

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA División de Estudios de Postgrado

ESTUDIO PETROFISICO DEL PLAY PALEOCENO WILCOX AL OESTE DE LA CUENCA DE BURGOS, EN EL AREA CHINA-BARRILETE ESTADO DE NUEVO LEON.

T E S I S

QUE PARA OBTENER EL GRADO DE:

MAESTRO EN INGENIERÍA

(EXPLORACIÓN DE RECURSOS ENERGÉTICOS DEL SUBSUELO)

PRESENTA:

JESUS ALEJANDRO GARCIA ARIAS

Director de Tesis: DR. JOAQUÍN EDUARDO AGUAYO CAMARGO

Ciudad Universitaria

Noviembre de 2006

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. Estudio Petrofísico del Play Paleoceno Wilcox al oeste de la Cuenca de Burgos en el área China-Barrilete Estado de Nuevo León.

ÍNDICE.

RESUMEN.

I-.INTRODUCCIÓN.

II-. GENERALIDADES.

- 2.1.- Localización del área de estudio.
- 2.2 Objetivo.
- 2.3 Metodología.
- 2.4. Antecedentes.
- > 2.4. a. Geofísicos.
- 2.4. b. Geológicas.

III -. MARCO GEOLÓGICO.

- 3.1.- Tectónico estructural.
- 3.2. Estratigrafía del Paleoceno Wilcox.

IV -. INTERPRETACIÓN.

- 4.1 Evaluación Petrofísica sección norte.
- 4.2.- Evaluación Petrofísica sección centro.
- 4.3.- Evaluación Petrofísica sección sur.
- 4.4.-.Interpretación de las tres secciones, mapas base y configuraciones.

V -. SISTEMA PETROLERO.

VI -. CONCLUSIONES Y RECOMENDACIONES.

BIBLIOGRAFIA

Apéndice

Evaluación petrofísica y cross plot de los pozos

- 1. Alicata-1.
- 2. Capitán-1.
- 3. Cenicerito-1
- 4. Coli-1.
- 5. China-104.
- 6. Flamante-1.
- 7. Neira-1.
- 8. Otoño-1.
- 9. Surco-1.
- 10.Tecuma-1.
- 11. Zinfandel-1.

Mapas y secciones sísmicas.

- a.- Mapa base.
- b.- Mapa con los pozos productores y que manifestaron en el Pwx.
- c.- Mapa con la configuración de la cima del Pwx.
- d.- Mapa con la configuración de la cima del Pmdy.
- e.- Mapa con los espesores del Pwx.
- f.- Sección sísmica con pozos de la parte norte.
- g.- Sección sísmica con pozos de la parte centro.
- h.- Sección sísmica con pozos de la parte sur.

Estudio Petrofísico del Play Paleoceno Wilcox al oeste de la Cuenca de Burgos en el área China-Barrilete Estado de Nuevo León.

RESUMEN

Se realizó la evaluación petrofísica de 20 pozos que se encuentran localizados en el área del cubo China – Barrilete, de la Cuenca de Burgos, con el propósito de evaluar su potencial petrolero. De igual manera, se elaboró el mapa base con sus respectivos rasgos estructurales de fallas, con la finalidad de poder visualizar los diferentes espesores de cada pozo de la Formación Paleoceno Wilcox.

En el análisis e interpretación petrofísica se destaca que los rangos de porosidad varían de 5 a 20 %. En cambio, la saturación de agua no es muy variada porque la mayoría de los pozos están invadidos, esto se puede ver cuando la curva de resistividad somera rebasa a la curva profunda. Cabe mencionar que la interpretación realizada se apoyo con los datos arrojados de los estudios de laboratorio realizados a los núcleos de pared y convencionales. En los pozos productores y en los que manifestaron se puede observar el cruce entre las curvas de densidad y neutrón. De los cuatro pozos productores, que son el China-104, Zinfandel-1, Alicata-1 y Verano-1, el que mejor producción inicial obtuvo fue el Verano-1 con una Qg= 0.918 mmpcd; con una porosidad del 15% y una Sw= 59%.

La Formación Paleoceno Wilcox está compuesta de lutitas gris oscuro, arenosas, semiduras, con alternancias de areniscas gris claro y gris oscuro, con granos de cuarzo texturalmente finos, subredondeados, regularmente clasificados, semicompactos, en matriz arcillosa y cementante calcáreo. El depósito de esta formación se llevó acabo en un ambiente marino, interpretado en este trabajo, que puede corresponder a nerítico interno distal o proximal.

I. - INTRODUCCIÓN

Como una necesidad de incrementar la producción de gas y las reservas en el país, Petróleos Mexicanos ha establecido una política intensa de exploración en todas las zonas del país.

Con esta idea y a través de la Maestría en Ingeniería Petrolera y Gas Natural, impartida por la Universidad Nacional Autónoma de México, PEMEX solicitó realizar un proyecto integral para evaluar el potencial petrolero del Play Paleoceno Wilcox al occidente de la Cuenca de Burgos.

Esta tesis trata únicamente lo correspondiente a la evaluación petrofísica del Play Paleoceno Wilcox, y se apoya en los datos de las otras disciplinas, que en conjunto, forman el proyecto integral realizado.

II. – GENERALIDADES

2.1. – Localización del área de estudio

El área de estudio China – Barrilete tiene aproximadamente 525 Km^2 . se ubica al suroeste de la Cuenca de Burgos, en el municipio de China Nuevo León, entre las coordenadas geográficas 99° 19′ 85′′ a 99° 00′ 00′′ de longitud oeste y los paralelos 25° 50′ 20′′ a 25° 36′ 20′′ latitud norte. Geológicamente pertenece a la Cuenca de Burgos. (fig. 2.1).

Fisiográficamente, la Cuenca Terciaria de Burgos, ubicada en el noreste de México, cubre un área aproximada de 50 000 km2. Geológicamente tiene continuidad al norte con el embahiamiento del Río Grande en la región sur de Texas, E.U.A., al sur está limitada por la Cuenca Tampico – Misantla, al oriente se continua hacia la Plataforma Continental del Golfo de México y al occidente la delimitan afloramientos que marcan el contacto Cretácico – Terciario.

Fig. 2.1 Mapa de localización del área de estudio.

2.2. – Objetivo

1-. Identificar y evaluar los cuerpos de arenas productoras del play Paleoceno Wilcox, del área China – Barrilete.

2-. Evaluar el potencial petrolero dentro del play Paleoceno Wilcox.

2.2. – Metodología

Se desarrollaron diversas actividades (fig. 2.1), las cuales se subdividen en tres etapas:

a) Recopilación de información. En esta etapa se conjuntó el material bibliográfico disponible de la zona y se analizó, De igual manera se cargaron 28 archivos en formato LAS de información de curvas de registros geofísicos, los cuales se revisaron y se editaron, así mismo, se normalizaron las curvas rayos gama (GR) y potencial espontáneo (SP), dando como resultado una base de datos confiable y la generación de un mapa base. Esta primera etapa se trabajó en la plataforma Geoframe (fig. 2.2).

b) Interpretación. Una vez validada la información, se realizó la evaluación petrofísica de los pozos del área mediante la herramienta Interactive Petrophysics con el cual se calcularon los parámetros Rw, salinidad, porosidad, saturación de agua, saturación de hidrocarburos y gradiente de temperatura, para cada uno de los pozos a evaluar, de igual manera, se apoyó con los valores petrofísicos arrojados de los núcleos de tapón. Cabe mencionar que la interpretación y el cálculo de sus parámetros, se realizó cualitativamente y cuantitativamente.

c) Análisis e integración. Consistió en el procesamiento de los datos obtenidos en la interpretación y su influencia en el sistema petrolero del área.

Fig. 2.1. Diagrama de flujo de trabajo. Aquí se muestran desglosadas las actividades que se realizaron desde la recopilación y validación de la información hasta la evaluación petrofísica e interpretación de los datos obtenidos y su relación con el sistema petrolero.

Fig. 2.2 Mapa base generado a partir de la base de datos. Aquí podemos observar la localización de los 4 pozos productores en el Pwx, así como los 4 pozos que tuvieron manifestaciones en el Play Pwx durante su perforación, este fue el primer producto del diagrama y nos permite visualizar en forma general el comportamiento del play de acuerdo con la geología general de la región.

2.3. – Antecedentes

La Cuenca de Burgos inicia su exploración en la década de 1930, en los estados de Tamaulipas y Nuevo León. Actualmente, esta cuenca es la principal productora de gas no asociado de México, la cual está en una etapa de exploración y explotación madura. Su columna sedimentaria siliciclástica terciaria, relacionada con el desarrollo de sistemas deltaicos, que llegan a tener un espesor aproximado de 10 000 m., está asociada a una serie de eventos que dan lugar al desarrollo de sistemas de fallas normales regionales con orientación general NW – SE, relacionándose a ellas los principales yacimientos, que a la fecha suman un total de 185 campos, con una producción acumulada de 5 772 mmmpc y una producción diaria que recientemente alcanzó los 1 035 mmpc.

2.3. a. – Geofísicos.

En el área se han realizado estudios petrofísicos a núcleos de pared y convencionales, así como evaluaciones petrofísicas con registros geofísicos. Algunos de los trabajos son los siguientes: pozo Alicata-1, González y García, (2003), NuTech energy alliance, (2003), pozo Zinfandel-1, González y Sowers, (2003), NuTech energy alliance, pozo Capitán-1, NuTech energy alliance, (2004), pozo Cenicerito-1, NuTech energy alliance, (2004), pozo Coli-1, Kelton y Mosley, (2003), pozo Genoma-1, (2003),

De los pozos perforados solo siete de ellos cuentan con un conjunto básico de curvas de información, y el pozo Marfil-1 es el único del área que solo tiene las curvas Sp y de resistividad. Por tal motivo, no se pudo realizar su evaluación petrofísica. El resto de los pozos, al ser más recientes, cuentan con mayor número de curvas y de estudios petrofísicos.

2.3. b. – Geológicos.

El área se encuentra cubierta por sedimentos aluviales del Reciente (fig. 2.3.b.1).

Hasta la fecha, se han perforado 28 pozos en el área, los cuales han cortado una columna sedimentaria que va desde el Reciente hasta el Cretácico Superior Méndez.

La columna estratigráfica representativa del área esta dada por las columnas de los pozos Capitán-1, Marfil-1, Barrilete-1 y Otoño-1 que son los más completos. A continuación se describen las formaciones y las litologías encontradas en dichos pozos.

Edad: Cretácico Superior. Formación: Méndez.

Se constituye por lutitas de color gris oscuro y negro, semiduras, calcáreas, en partes limolíticas, con delgados horizontes de mudstone gris oscuro, la biozona esta determinada por Heterohelix striata, Pseudotextularis deformis, Globotruncanita stuarti. (Saucedo, 1990).

Edad: Paleoceno Inferior.

Formación: Midway.

Formación constituida por lutita gris oscuro, semidura, arenosa, calcárea, alternando con areniscas gris clero y gris oscuro, de granos finos de cuarzo, subredondeados, regularmente clasificados, semicompacta, en matríz arcillosa y cementante calcáreo. Su batometría corresponde al nerítico medio. La biozona quedo definida por Pseudohastigerina wilcoxensis, Lentuculina wilcoxensis, L. midwayensis, Pseudoglandulina manifiesta, Vaginulinopsis tuberculata, Haplopragmoides topagorukensis, Nodosaria affinis, Globigerina sp, Anomalita sp (Franco, 2004).

Edad: Paleoceno Medio.

Formación: Wilcox.

Constituida litológicamente por una secuencia de lutita gris oscuro, semidura, arenosa y calcárea, con alternancia de areniscas gris claro y gris oscuro, de granos finos de cuarzo, subredondeados, regularmente clasificados, semicompacta, en matríz arcillosa y cementante calcáreo.

La biozona presente es de Morozavella angulata, Morozovella unzinata y Vaginulinopsis tuberculata con lo cual se le asigno una edad de Paleoceno Medio. El depósito de esta formación se llevo acabo en un ambiente marino indiferenciado, en algunos casos no se pudo determinar el ambiente ya que la fauna encontrada es muy escasa y ofrece poca preservación (Cornelio, 2003).

Edad: Eoceno Inferior.

Formación: Wilcox.

Litológicamente constituida por una secuencia de lutitas gris claro y gris oscuro, suave a semidura, arenosa y ligeramente calcárea. Alternando con cuerpos de arena, de color gris claro, de granos finos de cuarzo, subredondeados, regularmente clasificados, semicompactas, en matriz arcillosa y cementante calcáreo.

La biozona Acarinina soldadoensis le asigno la edad de Eoceno Inferior.

El medio de depósito se llevo acabo en un ambiente nerítico interno distal a nerítico interno proximal (Cornelio, 2003).

Edad: Eoceno Medio. Formación: Reklaw.

Constituida por cuerpos de lutitas gris claro, semidura, arenosa en partes y calcárea, alternando con paquetes de arenisca gris claro, de granos medios de cuarzo, subredondeados, regularmente clasificados, semicompactas, en matriz arcillosa y cementante calcáreo.

Su ambiente de deposito va de nerítico medio a interno.

Edad: Eoceno Medio.

Formación: Queen City.

Litológicamente es una secuencia alternada de lutitas y areniscas, las primeras de color gris claro, dura, arenosa y calcárea, las areniscas, son de color gris claro, de granos finos a medios de cuarzo, subredondeados, regularmente clasificados, semicompacta, en matríz arcillosa y cementante calcáreo.

Se le asigno una edad de Eoceno Medio, de acuerdo al cambio litológico y la correlación de los registros geofísicos y la relación de los reflectores sísmicos. Cabe mencionar que la formación Queen City pertenece a ambientes de nerítico interno distal a nerítico interno proximal, lo que propicia que la fauna sea escasa y en ocasiones nula.(Franco, 2004).

Edad: Eoceno Medio.

Formación: Weches.

La litología esta compuesta por lutitas de color gris claro y gris oscuro, semiduro, arenoso y calcáreo, intercalada con areniscas de color gris claro, de granos finos de cuarzo, subredondeados, regularmente clasificados, compacta, en matriz arcillosa y cementante calcáreo. La cima de esta formación por la biozona Textularia smithvillensis. (Cornelio, 2003).

Edad: Eoceno Medio. Formación: Cook Mountain.

La litología se compone de lutitas de color gris claro a gris oscuro, suave y ligeramente calcárea, con delgadas intercalaciones de areniscas, de color gris oscuro, de granos finos a medios de cuarzo, subredondeados, regularmente clasificados, semicompactos, en matríz arcillosa y cementante calcáreo. La biozona esta dada por la Ceratubilimina eximia (Franco, 2004).

Edad: Eoceno Medio.

Formación: Yegua.

Constituida principalmente por lutita gris claro a gris verdoso, café grisáceo, suave a plástica, con intercalaciones de pequeños cuerpos de arenisca gris claro, de granos finos de cuarzo, subangulosos a subredondeados, deleznable, en matriz arcillosa y cementante calcáreo (Franco, 2004).

La fauna característica esta dada por la biozona de Neopónides guayabalensis y Epónides yeguaensis (Cornelio, 2003).

La cuenca de Burgos muestra una columna sedimentaria Terciaria, desarrollada en etapas alternantes transgresivas y regresivas, que en conjunto constituyen un marco general regresivo hacia el oriente, de bajo relieve, con una lenta subsidencia en la que predominan ambientes deltaicos, costeros, marinos internos y medios.

Fig. 2.3.b.1. Columna estratigráfica representativa del área China-Barrilete. Modificado de Ortiz y Tolson.

El play Wilcox esta constituido por una secuencia areno – arcillosa, que se depósito durante una etapa predominante regresiva, que favoreció el desarrollo de numerosos cuerpos arenosos alargados en dirección norte-sur, formando sistemas de barras integrales y constructivas hacia el oriente, con edad del Paleoceno medio al Eoceno inferior, con rangos de espesores en el Eoceno de 20 a 70 m y porosidades de 12 a 21% y para el Paleoceno Wilcox con rangos de espesores de 5 a 65 m y porosidades del 15 al 20% (Echánove, 1976).

Estudios de paleosedimentación han podido logra definir una franja de producción del Eoceno al Paleoceno que se extiende desde Nuevo Laredo, Tamps. Con los campos Jaujal, Alondra y Peñalva hasta al sur de China, N.L. y en la cual se localizan los pozos productores Duna-1, Lobos-1, Calabaza-1, Verano-1 (Robles, 1982).

Hay evidencias de la existencia común de roca generadora, que presenta buenas condiciones de cantidad, calidad y madurez de la materia orgánica para la generación de hidrocarburos, relacionadas con rocas almacenadoras y sello, así como los procesos que incluyen la formación de la trampa-generación-migración y acumulación de los hidrocarburos.

Los yacimientos de hidrocarburos en el área están asociados primeramente a trampas estructurales y en segundo lugar a trampas estratigráficas y combinadas. Las trampas estructurales son del tipo anticlinal, a consecuencia del plegamiento y al fallamiento. Las trampas estratigráficas y combinadas se encuentran representadas por acuñamientos de arenas y discordancias.

La principal producción en el área y en el Play Paleoceno Wilcox, se encuentra en el pozo Verano-1, con una Qg= 0.918 mmpcd. A una profundidad de 2469 m. correspondiendo a un cuerpo arenosos de espesor bruto de 21 metros; con una porosidad de 16% y una saturación de agua de 59%.

III.- MARCO GEOLÓGICO

En este capitulo se discutirán de forma muy general y regional los principales eventos geológicos ocurridos en la cuenca de Burgos, y en forma mas detallada se analizarán los principales eventos tectónico – sedimentarios del Terciario, que servirán como marco de referencia al análisis sismoestratigráfico.

3.1.- Marco Tectónico – Estructural.

El origen de la cuenca de Burgos y de los paleoelementos del Noreste de México, están asociados a la apertura del protogolfo de México en el Jurásico Medio, como resultado de una etapa de ruptura (rift) acompañada de un fallamiento normal (Pérez, 1992).

Fig. 3.1 Diagrama de la Pangea y el Protogolfo de México, (Modificado de Salvador 1987).

Al concluir esta época, una subsidencia diferencial entre los bloques de basamento, da paso a depósitos marinos en el área. La sedimentación empieza durante el Calloviano, con la presencia de evaporitas; las condiciones de plataforma somera continúan presentes hasta el Oxfordiano con carbonatos de aguas someras arcillosas, así como capas rojas y evaporitas; en las áreas los paleoelementos circunvecinas а positivos la sedimentación fue predominantemente clástica. A fines del Jurásico Tardío (Kimmeridgiano-Tithoniano), al continuar los movimientos de subsidencia, las condiciones fueron de aguas mas profundas, dando márgen al depósito de carbonatos arcillosos y arcillas.

A partir del Berriasiano cesaron los movimientos horizontales de placas asociados con la apertura del Protogolfo de México, dando paso a una sedimentación predominantemente calcárea con influencia de evaporitas y presencia de terrígenos en las márgenes de las áreas que aun permanecían emergidas. Los ambientes de depósito a partir de esta época y hasta el término del Cretácico Temprano, varían de plataforma interna a mar abierto.

A fines del Cretácico Tardío se manifiestan los primeros movimientos del evento Laramide mediante un levantamiento en la parte oeste. Al término de esta época e inicios del Terciario los movimientos orogénicos alcanzaron su máxima expresión, incrementando con esto el aporte de clásticos; asociado a este fenómeno, durante el Paleoceno, una plataforma inestable con movimientos verticales y basculamientos, favorecieron el desarrollo de fallas normales escalonadas al oriente.

En el Eoceno Temprano se inicia el desarrollo de fallas de crecimiento, que forman estructuras rollover. Durante el Eoceno Medio-Tardío la actividad de las fallas de crecimiento se desplazan hacia el oriente de la cuenca y las fallas postdepósito siguen actuando.

2

Durante el Oligoceno, las fallas de crecimiento alcanzan su mayor desarrollo, en tanto que para el Mioceno Tardío estas dejan de actuar.

3.2.- Marco Estratigráfico del Paleoceno Wilcox.

Durante el Paleoceno Temprano una transgresión marina marca el inicio de una sedimentación fina, dando lugar a depósitos arcillo-arenosos de ambientes de plataforma media-externa a batial superior con desarrollos de areniscas turbidíticas que corresponden a la Formación Midway.

Para el Paleoceno Tardío un evento regresivo producto de una caída del nivel del mar, así como ajuste regional del depocentro del Río Houston, dan lugar al incremento de cuerpos arenosos dentro de una secuencia arcillo-arenosa que constituye a la Formación Wilcox.

PALEOCENO WILCOX

Definición: La primera referencia sobre la descripción de esta formación es la de : Crider y Johnson, (1906), en donde marcan como localidad tipo un afloramiento del condado de Wilcox, Alabama, en donde se identifica una serie de unidades con sedimentos que varían de gravas, arenas no marinas, arenas marinas y lutitas; esta formación es actualmente subdividida dentro de la Cuenca de Burgos en dos unidades cronoestratigráficas el Paleoceno Wilcox y el Eoceno Wilcox, ya que cada una de ellas presenta características litoestratigráficas, bioestatigráficas y ambientales particulares.

Litología y espesor: Constituida por una secuencia de lutitas gris oscuro, semiduras, arenosa y calcárea, con alternancias de areniscas gris claro y gris oscuro, de granos finos de cuarzo, subredondeados, regularmente clasificados, semicompactas, en matriz arcillosa y cementante calcáreo. (fig. 3.2).

En el Paleoceno se distingue una potente secuencia sedimentaria compacta de aproximadamente 1000 m. cortada por el pozo Neira-1.

La biozona presente es *Morozovella angulata, Morozovella uncinata* y *Vaginulinopsis tuberculata,* con las cuales se le asignó la edad Paleoceno Medio.

Relaciones estratigráficas: Sus contactos inferior y superior son concordantes con las formaciones Paleoceno Midway y Eoceno Wilcox respectivamente.

Origen: El depósito de la formación Wilcox marca un largo periodo de estabilidad tectónica relativa, de subsidencia lenta y progradante, que precedió a la etapa erosiva del Paleoceno Medio. Se depositó durante una etapa predominantemente regresiva que favoreció el desarrollo de numerosos cuerpos arenosos alargados, formando verdaderos sistemas de barras integrales y constructivas, progradantes hacia el oriente.

El depósito de esta formación se llevó a acabo en un ambiente marino indiferenciado, en algunos casos no se puede determinar el ambiente ya que la fauna encontrada es muy escasa y ofrece poca preservación.

El medio de depósito donde se originó esta sedimentación corresponde con ambientes de nerítico interno distal a nerítico interno proximal. Por su posición estratigráfica por la fauna *Acarinina soldadoensis* se le asignó una edad de Eoceno Inferior.

Fig. 3.2. Fotografía de lámina delgada del Paleoceno Wilcox, estas imágenes corresponden a la muestra 38R (2572 m) del pozo Coli-1, por sus componentes litológicos se clasificó como una arenita lítica y feldespática, la mayoría de las muestras caen dentro de esta clasificación. Estos resultados nos indican que nuestro yacimiento es compacto, con baja permeabilidad y porosidad.

IV. INTERPRETACIÓN.

4.1 - Evaluación Petrofísica, sección norte.

A partir del mapa base se realizaron tres secciones estratégicas de norte a sur, ver (fig. 4.1).

Fig. 4.1 Mapa base mostrando las tres secciones estratigráficas estratégicas, construidas con la finalidad de observar a través de los registros geofísicos, el comportamiento que tienen los cuerpos de arena.

Para la evaluación petrofísica se tomaron como referencia los datos del pozo Zinfandel-1, partiendo de una temperatura de fondo promedio de 110 °C a 2560 m.

y una temperatura superficial promedio de 25 a 30 °C y una salinidad promedio de 25, 000 a 30, 000 ppm. Arrojando una Rw promedio de 0.20 a 0.35 ohms.

La primera sección la tocan los pozos Barrilete-1, Zinfandel-1 y Alicata-1, (fig. 4.1). En el pozo Barrilete-1, de acuerdo a la expresión de la curva Sp se muestra un cuerpo compacto y arcilloso en su mayor parte; esto se demuestra con la presencia de alta resistividad y se confirma con la expresión de las curvas Rhob, Dt y Nphi (fig. 4.1.2). Durante la perforación del pozo no se presentó ninguna manifestación, por lo que en ese campo no existiría la posibilidad de encontrar hidrocarburos en este play.

Fig. 4.1.2. Evaluación petrofísica del pozo Barrilete-1. De acuerdo a la expresión que tienen las curvas de resistividad y las de porosidad, se puede observar que corresponden a cuerpos compactos.

Para el pozo Zinfandel-1, se pueden apreciar bien los cuerpos arenosos gracias a la expresión de la curva Gr, de acuerdo a esto en el intervalo 2474 a 2484 m. tenemos un cuerpo interesante que tienen la posibilidad de contener hidrocarburos un indicio es la presencia de las dos curvas de resistividad juntas y con un valor de Rt= 9.64 ohms, una porosidad de 15 % y una Sw= 60% (fig. 4.1.3). Dentro de este intervalo se cortaron cuatro núcleos de pared de los cuales se desprende que la porosidad varia de 8 a 11 %, la Sw= varia de 45 a 57% y una permeabilidad de 0.0010 a 0.0025 md. De acuerdo a su análisis petrográfico son areniscas gris claro, de granos muy finos a finos de cuarzo y líticos de moderados a bien clasificados, subredondeados, subangulosos y dúctiles, esfericidad baja, moderadamente consolidados, cementante ligeramente calcáreo, zona de flujo.

Fig. 4.1.3. Evaluación petrofísica del pozo Zinfandel-1. Como podemos observa se presenta el cross over entre las curvas Rhob y Nphi indicando la presencia de gas.

Otro intervalo con posibilidades de contener hidrocarburos es el de 2646 a 2651 m. donde la expresión de la curva Gr nos delimita un paquete arenoso de 5 m. y una Rt= 6.6 ohms. Además de observar que las curvas de resistividad van juntas (pegadas), lo que es un indicio de presencia de gas, también se puede corroborar con el cross over de las curvas Rhob y Nphi. (fig. 4.1.4). Existe la posibilidad que el cuerpo esté algo compacto porque la porosidad promedio es de 13 % y una Sw= 35%. De acuerdo a la litología se reporta 90% lutita gris oscura, semidura, arenosa y calcárea y 10% de arenisca gris oscuro, de granos finos de cuarzo, subredondeados, regularmente clasificados, semicompactas en matriz arcillosa y cementante calcáreo.

Fig. 4.1.4. Evaluación petrofísica del pozo Zinfandel-1. Aquí se muestra el cross over entre las curvas Nphi y Rhob, lo cual nos indica la presencia de gas, de los tres intervalos propuestos, solo se probó uno, por presentar mejores características petrofísicas en comparación a los otros dos.

Solo el intervalo 2564 a 2571 m es productor, con una Qg= 0.3387 mmpcd., presenta una Rt= 11.9 ohms, una porosidad de 21% y una Sw= 35 % (fig. 4.1.4). Dentro de este intervalo se cortaron tres núcleos de pared. De acuerdo a los resultados petrográficos son areniscas gris claro, de grano muy fino a medio, de cuarzo y líticos de pobre a moderadamente clasificados, de angulosos a subangulosos, subredondeados y dúctiles, esfericidad baja, moderadamente consolidada, cementante calcáreo, con porosidades que varían de 5.4 a 17.4%, Sw que van de 40 a 68% y permeabilidades de 0.0019 a 0.0024 md. (González y Sowers, 2003).

Durante la perforación hubo una manifestación a la profundidad de 2573 m con lectura de GL= 840 u.

En los análisis cross plot realizados a los núcleos de pared se observa que la mayoría de los puntos tienen porosidades entre 5 y 20%, con rangos de Sw= 40 a 90 %. Las graficas de Porosidad vs. Permeabilidad, Porosidad vs. saturación de agua, muestran que una tercera parte de los núcleos de pared tienen buena calidad de yacimiento. (Virgilio C. Rodríguez Lara, 2004).

Fig. 4.1.5. Cross plots del pozo Zinfandel-1. A través de estos diagramas vemos que la porosidad varía de 5 a 20%, con rangos de sw de 40 a 90% y permeabilidades de 0.001 a 0.1 md.

En el pozo Alicata-1, la expresión de la curva Gr nos permite reconocer cuerpos arenosos, pero desafortunadamente la mayoría de ellos están invadidos de agua y esto se puede apreciar cuando la curva somera (Ath10) sobrepasa en valor a la curva profunda (Aht-90), aunque también se puede apreciar que en el intervalo 2751 – 2754 m hay una arena muy compacta y esto se ve reflejado en los valores relativamente altos de resistividad Rt= 7 ohms y de igual forma se puede comprobar con las curvas Rhob y Nphi. (fig. 4.1.6). En este intervalo se cortaron dos núcleos de pared y de acuerdo a los resultados petrográficos, está compuesto de una lutita arenosa gris claro, compacta, ligeramente calcárea, con porosidades que varían de 7 a 8 % y Sw de 96 a 100%. (González y García, 2003).

Fig. 4.1.6. Evaluación petrofísica del pozo Alicata-1. Aquí se indica que el intervalo está invadido y la expresión de alta resistividad corresponde a un cuerpo compacto, esto se puede comprobar con la expresión de las curvas de Rhob y Nphi, aunado con la descripción petrográfica de los núcleos.

Se realizó una prueba de producción en el intervalo 2646-2651 del cual fluyó gas pero no se cuantificó aunque por las curvas de resistividad se puede apreciar que el intervalo tiene agua, con una Sw= 55% (fig. 4.1.8). En este mismo intervalo se puede apreciar el cross over entre las curvas de Rhob y Nphi indicando la presencia de gas. Los resultados del análisis petrográfico al intervalo, arrojaron que, litológicamente corresponde a areniscas gris claro, de granos muy finos a finos, en partes de cuarzo, bien clasificados, subredondeados y angulosos, esfericidad baja, porosidad primaria, moderadamente consolidada, cementante calcáreo, intercalada con horizontes de lutita gris oscura, trazas de pirita, con porosidades que van de 8 a 15 % y Sw entre 72 a 95 %.

De los 9 núcleos de pared que se cortaron para hacerles los análisis petrofísicos se observa que la permeabilidad va de 0.0009 a 1.494 md. (fig. 4.1.7). (González y García, 2003).

			RESU	JLTADOS	DE LA PET	ROFÍSICA BÁSICA - CMS	- 300	
Compañía: Pemex Exploración y Producción Pozo: Alicata No. 1 Campo: Exploratorio					Ubicación: Tipo de Núcleo: Tipo de Lodo:	APBR Muestras de Pared Base de Aceite	Fecha: Archivo: 29 Analistas:	Junio 2003 201R-030165 González
Número de Muestra	Profundidad (metros)	Porosidad (%)	Perm. Klinkenberg (md)	Densidad de Grano (gm/cm³)	Descripción			
21r	2175.00	17.8	0.0480	2.69	Arenisca gris subredondead ligeramente c	; clara de granos finos y los, subangulosos, esfericio alcáreo, clastos de lutita gris cla	muy finos de cuarzo y líticos bien ad baja, moderadamente consolida ara arenosa.	clasificados ada, cemento
Corrida 2 22r	2577.00	10.8	0.0028	2.68	Arenisca gris clasificados, moderadamei	clara de granos muy finos, fi subredondeados, subangulos nte consolidada, cemento tipo a	nos en parte medios de cuarzo y lítico os y dúctiles, esfericidad baja, porosi rcilloso, trazas de carbonatos y de pellef	s pobremente idad primaria is de arcilla.
23r	2579.00	11.8	0.0016	2.70	Arenisca gris clara de granos muy finos, finos en parte medios de cuarzo y líticos pobremente clasificados, subredondeados y subangulosos, esfericidad baja, porosidad primaria moderadamente consolidada, cemento tipo arcilloso, trazas de carbonatos, laminas de lutita.			
24r	2581.00	11.3	0.0036	2.71	Arenisca gris clara de granos muy finos, en parte finos y medios de cuarzo y líticos pobremente clasificados, subredondeados y subangulosos, esfericidad baja, porosidad primaria moderadamente consolidada, cemento tipo arcilloso, horizontes de lutita.			
25r	2582.00	10.4	0.3901	2.70	Alternancias o cuarzo, mod moderadame	de lutita arenosa gris oscura y eradamente clasificados, su nte consolidada, cemento tipo a	/ arenisca gris clara, de granos muy fi bangulosos y subredondeados, esfe rcilloso, trazas de carbonatos.	nos y finos d ericidad baja
26r	2648.00	15.3	0.0395	2.69	Arenisca gris subredondead calcáreo, mica	clara de granos muy fin os y angulosos, esfericidad l s de moscovita.	os en parte finos de cuarzo, bier baja, porosidad primaria, bien consoli	n clasificado dada, cemen
27r	2649.00	8.0	0.0093	2.72	Arenisca gris subredondead cemento calcá	clara de granos muy fin os y angulosos, esfericidad ba reo, horizontes de lutita gris os	os en parte finos de cuarzo, bier aja, porosidad primaria, moderadament cura.	n clasificado e consolidad
28r	2651.00	8.2	1.494	2.72	Lutita limosa d	afé clara, compacta y calcárea	, trazas de pirita.	
29r	2752.00	6.9	0.8831	2.73	Lutita arenosa falla.	gris clara compacta, ligerame	nte calcárea, con fracturas rellenas de c	alcita y reliz (
30r	2754.00	7.7	0.0235	2.73	Lutita arenosa	gris clara compacta, ligerame	nte calcárea.	

Fig. 4.1.8 Resultado petrofísica de los nucleos de tapón cortados en el pozo Alicata-1.

Fig. 4.1.8. Evaluación petrofísica del pozo Alicata-1. De acuerdo al cruce entre las curva Rhob y Nphi podemos deducir la presencia de gas, aunque también podemos ver que hay presencia de agua gracias a la expresión de las curvas de resistividad.

4.2.- Evaluación Petrofísica, sección centro.

La segunda sección incluye a los pozos Tecuma-1, Capitán-1, Marfil-1, Verano-1 y Coli-1. (fig. 4.1).

Fig. 4.1 Mapa base mostrando las tres secciones estratigráficas estratégicas, construidas con la finalidad de observar a través de los registros geofísicos, el comportamiento que tienen los cuerpos de arena.

Los pozos Tecuma-1 y Capitán-1 por las expresiones de las curvas Gr y Sp respectivamente nos muestran que son cuerpos compactos arcillosos que se pueden verificar con las expresiones de la curvas de densidad y neutron (fig. 4.2.1 y 4.2.2).

Cabe señalar que el pozo Capitán -1 presenta mayor cantidad de cuerpos compactos y prueba de ello son los valores de Rt de 4 a 6 ohms promedio y el empalme de las curvas de resistividad (fig. 4.2.2); en el pozo Tecuma-1 existen las mismas condiciones, sin embargo hay presencia de agua en algunos cuerpos de arena (fig. 4.2.1). Además durante la perforación de dichos pozos no hubo presencia de manifestaciones de hidrocarburos, determinando su nula posibilidad de contener hidrocarburos.

Fig. 4.2.1. Evaluación petrofísica del pozo Tecuma-1. Se observa que las curvas de resistividad presentan valores altos debido a la presencia de cuerpos compactos, esto se comprueba cuando la curva Nphi baja su valor de porosidad, en cambio la curva Rhob aumenta su valor de densidad.

Fig. 4.2.2. Evaluación petrofísica del pozo Capitán-1. Al igual que en el pozo Tecuma-1, se puede visualizar la presencia de cuerpos compactos, lo único que cambia es la curva sónica, en la cual se observa una variación pequeña en sus valores Dt.

Del pozo Marfil-1, se observa que la expresión de la curva Sp es muy arcillosa teniendo muy pocos cuerpos arenosos bien desarrollados. Una limitante para poder identificar cuerpos con posibilidad de hidrocarburos es la ausencia de la curva de resistividad somera, ya que en el pozo Marfil-1, solo se cuenta con la curva profunda. De este pozo solo se hizo una prueba de producción en el intervalo 2102 a 2115 m. habiendo fluido gas sin presión. La porosidad fue del 18% y la Sw de 48%. (fig. 4.2.3).

Fig. 4.2.3. Evaluación petrofísica del pozo Marfil-1. Aquí se observa que la curva Sp no tiene buena expresión, aunado a esto tenemos la limitación de que solo contamos con la curva de resistividad profunda, faltando la curva somera, para poder visualizar la existencia de otro intervalo importante.

En el pozo Verano-1, de acuerdo a la expresión de la curva Gr, no se observan muy bien los cuerpos arenosos o bien son cuerpos arcillo-arenosos (fig. 4.2.4). en los intervalos 2355 – 2372 y 2245 - 2265 m. se observan cross over de las curvas de densidad y neutron; pero son muy pequeños, ya que estamos hablando de espesores de 1 a 2 m. cuya porosidad es del 17% y Sw= 66%. Aquí también tenemos la limitante de falta de información, en todo el intervalo evaluado, en este caso la ausencia de la curva de resistividad somera, no nos permite visualizar si hay presencia de agua, gas o simplemente está compactado, ya que solamente
contamos con la curva de resistividad profunda, por lo que no se pueden identificar con más precisión cuerpos arenosos con potencial petrolero.

Fig. 4.2.4. Evaluación petrofísica del pozo Verano-1. De acuerdo al análisis, se muestra que la curva Gr casi no tiene expresión, ocasionándonos, una poca visualización de los cuerpos de arena, aunque se puede ver los cross over entre las curvas Nphi y Rhob, lo cual nos indica la presencia de gas, aunque tengamos intervalos de espesores muy delgados.

Solo el intervalo 2469 – 2490 es productor, con una Qg=0.918 mmpcd. cuyo espesor neto es de 21 m. Aquí si se puede apreciar el cuerpo arenoso gracias a la expresión del Gr, además de tener una Rt= 10 ohms, en este intervalo tenemos la

presencia del cross over entre la curva de densidad y neutron, la porosidad es del 15% y una Sw= 59%. (fig. 4.2.5).

Fig. 4.2.5. Evaluación petrofísica del pozo Verano-1. Este es el mejor pozo en cuestión de producción inicial, dentro del play, pero desafortunadamente solo contamos con una curva de resistividad, lo cual hace muy pobre su evaluación, aunque la única relevancia lo hace el cross over entre las curvas Nphi y Rhob, indicándonos la presencia de gas.

Por último, en el pozo Coli-1 se disparó el intervalo 2612 -2615 m del cual no fluyó gas y solo se recuperó agua salada de 4,400 ppm, esto puede ser debido a que en el intervalo la curva somera rebasa a la curva profunda indicando que hay presencia de agua, pero por la expresión se puede determinar que el intervalo está invadido. Presenta una Rt= 10 ohms, una porosidad de 16% y una Sw= 60%.

Arriba de este intervalo se cortaron cinco núcleos de pared cuyos valores de porosidad van de 6.8 a 9.6%. (fig. 4.2.6).

Fig. 4.2.6. Evaluación petrofísica del pozo Coli-1. Como podemos ver, el intervalo probado resultó estar invadido, esto se puede comprobar con las expresiones de las curvas de resistividad, ya que la curva somera sobrepasa a la curva profunda, indicando la presencia de agua. Otro rasgo visible es la compactación que presenta el cuerpo evaluado, que de acuerdo a los resultados obtenidos en los estudios de petrografía, nos indican rocas compactas.

De los intervalos 2556-2563 y 2570-2581 m. El primero se disparó, resultando invadido de agua salada de 4,400 ppm. Concluyéndose que el otro intervalo esta también invadido de agua salada, sus respectivos valores de Rt= 5 y 8 ohms,

porosidad del 15 y 10% y Sw= 65 y 70%. En los dos intervalos se cortaron 5 núcleos de pared, los cuales tienen una porosidad que va de 7 a 10% y una permeabilidad en el primer intervalo que va de 0.0006 - 0.0035 md y en el segundo intervalo de 0.0006 a 0.0010 md. (fig. 4.2.7).

Fig. 4.2.7. Evaluación petrofísica del pozo Coli-1. Como se indica, el intervalo disparado resultó invadido de agua salada, por lo consiguiente, y por sus mismas características petrofísicas, el segundo intervalo se dio como invadido. A través de la expresión de las curvas de resistividad se observa compactación y esto se puede comprobar con los resultados petrográficos de los núcleos que nos indican una arenita lítica compuesta de fragmentos de rocas ígneas, calizas, etc.

Se realizó el análisis cross plot a los intervalos probados (fig. 4.2.8), del pozo Coli-1, donde se observó que la mayoría de los puntos representan porosidades entre 14 y 17 %, y rangos de saturación de agua de 70 a 100 %, las resistividades verdaderas de formación son menores de 10 Ohms, excepto para la prueba 1, donde alcanza 12 Ohms. La calidad de la roca para fluir, en las pruebas 1 y 2, es mala, de acuerdo a los estudios petrográficos las areniscas son de granos muy finos. Durante la perforación se presentaron dos manifestaciones, una a la profundidad de 2545 m, con lectura de GL= 430 u, y la segunda manifestación a la profundidad de 2454 m. con lectura de GL= 330 u, en esta última se cortó un núcleo convencional en el intervalo 2460 a 2469 m. del cual se cortaron 9 tapones de pared del núcleo, los cuales se describieron petrográficamente como lutitas y lutitas limosas, muy bioturbadas, las que se encuentran interestratificadas con varias limolitas arcillosas, areniscas y areniscas arcillosas. (Rodríguez, 2003). Del análisis petrofísico se desprende que los valores de porosidad varían de 2.8 a 10.4 %, con una permeabilidad que va de 0.0005 a 0.005 md. Por evaluación de registros se tiene una porosidad de 12% y una Sw= 100% (Kelton y Mosley, 2003). La calidad del yacimiento, de acuerdo a los resultados, es de nula a muy deficiente.

Fig. 4.2.8 Cross plot del pozo Coli-1. De acuerdo a la clasificación de Folk. Las muestras caen dentro de arenisca lítica y feldespática, el rango de porosidad va de 4 al 18% y la permeabilidad varia de 0.0004 a 0.1 md.

En la mayoría de los pozos se han observado valores altos de resistividad debido a la presencia de cuerpos compactos, esto se corrobora al examinar las láminas delgadas y su descripción petrográfica del pozo Coli-1, en el cual tenemos que, de acuerdo a la clasificación de Folk, la mayoría de las muestras están clasificadas como arenitas líticas, compuestas de cuarzo, feldespato, fragmentos de roca ígnea, calizas, etc. (fig. 4.2.9). Ocasionando que las rocas estén compactas, por lo que aumenta la resistividad y disminuye la porosidad y la permeabilidad del yacimiento.

	PETROGRAF	ÍA DF	E LÁMINA DELGA	Pozo: Coli 1 No. Muestra: 39		
	121100104			Profundidad (m): 2468.50		
	IM	GENE	S 10A-10B			τ.
	1007		10 10 10 10 10 10 10 10 10 10 10 10 10 1			
Compañía	Pemer Exploración y P	roduce	ón Porosidad a helio- %:			
compania.	remex Exploration y r	Toutes	Development and a second and a	al and	1.4	
Pozo:	Coli 1		Permeabilid	ad-md:	0.001	and the standard states of the second
Ubicación:	Exploratorio, Cuenca d	le Burgo	os Densidad de	e matriz (gr/cm³):	2.71	
Profundidad (m):	2468.50	-	Número de	Muestra:	39	· A Contraction of the
Litologia:	Limolita Arcillosa		Tamaño Promedio(mm):			A second s
Clasificación (Feik):	Arenita Lítica y Feideaná	fica	Selección:	Moderadam	ente Buena	A STATE AND A STAT
onennoaeren (r eng.	Aronna Entra y ronatopa		evicevion.	nouvraden		
		Conteo	de Puntos			
Granos Detriticos	h		Arollia Autigénica			
Cuarzo	Monocristalino	22.0		Ciorita	0.7	a start the second start and store and store as
Feldersele	Policristalino	11	-	Cabinita	0.0	
Peldespato	Peldespato potasico Plaglaciaca	44.7		litta UE combinada	0.0	1 mm
Fragmanias Lilians	Fragmentos langos	14.7	4	indeterminada	0.0	
Pragmonico Encode	Fregmentos renevalidos	10.0	Camazios no Arolliosos	inter termination	0.0	
	Fragmentos de caliza	6.0		Cuarto autineno	0.0	
	Fragmentos de dolomía	0.7		Cuarzo microcristalino	Tr	
	Fragmentos de arenisca	0.0		Feidespata autigeon		and a second
	Fragmentos arcilosos	1.0		Dolomita-Fe	2.0	
	Pedernal	0.0		Calcita	0.0	A CHARGE STREET STREET ST
	Frag. Indeterminados	0.0		Calcita-Fe	0.7	The second s
Granos Sustitutidos	Calcita-Fe	6,3	1	Barita	0.0	
	Analcima	0.0		Siderita	0.0	
Accesorios	Micas	4.0	1	Analcima	0.0	
	Minerales pesados	0.7		Pirita	4.7	
	Foraminiferos	0.7		Óxido de titanio	1.0	
	Fósiles indeterminados	1.7	Porosidad			The second
	Materia orgánica	2.7		Intergranular	0.0	
	Glauconita	0.7		Intrablociástica	0.0	
	indeterminados	0.0		intragranular	Tr	A CALLER A CALLE
Matriz Detritica			1	Fractura	0.0	
	Arcilla	13.7	1	Móldica	0.0	0.1 mm
	Indeterminada	0.0		Missessation		

Fig. 4.2.9 Petrográfica de lámina delgada del pozo Coli-1. De acuerdo a la clasificación de Folk. Las muestras caen dentro de arenisca lítica y feldespática.

4.3.- Evaluación Petrofísica, sección sur.

La última sección incluye a los pozos China-104, Otoño-1, Cenicerito-1 y Surco-1. (fig. 4.1).

Fig. 4.1 Mapa base mostrando las tres secciones estratigráficas estratégicas, construidas con la finalidad de observar a través de los registros geofísicos, el comportamiento que tienen los cuerpos de arena.

En el pozo China-104, de acuerdo a la expresión de la curva Sp, no se aprecian cuerpos bien desarrollados de arena; se observa una columna arcillo arenosa. Este pozo fue productor en el intervalo 2044 – 2051 m. con una Qg= 0.4 mmpcd de gas, una Rt 10 ohms, porosidad promedio de 18% y Sw= 40%. (fig. 4.3.1). Cabe resaltar que la evaluación que se realizó a este pozo de desarrollo, no cuenta con la curva de resistividad profunda, al igual que las curvas de densidad y neutrón. Lo que hace que su interpretación no sea veraz.

Fig. 4.3.1. Evaluación petrofísica del pozo China-104. En este intervalo no se cuenta con la curva de resistividad profunda, la curva Sp no tiene una buena expresión, en general el pozo no cuenta con un set básico de curvas para una evaluación de formaciones.

Del pozo Otoño-1 se observa que la curva Sp tiene buena expresión, lo cual nos facilita identificar los cuerpos arenosos y sus posibilidades. Durante la perforación del pozo se detectaron dos manifestaciones a las profundidades 1721 y 1745 m. Revisando el registro geofísico, se observa un cuerpo arenoso que va de 1720 a 1745 m. aunque el análisis de las curvas de resistividad indican la presencia de agua. Desafortunadamente como no se cuenta con las curvas de densidad y neutrón, su evaluación es muy riesgosa para probar dicho intervalo, además se puede ver que su Rt es de 5 ohms, porosidad 21 % y Sw= 57%.(fig. 4.3.2).

Fig. 4.3.2. Evaluación petrofísica del pozo Otoño-1, aquí podemos suponer que el intervalo tenga agua, ya que la curva de resistividad somera rebasa a la curva de resistividad profunda, indicándonos la presencia de agua, pero también existe la posibilidad de tener hidrocarburos, ya que tenemos registradas dos manifestaciones durante la perforación, aunque hace falta la información de registros de densidad y neutron para poder disminuir las incertidumbres en este intervalo.

En este pozo se cortó un núcleo convencional en el intervalo 1877 a 1883 m,

del cual se recuperaron 5 m, y cuya descripción litológica es la siguiente, de acuerdo a cabrera 1979:

P.S. limolita de color gris claro, que gradúa a arenisca de grano fino, bien seleccionada, con delgadas intercalaciones de lutita del mismo color, con escasos fragmentos de cuarzo de grano medio.

P.M. arenisca de color gris claro, de grano fino, bien seleccionada, con escaso material orgánico negro, ligeramente calcárea.

P.I. limolita de color gris, ligeramente arenosa, que gradúa a arenisca de grano fino, del mismo color, con escasa pirita diseminada y ligeramente calcárea.

Observando la expresión de las curvas de resistividad, el pozo Cenicerito-1, está invadido de agua, aunque se pueden ver intervalos compactos, este pozo solo cuenta con la curva Sónica, lo cual hace más difícil su interpretación. (fig. 4.3.3).

Fig. 4.3.3. Evaluación petrofísica del pozo Cenicerito-1. Como podemos observar la curva de resistividad somera rebasa a al curva de resistividad profunda indicándonos la presencia de agua, por tal motivo el pozo se clasificó como improductivo, invadido de agua salada, aunque también se aprecia que hay presencia de cuerpos compactos y debido a los constituyentes litológicos tenemos valores altos de resistividad.

Por último, el pozo Surco-1 presenta una expresión bien definida por la curva Gr, delimitando los cuerpos de arena, y con ayuda de las curvas de resistividad se pueden diferenciar las arenas invadidas, de las productoras.

Dentro de este mismo pozo se dispararon tres intervalos.

El primer intervalo va de 2900 a 2913 m. del cual fluyó gas sin dato de cuantificación, con un valor de Rt= 8 ohms, una porosidad de12% y Sw= 60%. (fig. 4.3.4).

De acuerdo a la composición mineralógica de la roca, se tiene que para este intervalo, la roca esta compacta, lo que da como resultado la escasa o nula producción y con rangos de saturación de agua entre 55 y 70 %, de ahí que los resultados de las pruebas, no hayan sido satisfactorias, con producción baja de hidrocarburos. Su descripción litológica es la siguiente, 60% de arenisca gris oscuro y café claro, de grano fino de cuarzo, subredondeada, bien clasificada, semicompacta en matriz arcillosa y cementante calcáreo. (Franco, 2002)

Fig. 4.3.5. Cross plot del pozo Coli-1. Como se indica en los gráficos las muestran están clasificadas como areniscas líticas y feldespáticas, los rangos de porosidad varían del 5 al 18% y la permeabilidad va de 0.0004 a 0.02 md.

Fig. 4.3.4. Evaluación petrofísica del pozo Surco-1. De acuerdo a la expresión de las curvas de resistividad se observa que la formación está compacta y en algunas partes está invadida de agua, la compactación se puede comprobar con las gráficas de la calidad de la roca.

Del segundo intervalo (2726 a 2735 m). Fluyó gas con una Qg= 0.216 mmpdc, Qa= 48 bpd, resistividad de 10 ohms, porosidad del 15% y Sw= 60% (fig. 4.3.6). De acuerdo a la expresión de las curvas de resistividad hay presencia de agua en el intervalo, además se puede apreciar la presencia de gas por el cruce de las curvas de densidad y neutrón (fig. 4.3.6). La descripción litológica es 70% de arenisca gris claro y café claro, de grano muy fino a fino de cuarzo, subredondeada, bien clasificada, semicompacta en matriz arcillosa y cementante calcáreo. (Franco, 2002).

Fig. 4.3.6. Evaluación petrofísica del pozo Surco-1. En este caso se indica que las curvas de resistividad, nos muestran la presencia de cuerpos compactos, debido a este hecho vemos que la curva Nphi baja sus valores de porosidad, por otro lado se puede ver que la curva de resistividad somera rebasa a la curva de resistividad profunda, indicándonos presencia de agua, de igual manera se puede apreciar el cross over entre las curvas Nphi y Rhob mostrando la presencia de gas.

El último intervalo de 2439 a 2448 m fluyó gas con una Qg= 0.635 mmpcd, Qa= 46 bpd, resistividad de 7 ohms, porosidad del 14% y Sw 60%.

El cruce de las curvas de densidad y neutrón nos indica la presencia de gas en el intervalo (fig. 4.3.7). Su descripción litológica es de 50% lutitas gris oscuro, semidura, arenosa y calcárea y 50% de arenisca gris claro y oscura, de grano fino

de cuarzo, subredondeado, moderadamente clasificado, semicompacto, en matriz arcillosa y cementante calcáreo. (Franco, 2002).

Cabe señalar que por la expresión que muestran las curvas de resistividad se pueden separar los intervalos productores de los intervalos invadidos.

Fig. 4.3.7. Evaluación petrofísica del pozo Surco-1. Se observa que la formación está compacta. Un rasgo importante que reflejan las curvas de resistividad, es que los cuerpos de arena superior e inferior del intervalo probado están invadidos de agua salada y en el intervalo probado se puede apreciar que tiene agua, pero también gas, esto se comprueba por el cross over entre las curvas Rhob y Nphi.

El pozo Flamante-1, de acuerdo a la curva Gr, tiene buena expresión y se pueden identificar bien los cuerpos arenosos, pero desafortunadamente dichos cuerpos

están muy compactos, lo cual se puede ver a través de la expresión de empalme que tienen la curvas de resistividad. De igual forma las curvas de densidad, neutron y sónica reflejan la existencia de cuerpos compactos. De los resultados de la evaluación se tienen porosidades que varían de 5 a 20 % y Sw= del 100 %. (fig. 4.3.8). De este pozo se cortaron 35 muestras de pared, de las cuales solo 8 pertenecen al Paleoceno Wilcox. Lo que resalta que su porosidad varia de 4.6 a 12 %, Sw= 90 a 100 % y con permeabilidades entre 0.0019 y 0.1121 md.

Fig. 4.3.8. Evaluación petrofísica del pozo Flamante-1. Lo que se muestra aquí es que la formación está compacta y esto se puede comprobar por la expresión de las curvas de resistividad, en conjunto con las curvas de densidad y neutron. Los estudios petrográficos realizados a los núcleos de pared. Nos indican arenitas líticas, cuyos constituyentes líticos son fragmentos de rocas ígneas, calizas, etc.

Se elaboró un diagrama ternario (Fig. 4.3.9) en donde se muestra que la mayoría de las muestras se clasifican como areniscas líticas y feldespáticas, de acuerdo con la clasificación de Folk, su composición mineralógica consiste de cuarzo, fragmentos de roca ígnea, caliza, metamórficos, dolomía, pedernal, plagioclasa, feldespato, etc. Hay indicios de reemplazamiento de granos por calcita ferrosa, dentro de los minerales accesorios se encuentran las micas, minerales pesados y glaucomita, la relación del grano es muy fino, la materia orgánica (fragmentos de plantas) son comunes en las areniscas arcillosas y limonitas arcillosas (Beckner, Mosley, 2003). En el cross plot realizado nos indica que la porosidad tiene un rango del 5 al 18%, con una permeabilidad que varia del 0.008 al 0.2 md y una saturación de agua es cercana al 100 %. La calidad de la roca para fluir es de regular a mala, ya que se acerca a lo compacto donde no se tiene producción, y es irrelevante la simulación, (Cornelio, 2003).

Durante la perforación solo hubo una manifestación a la profundidad de 2523 m. G.L.= 969 u.

Fig. 4.3.9. Cross plot del pozo Flamante-1. Como se indica en los gráficos las muestran están clasificadas como areniscas líticas y feldespáticas, los rangos de porosidad varían del 5 al 18% y la permeabilidad va de 0.008 a 0.2 md.

4.4.-.Interpretación de las tres secciones y mapas de configuraciones.

En la sección de la (fig. 4.4.1). Se puede observar que los reflectores sísmicos son discontinuos, notando que el Paleoceno Wilcox esta muy deformado y muy afallado, en comparación a las formaciones superiores, que presenta una continuidad en sus reflectores. En el pozo Barrilete-1 de acuerdo a su posición estructural, el Paleoceno Wilcox posee poco interés petrolero, aunque cabe señalar que sus reflectores sísmicos presentan continuidad, en cambio, en el pozo Zinfandel-1 se nota una discontinuidad en cuestión a sus reflectores, debido probablemente al intenso fallamiento, provocando que los bloques presenten una rotación entre ellos. Además se muestra que los intervalos productores están dentro de una cuña de arena definida por la sísmica, pero desafortunadamente el pozo cortó la parte baja de la cuña, con lo cual se puede inferir que su mejor posición está hacia el este, ya que posiblemente llegue a invadirse en poco tiempo, quedando un remanente de hidrocarburos importante. En el pozo Alicata-1, uno de los intervalos que manifestaron se encuentra ubicado en una cuña de arena, cuya geometría fue definida por los reflectores sísmicos, y de igual manera se ven discontinuos. La otra manifestación esta ubicada fuera de las cuñas.

Cabe mencionar que la falta de datos e historia de producción de los pozos mencionados, nos conduce a dudar cual fue el resultado oficial de su terminación, es necesario contar con el análisis de posperforación, para poder dictaminar cual o cuales elementos del sistema petrolero fallaron.

A través de esta sección se puede inferir que el aporte sedimentario fue de oeste a este, observando que la parte este es de mayor espesor.

Fig. 4.4.1. Sección sísmica de la porción norte. Como se indica en la presente el Paleoceno Wilcox está muy deformado y afallado. Sus reflectores en su mayoría se ven discontinuos en comparación a las formaciones superiores, lo cual hace difícil definir la geometría y distribución de los cuerpos de arena.

En la segunda sección (fig. 4.4.2). Se ven claramente los reflectores sísmicos del Paleoceno Wilcox, en la parte oeste, presentan una continuidad más o menos bien definida, aunque en la parte inferior de la formación se muestran discontinuos, esto se pone de manifiesto en los pozos Tecuma-1 y Capitán-1, pero generalmente el Paleoceno Wilcox está fallado, provocando la separación en bloques. La parte central de la sección está muy deformada. Llama la atención el pozo Marfil-1, que por su posición estructural, su intervalo arenoso cae en la parte baja de la cuña, con lo cual su producción no fue medida o se invadió, pero de

acuerdo a la geometría de la cuña su mejor posición seria en la parte este del mismo pozo. En cambio, para el pozo Verano-1 su intervalo de prueba corresponde a la parte mas alta de la cuña de arena y con esto se puede comprobar que debido a su posición estructural el pozo tuvo un gasto inicial de gas muy bueno. Para el pozo Coli-1 se analizó que sus reflectores sísmicos presentan buena continuidad, y definen muy bien la geometría de la cuña de arena, de igual forma presenta una buena posición estructural pero desafortunadamente los tres intervalos probados resultaron invadidos de agua salada.

Fig. 4.4.2. Sección sísmica de la porción centro. En esta sección se ve claramente que el aporte sedimentario va en dirección oeste a este, aunque también se muestra lo afallado y deformado que esta el Pwx. De igual manera se puede ver la buena posición estructural de la cuña de arena productora en los pozos Verano-1.

En la tercera sección (fig. 4.4.3), la parte oeste no se encuentra muy fallada en comparación con la parte este, aunque en la porción del Paleoceno Wilcox sus reflectores sísmicos se vean caóticos y discontinuos. Para el pozo China-104, que produce en esta formación, de acuerdo a sus reflectores sísmicos, define una cuña alargada, la cual es continua. La parte central de la sección está muy afectada por fallas, las cuales separan las cuñas en bloques. El pozo Otoño-1 presenta buena situación estructural y de acuerdo a los resultados en la perforación se tienen posibilidades de contener hidrocarburos, pero la evaluación de registros geofísicos arroja que hay presencia de agua. El pozo Cenicerito-1, por su posición estructural, la geometría de sus cuñas y por evaluación de registros geofísicos, está invadido de agua salada. En el pozo Surco-1, sus intervalos probados presentan reflectores sísmicos con buena continuidad, de igual forma tienen buena situación estructural, pero solo la tercera prueba de producción esta ubicada en la parte mas alta de la cuña de arena y desafortunadamente uno de los elementos del sistema petrolero no funcionó, los dos intervalos restantes resultaron invadidos de agua salada.

Al igual que en las otras dos secciones, el sistema de fallas tienen su bloque caído hacia el este y que en conjunto forman un escalonamiento una con respecto a otra, otro rasgo presente es la mayoría de los planos de falla, tienden a juntarse, concluyendo que las fallas mas grandes y profundas resultan ser las fallas maestras.

Fig. 4.4.3. Sección sísmica de la porción sur, en esta imagen se puede visualizar la discontinuidad de los reflectores una característica del Pwx, al igual que en las otras dos secciones se muestra la caída de los bloques de fallas hacia el este en forma escalonada.

De las tres secciones sismo estratigráficas se infiere que el aporte de sedimentos fue de oeste a este, de igual forma el fallamiento va en igual dirección, notándose la caída de los bloques, uno con respecto al otro, en forma escalonada, y esto se visualiza en los mapas de configuración de cima y base del Paleoceno Wilcox (fig. 4.4.4 y 4.4.5).

Fig. 4.4.4. Mapa Estructural de la Cima del Paleoceno Wilcox, como se indica aquí las cimas mas someras se encuentran en la parte oeste en comparación a la parte este que se encuentra la cima mas profunda.

De acuerdo a la configuración de la cima del Paleoceno Wilcox en el mapa (fig. 4.4.4, 4.4.5 y fig. 4.4.7). Se muestran que los pozos que se localizan al oeste, su cima se ubica más somera, a comparación de los pozos que se encuentran al este, cuya cima está más profunda. También se infiere que estos rasgos están controlados por la acción de las fallas y la sedimentación del área.

Fig. 4.4.5 Mapa Estructural de la Cima del Paleoceno Midwey, se muestra que la cima se encuentra más somera en la parte oeste en comparación a la parte este que se encuentra mas profunda.

De igual forma, se puede mostrar que los espesores (fig. 4.4.6 y fig. 4.4.7). Son congruentes a la configuración de las fallas. Prueba de ello es que los pozos de un mismo campo presentan casi el mismo espesor entre ellos, en cambio, los pozos que están más alejados poseen un espesor diferente, como por ejemplo el pozo Neira-1, que es el único que cortó 958 m de espesor del Paleoceno Wilcox. Se infiere que los pozos productores están situados y bien definidos en bloques y que los procesos sedimentarios y tectónicos, contribuyeron para que el sistema petrolero funcionara, en los referidos pozos.

Fig. 4.4.6. Mapa Estructural de los espesores posibles del Paleoceno Wilcox.

Fig. 4.4.7. Variación de la columna sedimentaria en la Cuenca de Burgos.

(Modificado de Bebout, et al., 1982.)

V.- SISTEMA PETROLERO.

En la Cuenca de Burgos se tiene identificado el sistema petrolero Wilcox. La evidencia para la postulación de ésto, se basa en la existencia de roca generadora, que presenta buenas condiciones de cantidad, calidad y madurez de la materia orgánica para la generación de hidrocarburos, relacionadas con las rocas almacenadoras y sello, así como los procesos que incluyen la formación de la trampa-generación-migración y acumulación de los hidrocarburos.

Este sistema se encuentra ubicado en la parte centro-occidental de la cuenca, a manera de franja norte-sur, y las rocas generadoras son las gruesas secuencias arcillosas de las formaciones Midway, Wilcox del Paleoceno y Wilcox del Eoceno, considerada esta última como la principal. (fig. 5.1).

Fig. 5.1. Distribución del sistema petrolero de la Cuenca de Burgos.

ROCA GENERADORA.

La capacidad de generación de gas de la Formación Paleoceno Wilcox varia desde pobre (C. O. T. < 0.5%), asociado a un ambiente salobre y nerítico interno, a regular (C. O. T. de 0.5-1.0%), asociado a un ambiente nerítico medio; la mejor capacidad para generar, con potencial bueno (C. O. T. de 1.0 a 2.0%) ocurre en la parte mas profunda de la cuenca asociado de ambientes nerítico externo a batial superior. (Ziga et al, 1198). El potencial generador de esta roca va de bueno a pobre en sentido W-E (fig. 5.2).

Fig. 5.2 Potencial generador Paleoceno Wilcox, (Ziga et al, 1998).

Madurez.- La cima del Paleoceno Wilcox, varía desde inmadura (Ro < 0.5%), a madura (Ro > 0.5%) dentro de la ventana de gas húmedo, donde ocurre la generación de condensado, observándose que la madurez aumenta hacia el oriente, debido a la actividad de las fallas de expansión, que actuaron durante el Paleoceno Tardío al Eoceno Temprano (58.5-49.5 ma) (fig. 5.3)

Fig. 5.3 Madurez Cima Paleoceno Wilcox, (Ziga, 1998).

Tipo de materia Orgánica.- El tipo de materia orgánica para el Paleoceno Wilcox esta formada por kerógeno tipo III y IV, por lo que solo produce gas seco y escaso condensado. (fig. 5.4)

Fig. 5.4 Gráfica de Van Kreevelen, (Ziga et al, 1998).

ROCA ALMACENADORA.

La principal roca almacén para este sistema la constituyen cuerpos de areniscas dentro de la formación Wilcox, depositados en una ambiente de frente deltaico dominado por el oleaje. De acuerdo a los resultados de los registros geofísicos, los intervalos probados tienen una porosidad entre 10 y 15 %, de tipo intergranular como intragranular y en ocasiones secundaria, móldica e intercristalina, con una saturación de agua de 35 a 70 %. De acuerdo a los resultados de los análisis de núcleos de pared, la porosidad es de entre 5 y 17%, con una permeabilidad que va de 0.0003 a 1.494 md. Los espesores brutos de la roca almacén fluctúan entre los 18 y 30 m, en tanto que sus espesores netos lo hacen entre 5 y 15 m.

Los sistemas regionales de fallas de expansión ejercieron una gran influencia en el depósito de estos cuerpos arenosos, ya que originaron grandes depocentros en los bloques bajos de las fallas. (fig. 5.5).

Fig. 5.5. Diagrama de la roca almacenadora, donde observamos la distribución y espesor de los paquetes de arena.

ROCA SELLO.

La roca sello de acuerdo a los registros de inducción corresponde a lutitas con espesores que varían de 50 a 200 m; dependiendo del pozo al que se esté refiriendo. También se observa que a nivel regional el play posee un sello tanto superior, como inferior (fig. 5.6).

Fig. 5.6. A través de esta correlación de electrofacies se comprueba que la roca sello esta presente en el Paleoceno Wilcox.

TRAMPA.

Para este sistema, los tipos de trampas dominantes son estructuras rollover, asociadas a las fallas de crecimiento, así como cierres contra falla en bloques altamente compartamentalizados, que se formaron entre 33.5 a 29.0 m.a. (fig. 5.7).

Fig. 5.7. A través de estas figura se indica que tenemos buenas trampas tanto estructurales, como estratigráficas y combinadas.

SINCRONIA Y MIGRACION.

Las rutas de migración son de tipo vertical y lateral, probablemente se efectuó inmediatamente a la generación de los hidrocarburos a partir del Paleoceno Tardío – Eoceno Temprano (58.5 – 49.5 m.a.). El alineamiento de los campos de gas asociados a los sistemas de fallas regionales expansivas que se han observado tanto en Texas como en la Cuenca de Burgos, sugiere que la migración de los hidrocarburos está sujeta a un control tectónico responsable de la distribución y espesor de los cuerpos arenosos que constituyen los principales yacimientos, caracterizados por la mezcla de metano de origen termogénico y biogénico con contenidos de gas húmedo que varían de 5 a 20 % , así como a la distribución y tamaño de las trampas, la madurez de los focos de generación de las rocas generadoras y las rutas de migración entre los focos de generación y las trampas (fig. 5.8).

Jurásico	Cretácico	Paleocen	Eoceno	Oligoceno	
150 	140 130 120 110 100 90 80 70	60	50 40	30 	Edad (MA)
					Roca Generador
					Roca Almacenador
					Roca Sello
					Formación De Trampa
					Generación
					Migración
	eradora : Jur. Sup. Pimienta (150.9-144.2 m.a.)Ker.I; Cr 5-60.9m.a.)Ker. III	et. Sup.	Agua Nueva (a	89-94m.a.) 8m a): Eo	,Ker. II; Paleocenc

Cuenca de Burgos													
Diagrama de Sincronía Pozo Surco-1													
Jurásico	Cretácico Paleo									Eo	ceno	Oligoceno	
150	140 	130 	120 	110 	100 	90 	80	70 	60 	50	40	30 	Edad (MA)
													Roca Generador
													Roca Almacenador
													Roca Sello
											Formación De Trampa		
											Generación		
													Migración
Roca Generadora : Jur. Sup. Pimienta (150.9-144.2 m.a.)Ker.I; Cret. Sup. Agua Nueva (89-94m.a.),Ker. II; Paleoceno Midway (65-60.9m.a.)Ker. III Roca Almacenadora : Paleoceno Midway sup. (65-58.5m.a.); Paleoceno Wilcox (58-54.8m.a.); Eoceno Wilcox (54.8- 51.1m.a.). Roca Sello : paleoceno Midway y Wilcox; Eoceno Wilcox. Formación de la Trampa : Estructural, PAL. Midway (65-58m.a.); Pal Wilcox (58-54.8 m.a.); Eoceno Wilcox (54.8- 51.1m.a.). Generación : Jur.Pimienta (103-65 m.a.); Cret. Agua Nueva (60-55 m.a.); Pal. Midway (53-32 m.a.). Migración : Jur. Pimienta (65-52 m.a.); Cret. Agua Nueva (55-50 m.a.); Pal. Midway (32-10). Hidrocarburos : Gas Seco.													

Fig. 5.8. Diagrama de sincronía. Aquí podemos apreciar la edad de cada uno

de los elementos del sistema petrolero.

VI.- Conclusiones y Recomendaciones.

Conclusiones

- De acuerdo a la calidad y veracidad de la información, el play es poco atractivo para su exploración, ya que existen muchas dudas en los resultados de los pozos desde su historia de perforación, así como en la terminación de los mismos y sus aforos.
- En algunos pozos se observa que la posición en la que fueron perforados no fue la más adecuada, ya que cortaron la base de la cuña de arena, haciendo que al dispararlos, manifestaran pero en poco tiempo se invadieran de agua salada.
- De los cuatro pozos productores en el play Paleoceno Wilcox, el de mejor producción inicial fue el pozo Verano-1, y esto se debió principalmente a que fue perforado en una buena posición estructural
- De la evaluación petrofisica se observó que la mayoría de los pozos están invadidos de agua salada en el play Paleoceno Wilcox.
- De la expresión de las curvas de resistividad, se muestra en algunos pozos, valores altos de resistividad, pero desafortunadamente no fue debido a su contenido de hidrocarburos, ya que analizando su litología, se encontró, fragmentos de roca de calizas, líticos y varios minerales pesados, los cuales por su densidad afectan los valores de resistividad y ésto se puede comprobar con las expresiones que presentan las curvas de densidad y neutrón.

- En el pozo Otoño-1, del análisis del cruce de la curva de densidad y neutrón se puede apreciar el efecto de gas, pero desafortunadamente los estratos son de espesores son muy pequeños, lo cual los hacen poco atractivos para su explotación.
- De los pozos que se obtuvieron núcleos de pared, como convencionales, faltaron sus estudios petrofisicos y petrográficos.

Recomendaciones.

- Es necesario revisar, de forma consciente toda la información tanto en papel como digital de los pozos, ya que hay programas de perforación, como informes finales de pozos.
- Es necesario también, con mayor tiempo, validar las curvas de registros geofísicos en formato digital, para poder hacer una evaluación más confiable.
- Debido a la poca información, quedan muchas interrogantes, por lo que es necesario ordenar y re-analizar toda la información que existe tanto en el activo de exploración, como en el de producción.

Bibliografía

- Beckner, Mosley K., 2003. Análisis petrográfico del pozo Flamante-1, Core Laboratorios.
- Beckner, Mosley K., Kelton I., 2003. Análisis petrográfico del pozo Coli-1, Core Laboratorios.
- Cabrera C. C., 1979. Informe Final del pozo Otoño-1, Petróleos Mexicanos, Región Norte, pp. 1 -10 (inédito).
- Cornelio R. L. A., 2003. Informe Final del pozo Flamante-1, Petróleos Mexicanos, Región Norte, pp. 1 -27 (inédito).
- Correón P., 1962. Informe Final del pozo General Bravo-1, Petróleos Mexicanos, Región Norte, pp. 1 -10 (inédito).
- Cuervo J. C, 1983. Informe Final del pozo Marfil-1, Petróleos Mexicanos, Región Norte, pp. 1 -15 (inédito).
- Echánove E. O., 1976. Geología del Paleoceno Eoceno de la Cuenca de Burgos, III Simposio de Geología de Subsuelo, pp. 254 – 258.
- Echánove E O., 1986. Geología Petrolera de la Cuenca de Burgos (consideraciones geológico – petroleras), Bol. AMGP, Vol. XXXVIII, No. 1, pp. 3 -74.
- Edwards M. B., 1981. Upper Wilcox Rosita Delta System of South Texas: Growth-Faulted Shelf-Edge Deltas, The American Association of Petroleum Geologists, pp. 54-73 (inédito).
- Franco S. V. M., 2002. Informe Final del pozo Surco-1, Petróleos Mexicanos, Región Norte, pp. 1 -34 (inédito).
- González y García., 2003. Estudio petrofísico del pozo Alicata-1, Core. Lab.
- González y Sowers., 2003. Estudio Petrofísico del pozo Zinfandel-1, Core. Lab, 2003.
- Guzmán G. J. A., 1985. Informe Final del pozo Capitán-1, Petróleos Mexicanos, Región Norte, pp. 1 -15 (inédito).
- Jerry L. F., 2001. Integración de la información petrofísica y geológica una tarea para los petrofisicos, Schlumberger, pp.1-3.
- Kelton M y Mosley K., 2003. Estudio petrofisico del pozo Coli-1, Core. Lab.
- MTC/MBM/mlrp., 1990. Informe Final del pozo Tecuma-1, Petróleos Mexicanos, Región Norte, pp. 1 -15 (inédito).
- NuTech energy alliance., 2003. Evaluación petrofísica del pozo Alicata-1.
- NuTech energy alliance., 2004. Evaluación petrofísica del pozo Capitán-1.
- NuTech energy alliance., 2004. Evaluación petrofísica del pozo Cenicerito-1.
- NuTech energy alliance., 2003. Evaluación petrofísica del pozo Zinfandel-1.
- Robles L. G., 1982. Informe Final del pozo Barrilete-1, Petróleos Mexicanos, Región Norte, pp.1 -7 (inédito).

- Robles L. G., 1982. Informe Final del pozo Verano-1, Petróleos Mexicanos, Región Norte, pp. 1 -10 (inédito).
- Rodríguez L. V. C., 2003. Informe Final del pozo Coli-1, Petróleos Mexicanos, Región Norte, pp. 1 -27 (inédito).
- Rodríguez L. V. C., 2004. Informe Final del pozo Zinfandel-1, Petróleos Mexicanos, Región Norte, pp. 1 -25 (inédito).
- Sandoval M. J., 1964. Informe Final del pozo Cenicerito-1, Petróleos Mexicanos, Región Norte, pp. 1 -7 (inédito).
- Saucedo T. M., 1990. Informe Final del pozo Neira-1, Petróleos Mexicanos, Región Norte, pp. 1 -11 (inédito).
- Ortiz U. A. y Tolson. G., 2004. Interpretación estructural de una sección sísmica en la región Arcabuz – Culebra de la Cuenca de Burgos, NE de México, Revista Mexicana de Ciencias Geológicas, v. 21, numero 2, pp. 226-235.
- Ziga R. G. Ramos G. H. Téllez A. M. y Bernabé M. M. G., Sistemas Petroleros de la Cuenca de Burgos, México, A.M.G.P., pp. 1-7.

1. Evaluación petrofísica del pozo Alicata-1. Cross over entre las curvas Rhob y Nphi.

1. Cross plot Sw vs. Phie del pozo Alicata-1.

Evaluación petrofísica del pozo Alicata-1.

Cross plot Sw vs. Phie del pozo Alicata-1.

			RESU	JLTADOS	DE LA PET	ROFÍSICA BÁSICA - CMS -	300	
Compañia: Pozo: Campo:	Pemex Expl Alicata No. 1 Exploratorio	oración y P	roducción		Ubicación: Tipo de Núcleo: Tipo de Lodo:	APBR Muestras de Pared Base de Aceite	Fecha: Archivo: Analistas:	Junio 2003 29201R-030165 González
Número de Muestra	Profundidad (metros)	Porosidad (%)	Perm. Klinkenberg (md)	Densidad de Grano (gm/cm ⁶)	Descripción			
21r	2175.00	17.8	0.0480	2.69	Arenisca gris subredondead ligeramente ca	s clara de granos finos y m dos, subangulosos, esfericidad alcáreo, clastos de lutita gris clara	uy finos de cuarzo y líticos 1 baja, moderadamente co 1 arenosa.	s bien clasificados, nsolidada, cemento
Corrida 2 22r	2577.00	10.8	0.0028	2.68	Arenisca gris clasificados, moderadamer	clara de granos muy finos, fino subredondeados, subangulosos nte consolidada, cemento tipo arc	s en parte medios de cuarzo y dúctiles, esfericidad baja, illoso, trazas de carbonatos y de	y líticos pobremente porosidad primaria, s pellets de arcilla.
23r	2579.00	11.8	0.0016	2.70	Arenisca gris clasificados, moderadamer	clara de granos muy finos, fino subredondeados y subangu nte consolidada, cemento tipo arc	s en parte medios de cuarzo losos, esfericidad baja, p illoso, trazas de carbonatos, lan	y líticos pobremente porosidad primaria, ninas de lutita.
24r	2581.00	11.3	0.0036	2.71	Arenisca gris clasificados, moderadamer	clara de granos muy finos, en pu subredondeados y subangu nte consolidada, cemento tipo arci	arte finos y medios de cuarzo losos, esfericidad baja, p illoso, horizontes de lutita.	y líticos pobremente orosidad primaria,
25r	2582.00	10.4	0.3901	2.70	Alternancias o cuarzo, mod moderadamen	de lutita arenosa gris oscura y a eradamente clasificados, suba nte consolidada, cemento tipo arc	arenisca gris clara, de granos angulosos y subredondeados illoso, trazas de carbonatos.	muy finos y finos de a, esfericidad baja,
26r	2648.00	15.3	0.0395	2.69	Arenisca gris subredondead calcáreo, mica	s clara de granos muy finos los y angulosos, esfericidad ba as de moscovita.	en parte finos de cuarzo a, porosidad primaria, bien o	o, bien clasificados consolidada, cemento
27r	2649.00	8.0	0.0093	2.72	Arenisca gris subredondead cemento calcá	clara de granos muy finor los y angulosos, esfericidad baja reo, horizontes de lutita gris osci	en parte finos de cuarzo , porosidad primaria, moderad ra.	o, bien clasificados damente consolidada
28r	2651.00	8.2	1.494	2.72	Lutita limosa o	afé clara, compacta y calcárea. I	azas de pirita.	
29r	2752.00	6.9	0.8831	2.73	Lutita arenosa falla.	gris clara compacta, ligerament	calcárea, con fracturas reliena	as de calcita y reliz de
30r	2754.00	7.7	0.0235	2.73	Lutita arenosa	gris clara compacta, ligerament	calcárea.	

1. Información petrofísica y petrografica de los nucleos del pozo Alicata-1.

Compañia: Pozo: Campo:	Pernex Expl Alicata No. 1 Exploratorio	oración y P I D	roducción	1 1	Uticación: Tipo de Núcleo: Tipo de Lodo:	APBR Muestras de Base de Ace	e Pared ite			Fecha: Archivo: Analistas:	Junio 2 29201R-030 Ga
Número de	Profundiciad	Porosidad	Permeabilit Klinkenberg	ləd (md) Aire	F b(helio)	actores Forche Beta	imer Alfa	Saturació Aceite	n Fluidos Agua	Densidad de grano	Comentarios
Muestra Corrida 2	(netros)	(%)	(md)	(nd)	(psig)	(pies-1)	(nicras)	(%)	(%)	(gm/cm²)	
22r	2577.00	10.8	0.0028	0.0064	123.16	7.14E+16	6.50E+05	17.8	68.3	2.682	
23r	2579.00	11.8	0.0016	0.0037	133.15	5.07E+15	2.57E+04	10.6	77.7	2.705	
24r	2581.00	11.3	0.0036	0.0067	81.10	1.48E+15	1.73E+04	20.9	62.9	2.710	
25r	2582.00	10.4	0.3901	0.5217	23.51	2.65E+11	3.35E+02	21.0	50.2	2.705	
26r	2648.00	15.3	0.0395	0.0527	26.84	2.38E+15	3.04E+05	15.6	71.7	2.690	
27r	2649.00	8.0	0.0093	0.0143	47.41	3.17E+13	9.55E+02	20.0	77.3	2.716	
28r	2651.00	8.2	1.494	1.610	5.00	6.80E+09	3.29E+01	0.9	95.0	2.721	
29r	2752.00	6.9	0.8831	0.9140	2.32	8.26E+10	2.36E+02	6.5	96.8	2.732	
30r	2754.00	7.7	0.0235	0.0333	34.45	3.47E+13	2.64E+03		96.2	2.729	

1. Información petrofísica de los nucleos del pozo Alicata-1.

1. Cross plot Sw vs. k y Densidad de grano vs. Porosidad del pozo Alicata-1.

1. Cross plot Sw vs. Porosidad y So vs. Porosidad del pozo Alicata-1.

1. Cross plot k vs. Sw y k vs. Sw del pozo Alicata-1.

2. Evaluación petrofísica del pozo Barrilete-1.

2. Evaluación petrofísica del pozo Barrilete-1.

3. Evaluación petrofísica del pozo Capitan-1.

3. Evaluación petrofísica del pozo Capitan-1.

4. Evaluación petrofísica del pozo Cenicerito-1.

4. Evaluación petrofísica del pozo Cenicerito-1.

5. Evaluación petrofísica del pozo Coli-1.

5. Cross plot Sw vs Phie del pozo Coli-1.

5. Evaluación petrofísica del pozo Coli-1.

5. Cross plot Sw vs Phie del pozo Coli-1.

5. Cross plot Sw vs Phie del pozo Coli-1.

5. Evaluación petrofísica del pozo Coli-1.

5. Evaluación petrofísica del pozo Coli-1.

5. Cross plot Sw vs. Phie del pozo Coli-1.

		PI	RMEABIL	T IDAD Y	ABLA 5 POROSIDA Coli 1	AD: (LITOLOG	iA)
Numero	Profundiciad	Porosidad	Permeabilidad	Denaidad de grano	Litologia	Estructuras	Ambiente de Depositación
Muoetra	(metroe)	(16)	(md)	(priom)			-
				Aren	isoa Aroillosa		
11	2285.02	5.0	0.001	2.89	Arenisca Arcillosa	Bioturbada	Plataforma Arenosa (Upper Offshore)
12	2205.25	11.5	0.006	2.70	Areniaca	Dioturbada	Plataforma Arenosa (Upper
13	2285.60	13.0	0.010	2.70	Arenisca	Bioturbada	Plataforma Arenosa (Upper Offabore)
14	2285.75	11.7	0.006	2.70	Areniaca	Bioturbada	Plataforma Arenosa (Upper
15	2285.08	3.2	0.001	2.00	Arenisea	Bioturbada	Plataforma Arenosa (Upper
17	2288.50	12.5	0.007	2.70	Arenisca	Bioturbada	Plataforma Arenosa (Upper
18	2280.76	12.6	0.007	2.00	Arenisoa	Bioturbada	Plataforma Arenosa (Upper
18R	1738.50	19.2	0.011	2.74	Arenisca	Bioturbada	Muestra de Pared
23R	2036.00	4.5	0.001	2.08	Arenisoa	Bioturbada	Muestra de Pared
26R	2205.50	3.4	0.0005	2.69	Arenisca	Dioturbada	Muestra de Pared
28R	2233.50	15.6	0.009	2.09	Arenisoa	Bioturbada	Muestra de Pared
2913	2236.00	11.6	0.002	2.70	Arenisca	Dioturbada	Muestra de Pared
30R	2254.00	14.0	0.009	2.69	Arenisoa	Bioturbada	Muestra de Pared
31R	2257.00	12.2	0.004	2.69	Areniaca	Bioturbada	Muestra de l'ared
32R	2264.50	13.4	0.005	2.69	Arenisca	Eloturbada	Muestra de Pared
34R	2383.00	12.6	0.003	2.70	Arenisca	Bioturbada	Muestra de Pared
37R	2501.60	8.0	0.001	2.70	Arenisoa	Bioturbada	Muestra de Pared
				Record	nen Estadistica		
	Promedio	11.0	0.000	2.70	and the statute street		
	Mediana	12.6	0.005	2.70			
	Minimo	3.2	0.000	2.00			
	Mázimo	19.2	0.011	2.74			
				Lim	olita Arcillosa		
1	2292.50	9.5	0.002	2.72	Aroillosa	Bioturbada	Plataforma Lodosa (Lower Offshore)
3	2283.02	11.7	0.003	2.71	Arcillosa	Bioturbada	Plataforma Arenosa (Upper Offshore)
16	2205.25	12.9	0.007	2.70	Limolita Arcillosa	Dioturbada	Plataforma Arenosa (Upper Offshore)

5. Información petrofísica y petrografica de los nucleos del pozo Coli-1.

				т	ABLA 5		
		PE	RMEABIL	IDAD Y	POROSIDA	AD: (LITOLOG	IA)
					Coli 1		
Número de	Profundidad	Poroelded	Permeabilidad Klinkenberg	Densidad de grano	Litologiu	Estructures	Ambiente de Depositación
Musetra	(metroe)	67962	(1110)	(gnom ^e)			
				Lim	olita Arcillosa		
21	2287.75	10.4	0.005	2.71	Limolita	Rioturbada	Plataforma Lodosa (Lower
22	2200.00	0.0	0.002	2.74	Arollosa	Biotuthada	Offshore)
~~			and the first state of the		Arcillosa		Offshore)
23	2290.00	4.8	0.001	2.69	Limolita	Bioturbada	Plataforma Lodosa (Lower
25	2460.50	8.2	0.001	2.71	Limolita	Dicturbada	Plataforma Lodosa (Lower
					Aroillosa		Offshore)
26	2460.80	7.7	0.001	2.71	Aroillosa	Bioturbada	Plataforma Lodosa (Lower Offshore)
27	2461.25	6.3	0.001	2.70	Limolita	Bioturbada	Plataforma Lodosa (Lower
28	2401.70	0.2	0.001	2.71	Aroillosa	Bioturbadia	Offshore)
	2.101.78		10.000		Arcillosa		Offshore)
30	2462.95	8.5	0.002	2.70	Limolita	Bioturbada	Plataforma Lodosa (Lower
31	2463.50	7.8	0.001	2.71	Limolita	Laminada y	Plataforma Lodosa (Lower
	2124.40		0.004	0.70	Aroillosa	Bioturbada	Offshore)
32	2404.18	8.3	0.001	2.12	Aroillosa	Bioturbada	Pratatorma Lodosa (Lower Offshore)
33	2464.60	8.9	0.001	2.09	Limolita	Bioturbada	Plataforma Lodosa (Lower
34	2404.70	4.9	0.001	2.08	Arciliosa	Laminada H	Offshore) Ristaforma Lodosa (Lower
31	2101.18	1.0	10.000	2.08	Arcillosa	Bioturbada	Offshore)
35	2465.30	7.3	0.001	2.71	Limolita	Bioturbada	Plataforma Lodosa (Lower
36	2465.34	7.5	0.001	2.70	Limolita	Dicturbada	Ciffshore) Plataforma Lodosa (Lower
0.7	0400.55	7.0	0.004	0.70	Aroillosa	Dist. des.	Offshore)
3/	2400.65	12	0.001	2.70	Aroillasa	Bioturbada	Platatorma Lodosa (Lower Offshore)
38	2407.00	2.8	0.000	2.08	Limolita	Bioturbada	Plataforma Lodosa (Lower
30	2408.60	7.4	0.001	2.71	Arciliosa	Bioturbada	Offshore) Plataforma Lodosa (Lowor
	2100.00		10.000		Arcillosa	Contraction	Offshore)
40	2466.65	7.1	0.001	2.70	Limolita	Bioturbada	Plataforma Lodosia (Lower
115	1277.00	7.9	0.001	2.65	Linclita	Maniva	Muestra de Pared
150	1910.00	7.6	0.001	2.00	Arollosa		Musetes de Parret
104	1318.00	1.0	0.001	2.00	Arollosa	Mashva	Muestra de Pared
20R	1777.60	18.4	0.013	2.00	Limolita	Laminada y	Muestra de Pared
215	1994.00	17.3	0.000	2.70	Limolita	Bioturbada Laminada ⊻	Muestra de Pareci
					Arcillona	Dicturbada	
25R	2104.00	15.9	0.011	2.69	Limolita	Dicturbada	Muestra de Pared
27B	2209.00	14.0	0.006	2.70	Lincilta	Dicturbada	Muestra de Pared
050	0557.50	0.0	0.004	0.70	Arollosa		Manada da Barra
30H	2007.00	0.8	0.004	2.72	Cirrionica	Caminada y	Muestra de Mared

5. Información petrofísica de los nucleos del pozo Coli-1.

TABLA 5 PERMEABILIDAD Y POROSIDAD: (LITOLOGÍA)												
Coli 1												
Número de	Profundidad	Porceidad	Permeabilidad Klinkenberg	Densidad de grano	Litologia	Estructuras	Ambiente de Depositación					
Muestra	(metros)	(%)	(md)	(gn/orn ²)								
Linglith Arallaca												
36R	2559.50	7.6	0.001	2.71	Limolita	Bicturbada	Muestra de Pared					
38R	2572.00	9.6	0.001	2.71	Limolita	Bioturbada	Muestra de Pared					
39R	2574.50	7.4	0.001	2.72	Limolita Arcillosa	Bioturbada	Muestra de Pared					
				Resu	men Estadístico	D						
	Promedio	9.0	0.003	2.70		-						
	Mediana	8.1	0.001	2.70								
	Mínimo	2.8	0.000	2.66								
	Máximo	18.4	0.013	2.72								

5. Información petrofísica y petrografica de los nucleos del pozo Coli-1.

	PERM	IEABIL	IDAD Y PO	ROSIDA	ABLA 6 AD (AMBIENT Coli 1	TE DE DEPO	OSITACIÓN]
Numero	Profundided	Porceidad	Permeabilidad	Denoidad	Litologia	Estructuras	Ambiente de
Muestra	(metros)	(%)	(md)	(gr/om*)			Depositación
			Pla	taforma Lod	losa (Lower Offenor	(9)	
21	2287.75	10.4	0.005	2.71	Limolita Arcillosa	Bioturbada	Plataforma Lodosa (Lower Offshore)
22	2289.00	9.0	0.002	2.71	Limoita Arcilosa	Bioturbada	Plataforma Lodosa (Lower Offshore)
23	2290.00	4.8	0.001	2.69	Limolita Arcillosa	Bioturbada	Plataforma Lodosa (Lower
25	2460.50	8.2	0.001	2.71	Limoita Arcilosa	Bioturbada	Plataforma Lodosa (Lower
26	2460.80	7.7	0.001	2.71	Limolita Arcillosa	Bioturbada	Plataforma Lodosa (Lower
27	2461.25	6.3	0.001	2.70	Limoita Arcilosa	Bioturbada	Plataforma Lodosa (Lower
28	2461.75	0.3	0.001	2.71	Limplita Arcillosa	Bioturbada	Plataforma Lodosa (Lower
30	2462.98	8.5	0.002	2.70	Limoita Arcilosa	Bioturbada	Plataforma Lodosa (Lower
31	2463.50	7.8	0.001	2.71	Limolita Arcillosa	Laminada y	Plataforma Lodosa (Lower
32	2464.18	8.3	0.001	2.72	Limoita Arcilosa	Bioturbada	Platatorma Lodosa (Lower
33	2464.50	8.9	0.001	2.69	Limolita Arcillosa	Bioturbada	Plataforma Lodosa (Lower
34	2464.79	4.9	0.001	2.68	Limolita Arcillosa	Laminada y	Plataforma Lodosa (Lower
35	2465.30	7.3	0.001	2.71	Limolita Arcillosa	Bioturbada	Plataforma Lodosa (Lower
36	2466.34	7.5	0.001	2.70	Limolita Arcillosa	Bioturbada	Plataforma Lodosa (Lower
37	2465.55	7.2	0.001	2.70	Limolita Arcillosa	Bioturbada	Plataforma Lodosa (Lower
38	2467.90	2.8	0.000	2.68	Limolita Arcillosa	Bioturbada	Plataforma Lodosa (Lower
39	2465.60	7.4	0.001	2.71	Limoita Arciloga	Bioturbada	Plataforma Lodosa (Lower
40	2468.68	7.1	0.001	2.70	Limolita Arcillosa	Bioturbada	Plataforma Lodosa (Lower
				Rasum	an Estadiation		Citatore)
	Promedio	7.6	0.001	2.70			
	Mediana	7.7	0.001	2.71			
	Minimo	2.8	0.000	2.68			
	Maximo	10.4	0.005	2.72			
3R	1138.00	7.8	0.001	Muest 2.69	ra de Pared Arenisca	Masiva	Muestra de Pared
45.	1145.50	0.0	0.004	2.65	Aremisca	Masiva	Muestra de Pared
7R	1194.00	12.1	0.010	2.69	Arenisca	Masiya	Muestra de Pared

5. Información petrofísica y petrografica de los nucleos del pozo Coli-1.

				C	Coli 1		
de de	Profundidad	Porceidad	Permeabilidad	Densidad de grano	Litología	Estructuras	Ambiente de Depositación
icesca I	anne our		0112				
105	1207.80	7.0	0.001	Z.66	Arenisoa	Masiva	Muestra de Pareo
125	1278.00	6.3	0.000	2.70	Arenisca	Masiva	Muestra de Pared
135	1311.50	0.0	0.005	2.69	Arentsca	Mashva	Muestra de Pared
1dR	1312.00	9.9	0.006	2.69	Arenisca	Maniva	Muestra de Pared
17년	1347.00	11.5	0.095	2.72	Areniaca	Masiva	Muestra de Pared
22R	1997.50	13.4	0.007	2.69	Amounca	MARING.	Muestra de Pareo
25	1135.00	10.5	0.005	2.69	Arenteca Liger.	Masiva	Muestra de Pared
88	1203.80	0.0	0.001	2.65	Arenissa Liger.	Mastva	Muestra de Pared
245	2101.00	17.8	0.025	2.67	Arenisca Liger.	Bioturbada	Muestra de Pared
33R	2373.00	16.1	0.052	2.65	Arenicoa Liger.	Biolurbada	Muestra de Pared
10R	1730.50	19.2	0.011	2.74	Arenisca Arciliosa	Dioturbada	Muestra de Pared
238	2036.00	4.8	0.001	2.68	Arenisoa Aroliosa	Bioturbada	Muestra de Pared
26R	2206.50	2.4	0.600	2.69	Arenisca Arciliosa	Bioturbada	Muestra de Pared
285	2233.60	16.6	0.009	2.69	Arenicoa Arolloca	Biolurbada	Muestra de Pared
258	2236.00	11.6	0.002	2.70	Arenissa Arollosa	Bioturbada	Muestra de Pared
305	2254.00	14.0	0.009	2.69	Arenisca Arciliosa	Bioturbada	Muestra de Pared
21R	2257.00	12.2	0.004	2.69	Arenisca Arciliosa	Gioturbada	Muestra de Pared
32R	2264.50	13.4	0.005	2.69	Arenisca Arciliosa	Dioturbada	Muestra de Pared
348	2383.00	12.6	0.003	2.70	Arenissa Aroliosa	Biofurbada	Muestra de Pared
37R	2561.50	0.9	0.001	2.70	Arenisca Arciliosa	Dioturbada	Muestra de Pared
118	1277.00	7.9	0.001	2.65	Limolita Areliosa	Masiva	Muestra de Pared
15R	1310.00	7.5	0.001	2.69	Limolita Arcillosa	Masiva	Muestra de Pared
205	1777.50	18.4	0.013	2.69	Limolita Arcillosa	Laminada y Biotumada	Muestra de Pared
21R	1994.00	17.2	0.000	2.70	Limoita Arciliosa	Laminacia y	Muestra de Pareci
25R	2104.00	15.9	0.011	2.69	Limplita Arciliosa	Dioturbada	Muestra de Pared
27714	2209-00	14.0	0.00%	27.703	Limoita Arcilosa	HIOTUTOROA	Muestra de Pareo

5. Información petrofísica y petrografica de los nucleos del pozo Coli-1.

	PERM	IEABIL	IDAD Y PO	TA ROSIDA	BLA 6 D (AMBIENT Coli 1	E DE DEPO	SITACIÓN)
Número de Muestra	Profundidad (metros)	Porceidad	Permeabilidad Kilinkenberg (md)	Densidad de grano (griom ⁸)	Litologia	Estructuras	Ambiente de Depositación
				Manad	en de Darred		
35R	2557.50	6.8	0.004	2.72	Limolita Arcillosa	Laminada y Bioturbada	Muestra de Pared
36R	2559.50	7.6	0.001	2.71	Limolita Arcillosa	Bioturbada	Muestra de Pared
38R	2572.00	9.6	0.001	2.71	Limolta Arcilosa	Bioturbada	Muestra de Pared
39R	2574.50	7.4	0.001	2.72	Limolita Arciliosa	Bioturbada	Muestra de Pared
19R	1775.00	10.1	0.002	2.70	Limolita Uger. Arciliosa	Bioturbada	Muestra de Pared
1R	672.50	13.9	Sin Datos	2.69	Lutita Arcillosa	Bioturbada	Muestra de Pared
				Ransmi	an Estadistico		
	Promedio	11.0	0.009	2.69	AT LOCALIGUOU		
	Mediana	10.3	0.004	2.69			
	Minimo	3.4	0.000	2.65			
	Maximo	19.2	0.095	2.74			

5. Información petrofísica y petrografica de los nucleos del pozo Coli-1.

5. Diagrama ternario y Cross plot la Porosidad vs. k del pozo Coli-1.

IMÁGENES 15A-15B

Compañía:	Pemex Exploración y Producción	Porosidad a helio- %:	16.1
Pozo:	Coli 1	Permeabilidad- md:	0.052
Ubicación:	Exploratorio, Cuenca de Burgos	Densidad de matriz (gr/cm³):	2.68
Profundidad (m):	2373.00	Número de Muestra:	33R
Litologia:	Arenisca Ligeramente Arciliosa	Tamaño Promedio(mm):	0.067
Clasificación (Folk):	Arenita Lítica y Feidespática	Selección:	Buena

	0	Conteo	de Puntos		
Granos Detriticos			Arollia Autigénica		
Cuarzo	Monocristalino	21.7	Ciorita	10.3	
	Policristalino	0.7	Caolinita	0.0	
Feldespato	Feidespato potásico	0.0	llita	0.0	
	Plaglociasa	14.3	I/E combin	ada 0.7	
Fragmentos Líticos	Fragmentos Igneos	20.7	Indetermin	ada 0.0	
	Fragmentos metamórficos	1.3	Cementos no Arolliosos		
	Fragmentos de caliza	1.3	Cuarzo au	tigeno 2.7	
	Fragmentos de dolomía	0.0	Cuarzo mi	crocristalino 0.7	
	Fragmentos de arenisca	0.0	Feldespat	o autigeno 1.0	
	Fragmentos arciliosos	1.7	Dolomita-i	Fe 1.0	
	Pedemal	0.7	Calcita	0.0	
	Frag. Indeterminados	0.0	Calcita-Fe	0.7	
Granos Sustitutidos	Calcita-Fe	5.0	Barita	0.0	
	Anaicima	0.0	Siderita	0.0	
Accesorios	Micas	1.7	Anaicima	0.0	
	Minerales pesados	0.3	Pirita	2.0	
	Foraminiferos	0.7	Óxido de t	itanio 0.7	
	Fóslies indeterminados	1.0	Porosidad		
	Materia orgânica	0.7	Intergranu	lar 0.3	
	Glauconita	0.7	intrablocia	stica 0.0	
	Indeterminados	0.0	intragranu	lar 1.3	
Matriz Detritioa			Fractura	0.0	
	Arclia	6.0	Möldica	0.3	
	Indeterminada	0.0	Microporo	sidad común	

Diagénesis

Pirita > Ciorita > Ilita/ esmectita combinada > Cuarzo microoristalino > Calcita > Óxido de Titanio > Sobrecrecimientos de cuarzo sintaxiales > Albita > Calcita-Fe > Dolomita-Fe

Descripción de las Imágenes

imagen 16A: Lo que parecen ser poros abiertos dispersos (azui) no son poros naturales, se atribuyen a la remoción durante la preparación de lámina deigada. La mayoría de las áreas intergranulares de esta muestra son relienas ya sea con arcilia detritica o con arcilia autigena.

imagen 168: La mitad superior de esta vista magnificada presenta áreas intergranulares relienas con arcilia autigena, el material de color cade oscuro en la mitad inferior es arcilia detritica. Se nota un poro intragranular poco común (ip), al igual que un grano de giauconita (gl) y materia organica piritizada (mo-pi).

Pozo: Coli 1 No. Muestra: 33R Profundidad (m): 2373.00

5. Información petrografica de los nucleos del pozo Coli-1.

IMÁGENES 16A-16B

Compañía:	Pemex Exploración y Producción	Porosidad a helio- %:	7.7
Pozo:	Coli 1	Permeabilidad- md:	0.001
Ubicación:	Exploratorio, Cuenca de Burgos	Densidad de matriz (gr/cm³):	2.71
Profundidad (m):	2460.80	Número de Muestra:	26
Litologia:	Limolita Arciliosa	Tamaño Promedio(mm):	0.041
Clasificación (Folk):	Arenita Litica y Feidespática	Selección:	Buena

	0	onteo	de Puntos		
Granos Detriticos			Arollia Autigénica		
Cuarzo	Monocristalino	23.3		Ciorita	2.0
	Policristalino	Tr		Caolinita	0.0
Feldespato	Feldespato potásico	0.0	1	lita	0.0
	Plaglociasa	15.3		I/E combinada	1.0
Fragmentos Litioos	Fragmentos Igneos	16.0	1	Indeterminada	0.0
	Fragmentos metamórficos	0.7	Cementos no Arolliosos		
	Fragmentos de caliza	2.0		Cuarzo autigeno	1.0
	Fragmentos de dolomía	0.3		Cuarzo microcristalino	Tr
	Fragmentos de arenisca	0.0		Feldespato autigeno	0.7
	Fragmentos arcillosos	2.3		Dolomita-Fe	0.7
	Pedemal	Tr		Calcita	0.0
	Frag. Indeterminados	0.0		Calcita-Fe	0.3
Granos Sustitutidos	Calcita-Fe	6.3	1	Barita	0.0
	Analcima	0.0		Siderita	0.0
Accesorios	Micas	5.0	1	Anaicima	0.0
	Minerales pesados	0.7		Pirita	2.7
	Foraminiferos	1.0		Óxido de titanio	1.0
	Fósiles indeterminados	1.3	Porosidad		
	Materia orgânica	2.3		Intergranular	Tr
	Glauconita	1.0		Intrablociástica	0.0
	Indeterminados	0.0	1	Intragranular	0.7
Matriz Detritioa			I	Fractura	0.0
	Arcila	12.3	1	Móldica	Tr
	Indeterminada	0.0		Microporosidad	moderada

Diagénesis

Pirita > Ciorita > liita/ esmectita combinada > Cuarzo microcristalino > Calcita > Óxido de Titanio > Sobrecrecimientos de cuarzo sintaxiales > Albita > Calcita-Fe > Dolomita-Fe

Descripción de las Imágenes

imagen 18A: Se presenta matriz de arcilia detritica común color café finamente dispersa por esta muestra de limolita arciliosa y solamente en raras ocasiones se concentra en las galerías. El tamaño de grano fino y alto contenido de matriz indican que esta muestra nunca presentó buena calidad de yacimiento.

imagen 188: La mayoria dei material color negro disperso por esta vista magnificada es pirita autigena (pi), la cual tipicamente se asocia con matriz de arcilia detritica alterada (café) o fragmentos de planta. Los granos de color morado fueron reemplazados por caicita ferrosa.

Información petrografica de los nucleos del pozo Coli-1.

Pozo: Coll 1 No. Muestra: 26 Profundidad (m): 2460.80

	PETROGRAFÍA	DE LÁN	AINA DELGA	ADA		Core Lab	Pozo: No. Muestra: Profundidad (m	Coli 1 32 1): 2464.18
	IMÁGI	ENES 17/	A-17B			PITULITIE STATIS		
Compañía:	Pemex Exploración y Prod	ucción	Porosidad a	helio- %:	8.3			
Pozo:	Coli 1		Permeabilidad- md:		0.001	6		1 and
Ubicación:	Exploratorio, Cuenca de B	urgos	Densidad de	Densidad de matriz (gr/cm ³):		14	CARE AND ST	
Profundidad (m):	2464.18		Número de	Muestra:	32			a starter
Litologia:	Limolita Arciliosa		Tamaño Pron	nedio(mm):	0.041		a same for	- 1 A
Clasificación (Folk):	Arenita Lítica y Feidespática		Selección:	Moderadam	ente Buena	12		1.15
	Con	teo de Pur	itos					
Granos Detriticos		Arollia /	Autigénica					15
Cuarzo	Monocristalino	20.3		Clorita	2.0			120 4
Feldespato	Feidespato potásico	0.0		lita	0.0		a martine that	2.0
	Plaglociasa	13.3		I/E combinada	0.7		A start and the	
Fragmentos Litioos	Fragmentos Igneos	15.0		Indeterminada	0.0		10 - 1 - 4	and a star
	Fragmentos metamórficos	0.3 Cement	os no Arelliosos					S 1.33
	Fragmentos de caliza	1.3		Cuarzo autigeno	0.3			
	Fragmentos de atenisca	0.0		Eeldespato autilizeno	0.7			A
	Fragmentos arcilosos	1.3		Dolomita-Fe	0.7		State State	C Land
	Pedemal	0.0		Calcita	0.0	3	Sector Sector	
	Frag. Indeterminados	0.0		Calcita-Fe	1.0		AND A	- All
Granos Sustitutidos	Calcita-Fe	8.0		Barita	0.0		Carl and a	and the second se
Accesorios	Micas	4.7		Anaicima	0.0	and the second		Sector na
	Minerales pesados	1.0		Pirita	4.3		1	300
	Foraminiferos	1.3		Óxido de titanio	1.3	(A) a	C. Starte	
	Föslies Indeterminados	1.0 Porosid	ad				ST ALE ST	
	Materia organica Giauconita	3.3		intergranular Intrablociástica	0.0		1. 1. 1. 1.	17 - AL
	Indeterminados	0.0		Intragranular	0.3	5	The second s	
Matriz Detritioa				Fractura	0.0	-	AC 20-00	
	Arclia	16.0		Móldica	0.0		Plan Add	
	Indeterminada	0.0		Microporosidad	moderada		A Carry	
	[Diagénesis				1997	a state of a	
Pirita > Ciorita > Ilita/ cuarzo sintaxiales > Al	esmectita combinada > Cuarzo i bita > Caldta-Fe > Dolomita-Fe	nicrocristalin	o > Calcita > Óxido	de Titanio > Sobrecreo	cimientos de		B. Same	
	Descripci	ón de las l	mágenes					
Imagen 17A: La bioturba	ción es algo difusa en esta muestra y	ha resultado e	n la distribución hetero	gênea de la arcilla detritio	a y granos de	1. 25 - 20	V.S. 54445	600
arena más grandes. Seg	pún lo indica la variedad en los tama	nnos de los gr	anos de estructura, la	s porción tamaño arena y	limo de esta		and the second	
muestra presenta una sei	ección moderadamente dueña.							Sand Contraction
imagen 178: La pirita au	itigena (pl) se asocia principalmente o	on la arcilla de	tritica alterada; se ha	identificado un grano de g	lauconita (gi).		T.C. C. 347	2.00
Las áreas dispersas de o	olor azul ciaro no son poros naturales	son áreas de	daño causado a la mu	estra durante el proceso d	e elaboración	12521		
de lámina deigada.							Cat Calls	A Real
							In the set	
							A PARTY AND	
						CRESS OF	ANY CONTRACT	888S.
						C:\TIFFS\2464_18C.TIF 2464. Log: 20790 Mag=150 F0V=700 200uM	18 metros 1.070190 20.0KV	
						Tenerge and the second s		
5. Informac	ción petrografica	a de lo	os nucleo	os del pozo	Coli-1.			

17A

17B

17D

464_180.TIF 2464.18 netros 1 Mag=1500 FDV=70.007014 20.0KV

IMÁGENES 18A-18B

Compañía:	Pemex Exploración y Producción	Porosidad a helio- %:	7.5
Pozo:	Coli 1	Permeabilidad- md:	0.001
Ubicación:	Exploratorio, Cuenca de Burgos	Densidad de matriz (gr/cm³):	2.70
Profundidad (m):	2466.34	Número de Muestra:	36
Litologia:	Limolita Arcillosa	Tamaño Promedio(mm):	0.040
Clasificación (Folk):	Arenita Litica y Feidespática	Selección:	Buena

	0	Conteo	de Puntos	
Granos Detriticos			Arolla Autigénica	
Cuarzo	Monocristalino	19.7	Ciorita	1.0
	Policristalino	0.3	Caolinita	0.0
Feldespato	Feidespato potásico	0.0	lita	0.0
	Plaglociasa	14.3	I/E combinada	0.3
Fragmentos Liticos	Fragmentos igneos	13.7	Indeterminada	0.0
	Fragmentos metamórficos	0.7	Cementos no Arolliosos	
	Fragmentos de caliza	2.7	Cuarzo autigeno	0.0
	Fragmentos de dolomía	0.7	Cuarzo microcristalino	Tr
	Fragmentos de arenisca	0.0	Feldespato autigeno	0.0
	Fragmentos arciliosos	2.7	Dolomita-Fe	1.0
	Pedernal	0.0	Calcita	0.0
	Frag. indeterminados	0.0	Calcita-Fe	0.3
Granos Sustitutidos	Calcita-Fe	7.3	Barita	0.0
	Anaicima	0.0	Siderita	0.0
Accescorios	Micas	5.3	Anaicima	0.0
	Minerales pesados	0.7	Pirita	4.0
	Foraminiferos	1.0	Oxido de titanio	0.7
	Fósiles Indeterminados	0.7	Porosidad	
	Materia orgánica	3.7	intergranular	0.0
	Glauconita	0.7	intrablociástica	0.0
	Indeterminados	0.0	intragranular	Tr
Matriz Detritica			Fractura	0.0
	Arcilla	18.7	Móldica	0.0
	Indeterminada	0.0	Microporosidad	moderada

Diagénesis

Pirita > Ciorita > Ilita/ esmectita combinada > Cuarzo microcristalino > Calcita > Óxido de Titanio > Sobrecrecimientos de cuarzo sintaxiales > Albita > Calcita-Fe > Dolomita-Fe

Descripción de las Imágenes

imagen 18A: Se pueden notar àreas más ricas en arena en la porción derecha superior de esta fotomicrografía y áreas más ricas en matriz en la porción izquierda. Esta distribución irregular se atribuye a los organismos que retrabajan el sedimento poco después de la depositación (bioturbación).

imagen 188: La pirita autigena (pi) se asocia con la matriz detritica alterada (café) en una galería reliena de lodo en esta vista de gran expansión. Los granos dispersos de color morado fueron reemplazados por calcita ferrosa.

5. Información petrografica de los nucleos del pozo Coli-1.

IMÁGENES 19A-19B

Compañía:	Pemex Exploración y Producción	Porosidad a helio- %:	7.4
Pozo:	Coli 1	Permeabilidad- md:	0.001
Ubicación:	Exploratorio, Cuenca de Burgos	Densidad de matriz (gr/cm³):	2.71
Profundidad (m):	2468.50	Número de Muestra:	
Litologia:	Limolita Arcillosa	Tamaño Promedio(mm):	0.049
Clasificación (Folk):	Arenita Lítica y Feidespática	Selección: Moderadam	ante Buena

	L L	onteo	de Puntos		
Granos Detriticos			Arolla Autigénica		
Cuarzo	Monocristalino	22.0		Ciorita	0.7
	Policristalino	Tr		Caplinita	0.0
Feldespato	Feidespato potásico	0.0	1	Ita	0.0
	Plaglociasa	14.7		I/E combinada	0.3
Fragmentos Liticos	Fragmentos igneos	15.0		Indeterminada	0.0
	Fragmentos metamórficos	1.0	Cementos no Arolliosos		
	Fragmentos de caliza	6.0		Cuarzo autigeno	0.0
	Fragmentos de dolomía	0.7		Cuarzo microcristalino	Tr
	Fragmentos de arenisca	0.0		Feldespato autigeno	0.0
	Fragmentos arcillosos	1.0		Dolomita-Fe	2.0
	Pedernal	0.0		Calcita	0.0
	Frag. Indeterminados	0.0		Calcita-Fe	0.7
Granos Sustitutidos	Calcita-Fe	6.3		Barita	0.0
	Analcima	0.0		Siderita	0.0
Accesorios	Micas	4.0	1	Anaicima	0.0
	Minerales pesados	0.7		Pirita	4.7
	Foraminiferos	0.7		Oxido de titanio	1.0
	Fósiles Indeterminados	1.7	Porosidad		
	Materia orgánica	2.7		intergranular	0.0
	Glauconita	0.7		Intrablociástica	0.0
	Indeterminados	0.0		Intragranular	Tr
Matriz Detritica]	Fractura	0.0
	Arcilla	13.7	1	Móldica	0.0
	Indeterminada	0.0		Microporosidad	moderada

Diagénesis

Pinta > Ciorita > Ilita/ esmectita combinada > Cuarzo microcristalino > Calcita > Óxido de Titanio > Sobrecrecimientos de cuarzo sintaxiales > Albita > Calcita-Fe > Dolomita-Fe

Descripción de las Imágenes

Imagen 1943: El área delgada ondulatoria relena de lodo que atraviesa horizontalmente esta fotomicrografía es una galería relena de lodo. La distribución irregular diferente de los granos de arena más grandes y concentraciones de arcila destritos son otra evidencia que indica bioturbación.

imagen 198: El material de color café que se presenta en las áreas intergranulares es matriz de arcilia detritica. La pirita autigena (pl) se asocia con la matriz alterada y con los interiores de foraminiferos pequeños (for).

5. Información petrografica de los nucleos del pozo Coli

Pozo: Coli 1 No. Muestra: 39 Profundidad (m): 2468.50

IMÁGENES 20A-20B

Compañía:	Pemex Exploración y Producción	Porosidad a helio- %:	9.
Pozo:	Coli 1	Permeabilidad- md:	0.00
Ubicación:	Exploratorio, Cuenca de Burgos	Densidad de matriz (gr/cm³):	2.7
Profundidad (m):	2572.00	Número de Muestra:	38
Litologia:	Limolita Arcillosa	Tamaño Promedio(mm):	0.05
Clasificación (Folk):	Arenita Lítica y Feidespática	Selección: Moderadam	ente Buen

		Conteo	de Puntos		
Granos Detriticos			Arolla Autigénica		
Cuarzo	Monocristalino	22.7		Clorita	1.0
	Policristalino	0.7		Caolinita	0.0
Feldespato	Feldespato potásico	0.0	1	Ita	0.0
	Piaglociasa	13.7		I/E combinada	0.3
Fragmentos Liticos	Fragmentos igneos	17.3		Indeterminada	0.0
	Fragmentos metamórficos	0.7	Cementos no Arolilosos		
	Fragmentos de caliza	5.3		Cuarzo autigeno	0.3
	Fragmentos de dolomía	0.7		Cuarzo microcristalino	0.0
	Fragmentos de arenisca	0.0		Feldespato autigeno	0.3
	Fragmentos arcillosos	1.3		Dolomita-Fe	0.0
	Pedernal	0.3		Calcita	0.0
	Frag. Indeterminados	0.0		Calcita-Fe	1.0
Grance Sustitutidos	Calcita-Fe	6.7		Barita	0.0
	Anaicima	0.0		Siderita	0.0
Accesorios	Micas	3.3	1	Analcima	0.0
	Minerales pesados	1.0		Pirita	3.7
	Foraminiferos	1.3		Oxido de titanio	0.7
	Fósiles Indeterminados	2.0	Porosidad		
	Materia orgánica	3.3		Intergranular	0.0
	Glauconita	1.0		Intrabloclástica	0.0
	Indeterminados	0.0		Intragranular	0.3
Matriz Detritica]	Fractura	0.0
	Arcilla	11.0	1	Móldica	0.0
	Indeterminada	0.0		Microporosidad	2022

Diagénesis

Pirita > Ciorita > Ilita/ esmectita combinada > Cuarzo microcristalino > Calcita > Óxido de Titanio > Sobrecrecimientos de cuarzo sintaxiales > Albita > Calcita-Fe

Descripción de las Imágenes

imagen 20A: Los óvalos aplanados interconectados de color café oscuro son galerías horizontales relienas de arcilia, las cuales fueron creadas según los organismos se movilizaron a través del sedimento poco después de la depositación. El grano grande de color negro es probablemente un fragmento de planta (org).

imagen 20B: Los granos de color morado que se notan en esta vista magnificada son granos reemplazados por calcita ferrosa esqueietos de foraminifero relienos de calcita ferrosa (for). Note la pirita (pl) asociada con el foraminifero y la matriz.

C:\TIFFS\2572C.TIF 2572.00 metros Log: 20790 Mag=150 F0V=700.070190 20.0KV

5. Información petrografica de los nucleos del pozo Coli-1.

6. Evaluación petrofísica del pozo China-104.

7. Evaluación petrofísica del pozo Flamante-1.

7. Evaluación petrofísica del pozo Flamante-1.

IMÁGENES 10A-10B

Compañía:	Pemex Exploración y Producción	Porosidad a helio- %:	17.5
Pozo:	Flamante 1	Permeabilidad- md:	0.018
Ubicación:	Exploratorio, Cuenca de Burgos	Densidad de matriz (gr/cm ³):	2.68
Profundidad (m):	2071.00	Número de Muestra:	25R
Litologia:	Limolita Arcillosa	Tamaño Promedio(mm):	0.058
Clasificación (Folk):	Arenita Lítica y Feldespática	Selección:	Buena

		Conteo	de Puntos	
Granos Detriticos			Arcilla Autigénica	
Cuarzo	Monocristalino	30.0	Clorita	8.3
	Policristalino	0.3	Caolinita	0.0
Feldespato	Feldespato potásico	0.0	liita	0.0
	Plagioclasa	8.7	b/E combinada	0.0
Fragmentos Líticos	Igneos	12.7	Indeterminada	2.0
	Metamórficos	0.3	Cementos no Arcillosos	
	Caliza	3.0	Cuarzo autigeno	1.0
	Dolomía	0.3	Cuarzo microcristalino	Tr
	Arenisca	0.0	Feldespato autigeno	0.7
	Arcillosos	1.7	Dolomita-Fe	0.0
	Pedemal	0.0	Calcita	0.0
	Indeterminados	0.0	Calcita-Fe	4.7
Granos Sustitutidos	Calcita-Fe	2.3	Barita	0.0
	Analcima	0.0	Siderita	0.0
Accesorios	Micas	4.0	Analcima	0.0
	Minerales pesados	0.7	Pirta	2.0
	Foraminiferos	0.3	Óxido de titanio	0.7
	Fósiles indeterminados	1.0	Porosidad	
	Materia orgánica	2.7	Intergranular	0.0
	Glauconita	0.7	Intrabioclástica	0.0
	Indeterminados	0.0	Intragranular	1.0
Matriz Detritica			Fractura	0.0
	Arcilla	10.3	Móldica	0.7
	Indeterminada	0.0	Microporosidad	común

Diagénesis

Pirita > Ciorita > Ilita/ esmectita en capa mixta > Óxido de Titanio > Sobrecrecimientos de cuarzo sintaxiales > Albita Calcita-Fe > Dolomita-Fe

Descripción de las Imágenes

Imagen 10A: Esta totomicrografía de lámina delgada exhibe una limolita arcillosa gruesa, en la cual se observa un fragmento esquelético (esc). El material de color café visible en la mayoría de las áreas intergranulares es matriz de arcilla detrítica. El alto contenido de matriz y tamaño de grano pequeño son las causas principales para la calidad de yacimiento deficiente.

Imagen 108: Esta magnificación de la muestra realza un área libre de matriz. El material verde en las áreas intergranulares es principalmente arcilla autigena; localmente se presenta pirita autigena (pi). Se ha identificado un poro intragranular pequeño (pi), al igual que un grano de glauconita color verde (gl).

7. Información petrografica de los nucleos del pozo Flamante-1.

Pozo: Flamante 1 No. Muestra: 25R Profundidad (m): 2071.00

зĎ

10B

PETROGRAFÍA DE MICROSCOPIO ELECTRÓNICO Pozo: Flamante 1 25R No. Muestra: IMÁGENES 10C-10D Profundidad (m): 2071.00 h Porosidad a helio- %: Pemex Exploración y Producción Compañía: 17.5 Permeabilidad- md: Pozo: Flamante 1 0.018 Exploratorio, Cuenca de Burgos Densidad de matriz (gr/cm3): Ubicación: 2.68 Profundidad (m): 2071.00 Número de Muestra: 25R Litología: Limolita Arcillosa Tamaño Promedio(mm): 0.058 Clasificación (Folk): Arenita Lítica y Feldespática Selección: Buena Conteo de Puntos Granos Detríticos Arcilla Autigénica uarzo Monocristalino 30.0 Clorita 8.3 10C Policristalino 0.3 Caolinita 0.0 Feldespato Feldespato potásico 0.0 0.0 lita Plagioclasa 8.7 I/E combinada 0.0 Fragmentos Líticos 12.7 Indeterminada 2.0 laneos Metamórficos 0.3 Cementos no Arcillosos Caliza 3.0 1.0 Cuarzo autígeno Dolomía Cuarzo microcristalino 0.3 Tr Arenisca 0.0 Feldespato autígeno 0.7 Arcillosos 1.7 . Dolomita-Fe 0.0 0.0 Calcita 0.0 Pedemal Indeterminados 0.0 Calcita-Fe 4.7 C:\TIFFS\2071C.TIF 2071.00 metros Log: 20991 Mag=150 FOV=708.070190 20.0KV 200uM Granos Sustitutos 0.0 Calcita-Fe 2.3 Barita 0.0 Siderita 0.0 Analcima Accesorios Micas 4.0 Analcima 0.0 Minerales pesados 0.7 Pirita 2.0 Foraminíferos 0.3 Óxido de titanio 0.7 Fósiles indeterminados 10 Porosidad 0.0 Materia orgánica 2.7 intergranular Glauconita 0.7 ntrabioclástica 0.0 Indeterminados 1.0 Intragranular 0.0 Matriz Detrítica Fractura 0.0 10.3 Móldica 0.7 Arcilla Indeterminada 0.0 Microporosidad comúr Diagénesis Pirita > Clorita > Ilita/ esmectita en capa mixta > Oxido de Titanio > Sobrecrecimientos de cuarzo sintaxiales > Albita Calcita-Fe > Dolomita-Fe 10D Descripción de las Imágenes magen 10C: El material de apariencia áspera que se observa por toda esta fotomicrografía SEM de limolita arcillosa gruesa es arcilla autígena y detrítica. La calidad de yacimiento nula de esta muestra surge a causa de la combinación de matriz de arcilla detrítica comúr compactación mecánica y precipitación posterior de arcilla autígena y calcita ferrosa. Imagen 10D; El material escamoso en esta vista de gran ampliación es arcilla detrítica. La naturaleza plumosa de algunas escamas de arcilla puede indicar alteración diagenética. Note los cristales pequeños de pirita (pi). C:\TIFFS\2071D.TIF 2071.00 metros Log: 20991 Mag=1500 FOV=70.807014 20.0KV

7. Información petrografica de los nucleos del pozo Flamante-1.

PETROGRAFÍA DE LA	ÁMINA DELGADA
-------------------	---------------

IMÁGENES 11A-11B

Compañía:	Pemex Exploración y Producción	Porosidad a helio- %:	16.9
Pozo:	Flamante 1	Permeabilidad- md:	0.062
Ubicación:	Exploratorio, Cuenca de Burgos	Densidad de matriz (gr/cm ³):	2.67
Profundidad (m):	2089.00	Número de Muestra:	27R
Litología:	Limolita Ligeramente Arcillosa	Tamaño Promedio(mm):	0.054
Clasificación (Folk):	Arenita Lítica y Feldespática	Selección:	Buena

		Conteo	de Puntos		
Granos Detríticos			Arcilla Autigénica		
Cuarzo	Monocristalino	28.7	Clori	rita	7.7
	Policristalino	0.0	Cao	linita	0.0
Feldespato	Feldespato potásico	0.0	llita		0.0
	Plagioclasa	10.0	I/E c	combinada	0.0
Fragmentos Líticos	Igneos	15.7	Inde	eterminada	2.3
	Metamórficos	0.7	Cementos no Arcillosos		
	Caliza	1.3	Cua	rzo autígeno	3.3
	Dolomía	0.0	Cua	rzo microcristalino	0.7
	Arenisca	0.0	Feld	lespato autígeno	1.3
	Arcillosos	4.7	Dolo	omita-Fe	0.0
	Pedernal	0.0	Calc	cita	0.0
	Indeterminados	0.0	Calc	cita-Fe	2.7
Granos Sustitutídos	Calcita-Fe	1.7	Bari	ita	0.0
	Analcima	0.0	Side	erita	0.0
Accesorios	Micas	2.3	Ana	lcima	0.0
	Minerales pesados	0.3	Pirita	a	1.3
	Foraminíferos	0.3	Óxid	to de titanio	0.3
	Fósiles indeterminados	0.0	Porosidad		
	Fósil Indeterminado	0.0	Inter	rgranular	1.3
	Glauconita	1.3	Intra	abioclástica	0.0
	Indeterminados	0.0	Intra	agranular	2.7
Matriz Detrítica			Frac	ctura	0.0
	Arcilla	6.7	Mólo	dica	1.0
	Indeterminada	0.0	Micr	roporosidad	común

Diagénesis

Pirita > Clorita > Ilita/ esmectita en capa mixta > Oxido de Titanio > Sobrecrecimientos de cuarzo sintaxiales > Albita : Calcita-Fe

Descripción de las Imágenes

Imagen 11A: Las laminaciones de esta limolita ligeramente arcillosa son relazadas por concentraciones de arcilla de matriz detrítica color café oscuro. En las áreas libres de matriz, se observan cantidades menores de macroporos (azul). Sin embargo, estos poros no son suficientemente comunes para mejorar grandemente la calidad de yacimiento de esta muestra.

Imagen 11B: Toda esta vista exhibe microporos intergranulares primarios abiertos y dispersos (flechas), aunque la mayor parte son muy pequeños y revestidos con arcilla autígena verde. Note los granos verdes de glauconita y la pirita autígena (pi). Pozo: Flamante 1 No. Muestra: 27R Profundidad (m): 2089.00

ab

11B

7. Información petrografica de los nucleos del pozo Flamante-1.

PETROGRAFÍA DE MICROSCOPIO ELECTRÓNICO

IMÁGENES 11C-11D

Compañía:	Pemex Exploración y Producción	Porosidad a helio- %:	16.9
Pozo:	Flamante 1	Permeabilidad- md:	0.062
Ubicación:	Exploratorio, Cuenca de Burgos	Densidad de matriz (gr/cm³):	2.67
Profundidad (m):	2089.00	Número de Muestra:	27R
Litología:	Limolita Ligeramente Arcillosa	Tamaño Promedio(mm):	0.054
Clasificación (Folk):	Arenita Lítica y Feldespática	Selección:	Buena

		Conteo	de Puntos	
Granos Detríticos			Arcilla Autigénica	
Cuarzo	Monocristalino	28.7	Clorita	7.7
	Policristalino	0.0	Caolinita	0.0
Feldespato	Feldespato potásico	0.0	llita	0.0
	Plagioclasa	10.0	I/E combinada	0.0
Fragmentos Líticos	igneos	15.7	Indeterminada	2.3
	Metamórficos	0.7	Cementos no Arcillosos	
	Caliza	1.3	Cuarzo autígeno	3.3
	Dolomía	0.0	Cuarzo microcristalino	0.7
	Arenisca	0.0	Feldespato autígeno	1.3
	Arcillosos	4.7	Dolomita-Fe	0.0
	Pedernal	0.0	Calcita	0.0
	Indeterminados	0.0	Calcita-Fe	2.7
Granos Sustitutidos	Calcita-Fe	1.7	Barita	0.0
	Analcima	0.0	Siderita	0.0
Accesorios	Micas	2.3	Analcima	0.0
	Minerales pesados	0.3	Pirita	1.3
	Foraminíferos	0.3	Óxido de titanio	0.3
	Fósiles indeterminados	0.0	Porosidad	
	Fósil Indeterminado	0.0	Intergranular	1.3
	Glauconita	1.3	Intrabioclástica	0.0
	Indeterminados	0.0	Intragranular	2.7
Matriz Detrítica			Fractura	0.0
	Arcilla	6.7	Móldica	1.0
	Indeterminada	0.0	Microporosidad	común

Diagénesis

Pirita > Clorita > Ilita/ esmectita en capa mixta > Oxido de Titanio > Sobrecrecimientos de cuarzo sintaxiales > Albita : Calcita-Fe

Descripción de las Imágenes

Imagen 11C: Aunque se notan pocos poros intergranulares abiertos (flechas) en esta fotomicrografía de SEM, los datos del análisis di petrofísica básica sugieren que su interconexión no es buena. Una combinación de tamaño de grano pequeño inicial, cantidade: moderadas de matriz de arcilla y arcillas autígenas es la causa principal para la calidad de yacimiento deficiente de esta muestra.

Imagen 11D: Los minerales autígenos que se observan en esta gran ampliación incluyen albita (alb), clorita (cl; mineral en forma de hoja o lámina) e lilta / esmectita combinada (I/E; mineral de escamoso a fibroso). La arcilla combinada se asocia con un fragmento lítico muy alterado. Pozo: Flamante 1 No. Muestra: 27R Profundidad (m): 2089.00

ab

7. Información petrografica de los nucleos del pozo Flamante-1.

11D

Pozo: Flamante 1 No. Muestra: 30R Profundidad (m): 2124.00

12B

0.1

7. Información petrografica de los nucleos del pozo Flamante-1.

	IMA	AGENE	S 13A-13B		
Compañía:	Pemex Exploración y l	Producc	ón Porosi	dad a helio- %:	13
Pozo:	Flamante 1		Perme	abilidad- md:	0.00
Ubicación:	Exploratorio, Cuenca	de Bura	s Densid	ad de matriz (gr/cm ³):	2.6
Profundidad (m):	2302.00		Número de Muestra:		32
Litología:	Arenisca Arcillosa		Tamañ	Promedia(mm):	0.04
Clasificación (Folk):	Arenita Lítica y Feldesni	ática	Selecci	ón:	Bue
clasificación (Foik).	Arenna Linca y Pendespa		Delecci		Duel
Grance Detríticos	(Conteo	le Puntos		
Cuarzo	Monocristalino	31.7	Arcina Autigenica	Clorita	6
ounito	Policristalino	0.3		Caolinita	0
Feldespato	Feldespato potásico	0.0		llita	0.
	Plagioclasa	11.0		I/E combinada	0.
Fragmentos Líticos	Igneos	12.3		Indeterminada	1.
	Metamórficos	0.7	Cementos no Arcillos	DS	
	Caliza	3.3		Cuarzo autígeno	0.
	Dolomía	0.0		Cuarzo microcristalino	т
	Arenisca	0.0		Feldespato autígeno	0.
	Arcillosos	2.0		Dolomita-Fe	0.
	Pedernal	0.0		Calcita	0.
	Indeterminados	0.0		Calcita-Fe	2.
Granos Sustitutídos	Calcita-Fe	2.7		Barita	0.
	Analcima	0.0		Sidenta	0.
Accesorios	Micas	3.3		Analcima	0.
	Minerales pesados	0.7		Pirita Óvido do titopio	2.
	Foraminiferos	1.0	Democlided	Oxido de titanio	1.
	Posiles indeterminados Materia orgánica	0.3	Porosidad	Intergrapular	0
	Glauconita	17		Intrabioclástica	0.
	Indeterminados	0.0		Intragranular	0.
Matriz Detrítica				Fractura	0
	Arcilla	10.3		Móldica	Т
	Indeterminada	0.0		Microporosidad	com
			· · · ·	· ·	
	414	Diag	enesis		
Pirita > Clorita > Ilita/ Calcita-Fe	esmectita en capa mixta >	Oxido de	Titanio > Sobrecreci	mientos de cuarzo sintaxiales	> Albita
Quintari C					
	Descr	ipción d	e las imágenes		

Imagen 13B: La pirita autigena (pi) se asocia comúnmente con arcillas detríticas alteradas, o fragmentos orgánicos alterados más grandes. El material intergranular color café oscuro es arcilla detrítica. Note el grano de glauconita alterado (gl).

7. Información petrografica de los nucleos del pozo Flamante-1.

13B

PETROGRAFÍA DE MICROSCOPIO ELECTRÓNICO

IMÁGENES 13C-13D

Compañía:	Pemex Exploración y Producción	Porosidad a helio- %:	13.4
Pozo:	Flamante 1	Permeabilidad- md:	0.008
Ubicación:	Exploratorio, Cuenca de Burgos	Densidad de matriz (gr/cm³):	2.69
Profundidad (m):	2302.00	Número de Muestra:	32R
Litología:	Arenisca Arcillosa	Tamaño Promedio(mm):	0.063
Clasificación (Folk):	Arenita Lítica y Feldespática	Selección:	Buena

		Conteo	de Puntos	
Granos Detríticos			Arcilla Autigénica	
Cuarzo	Monocristalino	31.7	Clorita	6.0
	Policristalino	0.3	Caolinita	0.0
Feldespato	Feldespato potásico	0.0	llita	0.0
	Plagioclasa	11.0	I/E combinada	0.0
Fragmentos Líticos	İgneos	12.3	Indeterminada	1.3
	Metamórficos	0.7	Cementos no Arcillosos	
	Caliza	3.3	Cuarzo autígeno	0.7
	Dolomía	0.0	Cuarzo microcristalino	Tr
	Arenisca	0.0	Feldespato autígeno	0.7
	Arcillosos	2.0	Dolomita-Fe	0.0
	Pedernal	0.0	Calcita	0.0
	Indeterminados	0.0	Calcita-Fe	2.7
Granos Sustitutídos	Calcita-Fe	2.7	Barita	0.0
	Analcima	0.0	Siderita	0.0
Accesorios	Micas	3.3	Analcima	0.0
	Minerales pesados	0.7	Pirita	2.7
	Foraminíferos	1.0	Óxido de titanio	1.0
	Fósiles indeterminados	0.3	Porosidad	
	Materia orgánica	3.3	Intergranular	0.0
	Glauconita	1.7	Intrabioclástica	0.0
	Indeterminados	0.0	Intragranular	0.3
Matriz Detrítica			Fractura	0.0
	Arcilla	10.3	Móldica	Tr
	Indeterminada	0.0	Microporosidad	comúr

Diagénesis

Pirita > Clorita > Ilita/ esmectita en capa mixta > Óxido de Titanio > Sobrecrecimientos de cuarzo sintaxiales > Albita > Calcita-Fe

Descripción de las Imágenes

Imagen 13C: Esta muestra no presenta calidad de yacimiento a causa de la combinación de matriz detrítica común, compactación mecánica de los granos dúctiles y cementación por calcita ferrosa (Fcal) y arcilla autígena. Se observa un poro intergranular abierto poco común (flecha), pero no se encuentra bien interconectado.

Imagen 13D: La calcita ferrosa autígena (Fcal) rellena las áreas intergranulares entre dos granos líticos alterados que contienen ilita / esmectita combinada (I/E) y clorita (cl). Se observa pirita autígena (pi) en el ámbito local. Pozo: Flamante 1 No. Muestra: 32R Profundidad (m): 2302.00

7. Información petrografica de los nucleos del pozo Flamante-1.

13D

IMÁGENES 14A-14B

	O suto sul s Dun	4.4.4	
Clasificación (Folk):	Arenita Lítica y Feldespática	Selección:	Buena
Litología:	Limolita Arcillosa	Tamaño Promedio(mm):	0.059
Profundidad (m):	2340.00	Número de Muestra:	37R
Ubicación:	Exploratorio, Cuenca de Burgos	Densidad de matriz (gr/cm³):	2.71
Pozo:	Flamante 1	Permeabilidad- md:	0.001
Compañía:	Pemex Exploración y Producción	Porosidad a helio- %:	6.9

		Conteo	ie Funtos	
Granos Detríticos		Arcilla Autigénica		
Cuarzo	Monocristalino	28.3	Clorita	0.7
	Policristalino	0.0	Caolinita	0.0
Feldespato	Feldespato potásico	0.0	llita	0.0
	Plagioclasa	7.7	I/E combinada	0.0
Fragmentos Líticos	igneos	12.7	Indeterminada	0.0
	Metamórficos	1.0	Cementos no Arcillosos	
	Caliza	4.0	Cuarzo autígeno	0.0
	Dolomía	0.0	Cuarzo microcristalino	0.0
	Arenisca	0.0	Feldespato autígeno	0.0
	Arcillosos	2.0	Dolomita-Fe	0.0
	Pedernal	0.0	Calcita	0.0
	Indeterminados	0.0	Calcita-Fe	0.3
Granos Sustitutídos	Calcita-Fe	3.0	Barita	0.0
	Analcima	0.0	Siderita	0.0
Accesorios	Micas	4.0	Analcima	0.0
	Minerales pesados	1.0	Pirita	5.0
	Foraminiferos	1.3	Óxido de titanio	0.7
	Fósiles indeterminados	1.0	Porosidad	
	Materia orgánica	5.0	Intergranular	0.0
	Glauconita	1.3	Intrabioclástica	0.0
	Indeterminados	0.0	Intragranular	Tr
Matriz Detrítica			Fractura	0.0
	Arcilla	21.0	Móldica	0.0
	Indeterminada	0.0	Microporosidad	moderada

Diagénesis

Pirita > Clorita > Ilita/ esmectita en capa mixta > Óxido de Titanio > Calcita-Fe

Descripción de las Imágenes

Imagen 14A: Las concentraciones ovaladas de granos de limo y arena son galerías relienas de arena y limo. El material de color café oscuro que se observa por toda esta vista es matriz de arcilla detrítica, cuya distribución irregular puede ser a causa del retrabajo por parte de varios organismos diferentes.

Imagen 14B: El material de color café que se observa por toda esta magnificación es matriz de arcilla detritica, la cual abunda en esta muestra. Note los granos de estructura flotantes comunes. El mineral autígeno primario observado es pirita (pi), comúnmente asociada con arcilla detrítica alterada.

7. Información petrografica de los nucleos del pozo Flamante-1.

Pozo: Flamante 1 No. Muestra: 37R Profundidad (m): 2340.00

	IMÁGENE	S 14C-14D		No. Mue Profund	stra: 37R idad (m): 2340.00
•		. Democided		EES	
Compañía:	Pemex Exploración y Producci	on Porosidad	a helio- %:	1 9 8 - SE F.	CONTRACT PORT
Pozo:	Flamante 1	Permeabil	idad- md:	Start Aller	TA SAL
Ubicación:	Exploratorio, Cuenca de Burgo	s Densidad	de matriz (gr/cm ³):		pt of Stars
Profundidad (m):	2340.00	Número de Muestra:			
Litología:	Limolita Arcillosa	Tamaño Pr	omedio(mm):		C. Land
Clasificación (Folk):	Arenita Lítica y Feldespática	Selección:			al and a
	Conteo d	le Puntos			
Granos Detríticos		Arcilla Autigénica		States States	
Cuarzo	Monocristalino 28.3 Policristalino 0.0		Ciorita	1 1 1 1 1 1	
Feldespato	Feldespato potásico 0.0		llita	17 J. 1. 17	
	Plagioclasa 7.7		I/E combinada	a start of the	
Fragmentos Líticos	İgneos 12.7		Indeterminada	and the former	B. I.S. Cont
	Metamórficos 1.0	Cementos no Arcillosos			$L \sim N L$
	Caliza 4.0		Cuarzo autígeno		
	Arenisca 0.0		Eeldespato auticepo	A SHOULD	
	Arcillosos 2.0		Dolomita-Fe	Sec. 14	a state sell
	Pedernal 0.0		Calcita	Strates	
	Indeterminados 0.0		Calcita-Fe	and the second second	and the second second
Granos Sustitutídos	Calcita-Fe 3.0		Barita	C:\TIFFS\2340C. Log: 20991 Mag	TIF 2340.00 metrros =150 FOV=708.070190 2
A	Analcima 0.0		Siderita	200uM	
Accesorios	Micas 4.0 Minerales perados 1.0		Dirita		
	Foraminíferos 1.3		Óxido de titanio		
	Fósiles indeterminados 1.0	Porosidad		1 Carta Des	
	Materia orgánica 5.0		Intergranular	a contration to	The Part
	Glauconita 1.3		Intrabioclástica	and the second second	
Martin Bartalan	Indeterminados 0.0		Intragranular		
Matriz Detritica	Arcilla 21.0		Fractura	21 1.54	ALL IN
	Indeterminada 0.0		Microporosidad	and the second	
	Diage	enesis		371 24	1 × 1 × 1
Pirita > Clorita > Ilita/ es	smectita en capa mixta > Oxido de Tita	nio > Calcita-Fe		CH K	J. Ast
	Descripción d	a las Imáganas			Cont Sty
Imagen 14C: Aquellas ár	Descripcion a	s con arcilla detrítica en est	a limolita arcillosa fueron ochi	Stores and	MARCH STOL
precipitación local de calo muestra.	ata ferrosa. El contenido de matriz abunda	inte es la causa primaria pa	ara la calidad de yacimiento nu	10- 46 F	
Imagen 14D: El material	ondulado y escamoso que se observa po	r toda esta gran magnificad	ción es matriz de arcilla detritir	34 6	
microporosidad asociada	con las áreas interparticulares de la arcilla o	letrítica.		A-LOT	N. C.S.
				C:\TIFFS\2340D.	TIF 2340.00 metrros

14C

14D

7. Información petrografica de los nucleos del pozo Flamante-1.

PETROGRAFÍA DE MICROSCOPIO ELECTRÓNICO

IMÁGENES 15C-15D

Compañía:	Pemex Exploración y Producción	Porosidad a helio- %:	8.8
Pozo:	Flamante 1	Permeabilidad- md:	0.001
Ubicación:	Exploratorio, Cuenca de Burgos	Densidad de matriz (gr/cm³):	2.70
Profundidad (m):	2527.00	Número de Muestra:	39R
Litología:	Limolita Arcillosa	Tamaño Promedio(mm):	0.049
Clasificación (Folk):	Arenita Lítica y Feldespática	Selección:	Buena

		Conteo	le Puntos	
Granos Detríticos			Arcilla Autigénica	
Cuarzo	Monocristalino	32.3	Clorita	0.7
	Policristalino	0.3	Caolinita	0.0
Feldespato	Feldespato potásico	0.0	Ilita	0.0
	Plagioclasa	10.3	I/E combinada	0.0
Fragmentos Líticos	Igneos	12.3	Indeterminada	0.0
	Metamórficos	0.3	Cementos no Arcillosos	
	Caliza	6.7	Cuarzo autígeno	0.0
	Dolomía	0.0	Cuarzo microcristalino	0.0
	Arenisca	0.0	Feldespato autígeno	0.0
	Arcillosos	2.3	Dolomita-Fe	0.0
	Pedernal	0.0	Calcita	0.0
	Indeterminados	0.0	Calcita-Fe	1.3
Granos Sustitutídos	Calcita-Fe	3.0	Barita	0.0
	Analcima	0.0	Siderita	0.0
Accesorios	Micas	3.3	Analcima	0.0
	Minerales pesados	1.3	Pirita	3.7
	Foraminíferos	0.7	Óxido de titanio	0.7
	Fósiles indeterminados	0.7	Porosidad	
	Materia orgánica	4.0	Intergranular	0.0
	Glauconita	1.0	Intrabioclástica	0.0
	Indeterminados	0.0	Intragranular	Tr
Matriz Detrítica			Fractura	0.0
	Arcilla	15.0	Móldica	0.0
	Indeterminada	0.0	Microporosidad	moderada

Diagénesis

Pirita > Clorita > Ilita/ esmectita en capa mixta > Oxido de Titanio > Calcita-Fe

Descripción de las Imágenes

Imagen 15C: Una combinación de tamaño de grano pequeño y matriz detritica común es la causa principal para la calidad nula de la limolita arcillosa ilustrada en esta fotomicrografía de SEM. Los minerales autígenos de etapa tardía rellenaron aquellas áreas intergranulares que nos e encontraban rellenas con matriz o que no fueron destruidas por compactación.

Imagen 15D: Un grano de cuarzo (c) se encuentra rodeado por particulas deformes de arcilla detrítica (material escamoso). Las cantidades moderadas de microporosidad se asocian con la matriz de arcilla detrítica, sin embargo los microporos no son efectivos para el flujo de fluido. Pozo: Flamante 1 No. Muestra: 39R Profundidad (m): 2527.00

Ν

ab

7. Información petrografica de los nucleos del pozo Flamante-1.

15D

7. Diagrama ternario de la composición de la arenisca y Cross plot entre la Porosidad vs. k del pozo Famante-1.

8. Registro geofísico del pozo General Bravo-1.

9. Evaluación petrofísica del pozo Marfil-1.

9. Cross plot Sw vs. Phie del pozo Marfil-1.

9. Cross plot Sw vs. Phie del pozo Marfil-1.

10. Evaluación petrofísica del pozo Neira-1.

10. Evaluación petrofísica del pozo Neira-1.

11. Evaluación petrofísica del pozo Otoño-1.

11. Evaluación petrofísica del pozo Otoño-1.

11. Cross plot Sw vs. Phie del pozo Otoño-1.

11. Cross plot Sw vs. Phie del pozo Otoño-1.

12. Evaluación petrofísica del pozo Surco-1.

12. Cross plot Sw vs. Phie del pozo Surco-1.

12. Evaluación petrofísica del pozo Surco-1.

12. Cross plot Sw vs. Phie del pozo Surco-1.

12. Evaluación petrofísica del pozo Surco-1.

12. Cross plot Sw vs. Phie del pozo Surco-1.

12. Evaluación petrofísica del pozo Surco-1.

12. Cross plot Sw vs. Phie del pozo Surco-1.

13. Evaluación petrofísica del pozo Tecuma-1.

13. Evaluación petrofísica del pozo Tecuma-1.

13. Evaluación petrofísica del pozo Tecuma-1.

14. Evaluación petrofísica del pozo Verano-1.

14. Cross plot Sw vs. Phie del pozo Verano-1.

14. Evaluación petrofísica del pozo Verano-1.

14. Cross plot Sw vs. Phie del pozo Verano-1.

14. Evaluación petrofísica del pozo Verano-1.

14. Cross plot Sw vs. Phie del pozo Verano-1.

14. Cross plot Sw vs Phie del pozo Verano-1.

14. Cross plot Sw vs. Phie del pozo Verano-1.

15. Evaluación petrofísica del pozo Zinfandel-1.

15. Cross plot Sw vs. Phie del pozo Zinfandel-1.

15. Evaluación petrofísica del pozo Zinfandel-1.

15. Cross plot Sw vs. Phie del pozo Zinfandel-1.

15. Cross plot Sw vs. Phie del pozo Zinfandel-1.

15. Cross plot Sw vs. Phie del pozo Zinfandel-1.

15. Cross plot Sw vs. Phie del pozo Zinfandel-1.

Compañia: Rozo: Campo:	Pernex Expl Zinfandel N Exploratorio	oración y F lo. 1 o	roducción	-	Ubicactór: PICB, Región Norte Tipo de Núcleo: Nuestras de Pared Tipo de Lutox: Base de Aceite					Fechia: Auchiwo: Aurelistes:	Junio 2003 57171-17069 Sowers
Número	Profuncióad	Parasidad	Permeabilid	ad (md)	Factores Forcheimer Poros			Densidad			
de			Klinkenberg	Alte	p(pel o)	Beta	Alfa	RQI	pon/1-por	de Grano	Comentarios
mueetra	(metros)	(%)	(md)	(nd)	(psig)	(ples-1)	(mioras)	(miorae)		(gnikm)	
28r	2474.00	8.3	0.0005	0.0016	183.83	2.19E+17	3.50E+05	0.002	0.091	2,709	
27r	2478.00	9.3	0.0009	0.0017	163.87	1.76E+17	3.98E+05	0.003	0.103	2.702	
28r	2477.00	10.3	0.0016	0.0041	140.57	1.13E+17	5.98E+05	0.004	0.115	2.701	
29r	2478.00	9.8	0.0013	0.0033	149.44	1.28E+17	5.30E+05	0.004	0.109	2,700	
30r	2568.00	6.4	0.0009	0.0025	153.87	1.08E+17	5.64E+05	0.004	0.068	2.687	
31r	2569.00	16.9	0.0065	0.0206	170.91	1.44E+15	3.04E+04	0.006	0.203	2.684	
32r	2570.00	45	0.0009	0.0022	163,87	9.98F+18	6.87E+05	0.004	6.047	2 882	

15. Información petrofísica de los nucleos del pozo Zinfandeli-1.

RESULTADOS DE LA PETROFÍSICA BÁSICA - CMS - 300								
Compañia: Pemex Exploración y Producción Pozo: Zinfandel No. 1 Campo: Exploratorio					Ubicación: Tipo de Núcleo: Tipo de Lodo:	PICB, Región Norte Muestras de Pared Base de Aceite	Fecha: Archivo: Analistas:	Junio 2003 57171-17069 González
Número de Muestra	Profundidad (metros)	Porosidad (%)	Perm. Klinkenberg (md)	Densidad de Grano (gm/cm ³)	Descripción			
26r	2474.00	8.4	0.0010	2.71	Arenisca gri redondeado cemento liga	s clara de granos finos de cu s en partes, subangulosos y d ramente calcáreo.	arzo y líticos bien clasificados úctiles, esfericidad alta y baja,	s, subredondeados, , bien consolidada,
27r	2476.00	9.9	0.0014	2.70	Arenisca gri: subredondea cemento lige	s clara de granos muy finos y fin ados, subangulosos y dúctiles, ramente calcáreo, zona de flujo	os de cuarzo y líticos moderada esfericidad baja, moderaderar	mente clasificados, mente consolidada,
28r	2477.00	10.9	0.0025	2.70	Arenisca gris subredondes cemento lige	s clara de granos muy finos y fin ados, subangulosos y dúctiles, ramente calcáreo, zona de flujo	os de cuarzo y líticos moderada esfericidad baja, moderaderar	mente clasificados, mente consolidada,
29r	2478.00	10.6	0.0021	2.70	Arenisca gris subredondea cemento liga	s clara de granos muy finos y fin ados, subangulosos y dúctiles, ramente calcáreo, zona de flujo	os de cuarzo y líticos moderada esfericidad baja, moderaderar	mente clasificados, mente consolidada,
30r	2568.00	7.1	0.0020	2.69	Arenisca gri angulosos, s	s clara de granos medios y fino ubredondeados y dúctiles, esfer	s de cuarzo y líticos moderada ricidad baja, bien consolidada, c	mente clasificados, emento calcáreo.
31r	2569.00	17.4	0.0249	2.68	Arenisca gri clasificados, consolidada	s clara de granos finos en par angulosos, subredondeados cemento calcáreo, trazas de mi	te muy finos de cuarzo y lítico y dúctiles, esfericidad baja icas.	os moderadamente a, moderadamente
32r	2570.00	5.4	0.0019	2.68	Arenisca gri: clasificados, consolidada	s clara de granos finos, medios subangulosos, subredondead cemento calcáreo.	en parte muy finos de cuarzo y os y dúctiles, esfericidad baja	líticos pobremente a, moderadamente

15. Información petrofísica y petrografica de los nucleos del pozo Zinfandel-1.

RESULTADOS DE LA PETROFÍSICA BÁSICA - CMS - 300

15. Cross plot k aire vs. k y Densidad de grano vs. Porosidad del pozo Zinfandel-1.

15. Cross plot Sw vs. Porosidad y So vs. Porosidad del pozo Zinfandel-1.

A. Mapa Base del Cubo China-Barrilete

B. Cima del Paleoceno Wilcox

C. Cima del Paleoceno Midwey.

D. Espesores Posibles del Paleoceno Wilcox

E. Sección sísmica en la parte norte del cubo.

F. Sección sísmica en la parte centro del cubo.

G. Sección sísmica en la parte sur del cubo.