

Vniver4dad NacionaL AvFn9ma de Mexico UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE QUÍMICA

AISLAMIENTO Y CARACTERIZACIÓN DE LA 5-O-[β -Dxilopiranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-metoxi-3',4'-dihidroxi-4-fenilcumarina, METABOLITO SECUNDARIO NOVEDOSO DE LA ESPECIE MEDICINAL *Hintonia latiflora* (Sessé et Mociño ex DC.) Bullock (Rubiaceae)

> **TESIS MANCOMUNADA** QUE PARA OBTENER EL TÍTULO DE:

> . . .

QUÍMICO FARMACÉUTICO BIÓLOGO

PRESENTAN VICTOR HUGO LEMUS NERI CHABETTY YADIRA VARGAS OLVERA

MÉXICO, D.F.

2006

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO

PRESIDENTE	Dra. María Isabel Aguilar Laurents
VOCAL	Dra. Rachel Mata Essayag
SECRETARIO	Dr. José Fausto Rivero Cruz
1er. SUPLENTE	Q.F.B. Sergio Ismael Martínez Luis
2do. SUPLENTE	Dra. Mabel Clara Fragoso Serrano

SITIO DONDE SE DESARROLLÓ LA TESIS:

Laboratorio 124 del Departamento de Farmacia, Edificio E. Facultad de Química. UNAM.

ASESOR

SUPERVISOR TÉCNICO

Dra. Rachel Mata Essayag

Q.F.B. José Antonio Guerrero Analco

SUSTENTATES:

Victor Hugo Lemus Neri

Chabetty Yadira Vargas Olvera

AGRADECIMIENTOS

El trabajo experimental de esta tesis se realizó mediante el apoyo económico otorgado a través de los proyectos: CONACYT (Consejo Nacional de Ciencia y Tecnología) C01-018 y DGAPA (Dirección General de Asuntos del Personal Académico de la UNAM) IN212005.

Agradecemos también a las siguientes instituciones y personas que contribuyeron de manera importante al desarrollo del presente trabajo:

Al Sistema Nacional de Investigadores (SNI), CONACYT por las becas de ayudante de Investigador Nacional Nivel III.

Al **Dr. Robert Bye**, investigador del Instituto de Biología de la UNAM, por la recolección e identificación de la especie *Hintonia latiflora*.

Al personal de la USAI (Unidad de Servicios y Apoyo a la Investigación de la Facultad de Química), especialmente a Marisela Gutiérrez Franco, Georgina Duarte Lisci y Margarita Guzmán Villanueva, Rosa Isela del Villar y Victor Manuel Arroyo por el registro de los espectros de Infrarrojo, masas y resonancia magnética nuclear.

A la Dra. Rachel Mata Essayag, por su tutoría y dirección en la presente investigación.

Al Q.F.B. José Antonio Guerrero Analco y al M. en C. Francisco Palacios por su valiosa asesoría.

A las M. en C. Laura Acevedo e Isabel Rivero Cruz por su asistencia técnica.

A los miembros del jurado asignado para la revisión del manuscrito de tesis, por sus valiosos comentarios y observaciones.

"Las plantas medicinales tienen un lugar en el universo interpretativo de las diferentes culturas, dependiendo de que sea lo que se espera de ellas, lo que se obtiene de ellas, o más importante aún, lo que simbolizan"

Viesca 1993.

ÍNDICE GENERAL

Pág.

Lista de Al Lista de Cu Lista de Es Lista de Fi Lista de Es	breviatura uadros squemas guras spectros .	35	III IV V VI
I.	ANTEC	EDENTES	1
1.1 1.2	Anteced Estudios	entes etnobotánicos, botánicos de <i>Hintonia latiflora</i> s farmacológicos y químicos sobre <i>Hintonia latiflora</i>	1 3
II.	JUSTIF	ICACIÓN Y OBJETIVOS	15
III.	PARTE	EXPERIMENTAL	17
3.1 3.2	Recolec Ensayos 3.2.1	ción del material vegetal s biológicos Evaluación del efecto mutagénico del extracto 3.2.1.1 Cepas bacterianas 3.2.1.2 Condiciones de la cepa de estudio 3.2.1.3 Obtención de la fracción S9 3.2.1.4 Ensayo	17 17 17 17 18 18 18 18
3.3	Estudio 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 2.2.6	fitoquímico de <i>Hintonia latiflora</i> Análisis cromatográficos Equipos utilizados en los estudios de espectroscopía, espectrometría y para la determinación de constantes físicas Preparación del extracto orgánico de <i>H. latiflora</i> Fraccionamiento primario del extracto orgánico de <i>H. latiflora</i> Aislamiento de la 23,24-dihidrocucurbitacina F(3) a partir de la fracción F9-IV-6 Aislamiento del 25 apetil 22 24 dihidrocucurbitacina F(10) a partir de la fracción	20 20 20 21 21 23
	3.3.6 3.3.7 3.3.8	Aisiamiento del 25-acetil-23,24-dihidrocucurbitacina F(10) a partir de la fracción F9-III-7 Aisiamiento de 25-acetil-3- O - β -D-glucopiranosil-23,24-dihidrocucurbitacina F (37) a partir de la fracción F10-V Aisiamiento de 3- O - β -D-glucopiranosil-23,24-dihidrocucurbitacina F (28) a partir de la fracción F14-II-2	24 26 27

=

Pág.

	3.3.9 3.3.10 3.3.11 3.3.12 3.3.13	 Aislamiento de la 5-O-[β-D-xilopiranosil-(1→6)-β-D-glucopiranosil]-7-metoxi- 3',4'-dihidroxi-4-fenilcumarina (22) y de la 5-O-[β-D-apiofuranosil-(1→6)-β-D- glucopiranosil]-7-metoxi-3',4'-dihidroxi-4-fenilcumarina (39) Reacciones efectuadas para la identificación del 5-O-[β-D-xilopiranosil-(1→6)- β-D-glucopiranosil]-7-metoxi-3',4'-dihidroxi-4-fenilcumarina (22) 4.3.10.1 Detección cromatográfica de azúcares en el producto de hidrólisis del compuesto (22) 4.3.10.2 Obtención del derivado acetilado del compuesto (22) Prueba de identificación de alcaloides Obtención del ácido desoxicordifolínico (38) a partir de la fracción primaria F13 Identificación de los constituyentes mayoritarios presentes en las fracciones primarias F1, F2, F4, F5 y F7 	29 31 32 32 32 32 33
IV.	RESUL	TADOS Y DISCUSIÓN	34
4.1 4.2 4.3	Evaluac Determi Caracte 4.3.1 4.3.2	ión del potencial mutagénico del extracto de <i>H. latiflora</i> nación del potencial antiinflamatorio del extracto de <i>H. latiflora</i> rización de compuestos marcadores de <i>H. latiflora</i> Caracterización de la 5- <i>O</i> -[β -D-xilopiranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7- metoxi-3',4'-dihidroxi-4-fenilcumarina (22) Análisis de las fracciones primarias F1 , F2 , F4 , F5 y F7 por CG-EM	34 37 39 40 44
V.	RESUN	IEN Y CONCLUSIONES	49
VI.	REFER	ENCIAS	50
VII.	APÉNE	DICE	54

LISTA DE ABREVIATURAS

AcOEt	Acetato de etilo
cm	Centímetro
CDCl ₃	Cloroformo deuterado
COSŸ	Espectroscopía de correlación homonuclear
CG-EM	Cromatografía de gases acoplada a espectrometría de masas
δ	Desplazamiento guímico
CH-CI-	
d	Doblete
dd	Doble de dobles
ddd	Doble de dobles
	Aumento de desaconlamiento nor transferencia de nolarización
	Dimetileulfávido
DMSO-d	Dimetilsulfóxido deuterado
	Espectrometría de masas por impacte electrónico
	Electron volts
ev °C	Grade contigrade
	Bombardoo rápido do átomos modelidad positivo
FAB	Cromo
y CDCI	Glano Claraforma dautorada
	Ácido sulutico
	Acido ciomidico
	nella Espectropophia de infrarreia
IR Int Dol	Especiroscopia de initiariojo
	Constante de coonlamiente
J N4+	
	Ion molecular Kilograma
ry	Kilografilo
Ĺ	LILIO L'angitud de ende
λ	
	Frecuencia maxima
	Meteral
mg	
mL	Millitros
m	
ppm	Partes por million
%	Por ciento
m/z	Relacion masa-carga
RMN	Resonancia Magnetica Nuclear
RMN'H	Resonancia Magnetica Nuclear Protonica
RMN ¹³ C	Resonancia Magnetica Nuclear de Carbono 13
S	Singulete
IMS	
t	I riplete
	Bicarbonato de sodio
NOESY	Espectroscopia de aumento nuclear overhauser
p.t.	Punto de fusión
UV	Espectroscopia de ultravioleta

LISTA DE CUADROS

Pág.

Cuadro 1.	Nombres comunes y sinonimia de las principales especies de Rubiáceas que	2
Cuadro 2. Cuadro 3	Otros usos medicinales de la especie <i>Hintonia latiflora</i>	2
oudulo J.	copalchi	5
Cuadro 4.	Características de las cepas de referencia utilizadas para los diferentes ensavos.	17
Cuadro 5.	Agentes reveladores utilizados en los análisis cromatográficos en capa delgada.	20
Cuadro 6.	Fraccionamiento primario por cromatografía en columna abierta del extracto	22
Cuadro 7	Obtenido de H. launora abtenidas del frascionamiente primerio	22
Cuadro 8	Fraccionamiento secundario nor cromatografía en columna abierta de la fracción	ZJ
Guauro o.	F9	23
Cuadro 9.	Fraccionamiento terciario por cromatografía en columna abierta de la fracción F9-	20
•••••••		24
Cuadro 10.	Fraccionamiento terciario por cromatografía en columna abierta de la fracción F9-	
		25
Cuadro 11.	Fraccionamiento secundario por cromatografía en columna abierta de la fracción	~ 7
Cuedro 12	F10	27
Cuadro 12.	Fraccionamiento secundario mediante cromatografia en columna abierta de la	20
Cuadro 13.	Fraccion FTT Fraccionamiento cuaternario mediante cromatografía en columna abierta de la	29
Cuadro 14.	traccion (F11-IX-3) Número de revertantes inducidas por distintos mutágenos y número de	30
	revertantes espontáneas en cepas de S. typhimurium (His +) con y sin fracción	
	S9	35
Cuadro 15.	Porcentaje de inhibición del edema a las diferentes dosis del extracto de CH ₂ Cl ₂ -	
	MeOH (1:1) de <i>H. latiflora</i> , del control y del fármaco de referencia	38
Cuadro 16.	Efecto antiinflamatorio del extracto orgánico de <i>H. latiflora</i> en el modelo de edema	
O	plantar en ratas inducido con carragenina	38
Cuadro 17.	Rendimiento de los metabolitos aislados a partir de la corteza de <i>H. latiflora</i>	39
Cuadro 18.	Constantes fisicas y espectroscopicas del compuesto 5-O-[β -D-xilopiranosil-	40
Cuadra 10	$(1 \rightarrow 6)$ - β -D-glucopiranosil-7-metoxi-3',4-dinidroxi-4-teniicumarina (22)	40
Cuadro 19.	Datos de RIMIN de 5-O-[β -D-XIIOPIRANOSII-($1 \rightarrow 6$)- β -D-giucopiranosii]- 1 -metoXI-3,4 - dibidroxi 4 fenileumarina (CDeOD) 13C (75.5 MHz) y 1H (300 MHz)	40
Cuadra 20	C_{11}	43
Cuadro 21	Constituyentes de la Fracción F1	44 15
Cuadro 22	Constituyentes de la Fracción F2	43 16
Cuadro 22	Constituyentes de la Fracción F4	40 17
Cuadro 24	Constituyentes de la Fracción F3	41 10
Juaul 0 24.		40

_

LISTA DE ESQUEMAS

Esquema 1. Esquema 2.	Proceso de extracción y fraccionamiento primario de <i>Hintonia latiflora</i> Estudio de la fracción primaria F9	22 25
Esquema 3.	Estudio de la fracción primaria F10	27
Esquema 4.	Fraccionamiento secundario de la fracción primaria F14	28
Esquema 5.	Fraccionamiento secundario de la fracción primaria F11	31

LISTA DE FIGURAS

Pág.

Figura 1. Figura 2.	Hintonia latiflora (Sessé et Mociño ex DC.) Bullock (Rubiaceae) Efecto mutagénico del extracto orgánico obtenido a partir de <i>Hintonia latiflora</i> por el método de incorporación directa con y sin fracción S9 del homogenado de	3
Figure 2	hígado de rata. Cepa TA 98	36
Figura 3.	el método de incorporación directa con y sin fracción S9 del homogenado de	
Figura 4.	hígado de rata. Cepa TA 100 Efecto mutagénico del extracto orgánico obtenido a partir de <i>Hintonia latiflora</i> por el método de incorporación directa con y sin fracción S9 del homogenado de	36
Figure 5	hígado de rata. Cepa TA 102	37
Figura 5.	inducido con carragenina en ratas	38
Figura 6.	Derivado peracetilado del compuesto 22	42
Figura 7.	Correlaciones encontradas en el espectro COSY de la 5-O-[β-D-2 ^{···} ,3 ^{···} ,4 ^{···} -	
-	triacetil-xilopiranosil- $(1\rightarrow 6)$ - β -D-2",3",4"-triacetil-glucopiranosil]-7-metoxi-3',4'- dihidroxi-4-fenilcumarina	42
Figura 8.	Cromatograma de gases de la fracción primaria F1	44
Figura 9.	Cromatograma de gases de la fracción primaria F2	45
Figura 10.	Cromatograma de gases de la fracción primaria F4	46
Figura 11.	Cromatograma de gases de la fracción primaria F5	47
Figura 12.	Cromatograma de gases de la fracción primaria F7	48

LISTA DE ESPECTROS

Pág.

Espectro 1.	Espectro de infrarrojo del compuesto 23,24-dihidrocucurbitacina F (3)	57
Espectro 2.	Espectro de masas (IE) del compuesto 23,24-dihidrocucurbitacina F (3)	57
Espectro 3.	Espectro de la RMN-1H de 23,24-dihidrocucurbitacina F (3)	58
Espectro 4.	Espectro de la RMN-13C de 23,24-dihidrocucurbitacina F (3)	59
Espectro 5.	Espectro de infrarrojo del compuesto 25-acetil-3-O- β -D-glucopiranosil-23,24-	
	dihidrocucurbitacina F (37)	60
Espectro 6.	Espectro de masas (IE) del compuesto 25-acetil-3- O - β -D-glucopiranosil-23,24-	
	dihidrocucurbitacina F (37)	60
Espectro 7.	Espectro de RMN-1H de la 25-acetil-3- $O-\beta$ -D-glucopiranosil-23,24-	~
F	dihidrocucurbitacina F (37)	61
Espectro 8.	Espectro de RMN- ¹³ C de la 25-acetil-3- O - β -D-glucopiranosil-23,24-	
	dihidrocucurbitacina F (37)	62
Espectro 9.	Espectro de infrarrojo del compuesto 3-O-/3-D-glucopiranosil-23,24-	
Formative 40	dihidrocucurbitacina F (28)	63
Espectro 10.	Espectro de masas (IE) del compuesto 3- O - β -D-glucopiranosii-23,24-	C 0
Concetro 11	dinidrocucurbitacina F (28)	63
Espectro 11.	Espectro de RIMIN-'H de la 3-0-/3-D-glucopiranosii-23,24-dinidrocucurditacina F	64
Egnaatra 12	(28)	04
Especiro 12.		65
Econoctro 13	(20)	00
L'Spectro 13.	Espectro de limanojo del compuesto 5-O- $[D$ -D-apiolulanosi- $(1 \rightarrow 0)$ - D -D-	66
Espectro 1/	giucopiranosiij-r-metoxi-s, 4-umuroxi-4-termicumanna (39)	00
Lopectio 14.	Espectro de masas (IE) del compuesto 5-0- p -d-apionarios ($1 \rightarrow 0$)- p - D -	66
Espectro 15	Supertro de RMN-1H de la 5- Ω -[R -D-aniofuranosil-(1- β)- R D-aluconiranosil-7-	00
	r = 2 p = 2 -	67
Espectro 16	Espectro de RMN-13C de la 5- Ω -[<i>B</i> -D-aniofuranosil-(1 \rightarrow 6)- <i>B</i> -D-duconiranosil-7-	07
	metovi-3' 4'-dihidrovi-4-fenilcumarina (39)	68
Espectro 17.	Espectro de infrarroio del compuesto 5-0-[β -D-xilopiranosil-(1 \rightarrow 6)- β -D-	00
	alucopiranosill-7-metoxi-3' 4'-dihidroxi-4-fenilcumarina (22)	69
Espectro 18.	Espectro de masas (IE) del compuesto 5-O-I β -D-xilopiranosil-(1 \rightarrow 6)- β -D-	•••
•	glucopiranosill-7-metoxi-3'.4'-dihidroxi-4-fenilcumarina (22)	69
Espectro 19.	Espectro de RMN- ¹ H de la 5-O-[β -D-xilopiranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-	
•	metoxi-3'.4'-dihidroxi-4-fenilcumarina (22)	70
Espectro 20.	Espectro de RMN- ¹³ C de la 5-O-[β -D-xilopiranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-	-
-	metoxi-3',4'-dihidroxi-4-fenilcumarina (22)	71
Espectro 21.	Espectro DEPT de la 5-O-[β -D-xilopiranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-metoxi-	
	3',4'-dihidroxi-4-fenilcumarina (22)	72

=

Pág.

Espectro 22.	Espectro UV del compuesto 5-O-[β -D-xilopiranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7- metoxi-3',4'-dihidroxi-4-fenilcumarina (22)	73
Espectro 23.	Espectro COSY de la 5-O-[β -D-xilopiranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-metoxi-	
	3',4'-dihidroxi-4-fenilcumarina (22)	73
Espectro 24.	Espectro NOESY de la 5-O-[β -D-xilopiranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-metoxi-	
	3',4'-dihidroxi-4-fenilcumarina (22)	74
Espectro 25.	Espectro HETCOR de la 5-O-[β -D-xilopiranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-	
	metoxi-3',4'-dihidroxi-4-fenilcumarina (22)	75
Espectro 26.	Espectro de infrarrojo del compuesto ácido desoxicordifolínico (38)	76
Espectro 27.	Espectro de masas (IE) del compuesto ácido desoxicordifolínico (38)	76
Espectro 28.	Espectro de RMN-1H del ácido desoxicordifolínico (38)	77
Espectro 29.	Espectro de RMN-13C del ácido desoxicordifolínico (38)	78

I. ANTECEDENTES

1.1 ANTECEDENTES ETNOBOTÁNICOS, BOTÁNICOS DE Hintonia latiflora

Hintonia latiflora (Sessé et Mociño ex DC.) Bullock es una Rubiaceae conocida popularmente como falsa quina, copalquin, cáscara sagrada y cascarilla, entre otros. La especie es un árbol de hasta 10 metros de altura; su corteza café amarillenta, es escamosa en algunas áreas y casi lisa en otras; se desprende normalmente en escamas rectangulares; en las áreas desprovistas de escamas posee abundantes lenticelas pequeñitas de 2 mm, a veces en hileras longitudinales; su sabor es extremadamente amargo. Las hojas son opuestas, pecioladas, pubescentes o glabras, de 1.5 a 12 cm de largo, ovales, oblondo-lanceoladas, de base redondeada y ápice acuminado o agudo. Las flores son grandes en forma de embudo, verdosas; amarillas o blancas, axilares o terminales, solitarias o cimosas (**Figura 1**). Su fruto es capsular de forma globosa, con o sin costillas que contiene numerosas semillas aladas (Barajas y Pérez *et al.*, 1990).

Hintonia latiflora forma parte del complejo colpachi, constituido al menos por 11 especies de árboles o arbustos de corteza amarga y que pertenecen a las familias Rubiaceae (**Cuadro 1**) y Euphorbiaceae. Algunas de estas plantas se emplean como febrífugos, antipalúdicos y contra padecimientos del hígado, bilis y vesícula biliar (Martínez *et al.*, 1989).

Las especies del complejo copalchi que pertenecen a la familia de las rubiáceas se distribuyen en varias regiones del país, principalmente en los estados costeros del Océano Pacífico y del Golfo de México; las de mayor rango de distribución se encuentran también en los estados del centro y norte del país. *H. latiflora* particularmente se localiza desde el Sureste de Chihuahua hasta Chiapas (Camacho *et al.*, 1990).

Hintonia latiflora se usa en la medicina tradicional de México y otros países para el tratamiento de la malaria y dengue, y al igual que otras cortezas de la familia Rubiaceae se ha empleado como un sustituto de la quina para el tratamiento de síntomas asociados al paludismo (Standley *et al.,* 1975). En estudios sobre los Tarahumaras de Chihuahua, Bye (1986) reporta el uso de *H. latiflora* como antimalárico y para el tratamiento de heridas. Otros usos medicinales de esta especie se resumen en el Cuadro 2.

1

NOMBRE CIENTIFICO	SINONIMIAS	NOMBRE COMUN	REFERENCIA
Hintonia latiflora (Sessé et Mociño ex DC.) Bullock Coutarea pterosperma Portlandia pterosperma Portlandia pterosperma Coutarea latiflora Portlandia pterosperma DC.) Bullock Coutarea latiflora Portlandia pterosperma Coutarea latiflora Portlandia pterosperma Coutarea latiflora Portlandia pterosperma Coutarea latiflora Portlandia pterosperma		Campanilla, Campanillo, Chichicpatli, Cichicquauitl, Copalchi, Colpachi de Jojutla, Corteza de Jojutla, China od. Falsa quina, Palo amargo, Quina campanilla, Quina de Michoacán, Copalchile, Copalquin, Gurañona, Jujetillo, Palo negro, Quina, San Juan.	Díaz <i>et al.</i> , 1976 Camacho <i>et al.,</i> 1990 Aguilar <i>et al</i> ., 1994
Coutarea hexandra Jacq.		Colpachi de Oaxaca	Martínez <i>et al</i> ., 1989
Exostema caribaeum (Jacq.) Roem. et Schult.	Cinchona caribaea	Colpachi de Michoacán, Corteza de Jojutla, Jocotillo de cerro, Quina de Michoacán, Sabakche	Díaz e <i>t al</i> ., 1976
Exostema mexicanum A. Gray		Melena de león, Quina blanca, Sabacche	Camacho <i>et al</i> ., 1990
Psychotria horizontalis Sw.		Quina Blanca	Camacho <i>et al</i> ., 1990

Cuadro 1.	. Nombres comunes y sinonimia de las principales especies de Rubiáceas que integran el comple	эjo
	copalchi.	

Cuadro 2. Otros usos medicinales de la especie Hintonia latiflora.

USOS MEDICINALES	PARTE USADA	MODO DE USO	VIA DE ADMINISTRACION	REFERENCIA
Hipoglucemiante	Corteza	Decocción	Oral	
Antiperiódico	Corteza	Decocción	Oral	
Curar granos	Tallos	Decocción	Lavados	
Febrífugo	Corteza	Decocción	Oral	
Antiséptico	Tallos	Decocción	Lavados	Aguilar <i>et al</i> ., 1994
Tranquilizante	Tallos	Decocción	Oral	Rojas Alba et al.,
Tratamiento de la bilis	Corteza	Infusión	Oral	1998
Úlcera gástrica	Corteza	Macerado	Oral	
Cálculos biliares	Corteza	Decocción	Oral	
Eupéptico	Corteza	Decocción	Oral	
Purgante	Corteza	Decocción	Oral	
Diurético	Corteza	Decocción	Oral	

Figura 1. Hintonia latiflora (Sessé et Mociño ex DC.) Bullock (Rubiaceae).

1.2 ESTUDIOS FARMACOLÓGICOS Y QUÍMICOS SOBRE Hintonia latiflora

Los estudios realizados sobre la actividad farmacológica de *H. latiflora* son numerosos y la mayoría están relacionados con sus propiedades antidiabéticas y antipalúdicas. Los primeros estudios sobre los efectos antidiabéticos de esta planta fueron realizados en el Instituto Médico Nacional a principios del siglo XX. Posteriormente estos trabajos fueron confirmados por investigadores de otros países como Alemania, Francia e Italia utilizando diferentes modelos experimentales en animales. En 1960 Paris y Bastien comprobaron que el extracto no tenía influencia sobre los niveles de glucosa en sangre en conejos normales, sin embargo, sí el extracto era administrado por vía oral seguido de una administración de glucosa, el pico de hiperglicemia producido era más bajo en los animales tratados que en los controles.

Posteriormente, en un estudio realizado por Pérez (1984) se encontró que *H. latiflora* es una del 21 especies mexicanas más efectivas como agente antidiabético. A finales de la década de los noventas, Pinto y colaboradores (1997) en Italia demostraron, en un experimento a largo plazo en ratas, el efecto hipoglucemiante de un preparado desarrollado en Alemania y que se comercializa con el nombre de Sucontral®.

En el año 2000 (Korec *et al.*, 2000) demostró el efecto antihiperglicémico agudo del compuesto de síntesis 3',4',5-trihidroxi-7-metoxi-4-fenilcumarina y de un extracto concentrado de *H. latiflora* elaborado por la empresa Harras Pharma Curarina, misma que fabrica el Sucontral®. Tanto el producto como el preparado, administrados por vía oral provocaron una disminución de los niveles de glucosa en sangre en ratas Wistar con diabetes mellitus inducida por estreptozotocina. Los autores concluyen que el compuesto de síntesis es uno de los principios activos responsables de la disminución de la hiperglicemia, sin embargo no corroboraron la presencia de ese producto en el extracto de la planta.

Por otra parte, los productos de hidrólisis ácida de los extractos preparados con acetato de etilo a partir de las cortezas de *H. latiflora* y *E. caribaeum* presentaron actividad anti-*Plasmodium falciparium* in vitro. Así mismo, uno de los compuestos aislados a partir de un extracto etéreo de *E. caribaeum* presentó una actividad moderada, no obstante en ningún caso la actividad fue mejor que la de la cloroquina o la quinina (Noster y Kraus *et al.*, 1990). Más recientemente, Camacho y colaboradores (2003) comprobaron la actividad antiprotozoaria del extracto metanólico de la corteza de *H. latiflora* contra *Leishmania donovani promastigotes* y *Trypanosoma brucei*.

En otros estudios farmacológicos también se describe que *H. latiflora* tiene efectos hipotensivos, antiaterogénicos y suprime el apetito en perros y ratas Jiu (1966). En evaluaciones sobre la actividad antimicrobiana, el extracto metanólico de *H.latiflora* fue inactivo contra levaduras, bacterias gram-positivas y gram-negativas, sin embargo, el metabolito 5-O- β -D-galactopiranosil-3',4'-dihidroxi-7-metoxi-4-fenilcumarina (**11**) presentó una actividad moderada contra *C. albicans* (Rojas *et al.*, 1992). En ese mismo trabajo se comprobó que los glicósidos 5-O- β -Dgalactopiranosil-4'-hidroxi-7-metoxi-4-fenilcumarina (**27**), 5-O-(6''-acetil)- β -D-glucopiranosil-7,3',4',-trihidroxi-4fenilcumarina (**26**), 3-O- β -D-glucopiranosil-23,24-dihidrocucurbitacina F (**28**) y 6-O- β -D-glucopiranosil-2,3',4'trihidroxi-4-metoxi- α -fenilestireno (**30**), carecen de actividad antibiótica contra varios microorganismos (Rojas *et al.*, 1992).

El estudio fitoquímico de la especie *H. latiflora* ha permitido el aislamiento y caracterización de numerosos metabolitos secundarios principalmente de los tipos fenilcumarinas y cucurbitacinas. También se ha descrito la presencia de un fenilestireno y un flavonoide caracterizado como la 7-metil-luteolina (Camacho *et al.*, 1990). Los constituyentes de *H. latiflora* y otras especies que conforman el complejo copalchi se resumen en el Cuadro 3.

4

Especie	Metabolito	Referencia
Exostema caribaeum	H ₃ CO H ₃ CO OH OCH ₃ OCH ₃	Sánchez-Viesca <i>et al.,</i> 1969
	Exostemina (1)	
Exostema caribaeum	H_{2OH} H_{0} H_{0} H_{0} H_{0} H_{0} H_{0} H_{0} H_{1} H_{0} H_{1} H_{2} H_{2} H_{2} H_{1} H_{2} $H_$	Krebs y Griesinger <i>et</i> <i>al.</i> , 1960 Sánchez-Viesca <i>et al.</i> , 1969 Mata <i>et al.</i> , 1987 Mata <i>et al.</i> , 1988
Hintonia latiflora	но но но з,24-dihidrocucurbitacina F (3)	Reguero <i>et al</i> ., 1987
Exostema caribaeum Hintonia latiflora Coutarea latiflora Coutarea hexandra	7-metoxi-4′,5′-dihidroxi-4-fenil-5,2′-oxidocumarina (4)	Reher <i>et al.</i> , 1983 Mata <i>et al.</i> , 1987 Mata <i>et al.</i> , 1988 Reher y Kraus <i>et al.</i> , 1984

Especie	Estructura	Referencia
Exostema caribaeum Coutarea latiflora Coutarea hexandra	H ₃ CO $(+)$	Mata <i>et al.</i> , 1987 Mata <i>et al.</i> , 1988 Delle Monache <i>et al.</i> , 1983
Exostema mexicanum Coutarea hexandra	H ₃ CO U U H ₃ CO U H O	Delle Monache <i>et al.</i> , 1983 Köhler <i>et al.</i> , 2001
Exostema mexicanum Coutarea latiflora	H ₃ CO CH ₃ OCH ₃ OH OCH ₃ OH OCH ₃ OH OCH ₃ OH OCH ₃ OH OCH ₃ OH OCH ₃ OH OCH ₃ OCH	Delle Monache <i>et al.</i> , 1983 Köhler <i>et al.</i> , 2001
Coutarea hexandra Coutarea latiflora	H ₃ CO	Reher <i>et al.</i> , 1983 Reher y Kraus <i>et</i> <i>al.</i> ,1984

Especie	Estructura	Referencia
Coutarea hexandra	H ₃ CO H ₃ CO OH OCH ₃ OH 5,7-dimetoxi-3'-hidroxi-4-fenilcumarina (9)	Delle Monache <i>et al.,</i> 1983
Hintonia latiflora	HO HO HO HO HO HO HO HO HO HO HO HO HO H	Reguero <i>et al.,</i> 1987
Exostema caribaeum Hintonia latiflora	 H₃CO → O → O → O → O → O → O → O → O → O →	Mata <i>et al.</i> , 1987 Mata <i>et al.</i> , 1988 Mata <i>et al.</i> , 1990
Exostema caribaeum	T.3'-dimetoxi-5.4'-dihidroxi-4-fenilcumarina (12)	Mata <i>et al.</i> , 1987 Mata <i>et al.</i> , 1988

Especie	Estructura	Referencia
Exostema caribaeum Coutarea latiflora	7,5'-dimetoxi-4'hidroxi-4-fenil-5,2'-oxidocumarina (13)	Mata <i>et al.</i> , 1987 Mata <i>et al.</i> , 1988
Exostema caribaeum	но	Mata <i>et al.</i> , 1987 Mata <i>et al.</i> , 1988
Exostema caribaeum Exostema mexicamun Hintonia latiflora Coutarea hexandra Hintonia standleyana	H ₃ CO H ₁ OH HO HO HO HO H OH H OH H OH H OH H O	Mata <i>et al.</i> , 1987 Mata <i>et al.</i> , 1988 Soto <i>et al.</i> , 1988 Aquino <i>et al.</i> , 1988
Exostema caribaeum	 H₃CO + O^{AC} + O^O +	Mata <i>et al.</i> , 1987 Mata <i>et al.</i> , 1988

Especie	Estructura	Referencia
Exostema caribaeum	H_3^{CO} O	Mata <i>et al.</i> , 1987 Mata <i>et al</i> ., 1988
Exostema caribaeum	H ₃ CO	Mata <i>et al.</i> , 1987
Hintonia latiflora Coutarea hexandra	H ^O H ^H O ^H H ^O H ^H O ^O H ^O H ^O H ^O H ^O	Mata <i>et al.</i> , 1990 Mata <i>et al.</i> , 1992 Aquino <i>et al.</i> , 1988
Exostema caribeum	5.3'-dihidroxi-7.4'-dimetoxi-4-fenilcumarina (20)	Mata <i>et al.</i> , 1988

Especie	Estructura	Referencia
Coutarea hexandra Hintonia standleyana	Ho Ho Ho Ho Ho Ho Ho Ho Ho Ho	Aquino <i>et al.</i> , 1988
Coutarea hexandra	H ₃ CO $(\beta$ -D-xilopiranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-metoxi- 3',4'-dihidroxi-4-fenilcumarina (22)	Aquino <i>et al.</i> , 1988
Exostema mexicanum	но но сисurbitacina F (23)	Mata <i>et al.</i> , 1990
Exostema mexicanum	HO HO HO HO HO HO HO HO HO HO HO HO HO H	Mata <i>et al</i> , 1990

Especie	Estructura	Referencia
Exostema mexicanum	H H H H H H H H H H	Mata <i>et al.</i> , 1990
Exostema mexicanum Hintonia latiflora	H ^O H ^O H ^O H ^O H ^O H ^O H ^O H ^O	Mata <i>et al.</i> , 1990 Mata <i>et al.</i> , 1990 Mata <i>et al.</i> , 1992
Hintonia latiflora	H_3^{CO} O	Mata <i>et al.</i> , 1990
Hintonia latiflora Hintonia standleyana	HOH HOH HOH HOH HOH HOH HOH HOH HOH HOH	Mata <i>et al.</i> , 1990

Cuadro 3. Metabolitos secundarios descri	itos en las Rubiácea	as que integran el	complejo copalchi
	(continuación).		

Especie	Estructura	Referencia
Hintonia latiflora	 H₃CO + (-) + (Soto <i>et al.</i> , 1988
Hintonia latiflora	H ₃ CO \rightarrow OH H ₀ \rightarrow H ₃ CO \rightarrow OH H ₀ \rightarrow \rightarrow OH OH OH OH OH OH OH OH OH OH OH OH OH O	Mata <i>et al.</i> , 1992
Exostema mexicanum	H ₃ CO () () () () () () () () () ()	Köhler <i>et al</i> ., 2001
Exostema mexicanum	HO HO OCH ₃ OCH ₃ OCH ₃ 3',7-dihidroxi-4',5-dimetoxi-4-fenilcumarina (32)	Köhler <i>et al</i> ., 2001

Especie	Estructura	Referencia
Exostema mexicanum	H ₃ CO H ₃ CO	Köhler <i>et al</i> ., 2001
Exostema mexicanum	4',8-dihidroxi-5,7-dimetoxi-4-fenilcumarina (34)	Köhler <i>et al</i> ., 2001
Exostema mexicanum	H ₃ CO H ₃ CO OCH ₃ OCH ₃ O	Köhler <i>et al</i> ., 2001
Exostema mexicanum	H ₃ CO H ₃ CO OH OH OH OH OH 3',4',8-trihidroxi-5,7-dimetoxi-4-fenilcumarina (36)	Köhler <i>et al.</i> , 2001

Especie	Estructura	Referencia
Hintonia standleyana	HO +	Guerrero-Analco <i>et al.,</i> 2005
Hintonia standleyana	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array}} \\ \begin{array}{c} \end{array}$ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \left(\begin{array}{c} \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \left(\begin{array}{c} \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \left(\begin{array}{c} \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \left(\begin{array}{c} \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \left(\end{array} \\ \end{array} \left(\begin{array}{c} \end{array} \\ \left(\end{array} \\ \end{array} \left(\begin{array}{c} \end{array} \\ \end{array} \left(\begin{array}{c} \end{array} \\ \left(\end{array} \\ \end{array} \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \\ \end{array} \left) \\ \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \\ \end{array} \left) \\ \left(\end{array} \\ \left) \\ \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \\ \left) \\ \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \\ \left) \\ \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \\ \left) \\ \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \\ \left) \\ \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \\ \left) \\ \left(\end{array} \\ \left(\end{array} \\ \left) \\ \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \\ \left) \\ \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \\ \left) \\ \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \\ \left) \\ \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \\ \left) \\ \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \\ \left) \\ \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \\ \left) \\ \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \\ \left) \\ \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \\ \left) \\ \left(\end{array} \\ \left(\end{array} \\ \left) \\ \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \\ \left) \\ \left(\end{array}	Déciga-Campos <i>et al.,</i> 2006
Hintonia standleyana	H ₃ CO \downarrow	Guerrero-Analco <i>et al.,</i> 2005

II. JUSTIFICACIÓN Y OBJETIVOS

Las drogas crudas y preparados de plantas constituyen la base de la medicina herbolaria y en general de la fitoterapia. De ahí, la calidad, inocuidad y eficacia de los mismos debe gararantizarse para lograr una práctica terapéutica exitosa. Sin embargo, en la mayoría de los países los medicamentos herbolarios no se encuentran registrados; su comercialización no está regulada y a menudo la calidad de los productos es precaria. Por tal motivo la OMS planteó la necesidad de realizar guías apropiadas para el control sanitario de estos productos. Así en 1998 esta organización publicó una guía para el aseguramiento de la calidad de los medicamentos herbolarios. Esta guía contiene los criterios básicos para la evaluación de la calidad, seguridad y eficacia de los fitomedicamentos. En 1999 la OMS divulgó un primer volumen de 28 monografías de plantas medicinales ampliamente utilizadas alrededor del mundo; un segundo volumen con 32 monografías adicionales se publicó en el año 2002. Cada monografía consta de dos partes: la primera se refiere a la identificación y control de calidad (aspectos botánicos, pruebas de identificación, pureza, análisis químico, principales constituyentes). La segunda parte, basada en una extensa revisión de trabajos científicos, expone los usos tradicionales, no demostrados experimentalmente, así como los datos sobre experimentación farmacológica y clínica, información sobre sus posibles contraindicaciones, precauciones, efectos secundarios y posología. Estas monografías constituyen una referencia científica valiosa para las autoridades sanitarias encargadas de la regulación de productos destinados a procurar la salud, particularmente en países en los que la fitoterapia es un elemento necesario dentro del arsenal terapéutico; también sirven de modelo para que los países miembros de la OMS desarrollen las monografías de sus plantas autóctonas. Así en los países Europeos la ESCOP (Cooperación Científica Europea de Fitoterapia) ha publicado numerosas monografías de plantas de gran consumo en Europa.

En los Estados Unidos de América (EUA) la contribución de los productos herbolarios en el tratamiento y prevención de enfermedades ha incrementado sensiblemente en años recientes (Raskin *et al.*, 2002). Por lo anterior este país también ha tratado de promover el uso responsable de los medicamentos herbolarios mediante la publicación de la Farmacopea Herbolaria Americana así como la de generación de estándares de referencia para las pruebas de control de calidad.

En México, el comercio contemporáneo de plantas medicinales es significativo, aunque el uso de estas data de épocas prehispánicas su comercialización fue también de gran importancia (Legorreta, 1989). Los datos sobre las características vegetales, formas de uso, propiedades terapéuticas, recolección y comercio de numerosas plantas medicinales, se consignan en fuentes tan antiguas, como los códices precolombinos.

En respuesta al gran consumo de los medicamentos herbolarios en nuestro país, el Diario Oficial de la Federación publicó reglamentos en los que se especifica las condiciones de registro, autorización y venta que requieren dichos productos para que sean comercializados, así como una lista de las plantas prohibidas para la elaboración de remedios herbolarios. Posteriormente la Secretaria de Salud publica en el 2001 la primera edición de la "Farmacopea Herbolaria de los Estados Unidos Mexicanos" tomando en consideración la propuesta realizada por la OMS, no obstante la información de esta publicación resultó muy limitada en el número de monografías de plantas autóctonas debido a la carencia de información científica para integrarlas.

En este contexto el presente trabajo de tesis tiene como objetivo primordial generar la información científica relacionada con algunos parámetros de calidad, eficacia e inocuidad necesarios para la elaboración de la monografía de la especie medicinal *H. latiflora* (considerada como una de las 100 plantas más comercializadas en México) de acuerdo a los lineamientos de la Organización Mundial de la Salud. Esta planta se encuentra en una relación de especies de uso etnobotánico en México incluida en la sección extrafarmacopea de la FHEUM. Al igual que las otras 159 especies allí enlistadas, es necesario generar sus monografías farmacopeicas. La monografía de tipo OMS que florezca de este y otros trabajos afines permitirá integrar también la monografía farmacopeica de *H. latiflora*.

Los objetivos particulares formulados para el presente trabajo son los siguientes:

- Determinar el potencial mutagénico del extracto íntegro de *H. latiflora* mediante la prueba de Ames con el propósito de continuar los estudios relativos a su inocuidad.
- Establecer los compuestos marcadores de la especie que permitan la identificación o estandarización de los preparados herbolarios a base de *H. latiflora*.
- Evaluar el efecto antiinflamatorio del extracto integro de la corteza *H. latiflora* usando el modelo del edema plantar inducido con carragenina en ratas para completar los estudios relativos a su eficacia.

III. PARTE EXPERIMENTAL

3.1 RECOLECCIÓN DEL MATERIAL VEGETAL

El material vegetal (corteza) de la especie medicinal *Hintonia latiflora* fue recolectado en Batopilas, Chihuahua, en Junio del 2003. La corteza fue identificada por el Dr. Robert Bye del Jardín Botánico del Instituto de Biología de la UNAM. Un ejemplar de referencia (voucher: Bye 31735) fue depositado en el Herbario Nacional (MEXU).

3.2 ENSAYOS BIOLÓGICOS

3.2.1 Evaluación del efecto mutagénico del extracto

3.2.1.1 Cepas bacterianas

El potencial mutagénico del extracto de *Hintonia latiflora* se realizó de acuerdo a la metodología descrita por Ames (Maron y Ames *et al.*, 1983). Para este ensayo se emplearon cepas de *Salmonella typhimurium* -TA98, TA100 y TA 102- (**Cuadro 4**), las cuales fueron proporcionadas por la Dra. Miriam Arriaga Alba (Laboratorio Microbiología del Hospital Juárez de México).

Salmonella typhimurium				
Cepas	TA 98	TA 100	TA 102	
Revertantes de histidina/ placa	30-50	120-200	240-320	
Condiciones de incubación	aerobio, 37 °C	aerobio, 37 °C	aerobio, 37 °C	
Mutágeno s/S9	ácido picrolónico	etilen- <i>N</i> -nitroso guanidina	mitomicina C	
Mutágeno c/S9	2-aminoantraceno	ciclofosfamida	mitomicina C 2-aminoantraceno	
Mutación en el operón de histidina	his D3052	his G46	his G428 (pAQ1)	

Cuadro 4.	Características	de las cepas	s de referencia	utilizadas	para los diferente	s ensayos

3.2.1.2 Condiciones de la cepa de estudio

Para cada experimento, las cepas de prueba se resuspendieron y cultivaron en Medio Oxoid R el cual se mantuvo en agitación a 37°C, durante 16 horas. El genotipo del cultivo original de las cepas de *S. typhimurium* fue confirmado mediante la determinación de la sensibilidad a antibióticos y al cristal violeta.

3.2.1.3 Obtención de la fracción S9

La preparación de la fracción **S9** se realizó conforme al procedimiento descrito por Garner *et al.* (1972). Para este estudio cinco ratas macho de la cepa Wistar (180-200g), en ayuno de 12 hrs. y agua *ad libitum*, se sacrificaron por dislocación cervical cinco días después de la administración intraperitoneal de una dosis única de 500 mg/Kg de Aroclor 1254. El tejido extraído se lavó con una solución estéril de KCl 0.15 M y se suspendió en 150 mL de esta misma solución. El homogenado resultante se centrifugó a 8700 rpm durante 10 minutos, el sobrenadante resultante (fracción **S9**) se congeló a -80 °C en alícuotas de 1 mL. La concentración de proteínas de la fracción **S9** se cuantificó mediante el método de Lowry (Lowry *et al.*, 1951). Para la realización de las pruebas, la mezcla al 4% de la fracción **S9** se preparó en el momento utilizando 1 mL del homogenizado, 1 mL de buffer de cloruros, 23 mL de buffer de fosfatos, 60 mg de glucosa-6-fosfato y 26 mg de β -NADP. La mezcla se esterilizó por filtración utilizando membranas Acrodisc R de 0.45 µm.

3.2.1.4 Ensayo

a) Preparación de la muestra

Se disolvieron 50 mg del extracto de *H. latiflora* en 1 mL de DMSO y se realizaron diluciones consecutivas hasta obtener las concentraciones requeridas (1000, 500 y 250 μ g) contenidas en un volumen final de 20 μ L c/u.

b) Preparación del inóculo

Las muestras a evaluar junto con 100 μ L de la cepa de estudio y 500 μ L de agua destilada o de la fracción S9 se añadieron a tubos que contienen 2 mL de agar al 0.6% con 0.5 mM de L-histidina-D-biotina y 0.6% de NaCl, manteniéndolos a 45°C.

c) Procedimiento

Los tubos de inóculo se agitaron en un vortex y su contenido se adicionó a cajas petri (10 cm de diámetro interno) que contenían de 15-20 mL de medio (Vogel-Bonner). Una vez que el medio de cultivo solidificó a temperatura ambiente, las cajas se incubaron en posición invertida a 37°C por 2 días antes de realizar el conteo de colonias revertantes de histidina. Las características de reversión para cada prueba fueron determinadas de manera rutinaria en cada experimento. El conteo de colonias se realizó con un contador automático modelo Fisher; todos los experimentos se realizaron por triplicado. Como controles positivos se utilizaron los mutágenos de referencia indicados en el Cuadro 4; los controles negativos contenían DMSO y el medio de cultivo.

3.2.2 Determinación de la actividad antiinflamatoria del extracto de H. latiflora

La actividad antiinflamatoria del extracto de *H. latiflora* se realizó mediante el modelo del edema plantar inducido por carragenina en ratas descrito por Winter (Winter *et al.*, 1962). Para el ensayo se utilizaron ratas macho de la cepa Wistar, con un peso entre 180-220 g procedentes del centro UNAM-Harlan (Harlan México). El protocolo experimental se efectuó bajo las condiciones establecidas en la norma NOM-062-ZOO-1999 "Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio" y las reglas internacionales sobre cuidado y uso de animales de laboratorio. Las mediciones se realizaron en un pletismómetro marca UGO BASILE modelo 7140 Serie No. 4990 el cual fue operado y calibrado de acuerdo al procedimiento reportado en el manual de dicho equipo.

Los animales se dejaron en ayuno de 18 horas previas al experimento, dejando libre acceso al agua. El día del experimento las ratas fueron divididas en tres grupos de seis. La administración de las diferentes dosis del extracto (1000, 300, 100 mg/Kg) se realizó por vía oral. Como fármaco de referencia se utilizó indometacina (10 mg/Kg), la cual se administró por la misma vía 30 minutos después del extracto. Al cabo de este tiempo, las ratas recibieron una administración vía intraplantar (en la pata derecha) de 0.1 mL una solución salina isotónica al 1% de carragenina; en cada grupo se midió el volumen desplazado cada hora hasta completar las 6 horas de estudio. En la pata izquierda de cada animal se administró el vehículo como un control blanco. Finalmente las diferencias estadísticamente significativas entre grupos se determinaron mediante un análisis de varianza (ANADEVA), y complementadas con la prueba de Dunnet.

3.3 ESTUDIO FITOQUÍMICO DE Hintonia latiflora

3.3.1 Análisis cromatográficos

La cromatografía analítica en capa delgada se realizó en placas de aluminio de diferentes dimensiones recubiertas con gel de sílice (60 F₂₅₄ Merck, malla 3.5-7.0 ASTM) de 0.25 mm de espesor. Los compuestos se visualizaron con luz UV a longitudes de onda corta (254 nm) y larga (365 nm) y mediante la aplicación de un agente cromógeno apropiado (**Cuadro 5**). Para favorecer la reacción de los constituyentes con el agente revelador fue necesario calentar las placas en una parrilla hasta la visualización de los compuestos. En la modalidad preparativa los análisis se efectuaron sobre placas de vidrio recubiertas con gel de sílice (60 F254 Merck, malla 3.5-7.0 ASTM) de 1.0 mm de espesor; en este caso la identificación de las bandas se realizó sólo con luz UV. La cromatografía en columna abierta se realizó sobre gel de sílice Kiesegel 60 Merck (tamaño de partícula 0.063-0.200 mm, 70-230 mesh ASTM) o Sephadex LH-20 (Pharmacia LKB).

Agente revelador	Composición	Referencia	
Sulfato cérico	12.0 g de sulfato cérico 22.0 mL de ácido sulfúrico conc. 350.0 g de hielo picado	Stahl <i>et al.</i> , 1969 Lowery <i>et al.</i> , 1993	
Aldehído anísico	9.0 mL de etanol 0.5 mL de aldehído anísico 0.5 mL de ácido sulfúrico conc. 1.0 mL de ácido acético	Wagner <i>et al</i> ., 1984	
Reactivo de Dragendorff	8.0 g de Bi(NO ₃)₃•5H₂O 20 mL de HNO₃ (δ = 1.18, 30%) 27.2 g de KI 50 mL de agua	Domínguez <i>et al</i> ., 1979	

Cuadro 5. Agentes reveladores utilizados en los análisis cromatográficos en capa delgada.

3.3.2 Equipos utilizados en los estudios de espectroscopía, espectrometría y para la determinación de constantes físicas

Los estudios de espectroscopía y espectrometría se realizaron en la Unidad de Servicios de Apoyo a la Investigación (USAI), edificio B de la Facultad de Química de la U. N. A. M.

Los espectros en el IR se obtuvieron en un espectrofotómetro FTIR de rejilla Modelo 1605 marca Perkin-Elmer, en pastilla de bromuro de potasio. Los espectros en el UV se determinaron en un espectrofotómetro UV-Vis Lamba 2 utilizando metanol como disolvente. Los espectros de resonancia magnética nuclear protónica (RMN-¹H) y de carbono 13 (RMN-¹³C) se generaron en un equipo de 300 MHz Varian Unity-Inova, a 300 y 75.5 MHz respectivamente en CDCl₃ o CD₃OD; los desplazamientos químicos se reportan en partes por millón (ppm), con referencia al tetrametilsilano (TMS). Los espectros de masas por impacto electrónico (70 eV) se obtuvieron en un equipo Jeol JMS-SX102A Hewlett-Packard 5890 serie II acoplado a un cromatógrafo de gases; se utilizó la técnica de introducción directa. En la modalidad de bombardeo de átomos rápidos (EM-FAB), los espectros se registraron en el mismo equipo usando alcohol nitrobencílico como matriz. Los cromatogramas de algunas fracciones derivadas del extracto íntegro de *H. latiflora* se obtuvieron en un cromatógrafo de gases marca Agilent 6890N con automuestreador Agilent 7683B, acoplado a un espectrómetro de masas (CG-EM-TOF) LECO Pegasus 4D; se utilizó una columna capilar de 10 m de largo, diámetro interno 180 µm y espesor de película de 0.18 µm marca HP-5MS, como gas acarreador se empleó helio de alta pureza. Los puntos de fusión se determinaron en un aparato Fisher-Johns y se reportan sin corregir. La rotación óptica se registró en un polarímetro Perkin Elmer 241 utilizando como disolvente metanol.

3.3.3 Preparación del extracto orgánico de H. latiflora

El material vegetal se desecó a temperatura ambiente; la fragmentación se llevó a cabo en un molino Willey Modelo 4. El material seco y molido se extrajo mediante un proceso de maceración con una mezcla CH₂Cl₂-MeOH 1:1, se utilizaron 9 litros de mezcla. El extracto resultante se filtró y concentró al vacío obteniéndose 269.2 g de un residuo café oscuro (extracto seco). El extracto orgánico obtenido se utilizó para evaluar las actividades biológicas y para realizar el estudio fitoquímico de la especie.

3.3.4 Fraccionamiento primario del extracto orgánico de H. latiflora

Ciento quince gramos del extracto íntegro se fraccionaron en una columna abierta empacada con 800 g de gel de sílice. Como fase móvil se utilizaron hexano, mezcla de hexano-diclorometano (diversas proporciones), diclorometano, mezcla de diclorometano-metanol (diversas proporciones, **Cuadro 6**). Se recolectaron 178 fracciones de 500 mL cada una, las cuales se agruparon por sus características cromatográficas, en 14 fracciones primarias, **F1-F14 (Cuadro 7**). Este proceso se resume en el Esquema 1.

Esquema 1. Proceso de extracción y fraccionamiento primario de *Hintonia latiflora*.

Sistema de elución	Proporción	Fracciones obtenidas	Fracciones reunidas	Clave
Hexano/CH ₂ Cl ₂	40:60	1-26	1-5	F1
Hexano/CH ₂ Cl ₂	30:70	27-59	6-13	F2
Hexano/CH ₂ Cl ₂	20:80	60-68	14-20	F3
Hexano/CH ₂ Cl ₂	10:90	69-81	21-27	F4
CH ₂ Cl ₂	100	82-106	28-53	F5
CH ₂ Cl ₂ /metanol	90:10	107-133	54-63	F6
CH ₂ Cl ₂ /metanol	80:20	134-153	64-83	F7
CH ₂ Cl ₂ /metanol	70:30	154-160	84-110	F8
CH ₂ Cl ₂ /metanol	60:40	161-165	111-125	F9
CH ₂ Cl ₂ /metanol	50:50	166-170	126-142	F10
Metanol	100	171-178	143-157	F11
			158-163	F12
			164-178	F13
			134-142	F14

Cuadro 6. Fraccionamiento primario por cromatografía en columna abierta del extracto obtenido de *H. latiflora*.

Fracciones reunidas	Clave	Peso (g)	Fracciones reunidas	Clave	Peso (g)
1-5	F1	0.9173	84-110	F8	0.3317
6-13	F2	0.2510	111-125	F9	4.4889
14-20	F3	0.0694	126-142	F10	3.8910
21-27	F4	0.1702	143-157	F11	17.1170
28-53	F5	0.3426	158-163	F12	4.2116
54-63	F6	0.0908	164-178	F13	10.0908
64-83	F7	0.2376	134-142	F14	2.1521

Cuadro 7. Peso de las fracciones obtenidas del fraccionamiento primario.

3.3.5 Aislamiento de la 23,24-dihidrocucurbitacina F (3) a partir de la fracción F9-IV-6

La fracción **F9** (4.489 g) se sometió a un fraccionamiento secundario en columna abierta, utilizando como fase estacionaria 300 g de gel de sílice y hexano-acetato de etilo-metanol en orden creciente de polaridad como eluyentes. Se obtuvieron 207 fracciones de 60 mL cada una que se agruparon por sus características cromatográficas similares en siete fracciones secundarias **F9-I – F9-VII** (**Cuadro 8**).

Sistema de elución	Proporción	Fracciones obtenidas	Fracciones reunidas	Clave
Hexano/AcOEt	10:90	1-114	0-4	F9-I
Hexano/AcOEt	5:95	115-136	5-6	F9-II
AcOEt	100	137-163	7-23	F9-III
AcOEt /metanol	90:10	164-184	24-95	F9-IV
AcOEt /metanol	70:30	185-196	96-161	F9-V
AcOEt /metanol	50:50	197-206	162-206	F9-VI
Metanol	100	207	207	F9-VII

Cuadro 8. Fraccionamiento secundario por cromatografía en columna abierta de la fracción F9.

La fracción **F9-IV** (1.427 g) se sometió a un fraccionamiento terciario utilizando como fase estacionaria gel de sílice (70 g) y diclorometano-metanol (diferentes proporciones) como fase móvil. Este fraccionamiento generó 128 fracciones de 20 mL cada una, las cuales se agruparon en 12 fracciones **F9-IV-1** – **F9-IV-12** terciarias (**Cuadro 9**). De la fracción **F9-IV-6** (0.237 g), cristalizó de manera espontánea un sólido blanco con p.f. de 149-152°C., el cual fue identificado como la 23,24-dihidrocucurbitacina F (**3**) (0.327 g) por comparación de sus constantes físicas y espectroscópicas con las de una muestra auténtica (Reguero *et al.*, 1987).

23,24-dihidrocucurbitacina F (3): IR (KBr) v_{max} = 3440, 2970, 2960, 1694, 1466, 1430, 1374, 1265, 1214, 1180, 1091, 1056, 1028, 990, 922, 858, 822, 796, 624, 465 cm⁻¹; MS (ID): *m/z*= 502 (M-H₂O), *m/z*= 484 (M-2H₂O), *m/z* = 405 (M-C₆H₁₁O₂), *m/z*= 387 (M-C₆H₁₁O₂-H₂O); RMN 1H (CD₃OD, 300 MHz): δ_{H} = 4.45 (1H, m, H-16), 4.29 (1H, m, H-2), 3.18 (1H, d, *J* = 14.4 Hz, H-12), 2.98 (1H, dd, *J* = 9.0, 4.0 Hz, H-3), 2.90 (2H, m, H-23), 2.65 (1H, d, *J* = 14.7 Hz, H-12), 2.62 (1H, da, *J* = 11.4 Hz, H-10), 2.60 (1H, d, *J* = 6.6 Hz, H-17), 2.35 (1H, m, H-17), 1.95 (1H, d, *J* = 6.6 Hz, H-8), 1.92 (1H, m, H-17), 1.82 (2H, ddd, *J* = 2.1,2.7,6.9 Hz, H-1), 1.81 (2H, m, H-24), 1.80 (1H, m, H-15), 1.42 (3H, s, H-29), 1.35 (1H, d, *J* = 10.5 Hz, H-15), 1.28 (3H, s, H-19), 1.24 (3H, s, H-26), 1.21 (3H, s, H-27), 1.19 (3H, s, H-21), 1.10 (6H, s, H-18, H-30) y 0.95 (3H. s, H-28); RMN ¹³C (75.5 MHz): δ_{C} = 216.09 (C-22), 215.15 (C-11), 141.41 (C-5), 119.47 (C-6), 81.09 (C-20), 79.86 (C-3), 70.97 (C-2), 70.76 (C-16), 70.21 (C-25), 58.10 (C-17), 51.07 (C-12), 50.19 (C-14), 48.29 (C-9), 47.65 (C-13), 45.82 (C-15), 43.27 (C-8), 42.24 (C-4), 37.26 (C-24), 34.27 (C-10), 33.62 (C-1), 31.78 (C-23), 29.46 (C-26), 28.86 (C-27), 24.94 (C21), 24.80 (C-29), 24.13 (C-7), 21.89 (C-28), 20.42 (C-30), 20.09 (C-18), 19.38 (C-19).

Sistema de elución	Proporción	Fracciones obtenidas	Fracciones reunidas	Clave
CH ₂ Cl ₂	100	1-20	1-25	F9-IV-1
CH ₂ Cl ₂ /metanol	95:5	21-94	26-27	F9-IV-2
CH ₂ Cl ₂ /metanol	90:10	95-100	28-34	F9-IV-3
CH ₂ Cl ₂ /metanol	80:20	101-112	35-45	F9-IV-4
CH ₂ Cl ₂ /metanol	70:30	113-127	46-59	F9-IV-5
CH ₂ Cl ₂ /metanol	50:50	128	60-79	F9-IV-6
			80-92	F9-IV-7
			93-100	F9-IV-8
			101-104	F9-IV-9
			105-108	F9-IV-10
			109-115	F9-IV-11
			116-128	F9-IV-12

Cuadro 9. Fraccionamiento terciario por cromatografía en columna abierta de la fracción F9-IV.

3.3.6 Aislamiento de la 25-acetil-23,24-dihidrocucurbitacina F(10) a partir de la fracción F9-III-7

La fracción secundaria **F9-III** (1.76 g), fue recromatografiada en una columna de gel de sílice (100 g). El proceso de elución se realizó con hexano-diclorometano-metanol en las proporciones presentadas en el Cuadro 10. Este procedimiento generó 214 fracciones de 25 mL cada una, las cuales fueron agrupadas en 11 fracciones terciarias (**F9-III-1** – **F9-III-11**). El proceso de separación de la fracción **F9** se resume en el Esquema 2.
Sistema de elución	Proporción	Fracciones obtenidas	Fracciones reunidas	Clave
Hexano/ CH ₂ Cl ₂	20:80	1-18	1-70	F9-III-1
Hexano/ CH ₂ Cl ₂	15:85	19-34	71-106	F9-III-2
Hexano/ CH ₂ Cl ₂	10:90	35-50	107-111	F9-III-3
Hexano/ CH ₂ Cl ₂	5:95	51-67	112-119	F9-111-4
CH ₂ Cl ₂	100	68-83	120-132	F9-III-5
CH ₂ Cl ₂ /metanol	99:1	84-99	133-160	F9-III-6
CH ₂ Cl ₂ /metanol	97:3	100-162	161-191	F9-III-7
CH ₂ Cl ₂ /metanol	90:10	163-183	192-195	F9-111-8
CH ₂ Cl ₂ /metanol	80:20	184-194	196-199	F9-111-9
CH ₂ Cl ₂ /metanol	70:30	195-204	200-208	F9-III-10
CH ₂ Cl ₂ /metanol	60:40	205-213	209-214	F9-III-11
Metanol	100	205-214		

Cuadro 10. Fraccionamiento terciario por cromatografía en columna abierta de la fracción F9-III.

En la fracción terciaria **F9-III-7** se detectó la presencia de la 25-acetil-23,24-dihidrocucurbitacina F (**10**) (Reguero *et al.*, 1987) utilizando la cromatografía en capa delgada y la referencia apropiada.

3.3.7 Aislamiento de 25-acetil-3-*O*- -D-glucopiranosil-23,24-dihidrocucurbitacina F (37) a partir de la fracción F10-V

La fracción primaria F10 (3.891 g) se sometió a un fraccionamiento secundario (Esquema 3) empleando gel de sílice (303 g) como fase estacionaria y CH₂Cl₂-metanol (diversas proporciones) como fase móvil. Este procedimiento generó 212 fracciones de 100 mL cada una las cuales se agruparon en ocho fracciones terciarias F10-I–F10-VIII (Cuadro 11). En la fracción F10-V se detectó la 25-acetil-3-*O*- β -D-glucopiranosil-23,24-dihidrocucurbitacina F (37) por comparación de sus constantes físicas y espectroscópicas con aquellas de una muestra auténtica (Guerrero-Analco *et al.*, 2005).

25-acetil-3-O-β-D-glucopiranosil-23,24-dihidrocucurbitacina F (**37**): Sólido blanco con punto de fusión de 147-149 °C; IR (KBr) $v_{máx}$ = 3428, 2969, 2928, 1695, 1616, 1515, 1456, 1432, 1372, 1267, 1213, 1078, 1025, 923, 890, 821, 617, 422 cm⁻¹. EM (ID): *m/z* = 706 (M-H₂O), *m/z* = 646 (M-C₂H₄O₂-H₂O), *m/z* = 545 (M-C₆H₁₂O₆), *m/z* = 527 (M-C₆H₁₂O₆-H₂O). RMN ¹H (CD₃OD, 300 MHz): δ_{H} = 5.80 (1H, brd, *J* = 5.5 Hz, H-6), 4.47 (1H, d, *J* = 7.5 Hz, C-1'), 4.42 (1H, m, H-16), 4.06 (1H, m, H-6'), 3.87 (1H, m, H-2), 3.70 (1H, dd, *J* = 11.7, 5.1 Hz, H-6'), 3.32 (1H, m, H-3'), 3.31 (1H, m, H-2'), 3.32 (1H, m, H-4'), 3.22 (1H, m, H-5'), 3.22 (2H, m, H-12), 2.98 (1H, dd, *J* = 9.0, 4.0 Hz, H-3), 2.81 (2H, m, H-23), 2.54 (2H, d, *J* = 7.2 Hz, H-17), 2.50 (1H, m, H-10), 2.23 (1H, m, H-1), 1.99 (1H, d, *J* = 5.5 Hz, H-8), 1.77 (1H, m, H-1), 1.80 (2H, m, H-24), 1.94 (2H, m, H-15), 1.43 (3H, s, H-29), 1.28 (3H, s, H-19), 1.24 (3H, s, H-26), 1.22 (3H, s, H-27), 1.18 (3H, s, H-21), 1.05 (3H, s, H-30), 0.98 (3H. s, H-28) y 0.87 (3H. s, H-18); RMN ¹³C (75.5 MHz): δ_{C} = 216.70 (C-22), 216.20 (C-11), 142.5 (C-5), 120.6 (C-6), 106.8 (C-1'), 93.8 (C-3), 80.9 (C-20), 83.1 (C-25), 78.5 (C-3'), 78.0 (C-5'), 76.2 (C-2'), 72.1 (C-4'), 71.4 (C-2), 71.4 (C-16), 62.7 (C-6'), 59.5 (C-17), 49.8 (C-12), 51.8 (C-14), 49.0 (C-9), 49.0 (C-13), 46.6 (C-15), 44.3 (C-8), 43.2 (C-4), 35.8 (C-24), 34.8 (C-10), 34.1 (C-1), 32.8 (C-23), 25.6 (C-21), 26.3 (C-26), 26.2 (C-27), 25.5 (C-7), 24.8 (C-29), 22.3 (C-28), 20.5 (C-30), 20.5 (C-18) y 19.7 (C-19).

Esquema 3. Estudio de la fracción primaria F10.

Sistema de elución	Proporción	Fracciones obtenidas	Fracciones reunidas	Clave
CH ₂ Cl ₂	100	1-10	1-25	F10-I
CH ₂ Cl ₂ /metanol	99:1	11-17	26-29	F10-II
CH ₂ Cl ₂ /metanol	95:5	18-37	30-41	F10-III
CH ₂ Cl ₂ /metanol	93:7	38-55	42-56	F10-IV
CH ₂ Cl ₂ /metanol	90:10	56- 140	57-69	F10-V
CH ₂ Cl ₂ /metanol	85:15	141-154	70-102	F10-VI
CH ₂ Cl ₂ /metanol	80:20	155-178	103-173	F10-VII
CH ₂ Cl ₂ /metanol	70:30	179-199	174-225	F10-VIII
CH ₂ Cl ₂ /metanol	60:40	200-212		
CH ₂ Cl ₂ /metanol	50:50	213-224]	
Metanol	100	225		

Cuadro 11. Fraccionamiento secundario por cromatografía en columna abierta de la fracción F10.

3.3.8 Aislamiento de 3-O-β-D-glucopiranosil-23,24-dihidrocucurbitacina F (28) a partir de la fracción F14-II-2

La fracción primaria F14 (2.152g), se separó en una columna empacada con Sephadex, de 50 cm de altura y 2.5 cm de diámetro. El proceso de elución se realizó de forma isocrática con metanol. Este proceso generó 5 fracciones secundarias: F14-I – F14-V (Esquema 4). La fracción secundaria F14-II se recromatografió en una columna empacada con Sephadex, utilizando las mismas condiciones separación que la fracción primaria F14, generándose 4 fracciones (F14-II-F14IV). De la fracción F14-II-2 se obtuvieron 2.15g de la $3-O-\beta$ -D-glucopiranosil-23,24-dihidrocucurbitacina F(28), caracterizada por comparación de sus constantes físicas y espectroscópicas con una muestra auténtica (Mata *et al.*, 1990).

Esquema 4. Fraccionamiento secundario de la fracción primaria F14.

3-O-β-D-glucopiranosil-23,24-dihidrocucurbitacina (**28**): Sólido con punto de fusión de 199-204 °C; IR(KBr) $v_{máx}$ = 3545, 3427, 2960, 2910, 1696, 1614, 1551, 1525, 1431, 1360, 1340, 1264, 1233, 1096, 1080, 1047, 920, 852, 778, 640, 585, 535 y 514 cm⁻¹; RMN ¹H (CD₃OD, 300 MHz): δ_{H} = 5.77 (1H, da, *J* = 5.5 Hz, H-6), 4.47 (1H, d, *J* = 7.5 Hz, H-1'), 4.40 (1H, m, H-16), 4.06 (1H, m, H-6'), 3.83 (1H, m, H-2), 3.69 (1H, dd, *J* = 11.7, 5.1 Hz, H-6'), 3.34 (1H, m, H-3'), 3.30 (1H, m, H-2'), 3.32 (1H, m, H-4'), 3.22 (1H, m, H-5'), 3.22 (2H, m, H-12), 2.98 (1H, d, *J* = 9.5 Hz, H-3), 2.83 (2H, m, H-23), 2.55 (2H, d, *J* = 7.5 Hz, H-17), 2.50 (1H, brd, *J* = 13.0 Hz, H-10), 2.39 (1H, m, H-1), 1.98 (1H, d, *J* = 5.5 Hz, H-8), 1.70 (1H, m, H-1), 1.80 (2H, m, H-24), 1.93 (2H, m, H-15), 1.28 (3H, s, H-29), 1.37 (1H, m, H-7), 1.37 (3H, s, H-19), 1.44 (3H, s, H-26), 1.28 (3H, s, H-21), 1.22 (3H, s, H-27), 1.21 (1H, m, H-7), 1.10 (3H, s, H-30), 0.98 (3H. s, H-28) y 0.89 (3H. s, H-18); RMN ¹³C (75.5 MHz): δ_{C} = 217.21 (C-22), 216.04 (C-1), 142.51 (C-5), 120.48 (C-6), 106.78 (C-1'), 93.80 (C-3), 80.83 (C-20), 71.50 (C-25), 78.50 (C-3'), 78.04 (C-5'), 76.24 (C-2'), 72.10 (C-4'), 71.49 (C-2), 70..83 (C-16), 62.75 (C-6'), 59.32 (C-17), 51.82 (C-12), 51.80 (C-14), 49.76 (C-9), 49.18 (C-13), 46.66 (C-15), 43.26 (C-4), 38.15 (C-24), 34.80 (C-10), 34.11 (C-1), 33.12 (C-23), 25.51 (C-21), 29.15 (C-26), 29.39 (C-27), 24.79 (C-7), 23.42 (C-29), 20.90 (C-28), 20.50 (C-30), 20.44 (C-18) y 19.73 (C-19).

3.3.9 Aislamiento de la 5-*O*-[β -D-xilopiranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-metoxi-3',4'-dihidroxi-4-fenilcumarina (22) y de la 5-*O*-[β -D-apiofuranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-metoxi-3',4'-dihidroxi-4-fenilcumarina (39)

La fracción **F11** (17.117g) se sometió a un fraccionamiento secundario por cromatografía en columna abierta utilizando gel de sílice como fase estacionaria (800g) y acetato de etilo, mezclas de acetato de etilo-metanol (diferentes proporciones) y metanol como eluyentes. Se obtuvieron 12 fracciones secundarias **F11-I–F-11-XII** (**Cuadro 12**). La fracción secundaria **F11-IX** se sometió a una cromatografía en columna sobre Sephadex la cual se eluyó de forma isocrática con MeOH. Este proceso generó cinco fracciones (**F11-IX-1 – F11-IX-5**).

Sistema de elución	Proporción	Eluatos	Fracciones reunidas	Clave
AcOEt	100	1-68	1-2	F11-I
AcOEt/MeOH	99:1	31-69	3-10	F11-II
AcOEt/MeOH	95:5	70-177	11-32	F11-III
AcOEt/MeOH	90:10	178-213	33-73	F11-IV
AcOEt/MeOH	80:20	214-240	74-80	F11-V
AcOEt/MeOH	70:30	241-267	81-99	F11-VI
AcOEt/MeOH	60:40	268-294	95-118	F11-VII
AcOEt/MeOH	50:50	295-312	119-183	F11-VIII
Metanol	100	313-327	184-241	F11-IX
			243-255	F11-X
			256-290	F11-XI
			291-327	F11-XII

Cuadro 12. Fraccionamiento secundario mediante cromatografía en columna abierta de la fracción F11.

La fracción terciaria **F11-IX-2** se separó del mismo modo que la fracción secundaria **F11-IX**, este procedimiento generó siete fracciones. De la fracción **F11-IX-2-II** se obtuvieron 268 mg del producto 5-*O*-[β -D-apiofuranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-metoxi-3',4'-dihidroxi-4-fenilcumarina (**39**); la cumarina se caracterizó por comparación de sus constantes físicas y espectroscópicas con las de un estándar obtenido de *Hintonia standleyana* (Guerrero-Analco *et al.*, 2005).

La fracción terciaria **F11-IX-3** se recromatografió en una columna empacada sobre gel de sílice empleando una mezcla de acetato de etilo y metanol como fase móvil. Este procedimiento generó siete fracciones cuaternarias **F11-IX-3-I** – **F11-IX-3-VII** (**Cuadro 13**). De la fracción **F11-IX-3-IV** cristalizó de manera espontánea un sólido amarillo con p.f. >250°C el cual se identificó como la 5-*O*-[β -D-xilopiranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-metoxi3',4'-dihidroxi-4-fenilcumarina (22) por comparación de sus constantes físicas y espectroscópicas con los descritos por Aquino *et al.* (1988).

5-O-[*β***-D-apiofuranosil-(1**→**6)-***β***-D-glucopiranosil]-7-metoxi-3'**,**4'-dihidroxi-4-fenilcumarina** (39): Sólido amarillo claro con punto de fusión >250 °C; IR (KBr) $v_{máx}$ = 3412, 2922, 1701, 1613, 1516, 1434, 1354, 1290, 1232, 1200, 1164, 1073, 992, 824, 725, 714, 605, 521 cm⁻¹; EM (FAB⁺): *m/z* = 595 (M+1), *m/z* = 463 (M+1-C₅H₈O₄), *m/z* = 301 (M+1- C₅H₉O₄-C₆H₉O₅). RMN ¹H (CD₃OD, 300 MHz): δ_{C} = 6.83 (1H, d, *J* = 2.1 Hz, H-2'), 6.82 (1H, d, *J* = 7.8 Hz, H-5'), 6.73 (1H, d, *J* = 2.1 Hz, H-6), 6.73 (1H, *J* = 2.1, 7.8, H-6'), 6.70 (1H, d, *J* = 2.1, H-8), 5.92 (1H, s, H-3), 4.92 (1H, d, *J* = 2.4Hz, H-1'''), 4.78 (1H, d, *J* = 7.5 Hz, H-1''), 3.95 (1H, da, *J* = 9.9 Hz. H-6''). 3.88 (1H, d, *J* = 2.4 Hz, H-2'''), 3.87 (3H, s, H-7), 3.74 (1H, da, *J* = 9.9 Hz. H-6''), 3.54 (3H, m, H-5'', H-4''', H-5'''), 3.30 (1H, m, H-3'''), 3.30 (1H, dd, *J* = 7.8, 7.8 Hz, H-3''), 3.19 (1H, dd, *J* = 7.8, 7.8 Hz, H-4''), 2.73 (1H, dd, *J* = 7.7, 7.7 Hz, H-2''); RMN ¹³C (75.5 MHz): δ_{C} = 164.87 (C-7), 163.02 (C-2), 158.30 (C-4), 157.99 (C-5), 157.00 (C-8a), 146.96 (C-4'), 145.45 (C-3'), 132.73 (C-1'), 120.45 (C-6'), 116.82 (C-2'), 115.68 (C-5'), 113.19 (C-3), 110.97 (C-1'''), 105.53 (C-4a), 101.40 (C-1''), 100.44 (C-8), 96.28 (C-6), 80.45 (C-3'''), 78.03 (C-3''), 77.57 (C-5''). 77.07 (C-2'''), 75.00 (C-4'''), 75.54 (C-2''), 71.21 (C-4''), 68.75 (C-6''), 65.70 (C-5''') y 56.56 (-OMe).

Sistema de elución	Proporción	Eluatos	Fracciones reunidas	Clave
AcOEt/MeOH	95:5	1-28	1-74	F11-IX-3-I
AcOEt/MeOH	97:3	29-232	75-84	F11-IX-3-II
AcOEt/MeOH	90:10	233-261	87-113	F11-IX-3-III
AcOEt/MeOH	80:20	262-297	114-287	F11-IX-3-IV
AcOEt/MeOH	70:30	298-321	288-309	F11-IX-3-V
AcOEt/MeOH	60:40	322-353	310-319	F11-IX-3-VI
AcOEt/MeOH	50:50	354-369	320-369	F11-IX-3-VII

Cuadro 13. Fraccionamiento cuaternario mediante cromato	grafía en columna abierta de la fracción (F	11-IX-3).
---	---	-----------

Esquema 5. Fraccionamiento secundario de la fracción primaria F11.

De la fracción **F11-VII**, cristalizaron espontáneamente cantidades adicionales de $3-O-\beta$ -D-glucopiranosil-23,24-dihidrocucurbitacina F (**28**). En el esquema 5 se resume el proceso de separación de la fracción **F11**.

3.3.10 Reacciones efectuadas para la identificación del 5-*O*-[β -D-xilopiranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7metoxi-3',4'-dihidroxi-4-fenilcumarina (22)

3.3.10.1 Detección cromatográfica de azúcares en el producto de hidrólisis del compuesto (22)

Una muestra de 100 mg del compuesto (**22**) se disolvió en 10 mL de HCI 3 N, la solución resultante se calentó a reflujo durante 3 horas. Al terminó de la reacción la mezcla se extrajo con AcOEt (3 x 20 mL); posteriormente la fase orgánica se lavó con agua destilada (3 x 20 mL) y se secó sobre sulfato de sodio anhidro, al eliminar el disolvente se obtuvo un residuo amarillo. La fase acuosa se analizó por cromatografía en capa delgada usando gel de sílice y una mezcla de *n*-propanol-acetato de etilo-agua (83:11:6). Como agente revelador se usó una solución reactivo de anisaldehido en H₂SO₄.

3.3.10.2 Obtención del derivado acetilado del compuesto (22)

Para obtener el derivado acetilado del compuesto **22**, se utilizaron 2 mL de anhídrido acético y 2 mL de piridina por cada 100 mg de compuesto. La mezcla de reacción se dejó a temperatura ambiente y con agitación constante durante 4 días. El curso de la reacción se monitoreo por cromatografía en capa delgada. Al cabo de la reacción se agregó agua. A continuación la mezcla se extrajo con CH₂Cl₂ (3 x 30 mL). La fase orgánica se extrajo consecutivamente con HCl 1N (3 x 30mL), con una solución saturada de NaHCO₃ (3 x 30 mL) y con agua destilada (3 x 30 mL). Finalmente la fase orgánica se secó son sulfato de sodio anhidro y se concentró al vacío para generar 8 mg del derivado acetilado; este se obtuvo como un sólido blanco amorfo.

3.3.11 Prueba de identificación de alcaloides

Una pequeña cantidad del extracto de *H. latiflora* se disolvió en una mezcla de metanol-agua (1:1); la solución se trato primero con gotas de HCI (1N) y luego con 0.5 mL del reactivo de Dragendorff. Luego de una agitación suave se observó la formación de un precipitado color rojo-naranja, indicativo de una reacción positiva frente al reactivo. Como control positivo se utilizó atropina.

3.3.12 Obtención del ácido desoxicordifolínico (38) a partir de la fracción primaria F13

Parte de la fracción primaria **F13** (80 mg) fue separada por cromatografía preparativa en capa delgada en una placa de vidrio recubierta con gel de sílice. La fase móvil consistió de una mezcla de *n*-propanol-ácido acético-agua (4:1:2); la visualización se realizó con una lámpara de UV a 365nm. Este procedimiento permitió la obtención de 22 mg de un residuo rojo intenso, el cual se identificó como el ácido desoxicordifolínico (**38**), por comparación de sus constantes físicas y espectroscópicas con las de una muestra auténtica (Déciga-Campos *et al.*, 2006).

Ácido desoxicordifolínico (38): Sólido con punto de fusión >250 °C; IR(KBr) $v_{máx}$ = 3412, 1690, 1624, 1593, 1560, 1389, 1324, 1250, 1080, 1079, 944, 905, 796, 749, 702, 607 cm⁻¹; EM (FAB+): *m/z* = 579 (M+Na), *m/z* = 558 (M+1), *m/z* = 513 (M-CO₂), *m/z* = 468 (M-2CO₂), *m/z* = 399 (M-C₆H₁₂O₆+Na), *m/z* = 379 (M+1-C₆H₁₂O₆). RMN ¹H (CD₃OD, 300 MHz): δ_{H} = 8.75 (1H, s, H-6), 8.23 (1H, da, *J* = 8.0 Hz, H-9), 7.65 (1H, ddd, *J* = 8.0, 8.0, 1.0 Hz, H-12), 7.61 (1H, ddd, *J* = 8.0, 8.0, 1.0 Hz, H-11), 7.42 (1H, s, H-17), 7.32 (1H, ddd, *J* = 8.0, 8.0, 1.0 Hz, H-10), 5.72 (1H, d, *J* = 8.5 Hz, H-21), 5.70 (1H, ddd, *J* = 18.5, 10.5, 8.0 Hz, H-19), 4.82 (1H, d, 7.5 Hz, H-1'), 4.81 (1H, da, *J* = 18.5 Hz, H-18), 4.28 (1H, da, *J* = 10.5 Hz, H-18), 4.09 (1H, dd, *J* = 12.0, 2.0 Hz, H-6'), 3.72 (1H, dd, *J* = 12.0, 7.5 Hz, H-6'), 3.56 (1H, dd, *J* = 8.5, 6.0 Hz, H-15), 3.46 (1H, dd, *J* = 14.5 Hz, H-14), 3.45 (1H, m, H-5'), 3.42 (1H, dd, *J* = 8.0, 9.0

Hz, H-2'), 2.58 (1H, ddd, J = 8.5, 8.5, 8.5 Hz, H-20); RMN ¹³C (75.5 MHz): $\delta_{C} = 217.2$ (C-22), 143.3 (C-13), 142.5 (C-5), 116.5 (C-16), 113.1 (C-12), 93.8 (C-3), 80.8 (C-20), 78.6 (C-5'), 78.0 (C-3'), 72.0 (C-4'), 71.5 (C-2), 63.3 (C-6'), 43.3 (C-4), 39.6 (C-15), 35.5 (C-14), 34.1 (C-1), 33.1 (C-23), 25.5 (C-21) y 19.7 (C-19).

3.3.13 Identificación de los constituyentes mayoritarios presentes en las fracciones primarias F1, F2, F4, F5 y F7

Las fracciones primarias F1, F2, F4, F5 y F7 se analizaron por cromatografía de gases acoplado a espectrometría de masas. Las condiciones de trabajo fueron las siguientes: temperatura inicial del horno 40°C por tres minutos, seguido de un calentamiento de 20°C por minuto hasta alcanzar 280 °C, esta temperatura se mantuvo por 10 minutos; relación split de 1:50 y flujo del gas acarreador de 20 mL/min.

IV. RESULTADOS Y DISCUSIÓN

La especie *Hintonia latiflora* es una de las plantas medicinales más comercializadas en México para el tratamiento de la malaria, heridas y diabetes. Como en el caso de otras especies medicinales de amplio uso popular, su comercialización no esta sujeta a regulación alguna y en consecuencia no existen criterios oficiales de calidad, eficacia e inocuidad que garanticen el uso racional y seguro de esta especie. De tal forma que es necesario generar la información científica que permita establecer esos parámetros e integrarlos en una monografía tipo OMS, misma que servirá de modelo para la elaboración de la monografía farmacopeica correspondiente.

La investigación requerida para conformar la monografía tipo OMS es compleja y de carácter multidisciplinario y requiere de la participación de numerosos expertos. En este trabajo de tesis se describen parte de los resultados de la investigación conducida para establecer algunos parámetros de inocuidad, eficacia y calidad de la droga cruda de *H. latiflora*.

4.1 EVALUACIÓN DEL POTENCIAL MUTAGÉNICO DEL EXTRACTO DE H. latiflora

En el proceso de elaboración de monografías tipo OMS de plantas medicinales, el primer paso consiste en la determinación de la inocuidad de la especie. Las pruebas preliminares usualmente utilizadas son: la determinación de la toxicidad aguda en roedores y la posible actividad mutagénica. En el caso de H. latiflora, en un estudio paralelo al presente se estableció mediante el método de Lorke (Ángeles y Castañeda et al., 2006) que la planta carece de efectos tóxicos agudos. Continuando con los estudios de inocuidad de H. latiflora, en este trabajo se determinó su potencial mutagénico siguiendo la metodología clásica de Ames (Ames et al., 1975). Esta prueba ha sido utilizada de manera exitosa como un ensayo preliminar para la detección de mutágenos y carcinógenos potenciales. El principio de esta prueba se basa en la detección de componentes químicos que revierten las mutaciones presentes en cepas de Salmonella typhimurium y restauran la habilidad funcional de la bacteria para sintetizar el aminoácido histidina. Las bacterias revertantes son detectadas por su capacidad para crecer en ausencia del aminoácido requerido por las cepas progenitoras. Algunas cepas responden a mutaciones puntuales que involucran sustituciones, mientras que otras detectan adiciones o deleciones de una o algunas pares de bases de DNA. No obstante, además de la mutación en el operón histidina, el material genético se ha modificado para mejorar la sensibilidad de reversión de estas cepas a varias clases de compuestos. En este trabajo se utilizaron las cepas TA 98, 100 y 102 que contienen una mutación "rough phenotype" (rfa) que causa que la barrera de lipopolisacárido que normalmente recubre la superficie de Salmonella typhimurium se encuentre incompleta. Esta mutante permite una permeabilidad más alta a compuestos de peso molecular grande.

Otra modificación del genoma consiste en la eliminación genética de los sistemas de reparación de escisión en el que se encuentra involucrado el gen uvrB que permite que las lesiones en el DNA se acumulen. Como excepción, TA102 no contiene la mutación uvrB porque esta construida primariamente para detectar mutágenos que requieran un sistema de reparación por escisión intacto.

Las cepas de prueba también contienen un plásmido (factor-R) que les confiere resistencia para un antibiótico en particular, se ha utilizado principalmente el plásmido pKM101, que tiene homólogos *umuDC*, *mucA/B* y el gen lactamasa que otorga resistencia a la ampicilina. TA102 adicionalmente tiene el plásmido pAQ1 que contiene la mutación hisG428 y el gen de resistencia a la tetraciclina (Maron y Ames *et al.*, 1983).

En el procedimiento de evaluación del potencial mutagénico los cultivos bacterianos se exponen a la sustancia de prueba en ausencia y en presencia de sistemas enzimáticos exógenos (fracción **S9**) que incluyen el sistema P450; en presencia de estos sistemas, el ensayo puede detectar aquellos mutágenos potenciales que se generen en sistemas *in vivo* a través de la activación metabólica.

Las tres cepas de *S. typhimurium* empleadas fueron incubadas con el extracto por el método de incorporación directa a las concentraciones de 1000, 500 y 250 µg/caja. El número de revertantes inducidas (His +) con y sin fracción **S9** para los distintos mutágenos se reportan en el Cuadro 14. El comportamiento del crecimiento bacteriano en presencia del extracto con y sin fracción **S9** se indica en las Figuras 2, 3 y 4.

Сера	Mutágeno	No. de revertantes inducidas (His+)	No. de revertantes espontáneas (His+)
TA 98	Ácido picrolónico	382 <u>+</u> 37.5	Sin S9 : 44.1 <u>+</u> 2.1
	2-AA	5416.9 <u>+</u> 726.9	Con S9 : 45.2 <u>+</u> 3.7
TA100	Ciclofosfamida	826.1 <u>+</u> 47.6	Sin S9 : 243.4 <u>+</u> 13.6
	Etilen-Nitro-Guanidina	4921.9 <u>+</u> 1877.5	Con S9 : 299.9 <u>+</u> 26.1
TA102	2-AA	3204.2 <u>+</u> 359.5	Sin S9 : 218.9 <u>+</u> 12.9
	Mitomicina C	3873.6 <u>+</u> 187	Con S9 : 276.2 <u>+</u> 21.5

Cuadro 14. Número de revertantes inducidas por distintos mutágenos y número de revertantes espontáneas en cepas de *S. typhimurium* (His +) con y sin fracción **S9**.

Los resultados obtenidos en este ensayo indican que el extracto de la corteza de *H. latiflora* no provocó reversión en la mutación de las cepas TA98, TA100 y TA102 de *S. typhimurium* demostrando así que la especie no posee propiedades mutagénicas.

Figura 2. Efecto mutagénico del extracto orgánico obtenido a partir de *Hintonia latiflora* por el método de incorporación directa con y sin fracción **S9** del homogenizado de hígado de rata. Cepa TA 98.

Figura 3. Efecto mutagénico del extracto orgánico obtenido a partir de *Hintonia latiflora* por el método de incorporación directa con y sin fracción S9 del homogenizado de hígado de rata. Cepa TA 100.

Figura 4. Efecto mutagénico del extracto orgánico obtenido a partir de *Hintonia latiflora* por el método de incorporación directa con y sin fracción S9 del homogenizado de hígado de rata. Cepa TA 102.

4.2 DETERMINACIÓN DEL POTENCIAL ANTIINFLAMATORIO DEL EXTRACTO DE H. latiflora

En el presente estudio se determinó el efecto antiinflamatorio del extracto de *H. latiflora* con la finalidad de contribuir al conocimiento de la eficacia de esta planta mediante estudios farmacológicos apropiados. Esta actividad se seleccionó para determinar sí su uso como agente antipalúdico está relacionado con una posible acción antiinflamatoria que alivie algunos síntomas de la enfermedad (fiebre e inflamación).

El efecto antiinflamatorio del extracto de *H. latiflora* se determinó utilizando el modelo del edema plantar provocado por inyección intraplantar de carragenina en ratas (Winter *et al.*, 1962). Como fármaco de referencia se utilizó indometacina a una dosis de 10 mg/Kg. Los resultados obtenidos se ilustran en la Figura 5, y de los mismos se desprende el extracto carece de actividad antiinflamatoria significativa a las dosis ensayadas (100, 300 y 1000 mg/Kg). El porcentaje de inhibición del edema provocado por la administración del extracto de *H. latiflora* (**Cuadro 15**) se calculó con base en la siguiente fórmula:

% de inhibición: 100 (1-Vt/Vc)

Vc representa el volumen del edema plantar en el control y Vt volumen del edema plantar en el grupo tratado con el extracto a diferentes dosis. El curso del experimento se resume en el Cuadro 16.

Cuadro 15. Porcentaje de inhibición del edema a las diferentes dosis del extracto de CH₂Cl₂-MeOH (1:1) de *H. latiflora*, del control y del fármaco de referencia.

Tratamiento	Dosis vía o.p.	% inhibición del edema
Control	1 mL.	0
Indometacina	10 mg/Kg.	70.8
	100	-10.63
Extracto	300	12.23
	1000	31.91

Cuadro 16. Efecto antiinflamatorio del extracto orgánico de *H. latiflora* en el modelo de edema plantar en ratas inducido con carragenina.

Grupo	Dosis	Diferencias en el volumen desplazado (mL)					
	(mg/Kg)	1 h	2 h	3 h	4 h	5 h	6 h
Control		0.31 <u>+</u> 0.04	0.58 <u>+</u> 0.03	0.79 <u>+</u> 0.05	1.08 <u>+</u> 0.07	1.10 <u>+</u> 0.06	1.13 <u>+</u> 0.08
Indometacina	10	0.14 <u>+</u> 0.02	0.22 <u>+</u> 0.06	0.12 <u>+</u> 0.04	0.21 <u>+</u> 0.04	0.20 <u>+</u> 0.04	0.33 <u>+</u> 0.06
	100	0.28 <u>+</u> 0.04	0.48 <u>+</u> 0.04	0.82 <u>+</u> 0.02	1.14 <u>+</u> 0.07	1.21 <u>+</u> 0.03	1.17 <u>+</u> 0.07
Extracto	300	0.30 <u>+</u> 0.06	0.37 <u>+</u> 0.09	0.72 <u>+</u> 0.00	0.85 <u>+</u> 0.03	0.92 <u>+</u> 0.02	0.99 <u>+</u> 0.02
	1000	0.20 <u>+</u> 0.02	0.19 <u>+</u> 0.01	0.30 <u>+</u> 0.07	0.42 <u>+</u> 0.14	0.65 <u>+</u> 0.01	0.75 <u>+</u> 0.07

Figura 5. Efecto antiinflamatorio del extracto de *H. latiflora*^a en el modelo de edema plantar inducido con carragenina en ratas. ^aLos valores de las barras están expresados como media <u>+</u> E.E.(n= 6). Las diferencias estadísticamente significativas con respecto al control fueron determinadas mediante análisis ANADEVA complementada con la prueba Dunnet **P* < 0.05.

4.3 CARACTERIZACIÓN DE COMPUESTOS MARCADORES DE H. latiflora

Con la finalidad de establecer el o los compuestos marcadores de *H. latiflora* se realizó el estudio fitoquímico de la especie mediante la aplicación de los procedimientos cromatográficos convencionales. Los compuestos marcadores son sustancias químicamente definidas útiles con propósitos analíticos; los más relevantes son los marcadores característicos para especies, géneros o familias de plantas ya que son adecuados tanto para las pruebas de identidad química de las drogas como para la estandarización de preparados fitofarmacéuticos.

El estudio fitoquímico conducido en el presente trabajo permitió el aislamiento de seis metabolitos secundarios caracterizados como la 23,24-dihidrocucurbitacina F (3), la 25-acetil-3-O- β -D-glucopiranosil-23,24-dihidrocucurbitacina F (37), la 5-O-[β -D-apiofuranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-metoxi-3',4'-dihidroxi-4-fenilcumarina (39), 5-O-[β -D-xilopiranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-metoxi-3',4'-dihidroxi-4-fenilcumarina (39), 5-O-[β -D-xilopiranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-metoxi-3',4'-dihidroxi-4-fenilcumarina (22), la 3-O- β -D-glucopiranosil-23,24-dihidrocucurbitacina F (28) y el ácido desoxicordifolínico (38). En el cuadro 17 se indican los rendimientos de los compuestos con base en el peso de la droga cruda. De los seis metabolitos secundarios, el alcaloide 38, la cumarina 22 y la cucurbitacina 37 son novedosos en esta planta. Los productos 38 (Déciga-Campos *et al.*, 2006) y 37 (Guerrero-Analco *et al.*, 2006) recientemente se describieron en la especie relacionada *H. standleyana*, en tanto que la cumarina 22 se reportó años atrás en la especie *Coutarea hexandra* (Aquino *et al.*, 1988). Todos los compuestos obtenidos reúnen las cualidades de un marcador característico, en particular las cumarinas 22 y 39. En general los compuestos se caracterizaron mediante la aplicación de técnicas espectrométricas y espectroscópicas. En el caso de los productos 3, 37, 39, 28 y 38 la identificación se realizó a través de la comparación de sus propiedades fisicoquímicas con aquellas de muestras auténticas, en tanto que el producto 22 se caracterizó mediante el análisis de sus constantes espectroscópicas, reacciones químicas apropiadas y finalmente por comparación con los datos previamente descritos en la literatura especializada.

Compuesto	Rendimiento
23,24-dihidrocucurbitacina F (3)	0.055 %
25-acetil-3-O-β-D-glucopiranosil-23,24-dihidrocucurbitacina F (37)	0.117 %
5-O-[β -D-apiofuranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-metoxi-3',4'- dihidroxi-4-fenilcumarina (39)	0.045%
5-O-[β -D-xilopiranosil-(1 \rightarrow 6)- β –D-glucopiranosil]-7-metoxi-3',4'- dihidroxi-4-fenilcumarina (22)	0.315%
Ácido desoxicordifolínico (38)	0.463%

Cuadro 17. Rendimiento de los metabolitos aislados a partir de la corteza de *H. latiflora*.

4.3.1 Caracterización de la 5-O-[β -D-xilopiranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-metoxi-3',4'-dihidroxi-4-fenilcumarina (22)

El compuesto **22** se obtuvo como un sólido amarillo claro con un punto de fusión mayor a 250°C. El espectro en el IR presenta absorciones asociadas con la presencia de grupos hidroxilos (3410 y 1354 cm⁻¹) y carbonilo de cumarina (1076 cm⁻¹). El espectro de masas generado por la técnica de FAB, modalidad positiva, presenta el ión *quasimolecular* (M+1) en una relación masa carga (*m/z*) de 595 u. La formula molecular se estableció como $C_{27}H_{30}O_{15}$ y permite siete grados de insaturación (**Cuadro 18**). Consideraciones del tipo quimiotaxonómico y la información proporcionada a través de las constantes espectroscópicas y espectrométricas del compuesto **22** permitieron comprobar que el mismo es un glicósido de una 4-fenilcumarina.

Cuadro 18. Constantes físicas y espectroscópicas del compuesto 5-O-[β -D-xilopiranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-metoxi-3',4'-dihidroxi-4-fenilcumarina (**22**).

Estructura				
H ₃ CO 7 8 8a O 2 O $H_3CO 7 6 4a 4 4$ $f_4 a 4 4$ $H_3^{O} 7 6 - 2 - 0$ $f_4 a 4 4$ $H_3^{O} 7 - 6 - 2 - 2 - 0$ $H_3^{O} 7 - 6 - 2 - 2 - 0$ $H_3^{O} 7 - 6 - 2 - 2 - 0$ $H_3^{O} 7 - 6 - 2 - 2 - 0$ $H_3^{O} 7 - 6 - 2 - 2 - 0$ $H_3^{O} 7 - 6 - 2 - 2 - 0$ $H_3^{O} 7 - 6 - 2 - 2 - 2 - 0$ $H_3^{O} 7 - 2 - 2 - 0$ $H_3^{O} 7 - 2 - 2 - 2 - 0$ $H_3^{O} 7 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -$				
Punto de fusión	> 250°C			
Fórmula molecular	C27H30O15			
Peso molecular	594			
UV λ máx (MeOH)	204.13,0.852; 228.98, 0.487; 327,0.184			
Señales en IR (Pastilla)	$v_{máx}$: 3410, 2913, 1701, 1613, 1550, 1514, 1354, 1233, 1076, 916, 824, 785, 607 y 478 cm ⁻¹			
EM (FAB+) <i>m/z</i>	595 (M+1), 301 (M-C₅H9O₄-C6H9O₅), 1189 (2M+1)			
[α] ^t _D	-27.58°			

Los espectros de RMN del compuesto 22 (Apéndice) presentaron las siguientes características:

- En la región donde absorben los hidrógenos aromáticos, se observa un sistema ABX [δ_H 6.80 ppm (H-2' d, *J* = 2.1 Hz), 6.81 ppm (H-5' d, *J* = 8.1 Hz), y 6.72 (H-6' dd, *J* = 2.4, 7.5 Hz)] atribuible a un grupo fenilo trisustituido ubicado en la posición C-4 de una 4-fenil cumarina (Mata *et al.*, 1988). Así mismo, se observa un sistema AB asignable a dos hidrógenos aromáticos meta relacionados en δ_H 6.67 (H-6 d, *J* = 2.4 Hz) y 6.71 (H-8 d, *J* = 2.1 Hz). Por último, se aprecia un singulete en δ_H 5.94 ppm (H-3, s) típico del único hidrógeno de la porción alfa-pirona de la molécula. Estas señales correlacionan en el espectro HSQC con las señales en δ_C 116.8, 115.8, 120.5, 96.4, 100.6 y 113.3, y respectivamente; y aunadas a las observadas en δ_C 165.1, 163.0, 158.2, 158.1, 105.6, 157.1, 147.1, 145.6 y 132.8 permiten concluir claramente que el compuesto es una 4-fenilcumarina cuyos anillos aromáticos A y B presentan tres y dos sustituyentes oxigenados, respectivamente.
- En δ_H/ δ_C 3.89/ 56.7 se observan las señales asignables al único grupo metoxilo presente en la molécula y que *a priori* se asignó en la posición C-7 con base en el desplazamiento químico de este último núcleo (Mata *et al.,* 1988).
- En la zona entre δ_H 3.0 y 5.0 se observaron una serie de señales atribuibles a los hidrógenos de dos unidades de azúcares incluyendo las de los anoméricos en δ_H 4.81 (H-1" d, *J* = 7.5 Hz) y 4.26 (H-1" d, *J* = 7.2 Hz). Estas señales muestran conectividad en el espectro HSQC con las absorciones en δ_C 101.4, 74.6, 77.8 71.3, 77.3, 70.4, 105.6, 70.5, 77.7, 71.2 y 66.9.

Los desplazamientos químicos de las señales de la parte glicona así como la naturaleza de los productos de hidrólisis ácida indicaron que la molécula contiene glucosa y xilosa. Las pérdidas consecutivas de 142 y 162 uma a partir del ión *quasimolecula*r en el espectro FAB modalidad positiva indican que la glucosa es la unidad sacárida que se encuentra unida directamente a la aglicona, en tanto que la xilosa se une a la glucosa (Aquino *et al.*, 1988). El valor de las constantes de acoplamiento de los hidrógenos anoméricos es consistente con la disposición β -ecuatorial de los mismos.

El tratamiento del producto natural con anhídrido acético y piridina generó un derivado per acetilado (**Figura 6**). Los desplazamientos químicos de los grupos acetato en el espectro de RMN-¹H (**Espectro 19**) de este derivado indican la presencia de dos hidroxilos fenólicos libres en la molécula. Los seis grupos acetiloxi restantes están ubicados en la porción sacárida y son consistentes con la presencia de un disacárido constituido por una unidad de glucosa y otra de xilosa.

Figura 6. Derivado peracetilado del compuesto 22.

La correlación H-6/H-1" observada en el espectro NOESY revela que la glucosa se encuentra unida al hidroxilo ubicado en en C-5 del núcleo base. Asimismo la conectividad entre H-6" (δ_H 4.03 y 3.79) y H-1" indica que las unidades de azúcar se unen a través de un enlace 1 \rightarrow 6 β -glicosídico (**Figura 7**). La correlación entre los hidrógenos del grupo metoxilo y aquellos del sistema AB es consistente con la ubicación del metoxilo en C-7.

Figura 7. Correlaciones encontradas en el espectro NOESY de la 5-O-[β -D-2^{'''},3^{'''},4^{'''}-triacetil-xilopiranosil-(1 \rightarrow 6)- β -D-2^{''},3^{'''},4^{'''}-triacetil-glucopiranosil]-7-metoxi-3',4^{''}-dihidroxi-4-fenilcumarina.

C/H	δc	δ _H (Hz)	C/H	δc	δ _H (Hz)
2	163.0		6'	120.5	6.72 (dd, <i>J</i> = 2.4, 7.5)
3	113.3	5.94 (s)	-OMe	56.7	3.89 (s)
4	158.2		1"	101.4	4.81 (d, <i>J</i> = 7.5)
4a	105.6		2"	74.6	2.73 (dd, <i>J</i> = 7.7, 7.7)
5	158.1		3"	77.8	3.24 (dd, <i>J</i> = 6.9, 6.9)
6	96.4	6.67 (d, <i>J</i> = 2.4)	4"	71.3	3.19 (dd, <i>J</i> = 7.2, 7.2)
7	165.1		5"	77.3	3.6 (m)
8	100.6	6 71 (d. / = 2 1)	6"	70 4	4.03 (br d, <i>J</i> = 11.5)
Ŭ	100.0	0.11 (0,0 2.1)	Ū	70.1	3.79 (br d, <i>J</i> = 11.5)
8a	157.1		1'''	105.6	4.26 (d. <i>J</i> = 7.2)
1'	132.8		2""	70.5	3.21 (m)
2'	116.8	6.80 (d, <i>J</i> = 2.1)	3'''	77.7	3.26 (m)
3'	145.6		4"'	71.2	3.48 (m)
<i>A</i> ' 147 1		5""	66.9	3.08 (m)	
			J J	00.0	3.79 (m)
5'	115.8	6.81 (d, J= 8.1)			

Cuadro 19. Datos de RMN de 5-O-[β -D-xilopiranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-metoxi-3',4'-dihidroxi-4-fenilcumarina (CD₃OD) ¹³C (75.5 MHz) y ¹H (300 MHz).

Con base en la discusión anterior el producto **22** se identificó como la 5-O-[β -D-xilopiranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-metoxi-3',4'-dihidroxi-4-fenilcumarina.

4.3.2 Análisis de las fracciones primarias F1, F2, F4, F5 y F7 por CG-EM

Las fracciones primarias F1, F2, F4, F5 y F7 se analizaron por CG-EM con la finalidad de detectar la posible presencia de cucurbitacinas y fenilcumarinas de menor polaridad y potencial interés no solo como compuestos marcadores sino también como constituyentes antidiabéticos. La identificación de los compuestos presente en las fracciones analizadas se realizó por comparación de los espectros de masas generados por los compuestos presentes en las fracciones con aquellos de la biblioteca del aparato. En ninguno de los casos se detectaron compuestos cuyos espectros de masas presentaran el patrón de fragmentación diagnóstico de una 4-fenilcumarina o una cucurbitacina. En las fracciones F1 y F2 se detectaron fundamentalmente ésteres de ácidos grasos (Figuras 8 y 9; Cuadros 20 y 21).

Figura 8. Cromatograma de gases de la fracción primaria F1.

	Nombre	Intensidad relativa	Tiempo de retención (s)
40	Undecanoato de metilo	1.729	398.641
41	9-Oxo-nanoato de metilo	5.480	534.741
42	Octadecanoato de metilo	25.590	697.241
43	Octadeca-9,12-dienoato de metilo	51.093	747.041
44	Heptacosanoato de metilo	6.532	851.741

Figura 9. Cromatograma de gases de la fracción primaria F2.

Cuadro 21. Constituyentes de la Fracción F2

	Nombre	Intensidad relativa	Tiempo de retención (s)
47	Hexadecanoato de metilo	12.587	696.456
43	Octadeca-9,12-dienoato de metilo	22.461	744.456
45	11-Octadecenoato de metilo	14.968	745.956
42	Octadecanoato de metilo	5.617	752.056
46	Octadeca-13,16-dienoato de metilo	4.423	827.756

En las fracciones primarias F4 (Figura 10, Cuadro 22) y F5 (Figura 11, Cuadro 23) se detectó la presencia de esteroides, principalmente estigmasterol (51) y 22,23-dihidroestigmasterol (52), como constituyentes preponderantes. Por último, en la fracción F7 se detectaron ácidos grasos (Figura 12, Cuadro 24).

Figura 10. Cromatograma de gases de la fracción primaria F4.

Cuadro 22.	Constituyentes de la	Fracción F4.
------------	----------------------	--------------

	Nombre	Intensidad relativa	Tiempo de retención (s)
48	Nonanodioato de dimetilo	2.862	575.34
49	2,4-Dihidroxi-3,6-dimetil benzoato de metilo	1.994	633.44
42	Octadecanoato de metilo	1.966	696.04
43	Octadeca-9,12-dienoato de metilo	1.973	743.74
50	24-Metil-5-colesten-3-ol	12.694	1070.74
51	Estigmasterol	19.065	1089.84
52	22,23-Dihidroestigmasterol	42.957	1131.14
53	26-Acetiloxicolest-4-en-3-ona,	8.076	1209.04

Figura 11. Cromatograma de gases de la fracción primaria F5.

	Nombre	Intensidad relativa	Tiempo de retención (s)
41	9-Oxo-nanoato de metilo	4.683	534.14
54	3-Metilpentanol	1.878	152.54
55	2,5-Diceto-3-hexeno	1.432	299.34
56	Acido 3-hidroxi-4-metoximandelico	4.370	526.24
57	9-Ceto-nonanoato de metilo	2.099	575.04
58	1,1-Dimetoxidodecano	7.768	593.54
49	2,4-Dihidroxi-3,6-dimetil benzoato de metilo	5.418	634.94
42	Octadecanoato de metilo	6.695	696.64
59	Acido n-hexanodecanoico	1.260	708.44
45	11-Octadecenoato de metilo	2.300	745.54
50	24-Metil-5-colesten-3-ol	10.743	1069.54
51	Estigmasterol	17.150	1088.34
52	22,23-Dihidroestigmasterol	36.534	1126.94

Cuadro 23. Constituyentes de la Fracción F5.

Figura 12. Cromatograma de gases de la fracción primaria F7.

Cuadro 24.	Constituyentes de la Fracción F	7.
------------	---------------------------------	----

	Nombre	Intensidad relativa	Tiempo de retención (s)
42	Octadecanoato de metilo	4.086	696.656
59	Ácido n-hexadecanoico	30.523	715.856
60	Ácido heptadecanoico	4.648	739.456
61	Ácido octadecanoico	19.469	768.156
62	Ácido nonadecanoico	4.257	790.956
63	Ácido eicosanoico	29.449	816.456
64	Ácido tetracosanoico	7.566	907.356

V. RESUMEN Y CONCLUSIONES

- El presente trabajo constituye una aportación al conocimiento de los remedios herbolarios de México y en particular al aseguramiento de la calidad e inocuidad de la droga cruda derivada de *Hintonia latiflora*.
- El estudio fitoquímico convencional permitió el aislamiento de varios metabolitos secundarios, tres de ellos novedosos en la especie. Las cumarinas 5-O-[β-D-apiofuranosil-(1→6)-β -D-glucopiranosil]-7-metoxi-3',4'- dihidroxi-4-fenilcumarina (39), 5-O-[β-D-xilopiranosil-(1→6)-β-D-glucopiranosil]-7-metoxi-3',4'-dihidroxi-4-fenilcumarina (22) constituyen marcadores característicos y tienen la ventaja de que son abundantes en la planta.
- Se describe por vez primera la presencia de alcaloides en *H. latiflora*. El único alcaloide aislado se caracterizó como el ácido desoxicordifolínico (**38**).
- Los resultados generados al evaluar el extracto crudo de la corteza *H. latiflora* mediante la prueba de Ames revelaron que el extracto no induce la reversión en la mutación de las cepas TA98, TA100 y TA102 de *S. typhimurium* por lo tanto la especie es no mutagénica. Estos datos y los generados en otros estudios de toxicidad indican que la especie no es tóxica y que puede ser consumida con seguridad.
- El extracto íntegro de *H. latiflora* administrado oralmente carece de actividad antiinflamatoria en ratas a las dosis de 100, 300 y 1000 mg/Kg.

VI. REFERENCIAS

1. Adeoye, O. Adebowale., Waigh, D., Desoxycordifolinic acid from *Nauclea Diderrichii*. *Phytochemistry*, 1983; **22**, 2097-2098.

2. Andrade-Cetto, A., Heinrich, M., Review. Mexican plants with hypoglycaemic effect used in treatment of diabetes, *Journal of Ethnopharmacology*, 2005; **99**, 325-348.

3. Angeles López Guadalupe Esther, Castañeda Corral Guadalupe. Evaluación de la toxicidad y efecto antinociceptivo de especies medicinales selectas de México. Tesis para obtener el título de Químico Farmacéutico Biólogo, México, Facultad de Química, U.N.A.M, 2006.

4. Aguilar, Abigail., Camacho, J. R., Chino, S., Jacquez, P., López, E., Plantas Medicinales del Herbario IMSS. 1^a. Edición. 1994.

5. Aquino, R., D'Agostino, M., Francesco De Simone, Pizza, C., 4-Arylcoumarin Glycosides from *Coutarea Hexandra*. *Phytochemistry*, 1988; **27**, 1827-1830.

6. Argueta, V. A., Gallardo, V. M., Atlas de las plantas de la medicina tradicional mexicana. México: Instituto Nacional Indigenista, 1994.

7. Balunas, J., Douglas Kinghorn, A., Drug discovery for medicinal plants. Minireview. *Life sciences*, 2005; **78**, 431-441.

8. Barajas, M., A. Pérez J., Manual de Identificación de Árboles de Selva Baja Mediante Cortezas. Cuadernos 6. Instituto de Biología, UNAM. México. 1990; 83.

9. Bose, P., Barneji, J., Synthesis of 4-phenylcoumarins from Dalbergia Volubilis and *Exostema caribaeum*. *Phytochemistry*, 1991; **30**, 2438-2439.

10. BfR, Strategies for Genotoxicity Testing of Substances: An Overview, http://www.bfr.bund.de/cms/media.php/94, 2002.

11. COM, Guidance on a Strategy for Testing of Chemicals for Mutagenicity, Committee on Mutagenicity of Chemicals in Food, Consumer Products and the Environment, http://www.doh.gov.uk/com/guidance.pdf, December 2000.

12. Camacho, C. M., Nuevos metabolitos secundarios de la *Hintonia latiflora* (Sesse et Mociño ex D.C.) y aislamiento de compuestos bioactivos del Teloxys graveolens (Wild) W. A. Weber, Tesis de Maestría (Farmacia-Química Farmacéutica), México, Facultad de Química, U. N. A. M. 1990.

13. Camacho, MdR., Phillipson, J.D., Croft, S.L., Solis, P.N., Marshall, S.J., Ghazanfar, S.A., Screening of plants extracts for antiprotozoal and cytotoxic activities, *Journal of Ethnopharmacology*, 2003; **89**, 185-191.

14. Déciga-Campos, M., Guerrero-Analco, J.A., Quijano, L., Mata, R.; Antinociceptive activity of 3-O-βglucopyranosyl-23,24-dihydrocucurbitacin F from *Hintonia standleyana* (Rubiaceae). *Pharmacology, Biochemistry and Behavior*, 2006; **83**,342-348. 15. Delle Monache, G., Botta, B., Alves De Lima, R., Serafim, N. A., 4-Arylcoumarins from *Coutarea hexandra*. *Phytochemistry*, 1983; **22**, 1657-1658.

16. Delle Monache, G., Botta, B., Alves De Lima, R., 4-Arylcoumarins from *Coutarea hexandra*. *Phytochemistry*, 1984; **23**, 1813.

17. Delle Monache, G., Botta B., Delle Monache, F., Botta, M., Synthesis of 4-arylcoumarins from *Coutarea hexandra*. *Phytochemistry*, 1985; **24**, 1355-1357.

18. Díaz, José L., Indice y sinonímia de las plantas medicinales de México. Monografías Científicas I. Instituto Mexicano para el estudio de las plantas medicinales A. C. Imeplam 1976.

19. Domínguez, Xorge A., Métodos de investigación fitoquímica Ed.Limusa 1a. edición. México 1979. 211-228.

20. FDA, Office of Food Additive Safety, Redbook 2000, Toxicological Principles for the Safety Assessment of Food Ingredients, U.S. Food and Drug Administration, http://vm.cfsan.fda.gov/~redbook/red-toca.html, 2000.

21. Farmacopea Herbolaria de los Estados Unidos Mexicanos. Secretaria de Salud. México. 2001.

22. González, Chévez L., Hersch, Martínez P., Juárez, Miranda A., Pérez, Cardona A., Plantas Medicinales de Copalillo y Temalac, Guerrero. Serie Patrimonio Vivo 5, Actores Sociales de la Flora Medicinal en México, INAH, México, D.F, 2000; 27-28.

23. Guerrero-Analco, J.A., Hersch-Martínez, P., Pedraza-Chaverri, J., Navarrete, A., Mata, R., Antihyperglycemic effect of contituents from *Hintonia Standleyana* in Streptozotocin-Induced Diabetic Rats. *Planta Medica*, 2005; **71**, 1-7.

24. Köhler, I., Jenett-Siems, K., Mockenhaupt, P. F., Siems, K., Jekupovic, L., González, C. J., In vitro antiplasmodial activity of 4-phenylcoumarins from *Exostema mexicanum*. *Planta Medica*, 2001; **67**, 89-91.

25. Korec, R., Heinz Sensch, K., Zoukas, T., Effects of the Neoflavonoid Coutareagenin, One of the antidiabetic Active Substances of *Hintonia latiflora*, on Streptozotocin-induced Diabetes mellitus in Rats. *Drug Research*, 2000; **50(1)**, 122-128.

26. Krebs, K.G., Griesinger, E., Inhaltsstoffe der rinde von *Exostema caribaeum. Arzneimittel-Forschung*, 1960; **10**, 32-33.

27. Lowery, C., Reagent chemicals. American Chemical Society Specification. Washington, D.C., 1993; 90-91.

28. Lozoya, L. X., Bibliografía basica sobre herbolaria medicinal de México. México: Secretaria de Desarrollo Urbano y Ecología, 1984.

29. Linuma, M., Tanaka, T., Hamada, K., Mizuno, M., Asai F., Reher, G. Kraus, L., Revised Structure of Neoflavone in *Coutarea hexandra. Phytochemistry*, 1987; **26**, 3096-3097.

30. Maron, M. D., Ames, N. B., Revised methods for the Salmonella mutagenicity test. *Mutation Research*, 1983; **113**, 173-215.

31. Mata, R., Calzada, F., García, M. R., Reguero, M.T., Chemical Studies On Mexican Plants Used In Traditional Medicine, III: New 4-Phenylcoumarins from *Exostema Caribaeum*, *Journal of Natural Products*, 1987; **50**, 866-871.

32. Mata, R., Calzada, F., García, M. R., Chemical Studies On Mexican Plants Used In Traditional Medicine, VI: Additional new 4-Phenylcoumarins from *Exostema Caribaeum*, *Journal of Natural Products*, 1988; **51**, 851-856.

33. Mata, R., Castañeda, P., Camacho, M., Chemical Studies On Mexican Plants Used In Traditional Medicine, V: Cucurbitacin Glucosides From *Cigarrilla Mexicana*, *Journal of Natural Products*, 1988; **51**, 836-839.

34. Mata, R., Albor C., Pereda-Miranda, R., Mc Laughlin, L., Cytotoxic constituents of *Exostema mexicanum*. *Planta Medica*, 1990; **56**, 241.

35. Mata, R., Camacho, M. R., Cervera, E., Bye, R., Linares, E., Secondary Metabolites from *Hintonia latiflora*, *Phytochemistry*, 1990; **29**, 2037-2040.

36. Mata, R., Camacho, M. R., Mendoza, S., Cruz, M., A Phenylstyrene from *Hintonia latiflora*. *Phytochemistry*, 1992; **31**(9), 3199-3201.

37. Martínez, M., Las Plantas Medicinales de México. Ediciones Botas. 6^a. Ed., 1989.

38. Norma 062 ZOO 1999. "Guía para el Cuidado y Uso de los Animales de Laboratorio" www.sagarpa.gob.mx/Dgg/NOM/062zoo.pdf.

39. Noster, S., Kraus, Lj., In vitro Antimalarial Activity of *Coutarea latiflora* and *Exostema caribaeum* Extracts on *Plasmodium falciparium*. *Planta Medica*, 1990; **56**, 63-65.

40. Phytochemical Potential of Tropical Plants. Recent advances in phytochemistry. Edited by K. R. Downum, Plenum Press, New York, 1993. Capítulo 2. Autor: Rachel Mata.

41. Pinto, A., Capasso A., Sorrentino, L., Experimental animal studies on the hypoglycemic effects of a Copalchi extract. *Arzneimittelforschung*, 1997; **47(7)**, 829-833.

42. Raskin, I., Ribnicky, M. D., Komarnytsky, S., Poulev, A., Ilic, N., Borisjuk, N., Brinker, A., Moreno, D. A., Ripoll, C., Yakoby, N., O'Neal, M. J., Cornwell, T., Pastor, I., Fridlender, B., Plants and human health in the twenty-first century. Review. *Biotechnology*, 2002; **20** (12), 522-531.

43. Reguero, M. T., Mata, R., Bye, R., Linares, E., Delgado, G., Chemical Studies On Mexican Plants Used In Traditional Medicine, II: Cucurbitacins from *Hintonia latiflora, J. Nat. Prod.*, 1987; **50**, 315.

44. Reher, G., Kraus, L., New Neoflavonoids from Coutarea latiflora. *Journal of Natural Products,* 1984; **47**, 172-174.

45. Reher, G., Kraus, L., Sinnwell, V., König W., A neoflavonoid from *Coutarea hexandra* (Rubiaceae) *Phytochemistry*, 1983; **22**, 1524-1525.

46. Rojas, Alba Mario., *Tlahui-Medic*. No. 6, II/1998 www.tlahui.com.

47. Rojas, A., Hernández, L., Pereda-Miranda, R., Mata, R., Screening For Antimicrobial Activity of Crude Drug Extracts and Pure Natural Products From Mexican Medicinal Plants. *Journal of Ethnopharmacology*, 1992; **35**, 275-283.

48. Sánchez-Viesca, F., The structure of exostemin, a new 4-phenyl coumarin isolated from *Exostema* caribaeum. *Phytochemistry*, 1969; **8**, 1821-1823.

49. Soto, R.B.; Díaz, C.F., Yañez, R.O., Collera, C.O., Garcia, F.J., *Spectroscopy An International Journal*, 1988; **6**, 123.

50. Stahl, E., Thin Layer chromatography. Academic Press, Inc. New York, 1969; 478.

51. Standley, W. Williams CO. Flora of Guatemala-Part XI, Numbers 1 to 3. Fieldiana: Botany 1975; **24**, 1-274.

52. Vinegar, R., Schreiber, W., Hugo, R., Biphasic development of carrageenin edema in rats. *Journal of Pharmacology and Experimental Therapeutics*, 1969; **166**, 96-103.

53. Wagner, H., Bladt S., Zgainski, E. M., Plant Drug Analiysis. A Thin Layer Chromatography Atlas., Springer-Verlag, New York, 1984.

54. Winkelman, Michael., Frecuently used medicinal plants in Baja California Norte. *Journal of Ethnopharmacology*, 1986; **18**, 109-131.

55. Winter, A. C., Risley E. A., Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. *Proc. Soc. Biol. Med.*, 1962; **111**, 544-547.

56. Winter, A. C., Risley, E. A., Silber, R. H., Antiinflamatory activity of indomethacin and plasma corticosterone in rats. *Journal of pharmacology and Therapeutics*, 1968; **162**, 196-201.

57. World Health Organization. WHO Quality control methods for medicinal plant materials. Geneva, 1998.

58. World Health Organization. WHO monographs on selected medicinal plants. Volume 1. Geneva, 1999.

59. World Health Organization. WHO monographs on selected medicinal plants. Volume 2. Geneva, 2001.

APÉNDICE

MEDIOS DE CULTIVO Y SOLUCIONES UTILIZADOS EN LA DETERMINACIÓN DEL POTENCIAL MUTAGÉNICO

A. Medio de cultivo

Sales de Vogel Bonner pH: 7.4		
Sulfato de magnesio (MgSO4•7H2O)	10g	
Acido cítrico monohidratado	100g	
Fosfato dibasico de potasio anhidro (K ₂ HPO ₄)	500g	
Fosfato de sodio y amonio (NaHNH4 PO4•4H2O)	175g	
Agua destilada	670 mL	
Procedimiento: Adicionar las sales al agua destilada en el orden indicado con agitación constante, permitiendo que cada compuesto se disuelva antes de añadir el siguiente. Ajustar el pH a 7.4. Aforar al volumen final de 1L. Filtrar y guardar en un recipiente ámbar a temperatura ambiente.		

Agar Vogel-Bonner			
Medio mínimo	Agar	15g	
	Glucosa	20g	
	Agua destilada	800 mL	
Sa	Sales de Vogel-Bonner 20 mL		
Agua destilada 180 mL			
Procedimiento: Verter el agar y la glucosa en el agua destilada. Esterilizar por filtración en membranas Acrodisc de 0.45 µm.			

B. Preparación del inóculo

Agar suave al 0.6%			
Agar bacteriológico Cloruro de sodio NaCl Agua destilada	6g 5g 1000 mL		
Verter el agar y el cloruro de sodio en el agua destilada. Esterilizar en autoclave por 20 minutos a 121°C.			

Solución de Histidina-Biotina			
D-Biotina	30.9 mg		
L-Histidina•HCl	24.0 mg		
Agua destilada	250 mL		
Disolver la D-Biotina y la L-Histidina•HCl en el volumen indicado. Esterilizar en autoclave por 20			
minutos a 121°C. Guardar en	refrigeración a 4°C.		

C. Soluciones para la preparación de la fracción S9

Solución de cloruros				
•	Cloruro de potasio (KCl)	61.5 g		
	Cloruro de magnesio			
	(MgCl₂●6H₂O)	40.7 g		
•	Àgua destilada	500 mL		
Disolver las sales en la mitad de agua y ajustar al volumen final. Esterilizar en autoclave a 121°C y 21 lb/cm ² , durante 20 minutos. Conservar en refrigeración a 4°C				

Solución de fosfatos					
 Fosfato de sodio dibasico NaH₂PO₄●H₂O 	14.2g				
 Fostato de sodio monobasico Na₂HPO₄ Agua destilada 	13.8 g 500 mL				
Disolver las sales en el volumen indicado de agua. Esterilizar en autoclave a 121°C y 21 lb/cm ² , durante 20 minutos. Conservar en refrigeración a 4°C					

Solución de NADP				
NADP (PM 765.4)Agua destilada	383 mg 5 mL			
Procedimiento: Disover y esterilzar por filtración en				
membranas Acrodisc de 0.45µm.				

Solución de glucosa-6-fosfato				
Glucosa-6-fosfatoAgua destilada	383 mg 5 mL			
Procedimiento: Disover y esterilzar por fil	tración en			
membranas Acrodisc de 0.45µm.				

D. Solución al 4% de la fracción S9 con cofactores

Composición:		
 Fracción S9 de hígado de rata 	2.0 mL (4%)	
 Solución de cloruros 	1.0 mL	
 Solución de glucosa 6-fosfato 	0.25 mL	
 Solución de NADP 	1.0 mL	
 Solución de fosfatos 	25.0 mL	
 Agua destilada 	75 mL	
Procedimiento: Homogeneizar y esterilzar por filtración en membranas Acrodisc de $0.45 \mu m$.		

Espectro 5. Espectro de infrarrojo del compuesto 25-acetil-3-*O*-β-D-glucopiranosil-23,24-dihidrocucurbitacina F (37).

Espectro 7. Espectro de RMN-¹H de la 25-acetil-3-O-β-D-glucopiranosil- 23, 24-dihidrocucurbitacina F (37).

61

Espectro 8. Espectro de RMN-¹³C de la 25-acetil-3-O-β-D-glucopiranosil- 23,24-dihidrocucurbitacina F (**37**).

62

Espectro 9. Espectro de infrarrojo del compuesto 3-*O*-β-D-glucopiranosil-23,24-dihidrocucurbitacina F(28).

Espectro 11. Espectro de RMN-¹H de la 3-*O*-*β*-D-glucopiranosil- 23, 24-dihidrocucurbitacina F (**28**).

64

Espectro 15. Espectro de RMN-¹H de la 5-O-[β -D-apiofuranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-metoxi-3',4'-dihidroxi-4-fenilcumarina (**39**).

Espectro 17. Espectro de infrarrojo del compuesto 5-O-[β -D-xilopiranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-metoxi-3',4'-dihidroxi-4-fenilcumarina (**22**).

Espectro 19. Espectro de RMN-¹H de la 5-O-[β -D-xilopiranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-metoxi-3',4'-dihidroxi-4-fenilcumarina (22).

71

Espectro 21. Espectro DEPT de la 5-O-[β -D-xilopiranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-metoxi-3',4'-dihidroxi-4-fenilcumarina (22).

72

Espectro 22. Espectro UV del compuesto 5-*O*-[β -D-xilopiranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-metoxi-3',4'- dihidroxi-4-fenilcumarina (**22**).

Espectro 23. Espectro COSY de la 5-O-[β -D-xilopiranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-metoxi-3',4'-dihidroxi-4-fenilcumarina (**22**).

Espectro 24. Espectro NOESY de la 5-O-[β -D-xilopiranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-metoxi-3',4'-dihidroxi-4-fenilcumarina (22).

Espectro 25. Espectro HETCOR de la 5-O-[β -D-xilopiranosil-(1 \rightarrow 6)- β -D-glucopiranosil]-7-metoxi-3',4'-dihidroxi-4-fenilcumarina (22).

75

Espectro 29. Espectro de RMN-¹³C del ácido desoxicordifolínico (38).