

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE QUÍMICA

TRANSFERENCIA DE TECNOLOGÍA Y VALIDACIÓN DEL PROCESO DE UNA FORMA FARMACÉUTICA SÓLIDA ORAL. PRAVASTATINA SÓDICA. TABLETAS 10 mg.

T E S I S

QUE PARA OBTENER EL TÍTULO DE

QUÍMICO FARMACÉUTICO BIÓLOGO

P R E S E N T A:

BLANCA ESTELA ARREDONDO DELGADO

MÉXICO, D.F. 2006

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Jurado asignado:	
Presidente Vocal Secretario 1er. Suplente 2°. Suplente	Prof. Francisco García Olivares Prof. Ernestina Hernández García Prof. Margarito Artemio Morales Borboa Prof. Raúl Lugo Villegas Prof. Natividad García Escamilla
Sitio e	n donde se desarrolló el tema:
Departamento de Ase	guramiento de la Calidad, APOTEX, México.
ASESOR DEL TEMA	SUSTENTANTE
Margarito Artemio Morales Bor	boa Blanca Estela Arredondo Delgado

A mis padres

Miguel Arredondo y Celia Delgado

A mi hermana

Yeny

Mi familia, que los amo y es el motor de mi vida. Gracias a ellos soy lo que soy.

Papa: "Uno para todas y todas para uno";

Esta frase es la unión de cuatro personas que se dieron su apoyo incondicional.

No la olvides.

Doy gracias a Dios, por llegar a este punto importante de mi vida.

Agradezco a todos mis amigos de la facultad que durante los años de estancia tuve su compañía y que juntos nos divertimos, aprendimos y nos apoyamos.

A Rocío C. R., mi segunda hermana, que siempre estuvo y estará ahí cuando la necesite (y yo para ella, tenlo por seguro).

A mi gran amigo Paul, que siempre tenía una motivación y un consejo sabio, que siempre trato de ubicarme y a enseñarme a brincar las dificultades. Un ejemplo a seguir. ¡Que triunfes en tus proyectos!

A Julio, Genaro, Vicente, Polo, Israel, Guillermo, Fabian; que cada uno con sus distintas formas de ser, me enseñaron a aprender de la vida. Apoyándome, escuchándome, divirtiéndome, acompañándome y siempre ser sinceros y abiertos conmigo. Los quiero mucho, chicos, sean felices.

A Teresa y Sonia, amigas que no se pueden olvidar, personas que brindan su amistad sin interés alguno.

Agradezco el apoyo para la realización de esta tesis:

A Margarito Morales por la oportunidad brindada para pertenecer al área de Aseguramiento de la Calidad, así como la asesoría proporcionada para desarrollar la tesis.

A Ing. Miguel Bernal un buen líder y ejemplo a seguir, gracias por sus palabras de aliento, motivación, y sobre todo por su sinceridad.

A Raúl, Claudia, Mario, Perla, Alejandro, Nachito, Rocío y Miguel, por brindarme su amistad, por estar dispuestos a enseñarme y por proporcionarme siempre buenos consejos. Son un gran equipo, ¡Sigan así!

Agradezco a todas esas personas, que en un momento de mi carrera me brindaron apoyo, amistad, motivación, consejos y que solo les puedo pagar con amistad. A mi tío Santiago, Adrián, Alonso, Miguel A. G., Hiram, Israel G., Sandunga, Sandy, Marcelino, Diana, Olga, Miguel O., Ricardo, Magali, Blanca, Manuel.

"La vida es como la montaña rusa, en un momento subes, otras bajas y en otras no pasa nada, es muy rápida pero muy divertida. Hay que disfrutar la vida siempre riendo y terminar todo con una sonrisa."

INDICE:	PAGINA	
1. INTRODUCCIÓN	1	
1.1. Planteamiento del Problema.	4	
1.2. Objetivo.	5	
2. FUNDAMENTOS DEL TEMA	6	
2.1. Tecnología.	6	
2.2. Transferencia de Tecnología.	6	
2.2.1. Tipos de tecnologías que se pueden transferir.	7	
2.2.2. Pasos en una Transferencia de Tecnología.	10	
2.3. Validación.	12	
2.3.1. Métodos Analíticos.	12	
2.3.2. Calificación	13	
2.3.2.1. Equipos y Áreas.	13	
2.3.2.2. Sistemas críticos.	14	
2.3.2.3. Personal.	14	
2.3.3. Procesos.	16	
2.3.3.1. Tipos de Validación.	16	
2.3.3.2. Proceso de Sólidos Orales.	18	
2.4. Sólidos Orales.	19	
2.4.1. Pravastatina Sódica.	19	
2.4.1.1. Propiedades Química.	20	
2.4.1.2. Farmacocinética y Farmacodinamia.	20	
2.5. Documentación.	21	
2.5.1. Transferencia de Tecnología.	22	
2.5.1.1. Protocolo.	23	
2.5.1.2. Reporte.	23	
2.5.2. Validación del proceso.	23	
2.5.2.1. Protocolo.	24	
2.5.2.2. Reporte.	27	
2.6. Criterios de Aceptación.	28	
2.6.1. Transferencia de Tecnología.	29	
2.6.2. Validación de Procesos	30	

3. MATERIALES Y METODOS.	32
3.1. Instrumentación.	32
3.2. Material.	32
3.3. Reactivos.	33
4. DESARROLLO EXPERIMENTAL.	36
4.1. Transferencia de Tecnología.	36
4.1.1. Elaboración de protocolo.	36
4.1.2. Plan de seguimiento.	36
4.1.3. Muestreo y análisis	36
4.2. Validación del Proceso.	37
4.2.1. Elaboración de protocolo.	37
4.2.2. Elaboración de formatos.	38
4.2.3. Plan de muestreo y análisis.	38
5. RESULTADOS.	40
5.1. Transferencia de Tecnología.	40
5.1.1. Resultados de Humedad.	40
5.1.2. Resultados de Disolución.	40
5.2. Validación de Proceso.	40
5.2.1. Resultados de Pruebas Físicas.	40
5.2.2. Resultados de Valoración.	45
6. ANALISIS DE RESULTADOS.	47
7. CONCLUSIONES.	53
8. PROPUESTAS Y/O RECOMENDACIONES.	55
9. ANEXOS.	56
10. BIBLIOGRAFÍA.	57

LISTADO DE TABLAS.

		PAGINA
Tabla 1	Criterios y variables en la Transferencia de Tecnología	30
Tabla 2	Criterios y variables en la Validación de Procesos	30
Tabla 3	Especificaciones para el producto terminado de Pravastatina sódica. Tabletas de 10 mg.	31
Tabla 4	Muestreo y análisis para el seguimiento de la Transferencia de Tecnología.	37
Tabla 5	Cuadro de muestreo a realizar durante el Mezclado Inicial.	38
Tabla 6	Parámetros de prueba a realizar durante el Mezclado Final.	39
Tabla 7	Cuadro de muestreo a realizar durante el Tableteado.	39
Tabla 8	Resultados de Humedad de Transferencia de Tecnología.	40
Tabla 9	Resultados de Disolución de Transferencia de Tecnología.	40
Tabla 10	Resultados de Condiciones Ambientales de Validación de Procesos. Mezclado Inicial.	41
Tabla 11	Resultados de Condiciones Ambientales de Validación de Procesos. Mezclado Final.	41
Tabla 12	Resultados de Condiciones Ambientales de Validación Procesos. Tableteado.	41
Tabla 13	Resultados de peso promedio.	42
Tabla 14	Resultados de Capacidad del proceso en la variable peso.	42
Tabla 15	Resultados de Espesor.	42
Tabla 16	Resultados de Capacidad del proceso en la variable espesor.	42

Tabla 17	Resultados de Dureza.	42
Tabla 18	Resultados de Capacidad del proceso en la variable dureza.	43
Tabla 19	Resultados de Desintegración.	43
Tabla 20	Resultados de Capacidad del proceso en la variable desintegración.	43
Tabla 21	Resultados de Friabilidad.	43
Tabla 22	Resultados de Capacidad del proceso en la variable friabilidad.	44
Tabla 23	Resultados de Valoración Lote 1.	45
Tabla 24	Resultados de Valoración Lote 2.	45
Tabla 25	Resultados de Valoración Lote 3.	46

LISTA DE FIGURAS

	PÁGINA
Fig. 1. Etapas de una Transferencia de Tecnología.	11
Fig. 2. Pravastatina Sódica	20
Metodología para llevar acabo la Transferencia de Tecnología y la Validación de un Proceso.	35

1. INTRODUCCIÓN.

La implementación de nuevas tecnologías, modificación de procesos, formulaciones, equipos y áreas; son primordiales en la industria farmacéutica, para tener una mejora continua, así como para el beneficio de su economía.

En este rubro las industrias farmacéuticas transnacionales invierten gran parte de su presupuesto y tiempo a la investigación y desarrollo, área fundamental en toda empresa. Pues esta área es la que determina la implementación de nuevas tecnologías y/o modificaciones para la mejora de productos ya establecidos o el cumplir con nuevas exigencias regulatorias.

En este trabajo se pretende mostrar la implementación de una nueva tecnología en el área de producción. Pues dentro de los laboratorios Apotex, la formulación de Pravastatina Sódica Tabletas 10mg fue modificada. Con pruebas realizadas en el área de Investigación y Desarrollo, se obtuvo que al utilizar una mezcla comercial que esta compuesta de tres excipientes la tableta tendría teóricamente una humedad fuera de especificaciones, de acuerdo a lo indicado en la monografía incluida en farmacopea (FEUM). Así que se genero una nueva formulación donde se incluyen los tres excipientes individualmente, respetando los porcentajes con la cual fue registrada la formula actual.

Esta modificación, de acuerdo a FEUM; es considerada de Nivel 1, ya que no produce impacto significativo sobre la calidad y desempeño de la formulación. Para este cambio no se necesita aviso, ni autorización de la Secretaria de Salud. Como requisitos, para esta nueva implementación, solo es necesario incluir en al revisión anual del producto, el informe de estabilidad a largo plazo de un lote y justificación que avale el cambio.

El paso de esta nueva tecnología, realizada en laboratorios y la implementación en planta (procesos productivos) para ser utilizada en forma rutinaria sobre lotes comerciales, es lo que llamamos Transferencia de Tecnología.

Las transferencias de tecnologías, se aplican a métodos analíticos, procesos de fabricación y/o productos y ocurre por una variedad de razones, que pueden estar basados en un gran número de factores, entre los más importantes se pueden señalar:

 Progreso en el desarrollo de un producto (ciclo de vida); de un laboratorio que lo descubrió; el cual va del escalamiento y desarrollo clínico hasta comercialización.

2

- Necesidad de aumentar la capacidad, de cualquiera de las tecnologías utilizadas en forma rutinaria.
- Estrategia de aumento de economía empresarial, generando negocios en cualquier parte del mundo.

Actualmente la Transferencia de Tecnología es parte de los negocios de la industria farmacéutica; y es un punto en el que se enfocan las agencias regulatorias gubernamentales; por consecuencia se van generando nuevas normalizaciones jurídicas para los negocios farmacéuticos.

Sin importar, cual sea la razón para la Transferencia de Tecnología, la variable más crítica para llegar a los buenos resultados, en todos los casos es la documentación que se genera en la transferencia.

La documentación que respalda a una Transferencia de Tecnología debe contar con la evidencia de la calificación de sistemas críticos, equipos, áreas, instalaciones, instrumentos calibrados y de un personal calificado. Así como de metodologías analíticas validadas utilizadas en la obtención y análisis del producto. Para que cuando sea implementada la nueva tecnología, se prosiga a la Validación del proceso. Esta documentación debe ser generada antes de la Transferencia de Tecnología.

La Validación de un Proceso es la evidencia documentada de que un proceso se comporta de manera uniforme y reproducible; además de proveer de manera consistente el producto con la calidad preestablecida.

Así pues, la validación no solo abarca procesos, sino también la calificación de equipos, instalaciones, personal y métodos analíticos, como se menciono antes. De acuerdo con lo anterior, esta documentación generada es soporte para la Validación de Procesos.

La documentación mínima requerida en una Transferencia de Tecnología y Validación de un Proceso consta de:

- Plan Maestro de Validación.
- Procedimientos Normalizados de Operación.
- Protocolos.
- Programas a seguir.
- Reportes.

El incluir puntos, tales como las precauciones, análisis de riesgos, además de cumplir con una importante información de las características de una Transferencia de Tecnología, ayudan a evitar actividades innecesarias, que puedan afectar en el futuro a la transferencia y desde luego la calidad del producto.

La Transferencia de Tecnología es un medio sistemático donde se trasmite habilidades, documentación, equipos, técnicas, sistemas entres dos partes (emisor y receptor). La Validación es la herramienta a ser usada para confirmar el consistente desempeño para las especificaciones establecida.

Así pues, durante este trabajo se proporcionará la documentación sugerida pero no limitativa para desarrollar una Transferencia de Tecnología y Validación del Proceso, de un proceso de tableteado por compresión directa, tomando como ejemplo a Pravastatina Sódica Tabletas 10 mg, mostrando los resultados que avalen la implementación de la nueva tecnología y la evidencia de que el proceso hace lo que esta previsto.

1.1. PLANTEAMIENTO DEL PROBLEMA.

Pravastatina Sódica Tabletas 10 mg, indicada de acuerdo al cuadro básico de medicamentos; se emplea para el tratamiento de pacientes con un nivel alto de colesterol. Actualmente este padecimiento es una de las principales causas de las afecciones cardiacas.

Por consecuencia se incluye la monografía para Pravastatina Sódica tabletas 10mg en la Farmacopea de los Estados Unidos Mexicanos (FEUM). Dentro de ella se incluye la determinación de humedad, lo cual genero la necesidad de modificar la formulación del producto para cumplir con la especificación, pues teóricamente la humedad presentada por la formulación no cumplía con especificación.

La determinación de humedad es importante para la calidad de la tableta, pues Pravastatina Sódica tiene la propiedad de ser higroscópico, y se puede alterar la pureza del producto.

Así pues, al desarrollarse una nueva tecnología, esta se transfiere al área de producción verificando su implementación con tres lotes de producción, para darle paso a la Validación del Proceso de fabricación con tres nuevos lotes.

1.2. OBJETIVO GENERALES.

- Llevar acabo de manera satisfactoria la Transferencia de Tecnología de Pravastatina Sódica Tabletas 10mg, fabricada mediante un proceso de compresión directa, verificando su reproducibilidad en la planta.
- Llevar acabo de manera satisfactoria la Validación del Proceso de fabricación de Pravastatina Sódica Tabletas 10mg, por compresión directa, en tres lotes continuos de producción.

2. FUNDAMENTOS.

2.1. Tecnología.

La Tecnología es definida como la aplicación de conocimientos para propósitos prácticos con ayuda de herramientas, máquinas, materiales, procesos para realizar un trabajo, producir bienes, prestar servicios o realizar cualquier actividad útil. En general, es un conjunto de conocimientos organizados, desarrollados y aplicados entre ciencia, ingeniería y diseño; en el cual se alcanza un objetivo específico, que generalmente es el de producir y distribuir un bien o servicio. (1,2,3)

2.2. Transferencia de Tecnología.

La Transferencia de Tecnología surge por en un gran número de factores que pueden estar basados, entre los más importantes se pueden señalar:

- Progreso en el desarrollo de un producto (ciclo de vida); de un laboratorio que lo descubrió; el cual va del escalamiento y desarrollo clínico a comercialización.
- Necesidad de aumentar la capacidad, de cualquiera de las tecnologías utilizadas en forma rutinaria
- Estrategia de aumento de economía empresarial, generando negocios en cualquier parte del mundo.

La Transferencia de Tecnología (TT) tiene como fin, proporcionar las actividades, información, documentación y soporte técnico, involucrados, a una persona u organización con el fin de que este siga los lineamientos bajo los cuales se tienen que fabricar un producto, por lo general, innovador. La TT es un programa en el que se deben de plantear las actividades, y tener un plano claro y conciso de cada paso. (1,3,4,5,6)

En la TT se deben de considerar varios puntos; como son el personal involucrado, las instalaciones, equipos, condiciones ambientales, etapas del proceso y formulación; estos puntos a su vez tienen sus propias consideraciones. (4)

De los puntos anteriores, uno de los más críticos es el personal, pues se tiene que contar con un personal capacitado y calificado.

Las instalaciones y equipos deben estar calificados y contar con un procedimiento de operación de limpieza y sanitización.

Para las formulaciones se debe considerar su estabilidad, toxicidad y propiedades físicas ó químicas.

Con lo que respecta a los procesos, ya que se ha tomado en cuenta las consideraciones anteriores, solo resta realizar la validación del proceso. Los parámetros a determinar durante el proceso de validación; son evaluados después de la transferencia.

Una Transferencia de Tecnología termina cuando la nueva tecnología es usada de forma rutinaria para realizar las actividades propias de la organización receptora.

2.2.1. Tipos de tecnologías que se pueden transferir.

Los tipos de tecnología que se va a transferir son:

2.2.1.1. Proceso.

Es el tipo de tecnología que se transfiere cuando se ha hecho algún cambio en un proceso ya establecido, o bien cuando se ha innovado un nuevo proceso, y es necesario transferirlo para su mejora u optimización del proceso. Aquí se transfiere toda la documentación relacionada con el proceso, incluyendo, especificaciones para el criterio de la validación, así como la calificación de equipos sistemas e instalaciones a utilizar; como también de el personal capacitado y calificado. (1,4,5)

2.2.1.2. Formulación.

Tipo de tecnología cuando se ha hecho el desarrollo de un producto o se ha modificado su formulación. La documentación transferida debe incluir, las características del producto terminado, sus estudios de estabilidad, toxicidad, propiedades físicas y químicas, así como sus condiciones de fabricación y almacenamiento. (1,5)

2.2.1.3. Equipo.

Es el tipo de tecnología cuando se ha decidido hacer un cambio en los equipos utilizados, debido a que se ha generado mejor desempeño en la maquinaria o se a dado la innovación de un nuevo equipo. Este tipo de tecnología transferida es catalogada como el más común en las transferencias. La documentación debe incluir la calificación del equipo, manuales del proveedor, planos, diagramas y especificaciones; en algunos casos se proporciona capacitación por parte del proveedor. (1,6)

2.2.1.4. Cambio de instalación.

Tipo de tecnología que se transfiere cuando se hace un cambio de lugar o por remodelación de las instalaciones. La documentación debe incluir los planos, su calificación; validación del proceso de limpieza, además indicar las condiciones a las cuales debe de mantenerse las instalaciones. En el caso de la producción de productos estériles, la validación de los procesos de esterilización y llenado aséptico. (1,4,5)

Así mismo, dentro de la Transferencia de Tecnología, también existen otros tipos de tecnologías, como son la administrativa y la mercadotecnia. Sin embargo, para fines de este trabajo no se profundizará en este tema.

Las formas de transferir cualquiera de las anteriores tecnologías es a través de:

1) Canales de flujo:

Los canales de flujo son por los cuales el conocimiento es transferido y se puede hacer contacto con el proveedor de la tecnología ⁽¹⁾, los canales más utilizados son:

- La circulación de libros, publicaciones periódicas y otras informaciones publicas.
- El desplazamiento de personas de un país a otro.
- La enseñanza y formación de profesionales.
- El empleo de expertos y los acuerdos sobre asesoramientos.
- La importación de maquinaria y equipo, así como la documentación que conlleva.
- Las inversiones extranjeras.

2) Normalizaciones jurídicas.

La transferencia vista desde un punto jurídico, en donde cada país establece sus lineamientos. En el caso de México existe la "Ley sobre el Registro de la Transferencia de Tecnología y el Uso y Explotación de Patentes y Marcas", en donde se indican los siguientes tipos de transferencias. (1,7)

- La concesión para el uso o autorización para la explotación de marcas.
- La concesión del uso o autorización para la explotación de patentes de invención, de mejoras, de modelos y de dibujos industriales.

- El suministro de conocimientos técnicos mediante planos, diagramas modelos, instructivos, instrucciones, formulaciones, especificaciones, formación y capacitación de personal y otras modalidades.
- La provisión de ingeniería básica o de detalle para la ejecución de instalaciones o la fabricación de productos.

3) Procedencia.

Es cuando las transferencias se obtienen de acuerdo a su procedencia, las cuales se clasifican:

a) Transferencia de laboratorio a planta comercial:

Transferencia que en su mayoría no constituye grupos de tecnologías con mucha demanda comercial, ya que no tiene la vasta experimentación y efectividad probada. (1,5)

b) Transferencia de laboratorio a planta piloto:

Para este tipo de transferencia, su procedencia y su aplicación carecen de demanda comercial, pues agrupa una tecnología que nace o empieza su desarrollo, estando en una fase de prueba y experimentación.

c) Transferencia de empresa a empresa:

Este tipo de transferencia agrupa la gran mayoría de tecnologías comerciales susceptibles de negociación a gran escala. Contiene tecnologías con experiencia comprobada y con un largo tiempo de explotación. Ya que es el tipo de transferencia donde la tecnología es transferida de una empresa que la posee y la explota a otra que la necesita.

d) Transferencia de planta a planta:

Esta transferencia es el tipo de transferencia interna, esto es que esta dada dentro de firmas multinacionales, donde la tecnología que agrupa es la utilizada en la planta matriz y la exporta a sus filiales, solo con el objeto de desarrollo y expansión.

4) Tendencia.

De acuerdo a su tendencia, esta se muestra muy limitada; se divide en dos grandes grupos.

- a) Transferencia orientada a la creación de nuevos productos.
- b) Transferencia orientada a mejorar la calidad de productos ya existente.

2.2.2. Pasos en una Transferencia de Tecnología.

Cuando surge la necesidad de Investigar y desarrollar un nuevo medicamento, esta tiene que cumplir con su registro ante Secretaria de Salud, permitiéndose así su comercialización del producto.

Para realizarse un registro, la documentación presentada debe contener los siguientes puntos. (8)

- 1) Indicación terapéutica.
- 2) Condiciones de uso.
- 3) Información para prescribir.
- 4) Estudios preclínicos.
- 5) Estudios clínicos.
- 6) Fórmula.
- 7) Materias primas.
- 8) Desarrollo farmacéutico.
- 9) Información de fabricación y proceso.
- 10) Control de materiales de envase.
- 11) Control del producto terminado.

Estos puntos son generales, cada uno tiene su desarrollo como lo indica la Secretaria de Salud a través de la FEUM.8ª ed. 2004.

Cuando se trata de un medicamento Genérico Intercambiable (GI), los puntos anteriores se aplican, eliminándose los puntos 4) y 5), ya que estos puntos experimentales deben estar documentados en el registro de la patente.

Para un GI se pide como punto el Requisito de Intercambiabilidad realizada de acuerdo a la NOM-177-1998. Además una comparación del producto GI con el de referencia, esto indicado para los puntos del 1) al 3).

Para cuando surge la necesidad de una modificación en el producto, estas se clasifican en tres niveles. (4,8)

- Nivel 1 (modificación menor).
- Nivel 2 (modificación mediana).
- Nivel 3 (modificación mayor).

De acuerdo a la Secretaría de Salud las modificaciones que se realizan pueden ser:

- Modificación del sitio de fabricación.
- Modificación en el tamaño de lote.
- Modificación en la fabricación.
- Modificación en los componentes o en la composición de la fórmula, sin cambios en la forma farmacéutica, ni en el fármaco.
- Modificación en el fármaco.
- Modificación en la indicación terapéutica.
- Modificación en el sistema contenedor-cierre.
- Modificación en el etiquetado o en la información para prescribir.
- Modificación en el plazo de caducidad.
- Modificación en múltiples relacionados.

Para cada caso se aplican los tres niveles, de acuerdo al nivel es la documentación que se requiere para implementar la modificación. La documentación y requisitos se muestran en el ANEXO 1.

La transferencia de tecnología es normalmente realizada por parte de un laboratorio en desarrollo o planta piloto que se dedique al desarrollo de procesos con funcionalidad en la industria farmacéutica. ^(4,5) En la actualidad, la documentación y los puntos de una transferencia de tecnología, son generados como una validación prospectiva obteniendo varias etapas que son importantes en el desarrollo del producto.

Las etapas de una transferencia de tecnología se muestran en la Fig. 1.

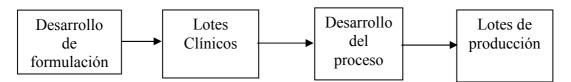


Fig. 1. Etapas de una transferencia de tecnología.

Para el desarrollo de las nuevas formas farmacéuticas se transfiere el proceso a instalaciones de fabricación comercial, sin dejar de ser monitoreado por el área de investigación y desarrollo; la transferencia es posible que se realice a instalaciones externas a la empresa, ya sea por necesidad de técnicas no posibles en la planta donde se desarrolla o por negocios.

Para fines de este trabajo la transferencia se considerará desde la tercera etapa de acuerdo a la Fig. 1; pues es el punto donde se monitorea la transferencia; enfocándonos en transferencia de una tecnología del tipo formulación, procedente de un cambio con la tendencia a la mejora continúa del producto ya existente. Terminando su monitoreo en la última etapa, donde se dictamina la implementación de la nueva tecnología.

2.3. Validación.

La validación es un herramienta muy necesaria que apoya todo lo propuesto por las Buenas Prácticas de Fabricación (BPF's). Estas se aplican a: procesos, actividades de almacén, materias primas, instalaciones, equipo, personal, sistemas críticos y documentación; donde la validación se encarga de verificar cada punto.

Así pues, la validación es definida como la evidencia documentada de que un proceso o sistema se comporta de manera uniforme y reproducible; que provee de manera consistente producto con la calidad preestablecida; y que cuenta con controles de pruebas y procesos estadísticos. (4,5,9,10,11,12)

Este trabajo se enfocara a la validación que aplica a procesos de fabricación, y desde luego no dejar de mencionar los otros puntos y tipos de validaciones que existen y apoyan a la Validación de Procesos. Estos puntos son: métodos analíticos, sistemas críticos, calificación de equipos, áreas y personal.

En el punto 2.2.2. se muestran las etapas de la Transferencia de Tecnología; en la etapa final (Lotes de Producción), ya donde se ha implementado la nueva tecnología es la etapa cuando se debe de realizar la validación a tres lotes productivos, esto en concordancia con las BPF's.

2.3.1. Métodos Analíticos.

Todo método analítico utilizado en la validación; debe contar con la evidencia de que la técnica utilizada es la adecuada para la determinación del producto. Además de que arroja datos confiables para un dictamen final.

La validación de métodos analíticos se basa a las guías ICH (International Conference on Harmonisation); ⁽¹¹⁾ en las cuales se indican los puntos que deben de realizarse y demostrarse durante la validación.

Estos puntos son:

Separation Especificidad.

- Linealidad.
- * Rangos (limites)
- ***** Exactitud.
- Precisión (Repetibilidad y reproducibilidad).
- Límite de detección.
- Límite de Cuantificación.
- * Robustez.

2.3.2. Calificación.

Calificación es definida como evidencia documentada que proporciona un alto grado de certeza de que un equipo, área o sistema producirá consistentemente un resultado dentro de especificaciones previamente establecidas. (21)

2.3.2.1. Equipos y Áreas.

Es importante tomar en cuenta que las instalaciones y equipos deben ser calificados conforme a los requerimientos de las BPF's.

De esta forma el programa de validación tiene que involucrar la calificación de diseño (DQ), seguido de la calificación de instalación (IQ), calificación de operación (OQ) y calificación de desempeño (PQ) (4,5,10,11,12)

1. Calificación de Diseño (DQ).

Documentación que involucra todos aquellos aspectos importantes del diseño del equipo, instalación o sistema. De acuerdo con las Guías CIPAM, la calificación de diseño es: Una verificación documentada que demuestra que el diseño de instalaciones, sistemas y equipos es apropiado para el propósito establecido basado en el cumplimiento de las especificaciones de requerimientos de usuario. (21)

2. Calificación de Instalación (IQ).

Esta consiste en procedimientos y documentación que muestra todos aquellos aspectos importantes de la instalación, sistema de soporte o piezas modulares del equipo, las cuales tienen que ser adecuadamente calibradas, considerando las especificaciones por las cuales están diseñadas y las recomendaciones del fabricante. Así pues; IQ es "una verificación documentada de que las instalaciones, sistemas y equipos cumplen con las especificaciones de diseño y que están instalados en forma adecuada para su uso". (21)

3. Calificación de Operación (OQ).

Una verificación documentada de que las instalaciones, sistemas y equipos funcionan en forma adecuada de acuerdo a los parámetros de operación con base en el diseño. Debe indicar procedimientos y documentación que muestran como operar completamente el equipo, instalaciones y los sistemas críticos, verificándose todo el rango de operación especificado por el fabricante.

4. Calificación de Desempeño (PQ).

Una verificación documentada de que las instalaciones, sistemas y equipos, se desempeñan en forma adecuada de acuerdo a los parámetros específicos del proceso en el que serán utilizados. (21)

Se muestra a través del curso de la validación para demostrar, que tan bien se lleva acabo la operación de los equipos, instalaciones, sistemas críticos, esto de acuerdo a un protocolo definido y procesos que se llevan acabo con reproducibilidad, y obteniendo un producto aceptable.

2.3.2.2. Sistemas críticos.

Los sistemas críticos son los sistemas de soporte que la planta requiere para su operación diaria, estás apoyan en gran parte a los procesos. Los sistemas críticos son: sistema de agua, aire ambiental (HVAC), aire comprimido, entre otros. (12)

Para la calificación de los sistemas críticos se consideran también las cuatro etapas:

- Calificación de Diseño.
- Calificación de Instalación.
- * Calificación de Operación.
- Calificación de Desempeño

2.3.2.3. Personal.

El elemento más importante para una organización es el recurso humano; el cual comprende a los empleados de todos los niveles dentro de la compañía. (4,13)

De acuerdo con el Proyecto NOM-059-SSA-1-2004. "Buenas Practicas de Fabricación para establecimientos de la industria químico farmacéutico dedicadas a la fabricación de

medicamentos"; Personal se define como: el conjunto de elementos que integran la infraestructura humana, para la fabricación, manufactura, almacenamiento, distribución y control de medicamentos de uso humano.

El personal es uno de los factores más importantes dentro de los procesos de producción; por ello la empresa debe seleccionarlo, capacitarlo, evaluarlo y motivarlo para su óptimo rendimiento. (4,13)

El capacitar es fortalecer los recursos humanos internos de la industria, y esto facilita el entendimiento; es sin duda esta actividad, un elemento estratégico de crecimiento y desarrollo empresarial. Así pues, la capacitación es la acción por medio de la cual se hace a alguien apto para desempeñar una tarea.

Después de la capacitación viene una actividad importante llamada adiestramiento; que se define como el dominio de una tarea a base de la práctica. Y su posterior aplicación en el trabajo. (13)

Así pues, el personal es el punto considerado más importante para el desarrollo de la Transferencia de Tecnología y Validación del Proceso; pues no solo se requiere personal para la parte operativa, como se menciono anteriormente en la parte de calificación, sino personal que coordine todas las actividades.

Y pues, cuando se requiere hacer una Transferencia de Tecnología se debe de formar un comité encargado de informar todas las actividades involucradas en la transferencia, así como las contribuciones deseadas y las responsabilidades a tomar en planta productiva.

Y para esta actividad es recomendable asignar a un representante con la experiencia para que coordine las actividades a futuro, teniendo contacto una a una con las actividades, ya que esta es la única oportunidad para el intercambio de ideas técnicas y observaciones. La oficina corporativa comúnmente involucra personal procedente de planeación, de producción, de ingeniería y sección de coordinación de nuevos productos, al igual que de marketing; desde luego en concordancia con las áreas de Investigación y Desarrollo, Control de Calidad y Aseguramiento de la Calidad. (4,5)

Todas las compañías cuentan con un comité de validación el cual trabaja bajo un programa de validación (Plan Maestro de Validación) y generalmente es dirigido por el personal de Aseguramiento de Calidad. (4,5)

Como en toda actividad con respecto al personal también debe de existir un programa documentado para la capacitación y el entrenamiento en las funciones que le sean asignadas. El programa debe de incluir al menos los siguientes puntos:

- Introducción al puesto.
- Buenas Prácticas de Fabricación.
- Procedimientos Normalizados de Operación.

En lo que respecta a los Procedimientos Normalizados de Operación (PNO), se debe de contar con PNO que abarquen la capacitación; la frecuencia de exámenes médicos periódicamente y; el indicativo y restricciones para ingresar a las áreas de fabricación. (21)

2.3.3. Procesos.

2.3.3.1. Tipos de validación.

Los tipos de validación de procesos son:

1. Validación prospectiva:

El estudio que se lleva acabo para demostrar y establecer una evidencia documentada de que un proceso hace lo que esta previsto basado en resultados obtenidos antes de que el producto involucrado en ese proceso salga al mercado. (21)

Es la prioridad para realizarse al proceso de un nuevo producto o a un producto existente, hecho bajo un proceso de fabricación corregido; que tales correcciones puedan afectar las especificaciones del producto o sus características de calidad. Esta validación plantea las características de los pasos críticos en las operaciones unitarias durante la validación del proceso, cuando es modificado. Las variables criticas a determinar en el proceso, se hacen por lo general con el análisis del "peor caso" o usando un diseño factorial. En la validación formal, que es el de validar tres lotes productivos, se deben de señalar todas la variable criticas del proceso, las cuales deben estar dados dentro de los rangos operacionales; y no debe de exceder los límites de control, superior e inferior; tomando en cuenta las especificaciones del producto terminado. (4,5,10,11,12)

2. Validación retrospectiva:

El estudio que se lleva acabo para demostrar y establecer una evidencia documentada de que un proceso hace lo que esta previsto basado en resultados obtenidos con la información histórica del producto involucrado con el proceso en cuestión. (21)

Esta involucra datos de control y pruebas acumuladas dentro del proceso y obtención de producto terminado, esto debe de demostrar que el proceso de fabricación esta

controlado. Los resultados arrojados en la validación deben de ser concordantes con las especificaciones finales del producto farmacéutico; estos resultados deben de ser tratados estadísticamente para poder dar un dictamen. Esta opción es elegida para procesos de fabricación de productos establecidos, que bajo consideraciones económicas y de recursos limitados se consideran estables. (4,5,10,11,12)

3. Validación concurrente.

Es el estudio que se lleva acabo para demostrar y establecer una evidencia documentada de que un proceso hace lo que esta previsto basado en resultados obtenidos paralelamente durante la distribución del producto que involucra al proceso en cuestión. (21)

Los estudios de esta validación son basados sobre un protocolo, para el curso normal del proceso. La evaluación de los resultados es usada para el establecer criterios y especificaciones de aceptación, para una secuencia de control en procesos y pruebas para producto terminado. Para las validaciones concurrentes se utilizan técnicas estadísticas para el control del proceso. (4,5,10,11,12)

4. Revalidación.

Esta es la validación requerida en caso de algún cambio en el proceso; si se introducen con o sin intención efectos adversos para las especificaciones y características de calidad del producto. Este debe ser basado en un programa denominado "Control de Cambios"; que su finalidad es obtener un producto con calidad. Este tiene que ser un cambio significante, ya sea en formulación, equipo, proceso y acondicionado que pueda tener un impacto en el desempeño de la fabricación. (4,5,10,11,12)

Actualmente siguiendo con las tendencias de primer mundo se ha generado un nuevo tipo de validación el cual es:

La *validación esbelta*, que se define como:

El estudio que se lleva acabo para demostrar y establecer una evidencia documentada de que un proceso hace lo que esta previsto, basado en resultados que son considerados durante su estudio la identificación de atributos críticos de calidad.

Este nuevo concepto considera los grandes errores que se han cometido al realizar la validación, en su parte más débil la documentación.

Esto se consigue eliminando documentos que hacían referencia a pruebas sin un objetivo concreto o con base a pruebas "no críticas" o de carácter informativo, lo cual en ocasiones causara que la validación se hiciera tediosa y larga.

Este concepto surge de la industria con el objetivo de cumplir sin tener que salirse de los límites. Haciendo que las empresas vuelvan los ojos al origen del producto y a la identificación de aquellos factores que realmente afectan la calidad del mismo, denominándolos "atributos críticos de calidad".

Estos atributos críticos de la calidad sirven de base para el desarrollo de la validación, puesto que esta última se tiene que centrar en el control de dichos atributos para garantizar el cumplimiento de las especificaciones.

Con esto es posible conjugar la validación prospectiva y/o concurrente con la validación esbelta.

2.3.3.2. Procesos de Sólidos Orales.

En la Validación de Procesos es importante tener en cuenta los puntos críticos de un proceso a validar, y de acuerdo con el tipo de proceso es el número de etapas y desde luego los puntos críticos a considerar.

Para la obtención de Tabletas (Sólidos Orales) se utilizan dos vías: la vía húmeda y la vía seca. (14,15,16)

VÍA HUMEDA.

Es el proceso más usado por la industria farmacéutica, este método involucra muchas etapas y componentes en su formulación. Es el método convencional para transformar polvos en gránulos dando propiedades adecuadas al polvo, como son flujo y cohesividad con el fin de comprimirlo. El diagrama de flujo se muestra en el ANEXO 2. "Diagrama de flujo de obtención de tabletas por Vía Húmeda".

VÍA SECA.

La vía seca es clasificada a su vez en dos tipos de procesos: Granulación seca y Compresión directa.

Procesos que son aplicado a fármacos sensibles a la humedad y temperatura, cuando el polvo a comprimir cuenta con las propiedades adecuadas de flujo y cohesividad la vía de fabricación es Compresión Directa; cuando el polvo no tiene las propiedades adecuadas, es necesario la adición de excipientes que se las proporcione; a esto se le conoce como Granulación en seco. (16) Utilizando menos componentes en su

formulación. El diagrama de flujo se muestra en el ANEXO 3. "Diagrama de flujo de obtención de tabletas por Vía Seca".

La Pravastatina sódica actualmente es obtenida mediante un proceso por compresión directa. A dicho proceso se aplicara la validación para considerar sus etapas críticas (4,14,15,16).

- Tamizado: homogeneizar una materia granulosa en el tamaño del grano de acuerdo a la superficie perforada por la cual se pasa (Tamiz)
- Mezclado: Es repartir uniformemente dos o más sustancias entre sí por medio de procesos físicos. Las sustancias sólidas debe constituir una mezcla homogénea que tenga en todos su puntos la misma composición. La homogeneidad asegura la exactitud de dosificación.
- Comprimir: Es dar forma a masas en granos o polvo, uniéndolas con acción de una presión ejercida. Operación que debe ser reproducible.

2.4. Sólidos Orales.

Los sólidos orales son formas farmacéuticas de dosificación unitaria, preparadas mediante moldeo o compresión. A lo que llamamos tabletas.

La composición general consiste en: principio activo y excipientes.

El principio activo pueden ser uno o más fármacos; los excipientes son: diluyente, aglutinante, desintegrante, lubricante, colorante, saborizante, antiadherente. (4,14,15,16,17)

Este tipo de forma farmacéutica tiene grandes ventajas en su fabricación:

- * Fabricación sencilla.
- ❖ Tienen estabilidad y fácil manejo.
- * Costos de fabricación relativamente bajos.
- ❖ Abundancia en el mercado siendo la forma farmacéutica más empleada.

Como producto terminado las tabletas tienen también una gran ventaja para su administración a pacientes. (18)

Las ventajas con los pacientes:

- ***** Exactitud de dosis.
- * Facil administración.
- * Fácil transporte.

Entre las desventajas en general se encuentran:

- ❖ No se pueden administrar a pacientes inconcientes, lactantes y aquellos que sufren trastornos gástricos.
- Con los fármacos higroscópicos se tienen algunas dificultades para ser preparados.
- ❖ Los fármacos líquidos tienen dificultad para ser presentados en tabletas.
- Fármacos que tienen una dosis alta o muy pequeña se dificulta su uniformidad.

2.4.1. Pravastatina Sódica.

Para fines de este trabajo se fabrico Pravastatina sódica Tabletas de 10mg; esta presentación está indicada para: (18,19)

- * Prevención de enfermedad coronaria En pacientes hipercolesterolémicos sin enfermedad coronaria clínicamente evidente.
- Enfermedad coronaria: En pacientes con historia de infarto del miocardio o angina inestable.
- Progresión de enfermedad aterosclerosa y eventos cardiovasculares.
- ❖ Trasplante renal y cardiaco: En pacientes que reciben terapia inmunosupresora después de un trasplante; reducir el riesgo de rechazo agudo en pacientes con trasplante renal.

2.4.1.1. Propiedades Químicas.

La Pravastatina sódica es una estatina, aislado del compuesto original mevastatina (que es obtenido a partir de cultivos de especies de *Penicillium*), es uno de los compuestos de la nueva clase de hipolipemiantes, inhibidores de la 3-hidroxi-3-metilglutaril coenzima A (HMG-CoA) reductasa, enzima que cataliza la conversión de HMG-CoA a mevalonato, limitando en un paso inicial la biosíntesis de colesterol.

Fórmula: C23-H35-NaO7

Na⁺ OOC OH HO HO CH₃

Fig. 2. Pravastatina Sódica

(+)-(3R,5R)-3,5-dihidroxi-7-[(1S,2S,6S,8S,8aR)-6-hidroxi-2-metil-8-[(S)-2-oximetilbutiril]-1,2,6,7,8,8a-hexahidro-1-naftil] heptanoato de sódio.

Polvo fino o cristalino, blanco, inodoro, soluble en metanol y agua, ligeramente soluble en isopropanol. Practicamente insoluble en acetona, acetonitrilo, cloroformo y éter. (20)

2.4.1.2. Farmacocinética y Farmacodinamia.

La Pravastatina Sódica ejerce su efecto hipolipemiante mediante dos mecanismos: Primero, como consecuencia de la inhibición reversible de la actividad de la HMG-CoA reductasa, generando reducciones moderadas de los depósitos de colesterol intracelular.

Segundo, la Pravastatina sódica inhibe la producción de lipoproteínas de baja densidad (LDL) al inhibir la síntesis hepática de lipoproteínas de muy baja densidad (VLDL) precursoras de las LDL.

Estudios clínicos y patológicos han demostrado que los niveles elevados de colesterol total (C-total), colesterol de lipoproteínas de baja densidad (C-LDL) y apolipoproteína B (un complejo transportador de membrana para LDL) favorecen la aterosclerosis en humanos.

Farmacocinética /metabolismo: La Pravastatina sódica se administra por vía oral en su forma activa. La Pravastatina sódica se absorbe rápidamente, obteniéndose niveles plasmáticos de 1 a 1.5 horas después de su ingestión. En base a la recuperación urinaria del fármaco, la absorción oral promedio de Pravastatina sódica es de 34% y su biodisponibilidad absoluta de 17%. Aun cuando la presencia de alimentos en el tracto gastrointestinal reduce su biodisponibilidad, el efecto hipolipemiante del medicamento es similar cuando se toma con o sin alimentos. La vida media de eliminación del plasma de Pravastatina sódica (t½) está entre 1.5 y 2 horas. Aproximadamente 20% de una dosis oral se excreta en orina y 70% en heces. Después de una dosis intravenosa de Pravastatina sódica administrada a voluntarios sanos, aproximadamente el 47% de la depuración total del organismo fue excreción vía renal y el 53% por vías no renales (por ejemplo, excreción biliar y biotransformación). Ya que tiene una vía de eliminación doble, existe el potencial para una excreción compensadora por la vía alterna así como una acumulación del fármaco y/o sus metabolitos en pacientes con insuficiencia renal o hepática. (18,19)

2.5. Documentación.

Como se ha hecho mención en los puntos anteriores; la documentación es la parte más importante tanto en la Transferencia de Tecnología como en la Validación del Proceso;

pues esta es el respaldo de toda la información, conocimiento, técnicas y pasos que se deben de seguir.

Todas las actividades de proceso dentro de una planta deben documentarse; comprobar que fue realizado, e indicar por quien, cuándo y donde se realizó.

Para esto se emiten los Procedimientos Normalizados de Operación (PNO's); que son de gran ayuda y base para la generación de la documentación requerida durante la Transferencia de Tecnología y Validación del Proceso. Estos documentos definen quién, cómo, cuándo y por qué de cada de una de las actividades. Estos deben de describir las responsabilidades e interrelaciones del personal que administra, ejecuta, verifica o revisa el trabajo, con el grado de detalle requerido para el control adecuado de las actividades implicadas. Así mismo debe de explicar como se ejecutan las diferentes actividades, la documentación que se requiere y los controles que serán aplicados. (21)

El realizar una mala documentación lleva (22):

- Retrasos en el lanzamiento de un producto.
- Incapacidad para comprobar actividades.
- Incumplimiento de las buenas prácticas de fabricación.
- No se tendrá la historia verídica que muestre la evolución y mejora del proceso.

2.5.1. Transferencia de Tecnología.

Cualquier programa de Transferencia de Tecnología se reduce a escribir un Check List, formato que es de gran ayuda y recomendado para una buena realización y registro de las actividades propuestas, quedando documentado el paso de cada actividad. El documento al ser emitido debe de ir acompañado del objetivo del programa.

Para este Check List se debe considerar los siguientes puntos a realizar ^(4,5):

- Formula
- Materias primas.
- Equipo de fabricación.
- Precauciones de fabricación.
- Procedimientos de fabricación.
- Acondicionado.
- Proceso de validación.
- Especificaciones de materias primas, acondicionado, producto terminado.
- Métodos analíticos validados.
- Consideraciones regulatorias.
- Reinscripción de procedimientos.

Transportación.

De acuerdo a la bibliografía el formato del Check List para el programa de Transferencia de Tecnología para fines de este trabajo, específico para un proceso por compresión directa se muestra en el ANEXO 4. "Check List de Transferencia de Tecnología para un proceso por Compresión Directa".

Dentro de todo esto los documentos que son importantes para llevar acabo la Transferencia de Tecnología es el protocolo y reporte.

2.5.1.1. Protocolo.

Un protocolo es establecer el plan de trabajo, además de proporcionar la información adecuada que se necesita para realizar les actividades propuestas por este.

Este documento debe ser emitido con base a toda la información proporcionada por la investigación y desarrollo realizado al producto.

El protocolo debe ser emitido y aprobado antes de la realización de la transferencia. Y se describe ampliamente mas adelante (ver el punto 2.5.2.1).

2.5.1.2. Reporte.

Al final de todo monitoreo de una actividad hay que realizar un análisis de los resultados obtenidos y dar su respectiva conclusión.

El reporte es el documento emitido al término de las actividades; en él, se da el resumen de cada actividad así como el resultado obtenido. En este documento se proporciona el dictamen final del programa propuesto por la Transferencia de Tecnología.

2.5.2. Validación.

Validación es la evidencia documentada de que un proceso o sistema fue diseñado para la obtención de un producto con una calidad preestablecida; el cual se comporta de manera uniforme y reproducible, que provee de manera consistente un producto con la calidad especificada. Con esta definición se requiere que toda la documentación emitida debe demostrar que el proceso propuesto es consistente. (4,5,9,10,11,12,22)

Los siguientes puntos conforman el formato recomendado por las "Guidelines on Validación of Manufacturing Processes", emitidas por la Organización Mundial de la Salud (WHO) para realizar un protocolo y completar el reporte de validación. ⁽⁴⁾

- Propósitos y pre-requisitos para toda la validación.
- Presentación de un diagrama de flujo que muestre el análisis de los pasos críticos de todo el proceso y subprocesos.
- Protocolo de validación previamente aceptado.
- Incluir el proyecto o dibujos de las instalaciones y calificaciones operacionales.
- Reporte de calificación; los cuales deben de contener los siguientes puntos:
 - -Objetivo.
 - -Procedimientos y métodos.
 - -Procedimientos de muestreos y pruebas con criterio de liberación.
 - -Reporte de funcionalidad.
 - -Pruebas de calibración de equipos.
 - -Datos de pruebas.
 - -Análisis de resultados.
 - -Procedimiento de revalidación.
 - -Subproceso propuesto en la revalidación.
- Calificación del producto, resultados de pruebas provenientes de lotes prevalidados.
- Validación de productos; resultados provenientes de tres lotes formales validados.
- Evaluación y recomendaciones.
- Certificación.
- Resumen de resultados con conclusiones.

Además el protocolo y reporte debe de incluirse el reporte de estabilidad del producto; así como la documentación de validación de limpieza y métodos analíticos.

Así pues, la documentación en el proceso de validación es la evidencia documentada que muestra, a través de un proceso específico, se obtiene un producto que cumple de manera consistente con lo establecido.

Se debe de contar con un plan maestro de validación donde se establezcan las políticas de validación, de revalidación y el mantenimiento del estado validado.

El Plan Maestro de Validación (PMV) es un documento que específica la información de la validación de las compañías, donde se definen detalles y escalas de tiempo para cada trabajo de validación a realizar. Las responsabilidades relacionadas con dicho plan deben ser establecidas. En forma general se define como: Documento que establece la filosofía y estrategia a utilizar por cada empresa para realizar todas las actividades involucradas con la validación. (21,22) (Ver ANEXO 5 "Plan Maestro de Validación")

2.5.2.1. **Protocolo.**

El protocolo es nuestro plan de trabajo y donde se establecen las partes críticas del proceso a seguir que pueden ser monitoreadas. En el también se propone el plan a seguir durante la Transferencia de Tecnología y la Validación del Proceso. Proporciona la información necesaria para el monitoreo y análisis de cada paso; los criterios de aceptación, así como los parámetros a evaluar (ver ANEXO 6).

El protocolo debe ser emitido, revisado y aprobado antes del inicio de la validación. (22) Con respecto a este trabajo el protocolo a realizar para la Validación del Proceso y la Transferencia de Tecnología; contiene los siguientes puntos; estos puntos son recomendables pero no limitativos:

1) OBJETIVO

Indica el objetivo general del documento. Establece la finalidad a cumplir con el protocolo; el objetivo debe ser específico.

2) ALCANCE

Define cual proceso está cubierto por el protocolo.

3) RESPONSABILIDADES

Asigna las áreas o departamentos que deben llevar a cabo las actividades principales o de soporte para el logro del objetivo del protocolo.

4) GENERALIDADES

Describe en forma breve el proceso contemplando su diagrama de flujo de fabricación Así mismo se incluyen las condiciones de seguridad a emplear en el desarrollo de las actividades y/o monitoreos del proceso cuando sean necesarios.

5) ANALISIS DE RIESGO

Identifica los parámetros, actividades del proceso que tienen algún impacto en la obtención de la calidad del producto. Enfatiza los principales riesgos que pudieran surgir en el momento de realizar el estudio.

6) MATERIALES, INSTRUMENTACIÓN Y EQUIPO

Se enlista los materiales, instrumentos y/o equipos, insumos requeridos para llevar a cabo las actividades.

7) DESARROLLO DE ACTIVIDADES

A) TRANSFERENCIA DE TECNOLOGÍA

Se establecen los pasos para dar seguimiento a la transferencia; indicando cada operación unitaria a realizar, equipo a utilizar y procedimiento a realizar.

B) VALIDACIÓN DEL PROCESO

Se establecen las pruebas mediante las cuales se demostrará que el proceso es reproducible y que realiza la función para la cual fue diseñado. Se registran cada operación unitaria que interviene en el proceso de fabricación.

8) CRITERIOS DE ACEPTACIÓN

En cada prueba a realizar se debe establecer el criterio de aceptación correspondiente teniendo en cuenta las especificaciones del fabricante, internas o establecidas en las regulaciones vigentes.

9) DOCUMENTOS FALTANTES

Cuando se éste llevando a cabo alguna actividad y algún documento no exista, anotarlo en un formato asignado.

10) DESVIACIONES Y ACCIONES CORRECTIVAS

Si se presentaran desviaciones a los criterios de aceptación en alguna de las etapas del estudio, los responsables de la aprobación del protocolo, deben evaluar si procede continuar con las actividades analizando el impacto de la desviación respecto a la validación.

11) CONTROL DE CAMBIOS

Se aplica en caso de que el equipo, sistema crítico o proceso sufra de alguna modificación y se procede de acuerdo a un procedimiento de control de cambios.

12) CRITERIOS DE REVALIDACIÓN

La revalidación se hará bajo un programa o cuando aplique un control de cambio que así lo determine.

13) REFERENCIAS BIBLIOGRAFICAS

Menciona toda la información bibliográfica consultada para elaborar el protocolo:

Anotar la cita bibliografía de acuerdo a la descripción u orden siguiente:

- LIBROS: Autor(es), Título, Editorial, País, Pagina(s), Edición,
- REVISTAS: Autor(es), Título del artículo, Nombre de la revista, Vol., Edición,
- NORMAS, CIPAM, etc.: Autor(es), Título de la Norma, País de origen y sus correspondientes claves.
- PROCEDIMIENTOS: Título del procedimiento, Código del procedimiento.

14) DISTRIBUCIÓN

Se realiza un listado del personal al cual que se le va ha distribuir el protocolo.

15) ANEXOS

Se realiza un listado de todos los formatos y/o anexos que se incluyen en el protocolo como apoyo para la ejecución del mismo.

16) GLOSARIO

Se realiza un listado de las palabras que se desconoce su significado.

2.5.2.2. Reporte.

El reporte hará referencia cruzada al protocolo y reunirá los resultados obtenidos, así como las recomendaciones y/o comentarios según los resultados obtenidos.

Los reportes de validación deben ser aprobados por el responsable sanitario y el de la unidad de aseguramiento de calidad del establecimiento. (21,22)

Con relación al reporte emitido en la Validación del Proceso, este sigue un formato el cual debe contener los siguientes puntos:

* Resumen.

Se efectúa un resumen de la Validación, describir con base en los resultados obtenidos, si el proceso cumple con los requerimientos establecidos en el protocolo. Finalizando con dictamen de la Validación.

❖ Documentación de referencia.

En este punto se hace referencia al protocolo y a la información bibliográfica consultada

Con respecto a la bibliografía anotar la cita bibliografía de acuerdo a la descripción u orden siguiente:

- LIBROS: Autor(es), Título, Editorial, País, Pagina(s), Edición,
- REVISTAS: Autor(es), Título del artículo, Nombre de la revista, Vol., Edición,
- NORMAS, CIPAM, etc.: Autor(es), Título de la Norma, País de origen, Clave de la Norma,
- PROCEDIMIENTOS: Título del procedimiento, Código del procedimiento.

Desarrollo de actividades y resultados.

Es indicar las actividades realizadas y documentar los resultados obtenidos de acuerdo a lo indicado en el protocolo.

* Anexos.

Realizar un listado de todos los formatos y/o anexos que se incluyen en el protocolo como apoyo para la ejecución del mismo.

Después del resumen de Validación incluir todos los formatos llenos que se generaron durante la ejecución.

* Abreviaturas.

Si es necesario en este punto se hace descripción de las abreviaturas mencionadas dentro del reporte.

* Acciones correctivas.

Punto aplicado cuando durante la Validación esta presenta desviaciones durante el proceso.

El reporte emite la conclusión y el dictamen de la validación. El reporte junto con toda la documentación que se genera se concentra en una carpeta codificada adecuadamente.

2.6. Criterios de Aceptación.

Las variables y los controles son definidos por medio de cambios y modificaciones al proceso dados durante su desarrollo. Así pues, la mayor parte de la información se obtiene durante la preformulación, así como en el desarrollo del proceso y durante su escalamiento. En estos pasos también se determinan las etapas críticas del proceso.

______28

Donde se deben de retar las etapas del proceso que pueden variar y afectar la calidad del producto. En el proceso de Transferencia de Tecnología y validación prospectiva de un producto nuevo; un punto muy importante para la determinación de los criterios de aceptación es que hay que asumir siempre el "peor de los casos"; así como las condiciones que se encontraran durante la producción real. El retar el proceso establece la adecuabilidad del proceso.

Para la determinación de los criterios de aceptación hay que considerar los siguientes pasos:

- a) La obtención de datos experimentales para la determinación del rango numérico de cada parámetro, de las pruebas físicas a determinar al producto terminado; asegurándose que estas pruebas son reproducibles lote a lote; o en una serie de lotes.
- **b)** Con los datos experimentales obtenidos establecer los límites de cada especificación, basados en el tratamiento estadístico de los datos, determinando los valores permitidos y las desviaciones, así como los rangos entre los cuales pueden ser aceptables.

Así pues, se determinan las condiciones permitidas de variación y de la posibilidad de cambios del proceso que no impacten en las especificaciones en el producto final.

Y como se ha mencionado anteriormente hay que calificar cada uno de los equipos que participan en el proceso y en el control de cada una de las operaciones con la finalidad de asegurar que las condiciones de operación sean reproducibles.

Cuando se han determinado las variables y los controles, es conveniente llevar acabo las pruebas necesarias que aseguren que el producto fabricado bajo esas condiciones se genera un producto aceptable y consistente.

En forma general se pueden mencionar las pruebas durante la transferencia de tecnología y validación del proceso de fabricación de formas farmacéuticas sólidas:

- a) Uniformidad de contenido en el mezclado y en la forma farmacéutica final; para el caso de este trabajo son uniformidad de dosis en las tabletas.
- **b)** Distribución de tamaño de partícula: Esta prueba es muy importante, ya que al no cumplir, sus consecuencias se relacionan con la compresibilidad, la dureza, variación de peso y uniformidad de contenido.
- **c)** Desintegración y disolución: prueba realizada para asegurar la disponibilidad de la liberación del fármaco *in vitro* y la uniformidad de lote a lote.
- **d)** Variación de peso: prueba relacionada con la funcionalidad del equipo; en este caso hay que verificar que entre en especificaciones.
- e) Dureza: Tiene relación con la friabilidad y laminación de las tabletas.
- **f)** Friabilidad: Prueba relacionada con el manejo en el empaque y traslado de las mismas.

g) Contenido de humedad: Esta prueba tiene relación con el tiempo y temperatura de secado; también en las condiciones ambientales de fabricación que puedan percutir en el contenido de humedad final de la tableta.

2.6.1. Transferencia de Tecnología.

Los criterios de aceptación para la Transferencia de Tecnología de la Pravastatina sódica Tabletas 10 mg son:

OPERACIÓN UNITARIA	CONTROL DE VARIABLES	CRITERIO DE ACEPTACIÓN
Mezclado	Distribución del principio activo	No menos del 96% y no mas del 110% de lo indicado en la especificación.
	Peso	No más de 2 tabletas de 20 difieren del promedio por mas del 5 % y ninguna difiere por más del 6.0 %
	Dureza	3 Kg. a 6 Kg.
	Agua	No más de 5.4 %
	Espesor	2.8 mm ± 0.2 mm (2.6 – 3.0 mm)
Tableteado	Desintegración	Máximo 30 minutos
	Friabilidad	Máximo 1%
	Disolución	Q = 80 % en 20 minutos
	Valoración	Cada tableta contiene no menos de 96 % y no más de 110 % de acuerdo a la especificación (9.6 mg – 11.0 mg/ tableta)

Tabla 1. Criterios y variables en la Transferencia de Tecnología.

2.6.2. Validación de Procesos.

En la siguiente tabla se muestran los criterios y variables en la validación del proceso, para Pravastatina Sódica Tabletas 10 mg.

OPERACIÓN UNITARIA.	CONTROL DE VARIABLES	CRITERIOS DE ACEPTACIÓN
Verificación de materias primas	Peso de las materias primas	Bascula calificada y calibrada.
Tamizado	Tipo de malla Tamaño de malla Velocidad de alimentación	Distribución del tamaño de partícula o del granulado.
Mezclado	Tamaño de lote Velocidad de mezclado(rpm) Tiempo de mezclado	Uniformidad del mezclado. Densidad aparente. Densidad compactada.
Compresión	Velocidad de compresión Velocidad de alimentación del granulado Fuerza de compresión	Variación de peso. Friabilidad. Dureza. Tiempo de desintegración. Valoración.

Tabla 2. Criterios y variables en la Validación de proceso.

Para fines de este trabajo, la validación del proceso se hace a base de estas variables y criterios de aceptación, ya que la vía de fabricación de Pravastatina sódica Tabletas 10 mg es por compresión directa.

Las especificaciones que debe cumplir el Producto Terminado se muestra en la Tabla No. 3.

PRUEBA	UNIDADES	ESPECIFICACIONES
Descripción		Tableta redonda, plana, de color blanco o blanco crema, de forma y color homogéneos, libre de fracturas e imperfecciones.
Identificación		Cumple especificaciones
Valoración	% / mg	Cada tableta contiene no menos de 96 % y no más de 110 % de lo indicado en la especificación. (9.6 mg – 11.0 mg/ tableta)
Peso promedio	mg	Tabletas de 100 mg: $100 \text{mg} \pm 5\% (95 - 105 \text{ mg})$
Variación de peso	mg	No más de 2 tabletas de 20 difieren del promedio por mas del 5 % y ninguna difiere por más del 6.0 %
Dureza	kg	3 Kg. a 6 Kg.
Espesor	mm	$2.8 \text{ mm} \pm 0.2 \text{ mm} (2.6 - 3.0 \text{ mm})$
Desintegración	Min.	Máximo 30 min
Friabilidad	%	Máximo 1%
Uniformidad de dosis	%	85 – 115 %
Agua	%	No mayor de 5.4%
Disolución	%	Q = 80% en 20 minutos

Tabla No. 3 Especificaciones para el Producto Terminado Pravastatina sódica Tabletas de 10 mg.

3. MATERIALES Y MÉTODOS.

3.1. Instrumentación.

❖ Sistema HPLC HPLC Alliance con Modulo de separación WATERS 2695 Detector de arreglos de diodos WATERS 2696 **WATERS**

* Balanza Analítica. Mettler Toledo XS204 Peso máximo 220g, d = 0.1g

❖ Durometro VK 2000 Tabletas VanKel

❖ Desintegrador VK 100 VanKel

Friabilizador Varian VanKel

❖ Baño Ultrasonico (Sonicador) Cole-Parmer 8892

❖ MilliQ Millipure

* Termohigrómetro Minipa sin sonda.

3.2. Materiales.

- Columna: Hypersil LC-18 de 4.6 cm X 100 mm, con tamaño de partícula 5μm.
 Matraz volumétrico de 1000 mL

- Probeta de 500 mL
- Espátula
- Gotero
- Vaso de precipitado 100 mL
- Pipeta volumétrica de 1 mL
- Perilla de succión
- Matraz volumétrico de 500 mL
- Vaso de precipitados de 250 mL
- Manguera de hule
- Filtros Whatman
- Matraz volumétrico de 25 mL
- Filtro con membrana de 0.45 μm
- Viales de 12 X 32 mm
- Pinzas de disección
- Mortero
- Bayoneta de acero inoxidable
- Bolsas de plástico 15 X 10 cm

3.3. Reactivos.

* Ácido Acético glacial.

PM 60.05

Pureza 99.8%

Reactivo BAKER, J.T. BAKER

Código: 9507-02 Presentación: 1 litro.

❖ *Metanol grado HPLC*

Pureza 99.93% SIGMA-ALDRICH Código: 270474-4L Presentación: 4 litros

* Hidróxido de Sodio, perlas bajo en carbono

PM 40.00 Pureza 98.1%

Reactivo BAKER, J.T. BAKER

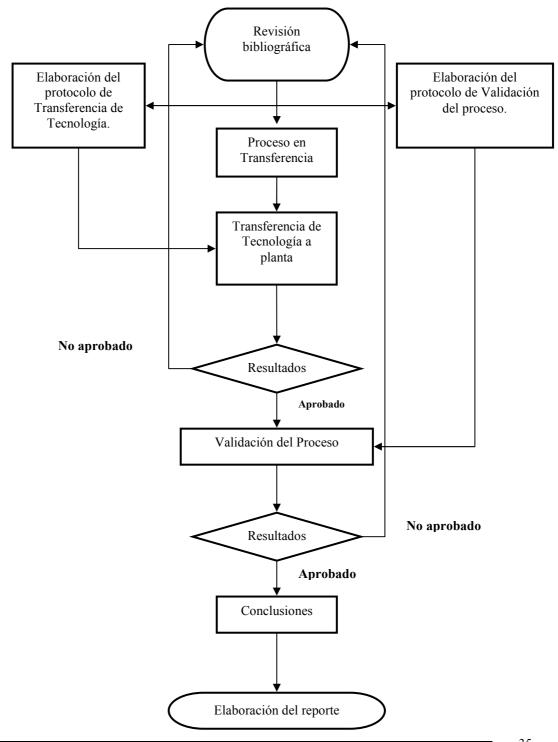
Código: 3722-01 Presentación: 500 mg

* Fosfato monobásico de potasio.

PM 136.09 Pureza 99.1% Reactivo BAKER, J.T. BAKER

Código: 3246-01 Presentación: 500 mg

❖ TrietilaminaPM 101.79Pureza 100%Reactivo BAKER, J.T. BAKER


Código: W035-07 Presentación: 500 mL

❖ Agua grado HPLC

METODOLOGÍA PARA LLEVAR ACABO LA TRANSFERENCIA DE TECNOLOGÍA Y LA VALIDACIÓN DE UN PROCESO.

4. DESARROLLO EXPERIMENTAL

4.1. Transferencia de Tecnología.

4.1.1. Elaboración de protocolo.

El protocolo de transferencia de tecnología se elaboro de acuerdo a los puntos propuestos mencionados en el punto 2.6.2.1.

Dentro del protocolo se describen las operaciones que conforman el proceso de fabricación de Pravastatina 10 mg. El proceso se muestra en diagrama de flujo; en el se indica la operación unitaria, así como el equipo y área a utilizar. Se indica a detalle la forma de realización, y además se establecen los criterios de aceptación.

El protocolo es mostrado en el ANEXO 6. "Protocolo de Transferencia de Tecnología y Validación del Proceso de fabricación de Pravastatina Sódica Tabletas 10 mg".

4.1.2. Plan de seguimiento.

La Transferencia de Tecnología como se ha mencionado anteriormente, se realizó por una reformulación y de acuerdo con FEUM, 8ª ed, su modificación es considerada de Nivel 1, pues no afecta la calidad especificada, ni propiedades físicas ni químicas de la tableta de Pravastatina Sódica.

De acuerdo con nuestro planteamiento con la modificación se pretende cumplir con la nueva especificación en humedad del producto a granel (Tabletas) indicado en la monografía. Esto no afecta al estudio de intercambiabilidad. Pero por haber tenido un cambio de excipientes es recomendable monitorear su disolución y desde luego el parámetro por el cual se genero el cambio de formulación.

Así pues, al implementarse la nueva tecnología en planta productiva, se monitorean tres lotes consecutivos. Para este caso se realiza de acuerdo al protocolo emitido; tomando como base al PNO "Transferencia de Tecnología y Escalamientos".

4.1.3. Metodología y análisis.

La metodología y análisis para los tres lotes consecutivos productivos se muestran en la Tabla 4

Operación Unitaria	Parámetro de prueba.	Frecuencia	Tamaño de muestra	Criterios de aceptación.
Tableteado	Humedad (Determinación de Agua)	Al termino del Tableteado	20 T. I.I.	Máximo 5.4 %
Tableteado	Disolución		30 Tabletas	Q = 80 % en 20 minutos

Tabla No. 4. Muestreo y análisis para el seguimiento de la Transferencia de Tecnología.

Las pruebas de humedad y disolución son realizadas de acuerdo a la Técnica Analítica PT-S004. "Técnica analítica de Pravastatina sódica Tabletas 10 mg."

4.2. Validación del Proceso.

4.2.1. Elaboración de protocolo.

Los puntos que conforman el protocolo se mencionan en el punto 2.6.2.1. Con lo que respecta en el punto 7) "Desarrollo de actividades"; se realiza una descripción de cada operación unitaria utilizadas en la fabricación de Pravastatina Sódica Tabletas de 10 mg.

Las operaciones unitarias son seis las cuales son: Verificación de Surtido y Pesado de materias primas; Premezclado del principio activo, Tamizado, Mezclado inicial, Mezclado final y Compresión; indicado en el protocolo como Tableteado, termino que usaremos en los resultados.

Para cada operación unitaria se describen cuatro puntos: Objetivo, Metodología, Muestreo y Criterios de aceptación.

- 1. Objetivo: Se da una descripción de la operación unitaria, y cual es su finalidad en esta etapa del proceso.
- 2. Metodología: Se da la descripción de cada actividad en la correspondiente etapa de operación; describiendo la forma y el tipo de muestreo a realizar; así como lo que se requiere para tal. Además se indica el manejo de los resultados obtenidos y de que forma se van a documentar.
- 3. Muestreo: En este punto se establece la variable a determinar en la operación unitaria, y por lo tanto el muestreo a realizar, indicando la frecuencia, la cantidad de muestra y en que parte del proceso se debe tomar la muestra.
- 4. Criterios de aceptación: En este punto se indican los límites establecidos para cada determinación en la operación unitaria.

El protocolo para la realización del proceso se muestra en el ANEXO 6 "Protocolo de Transferencia de Tecnología y Validación de Procesos".

4.2.2. Elaboración de formatos.

De acuerdo con el protocolo se anexan formatos que son elaborados durante la validación del proceso, en donde son documentadas todas las actividades realizadas, los resultados obtenidos, así como observaciones y sugerencias.

Así, pues, el formato es el documento que alberga información y resultados; a los cuales hace referencia el protocolo. Dentro del protocolo son mencionados en el punto 15). Los formatos se muestran en el ANEXO 6 "Protocolo de Transferencia de Tecnología y Validación de Procesos".

4.2.3. Plan de muestreo y análisis.

Dentro del desarrollo de actividades se describen las 6 operaciones unitarias. De los cuales; solo tres de ellas son consideradas pasos críticos; estos son: Mezclado inicial, Mezclado final y Tableteado.

El muestreo y análisis para Mezclado Inicial se muestra en la Tabla 5.

Operación Unitaria	Parámetro para prueba	Frecuencia	Tamaño de Muestra	Diagrama
	Temperatura y humedad relativa. Del medio ambiente.	Al inicio de la operación	N/A	Colocar dentro del cuarto un termohigrómetro
Mezclado inicial	Valoración del principio activo a diferentes tiempos de mezclados.	- 15 min. - 20 min. - 25 min.	5 gramos	Muestrear el producto directamente del mezclador. De acuerdo al diagrama del mezclador de pantalón.

Tabla No. 5 Cuadro de muestreo a realizar durante el mezclado inicial.

El diagrama del mezclador de pantalón se muestra en el ANEXO 7."Diagrama de muestreo del mezclado para Pravastatina Sódica"

Como se puede ver los análisis a llevar acabo en esta operación es la Valoración del principio activo; que se realizaran de acuerdo con la técnica analítica: PT-S004. "Técnica analítica de Pravastatina Sódica Tabletas 10 mg."

El muestreo y análisis para Mezclado Final se muestra en la Tabla 6.

Operación Unitaria	Parámetro para prueba	Frecuencia	Tamaño de Muestra	Diagrama
	Temperatura y humedad relativa. Del medio ambiente.	Al inicio de la operación.	N/A	Colocar dentro del cuarto un termohigrómetro
Mezclado Final	Valoración del principio activo.	Al final del mezclado (5 min)	5 gramos	Muestrear el producto directamente en los cuñetes Parte: Baja Media Alta Durante la descarga del mezclador.

Tabla No. 6 Parámetros de prueba a realizar durante el mezclado final.

Nuevamente en esta operación unitaria se realiza la Valoración del principio activo de acuerdo a la "Técnica analítica de Pravastatina Sódica Tabletas 10 mg." PT-S004.

El muestreo y análisis para Tableteado se muestra en la Tabla 7.

Operación Unitaria	Parámetro para prueba	Frecuencia	Tamaño de Muestra	Diagrama
	Temperatura y humedad relativa. Del medio ambiente.	Al inicio de la operación	N/A	Colocar dentro del cuarto un termohigrómetro
Tableteado	Valoración de Pravastatina Sódica	Inicio Medio Final Del proceso	20 tabletas	Tomar las tabletas
	Dureza Peso promedio de la tableta Espesor	Cada hora	27 tabletas	directamente a la salida de la tableteadora
	Friabilidad Desintegración	Tres veces por turno		

Tabla No. 7 Cuadro de muestreos a realizar durante el tableteado.

Las pruebas a realizar son con base a los siguientes procedimientos:

Prueba de variación de peso: Determinación de peso promedio en tabletas, Código PNOCPR-017

Prueba de espesor: Determinación del espesor en tabletas, Código PNOCPR-018

Prueba de dureza: Determinación de la dureza, Código PNOCPR-020

Prueba de desintegración: Determinación de desintegración, Código PNOCPR-022

Prueba de friabilidad: Determinación de friabilidad, Código PNOCPR-023

La Valoración se realiza de acuerdo con:

La "Técnica analítica de Pravastatina sódica Tabletas 10 mg." PT-S004.

5. RESULTADOS.

5.1. Transferencia de Tecnología.

5.1.1. Resultados de Humedad.

De acuerdo con el plan de muestreo el resultado de humedad para el producto terminado (Tabletas) son:

No. De lote	Humedad (%)	Criterio de aceptación.
1	1.70	Máx. 5.4 %
2	2.20	Máx. 5.4 %
3	2.38	Máx. 5.4 %

Tabla 8. Resultados de Humedad de Transferencia de Tecnología.

5.1.2. Resultados de Disolución.

De acuerdo con el plan de muestreo el resultado de disolución para el producto terminado (Tabletas) son:

No. De lote	Disolución (%)	Criterio de aceptación.
1	Q = 108.61	Q = 80 % en 20 minutos
2	Q = 90.41	Q = 80 % en 20 minutos
3	O = 96.19	O = 80 % en 20 minutos

Tabla 9. Resultados de Disolución de Transferencia de Tecnología.

Las graficas de disolución y los resultados de absorbancias son mostrados en el ANEXO 8. "Datos crudos y resultados gráficos de la Transferencia de Tecnología. Disolución."

5.2. Validación del Proceso.

5.2.1. Resultados de pruebas físicas.

De acuerdo al plan de muestreo y análisis los resultados obtenidos son:

1) Mezclado Inicial.

Condiciones ambientales:

	TEMPERATURA DEL CUARTO (°C)	HUMEDAD RELATIVA DEL CUARTO (%)
LOTE 1	23	34
LOTE 2	23.9	21
LOTE 3	24	25

Tabla 10. Resultados de Condiciones Ambientales de Validación de Procesos. Mezclado Inicial.

Los criterios de aceptación son para la humedad y temperatura ambiental son máximo 45% HR y temperatura menor a 28°C.

2) Mezclado Final.

Condiciones ambientales:

	TEMPERATURA DEL CUARTO (°C)	HUMEDAD RELATIVA DEL CUARTO (%)
LOTE 1	23	35
LOTE 2	24.1	21
LOTE 3	23.3	21

Tabla 11. Resultados de Condiciones Ambientales de Validación de Procesos. Mezclado Final.

Los criterios de aceptación son para la humedad y temperatura ambiental son máximo 45% HR y temperatura menor a 28°C.

3) Tableteado.

Condiciones ambientales:

	TEMPERATURA DEL CUARTO (°C)	HUMEDAD RELATIVA DEL CUARTO (%)
LOTE 1	20	33
LOTE 2	18	33
LOTE 3	27.9	20

 Tabla 12. Resultados de Condiciones Ambientales de Validación Procesos. Tableteado.

Los criterios de aceptación son para la humedad y temperatura ambiental son máximo 45% HR y temperatura menor a 28°C.

Propiedades físicas de Tableteado:

• Peso.

	Promedio	DS	LS_E	LI_{E}	LC_E
Lote 1	100.18 mg	0.977	105 mg	95 mg	100 mg
Lote 2	100.48 mg	0.740	105 mg	95 mg	100 mg
Lote 3	99.05 mg	0.694	105 mg	95 mg	100 mg

Tabla 13. Resultados de peso promedio.

Capacidad del proceso:

	Cpk _s	Cpk _I	CRITERIOS DE ACEPTACIÓN
Lote 1	1.65	1.77	Cpk≥ 1
Lote 2	2.04	2.47	Cpk≥ 1
Lote 3	2.86	1.95	Cpk≥ 1

Tabla 14. Resultados de Capacidad del proceso en la variable peso.

Los resultados son mostrados gráficamente; estas graficas se muestran en el ANEXO 9. "Datos crudos y gráficas del proceso: Peso."

• Espesor.

	Promedio	DS	LS_E	LI_{E}	LC_E
Lote 1	2.77 mm	0.032	3.0 mm	2.6 mm	2.8 mm
Lote 2	2.80 mm	0.035	3.0 mm	2.6 mm	2.8 mm
Lote 3	2.79 mm	0.034	3.0 mm	2.6 mm	2.8 mm

Tabla 15. Resultados de Espesor.

Capacidad del proceso

	Cpk _s	Cpk_I	CRITERIOS DE ACEPTACIÓN
Lote 1	2.40	1.77	Cpk≥1
Lote 2	1.90	1.91	Cpk≥1
Lote 3	2.06	1.86	Cpk≥ 1

Tabla 16. Resultados de Capacidad del proceso en la variable espesor.

Los resultados son mostrados gráficamente; estas graficas se muestran en el ANEXO 10. "Datos crudos y gráficas del proceso. Espesor."

• Dureza.

	Promedio	DS	LS _E	LI_{E}
Lote 1	4.45 Kg	0.404	6 Kg	3 Kg
Lote 2	4.20 Kg	0.310	6 Kg	3 Kg
Lote 3	4.64 Kg	0.216	6 Kg	3 Kg

Tabla 17. Resultados de Dureza.

Capacidad del proceso

	Cpk _s	Cpk ₁	CRITERIOS DE ACEPTACIÓN
Lote 1	1.28	1.20	Cpk≥ 1
Lote 2	1.94	1.29	Cpk≥ 1
Lote 3	2.10	2.53	Cpk≥ 1

Tabla 18. Resultados de Capacidad del proceso en la variable dureza.

Los resultados son mostrados gráficamente; estas graficas se muestran en el ANEXO 11. "Datos crudos y gráficas del proceso: Dureza"

• Desintegración.

	Promedio	DS	LS_E
Lote 1	6.25 min	0.751	30 min
Lote 2	6.39 min	0.165	30 min
Lote 3	5.21 min	0.145	30 min

Tabla 19. Resultados de Desintegración.

Capacidad del proceso.

	Cpk _s	CRITERIOS DE ACEPTACIÓN
Lote 1	10.54	Cpk≥ 1
Lote 2	47.70	Cpk≥ 1
Lote 3	56.98	Cpk≥ 1

Tabla 20. Resultados de Capacidad del proceso en la variable desintegración.

Los resultados son mostrados gráficamente; estas graficas se muestran en el ANEXO 12. "Datos crudos y gráficas del proceso: Desintegración."

• Friabilidad.

	Promedio	DS	LS_E
Lote 1	0.293 %	0.103	1 %
Lote 2	0.249 %	0.126	1 %
Lote 3	0.132 %	0.139	1 %

Tabla 21. Resultados de Friabilidad.

Capacidad del proceso.

	Cpk _s	CRITERIOS DE ACEPTACIÓN
Lote 1	2.29	Cpk≥ 1
Lote 2	1.98	Cpk≥ 1
Lote 3	2.41	Cpk≥ 1

Tabla 22. Resultados de Capacidad del proceso en la variable friabilidad.

Los resultados son mostrados gráficamente; estas graficas se muestran en el ANEXO 13. "Datos crudos y gráficas del proceso: Friabilidad."

5.2.2. Resultados de valoración.

LOTE No.1

OPERACIÓN UNITARIA		OS DE STREO	Concentración (mg)	%	CRITERIO DE ACEPTACIÓN	
	A1		10.79	107.87		
	A2		10.17	101.68		
	B1	15 min	10.28	102.79		
	B2		10.68	106.83		
	C1		10.5	104.98		
	A1		9.5	95.04		
	A2		9.40	93.95		
Mezclado Inicial	B1	20 min	10.42	104.22	No menos del 96 % y no más del 110 % de Pravastatina Sódica	
	B2		10.81	108.14	110 /0 40 114 140441114 304104	
	C1		9.98	99.76		
	A1		9.89	98.87		
	A2		10.18	101.83		
	B1	25 min	10.15	101.47		
	B2		9.79	97.85		
	C1		10.61	106.09		
	BA	JO	9.94	99.37		
Mezclado final	ME	DIO	10.2	102.01	No menos del 96 % y no más del 110 % de Pravastatina Sódica	
	AL	ТО	9.67	96.68	110 /0 do 11a. dodina bodica	
	INIC	CIAL	10.08	100.79		
Tableteado	ME	DIO	10.06	100.64	No menos del 96 % y no más del 110 % de Pravastatina Sódica	
	FIN	VAL	10.57	105.68	110 /0 de l'idvasatina Sodica	

Tabla 23. Resultados de Valoración Lote 1.

LOTE No.2

OPERACIÓN UNITARIA		OS DE STREO	Concentración (mg)	%	CRITERIO DE ACEPTACIÓN
Mezclado Inicial	A1		9.91	99.12	No menos del 96 % y no más del
	A2		10.24	102.41	110 % de Pravastatina Sódica
	B1	15 min	10.99	109.93	
	B2		9.89	98.91	
	C1		10.77	107.71	
	A1		10.13	101.30	
	A2		10.19	101.90	
	B1	20 min	9.73	97.29	
	B2		10.06	100.55	
	C1		9.62	96.22	
	A1	25 min	10.7	106.96	
	A2		10.66	106.60	
	B1		10.19	101.94	
	B2		10.4	104.04	

	C1	10.41	104.10		
Mezclado final	BAJO	10.19	101.36	N 11060/ / 11	
	MEDIO	9.62	96.15	No menos del 96 % y no más del 110 % de Pravastatina Sódica	
	ALTO	10.51	105.14		
	INICIAL	9.83	98.29	N 11060/	
Tableteado	MEDIO	10.56	105.55	No menos del 96 % y no más de 110 % de Pravastatina Sódica	
	FINAL	10.4	103.98	110 /0 40 114 / 4044	

Tabla 24. Resultados de Valoración Lote 2.

LOTE No. 3

OPERACIÓN UNITARIA	PUNTOS DE MUESTREO		Concentración (mg)	%	CRITERIO DE ACEPTACIÓN
	A1		10.12	101.20	
	A2		9.74	97.35	7
	B1	15 min	10.1	100.99	7
	B2		10.62	106.17	1
	C1		10.29	102.90	7
	A1		10.58	105.81	7
	A2		10.45	104.51	1
Mezclado Inicial	B1	20 min	10.42	104.22	No menos del 96 % y no más del 110 % de Pravastatina Sódica
	B2		9.99	99.95	110 /v de 11uvastanta Sodrea
	C1		9.9	98.99	1
	A1		10.54	105.35	7
	A2		10.46	104.60	1
	B1	25 min	10.44	104.40	7
	B2		10.5	105.01	7
	C1		10.26	102.60	1
	BAJO		10.14	101.36	
Mezclado final	MEDIO		9.85	98.49	No menos del 96 % y no más del 110 % de Pravastatina Sódica
	ALTO		10.32	103.15	110 /0 de 11a/asiatina sourea
	INICIAL		9.72	97.17	
Tableteado	MEDIO		9.87	98.70	No menos del 96 % y no más del 110 % de Pravastatina Sódica
	FINAL		9.87	98.70	110 /0 de 11a/asaania Boaica

Tabla 25. Resultados de Valoración Lote 3.

Los resultados se muestran en el ANEXO 14 "Datos crudos y gráficas del proceso: Valoración".

6. ANALISIS DE RESULTADOS.

6.1. Transferencia de Tecnología.

Un punto importante para la realización de este trabajo, fue la elaboración del protocolo, de acuerdo al Plan Maestro de Validación (ANEXO 5), ya que después de un desarrollo farmacéutico, hay que transferir el producto y validar las actividades relacionadas con el proceso de fabricación con base a un protocolo. La realización del protocolo se indica en el punto 4; mostrando los pasos para la Transferencia de Tecnología y Validación del Proceso de fabricación de Pravastatina Sódica Tabletas 10 mg el cual se ve en el ANEXO 6.

De acuerdo con el protocolo, la Transferencia de Tecnología se realizó y se documento en el Check List, este es incluido como formato en el protocolo. En el se verifico cada actividad transferida, tomando en cuenta cada punto del cual consiste el proceso, de esta forma dando el cumplimiento de la documentación adecuada.

La Transferencia de Tecnología fue verificada a tres lotes de producción; de acuerdo con las etapas establecidas (ver Fig. 1) y se verifico la implementación de la nueva tecnología en su última etapa, pues en ella ya se establece la nueva tecnología con el término el escalamiento del producto para iniciar a la fabricación de lotes de producción.

Como parte del muestreo y análisis de esta etapa del proceso de fabricación de Pravatatina Sódica Tabletas 10 mg; se toman muestras del producto a granel (Tabletas); a las cuales se les determino el porcentaje de principio activo disuelto (% disuelto), de acuerdo la técnica de Disolución, generada en el área de Investigación y Desarrollo, con la utilización del aparato 2 (paletas) y analizando las muestras por espectrofotometría de UV; así como la humedad (porcentaje de agua) por el método de Kart Fisher; metodología indicada en la FEUM; que de acuerdo con el planteamiento del problema es el motivo por el cual se reformulo Pravastatina Sódica Tabletas 10 mg. Esta modificación es de Nivel 1; ya que no afecta la apariencia, ni concentración de la tableta; y las pruebas con la que se verifico el cumplimiento de la transferencia de la nueva tecnología son la % disuelto de principio activo, así como la humedad. Y de acuerdo a los tipos tecnologías que se transfieren, esta se clasifica en una tecnología de formulación (ver punto2.2.1.).

Para la verificación de la Transferencia de Tecnología, los tres lotes cumplen con lo solicitado en el Check List indicado en el protocolo (ANEXO 6). Como podemos ver los resultados en el punto 5.1.1; (ver Tabla 8), la humedad cae dentro de especificaciones, obteniéndose resultados por debajo del límite indicado, que es No mayor a 5.4%.

Con respecto a la disolución, como sabemos es una determinación muy importante en las tabletas; esta prueba nos indica si se disuelve el principio activo y en que porcentaje. La disolución es el primer paso de la farmacodinamia del principio activo; como se puede observar en el punto 5.1.2, (ver Tabla 9); el % disuelto determinado a los tres lotes muestra que el principio activo se encuentra disuelto en el medio y a un porcentaje mayor a lo indicado en 20 min; por lo que podemos concluir que el principio activo es liberado y disuelto adecuadamente. Los resultados desde luego no afectan la calidad establecida de las tabletas; considerándose así la mejora continua del producto ya establecido en el mercado.

Con estos resultados se considera que la Transferencia de Tecnología es implementada adecuadamente, así pues se prosigue a realizar la Validación del Proceso.

6.2. Validación del Proceso.

De acuerdo con el protocolo, se monitoreo el proceso haciendo hincapié a cada una de las operaciones unitarias de las que consiste el proceso de Pravastatina Sódica tabletas 10 mg. Verificando que todo se trabaje adecuadamente, que los equipos se desempeñen de acuerdo a lo establecido, los cuartos estén en las condiciones especificas y el personal este calificado para desempeñar la actividad asignada. Para que en conjunto se obtenga un producto con las características establecidas.

De acuerdo con el punto 4.2.3., de las 6 operaciones unitarias en que consiste la fabricación de Pravastatina Sódica; solo son consideradas el Mezclado Inicial, el Mezclado Final y Tableteado como pasos críticos a monitorear.

6.2.1. Resultados de Pruebas Físicas:

Así pues para fines de este trabajo se registran los resultados de condiciones ambientales de la operaciones criticas de acuerdo al plan de muestreo; y los resultados los podemos ver, en el punto 5.1.2., (ver las Tablas 10, 11 y 12); para Mezclado Inicial, Mezclado Final y Tableteado, respectivamente. La especificación de temperatura y humedad del cuarto de fabricación, son: menor a 28°C y máxima de 45 % HR, respectivamente. Como podemos ver en las tablas antes mencionadas se cumple con las especificaciones de temperatura y humedad ambiental de los pasos críticos en los tres lotes.

En las operaciones de Verificación y Pesado de Materia Prima, Premezclado de Principio Activo y Tamizado, también se cumple con especificaciones del cuarto, equipos y tiempo de mezclado, para fines de este trabajo no son necesario ser

mostrados; para fines laborales están documentados en los formatos anexados al protocolo que lo podemos ver en el ANEXO 6, en el punto "15.0 ANEXOS".

Con lo que respecta al proceso de Tableteado, las pruebas físicas realizadas al producto a granel (Tabletas), son: Peso, Espesor, Dureza, Desintegración y Friabilidad. Los resultados se muestran en el punto 5.2.1., dentro de ellas se indica el límite superior de la especificación (LS_E), el limite inferior de la especificación (LI_E) y limite central de la especificación (LC_E).

Para el tratamiento de resultados se determina la Capacidad del Proceso, para las 5 pruebas físicas; el cálculo es indicado dentro del protocolo en el punto 7.3. Con este cálculo se proporciona la medición de la reproducibilidad propia de un producto desarrollado por un proceso. Evaluando con la Capacidad del Proceso si el proceso de fabricación de Pravastatina Sódica Tabletas 10 mg es adecuado para hacer lo que esta previsto y obtener un producto con la calidad preestablecida.

PESO

Los resultados se muestran en la Tabla 13; la toma de muestra se realizo cada hora. El tableteado para el lote 1 y 2 se realizó en 32 horas; y el lote 3 en 31 horas; la determinación de peso se le realiza a una muestra de 10 tabletas por hora. En el ANEXO 9 se muestran las grafica del promedio de las 10 tabletas; obteniéndose así una grafica de 32 puntos para el lote 1 y 2 y 31 puntos para el lote 3.

Así pues, los resultados obtenidos de los tres lotes caen dentro de las especificaciones establecidas que son 95 mg como límite inferior y de 105 mg como límite superior, y con un límite central de 100 mg; esto se puede observar en las graficas de tendencia de peso de los tres lotes, los valores de peso graficados oscilan alrededor del valor central del proceso. Por lo que se considera que la variable que es el peso se mantiene en control durante el proceso de tableteado.

***** ESPESOR

Los resultados se muestran en la Tabla 15. Para esta prueba se determina el espesor a cuatro tabletas por hora; y en las graficas mostradas en el ANEXO 10, se grafica el promedio. Observándose que todos los resultados obtenidos están dentro de los limites de aceptación, los cuales son 2.6 a 3.0 mm. Esta variable depende del peso, esto quiere decir que si el peso se mantiene bajo control este parámetro se mantendrá también bajo control, no importando en que parte de la grafica se registren los datos, siempre y cuando estos se mantengan dentro de los límites de las especificaciones. Por lo tanto, se considera que esta variable se mantiene bajo control durante el proceso de tableteado y esta sujeta al buen desempeño y control de peso de la tableta.

DUREZA

Los resultados se muestran en la Tabla 17. Con lo que respecta la dureza también se le determina a 10 tabletas por hora, teniendo el mismo numero de datos graficados que el peso. Todos los resultados obtenidos están dentro de la especificación que es mínimo 3.0 kg y máximo 6.0 kg.

La tendencia de esta variable se puede observar en las graficas correspondientes (ANEXO 11) y se observa que en los tres lotes se encuentran dentro de especificaciones. Así pues, manteniéndose esta variable durante el proceso bajo control.

* DESINTEGRACIÓN

Los resultados se muestran en la Tabla 19. Todos los resultados obtenidos están dentro de la especificación que es máximo de 30 minutos, el valor mayor obtenido en los tres lotes es de 7.12 min, y el valor menor es de 4.48 min, y esto se puede ver en las graficas obtenidas (ANEXO 12). Por lo que la desintegración es una variable que se mantiene bajo control durante el proceso de tableteado.

* FRIABILIDAD

Los resultados se muestran en la Tabla 21. Todos los resultados obtenidos están dentro de la especificación que es máximo de 1% de perdida de peso.

La tendencia se puede observar en las graficas obtenidas. La variable de friabilidad se mantiene bajo control durante el proceso de tableteado, ya que el máximo valor que se obtuvo fue de 0.50 % de perdida de peso. Los resultados se muestran en el ANEXO 13.

❖ CAPACIDAD DEL PROCESO

Para el caso del calculo de Cpk, en general los valores obtenidos en los lotes monitoreados para la calificación de desempeño del proceso de Pravastatina Sódica Tabletas 10 mg, fueron mayores a 1.3, tanto en Cpk_I (Capacidad del Proceso del límite inferior) como en Cpk_S (Capacidad del Proceso del límite superior),en todas sus pruebas; a excepción del LOTE 1 en la prueba de dureza que tanto Cpk_S, como Cpk_I; y en el LOTE 2, también en la prueba de dureza, pero solo Cpk_I; tienen un valor menor a 1.3. De acuerdo con el protocolo la especificación de Cpk para cualquier variable es mayor o igual a $1(Cpk \ge 1)$.

Estos resultados, nos indica que si se tiene un valor mayor a 1.3, la variación del proceso es inferior a la especificación, por lo tanto el proceso se desarrolla de manera consistente y reproducible dentro de las especificaciones. Podemos concluir que el proceso es capaz de cumplir las especificaciones establecidas para la fabricación de este producto. Si se tiene un valor entre 1 y 1.3 el proceso satisface la especificación y el proceso se encuentra bajo control.

6.2.2. Resultados de Valoración.

Con lo que respecta a la valoración, los resultados se registraron en las Tablas 23, 24 y 25 y se observa que para el Mezclado Inicial, los resultados entran en especificaciones que es de no menos del 96% y no más del 110% de la cantidad de Pravastatina sódica, indicado en la especificación. A excepción de los puntos A1 y A2 del minuto 20 pertenecientes al lote 1; que esta por debajo de la especificación. Este resultado no afecta para un dictamen, ya que de acuerdo al PNO de fabricación son hasta los 25 minutos de Mezclado Inicial cuando el principio activo debe tener una homogeneidad de distribución del 100 % en el granulado, por lo tanto al minuto 20, el granulado no se encuentra totalmente homogéneo.

Como se puede ver en la grafica de proceso en el ANEXO 14, el principio activo se va distribuyendo homogeneamente con el transcurso del tiempo de mezclado. Para el Mezclado Final se debe tener un 100 % homogenizado el principio activo teóricamente, como se puede ver en las Tablas de resultados de valoración, el Mezclado Final, cumplen con la especificación. Esta operación es realizada por que se le agrega el lubricante para terminar el mezclado, para esta se realiza un mezclado por 5 minutos más.

Así pues, los resultados de la valoración del mezclado inicial y mezclado final caen dentro de la especificación, graficaron para ver la tendencia o el comportamiento del proceso de mezclado; por lo cual el tiempo de acuerdo a la orden de fabricación es adecuado.

Para estas operaciones se tomaron muestras al minuto 15, 20 y 25; correspondientes al Mezclado Inicial y para el Mezclado Final se toma al minuto 5, todas las muestras se obtuvieron de tres diferentes niveles

Con lo que respecta al tableteado, todos los resultados obtenidos están dentro de la especificación que es de no menos de 96% y no más del 110% de la cantidad de Pravastatina Sódica Tabletas 10mg, indicado en la especificación.

Los resultados se muestran también en las tablas 23, 24 y 25. Para la valoración de las tabletas, se realizan tres muestreos uno al inicio, otro a la mitad y un tercero al final del proceso del tableteado. Cada valoración se hace por triplicado; reportándose en las graficas y formatos el promedio de las tres. La valoración fue realizada con la técnica de HPLC, con detector UV. Usando como fase móvil una mezcla de metanol, agua, ácido acético y trietilamina. (500:498:1:1)

Para fines del área de Aseguramiento de la Calidad todos los resultados y datos obtenidos durante este trabajo son documentados en los respectivos formatos indicados

en el protocolo de "Transferencia de Tecnología y Validación del proceso de fabricación de Pravastatina Sódica Tabletas 10mg" (ANEXO 6). Toda esta documentación es debidamente almacenada junto con su reporte en una carpeta adecuadamente codificada.

7. CONCLUSIONES

La Transferencia de Tecnología de la nueva formulación de Pravastatina Sódica Tabletas 10mg al área de producción se implemento y se verifico su desempeño en tres lotes de producción. Documentándose cada actividad de acuerdo al protocolo "Transferencia de Tecnología y Validación del proceso de fabricación de Pravastatina Sódica Tabletas 10mg" (ANEXO 6), que se elaboro para fines de este trabajo. Los resultados obtenidos fueron reproducibles y consistentes entre los tres lotes.

Con la nueva formulación se obtuvieron tabletas que arrojaron resultados muy por debajo de lo especificado. Demostrando de esta forma que la obtención de tabletas por compresión directa, a las condiciones ambientales especificadas no presenta posibilidad de obtener tabletas fuera de especificación.

Los valores obtenidos en la humedad en las tabletas oscilan alrededor del 2% (ver resultados en la Tabla 8), siendo la especificación de humedad: No mayor a 5.4%. Con esto se demuestra que la tableta obtuvo una mejora en la calidad del producto, implementándose una tecnología de formulación, de acuerdo al tipo de tecnologías, punto 2.2.

Concluyéndose que la Transferencia de Tecnología se realizo e implemento satisfactoriamente, cumpliéndose así con el objetivo planteado.

Con esto se da paso a la Validación del Proceso, que de acuerdo a la regularización sanitaria, es requisito indispensable que se debe cumplir y demostrar para la distribución y venta del producto.

La Validación del Proceso de fabricación de Pravastatina Sódica Tabletas 10mg se realizo a tres lotes de producción distintos a los verificados en la transferencia, nuevamente de acuerdo al protocolo "Transferencia de Tecnología y Validación del proceso de fabricación de Pravastatina Sódica Tabletas 10mg" (ANEXO 6).

La validación realizada para este trabajo, de acuerdo a los tipos de validación indicados en el punto 2.3.3.1., es una validación Concurrente, pues los resultados dados en este trabajo fueron obtenidos paralelamente a la distribución del producto. Monitoreando de acuerdo al Proyecto de la NOM-059. "Buenas Practicas de Fabricación para establecimientos de la industria químico farmacéutico dedicadas a la fabricación de medicamentos", tres lotes de producción.

Con base a los resultados de cada una de las pruebas realizadas para la Validación del Proceso de fabricación de Pravastatina Sódica Tabletas 10mg, donde se realiza la valoración para las operaciones de Mezclado Inicial, Mezclado Final y Tableteado, junto con el calculo de la Capacidad del Proceso, de cada una de las pruebas físicas del Tableteado para el control del proceso, se demuestra que proceso de fabricación de

Pravastatina Sódica Tabletas 10mg es reproducible y consistente, obteniéndose resultados de valoración dentro de lo especificado que es: No menor del 96% y no mayor del 110% de Pravastatina Sódica en la tableta. Así como de valores en la Capacidad del Proceso mayores o iguales a 1, como indica la especificación.

Todos los resultados documentados adecuadamente en los formatos indicados en el protocolo junto con su reporte, son almacenados en una carpeta adecuadamente codificada y en resguardo por el área de Aseguramiento de la Calidad.

Así pues se concluye que la Validación del Proceso de fabricación de Pravastatina Sódica Tabletas 10mg, cuenta con suficiente evidencia documentada para demostrar que el proceso cumple paro lo que fue diseñado y que se obtienen productos reproducibles y consistentes con la calidad preestablecida.

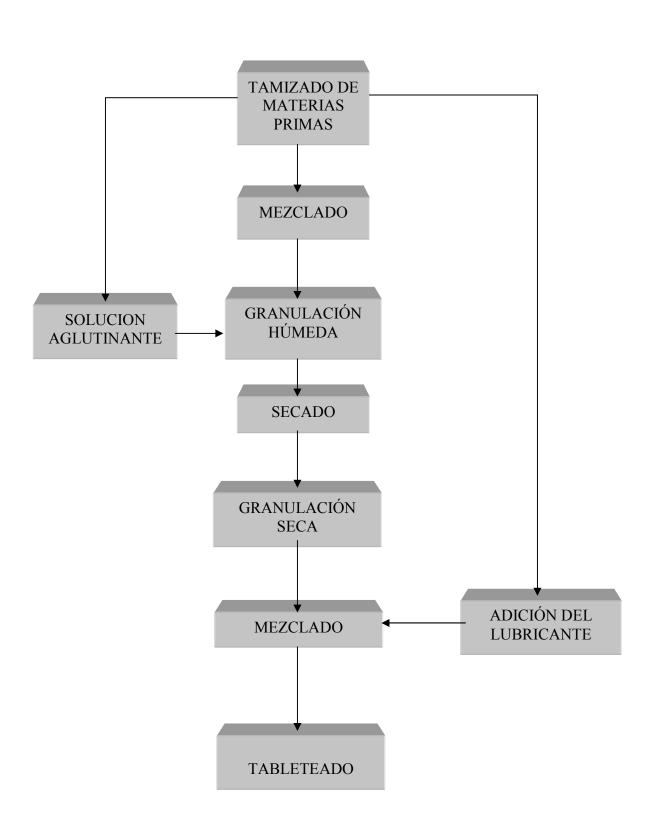
La Transferencia de Tecnología es un medio sistemático donde se trasmite habilidades, documentación, equipos, técnicas, sistemas entres dos partes (emisor y receptor). La Validación es la herramienta a ser usada para confirmar el consistente desempeño para las especificaciones establecida.

8. PROPUESTAS Y/O RECOMENDACIONES.

Pravastatina Sódica Tabletas es un proceso sencillo, ya que no consta de muchas operaciones, además que es realizado por compresión directa. Pero como principio activo Pravastatina Sódica es higroscópica y se degrada con la luz; así que al fabricarse hay que tener mucho cuidado y consideración de las condiciones de cuarto de fabricación; así que es recomendable no trabajar con luz directa. Por lo que se recomienda poner lámparas de luz naranja o cubrir con acrílico de color ámbar en las lámparas.

Punto importante son las condiciones de almacenaje, pues el principio activo debe ser refrigerado antes y después del surtido hasta ser utilizada.

Tabla de Modificaciones. (FEUM 8^a ed. 2004)


TABLA DE MODIFICACIONES

			Nivel 1			Nivel 2			Nivel 3	
Tipo de Modific	cación	Estudios de Estabilidad	Estudios de Intercambiabili- dad	Documento	Estudios de Estabilidad	Estudios de Intercambia- bilidad	Documento	Estudios de Estabilidad	Estudios de Intercam- biabilidad	Documento
Componente Composición o Formulació	de la	Un lote en estabili- dad a largo plazo	No	Revisión anual de producto	Un lote con 3 meses de estabilidad acelerada, y el avance del estudio de estabilidad a largo plazo	No	Solicitud de Autorización	Si hay estudios previos**: un lote con 3 meses de estabili- da acelerada y el avanec del estudio de estabilidad a largo plazo Si no hay estudios previos**: tres lotes con 3 meses de estabilidad acelerada y el avanec del estudio de estabili- dad a largo plazo	Prueba de intercambiabi- lidad correspondiente de acuerdo al tipo de farmaco, forma farma- céutica y a los criterios establecidos en la NOM correspondiente.	Solicitud de Autorización
Sitio de Fabric	ación	No	No	Revisión anual de producto	No	No	Solicitud de Autori- zación	Draw I		
Tamaño de L	Lote	Un lote en estabili- dad a largo plazo	No	Revisión anual de producto	Un lote con 3 meses de estabilidad acelerada, y estabilidad a largo plazo.	No	Aviso			
	Equipo	Un lote en estabili- dad a largo plazo	No	Revisión anual de producto	Si hay estudios previos**: un lote con 3 meses de estabilidad acelerada y estabilidad a largo plazo Si no hay estudios pre- vios**: tres lotes con 3 meses de estabilidad acelerada y estabilidad alargo plazo	No	Aviso			
Fabricación	Proceso	No	No	Revisión anual de producto	Un lote con 3 meses de estabilidad acelerada, y estabilidad a largo plazo.	No	Aviso	Si hay estudios previos**: un lote con 3 meses de estabili- dad acclerada y el avance del estudio de estabilidad a largo plazo Si no hay estudios previos**: tres lotes con 3 meses de estabilidad acclerada y el avance del estudio de estabili- dad a largo plazo	Prueba de intercambiabi- lidad correspondiente de acuerdo al tipo de fármaco, forma farma- ceutica y a los criterios establecidos en la NOM correspondiente.	Solicitud de Autorización
Fármaco	,	No	No	Revisión anual de producto	No	No	Revisión anual de producto	Tres lotes con 3 meses de estabilidad acelerada y avance del estudio de estabilidad a largo plazo	Prueba de intercambiabi- lidad correspondiente de acuerdo al tipo de fármaco, forma farma- céutica y a los criterios establecidos en la NOM correspondiente.*	Solicitud de Autorización e informe del estudio de estabi- lidad del fármaco
Sistema conten		Un lote en estabili- dad a largo plazo	No	Revisión anual de producto	Un lote con 3 meses de estabilidad acelerada, y estabilidad a largo plazo.	No	Aviso	Tres lotes con 3 meses de estabilidad acelerada y el avance del estudio de estabili- dad a largo plazo	No	Solicitud de Autorización

^{*} Informe de estudios de intercambiabilidad correspondiente, de acuerdo al fármaco, forma farmacéutica y a los criterios establecidos en la norma oficial mexicana correspondiente. En el caso de ser el mismo proceso, mismas especificaciones de calidad y los métodos de prueba de la fuente alterna del fármaco que los de la fuente original, no se requeriría prueba de intercambiabilidad, y cuando aplique para el caso de fármacos sólidos, sus características de cristalinidad.

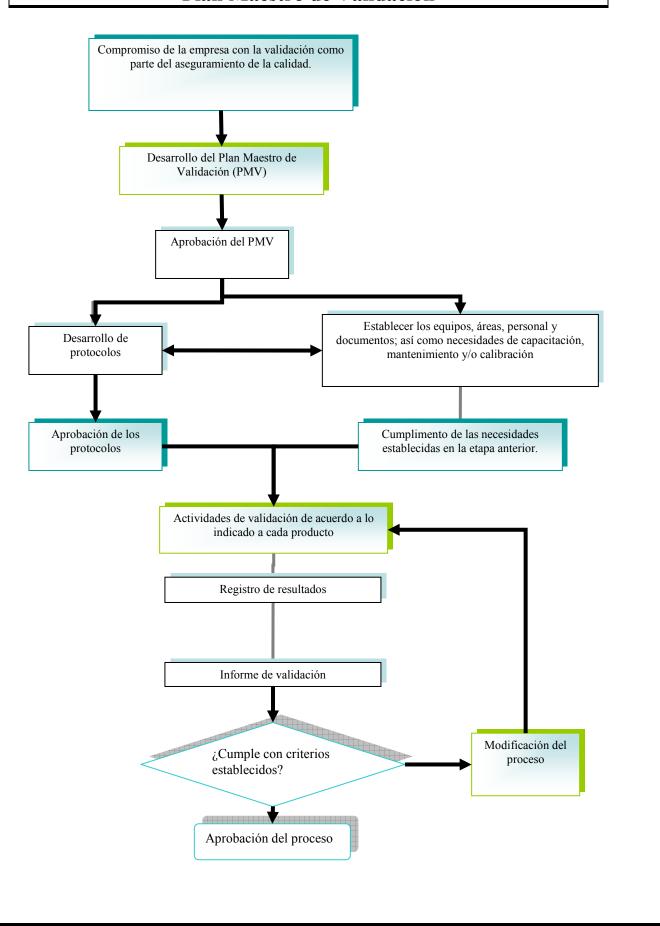
^{**} Estudios previos respecto a la estabilidad del medicamento significa que existen datos de cinco años de experiencia comercial para medicamentos nuevos; o bien tres años para medicamentos conocidos.


Diagrama de flujo de obtención de tabletas por Vía Húmeda.

ANEXO 3.

Página 1 de 1

Diagrama de flujo de obtención de tabletas por Vía Seca.



Check list de Transferencia de Tecnología

DECODIDATÓN DE ACTIVIDAD	CUMPLE CON	ESPECIFICACIONES	
DESCRIPCIÓN DE ACTIVIDAD	SI	NO	
1. DOCUMENTACION.			
1.1. Objetivo.			
1.2. Información General			
1.3. Formula Maestra			
1.4. Concentración de Forma Farmacéutica			
1.5. Procedimiento de Fabricación			
1.6. Diagrama de Flujo para el proceso de fabricación.			
1.7. Materiales e instrumentación.			
2. INSTALACIONES.			
2.1. PNO de limpieza.			
2.2. Limpias y aprobadas por Control de Calidad.			
2.3. Condiciones específicas.			
3. EQUIPO			
3.1. Equipo especificado en el Procedimiento de Fabricación.			
3.2. PNO de limpiza.			
3.3. PNO de opereración			
3.4. PNO de mantenimiento.			
3.4. FNO de mantenimiento.			
4. PERSONAL			
4.1. Vestimenta y comportamiento en área de producción.			
4.2. Capacitado y Calificado			
5. PROCESO			
5.1. Surtido de Materias Primas			
5.1.1. Condiciones de cuarto			
5.2. Premezcla de Principio Activo			
5.2.1. Tiempo de mezclado			
5.2.2. Condiciones del cuarto			
5.3. Tamizado			
5.3.1. Numero de malla			
5.3.2. Condiciones de Cuarto			
5.4. Mezclado Inicial			
5.4.1. Tiempo de mezclado			
5.4.2. Velocidad del mezclador.			
5.4.3. Condiciones de Cuarto.			
5.5. Mezclado Final			
5.5.1. Tiempo de mezclado			
5.5.2. Velocidad del mezclador.			
5.5.3. Condiciones de Cuarto.			
5.6. TABLETEADO.			
5.6.1. Velocidad de la tableteadora.			
5.6.2. Condiciones del cuarto.			

ELABORÓ	REVISÓ

Plan Maestro de Validación

PAG: 1 **DE: 34**

PROTOCOLO DE TRANSFERENCIA DE TECNOLOGÍA Y VALIDACIÓN DEL PROCESO DE FABRICACIÓN DE PRAVASTATINA SODICA TABLETAS 10 mg

1.0 **OBJETIVO**

Establecer la nueva tecnología en planta productiva. Verificando la trasferencia de tecnología.

Demostrar mediante evidencia documentada que la transferencia el proceso de fabricación del producto Pravastatina Tabletas 10 mg, es un proceso consistente y efectivo cuando es operado bajo los procedimientos estándar de fabricación; y produce tabletas con los atributos de calidad predeterminados que cumplen con las especificaciones establecidas de calidad.

2.0 ALCANCE

El presente protocolo es aplicable a los procesos de fabricación del producto Pravastatina Sódica en la presentación de Tabletas de 10 mg, para el tamaño de lote estándar 201.00 Kg que se fabrican en la planta de Proteín, S.A. de C.V.

3.0 RESPONSABILIDADES

Responsable Sanitario

Autorizar el presente protocolo. Autorizar el control de cambios

Gerente de Aseguramiento de Calidad

Autorizar el presente protocolo Autorizar el control de cambios.

Gerente de investigación y Desarrollo

Revisar el presente protocolo.

Verificar que los Procedimiento Normalizados de operaciones involucradas en la validación estén actualizados y autorizados.

Proporcionar la información necesaria para la elaboración del protocolo.

Gerente de Producción

Proporcionar las áreas, equipos y/o personal cuando se requiera.

Verificar que los Procedimientos Normalizados de Operación involucrados en la validación estén actualizados y autorizados.

Jefe de Aseguramiento de Calidad

Coordinar las actividades resultantes.

Revisar el presente protocolo.

Verificar y autorizar el reporte final emitido por el analista de validación.

Supervisor de Producción

Facilitar la disponibilidad de las áreas, equipos y/o personal.

Actualizar los Procedimientos Normalizados de Operación involucradas.

PAG: 2 DE: 34

PROTOCOLO DE TRANSFERENCIA DE TECNOLOGÍA Y VALIDACIÓN DEL PROCESO DE FABRICACIÓN DE PRAVASTATINA SODICA TABLETAS 10 mg

Analista de Validación

Elaborar el protocolo correspondiente.

Coordinar y ejecutar las actividades establecidas en este protocolo.

Realizar la toma de muestras.

Analizar las muestras resultantes de la Validación.

Emitir el reporte final.

4.0 GENERALIDADES

La descripción del proceso de fabricación del producto se describe en el Procedimiento Maestro de Fabricación en el cual es elaborado y resguardo por el Departamento de Investigación y Desarrollo.

El procedimiento Maestro de fabricación con código **DES-F-0253**, REV. 04, describe a detalle la fabricación del producto, Pravastatina Sòdica presentación en: Tabletas de 10 mg.

• El proceso de fabricación consiste en 6 operaciones, que son: verificación de surtido y pesado de materias primas, premezclado de activo, tamizado de materias primas, mezclado inicial, mezclado final y tableteado.

Tanto la transferencia de tecnología como la validación se realizarán en tres lotes de fabricación del producto de Pravastatina Sódica.

Cualquier cambio o modificación al proceso de fabricación durante la etapa de validación tendrá que ser documentado y el procedimiento maestro de fabricación tendrá que estar actualizado una vez concluido el reporte de Validación de Procesos.

Este protocolo aplica a las presentaciones y tamaños de lote que están determinadas en el punto 2 (Alcance).

4.1 Descripción del producto.

4.1.1 Principio activo:

La pravastatina es una estatina, aislado del compuesto original mevastatina (aislado a partir de cultivos de especies de *Penicillium*), es uno de los compuestos de la nueva clase de hipolipemiantes, inhibidores de la 3-hidroxi-3-metilglutaril coenzima A (HMG-CoA) reductasa, enzima que cataliza la conversión de HMG-CoA a mevalonato, limitando en un paso inicial la biosíntesis de colesterol.

La pravastatina está indicado para:

- Prevención de enfermedad coronaria en pacientes hipercolesterolémicos sin enfermedad coronaria clínicamente evidente.
- Enfermedad coronaria: En pacientes con historia de infarto del miocardio o angina inestable.
- Progresión de enfermedad aterosclerosa y eventos cardiovasculares.
- Trasplante renal y cardiaco: En pacientes que reciben terapia inmunosupresora después de un trasplante; reducir el riesgo de rechazo agudo en pacientes con trasplante renal.

PROTOCOLO DE TRANSFERENCIA DE TECNOLOGÍA Y VALIDACIÓN DEL PROCESO DE FABRICACIÓN DE PRAVASTATINA SODICA TABLETAS 10 mg

4.1.2 Farmacocinética y Farmacodinamia en humanos:

La Pravastatina Sòdica ejerce su efecto hipolipemiante mediante dos mecanismos:

Primero, como consecuencia de la inhibición reversible de la actividad de la HMG-CoA reductasa, generando reducciones moderadas de los depósitos de colesterol intracelular.

Segundo, la pravastatina inhibe la producción de lipoproteínas de baja densidad (LDL) al inhibir la síntesis hepática de lipoproteínas de muy baja densidad (VLDL) precursoras de las LDL.

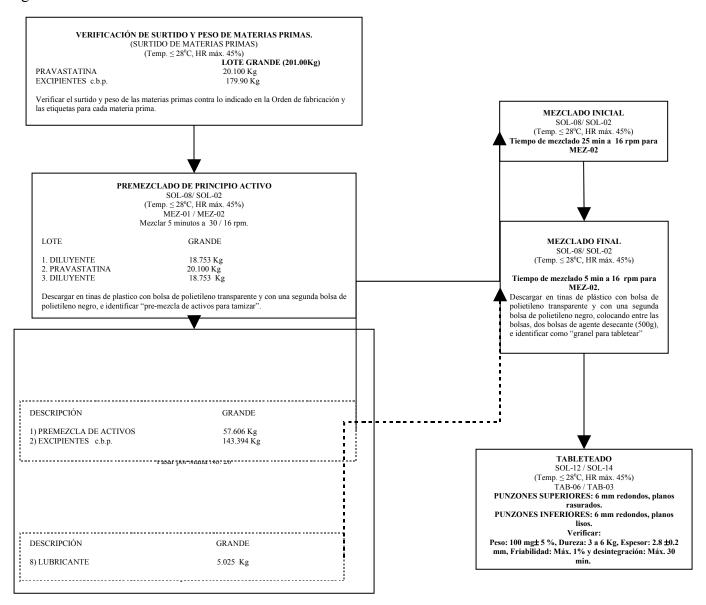
Estudios clínicos y patológicos han demostrado que los niveles elevados de colesterol total (C-total), colesterol de lipoproteínas de baja densidad (C-LDL) y apolipoproteína B (un complejo transportador de membrana para LDL) favorecen la aterosclerosis en humanos.

Farmacocinética /metabolismo: La pravastatina se administra por vía oral en su forma activa. La pravastatina se absorbe rápidamente, obteniéndose niveles plasmáticos de 1 a 1.5 horas después de su ingestión. En base a la recuperación urinaria del fármaco, la absorción oral promedio de pravastatina es de 34% y su biodisponibilidad absoluta de 17%. Aun cuando la presencia de alimentos en el tracto gastrointestinal reduce su biodisponibilidad, el efecto hipolipemiante del medicamento es similar cuando se toma con o sin alimentos. La vida media de eliminación del plasma de pravastatina (t½) está entre 1.5 y 2 horas. Aproximadamente 20% de una dosis oral se excreta en orina y 70% en heces. Después de una dosis intravenosa de pravastatina administrada a voluntarios sanos, aproximadamente el 47% de la depuración total del organismo fue excreción vía renal y el 53% por vías no renales (por ejemplo, excreción biliar y biotransformación). Ya que tiene una vía de eliminación doble, existe el potencial para una excreción compensadora por la vía alterna así como una acumulación del fármaco y/o sus metabolitos en pacientes con insuficiencia renal o hepática.

4.2 Especificaciones.

Las especificaciones que debe cumplir el Producto Terminado se muestra en la Tabla No. 1.

PRUEBA	UNIDADES	ESPECIFICACIONES	
Descripción		Tableta redonda, plana, ranurada, de color blanco o blanco crema, de forma y color homogéneos, libre de fracturas e imperfecciones.	
Identificación		Cumple especificaciones	
Valoración	% / mg	Cada tableta contiene no menos de 96 % y no más de 110 % (9.6 mg – 11.0 mg/ tableta)	
Peso promedio	mg	Tabletas de 100 mg: $100 \text{mg} \pm 5\% (95 - 105 \text{ mg})$	
Variación de peso	mg	DER ≤ 6%	
Dureza	kg	3 Kg. a 6 Kg.	
Espesor	mm	$2.8 \text{ mm} \pm 0.2 \text{ mm} (2.6 - 3.0 \text{ mm})$	
Desintegración	Min.	Máximo 30 min	
Friabilidad	%	Máximo 1%	
Uniformidad de dosis	%	85 – 115 %	
Disolución	%	Q = 80% en 20 min	
Agua	%	No más de 5.4%	
Impurezas Cualquier impureza individual	%	No más de 1%	


Tabla No. 1 Especificaciones para el Producto Terminado Pravastatina Tabletas de 10 mg

4.3 Diagrama de flujo

PAG: 4 DE: 34

PROTOCOLO DE TRANSFERENCIA DE TECNOLOGÍA Y VALIDACIÓN DEL PROCESO DE FABRICACIÓN DE PRAVASTATINA SODICA TABLETAS 10 mg

El proceso de fabricación para la producción de Pravastatina Sódica Tabletas de 10 mg se muestra en la Figura No. 1.

FIGURA No.1 Diagrama de flujo del proceso de fabricación de Pravastatina Tabletas 10 mg. **NOTA**: Área y equipo respectivamente, de acuerdo al tamaño de lote.

5.0 ANALISIS DE RIESGO

PAG: 5 DE: 34

PROTOCOLO DE TRANSFERENCIA DE TECNOLOGÍA Y VALIDACIÓN DEL PROCESO DE FABRICACIÓN DE PRAVASTATINA SODICA TABLETAS 10 mg

El proceso de fabricación incluye 6 etapas principales de las cuales son: Verificación de surtido y peso de materias primas, premezclado de activo, tamizado de materia primas, mezclado inicial, mezclado final y tableteado; y al no realizarse de la manera correcta podrán afectar la calidad del producto, por lo tanto las variables a controlar durante la validación están determinadas en el formato FORVAL-172.

6.0 MATERIALES, INSTRUMENTOS, EQUIPO Y PERSONAL.

Se registrarán en el formato FORVAL-165, para cada uno de los lotes en que se realice el estudio de validación.

Solicitar el área y los equipos necesarios al departamento de producción para ingresar al área y para llevar acabo las actividades indicadas en el protocolo; mediante el FORVAL-066.

7.0 DESARROLLO DE ACTIVIDADES.

7.1 TRANFERENCIA DE TECNOLOGIA.

7.1.1 Verificación de la implementación de la Transferencia de Tecnología.

7.1.1.1 Objetivo.

En este punto se verifica la implementación de la nueva tecnología a planta productiva. Donde se observa el comportamiento del proceso; registrando cada pasó.

7.1.1.2 Metodología.

- 1. Verificar que el surtido de materias primas sean surtidas adecuadamente; conforme a la nueva formulación. Registrar en el FORVAL-200
- 2. Verificar que los cuartos de producción cumplan con especificaciones ambientales; antes y durante el proceso de fabricación. Registrar en el FORVAL-200
- 3. Verificar que se realicen todas las operaciones de acuerdo al Procedimiento Maestro de Fabricación. Registrar en el FORVAL-200.
- 4. Realizar un muestreo al final del tableteado y realizar la disolución y humedad. Registrar los resultados en el FORVAL-201.

7.1.1.3 Muestreo.

Los muestreos se realizan de acuerdo a la siguiente tabla No. 2

Operación	Parámetro de prueba.	Fraguancia	Tamaño de
Unitaria	i ai ameno de prueba.	Frecuencia	muestra

PAG: 6 **DE: 34**

PROTOCOLO DE TRANSFERENCIA DE TECNOLOGÍA Y VALIDACIÓN DEL PROCESO DE FABRICACIÓN DE PRAVASTATINA SODICA TABLETAS 10 mg

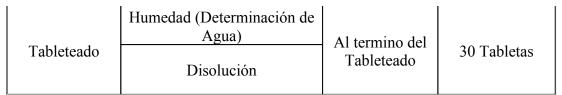


Tabla No. 2. Cuadro de muestreo para la Transferencia de Tecnología

7.1.1.4 Criterios de Aceptación.

Humedad del cuarto productivo no mayor a 45% HR, así como la temperatura menor a 28 °C.

Disolución, Q = 80% en 20 minutos y humedad: no mayor a 5.4 % de agua.

El procedimiento de fabricación debe cumplir con lo especificado en el Procedimiento Maestro de Fabricación.

7.2 VALIDACIÓN DEL PROCESO

7.2.1 Verificación y Surtido de Materias Primas

7.2.1.1Objetivo.

En esta operación se verifica que el surtido y pesado de materias primas realizado por almacén cumpla con loestablecido en Orden de Producción.

7.2.1.2 Metodología.

- 1. Verificar que el surtido de las materias primas por el almacén contra lo indicado en la Orden de Producción. Se registrarán en el formato FORVAL-165, para cada uno de los lotes en que se realice el estudio de validación.
- 2. Verificar el peso de las materias primas cotejando con lo indicado en la Orden de Producción y las etiquetas para cada materia prima. Se registrarán en el formato FORVAL-165, para cada uno de los lotes en que se realice el estudio de validación.

7.2.1.3 Muestreo.

En esta operación unitaria no se toma muestra para ningún tipo de análisis, ya que solo es una verificación.

7.2.1.4 Criterio de aceptación.

El surtido y peso de las materias primas deben corresponder con lo indicado en la Orden de Producción, emitida por el área de planeación.

Las condiciones del área de surtido deben ser Temperatura menor a 28ºC y Humedad Relativa máxima 45%.

7.2.2 Premezclado de Activo.

PAG: 7 **DE: 34**

PROTOCOLO DE TRANSFERENCIA DE TECNOLOGÍA Y VALIDACIÓN DEL PROCESO DE FABRICACIÓN DE PRAVASTATINA SODICA TABLETAS 10 mg

7.2.2.1 Objetivo

En esta operación unitaria el objetivo es mezclar el principio activo, que está en baja proporción; con una porción de los excipientes utilizado como diluyente y desintegrante en la formulación, esto a fin de que el principio activo, se homogenice con estos excipientes.

7.2.2.2 Metodología.

- 1. Realizar un registro de las condiciones ambientales del cuarto (temperatura y humedad) en el FORVAL-127, durante el mezclado para cada lote.
- 2. Realizar un registro de las variables de operación: velocidad y tiempo de mezclado, para el mezclador durante el proceso de fabricación para cada lote en el FORVAL-166.

7.2.2.3 Muestreo.

En esta operación unitaria no se toma muestra para ningún tipo de análisis, ya que solo es una operación para integración del principio activo, de manera uniforme dentro de la formulación.

7.2.2.4 Criterio de aceptación.

La humedad y temperatura del cuarto productivo deberá ser de máximo 45 % de humedad relativa y temperatura menor a 28 °C.

La velocidad del mezclador es de 16 rpm para MEZ-02. Tiempo de mezclado 5 min.

7.2.3 Tamizado de Materias Primas

7.2.3.1 Objetivo

En esta operación unitaria el objetivo del tamizado es eliminar los grumos existentes en las materias primas, formados por el almacenamiento de las mismas.

7.2.3.2 Metodología.

- 1. Realizar un registro de las condiciones ambientales del cuarto (temperatura y humedad) en el FORVAL-127, durante el tamizado para cada lote.
- 2. Realizar un registro de las variables de operación del tamizado durante el proceso de fabricación para cada lote en el FORVAL-166.

7.2.3.3 Muestreo.

En esta operación unitaria no se toma muestra para ningún tipo de análisis; ya que solo es una operación para la eliminación de grumos en las materias primas.

7.2.3.4 Criterio de aceptación.

La humedad y temperatura del cuarto productivo deberá ser de máximo 45 % de humedad relativa y temperatura menor a 28 °C.

En el tamizado es utilizar malla No. 20.

PAG: 8 **DE: 34**

PROTOCOLO DE TRANSFERENCIA DE TECNOLOGÍA Y VALIDACIÓN DEL PROCESO DE FABRICACIÓN DE PRAVASTATINA SODICA TABLETAS 10 mg

7.2.4 Mezclado inicial

7.2.4.1 Objetivo

Evaluar que en la etapa de mezclado inicial, se obtiene una mezcla homogénea lista para lubricarse.

7.2.4.2 Metodología

- 1. Realizar un registro de las condiciones ambientales del cuarto (temperatura y humedad) en el FORVAL-127, durante el mezclado para cada lote.
- 2. Realizar un registro de las variables de operación del mezclador durante el proceso de fabricación para cada lote en el FORVAL-166.
- 3. Realizar un registro del tiempo de mezclado y velocidad de mezclado durante el proceso del mismo, para cada lote.
- 4. Realizar los muestreos a los minutos 15, 20 y 25; como se indica en la tabla No. 2, con la ayuda de una bayoneta de muestreo; extraer directamente del mezclador las muestras e identificarlas correctamente; indicando el punto de muestreo
- 5. Realizar la valoración del principio activo de los muestreos realizados de acuerdo a la tabla 2 y registrar los resultados en el FORVAL-166.
- 6. Evaluar los resultados obtenidos y emitir una conclusión.

7.2.4.3 Muestreo.

Los muestreos que se realizaran en mezclado inicial en el proceso de fabricación de Pravastatina Sòdica se muestran en la tabla No. 3

Etapa de Proceso	Parámetro para prueba	Frecuencia	Tamaño de Muestra	Diagrama
Mezclado inicial	Valoración del principio activo a diferente tiempos de mezclados	- 15 min. - 20 min. - 25 min.	5 gramos	Muestrear el producto directamente del mezclador. De acuerdo al diagrama ANXVAL- 060

Tabla No. 3 Cuadro de muestreo a realizar durante el mezclado inicial.

PAG: 9 **DE: 34**

PROTOCOLO DE TRANSFERENCIA DE TECNOLOGÍA Y VALIDACIÓN DEL PROCESO DE FABRICACIÓN DE PRAVASTATINA SODICA TABLETAS 10 mg

7.2.3.4 Criterio de aceptación.

La humedad y temperatura del cuarto productivo deberá ser de máximo 45 % de humedad relativa y temperatura menor a 28 °C.

Para la valoración de Pravastatina Sódica los puntos de muestreo deben de cumplir con no menos de 96% y no más de 110% de Pravastatina Sódica (9.6 g/ 100 g a 11.0g/100 g).

Para el mezclador es de 16 rpm para MEZ-02 en velocidad. Y el del tiempo de mezclado para ambos es de 25 min.

7.2.5 Mezclado Final

7.2.5.1 Objetivo

Evaluar que en la etapa de mezclado, se obtiene una mezcla homogénea y lubricada lista para tabletearse.

7.2.5.2 **Metodología.**

- 4. Realizar un registro de las condiciones ambientales del cuarto (temperatura y humedad) en el FORVAL-127, durante el mezclado final para cada lote.
- 5. Realizar un registro de las variables de operación del mezclador durante el proceso de fabricación para cada lote en el FORVAL-166.
- 6. Realizar un registro del tiempo de mezclado y velocidad de mezclado durante el proceso del mismo, para cada lote.
- 7. Realizar un muestreo al minuto 5 como se indica en la tabla No. 3, extraer directamente de la descarga del mezclador a los cuñetes; identificar correctamente las muestras, indicando el punto del muestreo.
- 8. Realizar la valoración del principio activo en las muestras, como se indica en la tabla No.3 y registrar los resultados en el FORVAL-166.
- 9. Evaluar los resultados obtenidos y emitir una conclusión.

7.2.5.3 Muestreo.

Los muestreos que se realizaran durante el mezclado final en el proceso de fabricación de Pravastatina Sódica se muestran en la tabla No. 4.

T24 1		T ~ 1	
Etapa de		Tamaño de	

PAG: 10 DE: 34

PROTOCOLO DE TRANSFERENCIA DE TECNOLOGÍA Y VALIDACIÓN DEL PROCESO DE FABRICACIÓN DE PRAVASTATINA SODICA TABLETAS 10 mg

Proceso	Parámetro para prueba	Frecuencia	Muestra	Diagrama
Mezclado Final	Valoración del principio activo.	Al final del mezclado (5 min)	5 gramos	Muestrear el producto directamente en los cuñetes Parte: a. Baja b. Media c. Alta Durante la descarga del mezclador.

Tabla No. 4 Parámetros de prueba a realizar durante el mezclado final.

7.2.5.4 Criterio de Aceptación.

Para la humedad y temperatura ambiente del cuarto productivo deberá ser de máximo 45 % de humedad relativa y temperatura menor a 28 °C.

Para la valoración de Pravastatina Sódica deberá cumplir con las especificaciones del contenido no menos de 96 % y no más del 110 %.

Para el mezclador es de 16 rpm para MEZ-02 de velocidad. Y el del tiempo de mezclado para ambos es de 5 min.

7.2.6 Tableteado

7.2.6.1 Objetivo.

Evaluar que en la etapa de tableteado, se obtienen tabletas con los atributos de calidad y con una concentración uniforme como producto final.

7.2.6.2 Metodología

- 1. Realizar un registro de las condiciones ambientales del cuarto (temperatura y humedad) en el FORVAL-127, durante el tableteado para cada lote.
- 2. Realizar durante el tableteado de cada lote un registro de los parámetros de operación de la tableteadora y registrar los resultados en FORVAL-166.
- **3.** Realizar el muestreo cada hora para la verificación de las propiedades físicas de acuerdo al formato FORCPR-001 (Carta de control de procesos para tabletas).
- 4. Realizar los muestreos para la valoración del principio activo al inicio, a la mitad y al final del proceso del tableteado, para determinar contenido de principio activo en el producto terminado. Registrar los resultados en el FORVAL-166 y FORVAL-151.
- 5. Evaluar los resultados obtenidos y emitir una conclusión.

PAG: 11 **DE: 34**

PROTOCOLO DE TRANSFERENCIA DE TECNOLOGÍA Y VALIDACIÓN DEL PROCESO DE FABRICACIÓN DE PRAVASTATINA SODICA TABLETAS 10 mg

7.2.6.3 Muestreo.

Los muestreos que se realizaran durante la etapa de tableteado se presentan en la Tabla No. 5

Etapa de	Parámetro		Tamaño de	
Proceso	para prueba	Frecuencia	Muestra	Diagrama
	Valoración de Pravastatina Sódica	InicioMedioFinalDelproceso	20 tabletas	Tomar las tabletas directamente a la salida de la tableteadora.
Tableteado	Dureza Peso promedio de la tableta	Cada hara		
	Espesor	Cada hora	27 tabletas	Tomar las tabletas directamente a
	Friabilidad	Tres	27 tabletas	la salida de la tableteadora
	Desintegración	veces por turno		

Tabla No. 5 Cuadro de muestreos a realizar durante el tableteado.

7.2.6.4 Criterio de Aceptación.

Las tabletas muestreadas durante el proceso de tableteado, se les determinaran pruebas fisicoquímicas mencionadas en la siguiente tabla además de realizar la valoración correspondiente para determinar que la tableta contiene la cantidad de principio activo especificado.

Valoración de Pravastatina:	Contiene no menos del 96 % y no más del 110 % (9.6 mg - 11.0 mg/
	tableta)
Peso promedio:	$100 \text{ mg} \pm 5\% (95 \text{ mg} - 105 \text{ mg})$
Variación de peso:	$DER \le 6\%$
Dureza:	Entre 3 Kg. y 6 Kg.
Desintegración:	No mas de 30 minutos
Friabilidad:	No más de 1%
Espesor	$2.8 \text{ mm} \pm 0.2 \text{ mm}$

7.3 CAPACIDAD DEL PROCESO.

Es definida como la medición de la reproducibilidad inherente de un producto, desarrollado por un proceso. Y esta dada por el Cpk donde

Cpk = min.
$$\{\overline{X} - LSL, \underline{USL} - \overline{X}\}$$

PAG: **12 DE: 34**

PROTOCOLO DE TRANSFERENCIA DE TECNOLOGÍA Y VALIDACIÓN DEL PROCESO DE FABRICACIÓN DE PRAVASTATINA SODICA TABLETAS 10 mg

Donde:

Cpk = Capacidad real del proceso

X = Media de los datos

LSL = Limite inferior de la especificación USL = Limite superior de la especificación

min. = Mínimo

s = Desviación estándar de la muestra

El criterio de aceptación:

Cpk igual a 1 o mayor es indicativo de que el proceso es capaz de cumplir la especificación.

Cpk menor a 1 indicativo de que el proceso no es capaz de cumplir consistentemente los límites de la especificación y que hay un potencial de obtener resultados fuera de especificaciones.

La capacidad del proceso se realizara a la operación unitaria del tableteado, con los datos obtenidos correspondientes al peso promedio.

7.4 METODOLOGIA DE ANALISIS

Las muestras recolectadas para evaluación de propiedades químicas, serán analizadas mediante el método analítico para la determinación de:

- Técnica analítica de la PRAVASTATINA SODICA Tabletas 10 mg. Método analítico: PT-S004 La evaluación de los parámetros físicos serán realizados de acuerdo a los siguientes procedimientos: Prueba de variación de peso: Determinación de peso promedio en tabletas, Código PNOCPR-017

Prueba de espesor: Determinación del espesor en tabletas, Código PNOCPR-018

Prueba de dureza: Determinación de la dureza, Código PNOCPR-020

Prueba de desintegración: Determinación de desintegración, Código PNOCPR-022

Prueba de friabilidad: Determinación de friabilidad, Código PNOCPR-023

8.0 CRITERIOS DE ACEPTACIÓN.

Los criterios de aceptación se incluyen en cada uno de los puntos del desarrollo de actividades.

9.0 DOCUMENTOS FALTANTES.

Si durante la validación hace falta algún documento o no existe, anotarlo en el formato FORVAL-081. Solicitar al responsable de elaboración del documento una fecha de entrega y su firma que se está comprometiendo. Al cumplimiento de esta fecha, sí el documento no esta elaborado y autorizado por los responsables, se levanta una desviación.

10.0DESVIACIONES Y ACCIONES CORRECTIVAS.

PAG: 13 **DE: 34**

PROTOCOLO DE TRANSFERENCIA DE TECNOLOGÍA Y VALIDACIÓN DEL PROCESO DE FABRICACIÓN DE PRAVASTATINA SODICA TABLETAS 10 mg

10.1 Las desviaciones encontradas y acciones correctivas tomadas, durante la validación del proceso de fabricación de Pravastatina Sòdica Tabletas de 10 mg, debe documentarse en el formato FORVAL-045 y en el FORGAR-001.

10.2 Dar seguimiento a la corrección realizada con la finalidad de verificar que se elimine la desviación encontrada. La documentación generada por esta actividad debe anexarse al expediente de la Validación del proceso de fabricación.

11.0CONTROL DE CAMBIOS.

En caso de que el equipo, sistema crítico o proceso sufra de alguna modificación proceder con base al procedimiento de Control de Cambios, PNOVAL-038.

12.0 CRITERIO DE REVALIDACIÓN.

La revalidación de un proceso se hará bajo un programa o cuando sea aplicado un control de cambio que así lo determine.

13.0REFERENCIAS BIBLIOGRAFICAS.

- PLM, Diccionario de Especialidades Farmacéuticas.
- Goodman y Gilman, Bases Farmacológicas de la Terapéutica, Editorial medica panamericana, 9va edición, 1991.
- Procedimiento Maestro de Fabricación de Pravastatina Tabletas 10 mg. DES-F-0253. REV: 04
- Merck Index

14.0DISTRIBUCIÓN

Coordinación de Validación de Procesos.

15.0ANEXOS

10.0711 (E2100)	
Registro de desviaciones	FORVAL-045
Check List de Transferencia de Tecnología	FORVAL-200
• Diagrama de muestreo, mezclado de Pravastatina Sódica	ANXVAL-060
 Condiciones ambientales del área de trabajo 	FORVAL-127
Carta de control de procesos para tabletas	FORCPR-001
Análisis de riesgo	FORVAL-172
• Solicitud de áreas y equipo para ingresar al área de producción	FORVAL-066
Reporte de desviaciones	FORGAR-001
• Documentos faltantes.	FORVAL-081
 Resultados de monitoreo de la validación de procesos 	FORVAL-166
• Resultados de valoración.	FORVAL-151
Resultados de disolución.	FORVAL-201
• Listado de materias primas, equipos e instrumentos utilizados	FORVAL-165
en validación de procesos.	

PAG: 14 **DE: 34**

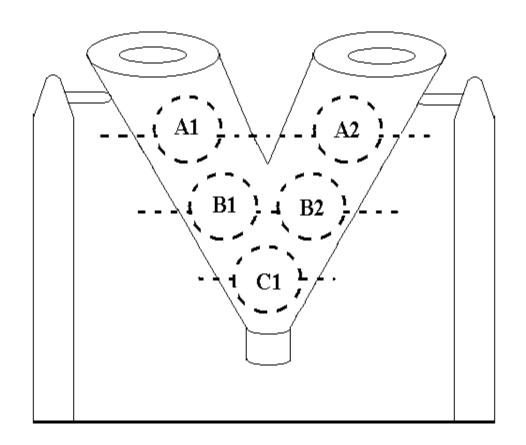
PROTOCOLO DE TRANSFERENCIA DE TECNOLOGÍA Y VALIDACIÓN DEL PROCESO DE FABRICACIÓN DE PRAVASTATINA SODICA TABLETAS 10 mg

16.0 GLOSARIO N/A

CÓDIGO:FORVAL-045 SEGUIMIENTO DE LAS DESVIACIONES **REV: 01** PAG: 1 DE: 1 ÁREA DE VALIDACIÓN CALIFICACIÓN DEL EQUIPO Equipo: Clave: Marca: Modelo: Nombre del Código del área: área: No. de serie: Descripción Código Fecha de Clasif. de la Fecha de la Fecha real de Cumple No de folio de la del compromiso del 1ra Revisión 2da Revisión 3ra Revisión calificación cumplimiento SI/NO Desviación Desviación formato cierre **Observaciones y recomendaciones:** N/A No aplica Toda desviación o anomalia durante la calificación, se debe documentar y reportar al departamento responsable del equipo. REALIZÓ VERIFICO FECHA **FECHA**

PAG: **16 DE: 34**

Check List para laTransferencia de Tecnología	FORVAL-200 REVISIÓN:
Area de Validación	00


DESCRIPCIÓN DE ACTIVIDAD		CUMPLE CON ESPECIFICACIONES	
DESCRIT CION DE ACTIVIDAD	SI	NO	
1. DOCUMENTACION.	<u> </u>	110	
1.1. Objetivo.			
1.2. Información General			
1.3. Formula Maestra			
1.4. Concentración de Forma Farmacéutica			
1.5. Procedimiento de Fabricación			
1.6. Diagrama de Flujo para el proceso de fabricación.			
2. INSTALACIONES.			
2.1. PNO de limpieza.			
2.2.Limpias y aprobado por Control de Calidad.			
2.3. Condiciones especificas.			
3. EQUIPO			
3.1. Equipo especificado en el Procedimiento de Fabricación.			
3.2. PNO de limpiza.			
3.3. PNO de opereración			
3.4. PNO de mantenimiento.			
4. PERSONAL			
4.1. Capacitado.			
4.2. Calificado			
5. PROCESO			
5.1. Surtido de Materias Primas			
5.1.1. Condiciones de cuarto			
5.2. Premezcia de Principio Activo			
5.2.1. Tiempo de mezclado			
5.2.2. Condiciones del cuarto			
5.3. Tamizado			
5.3.1. Numero de malla			
5.3.2. Condiciones de Cuarto			
5.4. Mezclado Inicial			
5.4.1. Tiempo de mezclado			
5.4.2. Velocidad del mezclador.			
5.4.3. Condiciones de Cuarto.			
5.5. Mezclado Final			
5.5.1. Tiempo de mezclado			
5.5.2. Velocidad del mezclador.			
5.5.3. Condiciones de Cuarto.			
5.6. TABLETEADO.			
5.6.1. Velocidad de la tableteadora.			
5.6.2. Condiciones del cuarto.			
		_	

ELABORÓ	REVISÓ

PAG: 17 **DE: 34**

PROTOCOLO DE TRANSFERENCIA DE TECNOLOGÍA Y VALIDACIÓN DEL PROCESO DE FABRICACIÓN DE PRAVASTATINA SODICA TABLETAS 10 mg

	CÒDIGO: ANXVAL-060
DIAGRAMA DE MUESTREO DE LA MEZCLADORA EN "V"	REV.: 00
VALIDACIÓN	PÁG.: 1 DE: 1

PUNTOS DE MUESTREO:

ZONA DE MUESTREO DE LA PARTE SUPERIOR (ARRIBA): A1, A2 ZONA DE MUESTREO DE LA PARTE INTERMEDIA (EN MEDIO): B1, B2 ZONA DE MUESTREO DE LA PARTE INFERIOR (ABAJO): C1

REFERENCIA DE ORIGEN: PRTVAL-057

PAG: **18 DE: 34**

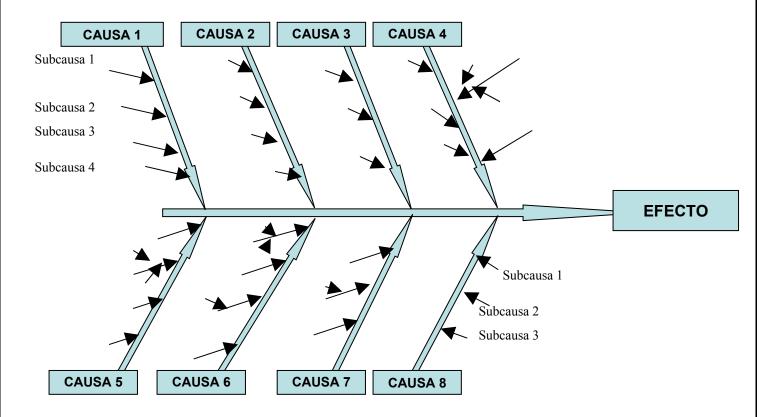
		CO	NDICIONES A	MBIENTAL	LES DEL ÁRI	EA DE TRABAJ	0			CÓDIGO:FOR REV: 02	VAL-127
ÁREA DI	E VALIDACI	ÓN								,	
				CAI	IFICACIÓN	DE DESEMPE	ÑO				
Equipo / l	Proceso / Siste	ema:	Clave:			Marca:			Modelo:		
No. de ser	·i		Localización:					Código d	el área:		
		4									
Producto	:			Concentra	ción:		Lote:		No. orden:		
		ACTIVIDAD					CRITERIO				
DURANT DESARRO	E CIERTO TI OLLO DEL PI	MPERATURA Y EMPO DE MON ROCESO DE FAI	ITOREO DEL	ALTIVA	TOMARON		MONITOREO	DEL PROC	ESO DE FAB	DES RELATIVAS BRICACIÓN DE A	
Descripcio Operación	on: n Unitaria:	,		Operación	Unitaria:			Operació	n Unitaria:		
FECHA	Hora hrs.	Temperatur a °C	H. R. %	FECHA	Hora hrs.	Temperatur a °C	H. R. %	FECHA	Hora hrs.	Temperatur a °C	H. R. %
				-							
Operació	n Unitaria:			Operación	Unitaria:			Operación Unitaria:			
FECHA	Hora hrs.	Temperatur a °C	H. R. %	FECHA	Hora hrs.	Temperatur a °C	H. R. %	FECHA	Hora hrs.	Temperatur a °C	H. R. %
0 1/	TT */ *			0 ''	TT */			0 ''	TT *4 *		
Operacion	n Unitaria:			Operación	Unitaria:			Operacio	n Unitaria:		
FECHA	Hora hrs.	Temperatur a °C	H. R. %	FECHA	Hora hrs.	Temperatur a °C	H. R. %	FECHA	Hora hrs.	Temperatur a °C	H. R. %
				-			 	-			
		L									
Observac	iones y recom	endaciones:									
responsabl Utilice el 1	iación o anom le del equipo. número de for o y el número		ŕ		7 1	departamento otar el número de	hoja				
		REALIZÓ Validación		FE	СНА		VERIFI J. A. Cali			FECH	A
										<u> </u>	

PAG: 19 **DE: 34**

NOMBRE GE	NÉRICO:	in and the	CONCENT	RACIÓN	LOTE:	cianir	CANTIDAD);	MAQUINA:	artes a	CLAVE SAP:	- constitution
PESO (mg)		MINIMO:	000		CENTRAL:			MÁXIMO:			PROMEDIO:	
FECHA												
HORA												
X1												
X2										1		
X3									-	-		
(4										-		
(5												
(6										1		
(7										-		
(8									2-1			
(9							12.02.40.500	4-4-				
(10										-		
PROM										-		
NSPECTOR												
ESPESOR (mm) i	MÍNIMO:	ingq		CENTRAL:	dicAM_		MÁXIMO:	100000		PROMEDIO:	(com)
ECHA												
ORA												
1												
2												
NSPECTOR												
DUREZA (k	g) 1	MÍNIMA:	1099		MÁXIMA:				aniar kan		PROMEDIO:	(Ma)
			1		T T							
ECHA												
IORA										+		
1						_				-		
2					19-					-		
3				112						+		
5										_		
6										-		
7										_		
										7-		
The second secon												
8					-							
9												1
9										-		
9 10 PROM												
PROM SPECTOR			Day.		MÁXIMO:						PROMEDIO:	
B 9 10 PROM SPECTOR DESINTEGR		:01038	PROM		MÁXIMO:						PROMEDIO:	40,189
0 PROM SPECTOR SESINTEGR		:01931	loas		MÁXIMO:						PROMEDIO:	молна
D PROM SPECTOR PESINTEGR		:Olgan	9099		MÁXIMO:						PROMEDIO:	MC PA
PROM SPECTOR DESINTEGR		:DIGSN	1079		MÁXIMO:						PROMEDIO:	
PROM SPECTOR DESINTEGR		:01038	099		MÁXIMO:			,			PROMEDIO:	40.738
O PROM SPECTOR CHA	ACION	:0igak	IOR9		MÁXIMO:						PROMEDIO:	MODES!
PROM SPECTOR CHA GRA SPECTOR CHA GRA GRIABILIDA	ACION	:01032	1089 088					`				
B B B B B B B B B B B B B B B B B B B	ACION	10(03)	3089 088					`				
9	ACION	OLGAN	089					`				

PAG: 20 DE: 34

PROTOCOLO DE TRANSFERENCIA DE TECNOLOGÍA Y VALIDACIÓN DEL PROCESO DE FABRICACIÓN DE PRAVASTATINA SODICA TABLETAS 10 mg


ANÁLISIS DE RIESGO

Mediante este diagrama se evaluaran los factores críticos que influyen en las operaciones unitarias que conforman el proceso de fabricación del producto.

DIAGRAMA DE ISHIKAWA

ANÁLISIS DE RIESGO PARA PROCESOS DE FABRICACIÓN DE

(Anotar y realizar el análisis de acuerdo a la vía de fabricación mencionada en la tabla 1)

FABRICACIÓN POR VÍA HÚMEDA	
FABRICACIÓN VÍA SECA POR COMPACTACIÓN	
FABRICACIÓN VÍA SECA POR COMPRESIÓN DIRECTA	
FABRICACIÓN VÍA ENCAPSULADO	
FABRICACIÓN PARA LÍQUIDOS NO ESTÉRILES	
FABRICACIÓN PARA SEMISÓLIDOS	

Tabla 1. Vías de fabricación existentes en Proteín Apotex

ANÁLISIS DE LAS CAUSAS

PAG: 21 **DE: 34**

PROTOCOLO DE TRANSFERENCIA DE TECNOLOGÍA Y VALIDACIÓN DEL PROCESO DE FABRICACIÓN DE PRAVASTATINA SODICA TABLETAS 10 mg

Para llevar a cabo el proceso de validación en la fabricación de los productos, es importante conocer estos factores de riesgo, para verificarlos durante la validación del proceso.

Enseguida enlistaremos las causas principales que pueden afectar el proceso de fabricación y la calidad del producto.

CAUSAS Y SU EFECTO

Causa 1:	
Subcausas	Actividad
Subcausa 1	
Subcausa 2	
Subcausa 3	
Subcausa 4	
Subcausa 5	
Causa 2:	
Subcausas	Actividad
Subcausa 1	
Subcausa 2	
Subcausa 3	
Subcausa 4	
Causa 3:	
Subcausas	Actividad
Subcausa 1	
Subcausa 2	
Subcausa 3	
Subcausa 4	
Subcausa 5	

PAG: **22 DE: 34**

PROTOCOLO DE TRANSFERENCIA DE TECNOLOGÍA Y VALIDACIÓN DEL PROCESO DE FABRICACIÓN DE PRAVASTATINA SODICA TABLETAS 10 mg

Causa 4:	
Subcausas	Actividad
Subcausa 1	
Subcausa 2	
Subcausa 3	
Subcausa 4	
Subcausa 5	
Causa 5:	
Subcausas	Actividad
Subcausa 1	
Subcausa 2	
Subcausa 3	
Subcausa 4	
Subcausa 5	

DETERMINACIÓN DE LAS VARIABLES A CONTROLAR

Una vez que se clasificaron todas las causas principales que pueden afectar el proceso de fabricación de diferentes formas farmacéuticas; podemos concluir que existen algunas causas que presentan factores de riesgo considerables en la fabricación del producto, con los cuales deberemos tener mas cuidado y tratar de controlarlos.

Para poder identificar la forma correcta en que se podrían disminuir estos factores a los que hacemos mención es necesario trabajar en forma conjunta con los departamentos involucrados en la calidad del producto (Producción, Control de Calidad, Investigación y Desarrollo y Aseguramiento de Calidad).

El área de validación deberá verificar durante la validación del proceso, que cada una de las operaciones se lleve a cabo bajo procedimiento y evaluara la reducción de los riesgos en el proceso de fabricación.

RESUMEN DE CAUSAS Y SU CONTROL POR EL DEPARTAMENTO DE VALIDACIÓN

PAG: **23 DE: 34**

Causa 1:	Control de las variables	
Subcausa 1		
Subcausa 2		
Causa 2:		
Subcausa 1		
Subcausa 2		
Causa 3:		
Subcausa 1		
Subcausa 2		
Causa 4:		
Subcausa 1		
Subcausa 2		
Causa 5:		
Subcausa 1		
ELABORÓ	REVISÓ	AUTORIZÓ
C.V. Procesos	J. A Calidad	G. A Calidad

PAG: **24 DE: 34**

			DE ÁREA Y/O EQU	IPO		CÓDIGO: FORVAL-066 REV:02
	Ál	REA D	E VALIDACIÓN			
ÁREA:				FEC C ÓD I	CHA:	
EQUIPO:						
PARA EFEC	CTUAR:					
	CANTIDAD		EQUIPO Y/O MATI	ERIAL		
COND	DICIONES NECESARIA	AS DE	L ÁREA Y/O EQUIPO	SOLI	CITADO	
DEL	L QUE AUTORIZA EL ÁREA Y/O EQUIPO (Nombre y fecha)	USO	FECHA PARA EL USO DEL ÁREA Y/O EQUIPO	USC	RA PARA EL O DEL ÁREA O EQUIPO	
					HRS.	
OBSERVACI OSE REQUIERE DICHA VERIFI	DEL ÁREA DE PRODU	CCIÓN	N Y EL EQUIPO EL TII	EMPO :	NECESARIO PA	ARA REALIZAR
R	EALIZÓ		Vo. Bo.		F	RECIBIDO
A. Va	alidación		J. A. Calidad			

PAG: 25 **DE: 34**

	DOCU	JMENTOS FALTA			CÓDIGO:FORVAL- 081 REV: 01
		AREA D	E VALIDACIÓN IÓN DE OPERAC	IÓN	
Equipo:	Clave:	CALIFICACI	Marca:	Mode	elo:
No. de serie:	Nombre del área:			Código de área:	
Descripción del documento	Código del formato	Fecha de la Calificación	Fecha compromiso	Cumple Sí/No	Observaciones
Observaciones y re	comendacione	3:			
			,		
Toda desviación o ar responsable del equi Utilice el número de consecutivo y el nún de hojas totales utilizadas.	po. formatos neces		·		
REALIZ	zó	FECHA	VERI	FICÓ	FECHA
A. Valida	ción		J.A. C	alidad	

PAG: **26 DE: 34**

				CÓDIGO: FORVAL-166
	RESULTADOS DEL MONI	TOREO DE LA VALIDACIÓN	DE PROCESOS	
				REVISIÓN: 00
	I	AREA VALIDACIÓN		PÁG.: 1 DE: 6
PRODUCTO:		No. DE LOTE:		TAMAÑO DE LOTE:
CONCENTRACIÓN:		FECHA:		No. DE ORDEN:
	TAMI	ZADO INICIAL		
ACTIVIDAD EN ESTA OPERACIÓN UNITARIA: ANÁLISIS. II. VERIFICAR EL NÚ TAMIZADO. III. VERIFICAR LA H HORA DE INICIO DE LA OPERACI HORA DE TERMINO DE LA OPERA	MERO DE MALLA CON EL Q UMEDAD Y TEMPERATURA ÓN Y EL OPERADOR QUE LA	OUE SE REALIZAR EL A DEL ÁREA. IV.ANOTAR LA	I. N/A II. EL NÚ TAMIZAR LA MA DEL No ENCONTRARSE INTEGRIDAD. II SER MENOR A MENOR A	CRIO DE ACEPTACIÓN MERO DE MALLA PARA ATERIA PRIMA DEBERÁ SER Y DEBERÁ EN CONDICIONES DE II. LA TEMPERATURA DEBERA Y LA HUMEDAD PARA AUTORIZAR EL CESO. IV. N/A V. N/A
INICIO		OPERADOR (ES):		
RPM DE RODILLO DE		RPM DE RODILLO DE		
TAMIZADOR: NOMBRE DEL CUARTO:		TAMIZADOR: CÓDIGO DEL CUARTO:		
TERMINO:		SUPERVISOR (ES):		
Observaciones:		501 ER VISOR (ES).		
Observaciones.				
VERIFICO/ FECHA:		SUPERVISÓ/FECHA:		
	· · · · · · · · · · · · · · · · · · ·			
	MEZC	LADO INICIAL		
REALÍZAR VALORACIÓN DE PRIM PARA DETERMINACIÓN DE TAM. COMPACTADA Y HUMEDAD. III. MEZCLADORES. IV. VERIFICAR MEZCLADO. V. VERIFICAR LA H HORA DE INICIO DE LA OPERACI LA HORA DE TERMINO DE LA OP	OX. 10 gr. DE MUESTRA A L DO AL DIAGRMA DE MUEST NCIPIO ACTIVO. II. TOMAR AÑO DE PARTÍCULA, DENSI DETERMINAR EL PORCEN' LAS RPM DEL MEZCLADOR UMEDAD Y TEMPERATURA ÓN Y EL OPERADOR QUE L.	OS MIN, REO ANXVAL-060 PARA UNA MUESTRA DE 100 gr. DAD APARENTE, TAJE UTILIZADO DE LOS Y EL TIEMPO DE A DEL ÁREA. VI.ANOTAR LA A REALIZA. VII.ANOTAR	MEZCLADO DEE ESPECIFICACIO MARBETE. II TAMAÑO DE PA ANOTARAN COI CARACTERÍZAR PORCENTAJE DI EXCEDER DEL 6 TOTAL DEL MEZCLADOR M 34 PARA MEZCL MEZCLADOR M DE MIDEBERA SER MI MENOR A	CRITERIO DE AS OBTENIDAS DURANTE EL BERÁN CUMPLI R CON LAS NES MARCADAS EN EL L LA DISTRIBUCIÓN DEL RTÍCULA Y DENSIDADES SE MO DATO INFORMATIVO PARA R EL PRODUCTO. III. EL EL MEZCLADOR NO DEBERÁ 10 AL 80 % DEL VOLUMEN ZCLADOR. IV. LAS RPM DEL EBBRÁN SER DE 30 PARA EL VI., 16 PARA MEZCLADOR MV2, ADOR MV6 Y 22 PARA V7. Y EL TIEMPO DEBERÁ SER L V. LA TEMPERATURA ENOR A Y LA HUMEDAD PARA AUTORIZAR EL INICIO VI. N/A VII. N/A
INICIO		OPERADOR (ES):		
NOMBRE DEL CUARTO:		CÓDIGO DEL CUARTO: TIEMPO TOTAL DE		
TERMINO:		MEZCLADO:		
SUPERVISOR (ES):				
Observaciones:				
		<u> </u>		
VERIFICO/ FECHA:		SUPERVISÓ/FECHA:		

PAG: **27 DE: 34**

	RESULTA	DOS DEL MON Pi	ITORE(ROCES		ALIDACI	IÓN DE	CÓDIGO: FO	
							KEVISION. 00	U
		AREA	VALID	ACIÓN			PÁG.: 2	
PRODUCTO:				No. DE I	LOTE:		TAMAÑO	DE LOTE:
CONCENTRACIÓN:				FECH			No. DE (ORDEN:
		M	$\mathbf{E} \mathbf{Z} \mathbf{C}$	LADO			L	
RPM DE					CENTAJI			
MEZCLADOR:		DECIH T	A DOC D	E GRANUL	ZCLADO			
MALLA No.		KESUL 1 A	<u>ADUS D</u>	<u>PE GRANUL</u> 	LOMETR	IA 		
% RETENIDO:								
DENSIDAD					DEN	SIDAD		
APARENTE:						ACTADA:		
HUMEDAD:								
Observaciones:				•				
				,				
VERIFICO/ FECHA:			SUP	ERVISÓ/FE	CHA:			
		DECLU	TADOG	DEVALO	D A CIÓN			
		RESUL	IADUS	S DE VALO	KACION			
TIEMPO DE MEZCLA MIN.		TIEMP	O DE M	IEZCLADO	N	AIN.	_	MEZCLADO MIN.
		TIEMP	O DE M	IEZCLADO	N	AIN.	_	
		TIEMP	O DE M	IEZCLADO	N	MIN.	_	
		TIEMP	O DE M	IEZCLADO	N	MIN.	_	
		TIEMP	O DE M	IEZCLADO	N	AIN.	_	
MIN.			O DE M	IEZCLADO	N	MIN.		
PROMEDIO:		TIEMP(PROMEDIO:	O DE M	IEZCLADO	N	AIN.	PROMEDIO:	MIN.
MIN.					N	MIN.	PROMEDIO:	
PROMEDIO: TIEMPO DE MEZCLA		PROMEDIO:			N		PROMEDIO:	MIN. MEZCLADO
PROMEDIO: TIEMPO DE MEZCLA		PROMEDIO:			N		PROMEDIO:	MIN. MEZCLADO
PROMEDIO: TIEMPO DE MEZCLA		PROMEDIO:			N		PROMEDIO:	MIN. MEZCLADO
PROMEDIO: TIEMPO DE MEZCLA		PROMEDIO:			N		PROMEDIO:	MIN. MEZCLADO
PROMEDIO: TIEMPO DE MEZCLA MIN.		PROMEDIO: TIEMPO I			N		PROMEDIO: TIEMPO DE	MIN. MEZCLADO
PROMEDIO: TIEMPO DE MEZCLA		PROMEDIO: TIEMPO I PROMEDIO:	DE MEZ	ZCLADO		MIN.	PROMEDIO: TIEMPO DE PROMEDIO:	MIN. MEZCLADO MIN.
PROMEDIO: TIEMPO DE MEZCLA MIN.	ADO	PROMEDIO: TIEMPO I PROMEDIO:	DE MEZ	ZCLADO	ECIFICAC	MIN.	PROMEDIO: TIEMPO DE PROMEDIO: ARCADAS EN E	MIN. MEZCLADO MIN.
PROMEDIO: TIEMPO DE MEZCLA MIN. PROMEDIO:	ADO	PROMEDIO: TIEMPO I PROMEDIO:	DE MEZ	CLADO	ECIFICAC	MIN.	PROMEDIO: TIEMPO DE PROMEDIO: ARCADAS EN E	MIN. MEZCLADO MIN.
PROMEDIO: TIEMPO DE MEZCLA MIN. PROMEDIO: CRITERIO DE ACE	ADO	PROMEDIO: TIEMPO I PROMEDIO:	DE MEZ	CLADO	ECIFICAC	MIN.	PROMEDIO: TIEMPO DE PROMEDIO: ARCADAS EN E	MIN. MEZCLADO MIN.
PROMEDIO: TIEMPO DE MEZCLA MIN. PROMEDIO: CRITERIO DE ACE	ADO	PROMEDIO: TIEMPO I PROMEDIO:	DE MEZ	CLADO	ECIFICAC _% AL	MIN.	PROMEDIO: TIEMPO DE PROMEDIO: ARCADAS EN E	MIN. MEZCLADO MIN.

PAG: **28 DE: 34**

						CÓDIGO: FORVAL-1	66
		RESULTADOS DEL M	ONITOREO DE LA VALI	DACIÓN D	E		
			PROCESOS				
						REVISIÓN: 00	
			,			,	
		AR	EA VALIDACIÓN			PÁG.: 3	DE: 6
PRODUCTO:			No. DE LOTE:	Ļ		TAMAÑO DE LOTE:	
CONCENTRACIÓN	N:		FECHA:			No. DE ORDEN:	
4.0	THE LEGISLAND		COMPACTA		CDITTE	NO DE ACEPTA CIÓN	
	TIVIDAD	NO CE DE ALIZA TOM	I.	1	_	RIO DE ACEPTACIÓN	JAD DEDENDED AN
		VARIABLES DE OPE	IA DE MUESTRA. II.			ARIABLES A DETERMIN DUCTO A COMPACTAI	
			Y TEMPERATURA DEL	1		DEBERA SER MENOR A	
		E INICIO Y TERMINO I				OR A PARA AUT	
		ALIZO LA OPERACIÓ		DEL PROC			Older III EE II VICIO
	(= = = =		MER COMP				
INICIO			OPERADOR (ES				
TERMINO:			SUPERVISOR (E				
NOMBRE DEL			-				
CUARTO:			CÓDIGO DEL CUA	RIO:			
			ESPECIFICACIONES				
VELOCIDAD DE	PRESIÓN	AMPERAJE DE	VELOCIDAD DE	AMPERA	JE DE	PRESIÓN DE	
RODILLO	DE	RODILLO	TORNILLO	TORNI		SELLOS	No. DE MALLA
RODILLO	RODILLO	RODILLO	ALIMENTADOR	ALIMENT	ADOR	LATERALES	
			DATOS REALES				1
VELOCIDAD DE	PRESIÓN	AMPERAJE DE	VELOCIDAD DE	AMPERA		PRESIÓN DE	N DEMAIL
RODILLO	DE RODILLO	RODILLO	TORNILLO	TORNI		SELLOS LATERALES	No. DE MALLA
	KODILLO		ALIMENTADOR	ALIMENT	ADUK	LATERALES	
VERIFICO/ FECHA	.		SUPERVISÓ/FECHA:				
VERH ICO/ I ECHA		SEGU		C T Λ C	LON		
INICIO		<u> </u>	OPERADOR (ES		101		
TERMINO:			SUPERVISOR (E				
NOMBRE DEL			_				
CUARTO:			CÓDIGO DEL CUA	RTO:			
			ESPECIFICACIONES				
VELOCIDAD DE	PRESIÓN	AMDEDATE DE	VELOCIDAD DE	AMPERA	JE DE	PRESIÓN DE	
VELOCIDAD DE RODILLO	DE	AMPERAJE DE RODILLO	TORNILLO	TORNI	LLO	SELLOS	No. DE MALLA
KODILLO	RODILLO	KODILLO	ALIMENTADOR	ALIMENT	ADOR	LATERALES	
			DATOS REALES			ļ	
VELOCIDAD DE	PRESIÓN	AMPERAJE DE	VELOCIDAD DE	AMPERA		PRESIÓN DE	
RODILLO	DE	RODILLO	TORNILLO	TORNI		SELLOS	No. DE MALLA
	RODILLO		ALIMENTADOR	ALIMENT	ADOR	LATERALES	
The Dieto Control	 		GLIDEDA HOÓ ÆEGYA :				
VERIFICO/ FECHA	.:		SUPERVISÓ/FECHA:				

PAG: **29 DE: 34**

							CÓDIGO: FORVAL-10	66
					,			
	RES	ULTADOS DEI		NITOREO DE LA VALID	ACIÓN DI	E		
]	PROCESOS			DELLICIÓN: 00	
							REVISIÓN: 00	
			4 DE	A XVAI ED A CTÓN			nía t	DE (
DD OD UCITO			AKE	A VALIDACIÓN			PÁG.: 4	DE: 6
PRODUCTO:				No. DE LOTE:			TAMAÑO DE LOTE:	
CONCENTRACIÓN:	T .	MIZADO	. 10	FECHA:			No. DE ORDEN:	
ACTIV		MIZADO	F	I N A L		CDIT	 ERIO DE ACEPTACIÓ	N
REALIZAR MUESTREO PA		EDMINIACIÓN E	T TA		I. N/A	CKII	EKIO DE ACEPTACIO	IN .
. II. DETERMINAR LAS F						шт	A TEMPERATURA DEBI	ERA SER MENOR A
DETERMINAR LA HUMEI							JMEDAD MENOR A	PARA
LA HORA DE INICIO Y TE				V. ANOTAR EL			L INICIO DE LA OPERAC	
OPERADOR QUE REALIZ					IV. N/A		N/A	
INICIO				OPERADOR (ES				
TEMPERATURA:				,				
HUMEDAD:								
NOMBRE DEL		•		CÓDIGO DEL CUA	ото			
CUARTO:				CODIGO DEL CUAI	KIO:			
RPM DE RODILLO DE				RPM DE RODILLO	DE			
TAMIZADOR:				TAMIZADOR:				
No. DE MALLA				SUPERVISOR (ES	S):			
TERMINO:								
		RE	SULT	TADOS DE GRANULOM	ETRIA			
MALLA No.								
% RETENIDO:								
			_	,				
VERIFICO/ FECHA:				SUPERVISÓ/FECHA:			,	
			M		I N A L			
ACTIV	/IDAD			EZCLADO FI	(RIO DE ACEPTACIÓN	
ACTIVI. EN ESTA OPERACIÓN	UNITARI		Á SI	EZCLADO FI SE OBTIENE UN	I. LAS M	UESTI	RAS OBTENIDAS DURA	NTE EL MEZCLADO
ACTIV I. EN ESTA OPERACIÓN MEZCLADO UNIFORME	UNITARIA DEL ACT	IVO CON SUS E	Á SI XCIP	EZCLADO F SE OBTIENE UN IENTES Y	I. LAS M DEBERÁ	IUESTI N CUM	RAS OBTENIDAS DURA MPLI R CON LAS ESPECI	NTE EL MEZCLADO IFICACIONES
ACTIV I. EN ESTA OPERACIÓN MEZCLADO UNIFORME LUBRICANTES POR LO T	UNITARIA DEL ACT ANTO SE	IVO CON SUS E TOMARÁ APR	Á SI XCIP OX. 1	E Z C L A D O F D SE OBTIENE UN IENTES Y 0 gr. DE MUESTRA AL	I. LAS M DEBERÁI MARCAE	IUESTI N CUM DAS EN	RAS OBTENIDAS DURA MPLI R CON LAS ESPECI N EL MARBETE. II. I	NTE EL MEZCLADO IFICACIONES LAS RPM DEL
ACTIV I. EN ESTA OPERACIÓN MEZCLADO UNIFORME LUBRICANTES POR LO T MINUTO UNA VE	UNITARIA DEL ACT ANTO SE EZ TERMI	IVO CON SUS E TOMARÁ APR NADO EL MEZO	Á SI XCIP OX. 1 CLAD	E Z C L A D O F D SE OBTIENE UN IENTES Y 0 gr. DE MUESTRA AL O DE ACUERDO AL	I. LAS M DEBERÁI MARCAE MEZCLA	IUESTI N CUM DAS EN DOR I	RAS OBTENIDAS DURA MPLI R CON LAS ESPECI N EL MARBETE. II. I DEBERÁN SER DE 30 PA	NTE EL MEZCLADO IFICACIONES LAS RPM DEL IRA EL
ACTIVI. EN ESTA OPERACIÓN MEZCLADO UNIFORME LUBRICANTES POR LO TMINUTO UNA VEDIAGRAMA DE MUESTRI	UNITARIA DEL ACT ANTO SE EZ TERMI EO ANXV	IVO CON SUS E TOMARÁ APR NADO EL MEZO AL-060 PARA I	Á SI XCIP OX. 1 CLAD REAL	E Z C L A D O F D SE OBTIENE UN IENTES Y 0 gr. DE MUESTRA AL O DE ACUERDO AL IZAR VALORACIÓN DE	I. LAS M DEBERÁI MARCAE MEZCLA MEZCLA	IUESTI N CUM DAS EN DOR I DOR N	RAS OBTENIDAS DURA MPLI R CON LAS ESPECI N EL MARBETE. II. I DEBERÁN SER DE 30 PA MV1, 16 PARA MEZCLA	NTE EL MEZCLADO IFICACIONES LAS RPM DEL JRA EL JOOR MV2, 34 PARA
I. EN ESTA OPERACIÓN MEZCLADO UNIFORME LUBRICANTES POR LO T. MINUTO UNA VE DIAGRAMA DE MUESTRI PRINCIPIO ACTIVO. IL.	UNITARIA DEL ACT ANTO SE EZ TERMI EO ANXV VERIFICA	IVO CON SUS E TOMARÁ APR NADO EL MEZO AL-060 PARA I AR LAS RPM DE	Á SI XCIP OX. 1 CLAD REAL IL ME	E Z C L A D O F D SE OBTIENE UN IENTES Y 0 gr. DE MUESTRA AL O DE ACUERDO AL IZAR VALORACIÓN DE ZCLADOR Y EL	I. LAS M DEBERÁ MARCAD MEZCLA MEZCLA MEZCLA	IUESTI N CUM DAS EN DOR I DOR N	RAS OBTENIDAS DURA MPLI R CON LAS ESPECI N EL MARBETE. II. I DEBERÁN SER DE 30 PA MV1, 16 PARA MEZCLA MV6 Y 22 PARA MEZCLA	INTE EL MEZCLADO IFICACIONES LAS RPM DEL IRA EL IDOR MV2, 34 PARA ADOR MV7. Y EL
I. EN ESTA OPERACIÓN MEZCLADO UNIFORME LUBRICANTES POR LO TMINUTO UNA VEDIAGRAMA DE MUESTRI PRINCIPIO ACTIVO. II. TIEMPO DE MEZCLADO.	UNITARIA DEL ACT ANTO SE EZ TERMI EO ANXV VERIFICA III. VER	IVO CON SUS E TOMARÁ APR NADO EL MEZO (AL-060 PARA I AR LAS RPM DE IFICAR LA HUN	Á SI EXCIP OX. 1 CLAD REAL IL ME MEDA	E Z C L A D O F D SE OBTIENE UN IENTES Y 0 gr. DE MUESTRA AL O DE ACUERDO AL IZAR VALORACIÓN DE ZCLADOR Y EL ID Y TEMPERATURA	I. LAS M DEBERÁ MARCAD MEZCLA MEZCLA MEZCLA TIEMPO	IUESTI N CUM DAS EN DOR I DOR M DOR M	RAS OBTENIDAS DURA MPLI R CON LAS ESPECI N EL MARBETE. II. I DEBERÁN SER DE 30 PA MV1, 16 PARA MEZCLA MV6 Y 22 PARA MEZCLA RÁ SER DE MII	NTE EL MEZCLADO IFICACIONES LAS RPM DEL IRA EL IDOR MV2, 34 PARA ADOR MV7. Y EL N III. LA
I. EN ESTA OPERACIÓN MEZCLADO UNIFORME LUBRICANTES POR LO TMINUTO UNA VEDIAGRAMA DE MUESTRI PRINCIPIO ACTIVO. II. TIEMPO DE MEZCLADO.	UNITARIA DEL ACT ANTO SE EZ TERMI EO ANXV VERIFICA III. VER IR LA HO	IVO CON SUS E TOMARÁ APR NADO EL MEZO AL-060 PARA I AR LAS RPM DE IFICAR LA HUN RA DE INICIO I	Á SI EXCIP OX. 1 CLAD REAL EL ME MEDA DE LA	E Z C L A D O F D SE OBTIENE UN HENTES Y O gr. DE MUESTRA AL O DE ACUERDO AL HIZAR VALORACIÓN DE ZCLADOR Y EL LO Y TEMPERATURA OPERACIÓN Y EL	I. LAS M DEBERÁ MARCAD MEZCLA MEZCLA MEZCLA TIEMPO TEMPERA	IUESTI N CUM DAS EN DOR I DOR M DOR M DEBER ATUR	RAS OBTENIDAS DURA MPLI R CON LAS ESPECI N EL MARBETE. II. I DEBERÁN SER DE 30 PA MV1, 16 PARA MEZCLA MV6 Y 22 PARA MEZCLA RÁ SER DEMII A DEBERA SER MENOR	NTE EL MEZCLADO IFICACIONES LAS RPM DEL IRA EL IDOR MV2, 34 PARA ADOR MV7. Y EL N III. LA IA Y LA
ACTIVI. EN ESTA OPERACIÓN MEZCLADO UNIFORME LUBRICANTES POR LO T. MINUTO UNA VEDIAGRAMA DE MUESTRI PRINCIPIO ACTIVO. II. TIEMPO DE MEZCLADO. DEL ÁREA. IV.ANOTA	UNITARIA DEL ACT ANTO SE EZ TERMI EO ANXV VERIFICA III. VER IR LA HO	IVO CON SUS E TOMARÁ APR NADO EL MEZO AL-060 PARA I AR LAS RPM DE IFICAR LA HUN RA DE INICIO I	Á SI EXCIP OX. 1 CLAD REAL EL ME MEDA DE LA	E Z C L A D O F D SE OBTIENE UN HENTES Y O gr. DE MUESTRA AL O DE ACUERDO AL HIZAR VALORACIÓN DE ZCLADOR Y EL LO Y TEMPERATURA OPERACIÓN Y EL	I. LAS M DEBERÁI MARCAE MEZCLA MEZCLA MEZCLA TIEMPO TEMPER HUMEDA	IUESTI N CUM DAS EN DOR I DOR N DOR N DEBER ATURA AD ME	RAS OBTENIDAS DURA MPLI R CON LAS ESPECI N EL MARBETE. II. I DEBERÁN SER DE 30 PA MV1, 16 PARA MEZCLA MV6 Y 22 PARA MEZCLA RÁ SER DEMII A DEBERA SER MENOR	NTE EL MEZCLADO IFICACIONES LAS RPM DEL IRA EL IDOR MV2, 34 PARA ADOR MV7. Y EL N. III. LA IA Y LA UTORIZAR EL
I. EN ESTA OPERACIÓN I MEZCLADO UNIFORME LUBRICANTES POR LO T MINUTO UNA VE DIAGRAMA DE MUESTRI PRINCIPIO ACTIVO. IL. TIEMPO DE MEZCLADO. DEL ÁREA. IV.ANOTA OPERADOR QUE LA REA	UNITARIA DEL ACT ANTO SE EZ TERMI EO ANXV VERIFICA III. VER IR LA HO	IVO CON SUS E TOMARÁ APR NADO EL MEZO AL-060 PARA I AR LAS RPM DE IFICAR LA HUN RA DE INICIO I	Á SI EXCIP OX. 1 CLAD REAL EL ME MEDA DE LA	E Z C L A D O F D SE OBTIENE UN HENTES Y O gr. DE MUESTRA AL O DE ACUERDO AL HIZAR VALORACIÓN DE ZCLADOR Y EL LO Y TEMPERATURA OPERACIÓN Y EL	I. LAS M DEBERÁ MARCAE MEZCLA MEZCLA MEZCLA TIEMPO TEMPER HUMEDA INICIO D	IUESTI N CUM DAS EN DOR I DOR N DOR N DEBER ATURA AD ME	RAS OBTENIDAS DURA MPLI R CON LAS ESPECI N EL MARBETE. II. I DEBERÁN SER DE 30 PA MV1, 16 PARA MEZCLA MV6 Y 22 PARA MEZCLA RÁ SER DE MII A DEBERA SER MENOR NOR A PARA A	NTE EL MEZCLADO IFICACIONES LAS RPM DEL IRA EL IDOR MV2, 34 PARA ADOR MV7. Y EL N. III. LA IA Y LA UTORIZAR EL
ACTIVIA DE LUBRICANTES POR LO TOMINUTO UNA VEDIAGRAMA DE MUESTRI PRINCIPIO ACTIVO. IL. TIEMPO DE MEZCLADO. DEL ÁREA. IV.ANOTA OPERADOR QUE LA REA OPERACIÓN UNITARIA.	UNITARIA DEL ACT ANTO SE EZ TERMI EO ANXV VERIFICA III. VER IR LA HO	IVO CON SUS E TOMARÁ APR NADO EL MEZO AL-060 PARA I AR LAS RPM DE IFICAR LA HUN RA DE INICIO I	Á SI EXCIP OX. 1 CLAD REAL EL ME MEDA DE LA	SE Z C L A D O F D SE OBTIENE UN IENTES Y 0 gr. DE MUESTRA AL O DE ACUERDO AL IZAR VALORACIÓN DE ZCLADOR Y EL D Y TEMPERATURA OPERACIÓN Y EL RA DE TERMINO DE LA	I. LAS M DEBERÁ MARCAE MEZCLA MEZCLA MEZCLA TIEMPO TEMPER HUMEDA INICIO D	IUESTI N CUM DAS EN DOR I DOR N DOR N DEBER ATURA AD ME	RAS OBTENIDAS DURA MPLI R CON LAS ESPECI N EL MARBETE. II. I DEBERÁN SER DE 30 PA MV1, 16 PARA MEZCLA MV6 Y 22 PARA MEZCLA RÁ SER DE MII A DEBERA SER MENOR NOR A PARA A	NTE EL MEZCLADO IFICACIONES LAS RPM DEL IRA EL IDOR MV2, 34 PARA ADOR MV7. Y EL N. III. LA IA Y LA UTORIZAR EL
ACTIVIA DE LA CENTRA DE MEZCLADO UNIFORME LUBRICANTES POR LO TEMINUTO UNA VEDIAGRAMA DE MUESTRI PRINCIPIO ACTIVO IL TIEMPO DE MEZCLADO. DEL ÁREA. IV.ANOTA OPERADOR QUE LA REA OPERACIÓN UNITARIA.	UNITARIA DEL ACT ANTO SE EZ TERMI EO ANXV VERIFICA III. VER IR LA HO	IVO CON SUS E TOMARÁ APR NADO EL MEZO AL-060 PARA I AR LAS RPM DE IFICAR LA HUN RA DE INICIO I	Á SI EXCIP OX. 1 CLAD REAL EL ME MEDA DE LA	SE Z C L A D O F D SE OBTIENE UN IENTES Y 0 gr. DE MUESTRA AL O DE ACUERDO AL IZAR VALORACIÓN DE ZCLADOR Y EL D Y TEMPERATURA OPERACIÓN Y EL RA DE TERMINO DE LA	I. LAS M DEBERÁ MARCAE MEZCLA MEZCLA MEZCLA TIEMPO TEMPER HUMEDA INICIO D	IUESTI N CUM DAS EN DOR I DOR N DOR N DEBER ATURA AD ME	RAS OBTENIDAS DURA MPLI R CON LAS ESPECI N EL MARBETE. II. I DEBERÁN SER DE 30 PA MV1, 16 PARA MEZCLA MV6 Y 22 PARA MEZCLA RÁ SER DE MII A DEBERA SER MENOR NOR A PARA A	NTE EL MEZCLADO IFICACIONES LAS RPM DEL IRA EL IDOR MV2, 34 PARA ADOR MV7. Y EL N. III. LA IA Y LA UTORIZAR EL
ACTIVI. EN ESTA OPERACIÓN MEZCLADO UNIFORME LUBRICANTES POR LO TIMINUTO UNA VEDIAGRAMA DE MUESTRI PRINCIPIO ACTIVO. II. TIEMPO DE MEZCLADO. DEL ÁREA. IV.ANOTA OPERADOR QUE LA REA OPERACIÓN UNITARIA. INICIO TEMPERATURA: HUMEDAD: NOMBRE DEL	UNITARIA DEL ACT ANTO SE EZ TERMI EO ANXV VERIFICA III. VER IR LA HO	IVO CON SUS E TOMARÁ APR NADO EL MEZO AL-060 PARA I AR LAS RPM DE IFICAR LA HUN RA DE INICIO I	Á SI EXCIP OX. 1 CLAD REAL EL ME MEDA DE LA	SE OBTIENE UN IENTES Y 0 gr. DE MUESTRA AL O DE ACUERDO AL IZAR VALORACIÓN DE ZCLADOR Y EL AD Y TEMPERATURA OPERACIÓN Y EL RA DE TERMINO DE LA	I. LAS M DEBERÁ MARCAD MEZCLA MEZCLA MEZCLA TIEMPO TEMPER HUMEDA INICIO D	IUESTI N CUM DAS EN DOR I DOR N DOR N DEBER ATURA AD ME	RAS OBTENIDAS DURA MPLI R CON LAS ESPECI N EL MARBETE. II. I DEBERÁN SER DE 30 PA MV1, 16 PARA MEZCLA MV6 Y 22 PARA MEZCLA RÁ SER DE MII A DEBERA SER MENOR NOR A PARA A	NTE EL MEZCLADO IFICACIONES LAS RPM DEL IRA EL IDOR MV2, 34 PARA ADOR MV7. Y EL N. III. LA IA Y LA UTORIZAR EL
ACTIVI. EN ESTA OPERACIÓN MEZCLADO UNIFORME LUBRICANTES POR LO TIMINUTO UNA VEDIAGRAMA DE MUESTRI PRINCIPIO ACTIVO. II. TIEMPO DE MEZCLADO. DEL ÁREA. IV.ANOTA OPERADOR QUE LA REA OPERACIÓN UNITARIA. INICIO TEMPERATURA: HUMEDAD: NOMBRE DEL CUARTO:	UNITARIA DEL ACT ANTO SE EZ TERMI EO ANXV VERIFICA III. VER IR LA HO	IVO CON SUS E TOMARÁ APR NADO EL MEZO AL-060 PARA I AR LAS RPM DE IFICAR LA HUN RA DE INICIO I	Á SI EXCIP OX. 1 CLAD REAL LL ME MEDA DE LA	SE Z C L A D O F D SE OBTIENE UN IENTES Y 0 gr. DE MUESTRA AL O DE ACUERDO AL IZAR VALORACIÓN DE ZCLADOR Y EL D Y TEMPERATURA OPERACIÓN Y EL RA DE TERMINO DE LA OPERADOR (ES) CÓDIGO DEL CUA	I. LAS M DEBERÁT MARCAE MEZCLA MEZCLA MEZCLA TIEMPO T TEMPERA INICIO D):	IUESTI N CUM DAS EN DOR I DOR N DOR N DEBER ATURA AD ME	RAS OBTENIDAS DURA MPLI R CON LAS ESPECI N EL MARBETE. II. I DEBERÁN SER DE 30 PA MV1, 16 PARA MEZCLA MV6 Y 22 PARA MEZCLA RÁ SER DE MII A DEBERA SER MENOR NOR A PARA A	NTE EL MEZCLADO IFICACIONES LAS RPM DEL IRA EL IDOR MV2, 34 PARA ADOR MV7. Y EL N. III. LA IA Y LA UTORIZAR EL
ACTIVI. EN ESTA OPERACIÓN MEZCLADO UNIFORME LUBRICANTES POR LO TIMINUTO UNA VEDIAGRAMA DE MUESTRI PRINCIPIO ACTIVO. II. TIEMPO DE MEZCLADO. DEL ÁREA. IV.ANOTA OPERADOR QUE LA REA OPERACIÓN UNITARIA. INICIO TEMPERATURA: HUMEDAD: NOMBRE DEL	UNITARIA DEL ACT ANTO SE EZ TERMI EO ANXV VERIFICA III. VER IR LA HO	IVO CON SUS E TOMARÁ APR NADO EL MEZO AL-060 PARA I AR LAS RPM DE IFICAR LA HUN RA DE INICIO I	Á SI EXCIP OX. 1 CLAD REAL LL ME MEDA DE LA	SE Z C L A D O F D SE OBTIENE UN IENTES Y 0 gr. DE MUESTRA AL O DE ACUERDO AL IZAR VALORACIÓN DE ZCLADOR Y EL ID Y TEMPERATURA OPERACIÓN Y EL RA DE TERMINO DE LA OPERADOR (ES CÓDIGO DEL CUAL SUPERVISOR (ES	I. LAS M DEBERÁT MARCAE MEZCLA MEZCLA MEZCLA TIEMPO T TEMPER HUMEDA INICIO D): RTO: S):	IUESTI N CUM DAS EN DOR I DOR N DOR N DEBER ATURA AD ME	RAS OBTENIDAS DURA MPLI R CON LAS ESPECI N EL MARBETE. II. I DEBERÁN SER DE 30 PA MV1, 16 PARA MEZCLA MV6 Y 22 PARA MEZCLA RÁ SER DE MII A DEBERA SER MENOR NOR A PARA A	NTE EL MEZCLADO IFICACIONES LAS RPM DEL IRA EL IDOR MV2, 34 PARA ADOR MV7. Y EL N. III. LA IA Y LA UTORIZAR EL
ACTIVIA I. EN ESTA OPERACIÓN IMEZCLADO UNIFORME LUBRICANTES POR LO TIMINUTO UNA VEDIAGRAMA DE MUESTRI PRINCIPIO ACTIVO. IL TIEMPO DE MEZCLADO. DEL ÁREA. IV.ANOTA OPERADOR QUE LA REA OPERACIÓN UNITARIA. INICIO TEMPERATURA: HUMEDAD: NOMBRE DEL CUARTO: RPM DE MEZCLADOR:	UNITARIA DEL ACT ANTO SE EZ TERMI EO ANXV VERIFICA III. VER IR LA HO	IVO CON SUS E TOMARÁ APR NADO EL MEZO AL-060 PARA I AR LAS RPM DE IFICAR LA HUN RA DE INICIO I	Á SI EXCIP OX. 1 CLAD REAL LL ME MEDA DE LA	SE OBTIENE UN IENTES Y 0 gr. DE MUESTRA AL O DE ACUERDO AL IZAR VALORACIÓN DE ZCLADOR Y EL AD Y TEMPERATURA OPERACIÓN Y EL RA DE TERMINO DE LA OPERADOR (ES CÓDIGO DEL CUAI SUPERVISOR (ES TIEMPO TOTAL	I. LAS M DEBERÁT MARCAE MEZCLA MEZCLA MEZCLA TIEMPO T TEMPER HUMEDA INICIO D): RTO: S):	IUESTI N CUM DAS EN DOR I DOR N DOR N DEBER ATURA AD ME	RAS OBTENIDAS DURA MPLI R CON LAS ESPECI N EL MARBETE. II. I DEBERÁN SER DE 30 PA MV1, 16 PARA MEZCLA MV6 Y 22 PARA MEZCLA RÁ SER DE MII A DEBERA SER MENOR NOR A PARA A	NTE EL MEZCLADO IFICACIONES LAS RPM DEL IRA EL IDOR MV2, 34 PARA ADOR MV7. Y EL N. III. LA IA Y LA UTORIZAR EL
ACTIVI. EN ESTA OPERACIÓN MEZCLADO UNIFORME LUBRICANTES POR LO TIMINUTO UNA VEDIAGRAMA DE MUESTRI PRINCIPIO ACTIVO. II. TIEMPO DE MEZCLADO. DEL ÁREA. IV.ANOTA OPERADOR QUE LA REA OPERACIÓN UNITARIA. INICIO TEMPERATURA: HUMEDAD: NOMBRE DEL CUARTO: RPM DE MEZCLADOR: TERMINO:	UNITARIA DEL ACT ANTO SE EZ TERMI EO ANXV VERIFICA III. VER IR LA HO	IVO CON SUS E TOMARÁ APR NADO EL MEZO AL-060 PARA I AR LAS RPM DE IFICAR LA HUN RA DE INICIO I	Á SI EXCIP OX. 1 CLAD REAL LL ME MEDA DE LA	SE Z C L A D O F D SE OBTIENE UN IENTES Y 0 gr. DE MUESTRA AL O DE ACUERDO AL IZAR VALORACIÓN DE ZCLADOR Y EL ID Y TEMPERATURA OPERACIÓN Y EL RA DE TERMINO DE LA OPERADOR (ES CÓDIGO DEL CUAL SUPERVISOR (ES	I. LAS M DEBERÁT MARCAE MEZCLA MEZCLA MEZCLA TIEMPO T TEMPER HUMEDA INICIO D): RTO: S):	IUESTI N CUM DAS EN DOR I DOR N DOR N DEBER ATURA AD ME	RAS OBTENIDAS DURA MPLI R CON LAS ESPECI N EL MARBETE. II. I DEBERÁN SER DE 30 PA MV1, 16 PARA MEZCLA MV6 Y 22 PARA MEZCLA RÁ SER DE MII A DEBERA SER MENOR NOR A PARA A	NTE EL MEZCLADO IFICACIONES LAS RPM DEL IRA EL IDOR MV2, 34 PARA ADOR MV7. Y EL N. III. LA IA Y LA UTORIZAR EL
ACTIVIA I. EN ESTA OPERACIÓN IMEZCLADO UNIFORME LUBRICANTES POR LO TIMINUTO UNA VEDIAGRAMA DE MUESTRI PRINCIPIO ACTIVO. IL TIEMPO DE MEZCLADO. DEL ÁREA. IV.ANOTA OPERADOR QUE LA REA OPERACIÓN UNITARIA. INICIO TEMPERATURA: HUMEDAD: NOMBRE DEL CUARTO: RPM DE MEZCLADOR:	UNITARIA DEL ACT ANTO SE EZ TERMI EO ANXV VERIFICA III. VER IR LA HO	IVO CON SUS E TOMARÁ APR NADO EL MEZO AL-060 PARA I AR LAS RPM DE IFICAR LA HUN RA DE INICIO I	Á SI EXCIP OX. 1 CLAD REAL LL ME MEDA DE LA	SE OBTIENE UN IENTES Y 0 gr. DE MUESTRA AL O DE ACUERDO AL IZAR VALORACIÓN DE ZCLADOR Y EL AD Y TEMPERATURA OPERACIÓN Y EL RA DE TERMINO DE LA OPERADOR (ES CÓDIGO DEL CUAI SUPERVISOR (ES TIEMPO TOTAL	I. LAS M DEBERÁT MARCAE MEZCLA MEZCLA MEZCLA TIEMPO T TEMPER HUMEDA INICIO D): RTO: S):	IUESTI N CUM DAS EN DOR I DOR N DOR N DEBER ATURA AD ME	RAS OBTENIDAS DURA MPLI R CON LAS ESPECI N EL MARBETE. II. I DEBERÁN SER DE 30 PA MV1, 16 PARA MEZCLA MV6 Y 22 PARA MEZCLA RÁ SER DE MII A DEBERA SER MENOR NOR A PARA A	NTE EL MEZCLADO IFICACIONES LAS RPM DEL IRA EL IDOR MV2, 34 PARA ADOR MV7. Y EL N. III. LA IA Y LA UTORIZAR EL
ACTIVI. EN ESTA OPERACIÓN MEZCLADO UNIFORME LUBRICANTES POR LO TIMINUTO UNA VEDIAGRAMA DE MUESTRI PRINCIPIO ACTIVO. II. TIEMPO DE MEZCLADO. DEL ÁREA. IV.ANOTA OPERADOR QUE LA REA OPERACIÓN UNITARIA. INICIO TEMPERATURA: HUMEDAD: NOMBRE DEL CUARTO: RPM DE MEZCLADOR: TERMINO:	UNITARIA DEL ACT ANTO SE EZ TERMI EO ANXV VERIFICA III. VER IR LA HO	IVO CON SUS E TOMARÁ APR NADO EL MEZO AL-060 PARA I AR LAS RPM DE IFICAR LA HUN RA DE INICIO I	Á SI EXCIP OX. 1 CLAD REAL LL ME MEDA DE LA	SE OBTIENE UN IENTES Y 0 gr. DE MUESTRA AL O DE ACUERDO AL IZAR VALORACIÓN DE ZCLADOR Y EL AD Y TEMPERATURA OPERACIÓN Y EL RA DE TERMINO DE LA OPERADOR (ES CÓDIGO DEL CUAI SUPERVISOR (ES TIEMPO TOTAL	I. LAS M DEBERÁT MARCAE MEZCLA MEZCLA MEZCLA TIEMPO T TEMPER HUMEDA INICIO D): RTO: S):	IUESTI N CUM DAS EN DOR I DOR N DOR N DEBER ATURA AD ME	RAS OBTENIDAS DURA MPLI R CON LAS ESPECI N EL MARBETE. II. I DEBERÁN SER DE 30 PA MV1, 16 PARA MEZCLA MV6 Y 22 PARA MEZCLA RÁ SER DE MII A DEBERA SER MENOR NOR A PARA A	NTE EL MEZCLADO IFICACIONES LAS RPM DEL IRA EL IDOR MV2, 34 PARA ADOR MV7. Y EL N. III. LA IA Y LA UTORIZAR EL
ACTIVIA I. EN ESTA OPERACIÓN IMEZCLADO UNIFORME LUBRICANTES POR LO TIMINUTO UNA VEDIAGRAMA DE MUESTRI TIEMPO DE MEZCLADO. DEL ÁREA. IV.ANOTA OPERADOR QUE LA REA OPERACIÓN UNITARIA. INICIO TEMPERATURA: HUMEDAD: NOMBRE DEL CUARTO: RPM DE MEZCLADOR: TERMINO: Observaciones:	UNITARIA DEL ACT ANTO SE EZ TERMI EO ANXV VERIFICA III. VER IR LA HO	IVO CON SUS E TOMARÁ APR NADO EL MEZO AL-060 PARA I AR LAS RPM DE IFICAR LA HUN RA DE INICIO I	Á SI EXCIP OX. 1 CLAD REAL LL ME MEDA DE LA	SE OBTIENE UN IENTES Y 0 gr. DE MUESTRA AL O DE ACUERDO AL IZAR VALORACIÓN DE ZCLADOR Y EL AD Y TEMPERATURA OPERACIÓN Y EL RA DE TERMINO DE LA OPERADOR (ES CÓDIGO DEL CUAI SUPERVISOR (ES TIEMPO TOTAL MEZCLADO:	I. LAS M DEBERÁT MARCAE MEZCLA MEZCLA MEZCLA TIEMPO T TEMPER HUMEDA INICIO D): RTO: S):	IUESTI N CUM DAS EN DOR I DOR N DOR N DEBER ATURA AD ME	RAS OBTENIDAS DURA MPLI R CON LAS ESPECI N EL MARBETE. II. I DEBERÁN SER DE 30 PA MV1, 16 PARA MEZCLA MV6 Y 22 PARA MEZCLA RÁ SER DE MII A DEBERA SER MENOR NOR A PARA A	NTE EL MEZCLADO IFICACIONES LAS RPM DEL IRA EL IDOR MV2, 34 PARA ADOR MV7. Y EL N. III. LA IA Y LA UTORIZAR EL
ACTIVI. EN ESTA OPERACIÓN MEZCLADO UNIFORME LUBRICANTES POR LO TIMINUTO UNA VEDIAGRAMA DE MUESTRI PRINCIPIO ACTIVO. II. TIEMPO DE MEZCLADO. DEL ÁREA. IV.ANOTA OPERADOR QUE LA REA OPERACIÓN UNITARIA. INICIO TEMPERATURA: HUMEDAD: NOMBRE DEL CUARTO: RPM DE MEZCLADOR: TERMINO:	UNITARIA DEL ACT ANTO SE EZ TERMI EO ANXV VERIFICA III. VER IR LA HO	IVO CON SUS E TOMARÁ APR NADO EL MEZO AL-060 PARA I AR LAS RPM DE IFICAR LA HUN RA DE INICIO I	Á SI EXCIP OX. 1 CLAD REAL LL ME MEDA DE LA	SE OBTIENE UN IENTES Y 0 gr. DE MUESTRA AL O DE ACUERDO AL IZAR VALORACIÓN DE ZCLADOR Y EL AD Y TEMPERATURA OPERACIÓN Y EL RA DE TERMINO DE LA OPERADOR (ES CÓDIGO DEL CUAI SUPERVISOR (ES TIEMPO TOTAL	I. LAS M DEBERÁT MARCAE MEZCLA MEZCLA MEZCLA TIEMPO T TEMPER HUMEDA INICIO D): RTO: S):	IUESTI N CUM DAS EN DOR I DOR N DOR N DEBER ATURA AD ME	RAS OBTENIDAS DURA MPLI R CON LAS ESPECI N EL MARBETE. II. I DEBERÁN SER DE 30 PA MV1, 16 PARA MEZCLA MV6 Y 22 PARA MEZCLA RÁ SER DE MII A DEBERA SER MENOR NOR A PARA A	NTE EL MEZCLADO IFICACIONES LAS RPM DEL IRA EL IDOR MV2, 34 PARA ADOR MV7. Y EL N. III. LA IA Y LA UTORIZAR EL

PAG: **30 DE: 34**

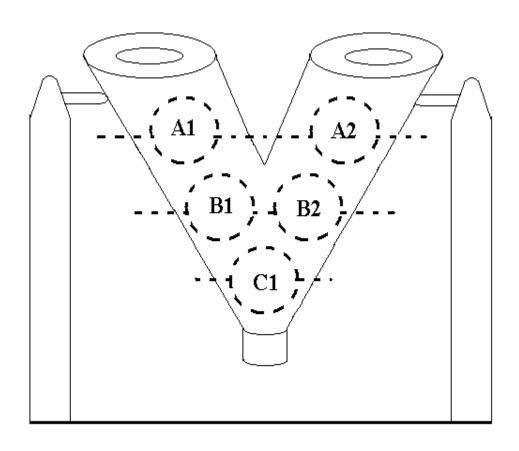
						CÓDIGO: FORVAL-1	66
	RESULTADOS DEL MONITOREO DE LA VALIDACIÓN DE						
	PROCESOS					DEVICIÓN, 00	
						REVISIÓN: 00	
	AREA VALIDACIÓN			PÁG.:5	DE: 6		
PRODUCTO:	No. DE LOTE:				-	TAMAÑO DE LOTE:	DE; 0
CONCENTRACIÓN:			FECHA:			No. DE ORDEN:	
CONCENTRACION:	MEZCL	4 D O 1				NO. DE ORDEN:	
	MEZCL		LTADOS DE VALORAC	IÓN			
			OLTADOS DE VALORAC		IN.		
		1 ILENII	O DE MEZCLADO		1111.		
PROMEDIO:		PROMEDIO	D:		PRON	MEDIO:	
CRITERIO DE ACE	EDTACIÓN.	DEBE CUN	MPLIR CON LAS ESPECIF	ICACION	ES MA	RCADAS EN EL MARBE	TE
CKITEKIO DE ACE	ET TACION:		% AL% D				
Observaciones:			<u> </u>				
	1		,				
VERIFICO/ FECHA:			SUPERVISÓ/FECHA:				
			TABLETEADO)			
ACTIV		TADIETAC	DOD MINITED OFF		CRI	TERIO DE ACEPTACIÓ	N
I.DETERMINAR LAS RPM PROPORCIONE LA TABL				I. N/A	II.LA T	TEMPERATURA DEBERA	A SER MENOR A
TEMPERATURA DEL ÁRI						UMEDAD MENOR A	
PARA LA VERIFICACIÓN						L INICIO DE LA OPERA	
EL FORMATO FORCPR-00						CACIÓN EN PROPIEDAD	
INICIO, INTERMIDIO Y FI	INAL DE PROCESO	O PARA REA	ALIZAR VALORACIÓN	DEPENDE DEL PRODUCTO Y SERÁN TOMADAS LAS QUE ESPECIFICA LA ORDEN DE FABRICACIÓN IV. LA			
DE PRÍNCIPIO ACTIVO V	. ANOTAR LA HO	RA DE INIC	IO Y TERMINO DEL	CONCENTRACIÓN DE PRINCIPIO ACTIVO DEBE SER L			
PROCESO. VI. ANOTAR I	EL OPERADOR QU	JE REALIZO	LA OPERACIÓN			A EN EL MARBETE V.	
UNITARIA.					TCAD	A EN EL MARDETE V.	IVA VI.IVA
INICIO			OPERADOR (ES):			
TEMPERATURA:							
HUMEDAD:							
NOMBRE DEL			CÓDIGO DEL CUA	RTO:			
CUARTO: RPM DE					_		
TABLETEADORA:			TABLETAS POR MIN	NUTO:			
SUPERVISOR (ES):			TERMINO:				
SUFERVISOR (ES):		DECI	JLTADOS DE VALORAC	IÓN			
INICIO DEL TABI	FTFADO		RMEDIO DEL TABLETE			TERMINO DEL TAI	RIFTEADO
INICIO DEL TABI	LETEADO	INTER	WIEDIO DEL TABLETE	ньо		TERMINO DEL TAI	DLETEADO
		1					
PROMEDIO:		PROMEDIO):		PROM	MEDIO:	
Observaciones:							
	•						
VERIFICO/ FECHA:			SUPERVISÓ/FECHA:				

PAG: **31 DE: 34**

		RESULTADOS DEL MONITOREO DE LA VALIDACIÓN DE PROCESOS					CÓDIGO: FORVAL-166 REVISIÓN: 00	
			AREA	VALIDACIÓN			PÁG.: 6	DE: 6
PRODUCTO:				No. DE LOTE:		TAMAÑO	DE LOTE:	
CONCENTRACIÓN	:			FECHA:		No. DE	ORDEN:	
			7	Г А В L Е Т Е А D O				
				PRUEBAS FISICAS				
No. LOTE	PESO PROMEDIO DE DUREZA		PROMEDIO DE ESPESOR	PROMEDIO DE FRIABILIDAD	OBSERVACIONES		CIONES	
CRITERIO DE ACEPTACIÓN								
OBSERVACIÓN: Estas variables se medirán cada hora a excepción de friabilidad y desintegración que se realizarán tres veces por turno. Aquí sólo se reportará el promedio de las evaluaciones; la totalidad de los datos evaluados aparecen en el FORCPR-001								
Observaciones:								
VERIFICO/ FECHA:				SUPERVISÓ/FECHA:				

PAG: **32 DE: 34**

	RESULTADOS DE	LA VALORACIÓN	CÓDIGO: FORVAL- 151 REV: 01
	VA	LIDACIÓN DE PROCESOS	
NOMBRE COMERCIAL:			
NO. LOTE:	F. FARMACÈUTICA	:	
TAMAÑO DEL LOTE:	FECHA DE FABRICA	ACIÒN:	
PESO TABLETAS:	FECHA DE CADUCI	DAD:	
MUESTREO:	PROCESO:		
EQUIPO:	TIEMPO:		
CRITERIO DE ACEPTACIÓN:			
PUNTOS DE	[]		9/
MUESTREO	mg / TABLETA		9/0
,			
OBSERVACIONES:			
DICTAMEN:			
R	EALIZÓ	RI	EVISO
A. VA	ALIDACIÓN	J. A. (CALIDAD

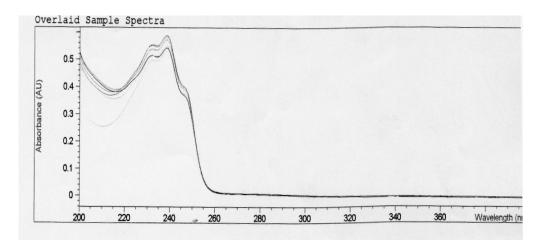

PAG: **33 DE: 34**

RESULTADOS DE TRANSFEREI	CÓDIGO: FORVAL-201 REV: 00							
Resultados de disolución								
NOMBRE COMERCIAL:								
NO. LOTE:	F. FARMACÈUT	ICA:						
TAMAÑO DEL LOTE:	FECHA DE FABI							
PESO TABLETAS:	FECHA DE CAD	UCIDAD:						
MUESTREO:	PROCESO:							
EQUIPO: CRITERIO DE ACEPTACIÓN:	TIEMPO:							
CRITERIO DE ACEPTACION:								
No. DE VASO	ABSORBANCIA	%						
OBSERVACIONES:								
DICTAMEN:	· · · · · · · · · · · · · · · · · · ·							
D. C. L. C. L. C.								
REALIZÓ		REVISO						
A. VALIDACIÓN		J. A. CALIDAD						
A. VALIDACION	ı	J. A. CALIDAD						

PAG: **34 DE: 34**

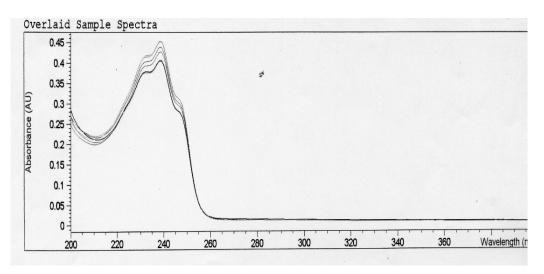
							CÓDIGO: FORVAL-1	65
	LICTADO DE MATERIA C DRIMA C. FOLUNGO, INCEDIMENTOS V DEDCONALI							
	LISTADO DE MATERIAS PRIMAS, EQUIPOS, INSTRUMENTOS Y PERSONAL INVOLUCRADO EN VALIDACIÓN DE PROCESOS							
	INVOLUCRADO EN VALIDACION DE PROCESOS						REVISIÓN: 00	
		A	AREA VALIDACIÓ	N			PÁG.: 1	DE:1
PRODUCTO:				TAMAÑO DE				
CONCENTRACIÓN:			Lote 1:		Lote 2:		Lote 3:	
Materia prima Utilizada	Proveedor de M.P.	M.P. Aprobada	Cantidad	No. de lote	Cantidad	No. de Lote:	Cantidad	No. de Lote:
						-		
						1		
Observed :						1		
Observaciones:								
				-			-	•
VERIFICO/ FECHA:		SUP	ERVISÓ/FECHA:					
VERMITE OF TECHNIC			Dit (100/1 Doin).			-		
			CÓDIGO DE					
EQUIPO	CÓDIGO	CÓDIGO DE AREA	PROTOCOLO DE CALIFICACIÓN	CÓDIGO D OPER	DE PNO DE ACÓN	CÓI	DIGO DE PNO DE MAN	TENIMIENTO
						-		
						_		
						<u> </u>		
						†		
								;
Observaciones:								
The Dieta Control			EDITION TELEVITY					
VERIFICO/ FECHA:		SUP	ERVISÓ/FECHA:			-		,
				VICE	NCIA DE			
	INSTRUME	NTO	CÓDIGO		BRACÓN		UBICACIÓN	
								_
						1		_
						+		-
						+-		\dashv
Observaciones:								
Observaciones.								
VERIFICO/ FECHA:		SUP	ERVISÓ/FECHA:					

DIAGRAMA DE MUESTREO DE LA MEZCLADORA EN "V"


PUNTOS DE MUESTREO:

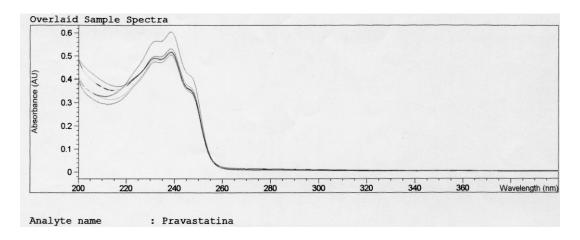
ZONA DE MUESTREO DE LA PARTE SUPERIOR (ARRIBA): A1, A2 ZONA DE MUESTREO DE LA PARTE INTERMEDIA (EN MEDIO): B1, B2 ZONA DE MUESTREO DE LA PARTE INFERIOR (ABAJO): C1

Página 1 de 3


Datos crudos y resultados gráficos de Transferencia de Tecnología. Disolución.

LOTE No. 1

#	Nombre de muestra	Dilut. Factor	Pravastatina(\$)	Abs<237nm>
1	Vaso 1	900.00000	105.29000	0.53239
2	Vaso 2	900.00000	112.89000	0.57081
3	Vaso 3	900.00000	113.98000	0.57633
4	Vaso 4	900.00000	102.65000	0.51902
5	Vaso 5	900.00000	110.59000	0.55919
6	Vaso 1	900.00000	106.31000	0.53756


LOTE No. 2

Datos crudos y resultados gráficos de Transferencia de Tecnología. Disolución.

#	Nombre de muestra	Dilut. Factor	Pravastatina(%)	Abs<237nm>
1	Vaso 1	900.00000	85.5\$800	0.39718
2	Vaso 2	900.00000	89.67400	0.41614
3	Vaso 3	900.00000	92.07300	0.42727
4	Vaso 4	900.00000	95.23900	0.44197
5	Vaso 5	900.00000	85.00200	0.39446
6	Vaso 1	900.00000	94.87400	0.44027

LOTE No.3

#	Nombre de muestra	Dilut. Factor	Pravastatina(%)	Abs<237nm>
1	Vaso 1	900.00000	93.14200	0.50381
2	Vaso 2	900.00000	95.93600	0.51892
3	Vaso 3	900.00000	109.25000	0.59092
4	Vaso 4	900.00000	93.88600	0.50783
5	Vaso 5	900.00000	91.10300	0.49278
6	Vaso 1	900.00000	93.81700	0.50746

Página 3 de 3

Datos crudos y resultados gráficos de Transferencia de Tecnología. Disolución.

FORMULA PARA REALIZAR EL CÁLCULO DE Q.

$$\%Disuelto - \Pr{avastatinaS\'odica} = \frac{ABSMtra}{ABSSref} \times \frac{PSref}{50mL} \times \frac{5mL}{100mL} \times \frac{900mL}{Tableta} \times \frac{Tableta}{10mg} \times POTSref$$

Donde:

ABSMtra= Absorbancia de la preparación de la muestra.

ABSSref = Absorbancia de la preparación de la referencia.

PSref= Peso de muestra de referencia (mg).

Tableta= Una unidad de dosis.

10mg= Contenido teórico de Pravastatina Sódica/Tableta

POTSref= Potencia de la referencia de Pravastatina sódica (%)

Página 1 de 5

ANEXO 9

							PRAV	AST	ATIN <i>A</i>	10 m	ıg			
No.	DE LO	TE:			1					ТІРО	DE PRI	JEBA:	:	PESO
	MAÑO		OTE:		20	01.00 K	<u></u> ζg		F	. FAR	MACE	UTIC	A	TABLETAS
no. Mtr	DATO (mg)	no. Mtr	DATO (mg)	no. Mtr	DATO (mg)	no. Mtr	DATO (mg)	no. Mtr	DATO (mg)	no. Mtr	DATO (mg)	no. Mtr	DATO (mg)	OBSERVACIONES
1	100	51	99	101	99	151	99	201	102	251	101	301	100	Límite Superior:
3	101	52 53	102 99	102	99	152	102	202	101	252	103	302	99 103	105 mg Límite Central:
4	102 101	54	99	103 104	103 100	153 154	98 98	203	100 101	253 254	101 103	303 304	103	100 mg
5	100	55	101	105	103	155	100	205	100	255	101	305	101	Límite Inferior:
6	101	56	99	106	99	156	101	206	99	256	102	306	101	95 mg
7	101	57	99	107	99	157	100	207	102	257	101	307	99	Promedio:
8	101	58	100	108	99	158	99	208	99	258	102	308	99	100.18 mg
9	101	59	99	109	99	159	102	209	100	259	102	309	100	Desv. Estándar:
10	102 99	60	103 100	110	100 99	160	101	210	101 99	260	102	310	100	0.977
11	99	61	99	111	100	161 162	98 101	211	99	261 262	101 102	311 312	101 100	
13	99	63	99	113	99	163	100	213	100	263	101	313	101	
14	98	64	100	114	98	164	99	214	98	264	104	314	100	
15	99	65	100	115	99	165	100	215	101	265	99	315	100	
16 17	100 98	66	99 99	116 117	98 100	166 167	101 100	216 217	100 99	266 267	101 100	316 317	99 100	
18	100	68	100	117	100	168	99	217	104	268	100	318	100	
19	98	69	99	119	99	169	100	219	101	269	101	319	101	
20	99	70	99	120	98	170	96	220	100	270	99	320	100	
21	99	71	98	121	100	171	99	221	100	271	103	321		
22	100 100	72 73	99 99	122 123	97 97	172 173	100 100	222	102 101	272 273	102 103	322 323	ł	
24	101	74	98	124	100	174	100	224	100	274	103	324	i	
25	99	75	103	125	100	175	101	225	102	275	102	325	i i	
26	98	76	99	126	100	176	100	226	103	276	104	326		
27	101 100	77 78	103 98	127 128	99 99	177 178	100 101	227 228	103 100	277 278	102 103	327 328	-	
29	98	79	103	128	99	179	99	229	100	279	103	329	ł	
30	99	80	98	130	99	180	101	230	101	280	103	330	i i	
31	98	81	97	131	101	181	100	231	101	281	102	331]	
32	99	82	98	132	101	182	99	232	99	282	100	332	Į l	
33	98 99	83 84	98 98	133 134	101 100	183 184	100 99	233	100 102	283 284	101 101	333 334	1	
35	99	85	97	135	100	185	101	235	99	285	101	335	i	
36	102	86	97	136	100	186	99	236	99	286	101	336]	
37	99	87	98	137	101	187	102	237	100	287	101	337		
38	100	88	97	138	100	188	101	238	101	288	101	338		
39 40	99 101	89 90	99 97	139	99 100	189 190	98 98	239	100	289 290	101	339 340	1	
41	100	91	100	141	103	191	101	241	102	291	100	341	1	
42	100	92	101	142	100	192	99	242	103	292	99	342]	
43	103	93	102	143	96	193	99	243	100	293	101	343		
44	102 99	94 95	99 98	144 145	100 101	194 195	99 99	244 245	101 101	294 295	101 103	344 345	1	
46	100	96	100	146	99	196	99	246	101	296	103	346	i	
47	101	97	103	147	99	197	99	247	99	297	100	347]	
48	103	98	101	148	101	198	100	248	100	298	100	348		
49 50	100	99 100	103	149	100 102	199 200	100	249	103 99	299	101	349		
30	104	100	103	150	102	200	100	250	99	300	100	350		

ANEXO 9	Página 2 de 5
Validación de proc	esos.
Datos crudos y gráficas de p PRAVASTATINA 1	Oroceso: Peso.
TIMINAT	· ····8

Página 3 de 5 ANEXO 9 Validación de procesos. Datos crudos y gráficas de proceso: Peso. 2 TIPO DE PRUEBA:

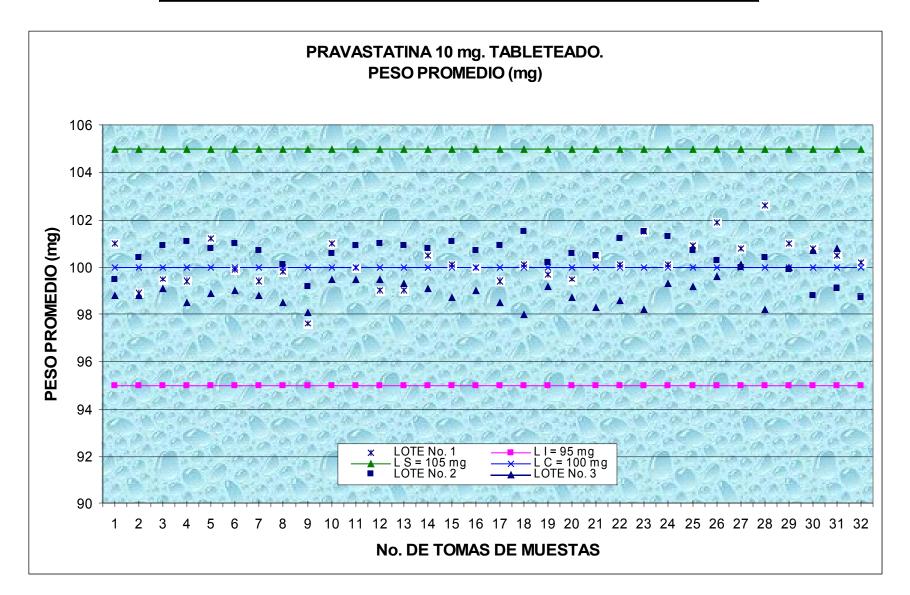
PESO No. DE LOTE: TAMAÑO DE LOTE:

TAMANO DE LOTE.	201.00 Kg	F. FARMACEUTICA	TABLETAS

no. Mtr	DATO (mg)	OBSERVACIONES												
1	99	51	103	101	101	151	100	201	100	251	100	301	100	Límite Superior:
2	100	52	100	102	101	152	101	202	101	252	99	302	99	105 mg
3	100	53	100	103	100	153	100	203	101	253	100	303	100	Límite Central:
4	100	54	102	104	101	154	103	204	100	254	101	304	99	100 mg
5	98	55	100	105	101	155	101	205	101	255	100	305	99	Límite Inferior:
6	99	56	102	106	101	156	100	206	101	256	101	306	99	95 mg
7	99	57	101	107	100	157	100	207	102	257	100	307	98	Promedio:
8	101	58	101	108	102	158	101	208	99	258	101	308	98	100.48 mg
9	99	59	99	109	101	159	100	209	99	259	101	309	98	Desv. Estándar:
10	100	60	102	110	101	160	101	210	101	260	100	310	98	0.740
11	100	61	100	111	101	161	102	211	100	261	99	311	101	
12	99	62	100	112	101	162	101	212	103	262	100	312	98	
13	100	63	100	113	100	163	100	213	102	263	100	313	99	
14	100	64	100	114	102	164	100	214	101	264	99	314	99	
15	101	65	101	115	101	165	101	215	100	265	101	315	100	
16	101	66	101	116	99	166	101	216	101	266	100	316	99	
17	101	67	101	117	101	167	101	217	101	267	100	317	100	
18	100	68	98	118	101	168	102	218	101	268	99	318	99	
19	101	69	100	119	102	169	100	219	102	269	100	319	99	
20	101	70	100	120	102	170	101	220	101	270	102	320	99	
21	101	71	100	121	101	171	103	221	102	271	102	321		
22	101 101	72 73	100	122 123	99 100	172 173	103 102	222	101 102	272 273	99 100	322 323		
24	102	7.4	00	124	100	174	102	224	100	274	102	224		
24 25	103 100	74 75	98 99	124 125	100 102	174 175	102 102	224 225	100 101	274 275	102 100	324 325		
26	100	76	100	125	102	176	102	225	101	276	100	325		
27	101	77	99	126	102	177	100	227	103	277	99	327		
28	102	78	99	128	101	178	100	228	101	278	99	328		
29	100	79	99	129	101	179	101	229	103	279	103	329		
30	100	80	98	130	102	180	101	230	101	280	100	330		
31	102	81	100	131	101	181	102	231	102	281	100	331		
32	101	82	102	132	101	182	100	232	100	282	101	332		
33	101	83	99	133	101	183	100	233	103	283	100	333		
34	103	84	100	134	100	184	101	234	102	284	99	334		
35	100	85	102	135	101	185	98	235	101	285	99	335		
36	101	86	101	136	100	186	101	236	101	286	100	336		
37	100	87	101	137	102	187	99	237	101	287	100	337		
38	100	88	100	138	100	188	101	238	102	288	101	338		
39	101	89	101	139	101	189	99	239	101	289	100	339		
40	102	90	101	140	101	190	101	240	100	290	99	340		
41	100	91	102	141	103	191	101	241	100	291	100	341		
42	102	92	100	142	102	192	101	242	102	292	99	342		
43	100	93	99	143	102	193	100	243	100	293	98 99	343		
44	102	94	101	144	102	194 195	101	244 245	101 100	294 295	100	344 345		
45 46	101 100	95 96	101 101	145 146	101 101	195	101 100	245	100	295	98	345		
46	100	96	101	146	101	196	100	246	101	296	100	346		
48	101	98	100	147	101	197	100	247	101	297	98	348		
49	100	99	100	149	99	198	101	249	100	298	98	349		
	101	"	100	147	100	200	100	250	100	300	98	350		

PRAVASTATINA 10 mg

ANEXO 9 Página 4 de 5 Validación de procesos. Datos crudos y gráficas de proceso: Peso. No. DE LOTE: 3 TIPO DE PRUEBA: PESO TAMAÑO DE LOTE:


201.00 Kg

F. FARMACEUTICA

TABLETAS

no.	DATO	no.	DATO	no.	DATO	no.	DATO	no.	DATO	no.	DATO	no.	DATO	
Mtr	(mg)	Mtr	(mg)	Mtr	(mg)	Mtr	(mg)	Mtr	(mg)	Mtr	(mg)	Mtr	(mg)	OBSERVACIONES
1	99	51	99	101	100	151	98	201	99	251	99	301	101	Límite Superior:
2	98	52	99	102	100	152	99	202	98	252	99	302	101	105 mg
3	98	53	99	103	98	153	99	203	98	253	100	303	101	Límite Central:
4	98	54	99	104	99	154	98	204	98	254	99	304	100	100 mg
5	98	55	98	105	99	155	98	205	99	255	103	305	101	Límite Inferior:
6	100	56	98	106	100	156	99	206	98	256	100	306	101	95 mg
7	100	57	99	107	100	157	102	207	98	257	99	307	101	Promedio:
8	99	58	99	108	100	158	100	208	98	258	98	308	101	99.05 mg
9	98	59	101	109	100	159	98	209	99	259	100	309	100	Desv. Estándar:
10	99	60	99	110	99	160	99	210	98	260	99	310	101	0.694
11	98	61	98	111	99	161	98	211	98	261	100	311		
12	98	62	98	112	99	162	99	212	101	262	100	312		
13	99	63	99	113	99	163	99	213	99	263	100	313		
14	100	64	101	114	99	164	98	214	98	264	100	314		
15	98	65	99	115	99	165	100	215	99	265	101	315		
16	99	66	98	116	100	166	98	216	99	266	99	316		
17	98	67	99	117	99	167	98	217	98	267	100	317	\vdash	
18	98	68	99	118	102	168	98	218	98	268	101	318		
19	99	69	99	119	100	169	99	219	98	269	99	319		
20	101	70	98	120	99	170	98	220	98	270	101	320	\vdash	
21	98 99	71 72	98 98	121 122	99 99	171 172	98 98	221	98 98	271 272	98 98	321 322	ł	
23	100	73	98	123	99	173	98	223	98	273	98	323	ł	
24	99	74	98	123	100	174	98	224	98	274	98	324	1	
25	100	75	99	125	99	175	98	225	98	275	100	325	i i	
26	98	76	99	126	100	176	98	226	98	276	98	326	1 1	
27	99	77	99	127	99	177	98	227	99	277	98	327	i i	
28	100	78	99	128	100	178	98	228	98	278	98	328	1 1	
29	100	79	99	129	99	179	98	229	99	279	98	329	i i	
30	98	80	98	130	100	180	98	230	98	280	98	330	1 1	
31	100	81	98	131	99	181	99	231	99	281	100	331	1 1	
32	99	82	98	132	98	182	100	232	101	282	99	332]	
33	98	83	98	133	99	183	99	233	99	283	101	333]	
34	98	84	98	134	99	184	99	234	98	284	100	334		
35	98	85	98	135	99	185	100	235	99	285	100	335		
36	99	86	98	136	99	186	98	236	99	286	99	336		
37	98	87	98 99	137	101	187	99	237	100	287	100	337		
38 39	98 98	88 89	99	138 139	98 100	188 189	100 98	238	98 99	288 289	99 102	338 339	1	
40	98	90	98 98	139	99	189	100	240	101	289	102	340	1	
41	99	90	102	140	99	190	98	240	99	290	100	341		
42	99	91	102	141	99	191	98	241	99	291	100	342	1	
43	99	93	98	143	101	193	99	243	99	293	101	343	1 1	
44	98	94	99	144	98	194	99	244	99	294	100	344	1 1	
45	99	95	98	145	98	195	98	245	101	295	101	345	1 1	
46	1010	96	100	146	99	196	99	246	100	296	100	346	1 1	
47	99	97	100	147	99	197	98	247	100	297	101	347]	
48	98	98	99	148	98	198	98	248	98	298	100	348]	
49	99	99	100	149	98	199	99	249	99	299	100	349]	
50	98	100	99	150	99	200	101	250	98	300	101	350		

Página 5 de 5

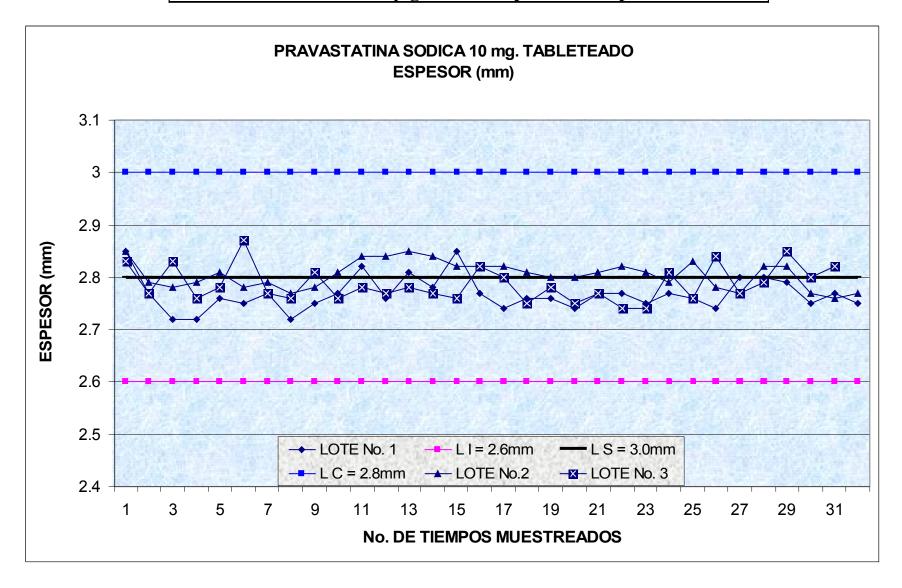
Página 1 de 4

ANEXO 10

	PRAVASTATINA 10 mg No. DE LOTE: 1 TIPO DE PRUEBA: ESPESOR														
No.	DE LO	TE:			1				7	ГІРО	DE PRI	UEBA	:	ESPESOR	
	MAÑO		OTE:		20	01.00 K	ζg				MACE			TABLETAS	
2111						. 1.50 1	-0					2.10	-	11100001110	
no.	DATO	no.	DATO	no.	DATO	no.	DATO	no.	DATO	no.	DATO	no.	DATO		
Mtr	(mm)	Mtr	(mm)	Mtr	(mm)	Mtr	(mm)	Mtr	(mm)	Mtr	(mm)	Mtr	(mm)	OBSERVACIONES	
1	2.92	51	2.95	101	2.76	151		201		251		301		Límite Superior:	
2	2.8	52	2.77	102	2.74	152		202		252		302		3.0 mm	
3	2.89	53	2.94	103	2.73	153		203		253		303		Límite Central:	
4	2.79	54	2.75	104	2.71	154	\vdash	204		254		304	_	2.8 mm	
5	2.79	55 56	2.71 2.72	105 106	2.82	155 156		205 206		255		305 306		Límite Inferior: 2.7 mm	
<u>6</u> 7	2.8 2.76	57	2.72	106	2.70	157		200		256 257		307		Promedio:	
8	2.76	58	2.84	107	2.72	157		207		258		308		2.77 mm	
9	2.79	59	2.80	109	2.82	159	\vdash	209	\vdash	259		309		Desv. Estándar:	
10	2.78	60	2.83	110	2.77	160		210		260		310		0.032	
11	2.78	61	2.78	111	2.89	161		211		261		311			
12	2.78	62	2.68	112	2.73	162		212		262		312			
13	2.77	63	2.76	113	2.73	163		213		263		313			
14	2.79	64	2.87	114	2.87	164		214		264		314			
15	2.81	65	2.75	115	2.77	165		215		265		315			
16	2.8	66	2.76	116	2.77	166		216		266		316			
17 18	2.8 2.89	67 68	2.77 2.71	117 118	2.73	167 168		217 218		267 268		317 318			
19	2.89	69	2.75	118	2.74	169		219	\vdash	269		319			
20	2.76	70	2.76	120	2.74	170		220		270		320			
21	2.79	71	2.8	121	2.78	171		221		271		321			
22	2.77	72	2.71	122	2.77	172		222		272		322	i		
23	2.77	73	2.80	123	2.75	173		223		273		323	1		
24	2.77	74	2.69	124	2.76	174		224		274		324			
25	2.8	75	2.77	125	2.74	175		225		275		325			
26	2.77	76	2.77	126	2.74	176		226		276		326	ļ .		
27 28	2.74 2.75	77 78	2.74	127 128	2.76	177 178		227 228		277 278		327 328	ł		
29	2.78	79	2.74	129	2.70	179		229		279		329	i		
30	2.78	80	2.74	130		180		230		280		330	i		
31	2.79	81	2.75	131		181		231		281		331	i		
32	2.77	82	2.76	132		182		232		282		332]		
33	2.79	83	2.78	133		183		233		283		333			
34	2.79	84	2.77	134		184	\vdash	234	\vdash	284		334			
35	2.79	85	2.77	135		185	\vdash	235	\vdash	285		335			
36	2.82	86 87	2.76 2.77	136 137		186 187		236 237		286 287		336 337	ł		
38	2.79	88	2.77	137		188		237		288		338	ł		
39	2.82	89	2.77	139		189		239		289		339	i		
40	2.83	90	2.74	140		190		240		290		340	i i		
41	2.81	91	2.74	141		191		241		291		341]		
42	2.86	92	2.76	142		192		242		292		342			
43	2.82	93	2.78	143		193	\vdash	243		293		343			
44	2.85	94	2.8	144		194		244		294		344	Į l		
45	2.84	95	2.76	145		195	\vdash	245	\vdash	295		345			
46 47	2.83 2.85	96 97	2.76 2.73	146 147		196 197	\vdash	246 247	\vdash	296 297		346 347	1		
48	2.83	98	2.76	147		197		247		297		348	ł		
49	2.83	99	2.82	149		199		249		299		349	i l		
50	2.84	100	2.73	150		200		250		300		350	i		

Página 2 de 4

ANEXO 10


							PRAV	AST	ATINA	. 10 m	ıg			
No.	DE LO	TE:			2				-	ГІРО	DE PRI	UEBA	:	ESPESOR
	MAÑO)TE:			01.00 K	ζσ				MACE			TABLETAS
171	VIII (O	DL L	, i.e.		20	71.00 1	•5			. 1 / 110	MILLE	CIIC		TABLETAS
no. Mtr	DATO (mm)	no. Mtr	DATO (mm)	OBSERVACIONES										
1	2.92	51	2.86	101	2.75	151	(IIIII)	201	(11111)	251	(11111)	301	(11111)	Límite Superior:
2	2.8	52	2.85	102	2.81	152		202		252		302		3.0 mm
3	2.89	53	2.85	103	2.76	153		203		253		303		Límite Central:
4	2.79	54	2.84	104	2.79	154		204		254		304		2.8 mm
5	2.79	55	2.82	105	2.77	155		205		255		305		Límite Inferior:
6	2.8	56	2.84	106	2.77	156		206		256		306		2.7 mm
7	2.76	57	2.83	107	2.78	157	\vdash	207	\vdash	257		307	$\vdash \vdash$	Promedio:
8	2.83	58	2.82	108	2.77 2.78	158	\vdash	208	\vdash	258		308	\vdash	2.80 mm Desv. Estándar:
10	2.79	59 60	2.83 2.81	109 110	2.78	159 160	\vdash	209 210	\vdash	259 260		309 310	$\vdash \vdash$	Desv. Estandar: 0.035
11	2.78	61	2.81	111	2.77	161	\vdash	211	\vdash	261		311	\vdash	0.055
12	2.78	62	2.81	112	2.79	162		212		262		312		
13	2.77	63	2.81	113	2.9	163		213		263		313		
14	2.79	64	2.84	114	2.77	164		214		264		314		
15	2.81	65	2.81	115	2.8	165		215		265		315	\perp	
16	2.8	66	2.83	116	2.79	166		216	\vdash	266		316	\vdash	
17	2.8	67	2.83	117	2.78	167	\vdash	217		267		317	\vdash	
18	2.89	68	2.81 2.81	118 119	2.72	168 169	\vdash	218 219		268 269		318 319	\vdash	
20	2.76	70	2.8	120	2.79	170	\vdash	220		270		320		
21	2.79	71	2.81	121	2.73	171		221		271		321		
22	2.77	72	2.81	122	2.79	172		222		272		322	i i	
23	2.77	73	2.79	123	2.81	173		223		273		323	1 1	
24	2.77	74	2.82	124	2.78	174		224		274		324		
25	2.8	75	2.83	125	2.8	175		225		275		325		
26 27	2.77	76	2.8	126	2.75	176		226		276		326	1 1	
28	2.74 2.75	77 78	2.8 2.82	127 128	2.76	177 178		227 228	\vdash	277 278		327 328	1 1	
29	2.78	79	2.79	129	2.70	179		229		279		329	i i	
30	2.78	80	2.78	130		180		230		280		330	1 1	
31	2.79	81	2.82	131		181		231		281		331]	
32	2.77	82	2.81	132		182		232		282		332	ļ l	
33	2.79	83	2.8	133		183	\vdash	233	\vdash	283		333	ļ l	
34	2.79	84	2.82	134		184	\vdash	234	\vdash	284		334	∤ 	
35 36	2.79 2.82	85 86	2.84 2.81	135 136		185 186		235		285 286		335 336	ł I	
37	2.79	87	2.82	130		187		237		287		337	† †	
38	2.8	88	2.79	138		188		238		288		338	1 1	
39	2.82	89	2.82	139		189		239		289		339	1 I	
40	2.83	90	2.8	140		190		240		290		340	l l	
41	2.81	91	2.78	141		191		241		291		341	ļ ļ	
42	2.86	92	2.84	142		192		242		292		342	ļ ļ	
43	2.82 2.85	93 94	2.84 2.79	143 144		193 194	\vdash	243 244	\vdash	293 294		343 344	- I	
44 45	2.85	95	2.79	144		194	\vdash	244	\vdash	294	\vdash	344	† I	
46	2.83	96	2.78	143		193	\vdash	246	\vdash	296		346	†	
47	2.85	97	2.81	147		197		247		297		347	1 1	
48	2.83	98	2.79	148		198		248		298		348	1 l	
49	2.83	99	2.8	149		199		249		299		349	ļ l	
50	2.84	100	2.9	150		200		250		300		350		

Página 3 de 4

ANEXO 10

	DE LO						PKAV	AST	ATINA	. 10 m	ıg 			
		TE:			3				,	ГІРО	DE PRI	JEBA:	: T	ESPESOR
	IAÑO 1	DE LO	TE:		20	1.00 K	g				MACE			TABLETAS
							J							
no.	DATO	no.	DATO	no.	DATO	no.	DATO	no.	DATO	no.	DATO	no.	DATO	
Mtr	(mm)	Mtr	(mm)	Mtr	(mm)	Mtr	(mm)	Mtr	(mm)	Mtr	(mm)	Mtr	(mm)	OBSERVACIONES
1	2.99	51	2.78	101	2.82	151		201		251		301		Límite Superior:
2	2.79	52	2.77	102	2.94	152		202		252		302		3.0 mm
3	2.77	53	2.78	103	2.78	153		203		253		303		Límite Central:
5	2.76 2.78	54 55	2.76	104	2.80	154 155		204		254 255		304 305		2.8 mm Límite Inferior:
6	2.78	56	2.76	105	2.77	156		206		256		306		2.6 mm
7	2.78	57	2.75	107	2.77	157		207		257		307		Promedio:
8	2.76	58	2.77	108	2.76	158		208		258		308		2.79 mm
9	2.98	59	2.75	109	2.79	159		209		259		309		Desv. Estándar:
10	2.80	60	2.75	110	2.80	160		210		260		310		0.034
11	2.77	61	2.77	111	2.79	161		211		261		311		
12	2.77	62	2.76	112 113	2.79	162 163		212		262 263		312 313		
13	2.76 2.76	63	2.95	113	2.79	164		213		264		314	\vdash	
15	2.75	65	2.75	115	2.99	165		215		265		315		
16	2.78	66	2.77	116	2.81	166		216		266		316		
17	2.78	67	2.77	117	2.80	167		217		267		317		
18	2.77	68	2.90	118	2.79	168		218		268		318		
19 20	2.76 2.81	69 70	2.75	119 120	2.81	169 170		219 220		269 270		319 320		
21	2.96	71	2.75	121	2.83	171		221		271		321		
22	2.77	72	2.75	122	2.80	172		222		272		322	l l	
23	2.96	73	2.77	123	2.87	173		223		273		323		
24	2.77	74	2.79	124	2.79	174		224		274		324		
25 26	2.77 2.79	75 76	2.77	125 126		175 176		225 226		275 276		325 326	ł	
27	2.76	77	2.75	127		177		227		277		327	i i	
28	2.77	78	2.76	128		178		228		278		328	l I	
29	2.74	79	2.73	129		179		229		279		329		
30	2.76 2.78	80 81	2.75	130 131		180 181		230		280		330 331		
32	2.78	82	2.73	131		182		231		282		332		
33	2.74	83	2.87	133		183		233		283		333		
34	2.96	84	2.75	134		184		234		284		334	l l	
35	2.76	85	2.73	135		185		235		285	<u> </u>	335		
36	2.79 2.76	86 87	2.75 2.75	136 137		186 187		236	\vdash	286 287		336 337		
38	2.77	88	2.74	138		188		238		288		338		
39	2.75	89	2.76	139		189		239		289		339]	
40	2.77	90	2.74	140		190		240		290		340		
41	2.78	91	2.74	141		191		241		291	<u> </u>	341		
42	2.77 2.78	92 93	2.71	142 143		192 193		242 243	\vdash	292 293		342 343		
43	2.78	93	2.77	143		193		243		293		344		
45	2.76	95	2.72	145		195		245		295		345		
46	2.77	96	2.98	146		196		246		296		346	l l	
47	2.78	97	2.77	147		197		247		297	<u> </u>	347		
48	2.78 2.78	98 99	2.76	148 149		198 199		248 249	\vdash	298 299		348 349		
50	2.79	100	2.76	150		200		250		300		350		

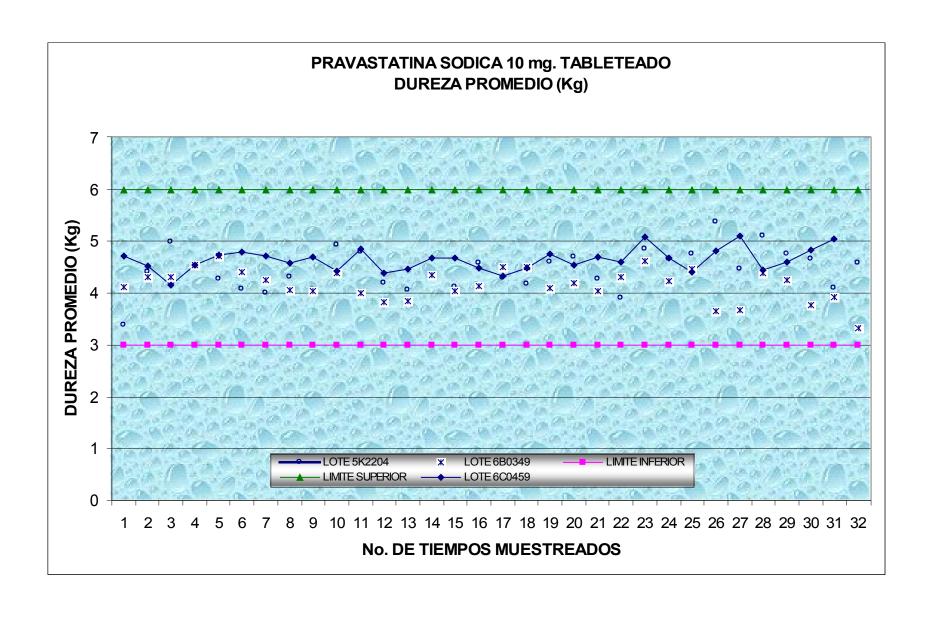
Página 4 de 4

Página 1 de 4

ANEXO 11

							PRAV	AST	ATINA	10 m	ıg			
No.	DE LO	TE:			1					TIPO	DE PRI	UEBA	:	DUREZA
	MAÑO		OTE:		20	01.00 K	Cg		I	. FAR	MACE	UTIC	4	TABLETAS
	1 1		1								1		1	
no. Mtr	DATO (Kg)	OBSERVACIONES												
1	3.3	51	3.7	101	5.2	151	4.1	201	3.1	251	4.4	301	4.9	Límite Superior:
2	3.5	52	4.6	102	4.1	152	5.9	202	4.0	252	5.8	302	5.4	6 Kg
3	3.5	53	4.7	103	5.3	153	4.9	203	4.1	253	5.7	303	3.2	Límite Central:
5	3.8	54 55	4.6 3.1	104 105	3.9 4.8	154 155	4.4 3.9	204	4.2 4.5	254 255	6.0 5.3	304 305	3.8	N/A Límite Inferior:
6	3.3	56	4.3	105	5.0	156	4.0	206	4.4	256	5.9	306	3.0	3 Kg
7	3.1	57	4.6	107	5.6	157	4.6	207	3.7	257	5.7	307	4.0	Dureza Promedio:
8	3.5	58	3.6	108	5.6	158	4.6	208	5.0	258	3.5	308	4.6	4.45 Kg
9	3.2	59	4.1	109	4.9	159	4.2	209	4.6	259	5.9	309	3.8	Desv. Estándar:
10	2.8	60	3.5	110	3.6	160	5.3	210	5.1	260	5.6	310	5.0	0.404
11	4.2 5.0	61	4.1	111 112	4.1 3.8	161 162	5.2 5.0	211	4.0 3.8	261 262	3.7 4.9	311 312	3.3 4.7	
13	3.9	63	3.1	112	3.8	162	4.0	212	4.3	262	4.9	313	5.7	
14	5.2	64	3.7	114	4.7	164	3.9	214	4.1	264	3.9	314	4.3	
15	3.0	65	4.1	115	4.3	165	4.9	215	4.6	265	2.9	315	5.8	
16	4.5	66	4.3	116	4.3	166	4.8	216	3.1	266	5.7	316	3.8	
17 18	4.1 3.8	67 68	3.9 4.4	117 118	4.8	167 168	3.4 4.3	217 218	3.6 4.0	267 268	5.6 5.5	317 318	4.1 5.0	
19	5.8	69	3.9	119	4.0	169	4.3	219	3.6	269	2.6	319	4.4	
20	5.3	70	4.3	120	4.1	170	3.1	220	3.9	270	5.5	320	4.8	
21	4.6	71	5.4	121	3.9	171	4.3	221	5.4	271	4.6	321		
22	5.1	72	4.9	122	4.4	172	3.8	222	4.1	272	4.9	322		
23	5.5 5.5	73 74	3.2 4.4	123 124	3.6 4.1	173 174	6.1 4.2	223 224	5.8 6.0	273 274	4.8 5.3	323 324	-	
25	4.5	75	4.1	125	3.8	175	3.9	225	3.9	275	5.8	325	i i	
26	5.4	76	4.3	126	4.6	176	4.6	226	4.4	276	4.6	326]	
27	5.1	77	4.5	127	4.2	177	4.1	227	5.6	277	5.5	327		
28	4.0	78	4.2	128	4.0	178	3.1	228	4.3	278	5.0	328		
29 30	4.5 5.6	79 80	4.3 3.9	129 130	3.8 4.3	179 180	2.9 4.8	229	4.3 4.8	279 280	5.0 5.5	329 330	1	
31	4.4	81	3.6	131	4.5	181	5.0	231	4.8	281	5.5	331		
32	4.8	82	3.9	132	4.3	182	3.8	232	3.6	282	5.3	332]	
33	3.8	83	4.2	133	4.4	183	4.5	233	5.0	283	4.8	333		
34	4.0 5.0	84 85	4.0	134 135	4.1 2.9	184 185	4.7 4.6	234	4.7 4.8	284 285	3.5 4.8	334 335		
36	5.7	86	4.5	136	4.3	186	3.8	236	5.8	286	4.8	336	1	
37	4.2	87	3.7	137	4.5	187	4.6	237	4.9	287	5.4	337]	
38	4.7	88	4.4	138	4.8	188	5.2	238	4.6	288	4.3	338		
39	4.2	89	3.9	139	4.6	189	5.2	239	4.2	289	4.1	339		
40	3.8 5.0	90 91	4.1	140 141	4.8	190 191	4.7 4.7	240 241	4.2 5.7	290 291	5.0 5.0	340 341	1	-
42	3.4	92	4.7	142	4.7	192	5.0	242	4.5	292	5.4	342		
43	4.2	93	5.1	143	7.5	193	5.2	243	5.1	293	4.9	343]	
44	4.6	94	4.5	144	3.4	194	3.9	244	4.6	294	4.6	344		
45	4.7	95	5.6	145	4.4	195	4.8	245	4.5	295	3.1	345		
46	4.8 3.4	96 97	5.5 5	146 147	4.1 3.4	196 197	4.6 5.1	246 247	6.0 5.3	296 297	4.3	346 347	1	
48	4.2	98	5.3	148	4.3	198	4.8	248	3.8	298	5.2	348		
49	4.6	99	4.6	149	4.0	199	5.0	249	3.4	299	5.0	349]	
50	3.9	100	4.9	150	4.0	200	3.8	250	4.6	300	5.1	350		

Página 2 de 4


ANEXO 11

	PRAVASTATINA 10 mg No. DE LOTE: 2 TIPO DE PRUEBA: DUREZA														
No.	DE LO	TE:			2					ТІРО	DE PRI	UEBA:	:	DUREZA	
-	MAÑO		OTE:		20	01.00 K	Σg				MACE			TABLETAS	
									-						
no.	DATO	no.	DATO	no.	DATO (Kg)	no. Mtr	DATO	no. Mtr	DATO	no. Mtr	DATO	no. Mtr	DATO	OBSERVACIONES	
Mtr 1	(Kg)	Mtr 51	(Kg)	Mtr 101	3.9	151	(Kg) 3.3	201	(Kg)	251	(Kg)	301	(Kg)	Límite Superior:	
2	3.5	52	4.2	102	3.7	152	4	202	4.6	252	4.6	302	4.2	6 Kg	
3	3.5	53	3.5	103	3.1	153	4.2	203	3.2	253	3.4	303	3.4	Límite Central:	
4	5.2	54	5.5	104	4.7	154	3.8	204	3.4	254	3	304	3.5	N/A	
5	3.8	55	4.9	105	3.4	155	4.8	205	3.4	255	3.5	305	3	Límite Inferior:	
6 7	4.4	56	5.5	106 107	3.3	156	4.5	206	5.5	256	3.5	306	3 4.8	3 Kg Promedio:	
8	5 3.1	57 58	3.8 5.2	107	3.6 5.7	157 158	4.3 3.5	207	4.7 4.1	257 258	3.5 4.3	307 308	4.8	4.20 Kg	
9	4.5	59	4.2	109	4.1	159	4.3	209	3.9	259	3.5	309	3.6	Desv. Estándar:	
10	5.1	60	3.8	110	4.6	160	4.7	210	3.8	260	4.2	310	5.7	0.310	
11	3.8	61	3.3	111	4	161	4.9	211	4	261	4.1	311	3		
12	3.9	62	3.9	112	3	162	3.8	212	4	262	3.6	312	3.2		
13	6.2 3.9	63	3.7 4.2	113 114	3.7	163 164	5.3 4.9	213 214	5.7 4	263 264	4.2 3.3	313 314	3.5		
15	4.3	65	3.5	114	4.7	165	3.6	214	4.3	265	3.3	314	3.3		
16	4.5	66	4.7	116	3.6	166	5.6	216	4.2	266	4	316	3.4		
17	4.1	67	3.9	117	5.2	167	3.4	217	4.2	267	3.5	317	3		
18	4	68	4.1	118	3	168	3.7	218	5.1	268	4.2	318	3.6		
19	3.8 4.6	69 70	4.6 4.8	119 120	3.1 4.3	169 170	4.1 5.7	219 220	3.3 4.3	269 270	3.8	319 320	3.6		
21	3.9	71	5.2	121	3.8	170	4.7	221	3.5	271	5.7	321	3.3		
22	5	72	4	122	4.8	172	3.8	222	5	272	4.6	322	i		
23	5.3	73	3.7	123	3.7	173	3.9	223	5.4	273	3.2	323			
24	3.7	74	4.7	124	3.2	174	5.7	224	4.1	274	3.7	324			
25 26	4.3 3.4	75 76	3.9	125 126	5.5	175 176	3.7 4.1	225 226	4.8 4.4	275 276	3.4 5	325 326	ł		
27	3.4	77	3.3	127	3.5	177	5.1	227	5.3	277	4.4	327	1		
28	5.4	78	3.2	128	3.7	178	4.9	228	5.6	278	5.1	328	1		
29	3.6	79	3.4	129	4.2	179	3.7	229	4.1	279	4.2	329			
30	4.8	80	6	130	3.1	180	5.4	230	4.1	280	4.6	330			
31	4.8 4.7	81 82	3.7 5.4	131 132	5 3.6	181 182	4.2 3.4	231	4.1 4.9	281 282	3.9	331 332			
33	4.7	83	4.3	133	4.3	183	6.1	233	5.5	283	4.3	333	1		
34	5.2	84	5.3	134	4.9	184	4.8	234	3.3	284	3.9	334]		
35	4.4	85	4.3	135	5.2	185	4.6	235	4.4	285	6	335			
36	4.6	86	4.4	136	3.1	186	3.3	236	4.3	286	4.8	336			
37	3.9 5.7	87 88	4.1 3.4	137 138	4.8 4.7	187 188	3.6 4.3	237	3.5 3.9	287 288	5.7	337 338	ł		
39	3.6	89	3.6	139	4.1	189	3.3	239	3.5	289	3.7	339	1		
40	3.7	90	4	140	3.8	190	3.4	240	4.9	290	3.6	340			
41	5.7	91	3.7	141	5	191	4.4	241	4	291	4.2	341			
42	5.1	92	4.7	142	3.2	192	5.2	242	4.5	292	3	342			
43	3.7 5.7	93 94	4.5 5.4	143 144	3.5 4.2	193 194	4.6 4.4	243 244	3.2 4.7	293 294	3.4 4.3	343 344	ł		
45	4.1	95	3.9	145	3.7	195	3.6	245	5.4	295	4.3	345	1		
46	4.3	96	5.2	146	4.6	196	4.2	246	6.5	296	3.5	346]		
47	5.1	97	4.9	147	4	197	4	247	5.3	297	4.7	347			
48	5.7	98 99	0.2	148	4	198	3.5	248	3.4	298	3	348			
50	3.7	100	4.2	149 150	3.4 4.9	199 200	4.5 3.6	249 250	3.3 4.3	299 300	3.9	349 350			

Página 3 de 4

ANEXO 11

No. DE LOTE: 3 TIPO DE PRU	EBA:	:	DUREZA
TAMAÑO DE LOTE: 201.00 Kg F. FARMACEU	U TIC	A	TABLETAS
no. DATO no.	no. Mtr	DATO (Kg)	OBSERVACIONES
1 4.1 51 5.5 101 4.9 151 4.5 201 4.3 251 3.2	301	5.5	Límite Superior:
2 5.2 52 6.0 102 4.9 152 4.9 202 4.6 252 4.9	302	5.6	6 Kg
3 4.1 53 5.2 103 3.8 153 4.5 203 5.3 253 4.8	303	5.3	Límite Central:
4 5.6 54 5.2 104 5.1 154 4.8 204 5.2 254 5.6	304	5.4	N/A
5 5.1 55 4.9 105 5.0 155 4.4 205 5.4 255 4.4	305	5.2	Límite Inferior:
6 4.5 56 5.0 106 5.1 156 3.4 206 5.4 256 4.1 7 4.6 57 5.1 107 5.2 157 4.1 207 3.3 257 5.4	306 307	4.9 4.4	3 Kg Dureza Promedio:
7 4.6 57 5.1 107 5.2 157 4.1 207 3.3 257 5.4 8 4.5 58 3.7 108 5.3 158 4.5 208 4.1 258 5.7	307	5.6	4.64 Kg
9 4.6 59 4.1 109 4.7 159 4.8 209 4.1 259 4.7	309	4.9	Desv. Estándar:
10 4.8 60 3.2 110 4.5 160 4.9 210 5.3 260 5.3	310	3.7	0.216
11 4.3 61 5.5 111 4.5 161 3.9 211 4.1 261 3.9	311	T	
12 4.3 62 4.1 112 4.0 162 4.6 212 4.1 262 5.1	312		
13 6.0 63 4.2 113 4.7 163 4.7 213 5.2 263 5.1	313		
14 3.0 64 4.1 114 3.5 164 4.0 214 4.3 264 5.2	314		
15 5.2 65 5.4 115 5.0 165 3.5 215 4.7 265 5.7 16 4.4 66 5.4 116 4.9 166 3.9 216 4.6 266 5.6	315 316	_	
16 4.4 66 5.4 116 4.9 166 3.9 216 4.6 266 5.6 17 4.2 67 4.6 117 5.3 167 4.5 217 4.7 267 4.0	317	_	
18 3.9 68 5.6 118 4.7 168 4.4 218 4.5 268 5.9	318		
19 5.2 69 4.8 119 3.3 169 5.6 219 5.2 269 5.5	319		
20 4.8 70 3.5 120 4.0 170 4.3 220 4.6 270 5.0	320		
21 4.1 71 4.9 121 4.8 171 4.3 221 5.7 271 4.1	321	Į	
22 4.2 72 5.1 122 4.8 172 4.5 222 5.7 272 4.0 23 4.3 73 5.3 123 3.0 173 3.8 223 5.2 273 4.5	322 323	ł	
23 4.3 73 5.3 123 3.0 173 3.8 223 5.2 273 4.5 24 3.4 74 4.0 124 4.9 174 4.5 224 4.3 274 4.5	324	ł	
25 3.6 75 3.1 125 3.9 175 4.3 225 5.4 275 4.5	325	i	
26 4.5 76 5.0 126 5.2 176 5.0 226 5.7 276 4.5	326	İ	
27 4.5 77 4.8 127 5.2 177 4.2 227 4.8 277 4.4	327]	
28 4.4 78 4.4 128 3.7 178 4.9 228 4.8 278 4.3	328	ļ	
29 3.7 79 4.8 129 4.2 179 5.3 229 4.2 279 5.0	329	ł	
30 4.9 80 4.4 130 5.0 180 4.0 230 5.0 280 4.6 31 4.7 81 4.2 131 5.2 181 5.4 231 5.5 281 5.4	330 331	ł	-
31 4.7 81 4.2 131 5.2 181 5.4 231 5.3 281 5.4 32 4.6 82 4.6 132 5.2 182 3.9 232 5.7 282 4.7	332	t	
33 4.8 83 4.8 133 4.7 183 4.3 233 4.0 283 4.6	333	1	İ
34 4.4 84 4.3 134 5.1 184 3.7 234 5.1 284 4.7	334	1	
35 4.5 85 5.5 135 4.7 185 5.1 235 3.6 285 5.1	335	Į	
36 4.2 86 4.1 136 4.0 186 5.3 236 3.2 286 4.8	336	ł	
37 4.3 87 4.6 137 3.8 187 5.4 237 5.4 287 3.0 38 4.5 88 5.3 138 4.9 188 4.7 238 4.9 288 5.0	337 338	ł	
38 4.5 88 5.3 138 4.9 188 4.7 238 4.9 288 5.0 39 4.7 89 4.5 139 4.7 189 4.7 239 4.5 289 3.8	339	ł	-
40 4.7 90 5.0 140 4.5 190 5.0 240 4.9 290 4.9	340	t	1
41 5.1 91 4.9 141 4.2 191 5.7 241 4.6 291 5.1	341	1	
42 5.1 92 3.1 142 4.4 192 4.7 242 3.9 292 4.3	342]	
43 5.3 93 4.9 143 5.2 193 4.0 243 4.5 293 5.6	343	Į.	
44 4.5 94 3.0 144 4.9 194 4.3 244 4.4 294 5.7	344	ł	
45 4.1 95 4.5 145 5.6 195 4.0 245 3.1 295 4.7	345	ł	
46 4.1 96 4.7 146 4.9 196 4.0 246 4.6 296 4.6 47 4.7 97 4.2 147 4.5 197 4.9 247 5.1 297 4.7	346 347	ł	-
47 4.7 97 4.2 147 4.3 197 4.5 247 3.1 297 4.7 48 4.1 98 4.7 148 4.8 198 4.5 248 4.3 298 3.3	348	t	1
49 5.6 99 5.1 149 3.7 199 4.5 249 4.7 299 5.5	349	1	
50 4.8 100 5.1 150 4.5 200 4.8 250 4.8 300 4.8	350		

Página 1 de 4

ANEXO 12

							PRAV	AST	ATINA	. 10 m	g			
N.	DELO	TE.			1				,	TIDO	DE DDI	TED A		DESINTEGRACIÓN
	DE LO		TE.		1		<i>r</i> .				DE PRI			
IA	MAÑO :	DE LC	JIE:		20)1.00 k	\g		F	. FAK	MACE	UTIC	A	TABLETAS
no. Mtr	DATO (min)	no. Mtr	DATO (min)	no. Mtr	DATO (min)	no. Mtr	DATO (min)	no. Mtr	DATO (min)	no. Mtr	DATO (min)	no. Mtr	DATO (min)	OBSERVACIONES
1	5.48	51		101		151		201		251		301		Límite Superior:
2	5.81	52		102		152		202		252		302		Máximo 30 min
3	6.51	53		103		153		203		253		303		Límite Central:
4	7.10	54		104		154		204		254		304	-	N/A Límite Inferior:
5	6.30 5.56	55 56		105 106		155 156		205		255 256		305 306	-	N/A
7	7.01	57		107		157		207		257		307		Promedio:
8	6.58	58		108		158		208		258		308		6.25 min
9	6.36	59		109		159		209		259		309		Desv. Estándar:
10	6.48	60		110		160		210		260		310		0.750
11	7.01	61		111		161	<u> </u>	211		261		311		
12	7.12 5.48	62		112		162 163		212		262		312 313	\vdash	
14	4.48	64		114		164		214		264		314		
15	6.41	65		115		165		215		265		315		
16		66		116		166		216		266		316		
17		67		117		167		217		267		317		
18		68		118		168		218		268		318		
19		69 70		119 120		169 170		219 220		269 270		319 320		
21		71		121		171		221		271		321		
22		72		122		172		222		272		322		
23		73		123		173		223		273		323		
24		74		124		174		224		274		324		
25		75		125		175		225		275		325	- 1	
26 27		76 77		126 127		176 177		226 227		276 277		326 327	1	
28		78		128		178		228		278		328	1	
29		79		129		179		229		279		329		
30		80		130		180		230		280		330		
31		81		131		181		231		281		331		
32	┝	82 83		132		182 183		232	-	282		332 333		
34		84		134		184		234		284		334		
35		85		135		185		235		285		335		
36		86		136		186		236		286		336		
37	$oxed{\Box}$	87		137		187		237		287		337		
38		88 89		138 139		188		238		288		338		
40	 	90		139		189 190		239	 	289		339 340		
41		91		141		191		241		291		341		
42		92		142		192		242		292		342	j	
43		93		143		193		243		293		343		
44		94		144		194		244		294		344		
45 46	\vdash	95 96		145 146		195 196		245 246		295 296		345 346		
46		96		146		196		246		296		346		
48		98		148		198		248		298		348		
49		99		149		199		249		299		349		
50		100		150		200		250		300		350		

Página 2 de 4

ANEXO 12

	PRAVASTATINA 10 mg													
No.	DE LO	TE:			2				,	ГІРО	DE PRI	JEBA	•	DESINTEGRACIÓN
	MAÑO		OTE:		2.0	1.00 K	ſσ		F. FARMACEUTICA				TABLETAS	
	.1111.0	222	, , , ,			71.001	-8					0 110.		111111111111111111111111111111111111111
					I I				I I					
no. Mtr	DATO (min)	no. Mtr	DATO (min)	no. Mtr	DATO (min)	no. Mtr	DATO (min)	no. Mtr	DATO (min)	no. Mtr	DATO (min)	no. Mtr	DATO (min)	OBSERVACIONES
1	6.41	51	,	101	,	151	()	201	,	251	, ,	301	` ′	Límite Superior:
2	6.42	52		102		152		202		252		302		Máximo 30 min
3	6.39	53		103		153		203		253		303		Límite Central:
4	6.43	54		104		154		204		254		304		N/A
5	6.34	55		105		155		205		255		305		Límite Inferior:
6	6.35	56		106		156		206		256		306		N/A Promedio:
7 8	6.44	57 58		107 108	 	157 158		207	 	257 258		307		6.39 min
9	6.07	59		108		159		209		259		309		Desv. Estándar:
10	6.58	60		110		160		210		260		310		0.165
11	6.41	61		111		161		211		261		311		
12	6.50	62		112		162		212		262		312		
13	6.59	63		113		163		213		263		313		
14	6.49	64		114		164		214		264		314		
15 16		65 66		115 116		165 166		215		265 266		315 316		
17		67		117		167		217		267		317		
18		68		118		168		218		268		318		
19		69		119		169		219		269		319		
20		70		120		170		220		270		320		
21		71		121		171		221		271		321		
22		72		122		172		222		272		322		
23 24		73 74		123 124		173 174		223		273 274		323 324	-	
25		75		125		175		225		275		325		
26		76		126		176		226		276		326		
27		77		127		177		227		277		327		
28		78		128		178		228		278		328		
29		79		129		179		229		279		329		
30		80		130		180		230		280		330		
31		81 82		131 132	 	181 182	 	231	 	281		331 332	l	
33		83		133		183		233		283		333		
34		84		134		184		234		284		334		
35		85		135		185		235		285		335		
36		86		136		186		236		286		336		
37		87		137		187		237		287		337		
38 39		88 89		138 139		188 189		238		288 289		338 339		
40		90		140		190		240		299		340		
41		91		141		191		241		291		341		
42		92		142		192		242		292		342]	
43		93		143		193		243		293		343		
44		94		144		194		244		294		344		
45		95		145		195	—	245		295		345	.	
46 47		96 97		146 147		196 197		246 247		296 297		346 347		
48		98		147		197		247		297		347		
49		99		149		199		249		299		349	1 1	
50		100		150		200		250		300		350		

Página 3 de 4

ANEXO 12

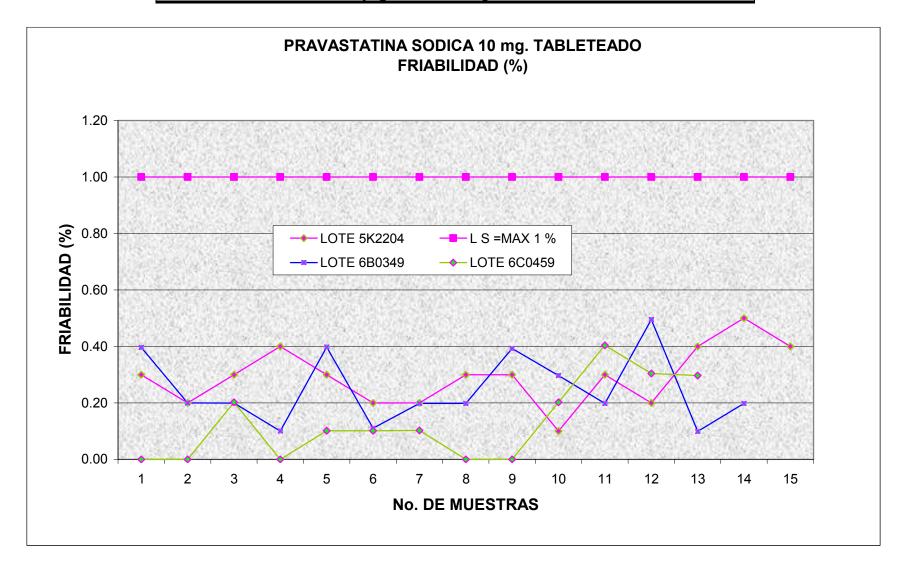
	PRAVASTATINA 10 mg													
No.	DE LO	TE:			3				,	ГІРО	DE PRI	JEBA	:	DESINTEGRACIÓN
	MAÑO		OTE:			1.00 K	Σg		F. FARMACEUTICA					TABLETAS
							-0							
no.	DATO	no.	DATO	no.	DATO	no.	DATO	no.	DATO	no.	DATO	no.	DATO	
Mtr	(min)	Mtr	(min)	Mtr	(min)	Mtr	(min)	Mtr	(min)	Mtr	(min)	Mtr	(min)	OBSERVACIONES
1	5.06	51		101		151		201		251		301		Límite Superior:
2	5.07	52		102		152		202		252		302		Máximo 30 min
3	5.09	53		103		153		203		253		303		Límite Central:
5	5.15 5.21	54 55		104 105		154		204		254 255		304 305		N/A Límite Inferior:
6	5.22	56		103		156		206		256		306		N/A
7	5.44	57		107		157		207		257		307		Promedio:
8	5.50	58		108		158		208		258		308		5.21 min
9	5.29	59		109		159		209		259		309		Desv. Estándar:
10	5.32	60		110		160		210		260		310		0.145
11	5.22	61		111		161		211		261		311		
12	5.03	62		112		162		212		262		312		
13 14	5.15	63 64		113 114		163 164		213 214		263 264		313		
15		65		115		165		215		265		315		
16		66		116		166		216		266		316		
17		67		117		167		217		267		317		
18		68		118		168		218		268		318		
19		69		119		169		219		269		319		
20		70 71		120 121		170 171		220 221		270		320 321		
22		72		121		172		222		271		321		
23		73		123		173		223		273		323		
24		74		124		174		224		274		324		
25		75		125		175		225		275		325		
26		76		126		176		226		276		326		
27		77		127		177		227		277		327		
28 29		78 79		128 129		178 179		228 229		278		328 329	1	
30		80		130		180		230		280		330	1	
31		81		131		181		231		281		331	1	
32		82		132		182		232		282		332	1	
33		83		133		183		233		283		333		
34		84		134		184		234		284		334		
35		85		135		185		235		285		335		
36 37		86 87		136 137		186 187		236 237		286		336 337	1	
38		88		138		188		238		288		338	1	
39		89		139		189		239		289		339	1	
40		90		140		190		240		290		340	1	
41		91		141		191		241		291		341		
42		92		142		192		242		292		342		
43		93		143 144		193 194		243 244		293		343 344		
44		94 95		144		194		244		294 295		344	1	
46		96		143		193		243		293		346	1	
47		97		147		197		247		297		347	1	
48		98		148		198		248		298		348		
49		99		149		199		249		299		349		
50		100		150		200		250		300		350		

Página 4 de 4

Validación de Procesos. Datos crudos y gráficas de proceso: Friabilidad.

	PRAVASTATINA 10 mg													
No.	DE LO	TE:			1				·	ГІРО	DE PRI	UEBA	:	FRIABILIDAD
	MAÑO)TE:			01.00 K	ζσ				MACE			TABLETAS
1 Al	IANU	DE EC	71 L.		20	71.00 F	` 5			. ran	MINCE	UTIC	Δ.	IADLEIAS
no. Mtr	DATO (%)	no. Mtr	DATO (%)	no. Mtr	DATO (%)	no. Mtr	DATO (%)	no. Mtr	DATO (%)	no. Mtr	DATO (%)	no. Mtr	DATO (%)	OBSERVACIONES
1	0.30	51	(,,,	101	(,,,)	151	(,,,)	201	(,,,	251	(,,,	301	(,,,	Límite Superior:
2	0.20	52		102		152		202		252		302		Máximo 1 %
3	0.30	53		103		153		203		253		303		Límite Central:
4	0.40	54		104		154		204		254		304		N/A
5	0.30	55		105		155		205		255		305		Límite Inferior:
6	0.20	56		106		156		206		256		306		N/A
7	0.20	57		107		157		207		257		307	\sqcup	Promedio:
8	0.30	58		108		158		208		258		308	\vdash	0.29 3 %
9	0.30	59		109		159		209		259		309		Desv. Estándar:
10	0.10	60		110		160		210		260		310	\vdash	0.103
11	0.30	61		111		161 162		211		261 262	-	311 312	_	
13	0.20	62		112		162		212		262		312		
14	0.40	64		114		164		214		264		314		
15	0.40	65		115		165		215		265		315		
16		66		116		166		216		266		316		
17		67		117		167		217		267		317		
18		68		118		168		218		268		318		
19		69		119		169		219		269		319		
20		70		120		170		220		270		320		
21		71		121		171		221	-	271		321	1	
22 23		72 73		122 123		172 173		222		272 273		322 323	1	
23 24		74		123		174		224		274		324	1	
2 4 25		75		125		175		225		275		325	1	
26		76		126		176		226		276		326	1	
27		77		127		177		227		277		327	1	
28		78		128		178		228		278		328		
29		79		129		179		229		279		329		
30		80		130		180		230		280		330		
31		81		131		181		231		281		331	1	
32 33		82 83		132		182 183		232		282 283	-	332 333		
34		83		133		183		233		283		334	1	
35		85		135		185		235		285		335	1	
36		86		136		186		236		286		336	1	
37		87		137		187		237		287		337]	
38		88		138		188		238		288		338		
39		89		139		189		239		289		339		
40		90		140		190		240		290		340		
41		91		141		191		241	-	291		341	1	
42		92		142		192		242		292	-	342		
43 44		93 94		143 144		193 194		243 244		293 294		343 344	1	
44 45		95		144		194		244		294		344	1	
46		96		146		196		243		296		346	1	
47		97		147		197		247		297		347	1	
48		98		148		198		248		298		348	1	
49		99		149		199		249		299		349	1	

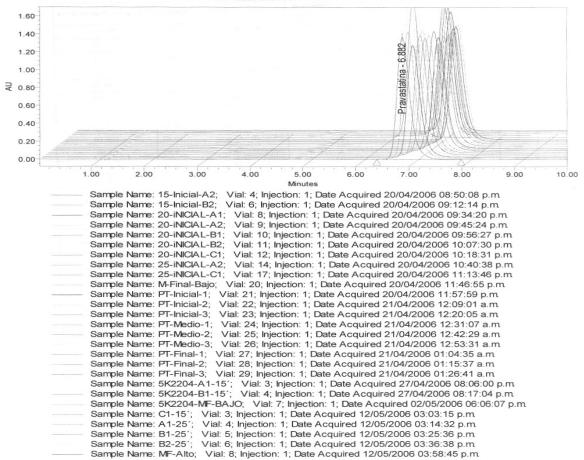
Validación de Procesos. Datos crudos y gráficas de proceso: Friabilidad.


	PRAVASTATINA 10 mg													
No.	DE LO	TE:			2				,	ГІРО	DE PRI	JEBA	:	FRIABILIDAD
	MAÑO		OTE:)1.00 K	σ				MACE			TABLETAS
171	VIII (O	DE E	, , , , , , , , , , , , , , , , , , ,		20	71.00 1	- b				MICE	<u>e 11e</u>		THEEDTHS
no. Mtr	DATO (%)	no. Mtr	DATO (%)	no. Mtr	DATO (%)	no. Mtr	DATO (%)	no. Mtr	DATO (%)	no. Mtr	DATO (%)	no. Mtr	DATO (%)	OBSERVACIONES
1	0.40	51		101		151		201		251		301		Límite Superior:
2	0.20	52		102		152		202		252		302		Máximo 1 %
3	0.20	53 54		103		153 154		203		253 254		303		Límite Central: N/A
5	0.40	55		105		155		205		255		305		Límite Inferior:
6	0.11	56		106		156		206		256		306		N/A
7	0.20	57		107		157		207		257		307		Promedio:
8	0.20	58		108		158		208		258		308		0.249 %
9	0.39	59		109		159		209		259		309		Desv. Estándar:
10	0.30	60		110		160		210		260		310	\vdash	0.126
11	0.20	61		111 112		161 162		211	 	261		311		
13	0.30	63		113		163		213		263		313		
14	0.20	64		114		164		214		264		314		
15		65		115		165		215		265		315		
16		66		116		166		216		266		316		
17		67		117		167		217		267		317		
18 19		68		118		168 169		218 219		268		318		
20		70		120		170		220		270		320		
21		71		121		171		221		271		321		
22		72		122		172		222		272		322		
23		73		123		173		223		273		323		
24		74		124		174		224		274		324		
25 26		75 76		125 126		175 176		225 226		275 276		325 326		
27		77		127		177		227		277		327		
28		78		128		178		228		278		328		
29		79		129		179		229		279		329		
30		80		130		180		230		280		330		
31		81		131		181		231		281		331		
32	\vdash	82 83		132 133		182 183		232	 	282		332 333		
34		84		134		183		234		284		334		
35		85		135		185		235		285		335	1	
36		86		136		186		236		286		336]	
37		87		137		187		237		287		337		
38	—	88		138		188		238		288		338	. I	
39 40		89 90		139 140		189 190		239 240		289 290		339 340	- I	
41		91		141		191		241		291		341	1	
42		92		142		192		242		292		342	1	
43		93		143		193		243		293		343]	
44		94		144		194		244		294		344	. I	
45		95		145		195		245		295		345		
46 47	\vdash	96 97		146 147		196 197		246 247		296 297		346 347		
48		98		147		197		247		298		348	† I	
49		99		149		199		249		299		349	1 I	
50		100		150		200		250		300		350		

Validación de Procesos. Datos crudos y gráficas de proceso: Friabilidad.

	PRAVASTATINA 10 mg													
No.	DE LO	TE:			3				,	ГІРО	DE PRI	JEBA	:	FRIABILIDAD
	MAÑO		OTE:			01.00 K	σ		F. FARMACEUTICA				TABLETAS	
1111		DE E				71.00 1								THEEDTHS
no. Mtr	DATO (%)	no. Mtr	DATO (%)	no. Mtr	DATO (%)	no. Mtr	DATO (%)	no. Mtr	DATO (%)	no. Mtr	DATO (%)	no. Mtr	DATO (%)	OBSERVACIONES
1	0.00	51		101		151		201		251		301		Límite Superior:
2	0.00	52		102		152		202		252		302		Máximo 1 %
3	0.20	53 54		103		153 154		203		253 254		303		Límite Central: N/A
5	0.10	55		105		155		205		255		305		Límite Inferior:
6	0.10	56		106		156		206		256		306		N/A
7	0.10	57		107		157		207		257		307		Promedio:
8	0.00	58		108		158		208		258		308		0.132 %
9	0.00	59		109		159		209		259		309		Desv. Estándar:
10 11	0.20	60		110 111		160		210 211		260 261		310	\vdash	0.139
12	0.40	62		111		162		211		261		311		
13	0.30	63		113		163		213		263		313		
14	0.00	64		114		164		214		264		314		
15		65		115		165		215		265		315		
16		66		116		166		216		266		316		
17		67		117		167		217		267		317		
18 19		68		118		168 169		218 219		268		318 319		
20		70		120		170		220		270		320		
21		71		121		171		221		271		321		
22		72		122		172		222		272		322		
23		73		123		173		223		273		323		
24		74		124		174		224		274		324		
25 26		75 76		125 126		175		225 226		275		325 326		
26		77		120		176 177		227		276		327		
28		78		128		178		228		278		328		
29		79		129		179		229		279		329		
30		80		130		180		230		280		330]	
31		81		131		181		231		281		331	l l	
32		82		132		182		232		282		332	l l	
33 34		83 84		133 134		183 184		233	 	283 284		333 334	l l	
35		85		135		185		235		285		335	1 I	
36		86		136		186		236		286		336	j l	
37		87		137		187		237		287		337]	
38		88		138		188		238		288		338		
39		89		139		189		239		289		339		
40		90 91		140 141		190 191		240 241	 	290 291		340 341	l l	
42		92		142		192		241		292		342	1	
43		93		143		193		243		293		343	j l	
44		94		144		194		244		294		344		
45		95		145		195		245		295		345		
46		96		146		196		246		296		346		
47 48		97 98		147 148		197 198		247 248		297 298		347	- I	
48	\vdash	98		148		198		248		298		348 349	†	
50		100		150		200		250		300		350	1	

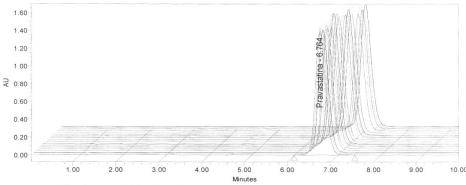
Página 4 de 4


Validación de Procesos. Datos crudos y gráficas de proceso: Friabilidad.

Validación de Procesos. Datos crudos y gráficas de proceso: Valoración.

LOTE 1.

		TIEMPO DE	
	MUESTRA	RETENCION	AREA
		(min)	
1	A1 15'	6.49	25265305.07
2	A2 15'	6.88	23073611.09
3	B1 15'	6.52	24087663.13
4	B2 15'	6.96	24229313.51
5	C1 15'	7.05	25759333.99
6	A1 20'	7.02	21577418.14
7	A2 20'	7.06	21329084.11
8	B1 20'	7.10	23636401.98
9	B2 20'	7.12	24537764.68
10	C1 20'	7.14	22649691.00
11	A1 25'	7.03	24348188.85
12	A2 25'	7.18	23118780.94
13	B1 25'	7.04	25001602.00
14	B2 25'	7.05	24108934.46
15	C1 25'	7.25	24061307.45


TIEMPO DE

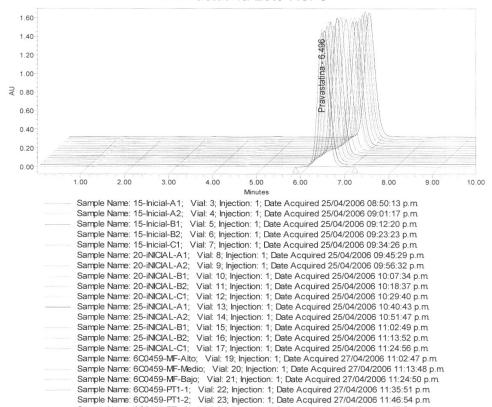
		TIEMPO DE	
	MUESTRA	RETENCION	AREA
		(min)	
16	MF-BAJO	7.34	22682322.15
17	MF-MEDIO	7.29	22899876.96
18	MF-ALTO	7.06	23188857.94
19	PT-INI 1	7.28	22344089.93
20	PT-INI 2	7.30	22539725.06
21	PT-INI 3	7.32	22339065.06
22	PT-MED 1	7.34	22567963.35
23	PT-MED 2	7.36	22209794.90
24	PT- MED 3	7.36	22148106.88
25	PT-FIN 1	7.39	22952373.96
26	PT-FIN 2	7.38	22984927.81
27	PT-FIN 3	7.39	23068024.97
PROMEDIO		7.14	23215095.53
DS		1 3.30	I 5.13

Validación de Procesos. Datos crudos y gráficas de proceso: Valoración.

LOTE 2.

Sample Name: 15-Inicial-A1; Vial: 4; Injection: 1; Date Acquired 24/04/2006 09:13:00 p.m. Sample Name: 15-Inicial-A2; Vial: 5; Injection: 1; Date Acquired 24/04/2006 09:24:02 p.m. Sample Name: 15-Inicial-B2: Vial: 7; Injection: 1; Date Acquired 24/04/2006 09:46:08 p.m. Sample Name: 15-Inicial-C1; Vial: 8; Injection: 1; Date Acquired 24/04/2006 09:57:12 p.m. Sample Name: 20-iNICIAL-A1; Vial: 9; Injection: 1; Date Acquired 24/04/2006 10:08:16 p.m. Sample Name: 20-iNICIAL-A2; Vial: 10; Injection: 1; Date Acquired 24/04/2006 10:19:18 p.m. Sample Name: 20-iNICIAL-B1; Vial: 11; Injection: 1; Date Acquired 24/04/2006 10:30:20 p.m. Sample Name: 20-iNICIAL-B2: Vial: 12: Injection: 1: Date Acquired 24/04/2006 10:41:24 p.m. Sample Name: 20-iNICIAL-C1; Vial: 13; Injection: 1; Date Acquired 24/04/2006 10:52:26 p.m. Sample Name: 25-iNICIAL-A1; Vial: 14; Injection: 1; Date Acquired 24/04/2006 11:03:30 p.m. Sample Name: 25-iNICIAL-A2; Vial: 15; Injection: 1; Date Acquired 24/04/2006 11:14:32 p.m. Sample Name: 25-iNICIAL-B1; Vial: 16; Injection: 1; Date Acquired 24/04/2006 11:25:36 p.m. Sample Name: 25-iNICIAL-B2; Vial: 17; Injection: 1; Date Acquired 24/04/2006 11:36:38 p.m. Sample Name: 25-iNICIAL-C1; Vial: 18; Injection: 1; Date Acquired 24/04/2006 11:47:42 p.m. Sample Name: M-Final-Alto; Vial: 19; Injection: 1; Date Acquired 24/04/2006 11:58:44 p.m. Sample Name: PT-Medio-1; Vial: 25; Injection: 1; Date Acquired 25/04/2006 01:05:18 a.m. Sample Name: PT-Medio-2; Vial: 26; Injection: 1; Date Acquired 25/04/2006 01:16:20 a.m. Sample Name: PT-Medio-3; Vial: 27; Injection: 1; Date Acquired 25/04/2006 01:27:24 a.m. Sample Name: PT-Final-1; Vial: 28; Injection: 1; Date Acquired 25/04/2006 01:38:27 a.m. Sample Name: PT-Final-2; Vial: 29; Injection: 1; Date Acquired 25/04/2006 01:49:30 a.m. Sample Name: PT-Final-3; Vial: 30; Injection: 1; Date Acquired 25/04/2006 02:00:32 a.m Sample Name: 6B0349-B1-15'; Vial: 16; Injection: 1; Date Acquired 06/05/2006 08:00:02 p.m Sample Name: 6B0349-MF-MEDIO-3; Vial: 23; Injection: 1; Date Acquired 06/05/2006 09:17:20 p.m. Sample Name: 6B0349-MF-ALTO-1; Vial: 24; Injection: 1; Date Acquired 06/05/2006 09:28:22 p.m. Sample Name: 6B0349-PT-1; Vial: 27; Injection: 1; Date Acquired 06/05/2006 10:01:48 p.m. Sample Name: 6B0349-PT-2; Vial: 28; Injection: 1; Date Acquired 06/05/2006 10:12:49 p.m. Sample Name: 6B0349-PT-3; Vial: 29; Injection: 1; Date Acquired 06/05/2006 10:23:53 p.m.

		TIEMPO DE	
	MUESTRA	RETENCION	AREA
		(min)	
1	A1 15'	6.76	22822404.03
2	A2 15'	6.77	23593841.15
3	B1 15'	6.91	24860092.97
4	B2 15'	6.78	22799356.01
5	C1 15'	6.76	24801321.96
6	A1 20′	6.80	23337707.01
7	A2 20'	6.79	23475580.64
8	B1 20'	6.77	22389794.69
9	B2 20'	6.80	23163760.91
10	C1 20'	6.81	22145456.08
11	A1 25'	6.80	24629122.40
12	A2 25'	6.81	24570868.11
13	B1 25'	6.82	23473690.01
14	B2 25'	6.82	23969609.13
15	C1 25'	6.82	23969288.26
			_


	I	HEMPO DE	
	MUESTRA	RETENCIO	AREA
		N (min)	
16	MF-BAJO	6.81	22908800.67
17	MF-MEDIO	7.04	22302197.07
18	MF-ALTO	7.05	24397809.52
19	PT-INI 1	7.08	22827138.64
20	PT-INI 2	7.08	22793408.01
21	PT-INI 3	7.09	23718851.79
22	PT-MED 1	6.89	23434446.53
23	PT-MED 2	6.91	23353288.97
24	PT- MED 3	6.93	23452982.96
25	PT-FIN 1	6.92	24018044.22
26	PT-FIN 2	6.94	22840684.28
27	PT-FIN 3	6.94	23009443.66
PROMEDIO		6.88	23446629.25
DS		1.58	3.25

TIEMBO DE

Validación de Procesos. Datos crudos y gráficas de proceso: Valoración.

LOTE 3.

Sample Name: 6C0459-PTI-3; Vial: 24; Injection: 1; Date Acquired 27/04/2006 11:57:54 p.m. Sample Name: 6C0459-PTM-1; Vial: 25; Injection: 1; Date Acquired 28/04/2006 12:09:13 a.m. Sample Name: 6C0459-PTM-3; Vial: 26; Injection: 1; Date Acquired 28/04/2006 12:20:17 a.m. Sample Name: 6C0459-PTF-1; Vial: 28; Injection: 1; Date Acquired 28/04/2006 12:31:18 a.m. Sample Name: 6C0459-PTF-2; Vial: 28; Injection: 1; Date Acquired 28/04/2006 12:42:23 a.m. Sample Name: 6C0459-PTF-3; Vial: 30; Injection: 1; Date Acquired 28/04/2006 01:04:27 a.m.

		TIEMPO DE	
	MUESTRA	RETENCION	AREA
		(min)	
1	A1 15'	6.50	22500822.53
2	A2 15'	6.52	21656122.91
3	B1 15'	6.50	22452905.10
4	B2 15'	6.49	23616786.83
5	C1 15'	6.50	22867408.24
6	A1 20′	6.50	23538496.18
7	A2 20′	6.52	23260525.05
8	B1 20′	6.51	23184789.59
9	B2 20'	6.55	22210642.10
10	C1 20'	6.56	21997554.20
11	A1 25'	6.56	23424263.31
12	A2 25'	6.57	23267894.06
13	B1 25'	6.59	23222923.84
14	B2 25'	6.63	23335223.62
15	C1 25'	6.65	22810911.98

	MUESTRA	TIEMPO DE RETENCION (min)	AREA
16	MF-BAJO	6.74	23567372.73
17	MF-MEDIO	6.74	22491290.97
18	MF-ALTO	6.76	23167995.91
19	PT-INI 1	6.77	22271246.57
20	PT-INI 2	6.79	22431759.39
21	PT-INI 3	6.79	22528049.98
22	PT-MED 1	6.79	22328805.11
23	PT-MED 2	6.80	22791133.18
24	PT- MED 3	6.80	23192650.91
25	PT-FIN 1	6.80	23089689.63
26	PT-FIN 2	6.82	22056662.24
27	PT-FIN 3	6.84	22548676.84
PROMEDIO		6.65	22807874.19
DS		1.96	2.36

Página 4 de 6

Validación de Procesos. Datos crudos y gráficas de proceso: Valoración.

RESULTADOS DE ADECUABILIDAD

Fecha de realización	MUESTRA	TIEMPO DE RETENCIÓN (min)	AREA	No de platos teoricos. (No menor a 1000)	Factor DE coleo (No mayor a 2)
20ABR06	STD PROM.	6.96	22217347.85	4037.2	1.4
24ABR06	STD PROM.	6.74	22273444.51	3944.0	1.1
25ABR06	STD PROM.	6.42	22303592.93	4052.1	1.1
27ABR06	STD PROM.	6.41	22739808.60	3962.3	1.1
06MAY06	STD PROM.	6.79	21511451.97	4108.4	1.2
12MAY06	STD PROM.	7.10	23436294.65	3801.5	1.1

Como se puede ver en los resultados, las muestras se realizaron en distintos días

CALCULO DE CANTIDAD DE PRAVASTATINA SODICA

$$\frac{mg \operatorname{Pr} avastatina - sodica}{TABLETA} = \frac{ABCMtra}{ABD\operatorname{Re} f} \times \frac{\operatorname{Pr} ef}{25mL} \times \frac{25mL}{PMtra} \times \frac{PotS\operatorname{Re} f}{100} \times P\operatorname{Pr} om$$

Mediante la siguiente fórmula se calcula el contenido de Pravastatina sódica en %.

% Pr avastatina - sódica =
$$\frac{mg \text{ Pr avastatina - sódica}/TABLETAS}{10mg \text{ Pr avastatina - sódica}/TABLETAS} \times 100$$

Donde:

ABC Mtra = Area bajo la curva del pico de Pravastatina sódica en la preparación de la muestra.

ABC SRef = Area bajo la curva del pico de Pravastatina sódica en la preparación de referencia.

PSRef = Peso de la sustancia de referencia de Pravastatina sódica (mg).

PMtra= Peso de la muestra (mg)

PotSRef= Potencia de la sustancia de referencia de Pravastatina sódica (%)

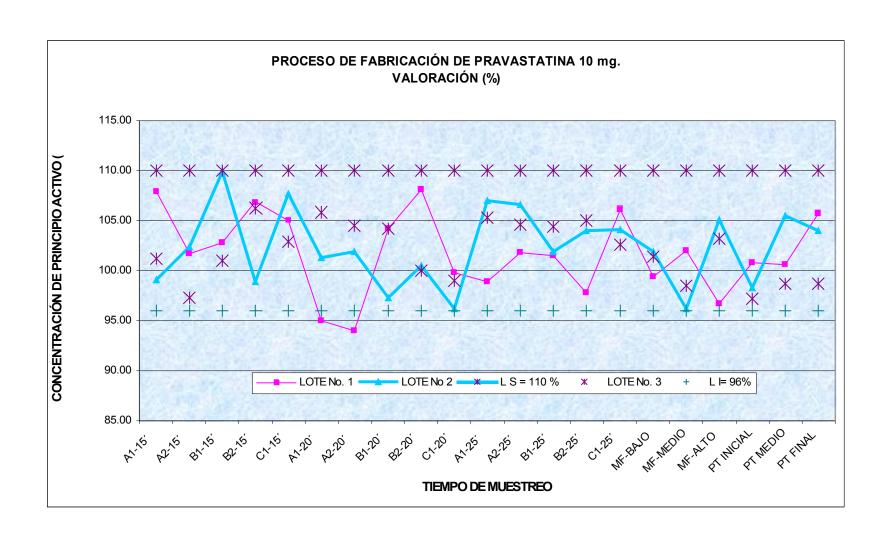
PProm.= Peso promedio de las tabletas (mg)

Tableta = Una unidad de dosis.

EJEMPLO:

Calculo para el PT INI 1 del lote No. 1.

Página 5 de 6


Validación de Procesos. Datos crudos y gráficas de proceso: Valoración.

$$\frac{mg \, \text{Pr} \, avastatina - sodica}{TABLETA} = \frac{22344089.93}{22217347.85} \times \frac{20.3}{25mL} \times \frac{25mL}{199.1mg} \times \frac{99.3\%}{100} \times 99.55mg = 10.14mg$$

% Pr avastatina - sódica =
$$\frac{10.14mg}{10mg \text{ Pr avastatina - sódica / TABLETAS}} \times 100 = 101.4\%$$

Cabe mencionar que para el cálculo de cantidad de principio activo en los granulados, se realiza la misma operación que el cálculo por tabletas, tomando como peso de la tableta, lo obtenido en la realización de un ajuste. Este ajuste consiste en obtener el peso de la tableta en el mezclado inicial y final.

Para mezclado inicial: 97.5mg/TabletaPara mezclado final: 100mg/Tabletas.

10. BIBLIOGRAFIA.

- 1. Girar, J., González, S., *Tecnología Apropiada*. México, Editorial Alambra Mexicana, 1980.
- 2. Morris, C., *Diccionario Enciclopédico. Ciencia y Tecnología.* Tomo IV, México, Editorial Prenntice may Hispanoamericana S.A., 1996.
- 3. *Transferencia Tecnología*. http://www.getec.etsit.upm.es/docencia/gtecnologia/transferencia/transferencia.h tm
- 4. Swarbrick, J., Boylan, J., *Encyclopedia of Pharmaceutical Technology*, USA, Editorial Marcel Dekker, 2002.
- 5. ISPE, *Technology Transfer*, USA, Editorial ISPE, The Society For Life Sciencie Professionals, 2003.
- 6. Sheth, J., Eshghi, A., *Global Microeconomic Perspectives*, USA, Editorial South-Western. 1991.
- 7. Murray, D., *Normas y Métodos para el desarrollo Industrial*, México, Editorial, 1968.
- 8. Farmacopea de los Estados Unidos Mexicanos, 8ª ed, México, 2004
- 9. Carleton, J., Agalloco, J, *Validation of Aseptic Pharmaceutical Processes*, 2a ed., USA, Editorial Marcel Dekker Inc., 1999.
- 10. Berry, I., Nash R., *Pharmaceutical Process Validation*, 2a ed., USA, Editorial Marcel Dekker Inc., 1993.
- 11. International Conference on Harmonization of Technical Requirements For Registration of Pharmaceuticals for Human Use. *ICH Harmonised Tripartite Guideline. Validation of Analytical Procedures: Methodology*, 1996.
- 12. Graham, C. *Pharmaceutical Production. Facilities design and applications*, Inglaterra, Editorial Ellis Horwood Limited, 1993.
- 13. Cipam, Guía de Buenas Prácticas de Fabricación. Personal que labora en la Industria Químico-Farmacéutica, Monografía Técnica No. 7, México, Editorial cipam, 1997.
- 14. Liberman, H., Lachman, L., Kanis, J., *The Theory and Practice of Industrial Pharmacy*, 3a ed., USA, Editorial Lea and Febiger Philadelphia, 1986.
- 15. Parrot, E., *Pharmaceutical Technology. Fundamental Pharmaceutics*, 3a ed., USA, Editorial Burgess Publishing Company, 1971.
- 16. Darr, A., Tecnología Farmacéutica. Textos para el ingeniero farmacéutico, 4ª ed., España, Editorial Acribia Zaragoza, 1981.
- 17. Liberman, A., Lachman, L., Pharmaceutical Dosag Forms, Vol.1, USA, Editorial Marcel Dekker, 1980.
- 18. Mac Van, B., Índice de Medicamentos, México, Editorial El Manual Moderno, 1995
- 19. PLM, Diccionario de Especialidades Farmacéuticas. 51ª ed., México, 2005.

57

- 20. The Merck Index, 13a ed., USA, 2001
- 21. Cipam, *Guía de Buenas Prácticas de Fabricación. Documentación*, Monografía Tecnica No. 13, 2ª ed, México, Editorial cipam, 2004.
- 22. Cervantes, M., et al, *Validación de Procesos*, México, Editorial Asociación Farmacéutica Mexicana, 2003.