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Resumen

Esta tesis está dividida en dos apartados, debido a que se estudiaron dos
temas diferentes.

En la parte 1, se estudió el comportamiento local de los Modelos de Mez-
clas. Primero, haciendo algunas analoǵıas con la geometŕıa de las Familias
Exponenciales Naturales, se desarrolló una teoŕıa acerca de la geometŕıa de
los modelos de mezcla donde los Espacios Af́ın jugaron un papel primordial.

Después, se derivaron expansiones asintóticas que revelan la naturaleza af́ın
de los modelos de mezcla cuando se asume el supuesto de que la distribución
de mezcla es un modelo de dispersión propio. La clase de los modelos de
mezclas locales se redefinieron de forma ligeramente distinta a la literatura,
en la nueva definición se hace explicita la dependencia de los parámetros de
mezcla con respecto a las distribuciones base.

La motivación principal para la construcción de estos modelos, es que poseen
propiedades geométricas simples que son explotadas para llevar a cabo infer-
encias estad́ısticas. Se analizaron las propiedades estad́ısticas y geométricas
de estos modelos y los resultados fueron aplicados para estudiar mezclas de
la distribución exponencial negativa.

La conclusión principal es que los modelos de mezclas locales constituyen
un conjunto de modelos paramétricos que son flexibles, identificables e in-
terpretables; además, generalizan a las familias exponenciales naturales con
función de varianza cuadrática, mediante la introducción de parámetros adi-
cionales diseñados para capturar información acerca de una posible estruc-
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tura de mezcla. La estructura de fronteras, hace de estos modelos una clase
innovadora con respecto a la literatura sobre modelos de mezclas.

En la parte 2, se estudió el problema de bondad de ajuste en las distribu-
ciones Gaussiana Inversa y Gamma cuando existe censura y los parámetros
son desconocidos. Se derivaron estad́ısticas de prueba del tipo Cramér-von
Mises para verificar el ajuste de dichas distribuciones. Se estudiaron las dis-
tribuciones asintóticas asociadas y se obtuvieron fórmulas para evaluar las
funciones de covarianza de los procesos emṕıricos subyacentes. Algunos por-
centiles asintóticos fueron tabulados para mostrar las conexiones existentes
con otros casos ya estudiados, como la distribución normal, exponencial neg-
ativa y de Levy.

Se sugirió un procedimiento basado en valores de significancia, en lugar de
la construcción y uso de tablas. Se llevó a cabo un estudio de Monte Carlo
para mostrar las propiedades de este procedimiento con muestras pequeñas.



Abstract

This thesis is divided in two parts as two different problems have been stud-
ied.

In part 1, we studied the local behavior of mixture models. First, by mak-
ing some analogues with the well known geometry of Natural Exponential
Families, we developed a comprehensive theory of the geometry of Mixture
models where Affine Spaces played a key role. After that, we derived a set of
asymptotic expansions which revealed the affine nature that mixture models
have, under the assumption that the mixing distribution follows a proper
dispersion model.

The class of Local Mixture Models is then defined in a slightly different way
as was previously done in the literature. The new definition makes explicit
the dependence of the mixing parameters with respect to the baseline dis-
tribution family. The main motivation for the construction of these models
is that they have simple geometric properties, which are exploited to make
statistical inference. The statistical and geometrical properties of these mod-
els were analyzed, and the results applied to study mixtures of the negative
exponential distribution.

The main conclusion is that local mixture models constitute a set of flexible,
identifiable and interpretable parametric statistical models which generalize
Natural Exponential Families with Quadratic Variance Function by adding
extra parameters, which are intended to capture possible mixing structure.
The boundary structure makes these models an innovative class with respect
to the literature in mixture models.
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In part 2, we studied the problem of testing the fit of the Inverse Gaussian
and Gamma distributions under censoring and when the parameters are un-
known. We derived tests statistics of the Cramer-von Mises’ type for testing
the fit of such distributions. The theory for the asymptotic distributions of
the test statistics was studied and formulae were obtained to evaluate the
covariance functions of the underlying empirical processes. Some asymptotic
percentiles are tabulated to show connections with other known cases such
as the normal, the negative exponential and the Levy distribution.

A procedure was suggested to compute p-values instead of constructing and
using tables. A small Monte Carlo study is carried out to show the small
properties of this procedure.



Preface

I only realized the hard work required to complete a PhD degree until I
actually did it. I spent almost five years trying to solve my own scientific
enquiries until I finally discovered that research is all about finding partial
answers and that new questions arise all the time. This thesis is just the
beginning of a hopefully long scientific journey. Its structure, divided in two
parts, appears to be quite unusual and therefore I will start giving a brief
explanation of such structure.

During the first year of my PhD, I worked as Research Assistant of my su-
pervisor Dr. Federico O’Reilly. Two publications emerged from that period
of work. The first, was merely completing a note by Dr. O’Reilly on some
simple asymptotic based inferences under censoring for location-scale fami-
lies. During that time, we came across with the problem of testing the fit
of parametric families under censoring. Soon after, I decided to start work-
ing on some simple new procedures for such purpose in the special case of
the Gamma and Inverse Gaussian distributions. The final result is ?) and
appear as Part II of this thesis.

While writing the second paper my scientific inquisitiveness started giving me
trouble. Why families like the Gamma and Inverse Gaussian have so many
nice properties? Digging into the immense statistical literature, I discovered
the Geometrical-Statistical literature which motivates Part I of this thesis.
The motivating example was a simple one. A largely used distribution in the
analysis of positive data, the negative exponential distribution, when sampled
with censoring becomes a Curved Exponential Family!!! If censoring means
loss of information, why the Exponential Family structure is retained in some
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way after censoring? Why the geometrical concept of Curvature comes into
play? What is the Statistical meaning of this curvature? So many questions,
very few answers.

I needed a special guidance to start in an ascending direction. My first
choice was asking Bradley Efron, the author of the seminal paper in statistical
curvature. After receiving a very short but encouraging reply, I continued my
search for guidance abroad which ended up with Paul Marriott which kindly
agreed to collaborate with me in a common research area, the statistical and
geometrical analysis of mixtures of positive distributions. The first approach
was a 6 month visit to the Institute of Statistics and Decision Sciences, Duke
University, U.S. in 2004 and then later a 1 month visit to the Department of
Statistics and Actuarial Sciences, University of Waterloo, Canada in 2005.
Both visits were always supported by UNAM. Part I of this thesis is the
result of this collaboration as well as two forthcoming publications.

After participating in the most important conference in the area, Information
Geometry and its Applications (Tokyo, December 2005) I finished to under-
stand two main issues: first, how fertile the area is at the moment and second,
how crucial is an efficient interaction between Geometers and Statisticians.
Many relatively simple tools still underused by both communities. In that
respect, writing this thesis was a challenge. In an almost philosophical way,
I can justify the use of Information Geometry by the following argument.

We all know that Statistical Theory is solidly constructed upon the foun-
dations of Probability using Measure Theory. Any additional mathematical
structure which help in improving the understanding of any statistical issue
is always welcome. Group Theory is a good example, Transformation mod-
els (such as Location-scale models) have a substantial geometrical content
which has been successfully exploited in Statistics over many years. Bayesian
Decision Theory is another clear example. It contains Bayesian Statistical
Inference as a subset and, in fact, enriches it to better understand the be-
havior of people. We can continue giving examples with the only purpose of
convincing ourselves independently of the statistical paradigm we follow.

Karim Anaya

Milton Keynes, U.K., June 2006



Part I

Local Mixture Models

5



Chapter 1

Introduction

1.1 Some History

There are two main areas within the interplay between Geometry and Statis-
tics. One of them studies statistical models using Group Invariance. See Giri
(1996) for an excellent review on this area. The other area, which is the one
we follow in this work, studies statistical models using Riemannian Geom-
etry and began with the seminal papers of Rao (1945) and Jeffreys (1946).
The geometric structure implicit on those seminal papers did not attract too
much attention to the statisticians of that time and thirty years later, Efron
(1975) retook the subject to emphasize the importance that geometrical in-
sight has in the asymptotic theory of parametric inference. But Efron did not
exploit the Geometry in its full multivariate splendor. It was Amari (1985)
who first really exploited the whole multivariate machinery of Geometry to
better understand parametric asymptotic inference in Exponential Families.

Amari first elucidated the Geometry of Exponential Families and exploited
it to develop a powerful, as well as insightful theory that clearly related
Geometrical and Statistical concepts in a natural way from both points of
view. After that account, there had been many contributions to the area,
now called Information Geometry (a name coined by Amari), but they still

6



CHAPTER 1. INTRODUCTION 7

compose an insignificant proportion compared to the now vast statistical
literature. Information Geometry is a fascinating and fertile area which is
fastly developing and with a promising future (see the Proceedings of the Sec-
ond International Symposium on Information Geometry and its Applications
(2005)).

One of the major challenges in Information Geometry is to make the tools
developed accessible to both Statistics and Geometry audiences. Part I of this
thesis is a contribution to tackle that challenge. It gives a second step to the
work inaugurated by Marriott (2002) and his subsequent articles: Marriott
(2003), Critchley and Marriott (2004), Marriott and Vos (2004) and Marriott
(2005) with the aim of a better understanding of the Geometry inherent to
mixture models. As in Amari’s work, we use very simple Geometrical and
Statistical ideas and put them to interact together naturally, making our
results readable to both audiences.

1.2 Local Mixtures

It is well known that Exponential Families are one the most important models
used in Statistical Inference. Two of their main virtues are that they offer
powerful statistical properties and at the same time are tractable analytically,
see for example Barndorff-Nielsen (1978), Brown (1986) and Letac (1992).
What it is not so well known is that those virtues are mainly due to the fact
that they can be interpreted as Affine Spaces (see Appendix B).

Affine Geometry is simple. It is just the “usual” Geometry but without the
notions of distance and angles. Roughly, an affine space can be thought of
as a set which becomes a vector space by simply selecting a point to be the
origin. We use Affine Spaces to explain the local nature that mixture models
have under natural statistical assumptions. Consider the space of functions

Dm
ν :=

{
g(x) :

∫
g(x) ν(dx) = 1

}
,

where is ν is a known measure. Note that the elements of Dm
ν are not

necessarily positive everywhere, so the set of all positive densities with respect
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to ν is only a convex subset. Any regular parametric family of densities
F = {f(x; θ) : θ ∈ Θ} with respect to ν, can be embedded into Dm

ν by using
the map θ �→ f(x; θ). Now consider the vector space of functions

V0
ν :=

{
s(x) :

∫
s(x) ν(dx) = 0

}
.

An affine structure is basically defined by the following fact:

g(x) + s(x) ∈ Dm
ν

for any g ∈ Dm
ν and s ∈ V0

ν , where + is the usual sum operator between
real valued functions. The structure (Dm

ν ,V0
ν , +) is then an Affine Space. In

general this affine space can be infinite dimensional. We consider mixtures
of F of the form

g(x; Q) :=

∫
Θ

f(x; θ) dQ(θ) ,

for some unknown distribution Q defined over Θ. For the set of allowed Q’s,
we consider the family of Proper Dispersion Models

{Q(θ; ϑ, ε) : ϑ ∈ Θ, ε > 0}
with densities

dQ(θ; ϑ, ε) = a(ε)V −1/2(θ) exp

{
− 1

2ε
d(θ; ϑ)

}
dθ.

These models generalize the idea of localizing mixing distribution of Marriott
(2002). We can therefore embed the generated family of densities in Dm

ν via
the mapping

(ε, ϑ) �→ g(x; Q(· ; ϑ, ε))

and think of it as a family of curves in the space Dm
ν approaching the family

F at each point f(x; ϑ), when ε goes to zero. See Figure 1.1.

We will show the following asymptotic result valid when ε is small:

g(x; Q(·; ϑ, ε)) ∼ f(x; M1(ϑ, ε)) +
d∑

i=2

Mi(ϑ, ε) f (i)(x; M1(ϑ, ε)) ∈ Dm
ν (1.1)

at each ϑ ∈ Θ and for some functions M1(ϑ, ε), . . . , Md(ϑ, ε).
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F

f(x;ϑ
2
)

f(x;ϑ
1
)

g(x;Q(θ;ϑ
2
,ε))

g(x;Q(θ;ϑ
1
,ε))

ε → 0 

Dm
ν

Local Mixture 
Model at ϑ

1

Figure 1.1: Local mixtures approaching F (red) and local mixture models
with d = 2 (dashed)

Motivated from this geometrical structure we will propose a new class of
statistical models, called Local Mixture Models, of the form{

g(x; θ, λ2, . . . , λd) = f(x; θ) +
d∑

i=2

λi(θ) f (i)(x; θ) : (θ, λ2, . . . , λd) ∈ Υ

}

(1.2)
where Υ ⊂ IRd is a set to be defined later. For each fixed θ ∈ Θ these
models are subsets of a finite dimensional affine subspace of (Dm

ν ,V0
ν , +).

Also, from (1.1), these models mimic the behavior of genuine mixtures when
the parameter ε is small. See Figure 1.1.

Exponential families constitute other important example of statistical fam-
ilies which are subsets of finite dimensional affine subspaces. The nice and
powerful statistical properties of exponential families are well known and have
already been studied from this geometric point of view (see Amari and Na-
gaoka (2000) and the references therein). We do the mixture counterpart to
show that Local Mixture Families have also nice and powerful statistical prop-
erties under very natural statistical assumptions and which can be exploited
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to make inference. When the underlying family F is Natural exponential
family with quadratic variance function, we show that Local mixture models
constitute a set of models which identifiable, flexible and interpretable. In
particular, we study in some detail the application of Local mixture models
to the analysis of mixtures of the negative exponential distribution.

As in exponential families, only a subset of the affine subspace can be con-
sidered as a proper density. That is, the natural parameter space of a k-
dimensional exponential family is not necessarily the whole IRk. This in-
duces a boundary structure which has been largely ignored in the statistical
literature about exponential families. We recognize an analogue boundary
structure in our models as they are also subsets of affine spaces. In our
case, the boundaries are given by the fact that the sum of a function which
integrates to one and a function which integrates to zero is not necessarily
positive everywhere. Our families have that structure, so we have to bound
the parameter space to always ensure positivity.

We study, in some detail, the effect that this boundary structure has on the
statistical inference of this type of models. These positivity boundaries are
difficult to dealt with as they represent singularities and, for that reason, we
call them Hard Boundaries. But, ensuring positivity is not enough to make
local mixture models capture mixture structure. We have to restrict a bit
more the parameter space using new boundaries, which are very simple to
manage and have a meaningful interpretation. For that reason, we call those
Soft Boundaries. A simple example arises when we need to further restrict
the parameter space to ensure positivity of a certain variance function.

1.3 Outline

The outline for Part I of the thesis is the following. In chapter two, we de-
scribed the relevant geometric properties of exponential families when they
are viewed as affine spaces. For our own convenience, we emphasize the
use of general exponential families instead of natural exponential families.
Then we show that mixture models also follow a natural affine geometry.
We define general mixture families basically by analogy from the exponential
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family structure. At the end of the chapter we briefly described the construc-
tion of statistical bundles with fibers which are either general exponential or
mixtures families.

In chapter three, we begin motivating local mixture models by describing as-
ymptotic expansions of mixtures. Taylor and Laplace based expansions are
described in detail. To construct Laplace expansions we made the important
assumption that the mixing distribution is a proper dispersion model. Mo-
tivated on the affine structure on those expansions we formally defined local
mixture models in a slightly different way as has been done in the literature.
We made explicit the dependence on the mixing parameters on the baseline
distribution family. Then true local mixture models are defined as an at-
tempt to improve the mixture behavior of our models. Local mixture models
for exponential families are described in detail and some statistical issues
like identification are discussed. A new class of local mixture models called
local scale and local location mixture models are then defined. The general
estimation problem is analyzed and some important statistical properties of
local mixture models are proved.

In chapter four, the results found are applied to the estimation problem of
mixtures of the negative exponential distribution. Some particular models
are studied. The use of boundaries in particular situations is described in
detail. Some connections are made with the literature about testing for
overdispersion. We described some interesting relationships with other mod-
els which, apparently, are not related to local mixture models. A simulation
study is performed at the end of the chapter to show many practical issues
that arise when trying to fit local mixture models to a particular set of data.

Finally, we included three appendixes at the end of the thesis. They corres-
pond to background definitions and results on: Regularity Conditions, Affine
Spaces and Dispersion Models. Such material is only used in Part I of this
thesis.



Chapter 2

Geometry of Mixture Models

In this chapter, the geometry of exponential and mixtures families is de-
scribed using Affine Spaces. The affine geometry of exponential families is
described in detail first and then summarized in Theorem 3 which states
that exponential families are convex subsets of subspaces of a specific affine
space. Immediately after, a geometric interpretation of the log-likelihood in
exponential families is given. Motivated on the exponential case, General
Mixture Families are defined as convex subsets of subspaces of a specific
affine space different than the exponential one. The boundary structure and
the visualization of the families is then described. Finally a brief and simple
description of Affine Bundles and an Euclidean Structure is given because of
its relevance to the next chapters.

The following material is a mixture of ideas taken basically from Barndorff-
Nielsen (1978), Brown (1986), Amari (1990), Letac (1992), Murray and Rice
(1993), Pistone and Rogantin (1999), De Sanctis (2002) and Grasselli (2005).
The contribution of this chapter is the form in which we state the results and
the connections made between them.

12
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2.1 Geometry of Exponential Families

2.1.1 Relevant properties of GEFs

Let ν be a σ-finite measure on (IR,B(IR)) and S : IR → IRd a Borel measur-
able function. The Laplace Transform of S with respect to ν is the function
Lν,S : IRd → (0,∞] defined by

Lν,S(λ) :=

∫
IR

exp〈λ, S(x)〉 ν(dx) =

∫
IRd

exp〈λ, s〉 νS(ds) ,

where νS = ν ◦ S−1 is the image measure of ν under S. Define

De(νS) :=
{
λ ∈ IRd : Lν,S(λ) < ∞}

and
KνS

(λ) := log Lν,S(λ).

Using Hölder’s inequality, see Letac (1992), it is possible to show

Theorem 1 De(νS) and KνS
(λ) have the following properties:

1. De(νS) is a convex set in IRd,

2. KνS
(λ) is a convex function on De(νS) and

3. KνS
(λ) is strictly convex if and only if νS is not concentrated on a

proper affine subspace of IRd.

Denote by R(IRd) the set of σ-finite measures η on (IRd,B(IRd)) such that

1. Λe(η) := interior(De(η)) �= ∅
2. η is not concentrated on a proper affine subspace of IRd.
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Definition 1 Let ν be a σ-finite measure on (IR,B(IR)) and S : IR → IRd a
Borel measurable function such that νS ∈ R(IRd) . The family GE(ν, S) =
{Pλ : λ ∈ Λe(νS)} of probability measures with Radon-Nikodym derivatives

fν(x; λ) :=
dPλ

dν
(x) = exp [〈λ, S(x)〉 − KνS

(λ)] (2.1)

is called the General Exponential Family (GEF) generated by ν and S. λ
and Λe(νS) are called the natural parameter and natural parameter space
associated with GE(ν, S), respectively. The boundary of Λe(νS) will be called
the Hard Exponential Boundary of the family. The function KνS

(λ) is called
the cumulant function and the number d is the dimension of the family.

Remarks:

R.1 All the measures in a GEF are mutually absolutely continuous. In
particular, this implies that they share the same support.

R.2 If ν and ν ′ are such that νS, ν ′
S ∈ R(IRd) then GE(ν,S) = GE(ν ′, S) if

and only if there exist a0 ∈ IRd and c0 ∈ IR such that

ν ′(A) =

∫
A

exp {〈a0, S(x)〉 + c0} ν(dx) , A ∈ B(IR).

The natural parameter space is not the same though. In fact,

De(ν ′
S) = De(νS) − a0 := {κ : κ + a0 ∈ De(νS)} .

In this sense, the natural parameter space is defined up to translations.
More generally, the natural parameter space is defined up to affine
transformations, see Brown (1986) for details. In particular, note that
a GEF is generated by any of its elements, that is

GE(ν, S) = GE(Pλ, S) ∀λ ∈ Λe(νS).

This implies that, by choosing any member of the GEF as starting
measure, we can always make the natural parameter space to include
the origin.
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R.3 It is possible to “center” the distribution of S anywhere we like without
changing the generated GEF. That is,

GE(ν, S) = GE(ν, S + τ ) ,

for any τ ∈ IRd.

R.4 The measure ∫
exp [〈λ, S(x)〉 − KνS

(λ)] ν(dx)

is called an exponential tilting of ν with S. Hence the members of a
GEF are exponential tiltings of each other.

R.5 The conditions on the definition of the set of measures R(IRd) are im-
portant because of the following. If νS is supported on a proper affine
subspace of IRd then it is possible to reduce the dimension of the GEF
to a number less than d. On the other hand, if De(νS) is contained in
a proper affine subspace of IRd (and therefore Λe(νS ) is empty) then it
is also possible to reduce the dimension of the GEF to a number less
than d. In both cases, that number is called the order of the family.
Then, the restriction to measures in R(IRd) ensure that GEF’s always
have order equal to the dimension of the support of νS . See Brown
(1986) for details.

R.6 The following Corollary of Theorem 1, states a result of important sta-
tistical consequences.

Corollary 1 The logarithm of the density function fν(x; λ) of a General
Exponential Family is a strictly concave function of λ for each fixed x. In
particular, the log-likelihood for λ will be a a strictly concave function.

2.1.2 Relevant properties of NEFs

The family of probability distributions of S in GE(ν, S) is called the Natural
Exponential Family (NEF) generated by νS . We will denote such family by
NE(νS) . The associated family of Radon-Nikodym derivatives is given by

fνS
(s; λ) :=

dPλ

dνS

(s) = exp {〈λ, s〉 − KνS
(λ)} . (2.2)
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We now review some relevant properties of NEFs for the case d = 1 which
will be used later in this work. The mean and variance are given by

∂

∂λ
Kνs(λ) =

∫
IR

s fνs(s; λ) νs(ds) =: Eλ[s ]

∂2

∂λ2
Kνs(λ) =

∫
IR

(s − Eλ[s])
2 fνs(s; λ) νs(ds) =: V arλ[s].

If we define

K ′
νs

(λ) :=
∂

∂λ
Kνs(λ) ,

then the set
M(νs) := K ′

νs
(Λe(νs)) ⊂ IR

is called the domain of the means of NE(νs). It is possible to use M(νs) to
parametrise NE(νs) as follows. If νs ∈ R(IR) then K ′

νs
: Λe(νs) → M(νs) is

a diffeomorphism. We denote by ψνs : M(νs) → Λe(νs) the inverse of K ′
νs

,
then the map

Pψνs (m) �→ m

is a new parametrization of NE(νs) by its domain of the means. We can thus
define f̃νs(s; m) := fνs(s; ψνs(m)). For simplicity in notation, we will omit
the tilde over the density f in the mean parametrization.

Denote by C0(νs) the interior of the convex hull of the support of NE(νs).
Then it is clear that M(νs) ⊆ C0(νs). In most practical cases both sets
are equal but not always. When M(νs) = C0(νs) the NEF is said to be
steep. It is possible to show that if De(νs) is open then NE(νs) is steep (see
Barndorff-Nielsen 1978). We shall only consider steep NEF’s throughout this
thesis.

Definition 2 Let NE(νs) be a univariate NEF. Then the map Vνs : M(νs) →
IR+ defined by

Vνs(m) := V arψνs (m)[s]

is called the variance function of NE(νs).

The variance function, together with its domain of means, characterizes the
NEF.
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Theorem 2 Let NE(νs) be a univariate NEF. Then

Vνs(m) = K ′′
νs

(ψνs(m)) = [ψ′
νs

(m)]−1 .

Furthermore, if NE(νs) and NE(νt) are two NEF’s such that Vνs and Vνt

coincide on a non-empty subset of M(νs) ∩ M(νt) then NE(νs) = NE(νt).

Vνs is always positive since NE(νs) is not concentrated on a proper affine
subspace of IR, that is, since NE(νs) is not degenerate. See Letac (1992) for
details about Natural Exponential Families.

2.1.3 Affine Geometry of GEFs

In this section we show that General Exponential Families have an Affine
Geometry. Following Murray and Rice (1993) and De Sanctis (2002), when
considering measures up to scale, any GEF is the interior of a convex subset
of an affine subspace of measures. The key ideas are:

A. Embed any GEF in a common space using the fact that measures in a
GEF are mutually absolutely continuous,

B. extend the GEF by adding measures which are possibly non-finite or does
not necessarily integrate to one,

C. treat measures which are proportional to each other as equal and

D. construct an appropriate vector space of random variables such that any
extended GEF corresponds to an affine subspace of a common bigger
affine space.

We now develop these ideas in detail.

A. Let ν be a σ-finite measure defined on (IR,B(IR)) and Mν be the set of
all σ-finite measures on (IR,B(IR)) which are equivalent to the measure
ν in the following sense. Two σ-finite measures ν and η are considered
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equivalent if and only if ν is absolutely continuous with respect to η
and viceversa. We will denote this equivalence relation by ν ≡ η.
Obviously Mν is just the equivalence class that contains ν. Note that
for any σ-finite measure ν we have

GE(ν, S) ⊂ Mν

for all measurable S. Recall remark R.1. Also note that any a.e.[ν]
assertion is equivalent to the same a.e.[η] assertion for any η ∈ Mν .

B. Consider the following extension of any GE(ν, S):

EE(ν, S) :=

{
η : η =

∫
exp [〈λ, S(x)〉 + c] ν(dx), λ ∈ IRd, c ∈ IR

}

which clearly satisfies

GE(ν, S) ⊂ EE(ν, S) ⊂ Mν .

EE(ν,S) includes non-finite measures (those with λ /∈ Λe(νS) ) and all
the multiples of measures in GE(ν, S) which do not integrate to one.

C. Consider now the following equivalence relation ∼= defined in Mν . We
define η1

∼= η2 if and only if η2 = exp(c) η1 for some c ∈ IR and denote
by η the equivalence class of η. The use of this equivalence relation
means that we are identifying measures up to scale. In other words,
treating as equal, measures in Mν which are proportional to each other.
For any H ⊆ Mν define H to be the quotient space H/ ∼=. That is,

H = {η̄ : η ∈ H} .

Then we have
GE(ν, S) ⊂ EE(ν, S) ⊂ Mν .

We declare η̄ ∈ EE(ν, S) finite if the representative η is a finite measure.
Then GE(ν,S) is the interior of the set of finite elements of EE(ν, S).

D. Now, we are going to construct a vector space Vν and a translation
operator �E such that (Mν ,Vν , �E) is an affine space and any extended
GEF EE(ν, S) is an affine subspace of (Mν ,Vν , �E) of dimension d.
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Consider the vector space L0(ν) of all measurable functions on (IR,B(IR))
quotiented by the subspace of functions which are 0 a.e.[ν]. The ele-
ments of L0(ν) are equivalence classes s̃ of the form

s̃ =
{
t ∈ L0(IR,B(IR)) : t = s a.e. [ν]

}
.

For simplicity in the notation, we will write s for s̃, always keeping in
mind is an equivalence class of functions. Define the following transla-
tion operator on Mν

η ⊕E s :=

∫
IR

es(x) η(dx) (2.3)

where η ∈ Mν , s ∈ L0(ν). Note that this operator is well defined due to
the properties of the integral. It is easy to check that (Mν , L

0(ν),⊕E)
is an affine space1.

Denote by 1 the constant function equal to one. To construct a con-
venient vector space, consider the subspace K of L0(ν) generated by 1
and denote by s∗ the coset

{s + r : r ∈ K} = {s + c1 : c ∈ IR} .

The quotient vector space

L0(ν)/K =
{
s∗ : s ∈ L0(ν)

}
has the appropriate structure to make Mν an affine space and means
that we are identifying vectors up to the addition of a constant. We
will denote this space by Vν . Recall remark R.3.

For any η ∈ Mν and s∗ ∈ Vν define the following translation operator

η �E s∗ := ρ ⊕E r

for any ρ ∈ η and r ∈ L0(ν) such that r − s ∈ K. The operator �E is
well defined in the sense that does not depend on the representatives
ρ and r so we can take them as η and s. Then we have the following
result,

1Denote by Pν the set of probability measures equivalent to ν. The geometry of Pν

has been studied by some authors (Pistone and Sempi 1995, Gibilisco and Pistone 1998,
Pistone and Rogantin 1999, Cena 2003 and Grasselli 2005). The set Pν is endowed with
the structure of a C∞-Banach manifold using the Orlicz space of an exponentially growing
function. With this added structure, they call Pν the exponential statistical manifold.
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Theorem 3 (Mν ,Vν , �E) is an affine space and any EE(ν, S) is an
affine subspace of (Mν ,Vν , �E) of dimension d.

Proof: First, η �E 0∗ = η ⊕E 0 = η for all η ∈ Mν . Also

(η �E s∗1) �E s∗2 = (η ⊕E s1) ⊕E s2

= η ⊕E (s1 + s2)

= η �E (s∗1 + s∗2).

Finally, s∗ with s = log(dη2/dη1) is the only vector such that η̄1 �E s∗ =
η̄2. This proves that (Mν ,Vν , �E) is an Affine Space. Now, we can
write

EE(ν,S) =
{
η̄(λ) := ν̄ �E s∗λ(x) : sλ(x) = 〈λ, S(x)〉 , λ ∈ IRd

}
or, more clearly

EE(ν, S) = ν̄ �E span {s∗1, . . . , s∗d} . (2.4)

To show that EE(ν, S) is an affine subspace of (Mν ,Vν , �E) we need
to show that it is closed under affine combinations (see Appendix B),
that is, for any finite set {λi}i∈I ⊂ IRd and for any {θi}i∈I such that∑

i∈I θi = 1 the affine combination∑
i∈I

θiη̄(λi) ∈ EE(ν, S).

Indeed, for any λ0 ∈ IRd

∑
i∈I

θiη̄(λi) = η̄(λ0) �E
∑
i∈I

θi

[
log

(
dη̄(λi)

dη̄(λ0)

)]∗

=

∫
exp

[∑
i∈I

θi log

(
dη̄(λi)

dη̄(λ0)

)
+ 〈λ0, S(x)〉

]
dν

=

∫
exp

[∑
i∈I

θi〈λi − λ0, S(x)〉 + 〈λ0, S(x)〉
]

dν

=

∫
exp

[〈∑
i∈I

θiλi, S(x)

〉]
dν ∈ EE(ν, S).
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By using Lemma 2 in Appendix B, the dimension of the affine subspace
is the same as the dimension of the vector space

Vν(S) =

{[
log

(
dη̄(λ)

dη̄(λ0)

)]∗
: λ ∈ IRd

}
=
{
[〈λ − λ0, S(x)〉]∗ : λ ∈ IRd

}
.

The assumption that νS is not concentrated on a proper affine subspace
of IRd implies that a.e.[ν]

a0 +
d∑

i=1

ai si(x) = 0 ⇒ a0 = a1 = . . . = ad = 0

and this implies the vector space Vν(S) above has dimension d.

To clarify the ideas presented, consider the following example.

Example 1 Consider the measure

ν(A) :=

∫
A∩ (0,∞)

exp(−x) dx , A ∈ B(IR)

and the function S(x) = (s1(x), s2(x))t = (x, log x) which is measurable over
(0,∞). Then we have

EE(ν, S) =

{
η̄(λ1, λ2) =

∫
exp [λ1x + λ2 log x − x] dx : λ1, λ2 ∈ IR

}

and De(νS) = (−∞, 1)×(−1,∞) . The GEF generated by (ν, S) has densities

fν(x; λ1, λ2) = (1 − λ1)
λ2+1xλ2 exp {λ1 x} /Γ(λ2 + 1).

This family is known as the Gamma Family with two parameters. The sub-
family generated by the restriction λ2 = 0 is known as the Negative Expo-
nential Family. This subfamily is clearly also a GEF.

Consider now the family of measures with densities with respect to ν,

hν(x; β) = βxβ−1 exp
{
x − xβ

}
, β > 0.
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This family is known as the Weibull family with shape parameter β. This is
not a General exponential family because its extended family


∫

xβ−1 exp {x − xβ} ν(dx) : β > 0




is not closed under affine combinations. Figure 2.1 shows graphically the
geometry of this example. We use the notation of an overline for any family
name as we are considering elements in Mν , that is, measures up to scale.
The Weibull family appears as a curve because it is not an affine subspace
of Mν (see section 2.2.4).

s*
2
(x)

s*
1
(x)

Gamma

Negative Exponential 

Weibull

ν

M
ν

Hard exponential boundary of Gamma

Figure 2.1: Affine Geometry of GEFs

From a geometrical point of view, the construction of a GEF is quite clear.
Assume we have a σ-finite measure on (IR,B(IR)) and measurable functions
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si : IR → IR for i = 1, . . . , d. The most familiar examples of finite dimensional
affine subspaces are hyperplanes of dimension d in IRn. For a given point
p ∈ IRn and a set of d vectors (directions) v1, . . . , vd also in IRn, we can
construct any such such hyperplane by{

p +
d∑

i=1

λivi : (λ1, . . . , λd) ∈ IRd

}
.

Here the translation operator is the sum between vectors in IRn. If we change
the translation operator to ⊕E, substitute IRn by Mν , take the point p as ν
and the directions vi as si, we obtain (apart from multiplicative constants)
a General Exponential Family by performing the same procedure. In this
respect, the representation of the exponential family as a plane in Figure 2.1,
makes sense.

As a final note, if the starting measure ν has a finite number of atoms (say
k) then the dimension of Vν is k−1 and therefore Mν is a finite dimensional
affine space.

2.1.4 Curved Exponential Families

We can attempt to generalize GEF’s by simply replacing λ by a function h of
another parameter, say ξ, valued in IRq. If q = d and h is a diffeomorphism
then it is just a reparametrization and no generality is gained. If q < d, then
we enter the world of curved exponential families.

Definition 3 Let

GE(ν, S) = {Pλ : λ ∈ Λe(νS)}

be a General Exponential Family, Ξ ⊂ IRq be an open set and h : Ξ → Λe(νS)
be a function such that:

1. h is a smooth, one-to-one and of rank q everywhere in Ξ and

2. h is a homeomorphism onto its image h(Ξ) ⊂ Λe(νS).
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Then the subfamily

GE0(ν, S) =
{
Ph(ξ) ∈ GE(ν, S) : ξ ∈ Ξ

}
is called a curved exponential family (CEF) of GE(ν, S).

Define Λe
0(νS) = h(Ξ). Under these conditions, according to standard geo-

metrical terminology, h is an embedding and Λe
0(νS) is said to be embedded

in Λe(νS) . We may also call the family GE0(ν, S) an embedded subfamily of
GE(ν, S). This definition does not depend on the parametrization used.

A Curved Exponential family can be itself a GEF but of lower dimension.

Theorem 4 Let GE(ν, S) be a General Exponential Family of dimension d.
An embedded subfamily GE0(ν, S) =

{
Ph(ξ) ∈ GE(ν, S) : ξ ∈ Ξ ⊂ IRq

}
is a

q-dimensional General Exponential Family if and only if there exist a proper
affine subspace of IRd (of dimension q) that contains h(Ξ). An equivalent
condition is that h can be written in the form

h(ξ) = λ0 + Bξ

for some λ0 ∈ IRd and B is d × q matrix of rank q.

In this case, the embedding h is an affine mapping and also defines an affine
subspace. See equation (B.5). So, in the sense described above, an embedded
subfamily of a GEF is a GEF itself if it corresponds to an affine subspace of
the bigger GEF. See section 4.2 of Kass and Vos (1997) for more details.

2.1.5 The log-likelihood

As described in Appendix B, any affine space can be identified with its asso-
ciated vector space using a particular mapping. It turns out to be that, for
the type of affine spaces described above, the identification mapping is equiv-
alent to the well known log-likelihood mapping used in statistical inference.
In this way, for the case of exponential families, the log-likelihood acquires
the geometrical interpretation of an isomorphism between vector spaces. The
following Corollary goes into details.
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Corollary 2 Let GE(ν, S) be a GEF. Given the arbitrary choice of an ele-
ment η̄0 ∈ EE(ν, S) as the origin, there exists an identification between
EE(ν, S) and Vν(S) via the log-likelihood mapping of EE(ν, S), which is de-
fined by 
η̄0 : EE(ν, S) → Vν(S) and


η̄0(η̄) =

[
log

(
dη

dη0

)]∗
=

{
log

(
dη

dη0

)
+ c · 1 : c ∈ IR

}
.

Moreover, 
η̄0 is an isomorphism.

Proof: This is just the identification result between affine spaces and its
associated vector spaces in Appendix B.

Note that this notion of log-likelihood in exponential families is consistent
with its statistical meaning. The log-likelihood of any parametric model is
defined up to the addition of a constant. It does not make any difference if
we use any representative of 
η̄0(η̄) for making inferences about the unknown
parameters. In this case, the unknown parameters correspond to the natural
parameters. For details see Cox and Hinkley (2000) and McCullagh (1999).

The difference with the statistical literature is that the definition of the log-
likelihood mapping is given between an extended family of measures (not
necessarily the extended exponential family EE(ν, S)) and the vector space
Vν , therefore it is not necessarily an isomorphism. This later notion of log-
likelihood is the one used throughout this thesis.

2.2 Geometry of Mixture Families

2.2.1 General Mixture Families

Given a σ-finite measure ν on (IR,B(IR)) consider the following spaces

Dm
ν :=

{
g ∈ L1(ν) :

∫
IR

g dν = 1

}
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and

V0
ν :=

{
s ∈ L1(ν) :

∫
IR

s dν = 0

}
.

For any g ∈ Dm
ν and s ∈ V0

ν , the translation operation will be defined just as
the sum of those functions, that is g ⊕m s := g + s.

Theorem 5 (Dm
ν ,V0

ν ,⊕m) is an affine space.

Proof: First note that, since L1(ν) is a vector space then g ⊕m s = g + s ∈
L1(ν) and ∫

IR

(g ⊕m s) dν =

∫
IR

g dν +

∫
IR

s dν = 1 + 0 = 1,

then g ⊕m s ∈ Dm
ν . Then V0

ν is clearly a real vector space with addition
operator the usual one for functions. In this case, the addition for vectors
is the same as the translation operator of the affine space but we still keep
different symbols to mantain coherence in the expressions. Let �0 be the
zero function in L1(ν). For any g ∈ Dm

ν and s2, s2 ∈ V0
ν , showing that

g ⊕m �0 = g and (g ⊕m s1) ⊕m s2 = g ⊕m (s1 + s2) is trivial. Given any
two functions g1, g2 ∈ V0

ν the only vector s for which g2 = g1 ⊕m s is clearly
s = g2 − g1 ∈ L1(ν) (the difference of two real functions) and obviously∫

IR

(g2 − g1) dν =

∫
IR

g2 dν −
∫

IR

g1 dν = 1 − 1 = 0 ,

thus s = g2 − g1 ∈ V0
ν .

We now describe a natural counterpart of General Exponential Families. We
will define a General Mixture Family just as the interior of a convex subset
of a finite dimensional affine subspace of (Dm

ν ,V0
ν ,⊕m).

Take any f ∈ Dm
ν and a set of functions s1, . . . , sd ∈ V0

ν , then clearly{
f ⊕m

d∑
i=1

λisi : (λ1, . . . , λd)
t ∈ IRd

}
(2.5)
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is an affine subspace of (Dm
ν ,V0

ν ,⊕m). Note that this includes the usual
concept of convex mixtures in which f, f1, . . . , fd ∈ Dm

ν yield the mixture(
1 −

d∑
i=1

pi

)
f +

d∑
i=1

pifi = f +
d∑

i=1

pi [fi − f ]

where pi > 0 and
∑d

i=1 pi < 1 but here both the weights and the fi are not
necessarily positive everywhere. Now consider the following theorem, which
is the mixture counterpart of Theorem 1 and Corollary 1.

Theorem 6 For any f ∈ Dm
ν and s1, . . . , sd ∈ V0

ν let Dm(νS) be the set of
values λ = (λ1, . . . , λd)

t ∈ IRd for which

g(x; λ) = f(x) +
d∑

i=1

λisi(x)

is positive a.e.[ν]. Then

1. Dm(νS) is a convex set in IRd,

2. log(g(x; λ)) is concave as a function of λ a.e.[ν] and

3. if the functions s1, . . . , sd are linearly independent a.e.[ν] then log(g(x; λ))
is strictly concave as a function of λ.

Proof: If Dm(νS) is nonempty, just take two different values λ1 and λ2 in
Dm(νS). Let λ(u) := uλ1 + (1 − u)λ2. Then, for u ∈ [0, 1],

g(x; λ(u)) = (1 − u + u)f(x) +
d∑

k=1

[
uλi

1 + (1 − u)λi
2

]
si(x)

= ug(x; λ1) + (1 − u)g(x; λ2)

because all affine spaces are convex. Then

ug(x; λ1) + (1 − u)g(x; λ2) > 0 a.e.[ν]

if g(x; λ1) > 0 and g(x; λ2) > 0 a.e.[ν], which implies that λ(u) ∈ Dm(νS)
for all u ∈ [0, 1].
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Concavity follows from the fact that for each x we can see g(x; λ) as a
linear function of the vector (1, λ)t ∈ IRd+1 and linear functions are concave.
Because log is a concave increasing function we have that log(g(x; λ)) is
concave. Now, the Hessian of log(g(x; λ)) is given by

[H(λ; x)]ij = − [si(x)sj(x)]

[g(x; λ)]2

and therefore

ltH(λ; x)l = −

(
d∑

i=1

lisi(x)

)2

[g(x; λ)]2

and so, if the functions s1, . . . , sd are linearly independent a.e.[ν] then H(λ; x)
is negative definite and log(g(x; λ)) is strictly concave.

Parallel with the definition of General Exponential Families, define Λm(νS) :=
interior(Dm(νS)) and νf :=

∫
fdν. This leads to the following

Definition 4 The convex subset of positive a.e.[ν] functions

GM(νf ,S) :=

{
g(x; λ) = f(x) +

d∑
i=1

λisi(x) : λ ∈ Λm(νS)

}

for some f ∈ Dm
ν and S = (s1, . . . , sd)

t, is called the General Mixture Family
(GMF) generated by νf and S provided that

1. the functions s1, . . . , sd ∈ V0
ν are linearly independent a.e.[ν] and

2. Λm(νS) �= ∅.

As in the exponential case, λ will be called the natural parameter and Λm(νS)
the natural parameter space of the Mixture Family. The boundary of Λm(νS)
will be called the Hard Mixture Boundary. The number d is the dimension
of the family.

Note. We will assume that f > 0 a.e.[ν]. In this case sometimes will be
more convenient to work with the isomorphic vector space

V0
νf

=

{
s ∈ L1(νf ) :

∫
IR

s dνf = 0

}
(2.6)
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(instead of V0
ν ). The isomorphism is clearly given by

s �→ s

f
, s ∈ V0

ν .

In this case it is possible to construct a General Mixture Family by choosing
a set s1, . . . , sd ∈ V0

νf
of linearly independent functions. Then the set

{
g(x; λ) = f(x)

[
1 +

d∑
i=1

λisi(x)

]
: λ ∈ Λm(νS)

}

is clearly the General Mixture Family generated by νf and fs1, . . . , fsd.

2.2.2 Mixture Boundaries

Consider the following simple example of a General Mixture Family. Let
f(x), f1(x) be two densities with respect to the measure ν with the same
support. Consider the simple mixture

g(x; λ) = (1 − λ)f(x) + λf1(x) = f(x) + λ[f1(x) − f(x)]

which is clearly a GMF. Here s(x) = s1(x) = f1(x) − f(x). The natural
parameter space Λm(νs) contains the interval [0, 1] but can be bigger. To see
this, take ν as the Lebesgue measure in IR and two members of the negative
exponential family defined in example 1

f(x) = θ0e
−θ0 x and f1(x) = θ1e

−θ1 x (2.7)

for some θ0, θ1 > 0. If θ0 > θ1 then

Dm(νs) =

[
0,

θ0

θ0 − θ1

]

and if θ0 < θ1 then

Dm(νs) =

[
θ0

θ0 − θ1

, 1

]
.
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Definition 5 Let GM(νf , S) be a General Mixture Family with natural
parameter space Λm(νS). The boundary of any closed set contained in

Λm(νS)

will be called a Soft Boundary of the family.

Clearly, if θ0 > θ1 in the above example, the set ∂(Dm(νs)) = {0, θ0/(θ0 − θ1)}
is the Hard Boundary and ∂([0, 1]) = {0, 1} is an example of a soft boundary.
As we will see later, soft boundaries have their own meaning and interpreta-
tion depending on the context.

As another example, consider a fixed θ0 > 0, ν de Lebesgue measure in IR+

and the following general mixture family

g(x; λ1, λ2) := f(x; θ0) + λ1
∂f(x; θ0)

∂θ
+ λ2

∂2f(x; θ0)

∂θ2

where f(x; θ) is again θe−θx. Clearly the derivatives

si(x) =
∂if(x; θ0)

∂θi
, i = 1, 2

belong to V0
ν as the family f is regular. We can write g as

f(x; θ0)

[
θ + λ1 − (λ1 + 2λ2)x + λ2θx

2

θ

]

so Dm(νS) is clearly given by the set of all (λ1, λ2)
t ∈ IR2 such that the

quadratic inside the bracket is positive for all x > 0. First, the set Dm(νS)
is given by

Dm(νS) =
{
(λ1, λ2)

t ∈ IR2 : λ1 ∈ [−θ0, θ0] , l(λ1) ≤ λ2 ≤ u(λ1)
}

where

l(λ1) =




0 λ1 < 0

θ0(θ0 −
√

θ2
0 − λ2

1)

2
λ1 ≥ 0

and

u(λ1) =
θ0(θ0 +

√
θ2
0 − λ2

1)

2
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Figure 2.2: Polygon approximation of ∂(Dm(νS))

Also, the natural mixture families defined when we set λ2 = 0 and λ1 = 0
have natural parameter space given by [−θ0, 0] and [0, θ2

0] respectively, so the
hard boundary in each case can be easily determined.

Hard Boundaries are not always easy to calculate as in the previous examples.
However, given that Dm(νS) is always a convex set, hard boundaries can
always be approximated in the following sense. Following Marriott (2002),
for each fixed x, the set of allowable λ values forms a half hyperplane with
boundary

g(x; λ) = 0.

Thus the set Dm(νS) is the intersection of a family of half hyperplanes over all
x. For a sufficiently dense grid over the support of g(x; λ) we can approximate
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(from above) Dm(νS) using the corresponding polygon. See figure 2.2 which
presents the hard boundary for g(x; λ1, λ2) plotted in red and its polygonal
approximation.

2.2.3 Curved Mixture Families

As in the exponential case, we can define Curved Mixture Families as em-
bedded subfamilies of a General Mixture Family.

Definition 6 Let GM(νf , S) be a General Mixture Family of dimension d,
Ξ ⊂ IRq (q < d) be an open set and h : Ξ → Λm(νS) an embedding. Then
the subfamily

GM0(νf , S) = {g(x; h(ξ)) ∈ GM(νf , S) : ξ ∈ Ξ}
is called a Curved Mixture Family (CMF) of dimension q.

Theorem 7 Let GM(νf , S) be a GMF of dimension d. An embedded sub-
family is a GMF of dimension q if and only if it is contained in a q-dimensional
proper affine subspace of (Dm

ν ,V0
ν ,⊕m). Equivalently, if and only if h(Ξ) is

contained in a q-dimensional proper affine subspace of IRd.

In this way, Curved mixture families are of the form

g(x; ξ) = f0(x) +
d∑

i=1

λi(ξ)si(x)

for some functions λi : Ξ ⊂ IRq → IR that satisfy the embedding assumption.
For example, any regular curve inside Dm(νS) essentially defines a one di-
mensional curved mixture family. Figure 2.2 presents two examples of CMF’s
one of which is also a subset of GMF of dimension 1. Indeed, in general, if
the image of the embedding h is a subset of a straight line, then this defines
a GMF of dimension 1. For example, this is when we can write

λ(ξ) = λ0 + r(ξ)λ1

for some λ0, λ1 ∈ IRd and a smooth full rank function r : Ξ ⊂ IR → IR.
This is the mixture counterpart of Theorems 2.3.4 and 4.2.2 of Kass and Vos
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(1997). Finally, note that Hard Boundaries for Curved Mixture Families can
be calculated as well.

2.2.4 Visualization

As we will consider our ambient space to be the affine space (Dm
ν ,V0

ν ,⊕m), it
becomes helpful to have an idea concerning the shape of our models within
this ambient space. Consider the following family affine projections proposed
by Marriott (2005). First define, for any density g,

Eg[h(X)] :=

∫
IR

h(x)g(x)ν(dx) ,

for any real valued integrable function h.

Theorem 8 Define, for any integers n1, n2, n3 for which the corresponding
integrals converge, the map

(Dm
ν ,V0

ν ,⊕m) → IR3

g(x) �→ (Eg[X
n1 ], Eg[X

n2 ], Eg[X
n3 ])t.

This map has the property that finite dimensional affine subspaces defined
in (Dm

ν ,V0
ν ,⊕m) (General Mixture Families) map to finite dimensional affine

subspaces of IR3 (Affine Planes).

These “moment” projections respect the geometric structure. If a line is
straight in (Dm

ν ,V0
ν ,⊕m), it will automatically be a straight line in the pro-

jection. Furthermore, a point which lies in a convex (or affine) hull in
(Dm

ν ,V0
ν ,⊕m) will lie in the convex (affine) hull of the image in IR3.

To see how this works, consider the negative exponential family F defined in
example 1. This is a natural exponential family of dimension 1. Also consider
the general mixture family G generated by two points in F as explained above
in (2.7). As expected from Theorem 8, G appears as a straight line. In Figure
2.3, the hard boundary of G is represented by the two red points and a soft
boundary by the two blue points. Note in this case one point of the boundary



CHAPTER 2. GEOMETRY OF MIXTURE MODELS 34
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Hard Mixture Boundary 
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f
0

f
1

Figure 2.3: Boundaries in General Mixture Families

is hard and soft at the same time. Clearly, this soft boundary is delimiting
the convex hull of the two points in F .

Note also that the natural exponential family F is not a straight since it
is not a general mixture family. In general, the intersection between GEF’s
(or NEF’s) and GMF’s is not empty, the multinomial distribution being a
prominent example inside that intersection, see Amari (1990).

As another example of visualization consider the General Mixture Family

g(x; λ1, λ2) = f(x; θ0) + λ1
∂f(x; θ0)

∂θ
+ λ2

∂2f(x; θ0)

∂θ2

described above. The visualization of this family is shown in Figure 2.4.
The General Mixture Family corresponds to points in the plane generated
by the vectors ∂f(x; θ0)/∂θ and ∂2f(x; θ0)/∂θ2 and the Hard Boundary for
this family is plotted in red. The set inside the Hard Boundary is just the
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Figure 2.4: Boundaries in General Mixture Families

image of the set Dm(νS) under the mapping

(λ1, λ2) �→ g(x; λ1, λ2) ∈ Dm
ν .

All the three dimensional graphs presented in this thesis represent projections
of the type described in Theorem 8 with respect to some moments.

2.3 Affine Bundles

In this section we consider a simple description of a geometrical object of
interest in this thesis, an Affine Bundle. Local Mixture Models (introduced in
the next chapter) are constructed as a particular subset of an Affine Bundle.
In general, the basic idea behind the construction of an Affine Bundle is
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to attach a fiber (in our case an affine space: a General Mixture Family
or Exponential Family) to each member of a given base object (in our case
a given parametric family). Some related ideas appear in Amari (1987),
Barndorff-Nielsen and Jupp (1989) and Barndorff-Nielsen et al. (1991). For
general Fibre Bundles see Husemoller (1966).

Given a regular parametric family of densities

F = {f(x; θ) : θ ∈ Θ ⊂ IR} .

with respect to the measure ν defined on (IR,B(IR)), consider a probability
density g /∈ F and assume g has the same support (say S) as the members
of F . For any θ ∈ Θ and x ∈ S we can write the simple formula

g(x) = f(x; θ) [1 + sm(x; θ)]

where

sm(x; θ) =
g(x) − f(x; θ)

f(x; θ)

is the relative deviation between g(x) and f(x; θ). Clearly,

Eθ [sm(x; θ)] :=

∫
sm(x; θ) νθ(dx) = 0 , ∀ θ ∈ Θ ,

where νθ the probability measure defined by

νθ(A) :=

∫
A

f(x; θ) ν(dx) , A ∈ B(IR) ∩ S.

Now, for each fixed θ ∈ Θ, consider the space of densities

Pm
θ :=
{
f(x; θ) [1 + s(x)] : s(x) ∈ V0

νθ
∩N m

θ

}
,

where V0
νθ

is the vector space (defined in (2.6)) of all possible relative devia-
tions from f(x; θ) and

N m
θ :=
{
s(x) ∈ L1(νθ) : 1 + s(x) > 0 , ∀x ∈ S} .

Another formulation of the same idea is to consider that for θ ∈ Θ and x ∈ S
we can also write

g(x) = f(x; θ)
g(x)

f(x; θ)

= f(x; θ) exp {se(x; θ) − log(1)}

= f(x; θ) exp {se(x; θ) − Ψθ(s
e(x; θ))} ,
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where

se(x; θ) = log

[
g(x)

f(x; θ)

]
is the log deviation between g(x) and f(x; θ), and

Ψνθ
(s(x)) := log Eθ[exp(s(x))]

is the cumulant generating functional of νθ evaluated at s(x). Then, for each
fixed θ ∈ Θ, it also makes sense to consider the following space of densities

Pe
θ :=
{
f(x; θ) exp {s(x) − Ψθ(s(x))} : s(x) ∈ V0

νθ
∩N e

θ

}
where

N e
θ :=
{
s(x) ∈ L1(νθ) : Eθ[exp(s(x))] < ∞} .

In practical Statistics, sometimes attention is focused in a particular set of
deviations. For example, if µθ is the mean under f(x; θ), the vector

s(x; θ) = (x − µθ)
2 − Eθ[(x − µθ)

2] ∈ V0
νθ

represents changes of the variance. Analogously, if mθ is the median of
f(x; θ), then the vector

s(x; θ) = II(x ≥ mθ) − 1

2
∈ V0

νθ
,

represents changes in the median. Here II(x ∈ A) is the indicator function
defined as

II(x ∈ A) :=

{
1 if x ∈ A

0 if x /∈ A.

Other examples of deviations in V0
νθ

(assuming some extra conditions as in
Appendix A) are the higher order scores defined as

ei(x; θ) :=

dif(x; θ)

dθi

f(x; θ)
, i = 1, 2, . . .

The most general type of directions we can consider are completely moving
from one density to another as given by

sm(x; θ) =
g(x) − f(x; θ)

f(x; θ)
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and by

se(x; θ) = log

[
g(x)

f(x; θ)

]
− Eθ

[
log

[
g(x)

f(x; θ)

]]
.

For each θ ∈ Θ consider now a measurable function Sθ : IRd → IR given
by Sθ(x) = (s1(x; θ), . . . , sd(x; θ))t for a set of linearly independent vectors
s1(x; θ), . . . , sd(x; θ) ∈ V0

νθ
. Define the following sets

Λm(νSθ
) := interior

{
λ ∈ IRd : 〈λ, Sθ(x)〉 ∈ N m

θ

}
Λe(νSθ

) := interior
{
λ ∈ IRd : 〈λ, Sθ(x)〉 ∈ N e

θ

}
where 〈·, ·〉 is the usual inner product on IRd. These will induce subsets

GE(νθ, Sθ) =

{f(x; θ) exp [〈λ(θ),Sθ(x)〉 − Ψθ (〈λ(θ), Sθ(x)〉)] : λ(θ) ∈ Λe(νSθ
)} ⊂ Pe

θ

which is the General Exponential Family generated by νθ and Sθ and

GM(νθ, Sθ) := {f(x; θ) [1 + 〈λ(θ), Sθ(x)〉] : λ(θ) ∈ Λm(νSθ
)} ⊂ Pm

θ

which is the General Mixture Family generated by νθ and Sθ. Then the
families

BM(F ,L(S)) =
⋃
θ∈Θ

GM(νθ, Sθ)

BE(F ,L(S)) =
⋃
θ∈Θ

GE(νθ, Sθ)

represent the set of all possible densities deviating from F in the directions
given by the family of vector spaces L(S) = {L(Sθ) : θ ∈ Θ} where

L(Sθ) :=
{〈λ, Sθ〉 : λ ∈ IRd

}
.

In Figure 2.5, the boundaries of the sets Λe(νSθ
), Λm(νSθ

) ⊂ IRd are respec-
tively, the Hard exponential and mixture boundaries at θ.

To specify a point in BE(F ,L(S)) or BM(F ,L(S)) we can first specify the
value of θ from the family F and then the particular deviation vector s(x; θ)
from it. This latter vector can be specified with the unique linear combination

s(x; θ) = 〈λ(θ), Sθ〉.
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Figure 2.5: Construction of the Family BE(F ,LF)

Note that λ is a function of θ, this is because the set {s1(x; θ), . . . , sd(x; θ)}
is a basis with respect to V0

νθ
, which depends on θ. Therefore, under some

further conditions, we can identify any point g ∈ BE(F ,L(S)) or g ∈
BM(F ,L(S)) with a vector (θ, λ(θ)) ∈ IRd+1.

For example, in the case where

si(x; θ) =
gi(x; θ) − f(x; θ)

f(x; θ)
,

for some parametric families

Gi = {gi(x; θ) ; θ ∈ Θ}
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with i = 1, 2, . . . , d, the family BM(F ,L(S)) has elements of the form

f(x; θ) +
k∑

i=1

λi(θ) [gi(x; θ) − f(x; θ)]

=

[
1 −

k∑
i=1

λi(θ)

]
f(x; θ) +

k∑
i=1

λi(θ)gi(x; θ) ,

which, for a fixed θ, is an affine combination of f(x; θ) g1(x; θ), . . . , gd(x; θ)
and, when λi(θ) > 0 for all i and their sum is less than one, we clearly have
a linear mixture.

Analogously, in the case where

si(x; θ) = log

[
gi(x; θ)

f(x; θ)

]
,

the family BE(F ,L(S)) has elements of the form

{
Eθ

[
d∏

i=1

[
gi(x; θ)

f(x; θ)

]λi(θ)
]}−1

f(x; θ)1−∑d
i=1 λi(θ)

d∏
i=1

gi(x; θ)λi(θ) , (2.8)

which, for a fixed θ, λi(θ) > 0 for all i with their sum is less than one, is a
geometric mixture.

In the next chapter we introduce a new class of statistical models which is
of the form BM(F ,L(S)). The motivation is the following. If Q(θ) is a
continuous cumulative distribution function defined on Θ which assign most
of its mass to a neighbourhood of a fixed ϑ ∈ Θ then

∫
Θ

f(x; θ)dQ(θ) ≈ f(x; ϑ)

[
1 +

d∑
i=1

λi(ϑ) ei(x; ϑ)

]

where

λi(ϑ) ≈ EQ[(θ − ϑ)i]

i!
(2.9)

and ei(x; ϑ) are the higher order scores defined above.
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2.4 Euclidean Structure

So far, we have not considered any further geometrical structure apart from
the affine structure. We can make our affine spaces Euclidean (or more
properly Riemannian) by defining an inner product on the associated vector
spaces. In our case, it is enough to define an inner product on V0

νf
, defined

in (2.6) as

V0
νf

=

{
s ∈ L1(νf ) :

∫
IR

s(x) f(x) ν(dx) = 0

}
.

Definition 7 The Fisher Information inner product 〈·, ·〉f : V0
νf
×V0

νf
→ IR

is defined as

〈u, v〉f :=

∫
u(x)v(x) f(x) ν(dx).

This is clearly bilinear symmetric and positive definite. This permits the
introduction of important concepts like orthogonality. It turns out that the
orthogonality induced by this inner product is the same as the usual Fisher
orthogonality used in parametric statistical inference , see for example Cox
and Reid (1987) and Barndorff-Nielsen and Cox (1994). As we will see in
the next chapter it is convenient statistically to construct the fibers in our
bundles to be Fisher orthogonal to the tangent space of the base family
F . In particular, Fisher orthogonality implies Local Mixture models are
well identified also the well known asymptotic inferential separation between
interest and nuisance parameters.

2.4.1 Frequentist interpretation of the space V0
νϑ

Clearly, the space V0
νϑ

is the vector space of random variables that have null
expectation with respect to the density f(x; ϑ). That, if s(x; ϑ) ∈ V0

νϑ
and X

is a random variable with density f(x; ϑ) then the random variable S(X; ϑ)
will have zero expectation. This view of the space V0

νϑ
has been used many

times in the Frequentist Statistics literature concerning the issue of testing for
the presence of mixing. Sometimes it appears under a different name such as
tests for over-dispersion, tests of homogeneity (heterogeneity) or frailty tests.
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The following is mainly based on the following references: Zelterman (1988),
Zelterman and Chen (1988), Dean (1992), Chesher (1984) and Cox (1983).
The general idea is that if a random sample X1, X2, . . . , Xn is generated by
the density f(x; ϑ) for some known value ϑ ∈ Θ then the average

1

n

n∑
i=1

S(Xi; ϑ)

should have zero expectation. So, given a particular data set x1, . . . , xn, large
values of the statistic

T (x) =
1

n

n∑
i=1

S(xi; ϑ) (2.10)

represent empirical evidence against the original hypothesis that the data
was generated by f(x; ϑ). If the distribution of T (x) can be calculated under
such hypothesis then classical statistical inference can be performed. As this
is not usually the case (or it is difficult to do so), usually, asymptotic inference
is used. Assuming that hypothesis as true, by the Central Limit Theorem,

√
n T (x)√
v(ϑ)

d→ N(0, 1)

as n tends to infinity, where

v(ϑ) :=

∫
[S(x; ϑ)]2 f(x; ϑ) ν(dx).

For the validity of this approach we need to assume a particular value of ϑ
which does not always makes too much sense. Most of the time, the important
assumption to be empirically tested is that the data we are observing come
from F , that is, come from f(x; ϑ) for some unknown ϑ ∈ Θ. In that case,
the unknown ϑ in (2.10) is replaced by a “good” estimate of it.

To the best of our knowledge, all the literature concerning testing for the
presence of mixing concentrates on the so-called dispersion score statistic
defined as

DS(x) :=
1

n

n∑
i=1

f (2)(xi; ϑ̂)

f(xi; ϑ̂)

where ϑ̂ is an asymptotically efficient estimator of ϑ under the model F .
We will use the results when ϑ̂ is the maximum likelihood estimate of the
unknown ϑ.
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It can be shown that √
nDS(x)√

v(ϑ̂)

d→ N(0, 1)

when n → ∞, where now

v(ϑ̂) = v22(ϑ̂) − [v12(ϑ̂)]2

v11(ϑ̂)

and where

v11(ϑ) =

∫ (
f (1)(x; ϑ)

f(x; ϑ)

)2

f(x; ϑ) ν(dx)

v22(ϑ) =

∫ (
f (2)(x; ϑ)

f(x; ϑ)

)2

f(x; ϑ) ν(dx)

v12(ϑ) =

∫
f (1)(x; ϑ)

f(x; ϑ)
· f (2)(x; ϑ)

f(x; ϑ)
f(x; ϑ) ν(dx)

In statistical terms, v(ϑ) is the residual variance after taking into account
the variability induced by ϑ̂. In geometrical terms v(ϑ) has also a very clear
meaning. It is easy to show that

v(ϑ) =

∥∥∥∥f (2)(x; ϑ)

f(x; ϑ)
− v12(ϑ)

v11(ϑ)

f (1)(x; ϑ)

f(x; ϑ)

∥∥∥∥
2

ϑ

where ‖ · ‖ϑ is the norm induced by 〈·, ·〉fϑ
. So, v(ϑ) is just the squared norm

of the residual vector after projecting f (2)(x; ϑ)/f(x; ϑ) in f (1)(x; ϑ)/f(x; ϑ)
orthogonally.

This is quite clear from the statistical point of view because it is well known
that the asymptotic properties of the maximum likelihood estimator in the
regular case are basically derived from the asymptotic behavior of the so-
called score statistic

f (1)(x; ϑ̂)

f(x; ϑ̂)

So, a simple asymptotic statistical test of the assumption that, an observed
data set x1, x2, . . . , xn comes from the density f(x; ϑ), for some unknown ϑ,
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is to reject that assumption if the observed absolute value of the standardized
dispersion score statistic √

nDS(x)√
v(ϑ̂)

exceeds some critical value of the standard normal distribution. Obviously
this test is expected to work well only for large sample sizes. It can be
corrected in may ways to improve its performance but what we really want
to emphasize here is the use of the vectors in V0

νϑ
as random variables to

perform this kind of statistical tests.

In this part of the thesis we propose the use of a novel approach of looking at
the same problem based on the underlying geometrical structure rather than
on frequentist properties. The basic idea is very simple. Instead of treating
the set of vectors{

f (2)(x; ϑ)

f(x; ϑ)
,
f (3)(x; ϑ)

f(x; ϑ)
, . . . ,

f (d)(x; ϑ)

f(x; ϑ)

}
∈ V0

νϑ

as random variables we are going to exploit the affine structure present in
the space (Dm

ν ,V0
ν ,⊕m) and use families of densities of the form of general

mixture families

GF =

{
f(x; ϑ)

[
1 +

k∑
i=2

λi(ϑ)
f (i)(x; ϑ)

f(x; ϑ)

]
: ϑ ∈ Θ , {λi}k

i=2

}
.

This type of parametric families will be taken to be low dimensional, flexible
and interpretable. The parameters ϑ and λi(ϑ) will be estimated from the
data in a simple way using standard geometrical and classical statistical
arguments.

If the elements in the above set of vectors are linearly independent as func-
tions of x then they form a base for a subspace of V0

νϑ
. Then it will be clear

that the λi(ϑ) are simply the affine coordinates with respect to that base
and to the choice of the origin f(x; ϑ). So, for the elements of GF to be
probability densities we need to restrict the values that the λi can take.



Chapter 3

Local Mixture Models

In this chapter the class of Local Mixture Models is introduced. We first
develop detailed asymptotic expansions to show that mixtures of regular
parametric families have an affine-type behavior when the mixing distribu-
tion is small. Motivated on this affine behavior, local mixture models are
then defined as a bundle of general mixture families and some of its prop-
erties are described. True Local Mixture Models are also introduced as a
smaller set of local mixture models that represent genuine mixtures more
faithfully. The properties of NEF-QVF’s are exploited to construct local
mixture models that are identifiable, flexible and interpretable statistically.
Regular Proper Dispersion Models are chosen to be the workhorse class of
small mixing distributions.

3.1 Introduction

Mixture models can be found in a wide variety of statistical applications.
Important general references are Titterington, Smith, and Makov (1985),
Lindsay (1995) and McLachlan and Peel (2001) and the particular references
therein. The geometry of this type of models has been studied in essentially
two distinct ways: from the point of view of Convex Geometry, see for ex-

45
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ample the excellent account by Lindsay (1995) and from the point of view
of Differential Geometry, see Amari (1990) or Kass and Vos (1997). But
the Convex Geometry approach has been by far more studied than the Dif-
ferential Geometric one. The seminal work on purely differential-geometric
ideas applied to inference in mixture models is Marriott (2002). We basically
follow Marriott’s work.

We begin with some mathematical definitions. Let F be a family of cumula-
tive distribution functions (cdf’s) on IR and let A be a family of probability
measures defined on a Borel σ-algebra of subsets of F . Then, if λ ∈ A,∫

F
g(F ) dλ(F )

is defined in the usual manner for measurable mappings g : F → IR. If
g = gx(F ) = F (x) for some x, the integral above becomes

G(x; λ) :=

∫
F

F (x) dλ(F ). (3.1)

Definition 8 The resultant distribution function G will be called a mixture
or more specifically a λ-mixture of F , provided the mixing measure λ does
not assign measure one to a particular member of F . For given F and A,
the family

G(F) = {G(x; λ) : λ ∈ A}
will be called the class of A-mixtures over F .

Thus, the term mixture, as employed here, means a genuine weighted average
of cdf’s. In particular, there may exist a parametrization of the family F
with image an open region Θ ⊂ IR , that is

F = {F (x; θ) : θ ∈ Θ} .

Let Q = {Q(θ)} denote a class of d-dimensional cdf’s with support Θ and
assume F (x; θ) is measurable on IRd+1. Then A may be taken to be the cor-
responding class of Lebesgue-Stieljes measures {λQ : Q ∈ Q} on IRd induced
by Q and (3.1) becomes

G(x; Q) :=

∫
Θ

F (x; θ) dQ(θ). (3.2)
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If F = {F (x; θ) : θ ∈ Θ} is a family of discrete distributions whose disconti-
nuity points are independent of θ, then the resultant mixture will be discrete,
inheriting the common points of discontinuity. On the other hand if F (x; θ)
is absolutely continuous for every θ then f(x; θ) := dF (x; θ)/dx is measur-
able on IRd+1 and, by Fubini’s Theorem, the resultant mixture G(x; Q) is
absolutely continuous with density

g(x; Q) =

∫
Θ

f(x; θ)dQ(θ).

Definition 9 Given a family F of absolutely continuous cdf’s and the corre-
sponding family of densities (which we will also call F). The density g(x; Q)
will be called a Q-mixture density of F , provided the mixing distribution Q
does not assign measure one to a particular point in Θ. For a given F , the
family

G(F) := {g(x; Q) : Q ∈ Q}
will be called the class of Q-mixtures over F .

Appealing to the change of variable theorem, note that this definition does
not depend on the way we parametrize F .

We will be interested in mixtures when the mixing distribution Q is small in
the following sense. Roughly, we will call a mixing distribution local when
its associated density is close to a delta function, that is, when it is highly
peaked around some value of its support and assign almost all of its mass to
a small neighborhood around the same value.

From the point of view of Statistics we are interested in such kind of mixtures
because they represent an important type of deviations from the family F .
Usually, practitioners of Statistics use a simple (low dimensional) paramet-
ric family of distributions F to model the random behavior of a particular
phenomenon they are interested in. This is mainly because of: matter of
simplicity, some of the parameters have a “real world meaning” or the para-
meters represent a systematic part of the phenomenon which is of interest.
Often, some incompatibility is found between what has been observed and
what F can predict, so a more flexible family than F is needed. For exam-
ple, when dealing with univariate data and if F is one-dimensional, it is often
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found that the data have more variability than the variability predicted un-
der the model. Applied Statisticians call this situation over-dispersion. This
can happen, for example, because F assumes some kind of homogeneity in
the population which is not really present and that is why one observes more
variability than expected under F . An attractive generalization of a family
F that can handle such situation is precisely mixing over some of the para-
meters in F . Under some conditions, the resulting mixtures will always have
larger variances than those of the elements of F . Apart from some particular
instances, mixtures are considerably more complicated to manage (in statis-
tical terms) compared to F . So mixtures of F have more flexibility but are
in general less tractable than F .

The small mixing assumption is intended to be responsible for retaining some
of the tractability in F lost by mixing. The geometry of mixtures can be
very complicated whenever a reasonable large class of mixing distributions is
allowed. When the mixing distribution is continuous or discrete but with an
unknown number of components, the Geometry is essentially infinite dimen-
sional and typically the mixtures have singular or boundary points. In con-
trast, the Geometry of an Exponential Family is that of a finite-dimensional
smooth affine manifold. It is of course no coincidence that in the second
case, inferential theories are well understood and in the first case difficult. It
might be expected that any restriction of the general mixture family structure
which maintains a simple geometry will simplify inferential problems.

The most fruitful form of simplification in both Statistics and Geometry is
that of local analysis, for example when using an asymptotic expansion based
on some form of Taylor’s Theorem in Statistics or studying the tangent space
of a manifold in Geometry. However, there are at least two ways of localising
a mixture family. The most obvious is to look at a local neighborhood of
g(x; Q); that is, to look only at densities which are close to f(x; Q) and then
make appropriate approximations. This approach has problems because of
the infinite-dimensional nature mixtures families, since an open subset of an
infinite dimensional space is still infinite dimensional. A more productive
approach is to assume the mixing distribution has only local support in the
parameter space. Thus the localizing is done at the mixing distribution level.

Based mainly on the work of Marriott (2002), we propose new families of
distributions that behave like mixtures of a given simple parametric family F
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when the mixing is small. These families gain flexibility but at the same time
are statistically tractable and have similar properties to that of exponential
family models.

We will focus on Q-mixtures over F where F will be a family of the type
called Real Natural Exponential Families with Quadratic Variance Functions
(NEF-QVF) (see Morris (1982) and Letac (1992)) and Q will be a two di-
mensional class of mixing distributions inside the so-called Proper Dispersion
Models (see Appendix C). The usual way to parametrize this latter class
(which is particularly suitable for us here) is the standard form:

Q = {Q(θ; ϑ, ε) : ϑ ∈ Θ, ε > 0} ,

where the parameter ϑ is an indicator of the position of the mixing distrib-
ution and the parameter ε controls the dispersion of the mixing distribution
around ϑ. Clearly, a suitable choice of the parameter ϑ will depend on the
way the family F is parametrized. If the family F is parametrized in a dif-
ferent way, for example using a diffeomorphism µ = h(θ), then the family Q
will be parametrized as

Q = {Q(µ; m, ε) : m ∈ h(Θ), ε > 0} ,

where m = h(ϑ), which is again a proper dispersion model in standard form
but with different support.

We are going to deal only with families of densities F that satisfy the regu-
larity conditions on Appendix A . Those conditions basically ensure that F
can be treated as a smooth manifold. In particular, they imply the existence
of a σ-finite measure ν that dominates all elements in F . Also we are going
to deal only with families Q of continuous cdf’s. An approach to the discrete
case can be found in Anaya-Izquierdo and Marriott (2006) and for general
discrete mixture models see McLachlan and Peel (2001).

3.2 Taylor-type expansions

Let us now study the behavior of the mixture

g(x; Q) =

∫
Θ

f(x; θ)dQ(θ) ,
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when Q is small. Assume Q has all the necessary moments and denote by
f (i)(x; ϑ) the i-th partial derivative of f(x; θ) with respect to θ evaluated at
ϑ. It is well know that, for any k ∈ IN, the Taylor polynomial

f(x; ϑ) +
d∑

i=1

f (i)(x; ϑ)

i!
(θ − ϑ)i (3.3)

is a good approximation to f(x; θ), provided that θ is close to ϑ. Denote by
Θ̄ the neighborhood of ϑ for which this approximation is good in a specific
sense, for example, using certain bounds for the remainder. Integrating this
expression with respect to dQ(θ) we get

f(x; ϑ) +
d∑

i=1

f (i)(x; ϑ)

i!
EQ[(θ − ϑ)i] . (3.4)

This last expression will be a good approximation to g(x; Q) if Q is small in
the sense that it assigns negligible probability to Θ − Θ̄.

Suppose now we reparametrize F using a diffeomorphism h : Θ → Φ and
proceed as before. Define f̃(x; φ) := f(x; h−1(φ)) and ϕ := h(ϑ). Denote by
Φ̄ the set of values of φ for which the Taylor polynomial

f̃(x; ϕ) +
d∑

i=1

f̃ (i)(x; ϕ)

i!
(φ − ϕ)i

is a good approximation to f̃(x; φ). Now the approximation of

f̃(x; ϕ) +
d∑

i=1

f̃ (i)(x; ϕ)

i!
EQ̃[(φ − ϕ)i] (3.5)

to g(x; Q̃) = g(x; Q) will be good if the transformed mixing distribution Q̃
assigns negligible probability to the set Φ − Φ̄. Note that, by continuity of
h, Φ̄ is clearly contained in h(Θ̄).

Let us look to a particular situation. Assume Θ = IR and consider the
following family of mixing distributions

Qls =

{
Q(θ; ϑ, ε) = Q0

(
θ − ϑ√

ε

)
: ε > 0

}
,
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where ϑ is some real number and Q0 is a (nondegenerate) continuous cdf
that has all the necessary moments. By this construction θ = ϑ +

√
εz,

where z is random variable with cdf Q0. There is no loss of generality if we
assume z has variance equal to one. Clearly, θ converges in distribution to
the constant ϑ as ε ↓ 0. Because, convergence in distribution is preserved
by diffeomorphisms, we also have that φ = h(θ) converges in distribution to
ϕ = h(ϑ) as ε ↓ 0.

We have in this case

EQ[(θ − ϑ)i] = εi/2EQ0 [z
i] ,

where z = (θ − ϑ)/
√

ε. If we take ϑ to be the expectation of θ and denote it
by ϑ∗ then clearly z has zero mean and

V arQ[θ] = ε

E[(θ − ϑ∗)i] = εi/2EQ0 [z
i] , i ≥ 3 ,

So, for small enough ε we should expect a good approximation to the mixture
g(x; Q) by

f(x; ϑ∗) +
d∑

i=2

f (i)(x; ϑ∗)
i!

EQ[(θ − ϑ∗)i]

because the distribution of θ is “concentrating” around its mean ϑ∗ for small
values of ε. Note the vanishing of the first derivative term in the Taylor
expansion, because we are assuming ϑ∗ is the mean of θ. It is important to
remind the reader about the fact that here, and actually all along this thesis,
we are assuming the existence of all the necessary moments.

Now consider a reparametrization of the family F by using the diffeomor-
phism h : Θ → Φ. As before, define φ = h(θ) and ϕ∗ = h(ϑ∗). Using Taylor’s
Theorem, we have the approximations

EQ̃[φ] ≈ ϕ∗ +
h′′(ϑ∗)

2
ε

V arQ̃[φ] ≈ [h′(ϑ∗)]2ε

valid again for small ε. Note these simple approximations are telling us that,
the transformed random variable φ = h(θ) is behaving like φ∗+

√
εw for some
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(zero mean) random variable w when ε is small and this now implies a good
approximation to the mixture g(x; Q̃) = g(x; Q) by

f̃(x; ϕ∗) +
d∑

i=2

f̃ (i)(x; ϕ∗)
i!

EQ̃[(φ − ϕ∗)i] .

Also note this argument is valid for any diffeomorphism h. For example, if
Q0 is a standard normal distribution, then θ is also Gaussian with mean ϑ
and variance ε. Now assume φ = h(θ) = exp(θ). The distribution of φ is
called the log-normal distribution. It is well known that

φ − ϕ

ϕ
√

ε

d→ W, as ε ↓ 0 ,

where W has standard normal distribution. Here
d→ means convergence in

distribution. So, for small enough ε we can approximate the distribution
of φ by a normal with mean ϕ and variance ϕ2 ε. This means that if ε is
sufficiently small we can ensure the distribution Q̃ for φ assigns negligible
probability to Φ− Φ̄. Now, more generally, using the so called Delta-Method
(Serfling (1980)) we have that convergence in distribution to normality is
preserved by diffeomorphisms. Then

h(θ) − h(ϑ∗)√
[h′(ϑ∗)]2ε

d→ W, as ε ↓ 0 .

So, as long as we have convergence to normality in some parametrization, we
will have convergence to normality in any diffeomorphic reparametrization.

Summarizing, when the family F has parametrization θ with image Θ = IR
then the family of mixing distributions

Qls =

{
Q(θ; ϑ, ε) = Q0

(
θ − ϑ∗
√

ε

)
: ε > 0

}
,

represents a geometrically convenient way of modeling local Q-mixtures of F
in the sense that if the parameter ε is small, the distributions in Qls tend to
be small no matter how F is being reparametrized. Note the important fact
that all the previous discussion does depend on Q0 only through some of its
first moments. The subscript “ls” stands for location-scale as the parameters
ϑ∗ and

√
ε act on Q0 changing its location and scale.
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Approximations like (3.4) and (3.5) basically rely on the possibility of in-
tegrating term by term an expansion of the integrand. This would require
some further assumptions, like the integrand being exponentially decaying.

To acknowledge this, consider now the following family of mixing distribu-
tions

Qld =

{
dQ(θ; ϑ, ε) = c(ε) exp

(
−d0(θ − ϑ)

2ε

)
dθ : ε ∈ (0, ε0)

}
,

where ε0 > 0, ϑ is some real number and d0(z) is a non-negative smooth
function such that

d0(0) = 0

d0(z) > 0 , for z �= 0. (3.6)

Clearly, we can write the associated mixtures by

g(x; Q) =

∫
Θ

f(x; θ)dQ(θ; ϑ, ε) = c(ε)

∫
IR

f(x; ϑ + z) exp

(
−d0(z)

2ε

)
dz ,

(3.7)
where θ = ϑ + z. Formally using Laplace’s Method (see for example Wong
(2001)), we are going to obtain an asymptotic expansion of the form

g(x; Q) ∼ f(x; ϑ) +
k∑

i=1

Ai(ε)f
(i)(x; ϑ) + R(x, ϑ, ε) (3.8)

as ε ↓ 0, for some set of functions {Ai(ε) , i = 1, 2, . . .}. Here, the ∼ symbol
means that the right hand side of (3.8) behaves like g(x; Q) when ε goes to
zero and x and ϑ are kept fixed. This is a formal expansion and essentially
does not need any further assumption, apart from the regularity assumption
of F and conditions in (3.6). The restriction here of having ε defined in some
bounded interval is to ensure the existence of appropriate moments of the
mixing distribution.

Moreover, we will also show that the functions Ai(ε) have now an asymptotic
relation with the moments of the mixing distribution Q. Explicitly we will
show that

EQ[(θ − ϑ)i]

i!
∼ Ai(ε) + Ri(ε) i = 1, 2, . . .



CHAPTER 3. LOCAL MIXTURE MODELS 54

as ε ↓ 0. Here we note that Ri is a different remainder from that in expression
(3.8). If we reparametrize F using the diffeomorphism h(θ) = φ then clearly
we can write∫

Φ

f̃(x; φ)dQ̃(φ; ϕ, ε) =

∫
Φ

f̃(x; φ)

∣∣∣∣dh−1(φ)

dφ

∣∣∣∣ c(ε) exp

(
− d̃(φ; ϕ)

2ε

)
dφ ,

where ϕ = h(ϑ) and

d̃(φ; ϕ) := d0(h
−1(φ) − h−1(ϕ)) ,

then, by making the further change of variable φ = z + ϕ and defining

Ṽ −1/2(φ) :=

∣∣∣∣dh−1(φ)

dφ

∣∣∣∣
d̃0(z) := d̃(ϕ + z; ϕ) ,

we turn the mixture into

g(x; Q̃) =

∫
Φ−ϕ

f̃(x; ϕ + z)Ṽ −1/2(ϕ + z) exp

(
− d̃0(z)

2ε

)
dφ

which is of the same form as (3.7) but now with an additional function
multiplying the density. So, again we can formally apply Laplace’s Method
to obtain an expansion of the form

g(x; Q̃) ∼ f̃(x; ϕ) +
d∑

i=1

Ãi(ϕ, ε)f̃ (i)(x; ϕ) + R̃(x, ϕ, ε) (3.9)

as ε ↓ 0, for some set of functions Ãi(ϕ, ε) which now can depend on ϕ. The
relation with the moments of Q̃ is preserved as we will show that

EQ̃[(φ − ϕ)i]

i!
∼ Ãi(ϕ, ε) + R̃i(ϕ, ε) i = 1, 2, . . .

as ε ↓ 0.

As in the Taylor expansions above, we will show that here we can also have
control over the orders (for small ε) of the functions Ãi and on the remainder
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terms. For example, we will show that Ã1(ϕ, ε) and Ã2(ϕ, ε) are both O(ε)
for each fixed ϕ, Ã3(ϕ, ε) and Ã4(ϕ, ε) are both O(ε2) and so on. This clearly
differs from the Taylor expansions above. Specifically, we are going to work
with d = 4 and then the remainder terms will be shown to be of order ε3.
Finally, under mild conditions, mixing distributions in the family Qld are
asymptotically normal. Explicitly,

θ − ϑ√
ε

d→ N(0, 1) as ε ↓ 0

and clearly, as before, this inherits the asymptotic normality under transfor-
mations, obtaining

φ − ϕ√
ε Ṽ (ϕ)

d→ N(0, 1) as ε ↓ 0 ,

and justifying the definition of Ṽ (φ).

More generally, asymptotic expansions like (3.9) will not only be valid for
families of mixing distributions like Qld, but for the more general class of
Regular Proper Dispersion Models of which Qld is just a particular subfamily
known as the location dispersion family. The standard form of the densities
in this general class is

dQ(θ; ϑ, ε) = a(ε)V −1/2(θ) exp

(
−d(θ; ϑ)

2ε

)
,

where d(θ; ϑ) is a regular unit deviance function and V (θ) is the associated
unit variance function (see Appendix C). The parameters ϑ and ε are called
the position and dispersion parameters respectively. From the observations
in the example above, Laplace’s method can be formally applied over any
diffeomorphic parametrization. The asymptotic normality result also applies
to general proper dispersion models. Finally, note the obvious locality of the
densities in the regular proper dispersion class. As ε decreases, the density
becomes unimodal with mode in the interior of its support and also highly
peaked around that mode. As before, this does not depend on the parame-
trization.

Summarizing, the family of regular proper dispersion mixing distributions,
which we will denote by QPDM , represents a geometrically convenient and
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much more general way of modeling local Q-mixtures of F , in the sense that
if the dispersion parameter ε is small, the distributions in QPDM tend to be
small no matter how F is being reparametrized. The use of these families as
mixing distributions is an important contribution (innovation) of this thesis.

3.3 Laplace Expansions

3.3.1 Motivating Examples

As a motivating example, consider the situation of a mixture of a negative
exponential family of densities

F =

{
f(x; µ) =

1

µ
exp

(
− 1

µ

)
: µ > 0

}
,

with an Inverse Gaussian family of mixing distributions

Q =

{
dQ1(µ; m, ε) =

1√
2πε

µ−3/2 exp

(
− 1

2ε

(µ − m)2

µm2

)
dµ : m > 0, ε > 0

}
.

Note that, this is clearly a proper dispersion model and in this particular
case µ is the unknown mean of the distribution of the random variable X
and m is the mean of the distribution of µ. An explicit expression of the
mixture density is available and given by

g(x; Q1(µ; m, ε)) =

∫ ∞

0

f(x; µ) dQ1(µ; m, ε)

=

(
mε +

√
1 + 2εx

)
exp

(
−
√

1 + 2εx − 1

mε

)
m (1 + 2εx)3/2

(3.10)

It is possible to show that for all x > 0 and all m > 0,

lim
ε→0

g(x; Q1(µ; m, ε)) = f(x; m).

This is not surprising because, as in any dispersion model, the mixing dis-
tribution Q1 becomes degenerate at its mean m when ε goes to zero. More-
over, the mixing density becomes more and more peaked around m as ε gets
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smaller. We should expect this limit to be the leading term of an asymptotic
expansion of g(x; Q1(µ; m, ε)) as ε → 0 while the higher order terms will give
us more information about the behavior of g when ε is small, that is, when
the mixture is local.

As another example of a proper dispersion mixing distribution, consider now
the Gamma family of mixing distributions

Q =

{
dQ2(µ; m, ε) =

(ε e)−1/ε µ−1

Γ(1/ε)
exp

(
−1

ε

[ µ

m
− log

µ

m
− 1

])
dµ : m, ε > 0

}

with mean m > 0. Also, we have here an explicit representation of the
mixture density,

g(x; Q2(µ; m, ε)) =

∫ ∞

0

f(x; µ) dQ2(µ; m, ε)dµ

=
2(εm)−

1+ε
2ε x

1−ε
2ε

Γ(1/ε)
K ε−1

ε

(√
4x

εm

)
, (3.11)

where Kν(z) is the modified Bessel function of the second kind with index ν.
It is also possible to show that for all x > 0 and m > 0

lim
ε→0

g(x; Q2(µ; m, ε)) = f(x; m).

The parametrization for the mixing distributions in terms of m and ε plays an
important role here. Both mixtures have the form of a product of a function
of ε and the generic Laplace-type integral

Ix(ε) :=

∫ b

a

H(x; µ) exp

(
−h(µ)

ε

)
dµ ,

where h(µ) is a smooth function with absolute minimum m ∈ (a, b). In our
cases H(x; µ) will always be a product of the base density f(x; µ) with other
function of µ.

Assume h(m) = 0. As ε gets smaller the region where the integrand of Ix(ε) is
significantly different from zero becomes a smaller and smaller neighborhood
of µ = m. Thus, in the determination of the asymptotic behavior of Iε
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as ε → 0, we need only be concerned with the behavior of H and h in an
arbitrarily small neighborhood of µ = m. Because of the properties of proper
dispersion models, this does not depend on the way F is parametrized.

In the following, f (r)(x; m) will denote the rth-partial derivative of f(x; µ)
with respect to µ evaluated at µ = m. For each x > 0, a Laplace asymptotic
expansion (see Wong (2001)) for the Inverse Gaussian mixing case yields

g(x; Q1(µ; m, ε)) ∼ f(x; m) +
εm3

2
f (2)(x; m) +

3ε2m5

6
f (3)(x; m)

+
3ε2m6

24
f (4)(x; m) + Ox,m(ε3) (3.12)

as ε → 0. The function Ox,m(ε3) means an O(ε3) constant for each value
of x and m. In this particular case, the simple form of the factor (2πε)−1/2

facilitates the expression.

The interpretation of this kind of expansions is the following. For each fixed
value of x and m, the mixture g(x; Q1(µ; m, ε)) (viewed now as a function
of ε only) behaves like the right hand side of (3.12) as ε goes to zero. So,
the symbol ∼ will be used to denote that, in order to avoid confusion with
the equality or approximation symbol. Here Ox,m(ε3) is a function that can
include higher order derivatives of f(x; µ) (evaluated at m), but for fixed x
and m it is of order ε3.

Now, a Laplace asymptotic expansion for the gamma mixing case yields

g(x; Q2(µ; m, ε)) ∼ f(x; m) + m2
[ ε

2

]
f (2)(x; m) + m3

[
2ε2

6

]
f (3)(x; m)

+m4

[
3ε2

24

]
f (4)(x; m) + Ox,m(ε3) (3.13)

as ε → 0. Here, it was also necessary to expand the normalization factor
Γ(1/ε)/(ε e)−1/ε and divide both expansions to get the expression.

Note that truncation in this expansion may be used to define a curved mixture
family in the following sense. In the Gamma case, consider the following
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density

g(x; m, ε) := f(x; m) +
εm2

2
f (2)(x; m) +

ε2m3

3
f (3)(x; m) +

ε2m4

8
f (4)(x; m) .

For each fixed m, this is a curved mixture family with parameter ε which
behaves like g(x; Q2) for small ε in the sense described above. It is embedded
in the Natural Mixture Family

g(x; λ,m) = f(x; m) + λ1f
(2)(x; m) + λ2f

(3)(x; m) + λ3f
(4)(x; m) ,

for each fixed m > 0. We might also consider the curved mixture family

g(x; m, ε) := f(x; m) +
ε m2

2
f (2)(x; m), (3.14)

which is, in fact, for each fixed m > 0, a one-dimensional natural mixture
family (with natural parameter εm2/2). It behaves like g(x; Q2) for small ε
but in a different way compared to the former curved mixture family. The
natural parameter space Dm(ν) (for any m > 0) of this latter family has a
very interesting and simple interpretation. It is easy to check in this case
that Dm(ν) = [0,m2/2], and this means that 0 ≤ ε ≤ 1. So, the parameter
space of this natural mixture family is in one-to-one correspondence to those
gamma mixing distributions with mean m (fixed) and ε ∈ [0, 1]. Nicely, those
values of ε correspond to the case when the distribution has a unique mode
inside the interval (0,∞). As discussed before, as ε → 0 the mixing distri-
bution tends to degenerate towards its mean m. For ε > 1 the distribution
has a mode at 0 and tends to be more dispersed if ε increases. This makes
very clear the interpretation of the natural parameter space. It corresponds
to those values of the parameter for which the mixing distribution is local in
the sense defined above.

Now, for the Inverse Gaussian example, we have

EQ1 [(µ − m)] = 0

EQ1 [(µ − m)2]

2!
=

εm3

2

EQ1 [(µ − m)3]

3!
=

3ε2m5

6

EQ1 [(µ − m)4]

4!
=

3ε2m6 + 15ε3m7

24
.
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Using Laplace’s method, we obtain the following expansions,

EQ1 [(µ − m)2]

2!
∼ εm3

2
+ Om(ε3)

EQ1 [(µ − m)3]

3!
∼ 3ε2m5

6
+ Om(ε3)

EQ1 [(µ − m)4]

4!
∼ 3ε2m6

24
+ Om(ε3)

as ε → 0. For the Gamma example, we have

EQ2 [(µ − m)] = 0

EQ2 [(µ − m)2]

2!
= m2

[ ε

2

]
EQ2 [(µ − m)3]

3!
= m3

[
2ε2

6

]
EQ2 [(µ − m)4]

4!
= m4

[
3ε2 + 6ε3

24

]
.

and using Laplace’s method we obtain the following expansions:

EQ2 [(µ − m)2]

2!
∼ m2

[ ε

2
+ O(ε3)

]
EQ2 [(µ − m)3]

3!
∼ m3

[
2ε2

6
+ O(ε3)

]
EQ2 [(µ − m)4]

4!
∼ m4

[
3ε2

24
+ O(ε3)

]
.

So, the coefficients of the derivative terms in expansions (3.12) and (3.13),
also behave like the exact moments of the corresponding mixing distribution,
when ε is small. In these particular examples, we obtained that the leading
terms of the expansions of the second and third central moments, have the
same expression of the exact moments. This will not happen in general as
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we will see now. Consider, for example, the change of variable θ = 1/µ in
the integral (3.10). This yields the following Laplace expansion,∫ ∞

0

f(x; 1/θ) dQ1(1/θ; 1/ϑ, ε) ∼ f̃(x; ϑ) + εf̃ (1)(x; ϑ)

+

[
εϑ

2
+

3ε2

2

]
f̃ (2)(x; ϑ) + ε2ϑf̃ (3)(x; ϑ)

+
ε2ϑ2

8
f̃ (4)(x; ϑ) + Ox,ϑ(ε3),

where ϑ = 1/m and f̃(x; θ) := f(x; 1/θ) . Note that the integral on the left
hand side is the same as (3.12), by the change of variable theorem. We are
just finding an asymptotic expansion now in terms of the derivatives of the
reparametrized density f̃(x; θ).

Here we emphasize that Q̄1(θ; ϑ, ε) := Q1(1/θ; 1/ϑ, ε) is a new proper dis-
persion model with position ϑ and the same dispersion parameter ε, see
Appendix C. Note that it was necessary to reparametrize via m �→ ϑ in
order to express the model in standard form. This transformed model is
obviously called the reciprocal Inverse Gaussian model. In general, the dis-
persion model structure on the mixing density is preserved under arbitrary
monotone differentiable transformations (diffeomorphisms). This means that
the locality of the mixing density is also preserved. Now we have,

EQ̄1
[(θ − ϑ)] = ε

EQ̄1
[(θ − ϑ)2]

2!
=

εϑ + 3ε2

2

EQ̄1
[(θ − ϑ)3]

3!
=

6ε2ϑ + 15ε3

6

EQ̄1
[(θ − ϑ)4]

4!
=

3ε2ϑ2 + 45ε3ϑ + 105ε4

24
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and using Laplace’s method we obtain:

EQ̄1
[(θ − ϑ)] ∼ ε + Oϑ(ε3)

EQ̄1
[(θ − ϑ)2]

2!
∼ εϑ + 3ε2

2
+ Oϑ(ε3)

EQ̄1
[(θ − ϑ)3]

3!
∼ 6ε2ϑ

6
+ Oϑ(ε3)

EQ̄1
[(θ − ϑ)4]

4!
∼ 3ε2ϑ2

24
+ Oϑ(ε3)

as ε → 0. In the Gamma case we have the expansion∫ ∞

0

f̃(x; θ) dQ̄2(θ; ϑ, ε) ∼ f̃(x; ϑ) + ϑ
[
ε + ε2

]
f̃ (1)(x; ϑ)

+ϑ2

[
ε

2
+

5ε2

2

]
f̃ (2)(x; ϑ) + ϑ3

[
7ε2

6

]
f̃ (3)(x; ϑ)

+ϑ4

[
ε2

8

]
f̃ (4)(x; ϑ) + Ox,ϑ(ε3) (3.15)

and the exact moments and its expansions are the following

EQ̄2
[(θ − ϑ)] = ϑ

[
ε

1 − ε

]

EQ̄2
[(θ − ϑ)2]

2!
= ϑ2

[
ε(1 + 2ε)

2(1 − 2ε)(1 − ε)

]
EQ̄2

[(θ − ϑ)3]

3!
= ϑ3

[
ε2(7 + 6ε)

6(1 − 3ε)(1 − 2ε)(1 − ε)

]
EQ̄2

[(θ − ϑ)4]

4!
= ϑ4

[
ε2(3 + 46ε + 24ε2)

24(1 − 4ε)(1 − 3ε)(1 − 2ε)(1 − ε)

]
(3.16)
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EQ̄2
[(θ − ϑ)] ∼ ϑ

[
ε + ε2 + O(ε3)

]
EQ̄2

[(θ − ϑ)2]

2!
∼ ϑ2

[
ε + 5ε2

2
+ O(ε3)

]
EQ̄2

[(θ − ϑ)3]

3!
∼ ϑ3

[
7ε2

6
+ O(ε3)

]
EQ̄2

[(θ − ϑ)4]

4!
∼ ϑ4

[
3ε2

24
+ Oϑ(ε3)

]
.

To check that these expansions describe the behavior of the exact moments
(3.16) for small ε, just expand them as a series in ε to get

ϑ

[
ε

1 − ε

]
∼ ϑ

[
ε + ε2 + O(ε3)

]

ϑ2

[
ε(1 + 2ε)

2(1 − 2ε)(1 − ε)

]
∼ ϑ2

[
ε + 5ε2

2
+ O(ε3)

]

ϑ3

[
ε2(7 + 6ε)

6(1 − 3ε)(1 − 2ε)(1 − ε)

]
∼ ϑ3

[
7ε2

6
+ O(ε3)

]

ϑ4

[
ε2(3 + 46ε + 24ε2)

24(1 − 4ε)(1 − 3ε)(1 − 2ε)(1 − ε)

]
∼ ϑ4

[
3ε2

24
+ Oϑ(ε3)

]
,

which is exactly what we have got using Laplace’s method. As above, we
can define curved mixture families by truncating this expansions. Consider,
for example, the curved family

g(x; ϑ, ε) := f(x; 1/ϑ) + ϑ
[
ε + ε2

]
f (1)(x; 1/ϑ) + ϑ2

[
ε

2
+

5ε2

2

]
f (2)(x; 1/ϑ)

defined for each ϑ > 0. The parameter space for this family is [0, 0.4891] for
any ϑ > 0. Again, this has an interpretation. The variance of the mixing
distribution exists for ε ∈ (0, 1/2). But we have to be careful about this
parameter space, because it includes points for which some other moments
of the mixing distribution do not exist. If ε = 1/k (k ≥ 3) then the mixing
distribution does not have moments of order l ≥ k (that is E[θl] does not
exist). Thus, we need to further restrict the parameter space for the curved
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mixture family to behave like the mixture g(x; Q̄2) for small values of ε. In
this case it is enough to restrict the values of ε to be in the interval (0, 1/4).

It is important to note here that the vanishing of the first derivative terms
in the expansions in the variable µ is due to the fact that m is the mean of
the proper dispersion model and therefore

E[µ − m] = 0.

In the expansions with the variable θ, the new parameter ϑ is no longer the
mean of the distribution and therefore, the moments obtained are no longer
central moments. It is statistically more convenient, to obtain an expansion,
now in terms of the mean of the new variable θ. To see this, consider the
following.

For the reciprocal Gamma mixing example we have that

EQ̄2
[θ] ∼ ϑ [1 + δ(ε)] ,

where δ(ε) := ε + ε2 + O(ε3). Then, the mean of Q̄2 behaves like ϑ for small
ε. Define the following function

u(x; ϑ, ε) := f̃(x; ϑ [1 + δ(ε)])

+ ϑ2

[
ε + 4ε2

2

]
f̃ (2)(x; ϑ [1 + δ(ε)])

+ ϑ3

[
4ε2

6

]
f̃ (3)(x; ϑ [1 + δ(ε)])

+ ϑ4

[
3ε2

24

]
f̃ (4)(x; ϑ [1 + δ(ε)]).

By expanding f̃ and its derivatives in a Taylor series (as a function of δ(ε)),
it is easy to obtain that, for small δ(ε),

u(x; ϑ, ε) ∼ f̃(x; ϑ) + ϑ
[
ε + ε2

]
f̃ (1)(x; ϑ) + ϑ2

[
ε

2
+

5ε2

2

]
f̃ (2)(x; ϑ)

+ϑ3

[
7ε2

6

]
f̃ (3)(x; ϑ) + ϑ4

[
ε2

8

]
f̃ (4)(x; ϑ) + Ox,ϑ(ε3)
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for fixed x, ϑ > 0. This is exactly the same expansion obtained in (3.15). So,
we can write ∫ ∞

0

f̃(x; θ) dQ̄2(θ; ϑ, ε) ∼ u(x; ϑ, ε) + Ox,ϑ(ε3).

To interpret the new coefficients, consider the expressions for the centered
moments

EQ̄2
[(θ − EQ̄2

[θ])2]

2!
= ϑ2

[
ε

2(1 − 2ε)(1 − ε)2

]

EQ̄2
[(θ − EQ̄2

[θ])3]

3!
= ϑ3

[
4ε2

6(1 − 3ε)(1 − 2ε)(1 − ε)3

]

EQ̄2
[(θ − EQ̄2

[θ])4]

4!
= ϑ4

[
3ε2(1 + 5ε)

24(1 − 4ε)(1 − 3ε)(1 − 2ε)(1 − ε)4

]
,

which can be expanded as functions of ε to get

ϑ2

[
ε

2(1 − 2ε)(1 − ε)2

]
∼ ϑ2

[
ε + 4ε2

2
+ O(ε3)

]

ϑ3

[
4ε2

6(1 − 3ε)(1 − 2ε)(1 − ε)3

]
∼ ϑ3

[
4ε2

6
+ O(ε3)

]

ϑ4

[
3ε2(1 + 5ε)

24(1 − 4ε)(1 − 3ε)(1 − 2ε)(1 − ε)4

]
∼ ϑ4

[
3ε2

24
+ O(ε3)

]
.

These are, up to the order indicated, the coefficients of u(x; ϑ, ε). So what we
have obtained, is a new asymptotic expansion but now with the derivatives
of the density f̃(x; θ) evaluated at ϑ [1 + δ(ε)], which behaves like the mean
for small ε.

To consider visually some of the previous facts, we have plotted in figure 3.1
the projections of both mixtures g(x; Q1) (blue) and g(x; Q2) (green) on the
mean, variance and skewness scale. This scale has been chosen because it is
easy to interpret statistically. Moreover, this new scale corresponds to the
following affine projections which also respect the geometry in (Dm

ν ,V0
ν ,⊕m)



CHAPTER 3. LOCAL MIXTURE MODELS 66

Variance

Mean

S
ke

w
ne

ss

Negative Exponential Family 

Inverse Gaussian 

Gamma

ε → 0 

Figure 3.1: Gamma and Inverse Gaussian mixtures of F

for every fixed value of m. The mean, variance and skewness are defined
respectively as:

E[X] :=

∫ ∞

0

xg(x; Q)dx

E[(X − m)2] :=

∫ ∞

0

(x − m)2g(x; Q)dx

E[(X − m)3] :=

∫ ∞

0

(x − m)3g(x; Q)dx.

Note that, in this examples we have E[X] = m because the mixing models
are central (that is, EQ[µ] = m) when parametrized with µ. Both mixtures
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appear as two-dimensional surfaces and the negative exponential family (un-
mixed one) appear as the one dimensional curve plotted in red. From the
previous facts both surfaces degenerate into the red curve as ε → 0 for any
value of their mean m. It is worth pointing out that this surface can be
treated in the usual geometric way as a parameter free entity. But the pre-
vious observations show that parametrization has a very important meaning
as, for example, in one parametrization we have identification with a mixing
distribution with essentially all moments, but in other parametrizations we
don’t.

As a final example consider a familiar situation in Bayesian analysis. For a
given regular parametric family F , let P be another parametric family with
support Θ that describes the experimenter’s prior beliefs about θ. This family
is called the family of prior densities. Given a random sample x1, . . . , xn from
F , the predictive density for a new observation Xn+1 from F is given by the
following integral

g(xn+1|q) =

∫
Θ

f(xn+1|θ)q(θ|π, x1, . . . , xn)dθ ,

where q is the so-called posterior distribution

q(θ|π, x1, . . . , xn) =
L(θ; x1, . . . , xn) π(θ)∫

Θ

L(θ; x1, . . . , xn) π(θ)dθ

,

where π ∈ P and L is the likelihood function

L(θ; x1, . . . , xn) =
n∏

i=1

f(xi|θ).

Under some conditions, see Bernardo and Smith (1994), the posterior density
is asymptotically Gaussian. The Gaussian distribution is the typical exam-
ple of a proper dispersion model. More importantly, as the sample size n
becomes large, the posterior density will become very concentrated around
some value that is very close to the posterior maximum. In this example,
1/n has essentially the same role as ε in the previous examples. So, in this
case, we expect to have an expansion in powers of 1/n and coefficients which
are functions of the posterior moments.
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Before finish this section, it is worth mentioning that we obtained the Laplace
asymptotic expansions using the method proposed by Fabijonas (2002) and
the corresponding maple code kindly provided by Professor Fabijonas.

3.3.2 Formal Expansions

The motivation of this section is to find general asymptotic expansions for the
local mixtures discussed by examples in the previous section. Those mixtures
have the form of a proper dispersion mixture of a NEF-QVF, that is

g(x; Q(θ, ϑ, ε)) =

∫ b

a

f(x; θ)V −1/2(θ) exp

(
−d(θ, ϑ)

2ε

)
dθ

a(ε)
, (3.17)

where V (θ) and d(θ, ϑ) are the unit variance and deviance function of the
proper dispersion model and Θ = (a, b). Clearly a(ε) is the normalization
function

a(ε) =

∫ b

a

V −1/2(θ) exp

(
−d(θ, ϑ)

2ε

)
dθ.

To find an asymptotic expansion for g(x; Q(θ, ϑ, ε)) (for fixed x), it is tempt-
ing to expand f(x; θ) in a Taylor series around θ = ϑ and then, perform
termwise integration. We found in the examples in the previous section that
this is actually the case, at least to find an asymptotic expression valid up to
order ε3. In general, such procedure is only justified when the integrand is
exponentially decaying as can be shown by means of the so-called Watson’s
Lemma.

Theorem 9 (Watson’s Lemma) Let H(t) be a function of the positive real
variable t, such that

H(t) ∼
∞∑

k=0

ak t(k−1)/2 as t → 0 (3.18)

Then ∫ ∞

0

H(t) exp (−t/ε) dt ∼
∞∑

k=0

Γ

(
k + 1

2

)
ak ε(k+1)/2 (3.19)
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provided there exist ε0 > 0 such that this integral converges absolutely for all
ε < ε0.

Note here that Watson’s Lemma is stated for the Laplace transform of the
function H. This is not a very restrictive assumption, as one can transform
a given integral to look like the Laplace transform of some function. This is
actually the path to follow in the proof of Laplace’s method.

Theorem 10 (Laplace’s Method) For the integral

I(ε) :=

∫ b

a

H(z) exp

(
−h(z)

ε

)
dz ,

assume that

1. h(z) and H(z) have Taylor series expansions at every point of (a, b),

2. h(z) has a simple minimum on z0 ∈ (a, b) and H(z0) �= 0 ,

3. without loss of generality we can assume that z0 = 0 and also that
h(0) = 0 = h′(0) and

4. I(ε) converges absolutely for ε < ε0 for some ε0 > 0. Then

I(ε) ∼
∞∑

k=0

Γ

(
k +

1

2

)
2 c2k εk+1/2, (3.20)

where the coefficients ck are those found in the series expansion of H̄(t) =
H(z)/h′(z) about z = 0 where

z ∼
∞∑

k=1

bkt
k/2 as z → 0

is obtained by reverting the change of variable t = h(z).
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Laplace’s method, as stated here, transforms the integral I(ε) to

I(ε) =

∫ b

0

H(z) exp

(
−h(z)

ε

)
dz +

∫ −a

0

H(−z) exp

(
−h(−z)

ε

)
dz

=

∫ h(b)

0

H̄(t) exp

(
− t

ε

)
dt +

∫ h(a)

0

H̃(t) exp

(
− t

ε

)
dt, (3.21)

where H̃(t) = H(−z)/h′(−z). This last equation is symbolically exact, how-
ever in most situations both H̄ and H̃ are not known analytically. Rather,
we only know its series expansions about t = 0. Upon substituting this ex-
pansion into (3.21) the upper limits can be replaced by ∞ by arguing that
the integrands contribution to each integral is exponentially small on the in-
tervals (h(a),∞) and (h(b),∞). Finally, both integrals are now in the correct
form for Watson’s Lemma to be applied. This shows more clearly why the
odd coefficients c2k+1 vanish.

In the case of our mixtures (3.17), the transformation θ = ϑ + z has to be
applied first, both in the numerator and in the denominator, in order to use
Laplace’s method.

First, let us explore the Laplace asymptotic expansions of the moments of a
proper dispersion model. The following Theorem is stated without proof as
it is very tedious but analytically straightforward.

Definition 10 A proper dispersion model Q = {dQ(θ; ϑ, ε) : ϑ ∈ Θ, ε > 0}
is said to be central if

EQ[θ] =

∫
Θ

θdQ(θ; ϑ, ε) = ϑ , ∀ϑ ∈ Θ .

Theorem 11 The first four moments (centered at ϑ) of a proper dispersion
model

q(θ; ϑ, ε) = a(ε)V −1/2(θ) exp

(
−d(θ, ϑ)

2ε

)
,
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have the following asymptotic expansions:

EQ[θ − ϑ] ∼ B1(ϑ) ε + B2(ϑ) ε2 + Oϑ(ε3) ,

EQ[(θ − ϑ)2] ∼ 2 C1(ϑ) ε + 2 C2(ϑ) ε2 + Oϑ(ε3)

EQ[(θ − ϑ)3] ∼ 6D1(ϑ)ε2 + Oϑ(ε3)

EQ[(θ − ϑ)4] ∼ 24E1(ϑ) ε2 + Oϑ(ε3) , ∀ϑ ∈ Θ (3.22)

as ε → 0, where

B1(ϑ) = −
[
V 2d3 + 2V ′

4

]

B2(ϑ) = −3(V ′)3

4V
+ V ′V ′′ − V

16

{
4V ′′′ + 5d3(V

′)2
}

+
V 2

8
{d4V

′ + 2d3V
′′}

−V 3

16

{
d5 + 2V ′d2

3

}
+

V 4

6
d3d4 − 5V 5d3

3

64

C1(ϑ) = V/2

C2(ϑ) =
3(V ′)2

8
− V V ′′

4
+

V 2V ′d3

4
− V 3d4

8
+

5V 4d2
3

32

D1(ϑ) = −
[
V V ′

4
+

5V 3d3

24

]

E1(ϑ) =
[V (ϑ)]2

8
.

Here V, V ′, V ′′, V ′′′ are the variance function and its derivatives evaluated at
θ = ϑ and

di = di(ϑ, ϑ) :=
∂i

∂θi
d(θ, ϑ)

∣∣∣∣
θ=ϑ

i = 3, 4, 5.

It is clearly possible to obtain explicit asymptotic expansions up to an order
higher than three. We only present our expansions up to order three for
clarity (expressions become massively long and obscure) and because it is
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enough to describe the properties we are interested in. The important thing
to highlight is the presence of an asymptotic pairing in the asymptotic orders
of these moments in general. Namely

EQ[(θ − ϑ)i] ∼ Oϑ(εu(i)) , (3.23)

where

u(i) =

⌊
i + 1

2

⌋
and �x� means rounding towards infinity. This behavior is preserved for the
centered moments and the normalized moments. Following a suggestion from
Paul Vos, it is straightforward to verify that the cumulants Ci

Q(θ) have the
more “usual” behaviour

Ci
Q(θ) = O(εi−1) , i ≥ 2

for i ≥ 2. But here we insist in the use of moments.

Corollary 3 The second, third and fourth centered (at the mean) moments
of a proper dispersion model have the following asymptotic expansions as
ε → 0

EQ[(θ − EQ[θ])2] ∼ V (ϑ)ε + [2C2(ϑ) − B2
1(ϑ)]ε2 + Oϑ(ε3)

EQ[(θ − EQ[θ])3] ∼ 6[D1(ϑ) − B1(ϑ)C1(ϑ)]ε2 + Oϑ(ε3)

EQ[(θ − EQ[θ])4] ∼ 24E1(ϑ)ε2 + Oϑ(ε3).
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Proof: Just note that

EQ[(θ − EQ[θ])2] = EQ[(θ − ϑ)2] − (EQ[θ − ϑ])2

∼ V (ϑ)ε + [2C2(ϑ) − B2
1(ϑ)]ε2 + Oϑ(ε3)

EQ[(θ − EQ[θ])3] = EQ[(θ − ϑ)3] + 2(EQ[θ − ϑ])3 − 3EQ[θ − ϑ]EQ[(θ − ϑ)2]

∼ 6[D1(ϑ) − B1(ϑ)C1(ϑ)]ε2 + Oϑ(ε3)

EQ[(θ − EQ[θ])4] = EQ[(θ − ϑ)4] − 4EQ[(θ − ϑ)3]EQ[(θ − ϑ)]

+6EQ[(θ − ϑ)2](EQ[(θ − ϑ)])2 − 3(EQ[(θ − ϑ)])4

∼ EQ[(θ − ϑ)4] + Oϑ(ε3) = 24E1(ϑ)ε2 + Oϑ(ε3).

Note that, in particular we have that, as ε → 0,

EQ[(θ − EQ[θ])4] ∼ 3(EQ[(θ − EQ[θ])2])2 + Oϑ(ε3). (3.24)

This will be particularly useful later on. Also note that,

EQ[θ] ∼ ϑ + Oϑ(ε)

EQ[(θ − EQ[θ])2] ∼ V (ϑ)ε + Oϑ(ε2) .

This is consistent with the asymptotic normality result for proper dispersion
models, which states that

[θ − ϑ]√
ε

d→ N(0, V (ϑ)) , ε → 0 , (3.25)

see Jorgensen (1997) page 30.

If the proper dispersion model is an exponential dispersion model, then au-
tomatically is central and therefore its variance is ε V (ϑ). But this is a very
restrictive class. By Daniel’s Theorem (see Jorgensen (1997) page 188) the
models that are both regular proper and exponential dispersion models are
only the Gamma, Gaussian and Inverse Gaussian.
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The following expansions for the normalized moments of a proper dispersion
model will be used later on. In particular we give an expansion for the
squared coefficient of variation.

Corollary 4 The normalized moments of a proper dispersion model have
the following asymptotic expansions as ε → 0,

EQ[(θ − EQ[θ])2]

(EQ[θ])2
∼ V (ϑ)

ϑ2
ε +

L2(ϑ)

ϑ3
ε2 + Oϑ(ε3)

EQ[(θ − EQ[θ])3]

(EQ[θ])3
∼ L3(ϑ)

ϑ3
ε2 + Oϑ(ε3)

EQ[(θ − EQ[θ])4]

(EQ[θ])4
∼ L4(ϑ)

ϑ4
ε2 + Oϑ(ε3),

where

L2(ϑ) =
4V V ′ + 2d3V

3 + ϑV 4d2
3 − ϑV 3d4 + ϑV 2V ′d3 + 2ϑ(V ′)2 − 2ϑV V ′′

4

L3(ϑ) = −V 3(ϑ)d3

2

L4(ϑ) = 3V 2(ϑ).

Proof: Just note that

EQ[(θ − EQ[θ])2]

(EQ[θ])2
=

EQ[(θ − ϑ)2] − (EQ[θ − ϑ])2

(ϑ + EQ[θ − ϑ])2

∼ V (ϑ)

ϑ2
ε + L(ϑ)ε2 + Oϑ(ε3).

The expansion is obtained by dividing the corresponding expansions derived
from Theorem 11 and Corollary 3. A similar argument yields the other two
expansions.

As a consequence of the previous discussions and results, we now present a
Theorem (which is one of the main contributions of part I of this thesis) that
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formally specifies the form of the expansions of mixtures when the mixing
model is local.

Theorem 12 Let F = {f(x; θ) : θ ∈ Θ} be a regular family and also let
Q = {dQ(θ; ϑ, ε) : ϑ ∈ Θ, ε > 0} be a proper dispersion model which is de-
fined on Θ . Then the Q-mixture of F has the following asymptotic expan-
sion:

g(x; Q(θ, ϑ, ε)) =

∫
Θ

f(x; θ)V −1/2(θ) exp

(
−d(θ, ϑ)

2ε

)
dθ

∫
Θ

V −1/2(θ) exp

(
−d(θ, ϑ)

2ε

)
dθ

∼ f(x; ϑ) +
2r∑

i=1

Ai(ϑ, ε)f (i)(x; ϑ) + Ox,ϑ(εr+1)

as ε → 0, for fixed ϑ ∈ Θ and x and for some functions Ai such that

Ai(ϑ, ε) = Oϑ(εu(i))

EQ[(θ − ϑ)i]

i!
∼ Ai(ϑ, ε) + Oϑ(εr+1) , i = 1, 2, . . . , 2r ,

where u(i) = �(i + 1)/2�. The following alternative expansion is also valid

g(x; Q(θ, ϑ, ε)) ∼ f(x; M1(ϑ, ε)) +
2r∑

i=2

Mi(ϑ, ε)f (i)(x; M1(ϑ, ε)) + Ox,ϑ(εr+1) ,

for some functions Mi such that,

EQ[θ] ∼ M1(ϑ, ε) = ϑ + A1(ϑ, ε) + Oϑ(ε3)

Mi(ϑ, ε) = Oϑ(εu(i))

EQ[(θ − EQ[θ])i]

i!
∼ Mi(ϑ, ε) + Oϑ(εr+1) , i = 2, . . . , 2r.

If the density f(x; θ) and all its derivatives are bounded then the statement
will be uniform in x.
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Proof: As said before, for clarity in our exposition, we only show the proof
in the case r = 2 which is enough for our purposes. Extensions to higher r
are straightforward. Using Laplace’s method in both numerator and denom-
inator of g(x; Q(θ, ϑ, ε)) and then dividing the two series, one obtains (after
a considerable amount of algebra),

f(x; ϑ) +
4∑

i=1

Ai(ϑ, ε)f (i)(x; ϑ) + Ox,ϑ(ε3)

as ε → 0, where

A1(ϑ, ε) = B1(ϑ) ε + B2(ϑ) ε2

A2(ϑ, ε) = C1(ϑ) ε + C2(ϑ) ε2

A3(ϑ, ε) = D1(ϑ)ε2

A4(ϑ, ε) = E1(ϑ)ε2

Ra(x; ϑ, ε) =
∞∑

k=5

Ri(ϑ, ε)f (k)(x; ϑ) = Ox,ϑ(ε3) ,

for some functions Ri for i ≥ 5 and B1, B2, C1, C2, D1, E1 are defined in
the proof of Theorem 11. One obtains the same result by making use (in
the denominator) of the saddlepoint approximation of a proper dispersion
model, see Jorgensen (1997), which states that

a(ε) ∼
√

2πε

as ε → 0. Use of the formulae given in Theorem 11 states the first form of
the expansion stated in this theorem. Now define

M1(ϑ, ε) := ϑ + A1(ϑ, ε) + Oϑ(ε3)

M2(ϑ, ε) :=
2C1(ϑ)ε + [2C2(ϑ) − B2

1(ϑ)]ε2

2

M3(ϑ, ε) := ε2[D1(ϑ) − B1(ϑ)C1(ϑ)]

M4(ϑ, ε) := E1(ϑ)ε2 .
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Using Taylor’s Theorem (with δϑ(ε) := A1(ϑ, ε) + Oϑ(ε3) as the increment)
on f(x; M1(ϑ, ε)) and f (i)(x; M1(ϑ, ε)) for i = 2, 3, 4 we obtain

f(x; M1(ϑ, ε)) +
4∑

i=2

Mi(ϑ, ε)f (i)(x; M1(ϑ, ε))

= f(x; ϑ + δϑ(ε)) +
4∑

i=2

Mi(ϑ, ε)f (i)(x; ϑ + δϑ(ε))

∼ f(x; ϑ) + [B1(ϑ)ε + B2(ϑ)ε2]f (1)(x; ϑ) + [C1(ϑ)ε + C2(ϑ)ε2]f (2)(x; ϑ)

+D1(ϑ)ε2f (3)(x; ϑ) +
V 2(ϑ)ε2

8
f (4)(x; ϑ) + Ox,ϑ(ε3)

= f(x; ϑ) +
4∑

i=1

Ai(ϑ, ε)f (i)(x; ϑ) + Ox,ϑ(ε3)

as ε → 0. By making use of the formulae given in Corollary 3 we can state
the second form of the expansion in the theorem. The bounded derivatives
assumption implies uniformity in x as described in Marriott (2002).

From now on, we will refer to the first form of the expansion given in Theorem
12 as the ϑ-centered expansion and the other expansion as the mean-centered
expansion. Note that actually this latter expansion is not centered at the
exact mean but at the function M1(ϑ, ε) which behaves like the exact mean
when ε is small. We will call the function M1(ϑ, ε) the pseudo-mean of the
proper dispersion model. Also, we call the functions Mi(ϑ, ε) the central
pseudo-moments of the proper dispersion model, as they behave like the
exact moments for small ε. Of course, when the proper dispersion model is
central, both expansions coincide and the pseudo-mean converts into the the
exact mean. Also we will be more interested, from the statistical point of
view, in the mean-centered expansion.

We are not very concerned about the behavior of the remainder terms because
it is not our aim to use these expansions to local mixtures in any analytical
sense. We are only interested in the behavior of local mixtures when ε is
small. Up to an specific asymptotic order, the asymptotic behavior of this
kind of mixtures depends on
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1. the behavior of f(x; θ) near the mean of the mixing distribution through
its higher order derivatives and

2. the mixing distribution only through the set of pseudo-moments.

The second point makes sense as when the mixing distribution is unimodal
and sufficiently concentrated, it can be very much determined by its first few
moments. See Johnson and Rogers (1951) and Janson (1988).

Although Theorem 12 is valid for any regular family and any parametriza-
tion of it, we will be interested in the case where F is a NEF-QVF and is
parametrized by its mean. This is because these families have an orthogonal
polynomials property that will be very useful from statistical point of view
later on.

Given the ϑ-centered expansion on the θ parametrization it is possible to
obtain the corresponding expansion of the new parameter µ = h(θ) under
the diffeomorphism h by simply multiplying the vector of derivatives of f by
the transpose of the invertible matrix (for the case r = 2)

H(ϑ) =




h
(1)
0 0 0 0

h
(2)
0

[
h

(1)
0

]2

0 0

h
(3)
0 3h

(1)
0 h

(2)
0

[
h

(1)
0

]3

0

h
(4)
0 4h

(1)
0 h

(3)
0 + 3

[
h

(2)
0

]2

6h
(2)
0

[
h

(1)
0

]2 [
h

(1)
0

]4




where

h
(k)
0 :=

dk

dθk
h(θ)

∣∣∣∣
θ=ϑ

.

That is, if we write

g(x, Q(θ, ϑ, ε)) = f(x; ϑ) + At(ϑ, ε)f(x; ϑ) + Ra(x; ϑ, ε),

where

A(ϑ, ε) = (A1(ϑ, ε), A2(ϑ, ε), A3(ϑ, ε), A4(ϑ, ε))t

f(x; ϑ) =
(
f (1)(x; ϑ), f (2)(x; ϑ), f (3)(x; ϑ), f (4)(x; ϑ)

)t
,



CHAPTER 3. LOCAL MIXTURE MODELS 79

then, if m = h(ϑ), we can write

g(x; Q(µ; m, ε)) = f̃(x; m) + Ã
t
(m, ε)f̃(x; m) + R̃a(x; ϑ, ε)

where

f̃(x; m) = f(x; h−1(m))

Ã(m, ε) = H t(h−1(m))A(h−1(m))

f̃(x; ϑ) =
(
f̃ (1)(x; m), f̃ (2)(x; m), f̃ (3)(x; m), f̃ (4)(x; m)

)t

.

To sketch this result consider that, for θ near ϑ,

[h(θ) − h(ϑ)]2 =

[
h′(ϑ)(θ − ϑ) +

h′′(ϑ)

2
(θ − ϑ)2 +

h′′′(ϑ)

3!
(θ − ϑ)3 + · · ·

]2

= [h′]2 (θ − ϑ)2 + h′h′′(θ − ϑ)3 +

[
(h′′)2

4
+

h′h′′′

3

]
(θ − ϑ)4 + · · ·

and therefore,

E[(h(θ) − h(ϑ))2]

2
=

[
h

(1)
0

]2 E[(θ − ϑ)2]

2
+ 3 h

(1)
0 h

(2)
0

E[(θ − ϑ)3]

3!

+

[
3
[
h

(2)
0

]2

+ 4 h
(1)
0 h

(3)
0

]
E[(θ − ϑ)4]

4!
+ Oϑ(ε3).

Doing something similar, we can obtain the other rows of the matrix H .

Note also that Theorem 12 is just a one-dimensional version of Theorem 9 in
Marriott (2002) with the additional (but statistically important) assumption
that the mixing distribution is a proper dispersion model. This assumption
states more clearly the meaning of locality in the mixing distribution.

The theorem of Marriott essentially assumes (in the one dimensional case)
that the mixing distribution is a location dispersion model (with a constant
variance function) independently of its support. In this sense, Theorem 12 is
slightly more general, as we allow for nonconstant variance functions for the
mixing model and the support is properly defined. In theory, we can always
get a mixing proper dispersion model with constant variance function by
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reparametrizing using the so-called variance-stabilizing transformation (see
Jorgensen (1997)). However, our results and Marriott’s are asymptotically
(in ε) equivalent because any proper dispersion model converges in distrib-
ution to a Gaussian which is a location dispersion model and therefore has
constant variance function (recall (3.25)). One of the prices to pay is that the
accuracy of the approximation is not the same as in Marriott’s. For example,
if we keep terms until the second derivative of f , then Marriott’s Theorem
states we neglect terms of order ε3 in the approximation and Theorem 12
states we neglect terms of order ε2.

For the case where Θ = IR+, some important and useful simplifications arise
if we further assume the proper dispersion model is in fact a scale dispersion
model. We know in such a case that the unit variance function of the mixing
model is of the form V (θ) = θ2. This appears to be quite restrictive but, as
we will see later, the family of scale dispersion models is very flexible and
contains many families assumed in practice. This implies also flexibility for
the resultant mixed distributions.

Corollary 5 Let F =
{
f(x; θ) : θ ∈ Θ = IR+

}
be a regular family and also

let Qsd = {dQ(θ; ϑ, ε) : ϑ ∈ Θ, ε > 0} be a scale dispersion model defined on
Θ. Then the Qsd-mixture of F has the following expansion:

g(x; Q(θ, ϑ, ε)) =

∫
Θ

f(x; θ) θ−1 exp

(
−d0(θ/ϑ)

2ε

)
dθ

∫
Θ

θ−1 exp

(
−d0(θ/ϑ)

2ε

)
dθ

∼ f(x; ϑ) +
2r∑

i=1

ϑiA∗
i (ε)f

(i)(x; ϑ) + Ox,ϑ(εr+1)

as ε → 0, for fixed ϑ ∈ Θ and x, and for some functions A∗
i such that

A∗
i (ε) = O(εu(i))

EQ[(θ − ϑ)i]

i!
∼ ϑi(A∗

i (ε) + O(ε3)) , i = 1, 2, . . . , 2r ,
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where u(i) = �(i + 1)/2�. The following alternative expansion is also valid

g(x; Q(θ, ϑ, ε)) ∼ f(x; M∗
1 (ϑ, ε)) +

2r∑
i=2

ϑiM∗
i (ε)f (i)(x; M∗

1 (ϑ, ε)) + Ox,ϑ(εr+1) ,

for some functions M∗
i such that

EQ[θ] ∼ M∗
1 (ϑ, ε) = ϑ[1 + A∗

1(ε) + O(ε3)]

M∗
i (ε) = O(εu(i))

EQ[(θ − EQ[θ])i]

i!
∼ ϑi[M∗

i (ε) + O(εr+1)] , i = 2, . . . , 2r.

If the density f(x; θ) and all its derivatives are bounded then the statement
will be uniform in x.

Proof: Proceeding as in the proof of Theorem 12 we have that, as ε → 0,

g(x; Q(θ; ϑ, ε)) ∼ f(x; ϑ) +
4∑

i=1

ϑiA∗
i (ε)f

(i)(x; ϑ) + Ox,ϑ(ε3) ,

where

A∗
1(ε) = −ε

(
1 +

d
(3)
0

4

)

+ε2

(
d

(3)
0 d

(4)
0

6
− 2 +

d
(4)
0

4
− d

(5)
0

16
− 3d

(3)
0

4
− 5[d

(3)
0 ]3

64
− [d

(3)
0 ]2

4

)

A∗
2(ε) =

ε

2
+ ε2

(
5[d

(3)
0 ]2

32
+ 1 − d

(4)
0

8
+

d
(3)
0

2

)

A∗
3(ε) = −ε2

(
1

2
+

5d
(3)
0

24

)

A∗
4(ε) =

ε2

8
,
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where now d0(u) is function with absolute minimum at u = 1 and d
(i)
0 for

i = 3, 4, 5 are its third to fifth derivatives evaluated at that minimum. The
rest of the proof follows as in the proof of Theorem 12, and therefore will be
omitted. We only give the formulae for the M∗

i functions:

M∗
2 (ε) =

ε

2
+ ε2

[
[d

(3)
0 ]2

8
+

1

2
− d

(4)
0

8
+

d
(3)
0

4

]

M∗
3 (ε) = −ε2d

(3)
0

12

M∗
4 (ε) =

ε2

8

Corollary 6 The normalized moments of a scale dispersion model have the
following asymptotic expansions as ε → 0,

EQ[(θ − EQ[θ])2]

(EQ[θ])2
∼ ε +

[
12 + 4d

(3)
0 − d

(4)
0 + [d

(3)
0 ]2

4

]
ε2 + O(ε3)

EQ[(θ − EQ[θ])3]

(EQ[θ])3
∼ −d

(3)
0

2
ε2 + O(ε3)

EQ[(θ − EQ[θ])4]

(EQ[θ])4
∼ 3 ε2 + O(ε3).

Clearly, the normalized moments of a scale dispersion model does not depend
on ϑ. We also state, without proof, the equivalent result of Corollary 5 for
location dispersion models.

Corollary 7 Let F = {f(x; θ) : θ ∈ Θ = IR} be a regular family and also
let Qld = {dQ(θ; ϑ, ε) : ϑ ∈ Θ, ε > 0} be a location dispersion model defined
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on Θ . Then the Qld-mixture of F has the following expansion,

g(x; Q(θ, ϑ, ε)) =

∫
Θ

f(x; θ) exp

(
−d0(θ − ϑ)

2ε

)
dθ

∫
Θ

exp

(
−d0(θ − ϑ)

2ε

)
dθ

∼ f(x; ϑ) +
2r∑

i=1

A∗
i (ε)f

(i)(x; ϑ) + Ox,m(εr+1)

as ε → 0, for fixed ϑ ∈ Θ and x, and for some functions A∗
i such that

A∗
i (ε) = O(εu(i))

EQ[(θ − ϑ)i]

i!
∼ A∗

i (ε) + O(ε3) , i = 1, 2, . . . , 2r ,

where u(i) = �(i + 1)/2�. The following alternative expansion is also valid

g(x; Q(θ, ϑ, ε)) ∼ f(x; M∗
1 (ϑ, ε)) +

2r∑
i=2

M∗
i (ε)f (i)(x; M∗

1 (ϑ, ε)) + Ox,ϑ(εr+1)

for some functions M∗
i such that

EQ[θ] ∼ M∗
1 (ϑ, ε) = ϑ + A∗

1(ε) + O(ε3)

M∗
i (ε) = O(εu(i))

EQ[(θ − EQ[θ])i]

i!
∼ M∗

i (ε) + O(εr+1) , i = 2, . . . , 2r.

If the density f(x; θ) and all its derivatives are bounded then the statement
will be uniform in x.
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Proof: We only state the formulae for the functions A∗
i and M∗

i :

A∗
1(ε) = −ε

(
d

(3)
0

4

)
+ ε2

(
d

(3)
0 d

(4)
0

6
− d

(5)
0

16
− 5[d

(3)
0 ]3

64

)

A∗
2(ε) =

ε

2
+ ε2

(
5[d

(3)
0 ]2

32
− d

(4)
0

8

)

A∗
3(ε) = −ε2

(
5d

(3)
0

24

)

A∗
4(ε) =

ε2

8
,

where now d0(u) is function with absolute minimum at u = 0 and d
(i)
0 for

i = 3, 4, 5 are its third to fifth derivatives evaluated at that minimum. Also,
we have

M∗
2 (ε) =

ε

2
+ ε2

[
[d

(3)
0 ]2

8
− d

(4)
0

8

]

M∗
3 (ε) = −ε2d

(3)
0

12

M∗
4 (ε) =

ε2

8
.

3.4 Local Mixture Models

Motivated by the definition of a General Mixture Family and the expansions
developed in Section 3.3.2 let us define Local Mixture Models formally.

Let F = {f(x; θ) : θ ∈ Θ ⊂ IR} be a regular family of densities with respect
to the measure ν. We can embed F in the affine space (Dm

ν ,V0
ν ,⊕m) using



CHAPTER 3. LOCAL MIXTURE MODELS 85

the embedding E : Θ → Dm
ν defined by

θ �→ f(x; θ).

The regularity conditions on F imply the differentiability under the integral
sign, and therefore∫

Θ

df(x; θ)

dθ

∣∣∣∣
θ=θ0

dν(x) =
d

dθ

∫
Θ

f(x; θ) dν(x)

∣∣∣∣
θ=θ0

=
d

dθ
(1) = 0.

This means that the functions

df(x; θ0)

dθ
:=

df(x; θ)

dθ

∣∣∣∣
θ=θ0

∈ V0
ν

for any θ0 ∈ Θ. Clearly, the same happens with higher order derivatives,
that is

f (k)(x; θ0) :=
dkf(x; θ0)

dθk
∈ V0

ν , k ∈ IN,

for any θ0 ∈ Θ. Now, for d ≥ 1, consider the following subset of Dm
ν

G ′
θ0

=

{
g(x; θ0,λ) = f(x; θ0) +

d∑
k=1

λkf
(k)(x; θ0) : λ = (λ1, . . . , λd)

t ∈ IRd

}
,

which is clearly an affine subspace of (Dm
ν ,V0

ν ,⊕m). Recall expression (2.5).

If the set of vectors {
f (1)(x; θ0), . . . , f

(d)(x; θ0)
} ⊂ V0

ν

are linearly independent (as functions of x), then λ = (λ1, . . . , λd)
t is nothing

but an affine parametrization (see Appendix B) relative to the origin f(x; θ0)
and also relative to the base conformed by that set.

Also, we can identify G ′
θ0

with the Jet space of order r of F at the point
f(x; θ0) (see Murray and Rice (1993) and Marriott (2002)).

Now, we can restrict the values of λ to get the general mixture family

Gθ0 =

{
g(x; θ0,λ(θ0)) = f(x; θ0) +

d∑
k=1

λk(θ0)f
(k)(x; θ0) : λ(θ0) ∈ Λθ0(ν)

}
,

where Λθ(ν) := Λm(νSθ
). Obviously, we can do the same for every θ0 ∈ Θ

and then glue them all together to create a Local Mixture Model.
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Definition 11 Let F = {f(x; θ) : θ ∈ Θ ⊂ IR} be a regular parametric fam-
ily. The Local Mixture Model of order d of the family F is the parametric
family

GF =

{
g(x; θ, λ(θ)) = f(x; θ) +

d∑
k=1

λk(θ)f
(k)(x; θ) : θ ∈ Θ, λ(θ) ∈ Λθ(ν)

}
,

(3.26)
when {

f (1)(x; θ), . . . , f (d)(x; θ)
}

is a linearly independent set of functions for every θ ∈ Θ and Λθ(ν) is non-
empty for all θ ∈ Θ.

The natural parametrization in a Local Mixture Model is defined as the vector
(θ, λ(θ))t and the Hard Boundary of the local mixture model is defined to
be the set ⋃

θ∈Θ

∂(Λθ(ν)) .

That is, the union of all the Hard Mixture Boundaries.

It is not the aim of local mixture models to approximate genuine local mix-
tures in any analytical sense. The philosophy is that we can capture some
information of dispersion mixing structure (if present) in the data by mod-
eling using local mixture models of even order.

Note that the natural parametrization in this case corresponds to the given
parametrization θ for F together with the affine parametrization of Gθ when
we think of it as a subset of G ′

θ. This latter parametrization is expressed as
a function of θ because, for each θ, we have a particular affine space and we
are expressing its points with respect to the particular origin f(x; θ). Affine
coordinates do not make any sense if we do not specify the origin with respect
to which they are constructed. Therefore, the natural parameter space for a
Local Mixture Family is not in general a Cartesian product unless the vector
parameter function λ is constant.

This is the usual way to parametrize this kind of structures in Differential
Geometry. For example, the Tangent Bundle of a finite dimensional smooth
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manifold is parametrized in this way. In fact, the Tangent Bundle is itself
a smooth manifold. As explained in section 2.3, we can think of a Local
Mixture Model as a Fiber Bundle as we are attaching to each point of F a
convex subset of an affine space which is in fact a General Mixture Family.
We can also see a Local Mixture model as a manifold with a boundary. These
added geometrical structures entail some theoretical difficulties which really
do not help too much, at least for the statistical purposes we have. They are
clearly an interesting subject to explore in the future. The only thing we are
going to take some care about is the fact that the original model F can lie in
the boundary of the parameter space of its associated local mixture family.

We can visually consider the bundle construction of a Local Mixture Model
in Figure 3.2 as the union of general mixture families.

f(x;θ
0
)

Gθ
0

F

G(F)

Figure 3.2: Construction of a Local Mixture
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Also, at the heart of this construction of a local mixture model is the fact
that we are really trying to mimic the behavior of genuine mixtures when the
mixing distribution is local. In Theorem 12 it is shown that, if a mixture is
local in that sense, the role played by the coefficients of the derivative terms
in the expansion is exactly that of functions of ϑ. We will further discuss
this issue when we define true local mixtures later on.

One important thing to state is that the definition of a Local Mixture Model
does not really depend on the way F is parametrized. This is just a con-
sequence of the underlying geometrical structure. Let h : Θ → Φ be a
diffeomorphism. If we reparametrize the original family F using h then we
end up with the same Local Mixture Model.

Theorem 13 Let GF be a Local Mixture Model of the regular parametric
family

F = {f(x; θ) : θ ∈ Θ} .

Then GF is invariant to reparametrizations on F . That is, if we reparame-
trize F using a diffeomorphism h : Θ → Φ then the Local Mixture Model
obtained from this new specification is GF . That is,

GF = {g(x; θ, λ(θ)) : θ ∈ Θ, λ(θ) ∈ Λθ(ν)}

= {g(x; φ,η(φ)) : φ ∈ Φ, η(φ) ∈ Dφ(ν)} .

Moreover, the change of parameter formula is given by(
θ

λ(θ)

)
�→

(
φ

At(h−1(φ))λ(h−1(φ))

)
,

where A is a change-of-basis matrix.

Proof: Define, for any θ0 ∈ Θ and φ0 ∈ Φ such that φ0 = h(θ0),

f̃(x; φ0) := f(x; h−1(φ0))

f(x; θ0) :=
(
f (1)(x; θ0), . . . , f

(d)(x; θ0)
)t

f̃(x; φ0) :=
(
f̃ (1)(x; φ0), . . . , f̃

(d)(x; φ0)
)t

.
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By a simple application of the chain rule we can write,

f(x; θ0) = A(θ0) f̃(x; h(θ0)) ,

where A(θ0) is the invertible lower triangular matrix


h
(1)
0 0 0 0 · · · 0

h
(2)
0

[
h

(1)
0

]2

0 0 · · · 0

h
(3)
0 3h

(1)
0 h

(2)
0

[
h

(1)
0

]3

0 · · · 0

h
(4)
0 4h

(1)
0 h

(3)
0 + 3

[
h

(2)
0

]2

6h
(2)
0

[
h

(1)
0

]2 [
h

(1)
0

]4 ...

...
. . . 0

h
(d)
0 · · · · · ·

[
h

(1)
0

]d




,

where

h
(k)
0 :=

dk

dθk
h(θ)

∣∣∣∣
θ=θ0

.

Note that this equality implies that

{
f (1)(x; θ0), . . . , f

(d)(x; θ0)
}t

are linearly independent as elements in V0
ν , if and only, if{

f̃ (1)(x; φ0), . . . , f̃
(d)(x; φ0)

}
are linearly independent. Then,

g(x; θ0, λ(θ0)) = f(x; θ0) + λt(θ0)f(x; θ0)

= f(x; θ0) + λt(θ0)A(θ0)f̃(x; h(θ0))

= f̃(x; φ0) + λt(h−1(φ0))A(h−1(φ0))f̃(x; φ0).
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This clearly gives the change of parameter formula(
θ

λ(θ)

)
�→

(
φ

At(h−1(φ))λ(h−1(φ))

)
.

The invariance of a local mixture family can be visualized in Figure 3.3.
When working in the θ parametrization, any point in the family can be
expressed as an affine combination in terms of the origin f(x; θ0) and the
base {

f (1)(x; θ0), . . . , f
(d)(x; θ0)

}t
.

And, when working in the φ parametrization, can be expressed as an affine
combination in terms of the same origin f(x; φ0) and the base{

f̃ (1)(x; φ0), . . . , f̃
(d)(x; φ0)

}
.

From this geometrical point of view, the invariance result is quite clear, it
only corresponds to the invariance of representation of points in an Affine
Space.

Another important aspect is that, for any fixed θ0 ∈ Θ, Local Mixture Models
are closed under general mixing as the following theorem shows. This appears
also in Marriott (2002).

Theorem 14 The parametric family of densities Gθ0 is closed under mixing.

Proof: Let Q be a distribution in IRd with support Λθ0 . Then,

∫
Λθ0

g(x; θ0,λ) dQ(λ) =

∫
Λθ0

[
f(x; θ0) +

d∑
k=1

λif
(k)(x; θ0)

]
dQ(λ)

= f(x; θ0) +
d∑

k=1

ηif
(k)(x; θ0) ,

where

ηi =

∫
λ dQi(λ) , i ∈ {1, 2, . . . , d} ,
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F

origin f(x;θ
0
)=f(x;φ

0
)

~f(2)(x;φ
0
)

f(2)(x;θ
0
)

f(3)(x;θ
0
)

f(1)(x;θ
0
)

~f(1)(x;φ
0
)

~f(3)(x;φ
0
)

o

Figure 3.3: Invariance of Local Mixture Families

with Qi the marginal distribution of the i entrance of λ. Clearly η =
(η1, . . . , ηd)

t ∈ Λθ0(ν) because of the convexity of Λθ0(ν).

This result is mainly a consequence of the fact that General Mixture Families
are convex.

3.4.1 Moments of a Local Mixture Model

The fact that we are working with regular parametric families makes the
computation of the moments of a Local Mixture Model very straightforward.
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Actually, if E[r(X); θ] exist for all θ and is smooth as a function of θ, then

E[r(X); θ, λ(θ)] =

∫
r(x) g(x; θ, λ(θ)) ν(dx)

=

∫
r(x)

{
f(x; θ) +

d∑
k=1

λk(θ)f
(k)(x; θ)

}
ν(dx)

=

∫
r(x)f(x; θ) ν(dx) +

d∑
k=1

λk(θ)

∫
r(x)f (k)(x; θ)ν(dx)

=

∫
r(x)f(x; θ) ν(dx) +

d∑
k=1

λk(θ)
dk

dθk

∫
r(x)f(x; θ)ν(dx)

= E[r(X); θ] +
d∑

k=1

λk(θ)
dk

dθk
E[r(X); θ].

3.5 True Local Mixture Models

So far, Local Mixture Families have been viewed simply as multidimensional
parametric families constructed using a base parametric family F . But the
motivation of their definition is to mimic the behavior of genuine continuous
(local) mixtures of F . It is then natural to ask the question of whether a local
mixture model can be a true mixture. As we will see in the next chapter,
when studying mixtures of the negative exponential distribution, the answer
to this question can be negative and in such case makes sense to modify in
some way local mixture models to be much more like genuine mixtures.

In this section we study how we can restrict the parameter values of a local
mixture to mimic the behavior of a mixture in a reasonable way. Let us start
with a definition.

Definition 12 Let F = {f(x; θ) : θ ∈ Θ} be a regular parametric family of
densities. Then the Local Mixture Model

GF = {g(x; θ, λ(θ)) : θ ∈ Θ, λ(θ) ∈ Λθ(ν)}
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is a True Local Mixture Model if there exists Q(θ), a proper distribution
function defined on Θ, such that∫

Θ

f(x; θ)dQ(θ) ∼ g(x; ϑ, λ∗(ϑ, ε)) + Ox,ϑ(εr+1)

as ε → 0, with ϑ ∈ Θ and

λ∗(ϑ, ε) = (A1(ϑ, ε), . . . , A2r(ϑ, ε))t ∈ Λϑ(ν),

where the functions Ai are the same as those defined in Theorem 12. Equiva-
lently, the Local Mixture Model is a True Local Mixture Model if there exists
Q(θ) such that∫

Θ

f(x; θ)dQ(θ) ∼ g(x; M1(ϑ, ε), λ∗∗(ϑ, ε)) + Ox,ϑ(εr+1)

as ε → 0, with M1(ϑ, ε) ∈ Θ and

λ∗∗(ϑ, ε) = (0,M2(ϑ, ε), . . . , M2r(ϑ, ε))t ∈ Λϑ(ν),

where the functions Mi are the same as those defined in Theorem 12.

The definition says that a local mixture model is a true local mixture model
if it is capable of be having locally (that is, for small ε), like a Q-mixture of
F in the sense that its parameter space admits values that can be realized
as the derivative coefficients in either one of the two asymptotic expansions
in Theorem 12. This is always true at least for sufficiently small values of ε.

Theorem 15 There exists ε0 > 0 such that λ∗(ϑ, δ) ∈ Λϑ(ν) for all δ ∈
[0, ε0].

Proof: Note that (0, . . . , 0)t ∈ ∂(Λϑ(ν)). The result is true because Λϑ(ν) is
an open set in IR2r and λ∗(ϑ, ε) is an embedding and therefore is continuous
as a function of ε for each fixed ϑ.

As an example, just recall the Gamma mixing distribution example above
where ε0 = 1.
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Also, the definition of a true local mixture model emphasizes the fact that
the parameter λ(θ) must be really treated as a function of θ (supporting our
notation), as the pseudo-moments are functions of ϑ (for any ε, small or not)
and ϑ varies over Θ.

Equivalence in the definition follows from the fact that ϑ,A1,M2, . . . , M2r and
ϑ,A1, A2, . . . , A2r are in one-to-one correspondence (asymptotically) for each
fixed value of ε. As said before, we will focus from now on True Local Mixture
Models in terms of the central pseudo-moments Mi. From the statistical point
of view, those are clearly easier to interpret.

This means that the true local mixtures we will be interested in are of the
form

GF =

{
g(x; θ; λ(θ)) = f(x; θ) +

d∑
i=2

λi(θ) f (i)(x; θ) : θ ∈ Θ λ(θ) ∈ Λθ(ν)

}

(3.27)
for d even. One has to keep in mind that, in this model, θ is now playing
the role of the pseudo-mean M1(ϑ, ε), when ϑ varies over Θ and a fixed value
of ε. In the same way, λ2(θ), . . . , λ2r(θ) are playing the role of the central
pseudo-moments M2(ϑ, ε), . . . , M2r(ϑ, ε), respectively.

Note also that the parameter space has been reduced in one dimension. This
means that knowing the values of the pseudo-moments M1, . . . , M2r does not
imply the knowledge of ϑ,A1, A2, . . . , A2r. The values of ϑ and A1 will be
undetermined as they can take any value as long as ϑ + A1 = M1 (up to
order ε3). From the statistical point of view, this is not a serious restric-
tion as we are more interested in the mean of a distribution instead of its
components (additive components, in this case). This is also related to an
identifiability issue to be discussed later. Moreover, the change of parame-
ter formula in Theorem 13 is still valid if we can recover the values of the
functions ϑ,A1, . . . , A2r.

It seems reasonable to treat the central pseudo-moments defined before like
true central moments of some distribution, as they must behave like that at
least for sufficiently small ε (that is, locally). Given that, observe that there
can be values in Λϑ(ν) (for some ϑ) that cannot be realizable as the central
moments. For example, negative values of M2(ϑ, ε) cannot be allowed as it
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should behave like a variance. Moreover, Rohatgi and Székely (1989) prove
that for any distribution with finite first four moments it is true that

M2
3 ≤ M4M2 − M3

2 , (3.28)

where Mi is the ith central moment. Moreover, if the distribution is uni-
modal, Klaassen, Mokveld, and van Es (2000), then

M2
3 ≤ M4M2 − 3

2
M3

2 . (3.29)

Then it is reasonable to not allow values on the parameter space which do
not satisfy such inequality. Note that the previous inequality can be eas-
ily expressed in terms of the normalized moments of the distribution, just
dividing both sides by M6

1 . That is

[
M3

M3
1

]2

≤ M4

M4
1

M2

M2
1

− 3

2

[
M2

M2
1

]3

. (3.30)

According to Shaked (1980), if F is an exponential family and the mixing
density Q(θ; ϑ, ε) is a central dispersion model, then

Ef [X] =

∫
xf(x; ϑ)ν(dx) = ϑ

implies,

1. The function

R(x) =
g(x; Q(θ; ϑ, ε))

f(x; ϑ)
− 1

is convex and has the sign sequence (+,−, +) as x transverses the real
axis and

2. For any convex function C(x) it is true that

Eg[C(X)] =

∫
c(x)g(x; Q(θ; ϑ, ε))ν(dx) ≥ Ef [C(X)].
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In particular, we have the well known result that, if mixed and unmixed
models have the same mean, then the variance should increase by mixing,
that is

Vg[X] ≥ Vf [X].

Then, it is reasonable to restrict the parameter values of a local mixture
model to satisfy conditions like the ones above.

3.6 Local Mixture Models of Natural

Exponential Families

Natural Exponential Families are a very important class in statistics because
they contain some of the most common and widely used models in the prac-
tice of statistics.

There exist some important simplifications when the underlying regular fam-
ily F is a natural exponential family. Let F be a steep regular natural
exponential family in its natural parametrization, that is

f(x; θ) = exp {θx − kν(θ)}
with respect to the σ-finite measure ν on IR. Then the derivatives of the
densities have a simple form,

df(x; θ)

dθ
= f(x; θ) [x − k′

ν ] (3.31)

d2f(x; θ)

dθ2
= f(x; θ)

[
(x − k′

ν)
2 − k′′

ν

]
d3f(x; θ)

dθ3
= f(x; θ)

[
(x − k′

ν)
3 − 3(x − k′

ν)k
′′
ν − k′′′

ν

]
d4f(x; θ)

dθ4
= f(x; θ)

[
(x − k′

ν)
4 − 6(x − k′

ν)
2k′′

ν − 4(x − k′
ν)k

′′′
ν + 3(k′′

ν)
2 − k′′′′

ν

]
,

and so on. Here k′
ν , k

′′
ν , k

′′′
ν , k′′′′

ν are just the first four derivatives of kν eval-
uated at θ. If we use the mean parametrization µ = k′

ν(θ) and denote the
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variance function by Vf (µ) then, these expressions turn into

df(x; µ)

dµ
= f(x; µ)

[
x − µ

Vf (µ)

]

d2f(x; µ)

dµ2
= f(x; µ)

[
(x − µ)2 − (x − µ)V ′

f (µ) − Vf (µ)

V 2
f (µ)

]

d3f(x; µ)

dµ3
= f(x; µ)

[
(x − µ)3 − 3(x − µ)2V ′

f (µ)

V 3
f (µ)

+
−(x − µ)

[
3Vf (µ) + Vf (µ)V ′′

f (µ) − 2[V ′
f (µ)]2

]
+ 2Vf (µ)V ′

f (µ)

V 3
f (µ)

]

d4f(x; µ)

dµ4
=

f(x; µ)

V 4
f (µ)

{
(x − µ)4 − 6(x − µ)3V ′

f (µ)

−(x − µ)2[6Vf (µ) + 4Vf (µ)V ′′
f (µ) − 11[V ′

f (µ)]2]

+(x − µ)[14Vf (µ)V ′
f (µ) + 6Vf (µ)V ′

f (µ)V ′′
f (µ) − 6[V ′

f (µ)]3 − Vf (µ)2V ′′′
f (µ)]

−6Vf (µ)[V ′
f (µ)]2 + 3V 2

f (µ)V ′′
f (µ) + 3V 2

f (µ)
}

.

If the variance function Vf (µ) is quadratic, then these expressions have a
very special property.

Theorem 16 Let F be a regular natural exponential family. Let µ be the
mean parametrization and assume the variance function Vf (µ) is a polyno-
mial of degree at most 2. Then, for each µ, the system of polynomials

Pk(x; µ) := V k
f (µ)

dkf(x; µ)

dµk

f(x; µ)

for k = 0, 1, . . . is orthogonal with respect to f(x; µ) (in the sense of definition
7). Moreover, Pk(x; µ) has exact degree k in both x and µ with leading term
xk.
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Proof: See Morris (1982, 1983).

Clearly, those polynomials are linearly independent as functions of x. Be-
cause of this property, we get for free a local mixture model of any order.
The orthogonality property will play an important statistical role later.

Corollary 8 Let F be a regular natural exponential family and let µ be its
mean parametrization. Assume the variance function Vf (µ) is a polynomial
of degree at most 2. Then the Local Mixture Model GF of order r can be
written as

g(x; µ, η(µ)) = f(x; µ)

[
1 +

d∑
k=1

ηk(µ)
Pk(x; µ)

V k
f (µ)

]
, (3.32)

where {Pk(x; µ)} is the orthogonal system of polynomials described above.

It will be useful to consider the following simple reparametrization suggested
in the formal expansions developed in Section 3.3.2

g(x; µ, η(µ)) = f(x; µ)

[
1 +

d∑
k=1

ηk(µ)

k!

Pk(x; µ)

V k
f (µ)

]
, (3.33)

where we keep the same notation in terms of η to avoid overloading the
notation. For the case d = 4, we have the following expressions for the mean,
variance and third central moment functions,
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Eg[µ, η(µ)] = µ + η1(µ) (3.34)

Vg[µ, η(µ)] = Vf (µ) + η2(µ) − η2
1(µ)

= +η1(µ)V ′
f (µ) +

η2(µ)

2
V ′′

f (µ) (3.35)

Sg[µ, η(µ)] = E[(X − µ − η1(µ))3]

= Vf (µ)V ′
f (µ) + 2η3

1(µ) + η3(µ) − 3η1(µ)η2(µ)

+η1(µ)
[
[V ′

f (µ)]2 + Vf (µ)V ′′
f (µ)

]
+η2(µ)

[
3V ′

f (µ) +
3

2
V ′

f (µ)V ′′
f (µ)

]

+η3(µ)

[
1

2
[V ′′

f (µ)]2 +
3

2
V ′′

f (µ)

]

−3η2
1(µ)V ′

f (µ) − 3

2
η1(µ)η2(µ)V ′′

f (µ), (3.36)

which does not depend on ηu(µ) for u ≥ 4.

3.7 Identification

Identification, in a statistical sense, is related to the possibility of the model
parameters being uniquely determined from the distribution of the observed
random variables. When the parameter θ is known, the identification of a
Local Mixture Model of order r is quite clear because of the underlying affine
structure. The analogue is quite clear also for exponential families. For an
extensive treatment of the identification issue, see Mimoso and de Bragança
(1994).

Definition 13 Let G =
{
g(x; ψ) : ψ ∈ Ψ ⊂ IRk

}
be a parametric family of

densities with respect to some σ-finite measure ν. The points ψ1, ψ2 ∈ Ψ are
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said to be observationally equivalent (we write ψ1 � ψ2) if

f(x; ψ1) = f(x; ψ2) a.e.[ν]

The relation � is an equivalence relation and thus induce a partition on Ψ
into equivalence classes [ψ0] = {ψ ∈ Ψ : ψ � ψ0}.

Definition 14 The point ψ0 ∈ Ψ is said to be globally identifiable if [ψ0] =
{ψ0}. The model G is called identifiable if [ψ] = {ψ} for all ψ ∈ Ψ. The point
ψ0 is said to be locally identifiable if, for some open neighborhood U(ψ0) of
ψ0, [ψ0] ∪ U(ψ0) = {ψ0}.

Now, we can prove the following.

Theorem 17 Let GF be a Local Mixture Model of order d of the family F .
If the parameter θ is known then the family Gθ is identifiable.

Proof: Assume θ is known to be ϑ ∈ Θ. Suppose there exist a pair of values
λ1 �= λ2 such that

g(x; ϑ, λ1) = g(x; ϑ, λ2)

for all x. Then
d∑

k=1

(λk
1 − λk

2)f
(k)(x; ϑ) = 0

for all x and this contradicts the linear independence of the derivative vector.

When θ is not known the problem is more difficult. To see why, consider the
following. As noted by Marriott (2002), given the regular parametric family
F let us expand f(x; θ) in a Taylor series around ϑ for any fixed x, that is,

f(x; θ) = f(x; ϑ) +
d∑

k=1

(θ − ϑ)k

k!
f (k)(x; ϑ) + r(x; ξ)

where

r(x; ξ) =
(θ − ϑ)d+1

(d + 1)!
f (d+1)(x; ξ)
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for some ξ ∈ (ϑ, θ). In this way, the truncated Taylor’s Series defines a curved
mixture family for each fixed ϑ. It is embedded in the general mixture family

Gϑ =

{
g(x; ϑ, λ) = f(x; ϑ) +

d∑
k=1

λkf
(k)(x; ϑ) , λ ∈ Λϑ(ν)

}

and the corresponding embedding h : Θ → Λϑ(ν) is clearly given by

h(θ) =

(
(θ − ϑ)1

1!
, . . . ,

(θ − ϑ)d

d!

)t

.

If we glue together all these curved mixture families, we get the family Gapp

defined as{
gapp(x; ϑ, θ) = f(x; ϑ) +

d∑
k=1

(θ − ϑ)k

k!
f (k)(x; ϑ) : ϑ ∈ Θ , θ ∈ h−1(Λϑ(ν))

}

which is a subset of a local mixture model.

Clearly, this parametric family contains good approximations to F at each
point ϑ in the sense of the Taylor’s expansion above. That is,

f(x; θ) ≈ gapp(x; ϑ, θ)

for θ close to ϑ. To get an idea of how good those approximations can be,
consider the case when F is a NEF-QVF (parametrized by its mean µ and
with variance function Vf (µ)). Then it is easy to prove the following result.

Theorem 18 Assume F is NEF-QVF. For each fixed m, the variance func-
tion of the curved mixture family

g(x; m,µ) = f(x; m) +
d∑

k=1

(µ − m)k

k!
f (k)(x; m)

is exactly Vf (µ) and the mean is µ.

To check this is true, just use expression in (3.35). Recall that a NEF-QVF
is characterized (within the class of exponential families) by its variance
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function together with its domain of means. In this case, the curved mixture
family is not even an exponential family, but the mean is µ (use formula
(3.34)) and the domain of the means is h−1(Λϑ(ν)), which is a proper subset
of the domain of means of the complete family F . This result is simple but
important in its own right and can also give some insights into the theory of
NEF-QVF’s. Moreover, the result is also true for the so-called Natural real
exponential families with cubic variance function, see for example Letac and
Mora (1990).

The previous discussion means that local mixture models have local iden-
tification problems when we let the coefficient of the first derivative to be
nonzero. Explicitly, we have

g(x; θ, 0, . . . , 0) = f(x; θ)

≈ gapp(x; ϑ, θ)

= g

(
x; ϑ, θ − ϑ,

(θ − ϑ)2

2!
, . . . ,

(θ − ϑ)d

d!

)
,

for θ close to ϑ and this implies nearly non-identifiability of the local mix-
ture family GF . We note here that the point (θ, 0, 0, 0, 0)t can lie in the
boundary of Λθ(ν), but this is not a problem as we can continuously extend
the coordinates of a local mixture model to the boundaries of the parameter
space.

On the other hand, it is possible to confound local mixing around some ϑ ∈ Θ
with a small displacement of that value in the original family F . That is, it
is possible to have(

ϑ, θ − ϑ,
(θ − ϑ)2

2
, . . . ,

(θ − ϑ)d

d!

)t

≈ (ϑ,A1(ϑ, ε), A2(ϑ, ε), . . . , Ad(ϑ, ε))t

for small ε, and θ sufficiently close to ϑ. So, again it seems reasonable to not
allow parameter values of a true local mixture model such as those the form(

ϑ, y,
y2

2
, . . . ,

yd

d!

)t

for small y. This makes sense for a true local mixture model, since the order
(for small ε) of the functions A1, A2 should be O(ε), for A3, A4 should be
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O(ε2) and so on. As shown by Marriott (2005) it is enough (locally) to
consider the restriction M2(ϑ, ε) ≥ 0 for this purpose.

Finally, it is possible to ensure global identifiability in the case of local mix-
tures of NEF-QVF’s.

Theorem 19 Let GF be a Local Mixture Model of the form (3.27) of a NEF-
QVF F parametrized by its mean µ. Then the family is identified in all its
parameters (µ, η2, η3, . . . , ηd).

Proof: For each µ, the mean of g(x; µ, η) is exactly µ, hence it is sufficient
to show identifiability for each fiber as it is shown by Theorem 17.

This supports the use of true local mixture models of the form (3.27) based
on the mean-centered expansion of Theorem 12.

3.8 Local Scale and Local Location mixture

models

Motivated by mean centered expansions of Corollaries 5 and 7, we now define
the following statistical models and call them Local scale and Local location
mixture models respectively. One of the main features in both cases is the fact
that the pseudo-moments have a specific form as functions of the parameter.

Definition 15 Let F =
{
f(x; θ) : θ ∈ Θ = IR+

}
be a regular parametric

family. The Local scale mixture model of order d of the family F is defined
as the parametric family

Gscale
F =

{
g(x; θ, γ) = f(x; θ) +

d∑
k=2

θk γk

k!
f (k)(x; θ) : θ ∈ Θ , γ ∈ Γθ

}
,

when {
f (2)(x; θ), . . . , f (r)(x; θ)

}
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is a linearly independent set of functions for every θ ∈ Θ and Γθ ⊂ IRd−1 is
nonempty for all θ. The natural parametrization in a Local scale mixture
model is defined as (θ, γ).

Definition 16 Let F = {f(x; θ) : θ ∈ Θ = IR} be a regular parametric fam-
ily. The Local location mixture model of order r of the family F is defined as
the parametric family

Gloc
F =

{
g(x; θ, γ) = f(x; θ) +

d∑
k=2

γk

k!
f (k)(x; θ) : θ ∈ Θ , γ ∈ Γθ

}
,

when {
f (2)(x; θ), . . . , f (r)(x; θ)

}
is a linearly independent set of functions for every θ ∈ Θ and Γθ ⊂ IRd−1 is
nonempty for all θ. The natural parametrization in a Local location mixture
model is defined as (θ, γ).

First note that these models are simple reparametrizations of local mixture
models of the form (3.27). Also note that their definitions are restricted to
the case where the parameter space for F is IR+ (scale) and IR (location).
Here, γ is considered constant as a function of θ, but for each θ ∈ Θ the
parameter space Γθ for γ depends on θ. This is just a consequence of the
fact that, for us, a mixing distribution is going to be small not only when
ε is small but also relative to the family F . To illustrate this, consider for
example, the case where F is a Poisson family with mean parameter θ. It
is well known that a Poisson distribution with mean ϑ is close to a Normal
distribution with mean and variance ϑ. If the mixing distribution is a scale
dispersion model with position ϑ and dispersion parameter ε sufficiently small
such that the normal approximation (3.25) holds, then the distribution of θ
is close to a normal with mean ϑ and variance ϑ2. Then, for the mixing
distribution to be local, it is reasonable to require that ε ϑ2 < ϑ. Otherwise,
the mixing distribution will have more variability around ϑ than X.

In the special case where F is a scale family with scale parameter θ ∈ IR+

then it is straightforward to check that θ is still a scale parameter for the
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family Gscale
F and therefore Γθ does not depend on θ. Similarly, when F is

a location family with location parameter θ ∈ IR then θ is still a location
parameter for the family Gloc

F and therefore Γθ does not depend on θ. So,
in these special cases the smallness of the mixing distribution depends only
on the dispersion parameter ε. This is one of the most important aspects of
the negative exponential distribution that we are going to exploit in the next
chapter.

The interpretation of the local scale and local location models is clear. When
we have a regular family F parametrized in such a way that Θ = IR+ (Θ = IR)
and the mixing distribution on that parametrization is a scale (location)
dispersion model with small ε, then the above models mimic the behavior of
the mean-centered expansions in Corollaries 5 and 7, respectively. Moreover,
the parameters γi play the role of the pseudo normalized moments in the
scale case and the role of the pseudo moments in the location case. This
justifies the introduction of the factorials in the previous definitions.

Note also that, if a mixture of F has mixing density as a scale dispersion
model, then any diffeomorphism which maps IR+ to IR (for example the
natural logarithm), converts the mixing model into a scale mixture model
and the above definitions are related in the same sense. Our definition of a
Local location mixture models coincides with the first definition of a local
mixture model given by Marriott (2002).

3.9 Estimation in Local Mixture Models

of NEF-QVFs

In this section, we discuss simple likelihood inference for Local Mixture Mod-
els of NEF-QVFs. For the relevance of the likelihood function in statistical
inference see, for example, Barndorff-Nielsen and Cox (1994) or Pace and
Salvan (1997) and the references therein. We will mainly restrict ourselves
to the case of Local location and Local scale mixture models of NEF-QVF.
This is mainly because of the statistical advantages that they present and
also because they are flexible for practical statistical purposes.
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Given a random sample x = (x1, . . . , xn)t from a local mixture model (3.26),
the log-likelihood of the natural parameters (θ, λ(θ)) is given by:

�lm(θ, λ(θ); x) =
n∑

i=1

log

(
f(xi; θ)

[
1 +

d∑
k=1

λk(θ)
f (k)(xi; θ)

f(x; θ)

])
. (3.37)

Here, we use the subscript “lm” which stands for local mixture. Note that, in
general, this is a non-parametric likelihood in the sense that λ is an unknown
function of θ that we want to estimate from the data. Note that, we can write

�lm(θ, λ(θ); x) = �f (θ; x) +
n∑

i=1

log

(
1 +

d∑
k=1

λk(θ)
f (k)(xi; θ)

f(x; θ)

)
, (3.38)

where

�f (θ; x) = �lm(θ,0) =
n∑

i=1

log f(xi; θ)

is the log-likelihood under the original model F . We begin with a general
result which applies to any local mixture model. Analogous to Exponen-
tial Families we have an important property of the log-likelihood of a local
mixture model, a property which is the mixture counterpart of Corollary 1.

Theorem 20 For each fixed θ ∈ Θ, the log-likelihood of the parameter λ(θ)
from a sample of size n from a Local Mixture model (3.26) is concave on its
convex domain Λθ(ν).

Proof: It is enough to prove that

log

(
1 +

d∑
k=1

λk(θ)
f (k)(x; θ)

f(x; θ)

)

is concave as the sum of concave functions is always concave. This is true
because the function in the argument of the logarithm is linear in λ(θ) and
therefore concave, and the logarithm of a concave function is also concave.
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Thus, the log-likelihood function of the affine parameters of a local mixture
model has properties like those of an exponential family. Therefore, the
problem of finding the maximum likelihood estimator of the parameter λ(θ)
for each fixed θ ∈ Θ is well defined and well known in nonlinear programming.
That is, finding the maximum of a concave function over a convex set. See
for example Bazaraa, Sherali, and Sheety (1993). We will denote such a

estimator by λ̂(θ).

When one is only interested in the parameter θ of the original family F and
consider the other parameters as nuisance, for each θ ∈ Θ we can construct
the profile log-likelihood of θ as follows

�p(θ) = �lm(θ, λ̂(θ)) , (3.39)

which can be used as an inference tool for the parameter θ. Sometimes it
is more convenient to use the normalized version known as the profile log-
likelihood ratio

�0
p(θ) = �p(θ̂) − �p(θ) = �lm(θ̂,λ̂) − �lm(θ, λ̂(θ)) , (3.40)

where θ̂ and λ̂ are the overall mle’s of θ and λ and clearly �0
p(θ̂) = 0. Now,

Theorem 20 clearly applies to the log-likelihood of the parameters γ in a
local scale (or location) mixture model.

Corollary 9 For each fixed θ ∈ Θ, the log-likelihood of the parameter γ
from a sample of size n from a Local scale (or location) mixture model is
concave on its convex domain Γθ.

Here, it is important to emphasize the simplification implied by the adoption
of a local scale mixture model. If the mixture has a mixing density which
is a scale dispersion model, then the normalized pseudo-moments does not
depend on the parameter that indexes F . The same applies to the location
case with the pseudo-moments instead of the normalized ones. In statistical
terms this means that we need to estimate a constant vector instead of a
vector function. We now establish a useful result which also links statistical
and geometrical properties in a clear way.
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Theorem 21 Let F = {f(x; µ) : µ ∈ M} be a NEF-QVF expressed in its
mean parametrization µ. Let

Gscale
F =

{
g(x; µ, γ) = f(x; µ) +

d∑
k=2

µk γk

k!
f (k)(x; µ) : µ ∈ M , γ ∈ Γµ

}

be a local scale mixture model of order d of F and

Gloc
F =

{
g(x; µ, γ) = f(x; µ) +

d∑
k=2

γk

k!
f (k)(x; µ) : µ ∈ M , γ ∈ Γµ

}

be a local location mixture model of order d of F . Then the parameters
(µ, γ2, . . . , γd) are Fisher orthogonal at (µ, 0, . . . , 0) for all µ ∈ M .

Proof: We will prove the result for the scale case. The location case is
similar. Simply note that

S1(x; m) :=
∂ log g(x; µ, γ)

∂µ

∣∣∣∣
µ=m,γ=0

=
f (1)(x; m)

f(x; m)

Sk(x; m) :=
∂ log g(x; µ, γ)

∂γk

∣∣∣∣
µ=m,γ=0

=
mk

k!

f (k)(x; m)

f(x; m)

for k = 2, . . . , r. Then the entry (i, j) of the Fisher’s Matrix is

Ef [Si(x; m) Sj(x; m)] = ui,j Im

(
f (i)(x; m)

f(x; m)
,
f (j)(x; m)

f(x; m)

)
,

where Im(·, ·) is the Fisher’s information inner product from Definition 7.
Using the formulae in Section 8 of Morris (1982), we have

Im

(
f (i)(x; m)

f(x; m)
,
f (j)(x; m)

f(x; m)

)
= δi,j

ai

V i
f (m)

,

where δi,j is the Kronecker delta and

ai = i!
i−1∏
s=0

(1 + sc) (3.41)
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and c is the coefficient of m2 in the variance function Vf (m). Then we have

Ef [Si(x; m) Sj(x; m)] =




0 i �= j

1

Vf (m)
i = j = 1

[
mi

i!

]2
ai

V i
f (m)

i = j ≥ 2 .

This concludes the proof.

f(4)(x;m)/f(x;m)

f(x;m)

f(3)(x;m)/f(x;m)

f(2)(x;m)/f(x;m)

F

Figure 3.4: Fisher Orthogonality

The orthogonality property in Theorem 16 has two interpretations. The fa-
miliar one described graphically in Figure 3.4 and the statistical one. This
latter interpretation implies, among other things, that the maximum likeli-
hood estimators of (µ, γ2, . . . , γd)

t are asymptotically (in sample size) inde-
pendent, when the true model is a member of F . For more details about
Fisher’s orthogonality, see Barndorff-Nielsen and Cox (1994). We note here
that the exclusion of the first derivative term in the local mixture definition
was crucial, supporting again the use of this kind of local mixture model.
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Note also that the generality of the previous theorem is somewhat restricted.
Morris (1982) showed that there exist only six NEF-QVF’s (modulo cer-
tain transformations). These are the normal distribution with variance 1,
the Poisson, the Bernoulli, the geometric, the negative exponential and the
hyperbolic secant distributions. The normal and the hyperbolic secant dis-
tributions have domain of the means equal to IR, so only for those families we
can apply Theorem 21 with M = IR. The Poisson, geometric and negative
exponential have domain of the means equal to IR+, so only for those families
we can apply Theorem 21 with M = IR+.



Chapter 4

Local Mixture Models of the
Negative Exponential
Distribution

Mixtures of the negative exponential distribution have received considerable
attention in the statistical literature. For example, Jewell (1982) discusses a
characterization of mixtures of Weibull distributions (of which the negative
exponential is a particular case) and also nonparametric maximum likelihood
estimation of the mixing distribution. Keilson and Steutel (1974) discuss
scale and power mixtures, and applied their results to construct some im-
portant inequalities and to show that the squared coefficient of variation of
the mixing distribution is a measure of distance in the space of mixtures of
exponential distributions.

Mixtures of the negative exponential are characterized as being completely
monotone (see Jewell (1982) and Heckman, Robb, and Walker (1990)). This
implies in particular that the density has to be monotone decreasing, so they
do not exhibit multimodality. Alsoimplies that simple diagnostics, such as
histograms of the data, are not useful to detect this kind of mixture structure.

From the point of view of reliability analysis, mixtures of general distributions
with decreasing failure rate are always of the same type. Therefore, mixtures

111
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of exponentials have always decreasing failure rate. Moreover, Heckman,
Robb, and Walker (1990) show that the failure rate of a model being a
completely monotone function is a sufficient condition for the model to be
represented as a mixture of exponentials.

As said before, we are only interested in the case where the mixing distribu-
tions are continuous.

4.1 Scale dispersion mixtures

Consider the family of negative exponential densities

F =

{
1

µ
exp

(
−x

µ

)
: µ > 0

}

with respect to the Lebesgue on IR+ and parametrized by its mean µ. This is
clearly a NEF-QVF as its variance is µ2. We are interested in the following
type of mixtures.

Definition 17 We define the family of mixtures of F of the form

g(x; Q(µ; m, ε)) =

∫ ∞

0

1

µ
exp

(
−x

µ

)
dQ(µ; m, ε)

=

∫ ∞

0

1

µ
exp

(
−x

µ

)
a(ε)

1

µ
exp

(
−d0(µ/m)

2ε

)
dµ

as the Family of Scale dispersion mixtures of F when Q is a regular scale
dispersion model, that is, when the function d0(u) is smooth and nonnegative
with d0(u) = 0 if and only if u = 1.

Clearly, the generality in this definition comes from the generality of the
function d0(u). To see how the members of this family are, consider the
following examples. The Generalized Inverse Gaussian distribution can be
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parametrized in the following way,

qβ(µ; m, ε) =

(
1 + β

1 − β

) β
2ε

e−1/ε

2µKβ/ε

(√
1 − β2

ε

) exp

(
−dβ(µ; m)

2ε

)
, µ > 0 , (4.1)

where

dβ(µ; m) = 2β log

(
m

µ

)
+

µ

m
(1 + β) +

m

µ
(1 − β) − 2

with m, ε > 0 and β ∈ [−1, 1]. Kν(z) is the modified Bessel function of the
third kind with index ν. To be clear (since there seems to be some confusion
in the literature), we mean the Bessel function with integral representation

Kν(z) =
1

2

∫ ∞

0

uν−1 exp
(
−z

2
(u + u−1)

)
du.

This family defines a scale dispersion model for each fixed value of β and with
unit deviance dβ. The values β = ±1 correspond (by taking the appropriate
limits) to the Gamma distribution

q1(µ; m, ε) =
ε−1/εe−1/ε

Γ(1/ε)

1

µ
exp

(
−1

ε

( µ

m
− log

µ

m
− 1

))

and Reciprocal Gamma distribution

q−1(µ; m, ε) =
ε−1/εe−1/ε

Γ(1/ε)

1

µ
exp

(
−1

ε

(
m

µ
− log

m

µ
− 1

))
,

respectively. The value β = 0 corresponds to the Hyperbola distribution

q0(µ; m, ε) =
e−1/ε

2 K0(1/ε)

1

µ
exp

(
−(µ − m)2

2εµm

)
.

See Jorgensen (1997) page 194 for details. And finally, the mean is given by

E[µ] = m

√
1 − β

1 + β

Kβ/ε+1

(√
1 − β2

ε2

)

Kβ/ε

(√
1 − β2

ε2

) .
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Now, the Qβ-mixture

g(x; Qβ) =

∫ ∞

0

1

µ
exp

(
−x

µ

)
dQβ(µ; m, ε)

has a closed form given by(
1 + β

1 − β

) β
2ε

Kβ
ε
−1

(
1

ε

√
(1 + β)[2xε + m(1 − β)]

m

) [
2xε + m(1 − β)

m(1 + β)

]β−ε
2ε

mKβ/ε

(√
1 − β2

ε

) .

This family appears to be related to the Bessel function family described
in Johnson, Kotz, and Balakrishnan (1994). Also, this family contain, for
example, the Pareto distribution of the second kind when the mixing dis-
tribution is reciprocal Gamma. The mixture density in such case is given
by

g(x; Q−1) =
1

m

(
1 +

xε

m

)−(1+1/ε)

,

see Embrechts, Kluppelberg, and Mikosch (1997) and Johnson, Kotz, and
Balakrishnan (1994) for details about this distribution. The corresponding
mixture densities for the cases β = 0 and β = 1 are given by

g(x; Q0) =

K1

(
1

ε

√
1 +

2εx

m

)

m

√
1 +

2εx

m
K0

(
1

ε

)
and

g(x; Q1) =
2(εm)−

1+ε
2ε x

1−ε
2ε

Γ(1/ε)
K ε−1

ε

(√
4x

εm

)
.

As another example of a scale dispersion model, consider the lognormal dis-
tribution

q(µ; m, ε) =
1√
2πε

1

µ
exp

(
−(log(µ) − log(m))2

2ε

)
.

There is no closed form expression for the corresponding mixture density and
it is precisely in these cases that our local mixtures appear to be most useful.
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4.2 Models

To keep focused on the presentation, we will only be interested in the local
scale mixture model of F of order d = 4 which, according to Definition 15,
has density given by

g0(x; µ, γ) = f(x; µ) +
4∑

k=2

γk

k!
f (k)(x; µ) =

1

µ
exp

(
−x

µ

)
p4(x; µ, γ) (4.2)

where p4(x; µ, γ) is the quartic polynomial

p4(x; µ, γ) =
(γ4

24

) x4

µ4
+

(
γ3

6
− 2γ4

3

)
x3

µ3
+

(
γ2

2
− 3γ3

2
+ 3γ4

)
x2

µ2

+ (−2γ2 + 3γ3 − 4γ4)
x

µ
+ (1 + γ2 − γ3 + γ4) .

We will call this model Model 0 from now on. Note that µ is a scale parameter
for this model. This is just inherited from the fact that a scale dispersion
mixture of negative exponentials has the same property. Specifically,

g(x; Q(µ; m, ε)) =

∫
f(x; µ)a(ε)µ−1 exp

(
−d0(µ/m)

2ε

)
dµ

=

∫
f(x; mw)a(ε)w−1 exp

(
−d0(w)

2ε

)
dw

=

∫
m−1f(x/m; w)a(ε)w−1 exp

(
−d0(w)

2ε

)
dw

= m−1g(x/m; Q(w; 1, ε))

where w = µ/m. Note here we are exploiting the fact that the mean of the
negative exponential distribution is a scale parameter.

The submodels of (4.2) we will be interested in are:
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Model Restriction on the parameters

1 γ3 = γ4 = 0

2 γ4 = 3 γ2
2

3 γ4 = 0

4.2.1 Model 1

This corresponds to the local scale mixture model of order d = 2 and therefore
its density is given by

g1(x; µ, γ2) =
1

µ
exp

(
−x

µ

)[
1 + γ2

[
1 − 2x

µ
+

x2

2µ2

]]
. (4.3)

Model 1 has the following interpretation from Corollary 5. It mimics the
behavior of a scale dispersion mixture of F when ε is small and we retain
terms of order ε. That is∫ ∞

0

f(x; µ)dQ(µ; m, ε) ∼ f(x; m(1+M∗
1 (ε)))+m2M∗

2 (ε)f (2)(x; m)+Rb(x,m, ε)

as ε → 0, with Rb(x,m, ε) = Ox,m(ε2).

Here µ plays the role of the pseudo-mean but the parameter γ2 will play the
role of the pseudo-squared coefficient of variation of the mixing distribution,
that is

m2M∗
2 (m, ε)

m2(1 + M∗
1 (ε))2

=
M∗

2 (m, ε)

(1 + M∗
1 (ε))2

.

To see this, just note that

f(x; m(1 + M∗
1 (ε))) + m2M∗

2 (ε)f (2)(x; m) + Ox,m(ε2) =

f(x; m(1 + M∗
1 (ε))) + m2(1 + M∗

1 (ε))2 M∗
2 (m,ε)

(1+M∗
1 (ε))2

f (2)(x; m) + Ox,m(ε2).

Note also that this does not affect the order of the expansion, since we are
dividing and multiplying by the function (1+M∗

1 (ε))2 which is O(1) as ε → 0.
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Corollary 6 gives an expression of an asymptotic expansion of the exact
squared coefficient of variation. The expression is very simple in this case,

EQ[(µ − EQ[µ])2]

(EQ[µ])2
∼ ε + O(ε2)

as ε ↓ 0. Clearly, if the mixing model is a scale dispersion then, this term
does not depend on m.

The natural parameter space D1 for model 1 is given by

{(µ, γ2) : c0 > 0, c1 > 0, c2 > 0}∪{(µ, γ2) : c0 > 0, c1 + 2
√

c0c2 > 0, c2 > 0} ,

where c0, c1, c2 the coefficients in the quadratic factor of (4.3). In this case,
we have the simple expression

D1 = {(µ, γ2) : µ > 0 , 0 < γ2 < 1} .

Note that this already includes the positivity of the pseudo-squared coeffi-
cient of variation.

The Hard boundary for model 1 has a nice and simple interpretation, it says
that the model is a proper density when the pseudo-squared coefficient of
variation γ2 is on the interval (0, 1). Keilson and Steutel (1974) show that
the squared coefficient of variation of the mixing distribution in the negative
exponential case is a distance, in the formal sense, from a mixture of negative
exponentials to the unmixed F .

The mean and variance for model 1 are given by

E[X; µ, γ2] = µ

V [X; µ, γ2] = µ2[1 + 2γ2] .

In fact, it is easy to check that

E[(X − µ)k; µ, γ2] = µk[c1,k + γ2c2,k], k ≥ 2 , (4.4)

for some positive constants c1,k and c2,k. Note that the behavior of the mo-
ments of this local scale mixture model is that of inflating the corresponding
moments of the negative exponential distribution. This argument is clearly
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Negative Exponential
Family

Local Mixture 
Model 1 

Figure 4.1: Visualization of Model 1

local as γ2 is bounded above by 1. So, local mixture model 1 is capable of
recognizing the increasing behavior not only in the variance but also in other
central moments.

It is important to note that, locally, the central moments of any scale dis-
persion mixture have the form (4.4). To see this, just apply Corollary 5 to
obtain the expression∫

xkg(x; Q)dx ∼
∫

xkf(x; m(1 + M∗
1 (ε)))dx

+m2M∗
2 (ε)

∫
xkf (2)(x; m(1 + M∗

1 (ε)))dx

+

∫
xkRb(x; m, ε)dx

= k! mk[1 + M∗
1 (ε)]k + m2 M∗

2 (ε)
{
k!k(k − 1)mk−2[1 + M∗

1 (ε)]k−2
}

+

∫
xkRb(x; m, ε)dx

= mk[1 + M∗
1 (ε)]k W ∗(ε, k) +

∫
xkRb(x; m, ε)dx
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for k ≥ 2 and for some function W ∗(ε, k). For k = 1, it is clear that∫
xg(x; Q)dx ∼ m(1 + M∗

1 (ε)) +

∫
xRb(x; m, ε)dx.

Recall that, in this case Rb(x; m, ε) is Ox,m(ε2). Then, it is easy to show that,∫
(x − Eg[X])kg(x; Q)dx ∼ mk[1 + M∗

1 (ε)]k V ∗(ε, k) + Om(ε2) ,

for some function V ∗(ε, k), and provided that all the previous integrals of the
remainders exist. Recall also that the pseudo-mean is m[1 + M∗

1 (ε)] not m.

Note that the variance of model 1 is bounded in the following way:

µ2 < V [X; µ, η2(µ)] < 3µ2

To understand the constraints imposed by the hard boundary and the lo-
cality implicit in our models, assume that the mixing model is a Gamma
distribution with mean m and dispersion ε, as in Section 3.1. The variance
of such mixing distribution is m2ε and therefore, the squared coefficient of
variation is ε. Being inside the hard boundary in this case means that, the
local mixture is only going to be able to model the behavior of this mixture
when the squared coefficient of variation of the mixing distribution is less
than one. Moreover, if ε > 1, the family of Gamma distributions with mean
m and dispersion ε has a unique mode at zero, but if 0 < ε < 1 then the
mode is inside the interval (0,∞) and, as said before, the density shrinks to
m as ε → 0.

Now, assume the mixing model is a Lognormal distribution with position
parameter log(m) and dispersion parameter ε. The mean and variance for
this model are m exp(ε/2) and m2 exp(ε)(exp(ε)−1), so the squared coefficient
of variation is

exp(ε) − 1

and therefore the local mixture is only going to be able to model the behavior
of this mixture when 0 < ε < log(2).

More generally, recall that the variance function of the negative exponential
distribution with mean µ is Vf (µ) = µ2. Then, we can interpret the hard
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boundary for model 1 as follows. Model 1 is going to be able to model the
behavior of the scale dispersion mixture when the variance function of the
mixing distribution (in this case is approximately µ2γ2) is smaller than the
variance function of the negative exponential distribution, that is µ2γ2 ≤ µ2

for all µ > 0. As any variance has to be nonnegative, this gives the other
inequality. Obviously, we are assuming the mean of the negative exponential
model to be the mean of the mixing distribution.

To understand the simplification implied by the scale dispersion mixing as-
sumption, now suppose that the mixing model is not a scale dispersion model.
For example, if it is an Inverse Gaussian distribution with mean m and dis-
persion ε, the variance of the corresponding mixing distribution is m3 ε and
the boundary means that model 1 is only going to be able to model the
behavior of this mixture for values of m and ε such that εm < 1. If the
mixing model is a reciprocal Inverse Gaussian distribution with position m
and dispersion ε, the mean and variance are given by m + ε and ε(m + 2ε),
respectively. Then model 1 is going to be able to model the behavior of this
mixture only for values of the mean and ε, such that

0 <
ε(m + 2ε)

(m + ε)2
< 1 ,

and both last inequalities depend on m and ε at the same time.

Now, the following question arises: How close local mixture models can be
from genuine mixtures?. Recall our definition of a True local mixture model.
Essentially, we require for a local mixture model to be a true local mixture
that the affine parameters of the local mixture model can be realized as
the pseudo-moments of some proper dispersion mixing distribution as stated
in the expansions in Theorem 12 and its Corollaries 5 and 7. But even in
such case, the resulting true local mixture model mimics the behavior of the
mixture only locally. To measure the closeness of a true local mixture to a
genuine mixture (for our case of negative exponential mixtures), consider the
following important Theorem from Feller (1970).

Theorem 22 Suppose that X is a positive random variable such that S(0) =
1, where

S(x) = Pr(X > x)



CHAPTER 4. LMM FOR THE NEGATIVE EXPONENTIAL 121

is the survival function. Then,

S(x) =

∫ ∞

0

exp

(
−x

µ

)
dQ(µ)

for some proper probability distribution Q if and only if

(−1)k ∂kS(x)

∂xk
≥ 0 , (4.5)

for all x ≥ 0 and all k ∈ IN.

Proof: See Feller (1970) page 439.

So we can use this theorem to check if our local mixtures can be genuine
mixtures.

Corollary 10 Model 1 can never be a genuine mixture of exponentials.

Proof: We need to check that the survival function of model 1 satisfies
conditions (4.5) of the theorem. Note that, for k = 1, the condition is
just the positivity condition that defines the hard boundary and therefore is
always satisfied. It is easy to check that the other conditions are equivalent
to

0 ≤ γ2 ≤ 2

k + 1
k = 2, 3, . . . .

So, model 1 can never be a genuine mixture, as the only parameter values for
that to happen are any µ > 0 but γ2 = 0, which corresponds to the original
model which, by definition, is not a mixture.

This is not a surprising result since we construct local mixture models to
mimic the behavior of a genuine mixture only for small values of the disper-
sion parameter of some proper dispersion mixing density. However, we can
take advantage of this last theorem to impose new soft boundaries to further
restrict true local mixture models.

Recall that the squared coefficient of variation is a measure of the distance
between mixtures of exponentials and unmixed exponentials. Then we can
formally say: the larger the k, the closer we are to non-mixing.
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For example, the k = 2 condition is saying that a mixture of exponentials
must have a non-increasing density. In Figure 4.2, we plot some densities of
model 1 for a fixed value of µ. Any value of µ will give the same shape, as
µ is a scale parameter. As can be seen from the plots, some of them have
a bump, and therefore they are not non-increasing. This happens for values
of γ2 close to 1. Then, restricting the local mixture model using the soft
boundary imposed by the k = 2 condition on Theorem 22, allows only for
non-increasing densities, that is, now using the parameter space

D∗
1 =

{
(µ, η2(µ)) : µ > 0, 0 < γ2 ≤ 2

3

}
.

We can further restrict the natural parameter space but the interpretation
of the resulting boundary is not so easy.

0

Figure 4.2: Some densities of model 1 (unmixed model in black)

Even though they are not genuine mixtures, local mixtures keep some impor-
tant properties of a genuine mixture. As said before, if g(x; Q) is a mixture
of f(x; µ) such that EQ[µ] = m̄, then the ratio

R(x) =
g(x; Q)

f(x; m̄)
− 1
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is convex and has the sign sequence (+,−, +) as x transverses the real axis.
For model 1 we have,

R(x) =
µ2γ2

2

(
f (2)(x; µ)

f(x; µ)

)
= γ2

(
1 − 2x

µ
+

x2

2µ2

)
,

which is clearly convex. The sign changes also follows easily. In fact, we can
visually see the sign changes in Figure 4.2. The unmixed negative exponential
density is plotted for reference in black.

As another genuine mixture property of model 1, recall that we must have

Eg[X
k] ≥ Ef [X

k] , k ≥ 2 ,

when g is a genuine mixture with the same mean as f . This is true in this
case as the function xk for k ≥ 1 is convex on the positive real line. For
model 1 we have

Eg1 [X
k] = µk

[
k! +

k(k − 1)

2
γ2

]
,

so the previous set of inequalities translates to γ2 ≥ 0 which is always true.
So, for the local mixture model 1, that set of moments is always bigger than
the corresponding set of the unmixed model.

As mixtures of exponentials are important in the analysis of positive data,
consider the following. It is well known that if a density f(x) is a mixture of
exponentials, then it must have decreasing hazard function for all x > 0, see
for example Barlow and Proschan (1975). The hazard function is defined in
the continuous case as

h(x) :=
f(x)

S(x)

which for model 1 turns out to be

h(x; µ, η2(µ)) =
2 + 2γ2µ

2 − 4γ2µx + γ2x
2

µ(2µ2 + γ2x2 − 2γ2µx)
. (4.6)

It is easy to show that it is never monotone and actually always has a mini-
mum at

x∗ =
µ

γ2

(
γ2 +

√
γ2(2 − γ2)

)
.
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On the other hand, this hazard function has the property that

lim
x→∞

h(x; µ, η2(µ)) =
1

µ

for all µ > 0. This mimics the behavior of a genuine mixture. In general, the
hazard function of a mixture of distributions tends to follow, in the long run,
the lowest hazard function among the hazard functions of the distributions
that are being mixed. See Shaked and Spizzichino (2001).

1/µ

0

Figure 4.3: Some hazard functions of model 1

Model 1 has been used indirectly in many articles related to testing for the
presence of mixing in a negative exponential model. Some of them are Mosler
and Seidel (2001), Jaggia (1997), Chang and Suchindran (1997) and Kiefer
(1984). They used Model 1 to construct the dispersion score test statistic.
For example, Kiefer assumes a mixture model (in our notation) of the form

g(x; Q1) =

∫
f̃(x; ϕ + u)dQ1(u) ,

where u has mean zero under Q1 and f̃(x; φ) = f(x; e−φ). That is, φ is the
logarithm of the reciprocal of the mean. Clearly, ϕ is the unknown mean of
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the random variable φ. Jaggia assumes a mixture of the form

g(x; Q2) =

∫
˜̃f(x; ϑ v)dQ2(v) ,

where now v has mean one under Q2 and ˜̃f(x; θ) = f(x; 1/θ). That is, θ
is the rate parameter. Using a Taylor expansion argument (as in the intro-
duction), they obtain the following approximations to g(x; Q1) and g(x; Q2)
respectively ,

f̃(x; ϕ) +
V arQ1 [φ]

2
f̃ (2)(x; ϕ) = f̃(x; ϕ)

[
1 +

V arQ1 [φ]

2

{
1 − 3xeϕ + x2e2ϕ

}]

˜̃f(x; ϑ) +
V arQ2 [θ]

2
˜̃f (2)(x; ϑ) = ˜̃f(x; ϑ)

[
1 +

V arQ2 [θ]

2

{
ϑx2 − 2x

ϑ

}]
.

Using these approximations, the authors obtain the corresponding dispersion
score statistics, which are given by

DS1(x) =
1

n

n∑
i=1

[
1 − 3xie

ϕ̂ + x2
i e

2ϕ̂
]

=
1

n

∑n
i=1(xi − x̄)2

x̄2
− 1

DS2(x) =
1

n

n∑
i=1

[
ϑ̂x2

i − 2xi

ϑ̂

]
= (1/n)

n∑
i=1

(xi − x̄)2 − x̄2,

where ϕ̂ and ϑ̂ are the maximum likelihood estimates of ϕ and ϑ, respectively,
under the assumption of no mixing, that is, under the assumption that each
observation in the sample follows a negative exponential distribution with
unknown mean e−ϕ and 1/ϑ, respectively.

Both statistics have a very nice and simple interpretation. DS1(x) is the
relative difference between the sample variance and the variance under the
model, and DS2(x) is the absolute difference between the sample variance
and the variance under the model. Recall that the variance of a negative
exponential distribution is the square of the mean. So, when the sample
variance exceeds the variance under the model, we have empirical evidence
of mixing. If fact, from (3.31) it is clear that if F is an exponential family
expressed in its natural parametrization, then the dispersion score always
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has the form
1

n

n∑
i=1

(xi − x̄)2 − Vf (x̄),

where Vf (µ) is the variance function of F . Also recall that in the case of
the negative exponential distribution, the rate parameter is essentially the
natural parameter.

Lindsay (1989) shows that in the case when F is a NEF-QVF, it is more
informative to use the mean parametrization in the following sense. Lindsay
shows that, for any known µ0 and k = 1, 2, 3, . . .,

m̂0,k =
1

n

n∑
i=1

k!

ak

Pk(xi; µ0)

is an unbiased estimator of

m0,k := EQ[(µ − µ0)
k] ,

for any mixing distribution Q. The constants ak were defined in (3.41). For
example, in our negative exponential case,

m̂0,2 =
1

n

n∑
i=1

[
2µ2

0 − 4µ0xi + x2
i

]
is an unbiased estimator of EQ[(µ − µ0)

2]. Since we want to estimate the
variance, substituting µ0 by x̄ we obtain

DS2(x)

2
.

So, the dispersion score DS2(x) can be regarded as an estimator of the
variance of the mixing distribution.

Here is convenient to consider the following reparametrization of Model 1.
Define η2 = µ2γ2. Note that the model in this parametrization is a general
mixture family for each fixed value of µ. Clearly, η2 will play the role of the
pseudo-variance of the mixing distribution. The mean and variance of model
1 now take the form

E[X; µ, η2] = µ

V [X; µ, η2] = µ2 + 2η2 .
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Simple moment estimators of µ and η2 can be obtained, namely

µ̂mom = x̄

η̂ mom
2 =

1

2

[
1

n

n∑
i=1

(xi − x̄)2 − x̄2

]
=

DS2(x)

2
,

where the superscript mom stands for method of moments. Clearly, we also
have

γ̂2
mom =

1

2

[
1

n

∑n
i=1(xi − x̄)2

x̄2
− 1

]
=

DS1(x)

2
.

Now it is clear that DS1(x) can be considered as an estimator of the squared
of the coefficient of variation of the mixing distribution. However, to be
consistent with our definition of a local mixture model, we can restrict the
values of this estimator to be inside the interval [0, 2/(k+1)] although this is
not part of the definition of the dispersion score. Moreover, Darling (1953)
shows that ∑n

i=1(xi − x̄)2

x̄2
= n[DS1(x) + 1]

defines a (right sided) locally most powerful test against mixtures of expo-
nentials and also derives its asymptotic distribution under the hypothesis
of no mixing. See also O’Reilly and Stephens (1982) for tests of fit in the
negative exponential case.

4.2.2 Model 2

Recall Model 0 has the following form

g0(x; µ, γ) =
1

µ
exp

(
−x

µ

)
p4(x; µ, γ),

where p4(x; µ, γ) is the quartic polynomial given by,

p4(x; µ, γ) =
(γ4

24

) x4

µ4
+

(
γ3

6
− 2γ4

3

)
x3

µ3
+

(
γ2

2
− 3γ3

2
+ 3γ4

)
x2

µ2

+ (−2γ2 + 3γ3 − 4γ4)
x

µ
+ (1 + γ2 − γ3 + γ4) .
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Proceeding as in model 1, it is clear that here µ will continue to play the role
of the pseudo-mean and the parameters γi will play the role of the pseudo
normalized moments of the mixing distribution.

The first soft boundary we are going to impose to get a true local mixture
model is the obvious one γ2 ≥ 0, since the squared coefficient of variation of
any distribution must be positive. Note that in model 1 we got this boundary
for free.

From Corollary 6, we know that when the mixing distribution is a scale
dispersion model, then the normalized moments are independent of the pa-
rameter and have the following asymptotic expansions as ε ↓ 0,

EQ[(µ − EQ[µ])2]

(EQ[µ])2
∼ ε +

[
12 + 4d

(3)
0 − d

(4)
0 + [d

(3)
0 ]2

4

]
ε2 + O(ε3)

EQ[(µ − EQ[µ])3]

(EQ[µ])3
∼ −d

(3)
0

2
ε2 + O(ε3)

EQ[(µ − EQ[µ])4]

(EQ[µ])4
∼ 3 ε2 + O(ε3).

To construct the new model, recall expression (3.24)

EQ[(µ − EQ[µ])4] ∼ 3(EQ[(µ − EQ[µ])2])2 + Om(ε3).

Also, from the expansions of the normalized moments above we get

EQ[(µ − EQ[µ])4]

(EQ[µ])4
∼ 3

[
EQ[(µ − EQ[µ])2]

(EQ[µ])2

]2

+ O(ε3).

So, the normalized moments behave like that for small ε. We can therefore
restrict the parameter values by

γ4 = 3 γ2
2 .

It is interesting to note that this restriction is forcing the usual coefficient of
kurtosis of the mixing distribution to be zero, as in the normal distribution.
Recall that the coefficient of skewness is defined, in our notation, as

γ4

γ2
2

− 3 .
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Clearly, for each µ, the resulting model (after a simple reparametrization)
is a curved mixture model of dimension 2 embedded in model 0. Note that
this restriction automatically makes γ4 positive, as it should be in a genuine
mixture.

The density for model 2 is then

g2(x; µ, γ2, γ3) =
1

µ
exp

(
−x

µ

)
p†4(x; µ, γ2, γ3) , (4.7)

where p†4(x; µ, γ2, γ3) is now the quartic polynomial given by

p†4(x; µ, γ2, γ3) =

(
γ2

2

8

)
x4

µ4
+

(γ3

6
− 2γ2

2

) x3

µ3
+

(
γ2

2
− 3γ3

2
+ 9γ2

2

)
x2

µ2

+
(−2γ2 + 3γ3 − 12γ2

2

) x

µ
+

(
1 + γ2 − γ3 + 3γ2

2

)
.

Using the results in Ulrich and Watson (1994), it is possible to characterize
the parameter space D2 for model 2. It is clear that, because µ is a scale
parameter, then D2 is of the form

D2 =
{

(µ, γ2, γ3) : µ > 0 , (γ2, γ3) ∈ Γ†
2

}
,

i.e. a Cartesian product. There is no closed form expression for the boundary
of Γ†

2 in terms of the parameters (γ2, γ3), but it is very easy to calculate
using the results in Ulrich and Watson (1994). The Hard boundary for the
parameters (γ2, γ3) is plotted in red in Figure 4.4.

Also in Figure 4.4, we plotted in blue the k = 2 soft boundary implied by
Theorem 22. Recall this boundary implies monotone decreasing densities.

The parametrization in terms of (γ2, γ3) has some problems, as it takes into
account values of the parameter space which corresponds to small variance
but relatively high skewness of the mixing distribution. One such case is
indicated with a cross in Figure 4.4. Clearly, those parameters values are not
compatible with the small mixing assumption.
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Figure 4.4: Boundaries of Model 2

Note that a mixing distribution can be small in two quite different ways. It
is convenient to denote the distinction with two separate classes. The first
will be called Laplace type mixing where the mixing distribution has small
variance and unimodal. The second type will be called Contamination type
mixing where, although the variance is small, there can be a small proportion
of the realized values a long way from the mean. Such a class can have more
than one mode and in general show high skewness. It is clear that, for small
enough ε, proper dispersion models are of the Laplace type. This is because
they are asymptotically normal. We distinguished the Contamination type
because empirically, we want to avoid this latter kind of mixing in our models
by imposing soft boundaries, such as the following.

Consider the following reparametrization of model 2,

γ2 = α

γ3 = (3 − β) α2 , (4.8)

which is clearly a diffeomorphism because α > 0. Note that, for each fixed
value of µ and β, the induced subfamily is a Curved Mixture Family embed-
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ded in Model 0 via the mapping

α 
→ (α, (3 − β)α2, 3α2).

Note that this is exactly mimicking the behavior of the second, third and
fourth normalized moments of a scale dispersion mixing model for small ε
according to Corollary 6. That is, the third normalized moment is asymp-
totically proportional to the squared of the second normalized moment with
constant of proportionality equal to minus half of the third derivative of the
deviance evaluated at its minimum, and the fourth normalized moment is
asymptotically 3 times the squared of the second normalized moment.
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Figure 4.5: Reparametrization for Model 2

Those subfamilies are plotted in dashed black for a range of values of β
in Figure 4.5. Then it is clear, from the figure, that restricting the values
of the parameters β to a specific interval of the form [K1, K2] will avoid
contamination type mixing distributions. One important fact is that each
of these curved mixture families is converging very slowly to the boundary
γ2 = 0, so not very extreme values of Ki are enough to capture the local
behavior of a large range of scale dispersion mixing models.
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For instance, the interval [K1, K2] = [−1, 1] covers the behavior of the Gen-
eralized Inverse Gaussian distribution. To see this, consider the Generalized
Inverse Gaussian distribution. Recall that, for this family we have

d0(u) = 2β log (1/u) + u(1 + β) +
1

u
(1 − β) − 2

which implies
d

(3)
0 = 2β − 6.

Recall from Corollary 6 that

EQβ
[(µ − EQβ

[µ])3]

(EQβ
[µ])3

∼ −d
(3)
0

2

[
EQβ

[(µ − EQβ
[µ])2]

(EQβ
[µ])2

]2

+ O(ε3).

This justifies the particular form of parametrization (4.8) above. But para-
metrization (4.8) is just a matter of convenience. Actually, a single particu-

lar value of d
(3)
0 might correspond to different distributions. For example, if

β = 0, the value of d
(3)
0 = −6 corresponds to either the Lognormal (which is

not included in the Generalized Inverse Gaussian family) or the Hyperbola
distribution.

Finally, the moments for Model 2 are given by

Eg[X] = µ

Eg[(X − µ)2] = µ2(1 + 2γ2)

Eg[(X − µ)3] = 2µ3(1 + 6γ2 + 3γ3).

Note that the expressions for the mean and variance are exactly the same
as in Model 1, and that the expression for the third central moment is the
corresponding one for the negative exponential distribution, inflated by a
factor which depends linearly on γ2 and γ3.

Finally, we can further impose soft boundaries like the one in expression
(3.30), which states an inequality for the second, third and fourth normalized
moments of any unimodal distribution. For Model 2 this inequality results
in the cusp

γ2
3 ≤ γ4γ2 − 3

2
γ3

2 =
3

2
γ3

2 . (4.9)

This soft boundary also avoids contamination type mixing distributions.
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Figure 4.6: Visualization of Model 2

4.2.3 Model 3

Here we introduce a model which perhaps does not have a clear interpreta-
tion in terms of the asymptotic expansions derived from Theorem 12, but
nevertheless can be useful in practice. Model 3 is generated when we impose
the restriction γ4 = 0. The corresponding density has the following form

g3(x; µ, γ2, γ3) =
1

µ
exp

(
−x

µ

)
p3(x; µ, γ2, γ3),

where p3(x; µ, γ2, γ3) is the cubic polynomial

p3(x; µ, γ2, γ3) =
(γ3

6

) x3

µ3
+

(
γ2

2
− 3γ3

2

)
x2

µ2
(−2γ2 + 3γ3)

x

µ
+ (1 + γ2 − γ3) .

Using the results of Schmidt and Heß (1988) it easy to verify that the para-
meter space for this model is given by

D3 = {(µ, γ2, γ3) : µ > 0 , γ3 > 0 , u3(µ, γ2, γ3) < 0} ,
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where

u3(µ, λ2, λ3) = 36γ2
3γ

2
2 + 18γ3γ

2
2 − 20γ3γ

3
2 − 36γ3

3γ2 − 18γ2
3γ2

+18γ3
3 − 6γ3

2 + 18γ4
3 + 6γ4

2 − 9γ2
3 .

Note this model is restricting the third normalized moment of the mixing
distribution to be positive (γ3 > 0), but not restricting the values of the
squared coefficient of variation. In this way, we can impose again the obvious
soft boundary γ2 > 0. Mimicking Model 2, we can also impose boundaries
of the type

(3 − K2)γ
2
2 ≤ γ3 ≤ (3 − K1)γ

2
2 .

In Figure 4.7, the hard boundary is plotted in red and the k = 2 boundary
is plotted in blue.
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Figure 4.7: Boundaries of Model 3

4.2.4 Relationship with other models

In this section we review some relationships that we found between Local
Mixture Models of the Negative Exponential and some other statistical mod-
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els in the literature. These relationships can be exploited in the future to
further development and understanding of local mixture models in general.

Weibull distribution

Suppose we reparametrize the generalized inverse Gaussian distribution (4.1)
in a different way as follows

qγ(µ; m, ε) =
m−γ exp(−m2γ/ε)µγ−1

2Kγ(m2γ/ε)
exp

(
−dγ(µ; m)

2ε

)
,

where

dγ(µ; m) =
(µ − m)2

µm1−2γ

and µ, ε > 0 and γ ∈ IR. Then this family defines again a proper disper-
sion model for three specific values of γ, namely ±1/2 and zero. The values
±1/2 give rise to the Reciprocal Inverse Gaussian and Inverse Gaussian dis-
tribution, respectively. The Hyperbola distribution is again obtained with
γ = 0.

The relationship with the Weibull distribution is the following. If a random
variable θ has a positive stable distribution with index α and parameter δ
(see Feller (1970)) then its Laplace transform is given by∫ ∞

0

exp(−s θ)dQα(θ) = exp

(
−δ sα

α

)
.

This means that if µ has a reciprocal positive stable distribution with index
α and parameter δ, then the mixture

g(x; Qα,δ) =

∫
1

µ
exp

(
− 1

µ

)
dQα,δ(1/µ)

is a Weibull distribution with scale α/δ and shape α. To see this, just consider

P [X > x; Qα,,δ] =

∫ ∞

0

P [X > x; µ]dQα,δ(1/µ)

=

∫ ∞

0

exp

(
−x

µ

)
dQα,δ(1/µ)

= exp

(
−δ xα

α

)
,
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which gives the desired result. Denote by Tp(µ, ε) the reproductive exponen-
tial dispersion model with unit variance functions of the form

Vp(µ) = µp

for p ∈ IR (see Appendix C). This is the so-called Tweedie Family. Note that
this class of models includes the Gamma (p = 2) and the Inverse Gaussian
(p = 3). Denote by Tp(∞, ε) the limit of the distributions Tp(µ, ε) when µ
goes to infinity. From Jorgensen (1997) we have the following Theorem.

Theorem 23 The distribution Tp(∞, ε) is positive stable with index α ∈
(0, 1) if p > 2, where α = (p − 2)/(p − 1).

The distributions Tp(∞, ε) are positive stable with α = (p − 1)/(p − 2) and

δ = α
√

2/ε. This means that the family of Weibull distributions with scale√
ε/2 and shape α for α ∈ (0, 1) can be constructed as mean mixtures of the

negative exponential distribution when the mean has a mixing distribution
which is the reciprocal of a Tp(∞, ε) dispersion model. For example, for p = 3
we have α = 1/2. The corresponding T3(∞, ε) distribution is clearly the limit
of the Inverse Gaussian distribution when the mean goes to infinity, which
in this case is

q1/2(θ; ε) =
1√

2πεθ3
exp

(
− 1

2ε θ

)
.

The corresponding mixture is clearly a Weibull with scale
√

ε/2 and shape
α = 1/2. Equivalently, by making the change of variable µ = 1/θ, this
distribution transforms to

q2(µ, ε) =
1√

2πεµ
exp

(
− µ

2ε

)
,

which is the limit of a reciprocal Gamma distribution when the position
parameter m goes to zero.

Smooth goodness-of-fit tests

The idea of smooth goodness-of-fit testing was introduced by Neyman (1937).
A good review can be found in Rayner and Best (1989) and the references
therein.
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Consider a parametric model F = {f(x; θ) : θ ∈ Θ} on which we would
like to perform an omnibus goodness-of-fit test. One way of doing this is
to construct an embedding in a finite dimensional space on which we can
perform a standard score type test. The usual form of the embedding space
is given by

g(x; θ, λ1, . . . , λk) =

f(x; θ) exp

{
d∑

i=1

λihi(x)

}

M(θ, λ1, . . . , λk)
, (4.10)

where M is a normalizing constant and the functions hi(x) are suitably cho-
sen; often they are a set of orthogonal polynomials with respect to the base
model.

The form (4.10) is mimicking the behavior of an exponential family instead
of a mixture family. This is clearly a Bundle of General Exponential Families
as described in section 2.3 .On the other hand, in the papers of Rayner and
Best (1986) and Koziol (1987) essentially local mixture models are used in a
different context. The specific form is given by

g(x; θ, λ1, . . . , λk) = f(x; θ)

{
1 +

d∑
i=1

λihi(x)

}
, (4.11)

where the functions hi(x) must be chosen such that∫
hi(x)f(x; θ)dx = 0 ,

exactly as we do.

Phase type distributions

Consider the time until absorption on a continuous time Markov chain with
a finite state space. The distribution of this time is called a phase-type
distribution. This type of distributions were introduced in Neuts (1994), and
have densities of the form

fX(x|A,α) = −αt exp{xA}A1, (4.12)
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where α is a vector of initial probabilities, A is a k × k matrix giving the
transition rates, and 1 is the k-dimensional vector of 1s. Note that we use
matrix exponentiation in this formula. Also note that this is positive, since
the sum of the rows of A are all negative.

Phase type distributions always have rational Laplace transforms. We define
the degree of the distribution as the order of the polynomial in the denom-
inator written when in irreducible form. A representation of a phase type
distribution is given by the (A,α) form given in equation 4.12. Note that
there can be many different representations for the same distribution. The
order is then defined as the minimum of the orders (i.e. k in equation 4.12)
of all possible representations. Note that the order is always greater than or
equal to the degree.

The triangular order is defined as the minimum of k over all representations
where A is upper triangular. If this exists then this is greater than or equal
to the order. See, for example, O’Cinneide (1990) for more details. Note that
if A is in upper triangular from this has a direct interpretation in lifetime
data analysis that the item is degrading, i.e. moving monotonically through
the different states, see Aalen (1995).

Consider the local mixture of an exponential of the form

fX(x|µ, ν1, ν2) =
1

µ
e−x/µ + ν1

∂

∂µ

(
1

µ
e−x/µ

)
+ ν2

∂2

∂µ2

(
1

µ
e−x/µ

)
. (4.13)

This can be expressed as a linear combination of Gamma densities of the
form

p(µ, ν1, µ2)Γ(3, µ) + q(µ, ν1, µ2)Γ(2, µ) + r(µ, ν1, µ2)Γ(1, µ) , (4.14)

where

Γ(i, µ) =
1

Γ(i)µi
xi−1e−xµ.

The density (4.14) has been explored in the paper O’Cinneide (1993).

The hard boundary for this local mixture is given by

p, r ≥ 0, q ≥ −
√

2pr.

The following results shows when the local mixture is phase type.
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Theorem 24 The local mixture given by (4.13) is a phase type distribution
if and only if it lies strictly inside the hard boundary.

Proof: Direct calculation shows that the Laplace transform of the density
give by (4.13) has only one real pole. Hence we can apply the characterisation
theorem for phase type distributions, see O’Cinneide (1990).

We can use Theorem 7.5 from O’Cinneide (1993) to characterise the trian-
gular order of the local mixture.

Theorem 25 The triangular order of 4.13 is given by

1. 3 if q ≥ 0 and this agrees with the order;

2. 3 + � ξ
2−ξ

�, where ξ = q2/pr.

This has the interpretation that, as we approach the hard boundary, the
number of states needed in the representation grows without bound. Alter-
natively, if we are modelling with a three state model we have a soft boundary
in the parameter space. Also note that case 1 is precisely the case where the
density given by 4.14 is exactly a convex mixture of three Gammas. For
estimation in phase type models see Asmussen, Nerman, and Olsson (1996),
and in the censored case see Olsson (1996).

4.3 Statistical Inference

In this section, we show empirically that first order asymptotic inference
over the parameters in a local mixture model, seems to apply when the true
data generation process is a scale dispersion mixture with small dispersion
parameter ε.

We will focus first on Model 1. We generated 10,000 independent replications
of a random sample of size n from a scale dispersion mixture of the negative
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Mixing Distribution

G1 G2

γ2 = 0.1 γ2 = 0.1

Gamma n = 100 n = 1000

G3 G4

γ2 = 0.5 γ2 = 0.5

n = 100 n = 1000

RG1 RG2

γ2 = 0.1 γ2 = 0.1

Reciprocal n = 100 n = 1000

Gama RG3 RG4

γ2 = 0.5 γ2 = 0.5

n = 100 n = 1000

Table 4.1: Parameter values used in the simulations for Model 1

exponential distribution with mean 5 and according to the values in Table
4.1.

Here γ2 denotes the squared coefficient of variation of the mixing distribution.
The labels G1, RG1 and so on are just simply identifiers of that particular
combination of the parameters. We generated the samples in the usual two-
step way, that is, first generating a value µ from the mixing distribution and
then generating a value of x from a negative exponential distribution with
mean µ.

First and second rows of figures 4.8 to 4.15 show the histograms of the max-
imum likelihood estimators (mle’s) (µ̂mle, γ̂mle

2 ) of the parameters (µ, γ2) of
model 1 defined in (4.3) and the corresponding normal probability plots, re-
spectively. Also plotted are the histograms and normal probability plots of
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the moment estimator of γ2, that is

γ̂mom
2 =

DS1(x)

2
,

where DS1(x) is the dispersion score defined above.

The mle’s were calculated using the function fmincon of the Optimization
Toolbox in matlab. Recall, the parameter space for model 1 is the product
(0,∞)×(0, 1). Motivated by the usual asymptotic confidence interval for the
mean of a negative exponential distribution, and because we are interested
only on inferences in small mixing distributions, we restricted the search
for the values of µ to the interval x̄(1 ± 2k/

√
n) for an specific value of

the inflation factor k. We found in our simulations that k =
√

6 always
was adequate good enough to capture of all the relevant information in the
corresponding likelihoods.

In all the simulations, the mle’s were calculated using the k = 2 boundary
which in this case restricts the parameter γ2 to be on the interval [0, 2/3].
Therefore, we restricted our search for the mle’s for model 1 within the
compact set

[x̄(1 − 2k/
√

n), x̄(1 + 2k/
√

n)] × [0, 2/3]

For comparison purposes, we only show both estimators of γ2 when they yield
a value inside the interval (0, 2/3). So, our statements about the distribution
of both estimators of γ2 will be conditional on being in the interval (0, 2/3).
It is important to mention that we should take that restriction into account
when interpreting the corresponding normal probability plot. When there is
a visible scree in the corresponding normal probability plot, it means that
the estimator has been truncated at that value and the intersection with the
vertical axis shows the proportion of values for which this happens.

Also, in the third row of each of the figures, we show the scatter plots of
(µ̂mle, γ̂mle

2 ) , (µ̂mle, µ̂mom
2 ) where µ̂mom = x̄, the sample mean, and finally the

scatter plot of (γ̂mle
2 , γ̂mom

2 ).

As can be seen from the plots, for the cases where γ2 = 0.1, the distribution of
the mle µ̂mle of the mixture mean µ is slightly skewed to the right compared
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to a normal distribution. This is mainly because of some few extreme points
that appear in the right tail. This skewness is clearly increased when γ2 = 0.5,
specially when the mixing distribution is reciprocal Gamma. We will explain
that behavior later. Also note that, in all cases this skewness decreases a
little bit when increasing the sample from n = 100 to n = 1000. Also, all
the histograms appear to be centered at the correct true value of the mean
of the mixture which equals 5 in all cases.

A similar situation occurs for the the mle γ̂mle
2 of γ2, although this estimator

can reach either the positivity boundary or the k = 2 boundary. Now, the
distribution of γ̂mle

2 is not always centered at the correct value. In simulations
G3 and G4, the corresponding histogram is clearly centered at around 0.35,
a wrong value, the correct value is supposed to be 0.5. The situation is even
worse for the Reciprocal Gamma distribution. In simulations RG3 and RG4,
the corresponding histogram of γ̂mle

2 is clearly centered at around 0.25, which
is away from the correct value of 0.5. It is clear also that we cannot expect
this to improve by increasing the sample size because only the dispersion of
the histogram will change (actually decrease), not its location. In general,
this bias is a result of the fact that local mixtures are designed to mimic
genuine mixtures when the mixing distributions are small. This is saying
that a Gamma distribution or a Reciprocal Gamma with γ2 = 0.5 are not
small mixing distributions in that sense. The local mixture model is trying
to fit a mixing distribution with smaller squared coefficient of variation in
each case.

It is interesting to note that in simulations RG3 and RG4, the value of
0.25 where the histograms of γ̂2

mle are centered, corresponds to the value of
the dispersion parameter ε for which the coefficient of variation is 0.5. In
a reciprocal Gamma distribution with dispersion parameter ε, the squared
coefficient of variation is

γ2 =
ε

1 − 2ε

which clearly behaves like ε when ε is small, as should happen according to
Corollary 6 when we only retain terms of order ε. So, roughly, local mixture
model 1 is trying to fit a value of γ2 that corresponds to an approximation
of that kind. But there is a limit for this behavior of the local mixture
model. In simulations G3 and G4 where ε = γ2 = 0.5, because in a Gamma
distribution with dispersion ε the squared coefficient of variation is ε, we
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see that the distributions of γ̂mle
2 concentrates at around 0.35. Now, it is

clearer that local mixtures behave like true mixtures only when the mixing
distribution is small. The smallness in the case of mean mixtures of the
negative exponential distribution is dictated by the smallness of the squared
coefficient of variation of the mixing distribution γ2.

With respect to the moment estimate γ̂mom
2 of γ2 , recall it is proportional to

the dispersion score DS1(x) which has been used many times in the literature
of testing for overdispersion in the negative exponential distribution. See, for
example, page 234 of Mosler and Seidel (2001). From our simulations it is
clear that the distribution of this moment estimator does look very much
like a truncated normal distribution although the corresponding histogram
is always nearly centered around the correct value of the squared coefficient
of variation γ2. In fact, from the result in page 70 of Lindsay (1995), it is
not difficult to check, using the properties of convergence in probability, that
γ̂mom

2 = DS1(x)/2 is a weakly consistent estimator of the squared coeffi-
cient of variation of the mixing distribution. This justifies the fact that the
histograms of that estimator concentrate around the correct value.

In the last plot in each of the figures, we show the scatter plots of γ̂mle
2 vs

γ̂mom
2 , the red dashed line is the 45o line plotted for reference. As expected

from the discussion above, from those scatter plots we can see a good agree-
ment between both estimators for small values of them, except in the case
where γ2 = 0.5. In those cases, γ̂mom

2 tends to be bigger than γ̂mle
2 and this

is most clear for sample size n = 1000, where γ̂mom
2 is about to converge to

the correct value. Thus, both estimators can complement each other in the
following sense. If γ̂mom

2 crosses the hard boundary 2/3 then we have a sim-
ple diagnostic about the possible non-smallness of the mixing distribution,
which may prompt us to reconsider our modeling assumptions.

Also clear from the plots, is the elliptically contoured joint distribution of
(µ̂mle, γ̂2

mle). Remarkably, we see that when the mixing is small, (µ̂mle, γ̂2
mle)

are nearly orthogonal (which under asymptotic normality will imply indepen-
dence) extending, at least empirically, the orthogonality under non-mixing
proved in Theorem 21. It is important to recall here that this contours can
be centered at a wrong value.

Finally, we show in the figures the scatter plots of µ̂mle against x̄. The
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agreement between both estimates is quite good, specially for large sample
sizes. This is not the case when the mixing distribution is reciprocal Gamma
with γ2 = 0.5. In simulations RG3 and RG3 we can clearly see that µ̂mle is
slightly larger than the sample mean. It is also clear that if the variance of the
mixture distribution exists then the sample mean is a consistent estimator of
the true mean µ. So, the local mixture mle of µ tend to be biased when the
mixing distribution is not small. This bias has a clear explanation. As shown
in the proof of Theorem 12, the mean centered expansion of a mixture relies
on the fact that the function A1(ϑ, ε) = Oϑ(ε) is small. Then, clearly, if the
scale dispersion mixing distribution does have a small value of the dispersion
parameter ε (and therefore not a small squared coefficient of variation), the
local mixture approximation is not going to be good and this is where the bias
on the estimator of the mean comes from. When the mixing distribution is
not so small, the local mixture model tries to fit a larger of value of the mean
instead of increasing the variance. The bias is not present in simulations
G3 and G4 because a Gamma mixing distribution has the property of being
central and this implies A1(ϑ, ε) ≡ 0.

In practice, applied statisticians are usually only interested in the mean of the
distribution of the observed data and then treat the mixing distribution as
nuisance. In this respect, we can use the profile log-likelihood ratio function
(3.40) defined here as

�0
p(µ) = �lm(µ̂, γ̂2) − �lm(µ, γ̂2(µ))

to make inferences about the parameter of interest µ, treating the local mix-
ture parameter γ2 as nuisance. A couple of typical plots of such profile
log-likelihood ratio functions are plotted in Figure 4.16. It is well known
that under the usual assumptions of the classical first order asymptotic the-
ory of parametric models, when a model is embedded in a larger one, twice
the profile log-likelihood ratio evaluated at the true value of the parameter
has an asymptotic χ2 distribution with one degree of freedom provided the
embedded model is one dimensional. Thus, in Figure 4.16 we show the Q-Q
plots (under a χ2

(1)) of the profile log-likelihood ratios evaluated at the true
mean of the mixing distribution from 10,000 replications of samples of size
n = 100 and n = 1000, respectively, under a Gamma mixing distribution
with mean 5 and squared coefficient of variation 0.1. It is clear from the
plots that the χ2

(1) provides a good fit to those profile ratios. This implies
in particular that asymptotic confidence intervals for the true mean of the
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mixing distribution can be constructed using this empirical result and, conse-
quently, they should have asymptotically the correct coverage. As expected,
we also found empirically that this χ2 approximation no longer holds if the
mixing distribution has a larger squared coefficient of variation.

At this point, it is important to mention that, for all the previous simulations,
we found very similar results for other scale dispersion mixtures, such as when
the mixing distribution is lognormal or other members of the Generalized
Inverse Gaussian like the Hyperbola distribution. These cover a wide range
of mixing distributions.

To better understand the frequently mentioned smallness of the mixing distri-
bution, we now consider the effect of extreme observations in the estimation
of the parameters in a local mixture model. First of all, large observations
are evidence of contamination mixing, as discussed above. If the mixing dis-
tribution is small and has finite variance, we cannot expect great deviations
from a negative exponential in the sense that the largest order statistics can-
not be way larger than those under the non mixing assumption. To give a
concise example, consider a reciprocal Gamma distribution with position m
and dispersion ε. This mixing distribution does not have finite variance for
values of ε greater than 0.5. Moreover, the generated scale dispersion mixture
is a Pareto distribution of the second kind whose density is given by

g(x; Q−1) =
1

m

(
1 +

xε

m

)−(1+1/ε)

.

Clearly, this is a heavy tailed distribution for positive values of ε. So, when we
generate samples from this distribution, we expect to have large upper order
statistics compared to the negative exponential. This is what is happening
in Figures 4.8 to 4.15 when we observe some few distant points from the
histograms or the scatter plots. Those points might correspond to a case
where the mixing distribution yielded a large observed value compared to its
position parameter and therefore, the negative exponential value has to be
generated with that value of the mean, giving a high probability to observe a
very large value compared to mean of the mixing distribution. In other words,
sometimes the value of ε is not small enough for the normal approximation
(3.25) of a dispersion model to hold. Also, this approximation only makes
sense if the corresponding proper dispersion model has finite variance, which
always occur for a sufficiently small value of ε.
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Figure 4.8: Gamma mixing with µ = 5 and γ2 = 0.1. Sample size 100
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Figure 4.9: Gamma mixing with µ = 5 and γ2 = 0.1. Sample size 1000
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Figure 4.10: Gamma mixing with µ = 5 and γ2 = 0.5. Sample size 100
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Figure 4.11: Gamma mixing with µ = 5 and γ2 = 0.5. Sample size 1000
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Figure 4.12: Reciprocal Gamma mixing with µ = 5 and γ2 = 0.1. Sample
size 100
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Figure 4.13: Reciprocal Gamma mixing with µ = 5 and γ2 = 0.1. Sample
size 1000
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Figure 4.14: Reciprocal Gamma mixing with µ = 5 and γ2 = 0.5. Sample
size 100
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Figure 4.15: Reciprocal Gamma mixing with µ = 5 and γ2 = 0.5. Sample
size 1000
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Figure 4.16: Profile log-likelihoods under Model 1
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To be more graphical in this description, consider the log-likelihood contours
plotted in Figure 4.17. We generated a sample of size 100 and 1000 from a
reciprocal Gamma distribution with mean µ = 5 and squared coefficient of
variation γ2 = 0.5. Plotted are the log-likelihoods ratios (up to a drop of
6) of this pair of sets of data under the true mixture model and using local
mixture model 1. Clearly, the true likelihood is always unknown in practice,
but here we it use as a gold standard for comparison. In the first data set, we
observe a large maximum, which is clearly far away from the rest of the data.
The local mixture likelihood is clearly not giving much inferential importance
to the true point, which is in this case (5, 0.5). The true likelihood is very
flat in a strip which contains the true value. Something similar happens if
we increase the sample size to 1000. In this case, we actually observe not
only one but some other high values.

On the other hand, in Figure 4.18 we show that under a Gamma mixing
distribution with coefficient of variation γ2 = 0.5, the agreement between
the local mixture and true likelihoods can be better. This is mainly be-
cause a Gamma distribution with squared coefficient of variation 0.5 is more
“normal” than a reciprocal Gamma with the same mean and the same coeffi-
cient of variation. In general, we found a very good agreement between the
likelihoods of the local mixture model 1 and the true likelihoods when the
coefficient of variation was small (less that 0.1) and there were no discrepant
observations in the data.

A very simple diagnostic of non local mixing is therefore, the presence of
extreme observations that clearly affect the mle of the parameters in a local
mixture model. Concrete diagnostics of this kind can be found in the work
of Caroni and Kimber (2004).

Summarizing, we can get uniformly good approximations to the true likeli-
hoods under a scale dispersion mixture, as long as the normal approximation
to the corresponding mixing scale dispersion model is good. We know this
always occurs for a sufficiently small value of ε. Now we are in a position
to state an easier to understand definition of when a mixing distribution
is small: a proper dispersion mixing distribution is small when the normal
approximation to it is good.

A simple measure of the closeness to normality is the third normalized mo-



CHAPTER 4. LMM FOR THE NEGATIVE EXPONENTIAL 156

4 4.5 5 5.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 4.5 5 5.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80
0

50

100

150

200

250

300

350

3 4 5 6 7 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3 4 5 6 7 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50
0

10

20

30

40

50

60

Local mixture likelihood True likelihood 

n=100

n=1000

Data

Figure 4.17: Local mixture and Reciprocal Gamma log-likelihoods

ment of the mixing distribution, which here we will denote by γ3. This
motivates the use of Model 2. Recall that this model forces the coefficient
of kurtosis to be zero as in the normal distribution. Also, by imposing soft
boundaries like

(3 − K2)γ
2
2 ≤ γ3 ≤ (3 − K1)γ

2
2 ,

we can match the behavior of the third normalized moment, which is sup-
posed to behave like a quadratic near the origin with the sign given by the
third derivative of the deviance evaluated at its minimum. Clearly, γ3 is a
measure of closeness to normality in the following sense. First, it represents
the skewness of the distribution so, if it is close to zero, we are close to a
normal. If we write γ3 = (3 − β) γ2

2 as in (4.8), it is also clear that this
skewness will converge faster to zero than the squared coefficient of varia-
tion. Together with the restriction γ4 = 3γ2

2 , this means that the squared



CHAPTER 4. LMM FOR THE NEGATIVE EXPONENTIAL 157

3 4 5 6 7 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3 4 5 6 7 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50
0

10

20

30

40

50

60

70

4 4.5 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 4.5 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50
0

50

100

150

200

250

300

Local mixture likelihood True likelihood Data

n=100

n=1000

Figure 4.18: Local mixture and Gamma log-likelihoods

coefficient of variation is driving the convergence of the mixing distribution
to the unmixed negative exponential. This argument has strong support not
only on the asymptotic expansions derived from Theorem 12, but also on the
fact that, the squared coefficient of variation of any mixing distribution of
the negative exponential in its mean scale is a formal distance to the unmixed
distribution, as proved by Keilson and Steutel (1974).

Now, in Figures 4.19 and 4.20 we present similar results to those shown for
Model 1. We generated 10,000 independent replications of a random sample
of size n = 1000 from scale dispersion mixtures with Gamma and Reciprocal
Gamma mixing distributions with mean µ = 5 and squared coefficient of
variation γ2 = 0.1. We used a small value of the squared coefficient of
variation and a relatively large sample because, as shown for Model 1, local
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scale mixtures perform better in such cases.

In the first row of each figure are the histograms of µ̂mle, γ̂mle
2 and γ̂mle

3 of
the parameters of Model 2 defined in (4.7). We will not concentrate here
on the normality of the estimators, as we are more interested in the effect
of soft boundaries. The distributions of µ̂mle and γ̂mle

2 clearly appear to be
centered at the correct values of µ = 5 and γ2 = 0.1. The same happens
for γ̂mle

3 , where the correct value under a Gamma mixing distribution is
γ2 = 2ε2 = 2(0.1)2 = 0.02, while under the reciprocal Gamma is

γ2 =
4ε2

(1 − 2ε)(1 − 3ε)
=

4(0.0833)2

(1 − 2(0.0833))(1 − 3(0.0833))
= 0.044 .

In the second row of each figure, we show the scatter plots of (γ̂mle
2 , γ̂mom

2 )
and (γ̂mle

3 , γ̂mom
3 ). Similar to the results obtained under Model 1, here we

also found a good agreement between both estimators only for small values
of each of them. Also, in the same row, is the scatter plot of (γ̂mle

2 , γ̂mle
3 ),

however, to explain this plot we first need to mention how we calculated the
mle’s for model 2.

As in model 1, the mle’s were calculated using the function fmincon of the
Optimization Toolbox in matlab. Following the discussion concerning the
reparametrization (4.8) of model 2, we judiciously chose as soft boundary for
the parameter β the interval [K1, K2] = [−20, 20]. The generalized inverse
Gaussian family is by far contained in such an interval. In practice, we will
be required to fix an interval of that form if we really want to model local
mixtures, so the interval we have chosen seems reasonable.

We plotted in red the hard boundary for (γ2, γ3) and in blue the k = 2
boundary. In dashed green is plotted the −20 ≤ β ≤ 20 boundary. Having
this, we can see from our scatter plots that the joint distribution of the mle of
(γ2, γ3) can reasonably be well approximated by a distribution with elliptic
contours. It is also clear that there exists a positive correlation between
both estimators. This is just a consequence of the fact that, under the
mixing distribution, there exists a relationship of the same kind between the
squared coefficient of variation and the third normalized moment, for small
values of the dispersion parameter ε. The points that stick into the soft
boundary −20 ≤ β ≤ 20 correspond to cases where the sample gave rise to
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high upper order statistics. In this sense, this boundary can be used as a
simple diagnostic for detecting non-local mixing.

In the last row of each figure we present the scatter plots of (µ̂mle, γ̂mle
2 ) and

(µ̂mle, γ̂mle
3 ). As in Model 1, here we found evidence of elliptically contoured

joint distributions and approximate orthogonality between the estimators.
Finally, in the last plot of each figure is the Q-Q plot of twice the profile
log-likelihood ratio evaluated at the true mean for model 2. The χ2

(1) fit to
the empirical distribution is also quite good. Finally, we mention that we
found very similar results to the previous simulations using Model 3.

Now, in Figures 4.21 to 4.23 we show the results of a simulation exercise of
the performance of local mixture model 1 under no mixing. We generated
10,000 replications of samples of sizes n = 100 and n = 1000 from a negative
exponential distribution with mean µ = 5. First, from figure 4.21 it is clear
that the sample mean is the mle of µ under model 1 for samples sizes over
a thousand. This implies that it retains all the optimal properties which
this estimator has, when we see the negative exponential as an exponential
family.

From Figures 4.22 and 4.23, we can see that the distributions of γ̂mle
2 and

γ̂mom
2 resemble a half normal distribution with zero mean specially for large

sample sizes. The proportion of positive values for any of the estimators
is tending to 0.5 when the sample increases. Also we can see much better
agreement between both estimators for sample sizes like n = 1000 because
the range of values they take is considerably smaller than the corresponding
values under small mixing, for example with the Gamma distribution and
with the same sample size. The orthogonality result in Theorem 21 is evident
also from the scatter plots. Moreover, we can also observe a reasonable fit of
the χ2

(1) to the distribution of the profile log-likelihood ratio evaluated at the
true mean. Extreme observations can also appear under no mixing, although
this happen with very small probability.

Finally, to avoid repetition, we mention that we obtained similar results
for model 3, conditional on the fact that γ3 ≥ 0 and imposing the same
boundaries as in Model 2.

It is worth finishing this chapter with the following considerations. There
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Figure 4.19: Gamma mixing with µ = 5 and γ2 = 0.1. Sample size 1000
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Figure 4.21: µ̂mle vs x̄ under no mixing

is trade-off between local scale mixing and estimation error in the following
sense. It is well known that, for a negative exponential distribution, the
maximum likelihood estimator of the mean parameter is the sample mean
and that this estimator has the following asymptotic property:

x̄
d→ N

(
m,

1

nI(m)

)
,

when n → ∞, where m is the true mean parameter and I(m) is the expected
Fisher’s information evaluated at m. Then, we have

x̄
d→ N

(
m,

m2

n

)
,

when n → ∞. From the results in Appendix C, we have that if the dis-
tribution of µ is a scale dispersion model with position m and dispersion
parameter ε, then it follows that

µ
d→ N (m, ε V (m))
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when ε → 0, but we also know that V (m) = m2, so

µ
d→ N

(
m, ε m2

)
when ε → 0. Thus, there is a clear trade-off between the two types of as-
ymptotics. If we are really observing mixtures of F with a very small value
of ε but our sample size is clearly smaller than 1/ε, then we will make infer-
ences with F without even notice that there was a small mixing (probably
insignificant) in the sample. On the other hand, this justifies in some sense
the fact that we have needed large sample sizes in order to recognize small
mixing in our simulations.
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Figure 4.22: Model 1 under no mixing. Sample size n = 100
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Figure 4.23: Model 1 under no mixing. Sample size n = 1000



Chapter 5

Conclusions and Future Work

5.1 Conclusions

The conclusions of this part of the thesis are as follows:

1. The use of one of the simplest geometrical structures, Affine Spaces,
provides a better understanding of the difficult statistical problem of
estimation in mixture models.

2. A novel approach to the problem of detecting local mixing in one di-
mensional NEF-QVF’s is proposed. Our approach is based on the un-
derlying Affine Geometrical structure and is different from the usual
approach of embedding in a space of random variables combined with
the use of significance tests. This latter approach is more data-driven
while ours is purely model-driven. This is the reason why we did not
use any real data example.

3. Clear geometrical and statistical analogies between Exponential and
Mixture models were given and used to propose new concepts like Gen-
eral and Curved Mixture Families that will certainly be useful for the
future work in the area. We are aware that those analogies are a simple
consequence of the Duality Theory mainly developed by Amari (see for
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example Amari and Nagaoka (2000)) but the contribution here is the
better statistical understanding we give to them from the point of view
of mixture models.

4. Local Mixture models constitute a class of low dimensional, parameter
interpretable and geometrically insightful models that appear to be an
attractive alternative to non-parametric and semi-parametric methods
commonly used in the estimation of mixing distributions.

5. The asymptotic expansions developed from Theorem 12 provide simple
expressions that can be used not only in the mixture model setting but
also in any other setting in which dispersion models are involved.

6. The use of Dispersion Models as mixing distributions combined with
the asymptotic expansions developed from Theorem 12 constitutes a
novel approach to the local analysis of mixture models, and generalizes
the original proposal of Marriott (2002).

7. Also, the use of Dispersion Models as mixing distributions provides a
better statistical understanding of the invariance geometrical properties
inherent to continuous mixture models and an understanding of the
smallness assumption inherent in local mixture models

8. Local scale and Local location mixture models provide a simple mod-
eling framework when the mixing parameter is either scale or location.
We used the former with the negative exponential but the latter invites,
for example, to the analysis of mean mixtures of the normal distribution
with known variance.

9. Local scale mixture models of the Negative Exponential Distribution
were analyzed in some detail, both geometrically and statistically. We
showed they provide a simple statistical tool to analyze general scale
dispersion mixtures when the dispersion parameter ε is small. Our sim-
ulations showed that simple asymptotic statistical procedures perform
reasonably well for such models when the sample size is over n = 100.
Also shown by our simulations is the fact that local mixture models
have a very clear statistical meaning only when the mixing distribu-
tion is small, with this smallness measured by the squared coefficient
of variation of the mixing distribution. As negative exponential distri-
butions are widely used in the analysis of reliability and lifetime data,
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local scale mixtures of them provide a new tool for the analysis of such
kind of data.

10. We showed that appropriate reparametrizations of a local mixture model
can reveal nice underlying statistical configurations. For example,
reparametrization (4.8) revealed that our Model 2 is in fact a bundle
of curved mixture families.

11. Far beyond the mixture setting, local mixture models provide a geo-
metrically insightful generalization of any regular parametric family of
densities.

12. Finally, as aimed in the introduction, we think we have contributed by
developing a mathematical tool which is accessible to both Statistical
and Geometrical audiences.

5.2 Future Work

Geometry of Perturbations: Cook (1986) proposed a very interesting geo-
metric approach to the assessment of local influence in parametric sta-
tistical models. The approach has been revisited recently by Critchley
and Marriott (2004) and seems to be closely related to Local Mixture
Models, thus providing an attractive area to work in the near future.

Local Mixture Models for small dependence: A very simple way to in-
duce dependence in a pair of random variables is via mixtures combined
with conditional independence. Suppose we have a pair of random vari-
ables (X, Y ) which are conditionally independent given the value of a
third random variable θ. If f(x, y | θ) is the conditional distribution
then the marginal joint density of (X, Y ) is given by

g(x, y; Q) =

∫
f(x, y | θ) dQ(θ)

and this clearly invites to a geometrical analysis using local mixtures.

Multivariate Local Mixture Models: This type of models were defined
by Marriott (2002) but have not been used ever since. Combined with
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the multivariate dispersion models of Jorgensen and Lauritzen (2000),
they appear to be an interesting topic to explore in the future.

Deeper Geometrical Analysis: As explained in section 2.3, Local Mix-
ture models have the underlying geometrical structure of an Affine
Bundle. Interesting geometrical notions like Affine Connections and
curvature apply to this kind of structures. The Statistical understand-
ing and implications of such notions is also a very interesting area to
explore in future work.



Part II

Goodness of Fit
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Chapter 6

Goodness of Fit for the Inverse
Gaussian and Gamma
distributions under censoring

6.1 Introduction

The modification of the Cramér-von Mises statistics to test the fit from a
censored sample for a completetely specified distribution was first proposed
by Pettitt and Stephens (1976). In Pettitt (1976) a generalization was made
for the case where parameters are unknown and the results were applied to
find the asymptotic distributions of Cramér-von Mises type statistics when
testing for normality. Tests of fit based on EDF statistics for the inverse
Gaussian were discussed by Pavur, Edgeman, and Scott (1992) and O’Reilly
and Rueda (1992). Lockhart and Stephens (1983) and Pettitt and Stephens
(1983) discuss the same problem, but for the gamma distribution. These
latter papers refer to the uncensored case.

In this chapter we discuss the problem of testing the null hypothesis that
a sample, which may be censored at one or both ends, comes from an in-
verse Gaussian distribution with unknown parameters. We also discuss the
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problem when the null hypothesis corresponds to a gamma distribution. The
derived tests are based on the results of Pettitt (1976) and Durbin (1973).

In Section 6.2 the theory for the asymptotic distributions of the test sta-
tistics is summarized and in Section 6.3 formulae are given to evaluate the
covariance functions of the underlying empirical processes. Some asymp-
totic percentiles are tabulated in Section 6.4. Section 6.5 describes the test
procedures and a small Monte Carlo study is carried out in Section 6.6.

6.2 Asymptotic Theory

Consider a type I censored sample of size n, from a continuous density g(x),
with ordered observations

xq < x(s+1) < x(s+2) < . . . < x(n−r) < xp (2.1)

where s, r ≥ 0 and xq and xp are fixed known constants. Suppose we wish
to test the null hypothesis

H0 : g(x) = f(x; θ) for some θ ∈ Θ,

where θ is a vector of unknown parameters (Θ ⊂ IR2). The case where θ
is completely known was studied by Pettitt and Stephens (1976) and will
be referred to here as Case 0. In this chapter we deal with two parametric
families of densities: the inverse Gaussian family, with density of the form

f(x; µ, λ) =

(
λ

2πx3

) 1
2

exp

(
−λ(x − µ)2

2µ2x

)
x > 0, µ, λ > 0, (2.2)

and the gamma family with density

f(x; α, β) =
β−α

Γ(α)
xα−1 exp

(
−x

β

)
x > 0, α, β > 0. (2.3)

At this point, we distinguish 6 different situations:
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Inverse Gaussian Gamma
θT = (µ, λ) θT = (α, β)

Case IG1: µ known, λ unknown. Case Γ1: α known, β unknown.

Case IG2: λ known, µ unknown. Case Γ2: β known, α unknown.

Case IG3: µ and λ unknown. Case Γ3: α and β unknown.

where the superscript T denotes the transpose of a vector. Denote by F (x; θ)
the cumulative distribution function corresponding to f(x; θ). If θ is known
(Case 0) and p, q satisfy

q = F (xq ; θ) and p = F (xp ; θ) (2.4)

Pettitt and Stephens (1976) suggest the use of a modified form of Anderson-
Darling’s and Cramér-von Mises’ statistic for testing the fit of F (x; θ) with
the available censored sample (2.1). These modifications are:

qpW
2
n = n

∫ p

q

(Gn(t) − t)2 dt and qpA
2
n = n

∫ p

q

(Gn(t) − t)2

t(1 − t)
dt,

where Gn(t) is the EDF of the transformed ordered sample {t(s+1), . . . , t(n−r)}
where t(i) = F (x(i); θ). In their paper, Pettitt and Stephens provide percent-
age points for the asymptotic distribution of both statistics for various values
of p (q = 0 and q = 1 − p).

For the case where θ is partially (or totally) unknown, let θ̂n be the maximum
likelihood estimator (or another asymptotically efficient estimator) of θ based
on the sample (2.1). For testing H0 in this case, we use the modification
of Anderson-Darling’s and Cramér-von Mises’ statistic proposed by Pettitt
(1976). The modifications are:

qpŴ
2
n = n

∫ p

q

(
Ĝn(t) − t

)2

dt and qpÂ
2
n = n

∫ p

q

(Ĝn(t) − t)2

t(1 − t)
dt

where Ĝn(t) is the EDF of the transformed ordered sample {t̂(s+1), . . . , t̂(n−r)}
where t̂(i) = F (x(i); θ̂n). Note that, in order to properly define these statistics,
one needs to know the values of p and q which satisfy (2.4). This situation
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is evidently not possible because θ is unknown. In this sense, the latter
expressions represents a pair of non-constructible statistics.

In this chapter we propose the use of the statistics q̂p̂Ŵ
2
n and q̂p̂Â

2
n , where

q̂ = F (xq ; θ̂n) and p̂ = F (xp ; θ̂n) which are asymptotically equivalent to

qpŴ
2
n and qpÂ

2
n , since q̂ and p̂ converge in probability to q and p respec-

tively. Following Durbin (1973), Pettitt (1976) shows that if the sequence of

estimators {θ̂n} is asymptotically efficient then the process

ξ̂n(t) =
√

n(Ĝn(t) − t) t ∈ [q, p]

converges weakly to the Gaussian process defined over the interval [q, p] with
zero mean and covariance function

ρ(s, t) = min(s, t) − st − gT (t)I−1g(s), (2.5)

where I is Fisher’s expected information provided by a single observation
and g(t) is the vector of derivatives of F (x; θ) with respect to the unknown
parameters evaluated at t = F (x; θ). If only one component of θ is unknown
I is scalar, and if both components are unknown I is a 2 × 2 matrix.

Once the covariance function ρ(s, t) is obtained, the asymptotic distribution

of qpŴ
2
n may be evaluated because it coincides with the distribution of

∞∑
i=1

λiZ
2
i ,

where the Z ′
is are independent standard normal variables and λ1, λ2, . . . are

the eigenvalues of the integral equation

λ ϑ(t) =

∫ p

q

ρ(s, t)ϑ(s)ds. (2.6)

The asymptotic distribution of qpÂ
2
n can be obtained in a similar way by

replacing the covariance function ρ(s, t) by ρ(s, t)/{(s − s2)(t − t2)}1/2.
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6.3 Obtaining The Covariance Functions

We denote θ = (θ1, θ2)
T to cover any of the two families of densities men-

tioned previously. The matrix I for cases IG3 and Γ3 is

I = −




E

[
∂2 ln L(θ; x)

∂θ2
1

]
E

[
∂2 ln L(θ; x)

∂θ1∂θ2

]

E

[
∂2 ln L(θ; x)

∂θ2∂θ1

]
E

[
∂2 ln L(θ; x)

∂θ2
2

]

 (3.1)

and for the other cases, namely IG1, IG2, Γ1 and Γ2, the corresponding
diagonal elements of the matrix are Fisher’s expected information quantities.
The likelihood function for a single observation x is given by

L(θ; x) = F (xq; θ)γ(x) × f(x; θ)δ(x) × [1 − F (xp; θ)]1−δ(x)−γ(x), (3.2)

where

(δ(x), γ(x)) =




(0, 0) x ≥ xp

(0, 1) x ≤ xq

(1, 0) xq < x < xp .

One can express the entries of the matrix in (3.1) by the well known identity:

E

[
∂2 ln L(θ; x)

∂θi∂θj

]
= (1 − p) · E

[
∂2 ln L(θ; x)

∂θi∂θj

∣∣∣∣ x ≥ xp

]
+ (3.3)

q · E
[

∂2 ln L(θ; x)

∂θi∂θj

∣∣∣∣ x ≤ xq

]
+ (p − q) · E

[
∂2 ln L(θ; x)

∂θi∂θj

∣∣∣∣ xq < x < xp

]
.

Next, we state a proposition that is useful in evaluating the covariance func-
tion for the inverse Gaussian case and in determining the asymptotic distri-
bution of the test statistics used in this part of the thesis.

Proposition 1 For cases IG1, IG2 and IG3, the covariance function
ρ(s, t) defined in (2.5) depends only on η = λ/µ.
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Proof: Let η = λ/µ and consider the case xq < x < xp . It is easy to show
that

−∂2 ln f(x; µ, λ)

∂µ2
=

1

µ2

[
η

(
3x

µ
− 2

)]
,

− ∂2 ln f(x; µ, λ)

∂λ2
=

1

µ2

[
1

2η2

]
and

− ∂2 ln f(x; µ, λ)

∂µ∂λ
= − 1

µ2

[
x

µ
− 1

]
.

Note that these derivatives depend on x as a linear function in x/µ. We shall
prove next that the conditional expectation of x/µ given that xq < x < xp

depend only on η. We have that

E[x | xq < x < xp] =

∫ ∞

xq

xf(x; µ, λ) dx −
∫ ∞

xp

xf(x; µ, λ) dx

F (xp; µ, λ) − F (xq; µ, λ)
,

making the change of variable y = µ/x in the integrals one obtains

E[x | xq < x < xp] =
µ[F (µ/xq; 1, η) − F (µ/xp; 1, η)]

F (xp; µ, λ) − F (xq; µ, λ)
.

We use the following property

F (x; µ, λ) = F (x/µ; 1, η), (3.4)

which implies that if t = F (x; µ, λ) then x/µ = F−1(t; 1, η). In this way,

E[x/µ | xq < x < xp ] =
F (z−1

q ; 1, η) − F (z−1
p ; 1, η)

p − q

where zq = F−1(q; 1, η) and zp = F−1(p ; 1, η). Note that if values are given
for p, q and η one could evaluate E[x/µ | xq < x < xp ]. On the other hand,
it is easy to show that

∂F (x; µ, λ)

∂µ
=

1

µ
h1(η, t) and

∂F (x; µ, λ)

∂λ
=

1

µ
h2(η, t)
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at t = F (x; µ, λ), where

h1(η, t) = −√
ηztφ(Rt) − 2ηe2ηΦ(Lt) +

√
ηzte

2ηφ(Lt) and

h2(η, t) = Rt

2η
φ(Rt) + 2e2ηΦ(Lt) + Lt

2η
e2ηφ(Lt)

(3.5)

with zt = x/µ = F−1(t; 1, η), Rt =
√

η(z
1/2
t − z

−1/2
t ) and Lt = −√

η(z
1/2
t +

z
−1/2
t ). From these expressions one has that

∂2F (x; µ, λ)

∂µ2
= − 1

µ2
(η h′

1(η, t) + h1(η, t)),

∂2F (x; µ, λ)

∂λ2
=

1

µ2
h′

2(η, t) and

∂2F (x; µ, λ)

∂λ∂µ
=

1

µ2
h′

1(η, t),

where the dash denotes the derivative with respect to η. So, the conditional
expectations for x ≥ xp and x ≤ xq in equation (3.3) take the form of a
product of µ−2 and a function of η. It then follows that µ−2 can be factored
out of any element in the matrix I, and µ−1 from the vector g(t) for all
t ∈ [q, p] leaving the quadratic form

gT (t)I−1g(s)

to be a function of η only. �

In order to simplify the following expressions, we denote by ∆F the difference
F (z−1

q ; 1, η)−F (z−1
p ; 1, η). The covariance function (2.5) in the IG3 case can

then be written as:

ρIG3(s, t) = min(s, t) − st − As t

Ds t

, (3.6)
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where

As t = h1(η, s)h1(η, t)

[
p − q

2η2
+

(h2(η, q))2

q
+

(h2(η, p))2

1 − p
− {h′

2(η, q) − h′
2(η, p)}

]

+ h2(η, s)h2(η, t)

[
3η∆F − 2η(p − q) +

(h1(η, q))2

q
+ η{h′

1(η, q) − h′
1(η, p)}

+
(h1(η, p))2

1 − p
+ h1(η, q) − h1(η, p)

]
−

[
p − q − ∆F +

h1(η, q)h2(η, q)

q

+
h1(η, p)h2(η, p)

1 − p
− {h′

1(η, q) − h′
1(η, p)}

] [
h1(η, t)h2(η, s) + h1(η, s)h2(η, t)

]

and

Ds t =

[
3η∆F − 2η(p − q) +

(h1(η, q))2

q
+

(h1(η, p))2

1 − p
+ h1(η, q) − h1(η, p)

+ η{h′
1(η, q) − h′

1(η, p)}
] [

p − q

2η2
+

(h2(η, q))2

q
+

(h2(η, p))2

1 − p
− h′

2(η, q)

+ h′
2(η, p)

]
−

[
p − q − ∆F +

h1(η, q)h2(η, q)

q
+

h1(η, p)h2(η, p)

1 − p

− {h′
1(η, q) − h′

1(η, p)}
]2

.

The covariance functions for cases IG1 and IG2 can be expressed as:

ρIG1(s, t) = min(s, t) − st − h2(η, s) h2(η, t)

I2(η)
(3.7)

ρIG2(s, t) = min(s, t) − st − h1(η, s) h1(η, t)

I1(η)
(3.8)
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where

I1(η) = 3η∆F − 2η(p − q) +
(h1(η, q))2

q
+ η{h′

1(η, q) − h′
1(η, p)}

+
(h1(η, p))2

1 − p
+ h1(η, q) − h1(η, p)

I2(η) =
p − q

2η2
+

(h2(η, q))2

q
+

(h2(η, p))2

1 − p
− {h′

2(η, q) − h′
2(η, p)}.

Now, for the gamma case it is possible to show, as in the inverse Gaussian
case, that the covariance function depends only on one quantity, the shape
parameter α, using the fact that β is a scale parameter. In order to express
the covariance function we define

E = E[x/β | xq < x < xp]

k1(w) =
1

Γ(α)

∫ w

0

uα−1e−u log u du

k2(w) =
1

Γ(α)

∫ w

0

uα−1e−u(log u)2 du

zt = F−1(t; α, 1)

ft = f(zt; α, 1) t ∈ [q, p],

note that E does not depend on β since

E = α

[
F (zp; α + 1, 1) − F (zq; α + 1, 1)

F (zp ; α, 1) − F (zq; α, 1)

]
.

For case Γ3 one has that
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g(t) =




k1(zt) − t ψ(α)

− zt ft

β


 , t ∈ [q, p]

where ψ(·) is the digamma function. Therefore, the covariance function (2.5)
for this case, can be written as:

ρΓ3(s, t) = min(s, t) − st − A�
s t

D�
s t

, (3.9)

where

A�
s t = zt zs ft fs

[
k2(zp) − k2(zq) + k2

1(zq) +
k2

1(zp) − 2ψ(α)k1(zp) + pψ2(α)

1 − p

]

+

[
k1(zt)k1(zs) − ψ(α) {s k1(zt) + t k1(zs)} + s t ψ2(α)

] [
2E − α(p − q)

+ zq

{
zqf

2
q

q
+ fq(zq − α − 1)

}
+ zp

{
zpf

2
p

1 − p
− fp(zp − α − 1)

}]

−
[
zsfs {t ψ(α) − k1(zt)} + ztft {s ψ(α) − k1(zs)}

] [
p − q

+ zq fq

{
ln zq − k1(zq)

q

}
+ zp fp

{
− ln zp +

ψ(α) − k1(zp)

1 − p

}]
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and

D�
s t =

[
k2(zp) − k2(zq) + k2

1(zq) +
k2

1(zp) − 2ψ(α)k1(zp) + p ψ2(α)

1 − p

] [
2E

−α(p − q) + zq

{
zqf

2
q

q
+ fq(zq − α − 1)

}
+ zp

{
zpf

2
p

1 − p
− fp(zp − α − 1)

}]

−
[
p − q + zq fq

{
ln zq − k1(zq)

q

}
+ zp fp

{
− ln zp +

ψ(α) − k1(zp)

1 − p

}]2

.

The covariance functions for cases Γ1 and Γ2 can be expressed as:

ρΓ1(s, t) = min(s, t) − st − zsztfsft

I2(α)
(3.10)

ρΓ2(s, t) = min(s, t) − st − k1(zt)k1(zs) − ψ(α)(sk1(zt) + tk1(zs)) + stψ2(α)

I1(α)
(3.11)

where

I1(α) = k2(zp) − k2(zq) + k2
1(zq) +

k2
1(zp) − 2ψ(α)k1(zp) + pψ2(α)

1 − p

I2(α) = 2E − α(p − q) + zq

{
zqf

2
q

q
+ fq(zq − α − 1)

}

+ zp

{
zpf

2
p

1 − p
− fp(zp − α − 1)

}
.
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Finally, to evaluate k1(·) and k2(·) we use the following expansions truncated
to 200 terms:

k1(w) =
∞∑

j=0

(−1)j

j!

[
wα+j {(α + j) ln w − 1}

(α + j)2

]

k2(w) =
∞∑

j=0

(−1)j

j!

[
wα+j {(α + j)2(ln w)2 − 2(α + j) ln w + 2}

(α + j)3

]
.

In fact, it is not necessary to approximate such integrals. Computer algebra
systems like mathematica easily compute such integrals using formal series
without the need of truncation.

6.4 Percentiles of the Asymptotic

Distributions

Percentiles of the asymptotic distribution of qpŴ
2
n and qpÂ

2
n for both the

gamma and inverse Gaussian can be found accurately by solving the eigen-
value problem (2.6) numerically, first approximating the integral with a sum
using (say) one hundred points in the interval [q, p] and then evaluating the
covariance functions (expression 3.6 to 3.11) in the 100 × 100 grid. Imhof’s
(1961) method can then be used to obtain the required percentiles.

Only for illustration, upper percentiles of 0,pÂ
2
n were calculated for p = 0.75

in the inverse Gaussian cases for some values of η and upper percentiles of

qpÂ
2
n were also evaluated for (q, p) = (0, 0.75) and (q, p) = (.25, 1) for the

gamma cases for some values of α. Results are presented in the following
tables.
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Table I: Upper percentiles of 0,0.75Â
2
n .

Case IG3 Case IG2

η .25 .10 .05 .025 0.01 .25 .10 .05 .025 .01

2−10 .373 .549 .691 .838 1.040 .668 1.063 1.387 1.726 2.191
2−8 .372 .548 .689 .836 1.037 .666 1.060 1.383 1.722 2.185
2−6 .369 .543 .682 .827 1.025 .661 1.050 1.369 1.703 2.160
2−4 .360 .527 .660 .798 0.986 .641 1.014 1.320 1.639 2.077
2−2 .338 .488 .606 .728 0.894 .591 0.921 1.191 1.473 1.860
20 .310 .438 .538 .639 0.777 .516 0.781 0.995 1.218 1.524
22 .293 .409 .498 .588 0.709 .456 0.672 0.842 1.018 1.259
24 .287 .399 .484 .570 0.686 .429 0.623 0.775 0.931 1.142
26 .286 .396 .481 .566 0.680 .419 0.607 0.752 0.902 1.104
28 .285 .396 .480 .565 0.678 .416 0.601 0.745 0.893 1.093

∞ .285 .397 .480 .563 0.675 .414 0.599 0.742 0.888 1.086

It is well known (Johnson, Kotz, and Balakrishnan (1994)) that if a random
variable X follows the inverse Gaussian density (2.2) then the random vari-
able

√
η(X/µ − 1) converges in distribution to a standard normal provided

that η = λ/µ tends to infinity no matter how µ and λ behave. On the other
hand, if η tends to zero in such a way that µ tends to infinity while λ remains
fixed it is also well known that Y = X−1 converges to a gamma distribution
with shape α = 1/2 and scale β = 1/λ. Table I exhibits percentiles of the

asymptotic distribution of 0,0.75Â
2
n in cases IG2 and IG3 for some values of

η. For case IG3, the last row indicating η = ∞ refers to the asymptotic
percentiles of 0,0.75Â

2
n in the normal case (say N3 case) with both mean and

variance unknown (2) while for case IG2 the same row refers to the normal
case with unknown mean and known variance (say case N2). Note that, as
long as η tends to infinity, the percentiles approach the corresponding ones
in the normal case.
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Table II: Upper percentiles of 0,0.75Â
2
n .

Case IG1

η .25 .10 .05 .025 0.01

0 0.522 0.806 1.038 1.281 1.613

2−10 0.522 0.807 1.039 1.282 1.614
2−8 0.523 0.808 1.041 1.284 1.617
2−6 0.525 0.812 1.047 1.293 1.630
2−4 0.532 0.829 1.073 1.328 1.676
2−2 0.559 0.887 1.159 1.443 1.832
20 0.621 1.021 1.352 1.699 2.172
22 0.696 1.180 1.582 2.000 2.570
24 0.747 1.286 1.732 2.197 2.831
26 0.771 1.336 1.804 2.291 2.956
28 0.782 1.358 1.835 2.332 3.011

∞ 0.791 1.378 1.863 2.368 3.057

In Table II the asymptotic percentiles of 0,0.75Â
2
n , when η → 0, identified in

row η = 0, converge to the percentiles that appear in Table V in the Γ1 case
with α = 0.5. Whereas if η → ∞, convergence is to the percentiles (row
η = ∞) in the normal case with known mean and unknown variance (say
case N1). The asymptotic percentiles for the three different normal cases
mentioned above where obtained using the formulas in (2) and the method
described at the beginning of this section.
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Table III: Upper percentiles of 0.25,1Â
2
n and 0,0.75Â

2
n respectively.

Case Γ3 Case Γ3

α .25 .10 .05 .025 0.01 .25 .10 .05 .025 .01

2−4 .381 .565 .713 .867 1.077 .348 .505 .629 .758 .933
2−2 .319 .455 .560 .669 0.817 .322 .460 .568 .680 .833
2−1 .302 .425 .519 .615 0.745 .305 .430 .527 .627 .762
20 .293 .410 .498 .588 0.709 .295 .412 .502 .594 .717
21 .289 .402 .489 .576 0.693 .290 .403 .490 .578 .696
22 .286 .397 .482 .567 0.681 .287 .399 .484 .571 .686

∞ .285 .397 .480 .563 0.675 .285 .397 .480 .563 .675

Table IV: Upper percentiles of 0,0.75Â
2
n .

Case Γ2

α 0.25 0.10 0.05 0.025 0.01

0 0.489 0.735 0.933 1.140 1.422

2−6 0.469 0.704 0.892 1.090 1.360
2−4 0.469 0.703 0.890 1.090 1.350
2−3 0.467 0.699 0.884 1.080 1.340
2−2 0.462 0.688 0.867 1.050 1.310
2−1 0.450 0.665 0.833 1.010 1.240
20 0.435 0.636 0.794 0.955 1.170
21 0.424 0.616 0.765 0.918 1.130
22 0.418 0.605 0.751 0.900 1.100
23 0.415 0.601 0.745 0.892 1.090

∞ 0.414 0.599 0.742 0.888 1.086

For the gamma, it is also well known that as α becomes larger then the
gamma (standardized) distribution tends to the standard normal. Table III
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shows again convergence of the asymptotic percentiles of 0.25,1Â
2
n and 0,0.75Â

2
n

in the Γ3 case to the corresponding ones (row α = ∞) in the N3 case. In
Table IV the same kind of convergence appears in the Γ2 case but now to
the N2 case.

Also in Table IV, as α → 0 the percentiles tends to the ones in the exponential
case studied by Sirvanci and Levent (1982).

Table V: Upper percentiles of 0.25,1Â
2
n and 0,0.75Â

2
n respectively.

Case Γ1 Case Γ1

α .25 0.1 0.05 0.025 0.01 .25 0.1 0.05 0.025 0.01

2−4 .771 1.270 1.680 2.120 2.710 .666 1.060 1.380 1.720 2.180
2−2 .600 0.958 1.250 1.560 1.980 .597 0.938 1.220 1.510 1.910
2−1 .522 0.806 1.038 1.281 1.613 .538 0.829 1.070 1.310 1.650
20 .469 0.704 0.892 1.090 1.360 .489 0.735 0.933 1.140 1.420
21 .440 0.648 0.813 0.983 1.210 .456 0.674 0.846 1.030 1.270
22 .425 0.621 0.774 0.931 1.150 .438 0.639 0.798 0.961 1.180
23 .418 0.608 0.755 0.907 1.110 .427 0.621 0.772 0.927 1.140

∞ .414 0.599 0.742 0.888 1.086 .414 0.599 0.742 0.888 1.086

Finally, Table V shows the convergence of the asymptotic percentiles of

0.25,1Â
2
n and 0,0.75Â

2
n in the Γ1 case to the ones in the N2 case.

Obviously, the formulae in Section 3 could be used to reproduce any un-
censored case for both the inverse Gaussian and the gamma. Another ap-
plication is for the Levy distribution (O’Reilly and Rueda (1998)) because
of its relationship with the gamma distribution. If X is a random variable
that follows a Levy distribution with scale σ, then the reciprocal Y = 1/X
follows a gamma distribution with α = 1/2 and β = 1/σ. Thus, if we have
a type I censored sample with known mean (µ), it is equivalent to test the
inverse Gaussian hypothesis with the original sample or to test the gamma
distribution (with α = 1/2) with the sample of the corresponding reciprocals
only observing that the censoring limits, yq = 1/xp and yp = 1/xq imply that
the pair (q, p) is changed to (1 − p, 1 − q).
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6.5 Test Procedure

Consider a type I censored sample of size n

xq < x(s+1) < x(s+2) < . . . < x(n−r) < xp (5.1)

from a continuous density g(x), where s, r ≥ 0 and xq and xp are fixed known
constants. To test the null hypothesis

H0 : g(x) = f(x; θ) for some θ ∈ Θ

where f is either of the form (2.2) or (2.3), follow the next steps:

1. Calculate θ̂n, q̂ = F (xq ; θ̂n) and p̂ = F (xp ; θ̂n). For estimation in the
inverse Gaussian case see Chao (1985) and for the gamma see Harter
and Moore (1965).

2. Evaluate z(i) = F (x(i); θ̂n) for i = s + 1, . . . , n − r and q̂p̂Ŵ
2
n or q̂p̂Â

2
n

using the formulae (1):

q̂p̂Ŵ
2
n = p̂Ŵ

2
n − q̂Ŵ

2
n (5.2)

q̂p̂Â
2
n = p̂Â

2
n − q̂Â

2
n (5.3)

where

âŴ
2
n =

R∑
i=1

(
z(i) − 2i − 1

2n

)2

− R(4R2 − 1)

12n2
+ nâ

(
R2

n2
− â

R

n
+

â2

3

)

âÂ
2
n =

R∑
i=1

(
2i − 1

n

) [
log(1 − z(i)) − log(z(i))

] − 2
R∑

i=1

log(1 − z(i))

+ n

[
2R

n
−

(
R

n

)2

− 1

]
log(1 − â) +

R2

n
log(â) − nâ (5.4)

with

R =

{
n − r if â = p̂

s if â = q̂
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3. Finally, compute the p-value associated to the observed value of q̂p̂Ŵ
2
n

or q̂p̂Â
2
n using the asymptotic distribution of qpŴ

2
n or qpÂ

2
n with the

method described at the beginning of Section 6.4 and entering the
estimated value of θ, that is θ̂n. To do this step a numerical routine in
matlab made by the author is available upon request.

6.6 Monte Carlo Study

We carried out a small Monte Carlo study to assess the finite sample proper-
ties of q̂p̂Â

2
n when used to test H0 using the procedure given in the previous

section. We simulated ten thousand, type I censored samples of size n fixing
xq = 0, p = 0.75 and xp = F−1(p ; θ) and then, evaluated 0,p̂Â

2
n for each one

of the samples using expression (5.3). When computing the test statistic, p
and θ were estimated, as we would do in practice. The actual Monte-Carlo
percentiles were based on the 10,000 runs and are presented in the following
table without any type of correction.

Table VI: Monte-Carlo upper percentiles of 0,p̂Â
2
n .

Case IG3 (η = 1) Case Γ3 (α = 1)

n .25 .10 .05 .025 0.01 .25 .10 .05 .025 .01

10 .319 .458 .632 .731 0.799 .303 .444 .499 .533 .723
20 .313 .434 .523 .607 0.768 .302 .427 .536 .635 .748
40 .313 .466 .580 .622 0.708 .302 .435 .526 .614 .772
60 .324 .461 .498 .588 0.709 .308 .446 .514 .609 .709
80 .334 .422 .523 .590 0.778 .312 .435 .530 .611 .699
100 .316 .441 .516 .629 0.770 .301 .419 .529 .588 .705

∞ .310 .438 .538 .639 0.777 .295 .412 .502 .594 .717

The corresponding percentiles of the asymptotic distribution of 0,pÂ
2
n , which

is the limiting distribution for the Monte-Carlo distributions if we had known
the value of p and θ, are exhibited in the last row of Table VI.
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In a practical situation, the above assumed knowledge of p and θ is not pos-
sible and, for each simulated sample, one would compute a p-value for 0,p̂Â

2
n

using p̂ and θ̂n in the asymptotic distribution. As a small verification that
this procedure actually provides an accurate method, out of 500 simulated
(inverse Gaussian) samples with the same parameters fixed previously, the
p-value was computed for each sample as described here and a test for uni-
formity in the (0, 1) interval was made using Anderson-Darling’s statistic A2.
The results are shown in Table VII.

Table VII: Test for uniformity of the obtained p-values.

Sample size (n) Value of A2 Significance

10 4.326 0.006
20 3.301 0.019
30 2.617 0.043
100 2.409 0.055

As can be observed, uniformity of these p-values is still rejected with n = 100
which seems puzzling in the light of the very nice approximation suggested in
Table VI. The explanation of this apparent contradiction is that, in Table VI,
the Monte-Carlo distributions are quite well approximated by the asymptotic
distribution in the right tail ; that is, for tail areas below 0.25.

To double-check this observation on the good approximation of the asymp-
totic distribution on the right tail, a conditional test was performed for the
simulated p-values, conditioning on the fact that these were below 0.25. The
results on Table VIII confirm the good approximation.
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Table VIII: Conditional test for uniformity of the obtained p-values
(≤ 0.25).

Sample size (n) Value of A2 Significance

10 0.654 0.594
20 0.719 0.539
30 0.922 0.398
100 0.224 0.980

6.7 Conclusions

A procedure has been developed for testing the inverse Gaussian and, sepa-
rately, for testing the gamma distribution. This procedure works under type
I single or double censoring. Connections were established with other known
cases (normal with one or both parameters unknown, exponential and Levy
distribution). A procedure is suggested to compute p-values instead of con-
structing and using tables. This procedure is outlined and the corresponding
routine was developed in matlab.



Appendix A

Regularity Conditions

In this Appendix we define the regularity conditions for the families of prob-
ability densities used in the first part of the thesis. Let

F = {f(x; θ) : θ ∈ Θ ⊂ IR}

be a one dimensional parametric family of densities defined on IR. The
following conditions on F are basically taken from Amari (1990) page 16.

Definition 18 We will say that the parametric family F is regular if it
satisfies the following conditions

(A1) There exist a measure ν on IR such that the measures generated by the
members of F are equivalent to ν. This implies that all the measures in
F have common support, so they are mutually absolutely continuous.

(A2) Θ is an open subset of IR.

(A3) Every density f(x; θ) is smooth1 as a function of θ a.e.[ν] and the
partial derivatives {∂/∂θi} and integration with respect to the measure
ν are always commutative.

1means of class C∞(Θ)

191
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(A4) For all θ ∈ Θ, the random variables

∂kf(x; θ)

∂θk

f(x; θ)
, k = 1, 2, . . .

are square integrable with respect to the measure f(x; θ)ν(dx).

(A5) The set of functions {
∂kf(x; θ)

∂θk
: k = 1, 2, . . .

}

is linearly independent a.e. [ν]

(A6) For each θ0 ∈ Θ there exist ν integrable functions hk(x, θ0) for k =
1, 2, . . . , such that ∣∣∣∣dkf(x; θ)

dθk

∣∣∣∣ ≤ hk(x, θ0)

and ∫
hk(x, θ0)f(x; θ) dµ(x) < ∞ ,

holds in a neighborhood Nθ0 of θ0 a.e. [ν].



Appendix B

Affine Spaces

In this Appendix we present a brief description of the important aspects of
Affine Spaces used in Part I of the thesis. For more details the reader can
consult for example Berger (1994).

Affine Geometry is just the “usual” Geometry but without the notions of
distance and angles. An affine space can be thought of as a set which becomes
a vector space by simply selecting a point to be the origin (the zero vector).
One of the simplest examples is the plane which it is not a vector space itself
but if one selects arbitrarily a point to be the origin then any other point
can be regarded as the vector whose tip is precisely that point and is based
at the selected origin.

It is well known that the structure of those arrows forms a real vector space
in the sense that two arrows represent the same vector if they are parallel
translates of each other and they are added and multiplied by scalars accord-
ing to the parallelogram rules applied to the corresponding arrows. Given
a vector v and a point x on the plane we can consider the particular arrow
based at x which corresponds to v. Denote its tip by x⊕v. Then each vector
v defines an operation on the plane which sends the point x to the point
x⊕v. This operation is usually called the translation through v and denoted
by ⊕v applied to the right so that the value of ⊕v acting on x is given in the
usual way as x ⊕ v.

193
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Notice it is true that (p ⊕ v) ⊕ w = p ⊕ (v + w), where + is the addition
operator between two arrows, and that given any two points x and y there
is a unique vector v for which y = x ⊕ v, namely the vector corresponding
to the arrow from x to y. That is to say, the choice of an origin sets up a
one-to-one correspondence between points and vectors. Obviously the same
structure appears in three and higher dimensional euclidean spaces.

Definition 19 An affine space is either the empty set or a triplet (X ,V ,⊕)
consisting of a nonempty set X (of points), a real vector space V (of transla-
tions) and a action ⊕ : X × V → X satisfying the following conditions: We
define x ⊕ v := ⊕(x, v)

(AF1) Let �0 be the zero vector in V . For all x ∈ X
x ⊕�0 = x

(AF2) For all �u,�v ∈ V and all x ∈ X
(x ⊕ �u) ⊕ �v = x ⊕ (�u + �v)

(AF3) For any two points x, y ∈ X there is a unique �u ∈ V such that

x ⊕ �u = y. We will denote this unique vector �u by
−→
xy.

The dimension of the affine space (X ,V,⊕) is defined to be the dimension
of the vector space V.

To avoid confusion we will always use a symbols like ⊕, �, . . . for the trans-
lation operator and keep the usual symbol + for the addition of vectors (or
real numbers). It is important to keep in mind that when x, y ∈ X then x+y
it is not defined.

In group theory, conditions (AF1) and (AF2) say that the abelian group
V acts on X and condition (AF3) is equivalent to say that V actually acts
transitively and faithfully on X .

For every fixed x0 ∈ X consider the mapping Tx0 : V → X given by

Txo(�v) = x0 ⊕ �v
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which is bijective in virtue of (AF3). Consider also the mapping �x0 : X → V
given by

�x0(x) =
−→
x0x (B.1)

which is also bijective in virtue of (AF3). Note that

�xo(Tx0(�v)) = �x0(x0 ⊕ �v) =
−−−−−−−→
x0(x0 ⊕ �v) = �v

and
Tx0(�x0(x)) = Tx0(

−→
x0x) = x0 ⊕−→

x0x = x.

It is therefore established a one-to-one correspondence in which we can iden-
tify X with V via the isomorphism �x0 . In this way, we can consider X as
the vector space obtained by taking x0 as the origin in X . This is called
the vectorialization of X at x0. Thus, an affine space (X ,V,⊕) is a way of
defining a vector space structure on a set of points X , without making the
commitment to a fixed origin in X .

Some important properties are the following. Given x1, x2, x3 ∈ X , since
x3 = x1 ⊕−−→

x1x3, x2 = x1 ⊕−−→
x1x2 and x3 = x2 ⊕−−→

x2x3 then

x3 = x2 ⊕−−→
x2x3 = (x1 ⊕−−→

x1x2) ⊕−−→
x2x3 = x1 ⊕ (

−−→
x1x2 +

−−→
x2x3)

and thus, by (AF3) −−→
x1x2 +

−−→
x2x3 =

−−→
x1x3

which is known as Chasles’ identity. For x, y ∈ X we can always write
y = x⊕−→

xy = (y ⊕−→
yx) ⊕−→

xy and using (AF1) and (AF3) we get �0 =
−→
yx +

−→
xy

implying that
−→
yx = −−→

xy.

B.1 Affine combinations

A fundamental concept in linear algebra is that of a linear combination.
The corresponding concept in Affine spaces is that of affine combination.
However there is a problem, the sum of two points in an affine space it is
not well defined, actually the result is different depending on the selected
origin. That is, as described above, we can identify any point in the affine
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space with a vector via the choice of an origin, then the sum of two points
can be defined as the sum of the corresponding vectors but this depends on
the selected origin.

Thus, some extra condition is needed for an affine combination to make sense.
It turns out that if the scalars involved in the combination add up to unity
then the definition is intrinsic as the following simple lemma shows

Lemma 1 Given an affine space X , let {xi}i∈I be a finite set of points in X
and {λi}i∈I be a set of real numbers such that

∑
i∈I λi = 1 then the point

x = xo ⊕
∑
i∈I

λi
−−→
xoxi (B.2)

is independent of the choice of the origin xo ∈ X .

Definition 20 The unique point x in the previous Lemma is called the affine
combination of {xi}i∈I with coefficients {λi}i∈I . It is usually denoted by∑

i∈I

λi xi.

Note that the affine combination x is the unique point such that

−→
yx =

∑
i∈I

λi
−→
yxi for every y ∈ X

that is, y playing the role of origin in (B.2) and, setting y = x, the unique
point such that ∑

i∈I

λi
−→
xxi = 0.

B.2 Affine subspaces

In linear algebra, a vector subspace can be characterized as a nonempty
subset of a vector space closed under linear combinations. In affine spaces
the notion of subspace corresponds to the same but with affine combinations.
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Definition 21 Given an affine space (X ,V ,⊕), a subset Y of X is an affine
subspace if for every finite set of points {yi}i∈I ⊂ Y and for any set {λi}i∈I of
real numbers such that

∑
i∈I λi = 1, the affine combination

∑
i∈I λiyi belongs

to Y .

As expected, affine subspaces can also be characterized in terms of subspaces
of V . Given any point x ∈ X and any subspace U of V , define

x ⊕ U := {x ⊕ u | u ∈ U}.

Lemma 2 Let (X ,V,⊕) be an affine space.

1. A nonempty subset Y of X is an affine subspace if and only if for every
point y ∈ Y, the set

Uy := {−→yz | z ∈ Y}
is a subspace of V. Consequently Y = y ⊕ Uy. Furthermore,

U := {−→yz | y, z ∈ Y}

is a subspace of V and Uy = U for all y ∈ X . Thus Y = y ⊕ U .

2. For any subspace U of V and for any y ∈ X the set Y = y ⊕ U is an
affine subspace of X .

The subspace U is called the direction space of the affine subspace. The
dimension of the affine subspace Y is defined to be the dimension of its
direction space. Note that an affine subspace it is actually an affine space in
its own right.

B.3 Affine Maps

Corresponding to linear maps there exist the notion of affine maps.



APPENDIX B. AFFINE SPACES 198

Definition 22 Given any two affine spaces (X ,V ,⊕) and (Y ,W, �), a func-
tion h : X → Y is an affine map if and only if for every family {xi}i∈I of
points in X and for every family {θi}i∈I of scalars such that

∑
i∈I θi = 1, we

have

h

(∑
i∈I

θi xi

)
=

∑
i∈I

θi f(xi).

In other words, h preserves affine combinations.

Lemma 3 Given a point x ∈ X , a point y ∈ Y and a linear map �h : V → W
the map h : X → Y defined as

h(x ⊕ �v) := y + �h(�v) , �v ∈ V
is an affine map. Conversely, given an affine map h : X → V there exist a
unique linear map �h : V → W such that

h(x + �v) = h(x) + �h(�v) , x ∈ X , �v ∈ V .

This unique linear map is called the linear map associated with h.

Let X0 be an affine subspace of X . Since an affine map preserves affine combi-
nations, and since the affine subspace X0 is closed under affine combinations,
the image h(X0) under the affine map h is an affine subspace of Y .

B.4 Affine Independence and coordinates

Corresponding to the notion of linear independence in vector spaces we have
the notion of affine independence.

Definition 23 Given an affine space (X ,V,⊕) a family {xi}i∈I ⊂ X is

affinely independent if the family
{−−→

xixj

}
j∈(I−{i})

is linearly independent for

some i ∈ I.

This definition makes sense because it is easily shown that the independence

of the family
{−−→

xixj

}
j∈(I−{i})

does not depend on the choice of xi. Recall that
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given a k dimensional vector space V and an ordered basis V0 = {�v1 . . . , �vk}
for V , the standard representation of V with respect to V0 is the function
ψV0 : V → IRk defined by ψV0(�v) = (a1, . . . , ak)

t where

�v =
k∑

i=1

ai �vi. (B.3)

In fact, ψV0 is an isomorphism. Now for a point x0 ∈ X consider now the
following composition

Cx0,V0 := ψV0 ◦ �x0 : X → IRk

where �x0 is the bijection defined in (B.1). The map Cx0,V0 is therefore a
bijection and can be expressed as

Cx0,V0(x) = (θ1, . . . , θk)
t when x = x0 ⊕

k∑
i=1

θi�vi.

Definition 24 The function Cx0,V0 is called an affine parametrization of the
affine space (X ,V ,⊕) with respect to the point x0 and the basis V0.

We can choose another point x1 and another basis V1 = {�w1, . . . , �wk} and let
θ = (θ1, . . . , θk)

t then

Cx0,V0 ◦ C−1
x1,V1

(θ) = Cx0,V0(�
−1
x1

◦ ψ−1
V1

(θ))

= ψV0 ◦ �x0

(
x1 ⊕ ψ−1

V1
(θ)

)
= ψV0

(−−−−−−−−−−−→
x0

[
x1 ⊕ ψ−1

V1
(θ)

])
= ψV0

(−−→
x0x1 + ψ−1

V1
(θ)

)
= ψV0

(−−→
x0x1

)
+ ψV0 ◦ ψ−1

V1
(θ)

= θ0 + Mθ (B.4)

where M is the change of basis matrix from V1 to V0 and θt
0 = (θ0

1, . . . , θ
0
k)

where

−−→
x0x1 =

k∑
i=1

θ0
i �vi.
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Let Y be a r dimensional affine subspace of the k dimensional affine space
(X ,V ,⊕). Also let y0 be a point in Y and W = {�w1, . . . , �wr} a basis of the
direction space of Y . For η ∈ IRr we have

Cx0,V0 ◦ C−1
y0,W (η) = Cx0,V0(�

−1
y0

◦ ψ−1
W (η))

= ψV0(
−−→
x0y0) + ψV0 ◦ ψ−1

W (η)

= η0 + Bη (B.5)

where η0 ∈ IRk and B is a k × r matrix of rank r.

Lemma 4 Given an affine space (X ,V,⊕) let {x0, x1, . . . , xm} be a set of
m+1 points in X . Let x ∈ X be such that x =

∑m
i=0 θixi where

∑m
i=0 θi = 1.

Then the set {θ0, θ1, . . . , θm} is unique if and only if
{−−→

x0x1, . . . ,
−−−→
x0xm

}
is

linearly independent

Definition 25 An Affine Frame in an affine space (X ,V,⊕) of dimension k

is a set of k + 1 points {x0, x1, . . . , xk} such that
{−−→

x0x1, . . . ,
−−→
x0xk

}
is a base

for V .

Corollary 11 Let (X ,V,⊕) be an affine space of dimension k. Given an
affine frame F0 = {x0, x1, . . . , xk} the mappings CF0 : X → IRk and BF0 :
X → IRk defined by

CF0(x) = (θ1, . . . , θk)
t when x = x0 ⊕

k∑
i=1

θi
−−→
x0xi

BF0(x) = (θ0, θ1, . . . , θk)
t when x =

k∑
i=0

θixi and
k∑

i=0

θi = 1

are bijections.

Thus, given an affine space (X ,V,⊕) for any m ≥ 1 it is equivalent to consider
a set of m + 1 points {x0, x1, . . . , xm} in X or a pair (x0, {�v1, . . . , �vm}) where
the �vi are vectors in V .

Consider an affine space (X ,V ,⊕) of dimension k. Let x0 be a point in X and
{�v1, . . . , �vk} be a base for V. Then clearly this a base for the vectorialization
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of X at x0. Therefore any point x in X can be written as

x = x0 +
k∑

i=1

θi�vi

for some real numbers θ1, . . . , θk.



Appendix C

Dispersion Models

In this Appendix we present a brief of the most important aspect of Disper-
sion Models that we use in the first part of the thesis. For details, the reader
can consult Jorgensen (1997).

The main idea behind dispersion models is that the notions of location and
scale may be generalized to position and dispersion respectively. Similarly,
the residual sum of squares from analysis of variance may be generalized to
the notion deviance. As an important motivation, consider first the den-
sity (with respect to the Lebesgue measure on IR) function of the normal
distribution N(µ, σ2)

f(x; µ, σ2) = (2πσ2)−1/2 exp

{
− 1

2σ2
(x − µ)2

}
, x ∈ IR.

From the point of view of dispersion models, the crucial properties of this
density function are:

1. The exponent (x − µ)2/(2σ2) is a negative constant times the squared
distance between x and µ.

2. The factor (2πσ2)−1/2 does not depend on µ.

202



APPENDIX C. DISPERSION MODELS 203

The crucial step is to generalize the notion squared distance to the notion of
unit deviance. In the following we consider a family of probability distribu-
tions for a real-valued random variable Θ. We confine ourselves here to the
case where Θ is a continuous random variable. Denote by S the interior of
the smallest interval containing the union of the support of all the members
in the family. We let ϑ be a parameter with domain S.

Definition 26 A function d : S × S → IR is called a unit deviance if it
satisfies

d(θ; θ) = 0 ∀ θ ∈ S
d(θ; ϑ) > 0 ∀ θ 
= ϑ.

A unit deviance d is called regular if d(θ, ϑ) is twice continuously differentiable
on S × S and staisfies

∂2d(ϑ, ϑ)

∂ϑ2
> 0 ∀ϑ ∈ S.

The unit variance function V : S → IR+ of a regular unit deviance is defined
by

V (ϑ) =
2

∂2d(ϑ, ϑ)

∂ϑ2

The normal distribution unit deviance d(θ, ϑ) = (θ−ϑ)2 is obviously regular
with unit variance function V (ϑ) = 1. Note that the definition does not
require the unit deviance to be symmetric in its arguments, although it can
be proved it is locally symmetric for θ near ϑ.

Let ϑ0 be a fixed value in S. Note that if d is a regular unit deviance, then
d(θ, ϑ0) has a unique minimum at ϑ0 implying that for all ϑ ∈ S

∂d(ϑ, ϑ)

∂θ
= 0

differentiating with respect to ϑ one has

∂(ϑ, ϑ)

∂θ2
+

∂(ϑ, ϑ)

∂ϑ∂θ
= 0
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and thus

V (ϑ) =
2

∂2d(ϑ, ϑ)

∂ϑ2

=
2

−∂(ϑ, ϑ)

∂ϑ∂θ

.

Furthermore we have the following expansion of d near its minimum

d(ϑ0 + δx, ϑ0 + δm) =
δ2

V (ϑ0)
(x − m)2 + o(δ2) (C.1)

This expansion shows that a regular unit deviance behaves approximately
as the normal unit deviance near its minimum, with curvature given by the
reciprocal of the unit variance function.

Definition 27 A reproductive dispersion model DM(µ, σ2) with position pa-
rameter ϑ and dispersion parameter ε is a family of probability distributions
whose density functions with respect to a suitable measure may be written
in the form

f(θ; ϑ, ε) = a(θ; ε) exp

{
− 1

2ε
d(θ; ϑ)

}
, θ ∈ S (C.2)

where a ≥ 0 is a suitable function, d is a regular unit deviance on S × S,
ϑ ∈ S and ε > 0. A dispersion model density of the form (C.2) is said to be
expressed in standard form.

Note that the support of any DM(ϑ, ε) depends on ε only. Note also that
we require (C.2) to hold on S wich implies that a(θ, ε) is zero outside the
support of DM(ϑ, ε).

Definition 28 We call (C.2) a proper dispersion model PD(ϑ, ε) if the unit
deviance d is regular and (C.2) takes the form

f(θ; ϑ, ε) = a(ε)V −1/2(θ) exp

{
− 1

2ε
d(θ; ϑ)

}
(C.3)

for θ, ϑ ∈ S, a suitable function a and V the unit variance function.

We call (C.2) a reproductive exponential dispersion model ED(ϑ, ε) if the
unit deviance takes the form

d(θ, ϑ) = θh1(ϑ) + h2(ϑ) + h3(θ) (C.4)

for some suitable functions h1 h2 and h3.
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Note that a natural exponential family is a reproductive exponential dis-
persion model with h1 the identity and ε = 1/2. Conversely note that a
reproductive exponential dispersion model with known ε gives a natural ex-
ponential family. For example, the normal distribution is a proper dispersion
model and also a reproductive exponential dispersion model.

Let d : IR → IR be a nonnegative twice continuously differentiable function
satisfying d(0) = 0, d(θ) > 0 for θ 
= 0 and d′′(0) > 0. Then d(θ − ϑ) is a
regular unit deviance.

Definition 29 If the integral

1

a(ε)
=

∫
IR

exp

{
− 1

2ε
d(θ − ϑ)

}
dθ

is finite for ε ∈ (0, ε0) for some ε0 > 0 then

f(θ; ϑ, ε) = a(ε) exp

{
− 1

2ε
d(θ − ϑ)

}
(C.5)

is defined to be a location-dispersion model with location parameter ϑ.

Note the corresponding variance function is constant and therefore location-
dispersion models are proper dispersion models. In fact, the unit deviance
can be rescaled so that the unit variance function is V (θ) = 1, the unit
variance function of the normal distribution, showing that many different
dispersion models may share the same unit variance function. In analogy to
general location-scale models, scale dispersion models can also be defined.

Let d : IR → IR be a nonnegative twice continuously differentiable function
satisfying d(1) = 0, d(θ) > 0 for θ 
= 1 and d′′(1) > 0. Then d(θ/ϑ) is a
regular unit deviance.

Definition 30

f(θ; ϑ, ε) = a(ε)θ−1 exp

{
− 1

2ε
d(θ/ϑ)

}
(C.6)

is defined to be a scale-dispersion model with scale parameter ϑ.
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Note this model has unit variance function proportional to θ2 showing again
that there are many proper dispersion models that have the same unit vari-
ance function.

We now consider transformations of dispersion models. Consider a regular
unit deviance on S × S and a diffeomorphism h : S → h(S). A new unit
deviance may then be defined on h(S) × h(S) by

dh(φ; ϕ) := d(h−1(φ), h−1(ϕ))

Note that dh is also regular and the corresponding unit variance function is

Vh(ϕ) = V (h−1(ϕ))[h′(h−1(ϕ))]2.

If Θ follows a dispersion model with unit deviance d consider now the trans-
formation Φ = h(Θ) with h being the diffeomorphism defined above. Then Φ
follows a dispersion model with unit deviance dh as seen from the following
expression of the density of Φ

f(φ; ϕ, ε) = A(φ, ε) exp

{
− 1

2ε
dh(φ; ϕ)

}
(C.7)

where

A(φ, ε) =
a(h−1(φ); ε)

|h′(h−1(φ))|

Consider the particular transformation

h(θ) =

∫ θ

θ0

V −1/2(ϑ)dϑ (C.8)

for fixed θ0. This transformation yields a unit deviance dh with constant
variance function Vh ≡ 1. It is called the variance stabilizing transformation.

The general idea behind the definitions is that, with d being a measure of
squared distance, the second factor of (C.2) tends to give a mode point of
the density near ϑ. It actually gives a mode when a does not depend on θ,
for example in a proper dispersion model with V constant. The smaller the
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value of ε, the higher and more narrow the peak of this mode will be. This
makes the ϑ and ε somewhat analogous to location and scale respectively.

Another important aspect of (C.2) is that a(θ; ε) does not depend on ϑ. This
generalizes the second property of the normal distribution above, although
in contrast to the normal case, a(θ; ε) may depend on θ. Another important
observation is that, in order to show that a given two parameter family is
a dispersion model, we must find a parametrization (ϑ, ε) that brings the
density into the form (C.2). The parameter ε is determined up to a constant,
because multiplying d and ε by the same constant leaves the dispersion model
unchanged.

The word unit in the terms unit deviance and unit variance function is used
here both in the statistical sense of “observational units” and in the sense of
corresponding to standardized forms of the functions ε−1d(θ; ϑ) and εV (ϑ)
respectively, with ε = 1. The terminology variance function refers to the role
of εV (ϑ) as the asymptotic variance of Θ. In fact, for reproductive exponen-
tial dispersion models the exact variance of Θ is εV (ϑ) for any value of ε.
The unit variance function hence summarizes how the variance behaves as a
function of ϑ. It is essentially the curvature of the deviance at its minimum.
Furthermore, the shape of the unit variance function itself provides a useful
summary of the degree and type of non-normality of the corresponding dis-
persion model. The terminology reproductive model refers to the property
that the distribution of the sample mean θ̄ for a random sample of size n
from the model belongs to the model itself. For an arbitrary reproductive
dispersion model the asymptotic variance of the sample mean θ̄ behave like

asymptotic variance(θ̄) ∼ ε

n
V (ϑ) as ε → 0

We now introduce the saddlepoint approximation for dispersion model, a
useful approximation of the density function.

Definition 31 The saddlepoint approximation for a dispersion model with
regular unit deviance d is defined by

f(θ; ϑ, ε) ∼ [2πε V (θ)]−1/2 exp

{
− 1

2ε
d(θ; ϑ)

}
, as ε → 0 (C.9)
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The saddlepoint approximation is valid for an extensive range of models and
is often very accurate. It is even exact in a very few special cases such as the
normal. The saddlepoint approximation may be interpreted as being half way
the original density and a normal approximation. In fact if we replace V (θ)
by V (ϑ) and introduce a quadratic approximation like (C.1) we essentially
get a normal approximation.

Note that the saddlepoint approximation only gives an approximation to the
function a(θ; ε). In fact this approximation is equivalent to

ε1/2 a(θ; ε) → [2πV (θ)]−1/2 as ε → 0.

Note also that the saddlepoint approximation on the right hand side of (C.9),
while positive, is not in general a density function on S. However it may be
rescaled to become a density function, motivating the following definition.

Definition 32 Let d be a given regular unit deviance defined on S × S the
corresponding renormalized saddlepoint approximation is the density function
defined by

f0(θ; ϑ, ε) = a0(ϑ, ε)V −1/2(θ) exp

{
− 1

2ε
d(θ; ϑ)

}
(C.10)

where a0(ϑ, ε) is the normalizing function such that

1

a0(ϑ, ε)
=

∫
S

V −1/2(θ) exp

{
− 1

2ε
d(θ; ϑ)

}
dθ

Fortunately it is possible to show using a Laplace approximation that

a0(ϑ, ε) ∼ [2πε]−1/2 as ε → 0.

Now we can state two important features of the class of proper dispersion
models has:

1. the renormalized saddlepoint approximation is exact and
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2. making the variance stabilizing transformation (C.8) we get a location
dispersion model

f(φ; ϕ, ε) = a(ε) exp

{
− 1

2ε
dh(φ, ϕ)

}

making ϕ the mode of the density.

If d(θ, ϑ) is monotone as a function of θ on each side of ϑ, the density is
unimodal, and become more and more peaked and concentrated around ϑ as
ε decreases. In this sense, the interpretation of the parameters ϑ and ε as
position and dispersion parameters is especially clear for proper dispersion
models transformed via the stabilizing variance transformation.

Theorem 26 Let Θ be a continuous random variable with density (C.10)
of a renormalized saddlepoint approximation then it follows that

Θ − ϑ

ε1/2

d→ N(0, V (ϑ)) as ε → 0 (C.11)
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