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Abstract

A granular system can flow like a liquid under the action of an external force, but it can also
auto organize and jam, becoming able to support shear stress to some extent, like a solid.
Thermal systems can also present jamming, like the glassy state of a fluid. Some amazing
analogies in the dynamics of very different systems near jamming, like colloids, foams and
grains, gave rise to several proposals about describing in a unified and general way all the
systems that jam.

With the idea of testing experimentally these proposals, we studied the mechanical prop-
erties of a dense granular material under weak random vibration. By putting in direct contact
millimetric glass beads with piezoelectric transducers, we managed to inject energy to the
system in a disordered manner with accelerations much smaller than gravity, resulting in a
slow compaction dynamics and no convection.

The weak vibration and the fact that the container was not shaken, allowed to perform in
the system very precise measurements at the same time of the vibration. The design of the
set up made possible to measure the agitation induced in the grains by using an accelerometer
buried in the bulk, to measure the packing fraction, to directly see boundary particles and
follow their trajectories, to measure the drag force on an intruder grain dragged at constant
velocity and, finally, to make Diffusing Wave Spectroscopy experiments.

In chapter 1 it is presented a general introduction of the state of the art concerning granular
materials and jamming, together with a brief description of some experimental works by other
groups that show analogies between dense granular materials and thermal jammed systems.
Also from other groups, there are presented two experiments that study the drag force on
granular systems under conditions that are close to our own rheology experiments.

The experimental set up is described in chapter 2 and it is shown how we managed to create
a weak and disordered vibration without convective flux. There are also presented systematic
measurements of the acceleration and kinetic energy induced on the granular medium by the
piezoelectric transducers as a function of frequency and voltage of the input signal. The

measurements were done with an accelerometer buried in the grains.
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Chapter 3 includes the study of the relaxation of the packing fraction of the weakly vibrated
granular material. The density showed to logarithmically increase with time. A central result
of these experiments was that the relevant parameter that controls the rate of compaction is
the mean kinetic energy and not the r.m.s. acceleration, as is usually considered. It was also
studied the response of the density to abrupt changes on the intensity of vibration, finding
interesting analogies with the response of thermal systems to changes in temperature.

Direct observation of boundary particles allowed to follow and study their trajectories
during long time compaction experiments. The results of these experiments are the subject
of chapter 4. The diffusion properties of these particles suggest that their dynamics is similar
to the cage dynamics found in glasses, and it was even possible to get a rough estimation
of the cage size. An astonishing finding here was that, despite the continuous compaction
of the system, the dynamics of the particles was homogeneous in time, which suggests that
compaction is governed by collective modes.

Chapter 5 shows rheology experiments where a thread and an intruder grain were dragged
quasi statically through the granular material at constant velocity and the resulting drag force
was measured. The objects could be dragged while vibrating the system. An exhaustive study
of the drag force as a function of velocity, intruder size and vibration intensity is presented.
It was possible to separate the contributions to the drag force that came from the thread and
those that came from the intruder grain. Interestingly, the rheology of the intruders dragged
through the vibrated phase shared features with solid - solid friction, which suggests that
models of thermal activated processes could be used to describe granular drag force. It was
even measured the ‘direct effect’ parameter of friction models.

An analysis of the fluctuations of the drag force is also included in chapter 5, where it
is shown that the size of the fluctuations were independent of the size of the intruder. The
power spectra of the force fluctuations showed to be Lorentzian, with a characteristic length
that coincides with the mean diameter of the grains of the medium. Finally, it is developed a
simple model based on an Ornstein-Uhlenbeck process which recovers the principal features
of the fluctuations of the drag force.

The general conclusions and perspectives of the work are discussed in chapter 6.



Chapter 1

General Introduction

1.1 Granular materials

Systems of many particles that interact mainly by contact forces is what is understood by
granular matter. It is conventionally accepted that the minimum size that can have the
constituent particles to be considered a granular material is of d = 100um [1], where the
criteria are that the thermal energy is much smaller than gravitational energy and that the
Van der Walls interactions can be neglected. The non-thermal character of a granular material
becomes clear when one sees that the potential energy of a glass sphere of diameter d = 100um
at a height d at room temperature T = 27°C' is of the order of 108kgT.
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Figure 1.1: The pressure at the bottom of two granular piles. The stress distribution at the bottom
of the pile is different for a pile prepared by point source deposition and for one prepared by rain
deposition. Figure taken from reference [2].
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When the surrounding fluid in a granular medium is not highly viscous, and the constituent
particles are big enough so that the capillary forces and viscous interactions can be neglected,
the mechanical properties of the material are governed by inelastic collisions and frictional
contacts between grains. Even in this simple case, the disorder of the medium and the com-
plexity inherent to dissipative and frictional interactions make such mechanical properties very
complex. An impressive phenomenon that illustrates this fact is the stress distribution at the
bottom of a granular pile. Figure 1.1 shows measurements of the pressure at the bottom of
two granular piles by Vanel et al. [2]. The difference between the two piles was the prepara-
tion: the pile on the top of the figure was prepared by point source deposition and it showed a
pressure dip below the peak of the pile. Such a dip was not present in the other pile which was
prepared by rain deposition. Therefore, two macroscopic identical piles, with identical volume

and shape, present different stress distributions depending on their preparation history.

Liquid

Gas

Solid

I;r:gtiils Jamming Derr;ZierT:Ieow CoIIis_ionaI
transition regime
solid (complex fluid) (gas)
>

Vibration
or Shear

Figure 1.2: A sand clock is an example of a system where the solid, liquid and gas phases of granular
matter coexist. Depending on external actions, granular matter can behave in very different ways.

Depending on the external forcing, granular matter can behave like a solid able to support
compression and to some extent shear, but it can also flow like a fluid when sheared stronger or
vibrated (see figure 1.2). However, the behavior of a granular material is always peculiar due to
the highly dissipative frictional and collisional interactions between grains and, consequently,
a perfect analogy with a common solid, liquid or gas is not usually possible. As a result, up
to now it has not been possible to develop a complete theoretical framework to describe the

physics of granular matter.
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Specially interesting is the transition between the static elastic-like and the dense flow
regimes: the jamming transition. Dynamics and mechanical properties of a granular material
near this jamming/unjamming transition are not quite well understood and they present
surprising analogies with very different systems like foams and even with thermal systems like
colloids and glasses.

The motivation of the present work was to investigate the rheology, relaxation processes

and grain dynamics of a granular material near the jamming transition.

1.2 Jamming, force chains and fragile matter

Figure 1.3: (a) A jammed colloid (schematic). Black: force chains; grey: other force-bearing parti-
cles; white: spectators. (b) Idealized rectangular network of force chains. Picture taken from reference

[3]

A jammed granular assembly like a pile is what is called by Cates et al. [3] fragile matter.
It is a rigid system that can support stresses elastically but whose rigidity comes precisely
from the applied stresses. In other words, under stress, the system self organizes to support
the load and becomes rigid. However, it is fragile because it can only support stresses in the
directions determined by the stresses that rigidified it; stresses in any other direction, even if
infinitesimal, cause irreversible reorganizations in the medium. Moreover, when there is no
stress, it is not jammed. Thus, the authors considered as fragile the jammed systems with no
tensile forces.

Cates et al. modeled a jammed colloid by an assembly of force chains that supported the
external load and that were immersed in a sea of 'spectator’ particles (figure 1.3). With this
work Cates et al. introduced a precise definition of fragility. They also talked about jamming
as a general phenomenon that could be present in systems as different as colloids and grains,
and they pointed out the importance of force chains in jammed systems.

Inspired in the work by Cates et al. [3], Liu and Nagel [4] proposed that all jammed

systems present common properties even if they were jammed not because of external loads
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Figure 1.4: Jamming phase diagram. Picture taken from reference [4]

but as a result of internal attractive forces between particles. They argued that a glass was
a disordered jammed liquid, that has come to rest due to a lowering of temperature and that
could be unjammed by rising the temperature again. This took Liu and Nagel to suggest
that if temperature and stress played a similar role in jamming and unjamming systems,
there should be a universal way to describe jammed thermal and non thermal systems. They
sketched a speculative jamming phase diagram that would unify the description of all systems
that jam: grains, bubbles, droplets, liquids (see figure 1.4). In this scenario, jamming would
be controlled by temperature, external load and the inverse of density.

From the equivalent role of temperature and load in the jamming phase diagram, Liu and
Nagel pose the question of how similar is the dynamics of thermal and non thermal systems
when approaching the jamming transition. They also talk about the pertinence of defining
an effective temperature and the possibility of applying concepts of statistical mechanics to
describe non thermal systems.

We will see in section 1.4 experimental evidence of analogies in the dynamics of thermal
and non thermal systems that support the jamming phase diagram proposed by Liu and Nagel,
but first we will see that these authors were not the first ones to apply statistical mechanics

to granular media.
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1.3 Statistical physics approach

One of the reasons why granular materials are so difficult to describe is that they are composed
of many interacting particles. This took S. F. Edwards [5] to try to apply the tools of statistical
mechanics to granular matter.

The ergodic hypothesis proposed by Edwards [5] consists in considering equally probable
to occur all the particular configurations of N grains with a given volume V' that are blocked,
and that result from any macroscopic mechanical action on the system. Then it is possible to

define the configurational entropy as:
Spaw(V, N) = InQpa,(V, N), (1.1)

where Qpq,(V, N) is the number of blocked configurations compatible with a macroscopic
state defined by the volume V. From here, the compactivity of Edwards Xgg, = 0V/9SEgaw
can be defined, which is the analog to temperature in thermodynamics.

Another attempt to use statistical physics concepts to describe granular matter was done
by Makse and Kurchan [6]. They made numerical simulations that suggest that an effective
temperature 7. ;s can be defined in granular systems in the same way that it is done in glassy
systems. In these thermal out of equilibrium blocked systems, a well defined temperature
appears when fluctuation-dissipation relations are used!. It is called effective temperature
and is defined as T.fr = D/x, where D is the diffusivity of the molecules and y the mobility.
It turns out that Tiss is different from the bath temperature but it governs the heat flow
and the slow components of the fluctuations and responses of all observables [6]. Makse and
Kurchan suggest the existence of an effective temperature that can be defined and measured

in granular systems by using fluctuation-dissipation relations.

IThe fluctuation-dissipation theorem relates the viscous dissipation with the random collisions of a Brow-
nian particle in a fluid in thermodynamic equilibrium. If the particle follows the Langevin equation:

d? d
my = —my g A,

where A(t) is a random force, the fluctuation-dissipation theorem states that:

1
kaT

/0 T AWA(E + 1) dr,

’y:

where kp is Boltzman’s constant and T is the temperature. This is equivalent to Einstein’s relation:

D
- = kBTv
X

where D is the diffusion coefficient and xy = v/F is the mobility, with v the velocity and F' an external force
applied to the particle.
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The validity of these ideas are still subject of an intense debate, and they have motivated

a great number of theoretical, numerical and experimental investigations.

1.4 Analogies between thermal and granular systems

1.4.1 Glass transition

liquid

Tg, Tgy, Tm
Temperature

Figure 1.5: Schematic representation of the specific volume as a function of temperature for a liquid
which can both crystallize and form a glass. Figure taken from reference [7].

Figure 1.5 shows schematically the behavior of the specific volume as a function of tem-
perature in a thermal system. The state of the system below the transition temperature 7,,
depends on the cooling rate, having the possibility of being a supercooled liquid, a glass or a
crystal.

Concerning vibrated granular materials, figure 1.6 shows the stationary packing fraction
as a function of vibration intensity I' on an experiment where a granular column was vertically
shaken. The intensity of vibration was characterized by the peak acceleration a of the container
normalized by the acceleration of gravity g: ' = a/g (see the inset in figure 1.6). At each
value of I, the system was tapped 10° times and at the end the density of the system, p, was
measured. Then the vibration intensity was changed by AI' = 0.5. After a transient, the
system arrives to a branch where there is a well defined reversible value of the density for each
vibration intensity. Nowak et al. report in reference [9] that the low I' part of the reversible

branch could only be attained by slowly reducing the intensity of vibration (AI' = 0.5), a
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Figure 1.6: Left: A schematic drawing of the shaken granular column and the four capacitors used
to measure density. The inset shows the acceleration induced by a tap of intensity I'. Figure taken
from reference [8]. Right: At each value of T, the system was tapped 10° times and at the end the
density of the system, p, was measured. Figure taken from reference [9].

process that is known as ’annealing’. When the vibration was reduced faster, the system fell
out of the reversible branch. This behavior seems to be similar to the response of liquids to

cooling presented in figure 1.5, though Nowak et al. do not talk about crystallization.

t (min)
19 00 2 30 45 60 79 928 05120138

A(cm)

16 18
v (Hz)

Figure 1.7: Left: fec structure obtained by annealing using ball bearings of d = 1.6mm in a square
confinement of 2dmm. Right: Cooling rate for the annealing process. Amplitude and linear frequency
for a square vibration as a function of time. Figures taken from reference [10].

In a more recent work, Ruiz et al. [10] managed to create granular crystals by vibrational
annealing (figure 1.7). If the ’cooling’ was fast, the crystal was not formed. It would be
interesting to try to reconstruct in this system a diagram like the one presented in figure 1.5.

In section 3.4 we present a quasi reversible state of density found in our set up in compaction

experiments.
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1.4.2 Kovacs effect

[=5.6 =18 =35

0 10 20 30 40 0O [0 20 30 40 50 60
t t

Figure 1.8: Response of the packing fraction, p, to variations of vibration intensity, I', as a function
of tap number, t, at four heights in the column (see figure 1.6). Curves for different heights are shifted
for clarity. Vibration intensity decreases in a) and increases in b). Figure taken from reference [11].

Another experimental evidence of the analogies between blocked thermal systems and
dense granular materials was found by Josserand et al. [11] in the same system described in
figure 1.6. The response of the packing fraction to variations on the intensity of vibration is
similar to the response of some observables to temperature variations in thermal systems out
of equilibrium?. In particular, the transient dilation observed in figure 1.8 when the vibration
intensity was increased is analogous to the 'Kovacs effect’, observed in thermal glassy systems
when the temperature is changed abruptly [12]. In our set up we also observed the Kovacs

effect (section 3.4).

1.4.3 Cage effect

Molecules in a glassy system have a peculiar dynamics characterized by the so called ’cage
effect’. According to this model, a particle in a glassy environment is free to move at the
interior of a cage from which it can only eventually escape. This kind of dynamics was
proposed to explain the multiple characteristic times observed in glassy systems, and it was
finally observed in real space by Weeks et al. in a colloidal system by means of a confocal
microscopy method [13].

Concerning granular systems, the cage effect has been observed in shearing experiments in

three dimensions by Pouliquen et al. [15], and more recently in two dimensions by Marty and

2For example the magnetic susceptibility in spin glasses
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Figure 1.9: Left: A horizontal deformable paralelogram was used to quasistatically shear a bidisperse
granular material. Right: In gray, a trajectory of 10000 cycles of a typical particle. The coordinates
x and y are normalized by the mean diameter of the particles (the circle in the figure represents
the size of a particle). In black, the first 2000 cycles of the same trajectory. The particle follows a
cage-like dynamics with a typical size of the cage of 0.3d. Figures taken from reference [14].

Dauchot [14]. The set up of this later work is shown in figure 1.9. A horizontal deformable
paralelogram was used to quasistatically shear a bidisperse granular material composed of
metallic cylinders of 4 and 5mm. The shear was periodic with an amplitude ©,,,, = +10°
and the position of 500 particles was registered each time the system was back to © = 0. The
plot in the right of figure 1.9 shows in gray a trajectory of 10000 cycles of a typical particle
and in black the first 2000 cycles. It can be seen that, indeed, the particle presents cage-like

dynamics.
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Figure 1.10: Left: Probability distribution of the size of jumps in the X direction for a time T.
Right: Root mean squared displacement of the trajectories. Figure taken from reference [14].

The statistical properties of the trajectories of particles in the experiment by Marty and
Dauchot are very similar to those of molecules in glass forming systems [14]. The left plot

in figure 1.10 shows the probability distribution of the size of jumps in the X direction for
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a time 7, AX(7) = X(t + 7) — X(t), normalized by the root mean squared displacement
o, = v/ (AX?2(7)). The exponential tails of the distribution are characteristic of intermittent
dynamics in blocked systems [14]. The right plot of the same figure is the ensemble average
of the root mean squared displacement of the trajectories. In a normal diffusion process,

12 However, it can be seen that for short times (Ar2(r))"/?

this quantity should grow like 7
goes as 7Y% i.e. a sub diffusive behavior. Marty and Dauchot interpret the transition from
subdiffusive to normal diffusion as the escape of particles from the cage. In this way they
estimate the size of the cage as r* =~ 0.3d, where the corresponding time needed to escape
from it is t* &~ 300 cycles. We will see later in chapter 4 that we obtained similar results in

our set up when analyzing the trajectories of boundary particles.

1.4.4 Granular temperature
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Figure 1.11: Left: experimental set up: two coaxial cylinders where the interior one rotates. A
granular material together with a fluid that matches the refractive index and the density of grains are
between cylinders. Tracers of different density are put into the system. Right: The diffusivity and
mobility of tracers define an effective temperature. Figures taken from reference [16].

Makse et al. [16] designed a Couette-Taylor set up in which they measured the effective
granular temperature 7., following the idea of applying fluctuation-dissipation relations to
granular materials. These ideas can be found in reference [6] and they were briefly described
in section 1.3 of the present work. The left image in figure 1.11 shows the experimental set
up: two coaxial cylinders where the interior one rotates. A granular material consisting of
a bidisperse mixture of acrylic particles is put between the cylinders together with a fluid
which matches the refractive index and the density of the particles (p, = 1.19g/mm). Tracer
particles of slightly different density (p, = 1.12¢g/mm and p; = 1.36g/mm) are put into
the system and their trajectories are followed while shearing the granular material. There is

an external vertical force on the tracers F' = ApVyg, where Ap is the difference of density
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between the tracer and the particles of the medium, V' is the volume of the tracers and
g is the acceleration of gravity. From the trajectories of the tracer particles, a diffusivity
D = {[2(t + ty) — 2(t)]?) /2t and a mobility x = (z(t + to) — 2(to)) /Ft can be evaluated.
The effective granular temperature is then obtained from T,fr = D/x, shown in the left plot
in figure 1.11 as a function of shearing rate. Interestingly, the same temperature is obtained

for different sizes of grains and different kinds of tracers.

1.5 Granular drag force; previous works

The motivation of the present work is to study the properties of granular matter near the
jamming transition zone. In other words, we wanted to know more about the rheology of
dense granular systems near blockage. The rheology of grains can be studied in two general
ways: by applying to the system boundary or body forces, and by dragging objects through
the system. Examples of the first method are a shearing Couette-Taylor cell and avalanches
in an inclined plane. A great number of experimental, numerical and theoretical works have
been done in relation to this kind of systems. For a detailed summary and compilation of
much of the findings on this subject see the collective work by the GDRMidi French group
[17].

Dragging objects through granular materials has not been studied so extensively in the
physics community. Two pioneering works on this subject are due to Wieghardt in 1975 [18]
and to Zik et al. in 1992 [19]. Both of them studied the drag force as a function of velocity,
but in regimes that were far from jamming. The velocities investigated by Wieghardt were big
enough to fluidize the granular material, while Zik et al. drove a particle through a strongly
vibrated granular material when the system was in the free fall phase of the vibration.

A more recent work that studied the granular drag force was performed by Chehata et
al. [20], where they investigated the flow around a fixed cylinder immersed in a uniform
granular flow. Among their findings are that the drag force was independent of the mean flow
velocity, that it scaled with the asymptotic static stress states in a tall granular bed and that
the drag acting on the cylinder was strongly affected by the surrounding channel geometry.
Again, since Chehata et al. were more interested in the transition ‘liquid-gas’ of the flow, they
worked in velocity regimes that were far from jamming, so that comparison with our results
should be done carefully.

Closer to the jamming transition on which we are interested are the works by Schiffer et
al. [21] and by Geng and Behringer [22]. A schematic representation of the experimental

set up used by Schiffer et al. is shown in figure 1.12. A vertical cylinder was extended into
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Figure 1.12: Left: experimental set up: a vertical cylinder was extended into a bucket of granular
material and held fixed while the bucket was slowly rotated. Right: dependence of the drag force on
the diameter of the cylinder for a velocity of 1.4mm/s. Data for different sizes of grains dg are
presented. Figures taken from reference [21].

a bucket of granular material and held fixed while the bucket was slowly rotated. The arm
holding the cylinder was held fixed by the sensor of a load cell which measured the drag force
Fy. In order to prevent the cylinder from repeatedly traveling through a trough created by
previous rotations, the granular environment was randomized by mixing the medium with
a fixed 'comb’ consisting of a series of thin steel rods. Millimetric glass spheres were used.
Schiffer et al. found no dependence of the drag force on the dragging rate, while the effect
on Fy of varying the diameter of the cylinder is shown in figure 1.12. A linear relation was
found?® with deviations from it for thin cylinders. The authors explain this deviation by the
fact that even a very thin cylinder encounters resistance from the medium to move, thus the
limit of the drag force when the diameter goes to zero must be a non zero constant.

The dragging experiment by Geng and Behringer [22] was, in a sense, the two dimensional
version of the experiment by Schiffer et al. presented above, though there are two substantial
differences. First, the particles used by Geng and Behringer are very smooth (a photoelastic
material was used) compared to the glass beads used by Schiffer et al. Second, the two
dimensional experiment is done at constant 'volume’, while in the 3D version the surface is
free. A schematic representation of the set up of Geng and Behringer is shown in figure 1.13,
and the plots with the drag force that they measured as a function of drag velocity and of
the size of the intruder are shown in figure 1.14. It can be seen that the drag force changed
with the drag velocity, in contrast with the results by Schiffer et al. [21]. Geng and Behringer
explain that the dependence on rate of the drag force appeared because the softness of the

particles introduced a characteristic time that was not present in the experiment with glass

3Though it is difficult to be sure of the linearity with less than one decade of variation of the cylinder
diameter.
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Figure 1.13: Schematic cross-sectional view of the set up used by Geng and Behringer. The apparatus
has circular symmetry in the horizontal plane, and the bottom plate, together with the particles, rotate
as a rigid body at a slow velocity. The inset shows how a digital force gauge is mounted o the top plate
and connected with an intruder particle through the force gauge hole. Figure taken from reference

[22].

beads by Schiffer et al. [22]. Concerning the variation of the drag force as a function of the
size of the intruder, the range of sizes explored by Geng and Behringer, compared to the size
of the grains of the medium, coincide with the range in which Shiffer et al. found deviations
from linearity.

Finally, figure 1.15 shows the power spectra P(w), from force time series at different
rotation rates wy. The power spectra and frequency are scaled with the rotation rate. The
fact that the curves for different rotation rates collapse means that fluctuations of force are
rate independent. On the other hand, the shape of the spectra is Lorentzian, which implies
that there is a characteristic length beyond which there is no correlation on the drag force
22].

Our own results of dragging an object through a granular material are presented in chapter
5, where the similarities and differences with the experiments by Schiffer et al. and by Geng

and Behringer are discussed.
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Figure 1.15: Power spectra, P(w), from force time series at different rotation rates. The scaling
frequency, wy is the rotation rate. Figure taken from reference [22].



Chapter 2
Weak random vibration

In the present chapter we describe the experimental set up that we designed with the idea of
studying the mechanical properties of a dense granular material under random vibration near
the jamming transition. We show how we managed to create a weak and disordered vibration
without convection. This last point was important since it allowed to study compaction
phenomena and rheological behavior without interference of convective flows.

There are also presented systematic measurements of the acceleration and kinetic energy
in the bulk induced on the medium by the piezoelectric transducers as a function of frequency
and voltage of the input signal. The measurements were done with an accelerometer buried

in the granular medium.

2.1 Experimental set up

Figure 2.1 schematically shows the experimental setup. A rectangular glass container is closed
at its bottom by seven piezoelectric transducers, each one glued by its extremes to a plastic
base in a way that the ceramic membrane is free to vibrate, being directly in contact with the
grains and with nothing else (figure 2.1, lateral view). The plastic bases of the transducers
as well as the glass container are all fixed to a main plastic support. The container is filled
with a binary mixture of glass beads of 1 and 1.5mm?!, and each piezoelectric is excited by a
square signal of frequency? f which is out of phase by 7 compared to that of its neighbors.
With this setup, the agitation created in the bulk is disordered and weak compared to typical
experiments of vibrated granular materials [9, 23, 24] where all the container is shaken with

accelerations of the order of or greater than gravity. In contrast, in our set up the root mean

!The mean diameter of the grains is d = 1.2mm and the dispersion of the diameter of each of the species
of the binary mixture is of 10%.
2 f takes values between 100 and 2000H z.

21
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Figure 2.1: Experimental setup. A glass container is closed at its bottom by seven piezoelectric
transducers. The container is filled with a bidisperse mixture of glass beads of 1 and 1.bmm that are
in direct contact with the transducers. Each piezoelectric is excited by a square signal of frequency f
that is out of phase by m compared to that of its neighbors.

squared acceleration ,.,,s induced in the bulk, measured by means of an accelerometer buried
in the granular material, is always smaller than gravity. With such a weak excitation, the
main mode excited in the system is the rotation of grains and re-organization of granular

contacts.

2.2 Different measurements

Besides the disordered agitation created by the independent transducers being in direct contact
with the grains, a great advantage of our set up is that the container is fixed and the vibrations

are very weak, so it is possible to perform very precise measurements of the granular packing
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while vibrating. Below, the techniques used to extensively characterize the response of the

system to vibration as well as some of its rheological properties, are briefly described.

Agitation measured in the bulk

Acceleration

Nt T

ST s

Piezos

Figure 2.2: Acceleration in the bulk measured by means of a buried accelerometer. The packing
fraction is obtained from the position of a metallic lid on the surface of the pile given by two prozimity
sensors.

In the best of our knowledge, in all granular vibration experiments done until now, what is
measured and controlled is the vibration of the container by placing an accelerometer on it or
simply by adjusting the amplitude and frequency of the shaker. In our set up, we were able to
bury an accelerometer into the bulk and take measurements while vibrating (see figure 2.2).
This allowed us to fully characterize the state of agitation of the system for different vibration
conditions as far as transmission of momentum is concerned. We obtained, for example, the
root mean squared acceleration 7,.,s and mean kinetic energy (e) for different frequencies
and voltages of the input signal of the transducers. The details of this technique and the main

results obtained are described in section 2.3.

Packing fraction

The packing fraction ¢ or, in other words, the average density of the system (represented as p
in figure 1.6), is obtained by measuring the height of the pile, which, knowing the dimensions
of the container, gives the total volume occupied by the grains. To know the height, a thin
metallic lid is placed on the surface of the grains and two inductive proximity sensors measure
the position of the lid (see figure 2.2). The weight of the lid is equivalent to five layers of
beads in the container and, since it is rigid, what we obtain is an averaged measurement of
the height of the pile. The resolution of the sensors is of the order of micrometers, so they
can detect very small density variations. However, the precision on the absolute value of the

packing fraction is not better than 3% (see equation 3.1).



CHAPTER 2. WEAK RANDOM VIBRATION 24

With this set up we were able to study the evolution in time of the density for different
vibration conditions in very long experiments. We could also observe the response of the
system to abrupt changes in the vibration intensity. Moreover, the density was measured at
the same time that measurements of particle tracking and diffusion of light (described below)
were performed. A detailed description of this technique and the main results obtained are

found in chapter 3.

Particle tracking

Figure 2.3: During compaction experiments, a CCD camera filmed a small region of approximately
5d x 5d next to a lateral transparent wall at a rate of one image each minute. Vertical y(t) and
horizontal x(t) positions of particles were obtained by image analysis.

The transparent walls of the glass container allowed to directly see the beads that were next
to the wall. We took advantage of this and filmed a small zoomed region of a lateral wall with a
CCD camera during long time vibration experiments. Even our strongest vibration intensities
were so weak that the system did not seem to move when viewed in real time. However, when
images were taken during times of the order of hours, one could see that particles actually
had moved, and that the structural configuration of the system continuously changed while
compacting. The movement of the particles was quite random though the zone of exploration
was rather small. Consequently, particles that were in our vision field at the beginning of the
experiments did not get out of it even after ten days of vibration. Then, from image analysis,
we were able to extract the position of seven particles as a function of time. These boundary
particles gave us an idea of the microscopic dynamics of the system which we could relate with
macroscopic features like global compaction. Nevertheless, what we observed were boundary
particles, whose dynamics could differ from particles in the bulk. Chapter 4 develops in detail

this technique and the results obtained.
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Figure 2.4: The resistance force of the granular medium to the movement of an object dragged at
constant velocity through it is measured by using an Atwood like machine.

Dragging an intruder grain

The two narrow lateral walls of the container had a small slit thinner than the bead size.
A thin metallic thread was made to pass through the slits and the granular matter, and an
Atwood like machine (see figure 2.4) was used to test the resistance to motion inside the
dense granular medium. The heaviest mass of the machine rested on a force probe that was
moved downwards at a constant velocity. Additionally, an intruder grain could be glued to the
thread. With this set up we were able to drag the thread alone or the thread together with
the intruder grain at constant velocity and to measure the resistance to movement opposed by
the granular material very precisely. We extensively studied the dependence of this drag force
as a function of the driving velocity, the size of the intruder and the intensity of vibration. We
found interesting analogies with solid-solid friction and with the behavior of complex fluids
characterized by a yield stress. The range of slow velocities as well as the vibration conditions
explored make this experiment novel with respect to previous similar studies [19, 21, 22, 25].

These experiments are the subject of chapter 5.

Diffusion of light

The idea of the Diffusing Wave Spectroscopy (DWS) is to shine a coherent light through a
disordered sample where the light is multiply scattered. Therefore, when this light is recovered
out of the sample it forms a random interference pattern known as 'speckle’ pattern. When the
scatterers of the sample move, the interference pattern changes and, in this way, it is possible
to obtain information of the dynamics of the sample by studying the temporal correlations
of the speckle pattern [26]. This technique was developed for dense suspensions colloids

and foams, where it can successfully give quantitative information about the mean squared
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Figure 2.5: DWS measure.

displacement of the scatterers and, thus, is a powerful tool for studying transport properties
of complex systems. However, when DWS is applied to granular materials, some of the main
assumptions of the theory are not fulfilled any more and the quantitative interpretation in
terms of particle displacements is not easy [24]. Nevertheless, very valuable information can
still be obtained concerning the characteristic times of the granular dynamics that are not
attainable with other techniques given its extreme sensitivity to small movements.

We largely worked on this technique at the beginning of the project, and we were able
to obtain interesting preliminary results concerning intermittent dynamics, aging and rejuve-
nation processes. However, we decided not to include them in this work since none of these

results were conclusive.

2.3 Characterization of vibration

2.3.1 Acceleration in the bulk

An accelerometer buried in the granular material allowed the measurement of the acceleration
in the bulk induced by the vibration of the transducers. The Briiel & K jaer accelerometer
was a 1ml cube with a piezoelectric that detected the acceleration of the cube in one direction,
which was indicated by an arrow on one of the faces. The electric signal was transmitted to
an amplifier through a cable that was attached to the accelerometer on one of the faces of
the cube in a way that the orientation of the cable was perpendicular to the direction of
measurement of the accelerometer. The accelerometer was buried in the pile in such a way
that the direction of measurement was vertical and with the cable going out of the container
at one of its extremes (see figure 2.2).

Figure 2.6 shows a typical measurement of acceleration v(¢) for an input square signal of

frequency f = 400H z and voltage V' = 10V. It also shows the vertical velocity v(t) obtained
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Figure 2.6: Acceleration measured by the accelerometer buried in the bulk for a signal of frequency
f =400Hz and voltage V.= 10V. The velocity is obtained by integration of the acceleration signal
(equation 2.1). A tap is defined as one cycle of the movement of the transducers.

by integration of ()
t
v(t) = / y(T)dr. (2.1)
0

From the velocity signal it was possible to obtain the kinetic energy density ¢, = (1/2)paecv?,

where p,e. is the mass density of the accelerometer. Then, the mean kinetic energy density

during vibration is

(ex) = ’;T /0 v (t)dt, (2.2)

with T >> 1/f. Note that two signals of different frequency f but equal (ex) did not inject
the same energy to the system each tap, where a tap is defined in figure 2.6.
A reference energy to which (e;) can be compared is the potential energy density of the

granular material at a height of one grain diameter d:

€ = Ppgd; (2.3)

where p,, is the mass density of the granular material, i.e. p, = pg, with p the density of glass
and ¢ the packing fraction of the pile. In our system d = 1.2mm, ¢ ~ 0.6 and p = 2.6g/cm?,
then we get €, ~ 20.J/m3.

It is important to note here that even if the measurements with the accelerometer were
directly done in the bulk, they did not give the exact acceleration of the grains, since the

accelerometer cube had a different density and geometry.
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The voltage and frequency of the input signal to the transducers are the parameters that
we can control. Now, we would like to translate them into the energy and acceleration induced
in the grains by the transducers since these are more general parameters that can be used for

comparison with other experiments.

2.3.2 Acceleration and energy vs frequency
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Figure 2.7: Left: Mean kinetic energy density (ex) as a function of input signal frequency at the
mazimum input voltage (10V'). €, = ppgd is the potential energy density for a height d, the mean
diameter of grains. Right: RMS acceleration as a function of frequency.

Figure 2.7 shows the mean kinetic energy density (e;) (plot in the left), and the root
mean squared acceleration 7,.,s = \/<y72> (plot in the right) as a function of input signal
frequency f. For these measurements the accelerometer was placed at a depth of 1em, which
corresponds to the depth at which the drag force experiments were done (chapter 5), and the
signal voltage used corresponds to the maximum limit for our set up (10V). Before taking
these data, the system was vibrated at the maximum intensity (400Hz and 10V') for three
hours in order to avoid the initial regime of strong compaction. However, we verified that the
acceleration in the bulk does not change considerably either with packing fraction nor with
the depth of the accelerometer in the pile.

The kinetic energy density is expressed in terms of the potential energy density ¢, defined
above (equation 2.3). From the energy plot we can see that the maximum energy that could
be injected in average to the granular medium corresponded to a signal of around 400H z
at 10V. Moreover, the value of this maximum energy was of 10~ %¢,, which is equivalent in

potential energy to a height of 0.1um (107%, = p,g(107*d); 10~*d = 0.1um). Interestingly,
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this height is comparable to the r.m.s. amplitude of sinusoidal oscillation of the piezoelectric

transducers at 400H z with 7,,,,s = 3m/s?, which is approximately 0.5um.

2.3.3 Acceleration and energy vs voltage
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Figure 2.8: Left: Kinetic energy density (ex) as a function of input signal voltage. Right: RMS
acceleration as a function of voltage (inset: I' =< Min(y(t)) > /g). Data on both plots were taken
at f = 400H z.

Figure 2.8 shows the dependence of the energy (plot in the left) and the acceleration (plot
in the right) measured in the bulk on the input signal voltage. The measurements were done
at f = 400H z because it was this frequency of vibration for which the injection of energy
was maximal for the highest voltage. Noteworthy is the different behavior for low and high
voltages, with a transition around 4V. This abrupt change in behavior might correspond to
the threshold voltage at which the transducers manage to break the force network that resists

the motion of grains relative to the walls of the container.

2.3.4 Absence of convection

It has been shown that convection, when present, plays an important roll in the evolution
of compaction in strong vibration experiments [23]. Moreover, it could be that the steady
states that have been obtained would correspond to an interplay between compaction and
convection. For this reason we wanted to make a vibration experiment which would present
compaction but no convection. To verify if our system presented convection for long time
experiments, we put in the system two layers of the same glass beads but colored. One of
these layers was at the middle height of the pile and the other at the surface. We then vibrated

the system at the maximum intensity for 14 hours, and registered images of a lateral wall all
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along the experiments. Figure 2.9 shows the first and the last of these images where it can
be clearly seen that the colored layers were not destroyed, showing that there is not flux of
particles. Moreover, this shows that particles barely move and that they stay close to their
initial neighbors. This experiment was repeated several times giving always the same result:

there is no convection in the system!

0.00 hrs 14.00 hrs

Figure 2.9: First and last images of a sequence of images taken each three minutes on a 14 hour
experiment of vibration at the mazimum intensity. Two layers of colored particles were still present
at the end of the experiment, showing that there was no flux of particles and, therefore, there was no
convection.

Even though there is no net flux of particles, the full sequence of images shows that
important changes in the structural configuration of the pile exist. In fact, it can be seen that
the dominant motion induced on the particles is rotation, and that such movement is far from
being homogeneous. A single particle can present moments of intense activity together with
long periods of rest. One can also identify regions of different rotational mobility. The study
of rotation of particles would be an interesting analysis to gain information of the microscopic

dynamics of the system.

2.4 Conclusions

We constructed a novel experimental set up that vibrates a granular material: a weak and
disordered agitation was obtained by using independent piezoelectric transducers. The main
motion excited on the grains was rotation and, most importantly, there is no convection in
the system.

The energy injected to the system as well as the acceleration induced in the granular

matter by the transducers was directly measured in the bulk by means of an accelerometer.
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Both acceleration and energy were systematically measured as a function of frequency and
input signal voltage.

The fact that vibration was weak and that the container was not shaken, allowed very
precise measurements during vibration. The design of the set up allowed measurements of the
packing fraction, to see boundary particles directly, to measure the drag force on an intruder

grain and, finally, to make Diffusing Wave Spectroscopy measurements.



Chapter 3
Packing fraction

This chapter presents the relaxation of the packing fraction in long time vibration experiments
for different vibration conditions. We investigated the effect of the r.m.s. acceleration and the
kinetic energy on the relaxation of the density of the pile and we found that it is the energy
which determines the compaction rate.

We also studied the response of the packing fraction to variations in the vibration intensity
and we found a quasi reversible regime of the density as a function of vibration intensity as
well as interesting analogies with the response of thermal systems to changes in temperature
like the Kovacs effect.

3.1 Measuring the packing fraction

® Proximity
Metallic 1{ / probes

s()=y, -y, () = Packing fraction; ¢(t)

Figure 3.1: Packing fraction is measured with two inductive proximity probes that give the separa-
tion y, — ys between the probes and a thin metallic lid that rests on the surface of the grains.

32
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The packing fraction ¢ of a granular pile is defined as the ratio of the volume occupied
by the grains V;, and Vr, the total volume of the pack. V; is easily obtained by knowing
the total mass of the pack M, and the mass density of the constituent material of the grains
p, so that V, = M,/p. For the particular case of our experiment M, = 265 & 0.1g and
p = 2.59 + 0.02g/cm?, which makes V, = 102.3 £ 0.8cm3. On the other hand, Vr for a
rectangular packing is the product of the horizontal cross section of the container, S, and the
height of the packing surface y,. In our set up S = (1940.05¢m)(2.34+0.05¢m) = 43.740.9cm?
and the height of the pile is obtained by using two inductive proximity probes (Pepperl+Fuch’s
115-18GM-I3) that measure s = y, —ys, the separation between the probes and a thin metallic
lid that rests on the surface of the packing (see figure 3.1). The resolution of the sensors is of
the order of 5um and we use two of them to take into account the deviations of the lid from
the horizontal. Then, ys = y, — s where s = 1/2(s; + s2) (measurements from both sensors)

and y, = 42.5 £ 0.2mm. Thus, the final expression for the packing fraction is

ﬁZMg//): M,

=V T Sy, Sl —s)

(3.1)

The uncertainty on the absolute value of ¢ when using equation 3.1 is of the order of 3% for
a typical value of ¢ = 0.6.

The metallic lid used had a weight which was equivalent to five layers of glass beads and its
shape coincided with the horizontal cross section of the container, but it was slightly smaller
in such a way that it did not touch the container walls but at the same time the beads could
not pass or get stuck between the lid and the container. Since the lid was not flexible, what
we obtained with this technique was an averaged measurement of the height of the pile. In
fact, at the beginning of each experiment, the irregularity of the surface of the pile made that
the lid did not touch the whole surface. However, after some time of vibration, the surface
became regular and the lid touched it everywhere, giving a good measurement of the mean
height of the pile. Deviations from logarithmic behavior for short times of the curves in figure

3.4 are consequence of the irregularity of the surface.

3.2 Long time logarithmic compaction

Figure 3.2 shows the time evolution of the packing height and the packing fraction when
vibrating at a maximum vibration intensity (10V and 400H z) for ten days. It can be seen that
the vibration intensity is so small that it induces an extremely slow logarithmic compaction and

even after ten days of vibration there is no saturation observed at a final steady volume. The
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Figure 3.2: Packing height and packing fraction as a function of time for ten days of vibration at
the maximum intensity(10V and 400Hz). The packing height ys is normalized by the mean grains
diameter d = 1.2mm. The number of taps tf are also shown.

total packing fraction variation at maximum vibration intensity is of 3%, which is comparable
to the compaction of 5% found by Nowak et al. [9] for much stronger vibration intensity
(I' =6.8), and the 4% reported by Pouliquen et al. [15] obtained by shearing.

From figure 3.2 we see that a good fit for the height of the pile is the function

)= (1= pin1+ 1), (32)

To

where the parameter § depends on vibration intensity, 7o = 1s, and ys = ys(t = 0). For
our system 3 < 2.5 x 1073, which corresponds to the experiment at the maximum vibration
intensity shown in figure 3.2. Since 0 < (ln(1 + T—to) < 1, from equations 3.1 and 3.2 follows
that

olt) = S]fygso <1—ﬁln1(1—|—%)> = 6o (1+ﬁln(1+%)) 10 <(ﬂln(1+%)) > (33)

where ¢g = M,/Spyso. It is important to note that equations 3.2 and 3.3 diverge for infinite

times, which means that they are only valid when the time needed to reach a final steady
density is much bigger than experimental times.

The number of taps in figure 3.2 is obtained as the product of the time ¢ and the frequency
f of the input signal. This defines a tap as one cycle of the movement of the piezoelectric

transducers (see figure 2.6).
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3.3 Relevant parameter for compaction: energy.
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Figure 3.3: Acceleration and energy as functions of frequency. Superposed to the 10V measurements
are groups of points which have the same acceleration but different energy. These points indicate the
vibration conditions of the compaction experiments in figure 3.4.

In standard vibration experiments [9, 23, 27|, the control parameter used to characterize the
vibration intensity is the peak acceleration attained by the container of the grains. However,
energy can be injected into a granular medium in very different ways, and the peak acceleration
might not be the most pertinent and general parameter to be used [23]. In order to explore
this issue in our system we performed a set of compaction experiments at different vibration
conditions to see the dependence of  (equation 3.3) on the mean kinetic energy density (ex)
and on the r.m.s. acceleration ,,s.

The way in which we proceeded was to perform long compaction experiments (at least
4 days of vibration) at vibration conditions which had the same r.m.s. acceleration but
different energy. Figure 3.3 shows the approximately constant acceleration obtained for several
frequencies at appropriate voltages as well as the energy associated to each of these vibration
conditions. Compaction curves for the vibration conditions indicated by the group of points
in figure 3.3 are shown in figure 3.4. Solid lines are fitted to the data using equation 3.3.
These fits allow to obtain 3({e)), which is plotted in figure 3.5. From these results it is clear
that the compaction dynamics is governed by the mean kinetic energy of the grains but not by
their acceleration. Moreover, as discussed in section 2.3.1 (equation 2.2), the energy injected
to the system per tap is not the same for two different vibration frequencies with equal ().
Therefore, in this kind of weak continuous vibration, the energy injected to the system per

tap is not the relevant parameter.
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Figure 3.4: Long compaction experiments for different vibration conditions. Curves of the same
color have the same r.m.s. acceleration but different energy 3((ex)). Solid lines are the fits using
equation 3.3.

The noise of these measurements does not allow to determine the exact relationship be-
tween [ and (e;). We found that the functions that fitted the best to the data were a power
law of the form § = C (e)" with C' a constant and o = 1/4, and the logarithmic function
shown in figure 3.5, with a characteristic beta Buq, ~ 4.7 x 107%, and a characteristic energy
€char ~ 6.4 X 10_7ep. The logarithmic fit turns out to be statistically better than the power

law. However, it is still not clear for us the physical meaning of B4, and €pqp-

3.4 Reversibility of the packing fraction. Kovacs effect

At the end of the long compaction experiments shown in figure 3.4, variations in the intensity
of vibration were performed to study the response of the packing fraction. In the following,
the reference vibration energy that will be used is the maximum kinetic energy possible with
our set up, €mqr = 1.04 x 107%¢,, which corresponds to an input signal of 10 volt at 400H z.
Figure 3.6 shows the results of one of these experiments, where the energy variation sequence
and the time of vibration in each of these energies were arbitrarily chosen. After ten days of
vibration at 300H z at mean kinetic energy €z = 0.8€,4, (magenta curve in figure 3.4), the
energy was lowered down to €xo = 0.2€,,4, for 4 hours, then it was set to €3 = 0.06€,,,, for 4
hours and finally it was raised up again to €;; for 24 hours. Then the same energy variation
sequence was repeated. The right plot in figure 3.6 shows the relative variations of packing

fraction A¢(ep; — €rj) = ¢(t) — ¢(ti—;) when the energy was changed from e, to €; at time
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Figure 3.5: Parameter B from equation 3.2 as a function of the mean kinetic energy density. The
r.m.s. acceleration of each point can be known by comparing symbols in this figure with those in
figure 3.3. These results show that the relevant parameter for compaction is the kinetic energy of the
grains and not their acceleration.

tie; (with 4,7 = 1,2,3). The first energy variation sequence is shown in blue and the second
sequence in gray.

The behavior of the packing fraction is consistent with the results obtained by Nowak et
al. [9] in the sense that for lower vibration intensities the density of the packing increases.
This means that in this long time experiment the system is not far from the reversible branch
of the density vs intensity of vibration curve in reference [9]. In other words, there is a unique
and well defined relative value of the density for each vibration intensity.

In contrast with the behavior of density in figure 3.6, figure 3.7 shows the results of a
vibration energy variation sequence done at the end of a six days initial vibration at 1400H z
and energy €5 = 0.16€,,,.. Then, the energy was changed as follows: €y5 — €pq4 — €15 —
€ka — €k5 — €mar(400H2), where €y = 0.4€,,4,. Note that at the end of the long time
vibration the system was looser than in the experiment at 300Hz presented above (figure
3.6), and the response of the density to energy variations was always to increase, except for
a small dilation transient in the second change from €5 to €4, which can be better seen in
figure 3.8. This transient dilation is analogue to the 'Kovacs effect’ observed in thermal glassy
systems when the temperature is changed abruptly [12] and it was previously observed in
granular systems by Josserand et al. [11]. Noteworthy, there is not a transient dilation either

on the first change of energy from €5 to €4, nor in the last change from €5 to €,,4z.
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Figure 3.6: After ten days of vibration at 300H z at energy €x1, the intensity of vibration was changed
to see the response of the density. Right: relative variations of packing fraction A¢(ep; — €r;). A
quasi reversible state is seen with denser packs for lower vibration intensities.

Many features of granular compaction are also found in glassy systems [28, 29, 30, 31] and
some of them are successfully described by the reversible Parking Lot Model (PLM) [32, 33, 34]
or the nonlinear diffusion model by Arenzon et al. [35].

It is important to note here that it was not obvious a prior: that these results were to
be recovered with our set up, even though they have been observed in other compaction
experiments [9, 11, 23], since there are profound differences in the agitation methods. Ours
is a high frequency continuous weak vibration without convection while usually people work
with discrete strong taps. Therefore, these results support the robustness of the main features
of compaction. An advantage of our set up is that the evolution of density with time can
be measured very precisely for very weak vibration intensities with, on the other hand, the

disadvantage of not having access to stronger shaking.

3.5 Conclusions

In this chapter, an extensive study of the relaxation of the packing fraction of the weakly
vibrated granular material was presented. A neat logarithmic compaction for all vibration
intensities and frequencies studied was observed. Due to the weakness of the agitation, a
saturation of the density was never attained, even after ten days of vibration at our strongest
vibration intensity.

It was found that the relevant parameter that controls the rate of compaction of the
granular pile is the mean kinetic energy and not the r.m.s. acceleration. This is important

because in vibration experiments in granular materials the acceleration is often used as the
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Figure 3.7: Vibration intensity variations at the end of a long time experiment at 1400Hz and
energy €xs = 0.16€42. The system s so loose that it becomes always more compact when the energy
changes.

control parameter. However, vibration is usually applied in the form of discrete strong taps,
while ours is a weak continuous agitation.

A quasi reversible packing fraction state was observed where, for each intensity of vibration,
corresponded a well defined relative value of density.

When vibration intensity variations were applied to looser packs, the response of the
packing fraction was analogous to thermal systems under temperature variations, like the
Kovacs effect.

Both the reversibility of the packing fraction as well as the Kovac effect had already been
observed in granular materials [9, 11]. However, the system and vibration method used in
those cases were very different from ours. Thus, the fact that we have also found them shows
the robustness of the compaction features. Moreover, our set up allows the measurement
of the relative variations of density in a very precise way, which makes it possible to study

relaxation processes and transient phases very accurately.



CHAPTER 3. PACKING FRACTION 40

0.5088 |
0.5984
0.5980
€ _>¢g -
0.59761 e ke
6 7 8 9
Time (107s)

Figure 3.8: Zoom to the energy variations of experiment in figure 3.7. A transient dilation analogue
to the 'Kovac effect’ is observed when the energy changes from €5 to €gy.



Chapter 4
Particle tracking

Direct observation of boundary particles allowed to follow and study their trajectories during
long time compaction experiments. The results of these experiments are the subject of the
present chapter.

The statistical characteristics of the trajectories of these boundary particles are analyzed
and it is shown that they present a cage-like dynamics, like glassy thermal systems. It is
even estimated the size of the cages. It is also shown that the dynamics of these particles is
homogeneous in time while the compaction is continuously increasing, an astonishing result
that suggests that compaction results from collective modes of the system.

Of course, all these results are valid for particles that are next to the wall, and we do
not know to what extent their dynamics resemble the dynamics of particles in the bulk.
Nevertheless, we believe that they do not differ considerably because the width of the system
is only twenty times the diameter of the grains and also because the intensity of vibration is

strong enough to brake the contacts between particles and walls (see section 2.3.3).

4.1 Tracking individual grains

In the previous chapter we presented long time vibration experiments where the evolution in
time of the packing fraction of the system was studied. Density is an intensive macroscopic
quantity that would be interesting to relate to microscopic local features the way it is done in
statistical mechanics. Here, of course, microscopic refers to the size of a grain. With this in
mind, during compaction experiments we filmed a small region of approximately 5d x 5d next
to a lateral transparent wall with a CCD camera. Figure 4.1 shows one of these images during

vibration. Images were recorded at a rate of one image per minute all along the duration of

41
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Figure 4.1: During compaction experiments, a CCD camera filmed a small region of approximately
5d x 5d next to a lateral transparent wall at a rate of one image per minute. Vertical y(t) and
horizontal x(t) positions of numerated particles were obtained by image analysis.

the experiments. By image analysis it was possible to obtain the position of each particle in
each image, i.e. the position of particles as a function of time.

The way in which images were analyzed was by tracking the position of the bright spots
that appeared in the upper left portion of the particles. These spots are due to the reflection
of a fixed light source situated far away from the packing (approximately two meters). Given
the small size of the grains, the light can be considered as coming from a single point infinitely
far and, therefore, the relative position of the spot with respect to the center of the grain is
constant for any practical purpose. Thus, the position of a grain in an image corresponds to
the center of the spot. The determination of the position of the spot was made by using the
Particle Tracking Script of the ImageJ software. This script gives the central pixel of all the
pixels occupied by the spot, which implies that the resolution of this analysis technique can
not be less than one pixel (pixz). The mean size of the spots was around 4piz X 4piz. In order
to assess the precision of the image analysis method we mounted the camera on a support that
allowed micrometric horizontal displacements. We took images of a static granular pack at
constant displacement steps of the camera of 10um. The set up was under similar lighting and
optical conditions than in the experiments. Figure 4.2 shows the position obtained by image
analysis of one grain while moving the camera. From the best linear fit of the measurements
made on several grains we obtained a relation of 145 + 15pixz/mm, which means that the size
of one pixel in the image is of 6.9+ 0.7um. In figure 4.2 a plot of the deviations from the best

linear fit for each measurement is also shown. These divisions are all smaller than one pixel.
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Figure 4.2: Calibration of the image acquisition and analysis set up. The camera was displaced
horizontally at steps of 10um, at each step recording an image of an static packing.

4.2 'Trajectories in long time experiments

Figure 4.3 shows the trajectories of the five particles numerated in figure 4.1 during a ten days
vibration experiment at 300H z and 10V. The corresponding packing fraction curve of this
experiment is the bright green curve in figure 3.4. The origin of the vertical coordinate y is
taken at the bottom of the container (see figure 3.1) while x = 0 corresponds to the left border
of the image. Both x and y are normalized by the mean particle diameter d = 1.2mm. Note
that the filmed region was at a height of around 26 particle diameters, i.e. at a depth of 1em
from the surface. This position was chosen because it is more or less the same depth at which
the intruder particles are dragged in the experiments described in chapter 5. Trajectories
of particles bear a strong erratic component and it can be seen that after an initially big
downwards displacement related to a strong initial compaction, particles become trapped in
a small region compared to the particle size.

Plots in figure 4.4 show the horizontal and vertical coordinates as a function of time for
the five particles of figure 4.3. Interestingly, the position of individual particles is highly
fluctuating in both directions, though the exploration surface is small compared to the grain
size. The horizontal dynamics of the particles seems very much like random walks without
any preferred direction, and at the same time, correlations between different particles are
obvious. On the other hand, the vertical displacements present a logarithmic downwards drift
which seems to be consistent with the global logarithmic compaction of the packing. Now
we proceed to characterize quantitatively this rich microscopic dynamics and to relate it to

macroscopic features.
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Figure 4.3: Trajectories of numerated particles in figure 4.1 for a ten days vibration experiment at
300H z and 10V. The origin of the vertical coordinate y is at the bottom of the container (see figure
3.1) while x = 0 corresponds to the left border of the image. Both x and y are normalized by the
mean particle diameter d = 1.2mm. The size of a small grain is illustrated by the circle near particle
1.

4.3 Homogeneous vertical compaction

Combining the measurement of the surface height with the lateral particle tracking it is
possible to test the vertical homogeneity of the compaction. We can think of the packing as
composed of several horizontal slices, each one of them squeezing an amount €(y, At) for a
vibration of duration At =ty — ¢;. The total displacement Ay = y(t2) — y(¢1) of a particle at
a height y would be

Ay(At) = /0 " ey, Aty (4.1)

An homogeneous vertical deformation would imply that ¢ = €(At), and thus Ay(At) =
e(At)y;. This relation is true for any horizontal slice and in particular, it is true for the

surface height y;. Then

Ay(At) _ Ays(At)

. 4.2
Y1 Ys1 ( )

Tmagine slices of width of the order of two or three particle diameters that would be thiner the more
compact is the system.
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Figure 4.4: Horizontal and vertical coordinates as a function of time for the five analyzed particles.
Horizontal origins are put together for comparison. In the y plot, the position of the surface together
with the fits from equation 4.3 is also shown.

The surface position is well described by equation 3.2, which together with 4.2 gives the

position of any horizontal slice in the pack if the deformation is homogeneous:

Ay(ts,ts) = — (£> yoBin (LQ/TO) | (4.3)

Ys1 1+t /70

The individual lateral particles that we tracked belong to some of these horizontal slices so, if
deformation is vertically homogeneous during vibration, it is expected that their height follow
equation 4.3. Figure 4.4 shows the evolution in time of the height of the particles together
with the height of the surface. The solid line that passes through the surface data is the fit
using equation 3.2, while solid lines through particles heights correspond to equation 4.3 with
t, = 10°s and t, = t. The good agreement between data and equation 4.3 suggests that the
compaction of the pack is indeed vertically homogeneous.

In the following, we will be interested in the statistical characteristics of the fluctuations
in the position of the particles. Thus we will subtract the vertical drift due to the logarithmic

compaction (the drift shown in figure 4.4).

4.4 Position fluctuations

In the context of the analogy between vibrated granular packings and thermal systems, a

central quantity to look at is the squared displacement as a function of a lag time 7,

Ar? = (r(t+71) —r(t))> (4.4)



CHAPTER 4. PARTICLE TRACKING 46

The ensemble average of Ar? for a Brownian particle grows linearly with lag time 7 and in
two dimensions it is given by (Ar?(7)) = 4D7, with D = kgT/67na, D being the diffusion
coefficient, T" the temperature, kg Boltzman’s constant, n the viscosity of the fluid, and a
the size of the particle. Complex fluids usually present deviations from this behavior that are

related to complex macroscopic rheology [36].

4.4.1 Ensemble dynamics
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Figure 4.5: Left: Time and ensemble averaged mean squared displacement of the particles <Ar2(7')>

in linear scale, and root mean squared displacement <A7’2(7)>1/2 in log-log scale fort > 3 days. A sub
diffusive behavior for short times becomes diffusive at T, which defines a cage size r*. Right: The
same but for each of the coordinates x and y. It shows an asymmetry between vertical and horizontal
mobility.

Since we only have data for five particles, ensemble averages are statistically very poor so,
in order to improve the statistics, first we made time averages on the data of each particle and

then we averaged between particles. For a discrete series of time r; = r(¢;) for i = 1,2, ..., N,
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where 0t = t;,1 — t; is constant, we calculated the root mean-squared displacement o as a

function of lag time 7 = sdt, with s an integer, as

N-—s

o(r) = <Ar2(7)>1/2 = Nl— . Z(m+s —71i)2. (4.5)

In addition, o(7) can also be averaged over the five particles, i.e. an ensemble average. Time
and ensemble average are equivalent for a stationary process where there is no privileged time.
As we will see later, ours is a quasi stationary system, so one expects that time and ensemble
averages to not differ considerably. Left plots in figure 4.5 show the time and ensemble average
of 0%(7) in linear scale and o (7) in log-log scale. Time average was done for ¢ > 3 days in order
to avoid transient effects from the initial strong compaction. The logarithmic compaction drift
was subtracted from the y coordinate. For short times the dynamics is clearly sub diffusive
since o(7) grows with a power law with exponent smaller than 1/2. However, for longer times
there seems to be a change of regime and the dynamics becomes diffusive, though there is no
enough data to make any definite conclusion. However, this behavior qualitatively coincides
with the results by Marty and Dauchot [14] where they suggest that the short time sub diffusive
dynamics correspond to the particles trapped in a cage and the long time diffusion comes from
particles going from cage to cage. Thus, the crossover between both regimes defines a cage
size r* and a cage lifetime 7* [14]. It can be seen from figure 4.5 that for our experiment
r* ~ 0.026d and 7" ~ 22 days or, equivalently, 7" ~ 24 x 10° taps. These values contrast with
those reported by Marty and Dauchot in reference [14] of r* ~ 0.3d and 7" =~ 300 shearing
cycles. The way in which we can understand such great discrepancies is by referring to the
results by Pouliquen et al. [15] where they made particle tracking in a three dimensional
shearing experiment and, even though they did not get a precise size of a cage, they showed
that the value of the packing fraction was related to the size of the cage and that they both
changed with the shearing angle: a bigger shearing angle made the cage size bigger and more
dilated the packing. Therefore, since the size of the cage in our experiment is one order of
magnitude smaller than the one found by Marty and Dauchot we can say that the vibration
in our experiment is one order of magnitude weaker than their shear. However, the validity
of this comparison is not clear since the set up of Marty and Dauchot is a two dimensional
horizontal system where there is no effect of gravity.

On the right plots of figure 4.5 are shown the root mean-squared displacements in x
<0‘x(7') = (Ax2(7)>1/2> and y <0y<7'> = <Ay2(7'))1/2>. Both coordinates have the same dy-
namics though particles seem to be more mobile in the vertical direction despite the fact that

the logarithmic compaction drift was subtracted. This asymmetry might be caused by the
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vertical shaking and could be equivalent to the asymmetries encountered both by Marty and

Dauchot [14] and Pouliquen et al. [15] in the direction of shear.
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Figure 4.6: Ensemble averaged jump probability distributions for t > 3 days and for two different
lag times 7. Ezxponential tails are characteristics of intermittent dynamics [14].

Figure 4.6 shows the ensemble averaged probability distributions of the jumps Az =
x(t+7) —x(t) and Ay = y(t +7) — y(t) for ¢ > 3 days and 7 = 5 and 30 minutes. The
Gaussian curve is plot for comparison. The distributions of jumps are similar to those reported
by Marty and Dauchot [14] and, as they point out, the exponential tails are characteristics of

intermittent dynamics and might be related to the cage effect.

4.4.2 Spatial and temporal inhomogeneities

Sub diffusive dynamics is also found in thermal jammed system like actin [36] or glass forming
systems which present aging, memory effects and spatial and temporal heterogeneities [7]. So
far, we have studied ensemble quasi-stationary features of the microscopic dynamics of our
system by averaging over five different particles and for ¢t > 3 days. Now, we will see that the
dynamics of individual particles differ from each other and from the ensemble behavior and
that they are not homogeneous in time.

Figure 4.7 shows the mean squared horizontal displacement o2 and the probability dis-
tribution of AX for the five different particles and for ¢ > 3 days. It can be seen that the
behavior of each particle is very different ranging from very blocked particles with nearly
Gaussian distributions like particle 2, to very mobile particles whose probability distributions
have important exponential tails, like particle 5. Figure 4.7 only shows the horizontal coordi-
nate but similar plots result for the y coordinate. Thus, these differences can be interpreted

as particle 2 being trapped in a single cage while particle 5 belonging to a more mobile region
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Figure 4.7: Mean squared x displacement and probability distribution of AX for the five different
particles for t > 3 days. Differences between particles imply important spatial heterogeneities.

which allows it to change cage and diffuse, thus having a more intermittent and inhomoge-
neous dynamics. The existence of regions of different mobility would be analogous to the
results of Valentine et al. [36] when doing particle tracking on actin and agarose.

The evolution in time of the dynamics can be seen in figure 4.8, which shows the ensemble
average of o,(71) = (Ax2(7)>1/2 as a function of the packing fraction ¢ for 7 = 30,90 and
500 minutes. To get this plot we analyzed data on time intervals of varying sizes such that
the relative variation of density for each interval was the same: A¢ = 5 x 10~*. Therefore,
the statistics for lower densities is poorer than for higher densities, which explains the huge
fluctuations. However, for higher densities it is clear that fluctuations in horizontal jumps
saturate to a constant value which is smaller than the cage size r*.

This result may look counter-intuitive at a first glance. Indeed, we do not see any ‘aging’
of the fluctuation dynamics with the waiting time. This may look contradictory to the fact
that the system is compacting. Moreover, there are moments where, surprisingly, something
more like rejuvenation events can be seen. This result is not an accident because it was
consistently found in different independent experiments and, moreover, it could be associated
to the behavior observed by Kabla and Debregeas [24] using a DWS probe. It simply may
say that the relevant scale associated to the compaction dynamics is not a local one, i.e. the
size of few grains. It could be associated to the larger scale dynamics akin to the soft modes
identified in frictionless isostatic systems [37].

To explore the spatial inhomogeneities in a more quantitative way and to characterize the

dynamics at the granular scale, we calculated a local variance W?(t,,, 7) in an interval of size
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Figure 4.8: Ensemble averaged o,(1) = <Am(7)2>1/2 as a function of the packing fraction ¢ for

7 = 30,90 and 500 minutes. The statistics of Ax does not seem to change with the increasing
density of the system. The cage size r* measured in figure 4.5 is put as a reference.

7 that begins at the waiting time t,,

W2(ty, ) = x2—(t)_ﬁ2 = éfo — (é Zmz> : (4.6)

where,

to > 1>ty + T,

st =,
ot = ti—l—l — tz

This quantity allows the evaluation of a kind of particle ‘activity’” during the interval ¢,, > t >
tw+ 7. The left plot in figure 4.9 shows the local variance I/Vy2 of the y coordinate as a function
of waiting time t,, for the five particles for 7 = 90 minutes and ¢ > 3 days. The dynamics
presents moments of intense activity all along the duration of the experiment. Interestingly,
there are important peaks of fluctuations for some particles that occur toward the end of
the experiment, contrary to the image of a particle becoming more and more trapped with
increasing density [15].

On the right plot of figure 4.9 are shown the probability distributions of W; for particle

2 for t > 3 days and for different interval sizes 7. All curves collapse when normalized by
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Figure 4.9: Left: local variance Wy2 (equation 4.6) for the five particles for 7 = 90 minutes and
tw > 3.5 days. Right: probability distribution of VVy2 for particle number two as a typical case.
Distributions for different interval sizes At collapse when normalized by <W2>

the mean value (W?) giving a unique probability distribution curve that is characteristic of
this specific particle in the vertical direction. It turns out that the distributions for each
coordinate and each particle are not all the same curve. These differences between particles
become clearer when we look at mean value (IW?) as a function of interval size 7, shown
in figure 4.10 for x and y for the five particles and ¢ > 3 days. Data are well fitted by an
expression of the form (WW?) = C7®, where C'is a constant and a < 1. The exponent « differs
between particles and even between x and y for the same particle, as is the case for particles
1 and 2. This is, again, result of the strong sub diffusive dynamics of particles, since the
expected value of a for a Brownian process is 1.

So far we have interpreted the different values of « for different particles and coordinates
x and y as a signature of the spatial inhomogeneity of the dynamics. However, we wanted
to know to which extent this parameter « really characterizes the dynamics of a particle and
how much it depends on the time interval in which it was calculated. Thus, we calculated
a on one day intervals for ¢ > 3 days. The results of this analysis are shown in figure 4.11.
It can be seen that in general the values of « for all particles take more or less the same
values, which means that statistically they all have similar diffusion dynamics. Nonetheless,
looking carefully to the left plot in figure 4.11 it can be seen that coordinate x of particle 1
is consistently smaller than that of particle 5, revealing that in fact the dynamics of different
particles have not necessarily the same diffusion characteristics. Interestingly, the separation
distance between particles 1 and 5 is the biggest of the interparticle distances.

In order to show in a clearer representation than in figure 4.9 the behavior in time of the

dynamics of different particles, we analyzed the data in a binary way: we defined as ‘active
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Figure 4.10: Behavior of the mean x and y variances W2 and I/Vy2 as a function of T fort > 3 days.
Parameter C' is a constant and exponent o < 1 means sub diffusive dynamics and the variability
between « of different particles is due to spatial inhomogeneities.

intervals’ those with W?2 > (W?) and we assigned to them the value 1. All other intervals got
the value 0. Figure 4.12 shows these plots for x and y of all particles and for 7 = 90 minutes.

The binary representation of the activity of the particles shown in figure 4.12, allows
to objectively evaluate the temporal homogeneity of the dynamics for each particle. The
way in which it was done was by computing the probability distributions of the sizes At
of active and inactive intervals? (see figure 4.13). If the dynamics was inhomogeneous in
time one would expect long periods of time during which particles would be trapped and
consequently W? < (W?). This would result in important deviations of P(At) from an
exponential distribution, which is not the case for any of the distributions in figure 4.13. In
fact, we see that besides some extreme events identified in the tails of P(At), the distributions
of active and inactive interval sizes are essentially exponential. However, the statistics on

extreme events is too weak to draw any conclusion.

4.5 Conclusions

Direct observation of boundary particles allowed to follow and study their trajectories during
long compaction experiments. These trajectories were consistent with an homogeneous vertical
compaction of the pile.

All five analyzed particles showed sub diffusive dynamics for short times and, as an aver-

age ensemble behavior, particles seemed to diffuse normally for longer times. This behavior

2The size At of an active (inactive) interval is the time during which the particle is active (inactive) between
two inactive (active) events.
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Figure 4.11: Exponent « (defined in figure 4.10) calculated on one day intervals for t > 3 days.
This shows to what extent o characterizes the dynamics of a particle.
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Figure 4.12: Binary analysis of the particle “activity’. A black line points out an interval of size
T =90 minutes where W2(ty, 1) > (W2 (tw,7)).

was identified with the cage effect found in glasses, and it was even possible to get a rough
estimation of the cage size (r* ~ 0.026d).

Differences in the diffusion characteristics of different particles revealed spatial inhomo-
geneities, which are also found in thermal blocked systems. Different diffusion properties were
only found between the two particles whose separation was the biggest (there were approx-
imately three particles between them), which could be related to a correlation length that
would be worthy to study.

It was a surprise to find that the dynamics of the particles was homogeneous in time.
Since the system was continuously compacting, one would expect that individual particles
became more and more blocked. As this is not the case, the compaction must then result

from collective modes.
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Figure 4.13: Probability distributions of the sizes At of active and inactive intervals of figure 4.12.

Solid lines are the exponential distributions.



Chapter 5
Rheology of the weakly vibrated phase

The present chapter shows rheology experiments where the granular drag force was measured
while dragging quasi statically a thread and an intruder grain through the granular material
at constant velocity. An exhaustive study of the drag force as a function of velocity, intruder
size and vibration intensity is presented.

It is shown the way in which we managed to separate the contributions to the drag force
that came from the thread and those that came from the intruder grain. There were profound
differences in the rheology of the thread alone and the intruders, and we found that the
vibrated system does not behave like a Newtonian fluid. Interestingly, the rheology of the
intruders dragged through the vibrated phase shared features with solid - solid friction, which
suggests that thermal activated processes models could be used to describe granular drag
force.

An analysis of the fluctuations of the drag force is also included, where it is shown that the
size of the fluctuations were independent of the size of the intruder. The power spectra of the
force fluctuations showed to be Lorentzian, with a characteristic length that coincides with
the mean diameter of the grains of the medium. Finally, it is developed a simple model based
on an Ornstein-Uhlenbeck process which recovers the principal features of the fluctuations of

the drag force.

5.1 Rheology set up

Figure 5.1 shows the experimental setup used to measure the mobility of the system by driving
an intruder grain at constant velocity v. A tense (M; < M) metallic 100pum thick thread
supported by two pulleys passed through the container filled with grains. The heaviest mass

M, rested on a force gauge that was attached to a step motor which moved vertically at

55
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Figure 5.1: An Attwood-like machine is used to measure the drag force that results of driving an
intruder bead glued to a metallic thread through the granular medium.

constant velocity. This allowed to measure the drag force that resisted the motion of the
thread and the intruder grain. The drag force was measured as a function of driving velocity,
intensity of vibration and size of the intruder.

The mobility experiment protocol was the following : 265¢ of a mixture of glass beads of
1 and 1.5mm were poured in the container trying to make the upper surface as horizontal as
possible without tapping the container. Then, the thread with the intruder grain was made
to pass through the grains at a depth h = 13mm from the surface of the pile (the total height
was around 40mm). The metallic lid was gently placed on the surface of the pile and the
piezoelectric transducers were turned on at their maximum intensity (10V at 400Hz). After
4 hours of vibration the intruder grain was driven at constant velocity along ten centimeters.
Then, the grains were taken out of the container and the intruder grain was driven through
the same path as before and at the same velocity, but this time with the container empty. This
last step gave us a reference control measure which accounted for the friction forces inherent to
our set up that it is well known, depend on the driving velocity [38]. In this way, the resistance
force due to the granular material was obtained relatively to the control measurement.

Figure 5.2 shows typical measures of the force that the granular material opposes to the
displacement of the thread with an intruder bead glued to it and also to the thread alone.
There are curves for different intensities of vibration, all of them at 400Hz. In fact, all the
rheological experiments were done at this frequency in order to be able to go from no vibration
to the maximum input of energy without changing the frequency (see figure 2.7). Note that
the scale of force in both plots are different. The resistance forces for the thread alone is

approximately three times smaller than those for the intruder bead of 6mm in diameter. Data
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Figure 5.2: Typical raw data of force as a function of displacement x. Experiments at constant
velocity v = 500um/s for several intensities of vibrations at 400H z are shown for the thread alone
and for an intruder of diameter D = 6mm. Control experiments without grains in the container
shows the level of noise of the set up.

are presented as a function of displacement of the intruder, which is equivalent to time since
the driving is done at constant velocity. However, we will see that for comparison between
experiments done at different velocities it is more convenient to think in terms of displacement.
Note in figure 5.2 that fluctuations in force are of the order of 30% of the mean value. These
fluctuations come from the interaction of the thread and the intruder bead wih the granular
material as can be seen when compared to the control experiment done without grains in the

container.

Force

o 2 4 6 8 10 12
Displacement: x (mm)

Figure 5.3: Typical data of force vs displacement to show what we call the mean steady force Fu,
and the peak force Fpeqp-
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Notice that the force as a function of displacement presents an initial rapid increase to a
maximum value Fj.., to relax afterward to a mean constant steady value F,,. This kind of
behavior is also found in complex fluids that present a yield stress below which the material
behaves like a fragile elasto-plastic solid [39, 40]. Thus, in order to make the connection
between these kind of materials and granular packings, we have interest to well characterize
the behavior of Fj..; and F as a function of dragging velocity, intensity of vibration and
size of the intruder. We determined Fj.q; as the maximum value of F'(x) whereas F., was
calculated as the mean value of F(z) for x > 20mm. The reported values of F, that we
show in the following sections result from the average of three independent realizations of the
experiment and the associated errors correspond to the dispersion of such an average and that

should not be confused with the fluctuations of the force versus displacement given by
SF =/ (F(z) = F)". (5.1)

Interestingly, 0 F' is usually bigger than the average dispersion except for some cases where
the poor statistic yields exceptionally big standard deviations. In normal cases, 0 F was of
the order of 20% of the absolute value while average deviations were of the order of 15%. We
were obliged to work with only three realizations because of the long time required for the
experiments at low velocities, specially if considered that for each experiments there was a
control run done at the same velocity.

A quantity that will be interesting to study is the effective friction coefficient p that we
define as the ratio of the drag force and the hydrostatic force on the intruder if the granular
material was a fluid with the same density. Therefore,

F(z) F(z)

H) = "gp ~ S(ppgh+ R)’ 52)

where S is the surface of the dragged object, p, = ¢p is the mass density of the packing being
¢ ~ 0.6 the packing fraction and p the density of glass. P, = 46 Pa is the pressure due to the
metallic lid. This made a total pressure of P = 244Pa. Again, we will be interested in the
peak friction coefficient fipeqr = Fpear/SP and in the mean steady value pioo = Fio /SP.
Before studying the dragging of an intruder bead glued to the thread, we would like to

begin with the simpler case of the thread alone.
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Figure 5.4: Steady mean force versus drag velocity for the thread alone.

5.2 Rheology of the thread alone

Figure 5.4 shows F,, as a function of drag velocity for the maximum vibration intensity
and also without vibration for the thread alone, i.e. the thread driven through the granular
material without an intruder bead glued on it. The linear regime found for low velocities can
be seen when the system is vibrated. At higher velocities the relation is not longer linear,
going from one regime to the other with an abrupt transition at about v ~ 0.3mm/s. When
the system is not vibrated, the relation between force and velocity is not linear even for low
drag velocities and it is hard to distinguish from the experimental data if the relation is either
logarithmic or a power law, but what is clear is that it is not constant as one would have
expected from Coulomb friction [41].

Before trying to understand the non trivial F, vs v relation of figure 5.4, note that the
resistance force that we measured when dragging the thread was tangential with respect to
the surface of the thread. Therefore, the shear stress is directly obtained from the ratio of
the measured force and thread’s surface: 0o = Fao/Sthread, With Sipreaa ~ 6 x 107°m?2. If
now we define the strain rate as the drag velocity divided by the mean grain size, ¥ = v/d,
we obtain the strain-stress relation, which is shown in figure 5.5. Interestingly, these results
are very similar to the results obtained by Sollich et al. [42] in the context of a model aimed
to describe in a general way the rheology of the so called ’soft glassy materials’, referring to
materials like foams, pastes, emulsions and slurries. They found that for low strain rates and
temperatures below the glass transition temperature 7}, the stress-strain relation followed the
Herschel-Bulkeley equation

o=A+ By", (5.3)
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Figure 5.5: Same data as in figure 5.4 but in terms of shear stress 0oo = Foo/Sthread and strain rate

¥ =v/d.

which is commonly used to fit experimental data from the soft materials mentioned before [42].
Note that equation 5.3 implies the existence of a finite yield stress o, = (¥ — 0). Sollich et
al. found also a power law fluid behavior for temperatures slightly higher than 77, but without
a yield stress (A = 0 in equation 5.3). For temperatures even higher, the fluid was Newtonian.
For high strain rates (4 > 1), Sollich et al. reported that o ~ (Tin(¥))"?, where T was a
mean-field noise temperature. It is not a minor issue to see that our results follow closely the
features of this model, being the vibration in our system the source of noise that would play
the same role as a temperature in the model. This suggests that it is indeed a power law and
not a logarithmic behavior what we found for the experiments with no vibration (figures 5.4
and 5.5). Supposing that this is correct, our data still do not allow us to discern the existence
or not of a yield stress. However, it can be seen from figure 5.5 that if it is considered that
there is no yield stress, the strain rate for which the stress would become close to zero (of the
order of the uncertainty bars, for example) is extremely low (4 << 0.01). Thus, in practice,
for our data there is a finite dynamic yield stress, whose value we propose to be o, ~ 130Pa,
the extrapolation of our data to a strain rate of 107®. Given this value of o, we obtain by
fitting equation 5.3 that 0., ~ 130Pa(1 + 0.840-17+0-01),

Up to here we concentrated our attention on the stationary values of force and stress (Fi
and 0.,). However, our set up allowed us to to study the transitory features of the force
at the beginning of the driving of the thread. We defined in section 5.1 a peak force Fjeq
as the maximum value attained by the force during the dragging. It was also defined the
corresponding friction coefficient ji,eqi in equation 5.2 with S = Sjpreqq. Figure 5.6 shows the

peak and the stationary values of the friction coefficient as a function of the energy input for
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Figure 5.6: Peak and stationary friction coefficients as a function of vibration energy for two different
velocities: the lower velocity corresponds to the linear regime in figure 5.4 while the other is in the
non linear part.

two different velocities: the lower velocity corresponds to the linear regime in figure 5.4 while
the other is in the non linear part. Significant differences between fipeqr and i are coherent
with the picture of a complex fluid behavior with an elastic-like response of the material for
small strains up to a point where the system yields and begins to flow [40, 43]. That would be
the case for the high velocity plot in figure 5.6 independently of the vibration energy whereas
for the low velocity plot there is a transition from a fluid like behavior at high vibration energy

where there is N0 fipeqr to a yield regime with fipeq different from jio.

Figure 5.7: Two dimensional schematic representation of a thread moving through a granular ma-
terial. Frictional forces appear in sliding contacts due to frustrated rotations.

Now, let us develop a picture of the microscopic processes occurring around the driven
thread. When dragging the tense thread through the granular material, rotations are induced
in the grains that are in the neighborhood of the thread. However, as shown schematically

in figure 5.7, the disordered configuration of the grains make some of these rotations to be
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'frustrated’ [1], i.e. the sense of rotation induced on a particle by one of its neighbors is
incompatible with the sense of rotation induced by another one. Some of these cases are
represented by the particles w