

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

MODELADO DE UN SENSOR DE INTENSIDAD EN FIBRA ÓPTICA PARA MEDIR DESPLAZAMIENTO

T E S I S

PARA OBTENER EL TÍTULO DE INGENIERA ELÉCTRICA ELECTRÓNICA P R E S E N T A

MARÍA EUGENIA ENRÍQUEZ SALAZAR

Director de tesis: Dr. Volodymyr Svyryd

CIUDAD UNIVERSITARIA, 2005

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

AGRADECIMIENTOS

A ese ser infinito llamado Dios. Agradezco cada una de las cosas dadas y faltadas, porque siempre Llena mi ser de vida y esperanza

> A mi mami y papá por todo el apoyo brindado, por toda la confianza y la paciencia. Por el gran ejemplo de Amor y confianza. De trabajo y esfuerzo. Los amo como a nadie.

A mis hermanos dedico éste humilde trabajo lleno de ilusiones y esperanza. Les agradezco todos los momentos juntos.

> Al Dr, Svyryd por toda su infinita paciencia Y por todo lo que pude aprender a su lado. Mil gracias

A la UNAM por la educación brindada Y por la grandeza que implica esta alma puma.

> Al IIM, en especial al Dr. Guillermo Pulos Muchas gracias por absolutamente todo. A los malandrines: Eren, Violeta, León, Panchito, Felipe, Manuel. Gracias por su amistad. Siempre los levo en mi corazón de pollo

A los programas de PAPIT por el poyo brindado.

A cada uno de mis amigos agradezco Todo momento compartido, sueños y frustraciones. Porque de ellos aprendí más de lo que los libros pueden enseñar.

> A Lalo, Cori y HiueHue porque fueron mis primeros amigos en este difícil camino.

A Rosalía, Iveth y Erica que son mis grandes amigas y compañeras en los momentos difíciles. Gracias siempre las consideraré parte de mi alma.

> A mi querido Dario lleno siempre de amor. A Temo por su gran solidaridad. Alberto porque siempre estuvo conmigo.

Gracias mi querido Gilberto, porque te tocaron muchas lágrimas, y frustraciones. Te agradezco infinitamente cada una de tus palabras.

> Ange, Coria, Ishi, Noe, Odett y Carlitos con quienes no tuve oportunidad de realizar una amistad más cercana pero aún así son mis amigos y son importantes.

Agradezco a cada unas de las personas que de manera directa o indirecta colaboraron en este sueño.

> A Betzabé y Victor que a pesar de la distancia Siguen siendo mis amigos. Gracias.

En especial quiero darte las gracias A ti corazón porque fuiste quien me apoyó y me ayudó con los miles de conflictos y dudas en este trabajo. Gracias. Por el simple hecho de ser y estar.

ÍNDICE

INTRODUCCIÓN	1
CAPÍTULO 1	
1. SENSORES EN FIBRA ÓPTICA	4
1.1. Aplicaciones de las fibras ópticas en el área de sensores	4
1.2. Clasificación de sensores en fibra óptica	5
1.3. Principales tipos de sensores de desplazamiento en fibras ópticas	9
CAPÍTULO 2	
2. SENSORES DE DESPLAZAMIENTO EN FIBRAS ÓPTICAS CON	
MODULACIÓN DE INTENSIDAD	14
2.1. Perspectivas y problemas de desarrollo en los sensores de intensidad	14
2.2. Principios del funcionamiento y construcción de los sensores	
de desplazamiento	15
2.3. Análisis de las características de los sensores de desplazamiento	19
2.4. Técnicas de procesamiento de las señales en los sensores de intensidad	21
CAPÍTULO 3	
3. CÁLCULO DE LA FUNCIÓN DE TRANSFERENCIA DE UN SENSOR	
DE DESPLAZAMIENTO EN FIBRAS ÓPTICAS	25
3.1. Modelo matemático del sensor de desplazamiento	
con modulación de intensidad	25
3.1.1. Consideraciones para el análisis de la función de transferencia	26
3.1.2. Cálculo de la función de iluminación	28
3.1.3. Expresión de la función de transferencia del sensor	32
3.2. Comparación de los resultados obtenidos con resultados	
de análisis de otros métodos	34
CAPÍTULO 4	
4. DESARROLLO EXPERIMENTAL DE UN SENSOR DE	
DESPLAZAMIENTO EN FIBRAS OPTICAS	37
4.1. Determinación de la distribución en cono de admisión y emisión	• •
considerando la distribución de la fuente	38
4.1.1. Fibra de polímero-polímero	40
4.1.2. Fibra de cuarzo-polímero	41
4.1.3. Fibra de cuarzo-cuarzo # 1 4.1.4. \mathbf{F}^{T}	42
4.1.4. Fibra de cuarzo-cuarzo # 2	43
4.2. Determinación experimental de la función de transferencia de	
un sensor de desplazamiento de intensidad en fibras opticas	44
4.5. Anansis de resultados experimentales	45

5. SISTEMAS DE FORMACIÓN DE SEÑAL DE	
REFERENCIA EN LOS SENSORES DE INTENSIDAD	52
5.1. Problemas comunes para todo tipo de sistema de formación	
de una señal de referencia	54
5.2. Métodos de formación de la señal de referencia	55
5.2.1. Referencia espacial	56
5.2.2. Referencia temporal	58
5.2.3. Referencia de doble longitud de onda	61
5.3. Comparativo entre los diferentes métodos	63
CAPÍTULO 6	
6. DESARROLLO EXPERIMENTAL DE UN PUENTE	
ÓPTICO BALANCEADO CON SEPARACIÓN TEMPORAL	66
6.1. Análisis del puente óptico balanceado	66
usando separación temporal	
6.2. Relación de rechazo en modo común para un amplificador operacional	67
6.3. Definición de la relación de rechazo en modo común (CMRR)	
para un puente óptico balanceado	70
6.4. Elementos del sistema experimental	71
6.4.1. Fuentes ópticas	71
6.4.2. Puente óptico balanceado	73
6.4.3. Sistema de fotodetección	74
6.4.4. Sistema de procesamiento de la señal	75
6.5. Resultados experimentales	79
CONCLUSIONES GENERALES	83
BIBLIOGRAFÍA	85
APÉNDICE A	
TABLAS DE RESULTADOS EXPERIMENTALES	87
APÉNDICE B	
IMÁGENES DE LOS COMPONENTES PRINCIPALES DE LAS	105
INSTALACIONES EAFENIMENTALES	105
APÉNDICE C	
CIRCUITO EXPERIMENTAL DEL SISTEMA DE	
PUENTE ÓPTICO BALANCEADO CON SEPARACIÓN TEMPORAL	112

INTRODUCCIÓN

Los campos de la medición e instrumentación y, en particular el que se ocupa del desarrollo de sensores, son de los que se han expandido rápidamente en los años recientes. La necesidad de sensores de alta calidad que puedan ser integrados dentro de sistemas más sofisticados es la que sostiene la constante investigación y mejoras en el desarrollo de nuevos sensores. De manera paralela al desarrollo de sensores basados en microelectrónica, los sensores basados en técnicas ópticas se han expandido, particularmente donde se incorporan fibras ópticas. Los sensores ópticos se han incorporado en muchos campos por contar con características tales como ser fáciles de transportar, no necesitar fuentes eléctricas en el medio a medir, ser inmunes a la radiación, etc. No obstante, el estudio dentro de este campo se enfoca a encontrar mejoras en el desempeño y versatilidad de las aplicaciones tanto de sistemas ópticos como de fibras ópticas.

Para mediciones de distancia, desplazamiento o vibración se usan varios tipos de sensores que hacen uso de las fibras ópticas. La mayoría de estos sensores pueden encontrarse dentro de dos tipos: de intensidad o interferométricos. En los sistemas interferométricos se detecta un cambio en la fase de una señal coherente. En los sistemas de intensidad la señal es no coherente y la medición se realiza sobre un cambio en la intensidad de la señal enviada. Los sensores interferométricos tienen la exactitud alta pero necesitan un sistema de procesamiento de la señal muy complejo.

Los sensores de intensidad en fibras ópticas han generado amplias aplicaciones debido a que su sistema es sencillo y de bajo costo. Sin embargo, la intensidad no es bien conservada en las fibras ópticas lo cual causa efectos de atenuación, además las mediciones se ven afectadas directamente por cambios en la fuente óptica. Por lo que surge la necesidad de tener un sistema que nos permita mantener la señal en estado estable para obtener mediciones confiables Por tal motivo, es necesario aplicar un sistema de referencia que nos permita asegurar la calidad de la lectura. Es necesario analizar las opciones para obtener un sistema de referencia que sea versátil y que minimice las pérdidas debidas a la fuente y fibra. Las opciones a escoger son muy variadas y pueden ser elegidas dependiendo de las necesidades de cada aplicación. Existen diferentes alternativas para la señal de referencia, desde tener una señal de referencia independiente, hasta los sistemas que implican que la señal de referencia y la señal de medición provengan de una sola fuente.

Entre varias técnicas de referencia, hay una técnica que utiliza un puente óptico balanceado como sistema de autoreferencia para compensar la influencia de los factores parásitos. Por medio de esta técnica, se pueden mejorar las características de los sensores de intensidad de distintos tipos incluso los sensores de desplazamiento.

El objetivo general de esta tesis es el desarrollo del modelo matemático de un sensor de desplazamiento con modulación de intensidad y la aplicación de un sistema de referencia con el puente óptico balanceado.

Como objetivos particulares se pueden mencionar los siguientes:

1. Estudio analítico de la función de transferencia de un sensor de desplazamiento con modulación de intensidad en fibra óptica.

2. Modelado de un sensor de desplazamiento con modulación de intensidad en fibra óptica y el análisis experimental de sus características principales.

3. Diseño de un sistema de referencia usando un puente óptico balanceado con un sistema de procesamiento de sus señales.

4. Caracterización del sistema de referencia diseñado para sensores de intensidad.

Con el fin de obtener un modelo adecuado de un sensor de desplazamiento con fibras ópticas multimodo, se presenta un análisis matemático basado en óptica geométrica que permite determinar su función de transmisión en potencia. En principio se desarrolla un análisis de la distribución de intensidad de la luz en la salida de fibra óptica transmisora para encontrar la distribución de iluminación en el plano de la fibra óptica receptora. Esta ecuación es comparada con ecuaciones planteadas donde se trata también de determinar una expresión para la función de transmisión en sensores de intensidad en fibras ópticas para medir desplazamiento.

Sin embargo, en el modelo planteado no es considerada la influencia de la distribución de intensidad en la apertura de las fibras ópticas, por lo tanto se trata de determinar una forma adecuada de incluir este parámetro dentro de la ecuación resultante, por tanto se toma una apertura numérica efectiva de los datos obtenidos para la distribución de potencia en el cono de emisión considerando la fuente. Por lo que se caracteriza la distribución de potencia en el cono de emisión tomando en cuenta la fuente y en el cono de recepción en forma experimental. De esta manera se obtiene una ecuación que nos proporciona un comportamiento de la función de transferencia del sensor, la cual es comparada con datos experimentales.

Por otro lado, para mejorar la respuesta de los sensores con modulación de intensidad y eliminar las fluctuaciones parásitas en los sensores, generalmente llamadas variaciones en modo común, se estudiaron las diferentes técnicas para generar una compensación de éstas. En particular en esta tesis, presenta un estudio de un puente óptico balanceado que permite tener una separación espacial de dos señales. De acuerdo con el estudio sobre la trayectoria de las señales a través del puente óptico balanceado se llega a la necesidad de procesar las señales a la salida de los fotodetectores.

En dicho estudio se ha definido la relación de rechazo en modo común (CMRR) para un puente óptico balanceado realizando una similitud con la definición existente para los amplificadores operacionales. Se ha desarrollado un sistema experimental que incluye los prototipos del puente óptico balanceado y la parte electrónica del procesamiento de las señales, para la cual se ha determinado el valor de la CMRR.

FI

Sensores en fibra óptica

CAPÍTULO 1

1. SENSORES EN FIBRA ÓPTICA

1.1. Aplicaciones de fibras ópticas en el área de sensores

Las telecomunicaciones llevaron a una revolución en la tecnología desarrollando nuevas perspectivas y métodos para procesar información. Uno de estos avances llevó las fibras ópticas a diversos campos, incluyendo el área de los sensores.

La función esencial de un sensor de fibra óptica es satisfacer la necesidad de obtener un cambio necesario en la forma de procesar las señales procedentes de un medio, sin tener que manejar variables eléctricas.

Las variables que podemos medir se clasifican de acuerdo al tipo de señal a procesar.

- señales de radiación que conllevan la intensidad, longitud de onda, estado de polarización y fase electromagnética o radiación acústica;
- señales mecánicas: fuerza, par, fluido, masa, etc;
- señales térmicas: incrementos de temperatura en el espacio y/o tiempo, y flujo de calor;
- señales eléctricas: voltaje, corriente, carga, resistencia, inductancia, capacitancia, duración de pulsos, frecuencia y constante dieléctrica;

FI

Sensores en fibra óptica

- señales magnéticas: densidad de flujo magnético, dirección de campo magnético y permeabilidad;
- señales químicas: composición química, toxicidad, potencial de oxi-reducción, pH, pCO₂, etc.

En un sensor de fibra óptica la medición es un cambio en las características de la luz transmitida, que se manifiesta en cambios de la luz captada en una fibra receptora.

Los motivos que mueven el campo de la investigación en sensores ópticos son principalmente obtener tecnología basada en fibra óptica para generar nuevas formas de medición que hagan factible crear sensores que proporcionen las siguientes características: pequeños, comunicación con sistemas remotos, mucho más precisos, seguros en la transmisión de datos, que no requieran contacto directo, acceso en áreas limitadas, no explosivos, ligeros, multicanalizales, e inmunes a radiación electromagnética, además que no necesiten fuentes eléctricas en el medio a sensar, y que tengan el potencial de ser producidos a muy bajo costo.

Algunas de las áreas que se han visto beneficiadas con estos desarrollos han sido: la investigación de acústica bajo el agua, monitoreo de tensiones, sensores de componentes químico-biológicos, área biomédica, procesos de control, líneas de producción automática, petroquímica, milicia, geofísica, calor, ventilación y controles de temperatura, sensores de presión, rotación, desplazamiento, campo eléctrico, nivel de líquido, fluido, radiación y vibración, etc.

1.2. Clasificación de sensores de fibra óptica

Los sensores de fibras ópticas pueden ser divididos en tres categorías básicas: sensor por modulación de fase, sensor por modulación de intensidad y sensor por modulación de longitud de onda.

 Los sensores de intensidad miden cambios en la cantidad de luz recibida, generalmente son asociados con los sensores de desplazamiento o alguna otra perturbación física que interactúa con la fibra óptica, o con un transductor mecánico unido a la fibra. La pérdida de luz puede ser asociada con la transmisión, reflexión, microcurvaturas, y fenómenos como la absorción, dispersión o fluorescencia la cual puede ser incorporada en la fibra. Los sensores de intensidad requieren más luz para trabajar, por lo general se utilizan

Sensores en fibra óptica

arreglos de fibra multimodo. En Fig. 1.1 se puede observar un diagrama de bloques básico de un sensor de intensidad. En este sistema se tiene una fuente óptica de banda ancha, la señal de ésta es enviada por una fibra óptica comúnmente llamada transmisora, a través de la cual es transportada hacia la perturbación a medir, después de esto es captada por una fibra llamada receptora y es llevada a un detector óptico. Del detector óptico pasa a un transductor que convierte la señal óptica en una señal electrónica y es llevada a un procesador de señales.

Fig. 1.1 Diagrama de bloques de un sensor de intensidad

Los sensores de fase comparan la fase de la señal en una fibra con la señal de una fibra de referencia en un dispositivo llamado interferómetro. La diferencia de fase puede ser medida con gran sensibilidad. Este tipo de sensor es mucho más exacto que el de intensidad y puede ser utilizado en un rango dinámico mucho mayor. A causa de esto, pueden llegar a ser mucho más caros. Los sensores de fase utilizan técnicas de interferometría para detectar presión, rotación o campo magnético. Básicamente funcionan de la siguiente manera: la luz de la fuente es dividida en dos, una parte de la luz viaja en la fibra de referencia y la otra en la fibra sensora la cual es expuesta a la

Sensores en fibra óptica

perturbación. Si la luz en la fibra sensora y la luz en la fibra de referencia están exactamente en fase se recombinan, entonces, se produce interferencia constructiva con un incremento en la intensidad de la luz, si sucede lo contrario, es decir, no están en fase, ocurre la interferencia destructiva y la intensidad de la luz recibida disminuye. Si la fibra sensora sometida a la perturbación tiene un cambio en el índice de refracción o en su longitud de onda, o incluso los dos, tales dispositivos experimentan un desfase. La Fig. 1.2 muestra un diagrama de bloques básico de un sensor de fase.

Fig. 1.2 Diagrama de bloques de un sensor de fase (interferómetro Mach-Zender).

 Los sensores de longitud de onda detectan un cambio en la longitud de onda asociado con el desplazamiento, temperatura o presencia de algún químico que causa fluorescencia. Algunos sensores de longitud de onda se complementan con rejillas de Bragg. Las rejillas de Bragg tienen una condición de resonancia en una longitud de onda específica y cuando se detecta esta longitud de onda, la luz es reflejada. Sin embargo, cuando se manifiestan cambios en la temperatura o tensión mecánica sobre la rejilla, estos pueden crear desfases en la longitud de onda debidos a que cambia el tamaño de las rejillas, lo cual puede afectar las lecturas o en algunos casos en sistemas más complejos puede ser parte de las

Sensores en fibra óptica

mediciones. La Fig. 1.3. presenta el diagrama de un sistema de sensor con rejilla de *B*ragg.

SENSOR DE LONGITUD DE ONDA

Fig. 1.3 Diagrama de bloques de un sensor de longitud de onda con una rejilla de Bragg.

Otra forma de clasificación de los sensores de fibra óptica es llamándolos intrínseco o extrínseco.

- Los sensores extrínsecos o híbridos son distinguidos debido a que la medición toma lugar fuera de la fibra. Los sensores de fibra óptica híbridos son similares y pueden ser vistos como una caja negra, donde las fibras son usadas para llevar la luz a la caja y a los registros posteriores. Para algunos casos los dos términos pueden ser utilizados de manera indistinta. La mayor diferencia que existe en sensores en los cuales un rayo de luz es utilizado para accionar un sensor electrónico y donde los datos deben ser comunicados vía fibra óptica, es esencialmente en la potencia emitida. En este caso la determinación de un sistema híbrido puede ser el más apropiado.
- Los sensores intrínsecos, también llamados "all fibers" indican que el sensado se realiza dentro de la fibra óptica. En este caso los términos siempre son usados de manera indistinta.

Sensores en fibra óptica

I.3. Principales tipos de sensores de desplazamiento en fibras ópticas

Medir desplazamiento en algunos sistemas puede ser de gran importancia, resolver esta necesidad nos puede dar una variedad infinita de soluciones una de ellas puede ser utilizar los dispositivos de fibra óptica los cuales permiten tener lecturas de desplazamientos lineales, de resolución y precisión por debajo de los nanómetros. Existen varias configuraciones en sensores con fibra óptica, las cuales se mencionan a continuación.

• Los interferométricos son utilizados en aplicaciones que requieren alta precisión y resolución, en pequeños desplazamientos y en desplazamientos muy precisos. Esta técnica es aplicada para medir desplazamientos en herramientas de máquinas, para calibración de escalas, en estudio de materiales (para determinar la anisotropía de coeficientes térmicos y módulos elásticos de mono-cristales), en dimensiones metrológicas (como para obtener la constante de Avogadro). La simplicidad que existe en la conceptualidad de la óptica para interferómetros no significa que su desarrollo sea simple, en realidad la utilización práctica de un interferómetro, significa que se confía críticamente en que la fuente de luz es monocromática y coherente.

Sin embargo, cuando la medición requiere baja resolución y alta precisión, es necesario contar con una fuente de luz muy potente. Para obtener gran exactitud debemos poner atención en la distribución de la intensidad del rayo, y la manera de minimizar los efectos de difracción. También debemos tomar en cuenta la estabilidad mecánica de los componentes.

La óptica interferométrica para mediciones de desplazamiento se ha desarrollado en dos vertientes principalmente, la industria y la investigación. Para la industria es indispensable que cuente con características específicas como son: que sea portátil, de fácil uso, un rango amplio de aplicaciones, de bajo costo y precisión elevada, y resolución mejor que 1 µm, por lo que alta precisión y resolución son las características más deseadas. Por tanto la investigación se encarga de proporcionar estas características.

Los sensores de desplazamiento interferométricos están basados en el interferómetro básico de Michelson, que por lo general, utiliza una fuente láser, que ha sido modificada de diferentes formas; a) para que el rayo emitido no regrese a la fuente de luz, ó b) para tener una sola fuente de luz, para trabajar con dos señales con dos diferentes frecuencias y polarizaciones, o dos fuentes que tengan diferente longitud de onda [1], de esta manera es posible obtener la

Sensores en fibra óptica

información del desplazamiento en relación con la fase. Una parte del interferómetro es identificada como la parte que sensa y es donde su longitud cambia, así que un cambio en la fibra receptora será detectado y podrá hacerse una lectura. La forma básica de este sensor puede observase en la Fig.1.4.

Fig. 1.4 Interferómetro de Michelson.

También el arreglo llamado interferómetro de doble paso de Michelson, proporciona precisión de picómetros, lo cual significa que el ruido puede ser muy reducido [1].

La interferometría del espacio libre está basada en la propagación en el aire de un rayo de luz, el cual es afectado por las condiciones del medio.

Es posible encontrar interferómetros comerciales que permiten medir desplazamientos lineales axiales de varias décimas de metros con una resolución y precisión de 1nm.

• *Modulación de la intensidad de luz*. Podríamos determinar el funcionamiento de estos sensores; como la relación de la cantidad de luz captada por la fibra receptora y la cantidad de luz llevada a través de la fibra transmisora. En este tipo de sensor es posible tener dos tipos de lecturas de desplazamiento: longitudinal y transversal. En la Fig. 1.5 podemos caracterizar el tipo de desplazamientos a medir, por lo general, este tipo de sensor trabaja en el infrarrojo o en el rango visible [2].

Sensores en fibra óptica

Fig. 1.5 Sensores de desplazamiento con modulación de intensidad.

Muchos sensores con modulación de intensidad son basados en la amplitud modulada para poder tener mediciones de desplazamientos lineales o angulares. Estos sensores involucran desplazamientos longitudinales, transversales, angulares y diferenciales de las fibras. Así como arreglos que contienen: obturadores, rejillas, cuñas ópticas, franjas, lentes móviles y microinterruptores ópticos.

Los sensores del tipo obturados tienen arreglos de fibras con lentes colimadoras y aperturas mecánicamente variables acopladas a un sensor primario como un diafragma. En un sistema de franjas, se puede medir un desplazamiento midiendo franjas. Este sistema evita los problemas con la referencia e incrementa la respuesta para pequeños desplazamientos, pero introduce ambigüedad en la medición a menos que sea incluida la cantidad de las franjas.

• *Monitoreados usando técnicas de filtrado espectral*. Este tipo de sensor cuenta con un aparato donde se modula la luz en respuesta de la rotación de un prisma o una rejilla de difracción. Otro tipo de arreglo puede ser con una zona de plata, la cual trabaja como una rejilla de difracción con un rayado anular concéntrico, el cual actúa como un espejo cóncavo, teniendo

Sensores en fibra óptica

una distancia focal dependiente de la longitud de onda. Todos estos sistemas tienen un estrecho ancho de banda de la luz filtrada el cual cambia cuando el sensor responde al desplazamiento. Este método es altamente inmune a variaciones de la fuente y de variaciones en la transmisión de la fibra, y su éxito se fundamenta solamente en el diseño de un decodificador de longitud de onda y sobre la disponibilidad del ancho de banda de la fuente capaz de soportar el costo y contrastes ambientales. En la Fig. 1.6 se pueden observar este tipo de configuraciones [2].

Fig. 1.6 Sensores de desplazamiento con técnicas de filtrado espectral.

Conclusiones

Los sensores en fibras ópticas cuentan con las ventajas de ser pequeños, muchos más exactos, seguros en la transmisión de datos, no explosivos y ligeros. Tienen sistemas de comunicación remotos, acceso en áreas limitadas, inmunes a radiación electromagnética, además que no necesitan fuentes eléctricas en el medio a sensar, y tienen el potencial de ser producidos a muy bajo costo y además no requieren contacto directo.

Sensores en fibra óptica

Los sensores de desplazamiento en fibras ópticas permiten tener una gran variedad de configuraciones dependiendo de la aplicación, haciendo posible tener lecturas lineales, de baja resolución y alta precisión. Los sensores de intensidad presentan la ventaja de ser arreglos sencillos, además de que es posible realizarlos con fuentes no coherentes. Permiten tener arreglos que contienen: obturadores, rejillas, cuñas ópticas, franjas, lentes móviles y micro-interruptores ópticos Sin embargo, se ven afectados por cambios en la fuente y en algunos casos dependen del acoplamiento entre fibras. Por otro lado, cuando es necesario tener mayor exactitud y rango dinámico se cuenta con un arreglo interferométrico el cual hace posible tener dos señales, lo que permite tener una señal de referencia que puede ser comparada con la señal proveniente de la perturbación medida. Sin embargo, es necesario contar con una fuente altamente coherente, y los arreglos se hacen más complicados. Otro tipo de sensores en fibra óptica son los que comparan la fase. Este tipo de sensor es mucho más exacto que el de intensidad y puede ser utilizado en un rango dinámico mucho mayor. A causa de esto, pueden llegar a ser mucho más caros. Cuando hacen uso de las rejillas de Bragg, se tiene una señal de respuesta como consecuencia de un cambio de fase. Sin embargo, presentan la desventaja de ser altamente sensibles a los cambios de temperatura y tensión mecánica. No obstante, es posible tener control sobre estos cambios. Los sensores con técnicas especiales de filtrado espectral cuentan con la ventaja de que la señal de medición se obtiene en un ancho de banda estrecho consecuencia de la propia medición, además son altamente inmunes a variaciones de la fuente y en la fibra.

CAPÍTULO 2

2. SENSORES DE DESPLAZAMIENTO EN FIBRAS ÓPTICAS CON MODULACIÓN DE INTENSIDAD

2.1. Perspectivas y problemas de desarrollo en los sensores de intensidad

El desarrollo de sensores de intensidad es parte fundamental para la construcción de sistemas mucho más complejos. Los sensores de intensidad son utilizados para desarrollar sistemas de medición, principalmente en temperatura, nivel de líquidos, desplazamiento, etc.

Los sensores de intensidad presentan la posibilidad de ser confiables, simples y de muy bajo costo. No obstante, para aplicaciones analógicas presentan la desventaja de necesitar una señal de referencia para poder tener una señal con exactitud y estabilidad, con lo que se eliminan fluctuaciones en la fuente y pérdidas en los conectores.

Principalmente trabajan bajo ciertos fenómenos que a continuación se mencionan.

<u>*Transmisión*</u>; es asociada con la existencia o no del rayo transmitido, por lo que esto proporciona un buen sensor de tipo analógico.

<u>Reflexión</u>; es generalmente asociada a una superficie reflectora la cual permite introducir una serie de arreglos de fibras, con lo que se obtienen mediciones de millonésima de pulgada. A pesar de esto, la exactitud y el rango dinámico dependen estrechamente del tipo de arreglo. Por otro lado, en un desplazamiento transversal la pérdida de la transmisión es mucho más rápida que en un sensor de desplazamiento longitudinal.

<u>Curvaturas</u>. Inicialmente se manifiestan en pérdidas en los altos modos de propagación. Otra manera en que se manifiesta este fenómeno es cuando una fibra es doblada, en este estado existen pequeñas cantidades de luz que se convierten en pérdidas a través de la pared de la fibra.

Los sensores basados en la reflexión son de alta exactitud y bajo costo, además es importante resaltar que los sensores de microcurvaturas tienen una trayectoria óptica muy corta y por lo tanto son inmunes a factores ambientales.

La *absorción* es causada también por impurezas en la fibra, y en fibras fabricadas con silicio. Esto ocurre fuertemente en el intervalo del ultravioleta al infrarrojo. Sin embargo, las fibras de uso común han sido producidas con pérdidas de atenuación por debajo de 0.2 dB/km. Como consecuencia, tenemos un espectro de absorción y dispersión para diferentes longitudes de onda [3].

En muchas cubiertas de polímero pueden generarse <u>cambios del índice de refracción</u> sensibles a la temperatura, lo cual se observa en la cantidad de luz recibida que afecta directamente a la onda evanescente.

Fluorescencia. Es un fenómeno que también puede afectar a los sensores de intensidad, esto se logra dopando los cristales de silicio con distintos aditivos: El sensor puede trabajar como emisor de fluorescencia o como detector de ésta. También si se dopan las fibras con óxidos de elementos llamados tierras raras es posible hacer la fibra sensible a ciertos campos magnéticos, lo cual nos permite tener un sensor de intensidad polarizado.

2.2. Principios del funcionamiento y construcción de los sensores de desplazamiento

Los sensores de desplazamiento hacen uso de las características de los sensores de intensidad e interferométricos para obtener un mejor desempeño. Partiendo de los fenómenos antes

mencionados principalmente: transmisión, cambios en el índice de refracción, reflexión y microcurvaturas [9].

Fig. 2.1 Sensor de desplazamiento con obturador y gráfica de la respuesta. dA/A es el cambio de la intensidad debida al obturador, δx es el cambio de posición del obturador.

El sistema más sencillo y representativo es el que se forma de dos fibras y un obturador, este sistema mide la relación que existe cuando el obturador se desplaza entre las dos fibras y deja pasar solamente cierta cantidad de luz relacionada con el desplazamiento del obturador (Fig. 2.1).

Así mismo, una variante de este tipo, es el que se forma por lentes colocadas entre las fibras, las cuales hacen posible hacer más grande la trayectoria del rayo. Este tipo de arreglo es muy útil cuando las fibras necesitan más espacio entre ellas.

Sensores de desplazamiento en fibras ópticas con modulación de intensidad

Fig. 2.2 Sensor de desplazamiento con rejillas y curva de respuesta. δx es el cambio de posición del obturador.

Un sistema un poco más complejo es cuando se añaden rejillas, que constan de zonas transparentes y opacas. Con este mecanismo se alternan las zonas, las cuales indican un cambio en la transmisión desde un 50% a 0%, lo que se manifiesta como una función periódica del movimiento y la posición de las rejillas (Fig. 2.2).

Fig. 2.3 Sensor de desplazamiento con superficie reflectora.

Otra opción de sensores de desplazamiento es el tipo que hace uso de la reflexión, principalmente se compone de una o dos fibras y una superficie reflectora (Fig. 2.3). Su funcionamiento se basa en que la luz es enviada a la tarjeta reflectora y ésta a su vez envía la luz a una fibra. La cantidad de luz emitida y recibida depende principalmente de la geometría del arreglo de las fibras.

Fig. 2.4 Sensor de desplazamiento con microcurvaturas.

Un arreglo más complejo, aprovecha las microcurvas que puede sufrir la fibra, lo que se interpreta como una medición de desplazamiento. Este fenómeno se realiza principalmente cuando sobre la fibra se ejerce un desplazamiento que se traduce en presión sobre ésta, lo que provoca que los modos propagados dentro de la fibra se minimicen y se tenga menor cantidad de luz transmitida y por tanto se pueda medir un desplazamiento (Fig. 2.4).

Otra propiedad que se puede emplear es la de cambiar el índice de refracción, lo cual se logra por pequeños desplazamientos de dos fibras que tienen en medio una película de material con diferente índice de refracción. Esto se manifiesta en cambios en el campo evanescente

asociados directamente con la onda evanescente e incluso con el flujo de luz a través de la fibra.

2.3. Análisis de las características de los sensores de desplazamiento

Para los sistemas de sensores como los que se muestran en la Fig. 2.1 podemos determinar la intensidad de la luz basada en la geometría de la transmisión. En general podemos expresar esto como [5]:

$$I = \left[\frac{a}{d\tan\theta_m}\right]^2 \left[\frac{\delta A}{A}\right],\tag{2.1}$$

donde *a* es el núcleo de la fibra, *d* separación entre las fibras, $\delta A/A$ es la relación entre el área parcialmente cubierta y el obturador, y θ_m es el ángulo correspondiente a la apertura numérica. Este análisis también puede extenderse al caso mencionado de los sensores que utilizan lentes para ampliar el alcance del rayo transmitido. Tomando en cuenta que la geometría que se describe es la misma. El comportamiento de la respuesta según Grattan, tiene un comportamiento casi lineal, aunque rigurosamente no es así [5]. Por otro lado, el rango de este tipo de sensores con un obturador se ve limitado por el diámetro del núcleo de la fibra el cual no puede ser mayor a 1 mm.

Los sensores con rejillas son de buena calidad cuando el desplazamiento deforma la rejilla en dirección axial. El cambio asociado a la longitud de onda causada por la deformación, está determinado por:

$$\frac{\Delta\lambda}{\lambda} = (1 - P_e)\varepsilon, \qquad (2.2)$$

$$P_{e} = \left(\frac{n^{2}}{2}\right) \left[P_{12} - \gamma \left(P_{11} + P_{12}\right)\right], \qquad (2.3)$$

donde ε es la fuerza aplicada, P_{11} y P_{12} son las constantes fotoelásticas, *n* es el índice de refracción y γ es la razón de Poisson.

Los sensores de desplazamiento basados en la reflexión, tienen muchas variantes dependiendo del arreglo que se realice con las fibras y con la superficie reflectora, lo cual nos dará diferentes geometrías de análisis [6], [7] y [8].

Sensores de desplazamiento en fibras ópticas con modulación de intensidad

Fig. 2.5 Sensor de desplazamiento con superficie reflectora.

La curva básica de respuesta se muestra en la Fig. 2.5, donde es posible observar que inicialmente la relación es casi lineal, incluso Krohn [3] menciona que es lineal inicialmente en un 20%, después de llegar a su máximo valor decae con una relación de $1/R^2$ donde R es la distancia entre las fibras y la tarjeta reflectora. La curva puede ser explicada de manera sencilla si consideramos que la luz emitida forma un cono sólido con la apertura numérica correspondiente a la fibra, por lo que la luz sobre la tarjeta está dada por:

$$2R\tan\theta = D, \qquad (2.4)$$

donde θ es el medio ángulo correspondiente a la apertura numérica y *D* es el diámetro de la circunferencia proyectada sobre la tarjeta reflectora, de tal suerte que la circunferencia de luz reflejada que llega a la fibra receptora incrementa cuando la distancia entre la fibra emisora incrementa en una manera directamente proporcional a R^2 . Como consecuencia, la cantidad de luz detectada es inversamente proporcional al área de la circunferencia de luz reflejada $(1/R^2)$.

Sensores de desplazamiento en fibras ópticas con modulación de intensidad

Por otro lado la sensibilidad y el rango dinámico están influenciados por el tipo de arreglo de las fibras lo cual nos proporciona diferentes ventajas. Por ejemplo un arreglo hemisférico nos proporciona más rango dinámico, pero tiene menor sensibilidad cuando es comparado con un arreglo aleatorio. Es posible observar en la Fig. 2.5 las diferencias en el tipo de arreglos con fibras. También para estos sistemas es importante la eficiencia del acoplamiento óptico el cual es idealmente con una fibra de 200 μ m y NA = 0.5 de aproximadamente 5% [5].

Cuando en una fibra se realizan microcurvaturas la fibra emite energía, lo cual provoca cambios en la onda evanescente, como consecuencia la energía transmitida se pierde por radiación. Los parámetros que influencian a las pérdidas por microcurvaturas son: apertura numérica, tamaño del núcleo, relación entre el núcleo y el recubrimiento, y la periodicidad de la deformación de la fibra.

Cuando una microcurvatura periódica es introducida, ocurre acoplo entre modos con constantes de propagación longitudinales $\beta y \beta^{l}$ [3]. Por lo que:

$$\beta - \beta^1 = \frac{2\pi}{\Lambda},\tag{2.5}$$

donde Λ es la longitud de onda de la curvatura periódica.

La diferencia en la constante de propagación para modos adyacentes está dada por:

$$\beta_{m+1} - \beta_m = \frac{2.83NA(m)}{an_1(M)},$$
(2.6)

donde *NA* es la apertura numérica, n_1 es el índice en el núcleo, a es el radio del núcleo, m es el grupo modal y M es el numero de grupos modales.

Cuando tenemos incrementos en la apertura numérica, el espaciamiento de los periodos de perturbación debe disminuir para tener máxima sensibilidad. Por lo tanto las pérdidas en la luz están fuertemente relacionadas con la perturbación periódica.

2.4. Técnicas de procesamiento de las señales en los sensores de intensidad

Una manera que se ha encontrado para disminuir los efectos producidos por los elementos del sistema (distribución de la potencia en la fuente, el espectro de transmisión en la fibra, el

espectro de respuestas del detector, etc.), ha sido colocar arreglos extras a las configuraciones existentes, lo cual produce una señal de intensidad de referencia [5].

Fig. 2.6 Sensor de desplazamiento con superficie reflectora.

Esto consta de tener arreglo aleatorio de fibras, lo cual está rodeado por un anillo de fibras únicamente receptoras. En Fig. 2.6, podemos observar las características de modulación para cada tipo de arreglo.

La eficiencia de este sistema lo podemos expresar como:

$$\frac{V_{S}}{V_{R}} = \frac{q_{S}}{q_{R}} = \left[\frac{\sum_{l,m,\lambda} \left(\int_{l} P(\lambda)F(\lambda)M_{2S}(\lambda)dl \right) M_{1S}(\lambda)R_{S}(\lambda)d\lambda}{\sum_{l,m,\lambda} \left(\int_{l} P(\lambda)F(\lambda)M_{2S}(\lambda)dl \right) M_{1R}(\lambda)R_{R}(\lambda)d\lambda} \right]^{P}, \quad (2.7)$$

donde $P(\lambda)$ es la distribución de la potencia en la fuente, $F(\lambda)$ es la transmisión en la fibra, $M_{2S}(\lambda)$ modulación producida por el sensor, $M_{1S}(\lambda)$ factor de cambios intermodales, $R_S(\lambda)$ respuesta del detector en la fuente, $R_R(\lambda)$ respuesta del detector en la fuente, V_S y V_R son los voltajes de salida y de referencia respectivamente.

La ecuación (2.7) muestra que el arreglo es confiable, si los cambios de amplitud son generados por el sistema encargado de realizar el cambio de intensidad. Incluso la referencia

obtenida puede ser susceptible de errores si los elementos del arreglo de las fibras tienen fracturas. La ecuación anterior también muestra que puede tener errores debidos a cambios en la longitud de onda lo cual depende de los parámetros anteriormente definidos, los cuales pueden ser eliminados incluyendo una fuente monocromática. Este método es exclusivamente aplicable para la medición de desplazamiento, para otros sistemas requiere de procesos de transducción secundarios.

Un método alternativo es el que monitorea dos longitudes de onda lo que permite tener dos señales en diferentes longitudes de onda, donde una longitud de onda es independiente de la medición y la otra es totalmente dependiente de ésta. La relación de las longitudes de onda es utilizada la medición que produce cambios de intensidad, por lo que en este caso tenemos:

$$\frac{V_{S}}{V_{R}} = \frac{q_{S}}{q_{R}} = \left[\frac{\sum_{l,m} P(\lambda_{S}) F_{a}(\lambda_{S}) M_{"a}(\lambda_{S}) M_{1}(\lambda_{S}) R_{a}(\lambda_{S})}{\sum_{l,m} P(\lambda_{R}) F_{a}(\lambda_{R}) M_{"a}(\lambda_{R}) M_{1}(\lambda_{R}) R_{a}(\lambda_{r})}\right]^{P}, \qquad (2.8)$$

donde S y R se refieren a la señal y referencia, a y b corresponden a las dos longitudes de onda

Otro método utilizado es la espectrometría, donde la información es obtenida por medio de dispersar la señal óptica utilizando prismas o rejillas difractoras. El resultado obtenido es llevado dentro de una matriz de fotodetectores, lo que proporciona mayor información acerca de los cambios en la intensidad de la luz. Sin embargo, tales sistemas son incómodos para los diseños de instrumentación con fibra óptica pero son más generosos con la cantidad de datos adquiridos.

El monitoreo monocromático es una aproximación de gran poder ya que busca unir la complejidad de un monitoreo espectral y la simplicidad de dos longitudes de onda utilizando técnicas de medición cromática. Tales métodos hacen uso de los principios de la ciencia del color. Esta aproximación cuenta con el uso de M detectores, donde se eligen N para tener determinado nivel de detalle requerido para cada aplicación, por lo que cada arreglo tiene diferente apertura espectral.

En caso de los sistemas análogos es común multicanalizar la señal de referencia a lo largo de la misma fibra y detectando con un solo detector.

Conclusiones

Entre los sensores de desplazamiento con modulación de intensidad el sistema más sencillo y representativo es el que se forma de dos fibras y un obturador, incluso pueden realizarse arreglos con lentes colocados entre las fibras, las cuales hacen posible hacer más grande la trayectoria del rayo. Este tipo de sensores se ve limitado por el diámetro del núcleo de la fibra el cual no puede ser mayor a 1 mm. El arreglo puede ser confiable si el cambio en la intensidad es generado por un solo elemento. Sin embargo, la referencia obtenida puede ser susceptible a errores si los elementos del arreglo de las fibras tienen fracturas.

En un sensor reflectivo la cantidad de luz emitida y recibida depende principalmente de la geometría del arreglo de las fibras, lo cual nos dará diferentes geometrías de análisis. Un arreglo más complejo, aprovecha las microcurvas que puede sufrir la fibra, lo que logra cuando existe un desplazamiento que presiona la fibra, lo que provoca que los modos propagados dentro de la fibra se minimicen y se tenga menor cantidad de luz transmitida y por tanto se pueda medir un desplazamiento.

Otra propiedad que se puede emplear es la de cambiar el índice de refracción, lo cual se logra por pequeños desplazamientos de dos fibras que tienen en medio una película de material con diferente índice de refracción.

Los sensores con rejillas son de buena calidad cuando el desplazamiento deforma la rejilla en dirección axial Otro método utilizado es la espectrometría, donde la información es obtenida por medio de dispersar la señal óptica utilizando prismas o rejillas difractoras. Sin embargo, tales sistemas son incómodos para los diseños de instrumentación con fibra óptica pero son más generosos con la cantidad de datos adquiridos.

De las opciones presentadas anteriormente los arreglos mayormente utilizados, son los de tipo reflectivo y transmitivo, ya que cuentan con la ventaja de poder ser adaptables a técnicas para mejorar la señal de respuesta (como es la interferometría) que es altamente sensible a cambios tanto en la fibra como en la fuente. Además los sensores reflectivos pueden ser mejorados si se tiene un arreglo de fibras, lo que permite tener mayor rango dinámico.

CAPÍTULO 3

3. CÁLCULO DE LA FUNCIÓN DE TRANSFERENCIA DE UN SENSOR DE DESPLAZAMIENTO EN FIBRAS ÓPTICAS

3.1. Modelo matemático del sensor de desplazamiento con modulación de intensidad

El sensor se compone de dos contrapartes (dos fibras multimodo o una fibra y un espejo) que se desplazan a lo largo de un eje común. La *función de transferencia* de este sensor de desplazamiento con modulación de intensidad, se define como la relación entre la potencia óptica recibida por una fibra y la potencia óptica transmitida por otra fibra, en función de la distancia longitudinal entre las fibras.

En este capítulo se estudian las características de un sensor de desplazamiento de intensidad transmitivo mostrado en la Fig. 3.1(a), el cual es un sensor que mide desplazamiento relacionando la potencia transmitida con la distancia entre las dos fibras.

Fig. 3.1 Sensores de desplazamiento de intensidad en fibras ópticas: a) sensor de desplazamiento transmitivo, b) sensor de desplazamiento reflectivo.

3.1.1. Consideraciones para el análisis de la función de transferencia

Analizaremos el caso en que tenemos un sensor de distancia en el cual se considera que la distribución en toda la superficie de la fibra emisora es homogénea y la distribución en el cono de emisión es homogénea también, por lo que se puede considerar que la distribución en la sección transversal del cono de emisión en el plano de recepción también es homogénea.

Considerando el núcleo de la fibra emisora como la superficie de emisión S_e (Fig. 3.2), y siendo éste un conjunto de pequeñas superficies de emisión elemental dS_e , que emiten una potencia elemental dP_e , con un patrón de cono con la apertura numérica $NA = \text{sen } \theta$, hacia el plano receptor.

Fig. 3.2 Cono de emisión en un sensor de desplazamiento de intensidad transmitivo.

Definimos la potencia de una superficie elemental como:

$$dP_e = E \cdot dS_e, \tag{3.1}$$

donde E es la emitancia de la superficie emisora, considerada constante para fibras ópticas de índice escalonado.

Tomando en cuenta que las superficies de emisión elemental dS_e , tienden a cero y la cantidad de estas superficies tienden a infinito, y que la distribución de la potencia emitida sobre la superficie receptora es homogénea (condición válida sólo para fibras ópticas de índice escalonado), podemos considerar que la potencia emitida P_{e} , está dada por:

$$P_{e} = \int dP_{e} = E \int_{S_{e}} dS_{e} = E \cdot S_{e} = E \pi R^{2}, \qquad (3.2)$$

donde *R* es el radio de la fibra emisora.

Definimos $I(\rho)$ como la función de iluminación, perteneciente a cada punto en el plano de recepción, donde ρ es su coordenada radial en relación con el eje de las fibras. Entonces, la función de iluminación varía con la distancia entre las fibras emisora y receptora. La expresión para la iluminación elemental dI que proyecta una superficie de emisión elemental, sobre el plano de recepción es la siguiente:

$$dI = \frac{dP_e}{S_i} = \frac{EdS_e}{S_i},\tag{3.3}$$

donde S_i es el área de la iluminación elemental, es decir es el área de la sección del cono de emisión sobre el plano de recepción.

La iluminación total que recibe un punto elemental que se encuentra dentro del plano de recepción con coordenada radial ρ está formado por las iluminaciones elementales que están contenidas en el cono de recepción elemental, por lo que se establece la función de iluminación $I(\rho)$ de la siguiente manera:

$$I(\rho) = \int dI = \frac{E}{S_i} \int_{S_e(\rho)} dS_e = E \frac{S_e(\rho)}{S_i},$$
(3.4)

donde $S'_{e}(\rho)$ es el área de traslape entre la sección del cono de recepción del punto elemental receptor y la superficie emisora (un círculo completo o incompleto).

Así que se puede expresar la función de transferencia del sensor *T* en relación a la expresión para la iluminación.

$$T = \frac{P_r}{P_e} = \frac{2\pi \int_0^R I(\rho)\rho d\rho}{E\pi R^2},$$
(3.5)

donde P_r es la potencia total captada por la fibra receptora.

3.1.2. Cálculo de la función de iluminación

El análisis se centra en el cálculo del área de traslape $S'_{e}(\rho)$ entre la sección del cono de recepción del punto elemental con coordenada radial ρ y la superficie emisora.

El radio r del "círculo de recepción elemental" proyectado desde el punto elemental receptor sobre el plano emisor, dependerá de la distancia entre las fibras L y de la apertura numérica NA.

$$r = L \cdot \tan(\arcsin(NA)). \tag{3.6}$$

Tomando en cuenta la posición de las fibras en la Fig. 3.2, podemos decir que éstas se encuentran sobre un mismo eje longitudinal, y asumiendo que las dos fibras tienen el mismo origen, se deduce que la posición de un punto sobre una de las fibras tendrá la misma localización en la otra, así que podemos determinar un solo sistema cartesiano (X, Y). Como consecuencia

observaríamos en un solo plano dos circunferencias (Fig. 3.3); una perteneciente al radio R de la fibra emisora y otra al "círculo de recepción elemental" con el radio r.

Fig. 3.3 Zonas de iluminación de un punto con coordenada ρ dependientes de la separación entre las fibras.

Debido a que el tamaño del "círculo de recepción elemental" depende de la distancia entre las fibras y que hay varios casos de traslape entre dos circunferencias mencionadas, el estudio de la función de iluminación se divide en tres intervalos o zonas [10].

Zona cercana es el intervalo donde el radio *r* del "círculo de recepción elemental", varía en el límite de $0 \le r \le R$, es decir, la distancia entre las fibras varía desde cero hasta que el radio del "círculo de recepción elemental" sea igual al radio de la fibra emisora. Esta zona se subdivide como se muestra en la Fig. 3.3 (a) y (b).

Para el inciso (a) podemos determinar que el "círculo de recepción elemental" está completamente dentro de la circunferencia de fibra emisora, debido a que la iluminación recibida será igual a la emitancia de la superficie emisora:

$$I = \frac{E}{S_i} \int_{S_e} dS_e = E \frac{S_e}{S_i} = E \frac{\pi r^2}{\pi r^2} = E.$$
(3.7)

En el inciso (b) podemos observar que existe un traslape parcial del "círculo de recepción elemental" con la circunferencia de fibra emisora, por lo tanto la función de iluminación estará condicionada por el área de traslape $S'_{e}(\rho)$ como en la ecuación (3.4).

Zona intermedia es el intervalo donde el radio *r* varía en el límite de $R \le r \le 2R$.

Cálculo de la función de transferencia de un sensor de desplazamiento en fibras ópticas

Esta zona también es afectada por un traslape parcial pero el "círculo de recepción elemental" es más grande que la circunferencia de fibra emisora, como se muestra en la Fig. 3.3 (c). Como en el caso anterior, la función de iluminación estará condicionada por el área de traslape $S'_{e}(\rho)$ según de la ecuación (3.4).

Zona lejana es el intervalo donde el radio *r* varía en el límite de $r \ge 2R$.

En esta zona la circunferencia de fibra emisora siempre está dentro del "círculo de recepción elemental" como se muestra en la Fig. 3.3 (d):

$$I = \frac{E}{S_i} \int_{S_e} dS_e = E \frac{S_e'}{S_i} = E \frac{\pi R^2}{\pi r^2} = E \frac{R^2}{r^2}.$$
 (3.8)

Cálculo del área de traslape

Como se mencionó anteriormente la iluminación dependerá del área de traslape $S'_{e}(\rho)$ entre el "círculo de recepción elemental" y la superficie de fibra emisora. Así que tomando en cuenta los puntos marcados para dicho traslape como se muestra en la Fig. 3.4, definimos los límites de integración para el cálculo del área de traslape [10].

Fig. 3.4 Definición de los puntos característicos de la zona de traslape.
CAPÍTULO 3

Cálculo de la función de transferencia de un sensor de desplazamiento en fibras ópticas

Punto x_0 es el centro del "círculo de recepción elemental" equivalente a la coordenada radial ρ del punto iluminado definido anteriormente. Su valor máximo es:

$$x_{0\max} = R + r \,. \tag{3.9}$$

De la Fig. 3.4 se observa lo siguiente:

$$x_1 = x_0 - r \,. \tag{3.10}$$

Punto x_2 es la intersección del extremo de fibra emisora y el "círculo de recepción elemental"

$$x_2 = \frac{x_0^2 + R^2 - r^2}{2x_0} \,. \tag{3.11}$$

Punto x_3 es la intersección de la circunferencia de la fibra emisora y el eje x.

$$x_3 = R . \tag{3.12}$$

De la Fig. 3.4 se observa que:

$$x_4 = x_0 + r \,. \tag{3.13}$$

Tomando en cuenta los puntos anteriormente definidos, la función de iluminación para la zona de traslape se puede expresar como:

$$S'_e = S'_1 + S'_2,$$
 (3.14)

donde S'_1 se puede calcular como el área del "círculo de recepción elemental" en el intervalo de $[x_1, x_2]$, y S'_2 se puede calcular como el área del núcleo de la fibra emisora en el intervalo $[x_2, x_3]$, por lo que tenemos:

$$S'_{1} = 2 \int_{x_{1}}^{x_{2}} \sqrt{r^{2} - (x - x_{0})^{2}} dx . \qquad (3.15)$$

$$S'_{2} = 2 \int_{x_{2}}^{x_{3}} \sqrt{R^{2} - x^{2}} dx . \qquad (3.16)$$

Resolviendo las ecuaciones (3.15 y 3.16), y sustituyendo en (3.14), tenemos:

$$S_{e}' = 2 \left[\frac{\pi}{4} \left(R^{2} + r^{2} \right) - \frac{1}{4} \sqrt{4R^{2}r^{2} - (x_{0}^{2} - R^{2} - r^{2})^{2}} - \frac{r^{2}}{2} \arcsin \left(\frac{x_{0}^{2} - R^{2} + r^{2}}{2rx_{0}} \right) - \frac{R^{2}}{2} \arcsin \left(\frac{x_{0}^{2} + R^{2} - r^{2}}{2Rx_{0}} \right) \right].$$
(3.17)

31

Cálculo de la función de transferencia de un sensor de desplazamiento en fibras ópticas

3.1.3. Expresión de la función de transferencia del sensor

La función de transferencia del sensor para las tres zonas mencionadas según la ecuación (3.5), la podemos expresar [10] como:

$$T(r) = \begin{cases} \frac{E\pi(R-r)^{2} + \frac{2E\pi}{r^{2}} \int_{R-r}^{R} S_{e}^{'}(\rho)\rho d\rho}{E\pi R^{2}} = \frac{(R-r)^{2}}{R^{2}} + \frac{2}{\pi R^{2}r^{2}} \int_{R-r}^{R} S_{e}^{'}(\rho)\rho d\rho.....0 \le r \le R \\ \frac{E\pi \frac{R^{2}}{r^{2}} (r-R)^{2} + \frac{2E\pi}{r^{2}} \int_{R-r}^{R} S_{e}^{'}(\rho)\rho d\rho}{E\pi R^{2}} = \frac{(r-R)^{2}}{r^{2}} + \frac{2}{\pi R^{2}r^{2}} \int_{r-R}^{R} S_{e}^{'}(\rho)\rho d\rho....R \le r \le 2R \\ \frac{E\pi \frac{R^{2}}{r^{2}}}{E\pi R^{2}} = \frac{R^{2}}{r^{2}}....r \ge 2R \end{cases}$$

(3.18)

Sustituyendo la ecuación (3.17) en (3.18) y resolviendo la integral perteneciente a la zona de traslape en los límites mencionados, obtenemos:

$$\begin{aligned} & \left\{ \begin{bmatrix} \frac{(R-r)^2}{R^2} + \frac{r}{R} + \frac{R}{r} - \frac{r^2}{2R^2} - \frac{1}{2\pi} \left(\frac{r}{2R} + \frac{R}{r} \right) \sqrt{4 - \frac{r^2}{R^2}} - \frac{R^2}{\pi r^2} \arcsin\left(1 - \frac{r^2}{2R^2}\right) + \\ & \frac{1}{2\pi} \left(\frac{(R-r)^2}{r^2} - \frac{(R-r)^2}{R^2} \right) \arccos\left(\frac{R-r}{|R-r|}\right) - \frac{2}{\pi} \arcsin\left(\frac{r}{2R}\right) \right] \dots \dots 0 \le r \le R \end{aligned} \\ T(r) = \begin{cases} \left[\frac{(R-r)^2}{r^2} + \frac{r}{R} + \frac{R}{r} - \frac{r^2}{2R^2} - \frac{1}{2\pi} \left(\frac{r}{2R} + \frac{R}{r}\right) \sqrt{4 - \frac{r^2}{R^2}} - \frac{R^2}{\pi r^2} \arcsin\left(1 - \frac{r^2}{2R^2}\right) + \\ & \frac{1}{2\pi} \left(\frac{(R-r)^2}{r^2} - \frac{(R-r)^2}{R^2} \right) \arccos\left(\frac{R-r}{|R-r|}\right) - \frac{2}{\pi} \arcsin\left(\frac{r}{2R}\right) \right] \dots R \le r \le 2R \\ & \frac{R^2}{r^2} \dots R \le r \le 2R \end{aligned}$$

De simple observación podemos decir que:

FI

(3.19)

 $arcsin((R-r)/|R-r|) = \pi$, para el intervalo $0 \le r \le R$; $arcsin((R-r)/|R-r|) = -\pi$, para el intervalo $R \le r \le 2R$. Con esto, la ecuación (3.19) se puede simplificar a la siguiente:

$$T(r) = \begin{cases} 1 + \frac{R^2}{2r^2} - \frac{1}{2\pi} \left(\frac{r}{2R} + \frac{R}{r}\right) \sqrt{4 - \frac{r^2}{R^2}} - \frac{R^2}{\pi r^2} \arcsin\left(1 - \frac{r^2}{2R^2}\right) - \frac{2}{\pi} \arcsin\left(\frac{r}{2R}\right) \dots \dots 0 \le r \le 2R \\ \frac{R^2}{r^2} \dots \dots r \ge 2R \end{cases}$$

(3.20)

Ahora se puede ver que para las zonas cercana e intermedia, se tiene una misma ecuación.

Por otro lado podemos realizar un cambio de variable el cual es la relación entre r y R, o de otra manera también se puede expresar en función de la distancia entre las fibras L, apertura numérica NA y el radio R de las fibras [14].

$$z = \frac{r}{R} = \frac{L \cdot \tan(\arcsin(NA))}{R}$$
(3.21)

De tal manera, de la ecuación (3.20) se ha encontrado que la función de transferencia del sensor con la variable de *distancia normalizada z*, se expresa en la manera siguiente:

$$T(z) = \begin{cases} 1 + \frac{1}{2z^2} - \frac{1}{2\pi} \left(\frac{z}{2} + \frac{1}{z}\right) \sqrt{4 - z^2} - \frac{1}{z^2 \pi} \arcsin\left(1 - \frac{z^2}{2}\right) - \frac{2}{\pi} \arcsin\left(\frac{z}{2}\right) \dots 0 < z \le 2\\ \frac{1}{z^2} \dots z \ge 2 \end{cases}$$

(3.22)

Se dedujo que se puede simplificar la expresión obtenida (3.22) para todo el intervalo común, es decir de z>0, tomado en cuenta que en la expresión para el intervalo de $0 < z \le 2$ nos interesa solamente la componente real, y la expresión para el intervalo de $z\ge 2$ da los mismos resultados que muestra la componente real de la expresión anterior (para el intervalo $0 < z \le 2$). Entonces, para todo el intervalo de z>0, la función de transferencia del sensor

$$T(z) = \operatorname{Re}\left[1 + \frac{1}{2z^{2}} - \frac{1}{2\pi}\left(\frac{z}{2} + \frac{1}{z}\right)\sqrt{4 - z^{2}} - \frac{1}{z^{2}\pi}\operatorname{arcsin}\left(1 - \frac{z^{2}}{2}\right) - \frac{2}{\pi}\operatorname{arcsin}\left(\frac{z}{2}\right)\right].$$
 (3.23)

33

Cálculo de la función de transferencia de un sensor de desplazamiento en fibras ópticas

3.2. Comparación de los resultados obtenidos con resultados de análisis de otros modelos

Los resultados de cálculo de la función de transferencia de un sensor de desplazamiento que se obtienen con la ecuación (3.23) (gráfica en línea continua (a) en la Fig. 3.5) se han comparado con resultados obtenidos por simulación numérica utilizando el mismo modelo [10] (marcas en la gráfica (a) en la Fig. 3.5). Estos resultados de cálculo por ecuación analítica propuesta y de simulación numérica coinciden muy bien en todo intervalo de distancia.

Fig. 3.5 Función de transmisión obtenida con distintos modelos: aproximación geométrica propuesta (a), aproximaciones Gaussianas de Wang y Faria (b) y de Libo (c).

Se encontraron modelos que pueden ser aplicables a nuestro estudio, por lo tanto se realizaron las modificaciones necesarias para poder expresarlos en las mismas variables.

Wang [11] considera la iluminación como una función Gaussiana, y en nuestra variable *z* podemos expresar la función de transferencia como:

Cálculo de la función de transferencia de un sensor de desplazamiento en fibras ópticas

donde *A* es una constante relacionada con la distribución de potencia modal. De manera paralela Faria [8] muestra la misma expresión para una aproximación Gaussiana, con el valor de la constante A = 2 (vea gráfica (c) en la Fig. 3.5).

Libo [12] utilizando un modelo parecido a los mencionados anteriormente, muestra una expresión que en nuestro caso se obtiene de la ecuación siguiente (vea la gráfica (c) en la Fig. 3.5):

$$T(z) = 1 - \exp\left[-\frac{1}{\left(1 + kz^{3/2}\right)^2}\right],$$
(3.25)

donde la constante k depende del tipo de la fuente (para la luz blanca el valor de k = 0.204).

Lo primero que se puede observar en la Fig. 3.5 es que las gráficas (b) y (c) no son normalizadas $(T(z=0) \neq 1)$. Además, parece que su normalización no aumentaría mucho la coincidencia con la gráfica (a) sin ajustar las constantes correspondientes.

En la Fig. 3.6 son presentados los resultados obtenidos por la ecuación analítica propuesta (3.23) (a) y los resultados obtenidos por las ecuaciones (3.24) (b) y (3.25) (c) ya normalizadas por el valor T(z=0) y con valores de constantes A = 2.9 y k = 0.5 ya ajustados para tener una desviación mínima con la gráfica (a) en el intervalo de distancia 0<z<3. Como se puede observar, la desviación es menor para la gráfica (c).

Fig. 3.6 Función de transmisión obtenida con distintos modelos: aproximación geométrica propuesta (a), aproximaciones Gaussianas de Wang y Faria (b) y de Libo (c) normalizadas y con las constantes ajustadas.

Conclusiones

Mediante el análisis y revisión de las ecuaciones propuestas en [10], se determinó una sola ecuación analítica (3.23) de la función de transferencia en todo el rango de distancia para un sensor de desplazamiento de intensidad transmitivo en fibra óptica, utilizando el modelo geométrico idealizado con la distribución homogénea en las aperturas de fibras ópticas.

Se mostró que los modelos de otros autores, que están buscando la función de transferencia con una aproximación Gaussiana, necesitan los datos adicionales (experimentales) sobre las características reales de la fibra y fuente óptica para ajustar valores óptimos de sus constantes y obtener en esta manera una buena aproximación a los resultados experimentales. Se mostró que la ecuación Gaussiana [12] modificada en tal manera que aproxime a la ecuación propuesta, también tiene una buena coincidencia.

CAPÍTULO 4

4. DESARROLLO EXPERIMENTAL DE UN SENSOR DE DESPLAZAMIENTO EN FIBRAS ÓPTICAS

La fase experimental se divide en dos partes, la primera es determinar la distribución de intensidad en el cono de admisión y emisión de varias fibras ópticas incluyendo el patrón de radiación de la fuente, la segunda es obtener valores experimentales de la función de transferencia en un sensor de desplazamiento de intensidad de fibra óptica transmitivo como el que se muestra en la Fig. 4.1 (a).

Se utilizan fibras multimodo de índice escalonado de diferentes materiales: cuarzo-cuarzo, cuarzo-polímero, y polímero-polímero, en el núcleo y cubierta, respectivamente. En el caso de las fibras de cuarzo-polímero y polímero-polímero se utilizan fibras con diferentes longitudes. También, se utilizan dos fibras de cuarzo-cuarzo de diferentes características.

4.1. Determinación de la distribución en cono de admisión y emisión considerando la distribución de la fuente

En esta fase experimental se utilizó, para todos los experimentos, dos fuentes ópticas (un láser con modulador mecánico y un LED con controlador electrónico), fibras multimodo, una mesa giratoria, un receptor óptico que incluye un fotodiodo de silicio y un preamplificador de corriente, y un osciloscopio.

Para la determinación de la *distribución de intensidad captada en el cono de admisión* se instaló (Fig. 4.1): una fuente de luz de haz paralelo láser He-Ne monomodo (Melles Griot, modelo 05-LHP-925), $\lambda = 633$ nm, potencia de 17 mW; modulador de luz láser mecánico con frecuencia de modulación de 0.5 kHz y relación cíclica de 0.5. Receptor óptico formado de una fibra de cuarzo-polímero de índice escalonado (Thorlabs, modelo FT-1.0-URT, con el diámetro de núcleo de 1 mm y NA = 0.48, con 2 m de longitud, con de 3 ó 4 vueltas con un radio aproximado de 10 cm), un fotodiodo de silicio (modelo FD-24, diámetro de 10 mm) y un preamplificador de corriente (SRS, modelo SR570, con los siguientes parámetros preinstalados: voltaje de polarización del FD de +5V, filtro de pasabanda con 6 dB para 3 Hz y 10 kHz). Entre el extremo de salida de la fibra receptora y la superficie del fotodiodo está colocada la inmersión (glicerina). La distancia entre láser y el extremo de entrada de la fibra es de aproximadamente 3 m (la distancia grande se necesita para obtener un diámetro del haz de luz paralelo de unos 5 mm, mayor que el diámetro de la fibra óptica).

Fig. 4.1 Instalación experimental para determinar la distribución de intensidad captada en el cono de admisión.

Con la instalación mostrada en la Fig. 4.1, se procedió a mover la mesa giratoria con la fibra hasta el punto en el que se tuviera una lectura mínima detectada (desde este punto se tomaron lecturas en intervalos iguales), pasando por un valor máximo hasta llegar al otro extremo donde se presentara una lectura mínima nuevamente (resultados experimentales vea Apéndice A).

Para la determinación de la *distribución de intensidad radiada en el cono de emisión incluyendo el patrón de radiación de la fuente*, se instaló (Fig. 4.2): fuente emisora LED (Agilent, modelo HFBR-15), $\lambda = 665$ nm, NA = 0.5, modulado con pulsos de 0.15 ms de duración y 2 kHz de frecuencia, con la corriente de 440 mA. Receptor óptico formado de una fibra de cuarzo-polímero de índice escalonado (Thorlabs, modelo FT-1.0-URT, con el diámetro de núcleo de 1 mm y NA = 0.48, con unos 2 m de longitud), un fotodiodo de silicio (modelo FD-24, diámetro de 10 mm) y un preamplificador de corriente (SRS, modelo SR570, con los siguientes parámetros preinstalados: voltaje de polarización del FD de +5V, filtro de pasabanda con 6 dB para 10 Hz y 30 kHz, Entre el extremo de salida de la fibra receptora y la superficie del fotodiodo está colocada la inmersión (glicerina).

Fig. 4.2 Instalación experimental para determinar la distribución de intensidad radiada en el cono de emisión incluyendo el patrón de radiación de la fuente (LED).

Con la instalación mostrada en la Fig. 4.2, se procedió a mover la mesa giratoria con la fibra hasta el punto en el que se tuviera una lectura mínima detectada (desde este punto se tomaron lecturas en intervalos iguales), pasando por un valor máximo hasta llegar al otro extremo donde se presentara una lectura mínima nuevamente (resultados experimentales vea Apéndice A).

4.1.1. Fibra de Polímero-Polímero

En este experimento se utilizó fibra óptica de polímero-polímero (Agilent, modelo HFBR-R) de índice escalonado con diámetro del núcleo de 1 mm y NA = 0.47. Una "larga" de 1 m de longitud (con un par de curvaturas de media vuelta del radio de 5-10 cm) y una "corta" de 10 cm de longitud, recta.

En la Fig. 4.3 se muestran distribuciones de intensidad en el cono de emisión y cono de admisión de las fibras mencionadas de polímero-polímero.

Características particulares para la gráfica (a) en la Fig. 4.3:

La sensibilidad del preamplificador es de 200 nA/V. Distancia entre el extremo de salida de la fibra emisora y el plano receptor es de 35 mm.

Características particulares para las gráficas (b) y (c) en la Fig. 4.3:

La sensibilidad del preamplificador es de 500 μ A/V.

Fig. 4.3 Distribución de intensidad en la fibra de polímero-polímero: cono de emisión de la fibra "larga" incluyendo el patrón de radiación de la fuente emisora (a), cono de admisión de la fibra "larga" (b), cono de admisión de la fibra "corta" (c).

4.1.2. Fibra de Cuarzo-Polímero

En este experimento se utilizó fibra óptica de cuarzo-polímero de índice escalonado (Thorlabs, modelo FT-1.0-URT) con diámetro del núcleo de 1 mm y NA = 0.48. Una "larga" de 1.9 m de longitud (con una vuelta completa del radio aproximado de 30 cm) y una "corta" de 24 cm de longitud, recta.

En la Fig. 4.4 se muestran distribuciones de intensidad en el cono de emisión y cono de admisión de las fibras mencionadas de cuarzo-polímero.

Características particulares para la gráfica (a) en la Fig. 4.4:

La sensibilidad del preamplificador es de 200 nA/V. Distancia entre el extremo de salida de la fibra emisora y el plano receptor es de 35 mm.

Características particulares para las gráficas (b) y (c) en la Fig. 4.4:

La sensibilidad del preamplificador es de 500 μ A/V.

Fig. 4.4 Distribución de intensidad en la fibra de cuarzo-polímero: cono de emisión de la fibra "larga" incluyendo el patrón de radiación de la fuente emisora (a), cono de admisión de la fibra "larga" (b), cono de admisión de la fibra "corta" (c).

4.1.3. Fibra de Cuarzo-Cuarzo #1

En este experimento se utilizó la fibra óptica de cuarzo-cuarzo de índice escalonado con diámetro del núcleo de 105 μ m y NA = 0.21, de 1.5 m de longitud (con 3 vueltas y curvaturas con un radio aproximado de 10 cm). En medio de la fibra se agregó un supresor de modos de cubierta de aproximadamente 20 mm de fibra cubierta con resina epóxica.

En la Fig. 4.5 se muestran distribuciones de intensidad en el cono de emisión y cono de admisión de la fibra mencionada de cuarzo-cuarzo #1.

Características particulares para la gráfica (a) en la Fig. 4.5:

La sensibilidad del preamplificador es de 100 nA/V. Distancia entre el extremo de salida de la fibra emisora y el plano receptor es de 20 mm.

Características particulares para la gráfica (b) en la Fig. 4.5:

La sensibilidad del preamplificador es de 5μ A/V.

Fig. 4.5 Distribución de intensidad en la fibra de cuarzo-cuarzo #1: cono de emisión de la fibra incluyendo el patrón de radiación de la fuente emisora (a), cono de admisión de la fibra (b).

4.1.4. Fibra de Cuarzo-Cuarzo #2

En este experimento se utilizó fibra óptica de cuarzo-cuarzo de índice escalonado (Thorlabs, modelo FG-365-LER) con diámetro del núcleo de 360 μ m y NA = 0.22, de 2.0 m de longitud (con un par de vueltas del radio aproximado de 15 cm). Por ambos extremos de la fibra se agregaron supresores de modos de cubierta de aproximadamente 20 mm de fibra cubierta con resina epóxica.

En la Fig. 4.6 se muestran distribuciones de intensidad en el cono de emisión y cono de admisión de la fibra mencionada de cuarzo-cuarzo #2.

Características particulares para la gráfica (a) en la Fig. 4.6:

La sensibilidad del preamplificador es de 200 nA/V. Distancia entre el extremo de salida de la fibra emisora y el plano receptor es de 20 mm.

Características particulares para la gráfica (b) en la Fig. 4. 6:

La sensibilidad del preamplificador es de 50 μ A/V.

Fig. 4.6 Distribución de intensidad en la fibra de cuarzo-cuarzo #2: cono de emisión de la fibra incluyendo el patrón de radiación de la fuente emisora (a), cono de admisión de la fibra (b).

4.2. Determinación experimental de la función de transferencia de un sensor de desplazamiento de intensidad en fibras ópticas

En esta fase experimental se utilizaron un par de fibras ópticas "largas" de los tipos de fibra a medir de los mencionados anteriormente y una instalación experimental (Fig. 4.7) con los siguientes elementos.

La fuente emisora LED (Agilent, modelo HFBR-1524), $\lambda = 665$ nm, NA = 0.5, modulado con pulsos de 0.15 ms de duración y 2 kHz de frecuencia, con la corriente de 440 mA. Dos microposicionadores (micrómetros) de tres ejes. El receptor óptico que incluye un fotodiodo de silicio (modelo FD-24, diámetro de 10 mm) y un preamplificador de corriente (SRS, modelo SR570, con los siguientes parámetros preinstalados: voltaje de polarización del FD de +5V, filtro de pasabanda con 6 dB para 10 Hz y 30 kHz. El osciloscopio (Hitachi, modelo V-1060).

Entre el extremo de salida de la fibra receptora y la superficie del fotodiodo está colocada la inmersión (glicerina).

Fig. 4.7 Instalación experimental para determinar la función de transferencia de un sensor de desplazamiento de intensidad en fibras ópticas.

La gráfica de los resultados de la determinación experimental de la función de transferencia se muestra en el subcapítulo siguiente (Fig. 4.10). (Resultados experimentales vea Apéndice A).

4.3. Análisis de los resultados experimentales

Por lo general el desarrollo teórico tiene discrepancias con los resultados obtenidos en la práctica. En el caso presente la causa de discrepancia más fuerte es la diferencia en la distribución de intensidad en el cono de emisión de la fibra incluyendo el patrón de radiación de la fuente emisora, en comparación con la distribución homogénea considerada en el modelo teórico del sensor. Pensando en esto fue necesario encontrar un método adecuado para determinar prácticamente un valor de apertura numérica efectivo NA_{eff} , el cual permitiera obtener teóricamente la función de transferencia del sensor que fuera cercana a la función real (experimental).

Se consideraron tres métodos para definir el valor de apertura numérica efectivo como

$$NA_{eff} = \sin \alpha', \tag{4.1}$$

donde α' es el valor del semiángulo efectivo determinado por las gráficas reales de la distribución de intensidad en el cono de emisión de la fibra incluyendo el patrón de radiación de la fuente emisora:

1. Se busca el valor del semiángulo efectivo que divide la gráfica en dos partes con la relación igual a 1 entre las áreas de equilibrio como se muestra en la Fig. 4.8 (a).

2. Se busca el valor del semiángulo efectivo en el nivel 0.5 de intensidad por la gráfica directamente, como se muestra en la Fig. 4.8 (b).

3. Se busca el valor del semiángulo efectivo en el nivel 0.5 de intensidad por la recta secante con la gráfica en dos niveles determinados (por ejemplo, 0.7 y 0.3), como se muestra en la Fig. 4.8 (c).

Fig. 4.8 Métodos para determinar el valor del semiángulo efectivo α ': a) relación 1 entre áreas de equilibrio, b) nivel 0.5 directo de la gráfica y c) nivel 0.5 por la recta de aproximación por mínimos cuadrados en el intervalo de (0.3-0.7).

Para determinar cual de los métodos sería más exacto, comparamos los resultados obtenidos por los métodos mencionados, con la aproximación individual para cada tipo de fibra óptica obteniendo la menor desviación estándar [13]. Los datos obtenidos experimentalmente se comparan con los datos que proporciona la ecuación (3.23), donde la distancia relativa z (3.21) se determina con el valor de apertura numérica efectiva (4.1).

La aproximación individual y la misma comparación de los métodos se hacen por medio de la desviación estándar también llamada *error estándar de estimación*. Ésta se define como [13] "*la desviación típica de los valores* Y_i (los valores teóricos, en este caso los resultados de la ecuación (3.23)) *con respecto a* Y_c (los valores experimentales)" y se expresa como:

$$\sigma_{xy} = \sqrt{\frac{\sum \left(Y_i - Y_c\right)^2}{n}}.$$
(4.2)

En otras palabras, se dice que entre más pequeño sea el valor de σ_{xy} , más cercanos están los valores originales de Y_i con respecto a Y_c .

Los resultados obtenidos se muestran en la Tabla 4.1. Por lo que el método que mostró resultados más cercanos al experimento fue el método de aproximación de apertura numérica en nivel 0.5 de intensidad directamente por la gráfica de la distribución de intensidad radiada en el cono de emisión de la fibra emisora.

Tabla 4.1 Resultados de aproximaciones para encontrar el valor de apertura numérica efectiva en rango de distancia $0 \le L \le 0.16$ " (*d* es el diámetro del núcleo de la fibra, *NA* es la apertura numérica real de la fibra).

Tipo de fibra óptica Método de aproximación	F.O. de polímero- polímero, (d = 1 mm, NA = 0.47)	F.O. de cuarzo- polímero, (<i>d</i> = 1mm, NA = 0.48)	F.O. de cuarzo- cuarzo #1, $(d = 105 \mu m,$ NA = 0.21)	F.O. de cuarzo- cuarzo #2, (d= 360µm, NA= 0.22)	Desviación estándar con la aproximación individual
1. Relación 1 entre las áreas de equilibrio	0.344	0.326	0.148	0.160	0.0151
2. Nivel 0.5 de intensidad por la gráfica directamente	0.355	0.328	0.179	0.175	0.0069
3. Nivel 0.5 por la recta de aproximación por mínimos cuadrados (en intervalo 0.7 a 0.3)	0.348	0.329	0.173	0.174	0.0089
4. Aproximación individual para cada F.O. (por el valor mínimo de la desviación estándar)	0.365	0.325	0.170	0.176	0

En la Fig. 4.9 se muestran las curvas correspondientes a la distribución de intensidad en el campo lejano de las fibras emisoras de varios tipos investigadas considerando el patrón de emisión de la fuente óptica (LED).

Características particulares para la gráfica (a) en la Fig. 4.9:

La sensibilidad del preamplificador es de 100 nA/V.

Características particulares para las gráficas (b), (c) y (d) en la Fig. 4.9:

La sensibilidad del preamplificador es de 200 nA/V.

Fig. 4.9 Distribución de intensidad en el campo lejano de las fibras emisoras considerando el patrón de emisión de la fuente: fibra cuarzo-cuarzo #1 (a), fibra cuarzo-cuarzo #2 (b), fibra cuarzo-polímero (c), fibra polímero-polímero (d).

En la Fig. 4.10 se muestran los resultados experimentales y los resultados teóricos de la función de transferencia de sensor de desplazamiento para las fibras ópticas de varios tipos investigadas.

Características particulares para las gráficas en la Fig. 4.10:

La sensibilidad del preamplificador es de 50 μ A/V.

Fig. 4.10 Resultados experimentales (marcas) y los resultados calculados por medio de la ecuación propuesta (5.23) considerando la apertura numérica efectiva NA_{eff} (5.26) (líneas continuas): fibra cuarzo-cuarzo #1 NA_{eff} = 0.179 (a), fibra cuarzo-cuarzo #2 NA_{eff} = 0.175 (b), fibra polímero-polímero NA_{eff} = 0.355 (c), fibra cuarzo-polímero NA_{eff} = 0.328 (d).

En la Tabla 4.2 se muestra la desviación estándar entre los resultados obtenidos experimentalmente y los valores arrojados por la ecuación propuesta (3.23) y por la ecuación Gaussiana (3.25) modificada con valor de constante k = 0.5 ajustado para tener una desviación mínima, considerando la definición de la apertura numérica efectiva (4.1) por el método de "nivel 0.5 directamente".

Tabla 4.2 Diferencia (desviación estándar) de los resultados obtenidos experimentalmente y resultados obtenidos teóricamente por el modelo geométrico propuesto y por el modelo Gaussiano modificado, en el rango de distancia $0 \le L \le 0.16$ ".

	F.O. de	F.O. de	F.O. de	F.O. de	Promedio de
	polímero-	cuarzo-	cuarzo-	cuarzo-	la desviación
	polímero	polímero	cuarzo #1	cuarzo #2	estándar
Modelo geométrico propuesto	0.015	0.018	0.018	0.035	0.0215
Modelo Gaussiano modificado	0.011	0.023	0.018	0.027	0.0198

En la Tabla 4.3 se muestra la desviación estándar que existe entre los resultados obtenidos por la ecuación (3.23) haciendo la consideración que marca la ecuación (4.1) y los resultados experimentales. También se muestra la desviación estándar existente entre la ecuación Gaussiana modificada (3.25) y los resultados experimentales. Ambos considerando el rango en distancia normalizada z posible para cada fibra.

Tabla 4.3 Diferencia (desviación estándar) de los resultados obtenidos experimentalmente y resultados obtenidos teóricamente por el modelo geométrico propuesto y por el modelo Gaussiano modificado, en los diferentes rangos posibles de distancia normalizada *z*.

	F.O. de	F.O. de	F.O. de	F.O. de	Promedio de
	polímero-	cuarzo-	cuarzo-	cuarzo-	la desviación
	polímero	polímero	cuarzo #1	cuarzo #2	estándar
Modelo geométrico propuesto	0.0086	0.0151	0.0175	0.0289	0.0176
Modelo Gaussiiano modificado	0.0090	0.0201	0.0181	0.0242	0.0179
Rango de distancia normalizada z	6.4	8.8	5.3	6.9	

Por los resultados presentados en las tablas 4.2 y 4.3 se puede encontrar que la ecuación propuesta y la ecuación Gaussiana modificada tienen el valor promedio de desviación casi igual (cerca de 0.02). Especialmente para las distancias mayores (tabla 4.3) el valor promedio de desviación obtenido por el modelo geométrico propuesto es un poco menor que él obtenido por el modelo Gaussiano modificado. Por lo tanto, ambas ecuaciones pueden ser aplicadas para el cálculo analítico de la función de transferencia de un sensor de desplazamiento en fibra óptica bajo del concepto propuesto de apertura numérica efectiva (para determinar la distancia normalizada z).

Conclusiones

Se realizó un análisis de resultados de la investigación experimental del sensor de desplazamiento utilizando varios tipos de fibra óptica multimodo de índice escalonado y un LED como fuente óptica, con el fin de encontrar un método adecuado para determinar prácticamente el valor de apertura numérica efectiva NA_{eff} , el cual permitiera obtener buena coincidencia de los resultados teóricos y experimentales sobre la función de transferencia del sensor. Se encontró que el mejor método para determinar el valor de NA_{eff} es a partir de la anchura (semiángulo) de la distribución de intensidad en el cono de salida de la fibra emisora en el nivel de 0.5 de la intensidad normalizada. Con el uso del valor de NA_{eff} determinado en esta manera, nuestro modelo matemático da resultados muy cercanos con los valores obtenidos experimentalmente (el promedio de la desviación estándar es cerca de 0.02).

Se mostró que la ecuación Gaussiana [16] modificada en tal manera que aproxime a la ecuación propuesta, también tiene una buena coincidencia con los resultados experimentales aplicando el concepto propuesto de apertura numérica efectiva.

La ventaja del modelo propuesto es que la ecuación de la función de transferencia obtenida (3.23) para un sensor de desplazamiento, representa muy buena coincidencia con los resultados experimentales para fibras de distintos tipos en un rango grande de distancias a medir, bajo del concepto propuesto de medición experimental del valor de apertura numérica efectiva NA_{eff} de fibra óptica, sin necesidad de un ajuste previo de algunos parámetros (constantes) de ecuación, al contrario con la conocida ecuación Gaussiana.

CAPÍTULO 5

5. SISTEMAS DE FORMACIÓN DE SEÑAL DE REFERENCIA EN LOS SENSORES DE INTENSIDAD

En aplicaciones de medición analógica en sistemas de intensidad de fibra óptica existe la problemática de que la lectura obtenida no está relacionada únicamente con el medio perteneciente a la perturbación a registrar, también la lectura se ve afectada por pérdidas en los componentes ópticos pasivos. Además conlleva la inestabilidad de los componentes optoelectrónicos como las fuentes ópticas. Estos efectos son imposibles de eliminar; sin embargo, pueden compensarse aplicando un sistema de monitoreo de dichas pérdidas. Lo más usual es generar una señal adicional de referencia la cual, en conjunto con la señal de medición, es utilizada para tener una lectura relativa libre de las variaciones llamadas de modo común. Pero estas dos señales necesitan ser identificadas de modo separado, tal distinción es normalmente lograda empleando separación espacial, separación temporal o separación de longitud de onda, incluso una combinación de estos métodos [5].

Fig. 5.1 Técnicas más usadas para la separación de señales de medición y de referencia: (a) separación espacial; (b) separación por longitud de onda (o WDM); (c) separación temporal (o TDM); (e) separación en frecuencia (o FDM)

La separación espacial es requerida cuando las señales ópticas tienen la misma constitución espectral; es decir, cuando son generadas por una sola fuente o se hace el uso de dos fuentes similares. Sin embargo, estas señales pueden ser sólo identificadas por separación espacial, dentro de diferentes componentes de transmisión y recepción, o incluso pueden mantenerse físicamente aislados como se muestra en la Fig. 5.1 (a). En el caso en que las señales están contenidas dentro de bandas espectrales diferentes, las señales pueden ser transmitidas en la misma fibra óptica, como se observa en la Fig. 5.1 (b). La presencia de un espacio espectral entre los canales de la señal permite la separación en la longitud de onda, haciendo uso de elementos WDM para demulticanalizar. No obstante, los componentes para multicanalizar serían necesarios cuando las señales sean provenientes de fuentes LED separadas. La separación temporal puede ser empleada cuando las señales son generadas de fuentes ópticas diferentes como se ilustra en la Fig. 5.1 (c). Esto se logra por la multicanalización por división de tiempo (TDM por sus siglas en inglés) de las dos señales. Las señales pueden ser identificadas por el tiempo en el que llegan al

punto de detección. Otro método alternativo, es la multicanalización por división de frecuencia (FDM por sus siglas en inglés), mostrado en la Fig. 3.1 (d). El funcionamiento del FDM involucra modulación eléctrica de cada fuente óptica a diferente frecuencia. Por lo que las señales son separadas utilizando filtros electrónicos dentro de los respectivos componentes. Una ventaja que presenta la señal tanto de TDM y FDM, es que pueden propagarse dentro de una sola fibra para así pasar por un detector común.

5.1. Problemas comunes para todo tipo de sistema de formación de una señal de referencia

Las dos principales fuentes de error de modo común pueden ser identificadas como resultado de fallas en el transmisor óptico y en las vías ópticas, causadas por la inestabilidad óptica de la fuente que produce fluctuaciones en la intensidad de la señal óptica debida a cambios en la temperatura ambiente, así como en la disipación dentro del dispositivo, además se suman cambios introducidos por la medición.

Una técnica para obtener un buen sensor de fibra óptica de intensidad podría ser un mecanismo de donde la variación en la intensidad al medir pueda ser distinguida y medida independientemente de todas las variaciones de modo común. Esto puede ser realizado asegurando que la señal de medición y una señal de referencia sigan el mismo patrón a través de todas las partes del sistema excepto en el punto de medición. Sin embargo, debido a que las dos señales pueden ser generadas por fuentes independientes y pueden ser detectadas por diferentes detectores, otros errores elevarían las diferencias operacionales entre estos componentes. No obstante, es posible tomar precauciones al realizar el diseño de un sistema reduciendo estos errores a un nivel aceptable para tener la exactitud requerida en el sistema. Algunas indicaciones generales relacionadas con la obtención de la señal de referencia con la exactitud y seguridad requeridas se mencionan a continuación:

 Las dos señales deberán seguir el mismo patrón óptico en todo el sistema excepto en el punto de medición.

- La parte sensora debe ser configurada de tal modo que la señal de referencia y la de medición estén separadas justo en el punto de medición y que se permita inmediatamente la recombinación de las señales de medición y de referencia.
- 3. Siempre que sea posible, es mejor utilizar configuración de un solo detector.
- 4. Las señales deben ser analizadas cuidadosamente para asegurar que su respuesta a las variaciones en modo común sean identificadas. Este requerimiento puede presentar un nuevo conjunto de problemas para cada esquema de referencia.

5.2. Métodos de formación de la señal de referencia

Una clasificación más comúnmente utilizada en técnicas de referencia para sensores de intensidad de fibra óptica que ha sido propuesta en los últimos años, es de acuerdo con el método empleado para obtener una señal de referencia separada. Esta clasificación incluye [9]:

- 1. Referencia espacial:
 - a) puente óptico balanceado (2 LED, 1 acoplador cruzado 2x2, 2 FD);
 - b) división de la señal óptica (1 LED, 1 acoplador 1x2, 1 divisor-reflector, 2 FD);
 - c) monitoreo por fibra desviada (1 LED, 1 acoplador 1x2, 2 FD).
- 2. Referencia temporal:

Recuperación de señal temporal (1 LED, 2 acopladores 2x1, 1 FD).

Multicanalización de autoreferencia (1 LED, 2 acopladores 2x2, 1 FD).

3. Referencia de doble longitud de onda:

Configuración básica (2 LED, 1 Mux WDM, 1 Demux WDM, 2 FD).

Configuración de un fotodetector (2 LED, 1 Mux WDM, 1 FD).

Configuración de una fuente óptica (1 LED, 1 Demux WDM, 2 FD).

Puente de doble longitud de onda (2 LED, 1 acoplador 2x2, 2 FD).

A continuación se describen algunos de los métodos más comunes de los mencionados anteriormente.

5.2.1. Referencia espacial

Fig. 5.2 Técnicas en sistemas de referencia espacial. a) puente óptico balanceado, b) división de señal óptica y c) monitoreo por fibra desviada.

Las técnicas que utilizan esta referencia involucran división de la señal óptica, la cual introduce una separación espacial entre las señales provenientes de la separación. La técnica de puente balanceado está compuesta por dos fuentes de características similares. La señal de cada fuente es dividida en dos y por tanto se obtienen cuatro señales. La técnica de división de la señal óptica es basada en el mismo principio de tener cuatro señales, pero su respuesta es mejorada dentro de un arreglo sensor. Por su parte el monitoreo es mejorado con respecto al anterior debido a que las señales son transmitidas por dos fibras ópticas separadas.

Para darnos una idea general del funcionamiento de estas técnicas describiremos el sistema de puente óptico balanceado que se muestra en la Fig. 5.2 (a).

En este esquema dos fuentes ópticas $(S_1 \ y \ S_2)$ llevan su señal al puente óptico a través de dos fibras independientes ($F_{e1} \ y \ F_{e2}$) conectadas cada una a un puerto de entrada de un acoplador cruzado 2x2. Este acoplador cruzado 2x2 incluye cuatro acopladores 1x2 con el coeficiente de acoplamiento de 0.5 y cuatro brazos con funciones de transferencia C_{ij} respectivamente, donde la función de transferencia de un brazo C_{11} la denominamos como la función de transferencia del medio a medir M. La señal proveniente de la fuente S_1 pasa a través de los brazos $C_{11} \ y \ C_{12}$ a dos puertos de salida del acoplador cruzado. De manera similar la señal de la fuente S_2 pasa a través de los brazos $C_{22} \ y \ C_{21}$ a los mismos dos puertos de salida del acoplador cruzado. Se utilizan dos fibras adicionales ($F_{s1} \ y \ F_{s2}$) para transmitir las señales de los puertos de salida del puente a dos fotodetectores ($D_1 \ y \ D_2$). Para recuperar las cuatro señales de salida es necesario realizar en las fuentes una modulación eléctrica ya sea en el dominio del tiempo o de la frecuencia.

La expresión para la intensidad de las cuatro señales de salida puede ser obtenida a partir de la trayectoria óptica de cada señal a través del sistema. Por ejemplo, la expresión para la intensidad (magnitud) de la señal transmitida por la trayectoria desde la fuente S_1 al fotodetector D_2 está dada por:

$$I_{12} = D_2 F_{s2} C_{12} F_{e1} S_1 I_1, (5.1)$$

donde S_1 , F_{e1} , F_{s2} , C_{12} y D_2 son las funciones de transferencia de la fuente óptica, fibras ópticas de entrada y salida, brazo del acoplador cruzado y fotodetector, respectivamente; I_1 es la intensidad (magnitud) de la señal de entrada de la primera fuente óptica.

La señal de salida de un procesador que realiza las multiplicaciones y división de las cuatro señales transmitidas en una manera correspondiente, se puede expresar como:

$$V = \frac{I_{22}I_{11}}{I_{12}I_{21}} = \frac{C_{22}}{C_{12}C_{21}}M.$$
(5.2)

Como se puede observar la señal procesada es directamente proporcional a la medición realizada (transferencia del medio a medir M) si los coeficientes de acoplamiento de los acopladores 1x2 y los brazos que están formando el acoplador cruzado se mantienen constantes. En el caso contrario, la señal procesada puede ser expresada de la siguiente manera:

$$V = \frac{C_{22}(\lambda_2)}{C_{12}(\lambda_1)C_{21}(\lambda_1)}M.$$
(5.4)

En este tipo de arreglo debemos considerar que el funcionamiento (características espectrales, distribución de potencia entre los modos excitados en fibra óptica, etc.) de las fuentes ópticas rara vez es idéntico, y esto puede provocar algunas imperfecciones por el uso de fibras y acopladores con parámetros dependientes de las características mencionadas. No obstante, para mejorar estos inconvenientes se realizan otras técnicas para referencia espacial mencionadas anteriormente que usan una sola fuente óptica.

5.2.2. Referencia temporal

El método de recuperación de señal temporal ha sido implementado en dos diferentes formas: un lazo óptico del tipo de Fabry-Perot y un lazo óptico de recirculación. En ambos casos un pulso óptico de corta duración es introducido en el lazo y despliega temporalmente un tren de pulsos. Entonces tenemos pulsos que sufren el mismo nivel de atenuaciones por cada disparo en el lazo, uno de los dos pulsos recibidos en el fotodetector son comparados para obtener el valor de la medición. Sin embargo, en la práctica, el valor obtenido representa el valor de la medición más la pérdida insertada del lazo óptico. Este tipo de técnicas son ilustradas en la Fig. 5.3.

b) multicanalización de autoreferencia

Fig. 5.3 Técnicas en sistemas de referencia temporal. a) Recuperación de la señal temporal, b) multicanalización de autoreferencia.

La técnica de recuperación temporal se basa en una configuración que consta de una fuente óptica S, dos acopladores 2x1 y un fotodetector D (Fig. 5.3 a). En este sistema se tiene una fibra óptica F entre dos acopladores, donde un pulso de luz es inyectado dentro del sistema a través del acoplador A, el cual transmite una porción de la potencia total incidente P_i . El pulso encuentra pérdidas adicionales causadas por la propagación en la fibra óptica, además la intensidad es modulada por el modulador (sensor) M. En el acoplador B una porción de la potencia del pulso atraviesa y es transmitida al detector mientas que otra parte es reflejada dentro del sistema. La porción reflejada del pulso propagado entre los acopladores produce una serie de pulsos segundarios hasta que toda la energía en el pulso circulante es agotada. Subsecuentemente, el

CAPÍTULO 5

Sistemas de formación de la señal de referencia en los sensores de intensidad

detector óptico recibe una serie de pulsos de amplitudes decrecientes. Un pulso de luz es por lo tanto temporalmente dispersado en forma de otros pulsos y las amplitudes de éstos pueden ser procesadas para recuperar el valor de la medición.

Sean R_A y T_A las funciones de reflexión y transmisión respectivamente, del acoplador A; T_B y R_B son las que corresponden al acoplador B; F y M son las atenuaciones de la señal óptica en la fibra y en el sensor. Las expresiones para los dos primeros pulsos están dadas por:

$$P_1 = T_A T_B M F P_i, (5.5)$$

$$P_1 = T_A T_B M^3 F^3 R_A R_B P_i, (5.6)$$

Para eliminar las variaciones en modo común las dos señales son divididas, obteniendo:

$$\frac{P_2}{P_1} = R_A R_B M^2 F^2, (5.7)$$

Por lo que la medición para cualquier par de pulsos puede ser expresada por:

$$M = \left(\frac{P_{n+1}}{P_n R_A R_B F^2}\right)^{1/2},$$
 (5.8)

De la ecuación (5.8) es posible determinar que con este sistema de referencia se eliminan las fluctuaciones de la fuente, pero sigue siendo susceptible a las variaciones a lo largo de la trayectoria de la fibra. Estas pérdidas pueden ser reducidas acortando la longitud de las fibras, pero esto complica el sistema porque el periodo de repetición de los pulsos depende de la longitud de la fibra. Por ejemplo, se estima que la separación temporal entre dos pulsos en una fibra de 1 metro de longitud es de 5 ns y esto puede limitar el tipo de los fotodetectores. Por otro lado, los pulsos subsecuentes pueden tener muy pequeños niveles de potencia que podrían no ser detectados.

En la técnica de multicanalización de autoreferencia se introduce un pulso que recircula en un lazo óptico que se forma con divisores y conectores. Desafortunadamente, la relación entre el pulso que recircula y el que se detecta es dependiente de las propiedades de transmisión tanto de los conectores como de los divisores.

5.2.3. Referencia de doble longitud de onda

Este método se basa en que la medición se realiza por el uso de dos señales ópticas puestas en diferentes bandas de longitud de onda las cuales son comparadas para eliminar algunas variaciones de modo común. Por lo tanto, una señal de referencia puede obtenerse por medio de una modulación de intensidad de dos bandas de longitud de onda separadas, o, alternativamente, someter a una de las señales a la modulación de intensidad por la perturbación a medir mientras la otra señal actúa como referencia. Las bandas pertenecientes a dos longitudes de onda pueden ser estrechas y puestas muy cerca para minimizar las variaciones espectrales entre las dos señales ópticas. Existen algunas configuraciones alrededor de este sistema partiendo de las opciones disponibles para la generación y detección de las señales dentro de bandas de longitud de onda.

Fig. 5.4 Referencia de doble longitud de onda: a) configuración básica, b) configuración de un fotodetector, c) configuración de una fuente óptica, d) puente de doble longitud de onda.

La forma básica de este sistema de referencia es donde (Fig. 5.4 (a)) la señal de dos fuentes independientes (S_1 y S_2) es multicanalizada (MUX) y acoplada a una fibra óptica F_1 , la cual lleva la señal a la parte sensora M donde una longitud de onda es alterada, y la otra longitud de onda es adaptada para mantenerse inafectada por la modulación la cual se convierte en la referencia. La misma fibra (en un modo de sensor de reflexión) o una fibra diferente F_0 (en modo de sensor de transmisión) llevará las señales a un demulticanalizador (DEMUX) donde las diferentes bandas pertenecientes a cada longitud de onda son separadas y recibidas por dos detectores diferentes (D_1 y D_2). Asumiendo que las dos bandas de longitud de onda han sido elegidas de tal manera que están tan cercanas como para asegurar que tienen un funcionamiento similar a través de todo el sistema.

En el análisis presente es asumido que algún componente multicanalizador o demulticanalizador usados tiene 100% de eficiencia. Entonces la expresión para este sistema se deduce como:

$$I_1 = D_1 F_0 M_1 F_1 S_1, (5.9)$$

$$I_2 = D_2 F_0 M_2 F_1 S_2, (5.10)$$

donde S_1 , S_2 , son las funciones de transferencia de dos fuentes independientes. F_1 , F_0 , son las funciones de transferencia de las fibras ópticas. D_1 , y D_2 son las correspondientes a los fotodetectore; I_1 y I_2 son la intensidad (magnitud) de la señal de entrada de la primera fuente óptica y la segunda fuente óptica, respectivamente.

La salida está dada por

$$V = \frac{I_2}{I_1} = \frac{M_2}{M_1}$$
(5.11)

La mayor desventaja del arreglo básico es que mantiene las variaciones debidas a la fuente.

El funcionamiento de esta técnica la podemos generalizar y complementar en un puente de doble longitud de onda (Fig. 5.4 (d)). Dos fuentes ($S_1 \ y \ S_2$) son puestas en estado de apagado y encendido en el dominio del tiempo. Estas señales son llevadas a un acoplador 2x2 donde las señales centradas en diferentes longitudes de ondas $\lambda_1 \ y \ \lambda_2$, son combinadas [5]. Una fracción de la señal combinada es llevada al detector de referencia D_2 el cual es utilizado para monitorear la señal perteneciente a cada fuente. El resto de la señal es transmitida a la parte sensora, a través de una fibra F₁ donde las señales de diferentes bandas de longitud de onda centradas en $\lambda_1 \ y \ \lambda_2$ son

llevadas al detector de la medición D_1 a través de una segunda fibra F_0 . El voltaje de salida se puede determinar como se menciona en la ecuación (5.11).

Con el procesamiento de las señales como en el caso de un puente óptico balanceado (Fig. 5.2 a) se reducen las variaciones debidas a las fuentes. La ventaja de este puente es el requerimiento de solamente dos fibras de acoplo con el sensor en lugar de las cuatro fibras requeridas por el puente balanceado y se elimina el uso de un acoplador cruzado 2x2. La desventaja es la diversidad menor de los sensores usados por requerir solamente sensores de sensibilidad espectral.

5.3. Comparativo entre los diferentes métodos

El puente óptico en comparación con el resto de los métodos no provee una referencia que proteja completamente contra las variaciones en modo común por usar dos fuentes ópticas que en la práctica no son iguales. También, el uso de un número relativamente grande de componentes se vuelve en un sistema de medición complejo. Además, el requerimiento de cuatro uniones ópticas para las conexiones en la medición a la terminal de control limita la utilidad de esta estrategia. Incluso se mantiene la posibilidad de una medición errónea debida a la sensibilidad de los elementos de puente a efectos ambientales. Por otro lado el puente óptico tiene ventajas en lo que no requieren los componentes ópticos y electrónicos muy complejos (como fuentes ópticas con ancho espectral pequeño, filtros ópticos selectivos, circuitos electrónicos de velocidad alta, etc.). Al contrario la ventaja principal del método de recuperación de señal temporal está en usar una

sola fuente óptica y un solo fotodetector. La desventaja es el requerimiento de los componentes optoelectrónicos y electrónicos de alta velocidad.

La señal de referencia por doble longitud de onda puede proporcionar una referencia efectiva contra la mayoría de las variaciones en modo común, cuando la emisión de cada fuente óptica es también monitoreada. Por lo tanto la configuración se vuelve similar a un puente balanceado lo que representa tener un control de ajuste. Por otro lado se han demostrado mejorías [5] en la configuración si se utiliza una sola fuente para obtener las dos longitudes de onda. Finalmente se muestra un comparativo entre los diferentes métodos en la Tabla 5.1.

Clasificación	Referencia espacial			Referencia temporal	Referencia de longitud de onda
Esquema de	Puente óptico	División de	Monitoreo de	Recuperación de	Dos longitudes de
Principio	Acontamiento	Un ospoio	Soñal	Pagiroulagión do	Dos soñalos do
Básico	cruzado entre dos	narcial divide la	monitoreada en	un pulso dentro	dos longitudes de
Dasico	canales de señal	señal de entrada	una fibra	de un lazo de	onda en una
	canares de senar	en dos ravos	desviada	fibra óptica	misma fibra
Mecanismo	2 LED operados	Ravos ópticos	Señales de	Consecutivos	Señales ópticas de
de referencia	con TDM que	refleiados v	fibras de	pulsos	diferentes canales
	producen cuatro	transmitidos	medición v	muestreados v	de longitudes de
	señales para total	para ser	referencia	comparados	onda comparados
	compensación	comparados	comparadas	1	1
Componentes	2 LED, 2 FD, 4	LED, 2 FD, 2	LED, 2 FD, 2 ó	LED, FD, fibra	1 ó 2 LED, 1 o 2
requeridos	fibras, acoplador	fibras,	4 fibras,	óptica, 2	FD, fibras, con o
	especial cruzado	acoplador Y,	acoplador Y,	acopladores Y,	sin MUX y
	con 4 acopladores	espejo parcial,	conectores	espejos parciales	DEMUX,
	Y, conectores	conectores		o totales, conects.	conectores
Efectividad de	Se compensan	Sólo se	Se compensan	Sólo se	Puede ser
la referencia	mayores	compensan	mayores	compensan	completa pero
	fluctuaciones de	fluctuaciones	fluctuaciones	fluctuaciones de	algunas pérdidas
	la fuente y	de la fuente	de la fuente y	la fuente	de transmisión se
	perdidas de		perdidas de		compensan
	propagación		propagación		parciaimente
Susceptibilidad	Cambios en el	Pérdidas en la	Pérdida	Pérdidas en la	Variaciones de la
Residual	espectro del LED	fibra óptica y	diferencial	fibra óptica y en	fuente óptica y
	y a los elementos	en acoplador Y	entre las fibras	los elementos del	diferencias entre
	de acoplador		ópticas	divisor de rayo	los LED
Nivel de	Alto (en el	Medio (óptica	Medio	Alto (complejidad	Depende de la
complejidad	sistema de	simple)	(estrategia	en la electrónica	configuración,
	sensado)		básica)	del receptor)	puede ser alta
Conveniencia	Extrinseco o	Tipos	Extrínseco y	Intrínseco	Extrinseco
del modo de	intrinseco	extrinseco	intrinseco	ransmisivo-	transmisor y
Sensado Deterroi al de	transmisor	transmisor	transmisor	reflexivo	reflector
Potencial de	Bajo debido a los	Medio cuando	Medio en modo	Medio con TDW	Medio cuando se
muniplexion	roquoridos	WDM	extrinsecto por		con TDW
Mayor	Costo y	Pérdidas en la	Uso ineficiente	Flectrónica	No se controla la
inconveniente	componentes	travectoria	de fibras	compleia	fuente
meonvemente	necesarios	auycetonu	ópticas	compieju	ruente
Posibles	Posible	Utilizar un fibra	Utilizar un fibra	Reducción de	Utilizar fuentes
mejoras	simplificación	de doble núcleo	de doble núcleo	sensibilidad a	coherentes para
5	utilizando WDM	para combinar	y un sistema	perdidas en la	mejorar la banda
	con dos LED	las funciones de	óptico de	fibra usando un	de las señales
	diferentes	recepción y	sensado	lazo de fibra corto	
		transmisión	integrado		

Tabla 5.1 Comparación de características de los diferentes esquemas de referencia

Tipo de fibra monomodo y n multimodo n	monomodo y multimodo	monomodo y multimodo	monomodo	multimodo y en algunos casos sólo monomodo
---	-------------------------	-------------------------	----------	--

Conclusiones

En general los sensores de intensidad presentan la problemática que las mediciones no pueden ser confiables debido a que son altamente sensibles a las variaciones de la fuente así como a las pérdidas en las fibras y los componentes. Sin embargo es posible adicionar una señal de referencia la cual puede estar sometida a los mismos cambios en el sistema excepto en la medición. En general se deben tomar algunas precauciones como: a) las dos señales deberán seguir las mismas condiciones excepto en la medición, b) la señal de referencia y la de medición deben permitir su recombinación después de la medición, c) es mejor utilizar configuración de un solo detector y d) las variaciones en modo común deben identificadas.

El puente óptico no provee en sí una señal de referencia, pero compensa las variaciones en las fuentes combinando información de los dos puentes dentro de las brazos del puente, de tal manera proporciona una compensación contra las variaciones en modo común. Además, el uso de un número relativamente grande de componentes puede ser reducido con el uso de varias fibras. La técnica de división de la señal óptica contiene un arreglo sensor. Por su parte en la técnica de monitoreo las señales son transmitidas por dos fibras ópticas separadas. La principal ventaja del método de monitorear la fibra de desvío es que puede ser utilizado en casi todos los tipos de fibra óptica.

En la referencia temporal se eliminan las fluctuaciones de la fuente, pero sigue siendo susceptible a las variaciones a lo largo de la trayectoria de la fibra. Estas pérdidas pueden ser reducidas acortando la longitud de las fibras, pero esto complica el sistema porque el tiempo de detección de cada pulso depende de la longitud de la fibra. Por otro lado, los pulsos subsecuentes pueden tener muy pequeños niveles de potencia que podrían no ser detectados.

La señal de referencia por doble longitud de onda puede proporcionar una referencia efectiva contra la mayoría de las variaciones en modo común, cuando la emisión de cada fuente óptica es también monitoreada.

Desarrollo experimental de un puente óptico balanceado con separación temporal

CAPÍTULO 6

6. DESARROLLO EXPERIMENTAL DE UN PUENTE ÓPTICO BALANCEADO CON SEPARACIÓN TEMPORAL

En este capítulo se analiza un puente óptico balanceado y el sistema de procesamiento de sus señales separadas en el dominio del tiempo, se define la relación de rechazo en modo común (*CMRR*) para un puente óptico balanceado de manera similar a la relación de rechazo en modo común para un amplificador operacional, también se muestran resultados experimentales obtenidos para *CMRR*. Además se describe el prototipo experimental del puente óptico con el sistema de procesamiento analógico de sus señales.

6.1 Análisis del puente óptico balanceado usando separación temporal

En la Fig. 6.1 se muestra la configuración básica de un puente óptico balanceado que se mencionó en el Capítulo 5 como una de las opciones del método de referencia espacial (Fig. 5.2 a) y un sistema de procesamiento de las señales separadas en el dominio del tiempo.

Fig. 6.1 Puente óptico balanceado.

La operación (función) requerida del sistema de procesamiento sobre las señales I_{ij} de salida del puente óptico balanceado para realizar el rechazo de los factores parásitos y destacar en esta manera el factor a medir, según la ecuación (5.2) es la siguiente:

$$V = \frac{I_{22}I_{11}}{I_{12}I_{21}}.$$
(6.1)

 I_{12}

El sistema de procesamiento presentado en la Fig. 6.1 incluye cuatro circuitos de muestreosujeción, dos multiplicadores y un divisor analógicos. Los circuitos de muestreo-sujeción son sincronizados con el generador de pulsos para las fuentes ópticas. En esta manera se realiza la operación de separación física (espacial) de las señales de las fuentes ópticas (S_1 y S_2) separados en el dominio del tiempo, además las operaciones de la multiplicación de las señales de salida de los detectores (D_1 y D_2) ya separados físicamente y la división de sus productos $I_{11}I_{22}$ e $I_{12}I_{21}$, según la ecuación (6.1).

6.2 Relación de rechazo en modo común (CMRR) para un amplificador operacional

El parámetro *CMRR* sirve para evaluar la capacidad de un sistema de rechazar (atenuar) señales idénticas aplicadas simultáneamente en sus entradas (señal en modo común) [14]. También se

define como la relación que existe entre la ganancia en modo común y la ganancia en modo diferencial. En principio es necesario determinar las ganancias en modo común y modo diferencial, por tanto a continuación se presentan dichas definiciones.

Un amplificador diferencial es un circuito versátil que sirve como etapa de entrada para la mayoría de los amplificadores operacionales [15]. En la Fig. 6.2 se presenta su configuración básica.

Fig. 6.2 Configuración básica de un amplificador operacional.

El esquema indica que el circuito tiene dos señales de entrada, v_{e1} y v_{e2} , y dos señales de salida v_{s1} , v_{s2} . La importancia del amplificador operacional estriba en el hecho de que las salidas son proporcionales a la diferencia entre las dos señales de entrada. En esta configuración estamos suponiendo que los transistores Q_1 y Q_2 son idénticos.

Como el amplificador diferencial se utiliza más comúnmente para amplificar la diferencia entre las dos señales de entrada. Llamando v_{ed} a la diferencia entre las tensiones de entrada, por lo que

$$v_{ed} = v_{e2} - v_{e1}. ag{6.2}$$

La ecuación (6.2) es la tensión de entrada en *modo diferencial*. Para completar es necesario el término que designe el valor medio de las tensiones de entrada, que llamaremos v_{ec} :

$$v_{ec} = \frac{v_{e2} + v_{e1}}{2}.$$
(6.3)

Puesto que v_{ec} es el promedio de las dos tensiones de entrada, se le denomina tensión de entrada en *modo común*.

Tomando en cuenta que las dos fuentes son idénticas. Analizando el circuito mostrado en la Fig. 6.2, podemos decir que cuando la corriente en el circuito de Q_1 aumenta, la corriente en el circuito Q_2 disminuye a la misma velocidad y amplitud. Esto es cierto puesto que la entrada a Q_2 es igual a la entrada a la de Q_1 , pero fuera de fase 180°. De esta manera el cambio en R_{EE} es cero. Puesto que el voltaje de la señal de AC en R_{EE} es cero, es posible sustituirlo por un corto circuito en el circuito equivalente de AC. Nótese que poner voltajes en la base de cada transistor que sean iguales en amplitud pero fuera de fase 180° es equivalente a poner un voltaje entre las dos bases de los transistores del doble de la amplitud. Los voltajes en v_{s1} y v_{s2} son de igual magnitud pero en diferente fase y la ganancia en modo diferencial es:

$$A_d = \frac{v_{sd}}{v_{ed}},\tag{6.4}$$

donde v_{sd} es el voltaje de una de las salidas medida aplicando la señal de entrada en modo diferencial.

Es posible aplicar un análisis similar al circuito equivalente en modo común, si se divide la resistencia R_{EE} en dos resistencia paralelas, cada una con el doble de la resistencia original, es posible encontrar la salida utilizando sólo la mitad del circuito. En vista de que los transistores son idénticos y los voltajes de entrada en modo común son iguales y están en fase los voltajes en las resistencias $2R_{EE}$ son los mismos. Así, la corriente entre las dos resistencias en paralelo es cero y por tanto es necesario ver en un lado del circuito. La ganancia en modo común es por consiguiente

$$A_c = \frac{v_{sc}}{v_{ec}},\tag{6.5}$$

donde v_{sc} es el voltaje de una de las salidas medida aplicando la señal de entrada en modo común.

Es deseable que la ganancia en modo diferencial sea mucho mayor que la ganancia en modo común. Para que el amplificador reaccione solamente a la diferencia entre los voltajes de entrada. La *relación de rechazo en modo común (CMRR)* se define como la proporción entre la ganancia en modo diferencial y la ganancia en modo común.

$$CMRR = \frac{A_d}{A_c} = \frac{v_{sd}v_{ec}}{v_{sc}v_{ed}}.$$
(6.6)

6.3 Definición de la relación de rechazo en modo común (CMRR) para un puente óptico balanceado

Haciendo una similitud de la definición de *CMRR* para los amplificadores operacionales con nuestro sistema de puente óptico balanceado, podemos decir que la tensión de entrada de *modo diferencial* y tensión de entrada en *modo común* se pueden expresar en los mismos términos marcados en las ecuaciones (6.2) y (6.3), respectivamente.

Para determinar las expresiones para las ganancias tanto en modo diferencial como común para el puente óptico balanceado, hacemos uso del circuito mostrado en la Fig. 6.2 estableciendo una similitud en el análisis antes realizado para el amplificador operacional. Cabe mencionar que en el caso general, las señales de entrada en modo diferencial corresponden a los componentes AC de las funciones de transferencia C_{ij} de los brazos del acoplador cruzado, mientras las señales de entrada en modo común corresponden a los componentes AC de las funciones de transferencia S_i , F_{ei} , F_{sj} y D_j de los elementos que están formando las cuatro trayectorias posibles de señales entre los puertos de entrada y salida del puente óptico.

Por tanto, la ganancia en modo diferencial para nuestro caso se puede expresar como

$$A_d = \frac{v_d}{c_{ii}} = \frac{v_d}{m} = 1,$$
(6.7)

donde c_{ij} y *m* son las señales de entrada del sistema de procesamiento en modo diferencial correspondientes a los componentes AC de las funciones de transferencia C_{ij} y *M*, y v_d es la señal de salida del sistema de procesamiento aplicando la señal de entrada en modo diferencial correspondiente al componente AC de la señal *V* de salida del sistema de procesamiento, respectivamente.

En la misma manera la ganancia en modo común se puede expresar como

$$A_{c} = \frac{v_{c}}{s_{i} + f_{ei} + f_{sj} + d_{j}},$$
(6.8)

donde s_i , f_{ei} , f_{sj} , y d_j son las señales de entrada del sistema de procesamiento en modo común correspondientes a los componentes AC de las funciones de trasferencia S_i , F_{ei} , F_{sj} , y D_j , y v_c es la señal de salida del sistema de procesamiento aplicando la señal de entrada en modo común correspondiente al componente AC de la señal V, respectivamente.

De tal manera que la definición de *CMRR* para un puente óptico balanceado se puede expresar como

$$CMRR = \frac{1}{A_c} = \frac{s_i + f_{ei} + f_{sj} + d_j}{v_c}.$$
(6.9)

6.4 Elementos del sistema experimental

Para este tipo de técnica es necesario contar con dos fuentes ópticas LED, fibras ópticas, un acoplador óptico cruzado 2x2, dos fotodetectores y un sistema de procesamiento de las señales separado en el dominio del tiempo. Como se muestra en el diagrama de bloques en la Fig. 6.3.

Fig. 6.3 Diagrama de bloques de un puente balanceado con un sistema de procesamiento.

6.4.1 Fuentes ópticas

Las fuentes ópticas fueron construidas con circuitos integrados (CI) 555 de donde se obtienen señales de aprox. 0.5 kHz. El CI 555 es un dispositivo altamente estable para generar osciladores o retardos. Trabaja en modo astable y monostable. La duración del ciclo es ajustable, la señal de salida puede proporcionar una salida de hasta 200 mA y puede accionar sistemas TTL [16].

Se utilizó una configuración CI_1 555 en operación astable como muestra la Fig. 6.4. La señal obtenida de esta etapa es una señal que se enviará al puente óptico a través de un LED₁. Esta señal es llevada, también al disparo (entrada 2) de un segundo CI_2 555 el cual está en una

configuración monostable y que generará un pulso con un retraso de 180° con respecto al pulso del primer 555. La señal CI₂ 555 es llevada al puente óptico a través de un segundo LED₂.

Fig. 6.4 Circuito eléctrico para generar las fuentes ópticas con el uso de un circuito integrado 555. En configuración: a) CI_1 555 astable y b) CI_2 555 monostable.

En este circuito se tienen dos resistencias R_2 y R_{2x} que son utilizadas para variar la corriente de los LED efectuando la variación de la señal s_i . R_{2x} se conecta o desconecta para simular variación de dicha señal.

En una configuración astable para obtener los valores de los componentes en función de la frecuencia deseada se hace uso de la ecuación:

$$f = \frac{1}{T} = \frac{1.44}{(R_A + 2R_B)C_1}.$$
 (6.10)

Para la configuración monostable para obtener la duración del pulso en alto se cuenta con la ecuación:

$$t = 1.1(R_1C_3). \tag{6.11}$$

En las tablas 6.1 se presentan los valores de los elementos del circuito eléctrico.

La frecuencia obtenida con los valores experimentales es de 0.62 kHz.

Tabla 6.1 Valores de los componentes para la realización de las fuentes ópticas con polarización $+V_{cc} = 5$ V: (a) valores de las capacitancias y (b) valores de las resistencias.

``	
8 I	
u,	

b)

Elemento	Valor calculado	Valor experimental
С	0.01 µF	0.01 µF
C_1	1 μF (propuesto)	1 µF
C_2	220 nF	220 nF
C_3	1.5 μF (propuesto)	1.5 μF
C_4	10 nF	10 nF
C_5	100 µF	100 µF

Elemento	Valor calculado	Valor experimental	
R _A	880 Ω	330 Ω	
R_B	1 kΩ (propuesto)	1 kΩ	
R_1	245.2 Ω	270 Ω	
R_2	82 Ω	82 Ω	
R_3	10 MΩ	10 MΩ	

6.4.2 Puente óptico balanceado

El puente óptico experimental es un arreglo de cuatro fibras ópticas cruzadas puestas en pares entre las fuentes ópticas y fotodetectores, como se muestra en la Fig. 6.5.

Fig. 6.5 Diagrama del prototipo experimental de un puente óptico balanceado.

Los extremos de las cuatro fibras están acoplados en pares con las fuentes ópticas y fotodetectores haciendo en esta manera la función de los cuatro acopladores 1x2 formando el acoplador cruzado 2x2 del puente óptico balanceado.

Las fibras ópticas utilizadas son del tipo mencionado anteriormente en el Capítulo 4 como fibra de cuarzo-cuarzo # 2. Cada par de fibras tiene una fibra de 2.5 m y una de 3 m. Con una vuelta completa de aproximadamente 8 cm de radio en las fibras más largas.

6.4.3 Sistema de fotodetección

El sistema de detección de la señal está formado por dos fotodetectores D_1 y D_2 , y un sistema de conversión de la corriente proveniente de los fotodetectores a voltaje. Esto se resuelve con un amplificador de transimpedancia *OA* [17]. El arreglo experimental se muestra en la Fig. 6.6. Para un amplificador operacional ideal la salida en voltaje debería ser:

$$v_0(t) = -i_s(t)R$$
, (6.12)

donde i_s es la corriente en la fuente y R la resistencia de retroalimentación.

Considerando errores estáticos de la fuente, el voltaje de salida estará representado por:

$$v_0(t) = -i_s(t)R + I_n R + V_{io}, \qquad (6.13)$$

donde I_n y V_{io} son la corriente y voltaje, respectivamente, pertenecientes a los errores estáticos de la fuente.

Fig. 6.6 Sistema de detección con amplificador de transimpedancia. Este circuito detecta las señales de salida del puente óptico balanceado.

El capacitor C de retroalimentación sirve para evitar autogeneración del amplificador de transimpedancia y limitar su banda.

Los valores de los componentes de esta etapa se muestran en la tabla 6.2.

Tabla 6.2 Elementos de un sistema de fotodetección con un amplificador de transimpedancia

Elemento	Valor
R_4	1 MΩ
C_6	10 pF

El circuito integrado usado para el amplificador de transimpedancia fue un CI DBL324, el cual contiene cuatro amplificadores operacionales diseñados para operar con una o dos fuentes de polarización [16].

6.4.4 Sistema de procesamiento de la señal

Como se mencionó anteriormente el sistema de procesamiento tiene que realizar la función (6.1) sobre las señales de salida del puente óptico balanceado. En la Fig. 6.7 se muestra su diagrama de

bloques modificado en comparación con el diagrama presentado en la Fig. 6.1, con el fin de disminuir número de los componentes electrónicos usados.

Fig. 6.7 Diagrama de bloques del prototipo del sistema de procesamiento de las señales.

Se utiliza un (CI) multiplicador AD534 [16] y [18], que puede adaptarse para obtener una división de las señales. Un CI multiplicador produce una salida proporcional al producto de las dos entradas v_1 y v_2 .

$$v_0 = k v_x v_y, \tag{6.14}$$

donde k es un factor de escala usualmente de $1/10 \text{ V}^{-1}$.

Un multiplicador que acepta entradas de cualquier polaridad y preserva la correcta relación de polaridad en la salida es conocido como un multiplicador de cuatro cuadrantes. Pero tanto la salida como la entrada en este tipo de circuitos se encuentran dentro de rangos de +10 V a -10 V. Por otro lado, un amplificador de dos cuadrantes requiere que una de las entradas sea unipolar, y un multiplicador de un cuadrante requiere que ambas entradas sean unipolares.

El desempeño de un multiplicador es especificado en términos de la exactitud y la no-linealidad. *La exactitud* representa la máxima desviación de la salida con respecto al valor ideal de acuerdo con la ecuación (6.14). Esta desviación es también conocida como el error total. La *no-linealidad*, también es conocida como error por linealidad, la cual representa el máximo error a la salida con respecto a la mejor aproximación a una recta para el caso en que una de las entradas es variada de extremo a extremo mientras la otra se mantiene constante, comúnmente de +10 V a -10 V. Ambos parámetros son expresados como un porcentaje de la escala total de la salida.

La función de transferencia para este circuito integrado en configuración para trabajar como divisor es:

$$10V \frac{(Z_2 - Z_1)}{(X_1 - X_2)} + Y_1, \tag{6.15}$$

donde ($X_1 > X_2$).

La configuración requerida para que el amplificador AD534 trabaje como divisor es mostrada en la Fig. 6.8. En este circuito (para el modelo AD534J con la precisión menor) se cuenta con un error total E_{tot} de ±0.75 % (con X = 10V, -10V < Z < +10V) o de ±2.5 % (con 0.1V < X < 10V, -10V < Z < 10V). En el sistema (Fig. 6.7) que cuenta con dos divisores en serie teóricamente la $CMRR \approx 1/(2E_{tot})$. Entonces, en el primer caso mencionado (con los valores óptimos y fijos de las variables $X \neq Z$) $CMRR \approx 1/(2x0.0075) \approx 67$, y en el segundo caso (con un rango dinámico de las variables cerca de 100) $CMRR \approx 1/(2x0.025) = 20$.

Fig. 6.8 Configuración de un multiplicador AD534 para obtener un divisor.

Para obtener la separación física (espacial) de las señales separadas en el dominio del tiempo se ha utilizado un circuito integrado de muestreo y sujeción (almacenamiento). En este circuito, el valor de la señal de entrada es capturada instantáneamente. Aunque matemáticamente en la teoría de muestreo es posible una captura instantánea, en la práctica es imposible debido a las limitaciones de los componentes físicos. No obstante, en la práctica es posible detectar en un tiempo determinado la información y almacenarla por el resto de la duración de un ciclo. Al sistema que trabaja en la detección de la información se le conoce como amplificador de muestreo-sujetador (SHA por sus siglas en inglés). Existe otro tipo que además de detectar y sostener la información también la memoriza, a este se le conoce como amplificador de memoria-

FI

Desarrollo experimental de un puente óptico balanceado con separación temporal

sujeción (THA por sus siglas en inglés). Sin embargo, en muchos de los casos son utilizados en conjunto. En la Fig. 6.9 se muestra un circuito básico de un THA.

Fig. 6.9 Circuito básico de un amplificador THA.

Este circuito asemeja a un detector de pico, excepto por el reemplazo de diodos que depende del interruptor (*SW*) externamente controlado el cual carga y descarga el capacitor C_H , dependiendo del caso. El circuito opera de la siguiente manera.

Durante el modo de memoria, *SW* es cerrado para crear la trayectoria de retroalimentación *SW*- OA_2 - R_2 alrededor de OA_1 . Debido a la caída de voltaje a través de *SW*, los dos diodos están apagados, indicando un voltaje de 0 V a través de *R*. OA_1 actúa como un seguidor de voltaje, dando a C_H cualquier corriente.

En el modo de sujeción, *SW* es abierto, dejando a C_H retener cualquier voltaje que éste tiene en el instante de apertura del interruptor; OA_2 lleva este voltaje a la salida. La función de D_1 y D_2 es proteger a OA_1 de la saturación y también facilita la recuperación de OA_1 cuando un nuevo comando de memoria es recibido.

En nuestro caso el desempeño de los amplificadores THA depende de los siguientes parámetros:

- Error de ganancia (G_e) .
- Salto de desplazamiento o pedestal (*S_t*).

• Velocidad de decrecimiento (*D_r*).

En esta implementación se planea el uso de un CI AD386KD [16] que cuenta con G_e de ±0.02%, S_t de ±4mV, D_r de 1µV/µs.

Además este CI es compatible con niveles TTL. Puede ser usado en sistemas de retardo de alta resolución sin tener pérdidas de exactitud. Se puede utilizar para aplicaciones que requieren amplio rango dinámico.

La conexión de este CI se muestra en la Fig. 6.10.

Fig. 6.10 Conexión de un amplificador AD386 para obtener la separación temporal de las señales.

Y por último es necesario realizar la división entre las dos señales separadas espacialmente, así que, una vez más, hacemos uso del circuito divisor mostrado en la Fig. 6.8, con el numerador y denominador indicados en la ecuación (6.16). El circuito total se encuentra en el Apéndice C.

6.5 Resultados experimentales

En el procedimiento del experimento para medir la relación de rechazo en modo común (*CMRR*) según de la ecuación (6.9) se han variando la potencia de las fuentes ópticas por medio de modulación de la corriente de los LED. En esta manera se ha formando una señal de entrada del sistema de procesamiento en modo común s_i manteniendo las demás señales (f_{ei} , f_{sj} , d_j) igual a cero. En particular, se ha reducido la corriente de los LED a la mitad por medio de conmutación de las resistencias R_{2x} (Fig. 6.4), detectando el cambio de la señal s_1 o s_2 (por separado en dos pruebas) en las salidas de los fotodetectores correspondientes al primer y segundo LED, y la señal v_c de salida del sistema de procesamiento.

Por no encontrar en el mercado el circuito integrado equivalente al amplificador THA mencionado, en el experimento se ha investigado únicamente la primera etapa del sistema de procesamiento compuesta de un divisor (Fig. 6.7). Los resultados del experimento planteado serán factibles tomando en cuenta que la incertidumbre de la señal de salida del sistema llevada por los amplificadores THA se puede despreciar en comparación con el error total de los divisores.

Por tanto, en la primera prueba (con el primer LED), el valor de voltaje de entrada del sistema de procesamiento en modo común (medido en la salida de un fotodetector) pasa de ser 9.6 V a 4.8 V (el cambio es de 4.8 V) y el cambio registrado en la señal v_c de salida del primer divisor (modelo AD534J) es de 40 mV. Calculando el valor de *CMRR* es:

$$CMRR = \frac{s_1}{v_c} = \frac{4.8V}{40mV} = 120$$
.

En la segunda prueba (con el segundo LED) el valor de voltaje de entrada del sistema de procesamiento en modo común (medido en la salida de un fotodetector) pasa de ser 9.1 V a 4.55 V (el cambio es de 4.55 V) y el cambio registrado de la señal v_c de salida del primer divisor es de 20 mV. Calculando el valor de *CMRR* es:

$$CMRR = \frac{s_2}{v_c} = \frac{4.55V}{20mV} = 228$$
.

Por el resultado obtenido podemos decir que se tiene una *CMRR* de 120 a 230 veces para el caso de los valores óptimos de las señales de entrada. Esto se ve directamente afectado por la exactitud

de funcionamiento del primer divisor del sistema de procesamiento. Con los resultados obtenidos se puede aproximar el valor esperado de la *CMRR* para el sistema compuesto de dos divisores en dos veces menor: de 60 a 115 veces. Para el caso de contar con un rango dinámico de las señales de entrada de 100, la *CMRR* del sistema será de 20 a 38.

Conclusiones

Con el uso de un puente óptico balanceado con separación de las señales en el dominio del tiempo y un sistema de procesamiento de señales se ha logrado una buena relación de rechazo en modo común (*CMRR* > 20) es decir, la relación de rechazo de los factores parásitos de un sensor de intensidad.

En este sistema de referencia es muy importante contar con componentes de buena estabilidad de algunos de sus parámetros; por ejemplo, en el puente óptico son necesarios acopladores que tengan estable la relación de acoplamiento ya que de esto depende que *CMRR*, se mantenga estable. Otro factor que es importante controlar es la variación de los parámetros de componentes electrónicos involucrados al sistema de procesamiento de las señales. Es preferible el uso de componentes de precisión. El parámetro que más debemos cuidar en el divisor es su error total. Este parámetro debe ser lo mínimo posible. Con respeto a la precisión total del sistema de procesamiento, se puede despreciar la influencia del amplificador THA en comparación con el error total del divisor antes mencionado. Además, se puede aumentar el valor de la *CMRR* obtenido en el experimento en 2 ó 3 veces con el uso de los modelos del circuito divisor más precisos (AD534K y AD534L).

Para mantener el valor de *CMRR* que ofrece el sistema de procesamiento diseñada, es necesario usar los elementos ópticos formadores del puente que tengan estabilidad correspondiente, por ejemplo los acopladores ópticos con una estabilidad de la relación de acoplamiento mejor de $\pm 1\%$.

Otra opción de la obtención del procesamiento de las señales del puente óptico balanceado, es también posible por un sistema digital, el cual puede involucrar tarjetas DAC (convertidores analógico/digital) y una PC. Otra opción es el uso de microprocesadores.

FI

CONCLUSIONES GENERALES

Los sensores de intensidad presentan la ventaja de ser arreglos sencillos, además de que es posible realizarlos con fuentes no coherentes. Sin embargo, se ven afectados por cambios de intensidad en la fuente y por cambios de la atenuación y distribución de intensidad intermodal en la fibra óptica.

Los sensores de intensidad de desplazamiento en fibras ópticas permiten tener una gran variedad de configuraciones dependiendo de la aplicación. Principalmente son utilizados en configuraciones de tipo reflexivo y transmitivo.

Se presenta un estudio de los sensores de intensidad para medir desplazamiento donde se describió analíticamente la función de transferencia de un sensor de desplazamiento con fibra multimodo usando el modelo geométrico. Mediante el análisis y revisión de las ecuaciones propuestas en un trabajo anterior, se determinó una sola ecuación de la función de transferencia en todo el rango de distancia para un sensor de desplazamiento de intensidad transmitivo en fibra óptica.

Además, se realizó un análisis para poder determinar un parámetro que es la apertura numérica efectiva NA_{eff} de fibra óptica, el cual permite tomar en consideración la influencia de la fuente óptica a la distribución de intensidad en la fibra óptica. Se encontró un método eficaz y sencillo

para determinar prácticamente el valor de NA_{eff} . Con el uso del parámetro de NA_{eff} nuestro modelo matemático da resultados de muy buena cercanía con los valores obtenidos experimentalmente. La desviación estándar entre las funciones de transferencia de un sensor de desplazamiento teórica y experimental está en intervalo 0.015 a 0.035 y el valor promedio de desviación está cerca de 0.02 para distintos tipos de fibras ópticas.

Se mostró que la ecuación Gaussiana modificada en tal manera que aproxime a la ecuación propuesta, también tiene una buena coincidencia con los resultados experimentales y por tanto es posible aplicar el concepto propuesto de apertura numérica efectiva. La ventaja del modelo propuesto es que la ecuación de la función de transferencia obtenida para un sensor de desplazamiento, representa muy buena coincidencia con los resultados experimentales para fibras de distintos tipos en un rango grande de distancias a medir, sin necesidad de un ajuste previo de algunos parámetros (constantes) de ecuación, al contrario con la conocida ecuación Gaussiana.

Debido a su gran dependencia de las fluctuaciones en la fuente y pérdidas en la fibra, es necesario añadir un sistema de referencia que brinde estabilidad al sistema de medición. Por tal motivo se estudiaron diferentes opciones para los sistemas de referencia, ya que buscan principalmente obtener que la señal de referencia esté expuesta a las mismas condiciones que la señal de medición. Las opciones son variadas pero en especial, el obtener la señal de referencia en doble longitud puede proporcionar una referencia efectiva contra la mayoría de las variaciones en modo común, cuando la emisión de cada fuente óptica es también monitoreada. Por lo tanto la configuración se vuelva similar a un puente balanceado lo que representa tener un control de ajuste.

Para entender de mejor manera las habilidades prácticas de un sistema de referencia, se realizó un sistema de referencia en configuración de puente óptico balanceado. Se diseñó el puente óptico balanceado con un sistema analógico de procesamiento de sus señales separado en el dominio del tiempo y se determinó experimentalmente el valor de la relación de rechazo en modo común (CMRR) del sistema diseñado que resultó. El valor de la CMRR que ofrece el sistema de procesamiento analógico diseñado es mayor que 20, lo que confirma buenas perspectivas a la aplicación de este sistema de referencia en los sensores de intensidad en fibra óptica.

BIBLIOGRAFÍA

- [1] Alan D. Kersey "A review of recent developments in fiber optic sensor technology" Optical fiber technology, Vol. 2 (1996) 291-316.
- [2] Dakin, John. y Culshaw, Brian. "Optical Fiber Sensors: Principles and Components" Vol. I.
 U.S.A. Ed. ARTECH HOUSE, INC. 1988.
- [3] Krohn.D.A. "Fiber Optic Sensors. Fundamentals and applications". 3a. ed. U.S.A. Ed. ISA. 2000.
- [4] Udd, Eric. "Fiber Optic Sensor. An Introduction for Engineers and Scientists". U.S.A. Ed. John Wiley & Sons, Inc., 1991.
- [5] Grattan y Meggitt. "Optical Fiber Sensor Technology". CHAPMAN & HALL. Gran Bretaña. 1995.
- [6] Yuan, Lin, Liang y Jiang. "Applications of angled-mirror in fiber-optic sensors". Optics & Laser Technology Vol. 32 (2000) 255-260.
- [7] He, Gang y Cuomo, Frank. "Displacement Response, Detection limit, and Dynamic Range of Fiber-Optic lever sensor". Journal of Lightwave Technology, Vol. 9, No. 11 (1991).

[8] J.B. Faria, "A Theoretical Analysis of the Bifurcated Fiber Bundle Displacement Sensor". IEEE Trans. Instrum. Meas., Vol. 47, No. 3 (1998) 742-747.

- [9] Grattan y Meggitt. "Optical Fiber Sensor Technology. Devices and technology". Vol 2. CHAPMAN & HALL. Londres 1998.
- [10] N.N. Solis Osorno. "Cálculo del modelo matemático de la atenuación de un sensor refractométrico de intensidad en fibra óptic", Tesis de licenciatura, UNAM, México, 2000.
- [11] A. Wang, M.S. Miller, A.J. Plante, M.F. Gunther, K.A. Murphy, and R.O. Claus, *Appl. Opt.* Vol. 35 (1996) 2595-2601.
- [12] Y. Libo, P. Jian, Y. Tao, H. Guochen. Sensors and Actuators A, Vol. 36 (1993) 177-182.
- [13] Bonilla, Gidalberto. "Métodos prácticos de inferencia estadística", 2ª ed. Trillas: México, 1991.
- [14] Savant, C.J. "Diseño electrónico. Circuitos y sistemas". 3ª. ed. Pearson Educación México. 2000.
- [15] Pertence, Antonio. "Amplificadores operacionales y filtros activos". Mc.Graw-Hill. España. 1991.
- [16] www.datasheetarchive.com
- [17] Pallas-Areny, Ramón and Webster John. "Analog signal processing". J. Wiley. U.S.A. 1999.
- [18] Franco, Sergio. "Design with operational amplifiers and analog integrated circuits". 3a. ed. Mc.Graw-Hill. 2002.
- [19] V. Argueta-Díaz, M. Trejo-Valdez, and A. García-Valenzuela. *Rev. Sci. Instrum.*, Vol. 71, No. 8., (2000) 2995-3003.

Tablas de resultados experimentales

APÉNDICE A

Tablas de resultados experimentales

Tabla A.1. Distribución de intensidad en el cono de emisión de la fibra de polímero-polímero "larga" incluyendo el patrón de radiación de la fuente emisora (gráfica (a) en la Fig. 5.3).

Ángulo	Lectura	Ángulo	Lectura	Promedio	Lectura
[grad]	[mV]	[grad]	[mV]	[mV]	normaliz.
0	850	0	850	850	1.0000
2	840	-2	850	845	0.9941
4	820	-4	840	830	0.9765
6	815	-6	800	807.5	0.9500
8	780	-8	780	780	0.9176
10	730	-10	740	735	0.8647
12	670	-12	720	695	0.8176
14	630	-14	680	655	0.7706
16	578	-16	580	579	0.6812
18	510	-18	510	510	0.6000
20	450	-20	460	455	0.5353
22	380	-22	390	385	0.4529
24	275	-24	200	237.5	0.2794
26	95	-26	60	77.5	0.0912
28	30	-28	25	27.5	0.0324
30	13	-30	15	14	0.0165
32	6	-32	8	7	0.0082

Tablas de resultados experimentales

Tabla A.2. Distribución de intensidad en el cono de admisión de la fibra de polímero-polímero "larga" (gráfica (b) en la Fig. 5.3).

Ángulo	Lectura	Ángulo	Lectura	Promedio	Lectura
[grad]	[mV]	[grad]	[mV]	[mV]	normaliz.
0	1350	0	1350	1350	1.0000
2	1345	-2	1350	1347.5	0.9981
4	1340	-4	1350	1345	0.9963
6	1335	-6	1345	1340	0.9926
8	1325	-8	1340	1332.5	0.9870
10	1310	-10	1330	1320	0.9778
12	1290	-12	1320	1305	0.9667
14	1270	-14	1300	1285	0.9519
16	1250	-16	1270	1260	0.9333
18	1220	-18	1240	1230	0.9111
20	1180	-20	1200	1190	0.8815
22	1140	-22	1130	1135	0.8407
24	1060	-24	920	990	0.7333
26	850	-26	580	715	0.5296
28	540	-28	390	455	0.3370
30	325	-30	245	275	0.2037
32	220	-32	175	198	0.1467
34	150	-34	115	133	0.0985
36	100	-36	74	87	0.0644
38	60	-38	50	55	0.0407
40	42	-40	32	37	0.0274
42	25	-42	19	22	0.0163
44	16	-44	12	14	0.0104
46	10	-46	8	9	0.0067
48	6.4	-48	5.2	5.8	0.0043
50	4	-50	3.6	3.8	0.0028
52	2.4	-52	2.7	2.5	0.0019
54	2	-54	2	2	0.00074

Tabla A.3. Distribución de intensidad en el cono de admisión de la fibra de polímero-polímero "corta" (gráfica (c) en la Fig. 5.3).

Ángulo	Lectura	Ángulo	Lectura	Promedio	Lectura
[grad]	[mV]	[grad]	[mV]	[mV]	normaliz.
0	1440	0	1440	1440	1.0000
2	1415	-2	1440	1427.5	0.9913
4	1410	-4	1410	1410	0.9792
6	1400	-6	1410	1405	0.9757
8	1380	-8	1380	1380	0.9583
10	1360	-10	1370	1365	0.9479
12	1340	-12	1360	1350	0.9375
14	1320	-14	1340	1330	0.9236
16	1300	-16	1325	1312.5	0.9115
18	1280	-18	1320	1300	0.9028
20	1260	-20	1310	1285	0.8924
22	1240	-22	1280	1260	0.875
24	1200	-24	1270	1235	0.8576
26	1180	-26	1240	1210	0.8403
28	725	-28	880	802.5	0.5573
30	540	-30	535	537.5	0.3733
32	345	-32	370	357.5	0.2483
34	252.5	-34	345	298.75	0.2075
36	210	-36	250	230	0.1597
38	162.5	-38	185	173.75	0.12067
40	125	-40	154	139.5	0.0969
42	98	-42	122	110	0.0764
44	84	-44	94	89	0.0618
46	70	-46	82	76	0.0528
48	56	-48	63.5	59.75	0.0415
50	42	-50	47.5	44.75	0.0311
52	34.5	-52	36	35.25	0.0245
54	29	-54	29.5	29.25	0.0203
56	23	-56	22	22.5	0.0156
58	17.5	-58	16.5	17	0.0118
60	13	-60	13.5	13.25	0.0092
62	11	-62	11.5	11.25	0.0078
64	9.5	-64	7.8	8.65	0.0060
66	8.5	-66	6.6	7.55	0.0052
68	6.25	-68	5.6	5.925	0.0041
70	4.25	-70	4.1	4.175	0.0029
72	3.75	-72	3	3.375	0.0023
74	2.5	-74	2.6	2.55	0.0018
76	1.8	-76	1.4	1.6	0.0011
78	1.4	-78	1	1.2	0.00083
80	1.2	-80	0.8	1	0.000069

Tablas de resultados experimentales

82 0.8 -82 0.8 0.00056

Tabla A.4. Distribución de intensidad en el cono de emisión de la fibra de cuarzo-polímero "larga" incluyendo el patrón de radiación de la fuente emisora (gráfica (a) en la Fig. 5.4).

Ángulo [grad]	Lectura [mV]	Ángulo [grad]	Lectura [mV]	Promedio [mV]	Lectura normaliz.
0	850	0	850	850	1.0000
2	850	-2	850	850	1.0000
4	850	-4	850	850	1.0000
6	790	-6	830	810	0.9528
8	755	-8	775	765	0.9000
10	710	-10	750	730	0.8587
12	655	-12	710	682.5	0.8028
14	590	-14	630	610	0.7175
16	500	-16	570	535	0.6293
18	440	-18	490	465	0.5470
20	370	-20	420	395	0.4646
22	305	-22	345	325	0.3823
24	240	-24	270	255	0.3000
26	175	-26	215	195	0.2293
28	80	-28	140	110	0.1293
30	36	-30	56	46	0.0540
32	18	-32	26	22	0.0259
34	10	-34	10	10	0.0118

Tablas de resultados experimentales

Tabla A.5. Distribución de intensidad en el cono de admisión de la fibra de cuarzo-polímero "larga" (gráfica (b) en la Fig. 5.4).

Ángulo	Lectura	Ángulo	Lectura	Promedio	Lectura
[grad]	[mV]	[grad]	[mV]	[mV]	normaliz.
0	1460	0	1460	1460	1.0000
2	1450	-2	1450	1450	0.9931
4	1430	-4	1430	1430	0.9794
6	1400	-6	1390	1395	0.9555
8	1340	-8	1340	1340	0.9177
10	1270	-10	1280	1275	0.8733
12	1215	-12	1200	1207.5	0.8270
14	1150	-14	1120	1135	0.7774
16	1020	-16	1030	1025	0.7020
18	940	-18	920	930	0.6370
20	830	-20	840	835	0.5718
22	730	-22	720	725	0.4966
24	610	-24	610	610	0.4177
26	495	-26	510	502.5	0.3442
28	280	-28	320	300	0.2055
30	170	-30	185	177.5	0.1216
32	110	-32	123	116.5	0.0798
34	75	-34	80	77.5	0.0531
36	52	-36	56	54	0.0370
38	36.5	-38	38	37.25	0.0254
40	22.5	-40	26	24.25	0.0165
42	18	-42	19	18.5	0.0127
44	13	-44	13.4	13.2	0.0089
46	9.2	-46	9.8	9.5	0.0064
48	6.8	-48	7.2	7	0.0046
50	5	-50	5.2	5.1	0.0035
52	4	-52	4	4	0.0026
54	3.2	-54	3	3.1	0.0020
56	2.4	-56	2.4	2.4	0.0015
60	1.6	-60	1.5	1.55	0.0011
64	1.4	-64	1.2	1.3	0.0009

Tabla A.6. Distribución de intensidad en el cono de admisión de la fibra de cuarzo-polímero "corta" (gráfica (c) en la Fig. 5.4).

Ángulo	Lectura	Ángulo	Lectura	Promedio	Lectura
[grad]	[mV]	[grad]	[mV]	[mV]	normaliz.
0	1520	0	1520	1520	1.0000
2	1510	-2	1510	1510	0.9933
4	1500	-4	1500	1500	0.9867
6	1490	-6	1490	1490	0.9803
8	1470	-8	1480	1475	0.9704
10	1450	-10	1460	1455	0.9571
12	1420	-12	1440	1430	0.9408
14	1400	-14	1420	1410	0.9275
16	1370	-16	1400	1385	0.9112
18	1330	-18	1360	1345	0.8849
20	1290	-20	1340	1315	0.8650
22	1250	-22	1300	1275	0.8387
24	1200	-24	1250	1225	0.8058
26	1120	-26	1200	1160	0.7631
28	680	-28	1040	860	0.5658
30	455	-30	700	577.5	0.3798
32	335	-32	380	357.5	0.2352
34	255	-34	315	285	0.1875
36	195	-36	245	220	0.1446
38	160	-38	190	175	0.1150
40	128	-40	153	140.5	0.0923
42	98	-42	116	107	0.0704
44	82	-44	98	90	0.0591
46	66	-46	78	72	0.0474
48	53	-48	64	58.5	0.0385
50	44	-50	52	48	0.0316
52	37	-52	42	39.5	0.0260
54	29	-54	34	31.5	0.0206
56	23	-56	29	26	0.0170
58	19	-58	23.5	21.25	0.0140
60	15	-60	18	16.5	0.0107
62	12	-62	15	13.5	0.0089
64	10	-64	12	11	0.0071
68	6	-68	7.5	6.75	0.0043
72	3.6	-72	4.2	3.9	0.0026
76	1.8	-76	2.4	2.1	0.0014
82	1	-82	1.5	1.25	0.0007

FI

Tablas de resultados experimentales

Tabla A.7. Distribución de intensidad en el cono de emisión de la fibra de cuarzo-cuarzo #1 incluyendo el patrón de radiación de la fuente emisora (gráfica (a) en la Fig. 5.5).

Ángulo [grad]	Lectura [mV]	Ángulo [grad]	Lectura [mV]	Promedio [mV]	Lectura normaliz.
0	110	0	110	110	1.0000
1	110	-1	110	110	1.0000
2	107	-2	109	108	0.9817
3	104	-3	107	105.5	0.9591
4	98	-4	102	100	0.9091
5	94	-5	99	96.5	0.8773
6	88	-6	93	90.5	0.8226
7	79	-7	85	82	0.7455
8	73	-8	75	74	0.6726
9	64	-9	68	66	0.6000
10	55	-10	61	58	0.5273
11	45	-11	50	47.5	0.4317
12	30	-12	39	34.5	0.3135
13	13	-13	20	16.5	0.1500
14	0	-14	5	2.5	0.0226
15	0	-15	0	0	0.0000

Tabla A.8. Distribución de intensidad en el cono de admisión de la fibra de cuarzo-cuarzo #1 (gráfica (b) en la Fig. 5.5).

Ángulo	Lectura	Ángulo	Lectura	Promedio	Lectura
[grad]	[mV]	[grad]	[mV]	[mV]	normaliz.
0	1890	0	1890	1890	1.0000
0.5	1870	-0.5	1890	1880	0.9946
1.5	1860	-1.5	1870	1865	0.9868
2.5	1840	-2.5	1850	1845	0.9762
3.5	1810	-3.5	1820	1815	0.9602
4.5	1800	-4.5	1810	1805	0.9549
5.5	1780	-5.5	1790	1785	0.9443
6.5	1750	-6.5	1750	1750	0.9258
7.5	1720	-7.5	1730	1725	0.9127
8.5	1700	-8.5	1690	1695	0.8967
9.5	1650	-9.5	1640	1645	0.8704
10.5	1600	-10.5	1580	1590	0.8413
11.5	1500	-11.5	1490	1495	0.7909
12.5	800	-12.5	1060	930	0.4921
13.5	200	-13.5	290	245	0.1295
14.5	55	-14.5	60	57.5	0.0303
15.5	50	-15.5	50	50	0.0265
16.5	4.5	-16.5	50	27.25	0.0143
17.5	1	-17.5	25	13	0.0069
18.5	0	-18.5	0	0	0

Tabla A.9. Distribución de intensidad en el cono de emisión de la fibra de cuarzo-cuarzo #2 incluyendo el patrón de radiación de la fuente emisora (gráfica (a) en la Fig. 5.6).

Ángulo	Lectura	Ángulo	Lectura	Promedio	Lectura
[grad]	[mv]	[grad]	[mv]	[mv]	normaliz.
0	840	0	840	840	1.0000
1	830	-1	830	830	0.9881
2	820	-2	820	820	0.9762
3	790	-3	800	795	0.9463
4	770	-4	770	770	0.9167
5	740	-5	740	740	0.8810
6	670	-6	715	692.5	0.8243
7	600	-7	660	630	0.7500
8	520	-8	590	555	0.6606
9	450	-9	530	490	0.5832
10	400	-10	450	425	0.5060
11	330	-11	380	355	0.4225
12	250	-12	320	285	0.3393
13	140	-13	250	195	0.2320
14	50	-14	140	95	0.1131
15	15	-15	60	37.5	0.0445

Tabla A.10. Distribución de intensidad en el cono de admisión de la fibra de cuarzo-cuarzo #2 (gráfica (b) en la Fig. 5.6).

Ángulo	Lectura	Ángulo	Lectura	Promedio	Lectura
[grad]	[mV]	[grad]	[mV]	[mV]	normaliz.
0	2280	0	2280	2280	1.0000
1	2270	-1	2280	2275	0.9977
2	2250	-2	2270	2260	0.9911
3	2220	-3	2230	2225	0.9759
4	2200	-4	2180	2190	0.9604
5	2170	-5	2160	2165	0.9496
6	2140	-6	2140	2140	0.9386
7	2130	-7	2130	2130	0.9341
8	2120	-8	2120	2120	0.9297
9	2120	-9	2100	2110	0.9253
10	2110	-10	2100	2105	0.9231
11	2100	-11	2100	2100	0.9211
12	2060	-12	2050	2055	0.9012
13	1700	-13	1580	1640	0.7193
14	950	-14	1060	1005	0.4408
15	660	-15	690	675	0.2961
16	540	-16	545	542.5	0.2380
17	410	-17	435	422.5	0.1852
18	320	-18	345	332.5	0.1457
19	260	-19	280	270	0.1183
20	220	-20	223	221.5	0.0970
21	185	-21	185	185	0.0810
22	164	-22	160	162	0.0711
23	130	-23	133	131.5	0.0577
24	110	-24	112	111	0.0487
25	100	-25	100	100	0.0439
26	83	-26	81	82	0.0360
27	71	-27	72	71.5	0.0314
29	52	-29	55	53.5	0.0235
31	42	-31	42	42	0.0183
33	33	-33	32	32.5	0.0143
37	23	-37	23	23	0.0101
41	16	-41	15	15.5	0.0068
45	11	-45	11	11	0.0047
49	7	-49	6	6.5	0.0029

Tabla A.11. Función de transferencia de sensor de desplazamiento con la fibra de cuarzo-cuarzo #1 (gráfica (a) en la Fig. 5.10).

	Distancia	Distancia	Lectura	Lectura
	[in]	[mm]	[mV]	normaliz.
1	0	0	1320	1.0000
2	0.001	0.0254	1280	0.9697
3	0.002	0.0508	1240	0.9394
4	0.003	0.0762	1200	0.9091
5	0.004	0.1016	1160	0.8788
6	0.005	0.1270	1110	0.8408
7	0.006	0.1524	1060	0.8029
8	0.007	0.1778	1000	0.7576
9	0.008	0.2032	960	0.7273
10	0.009	0.2286	900	0.6817
11	0.010	0.2540	860	0.6514
12	0.011	0.2794	800	0.6061
13	0.012	0.3048	750	0.5682
14	0.013	0.3302	700	0.5302
15	0.014	0.3556	655	0.4961
16	0.015	0.3810	610	0.4620
17	0.016	0.4064	570	0.4317
18	0.017	0.4318	530	0.4014
19	0.018	0.4572	490	0.3711
20	0.019	0.4826	460	0.3485
21	0.020	0.5080	430	0.3258
22	0.021	0.5334	400	0.3029
23	0.022	0.5588	370	0.2802
24	0.023	0.5842	345	0.2614
25	0.024	0.6096	325	0.2461
26	0.025	0.6350	305	0.2311
27	0.026	0.6604	285	0.2158
28	0.027	0.6858	267	0.2023
29	0.028	0.7112	253	0.1917
30	0.029	0.7366	237	0.1794
31	0.030	0.7620	224	0.1705
32	0.031	0.7874	212	0.1605
33	0.032	0.8128	200	0.1514
34	0.033	0.8382	190	0.1438
35	0.034	0.8636	182	0.1379
36	0.035	0.8890	172	0.1302
37	0.036	0.9144	163	0.1235
38	0.037	0.9398	155	0.1173

FI

APÉNDICE A

39	0.038	0.9652	150	0.1135
40	0.039	0.9906	144	0.1091
41	0.040	1.0160	136	0.1029
42	0.041	1.0414	130	0.0985
43	0.042	1.0668	125	0.0947
44	0.043	1.0922	120	0.0908
45	0.044	1.1176	115	0.0870
46	0.045	1.1430	110	0.0832
47	0.046	1.1684	105	0.0794
48	0.047	1.1938	101	0.0764
49	0.048	1.2192	97	0.0735
50	0.049	1.2446	94	0.0711
51	0.050	1.2700	90	0.0682
52	0.052	1.3208	84	0.0635
53	0.054	1.3716	78	0.0591
54	0.056	1.4224	72	0.0544
55	0.058	1.4732	68	0.0514
56	0.060	1.5240	64	0.0485
57	0.064	1.6256	56	0.0423
58	0.068	1.7272	50	0.0379
59	0.072	1.8288	45	0.0341
60	0.076	1.9304	40	0.0302
61	0.080	2.0320	36	0.0273
62	0.088	2.2352	30	0.0226
63	0.096	2.4384	26	0.0197
64	0.104	2.6416	22	0.0167
65	0.112	2.8448	19	0.0144
66	0.120	3.0480	16	0.0120

Tablas de resultados experimentales

-

Tabla A.12. Función de transferencia de sensor de desplazamiento con la fibra de cuarzo-cuarzo #2 (gráfica (b) en la Fig. 5.10).

-	1		1	
	Distancia	Distancia	Lectura	Lectura
	[in]	[mm]	[mV]	normaliz.
1	0	0	1920	1.0000
2	0.002	0.0508	1890	0.9844
3	0.004	0.1016	1850	0.9634
4	0.006	0.1524	1800	0.9375
5	0.008	0.2032	1760	0.9167
6	0.010	0.2540	1710	0.8905
7	0.012	0.3048	1670	0.8698
8	0.014	0.3556	1620	0.8438
9	0.016	0.4064	1580	0.8228
10	0.018	0.4572	1540	0.8021
11	0.020	0.5080	1500	0.7813
12	0.022	0.5588	1450	0.7551
13	0.024	0.6096	1400	0.7292
14	0.026	0.6604	1350	0.7030
15	0.028	0.7112	1310	0.6823
16	0.030	0.7620	1260	0.6563
17	0.032	0.8128	1220	0.6353
18	0.034	0.8636	1170	0.6094
19	0.036	0.9144	1130	0.5884
20	0.038	0.9652	1080	0.5625
21	0.040	1.0160	1040	0.5417
22	0.042	1.0668	1000	0.5207
23	0.044	1.1176	960	0.5000
24	0.046	1.1684	920	0.4792
25	0.048	1.2192	880	0.4582
26	0.050	1.2700	840	0.4375
27	0.052	1.3208	800	0.4167
28	0.054	1.3716	760	0.3957
29	0.056	1.4224	725	0.3775
30	0.058	1.4732	690	0.3594
31	0.060	1.5240	660	0.3438
32	0.062	1.5748	630	0.3280
33	0.064	1.6256	600	0.3125
34	0.066	1.6764	570	0.2969
35	0.068	1.7272	545	0.2839
36	0.070	1.7780	520	0.2707
37	0.074	1.8796	470	0.2448
38	0.078	1.9812	440	0.2292

FI

39	0.082	2.0828	400	0.2082
40	0.086	2.1844	375	0.1952
41	0.090	2.2806	350	0.1823
42	0.094	2.3876	325	0.1693
43	0.098	2.4892	305	0.1589
44	0.102	2.5908	275	0.14323
45	0.106	2.6924	255	0.1327
46	0.110	2.7940	240	0.1250
47	0.114	2.8956	225	0.1172
48	0.118	2.9972	210	0.1094
49	0.122	3.0988	200	0.1042
50	0.126	3.2004	185	0.0964
51	0.130	3.3020	175	0.0910
52	0.138	3.5052	160	0.0832
53	0.146	3.7084	150	0.0780
54	0.154	3.9116	130	0.0676
55	0.162	4.1148	120	0.0625
56	0.170	4.3180	110	0.0573
57	0.185	4.6990	90	0.0469
58	0.200	5.0800	80	0.0417
59	0.215	5.4610	70	0.0365
60	0.230	5.8420	60	0.0313
61	0.245	6.4516	54	0.0280
62	0.260	6.6040	48	0.0250
63	0.290	7.3660	38	0.0198
64	0.320	8.1280	32	0.0167
65	0.350	8.8900	27	0.0141
66	0.400	10.1600	20	0.0103
67	0.450	11.4300	15	0.0077
68	0.500	12.7000	12	0.0063
69	0.550	13,9700	10	0.0051

Tablas de resultados experimentales

_

Tabla A.13. Función de transferencia de sensor de desplazamiento con la fibra de polímero-polímero (gráfica (c) en la Fig. 5.10).

	Distancia	Distancia	Lectura	Lectura
	[in]	[mm]	[mV]	normaliz.
1	0.000	0.000	2000	1.0000
2	0.005	0.127	1950	0.9750
3	0.010	0.254	1860	0.9300
4	0.015	0.381	1780	0.8900
5	0.020	0.508	1690	0.8450
6	0.025	0.635	1600	0.8000
7	0.030	0.762	1520	0.7600
8	0.035	0.889	1440	0.7200
9	0.040	1.016	1350	0.6750
10	0.045	1.143	1270	0.6350
11	0.050	1.27	1180	0.5900
12	0.055	1.397	1100	0.5500
13	0.060	1.524	1020	0.5100
14	0.065	1.651	950	0.4750
15	0.070	1.778	870	0.4350
16	0.075	1.905	800	0.4000
17	0.080	2.032	735	0.3675
18	0.085	2.159	670	0.3350
19	0.090	2.286	620	0.3100
20	0.095	2.413	565	0.2825
21	0.100	2.54	520	0.2600
22	0.110	2.794	440	0.2200
23	0.120	3.048	385	0.1925
24	0.130	3.302	330	0.1650
25	0.140	3.556	290	0.1450
26	0.150	3.81	255	0.1275
27	0.160	4.064	225	0.1125
28	0.170	4.318	200	0.1000
29	0.180	4.572	180	0.0900
30	0.190	4.826	166	0.0830
31	0.200	5.08	150	0.0750
32	0.210	5.334	136	0.0680
33	0.220	5.588	125	0.0625
34	0.230	5.842	114	0.0570
35	0.240	6.096	106	0.0530
36	0.250	6.35	97	0.0485
37	0.260	6.604	90	0.0450
38	0.270	6.858	84	0.0420

FI

_

39	0.280	7.112	77	0.0385
40	0.290	7.366	73	0.0365
41	0.300	7.62	68	0.0340
42	0.320	8.128	60	0.0300
43	0.340	8.636	54	0.0270
44	0.360	9.144	47	0.0235
45	0.380	9.652	42	0.0210
46	0.400	10.16	38	0.0190
47	0.420	10.668	35	0.0175
48	0.440	11.176	32	0.0160
49	0.460	11.684	29	0.0145
50	0.480	12.192	26.5	0.0132
51	0.500	12.7	24	0.0120
52	0.540	13.208	21.5	0.0107
53	0.580	13.716	18	0.0090
54	0.620	14.224	16	0.0080
55	0.660	14.732	14.5	0.0072
56	0.700	15.24	12.5	0.0062
57	0.800	15.748	10	0.0050
58	0.900	16.256	8	0.0107
59	1.000	16.764	6.5	0.0092

Tablas de resultados experimentales

=
Tabla A.14. Función de transferencia de sensor de desplazamiento con la fibra de cuarzo-polímero (gráfica (d) en la Fig. 5.10).

	Distancia	Distancia	Lectura	Lectura
	[in]	[mm]	[mV]	normaliz.
1	0.000	0	1500	1.0000
2	0.005	0.127	1420	0.9467
3	0.010	0.254	1380	0.9200
4	0.015	0.381	1340	0.8932
5	0.020	0.508	1280	0.8532
6	0.025	0.635	1220	0.8132
7	0.030	0.762	1180	0.7867
8	0.035	0.889	1110	0.7400
9	0.040	1.016	1060	0.7067
10	0.045	1.143	1000	0.6667
11	0.050	1.27	950	0.6332
12	0.055	1.397	900	0.6000
13	0.060	1.524	820	0.5467
14	0.065	1.651	795	0.5300
15	0.070	1.778	740	0.4932
16	0.075	1.905	695	0.4632
17	0.080	2.032	645	0.4300
18	0.085	2.159	605	0.4032
19	0.090	2.286	565	0.3767
20	0.095	2.413	525	0.3500
21	0.100	2.54	495	0.3300
22	0.110	2.794	430	0.2867
23	0.120	3.048	380	0.2532
24	0.130	3.302	335	0.2232
25	0.140	3.556	297.5	0.1982
26	0.150	3.81	262.5	0.1750
27	0.160	4.064	237.5	0.1582
28	0.170	4.318	207	0.1380
29	0.180	4.572	190	0.1267
30	0.190	4.826	175	0.1167
31	0.200	5.08	160	0.1067
32	0.210	5.334	143	0.0952
33	0.220	5.588	134	0.0892
34	0.230	5.842	121	0.0807
35	0.240	6.096	114	0.0760
36	0.250	6.35	110	0.0732
37	0.260	6.604	96	0.0640
38	0.270	6.858	90	0.0600

_

39	0.280	7.112	82	0.0547
40	0.290	7.366	78	0.0520
41	0.300	7.62	74	0.0492
42	0.320	8.128	63	0.0420
43	0.340	8.636	57	0.0380
44	0.360	9.144	51	0.0340
45	0.380	9.652	46	0.0307
46	0.400	10.16	42	0.0280
47	0.420	10.668	38	0.0252
48	0.440	11.176	34	0.0227
49	0.460	11.684	31	0.0207
50	0.480	12.192	30	0.0200
51	0.500	12.7	27.5	0.0182
52	0.540	13.716	23	0.0152
53	0.580	14.732	19.5	0.0130
54	0.620	15.748	16.25	0.0107
55	0.660	16.764	14	0.0092
56	0.700	17.78	12	0.0080
57	0.800	20.32	9	0.0060
58	0.900	22.86	7.5	0.0050
59	1.000	25.4	5	0.0032

Tablas de resultados experimentales

=

APÉNDICE B

Imágenes de los componentes principales de las instalaciones experimentales

Imagen B.1. Fuente de luz de haz paralelo láser He-Ne monomodo con modulador mecánico utilizados en la instalación para determinar la distribución de intensidad captada en el cono de admisión (Fig. 5.1).

Imagen B.2. Mesa giratoria utilizada en las Instalaciones para determinar la distribución de intensidad captada en cono de admisión (Fig. 5.1) y la distribución de intensidad radiada en el cono de emisión (Fig. 5.2).

Imagen B.3. Arreglo de micrómetros utilizado en la instalación experimental para determinar la función de transferencia de un sensor de desplazamiento de intensidad en fibras ópticas (Fig. 5.7).

Imagen B.4. Fuente emisora LED con su controlador y fuente de alimentación utilizados en las instalaciones experimentales (Fig. 5.2 y 5.7).

Imagen B.5. Receptor óptico que incluye un fotodiodo de silicio y un preamplificador de corriente utilizados en las instalaciones experimentales (Fig. 5.1, 5.2 y 5.7).

Imagen B.6. Osciloscopio utilizado en las instalaciones experimentales (Fig. 5.1, 5.2 y 5.7).

Imagen B.7. Instalación experimental de un puente óptico balanceado con separación temporal de las fuentes y un sistema de procesamiento analógico (Figuras 6.3 - 6.8).

Circuito C.1 Fuentes ópticas y circuitos de sincronización

