UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

DIVISIÓN DE ESTUDIOS DE POSGRADO FACULTAD DE INGENIERÍA

REDISEÑO DE UNA HERRAMIENTA PARA OPTIMIZAR EL DESPLAZAMIENTO DE FLUIDOS EN MEDIOS POROSOS UTILIZANDO LA TÉCNICA DE DINÁMICA DE FLUIDOS COMPUTACIONALES

T E S I S

QUEPARAOBTENERELGRADODEM A E S T R OE NI N G E N I E R Í APRESENTAGABRIEL ALVAREZ CALDERÓN DE LA BARCA

Director: Dr. Marcelo López Parra

Co-Director: Dr. Simón López Ramírez

México Distrito Federal

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Agradecimientos

A mi amada esposa e hijos, por que son la fuerza que me inspira con el ejemplo a seguir creciendo y me enseñan que aún falta mucho por emprender.

A mis padres, por hacer de mi lo que ahora soy.

A mis hermanos, por inspirarme a seguir adelante.

A la máxima casa de estudios, UNAM, por abrirme las puertas al conocimiento y sembrar en mi el deseo de seguir descubriendo nuevas áreas de oportunidad.

Al Instituto Mexicano del Petróleo, por ser una institución dedicada a difundir conocimiento a todas aquellas personas interesadas en aprender, y por brindarme la oportunidad de ser parte de ella.

A Conacyt, por creer en mi y otorgarme más que un apoyo económico, una oportunidad de superación.

A Ignacio R. Cortés Monroy, por brindarme su conocimiento y apoyo en el desarrollo y validación experimental de este trabajo, además de su valiosa amistad.

A Simón López Ramírez, que además de guiarme en el desarrollo de esté trabajo y ser un buen amigo, compartió su conocimiento en la parte de modelación numérica.

A Cristina Avilés Alcántara, por brindarme el apoyo para llevar a cabo esté trabajo.

A Soledad Bernal, Oscar de la Torre y Julián Ortiz por compartir su valiosa experiencia durante la realización de esté trabajo.

i

ÍNDICE	Pagina
Agradecimientos	i
Abstract	ii
Lista de figuras	iii
Lista de tablas	v
Lista de símbolos	vii
Introducción	viii
Objetivo	ix
Descripción de la estructura de trabajo	X
CAPÍTULO 1. Diseño conceptual	
 1.1. Diseño 1.1. Objetivo de la etapa de diseño 1.2. Clarificación del problema 1.3. Especificaciones para el diseño del difusor 1.4. Descomposición del problema 1.5. Análisis de las diferentes metodologías 1.6. Prototipo 1.7 Diferencias Geométricas 	1 1 1 3 7 8 9
CAPÍTULO 2. Flujo de fluidos en medios porosos	
 2.1. Introducción 2.2. Porosidad 2.2.1. Clasificación de la porosidad 2.3. Permeabilidad 2.3.1 Clasificación de la permeabilidad 2.4. Factores que afectan la permeabilidad 2.4.1. Competención 	10 10 11 12 13 14
2.4.1. Cementación 2.4.2. Re cristalización	14 14

2.4.3. Granulación y molimiento	15
2.4.4. Fracturamiento	15
2.4.5. Arreglo o empaquetamiento	15
2.4.6. Distribución, tamaño y forma del grano	15
2.4.7. Contaminación microbiológica	15
2.5. Medición de la permeabilidad	15
2.6. Partes que componen el EDF	19
2.6.1. Celda hidrostática	20
2.6.2. Módulo de presión de confinamiento	20
2.6.3. Módulo de presión de desplazamiento axial	20
2.6.4. Módulo térmico	21
2.6.5. Módulo de adquisición de datos	21
2.6.6. Celdas de almacenamiento	21
2.6.7. Red de tuberías y accesorios	21
2.7. Principio de operación del EDF	21

CAPÍTULO 3. Comportamiento de flujo de fluidos bajo la técnica de DTR

3.1. Comportamiento de flujo de fluidos debido al difusor	23
3.2. Selección del trazador	27
3.3. Técnica empleada para el análisis de las curvas DTR	28

CAPÍTULO 4. Diseño experimental

4.1. Diseño Experimental	34
4.1.1. Introducción	34
4.2. Objetivos del diseño experimental	34
4.3. Características a analizar	34
4.3.1. Factores que afectan la permeabilidad	35
4.3.2. Factores que afectan el volumen muerto, pistón y de mezclado	35
4.3.3. Inyección del trazador	35
4.3.4. Que factores se tomarán en cuenta	35
4.3.5. Plan a seguir para controlar los factores que afectan las características a analizar	36
4.3.5.1. Re-cristalización	36
4.3.5.2. Fracturamiento	36
4.3.5.3 Contaminación microbiológica	37
4.3.5.4. Inyección del Trazador	37

4.4. Validación experimental	38
4.5. Programa experimental	38
4.6. Esquema de trabajo	40
CAPÍTULO 5. Simulación numérica bajo la técnica de DFC	
5.1. Simulación matemática	41
5.1.1. Introducción	41
5.2. Modelo matemático	42
5.3. Ecuaciones fundamentales	43
5.4. Malla	47
5.5. Condiciones en la frontera	48
5.6. Metodo numenco 5.7. Procodimiento empleado para el apólisis del comportamiento, de	49 50
flujo de fluidos en el sistema	50
CAPÍTULO 6. Análisis de resultados	
6.1. Análisis numérico	55
6.2. Resultados del análisis numérico	56
6.2.1. Curva de distribución de tiempos de residencia DTR	59
6.3. Discusión de resultados	64
Conclusiones	65
Referencias Bibliográficas	66
Bibliografía	68
ANEXO 1. Procedimiento API-RP-40. Prácticas recomendadas para el análisis de núcleos, sección 3.6	
A.1.1. Limpieza de núcleos	69
A.1.2. Método de extracción por destilación	69
A.1.2.1. Procedimiento	70
ANEXO 2. Procedimiento API-RP-40. Prácticas recomendadas para el análisis de núcleos, sección 3.7	
A.2.1. Secado	71
ANEXO 3. Procedimiento preparación, inyección y muestreo del trazador	
A.3.1. Procedimiento de preparación	72

A.3.2. Procedimiento de inyección del trazador	72
A.3.3. Procedimiento de muestreo del trazador	73

ANEXO 4. Validación Experimental

A.4.1. Validación experimental	74
A.4.2. Consideraciones para el estudio estadístico	75
A.4.3. Algoritmo de evaluación del método de medición	76
A.4.4. Datos y resultados del algoritmo de evaluación del método de medición	82
A.4.5. Discusión de resultados	89
A.4.6. Precisión y veracidad	89
A.4.7 Recomendaciones	89
ANEXO 5. Resultados de la simulación numérica de la fracción masa caso: difusor 1	94
ANEXO 6. Resultados de la simulación numérica de la fracción	101
masa caso: difusor 2	

Abstract

In this work, a methodology based on residence time distribution (RTD) curve was used in order to obtain the influence of the design of the diffuser on the fluid flow behavior such as: dead zones, mixing zones and by-passing. The purpose of this methodology is to improve the flow distribution through a better design of the diffuser. This diffuser is used to inject fluids in a porous media.

Along the experimental procedure, mathematical simulations using the Computational Fluids Dynamics (CFD) technique were carried out. The mathematical model was developed using experimental data obtained basically from the original design and it was used to predict the fluid behavior of new proposed geometries of the diffuser. Each design of the diffuser was deeply analyzed through velocity profiles, tracer distribution profiles and by the curve obtained by the RTD technique. The RTD curves were analyzed in order to characterize the fluid flow behavior.

The accuracy of the experimental data were validate through the ISO 5725 Norm. The results indicate that it is possible to reduce the influence of the diffuser on the fluid flow behavior (in this study, the dead zones was reduced in 28 %) and it is possible to improve the quality of the experimental results that are the base for the processes analysis in the oil industry.

Lista de Figuras

Figura 1.1. Diagrama de operación simplificado del EDF y partes que conforman la celda hidrostática.	2
Figura. 1.2. Diagrama caja negra del EDF.	3
Figura 1.3. Diagrama de sub-funciones del EDF.	4
Figura 1.4. Diagrama del análisis funcional.	6
Figura. 2.1. a) Estructura de poro con arreglo cúbico, b) tipos de poros.	11
Figura.2.2. Representación esquemática de la ley de Darcy.	13
Figura. 2.3. Diagrama de flujo del EDF.	19
Figura. 2.4. Partes que componen la celda hidrostática.	20
Figura 3.1. Curvas de distribución de tiempos de residencia (DTR) del comportamiento de flujos ideales.	23
Figura 3.2. Tipos de flujo no ideal que pueden presentarse debido a un flujo pistón y el efecto sobre la curva DTR.	25
Figura 4.1. Diagrama de razonamiento para definir el programa experimental.	34
Figura. 4.2. Diagrama del programa experimental planteado.	39
Figura 5.1a. Difusor original: Malla utilizada en la simulación matemática.	46
Figura 5.1b. Difusor prototipo: Malla utilizada en la simulación matemática.	46
Figura 5.2. Señal empleada en la simulación matemática que indica la inyección en impulso del trazador.	53
Figura 6.1. Resultados de permeabilidad.	57
Figura 6.2. Resultados de volumen muerto.	57
Figura 6.3. Resultados de volumen pistón.	58
Figura 6.4. Resultados de dispersión axial.	58
Figura 6.5. Resultados de volumen de mezclado.	59

Figura 6.6. Curva de distribución de tiempos de residencia, caso 1-A- 2/16".	59
Figura 6.7. Curva de distribución de tiempos de residencia, caso 1-B- 1/16".	60
Figura 6.8. Curva de distribución de tiempos de residencia, caso 1-C- 3/16".	60
Figura 6.9. Curva de distribución de tiempos de residencia, caso 1-D- 1/32".	61
Figura 6.10. Curva de distribución de tiempos de residencia, caso 2-A- 2/16".	61
Figura 6.11. Curva de distribución de tiempos de residencia, caso 2-B- 1/16".	62
Figura 6.12. Curva de distribución de tiempos de residencia, caso 2-C- 3/16".	62
Figura 6.13. Curva de distribución de tiempos de residencia, caso 2-D- 1/32".	63
Figura 6.14. Caso que mostró un optimo comportamiento de flujo con respecto a los criterios de selección: V_d , V_p , Da y V_m .	64
Figura. A.1.1. Equipo de destilación tipo soxhlet	70
Figura A.3.1. Arreglo del by pass y secuencia para inyectar el trazador.	72
Figura. A.4.1 Gráfica Permeabilidad: valores h agrupados por pares de ensayos, valor de significáncia 1% @ 1.87, 5% @ 1.66, la línea punteada indica el límite superior admisible para valores de h.	85
Figura. A.4.2. Gráfica Permeabilidad: valores k agrupados por pares de ensayos, valor de significáncia 1% @ 1.47, 5% @ 1.33, la línea punteada indica el límite superior admisible para valores de k.	85
Figura. A.4.3. Gráfica Permeabilidad: Desviaciones típicas de repetibilidad.	88
Figura. A.4.4. Gráfica Permeabilidad: Desviaciones típicas de reproducibilidad.	88

Lista de Tablas

Tabla 1.1. Partes que conforman la celda hidrostática	3
Tabla 1.2. Formulación de funciones de la celda de trabajo	5
Tabla 1.3. Grado de perturbación del proceso de difusión de flujo.	6
Tabla 1.4. Partes críticas.	7
Tabla 1.5. Carta Morfológica.	8
Tabla 1.6. Prototipo desarrollado.	9
Tabla 2.1. Medición de la permeabilidad empleando líquidos.	16
Tabla 2.2. Medición de la permeabilidad empleando gases.	17
Tabla 2.3. Ventajas y desventajas al emplear líquidos o gases.	18
Tabla 3.1. Especificaciones técnicas del trazador	27
Tabla 4.2. Descripción de hipótesis por sistema, descripción de sistemas y condiciones operacionales por corrida.	40
Tabla 5.1. Propiedades del agua bidestilada utilizados en la simulación matemática.	48
Tabla 5.2. Condiciones establecidas en la entrada del difusor original en estado estacionario.	52
Tabla 5.3. Condiciones establecidas en la entrada del difusor prototipo en estado estacionario.	52
Tabla 6.1. Matriz de configuraciones geométricas para el análisis numérico.	55
Tabla 6.2. Resultado Experimental de referencia.	56
Tabla 6.3. Resultados de la simulación numérica de los criterios de diseño	56
Tabla. A.1.1. Selección de Solventes y usos	69
Tabla. A.2.1. Métodos de secado para núcleos	71
Tabla A.4.1 Valor de referencia aceptado. Permeabilidad (mD)	82
Tabla A.4.2a Difusor original: Valores de permeabilidad medidos en el EDF.	83

Tabla A.4.2b Difusor propuesto: Valores de permeabilidad medidos en el EDF.	83
Tabla A.4.3. Valores de las medias de la permeabilidad medidas en el EDF en los dos niveles utilizados en esté estudio de repetibilidad y reproducibilidad.	84
Tabla A.4.4. Valores de las varianzas de la permeabilidad medidas en el EDF en los dos niveles utilizados en esté estudio de repetibilidad y reproducibilidad.	84
Tabla A.4.5a. Los valores calculados cumplen con el criterio de selección de Cochran	86
Tabla A.4.5b. Los valores calculados cumplen con el criterio de selección de Cochran	86
Tabla A.4.6a. Los valores calculados cumplen con el criterio de selección de Grubbs.	86
Tabla A.4.6b. Los valores calculados cumplen con el criterio de selección de Grubbs.	86
Tabla A.4.7. Resultados de permeabilidad experimentales vs. simulación numérica.	87
Tabla A.4.8. Permeabilidad: Estimación de las desviaciones típicas de repetibilidad y reproducibilidad, así como el sesgo del método de medición.	87
Tabla A 4.9. Indicadores de Mandel h y k al 1 % de significáncia.	90
Tabla A 410. Tabla de los indicadores de Mandel h y k al 5% de significáncia.	91
Tabla A. 4.11. Tabla de los indicadores de Cochran al 1% y 5% de significáncia.	92
Tabla A. 4.12. Tabla de los indicadores de Grubb al 1% y 5% de significáncia.	93
Tabla A. 5.1.Resultados de la situación numérica caso: difusor 1.	94
Tabla A. 6.1.Resultados de la situación numérica caso: difusor 2.	101

Lista de Símbolos

En la siguiente lista se incluyen los símbolos comunes que se usan en el texto. Los símbolos más especializados se definen en el texto al estudiar los conceptos correspondientes.

- V_p Volumen de poro
- V_b Volumen de bulto
- Q Flujo volumétrico
- μ Viscosidad
- Δp Caída de presión
- L Longitud
- K Permeabilidad
- A Área, (longitud)²
- T Temperatura absoluta
- t Tiempo
- u Velocidad superficial, longitud/tiempo
- v Velocidad, longitud/tiempo
- v Volumen especifico o molal, vol/(masa) o vol/(mol)
- V_d Volumen muerto
- V_p Volumen pistón
- V_m Volumen mezclado
- θ Tiempo de residencia
- $\overline{\theta}$ Tiempo medio de residencia trayectoria libre media
- σ^2 Varianza
- ρ Densidad, masa/volumen
- Ci Concentración del componente i, mol/vol
- D Difusividad global y difusividad de Knudsen, (longitud)²/tiempo
- D_L Coeficiente axial de dispersión, (longitud)²/tiempo
- d Diámetro de un tubo
- $E(\theta)$ Función de distribución del tiempo de residencia
- Pe Número de Peclet, uL/D_L o ud_p/D_e

Introducción

Dentro de los estudios que se realizan en el Instituto Mexicano del Petróleo (IMP), en el Laboratorio de Perforación se encuentra la caracterización de propiedades petrofísicas como lo es la determinación de permeabilidad y estudios de daño a la formación por mencionar algunos, los cuales se vienen realizando en el equipo de desplazamiento de fluidos (EDF). Con el advenimiento de nuevos retos (recuperación primaria, secundaria, estimulaciones ácidas, etc.) que se presentan en la industria petrolera, es necesario redefinir la metodología experimental actualmente utilizada para poder así caracterizar con mayor precisión el comportamiento del flujo de fluidos en un medio poroso. En la búsqueda de estas mejores metodologías se debe sumar el monitoreo de nuevas variables que coadyuven a la toma de decisiones en todos los nuevos retos que se planteen.

Una de estas variables es el coeficiente de difusión, que bajo ciertas condiciones de flujo, debe depender únicamente de las características de los fluidos que están siendo estudiados, éste coeficiente es caracterizado por su comportamiento de flujo mediante curvas de distribución de tiempos de residencia (DTR), inclusive los estudios ha nivel laboratorio pueden ser escalados ha situaciones reales.

Por esto se deben rediseñar algunos de los componentes de los equipos que participen directamente en la calidad de los resultados obtenidos. Un componente fundamental del EDF es el difusor cuyo trabajo principal es el inyectar homogéneamente los fluidos en la cara transversal (entrada) del medio poroso en estudio. El diseño del difusor debe ser de tal manera que evite irregularidades de flujo tales como zonas muertas, circuitos cortos de flujo, etc. que puedan dar resultados erróneos de una variable fundamental en el desplazamiento en medio poroso como es el coeficiente de difusión, por está razón el presente trabajo se planteo el siguiente objetivo:

Objetivo

Esté trabajo se enfocará específicamente en el rediseño de una herramienta, que en lo sucesivo se denominara difusor, que optimice la difusión del flujo de fluidos en medios porosos evitando irregularidades en la distribución del fluido tales como zonas muertas y circuitos cortos.

Para cumplir con tal propósito, el trabajo de investigación que se plantea será enfocado a evaluar la eficiencia que tiene el difusor para transmitir el flujo del fluido a través del medio poroso, y para lograrlo el programa de trabajo a seguir estará dividido en las siguientes etapas:

Etapa de Diseño Diseño Experimental Prueba Experimental de Comportamiento de Flujo del Difusor Validación del Experimento Simulación del Desempeño del Difusor. Análisis de Resultados

En la etapa de diseño se llevará a cabo la fabricación de un difusor prototipo, que servirá como marco de referencia para comparar los datos experimentales del comportamiento de flujo con el difusor original. En la etapa de diseño experimental se planteará el programa experimental a seguir y se definirán las variables de respuesta a monitorear, posteriormente se ejecutará el programa experimental planteado y con los datos que arroje deberá efectuarse la validación de la metodología experimental. Una vez validada se simulará numéricamente la prueba experimental para encontrar la geometría que optimice el comportamiento de flujo del fluido sobre un medio poroso, para así concluir con el análisis de resultados definiendo cual de las alternativas de solución propuestas, evita irregularidades de flujo.

Descripción de la estructura del trabajo

Capítulo 1

En esté capítulo se aplican metodologías de diseño tales como: análisis del valor, y análisis funcional, para definir si la interacción de las partes que componen el EDF afectan el desempeño del difusor, así también se genera la propuesta para fabricar un prototipo del difusor, con la finalidad de comparar el comportamiento de flujo que esté presente con respecto al difusor original en el equipo de desplazamiento de fluidos (EDF).

Capítulo 2

En esté capítulo se definen las bases teóricas de flujo de fluidos en medios porosos, específicamente sobre los conceptos de porosidad y permeabilidad, su clasificación y los parámetros que los afectan, también se describe el principio de operación del EDF.

Capítulo 3

En esté capítulo se describen las bases teóricas de la técnica de distribución de tiempos de residencia, que fue empleada para caracterizar el comportamiento de flujo del fluido debido a la geometría del difusor.

Capítulo 4

En esté capítulo se diseña el programa experimental a seguir, tomando en cuenta los factores que afectan la calidad de la medición, se definen las variables de respuesta que cuantificaran el desempeño del difusor y además se lleva a cabo la validación de los resultados experimentales.

Capítulo 5

En esté capitulo se definen los modelos matemáticos y condiciones de frontera empleados, bajo la técnica de dinámica de fluidos computacionales, mediante los cuales se llevó a cabo la simulación numérica.

Capítulo 6

En esté capítulo se presentan los resultados de las alternativas de solución propuestas y se define cual de las geometrías propuestas optimiza el desplazamiento de fluidos sobre un medio poroso.

Х

1.1. Diseño

1.1.1. Objetivo de la etapa de diseño

Está etapa, tiene como propósito, fabricar un prototipo del difusor, con la finalidad de comparar el comportamiento de flujo que esté presente con respecto al difusor original en el EDF. Así también, es necesario identificar si las partes componentes que interactúan con el difusor, pudieran oponer alguna restricción dentro del diseño.

Para cumplir con esté propósito se requiere una metodología estructurada, que sirva como mecanismo para integrar las soluciones parciales y además sea está un procedimiento que conduzca paso a paso dentro de las actividades de diseño a realizar, por lo cual se empleará la metodología de los "Cinco Pasos" y la integración en ésta, del método de análisis del valor para identificar las partes criticas relacionadas al difusor y poder así generar los conceptos de solución.

1.2. Clarificación del problema

En el diseño original del difusor, no es posible determinar con certeza si existen irregularidades de flujo, tales como, zonas muertas, circuitos cortos de flujo, etc. que puedan proveer resultados erróneos en el EDF en medios porosos. Por está razón, es necesario verificar la presencia de estas perturbaciones mediante la técnica de distribución de tiempos de residencia descrita más adelante y corregirlas mediante el diseño de un difusor que optimice el desplazamiento de fluidos en medios porosos.

1.3. Especificaciones para el diseño del difusor

1. El difusor debe asegurar la distribución de flujo del fluido sobre la sección transversal del medio poroso.

- 2. El difusor debe reducir la presencia de zonas muertas.
- 3. El difusor debe evitar la canalización de flujo.
- 4. La geometría del difusor debe ser de 1" de largo X 1" de diámetro.

1

Las especificaciones 1, 2 y 3 se definen por la teoría de comportamiento de flujo de un fluido, la cual se describe en el capítulo 3, de tal forma que los criterios de diseño bajo los cuales se cuantificará el comportamiento de flujo del difusor son:

Volumen muerto (v_d)= cero; Volumen pistón (v_p) = 100% y; Volumen de mezclado (V_m) = cero.

Estos valores se presentan en una situación ideal, pero aún así, se tomaran como referencia.

El punto de partida, para identificar si las partes componentes que interactúan con el difusor pudieran oponer alguna restricción dentro del diseño es, el diagrama operacional del EDF que se muestra en la Figura. 1.1 y las partes que lo conforman se desglosan en la tabla 1.1.

Figura 1.1. Diagrama de operación simplificado del EDF y partes que conforman la celda hidrostática.

Parte	Material
1. Tapa superior de la celda	Acero
2. Difusor	Acero
3. Núcleo	Roca
4. Soporte	Acero
5. Porta Núcleo	Vitón
Celda hidrostática	Acero
(recipiente de presión)	
7. Tapa inferior de la celda	Acero

Tabla 1.1. Partes que conforman la celda hidrostática

1.4. Descomposición del problema

Para lograr la descomposición funcional del problema, se representará, como una simple caja negra que opera con materiales, energía y señales de flujo, veáse Figura.1.2., para posteriormente dividir la caja negra en sub-funciones, ver Figura. 1.3., que permitan crear una descripción más específica de qué es lo que hace, cada elemento del sistema y así describir las funciones que realiza. La división del proceso se repite hasta que cada sub-función es suficientemente simple para poder trabajar con ella.

Análisis Funcional

Figura. 1.2. Diagrama caja negra del EDF.

Figura 1.3. Diagrama de sub-funciones del EDF.

De acuerdo al análisis funcional, las funciones que desempeña cada una de las parte de la celda hidrostática, tabla 1.1, se describen en la tabla 1.2 y su correspondiente Diagrama FAST se presenta en la Figura. 1.4.

Parte	Función			
Tapa superior de la celda	Tapar a presión			
	Permitir la entrada del fluido			
	Sostener porta núcleos			
Difusor	Receptor del flujo de entrada			
	Distribuir flujo uniformemente sobre el área transversal del núcleo			
	Asegurar flujo pistón sobre el área transversal del núcleo			
	Sostener núcleo			
	Soporta la carga radial de la presión de confinamiento			
Núcleo	Material de estudio			
Soporte	Receptor del flujo de salida			
	Sostener núcleo			
	Soporta la carga radial de la presión de confinamiento			
Porta Núcleo	Sujeta núcleo, difusor y soporte			
	Aísla el núcleo del fluido de confinamiento			
	• Mantiene la presión de sobrecarga y de confinamiento aisladas			
	entre sistemas			
	• Transmite radialmente la presión de confinamiento sobre el			
	núcleo			
Celda de trabajo	Recipiente de presión			
	Contener porta núcleo			
	Reproducir condiciones de presión y temperatura del yacimiento			
Tapa inferior de la celda	Tapar a presión			
	Permitir salida de flujo del fluido			
	Sostener porta núcleo			
	Entrada del termostato			

Tabla 1.2. Formulación de funciones de la celda de trabajo

Figura 1.4. Diagrama del análisis funcional.

Para establecer que piezas pueden perturbar la difusión de flujo del difusor, se estableció de forma cualitativa, la interacción que cada parte tiene con el proceso de difusión de flujo del difusor, véase tabla 1.3, la relación de interacción es de 0 a 10, donde el máximo valor perturbará en mayor orden el flujo del difusor, el valor de interacción se obtuvo de los problemas observados tras realizar varias corridas experimentales, los cuales fueron: obstrucción de sólidos tanto en la tapa superior como en el difusor y daño estructural sobre el porta núcleos.

Parte	Interacción	Grado Perturbación, %
Tapa superior de la celda	1	7.15 %
Difusor	7	50 %
Núcleo	-	-
Soporte	-	-
Porta Núcleo	6	42.85 %
Celda	-	-
Tapa inferior de la celda	-	-
Total	14	100 %

Tabla 1.3. Grado de perturbación del proceso de difusión de flujo.

En esté caso la perturbación de flujo no fue debida a una pieza, sino a un mal programa de mantenimiento de limpieza y a una presión de confinamiento excesiva respectivamente, que indirectamente perturbo la difusión de flujo del difusor, las perturbaciones anteriores se tomaron en cuenta para la fase de diseño experimenta por lo cual se consideró importante señalarlo.

1.5. Análisis de las diferentes metodologías

Al aplicar las metodologías, se identificaron las piezas críticas de las partes que conforman la celda hidrostática, véase tabla 1.4, que pudieran afectar la eficiencia del difusor para difundir el flujo de fluido a través del medio poroso, además se agrega la ecuación de Darcy por ser el algoritmo en el cual está basado el principio de operación del EDF, tema que se tratará en el siguiente capítulo.

Metodología	Pieza(s) crítica(s)	
Análisis funcional	Difusor, Porta núcleo y núcleo.	
Análisis del valor	Porta núcleo	
$k = \frac{q\mu L}{A\Delta p}$	Bomba axial, fluido, núcleo y transductores de presión	

La pieza que podría afectar la eficiencia del difusor es el porta núcleos por su gran interacción de acuerdo a los análisis realizados, motivo por el cual deberá tomarse en cuenta dentro del programa experimental para asegurar su buen funcionamiento.

El siguiente paso a seguir a partir de una lluvia de ideas es presentar alternativas de solución del difusor que será fabricado, las cuales se muestran en la carta morfológica de la tabla 1.5.

Pieza	Opción 1	Opción 2	Opción 3
Difusor	Fabricar un difusor incrementando el número de toberas.	Fabricar el difusor mediante un proceso de sinterizado	
Porta núcleo	Fabricar mediante un proceso de extrusión con un polímero adecuado.	Seleccionar un material con mejores propiedades elásticas para su fabricación.	Determinar el límite de la presión de trabajo.

Tabla 1.5. Carta Morfológica.

1.6. Prototipo

Un prototipo es una aproximación de un producto a lo largo de una o más dimensiones de interés. Los prototipos físicos son artefactos tangibles creados para representar el producto; los aspectos del producto de interés son construidos para su experimentación y prueba; bajo este concepto se creo el prototipo del difusor. La opción seleccionada de la carta morfológica, que se muestra en la tabla 1.5, para fabricar el prototipo del "difusor" es la número 1, el criterio de selección fue con base a los recursos disponibles buscando cubrir con el objetivo planteado al inicio del capítulo, no se llevó a cabo ninguna evaluación en está fase, ya que la optimización del difusor se hará a través de herramientas de simulación numérica en los capítulos 5 y 6. Con respecto al porta núcleo, se selecciono la opción 3, ya que un estudio exhaustivo del diseño correcto del porta núcleos queda fuera del alcance de esté trabajo; y la función que desempeña es alcanzada siempre y cuando no se rebasé su límite de presión de trabajo.

Nombre	Pieza Original	Prototipo
Difusor		

Tabla 1.6. Prototipo desarrollado.

1.7. Diferencias Geométricas

Las diferencias geométricas se pueden apreciar en la tabla 1.6 y consisten en un mayor número de toberas de inyección (cinco) del difusor prototipo con respecto al difusor original, las cuales proporcionaran una mayor área de impregnación y en consecuencia un frente de ataque mayor que puede proveer una distribución de flujo más homogéneo.

2.1. Introducción

Antes de continuar con el diseño experimental, es necesario establecer las bases sobre las cuales estará apoyada la experimentación, por tal razón se definirá en primera instancia los conceptos de porosidad y permeabilidad hasta llegar a la ley en la cual está sustentado el principio de operación del EDF.

2.2. Porosidad

La porosidad da una idea de la capacidad de almacenamiento que puede tener la roca para contener hidrocarburos. Está porosidad que se encuentra en arenas y carbonatos, es formada después de uno o varios procesos geológicos que se realizaron en la roca. Las capas formadas por granos de arena o fragmentos de carbonatos nunca se acomodaran en forma perfecta. Aún con la presión de sobrecarga que experimentan estas capas, debida a los estratos suprayentes, no será suficiente para lograr una compactación perfecta. A estos espacios vacíos que quedan en la roca se les llaman poros, intersticios, espacios porosos o, bien, estructura porosa. Esté espacio poroso provee el lugar para almacenar los fluidos que se tengan en la formación (aceite, gas, agua). Entonces dependiendo del tamaño y de la forma del grano y de su ocurrencia será la porosidad que se tenga en la roca sedimentaria, ver figura 2.1.

La porosidad es definida entonces, como la relación del espacio vacío en la roca al volumen total de ella, y se expresa como sigue:

$$\phi = \frac{V_p}{V_b} x 100 \tag{2.1}$$

donde:

Figura. 2.1. a) Estructura de poro con arreglo cúbico, b) tipos de poros.

2.2.1. Clasificación de la porosidad

En general se tienen dos clasificaciones, una de ellas se refiere al modo de origen o tiempo de depósito y la otra a la cantidad de material cementante o distribución y forma de los poros (Figura. 2.1), la cual nos resulta relevante en esté trabajo, considerando está última, se tienen las siguientes porosidades:

Porosidad absoluta (total). Se define como el porcentaje del espacio disponible respecto al volumen total de la roca sin tomar en cuenta si estos espacios (poros) están interconectados o no.

Porosidad efectiva. Es el porcentaje del espacio poroso interconectado con relación al volumen total de la roca.

Está porosidad efectiva es la que interesa realmente, por la comunicación de los fluidos en el yacimiento, es decir, es una medida de la capacidad que tiene la roca para manejar un volumen de fluidos. Así entonces, se podrá tener porosidades absolutas grandes, pero esto no sirve de nada si no existe comunicación entre los poros de la roca.

2.3. Permeabilidad

La permeabilidad es una propiedad intrínseca del medio poroso y mide su capacidad para transmitir fluidos, entonces, se puede decir que la permeabilidad mide la conductividad de una roca. Así el grado de permeabilidad de una roca estará dado de acuerdo a la facilidad que presente para el paso de fluidos a través de ella. El recíproco de la permeabilidad representa la resistencia viscosa que el medio poroso opone al flujo del fluido cuando prevalece un flujo bajo. La permeabilidad de un medio isotrópico homogéneo es siempre la misma en cualquier punto y en todas las direcciones. Sin embargo, las rocas no son completamente homogéneas e isotrópicas.

La permeabilidad está ligada a la porosidad efectiva de la roca, porque para que pueda existir debe haber interconexión de los espacios porosos, dado que la roca puede tener porosidad más no necesariamente permeabilidad.

La relación que describe el flujo de fluidos a través de un medio poroso fue desarrollada por Henry Darcy en 1856, y establece que el porcentaje de flujo a través de una roca dada es directamente proporcional al gasto, viscosidad del fluido y longitud del medio poroso e inversamente proporcional al área del medio poroso y presión aplicada, es decir, una roca tiene una permeabilidad de 1 Darcy, si a través de ella fluye 1 mililitro de fluido cada segundo con una viscosidad de 1 cp a través de una porción de roca de 1 cm de longitud y de área transversal de 1 cm² y se registra en ella una caída de presión de 1 atmósfera, ley de Darcy (Figura 2.2), lo que se expresa matemáticamente como:

$$k = \frac{q\mu L}{A\Delta p} \tag{2.2}$$

Donde: Q = Gasto, $[cm^{3}/min]$ μ = Viscosidad [cp] Δp = Caída de presión [atm] L = Longitud, [cm] A = Área, $[cm^{2}]$ K = Permeabilidad, [darcys]

Es importante mencionar que Darcy estableció su ecuación con base en las siguientes premisas:

Roca homogénea Roca o medio no reactivo Medio saturado 100% por un fluido homogéneo en una fase Fluido newtoniano Flujo incompresible Flujo laminar y Temperatura constante

Figura.2.2. Representación esquemática de la ley de Darcy.

2.3.1. Clasificación de la permeabilidad

La permeabilidad puede ser clasificada de acuerdo al contenido de fluidos en la roca y a la forma de flujo que se tiene, esto es:

• Permeabilidad absoluta (K). Es aquella en la cual solo se tiene un fluido homogéneo en el medio poroso, por lo tanto, la permeabilidad no varía

CAPÍTULO 2

considerando que el fluido no reaccione con el medio. A esté tipo de permeabilidad se le llama también permeabilidad específica o intrínseca y es una propiedad específica de la roca.

• Permeabilidad efectiva (Kef). Cuando en el medio se tiene presente más de un fluido, entonces se dice que la permeabilidad efectiva es la permeabilidad de un fluido en particular, sea aceite, gas o agua. Está permeabilidad no solo depende de la roca, sino también de las cantidades y propiedades del los fluidos presentes en ella. Estas permeabilidades cambiarán en función de la variación de las saturaciones que se tengan. Se ha encontrado que: $0 \le \text{Kef} \ge \text{K}$.

• Permeabilidad relativa (Krf). Es la relación de la permeabilidad efectiva de cualquier fluido (aceite, gas o agua) a la permeabilidad absoluta (Krf = Kef / K), se expresa en fracción pues nunca es mayor a uno. Está permeabilidad expresa la facilidad de flujo de un fluido a través de la roca, en presencia de otros fluidos comparado con la facilidad que se tendría si únicamente fluyera un fluido.

2.4. Factores que afectan la permeabilidad

Existen diversos factores que afectan la permeabilidad de la roca o medio poroso y la mayoría están relacionados con la porosidad efectiva, por lo tanto, la permeabilidad es afectada de la misma forma que la porosidad efectiva. A continuación se mencionan dichos factores:

2.4.1. Cementación

Reduce la porosidad al depositarse el material cementante entre los poros, lo que puede reducir la porosidad inicial de un 20 hasta un 40% final.

2.4.2. Re-cristalización

Esté fenómeno puede disminuir grandemente la porosidad existente debido a que convierte la roca en un agregado denso de cristales entrelazados.

14

2.4.3. Granulación y molimiento

Esté efecto se presenta en los granos de la roca conforme aumenta la profundidad, disminuye o inclusive elimina la porosidad debido a la presión de sobrecarga.

2.4.4. Fracturamiento

Estas contribuyen a aumentar la porosidad en ciertas formaciones más o menos compactadas.

2.4.5. Arreglo o empaquetamiento

La porosidad variará dependiendo del tipo de empaquetamiento de los granos que la roca posea.

2.4.6. Distribución, tamaño y forma del grano

Afectará la porosidad dependiendo de la uniformidad de los granos, así como la distribución de estos.

2.4.7. Contaminación microbiológica

La red poral es afectada, sí en está, se produce crecimiento microbiológico de bacterias dando lugar al decremento de la porosidad efectiva. Las condiciones necesarias para que se reproduzca una bacteria son: un medio acuoso que provea humedad y una temperatura entre 5 a 65 °C.

2.5. Medición de la permeabilidad

Existen cuatro categorías para medir la permeabilidad en una sola fase y se dividen en función al tipo de fluido empleado, gas o líquido, y al tipo de régimen, estacionario o transitorio. En éste caso el fluido empleado fue un líquido y el régimen de flujo fue en estado estacionario, las tabla 2.1 y 2.2 sirven de guía rápida para seleccionar el tipo de medición de acuerdo a las necesidades. La tabla 2.3 presenta las ventajas y desventajas debidas al tipo de fluido seleccionado.

15

La permeabilidad de un medio poroso incluso puede ser inferida por correlaciones empíricas usando mediciones indirectas, tal como la distribución granular de poros y el tamaño de grano del poro (Kozeny, 1927; Carman, 1937), así como, la medición de la garganta de poro y su distribución del tamaño de poro por inyección de mercurio o midiendo la presión capilar (Swannson, 1981; Katz and Thompson, 1986); por conductividad eléctrica efectiva (Archie, 1942; Ondracek, 1986); transmisión de ondas acústicas (Biot, 1957); electrocinética EMF (Moran and Papaconstantinou, 1981); etc. Estos métodos son menos exactos y frecuentemente consumen mayor tiempo que hacer la medición directa.

Tipo de medición	Permeabilidad Rango, md	Aparato o aplicación	Ventajas	Desventajas
Flujo axial, estado estacionario en tapones de núcleos	1000-40,000	Flujo gravitatorio del líquido a través del medio poroso, tapones cilíndricos.	Simple, equipo de bajo costo (requiere balanza electrónica para determinar el flujo)	Baja presión, difícil asegurar la presencia de gas en el tapón
Flujo axial, estado estacionario en tapones de núcleos	0.1-20,000	Equipo con sensores electrónicos, alta presión.	Puede ser automatizado, puede alcanzar el esfuerzo del yacimiento, permeabilidad representativa del yacimiento.	Resistente a la corrosión, controlado por equipo de bombeo de alta presión (equipo costoso).
Flujo axial, variación de flujo en tapones de núcleos	0.00001-0.1	Equipo de alta presión para permeabilidades bajas .	Método único para permeabilidades ultra bajas, no requiere flujometros está es calculada a partir de la Δp y el tiempo.	Muy costoso, requiere alta presión, sistemas anti fugas con transductores y sistema de adquisición de datos de alta calidad.
Permeabilidad transversal, estado estacionario, núcleo de diámetro completo	0.005-500	Permeabilidad direccional en el núcleo para K _{max} y K ₉₀ .	Puede medir la permeabilidad horizontal en varias direcciones, promedio obtenido usando núcleo completo.	Limpieza y preparación del núcleo costosa, el efecto de Klinkenberg es medido una sola vez
Permeabilidad radial, estado estacionario, núcleo de diámetro completo	0.002-250	Permeabilidad promedio en todas las direcciones radiales.	Mide la permeabilidad horizontal	Preparación de la muestra difícil, cero esfuerzos radiales.

Tabla 2.1. Medición de la permeabilidad empleando líquidos.

Tipo de	Permeabilidad	Aparato o	Ventajas	Desventajas
medición	Rango, md	aplicación		
Flujo axial, estado estacionario en tapones de núcleos	0.1-10,000	Equipo de baja presión con manómetros y flujometros.	Costo de inversión bajo, sistema manual simple, base de datos extensa para comparación.	Labor intensa, Costos operacionales altos, esfuerzos permisibles bajos, no hay corrección para el efecto de Klinkenberg.
Flujo axial, estado estacionario en núcleos	0.1- 10,000	Equipo con sensores electrónicos, alta presión.	Puede ser automatizado, puede alcanzar el esfuerzo del yacimiento, mejor precisión y exactitud que el sistema manual.	Mediciones múltiples para corregir el efecto de Klinkenberg, la resistencia inercial debe ser despreciable.
Flujo axial, reducción de presión en tapones de núcleos	0.001-30,000	Rango amplio, medición de esfuerzos de medianos a altos, corrección de Klinkenberg e inercial.	Sistema autómata, no se requieren flujometros.	Costo de inversión elevado para el sistema autónomo, los transductores presión y la adquisición de datos.
Flujo axial por variación de pulso en tapones de núcleos	0.00001-0.1	Equipo de alta presión para permeabilidad es bajas.	Método único para permeabilidades ultra bajas, la porosidad también puede medirse.	Requiere alta presión, sistemas anti fugas con transductores y sistema de adquisición de datos de alta calidad.
Permeabilidad, estado estacionario, núcleos de diámetro completo	1 – 10,000	Alta densidad, medición de núcleos heterogéneos.	No se requiere preparar el núcleo, relativamente rápido, puede ser manual o autónomo.	Cero esfuerzos, no hay corrección para el efecto de Klinkenberg, alta resistencia inercial.
Permeabilidad, reducción de presión en núcleos de diámetro completo	0.001-30,000	Alta densidad, medición de núcleos heterogéneos	No se requiere preparar el núcleo, muy rápido, puede ser manual o autónomo, corrección de Klinkenberg e inercial.	Cero esfuerzos cuando la permeabilidad es alta, inversión elevado para el sistema autónomo
Permeabilidad transversal, estado estacionario, núcleo de diámetro completo	0.02-500	Permeabilidad direccional en el núcleo para K _{max} y K ₉₀ .	Puede medir la permeabilidad horizontal en varias direcciones, promedio obtenido usando núcleo completo.	Limpieza y preparación del núcleo costosa, el efecto de Klinkenberg es medido una sola vez
Permeabilidad radial, estado estacionario, núcleo de diámetro completo	0.01-250	Permeabilidad promedio en todas las direcciones radiales	Mide la permeabilidad horizontal	Preparación de la muestra difícil, cero esfuerzos radiales.

Tabla 2.2. Medición de la permeabilidad empleando gases.

Principales Ventajas de us líquidos	sar	Principales desventajas de usar líquidos
La permeabilidad es n representativa.	nás	La roca opone mayor resistencia al flujo.
No se presenta el efecto Klinkenberg.	de	Después de la medición requiere de la operación de limpieza
		Puede existir crecimiento microbiológico de bacterias dentro de los poros.
Principales Ventajas de usar gas		Principales desventajas de usar gas
No requiere técnicas de saturac especiales	ción	Requiere corrección por el efecto de Klinkenberg, especialmente a bajas permeabilidades.
No es reactivo con la roca ni corrosiv	vo	Opone resistencia inercial a alta velocidad y permeabilidad.
No requiere la operación de limpie después de la medición	eza	La permeabilidad es menos representativa.
Nulo crecimiento microbiológico bacterias.	de	
La movilidad del gas a través de roca es muy alta.	e la	

Tabla 2.3. Ventajas y desventajas al emplear líquidos o gases.

CAPÍTULO 2

2.6. Partes que componen el equipo de desplazamiento de fluidos (EDF)

Para describir cada parte es necesario conocer el diagrama de operación del EDF, el cual se presenta en la Figura. 2.3., así como las partes que conforman la celda hidrostática (Figura. 2.4.), la cual es la parte principal del EDF.

Figura. 2.3. Diagrama de flujo del EDF.

Figura. 2.4. Partes que componen la celda hidrostática

El equipo está integrado por los siguientes sistemas:

2.6.1. Celda hidrostática

En esté sistema se reproducen las condiciones operacionales de temperatura y presión de confinamiento del yacimiento petrolero y a las cuales está sometido el medio poroso de estudio.

2.6.2. Módulo de presión de confinamiento

La presión de confinamiento son los esfuerzos que se generan en el yacimiento debido al peso que ejercen los estratos o capas de roca superiores al yacimiento, por lo tanto esté módulo suministra la presión de confinamiento, del yacimiento a estudiar, sobre el medio poroso; roca que puede ser extraído del mismo yacimiento o que puede ser fabricado de manera sintética.

2.6.3. Módulo de presión de desplazamiento axial

Una vez que el yacimiento se encuentra en producción, el fluido que fluye, en una condición óptima a través de la roca, es el crudo o petróleo, de forma análoga el módulo de presión provee movilidad al fluido de estudio, el cual circulará a lo largo del medio poroso a gasto constante.
2.6.4. Módulo térmico

Esté módulo provee la temperatura al medio poroso en estudio similar a la que se encuentra en el yacimiento, a través de un serpentín integrado a la celda hidrostática.

2.6.5. Módulo de adquisición de datos

En esté módulo se reciben todas las señales que emiten los dispositivos de control del EDF, como transductores de presión, termopares, sensores de flujo, etc., para almacenar en tiempo real toda la información que se genera durante el desarrollo de la prueba experimental.

2.6.6. Celdas de almacenamiento

En un yacimiento la naturaleza de los fluidos varía de estado gaseoso a líquido coexistiendo dentro del espacio confinado tanto gas, aceite y agua, para reproducir las condiciones a las cuales se encuentra el yacimiento, el equipo cuenta con celdas independientes que pueden albergar diferentes tipos de fluidos.

2.6.7. Red de tuberías y accesorios

En está clasificación entran todas las partes menores, por decirlo así, pero igualmente importantes, que componen el EDF como: red de tuberías, bombas, válvulas, sensores, etc., y que sirven de enlace entre los módulos que conforman el EDF.

2.7. Principio de operación del EDF

El principio de operación del EDF está basado en la ley de Darcy y partiendo de la expresión matemática que la describe, ecuación 2.2, se observa que los únicos parámetros que tienen que ser cuantificados y controlados por el equipo son el gasto y la caída de presión, ya que el área y longitud son dependientes del medio poroso y la viscosidad depende del fluido y de su temperatura.

El gasto se manipula y mide directamente de la bomba que lo suministra o se puede medir al final del sistema, en cuanto a la caída de presión, es registrada por los transductores de presión que se encuentran ubicados a la entrada y salida de la celda hidrostática, lo que hace que la operación del equipo sea muy sencilla para el operario. El resto de las partes componentes del EDF permiten reproducir el estado de esfuerzos al cual está sometido el medio poroso en el yacimiento, como es la presión de confinamiento y temperatura del mismo.

CAPÍTULO 3

COMPORTAMIENTO DE FLUJO DE FLUIDOS BAJO LA TÉCNICA DE DTR

3.1. Comportamiento de flujo de fluidos debido al difusor

El estudio del comportamiento de flujo del fluido dentro de un sistema es complejo, ya que, un sistema real puede presentar simultáneamente los dos tipos de flujos ideales: el flujo pistón y el de mezcla completa.

El flujo pistón se caracteriza por el comportamiento ordenado del fluido, sin que ningún elemento del mismo sobrepase o se mezcle con cualquier otro elemento situado antes o después; en realidad, en esté tipo de flujo puede haber mezcla lateral de fluido, pero nunca debe existir mezcla o difusión a lo largo de la trayectoria del flujo. La condición necesaria y suficiente para que exista flujo pistón es que el tiempo de residencia en el sistema debe ser el mismo para todos los elementos del fluido. El valor de la dispersión axial del tiempo promedio de los elementos contenidos en el sistema que presentan un flujo pistón, es muy pequeño, mientras que en el caso de un flujo 100 % pistón (Himmelblau, 1968), (Levenspiel, 1967) el valor llega a ser cero (Figura 3.1).

El flujo de mezcla completa, se presenta cuando dentro del sistema existe un mecanismo de agitación, y su composición en cada instante es la misma en todos los puntos del sistema. Por lo tanto, la corriente de salida tiene la misma composición que la del flujo contenido en el mismo. El valor de la dispersión axial del tiempo promedio de los elementos contenidos en el sistema cuando presenta un flujo de mezcla completa, es muy grande. En un flujo 100% de mezcla completa, el valor de la dispersión axial tiende al infinito (Levenspiel, 1967) (Figura 3.1).

El comportamiento de flujo desarrollado en el EDF es del tipo flujo pistón, ya que no existe ningún sistema de agitación en el EDF que pudiera generar el flujo en mezcla completa.

Figura 3.1. Curvas de distribución de tiempos de residencia (DTR) del comportamiento de flujos ideales.

Las desviaciones con respecto al flujo ideal cuando el flujo se comporta tipo pistón dentro del sistema, es el siguiente, los elementos del fluido pueden moverse a través del sistema a diferentes velocidades causando canalizaciones y "zonas muertas". Para que ocurra esté comportamiento, los elementos del fluido no deben mezclarse por completo localmente, sino que tienen que permanecer segregados, cuando menos en forma parcial, a medida que se mueven en el sistema.

La influencia del flujo no ideal perturba indirectamente el cálculo de la permeabilidad ya que tanto un efecto de canalización como de zonas muertas inducido por el difusor afecta directamente una de las premisa de la ley de Darcy, en la cual se basa el principio de operación del EDF, viéndose perturbado el

CAPÍTULO 3

COMPORTAMIENTO DE FLUJO DE FLUIDOS BAJO LA TÉCNICA DE DTR

régimen estacionario sobre el medio poroso, con lo cual el parámetro de permeabilidad no sería representativo de la muestra de estudio.

Para caracterizar el comportamiento del flujo no ideal que se presenta en el medio poroso es necesario usar la técnica DTR (Distribución de tiempo de residencia). Está técnica permite predecir el comportamiento de los fluidos en el interior del medio de estudio, es una técnica sencilla y económica. En la figura 3.2, se muestran los principales tipos de flujo no ideal (curva DTR, concentración vs tiempo), que pueden presentarse en el medio poroso debido a un flujo pistón y el efecto sobre la curva de distribución de tiempos de residencia si el diseño del difusor no es el apropiado.

En las canalizaciones de flujo o circuitos cortos no se emplearía el volumen completo del medio poroso ha estudiar y la saturación del 100% que debe de tener el medio poroso por el fluido no se cumpliría, lo mismo sucedería si se presentaran zonas muertas, por tanto un buen comportamiento de flujo será aquel donde el porcentaje de volumen muerto sea menor.

 a) Canalizaciones de flujo o circuitos cortos
 b) Volumen muerto o zonas de estancamiento
 Figura 3.2. Tipos de flujo no ideal que pueden presentarse debido a un flujo pistón y el efecto sobre la curva DTR.

COMPORTAMIENTO DE FLUJO DE FLUIDOS BAJO LA TÉCNICA DE DTR

En el análisis de comportamiento de flujo de fluidos dentro de un sistema, es muy difícil saber exactamente lo que sucede en su interior, es decir, no se tiene una representación completa de los perfiles de velocidad. Aunque está información resultaría muy importante en el diseño, es suficiente con saber cuanto tiempo permanece cada una de las moléculas en el sistema, o exactamente la distribución del tiempo de residencia (DTR) de la corriente del fluido.

Está información puede determinarse de manera fácil y directa por un método de investigación empleado ampliamente: el método experimental estímulo – respuesta (Levenspiel, 1967). En esté caso, el estímulo es una inyección de trazador en el fluido que entra al sistema, la respuesta es una representación del trazador a la salida del sistema con respecto al tiempo. El análisis estadístico de la gráfica de la respuesta indicará el porcentaje de los diferentes tipos de flujo que se presentan en el sistema, a está gráfica se le conoce como curva de distribución de tiempo de residencia (Levenspiel, 1967; Johnstone and Thring, 1957).

Puede emplearse como trazador cualquier sustancia que se pueda detectar y que no perturbe el flujo en el sistema, la señal de entrada es un impulso. El trazador, debe reunir las siguientes características (Levenspiel, 1967).

- Su comportamiento en flujo y mezclado debe ser igual a cualquier otro elemento del fluido (misma densidad, soluble en todas las proporciones, etc.)
- Cuantitativamente debe conservarse, es decir, que no desaparezca por reacción o adsorción.
- Fácil de analizar, inerte y no tóxico.
- La magnitud de la respuesta a la salida debe ser proporcional a la cantidad de trazador en la entrada.
- No debe de modificar el comportamiento del fluido.
- Inyectar y detectar dentro de una zona con fuerte turbulencia, para garantizar un buen mezclado.

3.2. Selección del trazador

Tomando como base los criterios descritos anteriormente, las limitantes en cuanto a equipo para detectar el trazador y la disponibilidad en existencia de materia prima que pueda fungir como trazador, el compuesto seleccionado fue sulfato de cobre pentahidratado (CuSO₄ $5H_2O$).

Descripción: Cristales azules, solubles en agua y metanol; ligeramente soluble en alcohol y glicerina, cuyas especificaciones y usos se muestran en la tabla 3.1.

PROPIEDAD	ESPECIFICACION
Pureza (CuSO4 . 5H2O), %	98,0% mín.
Cobre (como Cu), %	25% mín.
Acidez libre (como H2SO4), %	0,1% máx.
Material insoluble en agua, %	0,1% máx.
Fe	0,1% máx.
Pb	0,01% máx.
pH (Sol. al 10%)	4 máx.

Tabla 3.1. Especificaciones técnicas del trazador

USOS

Usado en tratamiento de aguas como algicida, fabricación de concentrados para animales, abonos, pesticidas, mordientes textiles, industria del cuero, pigmentos, baterías eléctricas, recubrimiento de galvanizados, sales de cobre, medicina, preservativos de la madera, procesos de grabado y litografía, flotación de menas, industria del petróleo, caucho sintético, industria del acero, tratamiento del asfalto natural.

CAPÍTULO 3

3.3. Técnica empleada para el análisis de las curvas DTR

La técnica empleada para el análisis de las curvas DTR es una adaptación de los diferentes métodos que existen en la literatura para caracterizar el comportamiento de flujo, es decir: el tiempo promedio usado para el análisis de las curvas DTR, es el tiempo promedio calculado, según la propuesta hecha por Himmelblau, 1968. El tiempo adimensional, la concentración adimensional y el factor de dispersión, se calcula de acuerdo con las ecuaciones propuestas por Levenspiel, 1967. Los diferentes tipos de flujos: pistón, de mezclado y muerto, están calculados de acuerdo a la propuesta hecha por Sahai and Toshihiko, 1996. Está metodología reproduce satisfactoriamente los resultados que observan se en la experimentación.

1.- Cálculo del tiempo promedio de residencia (TPR).

Está es la medida más importante cuando se caracteriza una distribución de tiempo de residencia en el sistema, también se le denomina media o centroide de la distribución. Un buen diseño de difusor, será aquel en donde la dispersión axial sea cercana a cero, es decir el flujo tienda a flujo pistón (Turkdogan, 1968) porque el fluido se desplaza sobre toda la sección transversal del medio poroso.

$$\bar{t} = \frac{\int_0^\infty t \ c \ dt}{\int_0^\infty c \ dt}$$
(3.1)

Sí la curva de distribución solo se conoce para un número de valores discretos del tiempo, t_i entonces:

$$\bar{t} = \frac{\sum t_i C_i \Delta t_i}{\sum C_i \Delta t_i}$$
3.2

CAPÍTULO 3

2.- Cálculo de la amplitud de la distribución de tiempo de residencia.

Después del tiempo promedio de residencia, la siguiente magnitud descriptiva, en orden de importancia, es la amplitud de la distribución de tiempo de residencia que se mide por la varianza σ_{θ}^2 que se define por la ecuación 3.4.

$$\sigma^{2} = \frac{\int_{0}^{\infty} t^{2} c dt}{\int_{0}^{\infty} c dt} - \bar{t}^{2}$$
 3.3

$$\sigma_{\theta}^2 = \frac{\sigma^2}{\bar{t}^2}$$
 3.4

Y para valores discretos toma la forma:

$$\sigma^{2} = \frac{\sum t_{i}^{2} C_{i} \Delta t_{i}}{\sum C_{i} \Delta t_{i}} - \bar{t}^{2}$$

$$3.5$$

3.- Cálculo del número de dispersión $\left(\frac{D}{uL}\right)$, (Levenspiel, 1967).

El grupo adimensional $\left(\frac{D}{uL}\right)$ es conocido como módulo de dispersión del difusor,

esté parámetro mide el grado de dispersión axial de la velocidad en el sistema y se calcula de la siguiente manera.

$$\sigma_{\theta}^{2} = 2\left(\frac{D}{uL}\right) - 2\left(\frac{D}{uL}\right)^{2} \left[1 - \exp\left(-\frac{uL}{D}\right)\right]$$
3.6

Cuando la dispersión es pequeña, la expresión 3.6 toma la forma:

 $\sigma_{\theta}^2 = 2 \left(\frac{D}{uL} \right)$ 3.6a

 $\left(\frac{D}{uL}\right) \rightarrow 0$ Se tiende a flujo pistón

$$\left(\frac{D}{uL}\right) \rightarrow \infty$$
 Se tiende a mezcla completa

En la figura 3.1, se muestran gráficamente los valores del módulo de dispersión de acuerdo a la forma de la curva DTR.

4.- Cálculo del tiempo adimensional (θ), (Himmelblau, 1968).

Para el estudio de los distintos modelos es conveniente medir el tiempo en función del tiempo promedio de residencia calculado, dando una medida adimensional:

$$\theta_i = \frac{t_i}{\bar{t}}$$
 3.7

El subíndice *i* se refiere a que esté tratamiento se le debe aplicar a todos los datos registrados en el experimento.

5.- Cálculo de la concentración adimensional (C), (Levenspiel, 1967).

Se denomina curva C o curva DTR a la respuesta normalizada del trazador en la corriente de salida con respecto al tiempo adimensional.

La normalización se lleva a cabo dividiendo la concentración entre el área (*A*) bajo la curva concentración - tiempo (cantidad de trazador que sale del sistema de análisis).

$$A = \int_0^\infty c \ d\theta \tag{3.8}$$

$$\int_0^\infty C \, d\theta = 1 \tag{3.9}$$

$$\int_0^\infty \frac{c}{A} d\theta = 1$$
 3.10

$$C_i = \frac{c_i}{A}$$
 3.11

La curva C representa la concentración del trazador a la salida en función al tiempo, por consiguiente es un indicativo del tiempo en que tardan en salir del sistema (edad).

El subíndice *i* se refiere a que esté tratamiento se le debe aplicar a todos los datos registrados en el experimento.

6.- Cálculo del volumen muerto (V_d), (Sahai and Toshihiko, 1996).

Condiciones necesarias para llevar a cabo el análisis del tipo de flujo que se presenta en el sistema (Ecuaciones 3.12 y 3.13).

$$\int_0^\infty C \, d\theta = 1 \tag{3.12}$$

CAPÍTULO 3

COMPORTAMIENTO DE FLUJO DE FLUIDOS BAJO LA TÉCNICA DE DTR

$$\bar{\theta} = \frac{\int_0^\infty C\,\theta\,d\theta}{\int_0^\infty C\,d\theta} = 1$$
3.13

Tiempo promedio de residencia de la curva comprendida entre θ =0 y θ = 2 (sin considerar el área bajo la curva debido al volumen muerto).

$$\bar{\theta}_{c} = \frac{\int_{0}^{2} C \theta \ d\theta}{\int_{0}^{2} C \ d\theta}$$
 3.14

Área bajo la curva desde θ =0 hasta θ = 2.

$$\frac{Q_a}{Q} = \int_0^2 C \, d\theta \tag{3.15}$$

De las ecuaciones 3.13 y 3.14, el volumen muerto está dado por:

$$\frac{V_d}{V} = 1 - \frac{Q_a}{Q} \bar{\theta_c}$$
 3.16

Donde 1, es el área total de la curva, de acuerdo a la ecuación 3.8 La ecuación 3.15 cuantifica la cantidad de colorante con respecto a la unidad (área total de la curva), que permanece en el sistema por un tiempo mayor de dos veces el tiempo adimensional.

7.- Cálculo del volumen pistón (V_p), (Sahai and Toshihiko, 1996).

$$\int_{0}^{\frac{V_{p}}{V}} C \, d\theta = 0.01$$
 3.17

Se considera cuando el 1 % del total de colorante inyectado ha salido del sistema.

8.- Cálculo del volumen de mezclado (V_m), (Sahai and Toshihiko, 1996).

$$\frac{V_m}{V} = 1 - \frac{V_p}{V} - \frac{V_d}{V}$$
 3.18

Con esté procedimiento se hace el análisis de los diferentes tipos de volúmenes que se presentan en el medio poroso promovido por el difusor.

A partir de la curva adimensional obtenida se puede obtener otra característica que sirve para evaluar el funcionamiento del difusor, está característica es la máxima concentración (MC). La máxima concentración es el punto más alto de la curva DTR y está asociado al flujo pistón. Cuando el comportamiento del difusor tiende al volumen pistón, el trazador dentro del sistema viaja en forma de paquetes, por esto, entre más grande sea el valor de la máxima concentración, el funcionamiento del difusor, tiende al volumen pistón. Al tiempo en donde se presenta la máxima concentración, se le conoce como TMC.

4.1. Diseño experimental

4.1.1. Introducción

En está etapa se planeará la secuencia completa de pasos a seguir durante el diseño experimental asegurando que la información obtenida concerniente al problema sea apropiada, de modo que, permita un análisis objetivo que conduzca a deducciones válidas con respecto al problema establecido y el primer paso es definir los objetivos que deberá cubrir la experimentación.

4.2. Objetivos del diseño experimental

- Proporcionar la máxima cantidad de información pertinente al problema bajo investigación.
- El diseño, plan o programa debe ser tan simple como sea posible.
- La investigación debe efectuarse lo más eficientemente posible.

Para establecer el diseño experimental seguiremos el proceso de razonamiento que se muestra a continuación.

Figura 4.1. Diagrama de razonamiento para definir el programa experimental.

4.3. Características a analizar

En el capítulo anterior se planteó que la problemática estará centrada en el principio de la Ley de Darcy, la cual tiene por objeto medir la permeabilidad, siendo está la variable de respuesta a monitorear a condiciones de régimen estacionario en el EDF, así mismo, la técnica que se empleará para caracterizar el comportamiento de flujo del fluido es la de distribución de tiempos de residencia

(DTR) y las variables de respuesta serán el volumen muerto, volumen pistón y volumen de mezclado.

4.3.1. Factores que afectan la permeabilidad

Los factores que pueden afectar la permeabilidad fueron tratados en el capítulo 2 y se pueden clasificar en dos grupos: aquellos que dependen de la naturaleza del material y aquellos que dependen de factores externos pero que pueden ser controlados, dentro del primer grupo se encuentran la granulación y molimiento, arreglo y empaquetamiento, distribución, tamaño y forma del grano y en el segundo grupo está la cementación, re-cristalización, fracturamiento y contaminación microbiológica.

4.3.2. Factores que afectan el volumen muerto, pistón y de mezclado

4.3.3. Inyección del trazador

El estímulo o inyección de trazador dentro del sistema no afecta los valores de volumen muerto, pistón ni de mezclado, pero se requiere que estos valores sean representativos al régimen de flujo correspondiente una vez alcanzada la permeabilidad del medio poroso en estudio; recordando que en esté caso de estudio la permeabilidad se medirá en régimen estacionario, es decir, el gasto y la presión permanecerán constantes, una vez alcanzada la permeabilidad del medio poroso en estudio; al permeabilidad del medio poroso en estudio; nor lo tanto para no afectar el comportamiento de flujo al inyectar el trazador dentro del sistema deberá seguirse el procedimiento de inyección de trazador descrito en el anexo 3.

El trazador inyectado no afecta la permeabilidad de la roca, ya que es inerte al medio poroso y es soluble en agua bidestilada.

4.3.4. Que factores se tomarán en cuenta

Se tomarán en cuenta únicamente aquellos factores que no dependan de la naturaleza de la roca. Con base en lo anterior, los factores a tomar en cuenta para

no afectar la permeabilidad de la roca y que caen en está categoría son: Cementación, re-cristalización, fracturamiento y contaminación microbiológica. La operación de cementación no estará contemplada en esté trabajo, por lo que los únicos factores posibles que pudieran afectar el diseño experimental serían los de re-cristalización, fracturamiento y contaminación microbiológica.

4.3.5. Plan a seguir para controlar los factores que afectan las características a analizar

4.3.5.1. Re-cristalización

El efecto de re-cristalización puede presentarse debido al trazador empleado, el cual es una mezcla compuesta de agua y sulfato de cobre prehidratado CuSO₄.5H2O, que al estar a temperatura ambiente y permanecer en reposo, la mezcla empieza a separase y el CuSO₄.5H2 se precipita en formar de cristales.

Para evitar la formación de cristales dentro del núcleo la mezcla permanecerá en movimiento constante, pero además se aplicará el procedimiento de limpieza de núcleos descrito en las practicas recomendadas para análisis de núcleos (API RP-40 Recommended Practices for Core Analysis API/PETRO RP 40-ENGL 1778), el cual es descrito dentro del Anexo A, con lo cual se eliminará cualquier cristal que pueda formarse en el interior del medio poroso. El solvente a emplear es tolueno, con un punto de ebullición de 110 °C.

4.3.5.2. Fracturamiento

El esfuerzo permisible de la arena berea es de 0.28 MPa m^{1/2} equivalente a 40.6 psi. m^{1/2} (estudio realizado por Zoback,1978, bajo el método de fracturamiento hidráulico), a través de estudios experimentales (Perkins and Krech, 1966) determinaron que el esfuerzo permisible incrementa al aplicarle una presión de confinamiento, para el caso de la areniscas de Tennessee al ser aplicada una presión de confinamiento de 2000 psi., la resistencia al esfuerzo es de 401.7 psi., esté valor será el límite de resistencia al esfuerzo en función a la presión de

confinamiento que no deberá rebasarse, ya que se podría inducir la fractura del medio poroso.

4.3.5.3 Contaminación microbiológica

Como se menciona en el capítulo 3, las condiciones necesarias para que una bacteria se reproduzca son un ambiente húmedo y una temperatura entre 5 y 65°C, por lo que existe la posibilidad de crecimiento de bacterias dentro de la red poral del medio poroso y con ello el detrimento de la porosidad efectiva, por lo tanto, la acción a seguir para evitar el crecimiento de bacterias será someter el medio poroso en estudio a un gradiente de temperatura por encima de 70 °C con un tiempo de exposición de 30 min. Aunado a ello el sulfato de cobre es usado en el tratamiento de aguas como algicida y para elaborar pesticidas por lo cual actuará también como mecanismo inhibidor de bacterias.

4.3.5.4. Inyección del trazador

Para poder inyectar el trazador dentro del sistema primero debe determinarse la permeabilidad del medio poroso en estudio bajo un régimen estacionario, y de acuerdo al principio de operación del EDF los mensurados que registra el equipo para determinar la permeabilidad de un medio poroso son el gasto y la caída de presión, el gasto es constante y la caída de presión será aquella desarrollada en el instante en que el fluido vence la resistencia que opone el medio poroso al paso del fluido a través de su red poral efectiva, por lo tanto la presión de inyección del trazador deberá ser igual o mayor que la desarrollada al alcanzar la permeabilidad en ese instante por lo que podemos establecer la siguiente relación de presión de inyección de

$P_{SISTEMA}$ + 500 Ibs = $P_{iny-trazador}$

Se estableció un factor de seguridad de 500 lbs. al momento de la inyección con el fin de que los valores de volumen muerto, pistón y de mezclado sean representativos al instante de alcanzar la permeabilidad del medio poroso.

4.4. Validación experimental

La validación del estudio experimental fue a través de un análisis de veracidad y precisión, de acuerdo a ISO 5725 *Accuracy* (*trueness and precision*) of *measurement methods and results* (parte 1 a 6). Los resultados y análisis obtenidos de la validación se presentan en el anexo 4.

4.5. Programa experimental

Para diseñar el programa experimental, se tomarán en cuenta las premisas establecidas por la ley de Darcy, las especificadas por la técnica estímulo respuesta, así como también los factores que afectan el desarrollo experimental encontrados durante el proceso de razonamiento desarrollado en está sección como son la recristalización, fracturamiento y contaminación microbiológica.

El programa de desarrollo experimental generalizado engloba diferentes procedimientos, mismos que se describen al final de esté trabajo en la sección de anexos, y es representado por el diagrama de bloques mostrado en la Figura. 4.2.

Figura. 4.2. Diagrama del programa experimental planteado.

4.6. Esquema de trabajo

Tabla 4.2. Descripción de hipótesis por sistema, descripción de sistemas y condiciones operacionales por corrida.

Hipótesis		
Medio poroso	Fluido	Trazador
Isotrópico	Comportamiento	Comportamiento
	Newtoniano	Newtoniano
Homogéneo	Incompresible	Incompresible
Inerte	Flujo Laminar	Inerte
		Soluble en el fluido

Medio poroso		
Descripción	Núcleo sintético de Arer	na berea libre de lutitas
Diámetro	1 pulg.	
Longitud	2 pulg.	

Fluido

Descripción	Agua bidestilada libre de sales

Trazador		
Descripción	Sulfato de cobre pentah	idratado (CuSO ₄ 5H ₂ O)
Solubilidad en H2O	99.9 %	

Corrida para Validación			
Gasto, [cc/min]	2.5		
Presión de			
confinamiento, [psi]	2000		
Temperatura, [°C]	21		
No. replicas	10		
No. repeticiones	6		

Corrida experimental			
Gasto, [cc/min]	0.5		
Presión de	2000		
confinamiento, [psi]			
Temperatura, [°C]	21		

5.1. Simulación matemática

5.1.1. Introducción

En está parte del trabajo, se utiliza la técnica de dinámica de fluidos computacionales (DFC) para analizar el desempeño de flujo de fluidos que desarrolla el difusor a través de un medio poroso en el EDF a condiciones reales de operación. En estas circunstancias, la simulación matemática es una herramienta muy útil porque reproduce una situación real en donde es posible analizar de manera integral varios aspectos en todo el sistema, tales como: forma del flujo, vectores de velocidades, perfiles de presión, etc. A diferencia de la simulación física en donde es necesario cumplir con ciertos criterios de similitud para apreciar algún fenómeno particular, hoy en día la simulación matemática reproduce casi todos los fenómenos que se presentan en situaciones reales o de laboratorio. La condición necesaria para lograr una buena representación del comportamiento real es que se utilicen la geometría, condiciones en la frontera, modelos matemáticos y métodos numéricos adecuados, probados y ajustados en una situación real. En esté caso se obtienen todos estos parámetros reproduciendo el comportamiento del flujo de fluidos obtenidos con la simulación física.

La simulación matemática del desempeño del difusor inicia estableciendo la geometría del sistema, que está compuesto por las siguientes geometrías: difusor a la entrada, medio poroso y difusor a la salida ya que es el espacio físico que ocupa el fluido en el sistema. La segunda parte corresponde al mallado de la geometría en sub-volúmenes utilizando como herramienta el preprocesador conocido como preBFC*, herramienta gráfica que permite dibujar cualquier forma física en un espacio di o tridimensional. Todas las esquinas que forman los sub-volúmenes tienen una posición *x*, *y*, *z* en el espacio tridimensional. En la tercera parte de esté trabajo se definen las condiciones frontera en el espacio tridimensional creado, aquí, es necesario definir la posición de las paredes, velocidad de entrada, superficie libre, salidas, etc. Las diferentes condiciones en la

^{*}FLUENT y *preBFC son marcas registradas por Fluent Inc., Lebanon, NH.

frontera reportadas fueron probadas hasta encontrar las adecuadas en términos de reproducibilidad del comportamiento real. También es necesario definir las propiedades del fluido de trabajo (densidad, viscosidad, gasto, etc.), así como también la permeabilidad del medio poroso. FLUENT* es una herramienta muy importante y básica para llevar a cabo la simulación matemática, en el se encuentran programados diferentes modelos matemáticos y métodos numéricos. La tarea aquí, es conocer cuales son los modelos matemáticos y métodos numéricos que resuelven con mayor eficiencia; en términos de reproducibilidad del fenómeno y rapidez de convergencia, el problema propuesto.

5.2. Modelo matemático

En está parte se hará una breve revisión de la teoría del DFC utilizada en esté trabajo.

Los aspectos físicos de cualquier situación que involucre flujo de fluidos están gobernados por las siguientes ecuaciones básicas:

Conservación de masa. Conservación de momentum. Conservación de energía. Conservación de especies.

Una práctica común en el análisis numérico, es transformar estas ecuaciones de conservación de su forma diferencial a ecuaciones algebraicas que se resuelven por técnicas apropiadas para obtener la distribución de los perfiles de flujo. Tal transformación es conocida como la técnica de discretización. Hay varias formas de técnicas disponibles, cada una tiene ventajas y desventajas dependiendo de la naturaleza de los flujos en las que se aplican (Hoffmann and Chiang, 1989)

En esté trabajo se usa una técnica basada en un volumen de control (Fluent,

*FLUENT y *preBFC son marcas registradas por Fluent Inc., Lebanon, NH.

1999), para convertir las ecuaciones diferenciales que gobiernan la física de flujo de fluido, transferencia de calor y turbulencia en ecuaciones algebraicas que se resuelven numéricamente. Está técnica consiste en la integración de las ecuaciones diferenciales en cada volumen de control, produciendo una ecuación en un esquema de diferencias finitas que conservan cada cantidad en el volumen de control de estudio.

5.3. Ecuaciones fundamentales

El modelo matemático consiste en la solución simultánea de la ecuación de continuidad, transferencia de momentum y transferencia de energía bajo condiciones de flujo turbulento y cuando se estudia el comportamiento del trazador en el sistema, se agrega la ecuación de conservación de especies. Estas ecuaciones se resuelven con las ecuaciones de energía cinética turbulenta y las ecuaciones de velocidad de disipación de la energía cinética turbulenta usando el modelo \tilde{k} - ϵ para flujo turbulento (Launder and Spalding, 1974).

Ecuación de conservación de masa o ecuación de continuidad.

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_i)}{\partial x_i} = 0$$
(5.1)

Ecuación de conservación de momentum.

$$\frac{\partial(\rho u_i)}{\partial t} + \frac{\partial(\rho u_i u_j)}{\partial x_j} = -\frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_i} \mu_{eff} \left[\frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j} \right]$$
(5.2)

El último término corresponde a las fuerzas de flotación. Ecuación de conservación de especies *i*'.

$$\frac{\partial}{\partial t}(\rho m_{i'}) + \frac{\partial}{\partial x_i}(\rho u_i m_{i'}) = \frac{\partial}{\partial x_i}(J_{i',i})$$
(5.3)

$$J_{i',i} = -\rho D_{eff\ i',m} \frac{\partial m_{i'}}{\partial x_i}$$
(5.4)

Para la simulación del flujo turbulento, se usó el modelo \tilde{k} - ε propuesto por Jones and Launder, 1972. La viscosidad turbulenta se calcula a través de su relación con la energía cinética (*k*) y su velocidad de disipación (ε):

$$\frac{\partial (\rho k)}{\partial t} + \frac{\partial (\rho u_i k)}{\partial x_i} = \frac{\partial}{\partial x_i} \left[\frac{\mu_i}{\sigma_k} \frac{\partial k}{\partial x_i} \right] + G_k + G_b - \rho \varepsilon$$
(5.5)

$$\frac{\partial (\rho \varepsilon)}{\partial t} + \frac{\partial (\rho u_i \varepsilon)}{\partial x_i} = \frac{\partial}{\partial x_i} \left[\frac{\mu_i}{\sigma_k} \frac{\partial \varepsilon}{\partial x_i} \right] + C_1 G_k \frac{\varepsilon}{k} - C_2 \rho \frac{\varepsilon^2}{k}$$
(5.6)

Los términos G_k y G_b son la velocidad de producción de energía cinética turbulenta y generación debido a las fuerzas de flotación, respectivamente.

$$G_{k} = \mu_{t} \left[\frac{\partial u_{j}}{\partial x_{i}} + \frac{\partial u_{i}}{\partial x_{j}} \right] \frac{\partial u_{j}}{\partial x_{i}}$$
(5.7)

$$G_{b} = -g_{i} \frac{\mu_{i}}{\rho \sigma_{h}} \frac{\partial(\rho)}{\partial x_{i}}$$
(5.8)

La viscosidad turbulenta se obtiene asumiendo que es proporcional al producto de una escala de velocidad turbulenta y a una escala de longitud, y está dada por: CAPÍTULO 5

$$\mu_{t} = \rho C_{\mu} \frac{k^{2}}{\varepsilon}$$
(5.9)

La viscosidad efectiva del fluido bajo un régimen turbulento está dada por:

$$\mu_{eff} = \mu + \mu_t \tag{5.10}$$

Los valores para $C_{\mu}, C_1, C_2, \sigma_{\kappa}, \sigma_{\varepsilon}, \sigma_{h}$ fueron obtenidos de Launder and Spalding, 1974 y los valores son: 1.44,1.92,0.09,1.0,1.3, y 0.9, respectivamente.

Figura 5.1a. Difusor original: Malla utilizada en la simulación matemática.

Figura 5.1b. Difusor prototipo: Malla utilizada en la simulación matemática.

5.4. Malla

Se emplea lo que podría llamarse una geometría basada en la malla, en la cual la geometría del modelo se determina por volúmenes de control determinados por la malla. Se emplean coordenadas curvilíneas fijadas en el cuerpo en la cual las líneas de las mallas se determinan por un sistema de coordenadas que conforma la frontera geométrica del modelo.

El procedimiento más común para generar la malla fijada en el cuerpo consiste en los siguientes pasos de procedimientos utilizando el preBFC*:

Definir la geometría del sistema en términos de puntos (en coordenadas cartesianas), curvas y superficies (en 3D).

Determinar los puntos de la malla sobre las fronteras geométrica del modelo computacional

Determinar la localización de todos los puntos interiores de la malla interpolando los puntos de la frontera de la malla.

La región de estudio (Figura 5.1a y b) fue fraccionado en un total de 1,012,500 nodos, en las zonas de mayor importancia como son la entrada y salidas del difusor, así como el medio poroso, regiones en donde se encuentran localizados los modificadores de flujo, se estableció una malla más fina para observar detalladamente estas zonas de gran interés. En la figura 5.1a y 5.1.b se muestra la distribución de la malla empleada para ambos casos de estudio.

^{*}FLUENT y *preBFC son marcas registradas por Fluent Inc., Lebanon, NH.

5.5. Condiciones en la frontera

Se establecerán las condiciones de frontera comunes en los casos de estudio.

La velocidad media vertical a la salida del difusor es uniforme a través de su sección transversal y se calcula dividiendo al gasto volumétrico del agua bidestilada entre el área transversal, las otras dos velocidades perpendiculares (x,z) se asumen con una velocidad igual a cero. La velocidad media vertical coincide con el eje "y", porque sobre esté eje actúa la atracción debida a la fuerza gravitacional. Las condiciones frontera para la transferencia de momentum de todas las superficies sólidas que incluyen las paredes, el difusor de entrada y salida, así como el medio poroso, fueron consideradas de no – deslizamiento (Barrón, 1997). Está condición establece que el fluido en contacto con la pared, asume la velocidad de ésta, es decir que no existe deslizamiento entre el fluido y la pared en la interfase.

En todos los análisis que se presentan en está parte del estudio, incluyendo la reproducción de las curvas DTR, no se incluye la ecuación de la energía, ya que la experimentación se llevo acabó bajo condiciones isotérmicas.

Las propiedades del fluido de estudio (agua bidestilada) empleadas en la simulación matemática se muestran en la tabla 5.1 respectivamente.

Tabla 5.1. Propiedades	del agua bidestilada	utilizados en la simulación
	matemática.	

Propiedad	Valor	
Viscosidad, cp @ 21°C	0.008046 cp	
Densidad , g/cm ³	1	

5.6. Método numérico

Las ecuaciones de continuidad, momentum y de turbulencia y de todas las condiciones frontera, se adaptaron a un esquema de diferencias finitas en la malla mostrada en la figura 5.1, y se resolvieron simultáneamente por una técnica numérica conocida como SIMPLE (Método semi- implícito para ecuaciones enlazadas por la presión (Hoffmann and Chiang, 1989). El término de la presión será nuestra variable de respuesta, por tal motivo, a está variable se le elige como un indicador de la convergencia. Para verificar que se cumple tal propósito, se compararon los resultados de la simulación con las corridas experimentales, cuyos resultados se muestran en el capítulo 6.

El algoritmo SIMPLE relaciona la velocidad y los campos de presión los cuales satisfacen las ecuaciones de momentum y continuidad en un punto. Como las ecuaciones no se resuelven simultáneamente en todos los puntos, porque las ecuaciones son no lineales y están acopladas, se requiere un procedimiento de solución iterativo con iteraciones continuas hasta satisfacer todas las ecuaciones en todos los puntos.

Cada iteración del procedimiento de solución consiste de los siguientes pasos.

- 1. Se resuelven las ecuaciones de momentum usando un campo de presión supuesto.
- Se resuelve la ecuación correctiva de presión (balance de masa) para obtener las correcciones necesarias al campo de presión. En esté punto se hacen también los ajustes correspondientes a los componentes de velocidad.
- 3. Se resuelven las ecuaciones de flujo turbulento usando el campo de velocidades actualizado para obtener la distribución de la viscosidad efectiva.
- Se resuelven las ecuaciones auxiliares de conservación de especies utilizando los valores actualizados de las otras variables.

5. Se actualizan las propiedades del fluido.

Estos pasos deben de repetirse hasta que el error de cada ecuación de conservación en cada volumen y sobre el dominio global disminuya al valor requerido.

Los cálculos realizados en la simulación matemática se llevaron a cabo en una pc IBM con procesadores Pentium IV a 2.20 Ghz y 256 MGbytes en Ram. El tiempo total de cómputo para todas las simulaciones realizadas exceden las 1000 horas.

5.7. Procedimiento empleado para el análisis del comportamiento de flujo de fluidos en el sistema

El estudio de los fenómenos que se presentan en cualquier sistema de interés empleando la simulación matemática como herramienta es complicado, porque aunque existan herramientas muy poderosas que facilitan está operación, esto no garantiza que los resultados obtenidos sean los que realmente representen los fenómenos. Es una gran ventaja para está parte del estudio el contar con los resultados experimentales, porque éstos ayudan a establecer las condiciones adecuadas para llevar a cabo una simulación matemática confiable y eficiente. En la medida que se cuente con máquinas con más recursos en términos de velocidad de cálculo, memoria y despliegue gráfico, los fenómenos predichos con está herramienta estarán más cercanos a la realidad.

En está sección se explicará brevemente el procedimiento seguido para estudiar el comportamiento del flujo de fluidos que se presenta en el sistema de estudio.

Además de las condiciones de frontera generales mencionadas en la sección 5.5 de esté trabajo, se indicarán las condiciones de frontera en la entrada empleadas para alcanzar la finalidad establecida en cada una de las siguientes etapas:

Etapa 1. **Simulación matemática del comportamiento de flujo de fluidos**. En está etapa del trabajo se reproducen los tipos de comportamientos que desde el punto de vista de flujo de fluidos se obtuvieron con la simulación física.

Finalidad: Definir el algoritmo matemático y el modelo de turbulencia que reproduzca satisfactoriamente el comportamiento de flujo; que se empleará en las siguientes etapas.

El algoritmo y el modelo elegido deben de reproducir la forma del flujo que desarrolla el agua bidestilada en el sistema y las caídas de presión obtenidas en la simulación física. La metodología establecida se usa también para analizar, a través de la obtención de las curvas DTR, el tipo de flujo que el agua bidestilada presenta en el EDF. Se considera como trazador en el análisis del difusor un material órgano-metálico como es el sulfato de cobre pentahídratado; que al mezclarlo con el agua bidestilada no altera sus propiedades, con la finalidad de que éste no altere el comportamiento de flujo de fluidos dentro del sistema. En la obtención de las curvas DTR del difusor, no se incluyó la ecuación de energía y se consideró la entrada de sulfato de cobre pentahídratado a temperatura constante y sin pérdidas de calor por las paredes y la superficie. Sin profundizar sobre está etapa porque no es la finalidad de esté trabajo, se mostrarán en la parte de resultados las curvas DTR y forma de flujo obtenidas para las diferentes corridas con el algoritmo y el modelo de turbulencia establecido. A continuación se muestra el procedimiento empleado para el análisis del desempeño del difusor.

Como primer paso, se resuelven las ecuaciones de masa, momentum y especies en estado estacionario. Se considera como estado estacionario cuando en todo el sistema, ninguna de las variables de operación (velocidad, comportamiento de flujo y especies), cambia con respecto al tiempo. Las propiedades del agua bidestilada empleadas en la simulación matemática se muestran en la tabla 5.1. En la tabla 5.2 y 5.3 se muestran las condiciones de entrada utilizadas en esté paso para el difusor original, como el prototipo.

^{*}O2 es una marca registrada por Silicon Graphics.

Tabla 5.2. Condiciones establecidas en la entrada del difusor original en estado estacionario.

Condición de entrada	Valor	
Velocidad, m/s.	0.001052505	
Composición, fracción masa de	0 35	
trazador, g/ml	0.00	
Resistencia viscosa, m ⁻¹	1.054544 x 10 ¹⁵	

Tabla 5.3. Condiciones establecidas en la entrada del difusor prototipo en estado estacionario.

Condición de entrada	Valor	
Velocidad, m/s.	0.000210501	
Composición, fracción masa de	0.35	
trazador, g/ml		
Resistencia viscosa, m ⁻¹	1.054544 x 10 ¹⁵	

Figura 5.2. Señal empleada en la simulación matemática que indica la inyección en impulso del trazador.

Con los campos de velocidad obtenidos en el paso anterior, se continúa con la solución del sistema en estado transitorio (dependiente del tiempo) a la misma velocidad de entrada que el paso anterior, variando solamente la composición de las especies (agua bidestilada y trazador) en la entrada conforme a la figura 5.2. El tamaño de paso en tiempo utilizado en las soluciones del sistema en estado transitorio fue de 0.5 s.

En el estado transitorio se resuelven las ecuaciones fundamentales en cada tiempo establecido. Cuando se alcanza la convergencia en el tiempo *t*, los campos de todas las variables son la base para el cálculo en el siguiente incremento de tiempo t=t+0.5. En las celdas que conforman cada una de las salidas, se monitorea la concentración del trazador con respecto al tiempo.

Normalmente la condición frontera de salida está conformada por un grupo de celdas en donde todas son monitoreadas para determinar el valor de la variable a la salida del difusor y para definir el valor de la variable de interés (concentración

del trazador), se realiza el siguiente procedimiento (Dipak, Mazumdar and Roderick, 1999):

Se considera que las velocidades del flujo volumétrico a través de las "*n*" celdas que conforman la salida, son idénticas. La cantidad de trazador inyectado que abandona el difusor en un período dt a través de la celda *"i*" será:

$$dm_i = c_i(t)Q\,dt 5.15$$

Donde c_i es la concentración en la celda "*i*", Q es el flujo volumétrico y m_i la cantidad de masa del trazador en la celda "*i*"

Considerando a *"M"* como la masa total de trazador inyectado, se obtiene por definición la siguiente expresión:

$$\frac{dm_i}{M} = \frac{c_i(t)Qdt}{M} = E_i(t) dt$$
5.16

Donde $E_i(t)$ es la función de distribución de tiempo de residencia para la celda *"i"*. Integrando la ecuación 5.16 y para todas las celdas, se tiene:

$$\int_{0}^{\infty} E_{1}(t) dt + \int_{0}^{\infty} E_{2}(t) dt + \mathbf{K} \int_{0}^{\infty} E_{n}(t) dt = 1.0$$
5.17

O simplemente:

$$\int_{0}^{\infty} E(t) dt = 1.0$$
 5.18

Donde E(t) es la función global de distribución de tiempo de residencia (DTR) y es la suma de las funciones individuales de DTR de las "*n*" celdas. El procedimiento empleado para analizar las curvas DTR globales es el mismo al utilizado en la simulación física (ecuaciones 4.1-4.18).

6.1. Análisis numérico

La simulación numérica, es una herramienta que permite evaluar diferentes alternativas de solución dentro de una misma problemática, lo que permite obtener información valiosa para la toma de decisiones en un tiempo menor; que al hacerlo mediante una técnica experimental, siempre y cuando sea validada la simulación, al hacer uso de estas herramientas, es posible mejorar el diseño de partes en cuanto a la función especifica que debe de cumplir cada parte, por tal razón, en esté trabajo, la optimización de la herramienta de difusión fue a través de un simulador de flujo (Fluent), siguiendo la técnica de dinámica de fluidos computacionales (DFC), con el propósito de evaluar el desempeño de diferentes configuraciones geométricas de difusores, simulando la corrida experimental en el EDF para encontrar cual de estás es la configuración optima de acuerdo a las necesidades.

Para cumplir con tal propósito, el análisis numérico contemplo los casos que se presentan en la tabla 6.1.

Difusor 1		Difusor 2			
y z x		× Z			
				Γ	
Caso	Diámetro de	Tobera de	Caso	Diámetro de la	Toberas de
Cuso	la tobera	inyección	Cuso	tobera	inyección
1A	2/16"	1	$2\overline{A}$	2/16"	5
1B	1/16″	1	2B	1/16″	5
1C	3/16″	1	2C	3/16″	5
1D	1/32″	1	2D	1/32″	5

Tabla 6.1. Matriz de configuraciones geométricas para el análisis numérico.

6.2. Resultados del análisis numérico

Los resultados para cada caso se presentan en las tablas 6.2 y 6.3., su grafica correspondiente en las figuras 6.1 a 6.5, y su curva de distribución de tiempos de residencia en las figuras 6.6 a 6.13.

Tabla 6.2. Resultado Experimental de referencia.

Gasto [cc/min]	Caída Presión [psi]	Permeabilidad [mD]		
0.5	103.33	0.9608		

Tabla 6.3. Resultados de la simulación numérica de los criterios de diseño

Gasto [cc/min]	Difusor	Caída Presión [psi]	Permeabilidad [mD]	Volumen Muerto	Volumen Pistón	Volumen mezclado	TCAL	VARO	Dispersión Axial
0.5	1A-2/16"	102.42	0.9644	0.3841	0.0680	0.5479	73.5000	0.7193	0.3596
0.5	1B-1/16"	102.8409	0.9605	0.2591	0.0242	0.7166	165.0160	0.4837	0.2418
0.5	1C-3/16"	102.8279	0.9606	0.3651	0.0999	0.5350	50.0575	0.7438	0.3719
0.5	1D-1/32"	102.8601	0.9603	0.3622	0.0475	0.5902	556.0400	0.2327	0.1163
0.5	2A-2/16"	102.286	0.9661	0.3145	0.1247	0.5608	24.0588	0.8060	0.4030
0.5	2B-1/16"	102.3224	0.9653	0.3756	0.0755	0.5489	39.7127	0.8616	0.4308
0.5	2C-3/16"	102.2774	0.9662	0.2834	0.1267	0.5900	23.6814	0.6586	0.3293
0.5	2D-1/32"	101.0038	0.9780	0.1025	0.6221	0.2753	106.0770	0.3653	0.1827

Figura 6.1. Resultados de permeabilidad.

Figura 6.2. Resultados de volumen muerto.

Figura 6.3. Resultados de volumen pistón.

Figura 6.4. Resultados de dispersión axial.

Figura 6.5. Resultados de volumen de mezclado.

6.2.1. Curva de distribución de tiempos de residencia DTR

Figura 6.6. Curva de distribución de tiempos de residencia, caso 1-A-2/16".

Figura 6.7. Curva de distribución de tiempos de residencia, caso 1-B-1/16".

Figura 6.8. Curva de distribución de tiempos de residencia, caso 1-C-3/16".

Figura 6.9. Curva de distribución de tiempos de residencia, caso 1-D-1/32".

Figura 6.10. Curva de distribución de tiempos de residencia, caso 2-A-2/16".

Figura 6.11. Curva de distribución de tiempos de residencia, caso 2-B-1/16".

Figura 6.12. Curva de distribución de tiempos de residencia, caso 2-C-3/16".

Figura 6.13. Curva de distribución de tiempos de residencia, caso 2-D-1/32".

6.3. Discusión de resultados

Una vez modelado un campo de configuraciones geométricas de ocho alternativas de solución, y sabiendo que un buen comportamiento de flujo está definido por un valor mínimo de volumen muerto, así como de mezclado y un valor máximo de volumen pistón; donde la dispersión axial indica si el flujo del fluido tiende a un comportamiento pistón cuando su valor tiende a cero, por lo tanto la alternativa de solución que mostró un mejor desempeño de flujo, en función a los criterios de diseño, fue la configuración geométrica "2D", correspondiente al difusor 2 e integrada por cinco toberas con diámetro de 1/32", que con respecto a la configuración original "1A", reduce las zonas de volumen muerto y de mezclado en un 28% y 27%, respectivamente, e incrementa el volumen pistón en un 55%. Los resultados del comportamiento de flujo de la configuración "2D" con respecto a la "1A" se muestran en la Figura. 6.14.

Figura 6.14. Caso que mostró un optimo comportamiento de flujo con respecto a los criterios de selección: V_d, V_p, V_m y D_a.

Conclusiones

La meta principal de esté proyecto fue alcanzada con éxito, y consistió en diseñar una herramienta que optimizará la difusión de flujo de fluidos en medios porosos evitando perturbaciones en la distribución del fluido tales como: zonas muertas y canalizaciones de flujo, debidas a un diseño no óptimo. Los criterios de diseño para lograr la meta trazada son aquellos que caracterizan el comportamiento de flujo de fluidos y los parámetros que lo definen son: el volumen muerto, volumen pistón, volumen de mezclado y dispersión axial.

Las diferentes alternativas de solución propuestas, fueron sometidas a pruebas de desempeño de comportamiento de flujo, a través del empleo de herramientas de simulación numérica; previa validación de la metodología, de tal forma que el difusor seleccionado (2D), prueba ser el optimó, dentro de las propuestas planteadas, ya que cuantitativamente es el que menor irregularidades de flujo desarrollo en la prueba de desempeño de comportamiento de flujo.

El trabajar de forma planeada, a través de un proceso que integro diferentes metodologías de diseño, pruebas experimentales, cuyos resultados experimentales fueron validados y herramientas de simulación numérica, para probar diferentes posibles soluciones, permitió definir cual de las alternativas de solución propuestas, minimiza las irregularidades de flujo.

Por consiguiente, el proceso de diseño fue más allá de proponer diferentes conceptos geométricos, ya que, no sólo se llego a una solución que cuantitativamente cumple con la función para la cual está requerido, sino que también quedó definida una metodología de gran aplicación, a través de la cual es posible diseñar la forma geométrica en función al tipo de flujo requerido.

65

A.1.1. Limpieza de núcleos

Antes de realizar cualquier medición de permeabilidad o porosidad, los fluidos originales del núcleo o muestra deben ser completamente removidos. Esto generalmente se lleva a cabo mediante una corriente de varios solventes para extraer los hidrocarburos, agua o sales presentes, algunos de estos solventes se presentan en la tabla siguiente.

Solvent	Boiling Point, °C	Solubility
Acetone	56.5	oil, water, salt
Chloroform/methanol azeptrope (65/35)	53.5	oil, water, salt
Cyclohexane	81.4	oil
Ethylene Chloride	83.5	oil, limited water
Hexane	49.7-68.7	oil
Methanol	64.7	water, salt
Methylene Chloride	40.1	oil, limited water
Naphtha	160.0	oil
Tetrachloroethylene	121	oil
Tetrahydrofurane	65.0	oil, water, salt
Toluene	110.6	oil
Trichloroetylene	87.0	oil, limited water
Xylene	138.0-144.4	oil

Tabla. A.1.1. Selección de Solventes y usos

Existen varias técnicas para eliminar estos residuos, en nuestro caso se empleo el "método de extracción por destilación", el cual se describe brevemente a continuación, para mayor referencias consultar el procedimiento API-RP-40 Secc. 3.6.4.4.

A.1.2. Método de extracción por destilación

A través del empleo de un equipo de extracción tipo Soxhlet y un solvente o solventes adecuados se disuelve y extrae cualquier residuo de aceite, agua o sal que pueda existir dentro del medio poroso. El solvente pasa continuamente por un ciclo de destilación – condensación y por medio de esté proceso se eliminan los residuos existentes en el medio poroso.

ANEXO 1. PROCEDIMIENTO API-RP-40. RECOMMENDED PRACTICES FOR CORE ANALYSIS, SECCIÓN 3.6.

A.1.2.1. Procedimiento

- 1.- Coloque el medio poroso a limpiar dentro del soxhlet
- 2.- Agregue el solvente dentro del soxhlet hasta rebasar el espécimen a limpiar.
- 3.- Ensamble el equipo soxhlet.
- 4.- Encienda la chaqueta de calentamiento
- 5.- Una vez que el color del solvente regrese a su color inicial durante el proceso
- de extracción la limpieza de la muestra concluye.
- 6.- Seque la muestra

Figura. A.1.1. Equipo de destilación tipo soxhlet

A.2.1. Secado

Los núcleos convencionales deben ser secados por el método listado en la tabla A.2.

Tipo de roca	Método	Temperatura, °C
Arenisca (bajo contenido de arcilla)	Horno convencional Horno de vacío	116 90
Arenisca (alto contenido de arcilla)	Horno humidificado, 40% humedad relativa	63
Carbonato	Horno convencional Horno de vacío	116 90
Lutita u otra roca de alto contenido de arcilla	Horno humidificado, 40% humedad relativa	60

Tabla. A.2.1. Métodos de secado para núcleos

Cada núcleo debe ser secado hasta que el peso se mantenga constante. El tiempo de secado puede variar sustancialmente, pero generalmente no excede de 4 horas.

ANEXO 3. PROCEDIMIENTO PREPARACIÓN, INYECCIÓN Y MUESTREO DEL TRAZADOR

A.3.1. Procedimiento de preparación

1.- Pese 7 gramos de Sulfato de cobre.

2.- Mida 20 ml. de agua bidestilada.

3.- Mezcle el sulfato de cobre con el agua bidestilada y agite hasta diluir la mezcla.

El trazador será el producto de mezclar sulfato de cobre con agua bidestilada.

A.3.2. Procedimiento de inyección del trazador

1.- Coloque el trazador en el dispositivo contenedor a través del cual será inyectado (By pass).

2.-Conecte el by pass al EDF, como se muestra en la figura.

3.- Una vez que se ha determinado la permeabilidad y sigue fluyendo fluido a través del medio de estudio, proceda ha cerrar la válvula (Va).

4.- Cambie la dirección del flujo girando la válvula de 4 pasos (V4pasos) 180°.

5.- Habrá la válvula (Vb) una vez alcanzada la presión de inyección.

6.- Habrá la válvula (Vc) una vez alcanzada la presión de inyección, en esté momento el trazador empieza a entrar al sistema.

Figura A.3.1. Arreglo del by pass y secuencia para inyectar el trazador.

ANEXO 3. PROCEDIMIENTO PREPARACIÓN, INYECCIÓN Y MUESTREO DEL TRAZADOR

A.3.3. Procedimiento de muestreo del trazador

Inicio de muestreo: 1 min. después de inyectar el trazador,

Tiempo de muestreo: cada 15 seg.

Duración de muestreo: 1 min.

Número de muestreos: 60

A.4.1. Validación Experimental

Una de las propiedades más importantes del método de medición empleado es que debe de estar libre de errores sistemáticos y aleatorios. Esto significa que el valor evaluado para el mensurando debería ser el valor verdadero. Sin embargo, aunque no existieran errores sistemáticos, los errores aleatorios hacen poco probable que la cantidad medida sea exactamente igual que la cantidad patrón conocida. En ocasiones estos errores son detectados por simple inspección, sin embargo, en otras no, al tener orígenes muy distintos en la técnica experimental y el equipo utilizado. Esto afecta a la precisión y reproducibilidad. Para decidir si la diferencia entre la cantidad medida y la cantidad conocida se puede atribuir a estos errores sistemáticos y principalmente aleatorios, se aplican las pruebas de validación (prueba estadística de contraste de significación). Como su nombre indica, está aproximación contrasta si son significativas las diferencias entre los resultados, o si se pueden justificar solo por variaciones aleatorias.

Al hacer un contraste de significación se prueba la veracidad de una hipótesis denominada Hipótesis nula, denotada por Ho. Se adopta como hipótesis nula aquella mediante la cual un método de medición no está sujeto a errores sistemáticos. El término nulo es empleado para indicar que no hay otra diferencia entre el valor observado y el conocido, que la atribuible a la variación aleatoria. Suponiendo que está hipótesis nula es verdadera, la teoría estadística se puede emplear para calcular la probabilidad de que la diferencia observada (o una superior a ella) entre la medida muestral, \bar{x} , y el valor verdadero μ , se deba solamente a errores aleatorios. Cuanto mas pequeña sea la probabilidad de que la diferencia observada ocurra por azar. menos probable será que la hipótesis nula sea verdadera. Normalmente la hipótesis nula se rechaza cuando la probabilidad de que dicha diferencia observada ocurra por azar es menor que 1 en 20 veces (es decir 0.05 o 5%). En esté caso se dice que la diferencia es significativa al nivel 0.05 (ó 5%). Utilizando esté nivel de significación se rechaza, en promedio, la hipótesis nula, aunque sea de hecho verdadera, 1 de cada 20 veces. Para estar mas seguros de que se toma la decisión adecuada, se maneja también un nivel de significación mas pequeño, normalmente 0.01 ó 0.001 (1% ó 0.01%).

Para evaluar y cuantificar la calidad de los resultados obtenidos en esté trabajo, se procedió a realizar la validación del estudio experimental, a través de un análisis de veracidad y precisión, considerando los aspectos anteriormente mencionados, de acuerdo a ISO 5725 *Accuracy* (*trueness and precision*) of measurement methods and *results* (parte 1 a 6).

Entendiendo como veracidad, el grado de concordancia existente entre el valor medio del mensurando obtenido de una gran serie de resultados de ensayo y el valor aceptado como verdadero. Para el caso de estudio, el mensurando es la permeabilidad registrada por el EDF, en tanto, el valor verdadero es el valor teórico basado en los resultados de la simulación matemática. La veracidad se expresa en términos del sesgo o desviación (BIAS).

La precisión es el grado de concordancia entre resultados de ensayo independientes obtenidos en las condiciones determinadas para hacer al experimento repetible y reproducible r&R.

A.4.2. Consideraciones para el estudio estadístico

Incertidumbre: Tipo A (atribuible solo a la medición, solo son considerados errores aleatorios)

Mensurando: Permeabilidad.

Condiciones de la medición:

- > Fluido: Agua bidestilada (viscosidad de 0.008046 cp)
- > Gasto: 2.5 cc/min
- Flujo: Laminar descendente, en medio poroso cilíndrico (radio de 0.5 *pulg.* y longitud de 2 *pulg.*).
- Presión de confinamiento: 2000 psi
- > Temperatura: 21°C
- > Difusores: Original y Propuesto

Numero de pruebas: 6 Numero de replicas por prueba: 10 Niveles: 2 geometrías de difusores Nivel de significáncia: Intervalo de confianza del 95% con una distribución normal.

La desviación estándar poblacional es considerada igual a la desviación estándar muestral, debido a que se trata de *n* mediciones no limitadas.

El análisis de los resultados implicó una serie de pruebas de escrutinio, Mendel (h y k), Cochran y Grubbs. El Algoritmo del método empleado para validar los resultados experimentales aparece al final de esté anexo

Los estadísticos de Mendel permitieron investigar cuidadosamente la existencia potencial de los valores aberrantes. En tanto el estadístico de Cochran sirvió para probar la homogeneidad de la varianza. Donde la hipótesis rechaza que la varianza más grande no sea un valor anómalo, si el valor critico de Cochran es mayor que el valor adecuado de experimentos. Cuando se rechaza la hipótesis nula, se descartan los resultados procedentes del experimento en cuestión. Después de estas pruebas se aplicó el estadístico de Grubbs, el cual compara la desviación del valor sospechoso y la media muestral, con la desviación estándar de la muestra. Se aplica en primer lugar como contraste simple de valores anómalos y en su forma modificada como contraste de replicas anómalas. Está serie de contrastes es recomendada por ISO. Una vez que se aplican las tres pruebas de escrutinio, se puede proceder a los cálculos de Precisión y Veracidad.

En la precisión se evalúa la repetibilidad y reproducibilidad del experimento y en la veracidad se determina el sesgo y su incertidumbre.

Datos experimentales.		Y = Mensurando
		i = l aboratorio
p n' m		$n = N_{ij}$
$\sum \sum \sum Y_{ikj}$	1	
i=1 $k=1$ $j=1$	1	k = Replica por laboratorio
		n' = Número de replicas por laboratorio
		j = Niveles
		m = Número total de niveles
Estadísticos básicos de replicas por lab	oratorio	
$\overline{Y}_{ij} = \sum_{k=1}^{n} \frac{Y_{ik}}{n}$	2	Promedio de replicas por laboratorio (i) y nivel (j) .
$\sum_{n=1}^{n'} (x_n - \overline{x_n})^2$		
$S_{ij}^{2} = \frac{\sum_{k=1}^{n} (Y_{ik} - Y_{i})}{n-1}$	3	Varianza de replicas por laboratorio y nivel $\left(j ight)$
Se obtienen tablas		
<i>D m</i>		
$\sum_{i}\sum_{j}\sum_{i}\sum_{j}\overline{Y}_{ij}$	4	Medios del Mensurando
$\sum_{j=1}^{p}\sum_{i=1}^{m}S_{ij}^{2}$	5	Varianzas del Mensurando
i j		
Estadísticos de Mendel		
$\sum n'_{ii} \overline{Y}_{ii}$		
$\overline{\overline{Y}} = \overline{\overline{\overline{y}}}$	0	Promedio de promedios por nivel (j) .
$\sum_{n=1}^{p} n' $	6	
$\sum_{j=1}^{j} i^{j} y^{j}$		
$S \sqrt{n}$		
$K_{ij} = \frac{S_{ij} \sqrt{P_j}}{\sqrt{p_j}}$		
$\sum_{i=1}^{p} S_{ii}^{2}$	7	
$\bigvee \sum_{i=1}^{2} $		
$Y_{ii} - \overline{\overline{Y}_j}$		
$n_{ij} = \frac{1}{1 + \frac{p_j}{p_j}}$		
$\sqrt{\frac{1}{(p_j-1)}}\sum_{i=1}^{2} (Y_{ij} - Y_j)^2$	8	
	\sim	

٦

A.4.3. ALGORITMO DE EVALUACIÓN DE MÉTODOS DE MEDICIÓN INICIO

Veracidad.		
$\gamma = \frac{S_R}{S_r}$	18	Relación <i>r</i> & <i>R</i> Repetibilidad y Reproducibilidad.
BIAS (Sesgo)		
$\overset{<}{\delta} = \overline{Y}_{j} - \mu_{j}$	19	μ_j = valor verdadero. (teórico por nivel)
$A = 1.95 \sqrt{\frac{n'(\gamma^2 - 1) + 1}{\gamma^2 P_n}}$	20	
$A_{SR} = A \times SR$	21	
Incertidumbre del sesgo.		
$\delta - A_{SR}$	22	
$\dot{\delta} + A_{SR}$	23	

A.4.4. Datos y resultados del algoritmo de evaluación del método de medición

Los valores de referencia aceptados para el gasto = $2.5 \text{ cm}^3/\text{min}$, viscosidad agua bidestilada = 0.008046 cp, medio poroso = 1° Diam. x 2° long. y presión de confinamiento de 2000 psi, que fueron obtenidos a partir de la simulación numérica en los dos niveles son los siguientes:

Tabla A 4 1	Valor de	referencia	acentado	Permeabilidad	(mD)	•
1 4514 7.4.1	valut uc	referencia	accplade.	r crificabilidad	(1110)	1

Niveles	1. Difusor original	2. Difusor propuesto
Valor de referencia aceptado K (mD)	3.3087	3.2678

La siguiente tabla muestra los ensayos y valores de permeabilidad medidos en el EDF para el caso del difusor original.

Permeabilidad [mD]					
	E	Ensayos - Dif	fusor origina		
1	2	3	4	5	6
3.76470228	3.48057381	3.39516095	3.92490238	3.69012797	3.58033214
3.76470228	3.50260275	3.41611874	3.89726222	3.66279369	3.55457436
3.71416936	3.48057381	3.43733686	3.87000864	3.63586138	3.50415486
3.59357945	3.48057381	3.43733686	3.84313358	3.60932225	3.47947771
3.54750792	3.52491233	3.39516095	3.84313358	3.58316774	3.50415486
3.57039507	3.45882022	3.41611874	3.84313358	3.58316774	3.50415486
3.59357945	3.43733686	3.41611874	3.81662921	3.43386909	3.47947771
3.59357945	3.43733686	3.41611874	3.84313358	3.43386909	3.4551457
3.50260275	3.45882022	3.41611874	3.84313358	3.48223344	3.50415486
3.45882022	3.43733686	3.41611874	3.84313358	3.45788216	3.53900466

Tabla A.4.2a Difusor original: Valores de permeabilidad medidos en el EDF.

Tabla A.4.2b Difusor	propuesto: Valores	le permeabilidad	I medidos en el EDF.
----------------------	--------------------	------------------	----------------------

Permeabilidad [mD]					
	Er	nsayos - Difu	sor Propues	to	
1	2	3	4	5	6
3.54750792	3.41611874	3.45882022	3.45882022	3.746039	3.92131615
3.57039507	3.35400749	3.37445875	3.41611874	3.7178733	3.92131615
3.66497507	3.41611874	3.37445875	3.35400749	3.69012797	3.98456319
3.54750792	3.41611874	3.39516095	3.41611874	3.55738956	4.08335401
3.50260275	3.43733686	3.31383973	3.35400749	3.53197963	4.22295586
3.37445875	3.39516095	3.35400749	3.35400749	3.50693013	4.11738196
3.37445875	3.39516095	3.35400749	3.31383973	3.45788216	4.0498839
3.39516095	3.35400749	3.37445875	3.27462269	3.53197963	4.11738196
3.39516095	3.45882022	3.37445875	3.27462269	3.50693013	4.01695801
3.35400749	3.48057381	3.43733686	3.27462269	3.53197963	4.12042868

Tabla A.4.3. Valores de las medias de la permeabilidad medidas en el EDF en los dos niveles utilizados en esté estudio de repetibilidad y reproducibilidad.

	Niveles			
	DO	DP		
Ensayo 1	3.61036382	3.47262356		
Ensayo 2	3.46988875	3.4123424		
Ensayo 3	3.41617081	3.38110077		
Ensayo 4	3.85676039	3.3490788		
Ensayo 5	3.55722945	3.57791111		
Ensayo 6	3.51046317	4.05555399		

Medias del Mensurado

Tabla A.4.4. Valores de las varianzas de la permeabilidad medidas en el EDF en los dos niveles utilizados en esté estudio de repetibilidad y reproducibilidad.

	Niv	Niveles		
	DO	DP		
Ensayo 1	0.01987755	0.02080316		
Ensayo 2	0.00157284	0.00297591		
Ensayo 3	0.00035577	0.00311382		
Ensayo 4	0.00183678	0.00779554		
Ensayo 5	0.01699558	0.01833656		
Ensayo 6	0.01987755	0.01665029		

Varianza del Mensurado

Resultados de los valores de h

Figura. A.4.1 Gráfica Permeabilidad: valores h agrupados por pares de ensayos, valor de significáncia 1% @ 1.87, 5% @ 1.66, la línea punteada indica el límite superior admisible para valores de h.

Resultados de los valores de k

Figura. A.4.2. Gráfica Permeabilidad: valores k agrupados por pares de ensayos, valor de significáncia 1% @ 1.47, 5% @ 1.33, la línea punteada indica el límite superior admisible para valores de k.

Resultados de los valores de Cochran

Tabla A.4.5a. Los valores calculados cumplen con el criterio de selección de Cochran

C estadístico de Cochran, 1% 0.676, 5% 0.600		
Nivel DO @ 4 ensayos, 10 replicas		
DO Aberrantes		
0.40436934	0	

Tabla A.4.5b. Los valores calculados cumplen con el criterio de selección de Cochran

C estadístico de Cochran, 1% 0.520 5% 0.445							
Nivel DP @ 6 ensayos, 10 replicas							
DP	Aberrantes						
0.298573049	0						

Resultados de los valores de Grubbs

Tabla A.4.6a. Los valores calculados cumplen con el criterio de selección de Grubbs.

Grubbs Máximos, 1%- 1.973, 5% 1.887							
Nivel DO @ 6 ensayos, 10 replica							
DO	Aberrantes						
1.8404956	0						

Tabla A.4.6b. Los valores calculados cumplen con el criterio de selección de Grubbs.

Grubbs Máximos, 1%- 1.764, 5% 1.715							
Nivel DP @ 5 ens	Nivel DP @ 5 ensayos, 10 replicas						
DP	Aberrantes						
1.5436157	0						

Estimación de las desviaciones típicas de repetibilidad, reproducibilidad y del sesgo de medición:

Difusor	Gasto [cc/min]	Caso	Caída Presión [psi]	Permeabilidad [mD]	Volumen Muerto %	Volumen Pistón %	VM/VP %	TCAL	VARO	Dispersión Axial
Original	2.5	Experimental	139.64	3.5417	0.2109	0.356	0.432	449.32	0.3930	0.1965
Original	2.5	Simulación	138.88	3.5576	0.3458	0.0896	0.5646	66.9378	0.6098	0.3049
Prototipo	2.5	Simulación	138.66	3.5633	0.3129	0.1336	0.5535	22.459	0.7774	0.3887

Tabla A.4.7. Resultados de permeabilidad experimentales vs. simulación numérica.

Tabla A.4.8. Permeabilidad: Estimación de las desviaciones típicas de repetibilidad y reproducibilidad, así como el sesgo del método de medición.

		Nive	eles
		DO	DP
Varianza de repetibilidad	Sr ²	0.00075308	0.01161255
Desviación típica de repetibilidad	Sr	0.02744227	0.10776152
Varianza de los campos de velocidades	Sd ²	2.42508071	0.81437142
Varianza entre los campos de velocidades	SL ²	0.24243276	0.08027589
Número de réplicas	n′	10	10
Varianza de reproducibilidad	SR ²	0.24318584	0.09188843
Desviación típica de reproducibilidad	SR	0.49313877	0.30313105
Veracidad (relación entre Sr y SR)	γ	17.9700418	2.81298034
	А	0.87085042	0.7494451
	A*SR	0.4294501	0.22718008
Sesgo	δ΄	0.26144607	0.17081133
Incortidumbro del conco	δ´ - ASR	-0.16800403	-0.05636875
incertidumbre del sesgo	δ´+ ASR	0.69089617	0.39799141
Valor medido (promedio de promedios por	=		
nivel)	У	3.92	3.4386
Valor verdadero (teórico por nivel)	μ´	3.3087	3.2678

Gráficas de la repetibilidad y reproducibilidad

Figura. A.4.3. Gráfica Permeabilidad: Desviaciones típicas de repetibilidad.

Figura. A.4.4. Gráfica Permeabilidad: Desviaciones típicas de reproducibilidad.

A.4.5. Discusión de resultados

- Para el análisis de Mendel se descartaron únicamente los valores aberrantes mayores al 1% de significáncia, para h 1.87 y k 1.47, es decir los datos correspondientes al nivel DP del ensayo 6; del nivel DO también se descartaron el ensayo 1 y 5; ver la gráfica A.4.1 y A.4.2.
- Al llevar a cabo el análisis estadístico de Cochran no se descarto ningún dato; ver las tablas A.5a y A.5b.
- El análisis estadístico de Grubbs tampoco descarto ningún dato; ver las tablas A.6a y A.6b.

A.4.6. Precisión y veracidad

La veracidad del método de medición del EDF con respecto al mensurado de permeabilidad, se evaluó bajo el intervalos de confianza del 95% del sesgo, en dos niveles o configuraciones geométricas (difusor original "DO" y difusor prototipo "DP"), que actúan sobre el mismo medio poroso a las mismas condiciones de medición planteadas al inicio. Estos intervalos de confianza cubren el valor cero. El sesgo del método de medición del EDF es despreciable para las dos configuraciones geométricas. Los valores de Sr y SR pequeños nos indican que el método de medición es repetible y reproducible.

A.4.7. Recomendaciones

Debido a limitaciones de disponibilidad del EDF, no fue posible llevar a cabo un mayor número de experimentaciones para encontrar el factor de corrimiento que existe entre las curvas de DTR obtenidas experimentalmente con respecto a las obtenidas numéricamente, véase tabla A.4.7, lo cual resultaría benéfico para el Laboratorio de perforación pudiendo ofrecer un análisis predictivo a un menor tiempo y costo. Por lo es recomendable que el área de interés le de seguimiento a este trabajo encontrando el factor de corrimiento.

		K										
р	h					N						
1		2	3	4	5	6	7	8	9	10		
3	1.15	1.71	1.64	1.58	1.53	1.49	1.46	1.43	1.41	1.39		
4	1.49	1.91	1.77	1.67	1.60	1.55	1.51	1.48	1.45	1.43		
5	1.72	2.05	1.85	1.73	1.66	1.59	1.55	1.51	1.48	1.46		
6	1.87	2.14	1.90	1.77	1.68	1.62	1.57	1.53	1.50	1.47		
7	1.98	2.20	1.94	1.79	1.70	1.63	1.58	1.54	1.51	1.48		
8	2.06	2.25	1.97	1.81	1.71	1.65	1.59	1.55	1.52	1.49		
9	2.13	2.29	1.99	1.82	1.73	1.66	1.60	1.56	1.53	1.50		
10	2.18	2.32	2.00	1.84	1.74	1.66	1.61	1.57	1.53	1.50		
11	2.22	2.34	2.01	1.85	1.75	1.67	1.62	1.57	1.54	1.51		
12	2.25	2.36	2.02	1.85	1.75	1.68	1.62	1.58	1.54	1.51		
13	2.27	2.38	2.03	1.86	1.76	1.68	1.63	1.58	1.55	1.52		
14	2.30	2.38	2.04	1.87	1.76	1.69	1.63	1.58	1.55	1.52		
15	2.32	2.41	2.05	1.87	1.76	1.69	1.63	1.59	1.55	1.52		
16	2.33	2.42	2.05	1.88	1.77	1.69	1.63	1.59	1.55	1.52		
17	2.35	2.44	2.06	1.88	1.77	1.69	1.64	1.59	1.56	1.52		
18	2.36	2.44	2.06	1.88	1.77	1.70	1.64	1.59	1.56	1.52		
19	2.37	2.44	2.07	1.88	1.78	1.70	1.64	1.59	1.56	1.53		
20	2.39	2.45	2.07	1.89	1.78	1.70	1.64	1.60	1.56	1.53		
21	2.39	2.46	2.07	1.89	1.78	1.70	1.64	1.60	1.56	1.53		
22	2.40	2.46	2.08	1.90	1.78	1.70	1.65	1.60	1.56	1.53		
23	2.41	2.47	2.08	1.90	1.78	1.71	1.65	1.60	1.56	1.53		
24	2.42	2.47	2.08	1.90	1.79	1.71	1.65	1.60	1.56	1.53		
25	2.42	2.47	2.08	1.90	1.79	1.71	1.65	1.60	1.56	1.53		
26	2.43	2.48	2.08	1.90	1.79	1.71	1.65	1.60	1.56	1.53		
27	2.44	2.48	2.09	1.90	1.79	1.71	1.65	1.60	1.56	1.53		
28	2.44	2.49	2.09	1.91	1.79	1.71	1.65	1.60	1.57	1.53		
29	2.45	2.49	2.09	1.91	1.79	1.71	1.65	1.60	1.57	1.53		
30	2.45	2.49	2.10	1.91	1.79	1.71	1.65	1.60	1.57	1.53		
p = nú n = N	mero to úmero o	otal de p de repliq	oruebas cas por	permea prueba	abilidad de perr	en un r neabilid	nivel dao ad en e	do. I mismo	o nivel.			

Tabla A 4.9. Indicadores de Mandel h y k al 1 % de significáncia.

			k										
р	h					п							
		2	3	4	5	6	7	8	9	10			
3	1.16	1.65	1.53	1.45	1.40	1.37	1.34	1.32	1.30	1.29			
4	1.42	1.76	1.59	1.50	1.44	1.40	1.37	1.35	1.33	1.31			
5	1.57	1.81	1.62	1.53	1.46	1.42	1.38	1.36	1.34	1.32			
6	1.66	1.85	1.64	1.54	1.48	1.43	1.40	1.37	1.35	1.33			
7	1.71	1.87	1.66	1.55	1.49	1.44	1.41	1.38	1.36	1.34			
8	1.75	1.88	1.67	1.56	1.50	1.45	1.41	1.38	1.36	1.34			
9	1.78	1.90	1.68	1.57	1.50	1.45	1.42	1.39	1.36	1.35			
10	1.80	1.90	1.68	1.57	1.50	1.46	1.42	1.39	1.37	1.35			
11	1.82	1.91	1.69	1.58	1.51	1.46	1.42	1.39	1.37	1.35			
12	1.83	1.92	1.69	1.58	1.51	1.46	1.42	1.40	1.37	1.35			
13	1.84	1.92	1.69	1.58	1.51	1.46	1.43	1.40	1.37	1.35			
14	1.85	1.92	1.70	1.59	1.52	1.47	1.43	1.40	1.37	1.35			
15	1.86	1.93	1.70	1.59	1.52	1.47	1.43	1.40	1.38	1.36			
16	1.86	1.93	1.70	1.59	1.52	1.47	1.43	1.40	1.38	1.36			
17	1.87	1.93	1.70	1.59	1.52	1.47	1.43	1.40	1.38	1.36			
18	1.88	1.93	1.71	1.59	1.52	1.47	1.43	1.40	1.38	1.36			
19	1.89	1.93	1.71	1.59	1.52	1.47	1.43	1.40	1.38	1.36			
20	1.89	1.94	1.71	1.59	1.52	1.47	1.43	1.40	1.38	1.36			
21	1.89	1.94	1.71	1.60	1.52	1.47	1.44	1.41	1.38	1.36			
22	1.89	1.94	1.71	1.60	1.52	1.47	1.44	1.41	1.38	1.36			
23	1.90	1.94	1.71	1.60	1.53	1.47	1.44	1.41	1.38	1.36			
24	1.90	1.94	1.71	1.60	1.53	1.48	1.44	1.41	1.38	1.36			
25	1.90	1.94	1.71	1.60	1.53	1.48	1.44	1.41	1.38	1.36			
26	1.90	1.94	1.71	1.60	1.53	1.48	1.44	1.41	1.38	1.36			
27	1.91	1.94	1.71	1.60	1.53	1.48	1.44	1.41	1.38	1.36			
28	1.91	1.94	1.71	1.60	1.53	1.48	1.44	1.41	1.38	1.36			
29	1.91	1.94	1.72	1.60	1.53	1.48	1.44	1.41	1.38	1.36			
30	1.91	1.94	1.72	1.60	1.53	1.48	1.44	1.41	1.38	1.36			
<i>p</i> = nú	mero to	tal de p	ruebas	permea	abilidad	en un r	nivel dad	0.					

Tabla A 4.10. Tabla de los indicadores de Mandel h y k al 5% de significáncia.

n = Número de replicas por prueba de permeabilidad en el mismo nivel.

	n =	= 2	n =	= 3	<i>n</i> =	= 4	n =	= 5	n	= 6
p	1%	5%	1%	5%	1%	5%	1%	5%	1%	5%
2	-	-	0.995	0.975	0.979	0.939	0.959	0.906	0.937	0.877
3	0.993	0.967	0.942	0.871	0.883	0.788	0.934	0.746	0.793	0.702
4	0.968	0.906	0.864	0.768	0.781	0.684	0.721	0.629	0.676	0.600
5	0.926	0.841	0.788	0.684	0.696	0.668	0.633	0.544	0.698	0.506
6	0.883	0.781	0.722	0.616	0.626	0.632	0.564	0.488	0.520	0.445
7	0.838	0.727	0.664	0.581	0.568	0.480	0.506	0.431	0.466	0.397
8	0.794	0.686	0.618	0.516	0.521	0.438	0.463	0.391	0.423	0.360
9	0.754	0.638	0.573	0.478	0.481	0.403	0.425	0.358	0.387	0.329
10	0.718	0.602	0.536	0.445	0.447	0.373	0.393	0.331	0.357	0.303
11	0.684	0.570	0.504	0.417	0.418	0.348	0.386	0.308	0.332	0.281
12	0.653	0.541	0.475	0.392	0.392	0.326	0.343	0.288	0.310	0.262
13	0.624	0.516	0.480	0.371	0.369	0.307	0.322	0.271	0.291	0.243
14	0.599	0.492	0.427	0.352	0.349	0.291	0.304	0.255	0.274	0.232
15	0.575	0.471	0.407	0.335	0.332	0.276	0.288	0.242	0.259	0.220
16	0.553	0.452	0.388	0.318	0.316	0.262	0.274	0.230	0.246	0.208
17	0.532	0.434	0.372	0.305	0.301	0.250	0.261	0.218	0.234	0.198
18	0.514	0.418	0.356	0.293	0.288	0.240	0.249	0.209	0.223	0.189
19	0.496	0.403	0.343	0.281	0.278	0.230	0.238	0.200	0.214	0.181
20	0.480	0.389	0.330	0.270	0.265	0.220	0.229	0.192	0.205	0.174
21	0.466	0.377	0.318	0.261	0.256	0.212	0.220	0.185	0.197	0.167
22	0.450	0.365	0.307	0.252	0.248	0.204	0.212	0.178	0.189	0.160
23	0.437	0.354	0.297	0.243	0.238	0.197	0.204	0.172	0.182	0.155
24	0.426	0.343	0.287	0.236	0.230	0.191	0.197	0.166	0.176	0.149
25	0.413	0.334	0.278	0.228	0.222	0.185	0.190	0.160	0.170	0.144
26	0.402	0.325	0.270	0.221	0.216	0.178	0.184	0.155	0.164	0.140
27	0.391	0.316	0.262	0.216	0.209	0.173	0.178	0.150	0.159	0.135
28	0.382	0.308	0.255	0.209	0.202	0.168	0.173	0.146	0.154	0.131
29	0.372	0.300	0.248	0.203	0.196	0.164	0.168	0.142	0.150	0.129
30	0.363	0.293	0.241	0.198	0.191	0.159	0.164	0.138	0.145	0.124
31	0.355	0.286	0.235	0.193	0.186	0.155	0.159	0.134	0.141	0.120
32	0.347	0.280	0.229	0.188	0.181	0.151	0.156	0.131	0.138	0.117
33	0.339	0.273	0.224	0.184	0.177	0.147	0.151	0.127	0.134	0.114
34	0.332	0.267	0.218	0.178	0.172	0.144	0.147	0.124	0.131	0.111
35	0.325	0.262	0.213	0.176	0.168	0.140	0.144	0.121	0.127	0.108
36	0.318	0.256	0.208	0.172	0.165	0.137	0.140	0.118	0.124	0.106
37	0.312	0.251	0.204	0.166	0.161	0.134	0.137	0.116	0.121	0.103
38	0.306	0.246	0.200	0.164	0.157	0.131	0.134	0.113	0.118	0.101
39	0.300	0.242	0.196	0.161	0.154	0.129	0.131	0.111	0.116	0.098
40	0.294	0.237	0.192	0.158	0.151	0.126	0.128	0.108	0.114	0.092
p = núr	nero tota	al de pru	iebas pe	rmeabili	dad en i	un nivel	dado.			

Tabla A. 4.11. Tabla de los indicadores de Cochran al 1% y 5% de significáncia.

n = Número de replicas por prueba de permeabilidad en el mismo nivel.

	máximo	o mínimo	dos máximos o dos mínimos				
р	Superior 1%	Superior 5%	Inferior 1%	Inferior 5%			
3	1.155	1.155					
4	1.496	1.484	0.000 0	0.000 2			
5	1.764	1.715	0.001 8	0.000 0			
6	1.973	1.887	0.011 6	0.034 9			
7	2.139	2.020	0.030 8	0.070 8			
8	2.274	2.126	0.056 3	0.130 1			
9	2.387	2.215	0.085 1	0.149 2			
10	2.482	2.280	0.115 8	0.186 4			
11	2.504	2.355	0.144 6	0.221 3			
12	2.636	2.412	0.173 8	0.253 7			
13	2.699	2.462	0.201 6	0.283 6			
14	2.755	2.507	0.228 0	0.313 2			
15	2.806	2.549	0.253 0	0.336 7			
16	2.852	2.565	0.276 7	0.360 3			
17	2.884	2.620	0.298 0	0.382 2			
18	2.932	2.651	0.320 0	0.402 5			
19	2.968	2.681	0.339 6	0.421 4			
20	3.001	2.709	0.358 6	0.439 3			
21	3.031	2.733	0.370 1	0.455 6			
22	3.060	2.758	0.392 7	0.471 1			
23	3.087	2.781	0.408 5	0.485 7			
24	3.112	2.802	0.423 4	0.499 4			
25	3.135	2.822	0.437 6	0.512 3			
26	3.157	2.843	0.451 0	0.524 5			
27	3.178	2.859	0.463 8	0.536 0			
28	3.199	2.876	0.475 9	0.547 0			
29	3.218	2.893	0.487 5	0.557 4			
30	3.236	2.908	0.498 5	0.567 2			
31	3.253	2.924	0.508 1	0.576 0			
32	3.270	2.938	0.518 2	0.585 6			
33	3.286	2.952	0.528 8	0.594 1			
34	3.301	2.966	0.538 3	0.602 3			
35	3.318	2.979	0.546 9	0.610 1			
36	3.330	2.993	0.555 4	0.617 6			
37	3.343	3.003	0.563 8	0.624 7			
38	3.356	3.014	0.573 4	0.631 6			
39	3.369	3.025	0.578 9	0.638 2			
40	3.381	3.036	0.586 2	0.644 5			
p = número total	de pruebas perme	eabilidad en un ni	vel dado.				
\hat{n} = Número de r	replicas por prueba	a de permeabilida	d en el mismo niv	el.			

Tabla A. 4.12. Tabla de los indicadores de Grubb al 1%	y 5% de significáncia.
--	------------------------

ANEXO 5. RESULTADOS DE LA SIMULACIÓN NUMÉRICA DE LA FRACCIÓN MASA CON RESPECTO AL TIEMPO PARA LOS CASOS EN QUE LA GEOMETRÍA EMPLEADA FUE CON RESPECTO AL DIFUSOR 1.

Histói	rico de la fracci	ón masa	de trazador par	ra los casos en que se simulo con el Difusor 1				
Caso	o 2/16"-1A	Cas	o 1/16"-1B	Cas	o 3/16"-1C	Caso	o 1/32"-1D	
Tiempo	Concentración	Tiempo	Concentración	Tiempo	Concentración	Tiempo	Concentración	
[min]	[gr/l]	[min]	[gr/l]	[min]	[gr/l]	[min]	[gr/l]	
0	0	0	0	0	0	0	0	
1	0.007107207	1	0.001555366	1	0.003698094	1	0.000100005	
2	0.007860766	2	0.001549012	2	0.004893358	2	8.74677E-05	
3	0.021322586	3	0.004612199	3	0.016008416	3	0.000210047	
4	0.037185241	4	0.008452599	4	0.032055501	4	0.000382003	
5	0.054106802	5	0.013034815	5	0.051985171	5	0.000574665	
6	0.07110364	6	0.018177342	6	0.096514024	6	0.000788515	
7	0.081586763	7	0.022236682	7	0.096138179	7	0.000931507	
8	0.085766003	8	0.02549262	8	0.11262602	8	0.001034815	
9	0.086667277	9	0.027972465	9	0.12439064	9	0.001113672	
10	0.086116016	10	0.029710839	10	0.13189736	10	0.001176692	
11	0.084952623	11	0.030889893	11	0.13595054	11	0.001243903	
12	0.083556689	12	0.031638213	12	0.13744979	12	0.001290419	
13	0.082127199	13	0.032091375	13	0.13717307	13	0.001320112	
14	0.080652863	14	0.03233188	14	0.13568985	14	0.001352731	
15	0.079221137	15	0.032430138	15	0.13342321	15	0.001365032	
16	0.077808991	16	0.032434605	16	0.13066758	16	0.001373923	
17	0.076440603	17	0.032373864	17	0.12758854	17	0.001388675	
18	0.075104207	18	0.032266688	18	0.12436356	18	0.001401262	
19	0.07377097	19	0.032132994	19	0.12105066	19	0.001405683	
20	0.072489873	20	0.031979073	20	0.11771717	20	0.0014227	
21	0.071234427	21	0.03181253	21	0.11443714	21	0.001426311	
22	0.070009232	22	0.031636726	22	0.1112164	22	0.001436126	
23	0.068792373	23	0.031456247	23	0.10805204	23	0.001444665	
24	0.067597702	24	0.031273067	24	0.10500729	24	0.001474188	
25	0.066419102	25	0.031088475	25	0.10200637	25	0.001483864	
26	0.065262973	26	0.030902332	26	0.099135861	26	0.001509746	
27	0.06413807	27	0.030716645	27	0.096334636	27	0.00151949	
28	0.063028261	28	0.030531669	28	0.093612723	28	0.001528945	
29	0.061942097	29	0.030347927	29	0.091010921	29	0.001538719	
30	0.060878549	30	0.030165792	30	0.088475049	30	0.001557649	
31	0.059837431	31	0.029986802	31	0.086029299	31	0.00156926	
32	0.058818012	32	0.029807458	32	0.083665699	32	0.001580464	
33	0.057819206	33	0.029630151	33	0.081365876	34	0.001599166	
34	0.056841049	34	0.029455198	34	0.079153508	35	0.001608415	
35	0.055883896	35	0.029281987	35	0.077028103	36	0.00161607	
36	0.054946721	36	0.029110512	36	0.074941665	37	0.001616553	
37	0.054028761	37	0.028940946	37	0.072950587	38	0.001626831	
38	0.053129431	38	0.028773084	38	0.070997	39	0.001627391	
39	0.052249398	39	0.028607057	39	0.06913317	40	0.001640588	
40	0.051387891	40	0.028442713	40	0.067304052	41	0.001674511	

Tabla A. 5.1. Resultados de la situación numérica caso: difusor 1.

ANEXO 5. RESULTADOS DE LA SIMULACIÓN NUMÉRICA DE LA FRACCIÓN MASA CON RESPECTO AL TIEMPO PARA LOS CASOS EN QUE LA GEOMETRÍA EMPLEADA FUE CON RESPECTO AL DIFUSOR 1.

Caso 2/16"-1A		Caso 1/16"-1B		Cas	o 3/16"-1C	Caso 1/32"-1D		
Tiempo	Concentración	Tiempo	Concentración	Tiempo	Concentración	Tiempo	Concentración	
[min]	[gr/l]	[min]	[gr/l]	[min]	[gr/l]	[min]	[gr/l]	
41	0.050543964	41	0.028281165	41	0.065557629	42	0.001681161	
42	0.049717598	42	0.02811981	42	0.063843556	43	0.001716032	
43	0.048908748	43	0.027960442	43	0.062206075	44	0.001716342	
44	0.048120927	44	0.027803592	44	0.060591355	45	0.001719801	
45	0.047351833	45	0.027646948	45	0.059058566	46	0.001755772	
46	0.04659196	46	0.027491903	46	0.057569921	47	0.001775063	
47	0.045854256	47	0.02733838	47	0.056107081	48	0.001791204	
48	0.045123171	48	0.027186612	48	0.054712273	49	0.001790704	
49	0.044409137	49	0.027036363	49	0.053347409	50	0.001789707	
50	0.043707784	50	0.026887694	50	0.052038845	51	0.00180645	
51	0.043021355	51	0.026741879	51	0.050747693	52	0.001816352	
52	0.042347614	52	0.026596069	52	0.049515896	53	0.001832019	
53	0.041689098	53	0.026451902	53	0.048320297	54	0.001840403	
54	0.041043241	54	0.026309226	54	0.047137741	55	0.001839446	
55	0.040410072	55	0.026169298	55	0.04601568	56	0.001852558	
56	0.03980393	56	0.026028989	56	0.044923648	57	0.001859715	
57	0.039196484	57	0.025891762	57	0.043864127	58	0.001873762	
58	0.038600862	58	0.025755739	58	0.042814851	59	0.001890576	
59	0.038017295	59	0.025621019	59	0.041814063	60	0.001940772	
60	0.037444696	60	0.025487579	60	0.040841576	61	0.001958931	
61	0.036883816	61	0.025354169	61	0.039896481	62	0.001976635	
62	0.036333334	62	0.025222208	62	0.038983107	63	0.001984346	
63	0.035793938	63	0.025091629	63	0.038095023	64	0.002003819	
64	0.035264626	64	0.024962569	64	0.037232108	65	0.002027437	
65	0.034746636	65	0.024834767	65	0.036391459	66	0.002047026	
66	0.034238104	66	0.024707893	66	0.035560638	67	0.002062785	
67	0.033739679	67	0.024582308	67	0.034772057	68	0.002071404	
68	0.033250477	68	0.024458027	68	0.034004334	69	0.002078385	
69	0.032771304	69	0.024335206	69	0.033257127	70	0.002086527	
70	0.032301296	70	0.024213217	70	0.032530401	71	0.002113116	
71	0.031840608	71	0.024092712	71	0.031824168	72	0.002144613	
72	0.031388953	72	0.023973307	72	0.031136701	73	0.002150442	
73	0.030945657	73	0.023854893	73	0.03046805	74	0.00221275	
74	0.030510928	74	0.023737613	74	0.02981809	75	0.002268877	
75	0.030084381	75	0.023621425	75	0.029185878	76	0.002297697	
76	0.029665604	76	0.023506368	76	0.028570434	77	0.002340112	
77	0.029254057	77	0.023392482	77	0.02797148	78	0.002364736	
78	0.028858535	78	0.023279566	78	0.027388455	79	0.002373852	
79	0.028470268	79	0.023167819	79	0.026820727	80	0.00238304	
80	0.028091565	80	0.023057351	80	0.02626802	81	0.002402991	
Case	o 2/16"-1A	Cas	o 1/16"-1B	Caso 3/16"-1C		Caso	Caso 1/32"-1D	
--------	---------------	--------	---------------	---------------	---------------	--------	---------------	--
Tiempo	Concentración	Tiempo	Concentración	Tiempo	Concentración	Tiempo	Concentración	
[min]	[gr/l]	[min]	[gr/l]	[min]	[gr/l]	[min]	[gr/l]	
81	0.027712245	81	0.022948911	81	0.025730029	82	0.002399843	
82	0.027338671	82	0.022840448	82	0.025205797	83	0.002415998	
83	0.026977753	83	0.022732785	83	0.024692398	84	0.002424787	
84	0.026616784	84	0.022626249	84	0.02419246	85	0.002444282	
85	0.026269261	85	0.022520702	85	0.023705624	86	0.002452506	
86	0.025921427	86	0.022417251	86	0.023233442	87	0.002449476	
87	0.025580117	87	0.022314237	87	0.022769913	88	0.00245705	
88	0.025244458	88	0.02221109	88	0.022318916	89	0.002468352	
89	0.024921197	89	0.022110224	89	0.021879377	90	0.002505633	
90	0.024600098	90	0.022009078	90	0.021450877	91	0.002538815	
91	0.024282673	91	0.021909244	91	0.021035166	92	0.002559066	
92	0.0239754	92	0.021811195	92	0.020626405	93	0.002579111	
93	0.02367322	93	0.021712888	93	0.020228606	94	0.002575276	
94	0.023379028	94	0.021615783	94	0.01984301	95	0.002583843	
95	0.023090886	95	0.021519639	95	0.019466475	96	0.002603007	
96	0.022808438	96	0.021424351	96	0.019098347	97	0.002599534	
97	0.022526503	97	0.021330005	97	0.018739216	98	0.002609451	
98	0.022247262	98	0.021236528	98	0.018388577	99	0.00262769	
99	0.021972558	99	0.021144776	99	0.018044936	100	0.002657368	
100	0.021701865	100	0.021052755	100	0.017710282	101	0.002675355	
101	0.021435749	101	0.020962503	101	0.017385859	102	0.002671855	
102	0.021178555	102	0.020871911	102	0.017066481	103	0.002668411	
103	0.02092595	103	0.020783374	103	0.016757539	104	0.002689713	
104	0.020678088	104	0.020694483	104	0.016455006	105	0.002701813	
105	0.020434558	105	0.020607496	105	0.016159739	106	0.002758483	
106	0.020195531	106	0.020521129	106	0.015870733	107	0.002809045	
107	0.019960366	107	0.020434594	107	0.015588584	108	0.002841627	
108	0.019725095	108	0.020350032	108	0.015312822	109	0.002885503	
109	0.019493615	109	0.020265156	109	0.015041583	110	0.002900002	
110	0.019265331	110	0.020182153	110	0.014777823	111	0.002931633	
111	0.019049516	111	0.020098787	111	0.014521807	112	0.002981714	
112	0.0188317	112	0.020017214	112	0.014270852	113	0.002986152	
113	0.018617898	113	0.019936189	113	0.014025397	114	0.002983788	
114	0.01840567	114	0.019854914	114	0.013785334	115	0.003013116	
115	0.018198239	115	0.019775538	115	0.013549003	116	0.003024196	
116	0.017988991	116	0.019696567	116	0.013318741	117	0.003029662	
117	0.017791806	117	0.01961742	117	0.013095236	118	0.003026153	
118	0.017591609	118	0.01954007	118	0.012876078	119	0.003022748	
119	0.017401632	119	0.019462395	119	0.012661545	120	0.003019446	
120	0.017208317	120	0.019386403	120	0.012450104	121	0.003047157	

Case	o 2/16"-1A	Cas	o 1/16"-1B	Caso 3/16"-1C		Caso 1/32"-1D	
Tiempo	Concentración	Tiempo	Concentración	Tiempo	Concentración	Tiempo	Concentración
[min]	[gr/l]	[min]	[gr/l]	[min]	[gr/l]	[min]	[gr/l]
121	0.017024746	121	0.019310784	121	0.012245568	122	0.003042471
122	0.016844923	122	0.019235788	122	0.012043471	123	0.003056566
123	0.016661467	123	0.019161385	123	0.01184766	124	0.003052039
124	0.016486716	124	0.019087676	124	0.011655491	125	0.003065293
125	0.016315484	125	0.019013831	125	0.011467487	126	0.003074802
126	0.016140567	126	0.018940816	126	0.011281954	127	0.003071648
127	0.015973834	127	0.018868545	127	0.011102215	128	0.003080156
128	0.015807973	128	0.01879693	128	0.010925747	129	0.003076716
129	0.015643792	129	0.0187259	129	0.010752813	130	0.00309873
130	0.015481091	130	0.018655501	130	0.010583743	131	0.003095398
131	0.015320146	131	0.018585725	131	0.010417913	132	0.00310617
132	0.015162027	132	0.018517232	132	0.010255761	133	0.003113177
133	0.015004463	133	0.018449007	133	0.010096957	134	0.0031156
134	0.014849238	134	0.018381283	134	0.009941311	135	0.003113434
135	0.014696442	135	0.01831333	135	0.009788964	136	0.003110679
136	0.014545663	136	0.018246293	136	0.009639707	137	0.003107792
137	0.014397126	137	0.018179901	137	0.009493567	138	0.003104888
138	0.014250739	138	0.018114142	138	0.009350318	139	0.003101938
139	0.014106797	139	0.018048922	139	0.009210016	140	0.003099034
140	0.013965517	140	0.017984128	140	0.009072453	141	0.003096093
141	0.013825553	141	0.01792055	141	0.008936586	142	0.003093194
142	0.013687865	142	0.017857313	142	0.008803976	143	0.003090286
143	0.01355259	143	0.017793706	143	0.008674176	144	0.003087378
144	0.013419196	144	0.017730929	144	0.008546921	145	0.003084506
145	0.013286344	145	0.017668795	145	0.008422111	146	0.003081602
146	0.013156153	146	0.017607169	146	0.008299751	147	0.003078703
147	0.013030681	147	0.017545998	147	0.00817964	148	0.003075834
148	0.012908801	148	0.017485311	148	0.008061817	149	0.003072926
149	0.012788789	149	0.017425179	149	0.007946334	150	0.003070058
150	0.012670666	150	0.017366126	150	0.007832944	151	0.003067167
151	0.01255084	151	0.01730665	151	0.007721655	152	0.003064292
152	0.012435257	152	0.017247796	152	0.007612497	153	0.003061426
153	0.012318403	153	0.017190095	153	0.007505386	154	0.003058588
154	0.012206148	154	0.017132629	154	0.007400268	155	0.003055725
155	0.012095825	155	0.017075565	155	0.007297015	156	0.003052877
156	0.01198443	156	0.017018273	156	0.007195838	157	0.003050015
157	0.011874038	157	0.016962275	157	0.007096462	158	0.003047197
158	0.011764887	158	0.016905971	158	0.006999028	159	0.003044346
159	0.011657093	159	0.016850378	159	0.006903302	160	0.003041514
160	0.011550616	160	0.016795706	160	0.006809426	161	0.003038702

Case	o 2/16"-1A	Cas	o 1/16"-1B	Caso 3/16"-1C		Caso 1/32"-1D	
Tiempo	Concentración	Tiempo	Concentración	Tiempo	Concentración	Tiempo	Concentración
[min]	[gr/l]	[min]	[gr/l]	[min]	[gr/l]	[min]	[gr/l]
161	0.011445451	161	0.016740715	161	0.006717157	162	0.003035886
162	0.011341078	162	0.016686358	162	0.00662662	163	0.00303307
163	0.011237996	163	0.016632427	163	0.006537804	164	0.003030277
164	0.011136523	164	0.016578894	164	0.00645048	165	0.003027466
165	0.011036308	165	0.016526397	165	0.006364691	166	0.003024669
166	0.01093741	166	0.016473452	166	0.006280583	167	0.003021872
167	0.010839934	167	0.016421085	167	0.00619795	168	0.003019111
168	0.010743644	168	0.016369218	168	0.006116787	169	0.003016323
169	0.010649179	169	0.016317703	169	0.006040422	170	0.003013579
170	0.01055593	170	0.016266592	170	0.005961625	171	0.003010822
171	0.010463948	171	0.016215898	171	0.005884803	172	0.003008069
172	0.010373184	172	0.016165562	172	0.005808634	173	0.003005328
173	0.010282973	173	0.016115583	173	0.005734203	174	0.003002555
174	0.010194738	174	0.016066005	174	0.00566111	175	0.002999831
175	0.010107456	175	0.016016815	175	0.005589494	176	0.002997075
176	0.010020833	176	0.015967939	176	0.005519031	177	0.002994377
177	0.009935326	177	0.015919918	177	0.005449815	178	0.002991627
178	0.009850821	178	0.015871514	178	0.005384651	179	0.0029889
179	0.009767361	179	0.015823653	179	0.005317274	180	0.002986213
180	0.009684969	180	0.015776264	180	0.005251618	181	0.002983489
181	0.009604305	181	0.015729219	181	0.005187111	182	0.002980806
182	0.009523872	182	0.015682517	182	0.005123162	183	0.002978097
183	0.009444611	183	0.015636114	183	0.005060454	184	0.002975419
184	0.009366368	184	0.015590059	184	0.005001531	185	0.002972717
185	0.009289208	185	0.01554436	185	0.004940022	186	0.002970031
186	0.0092129	186	0.015498982	186	0.004880376	187	0.002967339
187	0.009137365	187	0.015453908	187	0.004824359	188	0.002964683
188	0.009062851	188	0.015409186	188	0.00476644	189	0.002961996
189	0.008989335	189	0.015364768	189	0.00470938	190	0.002959318
190	0.008919708	190	0.015320648	190	0.004653629	191	0.002956664
191	0.00884714	191	0.015276947	191	0.00459881	192	0.002953984
192	0.008776936	192	0.015233493	192	0.004547207	193	0.002951351
193	0.008707097	193	0.015190335	193	0.004493851	194	0.002948683
194	0.008638122	194	0.015147497	194	0.004441808	195	0.002946059
195	0.00856996	195	0.015104931	195	0.00439062	196	0.002943403
196	0.008502402	196	0.015062707	196	0.004340258	197	0.002940771
197	0.008435767	197	0.01502075	197	0.004290699	198	0.002938152
198	0.008369966	198	0.01497907	198	0.004241948	199	0.002935526
199	0.008304966	199	0.014937714	199	0.004193978	200	0.002932937
200	0.008240725	200	0.014896641	200	0.004146767	201	0.002930319
201	0.00817719	201	0.014855926	201	0.004100339	202	0.002927753
202	0.008114373	202	0.014815438	202	0.004054185	203	0.002925139
203	0.008052271	203	0.014775179	203	0.004010935	204	0.002922579
204	0.007990912	204	0.014735267	204	0.003965629	205	0.002919965

Case	o 2/16"-1A	Cas	o 1/16"-1B	Cas	o 3/16"-1C	Caso 1/32"-1D	
Tiempo	Concentración	Tiempo	Concentración	Tiempo	Concentración	Tiempo	Concentración
[min]	[gr/l]	[min]	[gr/l]	[min]	[gr/l]	[min]	[gr/l]
205	0.007930297	205	0.014695654	205	0.003923635	206	0.002917406
206	0.00787044					207	0.002914844
207	0.007811316					208	0.002912254
208	0.007752797					209	0.002909718
209	0.007694875					210	0.002907144
210	0.007637619					211	0.002904621
211	0.00758088					212	0.002902059
212	0.007525017					213	0.002899555
213	0.007469755					214	0.002897005
214	0.00741517					215	0.002894507
215	0.007361148					216	0.002891994
216	0.00730768					217	0.00288947
217	0.007254885					218	0.002887012
218	0.007202616					219	0.002884489
219	0.007150929					220	0.002882002
220	0.007099831					221	0.002879529
221	0.007049292					222	0.00287706
222	0.006999316					223	0.00287458
223	0.006949868					224	0.002872146
224	0.006900971					225	0.002869678
225	0.006852601					226	0.002867254
226	0.006804753					227	0.002864792
227	0.006757424					228	0.00286237
228	0.006710616					229	0.002859927
229	0.006664482					230	0.002857519
230	0.006618824					231	0.002855092
231	0.006573578					232	0.002852694
232	0.006528764					233	0.002850265
233	0.006484509					234	0.002847869
234	0.00644067					235	0.002845468
235	0.006397249					236	0.002843104
236	0.006354382					237	0.002840725
237	0.006311887					238	0.002838381
238	0.00626993					239	0.00283599
239	0.006228346					240	0.002833652
240	0.006187175					241	0.002831293
241	0.006146386					242	0.002828971
242	0.00610601					243	0.002826625
243	0.00606604					244	0.002824295
244	0.00602649					245	0.002821967
245	0.00598742					246	0.002819632
246	0.005948796					247	0.002817328
247	0.005910521					248	0.002815011
248	0.005871786					249	0.002812715

Caso 2/16"-1A		Caso 1/16"-1B		Caso 3/16"-1C		Caso 1/32"-1D	
Tiempo	Concentración	Tiempo	Concentración	Tiempo	Concentración	Tiempo	Concentración
[min]	[gr/l]	[min]	[gr/l]	[min]	[gr/l]	[min]	[gr/l]
249	0.005836337					250	0.002810423
250	0.005801224					251	0.002808148
251	0.005766647					252	0.002805873
252	0.005732378					253	0.0028036
253	0.005698451					254	0.002801345
254	0.005663213					255	0.002799101
255	0.005629558					256	0.002796849

Caso	: 2/16"-2A	Cas	o: 1/16"-2B	Caso:	3/16"-2C	Caso: 1/32"-2D	
Tiemno	Concentración	Tiemno	Concentración	Tiempo	Concentración	Tiemno	Concentración
[min]	[ar/l]	[min]	[ar/l]	[min]	[ar/l]	[min]	[ar/l]
0	0	0	0	1	0	0	0
1	0.019640926	1	0.02773864	2	0.02601076	1	0.001662201
2	0.024418475	2	0.028631719	3	0.06066414	2	0.001112793
3	0.064903907	3	0.05770383	4	0.10050207	3	0.003471527
4	0.11456526	4	0.087246925	5	0.14318164	4	0.006308743
5	0.16421768	5	0.11667003	6	0.18664534	5	0.009538349
6	0.21339193	6	0.14522934	7	0.23034634	6	0.013034899
7	0.24034347	7	0.14661655	8	0.2507869	7	0.015125383
8	0.24602643	8	0.14510514	9	0.25353342	8	0.01659972
9	0.24048977	9	0.14384829	10	0.25607792	9	0.01765951
10	0.22999033	10	0.14140962	11	0.253575	10	0.01838194
11	0.21788345	11	0.13861407	12	0.2476014	11	0.018861417
12	0.20590827	12	0.13535653	13	0.2392443	12	0.01916589
13	0.19427355	13	0.13185251	14	0.22927031	13	0.019343732
14	0.18321694	14	0.12816845	15	0.21852045	14	0.01943801
15	0.17279124	15	0.12441714	16	0.20751709	15	0.01947411
16	0.16298227	16	0.12066595	17	0.19646506	16	0.01947272
17	0.15366979	17	0.11696655	18	0.18559638	17	0.019446788
18	0.14498079	18	0.11332683	19	0.17519052	18	0.019405441
19	0.13674663	19	0.10975638	20	0.1652351	19	0.019353025
20	0.12899972	20	0.10631966	21	0.15571959	20	0.019292828
21	0.12178857	21	0.10294378	22	0.14670041	21	0.019229231
22	0.11502221	22	0.099608935	23	0.13810754	22	0.019162921
23	0.10862226	23	0.096442208	24	0.13004923	23	0.01909557
24	0.10264003	24	0.093366176	25	0.1224572	24	0.019026812
25	0.097016782	25	0.09037967	26	0.11534198	25	0.018959021
26	0.091725573	26	0.087508753	27	0.10862195	26	0.018890845
27	0.086707674	27	0.084689237	28	0.1022845	27	0.018822746
28	0.082006894	28	0.08201199	29	0.09635183	28	0.018755505
29	0.077551179	29	0.079411268	30	0.09079139	29	0.018688962
30	0.073312469	30	0.076899737	31	0.08555288	30	0.018622121
31	0.06938415	31	0.074472964	32	0.08060667	31	0.018556636
32	0.065687798	32	0.072130792	33	0.07600639	32	0.018490916
33	0.062207717	33	0.069878966	34	0.07166819	33	0.018426538
34	0.058931943	34	0.067689463	35	0.06758693	34	0.018361667
35	0.055782739	35	0.065591112	36	0.06374902	35	0.018298728
36	0.052841078	36	0.063570857	37	0.06014917	36	0.018234896
37	0.050032381	37	0.061616529	38	0.0567776	37	0.018172879
38	0.047412705	38	0.05973091	39	0.05361056	38	0.018110303
39	0.044942092	39	0.057910241	40	0.05062495	39	0.018048072

Tabla A. 6.1.Resultados de la situación numérica caso: difusor 2. Histórico de la fracción masa de trazador para los casos en que se simulo con el Difusor 2

Caso	: 2/16"-2A	Cas	o: 1/16"-2B	Caso:	3/16"-2C	Caso: 1/32"-2D	
Tiempo	Concentración	Tiempo	Concentración	Tiempo	Concentración	Tiempo	Concentración
[min]	[gr/l]	[min]	[gr/l]	[min]	[gr/l]	[min]	[gr/l]
40	0.042630415	40	0.056152973	41	0.04780068	40	0.017986989
41	0.040449891	41	0.054450683	42	0.04516365	41	0.017926605
42	0.038376406	42	0.052806169	43	0.0426437	42	0.017866163
43	0.036416687	43	0.051224604	44	0.04028825	43	0.017806809
44	0.03459537	44	0.049669944	45	0.03805916	44	0.017747883
45	0.032881353	45	0.048170835	46	0.03595892	45	0.017688725
46	0.031237071	46	0.046740931	47	0.03398826	46	0.017630767
47	0.029678652	47	0.04534271	48	0.03213615	47	0.017573634
48	0.028226197	48	0.044000432	49	0.03039406	48	0.017516684
49	0.026813786	49	0.042689368	50	0.02874823	49	0.017459437
50	0.025502155	50	0.041449405	51	0.02719072	50	0.017403264
51	0.024259282	51	0.040235136	52	0.02573758	51	0.01734772
52	0.023093315	52	0.039073676	53	0.02436562	52	0.017291894
53	0.021990824	53	0.037958849	54	0.02307782	53	0.017237194
54	0.020946037	54	0.03687337	55	0.02184776	54	0.01718235
55	0.01994177	55	0.035823371	56	0.02069	55	0.017128324
56	0.018993732	56	0.034795512	57	0.01959476	56	0.017075099
57	0.018097118	57	0.033813339	58	0.01855977	57	0.017021321
58	0.017236771	58	0.032860197	59	0.01758735	58	0.016968561
59	0.016421251	59	0.031926468	60	0.01667179	59	0.016915491
60	0.015644357	60	0.031037189	61	0.01580282	60	0.016863802
61	0.014909032	61	0.030167839	62	0.01497958	61	0.016812226
62	0.014209289	62	0.029318595	63	0.01420588	62	0.016760644
63	0.0135459	63	0.028504735	64	0.01347254	63	0.016710129
64	0.012916225	64	0.027709147	65	0.01277692	64	0.016660042
65	0.01231845	65	0.026939902	66	0.0121188	65	0.016609605
66	0.011751659	66	0.026206175	67	0.01149913	66	0.016559897
67	0.011213213	67	0.025491258	68	0.0109159	67	0.016510447
68	0.010701885	68	0.02480376	69	0.01036367	68	0.016461151
69	0.010216203	69	0.024130572	70	0.00983975	69	0.01641239
70	0.009750303	70	0.02348586	71	0.00934561	70	0.016363559
71	0.009322816	71	0.022860024	72	0.00887772	71	0.016315514
72	0.008908531	72	0.022254646	73	0.00843306	72	0.016267337
73	0.008513806	73	0.021665817	74	0.00801251	73	0.01622002
74	0.008137545	74	0.021095116	75	0.00761397	74	0.016172592
75	0.007779115	75	0.020538926	76	0.00724068	75	0.016126327
76	0.007437775	76	0.01999885	77	0.00688381	76	0.016079638
77	0.007109623	77	0.019478053	78	0.00654604	77	0.016034042
78	0.006808751	78	0.018975182	79	0.00622554	78	0.015988031
79	0.006510507	79	0.01848748	80	0.0059198	79	0.015942695
80	0.006238519	80	0.018012729	81	0.00563097	80	0.015897313
81	0.005973051	81	0.017552359	82	0.00535643	81	0.0158526
82	0.005725751	82	0.01710907	83	0.00509667	82	0.015808245
83	0.005486846	83	0.016671855	84	0.00484996	83	0.015764035
84	0.005257085	84	0.016247587	85	0.00461621	84	0.015720243

Caso	: 2/16"-2A	Cas	o: 1/16"-2B	Caso:	: 3/16"-2C	Caso: 1/32"-2D	
Tiempo	Concentración	Tiempo	Concentración	Tiempo	Concentración	Tiempo	Concentración
[min]	[gr/l]	[min]	[gr/l]	[min]	[gr/l]	[min]	[gr/l]
85	0.005042845	85	0.015837766	86	0.00439508	85	0.015676845
86	0.004835384	86	0.015441151	87	0.00418416	86	0.015633835
87	0.004637266	87	0.015057237	88	0.00398531	87	0.015591166
88	0.004447918	88	0.014685226	89	0.00379681	88	0.015548799
89	0.004266994	89	0.014320387	90	0.00361704	89	0.015506739
90	0.00409709	90	0.013967074	91	0.00344693	90	0.015464874
91	0.0039279	91	0.013625115	92	0.00328539	91	0.015423392
92	0.00377352	92	0.013291974	93	0.00313236	92	0.015382268
93	0.00362186	93	0.012969572	94	0.00298595	93	0.015341435
94	0.003480407	94	0.012653514	95	0.00284672	94	0.015300905
95	0.003343164	95	0.012346423	96	0.00271416	95	0.01526042
96	0.003211934	96	0.012051417	97	0.00258849	96	0.015220235
97	0.003086224	97	0.011761407	98	0.00246909	97	0.015180348
98	0.002965974	98	0.011483005	99	0.00235552	98	0.015140922
99	0.002851858	99	0.011211099	100	0.00224764	99	0.015101832
100	0.002740855	100	0.010947678	101	0.00214451	100	0.015062633
101	0.002636927	101	0.010691463	102	0.0020464	101	0.01502383
102	0.002538019	102	0.010442151	103	0.0019532	102	0.01498524
103	0.002442677	103	0.010200367	104	0.00186462	103	0.014946993
104	0.002351283	104	0.009965208	105	0.00178006	104	0.014909016
105	0.002263615	105	0.009736212	106	0.00169964	105	0.014871074
106	0.002178866	106	0.009512916	107	0.00162322	106	0.014833403
107	0.002098198	107	0.009295445	108	0.00155038	107	0.014796087
108	0.002020797	108	0.009084567	109	0.0014812	108	0.014759056
109	0.001946565	109	0.008877792	110	0.00141516	109	0.014722317
110	0.001875372	110	0.008678332	111	0.00135223	110	0.014685917
111	0.001807124	111	0.008480638	112	0.00129239	111	0.014649462
112	0.001742062	112	0.008291856	113	0.00123547	112	0.01461325
113	0.001679588	113	0.008104752	114	0.00118105	113	0.014577341
114	0.00161942	114	0.007923078	115	0.00112924	114	0.014541788
115	0.00156178	115	0.007746402	116	0.00108	115	0.014506611
116	0.001506466	116	0.007576444	117	0.00103303	116	0.014471192
117	0.001453304	117	0.007411285	118	0.0009883	117	0.014436013
118	0.001402212	118	0.007249329	119	0.00094576	118	0.014401162
119	0.001352626	119	0.007091475	120	0.00090486	119	0.014366611
120	0.001305365	120	0.006938377	121	0.00086575	120	0.014332279
121	0.001259908	121	0.006789152	122	0.00082829	121	0.014298193
122	0.001215851	122	0.006642685	123	0.00079281	122	0.014264332
123	0.001173528	123	0.0065012	124	0.00075892	123	0.014230972
124	0.00113284	124	0.006363506	125	0.0007268	124	0.014197277
125	0.001093965	125	0.006228483	126	0.00069609	125	0.014163769

Caso	: 2/16"-2A	Cas	o: 1/16"-2B	Caso: 3/16"-2C		Caso: 1/32"-2D	
Tiempo	Concentración	Tiempo	Concentración	Tiempo	Concentración	Tiempo	Concentración
[min]	[gr/l]	[min]	[gr/l]	[min]	[gr/l]	[min]	[gr/l]
126	0.001056585	126	0.006096726	127	0.0006668	126	0.014130547
127	0.001020483	127	0.005968879	128	0.00063879	127	0.014097586
128	0.000985987	128	0.005843876	129	0.00061194	128	0.014064847
129	0.00095276	129	0.005722046	130	0.00058641	129	0.014032337
130	0.000920579	130	0.005603531	131	0.00056201	130	0.014000108
131	0.000890096	131	0.005487799	132	0.00053873	131	0.013968316
132	0.000860389	132	0.005374939	133	0.0005164	132	0.013936105
133	0.000831755	133	0.005264458	134	0.00049511	133	0.013904132
134	0.000804137	134	0.005156869	135	0.00047478	134	0.013872448
135	0.000777553	135	0.005051906	136	0.00045532	135	0.013841006
136	0.000751922	136	0.004949813	137	0.00043672	136	0.01380976
137	0.000727259	137	0.004850313	138	0.00041892	137	0.013778696
138	0.000703473	138	0.00475309	139	0.00040191	138	0.013747831
139	0.000680584	139	0.004658253	140	0.00038555	139	0.013717153
140	0.000658506	140	0.004566057	141	0.00036995	140	0.013687039
141	0.000637246	141	0.004475949	142	0.000355	141	0.013656431
142	0.000616764	142	0.004388183	143	0.0003407	142	0.013626235
143	0.000596853	143	0.004302276	144	0.00032701	143	0.013596141
144	0.000577813	144	0.004218109	145	0.00031393	144	0.013566213
145	0.000559444	145	0.004136127	146	0.00030144	145	0.013536532
146	0.000541752	146	0.004056146	147	0.00028944	146	0.01350705
147	0.000524671	147	0.003977899	148	0.00027804	147	0.013477742
148	0.000508217	148	0.003901524	149	0.0002671	148	0.013448844
149	0.000492328	149	0.003826893	150	0.00025662	149	0.013419619
150	0.00047702	150	0.003754026	151	0.0002466	150	0.013390665
151	0.00046224	151	0.003682739	152	0.00023698	151	0.013361847
152	0.000447972	152	0.003612967	153	0.00022778	152	0.01333324
153	0.000434216	153	0.00354482	154	0.00021894	153	0.013304822
154	0.000420939	154	0.003478679	155	0.00021048	154	0.013276586
155	0.000408116	155	0.003414028	156	0.00020238	155	0.013248711
156	0.000395734	156	0.003350773	157	0.00019463	156	0.013221201
157	0.000383775	157	0.003288928	158	0.0001872	157	0.013193103
158	0.000372225	158	0.003228551	159	0.00018007	158	0.013165159
159	0.000361072	159	0.003169262	160	0.00017324	159	0.013137494
160	0.000350199	160	0.003111366	161	0.00016672	160	0.013110033
161	0.000339696	161	0.003054871	162	0.00016044	161	0.01308277
162	0.000329539	162	0.002999767	163	0.00015441	162	0.013055623
163	0.000319717	163	0.002945931	164	0.00014863	163	0.013028658
164	0.000310219	164	0.002893299	165	0.00014308	164	0.013001834
165	0.000301254	165	0.002841726	166	0.00013776	165	0.012975159
166	0.000292605	166	0.00279114	167	0.00013266	166	0.012948628
167	0.000284266	167	0.002741849	168	0.00012775	167	0.012922165
168	0.00027622	168	0.002693555	169	0.00012304	168	0.012895929
169	0.000268464	169	0.002646134	170	0.00011851	169	0.012869825

Caso	: 2/16"-2A	Cas	o: 1/16"-2B	Caso:	3/16"-2C	Caso	Caso: 1/32"-2D	
Tiempo	Concentración	Tiempo	Concentración	Tiempo	Concentración	Tiempo	Concentración	
[min]	[gr/l]	[min]	[gr/l]	[min]	[gr/l]	[min]	[gr/l]	
170	0.000260965	170	0.002599849	171	0.00011415	170	0.012843826	
171	0.000253524	171	0.002554572	172	0.00010998	171	0.012817998	
172	0.000246485	172	0.002510257	173	0.00010596	172	0.012792287	
173	0.000239677	173	0.002466861	174	0.00010209	173	0.012766708	
174	0.000233092	174	0.002424408	175	9.8388E-05	174	0.012741269	
175	0.000226717	175	0.002382866	176	9.4819E-05	175	0.012715956	
176	0.000220552	176	0.002342208	177	9.1387E-05	176	0.012690754	
177	0.000214592	177	0.00230242	178	8.809E-05	177	0.012665682	
178	0.000208797	178	0.002263432	179	8.4922E-05	178	0.012640752	
179	0.000203178	179	0.002225235	180	8.1863E-05	179	0.012615911	
180	0.000197743	180	0.002187855	181	7.8922E-05	180	0.012591193	
181	0.000192437	181	0.002151243	182	7.6107E-05	181	0.012566541	
182	0.000187309	182	0.002115393	183	7.3397E-05	182	0.012542074	
183	0.000182274	183	0.002080274	184	7.078E-05	183	0.012517684	
184	0.000177327	184	0.002045885	185	6.8278E-05	184	0.012493438	
185	0.000172528	185	0.002012224	186	6.5871E-05	185	0.012469297	
186	0.000167864	186	0.001979248	187	6.3567E-05	186	0.012445278	
187	0.000163335	187	0.001946946	188	6.1342E-05	187	0.012421315	
188	0.000159048	188	0.001915065	189	5.9204E-05	188	0.012397528	
189	0.000154898	189	0.001883854	190	5.7146E-05	189	0.012373832	
190	0.000150886	190	0.00185329	191	5.5168E-05	190	0.012350252	
191	0.000146988	191	0.001823331	192	5.3254E-05	191	0.012326784	
192	0.000143221	192	0.001793982	193	5.1421E-05	192	0.012303438	
193	0.000139563	193	0.001765072	194	4.9658E-05	193	0.01228067	
194	0.000135967	194	0.001736756	195	4.7961E-05	194	0.012257272	
195	0.000132465	195	0.00170916	196	4.6324E-05	195	0.012233967	
196	0.000129055	196	0.001682106	197	4.4746E-05	196	0.012210861	
197	0.000125744	197	0.001655419	198	4.3232E-05	197	0.01218787	
198	0.000122524	198	0.001629472	199	4.1768E-05	198	0.012165384	
199	0.00011939	199	0.001604004	200	4.0356E-05	199	0.012142448	
200	0.000116347	200	0.001579086	201	3.8995E-05	200	0.012119609	
201	0.000113361	201	0.001554476	202	3.7679E-05	201	0.012096921	
202	0.000110465	202	0.001530482	203	3.6415E-05	202	0.012074389	
203	0.000107654	203	0.001506986	204	3.5194E-05	203	0.012052016	
204	0.000104924	204	0.001483931	205	3.4019E-05	204	0.012029779	
205	0.000102274	205	0.001461332	206	3.2884E-05	205	0.012007664	

ANEXO 7 TABLAS

Experimental values of model stress intensity resistance for rocks at room temperature.

	Stress			
	resistance			
Material	Mpa m ^{1/2}	Comment	Method	Reference
		Quartz Rock		
Arkansas novaculite	1.34	с	DT	Atkinson (1980)
	1.60	с	DT	Meredith et al. (1984)
	1.77	CN	SR	Meredith et al. (1984)
Arkose	0.62	a	SENB(3)	Dibb et al. (1983)
Berea sandstone	0.28	BT	HF	Zoback (1978)
Coarse grain porous sst.	1.40	рт	IDTWC	Clifter et al. (1076)
7.0% porosity	1.40		IPTWC	Clifton et al. (1976)
8.0% porosity	0.57	BT	IPTWC	Clifton et al. (1976)
13.0% porosity	0.81	BT	IPTWC	Clifton et al. (1976)
Grimsby sandstone	1.47	CN	SR	Gunsallus & Kulhawy (1984)
Hohensyburg sandstone	1.17-1.33	а	SENRBB	Bergkvist & Fornerod (1979)
Mojave quartzite	2.10	с	DT	Atkinson (1984)
Nugget sandstone	0.22-0.34	а	CNRBT	Brown et al. (1972)
Oughtbridge sanstone	1.31	с	DT	Meredith et al. (1984)
	1.39	CN	SR	Meredith et al. (1984)
Pennant sandstone	2.66	с	DT	Meredith et al. (1984)
	2.56	CN	SR(C)	Meredith et al. (1984)
Ruhr sandstone	1.39	BT	HF (F)ID(2)	Rummel & Winter (1983) $M_{\rm eff}$
	1.09		SENB(3)	Muller (1984)
	1.05	CN	CENIDDD	Muller (1984)
borehole Baldebaar Bh6	0.50	CN	SENB(3)	$\begin{array}{c} \text{Numer} (1964) \\ \text{Rummel et al.} (1980) \end{array}$
borehole Werne W7	1.27		SENB(3)	Winter (1983)
borehole Fehndorf 3Z	0 35-1 15	CN	CENRBB	Rummel et al. (1985)
borehole Fehndorf 2T	0.04-1.37	CN	CENRBB	Rummel et al. (1985)
borehole Mamburger Sand	0.11-0.60	CN	CENRBB	Rummel et al. (1985)
e				
"sandstone"	0.31-0.35		SENB(3)	Sukuzi et al. (1978)
"sandstone"	0.69-2.40	CN	SR(C)	Senseny & Pfeifle (1984)
Shetland sandstone	0.34	c	DI	Meredith et al. (1984)
Tannagaa aandatana	0.35	CN	SK	Meredith et al. (1984)
Tennessee sandstone	0.43	C	DT	Maradith at al. (1984)
Vellow River Sandstone	0.79	C	DT	Atkinson et al. (1985)
Tenow River buildstone	0.92	Carbonate rocks	DI	Auxilison et ul. (1965)
Balmholtz limestone	1.77	а	SENRBB	Bergkvist & Fornerod (1979)
Carboniferous limestone	1.25	а	SENB(3)	Dibb et al. (1983)
Carrara marble	0.64	с	DT	Atkinson et al. (1979a)
	1.07	а	SENRBB	Bergkvist & Fornerod (1979)
	0.87	с	DT	Meredith et al. (1984)
	0.82	CN	SR	Meredith et al. (1984)
	1.16		SENB(3)	Muller (1984)
	1.24	CN	SENKBB	Muller (1984)
Chall	1.26	CN	CENKBB SEND(2)	Muller (1984) Dibb at al. (1082)
Ekabarg marbla	0.17	a	SEND(5)	Ouchterlony (1978)
X direction	1.35	a	SENRBB	Ouchterlony (1978)
Y direction	1.66	a	SENRBB	Ouchterlony (1978)
Z direction	1.54	a	SENRBB	Ouchterlony (1978)
	1.36	а	SENRBB	Swan (1980a)
	0.96	а	SENRBT	Swan (1980a)
sample 1	1.42	а	SENRBB	Ouchterlony & Sun (1983)
	2.05	а	SENRBB	Ouchterlony & Sun (1983)
	1.90	J	SENRBB	Ouchterlony & Sun (1983)
	2.10-2.30	Jc	SENRBB	Ouchterlony & Sun (1983)
	1.87	CN	SR	Ouchterlony & Sun (1983)
sample 2	1.62	a	SENRBB	Ouchterlony & Sun (1983)
	2.22	a T	SENKBB	Ouchterlony & Sun (1983)
	2.12	J CN	SEINKBB CENRBB	Ouchterlony & Sun (1983) Ouchterlony & Sun (1983)
	2.09	UN	CENINDD	Guenteriony & Sun (1963)

Confining	Stress intensity resistance	Fracture surface energy I m ^{1/2}		
Mpa Con	nment Mpa m ^{1/2}	<i>J</i> 111	Method	Reference
0 jackete 6.9 jackete 20.7 jackete 34.5 jackete 48.3 jackete	d 0.93 d 1.00 d 1.55 d 2.10 d 3.05	Indiana Limestone	SENT SENT SENT SENT SENT	Schmidt & Huddle (1977) Schmidt & Huddle (1977) Schmidt & Huddle (1977) Schmidt & Huddle (1977) Schmidt & Huddle (1977)
62.1 jackete	d 4.20		SENI	Schmidt & Huddle (1977)
0jackete6.0jackete6.3jackete6.9jackete	d 0.66-1.01 d 1.37 d 1.42 d 1.53		IPTWC IPTWC IPTWC IPTWC	Abou-Sayed (1977) Abou-Sayed (1977) Abou-Sayed (1977) Abou-Sayed (1977)
		Ruhr sandstone		
20jackete40jackete60jackete60jackete80jackete100jackete0unjacket0unjacket20unjacket40unjacket60unjacket80unjacket100see Not100see Not100see Not20see Not20see Not20see Not20see Not20see Not20see Not20see Not50see Not50 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td></td> <td>SENB(3) SENB(3) SENB(3) SENB(3) SENB(3) SENB(3) SENB(3) SENB(3) SENB(3) SENB(3) SENB(3) SENB(3) SENB(3) SENB(3) CENRBB CENRBB CENRBB CENRBB CENRBB CENRBB CENRBB CENRBB CENRBB CENRBB CENRBB CENRBB CENRBB CENRBB CENRBB CENRBB CENRBB</td> <td>Winter (1983) Winter (1983) Muller (1984) Muller (1984)</td>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		SENB(3) SENB(3) SENB(3) SENB(3) SENB(3) SENB(3) SENB(3) SENB(3) SENB(3) SENB(3) SENB(3) SENB(3) SENB(3) SENB(3) CENRBB CENRBB CENRBB CENRBB CENRBB CENRBB CENRBB CENRBB CENRBB CENRBB CENRBB CENRBB CENRBB CENRBB CENRBB CENRBB CENRBB	Winter (1983) Winter (1983) Muller (1984) Muller (1984)
		Tannassa sandstona		
0 6.9 13.8 20.7	(1.58) 2.10 2.77 3.33	88 119 168 205	DCB DCB DCB DCB	Perkins & Krech (1966) Perkins & Krech (1966) Perkins & Krech (1966) Perkins & Krech (1966)
		Carthage limeston	ie	
0 6.9 10.3 13.8 20.7	1.11 1.66-2.03 2.19 2.80 2.12 2.52	35 60-89 93 137	DCB DCB DCB DCB	Perkins & Krech (1966) Perkins & Krech (1966) Perkins & Krech (1966) Perkins & Krech (1966) Perkins & Krech (1966)

Experimental values of model stress intensity resistance and fracture energy for rocks as a function of pressure.

Referencias bibliográficas

- Archie, G. E., "The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics," Trans., AIME, 1942, 146, 54-62.
- 2. Barrón Meza Miguel Angel. Tesis de Doctorado, SEPI-ESIQIE-DIM, 1997
- Biot, M. A. and Willis, "Elastic Coefficients of the Theory of Consolidation," J. Appl. Mech., 1957, 57, 594-601.
- 4. Carman P.C., Fluid Flow through Granular Beds Trans. Inst. Chem. Eng. London, 1937, 15, 150-156.
- Darcy, Henry, Les Fontaines Publiques de la Ville de Dijon, Victor Dalmont, Paris, 1856.
- Dipak Mazumdar and Roderick I. L. Guthrie: ISIJ International, Vol. 39, No.
 6, 1999. pp 524-547.
- 7. E. T. Turkdogan: Trans. Met. Soc. AIME, Vol 233, 1968, pp. 2100-2112.
- 8. FLUENT User's Guide, Fluent Inc., Lebanon, NH. Vols 1-4, 1999.
- Himmelblau M. David, "Process analysis and simulation". Deterministic Systems. John Wiley & Sons, Inc., New York London Sydney, 1968.
- Hoffmann A. Klaus and Chiang T. Steve, Computational Fluid Dynamics for Engineers. A publication on Engineering Education System, Austin, Texas, USA. 1989.
- 11.ISO 5725 Accuracy (trueness and precision) of measurement methods and results (parte 1 a 6).
- 12. Johnstone, R. E., and Thring, M. W., "Pilot Plants, Models, and Scale-Up Methods in Chemical Engineering", McGraw-Hill, New York, 1957.
- 13. Jones and Launder: Int. J. Heat and Mass Transfer, Vol. 15, 1972, pp. 301-303.
- 14. Katz, A. J. and Thompson, A. H., "Quantitative Prediction of Permeability in Porous Rock," Phys. Rev. B, 1986, 34, 8179-81.
- 15.Kozeny J., Uber Kapillare Leitung des Wassers im Boden, Sitzungber, Akad. Wiss. Wien, Math Naturw klasse, Abt. II A, 1927, 136, 271 - 306.
- 16.Launder and Spalding: Comp. Meth. Appl. Mech. Eng., Vol. 3, 1974, pp. 269-289.

- 17. Michael L. Lowry and Yogeshwar Sahai. Steelmaking Conference Proceedings 1989.
- Moran, J. H. and Papaconstantinou, C. M., "A Novel Dynamic Measurement of Permeability," SPEJ, December 1981, 670-8.
- 19. Octave levenspiel, Ingeniería de las reacciones químicas. John Wiley & Sons Inc., New York, 1967.
- 20. Ondracek, G., "Effect of Microstructure on Conductivity of Composite Materials," Zeits. fuer Metallkunde, Sept. 1986,77, NO. 9, 603-610.
- 21. Perkins, T. K. and Krech, W. W. (1966). J. Soc. Petrol. Eng. 6, 308-314.
- 22. Swanson, B. F., "A Simple Correlation Between Permeability and Mercury Capillary Pressures," J. Pet. Tech., 1981, 33, 2498-2504.
- 23.Y Sahai: Mathematical Modelling of materials Processing Operations, Ed. byJ. Szekely et al., TMS. Warrendale. PA. 1987.
- 24. Y. Sahai and R. Ahuja: Ironmaking Steelmaking. Vol 13, 1986, pp. 241-249.
- 25. Yogeswar Sahai and Toshihiko EMI: ISIJ International, Vol. 36, No. 6, 1996, pp. 667-671.
- 26. Zoback, M.D. (1978) Proc. 19th U.S. Symp. Rock Mech., Reno, Nevada, 83-85.

Bibliografía

- 1. American Petroleun Institute, Recommended Practice for core analysis procedures, API-RP-40.
- B. K. Atkinson, Fracture Mechanics of rock, Academy Press Geology Series 1987.
- BICKING A. C. Some uses of statistics en the Planning of Experiments. Industrial Quality Control, Vol. 10 No. 4, Enero 1954.
- COX D. R. Planning of experiments. John Wiley and Sons, Inc. New York, 1978
- Karl T. Ulrich, and Steven D. Eppinger, Product Design and Development, McGraw Hill, 1995.
- KEMPTHORNE O. The design and analysis of experiments. John Wiley and Sons., New York, 1952, p.10
- 7. Manual del Equipo de Desplazamiento de Fluidos.
- MENDEZ I. Lineamientos Generales para la planeación de Experimentos. Monografía No. 15, Vol. 15 IIMAS. 1980.
- 9. OSTLE B. Estadística Aplicada, Limusa-Wiley, México, 1975, Cap. 10
- 10. Parkar, J., Boggs, J., and Blick, E., "Introduction to Fluid Mechanics and Heat Transfer", Addison-Wesely, New York 1969.
- 11. Royal Eugene Collins, Flow of fluids, Penn Well Books, 1961
- S. López-Ramírez, J. Palafox-Ramos, R. D. Morales, M. A Barrón-Meza and M. V. Toledo: Steel Research. Vol. 69, No. 10+11, 1999, pp. 423-428.
- 13.S. López-Ramírez, R. D. Morales and J.A.R. Serrano: Numerical Heat Transfer. Part A: Applications, Vol. 37, 2000, pp. 68-86.
- 14.W. Shyy, S. S. Thakur, H. Ouyang, J. Liu and E. Blosch: Computational Techniques for Complex Transport Phenomena, Cambridge University Press 1997, pp. 169-172.