UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO DIVISIÓN DE CIENCIAS DE LA TIERRA FACULTAD DE INGENIERIA

INFLUENCIA DE LOS PARÁMETROS DE INTERACCION BINARIA Y LAS PROPIEDADES CRITICAS EN LAS ECUACIONES DE ESTADO

TESIS

PARA OBTENER EL TITULO DE INGENIERO PETROLERO

PRESENTA

GUEVARA CORONA ERIKA JAZMÍN AMIYALI

DIRECTOR: M.I. JOSE ANGEL GOMEZ CABRERA DRA. CECILIA DE LOS ANGELES DURAN VALENCIA

MÉXICO, D.F., 2004

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

ÍNDICE

Introducción Resumen

1.	Cor 1.1.	mportamiento de Fases Propiedades críticas 1.1.1. Kesler Lee 1.1.2. Cavett 1.1.3. Riazzi – Daubert 1.1.4. Winn 1.1.5. Twu	1 5 7 8 8 9
	1.2.	Correlaciones para el cálculo del factor acéntrico 1.2.1. Kesler Lee 1.2.2. Edmister 1.2.3. Tomasen 1.2.4. Tablas comparativas	12 12 13 13 14
	1.3.	 Influencia de los coeficientes de interacción binaria en las ecuaciones de estado 1.3.1. Correlaciones para el cálculo de los PIB en los diferentes sistemas 1.3.2. Sistemas hidrocarburo-hidrocarburo 1.3.3.Sistemas no hidrocarburo-hidrocarburo y no hidrocarburo-no hidrocarburo 	18 19 19 23
	1.4.	Tablas establecidas de valores recomendados de los PIB para la aplicación en las ecuaciones de estado	32
2.	Ecua 2.1. 2.2.	aciones de Estado Soave Redlich Kwong Peng Robinson	36 36 38
3.	Cálc 3.1.	culo Flash Método de cálculo	41 42
	3.2.	Desarrollo para el cálculo del coeficiente de fugacidad 3.2.1. Soave Redlich Kwong 3.2.2. Peng Robinson	47 48 49
	3.3.	Presión de saturación 3.3.1. Presión de burbuja 3.3.2. Presión de rocío	50 50 50
4.	Res	ultados	53

4.1.	Antecedentes 4.1.1. Balam 4.1.2. May	53 54 54
4.2.	Datos Generales 4.2.1. Balam 4.2.2. May	55 55 57
4.3.	Propiedades Críticas	58
4.4. 4.5.	Parámetros de interacción binaria Tablas comparativas 4.5.1. Balam 4.5.2. May	58 59 59 62
4.6.	Aplicación del programa Flash	67
4.7.	Tablas comparativas Flash 4.7.1. Balam 4.7.2. May	69 70 72
Conclusio	ones y Recomendaciones	75

Apéndice A

Tablas

- A1. Valores de la presión critica obtenidos de la literatura, WinProp CMG y programa
- A2. Valores de la temperatura critica obtenidos de la literatura, WinProp CMG y programa
- A3. Valores de la factor acéntrico obtenidos de la literatura, WinProp CMG y programa

Apéndice B

Tablas

- B1. Propiedades críticas Balam 53
- B2. Propiedades críticas May 1
- B3. Parámetros de interacción binaria (PIB) Balam 53
- B4. Parámetros de interacción binaria (PIB) May 1

Apéndice C

Tablas

- C1. Archivo de datos que utiliza el programa para el cálculo flash. Balam 53
- C2. Archivo de datos que utiliza el programa para el cálculo flash. May 1

Apéndice D

i. Menú

- 1. Presión y Tempertura crítica
- 2. Factor acéntrico

ii. Propiedades críticas

- a) Kesler Lee
- b) Cavett
- c) Riazi y Daubert
- d) Winn
- e) Twu

iii. Factor acéntrico

- a) Kesler Lee
- b) Tomasen
- iv. Cálculo Flash
- Apéndice E

Referencias WinProp CMG

IMPEVETE

INTRODUCCIÓN

En el desarrollo de la industria de campos petroleros se generan una serie de necesidades y problemas que el Ingeniero Petrolero debe resolver; desafortunadamente no siempre se cuenta con los medios ni con el tiempo necesario para poder dar la solución a ello, ya que en este medio es muy común encontrar casos urgentes en los que un análisis de laboratorio retardaría su solución, por lo que es importante que el ingeniero cuente con diversas alternativas para dar una respuesta oportuna y confiable que le ayude a su solución.

Por otro lado, la Industria Petrolera representa una fuente de ingresos muy importante, especialmente para México; por lo cual se deben analizar día con día minuciosamente todos aquellos aspectos que puedan beneficiar una buena administración integral de los yacimientos petroleros.

En la Ingeniería Petrolera se tienen diferentes ramas de estudio para optimizar el desarrollo de los yacimientos. Uno de los problemas que se presenta en el estudio de las propiedades de los fluidos o mezclas de hidrocarburos de un yacimiento, es sin duda el obtener un buen estudio del comportamiento de fases del mismo; para lo cual se tiene como una herramienta a las ecuaciones de estado, lo que implica la determinación de las propiedades criticas de la mezcla, así como el factor acéntrico y los parámetros de interacción binaria.

No todos los fluidos de yacimientos petroleros tienen el mismo comportamiento, dependiendo entre otros aspectos de los componentes de la mezcla, presión y temperatura a la cual se encuentran y obviamente, del tipo de yacimiento en estudio; por esto, existen diversas correlaciones para determinar los valores de los parámetros necesarios para una buena determinación en el comportamiento de fases.

Para la Industria es necesario contar con modelos matemáticos que permitan caracterizar a las mezclas de hidrocarburos que se obtienen de los

yacimientos petroleros, tanto para planear esquemas más adecuados de explotación y de recuperación, como para el manejo óptimo de las instalaciones superficiales; además con el gran avance que se ha dado en los sistemas de cómputo, la simulación numérica composicional de los yacimientos se ha convertido en una posibilidad más cercana a la realidad.

Este trabajo tiene como objetivo general determinar que influencia tienen las propiedades críticas (p_c , T_c), el factor acéntrico ω y los parámetros de interacción binaria (PIB) de los pseudocomponentes en el cálculo del comportamiento de fases cuando se utilizan en ecuaciones de estado. Para lograrlo podemos dividir el objetivo en objetivos particulares con el fin de llegar a cumplir con lo antes mencionado.

- Realizar un programa de computo que calcule propiedades críticas (p_C, T_C), el factor acéntrico (ω) y los parámetros de interacción binaria (PIB) de los pseudocomponentes.
- 2. Buscar en la literatura datos que puedan servir como base para la programación de las correlaciones y/o ecuaciones.
- Desarrollar las derivadas necesarias de las ecuaciones de estado de Peng-Robinson y de Soave-Redlich-Kwong para llegar a la ecuación cúbica en términos de Z y asi realizar con mayor facilidad el desarrollo de las derivadas para el flasheo.
- Desarrollar las derivadas necesarias de las ecuaciones de estado de Peng-Robinson y de Soave-Redlich-Kwong para obtener la matriz jacobiana para el desarrollo del calculo flash.
- 5. Buscar análisis PVT de campos diferentes para tomarlos como ejemplo con la finalidad de poder tener una comparación.
- 6. Realizar el flasheo sin ajustar los parámetros con la finalidad de observar que tan alejado o acercado dan los resultados a los

experimentales del mismo si utilizamos las correlaciones de propiedades críticas (p_c , T_c), el factor acéntrico (ω) y las ecuaciones de los parámetros de interacción binaria (PIB) sin realizar un ajuste previo, observándose así la confiabilidad de cada correlación y/o ecuación.

- Seleccionar cual de las correlaciones para el calculo de las propiedades críticas (p_C, T_C) y factor acéntrico (ω) es la mejor y cual tiene mas rango de error.
- Realizar una combinación entre las diferentes correlaciones de propiedades críticas (p_C, T_C) y las diferentes correlaciones para el calculo del factor acéntrico (ω) dan mejores resultados.
- Variar el valor del exponente 'n' de la ecuación de Mehra con la finalidad de ver que valores del mismo arrojan mejores resultados. en base a lo experimental (PVT)
- 10. Realizar una combinación de las correlaciones de propiedades críticas (p_C, T_C) y las diferentes correlaciones para el calculo del factor acéntrico (ω) con los diferentes valores del exponente 'n' de la ecuación de Mehra.
- 11. Comparar los resultados de las propiedades criticas, factor acéntrico y PIB con corridas realizadas con el programa realizado en el presente trabajo denominado PCPIB, Win pro CMG y datos de literatura.
- 12. Comparar los resultados del flasheo con tablas PVT experimental.

En el primer capitulo se presentan las correlaciones más frecuentes para el calculo de las propiedades criticas (p_c , T_c), factor acéntrico ω y parámetros de interacción binaria (PIB), mencionando entre las mas sobresalientes la de Kesler-Lee y la de Riazy-Daubert para propiedades criticas y Mehra para PIB; se han introducido otras ecuaciones y correlaciones con la finalidad de poder comparar los valores obtenidos con las correlaciones anteriormente

mencionadas y para tener mas opciones a las que presenta el programa de computo CMG, tanto para propiedades criticas como para parámetros de interacción binaria. En el segundo capitulo se presenta un resumen de lo que son las ecuaciones de estado de Peng-Robinson y Soave-Redlich-Kwong. En el tercer capitulo se presenta el algoritmo del calculo para el flasheo por medio de la matriz jacobiana mencionando las ventajas que se tienen al utilizar este método el cual aplica el simulador IMPEVETE, en comparación al calculo por iteraciones, método que aplican los simuladores Eclipse y CMG. Finalmente en el capitulo cuarto se presentan los resultados obtenidos de los cálculos realizados con el programa de computo del presente trabajo. En adición se presenta al final una serie de apéndices donde se pueden ver las corridas del programa al aplicar los datos experimentales de los dos campos tomados como ejemplo con las diferentes correlaciones y variando el valores del exponente 'n' de la correlación de Mehra además de los algoritmos del programa de calculo para las propiedades criticas y el factor acéntrico.

El trabajo cuenta con un CD que contiene una copia del ejecutable del programa de computo denominado PCPIB.

RESUMEN

Las estimaciones iniciales del factor acéntrico, parámetros de interacción binaria y las propiedades criticas de la fracción pesada (pseudocomponentes) presentes en mezclas de hidrocarburos, influyen directamente en la precisión del cálculo del comportamiento termodinámico de fases. La necesidad de reproducir los resultados obtenidos experimentalmente, ha contribuido al desarrollo de métodos numéricos robustos, así como la implementación de nuevas ecuaciones de estado y, como en este caso, la búsqueda de correlaciones existentes en la literatura que garanticen una estimación inicial adecuada de los parámetros, que mejoren la predicción del comportamiento termodinámico.

En el presente trabajo se realizó un programa de cómputo para calcular las propiedades críticas, y los parámetros de los pseudocomponentes. El programa de cómputo utiliza las diferentes correlaciones reportadas en la literatura con la finalidad de hacer una comparación de su influencia como estimación inicial en el cálculo del comportamiento de fases utilizando las ecuaciones de estado de Soave–Redlich–Kwong y la ecuación de Peng– Robinson. Para la evaluación de la estimación inicial de los parámetros se consideraron los cálculos siguientes de equilibrio termodinámico: la presión de saturación y el cálculo de la separación a composición constante o flash.

Finalmente después de haberse realizado las pruebas en dos mezclas de fluidos diferentes, se observa que una de las mas confiables correlaciones y que da mejores resultados es la de Kesler-Lee, tanto para las propiedades críticas como para el factor acéntrico, demostrando la gran influencia que tienen las propiedades críticas en el comportamiento termodinámico, por lo que es necesario tener cuidado al elegir la correlación.

En referencia a los parámetros de interacción binaria, el valor del exponente para determinar el valor del componente par, también genera una gran influencia dentro de las ecuaciones de estado, se observó que los mejores

resultados se dieron al dar el valor del exponente 'n' entre los extremos, es decir de 1 o de 6.

De manera preliminar y tratándose más adelante, se puede concluir que los valores iniciales de los parámetros utilizados en el cálculo de la presión de saturación y flash, tienen una gran influencia en los cálculos.

El trabajo se limita a utilizar dos ecuaciones de estado Peng-Robinson y Soave-Redlich-Kwong; las correlaciones utilizadas para el calculo de las propiedades criticas únicamente sirven en caso de ser fracciones pesadas. En el caso de los parámetros de interacción binaria (PIB) se han tomado dos criterios para fines prácticos, el primero utilizar tablas con valores ya establecidos para pares de hidrocarburo-hidrocarburo de fracciones menores al C₆, para el caso de la ecuación de Peng-Robinson y tablas para el caso de Soave-Redlich-Kwong; y el segundo criterio utilizar la ecuación de Mehra para calculo de valores para pares de fracciones C₇₊(fracciones pesadas) con otro hidrocarburo pesado con exponente 'n=1' o bien con componentes no hidrocarburos con exponente '1<n<6' y para el calculo de PIB para fracciones de no hidrocarburos con no hidrocarburos con exponente 'n=6'. Al realizar el calculo flash de los ejemplos presentados no se realizo ningún ajuste en los parámetros PIB y propiedades criticas.

La continuación de este trabajo se resumiría en analizar otras ecuaciones de estado, como podría ser la ecuación de Schmidt-Wenzel, o bien realizar una generalización de las ecuaciones de estado, analizando las derivadas de las mismas para realizar el calculo flash. En cuanto a los parámetros de interacción binaria (PIB), se debe realizar la programación de las demás ecuaciones ya que en el presente trabajo únicamente fueron utilizados valores ya establecidos y la ecuación de Mehra.

Este trabajo fue realizado en el Instituto Mexicano del Petróleo en el área de Yacimientos Naturalmente Fracturados, bajo la supervisión de la Dra. Cecilia de los Ángeles Durán Valencia, dentro del proyecto titulado "Simulación Numérica de Yacimientos Naturalmente Fracturados".

Capítulo 1 COMPORTAMIENTO DE FASES

1.1. Propiedades Críticas

Sustancias Puras

La línea TC de la figura 1.1 se denomina **línea de presión de vapor**, esta línea separa las condiciones de presión y temperatura en donde la sustancia es un líquido o un gas. La zona comprendida entre la línea de punto de fusión y la línea de presión de vapor indica las condiciones donde la sustancia es un líquido. Similarmente, los puntos bajo la línea de presión de vapor representan las condiciones donde la sustancia es un gas. Los puntos de presión y temperatura que caen exactamente sobre la línea TC, indican condiciones donde el líquido y el gas coexisten^{1, Referencias y nomenclatura se presentan al final del trabajo.}

Fig.1.1. Diagrama de fase de una sustancia pura

Punto Crítico

Se llama punto crítico al punto máximo de la línea de presión de vapor, y es el punto C mostrado en la figura 1.1. La presión y la temperatura que se representan a este punto son llamados presión crítica y temperatura crítica, $p_c y T_c$, respectivamente, y representan las condiciones de p y T más altas a las que puede existir el material puro en equilibrio vapor - líquido.

Estas definiciones de propiedades críticas no son validas para sistemas de dos o más componentes.

Punto Triple

El punto T es llamado **punto triple** (figura 1.1), el cual representa la presión y la temperatura en donde el sólido, líquido y gas coexisten en equilibrio.

Línea de punto de fusión

La línea de punto de fusión es la línea vertical que termina en el punto triple. Esta línea separa las condiciones del estado líquido de las condiciones del estado sólido. Nuevamente, los puntos de presión y temperatura que caen exactamente sobre la línea, indican el caso donde coexisten el sólido y el líquido. El diagrama de fases para algunos materiales puros muestra otras líneas sin la región del sólido indicando cambios de fase del sólido, debidos a cambios en la estructura cristalina. El límite máximo de la línea del punto de fusión no se ha obtenido experimentalmente¹.

Mezclas de dos componentes

La ingeniería petrolera normalmente no trabaja con sistemas de dos componentes; usualmente las mezclas constan de muchos componentes. Sin embargo, es instructivo observar las diferencias en el comportamiento de fase entre mezclas de dos componentes y sustancias puras.

Diagrama de fases de mezclas de dos componentes

El comportamiento de una mezcla de dos componentes no es tan simple como el comportamiento de una sustancia pura, en lugar de ser representado por una simple línea, la curva de presión de vapor, es el rango en la región en la cual dos fases coexisten. Esta región "curva de saturación, envolvente de fase o región de dos fases".

Punto de Burbuja y Punto de Rocío

Considerando la expansión a temperatura constante ilustrada en la figura 1.2 para la celda de presión representada por la línea 1-2. A presión p₁ la mezcla es líquida, en cuanto la presión disminuye, el volumen del líquido se expande hasta que aparece la primera burbuja de gas (p_b). A este punto se le llama punto de burbuja.

A medida que la presión decrece por debajo de la presión de burbuja, aparece gas adicional. Finalmente, la cantidad de líquido remanente disminuye hasta el punto en que sólo se aprecian ligeras cantidades de líquido. Este es el punto de rocío, la presión en este punto se le conoce como presión de rocío (p_r).

Punto Crítico

La definición de punto crítico como aplicación a una sustancia pura, no aplica a mezclas de dos componentes. En una mezcla de dos componentes, líquido y gas pueden coexistir a temperatura y presión superior al punto crítico, nótese que la curva de saturación existe a temperaturas y presiones más altas que la temperatura y presión crítica. Vemos ahora que la definición del punto crítico es simplemente el punto en el cual la línea del punto de burbujeo y la línea del punto de rocío están juntas. Una definición más rigurosa del punto crítico, dice que es aquel punto en el cual todas las propiedades de líquido y gas son exactamente iguales.

Fig.1.2. Diagrama de fases para una mezcla de dos componentes

El diagrama de fases para mezclas de tres componentes debe ser un diagrama tal, que marque una trayectoria que describa el comportamiento de los tres componentes. Para este propósito se utilizan los diagramas triangulares. También denominados diagramas ternarios.

Clasificación de los componentes de mezclas de aceite - gas

Componentes definidos

Son todos aquellos componentes presentes en la mezcla, para los cuales existe un análisis cromatográfico, y para el cual la presión crítica p_c , temperatura crítica T_c , y el factor acéntrico ω son conocidos, incluyendo no hidrocarburos e hidrocarburos mayores al C₆H₁₄.

Fracción TBP (True Boiling Point)

Las fracciones TBP cubren lo que sería la verdadera fracción en el punto de ebullición para C_7H_{14} y máximo $C_{30}H_{14}$ (fracciones pesadas o fracciones de hidrocarburos pesados), los cuales contienen diferentes componentes. La

densidad y el peso molecular se deben de medir para la muestra en dicha fracción.

Residuo TBP

El residuo TBP esta formado por componentes que son muy pesados, los cuales son separados utilizando un proceso de destilación TBP. La densidad y el peso molecular deben ser medidos para una muestra total, pero la distribución del punto de ebullición y del peso molecular no se determinan.

1.1. Propiedades Críticas

Cálculo de las Propiedades Críticas

Las propiedades críticas de una mezcla o de un componente son generalmente utilizadas para la determinación de los parámetros de las ecuaciones de estado, para lo cual se necesita conocer la caracterización de la mezcla para su cálculo.

En la tabla 1.1 se muestran valores de presión crítica, temperatura crítica y factor acéntrico, de algunos de los componentes más comunes dentro de una mezcla de hidrocarburos.

Para la determinación de los parámetros de las ecuaciones de estado, es necesario caracterizar las fracciones pesadas presentes en la mezcla de hidrocarburos. Dichas fracciones TBP (fracciones pesadas) deben ser representadas como un seudo-componente. La presión crítica P_c , la temperatura crítica $T_c y$ el factor acéntrico ω son usados en el cálculo de los parámetros de las ecuaciones de estado, estas propiedades pueden ser determinadas a partir del punto de ebullición, el peso molecular y la densidad, usando correlaciones empíricas.

Existen diversas correlaciones para la determinación de las propiedades críticas, sin embargo en este trabajo solo se presentarán algunas de ellas.

Tabla 1.1. Valores para T _c	, p_{c} y ϖ de algunos de los componentes de las mezclas
	de petróleo más comunes ² .

Componente	Tc [⁰K]	pc [atm]	ω
N ₂	126.2	33.5	0.040
CO ₂	304.2	72.6	0.225
H_2S	373.2	88.2	0.100
C ₁	190.6	45.4	0.008
C ₂	305.4	48.2	0.098
C ₃	369.8	41.9	0.152
i-C ₄	408.1	36.0	0.176
n-C ₄	425.2	37.5	0.193
i-C ₅	460.4	33.4	0.227
n-C ₅	469.5	33.3	0.251
n-C ₆	507.4	29.3	0.296

Riazi-Daubert al igual que Kesler y Lee recomiendan sus correlaciones para hidrocarburos puros del C₆ al C₅₀, en el caso de las propiedades críticas

El factor acéntrico ω es prácticamente medido en base a valores de la curva de presión de vapor para rangos de T_r [0.7 – 1] donde $\frac{p_v}{p_c} = 0.1$ para $\omega=0$ y $\frac{p_v}{p_c} = 0.01$ para $\omega=1$. Los valores de omega son aproximadamente 0.01 para el metano, $\omega\approx0.25$ para el C₅ y $\omega\approx0.5$ para el C₈. El valor de omega se incrementa para fracciones pesadas a valores de $\omega\geq1^3$. Kesler-Lee determinó dos condiciones para el cálculo del factor acéntrico en base a la temperatura de ebullición; la primera condición es de $\frac{T_b}{T_c}$ < 0.8 esta basada en datos de presión de vapor para componentes puros, por tanto la primer condición será para determinar el factor acéntrico de los componentes puros. La correlación de Edmister es recomendada únicamente para hidrocarburos puros, sin embargo en la práctica también se utiliza para el cálculo de seudocomponentes.

El método propuesto por Kesler y Lee esta basado en un rango de valores de peso molecular MW entre 60 y 650.

El método propuesto por Twu predice las propiedades criticas de los componentes de fracciones pesadas basándose en la teoría de perturbación.

1.1.1. Correlación de Kesler-Lee^{falta} referencia (1976)

A continuación se presentan las correlaciones usadas por Kesler – Lee para la determinación de las propiedades críticas.

$$Tc = 341.7 + 811sg + (0.4244 + 0.1174sg)Tb + \frac{(0.4669 - 3.2623sg)x10^5}{T_b} \qquad \dots 1.1$$

Ln p_c = 8.3634 -
$$\frac{0.0566}{\text{sg}}$$
 - (0.24244 + $\frac{2.2898}{\text{sg}}$ + $\frac{0.11857}{\text{sg}^2}$) x 10⁻³ Tb
+ (1.4685 + $\frac{3.648}{\text{sg}}$ + $\frac{0.47227}{\text{sg}^2}$) x 10⁻⁷ T_b² ...1.2
- (0.42019 + $\frac{1.6977}{\text{sg}^2}$) x 10⁻¹⁰ T_b³

Donde y p_c es la presión crítica en [psia], T_b es la temperatura de ebullición en [R], T_c la temperatura crítica en [R] y **sg** gravedad específica (la densidad de la fracción a presión atmosférica y 60°F dividida entre la densidad del

...1.3

agua a las mismas condiciones; es aproximadamente igual a la densidad de la fracción en (gr/cm³) a presión atmosférica y a 60 °F) $SG = \frac{\rho_{fracción} @CS}{\rho_{agua} @CS}$

1.1.2. Correlación de Cavett (1964)

A continuación se presentan las correlaciones usadas por Cavett para la determinación de las propiedades críticas.

$$T_{c} = 768.071 + 1.7134 T_{b} - 0.10834 x 10^{-2} T_{b}^{2} + 0.3889 x 10^{-6} T_{b}^{3}$$
$$- 0.89213 x 10^{-2} T_{b} API + 0.53095 x 10^{-6} API + 0.32712 x 10^{-7} API^{2}$$

Donde **p**_C [psia], **T**_b y **T**_c [°F], sg
$$\left[\frac{60^{\circ} F}{60^{\circ} F}\right]$$
 y $API = \frac{141.5}{SG} - 131.5$,

1.1.3. Correlacion de Riazi-Daubert (1980)

Se presentan las correlaciones usadas por Riazi – Daubert para la determinación de las propiedades críticas.

$$Tc = 24.2787 \, Tb^{0.58848} sg^{0.3596} \qquad \dots 1.5$$

$$pc = 3.12281x10^9 Tb^{-2.3125} sg^{2.3201} \dots 1.6$$

Donde **p**_c [psia], **T**_b y **T**_c [R], **sg** $\left[\frac{60^{\circ}F}{60^{\circ}F}\right]$

1.1.4. Correlación de Win (1957); Daubet (1980)

A continuación se presentan las correlaciones usadas por Win y Daubet para la determinación de las propiedades críticas.

$$Tc = \frac{\exp(4.2009Tb^{0.08615}sg^{0.04614})}{1.8} \dots 1.7$$

$$pc = 6.1483 \times 10^{12} T_B^{-2.3177} SG^{2.483} \qquad \dots 1.8$$

Donde **p**_C [pascales], **T**_b y **T**_c [K] , **sg** $\left[\frac{60^{o}F}{60^{o}F}\right]$

1.1.5. Correlación de Twu

A continuación se presentan las correlaciones usadas por Twu para la determinación de las propiedades críticas.

$$T_{c} = T_{co} \left(\frac{1+2F_{t}}{1-2F_{t}}\right)^{2} \qquad \dots 1.9$$

$$F_t = \frac{-0.362456}{\sqrt{T_b}} + 0.0398285 \frac{0.9481257}{\sqrt{T_b}} Dsg_t \qquad \dots 1.9-a$$

$$Dsg_t = exp(5(sg_o - sg)) - 1$$
 ...1.9-b

$$DSG_{p} = \exp(0.5(SG_{o} - SG)) - 1$$
 ...1.9-c

$$P_{c} = P_{co} \frac{T_{c}}{T_{co}} \frac{V_{co}}{V_{c}} \left[\frac{\left(l + 2F_{p} \right)}{\left(l - 2F_{p} \right)} \right]^{2} \dots 1.10$$

$$F_{p} = \begin{cases} \left[2.53262 - \frac{46.1955}{\sqrt{T_{eb}}} - 0.00127885T_{eb} \right] \\ + \left[-11.4277 + \frac{252.140}{\sqrt{T_{eb}}} + 0.00230535T_{eb} \right] Dsg_{p} \end{cases} Dsg_{p} \end{cases} \dots 1.10-a$$

Càlculo de MW $_{\circ}$

$$MW_o = \frac{T_b}{(10.44 - 0.0052T_b)} \dots 1.11$$

Càlculo de T_{eb}

$$T_{eb} = T_b \exp\left(5.71419 + 2.71579Q - 0.28659Q^2 - \frac{39.8541}{Q} - \frac{0.122488}{Q^2}\right) \qquad \dots 1.12$$
$$-24.7522Q + 35.3155Q^2$$

$$Q = \log MW_o \qquad \dots 1.12-a$$

Càlculo de T_{co}

$T_{co} = T_{eb} \left(F^{-1} \right)$	1.13

$$A = 0.533272$$
 ...1.13-a
 $B = 0.191017x10^{-3}T_{h}$...1.13-b

$$C = 0.779681 x 10^{-7} T_b^2 \qquad \dots 1.13 \text{-c}$$

$$D = 0.284376x10^{-10}T_b^3 \qquad \dots 1.13-d$$

...1.13-d
...1.13-e

$$E = \frac{0.959468 \times 10^{-5}}{T_b^{13}}$$

F = A + B + C + D + E

Càlculo de p_{co}

$$p_{co} = u^2$$
 ...1.14

$t = 104.193\alpha^4$	1.14-a
u = o + p + r + s + t	1.14-b
$\alpha = 1 - \frac{T_{eb}}{T_{co}}$	1.14-c
o = 3.83354	
$p = 1.19629\sqrt{\alpha}$	1.14-d
$r = 34.8888\alpha$	1.14-e
$s = 36.1952\alpha^{-1}$	1.14-f
	1.14-g
Cálculo de V _{co}	
$V_{co} = F^{-8}$	1.15
F = 1 - E	1.15-a
FF = A + B + C + D	1.15-b
A = 0.419869	1.15-c
$B = -0.505839\alpha$	1.15-d
$C = 1.56436\alpha^3$	1.15-е
$E = 9481.70\alpha^{14}$	1.15-f

Cálculo de SG_o

$$SG_{o} = 0.843593 - 0.128624\alpha - 3.36159\alpha^{3} - 13749.5\alpha^{12}$$
 ...1.16

Cálculo del volumen critico $V_{\rm c}$

$$V_c = V_{co} \left[\frac{1 + 2F_V}{1 - 2F_V} \right]^2$$

...1.17

$$DSG_{v} = \exp[4(SG_{o}^{2} - SG^{2})] - 1$$
 ...1.17-a

$$F_{V} = DSG_{V} \frac{0.46659}{\sqrt{T_{eb}}} - 0.182421 + \frac{3.0172}{\sqrt{T_{eb}}} DSG_{V}$$
 ...1.17-b

Cálculo del peso molecular MW

$$MW = \exp\left[\log MW_o\left(\frac{1+2F_m}{\left(1-2F_m\right)^2}\right)\right] \qquad \dots 1.18$$

$$F_m = DSG_m \left[\left| x \right| + \left(-0.0175691 + \frac{0.193168}{\sqrt{T_{eb}}} \right) DSG_m \right]$$
...1.18-a

$$DSG_m = \exp[5(SG_o - SG)] - 1$$
 ...1.18-b

$$|x| = \left| 0.0123420 - \frac{0.328086}{\sqrt{T_{eb}}} \right|$$
 ...1.18-c

1.2. Factor acéntrico (ω)

1.2.1. Kesler – Lee^{2,3,4} 1976

A continuación se presentan las correlaciones usadas por Kesler – Lee para la determinación del factor acéntrico.

Para (T_{br}≤0.8)

$$\omega = \frac{\left(\ln p_{br} - 5.92714 + \frac{6.09648}{T_{br}} + 1.28862\ln T_{br} - 0.169347T_{br}^{6}\right)}{\left(15.2518 - \frac{156875}{T_{br}} - 134721\ln T_{br} + 0.43577T_{br}^{6}\right)} \qquad \dots 1.19$$

Para ($T_{br} > 0.8$)

$$\omega = -7.904 + 0.1352K - 0.007465K^2 + 8.359T_{br} + \frac{(1.408 - 0.01063K)}{T_{br}} \qquad \dots 1.20$$

Donde **T**_c[R], **p**_c[psi], $T_{br} = \frac{Tb}{T_c}$, $p_{br} = \frac{pb}{p_c}$, *K* factor de caracterización de Watson

$$K = \frac{T_B^{1/3}}{SG}$$

1.2.2. Edmister^{2,3,4} (1958)

A continuación se presentan las correlaciones usadas por Edmister para la determinación del factor acéntrico.

$$\omega = \frac{3}{7} \left[\frac{\log p_c}{T_c / T_B - 1} \right] - 1 \qquad \dots 1.21$$

Donde pc [atm]

1.2.3.Tomasen^{2,3,4} (1986)

A continuación se presentan las correlaciones usadas por Tomasen para la determinación del factor acéntrico.

Para (T_{Br} ≤0.8)

$$\omega = \frac{(\ln p_{Br} - 5.77881 + 6.05615/T_{br} + 1.37882 \ln T_{br} - 0.173914T_{br}^{6})}{(15.5523 - \frac{15.7915}{T_{br}} - 12.7855 \ln T_{br} + 0.43487T_{br}^{6})} \dots 1.22$$

Para (T_{Br} > 0.8)

$$\omega = -7.904 + 0.1352K - 0.007465K^{2} + 8.359T_{br} + \frac{(1.408 - 0.01063K)}{T_{br}} \qquad \dots 1.23$$

Donde
$$T_{br} = \frac{T_b}{T_c}$$
 y $p_{br} = \frac{p_b}{T_c}$

1.2.4. Tablas Comparativas

En el presente trabajo se realizó un programa de cálculo PCPIB para obtener las propiedades críticas y el factor acéntrico; que se fundamento en las correlaciones antes mencionadas.

Se realizaron corridas con cuarenta datos obtenidos de la literatura con la finalidad de realizar una comparación entre lo obtenido del programa, lo valores reportados en la literatura y los valores obtenidos utilizando el simulador Win Prop de CMG^{En el apéndice B se presentan las características del simulador.}

Todas las correlaciones proporcionan valores aproximados sin embargo existe una desviación entre cada una de ellas, pese a que utilizan los mismos datos, esto debido a que cada correlación tiene una forma diferente de calcular el valor.

Se realizaron tres tablas de valores, una con datos de temperatura crítica y con datos de presión crítica, y finalmente una ultima donde se muestran los valores del factor acéntrico variando la temperatura de ebullición en un rango de T_b [606.7-1487.1] y la gravedad específica entre valores de sg [0.690 -0.940].

Las tablas de los resultados obtenidos se muestran en el apéndice A, cada tabla consta de tres columnas de datos con la finalidad de realizar una comparación entre ellas; la primera columna son los datos reportados en la literatura, utilizando los valores de entrada de temperatura de ebullición y gravedad específica, dados para estos valores, se generan las otras dos columnas 3 y 4, utilizando el simulador Win Prop (CMG) y el programa PCPIB desarrollado en este trabajo.

Tomando en cuenta que los valores de la segunda columna se han tomado de una datos ya analizados y verificados, y por tanto expuestos a la literatura, los

valores se tomarán como valores verdaderos para poder obtener la desviación que exista entre los valores de las demás columnas; sin embargo debemos tomar en cuenta que la correlación usada en la literatura fue la de Kesler Lee.

Por otro lado se observa que al ir bajando la presión el error se va haciendo menos, es decir el valor se va acercando más al real.

Tabla 1.2. Porcentaje de error de la p_c entre los valores de literatura y los calculados con Win Prop (CMG) y PCPIB

	%error	%error
	CMG	PCPIB
Kesler Lee	0.0655	0.0547

Los valores comparativos entre las tres columnas de datos son muy aproximados por lo que podemos decir que las correlaciones especificadas en el presente trabajo son muy acertadas y con una gran fiabilidad para su uso.

Al observar las tablas de la presión crítica (Tabla A1 del apéndice A) con las diferentes correlaciones se ve que Kesler Lee, Riazzi y Daubert y Twu se aproximan mucho en valor, Cavett le segiría en aproximación y finalmente el que se aleja un poco más es Winn.

La comparación entre los valores obtenidos con el Win Prop y el PCPIB se realizo tomando en cuenta que este programa ya es utilizado por varias compañías para diversos proyectos y por tanto asegura dar buenos resultados; y los valores obtenidos con el programa realizado.

Tabla 1.3. Porcentaje de error entre los valores de p_{C} calculados con Win Pro (CMG) y PCPIB

	% error
Kesler Lee	0.0108
Twu	0.0105
Riazzi y Daubert	0.0113

Las correlaciones de Cavett y Winn no se pudieron comparar con el Win Prop debido a que este programa no contiene esas correlaciones y en la literatura no se encontraron datos calculados con las correlaciones mencionadas; por lo que se hizo la comparación con los valores encontrados en la literatura calculados con la correlación de Kesler-Lee.

Tabla	1.4.	Porcentaje	de	error	entre	los	valores	calculados	de	p c	con	PCPIB	у	datos
encon	trado	os de la litera	atur	а										

	%error
	PCPIB
Cavett	0.273
Winn	3.197

La siguiente tabla muestra una media del porcentaje de error de la temperatura crítica (Tabla A2 del apéndice A) que existe entre los valores especificados en la literatura y los valores obtenidos con el Win Prop (CMG) y con el programa realizado en el presente trabajo.

Tabla 1.5. Porcentaje de error de los valores calculados de T_c con Win Prop (CMG), PCPIB y los valores encontrados en la literatura.

	%error	%error
	CMG	PCPIB
Kesler Lee	0.046	9.23x10 ⁻⁴

Los valores comparativos entre las tres columnas de datos son muy aproximados por lo que podemos decir que las correlaciones especificadas en el presente trabajo son muy acertadas y con una gran fiabilidad para su uso.

Al observar las tablas de la temperatura crítica con las diferentes correlaciones se ve que Kesler Lee, Cavett y Winn se aproximan mucho en valor, lo que muestra que en el cálculo de la presión y en el cálculo de la temperatura las correlaciones mas acercadas cambian.

A continuación se realizó una comparación obteniendo el porcentaje de error entre los valores obtenidos con el Win Prop, tomando en cuenta que este programa ya es utilizado por varias compañías para diversos proyectos y por tanto asegura dar buenos resultados; y los valores obtenidos con el programa realizado.

Tabla 1.6. Porcentaje de error de los valores calculados de la T_c con Win Prop (CMG) y PCPIB

	% error
Kesler-Lee	0.558
Twu	0.0624
Riazzi y Daubert	0.0621

Las correlaciones de Cavett y Winn no se pudieron comparar con el Win-Pro debido a que este programa no contiene esas correlaciones y en la literatura no se encontraron datos calculados con las correlaciones mencionadas; por lo que se hizo la comparación con lo valores encontrados en la literatura de la correlación de Kesler Lee.

Tabla 1.7. Porcentaje de error de los valores calculados de la T_c con PCPIB y los datos encontrados en la literatura

	%error
	PCPIB
Cavett	0.0805
Winn	0.0347

En cuanto al la revisión de las tablas del factor acéntrico (tabla A3 del apéndice A) diremos que los más aproximados en valor son Kesler Lee y Tomasen, y el que más se alejado es Edmister.

Los valores comparativos entre las tres columnas de datos son muy aproximadas por lo que se puede decir que las correlaciones especificadas en el presente trabajo son muy acertadas y con una gran fiabilidad para su uso. El porcentaje de error obtenido al comparar entre el valor de la literatura y

los valores obtenidos con el Win Prop y el PCPIB, se muestra a continuación.

Tabla 1.8. Porcentaje de error de los valores calculados de ω con PCPIB y los datos encontrados en la literatura(con la correlación de Kesler-Lee para las propiedades críticas)

Correlación	%error	%error
ω	CMG PC	
Kesler Lee	0.0191	0.0

Comparando ahora datos del Win Prop con los datos obtenidos del PCPIB tenemos:

Tabla 1.9. Porcentaje de error de los valores calculados de ω con PCPIB y los datos encontrados en la literatura(con la correlación de Kesler-Lee para las propiedades críticas)

Correlación	%error
ω	programa
Kesler Lee	0.0191
Edmister	0.226

Tabla 1.10. Porcentaje de error de los valores calculados de ω con PCPIB y los datos encontrados en la literatura (con la correlación de Twu para las propiedades críticas)

Correlación	%error	
ω	programa	
Kesler Lee	0	
Edmister	0.0386	

Tabla 1.10. Porcentaje de error de los valores calculados de ω con PCPIB y los datos encontrados en la literatura (con la correlación de Riazzi y Daubert para las propiedades críticas)

Correlación	%error
ω	programa
Kesler Lee	0.0414
Edmister	0.0401

1.3. Influencia de los Coeficientes de interacción binaria (k_{ij}) o (PIB)

El coeficiente de interacción binaria (PIB o k_{ij}) es un factor de corrección empírico, que caracteriza a un par de componentes en una mezcla de hidrocarburos. Estos coeficientes son usados para modelar las interacciones moleculares a través de ajustes empíricos que describen la energía de interacción entre dos diferentes moléculas, los cuales se incluyen en todas las ecuaciones de estado. Generalmente a estos parámetros se les considera constantes e independientes de la temperatura y de la presión, pero se ha detectado que estos son sensibles a la temperatura y a la composición, teniendo valores entre 0 y 0.25, e incluso valores negativos, por lo que sus valores deberían obtenerse para las condiciones de presión y temperatura a las cuales tengan su mayor uso. El coeficiente de interacción binaria incrementa su valor a medida que el tamaño y la complejidad de la molécula se incrementan.

Los parámetros de interacción binaria PIB, se usan esencialmente en algunas ecuaciones cúbicas de estado en el comportamiento de fases. Un uso inadecuado de los parámetros de interacción binaria, implica que los componentes en un sistema no ideal, no pueden ser separados propiamente en el proceso de cálculo, es decir deben ser calculados con correlaciones o bien determinados con un proceso de laboratorio.

1.3.2. Correlaciones para el cálculo de los PIB en los diferentes sistemas 1.3.2.1. Sistemas Hidrocarburo – Hidrocarburo

Kats y Firoozabodi (1978) han publicado los coeficientes de interacción binaria entre el metano y otras fracciones de hidrocarburos pesados, dichos valores han sido obtenidos tomando en cuenta la densidad de la fracción (ρ), por medio de la siguiente expresión dada por Conrard y Gavier (1980)

$$k_{ij} = 0.12903\rho - 0.05871$$
....1.24

Whitson y Torp (1981) encontraron los mismos datos en el cálculo de los k_{ii}'s utilizando la gravedad específica (sg) de la siguiente manera:

$$k_{ij} = 0.14sg - 0.0668 \qquad \dots 1.25$$

Mehra (1981) y Li (1983) ambos utilizaron la siguiente correlación para sistemas de hidrocarburo – hidrocarburo.

$$k_{ij} = A \left[1 - \left[\frac{2\sqrt{V_{ci}^{1/3} V_{cj}^{1/3}}}{V_{ci}^{1/3} + V_{cj}^{1/3}} \right]^n \right] \dots 1.26$$

con la constante A=1 y n=1 en el caso de pares de hidrocarburo – hidrocarburo.

A continuación se muestra otra manera de cálculo de los parámetros de interacción binaria.

Los coeficientes de interacción binaria dependen de la diferencia en tamaño de la molécula de los componentes de un sistema binario, distinguiéndose por las siguientes propiedades según Slot y Petersen.

Sistemas de Metano - hidrocarburo

La siguiente expresión es útil para determinar los valores de los PIB en sistemas de pares de metano con algún hidrocarburo, tomando en cuenta dos condiciones.

Para MW ≤ 280	
$k_{ij} = 0.0289 + 1.633 x 10^{-4} MW$	1.27
Para MW > 280	
$k_{ij} = 0.04002 + 1.41x10^{-4}MW$	1.28

Método de cálculo

a)

La interacción entre componentes hidrocarburos se incrementa a medida que la diferencia relativa entre los pesos moleculares se incrementa, o sea, el valor de un coeficiente de interacción en un sistema binario será mayor que en

...1.30

otro sistema cuando uno de los componentes del primer sistema tenga mayor peso molecular que su equivalente en el segundo.

$$k_{ij} + 1 > k_{ij}$$
1.29

 b) Los componentes hidrocarburos con el mismo peso molecular tienen un coeficiente de interacción binario nulo

$$k_{ij} = 0$$

c) La matriz de coeficientes de interacción binaria es simétrica

$$k_{ij} = k_{ji} \qquad \dots 1.31$$

 d) El coeficiente de interacción binaria entre el etano y la fracción pesada es proporcional al coeficiente de interacción binaria entre el metano y la fracción pesada, y así sucesivamente

$$k_{i+1,C+} = R_i k_{i-C+}$$
...1.32

donde $R_i \ll 1$, las constante R_i son factores de proporción requeridos por la suposición anteriormente mencionada, de la existencia de proporcionalidad entre los coeficientes de interacción binaria entre los componentes y la fracción pesada.

e) El coeficiente de interacción binaria entre los componentes hidrocarburos "j"
 e "i" es función de los pesos moleculares de ambos componentes así como de la fracción pesada y del coeficiente de interacción binaria entre la molécula de hidrocarburo ligero y la fracción pesada.

$$k_{ij} = F(MW_i, MW_j, MW_{f+}, k_{i-C+})$$
 ...1.33

Planteamiento de la función binaria para el cálculo de los k_{i-j}

Slot y Petersen proponen un método de cálculo basado en la suposición de una relación lineal entre el coeficiente de interacción binaria y la n-ésima potencia del peso molecular de cada componente MW_i.

...1.34

$$k_{ij} = a_i M W_j^n + b_i$$

donde
$$a_i = \frac{k_{i-CN}}{\left(MW_{CN+}^n - MW_i^n\right)}$$
 y $b_i = -MW_i^n a_i$

La ecuación anterior representa un comportamiento lineal de MW_i^n contra k_{ij}. Cuando n toma el valor de cero, la ecuación para determinar los coeficientes de interacción será:

$$k_{ij} = k_{i-CN+} \frac{\ln\left(\frac{MW_j}{MW_i}\right)}{\ln\left(\frac{MW_{CN+}}{MW_i}\right)} \dots 1.35$$

Este método se reduce a los siguientes pasos:

1) Escoger el valor de la potencia "n".

2) Elegir el número de coeficientes de interacción binaria diferentes de cero.

3) Elegir el valor de las relaciones R_i que serán definidas a continuación.

 Estimar el valor numérico del coeficiente de interacción binaria entre el metano y la fracción pesada k_{C1-CN+}

5) Calcular los valores de las constantes ai y bi para la ecuación propuesta.

6) Calcular los coeficientes restantes mediante la función elegida.

7) Predecir la presión de saturación mediante la ecuación de estado.

8) Determinar que la presión de saturación predicha se ajuste la presión de saturación actual. Si se presenta un ajuste razonable puede continuarse con el siguiente paso, si no cumple, se deberá regresar al paso 4 y estimar un nuevo valor para el coeficiente de la fracción pesada y el metano, lo que puede lograrse mediante un proceso de ensayo y error, el cual hará que el proceso converja rápidamente a la presión que está siendo ajustada con la precisión requerida.

 Simular el experimento de expansión para los casos en que se tenga disponibilidad de datos de laboratorio (expansión a composición constante, liberación diferencial, agotamiento a volumen constante). 10) Verificar el ajuste entre los datos de laboratorio y la predicción de la ecuación de estado. Si existe una coincidencia razonable, el proceso estará terminado, de lo contrario se tendrá nuevamente que realizar todo el proceso de cálculo, eligiendo una nueva relación para los coeficientes y un nuevo valor para la potencia "n".

Ventajas del método

La ventaja de este método es la capacidad de asignar coeficientes de interacción binaria entre un número definido de componentes de manera sistemática y consistente variando un número reducido de parámetros que no afectan el cálculo de las variables de la ecuación de estado elegida; el valor de la potencia n, el número de coeficientes diferentes de cero y el valor de las constantes R_i.

1.3.2.2. Sistemas Hidrocarburos – no Hidrocarburos y no hidrocarburos – no hidrocarburos.

En el punto anterior ya se había mencionado la correlación de Mehra (1981) y Li (1983) para el caso de sistemas hidrocarburo –hidrocarburo, sin embargo es posible utilizar la misma correlación para sistemas hidrocarburo-no hidrocarburo y para sistemas no hidrocarburo-no hidrocarburo, realizando una modificación en el valor de A y n.

$$k_{ij} = A \left[1 - \left[\frac{2\sqrt{V_{ci}^{1/3} V_{cj}^{1/3}}}{V_{ci}^{1/3} + V_{cj}^{1/3}} \right]^n \right] \qquad \dots 1.36$$

para el caso de pares de no hidrocarburo – no hidrocarburo A=0.8 y n=6. En el caso de sistemas no hidrocarburo-hidrocarburo, el valor de A seguirá con el mismo valor de 0.8, pero el valor de n cambiará teniendo una variación entre los límites (1 y 6), debido a que serían los dos casos extremos.

El valor recomendado por el Win Pro es de 1.2^{2.1}, para el valor de n en sistemas no hidrocarburo- hidrocarburo.

A continuación se muestra otra manera de cálculo de los parámetros de interacción binaria.

El Instituto de termodinámica (Universidad Tecnológica de Berlin) ha acumulado una colección de datos de equilibrio de vapor – líquido. Este contiene aproximadamente 55000 datos experimentales para mas de 120 sistemas binarios. Estos han sido evaluados por Oellrich, Plocker and Knapp (1981) para determinar los coeficientes de interacción binaria (para sistemas de hidrocarburos y sistemas de no hidrocarburos) por comodidad se utilizaron las ecuaciones de estado de Soave Redlich Kwong y Peng Robinson.

Oellrich (1981), también ha reportado valores de los coeficientes de interacción binaria para sistemas de pares de hidrocarburos – no hidrocarburos y sistemas de pares de no hidrocarburos – no hidrocarburos.

El reporte de los valores de los coeficientes de interacción binaria entre CO_2 e hidrocarburos ($k_{CO2 - HC}$), rangos generalmente entre 0.1 a 0.13 para la ecuación de estado de Peng – Robinson.

La correlación para el cálculo de los coeficientes de interacción binaria $(k_{CO2 - HC})$ ha sido propuesta por Kato, Nagahama y Hirata; Mulliken y Sandler y Turek, Metcalfe, Yarborough y Robinson. Estas correlaciones son generalmente dependientes de la temperatura y además son complejas de entender.

Los reportes de los valores de los coeficientes de interacción binaria entre el N₂ e hidrocarburos ($k_{N2 - HC}$) generalmente incrementa con el número de carbonos en el hidrocarburo, y el rango de estos se encuentra entre 0.03 a 0.15.

En la tabla 1.2 se muestran los valores de los coeficientes de interacción binaria para sistemas de pares de hidrocarburos – no hidrocarburos y sistemas de

pares de no hidrocarburos – no hidrocarburos utilizados en la aplicación de la ecuación de estado de Peng - Robinson.

Tabla 1.11. Valores de los parámetros de interacción binaria en sistemas de pares hidrocarburos – no hidrocarburos y sistemas de pares no hidrocarburos – no hidrocarburos, utilizados para la ecuación de estado de Peng-Robinson².

Componente par	N ₂	CO ₂	H ₂ S	H ₂ O
CH ₄	0.031	0.103	0.080	0.4907
C ₂ H6	0.042	0.130	0.070	0.4911
C ₃ H ₈	0.091	0.135	0.070	0.5469
iC ₄	0.095	0.130	0.060	0.5080
nC4	0.095	0.130	0.060	0.5080
iC5	0.095	0.125	0.060	0.5000
nC5	0.095	0.125	0.060	0.5000
nC6	0.100	0.125	0.050	0.4500
nC7	0.100	0.120	0.040	0.4500
nC ₈	0.100	0.115	0.040	0.4500
nC ₉	0.100	0.110	0.030	0.4500
nC ₁₀	0.100	0.110	0.000	0.4500
nC ₁₆	0.130	0.090	0.000	0.4500
Tolueno	0.120	0.120	0.000	0.4800
Benceno	0.120	0.078	0.000	0.4800
Ciclo exano	0.120	0.106	0.000	0.4800
$FC_6 - FC_{45}$	0.120	0.150	0.000	0.4800
N ₂	0.000	-0.20	0.176	0.2750
CO ₂	-0.020	0.000	0.096	0.2000
H ₂ S	0.176	0.096	0.000	0.1200
H ₂ O	0.275	0.200	0.120	0.0000
En sistemas de hidrocarburo – hidrocarburo, hidrocarburos – no hidrocarburos y sistemas de pares de no hidrocarburos – no hidrocarburos, se obtienen valores diferentes de cero.

En el caso de que se desee el cálculo de k_{ij} entre el mismo componente, el valor de los parámetros de interacción binaria para la ecuación de estado se considera igual a cero.

Ecuación propuesta para el cálculo de los k_{ij} por Valderrama y Reyes⁸

José Valderrama y Obaid – UR –Rehman, del departamento de ingeniería Química de la Universidad de Petróleo y Minerales de Arabia Saudita y Luis Cisternas del departamento de ingeniería Química de la Universidad del Norte de Chile, realizaron una investigación en la que determinaron una expresión, la cual calcula los parámetros de interacción binaria para algunos sistemas de pares no hidrocarburos con hidrocarburos.

Kato estudió los sistemas de pares de CO_2 – hidrocarburos y expresa a los parámetros de interacción binaria (k_{ij}) en la ecuación de Peng – Robinson como una función que depende de la temperatura y el factor acéntrico; dicha expresión es dada por:

$$k_{ij} = A'(T - B')^2 + C'$$
 ...1.37

Donde: T[K], A', B', C' son dependientes del factor acéntrico de cada componente hidrocarburo

Moysan expresa que para el cálculo de los parámetros de interacción binaria se deben tomar en cuenta dos aspectos diferentes; el primero, que sería el efecto de la temperatura y en segundo, el efecto de las características de la mezcla. De lo cual deduce las siguientes expresiones.

$$k_{ij} = k_{ij}^{1} (Tr_{i}) + k_{ij}^{2} \omega_{j} \qquad \dots 1.38$$

26

$$k_{ij}^{1}(Tr_{i}) = A_{1}(Tr_{i}^{2}) + B_{1}(Tr_{i}) + C_{1}^{'}$$
...1.39
$$k_{ij}^{2}(\omega_{i}) = A_{2}^{'}(\omega_{i}^{2}) + B_{2}^{'}(Tr_{i}) + C_{2}^{'}$$
...1.40

Donde T_r es la temperatura reducida de CO2, ω – factor acéntrico del componente j y A', B', C' – son constantes

Ecuación	A ₁	A ₂	A ₃	B ₁	B ₂	B ₃
SRK	0.3893	-1.7902	5.4352	0.2284	-1.7301	4.7849
PR	0.3327	-1.8128	5.9562	0.1785	-1.6383	5.0265

Tabla 1.12. Valores de los coeficientes A', B' y C' para el cálculo de los k_{ij}'s⁸.

Valderrama y Reyes (1983) aplicaron lo basado en la investigación de Moysan y Kato para la determinación de los k_{ij} 's en sistemas de pares de hidrógeno – hidrocarburos y en (1987) aplicaron el mismo criterio para sistemas de pares de ácido sulfhídrico – hidrocarburos, llegando a la siguiente expresión:

$$k_{ij} = \frac{A - B}{Tr_j} \qquad \dots 1.41$$

Donde T_{rj} es la temperatura reducida del componente j, A y B son constantes para el sistema

Las constantes A y B han sido correlacionadas en función del factor acéntrico del hidrocarburo de la siguiente forma:

$$A = A_0 + A_1 \omega + A_2 \omega^2 \qquad ... 1.42$$

$$B = B_0 + B_1 \omega + B_2 \omega^2 \qquad \dots 1.43$$

Donde A_i y B_i – dependen de la ecuación de estado que se esté utilizando

A continuación se muestra en la tabla 1.4 en la cual se determinaron los k_{ij} en la ecuación de Soave – Redlich – Kwong mediante la correlación de Moysan, dichos valores se compararon con los resultados obtenidos al aplicar la correlación de Valderrama y Reyes^{1.11}

Tabla 1.13. Parámetros de interacción binaria en la ecuación de estado de Soave – Redlich – Kwong, determinados por la ecuación de Moysan y la ecuación de Valderrama y Reyes⁸.

Sistema	T[K]	(Moysan)	(Valderrama –
		k _{ij}	Reyes)
			k _{ij}
CO ₂ – etano	220	0.1384	0.1206
	240	0.1370	0.1327
	260	0.1359	0.1429
	280	0.1353	0.1517
	300	0.1350	0.1593
CO ₂ –n-propano	240	0.1370	0.1206
	260	0.1359	0.1327
	280	0.1353	0.1429
	300	0.1350	0.1517
	320	0.1351	0.1593
	280	0.1353	0.1517
	300	0.1350	0.1593
CO ₂ –n-butano	270	0.1355	0.1317
	300	0.1350	0.1432
	320	0.1351	0.1496
	340	0.1356	0.1553

Tabla 1.13. Parámetros de interacción binaria en la ecuación de estado de Soave – Redlich – Kwong, determinados por la ecuación de Moysan y la ecuación de Valderrama y Reyes¹⁸_{continuacion}

sistema	T[K]	(Moysan)	(Valderrama –
		k _{ij}	Reyes)
			k _{ij}
	360	0.1365	0.1603
	380	0.1378	0.1648
CO ₂ –n-pentano	280	0.1353	0.1221
	300	0.1350	0.1328
	320	0.1351	0.1421
	340	0.1356	0.1504
	360	0.1365	0.1577
	380	0.1378	0.1643
CO ₂ –n-hexano	320	0.1351	0.1207
	340	0.1356	0.1334
	360	0.1365	0.1446
	380	0.1378	0.1547
	400	0.1394	0.1637
CO ₂ –n-eptano	380	0.1378	0.1312
	420	0.1415	0.1597
	460	0.1467	0.1832
	480	0.1499	0.1935

De la misma forma realizaron Valderrama y Reyes un estudio similar al anterior pero aplicando ahora la ecuación de Peng – Robinson.

A continuación se muestra en la tabla 1.5 de valores ejemplificando cálculos de los k_{ij} ', aplicando la ecuación de Peng – Robinson en la cual nuevamente se hace una comparación entre los valores obtenidos de la ecuación de Moysan y los valores obtenidos de la ecuación de Valderrama y Reyes.

Tabla 1.14. Parámetros de interacción binaria en la ecuación de estado de Peng -Robinson,
determinados por la ecuación de Moysan y la ecuación de Valderrama y Reyes ⁸ .

sistema	T[K]	(Moysan)	(Valderrama –
		k _{ij}	Reyes)
			k _{ij}
CO ₂ - etano	220	0.1392	0.1203
	240	0.1319	0.1280
	260	0.1340	0.1345
	280	0.1341	0.1400
	300	0.1435	0.1448
CO ₂ –n-propano	240	0.1329	0.1245
	260	0.1278	0.1299
	280	0.1273	0.1345
	300	0.1312	0.1385
	320	0.1397	0.1421
CO ₂ –n-butano	270	0.1235	0.1267
	300	0.1192	0.1345
	320	0.1205	0.1389
	340	0.1250	0.1427
	360	0.1329	0.1462
	380	0.1439	0.1493
CO ₂ –n-pentano	280	0.1212	0.1121

sistema	T[K]	(Moysan)	(Valderrama –
		k _{ij}	Reyes)
			k_{ij}
	300	0.1192	0.1215
	320	0.1205	0.1297
	340	0.1250	0.1370
	360	0.1328	0.1434
	380	0.1439	0.1492
CO2 –n-hexano	320	0.1157	0.1056
	340	0.1177	0.1180
	360	0.1226	0.1292
	380	0.1304	0.1391
	400	0.1410	0.1480
CO2 –n-eptano	380	0.1185	0.1136
	420	0.1350	0.1437
	460	0.1615	0.1687
	480	0.1783	0.1796
CO2 –n-decano	480	0.1274	0.1249
	520	0.1453	0.1826
	560	0.1725	0.2320
	580	0.1886	0.2541

Tabla 1.14. Parámetros de interacción binaria en la ecuación de estado de Peng -Robinson, determinados por la ecuación de Moysan y la ecuación de Valderrama y Reyes⁸.

Los resultados obtenidos no marcan gran diferencia entre unos valores y otros, a excepción de los datos obtenidos del par CO_2 -n-hexano y los datos obtenidos en los valores del par CO_2 -n-heptano.

31

1.4. Tablas establecidas de valores recomendados de los PIB para la aplicación en las ecuaciones de estado

Tabla 1.15. Valores de los parámetros de interacción binaria de sistemas de pares de hidrocarburo – no hidrocarburo y sistemas de pares de no – hidrocarburo – no hidrocarburo recomendados para la aplicación en la ecuación de Soave Redlich Kwong

Componente par	N_2	CO ₂	H_2S
N ₂	0.00	0.00	0.00
CO ₂	0.00	0.00	0.12
H ₂ S	0.00	0.12	0.00
C ₁	0.02	0.12	0.08
C ₂	0.06	0.15	0.07
C ₃	0.08	0.15	0.07
i-C ₄	0.08	0.15	0.06
n-C ₄	0.08	0.15	0.06
i-C ₅	0.08	0.15	0.06
n-C ₅	0.08	0.15	0.06
n-C ₆	0.08	0.15	0.05

Otros valores de los k_{ij} encontrados en la literatura para la aplicación de las ecuaciones de estado de Peng – Robison y Soave - Redlich - Kwong se muestran en la tabla 1.16 y 1.17.

Peng – Robinson			
Componente par	N_2	CO ₂	H ₂ S
N ₂	-	-	-
CO ₂	0.000	-	-
H ₂ S	0.130	0.135	-
C ₁	0.025	0.105	0.070
C ₂	0.010	0.130	0.085
C ₃	0.090	0.125	0.080
i-C ₄	0.095	0120	0.075
C ₄	0.095	0.115	0.075
i-C ₅	0.100	0.115	0.070
C ₅	0.110	0.115	0.070
C ₆	0.110	0.115	0.055
C ₇₊	0.110	0.115	0.050 +

Tabla 1.16. Valores de los parámetros de interacción binaria aplicados en la ecuación de estado de Peng – Robinson³

Tabla 1.17. Valores de los parámetros de interacción binaria aplicados en la ecuaciónde estado de Soave Redlich Kwong³

	Soave – Red	lich - Kwong	
Componente par	N ₂	CO ₂	H ₂ S
N ₂	-	-	-
CO ₂	0.000	-	-

Referencias se presentan al final del trabajo

	Soave – Red	lich - Kwong	
Componente par	N ₂	CO ₂	H ₂ S
H ₂ S	0.120+	0.120	-
C ₁	0.020	0.120	0.080
C ₂	0.060	0.150	0.070
C ₃	0.080	0.150	0.070
i-C ₄	0.080	0.150	0.060
C ₄	0.080	0.150	0.060
i-C ₅	0.080	0.150	0060
C ₅	0.080	0.150	0.060
C ₆	0.080	0.150	0.050
C ₇₊	0.080	0.3150	0.030 _

Continuación de la tabla 1.17. Valores de los parámetros de interacción binaria aplicados en la ecuación de estado de Soave Redlich Kwong³

En el cálculo de los parámetros de interacción binaria para sistemas de pares hidrocarburos – no hidrocarburos y para sistemas de pares de no hidrocarburos – no hidrocarburos se realiza de forma similar y obteniendo valores diferentes de cero.

Referencias se presentan al final del trabajo

Nomenclatura

T _C	Temperatura crítica
Pc	Presión crítica
Vc	Volumen crítico
SG, sg	Gravedad específica
Τ _Β , Τ _b	Temperatura de ebullición
T _r	Temperatura reducida
Pr	Presión reducida
Pb	Presión de ebullición
API	Densidad $API = \frac{141.5}{SG} - 131.5$
MW	Peso molecular
к	Factor de caracterización de Watson
k _{ij} , PIB	Parámetro de interacción binaria
ω	Factor acéntrico
T _{br}	Temperatura reducida en el punto de ebullición $\displaystyle rac{T_{_b}}{T_{_C}}$
P _{br}	Presión reducida en punto de ebullición $\displaystyle rac{P_b}{P_C}$
i	Índice del componente presente
j	Índice del componente par
a _i	Constante de la ecuación 1.38
b _i	Constante de la ecuación 1.38
R _i	Factor de proporción
R	Grados Rankin
°F	Grados Fahrenheit
К	Grados Kelvin
psia	$\frac{lb}{pg^2}absolutas$
Ра	pascales

o subíndice valor inicial

Capítulo 2 ECUACIONES DE ESTADO

Las ecuaciones de estado son expresiones semiempíricas que solo proporcionan resultados aceptables al aplicarlas a mezclas semejantes a aquellas utilizadas para la obtención de la ecuación original, o en rangos limitados de presión y temperatura, por lo que es norma aceptada que ninguna ecuación de estado es capaz de predecir con exactitud el comportamiento de las mezclas complejas que se recuperan de los yacimientos de hidrocarburos en general.

Las ecuaciones de estado a las cuales se hace referencia dentro de este trabajo de tesis son: la ecuación de Soave-Redlich-Kwong (SRW) y la ecuación de Peng-Robinson (PR).

2.1. Ecuación de Soave-Redlich-Kwong^{3,4,6,7}

La ecuación de Soave, muestra dos desventajas sumamente importantes;

- los valores de densidad de la fase líquida no son satisfactorios, aún cuando la densidad para la fase gaseosa fuera aceptable,
- el aumento en la desviación de los valores experimentales con respecto a los predichos al acercarse el punto crítico.

Esta ecuación tiene su origen en la ecuación original de Redlich-Kwong, la cual fue durante mucho tiempo el máximo avance desde la publicación de Van der Waals, pues fue utilizada para predecir con un alto grado de precisión, propiedades térmicas y volumétricas de componentes puros y mezclas, sin embargo su aplicación al estudio del equilibrio vapor-líquido multicomponente frecuentemente arroja resultados no satisfactorios; hecho al que se le atribuye no solo debido a la imperfección de las llamadas reglas de mezclado, sino también a

Referencias se presentan al final

la falta de la influencia de la temperatura en la conformación de la ecuación dentro de sus parámetros de atracción.,,,

La forma original de la ecuación de Redlich - Kwong es:

$$P = \frac{RT}{V - b} - \frac{a/T^{0.5}}{V(V + b)}$$
2.1

donde "*a*" es el parámetro de atracción (función de las propiedades críticas del componente puro o de la combinación de los componentes de la mezcla)

Soave llegó a la conclusión que una mejora en la precisión de la ecuación al ser aplicada al comportamiento de fases, era la inclusión de parámetros de atracción dependientes de la temperatura, es decir:

lo cual también llevaría a un mejor ajuste entre valores en el cálculo de las presiones de vapor experimentales y calculadas.

Soave mantuvo la forma original de la ecuación, pero expresando al parámetro '*a*' de forma generalizada:

$$P = \frac{RT}{V - b} - \frac{a(T)}{V(V + b)}$$
.....2.3

Esta ecuación puede ser expresada en función del factor de compresibilidad, lo cual genera una ecuación cúbica de la siguiente manera:

Para obtener los factores de repulsión y de atracción se utilizan las siguientes expresiones, imponiendo las condiciones de Van der Waals:

$$a(Tc_i) = a_{ci} = 0.42747 \frac{R^2 T c_i^2}{Pc_i}$$
2.5

$$b_i = 0.08664 \frac{RTc_i}{Pc_i} \qquad \dots 2.6$$

A temperaturas diferentes de la crítica, Soave propuso un factor de corrección para a_{Tci} , que es función de la temperatura y denotado por α y que se vuelve unitario cuando la temperatura es igual a la crítica:

$$a_i(T) = a_{ci} * \alpha_i(T) \qquad \dots 2.7$$

Para mezclas, se aplican las siguientes reglas de mezclado expresadas por Van der Waals.

$$a_{m} = \sum_{i=1}^{N} \sum_{j=1}^{N} x_{i} x_{j} \sqrt{a_{i} a_{j}} (1 - K_{i,j})$$

$$b_{m} = \sum_{i=1}^{N} x_{i} b_{i}$$
.....2.9

2.2. Ecuación de Peng-Robinson^{4,6,7,9,}

La forma original de la ecuación de estado de Peng-Robinson es:

$$P = \frac{RT}{V-b} - \frac{a(T)}{V(V+b) + b(V-b)}$$
....2.10

De donde se puede observar que el parámetro de atracción "a" tiene una forma diferente a la propuesta por Soave, lo que se explicara a continuación.

El término de atracción, según la teoría de las esferas rígidas de Van der Waals puede ser expresado como:

$$PA = -\frac{a}{g(V)} \qquad \dots 2.11$$

Donde g(V) es una función que depende del volumen molar y "*a*" es una función de la temperatura a(T).

Al aplicar las condiciones críticas a la ecuación propuesta, se observa que: Referencias se presentan al final del trabajo En relación a este problema, Soave usó un factor de escala a fin de demostrar la dependencia del término de atracción con la temperatura. Peng y Robinson realizaron un estudio de las ecuaciones expresadas en términos de atracción y repulsión, encontraron que la elección de una función adecuada para g(V) proporcionaba un valor de comprensibilidad de 0.307, que se aproxima más a la realidad , ya que estudios experimentales han mostrado que el factor de comprensibilidad obtenido por los autores es menor que el de la ecuación de Soave, que es de 0.333, observándose que esta ecuación no es predecible para altas presiones por la magnitud de:

 $\frac{b}{V_c}$...2.12

donde V_c es el volumen critico predicho.

Al comparar el modelo propuesto con la ecuación original de Redlich-Kwong, y con la ecuación de Soave, se hizo evidente que el tratamiento del factor de escalamiento adimensional para el parámetro de energía como función del factor acéntrico y de temperatura reducida había mejorado notablemente la predicción de las presiones de vapor en componentes puros y consecuentemente, las relaciones de proporcionalidad de ambas fases en una mezcla.

La ecuación de Peng-Robinson, expresada en función del factor de comprensibilidad presenta una ecuación cúbica de la siguiente forma:

 $Z^{3} - (1 - B)Z^{2} + (A - 3B - 2B) - (AB - B^{2} - B) = 0 \qquad \dots 2.13$

Donde A y B tienen la misma definición que en la ecuación de Soave-Redlich-Kwong.

39

Nomenclatura

R Constante R de la ecuación de estado

Presión

$$\mathsf{R} = 0.084784 \left[\frac{kg}{cm^3} \frac{lt}{K} \right]$$

Т	Temperatura
V	Volumen
b	Volumen molar
b _i	Parámetro de repulsión
a _i	Parámetro de atracción
b _m	Parámetro de repulsión de la mezcla de las reglas de mezclado
a _m	Parámetro de atracción de la mezcla de las reglas de mezclado
Z	Factor de compresibilidad
А	Parámetro de la fórmula 2.4
В	Parámetro de la fórmula 2.5
Tc	Temperatura crítica
Pc	Presión crítica
α	Factor de corrección
g(V)	Función que depende del volumen molar.
Vc	Volumen crítico
ω	Factor acéntrico
PR	Ecuación de Peng – Robinson
SRK	Ecuación de Soave –Redlich – Kwong
β _C	Parámetro de la ecuación 2.13
ξ _C	Parámetro de la ecuación 2.15
m	Pendiente
mo	Pendiente o
m ₁	Pendiente 1
m ₂	Pendiente 2
i	Subíndice del componente i
j	Subíndice del componente j
k _{ij}	Parámetros de interacción binaria
Tr	Temperatura reducida
Pr	Presión reducida
X _i	Fracción mol

Capítulo 3 CÁLCULO FLASH

La solución de las ecuaciones de equilibrio se agrupa dentro de lo que generalmente se conoce como "cálculo flash", el cual, partiendo de la presión, temperatura y composición global de la mezcla multicomponente, permite la obtención de las composiciones en el equilibrio de las fases líquida, vapor y gaseosa, así como las fracciones molares correspondientes de cada fase⁹

- 1. Las composiciones de la fase líquida xi en mol
- 2. Las composiciones de la fase vapor yi en mol
- 3. Las fracciones molares de las fases líquida y vapor L, V, respectivamente.
- 4. Número de componentes N_c conocida

Para i = 1, 2, 3,, Nc

Para obtener las soluciones de dichas incógnitas, se cuenta con las ecuaciones siguientes:

$$x_i L + y_i V = F$$
; si $F = 1 \text{ mol}$ 3.1

Para i = 1, 2, 3,, Nc

2) N_c ecuaciones de equilibrio termodinámico:

$$f_i^V = f_i^L \qquad \dots .3.2$$

donde f_i^V es la fugacidad en la fase vapor y f_i^L es la fugacidad en la fase líquida

3) Dos cualesquiera ecuaciones de restricción

3.3
3.4
3.5

Referencias se presentan al final del trabajo

De acuerdo con lo anterior, es posible resolver el problema, ya que se tienen tantas ecuaciones como incógnitas. El cálculo flash presenta un sistema de $2N_c+2$ ecuaciones por $2N_c+2$ incógnitas, existiendo diferentes técnicas de resolución para este tipo de casos, como son el Método de aproximaciones sucesivas y el método híbrido.

3.1. Método de Cálculo

A continuación se presenta el algoritmo de cálculo utilizada para el cálculo flash:

- 1. Lectura de datos: temperatura (T), presión (p) y fracción molar (z_i)
- 2. Cálculo de las fracciones de equilibrio K_i

$$K_{i} = \frac{y_{i}}{x_{i}} = \frac{\phi_{i}^{L}}{\phi_{i}^{V}}$$
.....3.6
$$K_{i}^{n+1} = K_{i}^{n} \frac{f_{i}^{L}}{f_{i}^{V}}$$
.....3.7

donde ϕ_i = coeficiente de fugacidad del componente i y f_i = fugacidad

3. De la expresión 3.2, se calcula la fugacidad

3.1. Cálculo del coeficiente de fugacidad

$$\ln\left(\frac{f_i^L}{px_i}\right) = \ln\phi_i^L = \frac{1}{RT} \int_{\infty}^{V^L} \left(\frac{RT}{V} - \left(\frac{\partial p}{\partial n_i}\right)_{TVn_j}\right) dV - \ln z^L$$
 Para la fase3.8

líquida

$$\ln\left(\frac{f_i^V}{px_i}\right) = \ln\phi_i^V = \frac{1}{RT} \int_{\infty}^{V^V} \left(\frac{RT}{V} - \left(\frac{\partial p}{\partial n_i}\right)_{TVn_j}\right) dV - \ln z^V$$
 Para la fase3.9
vapor

En donde p es la presión, R es la constante de los gases, T es la temperatura, V es el volumen, ϕ_i es el coeficiente de fugacidad, f_i es la fugacidad en la fase vapor y en la fase líquida, z_i es la fracción del componente i de la fase líquida más la fase vapor y x_i es la composición del componente i en la fase líquida

o en la fase vapor. (todo en unidades respectivas de acuerdo al sistema que se esté utilizando.

4. Estimación de la relación del líquido o factor de vaporización

5. Dependiendo del componente se tendrá:

$$x_i L + y_i V = z_i F \qquad \dots 3.11$$

y para la constante de equilibrio:

$$x_i = K_i y_i \qquad \dots .3.12$$

o bien

$$x_{i} = \frac{z_{i}K_{i}}{\left(\frac{L}{F}\right) + K_{i}\left[1 - \left(\frac{L}{F}\right)\right]} \qquad \dots 3.13$$

6. Calculando y_i

$$y_{i} = \frac{z_{i}K_{i}}{\left(\frac{L}{F}\right) + K_{i}\left[1 - \left(\frac{L}{F}\right)\right]} \qquad \dots 3.14$$

7. Estableciendo la ecuación de restricción:

$$\sum x_i - \sum y_i = \sum \left[\frac{(1 - K_i)z_i}{\left(\frac{L}{F} + K_i \left(1 - \frac{L}{F}\right)\right)} \right] = 0 \qquad \dots .3.15$$

Si no se cumple se regresa al paso 3

8. Cálculo de
$$z^{L}$$
 y z^{V}

$$z^{L} = \frac{pV^{L}}{RT}$$

$$z^{L} = \frac{pV^{V}}{RT}$$
.....3.17

teniendo que:

$$v^{L} = \frac{V_{T}^{L}}{n_{T}^{L}}$$
3.18
 $v^{V} = \frac{V_{T}^{V}}{n_{T}^{V}}$ 3.19

9. Se realiza el cálculo de la fugacidad

$$f_i^V = f_i^L \qquad \dots .3.20$$

si cumple la igualdad o se aproxima a un ε , se tiene la solución de (L/F), x_i, y_i, si no cumple entonces regresaremos al paso 2, de lo contrario el cálculo termina.

$$K_i^{nuevo} = K_i^{anterior} \frac{f_i^L}{f_i^V} \qquad \dots 3.21$$

Para la realización del cálculo de las iteraciones existe un gran número de métodos para realizar una secuencia iterativa, uno de ellos es el caso anterior; sin embargo un método más eficiente sería el método de Newton-Raphson, el cual tiene la ventaja de reducir el número de pasos de corrección.

Método de Variables mínimas de Newton Raphson¹⁰

Este método reduce a las variables en dos grupos; el primer grupo contiene a las variables independientes que son desconocidas y que serán mediante un proceso de iteración corregidas; el segundo grupo contendrá a las variables que son dependientes, para lo cual se debe utilizar una ecuación o un grupo de ecuaciones que se les asocie a dichas variables para ser determinadas.

Dicho método contendrá el mismo número de variables de iteración como ecuaciones a realizar para su determinación.

La secuencia de iteración que llevará dicho método se podrá reducir a un proceso de cuatro pasos:

1. Se debe seleccionar las variables de iteración y asumir los valores para dichas variables.

- Después se utilizan las ecuaciones definidas para el cálculo de las variables dependientes.
- 3. Posteriormente proceder al cálculo del error.
- Utilizar el método de Newton-Raphson para la corrección de las variables de iteración.

Este método se realiza tomando como base el cálculo del error, si este es menor que la tolerancia entonces el proceso habrá convergido, de lo contrario se repetirán los cálculos de tal manera que este valor sea menor o igual a la tolerancia.

En esta ocasión, se tomaran los primeros nueve pasos para la realización del cálculo flash, tomando este resultado como el primer valor; y los siguientes valores se realizarán formando una matriz jacobiana en el que su procedimiento de cálculo se muestra en el paso 10 y a así poder determinar las correcciones de dichos valores.

10. Finalmente para realizar las correcciones de dicho cálculos la reduciremos al problema de una matriz con un orden directamente proporcional al número de componentes (n) para la iteración de la fase de vapor y la fase líquida V-Y y L-X, y para la iteración p_v y p_x será una matriz proporcional a n+1.

Considerando la iteración V-Y para un fluido de dos fases en el cual predomina el vapor. Supongamos el vector R (V, y_2 , y_3 ,, y_n)^T y teniendo como el vector de error a Φ (Φ_1 , Φ_2 ,, Φ_n)^T, cuando la corrección es considerada lineal, entonces el algoritmo puede ser expresado por:

 $J^{q} \left[R^{q+1} - R^{q} \right] = -\Phi^{q} \qquad \dots 3.22$

donde el exponente "q " es el número de veces que ha sido evaluada utilizando valores conocidos desde la iteración q. Este tipo de ecuaciones lineales simultáneas es resuelto para elementos de la matriz R^{q+1},los cuales son valores que serán utilizados en la siguiente iteración.

La convergencia cuadrática de la ecuación de arriba será obtenida si J es la matriz del jacobiano, definida como la matriz en la cual cada elemento es la derivada parcial de uno de los errores con respecto a una variable de iteración cuando todas las otras variables de iteración son constantes.

Los elementos de la matriz J para la iteración V-Y (fase vapor) son definidas por las expresiones siguientes:

$$J_{il} = \frac{\partial \Phi_i}{\partial V_l}; 1 \le i \le n$$

$$\dots 3.23$$

$$J_{il} = \frac{\partial \Phi_i}{\partial V_l}; 1 \le i \le n; 2 \le i \le n$$

$$\dots 3.24$$

$$\partial Y_j = \partial Y_j$$
, $i \le i \le n, 2 \le j \le n$
La expresión analítica para las derivadas en las ecuaciones anteriores

La expresión analítica para las derivadas en las ecuaciones anteriores puede ser definida derivando las siguientes expresiones:

$$L+V=1 \qquad \qquad \dots .3.25$$

$$Lx_i + Vy_i = z_i; 1 \le i \le n \qquad \dots 3.26$$

$$\sum_{i=1}^{n} x_{i} = 1$$
.....3.27
$$\sum_{i=1}^{n} y_{i} = 1$$

$$\sum_{i=1}^{j} y_i = 1$$
3.28

Obteniendo la primer derivada de las ecuaciones de +++++ tendremos:

$$J_{il} = \frac{\partial \phi_i}{\partial V} = -\frac{1}{L} \sum_{j=2}^n \frac{\partial f_{iL}}{\partial_{xj}} (y_j - x_j) \\ 1 \le i \le n$$
3.29

$$J_{ij} = \frac{\partial \phi_i}{\partial y_j} = -\frac{V}{L} \frac{\partial f_{i\Omega}}{\partial x_j} - \frac{\partial f_{iV}}{\partial y_j}; 1 \le i \le n; 2 \le j \le n$$
3.30

Finalmente se puede marcar que los elementos de la matriz del jacobiano para la fase líquida y la fase vapor estarán dados por:

$$J_{iL} = \frac{\partial \phi_i}{\partial L} = -\frac{1}{V} \sum_{j=2}^n \frac{\partial f_{iV}}{\partial y_j} (y_j - x_j); 1 \le i \le n$$
.....3.31

$$J_{ij} = \frac{\partial \phi_i}{\partial x_j} = \frac{\partial f_{il}}{\partial x} + \frac{L}{V} \frac{\partial f_{iV}}{\partial y_j}; 1 \le i \le n; 2 \le j \le n$$
.....3.32

Los elementos de la matriz del jacobiano para el cálculo de la presión de burbuja serán dados por:

$$J_{i,j} = \frac{\partial \phi_i}{\partial y_j} = -\frac{\partial f_{iV}}{\partial y_j}; 1 \le i \le n$$
.....3.33

$$J_{i,n+1} = \frac{\partial \phi_i}{\partial p} = -\frac{\partial f_{iL}}{\partial y_p} - \frac{\partial f_{iV}}{\partial p}; 1 \le i \le n$$
.....3.34

$$J_{n+1} = \frac{\partial \phi_{n+1}}{\partial y_j} = -\frac{f_{jL}p}{f_{jV}} + \sum_{i=1}^n \left[\frac{f_{iL}py_i}{f_{iV}^2}\frac{\partial f_{iV}}{\partial y_j}\right]; 1 \le i \le n$$
3.35

$$J_{n+1,n+1} = \frac{\partial \phi_{n+1}}{\partial p} = 1 - \sum_{i=1}^{n} \left[\frac{py_i}{f_{iV}} \left| \frac{\partial f_{iL}}{\partial p} \frac{f_{iL}}{p} - \frac{f_{iL}}{f_{iV}} \frac{\partial f_{iV}}{\partial p} \right| \right]; 1 \le j \le n$$
3.36

$$J_{n+1,j} = \frac{\partial \phi_{n+1}}{\partial x_j} = -\frac{f_{jV}p}{f_{jL}} + \sum_{i=1}^n \left[\frac{f_{iL}px_i}{f_{iL}^2} \frac{\partial f_{iL}}{\partial x_j} \right]; 1 \le j \le n$$
3.37

Las expresiones para el cálculo de iteración de la fase presión de rocío serán:

$$J_{i,j} = \frac{\partial \Phi_i}{\partial x_j} = \frac{\partial f_{iL}}{\partial x_j}; 1 \le i, j \le n$$
.....3.38

$$J_{i,n+1} = \frac{\partial \Phi_i}{\partial p} = \frac{\partial f_{iL}}{\partial p} - \frac{\partial f_{iV}}{\partial p}; 1 \le i \le n$$
.....3.39

$$J_{n+1,n+1} = \frac{\partial \Phi_i}{\partial p} = \frac{\partial \Phi_{n+1}}{\partial p} = 1 - \sum_{i=1}^n \left[\frac{px_i}{f_{iV}} \left| \frac{\partial f_{iV}}{\partial p} + \frac{f_{iV}}{p} - \frac{f_{iV}}{f_{iL}} \right| \frac{\partial f_{iL}}{\partial p} \right] \qquad \dots 3.40$$

3.2. Desarrollo para el cálculo del coeficiente de fugacidad para las ecuaciones de estado.

Uno de los pasos para el procedimiento del cálculo flash es determinar el coeficiente de fugacidad, para lo cual es necesario realizar un cálculo diferente para cada ecuación de estado.

De forma generalizada se sabe que el cálculo de la fugacidad es de la expresión 3.2:

$$f_i^V = f_i^L$$

Cálculo del coeficiente de fugacidad

$$\ln\left(\frac{f_i^L}{px_i}\right) = \ln\phi_i^L = \frac{1}{RT} \int_{\infty}^{V^L} \left(\frac{RT}{V} - \left(\frac{\partial p}{\partial n_i}\right)_{TVn_j}\right) dV - \ln Z^L$$
 Para la fase3.41

líquida

$$\ln\left(\frac{f_i^V}{px_i}\right) = \ln\phi_i^V = \frac{1}{RT} \int_{\infty}^{V^V} \left(\frac{RT}{V} - \left(\frac{\partial p}{\partial n_i}\right)_{TVn_j}\right) dV - \ln Z^V$$
 Para la fase3.42

vapor

Donde p es la presión, R es la constante de los gases, T es la temperatura, V es el volumen, ϕ_i es el coeficiente de fugacidad, f_i es la fugacidad en la fase vapor y en la fase líquida, z_i es la fracción del componente i de la fase líquida más la fase vapor, x_i es la composición del componente i en la fase líquida o en la fase vapor y Z es el factor de compresibilidad. Todos en las unidades respectivas de acuerdo al sistema que se esté utilizando.

3.2.1. Ecuación de estado de Soave – Redlich- Kwong

Para obtener el coeficiente de fugacidad a partir de la ecuación de Soave – Redlich-Kwong, se tiene:

$$RT\ln\phi_i = \int_V^{\infty} \left(\left(\frac{\partial p}{\partial n_i}\right)_{TVn_j} - \frac{RT}{V} \right) dV - RT\ln Z \qquad \dots 3.43$$

Recordando de la expresión 2.2, la ecuación de estado de Soave – Redlich - Kwong se expresa como:

$$p = \frac{RT}{V-b} - \frac{a(T)}{V(V+b)}$$

Para el cálculo del coeficiente de fugacidad

$$A_i = \left(\frac{\partial N^2 a}{\partial N_i}\right) \qquad \dots 3.44$$

$$B_i = \left(\frac{\partial Nb}{\partial N_i}\right) \qquad \dots 3.45$$

$$RT\ln f_i = RT\ln\frac{N_iRT}{V-B} - \frac{A_i}{B}\ln\left(\frac{V+B}{V}\right) + \frac{AB_i}{B}\left[\frac{1}{B}\ln\left(\frac{V+B}{V}\right) - \frac{1}{(V+B)}\right] \qquad \dots 3.46$$

o bien en términos del volumen molar

$$RT \ln f_{i} = RT \ln \frac{x_{i}RT}{v-b} - \frac{RT}{(v-b)} - \frac{A_{i}}{b} \ln \left(\frac{v+b}{v}\right) + \frac{aB_{i}}{b} \left[\frac{1}{b} \ln \left(\frac{v+b}{v}\right) - \frac{1}{(v+b)}\right] \qquad \dots 3.47$$

3.2.2. Ecuación de estado de Peng – Robinson

Para obtener el coeficiente de fugacidad a partir de la ecuación de estado de Peng – Robinson, se tiene:

$$RT \ln \phi_i = \int_V^\infty \left(\left(\frac{\partial P}{\partial n_i} \right)_{TVn_j} - \frac{RT}{V} \right) dV - RT \ln Z$$
3.48

Recordando de la expresión 2.9, la ecuación de estado de Peng – Robinson se expresa como:

$$p = \frac{RT}{V-b} - \frac{a(T)}{V(V+b) + b(V-b)}$$

Para el cálculo del coeficiente de fugacidad

$$A_{i} = \left(\frac{\partial N^{2}a}{\partial N_{i}}\right) \qquad \dots .3.49$$
$$B_{i} = \left(\frac{\partial Nb}{\partial N_{i}}\right) \qquad \dots .3.50$$

Reordenando términos:

$$RT \ln f_{i} = RT \ln \frac{N_{i}RT}{V-B} - \frac{A_{i}}{B[(1+\sqrt{2})-(1-\sqrt{2})]} \ln \left(\frac{V+(1+\sqrt{2})B}{V+(1-\sqrt{2})B}\right) + \frac{AB_{i}}{B[(1+\sqrt{2})-(1-\sqrt{2})]}^{*} \qquad3.51$$
$$\left[\frac{1}{B} \ln \left(\frac{V+(1+\sqrt{2})B}{V+(1-\sqrt{2})B}\right) + \left(\frac{(1-\sqrt{2})B}{V+(1-\sqrt{2})B}\right) - \left(\frac{(1+\sqrt{2})B}{V+(1+\sqrt{2})B}\right)\right]$$

o bien en términos del volumen molar

$$RT \ln f_{i} = RT \ln \frac{x_{i}RT}{v-b} - \frac{RT}{v-b} - \frac{A_{i}}{b[(1+\sqrt{2})-(1-\sqrt{2})]} \ln \left(\frac{v+(1+\sqrt{2})b}{v+(1-\sqrt{2})b}\right) + \frac{aB_{i}}{b[(1+\sqrt{2})-(1-\sqrt{2})]}^{*} \\ \left[\frac{1}{b} \ln \left(\frac{b+(1+\sqrt{2})b}{v+(1-\sqrt{2})b}\right) + \left(\frac{(1-\sqrt{2})}{v+(1-\sqrt{2})b}\right) - \left(\frac{(1+\sqrt{2})}{v+(1+\sqrt{2})b}\right)\right] \qquad \dots .3.52$$

NOTA: Los valores de A y B son los calculados de acuerdo a cada una de las ecuaciones de estado.

3.3. Presión de Saturación

Se le llama presión de saturación a la presión a la cual tenemos un contenido de 100% aceite.

3.3.1. Cálculo de la presión de burbuja para un componente puro

El punto de burbuja, como su nombre lo indica, es el punto en el cual se forma la primera burbuja de gas; o bien podemos decir que el punto en el cual la cantidad de gas es despreciable, dando esto como resultado que el número de moles de gas es igual a cero ($n_g = 0$) y el número de moles de líquido es igual al total de moles existentes en la mezcla.

$p_b = \sum_j z_j p_{vj}$	3.53
$n_g = 0$	3.53-A
$n_L = n$	3.53-B
$p = p_b$	3.53-C
$\sum_{j} \frac{z_{j}}{\frac{p_{b}}{p_{vj}}} = 1$	3.53-D

Donde p_b es la presión de burbuja, p_{vj} es la presión de vapor para cada componente j, z_i es la fracción mol de cada componente j

Por lo tanto tenemos que la presión de burbujeo será el producto de la fracción molar multiplicada por a presión de vapor de cada componente j.

3.3.2. Cálculo de la presión de rocío

El punto de rocío es el punto en el cual la cantidad del líquido es prácticamente despreciable, por lo tanto podemos decir que en este punto el número de moles de líquido es igual a cero, mientras que el número de moles de gas será igual al número total de moles de la mezcla.

$n_l = 0$	3.54
$n_g = n$	3.55
$p = p_r$	3.56
$\sum_{j} \frac{z_{j}}{\frac{p_{vj}}{p_{r}}} = 1$	3.57
$p_r = \frac{1}{-7}$	3.58
$\sum_{j} \frac{z_{j}}{p_{vj}}$	

Donde p_r es la presión de rocío, p_{vj} es la presión de vapor para cada componente j y z_j es la fracción mol de cada componente j. Todo en unidades de acuerdo al sistema que se esté utilizando.

Por lo tanto se tiene que la presión de rocío se determinará mediante el recíproco de la sumatoria de la división de la fracción molar de cada componente j entre la presión de vapor de cada componente j.

Nomenclatura

- x_i Composición de la fase líquida
- y_i Composición de la fase de gas

Zi	Composición total, fase líquida mas fase de gas
L	Fracción mol de fase líquida
V	Fracción mol de la fase de gas
Nc	Número de componentes
i	Índice del componente
f	Fugacidad
Т	Temperatura
Р	Presión
K _i	Fracciones de equilibrio
$\Phi_{\rm L}$	Coeficiente de fugacidad de la fase líquida

Nomenclatura

$\Phi_{\rm V}$	Coeficiente de fugacidad de la fase de gas
R	Constante R de la ecuación de estado
	$R = 0.084784 \left[\frac{kg}{cm^3} \frac{lt}{K} \right]$
V	Volumen
Z	Factor de compresibilidad
J	Matriz jacobiana
q	Exponente que indica el número de veces que se ha realizado el cálculo en la ecuación 3.22
R'	Vector compuesto por la fase vapor en la ecuación 3.22
Φ	Error de la ecuación 3.22
N	Número de moles
b	Volumen molar
А	Parámetro de la ecuación 3.53
В	Parámetro de la ecuación 3.53
ω	Factor acéntrico
Z	Factor de compresibilidad
v	Volumen
a	Parámetros de atracción
b	Parámetros de repulsión
P _b	Presión de burbuja
P _V	Presión de vapor
n _L	Número de moles de líquido

n_g Número de moles de gas

P_r Presión de rocío

Capítulo 4 RESULTADOS

En el presente capítulo se determinarán valores de presión y temperatura crítica así como los valores de los parámetros de interacción binaria de dos mezclas de hidrocarburos, con la finalidad de determinar que tanta influencia tienen estos parámetros, en el cálculo de la presión de saturación y un cálculo flash, a partir de las correlaciones estudiadas en este trabajo, usando el peso molecular y la densidad específica de los pseudocomponentes.

Para obtener los resultados comparativos de las dos mezclas de hidrocarburos se uso el simulador composicional IMPEVETE desarrollado en el Instituto Mexicano del Petróleo el cual emplea las ecuaciones de estado de Peng – Robinson (PR) y Soave – Redlich – Kwong (SRK).

Se realizará una comparación entre los diferentes valores de presión de saturación, calculados a través de los valores de las propiedades criticas, factor acéntrico, y variando el exponente "n", de la ecuación 1.36, para calcular los parámetros de interacción binaria.

$$k_{ij} = A \left[1 - \left[\frac{2\sqrt{V_{ci}^{1/3}V_{cj}^{1/3}}}{V_{ci}^{1/3} + V_{cj}^{1/3}} \right]^n \right]$$

El análisis se hará para dos mezclas diferentes, una de aceite negro y otra de gas y condensado.

Las mezclas son tomadas de análisis PVT realizados por el Instituto Mexicano del Petróleo, quienes facilitaron los datos experimentales para poder realizar las comparaciones de los resultados obtenidos con el programa de cálculo.

4.1. Antecedentes.

La primera mezcla de ejemplo se tomo del pozo 53 perteneciente al campo Balam y la segunda mezcla se tomo del pozo May 1 perteneciente al campo May.

A continuación se mencionarán algunos antecedentes de los campos anteriormente mencionados.

4.1.1. Campo Balam

El proyecto de Balam pertenece al complejo Cantarell, el cual está localizado en aguas mexicanas del Golfo de México en la costa de Campeche, aproximadamente a 95 kilómetros del noroeste de Ciudad del Carmen. Este cubre un área de 43 kilómetros cuadrados.

El campo Balam esta localizado en el litoral de la provincia de Coatzacoalcos, y consiste de dos yacimientos. El primero corresponde al paleoceno alto y cretácico, consiste de calcita dolomitizada y dolomitas. El segundo está compuesto por cuarzos y areniscas con pequeñas cantidades de evaporizas que actúan como agente cementante y pequeñas cantidades de arcilla.

Tipo de Trampa.

La trampa en este campo es localizada en el Oxfordiano y es propiamente una combinación de tipos con cierres descubiertos alrededor de la falla inversa en el este y en la falla normal en la porción oeste. El centro de la trampa es afectada por un serio problema de contenido de sal.

4.1.2. Campo May

El campo May se localiza en la plataforma del Golfo de México, en el suroeste de la región litoral, aproximadamente a 20 kilómetros de la frontera noroeste de Tabasco.

Geológicamente, el campo está localizado cercano a la costa de la provincia de Coatzacoalcos, en el litoral de Campeche. Consta de dos

54

yacimientos, el primer yacimiento es llamado Kimmeridgian, consiste de una delgada fractura de dolomita y caliza la cual forma una trampa combinada. El yacimiento contiene aceite ligero con una densidad de 47 °API. El campo cubre 20.6 kilómetros cuadrados.

El primer pozo perforado en este campo fue el de Yum 1, del cual se obtuvieron exitosos resultados, lo que hizo posible continuar con la investigación para la localización de un nuevo yacimiento. Posteriormente se procedió a perforar el pozo May 1 en el cual se siguió con la búsqueda de hidrocarburos ligeros en rocas carbonatadas del cretácico y en sedimentos de caliza dolomitizada.

El campo May fue descubierto debido a la información de interpretación sísmica, obtenida por prospectiva 3D como parte del proyecto de Yum y también por datos suplementarios por pozos perforados dentro de la misma área.

Tipo de trampa.

Este pertenece a una trampa estructural perteneciente al cretácico alto correspondiente a un anticlinal, donde la roca esta conformada por una fractura delgada de caliza. Es una trampa combinada de caliza dolomitizada y dolomitas mesocristalinas. La estructura varía lateral y verticalmente lo que afecta a la roca del yacimiento, dependiendo de la intensidad del proceso de dolomitación.

4.2. Datos Generales

4.2.1. Campo Balam *Distrito: Pozo: Campo:*

Ciudad del Carmen 53 Balam

Datos del Yacimiento Formación productora: Presión inicial Temperatura del Yacimiento: Presión del Yacimiento: Presión de rocío @ T_v:

J. S. Oxford 578.2 [kg/cm²] 314.82 [K] 578.2 [kg/cm²] 91 [kg/cm²] Tipo de fluido: Densidad inicial Aceite negro 0.8860 [gr/cm³]

Composición del fluido original

Composición del fluido original					
		Densidad	Peso		
Componente	% Mol	[gr/cm ³]	Molecular		
Nitrógeno	0.172				
Bióxido de	0.088				
carbono					
Ácido sulfhídrico	0.000				
Metano	24.234				
Etano	2.471				
Propano	2.377				
Isobutano	0.594				
Butano normal	2.779				
Isopentano	1.846				
Pentano normal	2.476				
Hexanos	4.471				
Heptanos	5.434	0.7155	97.0		
Octanos	4.781	0.7351	108.8		
Nonanos	4.656	0.7598	117.5		
Decanos	4.881	0.7791	131.0		
Undecanos y más	38.740	0.9508	424.0		
pesados					
TOTAL	100.000				
Características de la fracción C ₇₊	58.492	0.9150	297.0		

Resultados PVT experimental *Resultados de separación a masa constante* @ 107 °C

Presión	Volumen	Factor de	Densidad	Compresibilidad
	relativo	volumen	del aceite	del gas x 10 ⁻⁴
[kg/cm ²]	[m ³ /m ³]	del aceite	@ CY	[1/kg/cm ³]
		[m ³ /m ³]	[gr/cm ³]	
350	0.9712	1.306	0.7190	
300	0.9756	1.312	0.7158	8.99
250	0.9810	1.319	0.7118	9.39
200	0.9857	1.325	0.7084	9.84
150	0.9915	1.333	0.7043	10.35
100	0.9984	1.342	0.6994	11.03

91	1.0000	1.345	0.6980	11.28
90	1.0015			
80	1.0397			
65	1.1353			
45	1.2345			

Presión de rocío

 $91 [kg/cm^2]$

4.2.2. Campo May

Distrito: Región: Pozo: Campo: Plataforma: Ciudad del Carmen Marina May 1 May Sonat 84

Datos del Yacimiento

Formación productora: Presión inicial Temperatura del Yacimiento: Presión del Yacimiento: Presión de rocío @ T_y: Tipo de fluido: Densidad inicial Cretácico Medio 833.15 Kg/cm² 168 °C 833.15 Kg/cm² 396 Kg/cm² Gas y condensado 0.8127 gr/cm³

Composiciór	Composición del fluido original					
	Composición del fluido original					
	Componente	%mol	Densidad [gr/cm ³]	Peso molecular		
1	Nitrógeno	0.641				
2	Bióxido de carbono	0.605				
3	Ácido sulfhídrico	0.054				
4	Metano	77.306				
5	Etano	5.602				
6	Propano	2.102				
7	Isobutano	0.320				
8	Butano normal	1.503				
9	Isopentano	0.714				
10	Pentano normal	0.980				
11	Hexanos	1.250				
12	Heptanos +	8.923	0.8162	195.5		
TOTAL	100.000					

Resultados PVT experimental

Resultados de separación a masa constante @ 166 °C					
Presión	Volumen	Factor de	Factor de	Densidad	Compresibilidad
	relativo	desviación	volumen	del gas @	del gas x 10 ⁻⁴
[kg/cm ²]	[m ³ /m ³]	"Z"	del gas	ČΥ	[1/kg/cm ³]
			x10 ⁻³	[gr/cm ³]	
			[m ³ /m ³]		
450	0.9499	1.0940	4.585	0.3168	
425	0.9701	1.0739	4.683	0.3102	8.41
400	0.9942	1.0521	4.799	0.3027	9.01
396	1.000	1.0492	4.817	0.3015	9.14
375	1.0224				
350	1.0589				
325	1.1033				
300	1.1575				

Resultados d	separación a	a masa constante	@	168	°C
--------------	--------------	------------------	---	-----	----

Presión de rocío $396 [kg/cm^2]$

4.3. Propiedades críticas

Los valores de las propiedades crítica, presión (Pc) y temperatura (Tc), así como del factor acéntrico (ω) (var tabla B1 y tabla B2), para los pseudocomponentes, se obtuvieron a través del programa de cómputo de propiedades críticas, usando las correlaciones presentadas anteriormente.

Por razones obvias, en este trabajo no podrán presentarse todas las tablas de resultados de los diferentes pares de correlaciones, por lo cual se presentan únicamente para cada uno de los fluidos tres de esas combinaciones.

4.4. Parámetros de interacción binaria

Para facilitar el cálculo de los parámetros de interacción binaria se realizó un programa de cómputo. Algunos de los parámetros de interacción binaria se toman de una base de datos, para los componentes pares con metano se tomó la ecuación No. 1.32 A y 1.33 B, para los pares hidrocarburo con hidrocarburo, no hidrocarburo - hidrocarburo y no hidrocarburo - no hidrocarburo se ha tomado la correlación de Mehra (Ec. No.), la cual depende de un exponente "n", y es función del volumen crítico, el cual varía de acuerdo al tipo de par como se mencionó en capítulos anteriores. (Tablas B3 y B4).

Las tablas que muestran los resultados de los fluidos estudiados se muestran en el apéndice B.

Se hicieron pruebas con diferentes valores de n y se determinó que existe una influencia considerable en los resultados si ese valor cambia, lo cual se verá mas adelante. En la literatura sugieren que para pares de hidrocarburo – hidrocarburo el valor de "n" sea igual a la unidad, y que para los pares de no hidrocarburo – no hidrocarburo sea igual a seis, en valor de "n" igual a 1.2 es sugerido por el simulador WinPro de CMG.

4.5. Tablas Comparativas

Para obtener los resultados comparativos de las dos mezclas de hidrocarburos con el simulador IMPEVETE, se emplearon los procesos de presión de saturación y separación a composición constante (flash); usando los valores de las propiedades críticas, factor acéntrico y parámetros de interacción binaria, calculados y presentados anteriormente.

En un principio lo que se analizó, fue el valor de la presión de saturación calculada con el valor experimental obtenida de los análisis PVT proporcionado por el Instituto Mexicano del Petróleo.

Esta comparación se hizo con la finalidad de ver la influencia que tienen los parámetros de interacción binaria, las propiedades críticas y el factor acéntrico en las ecuaciones de estado.

A continuación se muestran los resultados obtenidos con las diferentes combinaciones de pares de correlaciones y los diferentes valores de PIB variando el valor de n y aplicando a las dos ecuaciones de Estado PR y SRK.

4.5.1. Balam

Campo: Balam 53 Tipo de Yacimiento: Aceite negro P_{sat, experimental}: 92.0332 [Kg/cm²] Ecuación de Estado: Peng Robinson

59

n = 1

Tabla 4.1. Porcentaje de error utilizando las diferentes correlaciones parapropiedades críticas. (PR)

	Correlación de omega						
Correlación	KL	%E	ED	%E	TW	%E	
de							
propiedades críticas							
KL	114.1256	24.0048	114.1256	24.0048	113.9021	23.7619	
С	107.2638	16.5490	99.8127 **	8.4529**	107.0682	16.3365	
RD	113.2113	23.0114	107.3950	16.6916	112.9955	22.7769	
WI	119.9284	30.3099	116.5791	26.6707	119.6739	30.0334	
TO	123.8869	34.6111	119.4887	29.8321	119.9526	30.3362	

				Correlación			
				de omega			
n=1.2	Correlación	KL	%E	ED	%E	TW	%E
	de						
	propiedades						
	críticas						
	KL	114.1299	24.001	114.1299	24.0095	113.9058	23.766
	С	107.2670	16.5525	99.8163 **	8.4568**	107.0708	16.3393
	RD	113.2158	23.0162	107.3998	16.6968	112.9993	22.7810
	WI	119.9340	30.3160	116.5848	26.6769	119.6788	30.0387
	TO	123.8933	34.6181	119.4953	29.8393	119.9585	30.3426

n=6

			Correlación de omega			
Correlación	KL	%E	ED	%E	TW	%E
de						
propiedades						
criticas						
KL	114.1573	24.0392	114.1573	24.0392	113.9330	23.7955
С	107.2917	16.5793	99.8385 ***	8.4809 **	107.0953	16.3659
RD	113.2430	23.0458	107.4250	16.7242	113.0263	22.8103
WI	119.9638	30.3484	116.6135	26.7081	119.7084	30.0709
TO	123.9248	34.6523	119.5253	29.8719	119.9885	30.3752

** Mejor grupo de correlaciones
Campo: Balam 53 Tipo de Yacimiento: Aceite negro P_{sat, experimental}: 92.0332[Kg/cm²] Ecuación de Estado: Soave Redlich Kwong

Tabla 4.2. Porcentaje de error utilizando las diferentes correlaciones parapropiedades críticas. (SRK)

n = 1

	Correlación								
			de omega						
Correlación	KL	%E	ED	%E	TW	%E			
de									
propiedades									
críticas									
KL	116.7746	26.8831	116.7746	26.8831	116.5100	26.5956			
С	108.9043	18.3315	99.8862 **	8.5328**	108.6737	18.0809			
RD	115.3532	25.3387	108.2566	17.6278	115.1004	25.0639			
WI	122.9479	33.5908	118.7835	29.0659	122.6453	33.2620			
TO	127.0375	38.0344	121.6245	32.1528	122.2028	32.7812			

				Correlación			
				de omega			
n=1.2	Correlación	KL	%E	ED	%E	TW	%E
	de						
	propiedades						
	críticas						
	KL	116.7811	26.8902	116.7811	26.8902	116.5159	26.602
	С	108.9095	18.3372	99.8915 ***	8.5385***	108.6783	18.0859
	RD	115.3598	25.3458	108.2634	17.6352	115.1064	25.0705
	WI	122.9559	33.5995	118.7916	29.0747	122.6526	32.7902
	TO	127.0464	38.0441	121.6336	32.1627	122.2111	32.7902

n=6

			Correlación de omega			
Correlación	KL	%E	ED	%E	TW	%E
de						
propiedades						
críticas						
KL	116.8068	26.9181	116.8068	26.9181	116.5413	26.6296
С	108.9324	18.3621	99.9117 **	8.5605**	108.7010	18.1106
RD	115.3851	25.3733	108.2866	17.6604	115.1315	25.0978
WI	128.9839	40.1493	118.8182	29.1036	122.6804	33.3001
ТО	127.0760	38.0763	121.6336	32.1627	122.2389	32.8204

** Mejor grupo de correlaciones

4.5.2. May

Campo: May 1 Tipo de Yacimiento: Gas y Condensado P_{sat, experimental}: 397.0332[Kg/cm²] Ecuación de Estado: Peng Robinson

Tabla 4.3. Porcentaje de error utilizando las diferentes correlaciones para propiedades críticas. (PR)

		1
n	_	
п	_	T

1				Correlación			
				de omega		-	
	Correlación	KL	%E	ED	%E	TW	%E
	de						
	propiedades						
	críticas						
	KL	419.3079	5.6102				
	С	430.6171	8.4587				
	RD	518.1688	30.5102	507.9561	27.9379	492.5692	24.0625
	WI	421.7084	6.2149				
	TO					391.2930**	1.44 58 ^{**}

				Correlación de omega			
n=1.2	Correlación	KL	%E	ED	%E	TW	%E
	de						
	propiedades						
	críticas						
	KL					475.8538	19.8523
	С	425.3675	7.1365				
	RD	514.1205	29.4906	502.8740	26.6579	75.0884	81.0876
	WI	421.3772	6.1315			-1272.26	
	TO			53.7593	86.4597	388.9 784 ^{**}	2.0287**

Correlación de omega Correlación n=6 KL %E ED %E TW %E de propiedades críticas 419.2949 5.607 KL ____ ____ ---____ С 425.3675 7.1365 -------------492.5834 RD 518.1761 30.5120 492.5834 24.066 24.066 WI 421.7340 6.2213 ------------TO ---391.3227 1.4383 ---------

** Mejor grupo de correlaciones

Campo: May 1 Tipo de Yacimiento: Gas y Condensado P_{sat, experimental}: 397.0332[Kg/cm²] Ecuación de Estado: Soave Redlich Kwong

Tabla 4.4. Porcentaje de error utilizando las diferentes correlaciones parapropiedades críticas. (SRK)

		Correlación de omega							
Correlación	KL	%E	ED	%E	TW	%E			
de									
propiedades									
criticas			**	**					
KL	452.1221	13.8751	442.6577***	11.4935					
С	461.0162	16.1153							
RD	565.1921	42.3538	551.4797	38.9001	532.7291	34.1775			
WI	454.4994	14.3481	445.0165	12.0855					
TO					91.4631	76.9634			

				Correlación			
n=1.2	Correlación de propiedades	KL	%E	ED	%E	TW	%E
	KL	451.5795	13.7385	441.6944**	11.2487**		
	С	460.0404	15.8695				
	RD	564.2562	42.1181	550.5915	38.6764	531.9046	33.9698
	WI	453.5104	14.2248	444.4240	11.9362		
	ТО						

n=6

			Correlación de omega			
Correlación	KL	%E	ED	%E	TW	%E
de propiedades críticas						
KL	452.1115	13.8725	443.0121**	11.5804**		
С	461.0228	16.1169				
RD	565.1816	42.3512	551.4734	38.8985	532.7285	34.1773
WI	454.1816	14.4703	445.0213	12.0867		
ТО					65.1417	83.5929

** Mejor grupo de correlaciones

4.5.3. Observaciones:

1. GAS y CONDENSADO

Al realizar las corridas con el conjunto de valores para un gas se observó lo siguiente:

- a) No todos los conjuntos de valores con los pares de correlaciones funcionaron para obtener un valor de la presión de rocío por lo que se necesitaría hacer una nueva selección de la correlación a utilizar.
- b) El mejor par para realizar una estimación más cercana a la presión de saturación, en este caso, fue la de Tomassen para las propiedades críticas y Twu para el factor acéntrico, obteniendo un valor mínimo de error.
- c) La correlación para propiedades críticas que mayor porcentaje de error tuvo para la estimación de la presión fue la de Riazi y Daubert.
- d) Pese a que la correlación de Riazi es la más alejada al valor experimental es importante resaltar que es la única correlación que al ser combinada con cualquiera de las correlaciones para el cálculo del factor acéntrico aquí estudiadas, permite calcular un valor de presión de saturación acorde a los datos y por tanto realizar el cálculo flash.
- e) La correlación para propiedades críticas de acuerdo a los resultados presentados que tendría mayores problemas en el cálculo de la presión de saturación es la de Tomassen, pues esta correlación únicamente aplica cuando se utiliza la correlación de Twu para el cálculo del factor acéntrico.

- f) La correlación para omega que presenta mejores resultados es la de Kesler Lee, pues si se observa las tablas No. 4.1, 4.2, 4.3 y 4.4, se aprecia que al combinarla con cualquiera de las correlaciones de las propiedades críticas, se puede realizar el cálculo de la presión de saturación, a excepción con la correlación de Tomasen. A diferencia de las otras dos correlaciones que solamente estiman uno o dos valores de presión de saturación.
- g) El par que presenta una estimación con un margen de error menor, al comparar los valores experimentales, es el de Kesler Lee con Kesler Lee.
- h) Al cambiar el valor de "n" para el cálculo de los parámetros de interacción binaria, se genera un cambio considerable en el cálculo de las presiones de saturación., Se observa también que existe un cambio en el par, para correlaciones que se utilizarán para el cálculo de las propiedades críticas y factor acéntrico. Esto se pude explicar debido a que las partículas de un gas tienen más movilidad, comparadas con las de un líquido. Esto permite demostrar que la influencia de los parámetros de interacción binaria (PIB) es mucho más notoria en el caso del gas.
- i) Al cambiar la ecuación de estado, el par de correlaciones que se concidera mejor para una ecuación no es el mismo que para la otra. Se observa que los valores con menor porcentaje de error con respecto al valor experimental de la presión de saturación son obtenidos al utilizar la ecuación de Peng Robinson.
- j) Cabe resaltar que la ecuación de Soave Redlich Kwong, pese a que da valores más alejados al experimental, se puede hacer el cálculo de la presión de saturación para más pares de

correlaciones; a diferencia de cuando se elige la ecuación de Peng Robinson.

2. ACEITE NEGRO

Al realizar las corridas con el conjunto de valores para un aceite se observó lo siguiente:

- a) En el aceite no hay mayor problema para los valores al escoger las correlaciones, pues todos dan valores a diferencia del gas.
- b) Al cambiar el valor de n para el cálculo de los PIB no hay mucha variación para aceite pues el mejor y el peor par no cambiaron a diferencia del gas.
- c) Para líquido, el mejor par fue: Cavett para las propiedades críticas combinada con Edmister para el factor acéntrico.
- d) A pesar de que la literatura menciona que Edmister no es muy recomendable para estimaciones de omega en fracciones pesadas, fue la de mejor utilidad en este caso.
- e) En el gas se mencionó que la correlación de Tomassen para propiedades críticas en cualquiera de sus combinaciones para la estimación del factor acéntrico, al parecer sería la última en recomendar, de las estudiadas aquí, y en este caso del aceite se corrobora, pues los valores son muy alejados al compararlos con el valor experimental.
- f) En el caso del aceite se obtuvieron mayores porcentajes de error que en el gas.
- **g)** En el caso del aceite negro la ecuación de estado no afecta tanto el cambio de ecuación en el cálculo a diferencia del gas

y condensado; sin embargo es bien visto que sigue teniendo menor error la de Peng Robinson aunque la diferencia sea mínima.

Recomendaciones de la literatura:

- h) En la literatura mencionan que es mas confiable la ecuación de Peng Robinson que la de Soave Redlich Kwong, ya que la primera ha sido mas estudiada que la segunda¹
- i) La literatura menciona que es mejor utilizar las correlaciones de Kesler y de Riazzi para el cálculo de las propiedades críticas para los hidrocarburos del C₆ al C₅₀.^{1.16}
- j) La correlación de Edmister para el cálculo de omega, se dice que no es apta para estimación del factor acéntrico en fracciones pesadas, es decir mayores al C₆.¹
- k) La correlación para el cálculo de omega es la correlación de Kesler y Lee para fracciones pesadas.
- I) La correlación de Twu realiza una modificación a la correlación de Kesler Lee para su cálculo el cual solamente la hace para una de las condiciones en ciertos valores de la T_b (T_b < 0.8).

4.6. Aplicación del programa Flash

Los archivos de resultados del cálculo flash realizado con el programa de cómputo, uno para la ecuación de PR y otro para la ecuación de SRK para cada uno de los fluidos (Ver tablas C1, C2, C3, C4).

Se tomaron las corridas realizadas con las correlaciones que mejores valores de presión de saturación dieron y con el valor de n = 1 para los parámetros de interacción binaria.

Estos datos se presentan con la finalidad de mostrar que al utilizar correlaciones apropiadas para determinar los valores iniciales de los parámetros utilizados en el cálculo flash, proporcionan una buena aproximación en el caso de que el ingeniero en el campo no cuente con los medios para realizar un análisis de laboratorio.

Observaciones

Propiedades Críticas

Los pares para el cálculo de las propiedades críticas y factor acéntrico se han seleccionado así debido a que al realizar las pruebas y analizarlas, en el caso del gas y del aceite son diferentes las correlaciones que dan mejores y peores resultados.

En este caso se habla de un fluido de aceite negro perteneciente al campo Balam, los mejores resultados de presión de saturación calculado se han encontrado al aplicar la correlación de Cavett para las propiedades críticas y la de Edmister para el factor acéntrico con respecto al valor experimental, por otro lado se encontró que al aplicar el par de Kesler Lee y Twu para dichos parámetros se obtuvieron valores mas alejados.

En el caso del ejemplo en el que el fluido corresponde a un gas y condensado perteneciente al campo May, los mejores resultados al realizar los cálculos de la presión de saturación fueron al aplicar el par de Tomasen con Twu; y al aplicar el par de Riazi y Daubert con Kesler Lee fue el par que arrojó resultados más alejados.

Finalmente se puede decir que se ha decidido imprimir un último par para ambos tipos de fluidos que fue la de Kesler Lee con Kesler Lee, debido a que al momento de analizar las pruebas en otros fluidos aparte de los expuestos en el presente trabajo fueron las dos correlaciones para propiedades críticas y para factor acéntrico respectivamente que dieron valores con un rango de error aceptable tanto en gas como en aceite independientemente de la ecuación de estado.

68

Más adelante se mostrará una tabla de resultados que expresa claramente la influencia que dieron las diferentes correlaciones para el cálculo de las propiedades críticas y el factor acéntrico con los diferentes pares en las Ecuaciones de Estado

Parámetros de interacción binaria

En los resultados se observa un notorio cambio existente en los resultados obtenidos con los diferentes valores de n, tomando en cuenta que deben estar dentro del rango de los dos extremos, debido a que como se mencionó en capítulo anteriores el valor de 1 se recomienda para determinar los parámetros entre pares hidrocarburo – hidrocarburo y un valor de n = 6 para pares de no hidrocarburo – no hidrocarburo.

Por otro lado, los valores de los componentes par obtenidos de la base de datos cambian su valor de acuerdo a la ecuación de estado, ya que de acuerdo a la literatura los valores recomendados para cada una de las ecuaciones son diferentes.

Finalmente se comprobó la gran influencia que existe entre estos parámetros y las ecuaciones de estado, pues al realizar el cálculo de la presión de saturación y al variar el valor de n se obtuvieron valores diferentes.

Los resultados de estas pruebas serán mostrados más adelante.

4.7. Tablas comparativas Flash

Con la solución del cálculo flash se realizó la comparación entre el volumen relativo experimental con el volumen relativo calculado, lo cual muestra que el margen de error es de (escribir el valor promedio de error o entre cuanto se encuentra) en relación a los valores experimentales, lo que nos lleva a verificar cual de las correlaciones es la mejor para calcular los parámetros críticos, factor acéntrico y parámetros de interacción binaria, que generan mejores resultados.

69

Los valores obtenidos son cercanos a los experimentales, sin embargo cambian de acuerdo a la correlación y valor de 'n' dependiente de los parámetros de interacción binaria que se utilizó y a la ecuación de estado seleccionada.

Se observó que la ecuación de Peng Robinson (PR) es más confiable que la ecuación de Soave Redlich Kwong (SRK), ya que la ecuación de PR predice mejor los valores experimentales que la ecuación de (SRK).

A continuación se muestran los resultados del flasheo de los dos fluidos estudiados.

4.7.1. Balam

Presión	Volumen relativo	Volumen relativo	
	[m ³ /m ³]	calculado	%
[kg/cm ²]		[m ³ /m ³]	ERROR
350	0.9712	0.9704	0.08237
300	0.9756	0.9749	0.07175
250	0.9810	0.9799	0.1121
200	0.9857	0.9857	0.0
150	0.9915	0.9922	0.07060
100	0.9984	0.9998	0.14022
91	1.0000	1.0000	0.0
90	1.0015	1.02510	2.3564
80	1.0397	1.06184	2.1294
65	1.1353	1.14205	0.5995
45	1.2345	1.34465	8.9226

Tabla 4.5 Análisis de flasheo para los fluidos analizados. (PR)

Propiedades críticas: Cavett Factor acéntrico: Edmister n=1

Tabla 4.6 Análisis	de flasheo	para los fluidos	analizados.	(PR)
--------------------	------------	------------------	-------------	------

Presión	Volumen relativo	Volumen relativo	
	[m ³ /m ³]	calculado	%
[kg/cm ²]		[m ³ /m ³]	ERROR
350	0.9712	0.97588	0.4818
300	0.9756	0.97997	0.4479
250	0.9810	0.9845	0.3568
200	0.9857	0.98957	0.3926
150	0.9915	0.99528	0.3812

Continuación de la tabla 4.6 Análisis de flasheo para los fluidos

analizados. (PR)

100	0.9984	1.00179	0.3395
91	1.0000	1	0.0
90	1.0015	1.06019	5.8602
80	1.0397	1.09954	5.7555
65	1.1353	1.18524	4.3988
45	1.2345	1.40121	13.504

Propiedades críticas: Kesler Lee

Factor acéntrico: Kesler Lee

n=1

Tabla 4.7 Análisis de flasheo para los fluidos analizados. (SRK)

Presión	Volumen relativo	Volumen relativo	
	[m ³ /m ³]	calculado	%
[kg/cm ²]		[m ³ /m ³]	ERROR
350	0.9712	0.96716	0.4205
300	0.9756	0.9721	0.3588
250	0.9810	0.97767	0.3394
200	0.9857	0.984	0.1724
150	0.9915	0.99128	0.0222
100	0.9984	0.99979	0.1392
91	1.0000	1	0.0
90	1.0015	1.0231	2.1567
80	1.0397	1.05655	1.6206
65	1.1353	1.12926	0.5320
45	1.2345	1.31197	6.2754

Propiedades críticas: Cavett Factor acéntrico: Edmister n=1

Tabla 4.8 Análisis de flasheo para los fluidos analizados. (SRK)

Presión	Volumen relativo	Volumen relativo	
	[m ³ /m ³]	calculado	%
[kg/cm ²]		[m ³ /m ³]	ERROR
350	0.9712	0.97381	0.2687
300	0.9756	0.97826	0.2765
250	0.9810	0.98322	0.2263
200	0.9857	0.98879	0.33134
150	0.9915	0.99513	0.3661
100	0.9984	1.00241	0.4016
91	1.0000	1	0.0
90	1.0015	1.05996	5.8372
80	1.0397	1.09589	5.4044
65	1.1353	1.17382	3.3929
45	1.2345	1.36918	10.9096

Propiedades críticas: Kesler Lee Factor acéntrico: Kesler Lee n=1

4.7.2. May 1

Tabla 4.9. Análisis de	flasheo para	los fluidos	analizados.	(PR)
	naonoo para			···

Presión	Volumen relativo experimental	Volumen relativo calculado	% ERROR
[[kg/cm²]	[m³/m³]	[[m³/m³]	
450	0.9499		
425	0.9701		
400	0.9942		
396	1.000	1.00000	0.0
375	1.0224	1.02625	0.3766
350	1.0589	1.07480	1.5016
325	1.1033	1.13182	2.5849
300	1.1575	1.19958	3.6354

Propiedades críticas: Tomasen Factor acéntrico: Twu n=1

Tabla 4.10. Análisis de flasheo	para los fluidos analizados.	(PR)
---------------------------------	------------------------------	------

Presión	Volumen relativo experimental	Volumen relativo calculado	% ERROR
[kg/cm ²]	[m ³ /m ³]	[m ³ /m ³]	
450	0.9499		
425	0.9701		
400	0.9942		
396	1.000	1.00000	0.0
375	1.0224	1.07248	4.8983
350	1.0589	1.02288	3.4016
325	1.1033	1.18205	7.1377
300	1.1575	1.25236	8.1952

Propiedades críticas: Kesler Lee Factor acéntrico: Kesler Lee n=1

Presión	Volumen relativo experimental	Volumen relativo calculado	% ERROR
[kg/cm ²]	[m ³ /m ³]	[m ³ /m ³]	
450	0.9499		
425	0.9701		
400	0.9942		
396	1.000	1.00000	0.0
375	1.0224	1.10025	1.9464
350	1.0589	1.14909	8.5173
325	1.1033	1.20637	9.9777
300	1.1575	1.27434	10.0941

Tabla 4.11. Análisis de flasheo	para los fluidos analizados. ((SRK)

Propiedades críticas: Kesler Lee Factor acéntrico: Edmister

n=1

Tabla 4.12. Análisis de flasheo	para los fluidos analizados. ((SRK)

Presión [kg/cm ²]	Volumen relativo experimental [m ³ /m ³]	Volumen relativo calculado [m³/m³]	% ERROR
450	0.9499		
425	0.9701		
400	0.9942		
396	1.000	1.00000	0.0
375	1.0224	1.11292	8.8536
350	1.0589	1.16222	9.7573
325	1.1033	1.22005	10.5819
300	1.1575	1.28867	11.3322

Propiedades críticas: Kesler Lee Factor acéntrico: Kesler Lee n=1

Observaciones

En las comparaciones realizadas en las tablas anteriores de los valores obtenidos con el Impevete y los valores experimentales, puede observarse que el porcentaje de error en general es mínimo, pues el mayor error obtenido fue de 13.504%; sin embargo hay que tomar en cuenta que en ninguna de estas pruebas se ha realizado un ajuste en los valores.

Lo anterior vuelve a marcar la gran confiabilidad que da el uso de las correlaciones estudiadas en el presente trabajo, tanto para las propiedades críticas, el factor acéntrico y los PIB.

En esta prueba resalta que al comparar los valores obtenidos con el mejor par de correlaciones y los valores obtenidos con el par Kesler Lee y Kesler Lee para propiedades críticas ($P_c \ y \ T_c$) y factor acéntrico (ω) respectivamente, dan porcentajes de error muy pequeños lo que hace mencionar nuevamente que la correlación de Kesler Lee es la que proporciona valores muy acertados, como ya se había visto anteriormente en otras pruebas, pues pese a que el tipo de mezcla cambia los valores son muy acertados.

Además se observa que las pruebas realizadas con la ecuación de estado de Peng Robinson obtiene menor porcentaje de error que al realizarla con la ecuación de Soave Redlich Kwong; sin embargo a pesar de ser mayor, no afecta en gran cantidad pues los valores son muy acercados a los experimentales.

Conclusiones

El objetivo general del trabajo es determinar la influencia que tienen las propiedades críticas (p_c , T_c), el factor acéntrico (ω) y los parámetros de interacción binaria (PIB) de los pseudocomponentes en el cálculo del comportamiento de fases cuando se utilizan en Ecuaciones de Estado. Dentro de objetivos particulares podemos mencionar lo siguiente:

- Realizar un programa de computo que calcule propiedades críticas (p_C, T_C), el factor acéntrico (ω) y los parámetros de interacción binaria (PIB) de los pseudocomponentes.
- Desarrollar las derivadas necesarias de las ecuaciones de estado de Peng-Robinson y de Soave-Redlich-Kwong para llegar a la ecuación cúbica en términos de Z.
- Desarrollar las derivadas necesarias de las ecuaciones de estado de Peng-Robinson y de Soave-Redlich-Kwong para obtener la matriz jacobiana para el desarrollo del calculo flash.
- 4. Realizar el flasheo sin ajustar los parámetros con la finalidad de observar que tan alejado o acercado dan los resultados a los experimentales del mismo si utilizamos las correlaciones de propiedades críticas (p_C, T_C), el factor acéntrico (ω) y las ecuaciones de los parámetros de interacción binaria (PIB) sin realizar un ajuste previo, observándose así la confiabilidad de cada correlación y/o ecuación.
- Seleccionar cual de las correlaciones para el calculo de las propiedades críticas (p_C, T_C) y factor acéntrico (ω) es la mejor y cual tiene mas rango de error.

- Realizar una combinación entre las diferentes correlaciones de propiedades críticas (p_C, T_C) y las diferentes correlaciones para el calculo del factor acéntrico (ω) dan mejores resultados.
- Variar el valor del exponente 'n' de la ecuación de Mehra con la finalidad de ver que valores del mismo arrojan mejores resultados. en base a lo experimental (PVT)
- Realizar una combinación de las correlaciones de propiedades críticas (p_C, T_C) y las diferentes correlaciones para el calculo del factor acéntrico (ω) con los diferentes valores del exponente 'n' de la ecuación de Mehra.
- 9. Comparar los resultados del flasheo con tablas PVT experimental.
- Comparar los resultados de las propiedades criticas, factor acéntrico y PIB con corridas realizadas con el programa denominado PCPIB y Win pro CMG.

Para llegar al objetivo del presente trabajo se realizo una investigación de las diferentes correlaciones de propiedades críticas (p_c , T_c) y las diferentes correlaciones para el calculo del factor acéntrico (ω), así como de las diferentes ecuaciones para la determinación de los PIB.

Posteriormente se programaron las correlaciones y se decidió únicamente programar la correlación de Mehra y la de los pares de hidrocarburos con metano para los PIB, decisión tomada únicamente por convicción y por tiempo.

Se realizaron una serie de pruebas generadas basándose en la aplicación de las diferentes correlaciones encontradas en la literatura para el cálculo de las propiedades críticas (p_c , T_c) y del factor acéntrico (ω), así como para el cálculo de los parámetros de interacción binaria (PIB)

76

Después de realizar los cálculos necesarios para la mezcla de gas y los cálculos necesarios para la mezcla de aceite, se procedió a realizar un análisis comparativo entre lo experimental y lo calculado con la finalidad de establecer la relación que existe entre estos dos parámetros (propiedades críticas y PIB) con las ecuaciones de estado; de lo cual se concluye lo siguiente:

- a) No todos los conjuntos de valores con los pares de correlaciones funcionaron para poder obtener un valor de la presión de rocío sin tener que realizar previamente un ajuste.
- b) La correlación (propiedades críticas) que mayor porcentaje de error tuvo para la estimación de la presión es la de Riazi y Daubert, independientemente del tipo de fluido que se esté trabajando.
- c) Pese a que la correlación de Riazi es la más alejada al valor experimental es importante resaltar que es la única correlación que al ser combinada con cualquiera de las correlaciones para el cálculo del factor acéntrico aquí estudiadas y de valores de PIB, independientemente del valor de 'n'; estima un valor de presión de saturación y por tanto realiza el cálculo flash, sin necesidad de realizar un ajuste previo a los datos.
- d) La correlación (propiedades críticas) que presenta menor confianza sería la de Tomassen, pues esta correlación es la que da menores estimaciones de presión de saturación, en el caso de que el fluido fuese un gas.
- e) La correlación ω que presenta mayor confianza sería la de Kesler Lee, si observamos la tabla de valores se nota que al combinar esta

correlación con cualquiera de las correlaciones de las propiedades críticas aquí estudiadas, estima valores de presión de saturación, a diferencia de las otras dos correlaciones estudiadas que solamente estiman uno o dos valores de presión de saturación y no con más de dos correlaciones en el caso de que el fluido sea gas.

- f) El par que acerca una estimación con un margen de error pequeño y aceptable al comparar los valores con el experimental es la de Kesler Lee con Kesler-Lee.
- g) Al cambiar el valor de 'n' para el cálculo de los parámetros de interacción binaria, se genera un cambio considerable en el cálculo de las presiones de saturación.
- h) Se observa también que existe un cambio en el par de correlaciones que se utilizarán para el cálculo de las propiedades críticas y factor acéntrico en el caso de un gas. Esto se pude explicar debido a que las partículas de un gas tienen más movilidad, comparadas con las de un líquido. Esto permite demostrar que la influencia de los parámetros de interacción binaria (PIB) es mucho más notoria en el caso del gas.
- i) Se observa claramente que la ecuación de Peng Robinson es la que predice con menor porciento de error con respecto a los valores experimentales.
- j) En el aceite no hay mayor problema en cuanto a valores al escoger el par, pues todos dan valores a diferencia del gas.

- a) A pesar de que la literatura menciona que Edmister no es muy recomendable para estimaciones de omega en fracciones pesadas, fue la de mejor utilidad en este caso.
- b) De las correlaciones estudiadas en este trabajo y de acuerdo a los resultados obtenidos podemos concluir que la correlación de Tomassen (propiedades críticas), genera mayor porciento de error, para cualquiera de sus combinaciones con la estimación del factor acéntrico.
- c) La influencia que tienen las propiedades críticas en las ecuaciones de estado es muy fuerte pues se observó en los resultados los cambios tan bruscos que existen al cambiar la correlación.
- d) Los PIB también generan un fuerte efecto en las ecuaciones de estado, pues si recordamos que una de las pruebas que se hizo en el caso del gas, la correlación de Kesler-Lee para el factor acéntrico al combinarla con cualquiera de las correlaciones para las propiedades críticas estimaban valores de presión de saturación para valores cuando n = 1 y cuando n = 6, sin embargo cuando el valor de 'n' cambia a 1.2, tuvo un cambio drástico pues ya no estima valor de presión de rocío, lo que nos lleva a la conclusión de que influye enormemente el valor del exponente para el cálculo de los PIB, en el caso de utilizar la ecuación de Mehra.
- e) Al realizar la comparación en la aplicación de los diferentes valores de propiedades críticas y PIB de las pruebas de los dos diferentes fluidos, se llega a la conclusión de que las correlaciones existentes en la literatura son confiables pues el error al comparar los valores de volumen relativo calculado con el experimental es mínimo.

- f) Se puede decir con lo anterior mencionado que se recomendaría realizar el primer cálculo con las correlaciones de Kesler Lee para propiedades críticas y factor acéntrico, debido a que ha resultado una de las correlaciones mas confiables tanto para el gas como para el aceite.
- g) Se debe tomar en cuenta las recomendaciones de la literatura para el cálculo de los PIB, n=1 para pares hidrocarburo, n=6, para pares no hidrocarburo y tomar este rango de (1 a 6) para sistemas combinados no hidrocarburo– hidrocarburo.
- h) Es recomendable realizar dos veces el primer cálculo tomando dos diferentes pares de correlaciones, para poder realizar una mejor estimación de cual par debe elegirse para el cálculo.

Recomendaciones

a) Realizar más pruebas con diferentes tipos de fluidos para determinar en que porcentaje influyen los PIB y en que porcentaje influyen las propiedades críticas y el factor acéntrico.

b) Utilizar las otras correlaciones para el cálculo de los parámetros de interacción binaria, para hacer una comparación entre ellas y ver cual genera mejores resultados.

c) Utilizar otras ecuaciones de estado, como por ejemplo la ecuación de Schmidt-Wenzel, para tener otras ecuaciones para comparar.

d) Generalizar las nuevas ecuaciones de estado a estudiar en una sola, con la finalidad de realizar el mismo programa para el calculo flash pero con una sola ecuación determinando en el menú las demás la elección

de cada ecuación y así comparar todos los resultados con el programa obtenido.

e) Programar las demas ecuaciones para el calculo de los parámetros de interaccion binaria presentadas en este trabajo con la finalidad e tener un rango mas amplio de eleccion, pues como se ha podido observar existen ecuaciones como por ejemplo para el calculo de PIB para pares de hidrocarburos con CO₂, o bien utilizando los valores de los parámetros A y B dependientes de la ecuación de estado.

f) Introducir al programa flash un ajuste ya que en el presente trabajo no se realizo debido a que el objetivo era ver que tan acercado o alejado da el valor calculado de las ecuaciones y correlaciones hacia los valores experimentales.

Tabla A1. Valores de la presión crítica obtenidos de la literatura³, WinPro-CMG¹¹ y programa

sg = 0.690 $T_b = 606.767$

Correlación	Pc _{literatura} [psia]	Рс _{смб} [psia]	Pc _{programa} [psia]
Kesler Lee	476	476.3121	476.2603
Twu		474.3281	474.2784
Cavett			474.6987
Riazzi y Daubert		484.2626	484.2079
Winn			491.2179

sg = 0.727 T_b = 657.1

Correlación	Pc _{literatura} [psia]	Рс _{смб} [psia]	Pc _{programa} [psia]
Kesler Lee	457	457.0897	457.0444
Twu		447.6401	447.6038
Cavett			455.8055
Riazzi y Daubert		454.53	454.4841
Winn			464.8668

sg = 0.749 $T_b = 701.7$

Correlación	Pc _{literatura} [psia]	Рс _{смд} [psia]	Pc _{programa} [psia]
Kesler Lee	428	427.7270	427.8213
Twu		417.5575	417.6407
Cavett			432.1934
Riazzi y Daubert		418.3216	418.4133
Winn			429.9379

sg = 0.768 $T_b = 747.6$

Correlación	Pc _{literatura} [psia]	Рс _{смд} [psia]	Pc _{programa} [psia]
Kesler Lee	397	396.8214	396.8954
Twu		387.6657	387.7431
Cavett			406.2378
Riazzi y Daubert		382.9337	383.0115
Winn			395.0629

sg = 0.782 T_b = 790.1

Correlación	Pc _{literatura} [psia]	Рс _{смб} [psia]	Pc _{programa} [psia]
Kesler Lee	367	367.3412	367.3081
Twu		360.0961	360.0709
Cavett			379.5446
Riazzi y Daubert		351.4989	351.4672
Winn			363.5050

sg = 0.793 $T_b = 828.6$

Correlación	Pc _{literatura} [psia]	Рс _{смд} [psia]	Pc _{programa} [psia]
Kesler Lee	341	341.3293	341.3987
Twu		336.0534	336.1066
Cavett			354.6482
Riazzi y Daubert		325.1637	325.2195
Winn			337.0521

SG = 0.804 Tb = 866.6

Correlación	Pc _{literatura} [psia]	Рс _{смд} [psia]	Pc _{programa} [psia]
Kesler Lee	318	318.4917	318.4582
Twu		314.9646	314.9373
Cavett			300.2373
Riazzi y Daubert		302.7376	302.7083
Winn			314.3633

SG = 0.815 Tb = 900.6

Correlación	Pc _{literatura} [psia]	Рс _{смб} [psia]	Pc _{programa} [psia]
Kesler Lee	301	300.9006	300.9596
Twu		298.7991	298.8549
Cavett			312.7766
Riazzi y Daubert		285.7490	285.8033
Winn			297.4149

SG = 0.826 Tb = 935.2

Correlación Pc_{CMG} Pc_{literatura} Pc_{programa} [psia] [psia] [psia] Kesler Lee 284.4411 284.4194 284 Twu 283.8091 283.7795 294.4725 Cavett 270.2747 Riazzi y Daubert 270.2180 281.7647 Winn

sg = 0.836 T_b = 970.5

Correlación	Pc _{literatura} [psia]	Pc _{CMG} [psia]	Pc _{programa} [psia]
Kesler Lee	268	267.7758	267.7549
Twu		268.6576	268.6351
Cavett			275.6400
Riazzi y Daubert		255.07847	255.0522
Winn			266.4287

sg = 0.843 $T_b = 1001.1$

Correlación	Pc _{literatura} [psia]	Рс _{смд} [psia]	Pc _{programa} [psia]
Kesler Lee	253	252.9034	252.8785
Twu		255.034384	255.0163
Cavett			258.8327
Riazzi y Daubert		257.8413	278.8392
Winn			253.1244

sg = 0.851 $T_b = 1031.7$

Correlación Pc_{CMG} Pc_{literatura} Pc_{programa} [psia] [psia] [psia] Kesler Lee 239.9269 239.9099 240 243.2819 Twu 243.3069 243.8402 Cavett 230.7565 Riazzi y Daubert 230.7452 241.6699 Winn

sg = 0.856 T_b = 1055.1

Correlación	Pc _{literatura} [psia]	Рс _{смд} [psia]	Pc _{programa} [psia]
Kesler Lee	230	229.6543	229.6402
Twu		233.9015	233.8806
Cavett			232.1874
Riazzi y Daubert		222.1006	222.0810
Winn			232.7935

sg = 0.861 $T_b = 1076.7$

Correlación	Pc _{literatura} [psia]	Рс _{смб} [psia]	Pc _{programa} [psia]
Kesler Lee	221	220.9690	220.9520
Twu		226.0098	225.9934
Cavett			222.2673
Riazzi y Daubert		214.8114	214.7966
Winn			225.3506

sg = 0.866 $T_b = 1100.1$

Correlación	Pc _{literatura} [psia]	Рс _{смд} [psia]	Pc _{programa} [psia]
Kesler Lee	212	211.6812	211.6693
Twu		217.5449	217.5295
Cavett			211.8254
Riazzi y Daubert		207.1548	207.1424
Winn			217.5040

sg = 0.871 T_b = 1123.5

Correlación	Pc _{literatura} [psia]	Рс _{смд} [psia]	Pc _{programa} [psia]
Kesler Lee	203	202.8783	202.8569
Twu		209.5356	209.5164
Cavett			202.0120
Riazzi y Daubert		199.9685	199.9546
Winn			210.1335

sg = 0.876 $T_b = 1145.1$

Correlación	Pc _{literatura} [psia]	Рс _{смб} [psia]	Pc _{programa} [psia]
Kesler Lee	195	195.4127	195.4028
Twu		202.8489	202.8279
Cavett			193.7295
Riazzi y Daubert		193.9137	193.8982
Winn			203.9414

sg = 0.881 $T_b = 1166.7$

Correlación	Pc _{literatura} [psia]	Рс _{смб} [psia]	Pc _{programa} [psia]
Kesler Lee	188	188.2998	188.2861
Twu		196.4855	196.4754
Cavett			185.9414
Riazzi y Daubert		188.1822	188.1659
Winn			198.0791

sg = 0.885 T_b = 1186.5

Correlación	Pc _{literatura} [psia]	Рс _{смд} [psia]	Pc _{programa} [psia]
Kesler Lee	182	181.6426	181.6268
Twu		190.4602	190.4430
Cavett			178.9194
Riazzi y Daubert		182.9064	182.8961
Winn			192.6589

sg = 0.888 $T_b = 1206.3$

Correlación	Pc _{literatura} [psia]	Рс _{смд} [psia]	Pc _{programa} [psia]
Kesler Lee	175	174.5591	174.5494
Twu		183.8616	183.8519
Cavett			171.8239
Riazzi y Daubert		177.4248	177.4161
Winn			186.9748

sg = 0.892 T_b = 1226.1

Correlación	Pc _{literatura} [psia]	Рс _{смб} [psia]	Pc _{programa} [psia]
Kesler Lee	168	168.4602	168.4430
Twu		178.3653	178.3491
Cavett			165.6807
Riazzi y Daubert		172.6633	172.6517
Winn			182.0735

sg = 0.896 $T_b = 1245.9$

Correlación	Pc _{literatura} [psia]	Рс _{смд} [psia]	Pc _{programa} [psia]
Kesler Lee	163	162.5965	162.5832
Twu		173.1042	173.0867
Cavett			159.9489
Riazzi y Daubert		168.1222	168.1088
Winn			177.3989

sg = 0.899 T_b = 1263.9

Correlación	Pc _{literatura} [psia]	Рс _{смд} [psia]	Pc _{programa} [psia]
Kesler Lee	157	156.8651	157.0520
Twu		168.0047	167.9981
Cavett			154.8095
Riazzi y Daubert		163.7428	163.8901
Winn			173.0297

sg = 0.902 $T_b = 1280.1$

Correlación	Pc _{literatura} [psia]	Рс _{смб} [psia]	Pc _{programa} [psia]
Kesler Lee	152	152.4563	152.4371
Twu		163.8310	163.8182
Cavett			150.6088
Riazzi y Daubert		160.3774	160.3684
Winn			169.3936

sg = 0.905 $T_b = 1294.5$

Correlación	Pc _{literatura} [psia]	Рс _{смб} [psia]	Pc _{programa} [psia]
Kesler Lee	149		148.6667
Twu			145.7819
Cavett			147.2337
Riazzi y Daubert			157.4816
Winn			166.4260

sg = 0.909 $T_b = 1310.7$

Correlación	Pc _{literatura} [psia]	Рс _{смб} [psia]	Pc _{programa} [psia]
Kesler Lee	145	144.9466	144.9293
Twu		157.3501	157.4819
Cavett			143.9163
Riazzi y Daubert		142.6393	142.6205
Winn			163.4793

sg = 0.912 T_b = 1325.1

Correlación	Pc _{literatura} [psia]	Рс _{смб} [psia]	Pc _{programa} [psia]
Kesler Lee	141	141.3902	141.3752
Twu		154.2198	154.2108
Cavett			140.9501
Riazzi y Daubert		138.6568	138.6468
Winn			160.7018

sg = 0.915 $T_b = 1339.5$

Correlación	Pc _{literatura} [psia]	Рс _{смд} [psia]	Pc _{programa} [psia]
Kesler Lee	138	137.9366	137.9206
Twu		151.192	151.1853
Cavett			138.1762
Riazzi y Daubert		134.8504	135.0921
Winn			158.0106

sg = 0.917 T_b = 1352.1

Correlación	Pc _{literatura} [psia]	Рс _{смб} [psia]	Pc _{programa} [psia]
Kesler Lee	135	134.85	134.6201
Twu			148.1482
Cavett			135.6834
Riazzi y Daubert			124.4362
Winn			155.4600

sg = 0.920 $T_b = 1366.5$

Correlación	Pc _{literatura} [psia]	Pc _{CMG} [psia]	Pc _{programa} [psia]
Kesler Lee	131		131.3494
Twu			145.2983
Cavett			133.2707
Riazzi y Daubert			144.3551
Winn			152.9258

sg= 0.922 $T_b = 1379.1$

Correlación	Pc _{literatura} [psia]	Рс _{смд} [psia]	Pc _{programa} [psia]
Kesler Lee	128	128.2226	128.2174
Twu		142.4336	142.4187
Cavett			131.1037
Riazzi y Daubert		124.4457	142.03735
Winn			150.5171

sg = 0.925

 $T_b = 1391.7$

Correlación	Pc _{literatura} [psia]	Рс _{смд} [psia]	Pc _{programa} [psia]
Kesler Lee	126	125.709	125.7046
Twu		140.3468	140.3347
Cavett			129.4133
Riazzi y Daubert		121.8151	137.5244
Winn			145.8503

sg = 0.927 $T_b = 1406.1$

Correlación	Pc _{literatura} [psia]	Рс _{смб} [psia]	Pc _{programa} [psia]
Kesler Lee	122	122.1531	122.1452
Twu		137.0108	134.3334
Cavett			125.4970
Riazzi y Daubert		118.1411	135.3916
Winn			143.6329

sg = 0.929 $T_{b} = 1418.7$

Correlación	Pc _{literatura} [psia]	Рс _{смд} [psia]	Pc _{programa} [psia]
Kesler Lee	119	119.2580	119.2450
Twu		134.3508	134.3334
Cavett			125.4970
Riazzi y Daubert		115.1872	115.1744
Winn			148.5722

sg = 0.931 $T_b = 1431.3$

Correlación	Pc _{literatura} [psia]	Рс _{смд} [psia]	Pc _{programa} [psia]
Kesler Lee	116	116.4217	116.4164
Twu		131.7496	131.7333
Cavett			123.9470
Riazzi y Daubert		112.3362	112.3243
Winn			141.4734

sg = 0.933 T_b = 1442.1

Correlación	Pc _{literatura} [psia]	Рс _{смд} [psia]	Pc _{programa} [psia]
Kesler Lee	114	114.2026	114.1913
Twu		129.7656	129.7530
Cavett			122.8193
Riazzi y Daubert		110.1171	110.1052
Winn			139.7734

sg = 0.934 $T_b = 1452.9$

Correlación	Pc _{literatura} [psia]	Рс _{смд} [psia]	Pc _{programa} [psia]
Kesler Lee	112	111.5279	111.5148
Twu		127.1351	127.1283
Cavett			121.5121
Riazzi y Daubert		107.4718	107.462
Winn			137.7434

sg = 0.936 $T_b = 1463.7$

Correlación	Pc _{literatura} [psia]	Рс _{смд} [psia]	Pc _{programa} [psia]
Kesler Lee	109	109.3970	109.3869
Twu		125.2393	125.2357
Cavett			120.6003
Riazzi y Daubert		102.8866	128.1724
Winn			136.1209

sg= 0.938 T_b = 1476.3

Correlación	Pc _{literatura} [psia]	Рс _{смд} [psia]	Pc _{programa} [psia]
Kesler Lee	107	106.8105	106.7987
Twu		122.8585	122.8532
Cavett			119.5789
Riazzi y Daubert		102.8866	102.8741
Winn			134.1532

sg = 0.940 $T_b = 1487.1$

Correlación	Pc _{literatura} [psia]	Рс _{смб} [psia]	Pc _{programa} [psia]
Kesler Lee	105	104.7677	104.7656
Twu		121.0509	121.0457
Cavett			118.8976
Riazzi y Daubert		100.9321	100.9239
Winn			132.6060

Tabla A2. Valores de la temperatura crítica obtenidos de la literatura³, WinProp CMG¹¹ y del programa

sg = 0.690 $T_b = 606.7$

Correlación			
	Tc _{literatura}	Tc _{CMG}	Tc _{programa}
	[R]	[R]	[R]
Kesler Lee	914	914.4258	913.9156
Twu		918.9564	918.3830
Cavett			913.2640
Riazzi y Daubert		923.145	922.5716
Winn			914.3175

sg = 0.727 $T_b = 657.1$

Correlación			
	TC _{literatura}		TC _{programa}
Kesler Lee	976	976.947	976.4388
Twu		982.8402	982.2668
Cavett			973.7376
Riazzi y Daubert		985.839	985.264
Winn			974.3589

Continuación de la tabla A2. Valores de la temperatura crítica obtenidos de la literatura³, WinProp CMG¹¹ y del programa

sg = 0.749 T_b = 701.7

Correlación	Tc _{literatura} [R]	Тс _{СМG} [R]	Tc _{programa} [R]
Kesler Lee	1027	1027.6242	1027.0271
Twu		1034.2302	1033.5675
Cavett			1024.6929
Riazzi y Daubert		1035.7854	1035.1238
Winn			1022.8518

sg = 0.768 T_b = 747.6

Correlación			
	Tc _{literatura}	TC _{CMG}	Tc _{programa}
	[K]	[K]	[K]
Kesler Lee	1077	1077.2178	1076.6252
Twu		1084.8318	1084.1669
Cavett			1075.8363
Riazzi y Daubert		1084.8282	1084.1720
Winn			1070.9941

sg = 0.782 $T_b = 790.1$

Correlación	Tc _{literatura} [R]	Тс _{смб} [R]	Tc _{programa} [R]
Kesler Lee	1120	1120.5402	1120.03553
Twu		1129.2054	1128.6303
Cavett			1121.2966
Riazzi y Daubert		1127.904	1127.3285
Winn			1113.7609
sg = 0.793 T_b = 828.6

Correlación	Tc _{literatura} [R]	Тс _{смб} [R]	Tc _{programa} [R]
Kesler Lee	1158	1158.414	1157.8278
Twu		1168.1304	1167.4714
Cavett			1161.2037
Riazzi y Daubert		1165.8336	1165.1764
Winn			1151.5380

sg= 0.804

 $T_{b} = 866.6$

Correlación			
	Tc _{literatura}		Tc _{programa}
	ואן	[K]	נאן
Kesler Lee	1195	1195.116	1194.6129
Twu		1205.9682	1205.9682
Cavett			1200.1209
Riazzi y Daubert		1202.8488	1202.2728
Winn			1188.7233

sg = 0.815 $T_b = 900.6$

Correlación Tc_{CMG} Tc_{literatura} Tc_{programa} [R] [R] [R] Kesler Lee 1228 1228.326 1227.7485 1236.4926 Twu 1235.0462 1235.0462 Cavett 1240.2834 1235.8354 Riazzi y Daubert 1222.4406 Winn

sg = 0.826 $T_b = 935.2$

Correlación	Tc _{literatura} [R]	Tc _{CMG} [R]	Tc _{programa} [R]
Kesler Lee	1261	1261.5378	1261.0369
Twu		1274.6094	1274.0333
Cavett			1270.02192
Riazzi y Daubert		1270.2408	1269.6654
Winn			1256.5716

sg = 0.836 $T_b = 970.5$

Correlación			
	Tc _{literatura}	Tc _{CMG}	Tc _{programa}
	[K]	[K]	[K]
Kesler Lee	1294	1294.4958	1293.9949
Twu		1308.6384	1308.0617
Cavett			1304.5785
Riazzi y Daubert		1303.8576	1303.2806
Winn			1290.6909

sg = 0.843 $T_b = 1001.1$

Correlación	Tc _{literatura} [R]	Тс _{смб} [R]	Tc _{programa} [R]
Kesler Lee	1321	1321.8234	1321.3234
Twu		1336.8012	1336.2235
Cavett			1333.2641
Riazzi y Daubert		1331.871	1331.2940
Winn			1319.3291

sg = 0.851 $T_b = 1031.7$

Correlación			
	Tc _{literatura}	Tc _{CMG}	Tc _{programa}
	[R]	[R]	[R]
Kesler Lee	1349	1349.5308	1349.0313
Twu		1365.3762	1364.7991
Cavett			1362.0871
Riazzi y Daubert		1360.2804	1359.7028
Winn			1348.4072

sg = 0.856 T_b = 1055.1

Correlación			
	Tc _{literatura}	Tc _{CMG}	Tc _{programa}
	[R]	[R]	[K]
Kesler Lee	1369	1369.8924	1369.3933
Twu		1386.3354	1385.7571
Cavett			1383.3132
Riazzi y Daubert		1381.2504	1380.6729
Winn			1370.0043

sg = 0.861 $T_b = 1076.7$

Correlación			
	Tc _{literatura} [R]	Тс _{СМG} [R]	Tc _{programa} [R]
Kesler Lee	1388	1388.8248	1388.3255
Twu		1405.8312	1405.2542
Cavett			1402.9261
Riazzi y Daubert		1400.7426	1400.1663
Winn			1390.1045

sg = 0.866 $T_b = 1100.1$

Correlación			
	Tc literatura	Tc _{CMG}	Tc _{programa}
	[R]	[R]	[R]
Kesler Lee	1408	1408.965	1408.4671
Twu		1426.5582	1425.9796
Cavett			1423.7799
Riazzi y Daubert		1421.5272	1420.9501
Winn			1411.6139

sg = 0.871 T_b = 1123.5

Correlación			
	Tc _{literatura}	Tc _{CMG}	Tc _{programa}
	[R]	[R]	[R]
Kesler Lee	1428	1429.0026	1428.5051
Twu		1447.1772	1446.5996
Cavett			1444.4576
Riazzi y Daubert		1442.2182	1441.6412
Winn			1433.0808

sg = 0.876 T_b = 1145.1

Correlación			
	Tc _{literatura} [R]	Tc _{CMG} [R]	Tc _{programa} [R]
Kesler Lee	1447	1447.6686	1447.1709
Twu		1466.4084	1465.8302
Cavett			1463.5906
Riazzi y Daubert		1461.4692	1460.8918
Winn			1453.0752

sg = 0.881 $T_b = 1166.7$

Correlación			
	Tc _{literatura}	Tc _{CMG}	Tc _{programa}
	[R]	[R]	[R]
Kesler Lee	1466	1466.2644	1465.7673
Twu		1485.5784	1484.9993
Cavett			1482.5909
Riazzi y Daubert		1480.65	1480.0722
Winn			1473.0418

sg = 0.885 $T_b = 1186.5$

Correlación			
	Tc _{literatura}	TC _{CMG}	Tc _{programa}
	[K]	[K]	[K]
Kesler Lee	1482	1482.8604	1482.3632
Twu		1502.6658	1502.0879
Cavett			1499.6156
Riazzi y Daubert		1497.8166	1497.2395
Winn			1490.9904

sg = 0.888 $T_b = 1206.3$

Correlación			
	Tc _{literatura}	Tc _{CMG}	Tc _{programa}
	[R]	[R]	[R]
Kesler Lee	1498	1498.7148	1498.2186
Twu		1518.9468	1518.3679
Cavett			1516.0700
Riazzi y Daubert		1514.3118	1513.7339
Winn			1508.3392

sg = 0.892 T_b = 1226.1

Correlación			
	Tc _{literatura}	Tc _{CMG}	Tc _{programa}
	[R]	[R]	[R]
Kesler Lee	1515	1515.1902	1514.6948
Twu		1535.9334	1535.3548
Cavett			
Riazzi y Daubert		1531.356	1530.7784
Winn			1526.2313

sg = 0.896 $T_b = 1245.9$

Correlación			
	Tc _{literatura}	TC _{CMG}	Tc _{programa}
	[R]	[R]	[R]
Kesler Lee	1531	1531.6152	1531.1202
Twu		1552.8858	1552.3058
Cavett			1549.7280
Riazzi y Daubert		1548.3444	1547.7660
Winn			1544.0997

sg = 0.899 $T_b = 1263.9$

Correlación			
	TC literatura	Tc _{CMG}	Tc _{programa}
	[R]	[R]	[R]
Kesler Lee	1545	1546.4022	1545.5645
Twu		1567.7664	1567.1879
Cavett			1564.6494
Riazzi y Daubert		1563.7056	1562.7636
Winn			1559.9495

sg = 0.902 $T_b = 1280.1$

Correlación	Tc _{literatura} [R]	Тс _{смб} [R]	Tc _{programa} [R]
Kesler Lee	1559	1559.2326	1558.7384
Twu		1581.3726	1580.7939
Cavett			1578.1876
Riazzi y Daubert		1576.986	1576.4078
Winn			1574.3721

sg = 0.905

 $T_b = 1294.5$

Correlación	Tc _{literatura} [R]	Тс _{смб} [R]	Tc _{programa} [R]
Kesler Lee	1571	1571.154	1570.6592
Twu		1593.7206	
Cavett			1590.3516
Riazzi y Daubert		1589.7206	1588.7152
Winn			1587.3776

sg = 0.909 $T_b = 1310.7$

Correlación	_		
	l C _{literatura} [R]	I C _{CMG} [R]	I C _{programa} [R]
	['`]	['\]	[, ,]
Kesler Lee	1584	1584.987	1584.4932
Twu		1608.1134	1604.3044
Cavett			1607.5343
Riazzi y Daubert		1603.5036	1602.9254
Winn			1602.3724

sg = 0.912 $T_b = 1325.1$

Correlación			
	Tc _{literatura}	Tc _{CMG}	Tc _{programa}
	[R]	[R]	[R]
Kesler Lee	1596	1596.8688	1596.3743
Twu		1620.456	1619.8757
Cavett			1616.4175
Riazzi y Daubert		1615.7562	1615.1782
Winn			1615.3599

sg = 0.915 T_b = 1339.5

Correlación			
	Tc _{literatura}	TC _{CMG}	Tc _{programa}
	[R]	[R]	[R]
Kesler Lee	1608	1608.7308	1608.5326
Twu		1632.795	1632.2152
Cavett			1628.5325
Riazzi y Daubert		1627.9836	1627.4052
Winn			1628.3386

sg = 0.917 T_b = 1352.1

Correlación			
	Tc _{literatura} [R]	Tc _{CMG} [R]	Tc _{programa} [R]
Kesler Lee	1618		1618.1468
Twu			1642.4911
Cavett			1639.8603
Riazzi y Daubert			1637.6816
Winn			1639.3063

sg = 0.920 $T_b = 1366.5$

Correlación			
	Tc _{literatura}	Tc _{CMG}	Tc _{programa}
	[R]	[R]	[R]
Kesler Lee	1630	1630.4676	1629.9744
Twu		1655.4066	1654.8278
Cavett			1650.9714
Riazzi y Daubert		1650.4386	1649.8599
Winn			1652.2671

sg = 0.922 T_b = 1379.1

Correlación			
	Tc _{literatura}	Tc _{CMG}	Tc _{programa}
		[R]	[K]
Kesler Lee	1640	1640.3442	1639.8502
Twu		1665.6756	1665.0961
Cavett			1661.3098
Riazzi y Daubert		1660.6698	1660.0912
Winn			1663.2158

sg = 0.925 T_b = 1391.7

Correlación			
	Tc _{literatura}		Tc _{programa}
	[ת]	[ת]	[ת]
Kesler Lee	1650	1650.9426	1650.4499
Twu		1676.7942	1676.2138
Cavett			1672.0706
Riazzi y Daubert		1671.5292	1670.9509
Winn			1674.7749

sg = 0.927 $T_b = 1406.1$

Correlación			
	Tc _{literatura}	Tc _{CMG}	Tc _{programa}
	[R]	[R]	[R]
Kesler Lee	1661	1661.9838	1661.4904
Twu		1688.2836	1687.7034
Cavett			1683.7957
Riazzi y Daubert		1682.9898	1682.4100
Winn			1687.0905

sg = 0.929 $T_b = 1418.7$

Correlación			
	Tc _{literatura}	Tc _{CMG}	Tc _{programa}
	[R]	[R]	[K]
Kesler Lee	1671	1671.8118	1671.3198
Twu		1698.549	1697.9689
Cavett			1694.1776
Riazzi y Daubert		1693.1562	1692.5769
Winn			1698.0118

sg = 0.931 T_b = 1431.3

Correlación	Tc _{literatura} [R]	Tc _{CMG} [R]	Tc _{programa} [R]	
Kesler Lee	1681	1681.6272	1681.1347	
Twu		1708.8144	1708.2348	
Cavett			1704.5813	
Riazzi y Daubert		1703.3028	1702.7234	
Winn			1708.9243	

sg = 0.933 $T_b = 1442.1$

Correlación			
	Tc _{literatura}	Tc _{CMG}	Tc _{programa}
	[R]	[R]	[R]
Kesler Lee	1690	1690.2438	1689.7519
Twu		1717.8666	1717.2860
Cavett			1713.6285
Riazzi y Daubert		1712.1714	1711.5928
Winn			1718.4518

sg = 0.934 T_b = 1452.9

Correlación			
	Tc _{literatura}	TC _{CMG}	Tc _{programa}
	[R]	[R]	[R]
Kaalariaa	1607	1609 0054	1607 6029
Resiei Lee	1097	1096.0954	1097.0036
Twu		1726.0386	1725.4591
Cavett			1722.3141
Riazzi y Daubert		1720.3668	1719.7868
Winn			1727.3387

sg = 0.936 $T_b = 1463.7$

Correlación			
	Tc _{literatura} [R]	Тс _{СМG} [R]	Tc _{programa} [R]
Kesler Lee	1706	1706.694	1706.2021
Twu		1735.0962	1734.5156
Cavett			1731.4034
Riazzi y Daubert		1729.2066	1728.6276
Winn			1736.8544

sg = 0.938 $T_b = 1476.3$

Correlación			
	Tc _{literatura}	Tc _{CMG}	Tc _{programa}
	[R]	[R]	[R]
Kesler Lee	1716	1716.4608	1715.9692
Twu		1745.3706	1744.7913
Cavett			1741.9127
Riazzi y Daubert		1739.283	1738.7031
Winn			1747.7365

sg = 0.940 $T_b = 1487.1$

Correlación			
	Tc _{literatura}	Tc _{CMG}	Tc _{programa}
	[K]	[K]	[K]
Kesler Lee	1724	1725.0414	1724.5504
Twu		1754.4408	1753.8605
Cavett			1751.0573
Riazzi y Daubert		1748.094	1747.5151
Winn			1757.2419

Tabla 1.3. Valores del factor acéntrico³ obtenidos de la literatura, WinProp CMG¹¹ y del programa.

sg = 0.690 $T_b = 606.7$

Correlación Pc y Tc	Correlación ω	ω _{literatura}	ω _{CMG}	ω _{programa}
Kesler Lee	Kesler Lee Edmister Tomasen	0.271	0.271052 0.278774	0.2710 0.2784 0.2411

Twu	Kesler Lee	0.2509	0.2509
	Edmister	0.2587	0.2586
	Tomasen		0.2226
Cavett	Kesler Lee		0.2723
	Edmister		0.2799
	Tomasen		0.2426
Riazzi y	Kesler Lee	0.2414	0.2413
Daubert	Edmister	0.2494	0.2493
	Tomasen		0.2139
Winn	Kesler Lee		0.2799
	Edmister		0.2881
	Tomasen		0.2500

sg = 0.727 $T_b = 657.1$

Correlación	Correlación			
Рс у Тс	ω	$\omega_{ ext{ literatura}}$	ω_{CMG}	$\omega_{ m programa}$
Kesler Lee	Kesler Lee	0.310	0.3100	0.3100
	Edmister		0.3166	0.3163
	Tomasen			0.2771
Twu	Kesler Lee		0.2782	0.2782
	Edmister		0.2849	0.2848
	Tomasen			0.2476
Cavett	Kesler Lee			0.3201
	Edmister			0.3265
	Tomasen			0.2869
			0.0740	0.0740
Riazzi y	Kesler Lee		0.2718	0.2718
Daubert	Edmister		0.2789	0.2788
	Tomasen			
				0.0040
VVINN	Kesler Lee			0.3248
	Edmister			0.3315
	Tomasen			0.2915

sg = 0.749 $T_b = 701.7$

Correlación Pc y Tc	Correlación ω	$\omega_{ m literatura}$	ω _{CMG}	ω _{programa}
Kesler Lee	Kesler Lee	0.349	0.3491	0.3491
	Edmister		0.3537	0.2538
	Tomasen			0.3131
Twu	Kesler Lee		0.3537	0.3537
	Edmister			0.3171
	Tomasen		0.3118	0.2786
				0.3628
Cavett	Kesler Lee			0.3671
	Edmister			0.3264
	Tomasen			
Riazzi y	Kesler Lee		0.3172	0.3172
Daubert	Edmister		0.3122	0.3116
	Tomasen			0.2734
Winn	Kesler Lee			0.3688
	Edmister			0.3728
	Tomasen			0.3320

SG = 0.768 Tb = 747.6

Correlación Pc y Tc	Correlación ω	ω _{literatura}	ω _{CMG}	ω _{programa}
Kesler Lee	Kesler Lee Edmister Tomasen	0.392	0.3926 0.3943	0.3926 0.3938 0.3534
Twu	Kesler Lee Edmister Tomasen		0.3453 0.3480	0.3453 0.3531 0.3137
Cavett	Kesler Lee Edmister Tomasen			0.4054 0.4071 0.3661

Riazzi y Daubert	Kesler Lee Edmister Tomasen	0.3503 0.3531	0.3453 0.3480 0.3089
Winn	Kesler Lee Edmister Tomasen		0.4155 0.4161 0.3753

sg = 0.782 $T_b = 790.1$

Correlación Pc y Tc	Correlación ω	ω _{literatura}	ω _{CMG}	$\omega_{ m programa}$
Kesler Lee	Kesler Lee Edmister Tomasen	0.437	0.43367 0.4349	0.4363 0.4345 0.4363
Twu	Kesler Lee Edmister Tomasen		0.3895 0.38953	0.3895 0.3894 0.3501
Cavett	Kesler Lee Edmister Tomasen			0.4451 0.4435 0.4031
Riazzi y Daubert	Kesler Lee Edmister Tomasen		0.3845 0.3843	0.3845 0.3842 0.3452
Winn	Kesler Lee Edmister Tomasen			0.4609 0.4575 0.4177

sg = 0.793 T_b = 828.6

Correlación	Correlación			
Рс у Тс	ω	$\omega_{ ext{ literatura}}$	ω_{CMG}	$\omega_{ m programa}$
Kesler Lee	Kesler Lee Edmister Tomasen	0.479	0.4796 0.4738	0.4796 0.4733 0.4345
Twu	Kesler Lee Edmister Tomasen		0.4191 0.4227	0.4191 0.4243 0.3854
Cavett	Kesler Lee Edmister Tomasen			0.481 0.4761 0.4367
Riazzi y Daubert	Kesler Lee Edmister Tomasen		0.4245 0.4276	0.4245 0.4189 0.3804
Winn	Kesler Lee Edmister Tomasen			0.5033 0.4959 0.4576

sg = 0.804 $T_b = 866.6$

Correlación Pc y Tc	Correlación ω	ω _{literatura}	ω _{CMG}	ω _{programa}
Kesler Lee	Kesler Lee Edmister Tomasen	0.523	0.5227 0.5128	0.5227 0.5124 0.4754
Twu	Kesler Lee Edmister Tomasen		0.4656 0.4590	0.4656 0.4590 0.4211

Cavett	Kesler Lee Edmister Tomasen		0.5153 0.5067 0.4689
Riazzi y Daubert	Kesler Lee Edmister Tomasen	0.4607 0.4536	0.4607 0.4535 0.4161
Winn	Kesler Lee		0.5454
	Edmister		0.5336
	Tomasen		0.4974

sg = 0.815 $T_b = 900.6$

Correlación Correlación Pc y Tc ω $\omega_{\text{literatura}}$ ω_{CMG} ω_{programa} Kesler Lee Kesler Lee 0.561 0.5614 0.5614 Edmister 0.5475 0.5469 Tomasen 0.5119 Twu Kesler Lee 0.4992 0.4992 Edmister 0.4895 0.4892 Tomasen 0.452 Cavett Kesler Lee 0.5443 Edmister 0.5324 Tomasen 0.4963 Riazzi y Kesler Lee 0.4943 0.4943 Daubert Edmister 0.4840 0.4837 Tomasen 0.4476 Winn Kesler Lee 0.5819 Edmister 0.5663 Tomasen 0.5323

sg = 0.826 $T_b = 935.2$

Correlación	Correlación			
РсуТс	ω	ω _{literatura}	ω_{CMG}	$\omega_{ m programa}$
Kesler Lee	Kesler Lee	0.601	0.6013	0.6013
	Edmister		0.5831	0.5826
	Iomasen			0.5503
Туу	Kesler I ee		0.5341	0.5341
	Edmister		0.5208	0.5207
	Tomasen			0.4858
Cavett	Kesler Lee			0.5735
	Edmister			0.5582
	Tomasen			0.5241
Riazzi y	Kesler Lee		0.5291	0.5291
Daubert	Edmister		0.5153	0.5151
	Iomasen			0.4808
				0.0404
vvinn	Kesler Lee			0.6194
	Edmister			0.5995
	Tomasen			0.5682

sg = 0.836 T_b = 970.5

Correlación Pc y Tc	Correlación ω	ω _{literatura}	ω _{CMG}	ω _{programa}
Kesler Lee	Kesler Lee Edmister Tomasen	0.644	0.6441 0.6210	0.6441 0.6205 0.5916
Twu	Kesler Lee Edmister Tomasen		0.5721 0.5548	0.5721 0.5548 0.5221
Cavett	Kesler Lee Edmister Tomasen			0.6041 0.5849 0.5533

Riazzi y Daubert	Kesler Lee Edmister Tomasen	0.5670 0.5491	0.5670 0.5489 0.5169
Winn	Kesler Lee Edmister Tomasen		0.6589 0.6344 0.6065

sg = 0.843

 $T_{b} = 1001.1$

Correlación Pc y Tc	Correlación ω	ω _{literatura}	ω _{CMG}	ω _{programa}
Kesler Lee	Kesler Lee Edmister Tomasen	0.648	0.6838 0.6559	0.6838 0.6554 0.6302
Twu	Kesler Lee Edmister Tomasen		0.6078 0.5866	0.6078 0.5865 0.5565
Cavett	Kesler Lee Edmister Tomasen			0.6318 0.6090 0.5800
Riazzi y Daubert	Kesler Lee Edmister Tomasen		0.6027 0.5459	0.6026 0.5807 0.5513
Winn	Kesler Lee Edmister Tomasen			0.6952 0.6664 0.6420

sg = 0.851 $T_b = 1031.7$

Correlación Pc y Tc	Correlación ω	ω literatura	ω _{cmg}	ω _{programa}
Kesler Lee	Kesler Lee Edmister Tomasen	0.723	0.7229 0.6903	0.7229 0.6897 0.6687

Twu	Kesler Lee Edmister Tomasen	0.6431 0.6179	0.6431 0.6178 0.5907
Cavett	Kesler Lee		0.6589
	Edmister		0.6324
Riazzi y	Kesler Lee	0.6380	0.6380
Daubert	Edmister	0.6121	0.6119
	Tomasen		0.5856
Winn	Kesler Lee		0.7307
	Edmister		0.6975
	Tomasen		0.6769

sg = 0.856 T_b = 1055.1

Correlación Pc y Tc	Correlación ω	$\omega_{ ext{ literatura}}$	ω _{CMG}	$\omega_{ m programa}$
Kesler Lee	Kesler Lee Edmister Tomasen	0.754	0.7546 0.7180	0.7546 0.7172 0.7001
Twu	Kesler Lee Edmister Tomasen		0.6720 0.6435	0.6720 0.6433 0.6189
Cavett	Kesler Lee Edmister Tomasen			0.6807 0.6512 0.6277
Riazzi y Daubert	Kesler Lee Edmister Tomasen		0.6672 0.6379	0.6672 0.6377 0.6141
Winn	Kesler Lee Edmister Tomasen			0.7594 0.7226 0.7054

sg = 0.861 $T_b = 1076.7$

Correlación Pc y Tc	Correlación ω	ω _{literatura}	ω _{CMG}	ω _{programa}
Kesler Lee	Kesler Lee Edmister Tomasen	0.784	0.7837 0.7434	0.7837 0.7428 0.7292
Twu	Kesler Lee Edmister Tomasen		0.6987 0.6669	0.6987 0.6667 0.6452
Cavett	Kesler Lee Edmister Tomasen			0.7007 0.6685 0.6474
Riazzi y Daubert	Kesler Lee Edmister Tomasen		0.7434 0.6616	0.7434 0.6615 0.6406
Winn	Kesler Lee Edmister Tomasen			0.7855 0.745 0.7316

sg = 0.866 $T_b = 1100.1$

Correlación Pc y Tc	Correlación ω	ω literatura	ω _{CMG}	ω programa
Kesler Lee	Kesler Lee Edmister Tomasen	0.816	0.8161 0.7716	0.8161 0.7710 0.7618
Twu	Kesler Lee Edmister		0.7285 0.6931	0.7285 0.6930 0.6747
Cavett	Kesler Lee Edmister Tomasen			0.7231 0.6877 0.6695

Riazzi y Daubert	Kesler Lee Edmister Tomasen	0.7245 0.6884	0.7245 0.6883 0.6708
Winn	Kesler Lee Edmister Tomasen		0.8147 0.7710 0.7609

sg = 0.871 T_b = 1123.5

Correlación Pc y Tc	Correlación ω	ω _{literatura}	ω _{cmg}	ω _{programa}
Kesler Lee	Kesler Lee Edmister Tomasen	0.849	0.8488 0.8001	0.8488 0.7994 0.7952
Twu	Kesler Lee Edmister Tomasen		0.7588 0.7197	0.7588 0.7196 0.7050
Cavett	Kesler Lee Edmister Tomasen			0.7459 0.7073 0.6924
Riazzi y Daubert	Kesler Lee Edmister Tomasen		0.7556 0.7158	0.7556 0.7157 0.7557
Winn	Kesler Lee Edmister Tomasen			0.8441 0.7967 0.7908

sg = 0.876 T_b = 1145.1

Correlación Pc y Tc	Correlación ω	ω _{literatura}	ω _{CMG}	ω _{programa}
Kesler Lee	Kesler Lee Edmister Tomasen	0.879	0.8788 0.8261	0.8788 0.8254 0.8259

Twu	Kesler Lee	0.7867	0.7867
	Edmister	0.7441	0.7441
	Tomasen		0.7330
Cavett	Kesler Lee		0.7672
	Edmister		0.7256
	Tomasen		0.7138
Riazzi y	Kesler Lee	0.7844	0.7844
Daubert	Edmister	0.7411	0.7409
	Tomasen		0.7309
Winn	Kesler Lee		0.8709
	Edmister		0.8201
	Tomasen		0.8183

sg = 0.881 T_b = 1166.7

Correlación Pc y Tc	Correlación ω	ω _{literatura}	ω _{CMG}	ω _{programa}
Kesler Lee	Kesler Lee Edmister Tomasen	0.909	0.909 0.8523	0.9090 0.8516 0.8572
Twu	Kesler Lee Edmister Tomasen		0.8150 0.7689	0.8150 0.7688 0.7617
Cavett	Kesler Lee			0.7891
	Edmister Tomasen			0.7442 0.7360
Riazzi y Daubert	Kesler Lee Edmister Tomasen		0.8137 0.7668	0.8137 0.7667 0.7607
Winn	Kesler Lee Edmister Tomasen			0.8980 0.8436 0.8461

sg = 0.885 $T_b = 1186.5$

Correlación Pc y Tc	Correlación ω	ω _{literatura}	ω _{CMG}	$\omega_{ m programa}$
Kesler Lee	Kesler Lee Edmister Tomasen	0.936	0.9362 0.8773	0.9862 0.8766 0.9359
Twu	Kesler Lee Edmister Tomasen		0.8421 0.7926	0.8421 0.7924 0.7894
Cavett	Kesler Lee Edmister Tomasen			0.8102 0.7625 0.7576
Riazzi y Daubert	Kesler Lee Edmister Tomasen		0.8422 0.7918	0.8422 0.7916 0.7899
Winn	Kesler Lee Edmister Tomasen			0.9239 0.8662 0.8731

sgh = 0.888 T_b = 1206.3

Correlación Pc y Tc	Correlación ω	$\omega_{ ext{ literatura}}$	ω _{CMG}	ω _{programa}
Kesler Lee	Kesler Lee Edmister Tomasen	0.965	0.9649 0.9038	0.9647 0.9031 0.9647
Twu	Kesler Lee Edmister Tomasen		0.8709 0.8177	0.8708 0.8176 0.8192
Cavett	Kesler Lee Edmister Tomasen			0.8327 0.7820 0.7809

Riazzi y Daubert	Kesler Lee Edmister Tomasen	0.8734 0.8191	0.8732 0.8189 0.8220
Winn	Kesler Lee Edmister Tomasen		0.8732 0.8189 0.8220

sg = 0.892 T_b = 1226.1

Correlación Pc y Tc	Correlación ω	ω _{literatura}	ω _{CMG}	ω _{programa}
Kesler Lee	Kesler Lee Edmister Tomasen	0.992	0.9919 0.9291	0.9917 0.9285 0.9917
Twu	Kesler Lee Edmister Tomasen		0.8987 0.8419	0.8986 0.8418 0.8986
Cavett	Kesler Lee Edmister Tomasen			0.8045 0.8015 0.8045
Riazzi y Daubert	Kesler Lee Edmister Tomasen		0.9373 0.8453	0.9374 0.8352 0.9374
Winn	Kesler Lee Edmister Tomasen			0.9525 0.9135 0.9525

sg = 0.896 T_b = 1245.9

Correlación Pc y Tc	Correlación ω	ω _{literatura}	ω _{cmg}	$\omega_{ m programa}$
Kesler Lee	Kesler Lee Edmister Tomasen	1.019	1.0185 0.9547	1.0183 0.9540 1.0183
Twu	Kesler Lee Edmister Tomasen		0.9472 0.8664	0.9478 0.8663 0.9472
Cavett	Kesler Lee Edmister Tomasen			0.9563 0.8218 0.9557
Riazzi y Daubert	Kesler Lee Edmister Tomasen		0.9622 0.8721	0.9628 0.8719 0.9623
Winn	Kesler Lee Edmister Tomasen			0.97503 0.9367 0.9745

sg = 0.899 $T_b = 1263.9$

Correlación Pc y Tc	Correlación ω	ω _{literatura}	ω _{CMG}	ω _{programa}
Kesler Lee	Kesler Lee Edmister Tomasen	1.044	1.0442 0.9799	1.0449 0.9783 1.0434
Twu	Kesler Lee Edmister Tomasen		0.9708 0.8897	0.9709 0.8895 0.9709
Cavett	Kesler Lee Edmister Tomasen			0.9808 0.8415 0.9793

Riazzi y Daubert	Kesler Lee Edmister Tomasen	0.9717 0.9862	0.955 0.8623 0.9855
Winn	Kesler Lee Edmister Tomasen		0.9964 0.9592 0.9949

sg = 0.902 T_b = 1280.1

Correlación Pc y Tc	Correlación ω	ω _{literatura}	ω _{CMG}	ω _{programa}
Kesler Lee	Kesler Lee Edmister Tomasen	1.065	1.0654 1.0007	1.0654 0.9999 0.0652
Twu	Kesler Lee Edmister Tomasen		0.9914 0.9105	0.9914 0.9103 0.9916
Cavett	Kesler Lee Edmister Tomasen			1.0022 0.8742 1.0059
Riazzi y Daubert	Kesler Lee Edmister Tomasen		1.058 0.9216	1.0652 0.8749 1.06552
Winn	Kesler Lee Edmister Tomasen			1.0148 0.9791 1.0126

SG = 0.905 Tb = 1294.5

Correlación	Correlación			
Pcylc	ω	ω _{literatura}	ω _{CMG}	$\omega_{ m programa}$
Kesler Lee	Kesler Lee	1.084	1.0841	1.0841
	Edmister		1.0196	1.0196
	Tomasen			1.0841
Twu	Kesler Lee		1.0088	1.0089
	Edmister		0.9286	0.9285
	Tomasen			1.0089
Cavett	Kesler Lee			1.0181
	Edmister			0.8765
	Tomasen			1.0181
Riazzi y	Kesler Lee		1.0234	1.0234
Daubert	Edmister		0.9422	0.9420
	Tomasen			1.0234
Winn	Kesler Lee			1.0303
	Edmister			0.9963
	Tomasen			1.0303

SG = 0.909 Tb = 1310.7

Correlación Pc y Tc	Correlación ω	ω _{literatura}	ω _{CMG}	ω _{programa}
Kesler Lee	Kesler Lee Edmister Tomasen	1.104	1.1039 1.0398	1.1037 0.0390 1.1037
Twu	Kesler Lee Edmister Tomasen		1.027 1.948	1.0271 1.9482 1.0271
Cavett	Kesler Lee Edmister Tomasen			1.0377 0.8956 1.0377

Riazzi y Daubert	Kesler Lee Edmister Tomasen	1.0421 0.8972	1.0422 0.8969 1.0422
Winn	Kesler Lee Edmister Tomasen		1.0463 1.0148 1.0463

sg = 0.912 T_b = 1325.1

Correlación Pc y Tc	Correlación ω	ω _{literatura}	ω _{CMG}	$\omega_{ m programa}$
Kesler Lee	Kesler Lee Edmister Tomasen	1.122	1.1403 1.0588	1.1221 1.0579 1.1221
Twu	Kesler Lee		1.0441	1.0441
	Edmister		0.9668	0.9661
	Tomasen			1.0441
Cavett	Kesler Lee Edmister Tomasen			1.0553 0.9138 1.0553
Riazzi y Daubert	Kesler Lee Edmister Tomasen		1.0594 0.9082	1.0594 0.9855 1.0594
Winn	Kesler Lee Edmister Tomasen			1.0588 1.0322 1.0588

sg = 0.915 T_b = 1339.5

Correlación Pc y Tc	Correlación ω	ω _{literatura}	ω _{CMG}	ω _{programa}
Kesler Lee	Kesler Lee Edmister Tomasen	1.141	1.1405 1.0830	1.1403 1.0770 1.1403
Twu	Kesler Lee Edmister Tomasen		1.0608 0.9853	1.0609 0.9851 1.0609
Cavett	Kesler Lee Edmister Tomasen			1.0729 0.9327 1.0729
Riazzi y Daubert	Kesler Lee Edmister Tomasen		1.0765 0.9194	1.0765 0.9193 1.0765
Winn	Kesler Lee Edmister Tomasen			1.0735 1.0498 1.0735

sg = 0.917 T_b = 1352.1

Correlación Pc y Tc	Correlación ω	ω _{literatura}	ω _{CMG}	ω _{programa}
Kesler Lee	Kesler Lee Edmister Tomasen	1.157	1.1371 1.0745	1.1571 1.09486 1.1571
Twu	Kesler Lee Edmister Tomasen		1.0739 0.9189	1.0766 1.0022 1.0766
Cavett	Kesler Lee Edmister Tomasen			1.091 0.9504 1.0884

Riazzi y Daubert	Kesler Lee Edmister Tomasen	1.0570 0.9826	1.0998 0.9297 1.0949
Winn	Kesler Lee Edmister Tomasen		1.0903 1.0666 1.0870

sg = 0.920 T_b = 1366.5

Correlación Pc y Tc	Correlación ω	ω _{literatura}	ω _{CMG}	ω _{programa}
Kesler Lee	Kesler Lee Edmister Tomasen	1.175	1.1753 1.1150	1.1758 1.1141 1.1750
Twu	Kesler Lee Edmister Tomasen		1.0930	1.0966 1.0208 1.0930
Cavett	Kesler Lee Edmister Tomasen			1.1091 0.971 1.1092
Riazzi y Daubert	Kesler Lee Edmister Tomasen		1.1091 0.9410	1.1092 0.971 1.1092
Winn	Kesler Lee Edmister Tomasen			1.1013 1.0845 1.1013

sg = 0.922 T_b = 1379.1

Correlación	Correlación			
Рс у Тс	ω	$\omega_{literatura}$	ω_{CMG}	$\omega_{ m programa}$
Kesler Lee	Kesler Lee	1.192	1.1919	1.1916
	Tomasen		1.1330	1.1916
Twu	Kesler Lee		1.1084	1.1085
	Edmister		1.0384	1.03819
	Tomasen			1.1085
Cavett	Kaslar I aa			1 1207
Caven				0.9902
	Edmister			1.1207
	Tomasen			
Diozzi y	Koolor Loo		1 1047	1 1047
Nidzzi y Daubert	Edmister		0.051/	1.1247
Daubert	Tomasen		0.0014	1.1247
Winn	Kesler Lee			1.1187
	Edmister			1.1016
	Tomasen			1.1145

sg = 0.925 T_b = 1391.7

Correlación Pc y Tc	Correlación ω	ω literatura	ω _{CMG}	$\omega_{ m programa}$
Kesler Lee	Kesler Lee Edmister Tomasen	1.207	1.2067 1.1494	1.2069 1.1484 1.2069
Twu	Kesler Lee Edmister Tomasen		1.1217 1.05431	1.1218 1.0541 1.1218

Cavett	Kesler Lee Edmister Tomasen		1.1352 1.0096 1.1352
Riazzi y Daubert	Kesler Lee Edmister Tomasen	1.1388 0.9616	1.1388 0.9614 1.1388
Winn	Kesler Lee Edmister Tomasen		1.1264 1.1373 1.1264

sg = 0.927 Tb = 1406.1

Correlación	Correlación			
РсуТс	ω	ω _{literatura}	ω _{CMG}	ω _{programa}
Kesler Lee	Kesler Lee	1.226	1.2259	1.2256
	Edmister		1.1707	1.1697
	Tomasen			1.2256
Туш	Kesler I ee		1 1396	1 1396
	Edmister		1.0747	1.0744
	Tomasen			1.1445
Cavett	Kesler Lee			1.1523
	Edminter			1 0227
	Tomasen			1.0337
	Tomasen			1.1071
Riazzi y	Kesler Lee		1.1567	1.1567
Daubert	Edmister		0.9741	0.9738
	Tomasen			1.1567
Winn	Kesler Lee			1.1416
	Edmister			1.13/3
	Iomasen			1.1416

sg = 0.929 $T_b = 1418.7$

Correlación	Correlación			
Рс у Тс	ω	$\omega_{ ext{ literatura}}$	ω _{CMG}	$\omega_{ m programa}$
Kesler Lee	Kesler Lee Edmister Tomasen	1.242	1.2422 1.1891	1.2419 1.1881 1.2419
Twu	Kesler Lee Edmister Tomasen		1.1546 1.0922	1.1546 1.0919 1.1546
Cavett	Kesler Lee Edmister Tomasen			1.1668 1.0555 1.1668
Riazzi y Daubert	Kesler Lee Edmister Tomasen		1.1719 0.9850	1.1720 0.9847 1720
Winn	Kesler Lee Edmister Tomasen			1.1545 1.1167 1.1545

sg = 0.931 T_b = 1431.3

Correlación Pc y Tc	Correlación ω	ω _{literatura}	ω _{CMG}	$\omega_{ m programa}$
Kesler Lee	Kesler Lee Edmister Tomasen	1.258	1.2584 1.2076	1.2581 1.2065 1.2581
Twu	Kesler Lee Edmister Tomasen		1.1694 1.1097	1.1694 1.1095 1.1694

Cavett	Kesler Lee Edmister Tomasen		1.1812 1.0783 1.1812
Riazzi y Daubert	Kesler Lee Edmister Tomasen	1.1872 0.9962	1.1872 0.9959 1.1872
Winn	Kesler Lee Edmister Tomasen		1.1672 1.1727 1.1672

sg = 0.933 T_b = 1442.1

Correlación Pc y Tc	Correlación ω	$\omega_{ ext{ literatura}}$	ω _{CMG}	ω _{programa}
Kesler Lee	Kesler Lee Edmister Tomasen	1.272	1.2716 1.2229	1.2714 1.2218 1.2714
Twu	Kesler Lee Edmister Tomasen		1.1814 1.1244	1.1814 1.1242 1.1814
Cavett	Kesler Lee			1.1932
	Edmister Tomasen			1.0985 1.1932
Riazzi y Daubert	Kesler Lee Edmister Tomasen		1.1997 1.0058	1.1997 1.1836 1.1997
Winn	Kesler Lee Edmister Tomasen			1.1777 1.1874 1.1777

sg = 0.934 $T_b = 1452.9$

Correlación Pc y Tc	Correlación ω	ω _{literatura}	ω _{CMG}	ω _{programa}
Kesler Lee	Kesler Lee Edmister Tomasen	1.287	1.28661 1.24034	1.2863 1.2392 1.2863
Twu	Kesler Lee Edmister Tomasen		1.1954 1.1407	1.1954 1.1404 1.1954
Cavett	Kesler Lee Edmister Tomasen			1.2054 1.1200 1.2054
Riazzi y Daubert	Kesler Lee Edmister Tomasen		1.2136 1.0159	1.2136 1.0156 1.2136
Winn	Kesler Lee Edmister Tomasen			1.1893 1.1874 1.1893

sg = 0.936 T_b = 1463.7

Correlación Pc y Tc	Correlación ω	ω _{literatura}	ω _{CMG}	ω _{programa}
Kesler Lee	Kesler Lee Edmister Tomasen	1.300	1.29973 1.2558	1.2994 1.2547 1.2994
Twu	Kesler Lee Edmister Tomasen		1.2071 1.1553	1.2071 1.1551 1.2071
Cavett	Kesler Lee Edmister Tomasen			1.2261 1.1418 1.2261
Continuación de la tabla 1.3. Valores del factor acéntrico³ obtenidos de la literatura, WinProp CMG¹¹ y del programa

Riazzi y Daubert	Kesler Lee Edmister Tomasen	1.2260 1.0258	1.2260 1.2268 1.2260
Winn	Kesler Lee Edmister Tomasen		1.1997 1.2198 1.1997

SG = 0.938 Tb = 1476.3

Correlación Pc y Tc	Correlación ω	ω _{literatura}	ω _{CMG}	$\omega_{ m programa}$
Kesler Lee	Kesler Lee Edmister Tomasen	1.316	1.3155 1.2747	1.3153 1.2736 1.3153
Twu	Kesler Lee Edmister Tomasen		1.2214 1.1731	1.2214 1.1728 1.2214
Cavett	Kesler Lee Edmister Tomasen			1.2306 1.1684 1.2306
Riazzi y Daubert	Kesler Lee Edmister Tomasen		1.2408 1.0377	1.2409 1.2521 1.2409
Winn	Kesler Lee Edmister Tomasen			1.2121 1.2383 1.2121

Continuación de la tabla 1.3. Valores del factor acéntrico³ obtenidos de la literatura, WinProp CMG¹¹ y del programa

sg = 0.940 T_b = 1487.1

Correlación Pc y Tc	Correlación ω	ω _{literatura}	ω _{CMG}	$\omega_{ m programa}$
Kesler Lee	Kesler Lee Edmister Tomasen	1.328	1.3285 1.2903	1.3282 1.2892 1.3282
Twu	Kesler Lee Edmister Tomasen		1.2329 1.1878	1.2329 1.1875 1.2329
Cavett	Kesler Lee Edmister Tomasen			1.2419 1.1921 1.2419
Riazzi y Daubert	Kesler Lee Edmister Tomasen		1.2532 1.0479	1.2532 1.0476 1.2532
Winn	Kesler Lee Edmister Tomasen			1.2222 1.2536 1.2222

Tabla B1. Propiedades críticas de Balam 53

INSTITUTO MEXICANO DEL PETROLEO SUBDIRECCION DE TECNOLOGIA DE LA EXPLOTACION DIVISION DE YACIMIENTOS NATURALMENTE FRACTURADOS ESTE PROGRAMA CALCULA LAS PROPIEDADES CRÍTICAS Y EL FACTOR ACENTRICO DE MEZCLAS Y COMPONENTES

PROPIEDADES CRITICAS Y FACTOR ACENTRICO

PRESION CRITICA (PC) TEMPERATURA CRITICA (TC) VOLUMEN CRITICA (VC) FACTOR ACENTRICO (OMEGA) GRAVEDAD ESPECIFICA (SG) TEMPERATURA DE EBULLICION (TEB) PESO MOLECULAR(PM)

• LAS PROPIEDADES DE LOS COMPONENTES PUROS SE TOMAN DE UNA BASE DE DATOS

LAS CORRELACIONES EMPLEADAS PARA EL CALCULO DE LAS PROPIEDADES CRITICAS Y FACTOR ACENTRICO DE LOS SEUDOCOMPONENTES SON:

NOM	тс	PC	OMEGA	VC	PM	SG	TEB
	[KELVIN]	[KGF/CM ²]		[L/G- MOL]			[RANKIN]
H2S	373.54	91.82	0.1	0.0985	34.08		
CO2	304.15	75.27	0.231	0.094	44.01		
N2	126.26	34.66	0.045	0.0895	28.02		
C1	190.58	46.95	0.0104	0.099	16.04		
C2	305.42	49.76	0.0986	0.148	30.07		
C3	369.82	43.33	0.1524	0.203	44.1		
IC4	408.14	37.2	0.1848	0.263	58.12		
NC4	425.18	38.72	0.201	0.255	58.12		
IC5	460.43	34.48	0.2223	0.306	72.15		
NC5	469.65	34.35	0.2539	0.304	72.15		
NC6	507.45	30.72	0.3007	0.37	86.18		
HEP	528.91	29.3	0.3427	0.4084	97	0.7155	665.94
OCT	554.77	27.71	0.381	0.4515	108.8	0.7351	707.4
NON	575.57	27.65	0.3982	0.4727	117.5	0.7598	736.19
DEC	601.95	26.22	0.4314	0.5168	131	0.7791	778.24
UDP	885.4	10.44	0.8615	1.1997	424	0.9508	1305.42

LA CORRELACION PARA TC, PC ES: **CAVETT** LA CORRELACION PARA OMEGA ES: **EDMISTER**

Continuación de la tabla B1. Propiedades críticas de Balam 53

INSTITUTO MEXICANO DEL PETROLEO SUBDIRECCION DE TECNOLOGIA DE LA EXPLOTACION DIVISION DE YACIMIENTOS NATURALMENTE FRACTURADOS ESTE PROGRAMA CALCULA LAS PROPIEDADES CRÍTICAS Y EL FACTOR ACENTRICO DE MEZCLAS Y COMPONENTES

PROPIEDADES CRITICAS Y FACTOR ACENTRICO

PRESION CRITICA (PC) TEMPERATURA CRITICA (TC) VOLUMEN CRITICA (VC) FACTOR ACENTRICO (OMEGA) GRAVEDAD ESPECIFICA (SG) TEMPERATURA DE EBULLICION (TEB) PESO MOLECULAR(PM)

LAS PROPIEDADES DE LOS COMPONENTES PUROS SE TOMAN DE UNA BASE DE DATOS LAS CORRELACIONES EMPLEADAS PARA EL CALCULO DE LAS PROPIEDADES CRITICAS Y FACTOR ACENTRICO DE LOS SEUDOCOMPONENTES SON:

LA CORRELACION PARA TC,PC ES: **KESLER-LEE** LA CORRELACION PARA OMEGA ES: **TOMASEN**

NOM	тс	PC	OMEGA	VC	PM	SG	TEB
	[KELVIN]	[KGF/CM ²]		[L/G- MOL]			[RANKIN]
H2S	373.54	91.82	0.1	0.0985	34.08		
CO2	304.15	75.27	0.231	0.0940	44.01		
N2	126.26	34.66	0.045	0.0895	28.02		
C1	190.58	46.95	0.0104	0.099	16.04		
C2	305.42	49.76	0.0986	0.148	30.07		
C3	369.82	43.33	0.1524	0.203	44.1		
IC4	408.14	37.2	0.1848	0.263	58.12		
NC4	425.18	38.72	0.201	0.255	58.12		
IC5	460.43	34.48	0.2223	0.306	72.15		
NC5	469.65	34.35	0.2539	0.304	72.15		
NC6	507.45	30.72	0.3007	0.370	86.18		
HEP	530.17	29.06	0.3245	0.4084	97	0.7155	665.94
OCT	555.73	27.2	0.3632	0.4515	108.8	0.7351	707.4
NON	576.07	27.06	0.3835	0.4727	117.5	0.7598	736.19
DEC	601.45	25.43	0.4231	0.5168	131	0.7791	778.24
UDP	880.53	11.14	1.0247	1.1997	424	0.9508	1305.42

Continuación de la tabla B1. Propiedades críticas de Balam 53

INSTITUTO MEXICANO DEL PETROLEO SUBDIRECCION DE TECNOLOGIA DE LA EXPLOTACION DIVISION DE YACIMIENTOS NATURALMENTE FRACTURADOS ESTE PROGRAMA CALCULA LAS PROPIEDADES CRÍTICAS Y EL FACTOR ACENTRICO DE MEZCLAS Y COMPONENTES

PROPIEDADES CRITICAS Y FACTOR ACENTRICO

PRESION CRITICA (PC) TEMPERATURA CRITICA (TC) VOLUMEN CRITICA (VC) FACTOR ACENTRICO (OMEGA) GRAVEDAD ESPECIFICA (SG) TEMPERATURA DE EBULLICION (TEB) PESO MOLECULAR(PM)

LAS PROPIEDADES DE LOS COMPONENTES PUROS SE TOMAN DE UNA BASE DE DATOS LAS CORRELACIONES EMPLEADAS PARA EL CALCULO DE LAS PROPIEDADES CRITICAS Y FACTOR ACENTRICO DE LOS SEUDOCOMPONENTES SON:

LA CORRELACION PARA Tc,Pc ES: KESLER-LEE LA CORRELACION PARA OMEGA ES: KESLER_LEE

NOM	тс	PC	OMEGA	VC	PM	SG	TEB
	[KELVIN]	[KGF/CM ²]		[L/G- MOL]			[RANKIN]
H2S	373.54	91.82	0.1	0.0985	34.08		
CO2	304.15	75.27	0.231	0.094	44.01		
N2	126.26	34.66	0.045	0.0895	28.02		
C1	190.58	46.95	0.0104	0.099	16.04		
C2	305.42	49.76	0.0986	0.148	30.07		
C3	369.82	43.33	0.1524	0.203	44.1		
IC4	408.14	37.2	0.1848	0.263	58.12		
NC4	425.18	38.72	0.201	0.255	58.12		
IC5	460.43	34.48	0.2223	0.306	72.15		
NC5	469.65	34.35	0.2539	0.304	72.15		
NC6	507.45	30.72	0.3007	0.37	86.18		
HEP	530.17	29.06	0.3245	0.4084	97	0.7155	665.94
OCT	555.73	27.2	0.3632	0.4515	108.8	0.7351	707.4
NON	576.07	27.06	0.3835	0.4727	117.5	0.7598	736.19
DEC	601.45	25.43	0.4231	0.5168	131	0.7791	778.24
UDP	880.53	11.14	1.0247	1.1997	424	0.9508	1305.42

Tabla B2. Propiedades críticas de May

INSTITUTO MEXICANO DEL PETROLEO SUBDIRECCION DE TECNOLOGIA DE LA EXPLOTACION DIVISION DE YACIMIENTOS NATURALMENTE FRACTURADOS ESTE PROGRAMA CALCULA LAS PROPIEDADES CRÍTICAS Y EL FACTOR ACENTRICO DE MEZCLAS Y COMPONENTES

PROPIEDADES CRITICAS Y FACTOR ACENTRICO

PRESION CRITICA (PC) TEMPERATURA CRITICA (TC) VOLUMEN CRITICA (VC) FACTOR ACENTRICO (OMEGA) GRAVEDAD ESPECIFICA (SG) TEMPERATURA DE EBULLICION (TEB) PESO MOLECULAR(PM)

LAS PROPIEDADES DE LOS COMPONENTES PUROS SE TOMAN DE UNA BASE DE DATOS LAS CORRELACIONES EMPLEADAS PARA EL CALCULO DE LAS PROPIEDADES CRITICAS Y FACTOR ACENTRICO DE LOS SEUDOCOMPONENTES SON:

LA CORRELACION PARA Tc, Pc ES: TOMASSEN LA CORRELACION PARA OMEGA ES: TWU

NOM	тс	PC	OMEGA	VC	PM	SG	TEB
	[KELVIN]	[KGF/CM ²]		[L/G- MOL]			[RANKIN]
H2S	373.54	91.82	0.1	0.0985	34.08		
CO2	304.15	75.27	0.231	0.094	44.01		
N2	126.26	34.66	0.045	0.0895	28.02		
C1	190.58	46.95	0.0104	0.099	16.04		
C2	305.42	49.76	0.0986	0.148	30.07		
C3	369.82	43.33	0.1524	0.203	44.1		
IC4	408.14	37.2	0.1848	0.263	58.12		
NC4	425.18	38.72	0.201	0.255	58.12		
IC5	460.43	34.48	0.2223	0.306	72.15		
NC5	469.65	34.35	0.2539	0.304	72.15		
NC6	507.45	30.72	0.3007	0.37	86.18		
C7+	708.96	18.8	0.5116	0.7642	195.5	0.8162	945.6

Continuación de la tabla B2. Propiedades críticas de May

INSTITUTO MEXICANO DEL PETROLEO SUBDIRECCION DE TECNOLOGIA DE LA EXPLOTACION DIVISION DE YACIMIENTOS NATURALMENTE FRACTURADOS ESTE PROGRAMA CALCULA LAS PROPIEDADES CRÍTICAS Y EL FACTOR ACENTRICO DE MEZCLAS Y COMPONENTES

PROPIEDADES CRITICAS Y FACTOR ACENTRICO

PRESION CRITICA (PC) TEMPERATURA CRITICA (TC) VOLUMEN CRITICA (VC) FACTOR ACENTRICO (OMEGA) GRAVEDAD ESPECIFICA (SG) TEMPERATURA DE EBULLICION (TEB) PESO MOLECULAR(PM)

LAS PROPIEDADES DE LOS COMPONENTES PUROS SE TOMAN DE UNA BASE DE DATOS LAS CORRELACIONES EMPLEADAS PARA EL CALCULO DE LAS PROPIEDADES CRITICAS Y FACTOR ACENTRICO DE LOS SEUDOCOMPONENTES SON:

LA CORRELACION PARA TC,PC ES: RIAZI Y DAUBERT LA CORRELACION PARA OMEGA ES: KESLER_LEE

NOM	тс	PC	OMEGA	VC	PM	SG	TEB
	[KELVIN]	[KGF/CM ²]		[L/G- MOL]			[RANKIN]
H2S	373.54	91.82	0.1	0.0985	34.08		
CO2	304.15	75.27	0.231	0.094	44.01		
N2	126.26	34.66	0.045	0.0895	28.02		
C1	190.58	46.95	0.0104	0.099	16.04		
C2	305.42	49.76	0.0986	0.148	30.07		
C3	369.82	43.33	0.1524	0.203	44.1		
IC4	408.14	37.2	0.1848	0.263	58.12		
NC4	425.18	38.72	0.201	0.255	58.12		
IC5	460.43	34.48	0.2223	0.306	72.15		
NC5	469.65	34.35	0.2539	0.304	72.15		
NC6	507.45	30.72	0.3007	0.37	86.18		
C7+	706.94	22.43	0.6788	0.7642	195.5	0.8162	945.6

Continuación de la tabla B2. Propiedades críticas de May

INSTITUTO MEXICANO DEL PETROLEO SUBDIRECCION DE TECNOLOGIA DE LA EXPLOTACION DIVISION DE YACIMIENTOS NATURALMENTE FRACTURADOS ESTE PROGRAMA CALCULA LAS PROPIEDADES CRÍTICAS Y EL FACTOR ACENTRICO DE MEZCLAS Y COMPONENTES

PROPIEDADES CRITICAS Y FACTOR ACENTRICO

PRESION CRITICA (PC) TEMPERATURA CRITICA (TC) VOLUMEN CRITICA (VC) FACTOR ACENTRICO (OMEGA) GRAVEDAD ESPECIFICA (SG) TEMPERATURA DE EBULLICION (TEB) PESO MOLECULAR(PM)

LAS PROPIEDADES DE LOS COMPONENTES PUROS SE TOMAN DE UNA BASE DE DATOS LAS CORRELACIONES EMPLEADAS PARA EL CALCULO DE LAS PROPIEDADES CRITICAS Y FACTOR ACENTRICO DE LOS SEUDOCOMPONENTES SON:

LA CORRELACION PARA Tc,Pc ES: KESLER-LEE LA CORRELACION PARA OMEGA ES: KESLER_LEE

NOM	TC	PC	OMEGA	VC	PM	SG	TEB
	[KELVIN]	[KGF/CM ²]		[L/G- MOL1			[RANKIN]
H2S	373.54	91.82	0.1	0.0985	34.08		
CO2	304.15	75.27	0.231	0.094	44.01		
N2	126.26	34.66	0.045	0.0895	28.02		
C1	190.58	46.95	0.0104	0.099	16.04		
C2	305.42	49.76	0.0986	0.148	30.07		
C3	369.82	43.33	0.1524	0.203	44.1		
IC4	408.14	37.2	0.1848	0.263	58.12		
NC4	425.18	38.72	0.201	0.255	58.12		
IC5	460.43	34.48	0.2223	0.306	72.15		
NC5	469.65	34.35	0.2539	0.304	72.15		
NC6	507.45	30.72	0.3007	0.37	86.18		
C7+	701.9	18.77	0.6272	0.7642	195.5	0.8162	945.6

Tabla B4. Parámetros de interacción binaria (PIB) para Balam 53

INSTITUTO MEXICANO DEL PETROLEO

SUBDIRECCION DE TECNOLOGIA DE LA EXPLOTACION

DIVISION DE YACIMIENTOS NATURALMENTE FRACTURADOS

ESTE PROGRAMA CALCULA LOS PARAMETROS DE INTERACCION BINARIA

PIB

VOLUMEN CRITICA (VC)

PESO MOLECULAR (MW)

PARAMETROS DE INTERACCION BINARIA (PIB)

ECUACION: PR

N=1

NOM	H2S	CO2	N2	C1	C2	C3	IC4	NC4	IC5	NC5	NC6	HEP	OCT	NON	DEC
H2S	0	-0.02	0.103	0.13	0.135	0.13	0.13	0.125	0.125	0.0255	0.0292	0.0333	0.0352	0.039	0.0078
CO2	-0.02	0	0.31	0.42	0.091	0.095	0.095	0.095	0.095	0.0273	0.0312	0.0353	0.0373	0.0412	0.0089
N2	0.103	0.31	0	0.0338	0.0361	0.0384	0.0384	0.0407	0.0407	0.043	0.0447	0.0467	0.0481	0.0503	0.0998
C1	0.13	0.42	0.0338	0	0.0015	0.0049	0.0044	0.0077	0.0076	0.0121	0.0147	0.0176	0.019	0.0218	0.0013
C2	0.135	0.091	0.0361	0.0015	0	0.001	0.0008	0.0025	0.0024	0.0053	0.0072	0.0093	0.0104	0.0126	0
C3	0.13	0.095	0.0384	0.0049	0.001	0	0	0.0003	0.0003	0.0017	0.0029	0.0043	0.0051	0.0067	0.0011
IC4	0.13	0.095	0.0384	0.0044	0.0008	0	0	0.0005	0.0005	0.0021	0.0033	0.0048	0.0056	0.0073	0.0009
NC4	0.125	0.095	0.0407	0.0077	0.0025	0.0003	0.0005	0	0	0.0005	0.0012	0.0023	0.0028	0.0041	0.0027
IC5	0.125	0.095	0.0407	0.0076	0.0024	0.0003	0.0005	0	0	0.0006	0.0013	0.0023	0.0029	0.0042	0.0026
NC5	0.0255	0.0273	0.043	0.0121	0.0053	0.0017	0.0021	0.0005	0.0006	0	0.0001	0.0006	0.0009	0.0017	0.0056
NC6	0.0292	0.0312	0.0447	0.0147	0.0072	0.0029	0.0033	0.0012	0.0013	0.0001	0	0.0002	0.0003	0.0008	0.0075
HEP	0.0333	0.0353	0.0467	0.0176	0.0093	0.0043	0.0048	0.0023	0.0023	0.0006	0.0002	0	0	0.0003	0.0097
OCT	0.0352	0.0373	0.0481	0.019	0.0104	0.0051	0.0056	0.0028	0.0029	0.0009	0.0003	0	0	0.0001	0.0108
NON	0.039	0.0412	0.0503	0.0218	0.0126	0.0067	0.0073	0.0041	0.0042	0.0017	0.0008	0.0003	0.0001	0	0.013
DEC	0.0078	0.0089	0.0998	0.0013	0	0.0011	0.0009	0.0027	0.0026	0.0056	0.0075	0.0097	0.0108	0.013	0

PARAMETROS DE INTERACCION BINARIA (PIB)

ECUACION: PR

N=1.2

NOM	H2S	CO2	N2	C1	C2	C3	IC4	NC4	IC5	NC5	NC6	HEP	OCT	NON	DEC
H2S	0	-0.02	0.103	0.13	0.135	0.13	0.13	0.125	0.125	0.0046	0.0053	0.006	0.0063	0.007	0.0014
CO2	-0.02	0	0.31	0.42	0.091	0.095	0.095	0.095	0.095	0.0049	0.0056	0.0064	0.0067	0.0074	0.0016
N2	0.103	0.31	0	0.0338	0.0361	0.0384	0.0384	0.0407	0.0407	0.043	0.0447	0.0467	0.0481	0.0503	0.0998
C1	0.13	0.42	0.0338	0	0.0014	0.0046	0.0041	0.0073	0.0072	0.0115	0.0141	0.017	0.0184	0.0213	0.0012
C2	0.135	0.091	0.0361	0.0014	0	0.0009	0.0007	0.0023	0.0023	0.005	0.0067	0.0088	0.0098	0.012	0
C3	0.13	0.095	0.0384	0.0046	0.0009	0	0	0.0003	0.0003	0.0016	0.0027	0.004	0.0048	0.0063	0.0011
IC4	0.13	0.095	0.0384	0.0041	0.0007	0	0	0.0005	0.0004	0.0019	0.0031	0.0045	0.0053	0.0069	0.0008
NC4	0.125	0.095	0.0407	0.0073	0.0023	0.0003	0.0005	0	0	0.0005	0.0012	0.0021	0.0026	0.0038	0.0025
IC5	0.125	0.095	0.0407	0.0072	0.0023	0.0003	0.0004	0	0	0.0005	0.0012	0.0022	0.0027	0.0039	0.0024
NC5	0.0046	0.0049	0.043	0.0115	0.005	0.0016	0.0019	0.0005	0.0005	0	0.0001	0.0006	0.0008	0.0015	0.0053
NC6	0.0053	0.0056	0.0447	0.0141	0.0067	0.0027	0.0031	0.0012	0.0012	0.0001	0	0.0001	0.0003	0.0008	0.0071
HEP	0.006	0.0064	0.0467	0.017	0.0088	0.004	0.0045	0.0021	0.0022	0.0006	0.0001	0	0	0.0003	0.0092
OCT	0.0063	0.0067	0.0481	0.0184	0.0098	0.0048	0.0053	0.0026	0.0027	0.0008	0.0003	0	0	0.0001	0.0102
NON	0.007	0.0074	0.0503	0.0213	0.012	0.0063	0.0069	0.0038	0.0039	0.0015	0.0008	0.0003	0.0001	0	0.0124
DEC	0.0014	0.0016	0.0998	0.0012	0	0.0011	0.0008	0.0025	0.0024	0.0053	0.0071	0.0092	0.0102	0.0124	0

PARAMETROS DE INTERACCION BINARIA (PIB)

ECUACION: PR

N=6

NOM	H2S	CO2	N2	C1	C2	C3	IC4	NC4	IC5	NC5	NC6	HEP	OCT	NON	DEC
H2S	0	-0.02	0.103	0.13	0.135	0.13	0.13	0.125	0.125	0.0259	0.0294	0.0331	0.0348	0.0382	0.0083
CO2	-0.02	0	0.31	0.42	0.091	0.095	0.095	0.095	0.095	0.0276	0.0311	0.0349	0.0367	0.0402	0.0094
N2	0.103	0.31	0	0.0338	0.0361	0.0384	0.0384	0.0407	0.0407	0.043	0.0447	0.0467	0.0481	0.0503	0.0998
C1	0.13	0.42	0.0338	0	0.0014	0.0046	0.0041	0.0073	0.0072	0.0115	0.0141	0.017	0.0184	0.0213	0.0012
C2	0.135	0.091	0.0361	0.0014	0	0.0009	0.0007	0.0023	0.0023	0.005	0.0067	0.0088	0.0098	0.012	0
C3	0.13	0.095	0.0384	0.0046	0.0009	0	0	0.0003	0.0003	0.0016	0.0027	0.004	0.0048	0.0063	0.0011
IC4	0.13	0.095	0.0384	0.0041	0.0007	0	0	0.0005	0.0004	0.0019	0.0031	0.0045	0.0053	0.0069	0.0008
NC4	0.125	0.095	0.0407	0.0073	0.0023	0.0003	0.0005	0	0	0.0005	0.0012	0.0021	0.0026	0.0038	0.0025
IC5	0.125	0.095	0.0407	0.0072	0.0023	0.0003	0.0004	0	0	0.0005	0.0012	0.0022	0.0027	0.0039	0.0024
NC5	0.0259	0.0276	0.043	0.0115	0.005	0.0016	0.0019	0.0005	0.0005	0	0.0001	0.0006	0.0008	0.0015	0.0053
NC6	0.0294	0.0311	0.0447	0.0141	0.0067	0.0027	0.0031	0.0012	0.0012	0.0001	0	0.0001	0.0003	0.0008	0.0071
HEP	0.0331	0.0349	0.0467	0.017	0.0088	0.004	0.0045	0.0021	0.0022	0.0006	0.0001	0	0	0.0003	0.0092
OCT	0.0348	0.0367	0.0481	0.0184	0.0098	0.0048	0.0053	0.0026	0.0027	0.0008	0.0003	0	0	0.0001	0.0102
NON	0.0382	0.0402	0.0503	0.0213	0.012	0.0063	0.0069	0.0038	0.0039	0.0015	0.0008	0.0003	0.0001	0	0.0124
DEC	0.0083	0.0094	0.0998	0.0012	0	0.0011	0.0008	0.0025	0.0024	0.0053	0.0071	0.0092	0.0102	0.0124	0

PARAMETROS DE INTERACCION BINARIA (PIB)

ECUACION: SRK

N=1

NOM	H2S	CO2	N2	C1	C2	C3	IC4	NC4	IC5	NC5	NC6	HEP	OCT	NON	DEC
H2S	0	0.106	0.103	0.42	0.4911	0.07	0.13	0.095	0.508	0.0255	0.0292	0.0333	0.0352	0.039	0.0078
CO2	0.106	0	0.31	0.4907	0.07	0.135	0.095	0.508	0.06	0.0273	0.0312	0.0353	0.0373	0.0412	0.0089
N2	0.103	0.31	0	0.0338	0.0361	0.0384	0.0384	0.0407	0.0407	0.043	0.0447	0.0467	0.0481	0.0503	0.0998
C1	0.42	0.4907	0.0338	0	0.0015	0.0049	0.0044	0.0077	0.0076	0.0121	0.0147	0.0176	0.019	0.0218	0.0013
C2	0.4911	0.07	0.0361	0.0015	0	0.001	0.0008	0.0025	0.0024	0.0053	0.0072	0.0093	0.0104	0.0126	0
C3	0.07	0.135	0.0384	0.0049	0.001	0	0	0.0003	0.0003	0.0017	0.0029	0.0043	0.0051	0.0067	0.0011
IC4	0.13	0.095	0.0384	0.0044	0.0008	0	0	0.0005	0.0005	0.0021	0.0033	0.0048	0.0056	0.0073	0.0009
NC4	0.095	0.508	0.0407	0.0077	0.0025	0.0003	0.0005	0	0	0.0005	0.0012	0.0023	0.0028	0.0041	0.0027
IC5	0.508	0.06	0.0407	0.0076	0.0024	0.0003	0.0005	0	0	0.0006	0.0013	0.0023	0.0029	0.0042	0.0026
NC5	0.0255	0.0273	0.043	0.0121	0.0053	0.0017	0.0021	0.0005	0.0006	0	0.0001	0.0006	0.0009	0.0017	0.0056
NC6	0.0292	0.0312	0.0447	0.0147	0.0072	0.0029	0.0033	0.0012	0.0013	0.0001	0	0.0002	0.0003	0.0008	0.0075
HEP	0.0333	0.0353	0.0467	0.0176	0.0093	0.0043	0.0048	0.0023	0.0023	0.0006	0.0002	0	0	0.0003	0.0097
OCT	0.0352	0.0373	0.0481	0.019	0.0104	0.0051	0.0056	0.0028	0.0029	0.0009	0.0003	0	0	0.0001	0.0108
NON	0.039	0.0412	0.0503	0.0218	0.0126	0.0067	0.0073	0.0041	0.0042	0.0017	0.0008	0.0003	0.0001	0	0.013
DEC	0.0078	0.0089	0.0998	0.0013	0	0.0011	0.0009	0.0027	0.0026	0.0056	0.0075	0.0097	0.0108	0.013	0

PARAMETROS DE INTERACCION BINARIA (PIB)

ECUACION: SRK

N=1.2

NOM	H2S	CO2	N2	C1	C2	C3	IC4	NC4	IC5	NC5	NC6	HEP	OCT	NON	DEC
	0	0.106	0.103	0.42	0.4911	0.07	0.13	0.095	0.508	0.0046	0.0053	0.006	0.0063	0.007	0.0014
H2S	0.106	0	0.31	0.4907	0.07	0.135	0.095	0.508	0.06	0.0049	0.0056	0.0064	0.0067	0.0074	0.0016
CO2	0.103	0.31	0	0.0338	0.0361	0.0384	0.0384	0.0407	0.0407	0.043	0.0447	0.0467	0.0481	0.0503	0.0998
N2	0.42	0.4907	0.0338	0	0.0014	0.0046	0.0041	0.0073	0.0072	0.0115	0.0141	0.017	0.0184	0.0213	0.0012
C1	0.4911	0.07	0.0361	0.0014	0	0.0009	0.0007	0.0023	0.0023	0.005	0.0067	0.0088	0.0098	0.012	0
C2	0.07	0.135	0.0384	0.0046	0.0009	0	0	0.0003	0.0003	0.0016	0.0027	0.004	0.0048	0.0063	0.0011
C3	0.13	0.095	0.0384	0.0041	0.0007	0	0	0.0005	0.0004	0.0019	0.0031	0.0045	0.0053	0.0069	0.0008
IC4	0.095	0.508	0.0407	0.0073	0.0023	0.0003	0.0005	0	0	0.0005	0.0012	0.0021	0.0026	0.0038	0.0025
NC4	0.508	0.06	0.0407	0.0072	0.0023	0.0003	0.0004	0	0	0.0005	0.0012	0.0022	0.0027	0.0039	0.0024
IC5	0.0046	0.0049	0.043	0.0115	0.005	0.0016	0.0019	0.0005	0.0005	0	0.0001	0.0006	0.0008	0.0015	0.0053
NC5	0.0053	0.0056	0.0447	0.0141	0.0067	0.0027	0.0031	0.0012	0.0012	0.0001	0	0.0001	0.0003	0.0008	0.0071
NC6	0.006	0.0064	0.0467	0.017	0.0088	0.004	0.0045	0.0021	0.0022	0.0006	0.0001	0	0	0.0003	0.0092
HEP	0.0063	0.0067	0.0481	0.0184	0.0098	0.0048	0.0053	0.0026	0.0027	0.0008	0.0003	0	0	0.0001	0.0102
OCT	0.007	0.0074	0.0503	0.0213	0.012	0.0063	0.0069	0.0038	0.0039	0.0015	0.0008	0.0003	0	0	0.0124
NON	0.0014	0.0016	0.0998	0.0012	0	0.0011	0.0008	0.0025	0.0024	0.0053	0.0071	0.0092	0.0102	0	0
DEC	0	0.106	0.103	0.42	0.4911	0.07	0.13	0.095	0.508	0.0046	0.0053	0.006	0.0063	0.007	0

PARAMETROS DE INTERACCION BINARIA (PIB)

ECUACION: SRK

N=6

NOM	H2S	CO2	N2	C1	C2	C3	IC4	NC4	IC5	NC5	NC6	HEP	OCT	NON	DEC
H2S	0	0.106	0.103	0.42	0.4911	0.07	0.13	0.095	0.508	0.0259	0.0294	0.0331	0.0348	0.0382	0.0083
CO2	0.106	0	0.31	0.4907	0.07	0.135	0.095	0.508	0.06	0.0276	0.0311	0.0349	0.0367	0.0402	0.0094
N2	0.103	0.31	0	0.0338	0.0361	0.0384	0.0384	0.0407	0.0407	0.043	0.0447	0.0467	0.0481	0.0503	0.0998
C1	0.42	0.4907	0.0338	0	0.0014	0.0046	0.0041	0.0073	0.0072	0.0115	0.0141	0.017	0.0184	0.0213	0.0012
C2	0.4911	0.07	0.0361	0.0014	0	0.0009	0.0007	0.0023	0.0023	0.005	0.0067	0.0088	0.0098	0.012	0
C3	0.07	0.135	0.0384	0.0046	0.0009	0	0	0.0003	0.0003	0.0016	0.0027	0.004	0.0048	0.0063	0.0011
IC4	0.13	0.095	0.0384	0.0041	0.0007	0	0	0.0005	0.0004	0.0019	0.0031	0.0045	0.0053	0.0069	0.0008
NC4	0.095	0.508	0.0407	0.0073	0.0023	0.0003	0.0005	0	0	0.0005	0.0012	0.0021	0.0026	0.0038	0.0025
IC5	0.508	0.06	0.0407	0.0072	0.0023	0.0003	0.0004	0	0	0.0005	0.0012	0.0022	0.0027	0.0039	0.0024
NC5	0.0259	0.0276	0.043	0.0115	0.005	0.0016	0.0019	0.0005	0.0005	0	0.0001	0.0006	0.0008	0.0015	0.0053
NC6	0.0294	0.0311	0.0447	0.0141	0.0067	0.0027	0.0031	0.0012	0.0012	0.0001	0	0.0001	0.0003	0.0008	0.0071
HEP	0.0331	0.0349	0.0467	0.017	0.0088	0.004	0.0045	0.0021	0.0022	0.0006	0.0001	0	0	0.0003	0.0092
OCT	0.0348	0.0367	0.0481	0.0184	0.0098	0.0048	0.0053	0.0026	0.0027	0.0008	0.0003	0	0	0.0001	0.0102
NON	0.0382	0.0402	0.0503	0.0213	0.012	0.0063	0.0069	0.0038	0.0039	0.0015	0.0008	0.0003	0.0001	0	0.0124
DEC	0.0083	0.0094	0.0998	0.0012	0	0.0011	0.0008	0.0025	0.0024	0.0053	0.0071	0.0092	0.0102	0.0124	0

Tabla B5. Parámetros de interacción binaria (PIB) para May

INSTITUTO MEXICANO DEL PETROLEO

SUBDIRECCION DE TECNOLOGIA DE LA EXPLOTACION

DIVISION DE YACIMIENTOS NATURALMENTE FRACTURADOS

ESTE PROGRAMA CALCULA LOS PARAMETROS DE INTERACCION BINARIA

PIB

VOLUMEN CRITICA (VC)

PESO MOLECULAR (MW)

PARAMETROS DE INTERACCION BINARIA (PIB)

ECUACION: PR

N=1

NOM	H2S	CO2	N2	C1	C2	C3	IC4	NC4	IC5	NC5	NC6	HEP	OCT	NON	DEC
H2S	0	-0.02	0.176	0.31	0.42	0.091	0.095	0.095	0.095	0.095	0.0273	0.0606	0	-0.02	0.176
CO2	-0.02	0	0.096	0.103	0.13	0.135	0.13	0.13	0.125	0.125	0.0255	0.058	-0.02	0	0.096
N2	0.176	0.096	0	0.08	0.07	0.07	0.06	0.06	0.06	0.06	0.0238	0.0556	0.176	0.096	0
C1	0.31	0.103	0.08	0	0.0338	0.0361	0.0384	0.0384	0.0407	0.0407	0.043	0.0608	0.31	0.103	0.08
C2	0.42	0.13	0.07	0.0338	0	0.0015	0.0049	0.0044	0.0077	0.0076	0.0121	0.0358	0.42	0.13	0.07
C3	0.091	0.135	0.07	0.0361	0.0015	0	0.001	0.0008	0.0025	0.0024	0.0053	0.0243	0.091	0.135	0.07
IC4	0.095	0.13	0.06	0.0384	0.0049	0.001	0	0	0.0003	0.0003	0.0017	0.0162	0.095	0.13	0.06
NC4	0.095	0.13	0.06	0.0384	0.0044	0.0008	0	0	0.0005	0.0005	0.0021	0.0171	0.095	0.13	0.06
IC5	0.095	0.125	0.06	0.0407	0.0077	0.0025	0.0003	0.0005	0	0	0.0005	0.0121	0.095	0.125	0.06
NC5	0.095	0.125	0.06	0.0407	0.0076	0.0024	0.0003	0.0005	0	0	0.0006	0.0123	0.095	0.125	0.06
NC6	0.0273	0.0255	0.0238	0.043	0.0121	0.0053	0.0017	0.0021	0.0005	0.0006	0	0.0077	0.0273	0.0255	0.0238
HEP	0.0606	0.058	0.0556	0.0608	0.0358	0.0243	0.0162	0.0171	0.0121	0.0123	0.0077	0	0.0606	0.058	0.0556
OCT	0	-0.02	0.176	0.31	0.42	0.091	0.095	0.095	0.095	0.095	0.0273	0.0606	0	-0.02	0.176
NON	-0.02	0	0.096	0.103	0.13	0.135	0.13	0.13	0.125	0.125	0.0255	0.058	-0.02	0	0.096
DEC	0.176	0.096	0	0.08	0.07	0.07	0.06	0.06	0.06	0.06	0.0238	0.0556	0.176	0.096	0

PARAMETROS DE INTERACCION BINARIA (PIB)

ECUACION: PR

N=1.2

NOM	H2S	CO2	N2	C1	C2	C3	IC4	NC4	IC5	NC5	NC6	HEP	OCT	NON	DEC
H2S	0	-0.02	0.176	0.31	0.42	0.091	0.095	0.095	0.095	0.095	0.0049	0.0109	0	-0.02	0.176
CO2	-0.02	0	0.096	0.103	0.13	0.135	0.13	0.13	0.125	0.125	0.0046	0.0104	-0.02	0	0.096
N2	0.176	0.096	0	0.08	0.07	0.07	0.06	0.06	0.06	0.06	0.0043	0.01	0.176	0.096	0
C1	0.31	0.103	0.08	0	0.0338	0.0361	0.0384	0.0384	0.0407	0.0407	0.043	0.0608	0.31	0.103	0.08
C2	0.42	0.13	0.07	0.0338	0	0.0014	0.0046	0.0041	0.0073	0.0072	0.0115	0.0065	0.42	0.13	0.07
C3	0.091	0.135	0.07	0.0361	0.0014	0	0.0009	0.0007	0.0023	0.0023	0.005	0.0239	0.091	0.135	0.07
IC4	0.095	0.13	0.06	0.0384	0.0046	0.0009	0	0	0.0003	0.0003	0.0016	0.0156	0.095	0.13	0.06
NC4	0.095	0.13	0.06	0.0384	0.0041	0.0007	0	0	0.0005	0.0004	0.0019	0.0165	0.095	0.13	0.06
IC5	0.095	0.125	0.06	0.0407	0.0073	0.0023	0.0003	0.0005	0	0	0.0005	0.0115	0.095	0.125	0.06
NC5	0.095	0.125	0.06	0.0407	0.0072	0.0023	0.0003	0.0004	0	0	0.0005	0.0117	0.095	0.125	0.06
NC6	0.0049	0.0046	0.0043	0.043	0.0115	0.005	0.0016	0.0019	0.0005	0.0005	0	0.0073	0.0049	0.0046	0.0043
HEP	0.0109	0.0104	0.01	0.0608	0.0065	0.0239	0.0156	0.0165	0.0115	0.0117	0.0073	0	0.0109	0.0104	0.01
OCT	0	-0.02	0.176	0.31	0.42	0.091	0.095	0.095	0.095	0.095	0.0049	0.0109	0	-0.02	0.176
NON	-0.02	0	0.096	0.103	0.13	0.135	0.13	0.13	0.125	0.125	0.0046	0.0104	-0.02	0	0.096
DEC	0.176	0.096	0	0.08	0.07	0.07	0.06	0.06	0.06	0.06	0.0043	0.01	0.176	0.096	0

PARAMETROS DE INTERACCION BINARIA (PIB)

ECUACION: PR

N=6

NOM	H2S	CO2	N2	C1	C2	C3	IC4	NC4	IC5	NC5	NC6	HEP	OCT	NON	DEC
H2S	0	-0.02	0.176	0.31	0.42	0.091	0.095	0.095	0.095	0.095	0.0276	0.0563	0	-0.02	0.176
CO2	-0.02	0	0.096	0.103	0.13	0.135	0.13	0.13	0.125	0.125	0.0259	0.0543	-0.02	0	0.096
N2	0.176	0.096	0	0.08	0.07	0.07	0.06	0.06	0.06	0.06	0.0243	0.0523	0.176	0.096	0
C1	0.31	0.103	0.08	0	0.0338	0.0361	0.0384	0.0384	0.0407	0.0407	0.043	0.0608	0.31	0.103	0.08
C2	0.42	0.13	0.07	0.0338	0	0.0014	0.0046	0.0041	0.0073	0.0072	0.0115	0.0363	0.42	0.13	0.07
C3	0.091	0.135	0.07	0.0361	0.0014	0	0.0009	0.0007	0.0023	0.0023	0.005	0.0239	0.091	0.135	0.07
IC4	0.095	0.13	0.06	0.0384	0.0046	0.0009	0	0	0.0003	0.0003	0.0016	0.0156	0.095	0.13	0.06
NC4	0.095	0.13	0.06	0.0384	0.0041	0.0007	0	0	0.0005	0.0004	0.0019	0.0165	0.095	0.13	0.06
IC5	0.095	0.125	0.06	0.0407	0.0073	0.0023	0.0003	0.0005	0	0	0.0005	0.0115	0.095	0.125	0.06
NC5	0.095	0.125	0.06	0.0407	0.0072	0.0023	0.0003	0.0004	0	0	0.0005	0.0117	0.095	0.125	0.06
NC6	0.0276	0.0259	0.0243	0.043	0.0115	0.005	0.0016	0.0019	0.0005	0.0005	0	0.0073	0.0276	0.0259	0.0243
HEP	0.0563	0.0543	0.0523	0.0608	0.0363	0.0239	0.0156	0.0165	0.0115	0.0117	0.0073	0	0.0563	0.0543	0.0523
OCT	0	-0.02	0.176	0.31	0.42	0.091	0.095	0.095	0.095	0.095	0.0276	0.0563	0	-0.02	0.176
NON	-0.02	0	0.096	0.103	0.13	0.135	0.13	0.13	0.125	0.125	0.0259	0.0543	-0.02	0	0.096
DEC	0.176	0.096	0	0.08	0.07	0.07	0.06	0.06	0.06	0.06	0.0243	0.0523	0.176	0.096	0

PARAMETROS DE INTERACCION BINARIA (PIB)

ECUACION: SRK

N=1

NOM	H2S	CO2	N2	C1	C2	C3	IC4	NC4	IC5	NC5	NC6	HEP	OCT	NON	DEC
H2S	0	0.106	0	0.31	0.4907	0.07	0.135	0.095	0.508	0.06	0.0273	0.0606	0	0.106	0
CO2	0.106	0	0	0.103	0.42	0.4911	0.07	0.13	0.095	0.508	0.0255	0.058	0.106	0	0
N2	0	0	0	0.08	0.13	0.091	0.5469	0.06	0.13	0.095	0.0238	0.0556	0	0	0
C1	0.31	0.103	0.08	0	0.0338	0.0361	0.0384	0.0384	0.0407	0.0407	0.043	0.0608	0.31	0.103	0.08
C2	0.4907	0.42	0.13	0.0338	0	0.0015	0.0049	0.0044	0.0077	0.0076	0.0121	0.0358	0.4907	0.42	0.13
C3	0.07	0.4911	0.091	0.0361	0.0015	0	0.001	0.0008	0.0025	0.0024	0.0053	0.0243	0.07	0.4911	0.091
IC4	0.135	0.07	0.5469	0.0384	0.0049	0.001	0	0	0.0003	0.0003	0.0017	0.0162	0.135	0.07	0.5469
NC4	0.095	0.13	0.06	0.0384	0.0044	0.0008	0	0	0.0005	0.0005	0.0021	0.0171	0.095	0.13	0.06
IC5	0.508	0.095	0.13	0.0407	0.0077	0.0025	0.0003	0.0005	0	0	0.0005	0.0121	0.508	0.095	0.13
NC5	0.06	0.508	0.095	0.0407	0.0076	0.0024	0.0003	0.0005	0	0	0.0006	0.0123	0.06	0.508	0.095
NC6	0.0273	0.0255	0.0238	0.043	0.0121	0.0053	0.0017	0.0021	0.0005	0.0006	0	0.0077	0.0273	0.0255	0.0238
HEP	0.0606	0.058	0.0556	0.0608	0.0358	0.0243	0.0162	0.0171	0.0121	0.0123	0.0077	0	0.0606	0.058	0.0556
OCT	0	0.106	0	0.31	0.4907	0.07	0.135	0.095	0.508	0.06	0.0273	0.0606	0	0.106	0
NON	0.106	0	0	0.103	0.42	0.4911	0.07	0.13	0.095	0.508	0.0255	0.058	0.106	0	0
DEC	0	0	0	0.08	0.13	0.091	0.5469	0.06	0.13	0.095	0.0238	0.0556	0	0	0

PARAMETROS DE INTERACCION BINARIA (PIB)

ECUACION: SRK

N=1.2

NOM	H2S	CO2	N2	C1	C2	C3	IC4	NC4	IC5	NC5	NC6	HEP	OCT	NON	DEC
H2S	0	0.106	0	0.31	0.4907	0.07	0.135	0.095	0.508	0.06	0.0049	0.0109	0	0.106	0
CO2	0.106	0	0	0.103	0.42	0.4911	0.07	0.13	0.095	0.508	0.0046	0.0104	0.106	0	0
N2	0	0	0	0.08	0.13	0.091	0.5469	0.06	0.13	0.095	0.0043	0.01	0	0	0
C1	0.31	0.103	0.08	0	0.0338	0.0361	0.0384	0.0384	0.0407	0.0407	0.043	0.0608	0.31	0.103	0.08
C2	0.4907	0.42	0.13	0.0338	0	0.0014	0.0046	0.0041	0.0073	0.0072	0.0115	0.0363	0.4907	0.42	0.13
C3	0.07	0.4911	0.091	0.0361	0.0014	0	0.0009	0.0007	0.0023	0.0023	0.005	0.0239	0.07	0.4911	0.091
IC4	0.135	0.07	0.5469	0.0384	0.0046	0.0009	0	0	0.0003	0.0003	0.0016	0.0156	0.135	0.07	0.5469
NC4	0.095	0.13	0.06	0.0384	0.0041	0.0007	0	0	0.0005	0.0004	0.0019	0.0165	0.095	0.13	0.06
IC5	0.508	0.095	0.13	0.0407	0.0073	0.0023	0.0003	0.0005	0	0	0.0005	0.0115	0.508	0.095	0.13
NC5	0.06	0.508	0.095	0.0407	0.0072	0.0023	0.0003	0.0004	0	0	0.0005	0.0117	0.06	0.508	0.095
NC6	0.0049	0.0046	0.0043	0.043	0.0115	0.005	0.0016	0.0019	0.0005	0.0005	0	0.0073	0.0049	0.0046	0.0043
HEP	0.0109	0.0104	0.01	0.0608	0.0363	0.0239	0.0156	0.0165	0.0115	0.0117	0.0073	0	0.0109	0.0104	0.01
OCT	0	0.106	0	0.31	0.4907	0.07	0.135	0.095	0.508	0.06	0.0049	0.0109	0	0.106	0
NON	0.106	0	0	0.103	0.42	0.4911	0.07	0.13	0.095	0.508	0.0046	0.0104	0.106	0	0
DEC	0	0	0	0.08	0.13	0.091	0.5469	0.06	0.13	0.095	0.0043	0.01	0	0	0

PARAMETROS DE INTERACCION BINARIA (PIB)

ECUACION: SRK

N=6

NOM	H2S	CO2	N2	C1	C2	C3	IC4	NC4	IC5	NC5	NC6	HEP	OCT	NON	DEC
H2S	0	0.106	0	0.31	0.4907	0.07	0.135	0.095	0.508	0.06	0.0276	0.0563	0	0.106	0
CO2	0.106	0	0	0.103	0.42	0.4911	0.07	0.13	0.095	0.508	0.0259	0.0543	0.106	0	0
N2	0	0	0	0.08	0.13	0.091	0.5469	0.06	0.13	0.095	0.0243	0.0523	0	0	0
C1	0.31	0.103	0.08	0	0.0338	0.0361	0.0384	0.0384	0.0407	0.0407	0.043	0.0608	0.31	0.103	0.08
C2	0.4907	0.42	0.13	0.0338	0	0.0014	0.0046	0.0041	0.0073	0.0072	0.0115	0.0363	0.4907	0.42	0.13
C3	0.07	0.4911	0.091	0.0361	0.0014	0	0.0009	0.0007	0.0023	0.0023	0.005	0.0239	0.07	0.4911	0.091
IC4	0.135	0.07	0.5469	0.0384	0.0046	0.0009	0	0	0.0003	0.0003	0.0016	0.0156	0.135	0.07	0.5469
NC4	0.095	0.13	0.06	0.0384	0.0041	0.0007	0	0	0.0005	0.0004	0.0019	0.0165	0.095	0.13	0.06
IC5	0.508	0.095	0.13	0.0407	0.0073	0.0023	0.0003	0.0005	0	0	0.0005	0.0115	0.508	0.095	0.13
NC5	0.06	0.508	0.095	0.0407	0.0072	0.0023	0.0003	0.0004	0	0	0.0005	0.0117	0.06	0.508	0.095
NC6	0.0276	0.0259	0.0243	0.043	0.0115	0.005	0.0016	0.0019	0.0005	0.0005	0	0.0073	0.0276	0.0259	0.0243
HEP	0.0563	0.0543	0.0523	0.0608	0.0363	0.0239	0.0156	0.0165	0.0115	0.0117	0.0073	0	0.0563	0.0543	0.0523
OCT	0	0.106	0	0.31	0.4907	0.07	0.135	0.095	0.508	0.06	0.0276	0.0563	0	0.106	0
NON	0.106	0	0	0.103	0.42	0.4911	0.07	0.13	0.095	0.508	0.0259	0.0543	0.106	0	0
DEC	0	0	0	0.08	0.13	0.091	0.5469	0.06	0.13	0.095	0.0243	0.0523	0	0	0

Tabla C1. Aplicación del programa Flash, utilizando la ecuación de Peng – Robinson. Balam 53

INSTITUTO MEXICANO DEL PETROLEO SUBDIRECCION DE TECNOLOGIA DE LA EXPLOTACION DIVISION DE YACIMIENTOS SIMULADOR IMPEVETE COMPOSICIONAL

PRESION DE SATURACION

***** ECUACION DE ESTADO DE PENG-ROBINSON *******

PRESION DE BURBUJA	99.8127 (KG/CM2)
TEMPERATURA	380.1500 (K)
VOLUMEN MOLAR DEL LI	QUIDO 0.2811 (LT/MOLG)
VOLUMEN MOLAR DEL GA	AS 0.2938 (LT/MOLG)
NUMERO DE ITERACIONES	\$ 3

COMPONENTE	COMPOSICION	COMPOSICION FASE GAS
CO2	0.00088	0.00140
N2	0.00172	0.00932
C1	0.24234	0.90600
C2	0.02471	0.03193
C3	0.02377	0.01615
IC4	0.00594	0.00257
NC4	0.02779	0.01003
IC5	0.01846	0.00426
NC5	0.02476	0.00497
NC6	0.04471	0.00519
HEP	0.05434	0.00369
OCT	0.04781	0.00209
NON	0.04656	0.00146
DEC	0.04881	0.00094
UDP	0.3874	0

Continuación de la tabla C1. Aplicación del programa Flash, utilizando la ecuación de Peng – Robinson. Balam 53

INSTITUTO MEXICANO DEL PETROLEO SUBDIRECCION DE TECNOLOGIA DE LA EXPLOTACION DIVISION DE YACIMIENTOS SIMULADOR IMPEVETE COMPOSICIONAL

SEPARACION FLASH

PRESION DE BURBUJA (PB)	99.812738 KG/CM2
VOLUMEN DE ACEITE A PB	1000.000000 LT
FAC DE VOL DEL ACEITE A PB	1.120820 LT/LT
DENSIDAD DEL ACEITE A PB	0.716122 GR/CC
FACTOR Z DEL ACEITE A PB	0.870538
VOLUMEN DE GAS A PS Y TS (CS)	27882.335657 LT
VOLUMEN DE ACEITE A CS	892.203760 LT
DENSIDAD DEL ACEITE A CS	0.770461 GR/CC
FACTOR Z DEL ACEITE A CS	0.015125

PRESION (KG/CM2)	DENSIDAD DEL ACEITE ROO(GR/CC)	FACTOR DE COMP.ACEITE ZO	VOLUMEN DE ACEITE (LT)	FACTOR DE VOLUMEN DE ACEITE BO(LT/LT)	FACTOR ENCOGIMIENTO SH	VOL. ACEITE RELATIVO (LT/LT)	VOL. RELATIVO TOTAL (LT/LT)
351.0332	0.73799	2.97089	970.36715	1.08761	0.91945	0.97037	0.97037
301.0332	0.73456	2.55963	974.89995	1.09269	0.91517	0.9749	0.9749
251.0332	0.73076	2.14559	979.97209	1.09837	0.91044	0.97997	0.97997
201.0332	0.72651	1.72828	985.69937	1.10479	0.90515	0.9857	0.9857
151.0332	0.72173	1.30704	992.23712	1.11212	0.89918	0.99224	0.99224
101.0332	0.71627	0.88101	999.80022	1.1206	0.89238	0.9998	0.9998
99.81274	0.71612	0.87054	1000	1.12082	0.8922	1	1
91.0332	0.71816	0.81118	994.6274	1.1148	0.89702	0.99463	1.0251
81.0332	0.72052	0.74039	988.48746	1.10792	0.90259	0.98849	1.06184
66.0332	0.72415	0.62739	979.15177	1.09745	0.9112	0.97915	1.14205
46.0332	0.72924	0.46255	966.05508	1.08277	0.92355	0.96606	1.34465
1.03341	0.77046	0.01512	892.20376			0.8922	28.77454

Continuación de la tabla C1. Aplicación del programa Flash, utilizando la ecuación de Peng – Robinson. Balam 53

SIMULADOR IMPEVETE COMPOSICIONAL SEPARACION FLASH

PRESION DE BURBUJA (PB)	99.812738 KG/CM2
VOLUMEN DE ACEITE A PB	1000.000000 LT
FAC DE VOL DEL ACEITE A PB	1.120820 LT/LT
DENSIDAD DEL ACEITE A PB	0.716122 GR/CC
FACTOR Z DEL ACEITE A PB	0.870538

VOLUMEN DE GAS A PS Y TS (CS)27882.335657 LTVOLUMEN DE ACEITE A CS892.203760 LTDENSIDAD DEL ACEITE A CS0.770461 GR/CCFACTOR Z DEL ACEITE A CS0.015125

PRESION (KG/CM2)	DENSIDAD DEL GAS ROG(GR/CC)	FACTOR DE COMP. GAS ZG	VOLUMEN DE GAS (LT)	FACTOR DE VOLUMEN DE GAS BG(LT/LT)	FACTOR VOL FASE MIXTA BTF(LT/LT)	RELACION DE SOLUBILIDAD RS(LT/LT)
351.0332	1.08761	31.25109				
301.0332	1.09269	31.25109				
251.0332	1.09837	31.25109				
201.0332	1.10479	31.25109				
151.0332	1.11212	31.25109				
101.0332	1.1206	31.25109				
99.81274	1.12082	31.25109				
91.0332	0.05971	0.91365	30.46847	0.01327	1.14895	28.67675
81.0332	0.05313	0.9186	73.34857	0.01498	1.19013	25.76443
66.0332	0.04341	0.9273	162.89959	0.01856	1.28003	21.41531
46.0332	0.03075	0.94132	378.59639	0.01358	1.50711	0
1.03341	0.00103	0.99482	27882.3357			

Tabla C2. Aplicación del programa Flash, utilizando la ecuación de Soave-Redlich-Kwong. Balam 53

INSTITUTO MEXICANO DEL PETROLEO SUBDIRECCION DE TECNOLOGIA DE LA EXPLOTACION DIVISION DE YACIMIENTOS SIMULADOR IMPEVETE COMPOSICIONAL

PRESION DE SATURACION

***** ECUACION DE ESTADO DE SOAVE-REDLICH-KWONG*******

PRESION DE BURBUJA	99.8862 (KG/CM2)	
TEMPERATURA	380.1500 (K)	
VOLUMEN MOLAR DEL LIQU	(IDO 0.3143 (LT/MOLG))
VOLUMEN MOLAR DEL GAS	0.3043 (LT/MOLG)	
NUMERO DE ITERACIONES	3	

COMPONENTE	COMPOSICION	COMPOSICION
		FASE GAS
CO2	0.00088	0.00136
N2	0.00172	0.00984
C1	0.24234	0.90844
C2	0.02471	0.03156
C3	0.02377	0.01577
IC4	0.00594	0.0025
NC4	0.02779	0.00965
IC5	0.01846	0.00404
NC5	0.02476	0.00471
NC6	0.04471	0.00483
HEP	0.05434	0.00335
OCT	0.04781	0.00186
NON	0.04656	0.00128
DEC	0.04881	0.00081
UDP	0.3874	0

Continuación de la tabla C2. Aplicación del programa Flash, utilizando la ecuación de Soave-Redlich-Kwong. Balam 53

INSTITUTO MEXICANO DEL PETROLEO SUBDIRECCION DE TECNOLOGIA DE LA EXPLOTACION DIVISION DE YACIMIENTOS SIMULADOR IMPEVETE COMPOSICIONAL

SEPARACION FLASH

PRESION DE BURBUJA (PB)	99.886187 KG/CM2
VOLUMEN DE ACEITE A PB	1000.000000 LT
FAC DE VOL DEL ACEITE A PB	1.120675 LT/LT
DENSIDAD DEL ACEITE A PB	0.640447 GR/CC
FACTOR Z DEL ACEITE A PB	0.974118
VOLUMEN DE GAS A PS Y TS (CS)	24878.614800 LT
VOLUMEN DE ACEITE A CS	892.318987 LT
DENSIDAD DEL ACEITE A CS	0.689254 GR/CC
FACTOR Z DEL ACEITE A CS	0.016889

PRESION	DENSIDAD DEL ACEITE	FACTOR DE COMP.ACEITE	VOLUMEN DE ACEITE	FACTOR DE VOLUMEN DE ACEITE	FACTOR ENCOGIMIENTO	VOL. ACEITE RELATIVO	VOL. RELATIVO TOTAI
(KG/CM2)	ROO(GR/CC)	ZO	(LT)	BO(LT/LT)	SH	(LT/LT)	(LT/LT)
351.0332	0.66219	3.31095	967.16034	1.08387	0.92262	0.96716	0.96716
301.0332	0.65883	2.85386	972.10251	1.08941	0.91793	0.9721	0.9721
251.0332	0.65508	2.39348	977.66854	1.09565	0.9127	0.97767	0.97767
201.0332	0.65086	1.92916	983.99864	1.10274	0.90683	0.984	0.984
151.0332	0.64608	1.46008	991.28294	1.11091	0.90017	0.99128	0.99128
101.0332	0.64058	0.98509	999.78781	1.12044	0.89251	0.99979	0.99979
99.88619	0.64045	0.97412	1000	1.12068	0.89232	1	1
91.0332	0.64216	0.90729	994.80902	1.11486	0.89698	0.99481	1.0231
81.0332	0.64413	0.82824	988.90908	1.10825	0.90233	0.98891	1.05655
66.0332	0.64718	0.70198	979.90318	1.09815	0.91062	0.9799	1.12926
46.0332	0.65148	0.5177	967.18955	1.08391	0.92259	0.96719	1.31197
1.03341	0.68925	0.01689	892.31899			0.89232	25.77093

Continuación de la tabla C2. Aplicación del programa Flash, utilizando la ecuación de Soave-Redlich-Kwong. Balam 53

INSTITUTO MEXICANO DEL PETROLEO SUBDIRECCION DE TECNOLOGIA DE LA EXPLOTACION DIVISION DE YACIMIENTOS SIMULADOR IMPEVETE COMPOSICIONAL SEPARACION FLASH PRESION DE BURBUJA (PB) 99.886187 KG/CM2

PRESION (KG/CM2)	DENSIDAD DEL GAS ROG(GR/CC)	FACTOR DE COMP. GAS ZG	VOLUMEN DE GAS (LT)	FACTOR DE VOLUMEN DE GAS BG(LT/LT)	FACTOR VOL FASE MIXTA BTF(LT/LT)	RELACION DE SOLUBILIDAD RS(LT/LT)
351.0332	1.08387	27.88085				
301.0332	1.08941	27.88085				
251.0332	1.09565	27.88085				
201.0332	1.10274	27.88085				
151.0332	1.11091	27.88085				
101.0332	1.12044	27.88085				
99.88619	1.12068	27.88085				
91.0332	0.05728	0.94477	28.28892	0.01371	1.14656	25.56824
81.0332	0.05114	0.94713	67.63828	0.01544	1.18405	22.97129
66.0332	0.04202	0.95168	149.36178	0.01904	1.26554	19.08908
46.0332	0.02999	0.95962	344.77703	0.01386	1.47029	0
1.03341	0.00102	0.9956	24878.6148			

VOLUMEN DE ACEITE A PB1000.00000 LTFAC DE VOL DEL ACEITE A PB1.120675 LT/LTDENSIDAD DEL ACEITE A PB0.640447 GR/CCFACTOR Z DEL ACEITE A PB0.974118VOLUMEN DE GAS A PS Y TS (CS)24878.614800 LTVOLUMEN DE ACEITE A CS892.318987 LTDENSIDAD DEL ACEITE A CS0.6689254 GR/CCFACTOR Z DEL ACEITE A CS0.016889

Tabla C2. Aplicación del programa Flash, utilizando la ecuación de Peng-Robinson. May

INSTITUTO MEXICANO DEL PETROLEO SUBDIRECCION DE TECNOLOGIA DE LA EXPLOTACION DIVISION DE YACIMIENTOS SIMULADOR IMPEVETE COMPOSICIONAL

PRESION DE SATURACION

***** ECUACION DE ESTADO DE PENG-ROBINSON ******* FLUIDOS DEL YACIMIENTO T,MAY1

> CONDICIONES INICIALES PRESION EN EL YACIMIENTO 833.15 KG/CM2 TEMPERATURA EN EL YACIMIENTO 441.15 K PRESION EN LA SUPERFICIE 1.03 KG/CM2 TEMPERATURA EN LA SUPERFICIE 293.15 K VOLUMEN BASE PARA EL CALCULO 1.00 COMPOSICION Y PROPIEDADES DE LA MEZCLA

COMPONENTE	COMPOSICION	COMPOSICION FASE ACEITE
N2	0.00641	0.00616
CO2	0.00605	0.00602
H2S	0.00054	0.00055
C1	0.77306	0.75238
C2	0.05602	0.05602
C3	0.02102	0.02142
IC4	0.0032	0.0033
NC4	0.01503	0.0156
IC5	0.00714	0.00751
NC5	0.0098	0.01035
NC6	0.0125	0.01343
C7+	0.08923	0.10726
N2	0.00641	0.00616

Continuación de la tabla C3. Aplicación del programa Flash, utilizando la ecuación de Peng-Robinson. May

INSTITUTO MEXICANO DEL PETROLEO SUBDIRECCION DE TECNOLOGIA DE LA EXPLOTACION DIVISION DE YACIMIENTOS SIMULADOR IMPEVETE COMPOSICIONAL

SEPARACION FLASH

PRESION DE ROCIO (PR)	391.292976 KG/CM2
VOLUMEN DE GAS A PR	1000.000000 LT
DENSIDAD DEL GAS A PR	0.345827 GR/CC
FACTOR Z DEL GAS A PR	1.097567

PRESION (KG/CM2)	DENSIDAD DEL ACEITE ROO(GR/CC)	FACTOR DE COMP.ACEITE ZO	VOLUMEN DE ACEITE (LT)	VOL. ACEITE RELATIVO (LT/LT)	VOL. RELATIVO TOTAL (LT/LT)
451.0332				0.00000	
426.0332				0.00000	
401.0332				0.00000	
391.29298			0.00000	0.0000	1.00000
376.0332	0.41673	1.13384	343.62823	0.34363	1.02625
351.0332	0.45104	1.13139	354.01231	0.35401	1.0748
326.0332	0.47544	1.11593	349.77917	0.34978	1.13182
301.0332	0.49548	1.09142	343.43194	0.34343	1.19958

Continuación de la tabla C3. Aplicación del programa Flash, utilizando la ecuación de Peng-Robinson. May

INSTITUTO MEXICANO DEL PETROLEO SUBDIRECCION DE TECNOLOGIA DE LA EXPLOTACION DIVISION DE YACIMIENTOS SIMULADOR IMPEVETE COMPOSICIONAL

SEPARACION FLASH

PRESION DE ROCIO (PR)	391.292976 KG/CM2
VOLUMEN DE GAS A PR	1000.000000 LT
DENSIDAD DEL GAS A PR	0.345827 GR/CC
FACTOR Z DEL GAS A PR	1.097567

PRESION (KG/CM2)	DENSIDAD DEL GAS ROG(GR/CC)	FACTOR DE COMP. GAS ZG	VOLUMEN DE GAS (LT)	VOLUMEN DE GAS RELATIVO VRG(LT/LT)
451.0332	0.36866	1.18677	938.05889	
426.0332	0.35959	1.14928	961.73251	
401.0332	0.34983	1.11201	988.55212	
391.29298	0.34583	1.09757	1000	1
376.0332	0.29684	1.05831	682.62132	1.02625
351.0332	0.25826	1.02573	720.78317	1.0748
326.0332	0.22956	1.00258	782.04287	1.13182
301.0332	0.20518	0.9845	856.14644	1.19958

Tabla C4. Aplicación del programa Flash, utilizando la ecuación Soave – Relkich – Kwong, May

INSTITUTO MEXICANO DEL PETROLEO SUBDIRECCION DE TECNOLOGIA DE LA EXPLOTACION DIVISION DE YACIMIENTOS SIMULADOR IMPEVETE COMPOSICIONAL

PRESION DE SATURACION

****** ECUACION DE ESTADO DE SOAVE-REDLICH-KWONG ******

PRESION DE ROCIO	442.6577 (KG/CM2)
TEMPERATURA	441.1500 (K)
VOLUMEN MOLAR DEL LIQU	ЛDO 0.1070 (LT/MOLG)
VOLUMEN MOLAR DEL GAS	0.1068 (LT/MOLG)
NUMERO DE ITERACIONES	7

COMPOSICION Y PROPIEDADES DE LA MEZCLA

COMPONENTE	COMPOSICION	COMPOSICION FASE ACEITE
N2	0.00641	0.00642
CO2	0.00605	0.00605
H2S	0.00054	0.00054
C1	0.77306	0.77419
C2	0.05602	0.05601
C3	0.02102	0.021
IC4	0.0032	0.00319
NC4	0.01503	0.015
IC5	0.00714	0.00712
NC5	0.0098	0.00977
NC6	0.0125	0.01245
C7+	0.08923	0.08826
N2	0.00641	0.00642

Continuación de la tabla C4. Aplicación del programa Flash, utilizando la ecuación Soave – Relkich – Kwong, May

INSTITUTO MEXICANO DEL PETROLEO SUBDIRECCION DE TECNOLOGIA DE LA EXPLOTACION DIVISION DE YACIMIENTOS SIMULADOR IMPEVETE COMPOSICIONAL

SEPARACION FLASH

PRESION DE ROCIO (PR)	442.657688 KG/CM2
VOLUMEN DE GAS A PR	1000.000000 LT
DENSIDAD DEL GAS A PR	0.339199 GR/CC
FACTOR Z DEL GAS A PR	1.265903

PRESION (KG/CM2)	DENSIDAD DEL ACEITE ROO(GR/CC)	FACTOR DE COMP.ACEITE ZO	VOLUMEN DE ACEITE (LT)	VOL. ACEITE RELATIVO (LT/LT)	VOL. RELATIVO TOTAL (LT/LT)
451.0332				0.00000	
426.0332				0.00000	
401.0332				0.00000	
442.65769			0.00000	0.0000	1.00000
376.0332	0.42724	1.3027	428.15423	0.42815	1.10025
351.0332	0.44284	1.28515	412.5069	0.41251	1.14909
326.0332	0.45650	1.25972	399.64812	0.39965	1.20637
301.0332	0.46886	1.22689	388.41486	0.38841	1.27434

Continuación de la tabla C4. Aplicación del programa Flash, utilizando la ecuación Soave – Relkich – Kwong, May

INSTITUTO MEXICANO DEL PETROLEO SUBDIRECCION DE TECNOLOGIA DE LA EXPLOTACION DIVISION DE YACIMIENTOS SIMULADOR IMPEVETE COMPOSICIONAL

SEPARACION FLASH

PRESION DE ROCIO (PR)	442.657688 KG/CM2
VOLUMEN DE GAS A PR	1000.000000 LT
DENSIDAD DEL GAS A PR	0.339199 GR/CC
FACTOR Z DEL GAS A PR	1.265903

PRESION (KG/CM2)	DENSIDAD DEL GAS ROG(GR/CC)	FACTOR DE COMP. GAS ZG	VOLUMEN DE GAS (LT)	VOLUMEN DE GAS RELATIVO VRG(LT/LT)
451.0332	0.34181	1.28	992.35807	
426.0332	0.33383	1.23797	1016.09113	
401.0332	0.32524	1.19609	1042.92148	
442.65769	0.3392	1.2659	1000	1
376.0332	0.23252	1.11784	672.09573	1.10025
351.0332	0.2125	1.09097	736.57835	1.14909
326.0332	0.19432	1.06813	806.72421	1.20637
301.0332	0.17731	1.04843	885.928	1.27434

Tabla C5. Archivo de datos que utiliza el	programa para el cálculo Flash. B	alam 53.
---	-----------------------------------	----------

Número de componentes: 15 Número de seudocomponentes:6 Tipo de cálculo: 1 1 Número de cambios de presión: 11

Letrero: BALAM Ecuación de estado y tipo de fluido:1 1

Posición del	Nombre	%mol	Тс	PC	VC	Factor acétrico	Peso molecular
componente			[k]	[KG/CM ²]	[l/gmol]	ω	PM
1	CO2	0.088	75.27	304.15	0.231	0.094	44.01
2	N2	0.172	34.66	126.26	0.045	0.0895	28.02
3	C1	24.234	46.95	190.58	0.0104	0.099	16.04
4	C2	2.471	49.76	305.42	0.0986	0.148	30.07
5	C3	2.377	43.33	369.82	0.1524	0.203	44.1
6	IC4	0.594	37.2	408.14	0.1848	0.263	58.12
7	NC4	2.779	38.72	425.18	0.201	0.255	58.12
8	IC5	1.846	34.48	460.43	0.2223	0.306	72.15
9	NC5	2.476	34.35	469.65	0.2539	0.304	72.15
10	NC6	4.471	30.72	507.45	0.3007	0.37	86.18
11	HEP	5.434	30.09	544.56	0.3245	0.4084	97
12	OCT	4.781	28.24	570.11	0.3632	0.4515	108.8
13	NON	4.656	28.1	590.45	0.3835	0.4727	117.5
14	DEC	4.881	26.47	615.83	0.4231	0.5168	131
15	UDP	38.74	12.17	894.88	1.0247	1.1997	424

Parámetros de interacción binaria (PIB) del componente par.

0	-0.02	0.103	0.13	0.135	0.13	0.13	0.125	0.125	0.0255	0.0292	0.0333	0.0352	0.039	0.0078	0
-0.02	0	0.31	0.42	0.091	0.095	0.095	0.095	0.095	0.0273	0.0312	0.0353	0.0373	0.0412	0.0089	-0.02
0.103	0.31	0	0.0338	0.0361	0.0384	0.0384	0.0407	0.0407	0.043	0.0447	0.0467	0.0481	0.0503	0.0998	0.103
0.13	0.42	0.0338	0	0.0015	0.0049	0.0044	0.0077	0.0076	0.0121	0.0147	0.0176	0.019	0.0218	0.0013	0.13
0.135	0.091	0.0361	0.0015	0	0.001	0.0008	0.0025	0.0024	0.0053	0.0072	0.0093	0.0104	0.0126	0	0.135
0.13	0.095	0.0384	0.0049	0.001	0	0	0.0003	0.0003	0.0017	0.0029	0.0043	0.0051	0.0067	0.0011	0.13
0.13	0.095	0.0384	0.0044	0.0008	0	0	0.0005	0.0005	0.0021	0.0033	0.0048	0.0056	0.0073	0.0009	0.13
0.125	0.095	0.0407	0.0077	0.0025	0.0003	0.0005	0	0	0.0005	0.0012	0.0023	0.0028	0.0041	0.0027	0.125
0.125	0.095	0.0407	0.0076	0.0024	0.0003	0.0005	0	0	0.0006	0.0013	0.0023	0.0029	0.0042	0.0026	0.125

Continuación de la tabla C5. Archivo de datos que utiliza el programa para el cálculo Flash. Balam 53

0.0255	0.0273	0.043	0.0121	0.0053	0.0017	0.0021	0.0005	0.0006	0	0.0001	0.0006	0.0009	0.0017	0.0056	0.0255
0.0292	0.0312	0.0447	0.0147	0.0072	0.0029	0.0033	0.0012	0.0013	0.0001	0	0.0002	0.0003	0.0008	0.0075	0.0292
0.0333	0.0353	0.0467	0.0176	0.0093	0.0043	0.0048	0.0023	0.0023	0.0006	0.0002	0	0	0.0003	0.0097	0.0333
0.0352	0.0373	0.0481	0.019	0.0104	0.0051	0.0056	0.0028	0.0029	0.0009	0.0003	0	0	0.0001	0.0108	0.0352
0.039	0.0412	0.0503	0.0218	0.0126	0.0067	0.0073	0.0041	0.0042	0.0017	0.0008	0.0003	0.0001	0	0.013	0.039
0.0078	0.0089	0.0998	0.0013	0	0.0011	0.0009	0.0027	0.0026	0.0056	0.0075	0.0097	0.0108	0.013	0	0.0078
0	-0.02	0.103	0.13	0.135	0.13	0.13	0.125	0.125	0.0255	0.0292	0.0333	0.0352	0.039	0.0078	0

Parámetros de interacción binaria (PIB) del componente par.

Temperatura del yacimiento: 380.15 Presión del yacimiento: 575.43

Temperatura superficial: 293.15 Presión superficial: 1.03341

1

Colocación de la Presión de saturación: 7

Valores de los cambios de presión: 351.0332 301.0332 251.0332 201.0332 151.0332 101.0332 92.0332 91.0332 81.0332 66.0332 46.0332

Tabla C6. Archivo de datos que utiliza el programa para el cálculo Flash. May

Número de componentes: 12 Número de seudocomponentes: 1

Tipo de cálculo: 1 1 Número de cambios de presión: 11

Letrero: May

Ecuación de estado y tipo de fluido:2 2

Posición del	Nombre	%mol	Tc	PC	VC	Factor acétrico	Peso molecular
componente			[k]	[KG/CM ²]	[l/gmol]	ω	PM
1	N2	0.641	34.66	126.26	0.045	0.0895	28.02
2	CO2	0.605	75.27	304.15	0.231	0.094	44.01
3	H2S	0.054	91.82	373.54	0.1	0.0985	34.08
4	C1	77.306	46.95	190.58	0.0104	0.099	16.04
5	C2	5.602	49.76	305.42	0.0986	0.148	30.07
6	C3	2.102	43.33	369.82	0.1524	0.203	44.1
7	IC4	0.32	37.2	408.14	0.1848	0.263	58.12
8	NC4	1.503	38.72	425.18	0.201	0.255	58.12
9	IC5	0.714	34.48	460.43	0.2223	0.306	72.15
10	NC5	0.98	34.35	469.65	0.2539	0.304	72.15
11	NC6	1.25	30.72	507.45	0.3007	0.37	86.18
12	C7+	8.923	22.43	706.94	0.6788	0.7642	195.5

Parámetros de interacción binaria (PIB) del componente par.

0	0.106	0	0.31	0.4907	0.07	0.135	0.095	0.508	0.06	0.0276	0.0563
0.106	0	0	0.103	0.42	0.4911	0.07	0.13	0.095	0.508	0.0259	0.0543
0	0	0	0.08	0.13	0.091	0.5469	0.06	0.13	0.095	0.0243	0.0523
0.31	0.103	0.08	0	0.0338	0.0361	0.0384	0.0384	0.0407	0.0407	0.043	0.0608
0.4907	0.42	0.13	0.0338	0	0.0014	0.0046	0.0041	0.0073	0.0072	0.0115	0.0363
0.07	0.4911	0.091	0.0361	0.0014	0	0.0009	0.0007	0.0023	0.0023	0.005	0.0239
0.135	0.07	0.5469	0.0384	0.0046	0.0009	0	0	0.0003	0.0003	0.0016	0.0156
0.095	0.13	0.06	0.0384	0.0041	0.0007	0	0	0.0005	0.0004	0.0019	0.0165
0.508	0.095	0.13	0.0407	0.0073	0.0023	0.0003	0.0005	0	0	0.0005	0.0115
0.06	0.508	0.095	0.0407	0.0072	0.0023	0.0003	0.0004	0	0	0.0005	0.0117
0.0276	0.0259	0.0243	0.043	0.0115	0.005	0.0016	0.0019	0.0005	0.0005	0	0.0073
0.0563	0.0543	0.0523	0.0608	0.0363	0.0239	0.0156	0.0165	0.0115	0.0117	0.0073	0

Continuación de la tabla C6. Archivo de datos que utiliza el programa para el cálculo Flash. May

Temperatura del yacimiento: 441.15Presión del yacimiento: 833.15Temperatura superficial: 293.15Presión superficial: 1.033411Colocación de la Presión de saturación: 7Valores de los cambios de presión:
Algoritmos de cálculo de las propiedades críticas y factor acéntrico

i. Menú

1) Presión y Temperatura crítica

2) Cálculo del factor acéntrico

ii. Propiedades críticas $P_C y T_C$

a) Kesler lee

b) Cavett

c) Riazi y Daubert

d) Win

e) Tomasen

Cálculo de Tco
A = 0.533272
$B = 0.191017 x 10^{-3} T_b$
$C = 0.779681 x 10^{-7} T_b^2$
$D = 0.284376 x 10^{-10} T_b^3$
$E = \frac{0.959468 \times 10^{28}}{T^{13}}$
F = A + B + C + D + F
$T_{CO} = T_b \left(F^{-1} \right)$
Cálculo de Pco
$\alpha = 1 - \frac{T_b}{T_{co}}$ $o = 3.83354$ $p = 1.19629\sqrt{\alpha}$ $r = 34.8888\alpha$ $s = 36.1952\alpha^2$ $t = 104.193\alpha^4$ $u = o + p + r + s + t$ $P_{co} = u^2$ Cálculo de Vco
A = 0.419869 $B = -0.505839\alpha$ $C = 1.56436\alpha^{3}$ $E = 9481.70\alpha^{14}$ F = A + B + C + D F = 1 - E $V_{co} = F^{-8}$

Cálculo de SGo

$$SG_{o} = 0.843593 - 0.128624\alpha - 3.36159\alpha^{3} - 13749.5\alpha^{12}$$
Cálculo del Volumen Critico Vc

$$DSG_{v} = \exp[4(SG_{o}^{2} - SG^{2})] - 1$$

$$F_{v} = DSG_{v} \frac{0.46659}{\sqrt{T_{b}}} - 0.182421 + \frac{3.0172}{\sqrt{T_{b}}} DSG_{v}$$

$$V_{c} = V_{co} \left[\frac{(1 + 2F_{v})}{(1 - 2F_{v})} \right]^{2}$$
Cálculo del peso molecular MW

$$DSG_{m} = \exp[5(SG_{o} - SG)] - 1$$

$$|x| = \left| 0.0123420 - \frac{0.328086}{\sqrt{T_{b}}} \right|$$

$$F_{m} = DSG_{m} \left[|x| + \left(-0.0175691 + \frac{0.193168}{\sqrt{T_{b}}} \right) DSG_{m} \right]$$

$$MW = \exp\left[\log MW_{o} \left(\frac{1 + 2F_{m}}{(1 - 2F_{m})^{2}} \right) \right]$$
Cálculo de MWo

$$MW_{o} = \frac{T_{cb}}{(10.44 - 0.0052T_{cb})}$$

Cálculo de Tb

$$Q = \log MW_o$$

$$T_b = T_{cb} \exp\left(5.71419 + 2.71579Q - 0.28659Q^2 - \frac{39.8541}{Q} - \frac{0.122488}{Q^2}\right)$$

$$-24.7522Q + 35.3155Q^2$$
Cálculo de Tco

$$A = .0533272$$

$$B = 0.191017 \times 10^{-3}T_b$$

$$C = 0.779681 \times 10^{-7}T_b^2$$

$$D = 0.284376 \times 10^{-10}T_b^3$$

$$E = \frac{0.959468 \times 10^{28}}{T_b^{13}}$$

$$F = A + B + C + D + E$$

$$T_{co} = T_b (F^{-1})$$
Cálculo de Pco

$$\alpha = 1 - \frac{T_b}{T_{co}}$$

$$o = 3.83354$$

$$p = 1.19629 \sqrt{\alpha}$$

$$r = 34.888\alpha$$

$$s = 361952\alpha^2$$

$$t = 104.193\alpha^4$$

$$u = o + p + r + s + t$$

$$p_{co} = u^2$$

Cálculo de Vco A = 0.419869 $B = -0.505839\alpha$ $C = 1.56436\alpha^{3}$ $E = 9481.70\alpha^{14}$ FF = A + B + C + DF = 1 - E $V_{co} = F^{-8}$ Cálculo de SGo $SG_{o} = 0.843593 - 0.12624\alpha - 3.36159\alpha^{3} - 13749.5\alpha^{12}$ Cálculo del Volumen crítico Vc $DSG_{y} = \exp \left| 4 \left(SG_{a}^{2} - SG^{2} \right) \right| - 1$ $F_{v} = DSG_{v} \frac{0.46659}{\sqrt{T_{b}}} - 0.182421 + \frac{3.0172}{\sqrt{T_{b}}} DSG_{v}$ $V_c = V_{co} \left[\frac{1 + 2F_v}{1 - 2F_v} \right]^2$ Calculo del peso molecular MW $DSG_m = \exp[5(SG_o - SG)] - 1$ $|x| = \left| 0.0123420 - \frac{0.328086}{\sqrt{T_b}} \right|$ $F_m = DSG_m \left[|x| + \left(-0.0175691 + \frac{0.193168}{\sqrt{T_b}} \right) DSG_m \right]$ $MW = \exp\left[\log MW_o\left(\frac{1+2F_m}{\left(1-2F_m\right)^2}\right)\right]$

Cálculo de MWo

$$MW_o = \frac{T_{ab}}{(10.44 - 0.0052T_{ab})}$$
Cálculo de Tb

$$Q = \log MW_o$$

$$T_b = T_{cb} \exp\left(5.71419 + 271579Q - 0.28659Q^2 - \frac{39.8541}{Q} - \frac{0.122488}{Q^2}\right)$$

$$- 247522Q + 353155Q^2$$
Cálculo de Tco

$$A = 0.533272$$

$$B = 0.191017 \times 10^{-3}T_b$$

$$C = 0.779681 \times 10^{-3}T_b^3$$

$$D = 0.284376 \times 10^{-7}T_b^3$$

$$E = \frac{0.959468 \times 10^{28}}{T_b^{13}}$$

$$F = A + B + C + D + E$$

$$T_{co} = T_b \left(F^{-1}\right)$$
Cálculo de Pco

$$a = 1 - \frac{T_b}{T_{co}}$$

$$a = 3.83354$$

$$p = 1.19629 \sqrt{a}$$

$$r = 34.888a$$

$$s = 36.1952a^2$$

$$t = 104.193a^4$$

$$u = o + p + r + s + t$$

$$P_{co} = u^2$$

iii. Cálculo del Factor Acéntrico

a) Kesler lee

b)Tomasen

Apéndice E

WinProp

WinProp es un programa (CMG) que determina el equilibrio multifásico y propiedades utilizando las ecuaciones de estado. El **WinProp** presenta técnicas para caracterizar mezclas pesadas de fluidos de petróleo, fracciones de componentes, marcando datos de análisis de laboratorio PVT en regresión directa, simulación de primera y multiple contacto de miscibilidad, generación de diagramas de fase, asfaltenos y modelación de creciente precipitación, así como simulación de procesos de flujo.

Con este programa únicamente se realizaron los cálculos de propiedades críticas con la finalidad de comparar los datos del programa realizado en el presente trabajo y los datos encontrados en la literatura.

IMPEVETE

IMPEVETE es un simulador composicional el cual utiliza las ecuaciones de estado de Peng-Robinson y Soave-Redlich-Kwong para simular el comportamiento de fases de mezclas multicomponentes, naturales o sintéticas, de hidrocarburos y contaminantes a condiciones del yacimiento, y permite reproducir el comportamiento de fase en una batería de o las pruebas PVT de laboratorio más comunes.

El simulador **IMPEVETE**, calcula el equilibrio de fases para todos los componentes considerando que la fugacidad del componente en la otra fase . La fugacidad se calcula mediante las ecuaciones derivadas de conceptos termodinámicos de fugacidad y con las ecuaciones de estado de Peng–Robinson y Soave-Redlich-Kwong; con esta ecuación se determina el factor de compresibilidad que permite determinar la densidad de las fases. Se genera un conjunto de ecuaciones simultáneas no lineales, con las ecuaciones que representan los balances de masa por fase y por componente, las ecuaciones de las fugacidades de los componentes y las ecuaciones que expresan la condición de equilibrio; de tal manera que el sistema generado se resuelve mediante una

Apéndice E

iteración tipo Newton Raspón en que reduce a un mínimo las variables de iteración.

Con el simulador se puede obtener lo siguiente:

- 1) Presión de burbuja o de rocío
- 2) Separación diferencial a volumen constante
- 3) Separación diferencial convencional
- 4) Agotamiento a composición constante
- 5) La envolvente de fase completa
- 6) Separación flash en superficie en varias etapas
- 7) Los coeficientes para un tipo Stiel-Thodos ajustando a datos de laboratorio
- 8) Densidad de una mezcla de hidrocarburops ya sea en fase líquida o gaseosa a una presión y una temperatura dada.

- Ahmed Tarek. *Hydrocarbon phase behavior*. Contributions in Petroleum Geology & Engineering. Volumen 7, 1989. 42 – 50, 298 – 300, 310 – 312, 325 – 327.
- « Apuntes para la carrera de Ingeniería Petrolera », Instutut Algerien du Petrole, Thermodinamique, Calcul des equilibres liquid vapor, octubre 2000. 39-52
- Curtis H. Withson and Michael R. Brule, *Phase Behavior*, 1^a edición, Society of Petroleum Engineering Inc, Monograph Volumen 20 SPE, Richarson, Texas 2000, 48,49,50,71, 80, 81, 82.
- Fernández Montes Carlos Alberto. *Ajuste semiautomático de una ecuación de estado generalizada*, Tesis, Universidad Nacional Autónoma de México, división de estudios de posgrado, 1998, 11 18, 22 34.
- Hydrocarbon reserves of Mexico, Pemex Exploración y Producción, 1999, volumen 1, 23-30,77-84.
- Mc. Cain D. William, *Petroleum Fluids*, 2^a edición, Penn Well Bocks, Tulsa Okalhoma1989, 48 - 50, 58 – 63, 73-75.
- Pedersen K. S., Fredenslund Aa.; Thomassen P. *Properties of oils and Natural gases*. Gulf Publishing Company, Houston, London, Paris, volumen 5, 114 - 116,122.
- Stanley Wallas M., *Phese equilibria in Chemical Engineering*, Butterwort Publishers, 1985.

Artículos Técnicos

- Durán Valencia Cecilia de los Ángeles, "1. Ecuaciones de Estado, Peng – Robinson, Soave Redlich – Kwong, 2. Diagramas de cálculo para la presión de saturación y cálculo flash", información interna, Instituto Mexicano del Petróleo. Mayo 2001. 1–7.
- "Influence of the optimized temperatura dependent interaction parameter on vapor – liquid equilibrium binary prediction of supercritical methane with some alkanes by means of the soave equation state". American Chemical Society, 1987, 618 – 621.
- "Correlation for the second virial coefficient for non polar compounds using cubic equation of state". American Chemical Society, 1989, 127 – 130.
- Fernández Montes Carlos Alberto, Fuentes Faustino, Samaniego Fernándo, *"Coeficientes de interacción binaria k_{ij}'s para el ajuste de una ecuación de estado generalizada"*, delegación México, febrero 2001, 33-45.
- Fussell, Yanosik. "An iterative sequence for phase equilibrium calculations incorporating the Redlich – Kwong equation of state". SPE, paper 6050, 1976, Tulsa Oklahoma. 1 - 12.
- Galicia Luna Luis A. "Desarrollo de las ecuaciones analíticas para calcular los puntos críticos; 1. Regla de mezclado clásica, 2. Regla de mezclado generalizada", información interna, Instituto Mexicano del Petróleo. Mayo 2001. 1 – 7.

- Jhaverl Sharat S., Youngren Gary K., "Three parameter modification of the Peng – Robinson equation of state to improve volumetric predictions", SPE, 1 – 20.
- López Cambrón Fabian. "Esquema de solución Newton Rapson de mínimas variables", IMPEVETE, 25 – 29.
- Montel Francois, Gao Guanghua; "A simple correlations to evaluate binary interaction parameters of the Peng Robinson equation state: binary light hydrocarbon systems"; Elsevier Science Publishers, fluid phase equilibria, 1992, B, V, Amsterdam. 85-93
- 10. Pedersen Karen Shout, Per Thomassen, "On the dangers of tuning equation of state parameters", Chemical Engineering Science, Volume 43 no. 2 pp269 - 278, 1988.; 272, 273.
- Péneloux André, Rauzy Evelyne, Fréze Richard. "A consistent correction for Soave - Redlich – Kwong volumes", Elsevier Scientific Publishing Company, Amsterdam – Netherlands, 1982.
- 12.Schmidt G, Wenzel H. Góral, "Vapor- liquid equilibrium in binary systems of hydrocarbons + related compounds not containing oxygen. Comparison between methods using equations of state and activity coefficients"; American chemical society 1981, 532-536.
- Taher A. Al-Sahhaf y Riazi Mohammad, "Physical proprieties of heavy petroleum fractions and crude oils", Fluid phase equilibria", 1996, 217-224.

- 14. Twu Chorng y Coon John E. "Convenient Methods for the derivation of binary interaction parameters for equation cubic state", Simulation Science Inc., 601 South Valencia Avenue, Brea, CA 92621 USA. 1 – 16.
- 15. Valderrama José O., Cisternas Luis A, Obaid Ur Rehman. "Generalized interaction parameters in cubic equations state for CO₂-n-alcane mixtures". Elsevier Scientific Publishing Company, Amsterdam Netherlands, 1988. 225 230.