

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE CIENCIAS

CRIPTOGRAFÍA Y CURVAS ELÍPTICAS

T E S I S
QUE PARA OBTENER EL TÍTULO DE:
M A T E M Á T I C O
P R E S E N T A :
CHRISTOPHER ROMÁN SILVA SARABIA

DIRECTORA DE TESIS: DRA. VERÓNICA MARTÍNEZ DE LA VEGA Y MANSILLA

2006

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

ACT. MAURICIO AGUILAR GONZÁLEZ Jefe de la División de Estudios Profesionales de la Facultad de Ciencias Presente

Comunicamos a usted que hemos revisado el trabajo escrito:

"Criptografía y curvas elípticas"

realizado por Christopher Román Silva Sarabia

con número de cuenta $\,^{09653484-5}\,$, quien cubrió los créditos de la carrera de: Matemáticas

Dicho trabajo cuenta con nuestro voto aprobatorio.

Atentamente

Director de Tesis

Propietario

Dra. Verónica Martínez de la Vega y Mansilla

Propietario

Dr. Alejandro Illanes Mejía

Propietario

Dr. Javier Páez Cárdenas

Suplente

Mat. Julio César Guevara Bravo

Suplente

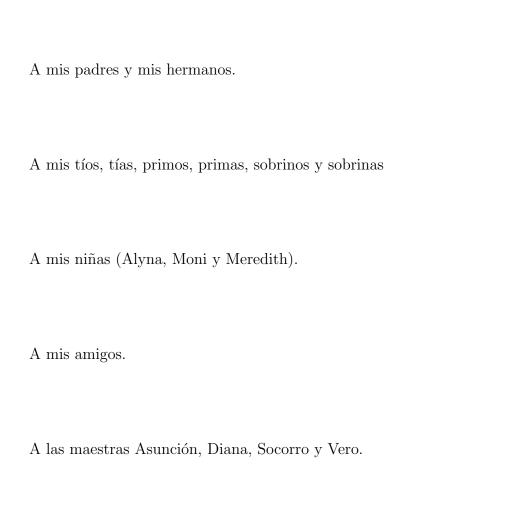
M. en C. María de la Asunción Preisser Rodríguez

Consejo Departamental de Matemáticas

M. en C. Alejandro Bravo Mojica AS

MATEMATICAL

Dedicatoria



A los que ya no están. Mis abuelos (Rip), Corona (Rip), mi tía Maui

(Rip), al profesor Vivar (Rip), al maestro Saleano (Rip).

Agradecimientos

Ha sido mucho el tiempo que le he dedicado a terminar está carrera, pero afordunadamente ha sido mas el tiempo que me han dedicado muchas personas hasta este día, los cuáles son parte de este logro también, por lo que quiero agredecerles a continuación.

Al Ingeniero y la Señora (mis padres) guías y ejemplo a lo largo de estos años, darles gracias por la dedicación y paciencia que han tenido conmigo y con mis hermanos a lo largo de estos años.

A mis hermanos agradecerles su apoyo en los momentos que lo he necesitado.

A la familia Sarabia Sanchez, agradecerles por abrirme las puertas de su casa cuando lo he necesitado y por él apoyo brindado a mis padres, a mí y mis hermanos, en especial a Doña Francisca, Doña Mona y a mi tío Pedro por su ayuda en los momentos díficiles y estar al tanto de mí.

También agradecerles a Adrián y al tío Pancho por su ayuda los cuales considero parte de mi familia. Así como a mis hermanos Eduardo y Román, gracias por aguantarme y por estos años de amistad.

A mis brothers Alex, Erubiel, Germán, Jorge, Lorenzo, Rogelio y Sergio y a las sisthers Claudia, Lupita, Mayra y Vero gracias por su amistad, en particular a Germán y Jorge que son los que me hablan para ir a las reuniones y se han encargado de que siempre regrese bien a mi casa.

A mis muy buenos amigos Javier, Eduardo y Alfredo por ayudarme con mis estudios durante distintas etapas.

A toda la banda de biologos (Armando, Carmen, Clemen, Demián, Isabel, Ivonne, Javier, Leti, Miguel, etc.) por brindarme su amistad y aceptarme como uno mas de ustedes.

Agradecerles a mis maestros su dedicación por tratar de que aprendiera un poco de lo que ellos saben como a la maestra socorro en mi educaión básica. A los maestros Alejandro Illanes y Javier Paez por su valiosa colaboración para corregir todos los errores en está tesis. A la maestra Diana Maya por por sus enseñanzas en distintas materias en especial en geometría, la cuál me ayudo a comprender. A la maestra Asunción Preisser por su amistad, por transmitirme un poco de su conocimiento de la Lógica y por permitirme trabajar con ella estoso últimos años.

Finalmente agradecerle a la Dra. Verónica Martínez por la infinita paciencia, dedicación, tiempo y colaboración para la realización de este trabajo, el cuál no habría podido terminar sin su ayuda.

Índice General

0.	INTRODUCCIÓN	1
1.	CRIPTOGRAFÍA: DEFINICIÓN E HISTORIA	5
2.	CRIPTOGRAFÍA	13
	2.1. ENCRIPTACIÓN POR SUSTITUCIÓN	
	MONOALFABÉTICA	
	2.2. MÉTODO CÉSAR	. 15
	2.3. MÉTODO DEL ALFABETO	
	DIEZMADO	. 16
	2.4. MÉTODO DE ENCRIPTACIÓN AFÍN	
	2.5. MÉTODO DE MATRICES	
	2.6. MÉTODO RSA	. 21
	2.7. MÉTODO MASSEY-OMURA	. 28
	2.8. MÉTODO ELGAMAL	. 35
3.	CURVAS ELÍPTICAS	49
	3.1. CURVAS ELÍPTICAS EN $\mathbb R$. 49
	3.2. LAS CURVAS ELÍPTICAS COMO	
	GRUPOS	. 59
	3.3. CURVAS ELÍPTICAS SOBRE LOS	
	COMPLEJOS	. 73
	3.4. CURVAS ELÍPTICAS EN CAMPOS	
	FINITOS	. 119
1	CURVAS ELÍPTICAS EN CRIPTOGRAFÍA	197
4.	4.1. INTRODUCCIÓN	
	4.1. INTRODUCCIÓN	. 141
	A UNA UNIDAD DE MENSAJE	
	4.3. ANALOGÍAS ENTRE \mathbb{F}_q Y E	
	4.4. SUMA DE UN PUNTO EN \mathbf{E} , k VECES	. 139

4.5.	CÁLCULO DEL NÚMERO DE PUNTOS EN UNA CURVA	
	ELÍPTICA	141
4.6.	PROBLEMA DEL LOGARITMO DISCRETO EN CURVAS	
	ELÍPTICAS	145
4.7.	MÉTODO ELGAMAL EN CURVAS ELÍPTICAS	146
4.8.	MÉTODO DE MASSEY-OMURA EN CURVAS ELÍPITICAS	148
	,	
A. PRI	ELIMINARES DE TEORÍA DE NÚMEROS	177

Capítulo 0 INTRODUCCIÓN

La criptografía, como se definirá en el capítulo 1, es el arte y ciencia de escribir en forma oculta informaciones confidenciales, de tal manera que éstas sólo puedan ser leídas por las personas deseadas.

Como una muestra coloquial de ello tenemos la sección de empleos en los periódicos. Algunas empresas han decidido escribir sus oportunidades de trabajo en un lenguaje distinto al español, de tal manera que la empresa logra el objetivo de que su mensaje llegue a cierto tipo de personas, aquellas que conocen ese lenguaje. Con esto aseguran que las personas que solicitarán la vacante cumplan con este requisito.

Otro ejemplo es la escritura (o simbología) plasmada en los distintos tipos de pirámides antiguas, la mayoría de nosotros desconocemos los mensajes escritos ahí, más aún, la mayoría de los especialistas en estas culturas sólo tienen interpretaciones de estos mensajes pero no están cien por ciento seguros de que sus interpretaciones sean correctas.

En fin, como éstos podríamos dar varios ejemplos. En el capítulo 1, dentro de la reseña histórica, daremos ejemplos menos coloquiales y en los que las matemáticas juegan un papel importante.

Inicialmente me interesé en conocer algunos métodos para ocultar mensajes, pero conforme investigué sobre el tema pude darme cuenta de que la evolución de la criptografía ha llegado a niveles muy avanzados. En un principio se usaron algunos métodos sencillos en los que se hacían cambios de una letra por otra. Estos tipos de métodos se pueden ver como problemas de teoría de grupos y teoría de números. Posteriormente, se utilizaron estos mismos tipos de cambios, pero ahora utilizando bloques de letras (por ejemplo se separa el texto en pares de letras y a cada primer letra de cada bloque se le aplica un método de cambio y a las segundas letras otro tipo de cambio de letras distinto del primero).

Después se empezaron a hacer máquinas exclusivamente para este fin, las cuales tuvieron su mayor auge en la segunda guerra mundial. Más recientemente se empezaron a utilizar métodos que hacen uso de problemas de díficil solución o problemas para los cuales se requiere de mucho tiempo para resolverlos. De algunos de estos problemas se hace una revisión en el capítulo 2.

Hasta este punto los metódos utilizados se pueden ver como problemas para los cuales se utilizan la teoría de grupos y la teoría de números tanto para su descripción como para su solución. En las últimas décadas se han hecho propuestas de nuevos métodos de encriptación. Dentro de las propuestas que se han hecho, están las que utilizan para este fin las redes neuronales, la utilización de fotones (criptografía cuántica) y la manera que describiré en esta tesis, que es por medio de curvas elípticas.

En sí los métodos basados en curvas elípticas tienen como predecesores a algunos modelos basados en la teoría de números y en la teoría de grupos. Esto se debe a que las curvas elípticas tienen una estructura de grupo, por lo que se logran hacer ciertas analogías entre las curvas elípticas y los grupos utilizados en los modelos basados en la teoría de números. Por esta razón se pueden ver algunos de estos modelos utilizando curvas elípticas.

Por lo anterior, en el capítulo 3, se hará una exposición completa pero a la vez sencilla de las curvas elípticas. Hago mención de que es completa ya que se analizarán en principio las propiedades de las curvas elípticas en el campo real, para después hacer un análisis de las curvas elípticas en distintos campos. Pero a la vez trato de hacer un manejo sencillo, ya que las curvas elípticas, en general, se ven como un objeto en el espacio proyectivo, lo cual

en el momento de hacer mi investigación se me hizo demasiado complicado. Por ello opté por ver mejor a las curvas elípticas como un objeto en $\mathbb{R}^2 \bigcup \{\infty\}$ donde es más fácil trabajar y a partir de esto dar el paso a otros campos.

Por lo anterior esta tesis quedo estructurada de la siguiente manera.

Capítulo 1.

Se presentan algunos datos históricos sobre la criptografía además de la definición de lo que es la criptografía y definiciones relacionadas con este tema

Capítulo 2.

En este capítulo se ilustran algunos de los métodos criptográficos mas conocidos desde los de sustitución como el método de Cesar, el de alfabeto diezmado, la encriptación afin, así como algunos métodos mas complicados como el método de matrices y algunos de llave pública dentro de los que estan el RSA, el Massey-Omura y El Gamal, en donde, para cada método, se revisa un ejemplo en concreto.

Capítulo 3.

Aquí se muestra la definición de curvas elípticas y posteriormente se hace un desarrollo de éstas en distintos campos, desde mi punto de vista se hace un muy buen análisis de las curvas elípticas en el campo complejo.

Capítulo 4.

Finalmente en este capítulo se desarrolla la encriptación en curvas elípticas, se muestran ejemplos de algunas construcciones que se necesitan para poder hacer la encriptación como, por ejemplo, calcular la suma de un punto k veces en la curva; pasar el texto a puntos en la curva y ejemplos concretos de encriptación en la curva elíptica por medio de dos métodos.

Apéndice A.

Aquí se presentan algunas definiciones que serán básicas sobre la teoría de los números y que se utilizarán a lo largo de la tesis.

En principio esta tesis estaría dirigida a alumnos de matemáticas o de ciencias de la computación con conocimientos básicos de teoría de números y un poco de teoría de grupos y de anillos, salvo la sección 3.3 para la cual se necesita una base sólida tanto de variable compleja como de teoría de grupos

y de anillos. Debo de agregar que en este trabajo no busco decidir cual de los métodos que se describirán es mas eficaz, así como tampoco analizar cual de estos métodos es más rápido, si no únicamente se pretende hacer la descripción de algunos métodos de encriptación, en particular los que hacen uso de curvas elípticas.

Capítulo 1

CRIPTOGRAFÍA: DEFINICIÓN E HISTORIA

Uno de los matemáticos que más aportaciones hizo a la teoría de los números es el inglés Godfrey H. Hardy, el cual se ufanaba de que sus descubrimientos y, en general, la teoría de números no tenía ninguna aplicación. Esto lo manifestaba cada vez que tenía oportunidad. Por ejemplo, en el Teorema 2.10 de su libro A Mathematical Apology, después de probar el viejo teorema que establece que el número de primos es infinito menciona que éste sólo tiene una ligera importancia práctica. A pesar de sus opiniones, con el paso de los años los matemáticos fueron descubriendo algunas aplicaciones interesantes de esta teoría.

En la actualidad, se ha descubierto que el conocimiento de los primos es fundamental en la teoría de la criptología (el estudio de los sistemas secretos de escritura).

La criptología se divide en dos ramas antagonistas, la *criptografía* y el *criptoanálisis*. La palabra criptografía se deriva de las palabras griegas *kriptos*, que quiere decir oculto, y *graphein*, que significa escribir. La criptografía

entonces es el arte y ciencia de escribir en forma oculta las informaciones confidenciales (excepto para las personas deseadas). Por el contrario, el criptoanálisis es el encargado de romper las claves que se usan en los mensajes secretos, para que las personas que no son las destinatarias de los mensajes sean capaces de conocer su contenido. En este trabajo desarrollaremos algunas técnicas matemáticas que se usan para la criptografía.

Con esta idea, siempre estaremos pensando en que tenemos un mensaje que queremos enviar, a estos mensajes les llamaremos textos planos, veremos cómo se disfraza éste para transformarlo en un texto cifrado o texto encriptado. Estos últimos son escritos usando algún alfabeto consistente de un cierto número de N letras, lo de letras es sólo una manera de llamarlas pues se pueden usar toda clase de símbolos como las letras que usamos regularmente, también pueden ser números, espacios en blanco, símbolos de puntuación, números o cualquier otro símbolo que queramos usar.

El proceso de convertir un texto plano en un texto cifrado es llamado ciframiento o encriptación (usaremos estos nombres indistintamente) y al proceso inverso se le conoce por deciframiento o desencriptación (también usaremos estas palabras sin distinción). Un cifrado o ciframiento es un método para cambiar un texto plano en un texto cifrado. Una llave o clave es el elemento que permite saber cómo fue encriptado un mensaje, así la tarea del criptoanalista consiste en descubrir la llave, y con esto allanar el camino para encontrar el texto plano.

Una función de encriptación es una función que toma cualquier texto plano y lo transforma en un mensaje cifrado. Nosotros supondremos que nuestra función (f) es una función uno a uno. La transformación de desencriptación es entonces la función inversa (f^{-1}) , que recupera el texto plano a partir del texto cifrado.

El siguiente diagrama ilustra esta situación:

$$\mathbf{P} \xrightarrow{f} \mathbf{E} \xrightarrow{f^{-1}} \mathbf{P}$$

A cualquier f de este tipo le llamaremos un sistema criptográfico.

A lo largo de la historia, desde hace muchos siglos, la criptografía ha servido para encubrir información, ya que por diversas razones los seres humanos han estado interesados en proteger cierta información. Por ejemplo los asirios estaban interesados en mantener en secreto la fabricación de

la céramica, los chinos se interesaron en guardar en secreto el método de la fabricación de la seda, los alemanes durante la segunda guerra mundial trataron de proteger sus secretos militares con su famosa máquina Enigma. En épocas más recientes, las instituciones e industrias gubernamentales de Estados Unidos se han apoyado en la criptografía para mantener en secreto determinada información, pero debido al adelanto de las computadoras y la interconectividad, son sujetos frecuentemente a ciberataques, además de sufrir intrusiones en sus sistemas y espionaje industrial.

A continuación daremos una breve cronología de la historia de la criptografía.

Cerca de 1900 a.C., un escribano egipcio utilizó jeroglíficos no estándares en una inscripción. Kahn enumera esto como el primer ejemplo documentado de la criptografía escrita.

En 1500 a.C., antiguos comerciantes asirios utilizaron lo que se le llamo la La talla, lo cual es un pedazo de piedra plana dentro del cual, tallaron una mezcla de imágenes, además de utilizar cierta escritura con lo cual identificaban las transacciones que hacían. Derivado de este mecanismo, produjeron lo que conocemos en nuestros días como la "Firma". La gente en general sabía que una firma en particular pertenecía a un determinado comerciante, debido a que solamente él tenía la forma de producirla.

Entre los años 500 y 600 a.C., los escribanos hebreos que escribian el libro de Jeremiah utilizaron en lugar del alfabeto normal un alfabeto al revés, lo cual es una forma simple de sustitución, este alfabeto fue conocido como ATBASH.

El emperador Julio Cesar (100-44 a.C.) utilizó una substitución simple con el alfabeto normal, lo utilizaba para comunicaciones de gobierno, debido a que no confiaba en sus mensajeros. Este cifrado era menos fuerte que ATBASH, por muy poco, pero en un tiempo en que pocas personas leían era bastante bueno. El método consistía en sustituir cada letra del alfabeto por la que se encontraba tres lugares a la derecha, en nuestro alfabeto sería substituir cada A en el texto por una D, cada B por una E, y así sucesivamente. También utilizó la transcripción del latín al griego, además de otros cifrados simples.

En 1379, Gabrieli di Lavinde, a petición de Clemente VII, compila un alfabeto que nace de la combinación del Alfabeto de sustitución y un código

pequeño. Esta clase de código-cifrado fue usado en general entre diplomáticos y algunos civiles por los próximos 450 años, a pesar del hecho de que ya había métodos de cifrado más fuertes inventados en aquel tiempo.

En 1466, Leon Battista Alberti (un amigo de Leonardo Dato, un secretario pontificio que pudo haber instruido a Alberti en las técnicas más avanzadas de la criptología) inventó y publicó el primer cifrador polialfabético, éste constaba de un disco de cifrado (conocido por nosotros como el Captan Midnight Decoder Badge) para simplificar el proceso. Esta clase de cifrado fue usado aparentemente hasta el año 1800. Alberti también escribió extensamente sobre los distintos métodos de cifrado conocidos hasta aquel entonces, además de escribir sobre el de su propia invención. Alberti también utilizó su disco para cifrar códigos. El sistema creado por Alberti era mucho más fuerte que la nomenclatura que usaban los diplomáticos en ese entonces y que siguieron usando durante siglos.

En 1518, Johannes Trithemius escribió el primer libro impreso usando criptología. En él hace usó de distintos tipos métodos de encriptación, como por ejemplo un cifrado esteganográfico (es decir, de ocultar la escritura) en el cual cada letra fue representada como una palabra tomada de una sucesión de columnas o por ejemplo en el que a cada letra le asignaba otra letra.

En 1553, Giovan Batista Belaso introdujo la noción de usar una frase como la clave para una encifrado polialfabético repetido. Éste es el encifrado polialfabético estándar llamado "Vigénere" por la mayoría de los escritores hoy en día.

En 1563, Giovanni Battista Porta escribió un texto cifrado, introduciendo el cifrado digráfico. Clasificó cifras en transposición, la substitución y substitución de símbolos (usados de un alfabeto extraño). También sugirió el uso de sinónimos y de faltas de ortografía para confundir al criptoanalista y al parecer introdujo la noción de un alfabeto mezclado en una tabla polialfabética.

En 1585, Blaise de Vigenére escribió un libro en cifras, incluyendo los primeros sistemas auténticos de documentos y de cifrado de textos para documentos usados como claves actuales de documentos.

En 1623, Sir Francis Bacon describió un cifrado que hoy lleva su nombre - un cifrado biliteral, conocido hoy como codificación binaria 5-bit -.

En 1790, Thomas Jefferson, ayudado posiblemente por el Dr. Robert Patterson (matemático de la Universidad de Pennsilvania.), inventó su cifrado de la rueda. Ésta fue reinventada en varias formas más adelante y utilizada en la segunda guerra mundial por la marina de los E.E.U.U. (conocido como el cifrado de la tira, M-138-A).

En 1917, William Frederick Friedman, quien fue honrado más adelante con el nombre de el padre del criptoanálisis de los E.E.U.U. (y el hombre que acuño ese término), fue empleado como criptoanalista civil (junto con su esposa Elizabeth) en los laboratorios de Riverbank, además realizó criptoanálisis para el gobierno de los E.E.U.U., que no contaba propiamente con ningún experto criptoanalista. Friedman comenzó una escuela para los criptoanálistas militares en Riverbank. Más adelante se transladó a Washington.

Entre los años de 1933-1945 la máquina Enigma no era un éxito comercial pero Alemania asumió el control y la mejoró hasta convertirla en el caballo de batalla criptográfico de la Alemania nazi. Pero la manera de descifrar los mensajes fue descubierta por el matemático polaco, Marian Rejewski, basado solamente en un texto cifrado que capturaron y una lista de las claves diarias de tres meses obtenidas a través de un espía.

En el año de 1976 un diseño creado por IBM, basado en el cifrado de Lucifer y con cambios hechos por la N.A.S.A. de los E.E.U.U. (los cuales incluyeron mejoras a la caja S y la reducción del tamaño dominante), fue elegido para ser el cifrado de datos estándar de los Estados Unidos. Este método ha tenido la aceptación mundial, en gran parte porque se ha demostrado fuerte contra 20 años de ataques.

En 1976 Whitfield Diffie y Martin Hellman publicaron "New directions in cryptography", introduciendo la idea de la clave pública de la criptografía. También pusieron adelante la idea de la autentificación por potencias de una función unidireccional. Cerraron el documento con la siguiente observación "la habilidad en la producción del criptoanálisis ha estado siempre en el lado de los profesionales, pero la innovación, particularmente en el diseño de los nuevos tipos de sistemas criptográficos, ha venido sobre todo de amateurs."

En 1977 inspirados por los documentos de Diffie-Hellman y siendo principiantes en la criptografía, Ronald L. Rivest, Adi Shamir y Leonard M.

Adleman discutieron cómo hacer un práctico y público sistema de cifrado. Una noche en abril, Ron Rivest se levantó con un dolor de cabeza masivo y el algoritmo de RSA vino a él. Él lo escribió y lo envió a Shamir y Adleman; a la mañana siguiente. Era un práctico cifrado público para ambos, enviado confidencialmente con todo y las firmas digitales, basado en la dificultad de descomponer números muy grandes en sus factores primos. Sometieron esto a Martin Gardner el 4 de abril para la publicacin en Scientific American. El artículo apareció en Scientific American en el año de 1977 en su edición de septiembre, en este se incluyó una oferta para enviar el informe técnico completo a cualquier persona que lo solicitase. Hubo millares de peticiones de todo el mundo.

En 1990, Xuejia Lai y James Massey en Suiza publicaron "A Proposal for a New Block Encription Standard", un algoritmo internacional propuesto del cifrado de datos (IDEA) que pudiera sustituir el DES. La IDEA usa una clave de 128 bits y emplea operaciones que son convenientes para las computadoras con fines generales, por lo tanto hizo prácticamente más eficiente el software.

En 1991 Phil Zimmermann lanzó su primera versión de PGP (Pretty Good Privacity) en respuesta a la amenaza del FBI de exigir el acceso a las comunicaciones de los ciudadanos. La PGP ofreció alta seguridad en las comunicaciones de los ciudadanos en general y como tal se habría podido considerar como un competidor a los productos comerciales como Mailsafe de RSADSI.

Sin embargo, el PGP es especialmente notable porque fue lanzado como freeware y se ha convertido en un estándar mundial mientras que sus competidores de la época siguen siendo altamente desconocidos.

En 1994, el profesor Ron Rivest, autor de los algoritmos anteriores RC2 y RC4 incluidos en la biblioteca criptográfica de RSADSI's BSAFE, publicó un algoritmo propuesto, RC5, en el Internet.

Este algoritmo utiliza la rotación dato-dependiente como su operación no lineal y da parámetros de modo que el usuario pueda variar el tamaño de bloque, el número de redondeo y la longitud dominante. Sigue siendo demasiado nuevo para ser analizado completamente y para permitir saber

qué parámetros utilizar para una fuerza deseada. Aunque un análisis realizado por los laboratorios de RSA, divulgados en CRYPTO'95, sugiere ciertos valores con los que se logra un mejor desempeño. Debe recordarse, sin embargo, que esto es sólo un primer análisis.

En las siguientes secciones veremos algunos sistemas criptográficos, empezaremos por algunos de sustitución monoalfabética, los cuales consisten en cambiar letra por letra en un texto plano. Después veremos los sistemas de $encriptación\ por\ bloques$, los cuales trabajan sustituyendo las letras por pares, tercias, o en general por bloques de n letras. Finalmente veremos el sistema de encriptación más usado en la actualidad, el sistema RSA, el cual se desarrollará en forma de encriptación momoalfabética aunque también puede hacerse en bloques.

Capítulo 2 CRIPTOGRAFÍA

2.1. ENCRIPTACIÓN POR SUSTITUCIÓN MONOALFABÉTICA

En un sistema de encriptación monoalfabético lo que se hace es sustituir cada letra usada en el texto plano por otra letra de manera que la transformación sea inyectiva (uno a uno), es decir, a cada letra le corresponde una y solo una letra. De esta manera, tendremos una asignación biunívoca entre las letras usadas del texto plano y las letras usadas en el texto cifrado.

Podemos entonces observar que si tomamos una letra de las usadas en el texto plano, y sólo usamos letras en español para encriptar, tenemos 27 posibilidades de asignarle una letra del alfabeto. Al tomar una segunda letra de las usadas en el texto plano, ya sólo tendremos 26 posibilidades para asignarle una letra del alfabeto (ya que no podemos volver a usar la primera). Para la tercera letra tenemos 25 opciones, para la cuarta 24, etc. Con lo anterior podemos notar que tenemos 27! posibles sistemas de encriptación distintos de sustitución monoalfabética.

A continuación describiremos, en forma más detallada, la manera en que se hace el proceso de encriptación y desencriptación por sustitución monoalfabética, para después ver algunos de los casos particulares de los 27! posibles.

Lo primero que se hace es asignarle un número a cada letra del alfabeto. Para los sistemas criptográficos que veremos en esta sección numeraremos las letras de la A a la Z por su respectivo número ordinal entre 0 y 26, como se muestra a continuación.

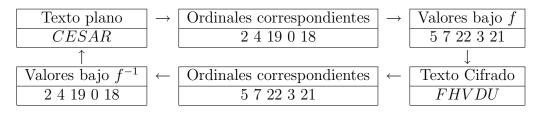
Texto Plano	A	B	C	D	E	F	G	H	I	J	K	L	M	N
Ordinal	0	1	2	3	4	5	6	7	8	9	10	11	12	13
				·					·					
Texto Plano	\tilde{N}	O	P	Q	R	1	$S \mid$	T	U	V	W	X	Y	Z
Ordinal	14	15	16	17	18	1	.9	20	21	22	23	24	25	26

Usando este esquema, lo que se hace en una sustitución monoalfabética es lo siguiente. Se da una biyección f del conjunto $\{0, 1, 2, ..., 26\}$ en sí mismo.

Ahora, dado un texto plano, se cambia cada una de sus letras por su ordinal correspondiente, a continuación, cada uno de los ordinales n se cambia por el ordinal f(n), y finalmente se cambia el ordinal f(n) por la letra que le corresponde. De esta manera se obtiene el texto encriptado.

Si uno quiere desencriptar el mensaje, se hacen las operaciones inversas, es decir: a cada letra del texto encriptado, se le asigna su número ordinal m, entonces se obtiene el número ordinal $f^{-1}(m)$, y se pone la letra que le corresponde. De esta manera recuperaremos el mensaje original.

En la siguiente gráfica se ilustra el proceso descrito en los dos párrafos anteriores, donde se usa la función f que a cada ordinal n le suma 3 módulo 27.



2.2. MÉTODO CÉSAR

Este método de encriptación recibe el nombre de César porque el mismo emperador Julio César lo usaba para comunicarse con sus generales. La manera como trabaja es simplemente la sustitución de una letra por la letra que se ubica tres lugares después en el alfabeto (módulo 27). La siguiente tabla dice cómo se cambian las letras.

Texto Plano	A	В	C	D	E	F	G	Н	I
Texto Cifrado	D	E	F	G	Н	I	J	K	L
Texto Plano	J	K	L	M	N	\tilde{N}	0	P	Q
Texto Cifrado	M	N	\tilde{N}	0	P	Q	R	S	T
Texto Plano	R	S	T	U	V	W	X	Y	Z
Texto Cifrado	U	V	W	X	Y	Z	A	B	C

Arriba ya mostramos cómo se cambia la palabra CESAR con este método. Aquí ni siquiera tenemos que hacer tanto ruido con la función f. Simplemente, para cifrar un mensaje, tomamos cada letra por la letra que aparece en el reglón inferior de la tabla. De esta manera la palabra CESAR se cambia por la palabra FHVDU. Y para recuperar el mensaje original simplemente cambiamos cada letra de la nueva palabra por su correspondiente en el renglón de arriba.

Si queremos usar el lenguaje de las funciones, para el método César usaríamos la función f(n) = m, donde m es el residuo que resulta de dividir n+3 entre 27. Así que

$$f(n) \equiv n + 3 \pmod{27}.$$

Claramente la función f^{-1} queda dada por restar 3 módulo 27. Entonces $f^{-1}(m)$ es el residuo que se obtiene al dividir el número m-3 entre 27. De modo que

$$f^{-1}(m) \equiv m - 3 \pmod{27}.$$

Así como César usaba una traslación de 3 lugares en las letras, se podría usar una traslación de k lugares, para cualquier $k \in \{1, 2, ..., 26\}$. Así por ejemplo, si usamos k = 5, la palabra CESAR se cambia por la palabra HJXFW y la función se puede representar en forma abreviada por las fórmulas:

$$f(n) \equiv n + 5 \pmod{27}$$
 y
$$f^{-1}(m) \equiv m - 5 \pmod{27}.$$

O más generalmente,

$$f(n) \equiv n + k \pmod{27}$$
 y
 $f^{-1}(m) \equiv m - k \pmod{27}$.

A pesar de que en algún tiempo se usó el método César, ahora resulta demasiado simple para que sirva de algo. Simplemente hay sólo 26 posibilidades de obtener el cifrado. Bastaría con que uno las probara todas para encontrar el mensaje oculto. Por esta razón se han inventado métodos más complicados. Veamos otros ejemplos.

2.3. MÉTODO DEL ALFABETO DIEZMADO

Para tener más métodos, ahora podríamos multiplicar en lugar de sumar. Es decir, podríamos usar la regla (aquí k es un número fijo).

$$f(n) \equiv kn \pmod{27}$$
.

Claro que ésta es sólo una forma simbólica de representar el método. Lo que en realidad tendríamos que decir es que dada n, f(n) es el residuo que se obtiene de dividir a kn entre 27.

Para que este método sirva, como dijimos antes, la función f debe ser inyectiva. De modo que se debe tener la implicación

$$f(n) = f(m) \Rightarrow n = m.$$

O, equivalentemente,

$$kn \equiv km \pmod{27} \Rightarrow n = m \text{ (para números } n, m \text{ en}\{0, 1, 2, ..., 26\}).$$

De nuestros conocimientos de divisibilidad sabemos que esta implicación se puede garantizar si (y sólo si) k es primo relativo con 27. Pues en este caso k tiene un inverso multiplicativo módulo 27.

Este método usa la palabra diezmado porque diezmar significa eliminar uno de cada diez y en este método, lo que se hace es tomar sólo uno de cada k símbolos, pues se usan los números, k, 2k, 3k, 4k, ...

Para ejemplificar, a continuación ponemos la tabla que serviría para transformar los textos usando este método, cuando k=5.

Texto Plano	A	B	C	D	E	F	G	H	I
Ordinal	0	1	2	3	4	5	6	7	8
Ordinal por 5	0	5	10	15	20	25	30	35	40
Ordinal mod 27	0	5	10	15	20	25	3	8	13
Texto Cifrado	A	F	K	O	T	Y	D	I	N

Texto Plano	J	K	L	M	N	\tilde{N}	O	P	Q
Ordinal	9	10	11	12	13	14	15	16	17
Ordinal por 5	45	50	55	60	65	70	75	80	85
Ordinal mod 27	18	23	1	6	11	16	21	26	4
Texto Cifrado	R	W	B	G	L	P	U	Z	E

Texto Plano	R	S	T	U	V	W	X	Y	Z
Ordinal	18	19	20	21	22	23	24	25	26
Ordinal por 5	90	95	100	105	110	115	120	125	130
Ordinal mod 27	9	14	19	24	2	7	12	17	22
Texto Cifrado	J	\tilde{N}	S	X	C	Н	M	Q	V

También a modo de ejemplo, notemos que la palabra AJEDREZ se transformaría en la palabra ARTOJTV.

Ya que $5 \cdot 11 = 55 \equiv 1 \pmod{27}$, el inverso de 5 módulo 27 es el número 11. Así que podemos representar a la función inversa f^{-1} por:

$$f^{-1}(m) \equiv 11 \cdot m \pmod{27}$$

Por supuesto que no tenemos que estar multiplicando por 11 cuando ya tenemos la tabla, pues simplemente para decifrar un mensaje, tenemos que localizar cada una de las palabras del mensaje cifrado en el renglón de abajo de la tabla y sustituirla por la letra que se encuentra arriba de ella.

Dado que hay 18 números k en $\{0, 1, 2, ..., 26\}$ que son primos relativos con 27, tenemos ahora 17 métodos diferentes de encriptar (no se toma en cuenta k = 1, pues con esto los mensajes no se cambian nada).

2.4. MÉTODO DE ENCRIPTACIÓN AFÍN

Este método es una simple combinación de los dos anteriores. La fórmula que representa este método está dada por

$$f(n) \equiv a \cdot n + k \pmod{27}$$

Como siempre, a y k son números fijos. Y como vimos en el método anterior, aquí se necesita pedir que a sea un número primo relativo con 27, pues con esto se puede garantizar que la función f es biyectiva, esto se da porque, en estos casos, a tiene un inverso módulo 27. Entonces la función inversa puede representarse con la fórmula

$$f^{-1}(m) \equiv a^{-1}(m-k) \pmod{27}$$

Combinando estos dos métodos obtenemos un total de $18 \cdot 27 - 1$ métodos de encriptado. Ponemos el -1 porque se pueden tomar en cuenta todas las combinaciones posibles para a y k excepto la combinación a=1 y k=0 pues ésta no cambia las letras y entonces no representa ninguna manera de encriptar mensajes.

A pesar de contar ahora con 485 métodos, estos métodos siguen siendo muy simples, son muy fáciles de decifrar. De hecho, no importa que función inyectiva $f: \{0, 1, 2, ..., 26\} \rightarrow \{0, 1, 2, ..., 26\}$ se tome, el método de

19

sustitución monoalfabética que usa a f es relativamente fácil de ser decifrado cuando se usa para un texto largo o para varios textos. Esto se hace como sigue.

Observe usted un texto largo cifrado usando alguna f. En él cada letra del texto original (o plano) se ha cambiado por otra letra del alfabeto. Cuente cuántas veces aparece cada letra. Se sabe la probabilidad de que cada letra aparezca en un texto normal en español y hasta hay tablas describiendo esto. Por ejemplo, la siguiente es una tabla compilada por H. Beker y F. Piper, en ella aparece el porcentaje de veces en que aparecen las respectivas letras en los textos en inglés que ellos analizaron (revisaron textos que en total sumaron más de 100,000 letras).

Letra	A	B	C	D	E	F	G	Н	I
Porcentaje	8,2	1,5	2,8	4,3	12,7	2,2	2,0	6,1	7,0
Letra	J	K	L	M	N	$\mid \tilde{N} \mid$	O	P	Q
Porcentaje	0,2	0,8	4,0	2,4	6,7	??	7,5	1,9	0,1
Letra	R	S	T	U	V	W	X	Y	Z
Porcentaje	6,0	6,3	9,1	2,8	1,0	2,4	0,2	2,0	0,1

De acuerdo con esto, la letra que más se usa es la E, seguida de la T, la A y la O. De modo que si en el texto cifrado que tenemos sustituimos la letra que más aparezca por la E, la segunda que más aparezca por la T y la tercera por la A, tendremos una alta probabilidad de acertar. Pero si no se puede empezar en otro orden combinando estas letras y sustituyéndolas con las que más aparecen en el texto cifrado. De esta manera, tendremos posibilidades de empezar a jugar como en el juego del ahorcado. Podemos hacer uso de otros hechos, como el de que la E muchas veces va acompañado de la E, la E0 o la E1. Jugando con estas posibilidades, podremos acertar y descubrir nuevas palabras en el texto y cuáles son las letras que les corresponden a ciertas letras. Podemos continuar usando la E1 y la E3, exactamente como en el ahorcado y usando asociaciones de ideas como en el juego del ahorcado terminar por decifrar el mensaje. La ayuda de una computadora que permite cambiar todas las letras de un tipo por letras de otro tipo sería de gran ayuda y permitiría decifrar el texto muy rápidamente. Por la facilidad con

que se pueden decifrar los mensajes cifrados usando la encriptación monoalfabética es que se han inventado una gran cantidad de otros métodos. En este trabajo describiremos algunos de los que más se usan actualmente.

2.5. MÉTODO DE MATRICES

Para este método, necesitamos trabajar con un número primo como módulo. Así que en lugar de 27 podríamos usar el 37. Esto nos permitiría incluir las 27 letras y los 10 dígitos.

Una vez que hemos separado nuestro texto plano en bloques de n letras podemos asignarle a cada letra su número ordinal correspondiente con lo que tendríamos ahora bloques de n números, a cada bloque de n números lo podemos ver como un vector de n entradas de la forma

$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

Para obtener un texto cifrado, podríamos hacer n combinaciones lineales de los números a_i . (todo esto módulo 37, por supuesto), de tal modo que obtengamos valores b_j . De esta manera obtenemos la siguiente serie de congruencias:

$$c_{11}a_1 + c_{12}a_2 + \dots + c_{1n}a_n \equiv b_1 \pmod{37}$$

$$c_{21}a_1 + c_{22}a_2 + \dots + c_{2n}a_n \equiv b_2 \pmod{37}$$

$$\vdots$$

$$c_{n1}a_1 + c_{n2}a_2 + \dots + c_{nn}a_n \equiv b_n \pmod{37}$$

Por supuesto que esto lo podemos poner, con notación matricial, de la siguiente forma:

$$\begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \equiv \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

Para que esto funcione, tenemos que proponer una matriz invertible. De esta manera tendremos una correspondencia biyectiva y podremos reconstruir un mensaje simplemente multiplicando por la matriz inversa. Para esto pedimos que el módulo sea un número primo. Pues de esta manera, al trabajar con los números $\{0, 1, 2, ..., 36\}$, y la suma y el producto módulo 37, tendremos un campo y entonces toda la teoría de matrices funciona adecuadamente. En particular, para comprobar que la matriz de las $c_{i,j}$ sea invertible, simplemente tendremos que comprobar que su determinante sea distinto de 0 modulo 37.

Ahora veremos otra forma de encriptar textos en bloques usando el mejor método que se conoce.

2.6. MÉTODO RSA

Uno de los más viejos problemas de la teoría de los números es el de encontrar un algoritmo eficiente para factorizar números (naturales). En principio parecería que este problema no es tan difícil de resolver pues desde la escuela primaria nos enseñan cómo hacerlo. Recordemos cómo se hace. Tomamos un número natural n y tomemos el primer número primo (el 2). Si 2 divide a n, tomamos ahora el número $\frac{n}{2}$ y revisamos si 2 divide a $\frac{n}{2}$. En el caso en que esto ocurra, consideramos ahora el número $\frac{n}{2^2}$ y seguimos con este proceso hasta encontrar una potencia 2^k del número 2 tal que $\frac{n}{2^k}$ ya no sea divisible entre 2. Ahora tratamos con el siguiente primo (el 3) y hacemos el proceso hasta encontrar una potencia 3^m del número 3 tal que el número $\frac{n}{2^k 3^m}$ ya no sea divisible entre 3. Notemos que puede ocurrir que k=0 y/o que m=0 que corresponde a los casos en que el 2 (y/o el 3) mismo no divida a n (y/o a $\frac{n}{2^k}$). Continuamos este proceso con todos los primos menores o iguales que n, y al final, la factorización de n será $n=2^k 3^m$...

Este proceso tan simple que hemos hecho muchas veces tiene sus bemoles cuando el número n es muy grande. Aun para las computadoras actuales, factorizar con este método, un número inicial n que conste de 200 cifras o más y que tenga pocos factores primos, es casi imposible hacerlo en un tiempo razonable. Esta dificultad y el Pequeño Teorema de Fermat son la base para el sistema de encriptado RSA. Expliquémonos.

El sistema RSA fue inventado por Rivest, Shamir y Adleman en 1977. La principal idea atrás de este sistema es que es relativamente fácil hallar números p y q de 100 cifras que tienen una alta probabilidad de ser primos y que sin embargo es muy difícil factorizar el producto pq que contará con casi 200 cifras. Los valores de 100 y 200 se toman ahora por la capacidad actual de las computadoras. Con los algoritmos actuales de factorización y con las computadoras más potentes que existen puede tomar décadas factorizar un número de 200 cifras. Cuando se inventen máquinas capaces de factorizar números de 200 cifras en un tiempo razonable, estos valores se tendrán que incrementar, pero el método RSA seguirá funcionando sin problema.

Ahora describiremos cómo funciona el sistema RSA.

Supongamos que yo quiero tener un método seguro de recibir mensajes, por supuesto que esto también servirá para enviarlos, pero en ese caso, la persona que reciba los mensajes tiene que hacer lo que se va a describir.

Lo primero que tengo que hacer es encontrar dos números primos (o casi primos) p y q, de aproximadamente 100 cifras cada uno, al final de esta sección describimos cómo encontrar tales números. Los multiplicamos para obtener el número $m=p\cdot q$, el cual tiene aproximadamente 200 cifras. Como sabemos la factorización de m, seremos capaces de encontrar $\phi(m)=(p-1)(q-1)$ (ver Proposición 0.0.2). Éste es un punto importantísimo pues el número m se va a conocer públicamente como el número que yo uso para encriptar mensajes. Pero, como los demás no conocen su factorización, no podrán conocer el valor de $\phi(m)$.

Hasta este momento, todos conocen a k y a m, y mantengo en secreto los números p, q, h y $\phi(m)$.

Ahora supongamos que alguien está interesado en enviarme un mensaje. Como ya hemos dicho, esto es equivalente a enviarme una secuencia de números. Ya hemos dicho por qué no conviene enviar letra por letra (o su equivalente en números) pero se pueden enviar bloques de digamos 20 números cada uno. Más tarde veremos un ejemplo concreto de cómo descompondríamos un mensaje en números para enviarlo usando este método. De manera que el problema se reduce a saber cómo enviarme un número a que puede tener hasta unas 80 cifras. Observemos que con esto garantizamos que a no sea múltiplo ni de p ni de q y entonces a y m serán primos relativos.

Entonces, dado un número a < m, que me quiere enviar una persona en particular, lo que tiene que hacer es calcular el único número b tal que $0 \le b < m$ y $b \equiv a^k \pmod{m}$. Y me envía el número b. No importa si el número b es interceptado por alguien pues sabiendo b no se puede conocer a a pues, la ecuación $b \equiv a^k \pmod{m}$ va a tener una única solución cuando se piensa que la incógnita es a y que se conoce b. Sin embargo, resolverla para a es bastante difícil, tal vez más difícil que factorizar m.

Finalmente, lo que yo tengo que hacer es encontrar el número c tal que $0 \le c < m$ y $c \equiv b^h \pmod{m}$. A continuación haremos unas cuentas para comprobar que a = c, por lo que ya sabré el número que me enviaron.

Notemos que (a, m) = 1 por lo que $a^{\phi(m)} \equiv 1 \pmod{m}$. Por otra parte, sabemos que $kh \equiv 1 \pmod{\phi(m)}$. De modo que existe un entero z positivo z tal que

$$kh = 1 + z\phi(m).$$

Puesto que

$$c \equiv b^h \equiv a^{kh} \equiv a^{1+z\phi(m)} \equiv a(a^{\phi(m)})^z \equiv a(1)^z \equiv a \pmod{m}$$

У

$$0 \le c, a < m$$

concluimos que a = c.

EJEMPLO

Nada más para ilustrar, veremos un ejemplo numérico en el que aplicamos el método RSA.

Por supuesto que tenemos que tomar primos muy pequeños pues de lo contrario las cuentas se harían inmanejables en este texto. En la práctica no hay problema en manejar grandes números porque se usan las computadoras tanto para hacer las cuentas como para transmitir los mensajes.

Sean p=5 y q=11. Entonces m=55 y $\phi(m)=4\cdot 10=40$. Ahora tenemos que escoger un número k que sea primo relativo con $\phi(m)=40$. Como $40=2^3\cdot 5$, cualquier número impar que no sea múltiplo de 5 servirá como k. Escogemos k=3. De una vez calculamos el inverso de k módulo 40. Podríamos hacerlo usando el algoritmo de la división, pero en este caso sería una verdadera exageración ya que basta observar que $3\cdot 27=81\equiv 1 \pmod{40}$ para saber que 27 es tal inverso. En nuestra notación h=27.

En este momento, doy a conocer a k y m, y mantengo en secreto los números p, q, h y $\phi(m)$.

Supongamos que un amigo me quiere enviar la palabra CRIPTOGRAFÍA en forma cifrada. Usaremos la siguiente correspondencia entre las letras del alfabeto y los números del 0 al 55, la cual se obtiene de asignar a cada letra del alfabeto un número del sistema reducido de residuos módulo $m \text{ (m=55)}^1$.

	Texto Plano	$\mid A$	$\mid B \mid$	C	D	E	F	G	H	I
Ì	Ordinal	2	4	6	7	8	9	12	13	14
<u>-</u> ا	Texto Plano	J	K	L	M	N	$\mid \tilde{N}$	O	P	Q
	Ordinal	16	17	18	19	21	23	24	26	28
								·		
۲.	Texto Plano	R	S	T	U	V	W	X	Y	Z
	Ordinal	29	31	32	34	36	37	38	39	41

 $^{^{1}}$ Un sistema reducido de residuos módulo m no es mas que el conjunto de números menores que m tal que cada número en el conjunto es primo relativo con m

Debemos notar que cada uno de estos numeros es primo relativo con 55. Entonces el mensaje se transforma en la secuencia de números:

```
6 29 14 26 32 24 12 29 2 9 14 2
```

En la práctica no se usa esta correspondencia. Se acostumbra a usar más el código ASCII (American Standard Code for Information Interchange) que le asigna a cada letra o símbolo un número de tres dígitos. Aquí transformamos letra por letra, ya dijimos que, en general esa no es una buena idea pero si aquí hacemos bloques nos van a salir números muy grandes, valga pues hacerlo así para este ejemplo.

De acuerdo con lo que explicamos antes mi amigo tiene que encontrar los números b tales que $a^k \equiv b \pmod{55}$ y 0 < b < 55, para cada uno de los números a que quiere transmitir, haciendo las cuentas pertinentes se obtiene que:

```
6^3 \equiv 51 \pmod{55}, \ 29^3 \equiv 24 \pmod{55}, \ 14^3 \equiv 49 \pmod{55}, \ 26^3 \equiv 31 \pmod{55}, \ 32^3 \equiv 43 \pmod{55}, \ 24^3 \equiv 19 \pmod{55}, \ 12^3 \equiv 23 \pmod{55}, \ 29^3 \equiv 24 \pmod{55}, \ 2^3 \equiv 8 \pmod{55}, \ 9^3 \equiv 14 \pmod{55}, \ 14^3 \equiv 49 \pmod{55}, \ 2^3 \equiv 8 \pmod{55}
```

Entonces mi amigo me transmite la sequencia de números:

```
51 24 49 31 43 19 23 24 8 14 49 8
```

Para que yo sepa el mensaje transmitido tengo que encontrar los valores c tales que $b^h \equiv c \pmod{55}$, donde b toma los valores que me fueron enviados, haciendo las cuentas pertinentes se obtiene que:

```
51^{27} \equiv 6 \pmod{55}, \ 24^{27} \equiv 29 \pmod{55}, \ 49^{27} \equiv 14 \pmod{55}, \ 31^{27} \equiv 26 \pmod{55}, \ 43^{27} \equiv 32 \pmod{55}, \ 19^{27} \equiv 24 \pmod{55}, \ 23^{27} \equiv 12 \pmod{55}, \ 24^{27} \equiv 29 \pmod{55}, \ 8^{27} \equiv 2 \pmod{55}, \ 14^{27} \equiv 9 \pmod{55}, \ 49^{27} \equiv 14 \pmod{55}, \ 8^{27} \equiv 2 \pmod{55}.
```

Entonces yo ya tengo la secuencia:

```
6 29 14 26 32 24 12 29 2 9 14 2
```

La cual puedo transformar otra vez en letras para, finalmente, obtener la palabra CRIPTOGRAFÍA.

En una primera lectura uno no capta la maravilla que es el método RSA. Observe usted que quien nos envía el mensaje no tiene que haber estado en contacto con nosotros antes, de hecho no tiene que conocernos y no tenemos que darle una clave secreta para que nos lo envíe. Lo único que tiene que saber esta persona es lo que sabe (o puede saber) todo el mundo, la k y la m. La idea de crear el RSA se ideó en dos partes. La idea de diseñar un sistema con estas características fue concebida por Whitfield Diffie en 1975. Quien lanzó al mundo matemático el reto de encontrar algunas funciones matemáticas específicas con las que se pudiera aterrizar esta idea. Él mismo junto con Hellman lo consiguieron en 1976 y en 1977 que Rivest, Shamir y Adleman se las ingeniaron para implementarlo en forma práctica.

Todos estos créditos que mencionamos en el párrafo anterior están bien otorgados, pero las personas mencionadas no fueron las primeras en diseñar este sistema. El inglés James Ellis hizo lo mismo que Diffie, es decir, concibió la idea de que hubiera un sistema de criptografía basado en una llave pública (la k y la m del método RSA) y una llave privada (las p, q, h y $\phi(m)$) para que cualquier persona me pudiera enviar un mensaje cifrado. Al igual que Diffie, Ellis sólo hizo el diseño teórico del sistema sin tener unas funciones matemáticas particulares que hicieran funcionar su método. El problema con Ellis es que trabajaba para la inteligencia británica en el GCHQ (Goverment Communications Headquarters) y todo su trabajo era clasificado como secreto y no se podía dar a conocer. Ellis concibió su idea en 1969 y les propuso a sus colegas la tarea de encontrar las funciones matemáticas que permitieran llevar a la práctica su idea, él mismo no era matemático. fue sino hasta 1973 que el novato Clifford Cooks entró a trabajar a esta oficina, depués de trabajar ahí durante 6 semanas, su jefe, Nick Patterson, le platicó el problema que había propuesto Ellis y, en una tarde, Cooks lo resolvió inventando el metodo RSA. Por supuesto, los británicos no lo dieron a conocer y los norteamericanos lo redescubrieron como hemos platicado en el párrafo anterior.

La idea del RSA también se puede resumir en la siguiente forma. Si yo quiero recibir mensajes cifrados, doy a conocer una función $f: \{a \in \{0,1,2,...,m-1\}: (a,m)=1\} \rightarrow \{a \in \{0,1,2,...,m-1\}: (a,m)=1\}$, que

sea biyectiva. La función es f(a) = b, donde $b \equiv a^k \pmod{n}$. Como yo soy el único que conoce a f^{-1} , yo puedo saber quién es a.

Esto lo mencionamos porque, con el RSA y como la f puede ser conocida por cualquiera, entonces todo el mundo me puede mandar mensajes cifrados. Pero ¿cómo puedo tener certeza absoluta de que el mensaje es de una persona en particular? Bueno, pues también hay una manera de hacer esto. Para explicar cómo se hace, supongamos que quiero tener un intercambio de mensajes con la persona V y que ella da a conocer públicamente su función f_V , a mi función le llamo f_V . Si yo recibo mensajes por medio de mi función f_Y , así nada más, no puedo estar seguro que vengan de V pues, mi línea de transmisión podría estar intervenida. Lo que podemos hacer Vy Yo, es convenir en una palabra clave que vaya acompañada de la fecha del mensaje. Podrá usted decir, que si podemos convenir una palabra clave y secreta, entonces no necesitamos de estarnos mandando mensajes cifrados pues, por la misma vía en que nos dijimos la palabra secreta (podría haber sido personalmente), nos podríamos estar diciendo lo que quisiéramos. Tiene usted razón pero la ventaja de lo de la palabra clave es que sólo la tenemos que decir una vez y, después podemos mandarnos muchos men-Bueno pues para no hacerlo más sajes en forma secreta y a distancia. largo, supongamos que la palabra clave junto con la fecha del mensaje del día está representada por el número a. Entonces, en todos los mensajes Vpodría empezar enviando la "palabra" $f_Y(f_V^{-1}(a))$. Entonces yo le puedo aplicar $f_V(f_Y^{-1}(f_Y(f_V^{-1}(a)))) = a$. Por supuesto que yo conozco f_Y^{-1} y f_V (pues esta última es pública). Y al reconocer yo la palabra clave y la fecha puedo estar seguro que V me está enviando el mensaje, pues V es la única persona que pudo haberlo enviado pues es la única que conoce a f_V^{-1} . Ésta es una manera de "firmar" mensajes cifrados.

En este momento uno se puede preguntar si hay algunas otras funciones matemáticas que sirvan para el mismo objetivo y la respuesta es sí. En las siguientes secciones desarrollaremos los conceptos de curvas elípticas y veremos cómo pueden ser usadas para encriptar mensajes en forma similar a la que se hizo para el RSA. El hecho de buscar otras maneras diferentes de implementar este sistema de encriptado no se debe sólo a la curiosidad de los matemáticos sino también a una razón práctica muy concreta. ¿Qué tal que se descubre algún método fabuloso para factorizar números naturales que haga inútil al RSA? Ya hasta ha habido películas en las que el protagonista

hace este descubrimiento e imagínese lo que se puede hacer con semejante paquete. En la actualidad el RSA es usado por gobiernos, bancos, empresas, etc.

En principio, el RSA funciona de maravilla si tenemos dos primos p y q. Pero como podría usted sospechar, no es tan fácil encontrarse dos primotes de 100 cifras. Pensemos un poco cómo encontrar un primo de ese tamaño. Si tomamos un número z de 100 cifras, si no tenemos más herramientas, para determinar si es primo o no, tenemos que buscar si se puede factorizar o no. Observe que esto es lo que no se puede hacer razonablemente para números de 200 cifras y por eso el RSA funciona. Pues resulta que tampoco es fácil hacerlo para números de 100 cifras y entonces se tienen que buscar métodos alternativos. Una buena forma de ver si un número es casi primo es usar el Pequeño Teorema de Fermat. Recuerde que este resultado dice que, si (a, z) = 1 y z es primo, entonces $a^{z-1} \equiv 1 \pmod{z}$. De manera que, si existe una a < z tal que a^{z-1} no es congruente a 1 módulo z, entonces z no es primo. Lo que se hace en la práctica, es tomar z, tomar varios números a tales que 1 < a < z y verificar si ocurre la congruencia $a^{z-1} \equiv 1 \pmod{z}$, entre más números a sean revisados podemos estar más confiados (aunque nunca podremos estar completamente seguros) de que z es primo. Se ha mostrado que la probabilidad de que z no sea primo cuando tomamos un número adecuado de números a es muy baja y entonces el método RSA se trabaja con estos números z que se acercan mucho a los primos. Por supuesto que hay otros métodos para obtener números que son casi primos que son razonablemente confiables y accesibles pero que necesitan de más Sin embargo, el que hemos descrito, basado en el Pequeño Teorema de Fermat, es bastante bueno.

2.7. MÉTODO MASSEY-OMURA

Otro de los grandes problemas dentro de la teoría de números es el llamado Problema del Logaritmo Discreto. Este problema consiste en calcular x a partir de la expresión $y \equiv a^x \pmod{p}$, donde p es un número cualquiera, a e y son números enteros.

En principio, una forma de resolver este problema sería calcular $a^t \pmod{p}$ para todo t entre 1 y p. Si logramos encontrar entre estos enteros un entero

 t_0 tal que $y \equiv a^{t_0} \pmod{p}$, entonces hacemos $x = t_0$ y así encontramos el valor de x.

Este proceso resulta muy sencillo de seguir, pero resulta demasiado extenso cuando p es un número muy grande, digamos por ejemplo un número que tuviera 200 cifras, puede imaginarse lo complicado que sería repetir el proceso anterior 10^{200} veces aproximadamente.

Basados en este problema tenemos los métodos Massey-Omura y ElGamal, empezaremos por describir el Massey-Omura.

Descripción

Supongamos que un grupo de personas desean enviar y recibir mensajes entre ellos. El Primer paso será que de común acuerdo, escojan un número primo q lo suficientemente grande. A continuación deberán escoger el tamaño de los bloques que serán utilizados para dividir los textos. Posteriormente deberán asignar un número a cada uno de los posibles bloques que puedan obtenerse, de tal manera que si se tienen 2 posibles bloques distintos entonces éstos tengan asignados 2 números distintos. Además deberán cuidar que cada número asignado a un bloque sea primo relativo con q, es decir, si k es un número asignado a un bloque entonces (k,q)=1.

El número q, así como también la información de cuáles son los bloques que se pueden utilizar y el número que tiene asignado cada bloque se hacen del conocimiento de todas los miembros del grupo, inclusive pueden ser conocidos por personas ajenas al grupo sin que se comprometa la seguridad.

A continuación cada persona deberá elegir un número el cual sea primo relativo con q-1, es decir, cada persona elegirá un número e tal que (e,q-1)=1. Una vez elegido e deberá calcular su inverso multiplicativo módulo q-1, de tal manera que encontrará un número d tal que:

$$de \equiv 1 \pmod{q-1}$$

cada persona mantendrá en secreto sus números e y d.

El siguiente paso será el envío y recepción de mensajes. Cabe resaltar que en este método a diferencia de otros no quedan separados claramente los procesos de encriptación y desencriptación. En los métodos hasta ahora

analizados sólo se hace un envío de la información encriptada y la persona que recibe la información debera desencriptarla. Sin embargo como se vera a continuación el método Massey-Omura tiene la particularidad de que se hace un envío repetido de información, por lo que, se hace una encriptación repetida de la misma. Más precisamente la información es encriptada y enviada 3 veces y en la cuarta encriptación se da también la desencriptación de la información.

Para describir cómo se hará el envío de la información tomaremos a dos personas del grupo de personas que mencionamos al principio, las cuales denotaremos con las letras A y B. Estas personas desean enviarse y recibir mensajes entre ellas, lo hacemos de esta manera por simplicidad pero podemos extenderlo a un número mayor de personas. Tanto A como B cuentan con una pareja de números enteros de la forma (e,d), pongamos (e_A,d_A) para A y (e_B,d_B) para B.

Ahora bien supongamos que la persona A desea enviarle un mensaje a la persona B. Para ello primeramente deberá dividir el mensaje que desea enviar en bloques del tamaño elegido previamente y cambiar cada bloque por el número que le corresponda según la asignación que acordaron al principio las personas del grupo. Al hacer A este cambio obtendrá una serie de números, digamos que la serie que obtuvo fue w_0, w_1, \ldots, w_m . El siguiente paso será mandarle esta información a B, pero necesita mandársela encriptada, ya que de enviar esta información sin encriptar, como las demás personas del grupo conocen qué bloque de texto le corresponde a cada número entonces podrán leer el mensaje lo cual no desea A.

Para encriptar el mensaje la persona A tomará cada número de la serie w_0, w_1, \ldots, w_m y lo multiplicará por sí mismo e_A veces calculando cada resultado módulo q. De tal manera que por cada número w_i con $0 \le i \le m$ obtendrá un valor x_i tal que

$$x_i \equiv (w_i)^{e_A} \pmod{q}$$

por lo que podrá formar una nueva serie la cual será x_0, x_1, \ldots, x_m . Esta serie será la que enviará a la persona B.

La persona B al recibir la serie x_0, x_1, \ldots, x_m , no podrá descifrar el mensaje, ya que para ello debería calcular $(x_i)^{-e_A}$ (este calculó se realiza $mod \ q$

por lo que obtendremos un número entero) esto para $0 \le i \le m$, esto debido a que como $x_i \equiv (w_i)^{e_A} \pmod{q}$ entonces obtendría

$$(x_i)^{-e_A} = \left((w_i)^{e_A} \right)^{-e_A} \equiv w_i \pmod{q}$$

con lo cual podría encontrar los números correspondientes a cada bloque del texto que le envío A. Pero como e_A es un número secreto de A entonces es desconocido por B, por lo que B no podrá realizar el calculo de $(x_i)^{-e_A}$. Sin embargo la persona B puede encriptar la serie que recibió y enviarle la serie que obtenga a A. La persona B lo que hará será tomar cada número de la serie que le envió A, multiplicar este número e_B veces y hacer el cálculo modulo q, es decir, para cada entero i que se encuentre entre 0 y m buscará el número y_i mediante la siguiente fórmula

$$y_i \equiv (x_i)^{e_B} \pmod{q}$$

al hacer este proceso para cada i, la persona B obtendrá la serie y_0, y_1, \ldots, y_m , la cual enviará a A.

La persona A como ya conoce el mensaje no le interesa desencriptar la información que le envío B, por lo que simplemente vuelve a encriptar la serie que recibe de B y se la envía. Para hacer esto la persona A lo que hace es multiplicar cada término de la serie por sí mismo un número d_A de veces y hacer el cálculo módulo q. Así por cada entero i entre 0 y m encontrará un número z_i tal que:

$$z_i \equiv (y_i)^{d_A} \pmod{q}$$

con los que formará la serie z_0, z_1, \ldots, z_m , la cual enviará a la persona B. Debemos mencionar algo importante, debido a que para cada i tenemos que $y_i \equiv (x_i)^{e_B} \pmod{q}$ y $x_i \equiv (w_i)^{e_A} \pmod{q}$ entonces tendremos que

$$z_i \equiv (y_i)^{d_A} \equiv \left((x_i)^{e_B} \right)^{d_A} \equiv \left(\left((w_i)^{e_A} \right)^{e_B} \right)^{d_A} \pmod{q}$$

pero si recordamos la persona A calculó d_A de tal forma que

$$d_A \equiv (e_A)^{-1} \pmod{q-1},$$

por lo que $d_A e_A \equiv 1 \pmod{q-1}$. Esto quiere decir que existe un número b tal que $d_A e_A - 1 = b(q-1)$ y entonces $d_A e_A = 1 + b(q-1)$ por lo que

$$z_i \equiv (y_i)^{d_A} \equiv \left(\left((w_i)^{e_A} \right)^{e_B} \right)^{d_A} \equiv \left((w_i)^{e_B} \right)^{e_A d_A}$$
$$\equiv \left((w_i)^{e_B} \right)^{1+b(q-1)} \equiv \left((w_i)^{e_B} \right)^1 \left((w_i)^{e_B} \right)^{b(q-1)} \pmod{q}$$

Ahora bien debido a que como q es un número primo entonces por la definición de la función ϕ de Euler tendremos que $\phi(q) = q - 1$. Además de esto como cada w_i es un número que fue asignado a un bloque, entonces se tendrá que $(w_i, q) = 1$. De lo anterior por el Corolario 4 del apéndice A tendremos que $(w_i)^{q-1} = (w_i)^{\phi(q)} \equiv 1 \pmod{q}$. De esto obtendremos que

$$z_{i} \equiv \left((w_{i})^{e_{B}} \right)^{1} \left((w_{i})^{e_{B}} \right)^{b(q-1)} \equiv (w_{i})^{e_{B}} \left((w_{i})^{q-1} \right)^{be_{B}}$$
$$\equiv (w_{i})^{e_{B}} (1)^{be_{B}} \equiv (w_{i})^{e_{B}} (\text{mod } q)$$

Esta información que acabamos de obtener le será de gran ayuda a la persona B cuando recibe la serie z_0, z_1, \ldots, z_m ya que, si él calcula para cada i:

$$(z_i)^{d_B} \pmod{q}$$

sabe que encontrara los números correspondientes a cada bloque del texto que quería enviarle A, ya que por los últimos cálculos tendremos que

$$(z_i)^{d_B} \equiv \left(w_i^{e_B}\right)^{d_B} \equiv w_i^{e_B d_B} \pmod{q}$$

y como $e_B d_B \equiv 1 \pmod{q-1}$ entonces existe un número r en los enteros tal que $r(q-1) = e_B d_B - 1$, de lo cual $e_B d_B = r(q-1) + 1$ y nuevamente por el Corolario 4 del apéndice A tendremos que

$$(z_i)^{d_B} \equiv w_i^{e_B d_B} \equiv w_i^{r(q-1)+1} \equiv w_i^{r(q-1)} * w_i^{-1} \equiv w_i \pmod{q}$$

Debido a esto si para cada i la persona B calcula $(z_i)^{d_B} \pmod{q}$, entonces obtendrá la serie w_0, w_1, \ldots, w_m y una vez obtenida esta serie entonces podrá encontrar el texto que le envió la persona A.

A continuación haremos un pequeño ejemplo, el cual sólo será ilustrativo. En este ejemplo el tamaño de los bloques que utilizaremos será 1, de tal manera que la separación del texto estará hecha por las letras del alfabeto. Para no hacer demasiado largas las cuentas utilizaremos como q al número 83 y haremos la siguiente asignación entre las letras del alfabeto y algunos números primos relativos con 82, debido a que en el método se requiere que cada valor asignado a un bloque sea primo relativo con q-1. Notemos que los divisores de 82 son 2 y 41, por lo que debemos elegir números que no sean multiplos de 2 o de 41.

	Texto Plano	A	B	C	D	E	F	G	Н	I
ĺ	Ordinal	1	3	5	7	9	11	13	21	23
r	Texto Plano	J	K	L	M	N	\tilde{N}	O	P	Q
	Ordinal	25	27	29	31	33	35	37	39	43
r	Texto Plano	R	S	T	$\mid U \mid$	V	W	X	Y	Z
	Ordinal	45	47	49	51	53	55	57	59	61

Una vez hecho lo anterior supongamos que la persona A ha escogido $e_A = 9$ y que la persona B escogió $e_B = 13$. Entonces tendremos que $d_A = 52$ y $d_B = 32$. Supongamos que la persona A desea enviar la palabra ENCRIPTACION a la persona B, nota que a esta palabra le corresponde la serie

entonces la persona A al elevar cada uno de estos números a la octava potencia (porque $a_B = 8$) y calcular el resultado módulo 83 obtendrá:

$$9^9 \equiv 61 \pmod{83}, \ 33^9 \equiv 75 \pmod{83}, \ 5^9 \equiv 52 \pmod{83}, \ 45^9 \equiv 18 \pmod{83}, \ 23^9 \equiv 38 \pmod{83}, \ 39^9 \equiv 20 \pmod{83}, \ 49^9 \equiv 9 \pmod{83}, \ 1^9 \equiv 1 \pmod{83}, \ 5^9 \equiv 52 \pmod{83}, \ 33^9 \equiv 38 \pmod{83}, \ 37^9 \equiv 49 \pmod{83}, \ 33^9 \equiv 75 \pmod{83}.$$

por lo que tendrá la serie

la cual le enviará a B. La persona B tomará cada elemento de esta serie y entonces lo elevará a la potencia 13, que corresponde a su número e_B y calculará el resultado módulo q con lo cual obtendrá:

```
61^{13} \equiv 31 \pmod{83}, 75^{13} \equiv 21 \pmod{83}, 52^{13} \equiv 79 \pmod{83}, 18^{13} \equiv 42 \pmod{83}, 38^{13} \equiv 69 \pmod{83}, 20^{13} \equiv 76 \pmod{83}, 9^{13} \equiv 78 \pmod{83}, 1^{13} \equiv 1 \pmod{83}, 52^{13} \equiv 79 \pmod{83}, 38^{13} \equiv 69 \pmod{83}, 49^{13} \equiv 75 \pmod{83}, 75^{13} \equiv 21 \pmod{83}.
```

Así la serie que enviará a la persona A será

De donde A, al recibirlos, multiplicará cada uno de estos valores por sí mismos tantas veces como d_A (es decir, 11) y calculará el resultado módulo q, obteniendo así:

```
31^{73} \equiv 78 \pmod{83}, \ 21^{73} \equiv 30 \pmod{83}, \ 79^{73} \equiv 47 \pmod{83}, \ 42^{73} \equiv 14 \pmod{83}, \ 69^{73} \equiv 81 \pmod{83}, \ 76^{73} \equiv 55 \pmod{83}, \ 78^{73} \equiv 75 \pmod{83}, \ 1^{73} \equiv 1 \pmod{83}, \ 79^{73} \equiv 47 \pmod{83}, \ 69^{73} \equiv 81 \pmod{83}, \ 75^{73} \equiv 33 \pmod{83}, \ 21^{73} \equiv 30 \pmod{83}.
```

por lo que A le enviará a B la serie

Así finalmente B hará lo siguiente

```
78^9 \equiv 9 \pmod{83}, \ 30^{19} \equiv 33 \pmod{83}, \ 47^{19} \equiv 5 \pmod{83}, \ 14^{19} \equiv 45 \pmod{83}, \ 81^{19} \equiv 23 \pmod{83}, \ 55^{19} \equiv 39 \pmod{83}, \ 75^{19} \equiv 49 \pmod{83}, \ 1^{19} \equiv 1 \pmod{83}, \ 47^{19} \equiv 5 \pmod{83}, \ 81^{19} \equiv 23 \pmod{83}, \ 33^{19} \equiv 37 \pmod{83}, \ 30^{19} \equiv 33 \pmod{83}.
```

de donde obtendrá la serie

de donde puede deducir que el mensaje que le envío A es ENCRIPTACION. Debemos mencionar que la persona A no necesariamente tiene que hacer la encriptación primero con e_A y después con d_A sino que puede utilizar primero d_A y despues e_A ya que al final de cuentas se obtendrán los mismos resultados. Análogamente, B en lugar de utilizar primero e_B y después d_B , puede usar primero d_B y a continuación e_B .

2.8. MÉTODO ELGAMAL

Al igual que en el método anterior, supondremos que un grupo de personas desea enviar y recibir mensajes entre ellos, y que ya han decidido de qué tamaño serán los bloques que utilizarán, así como también, ya habrán hecho la asignación de un número a cada bloque. Además de lo anterior deberán elegir un número p que sea primo y un número g el cual cumpla que $1 \le g \le p-1$. Tanto p como g deberán hacerse públicos.

Una vez que todos conocen esta información cada persona elegirá un número a el cual no sea divisible por p y debera calcular $g^a \pmod{p}$, el valor resultante de esta operación será su llave pública y el número a será su llave privada, es decir, cada persona contará con un pareja de números (a,b), en donde $b \equiv g^a \pmod{p}$ es conocido por cualquier persona que lo desee y a es un número que solo él conocerá.

Encriptación

El siguiente paso será el envío de mensajes, para ello tomaremos a 2 personas a las que llamaremos A y B, las cuales cuentan con las parejas (a_A, b_A) y (a_B, b_B) respectivamente, debemos recalcar que como b_A y b_B son públicos entonces A conoce b_B y B conoce b_A . Supongamos que A desea enviarle un mensaje a B para lo cual ya ha dividido el texto en bloques y ya cambió cada bloque por el número respectivo, obteniendo así una serie de números n_1, n_2, \ldots, n_m . Con esto la persona A, como conoce b_B calculará $b_B^{a_A}$ (mod p) de donde obtendrá un valor c.

Una vez que A ha calculado c multiplicará este valor por cada uno de los números de la serie n_1, n_2, \ldots, n_m . Al hacer cada una de estas multiplicaciones deberá calcular el resultado módulo p, es decir, para cada n_i con $1 \leq i \leq m$ buscará un valor q_i tal que

$$q_i \equiv n_i c \pmod{p}$$

Una vez calculados todos los q_i , entonces enviará a B la serie

$$q_1, q_2, \ldots, q_m$$

y con esto concluirá el proceso de encriptación.

Desencriptación

El siguiente paso será desencriptar el mensaje, proceso que queda a cargo de la persona B, para ello cuenta con la siguiente información

1	q_1, q_2, \ldots, q_m	Mensaje cifrado
2	a_B	Llave privada de B
3	b_A	Llave pública de A

con esta información, lo que hará B para poder encontrar el mensaje que le envío A será primero calcular $b_A^{a_B} \pmod{p}$, de lo cual obtendrá un valor x. Cabe resaltar que como $b_A \equiv g^{a_A} \pmod{p}$, entonces $x \equiv (b_A)^{a_B} \equiv (g^{a_A})^{a_B} \pmod{p}$. Una vez que B ha encontrado x entonces buscará un número z tal que $z \equiv (x)^{-1} \pmod{q}$. A este número z deberá multiplicarlo por cada uno de los números q_i $(1 \leq i \leq m)$ que le envío A. El resultado de cada una de estas multiplicaciones deberá calcularlo módulo p, es decir,

$$zq_i \pmod{q}$$
, con $1 \leqslant i \leqslant m$

al realizar los cálculos anteriores B encontrará que, como $z \equiv x^{-1} \pmod{p}$ y $q_i \equiv n_i c \pmod{p}$, entonces

$$zq_i \equiv (x^{-1})n_i c \pmod{p}$$

pero $c \equiv b_B^{a_A} \pmod{p}$, por lo que

$$zq_i \equiv (x^{-1})n_i c \equiv (x^{-1})n_i(b_R^{a_A}) \pmod{p}$$

y debido a que $x \equiv b_A^{a_B} \pmod{p}$ entonces

$$zq_i \equiv (b_A^{a_B})^{-1} n_i(b_B^{a_A}) \pmod{p}$$

finalmente recordemos que $b_A \equiv g^{a_A} \pmod{p}$ y $b_B \equiv g^{a_B} \pmod{p}$, entonces para zq_i tendremos

$$zq_{i} \equiv (b_{A}^{a_{B}})^{-1}n_{i}(b_{B}^{a_{A}}) \equiv \left((g^{a_{A}})^{a_{B}}\right)^{-1}n_{i}\left((g^{a_{B}})^{a_{A}}\right)$$
$$\equiv n_{i}\left((g^{a_{A}})^{a_{B}}\right)^{-1}\left((g^{a_{B}})^{a_{A}}\right) \equiv n_{i} \pmod{p}$$

Con esto la persona B podrá reconocer a cada una de las q_i de tal manera que podrá recuperar la serie $q_1, q_2, \ldots q_m$ y con ello recuperar el mensaje que le enviará A. Con lo cual terminamos la descripción del método.

Ejemplo

Como ejemplo utilizaremos a dos personas a las que llamaremos A y B las cuales han decidido que sus mensajes no los mandarán letra por letra sino que dividirán sus textos en parejas de letras. Como la persona A desea enviar a B la palabra ENCRIPTACION NUMERICA, entonces deberá dividir la palabra de la siguiente manera EN-CR-IP-TA-CI-ON-*N-UM-ER-IC-A*, aquí el símbolo * lo estamos ocupando para los espacios en blanco. El siguiente problema que deberán resolver es cómo asignar un número a cada bloque posible, para ello han construido una tabla, la cual se muestra al final de la sección.

El proceso para contruir la tabla es el siguiente, digamos que queremos encontrar el número que le corresponde al bloque UX, entonces buscamos que número le corresponde a U y a X en la siguiente tabla.

Texto Plano	A	B	C	D	E	F	G	H	I	J
Ordinal	1	2	3	4	5	6	7	8	9	10
			·				·	·		
Texto Plano	K	L	M	N	1	$ ilde{ m V}$	0	P	Q	R
Ordinal	11	12	13	14	1	.5	16	17	18	19
					·					
Texto Plano	S	T	U	V	V	V	X	Y	Z	*
Ordinal	20	21	22	23	$3 \mid 2$	24	25	26	27	28

como el número que le corresponde a U es 22 y el de X es 25 entonces calculan (22-1)*28+25=588+25=613 y este es el número que le corresponde al bloque UX. Más precisamente, si en un bloque la primer letra tiene asignado el número a y la segunda letra el número b, entonces el número asignado a tal bloque será (a-1)*28+b.

Debido a lo anterior los números asignados a EN-CR-IP-TA-CI-ON-*N-UM-ER-IC-A* podrán ser calculados como sigue:

Bloque	Número de la	Número de la	Operación	Número asignado
	primera	segunda		al bloque
	letra	letra		1
??	X	у	(x-1)28 + y = z	c
EN	5	14	(5-1)*28+14=112+14=127	127
CR	3	19	(3-1)*28+19=56+19=75	75
IP	9	17	(9-1)*28+17=224+17=241	241
TA	21	1	(21-1)*28+1=560+1=561	561
CI	3	9	(3-1)*28+9=56+9=65	65
ON	16	14	(16-1)*28+14=420+14=434	434
*N	28	14	(28-1)*28+14=756+14=470	470
UM	22	13	(22-1)*28+13=588+13=601	601
ER	5	19	(5-1)*28+19=112+19=131	131
IC	9	3	(9-1)*28+3=224+3=227	227
A*	1	28	(1-1)*28+28=0+28=28	28

por lo que el texto ENCRIPTACION NUMERICA tendrá asignada la serie

Por otro lado han elegido de común acuerdo que p=787 y g=29, además cada uno ha elegido su número secreto y su número público, y este último ya se lo han hecho llegar a la otra persona. En el caso de A ha elegido $a_A=13$, por lo que $b_A=g^{a_A}=29^{13}=10260628712958602189\equiv 734 \pmod{787}$. Y B ha escogido $a_B=11$, y a partir de este número ha calculado g^{a_B} lo cual le ha dado como resultado $b_B=29^{11}=12200509765705829\equiv 684 \pmod{787}$. De tal manera que la pareja de números de A es (13,734) y la de B es (11,684).

Como el mensaje que desea enviarle A a B es ENCRIPTACION NUMERICA el cual tiene asignado la serie

deberá calcular primero $b_B^{a_A}$ (mod 787), es decir, $(684)^{13} \equiv 420 \pmod{787}$ de donde el número c que aparece en la descripción del método es 420. Recordemos que este cálculo lo puede hacer ya que $b_B = 684$ es el número público de B por lo que lo conoce A. Una vez que ha calculado el número

c la persona A deberá multiplicar este número por cada número de la serie que corresponde al texto que desea enviar a B, de tal manera que hará los siguientes cálculos.

```
\begin{array}{c} 420(127)\equiv 611 \pmod{787}, \ 420(75)\equiv 20 \pmod{787}, \\ 420(241)\equiv 484 \pmod{787}, \ 420(561)\equiv 307 \pmod{787}, \\ 420(65)\equiv 542 \pmod{787}, \ 420(434)\equiv 483 \pmod{787}, \\ 420(470)\equiv 650 \pmod{787}, \ 420(601)\equiv 580 \pmod{787}, \\ 420(31)\equiv 428 \pmod{787}, \ 420(227)\equiv 113 \pmod{787}, \\ 420(28)\equiv 742 \pmod{721}, \end{array}
```

de donde obtendrá la serie

```
611, 20, 484, 307, 542, 483, 650, 580, 428, 113, 742
```

la cual enviará a B. Una vez que B recibe esta serie de números debera calcular $x = (b_A)^{a_B}$ (mod 787), este cálculo lo puede hacer ya que sabe quien es b_A porque este número ya lo hizo público A. Entonces B encontrará que

```
x = (734)^{11} = 33316291944896365241187223107584 \equiv 420 \pmod{787}
```

así, una vez que B sabe que x=420 entonces calcula el inverso multiplicativo de este número y el resultado lo calcula módulo 787, con esto encontrará un valor z tal que $z=b_A^{a_B}\equiv 594 \pmod{787}$. De acuerdo a la descripción que se hizo del método este número z que encontró B deberá multiplicarlo por cada uno de los números que le envío A y calcular el resultado módulo 787. Con esto podrá encontrar algunos números que verificará en la tabla al final de la sección para ver a que bloques pertenecen y así poder encontrar el mensaje que le envío A. El resultado de las operaciones es el siguiente:

```
594(611) \equiv 127 \pmod{787}, \quad 594(20) \equiv 75 \pmod{787},

594(484) \equiv 241 \pmod{787}, \quad 594(307) \equiv 561 \pmod{787},

594(542) \equiv 65 \pmod{787}, \quad 594(483) \equiv 434 \pmod{787},

594(650) \equiv 470 \pmod{787}, \quad 594(580) \equiv 601 \pmod{787},

594(428) \equiv 31 \pmod{787}, \quad 594(113) \equiv 227 \pmod{787},

594(742) \equiv 28 \pmod{721},
```

De donde B obtendrá la serie

```
127, 75, 241, 561, 65, 434, 470, 601, 31, 227, 28
```

que corresponde al texto ENCRIPTACION NUMERICA, con esto habrá llegado el mensaje a su destinatario.

Tabla

Bloque	Número	_
AA	1	_
AD	4	
AG	7	
AJ	10	
\mathbf{AM}	13	
AO	16	
\mathbf{AR}	19	
AU	22	
\mathbf{AX}	25	
A*	28	
\mathbf{BC}	31	
\mathbf{BF}	34	
BI	37	
$_{ m BL}$	40	
$ m B ilde{N}$	43	
\mathbf{BQ}	46	
\mathbf{BT}	49	
\mathbf{BW}	52	
\mathbf{BZ}	55	
$^{\mathrm{CB}}$	58	
\mathbf{CE}	61	
$\mathbf{C}\mathbf{H}$	64	
$\mathbf{C}\mathbf{K}$	67	
$\mathbf{C}\mathbf{N}$	70	
CP	73	
\mathbf{CS}	76	
\mathbf{CV}	79	
\mathbf{CY}	82	
DA	85	
DD	88	
\mathbf{DG}	91	
DJ	94	
DM	97	
DO	100	

Bloque	Número
\mathbf{AB}	2
\mathbf{AE}	5
\mathbf{AH}	8
$\mathbf{A}\mathbf{K}$	11
$\mathbf{A}\mathbf{N}$	14
\mathbf{AP}	17
\mathbf{AS}	20
\mathbf{AV}	23
\mathbf{AY}	26
$\mathbf{B}\mathbf{A}$	29
BD	32
\mathbf{BG}	35
\mathbf{BJ}	38
\mathbf{BM}	41
\mathbf{BO}	44
${ m BR}$	47
\mathbf{BU}	50
$\mathbf{B}\mathbf{X}$	53
\mathbf{B}^*	56
\mathbf{CC}	59
\mathbf{CF}	62
\mathbf{CI}	65
\mathbf{CL}	68
$ ilde{ ext{CN}}$	71
$\mathbf{C}\mathbf{Q}$	74
\mathbf{CT}	77
$\mathbf{C}\mathbf{W}$	80
\mathbf{CZ}	83
DB	86
\mathbf{DE}	89
\mathbf{DH}	92
$\mathbf{D}\mathbf{K}$	95
\mathbf{DN}	98
DP	101

Bloque	Número
\mathbf{AC}	3
\mathbf{AF}	6
\mathbf{AI}	9
${f AL}$	12
$ ilde{ ext{AN}}$	15
\mathbf{AQ}	18
\mathbf{AT}	21
\mathbf{AW}	24
\mathbf{AZ}	27
BB	30
${f BE}$	33
BH	36
$\mathbf{B}\mathbf{K}$	39
$\mathbf{B}\mathbf{N}$	42
BP	45
\mathbf{BS}	48
${f BV}$	51
\mathbf{BY}	54
$\mathbf{C}\mathbf{A}$	57
$egin{array}{c} \mathbf{CA} \\ \mathbf{CD} \end{array}$	60
\mathbf{CG}	63
\mathbf{CJ}	66
$\mathbf{C}\mathbf{M}$	69
\mathbf{CO}	72
$\mathbf{C}\mathbf{R}$	75
$\mathbf{C}\mathbf{U}$	78
$\mathbf{C}\mathbf{X}$	81
\mathbf{C}^*	84
\mathbf{DC}	87
\mathbf{DF}	90
\mathbf{DI}	93
\mathbf{DL}	96
$ ilde{ extbf{DN}}$	99
$\mathbf{D}\mathbf{Q}$	102

Tabla

Bloque	Número	Bloque	Número	Bloque	Número
DR	103	DS	104	$\overline{\mathrm{DT}}$	105
DU	106	\mathbf{DV}	107	\mathbf{DW}	108
DX	109	\mathbf{DY}	110	\mathbf{DZ}	111
D*	112	$\mathbf{E}\mathbf{A}$	113	\mathbf{EB}	114
EC	115	\mathbf{ED}	116	$\mathbf{E}\mathbf{E}$	117
\mathbf{EF}	118	\mathbf{EG}	119	$\mathbf{E}\mathbf{H}$	120
\mathbf{EI}	121	EJ	122	$\mathbf{E}\mathbf{K}$	123
\mathbf{EL}	124	\mathbf{EM}	125	EN	126
$ ilde{ ext{EN}}$	127	EO	128	EP	129
$\mathbf{E}\mathbf{Q}$	130	$\mathbf{E}\mathbf{R}$	131	ES	132
\mathbf{ET}	133	\mathbf{EU}	134	\mathbf{EV}	135
$\mathbf{E}\mathbf{W}$	136	$\mathbf{E}\mathbf{X}$	137	\mathbf{EY}	138
\mathbf{EZ}	139	\mathbf{E}^*	140	FA	141
FB	142	\mathbf{FC}	143	FD	144
\mathbf{FE}	145	\mathbf{FF}	146	\mathbf{FG}	147
\mathbf{FH}	148	\mathbf{FI}	149	\mathbf{FJ}	150
$\mathbf{F}\mathbf{K}$	151	\mathbf{FL}	152	\mathbf{FM}	153
FN	154	$ ilde{ ext{FN}}$	155	FO	156
FP	157	\mathbf{FQ}	158	\mathbf{FR}	159
\mathbf{FS}	160	\mathbf{FT}	161	\mathbf{FU}	162
\mathbf{FV}	163	\mathbf{FW}	164	\mathbf{FX}	165
\mathbf{FY}	166	\mathbf{FZ}	167	\mathbf{F}^*	168
$\mathbf{G}\mathbf{A}$	169	GB	170	GC	171
$\mathbf{G}\mathbf{D}$	172	\mathbf{GE}	173	\mathbf{GF}	174
GG	175	GH	176	GI	177
GJ	178	GK	179	\mathbf{GL}	180
$\mathbf{G}\mathbf{M}$	181	$\mathbf{G}\mathbf{N}$	182	$ ilde{ ext{GN}}$	183
GO	184	\mathbf{GP}	185	$\mathbf{G}\mathbf{Q}$	186
$\mathbf{G}\mathbf{R}$	187	\mathbf{GS}	188	\mathbf{GT}	189
$\mathbf{G}\mathbf{U}$	190	\mathbf{GV}	191	GW	192
GX	193	$\mathbf{G}\mathbf{Y}$	194	\mathbf{GZ}	195
G^*	196	HA	197	HB	198
HC	199	$^{ m HD}$	200	\mathbf{HE}	201
HF	202	HG	203	HH	204

Tabla

Bloque	Número	Bloque	Número	Bloque
HI	205	HJ	206	HK
HL	208	$\mathbf{H}\mathbf{M}$	209	HN
$ m H ilde{N}$	211	НО	212	HP
HQ	214	$_{ m HR}$	215	HS
HT	217	$\mathbf{H}\mathbf{U}$	218	HV
HW	220	HX	221	HY
HZ	223	H*	224	IA
IB	226	\mathbf{IC}	227	ID
\mathbf{IE}	229	\mathbf{IF}	230	IG
IH	232	II	233	IJ
IK	235	\mathbf{IL}	236	\mathbf{IM}
IN	238	$ ilde{ ext{IN}}$	239	IO
IP	241	IQ	242	IR
IS	244	IT	245	IU
IV	247	\mathbf{IW}	248	IX
IY	250	\mathbf{IZ}	251	I*
JA	253	$_{ m JB}$	254	JC
JD	256	${f JE}$	257	\mathbf{JF}
JG	259	JH	260	JI
JJ	262	JK	263	m JL
$\mathbf{J}\mathbf{M}$	265	JN	266	$ m J ilde{N}$
JO	268	JP	269	$_{ m JQ}$
m JR	271	JS	272	m JT
JU	274	JV	275	JW
JX	277	JY	278	JZ
J*	280	KA	281	KB
KC	283	KD	284	KE
KF	286	KG	287	KH
KI	289	KJ	290	KK
KL	292	$\mathbf{K}\mathbf{M}$	293	KN
$ ilde{ ext{KN}}$	295	KO	296	KP
KQ	298	KR	299	KS
KT	301	KU	302	KV
KW	304	KX	305	KY

Bloque	Número
HK	207
HN	210
$_{ m HP}$	213
\mathbf{HS}	216
HV	219
$\mathbf{H}\mathbf{Y}$	222
\mathbf{IA}	225
ID	228
\mathbf{IG}	231
\mathbf{IJ}	234
\mathbf{IM}	237
IO	240
IR	243
\mathbf{IU}	246
\mathbf{IX}	249
I^*	252
m JC	255
${f JF}$	258
\mathbf{JI}	261
$\mathop{ m JL}\limits_{ ilde{m{z}}}$	264
JN	267
$_{ m JQ}$	270
\mathbf{JT}	273
$_{-}^{\mathrm{JW}}$	276
JZ	279
KB	282
KE	285
KH	288
KK	291
KN	294
KP	297
KS	300
KV	303
$\mathbf{K}\mathbf{Y}$	306

Tabla

Bloque	Número	Bloque	Número	Bloque	Número
KZ	307	K*	308	$\mathbf{L}\mathbf{A}$	309
LB	310	\mathbf{LC}	311	LD	312
$\mathbf{L}\mathbf{E}$	313	\mathbf{LF}	314	$\mathbf{L}\mathbf{G}$	315
LH	316	\mathbf{LI}	317	LJ	318
LK	319	LL	320	LM	321
LN	322	$ ilde{ ext{LN}}$	323	LO	324
LP	325	LQ	326	LR	327
LS	328	\mathbf{LT}	329	$\mathbf{L}\mathbf{U}$	330
LV	331	$\mathbf{L}\mathbf{W}$	332	$\mathbf{L}\mathbf{X}$	333
LY	334	$\mathbf{L}\mathbf{Z}$	335	L^*	336
MA	337	MB	338	MC	339
MD	340	\mathbf{ME}	341	\mathbf{MF}	342
MG	343	MH	344	\mathbf{MI}	345
MJ	346	MK	347	\mathbf{ML}	348
MM	349	MN	350	$ m M ilde{N}$	351
MO	352	\mathbf{MP}	353	MQ	354
\mathbf{MR}	355	MS	356	\mathbf{MT}	357
MU	358	MV	359	MW	360
$\mathbf{M}\mathbf{X}$	361	\mathbf{MY}	362	\mathbf{MZ}	363
M*	364	NA	365	NB	366
NC	367	ND	368	NE	369
NF	370	NG	371	\mathbf{NH}	372
NI	373	NJ	374	NK	375
NL	376	NM	377	NN	378
NÑ	379	NO	380	NP	381
NQ	382	NR	383	NS	384
NT	385	NU	386	NV	387
NW	388	NX	389	NY	390
NZ	391	N*	392	$ ilde{\mathbf{N}}\mathbf{A}$	393
$ ilde{ ext{NB}}$	394	$ ilde{ ext{NC}}$	395	$ ilde{ ext{ND}}$	396
$ ilde{\mathbf{N}}\mathbf{E}$	397	$ ilde{\mathbf{N}}\mathbf{F}$	398	$ ilde{\mathbf{N}}\mathbf{G}$	399
$\tilde{\mathbf{N}}\mathbf{H}$	400	$ ilde{ ext{NI}}$	401	$ ilde{ ext{NJ}}$	402
ÑK	403	$ ilde{ ext{NL}}$	404	$ ilde{\mathbf{N}}\mathbf{M}$	405
ÑN	406	ÑÑ	407	ÑO	408

Tabla

Bloque	Número	Bloque	Número	Bloque	Número
ÑP	409	$ ilde{ ext{NQ}}$	410	$ ilde{\mathbf{N}}\mathbf{R}$	411
$ ilde{ ext{NS}}$	412	$ ilde{\mathbf{N}}\mathbf{T}$	413	$ ilde{\mathbf{N}}\mathbf{U}$	414
$ ilde{ ext{NV}}$	415	$ ilde{\mathbf{N}}\mathbf{W}$	416	$ ilde{\mathbf{N}}\mathbf{X}$	417
ÑY	418	$ ilde{ ext{NZ}}$	419	$ ilde{\mathbf{N}}^*$	420
OA	421	OB	422	\mathbf{OC}	423
OD	424	OE	425	OF	426
OG	427	ОН	428	OI	429
OJ	430	OK	431	\mathbf{OL}	432
\mathbf{OM}	433	ON	434	$ ilde{ m ON}$	435
OO	436	OP	437	OQ	438
OR	439	os	440	OT	441
OU	442	OV	443	OW	444
OX	445	OY	446	OZ	447
O*	448	PA	449	PB	450
PC	451	PD	452	\mathbf{PE}	453
\mathbf{PF}	454	PG	455	PH	456
PI	457	PJ	458	PK	459
PL	460	PM	461	PN	462
$ m P ilde{N}$	463	PO	464	PP	465
PQ	466	PR	467	\mathbf{PS}	468
PT	469	\mathbf{PU}	470	\mathbf{PV}	471
PW	472	$\mathbf{P}\mathbf{X}$	473	\mathbf{PY}	474
PZ	475	P*	476	$\mathbf{Q}\mathbf{A}$	477
QB	478	QC	479	QD	480
\mathbf{QE}	481	\mathbf{QF}	482	$\mathbf{Q}\mathbf{G}$	483
QH	484	QI	485	$_{ m QJ}$	486
QK	487	QL	488	$\mathbf{Q}\mathbf{M}$	489
$\mathbf{Q}\mathbf{N}$	490	$ extbf{Q} ilde{ extbf{N}}$	491	QO	492
\mathbf{QP}	493	QQ	494	$\mathbf{Q}\mathbf{R}$	495
$\mathbf{Q}\mathbf{S}$	496	\mathbf{QT}	497	$\mathbf{Q}\mathbf{U}$	498
$\mathbf{Q}\mathbf{V}$	499	$\mathbf{Q}\mathbf{W}$	500	$\mathbf{Q}\mathbf{X}$	501
$\mathbf{Q}\mathbf{Y}$	502	$\mathbf{Q}\mathbf{Z}$	503	Q^*	504
$\mathbf{R}\mathbf{A}$	505	RB	506	RC	507
RD	508	\mathbf{RE}	509	\mathbf{RF}	510

Tabla

Bloque	Número	
RG	511	
RJ	514	
RM	517	
RO	520	
RR	523	
RU	526	
$\mathbf{R}\mathbf{X}$	529	
R*	532	
\mathbf{SC}	535	
\mathbf{SF}	538	
\mathbf{SI}	541	
\mathbf{SL}	544	
$ ilde{ ext{SN}}$	547	
\mathbf{SQ}	550	
\mathbf{ST}	553	
SW	556	
SZ	559	
TB	562	
${f TE}$	565	
\mathbf{TH}	568	
$\mathbf{T}\mathbf{K}$	571	
TN	574	
\mathbf{TP}	577	
TS	580	
\mathbf{TV}	583	
\mathbf{TY}	586	
$\mathbf{U}\mathbf{A}$	589	
UD	592	
$\mathbf{U}\mathbf{G}$	595	
$\mathbf{U}\mathbf{J}$	598	
$\mathbf{U}\mathbf{M}$	601	
UO	604	
$\mathbf{U}\mathbf{R}$	607	
UU	610	

Bloque	Número
RH	512
$\mathbf{R}\mathbf{K}$	515
$\mathbf{R}\mathbf{N}$	518
\mathbf{RP}	521
\mathbf{RS}	524
\mathbf{RV}	527
$\mathbf{R}\mathbf{Y}$	530
$\mathbf{S}\mathbf{A}$	533
SD	536
\mathbf{SG}	539
SJ	542
\mathbf{SM}	545
\mathbf{SO}	548
\mathbf{SR}	551
\mathbf{SU}	554
$\mathbf{S}\mathbf{X}$	557
S^*	560
\mathbf{TC}	563
${f TF}$	566
\mathbf{TI}	569
${ m TL}$	572
$ ilde{ extbf{TN}}$	575
$\mathbf{T}\mathbf{Q}$	578
\mathbf{TT}	581
${f TW}$	584
${f TZ}$	587
\mathbf{UB}	590
$\mathbf{U}\mathbf{E}$	593
$\mathbf{U}\mathbf{H}$	596
$\mathbf{U}\mathbf{K}$	599
$\mathbf{U}\mathbf{N}$	602
\mathbf{UP}	605
\mathbf{US}	608
$\mathbf{U}\mathbf{V}$	611

Bloque	Número
RI	513
\mathbf{RL}	516
$ ext{R} ilde{ ext{N}}$	519
RQ	522
\mathbf{RT}	525
$\mathbf{R}\mathbf{W}$	528
\mathbf{RZ}	531
\mathbf{SB}	534
\mathbf{SE}	537
\mathbf{SH}	540
$\mathbf{S}\mathbf{K}$	543
$\mathbf{S}\mathbf{N}$	546
\mathbf{SP}	549
SS	552
${f SV}$	555
\mathbf{SY}	558
TA	561
TD	564
\mathbf{TG}	567
TJ	570
\mathbf{TM}	573
\mathbf{TO}	576
\mathbf{TR}	579
\mathbf{TU}	582
TX	585
\mathbf{T}^*	588
UC	591
\mathbf{UF}	594
\mathbf{UI}	597
\mathbf{UL}	600
$ ilde{ ext{UN}}$	603
$\mathbf{U}\mathbf{Q}$	606
\mathbf{UT}	609
$\mathbf{U}\mathbf{W}$	612

Tabla

Bloque	Número	Bloque	Número	Bloque	Número
UX	613	UY	614	$\mathbf{U}\mathbf{Z}$	615
\mathbf{U}^*	616	VA	617	VB	618
VC	619	VD	620	VE	621
$\mathbf{V}\mathbf{F}$	622	VG	623	VH	624
VI	625	VJ	626	VK	627
VL	628	VM	629	VN	630
$ m V ilde{N}$	631	VO	632	VP	633
VQ	634	VR	635	VS	636
$\mathbf{V}\mathbf{T}$	637	VU	638	VV	639
VW	640	VX	641	VY	642
VZ	643	$\mathbf{V}^{f *}$	644	WA	645
WB	646	\mathbf{WC}	647	WD	648
\mathbf{WE}	649	\mathbf{WF}	650	WG	651
WH	652	\mathbf{WI}	653	WJ	654
WK	655	\mathbf{WL}	656	$\mathbf{W}\mathbf{M}$	657
WN	658	$ m W ilde{N}$	659	WO	660
WP	661	WQ	662	WR	663
WS	664	\mathbf{WT}	665	WU	666
WV	667	$\mathbf{W}\mathbf{W}$	668	WX	669
WY	670	\mathbf{WZ}	671	\mathbf{W}^*	672
XA	673	XB	674	XC	675
XD	676	$\mathbf{X}\mathbf{E}$	677	\mathbf{XF}	678
XG	679	XH	680	XI	681
XJ	682	XK	683	\mathbf{XL}	684
$\mathbf{X}\mathbf{M}$	685	XN	686	$ m X ilde{N}$	687
XO	688	XP	689	$\mathbf{X}\mathbf{Q}$	690
XR	691	XS	692	$\mathbf{X}\mathbf{T}$	693
XU	694	XV	695	$\mathbf{X}\mathbf{W}$	696
XX	697	XY	698	XZ	699
X*	700	YA	701	YB	702
YC	703	YD	704	YE	705
YF	706	YG	707	YH	708
YI	709	YJ	710	YK	711
\mathbf{YL}	712	YM	713	YN	714

Tabla

Bloque	Número
ΥÑ	715
$\mathbf{Y}\mathbf{Q}$	718
\mathbf{YT}	721
$\mathbf{Y}\mathbf{W}$	724
YZ	727
$\mathbf{Z}\mathbf{B}$	730
$\mathbf{Z}\mathbf{E}$	733
\mathbf{ZH}	736
$\mathbf{Z}\mathbf{K}$	739
ZN	742
\mathbf{ZP}	745
$\mathbf{Z}\mathbf{S}$	748
\mathbf{ZV}	751
$\mathbf{Z}\mathbf{Y}$	754
*A	757
*D	760
*G	763
*J	766
*M	769
*O	772
*R	775
*U	778
*X	781
**	784

Bloque	Número
YO	716
$\mathbf{Y}\mathbf{R}$	719
$\mathbf{Y}\mathbf{U}$	722
$\mathbf{Y}\mathbf{X}$	725
\mathbf{Y}^*	728
\mathbf{ZC}	731
${f ZF}$	734
${f Z}{f I}$	737
${f ZL}$	740
$ ilde{\mathbf{Z}} ilde{\mathbf{N}}$	743
${f Z}{f Q}$	746
${f ZT}$	749
${f ZW}$	752
$\mathbf{Z}\mathbf{Z}$	755
*B	758
$*\mathrm{E}$	761
*H	764
*K	767
*N	770
*P	773
*S	776
*V	779
*Y	782

Bloque	Número
\mathbf{YP}	717
YS	720
$\mathbf{Y}\mathbf{V}$	723
$\mathbf{Y}\mathbf{Y}$	726
${f Z}{f A}$	729
ZD	732
\mathbf{ZG}	735
\mathbf{ZJ}	738
${f Z}{f M}$	741
\mathbf{ZO}	744
$\mathbf{Z}\mathbf{R}$	747
$\mathbf{Z}\mathbf{U}$	750
$\mathbf{Z}\mathbf{X}$	753
\mathbf{Z}^*	756
*C	759
$*{ m F}$	762
*I	765
$*\mathrm{L}$	768
$* ilde{ ext{N}}$	771
*Q	774
*T	777
$*\mathbf{W}$	780
$*\mathbf{Z}$	783

Capítulo 3 CURVAS ELÍPTICAS

3.1. CURVAS ELÍPTICAS EN $\mathbb R$

Hasta aquí hemos descrito lo que es el método RSA. Como se puede ver, las matemáticas que se usan, si bien no son elementales, tampoco requieren más que de un curso de Teoría de Números. Se puede hacer una variante de este método usando matemáticas más profundas. Esto es lo que trataremos a continuación. Para empezar, necesitamos saber qué son las curvas elípticas.

DEFINICIÓN 3.1.1 Una curva elíptica sobre un campo \mathbb{F} (sólo tomaremos campos no degenerados, esto es, campos que tienen al menos un elemento diferente de 0, o equivalentemente, campos en los que $0 \neq 1$) es una curva que está dada por una ecuación de la forma:

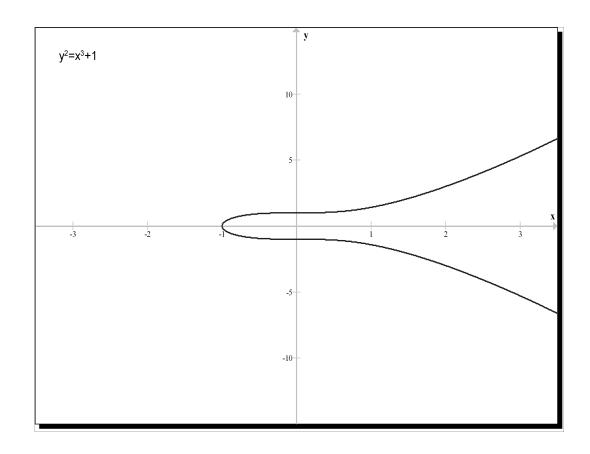
$$y^{2} + axy + by = x^{3} + cx^{2} + dx + e$$
, donde $a, b, c, d, e \in \mathbb{F}$,

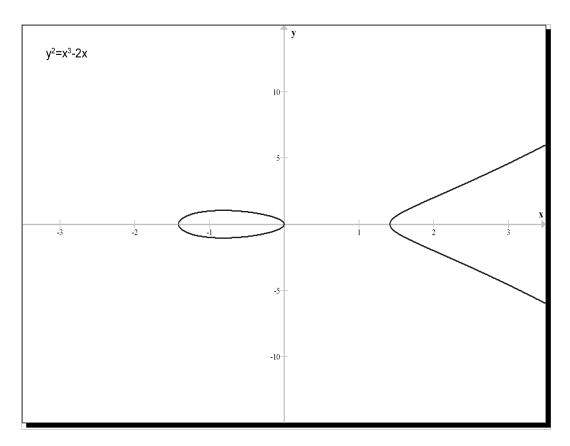
que además es una curva suave (esto quiere decir que las derivadas parciales $\frac{\partial f}{\partial x}$ y $\frac{\partial f}{\partial y}$ no se pueden anular ambas en un mismo elemento (x,y) de la curva (donde $f(x,y)=y^2+axy+by-(x^3+cx^2+dx+e)$) o equivalentemente, que no existe una pareja (x,y) en la curva que sea solución común a las ecuaciónes $ay=3x^2+2cx+d$ y 2y+ax+b=0).

Dada una curva elíptica fija, denotaremos por $S(\mathbb{F})$ al conjunto de soluciones de la ecuación añadiéndole el punto al infinito al cual denotaremos por ∞ , es decir:

$$S(\mathbb{F}) = \{(x, y) \in \mathbb{F}^2 : y^2 + axy + by = x^3 + cx^2 + dx + e\} \cup \{\infty\}$$

Ejemplos de curvas elípticas





En el caso en que también estemos considerando un campo de extensión \mathbb{K} de \mathbb{F} , también denotaremos:

$$S(\mathbb{K}) = \{(x,y) \in \mathbb{K}^2 : y^2 + axy + by = x^3 + cx^2 + dx + e\} \cup \{\infty\}.$$

Lo primero que haremos es mostrar que la ecuación de una curva elíptica puede ser escrita en forma más simple de acuerdo a la característica del campo sobre el cual estamos trabajando (recordemos que la característica de un campo $\mathbb F$ se define como el mínimo número natural p en $\mathbb N$ tal que para todo $a\neq 0$ en $\mathbb F$ se cumple que $p+p+\cdots+p=pa=0$. En caso de no

existir tal p como en el caso de \mathbb{Z} , se define la característica del campo como 0).

LEMA 3.1.2 La ecuación de una curva elíptica se puede simplificar, usando una transformación afín llegando a la forma:

52

- (a) $y^2 = x^3 + cx^2 + dx + e$, si $Car(\mathbb{F}) = 3$.
- **(b)** $y^2 = x^3 + dx + e$, si $Car(\mathbb{F}) \neq 2, 3$.
- (c) $y^2 + axy = x^3 + cx^2 + e$, si $Car(\mathbb{F}) = 2$ y el coeficiente del término xy es diferente de cero.
- (d) $y^2 + ay = x^3 + dx + e$, si $Car(\mathbb{F}) = 2$ y el coeficiente del término xy es cero.

DEMOSTRACIÓN.

(a) $Car(\mathbb{F}) = 3$.

En este caso, sabemos que 3z = 0, o z = -2z, para toda $z \in \mathbb{F}$.

Proponemos el siguiente cambio de variable: y = v + au + b y x = u. Sustituyendo en $y^2 + axy + by = x^3 + cx^2 + dx + e$, obtenemos

$$(v + au + b)^{2} + au(v + au + b) + b(v + au + b) = u^{3} + cu^{2} + du + e,$$

de manera que:

$$v^{2} + (au)^{2} + b^{2} + 2auv + 2abu + 2bv + auv + (au)^{2} + abu + bv + abu + b^{2} = u^{3} + cu^{2} + du + e.$$

Usando que 3z=0 para toda $z\in\mathbb{F},$ podemos simplificar, obteniendo:

$$v^{2} + 2(au)^{2} + 2b^{2} + abu = u^{3} + cu^{2} + du + e.$$

Lo que se puede escribir como:

$$v^2 = u^3 + fu^2 + gu + h,$$

donde $f = c - 2a^2$, g = d - ab y $h = e - 2b^2$. Ésta es la forma que buscábamos por lo que hemos terminado con el inciso (a).

(b) $Car(\mathbb{F}) \neq 2, 3$.

Aquí es conveniente recordar un par de cosas sobre la característica de un campo. Por definición, se dice que la característica de un campo \mathbb{F} es el mínimo entero positivo k tal que kz=0 para toda $z\in\mathbb{F}$, si existe tal entero k, si no existe, simplemente diremos que la característica de \mathbb{F} es infinita. Lo primero que hay que mencionar es que si kz=0 para algún entero positivo k y algún $z\in\mathbb{F}-\{0\}$, entonces kw=0 para todos los elementos de \mathbb{F} . Esto se debe a que

$$kw = \underbrace{w + \dots + w}_{k \text{ veces}} = zz^{-1}w + \dots + zz^{-1}w$$

= $(z + \dots + z)z^{-1}w = 0 \cdot z^{-1}w = 0$

Entonces, se puede definir la característica de \mathbb{F} como el mínimo entero positivo k para el que existe un elemento $z \in \mathbb{F} - \{0\}$ tal que kz = 0, si existe tal k, o si no se sigue diciendo que la característica de \mathbb{F} es infinita.

De manera que, como estamos suponiendo que $\operatorname{Car}(\mathbb{F}) \neq 2,3$, tenemos que los elementos 2=1+1 y 3=1+1+1 no son cero. De modo que tampoco pueden ser iguales a cero los elementos 6=3+3, 12=6+6 y 24=12+12. Y entonces podemos hablar de los elementos $\frac{1}{2}, \frac{1}{3}, \frac{1}{6}, \frac{1}{12}$ y $\frac{1}{24}$. Además recordemos que el elemento $\frac{1}{2}z$ es la mitad de z en el sentido de que $\frac{1}{2}z+\frac{1}{2}z=1\cdot\frac{1}{2}z+1\cdot\frac{1}{2}z=(1+1)\frac{1}{2}z=2(\frac{1}{2})z=1\cdot z=z$. Así que $\frac{1}{2}z+\frac{1}{2}z=z$. De la misma manera se muestra que $\frac{1}{3}z$ es la tercera parte de $z, \frac{1}{6}z$ es la sexta parte de z, etc.

Dicho todo esto, estamos listos para mostrar el inciso (b) de este lema. Para lo cual proponemos el siguiente cambio de variable:

$$y = v - \frac{1}{2}au + \frac{1}{6}ac + \frac{1}{24}a^3 - \frac{1}{2}b$$
, y
 $x = u - \frac{1}{3}c - \frac{1}{12}a^2$.

Al sustituirlo en $y^2 + axy + by = x^3 + cx^2 + dx + e$, obtenemos:

$$(v - \frac{1}{2}au + \frac{1}{6}ac + \frac{1}{24}a^3 - \frac{1}{2}b)^2 +$$

$$a(u - \frac{1}{3}c - \frac{1}{12}a^2)(v - \frac{1}{2}au + \frac{1}{6}ac + \frac{1}{24}a^3 - \frac{1}{2}b) +$$

$$b(v - \frac{1}{2}au + \frac{1}{6}ac + \frac{1}{24}a^3 - \frac{1}{2}b) =$$

$$(u - \frac{1}{3}c - \frac{1}{12}a^2)^3 + c(u - \frac{1}{3}c - \frac{1}{12}a^2)^2 + d(u - \frac{1}{3}c - \frac{1}{12}a^2) + e.$$

Simplemente desarrollando y pasando todo al primer lado, tenemos:

$$\begin{split} v^2 + \tfrac{1}{4}(au)^2 + (\tfrac{1}{6}ac + \tfrac{1}{24}a^3 - \tfrac{1}{2}b)^2 - auv - au(\tfrac{1}{6}ac + \tfrac{1}{24}a^3 - \tfrac{1}{2}b) \\ + 2v(\tfrac{1}{6}ac + \tfrac{1}{24}a^3 - \tfrac{1}{2}b) + auv - \tfrac{1}{2}(au)^2 + a^2u\tfrac{1}{2}(\tfrac{1}{3}c + \tfrac{1}{12}a^2) \\ - \tfrac{1}{2}abu - a(\tfrac{1}{3}c + \tfrac{1}{12}a^2)(-\tfrac{1}{2}au + \tfrac{1}{6}ac + \tfrac{1}{24}a^3 - \tfrac{1}{2}b) + \\ - a(\tfrac{1}{3}c + \tfrac{1}{12}a^2)v + bv - \tfrac{1}{2}abu + b(\tfrac{1}{6}ac + \tfrac{1}{24}a^3 - \tfrac{1}{2}b) \\ - u^3 + 3(\tfrac{1}{3}c + \tfrac{1}{12}a^2)u^2 - 3(\tfrac{1}{3}c + \tfrac{1}{12}a^2)^2u + (\tfrac{1}{3}c + \tfrac{1}{12}a^2)^3 - cu^2 \\ + 2cu(\tfrac{1}{3}c + \tfrac{1}{12}a^2) - c(\tfrac{1}{3}c + \tfrac{1}{12}a^2)^2 - du + d(\tfrac{1}{3}c + \tfrac{1}{12}a^2) - e = 0. \end{split}$$

Analicemos cuáles son los términos que tienen a u^2 . En el renglón 1 aparece $\frac{1}{4}a^2$, en el 2, $-\frac{1}{2}a^2$, en el 5, $3(\frac{1}{3}c+\frac{1}{12}a^2)$ y -c. Por lo que a la hora de sumarlos desaparecen todos.

Los términos que acompañan a uv son, en el renglón 1, -a y en el 2, a, por lo que también a éstos les podemos decir adios.

Ahora veamos quiénes acompañan a v. En el renglón 2 está $2(\frac{1}{6}ac+\frac{1}{24}a^3-\frac{1}{2}b)$, en el 4, $-a(\frac{1}{3}c+\frac{1}{12}a^2)$ y también b. De modo que éstos también desaparecen.

Ahora quitamos todos los términos mencionados. Con esto, ya queda la ecuación como queríamos pues sólo apareceran los términos v^2 y aquéllos que tienen a u^3 y u (además del independiente). Ya nada más para no dejar, veremos cómo quedan al final. Lo primero que hacemos es simplemente borrar los términos anunciados arriba.

$$\begin{split} v^2 + \left(\frac{1}{6}ac + \frac{1}{24}a^3 - \frac{1}{2}b\right)^2 - au\left(\frac{1}{6}ac + \frac{1}{24}a^3 - \frac{1}{2}b\right) - \frac{1}{2}abu + \\ + a^2u\frac{1}{2}\left(\frac{1}{3}c + \frac{1}{12}a^2\right) - a\left(\frac{1}{3}c + \frac{1}{12}a^2\right)\left(-\frac{1}{2}au + \frac{1}{6}ac + \frac{1}{24}a^3 - \frac{1}{2}b\right) - \\ - \frac{1}{2}abu + b\left(\frac{1}{6}ac + \frac{1}{24}a^3 - \frac{1}{2}b\right) - u^3 - 3\left(\frac{1}{3}c + \frac{1}{12}a^2\right)^2u + \\ + \left(\frac{1}{3}c + \frac{1}{12}a^2\right)^3 + 2cu\left(\frac{1}{3}c + \frac{1}{12}a^2\right) - c\left(\frac{1}{3}c + \frac{1}{12}a^2\right)^2 \\ - du + d\left(\frac{1}{3}c + \frac{1}{12}a^2\right) - e = 0. \end{split}$$

Agrupamos los términos que contienen a u y los independientes, dejando a v^2 solo de un lado de la igualdad.

$$\begin{split} v^2 &= u^3 + \left[a(\frac{1}{6}ac + \frac{1}{24}a^3 - \frac{1}{2}b) - a^2\frac{1}{2}(\frac{1}{3}c + \frac{1}{12}a^2) - \frac{1}{2}ab - \right. \\ &- \frac{1}{2}a^2(\frac{1}{3}c + \frac{1}{12}a^2) - \frac{1}{2}ab + 3(\frac{1}{3}c + \frac{1}{12}a^2)^2 - 2c(\frac{1}{3}c + \frac{1}{12}a^2) + d\right]u \\ &+ \left[-(\frac{1}{6}ac + \frac{1}{24}a^3 - \frac{1}{2}b)^2 + a(\frac{1}{3}c + \frac{1}{12}a^2)(\frac{1}{6}ac + \frac{1}{24}a^3 - \frac{1}{2}b) - \right. \\ &- b(\frac{1}{6}ac + \frac{1}{24}a^3 - \frac{1}{2}b) - (\frac{1}{3}c + \frac{1}{12}a^2)^3 + c(\frac{1}{3}c + \frac{1}{12}a^2)^2 \\ &- d(\frac{1}{3}c + \frac{1}{12}a^2) + e\right]. \end{split}$$

Ésta es la expresión final que buscábamos.

(c) $Car(\mathbb{F}) = 2$ y el coeficiente del término xy (que se llama a) es diferente de cero.

En este caso hacemos el cambio de variable

$$y = v + m$$
 y $x = u + ba^{-1}$,

(donde $m = a^{-1}((ba^{-1})^2 + d)$, y sustituimos en la ecuación $y^2 + axy + by = x^3 + cx^2 + dx + e$. Obtenemos:

$$(v+m)^2 + a(u+ba^{-1})(v+m) + b(v+m)$$

= $(u+ba^{-1})^3 + c(u+ba^{-1})^2 + d(u+ba^{-1}) + e$.

Como $\operatorname{Car}(\mathbb{F})=2,\ 2z=0$ y 3z=z para cada $z\in\mathbb{F}$. De manera que cuando desarrollamos esta ecuación, quitando todos los términos que tengan un 2 y sustituyendo 3z por z en donde aparece un 3, tenemos que:

$$v^{2} + m^{2} + auv + aum + bv + bm + bv + bm = u^{3} + u^{2}ba^{-1} + ub^{2}a^{-2} + b^{3}a^{-3} + cu^{2} + cb^{2}a^{-2} + du + dba^{-1} + e.$$

Tenemos otros dos términos dobles, a saber, 2bv y 2bm. Entonces los podemos quitar y sustituir el valor de m con lo que tendremos:

$$v^{2} + a^{-2}((ba^{-1})^{2} + d)^{2} + auv + aua^{-1}((ba^{-1})^{2} + d) = u^{3} + u^{2}ba^{-1} + ub^{2}a^{-2} + b^{3}a^{-3} + cu^{2} + cb^{2}a^{-2} + du + dba^{-1} + e.$$

Si pasamos todos los términos que tienen a u al primer término de la igualdad y vemos quién lo acompaña veremos que se trata de $(ba^{-1})^2+d-b^2a^{-2}-d$. Por lo que este término desaparece. Éste es el término que queríamos que desapareciera, por lo que ya prácticamente terminamos este inciso. Como antes, veamos un poco más cómo queda la ecuación.

$$v^{2} + a^{-2}((ba^{-1})^{2} + d)^{2} + auv =$$

$$u^{3} + u^{2}ba^{-1} + b^{3}a^{-3} + cu^{2} + cb^{2}a^{-2} + dba^{-1} + e.$$

Acomodando queda así:

$$v^{2} + auv =$$

$$u^{3} + (ba^{-1} + c)u^{2} - a^{-2}((ba^{-1})^{2} + d)^{2} + b^{3}a^{-3} + cb^{2}a^{-2} + dba^{-1} + e.$$

Que es lo que buscábamos.

(d) $Car(\mathbb{F}) = 2$ y el coeficiente del término xy (que se llama a) es cero.

Para este caso hacemos y=v y x=u+c. Y como siempre, los sustituimos en la ecuación $y^2+axy+by=x^3+cx^2+dx+e$, obteniendo:

$$v^{2} + bv = (u+c)^{3} + c(u+c)^{2} + d(u+c) + e.$$

Desarrollando tenemos que:

$$v^{2} + bv = u^{3} + 3u^{2}c + 3uc^{2} + c^{3} + cu^{2} + 2uc^{2} + c^{3} + du + dc + e.$$

Como $Car(\mathbb{F}) = 2$, los números 3 desaparecen y el término $2uc^2$ se quita. Al hacer esto, obtenemos los sumandos u^2c y cu^2 que al sumarlos se cancelan, lo mismo ocurre con los términos c^3 . Por tanto la ecuación se transforma en:

$$v^{2} + bv = u^{3} + (c^{2} + d)u + dc + e.$$

Que ya está como queríamos.

Ahora nos concentraremos en el caso en que $\operatorname{Car}(\mathbb{F}) \neq 2,3$. Según el lema que probamos, usando una transformación afín podemos cambiar la curva original $(y^2 + axy + by = x^3 + cx^2 + dx + e)$ por una curva de la forma $y^2 = x^3 + dx + e$. Con esto, podemos trabajar con estas nuevas expresiones que son más simples. El siguiente resultado nos dice un criterio para comprobar que una curva del nuevo tipo es elíptica.

LEMA 3.1.3 La curva que tiene por ecuación $y^2 = x^3 + dx + e$ es elíptica si y sólo si el polinomio $x^3 + dx + e$ no tiene raíces múltiples.

DEMOSTRACIÓN.

(\Rightarrow) Supongamos que la curva es elíptica. De acuerdo con la definición, tenemos que las parciales $\frac{\partial f}{\partial x}$ y $\frac{\partial f}{\partial y}$ no se pueden anular en un mismo punto de la curva, donde $f(x,y)=y^2-x^3-dx-e$. Es decir, no existe ningún punto (x,y) de la curva tal que las siguientes ecuaciones se cumplen ambas para el punto (x,y):

$$2y = 0$$
 y $3x^2 + d = 0$

Supongamos, para buscar una contradicción, que el polinomio $p(x) = x^3 + dx + e$ tiene alguna raíz múltiple, digamos que u es esta raíz. Por definición esto quiere decir que el polinomio $(x-u)^2$ divide a p(x). De modo que $p(x) = (x-u)^2(x-a)$ para alguna $a \in \mathbb{F}$, en principio aquí tendríamos que poner $p(x) = (x-u)^2 g(x)$ para algún polinomio g(x), pero si observamos la forma que tiene p(x), a g(x) no le queda más remedio que ser de la forma x-a. Entonces:

$$x^{3} + dx + e = (x^{2} - 2ux + u^{2})(x - a) =$$

$$x^{3} - (2u + a)x^{2} + (2au + u^{2})x - au^{2}.$$

Igualando los coeficientes tenemos que

$$2u + a = 0$$
; $2au + u^2 = d$ y $au^2 = -e$.

Combinando las dos primeras igualdades tenemos que:

$$-4u^2 + u^2 = d$$

De donde tenemos que $3u^2 + d = 0$

Por tanto las parciales de f se anulan ambas en el punto (u,0). Esto es absurdo pues estamos suponiendo que la curva es elíptica.

Por tanto p(x) no tiene raíces múltiples.

(\Leftarrow) Ahora supongamos que el polinomio p(x) no tiene raíces múltiples. También supongamos que la curva no es elíptica. Entonces existe un punto (u,v) de la curva en el que las dos derivadas parciales de f se anulan. Así que $v^2 = u^3 + du + e$, 2v = 0 y $3u^2 + d = 0$. Como $\mathbb F$ no tiene característica 2, v = 0. Vamos a mostrar que u es una raíz múltiple de p(x). Para esto, bastará mostrar que existe una $a \in \mathbb F$ tal que

$$x^{3} + dx + e = (x - u)^{2}(x - a)$$

$$= (x^{2} - 2ux + u^{2})(x - a)$$

$$= x^{3} - (2u + a)x^{2} + (2au + u^{2})x - au^{2}.$$

De modo que necesitamos encontrar una $a \in \mathbb{F}$ para la que se satisfagan las siguientes ecuaciones

$$2u + a = 0$$
, $2au + u^2 = d$ y $-au^2 = e$.

De la primera se ve cómo se tiene que proponer a a. Hacemos a=-2u. Automáticamente se satisface la primera ecuación. Sustituyendo esta a en la segunda ecuación, deberíamos tener que $-4u^2+u^2=d$. Esto también es cierto porque, como las parciales se anulaban en (u,v), habíamos obtenido que $3u^2+d=0$. Finalmente, ya habíamos obtenido que v=0 y que $v^2=u^3+du+e$. De modo que $u^3+du+e=0$ y, como sabíamos que $d=-3u^2$, obtenemos que $-2u^3+e=0$. De donde $-au^2=2u^3=e$. Hemos comprobado las tres ecuaciones que debe satisfacer a. Por tanto u es una raíz múltiple de p(x). Esta contradicción completa la prueba de que la curva es elíptica y con esto terminamos la prueba del lema.

3.2. LAS CURVAS ELÍPTICAS COMO GRUPOS

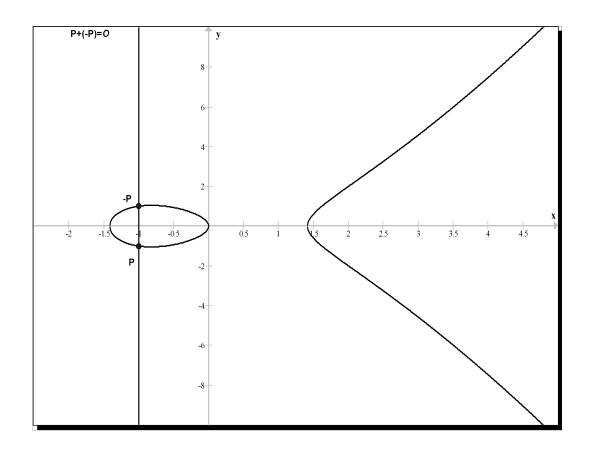
En esta sección trabajaremos con el campo de los números reales. De acuerdo con el Lema 3.1.2, podemos concentrarnos en una ecuación elíptica de la forma $y^2 = x^3 + dx + e$. En esta sección definiremos una operación en el conjunto de los puntos sobre la curva. Primero diremos cómo se define la operación, para esto nos guiamos con las gráficas y más tarde daremos las justificaciones necesarias. Definimos $S = \{(x,y) \in \mathbb{R}^2 : y^2 = x^3 + dx + e\} \cup \{\infty\}$.

Dados P, Q en S definimos -P y P+Q de acuerdo con las siguientes reglas.

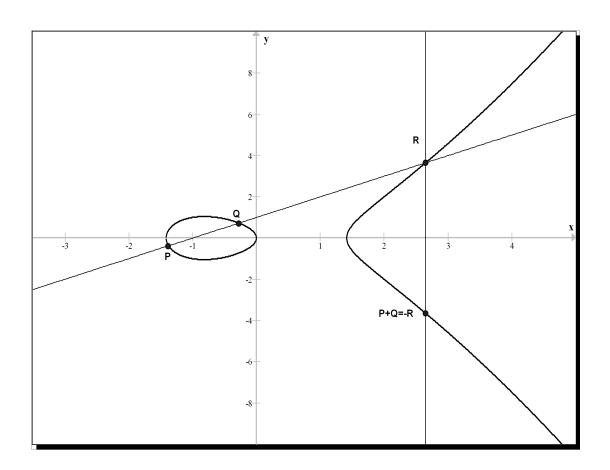
(1) Si P es el punto al infinito, definimos $-P = \infty$ y $\infty + Q = Q = Q + \infty$ para toda $Q \in S$. De esta manera, ∞ es el neutro aditivo de S.

(2) Si $P = (x, y) \in S - \{\infty\}$, notemos que $y^2 = x^3 + dx + e$, y entonces $(-y)^2 = x^3 + dx + e$, por lo que $(x, -y) \in P - \{\infty\}$. Por tanto podemos definir -P = (x, -y) (jojo!, es importante no confundir -P con (-x, -y)).

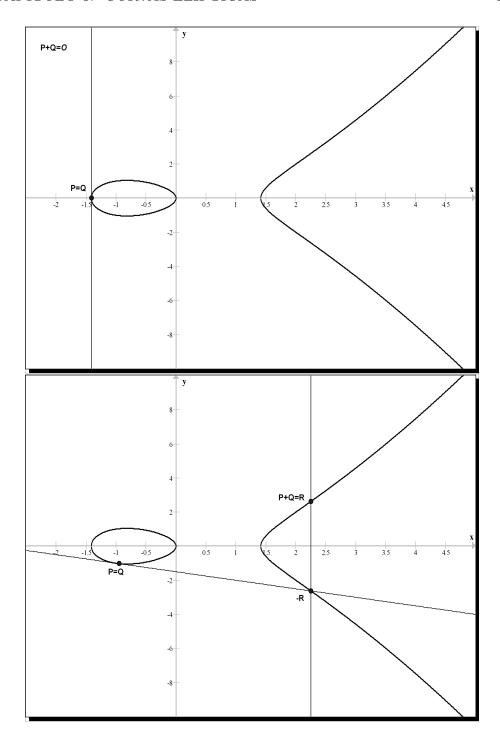
Para que nuestra definición sea congruente con lo que dijimos arriba, definimos $P+(-P)=\infty=(-P)+P.$



(3) Si P y Q tienen diferente coordenada x, entonces la línea que une a P con Q intersecta a la curva en exactamente otro punto R, a menos que esta recta sea tangente en P o en Q. En el primer caso, definimos P+Q=-R=Q+P (-R como se definió en (2)), en el segundo P+Q=P y en el tercero P+Q=Q.



(4) Si P=Q, sea l la recta tangente a la curva en el punto P. Entonces l intersecta a la curva en otro punto (único) R o l ya no vuelve a intersectar a la curva (cuando l es vertical). En el primer caso definimos P+Q=-R, en el segundo, $P+Q=\infty$.



Ahora vamos a mostrar que todas las definiciones son justificadas. Haremos el álgebra necesaria para comprobar las afirmaciones que hicimos sobre las intersecciones de las rectas con la curva.

Primero veremos que si $P \neq \pm Q$ y P, Q pertenecen a la curva (llamémosle \mathcal{C} a la curva), entonces la recta que pasa por P y por Q (llamémosle \mathcal{L}) intersecta a la curva en exactamente otro punto.

Para esto ponemos $P=(x_1,y_1),\ Q=(x_2,y_2)$ y sea $y=\alpha x+\beta$ la ecuación de la recta (\mathcal{L}) que pasa por ellos. La podemos poner así porque al ser $P\neq -Q$, entonces la recta no es vertical. Además $\alpha=\frac{y_2-y_1}{x_2-x_1}$ y $\beta=y_1-\alpha x_1$.

En general un punto (x, y) pertenece a $\mathcal{L} \cap \mathcal{C}$ si:

$$y = \alpha x + \beta$$
 (por estar en \mathcal{L}), y
 $y^2 = x^3 + dx + e$ (por estar en \mathcal{C}).

De manera que

$$(\alpha x + \beta)^2 = x^3 + dx + e.$$

De modo que el número x debe ser raíz del polinomio

$$q(x) = x^3 - (\alpha x + \beta)^2 + dx + e$$
, que es igual a $q(x) = x^3 - \alpha^2 x^2 + (d - 2\alpha\beta)x + e - \beta^2$.

Sabemos que un polinomio de grado 3 puede tener a lo más 3 raíces. El polinomio q(x) ya tiene dos $(x_1 y x_2)$ así que ya sólo podría tener una raíz más y, como el número y está completamente determinado por el número x (cuando $(x,y) \in \mathcal{L}$), entonces a lo más podemos tener un tercer punto en $\mathcal{L} \cap \mathcal{C}$.

Ahora veamos que, efectivamente, hay un tercer punto. Una tercera raíz x_3 del polinomio q(x) deberá satisfacer que:

$$q(x) = (x - x_1)(x - x_2)(x - x_3) = x^3 - (x_1 + x_2 + x_3)x^2 + (x_1x_2 + x_1x_3 + x_2x_3)x - x_1x_2x_3.$$

Igualando el coeficiente de x^2 , se debe tener que:

$$\alpha^2 = x_1 + x_2 + x_3.$$

Esto ya nos da oportunidad de conocer x_3 en términos de x_1 y x_2 , y la ecuación de la recta nos permite conocer a y_3 . Sustituyendo, tenemos:

$$x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2 - x_1 - x_2, y$$

$$y_3 = \alpha x_3 + \beta = \left(\frac{y_2 - y_1}{x_2 - x_1}\right) x_3 + y_1 - \left(\frac{y_2 - y_1}{x_2 - x_1}\right) x_1 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right) (x_3 - x_1) + y_1.$$

Teniendo los valores para x_3 y y_3 nos falta verificar que el punto (x_3, y_3) efectivamente está en la recta y en la curva. Con la recta no hay problema pues el y_3 se despejó de su ecuación. Podríamos hacer las cuentas necesarias para ver que el punto (x_3, y_3) satisface la ecuación de la curva, pero eso se ve muy complicado, en cambio, haremos un truco de polinomios, a ver que le parece.

Para encontrar x_3 supusimos que existía, factorizamos a q(x) y vimos qué condiciones tenía que cumplir x_3 . Veamos que no necesitamos suponer que existe x_3 sino que podemos comprobar su existencia.

Sabemos que x_1 y x_2 sí son raíces de q(x) y son diferentes. De manera que el polinomio $(x-x_1)(x-x_2)$ divide a q(x). Por tanto existe un polinomio q(x) tal que

$$q(x) = (x - x_1)(x - x_2)g(x).$$

Como q(x) es de grado 3, a g(x) no le queda más que ser de grado 1. Además el coeficiente de x^3 en q(x) es 1, entonces el polinomio de x en g(x) es también 1. Por tanto, $g(x) = x - x_3$ para alguna $x_3 \in \mathbb{R}$ (¡ojo! justo aquí estamos mostrando que existe x_3). Así pues,

$$q(x) = (x - x_1)(x - x_2)(x - x_3).$$

A partir de aquí, ya pudimos despejar x_3 de la ecuación $\alpha^2 = x_1 + x_2 + x_3$ y pudimos definir $y_3 = \alpha x_3 + \beta$.

Como x_3 es raíz de q(x), por la definición de q(x), tenemos que

$$(\alpha x_3 + \beta)^2 = x_3^3 + dx_3 + e.$$

Por tanto $y_3^2 = x_3^3 + dx_3 + e$, que es lo que queríamos verificar.

Ahora analicemos qué ocurre cuando $P=Q=(x_1,y_1)$. Consideremos la recta tangente a la curva, que pasa por P. Ponemos la ecuación de la recta en la forma $y=\alpha x+\beta$ (el caso en que la recta es vertical hay que hacerlo aparte, ya no lo haremos para no hacer esto tan largo). Si tomamos puntos sobre la curva, cada uno de ellos debe satisfacer la ecuación $y^2=x^3+dx+e$ como antes, si un punto está tanto en la recta que tiene por ecuación $y=\alpha x+\beta$ como en la curva $y^2=x^3+dx+e$, este punto deberá satisfacer la ecuación $(\alpha x+\beta)^2=x^3+dx+e$ por lo que este punto es raíz del polinomio $q(x)=x^3-(\alpha x+\beta)^2+dx+e$. Podemos pensar que y está en función de x (al menos localmente) y poner

$$(y(x))^2 = x^3 + dx + e.$$

Esto nos permite derivar para obtener:

$$2y(x)y'(x) = 3x^2 + d.$$

De modo que

$$\frac{dy}{dx} = \frac{3x^2 + d}{2y}.$$

Como la recta debe ser tangente a la curva en el punto debemos tener que:

$$\alpha = \frac{3x_1^2 + d}{2y_1}.$$

Ya que P = Q, x_1 debe ser una raíz doble del polinomio que se obtiene de sustituir la variable y de la ecuación de la recta en la variable y de la ecuación de la curva, es decir de:

$$q(x) = x^3 - (\alpha x + \beta)^2 + dx + e$$

Aquí podemos justificar la existencia de una segunda raíz x_3 del polinomio q(x) en la misma manera que procedimos antes y obtener que tal raíz debe cumplir:

$$x_3 = \alpha^2 - x_1 - x_2 = \alpha^2 - 2x_1.$$

Y entonces podemos buscar y_3 tal que (x_3,y_3) esté en la recta $y=\alpha x_1+\beta$ por lo que

$$y_3 = \alpha x_3 + \beta.$$

Pero $\beta=y-\alpha x$ y (x_1,y_1) está en la recta, entonces $\beta=y_1-\alpha x_1$, por lo que

$$y_3 = \alpha x_3 + y_1 - \alpha x_1 = y_1 - \alpha (x_1 - x_3)$$

por lo que tenemos que

$$x_3 = \alpha^2 - 2x_1$$

y $y_3 = y_1 - \alpha(x_1 - x_3)$

De donde, sustituyendo el valor de α obtenido arriba llegamos a que:

$$x_3 = \left(\frac{3x_1^2 + d}{2y_1}\right)^2 - 2x_1$$

$$y y_3 = y_1 - \left(\frac{3x_1^2 + d}{2y_1}\right)(x_1 - x_3)$$

De acuerdo a lo anterior hemos demostrado que dados dos puntos en la curva elíptica, podemos trazar la recta que pasa por estos dos puntos, y en ella encontrar un tercer punto que esté tanto en la recta como en la curva. Este tercer punto estará definido a partir de los otros dos por las siguientes ecuaciones

1. Si
$$P = Q$$
 con $P = (x_1, y_1)$

$$x_3 = \left(\frac{3x_1^2 + d}{2y_1}\right)^2 - 2x_1$$

$$y_3 = y_1 - (x_1 - x_3)\left(\frac{3x_1^2 + d}{2y_1}\right)$$

2. Si
$$P \neq Q$$
 con $P = (x_1, y_1)$ y $Q = (x_2, y_2)$

$$x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2 - x_1 - x_2$$

$$y_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x_3 - x_1) + y_1$$

De acuerdo a la notación dada en las propiedades 3) y 4), las ecuaciones que encontramos corresponden al punto que denotamos por R, el cual es distinto de la suma de P y Q, por que recordemos que tanto en la propiedad 3) y 4) el punto asociado a P+Q corresponde a -R. Como R tiene coordenadas (x_3, y_3) entonces -R tendrá coordenadas $(x_3, -y_3)$. Debido a que posteriormente necesitaremos calcular en varias ocasiones la suma de dos puntos en la curva será importante escribir las ecuaciones de este tercer punto, lo cual se hará en el siguiente lema.

LEMA 3.2.1 Dados los puntos $P = (x_1, y_1)$ y $Q = (x_2, y_2)$ el punto asociado con P + Q es el punto (x_3, y_3) en donde x_3 y y_3 están dados por:

1) Si P = Q entonces

$$x_3 = \left(\frac{3x_1^2 + d}{2y_1}\right)^2 - 2x_1$$

$$y_3 = -y_1 + (x_1 - x_3)\left(\frac{3x_1^2 + d}{2y_1}\right)$$

2) Si $P \neq Q$ entonces

$$x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2 - x_1 - x_2$$

$$y_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x_1 - x_3) - y_1$$

Con esto terminamos de demostrar que la suma en S está bien definida. Ahora lo más interesante del asunto es comprobar que S es un grupo abeliano. Desafortunadamente la prueba completa de la asociatividad de la función está fuera del alcance de este trabajo. En principio, podríamos usar la fuerza bruta para hacer esto. Ya tenemos la definición y hasta tenemos fórmulas para calcular el resultado de la suma, sin embargo nada más de verlas se desanima cualquiera. Un mejor camino (el que vamos a seguir) consiste en suponer el siguiente resultado sobre rectas y usarlo para posteriormente demostrar que S es un grupo abeliano.

TEOREMA 3.2.2 Sean l_1 , l_2 y l_3 tres rectas que intersectan a una cúbica en nueve puntos $P_1, P_2, ..., P_9$ (del plano proyectivo y contando

multiplicidad) y sean l'_1 , l'_2 y l'_3 tres líneas que intersectan a la cúbica en nueve puntos $Q_1, Q_2, ..., Q_9$. Si $Q_i = P_i$ para toda $i \in \{1, 2, ..., 8\}$, entonces $Q_9 = P_9$.

TEOREMA 3.2.3 Dada una curva elíptica S (en los reales), el conjunto S con la operación que definimos arriba es un grupo abeliano.

DEMOSTRACIÓN.

Con lo que justificamos en los párrafos anteriores tenemos que la operación es cerrada, aunque tal vez valga la pena comentar el caso que se presenta en (3). En ese caso P y Q tienen diferente coordenada en x y se toma la recta l que pasa por ellos. En el caso en que l es tangente a la curva en P, se define P+Q=P y en el caso en que l es tangente a la curva en Q, se define P+Q=Q. Notemos que no es posible que l sea tangente tanto en P como en Q pues esto implicaría que el polinomio que hemos usado (q(x)) tendría dos raíces dobles, una en la coordenada x de P y otra en la de Q, lo cual es imposible porque q(x) es de grado 3. Con esto cerramos la discusión de que la suma está bien definida.

Si usted observa los 4 pasos de la definición de la suma, verá que se define de manera que es simétrica para P y Q. Por tanto, la suma es conmutativa. Definimos a ∞ como el neutro aditivo y, en todos los casos definimos ya al inverso aditivo.

Sólo nos falta ver la asociatividad. Para ver esto, tomemos tres puntos P, Q y R en S. Si alguno de los elementos P, Q o R es igual a ∞ , supongamos para ilustrar que $P=\infty$, entonces, como ∞ es el neutro aditivo, $\infty+(Q+R)=Q+R=(\infty+Q)+R$. Por tanto, podemos suponer que ninguno es igual a ∞ .

Ahora vamos a analizar el caso en que $Q+R=\infty$ (y $Q\neq\infty$ y $R\neq\infty$). En este caso, Q=-R. Si Q=(u,v), entonces R=(u,-v). Como $P+(Q+R)=P+\infty=P$, tenemos que mostrar que (P+Q)+(-Q)=P. Si P=-Q, entonces $(P+Q)+(-Q)=\infty+(-Q)=-Q=P$ y ya terminamos. Supongamos entonces que $P\neq -Q$. Sea N=P+Q. Entonces $N\neq\infty$. Sea l la recta que pasa por P y Q (en el caso en que P=Q, l es la recta tangente a la curva que pasa por P). De manera que, por definición, si K

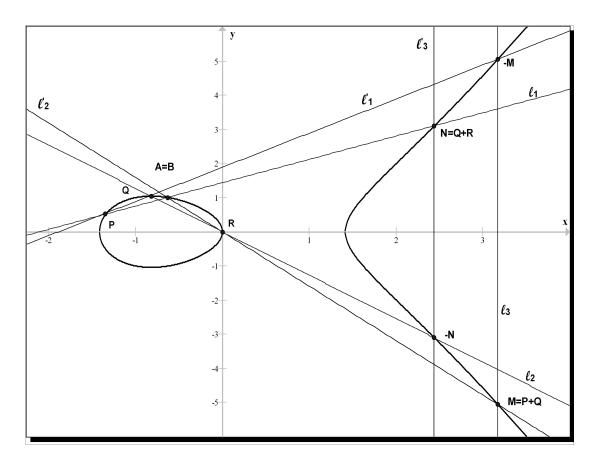
es la otra intersección de l con la curva, entonces N=-K. Consideremos la recta $-l=\{(x,-y)\in\mathbb{R}^2:(x,y)\in l\}$. Como P,Q y K pertenecen a l, -P, -Q y -K=N pertenecen a -l. Como l no es vertical, -l tampoco es vertical. De modo que, si queremos calcular N+(-Q), tenemos que ver cual es el otro punto en el que -l intersecta a la curva. Este punto es precisamente -P, de modo que N+(-Q)=-(-P)=P que es lo que queríamos probar.

Ahora podemos suponer que $Q+R \neq \infty$. Como la suma es conmutativa, también podemos suponer $P+Q \neq \infty$. De manera que estamos suponiendo que todos los puntos P, Q, R, P+Q y Q+R son diferentes de ∞ (y entonces todos ellos pertenecen a \mathbb{R}^2). Sean M=P+Q y N=Q+R.

Consideremos las rectas:

- (a) l_1 la que pasa por P, N, y sea A su tercer punto en S,
- (b) l_2 la que pasa por Q y R, ésta pasa por -N, por definición,
- (c) l_3 la que pasa por M y -M, ésta pasa por ∞ , por definición,
- (d) l'_1 la que pasa por P y Q, ésta pasa por -M, por definición,
- (e) l_2' la que pasa por M y R, y sea B su tercer punto en S,
- (f) l_3' la que pasa por N y -N, ésta también pasa por ∞ , por definición.

Entonces las rectas l_1 , l_2 y l_3 en conjunto tienen a los puntos de la curva: P, N, A = -(P+N), Q, R, M, -N, -M e ∞ . ¡Ojo!, aquí es importante notar que ∞ se puede pensar como el punto al infinito en el plano complejo que corresponde a las líneas verticales, pues ésa es la única interpretación que le dimos a ∞ en (c) y (f) al definir l_3 y l_3' . Por otra parte, las rectas l_1' , l_2' y l_3' en conjunto tienen a los puntos de la curva: P, N, B = -(M+R), Q, R, M, -N, -M e ∞ . De manera que las dos ternas de rectas tienen ocho puntos en común, que también pertenecen a la curva. Por tanto, el teorema 3.2.2 asegura que el noveno punto tiene que ser el mismo. Es decir, A = B. De donde, -(P+N) = -(M+R). Por tanto, P + (Q+R) = (P+Q) + R. Hemos demostrado que la suma es asociativa y por tanto, la curva elíptica es un grupo abeliano.



EJEMPLO.

Consideremos la curva $y^2 + y = x^3 - x^2$. Esta curva no está puesta en la forma simplificada que hemos trabajado por lo que no hemos descrito todavía una manera de hacer, de su conjunto de puntos, un grupo. Sin embargo, usando las transformaciones lineales que propusimos antes, la simplificaremos y la convertiremos en grupo. En este ejemplo, calcularemos 2P = P + P y 3P = 2P + P, en donde P = (0,0), observe que este punto está en la curva.

El cambio lineal que lleva esta curva a la forma simplificada es:

$$y = v - \frac{1}{2} y x = u + \frac{1}{3}$$
.

Sustituyendo en la ecuación original tenemos:

$$(v - \frac{1}{2})^2 + (v - \frac{1}{2}) = (u + \frac{1}{3})^3 - (u + \frac{1}{3})^2, \quad o$$

$$v^2 - v + \frac{1}{4} + v - \frac{1}{2} = u^3 + u^2 + \frac{1}{3}u + \frac{1}{27} - u^2 - \frac{2}{3}u - \frac{1}{9}.$$

Simplificando se obtiene:

$$v^2 - \frac{1}{4} = u^3 - \frac{1}{3}u - \frac{2}{27}$$
, o
 $v^2 = u^3 - \frac{1}{3}u + \frac{19}{108}$

Si aplicamos la misma transformación a P, obtenemos el punto Q dado por:

$$Q = (x - \frac{1}{3}, y + \frac{1}{2}) = (0 - \frac{1}{3}, 0 + \frac{1}{2}) = (-\frac{1}{3}, \frac{1}{2})$$

Ahora podemos calcular 2Q y 3Q, recordemos las fórmulas que deducimos para 2Q :

$$x_3 = \left(\frac{3x_1^2 + d}{2y_1}\right)^2 - 2x_1, \quad \mathbf{y}$$

$$y_3 = -y_1 + (x_1 - x_3)\left(\frac{3x_1^2 + d}{2y_1}\right).$$

De modo que:

$$x_3 = \left(\frac{3(-1/3)^2 - (1/3)}{2(1/2)}\right)^2 - 2(-1/3) = \left(\frac{0}{1}\right)^2 + \frac{2}{3} = \frac{2}{3}$$

$$y_3 = -\frac{1}{2} + \left(-\frac{1}{3} - \frac{2}{3}\right) \left(\frac{3(-1/3)^2 - 1/3}{2(1/2)}\right) = -\frac{1}{2} - 1(0) = -\frac{1}{2}.$$

Por tanto

$$2Q = (\frac{2}{3}, -\frac{1}{2})$$

Una vez que hemos calculado 2Q podemos calcular 3Q con las ecuaciones

$$x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2 - x_1 - x_2$$

$$y_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x_1 - x_3) - y_1$$

ya que 3Q = Q + 2Q, por lo que podemos hacer

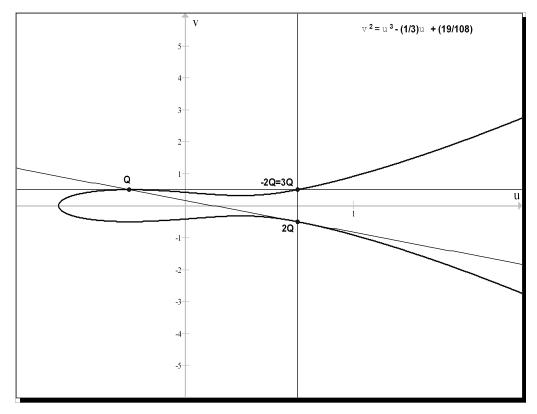
$$Q = (x_1, y_1) = (-\frac{1}{3}, \frac{1}{2})$$
 y
 $2Q = (x_2, y_2) = (\frac{2}{3}, -\frac{1}{2})$

de tal manera que

$$x_3 = \left(\frac{-\frac{1}{2} - \frac{1}{2}}{\frac{2}{3} + \frac{1}{3}}\right)^2 + \frac{1}{3} - \frac{2}{3} = \left(\frac{-1}{1}\right)^2 - \frac{1}{3} = \frac{2}{3}$$

$$y_3 = \left(\frac{-\frac{1}{2} - \frac{1}{2}}{\frac{2}{3} + \frac{1}{3}}\right)\left(-\frac{1}{3} - \frac{2}{3}\right) - \frac{1}{2} = \left(\frac{-1}{1}\right)(-1) - \frac{1}{2} = \frac{1}{2}$$

por lo que $3Q = (\frac{2}{3}, \frac{1}{2})$. Como podemos notar los puntos 3Q y 2Q tienen la misma coordenada en x, y coordenada en y de mismo valor absoluto pero de signo contrario, lo cual quiere decir que -3Q = 2Q, es decir, 5Q = 0. La gráfica de la ecuación simplificada así como los puntos correspondientes a Q, 2Q y 3Q se muestran en la siguiente gráfica, la cual tiene líneas de apoyo para poder localizar los puntos 2Q y 3Q gráficamente.



Como podemos notar entonces la línea que pasa por Q y 2Q es tangente a la curva en 2Q. Esta recta no intersecta a la curva en ningún otro punto distinto a los mencionados, pero de acuerdo a las propiedades 3) y 4) debe

haber un tercer punto que este tanto en la recta como en la curva. Este tercer punto es 2Q, debido a la propiedad 4), por esto la suma de Q y 2Q es -2Q.

Ahora bien, nuestro problema original era calcular $2P ext{ y } 3P$, y no $2Q ext{ y } 3Q$. Sin embargo podemos aplicar la transformación $y = v + 1/2 ext{ y } x = u + 1/3 ext{ a }$ los puntos $2Q ext{ y } 3Q$ y así obtendremos los puntos $2P ext{ y } 3P$. Para el primero tendremos que como 2Q = (u, v) = (2/3, -1/2) entonces

$$y = v + 1/2 = -1/2 + 1/2 = 0$$
 y
 $x = u + 1/3 = 2/3 + 1/3 = 1$

por lo que 2P=(0,1). en el otro caso como 3Q=(u,v)=(2/3,1/2) tendremos que

$$y = v + 1/2 = +1/2 + 1/2 = 1$$
 y
 $x = u + 1/3 = 2/3 + 1/3 = 1$

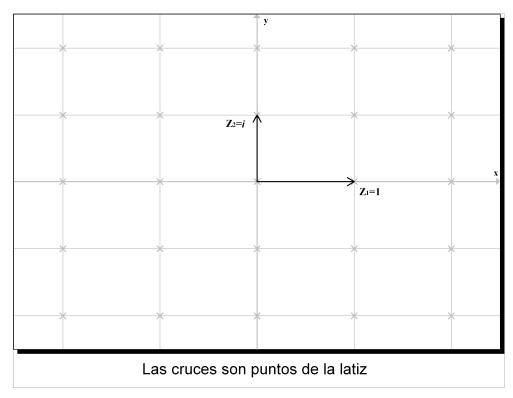
así, 3P = (1, 1), con lo cual concluimos nuestro ejemplo.

3.3. CURVAS ELÍPTICAS SOBRE LOS COMPLEJOS

Como hemos dicho antes, las curvas elípticas se pueden definir sobre cualquier campo. En los campos que no son de característica 2 ó 3, las curvas tienen una expresión muy simple $(y^2 = x^3 + dx + e)$ y sus puntos, junto con el punto al infinito, constituyen un grupo. En particular, no hay ningún problema para considerarlas definidas para el campo de los números complejos. Las curvas para este caso no son tan usadas en criptografía pues se prefiere usar las curvas sobre campos finitos, como explicamos en la sección anterior. Sin embargo, estas curvas en los complejos tienen algunas propiedades matemáticas muy agradables que explicaremos en esta sección.

Estas propiedades son muy fáciles de enlistar pero dificiles de demostrar. Debido a esto, las personas que solamente estén interesadas en la parte de la criptografía en curvas elípticas pueden saltarse esta sección, ya que lo que concierne a la parte compleja no se usará para la criptografía.

Para enlistar las propiedades, necesitamos la definición de latiz, que no es más que un conjunto en el plano complejo de la forma $\{nz_1+mz_2\in\mathbb{C}:n,m\in\mathbb{Z}\}$, donde z_1,z_2 son dos números complejos linealmente independientes (como elementos del espacio vectorial \mathbb{R}^2). En forma abreviada, podemos denotar esta latiz como $z_1\mathbb{Z}+z_2\mathbb{Z}$. Notemos que las latices son subgrupos de \mathbb{C} y que si z_1,z_2 es la base canónica que consta de los números complejos 1 e i, entonces obtenemos la latiz que consta de todos los puntos de \mathbb{R}^2 que tienen ambas coordenadas enteras, a los elementos de esta latiz se les llama enteros gaussianos.



Ahora ya podemos adelantar lo que haremos con las curvas elípticas sobre \mathbb{C} . Empezaremos tomando una latiz L y, usándola, definiremos una función

compleja, llamada la función \wp de Weirstrass, la cual se denota por \wp_L o por \wp cuando ya no hay posibilidad de confusión. Esta función tendrá las siguientes propiedades:

- (1) \wp es analítica en $\mathbb{C} L$ y tiene polos dobles en los puntos de L.
- (2) \wp satisface una ecuación diferencial del tipo $(\wp')^2 = \wp^3 + d\wp + e$. Ya que la última ecuación es la ecuación de una curva elíptica del tipo $y^2 = x^3 + dx + e$ (para un campo de característica distinta de 2 y 3), entonces para cualquier $z \in \mathbb{C} L$, el punto $(\wp(z), \wp'(z))$ pertenece a la curva elíptica definida por $(\wp')^2 = \wp^3 + d\wp + e$ la cual denotaremos por \mathbf{E} .
- (3) Dos números complejos z_1 y z_2 en $\mathbb{C} L$ dan el mismo punto $(\wp(z), \wp'(z))$ en \mathbf{E} si y sólo si $z_1 z_2 \in L$.
- (4) La función que le asocia a cada $z \in \mathbb{C} L$ el punto $(\wp(z), \wp'(z))$ de \mathbf{E} y le asocia a los puntos de L el punto al infinito ∞ en \mathbf{E} es una biyección entre el grupo cociente \mathbb{C}/L y \mathbf{E} .
- (5) La correspondencia mencionada en (4) es un isomorfismo de grupos abelianos. En otras palabras si a z_1 le corresponde el punto P y a z_2 le corresponde el punto Q, entonces al punto $z_1 + z_2$ le corresponde el punto P + Q.

Una vez enlistadas las propiedades procederemos a ver la demostración de cada una de ellas, para ello necesitaremos definir primeramente la función \wp , ya que es la base de todo lo demás.

DEFINICIÓN 3.3.1 (Definición de $\wp(z)$)

Sea $L\subset\mathbb{C}$ una latiz. La función \wp de Weierstrass relativa a la latiz L está definida por la siguiente serie:

$$\wp(z;L) = \frac{1}{z^2} + \sum_{w \in L \atop w \neq 0} \left(\frac{1}{(z-w)^2} - \frac{1}{w^2} \right) \qquad \text{para toda } z \in \mathbb{C} - L.$$

Una vez definida la función anterior, dado que está definida a partir de una serie de números complejos, primeramente tenemos que ver en qué puntos del plano complejo está definida, lo cual nos lleva a ver los puntos en que la función \wp es convergente. Antes de demostrar esto veamos el siguiente lema.

LEMA 3.3.2 Sea $w_0 \in L$. Definamos $\mathbf{D} = L - \{w_0, 0\}$. La serie

$$\sum_{w \in \mathbf{D}} \left(\frac{1}{(z-w)^2} - \frac{1}{w^2} \right)$$

converge absolutamente y uniformemente en cualquier subconjunto compacto de $\mathbb{C} - \mathbf{D}$.

DEMOSTRACIÓN.

Para demostrar la convergencia uniforme de la serie tenemos que probar que para cualquier punto $z_0 \in \mathbb{C} - \mathbf{D}$, existe una vecindad $U \subset \mathbb{C} - \mathbf{D}$ de z_0 tal que la serie

$$\sum_{w \in \mathbf{D}} \frac{1}{(z - w)^2} - \frac{1}{w^2}$$

converge absolutamente en U.

Y para esto basta encontrar una vecindad $U \subset \mathbb{C} - \mathbf{D}$ de z_0 y una serie convergente de números positivos $\sum_{w \in \mathbf{D}} M_w$ tal que

$$\left| \frac{1}{(z-w)^2} - \frac{1}{w^2} \right| \leqslant M_w,$$

para toda $z \in U$.

Tomemos $\epsilon > 0$ tal que $\overline{B_{\epsilon}(z_0)} \cap \mathbf{D} = \emptyset$ y $\epsilon < 1$. Tal ϵ existe porque \mathbf{D} es cerrado en \mathbb{C} . Aseguramos que $U = B_{\epsilon}(z_0)$ tiene la propiedad deseada.

Vamos a dividir al conjunto **D** en dos subconjuntos. Definamos

$$A = \{w \in \mathbf{D} : |w| \le 2(|z_0| + 1)\}$$

$$B = \{w \in \mathbf{D} : |w| > 2(|z_0| + 1)\}.$$

Además como z_0 es fijo, A es el conjunto de puntos de \mathbf{D} que caen en un disco (fijo) por lo que A es finito.

Dada $w \in A$ notemos que la función

$$\frac{1}{(z-w)^2} - \frac{1}{w^2}$$

es una función bien definida y analítica en el conjunto compacto \overline{U} por lo que alcanza su máximo valor y entonces existe $M_w \in \mathbb{R}^+$ tal que

$$\left| \frac{1}{(z-w)^2} - \frac{1}{w^2} \right| \leqslant M_w,$$

para toda $z \in \overline{U}$.

Ahora buscaremos los números de la forma M_w para $w \in B$.

Fijemos $w \in B$. Entonces $|w| > 2(|z_0| + 1)$. Dada $z \in \overline{U}$, $|z| - |z_0| \le |z - z_0| \le \epsilon < 1$. Así que $|z| < 1 + |z_0| < \frac{|w|}{2}$. De modo que 2|z| < |w| para toda $z \in \overline{U}$.

Dada $z \in \overline{U}$, notemos que

$$\left| \frac{1}{(z-w)^2} - \frac{1}{w^2} \right| = \left| \frac{w^2 - (z-w)^2}{w^2 (z-w)^2} \right| = \left| \frac{w^2 - z^2 + 2zw - w^2}{w^2 (z-w)^2} \right|$$
$$= \left| \frac{z(2w-z)}{w^2 (z-w)^2} \right| = \left| \frac{z}{w^2} \right| \left| \frac{2w-z}{(z-w)^2} \right|$$

y como $|z_1 - z_2| \leq |z_1| + |z_2|$ para cualesquiera números complejos z_1 y z_2 , entonces

$$\left| \frac{1}{(z-w)^2} - \frac{1}{w^2} \right| = \left| \frac{z}{w^2} \right| \left| \frac{2w-z}{(z-w)^2} \right| \le \left| \frac{z}{w^2} \right| \left(\frac{|2w|+|z|}{|(z-w)^2|} \right)$$

Ahora bien como $|z| < \frac{|w|}{2}$ tenemos que:

$$\left| \frac{1}{(z-w)^2} - \frac{1}{w^2} \right| \le \left| \frac{z}{w^2} \right| \left(\frac{|2w| + |z|}{|(z-w)^2|} \right) < \left| \frac{z}{w^2} \right| \left(\frac{|2w| + |\frac{w}{2}|}{|(z-w)^2|} \right)$$

$$= \left| \frac{z}{w^2} \right| \left(\frac{4|w| + |w|}{2|(z-w)^2|} \right)$$

y entonces

$$\left| \frac{1}{(z-w)^2} - \frac{1}{w^2} \right| < \left| \frac{z}{w^2} \right| \left(\frac{5|w|}{2|(z-w)^2|} \right) = \left| \frac{z}{w^2} \right| \left(\frac{5|w|}{2|(z+(-w))^2|} \right)$$

Por otro lado cuando $|z_1| > |z_2|$ tenemos que $|z_1| - |z_2| \leqslant |z_1 + z_2|$, por lo que $\frac{1}{|z_1+z_2|} \leqslant \frac{1}{|z_1|-|z_2|}$. De lo anterior, como |z| < |w|, entonces:

$$\left| \frac{1}{(z-w)^2} - \frac{1}{w^2} \right| < \left| \frac{5z}{2w^2} \right| \left(\frac{|w|}{|(z+(-w))^2|} \right) \le \left| \frac{5z}{2w^2} \right| \left(\frac{|w|}{\left(|-w|-|z|\right)^2} \right)$$

Además como 2|z|<|w|, entonces $|z|<\frac{|w|}{2}$, de donde $\frac{|w|}{2}<|w|-|z|$, por lo que $\frac{1}{|w|-|z|}<\frac{2}{|w|}$. Tomando en cuenta esto último y el hecho de que |-w|=|w| obtenemos:

$$\left| \frac{1}{(z-w)^2} - \frac{1}{w^2} \right| < \left| \frac{5z}{2w^2} \right| \left(\frac{|w|}{\left(|-w| - |z| \right)^2} \right) = \left| \frac{5z}{2w^2} \right| \left(\frac{|w|}{\left(|w| - |z| \right)^2} \right)$$

$$< \left| \frac{5z}{2w^2} \right| \left(\frac{2}{|w|} \right)^2 |w|$$

simplificando, finalmente obtenemos

$$\left| \frac{1}{(z-w)^2} - \frac{1}{w^2} \right| < \frac{10|z|}{|w|^3} \leqslant \frac{10(|z_0|+1)}{|w|^3}$$

Ahora bien, como sabemos que z_0 es fija entonces únicamente nos faltaría acotar $|w|^{-3}$.

Anteriormente vimos que toda latiz L tiene un par de generadores, digamos que en este caso son w_1 y w_2 , entonces cada $w \in L$ se escribe en la forma $w = nw_1 + mw_2$ donde $n, m \in \mathbb{Z}$. Si tomamos la función

$$f(p) = Re(p)w_1 + Im(p)w_2$$

con $p \in \mathbb{C}$, podemos notar que esta función es continua. Por otro lado, como w_1 y w_2 son generadores de L, también serán generadores de \mathbb{C} (pensado como espacio vectorial), es decir, cualquier $q \in \mathbb{C}$ lo podemos escribir como

 $q = aw_1 + bw_2$ para algún a y algún b en \mathbb{R} , de lo cual podemos decir que la función inversa de f es

$$f^{-1}(q) = f^{-1}(aw_1 + bw_2) = a + ib$$

la cual también es una función continua. Ahora bien, si nos fijamos en las funciones

$$\left| \left(Re \circ f^{-1} \right) (q) \right| \quad \mathbf{y}$$
$$\left| \left(Im \circ f^{-1} \right) (q) \right|$$

éstas tienen como contradominio a los números reales además de que son continuas, esto último ya que tanto $f^{-1}(q)$, Re(q), Im(q) como |q| son continuas. Con lo anterior, si tomamos la función

$$\phi(q) = \left| \left(Re \circ f^{-1} \right)(q) \right| + \left| \left(Im \circ f^{-1} \right)(q) \right|$$

ésta también será continua y tendrá como contradominio a \mathbb{R} . Cuando tomamos la región

$$S = \{ z' \in \mathbb{C} : |z'| = 1 \}$$

podemos notar que es un compacto y al ser ϕ continua, entonces tenemos que debe existir un $M\in\mathbb{R}$ tal que M>0 y además satisface que

$$\phi(z') < M$$
 para toda $z' \in S$

Si hacemos $\delta = \frac{1}{M},$ a continuación veremos que

$$\frac{1}{|w|} \leqslant \frac{1}{\delta(|n| + |m|)}$$

para toda $w \in L - \{0\}$ con $w = nw_1 + mw_2$.

Entonces, si tomamos

$$z = \frac{w}{|w|} = \frac{n}{|w|}w_1 + \frac{m}{|w|}w_2$$

entonces |z| = 1 por lo que $z \in S$. Así $\phi(z) < M$, es decir,

$$|\left(Re \circ f^{-1}\right)(z)| + |\left(Im \circ f^{-1}\right)(z)| = |Re\left(f^{-1}(z)\right)| + |Im\left(f^{-1}(z)\right)| < M,$$

pero

$$f^{-1}(z) = f^{-1}\left(\frac{w}{|w|}\right) = f^{-1}\left(\frac{n}{|w|}w_1 + \frac{m}{|w|}w_2\right) = \frac{n}{|w|} + i\frac{m}{|w|},$$

por lo que

$$|Re(f^{-1}(z))| + |Im(f^{-1}(z))| = \left|Re\left(\frac{n}{|w|} + i\frac{m}{|w|}\right)\right| + \left|Im\left(\frac{n}{|w|} + i\frac{m}{|w|}\right)\right|,$$

así

$$\left|Re\left(\frac{n}{|w|} + i\frac{m}{|w|}\right)\right| + \left|Im\left(\frac{n}{|w|} + i\frac{m}{|w|}\right)\right| = \left|\frac{n}{|w|}\right| + \left|\frac{m}{|w|}\right| = \left|\frac{n}{w}\right| + \left|\frac{m}{w}\right| < M,$$

de donde se sigue que

$$|n| + |m| < M|w|,$$

de donde finalmente obtenemos

$$\frac{1}{|w|} \le \frac{M}{|n| + |m|} = \frac{1}{\delta(|n| + |m|)}.$$

Debemos recordar que el caso que estamos analizando es cuando $w \in B$, pero esta hipótesis no la usamos para encontrar la última ecuación, en sí lo único que necesitaríamos es que tanto m como n sean distintas de cero. Por lo anterior podemos hacer la siguiente observación.

OBSERVACIÓN 3.3.3 Sea L una latiz con generadores w_1 y w_2 . Entonces existe un número real $\delta > 0$, tal que para todo $w \in L - \{0\}$ satisface

$$\frac{1}{|w|} \leqslant \frac{1}{\delta(|n| + |m|)}$$

en donde n y m son números en \mathbb{Z} tales que $w = nw_1 + mw_2$.

Continuando con nuestra demostración, recordemos que obtuvimos la desigualdad

$$\left| \frac{1}{(z-w)^2} - \frac{1}{w^2} \right| < \frac{10(|z_0|+1)}{|w|^3}.$$

Además por la última observación tenemos que

$$\frac{1}{|w|} \leqslant \frac{1}{\delta(|n| + |m|)}$$

con lo anterior obtenemos

$$\left| \frac{1}{(z-w)^2} - \frac{1}{w^2} \right| < \frac{10(|z_0|+1)}{|w|^3} < \frac{10\beta}{\delta^3(|n|+|m|)^3},$$

donde $\beta = |z_0| + 1$. Por tanto, para $w \in B$ podemos hacer

$$M_w = \frac{10\beta}{\delta^3 (|n| + |m|)^3}.$$

Una vez que hemos encontrado los M_w tanto para A como para B sólo nos faltaría ver que la serie $\sum_{w\in \mathbf{D}} M_w$ converge. Como A es finito, bastará mostrar que la serie

$$\sum_{\substack{(n,m)\in\mathbb{Z}\times\mathbb{Z}\\nw_1+mw_2\in B}} \frac{10\beta}{\delta^3(|n|+|m|)^3}$$

converge, la notación de la última suma se debe a que en ésta, ya no podemos hacer las sumas variando w, ya que w no aparece en los terminos de la suma, sin embargo, podemos cambiarlo por la suma sobre las parejas (n,m) en $\mathbb{Z} \times \mathbb{Z}$ que cumplen con que $nw_1 + mw_2 \in B$, en si los terminos de ésta serie son tantos como los terminos de la serie $\sum_{w \in B} M_w$. Finalmente basta ver que la serie

$$\sum_{\substack{(n,m)\in\mathbb{Z}\times\mathbb{Z}\\|n|+|m|\neq 0}} \frac{10\beta}{\delta^3(|n|+|m|)^3}$$

converge. Dada $(n,m) \in (\mathbb{Z} \times \mathbb{Z}) \setminus \{(0,0)\}$, hagamos N = |n| + |m|. Cuando tomamos n entre 1 y N-1, podemos encontrar un número m en los naturales que cumpla con N = |n| + |m|, pero tomando en cuenta el valor absoluto por cada pareja de números n y m encontrados de esta manera podemos notar que habrá otros 3 pares de números en \mathbb{Z} que también cumplirán con N = |n| + |m|, éstos serían -n y m, n y -m y finalmente -n y -m, con lo que tendremos 4(N-1) pares de números que cumplen la ecuación de N.

Pero también cumplirán las parejas N con 0, -N con 0, 0 con N y 0 con -N, con lo que tendremos otros 4 pares. De tal modo que hay 4N pares de números n, m que cumplen la ecuación de N. Por lo que

$$\sum_{\substack{(n,m) \in \mathbb{Z} \times \mathbb{Z} \\ |n|+|m| \neq 0}} \frac{1}{\delta^3 (|n|+|m|)^3} = \sum_{N \in \mathbb{N}} \frac{4N}{(\delta N)^3} = \frac{4}{\delta^3} \sum_{N \in \mathbb{N}} \frac{1}{N^2},$$

y como sabemos que $\sum \frac{1}{N^2}$ es una serie convergente y además 4 y δ^3 son constantes, entonces $\frac{4}{\delta^3}\sum \frac{1}{N^2}$ también es convergente por lo que

$$\sum_{\substack{(n,m)\in\mathbb{Z}\times\mathbb{Z}\\|n|+|m|\neq 0}}\frac{1}{\delta^3(|n|+|m|)^3}<\infty.$$

Así finalmente obtendremos

$$\sum_{\substack{(n,m)\in\mathbb{Z}\times\mathbb{Z}\\|n|+|m|\neq 0}} \frac{10\beta}{\delta^3(|n|+|m|)^3} < \infty.$$

Por tanto la serie

$$\sum_{w \in \mathbf{D}} \left(\frac{1}{(z-w)^2} - \frac{1}{w^2} \right)$$

converge absolutamente en U para toda $z \in \mathbb{C} - \mathbf{D}$.

Una vez visto el lema anterior podemos demotrar el lema que queremos sobre $\wp(z)$.

LEMA 3.3.4 La serie $\wp(z)$ converge absolutamente y uniformemente en cualquier subconjunto compacto de $\mathbb{C} - L$.

DEMOSTRACIÓN.

Como en el lema anterior, nos bastará con probar que para cualquier punto $z_0 \in \mathbb{C} - L$, existe una vecindad $U \subset \mathbb{C} - L$ de z_0 tal que la serie

$$\frac{1}{z^2} + \sum_{\substack{w \in L \\ w \neq 0}} \frac{1}{(z-w)^2} - \frac{1}{w^2}$$

converge absolutamente en U.

Y para esto basta encontrar una vecindad $U \subset \mathbb{C} - L$ de z_0 y una serie convergente de números positivos $\sum_{w \in L \atop w \neq 0} M_w$ tal que

$$\left| \frac{1}{(z-w)^2} - \frac{1}{w^2} \right| \leqslant M_w,$$

para toda $z \in U$.

En el lema anterior teníamos que dada $w_0 \in L$ y $z_0 \in \mathbb{C} - \mathbf{D}$ (donde $\mathbf{D} = L - \{w_0, 0\}$ podíamos tomar ϵ_1 y encontrar M_w tal que

$$\left| \frac{1}{(z-w)^2} - \frac{1}{w^2} \right| \leqslant M_w,$$

para cada $w \in \mathbf{D}$ (con $\mathbf{D} = L - \{w_0, 0\}$) y toda $z \in U_1$ ($U_1 = B_{\epsilon_1}(z_0)$). En donde la serie $\sum_{w \in \mathbf{D}} M_w$ es una serie convergente.

De lo anterior, dada $z_0 \in \mathbb{C} - L$ tomemos $\epsilon < \epsilon_1$ tal que $\overline{B_{\epsilon}(z_0)} \cap L = \emptyset$. Sea $U = B_{\epsilon}(z_0)$. Notemos que como $\epsilon < \epsilon_1$, entonces $U \subset U_1$. Además las M_w antes mencionadas cumplen que

$$\left| \frac{1}{(z-w)^2} - \frac{1}{w^2} \right| \leqslant M_w,$$

para cada $w \in \mathbf{D}$ y toda $z \in U$. Por lo que sólo nos faltará encontrar las M_w correspondientes a z^{-2} (ésta M_w la denotaremos por M_0) y a $(z-w_0)^{-2}-w_0^{-2}$.

Como 0 y w_0 están en L, entonces tanto z^{-2} como $(z-w_0)^{-2}-w_0^{-2}$, son funciones bien definidas y analíticas en $\mathbb{C}-L$. En particular también son analíticas en \overline{U} , el cual es un compacto, por lo que alcanzan su valor máximo y mínimo. Por lo que existen M_0 y M_w en \mathbb{R}^+ tales que

$$\left| \frac{1}{z^2} \right| < M_0 \qquad y \qquad \left| \frac{1}{(z - w_0)^2} - \frac{1}{(w_0)^2} \right| < M_{w_0}$$

Por lo que

$$\left| \frac{1}{z^2} \right| + \left| \frac{1}{(z - w_0)^2} - \frac{1}{(w_0)^2} \right| + \sum_{w \in \mathbf{D}} \left| \frac{1}{(z - w)^2} - \frac{1}{(w)^2} \right|$$

$$< M_0 + M_{w_0} + \sum_{w \in \mathbf{D}} M_w = \sum_{w \in L} M_w.$$

Pero como ya habíamos visto $\sum_{w \in \mathbf{D}} M_w$ es convergente, por lo que $\sum_{w \in L} M_w$ también es convergente. Así la serie

$$\frac{1}{z^2} + \sum_{\substack{w \in L \\ w \neq 0}} \left(\frac{1}{(z-w)^2} - \frac{1}{(w)^2} \right)$$

converge absolutamente en U, que es lo que queríamos demostrar.

Con lo anterior ya mostramos en qué puntos está definida \wp . Derivado del lema anterior tenemos el siguiente corolario.

COROLARIO 3.3.5 La función \wp es analítica en $\mathbb{C}-L$, es decir, existe \wp' que está definida por la serie

$$\sum_{w \in L} \frac{-2}{(z-w)^3} \quad \text{para todo} \quad z \in \mathbb{C} - L$$

y además esta serie es convergente.

Este corolario se deriva del hecho de que toda serie absolutamente convergente en una región $D \subset \mathbb{C}$, es analítica en D, además de que existe la derivada de esta serie la cual se obtiene derivando término a término los sumandos de la serie $\wp(z)$. Por la misma razón tenemos el siguiente corolario.

COROLARIO 3.3.6 Sea $w_0 \in L$. Definamos $\mathbf{D} = L - \{w_0, 0\}$. La serie

$$\sum_{w \in \mathbf{D}} \left(\frac{1}{(z-w)^2} - \frac{1}{(w)^2} \right)$$

es analítica en todo $z \in \mathbb{C} - \mathbf{D}$.

Con lo que ya hemos demostrado podemos empezar a ver las propiedades que tienen \wp y \wp' . Primeramente veremos que \wp es una función par y que \wp' es una función impar, además de ver que para toda $w \in L$ y toda $z \in \mathbb{C} - L$,

$$\wp'(z) = \wp'(z+w)$$

$$\wp(z) = \wp(z+w)$$

 $^{^1\}mathrm{Teorema}$ 2 ubicado en la página 38 de \cite{black} .

LEMA 3.3.7 $\wp(z)$ es una función par y $\wp'(z)$ es una función impar. Además para toda $w \in L$ se cumple

$$\wp'(z) = \wp'(z+w)$$
 para toda $z \in \mathbb{C} - L$
 $\wp(z) = \wp(z+w)$ para toda $z \in \mathbb{C} - L$

DEMOSTRACIÓN.

Para demostrar que \wp es una función par debemos demostrar que para toda $z \in \mathbb{C} - L$

$$\wp(z) = \wp(-z)$$

para ello debemos tomar en cuenta que $(z-w)^2=(-z+w)^2$ y $w^2=(-w)^2$ para toda $z\in\mathbb{C}-L$ y toda $w\in L$. Con esto tenemos que

$$\wp(z) = \frac{1}{z^2} + \sum_{\substack{w \in L \\ w \neq 0}} \left(\frac{1}{(z - w)^2} - \frac{1}{w^2} \right) = \frac{1}{z^2} + \sum_{\substack{w \in L \\ w \neq 0}} \left(\frac{1}{(-z + w)^2} - \frac{1}{w^2} \right)$$
$$= \frac{1}{(-z)^2} + \sum_{\substack{w \in L \\ w \neq 0}} \left(\frac{1}{\left(-z - (-w)\right)^2} - \frac{1}{(-w)^2} \right)$$

Como a final de cuentas, $w \in L$ si y sólo si $-w \in L$, entonces podemos hacer el cambio de variable -w = w', de tal manera que la última ecuación quedará como

$$\wp(z) = \frac{1}{(-z)^2} + \sum_{\substack{w' \in L \\ w' \neq 0}} \left(\frac{1}{(-z - w')^2} - \frac{1}{(w')^2} \right)$$
$$= \wp(-z)$$

Con lo cual obtenemos que $\wp(z) = \wp(-z)$. Ahora bien, para ver que $\wp'(z)$ es impar simplemente derivamos de ambos lados de la ecuación $\wp(z) = \wp(-z)$.

Ahora demostraremos que $\wp'(z) = \wp'(z + w_0)$ para toda z en $\mathbb{C} - L$ y toda $w_0 \in L$. Por la definición de \wp' tenemos que para toda $z \in \mathbb{C} - L$ y toda $w_0 \in L$

$$\wp'(z+w_0) = -2\sum_{w\in L} \frac{1}{(z+w_0-w)^3}$$

Debemos notar que si tomamos $w_0 \in L$, entonces $w \in L$ si y sólo si $w_0 - w \in L$, por lo que podemos hacer el cambio de variable $w' = w_0 - w$, con lo que obtenemos que

$$\wp'(z+w_0) = -2\sum_{w\in L} \frac{1}{(z+w_0-w)^3} = -2\sum_{w'\in L} \frac{1}{(z-w')^3}$$
$$= \wp'(z)$$

Con lo cual demostramos lo que queríamos. Ahora bien para demostrar que $\wp(z) = \wp(z + w_0)$ para toda $w_0 \in L$ y toda $z \in \mathbb{C} - L$ será suficiente con demostrar los casos en que $w_0 = nw_1$ y $w_0 = nw_2$ para toda $n \in \mathbb{Z}$, esto por que todo w_0 se puede escribir de la forma $w_0 = nw_1 + mw_2$, entonces si demostramos que $\wp(z) = \wp(z + nw_1)$ y $\wp(z) = \wp(z + nw_2)$ para toda $n \in \mathbb{Z}$ tendremos que

$$\wp(z + w_0) = \wp(z + nw_1 + mw_2) = \wp(z + nw_1) = \wp(z)$$

ya que ni $z + nw_1$ ni z están en L. Primero analicemos el caso en que $n \in \mathbb{N}$, como se trata de naturales lo haremos por inducción.

Demostremos primero cuando n=1, es decir, $w_0=w_1$. Para ello construyamos la función $f(z)=\wp(z+w_1)-\wp(z)$. De la función f podemos decir que como \wp es una función analítica en $\mathbb{C}-L$, entonces f es analítica en $\mathbb{C}-L$, y además esta función tiene como derivada $f'(z)=\wp'(z+w_1)-\wp'(z)$, pero por lo último que demostramos f'(z) es 0 en cualquier punto $z\in\mathbb{C}-L$, es decir, f'(z)=0 para toda $z\in\mathbb{C}-L$ y como $\mathbb{C}-L$ es conexo la función f(z) tiene que ser una función constante. Además como $-w_1/2\notin L$, entonces f(z) evaluada en $-w_1/2$ es

$$f(-w_1/2) = \wp\left(-\frac{w_1}{2} + w_1\right) - \wp\left(-\frac{w_1}{2}\right)$$

pero ya vimos que p es una función par por lo que

$$f(-w_1/2) = \wp\left(\frac{w_1}{2}\right) - \wp\left(-\frac{w_1}{2}\right)$$
$$= 0$$

Por lo que la constante que buscamos es 0. Así que f(z) = 0, entonces $\wp(z + w_1) = \wp(z)$ para toda $z \in \mathbb{C} - L$.

Para hacer el paso inductivo, supongamos que $\wp(z+(n-1)w_1)=\wp(z)$ para toda $z\in\mathbb{C}-L$. Demostremos que $\wp(z+nw_1)=\wp(z)$. Notemos que $z+nw_1=z+(n-1)w_1+w_1$, en donde, como ya vimos $z+(n-1)w_1\notin L$ y ya que $\wp(z+w_1)=\wp(z)$ para todo $z\in\mathbb{C}-L$, así

$$\wp(z + nw_1) = \wp(z + (n-1)w_1 + w_1) = \wp(z + (n-1)w_1)$$

y por nuestra suposición tenemos que

$$\wp(z + nw_1) = \wp(z + (n-1)w_1) = \wp(z)$$

por lo que

$$\wp(z + nw_1) = \wp(z)$$

es válido para toda $n \in \mathbb{N}$. Ahora si tomamos $n \in \mathbb{Z}^-$, -n pertenece a los naturales. Por lo que ya demostramos (aplicado a $z + nw_1$), tenemos que $\wp((z+nw_1)+(-nw_1)) = \wp(z+nw_1)$, así que $\wp(z+nw_1) = \wp(z)$. Por tanto la igualdad $\wp(z+nw_1) = \wp(z)$ se cumple para todo $n \in \mathbb{Z}$.

Análogamente podemos demostrar lo mismo con w_2 . Con lo dicho al principio finalmente obtenemos que $\wp(z+w_0)=\wp(z)$. Lo anterior quiere decir que la función \wp manda a z y a $z+w_0$ al mismo punto, y como w_0 era cualquiera en la latiz, entonces dada $z\in\mathbb{C}-L$, a todos los puntos del conjunto:

$$\{z+w:w\in L\}$$

la función \wp los manda al mismo punto.

Con esto concluimos la demostración del lema.

Con lo anterior podemos saber que es lo que ocurre con \wp en los puntos $z \in \mathbb{C} - L$, sin embargo, todavía nos faltaría determinar que ocurre en los puntos w que están en L. Para ello tomemos $w_0 \in L - \{0\}$. La función z^{-2} es una función analítica en $\mathbb{C} - \{0\}$ y por el corolario 3.3.6 tenemos que

$$\sum_{w \in \mathbf{D}} \left(\frac{1}{(z-w)^2} - \frac{1}{w^2} \right)$$

es analítica en todo $z \in \mathbb{C} - \mathbf{D}$ (donde $\mathbf{D} = L - \{w_0, 0\}$). Por lo que la serie

$$\frac{1}{z^2} + \sum_{w \in \mathbf{D}} \left(\frac{1}{(z-w)^2} - \frac{1}{w^2} \right)$$

es analítica en $\mathbb{C} - L$ y también en w_0 . En particular, nos interesa que la serie es analítica en una vecindad de w_0 . Exactamente, es analítica en el disco de radio R con centro en w_0 ($B_R(w_0)$), donde $R = min\{|w_1|, |w_2|\}$ (recordemos que w_1 y w_2 son los generadores de L). Ya que es analítica en esta vecindad, entonces el teorema de Taylor² nos garantiza que existen A_i con $i = 1, 2, \ldots$ tales que

$$\frac{1}{z^2} + \sum_{w \in \mathbf{D}} \left(\frac{1}{(z-w)^2} - \frac{1}{w^2} \right) = \sum_{i=0}^{\infty} \frac{A_i}{i!} (z-w_0)^i$$

para toda $z \in B_R(w_0)$. Además tenemos que

$$\frac{1}{(z-w_0)^2} - \frac{1}{(w_0)^2}$$

es analítica en $\mathbb{C} - \{w_0\}$, en particular, en $B_R(w_0) - \{w_0\}$. De tal modo que

$$\wp(z) = \left(\frac{1}{(z-w_0)^2} - \frac{1}{(w_0)^2}\right) + \frac{1}{z^2} + \sum_{w \in \mathbf{D}} \left(\frac{1}{(z-w)^2} - \frac{1}{w^2}\right)$$
$$= \left(\frac{1}{(z-w_0)^2} - \frac{1}{(w_0)^2}\right) + \sum_{i=0}^{\infty} \frac{A_i}{i!} (z-w_0)^i$$

es analítica en $B_R(w_0)$ salvo en w_0 . Pero el lado derecho de la igualdad no es mas que la serie de Laurent correspondiente a \wp alrededor de w_0 .

Recordemos que una función tiene un polo de orden N, si en la parte principal del desarrollo en serie de Laurent de dicha función alrededor de un punto z_0 , los coeficientes de los términos correspondientes a $(z-z_0)^{-k}$ son 0 para todo $k \in \mathbb{N}$ con k > N. Además, de que el coeficiente del término que contiene a $(z-z_0)^{-N}$ es distinto de 0. Así, como la parte principal de la serie de Laurent de \wp alrededor de w_0 es $(z-w_0)^{-2}$, tenemos que \wp tiene un polo de orden 2 alrededor de w_0 .

Análogmanete, podemos ver que \wp tiene un polo de orden 2 alrededor del 0. De lo anterior podemos deducir el siguiente teorema.

 $^{^2\}mathrm{Teorema}$ 3 en la página 179 de [ah]

TEOREMA 3.3.8 La función $\wp(z)$ tiene polos dobles en los puntos de L.

Uno de los problemas que se tienen por estar \wp definida como una serie, es lo complicado que resulta calcular expresiones simples y apropiadas para las funciones

$$\wp^{3}(z) = \left(\frac{1}{z^{2}} + \sum_{\substack{w \in L \\ w \neq 0}} \left(\frac{1}{(z-w)^{2}} - \frac{1}{w^{2}}\right)\right)^{3}$$

y
$$(\wp'(z))^2 = \left(-2\sum_{w\in L} \frac{1}{(z-w)^3}\right)^2$$
.

Para poder hacer esto se introducen nuevas funciones como la de la siguiente definición.

DEFINICIÓN 3.3.9 Sea L una latiz, entonces definimos la serie de Eisenstein de peso 2k (con $k \ge 2$) como

$$G_{2k}(L) = \sum_{\substack{w \in L \\ w \neq 0}} w^{-2k}$$

Antes de utilizar esta serie será importante analizar si esta serie es convergente, para ello veamos el siguiente teorema.

TEOREMA 3.3.10 Para cada latiz L la serie de Eisenstein G_{2k} es absolutamente convergente para toda $k \in \mathbb{N}$

DEMOSTRACIÓN. Para demostrar esto necesitamos que la serie

$$\sum_{\substack{w \in L \\ w \neq 0}} |\omega^{-2k}|$$

sea convergente para $k\geq 2$, para ello recordemos que en la observación 3.3.3 dentro de la demostración del teorema 3.3.2 obtuvimos el siguiente resultado.

Existe
$$c \in \mathbb{R}^+$$
 tal que para toda $w \in L - \{0\}, \quad \frac{1}{|w|} \leqslant \frac{1}{c(|n| + |m|)},$

en donde recordemos que $|w| = |nw_1 + mw_2| \text{ con } n, m \in \mathbb{Z} \text{ y } |n| + |m| \neq 0$, por lo que si sumamos sobre $w \in L - \{0\}$ en el lado izquierdo de la desigualdad, entonces las sumas correrán sobre n y m en el lado derecho con la condición de que $|n| + |m| \neq 0$, esto es:

$$\sum_{\substack{w \in L \\ w \neq 0}} \frac{1}{|w|^{2k}} \leqslant \sum_{\substack{n, m \in \mathbb{Z} \\ |n| + |m| \neq 0}} \frac{1}{\left(c(|n| + |m|)\right)^{2k}},$$

si hacemos N=|n|+|m| tendremos 4N parejas de números n y m que van a satisfacer está condicion por lo que

$$\sum_{\substack{w \in L \\ w \neq 0}} \frac{1}{|w|^{2k}} \leqslant \sum_{\substack{n,m \in \mathbb{Z} \\ |n|+|m| \neq 0}} \frac{1}{\left(c(|n|+|m|)\right)^{2k}} = \sum_{N \in \mathbb{N}} \frac{4N}{\left(cN\right)^{2k}} = \frac{4}{c^{2k}} \sum_{N \in \mathbb{N}} N^{-2k+1}$$

y como $\sum_{N\in\mathbb{N}} N^{-j}$ es convergente para cualquier $j\in\mathbb{N}$ tal que $j\geqslant 2$, entonces $\sum_{N\in\mathbb{N}} N^{-2k+1}$ es convergente para toda $k\in\mathbb{N}$ tal que $k\geq 2$, ademas como $4c^{-2k}$ es una constante entonces

$$\frac{4}{c^{2k}} \sum_{N \in \mathbb{N}} N^{-2k+1} \qquad \text{para toda } k \in \mathbb{N}$$

es convergente por lo que

$$G_{2k} = \sum_{\substack{w \in L \\ w \neq 0}} \frac{1}{|w|^{2k}}$$
 para toda $k \in \mathbb{N}$

es convergente, que es lo que queríamos demostrar.

Ya que la series G_{2k} son convergentes podemos enlistar las siguientes igualdades, sus pruebas son complicadas y quedan fuera del alcance de este trabajo, sin embargo, usaremos estas expresiones. ³

$$\wp'(z) = -\frac{2}{z^3} + 6G_4z + 20G_6z^3 + 42G_8z^5 + ...,$$

$$\left(\wp'(z)\right)^2 = \frac{4}{z^6} - 24G_4\frac{1}{z^2} - 80G_6 + (36(G_4)^2 - 168G_8)z^2 + ...,$$

$$\left(\wp(z)\right)^2 = \frac{1}{z^4} + 6G_4 + 10G_6z^2 + ...,$$

³Desafortunadamente no pude encontrar demostraciones de estas ecuaciones y desconozco si hay alguna prueba, las ecuaciones utilizadas aquí están escritas como en [?] página 275.

$$(\wp(z))^{3} = \frac{1}{z^{6}} + 9G_{4}\frac{1}{z^{2}} + 15G_{6} + (21G_{8} + 27(G_{4})^{2})z^{2} + ...,$$

$$\wp(z) = \frac{1}{z^{2}} + 3G_{4}z^{2} + 5G_{6}z^{4} + 7G_{8}z^{6} + ...,$$

Cada una de las series anteriores es convergente, ya que el producto de series absolutamente convergentes es una una serie absolutamente convergente⁴ y tanto \wp como \wp' lo son. Con esto definamos la función f(z) como sigue:

$$f(z) = (\wp'(z))^{2} - 4(\wp(z))^{3} + 60G_{4}\wp(z) + 140G_{6}$$

sustituyendo, obtenemos

$$f(z) = \frac{4}{z^6} - 24G_4 \frac{1}{z^2} - 80G_6 + (36(G_4)^2 - 168G_8)z^2 + \dots$$

$$-4\left[\frac{1}{z^6} + 9G_4 \frac{1}{z^2} + 15G_6 + (21G_8 + 27(G_4)^2)z^2 + \dots\right]$$

$$+60G_4\left[\frac{1}{z^2} + 3G_4z^2 + 5G_6z^4 + 7G_8z^6 + \dots\right]$$

$$+140G_6$$

$$= \left(\frac{4}{z^6} - \frac{4}{z^6}\right) + (60G_4 - 36G_4 - 24G_4)\frac{1}{z^2} - 80G_6 - 60G_6 + 140G_6$$

$$+ \left(36(G_4)^2 - 168G_8 - 4\left(21G_8 + 27(G_4)^2\right) + 180(G_4)^2\right)z^2 + \dots$$

$$f(z) = \left(108(G_4)^2 - 252G_8\right)z^2 + \dots$$

En esta última expresión, tenemos a f expresada como una serie de potencias alrededor del cero. Si $z \in \mathbb{C} - L$, esta serie es convergente, porque cada una de las funciones $(\wp'(z))^2$, $(\wp(z))^3$, $\wp(z)$ estaba dada como una serie absolutamente convergente. Por tanto el radio de convergencia de la serie que define a f es infinito. Así que f es analítica en \mathbb{C} .

Por otro lado recordemos que

$$\wp(z) = \wp(z+w) \qquad \forall z \in \mathbb{C} - L \ y \ \forall \ w \in L$$

$$\wp(z') = \wp'(z+w) \qquad \forall z \in \mathbb{C} - L \ y \ \forall \ w \in L,$$

⁴Teorema 5 en la pág. 240 de [?]

por lo que

$$\wp(z) = \wp(z+w) \qquad \forall z \in \mathbb{C} - L \ y \ \forall w \in L$$
$$(\wp(z))^{3} = (\wp(z+w))^{3} \qquad \forall z \in \mathbb{C} - L \ y \ \forall w \in L$$
$$\wp(z') = \wp'(z+w) \qquad \forall z \in \mathbb{C} - L \ y \ \forall w \in L,$$

entonces

$$f(z) = (\wp'(z))^{2} - 4(\wp(z))^{3} + 60G_{4}\wp(z) + 140G_{6}$$

$$= (\wp'(z+w))^{2} - 4(\wp(z+w))^{3} + 60G_{4}\wp(z+w) + 140G_{6}$$

$$f(z) = f(z+w) \quad \forall z \in \mathbb{C} - L \ y \ \forall w \in L.$$

Como f es analítica en 0, entonces f también es continua en 0, así

$$f(0) = \lim_{z \to 0} f(z)$$

pero como para todo $z \in \mathbb{C} - L$ tenemos que f(z) = f(z + w), entonces

$$f(0) = \lim_{z \to 0} f(z) = \lim_{z \to 0} f(z+w) = f(w) \quad \forall \ w \in L.$$

Por lo que podemos concluir que

$$f(z) = f(z+w) \quad \forall \ z \in \mathbb{C} \ \ y \ \ \forall \ w \in L.$$

Definimos

$$D = \{ z \in \mathbb{C} : z = kw_1 + jw_2 \text{ con } k, j \in [0, 1] \},$$

donde w_1 , w_2 son los generadores de L. Entonces si buscamos el supremo de |f| en \mathbb{C} éste será igual al supremo de |f| en D, es decir:

$$\sup\{|f(z)|\ : z\in\mathbb{C}\}=\sup\{|f(z)|\ : z\in D\}$$

Notemos que D es compacto y f es continua en D, de manera que f es acotada en D. Esto implica que f es acotada en \mathbb{C} y como f(0) = 0, por el Teorema de Liouville tenemos que la función f es constante, es decir, que f(z) = 0 para toda $z \in \mathbb{C}$. Dado que $f(z) = (\wp'(z))^2 - 4(\wp(z))^3 + 60G_4\wp(z) + 140G_6$ resulta que:

$$f(z) = (\wp'(z))^{2} - 4(\wp(z))^{3} + 60G_{4}\wp(z) + 140G_{6} = 0$$

Por tanto

$$(\wp'(z))^2 = 4(\wp(z))^3 - 60G_4\wp(z) - 140G_6$$

Hemos demostrado el siguiente teorema.

TEOREMA 3.3.11 Dada una latiz L en \mathbb{C} ,

$$(\wp'(z))^2 = 4(\wp(z))^3 - 60G_4\wp(z) - 140G_6,$$

para toda $z \in \mathbb{C} - L$

Consideremos la ecuación

$$y^2 = 4x^3 - 4ax + c \quad \text{con } x, y \in \mathbb{C},$$

Aplicando la trasformación dada por:

$$\widetilde{x} = 4^{1/3}x$$
 $\widetilde{y} = y$,

obtenemos la ecuación

$$\widetilde{y}^2 = \widetilde{x}^3 - \frac{4}{4^{\frac{1}{3}}} a\widetilde{x} + c,$$

la cual es la ecuación de una curva elíptica, por lo que $(\wp'(z))^2 = 4(\wp(z))^3 - 60G_4\wp(z) - 140G_6$ es la ecuación de una curva elíptica transformada, de está manera queda demostrada la propiedad 2 de las curvas elípticas en \mathbb{C} que enunciamos en la página 73.

Antes de ver la propiedad 3 necesitamos ver algunas definiciones y resultados importantes de variable compleja que serán de gran ayuda, en particular veremos algunos resultados del cálculo de residuos, comenzaremos con la siguientes definiciones.

DEFINICIÓN 3.3.12 Sea γ una curva diferenciable a trozos dentro de una región $\Omega \in \mathbb{C}$ y tomemos un punto $a \in \Omega$, tal que γ no pasa por a, entonces definimos el *indíce de el punto a con respecto a la curva* γ por la ecuación:

$$n(\gamma, a) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - a}$$

Se puede demostrar que $n(\gamma, a)$ siempre es un número entero (lema 1 de [?] pag. 115), además, de que el índice de un punto a con respecto a la curva γ también se puede describir como el número de vueltas con orientación que γ da alrededor de a.

DEFINICIÓN 3.3.13 Una curva γ en un conjunto abierto Ω se dice ser homóloga a cero con respecto a la región Ω si $n(\gamma, a) = 0$ para todos los puntos en el complemento de Ω . En símbolos esto se escribira como $\gamma \sim 0 \pmod{\Omega}$

DEFINICIÓN 3.3.14 Sea f(z) una una función analítica en una región D excepto quizás en un punto a. Entonces la serie de Laurent de f(z) es de la siguiente forma

$$f(z) = \sum_{-\infty}^{\infty} a_n (z - a)^n,$$

donde esta serie converge en un anillo de la forma

$$0 < |z - a| < r_1$$
.

Entonces definimos el residuo de f(z) en el punto a como:

$$Res_{z=a}f(z) = a_{-1}.$$

A partir de estas definiciones, se siguen varios resultados que nos serán de gran utilidad para poder demostrar la propiedad 3. Iniciaremos con el Teorema del residuo.

TEOREMA 3.3.15 (Teorema del residuo)

Sea f(z) analítica excepto para singularidades aisladas⁵ a_j en una región $\Omega \in \mathbb{C}$. Entonces

$$\frac{1}{2\pi} \int_{\gamma} f(z)dz = \sum_{j} n(\gamma, a_j) Res_{z=a_j} f(z),$$

para cualquier curva γ que sea homóloga a cero en Ω y no pase por ninguno de los puntos a_j .

⁵Puntos para los cuales existe una vecindad en la que, salvo por el mismo punto, f es analítica en dicha vecindad (es decir, un punto a es una singularidad aislada de f, si f es analítica en todo b tal que $b \in B_{\delta}(a) \setminus \{a\}$ para alguna $\delta \in \mathbb{R}^+$)

Derivado del teorema anterior tenemos el siguiente lema.

LEMA 3.3.16 Si f(z) es analítica en una región $\Omega \in \mathbb{C}$, entonces

$$n(\gamma, a)f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - a} dz$$

para cualquier curva γ que sea homóloga a cero en Ω .

Otros conceptos que son importantes de recordar son los de cero y polo, los cuales enunciaremos en las siguientes definiciones.

DEFINICIÓN 3.3.17 Sea f una función definida en \mathbb{C} . Diremos que un punto $a \in \mathbb{C}$ es un *cero* de f si f(a) = 0. Más generalmente diremos que a es un *cero* de orden h si existe una función $f_h(z)$ que sea analítica y diferente de cero en a (es decir $f_h(a) \neq 0$), tal que

$$f(z) = (z - a)^h f_h(z)$$

DEFINICIÓN 3.3.18 Sea f una función definida en \mathbb{C} . Diremos que un punto $a \in \mathbb{C}$ es un polo de f si a es una singularidad aislada de f y además

$$\lim_{z \to a} |f(z)| = \infty$$

En general diremos que a es un polo de orden h si existe una función $f_h(z)$ que sea analítica y diferente de cero en a (es decir $f_h(a) \neq 0$), tal que

$$f(z) = (z - a)^{-h} f_h(z)$$

De estas definiciones se pueden deducir varios teoremas importantes sobre ceros y polos en funciones complejas. Cuando una función f tiene un cero de orden h como ya vimos se puede escribir a la función como $f(z) = (z-a)^h f_h(z)$ en donde $f_h(a) \neq 0$. Derivando f obtenemos $f'(z) = h(z-a)^{h-1} f_h(z) + (z-a)^h f'_h(z)$. Así tenemos que

$$\frac{f'(z)}{f(z)} = \frac{h}{z - a} + \frac{f'_h(z)}{f_h(z)}$$

entonces f'/f tiene un polo simple con residuo h.

Si tomamos una función analítica g(z) en \mathbb{C} tal que $g(z) \neq 0$, entonces

$$g(z)\frac{f'(z)}{f(z)} = g(z)\frac{h}{z-a} + g(z)\frac{f'_h(z)}{f_h(z)}$$

tendrá un polo simple en a con residuo hg(a). Análogamente tendremos que si f tiene un polo de orden k en b entonces:

$$\frac{f'(z)}{f(z)}$$
 tendrá un polo simple en b con residuo k
$$y \quad g(z)\frac{f'(z)}{f(z)}$$
 tendrá un polo simple en b con residuo $kg(a)$

Derivado de estos resultados y del teorema del residuo se deducen el principio del argumento y su generalización.

TEOREMA 3.3.19 (Principio del argumento)

Si f(z) es analítica en una región $\Omega \in \mathbb{C}$ y f(z) es analítica en Ω con ceros en a_i y polos en b_k , entonces

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{i} n(\gamma, a_i) - \sum_{k} n(\gamma, b_k)$$

Para cualquier curva γ que sea homóloga a cero en una región $\Omega \in \mathbb{C}$ y no pase sobre ningún polo o cero de f.

TEOREMA 3.3.20 (Generalización del principio del argumento)

Sean g(z) y f(z) analíticas en Ω , en donde f(z) tiene ceros en a_j y polos en b_k , entonces

$$\frac{1}{2\pi i} \int_{\gamma} g(z) \frac{f'(z)}{f(z)} dz = \sum_{j} n(\gamma, a_j) g(a_j) - \sum_{k} n(\gamma, b_k) g(b_k)$$

Para cualquier curva γ que sea homologa a cero en Ω y no pase sobre ningún polo o cero de f.

Cabe aclarar que cuando los ceros y polos son múltiples, tendrán que ser repetidos en las sumas tantas veces como indique el orden respectivo. En particuar del último teorema tenemos que cuando $n(\gamma, a_j) = n(\gamma, b_k) = 1 \quad \forall j, k$ entonces

$$\frac{1}{2\pi i} \sum_{\gamma} g(z) \frac{f'(z)}{f(z)} dz = \sum_{j} g(a_j) - \sum_{k} g(b_k)$$

Otro resultado que ocuparemos y que no está relacionado con el cálculo de residuos es el siguiente.

LEMA 3.3.21 Sea f una función definida en \mathbb{C} que cumple con que f(z)=f(z+a), donde a es algún punto en \mathbb{C} y tomemos dos curvas γ_1 y γ_2 tales que

$$\gamma_1, \ \gamma_2: [c,d] \subset \mathbb{R} \to \mathbb{C}$$

$$y \quad \gamma_1(t) = \gamma_2(t) + a \quad \text{para cada } t \in [c,d] \quad \text{entonces}$$

$$\int_{\gamma_1} f(z) dz = \int_{\gamma_2} f(z) dz$$

mientras las curvas sean recorridas en el mismo sentido. Si son recorridas en sentidos opuestos (es decir, si $\gamma_1(t) = \gamma_2(d-t+c) + a$ tendremos

$$\int_{\gamma_1} f(z)dz = -\int_{\gamma_2} f(z)dz$$

El lema anterior se deduce del hecho de que si en $\int_{\gamma_1} f(z)dz$ se hace el cambio de variable z = z' + a, entonces la curva γ_1 será transformada en la curva γ_2 , de lo cual tendremos:

$$\int_{\gamma_1} f(z)dz = \int_{\gamma_2} f(z'+a)dz' = \int_{\gamma_2} f(z')dz' = \int_{\gamma_2} f(z)dz$$

Con estos resultados terminamos nuestro repaso por el cálculo de residuos y variable compleja. Antes de ver algunos lemas, veamos la siguiente definición.

DEFINICIÓN 3.3.22 Sea *L* una latiz. Un paralelogramo fundamental (o región fundamental) de la latiz *L* es un conjunto de la forma:

$$D = \{a + t_1 w_1 + t w_2 | 0 \leqslant t_1, \ t_2 < 1\}$$

en donde $a \in \mathbb{C}$ y w_1, w_2 son los generadores de la latiz L.

LEMA 3.3.23 Sea L una latiz en \mathbb{C} . Tomemos una función analítica f en \mathbb{C} que cumpla que f(z) = f(z+w) para cada $z \in \mathbb{C} - L$ y $w \in L$. Si a_k son los ceros y b_j los polos de f dentro de una región fundamental D, en donde la frontera de D (∂D) no pasa por ninguno de los polos o ceros de f entonces:

a)
$$\sum_{k} ord(a_k) - \sum_{j} ord(b_j) = 0$$

b)
$$\sum_{k} n(\partial D, a_k) a_k - \sum_{j} n(\partial D, b_j) b_j \in L$$

DEMOSTRACIÓN. Tomemos una región fundamental D de la latiz L como en la definición 3.3.22. Por el principio del argumento (teorema 3.3.19) sabemos que

$$\frac{1}{2\pi i} \int_{\partial D} \frac{f'(z)}{f(z)} dz = \sum_{k} n(\partial D, a_k) - \sum_{j} n(\partial D, b_j)$$

Pero como D es un paralelogramo podemos definir su frontera como la unión de cuatro segmentos dirigidos. Definiremos estos segmentos de la siguiente manera

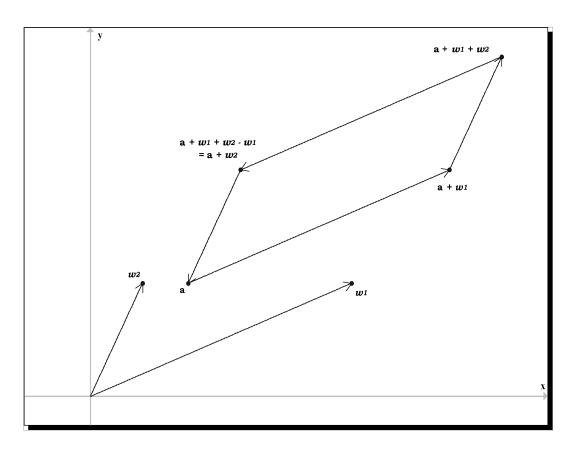
$$\gamma_1 = \{z | z = a + tw_1 \quad 0 \leqslant t \leqslant 1\}
\gamma_2 = \{z | z = a + w_1 + tw_2 \quad 0 \leqslant t \leqslant 1\}
\gamma_3 = \{z | z = a + w_1 + w_2 - tw_1 \quad 0 \leqslant t \leqslant 1\}
\gamma_4 = \{z | z = a + w_2 - tw_2 \quad 0 \leqslant t \leqslant 1\}$$

con ecuaciones $z_1(t)$, $z_2(t)$, $z_3(t)$ y $z_4(t)$, las cuales describen a la curva respectiva.

Podemos notar que $z_3(t) = z_1(1-t) + w_2$ y $z_2(t) = z_4(1-t) + w_1$, es decir γ_3 es una translación de γ_1 pero se recorren en sentido opuesto. Análogamente sucede con γ_2 y γ_4 . De lo anterior por el lema 3.3.21

$$\int_{\gamma_1} \frac{f'(z)}{f(z)} dz = -\int_{\gamma_3} \frac{f'(z)}{f(z)} dz$$

$$y \int_{\gamma_2} \frac{f'(z)}{f(z)} dz = -\int_{\gamma_4} \frac{f'(z)}{f(z)} dz.$$



Por lo que

$$\frac{1}{2\pi i} \int_{\partial D} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_{\gamma_1} \frac{f'(z)}{f(z)} dz + \frac{1}{2\pi i} \int_{\gamma_2} \frac{f'(z)}{f(z)} dz + \frac{1}{2\pi i} \int_{\gamma_3} \frac{f'(z)}{f(z)} dz + \frac{1}{2\pi i} \int_{\gamma_4} \frac{f'(z)}{f(z)} dz = 0,$$

entonces

$$\frac{1}{2\pi i} \int_{\partial D} \frac{f'(z)}{f(z)} dz = \sum_{k} n(\partial D, a_k) - \sum_{j} n(\partial D, b_j) = 0,$$

si tomamos en cuenta el orden de cada cero o polo tendremos que

$$\frac{1}{2\pi i} \int_{\partial D} \frac{f'(z)}{f(z)} dz = \sum_{k} \operatorname{ord}(a_k) \ n(\partial D, a_k) - \sum_{j} \operatorname{ord}(b_j) \ n(\partial D, b_j) = 0,$$

y como la curva ∂D da solamente una vuelta alrededor de cada polo o cero de f, entonces

$$\sum_{k} \operatorname{ord}(a_{k}) \ n(\partial D, a_{k}) - \sum_{j} \operatorname{ord}(b_{j}) \ n(\partial D, b_{j}) = \sum_{k} \operatorname{ord}(a_{k}) - \sum_{j} \operatorname{ord}(b_{j}) \ = 0,$$

con lo que queda demostrado a). Para demostrar b) por la generalización del principio del argumento (teorema 3.3.20) tenemos que

$$\frac{1}{2\pi i} \int_{\partial D} z \frac{f'(z)}{f(z)} = \sum_{k} n(\gamma, a_k) a_k - \sum_{j} n(\gamma, b_j) b_j.$$

Si tomamos la frontera de D como en la demostración de a) tenemos

$$\frac{1}{2\pi i} \int_{\partial D} z \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_{\gamma_1} z \frac{f'(z)}{f(z)} dz + \frac{1}{2\pi i} \int_{\gamma_2} z \frac{f'(z)}{f(z)} dz + \frac{1}{2\pi i} \int_{\gamma_3} z \frac{f'(z)}{f(z)} dz + \frac{1}{2\pi i} \int_{\gamma_4} z \frac{f'(z)}{f(z)} dz.$$

Por la forma en que definimos γ_i (con $i=1,\ 2,\ 3,\ 4$), podemos hacer el cambio de variable $z=z_i(t)$, por lo que cuando i=2

$$\frac{1}{2\pi i} \int_{\gamma_2} z \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_0^1 z_2(t) \frac{f'(z_2(t))}{f(z_2(t))} z_2'(t) dt.$$

Pero como ya vimos $z_2(t) = z_4(1-t) + w_1$, de tal forma que al hacer este cambio de variable tenemos que $z_2'(t) = -z_4'(1-t)dt$, por lo que

$$\frac{1}{2\pi i} \int_{\gamma_2} z \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_0^1 z_2(t) \frac{f'(z_2(t))}{f(z_2(t))} z_2'(t) dt$$

$$= -\frac{1}{2\pi i} \int_0^1 \left(z_4(1-t) + w_1 \right) \frac{f'(z_4(1-t) + w_1)}{f(z_4(1-t) + w_1)} z_4'(1-t) dt$$

Además como f(z)=f(z+w), entonces f'(z)=f'(z+w), por lo que f'(z)/f(z)=f'(z+w)/f(z+w). Así

$$\frac{1}{2\pi i} \int_{\gamma_2} z \frac{f'(z)}{f(z)} dz = -\frac{1}{2\pi i} \int_0^1 \left(z_4(1-t) + w_1 \right) \frac{f'(z_4(1-t) + w_1)}{f(z_4(1-t) + w_1)} z_4'(1-t) dt$$

$$= -\frac{1}{2\pi i} \int_0^1 \left(z_4(1-t) + w_1 \right) \frac{f'(z_4(1-t) + w_1)}{f(z_4(1-t))} z_4'(1-t) dt$$

De aquí si hacemos el cambio de variable 1-t por t tenemos

$$\frac{1}{2\pi i} \int_{\gamma_2} z \frac{f'(z)}{f(z)} dz = -\frac{1}{2\pi i} \int_0^1 \left(z_4(1-t) + w_1 \right) \frac{f'(z_4(1-t))}{f(z_4(1-t))} z_4'(1-t) dt$$

$$= \frac{1}{2\pi i} \int_1^0 \left(z_4(t) + w_1 \right) \frac{f'(z_4(t))}{f(z_4(t))} z_4'(t) dt$$

$$= -\frac{1}{2\pi i} \int_0^1 \left(z_4(t) + w_1 \right) \frac{f'(z_4(t))}{f(z_4(t))} z_4'(t) dt$$

$$= -\frac{1}{2\pi i} \int_{\gamma_4} \left(z + w_1 \right) \frac{f'(z)}{f(z)} dz$$

de manera análoga, si hacemos algo parecido en la integral alrededor de γ_3 haciendo el cambio de curva a γ_1 tendremos

$$\frac{1}{2\pi i} \int_{\gamma_3} z \frac{f'(z)}{f(z)} dz = -\frac{1}{2\pi i} \int_{\gamma_1} \left(z + w_2\right) \frac{f'(z)}{f(z)} dz$$

por las dos últimas ecuaciones tendremos que

$$\frac{1}{2\pi i} \int_{\partial D} z \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_{\gamma_1} z \frac{f'(z)}{f(z)} dz + \frac{1}{2\pi i} \int_{\gamma_2} z \frac{f'(z)}{f(z)} dz + \frac{1}{2\pi i} \int_{\gamma_3} z \frac{f'(z)}{f(z)} dz + \frac{1}{2\pi i} \int_{\gamma_4} z \frac{f'(z)}{f(z)} dz$$

$$= \frac{1}{2\pi i} \int_{\gamma_1} z \frac{f'(z)}{f(z)} dz - \frac{1}{2\pi i} \int_{\gamma_4} (z + w_1) \frac{f'(z)}{f(z)} dz$$

$$-\frac{1}{2\pi i} \int_{\gamma_1} (z + w_2) \frac{f'(z)}{f(z)} dz + \frac{1}{2\pi i} \int_{\gamma_4} z \frac{f'(z)}{f(z)} dz$$

de donde simplificando

$$\frac{1}{2\pi i} \int_{\partial D} z \frac{f'(z)}{f(z)} dz = -\frac{w_2}{2\pi i} \int_{\gamma_1} \frac{f'(z)}{f(z)} dz - \frac{w_1}{2\pi i} \int_{\gamma_4} \frac{f'(z)}{f(z)} dz$$

Ahora bien, si hacemos el cambio de variable $\tilde{z} = f(z)$, tendremos que $d\tilde{z} = f'(z)dz$. Con este cambio de variable la curva γ_1 se convertirá en la curva

$$\overline{\gamma_1} = \{\widetilde{z} \mid \widetilde{z} = f(z), \text{ en donde } z \in \gamma_1\}$$

con esto tenemos

$$\frac{w_2}{2\pi i} \int_{\gamma_1} \frac{f'(z)}{f(z)} dz = \frac{w_2}{2\pi i} \int_{\overline{\gamma_1}} \frac{d\widetilde{z}}{\widetilde{z}}$$

Debemos notar que como en la curva $\overline{\gamma_1}$, f(a) = f(b), entonces $\overline{\gamma_1}$ es cerrada, por lo que podemos ocupar el principio del argumento (Teorema 3.3.19), de lo cual

$$\frac{1}{2\pi i} \int_{\gamma_1} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_{\overline{\gamma_1}} \frac{d\widetilde{z}}{\widetilde{z}} = n(\overline{\gamma_1}, 0) \in \mathbb{Z}$$

ya que esta integral nos arrojará como resultado la suma del número de giros que da la curva alrededor de cada cero de la función \widetilde{z} menos la suma del número de giros que da la curva alrededor de cada polo de la función \widetilde{z} dentro de la curva. Por lo que existe $m \in \mathbb{Z}$ tal que

$$\frac{w_2}{2\pi i} \int_{\gamma_1} \frac{f'(z)}{f(z)} dz = mw_2$$

De manera análoga podemos ver que existe $n \in \mathbb{Z}$ tal que

$$\frac{w_1}{2\pi i} \int_{\gamma_4} \frac{f'(z)}{f(z)} dz = nw_1$$

de lo anterior deducimos que

$$\frac{1}{2\pi i} \int_{\partial D} z \frac{f'(z)}{f(z)} dz = \frac{w_2}{2\pi i} \int_{\gamma_1} \frac{f'(z)}{f(z)} dz + \frac{w_1}{2\pi i} \int_{\gamma_4} \frac{f'(z)}{f(z)} dz$$
$$= mw_2 + nw_1 \in L$$

y como ya habíamos visto al principio de la demostración que

$$\frac{1}{2\pi i} \int_{\partial D} z \frac{f'(z)}{f(z)} = \sum_{k} n(\gamma, a_k) a_k - \sum_{j} n(\gamma, b_j) b_j$$

de donde finalmente obtendremos que

$$\sum_{k} n(\gamma, a_k) a_k - \sum_{j} n(\gamma, b_j) b_j \in L$$

que es lo que queríamos demostrar.

103

COROLARIO 3.3.24 Cuando $n(\gamma, a_k)$ y $n(\gamma, b_j)$ es 1, si el orden de cada cero es $ord(a_k)$ y el orden de cada polo es $ord(b_k)$ entonces:

$$\sum_{k} ord(a_k)a_k - \sum_{j} ord(b_j)b_j \in L$$

Además de los resultados de variable compleja que ya hemos visto deberemos hacer la siguiente anotación sobre curvas elípticas en un lema.

LEMA 3.3.25 Sea $z\in\mathbb{C}$ tal que $\frac{z}{2}\notin L$. Entonces z está en L si y sólo si $\wp'(z/2)=0$

DEMOSTRACIÓN.

 \Rightarrow) Tomemos $w \in L$. Por el lema 3.3.7 tendremos que $\wp'(z) = \wp'(z+w)$ para todo $z \in \mathbb{C} - L$ y toda $w \in L$, entonces como por hipótesis $w/2 \notin L$ (es decir, $w \in \mathbb{C} - L$) tenemos que

$$\wp'(w/2) = \wp'(w/2 - w) = \wp'(-w/2),$$

y por el lema 3.3.7 también sabemos que la función \wp' es impar, entonces

$$\wp'(-w/2) = -\wp'(w/2),$$

así

$$\wp'(w/2) = -\wp'(w/2),$$

por lo que

$$2\wp'(w/2) = \wp'(w/2) + \wp'(w/2) = \wp'(w/2) - \wp'(w/2) = 0,$$

por lo tanto, si $w \in L$, entonces $\wp'(w/2) = 0$.

 \Leftarrow) Hagamos esto por reducción al absurdo. Para ello supongamos que existe algún $z_1 \notin L$ tal que $\wp'(z_1/2) = 0$. Tomemos w_1 y w_2 como los generadores de la latiz L. Además tomemos una región fundamental D que contenga a $w_1/2$, $w_2/2$ y $(w_1+w_2)/2$, y busquemos un punto z_2 tal que $z_2 \in D$ y que $z_2 \equiv z_1 \pmod{L}$. Dentro de esta región analizaremos qué pasa con la función ϕ_1 , la cual definiremos como $\phi_1(z) = \wp(z) - \wp(w_1/2)$. En esta región D habrá solamente un

punto de la latiz L, al cual llamaremos w_a . Debemos notar que nos basta con analizar ϕ en D ya que por el lema 3.3.7 $\wp(z) = \wp(z+w)$ y $\wp'(z) = \wp'(z+w)$ para toda $z \in \mathbb{C} - L$ y toda $w \in L$, por lo que analizando lo que pasa con ϕ en D sabremos lo que pasa con ϕ en \mathbb{C} .

Como los puntos w_1 , w_2 y w_1+w_2 pertenecen a L entonces tendremos por la demostración de la implicación (\Rightarrow) que $\wp'(w_1/2)$, $\wp'(w_2/2)$ y $\wp'\Big((w_1+w_2)/2\Big)$ son 0. Por otro lado la función ϕ_1 tiene un cero en $w_1/2$, pero como $\wp'(w_1/2)=0$, entonces ϕ_1 tiene un cero de orden al menos 2 en $w_1/2$. Además en el teorema 3.3.8 vimos que la función $\wp(z)$ tiene un polo de orden 2 en cada punto de L y ya que la función $\wp(w_1/2)$ es una constante no tiene polos, por lo que la función $\wp(w_1/2)$ tendrá un polo de orden 2 en cada punto de L.

De tal manera que en la región fundamental D tenemos en w_a un polo de orden 2 de ϕ_1 (el cual es el único) y en $w_1/2$ un cero de orden al menos 2 también de ϕ_1 . Del lema 3.3.23 tenemos que la suma de los órdenes de los ceros menos la suma de los órdenes de los polos es 0. Como para la función ϕ_1 dentro de la región D, con el cero y el polo que tenemos, la diferencia de los órdenes es 0 y ya que el polo es único en D, entonces podemos descartar que exista algún otro cero de la función ϕ_1 en la región D (porque de haberlo sería de orden al menos 1, que más el orden de w_1 obtendríamos como suma de los órdenes de los ceros 3, lo cual es diferente del orden del polo).

Con esto concluimos que $\phi_1(z)$ solamente tiene un cero en $w_1/2$, dentro de D y que además este cero es de orden exactamente 2, lo cual quiere decir que $\phi_1(z) \neq 0$ para toda z distinta de $w_1/2$, es decir, $\wp(z) - \wp(w_1/2) \neq 0$. En particular, ϕ_1 es distinta de cero en $w_2/2$, $(w_1 + w_2)/2$ y $z_2/2$ $(z_2/2 \neq w_1/2)$, pues de lo contrario $z_1 \in L$), lo cual quiere decir que

$$\wp(w_1/2) \neq \wp(w_2/2)
\wp(w_1/2) \neq \wp((w_1 + w_2)/2)
\wp(w_1/2) \neq \wp(z_2/2)$$

De manera análoga podemos tomar $\phi_2(z) = \wp(z) - \wp(w_2/2)$ y $\phi_3(z) = \wp(z) - \wp((w_1 + w_2)/2)$, en las cuales podemos encontrar que $\phi_2(z)$

solamente tiene ceros en $w_2/2$ y $\phi_3(z)$ sólo tiene ceros en $(w_1 + w_2)/2$ dentro de D, de lo cual podemos concluir que

$$\wp(w_2/2) \neq \wp(w_1/2)
\wp(w_2/2) \neq \wp((w_1 + w_2)/2)
\wp(w_2/2) \neq \wp(z_2/2)
\wp((w_1 + w_2)/2) \neq \wp(w_1/2)
\wp((w_1 + w_2)/2) \neq \wp(w_2/2)
\wp((w_1 + w_2)/2) \neq \wp(z_2/2)$$

Por lo que

$$\wp(w_1/2) \neq \wp(w_2/2)
\wp(w_1/2) \neq \wp((w_1 + w_2)/2)
\wp(w_1/2) \neq \wp(z_2/2)
\wp(w_2/2) \neq \wp((w_1 + w_2)/2)
\wp(w_2/2) \neq \wp(z_2/2)
\wp(z_2/2) \neq \wp((w_1 + w_2)/2)$$

En este punto sería bueno preguntarnos ¿esto de que nos va a servir? Pues bien tomemos la curva elíptica que construimos para la región D. La ecuación de esta curva elíptica es de la forma $\left(\wp'(z)\right)^2 = 4\wp(z)^3 - 60G_4\wp(z) + 140G_6$. Tanto en $w_1/2$, $w_2/2$, $(w_1 + w_2)/2$ como en $z_2/2$ la función $\wp'(z)$ es 0, por lo que si tomamos la función $f(x) = 4x^3 - 60G_4x + 140G_6$ entonces $\wp(w_1/2)$, $\wp(w_2/2)$, $\wp((w_1 + w_2)/2)$ y $\wp(z_2/2)$ son raíces de f(x). Pero como vimos cada uno de estos puntos es distinto de los demás, por lo que tenemos 4 raíces distintas de f, pero al ser f un polinomio de grado 3 solamente puede tener 3 raíces y tenemos cuatro lo cual es una contradicción.

Con esto demostramos que nuestras suposiciones fueron incorrectas por lo que podemos concluir que, si $\wp'(z/2) = 0$, entonces $z \in L$. Con esto concluimos la demostración

Con este último resultado podremos dar paso a la demostración de la propiedad 3, recordemos primero qué es lo que dice:

Propiedad 3) Dos números complejos z_1 y $z_2 \in \mathbb{C} - L$ dan el mismo punto $(\wp(z), \wp'(z))$ en **E** si y sólo si $z_1 - z_2 \in L$.

Para demostrar la parte del "si" tomemos $z_1 - z_2 \in L$. Entonces existe alguna $w \in L$ tal que $z_1 - z_2 = w$, es decir, $z_1 = w + z_2$ y por el lema 3.3.7 tenemos que

$$\wp(z_1) = \wp(z_2 + w) = \wp(z_2) \quad \text{y}$$

$$\wp'(z_1) = \wp'(z_2 + w) = \wp'(z_2).$$

Por tanto los puntos $(\wp(z_1),\wp'(z_1))$ y $(\wp(z_2),\wp'(z_2))$ coinciden. Nos falta demostrar la parte del "sólo si". Para probarla comenzaremos tomando dos puntos z_1 y z_2 en $\mathbb C$ y supongamos que $\wp(z_1) = \wp(z_2)$ y $\wp'(z_1) = \wp'(z_2)$. Construyamos la función $\phi(z) = \wp(z) - \wp(z_1)$. Continuamos la demostración tomando dos casos, cuando $2z_1 \in L$ y cuando $2z_1 \notin L$.

Caso 1)
$$2z_1 \notin L$$

Si $2z_1 \notin L$, entonces $z_1 + z_1 \notin L$. Así que ni $2z_1$ ni z_1 pertenecen a L. Podemos aplicar el lema 3.3.25 obteniendo que $\wp'(z_1) \neq 0$. Como $-\wp(z_1)$ es una constante y $\wp(z)$ tiene un polo de orden 2 en cada punto de L, entonces $\phi(z)$ tiene un polo de orden 2 en cada punto de L. Además por el lema 3.3.7, como \wp es par tenemos que $\wp(z_1) = \wp(-z_1)$. Como $\wp(z_1) = \wp(z_2)$, los números $z_1, -z_1$ y z_2 son ceros de $\phi(z)$.

Tomemos una región fundamental D_1 tal que $z_1 \in D_1$ pero que la frontera de D_1 (∂D_1) no pase por ninguno de los ceros o polos de ϕ . En esta región tomemos un punto z_3 tal que $z_3 \equiv z_2 \pmod{L}$.

Tomemos como γ a ∂D_1 en el corolario 3.3.24 con la función $\phi(z)$. Como D_1 contiene a un polo w de orden 2 ($w \in L$), D_1 sólo puede tener un cero de orden 2 o dos ceros de orden 1, para que se cumpla la fórmula de dicho corolario. Notemos que z_1 , $z_3 \in D_1$ y que ambos son ceros de $\phi(z)$. De manera que $z_1 = z_3$ o z_1 y z_3 son ceros de orden 1. En el primer caso tenemos que $z_1 \equiv z_2 \pmod{L}$ y ya acabamos, en el segundo caso, la fórmula del corolario 3.3.24 nos dice que $z_1 + z_3 + 2w \in L$. Así que $z_1 + z_3 \in L$ y $z_3 \equiv -z_1 \pmod{L}$. Por tanto $z_2 \equiv -z_1 \pmod{L}$.

Sabemos por hipótesis que $\wp'(z_1) = \wp'(z_2)$. Por la parte del "si" de esta demostración tenemos que $\wp'(z_2) = \wp'(-z_1)$, como \wp' es impar, $\wp'(z_2) = \wp'(-z_1) = -\wp'(z_1)$. Por hipótesis $\wp'(z_2) = \wp'(z_1)$, entonces $\wp'(z_1) = -\wp'(z_1)$. Así que $2\wp'(z_1) = \wp'(z_1) + \wp'(z_1) = \wp'(z_1) - \wp'(z_1) = 0$, de donde, $\wp'(z_1) = 0$. Esto contradice el hecho de que $\wp'(z_1) \neq 0$, por lo que no puede ocurrir que $z_2 \equiv -z_1 \pmod{L}$, por lo que necesariamente $z_2 \equiv z_1 \pmod{L}$.

Caso 2)
$$2z_1 \in L$$

Como $\wp(z_1) = \wp(z_2)$ y $\wp'(z_1) = \wp'(z_2)$, $\phi(z_2) = 0$. Como $2z_1 \in L$, por el lema 3.3.25, $\wp'(z_1) = 0$. Notemos que $\phi(z_1) = 0$, entonces $\phi(z)$ tiene un cero de orden al menos 2 en z_1 . Si construimos una región D_1 como en el caso 1) y tomamos un punto z_3 tal que $z_3 \equiv z_2 \pmod{L}$, entonces $\phi(z_3) = 0$ (ya que $\phi(z_2) = 0$). Por el lema 3.3.23, dado que z_3 es un cero de ϕ , z_1 es un cero de orden al menos 2 y existe un punto $w \in D_1$ que es un polo de orden 2, concluimos que $z_1 = z_3$ por lo que $z_2 \equiv z_1 \pmod{L}$.

De ambos casos concluimos que, si $\wp(z_1) = \wp(z_2)$ y $\wp'(z_1) = \wp'(z_2)$, entonces $z_2 \equiv z_1 \pmod{L}$ con lo cual completamos la demostración de la propiedad 3.

Ahora recordemos la propiedad 4, y a continuación demos su demostración.

Propiedad 4) La función que le asocia a un punto $z \notin L$ el correspondiente punto $(\wp(z), \wp'(z))$ en \mathbf{E} y le asocia a los puntos $z \in L$ el punto al infinito $O \in \mathbf{E}$ da una correspondencia uno a uno entre \mathbf{E} y el cociente del plano complejo por el subgrupo L (denotado \mathbb{C}/L).

Para demostrar la propiedad 4 denotemos por $\phi(z)$ a la función entre el cociente del plano complejo por el subgrupo L (denotado \mathbb{C}/L) y \mathbf{E} , es decir,

$$\phi : \mathbb{C}/L \to \mathbf{E}$$

Dada por

$$\phi(z) = \begin{cases} (\wp(z), \wp'(z)), & \text{si } z \notin L \\ O, & \text{si } z \in L \end{cases}$$

Lo primero que tendríamos que demostrar es que ϕ está bien definida, es decir, que para cualesquiera z' y z'' en la clase z+L en \mathbb{C}/L tenedremos que $\phi(z') = \phi(z'')$. Pero Si z' y z'' están en z+L entonces existe $w \in L$

tal que z' = w + z'', por lo que $\wp(z') = \wp(z'')$ y $\wp'(z') = \wp'(z'')$, por lo que $\phi(z') = \phi(z'')$. Ahora demostraremos que la función ϕ es biyectiva. Para demostrar que es inyectiva primero notemos que si $z_1 \in L$ y $z_2 \notin L$, entonces $\phi(z_1) = O$ y $\phi(z_2) \neq O$, así que $\phi(z_1) \neq \phi(z_2)$. Ahora si $z_1, z_2 \in \mathbb{C} - L$ y

$$(\wp(z_1),\wp'(z_1)) = (\wp(z_2),\wp'(z_2)),$$

entonces por la propiedad 3, $z_1 \equiv z_2 \pmod{L}$. Por tanto ϕ es inyectiva.

Para demostrar que ϕ es suprayectiva tomemos una pareja $(x, y) \in \mathbf{E} - \{O\}$. Construyamos la función $g(z) = \wp(z) - x$ la cual no es una función constante (una función con polos no puede ser constante), notemos que también tiene al menos un cero⁶, digamos que este cero es z = a, entonces $\wp(a) = x$. Por la fórmula que define a \mathbf{E} (ver teorema 3.3.11),

$$(\wp'(a))^2 = 4(\wp(a))^3 - 60G_4\wp(a) - 140G_6$$
$$= 4x^3 - 60G_4x - 140G_6$$
$$= y^2,$$

(notemos que $a \notin L$ porque en el punto $a \wp$ está definida). De manera que $(\wp'(a))^2 = y^2$. Así que $y = \wp'(a)$ o $y = -\wp'(a)$. En el caso en que $y = \wp'(a)$, tenemos que $\phi(a) = (x, y)$. Y en el caso en que $y = -\wp'(a)$, como \wp' es impar (por el lema 3.3.7), entonces $(x, y) = (\wp(a), -\wp'(a)) = (\wp(-a), \wp'(-a))$. Por tanto $\phi(-a) = (x, y)$. Por tanto ϕ es suprayectiva.

Por último debemos demostrar la propiedad 5 la cual dice:

La función ϕ es un isomorfismo de grupos abelianos.

En otras palabras, si a $z_1 \in \mathbb{C}$ le corresponde el punto $P \in \mathbf{E}$ y a $z_2 \in \mathbb{C}$ le corresponde el punto $Q \in \mathbf{E}$, entonces al número complejo $z_1 + z_2$ corresponde el punto P + Q. Es decir $\phi(z_1) + \phi(z_2) = \phi(z_2 + z_1)$.

Dado que $\phi(z) = (\wp(z), \wp'(z))$, debemos demostrar que

$$\wp(z_1) + \wp(z_2) = \wp(z_1 + z_2)$$
 y
 $\wp'(z_1) + \wp'(z_2) = \wp'(z_1 + z_2).$

⁶ La función g satisface las condiciones del teores 3.3.23, por lo que, si g no tiene ceros, entonces tampoco tiene polos, pero los polos de \wp también lo son de g. El argumento anterior nos llevaría a una contradicción por lo que g tiene al menos un cero.

Analicemos primero el caso cuando alguno de los puntos (digamos z_1) está en L y el otro punto (z_2) está en $\mathbb{C} - L$. En este caso $\phi(z_1) = O$, entonces

$$\phi(z_1 + z_2) = (\wp(z_1 + z_2), \wp'(z_1 + z_2))$$

al estar $z_1 \in L$, entonces

$$\phi(z_1 + z_2) = (\wp(z_1 + z_2), \wp'(z_1 + z_2))
= (\wp(z_2), \wp'(z_2))
= \phi(z_2) = \phi(z_2) + O
= \phi(z_2) + \phi(z_1).$$

Cuando z_1 y $z_2 \in L$, también $z_1 + z_2 \in L$, por lo que

$$\phi(z_1 + z_2) = \phi(z_1) + \phi(z_2).$$

Finalmente veamos el caso en que tanto z_1 como z_2 no están en L. Para ver esto debemos recordar que en el lema 3.2.1 vimos que dados dos puntos en una curva elíptica, digamos (x_1, y_1) y (x_2, y_2) , las coordenadas del punto que es la suma de estos dos puntos están dadas por:⁷

$$x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2 - x_1 - x_2$$

$$y_3 = -y_1 + (x_1 - x_3)\left(\frac{y_2 - y_1}{x_2 - x_1}\right),$$

⁷ Recordemos que x_3 se obtiene de despejar esta variable de la ecuación $m^2 = x_1 + x_2 + x_3$, en donde m es la ecuación de la pendiente de la recta que pasa por (x_1, y_1) y (x_2, y_2) , y $x_1 + x_2 + x_3$ es menos el coeficiente del término cuadratico del polinomio $(x - x_1)(x - x_2)(x - x_3)$ y $-y_3$ se obtiene de sustituir x_3 por x en la ecuación de la recta que pasa por (x_1, y_1) y (x_2, y_2) , es decir, en $-y_3 = m(x_3 - x_1) + y_1$.

esto en el caso en que la ecuación de la curva fuera de la forma $y^2 = x^3 + dx + e$. Tomando en cuenta que la ecuación que tenemos de la curva elíptica es de la forma $y^2 = 4x^3 + dx + e$, entonces las ecuaciones para x_3 y y_3 quedan en la forma⁸

$$x_3 = \frac{1}{4} \left(\frac{y_2 - y_1}{x_2 - x_1} \right)^2 - x_1 - x_2$$

$$y_3 = -y_1 + (x_1 - x_3) \left(\frac{y_2 - y_1}{x_2 - x_1} \right).$$

Entonces necesitamos demostrar que

$$\wp(z_1 + z_2) = \frac{1}{4} \left(\frac{\wp'(z_2) - \wp'(z_1)}{\wp(z_2) - \wp(z_1)} \right)^2 - \wp(z_1) - \wp(z_2)$$

$$\wp'(z_1 + z_2) = -\wp'(z_1) + \left(\wp(z_1) - \wp(z_1 + z_2)\right) \left(\frac{\wp'(z_2) - \wp'(z_1)}{\wp(z_2) - \wp(z_1)} \right).$$

Si demostramos la igualdad de $\wp(z_1+z_2)$ se puede seguir la demostración que se dio para encontrar y_3 a partir de x_3 y con ello encontrar $\wp'(z_1+z_2)$ a partir de $\wp(z_1+z_2)$. Para encontrar el valor de $\wp(z_1+z_2)$ necesitaremos ver algunas ecuaciones primero.

Como vimos en la página 86, el desarrollo en serie de Laurent de la función $\wp(z)$ tiene coeficiente 0 en el término $\frac{1}{z-w_0}$, por lo que $\wp(z)$ deberá ser la derivada de una función univaluada (esto ya que cada término de la serie de Laurent de \wp es integrable). Como \wp está definida por

$$\wp(z) = \frac{1}{z^2} + \sum_{\substack{w \in L \\ w \neq 0}} \left(\frac{1}{(z-w)^2} - \frac{1}{w^2} \right),$$

$$x_3 = \frac{m^2}{4} - x_2 - x_3$$

con lo que y_3 estará dada por

$$-y_3 = m(x_3 - x_1) + y_1$$

Be acuerdo a la nota anterior la ecuación de m no cabiaría. Al ser la ecuación de la curva $y^2 = 4x^3 + dx + e$, entonces nos fijaremos ahora en menos el término cuadratico del porinomio $4(x-x_1)(x-x_2)(x-x_3)$ y este lo igualaremos a m^2 , es decir, $m^2 = 4(x_1+x_2+x_3)$, del que despejaremos x_3 , por lo que

podemos definir una función $\zeta(z)$ por:

$$\zeta(z) = \frac{1}{z} + \sum_{\substack{w \in L \\ w \neq 0}} \left(\frac{1}{z - w} + \frac{1}{w} + \frac{z}{w^2} \right),$$

de tal manera que

$$\wp(z) = -\zeta'(z).$$

Otra función que utilizaremos es:

$$\sigma(z) = z \prod_{w \in L \atop w \neq 0} \left(1 - \frac{z}{w} \right) e^{z/w + \frac{1}{2}(z/w)^2},$$

se puede demostrar que esta función converge⁹, además de que satisface

$$\frac{\sigma'(z)}{\sigma(z)} = \zeta(z),$$

es decir

$$\frac{d}{dz}log(\sigma(z)) = \zeta(z),$$

Aplicando la definición de σ se tiene que:

$$\begin{split} &\frac{\sigma(z+a)\sigma(z-a)}{\left(\sigma(z)\right)^2} \\ &= \frac{\left(z+a\right)(z-a)\prod_{\substack{w\in L\\w\neq 0}}\left(1-\frac{z+a}{w}\right)\left(1-\frac{z-a}{w}\right)e^{\frac{z+a}{w}+\frac{1}{2}\left(\frac{z+a}{w}\right)^2+\frac{z-a}{w}+\frac{1}{2}\left(\frac{z-a}{w}\right)^2}}{z^2\prod_{\substack{w\in L\\w\neq 0}}\left(1-\frac{z}{w}\right)^2e^{2\frac{z}{w}+\frac{z^2}{w^2}}} \\ &= \frac{\left(z^2-a^2\right)\prod_{\substack{w\in L\\w\neq 0}}\left(\frac{(w-z)^2-a^2}{w^2}\right)e^{2\frac{z}{w}+\frac{z^2+a^2}{w}}}{z^2\prod_{\substack{w\in L\\w\neq 0}}\left(\frac{w-z}{w}\right)^2e^{2\frac{z}{w}+\frac{z^2}{w^2}}} \\ &= \frac{\left(z^2-a^2\right)}{z^2}\prod_{\substack{w\in L\\w\neq 0}}\left(\frac{(w-z)^2-a^2}{(w-z)^2}\right)e^{a^2/w^2} \end{split}$$

 $^{^9}$ página 274 de [?]

Si definimos h(z) para $a \notin L$, como

$$h(z) = \frac{\sigma(z+a)\sigma(z-a)}{(\sigma(z))^2},$$

y sustituimos z por $w_0 + a$, donde $w_0 \in L$ obtenemos

$$h(w_0 + a) = \frac{((w_0 + a)^2 - a^2)}{(w_0 + a)^2} \prod_{\substack{w \in L \\ w \neq 0}} \left(\frac{(w - (w_0 + a))^2 - a^2}{(w - (w_0 + a))^2} \right) e^{a^2/w^2}$$

$$= \frac{((w_0 + a)^2 - a^2)}{(w_0 + a)^2} \left(\frac{(w_0 - (w_0 + a))^2 - a^2}{(w_0 - (w_0 + a))^2} \right) e^{a^2/(w_0)^2} \times$$

$$\times \prod_{\substack{w \in L \\ w \neq w_0}} \left(\frac{(w - (w_0 + a))^2 - a^2}{(w - (w_0 + a))^2} \right) e^{a^2/w^2}$$

$$= \frac{((w_0 + a)^2 - a^2)}{(w_0 + a)^2} \left(\frac{a^2 - a^2}{a^2} \right) e^{a^2/(w_0)^2} \times$$

$$\times \prod_{\substack{w \in L \\ w \neq w_0}} \left(\frac{(w - (w_0 + a))^2 - a^2}{(w - (w_0 + a))^2} \right) e^{a^2/w^2}$$

$$= \frac{((w_0 + a)^2 - a^2)}{(w_0 + a)^2} \left(\frac{0}{a^2} \right) e^{a^2/(w_0)^2} \times$$

$$\times \prod_{\substack{w \in L \\ w \neq w_0}} \left(\frac{(w - (w_0 + a))^2 - a^2}{(w - (w_0 + a))^2} \right) e^{a^2/w^2}$$

$$= 0.$$

por lo que h(z) tiene ceros en a+w para toda $w \in L$ y polos en cada punto $w \in L$ (pues $\sigma(w+a) \neq 0$ y $\sigma(w-a) \neq 0$ para toda $w \in L$), al igual que la función $\wp(z) - \wp(a)$ (semejante a lo que se hizo con ϕ_1 en la demostración de \leftarrow del lema 3.3.25), por lo que h(z) y $\wp(z) + \wp(a)$ son iguales o una es un múltiplo de la otra, es decir,

$$\wp(z) - \wp(a) = C \ h(z) = C \left(\frac{\sigma(z+a)\sigma(z-a)}{\left(\sigma(z)\right)^2} \right),$$

para alguna constante C. Si multiplicamos ambos lados de la igualdad ante-

rior por z^2 obtenemos:

$$z^{2}\wp(z) - z^{2}\wp(a) = Cz^{2}\left(\frac{\sigma(z+a)\sigma(z-a)}{\left(\sigma(z)\right)^{2}}\right),$$

pero recordando que

$$z^{2}\wp(z) = \frac{z^{2}}{z^{2}} + \sum_{\substack{w \in L \\ w \neq 0}} \left(\frac{z^{2}}{(w-z)^{2}} - \frac{z^{2}}{w^{2}} \right),$$

cuando hacemos tender z hacia 0 en $z^2 \wp(z)$ tendremos:

$$z^{2}\wp(z) = \frac{z^{2}}{z^{2}} + \sum_{\substack{w \in L \\ w \neq 0}} \left(\frac{z^{2}}{(w-z)^{2}} - \frac{z^{2}}{w^{2}} \right)$$

$$\to 1 + \sum_{\substack{w \in L \\ w \neq 0}} (0-0) = 1.$$

Además como $\wp(a)$ es una constante, $z^2\wp(a)\to 0$ cuando $z\to 0$. Por otro lado cuando hacemos tender z hacia 0 en la función $z^2/(\sigma(z))^2$ obtenemos

$$\frac{z^2}{(\sigma(z))^2} = \frac{z^2}{z^2 \prod_{\substack{w \in L \\ w \neq 0}} \left(1 - \frac{z}{w}\right)^2 e^{2z/w + (z/w)^2}} = \frac{1}{\prod_{\substack{w \in L \\ w \neq 0}} \left(1 - \frac{z}{w}\right)^2 e^{2z/w + (z/w)^2}}$$

$$\rightarrow \frac{1}{1 \prod_{\substack{w \in L \\ w \neq 0}} \left(1 - 0\right)^2 e^{0 + (0)^2}} = \frac{1}{1 \prod_{\substack{w \in L \\ w \neq 0}} (1)^2 e^0} = 1.$$

También podemos notar que cuando $z\to 0$ entonces $\sigma(z+a)\sigma(z-a)\to \sigma(a)\sigma(-a)$ pero

$$\sigma(a) = a \prod_{\substack{w \in L \\ w \neq 0}} \left(1 - \frac{a}{w} \right) e^{a/w + \frac{1}{2}(a/w)^2}$$

$$= a \prod_{\substack{w \in L \\ w \neq 0}} \left(1 - \frac{(-a)}{(-w)} \right) e^{(-a)/(-w) + \frac{1}{2} \left((-a)/(-w) \right)^2}$$

$$= - \left[-a \prod_{\substack{w \in L \\ w \neq 0}} \left(1 - \frac{(-a)}{(-w)} \right) e^{(-a)/(-w) + \frac{1}{2} \left((-a)/(-w) \right)^2} \right],$$

si hacemos el cambio de variable -w por w_0 en la ultima igualdad, los puntos w_0 siguen siendo distintos de 0 y siguen perteneciendo a L, por lo que la última ecuación queda como:

$$\sigma(a) = -\left[-a \prod_{\substack{w \in L \\ w \neq 0}} \left(1 - \frac{(-a)}{(-w)} \right) e^{(-a)/(-w) + \frac{1}{2} \left((-a)/(-w) \right)^2} \right] \\
= -\left[-a \prod_{\substack{w \in L \\ w_0 \neq 0}} \left(1 - \frac{(-a)}{w_0} \right) e^{(-a)/w_0 + \frac{1}{2} \left((-a)/w_0 \right)^2} \right] \\
= -\sigma(-a),$$

por lo que $\sigma(z+a)\sigma(z-a) \to \sigma(a)\sigma(-a) = -(\sigma(a))^2$. De lo anterior tendremos que si juntamos los últimos resultados y los aplicamos a la igualdad

$$z^{2}\wp(z) - z^{2}\wp(a) = Cz^{2}\left(\frac{\sigma(z+a)\sigma(z-a)}{\left(\sigma(z)\right)^{2}}\right),$$

entonces podemos notar que cuando z tiende a 0

$$z^{2}\wp(z) - z^{2}\wp(a) = Cz^{2}\left(\frac{\sigma(z+a)\sigma(z-a)}{\left(\sigma(z)\right)^{2}}\right)$$

$$z^{2}\wp(z) - z^{2}\wp(a) = C\left(\frac{z^{2}}{\left(\sigma(z)\right)^{2}}\right)\sigma(z+a)\sigma(z-a)$$

$$\Rightarrow 1 - 0 = C(1)\left(-\left(\sigma(a)\right)^{2}\right)$$

$$\Rightarrow 1 = -C\left(\sigma(a)\right)^{2}$$

$$\Rightarrow C = -\frac{1}{\left(\sigma(a)\right)^{2}}.$$

Recordando que teníamos

$$\wp(z) - \wp(a) = C\left(\frac{\sigma(z+a)\sigma(z-a)}{\left(\sigma(z)\right)^2}\right).$$

Al sustituir C obtenemos

$$\wp(z) - \wp(a) = -\frac{\sigma(z+a)\sigma(z-a)}{(\sigma(z))^2(\sigma(a))^2}.$$

Si aplicamos el logaritmo natural de ambos lados de la última igualdad obtenemos

$$log(\wp(z) - \wp(a)) = log\left(-\frac{\sigma(z+a)\sigma(z-a)}{(\sigma(z))^{2}(\sigma(a))^{2}}\right)$$

$$= log(\sigma(z+a)) + log(\sigma(z-a)) - -log[(\sigma(z))^{2}] - log[-(\sigma(a))^{2}]$$

$$= log(\sigma(z+a)) + log(\sigma(z-a)) - -2log(\sigma(z)) - log[-(\sigma(a))^{2}],$$

derivando ambos lados de esta igualdad obtenemos

$$\frac{d}{dz}log(\wp(z) - \wp(a)) = \frac{d}{dz}\Big(log(\sigma(z+a)) + log(\sigma(z-a)) - 2log(\sigma(z)) - log[-(\sigma(a))^{2}]\Big)$$
$$\frac{\wp'(z)}{\wp(z) - \wp(a)} = \frac{\sigma'(z+a)}{\sigma(z+a)} + \frac{\sigma'(z-a)}{\sigma(z-a)} - 2\frac{\sigma'(z)}{\sigma(z)}.$$

Como $\sigma'(z)/\sigma(z) = \zeta(z)$, entonces

$$\frac{\wp'(z)}{\wp(z) - \wp(a)} = \frac{\sigma'(z+a)}{\sigma(z+a)} + \frac{\sigma'(z-a)}{\sigma(z-a)} - 2\frac{\sigma'(z)}{\sigma(z)}$$
$$= \zeta(z+a) + \zeta(z-a) - 2\zeta(z).$$

Si repetimos lo anterior, pero suponiendo ahora que la variable es a y z una constante obtenemos

$$\frac{-\wp'(a)}{\wp(z)-\wp(a)} = \zeta(z+a) - \zeta(z-a) - 2\zeta(a),$$

sumando las dos últimas ecuaciones resulta que

$$\frac{\wp'(z)}{\wp(z) - \wp(a)} + \frac{-\wp'(a)}{\wp(z) - \wp(a)} = \zeta(z+a) + \zeta(z-a) - 2\zeta(z) + \left(\zeta(z+a) - \zeta(z-a) - 2\zeta(a)\right),$$

y
$$\frac{\wp'(z) - \wp'(a)}{\wp(z) - \wp(a)} = 2\zeta(z+a) - 2\zeta(z) - 2\zeta(a),$$

por lo que

$$\zeta(z+a) = \zeta(z) + \zeta(a) + \frac{1}{2} \frac{\wp'(z) - \wp'(a)}{\wp(z) - \wp(a)}.$$

Si derivamos ambos lados de la última ecuación con respecto a z, ya que $\int \wp(z) = -\zeta(z)$ y $\wp(z) = -\zeta'(z)$ obtenemos

$$\zeta'(z+a) = \zeta'(z) + \frac{1}{2} \left(\frac{\wp''(z) \Big[\wp(z) - \wp(a)\Big] - \wp'(z) \Big[\wp'(z) - \wp'(a)\Big]}{\Big[\wp(z) - \wp(a)\Big]^2} \right),$$

así que

$$-\wp(z+a) = -\wp(z) + \frac{1}{2} \left(\frac{\wp''(z) \Big[\wp(z) - \wp(a)\Big] - \wp'(z) \Big[\wp'(z) - \wp'(a)\Big]}{\Big[\wp(z) - \wp(a)\Big]^2} \right).$$

Si repetimos lo anterior pero derivando ahora con respecto a a se obtiene

$$-\wp(z+a) = -\wp(a) - \frac{1}{2} \left(\frac{\wp''(a) \left[\wp(z) - \wp(a)\right] - \wp'(a) \left[\wp'(z) - \wp'(a)\right]}{\left[\wp(z) - \wp(a)\right]^2} \right).$$

Sumando las dos ecuaciones que tenemos para $-\wp(z+a)$ tenemos

$$-2\wp(z+a) = -\wp(z) - \wp(a) + \frac{1}{2} \left(\frac{\wp''(z) \left[\wp(z) - \wp(a)\right] - \wp'(z) \left[\wp'(z) - \wp'(a)\right]}{\left[\wp(z) - \wp(a)\right]^2} \right)$$

$$-\frac{1}{2} \left(\frac{\wp''(a) \left[\wp(z) - \wp(a)\right] - \wp'(a) \left[\wp'(z) - \wp'(a)\right]}{\left[\wp(z) - \wp(a)\right]^2} \right),$$

$$-2\wp(z+a) = -\wp(z) - \wp(a) + \frac{1}{2} \left(\frac{\left[\wp''(z) - \wp''(a)\right] \left[\wp(z) - \wp(a)\right]}{\left[\wp(z) - \wp(a)\right]^2} \right)$$

$$-\frac{1}{2} \left(\frac{\left[\wp'(z) - \wp'(a)\right] \left[\wp'(z) - \wp'(a)\right]}{\left[\wp(z) - \wp(a)\right]^2} \right),$$

$$-2\wp(z+a) = -\wp(z) - \wp(a) + \frac{1}{2} \left(\frac{\left[\wp''(z) - \wp''(a)\right] \left[\wp(z) - \wp(a)\right]}{\left[\wp(z) - \wp(a)\right]^2} \right)$$
$$-\frac{1}{2} \left(\frac{\left[\wp'(z) - \wp'(a)\right]^2}{\left[\wp(z) - \wp(a)\right]^2} \right).$$

Ya que

$$\left(\wp'(z)\right)^2 = 4\left[\wp(z)\right]^3 - 60G_4\wp(z) + 140G_6,$$

derivando ambos lados obtenemos

$$2\wp'(z)\wp''(z) = 12 \left[\wp(z)\right]^2 \wp'(z) - 60G_4\wp'(z),$$

dividiendo ambos lados de está ecuación entre $2\wp'(z)$ obtenemos

$$\wp''(z) = 6 \left[\wp(z)\right]^2 - 30G_4 = 6 \left(\left[\wp(z)\right]^2 - 5G_4\right)$$

si sustituimos el valor de $\wp''(z)$ en la ecuación de $-2\wp(z+a)$ obtenemos

$$-2\wp(z+a) = -\wp(z) - \wp(a) - \frac{1}{2} \left(\frac{\left[\wp'(z) - \wp'(a)\right]^2}{\left[\wp(z) - \wp(a)\right]^2} \right)$$

$$+ \frac{6}{2} \left(\frac{\left[\left(\wp(z)\right)^2 - 5G_4 - \left(\wp(a)\right)^2 + 5G_4\right] \left[\wp(z) - \wp(a)\right]}{\left[\wp(z) - \wp(a)\right]^2} \right)$$

$$= -\wp(z) - \wp(a) - \frac{1}{2} \left(\frac{\left[\wp'(z) - \wp'(a)\right]^2}{\left[\wp(z) - \wp(a)\right]^2} \right)$$

$$+ 3 \left(\frac{\left[\left(\wp(z)\right)^2 - \left(\wp(a)\right)^2\right] \left[\wp(z) - \wp(a)\right]}{\left[\wp(z) - \wp(a)\right]^2} \right)$$

$$-2\wp(z+a) = -\wp(z) - \wp(a) + -\frac{1}{2} \left(\frac{\left[\wp'(z) - \wp'(a)\right]^2}{\left[\wp(z) - \wp(a)\right]^2} \right)$$

$$3 \left(\frac{\left[\wp(z) + \wp(a)\right] \left[\wp(z) - \wp(a)\right] \left[\wp(z) - \wp(a)\right]}{\left[\wp(z) - \wp(a)\right]^2} \right)$$

$$= -\wp(z) - \wp(a) + 3 \left[\wp(z) + \wp(a)\right] - \frac{1}{2} \left(\frac{\left[\wp'(z) - \wp'(a)\right]^2}{\left[\wp(z) - \wp(a)\right]^2} \right)$$

$$= 2 \left[\wp(z) + \wp(a)\right] - \frac{1}{2} \left(\frac{\left[\wp'(z) - \wp'(a)\right]^2}{\left[\wp(z) - \wp(a)\right]^2} \right).$$

Finalmente dividiendo entre -2 llegamos al resultado deseado

$$\wp(z+a) = -\wp(z) - \wp(a) + \frac{1}{4} \left(\frac{\wp'(z) - \wp'(a)}{\wp(z) - \wp(a)} \right)^2$$

lo cual necesitabamos para demostrar la proposición 5. Debemos notar que cuando a tiende a z la última ecuación tiende a

$$\wp(2z) = -2\wp(z) + \frac{1}{4} \left(\frac{\wp''(z)}{\wp'(z)} \right)^2$$

Con esto terminamos nuestro estudio de las curvas elípticas en el campo complejo.

3.4. CURVAS ELÍPTICAS EN CAMPOS FINITOS

Un caso especial de campos en los que se pueden definir las curvas elípticas son los campos finitos, los cuáles son de nuestro particular interés ya que para la criptografía en curvas elípticas se utilizan la curvas elípticas en este tipo de campos, por lo que, en este capítulo se verán algunas de las propiedades que tendrán las curvas elípticas en campos finitos.

Antes de ver esto veamos algunas definiciones respecto a campos.

DEFINICIÓN 3.4.1 Sea \mathbb{F} un campo. Se define como *la característica de un campo* \mathbb{F} (denotada por $Car(\mathbb{F})$), el mínimo p en \mathbb{N} tal que para algún $a \neq 0$ en \mathbb{F}

$$\underbrace{a+a+\cdots+a}_{p\ veces}=pa=0.$$

OBSERVACIÓN 3.4.2 De esta definición podemos notar que la característica de un campo debe ser un número primo (de ser un número compuesto existirían q y $m \in \mathbb{N}$ tales que p = qm, donde m, q < p, entonces pa = mqa = 0, pero por las propiedades de campo ma = 0 o qa = 0 en ambos casos concluiríamos que existe un $x \in \mathbb{N}$ que es menor que p tal que xa = 0, lo cual contradice el hecho de que p era el mínimo natural que cumple con esta propiedad). Mas aún cuando \mathbb{F} tiene un número primo de elementos (digamos p), entonces $Car(\mathbb{F}) = p$.

Para ver algunas de las propiedades de los campos finitos comencemos tomando un campo finito \mathbb{F}_p con p elementos, en donde p es un número primo, usualmente \mathbb{F}_p es el campo \mathbb{Z}/\mathbb{Z}_p , cuando no es este último campo podemos dar un isomorfismo entre \mathbb{F}_p y $\mathbb{Z}/\mathbb{Z}_p^{10}$. Aunque es más sencillo trabajar con \mathbb{Z}/\mathbb{Z}_p , las propiedades que veremos se definirán en \mathbb{F}_p para hacerlo de manera general.

¹⁰Teorema 7.3 en la página 362 de [?]

Ahora bien, dado el campo \mathbb{F}_p podemos construir una extensión la cuál tenga exactamente p^n elementos¹¹ para toda $n \in \mathbb{N}$, esta extensión la denotaremos por \mathbb{F}_{p^n} . En el caso del campo \mathbb{Z}/\mathbb{Z}_p , ésta extensión es $\mathbb{Z}/\mathbb{Z}_{p^n}$.

Podemos notar que al ser \mathbb{F}_{p^n} una extensión de \mathbb{F}_p , entonces bajo las operaciones del campo \mathbb{F}_{p^n} , éste es un espacio vectorial sobre \mathbb{F}_p^{12} , donde la dimensión de \mathbb{F}_{p^n} sobre \mathbb{F}_p es n, es decir, la dimensión de \mathbb{F}_{p^n} como espacio vectorial sobre \mathbb{F}_p es n. Al hablar de un espacio vectorial uno podría suponer que los elementos de \mathbb{F}_{p^n} son exactamente n-adas ordenadas de elementos de \mathbb{F}_p , es decir, elementos de $(\mathbb{F}/\mathbb{F}_p)^n$, pero esto no es así. Esto lo podemos notar con $\mathbb{Z}/\mathbb{Z}_{p^n}$, el cuál esta formado por los elementos del conjunto $\{1,2,\ldots p^n-1,p^n\}$ de los cuales ninguno es un elemento de $(\mathbb{Z}/\mathbb{Z}_p)^n$. Sin embargo, analizando el caso general se puede dar el siguiente isomorfismo entre $(\mathbb{F}/\mathbb{F}_p)^n$ y $\mathbb{F}/\mathbb{F}_{p^n}$

$$\psi : (\mathbb{F}/\mathbb{F}_p)^n \to \mathbb{F}/\mathbb{F}_{p^n}$$

$$\psi(a_1, a_2, \dots a_n) = a_1 + a_2 p + \dots + a_n p^{n-1}$$

Por otro lado, al ser \mathbb{F}_{p^n} una extensión de \mathbb{F}_p , entonces todo $b \in \mathbb{F}_p$ también pertenece a \mathbb{F}_{p^n} , entonces $Car(\mathbb{F}_{p^n})$ tiene que ser p.

DEFINICIÓN 3.4.3 Sea G un grupo. Se define como el *orden de* el grupo G (denotado por o(G)) al número de elementos que tiene el grupo.

DEFINICIÓN 3.4.4 Sea G un grupo. Tomemos $a \in G$. Definimos el orden de a (denotado por o(a)) como el mínimo $m \in \mathbb{N}$ tal que $a^m = e$ (en el caso de la suma es ma = 0), donde e es el elemento neutro del grupo.

Dos resultados importante relacionados con las definiciones anteriores son los siguientes.

TEOREMA 3.4.5 Sea G un grupo. Para cualquier $a \in G$ tenemos que $o(a)|o(G).^{13}$

¹¹Lema 7.4A en la página 363 de [?]

¹²scceión 1 en la página 198 de citehe

¹³ Corolario 1 en la pág. 51 de [?]

TEOREMA 3.4.6 Para cualquier $a \in G$ tenemos que $a^{o(G)} = e$ donde e es el elemento neutro del grupo G.¹⁴

OBSERVACIÓN 3.4.7 Del último teorema debemos notar que cuando o(G) es un número primo, para cualquier elemento $a \in G$, tendremos cada uno de los elementos a^i (con i en $\{1, 2, ..., o(G)\}$) son distintos (de no ser así o(a) < o(G) por lo que $o(a) \nmid o(G)$). Así, cualquier $a \in G$ es un generador de G, es decir, para cualquier $b \in G$ existe $m \in \{1, 2, ..., o(G)\}$ tal que $a^m = b$.

En el caso de $\mathbb{F}/\mathbb{F}_{p^n}$ sus elementos distintos del neutro aditivo forman un grupo (denotado por $(\mathbb{F}/\mathbb{F}_{p^n})^*$), el cual consta de p^n-1 elementos, por lo que a partir de los últimos teoremas concluimos que para todo $a \in (\mathbb{F}/\mathbb{F}_{p^n})^*$, $\overline{1}a^{p^n-1}=\overline{1}$ donde $\overline{1}$ es el neutro multiplicativo de $(\mathbb{F}/\mathbb{F}_{p^n})^*$, es decir, cada elemento de $(\mathbb{F}/\mathbb{F}_{p^n})^*$ satisface la ecuación $\overline{1}x^{p^n}-\overline{1}x=\overline{0}$, donde $\overline{0}$ es el neutro aditivo del campo. Debemos notar que el polinomio $\overline{1}x^{p^n}-\overline{1}x$ tiene p^n raíces en $\mathbb{F}/\mathbb{F}_{p^n}$ y como $\overline{0}$ es raíz del polinomio, así como también los p^n-1 elementos de $(\mathbb{F}/\mathbb{F}_{p^n})^*$, entonces todas las raíces del polinomio $\overline{1}x^{p^n}-\overline{1}x$ son los elementos de $\mathbb{F}/\mathbb{F}_{p^n}$. Por otro lado, como $\mathbb{Z}/\mathbb{Z}_{p^n}$ y $\mathbb{F}/\mathbb{F}_{p^n}$ son isomorfos podemos ver que los elementos de $\mathbb{Z}/\mathbb{Z}_{p^n}$, también serán las raíces del polinomio $x^{p^n}-x=0$, utilizando las operaciones en $\mathbb{Z}/\mathbb{Z}_{p^n}$.

Esta información será suficiente por el momento para ver las curvas elípticas en campos finitos, por lo que empezaremos a desarrollar este tema.

Tomemos un campo finito \mathbb{F}_q donde $q = p^r$ y \mathbb{F}_q tiene q elementos, en donde p es un número primo. Sea $\mathbf{E}(\mathbb{F}_q)$ una curva elíptica definida en el campo \mathbb{F}_q . Debido a que la característica de un campo debe ser un número primo y divide al número de elementos del campo (por el teorema 3.4.5), entonces la $Car(\mathbb{F}_q) = p$ y la curva \mathbf{E} queda definida por las ecuaciones del tipo:

(a)
$$y^2 = x^3 + cx^2 + dx + e$$
, si $Car(\mathbb{F}_q) = 3$

(b)
$$y^2 = x^3 + dx + e$$
, si $Car(\mathbb{F}_q) \neq 2, 3$

(c) $y^2 + axy = x^3 + cx^2 + e$, si $Car(\mathbb{F}_q) = 2$ y el coeficiente del termino xy es diferente de cero.

 $^{^{14}}$ Corolario 2 en la pág. 51 de \cite{black}

122

(d) $y^2 + ay = x^3 + dx + e$, si $Car(\mathbb{F}_q) = 2$ y el coeficiente del termino xy es cero.

LEMA 3.4.8 La curva $\mathbf{E}(\mathbb{F}_q)$ tiene a lo más 2q+1 puntos.

DEMOSTRACIÓN.

Sean $x_1, ..., x_q$ los diferentes puntos de \mathbb{F}_q . Si hacemos $u_i = x_i^3 + cx_i^2 + dx_i + e$, se pueden obtener a lo más q valores de la forma u_i (aquí c, d ó e podrían ser ceros, dependiendo de la forma que adopta la ecuación de la curva).

Ahora bien, la ecuación $y^2 + ax_iy + by = u_i$ (en donde a o b pueden ser cero, dependiendo de la forma de la ecuación) tiene a lo más dos soluciones para cada valor de u_i . Entonces por cada valor de x_i tenemos a lo más dos valores $(y_i y y'_i)$, tales que $(x_i, y_i) y (x_i, y'_i)$ son soluciones de $y^2 + axy + by = x^3 + cx^2 + dx + e$.

Con lo anterior tenemos a lo más 2q parejas $(x,y) \in \mathbb{F}_q^2$ que satisfacen la ecuación $y^2 + axy + by = x^3 + cx^2 + dx + e$. Como incluimos a O en $\mathbf{E}(\mathbb{F}_q)$, concluimos que $\mathbf{E}(\mathbb{F}_q)$ tiene a lo más 2q+1 puntos.

Con el lema anterior queda demostrado que el número de puntos en $\mathbf{E}(\mathbb{F}_q)$ (# $(\mathbf{E}(\mathbb{F}_q))$) es a lo más 2q+1. Hay mejores cotas como la que se da en el siguiente teorema, pero la demostración de ellas queda fuera del alcance de esta tesis.

TEOREMA 3.4.9 Teorema de Hasse¹⁵

Sea N el número de puntos en $\mathbf{E}(\mathbb{F}_q)$, entonces:

$$|N - (q+1)| \leqslant 2\sqrt{q}$$

Si una curva elíptica \mathbf{E} está definida en \mathbb{F}_q entonces también está definida en \mathbb{F}_{q^r} para cada r=1,2,... y así es significativo considerar los puntos en $\mathbf{E}(\mathbb{F}_{q^r})$, es decir, las soluciones de la ecuación de la curva en los campos de extensión.

¹⁵Ver Teorema 1.1 en el capítulo 5 de [?]

Si comenzamos con \mathbb{F}_q como el campo en el que \mathbf{E} está definido, denotaremos por N_r el número de puntos en $\mathbf{E}(\mathbb{F}_{q^r})$. Así $N_1 = N$ es el número de puntos que son solución de la curva en \mathbb{F}_q .

Con los números N_r formaremos la "serie generadora" $Z(T; \mathbf{E}(\mathbb{F}_q))$ que es la serie de potencias formal en Q[[T]] definida por:

$$Z(T; \mathbf{E}(\mathbb{F}_q)) = e^{\sum N_r T^r/r},$$

en donde T es una indeterminada, la notación $\mathbf{E}(\mathbb{F}_q)$ designa la curva elíptica y el campo que estamos tomando como base, la suma es bajo todos los números $r=1,2,\ldots$ A esta serie le llamaremos la función zeta de la curva elíptica (en \mathbb{F}_q) y es un objeto muy importante asociado a \mathbf{E} .

Existe una conjetura muy especial llamada la "Conjetura de Weil", para variedades algebraicas de cualquier dimensión, en la cual se ve que la función zeta tiene una forma muy especial.

Cabe mencionar que nuestras curvas elípticas son variedades algebraicas, por lo cual en el caso de curvas elípticas la conjetura de Weil se puede ver como sigue:

CONJETURA 3.4.10 Conjetura de Weil

La función zeta es una función racional de T que tiene la forma

$$Z(T; \mathbf{E}(\mathbb{F}_q)) = \frac{1 - aT + qT^2}{(1 - T)(1 - qT)},$$

donde únicamente el entero a depende de la curva elíptica \mathbf{E} en particular. El valor a está relacionado con $N=N_1$, como sigue : N=q+1-a. Además el discriminante del polinomio cuadrático en el numerador es negativo (es decir, $a^2 < 4q$ por el Teorema de Hasse) y así el polinomio cuadrático tiene 2 raíces conjugadas complejas α y $\overline{\alpha}$ ambas de norma \sqrt{q} (más precisamente, $1/\alpha$ y $1/\overline{\alpha}$ son las raíces y α y $\overline{\alpha}$ son las "raíces recíprocas").

Si nosotros conocieramos el valor de N, entonces podríamos calcular el valor de cada uno de los N_r de la siguiente manera, por definición:

$$Z(T; \mathbf{E}(\mathbb{F}_q)) = e^{\sum N_r T^r/r}.$$

Aplicando logaritmo natural a ambos lados de la ecuación:

$$\log(\mathbf{Z}(\mathbf{T}; \mathbf{E}(\mathbb{F}_q)) = \sum N_r \mathbf{T}^r / r.$$

Derivando en ambos lados:

$$\frac{d^n}{d\mathbf{T}^n}\log \mathbf{Z}(\mathbf{T};\mathbf{E}(\mathbb{F}_q)) = \frac{d^n}{d\mathbf{T}^n} \left(\sum_{r=1}^{\infty} N_r \mathbf{T}^r / r\right).$$

De donde separando la suma hasta $n-1,\, n$ y de n+1 en adelante:

$$\frac{d^n}{d\mathbf{T}^n} \log \mathbf{Z}(\mathbf{T}; \mathbf{E}(\mathbb{F}_q)) = \frac{d^n}{d\mathbf{T}^n} (\sum_{r=1}^{n-1} (N_r \mathbf{T}^r/r)) + \frac{d^n}{d\mathbf{T}^n} (N_n \mathbf{T}^n/n) + \frac{d^n}{d\mathbf{T}^n} (\sum_{r=n+1}^{\infty} (N_r \mathbf{T}^r/r)).$$

Calculando las derivadas podemos ver que la primera suma es 0, entonces:

$$\frac{d^n}{d\mathbf{T}^n}\log \mathbf{Z}(\mathbf{T};\mathbf{E}(\mathbb{F}_q)) = \frac{n!}{n}(N_n) + \sum_{r=n+1}^{\infty} \frac{(r-n)!}{n}(N_r\mathbf{T}^{r-n}).$$

Haciendo i=r-n en la última suma, tenemos:

$$\frac{d^n}{d\mathbf{T}^n}\log \mathbf{Z}(\mathbf{T};\mathbf{E}(\mathbb{F}_q)) = \frac{n!}{n}(N_n) + \sum_{i=1}^{\infty} \frac{(i)!}{n}(N_{i+n}\mathbf{T}^i),$$

finalmente al evaluar en T=0:

$$\frac{d^n}{dT^n} \log Z(T; \mathbf{E}(\mathbb{F}_q))|_{T=0} = \frac{n!}{n} (N_n) + (\sum_{i=1}^{\infty} \frac{i!}{n} (N_{i+n}T^i))|_{T=0}.$$

Como la última suma es 0, obtenemos:

$$\frac{d^n}{d\mathbf{T}^n}\log \mathbf{Z}(\mathbf{T};\mathbf{E}(\mathbb{F}_q))|_{T=0} = \frac{n!}{n}(N_n).$$

Despejando N_n :

$$N_n = \frac{1}{(n-1)!} \frac{d^n}{d\mathbf{T}^n} \log \mathbf{Z}(\mathbf{T}; \mathbf{E}(\mathbb{F}_q))|_{T=0}.$$

Pero, si fuera cierta la conjetura de Weil, entonces

$$Z(T; \mathbf{E}(\mathbb{F}_q)) = \frac{1 - aT + qT^2}{(1 - T)(1 - qT)} = \frac{(1 - \alpha T)(1 - \overline{\alpha}T)}{(1 - T)(1 - qT)},$$

sustituyendo en la formula anterior:

$$N_n = \frac{1}{(n-1)!} \frac{d^n}{d\mathbf{T}^n} \log \left(\frac{(1-\alpha \mathbf{T})(1-\overline{\alpha}\mathbf{T})}{(1-\mathbf{T})(1-q\mathbf{T})} \right) \Big|_0.$$

De donde, separando los logaritmos tenemos:

$$N_n = \frac{1}{(n-1)!} \frac{d^n}{d\mathbf{T}^n} \left(\log(1-\alpha \mathbf{T}) + \log(1-\overline{\alpha}\mathbf{T}) - \log(1-\mathbf{T}) - \log(1-q\mathbf{T}) \right) \Big|_{0}.$$

Dado que $\log(1-T) = -T - \frac{T^2}{2} - \frac{T^3}{3} - \frac{T^4}{4}$..., sustituyendo tenemos que:

$$N_n = \frac{1}{(n-1)!} \frac{d^n}{d\mathbf{T}^n} \left(-\sum_{i=1}^{\infty} \frac{(\alpha \mathbf{T})^i}{i} - \sum_{i=1}^{\infty} \frac{(\overline{\alpha} \mathbf{T})^i}{i} + \sum_{i=1}^{\infty} \frac{(\mathbf{T})^i}{i} + \sum_{i=1}^{\infty} \frac{(q\mathbf{T})^i}{i} \right) \bigg|_{0}.$$

Como, si i < n, entonces $\frac{d^n}{d\mathrm{T}^i} = 0$ y, si $i \geqslant n$, tenemos $\frac{d^n}{d\mathrm{T}^n} = i(i-1)...(i-n+1)\mathrm{T} = \frac{i!}{(i-n)!}\mathrm{T}^{i-n}$ por lo cual al derivar, los primeros n-1 términos son cero.

Asi derivando obtenemos:

$$N_{n} = \frac{1}{(n-1)!} \left(-\sum_{i=n}^{\infty} \frac{i!}{(i-n)!} \frac{\alpha^{i}}{i} \mathbf{T}^{i-n} - \sum_{i=n}^{\infty} \frac{i!}{(i-n)!} \frac{\overline{\alpha}^{i}}{i} \mathbf{T}^{i-n} + \sum_{i=n}^{\infty} \frac{i!}{(i-n)!} \frac{q^{i}}{i} \mathbf{T}^{i-n} \right) \Big|_{0}.$$

Ahora bien para todo i>n $\mathsf{T}^{i-n}\big|_0=0$ y cuando i=n $\mathsf{T}^{i-n}\big|_0=1$ por lo cual:

$$N_{n} = \frac{1}{(n-1)!} \left(-\frac{n!}{(n-n)!} \frac{\alpha^{n}}{n} T^{n-n} - \frac{n!}{(n-n)!} \frac{\overline{\alpha}^{n}}{n} T^{n-n} + \frac{n!}{(n-n)!} \frac{1}{n} T^{n-n} + \frac{n!}{(n-n)!} \frac{q^{n}}{n} T^{n-n} \right) \Big|_{0}.$$

Por lo cual:

$$N_n = \frac{1}{(n-1)!} \left(-(n-1)!\alpha^n - (n-1)!\overline{\alpha}^n + (n-1)! + (n-1)!q^n \right).$$

Finalmente:

$$N_n = q^n + 1 - \alpha^n - \overline{\alpha}^n.$$

Con lo cual tenemos finalmente el valor de N_n .

Hasta el momento solamente tenemos acotado el número de puntos en la curva elíptica o como en el último caso una ecuación para este número, pero apartir de otros datos que no necesariamente conocemos. En la sección 4.5 se dará un método de tipo exponencial para el cálculo del número de puntos en una curva elíptica.

Con esto terminamos nuestra revisión por las curvas elípticas. Daremos paso ahora a ver una de las aplicaciones de las curvas elípticas.

Capítulo 4

CURVAS ELÍPTICAS EN CRIPTOGRAFÍA

4.1. INTRODUCCIÓN

Después de haber visto las fórmulas que definen la suma en una curva elíptica, se puede uno imaginar que el siguiente problema es difícil:

Si en una curva elíptica se conocen P y kP (donde k es un entero y kP significa sumar k veces el elemento P, si k es positivo y |k| veces -P, si k es negativo), es muy difícil conocer k.

Éste se conoce como el *Problema del Logaritmo Discreto*. Este problema ha sido muy estudiado, pero los únicos algoritmos que se conocen para resolver este problema son en tiempo exponencial, por lo que se puede usar esta hecho para aplicarlo a la criptografía.

La estructura de grupo que le dimos a una curva elíptica, en la sección anterior, se puede dar, exactamente en la misma manera en cualquier campo que no tenga característica 2 o 3. Nos concentramos en los reales porque éso nos permitió tener una idea geométrica, pero si usted observa las fórmulas obtenidas, verá que son válidas en cualquiera de los campos mencionados.

El uso de las curvas en criptografía no ha sido implementado para ser usado ampliamente, como ocurre con el sistema RSA. Ahora describiremos cómo se aplica.

4.2. ASIGNACIÓN DE UN PUNTO EN LA CURVA ELÍPTICA A UNA UNIDAD DE MENSAJE

En principio cualquiera supondría que al querer hacer una encriptación en una curva elíptica, deberíamos de escoger primero la curva sobre la cual vamos a trabajar y dar la ecuación de la curva, pero esto no ocurre así, debido a que el mensaje que deseamos cifrar está compuesto por unidades de mensaje (las cuales pueden ser de tamaño 1, es decir, que consten de un solo símbolo o de tamaño n es decir que cada unidad de mensaje tenga n símbolos), y sería deseable que a cada unidad de mensaje que quisieramos encriptar le correspondiera un punto en la curva. En el teorema 3.4.9 comentamos el Teorema de Hasse, el cual nos dice que si tenemos una curva elíptica definida en un campo \mathbb{F}_q , entonces el número de puntos (N), de la curva cumple las siguientes desigualdades

$$q + 1 - 2\sqrt{q} \leqslant N \leqslant q + 1 + 2\sqrt{q}$$

esto sin importar la ecuación que tenga la curva. Por lo que si nuestro mensaje tiene un cierto número m de unidades de mensaje distintas, entonces para asegurarnos que a cada unidad de mensaje le corresponda un punto en la curva elíptica necesitaremos que

$$m < q + 1 - 2\sqrt{q} \leqslant N$$

por esto queda claro que es preferible ocuparnos primero de las unidades de mensaje y posteriormente del número q con el cual definiremos el campo \mathbb{F}_q . Debido a lo anterior nos ocuparemos primero de las unidades de mensaje.

Trabajar con las unidades de mensaje resultaría algo incomodo, por lo que haremos primero una asociación entre cada unidad de mensaje y algún

número natural, para de esta forma trabajar con números en lugar de con unidades de mensaje. A cada unidad de mensaje le asociaremos aleatoriamente un número $u \in \mathbb{N}$, únicamente nos fijaremos en que a dos unidades de mensaje distintas no les corresponda el mismo número. Para denotar a las unidades de mensaje en general usaremos el símbolo α .

Unidad de		Número
mensaje		natural
α	\longrightarrow	u

Ya que hemos asociado un número a cada unidad de mensaje, el paso siguiente será asignar a cada uno de estos números un punto en una curva elíptica que estará definida en un campo \mathbb{F}_q . Aquí nos enfrentamos con dos problemas, el primero es saber cuál es la ecuación de la curva elíptica y el segundo saber quién es \mathbb{F}_q . Por el momento no estamos en condiciones de dar respuesta a ninguna de estas 2 cuestiones, sin embargo, podemos trabajar en abstracto con una curva elíptica $\mathbf{E}(\mathbb{F}_q)$, que esté definida por una ecuación de la forma $y^2 = x^3 + ax^2 + bx + c$ y tratar de encontrar condiciones adecuadas que deban cumplir \mathbb{F}_q , a, b y c de tal manera que la curva que encontremos sirva para nuestros propósitos.

Como lo mencionamos antes desearíamos que cada unidad de mensaje tuviera asociado un punto en la curva, y ya que cada unidad de mensaje tiene asociado un número natural, nos será más facil asociarle a cada uno de estos números un punto en la curva, como se muestra en el siguiente diagrama.

Unidad de mensaje		Número natural		Punto en la
3				curva
α	\longrightarrow	u	\longrightarrow	Р

Sería deseable que esto no se haga de una manera aleatoria, sino de una manera ordenada y además sencilla, para que si nosotros tomamos un punto P en la curva podamos encontrar fácilmente el número natural correspondiente u y por tanto recuperar la unidad de mensaje α asociada a ese punto. Y viceversa, si nosotros tomamos una unidad de mensaje de nuestro texto, ya que sepamos cuál es el número natural u que le corresponde, entonces podamos calcular rápidamente cuál será el punto P que le corresponde en la curva.

Para el problema de asignar un punto de la curva a un número existen varios métodos de solución, el que describiremos a continuación es un método de tipo probabilístico. Para comenzar tomaremos un número $k \in \mathbb{N}$, es importante que este número k sea un número grande ya que de la elección de este número dependerá la probabilidad de que el método funcione o no, como se explicará posteriormente.

A continuación busquemos un número M tal que para cualquier número u asignado a una unidad de mensaje ocurra que u < M y consideremos el número Mk. Cada número mayor que 1 pero menor que Mk dividámoslo entre k para obtener un cociente a y un residuo j, los cuales cumplirán que $0 \le a < M$ y $0 \le j < k$. De manera que, si $u \in \mathbb{N}$ es tal que $1 \le u < Mk$, entonces:

$$u = ak + i$$

Debemos mencionar un hecho importante, debido a que si una unidad de mensaje tiene asociado un número u (u < M), entonces de entre los números que se encuentran entre 1 y Mk existirán algunos que al dividirlos por k tendrán como cociente a u, de hecho, éstos son los k números que se escriben en la forma

$$uk + j$$
 con $0 \le j < k$

este paso es importante, porque recordemos que deseabamos asignar a un número u (el cual correspondia a una unidad de mensaje) un punto en la curva, con el paso anterior cada número u lo podemos relacionar ahora con k números (aquellos que tienen como cociente u, como resultado de dividirlos por k) esto nos será de utilidad posteriormente.

Unidad de		Número		Números
mensaje		natural		asociados
α	\longrightarrow	u	→ → : → →	uk $uk + 1$ \vdots $uk + (k-2)$ $uk + (k-1)$

El siguiente paso será asociar, a cada número u entre 1 y Mk, algún elemento x_n que se encuentre en \mathbb{F}_q , recordemos que cada punto P en la curva elíptica, es de la forma (x_P, y_P) donde $x_P, y_P \in \mathbb{F}_q$, de tal manera que si tenemos al elemento x_u podemos tratar de ver si existe algún punto $a \in \mathbb{F}_q$ tal que (x_u, a) esté en la curva elíptica y entonces hacer $y_u = a$.

Pero vayamos paso a paso. Para el problema de cómo asociarle un elemento de \mathbb{F}_q a cada u, recordemos que en la sección 3.4 se menciono que existe una manera de hacer una correspondencia entre \mathbb{F}_q y \mathbb{Z}_q (la cual no se dio pero se dio una referencia en la nota 10 pág. 84). De tal manera que a cada elemento $z \in \mathbb{Z}_q$ se le puede asociar un elemento $x \in \mathbb{F}_q$, y como $\mathbb{Z}_q = \{1, ..., q\}$, entonces todo número natural u que satisfaga $1 \leq u < Mk$, cumplirá que $u \in \mathbb{Z}_q$ por lo que podremos encontrar un elemento $x_u \in \mathbb{F}_q$ asociado a u.

Número		Número		Elemento
natural		en \mathbb{Z}_q		en \mathbb{F}_q
u	\longrightarrow	u	\longrightarrow	x_u

Ahora bien, como ya vimos cada uno de estos números u lo podemos escribir en la forma u=ak+j con $1\leqslant a< M$ y $0\leqslant j< k$. Con está identificación entonces podemos renombrar el valor asociado a u en \mathbb{F}_q por x_{a_j} .

Número		Número		Elemento
natural		en \mathbb{Z}_q		en \mathbb{F}_q
u	\longrightarrow	u = ak + j	\longrightarrow	x_{a_j}

En sí, no estamos cambiando el elemento asignado a u en \mathbb{F}_q , sólo estamos cambiándole el nombre, en lugar de llamarlo x_u lo llamamos ahora x_{a_j} . Por qué este cambio de nombre?, es sencillo las unidades de mensaje α tienen asignado un número u y como vimos cada u tendrá asignados k números de la forma uk+j, pero por el paso anterior cada uno de estos números uk+j tiene asignado un elemento $x_{u_j} \in \mathbb{F}_q$. De tal manera que a cada número u le asociaremos k elementos en \mathbb{F}_q

Unidad	Número natural		Naturales
de	asociado a la		asociados
mensaje	unidad de mensaje		
α	\longrightarrow u	\longrightarrow	uk $uk + 1$ \vdots $uk + (k - 2)$ $uk + (k - 1)$

Naturales		Número		Elemento
asociados		\mathbb{Z}_q	en \mathbb{F}_q	
a cada natural				
uk	\longrightarrow	uk	\longrightarrow	x_{u_0}
uk + 1	\longrightarrow	uk + 1	\longrightarrow	$x_{u_0} \\ x_{u_1}$
i :	\longrightarrow	<u>:</u>	\longrightarrow	:
uk + (k-2)	\longrightarrow	uk + (k-2)	\longrightarrow	$x_{u_{k-2}}$
uk + (k-1)	\longrightarrow	uk + (k-1)	\longrightarrow	$x_{u_{k-1}}$

Anteriormente, cuando decidimos asociarle a cada número u, k números debió surgir una pregunta muy natural ¿Para qué asociarle a cada unidad

de mensaje k elementos en \mathbb{F}_q , si anteriormente habíamos dicho que sólo necesitabamos asociarle un elemento? En efecto sólo deseamos asociarle un elemento en \mathbb{F}_q a cada unidad de mensaje, desafortunadamente no podremos asegurar que si nosotros tomamos un elemento en $x \in \mathbb{F}_q$ podamos encontrar otro elemento $y \in \mathbb{F}_q$ tal que $(x,y) \in \mathbf{E}(\mathbb{F}_q)$. Esto debido a que la ecuación de la curva es de la forma $y^2 = x^3 + ax^2 + bx + c$ entonces $y = \sqrt{x^3 + ax^2 + bx + c}$, pero recordemos que, por lo visto en la sección de curvas elípticas en un campo finito (enlademostración del Lema 3.4.8), a lo más la mitad de los elementos en el campo tendrán una raíz cuadrada. De tal manera que si a cada u sólo le asociamos un elemento en \mathbb{F}_q (digamos w) puede que no podamos encontrar otro elemento $v \in \mathbb{F}_q$ tal que $v = \sqrt{w^3 + aw^2 + bw + c}$, por lo que tendríamos que reiniciar todo el proceso.

Sin embargo, al asociarle k elementos en \mathbb{F}_q a cada unidad de mensaje tenemos k posibilidades de que para alguno de estos elementos (supongamos x_{u_i}) podamos encontrar un elemento $v \in \mathbb{F}_q$ tal que $v^2 = x_{u_i}^3 + ax_{u_i}^2 + bx_{u_i} + c$. Así podríamos asociarle a u (que tiene asociada la unidad de mensaje α) el punto $P_u = (x_{u_i}, v)$ en la curva elíptica. El procedimiento para encontrar v será de manera exhaustiva, es decir, exploraremos todos los valores u_i hasta encontrar a v de la manera siguiente.

De inicio tomaremos la función $f(x) = x^3 + ax^2 + bx + c$. Tomaremos el primer elemento asociado con u, es decir, para j = 0 tomaremos x_{u_j} , y sustituiremos x_{u_j} en f(x) para encontrar $f(x_{u_j})$. Posteriormente buscaremos la raíz cuadrada de $f(x_{u_j})$ en \mathbb{F}_q , si encontramos está raíz, entonces definimos $x_u = x_{u_j}$ y $y_u = \sqrt{f(x_{u_j})}$. Si $f(x_{u_j})$ no tiene una raíz cuadrada en \mathbb{F}_q repetimos el proceso con j = 1, es decir si $f(x_{u_j})$ tiene una raíz entonces hacemos $y_u = \sqrt{f(x_{u_j})}$. Si $f(x_{u_j})$ no tiene una raíz cuadrada en \mathbb{F}_q con j = 1, repetimos el proceso con j = 2 y así sucesivamente hasta j = k. Si en algún momento pudimos encontrar el elemento $y_u \in \mathbb{F}_q$, entonces definimos $P_u = (x_u, y_u)$ y diremos que este punto será el punto asociado a el natural u en la curva elíptica. Este procedimiento deberemos repetirlo para cada número u asociado con alguna unidad de mensaje.

Naturales		Número		Elemento	$f(x_{u_i})$
asociados		\mathbb{Z}_q		en \mathbb{F}_q	tiene raíz
a cada natural					
ua	\longrightarrow	ua	\longrightarrow	x_{u_0}	×
ua+1	\longrightarrow	ua + 1	\longrightarrow	x_{u_1}	×
:	\longrightarrow	:	\longrightarrow	:	:
ua + l	\longrightarrow	ua + l	\longrightarrow	x_{u_l}	\checkmark
:	\longrightarrow	:	\longrightarrow	•	
ua + (k-2)	\longrightarrow	ua + (k-2)	\longrightarrow	$x_{u_{k-2}}$	
ua+(k-1)	\longrightarrow	ua + (k-1)	\longrightarrow	$x_{u_{k-1}}$	

Unidad		Número	Natural			Número
de		natural	asociado			
mensaje		asociado a la	finalmente			\mathbb{Z}_q
		unidad de	a la unidad de			
		mensaje		mensaje		
α	\longrightarrow	u	\longrightarrow	ua + l	\longrightarrow	ua + l

Unidad de		Número 7		Elemento		Punto en la
mensaje		\mathbb{Z}_q		en \mathbb{F}_q		curva
α	\longrightarrow	ua + l	<i>─</i>	x_{u_l}	\longrightarrow	$(x_{u_l}, \sqrt{f(x_{u_l})})$

Con este procedimiento podremos encontrar para cada unidad de mensaje un punto en la curva.

En un principio mencionamos que este procedimiento era de tipo probabilístico, esto se va a deber a que la probabilidad de no encontrar una raíz de algún elemento $z \in \mathbb{F}_q$ será N/2q. Debido a esto la probabilidad de no encontrar una raíz de entre un conjunto de k elementos en \mathbb{F}_q será $(N/2q)^k$,

pero N/2q < 1/2 por lo que $(N/2q)^k < (1/2)^k$. Por lo que la probabilidad de no encontrar una raíz dentro de un conjunto de k elementos en \mathbb{F}_q será menor que $1/2^k$, de tal manera que como en un principio tomamos un k muy grande, entonces esta probabilidad será muy cercana a 0, con lo que el método tendrá menos posibilidades de fallar. Aún así, si en algún momento no podemos encontrar la raíz cuadrada de $f(x_{u_j})$ para algún u y toda j con $0 \le j < k$, entonces tendremos que escoger otra curva elíptica o cambiar el campo \mathbb{F}_q sobre el cual estamos trabajando.

Una vez que hemos podido asociar a cada unidad de mensaje un punto en la curva, nos enfrentamos al problema de que, si nosotros tenemos un punto en la curva, ¿Como podremos encontrar la unidad de mensaje correspodiente?

Recordemos que tenemos una manera de asociarle a un número u en \mathbb{Z}_q un elemento x_u en \mathbb{F}_q , del mismo modo si tenemos x_u podemos recuperar el valor u. Ahora bien, si tenemos un punto P en la curva éste debe tener coordenadas (x_P, y_P) , si tomamos x_P podemos encontrar el número asociado en \mathbb{Z}_q llamémosle n_P , éste número al dividirlo entre k nos dará un cociente u y un residuo i, es decir, $n_P = uk + i$, por lo que u es la parte entera de n_P/k , esto es,

$$u = \left\lceil \frac{n_P}{k} \right\rceil$$

y sabiendo cuál es el natural u entonces podemos recuperar la unidad de mensaje.

Recordemos que todo este procedimiento lo estuvimos haciendo en abstracto ya que no dimos condiciones sobre q para poder definir el campo \mathbb{F}_q sobre el cual quedará definida nuestra curva, ni la ecuación de la misma. Anteriormente mencionamos que para cada número n entre 1 y Mk necesitariamos que $q = \#(\mathbb{F}_q) > n$, lo cual es una restricción sobre q y en sí es la única que tiene q en todo el proceso. Debido a ello necesitaremos que q cumpla con Mk < q. Con esto bastará para poder definir \mathbb{F}_q ya que recordemos que el número de elementos de \mathbb{F}_q es exactamente q.

Para el problema de cómo definir la ecuación de la curva elíptica, es decir, encontrar a, b y c para $y^2 = x^3 + ax^2 + bx + c$ necesitaremos primero que a, b y c estén en \mathbb{F}_q y posteriormente que el discriminante del polinomio (es decir, $b^2a^2 - 4ca^3 - 4b^3 + 18cba - 27c^2$) sea distinto del cero de \mathbb{F}_q , con lo

cual garantizaremos que el polinomio no tiene raíces multiples y la ecuación $y^2 = x^3 + ax^2 + bx + c$ es la de una curva elíptica.

Con esto terminaremos el problema de como asociar cada unidad de mensaje con algún punto en la curva elíptica. Aquí debemos reflexionar en algo, estamos pidiendo que la curva elíptica esté definida bajo un campo \mathbb{F}_q , el tiempo que nos llevamos en hacer el proceso anterior lo podemos reducir significativamente si simplemente elegimos como campo a \mathbb{Z}_q , ya que nos ahorraríamos el paso de mandar cada elemento en \mathbb{Z}_q a algún elemento en \mathbb{F}_q . Decidí describir el caso general para mostrar el desarrollo completo, sin embargo, para los ejemplos que se desarrollaran a continuación utilizaremos \mathbb{Z}_q en lugar de \mathbb{F}_q .

Ejemplo

Aquí veremos como construir una curva elíptica en la cual a cada punto de ésta podamos asociarle una unidad de mensaje, las cuales estarán dadas por las letras del alfabeto, es decir, A,...,Z, por lo que el número de unidades de mensaje (m) será de 27. Para no hacer demasiado largos los cálculos daremos la siguiente correspondencia entre las unidades de mensaje y los naturales.

Texto Plano	A	B	C	D	E	F	G	H	I	J	K	L	M	N
Ordinal	0	1	2	3	4	5	6	7	8	9	10	11	12	13
									·					
Texto Plano	\tilde{N}	O	P	Q	$\mid R$		$S \mid$	T	U	V	W	X	Y	Z
Ordinal	14	15	16	17	18	3 1	9	20	21	22	23	24	25	26

A continuación escogeremos k=20 y M=36, como Mk=20*36=720 escogeremos q=751 el cual es un número primo. Con esto tendremos que el campo que tomaremos será \mathbb{Z}_{751} . Sin importarnos la ecuación de la curva que tomemos sabemos por el Teorema de Hasse (Teorema 3.4.9) que dado el campo (En este ejemplo \mathbb{Z}_{751}) el número de puntos (N) cumplirá que

$$\begin{array}{cccc} q+1-2\sqrt{q} \leqslant & N & \leqslant q+1+2\sqrt{q} \\ 751+1-2\sqrt{751} \leqslant & N & \leqslant 751+1+2\sqrt{751} \\ 752-2(27,40) \leqslant & N & \leqslant 752+2(27,40) \\ 752-54,80 \leqslant & N & \leqslant 752+54,80 \\ 724,6 \leqslant & N & \leqslant 806,8 \end{array}$$

Lo cual nos dice que, sin importar la ecuación de la curva, ésta tendrá al menos 724 puntos y como nosotros nada más necesitamos 26, tendremos un número suficiente de puntos en la curva para asociarle por lo menos uno de éstos a cada unidad de mensaje. Ahora bien, la ecuación de la curva que escogeremos será $y^2 = x^3 - x + 188$, recordando que la ecuación del discriminante de un polinomio de grado 3 de la forma $x^3 + a_2x^2 + a_1x + a_0$ es

$$a_1^2 a_2^2 - 4a_0 a_2^3 - 4a_1^3 + 18a_0 a_1 a_2 - 27a_0^2$$

tendremos que, de acuerdo a la ecuación que escogimos, ésta tiene discriminante

$$(1)^{2}(0)^{2} - 4(188)(0)^{3} - 4(1)^{3} + 18(188)(1)(0) - 27(188)^{2}$$

= $-4 - 954288 = -954292 \equiv 229 \pmod{751}$

como 229 es distinto de cero módulo 751, entonces aseguramos que el polinomio $x^3 - x + 188$ no tiene raíces multiples, con lo que la ecuación que escogimos sí corresponde a una curva elíptica.

El siguiente paso será ver cuáles son los puntos que hay en la curva. Al final del capítulo se encuentran tres tablas con el fin de ayudarnos con este problema, en la primera se da el número en \mathbb{Z}_{751} y a continuación el resultado que se obtiene al sustituir este número en $x^3 - x + 188$ el resultado se da módulo 751. En la segunda se dan primeramente los números en \mathbb{Z}_{751} seguidos del resultado que se obtiene de sustituir este número en y^2 mod 751. En la última tabla se dan los puntos en la curva elíptica, en la cual además, hemos agregado el punto (∞, ∞) el cual es el $0 \in \mathbf{E}(\mathbb{Z}_{751})$. Estas tablas serán de gran ayuda ya que todos los ejemplos que se den en lo subsecuente se referirán a la curva elíptica que acabamos de definir.

Una vez que hemos definido la curva y todos los valores relacionados con ella, será prudente ver cómo se hace la asociación entre los naturales asociados a la unidad de mensaje y los puntos en la curva elíptica, como ejemplo veremos el caso cuando u=3 que corresponde a la letra D. Para poder realizar esto nos apoyaremos en las tablas 1 y 2.

Como habíamos visto previamente el número u tiene asociados k elementos en \mathbb{Z}_q , en nuestro ejemplo serán 20 elementos, los cuales son:

$$60, 61, \ldots, 78, 79$$

tomemos el primer elemento, es decir, 60. De acuerdo a la tabla 1, $60^3+60 \equiv 591 \pmod{751}$, con esto buscaremos en la tabla 2 si algún elemento y en \mathbb{Z}_{751} arroja como resultado 591 al hacer $y^2 \pmod{751}$. Desafortunadamente ningún número en \mathbb{Z}_{751} arroja este resultado al hacer la operación, por lo que probaremos con el 61. Para 61 tenemos $61^3+61 \equiv 306 \pmod{751}$, pero tampoco ningún elemento en \mathbb{F}_{751} arroja como resultado 306 en la tabla 2.

Sin embargo para 62 tenemos que $62^3 + 62 \equiv 695 \pmod{751}$ para el cual 161 y 590 arrojan como resultado 695 al sustituirlos en $y^2 \pmod{751}$. Notemos que $161 + 590 \equiv 751 \equiv 0 \pmod{751}$ por lo que $161 \equiv -590 \equiv \pmod{751}$, es decir, 161 es el inverso aditivo de 590 en \mathbb{Z}_{751} . Con lo que obtenemos que al número 3 le podemos asociar los puntos en la curva (62, 161) o (62, 590), aquí elegimos a (62, 161). De esta manera tenemos que la letra D tiene asociado al punto (62, 161) en la curva elíptica. De manera análoga podemos encontrar los restantes 26 puntos que aparecen en la tabla 4.

4.3. ANALOGÍAS ENTRE \mathbb{F}_q Y E

Una vez que tenemos la curva y los puntos que vamos a utilizar podemos ver cómo haremos la encriptación. Comenzaremos por decir que el campo \mathbb{Z}_q y la curva elíptica \mathbf{E} definida en algún campo son muy semejantes desde cierto punto de vista. Si el campo \mathbb{Z}_q lo vemos con respecto a la multiplicación veremos que cumple ciertas propiedades.

1)	Elemento neutro	1
2)	Cerradura	$a * b \in \mathbb{F}_q \forall a, b \in \mathbb{Z}_q$
3)	Conmutatividad	$a*b=b*a \forall a,b \in \mathbb{Z}_q$
4)	Asociatividad	$(a*b)*c = a*(b*c) \forall a,b,c \in \mathbb{Z}_q$
		•

Si vemos la curva elíptica y como operación a la suma tendremos

1) Elemento neutro 2) Cerradura 3) Conmutatividad 4) Asociatividad
$$(P+Q)+R=P+(Q+R)$$
 $\forall P,Q\in\mathbb{F}_q$ $\forall P,Q\in\mathbb{F}_q$ $(P+Q)+R=P+(Q+R)$ $\forall P,Q,R\in\mathbb{F}_q$

Si en \mathbb{Z}_q tenemos la multiplicación de dos elementos en \mathbf{E} tenemos la suma de dos elementos, si en \mathbb{Z}_q tenemos la multiplicación k veces de un elemento en \mathbf{E} tenemos la suma k veces de un punto en P. Hacemos mencion de esto ya que todos los métodos de encriptación que se vieron en el capítulo están relacionados con la operación $mod\ q$, que es básicamente trabajar con \mathbb{Z}_q y debido a las analogías que tenemos entre \mathbb{Z}_q y \mathbf{E} trataremos de recuperar algunos de esos métodos con curvas elípticas.

4.4. SUMA DE UN PUNTO EN E, k VE-CES

En algún momento dado nos importará ver cual es el orden de un punto $P \in \mathbf{E}(\mathbb{F}_q)$ en una curva elíptica, es decir, encontrar la mínima k positiva tal que kP=0. Debido a esto será importante saber cómo sumar un punto k veces. Comencemos por tomar un número n cualquiera, y digamos que dado $P \in \mathbf{E}$ queremos encontrar el punto correspondiente a nP en \mathbf{E} . Aquí tomaremos dos casos

1. n es impar

Si el número es impar entonces, haremos m = n - 1 y buscaremos el punto mP para construir el punto P + mP en la curva

2. n es par

Si el número es par entonces, tomaremos m=n/2 y buscaremos el punto mP para una vez que lo hayamos encontrado construir el punto 2(mP) en la curva

en ambos casos para encontrar el punto mP se repetira el proceso proceso anterior hasta encontrar que o bien que m=0 para el primer caso o m=1 si estamos en el segundo caso.

Por ejemplo tomemos nuestra curva $y^2=x^3-x+188$ y tomemos un punto en ella digamos P=(1,375) y busquemos 100P. Como 100 es par entonces haremos 100P=2(50P) por el inciso 2, A continuación como 50 es par entonces por el inciso 2 tendremos 50P=2(25P), por lo que 100P=2(2(25P)). Como 25 es impar entonces en este paso usaremos el inciso 1, por lo que 25P=P+24P, luego entonces 100P=2(2(P+24P)). Si seguimos sucesivamente con el procedimiento tendremos que:

$$100P = 2(2(P + 2(2(2(P + 2P)))))$$

el procedimiento de los calculos se muestra en la siguiente tabla en donde se toma P = (1, 375)

Algoritmo	Ejemplo
a.P.	(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$ \begin{array}{c} 2P \\ P+2P \end{array} $	$ \begin{array}{c cccc} & (2 & , 378) \\ & (6 & , 361) \end{array} $
2(P+2P)	(207, 536)
2(2(P+2P))	(180, 408)
2(2(2(P+2P)))	(513, 610)
P + 2(2(2(P+2P)))	(296, 245)
2(P + 2(2(2(P + 2P))))	(19, 138)
2(2(P+2(2(2(P+2P)))))	(447, 448)

Antes de ver los métodos de encriptación será importante hacer mención de que los métodos que veremos están basados en los problemas del logaritmo discreto y el de la descomposición en factores primos de un número cualquiera, en particular para el problema del logaritmo discreto será importante analizar primero cuál sería el problema análogo en curvas elípticas.

4.5. CÁLCULO DEL NÚMERO DE PUN-TOS EN UNA CURVA ELÍPTICA

Existen varios métodos para calcular el número de puntos en una curva elíptica, en particular aquí mostraremos el llamado "Paso-Pequeño-Paso Gigante". La idea del algoritmo está basada en el Teorema de Hasse (Teorema 3.4.8).

En este algoritmo se elige un punto $P \in \mathbf{E}(\mathbb{F}_q)$ aleatoriamente y se calcula, para cada entero m en el intervalo $(p+1-2\sqrt{q},p+1+2\sqrt{q})$ el punto mP (recordemos que el número de puntos en la curva elíptica, es decir, N estará también en este intervalo, además de que NQ=0 para todo $Q \in \mathbf{E}(\mathbb{F}_q)$). Si solamente para uno de estos números m tenemos que mP=0, esto nos dirá que este número deberá coincidir con \mathbb{N} , es decir, m=N, con lo cual habremos encontrado el valor exacto del número de puntos en la curva.

Debido a lo anterior calcularemos mP para todo m en el intervalo $(p+1-2\sqrt{q},p+1+2\sqrt{q})$, para ello haremos dos pasos. Primeramente calcularemos kP en donde k está en un intervalo pequeño. Posteriormente calcularemos lP en donde l está en un intervalo más grande de tal manera que al hacer kP+lP=(k+l)P, el número (k+l) se encuentre en el intervalo $(p+1-2\sqrt{q},p+1+2\sqrt{q})$.

Describiremos primero cómo hacer los llamados Pasos-pequeños y se mostrará como ejemplo cómo se realiza este proceso para calcular el número de puntos en nuestra curva elíptica $y^2 = x^3 - x + 188$. Calcularemos primero un número s el cual será igual a la parte entera del número raíz cuarta de q, en nuestro ejemplo será la raíz cuarta de 751.

Algoritmo	Ejemplo
$s = \left[\sqrt[4]{q}\right]$	$s = 6 = \sqrt[4]{751}$

A continuación haremos una lista con los primeros s múltiplos del punto P elegido, en nuestro ejemplo el punto P será (1,375).

Algoritmo	Ejemplo
P	P = (1, 375)
2P	2P = (2, 378)
:	3P = (6, 361)
:	4P = (121, 712)
(s-1)P	5P = (57, 419)
sP	6P = (97, 129)

y calcularemos los inverso aditivos de estos puntos. Estos últimos puntos, los originales y el punto en la curva nos darán una primera lista.

Algoritmo	Ejemplo
-sP	-6P = (97, -129) = (97, 215)
-(s-1)P	-5P = (57, -419) = (57, 332)
:	-4P = (121, -712) = (121, 39)
:	-3P = (6, -361) = (6, 390)
-2P	-2P = (2, -378) = (2, 373)
-P	-P = (1, -375) = (1, 376)
0	$0 = (\infty, \infty)$
P	P = (1, 375)
2P	2P = (2, 378)
:	3P = (6, 361)
:	4P = (121, 712)
(s-1)P	5P = (57, 419)
sP	6P = (97, 129)

Con este sencillo cálculo quedará concluida la etapa de $Paso-peque\~no$. Antes de describir la etapa de Paso-gigante deberemos calcular dos puntos, Q y R los cuáles están dados por (2s+1)P y (q+1)P, respectivamente.

Algoritmo	Ejemplo
Q = (2s+1)P $R = (q+1)P$	Q = (2*6+1)P = 13P = (217,504) $R = (751+1)P = 752P = (296,245)$

Una vez calculados estos puntos, haremos los Pasos Gigantes, para ello calcularemos primero un número t, el cual será la parte entera de $2\sqrt{q}/(2s+1)$ y haremos una lista que incluya a los primeros t múltiplos de Q esto es Q, 2Q,...,tQ.

Algoritmo	Ejemplo
$t = \left[2\sqrt{q}/(2s+1)\right]$	$t = \left[2\sqrt{751}/13\right] = 54,08/13 = 4$
Q .	Q = 13P = (217, 504)
: : tQ	2Q = 26P = (161, 1) 3Q = 39P = (270, 589) 4Q = 52P = (381, 69)
	(331 (331)

además también calcularemos los puntos -Q,...,-tQ

Algoritmo	Ejemplo
-Q	-Q = -13P = (217, -504)
:	-2Q = -26P = (161 , -1)
:	-3Q = -39P = (270, -589)
-tQ	-4Q = -52P = (381, -69)

A cada uno de los múltiplos de Q que acabamos de calcular le sumaremos el punto R creando una nueva lista, además de que en está nueva lista aparecerá R mismo.

Algoritmo	Ejemplo
711501101110	Бјешрю
D 10	D 40 770 D 700 D (007 161)
R-tQ	R - 4Q = 752P - 52P = 700P = (205, 161)
:	R - 3Q = 752P - 39P = 713P = (734, 552)
:	R - 2Q = 752P - 26P = 726P = (1, 376)
R-Q	R - Q = 752P - 13P = 739P = (180, 408)
R	R = 752P $= 752P = (296, 245)$
R+Q	R + Q = 752P + 13P = 765P = (484, 590)
:	R + 2Q = 752P + 26P = 778P = (508, 668)
:	R + 3Q = 752P + 39P = 791P = (720, 570)
R + tQ	R + 4Q = 752P + 52P = 804P = (47, 335)

El siguiente paso será comparar los puntos de la forma jP con los puntos de la forma R+iQ y ver cuales puntos de entre estas dos listas coinciden, es decir verificar para qué i y j se cumple:

$$R + iQ = jP$$

para alguna
$$j \in \{0,\pm 1,\pm 2,...,\pm s\}$$
y alguna
$$i \in \{0,\pm 1,\pm 2,...,\pm t\}$$

pero esto ¿de que nos servirá? Debemos notar que cualquier número en el intervalo $(q+1-2\sqrt{q},q+1+2\sqrt{q})$, lo podemos escribir de la forma q+1+i(2s+1)-j, para alguna $j\in\{0,\pm 1,\pm 2,...,\pm s\}$ y alguna $i\in\{0,\pm 1,\pm 2,...,\pm t\}$. De tal manera que

$$(q+1+i(2s+1)-j)P = (q+1)P + i(2s+1)P - jP = R + iQ - jP.$$

por lo que al variar tanto i como j en el número q+1+i(2s+1)-j, este variara en el intervalo $(q+1-2\sqrt{q},q+1+2\sqrt{q})$ y cubrirá a todos los enteros en éste intervalo.

Continuando con nuestro ejemplo la lista que compara los puntos jP con los puntos R+iQ está en la tabla 5, al final del capítulo, no se pone aquí dado lo extensa que es. Podemos notar que de todas las parejas de puntos que obtuvimos los únicos que son iguales son R-2Q y -P, los cuales tienen asignado al punto (1,376), de tal manera que R-2Q+P=0, pero recordando que Q=13P y R=752P entonces 752P-2(13)P+P=(752-26+1)P=727P=0 por lo que el número m que buscamos es 727, el cual es un número primo, de lo cual podemos deducir (por la observación 3.4.7) que cualquier punto en la curva será un generador de la curva elíptica, es decir, que si tomamos 2 puntos P y Q en la curva existe $k \in \mathbb{Z}$ tal que P=kQ.

4.6. PROBLEMA DEL LOGARITMO DIS-CRETO EN CURVAS ELÍPTICAS

En la sección de criptografía vimos que algunos métodos de encriptación están basados en el problema del logaritmo discreto, ya que nuestra intención es transladar algunos de estos métodos a curvas elípticas será importante ver cómo transladar este problema a curvas elípticas.

El problema del logaritmo discreto consiste en calcular x a partir de la expresión $y \equiv a^x \pmod{p}$ en donde p es un número primo y a es una constante. Dado que el problema de multiplicar un mismo número k veces en \mathbb{Z}_q tiene su análogo en la suma k veces de un punto $P \in \mathbf{E}(\mathbb{Z}_q)$ en las curvas elípticas, el problema del logaritmo discreto se verá de la siguiente forma en curvas elípticas.

Sea R una curva elíptica bajo un campo \mathbb{F}_q y tomemos un punto B en \mathbf{E} . El problema es, dado $P \in \mathbf{E}$ encontrar un número k, tal que

$$kB = P$$

si es que este número k existe.

A primera vista el problema parecería sencillo pero recordemos que las fórmulas para la suma de dos puntos no eran fórmulas sencillas lo cual complica los calculos, mas aún cuando el campo sobre el que esta definida la curva es muy grande. A continuación veamos un método de encriptación basado en este problema.

4.7. MÉTODO ELGAMAL EN CURVAS ELÍPTICAS

Recordemos que en el método ElGamal normal elegíamos un número primo p y un número g que generará a todos los elementos de 1 a p módulo p, es decir, g tiene la propiedad de que para cualquier $s \in \mathbb{Z}$ existe un $k \in \mathbb{Z}$ tal que

$$g^k \equiv s \pmod{p},$$

y este k es precisamente lo que se tiene que encontrar.

Para pasar este método a curvas elípticas necesitaremos una curva elíptica \mathbf{E} definida en un campo \mathbb{F}_q y un punto $P \in \mathbf{E}(\mathbb{F}_q)$, tal que P genere a todos los puntos en la curva, esto es que para todo $Q \in \mathbf{E}(\mathbb{F}_q)$, existe $k \in \mathbb{Z}$ tal que

$$kP = Q$$

Garantizar lo anterior es un gran problema, que podemos resolver si logramos que $\#(\mathbf{E}(\mathbb{F}_q))$ sea un número primo, como en el caso de nuestro ejemplo, la curva elíptica tiene 727 puntos.

Aquí necesitaremos de dos personas que deseen enviarse un texto de manera confidencial, llamemos a estas persona **A** y **B**. De común acuerdo estas personas deciden de qué tamaño serán las unidades de mensaje y deciden qué punto en la curva asignaran a cada unidad de mensaje. En el caso de nuestro ejemplo diremos que las unidades de mensaje son de tamaño 1 y éstas consistirán de las 27 letras del alfabeto, donde además cada letra tendrá asignado un punto en la curva como se ejemplifico en la sección 4.2 (Ejemplo pág 95-96) y se muestra en la tabla 4.

Además de esto elegirán un punto $Z \in \mathbf{E}$, en nuestro ejemplo elegiremos el punto (680, 94). Debemos notar que toda esta información es pública, es decir, cualquier persona puede tener acceso a estos datos, además de \mathbf{A} y \mathbf{B} .

Posteriormente ambas personas deberan elegir un número entero e_i (es decir, e_A para \mathbf{A} y e_B para \mathbf{B}) el cual mantendrán en secreto, este punto será la llave secreta de la persona respectiva. Además de esto calcularán $e_i Z$ que será su llave pública, la cual deberán enviar a la otra persona. Los

puntos en la curva que son la llave pública de cada persona (es decir $e_A Z$ y $e_B Z$) también podrán ser conocidos por cualquier persona.

A continuación supondremos que \mathbf{A} desea enviar una unidad de mensaje a la persona \mathbf{B} , para ello buscará el punto asociado a la unidad de mensaje respectiva digamos que el punto es $P_m \in \mathbf{E}(\mathbb{F}_q)$. La persona \mathbf{A} que es la que desea enviar el punto P_m , elegirá un número entero aleatorio k y calculará el punto en la curva $P_m + k(e_B Z)$. Una vez que hecho este cálculo, enviará a \mathbf{B} la pareja puntos

$$(kZ, P_m + k(e_B Z))$$

y es todo lo que hace \mathbf{A} .

A la persona **B** le corresponde la labor de descifrar el mensaje que le mandó **A**, para ello sumará la primera coordenada de la pareja que le envió **A** consigo misma tantas veces como lo indique su clave secreta, es decir, calculara el punto $e_B(kZ)$. Una vez obtenido este punto lo restará de la segunda coordenada de la pareja que envio **A**, esto es

$$P_m + k(e_B Z) - e_B(kZ)$$

con lo cual obtendrá el valor de P_m , con lo que podrá recuperar la unidad de mensaje que deseaba enviar \mathbf{A} .

Para continuar con nuestro ejemplo, según el algoritmo cada persona deberá escoger un número que será la llave secreta, elegiremos para la persona \mathbf{A} : $e_A = 50$ y para \mathbf{B} : $e_B = 19$, y de acuerdo al punto Z elegido anteriormente ((680,94)) tendremos que $e_AZ = (154,176)$ y $e_BZ = (740,362)$, los cuales serán las llaves públicas, por lo que \mathbf{A} conoce e_BZ y \mathbf{B} conoce e_AZ .

Con lo anterior procedamos a enviar las unidades de mensaje. Digamos que la persona $\bf A$ desea enviar a $\bf B$ la unidad de mensaje H, la cual, de acuerdo a la tabla 4, tiene asociado el punto (144, 190), entonces supongamos que la persona $\bf A$ eligió como número k a 27 y entonces calcula kZ que es 27(680,94)=(395,610) y $k(e_BZ)$, es decir, calcula 27(740,362) el cual es (331,367). Seguido de esto calcula ahora $P_m+k(e_BZ)$, de lo cual obtiene el punto (398,425). Finalmente envía a $\bf B$ la pareja

$$(kZ, P_m + k(e_B Z)) = ((395, 610), (398, 425))$$

La persona **B** recibirá (395,610),(398,425), con lo cual debe calcular cuál es la unidad de mensaje que le envió A. Para ello calculará $k(e_bZ) = 19(395,610)$ de lo cual obtendrá (331,367), este punto se lo restará a (398,425) y el resultado será (144,190), de donde, fijandonos en la tabla 4, se puede ver que corresponde a la letra H, que es la unidad de mensaje que deseaba enviarle la persona A.

Aquí debemos mencionar que si una tercera persona a la que llamaremos ${\bf C}$ desea intercambiar información por medio de este método con la persona ${\bf A}$ o con ${\bf B}$, bastará con que conozca cual es la curva elíptica, los puntos en la curva asociados a cada unidad de mensaje, el punto Z y las llave pública de la persona a la que desea enviarle el mensaje, con esto podra seguir el proceso y estar en posibilidad de enviar y recibir mensajes con cualquiera de las dos personas.

4.8. MÉTODO DE MASSEY-OMURA EN CURVAS ELÍPITICAS

Algoritmo

Tomemos a dos personas \mathbf{A} y \mathbf{B} , las cuales de común acuerdo eligen una curva elíptica \mathbf{E} definida bajo un campo \mathbb{F}_q y además se ponen de acuerdo en definir las unidades de mensaje, a las cuales ya les ha asignado un elemento en \mathbf{E} .

Dado que ambos conocen la ecuación de \mathbf{E} pueden calcular el número de puntos que tiene \mathbf{E} y a este número le llaman N. Entonces cada uno elige secretamente un entero e entre 1 y N tal que (e, N) = 1 (es decir, e_A para \mathbf{A} y e_B para \mathbf{B}). Una vez elegido e cada uno calculará un número d, el cual será el inverso de e modulo N, es decir

$$d \equiv e^{-1} \pmod{N}$$

esto lo pueden hacer mediante el algoritmo de Euclides.

Después de esto comienza el proceso de encriptación del mensaje. Supongamos que \mathbf{A} va a enviar el punto P_m que corresponde a una unidad de mensaje a la persona \mathbf{B} , entonces suma e_A veces el punto P_m y le envía a \mathbf{B} el punto $e_A P_m$.

La persona **B** lo que recibirá será una pareja $(x, y) \in \mathbf{E}$ de la cual no podrá recuperar P_m ya que desconoce e_A y d_A , por lo que suma e_B veces el punto (x, y) y el punto resultante lo envá a **A**, es decir, A recibe $e_B e_A P_m$.

Cuando **A** recibe $e_B e_A P_m$ lo suma $d_{\mathbf{A}}$ veces para así obtener $d_{\mathbf{A}} e_{\mathbf{B}} e_{\mathbf{A}} P_m$ y envía este punto de regreso a **B**. Aquí debemos recordar que $d_{\mathbf{A}} e_{\mathbf{A}} \equiv 1 \pmod{N}$, por lo que tendremos que $d_A e_A - 1 = zN$ para algún $z \in \mathbb{N}$, de tal manera que $d_A e_A = zN + 1$. Por lo anterior tenemos que el último punto que envió A es

$$e_B e_A P_m = (zN+1)e_B P_m = zNe_B P_m + e_m P_m$$

y como el número de puntos en \mathbf{E} es N el cual es un número primo que corresponde al orden de la curva \mathbf{E} , entonces NP=0, para toda $P\in\mathbf{E}$. De tal manera que \mathbf{A} realmente envió

$$zNe_BP_m + e_mP_m = N(ze_BP_m) + e_BP_m = 0 + e_BP_m = e_BP_m$$

por lo que ${\bf B}$ recibió e_BP_m . Entonces ${\bf B}$ suma d_B veces el último punto que envió ${\bf B}$ obteniendo $d_Bd_ae_Be_AP_m=d_Be_BP_m$, lo cual se simplifica en P_m que es lo que ${\bf A}$ le quería hacer llegar. Dado que ${\bf B}$ ya conoce P_m , entonces puede recuperar la unidad de mensaje asociada a este punto, con lo cual terminamos la descripción del método.

Personas distintas de A y B que quisieran encontrar P_m lo único que sabrían sería $e_A P_m$, $e_B e_A P_m$ y $e_B P_m$. Tratar de encontrar P_m a partir de estos tres datos conduce a resolver el problema del logaritmo discreto en curvas elípticas, ya que sería la única manera de encontrar e_B a partir de $e_A P_m$ y $e_B e_A P_m$. Si alguna persona distinta de \mathbf{A} o \mathbf{B} se encuentra e_B , entonces puede calcular d_B y entonces puede encontrar $d_B(e_B P_m) = P_m$, pero como el problema del logaritmo discreto en curvas sólo se puede resolver en tiempo exponencial, este método es bastante seguro.

Ejemplo

Para mostrar cómo se desarrolla este ejemplo, utilizaremos nuestra curva elíptica de ejemplo ($y^2 = x^3 - x + 188$), las unidades de mensaje utilizadas antes y los puntos asociados a estas unidades como en la tabla 4.

En nuestro ejemplo la persona $\bf A$ escogió el número $e_A=45$ el cual tiene como inverso multiplicativo módulo 727 a $d_A=517$, y la persona $\bf B$ eligió $e_B=117$ que tiene como inverso multiplicativo a $d_B=87$.

Si la persona **A** desea enviarle a **B** la unidad de mensaje Z que tiene asociado el punto (520,328) de la curva **E** (el cual corresponde al punto P_m en el algoritmo), entonces deberá calcular 45(520,328) (correspondiente a $e_A P_m$), lo cual le dará como resultado (649,694) y este punto en la curva será el que mandará a **B**.

La persona **B** al recibir este punto calcula 117(649,694) que le arroja como resultado (187,701) (de acuerdo al algoritmo este punto es $e_B e_a P_m$) y se lo envía de regreso a **A**.

 $\bf A$ una vez que recibe (187, 701) sumará este punto 517 veces para obtener el punto (92, 606) y enviará este punto a $\bf B$. La persona $\bf B$ al recibir este punto sabe que de acuerdo al algoritmo corresponde al punto $d_A e_B e_A$ por lo que calcula 87(92, 606), lo cual le deberá dar como resultado el punto que la persona $\bf A$ le deseaba enviar, es decir (520, 328), que buscando en la tabla 4, puede ver que corresponde a la letra $\bf Z$. Por lo que finalmente recibe el mensaje que deseaba enviarle $\bf A$.

Sobre estos métodos debemos mencionar que no son la única manera en los que se puede aplicar, podemos hacer variaciones sobre los mismos. Por ejemplo, podemos aumentar la longitud de las unidades de mensaje, es decir, en lugar de tomar unidades de longitud uno, hacerlas de longitud 2, 3 o mayores. También podemos introducir "basura" en el texto. En este caso, si tenemos la palabra MENSAJE, podemos cambiarle por la palabra MENSWAJE y posteriormente hacer la encriptación, es decir, separar el texto en unidades de mensaje y cada determinado intervalo introducir una letra cualquiera en el texto. En fin se pueden hacer muchas modificaciones que dependen de la imaginación de la persona que haga el sistema de encriptación. Todo esto con el fin de complicarle el trabajo al criptoanalista y hacerle complicado su trabajo.

Con esto finalizamos este trabajo. Debemos mencionar que existen varios problemas abiertos sobre los distintos temas que se han presentado en este trabajo. En principio uno de los problemas a los que se enfrenta la criptografía actual son las investigaciones que se hacen para desarrollar una

computadora de tipo cuántica, la cual podría reducir considerablemente el tiempo de algunos procesos. Entre los procesos que se podrían hacer mas eficientemente están los problemas del logaritmo discreto y el de la factorización en primos de un número cualquiera, que son los problemas en los que están basados algunos de los métodos que hemos revisado. Aunque cabe destacar que al no existir un algoritmo que no sea de tiempo exponencial para su resolución, lo que sucederá es que se utilizarán números de un mucho mayor número de cifras que los empleados actualmente.

Por otro lado debemos mencionar que en el número 32 del Scientific American Latinoamerica se presenta un muy interesante artículo sobre CRIPTOGRAFÍA CUÁNTICA, lo cual es un salto muy importante en la criptografía ya que es posible determinar cuándo alguna persona ha intentado interceptar el mensaje, pues esto introduce errores en los mensajes, de lo cual se pueden percatar los emisores. Además de lo anterior se cree que la criptografía de tipo cuántica seguirá siendo segura a pesar de contar con ordenadores cuánticos. De hecho algunas empresas en el 2003 presentaron productos que utilizan esta reciente tecnología.

En el caso de las curvas elípticas tenemos algunos problemas sin resolver, de los cuales revisamos algunos en la tesis, como lo son el calcular el número de puntos que hay en una curva elíptica y el problema del logaritmo discreto en curvas elípticas de manera que los algoritmos no sean de tiempo exponencial. En el caso del problema del número de puntos en una curva elíptica existe una demostración realizada por René Schoof llamado Algoritmo de Schoof, el cual desafortunadamente es un algoritmo de tiempo exponencial.

Otro de los problemas para los cuales se han utilizado las curvas elípticas es para encontrar la factorización de un número entero, método realizado por H. W. Lenstra. El interés de muchos criptografos y criptoanalistas en las curvas elípticas se debe en parte a éste método, el cual, en muchos sentidos es mejor que los que se conocían anteriormente para encontrar la factorización de un número entero, aunque la mejora no es lo suficientemente significativa para convertirse en un peligro para los criptosistemas cuya seguridad está basada en la dificultad de encontrar la factorización de un número entero.

La factorización de un número entero en curvas elíptica es un problema el cual me hubiera gustado abordar en esta tesis, pero desde mi punto de vista lo desarrollado aquí tanto en criptografía como en curvas elípticas es un buen acercamiento con estos temas para un estudiante de licenciatura, para los cuales espero pueda servir como material de apoyo.

Tabla 1

x	x^3-x	x	x^3-x	x	x^3-x	x	x^3-x
	+188		+188		+188		+188
1	188	2	194	3	212	4	248
5	308	6	398	7	524	8	692
9	157	10	427	11	6	12	402
13	119	14	665	15	544	16	513
17	578	18	745	19	269	20	658
21	416	22	300	23	316	24	470
25	17	26	465	27	318	28	333
29	516	30	122	31	659	32	631
33	44	34	406	35	221	36	246
37	487	38	199	39	139	40	313
41	727	42	636	43	46	44	465
45	397	46	599	47	326	48	335
49	632	50	472	51	612	52	307
53	314	54	639	55	537	56	14
57	578	58	733	59	485	60	591
61	306	62	387	63	89	64	169
65	633	66	736	67	484	68	634
69	441	70	662	71	552	72	117
73	114	74	549	75	677	76	504
77	36	78	30	79	492	80	677
81	591	82	240	83	381	84	269
85	661	86	61	87	728	88	415
89	630	90	628	91	415	92	748
93	131	94	72	95	577	96	150
97	299	98	279	99	96	100	507
101	16	102	131	103	107	104	701
105	417	106	12	107	243	108	365
109	384	110	306	111	137	112	634
113	301	114	646	115	173	116	390
117	552	118	665	119	735	120	17
121	19	122	747	123	705	124	650
125	588	126	525	127	467	128	420
129	390	130	383	131	405	132	462

x	$x^3 - x$	x	$x^3 - x$	x	x^3-x	x	$x^3 - x$
	+188		+188		+188		+188
133	560	134	705	135	152	136	409
137	731	138	373	139	92	140	645
141	536	142	522	143	609	144	52
145	359	146	34	147	585	148	516
149	584	150	44	151	404	152	168
153	93	154	185	155	450	156	143
157	21	158	90	159	356	160	74
161	1	162	143	163	506	164	345
165	417	166	728	167	533	168	589
169	151	170	727	171	70	172	439
173	338	174	524	175	252	176	279
177	611	178	503	179	712	180	493
181	603	182	297	183	332	184	714
185	698	186	290	187	247	188	575
189	529	190	115	191	90	192	460
193	480	194	156	195	245	196	2
197	184	198	46	199	345	200	336
201	25	202	169	203	23	204	344
205	387	206	158	207	414	208	410
209	152	210	397	211	400	212	167
213	455	214	519	215	365	216	750
217	178	218	157	219	693	220	290
221	456	222	446	223	266	224	673
225	171	226	268	227	219	228	30
229	458	230	7	231	185	232	247
233	199	234	47	235	548	236	206
237	529	238	21	239	190	240	291
241	330	242	313	243	246	244	135
245	737	246	556	247	349	248	122
249	632	250	383	251	132	252	636
253	399	254	178	255	730	256	559
257	422	258	325	259	274	260	275
261	334	262	457	263	650	264	168
265	519	266	207	267	740	268	622
269	610	270	710	271	177	272	519
273	240	274	97	275	96	276	243
277	544	278	254	279	130	280	178
281	404	282	63	283	663	284	708
285	204	286	659	287	577	288	715

x	$x^3 - x$	x	x^3-x	x	x^3-x	x	$x^3 - x$
	+188		+188		+188		+188
289	328	290	173	291	256	292	583
293	409	294	491	295	84	296	696
297	80	298	495	299	445	300	687
301	476	302	569	303	221	304	189
305	479	306	346	307	547	308	337
309	473	310	210	311	305	312	13
313	91	314	545	315	630	316	352
317	468	318	233	319	404	320	236
321	486	322	409	323	11	324	49
325	529	326	706	327	586	328	175
329	230	330	6	331	260	332	247
333	724	334	195	335	168	336	649
337	142	338	155	339	694	340	263
341	370	342	270	343	720	344	224
345	290	346	173	347	630	348	165
349	286	350	248	351	57	352	470
353	742	354	128	355	136	356	21
357	540	358	197	359	500	360	704
361	64	362	88	363	31	364	650
365	449	366	185	367	615	368	243
369	577	370	121	371	383	372	618
373	81	374	280	375	470	376	657
377	96	378	295	379	509	380	744
381	255	382	550	383	133	384	512
385	191	386	678	387	477	388	345
389	288	390	312	391	423	392	627
393	179	394	587	395	355	396	240
397	248	398	385	399	657	400	319
401	128	402	90	403	211	404	497
405	203	406	86	407	152	408	407
409	106	410	6	411	113	412	433
413	221	414	234	415	478	416	208
417	181	418	403	419	129	420	116
421	370	422	146	423	201	424	541
425	421	426	598	427	327	428	365
429	718	430	641	431	140	432	723
433	143	434	659	435	24	436	497
437	582	438	285	439	363	440	71
441	166	442	654	443	39	444	580

x	x^3-x	x	$x^3 - x$	x	x^3-x	x	x^3-x
	+188		+188		+188		+188
445	30	446	648	447	187	448	155
449	558	450	651	451	440	452	682
453	632	454	296	455	431	456	292
457	636	458	718	459	544	460	120
461	203	462	48	463	412	464	550
465	468	466	172	467	419	468	464
469	313	470	723	471	198	472	246
473	122	474	583	475	133	476	280
477	279	478	136	479	608	480	199
481	417	482	517	483	505	484	387
485	169	486	608	487	208	488	477
489	670	490	42	491	101	492	102
493	51	494	705	495	568	496	397
497	198	498	728	499	491	500	244
501	744	502	495	503	254	504	27
505	571	506	390	507	241	508	130
509	63	510	46	511	85	512	186
513	355	514	598	515	170	516	579
517	329	518	177	519	129	520	191
521	369	522	669	523	346	524	157
525	108	526	205	527	454	528	110
529	681	530	671	531	86	532	434
533	219	534	198	535	377	536	11
537	608	538	672	539	209	540	727
541	730	542	224	543	717	544	713
545	218	546	740	547	32	548	353
549	207	550	351	551	40	552	31
553	330	554	192	555	374	556	131
557	220	558	647	559	667	560	286
561	261	562	598	563	552	564	129
565	86	566	429	567	413	568	44
569	79	570	524	571	634	572	415
573	624	574	516	575	97	576	124
577	603	578	38	579	688	580	306
581	400	582	225	583	538	584	594
585	399	586	710	587	31	588	621
589	233	590	375	591	302	592	20
593	286	594	355	595	233	596	677
597	191	598	283	599	208	600	723

\overline{x}	$x^3 - x$		$x^3 - x$	1	x	x^3-x]		$x^3 - x$
	+188		+188		J.	+188			+188
601	332	602	543		603	611		604	542
605	342	606	17		607	324		608	518
609	605	610	591		611	482		612	284
613	3	614	396		615	718		616	224
617	422	618	567		619	665		620	722
621	744	622	737		623	707		624	660
625	602	626	539		627	477		628	422
629	380	630	357		631	359		632	392
633	462	634	575		635	737		636	203
637	481	638	75		639	493		640	239
641	70	642	743		643	11		644	133
645	364	646	710		647	426		648	269
649	245	650	360		651	620		652	280
653	97	654	77		655	226		656	550
657	304	658	245		659	379		660	712
661	499	662	497		663	712		664	399
665	315	666	466		667	107		668	746
669	136	670	536		671	450		672	635
673	346	674	340		675	623		676	450
677	578	678	262		679	259		680	575
681	465	682	686		683	493		684	643
685	391	686	494		687	207		688	287
689	740	690	70		691	536		692	642
693	394	694	549		695	362		696	590
697	488	698	62		699	69		700	515
701	655	702	495		703	41		704	50
705	528	706	730		707	662		708	330
709	491	710	400		711	63		712	237
713	177	714	640		715	130		716	155
717	721	718	332		719	496		720	468
721	254	722	611		723	43		724	58
725	662	726	359		727	657		728	60
729	76	730	711		731	469		732	107
733	382	734	549		735	614		736	583
737	462	738	257		739	725		740	370
741	700	742	219		743	435		744	603
745	729	746	68		747	128		748	164
749	182	750	188		0	188			

Tabla 2

y	y^2	y	y^2	y	y^2	y	y^2
1	1	2	4	3	9	4	16
5	25	6	36	7	49	8	64
9	81	10	100	11	121	12	144
13	169	14	196	15	225	16	256
17	289	18	324	19	361	20	400
21	441	22	484	23	529	24	576
25	625	26	676	27	729	28	33
29	90	30	149	31	210	32	273
33	338	34	405	35	474	36	545
37	618	38	693	39	19	40	98
41	179	42	262	43	347	44	434
45	523	46	614	47	707	48	51
49	148	50	247	51	348	52	451
53	556	54	663	55	21	56	132
57	245	58	360	59	477	60	596
61	717	62	89	63	214	64	341
65	470	66	601	67	734	68	118
69	255	70	394	71	535	72	678
73	72	74	219	75	368	76	519
77	672	78	76	79	233	80	392
81	553	82	716	83	130	84	297
85	466	86	637	87	59	88	234
89	411	90	590	91	20	92	203
93	388	94	575	95	13	96	204
97	397	98	592	99	38	100	237
101	438	102	641	103	95	104	302
105	511	106	722	107	184	108	399
109	616	110	84	111	305	112	528
113	2	114	229	115	458	116	689
117	171	118	406	119	643	120	131
121	372	122	615	123	109	124	356
125	605	126	105	127	358	128	613
129	119	130	378	131	639	132	151
133	416	134	683	135	201	136	472

y	y^2	y	y^2	y	y^2	y	y^2
137	745	138	269	139	546	140	74
141	355	142	638	143	172	144	459
145	748	146	288	147	581	148	125
149	422	150	721	151	271	152	574
153	128	154	435	155	744	156	304
157	617	158	181	159	498	160	66
161	387	162	710	163	284	164	611
165	189	166	520	167	102	168	437
169	23	170	362	171	703	172	295
173	640	174	236	175	585	176	185
177	538	178	142	179	499	180	107
181	468	182	80	183	445	184	61
185	430	186	50	187	423	188	47
189	424	190	52	191	433	192	65
193	450	194	86	195	475	196	115
197	508	198	152	199	549	200	197
201	598	202	250	203	655	204	311
205	720	206	380	207	42	208	457
209	123	210	542	211	212	212	635
213	309	214	736	215	414	216	94
217	527	218	211	219	648	220	336
221	26	222	469	223	163	224	610
225	308	226	8	227	461	228	165
229	622	230	330	231	40	232	503
233	217	234	684	235	402	236	122
237	595	238	319	239	45	240	524
241	254	242	737	243	471	244	207
245	696	246	436	247	178	248	673
249	419	250	167	251	668	252	420
253	174	254	681	255	439	256	199
257	712	258	476	259	242	260	10
261	531	262	303	263	77	264	604
265	382	266	162	267	695	268	479
269	265	270	53	271	594	272	386
273	180	274	727	275	525	276	325
277	127	278	682	279	488	280	296
281	106	282	669	283	483	284	299
285	117	286	688	287	510	288	334

$\mid y \mid$	y^2	y	y^2	y	y^2	y	y^2
	160	290	739	291	569	292	401
293	235	294	71	295	660	296	500
297	342	298	186	299	32	300	631
301	481	302	333	303	187	304	43
305	652	306	512	307	374	308	238
309	104	310	723	311	593	312	465
313	339	314	215	315	93	316	724
317	606	318	490	319	376	320	264
321	154	322	46	323	691	324	587
325	485	326	385	327	287	328	191
329	97	330	5	331	666	332	578
333	492	334	408	335	326	336	246
337	168	338	92	339	18	340	697
341	627	342	559	343	493	344	429
345	367	346	307	347	249	348	193
349	139	350	87	351	37	352	740
353	694	354	650	355	608	356	568
357	530	358	494	359	460	360	428
361	398	362	370	363	344	364	320
365	298	366	278	367	260	368	244
369	230	370	218	371	208	372	200
373	194	374	190	375	188	376	188
377	190	378	194	379	200	380	208
381	218	382	230	383	244	384	260
385	278	386	298	387	320	388	344
389	370	390	398	391	428	392	460
393	494	394	530	395	568	396	608
397	650	398	694	399	740	400	37
401	87	402	139	403	193	404	249
405	307	406	367	407	429	408	493
409	559	410	627	411	697	412	18
413	92	414	168	415	246	416	326
417	408	418	492	419	578	420	666
421	5	422	97	423	191	424	287
425	385	426	485	427	587	428	691
429	46	430	154	431	264	432	376
433	490	434	606	435	724	436	93
	215	438	339	439	465	440	593
441	723	442	104	443	238	444	374

\mathbb{F}_{751}		\mathbb{F}_{751}		\mathbb{F}_{751}		\mathbb{F}_{751}	
y	y^2	y	y^2	y	y^2	y	y^2
445	512	446	652	447	43	448	187
449	333	450	481	451	631	452	32
453	186	454	342	455	500	456	660
457	71	458	235	459	401	460	569
461	739	462	160	463	334	464	510
465	688	466	117	467	299	468	483
469	669	470	106	471	296	472	488
473	682	474	127	475	325	476	525
477	727	478	180	479	386	480	594
481	53	482	265	483	479	484	695
485	162	486	382	487	604	488	77
489	303	490	531	491	10	492	242
493	476	494	712	495	199	496	439
497	681	498	174	499	420	500	668
501	167	502	419	503	673	504	178
505	436	506	696	507	207	508	471
09	737	510	254	511	524	512	45
513	319	514	595	515	122	516	402
517	684	518	217	519	503	520	40
521	330	522	622	523	165	524	461
525	8	526	308	527	610	528	163
529	469	530	26	531	336	532	648
533	211	534	527	535	94	536	414
537	736	538	309	539	635	540	212
541	542	542	123	543	457	544	42
545	380	546	720	547	311	548	655
549	250	550	598	551	197	552	549
553	152	554	508	555	115	556	475
557	86	558	450	559	65	560	433
561	52	562	424	563	47	564	423
565	50	566	430	567	61	568	445
569	80	570	468	571	107	572	499
573	142	574	538	575	185	576	585
577	236	578	640	579	295	580	703
581	362	582	23	583	437	584	102
585	520	586	189	587	611	588	284
589	710	590	387	591	66	592	498
593	181	594	617	595	304	596	744

y	y^2	y	y^2	y	y^2	y	y^2
$\frac{9}{597}$	$\frac{9}{435}$	598	$\frac{g}{128}$	$\frac{9}{599}$	$\frac{g}{574}$	$\frac{9}{600}$	$\frac{g}{271}$
601	721	602	422	603	125	604	581
605	288	606	748	607	459	608	172
609	638	610	355	611	74	612	546
613	269	614	745	615	472	616	201
617	683	618	416	619	151	620	639
621	378	622	119	623	613	624	358
625	105	626	605	627	356	628	109
629	615	630	372	631	131	632	643
633	406	634	171	635	689	636	458
637	229	638	2	639	528	640	305
641	84	642	616	643	399	644	184
645	722	646	511	647	302	648	95
649	641	650	438	651	237	652	38
653	592	654	397	655	204	656	13
657	575	658	388	659	203	660	20
661	590	662	411	663	234	664	59
665	637	666	466	667	297	668	130
669	716	670	553	671	392	672	233
673	76	674	672	675	519	676	368
677	219	678	72	679	678	680	535
681	394	682	255	683	118	684	734
685	601	686	470	687	341	688	214
689	89	690	717	691	596	692	477
693	360	694	245	695	132	696	21
697	663	698	556	699	451	700	348
701	247	702	148	703	51	704	707
705	614	706	523	707	434	708	347
709	262	710	179	711	98	712	19
713	693	714	618	715	545	716	474
717	405	718	338	719	273	720	210
721	149	722	90	723	33	724	729
725	676	726	625	727	576	728	529
729	484	730	441	731	400	732	361
733	324	734	289	735	256	736	225
737	196	738	169	739	144	740	121
741	100	742	81	743	64	744	49
745	36	746	25	747	16	748	9
749	4	750	1	0	0		

Tabla 3

#	x	y	#	x	y	#	x	y
1	1	375	2	1	376	3	2	373
4	2	378	5	3	211	6	3	540
7	5	225	8	5	526	9	6	361
10	6	390	11	7	240	12	7	511
13	12	235	14	12	516	15	13	129
16	13	622	17	17	332	18	17	419
19	18	137	20	18	614	21	19	138
22	19	613	23	21	133	24	21	618
25	24	65	26	24	686	27	26	312
28	26	439	29	28	302	30	28	449
31	30	236	32	30	515	33	32	300
34	32	451	35	34	118	36	34	633
37	36	336	38	36	415	39	38	256
40	38	495	41	39	349	42	39	402
43	41	274	44	41	477	45	43	322
46	43	429	47	44	312	48	44	439
49	45	97	50	45	654	51	47	335
52	47	416	53	50	136	54	50	615
55	52	346	56	52	405	57	54	131
58	54	620	59	57	332	60	57	419
61	59	325	62	59	426	63	62	161
64	62	590	65	63	62	66	63	689
67	64	13	68	64	738	69	66	214
70	66	537	71	67	22	72	67	729
73	69	21	74	69	730	75	72	285
76	72	466	77	74	199	78	74	552
79	77	6	80	77	745	81	79	333
82	79	418	83	84	138	84	84	613
85	86	184	86	86	567	87	92	145
88	92	606	89	93	120	90	93	631
91	94	73	92	94	678	93	97	284
94	97	467	95	101	4	96	101	747
97	102	120	98	102	631	99	103	180
100	103	571	101	121	39	102	121	712

#	x	y	#	x	y	#	x	y
103	124	354	104	124	397	105	126	275
106	126	476	107	128	252	108	128	499
109	131	34	110	131	717	111	135	198
112	135	553	113	139	338	114	139	413
115	144	190	116	144	561	117	147	175
118	147	576	119	152	337	120	152	414
121	153	315	122	153	436	123	154	176
124	154	575	125	155	193	126	155	558
127	157	55	128	157	696	129	158	29
130	158	722	131	159	124	132	159	627
133	160	140	134	160	611	135	161	1
136	161	750	137	169	132	138	169	619
139	170	274	140	170	477	141	172	255
142	172	496	143	173	33	144	173	718
145	174	240	146	174	511	147	177	164
148	177	587	149	178	232	150	178	519
151	179	257	152	179	494	153	180	343
154	180	408	155	182	84	156	182	667
157	187	50	158	187	701	159	188	94
160	188	657	161	189	23	162	189	728
163	190	196	164	190	555	165	191	29
166	191	722	167	192	359	168	192	392
169	195	57	170	195	694	171	196	113
172	196	638	173	197	107	174	197	644
175	198	322	176	198	429	177	200	220
178	200	531	179	201	5	180	201	746
181	202	13	182	202	738	183	203	169
184	203	582	185	204	363	186	204	388
187	205	161	188	205	590	189	207	215
190	207	536	191	209	198	192	209	553
193	210	97	194	210	654	195	211	20
196	211	731	197	212	250	198	212	501
199	214	76	200	214	675	201	217	247
202	217	504	203	219	38	204	219	713
205	224	248	206	224	503	207	225	117
208	225	634	209	227	74	210	227	677
211	229	115	212	229	636	213	231	176
214	231	575	215	232	50	216	232	701
217	233	256	218	233	495	219	234	188

#	x	y	#	x	y]	#	x	y
$\frac{7}{220}$	234	563	221	237	23		222	237	728
223	238	55	224	238	696		225	239	374
226	239	377	227	241	230		228	241	521
229	243	336	230	243	415		231	245	242
232	245	509	233	246	53		234	246	698
235	248	236	236	248	515		237	251	56
238	251	695	239	253	108		240	253	643
241	254	247	242	254	504		243	256	342
244	256	409	245	257	149		246	257	602
247	258	276	248	258	475		249	261	288
250	261	463	251	262	208		252	262	543
253	263	354	254	263	397		255	264	337
256	264	414	257	265	76		258	265	675
259	266	244	260	266	507		261	267	352
262	267	399	263	268	229		264	268	522
265	269	224	266	269	527		267	270	162
268	270	589	269	272	76		270	272	675
271	274	329	272	274	422		273	278	241
274	278	510	275	279	83		276	279	668
277	280	247	278	280	504		279	283	54
280	283	697	281	285	96		282	285	655
283	291	16	284	291	735		285	295	110
286	295	641	287	296	245		288	296	506
289	297	182	290	297	569		291	299	183
292	299	568	293	301	258		294	301	493
295	302	291	296	302	460		297	304	165
298	304	586	299	305	268		300	305	483
301	310	31	302	310	720		303	311	111
304	311	640	305	312	95		306	312	656
307	314	36	308	314	715		309	317	181
310	317	570	311	318	79		312	318	672
313	320	174	314	320	577		315	324	7
316	324	744	317	325	23		318	325	728
319	329	369	320	329	382		321	331	367
322	331	384	323	332	50		324	332	701
325	333	316	326	333	435		327	335	337
328	335	414	329	337	178		330	337	573
331	339	353	332	339	398		333	341	362
334	341	389	335	343	205		336	343	546

#	x	y	#	x	y	#	x	y
337	348	228	338	348	523	339	352	65
340	352	686	341	354	153	342	354	598
343	356	55	344	356	696	345	358	200
346	358	551	347	359	296	348	359	455
349	361	8	350	361	743	351	364	354
352	364	397	353	366	176	354	366	575
355	367	122	356	367	629	357	370	11
358	370	740	359	372	37	360	372	714
361	373	9	362	373	742	363	375	65
364	375	686	365	378	172	366	378	579
367	380	155	368	380	596	369	381	69
370	381	682	371	384	306	372	384	445
373	385	328	374	385	423	375	386	72
376	386	679	377	387	59	378	387	692
379	389	146	380	389	605	381	391	187
382	391	564	383	392	341	384	392	410
385	393	41	386	393	710	387	394	324
388	394	427	389	395	141	390	395	610
391	398	326	392	398	425	393	400	238
394	400	513	395	401	153	396	401	598
397	402	29	398	402	722	399	403	218
400	403	533	401	405	92	402	405	659
403	406	194	404	406	557	405	407	198
406	407	553	407	409	281	408	409	470
409	412	191	410	412	560	411	414	88
412	414	663	413	416	371	414	416	380
415	417	158	416	417	593	417	421	362
418	421	389	419	423	135	420	423	616
421	426	201	422	426	550	423	430	102
424	430	649	425	432	310	426	432	441
427	440	294	428	440	457	429	446	219
430	446	532	431	447	303	432	447	448
433	452	278	434	452	473	435	454	280
436	454	471	437	461	92	438	461	659
439	465	181	440	465	570	441	466	143
442	466	608	443	467	249	444	467	502
445	470	310	446	470	441	447	472	336
448	472	415	449	473	236	450	473	515
451	479	355	452	479	396	453	480	256

#	x	y	#	x	y	#	x	y
454	480	495	455	484	161	456	484	590
457	485	13	458	485	738	459	486	355
460	486	396	461	487	371	462	487	380
463	488	59	464	488	692	465	490	207
466	490	544	467	492	167	468	492	584
469	493	48	470	493	703	471	495	356
472	495	395	473	496	97	474	496	654
475	500	368	476	500	383	477	501	155
478	501	596	479	503	241	480	503	510
481	508	83	482	508	668	483	510	322
484	510	429	485	512	298	486	512	453
487	513	141	488	513	610	489	514	201
490	514	550	491	520	328	492	520	423
493	522	282	494	522	469	495	529	254
496	529	497	497	531	194	498	531	557
499	532	44	500	532	707	501	533	74
502	533	677	503	537	355	504	537	396
505	538	77	506	538	674	507	540	274
508	540	477	509	543	61	510	543	690
511	545	370	512	545	381	513	546	352
514	546	399	515	547	299	516	547	452
517	549	244	518	549	507	519	551	231
520	551	520	521	553	230	522	553	521
523	555	307	524	555	444	525	556	120
526	556	631	527	562	201	528	562	550
529	565	194	530	565	557	531	566	344
532	566	407	533	570	240	534	570	511
535	575	329	536	575	422	537	578	99
538	578	652	539	579	286	540	579	465
541	581	20	542	581	731	543	582	15
544	582	736	545	583	177	546	583	574
547	584	271	548	584	480	549	585	108
550	585	643	551	586	162	552	586	589
553	589	79	554	589	672	555	591	104
556	591	647	557	592	91	558	592	660
559	594	141	560	594	610	561	595	79
562	595	672	563	597	328	564	597	423
565	599	371	566	599	380	567	600	310
568	600	441	569	603	164	570	603	587

#	x	y	#	x	y	#	x	y
571	604	210	572	604	541	573	605	297
574	605	454	575	607	18	576	607	733
577	609	125	578	609	626	579	612	163
580	612	588	581	617	149	582	617	602
583	620	106	584	620	645	585	621	155
586	621	596	587	622	242	588	622	509
589	623	47	590	623	704	591	624	295
592	624	456	593	627	59	594	627	692
595	628	149	596	628	602	597	629	206
598	629	545	599	632	80	600	632	671
601	634	94	602	634	657	603	635	242
604	635	509	605	636	92	606	636	659
607	637	301	608	637	450	609	639	343
610	639	408	611	646	162	612	646	589
613	648	138	614	648	613	615	649	57
616	649	694	617	650	58	618	650	693
619	653	329	620	653	422	621	654	263
622	654	488	623	657	156	624	657	595
625	658	57	626	658	694	627	660	257
628	660	494	629	661	179	630	661	572
631	663	257	632	663	494	633	664	108
634	664	643	635	666	85	636	666	666
637	667	180	638	667	571	639	671	193
640	671	558	641	672	212	642	672	539
643	676	193	644	676	558	645	677	332
646	677	419	647	678	42	648	678	709
649	680	94	650	680	657	651	681	312
652	681	439	653	683	343	654	683	408
655	684	119	656	684	632	657	686	358
658	686	393	659	687	244	660	687	507
661	688	327	662	688	424	663	689	352
664	689	399	665	693	70	666	693	681
667	694	199	668	694	552	669	695	170
670	695	581	671	696	90	672	696	661
673	697	279	674	697	472	675	701	203
676	701	548	677	704	186	678	704	565
679	705	112	680	705	639	681	708	230
682	708	521	683	710	20	684	710	731

#	\boldsymbol{x}	y
685	712	100
688	714	578
691	717	150
694	720	570
697	722	164
700	723	447
703	731	222
706	732	571
709	734	199
712	735	705
715	742	74
718	743	597
721	747	153
724	750	376
727	∞	∞

#	\boldsymbol{x}	y
686	712	651
689	715	83
692	717	601
695	721	241
698	722	587
701	729	78
704	731	529
707	733	265
710	734	552
713	740	362
716	742	677
719	745	27
722	747	598
725	751	375

#	x	y
687	714	173
690	715	668
693	720	181
696	721	510
699	723	304
702	729	673
705	732	180
708	733	486
711	735	46
714	740	389
717	743	154
720	745	724
723	750	375
726	751	376

Tabla 4

Unidad de	Punto en
mensaje	${f E}$
A	(0,375)
\mathbf{C}	(41,274)
${f E}$	(84,138)
\mathbf{G}	(121,39)
I	(160,140)
K	(200,220)
\mathbf{M}	(241,230)
$ ilde{\mathbf{N}}$	(280,247)
P	(320,174)
\mathbf{R}	(361,8)
\mathbf{T}	(400,238)
\mathbf{V}	(440,294)
\mathbf{X}	(480,256)
${f Z}$	(520,328)

Unidad de	Punto en
mensaje	\mathbf{E}
В	(21,133)
D	(62,161)
\mathbf{F}	(101,4)
H	(144,190)
J	(180,343)
\mathbf{L}	(224,248)
N	(261,288)
О	(301,258)
\mathbf{Q}	(341,362)
S	(380,155)
\mathbf{U}	(421,362)
\mathbf{W}	(461,92)
\mathbf{Y}	(500,368)

Tabla 5

```
R-4Q
         700P = (205, 161)
                                             -6P
                                 (97, 215)
         700P = (205, 161)
                                             -5P
R-4Q
                             \neq
                                 (57,332)
R-4Q
         700P = (205, 161)
                             \neq
                                 (121, 39)
                                             -4P
R-4Q
         700P = (205, 161)
                                    , 390)
                                             -3P
                             \neq
                                (6
R-4Q
         700P = (205, 161)
                             \neq
                                (2)
                                    , 373)
                                             -2P
                                             -P
R-4Q
         700P = (205, 161)
                             \neq
                                (1
                                    , 376)
         700P = (205, 161)
R-4Q
                             \neq
                                (\infty, \infty)
                                              0
                                              P
         700P = (205, 161)
R-4Q
                             \neq
                                (1
                                     , 375)
R-4Q
         700P = (205, 161)
                                (2)
                                              2P
                             \neq
                                    , 378)
         700P = (205, 161)
                                              3P
R-4Q
                             \neq
                                (6, 361)
R-4Q
         700P = (205, 161)
                             \neq
                                (121, 712)
                                              4P
R-4Q
         700P = (205, 161)
                                (57,419)
                                              5P
R-4Q
         700P = (205, 161)
                            \neq
                                (97, 129)
                                              6P
```

```
R-3Q
         713P = (734, 552)
                                 (97, 215)
                                              -6P
R-3Q
         713P = (734, 552)
                             \neq
                                 (57,332)
                                              -5P
                                  (121, 39)
R - 3Q
         713P = (734, 552)
                                              -4P
                             \neq
R-3Q
         713P = (734, 552)
                             \neq
                                 (6, 390)
                                              -3P
                                     , 373)
         713P = (734, 552)
                                 (2)
                                              -2P
R-3Q
                             \neq
R-3Q
         713P = (734, 552)
                             \neq
                                 (1
                                      , 376)
                                              -P
R-3Q
         713P = (734, 552)
                                 (\infty)
                                               0
                             \neq
                                      , \infty)
R-3Q
         713P = (734, 552)
                             \neq
                                 (1
                                     , 375)
                                               P
                                 (2)
                                              2P
R-3Q
         713P = (734, 552)
                             \neq
                                     , 378)
R-3Q
         713P = (734, 552)
                             \neq
                                 (6, 361)
                                              3P
R-3Q
         713P = (734, 552)
                                 (121, 712)
                                              4P
                             \neq
R-3Q
         713P = (734, 552)
                             \neq
                                 (57,419)
                                              5P
         713P = (734, 552)
R-3Q
                                              6P
                             \neq
                                 (97, 129)
```

```
726P = (1, 376)
                                            -6P
R-2Q
                               (97, 215)
                           \neq
         726P = (1, 376)
                               (57,332)
R-2Q
                                            -5P
                           \neq
R-2Q
         726P = (1, 376)
                           \neq
                                (121, 39)
                                            -4P
R-2Q
         726P = (1, 376)
                           \neq
                               (6
                                   , 390)
                                            -3P
R-2Q
         726P = (1, 376)
                           \neq
                               (2)
                                   , 373)
                                            -2P
         726P = (1, 376)
R-2Q
                               (1
                                   , 376)
                                            -P
                           =
R-2Q
         726P = (1, 376)
                           \neq
                               (\infty)
                                    , \infty)
                                             0
                                             P
R-2Q
         726P = (1, 376)
                           \neq
                               (1
                                    , 375)
         726P = (1, 376)
                               (2)
                                            2P
R-2Q
                           \neq
                                    , 378)
                                            3P
R-2Q
         726P = (1, 376)
                               (6
                                   , 361)
                           \neq
         726P = (1, 376)
R-2Q
                           \neq
                               (121, 712)
                                            4P
R-2Q
         726P = (1, 376)
                           \neq
                               (57,419)
                                            5P
         726P = (1, 376)
R-2Q
                           \neq
                               (97, 129)
                                            6P
```

```
R-1Q
         739P = (180, 408)
                             \neq
                                 (57,332)
                                             -5P
R-1Q
         739P = (180, 408)
                                 (121, 39)
                                             -4P
                             \neq
                                             -3P
R-1Q
         739P = (180, 408)
                             \neq
                                (6, 390)
         739P = (180, 408)
                                 (2, 373)
                                             -2P
R-1Q
                             \neq
         739P = (180, 408)
                                     , 376)
                                              -P
R-1Q
                             \neq
                                (1
R-1Q
         739P = (180, 408)
                                (\infty, \infty)
                             \neq
                                               0
                                              P
R-1Q
         739P = (180, 408)
                             \neq
                                (1
                                     , 375)
R-1Q
         739P = (180, 408)
                             \neq
                                (2)
                                     , 378)
                                              2P
R-1Q
         739P = (180, 408)
                                (6, 361)
                                              3P
                             \neq
R-1Q
         739P = (180, 408)
                             \neq
                                (121, 712)
                                              4P
         739P = (180, 408)
                                              5P
R-1Q
                                 (57,419)
                             \neq
         739P = (180, 408)
R-1Q
                             \neq
                                 (97, 129)
                                              6P
```

```
R-0Q
         752P = (296, 245)
                                 (97, 215)
                                              -6P
         752P = (296, 245)
R - 0Q
                                 (57,332)
                                              -5P
                             \neq
R-0Q
         752P = (296, 245)
                             \neq
                                  (121, 39)
                                              -4P
R-0Q
         752P = (296, 245)
                             \neq
                                              -3P
                                 (6, 390)
R - 0Q
         752P = (296, 245)
                              \neq
                                 (2)
                                     , 373)
                                              -2P
                             \neq
R-0Q
         752P = (296, 245)
                                 (1
                                     , 376)
                                               -P
         752P = (296, 245)
                                 (\infty)
                                                0
R-0Q
                             \neq
                                      , \infty)
                                               P
R-0Q
         752P = (296, 245)
                              \neq
                                 (1
                                      , 375)
         752P = (296, 245)
R - 0Q
                                 (2)
                                      , 378)
                                               2P
                              \neq
                             \neq
R - 0Q
         752P = (296, 245)
                                 (6, 361)
                                               3P
                                 (121, 712)
                                               4P
R-0Q
         752P = (296, 245)
                             \neq
R - 0Q
         752P = (296, 245)
                             \neq
                                 (57,419)
                                               5P
R - 0Q
         752P = (296, 245)
                             \neq
                                 (97, 129)
                                               6P
```

```
R+1Q
         765P = (484, 590)
                             \neq
                                 (57,332)
                                             -5P
R+1Q
         765P = (484, 590)
                                 (121, 39)
                                             -4P
                             \neq
                                             -3P
R+1Q
         765P = (484, 590)
                             \neq
                                (6, 390)
         765P = (484, 590)
                                 (2, 373)
                                             -2P
R+1Q
                             \neq
                                     , 376)
         765P = (484, 590)
                                              -P
R+1Q
                             \neq
                                (1
R+1Q
         765P = (484, 590)
                                (\infty, \infty)
                             \neq
                                              0
                                              P
R+1Q
         765P = (484, 590)
                             \neq
                                (1
                                     , 375)
R+1Q
         765P = (484, 590)
                             \neq
                                (2)
                                     , 378)
                                              2P
R+1Q
         765P = (484, 590)
                                (6, 361)
                                              3P
                             \neq
R+1Q
         765P = (484, 590)
                             \neq
                                (121, 712)
                                              4P
         765P = (484, 590)
                                              5P
R+1Q
                                 (57,419)
                             \neq
         765P = (484, 590)
R+1Q
                             \neq
                                 (97, 129)
                                              6P
```

```
R + 2Q
         778P = (508, 668)
                                  (97, 215)
                                               -6P
R + 2Q
         778P = (508, 668)
                                  (57,332)
                                               -5P
                              \neq
R + 2Q
         778P = (508, 668)
                              \neq
                                  (121, 39)
                                               -4P
R + 2Q
         778P = (508, 668)
                                               -3P
                              \neq
                                  (6, 390)
R + 2Q
         778P = (508, 668)
                              \neq
                                  (2)
                                      , 373)
                                               -2P
                              \neq
R + 2Q
         778P = (508, 668)
                                  (1, 376)
                                                -P
                                  (\infty)
R + 2Q
                                                 0
         778P = (508, 668)
                              \neq
                                       , \infty)
                                                 P
R + 2Q
         778P = (508, 668)
                              \neq
                                  (1
                                       , 375)
                                                2P
R + 2Q
         778P = (508, 668)
                                  (2)
                                       , 378)
                              \neq
R + 2Q
         778P = (508, 668)
                              \neq
                                  (6, 361)
                                                3P
                                  (121, 712)
                                                4P
R + 2Q
         778P = (508, 668)
                              \neq
R + 2Q
         778P = (508, 668)
                              \neq
                                  (57,419)
                                                5P
R + 2Q
         778P = (508, 668)
                              \neq
                                  (97, 129)
                                                6P
```

```
791P = (720, 570)
R+3Q
                                  (57,332)
                                               -5P
R + 3Q
         791P = (720, 570)
                              \neq
                                  (121, 39)
                                               -4P
                                               -3P
R + 3Q
         791P = (720, 570)
                              \neq
                                 (6, 390)
R + 3Q
         791P = (720, 570)
                                  (2, 373)
                                               -2P
                              \neq
                                      , 376)
R + 3Q
         791P = (720, 570)
                                               -P
                              \neq
                                 (1
R + 3Q
         791P = (720, 570)
                                 (\infty, \infty)
                              \neq
                                                0
                                                P
R + 3Q
         791P = (720, 570)
                              \neq
                                 (1
                                      , 375)
R + 3Q
         791P = (720, 570)
                              \neq
                                 (2)
                                      , 378)
                                               2P
R + 3Q
         791P = (720, 570)
                                 (6, 361)
                                               3P
                              \neq
R + 3Q
         791P = (720, 570)
                              \neq
                                 (121, 712)
                                               4P
                              \neq
R + 3Q
         791P = (720, 570)
                                               5P
                                  (57,419)
         791P = (720, 570)
R + 3Q
                                  (97, 129)
                                               6P
```

```
804P = (47, 335)
                            \neq (97, 215)
                                            -6P
R + 4Q
R + 4Q
         804P = (47, 335)
                                (57,332)
                                            -5P
                            \neq
                                (121, 39)
R + 4Q
         804P = (47, 335)
                            \neq
                                            -4P
R + 4Q
         804P = (47, 335)
                            \neq
                               (6, 390)
                                            -3P
R + 4Q
                            \neq
         804P = (47, 335)
                               (2)
                                    , 373)
                                            -2P
                               (1, 376)
R + 4Q
         804P = (47, 335)
                            \neq
                                             -P
R + 4Q
                                              0
         804P = (47, 335)
                            \neq
                                (\infty, \infty)
R + 4Q
         804P = (47, 335)
                                    , 375)
                                              P
                            \neq
                                (1
         804P = (47, 335)
                                (2
R + 4Q
                            \neq
                                    , 378)
                                             2P
R + 4Q
         804P = (47, 335)
                            \neq
                               (6, 361)
                                             3P
         804P = (47, 335)
R + 4Q
                            \neq
                               (121, 712)
                                             4P
R + 4Q
         804P = (47, 335)
                            \neq
                                (57,419)
                                             5P
R + 4Q
         804P = (47, 335)
                                (97, 129)
                                             6P
```

Apéndice A

PRELIMINARES DE TEORÍA DE NÚMEROS

En este trabajo supondremos que el lector tiene conocimientos básicos sobre divisibilidad. En particular supondremos que conoce el algoritmo de la división, las propiedades sencillas de las congruencias y el Teorema Chino del Residuo. Como más adelante necesitaremos la función ϕ de Euler y sus principales cualidades, en esta sección las desarrollaremos.

DEFINICIÓN 1 Dado un número natural n se define la función ϕ de Euler por medio de la siguiente igualdad:

$$\phi(n) = \#(\{m \in \mathbb{N} : (n, m) = 1 \text{ y } 1 \le m \le n\}).$$

En el caso en que $n>1,\,n$ no es primo relativo con n, de manera que podemos poner

$$\phi(n) = \#(\{m \in \mathbb{N} : (n, m) = 1 \text{ y } 1 \le m < n\})$$

PROPOSICIÓN 2

- (a) Si p es un número primo, entonces $\phi(p) = p 1$.
- **(b)** La función ϕ es multiplicativa. Esto es, si (m,n)=1, entonces $\phi(nm)=\phi(n)\phi(m)$.
- (c) Si $n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}$ es la factorización de n como producto de primos, entonces

$$\phi(n) = n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})\cdots(1 - \frac{1}{p_k}).$$

DEMOSTRACIÓN.

- (a) Si p es primo, entonces todos los números 1, 2, ..., p-1 son primos relativos con p, mientras que p no es primo relativo con él mismo. De manera que $\{m \in \mathbb{N} : (n, m) = 1 \text{ y } 1 \leq m \leq n\} = \{1, 2, ..., p-1\}$, por lo que $\phi(p) = p-1$.
- (b) Tomemos $n, m \in \mathbb{N}$ tales que (n, m) = 1. Podemos suponer que ninguno de los números n y m es igual a 1. Sean $r = \phi(n)$ y $s = \phi(m)$. Denotemos por $a_1, a_2, ..., a_r$ a los diferentes números del conjunto $\{k \in \mathbb{N} : (n, k) = 1 \text{ y } 1 \leq k < n\}$ y por $b_1, b_2, ..., b_s$ a los del conjunto $\{k \in \mathbb{N} : (m, k) = 1 \text{ y } 1 \leq k < m\}$.

Dado un elemento $k \in \mathbb{N}$ tal que (mn, k) = 1 y $1 \le k \le mn$, tenemos que k no tiene ningún divisor, mayor que 1, común con mn, menos lo va a tener con n y con m. Es decir, (m, k) = 1 y (n, k) = 1. Sea u el residuo de dividir a k entre n. Entonces k = nq + u, donde q es un entero y $0 \le u < n$. No es posible que n y u tengan un divisor común mayor que 1 pues éste también tendría que dividir a k. De modo que (n, u) = 1. Por tanto u tiene que ser uno de los elementos de la forma a_i . En forma similar se muestra que el residuo de dividir a k entre m es igual a uno de los números b_j . Notemos que $k \equiv a_i \pmod{n}$ y $k \equiv b_j \pmod{m}$. Como el residuo siempre es único, podemos establecer una función del conjunto $A = \{k \in \mathbb{N} : (mn, k) = 1$ y $1 \le k < mn\}$ en el conjunto de parejas $\{(a_i, b_j) : i \in \{1, ..., r\}$ y $j \in \{1, ..., s\}\}$.

El Teorema Chino del Residuo implica que el sistema de congruencias

$$h \equiv a_i \pmod{n}$$
 y $h \equiv b_i \pmod{m}$

tiene una única solución módulo mn. En particular, hay una única $h \in \{0, 1, ..., mn - 1\}$ que satisface tal sistema.

Esto nos dice que para dos números diferentes k en A, la pareja de sus residuos (a_i, b_j) es única, pues de lo contrario tendríamos dos soluciones para el sistema mencionado. Por tanto la función que estamos proponiendo es inyectiva.

Nos falta mostrar que la función es suprayectiva. Tomemos una pareja (a_i, b_j) . Por el Teorema Chino del Residuo, existe una $h \in \{0, 1, ..., mn-1\}$ tal que se satisface el sistema de arriba. La congruencia $h \equiv a_i \pmod{n}$ implica que $h = nq + a_i$ para algún entero q, de modo que a_i es el residuo de h módulo n. Similarmente, b_j es el residuo de h módulo m. Sólo nos falta ver que h pertenece a A, para lo cual nos falta verificar que (h, nm) = 1. La igualdad $h = nq + a_i$ y el hecho de que $(n, a_i) = 1$ implican que (n, h) = 1. Similarmente, (m, h) = 1. Esto implica que (mn, h) = 1. Por tanto $h \in A$.

Hemos establecido entonces una biyección entre A y el conjunto de parejas. El número de elementos de A es, por definición, igual a $\phi(mn)$ y el número de parejas es igual a $\phi(m)\phi(n)$. Por tanto, podemos concluir que $\phi(mn) = \phi(m)\phi(n)$.

(c) Supongamos que $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ es la factorización de n como producto de primos. Esto quiere decir, en particular, que todos los p_i son diferentes. Entonces los números $p_i^{\alpha_i}$ son primos relativos entre sí. De manera que $\phi(n) = \phi(p_1^{\alpha_1})\phi(p_2^{\alpha_2})\cdots\phi(p_k^{\alpha_k})$. Por tanto, sólo nos tenemos que preocupar por saber calcular ϕ en un número de la forma p^{α} , donde p es un primo y $\alpha \in \mathbb{N}$.

Notemos que los únicos números que no son primos relativos con p^{α} son precisamente los múltiplos de p. De modo que

$$\{m \in \mathbb{N} : (p^{\alpha}, m) = 1 \text{ y } 1 \le m \le p^{\alpha}\}\$$
$$= \{1, 2, ..., p^{\alpha}\} - \{p, 2p, ..., p^{\alpha} = p^{\alpha - 1}p\}.$$

Así que
$$\phi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1}$$
.

Ya estamos en condiciones de calcular $\phi(n)$. Haciéndolo nos queda:

$$\begin{split} \phi(n) &= \phi(p_1^{\alpha_1})\phi(p_2^{\alpha_2})\cdots\phi(p_k^{\alpha_k}) \\ &= (p_1^{\alpha_1}-p_1^{\alpha_1-1})(p_2^{\alpha_2}-p_2^{\alpha_2-1})\cdots(p_k^{\alpha_k}-p_k^{\alpha_k-1}) \\ &= p_1^{\alpha_1}(1-\frac{1}{p_1})p_2^{\alpha_2}(1-\frac{1}{p_2})\cdots p_k^{\alpha_k}(1-\frac{1}{p_k}) \\ &= n(1-\frac{1}{p_1})(1-\frac{1}{p_2})\cdots(1-\frac{1}{p_k}). \end{split}$$

Y esto termina la demostración de la proposición.

TEOREMA 3. Si b y m son números naturales tales que (b, m) = 1, entonces $b^{\phi(m)} \equiv 1 \pmod{m}$.

DEMOSTRACIÓN.

Sean $a_1, a_2, ..., a_r$ los diferentes elementos del conjunto $A = \{k \in \mathbb{N} : (m, k) = 1 \text{ y } 1 \leq k < m\}$. Por definición $r = \phi(m)$. Para cada elemento de la forma ba_i , tomemos su residuo u_i , de dividirlo entre m. Entonces $ba_i = mq_i + u_i$ para algún entero q_i . Además $ba_i \equiv u_i \pmod{m}$. Como b y a_i son primos relativos con m, también lo es su producto. Esto implica que u_i también es primo relativo con m. De manera que u_i también pertenece a A por lo que es igual a un a_{j_i} . Como el residuo de dividir natural entre otro es único, tenemos definida una función que a cada ba_i le asocia a_{j_i} .

Si a ba_i y a ba_k les correspondiera la misma a_j , tendríamos que $ba_i \equiv a_{j_i} = a_{j_k} \equiv ba_k$, todo módulo m. Así que $ba_i \equiv ba_k \pmod{m}$. Ya que (b, m) = 1, el número b tiene inverso multiplicativo módulo m, por lo que en la última congruencia, b puede ser eliminado, con lo que tendríamos que $a_i \equiv a_k \pmod{m}$. Ya que ambos elementos a_i y a_k están entre 0 y m-1, esta última congruencia sólo es posible si $a_i = a_k$ y, entonces i = k. Esto prueba que la asociación es inyectiva.

Por tanto tenemos una función inyectiva del conjunto $\{ba_1, ba_2, ..., ba_r\}$ en el conjunto $\{a_1, a_2, ..., a_r\}$. Como ambos conjuntos tienen el mismo número

de elementos, tal función tiene que ser suprayectiva. Entonces los elementos $a_{j_1}, a_{j_2}, ..., a_{j_r}$ tienen que ser los mismos que $a_1, a_2, ..., a_r$, salvo que quizá estén en diferente orden. Así que si los multiplicamos todos obtendremos el mismo resultado. Por tanto:

$$b^r a_1 a_2 \cdots a_r = b a_1 b a_2 \cdots b a_r \equiv a_{j_1} a_{j_2} \cdots a_{j_r} = a_1 a_2 \cdots a_r \pmod{m}.$$

Entonces

$$b^r a_1 a_2 \cdots a_r \equiv a_1 a_2 \cdots a_r \pmod{m}$$
.

Como los a_i son primos relativos con m, se pueden ir cancelando de esta congruencia hasta obtener:

$$b^r \equiv 1 \pmod{m}$$
.

Que es exactamente lo que pretendíamos demostrar.

COROLARIO 4 Si a, p son números naturales tales que p es primo y p no divide a a, entonces $a^{p-1} \equiv 1 \pmod{p}$.

Bibliografía

- [1] Ahlgors Lars V. Complex analysis, An introduction to the theory of analytic functions of one complex variable. Third edition. McGraw Hill book company.1979.
- [2] Haseer, N. B., LaSalle, J. P. y Sullivan, J. A. Análisis Matemático, Curso Intermedio, vol. 2. Trillas, México, 1990.
- [3] Herstein, I. N. Álgebra Moderna Trillas, México, 1980.
- [4] Pino Caballero Gil. Introducción a la Criptografía 2a. edición actualizada. Algaomega Grupo Editor, 2003.
- [5] Silverman, J. H. The Arithmetic of Elliptic Curves. (Graduate texts in mathmatics; 106). Springer, USA, 1985.
- [6] Wunsch, A. David. Variable compleja con aplicaciones, 2a. edición. Addison-Wesley Iberoamericana, U.S.A., 1997.