

Universidad Nacional Autónoma de México

Facultad de Estudios Superiores Campus Iztacala

Expresión de quimiocinas en modelo murino de infección con cepas de *Trypanosoma cruzi* que exhiben diferentes grados de virulencia.

> T E S I S PARA OBTENER EL TÍTULO DE: B I Ó L O G O

P R E S E N T A: EDGAR OAXACA HERNÁNDEZ

Director de tesis: Dra. Bertha Espinoza Gutiérrez

Los Reyes Iztacala, Estado de México

2005

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Universidad Nacional Autónoma de México

Facultad de Estudios Superiores *Campus* Iztacala

Expresión de quimiocinas en modelo murino de infección con cepas de *Trypanosoma cruzi* que exhiben diferentes grados de virulencia.

T E S I S QUE PARA OBTENER EL TÍTULO DE: B I Ó L O G O

PRESENTA: EDGAR OAXACA HERNÁNDEZ

El presente trabajo se realizó en el Departamento de Inmunología del Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México, bajo la dirección de la Dra. Bertha Espinoza Gutiérrez. Y con el apoyo del programa PAPIIT de DGAPA de la U.N.A.M. con el número de proyecto IN232399 e IN226402. Edgar Oaxaca Hernández agradece la beca que para realizar su tesis le otorgó el programa antes mencionado.

Los Reyes Iztacala, Estado de México

A la Dra. Bertha Espinoza Gutiérrez por su apoyo y orientación durante mi trabajo de tesis.

Al comité tutorial integrado por Dra. Leticia Moreno Fierros, M. en C. Rodolfo Cárdenas Reygadas, M. en C. Rafael Jiménez Flores, Biol. Antonio Muñoz Torres por la revisión y corrección de este trabajo.

A la Biol. Andrea R. Jiménez Marín por su invaluable colaboración en el desarrollo de este trabajo de tesis, así como por su amistad incondicional.

A la Dra. Rosalía Lira Carmona por sus observaciones y sugerencias durante la realización de esta tesis.

Al técnico académico Biol. Ignacio Martínez por su apoyo técnico en la infección de los ratones empleados durante este trabajo de tesis.

Agradezco la beca que me otorgó el programa PAPIIT de DGAPA con el número de proyecto IN232399 e IN226402.

DEDICATORIAS

A mi mamá Maria Martha Hernández y mi papá Arturo Oaxaca por darme la vida y apoyarme para conseguir este sueño.

A mis hermanos Inés Concepción, Verónica Xiomara, Norma Susana y Juan Antonio por estar a mi lado y darme ánimos de concluir mi carrera.

A mis compañeros de laboratorio Fernando Martínez, Guiehdani Villalobos, Andrea Jiménez, Teresa Rico, Sandro Sosa, Ivone Pérez, Deyanira Pérez, Elsa Ugalde, Maria Luisa Martínez, Ignacio Martínez, Oralia Sánchez y Leticia Castro gracias por su amistad y paciencia.

A mis compañeros biólogos de la FES Iztacala especialmente a Alejandro Yañez (Guapo), José Luis Zarate (Cadáver), Manuel Ayala (Juan), Eduardo Jiménez (Sarigueyo), Andrés Rodríguez (Chuletón), Jennie Suárez (Jena), Wendy, Eufrosina Hinojosa, Carmen Castillo, Patricia Chaires, Sara Rosales (Saruka), Gillian López, Hugo Trujillo (Caballero de la salsa), Valentín López (Tin-Tin), Bernardo Hernández, Enrique Ávila (Goku), Moisés Aguilar, Guadalupe Márquez (Geoda), Oscar Pineda (Spider-Juano), Karina, Balby Gonzáles, Mónica Rangel, Israel Cárdenas, Rigoberto Romualdo, Rafael Rocha, Eduardo Mendiola.

A mis amigos: Oscar Hernández y Raúl Galicia, gracias por su apoyo moral y comprensión.

INDICE

=

Resumen	1							
I. Introducción								
Generalidades.								
Ubicación taxonómica de Trypanosoma cruzi.	4							
Morfología.	4							
Ciclo de vida.	5							
Transmisión.	6							
Manifestaciones y patología de la enfermedad de Chagas.	8							
Heterogeneidad genética de Trypanosoma cruzi.	9							
Interacción parásito – hospedero.	11							
Respuesta inmune contra Trypanosoma cruzi.	13							
Quimiocinas.	16							
Funciones biológicas de las quimiocinas.	21							
Papel de las quimiocinas en la respuesta inmune contra T. cruzi.	24							
II. Justificación	27							
III. Objetivos	28							
IV. Material y métodos.	29							
Ratones.	29							
Cepas de T. cruzi.	29							
Infección de ratones.	29							
Disección de órganos.	29							
Extracción de RNA total.	30							
Análisis por espectrofotometría UV de ácidos nucleicos.	30							
Electroforesis en geles de agarosa al 1%.	31							
Detección de RNAm de quimiocinas por RT-PCR.	31							
Análisis semi-cuantitativo de productos de RT-PCR.	33							
Análisis estadístico	33							
V. Resultados	34							
Optimización de extracción de RNA.								

Optimización de RT-PCR	34
Expresión de RNAm de quimiocinas MIG (CXCL9), MCP-1 (CCL2),	36
MIP-1 β (CCL4) y RANTES (CCL5) en corazón de ratones infectados	
con T. cruzi.	
Expresión de RNAm de quimiocinas MIG (CXCL9), MCP-1 (CCL2),	46
MIP-1β (CCL4) y RANTES (CCL5) en músculo esquelético de	
ratones infectados con T. cruzi.	
Expresión de RNAm de quimiocinas MIG (CXCL9), MCP-1 (CCL2),	55
MIP-1 β (CCL4) y RANTES (CCL5) en bazo de ratones infectados	
con T. cruzi.	
VI. Discusión.	64
VII. Conclusiones.	75
VII. Bibliografía.	76
Anexos.	86
Anexo I. Precauciones para extracción de RNA	86
Anexo II. Reactivos	86
ANEXO III. Análisis por densitometría de productos de RT-PCR.	88

RESUMEN

La generación de una respuesta inflamatoria provocada por Trypanosoma cruzi parece ser esencial para la patogénesis y daño tisular observado como consecuencia de esta infección. La respuesta inflamatoria también es esencial para el control de la replicación de T. cruzi. En el presente trabajo se analizó la expresión de mensajeros para quimiocinas (MIG, MCP-1, MIP-1ß y RANTES) por RT-PCR en diferentes órganos blanco (corazón, músculo esquelético y bazo) de ratones infectados con una cepa virulenta y una cepa no virulenta de T. cruzi, ambas cepas fueron aisladas en México y pertenecen al genotipo I. Durante la fase aguda de la infección los ratones infectados con la cepa virulenta presentaron niveles más altos de expresión de RNAm para MIG, MCP-1 y MIP-1 β en corazón y músculo esquelético en comparación con los ratones infectados con la cepa no virulenta. En lo que se refiere a la expresión de mensajeros en bazo MIG, se expresó en niveles más altos en una fase temprana de la infección (5 horas) en los ratones infectados con la cepa no virulenta, en cambio la expresión de MCP-1 en este mismo tiempo fue mayor en los ratones infectados con la cepa virulenta. Para el día 21 post-infección solo se detectó la presencia de RNAm para MIP-1ß en bazo de ratones de infectados con la cepa no virulenta. No se encontraron diferencias significativas en los niveles de expresión de RNAm para RANTES en los órganos analizados entre los ratones infectados con la cepa virulenta y no virulenta de T. cruzi. Durante la fase crónica de la infección con los ratones infectados con la cepa no virulenta (fueron los únicos que sobrevivieron) se detectaron niveles altos de MIP-1 β en corazón y MCP-1 en bazo, en cambio, los niveles de MCP-1 en corazón y RANTES en músculo esquelético se mantuvieron en niveles parecidos a los detectados a los 21 días post- infección, lo que podría sugerir la persistencia del parásito en el hospedero. Estos resultados sugieren que la producción moderada o controlada de quimiocinas es esencial para controlar la replicación de T. cruzi durante la fase aguda de la infección, pero una respuesta exacerbada puede ser la causa de la patología y muerte observada en los ratones infectados con la cepa virulenta.

I. INTRODUCCIÓN

I.1. GENERALIDADES

La enfermedad de Chagas o Tripanosomiasis Americana es provocada por el protozoario *Trypanosoma cruzi*, que es transmitido por varias especies de insectos reduvidos. La distribución geográfica de esta infección parasitaria se extiende del sur de Estados Unidos hasta el sur de Argentina (figura 1). Se ha estimado que 20 millones de personas se encuentran infectadas y cerca de 100 millones se encuentran en riesgo de adquirir esta enfermedad por lo que está infección representa un serio problema de salud pública en la región (WHO, 1991; WHO, 2002).

Figura 1. Distribución geográfica de *T. cruzi*, (Tripanosomiasis Americana o enfermedad de Chagas). Fuente: www.who.int/int/ctd/chagas/geo.htm

La morbilidad y mortalidad que se reportan para este padecimiento en los distintos países de América son variables y están relacionadas a múltiples factores. Posiblemente existe también un subregistro asociado a la falta de encuestas epidemiológicas adecuadas, a la prevalecencia del padecimiento en zonas rurales o suburbanas, en donde los servicios médicos no llegan y por lo tanto no se reportan casos del padecimiento. Otros factores que influyen están relacionados directamente con la heterogeneidad genética de las cepas de *T. cruzi* que influyen en su patógenicidad y virulencia (Espinoza *et al.*, 1998; Macedo *et al.*, 2002).

En la República Mexicana, se considera como área endémica probable, todo el territorio que se encuentra entre los 0 m y los 2,200 m sobre el nivel del mar, es decir las dos terceras partes del territorio nacional. En poblaciones ubicadas entre estas altitudes se han encontrado vectores y mamíferos infectados, por T. cruzi. También se han detectado casos de personas infectadas, detectados principalmente por pruebas serológicas, en los estados de: Morelos, Oaxaca, Chiapas, Jalisco, Michoacán, Guerrero, Zacatecas, Yucatán, Veracruz, Puebla, Nayarit, y Tabasco (Tay et al., 1967; Tay et al., 1968; Cortés et al., 1985; Salazar-Schettino et al., 1989; Anderson et al., 1990; Huante-Magaña et al., 1990; Farfán-Ale et al., 1992; Velasco et al., 1992; Guzmán-Bracho, 2001; Mazariego-Arana et al., 2001; Rangel-Flores et al., 2001). En el estudio de la Encuesta Nacional de Seroepidemiológica realizada por la Secretaria Salud, en 1990, se encontró una prevalencia promedio de un 1.6%; entre 20-30% de las personas infectadas pertenecían a zonas rurales. En otros estudios se ha reportado que del 0.2-17% de donadores de sangres fueron sero-positivos, lo que representa un factor de riesgo importante de infección por transfusiones sanguíneas (Ramos et al., 1993; Trujillo et al., 1993; Rodríguez-Felix et al., 1995; Campos et al., 1998; Rangel et al., 1998; Guzmán-Bracho, 2001; Sánchez-Guillen et al., 2002).

En México a los vectores transmisores de la enfermedad de Chagas se les conoce con diversos nombres como: chinche de Compostela, chinche hocicona, besucona, talaje, etc. (López, 2000). Los vectores más importantes en México desde el punto de vista epidemiológico son: *Triatoma pallidipennis, T. barberi, T. longipennis, T.* *picturata y T. dimidiata* (Ramsey *et al.*, 2000; Martínez-Ibarra *et al.*, 2001; Espinoza-Gómez *et al.*, 2002; Martínez, 2003).

I.2. UBICACIÓN TAXONOMICA DE Trypanosoma cruzi.

La más reciente revisión sobre la clasificación de *T. cruzi* fue realizada en el 2000 por Leedale y Vickerman y se presenta a continuación (Leedale y Vickerman, 2000).

Phylum	Euglenozoa	Cavalier-Smith, 1981
Clase	Diplonemea	Cavalier-Smith, 1993
Orden	Kinetoplastea	Honingberg,1963
Suborden	Trypanosomatina	Kent, 1980
Familia	Trypanosomatidae	Duflein, 1901
Género	Trypanosoma	Gruby, 1843
Subgénero	Schizotrypanum	Chagas, 1909
Especie	Trypanosoma (Schizotrypanum) cruzi	Chagas, 1909

I.3. MORFOLOGÍA

T. cruzi presenta 3 estadios, distinguibles según las características del flagelo y la posición relativa del cinetoplasto respecto al núcleo celular (De Souza, 1999; Navarro *et al.*, 2003):

- Tripomastigote: Es la forma flagelada infectiva, no replicativa dentro de ambos hospederos. El flagelo emerge del extremo apical posterior y el cinetoplasto es posterior al núcleo celular. Se denominan tripomastigotes sanguíneos a las formas circulantes en el mamífero, y tripomastigotes metacíclicos a las formas diferenciadas en el insecto, que son las formas infectivas. Los tripomastigotes sanguíneos pueden infectar miocitos, macrófagos y otros tipos celulares, por un evento dirigido por el parásito y mediado por receptores (figura 2A).
- Amastigote: es de forma redondeada, carece de flagelo y membrana ondulante, es intracelular, cuenta con una alta capacidad de multiplicarse por división binaria dentro del citoplasma de las células hospederas (figura 2B).

• Epimastigote: Es la forma flagelada replicativa en el intestino medio del insecto vector y es la forma predominante en los medios de cultivo para dar lugar a los tripomastigote metacíclico. El flagelo emerge de la región lateral anterior respecto a la dirección del movimiento del organismo y el cinetoplasto es anterior al núcleo celular (figura 2C).

Figura 2. Estadios de *Trypanosoma cruzi*. **A.** Tripomastigotes en sangre, **B.** Nido de amastigotes en músculo esquelético de ratón BALB/c, **C.** Epimastigote en medio de cultivo.

III.4. CICLO DE VIDA

El ciclo de vida se inicia cuando el vector pica y succiona sangre de un mamífero infectado con tripomastigotes sanguíneos, los cuales pasan al intestino del triatómino, se transforman en epimastigotes metacíclicos (Macedo *et al.*, 2002). Cuando el vector infectado se alimenta, deposita junto con sus heces a los tripomastigotes metacíclicos, que se introducen por la lesión dejada por la probóscide del triatómino, o bien los parásitos pueden ser arrastrados por las patas del insecto, y/o si la persona se rasca la lesión, se contamina los dedos y luego al despertar se frota los ojos, boca, etc. Una vez en el mamífero, los tripomastigotes que se dividen y se transforman en tripomastigotes, la célula infectada puede reventar y liberar tripomastigotes sanguíneos que se diseminan. Las células musculares y neuronales son principalmente las infectadas, el ciclo biológico se completa cuando un triatomino al picar, succiona sangre con tripomastigotes sanguíneos y se infecta (WHO, 1991; Macedo *et al.*, 2002) (figura 3).

Figura 3. Ciclo de vida de Trypanosoma cruzi (Modificado de http://dpd.cdc.gov/dpdx)

I.5. TRANSMISIÓN.

Esta enfermedad, era originalmente una zoonosis silvestre que afectaba a diversos animales, como *Rattus norvegicus* (rata), *Dasypus nobemcinctus* (armadillo), *Didelphys marsupialis* (tlacuache), *Peromiscus sp.* (ratón de campo), entre otros; posteriormente paso a ser una entidad domiciliaria cuando el hombre invadió el medio silvestre perturbando tanto a la fauna como a la flora, por estas circunstancias *T. cruzi* pudo ser transmitido al ser humano (López, 2000; Coura *et al.*, 2002; Moncayo, 2003).

• Infección por triatominos

El principal mecanismo de infección de *T. cruzi*, para el humano, es a través de las deyecciones de triatóminos infectados. Los insectos vectores de la enfermedad de Chagas pertenecen al Orden Hemiptera, Familia Reduviidae y subfamilia Triatominae (Martínez, 2003).

• Infección por transfusión sanguínea

La transfusión de sangre infectada con *T. cruzi* es considerado el segundo mecanismo de infección y sucede con relativa frecuencia, en los países donde no se

tienen control adecuado de los donadores de sangre, (WHO, 2002). Se ha observado que este parásito mantiene su viabilidad a la temperatura del refrigerador 4°C durante dos meses (Yoshida y Schenkman, 1997). La migración humana de áreas endémicas es considerada un alto factor de riesgo de infección por transfusión sanguínea en países no endémicos (Moncayo, 2003).

Infección por transplante de órganos

En algunos casos se han encontrado parásitos en diversos órganos que pueden ser transplantados, este tipo de transmisión puede ser fatal, dado que el individuo receptor del órgano, recibe un tratamiento inmunosupresor para evitar el rechazo de órgano (WHO, 1991; WHO, 2002).

• Chagas congénito y neonatal

Durante la segunda mitad de la gestación los tripomastigotes sanguíneos pueden traspasar la barrera placentaria e infectar al producto. La infección intrauterina con *T. cruzi* puede provocar aborto ó nacimientos prematuros, en la infección congénita los órganos afectados son corazón, intestino, cerebro, músculo esquelético, esófago (Brener, 1973; WHO, 1991).

• Infección oral

Se ha demostrado en este tipo de infección en animales de experimentación, aunque en humano no se ha reportado algún caso, pero puede existe la posibilidad de una transmisión por el consumo de alimentos infectados (WHO, 1991; Coura *et al.*, 2002).

Infección en el laboratorio

La infección se puede dar por accidentes que ocurren al manipular sangre infectada de animales utilizados para mantener las cepas de *T. cruzi* (WHO, 1991; Macedo *et al.*, 2004).

• Infección por manipulación de animales

Sucede sobre todo en cazadores que desollan animales y manipulan carnes infectadas (Tay et al., 1996).

I.6. MANIFESTACIONES Y PATOLOGÍA DE LA ENFERMEDAD DE CHAGAS.

Se reconocen tres fases de la enfermedad de Chagas o Tripanosomiasis Americana:

• Fase aguda

Es de corta duración, en la mayoría de los casos no hay síntomas o signos de entrada del parásito y cursan asintomáticos; pero en niños se encuentran principalmente el Signo de Romaña-Mazza que se caracteriza por edema bipalpebral unilateral, indoloro, hipermia conjuntival, escasa secreción conjuntival, dacriocistitis del ojo infectado y adenopatía local, en la que están comprometidos los ganglios cercanos al sitio de penetración de *T. cruzi* con desaparición espontánea en unos 15 días (WHO, 1991).

También pueden existir complicaciones viscerales que se caracteriza por fiebre generalmente no mayor de 38°C, hepatoesplenomegalia, poliadenitis generalizada, diarrea, signos bronquiales cardiomegalia y meningoencefalia. La evolución de los enfermos aparentemente es benigna y curan en unos meses, aunque en el 10% de los casos de infección puede ser mortal (WHO, 1991).

• Fase crónica indeterminada o asintomática

En esta fase los signos y síntomas parecen haber desaparecido de manera espontánea, pero los parásitos se multiplican lentamente dentro de las células; permaneciendo esta situación por mucho tiempo; la presencia de parásito es detectada por la producción de anticuerpos (Bustamante *et al.*, 2003).

• Fase crónica sintomática

Puede aparecer muchos años después de la fase aguda, en la que se presentaron o no síntomas (Prata, 2001). Se caracteriza por la ausencia de parásitos en circulación, pero con un nivel elevado de anticuerpos. De un 20% a un 35% de los individuos infectados desarrollan esta fase, pero esto depende de la cepa infectante y susceptibilidad del hospedero. Los individuos con enfermedad de Chagas crónica, suelen presentar daño irreversible en corazón, esófago, colon y sistema nervioso periférico (Coura et al., 1983), los cuales se descubren por estudios electrocardiográficos o radiológicos, en los que observa una cardiomegalia con insuficiencia cardiaca, alteraciones del electrocardiograma (WHO, 1991).

Los pacientes pueden vivir muchos años asintomáticos o bien se hacen aparentes la disnea, palpitaciones, dolor precordial e insuficiencia cardiaca o se puede presentar muerte súbita en individuos sin síntomas importantes previos. La evolución de la miocarditis es insidiosa y en ocasiones se suelen presentar accidentes cerebrales de tipo vascular ocasionados por trombos (Palacios-Pru *et al.*, 1989; WHO, 1991). En algunos países endémicos de Latino América, este padecimiento es la principal causa de lesiones cardiacas en jóvenes y adultos en edad productiva (WHO, 2002; Moncayo, 2003).

Cerca de 6% de los individuos que desarrollan la fase crónica de la enfermedad presentan alteraciones del tubo digestivo, los llamados megas, frecuentemente megaesófago y megacolon; aunque estas estimaciones varían de país en país (López *et al.*, 1989; Adad *et al.*, 1991; WHO, 1991). En el caso del megaesófago, se ha visto la destrucción de los ganglios que están en las paredes viscerales, lo que trae como consecuencia trastornos en la motilidad esofágica, con aparición de disfagia, dolor epigástrico, regurgitaciones, etc. (Brener, 1987; Palacios-Pru *et al.*, 1989; Adad *et al.*, 1991).

I.7. HETEROGENEIDAD GENÉTICA DE Trypanosoma cruzi

T. cruzi esta compuesto de poblaciones de cepas que circulan entre vectores, reservorios silvestres y el hombre que muestran una gran heterogeneidad en su biología, tasa de crecimiento, infectividad, tropismo, composición antigénica, virulencia, genética y susceptibilidad a drogas quimioterapéuticas (Murta *et al.*, 1998; Revollo *et al.*, 1998; Martínez-Díaz *et al.*, 2001; Torres *et al.*, 2004).

Diversos estudios biológicos, bioquímicos y moleculares han demostrado que *T. cruzi* es un taxón heterogéneo. El primer método que demostró la diversidad genética de *T. cruzi* fue realizado por el análisis de variantes electroforeticas de enzimas celulares (isoenzimas). Basado en la variabilidad isoenzimática de 6 loci, Miles *et al.*, (1977) propusieron la existencia de 3 grupos isoenzimáticos (zimodemas Z1, Z2 y Z3) de *T*.

cruzi. Estudios epidemiológicos demostraron que Z1 y Z3 se asocian con el ciclo silvestre y Z2 con el ciclo domestico de transmisión (Miles *et al.*, 1977).

Más tarde se confirmó este polimorfismo genético por el polimorfismo en la longitud de fragmentos de restricción, RFLP (por sus siglas en inglés), tipificando partes del minicirculo del DNA cinetoplasto (kDNA) llamados schizodemas (Jaramillo *et al.*, 1999; Brisse et al. 2000). La heterogeneidad en las poblaciones de *T. cruzi*, han sido también analizadas por diversas metodologías como LSS-PCR (low astringency single specific primer), polimorfismo del mini exon, polimorfismo en rDNA y análisis de microsatélites (Macedo *et al.*, 2004). Este tipo de estudios sugieren que las poblaciones naturales *T. cruzi*, tienen una estructura clonal. Además se ha podido subdividir el taxón en 2 grupos principales, llamados por consenso internacional *T. cruzi* I y *T. cruzi* II. El grupo *T. cruzi* I corresponde a Z1, mientras Z2 y Z3 están incluidos en el grupo *T. cruzi* II. Brisse et al (2000), al realizar un estudio de amplificación al azar de DNA polimorfito, RAPD (por sus siglas en inglés) identificaron 5 subdivisiones en el grupo *T. cruzi* II y propuso la existencia de 6 principales grupos discretos de *T. cruzi* llamados linajes I, IIa, IIb, IIc, IId, y IIe.

En cuanto a la caracterización de los aislados mexicanos de *T. cruzi*, el grupo de trabajo de la Dra. Bertha Espinoza, realizó un análisis de la diversidad genética de las poblaciones *T. cruzi* en México por isoenzimas y RAPD; encontrando que cerca del 98% de las cepas mexicanas pertenecen al linaje *T. cruzi* I y solo un 2% pertenecen al grupo *T. cruzi* II (López-Olmos *et al.*, 1998; Bosseno *et al.*, 2002). Estos resultados contrastan con la situación de los países de Sudamérica en donde los parásitos que circulan, son una mezcla de ambos linaje (Bosseno *et al.*, 2000; Brisse *et al.*, 2000; Coura *et al.*, 2002).

Estas características influyen en las manifestaciones clínicas que se presentan en cada país por ejemplo, en Brasil, la fase indeterminada de la enfermedad es la forma común (60-70%), seguida de las formas cardiacas (20-30%) y digestivas (8-10%); la forma cardio-digestiva es poco frecuente. Sin embargo en Chile, la forma digestiva de la enfermedad de Chagas es la más frecuente, la cuál prácticamente no existe en Venezuela y América Central (Lima *et al.*, 1999; Macedo *et al.*, 2004).

Actualmente el laboratorio de Inmunología de la Dra. Bertha Espinoza, cuenta con un cepario con más de 100 aislados diferentes, de los cuales la mayoría, ya han sido caracterizadas genéticamente, los cuales muestran un comportamiento biológico diferente que va desde no virulento a muy virulento (Espinoza *et al.*, 1998; López-Olmo *et al.*, 1998).

I. 8. INTERACCIÓN PARÁSITO - HOSPEDERO.

En la enfermedad de Chagas se plantea la inmunosupresión como un mecanismo empleado por el parásito para establecer la infección (Tafuri, 1999).

Se ha reportado que *T. cruzi* posee moléculas regulatorias del sistema de complemento que tienen distintos pesos moleculares pero coinciden en su capacidad de bloquear la activación del complemento en la superficie del parásito evitando su lisis.

Hasta el momento se especula con por lo menos tres mecanismos de resistencia al complemento: Trans-sialidación: El tripomastigote no sintetiza ácido siálico, sin embargo posee la trans- sialidasa, que es capaz de obtenerlo a partir de glicoproteínas del hospedero. El ácido siálico es un factor de virulencia debido a su capacidad de aumentar la eficiencia de activación de los factores I y H hacia la C3 convertasa, necesaria en la cascada del complemento (Ribeirao *et al.*, 2000; Buschiazzo *et al.*, 2002; Todeschini *et al.*, 2002). Otro mecanismo sería la eliminación de proteínas de membrana: aparentemente existiría un mecanismo dependiente de fosfolipasa, por el cual el parásito elimina las proteínas de su membrana, que podrían estar unidas, o no, a efectores de la respuesta inmune (Villalta *et al.*, 2001). Por ultimo, los tripomastigotes de *T. cruzi* poseen una glicoproteína superficial cuya actividad se asemeja a la actividad de DAF (decay accelerating factor), uniéndose a C3b y C4b e inhibiendo la C3 convertasa, lo que impide la formación y aceleran la degradación de las vías alternativas y clásica del complemento (Andrews *et al.*, 1990).

Por otra, parte *T. cruzi* penetra el macrófago por un evento fagocítico. La entrada a otros tipos celulares se considera un evento activo dirigido por el parásito y mediado por receptores (Burleigh y Andrews, 1995).

Además es posible que enzimas como proteasas y glicosidasas jueguen un papel crucial en facilitar la entrada del parásito, la presencia y abundancia de estas dependen del estadio del ciclo biológico en que se encuentre el parásito (Yoshida y Schenkman, 1997). Diferentes moléculas de superficie se han asociado con la invasión celular. Como por ejemplo, proteoglicanos sulfato heperan, algunos miembros de la superfamilia gp85/trans-sialidasa, gp83 trans-sialidasa, Tc85, gp82, han sido clasificados como antígenos o proteínas asociadas a la penetración, que se unen a receptores de fibronectina y colágena y son responsables del reconocimiento celular (Burleigh y Andrews, 1995; Silber et al. 2002; Cortez *et al.*, 2003; Calvet *et al.*, 2003).

Se piensa también que la fibronectina facilita la unión y entrada del parásito a la célula hospedadora. Todos los estadios de *T. cruzi* son capaces de unirse a fibronectina y su presencia en ensayos *in vitro*, aumenta la unión del parásito a la célula blanco fagocítica, pero sólo los tripomastigotes logran entrar en células no fagocíticas, evidenciando que en la invasión a este tipo de células interactuarían otros factores. También la penetrina, es una proteína que une heparina y se piensa que es la responsable de la unión y penetración de *T. cruzi* a diferentes células de mamíferos (Ortega-Barria *et al.*, 1991; Vieira *et al.*, 2000).

En *T. cruzi* se ha propuesto que, en particular glicoconjugados de proteínas y galactosas en la superficie células hospederas, participan en la invasión del parásito a células hospederas no fagocíticas (Silber *et al.*, 2002; Viera *et al.*, 2002).

El medio por el cual se piensa que los amastigotes pueden vivir intracitoplásmicamente dentro de los macrófagos es por medio de una hemolisina, que se encuentra relacionada con el componente C9 del complemento (Burleigh y Andrews, 1995). Los tripomastigotes escapan de la acción de los fagolisosomas evitando la destrucción por los metabolitos del oxígeno y por las enzimas lisosómicas. Entonces comienzan a dividirse por fisión binaria en el citoplasma, se transforman en amastigotes, mientras que los epimastigotes son destruidos (Burleigh y Andrews, 1995; Abrahamsohn y Coffman, 1996; Yoshida *et al.*, 2000; Silber *et al.*, 2002).

I.9. RESPUESTA INMUNE CONTRA Trypanosoma cruzi.

La resistencia del hospedero a la infección contra *T. cruzi* depende de la inmunidad innata y adquirida, que requiere los efectos combinados de varios tipos celulares, entre los que se incluye, células natural killer (NK), células T CD4+, CD8+, y de la producción de anticuerpos por parte de las células B. Las citocinas juegan un papel importante en la regulación de la replicación del parásito y en mediar la respuesta inmune en los animales infectados (Abrahamsohn y Coffman, 1996; Henriques-Pons *et al.*, 2002; Hamano *et al.*, 2003).

Los anticuerpos puede actuar directamente sobre el parásito para dañarlo ya sea por si mismos o al activar el sistema de complemento. De igual manera, pueden reforzar la fagocitosis por parte de las células presentadoras de antígenos. Se sabe que las inmunoglobulinas ofrecen resistencia contra reinfecciones. Pero no todas las clases de anticuerpos son efectivas en transferir inmunidad contra *T. cruzi*, las IgM se producen en las etapas tempranas de la infección, pero no confieren inmunidad; los isótipos que en modelo murino de infección son efectivos son IgG2a y IgG2b. El equivalente en humanos son IgG1 e IgG3 y ejercen su función a través de citotoxicidad dependiente de anticuerpos y activación del complemento (Takle y Snary, 1993; Pereira *et al.*, 2003). Los macrófagos son las células de la primera línea de defensa que se adhieren y fagocitan a los parásitos mediante mecanismos inespecíficos; su eficacia se refuerza notablemente por la opsonización del parásito con anticuerpos y C3b del complemento lo que conduce a una rápida eliminación del protozoo.

La resistencia en modelo murino a la infección experimental con *T. cruzi* ha sido asociada con la producción de citocinas pro-inflamatorias como la interleucina 12 (IL-12) que dispara la producción de interferón gamma (IFN- γ) por parte de las células NK, CD4+ Th1 y CD8+. El factor de necrosis tumoral α (TNF- α) es otra citocina que se ha relacionado con la protección contra el parásito (Santos-Lima *et al.*, 1997; Hoft y Eickhoff, 2002).

El papel de IL-12 en el control de la infección de *T. cruzi in vivo* fue demostrado, con el tratamiento de anticuerpos anti-IL-12 en ratones infectados, observándose una alta parasitemia y una alta mortalidad en comparación con el grupo

infectado pero sin tratamiento de anticuerpos. Un tratamiento con IL-12 exógeno, en ratones infectados, reduce la parasitemia y prolonga significamente la sobrevivencia, respecto a los ratones sin tratamiento. Este efecto de protección fue correlacionado con un incremento de los niveles en suero de IFN- γ y TNF- α . Otras citocinas derivadas de macrófagos (por ejemplo, IL-1 β y TNF- α) y derivadas de linfocitos T (IL-2) potencializan los efectos de IL-12 (Aliberti *et al.*, 1996; Silva *et al.*, 1998; Stempin *et al.*, 2002; Da–Silva *et al.*, 2003).

El IFN- γ activa a macrófagos, lo que los hace capaces de llevar a cabo la presentación de antígenos por moléculas del MHC clase II, la liberación de productos germicidas tales como el peróxido de hidrógeno y proteasas, además de activación de la sintetasa de óxido nítrico inducible (iNOS) requerida para la producción de óxido nítrico (NO) para eliminar a la forma intracelular de *T. cruzi*, el amastigote (Melo *et al.*, 2003).

Además de controlar la replicación del parásito el IFN- γ induce la secreción de TNF- α , regulando negativamente la diferenciación Th2, disminuyendo los niveles secretados de interleucina 10 (IL-10). La administración de IFN- γ recombinante incrementa la resistencia en ratón y la neutralización de IFN- γ endógeno incrementa la susceptibilidad durante la fase aguda de la infección con *T. cruzi*. El TNF- α también se ha asociado con la activación de macrófagos, porque provee de una segunda señal que induce la actividad microbicida, en macrófagos activados por IFN- γ para la producción de NO (Aliberti *et al.*, 1996; Abrahamsohn, 1996; Rodrígues *et al.*, 2000).

También se ha observado que la neutralización del IFN- γ y la depleción de células NK dan por resultados un incremento en la susceptibilidad a la infección y en la producción de IL-10, lo cual sugiere que la principal fuente de IFN- γ son las células NK en la fase aguda de la infección. Por otro lado, la interleucina 12 (IL-12), ha sido descrita como un potente inductor de la producción de IFN- γ por parte células NK, linfocitos T CD4⁺ Th1 CD8⁺ (Hoft *et al.*, 2000; Antúnez y Cardoni, 2000).

Por otro lado, se ha asociado con la susceptibilidad a la infección a la citocinas IL-10, IL-4 y TGF-β, mediante la inhibición de la activación de macrófagos mediada

por IFN- γ . Se ha demostrado que la inhibición de IL-10 con un anticuerpo monoclonal (mAb) contra IL-10, incrementa la producción de IFN- γ inducida por *T. cruzi* tanto *in vitro* como *in vivo*, lo que sugiere que esta citocina disminuye la producción de IFN- γ , inhibiendo la síntesis de IL-12 por parte de los macrófagos durante la infección con *T. cruzi* en ratón (Holscher *et al.*, 2000).

La neutralización de IL-4 endógena por anticuerpos, en ratones infectados con *T. cruzi,* reduce la parasitemia e incrementa la sobrevivencia y la producción de óxido nítrico; aunque estos efectos varían dependiendo de la cepa infectante y del fondo genético del ratón (Hiyama *et al.,* 2001). El mecanismo por el cual TGF- β inhibe la síntesis de IFN- γ es desconocido. Lo que es claro es que esta citocina es un potente modulador de la resistencia durante la fase aguda de la enfermedad de Chagas.

En el sitio de inflamación se ha detectado un infiltrado celular predominante de linfocitos T CD4⁺, CD8⁺ y macrófagos (Talvani *et al.*, 2000). El papel protector de los linfocitos T CD8⁺ en la fase aguda de la infección con *T. cruzi* ha sido demostrado en varios trabajos en los que se observa una susceptibilidad a la infección en ratones deficientes de este grupo celular. Por otro lado, al transferir linfocitos T CD8⁺ activados, en ratones susceptibles a la infección estos confieren resistencia a la infección con *T. cruzi* (Grisotto *et al.*, 2001). Este grupo celular ejerce sus funciones protectoras contra *T. cruzi* por mecanismos citolíticos dependientes de perforinas, dado que ratones deficientes de perforinas exhiben una alta susceptibilidad a la infección (Nickell y Shama, 2000), pero también secretan citocinas como el IFN- γ la cual se sabe que incrementa la protección contra *T. cruzi* como se menciono anteriormente.

Los linfocitos CD4⁺ Th1 también son una población celular de suma importancia por su papel en la producción de citocinas como IL-2 e IFN- γ las cuales inducen la activación de macrófagos que eliminan al parásito, así como promueven la diferenciación de más células Th1 (Hoft et al., 2000). Este tipo de respuesta ha sido asociada con protección a la infección con *T. cruzi* en algunos modelos murinos. Además, se ha observado que una respuesta incontrolada o un desequilibrio en la respuesta Th1/Th2 puede ser la causante de la patogénesis observada en la enfermedad de Chagas (Tarleton *et al.*, 1994). También se ha determinado que la función de los macrófagos en la infección experimental con *T. cruzi* es fundamental para el control de la replicación del parásito por mecanismos que involucran la síntesis y producción de óxido nítrico (Melo *et al.*, 2003). Existen otros grupos celulares que están involucrados en la respuesta inmune contra *T. cruzi* como los neutrófilos, se ha observado que la eliminación de este grupo celular por medio de anticuerpos en ratones BALB/c, incrementa la mortalidad de los ratones, mientras que la eliminación de esta misma células en ratones C57BL/6 tiene una función protectiva, dejando ver que el fondo genético del hospedero influye en la severidad de la patología de la enfermedad (Chen *et al.*, 2001).

I.10. QUIMIOCINAS

El reclutamiento celular es un aspecto crucial en el desarrollo de la respuesta inmune contra *T. cruzi*. Los tipos celulares que predominan en el sitio de inflamación dependen de factores quimiotácticos producidos localmente. Para ejercer su función efectora dichas células, deben dirigirse al sitio de infección e inflamación, para montar una respuesta inmune eficiente.

Dentro de los factores mediadores de la respuesta inmune se encuentran las quimiocinas que son citocinas descritas originalmente por su actividad quimiotáctica sobre diversas células del sistema inmune a los sitios de inflamación.

Bioquímicamente las quimiocinas son péptidos de bajo peso molecular (6 a 14 kDa), y son codificadas como una secuencia protéica de 70 a 125 aminoácidos. La estructura monomérica de las quimiocinas presenta un asa en extremo amino-terminal corta seguida de 3 hojas β anti-paralelas unidas por asas y una α -hélice en el extremo carboxilo-terminal (Murphy *et al.*, 2000; Olson y Ley, 2002).

Basado en la posición de los primeros dos residuos conservados de cisteinas, se han agrupado en cuatro subfamilias: C-X-C (α), C-C (β), C (γ) y C-X₃-C (δ) (Zlotnik y Yoshie, 2000; Thorpe, 2002) (figura 4 y tabla 1).

Las quimiocinas pueden subclasificarse en ELR+ y ELR-, basados en la presencia o ausencia de motivo ácido glutámico-leucina-arginina en la región amino terminal, esta clasificación trata de correlacionar la función de las quimiocinas con su

estructura. Las quimiocinas CXC ELR+ son específicas para neutrófilos; las quimiocinas CXC ELR- son potentes quimioatrayentes de monocitos y linfocitos, pero no de neutrófilos y algunas de ellas actúan también sobre basófilos y eosinófilos. La linfotaxina (quimiocinaγ) actúa específicamente sobre linfocitos y la fractalkina o neurotactina tiene efecto sobre neutrófilos, linfocitos T y monocitos (tabla 1 y 2) (Martínez y Hernández, 1999; Murphy *et al.*, 2000).

CXC:	CXCC.	• • • • •	n>15
CC:	cc.	••••	n>25
C:	CC		n=2
CX ₃ C:	СХХХСС.	• • • • •	n=1

Figura 4: Clasificación estructural de la familia de quimiocinas basado en cisteinas. El número de miembros en cada sub-clasificación se encuentra a la derecha de cada estructura. Las líneas son para alinear; las C son cisteinas; las X y los puntos son cualquier aminoácido pero no cisteina. Los espacios entre las cisteinas son similares en los cuatro grupos. Las regiones N y C terminal puede variar en tamaño (Modificado de Murphy *et al.* 2000).

En humanos los genes que codifican para quimiocinas inflamatorias se encuentran en los cromosomas 4 (CXC) y 17 (CC), mientras los genes para las quimiocinas homeostáticas se encuentran localizados en los cromosomas 1, 2, 5, 7, 9, 10, y 16 (Murphy et al., 2000).

Las quimiocinas no solo son secretadas por células del sistema inmune, si no también, por otros tipos celulares como fibroblastos, queratinocitos, células del músculo liso, células del endotelio, etc. en respuesta a mediadores como la interleucina 1 (IL-1) y TNF- α (Oppenheim, 2001; Ajuebor *et al.*, 2002). Las quimiocinas pueden ser secretadas al torrente sanguíneo o pueden permanecen en los tejidos, inmovilizadas por unión a proteoglicanos sobre la superficie celular y/o a proteínas de la matriz extracelular (Olson y Ley, 2002).

Las quimiocinas median su actividad sobre las células blanco, por la unión a sus receptores que se caracterizan por poseer siete dominios transmembranales y estar acoplados a proteínas G, conocidos también como receptores serpentina (figura 5) (Olson y Ley, 2002).

La secuencia de los receptores de quimiocinas, tiene entre un 25-80% de aminoácidos idénticos, lo que sugiere que tienen un antecesor común. Estos receptores tiene características conservadas como la longitud de 340 a 370 aminoácidos, una segmento ácido en la región N-terminal, un motivo DRYLAIVHA en el segundo dominio intracelular que se piensa esta involucrado en el funcionamiento del receptor, así como tercer dominio intracelular básico, la presencia de cisteínas en el extremo amino-terminal y en las 3 primeras asas extracelulares le permite formar puentes disulfuro, necesario para formar el sitio de unión para su ligando (Murphy *et al.*, 2000; Balkwill, 1998).

La estructura tridimensional de los receptores de quimiocinas no es conocida. De acuerdo a su secuencia de aminoácidos, los receptores de quimiocinas se clasifican dentro de la familia de proteínas tipo rodopsina de clase A (Olson y Ley, 2002).

Los receptores, que unen quimiocinas de la familia CXC son llamados CXCR y los receptores que unen a las quimiocinas CC se les designan CCR seguido de un número. Hasta el momento se han caracterizado en humano cinco receptores para las quimiocinas CXC y ocho receptores para las quimiocinas CC. El receptor de la linfotactina y fractalkina son llamados XCR1 y CX3CR1 respectivamente. La mayoría de los receptores pueden reconocer a más de una quimiocina, del mismo modo éstas se pueden ligar a más de un receptor (ver tabla 2).

Nombre sistemático*	Nombre común en	Nombre común en	Unión a recentores	Tipo de	Expresión	Función sugerida y sitio de expresión
CYCL1			CYCP2	FI P+	Inducible	
CXCL2	CROB MID 20	KC	CXCR2	ELR+	Inducible	Sitios inflamatorios neutrófilicos,
CXCL3	GROY MIP 2B	KC	CXCR2	ELR+	Inducible	lesiones por aterosclerosis
CXCL4	PE4	PE4	CYCR2	ELR-	Inducible	
CXCL5	FNA-78		CXCR2	FLR+	Inducible	
CXCL6	GCP-2	CK a-3	CXCR1 2	FLR+	Inducible	Sitios inflamatorios neutrófilicos
CXCL7	NAP-2	CIKU 5	CXCR2	ELR+	Inducible	Shies manaches near onnoos
CXCL8	IL-8		CXCR1, 2	ELR+	Inducible	Inflamación neutrófilica, lesión pulmonar
						aguda, ateroesclerosis, hígado
CXCL9	Mig	Mig	CXCR3	ELR-	Inducible	Inflamación Th1; CNS, lesión intestinal
CXC10	IP-10	IP-10, CRG-2	CXCR3	ELR-	Inducible	
CXC11	I-TAC		CXCR3	ELR-	Inducible	Inflamación Th1
CXC12	SDF-1	SDF-1	CXCR4	ELR-	Constitutiva	Medula ósea, timo, pulmón y órganos linfoides
CXCL13	BLC, BCA-1	BLC, BCA-1	CXCR5	ELR-	Constitutiva	Folículos linfoides
CXCL14	BRAK, bolekina			ELR-		
CXC15		Lunkine		ELR-		
CXCL16	CXCL16	CXCL16	CXCR6	ELR-, TMD+		Inflamación Th1
CCL1	I-309	TCA-3	CCR8	4 cisteínas	Inducible	Inflamación Th2
CCL2	MCP-1, MCAF	JE	CCR2	4 cisteínas	Inducible	Inflamación Th2; hígado, SNC, daño
						pulmonar por alergia, lesión por
						ateroesclerosis
CCL3	MIP-1a	MIP-1a	CCR1, 5	4 cisteínas	Inducible	Inflamación Th1; pulmón, SNC,
CCL4	Mip-1β	Mip-1β	CCR5, 8	4 cisteínas	Inducible	ateroesclerosis
CCL5	RANTES	RANTES	CCR1, 3, 5	4 cisteínas	Inducible	Inflamación Th1, Th2; pulmón; SNC,
						lesiones en piel, ateroesclerosis.
CCL6		MRP-1		4 cisteínas	Inducible	
CCL7	MCP-3	MARC	CCR1, 2, 3	6 cisteínas	Inducible	Inflamación Th1, Th2; SNC, lesion
CCL8	MCP-2	MCP-2	CCR3	4 cisteínas	Inducible	pulmonary.
CCL9		MRP-2 MIP-1a		6 cisteínas		
CCL10		CCF18		4 cisteínas		
CCL11	Eotaxina	Eotaxina	CCR3	4 cisteínas	Inducible	Inflamación Th2, alergia pulmonar,
						enfermedad de la piel.

 Tabla 1. Clasificación y nomenclatura sistemática de las quimiocinas.

Nombre sistemático*	Nombre común en humano	Nombre común en ratón	Unión a receptores	Tipo de quimiocina	Expresión	Función sugerida y sitio de expresión
CCL12		MCP-5	CCR2	4 cisteínas	Inducible	Inflamación Th1, Th2, enfermedad
CCL13	MCP-4		CCR2, 3	4 cisteínas	Inducible	alérgica pulmonar
CCL14	HCC-1, CKβ1		CCR1	4 cisteínas		
CCL15	HCC-2, Lkn-1 MIP-5		CCR1, 3	6 cisteínas		
CCL16	HCC-4, LEC Mtn-1	LCC-1	CCR1	4 cisteínas		
CCL17	TARC	TARC	CCR4	4 cisteínas	Inducible	Inflamación Th2 en piel.
CCL18	DC-CK1, PARC			4 cisteínas	Constitutiva	Zonas linfoides de células T
CCL19	MIP-3β, ELC, ckβ11	MIP-3β, ELC	CCR7	4 cisteínas	Constitutiva	Zonas linfoides de células T
CCL20	MIP-3β, LARC	MIP-3β, LARC	CCR6	4 cisteínas	Constitutiva	Vellos intestinales; piel
CCL21	6Ckine, SLC, ckβ9	SLC, TCA-4	CCR7	6 cisteínas	Constitutiva	Órganos linfoides, HEV
CCL22	MDC, STCP1	Abcd-1	CCR4	4 cisteínas	Ambas	Timo, enfermedad alérgica en pulmón.
CCL23	MPIF-1, ckβ8-1		CCR1	6 cisteínas		
CCL24	MPIF-2		CCR3	4 cisteínas	Inducible	Inflamación Th2
CCL25	TECK, ckβ15		CCR9	4 cisteínas	Constitutiva	Intestino delgado, timo.
CCL26	Eotaxina-3, MIP-4 α		CCR3	4 cisteínas	Inducible	Inflamación Th2.
CCL27	CTACK, ILC, ESkine	ALP, skinine	CCR10	4 cisteínas	Constitutiva	Piel.
CXCL1	Fractalkina	Neurotactina	CX ₃ CR1	TMD^+	Ambas	Omnipresente
XCL1	Linfotactina, ATAC	Linfotactina	XCR1			_

Tabla 1 continuación.

Clasificación y nomenclatura sistemática de las quimiocinas y su correlación humano/ratón definida por Zlonik y Yoshie (2000). ^{Abreviaciones} GRO, encogen relacionado con el crecimiento; MGSA, MIP, proteína inflamatoria de macrófagos; PF, factor plaquetario; ENA, factor activador de neutrófilos derivado de células endoteliales; LIX, quimiocina humana CXC inducida por lipopolisacáridos; GCP, proteína quimiotáctica de granulocitos; CK, quimiocina; NAP, proteína activadora de neutrófilos; IL, interleucina; MIG, monocina inducida por interferón-γ; IP-10, proteína inducida por IFNγ; CRG, quimiocina sensible a gamma; I-TAC, quimioatrayente de linfocitos T inducida por IFNγ; SDF, factor de células estromales; BCA-1, quimiocina activadora de células B; BLC, quimioatrayente de células B; BRAK, quimiocina expresada en pecho y riñón; TCA, proteína activadora de células T; MCP, proteína inflamatoria de macrófagos; MCAF, factor activador y quimiotáctico de monocitos; RANTES, factor de regulación y activación expresado y secretado por células T normales; MRP, proteína relacionada con MIP; CCF, factor de quimiocinas CC; HCC, quimiocina CC de hemofiltrado; Lkn, leucotactina; LEC, quimiocina expresada en hígado; Mtn, monotactina; LCC, quimiocina especifica de hígado; TARC, quimiocina de timo relacionada con activación; DC-CK, quimiocina de células dendríticas; PARC, quimiocina pulmonar reguladora de la activación; ELC, quimiocina ligando-receptor del virus Epstein-Barr; LARC, quimiocina de hígado e inductora de activación; 6Ckina, quimiocina de tejido linfoide secundario; MDC, quimiocina derivada de macrófagos; STPC, quimiocina de células T activadas, MPIF, factor inhibidor de progenitores mieloides; TECK, quimiocina expresada en timo; CTACK, quimiocina de activación; dellas T activadas, MPIF, factor inhibidor de progenitores mieloides; TECK, quimiocina expresada en timo; CTACK, quimiocina en la región amino-terminal; KC, JE, I-309, MARC, abcd-1, ATAC, nombres derivados a partir de nombre de genes; TMD, dominio transmembranal

Figura 5. Representación esquemática del receptor de quimiocina (Tomado de http://www.rndsystems.com/asp/g SiteBuilder.asp?BodyID=192#chemr).

I.11. FUNCIONES BIOLÓGICAS DE LAS QUIMIOCINAS.

Quimiotaxis

La quimiotaxis es definida como la migración directa en repuesta a un gradiente de concentración. La quimiotaxis esta involucrada en los procesos de regulación que mantienen la homeostasis del organismo y modulan la respuesta inflamatoria. Ejemplos de fenómenos inducidos por quimiotaxis son el rodamiento (rolling) de las células por los vasos sanguíneos, arresto de células en el endotelio y tráfico celular a distintos órganos linfoides. Dentro de los tejidos linfoides, existen complejas interacciones celulares, que son mediados por las quimiocinas. Se ha demostrado en ratones deficientes de ciertas quimiocinas, que la arquitectura de los tejidos linfoides es afectada (Chensue, 2001).

Angiogénesis y angiostasis

Este proceso es dirigido por factores angiogénicos, promotores de la formación de vasos y angiostáticos que lo inhiben. Se ha establecido que quimiocinas CXC ELR, como IL-8, GRO α , GRO β son potentes factores angiogénicos y son capaces de estimular la quimiotaxis de células endoteliales, mientras que las quimiocinas sin este motivo, como IP-10 y MIG son potentes angiostáticos los cuales inhiben la quimiotaxis de las células (Zlotnik y Yoshie, 2000).

Desarrollo de Linfocitos

También se ha visto que las quimiocinas están involucradas en el desarrollo de las células T y B. Ratones deficientes de CXCL12/SDF-1, CCL3, CCL4 y XCL1, muestran defectos en la linfopoyesis de las células B, y la arquitectura del órgano se ve afectada, lo que demuestra que esta quimiocina es importante en mantenimiento del micro-ambiente en el timo. Las quimiocinas también regulan el desarrollo de timocitos, ya que se ha visto que células precursoras de linfocitos T, tienen una expresión diferencial de receptores de quimiocinas dependiendo del estadio de desarrollo, lo que les permite migrar de la corteza a la médula. Los timocitos médulares responden a CCL19 y CCL21 (CCR7); mientras que los timocitos inmaduros migran en presencia de CCL25 pero pierden la capacidad de responder a esta quimiocina con la maduración, antes de salir del timo (Savino *et al.*, 2002).

Activación celular

Algunas quimiocinas son capaces de estimular la activación celular. Por ejemplo el tratamiento con IL-8, estimula la neutrófilos para que liberen enzimas y provocar el estallido respiratorio. En basófilos induce la liberación de histamina y leucotrenos. Algunas quimiocinas son capaces de proporcionar una señal co-estimuladora para la proliferación de linfocitos T y promover las funciones efectoras de estas células. Las quimiocinas CXC como MIP-1 α , MIP-1 β , RANTES y MCP-1 pueden incrementar la

Immony Chilas ChilsII <t< th=""><th>Timessites</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>· ·</th><th></th><th>`</th><th></th><th></th><th>L i</th><th></th></t<>	Timessites								· ·		`			L i	
CallabCallabConstraintConst	C(1 L CD24)									T	- T			- T	- T
Chailes NA Linketion SImage: Solution S<	Celulas CD34+				+							+			
Lindecist I <td>Células NK</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Células NK						+			+					
LinkburdyConstant of the second s	Linfocitos B			+	+	+		+			+	+	+	+	
DC matername Consideration Cons	Linfocitos T			+	+	+	+	+	+	+	+	+	+	+	+
Drandungs Centre into into into into into into into into	DC inmaduras				+		+			+	+	+			
Introduction Macriandow Mac	DC maduras				+						+		+		
Naccount ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· Baseline ··· ··· ··· ··· ··· ··· ··· ··· ··· Baseline ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· Residue ··· ··· ··· ··· ··· ··· ··· ··· ··· Residue ··· ··· ··· ··· ··· ··· ··· ··· ··· Residue ··· ··· ··· ··· ··· ··· ··· ··· ··· Residue ··· ··· ··· ··· ··· ··· ··· ··· ··· Residue ··· ···· ···· ···· ···· ···· ···· ···· ···· ···· Residue ···· ···· ···· ···· ···· ····· ····· ····· CXC1 ····· ····· ····· ····· ····· ····· ····· CXC1 ······ ······ ······ ······ ·······	Eritrocitos														
Basillos 1 <	Macrófagos	+	+		+		+	+			+			+	
Issuid/files ++<	Basófilos						+		+						
Natisfies + + + + + + + + + + - <	Eosinófilos		+				+		+						
Phquetas CXCR1 CXCR2 CXCR3 CXCR3 CXCR3 CCR3 CCR3 CCR4 CCR3 CCR3 CCR4 CCR3 CCR3 CCR4 CCR5	Neutrófilos	+	+		+		+	+							
CXCR1 CXCR2 CXCR3 CXCR4 CXCR5 CCR1 CCR2 CCR3 CCR5 CCR6 CCR7 CCR8 CCR9 CXCL1 +++ +++ +++ +++ +++	Plaquetas				+										
CXCL1 +++++ +++++ ++++++ ++++++ +++++++++ ++++++++++++++++++++++++++++++++++++		CXCR1	CXCR2	CXCR3	CXCR4	CXCR5	CCR1	CCR2	CCR3	CCR4	CCR5	CCR6	CCR7	CCR8	CCR9
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	CYCL1		+++												
CXCL3 +++++	CXCL2		+++												
CXCL4	CXCL3		+++												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CXCL4														
$ \begin{array}{c ccccc} CXL0^{*} & -++ &$	CXCL5	+	+++												
$ \begin{array}{c ccccc} $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$	CXCL6 CXCL7	++	+++												
CXCL09 ++++ ++++	CXCL8	+++	+++												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CXCL9			+++											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CXCL10			+++											
CXCL12 CXCL3 CXCL4 CXCL4 CXCL3 <	CXCL11			+++											
CXCL14	CXCL12 CXCL13					+++									
$ \begin{array}{ccccc} CCL1 \\ CCL2 \\ CCL3 \\ CCL4 \\ CCL4 \\ CCL5 \\ CCL5 \\ CCL5 \\ CCL6 \\ CCL6 \\ CCL6 \\ CCL6 \\ CCL7 \\ CCL7 \\ CCL8 \\ CCL9 \\ CCL10 \\ CC$	CXCL14														
$\begin{array}{c ccccc} CCL2 \\ CCL3 \\ CCL4 \\ CCL5 \\ CCL6 \\ CCL6 \\ CCL6 \\ CCL7 \\ CCL8 \\ CCL9 \\ CCL9 \\ CCL9 \\ CCL9 \\ CCL10 \\ CCL11 \\ CCL11 \\ CCL12 \\ CCL12 \\ CCL13 \\ CCL13 \\ CCL14 \\ CCL15 \\ CCL16 \\ CCL16 \\ CCL16 \\ CCL16 \\ CCL16 \\ CCL17 \\ CCL16 \\ CCL17 \\ CCL18 \\ H^+ \\ H^$	CCL1													+++	
$ \begin{array}{c cccc} CCL3 \\ CCL4 \\ CCL5 \\ CCL6 \\ CCL7 \\ CCL8 \\ CCL9 \\ CCL10 \\ CCL10 \\ CCL11 \\ CCL13 \\ CCL13 \\ CCL14 \\ CCL13 \\ CCL14 \\ CCL14 \\ CCL16 \\ CCL17 \\ CCL18 \\ CCL16 \\ CCL17 \\ CCL13 \\ CCL14 \\ CCL17 \\ CCL14 \\ CCL14 \\ CCL15 \\ CCL16 \\ CCL17 \\ CCL2 \\ CCL2 \\ CCL2 \\ CCL3 \\ CCL3 \\ CCL4 \\ CCL2 \\ CCL3 \\ CCL4 \\ CCL5 \\ CCL6 \\ CCL6 \\ CCL6 \\ CCL6 \\ CCL6 \\ CCL6 \\ CCL7 \\ CCL6 \\ CCL6 \\ CCL6 \\ CCL7 \\ CCL6 \\ CCL7 \\ CCL2 \\ CCL2 \\ CCL2 \\ CCL3 \\ CCL6 \\ C$	CCL2						+	+++							
CCL5 ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ +++++ +++++ +++++ +++++ +++++ ++++++ +++++++ ++++++++ ++++++++++++++++++++++++++++++++++++	CCL3						+++				+++				
CCL6 ++++ ++++ +++ +++ +++ +++++ +++++ +++++ +++++ +++++ +++++ ++++++ +++++++ ++++++++ ++++++++++++++++++++++++++++++++++++	CCL5						+++		++		+++			+	
CCL7 -++ +++ +++ +++ +++ CCL8 +++ +++ +++ +++ +++ CCL10 + ++++ ++++ ++++ ++++ ++++ CCL10 + ++++ - ++++ ++++ ++++ ++++ CCL11 + + ++++ - - ++++ -	CCL6						+++	+++	++		+				
CCL3 -+++ +++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ ++++++ ++++++ +++++++ ++++++++ ++++++++++ ++++++++++++++++++++++++++++++++++++	CCL7						++	+++	++		+++				
CCLD T+T+							+++	+++	+++		+				
CCL11 + ++++ ++++ ++++ ++++	CCL10						+++	'''							
CCL12 CCL3 CCL3 CCL4 Image: CCL3 Image: CCL4 Image: CCL3	CCL11			+			+++		+++						
CCL13 CCL14 CCL14 CCL15 CCL16 F	CCL12														
CCL14 CCL15 CCL16 Image: CCL17 Image: CCL17 Image: CCL17 Image: CCL18 Image: CCL18 Image: CCL19 Image: CCL20 Image: CCL20 Image: CCL20 Image: CCL20 Image: CCL20 Image: CCL23	CCL13 CCL14														
CCL16 CCL17 +++++ +++++ +++++ +++++	CCL15														
CCL17 CCL18 +++++ +++++ +++++ +++++ +++++ +++++ ++++++ +++++++ ++++++++ ++++++++++ ++++++++++++++++++++++++++++++++++++	CCL16														
CCL18 CCL19 +++++ +++++ +++++ +++++ +++++ +++++ ++++++ ++++++ ++++++ +++++++ +++++++++ ++++++++++++++++++++++++++++++++++++	CCL17									++++					
CCL19 +++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++	CCL18														
CCL20 + + ++++ ++++ CCL23 - ++++ ++++	CCL19 CCL20												+++	+	
CCL22 CCL23 CCL23	CCL20			+									++++		
CCL23 +++	CCL22									++++					
	CCL23						+++								
	CCL24								+++						+++
CCL26 ++	CCL25 CCL26								++						

Tabla 2. Receptores para quimiocinas, ligandos y tipos celulares sobre los cuales se expresan en humanos (Murphy et al., 2000).

funciones efectoras de linfocitos T citotóxicos, células NK, aumentando la degranulación y liberación de serina-estereasa (Balkwill *et al.*, 1998).

Polarización de las respuesta Th1/Th2

La activación y polarización de los linfocitos T CD4+, esta modulada entre otros factores por quimiocinas y receptores de quimiocinas. Los receptores de quimiocinas CCR5 y CXCR3 han sido asociados con un fenotipo Th1 de los linfocitos T, mientras CCR3 y CCR8 ha sido asociado con un fenotipo Th2. Además se ha visto que la expresión de estos receptores puede cambiar dependiendo del estado de activación de las células T. Las quimiocinas MCP-1, MIP-1 α , MIG y RANTES son capaces de inducir diferenciación de las células T hacia Th1, mientras eotaxina-1, eotaxina-2, eotaxina-3 y MCP-4 han sido asociadas con una respuesta Th2 (Charles *et al.*, 1999; Weber *et al.*, 2000; Kim *et al.*, 2001).

Estas funciones muestran que las quimiocinas son moléculas claves en el reclutamiento celular en la respuesta inmune, pero que también tienen otros efectos biológicos como la proliferación de linfocitos T, diferenciación Th1/Th2, migración y activación de células NK así como en la producción de IL-1 e IL-6 por parte de los macrófagos. Estos efectos son importantes para el hospedero para mediar la resistencia contra infecciones de virus, hongos, helmintos, protozoos, etc. (Brenier-Pinchart *et al.*, 2001; Annunziato et al., 1999).

I.12. PAPEL DE LAS QUIMIOCINAS EN LA RESPUESTA INMUNE CONTRA *T. cruzi*

La reacción inflamatoria observada en la enfermedad de Chagas parece tener un papel crucial en la eliminación del parásito. En los tejidos afectados la producción local de mediadores inflamatorios, conduce la migración de leucocitos, durante la interacción del parásito con las células del hospedero. Recientemente, se han estudiando las quimiocinas por ser mediadores que juegan un papel importante en el reclutamiento y activación de diversos tipos celulares del sistema inmune (Héber, 1999).

Villalta *et al.*, (1998), trataron a macrófagos humanos infectados con la cepa Tulahuen con diferentes concentraciones de las quimiocinas RANTES, MIP-1 α y MIP-1 β , encontrando que a la concentración de 500ng/ml de estas quimiocinas, se mejoraban la fagocitosis y producción de óxido nítrico para eliminar al parásito, de hecho la producción de óxido nítrico fue comparable a la del tratamiento con IFN- γ solo.

Aliberti *et al.*, (1999), demostraron que tripomastigotes de la cepa Y de *T. cruzi*, disparan la expresión de RNAm y la producción de MIP-1 α , MIP-1 β , RANTES y MCP-1 involucradas en la producción de óxido nítrico en macrófagos murinos infectados. Al neutralizar las quimiocinas con anticuerpos específicos se inhibió parcialmente la producción de óxido nítrico. La quimiocina MCP-1 fue más eficiente en inducir la eliminación del parásito, aunque fue menos eficiente que el IFN- γ .

Del mismo modo se observó que en cardiomiocitos infectados con la cepa Y, la activación de iNOS, citocinas pro-inflamatorias (TNF- α , IL-1 β) y quimiocinas (KC/GRO, MIP-2, MIG, RANTES e IP-10), fueron esenciales para el control de la replicación del parásito, pero que también podrían contribuir en la patogénesis de la cardiomiopatía chagásica (Machado *et al.*, 2000).

Al analizar la respuesta inmune en corazón de ratones infectados con la cepa virulenta Colombiana de *T. cruzi*, se detectó un infiltrado inflamatorio, con la presencia dominante de linfocitos T CD4⁺, CD8⁺ y macrófagos. La expresión de RNAm de las citocinas IL-1 β , IL-12 (p40), TNF- α y IFN- γ ; y quimiocinas MCP-1, MIP-1 α , MIP-1 β , KC y MIP-2 mostró un incremento durante la fase aguda de la infección. En contraste la expresión de RANTES, MIG y IP-10 persistió hasta la fase crónica, mientras la expresión IL-4 y IL-10 fue detectado a partir del día 60 (fase crónica); estos datos sugieren que la expresión de estas citocinas y quimiocinas son responsables de controlar la replicación del parásito en corazón, pero también pudieran ser responsables de inflamación y inmunopatología observada en tejido cardiaco (Talvani *et al.*, 2000; Dos Santos *et al.*, 2001).

También se ha demostrado el papel de las citocinas, en la modulación de la expresión de quimiocinas tanto *in vivo* como in *vitro*. En macrófagos en cultivo, el IFN-

 γ , incrementó la expresión de IP-10 y bloqueó la expresión de KC. Por otro lado, el TNF-α potencializa la expresión de KC, IP-10, MIP-1α, y MCP-1. El papel de estas citocinas en la modulación de la producción de quimiocinas fue evaluado en ratones deficientes en IFN- γ (GRO) y depletados del receptor de TNF-R1 (p55^{-/-}). La expresión de quimiocinas fue detectada en el sitio de inoculación, los ratones GRO muestran un intenso infiltrado de neutrófilos, que correlaciona con la expresión de KC y MIP-2, lo cual no se observa en los ratones p55^{-/-}. En el corazón de los ratones p55^{-/-} y Wild-type infectados con *T. cruzi* se detectó la expresión de MIG, IP-10, no así en los ratones GRO. Estos datos sugieren que estas dos citocinas tienen un papel crucial en la modulación de la respuesta inflamatoria durante la infección con *T. cruzi* y media la resistencia a la infección (Aliberti *et al.*, 2001).

Además de estudiar a la respuesta inmune montada por el hospedero a la infección con parásitos vivos, se ha estudiado el efecto que tienen glicoproteínas de *T. cruzi* en inducir el reclutamiento de leucocitos *in vivo*. Se ha observado que glicoproteínas similares a mucinas ancladas a glicosilfosfatidilinositol de *T. cruzi* (t-GPI-mucinas), inducen una alta producción de IFN- γ y son efectivas en promover el reclutamiento celular en la cavidad pleural, y que la neutralización de las quimiocinas MIP-1 α y RANTES, no afecta este fenómeno, no así la neutralización de la quimiocina MCP-1. Estos resultados sugieren que las t-GPI-mucinas en conjunción con el IFN- γ , pueden conducir a la producción de quimiocinas, produciendo el fenómeno inflamatorio y activación de macrófagos para la producción de óxido nítrico (Coelho *et al.*, 2002).

II. JUSTIFICACIÓN

En el proceso de dispersión geográfica, *T. cruzi* ha desarrollado una gran diversidad de cepas, las cuales se han aislado de varios hospederos. Estos aislados muestran diferencias en el desarrollo y/o curso de la infección, como por ejemplo: la preferencia de invasión de órganos específicos, variabilidad en la virulencia y en las diferencias en la sensibilidad a agentes quimioterapéuticos (WHO, 1991).

Existen reportes en la literatura donde se estudian la expresión y papel de las quimiocinas en la infección con *T. cruzi*, pero solo con cepas Sudamericanas virulentas genotipo II principalmente, pero no existen estudios con las cepas mexicanas que pertenecen al genotipo *T. cruzi* I, que entre otros aspectos difieren en su virulencia. En el laboratorio de Inmunología de la Dra. Bertha Espinoza se cuenta con un modelo murino de infección con dos cepas mexicanas de *T. cruzi* que difieren en su virulencia, una mata al hospedero en cuestión de semanas; mientras, la otra cepa se comporta no virulenta; esto debido posiblemente a diferencias en la patogénicidad de cada cepa. Por lo cual, es de sospecharse que también pueden existir diferencias importantes en la modulación de la respuesta inmune producida por estas cepas.

Siendo el perfil de quimiocinas generado en una infección, uno de los marcadores principales de los tipos de respuesta inmune que se desarrollan, el presente proyecto se realizó para conocer los patrones de expresión de mensajeros de quimiocinas en los órganos infectados con una cepa virulenta y una no virulenta de *T. cruzi*, para tratar de averiguar el papel que las quimiocinas juegan en la resistencia a la infección con estas dos cepas mexicanas.

OBJETIVO GENERAL

 Analizar *in situ*, la respuesta inmune, a nivel de expresión de mensajeros de las quimiocinas MIG, MCP-1, MIP-1β y RANTES, en ratones expuestos a la infección con cepas mexicanas de *T. cruzi* que exhiben diferente virulencia.

OBJETIVOS PARTICULARES.

- Estandarizar la técnica de RT-PCR para la detección de quimiocinas en tejido de ratón infectado con cepas de *T. cruzi*.
- Determinar los niveles de síntesis de mensajeros de las quimiocinas MIG, MCP-1, MIP-1β y RANTES en corazón, músculo esquelético y bazo, en ratones expuestos a la infección con *T. cruzi*.
- Comparar la producción de mRNA de quimiocinas en ratones expuestos a la infección con una cepa virulenta y una no virulenta de *T. cruzi*.

IV. MATERIAL Y MÉTODOS

IV.1. Ratones

Se emplearon ratones BALB/c hembras de 7 semanas de edad. Los cuales fueron proporcionados por el bioterio del Instituto de Investigaciones Biomédicas de la UNAM en donde se criaron y se mantuvieron bajo condiciones libres de patógenos, teniendo libre acceso a alimento y agua. Y siguiendo los lineamientos éticos del manejo de animales (Suckow *et al.*, 2001).

IV.2 Cepas de T. cruzi

La cepas utilizadas en el presente trabajo son mexicanas, pertenecen al genotipo *T. cruzi* I y han sido caracterizadas con anterioridad (López-Olmos *et al.*, 1998; Bosseno *et al.*, 2002). La selección de cepas se realizó dependiendo de los diferentes grados de virulencia que exhiben en ratón. La fase de tripomastigotes es mantenida por pases seriales en ratones hembras BALB/c cada 28 días para la cepa no virulenta y cada 21 días para la cepa virulenta, por ser estos los días en que se detectan los picos máximos de parasitemia, respectivamente.

IV.3. Infección de ratones

Se realizaron tres experimentos independientes con 3 ratones por punto de la cinética de infección, los tiempos fueron 5 horas, 21 días y 90 días. A cada ratón se le inoculó vía intra-peritoneal con 1×10^5 tripomastigotes sanguíneos, el volumen de inoculo fue de 200µl. El grupo control fue inoculado con PBS estéril solamente. La determinación de la sobrevivencia y parasitemia ya ha sido reportada en trabajos previos (Sosa, 2003; Rico, 2004).

IV.4. Disecciones de órganos

Grupos de ratones (n=3) fueron sacrificados en los tiempos indicados en el párrafo anterior, mediante el uso de una cámara de gases con éter. La disección de los órganos se realizó en una campana de flujo y todo el equipo de cirugía fue tratado
durante dos horas en una solución de DEPC 0.01% y posteriormente se esterizó en autoclave. Para la disección de los órganos (corazón y bazo) se realizó una incisión en la línea alba, para ingresar a la cavidad abdominal y toráxico a fin de extraer los órganos antes citados. El músculo esquelético se obtuvo de un miembro posterior del ratón. Los órganos y tejidos fueron colectados en tubos eppendorf libres de RNasas y almacenados inmediatamente a -70°C para su posterior extracción de RNA. El equipo de cirugía y equipo para la extracción de RNA como mortero, pistilo, etc. se trataron previamente durante 2 horas en solución DEPC 0.01% posteriormente se esterilizaron en autoclave, para inhibir la actividad de RNasas (Sambrook *et al.*, 1989).

IV.5. Extracción de RNA total

La extracción de RNA se realizo por el método de TRIZOLTM (Invitrogen Cat. No. 15596-026) siguiendo las instrucciones del fabricante con mínimas modificaciones y tomando las siguientes precauciones: la maceración de los tejidos (30-50 mg) se realizó en morteros previamente enfriados con hielo seco, el tejido fue colocado en tubos eppendorf libres de RNasas y se adiciono 1 ml de TRIZOL. Se mezcló con vortex y se procedió a incubar cada muestra durante 10 minutos en hielo y 5 minutos a temperatura ambiente. Posteriormente, se adicionaron 200µl de cloroformo y se mezcló por inversión, para incubarse después, durante 3 minutos a temperatura ambiente, seguida de centrifugación a 12000 g durante 15 minutos a 4°C. Se recuperó la fase acuosa en un tubo limpio y se adicionaron 500 µl de alcohol isopropílico, se mezcló por inversión e incubó por 10 minutos a temperatura ambiente y se lavó la pastilla con 1 ml de etanol al 75% y se centrifugó a 7500g durante 5 minutos a 4°C. Finalmente se decanto el sobrenadante y la pastilla fue secada al aire durante 15 minutos y resuspendida con 50µl de H₂0 tratada con DEPC 0.1%.

IV.6. Análisis de ácidos nucleicos por espectrofotometría (UV)

Para determinar la calidad de RNA extraído se realizaron mediciones de una alícuota con dilución 1:1000 para su análisis por espectrofotometría a 260nm y 280nm.

Esta medición se realizó por que la absorción máxima de luz ultravioleta del RNA es aproximadamente a 260 nm y las proteínas se detectan a 280nm (Rapley y Heptinstall, 1998).

La tasa de pureza se obtuvo de la siguiente ecuación:

$r = OD_{260} / OD_{280}$

Para considerar que la muestra de RNA sé encontraba pura este valor debe estar dentro del rango 1.5- 2 (Theophilus, 1998; Rapley y Heptinstall, 1998).

Para calcular la concentración de RNA de cada muestra se empleo la siguiente ecuación:

40 x OD₂₆₀ de la muestra = concentración de RNA (μ g/ml)

IV.7. Electroforesis en geles de agarosa al 1%

Para comprobar que el RNA se encontraba intacto y no degradado o contaminado se realizó una electroforesis en geles de agarosa al 1% tiñendo los geles con bromuro de etidio. Se corrió a 100 volts durante 50 minutos y se analizó en un transluminador de rayos UV (Sambrook *et al.*, 1989).

IV.8. Detección de RNAm de quimiocinas por RT-PCR.

Antes de realizar la reacción de RT-PCR, 1 μ g de RNA de cada muestra, fue tratado con Deoxyribonucleasa I Amplification Grade (DNasa I), (Invitrogen Cat. No. 18068-015) para eliminar posibles contaminaciones con DNA. Se siguieron las recomendaciones del fabricante, que fueron adicionar en tubos eppendorf en hielo 1 μ g de RNA, 1 μ l de buffer de reacción DNasa I 10X, 1 μ l de DNasa I grado de amplificación (1U/ μ l) y agua tratada con DEPC para completar un volumen de 10 μ l. Se mezcló por inversión e incubó por 15 minutos a temperatura ambiente. Para inactivar la DNasa se agregó 1 μ l de EDTA 25mM, seguido de una incubación a 65° durante 10 minutos.

La expresión de mensajeros de las quimiocinas C-C (MCP-1, MIP-1 β y RANTES) y quimiocina C-X-C (MIG) fueron analizadas por RT-PCR y como control

endógeno se empleo la amplificación de β -actina. Las secuencias de los iniciadores y tamaño de los productos de PCR para los genes ya han sido publicados previamente; así como también su validación usando plasmidos que contengan los genes para cada quimiocina (Aliberti *et al.*, 1999; Machado *et al.*, 2000). La secuencia de los iniciadores y tamaño de los amplificados se describen en la tabla 3.

Gen	Secuencia	Tamaño amplificado (pb)
β-Actina	TGG AAT CCT GTG GCA TCC ATG AAA C TAA AAC GCA GCT CAG TAA CAG TCC G	349
MIP-1β	CGC GGA TCC CCC ACT TCC TGC TGT TTC TCT TAC CGC GGA TCC AGC AGA GAA ACA GCA ATG CTG G	444
MCP-1	CCG GAA TTC CAC TCA CCT GCT GCT ACT CAT TCA C CCG GAA TTC GGA TTC ACA GAG AGG GAA AAA TGG	505
RANTES	CGC GGA TCC CCA CGT CAA GGA GTA TTT CTA CAC C CGC GGA TCC CTG GTT TCT TGG GTT TGC TGT G	356
MIG	GAT CAA ACC TGC CTA GAT CC GGC TGT GTA GAA CAC AGA GT	399

Tabla 3. Secuencia de iniciadores de quimiocinas.

La reacción de RT-PCR se realizó con el método de SuperScriptTM One-step RT-PCR con Taq platinum^R (Invitrogen Cat. No. 10928-042). La mezcla de RT-PCR consintió en 1µg de RNA tratado con DNasas, 25 µg de Buffer de reacción 2X (que contiene 0.4mM de cada dNTP, 2.4 mM MgSO₄), 1 µl de RT/Platinum Taq Mix, 10µM primer directo y 10µM del primer reverso, la reacción se completo con agua libre de RNasas a un volumen de 50 µl. Se empleo un termociclador PTC-100 (MJ Research. Inc.) y se usaron las siguientes condiciones de reacción del RT-PCR en un solo paso. Para la síntesis de cDNA 55°C durante 30 minutos; 94°C, 2 minutos para inactivar la transcriptasa reversa y activación de platinum Taq. La amplificación de PCR se realizo con 35 ciclos de 94 ° C, 15 segundos, 60 ° C, 30 segundos; 72 ° C, 1 minuto. Con una extensión final de 72°C, 7 minutos. Para todos los grupo de iniciadores se corrió un control negativo (sin templado) en paralelo.

IV.9. Análisis semi-cuantitivo de RT-PCR

Para el análisis del amplificado 5 μ l de los productos de RT-PCR fueron separados por electroforesis en geles de agarosa al 2% y teñidos con bromuro de etidio. Se escaneó directamente el gel en un multianalizador de imágenes Fluor-S MultiImager (Bio Rad) siguiendo las recomendaciones del fabricante. Para el análisis densitométrico se utilizó el programa Quantity One versión 4.4.1. (Bio Rad). Para eliminar el ruido de fondo se seleccionó un área del gel en la cual no se corrió ninguna muestra. Se realizó una normalización de los datos de expresión de los mensajeros de quimiocinas; dividiendo la densidad del producto de PCR de la quimiocina entre la densidad del control endógeno. Los datos de densitometría son expresados en la relación quimiocina/β-actina (Serazin-Leroy *et al.*, 1998)

IV.10. Análisis estadístico

Los resultados son expresados como la media aritmética del análisis de 4 ratones provenientes de 3 experimentos independientes, con su desviación estándar. Las diferencias fueron consideradas estadísticamente significativas si P<0.005 por una prueba t-Student (Zar, 1999).

V. RESULTADOS

V.1. Optimización de extracción de RNA.

En la estandarización de la extracción de RNA total de órganos de ratones, se tuvieron las siguientes precauciones: el uso de reactivo grado biología molecular, tubos eppendorf libres de RNasas, la limpieza del área de trabajo con una solución de SDS 0.1% preparada con DEPC 0.1%, tratamiento de cristalería con DEPC 0.1% para inhibir la actividad de RNasas (véase anexos I y II). La disgregación del tejido fue realizada en morteros previamente enfriados con hielo seco. Todo esto con el fin de evitar que el RNA extraído estuviera degradado. Al momento de visualizar el RNA obtenido por electroforesis en un gel de agarosa al 1%, detectamos la presencia de tres bandas, que corresponde a la subunidad 28s y 18s del RNA ribosomal y la tercera banda que corresponde a la subunidad 3.5s del RNA de transferencia de bajo peso molecular (figura 6).

Figura 6. Visualización de RNA total extraído de órganos de ratones sanos por electroforesis en gel de agarosa al 1% corrido a 100 volts durante 50 minutos.

V.2. Optimización de RT-PCR.

Para la reacción de RT-PCR se estandarizaron las condiciones mencionadas en la sección de metodología. Se realizó un tratamiento del RNA obtenido con DNAsa I (Invitrogen), debido a problemas que se presentaron con los productos de amplificación que no correspondían a los tamaños esperados cuando se amplificaban los mensajeros para β -actina (figura 7).

Figura 7. Productos de amplificación del gen β -actina en órganos de ratones sanos. La reacción de RT-PCR se realizó sin el tratamiento de DNasa I. Se observan en los carriles 1-5 dos bandas una de 350 pb que corresponde al producto esperado de β -actina, y otra banda de aproximadamente 450 pb.

Al realizar el tratamiento con DNasa I a las muestras de RNA, se eliminó la presencia del producto inespecífico que era observado en la reacción de RT-PCR, como se aprecia en la figura 8.

Figura 8. Productos de amplificación del mensajero para β -actina en órganos de ratones infectados con la cepa virulenta o no virulenta de *T. cruzi*. Antes de la reacción de RT-PCR el RNA fue tratado con DNasa I. En paréntesis se indica la cepa con la fue infectado el ratón.

Ya estandarizadas las condiciones se realizó él análisis de la cinética de expresión de RNA mensajero por RT-PCR semi-cuantitativo de las quimiocinas MIG (CXCL9), MCP-1 (CCL2), MIP-1β (CCL4) y RANTES (CCL5) en corazón, músculo

esquelético y bazo de ratones hembras de la cepa BALB/c, infectadas vía peritoneal con $1X10^5$ tripomastigotes sanguíneos de dos cepas mexicanas de *T. cruzi* que muestran diferente virulencia. Los valores del análisis están expresado como la relación entre los valores densitométricos de las quimiocinas entre el valor densitométrico del control endógeno, esto con el fin de normalizar los datos de expresión. Los valores normalizados se muestran en las tablas 4-7. Los valores de la densitometría de los productos de RT-PCR totales sin normalización (datos brutos) se encuentran en el anexo III y están expresados en unidades de densitometría (cuentas) por milímetro cuadrado. En algunos casos en la fotografía del gel no se distingue el producto de amplificación, pero el analizador de imágenes (MultiImagen, BioRad), si lo detectó, por esa razón esta graficado el valor densitométrico en las gráficas.

V.3. Expresión de RNAm de quimiocinas CXCL9 (MIG), CCL2 (MCP-1), CCL4 (MIP-1β) y CCL5 (RANTES) en corazón de ratones infectados con *T. cruzi*.

La expresión del RNA mensajero de la quimiocina MIG (CXCL9) en corazón, fue detectado desde 5 horas post-infección en ambos grupos de ratones infectados a diferencia del grupo control (sin infectar), donde no se detectó la expresión del mensajero de esta quimiocina. Esta expresión se incrementó significativamente en ambos grupos experimentales para el día 21 post-infección, llegando a ser aproximadamente 5 veces mayor que la detectada a las 5 horas post-infección. Para el día 90 se dejó de expresar esta quimiocina en los ratones infectados con la cepa no virulenta. Al comparar la expresión de quimiocinas que induce cada cepa de *T. cruzi* encontramos diferencias significativas, los ratones infectados con la cepa virulenta tuvieron una mayor expresión de mensajeros para MIG (CXCL9). En corazón este aumento fue aproximadamente el doble que la registrada en los ratones infectados con la cepa no virulenta tanto a las 5 horas post-infección como a los 21 días (tabla 4 y figura 9).

La expresión del mensajero para la quimiocina MCP-1 (CCL2) en este mismo órgano fue detectada a las 5 horas en los ratones control sin infectar y en los ratones infectados con la cepa virulenta, no así en los ratones infectados con la cepa no virulenta. Esta expresión fue significativamente mayor, en el grupo infectado con la cepa virulenta, en comparación con los ratones sanos. Para el día 21, los ratones infectados con la cepa virulenta mostraron un incremento en la expresión de esta quimiocina llegando ser 3 veces mayor que el detectado a las 5 horas post-infección. Hasta este punto de la infección se detectó la expresión del mensajero para esta quimiocina en los ratones infectados con la cepa no virulenta, que fue menor que el inducido por la cepa virulenta pero significativamente mayor que el detectado en los ratones control; esta expresión se mantuvo hasta la fase crónica de la infección en los ratones infectados con la cepa no virulenta (tabla 5 y figura 10).

Respecto a la expresión de la quimiocina MIP-1 β (CCL4) en corazón, esta fue detectada hasta el día 21 post-infección en ambos grupos experimentales no observándose expresión en el grupo control. La infección de la cepa virulenta indujo una expresión significativamente mayor del RNAm para MIP-1 β (CCL4), en comparación de los ratones infectados con la cepa no virulenta durante la fase aguda de la infección. Conforme transcurrió la infección en el corazón de los ratones infectados con la cepa no virulenta, al día 90 de infección (fase crónica) se incrementó cerca de 5 veces la expresión para esta quimiocina (tabla 6 y figura 11).

La expresión de RANTES (CCL5) en este órgano fue detectada tanto en los ratones infectados como en los controles. No encontrándose diferencias a las 5 horas post-infección. Para el día 21 post-infección, se detectó un incremento en la expresión de mensajeros para RANTES (CCL5) en ambos grupos infectados, que llegó a ser casi el doble respecto a los ratones control, no encontrándose diferencias entre los ratones infectados con la cepa virulenta y los ratones infectados con la cepa no virulenta. En la fase crónica, en el grupo infectado con la cepa no virulenta se detectó una reducción en la expresión de mensajeros para RANTES (CCL5) en comparación a la detectada al día 21 post-infección. Pero esta expresión fue mayor respecto al grupo de ratones control (tabla 7 y figura 12).

			Valores den	sitométricos			
			CNT*	mm2	Relación		
			MIG	B-actina	MIG/β-actina		
Corazón	Control	5 horas	0	11426.68015	0		
Corazón	Control	5 horas	0	12329.34024	0		
Corazón	Control	5 horas	0	12315.66024	0	Promedio	0
Corazón	Control	5 horas	0	12768.61029	0	Desv. Estándar	0
Corazón	No virulenta	5 horas	428.5800766	12864.8603	0.033314009		•
Corazón	No virulenta	5 horas	327.8000586	12447.50026	0.02633461		
Corazón	No virulenta	5 horas	315.3500564	12759.85029	0.024714244	Promedio	0.026349539
Corazón	No virulenta	5 horas	267.1000478	12697.71028	0.021035292	Desv. Estándar	0.005145207
Corazón	Virulenta	5 horas	1452.01119	13163.40033	0.110306695		•
Corazón	Virulenta	5 horas	1065.53115	12789.23029	0.08331472		
Corazón	Virulenta	5 horas	1257.08117	12775.90029	0.098394723	Promedio	0.101046848
Corazón	Virulenta	5 horas	1428.76118	12737.32029	0.112171254	Desv. Estándar	0.013303625
Corazón	Control	21 días	0	18178.57911	0		
Corazón	Control	21 días	0	19925.3695	0		
Corazón	Control	21 días	0	20366.12986	0	Promedio	0
Corazón	Control	21 días	0	19672.04979	0	Desv. Estándar	0
Corazón	No virulenta	21 días	5629.820587	21150.71047	0.266176429		
Corazón	No virulenta	21 días	4890.10051	19973.11034	0.244834201		
Corazón	No virulenta	21 días	3886.630405	19469.97029	0.199621794	Promedio	0.211587285
Corazón	No virulenta	21 días	2767.060289	20388.50039	0.135716715	Desv. Estándar	0.057691272
Corazón	Virulenta	21 días	7606.170014	16321.6217	0.466018031		
Corazón	Virulenta	21 días	8432.885425	19982.26208	0.422018558		
Corazón	Virulenta	21 días	9618.895549	19797.27207	0.485869746	Promedio	0.469293048
Corazón	Virulenta	21 días	9792.165567	19457.24203	0.503265856	Desv. Estándar	0.034997818
Corazón	Control	90 días	0	15234.05045	0		
Corazón	Control	90 días	0	14807.60044	0		
Corazón	Control	90 días	0	12095.33036	0	Promedio	0
Corazón	Control	90 días	0	13253.56039	0	Desv. Estándar	0
Corazón	No virulenta	90 días	0	24918.78074	0		
Corazón	No virulenta	90 días	0	20605.05061	0		
Corazón	No virulenta	90 días	0	19457.88058	0	Promedio	0
Corazón	No virulenta	90 días	0	19229.76057	0	Desv. Estándar	0

Tabla 4. Valores densitométricos de los productos de amplificación del RNA mensajero para MIG (CXCL9)

 en corazón de ratones BALB/C infectados con *T. cruzi*.

Datos de la normalización de valores densitométricos del RNAm para MIG (CXCL9). Los valores están expresados como la relación de los valores densitométricos de la quimiocina entre el control endógeno (βactina) expresados como cuentas por milímetro cuadrado (CNT^{*}mm²). Se muestra el promedio de la expresión de cuatro ratones de tres experimentos independientes.

Figura 9. Cinética de expresión de RNAm para MIG (CXCL9) en tejido cardiaco de ratones Balb/c infectados con 1×10^5 tripomastigotes sanguíneos de *T. cruzi*. El RNA total fue extraído de tejido cardiaco, obtenido a diferentes tiempos post-infección y la expresión de la quimiocina fue evaluada por RT-PCR. **A.** Los productos de amplificación fueron separados por electroforesis en gel de agarosa al 2% y teñido con bromuro de etidio. Cada banda del gel corresponde al resultado de RT-PCR obtenido de un solo ratón, se muestran cuatro ratones de tres experimentos independientes. **B.** La gráfica muestra el análisis semicuantitativo de la expresión de RNAm de MIG (CXCL9) en tejido cardiaco de ratones BALB/c infectados con *T. cruzi*. Los valores son el promedio de 4 ratones tomados de 3 experimentos independientes. El asterisco (*) indica que las diferencias son estadísticamente significativas con respecto al control, doble asterisco (**) indica si existen diferencias significativas en la expresión de la quimiocina en relación al transcurso de la infección con la misma cepa y la estrella (★) indica si hay diferencias en la expresión entre las cepas de *T. cruzi* infectantes con una P <0.05.

			Valores dens	sitométricos			
			CNT*	mm2	Relación		
			MCP-1	β-actina	MCP-1/β –actina		
Corazón	Control	5 horas	1437.920257	11426.68015	0.125838847		
Corazón	Control	5 horas	1288.15023	12329.34024	0.10447844		
Corazón	Control	5 horas	1357.670243	12315.66024	0.110239339	Promedio	0.110090584
Corazón	Control	5 horas	1274.380228	12768.61029	0.099805711	Desv. Estándar	0.011332912
Corazón	No virulenta	5 horas	2429.180434	12864.8603	0		
Corazón	No virulenta	5 horas	0	12447.50026	0		
Corazón	No virulenta	5 horas	0	12759.85029	0	Promedio	0
Corazón	No virulenta	5 horas	0	12697.71028	0	Desv. Estándar	0
Corazón	Virulenta	5 horas	6237.86791	13163.40033	0.473879678		
Corazón	Virulenta	5 horas	3645.67132	12789.23029	0.285057915		
Corazón	Virulenta	5 horas	3874.12259	12775.90029	0.303236759	Promedio	0.328177587
Corazón	Virulenta	5 horas	3191.15721	12737.32029	0.250535995	Desv. Estándar	0.099563493
Corazón	Control	21 días	3807.480397	18178.57911	0.209448735		
Corazón	Control	21 días	4516.940471	19925.3695	0.226692934		
Corazón	Control	21 días	3919.670409	20366.12986	0.192460248	Promedio	0.207472516
Corazón	Control	21 días	3959.750413	19672.04979	0.201288145	Desv. Estándar	0.014571028
Corazón	No virulenta	21 días	7985.790833	21150.71047	0.37756608		
Corazón	No virulenta	21 días	6198.870647	19973.11034	0.310360807		
Corazón	No virulenta	21 días	6804.71071	19469.97029	0.349497745	Promedio	0.344502326
Corazón	No virulenta	21 días	6944.010724	20388.50039	0.340584672	Desv. Estándar	0.027683674
Corazón	Virulenta	21 días	0	16321.6217	0		
Corazón	Virulenta	21 días	21641.62226	19982.26208	1.083041658		
Corazón	Virulenta	21 días	20782.20217	19797.27207	1.049750799	Promedio	1.015324111
Corazón	Virulenta	21 días	17767.96185	19457.24203	0.913179875	Desv. Estándar	0.090011965
Corazón	Control	90 días	0	15234.05045	0		
Corazón	Control	90 días	0	14807.60044	0		
Corazón	Control	90 días	0	12095.33036	0	Promedio	0
Corazón	Control	90 días	0	13253.56039	0	Desv. Estándar	0
Corazón	No virulenta	90 días	10486.75109	24918.78074	0.420837247		
Corazón	No virulenta	90 días	8908.460929	20605.05061	0.43234356		
Corazón	No virulenta	90 días	7474.61078	19457.88058	0.384143111	Promedio	0.38964751
Corazón	No virulenta	90 días	6177.870644	19229.76057	0.321266124	Desv. Estándar	0.05000688

 Tabla 5. Valores densitométricos de los productos de amplificación del RNA mensajero para MCP-1 (CCL2)

 en músculo esquelético de ratones BALB/C infectados con *T. cruzi*.

Datos de la normalización de valores densitométricos del RNAm para MCP-1(CCL2). Los valores están expresados como la relación de los valores densitométricos de la quimiocina entre el control endógeno (βactina) expresados como cuentas por milímetro cuadrado (CNT*mm²). Se muestra el promedio de la expresión de cuatro ratones de tres experimentos independientes.

Figura 10. Cinética de expresión de RNAm para MCP-1 (CCL2) en tejido cardiaco de ratones Balb/c infectados con 1×10^5 tripomastigotes sanguíneos de *T. cruzi*. El RNA total fue extraído de tejido cardiaco, obtenido a diferentes tiempos post-infección y la expresión de la quimiocina fue evaluada por RT-PCR. **A.** Los productos de amplificación fueron separados por electroforesis en gel de agarosa al 2% y teñido con bromuro de etidio. Cada banda del gel corresponde al resultado de RT-PCR obtenido de un solo ratón, se muestran 4 ratones de tres experimentos independientes. **B.** La gráfica muestra el análisis semi-cuantitativo de la expresión de RNAm de MCP-1 (CCL-2) en tejido cardiaco de ratones Balb/c infectados con *T. cruzi*. Los valores son el promedio de 4 ratones tomados de 3 experimentos independientes El asterisco (*) indica que las diferencias son estadísticamente significativas con respecto al control, doble asterisco (*) indica si existen diferencias en la expresión de la quimiocina en relación al transcurso de la infección (5 horas a 21 días) analizando una sola cepa con respecto a 5 horas post-infección y la estrella (*****) indica si hay diferencias en la expresión entre las cepas de *T. cruzi* infectantes con una P <0.05.

			Valores den	sitométricos			
			CNT [*]	*mm2	Relación		
			MIP-1β	β-actina	MIP-1β/β-actina		
Corazón	Control	5 horas	0	11426.68015	0		
Corazón	Control	5 horas	0	12329.34024	0		
Corazón	Control	5 horas	0	12315.66024	0	Promedio	0
Corazón	Control	5 horas	0	12768.61029	0	Desv. Estándar	0
Corazón	No virulenta	5 horas	0	12864.8603	0		
Corazón	No virulenta	5 horas	0	12447.50026	0		
Corazón	No virulenta	5 horas	0	12759.85029	0	Promedio	0
Corazón	No virulenta	5 horas	0	12697.71028	0	Desv. Estándar	0
Corazón	Virulenta	5 horas	0	13163.40033	0		
Corazón	Virulenta	5 horas	0	12789.23029	0		
Corazón	Virulenta	5 horas	0	12775.90029	0	Promedio	0
Corazón	Virulenta	5 horas	0	12737.32029	0	Desv. Estándar	0
Corazón	Control	21 días	0	18178.57911	0		
Corazón	Control	21 días	0	19925.3695	0		
Corazón	Control	21 días	0	20366.12986	0	Promedio	0
Corazón	Control	21 días	0	19672.04979	0	Desv. Estándar	0
Corazón	No virulenta	21 días	2995.782638	21150.71047	0.141639811		
Corazón	No virulenta	21 días	4032.252746	19973.11034	0.201884067		
Corazón	No virulenta	21 días	4658.682811	19469.97029	0.239275291	Promedio	0.21179542
Corazón	No virulenta	21 días	5390.362887	20388.50039	0.264382509	Desv. Estándar	0.053356004
Corazón	Virulenta	21 días	9484.274033	16321.6217	0.5810865		
Corazón	Virulenta	21 días	7210.503796	19982.26208	0.360845222		
Corazón	Virulenta	21 días	6683.923741	19797.27207	0.337618421	Promedio	0.393101582
Corazón	Virulenta	21 días	5698.173638	19457.24203	0.292856183	Desv. Estándar	0.12846053
Corazón	Control	90 días	0	15234.05045	0		
Corazón	Control	90 días	0	14807.60044	0		
Corazón	Control	90 días	0	12095.33036	0	Promedio	0
Corazón	Control	90 días	0	13253.56039	0	Desv. Estándar	0
Corazón	No virulenta	90 días	24297.94253	24918.78074	0.97508553		
Corazón	No virulenta	90 días	25493.00266	20605.05061	1.237221065		
Corazón	No virulenta	90 días	21712.18226	19457.88058	1.115855459	Promedio	1.07977399
Corazón	No virulenta	90 días	19055.42199	19229.76057	0.990933918	Desv. Estándar	0.12239783

Tabla 6. Valores densitométricos de los productos de amplificación del RNA mensajero para MIP-1 β (CCL4) en corazón de ratones BALB/C infectados con *T. cruzi*.

Datos de la normalización de valores densitométricos del RNAm para MIP-1 β (CCL4). Los valores están expresados como la relación de los valores densitométricos de la quimiocina entre el control endógeno (β -actina) expresados como cuentas por milímetro cuadrado (CNT^{*}mm²). Se muestra el promedio de la expresión de cuatro ratones de tres experimentos independientes.

Figura 11. Cinética de expresión de RNAm de MIP-1 β (CCL 4) en tejido cardiaco de ratones Balb/c infectados con 1x10⁵ tripomastigotes sanguíneos de *T. cruzi*. El RNA total fue extraído de tejido cardiaco, obtenido a diferentes tiempos post-infección y la expresión de la quimiocina fue evaluada por RT-PCR. **A.** Los productos de amplificación fueron separados por electroforesis en gel de agarosa al 2% y teñido con bromuro de etidio. Cada banda del gel corresponde al resultado de RT-PCR obtenido de un solo ratón, se muestran 4 ratones de 3 experimentos independientes. **B.** La gráfica muestra el análisis semi-cuantitativo de la expresión de RNAm de MIP-1 β (CCL 4) en tejido cardiaco de ratones BALB/c infectados con *T. cruzi*. Los valores son el promedio de 4 ratones tomados de 3 experimentos independientes. El asterisco (*) indica que las diferencias son estadísticamente significativas con respecto al control, doble asterisco (**) indica si existen diferencias en la expresión de la quimiocina en relación al transcurso de la infección, analizando la misma cepa con respecto a 5 horas y 90 días y la estrella (**★**) indica si hay diferencias en la expresión entre las cepas de *T. cruzi* infectantes con una P <0.05.

			Valores den	sitométricos			
			CNT	*mm2	Relación		
			RANTES	B-actina	Rantes/β-actina		
Corazón	Control	5 horas	5141.234938	11426.68015	0.449932515		
Corazón	Control	5 horas	6275.985057	12329.34024	0.509028458		
Corazón	Control	5 horas	8332.925271	12315.66024	0.676612143	Promedio	0.574483447
Corazón	Control	5 horas	8457.425284	12768.61029	0.662360671	Desv. Estándar	0.11247217
Corazón	No virulenta	5 horas	8901.07533	12864.8603	0.691890555		
Corazón	No virulenta	5 horas	16408.58611	12447.50026	1.3182234		
Corazón	No virulenta	5 horas	6977.67513	12759.85029	0.54684616	Promedio	0.793592602
Corazón	No virulenta	5 horas	7839.69703	12697.71028	0.617410293	Desv. Estándar	0.354732196
Corazón	Virulenta	5 horas	19431.03824	13163.40033	1.476141252		
Corazón	Virulenta	5 horas	12930.99756	12789.23029	1.011084895		
Corazón	Virulenta	5 horas	8132.717061	12775.90029	0.636567042	Promedio	0.922712946
Corazón	Virulenta	5 horas	7222.806966	12737.32029	0.567058597	Desv. Estándar	0.417317619
Corazón	Control	21 días	10780.20019	18178.57911	0.593016655		
Corazón	Control	21 días	10671.15017	19925.3695	0.535555949		
Corazón	Control	21 días	11692.54018	20366.12986	0.574116941	Promedio	0.578500134
Corazón	Control	21 días	12025.74021	19672.04979	0.611310989	Desv. Estándar	0.032407288
Corazón	No virulenta	21 días	25272.63055	21150.71047	1.194883292		
Corazón	No virulenta	21 días	25004.78052	19973.11034	1.251922214		
Corazón	No virulenta	21 días	25032.86052	19469.97029	1.285716421	Promedio	1.234435384
Corazón	No virulenta	21 días	24572.62048	20388.50039	1.20521961	Desv. Estándar	0.042243199
Corazón	Virulenta	21 días	23508.68037	16321.6217	1.44033974		
Corazón	Virulenta	21 días	24338.53045	19982.26208	1.218006768		
Corazón	Virulenta	21 días	24005.05042	19797.27207	1.212543341	Promedio	1.27428223
Corazón	Virulenta	21 días	23859.2304	19457.24203	1.226239072	Desv. Estándar	0.110848034
Corazón	Control	90 días	6007.064803	15234.05045	0.394318295		
Corazón	Control	90 días	7544.304963	14807.60044	0.509488691		
Corazón	Control	90 días	7077.604914	12095.33036	0.585151848	Promedio	0.51879967
Corazón	Control	90 días	7769.764987	13253.56039	0.58623983	Desv. Estándar	0.09043062
Corazón	No virulenta	90 días	7317.244939	24918.78074	0.293643779		
Corazón	No virulenta	90 días	16192.75169	20605.05061	0.785863233		
Corazón	No virulenta	90 días	14763.80154	19457.88058	0.75875692	Promedio	0.64089327
Corazón	No virulenta	90 días	13947.52145	19229.76057	0.725309158	Desv. Estándar	0.23282066

 Tabla 7. Valores densitométricos de los productos de amplificación del RNA mensajero para RANTES

 (CCL5) en corazón de ratones BALB/C infectados con *T. cruzi*.

Datos de la normalización de valores densitométricos del RNAm para RANTES (CCL5). Los valores están expresados como la relación de los valores densitométricos de la quimiocina entre el control endógeno (βactina) expresados como cuentas por milímetro cuadrado (CNT^{*}mm²). Se muestra el promedio de la expresión de cuatro ratones de tres experimentos independientes.

Figura 12. Cinética de expresión de RNAm de RANTES (CCL 5) en tejido cardiaco de ratones Balb/c infectados con 1×10^5 tripomastigotes sanguíneos de *T. cruzi*. El RNA total fue extraído de tejido cardiaco, obtenido a diferentes tiempos post-infección y la expresión de la quimiocina fue evaluada por RT-PCR. **A.** Los productos de amplificación fueron separados por electroforesis en gel de agarosa al 2% y teñido con bromuro de etidio. Cada banda del gel corresponde al resultado de RT-PCR obtenido de un solo ratón, se muestran 4 ratones de 3 experimentos independientes. **B.** La gráfica muestra el análisis semi-cuantitativo de la expresión de RNAm de RANTES (CCL5) en tejido cardiaco de ratones Balb/c infectados con *T. cruzi*. Los valores son el promedio de 4 ratones tomados de 3 experimentos independientes. El asterisco (*) indica que las diferencias son estadísticamente significativas con respecto al control, doble asterisco (**) indica si existen diferencias en la expresión de la quimiocina en relación al transcurso de la infección (21 a 90 días) y la estrella (**★**) indica si hay diferencias en la expresión entre las cepas de *T. cruzi* infectantes con una P <0.05.

V. 4. Expresión de RNAm de quimiocinas CXCL9 (MIG), CCL2 (MCP-1), CCL4 (MIP-1β) y CCL5 (RANTES) en músculo esquelético de ratones infectados con *T. cruzi*.

También se analizó la expresión de mensajeros para las quimiocinas MIG (CXCL9), MCP-1 (CCL2), MIP-1 β (CCL4) y RANTES (CCL5) en músculo esquelético de ratones BALB/c. La síntesis de mensajero de las quimiocinas MIG (CXCL9), MCP-1 (CCL2) y MIP-1 β (CCL5) en músculo esquelético solo fue detectada en el día 21 post-infección en los ratones infectados con la cepa virulenta de *T. cruzi*, no detectándose en el grupo infectado con la cepa no virulenta y en los ratones controles. Tampoco se observó durante la fase crónica de la infección con la cepa no virulenta. Cabe destacar que de todas la quimiocinas analizadas en este órgano el RNAm para MIP-1 β (CCL4) fue muy poco expresado (tablas 8, 9 y 10; figuras 13, 14 y 15).

En cambio, la expresión de mensajeros para la quimiocina RANTES fue detectada a partir de 5 horas post-infección, siendo mayor estadísticamente en los ratones infectados con la cepa virulenta, en comparación con los ratones infectados con la cepa no virulenta y el control sin infectar que mantienen niveles de expresión muy parecidos. En ambos grupos experimentales se mostró una tendencia de incremento conforme transcurrió la infección, ya que para el día 21 se observó un aumento de la expresión de mensajeros en los ratones infectados con respecto a los ratones control. Existiendo diferencias significativas entre los ratones infectados con la cepa virulenta y no virulenta de *T. cruzi*. La síntesis de mensajero de esta quimiocina se mantuvo con niveles similares en ambos grupos experimentales durante la fase aguda hasta la fase crónica de la infección en los ratones infectados con la cepa no virulenta de *T. cruzi*, no encontrándose diferencias significativas en la etapa crónica de la infección como lo observado en la fase aguda a los 21 días post-infección (tabla 11 y figura 16).

			Valores den	sitométricos			
			CNT	*mm2	Relación		
			MIG	β-actina	MIG/β-actina		
Músculo	Control	5 horas	0	19148.18022	0		
Músculo	Control	5 horas	0	19847.09019	0		
Músculo	Control	5 horas	0	19196.79023	0	Promedio	0
Músculo	Control	5 horas	0	20995.48021	0	Desv. Estándar	0
Músculo	No virulenta	5 horas	0	12473.03026	0		
Músculo	No virulenta	5 horas	0	12261.55024	0		
Músculo	No virulenta	5 horas	0	12333.00024	0	Promedio	0
Músculo	No virulenta	5 horas	0	11838.09019	0	Desv. Estándar	0
Músculo	Virulenta	5 horas	0	19039.67852	0		
Músculo	Virulenta	5 horas	0	7483.436454	0		
Músculo	Virulenta	5 horas	0	9582.131713	0	Promedio	0
Músculo	Virulenta	5 horas	0	18376.23329	0	Desv. Estándar	0
Músculo	Control	21 días	0	2244.960234	0		
Músculo	Control	21 días	0	1845.270192	0		
Músculo	Control	21 días	0	13507.37141	0	Promedio	0
Músculo	Control	21 días	0	3999.310417	0	Desv. Estándar	0
Músculo	No virulenta	21 días	0	15402.76161	0		
Músculo	No virulenta	21 días	0	13803.49144	0		
Músculo	No virulenta	21 días	0	19118.11199	0	Promedio	0
Músculo	No virulenta	21 días	0	25524.13266	0	Desv. Estándar	0
Músculo	Virulenta	21 días	7687.780802	15483.97525	0.496499166		
Músculo	Virulenta	21 días	7928.520827	19314.92565	0.410486738		
Músculo	Virulenta	21 días	5060.960528	19727.57115	0.256542505	Promedio	0.34388793
Músculo	Virulenta	21 días	4577.070477	21587.58134	0.212023311	Desv. Estándar	0.132593478
Músculo	Control	90 días	0	11148.18022	0		
Músculo	Control	90 días	0	10847.09019	0		
Músculo	Control	90 días	0	10196.79023	0	Promedio	0
Músculo	Control	90 días	0	11995.48021	0	Desv. Estándar	0
Músculo	No virulenta	90 días	0	11473.03026	0		
Músculo	No virulenta	90 días	0	11261.55024	0]	
Músculo	No virulenta	90 días	0	11333	0	Promedio	0
Músculo	No virulenta	90 días	0	10838.09	0	Desv. Estándar	0

Tabla 8. Valores densitométricos de los productos de amplificación del RNA mensajero para MIG (CXCL9) en músculo esquelético de ratones BALB/C infectados con *T. cruzi*.

Datos de la normalización de valores densitométricos del RNAm para MIG (CXCL9). Los valores están expresados como la relación de los valores densitométricos de la quimiocina entre el control endógeno (βactina) expresados como cuentas por milímetro cuadrado (CNT^{*}mm²). Se muestra el promedio de la expresión de cuatro ratones de tres experimentos independientes.

Figura 13. Cinética de expresión de RNAm de MIG (CXCL9) en músculo esquelético de ratones BALB/c infectados con 1×10^5 tripomastigotes sanguíneos de *T. cruzi*. El RNA total fue extraído a diferentes tiempos post-infección y la expresión de la quimiocina fue evaluada por RT-PCR. **A.** Los productos de amplificación fueron separados por electroforesis en gel de agarosa al 2% y teñido con bromuro de etidio. Cada banda del gel corresponde al resultado de RT-PCR obtenido de un solo ratón, se muestran 4 ratones de 3 experimentos independientes. **B.** La gráfica muestra el análisis semi-cuantitativo de la expresión de RNAm de MIG (CXCL9) en músculo esquelético de ratones BALB/c infectados con *T. cruzi*. Los valores son el promedio de 4 ratones tomados de 3 experimentos independientes. El asterisco (*) indica que las diferencias son estadísticamente significativas con respecto al control, doble asterisco (**) indica si existen diferencias en la expresión de la quimiocina en relación al transcurso de la infección y la estrella (**★**) indica si hay diferencias en la expresión entre las cepas de *T. cruzi* infectantes con una P <0.05.

			Valores den	sitométricos			
			CNT ³	*mm2	Relación		
			MCP-1	B-actina	MCP-1/β -actina		
Músculo	Control	5 horas	0	19148.18022	0		
Músculo	Control	5 horas	0	19847.09019	0		
Músculo	Control	5 horas	0	19196.79023	0	Promedio	0
Músculo	Control	5 horas	0	20995.48021	0	Desv. Estándar	0
Músculo	No virulenta	5 horas	0	12473.03026	0		
Músculo	No virulenta	5 horas	0	12261.55024	0		
Músculo	No virulenta	5 horas	0	12333.00024	0	Promedio	0
Músculo	No virulenta	5 horas	0	11838.09019	0	Desv. Estándar	0
Músculo	Virulenta	5 horas	0	19039.67852	0		
Músculo	Virulenta	5 horas	0	7483.436454	0		
Músculo	Virulenta	5 horas	0	9582.131713	0	Promedio	0
Músculo	Virulenta	5 horas	0	18376.23329	0	Desv. Estándar	0
Músculo	Control	21 días	0	2244.960234	0		
Músculo	Control	21 días	0	1845.270192	0		
Músculo	Control	21 días	0	13507.37141	0	Promedio	0
Músculo	Control	21 días	0	3999.310417	0	Desv. Estándar	0
Músculo	No virulenta	21 días	0	15402.76161	0		
Músculo	No virulenta	21 días	0	13803.49144	0		
Músculo	No virulenta	21 días	0	19118.11199	0	Promedio	0
Músculo	No virulenta	21 días	0	25524.13266	0	Desv. Estándar	0
Músculo	Virulenta	21 días	20939.64218	15483.97525	1.352342783		
Músculo	Virulenta	21 días	21521.03224	19314.92565	1.114217711		
Músculo	Virulenta	21 días	23317.29243	19727.57115	1.181964686	Promedio	1.153384609
Músculo	Virulenta	21 días	20832.30217	21587.58134	0.965013257	Desv. Estándar	0.160643485
Músculo	Control	90 días	0	11148.18022	0		
Músculo	Control	90 días	0	10847.09019	0		
Músculo	Control	90 días	0	10196.79023	0	Promedio	0
Músculo	Control	90 días	0	11995.48021	0	Desv. Estándar	0
Músculo	No virulenta	90 días	0	11473.03026	0		
Músculo	No virulenta	90 días	0	11261.55024	0		
Músculo	No virulenta	90 días	0	11333	0	Promedio	0
Músculo	No virulenta	90 días	0	10838.09	0	Desv. Estándar	0

Tabla 9. Valores densitométricos de los productos de amplificación del RNA mensajero para MCP-1 (CCL2)en músculo esquelético de ratones BALB/C infectados con *T. cruzi*.

Datos de la normalización de valores densitométricos del RNAm para MCP-1 (CCL2). Los valores están expresados por la relación de los valores densitométricos de la quimiocina entre el control endógeno (β -actina) expresados como cuentas por milímetro cuadrado (CNT^{*}mm²). Se muestra el promedio de la expresión de cuatro ratones de tres experimentos independientes.

Figura 14. Cinética de expresión de RNAm de MCP-1 (CCL2) en músculo esquelético de ratones BALB/c infectados con 1×10^5 tripomastigotes sanguíneos de *T. cruzi*. El RNA total fue extraído a diferentes tiempos post-infección y la expresión de la quimiocina fue evaluada por RT-PCR. **A.** Los productos de amplificación fueron separados por electroforesis en gel de agarosa al 2% y teñido con bromuro de etidio. Cada banda del gel corresponde al resultado de RT-PCR obtenido de un solo ratón, se muestran 4 ratones de 3 experimentos independientes. **B.** La gráfica muestra el análisis semi-cuantitativo de la expresión de RNAm de MCP-1 (CCL2) en músculo esquelético de ratones BALB/c infectados con *T. cruzi*. Los valores son el promedio de 4 ratones tomados de 3 experimentos independientes. El asterisco (*) indica que las diferencias son estadísticamente significativas con respecto al control, doble asterisco (**) indica si existen diferencias en la expresión de la quimiocina en relación al transcurso de la infección con la misma cepa y la estrella (**★**) indica si hay diferencias en la expresión entre las cepas de *T. cruzi* infectantes con una P <0.05.

		1	Valores den	sitométricos		ľ	1
			CNT	*mm2	Relación	1	1
			MIP-1β	β-actina	MIP-1β/β-actina	1	1
Músculo	Control	5 horas	0	19148.18022	0		
Músculo	Control	5 horas	0	19847.09019	0	1	
Músculo	Control	5 horas	0	19196.79023	0	Promedio	0
Músculo	Control	5 horas	0	20995.48021	0	Desv. Estándar	0
Músculo	No virulenta	5 horas	0	12473.03026	0		
Músculo	No virulenta	5 horas	0	12261.55024	0	1	
Músculo	No virulenta	5 horas	0	12333.00024	0	Promedio	0
Músculo	No virulenta	5 horas	0	11838.09019	0	Desv. Estándar	0
Músculo	Virulenta	5 horas	0	19039.67852	0		
Músculo	Virulenta	5 horas	0	7483.436454	0	1	
Músculo	Virulenta	5 horas	0	9582.131713	0	Promedio	0
Músculo	Virulenta	5 horas	0	18376.23329	0	Desv. Estándar	0
Músculo	Control	21 días	0	2244.960234	0		
Músculo	Control	21 días	0	1845.270192	0	1	
Músculo	Control	21 días	0	13507.37141	0	Promedio	0
Músculo	Control	21 días	0	3999.310417	0	Desv. Estándar	0
Músculo	No virulenta	21 días	0	15402.76161	0		
Músculo	No virulenta	21 días	0	13803.49144	0	1	
Músculo	No virulenta	21 días	0	19118.11199	0	Promedio	0
Músculo	No virulenta	21 días	0	25524.13266	0	Desv. Estándar	0
Músculo	Virulenta	21 días	885.9200924	15483.97525	0.057215287		
Músculo	Virulenta	21 días	730.4700762	19314.92565	0.037818943	1	
Músculo	Virulenta	21 días	578.4700603	19727.57115	0.029322924	Promedio	0.035556209
Músculo	Virulenta	21 días	385.7200402	21587.58134	0.017867682	Desv. Estándar	0.016592905
Músculo	Control	90 días	0	11148.18022	0		
Músculo	Control	90 días	0	10847.09019	0	1	
Músculo	Control	90 días	0	10196.79023	0	Promedio	0
Músculo	Control	90 días	0	11995.48021	0	Desv. Estándar	0
Músculo	No virulenta	90 días	0	11473.03026	0		
Músculo	No virulenta	90 días	0	11261.55024	0	1	
Músculo	No virulenta	90 días	0	11333	0	Promedio	0
Músculo	No virulenta	90 días	0	10838.09	0	Desv. Estándar	0

Tabla 10. Valores densitométricos de los productos de amplificación del RNA mensajero para MIP-1β (CCL4) en músculo esquelético de ratones BALB/C infectados con *T. cruzi*.

Datos de la normalización de valores densitométricos del RNAm para MIP-1 β (CCL4). Los valores están expresados como la relación de los valores densitométricos de la quimiocina entre el control endógeno (β -actina) expresados como cuentas por milímetro cuadrado (CNT^{*}mm²). Se muestra el promedio de la expresión de cuatro ratones de tres experimentos independientes.

TIEMPO

POST-INFECCIÓN

Figura 15. Cinética de expresión de RNAm de MIP-1 β (CCL4) en músculo esquelético de ratones BALB/c infectados con 1x10⁵ tripomastigotes sanguíneos de *T. cruzi*. El RNA total fue extraído a diferentes tiempos post-infección y la expresión de la quimiocina fue evaluada por RT-PCR. **A.** Los productos de amplificación fueron separados por electroforesis en gel de agarosa al 2% y teñido con bromuro de etidio. Cada banda del gel corresponde al resultado de RT-PCR obtenido de un solo ratón, se muestran 4 ratones de 3 experimentos independientes. **B.** La gráfica muestra el análisis semi-cuantitativo de la expresión de RNAm de MIP-1 β (CCL4) en músculo esquelético de ratones BALB/c infectados con *T. cruzi*. Los valores son el promedio de 4 ratones tomados de 3 experimentos independientes. El asterisco (*) indica que las diferencias son estadísticamente significativas con respecto al control, doble asterisco (**) indica si existen diferencias en la expresión de la quimiocina en relación al transcurso de la infección con la misma cepa y la estrella (**★**) indica si hay diferencias en la expresión entre las cepas de *T. cruzi* infectante con una P <0.05.

52

			Valores den	sitométricos			
			CNT [*]	*mm2	Relación		
			RANTES	β-actina	Rantes/β-actina		
Músculo	Control	5 horas	5582.630582	19148.18022	0.291548884		
Músculo	Control	5 horas	5463.55057	19847.09019	0.275282196		
Músculo	Control	5 horas	4743.600495	19196.79023	0.247103835	Promedio	0.259489241
Músculo	Control	5 horas	4703.450491	20995.48021	0.224022049	Desv. Estándar	0.029936367
Músculo	No virulenta	5 horas	4668.580487	12473.03026	0.374294008		
Músculo	No virulenta	5 horas	4342.230453	12261.55024	0.354133888		
Músculo	No virulenta	5 horas	3827.230399	12333.00024	0.310324359	Promedio	0.315657824
Músculo	No virulenta	5 horas	2650.300276	11838.09019	0.223879041	Desv. Estándar	0.06675927
Músculo	Virulenta	5 horas	2724.830284	19039.67852	0.143113251		
Músculo	Virulenta	5 horas	4398.980459	7483.436454	0.587828932		
Músculo	Virulenta	5 horas	5867.820612	9582.131713	0.612371108	Promedio	0.433996574
Músculo	Virulenta	5 horas	7215.850753	18376.23329	0.392673005	Desv. Estándar	0.217410989
Músculo	Control	21 días	0	2244.960234	0		
Músculo	Control	21 días	0	1845.270192	0		
Músculo	Control	21 días	0	13507.37141	0	Promedio	0
Músculo	Control	21 días	0	3999.310417	0	Desv. Estándar	0
Músculo	No virulenta	21 días	22775.50029	15402.76161	1.478663429		
Músculo	No virulenta	21 días	22692.22028	13803.49144	1.643947865		
Músculo	No virulenta	21 días	23072.17032	19118.11199	1.206822636	Promedio	1.39808175
Músculo	No virulenta	21 días	32234.25023	25524.13266	1.262893069	Desv. Estándar	0.201494071
Músculo	Virulenta	21 días	33113.43187	15483.97525	2.138561405		
Músculo	Virulenta	21 días	34089.13043	19314.92565	1.764911294	1	
Músculo	Virulenta	21 días	34277.33045	19727.57115	1.737534245	Promedio	1.696529297
Músculo	Virulenta	21 días	24720.16049	21587.58134	1.145110242	Desv. Estándar	0.410614524
Músculo	Control	90 días	6688.252622	11148.18022	0.5999412		
Músculo	Control	90 días	8355.642588	10847.09019	0.770311894		
Músculo	Control	90 días	6207.292572	10196.79023	0.608749659	Promedio	0.64470368
Músculo	Control	90 días	7195.032571	11995.48021	0.599811966	Desv. Estándar	0.08384323
Músculo	No virulenta	90 días	16001.59318	11473.03026	1.394713761		
Músculo	No virulenta	90 días	14373.44301	11261.55024	1.276328987	1	
Músculo	No virulenta	90 días	15181.18309	11333	1.339555554	Promedio	1.41740631
Músculo	No virulenta	90 días	17980.68338	10838.09	1.659026949	Desv. Estándar	0.16818545

Tabla 11. Valores densitométricos de los productos de amplificación del RNA mensajero para RANTES (CCL5) en músculo esquelético de ratones BALB/C infectados con *T. cruzi*.

Datos de la normalización de valores densitométricos del RNAm para RANTES (CCL5). Los valores están expresados como la relación de los valores densitométricos de la quimiocina entre el control endógeno (βactina) expresados como cuentas por milímetro cuadrado (CNT^{*}mm²). Se muestra el promedio de la expresión de cuatro ratones de tres experimentos independientes.

TIEMPO POST-INFECCIÓN 21 días 90 días 5 horas RANTES/CCL5 CONTROL **B-Actina** _ RANTES/CCL5 **NO VIRULENTA** β-Actina RANTES/CCL5 VIRULENTA β-Actina

B

Figura 16. Cinética de expresión de RNAm de RANTES (CCL5) en músculo esquelético de ratones BALB/c infectados con 1×10^5 tripomastigotes sanguíneos de *T. cruzi*. El RNA total fue extraído a diferentes tiempos post-infección y la expresión de la quimiocina fue evaluada por RT-PCR. **A.** Los productos de amplificación fueron separados por electroforesis en gel de agarosa al 2% y teñido con bromuro de etidio. Cada banda del gel corresponde al resultado de RT-PCR obtenido de un solo ratón, se muestran 4 ratones de 3 experimentos independientes. **B.** La gráfica muestra el análisis semi-cuantitativo de la expresión de RNAm de RANTES (CCL5) en músculo esquelético de ratones BALB/c infectados con *T. cruzi*. Los valores son el promedio de 4 ratones tomados de 3 experimentos independientes. El asterisco (*) indica que las diferencias en la expresión de la quimiocina en relación al transcurso de la infección (5 horas a 21 días) analizando una sola cepa y la estrella (**★**) indica si hay diferencias en la expresión entre las cepas de *T. cruzi* infectantes con una P <0.05.

V.5 Expresión de RNAm de quimiocinas MIG (CXCL9), MCP-1 (CCL2), MIP-1β (CCL4) y RANTES (CCL5) en bazo de ratones infectados con *T. cruzi*.

También se realizo un análisis de la expresión de mensajeros para las quimiocinas MIG (CXCL9), MCP-1 (CCL2), MIP-1 β (CCL4) y RANTES (CCL5) en bazo de ratones BALB/c. La expresión de la quimiocina MIG (CXCL9) en bazo, fue detectada a partir de 5 horas post-infección en ambos grupos experimentales, no detectándose esta expresión en los ratones control sin infectar. Esta expresión fue mayor en los ratones infectados con la cepa no virulenta. Para el día 21 post-infección se detectó una mayor expresión de mensajeros para esta quimiocina en los tres grupos de ratones en comparación a lo registrados a las 5 horas post-infección, siendo mayor en los grupos infectados. Los ratones infectados con la cepa no virulenta expresaron una mayor cantidad de mensajero en comparación con los ratones infectados con la cepa virulenta. Para el día 90 no se detectó la expresión de RNAm para esta quimiocina en ninguno de los grupos analizados (tabla 12 y figura 17).

En lo que se refiere a la síntesis de mensajeros para MCP-1 (CCL2) en este mismo órgano, a las 5 horas post-infección, se detectó una mayor expresión en los ratones inoculados con la cepa virulenta. Conforme transcurrió la infección, se incrementó la síntesis de mensajeros para esta quimiocina en los ratones infectados en comparación con el grupo de ratones control, pero no se encontraron diferencias significativas entre los ratones infectados con las 2 cepas diferentes de *T. cruzi*. El grupo infectado con la cepa no virulenta mostró un incremento de expresión de RNAm para el día 90 post-infección, en cambio en los ratones control no se detectaron los niveles basales detectados a las 5 horas y 21 días post-infección (tabla 13 y figura 18).

El RNAm para la quimiocina MIP-1 β (CCL4) fue detectado solo el día 21 postinfección en los ratones infectados con la cepa no virulenta de *T. cruzi* (figura 19, tabla 14).

En cambio los mensajeros para RANTES (CCL5) fueron detectado en todos los puntos post-infección analizados con ambas cepas, e incluso en los ratones control, no encontrando diferencias significativas entre los grupos experimentales, ni respecto al grupo control (tabla 15 y figura 20).

			Valores densitométricos				
			CNT	*mm2	Relación		
			MIG	β-actina	MIG/β-actina		
Bazo	Control	5 horas	0	13264.59034	0		
Bazo	Control	5 horas	0	13062.70032	0		
Bazo	Control	5 horas	0	13249.24034	0	Promedio	0
Bazo	Control	5 horas	0	13342.31035	0	Desv. Estándar	0
Bazo	No virulenta	5 horas	2119.25395	11596.01017	0.182757165		
Bazo	No virulenta	5 horas	2186.32396	11761.34018	0.185890717		
Bazo	No virulenta	5 horas	2326.39397	12352.21025	0.188338275	Promedio	0.163733365
Bazo	No virulenta	5 horas	1246.31386	12724.33028	0.097947305	Desv. Estándar	0.043916817
Bazo	Virulenta	5 horas	1230.03386	12472.81026	0.098617219		
Bazo	Virulenta	5 horas	1169.45385	12233.18023	0.095596879		
Bazo	Virulenta	5 horas	1072.41384	12825.17029	0.083617903	Promedio	0.089764083
Bazo	Virulenta	5 horas	1043.01384	12841.1503	0.081224331	Desv. Estándar	0.008623658
Bazo	Control	21 días	3644.985447	16970.04177	0.214789421		
Bazo	Control	21 días	3673.295554	19037.77199	0.192947765		
Bazo	Control	21 días	1494.215431	12862.15134	0.116171501	Promedio	0.171503571
Bazo	Control	21 días	2293.285411	14146.86148	0.162105596	Desv. Estándar	0.042753082
Bazo	No virulenta	21 días	8549.455437	13707.25175	0.623717693		
Bazo	No virulenta	21 días	7589.850792	22774.04238	0.333267615		
Bazo	No virulenta	21 días	7205.260752	22627.11236	0.318434833	Promedio	0.392410613
Bazo	No virulenta	21 días	6940.210724	23588.32246	0.29422231	Desv. Estándar	0.155042164
Bazo	Virulenta	21 días	6006.710627	18073.63189	0.332346629		
Bazo	Virulenta	21 días	6024.740628	19656.93205	0.306494453		
Bazo	Virulenta	21 días	4765.970497	19681.31205	0.242157153	Promedio	0.265366937
Bazo	Virulenta	21 días	3541.420369	19623.37205	0.180469512	Desv. Estándar	0.068127377
Bazo	Control	90 días	0	20170.5306	0		
Bazo	Control	90 días	0	23335.1407	0		
Bazo	Control	90 días	0	20566.30061	0	Promedio	0
Bazo	Control	90 días	0	23478.6307	0	Desv. Estándar	0
Bazo	No virulenta	90 días	0	18957.21056	0		
Bazo	No virulenta	90 días	0	21031.1029	0	1	
Bazo	No virulenta	90 días	0	16198.29048	0	Promedio	0
Bazo	No virulenta	90 días	0	12133.73036	0	Desv. Estándar	0

Tabla 12. Valores densitométricos de los productos de amplificación del RNA mensajero para MIG (CXCL9) en bazo de ratones BALB/C infectados con *T. cruzi*.

Datos de la normalización de valores densitométricos del RNAm para MIG (CXCL9). Los valores están expresados como la relación de los valores densitométricos de la quimiocina entre el control endógeno (βactina) expresados como cuentas por milímetro cuadrado (CNT^{*}mm²). Se muestra el promedio de la expresión de cuatro ratones de tres experimentos independientes.

21 días 90 días 5 horas MIG/CXCL9 CONTROL β-Actina ----____ ____ MIG/CXCL9 **NO VIRULENTA** β-Actina -----MIG/CXCL9 VIRULENTA β-Actina _ B

TIEMPO

POST-INFECCIÓN

Figura 17. Cinética de expresión de RNAm de MIG (CXCL9) en bazo de ratones BALB/c infectados con $1x10^5$ tripomastigotes sanguíneos de *T. cruzi*. El RNA total fue extraído a diferentes tiempos post-infección y la expresión de la quimiocina fue evaluada por RT-PCR. **A.** Los productos de amplificación fueron separados por electroforesis en gel de agarosa al 2% y teñido con bromuro de etidio. Cada banda del gel corresponde al resultado de RT-PCR obtenido de un solo ratón, se muestran 4 ratones de 3 experimentos independientes. **B.** La gráfica muestra el análisis semi-cuantitativo de la expresión de RNAm de MIG (CXCL9) en bazo de ratones BALB/c infectados con *T. cruzi*. Los valores son el promedio de 4 ratones tomados de 3 experimentos independientes. El asterisco (*) indica que las diferencias son estadísticamente significativas con respecto al control, doble asterisco (5 horas a 21 días) analizando una sola cepa y la estrella (**★**) indica si hay diferencias en la expresión entre las cepas de *T. cruzi* infectante con una P <0.05.

			Valores den	sitométricos	· · · · · · · · · · · · · · · · · · ·		
			CNT*	*mm2	Relación		
			MCP-1	B-actina	MCP-1/β -actina		
Bazo	Control	5 horas	2083.164801	13264.59034	0.157047051		
Bazo	Control	5 horas	2269.87482	13062.70032	0.173767656		
Bazo	Control	5 horas	2500.464844	13249.24034	0.188725148	Promedio	0.174888317
Bazo	Control	5 horas	2401.794834	13342.31035	0.180013414	Desv. Estándar	0.013382715
Bazo	No virulenta	5 horas	2762.004871	11596.01017	0.238185793		
Bazo	No virulenta	5 horas	2468.814841	11761.34018	0.209909313	1	
Bazo	No virulenta	5 horas	2191.304812	12352.21025	0.177401839	Promedio	0.198261407
Bazo	No virulenta	5 horas	2131.944806	12724.33028	0.167548685	Desv. Estándar	0.032187074
Bazo	Virulenta	5 horas	5777.784769	12472.81026	0.463230391		
Bazo	Virulenta	5 horas	5362.884726	12233.18023	0.438388434	1	ļ
Bazo	Virulenta	5 horas	4768.554664	12825.17029	0.371812191	Promedio	0.410313781
Bazo	Virulenta	5 horas	4723.284659	12841.1503	0.367824108	Desv. Estándar	0.04787518
Bazo	Control	21 días	3815.263077	16970.04177	0.224823435		
Bazo	Control	21 días	2222.77794	19037.77199	0.116756201		
Bazo	Control	21 días	3454.298069	12862.15134	0.268563009	Promedio	0.231310169
Bazo	Control	21 días	4457.648174	14146.86148	0.315098029	Desv. Estándar	0.084799506
Bazo	No virulenta	21 días	10462.82109	13707.25175	0.763305532		
Bazo	No virulenta	21 días	10836.66113	22774.04238	0.475833888		
Bazo	No virulenta	21 días	10011.22104	22627.11236	0.4424436	Promedio	0.529015932
Bazo	No virulenta	21 días	10248.67107	23588.32246	0.434480709	Desv. Estándar	0.157217072
Bazo	Virulenta	21 días	8768.820915	18073.63189	0.485172043		
Bazo	Virulenta	21 días	8873.060926	19656.93205	0.451396022	1	
Bazo	Virulenta	21 días	9432.140984	19681.31205	0.479243506	Promedio	0.472124873
Bazo	Virulenta	21 días	9275.730968	19623.37205	0.472687923	Desv. Estándar	0.014729855
Bazo	Control	90 días	0	20170.5306	0		
Bazo	Control	90 días	0	23335.1407	0		
Bazo	Control	90 días	0	20566.30061	0	Promedio	0
Bazo	Control	90 días	0	23478.6307	0	Desv. Estándar	0
Bazo	No virulenta	90 días	13421.97342	18957.21056	0.708014155		
Bazo	No virulenta	90 días	12583.84131	21031.1029	0.598344337	1	
Bazo	No virulenta	90 días	12675.50132	16198.29048	0.782520929	Promedio	0.78041109
Bazo	No virulenta	90 días	12531.29131	12133.73036	1.03276494	Desv. Estándar	0.18446006

Tabla 13. Valores densitométricos de los productos de amplificación del RNA mensajero para MCP-1 (CCL2) en bazo de ratones BALB/C infectados con *T. cruzi*.

Datos de la normalización de valores densitométricos del RNAm para MCP-1 (CCL2). Los valores están expresados como la relación de los valores densitométricos de la quimiocina entre el control endógeno (βactina) expresados como cuentas por milímetro cuadrado (CNT^{*}mm²). Se muestra el promedio de la expresión de cuatro ratones de tres experimentos independientes.

TIEMPO POST-INFECCIÓN 21 días 90 días 5 horas MCP-1/CCL2 CONTROL β-Actina ____ MCP-1/CCL2 **NO VIRULENTA** _ β-Actina MCP-1/CCL2 VIRULENTA β-Actina ----B 1.4 * Relación MCP-1/B-actina 1.2 ** 1 * Control ** 0.8 No virulenta * * 0.6 E Virulenta

Figura 18. Cinética de expresión de RNAm de MCP-1 (CCL2) en bazo de ratones BALB/c infectados con 1x10⁵ tripomastigotes sanguíneos de T. cruzi. El RNA total fue extraído a diferentes tiempos post-infección y la expresión de la quimiocina fue evaluada por RT-PCR. A. Los productos de amplificación fueron separados por electroforesis en gel de agarosa al 2% y teñido con bromuro de etidio. Cada banda del gel corresponde al resultado de RT-PCR obtenido de un solo ratón, se muestran 4 ratones de 3 experimentos independientes. B. La gráfica muestra el análisis semi-cuantitativo de la expresión de RNAm de MCP-1 (CCL2) en bazo de ratones BALB/c infectados con T. cruzi. Los valores son el promedio de 4 ratones tomados de 3 experimentos independientes. El asterisco (*) indica que las diferencias son estadísticamente significativas con respecto al control. Doble asterisco (**) indica si existen diferencias en la expresión de la quimiocina en relación al transcurso de la infección (comparando 5 horas con 21 y 90 días) y la estrella (*) indica si hay diferencias en la expresión entre las cepas de T. cruzi infectantes con una P <0.05.

21 días

90 días

*

5 horas

0.4 0.2 0

			Valores den	sitométricos			
			CNT ³	*mm2	Relación		
			MIP-1β	β-actina	MIP-1β/β-actina		
Bazo	Control	5 horas	0	13264.59034	0		
Bazo	Control	5 horas	0	13062.70032	0		
Bazo	Control	5 horas	0	13249.24034	0	Promedio	0
Bazo	Control	5 horas	0	13342.31035	0	Desv. Estándar	0
Bazo	No virulenta	5 horas	0	11596.01017	0		
Bazo	No virulenta	5 horas	0	11761.34018	0		
Bazo	No virulenta	5 horas	0	12352.21025	0	Promedio	0
Bazo	No virulenta	5 horas	0	12724.33028	0	Desv. Estándar	0
Bazo	Virulenta	5 horas	0	12472.81026	0		
Bazo	Virulenta	5 horas	0	12233.18023	0		
Bazo	Virulenta	5 horas	0	12825.17029	0	Promedio	0
Bazo	Virulenta	5 horas	0	12841.1503	0	Desv. Estándar	0
Bazo	Control	21 días	0	16970.04177	0		
Bazo	Control	21 días	0	19037.77199	0		
Bazo	Control	21 días	0	12862.15134	0	Promedio	0
Bazo	Control	21 días	0	14146.86148	0	Desv. Estándar	0
Bazo	No virulenta	21 días	3908.390408	13707.25175	0.285133043		
Bazo	No virulenta	21 días	3714.140387	22774.04238	0.163086567		
Bazo	No virulenta	21 días	2831.480295	22627.11236	0.125136617	Promedio	0.167180941
Bazo	No virulenta	21 días	2249.560235	23588.32246	0.095367538	Desv. Estándar	0.083375361
Bazo	Virulenta	21 días	0	18073.63189	0		
Bazo	Virulenta	21 días	0	19656.93205	0		
Bazo	Virulenta	21 días	0	19681.31205	0	Promedio	0
Bazo	Virulenta	21 días	0	19623.37205	0	Desv. Estándar	0
Bazo	Control	90 días	0	20170.5306	0		
Bazo	Control	90 días	0	23335.1407	0		
Bazo	Control	90 días	0	20566.30061	0	Promedio	0
Bazo	Control	90 días	0	23478.6307	0	Desv. Estándar	0
Bazo	No virulenta	90 días	0	18957.21056	0		
Bazo	No virulenta	90 días	0	21031.1029	0		
Bazo	No virulenta	90 días	0	16198.29048	0	Promedio	0
Bazo	No virulenta	90 días	0	12133.73036	0	Desv. Estándar	0

Tabla 14. Valores densitométricos de los productos de amplificación del RNA mensajero para MIP-1β (CCL4) en bazo de ratones BALB/C infectados con *T. cruzi*.

Datos de la normalización de valores densitométricos del RNAm para MIP-1 β (CCL4). Los valores están expresados como la relación de los valores densitométricos de la quimiocina entre el control endógeno (β -actina) expresados como cuentas por milímetro cuadrado (CNT*mm²). Se muestra el promedio de la expresión de cuatro ratones de tres experimentos independientes.

TIEMPO POST-INFECCIÓN

Figura 19. Cinética de expresión de RNAm de MIP-1 β (CCL4) en bazo de ratones BALB/c infectados con 1x10⁵ tripomastigotes sanguíneos de *T. cruzi*. El RNA total fue extraído a diferentes tiempos post-infección y la expresión de la quimiocina fue evaluada por RT-PCR. **A.** Los productos de amplificación fueron separados por electroforesis en gel de agarosa al 2% y teñido con bromuro de etidio. Cada banda del gel corresponde al resultado de RT-PCR obtenido de un solo ratón, se muestran 4 ratones de 3 experimentos independientes. **B.** La gráfica muestra el análisis semi-cuantitativo de la expresión de RNAm de MIP-1 β (CCL4) en bazo de ratones BALB/c infectados con *T. cruzi*. Los valores son el promedio de 4 ratones tomados de 3 experimentos independientes. El asterisco (*) indica que las diferencias son estadísticamente significativas con respecto al control, doble asterisco (**) indica si existen diferencias en la expresión de la quimiocina en relación al transcurso de la infección analizando una sola cepa y la estrella (**★**) indica si hay diferencias en la expresión entre las cepas de *T. cruzi* infectantes con una P <0.05.

			Valores densitométricos				
			CNT*mm2		Relación		
			RANTES	β-actina	Rantes/β-actina		
Bazo	Control	5 horas	7145.506958	13264.59034	0.538690361		
Bazo	Control	5 horas	19973.3183	13062.70032	1.529034412		
Bazo	Control	5 horas	20460.69835	13249.24034	1.544292188	Promedio	1.209698461
Bazo	Control	5 horas	16368.03792	13342.31035	1.226776884	Desv. Estándar	0.470627933
Bazo	No virulenta	5 horas	10122.5339	11596.01017	0.872932479		
Bazo	No virulenta	5 horas	19379.40487	11761.34018	1.647720801		
Bazo	No virulenta	5 horas	16304.74455	12352.21025	1.319985996	Promedio	1.369285379
Bazo	No virulenta	5 horas	20823.39502	12724.33028	1.63650224	Desv. Estándar	0.364109766
Bazo	Virulenta	5 horas	13252.7532	12472.81026	1.062531453		
Bazo	Virulenta	5 horas	11561.60302	12233.18023	0.945101993		
Bazo	Virulenta	5 horas	18269.72372	12825.17029	1.424520946	Promedio	1.278206999
Bazo	Virulenta	5 horas	21581.78237	12841.1503	1.680673606	Desv. Estándar	0.337076661
Bazo	Control	21 días	14098.26043	16970.04177	0.830773466		
Bazo	Control	21 días	13997.35042	19037.77199	0.735240995		
Bazo	Control	21 días	13094.34032	12862.15134	1.018052111	Promedio	1.060499217
Bazo	Control	21 días	23454.51026	14146.86148	1.657930298	Desv. Estándar	0.415247912
Bazo	No virulenta	21 días	31533.61507	13707.25175	2.300506013		
Bazo	No virulenta	21 días	22606.92519	22774.04238	0.992661944		
Bazo	No virulenta	21 días	33437.39527	22627.11236	1.477757954	Promedio	1.549870327
Bazo	No virulenta	21 días	33697.2253	23588.32246	1.428555395	Desv. Estándar	0.545848765
Bazo	Virulenta	21 días	33256.39525	18073.63189	1.840050493		
Bazo	Virulenta	21 días	33923.04532	19656.93205	1.725754825		
Bazo	Virulenta	21 días	34199.67535	19681.31205	1.737672532	Promedio	1.764684276
Bazo	Virulenta	21 días	34444.10538	19623.37205	1.755259254	Desv. Estándar	0.051685053
Bazo	Control	90 días	14881.77155	20170.5306	0.737797723		
Bazo	Control	90 días	13717.75143	23335.1407	0.587858098		
Bazo	Control	90 días	13225.55138	20566.30061	0.643069049	Promedio	0.65727157
Bazo	Control	90 días	15504.38162	23478.6307	0.660361408	Desv. Estándar	0.06195146
Bazo	No virulenta	90 días	13958.41146	18957.21056	0.736311464		
Bazo	No virulenta	90 días	10938.85114	21031.1029	0.520127318	1	
Bazo	No virulenta	90 días	7712.980805	16198.29048	0.476160173	Promedio	0.55451391
Bazo	No virulenta	90 días	5890.400614	12133.73036	0.485456693	Desv. Estándar	0.12266621

 Tabla 15. Valores densitométricos de los productos de amplificación del RNA mensajero para RANTES

 (CCL5) en bazo de ratones BALB/C infectados con *T. cruzi*.

Datos de la normalización de valores densitométricos del RNAm para RANTES (CCL5). Los valores están expresados como la relación de los valores densitométricos de la quimiocina entre el control endógeno (βactina) expresados como cuentas por milímetro cuadrado (CNT^{*}mm²). Se muestra el promedio de la expresión de cuatro ratones de tres experimentos independientes.

TIEMPO POST-INFECCIÓN 21 días 90 días 5 horas RANTES/CCL5 CONTROL β-Actina ____ ____ RANTES/CCL5 **NO VIRULENTA** β-Actina RANTES/CCL5 VIRULENTA β- Actina

B

Figura 20. Cinética de expresión de RNAm de RANTES (CCL5) en bazo de ratones BALB/c infectados con $1x10^5$ tripomastigotes sanguíneos de *T. cruzi*. El RNA total fue extraído a diferentes tiempos post-infección y la expresión de la quimiocina fue evaluada por RT-PCR. **A.** Los productos de amplificación fueron separados por electroforesis en gel de agarosa al 2% y teñido con bromuro de etidio. Cada banda del gel corresponde al resultado de RT-PCR obtenido de un solo ratón, se muestran 4 ratones de 3 experimentos independientes. **B.** La gráfica muestra el análisis semi-cuantitativo de la expresión de RNAm de RANTES (CCL5) en bazo de ratones BALB/c infectados con *T. cruzi*. Los valores son el promedio de 4 ratones tomados de 3 experimentos independientes. El asterisco (*) indica que las diferencias son estadísticamente significativas con respecto al control, doble asterisco (**) indica si existen diferencias en la expresión de la quimiocina en relación al transcurso de la infección y la estrella (**★**) indica si hay diferencias en la expresión entre las cepas de *T. cruzi* infectantes con una P <0.05.

VI. DISCUSIÓN

Aunque ya se conoce que la infección con *T. cruzi* induce la producción y secreción de varias citocinas proinflamatorias y regulatorias que modulan la respuesta inmune del hospedero, no se había determinado la expresión de mensajeros de quimiocinas en corazón, músculo esquelético y bazo de ratones infectados con cepas mexicanas de *T. cruzi* que mayoritariamente pertenecen al grupo genético I (López-Olmos *et al.*, 1998; Bosseno *et al.*, 2001). *T. cruzi* esta compuesto de cepas y/o aislados que muestran una heterogeneidad genética, lo que se ve reflejado, en varios aspectos de su biología como en su capacidad de infectar vectores y hospederos mamíferos, patogenicidad, tropismo, virulencia y desarrollo de las manifestaciones clínicas de la infección (Macedo *et al.*, 2004). Esta heterogeneidad genética da por resultado que en ratones con el mismo fondo genético, se induzca una respuesta inmune diferente.

En el laboratorio se cuenta, con dos cepas mexicanas de *T. cruzi*, genotipo I, que muestran un comportamiento biológico diferente entre ellas en modelo murino. Al inocular la misma cantidad de tripomastigotes $(1x10^5)$ vía peritoneal a ratones BALB/c, una cepa mata al 100% de los ratones mientras que la otra cepa no mata a ninguno de los ratones infectados (Sosa, 2003; Rico, 2004).

Los ratones BALB/c son relativamente susceptibles a la infección con *T. cruzi*; mientras que los ratones C57BL/6 son resistentes. Lo que demuestra que el curso de la infección está determinado tanto por las características propias del parásito como por las del hospedero. Las bases de la resistencia de las cepas de ratón no son totalmente conocidas. Sin embargo, se sabe que muestran diferentes patrones de producción de citocinas, en respuesta a la infección con *T. cruzi*, del mismo modo se ha observado que ratones de la cepa C57BL/10 (resistentes) que presentan el haplotipo H-2 del complejo mayor de histocompatibilidad sobreviven a la infección (Chen *et al.*, 2001). Los ratones C57BL/6 son resistentes a la infección y responden con altos niveles en la síntesis de iNOS (sintetasa de óxido nítrico inducible); mientras, los ratones Swiss (susceptibles) muestran una moderada producción de iNOS durante la infección con *T. cruzi* (Malvezi *et al.*, 2004). Estos son algunos factores relacionados al fondo genético del hospedero, que influyen en la respuesta inmune en la infección con *T. cruzi*.

En nuestro modelo el grupo de ratones BALB/c infectados con la cepa virulenta de *T. cruzi*, desarrolló una alta parasitemia de 4.07 x10⁶ \pm 0.52 parásitos por ml de sangre (pico máximo de parasitemia) y mostró una alta mortalidad en un corto tiempo post-infección, respecto al grupo infectado con la cepa no virulenta con la que los ratones sobrevivieron y presentaron una parasitemia más baja de 1.38 x10⁶ \pm 0.37 (Sosa, 2003; Rico, 2004).

En este modelo se detectaron también diferencias macroscópicas como: la apariencia física de los ratones conforme transcurre la infección con la cepa virulenta. Estos cambios consistieron en erizamiento del pelo, parálisis de miembros pélvicos. Todas estas características no fueron evidentes en los ratones infectados con la cepa no virulenta. Al comparar el tamaño del bazo de ratones control $(1.4 \pm 0.2 \text{ cm})$ se detectó esplenomegalia en ambos grupos infectados con *T. cruzi*, siendo mayor en los ratones infectados con la cepa no virulenta ($3.0 \pm 0.1 \text{ cm}$), que en los infectados con la cepa no virulenta ($2.3 \pm 0.2 \text{ cm}$) (Sosa, 2003).

De ahí la importancia de estudiar la respuesta inmune montada por el hospedero con cepas mexicanas de *T. cruzi*. El papel de la producción de quimiocinas en la infección con *T. cruzi* y la inmunopatología durante la infección con *T. cruzi* no está del todo comprendida, dado que esta respuesta varía dependiendo de la cepa y hospedero empleados en la infección experimental. En este trabajo, se analizó la expresión de mensajeros de quimiocinas en diferentes órganos blancos de *T. cruzi*, por ser moduladores de la respuesta inflamatoria observada durante la fase aguda y crónica de la infección.

La expresión de mensajeros para la quimiocina MIG (CXCL9) en el corazón de los ratones infectados con *T. cruzi* fue evidente desde la fase aguda temprana (5 horas) y puede denotar la presencia del parásito debido posiblemente al tropismo que presentan las dos cepas de *T. cruzi* empleadas en este trabajo que se sabe se establecen principalmente en corazón, pero también se pueden establecer en otros órganos (Monteón et al., 1996). Sin embargo, la infección con la cepa virulenta indujo una expresión significamente mayor de mensajeros para esta quimiocina. Es importante destacar que en el músculo esquelético de estos ratones infectados no se detectó la
expresión de RNAm para esta quimiocina en esta fase de la infección, lo cual apoya la idea que estas dos cepas tienen un temprano histotropismo preferencial hacia corazón. Durante la fase aguda de la infección (21 días) detectamos un incremento en la expresión de RNAm para MIG en el corazón con respecto a la fase aguda temprana (5 horas) de los ratones infectados con las diferentes cepas de *T. cruzi*. Sin embargo solo la cepa virulenta estimuló la producción de mensajeros para esta quimiocina en músculo esquelético, lo cual hasta este punto nos indica que la cepa virulenta de *T. cruzi* induce una respuesta inmune mayor en estos dos órganos (corazón y músculo esquelético), lo cual podría ser la causa de la patogénesis observada durante la infección experimental con esta cepa de *T. cruzi*. Un fenómeno contrarío en la expresión de mensajeros para MIG ocurre en el bazo de los ratones infectados con la cepa no virulenta, la cual induce niveles de expresión mayor de RNAm de esta quimiocina en comparación con el bazo de los ratones infectados con la cepa virulenta. La expresión de esta quimiocina en los diferentes órganos estudiados solo fue detectada en la fase aguda de la infección, no así durante la fase crónica.

La explicación de este fenómeno puede radicar en que la expresión de RNAm para MIG está relacionada el reclutamiento de células T y NK activadas, esta quimiocina es el principal quimioatrayente de las células NK (Amichay *et al.*, 1996). Se sabe que estos grupos celulares juegan un papel importante en el control de la replicación del parásito durante la fase aguda de la infección con *T. cruzi* principalmente por la producción de INF- γ el cual activa a los macrófagos para que produzcan oxido nítrico medio por el cual es eliminado el parásito (Antunez y Cardoni, 2004). Su expresión puede ser detectada en ratones sanos en niveles muy bajos en bazo, timo e hígado (Amichay *et al.*, 1996). Durante la fase crónica, nuestros resultados contrastan con lo reportado por otros grupos (Talvani *et al.*, 2000) en los cuales detectaron la expresión de mensajeros para MIG durante la fase crónica de la infección. La diferencia entre sus resultados y los nuestros podría radicar a que ellos emplean otro modelo murino con ratones C57BL/6 y una cepa sudamericana que pertenece al genotipo 2.

Del mismo modo, se detectó la expresión de RNAm para MCP-1 (CCL2) desde la fase aguda temprana de la infección en corazón de ratones infectados con la cepa virulenta de T. cruzi. Cabe destacar que esta quimiocina es un potente quimioatrayente de macrófagos, los cuales son importantes para la eliminación de la forma amastigote del parásito vía producción de óxido nítrico (Melo et al., 2003). Esta quimiocina también ejerce su función sobre otros grupos celulares como linfocitos T, células NK, células dendríticas y basófilos (Baggiolini et al., 1997; Rollins, 2001). En general la expresión de mensajeros para esta quimiocina se detecta en durante toda infección en corazón y bazo de ratones infectados, en músculo esquelético de los ratones infectados con la cepa virulenta existió una alta expresión de RNAm para MCP-1 (CCL2), no detectándose en la fase aguda temprana, esto hace sugerir nuevamente que tiene que ver con el tropismo que tienen las cepas de T. cruzi estudiadas en este trabajo. La presencia de mensajeros en corazón y bazo de ratones infectados con la cepa no virulenta durante la fase crónica de la infección es debido posiblemente por la persistencia del parásito en el hospedero. Algo que llama la atención es que no se detectan RNAm para MCP-1 (CCL2) en músculo esquelético, a pesar de la existencia de nidos de amastigotes (dato no mostrado), posiblemente el número de parásitos es muy bajo y/o esta regulada la expresión de mensajeros negativamente para evitar daño tisular.

Una alta expresión de MCP-1 (CCL2) ha sido detectada en muchas enfermedades como la ateroesclerosis, artritis reumatoide, esclerosis múltiple, miopatía inflamatoria idiopática, las cuales presentan un infiltrado rico en monocitos (Gu *et al.*, 1997; Ward, *et al.*, 1998; Canfalonieri *et al.*, 2000) una sobrexpresión de esta quimiocina ha sido asociada con la distrofia muscular murina y humana en la miopatía inflamatoria idiopática (Porter *et al.*, 2003). La alta expresión de mensajeros para MCP-1 (CCL2) en músculo esquelético de los ratones infectados con la cepa virulenta, pudiera ser uno de los factores que provocan la aparición de estructuras blanquecinas, con forma de cordones a lo largo del músculo esquelético de los miembros posteriores, que aparentemente se trata de tejido necrosado con nidos de amastigotes (estos datos se están analizando en el laboratorio).

En general se observó poca expresión del mensajero para MIP-1B (CCL4) durante la fase aguda de la infección, no detectándose a las 5 horas post-infección en ninguno de los órganos analizados. Durante la fase aguda (21 días) se expresa en corazón principalmente y en mayor concentración en los ratones infectados con la cepa virulenta. Estos resultados sugieren que esta quimiocina se expresa posteriormente a la aparición de MIG (CXCL9), MCP-1 (CCL2) y RANTES (CCL5) en respuesta a T. *cruzi*. Posiblemente se podría estar expresando el RNAm para MIP-1 α (CCL-3) que es otra quimiocina que se ha asociado con el reclutamiento de macrófagos en corazón y bazo de ratones infectados con T. cruzi (Petray et al., 2002). Pero aparentemente es importante la expresión de mensajeros para esta quimiocina, durante la fase crónica de la infección con la cepa no virulenta, dado que es el grupo de ratones que sobreviven la infección. Se ha observado que MIP-1 α (CCL3) y MIP-1 β (CCL4) tiene funciones quimioatrayente sobre macrófagos, linfocitos T CD4+, CD8+, timocitos doble positivos, y puede dirigir la respuesta inmune hacia un tipo Th1 versus Th2 (Siveke y Hamann, 1998; Ward y Westwick, 1998). La principal diferencia entre estas dos quimiocinas es que MIP-1β (CCL4) atrae linfocitos CD4+ activados mientras MIP-1α (CCL3) atrae CD8+ activados (Tabú et al., 1993). Durante la fase crónica de la infección la expresión del mensajero de esta quimiocina en corazón posiblemente denota la persistencia del parásito en este órgano. La importancia de la producción de esta quimiocina en la enfermedad de Chagas no está del todo comprendida, pero se ha observado en otros modelos que la expresión y secreción de esta quimiocina produce una cascada de eventos inflamatorios que conducen a la acumulación de leucocitos en el tejido afectado (Aliberti et al., 1999). En la meningitis bacterial se ha detectado en el fluido cerebroespinal la expresión de esta quimiocina y se piensa que el reclutamiento de leucocitos en las membranas del cordón espinal y/o cerebro causa daño tisular por la secreción de productos tóxicos (Menten, 2002), que pudiese ser lo que ocurre en el modelo experimental aquí estudiado al no ser regulada la respuesta inmune durante la fase aguda de la infección.

La infección con *T. cruzi* también produjo un incremento en la expresión de RNAm para RANTES (CCL5) encontrando el punto máximo de expresión durante la

fase aguda (21 días) de la infección, para posteriormente reducir durante la fase crónica la infección en los tres órganos analizados. A diferencia de las quimiocinas MIG (CXCL9), MCP-1 (CCL2) y MIP-1β (CCL3) no se encontraron diferencias significativas en los niveles de expresión de RNAm entre los ratones infectados con la cepa virulenta y no virulenta. Existen varios grupos celulares que producen RANTES (CCL5), pero principalmente se encuentran linfocitos T, macrófagos, células epiteliales y endoteliales en respuesta a señales inflamatorias. Esta quimiocina media la quimiotaxis de eosinófilos, monocitos, células dendríticas y células T CD4+ y CD8+ activadas y no activadas (Taub et al., 1993; Greaves y Schall, 2000). La producción de quimiocinas en la fase crónica está asociada a la presencia del parásito en los órganos analizados, la reducción de la expresión de mensajeros para RANTES (CCL5), que se observó en el presente trabajo, posiblemente tiene que ver con la regulación negativa de activación y quimioatracción de grupos celulares, para evitar un mayor daño tisular en corazón de ratones infectados con la cepa no virulenta, aunque no es claro cual es papel que tiene esta quimiocina en este modelo de infección experimental con cepas mexicanas de T. cruzi.

Con estos datos, es evidente que existe una expresión diferencial de quimiocinas, dependiendo de la cepa de *T. cruzi* que infecte al ratón, así como del órgano analizado y del tiempo de evolución de la infección. La alta expresión de mensajeros para MIG (CXCL9), MIP-1 β (CCL4) y MCP-1(CCL2) (aunque no en la misma proporción) detectada en la fase aguda de la infección con la cepa virulenta, puede estar relacionada con los altos niveles de IFN- γ e IL-12 detectados en suero de ratones infectados con esta misma cepa (Rico, 2004). En cambio en los ratones infectados con la cepa no virulenta la expresión de mensajeros para estas quimiocinas en la fase aguda, fue de menor intensidad comparado con los ratones infectados con la cepa virulenta. Esta expresión menor de mensajeros de quimiocinas MIG, MIP-1 β y MCP-1 (que posiblemente se trascribirán en una proteína funcional), aparentemente es suficiente para eliminar o controlar la replicación del parásito, dado que este grupo de ratones son los que sobreviven a la infección con *T. cruzi*.

Un posible mecanismo de acción de estas quimiocinas sería a través de la regulación de la producción del óxido nítrico en macrófagos infectados (Villalta *et al.*, 1998; Aliberti *et al.*, 1999) así como en el reclutamiento celular en los órganos infectados, que se caracterizan por infiltrados de células CD4+, CD8+ y macrófagos (Aliberti et al., 2001) que son importantes para el control de la replicación del parásito durante la fase aguda de la infección.

El IFN- γ es uno de los principales reguladores de la expresión de quimiocinas durante la infección experimental con *T. cruzi* (Teixeira *et al.*, 2002; Talvani *et al.*, 2000). La presencia de IFN- γ y quimiocinas MIG (CXCL9), MIP-1 α , (CCL3), MIP-1 β (CCL4), MCP-1 (CCL2) y RANTES (CCL5) en corazón de ratones infectados, se ha asociado con la producción de IL-12 y TNF- α , que son citocinas del perfil Th1. El TNF- α también puede disparar la producción de quimiocinas durante la infección con *T. cruzi* (Machado *et al.*, 2000).

En ratones GRO (deficientes IFN- γ), no existe expresión de MIG (CXCL9), IP-10 (CXCL10) y RANTES (CCL5), lo que revela la importancia del IFN- γ , en disparar la síntesis de mensajeros de estas quimiocinas. Sin la expresión de estas quimiocinas existe un intenso infiltrado celular en peritoneo, lo que sugiere que otras quimiocinas como MIP-1 α (CCL3), MIP-1 β (CCL4) y MCP-1 (CCL2) podrían estar involucradas en el reclutamiento de linfocitos al sitio de infección (Aliberti *et al.*, 2001). Estos datos concuerdan con lo observado en trabajos previos de nuestro laboratorio con este mismo modelo murino en la cual existe una producción de IFN- γ , detectada tanto en suero como en sobrenadante de células de bazo, siendo mayor el pico de concentración en los ratones infectados con la cepa virulenta (Rico, 2004), contrariamente a lo reportado en la literatura estos ratones son los que no sobreviven a la infección.

Además el tratamiento con recombinantes de las quimiocinas, RANTES (CCL5), MIG (CXCL9), MIP-1 α (CCL3), MIP-1 β (CCL4) y MCP-1 (CCL2) en cultivos de macrófagos infectados mejoran la producción del óxido nítrico, en comparación con el grupo tratado con IFN- γ . La neutralización endógena de estas quimiocinas, con anticuerpos específicos, produce una reducción en la producción de

óxido nítrico, lo que demuestra el papel autocrino de las quimiocinas en la inducción de la biosíntesis de óxido nítrico en macrófagos infectados (Aliberti *et al.*, 1999; Talvani *et al.*, 2000; Coelho et al., 2002).

Una posible explicación, sobre la capacidad de las quimiocinas para inducir la liberación de óxido nítrico, es que disparan el flujo de calcio intracelular, lo que incrementa la expresión y función de la sintetasa de óxido nítrico, cuya actividad depende de la calmodulina (Aliberti *et al.*, 1999). Del mismo modo, el incremento de la concentración de intermediarios de Ca²⁺, provoca la fosforilación de protein-cinasas e inducen la expresión de moléculas de superficie en macrófagos (Villalta *et al.*, 1998). Todos estos datos sugieren que la expresión de MIG (CXCL9), MIP-1 β (CCL4), MCP-1 (CCL2) y RANTES (CCL5) tienen un papel importante en la mediación de la resistencia a la infección con *T. cruzi* (Laucella *et al.*, 2004; Talvani et al., 2003). Sin embargo, en este modelo es claro, que la infección con la cepa virulenta de *T. cruzi*, mientras, que la respuesta inflamatoria exacerbada durante la fase aguda de la infección; mientras, que la respuesta inflamatoria moderada, que es capaz de resolver la infección.

Por otro lado existen dos hipótesis que proponen los mecanismos por los cuales se desarrolla la patogénesis en la enfermedad de Chagas: una es la persistencia de *T. cruzi* en los órganos del hospedero y/o que, *T. cruzi* induce una respuesta inmune, que es responsable de los daños en tejido cardiaco (Bustamante et al., 2002; Tarleton, 2003).

La generación de una respuesta inflamatoria exacerbada, dirigida contra *T. cruzi* o antígenos del parásito, parecen ser los causantes del daño tisular y de la patogénesis de la enfermedad. Las quimiocinas MIG (CCL2), MIP-1 β (CCL4) y MCP-1 (CCL2) están involucradas en el reclutamiento celular hacia los órganos infectados, así como en el control de la replicación del parásito, mediado por la producción de IFN- γ , conduciendo a la producción de óxido nítrico por parte de los macrófagos; pero se sabe que una excesiva producción de óxido nítrico, puede producir daño tisular severo (Malvezi *et al.*, 2004).

Se ha observado que altas concentraciones de CCL3 (MIP-1α) y/o CCL2 (MCP-1), están asociadas con la disfunción miocárdiaca, después de un infarto al miocardio en pacientes con cardiopatía dilatada. Se ha demostrado en pacientes, que existe una correlación entre una elevada concentración en plasma de MCP-1 (CCL2) y TNF- α y la incidencia de una cardiomiopatía Chagasica crónica severa, estos individuos presentan un incremento en el diámetro del ventrículo izquierdo (Talvani *et al.*, 2004), estos datos podrían explicar el porque los ratones infectados con la cepa virulenta no sobreviven a la infección, posiblemente esta sobre-expresión de RNAm para esta quimiocinas lleva a una gran producción de la quimiocina y esto sea la causante de la patología observada en este modelo confirmando la existencia de un desequilibrio en la modulación de la respuesta inmune, montada por el hospedero contra *T. cruzi*.

Además, altos niveles de IFN- γ y la baja secreción de IL-10, se han asociado con el desarrollo del daño en corazón. Esto contrasta aparentemente con el papel de protección que se le ha atribuido al IFN- γ . En este contexto se ha propuesto que durante la fase aguda de la infección, el IFN- γ ayuda a detener la replicación del parásito. Y durante la fase crónica de la infección la respuesta incontrolada de esta citocinas, promueve la destrucción tisular (Gomes *et al.*, 2003). En nuestro modelo esto parece suceder en la fase aguda de la infección con la cepa virulenta.

Existen otros componentes de la respuesta inmune que podrían también estar jugando un papel muy importante en esta desregulación, como la unión de IL-27 con su receptor WSX-1, que juega un papel importante en la regulación de la diferenciación de células T naive, hacia Th1, por inducir la producción temprana de IFN- γ en células indiferenciadas. Este receptor se encuentra expresado en células NK, macrófagos y células de Kupper. Ratones deficientes en el receptor WSX-1, muestran una alta y prolongada parasitemia, daño hepático severo, así como un incremento en la mortalidad en comparación con ratones C57BL/6. También los ratones WSX-1^{-/-}, tienen una sobre producción de citocinas pro-inflamatorias como IFN- γ , IL-6 y TNF- α , lo cual produce el daño hepático (Hamano *et al.*, 2003). Demostrando que una producción del hospedero.

Es evidente que la producción de citocinas (IFN- γ , IL-12, IL-2 y TNF- α) y quimiocinas (MIG, MIP-1 β , MCP-1 y RANTES), está involucrada en la activación de iNOS, la cual produce óxido nítrico por parte de macrófagos que es el medio por el cual

es el eliminado el parásito. Sin embargo, existe evidencia que sustenta que una producción excesiva de óxido nítrico, puede provocar consecuencias patológicas en el hospedero, en la malaria cerebral se ha asociado la severidad de la enfermedad con la producción de óxido nítrico. Del mismo se ha demostrado que el óxido nítrico juega un papel importante en el desarrollo y la progresión de la dilatación ventricular y disfunción sistólica en la miocarditis Chagasica aguda en modelo murino (Chandra *et al.*, 2002).

Además de la regulación de la respuesta inmune mediante la secreción de citocinas y quimiocinas, existen otros componentes que protegen contra el daño tisular y que podrían estar fallando en la regulación de la respuesta inmune. Por ejemplo, la glutatión peroxidasa, que es una enzima esencial que confiere protección contra la citotoxicidad del óxido nítrico y SOD (superóxido dismutasa) protege a las células contra el daño oxidativo asociado a citocinas pro-inflamatorias como IL-1 y TNF- α . En modelo murino la reducción en los niveles de glutation peroxidasa y SOD, se han asociado con el incremento en los niveles de TNF- α y óxido nítrico, lo que provoca un desequilibrio de antioxidantes y daño oxidativo, lo que favorece la evolución de la enfermedad (Perez-Fuentes *et al.*, 2003).

La expresión de quimiocinas encontradas se correlaciona con datos de estudios previos de nuestro laboratorio donde se analizaron las poblaciones de células T CD4+, CD8+ y NK en bazo de ratones infectados encontrándose diferencias en la composición de las poblaciones celulares. Durante la fase aguda en los ratones infectados con la cepa virulenta no existieron diferencias en la población de linfocitos CD8+ sin embargo el porcentaje de linfocitos T CD4+ disminuyó con respecto al grupo control lo que indica una falta de estimulación de células CD8+ y una inmunosupresión de linfocitos T CD4+. En lo que se refiere a los ratones infectados con la cepa no virulenta durante la fase aguda el porcentaje de linfocitos T CD8+ tuvo un leve incremento, no así la población de CD4+ que disminuyó durante la fase aguda de la infección comparado con los ratones controles, durante la fase crónica de la infección el incremento de la población de células CD8+ fue estadísticamente significativa, además la población de células T CD4+ recuperaron sus niveles normales. Con respecto al porcentaje de células

NK durante la fase aguda de la infección esta mostró un incremento en el número de este grupo celular con respecto al control, no encontrando diferencias entre los ratones infectados con la cepa virulenta y no virulenta (Sosa, 2003).

Es evidente en este modelo, que la cepa mexicana de *T. cruzi* virulenta, induce una mayor expresión de mensajeros de MIG (CXCL9), MIP- β (CCL4) y MCP-1 (CCL2) en corazón y músculo esquelético, en comparación con el grupo infectado con la cepa no virulenta durante la fase aguda de la infección y que posiblemente esta señal genere una respuesta inmune exacerbada que sea uno de los elementos responsables de la muerte de los ratones, sugiriendo que existe un desequilibrio en la modulación de la respuesta inflamatoria.

VII. CONCLUSIONES

- Existe una expresión diferencial de quimiocinas tanto en tiempo como en los diferentes órganos analizados dependiendo de la cepa de *T. cruzi* que infecte al hospedero aunque estas pertenezcan al mismo tipo genético.
- La producción moderada de quimiocinas es esencial para controlar la replicación del parásito, durante la fase aguda de la infección, pero una respuesta exacerbada de MCP-1, MIG y MIP-1β puede ser dañina para el hospedero.
- •La respuesta exacerbada en la expresión de quimiocinas (MCP-1, MIG y MIP-1 β), observada en los ratones infectados con la cepa virulenta, sugiere que existe un desequilibrio en la modulación de la respuesta inmune.

VII. BIBLIOGRAFÍA

- Abrahamsohn, I. A. y Coffman, R. L. 1996. *Trypanosoma cruzi:* IL-10, TNF, IFN-gamma and IL-12 regulate innate and acquired immunity to infection. Exp. Parasitol. 84: 231-244.
- Adad, S. J., Andrade, D. C., Lopes, E. R., Chapadeiro, E. 1991. Pathological anatomy of chagasic megaesophagus. Rev. Inst. Med. Trop. Sao Paulo 33, 443-450.
- Ajuebor, M.N., Swain, M.G., y Perretti, M. 2002. Chemokines as novel therapeutic targets in inflammatory diseases. Biochem. Pharmacol. 63: 1191-1196.
- Aliberti, J.C., Cardoso, M.A., Martins, GA., Gazzinelli, R.T., Viera, L.Q., y Silva, J.S. 1996. Interleukin-12 mediates resistance to Trypanosoma cruzi in mice and is produced by murine macrophages in response to live tripomastigotes. Infect. Immun. 64: 1961-1967.
- Aliberti, J.C.S., Machado, F.S., Souto, J.T., Campanelli, A.P., Teixeira, M.M., Gazzinelli, R.T., y Silva J.S. 1999. β- Chemokines enhance parasite uptake and promote nitric oxide-dependent microbiostatic activity in murine inflammatory macrophages infected with *Trypanosoma cruzi*. Infect. Immun. 67: 4819-4826.
- Aliberti, J.C.S., Souto, J.T., Marino, A.P., Lannes-Vieira, J., Teixeira, M.M., Farber, J., Gazzinelli, R.T., y Silva, J.S. 2001. Modulation of chemokines production and inflammatory responses in Interferon-γ- and tumor necrosis factor-R1-deficient mice during *Trypanosoma cruzi* infection. Am. J. Pathol. 158: 1433-1440.
- Amichay, D., Gazzinelli, R. T., Karupiah, G., Moench, T. R., Sher, A., Farber, J. M. 1996. Genes for chemokines MuMig and Crg-2 are induced in protozoan and viral infections in response to IFN-gamma with patters of tissue expression that sugget nonredundant roles in *vivo*. J. Immunol. 157: 4511-4520.
- Anderson, N., Morales, A., Nava E., Martínez, E., Rodríguez, I., Young, P. <u>Howard, M. K., Miles, M. A.</u> <u>1990.</u> Trypanosoma cruzi infection in the Mexican state of Guerrero: a seroepidemiological (ELISA) survey of 20 communities. J. Trop. Med. Hyg. 93: 341-346.
- Andrews, N. W., Abrams, C. K., Slatin, S. L., Griffiths, A. 1990. A Trypanosoma cruzi secreted protein immunologically related to the complement component C9: evidence for membrane pore forming activity at low pH. Cell. 61: 1277-1287.
- Annunziato, F., Cosmi, L., Galli, G., Beltrame, C., Romagnani, P., Manetti, R., Romagnani, S., y Maggi, E. 1999. Assessment of chemokine receptor expression by human Th1 and Th2 cells *in vitro* and *in vivo*. J. Leukc. Biol. 65: 691-699
- Antúnez, M.I., y Cardoni, R.L. 2000. IL-12 and IFN-γ production, and NK cell activity, in acute and chronic experimental Trypanosoma cruzi infections. Immunol. Lett. 71: 103-109.
- Antunez, M. I., Cardoni, R. L. 2004. Trypanosoma cruzi: the expansion of NK, T, and NKT cells in the experimental infection. Exp. Parasitol. 106: 85-94.
- Balkwill, F. 1998. The molecular and cellular biology of the chemokines. J. Viral Hepat. 5: 1-14.

- Bossceno, M.F., Barnábe, C., Magallón. E., Kasten, F.L., Ramsey, J., Espinoza, B., y Breniëre, S.F. 2002. Predominance of *Trypanosoma cruzi* lineage I in México. J. Clin. Microbiol. 40: 627-632.
- Bosseno, M. F., Espinoza, B., Sánchez, B., y Breniere, A. F. 2000. Mexican *Trypanosoma cruzi* stocks: analysis of minicircle kDNA homologies by cross-hybridization. Mem. Inst. Oswaldo Cruz 95: 473-476.
- Brener Z. 1987. Pathogenesis and immunopathology of chronic Chagas disease. Mem. Inst. Oswaldo Cruz 82: 205-212.
- Brener, Z. 1973. Biology of Trypanosoma cruzi. Annu. Rev. Microbiol. 27: 347-383.
- Brenier-Pinchart, M. P., Pelloux, H., Derouich-Guergour, D. D., y Ambroise-Thomas, P. 2001. Chemokines in host-protozoan-parasite interactions. Trends Parasitol. 17: 292-296
- Brisse, S., Barnabé, C., Tibayrenc, M. 2000. Identification of six *Trypanosoma cruzi* phylogenetic lineages by random amplified polymorphic DNA and multilocus enzyme electrophoresis. Inter. J. Parasitol. 30: 35-44.
- Burleigh, B., y Andrews, N. 1995. The mechanisms of Trypanosoma cruzi invasion of mammalian cells. Ann. Rev. Microbiol. 49: 175-200.
- Buschiazzo, A., Amaya, M. F., Cremona, M. L., Frasch, A. C., y Alzari, P. M. 2002. The crystal structure and mode of action of trans-sialidase, a key enzyme in *Trypanosoma cruzi* pathogenesis. Mol. Cell. 10: 757–768.
- Bustamante, J. M., Rivarola, H. W., Fernández, A. R., Enders, J. E., Fretes, R., Palma, J. A., y Paglini-Oliva, P. A. 2003. Indeterminate Chagas disease: *Trypanosoma cruzi* strain and re-infection are factors involved in the progression of cardiopathy. Clin. Sci. 104: 415-420.
- Bustamante, J. M., Rivarola, H. W., Fernández, A. R., Enders, J. E., Fretes, R., De luca, O. G., Palma, J. A., y Paglini-Oliva, P. A. 2003. *Trypanosoma cruzi* reinfections provoke synergistic effect and cardiac β-adrenergic receptors dysfunction in the acute phase of experimental Chagas disease. Exp. Parasitol. 103: 136-142.
- Bustamante, J. M., Rivarola, H. W., Fernández, A. R., Enders, J.E., Fretes, R., De luca, O. G., Palma, J. A., y Paglini-Oliva, P. A. 2002. *Trypanosoma cruzi* reinfections in mice determine the severity of cardiac damage. International J. Parasitol. 32: 889-896.
- Calvet, C. M., Toma, L., de Souza, F. R., de Nazareth, M., de Meirelles, S. I., y Pereira, M. C. 2003. Heparan sulfate proteoglycans mediate the invasion of cardiomyocytes by *Trypanosoma cruzi*. J. Eukaryot. Microbiol. 50: 97-103.
- Campos V.G., Sánchez L,R., Jiménez C.E., Romero P. 1998. Anticuerpo anti-*Trypanosoma cruzi* en bancos de sangre del centro Médico Nacional del Occidente, IMSS, Guadalajara, Jal. Memorias del XIII Congreso Nacional de Parasitología 16-17.
- Chandra, M., Tanowitz, H. B., Petkova, S. B., Huang, H., Weiss, L. M., Witter, M., Factor, S. M., Shtutin, V., Jelicks, L. A., Chan, J., y Sharani, J. 2002. Significance of inducible nitric oxide synthase in acute myocarditis caused by *Trypanosoma cruzi* (Tulahuen strain). International J. Parasitol.. 32: 897-905.

- Charles, P. C., Weber, K. S., Capriani, B., y Brosnan, C. F. 1999. Cytokine, chemokine and chemokine receptor mRNA expression in different strain of normal mice: implications for establishment of a Th1/Th2 bias. J. Neuroimmunol. 100: 64-73.
- Chen, L., Tadashi, W., Hisami, W., Fujiro, S. 2001. Neutrophil depletion exacerbates experimental Chagas disease in BALB/c, but protects C57Bl/6 mice through modulating the Th1/Th2 dichotomy in different directions. Eur. J. Immunol. 31: 265-275.
- Chensue, S. W. 2001. Molecular machinations: chemokines signal in host-pathogen interactions. Clin. Microbiol. Rev. 14: 821-835.
- Coelho, P. S., Klein, A., Talvani, A., Coutinho, S. F., Takeuchi, O., Akira, S., Silva J. S., Canizzaro, H., Gazzinelli, R. T., y Teixeira, M. M. 2002. Glycosylphosphatidylinositol-anchored mucin-like glycoproteins isolated from *Trypanosoma cruzi* tripomastigotes induce in vivo leukocyte recruitment dependent on MCP-1 production by IFN-γ-primed-macrophages. J. Leukoc. Biol. 71: 837-844.
- Cortés J., Velazco O., Labastida M., Melchor A., Duarte N., De Torre R. 1985. La enfermedad de Chagas en Santiago Yosotiche, Oaxaca, México. Sal. Pub. Mex. 27:60-65.
- Cortez, M., Neira, I., Ferreira, D., Luquetti, A. O., Rassi, A., Atayde, V. D., Yoshida, N. 2003. Infection by *Trypanosoma cruzi* metacyclic forms deficient in gp82 but expressing a related surface molecule, gp30. Infect. Immun. 71: 6184-6191.
- <u>Coura, J. R., Anunziato, N., Willcox, H. P.</u> 1983. Chagas' disease morbidity. I Study of cases originating in various states of Brazil, observed in Rio de Janeiro. Mem Inst Oswaldo Cruz. 78:363-72.
- Coura, J. R., Junqueira, A. C. V., Fernandes, O., Valente, S. A. S., Miles, M. A. 2002. Emerging Chagas disease in Amazonian Brazil. Trends Parasitol. 18: 171-176.
- Da-Silva, A.P., Jacysyn, J., y Abrahamsohn, I.A. 2003. Resistant mice lacking interleukin-12 become susceptible to *Trypanosoma cruzi* infection but fail to mount a T helper type 2 responses. Immunol. 108: 203-237.
- De Souza, W. 1999. A short review on the morphology of Trypanosoma cruzi: from 1900 to 1999. Mem. Inst. Oswaldo Cruz 94: 17-36.
- Dos-Santos, P. V. A., Roffe, E., Santiago, H. C., Torres, R. A., Marino, P. M. P., Paiva, C. N., Silva, A. A., Gazzinelli, R. T., y Lannes-Vieira, J. 2001. Prevalence of CD8+αβ T cell in Trypanosoma cruzi-elicited myocarditis is associated with acquisition of CD62L^{Low}LFA-1^{High}VLA-4^{High} activation phenotype and expression of IFN-γ-inducible adhesion and chemoattractant molecules. Microbes Infect. 3: 971-984.
- Espinoza, B., Vera-Cruz, J.M., González, H., Ortega, E., y Hernández, R. 1998. Genotype and virulence correlation within mexican stocks of *Trypanosoma cruzi* isolated from patients. Acta Trop. 70: 63-72.
- Espinoza-Gómez, F., Maldonado-Rodríguez, A., Coll-Cárdenas, R., Hernández-Suárez, C. M., y Fernández-Salas, I. 2002. Presence of Triatominae (Hemiptera, Reduviidae) and risk of transmission of Chagas Disease in Colima, México. Mem. Inst. Oswaldo Cruz 97: 25-30.

- Farfán-Ale J.A., Loroño-Pino M.A., Flores-Flores L.F., Rosado-Parades E.P., Arjona-Torres A. 1992. Prevalencia de anticuerpos contra *Toxoplasma gondii* y *Tripanosoma cruzi* en el estado de Yucatán. Rev. Biomed. 3: 8-12.
- Gomes, J.A.S., Bahia-Oliveira, M.G., Rocha, M.O.C., Martins-Filho, O.A., Gazzinelli, G., y Correa-Oliveira, R. 2003. Evidence that development of severe cardiomyopathy in human Chagas disease is due to a Th1-specific immune response. Infect. Immun. 71: 1185-1193.
- Greaves D. R., Schall T. J. 2000. Chemokines and myeloid cell recruitment. Microbes Infect. 2:331-336.
- Grissoto, M. G., d Imperio-Lima, M. R. Marinho, C. R., Tadokoro, C. E. Abrahamsohn, L. A., Alvarez, J. M. 2001. Most parasite-specific CD8+ cells in Trypanosoma cruzi infected chronic mice are down-regulated for T-cell receptor-αβ and CD8+ molecule. Immunol. 102: 209-217.
- Guzmán-Bracho, C. 2001. Epidemiology of Chagas disease in México: an update. Trends Parasitol. 17: 372-376
- Hamano. S., Himeno, K., Miyazaki, Y., Ishii, K., Yamanaka, A., Takeda, A., Zhang, M., Hisaeda, H., Mak, T.W., Yoshimura, A., y Yoshida, H. 2003. WSX-1 is required for resistance to *Trypanosoma cruzi* infection by regulation of proinflammatory cytokine production. Immunity. 19: 657-667.
- Hébert, C. A. 1999. Chemokines in disease. Biology and Clinical Research. Human press, USA. pp. 3-18.
- Henriques-Pons, A., Oliveira, G. M., Paiva, M. M., Correa, A.F.S., Batista, M. M., Bisaggio, R. C., Liu, C. C., Cotta-De-Almeida, V., Coutinho, C. M. L. M., Persechini, P. M., y Araújo-Jorge, T. C. 2002. Evidence for a perforin-mediated mechanism controlling cardiac inflammation in *Trypanosoma cruzi* infection. Int. J. Exp. Path. 83: 67-79.
- Hiyama, K., Hamano, S., Nakamura, T., Nomoto, K., y Tada I. 2001. IL-4 reduces resistance of mice to *Trypanosoma cruzi* infection. Parasitol Res. 87: 269-274.
- Hoft, D. F., Schnapp, A. R., Eickhoff, C. S., y Roodman, S. T. 2000. Involvement of CD4+ Th1 cells in systemic immunity protective against primary and secondary challenges with Trypanosoma cruzi. Infect. Immun. 68: 197-204.
- Hoft, D. F., y Eickhoff, C. S. 2002. Type 1 immunity provides optimal protection against both mucosal and systemic Trypanosoma cruzi challenges. Infect. Immun. 70: 6715-6725.
- Holscher, C., Mohrs, M., Dal, W. J., Kohler, G., Ryffel, B., Schaub, G. A., Mossmann, H., y Brombacher, F. 2000. Tumor Necrosis Factor alfa-mediated toxic shock in Trypanosoma cruzi-infected Interleukin 10deficient mice. Infect. Immun. 68: 4075-4083.
- Huante-Magaña, R., Piza-Bernal, R., Tabárez-Hernández, J., Liera-Romero, F., Mata-Carbajal, E., Matadazas, N. 1990. Enfermedad de Chagas en Guerrero. Reporte de dos casos confirmados con xenodiagnósticos. Sal. Pub. Mex. 32: 320-324.
- Jaramillo, N., Moreno, J., Triana, O., Arcos-Burgos, M., Muñoz, S., Solari, A. 1999. Genetic structure and phylogenetic relationships of Colombian *Trypanosoma cruzi* populations as determined by schizodeme and isoenzyme markers. Am. J. Trop. Med. Hyg. 61: 986-993.

- Kim, C. H., Rott, L., Kunkel, E. J., Genovese, M. C., Andrew, D. P., Wu, L., y Butcher, E.C. 2001. Rules of chemokines receptors association with T cell polarization in vivo. J. Clin. Invest. 108: 1331-1339.
- Laucella, S. A., Postan, M., Martin, D., Fralish, B. H., Albareda, M. C., Alvarez, M. G., Lococo, B., Barbieri, G., Viotti, R. J., y Tarleton R. L. 2004. Frequency of interferon-γ-producing T cells specific for *Trypanosoma cruzi* inversely correlates with disease severity in chronic human Chagas disease. J. Infect. Dis. 189: 909-918.
- Leedale, G.F., y Vickerman, K. 2000. An illustrated guide to the protozoan. Organisms traditional referred to a protozoan, or newly discovered groups. Society of Protozoologists, USA. Lawrence. pp.1432.
- Lima, V. S., Mangia, H. R., Carreira, J. C., Marchewski, R. S., y Cansen, A. M. 1999. *Trypanosoma cruzi:* correlations of biological aspects of the life cycle in mice and Triatomines. Mem. Inst. Oswaldo Cruz 94: 397-402
- Lopes, E. R., Rocha, A., Meneses, A. C., Lopes M. A., Fatureto, M. C., Lopes, G.P., Chapadeiro, E. 1989.
 Prevalence of visceromegalies in necropsies carried out in Triangulo Mineiro from 1954 to 1988. Rev. Soc.
 Bras. Med. Trop. 2: 211-215.
- López, L. 2000. Estado actual del conocimiento de la familia reduviidae (insecta: Hemíptera) en transmisión de Trypanosoma cruzi a mamíferos en América latina. Estudio recapitulativo. Tesis para obtener él titulo de Medico veterinario zootecnista. UNAM.
- López-Olmos, V., Pérez-Nasser, N., Piñero, D., Ortega, E., Hernández, R., y Espinoza, B.1998. Biological characterization and genetic diversity of Mexican isolates of *Trypanosoma cruzi*. Acta Trop. 69: 239-254.
- Macedo, A. M., Machado, C. R., Oliveira, R. P., Pena, S. D. J. 2004. *Trypanosoma cruzi*: Genetic structure of populations and relevance of genetic variability to the pathogenesis of Chagas disease. Mem. Inst. Oswaldo Cruz. 99: 1-12.
- Macedo, A. M., Oliveira, R.P., y Pena, S.D.J. 2002. Chagas disease: role of parasite genetic variation in pathogenesis. Exp. Rev. Mol. Med. Cambridge University Press. <u>http://www-ermm.cbcu.cam.ac.uk</u> /02004118h.htm.
- Machado, F. S., Martins, G. A., Aliberti, J. C. S., Mestriner F. L. A. C., Cunha, F. Q., y Silva, J. S. 2000. Trypanosoma cruzi -infected cardiomyocites produce chemokines and cytokines that trigger potent NOdependent trypanocydal activity. Circulation 120: 3003-3008.
- Malvezi, A. D., Cecchini, R., de Souza, F., Tadokoro, C. E., Rizzo, L. V., y Pinge-Filho, P. 2004. Involvement of nitric oxide (NO) and TNF-α in the oxidative stress associated with anemia in experimental *Trypanosoma cruzi* infection. FEMS Immunol. Med. Microbiol. 41: 69-77.
- Martínez, C. M., y Hernández, R. P. 1999. Las quimiocinas, una nueva familia de citocinas en el reclutamiento de células inflamatorias. Rev. Invest. Clin. 51: 255-268.
- Martínez, F. 2003. Caracterización de la diversidad genética de insectos transmisores de la enfermedad de Chagas en México. Tesis que para obtener el Titulo de Biólogo. Facultad de Ciencias, UNAM. pp. 75.
- Martínez-Ibarra, J., Bárcenas-Ortega, N., Nogueda-Torres, B., Alejandre-Aguilar, R., Lino, M. R., Magallón-Gastélum, E., López-Martínez, V., y Romero-Nápoles, J. 2001. Role of two Triatoma (Hemiptera:

Reduviidae: Triatominae) species in the transmission of *Trypanosoma cruzi* (Kinetoplastida: Trypanosomatidae) to man in the west coast of México. Mem. Inst. Oswaldo Cruz 96: 141-144.

- Mazariego-Arana, M. A., Monteón, V. M., Ballinas-Verdugo, M. A., Hernández-Becerril, N., Alejandre-Aguilar, R., y Reyes, P. A. 2001. Seroprevalence of human *Trypanosoma cruzi* infection in different geographic zones of Chiapas, México. Rev. Soc. Bra. Med. Trop. 34: 453-458.
- Melo, R. C. N., Fabrino, D. L., D-Ávila, H., Teixeira, H. C., y Ferreira, A. P. 2003. Production of hydrogen peroxide by peripheral blood monocytes and specific macrophages during experimental infection with *Trypanosoma cruzi* in vivo. Cell Biol. Inter. 27: 853-861.
- Miles, M. A., Toye, P. J., Oswald, S. C., Godfrey, D. G. 1977. The identification by isoenzyme patterns of two distinct strain-groups of Trypanosoma cruzi, circulating independently in a rural area of Brazil. Trans. R. Soc. Trop. Med. Hyg. 71: 217-225.
- Moncayo, A. 2003. Chagas disease: Current epidemiological trends after the interruption of vectorial and transfusional transmission in the southern cone countries. Mem. Inst. Oswaldo Cruz. 98: 577-591.
- Murphy, P. M., Baggiolini, M., Charo, I. R., Hebert, C. A., Huruk, R., Matsusshima, K., Miller, L. H., Oppenheim, J. J., y Power, C. A. 2000. International union of pharmacology. XXII. Nomenclature for chemokines receptors. Pharmacol. Rev. 52: 145-176.
- Navarro, M. C., De Lima, A. R., Askue, J., y Contreras, V. T. 2003. Morphological comparison of axenic amastigogenesis of trypomastigotes and metacyclic forms of *Trypanosoma cruzi*. Mem. Inst. Oswaldo Cruz. 98: 83-91.
- Nickell, S., y Sharma, D. 2000. *Trypanosoma cruzi*: Roles for perforin-dependent and perforin-independent immune mechanisms in acute resistance. Exp. Parasitol. 94: 207-216.
- Olson, T. S., y Ley, K. 2002. Chemokines and chemokines receptors in leukocyte trafficking. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283: R7-R28.
- Oppenheim, J. J., Howard, O. M., y Goetzl, E. 2001. Chemotactic factors, Neuropeptides and other ligands for seven transmembrane receptors. In Cytokine reference Vol. 1. A compendium of cytokines and other mediators of host defense. Oppenheim, J. J., Feldmann, M., Durum, S. K., Hirano, T., Vilcek, J., y Nicola, N. A. Ed. Academic Press. Great Britain. pp: 985-1021.
- Ortega-Barria, E., y Pereira, M. E. A. 1991. A new *Trypanosoma cruzi* heparin-binding protein proved fibroblast adhesion and penetration of engineered bacteria and trypanosomes into mammalian cells. Cell 67: 411-42.
- Palacios-Pru, E., Carrasco, H., Scorza, C., Espinoza, R. 1989 Ultrastructural characteristics of different stages of human chagasic myocarditis. Am. J .Trop. Med. Hyg. 41: 29-40..
- Pereira, V. R. A., Lorena, V. M. B., Vercosa, A. F., D-Silva, E., Ferreira, A. G. P., Montarroyos, U. R., Galvao-Silva, A. P., Gomes, Y. M. 2003. Antibody isotype responses in Balb/c mice immunized with the cytoplasmic repetitive antigen and flagellar repetitive antigen of Trypanosoma cruzi. Mem. Inst. Oswaldo Cruz. 98: 823-825.

- Péres-Fuentes, R., Guégan, J. F., Barnabé, C., López-Colombo, A., Salgado-Rosas, H., Torres-Rasgado, E., Briones, B., Romero-Díaz, M., Ramos-Jiménez, J., y Sánchez-Guillén, M. C. 2003. Severity of choric Chagas disease is associated with cytokine/antioxidant imbalance in chronically infected individuals. Inter. J. Parasitol. 33: 293-299.
- Petray , P., Corral, R., Cabeza, P. M., Laguens, R. 2002. Role of macrophage inflammatory protein-1a in macrophage homing in the spleen and heart pathology during experimental infection with *Trypanosoma crazi*. Acta Trop. 83: 205-211.
- Prata, A. 2001. Clinical and epidemiological aspects of Chagas disease. Lancet Infect. Dis. 1: 92-100.
- Ramos, A. A., Monteón, V. M, Reyes, P. A. 1993. Detección de anticuerpos contra *Trypanosoma cruzi* en donadores de sangre. Sal. Pub. Mex. 35: 56-64.
- Ramsey, J. M., Ordoñez, R., Cruz-Celis, A., Alvear, A. L., Chavez, V., Lopez, R., Pintor, J. R., Gama, F., y Carrillo, S. 2000. Distribution of domestic Triatominae and stratification of Chagas disease transmission in Oaxaca, México. Med. Vet. Entomol. 14: 19-30.
- Rangel, H., Gatica, R., Ramos, C. 1998. Detection of antibodies against *Trypanosoma cruzi* in donors from a blood bank in Cuernavaca, Morelos, Mexico. Arch. Med. Res. 29:79-82.
- Rangel-Flores, H., Sánchez, B., Mendoza-Duarte, J., Barnabé, C., Breniére, F. S., Ramos, C., y Espinoza, B. 2001. Serologic and parasitological demonstration of *Trypanosoma cruzi* infections in an urban area of central México; correlation with electrocardiography alterations. Am. J. Trop. Med. Hyg. 65: 887-895.
- Rapley, R., and Heptinstall, J. 1998. UV Spectrophotometric Analysis of Ribonucleic Acids. In Methods in Molecular Biology, Vol. 86: RNA Isolation and Characterization Protocols. (R. Rapley and D.L. Manning., eds). Humana Press Inc., Totowa, NJ. Pp: 65-68.
- Ribeirao, M., Pereira-Chioccola, V. L., Rénia, L., Fragata-Filho, A. A., Schenkman, S., Rodrigues, M. M. 2000. Chagasic patients develop a type 1 immune response to Trypanosoma cruzi trans-silidase. Parasite Immunol. 22: 49-53.
- Rico, D. 2004. Respuesta inmune celular contra cepas mexicanas de Trypanosoma cruzi: papel de las citocinas. Tesis que para obtener el titulo de Biólogo. Facultad de Ciencias. UNAM.
- Rodrígues, M. M., Ribeirao, M., y Boscardin, S. B. 2000. CD4+ Th1 but not Th2 clones efficiently activate macrophages to eliminate *Trypanosoma cruzi* through a nitric oxide dependent mechanism. Immunol. Lett. 73: 43–50.
- Rodríguez-Felix, M. E., Zavala-Velázquez, J., Barrera-Perez, M. A., Guzmán-Marín, E., Ramirez-Sierra, M. J., Alvarez-Moguel, R. 1995. Riesgo de transmisión de la enfermedad de Chagas por donante de sangre. *Rev. Biomédica* 6: 70-75.
- Rollins, B. J. 2001. MCP-1, MCP-2, MCP-3, MCP-4 and MCP-5. In Cytokine reference Vol. 1. A compendium of cytokines and other mediators of host defense. Oppenheim, J.J., Feldmann, M., Durum, S.K., Hirano, T., Vilcek, J., y Nicola, N.A. Ed. Academic Press. Great Britain. pp: 985-1021.

- Salazar-Schettino P. M., Ruiz-Hernández A. L., Haro-Artega I., Tay J., Gutiérrez-Quiroz M. 1989. Serología y electrocardiografía en jóvenes de área endémica de enfermedad de Chagas. Rev. Med. IMSS (Mex.) 27: 59-65.
- Sambrook J., Fritsch E.F. Maniatis T. 1989. Molecular cloning: a laboratory manual. Second edition. Cold Spring Harbor Laboratory Press, USA.
- Sánchez-Guillén, M. C., Barnabé, C., Guégan, J. F., Tibayrens, M., Velásquez-Rojas, M., Martínez-Mungía, J., Salgado-Rosas, H., Torres-Rasgado, E., Rosas-Ramirez, M. I., y Perez-Fuentes, R. 2002. High prevalence anti-*Trypanosoma cruzi* antibodies, among blood donors in state of Puebla, a non-endemic area of México. Mem. Inst. Oswaldo Cruz. 97: 947-952.
- Santos-Lima, E. C., Garcia, I., Vicentelli, M. H., Vassalli, P., y Minoprio, P. 1997. Evidence for a protective role of Tumor Necrosis Factor in the acute phase of *Trypanosoma cruzi* infection in mice. Infect. Immun. 65: 457-465.
- Savino, W., Mendes-da-Cruz, D. A., Silva, J. S., Dardenne, M., y Cotta-de-Almeida. 2002. Intrathymic Tcell migration: a combinatorial interplay of extracellular matrix and chemokines? Trends Immunol. 23: 305-313.
- Schall, T. J., Greaves, D. R. 2001. RANTES. . In Cytokine reference Vol. 1. A compendium of cytokines and other mediators of host defense. Oppenheim, J.J., Feldmann, M., Durum, S.K., Hirano, T., Vilcek, J., y Nicola, N.A. Ed. Academic Press. Great Britain. pp: 1161-1166.
- Serazin-Leroy, V., Denis-Henriot, D., Morot, M., de Mazancourt, P., Giudicelli, Y. 1998. Semi-quantitative RT-PCR for comparison of mRNa in cells with different amounts of housekeeping gene transcripts. Molecular and Cellular Probes 12: 283-291.
- Silber, A. M., Marcipar, I. S., Roodveldt, C., Meckert, C., Laguens, R., y Marcipar, A. J. 2002. *Trypanosoma cruzi:* identification of a galactose-binding protein that binds to cell surface of human erythrocytes and is involved in cell invasion by the parasite. Exp. Parasitol. 100: 217-225.
- Silva, J. S., Aliberti, J. C. S., Martins, G. A., Souza, M. A., Souto, J. T., y Pádua, M. A. 1998. The role IL-12 in experimental *Trypanosoma cruzi* infection. Braz. J. Med. Biol. Res. 31: 111-115.
- <u>Siveke J. T., Hamann A.</u> 1998. T helper 1 and T helper 2 cells respond differentially to chemokines. J Immunol. 160:550-4.
- Sosa, S. 2003. Respuesta inmune celular contra cepas mexicanas de *Trypanosoma cruzi*. Tesis que para obtener el Titulo de: Biólogo. Facultad de Ciencias. UNAM. p. 78.
- Stempin, C., Giordanengo, L., Gea, S., y Cerbán, F. 2002. Alternative activation and increase of Trypanosoma cruzi survival in murine macrophages stimulated by cruzipain, a parasite antigen. J. Leukoc. Biol. 72: 727-734.
- Suckow M.A., Weichbrod R.H., Douglas F.A. 2001. Management of laboratory animals care and use programs. CRC Press. Washington. 147pp.
- Tafuri, W. L. 1999. Immunopathology of Chagas disease- a historical overview. Mem. Inst. Oswaldo Cruz 94: 247-248.

- Takle, G.B., y Snary, D. 1993. South American trypanosomiasis (Chagas disease). In Warren KS. Immunology and molecular biology of parasitic infections. Third edition. Blackwell Scientific Publications. Boston. pp: 213-236.
- Talvani, A., Ribeiro, C. S., Aliberti, J. C. S., Michailowsky, V., Santos, P. V. A., Murta, S. M. F., Romanha, A. J., Almeida, I. C., Farber, J., Lannes-Vieira, J., Silva, J. S., Gazzinelli, R. T. 2000. Kinetics of cytokine gene expression in experimental chagasic cardiomyopathy: tissue parasitism and endogenous IFN-γ as important determinants of chemokine mRNA expression during infection with *Trypanosoma cruzi*. Microbes and Infection 2: 851-866.
- Talvani, A., Rocha, M. O. C., Barcelos, L. S., Gomes, Y. M., Ribeiro, A. L., y Teixeira, M. M. 2004. Elevated concentrations of CCL2 y tumor necrosis factor-α in Chagasic cardiomyophathy. Clin. Infect. Dis. 38: 943-950.
- Talvani, A., Santana, G., Barcelos, L. S., Ishii, S., Shimizu, T., Romanha, A. J., Silva, J. S., Soares, M. B. P. Teixeira, M. M. 2003. Experimental Trypanosoma cruzi infection in platelet-activating factor receptor-deficient mice. Microbes Infect. 5: 789-796.
- Tarleton, R.L. Sun, J., Zhang, L., Postan, M. 1994. Depletion of T-cell subpopulation results in exarcerbation of myocarditis and parasitism in experimental Chagas disease. Infect. Immun. 62: 1820-1829.
- Tarleton, R. L. 2003. Chagas disease: a role for autoimmunity? Trends in Parasitology.19: 447-451
- Tay J., Biagi F., de Biagi A. 1967. Estado actual del conocimientos sobre triatomas y enfermedad de Chagas en el estado de Michoacán, México. Rev. Fac. Med. (Mex). 9: 109-121.
- Tay J., Biagi F., de Biagi A. 1968. Estado actual de conocimientos sobre triatomas y enfermedad de Chagas en el estado de Zacatecas. Rev. Fac. Med. (Mex.) 48: 121-129.
- Tay, J., Lara, R., Velasco, O., y Gutiérrez, M. 1996. Parasitología Médica. Sexta edición Méndez Editores, México. pp: 107-128.
- Teixeira, M. M., Gazzinelli, R. T., y Silva, J. J. 2002. Chemokines, inflammation and *Trypanosoma cruzi* infection. Trends Parasitol. 18: 262-265.
- Theophilus, B. 1998. Extraction of RNA from Fresh and Frozen Blood. In Methods in Molecular Biology, Vol. 86: RNA Isolation and Characterization Protocols. (R. Rapley, and D.L. Manning, eds). Humana Press Inc., Totowa, NJ. Pp: 43- 45.
- Thorpe, R. 2002. Chemokine/chemokine receptor nomenclature IUIS/WHO subcommittee on Chemokines nomenclature. J. Immunological. 262: 1-3.
- Todeschini, A. R., Nunes, M. P., Pires, R. S., Lopes, M. F., Previato, J. O., Mendonca-Previato, L., y DosReis, G.A. 2002. Co-stimulation of host T lymphocytes by a trypanosomal *trans*-sialidase: involvement of CD4+3 signaling. J. Immunol. 168:5192–5198
- Trujillo, F., Lozano, F., Soto, M. M., Hernández, R. 1993. Prevalencia de infección a *Trypanosoma cruz*i en donadores de sangre en el Estado de Jalisco, México. Rev. Soc. Bras. Med. Trop. 26: 89-92.

- Velasco O., Valdespino J.L., Tapia R., Salvatierra B., Guzmán-Bracho C., Magos C., Llausas A., Gutiérrez G., Sepulveda J. 1992. Seroepidemiologia de la enfermedad de Chagas en México. Sal. Pub. Mex. 34: 186-196.
- Vieira, M., Dutra, J. M., Carvalho, T. M. U., Cunha-e-Silva, N. L., Souto-Padrón, T., Souza, W. 2002. Cellular signaling during the macrophages invasion by *Trypanosoma cruzi*. Histochem. Cell. Biol. 118: 491-499.
- Villalta, F., Smith, C. M., Ruiz-Ruano, A., Lima, M. F. 2001. A ligand that *Trypanosoma cruzi* uses to bind to mammalian cells to initiate infection. FEBS Letters. 505: 383-388
- Villalta, F., Zhang, Y., Bibb, K.E., Kappes, J. C., y Lima, M. F. 1998. The cysteine-cysteine family of chemokines RANTES, MIP-1α, and MIP-1β induce trypanocidal activity in human macrophages via nitric oxide. Infect. Immun. 66: 4690-4695.
- <u>Ward S.G.</u>, Westwick J. 1998. Chemokines: understanding their role in T-lymphocyte biology. Biochem. J. 333 (Pt 3):457-70.
- Weber, C., Belge, K. U., Hundelshausen, P. V., Draude, G., Steppich, B., Mack, M., Frakenberger, M., Weber, K. S. C., Ziegler-Heitbrock, H. W. L. 2000. Differential chemokine receptor expression and function in human monocyte subpopulations. J. Leukoc. Biol.. 67: 699-704.
- WHO. Expert Committee on the Control of Chagas Disease. 1991. WHO technical report series 811. World Health Organization.
- WHO. Expert Committee on the Control of Chagas disease. 2002. WHO Technical Report Series 905: i-vi 1-109 World Health Organization.
- Yoshida, N., Favoreto, S., Ferreira, A. T., y Manque, P. M. 2000. Signal transduction induced in *Trypanosoma cruzi* metacyclic tripomastigotes during the invasion of mammalian cells. Braz. J. Med. Biol. Res. 33: 269-278.
- Yoshida, N., y Schenkman, S. 1997. American Trypanosomiasis. Curr. Opin. Infect. Dis. 10: 351-356.
- Zar J.H. 1999. Biostatistical analysis. 4th edition. Prentice-Hall, Inc.
- Zlotnik, A., y Yoshie, O. 2000. Chemokines: A new classification system and their role in immunity. Immunity 12: 121-127.

ANEXOS

ANEXO I. Precauciones para extracción RNA.

- Limpiar perfectamente el área de trabajo, hieleras y todo el material que se vaya a colocar en la mesa de trabajo (micropipetas, puntas, recipientes con soluciones, etc.), con una solución de SDS 0.1%.
- Se deben tratar toda la cristalería (probetas, matraces, vasos de precipitados, pistilos, morteros con DEPC 0.1% durante dos horas a temperatura ambiente y esterilizar en autoclave durante 20 minutos para inactivar el DEPC 0.1%.
- Para la disección de los órganos (corazón y bazo) se realizo una incisión en la línea alba, para ingresar a la cavidad abdominal y toráxico y extraer en forma estéril los órganos antes citados. El músculo esquelético se obtuvo de un miembro posterior del ratón. Los órganos y tejidos fueron colectados en tubos eppendorf libres de RNasas y almacenados inmediatamente a -70°C para su posterior extracción de RNA.

ANEXO II. Reactivos.

Reactivos para extracción de RNA.

- DEPC 0.1% (Sigma, N° Cat.D-5758) Disolver 1 ml de DEPC por cada litro de agua ultrapura milli-Q^{uf} (37°C), esterizar en autoclave durante 30 minutos para inactivar el DEPC. Para resuspender el RNA y preparar los reactivos.
 Solución SDS 0.1% (GIBCO N° Cat. 15525-017) Se prepara disolviendo el SDS en agua milli Q tratada con DEPC 0.1%
- Alcohol etílico 75% (Sigma, N° Cat. E702-3)
 Se debe preparar con agua tratada con DEPC 0.1%.
- Alcohol isopropilico (Sigma N° Cat. I-9516)
 Cloroformo (Sigma, N° Cat. C-2432)
 TRIZOL (Invitrogen, N° Cat. 15596-026)

Reactivos empleados en la reacción de RT-PCR

•	Deoxyribonucleasa I, amplification grade.	(Invitrogen, N° Cat. 18068-015)
•	SuperScript One-Step RT-PCR with platinum Taq.	(Invitrogen, N° Cat. 10928-042)

Reactivos empleados en el corrimiento en geles de agarosa Marcadores de pesos moleculares de 100 pb 0.2 µg/µl (GIBCO, N° Cat. 15628-019) • 20 µl de marcadores 10 μ l de colorante de azul de bromofenol 6x 10 µl de NaCl 0.2 M 60 µl de agua milli-Q Se mantienen a -20 °C, hasta su uso Colorante de azul de bromofenol 6X 0.25% de azul de bromofenol 40% de sacarosa En agua bidestilada, guardar a 4°C. Agarosa (GIBCO, N° Cat. 15510-027) Se calienta en horno de microondas aproximadamente, por 3 minutos a temperatura alta, hasta observar una solución sin grumos de agarosa. Se deja enfriar un poco y se vierte en la base para geles. TAE 50x . (GIBCO, N° Cat. 15504-020) Tris base 242 g. Ácido acético glacial 57.1 ml (J. T. Baker N° Cat. 9507-05) EDTA 0.5 M pH 8 100ml (Sigma N° Cat. E-7889) Aforar a 1 litro. TAE 1X Agua milli-Q 980ml TAE 50X 20 ml

• TAE 0.5X

Agua mini-Q	<i>y</i> yom
TAE 50X	10ml

000m1

ANEXO III. Análisis por densitometría de productos de RT-PCR.

Se empleo el analizador de imágenes Fluor-s (Bio RAD) y el software Quantity One versión 4.4.1. Los valores obtenidos por un análisis de volúmenes de los productos de RT-PCR expresados como CNT cuentas x mm²

ANEXO III. Valores de la densitometría de los productos de RT-PCR fueron obtenidos del programa Quantity One (Bio Rad), expresados en cuentas (CNT) por mm². Volumen CNT*mm² = volumen sin resta de background. Adj. Vol. CNT*mm² = volumen con sustracción de background.

Name			Volume	Adj. Vol.	Name			Volume	Adj. Vol.
			CNT*mm2	CNT*mm2				CNT*mm2	CNT*mm2
B-actina						B-actina			
Corazón	Control	5 horas	12049.70021	11426.68015	Corazón	Control	21 días	12985.34135	8178.579114
Corazón	Control	5 horas	12952.36031	12329.34024	Corazón	Control	21 días	16732.13175	11925.3695
Corazón	Control	5 horas	12938.68031	12315.66024	Corazón	Control	21 días	20172.8921	15366.12986
Corazón	Control	5 horas	13391.63035	12768.61029	Corazón	Control	21 días	19478.81203	14672.04979
Corazón	No virulenta	5 horas	13487.88036	12864.8603	Corazón	No virulenta	21 días	25957.47271	21150.71047
Corazón	No virulenta	5 horas	13070.52032	12447.50026	Corazón	No virulenta	21 días	24779.87258	19973.11034
Corazón	No virulenta	5 horas	13382.87035	12759.85029	Corazón	No virulenta	21 días	24276.73253	19469.97029
Corazón	No virulenta	5 horas	13320.73035	12697.71028	Corazón	No virulenta	21 días	25195.26263	20388.50039
Corazón	Virulenta	5 horas	13786.42039	13163.40033	Corazón	Virulenta	21 días	20928.10218	16321.6217
Corazón	Virulenta	5 horas	13412.25036	12789.23029	Corazón	Virulenta	21 días	24588.74256	19982.26208
Corazón	Virulenta	5 horas	13398.92035	12775.90029	Corazón	Virulenta	21 días	24403.75255	19797.27207
Corazón	Virulenta	5 horas	13360.34035	12737.32029	Corazón	Virulenta	21 días	24063.72251	19457.24203
Bazo	Control	5 horas	13887.61041	13264.59034	Bazo	Control	21 días	21576.52225	16970.04177
Bazo	Control	5 horas	13685.72038	13062.70032	Bazo	Control	21 días	23644.25247	19037.77199
Bazo	Control	5 horas	13872.2604	13249.24034	Bazo	Control	21 días	17468.63182	12862.15134
Bazo	Control	5 horas	13965.33041	13342.31035	Bazo	Control	21 días	18753.34196	14146.86148
Bazo	No virulenta	5 horas	12116.65022	11596.01017	Bazo	No virulenta	21 días	19215.922	13707.25175
Bazo	No virulenta	5 horas	12281.98024	11761.34018	Bazo	No virulenta	21 días	30556.23319	22774.04238
Bazo	No virulenta	5 horas	12872.8503	12352.21025	Bazo	No virulenta	21 días	30409.30317	22627.11236
Bazo	No virulenta	5 horas	13244.97034	12724.33028	Bazo	No virulenta	21 días	31370.51327	23588.32246
Bazo	Virulenta	5 horas	12993.45031	12472.81026	Bazo	Virulenta	21 días	25855.8227	18073.63189
Bazo	Virulenta	5 horas	12753.82029	12233.18023	Bazo	Virulenta	21 días	27439.12286	19656.93205
Bazo	Virulenta	5 horas	13345.81035	12825.17029	Bazo	Virulenta	21 días	27463.50286	19681.31205
Bazo	Virulenta	5 horas	13361.79035	12841.1503	Bazo	Virulenta	21 días	27405.56286	19623.37205
Músculo	Control	5 horas	12668.82028	12148.18022	Músculo	Control	21 días	10027.15105	2244.960234
Músculo	Control	5 horas	12367.73025	11847.09019	Músculo	Control	21 días	9627.461004	1845.270192
Músculo	Control	5 horas	12717.43028	12196.79023	Músculo	Control	21 días	21289.56222	13507.37141
Músculo	Control	5 horas	12516.12026	11995.48021	Músculo	Control	21 días	11781.50123	3999.310417
Músculo	No virulenta	5 horas	12993.67031	12473.03026	Músculo	No virulenta	21 días	23184.95242	15402.76161
Músculo	No virulenta	5 horas	12782.19029	12261.55024	Músculo	No virulenta	21 días	21585.68225	13803.49144
Músculo	No virulenta	5 horas	12853.6403	12333.00024	Músculo	No virulenta	21 días	26900.30281	19118.11199
Músculo	No virulenta	5 horas	12358.73025	11838.09019	Músculo	No virulenta	21 días	33306.32347	25524.13266
Músculo	Virulenta	5 horas	25644.18459	19039.67852	Músculo	Virulenta	21 días	25878.3327	15483.97525
Músculo	Virulenta	5 horas	14087.94252	7483.436454	Músculo	Virulenta	21 días	29709.2831	19314.92565
Músculo	Virulenta	5 horas	15377.92275	9582.131713	Músculo	Virulenta	21 días	28899.06301	19727.57115
Músculo	Virulenta	5 horas	24172.02432	18376.23329	Músculo	Virulenta	21 días	30759.07321	21587.58134

Name			Volume	Adj. Vol.
			CNT*mm2	CNT*mm2
	B-actina			
Corazón	Control	90 días	21017.12063	15234.05045
Corazón	Control	90 días	20590.67061	14807.60044
Corazón	Control	90 días	17878.40053	12095.33036
Corazón	Control	90 días	19036.63057	13253.56039
Corazón	No virulenta	90 días	30701.85091	24918.78074
Corazón	No virulenta	90 días	26388.12079	20605.05061
Corazón	No virulenta	90 días	25240.95075	19457.88058
Corazón	No virulenta	90 días	25012.83075	19229.76057
Bazo	Control	90 días	25953.60077	20170.5306
Bazo	Control	90 días	29118.21087	23335.1407
Bazo	Control	90 días	26349.37079	20566.30061
Bazo	Control	90 días	29261.70087	23478.6307
Bazo	No virulenta	90 días	24740.28074	18957.21056
Bazo	No virulenta	90 días	27645.95082	21031.1029
Bazo	No virulenta	90 días	21981.36066	16198.29048
Bazo	No virulenta	90 días	17916.80053	12133.73036
Músculo	Control	90 días	11668.82028	11148.18022
Músculo	Control	90 días	11367.73025	10847.09019
Músculo	Control	90 días	11717.43028	10196.79023
Músculo	Control	90 días	11516.12026	11995.48021
Músculo	No virulenta	90 días	11993.67031	11473.03026
Músculo	No virulenta	90 días	11782.19029	11261.55024
Músculo	No virulenta	90 días	11853.6403	11333
Músculo	No virulenta	90 días	11358.73025	10838.09

Name			Volume	Adj. Vol.	Name			Volume	Adj. Vol.
			CNT*mm2	CNT*mm2				CNT*mm2	CNT*mm2
	MCP-1				MCP-1				
Corazón	Control	5 horas	7233.711293	1437.920257	Corazón	Control	21 días	12775.16133	3807.480397
Corazón	Control	5 horas	7083.941267	1288.15023	Corazón	Control	21 días	13484.62141	4516.940471
Corazón	Control	5 horas	7153.461279	1357.670243	Corazón	Control	21 días	12887.35134	3919.670409
Corazón	Control	5 horas	7070.171264	1274.380228	Corazón	Control	21 días	12927.43135	3959.750413
Corazón	No virulenta	5 horas	8224.971471	2429.180434	Corazón	No virulenta	21 días	15832.51165	7985.790833
Corazón	No virulenta	5 horas	0	0	Corazón	No virulenta	21 días	14045.59147	6198.870647
Corazón	No virulenta	5 horas	0	0	Corazón	No virulenta	21 días	14651.43153	6804.71071
Corazón	No virulenta	5 horas	0	0	Corazón	No virulenta	21 días	14790.73154	6944.010724
Corazón	Virulenta	5 horas	9397.811	6237.8679	Corazón	Virulenta	21 días	11232.49117	0
Corazón	Virulenta	5 horas	5658.8106	3645.6713	Corazón	Virulenta	21 días	29488.34308	21641.62226
Corazón	Virulenta	5 horas	6311.0807	3874.1226	Corazón	Virulenta	21 días	28628.92299	20782.20217
Corazón	Virulenta	5 horas	5522.1606	3191.1572	Corazón	Virulenta	21 días	25614.68267	17767.96185
Bazo	Control	5 horas	4146.430433	2083.164801	Bazo	Control	21 días	16567.21173	3815.263077
Bazo	Control	5 horas	4333.140452	2269.87482	Bazo	Control	21 días	15850.99165	4222.77794
Bazo	Control	5 horas	4563.730476	2500.464844	Bazo	Control	21 días	17082.51178	5454.298069
Bazo	Control	5 horas	4465.060466	2401.794834	Bazo	Control	21 días	18085.86189	6457.648174
Bazo	No virulenta	5 horas	4825.270503	2762.004871	Bazo	No virulenta	21 días	21407.02223	10462.82109
Bazo	No virulenta	5 horas	4532.080473	2468.814841	Bazo	No virulenta	21 días	21780.86227	10836.66113
Bazo	No virulenta	5 horas	4254.570444	2191.304812	Bazo	No virulenta	21 días	20955.42219	10011.22104
Bazo	No virulenta	5 horas	4195.210438	2131.944806	Bazo	No virulenta	21 días	21192.87221	10248.67107
Bazo	Virulenta	5 horas	8386.310875	5777.784769	Bazo	Virulenta	21 días	19713.02206	8768.820915
Bazo	Virulenta	5 horas	7971.410831	5362.884726	Bazo	Virulenta	21 días	19817.26207	8873.060926
Bazo	Virulenta	5 horas	7377.080769	4768.554664	Bazo	Virulenta	21 días	20376.34213	9432.140984
Bazo	Virulenta	5 horas	7331.810765	4723.284659	Bazo	Virulenta	21 días	20219.93211	9275.730968
Músculo	Control	5 horas	0	0	Músculo	Control	21 días	0	0
Músculo	Control	5 horas	0	0	Músculo	Control	21 días	0	0
Músculo	Control	5 horas	0	0	Músculo	Control	21 días	0	0
Músculo	Control	5 horas	0	0	Músculo	Control	21 días	0	0
Músculo	No virulenta	5 horas	0	0	Músculo	No virulenta	21 días	0	0
Músculo	No virulenta	5 horas	0	0	Músculo	No virulenta	21 días	0	0
Músculo	No virulenta	5 horas	0	0	Músculo	No virulenta	21 días	0	0
Músculo	No virulenta	5 horas	0	0	Músculo	No virulenta	21 días	0	0
Músculo	Virulenta	5 horas	0	0	Músculo	Virulenta	21 días	25657.35268	20939.64218
Músculo	Virulenta	5 horas	0	0	Músculo	Virulenta	21 días	26238.74274	21521.03224
Músculo	Virulenta	5 horas	0	0	Músculo	Virulenta	21 días	28035.00292	23317.29243
Músculo	Virulenta	5 horas	0	0	Músculo	Virulenta	21 días	25550.01267	20832.30217

Name			Volume	Adj. Vol.
			CNT*mm2	CNT*mm2
	MCP-1	•		
Corazón	Control	90 días	0	0
Corazón	Control	90 días	0	0
Corazón	Control	90 días	0	0
Corazón	Control	90 días	0	0
Corazón	No virulenta	90 días	16379.76171	10486.75109
Corazón	No virulenta	90 días	14801.47154	8908.460929
Corazón	No virulenta	90 días	13367.62139	7474.61078
Corazón	No virulenta	90 días	12070.88126	6177.870644
Bazo	Control	90 días	0	0
Bazo	Control	90 días	0	0
Bazo	Control	90 días	0	0
Bazo	Control	90 días	0	0
Bazo	No virulenta	90 días	29002.70303	13421.97342
Bazo	No virulenta	90 días	27208.95284	12583.84131
Bazo	No virulenta	90 días	27300.61285	12675.50132
Bazo	No virulenta	90 días	27156.40283	12531.29131
Músculo	Control	90 días	0	0
Músculo	Control	90 días	0	0
Músculo	Control	90 días	0	0
Músculo	Control	90 días	0	0
Músculo	No virulenta	90 días	0	0
Músculo	No virulenta	90 días	0	0
Músculo	No virulenta	90 días	0	0
Músculo	No virulenta	90 días	0	0

Continuación del ANEXO III. Valores de la densitometría de los productos de RT-PCR fueron obtenidos del programa Quantity One (Bio Rad), expresados en cuentas (CNT) por mm^2 . Volumen CNT*mm² = volumen sin resta de background. Adj. Vol. CNT*mm² = volumen con sustracción de background.

Name			Volume	Adj. Vol.	Name			Volume	Adj. Vol.
			CNT*mm2	CNT*mm2				CNT*mm2	CNT*mm2
	MIG	•			•	MIG			
Corazón	Control	5 horas	0	0	Corazón	Control	21 días	0	0
Corazón	Control	5 horas	0	0	Corazón	Control	21 días	0	0
Corazón	Control	5 horas	0	0	Corazón	Control	21 días	0	0
Corazón	Control	5 horas	0	0	Corazón	Control	21 días	0	0
Corazón	No virulenta	5 horas	1383.840247	428.5800766	Corazón	No virulenta	21 días	10347.53108	5629.820587
Corazón	No virulenta	5 horas	1283.060229	327.8000586	Corazón	No virulenta	21 días	9607.811002	4890.10051
Corazón	No virulenta	5 horas	1270.610227	315.3500564	Corazón	No virulenta	21 días	8604.340898	3886.630405
Corazón	No virulenta	5 horas	1222.360219	267.1000478	Corazón	No virulenta	21 días	7484.770781	2767.060289
Corazón	Virulenta	5 horas	1500.4302	1452.0112	Corazón	Virulenta	21 días	13245.63138	7606.170014
Corazón	Virulenta	5 horas	1113.9501	1065.5311	Corazón	Virulenta	21 días	14506.15151	8432.885425
Corazón	Virulenta	5 horas	1305.5001	1257.0812	Corazón	Virulenta	21 días	15692.16164	9618.895549
Corazón	Virulenta	5 horas	1477.1802	1428.7612	Corazón	Virulenta	21 días	15865.43165	9792.165567
Bazo	Control	5 horas	0	0	Bazo	Control	21 días	0	0
Bazo	Control	5 horas	0	0	Bazo	Control	21 días	0	0
Bazo	Control	5 horas	0	0	Bazo	Control	21 días	0	0
Bazo	Control	5 horas	0	0	Bazo	Control	21 días	0	0
Bazo	No virulenta	5 horas	2173.3602	2119.2539	Bazo	No virulenta	21 días	14622.72153	8549.455437
Bazo	No virulenta	5 horas	2240.4302	2186.324	Bazo	No virulenta	21 días	13157.01137	7589.850792
Bazo	No virulenta	5 horas	2380.5002	2326.394	Bazo	No virulenta	21 días	12772.42133	7205.260752
Bazo	No virulenta	5 horas	1300.4201	1246.3139	Bazo	No virulenta	21 días	12507.3713	6940.210724
Bazo	Virulenta	5 horas	1284.1401	1230.0339	Bazo	Virulenta	21 días	11573.87121	6006.710627
Bazo	Virulenta	5 horas	1223.5601	1169.4538	Bazo	Virulenta	21 días	11591.90121	6024.740628
Bazo	Virulenta	5 horas	1126.5201	1072.4138	Bazo	Virulenta	21 días	10333.13108	4765.970497
Bazo	Virulenta	5 horas	1097.1201	1043.0138	Bazo	Virulenta	21 días	9108.58095	3541.420369
Músculo	Control	5 horas	0	0	Músculo	Control	21 días	0	0
Músculo	Control	5 horas	0	0	Músculo	Control	21 días	0	0
Músculo	Control	5 horas	0	0	Músculo	Control	21 días	0	0
Músculo	Control	5 horas	0	0	Músculo	Control	21 días	0	0
Músculo	No virulenta	5 horas	0	0	Músculo	No virulenta	21 días	0	0
Músculo	No virulenta	5 horas	0	0	Músculo	No virulenta	21 días	0	0
Músculo	No virulenta	5 horas	0	0	Músculo	No virulenta	21 días	0	0
Músculo	No virulenta	5 horas	0	0	Músculo	No virulenta	21 días	0	0
Músculo	Virulenta	5 horas	0	0	Músculo	Virulenta	21 días	14100.10147	7687.780802
Músculo	Virulenta	5 horas	0	0	Músculo	Virulenta	21 días	14340.8415	7928.520827
Músculo	Virulenta	5 horas	0	0	Músculo	Virulenta	21 días	11473.2812	5060.960528
Músculo	Virulenta	5 horas	0	0	Músculo	Virulenta	21 días	10989.39115	4577.070477

Name			Volume	Adj. Vol.
			CNT*mm2	CNT*mm2
	MIG			
Corazón	Control	90 días	0	0
Corazón	Control	90 días	0	0
Corazón	Control	90 días	0	0
Corazón	Control	90 días	0	0
Corazón	No virulenta	90 días	0	0
Corazón	No virulenta	90 días	0	0
Corazón	No virulenta	90 días	0	0
Corazón	No virulenta	90 días	0	0
Bazo	Control	90 días	0	0
Bazo	Control	90 días	0	0
Bazo	Control	90 días	0	0
Bazo	Control	90 días	0	0
Bazo	No virulenta	90 días	0	0
Bazo	No virulenta	90 días	0	0
Bazo	No virulenta	90 días	0	0
Bazo	No virulenta	90 días	0	0
Músculo	Control	90 días	0	0
Músculo	Control	90 días	0	0
Músculo	Control	90 días	0	0
Músculo	Control	90 días	0	0
Músculo	No virulenta	90 días	0	0
Músculo	No virulenta	90 días	0	0
Músculo	No virulenta	90 días	0	0
Músculo	No virulenta	90 días	0	0

Name			Volume	Adj. Vol.	Name			Volume	Adj. Vol.
			CNT*mm2	CNT*mm2				CNT*mm2	CNT*mm2
	MIP-1B					MIP-1B			
Corazón	Control	5 horas	0	0	Corazón	Control	21 días	0	0
Corazón	Control	5 horas	0	0	Corazón	Control	21 días	0	0
Corazón	Control	5 horas	0	0	Corazón	Control	21 días	0	0
Corazón	Control	5 horas	0	0	Corazón	Control	21 días	0	0
Corazón	No virulenta	5 horas	0	0	Corazón	No virulenta	21 días	8585.650896	2995.782638
Corazón	No virulenta	5 horas	0	0	Corazón	No virulenta	21 días	9622.121004	4032.252746
Corazón	No virulenta	5 horas	0	0	Corazón	No virulenta	21 días	10248.55107	4658.682811
Corazón	No virulenta	5 horas	0	0	Corazón	No virulenta	21 días	10980.23115	5390.362887
Corazón	Virulenta	5 horas	0	0	Corazón	Virulenta	21 días	15198.36159	9484.274033
Corazón	Virulenta	5 horas	0	0	Corazón	Virulenta	21 días	12924.59135	7210.503796
Corazón	Virulenta	5 horas	0	0	Corazón	Virulenta	21 días	12398.01129	6683.923741
Corazón	Virulenta	5 horas	0	0	Corazón	Virulenta	21 días	11412.26119	5698.173638
Bazo	Control	5 horas	0	0	Bazo	Control	21 días	0	0
Bazo	Control	5 horas	0	0	Bazo	Control	21 días	0	0
Bazo	Control	5 horas	0	0	Bazo	Control	21 días	0	0
Bazo	Control	5 horas	0	0	Bazo	Control	21 días	0	0
Bazo	No virulenta	5 horas	0	0	Bazo	No virulenta	21 días	9384.390979	3908.390408
Bazo	No virulenta	5 horas	0	0	Bazo	No virulenta	21 días	9190.140959	3714.140387
Bazo	No virulenta	5 horas	0	0	Bazo	No virulenta	21 días	8307.480867	2831.480295
Bazo	No virulenta	5 horas	0	0	Bazo	No virulenta	21 días	7725.560806	2249.560235
Bazo	Virulenta	5 horas	0	0	Bazo	Virulenta	21 días	0	0
Bazo	Virulenta	5 horas	0	0	Bazo	Virulenta	21 días	0	0
Bazo	Virulenta	5 horas	0	0	Bazo	Virulenta	21 días	0	0
Bazo	Virulenta	5 horas	0	0	Bazo	Virulenta	21 días	0	0
Músculo	Control	5 horas	0	0	Músculo	Control	21 días	0	0
Músculo	Control	5 horas	0	0	Músculo	Control	21 días	0	0
Músculo	Control	5 horas	0	0	Músculo	Control	21 días	0	0
Músculo	Control	5 horas	0	0	Músculo	Control	21 días	0	0
Músculo	No virulenta	5 horas	0	0	Músculo	No virulenta	21 días	0	0
Músculo	No virulenta	5 horas	0	0	Músculo	No virulenta	21 días	0	0
Músculo	No virulenta	5 horas	0	0	Músculo	No virulenta	21 días	0	0
Músculo	No virulenta	5 horas	0	0	Músculo	No virulenta	21 días	0	0
Músculo	Virulenta	5 horas	0	0	Músculo	Virulenta	21 días	1376.840144	885.9200924
Músculo	Virulenta	5 horas	0	0	Músculo	Virulenta	21 días	1221.390127	730.4700762
Músculo	Virulenta	5 horas	0	0	Músculo	Virulenta	21 días	1069.390112	578.4700603
Músculo	Virulenta	5 horas	0	0	Músculo	Virulenta	21 días	876.6400914	385.7200402

Name			Volume	Adj. Vol.
			CNT*mm2	CNT*mm2
	MIP-1B			
Corazón	Control	90 días	0	0
Corazón	Control	90 días	0	0
Corazón	Control	90 días	0	0
Corazón	Control	90 días	0	0
Corazón	No virulenta	90 días	31141.15325	24297.94253
Corazón	No virulenta	90 días	32336.21337	25493.00266
Corazón	No virulenta	90 días	28555.39298	21712.18226
Corazón	No virulenta	90 días	25898.6327	19055.42199
Bazo	Control	90 días	0	0
Bazo	Control	90 días	0	0
Bazo	Control	90 días	0	0
Bazo	Control	90 días	0	0
Bazo	No virulenta	90 días	0	0
Bazo	No virulenta	90 días	0	0
Bazo	No virulenta	90 días	0	0
Bazo	No virulenta	90 días	0	0
Músculo	Control	90 días	0	0
Músculo	Control	90 días	0	0
Músculo	Control	90 días	0	0
Músculo	Control	90 días	0	0
Músculo	No virulenta	90 días	0	0
Músculo	No virulenta	90 días	0	0
Músculo	No virulenta	90 días	0	0
Músculo	No virulenta	90 días	0	0

Continuación del ANEXO III. Valores de la densitometría de los productos de RT-PCR fueron obtenidos del programa Quantity One (Bio Rad), expresados en cuentas (CNT) por mm^2 . Volumen CNT*mm² = volumen sin resta de background. Adj. Vol. CNT*mm² = volumen con sustracción de background.

Name			Volume	Adj. Vol.	Name			Volume	Adj. Vol.
			CNT*mm2	CNT*mm2				CNT*mm2	CNT*mm2
	RANTES	•			RANTES				
Corazón	Control	5 horas	9650.281007	5141.234938	Corazón	Control	21 días	11898.5302	10780.20019
Corazón	Control	5 horas	10785.03112	6275.985057	Corazón	Control	21 días	11789.48019	10671.15017
Corazón	Control	5 horas	12841.97134	8332.925271	Corazón	Control	21 días	11810.87019	11692.54018
Corazón	Control	5 horas	12966.47135	8457.425284	Corazón	Control	21 días	12144.07022	12025.74021
Corazón	No virulenta	5 horas	13410.1214	8901.07533	Corazón	No virulenta	21 días	25390.96056	25272.63055
Corazón	No virulenta	5 horas	20917.63218	16408.58611	Corazón	No virulenta	21 días	25123.11053	25004.78052
Corazón	No virulenta	5 horas	11486.7212	6977.67513	Corazón	No virulenta	21 días	25151.19054	25032.86052
Corazón	No virulenta	5 horas	12586.06131	7839.69703	Corazón	No virulenta	21 días	24690.95049	24572.62048
Corazón	Virulenta	5 horas	24177.40252	19431.03824	Corazón	Virulenta	21 días	23627.01038	23508.68037
Corazón	Virulenta	5 horas	17677.36184	12930.99756	Corazón	Virulenta	21 días	24456.86046	24338.53045
Corazón	Virulenta	5 horas	12879.08134	8132.717061	Corazón	Virulenta	21 días	24123.38043	24005.05042
Corazón	Virulenta	5 horas	11969.17125	7222.806966	Corazón	Virulenta	21 días	23977.56041	23859.2304
Bazo	Control	5 horas	11891.87124	7145.506958	Bazo	Control	21 días	14216.59044	14098.26043
Bazo	Control	5 horas	24719.68258	19973.3183	Bazo	Control	21 días	14115.68043	13997.35042
Bazo	Control	5 horas	25207.06263	20460.69835	Bazo	Control	21 días	1212.670335	13094.34032
Bazo	Control	5 horas	21114.4022	16368.03792	Bazo	Control	21 días	2572.840268	23454.51026
Bazo	No virulenta	5 horas	14884.02155	10122.5339	Bazo	No virulenta	21 días	3590.670166	31533.61507
Bazo	No virulenta	5 horas	24140.89252	19379.40487	Bazo	No virulenta	21 días	23663.98028	22606.92519
Bazo	No virulenta	5 horas	21066.2322	16304.74455	Bazo	No virulenta	21 días	32494.45036	33437.39527
Bazo	No virulenta	5 horas	25584.88267	20823.39502	Bazo	No virulenta	21 días	32754.28039	33697.2253
Bazo	Virulenta	5 horas	17633.32184	13252.7532	Bazo	Virulenta	21 días	32313.45035	33256.39525
Bazo	Virulenta	5 horas	15942.17166	11561.60302	Bazo	Virulenta	21 días	33980.10042	33923.04532
Bazo	Virulenta	5 horas	22650.29236	18269.72372	Bazo	Virulenta	21 días	34256.73044	34199.67535
Bazo	Virulenta	5 horas	26518.49277	21581.78237	Bazo	Virulenta	21 días	34501.16047	34444.10538
Músculo	Control	5 horas	9437.530984	5582.630582	Músculo	Control	21 días	0	0
Músculo	Control	5 horas	9318.450972	5463.55057	Músculo	Control	21 días	0	0
Músculo	Control	5 horas	8598.500897	4743.600495	Músculo	Control	21 días	0	0
Músculo	Control	5 horas	8558.350893	4703.450491	Músculo	Control	21 días	0	0
Músculo	No virulenta	5 horas	8523.480889	4668.580487	Músculo	No virulenta	21 días	22835.7303	22775.50029
Músculo	No virulenta	5 horas	8197.130855	4342.230453	Músculo	No virulenta	21 días	22752.45029	22692.22028
Músculo	No virulenta	5 horas	7682.130801	3827.230399	Músculo	No virulenta	21 días	23132.40033	23072.17032
Músculo	No virulenta	5 horas	6505.200679	2650.300276	Músculo	No virulenta	21 días	32294.48024	32234.25023
Músculo	Virulenta	5 horas	10301.66107	2724.830284	Músculo	Virulenta	21 días	34452.33046	33113.43187
Músculo	Virulenta	5 horas	11975.81125	4398.980459	Músculo	Virulenta	21 días	35410.29056	34089.13043
Músculo	Virulenta	5 horas	13444.6514	5867.820612	Músculo	Virulenta	21 días	35598.49058	34277.33045
Músculo	Virulenta	5 horas	14792.68154	7215.850753	Músculo	Virulenta	21 días	26041.32063	24720.16049

Name			Volume	Adj. Vol.
			CNT*mm2	CNT*mm2
	RANTES	<u> </u>		
Corazón	Control	90 días	12841.07134	6007.064803
Corazón	Control	90 días	14378.3115	7544.304963
Corazón	Control	90 días	13911.61145	7077.604914
Corazón	Control	90 días	14603.77152	7769.764987
Corazón	No virulenta	90 días	14151.25148	7317.244939
Corazón	No virulenta	90 días	26327.27275	16192.75169
Corazón	No virulenta	90 días	24898.3226	14763.80154
Corazón	No virulenta	90 días	24082.04251	13947.52145
Bazo	Control	90 días	25016.29261	14881.77155
Bazo	Control	90 días	23852.27249	13717.75143
Bazo	Control	90 días	23360.07244	13225.55138
Bazo	Control	90 días	25638.90267	15504.38162
Bazo	No virulenta	90 días	24092.93251	13958.41146
Bazo	No virulenta	90 días	21073.3722	10938.85114
Bazo	No virulenta	90 días	17847.50186	7712.980805
Bazo	No virulenta	90 días	16024.92167	5890.400614
Músculo	Control	90 días	19575.98204	10688.25262
Músculo	Control	90 días	19243.37201	10355.64259
Músculo	Control	90 días	19095.02199	10207.29257
Músculo	Control	90 días	19082.76199	10195.03257
Músculo	No virulenta	90 días	24889.3226	16001.59318
Músculo	No virulenta	90 días	23261.17243	14373.44301
Músculo	No virulenta	90 días	24068.91251	15181.18309
Músculo	No virulenta	90 días	26868.4128	17980.68338