

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

POSGRADO EN INGENIERÍA

ESTIMACIÓN PROBABILÍSTICA DE LA RESPUESTA SÍSMICA DE ALGUNOS SISTEMAS NO LINEALES DE UN GRADO DE LIBERTAD

TESIS

QUE PARA OBTENER EL GRADO DE:

MAESTRO EN INGENIERÍA

(Estructuras)

PRESENTA:

ITZEL NORIEGA NAVARRETE

DIRIGIDA POR:

DR. LUIS ESTEVA MARABOTO

CIUDAD UNIVERSITARIA

México 2005

M345126

2005

Voriega Navarrete Itze

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

CONTENIDO

1.	INTRODUCCIÓN	1
1.1	Generalidades	1
1.2	Antecedentes	1
1.3	Objetivos	2
2.	PLANTEAMIENTO TEÓRICO	4
2.1	Fundamentos	4
2.2	Modelo de histéresis bilineal	5
2.3	Desarrollos previos	6
2.3.1	Primera propuesta	6
2.3.2	Segunda propuesta	9
3.	MODELO PARA LA ESTIMACIÓN PROBABILÍSTICA DE DEMANDAS	S DE
DUCTI	LIDAD	11
3.1	Exploración de modelos para la presentación de resultados	11
3.1.1	Primer modelo	11
3.1.2	Segundo modelo	12
3.1.3	Tercer modelo	13
3.1.4	Método propuesto	13 14
3.2	Tino de análisis	14
3.4	Metodología	15
4.	SISTEMAS ESTUDIADOS	16
4.1	Tipo de sistema	16
4.2	Análisis dinámico de los sistemas	16
4.3	Datos del modelo	17
4.4	Acciones sismicas consideradas	18
5.	ANÁLISIS DE RESULTADOS	20
5.1	Expresiones de ajuste	20
5.1.1	Media de μ	20
5.1.2	Coeficiente de variación de μ	20
5.2	Resultados obtenidos	22
5.3	Resumen de resultados	23
5.4	Gráficos obtenidos	26
CONC	LUSIONES	28
ANEX	D A	29
Gráfico	s de ductilidad (μ) contra relación de resistencia (O) para $r = 0.0$	29
Gráfico	s de ductilidad (μ) contra relación de resistencia (O) para $r = 0.05$	31

Gráficos de ductilidad (μ) contra relación de resistencia (Q) para $r = 0.1$	
Gráficos de ductilidad (μ) contra relación de resistencia (Q) para $r = 0.2$	35
Gráficos de ductilidad (μ) contra relación de resistencia (Q) para $r = 0.3$	
Gráficos de ductilidad (μ) contra relación de resistencia (Q) para $r = 0.5$	40
Gráficos de ductilidad (μ) contra relación de resistencia (Q) para $r = 0.75$	42
Gráficos de ductilidad (μ) contra relación de resistencia (Q) para $r = 0.9$	44
ANEXO B	47
Gráficos $(\mu/\overline{\mu})^2$ contra $Q-1$ para $r=0.0$	47
Gráficos $(\mu/\overline{\mu})^2$ contra $Q-1$ para $r = 0.05$	49
Gráficos $\left(\mu/\overline{\mu}\right)^2$ contra $Q-1$ para $r=0.1$	51
Gráficos $\left(\mu/\overline{\mu}\right)^2$ contra $Q-1$ para $r=0.2$	53
Gráficos $\left(\mu/\overline{\mu}\right)^2$ contra $Q-1$ para $r=0.3$	
Gráficos $(\mu/\overline{\mu})^2$ contra $Q-1$ para $r = 0.5$	
Gráficos $(\mu/\overline{\mu})^2$ contra $Q-1$ para $r = 0.75$	60
Gráficos $(\mu/\overline{\mu})^2$ contra $Q-1$ para $r = 0.90$	62
ANEXO C	
Momentos de fluencia para cada marco según su periodo	65
ANEVOD	70
Archivos de entrada y salida del programa de análisis paso a paso Drain	70 70
b) Archivo de salida	
ANEXO E	
BIBLIOGRAFÍA	

1.INTRODUCCIÓN

1.1 GENERALIDADES

En los criterios de diseño sísmico basados en desempeño, es importante conocer las demandas de desplazamiento máximo en los sistemas estructurales cuando se someten a una intensidad sísmica dada. La necesidad de crear nuevas alternativas para estimar la respuesta de los sistemas estructurales sometidos a excitaciones sísmicas ha promovido la creación de nuevas herramientas de análisis aproximado que ayuden y simplifiquen la labor del ingeniero estructurista. El desarrollo de programas computacionales, capaces de realizar cálculos sísmicos dinámicos no lineales, ha permitido implantar innovadoras metodologías de análisis y diseño sísmico; sin embargo, muchas de éstas quedan fuera del alcance de aplicaciones comunes en la práctica del diseño sísmico, tomando en cuenta la complejidad en sus procedimientos y el costo en tiempo que representa su aplicación, por lo que este trabajo busca una alternativa que permita efectuar dichos análisis sin que represente un gasto y esfuerzo excesivo.

Se analizaron sistemas bilineales de un grado de libertad para obtener expresiones empíricas que estimen la media y el coeficiente de variación de la amplitud máxima de su respuesta sísmica, en términos de una variable Q, igual al coeficiente de la fuerza cortante correspondiente a la ordenada del espectro lineal de seudo-aceleraciones para amortiguamiento de 0.05 del crítico entre la resistencia de fluencia del sistema. Se consideraron también como variables independientes el periodo natural del sistema en su intervalo de comportamiento lineal y la relación r entre la rigidez tangente post-fluencia del sistema y la rigidez inicial.

Se utilizó como excitación una familia de trece acelerogramas simulados con el método de Grigoriu et al. (Ref. 5) con las propiedades estadísticas del registro de sismo del 19 de septiembre de 1985, componente este-oeste, registrado en la Secretaría de Comunicaciones y Transportes en la Ciudad de México.

1.2 ANTECEDENTES

El análisis elástico es la base de los procedimientos de diseño desde hace varios siglos. Se sabía que las hipótesis utilizadas son idealizaciones y simplificaciones del comportamiento real y, por esto, tratando de cubrir esas incertidumbres se utilizaron factores de seguridad. Actualmente se han modificado los procedimientos de análisis para evaluar el comportamiento inelástico, las variaciones en las propiedades de los materiales y los errores inherentes a la construcción de las estructuras. Por esta razón, se hace énfasis en el análisis elasto-plástico bilineal, por adecuarse más al comportamiento real de las estructuras.

Existen estudios relacionados que tratan la estimación de la máxima demanda de desplazamiento inelástico de sistemas de un grado de libertad mediante métodos de linealización equivalente. Por ejemplo, Jacobsen considera la rigidez equivalente igual a la

rigidez secante asociada con la amplitud máxima de la respuesta y supone el amortiguamiento adicional igual al necesario para disipar en cada ciclo de respuesta una cantidad de energía igual a la que disipa el sistema histerético durante su ciclo de máxima amplitud.

Por otro lado, Newmark y Rosenblueth, para mejorar el criterio de Jacobsen, proponen usar la rigidez efectiva y el amortiguamiento adicional como promedios ponderados de los valores que tomarían tales variables si se calcularan de acuerdo con el criterio de Jacobsen para amplitud de respuesta variable entre cero y la máxima. Alternativamente, Iwan propone expresiones empíricas para estimar el periodo y el amortiguamiento equivalentes del sistema, que resultan del ajuste de resultados de análisis de respuesta obtenidas mediante análisis paso a paso.

Los trabajos citados anteriormente tratan fundamentalmente de encontrar la máxima demanda de desplazamientos inelásticos de sistemas de un grado de libertad mediante linealización equivalente. Los criterios propuestos por Jacobsen y posteriormente por Newmark y Rosenblueth son en principio válidos para cualquier tipo de movimiento sísmico, mientras que el de Iwan es para condiciones de terreno firme cerca del foco y, por lo tanto, no es aplicable a movimientos con contenidos de frecuencia y duraciones efectivas similares a las que se presentan en terreno blando en el Valle de México. Además, se trata de obtener información sobre los parámetros estadísticos de los errores de predicción referidos a los valores calculados mediante el modelo del sistema equivalente aplicado al espectro promedio de los temblores de la intensidad que interesa.

En el presente estudio se empezó por tratar de desarrollar un modelo similar al de Iwan pero aplicable a las condiciones de terreno blando en el Valle de México. En el curso de los trabajos resultó evidente que era posible formular un criterio más directo para estimar respuestas no lineales.

1.3 OBJETIVOS

El objetivo de esta investigación es desarrollar expresiones empíricas para estimar la amplitud de la respuesta sísmica no lineal de marcos de un grado de libertad con comportamiento histerético bilineal con ciertas propiedades de rigidez, resistencia y segunda pendiente. El criterio se fundamenta en un procedimiento empírico propuesto por el Dr. Luís Esteva Maraboto, Investigador del Instituto de Ingeniería de la UNAM.

Se propone un criterio empírico como el propuesto por Iwan para las condiciones que persigue este trabajo sin las limitaciones siguientes: primero, que lo obtenido para movimientos de contenidos de frecuencias y duraciones efectivas son muy diferentes de lo que nos interesa para las condiciones del Valle de México y, segundo, que no se incluye información sobre los parámetros estadísticos de los errores de predicción referidos a los valores calculados mediante el modelo de sistemas equivalente aplicado a espectro promedio de los temblores de la intensidad que interesa.

Por lo anterior, se propone un criterio de análisis aproximado para estimar la amplitud de la respuesta dinámica de marcos que se comporten en forma inelástica ante la acción de un

evento sísmico. Este método tiene la ventaja de que su aplicación no involucra un marco de desarrollo operativo y teórico muy elaborado. De esta forma, se buscó transformar los resultados del estudio en resultados útiles para el desarrollo de formatos de diseño basados en desempeño y confiabilidad que puedan ser aplicados en la práctica común de diseño sísmico

El objetivo final será estudiar diversos sistemas de múltiples grados de libertad. En una primera etapa se empezará por sistemas bilineales de un grado de libertad y en trabajos posteriores deberán ampliarse a múltiples grados de libertad, así como sistemas con otros tipos de comportamiento no lineal.

2. PLANTEAMIENTO TEÓRICO

2.1 FUNDAMENTOS

Los criterios de diseño sísmico están evolucionando hacia métodos que tomen en cuenta mejores estimaciones de la respuesta no lineal, por esto la investigación que se desarrolla en este trabajo se enfoca a obtenerlas. El método de análisis propuesto por el Dr. Luís Esteva se basa en el desarrollo de expresiones empíricas para estimar la respuesta sísmica no lineal de sistemas histeréticos bilineales de un grado de libertad.

Los procedimientos que actualmente se están desarrollando en la ingeniería sísmica parten de criterios basados en desempeño que necesariamente evalúan las respuestas no lineales y, de acuerdo con los modelos simplificados actualmente aceptados, para determinar estas respuestas primero se debe conocer el comportamiento en el nivel superior y posteriormente trasladar los resultados a los niveles intermedios.

En este estudio se tratan de obtener expresiones que estimen la demanda de ductilidad μ de un sistema de un grado de libertad en términos de Q, que es el cociente de la ordenada del espectro lineal de aceleraciones para amortiguamiento de 0.05 del crítico entre la resistencia de fluencia del sistema, en función de r que es la relación entre la rigidez tangente postfluencia del sistema y la rigidez inicial y para un rango de valores del periodo natural de vibración T.

Para lograr lo anterior se supone una forma de la función del valor esperado de μ para valores dados de *T*, *Q* y *r*. La forma que se adopte para esta función deberá fundamentarse en una inspección visual de los resultados obtenidos por medio de análisis de respuesta dinámica de una muestra de historias típicas del movimiento del terreno, además, tomando en cuenta los valores que adopten estas funciones para los valores extremos de las variables independientes. A continuación se determinarán los parámetros que caracterizan a las funciones mediante ajustes por mínimos cuadrados, reduciendo el problema a la solución de sistemas de ecuaciones simultáneas no lineales.

Las predicciones que se obtienen al utilizar los métodos citados adolecen de incertidumbres significativas que provienen de dos fuentes: las asociadas a las propiedades detalladas de cada registro sísmico y las derivadas de las simplificaciones introducidas en el modelo; por ello es necesario estimar la dispersión de la respuesta no lineal, también como función de r, para las diversas combinaciones supuestas de Q y T. Finalmente, se planteará un criterio de interpolación para obtener estimaciones del valor esperado y el coeficiente de variación de μ para cualquier valor de Q, T y r.

4

Para el análisis del sistema el comportamiento se reproduce a partir de las descripciones geométricas, las propiedades de los materiales y las acciones aplicadas en un programa de computadora para el cálculo de respuesta inelástica paso a paso llamado DRAIN.

2.2 MODELO DE HISTÉRESIS BILINEAL

El modelo de rigidez de histéresis bilineal se utilizó para representar el comportamiento de estos sistemas consiste en una recta primaria que relaciona a la fuerza y deformación del modelo en una región elástica y posteriormente en una segunda recta que representa el comportamiento posterior a la fluencia; la rigidez o pendiente de la rama a la fluencia tiene una pendiente positiva, menor que en el rango elástico inicial, que simula las características de endurecimiento por deformación.

El comportamiento de histéresis bilineal se explica a continuación. La figura 2.1 representa el comportamiento de un ciclo de histéresis bilineal, donde Vy es el cortante de fluencia, Xy es la deformación de fluencia, KI la pendiente elástica inicial, K2 la pendiente después de la fluencia y X3, X4, X5 y X6 son variables que están relacionadas, X3 con X4 y X5 con X6.

Figura 2.1 Modelo Bilineal

Tomando a Xn como la deformación esperada del comportamiento de histéresis bilineal, el comportamiento del elemento se puede resumir en las siguientes tres reglas (fig. 2.1):

Nombrando a Xy, X3 o X6 como Xmax y a X2, X4 o X5 como Xmin.

Si el elemento está en la condición de la rama 1, 3 ó 5

Si Xn>Xmax, cambia a la rama 2

Si Xn<Xmin, cambia a la rama 4

Si el elemento está en la condición de la rama 2, si ocurre una descarga se cambia a la rama 1, 3 ó 5 y se determina

Xmax=Xn

Xmin=Xn-2Xy

Si el elemento está en la condición de la rama 4, si ocurre una descarga se cambia a la rama 1, 3 ó 5 y se determina

Xmax=Xn+2Xy

Xmin=Xn

2.3 DESARROLLOS PREVIOS

Los siguientes criterios fueron los que se propusieron en el desarrollo de esta investigación, en ellos se refinó el modelo hasta llegar al definitivo, mostrado en el capítulo 3. La primera propuesta se fundamentó en el criterio de Iwan; la segunda se formuló tratando de superar las limitaciones de la primera basada en un ajuste empírico del criterio de Jacobsen y en la tercera se exploraron alternativas para la representación de resultados de la propuesta definitiva según los fundamentos ya planteados en el capítulo 2.1 y mostrado a detalle más adelante.

2.3.1 Primera propuesta

El primer criterio considerado en este trabajo se designó como "Criterio Alternativo para Linearización Equivalente de Sistemas Histeréticos". Se fundamenta en el criterio de Iwan el cual consiste en el ajuste de expresiones empíricas aplicadas a las propiedades del sistema lineal equivalente con base en resultados de análisis de respuesta obtenidos por análisis paso a paso para el modelo de histéresis bilineal.

Se parte de un sistema histerético con comportamiento elastoplástico bilineal, caracterizado por su periodo natural T_0 para deformaciones menores que la de fluencia X_y , y por un amortiguamiento viscoso constante ξ_0 igual a 0.05 veces el crítico. Se supuso que el periodo y el amortiguamiento del sistema equivalente, $T y \xi$ respectivamente, se expresan como funciones de la ductilidad μ como indican las expresiones 2.1, 2.2 y 2.3.

6

$$\mu = \frac{X}{X_{\nu}} \tag{2.1}$$

$$\frac{T}{T_0} = \mu^m \tag{2.2}$$

$$\frac{\xi}{\xi_0} = \mu^n \tag{2.3}$$

En estas expresiones X y X_y son el desplazamiento máximo y el desplazamiento a la fluencia respectivamente, m y n son parámetros por determinar. El criterio empleado fue el siguiente:

Se consideró un conjunto de 14 movimientos simulados del terreno de diversas intensidades (ref. 7); estos movimientos fueron medidos por la ordenada del espectro lineal de seudoaceleraciones para el periodo y el amortiguamiento del sistema de interés para deformaciones pequeñas, T_0 y ξ_0 respectivamente. Se supuso una pareja de valores *m* y *n* y se trató de evaluar el error cuadrático que resulta de aplicar las expresiones 2.2 y 2.3 a la estimación de respuestas del sistema correspondientes a los 14 movimientos sísmicos.

En una segunda etapa se emplearon periodos naturales normalizados con respecto al valor dominante del terreno y para esto se modificaron las expresiones 2.2 y 2.3; a continuación se explica el procedimiento realizado:

Se define *r* de la siguiente manera:

$$r = \frac{T_0}{T_s} \tag{2.4}$$

en donde T_0 es el periodo natural del sistema para la condición de respuesta dinámica lineal y T_s el periodo de vibración dominante del suelo. A fin de tomar en cuenta esta variable en la determinación de los valores de *m* y *n* que conducen al mínimo error cuadrático, se reescribieron las ecuaciones 2.2 y 2.3 como sigue:

$$\frac{T}{T_0} = \mu^{m(r)}$$
(2.5)
$$\frac{\xi}{\xi_0} = \mu^{n(r)}$$
(2.6)

Estas ecuaciones difieren de las expresiones 2.2 y 2.3 en los parámetros m y n ya que en las expresiones 2.5 y 2.6 son funciones de r. Las expresiones son validas para $\mu \ge 1$ y tanto

 $\frac{T}{T_0}$ como $\frac{\xi}{\xi_0}$ deben ser mayores que 1, de modo que *m* y *n* deben ser positivos para cualquier valor de *r*, que siempre es mayor que 0. Las formas siguientes satisfacen estas condiciones:

$$m = a_1(1+b_1r)e^{c_1r} (2.7)$$

$$n = a_2 (1 + b_2 r) e^{c_2 r} \tag{2.8}$$

Donde $a_1 > 0$, $a_2 > 0$, $b_1 > 0$, $b_2 > 0$, y c_1 y c_2 pueden ser positivos ó negativos.

El propósito del problema de optimización fue obtener los valores de a_i , b_i , c_i , (i = 1, 2) que conducen al mínimo error cuadrático:

$$\varepsilon = \sum_{i} \left(1 - \frac{\delta_e}{\delta}\right)^2 \tag{2.9}$$

Donde $\delta y \delta_e$ son los valores del desplazamiento lateral del extremo superior calculados mediante el modelo detallado, solución paso a paso, y el sistema lineal equivalente, respectivamente.

El problema consistió en:

a) Seleccionar un conjunto de valores de las variables independientes, T_0 , $\xi_0 = 0.02$, $\mu = 1, 2, 3, 6$ por ejemplo.

b) Seleccionar un conjunto de acelerogramas, a(t).

c) Obtener valores de δ y δ_e para cada miembro del conjunto de casos correspondientes a los puntos anteriores.

d) Obtener los valores de a_i , b_i y c_i para i = 1,2 que minimizan el error cuadrático para el conjunto de casos mencionados en el inciso c.

Se observaron algunas limitaciones cuando se efectuó el ajuste en función de la ductilidad lo que llevó a realizar las modificaciones descritas a continuación:

Los parámetros independientes se representaron como el vector α .

$$\alpha = [a_1, a_2, b_1, b_2, c_1, c_2]$$
(2.10)

1 12

Y las variables por determinar son:

8

$$r = \frac{T_0}{T_r}$$
: $r_i, i = 1, ..., N_r$ (2.11)

$$Q = \frac{s_{0.02} - s_{0.20}}{R - s_{0.20}}; \quad \mathbf{Q}_{j}, \ j = 1, \dots, N_{Q}$$
(2.12)

Donde s_i son las seudoaceleraciones para distinto valor de amortiguamiento, R es la resistencia de la estructura en las mismas unidades que s, T_0 es el período natural del sistema, T_s el período dominante del terreno en el espectro medio de seudoaceleraciones y a(t) es el acelerograma:

$$a_{R}(t), k = 1, \dots, N_{a}$$
 (2.13)

Una segunda limitación, superable a costa de mayor trabajo, deriva de la poca información que se introduce en las ecuaciones empíricas sobre las características de la curva cortantedeformación del sistema en estudio. Por ejemplo, si se trata con un sistema bilineal se deja fuera la relación que existe entre la segunda y la primera pendiente; esto conduce a la necesidad de obtener un conjunto de expresiones, una para cada valor de la relación citada.

2.3.2 Segunda propuesta

El criterio siguiente denominado "Criterio de linealización equivalente basado en un ajuste empírico al criterio de Jacobsen" descarta las principales limitaciones del propuesto anteriormente. La aplicación de este último depende de la posibilidad de calcular una variable Q que depende de la diferencia entre las ordenadas de los espectros de seudoaceleraciones para dos amortiguamientos distintos. Para periodos naturales de vibración cortos se presentan problemas derivados de obtener, en ciertos casos, aceleraciones espectrales mayores para amortiguamientos mayores.

Los pasos a seguir del criterio seleccionado son los siguientes:

1. Se determinan Q, $r \neq V_y$, la primera como la relación entre la ordenada del espectro lineal de aceleraciones para el periodo natural del sistema, la segunda como la relación entre la rigidez tangente post-fluencia del sistema y la rigidez inicial, la tercera como la fuerza cortante de fluencia para el mismo.

2. Dados Q y el periodo natural T_0 , se estima el valor esperado de la deformación lateral del sistema suponiéndolo elasto-plástico y con la misma resistencia de fluencia que el sistema bilineal de interés. Es necesario contar con espectros elasto-plásticos.

3. Utilizando la respuesta obtenida según el inciso 2 como una aproximación a la del sistema bilineal que interesa, se aplicó el criterio de Jacobsen (descrito por Newmark y Rosenblueth)

para obtener la aproximación inicial a las propiedades del sistema equivalente: periodo natural igual a T_{e1} y amortiguamiento histerético ξ_{e1} .

4. Se definen las variables $X = \frac{T_e}{T_{e1}}$ y $Z = \frac{\xi_e}{\xi_{e1}}$, en donde T_e y ξ_{e1} son los valores del periodo natural y el amortiguamiento historático del sistema equivalente que se traté de estimar

natural y el amortiguamiento histerético del sistema equivalente que se trató de estimar mediante la relación empírica que se trata de establecer.

5. El problema se convirtió en obtener una muestra de valores de la deformación lateral, o del factor de ductilidad, calculada rigurosamente paso a paso para un conjunto de sistemas de diversos periodos naturales. Las excitaciones sísmicas deberían ser muestras de temblores simulados.

6. Obtener, para cada valor considerado del periodo inicial T_0 , la combinación de valores de X y Z que conducen al mínimo error cuadrático normalizado en las predicciones con la ecuación empírica.

7. A fin de acelerar el ajuste sin tener que resolver grandes sistemas de ecuaciones simultáneas puede procederse en forma secuencial: primero se ajusta una expresión empírica a los valores de Z obtenidos para los distintos periodos y luego se vuelve a optimizar con respecto a X, dando por buenos los valores de Z obtenidos después de que se ajusta la ecuación empírica citada.

La limitación de este criterio fue la manera de representar los resultados ya que no era la más adecuada debido a que aumentaba la complejidad de las funciones a ajustar. Por este motivo se realizaron cambios hasta lograr obtener las expresiones deseadas que reflejan el comportamiento idóneo de lo parámetros del sistema.

3. MODELO PARA LA ESTIMACIÓN PROBABILÍSTICA DE DEMANDAS DE

DUCTILIDAD

3.1 EXPLORACIÓN DE MODELOS PARA LA PRESENTACIÓN DE RESULTADOS

Para la presentación de resultados se propusieron varios modelos matemáticos, de los cuales, se muestran las últimas alternativas y los modelos finales se presenta en la sección 5.1.

Inicialmente éstos carecían de significado físico y requerían funciones complejas puesto que en algunos fue necesario dividir los datos en dos regiones dificultando la evaluación de los resultados finales por lo que se modificaron para alcanzar los fines de este trabajo. A continuación se muestran cuatro modelos preliminares para la presentación de resultados.

En el primero se proponen expresiones para ajustar la media de μ contra Q. En el segundo y en el tercero la media de μ contra T. Una vez obtenido el modelo para la media de μ se trataron de aproximar los resultados de una variable y para la evaluación del coeficiente de variación de la media de μ con el cuarto.

3.1.1 Primer modelo

A partir de los desplazamientos relativos arrojados por el programa DRAIN se organizó la ductilidad calculada de cada caso en el eje de las ordenadas y en las abscisas Q, para cada T y r. A estos gráficos se les ajustó una curva con la siguiente función (exp. 3.1):

$$\mu = a(1 - e^{-cQ}) + bQ \tag{3.1}$$

En donde los parámetros deben cumplir las condiciones b>0, c>0 y a positivo o negativo. Sí a<0, b>0 y c>0, la función 3.1 tiene un comportamiento como en la figura 3.1; sí a>0, b>0 y c>0 como en la figura 3.2

Figura 3.2 Comportamiento de los parámetros a, b y c de la expresión 3.1 si a>0

Se observó que los parámetros a, b, c no tenían sentido físico y se desconocía si existía error por lo que se ideó un modelo distinto: en el eje de las ordenadas se coloco μ y en el eje de las abscisas T; en estos gráficos, observando la tendencia de los datos, se propusieron las siguientes expresiones para el ajuste.

3.1.2 Segundo modelo

En la figura 3.3 se muestra la gráfica para el ajuste de los resultados de μ contra T. Debido a la tendencia de los valores se dividió en dos secciones: 1 y 2. El valor del periodo que divide los datos se le llamó T_1 .

Figura 3.3 Forma típica de las gráficas μ vs T

A cada sección se le ajustó una curva diferente de manera que se cumplieran las condiciones de frontera cuando $T = T_1$. Las expresiones 3.2 y 3.3 corresponden a las secciones 1 y 2 respectivamente.

$$\mu = \mu_0 + ax + bx^2 + cx^3 \tag{3.2}$$

$$\mu = \mu_1 e^{-b(T-T_1)} + Q(1 - e^{-c(T-T_1)})$$
(3.3)

Donde:

$$\mu_0 = \frac{Q-1}{r} + 1 \tag{3.4}$$

$$x = \frac{T}{T_1} \tag{3.5}$$

3.1.3 Tercer modelo

En la evaluación gráfica de los datos μ contra *T* la expresión 3.3 tuvo un ajuste satisfactorio, sin embargo, la expresión 3.2 no se ajustó adecuadamente por lo que se sustituyó con la expresión 3.6.

$$u = u + v \tag{3.6}$$

Donde:

$$u = a + bx + c(x_1 - x)^2$$
(3.7)

$$v = dx^{n} (x_{1} - x)^{m}$$
(3.8)

La expresión 3.6 no se ajustó satisfactoriamente y el modelo final para la media de μ se muestra en la sección 5.1.1 en la cual no fue necesario dividir los datos como en la figura 3.3.

3.1.4 Cuarto modelo

Con las ecuaciones finales para la media de μ se propusieron expresiones para la obtención de su coeficiente de variación. A continuación se muestran un modelo preliminar para presentar estos resultados.

Para la obtención del coeficiente de variación se utilizó la variable y equivalente a $E\left[\mu/\mu\right]^2$. La forma típica de los resultados de y contra x=Q-I es la que se muestra en la figura 3.4.

2 1 1

El modelo matemático auxiliar para la obtención del coeficiente de variación es el propuesto en la expresión 3.9, que trata de aproximarse a la figura 3.4.

$$y = \frac{a + b(x - x_1)^2}{1 + c(x - x_1)^2}$$
(3.9)

Se observó que la expresión 3.9 tenía buen comportamiento, no obstante, por el tipo de función, se generaban dos picos e incumplía con las condiciones requeridas en el ajuste por lo que se modificó ligeramente llegando a la función definitiva mostrada en la sección 5.1.2 en donde el ajuste mejoró y se evitaron variaciones e irregularidades.

3.2 MÉTODO PROPUESTO

El principal objetivo de este trabajo es obtener expresiones empíricas para estimar la media y el coeficiente de variación de las amplitudes máximas de la respuesta sísmica de sistemas bilineales de un grado de libertad. Se tomará en cuenta la influencia de diversas variables:

a) Características del movimiento del terreno: duración y contenido de frecuencia (tipo de suelo local).

b) Periodo natural y amortiguamiento viscoso del sistema.

c) Propiedades de las leyes constitutivas del sistema: relación entre la rigidez antes y después de la fluencia; características de degradación ante cargas cíclicas.

Para ello se estudian marcos de estructuras de un nivel que se consideran ubicados en la zona de terreno blando del Distrito Federal (zona III, según el RCDF), específicamente en un sitio donde el periodo dominante del suelo es muy próximo a dos segundos ($T_s = 2s$).

Las dimensiones de las secciones transversales de trabes y columnas que forman el marco se estimaron proponiendo los distintos valores de T, de manera que a partir de estos periodos se estiman su rigidez, inercia y área, (tabla 4.1).

3.3 TIPO DE ANÁLISIS

Se considera el método de Análisis Paso a Paso para evaluar las demandas máximas de desplazamiento inelástico de los marcos. En este método de analisis, al comienzo de cada intervalo de cálculo de la respuesta se establecen las condiciones de equilibrio dinámico y a continuación se resuelven las ecuaciones de equilibrio del sistema para calcular la respuesta en cada incremento de tiempo. Este método lo denominaremos método de solución "exacta", ya que toma en cuenta la no linealidad en las ecuaciones de equilibrio dinámico de los modelos estudiados. Los análisis paso a paso se llevan a cabo mediante una versión modificada del programa DRAIN (ref. 12). Se estudia un modelo de comportamiento histerético bilineal de los elementos estructurales sección 2.2.

.

3.4 METODOLOGÍA

Para cada tipo de movimiento del terreno y para cada tipo de sistema estructural se realizan las siguientes operaciones:

a) Se selecciona un conjunto de historias simuladas del movimiento del terreno.

b) Se selecciona un conjunto de sistemas estructurales, de diversos periodos naturales, diversas resistencias de fluencia y diversos valores del parámetro r (0.0, 0.05, 0.1, 0.2, 0.3, 0.5, 0.75 y 0.9). Estas últimas se controlan por medio de la variable Q, que es la relación entre la respuesta lineal de un sistema con igual rigidez inicial y amortiguamiento que el sistema de interés y la resistencia de fluencia de este último.

c) Para cada familia de movimientos del terreno se obtienen valores de la demanda de ductilidad μ para cada combinación de valores de T (periodo natural del sistema) Q y r.

d) Se ajustan expresiones empíricas a los valores medios y a los coeficientes de variación de μ , en términos de *T*, *Q* y *r* para los diversos tipos y casos de sistemas estructurales considerados.

4. SISTEMAS ESTUDIADOS

4.1 TIPO DE SISTEMA

Para representar los sistemas de interés se propuso una estructura rectangular de un nivel cuyos elementos tienen comportamiento elastoplástico bilineal. Se propusieron marcos planos de 4.0m de altura y 4.0m de ancho entre ejes. Se consideró que todos los marcos del mismo periodo tienen la misma rigidez lateral como consecuencia de que las columnas tienen igual sección y las vigas se consideran infinitamente rígidas, ya que se desea emplear los marcos para representar osciladores de un grado de libertad. La figura 4.1 destaca la geometría principal de los marcos estudiados.

Figura 4.1 Marco propuesto de un nivel

4.2 ANÁLISIS DINÁMICO DE LOS SISTEMAS

Los sistemas descritos se analizan empleando el programa de análisis citado anteriormente, idealizándolos como sistemas de un grado de libertad para la obtención de las expresiones dinámicas, (fig. 4.2).

Figura 4.2 Sistema equivalente de un grado de libertad

Al simplificar la estructura de este modo, el movimiento de la estructura puede ser descrito por lo expresión 4.1.

$$\ddot{x} + 2\xi_0 \omega_0 \dot{x} + \omega_0^2 f[x(t)] / k_0 = -a(t)$$
(4.1)

Donde x es el desplazamiento relativo generalizado, ξ_0 es la fracción del amortiguamiento viscoso, ω_0 es la frecuencia natural, f[x(t)] es la fuerza de restauración generalizada, k_0 es la rigidez nominal y a(t) es la aceleración de la excitación. En lo que sigue, el valor del factor de amortiguamiento viscoso es fijo e igual a 5% del crítico. El periodo fundamental del sistema es denotado por la expresión 4.2.

$$T_0 = \frac{2\pi}{\omega_0} \tag{4.2}$$

4.3 DATOS DEL MODELO

Para la obtención de resultados se crearon archivos de entrada (Anexo D, inciso a), para el programa de Análisis Paso a Paso DRAIN en el que se capturaron las propiedades geométricas de los 20800 casos. Se modificarion la rigidez K, el factor de amortiguamiento proporcional a la masa a_0 de modo que el amortiguamiento fuera 0.05 del crítico entre la resistencia de fluencia del sistema, área A, inercia I y momentos de fluencia My (Anexo C) de las secciones de las columnas (tabla 4.1); estas propiedades se calcularon a partir de 40 valores propuestos de T, 8 valores de r, 5 valores de Q y 13 señales simuladas.

Tabla 4.1 Propiedades geométricas de los casos estudiados

T	ĸ	aŬ	A	1
0.1	3947.84	6.28	755.45	47558.75
0.2	986.96	3.14	377.73	11889.69
0.3	438.65	2.09	251.82	5284.31
0.4	246.74	1.57	188.86	2972.42
0.5	157.91	1.26	151.09	1902.35
0.6	109.66	1.05	125.91	1321.08
0.7	80.57	0.90	107.92	970.59
0.8	61.69	0.79	94.43	743.11
0.9	48.74	0.70	83.94	587.15
1.0	39.48	0.63	75.55	475.59
1.1	32.63	0.57	68.68	393.05
1.2	27.42	0.52	62.95	330.27
1.3	23.36	0.48	58.11	281.41
1.4	20.14	0.45	53.96	242.65
1.5	17.55	0.42	50.36	211.37
1.6	15.42	0.39	47.22	185.78
1.7	13.66	0.37	44.44	164.56
1.8	12.18	0.35	41.97	146.79
1.9	10.94	0.33	39.76	131.74
2.0	9.87	0.31	37.77	118.90
2.1	8.95	0.30	35.97	107.84
2.2	8.16	0.29	34.34	98.26
2.3	7.46	0.27	32.85	89.90
2.4	6.85	0.26	31.48	82.57
2.5	6.32	0.25	30.22	76.09
2.6	5.84	0.24	29.06	70.35
2.7	5.42	0.23	27.98	65.24
2.8	5.04	0.22	26.98	60.66
2.9	4.69	0.22	26.05	56.55
3.0	4.39	0.21	25.18	52.84
3.1	4.11	0.20	24.37	49.49
3.2	3.86	0.20	23.61	46.44
3.3	3.63	0.19	22.89	43.67
3.4	3.42	0.18	22.22	41.14
3.5	3.22	0.18	21.58	38.82
3.6	3.05	0.17	20.98	36.70
3.7	2.88	0.17	20.42	34.74
3.8	2.73	0.17	19.88	32.94
3.9	2.60	0.16	19.37	31.27
40	2 47	0.16	18.80	20.72

Para cada periodo se calculó la aceleración en función de los 5 valores de Q, (exp. 4.3), calculándose así 2600 fuerzas de fluencia Fy, (exp. 4.4); se hizo de esta manera para obligar que el sistema tuviera la fluencia que se necesita, siendo su masa unitaria.

$$a_{Q} = \frac{a_{e}}{Q}$$

$$F_{y} = a_{Q}m$$
(4.3)
(4.4)

Dónde a_e son las ordenadas espectrales de las 13 señales de aceleración en función de Q para los 40 periodos naturales. Los momentos de fluencia se calcularon con la expresión 3.5 en donde H es la altura del marco; los valores de My se agrupan en el Anexo C.

$$My = \frac{F_y H}{4} \tag{4.5}$$

Con estas variables, K, a_0 , A, I, My y r, en el programa DRAIN se procedió a generar los archivos de entrada (Anexo D inciso a) que, al ser sometidos a las 13 señales, generan los desplazamientos relativos D_R de 20800 marcos (Anexo D inciso b); con estos desplazamientos se obtienen las ductilidades de cada caso de acuerdo a las expresiones 4.6 y 4.7, en donde D_y es el desplazamiento de fluencia.

$$\mu = \frac{D_R}{D_y} \tag{4.6}$$

$$D_y = \frac{4M_y}{HK} \tag{4.7}$$

4.4 ACCIONES SÍSMICAS CONSIDERADAS

Para estudiar los efectos que los sismos causan sobre las obras de ingeniería, es necesario tomar en cuenta las características relevantes de la historia del movimiento del suelo que se pueden presentar donde interesa establecer tales obras. Esto se puede realizar de dos formas: utilizando acelerogramas registrados en el sitio, con los cuales simular los temblores futuros o por medio de modelos estocásticos del movimiento del suelo.

Se utiliza como excitación una familia de trece acelerogramas simulados por el método propuesto por Grigoriu (Ref. 5), con propiedades estadísticas del contenido de frecuencia e intensidades instantáneas similares a las del registro del sismo del 19 de septiembre de 1985, componente este-oeste, registrado en la Secretaría de Comunicaciones y Transportes ubicada en la Ciudad de México. Los espectros de respuesta lineal de estos acelerogramas se muestran en la figura 4.3.

Figura 4.3 Espectros de respuesta lineal de señales simuladas por el método Grigoriu (Ref. 5)

5.ANÁLISIS DE RESULTADOS

5.1 EXPRESIONES DE AJUSTE

Una vez obtenidas las ductilidades de cada caso se realizaron pruebas para representar los resultados. Se advirtió que colocar los valores de ductilidad en el eje de las ordenadas y los valores de los periodos en el eje de las abscisas era la mejor manera para presentar los resultados, considerando grupos de gráficas para los valores de r y Q. De aquí resultaron las 320 graficas que se muestran en el Anexo A.

5.1.1 Media de μ

A la media de la ductilidad obtenida para los 320 casos se ajustó una función con la forma dada por la expresión 5.1, a la cual se le denominó "función ajustada de $\overline{\mu}$ ".

$$\overline{\mu} = 1 + a_m(Q-1) + b_m(1 - e^{-c_m(Q-1)})$$
(5.1)

Para $Q \ge 1$ y si Q < 1 entonces $\overline{\mu} = Q$.

Al derivar la función $\overline{\mu}$ con respecto a Q se obtiene:

$$\overline{u}' = a + b c e^{-c_m(Q-1)}$$
(5.2)

Las condiciones de frontera para Q=1 son:

$$\overline{\mu}(1) = 1 = 1 + a_m(1-1) + b_m(1 - e^{-c_m(1-1)}) \equiv 1$$
(5.3)

$$\overline{\mu}'(1) = 1 = a_m + b_m c_m \tag{5.4}$$

La condición dada por la expresión 5.3 se satisface automáticamente. De la condición 5.4 se obtiene $a_m = 1 - b_m c_m$, con lo cual la expresión 5.1 se transforma en la siguiente:

$$\overline{\mu} = Q + b_m c_m (1 - Q) + b_m (1 - e^{c_m (1 - Q)})$$
(5.5)

En esta ecuación hay dos constantes, cuyos valores se estimaron mediante un ajuste de mínimos cuadrados de la muestra de valores de Q y $\overline{\mu}$ con un programa que utiliza el método de Powell, (ref.14).

5.1.2 Coeficiente de variación de μ

Interesa obtener expresiones de coeficiente de variación de μ , V_{μ} , como función de Q. Utilizando la igualdad estadística de la expresión 5.6:

$$V_{\mu}^{2} = \frac{\sigma_{\mu}^{2}}{\overline{\mu}^{2}} = \frac{E(\mu^{2}) - \overline{\mu}^{2}}{\overline{\mu}^{2}} = \frac{E(\mu^{2})}{\overline{\mu}^{2}} - 1$$
(5.6)

Para trazarla se utilizaron valores de $y = \frac{\mu^2}{\overline{\mu}^2}$, los cuales se graficaron en el eje de las ordenadas, con valores de Q en el eje de las abscisas. Las gráficas se muestran en el Anexo B.

Los valores de μ^2 resultan de la muestra de valores de μ y los valores de $\overline{\mu}^2$ de aplicar la expresión 5.5.

Los 320 gráficos se ajustaron con la siguiente expresión empírica (expr. 5.7), a la cual se le identifica en los gráficos como F.A., donde x=Q-1.

$$y = \frac{a + bx^2}{1 + c(x - x_1^2)}$$
(5.7)

Esta función debe satisfacer las siguientes condiciones:

- a) y = 1 para x = 0, ya que $V_y^2 = 0$
- b) y tiende a un máximo igual a y_1 , para $x = x_1$
- c) El valor de y nunca puede ser menor que 1
- d) Para $x \to \infty$, $y \to y_2$

Estas condiciones satisfacen a la expresión 5.7, por lo que sustituyendo dichas condiciones se obtiene que:

$$y(0) = 1 = \frac{a}{1 + cx_1^2} \implies a = 1 + cx_1^2$$
 (5.8)

$$y_1 = a + bx_1^2 \implies a = y_1 - bx_1^2$$
 (5.9)

$$y_2 = \frac{b}{c} \qquad \Rightarrow b = y_2 c \qquad (5.10)$$

Igualando las expresiones 5.8 y 5.9 se tiene:

$$1 + cx_1^2 = y_1 - bx_1^2 \tag{5.11}$$

Al sustituir la expresión 5.10 se obtiene:

$$1 + cx_1^2 = y_1 - y_2 cx_1^2 \tag{5.12}$$

Y despejando c de la expresión 5.12 se llega a la expresión 5.14.

$$cx_1^2(1+y_2) = y_1 - 1 \tag{5.13}$$

$$c = \frac{y_1 - 1}{x_1^2 (1 + y_2)} \tag{5.14}$$

Sustituyendo la expresión 5.14 en 5.8 se llega a 5.15:

$$a = 1 + cx_1^2 = 1 + \frac{y_1 - 1}{1 + y_2}$$

$$a = \frac{y_1 + y_2}{1 + y_2}$$
(5.15)

Puesto que $y_1 > 1, y_2 > 0 \implies c > 0, b > 0, a > 0$

Con el planteamiento anterior se realizó un ajuste empírico por medio de inspección visual de cada uno de los 320 gráficos con la expresión 5.7 y al sustituir los valores de las expresiones 5.12, 5.13 y 5.14 en el que:

 y_1 es el valor de la ordenada para un abscisa Q=1.5

 $x_1 = 1.5$; este valor se obtuvo de la tendencia de los gráficos

 $y_2 = 1$; este valor se obtuvo de la tendencia de los gráficos

Con los valores de los parámetros a, b y c de la expresión 5.7 que se muestran en la tabla E.2 se obtuvieron las figuras E.1 y E.2; en estas últimas se incluye la curva de ajuste de los parámetros. Cada una de las ocho curvas se ajustó con el procedimiento que se detalla más adelante.

5.2 **RESULTADOS OBTENIDOS**

Se tomarán 3 casos representativos para ilustrar los tipos de ajuste outenidos.

Primer Caso:	T=0.4 seg. y r=0, (Fig. 5.1 y 5.2)
Segundo Caso:	T=1.3 seg. y r=0.9 (Fig. 5.3 y 5.4)
Tercer Caso:	T=0.1 seg. y r=0.3 (Fig. 5.5 y 5.6)

Figuras 5.5 y 5.6 Tercer caso

En el primer y segundo caso se observó que las funciones propuestas para la media de μ se ajustan con bastante precisión a los datos; sin embargo, se identificaron algunos casos en los que la dispersión fue considerable. Por ejemplo, en el tercer caso se observa que la función propuesta para encontrar el coeficiente de variación no se ajustó de la manera que se esperaba; esto se presento para periodos que oscilan entre 0.1 y 0.4, que se salen de la media de los demás puntos.

Una vez generados los casos para poder graficar los coeficientes de variación como los mostrados en los gráficos 5.2, 5.4 y 5.6 se obtuvieron los parámetros a, b y c (Anexo E).

5.3 RESUMEN DE RESULTADOS

Con los 20800 casos estudiados, para T entre 0.1 y 4.0 en incrementos de 0.1, para r=0, 0.05, 0.1, 0.2, 0.3, 0.5, 0.75 y 0.9, para Q=1.5, 2, 4, 6 y 8 y para 13 señales simuladas, se consideró adecuado presentar los resultados por medio de 320 gráficos, representando en el eje de las ordenadas los valores de μ y en el de las abscisas los valores de Q.

23

Los resultados de ajustar funciones de la forma dada por la Ec. 5.5 a la media de la ductilidad se muestran en los 320 gráficos del Apéndice A. El resultado fue de utilidad para obtener otros 320 gráficos, en los cuales se representó en el eje de las ordenadas el valor de $(\mu/\overline{\mu})^2$ y en el eje de las abscisas el valor de Q-1. A estas gráficas se ajustaron expresiones de la forma 5.7. Estas sirvieron para obtener los coeficientes de variación de μ (exp. 5.6) representados en el eje de las ordenadas $((\mu/\overline{\mu})-1)^2$ contra Q-1 en el eje de las abscisas. Así se cumple con el objetivo de este trabajo, con la expectativa de contar con expresiones sencillas para estimar las medias y los coeficientes de variación de las ductilidades de marcos de un grado de libertad en términos de Q, T y r.

En las tablas E.1.a y E.1.b del Anexo E se resumen los valores de b_m^{\dagger} y c_m de la Ec. 5.5 que se emplearon para trazar las funciones de valores medios de μ que aparecen en el Anexo A.

A fin de obtener formas simples para calcular los valores de a, b y c, se propuso la expresión 5.16 para ajustar el parámetro b de la función 5.7 para generalizar el cálculo del coeficiente de variación para cada uno de los ocho valores de r.

$$b = e^{\alpha (T - \delta)^2 + \beta} \tag{5.16}$$

Para los parámetros a y c se utilizaron las ecuaciones 5.15, 5.10 y 5.14 derivadas de la expresión 5.7 como se explica en la sección anterior.

$$a = \frac{y_1 + y_2}{1 + y_2} \tag{5.15}$$

$$b = y_2 c \tag{5.10}$$

$$c = \frac{y_1 - 1}{x_1^2 (1 + y_2)} \tag{5.14}$$

En las gráficas del Anexo B se observó la tendencia de los valores de x_1 y y_2 , iguales a 0.5 y 1 respectivamente; al sustituir en las expresiones anteriores se obtuvo

$$b = y_2 c \Longrightarrow b = c \tag{5.17}$$

Sustituyendo en 5.14 se llega a

$$c = \frac{y_1 - 1}{2x_1^2} \Longrightarrow c = 2(y_1 - 1)$$
(5.18)

Despejando y_1

$$y_1 = \frac{c}{2} + 1 \tag{5.19}$$

Y sustituyendo en la expresión 5.15

$$a = \frac{y_1 + y_2}{1 + y_2} \Longrightarrow a = \frac{c}{4} + 1 \tag{5.20}$$

Por lo que los parámetros a, b y c se calculan de la siguiente manera, según la función propuesta 5.16 y la deducción anterior.

$$a = \frac{e^{\alpha (T-\delta)^2 + \beta}}{4} + 1$$
 (5.21)

$$b = e^{\alpha (T - \delta)^2 + \beta}$$
(5.16)

$$c = e^{\alpha (T - \delta)^2 + \beta}$$
(5.22)

Los valores de α , β y δ obtenidos por medio de ajuste de mínimos cuadrados de las expresiones 5.21, 5.16 y 5.22 para cada valor de *r* se muestran en la tabla 5.1. Las graficas de los valores de los parámetros *a*, *b* y *c*, así como las curvas ajustadas del tipo de la expresión

r	α	δ	β
0	0.32	2.46	-0.96
0.05	0.17	2.68	-1.10
0.1	0.06	3.31	-1.27
0.2	-0.15	2.38	-1.46
0.3	-0.39	2.27	-1.81
0.5	-0.66	2.34	-2.14
0.75	-1.04	2.29	-2.36
0.9	-1.26	2.21	-2.77

Tabla 5.1 Valores de α , β y δ

Con estas expresiones se puede evaluar la expresión 5.7 para valores dados de r, T y Q.

$$y = \frac{a + bx^2}{1 + c(x - x_1^2)}$$
(5.7)

Donde $x_1 = 1.5$, x = Q - 1, y los parámetros a, b y c están dados por las expresiones 5.21, 5.16 y 5.22.

$$y = \frac{a + b(Q - 1)^2}{1 + c((Q - 1) - 2.25)}$$
(5.23)

Si $y = (\mu/\overline{\mu})^2$, entonces el cuadrado del coeficiente de variación de la ductilidad se evalúa como:

$$V_{\mu}^{2} = \left(\sqrt{y} - 1\right)^{2}$$
(5.24)

5.4 GRÁFICOS OBTENIDOS

A esta función propuesta (expresión 5.24) se le llamo Función Ajustada Calculada (F.A.C.) en los gráficos y se comparó con la obtenida directamente de la expresión 5.7, llamada Función Ajustada (F.A.). Se calculó el error mínimo entre las funciones F.A.C. y F.A y se observó que es el óptimo para los objetivos de este trabajo.

A continuación se obtuvieron los coeficientes de variación de las funciones 5.16 y 5.7 y se observó que tenían un buen comportamiento, teniendo en cuenta que para el intervalo lineal los coeficientes de variación son cercanos a 0. Se comprobó en los gráficos que conforme disminuía el valor de la relación de pendientes r el coeficiente de variación aumentaba su valor. Esto es evidente en los siguientes gráficos, en los que se muestran los coeficientes de variación para distintos periodos y relación de pendientes, mientras varía Q con la expresión 5.7 para los marcos con las características propuestas en este trabajo.

Figura 5.7 Gráficos del cuadrado del coeficiente de variación para r=0.0 y distintos periodos

Figura 5.10 Gráficos del cuadrado del coeficiente de variación para r=0.2 y distintos periodos

Figura 5.11 Gráficos del cuadrado del coeficiente de variación para r=0.3 y distintos periodos

Figura 5.12 Gráficos del cuadrado del coeficiente de variación para r=0.5 y distintos periodos

Figura 5.13 Gráficos del cuadrado del coeficiente de variación para r=0.75 y distintos periodos

Figura 5.14 Gráficos del cuadrado del coeficiente de variación para r=0.9 y distintos periodos

CONCLUSIONES

Del análisis de los resultados obtenidos se concluye que las expresiones empíricas propuestas permiten realizar estimaciones suficientemente precisas de las respuestas dinámicas de sistemas bilineales histeréticos ante movimientos del terreno similares al registro del sismo del 19 de septiembre de 1985, componente este-oeste, registrado en la Secretaria de Comunicaciones y Transportes ubicada en la Ciudad de México.

Lo anterior se realizó mediante una comprobación exhaustiva de los resultados y de varias pruebas de ajuste de los datos calculados mediante análisis paso a paso de sistemas con comportamiento de tipo bilineal.

Las respuestas calculadas con el método propuesto dependen de las hipótesis que se hacen en este trabajo en función de las propiedades de los casos. Todos estos factores influyen posiblemente en la forma de algunos gráficos y en las amplitudes de estos.

En el desarrollo de esta tesis se obtuvieron expresiones empíricas para estimar probabilísticamente la respuesta sísmica de algunos sistemas no lineales de un grado de libertad con histéresis bilineal. Los parámetros estadísticos que estiman la respuesta fueron la media de la ductilidad y su coeficiente de variación, dichos indicadores se obtienen por medio de expresiones matemáticas sencillas que se evalúan numéricamente con ayuda de parámetros tabulados y expresiones auxiliares que se incluyen en éste trabajo.

La expresión 5.5 estima el valor de la media de la ductilidad con Q como variable y con parámetros tabulados en el anexo E.1 para cada r y T. La expresión 5.24 evalúa el coeficiente de variación con las expresiones auxiliares 5.16, 5.21, 5.22 y 5.23 con Q y T como variables y la tabla 5.1 contiene los parámetros para las expresiones auxiliares en función de r. De esta manera para un sistema de un grado de libertad, con histéresis bilineal y determinado por sus valores Q, T y r, es posible estimar la media de la ductilidad y su coeficiente de variación basados en acelerogramas simulados por el método de Grigoriu para la Ciudad de México.

Se deben realizar más estudios para distintos tipos de comportamiento y para marcos con distintos números de niveles. Específicamente, se deben buscar formas simples que permitan incorporar información relevante del comportamiento no lineal de los elementos estructurales, con el fin de obtener amplitudes u otros valores que hagan fácil el uso de este tipo de análisis y comportamientos a los ingenieros de la práctica.

Sin duda, un reto importante se refiere a mejorar la precisión de métodos como este, manteniendo su simplicidad, dentro de límites que permitan su aplicación en condiciones típicas de la práctica del diseño en ingeniería.

ANEXO A

GRÁFICOS DE DUCTILIDAD (μ) CONTRA RELACIÓN DE RESISTENCIA (Q) PARA r = 0.0

29

× .

1.

GRÁFICOS DE DUCTILIDAD (μ) CONTRA RELACIÓN DE RESISTENCIA (Q) PARA r = 0.05

GRÁFICOS DE DUCTILIDAD (μ) CONTRA RELACIÓN DE RESISTENCIA (Q) PARA r = 0.1

÷,

GRÁFICOS DE DUCTILIDAD (μ) CONTRA RELACIÓN DE RESISTENCIA (Q) PARA r = 0.2

GRÁFICOS DE DUCTILIDAD (μ) CONTRA RELACIÓN DE RESISTENCIA (Q) PARA r = 0.3

39

GRÁFICOS DE DUCTILIDAD (μ) CONTRA RELACIÓN DE RESISTENCIA (Q) PARA r = 0.5

GRÁFICOS DE DUCTILIDAD (μ) CONTRA RELACIÓN DE RESISTENCIA (Q) PARA r = 0.75

GRÁFICOS DE DUCTILIDAD (μ) **CONTRA RELACIÓN DE RESISTENCIA** (Q) **PARA** r = 0.9

ANEXO B

GRÁFICOS $(\mu/\overline{\mu})^2$ **CONTRA** Q - 1 **PARA** r = 0.0

GRÁFICOS $(\mu/\overline{\mu})^2$ **CONTRA** Q - 1 **PARA** r = 0.05

49

. 1

GRÁFICOS $(\mu/\overline{\mu})^2$ **CONTRA** Q - 1 **PARA** r = 0.1

GRÁFICOS $(\mu/\overline{\mu})^2$ **CONTRA** Q - 1 **PARA** r = 0.2

53

GRÁFICOS $(\mu/\overline{\mu})^2$ **CONTRA** Q - 1 **PARA** r = 0.3

. .

GRÁFICOS $(\mu/\overline{\mu})^2$ **CONTRA** Q - 1 **PARA** r = 0.5

58

s

GRÁFICOS $(\mu/\overline{\mu})^2$ **CONTRA** Q - 1 **PARA** r = 0.75

. .

ł

-

GRÁFICOS $(\mu/\overline{\mu})^2$ **CONTRA** Q - 1 **PARA** r = 0.90

62

-

ANEXO C

MOMENTOS DE FLUENCIA PARA CADA MARCO SEGÚN SU PERIODO

	PARALIN	T=0.1					PARALIN	T=0.2			
acelemorama	Q≓1.5	(3=2	(S=4	0=6	(3 ≃ 8	acelemorama	Q=4.8	(G ⊭2	G=4	Cie6	© ≑8
A 101	16198.00	12148.50	6074.25	4049 50	3037 13	A 101	16302.98	12227.23	6113.62	4075.74	3056.81
A 102	5663.60	4247 70	2123.85	1415.90	1061.93	A102	5764 12	4323.09	2161.55	1441.03	1080.77
A 103	17571.33	13178.50	6589.25	4392.83	3294 63	A 103	17864 66	13398.49	6699.25	4466.16	3349.62
A104	14124.00	10593.00	5296.50	3531.00	2648.25	A104	14190.26	10642.69	5321.35	3547.56	2660.67
A 105	13667.33	10250.50	5125.25	3416.83	2562 63	A 105	13823.15	10367.36	5183.68	3455.79	2591.84
A 106	15819.33	11864 50	5932.25	3954 83	2966.13	A 106	16026.01	12019.51	6009.75	4006.50	3004.88
A 107	10121.33	7591.00	3795 50	2530.33	1897 75	A 107	10250.47	7687 85	3843.92	2562.62	1921.96
A108	15459.33	11594.50	5797.25	3864.83	2898 63	A 108	15620.84	11715.63	5857.82	3905.21	2928.91
A 109	18494 67	13871.00	6935 50	4623.67	3467 75	A 109	18636.60	13977 45	6988 73	4659 15	3494.36
A110	9266.00	6949 50	3474 75	2316.50	1737 38	A110	9472.55	7104 41	3552.21	2368.14	1776.10
A111	10445.33	7834.00	3917.00	2611.33	1958 50	A111	10488 12	7866.09	3933.05	2622.03	1966.52
A112	7694.00	5770.50	2885.25	1923.50	1442.63	A112	7742.80	5807.10	2903.55	1935.70	1451.78
A113	8687.33	6515.50	3257.75	2171.83	1628.88	A113	8731.32	6548.49	3274.24	2182.83	1637.12
							S	-			
	PARA UN	T=0.3					PARA UN	T=0.4			
acelenograma	Q=1.8	0≑2	(3≑4	©≑6	Ö=8	acelenorama	Q=1.6	Q=2	©=4	Q ≓ 6	Q≑8
A101	16535.98	12401.98	6200.99	4133.99	3100.50	A 101	16829.75	12622.31	6311.16	4207,44	3155.58
A102	5956.49	4467.37	2233.69	1489.12	1116.84	A102	6299.29	4724.47	2362.23	1574.82	1181.12
A 103	18412.19	13809.14	6904.57	4603.05	3452.29	A103	19391.93	14543.95	7271.97	4847.98	3635.99
A104	14344.77	10758.57	5379.29	3586.19	2689.64	A104	14537.39	10903.04	5451.52	3634.35	2725.76
A 105	14089.57	10567.17	5283.59	3522.39	2641.79	A 105	14568.43	10926.32	5463.16	3642.11	2731.58
A106	16415.70	12311.77	6155.89	4103.92	3077.94	A 106	17122.48	12841.86	6420.93	4280.62	3210.47
A107	10476.66	7857.50	3928.75	2619.17	1964.37	A107	10870.32	8152.74	4076.37	2717.58	2038.18
A 108	15877.99	11908.50	5954.25	3969.50	2977.12	A108	16363.61	12272.70	6136.35	4090.90	3068.18
A109	18924.15	14193.11	7096.56	4731.04	3548.28	A109	19306.83	14480.12	7240.06	4826.71	3620.03
A110	9861.43	7396.07	3698.03	2465 36	1849.02	A110	10594.18	7945.63	3972.82	2648.54	1986.41
A111	10592.29	7944.22	3972.11	2648.07	1986.05	A111	10745.54	8059.16	4025.58	2686.39	2014,79
A112	7838.68	5879.01	2939.51	1959.67	1469.75	A112	7977.03	5982.77	2991.39	1994.26	1495.69
A113	8788.24	6591.18	3295.59	2197.06	1647.79	A113	8824.92	6618.69	3309.35	2206.23	1654.67
acelemana	PARA UN	T=0.5	C1=4	0ee	m=8	acelemarama	PARA UN	T=0.6	6 =4	Ø≌6	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A 101	17288.84	12966.63	6483.32	4322.21	3241.66	A 101	18035 59	13526.70	6763.35	4508.90	3381.67
A 102	6939.15	5204.36	2602.18	1734 79	1301.09	A102	8751.25	6563.44	3281.72	2187.81	1640.86
A 103	21336.61	16002.46	8001.23	5334.15	4000.61	A 103	26960.55	20220.41	10110.20	6740,14	5055,10
A 104	14680.24	11010.18	5505.09	3670.06	2752.54	A104	14503.23	10877.42	5438.71	3625.81	2719.36
A 105	15532.32	11649.24	5824.62	3883.08	2912.31	A 105	18227.70	13670.77	6835.39	4556.92	3417.69
A 106	18601.94	13951.45	6975.73	4650,48	3487.86	A 106	23017.63	17263.22	8631.61	5754,41	4315.81
A107	11549.21	8661.91	4330.96	2887.30	2165.48	A107	13038.85	9779.14	4889.57	3259.71	2444.78
A 108	17346.11	13009.58	6504,79	4336.53	3252.40	A 108	20951.39	15713.54	7856.77	5237.85	3928.39
A 109	19773.51	14830.13	7415.07	4943.38	3707.53	A 109	20145.79	15109.35	7554.67	5036,45	3777.34
A110	12176.11	9132.08	4566.04	3044.03	2283.02	A110	16769.58	12577.18	6288.59	4192.39	3144.30
A111	11140.84	8355.63	4177.82	2785,21	2088.91	A111	12635.24	9476.43	4738.22	3158.81	2369.11
A112	8096.48	6072.36	3036.18	2024.12	1518.09	A112	9813.68	7360.26	3680.13	2453.42	1840.07
A113	8786.84	6590.13	3295.06	2196.71	1647.53	A113	9501.34	7126.00	3563.00	2375.33	1781.50
											·
112121212100000000000000000000000000000	PARA UN	T=0.7					PARA UN	T=0.8			Long and the second
acelerograma	Q=1.6	Q#2	Q≑4	Q≠6	Q≐8	acelerograma	Q=1.5	Q=2	Q≏4	Q=6	Q\$8
A 101	18584.97	13938.72	6969.36	4646.24	3484.68	A 101	18809.23	14106.92	7053.46	4/02.31	3526.73
A 102	11348.85	8511.64	4255.82	2837.21	2127.91	A 102	7799.21	5849.41	2924.70	1949.80	1462.35
A 103	35/15.06	26786.30	13393.15	8928.77	6696.57	A 103	21744.64	16308.48	8154.24	5436.16	4077.12
A 104	16687.86	12515.90	6257.95	41/1.97	3128.97	A104	18366.39	13//4./9	6887.40	4091.00	3443.70
A 105	20157.02	1511/.//	/558.88	5039.26	3779.44	A 105	17755.21	13316.41	0008.20	4438.80	3329.10
A 106	28698.86	21524.14	10/62.07	/1/4.71	5381.04	A106	19086.77	14315.08	/10/.54	4//1.69	30/8.//
A 107	17398.95	13049.21	6524.61	4349.74	3262.30	A107	9988.49	/491.3/	3/45.68	2497.12	18/2.84
A108	26318.28	19738.71	9869.35	65/9.57	4934.68	A108	181//.12	13632.84	0000 41	4044.28	3406.21
A109	21919.31	10439.48	8219.74	54/9.83	4109.87	A109	22939.76	1/204.82	4905.04	5734.94	4301.20
A110	23503.98	1/6/2.99	8836.49	5891.00	4418.25	A110	13055.75	9/91.81	4890.91	3203.94	2447.90
A111	10821.78	11866.34	0933.17	3955,45	2966.58	A111	14143.64	10607.73	5303.86	3535.91	2001.93
A112	10394.32	12295.74	6147.87	4098.58	3073.93	A112	10998.63	8248.97	4124.49	2749.00	2002.24
I A113	1 13000.40	10249.80	0124.90	3410.00	2002.40	A113	11868.94	8901.71	4400.85	2907.24	2220.43

	PARA UN	T=0.9					PARA UN	T=1.0			
acelerograma	Q=1.5	Q=2	Q=4	Q≐6	Q ≑ 8	acelenograma	Q=1.6	Q⊭2	Q=4	Q≠6	Q=8
A101	20145.43	15109.08	7554.54	5036.36	3777.27	A101	21535.79	16151.85	8075.92	5383.95	4037.96
A 102	6867.34	5150.51	2575.25	1716.84	1287.63	A102	6896.82	5172.62	2586.31	1724.21	1293.15
A 103	17544.64	13158.48	6579.24	4386.16	3289.62	A103	17392.87	13044.65	6522.33	4348.22	3261.16
A 104	19113.15	14334.87	7167.43	4778.29	3583.72	A104	20265.28	15198.96	7599.48	5066.32	3799.74
A 105	16487.83	12365.88	6182.94	4121.96	3091.47	A 105	16512.00	12384.00	6192.00	4128.00	3096.00
A106	16542.51	12406.88	6203.44	4135.63	3101.72	A106	16409.64	12307.23	6153.62	4102.41	3076.81
A107	10937.63	8203.22	4101.61	2734.41	2050.81	A107	11976.46	8982.35	4491.17	2994.12	2245.59
A108	18445.63	13834.23	6917.11	4611.41	3458.56	A 108	18932.56	14199.42	7099.71	4733.14	3549.86
A109	23438.46	17578.84	8789.42	5859.61	4394.71	A 109	24808.97	18606.73	9303.37	6202.24	4651.68
A110	9381.28	7035.96	3517.98	2345.32	1758.99	A110	9169.85	6877.38	3438.69	2292.46	1719.35
A111	14273.46	10705.09	5352.55	3568.36	2676.27	A111	14656.46	10992.35	5496.17	3664.12	2748.09
A112	10669.46	8002.09	4001.05	2667.36	2000.52	A112	11081.59	8311.19	4155.60	2770.40	2077.80
A113	12103.23	9077.42	4538.71	3025.81	2269.36	A113	12746.10	9559.58	4779.79	3186.53	2389.89

	PARA UN	T=1.1					PARA UN	T≈1.2			
acelenograma	Q=1.8	G≓2	Q≌4	Q≑6	QA8	acelenograma	Q≌1.6	Q ∺ 2	Q≓4	Q≑6	Q ≘8
A 101	23277.78	17458.33	8729.17	5819.44	4364.58	A101	25694.63	19270.97	9635.49	6423.66	4817.74
A102	7393.20	5544.90	2772.45	1848.30	1386.22	A102	8315.78	6236.83	3118.42	2078.94	1559.21
A103	18290.68	13718.01	6859.01	4572.67	3429.50	A 103	20173.18	15129.88	7564.94	5043.29	3782.47
A104	21962.39	16471.79	8235.90	5490.60	4117.95	A 104	24484.00	18363.00	9181.50	6121.00	4590.75
A 105	16988.74	12741.55	6370.78	4247.18	3185.39	A 105	17881.95	13411.46	6705.73	4470.49	3352.87
A 106	16920.17	12690.13	6345.06	4230.04	3172.53	A 106	17827.28	13370.46	6685.23	4456.82	3342.62
A 107	13244.29	9933.22	4966.61	3311.07	2483.30	A 107	14859.90	11144.92	5572.46	3714.97	2786.23
A 108	19723.25	14792.44	7396.22	4930.81	3698.11	A108	21391.01	16043:26	8021.63	5347.75	4010.81
A 109	27177.40	20383.05	10191.53	6794.35	5095.76	A 109	30335.68	22751.76	11375.88	7583.92	5687.94
A110	9729.90	7297.42	3648.71	2432.47	1824.36	A110	10680.10	8010.08	4005.04	2670.03	2002.52
A111	15401.47	11551.10	5775.55	3850.37	2887.78	A111	16562.34	12421.76	6210.88	4140.59	3105.44
A112	12044.03	9033.03	4516.51	3011.01	2258.26	A112	13571.57	10178.68	5089.34	3392.89	2544.67
A113	13675,56	10256.67	5128.33	3418.89	2564.17	A113	15118.77	11339.08	5669.54	3779.69	2834.77

	PARA UN	T=1.3					PARA UN	T=1.4			
acelerograma	Q=1.5	Q⊭2	Q≑4	Q=6	Q=8	acelenograma	Q=1.6	Q≓2	Q=4	Q=6	Q≑8
A 101	29531.38	22148.54	11074.27	7382.85	5537.13	A 101	34596.00	25947.00	12973.50	8649.00	6486.75
A102	9569.03	7176.77	3588.38	2392.26	1794.19	A 102	11181.78	8386.33	4193.17	2795.44	2096.58
A 103	22929.28	17196.96	8598.48	5732.32	4299.24	A 103	27690.44	20767.83	10383.92	6922.61	5191.96
A104	28004.31	21003.23	10501.62	7001.08	5250.81	A 104	32588.89	24441.67	12220 83	8147.22	6110.42
A 105	19285.64	14464.23	7232.12	4821.41	3616.06	A 105	21796.22	16347.17	8173.58	5449.06	4086.79
A 106	19781.38	14836.04	7418.02	4945.35	3709.01	A 106	23039.78	17279.83	8639.92	5759.94	4319.96
A107	17227.74	12920.81	6460.40	4306.94	3230.20	A 107	21107.11	15830.33	7915.17	5276.78	3957.58
A 108	24128.26	18096.19	9048.10	6032.06	4524.05	A 108	29928.44	22446.33	11223.17	7482.11	5611.58
A 109	34859.18	26144.38	13072.19	8714.79	6536.10	A 109	42138.44	31603.83	15801.92	10534.61	7900.96
A110	12253.33	9190.00	4595.00	3063.33	2297.50	A110	14980,44	11235.33	5617.67	3745.11	2808.83
A111	18221.03	13665.77	6832.88	4555.26	3416.44	A111	21416.44	16062.33	8031.17	5354,11	4015.58
A112	16537.03	12402.77	6201.38	4134.26	3100.69	A112	21766.00	16324.50	8162.25	5441.50	4081.13
A113	17382.46	13036.85	6518.42	4345.62	3259.21	A113	20472.22	15354.17	7677.08	5118.06	3838.54

	PARA UN	T=1.5					PARA UN	T=1.6			
acelerograma	Q=1.5	Q=2	Q=4	Q≠6	Ø ≑8	acelerograma:	Q≚1.5	©=2	Q=4	Q ≑6 .	Q ≑8
A 101	40047.88	30035.91	15017.96	10011.97	7508.98	A101	45724.97	34293.73	17146.87	11431.24	8573.43
A 102	15103.64	11327.73	5663.87	3775.91	2831.93	A 102	20647.44	15485.58	7742.79	5161.86	3871.39
A 103	34324,79	25743.59	12871.79	8581.20	6435.90	A103	42220,46	31665.35	15832.67	10555.12	7916.34
A 104	39588,80	29691.60	14845.80	9897.20	7422.90	A104	48671.08	36503.31	18251.65	12167.77	9125.83
A 105	24990.05	18742.54	9371.27	6247.51	4685.63	A 105	27913.79	20935.35	10467.67	6978.45	5233.84
A 106	27319.09	20489.32	10244.66	6829.77	5122.33	A 106	31909.69	23932.27	11966.13	7977.42	5983.07
A107	26249,32	19686.99	9843.49	6562.33	4921.75	A 107	31977.33	23983.00	11991.50	7994.33	5995.75
A108	40242.79	30182.09	15091.04	10060.70	7545.52	A 108	52209.38	39157.04	19578.52	13052.35	9789.26
A 109	51313.85	38485.38	19242.69	12828.46	9621.35	A109	60896.00	45672.00	22836.00	15224.00	11418.00
A110	18516.22	13887.17	6943.58	4629.06	3471.79	A110	23742.46	17806.85	8903.42	5935.62	4451.71
A111	26353.97	19765.47	9882.74	6588.49	4941.37	A111	31724.97	23793.73	11896.87	7931.24	5948.43
A112	27504.41	20628.31	10314.15	6876.10	5157.08	A112	33159.28	24869.46	12434.73	8289.82	6217.37
A113	23868.65	17901.49	8950.74	5967.16	4475 37	A113	27424.97	20568 73	10284.37	6856.24	5142.18

	PARA UN	T= 1.7					PARA UN	T=1.8			
acelenograma	Q=1.8	Q=2	Q≠4	Q#6	Ø≑8	acelerograma	Q=1.6	Q∺2	Q=4	Q≑6	Q≑8
A 101	53045.26	39783.95	19891.97	13261.32	9945.99	A101	61288.72	45966.54	22983.27	15322.18	11491.63
A102	25032.05	18774.04	9387.02	6258.01	4693.51	A102	31241.90	23431.42	11711.7	7810.47	5857.86
A 103	54766,56	41074.92	20537.46	13691.64	10268.73	A 103	66599.90	49949.92	24974.96	16649.97	12487.48
A 104	61176.48	45882.36	22941.18	15294.12	11470.59	A 104	74195.38	55646.54	27823.27	18548.85	13911.63
A 105	30660.44	22995.33	11497.67	7665.11	5748.83	A105	35148.56	26361.42	13180.71	8787.14	6590.36
A 106	36917.42	27688.06	13844.03	9229.35	6922.02	A 106	44855.21	33641.41	16820.71	11213.80	8410.35
A 107	39103.01	29327.26	14663.63	9775.75	7331.81	A107	43592.79	32694.59	16347.29	10898.20	8173.65
A 108	65873.38	49405.04	24702.52	16468.35	12351.26	A108	78760.85	59070.64	29535.32	19690.21	14767.66
A 109	73134.70	54851.03	27425.51	18283.68	13712.76	A 109	85174.36	63880.77	31940.38	21293.59	15970.19
A110	28911.09	21683.32	10841.66	7227.77	5420.83	A110	35913.33	26935.00	13467.50	8978.33	6733.75
A111	36763,23	27572.42	13786.21	9190.81	6893.11	A111	41109.73	30832.29	15416.15	10277.43	7708.07
A112	37727.78	28295.83	14147.92	9431.94	7073.96	A112	43052.09	32289.06	16144.53	10763.02	8072.27
A113	32365.54	24274.15	12137.08	8091.38	6068.54	A113	37766.94	28325.21	14162.60	9441.74	7081.30

	PARA UN	T=1.9					PARA UN	T=2.0			
acelerograma.	Q≓1.6	Q=2	Q≑4	Q ⊭6	Q =8	acelenograma	Q ∺1.5	Q=2	G ≓ 4	Q ≑ 6	© ≓8
A 10 1	58278.77	43709.08	21854.54	14569.69	10927.27	A 101	62678.56	47008.92	23504.46	15669.64	11752.23
A 102	29384.21	22038.15	11019.08	7346.05	5509.54	A 102	26255.88	19691.91	9845.96	6563.97	4922.98
A 103	75030.26	56272.69	28136.35	18757.56	14068.17	A103	92296.24	69222.18	34611.09	23074.06	17305.54
A 104	82576.92	61932.69	30966.35	20644.23	15483.17	A 104	66734.50	50050.87	25025.44	16683.62	12512.72
A 105	37477.95	28108.46	14054.23	9369.49	7027.12	A 105	42270.79	31703.09	15851.54	10567.70	7925.77
A 106	55374.15	41530.62	20765.31	13843.54	10382.65	A106	56589.32	42441.99	21220.99	14147.33	10610.50
A107	51873.49	38905.12	19452.56	12968.37	9726.28	A107	60772.27	45579.21	22789.60	15193.07	11394.80
A 108	94248.72	70686.54	35343.27	23562.18	17671.63	A 108	89876.75	67407.56	3370 5.78	22469.19	16851.89
A 109	92886.67	69665.00	34832.50	23221.67	17416.25	A 109	103769.91	77827.44	38913.72	25942.48	19456.86
A110	44280.26	33210.19	16605.10	11070.06	8302.55	A110	47984.75	35988.56	17994.28	11996.19	8997.14
A111	52644.62	39483.46	19741.73	13161.15	9870.87	A111	63013.30	47259.97	23629.99	15753.32	11814.99
A112	52351.79	39263.85	19631.92	13087.95	9815.96	A112	58774.44	44080.83	22040.42	14693.61	11020.21
A113	43424.15	32568.12	16284.06	10856.04	8142.03	A113	52003.30	39002.47	19501.24	13000.82	9750.62

	PARA UN	T=2.1					PARA UN	T=2.2			
acelerograma	Q≍1.5	Q=2	Q ≑ 4	Q≑6	Q ≏8	acelenograma	Q≓1.6	Q#2	G)≌4	Q ≑6	Q≏8
A101	71188.21	53391.15	26695.58	17797.05	13347.79	A 101	65037.54	48778.15	24389.08	16259.38	12194.54
A 102	31757.09	23817.82	11908.91	7939.27	5954.46	A 102	29776.36	22332.27	11166.13	7444.09	5583.07
A 103	95323.76	71492.82	35746.41	23830.94	17873.21	A 103	80930.26	60697.69	30348.85	20232.56	15174.42
A 104	56651.90	42488.92	21244.46	14162.97	10622.23	A104	51393.64	38545.23	19272.62	12848.41	9636.31
A 105	45797.47	34348.10	17174.05	11449.37	8587.03	A 105	52585.03	39438.77	19719.38	13146.26	9859.69
A106	62769.66	47077.24	23538.62	15692.41	11769.31	A106	77796.92	58347.69	29173.85	19449.23	14586.92
A107	49162.32	36871.74	18435.87	12290.58	9217.94	A107	38417.49	28813.12	14406.56	9604.37	7203.28
A 108	79232.48	59424.36	29712.18	19808.12	14856.09	A 108	59614.00	44710.50	22355.25	14903.50	11177.63
A 109	94530,60	70897.95	35448.97	23632.65	17724.49	A 109	70295.38	52721.54	26360.77	17573.85	13180.38
A110	45388.05	34041.04	17020.52	11347.01	8510.26	A110	34541.28	25905.96	12952.98	8635.32	6476.49
A111	59362.44	44521.83	22260.92	14840.61	11130.46	A111	55883.49	41912.62	20956.31	13970.87	10478.15
A112	49570.67	37178.00	18589.00	12392.67	9294.50	A112	35927.44	26945.58	13472.79	8981.86	6736.39
A113	52408.09	39306.06	19653.03	13102.02	9826.52	A113	38240.26	28680.19	14340.10	9560.06	7170.05

	PARA UN	T=2.3					PARA UN	T=2.4			
acelenograma	Q∺1.8	Q=2	Q≑4	Q≐6.	Ģ ≢8	acelerograma	Q=1.6	Q=2	Q≓4	Q≠6	Q≑8
A101	66889.74	50167.31	25083.65	16722.44	12541.83	A101	68478.63	51358.97	25679.49	17119.66	12839.74
A102	21731.61	16298.71	8149.35	5432.90	4074.68	A102	16779.71	12584.78	6292.39	4194.93	3146.20
A 103	62412.31	46809.23	23404.62	15603.08	11702.31	A 103	47852.09	35889.06	17944.53	11963.02	8972.27
A104	49727.76	37295.82	18647.91	12431.94	9323.96	A 104	47161.40	35371.05	17685.53	11790.35	8842.76
A 105	63056.09	47292.06	23646.03	15764.02	11823.02	A 105	65610.58	49207.94	2460	16402.65	12301.98
A 106	85644.62	64233.46	32116.73	21411.15	16058.37	A 106	82170.09	61627.56	30813.78	20542.52	15406.89
A 107	36043.97	27032.97	13516.49	9010.99	6758.24	A 107	37193.20	27894.90	13947.45	9298.30	6973.72
A 108	51024.51	38268.38	19134.19	12756.13	9567.10	A 108	55375.09	41531.32	20765.66	13843.77	10382.83
A 109	51396.27	38547.21	19273.60	12849.07	9636.80	A 109	44999.03	33749.27	16874.63	11249.76	8437.32
A110	32739.56	24554.67	12277.33	8184.89	6138.67	A110	29701.13	22275.85	11137.92	7425.28	5568.96
A111	44012.99	33009.74	16504.87	11003.25	8252.44	A111	44077.15	33057.86	16528.93	11019.29	8264.46
A112	26833.25	20124.94	10062.47	6708.31	5031.23	A112	21216.87	15912.65	7956.33	5304.22	3978.16
A113	31142.56	23356.92	11678.46	7785.64	5839 23	A113	2391923	17939 42	8969.71	5979.81	4484.86

	PARA UN	T=2.5					PARA UN	T=2.6			
acelerograma	Q≍1.5	Q##2	Q≠4	© ≌6	Ģ ≑8.	acelenograma	Q ≑1. &	Q≑2	Q⊨4	Q ⊭6	Ø ≡8
A101	65385.13	49038.85	24519.42	16346.28	12259.71	A101	52351.74	39263.81	19631.90	13087.94	9815.95
A102	13181.54	9886.15	4943.08	3295.38	2471.54	A102	11331.61	8498.71	4249.35	2832.90	2124.68
A 103	37437.03	28077.77	14038.88	9359.26	7019.44	A 103	38487.35	28865.51	14432.76	9621.84	7216.38
A104	41928.10	31446.08	15723.04	10482.03	7861.52	A 104	32678.56	24508.92	12254.46	8169.64	6127.23
A105	63763.59	47822,69	23911.35	15940.90	11955.67	A 105	55902.92	41927.19	20963.60	13975.73	10481.80
A106	70947.69	53210.77	26605.38	17736.92	13302.69	A 106	64875.32	48656.49	24328.24	16218.83	12164.12
A107	33247.13	24935.35	12467.67	8311.78	6233.84	A 107	30833.42	23125.06	11562.53	7708.35	5781,27
A108	55743.03	41807.27	20903.63	13935.76	10451.82	A 108	47679.57	35759.68	17879.84	11919.89	8939.92
A109	37360.51	28020.38	14010.19	9340.13	7005.10	A109	27854.60	20890.95	10445.47	6963.65	5222.74
A110	28854.05	21640.54	10820.27	7213.51	5410.13	A110	27117.23	20337.92	10168.96	6779.31	5084.48
A111	43742.21	32806.65	16403.33	10935.55	8201.66	A111	44840.53	33630.40	16815.20	11210.13	8407.60
A112	15388.46	11541.35	5770.67	3847.12	2885.34	A112	15488.65	11616.49	5808.24	3872.16	2904.12
A113	22251.69	16688.77	8344.38	5562.92	4172.19	A113	22490.36	16867.77	8433.88	5622.59	4216.94

	PARA UN	T=2.7					PARA UN	T=2.8			
aceienograma	Q=1.&	Q=2	Q=4	Q=6	Ø ≠8	acelenograma	Q=1.5	Q=2	Q=4	Q≏6	Q≐8
A 10 1	37835.11	28376.33	14188.17	9458.78	7094.08	A101	29609.69	22207.27	11103.63	7402.42	5551.82
A 102	11737.56	8803.17	4401.58	2934.39	2200.79	A102	11980.26	8985.19	4492.60	2995.06	2246.30
A 103	37097.78	27823.33	13911.67	9274.44	6955.83	A 103	30341.23	22755.92	1137 . 96	_7585.31	5688.98
A 104	27766.22	20824.67	10412.33	6941.56	5206.17	A 104	26293.28	19719.96	9859.98	6573.32	4929.99
A 105	45997.78	34498.33	17249.17	11499.44	8624.58	A 105	38596.00	28947.00	14473.50	9649.00	7236.75
A106	62761.33	47071.00	23535.50	15690.33	11767.75	A 106	55027.33	41270.50	20635.25	13756.83	10317.63
A107	30296.00	22722.00	11361.00	7574.00	5680.50	A 107	25759.95	19319.96	9659.98	6439.99	4829.99
A108	42746.67	32060.00	16030.00	10686.67	8015.00	A108	42044.46	31533.35	15766.67	10511.12	7883.34
A109	25449.11	19086,83	9543.42	6362.28	4771.71	A109	23228.15	17421.12	8710.56	5807.04	4355.28
A110	24313.56	18235.17	9117.58	6078.39	4558.79	A110	22946.00	17209.50	8604.75	5736.50	4302.38
A111	42660.67	31995.50	15997.75	10665.17	7998.88	A111	38606.05	28954.54	14477.27	9651.51	7238.63
A112	14877.78	11158.33	5579.17	3719.44	2789.58	A112	15141.74	11356.31	5678.15	3785.44	2839.08
A113	24757.56	18568.17	9284.08	6189.39	4642.04	A113	25738.62	19303.96	9651.98	6434.65	4825.99

ζ

	PARA UN	T=2.9					PARA UN	T=3.0			
acelerograma	Q=1.6	Q=2	C =4	Q ⇔6	Q=8	acelerograma	Q≌1.5	Q=2	Q=4	Q=6	Q≑8
A101	26335.73	19751.79	9875.90	6583.93	4937.95	A101	24177.08	18132.81	9066.40	6044.27	4533.20
A102	10587.32	7940.49	3970.24	2646.83	1985.12	A 102	8174.12	6130.59	3065.29	2043.53	1532.65
A 103	27597. 68	20698.26	10349.13	6899.42	5174.56	A103	23419.86	17564.90	8782.45	5854.97	4391.22
A104	22183.03	16637.27	8318.63	5545.76	4159.32	A 104	17747.23	13310.42	6655.21	4436.81	3327.61
A105	32411.81	24308.86	12154.43	8102.95	6077.21	A105	27751.18	20813.38	10406.69	6937.79	5203.35
A106	43230.07	32422.55	16211.28	10807.52	8105.64	A 106	35351.16	26513.37	13256.69	8837.79	6628.34
A 107	18127.62	13595.72	6797.86	4531.91	3398.93	A107	17155.86	12866.90	6433.45	4288.97	3216.72
A108	40435.35	30326.51	15163.26	10108.84	7581.63	A 108	37348.07	28011.05	14005 53	9337.02	7002.76
A109	22770.65	17077.99	8538.99	5692.66	4269.50	A109	20359.98	15269.99	7634.99	5090.00	3817.50
A110	23589.64	17692.23	8846.12	5897.41	4423.06	A110	23496.80	17622.60	8811.30	5874.20	4405.65
A111	33325.88	24994.41	12497.21	8331.47	6248.60	A111	27558.79	20669.09	10334.54	6889.70	5167.27
A112	15460.67	11595.50	5797.75	3865.17	2898.88	A112	14258.77	10694.08	5347.04	3564.69	2673.52
A113	24307.76	18230.82	9115.41	6076.94	4557.71	A113	20403.49	15302.62	7651.31	5100.87	3825.65

	PARA UN	T=3.1					PARA UN	T=3.2			
acelenograma	Q≍1.8	Q=2	Q ≓ 4	Q⊭6	Q≑8	acelerograma:	Q=1.5	Q÷2	Q ≑ 4	Q≌6	Q≑8
A101	23117.90	17338.42	8669.21	5779.47	4334.61	A101	20978.99	15734.24	7867,12	5244.75	3933.56
A102	7547.18	5660.38	2830.19	1886.79	1415.10	A102	7108.82	5331.62	2665.81	1777.21	1332.90
A103	20095.08	15071.31	7535.65	5023.77	3767.83	A 103	20119.35	15089.51	7544.76	5029.84	3772.38
A 104	16574.92	12431.19	6215.60	4143.73	3107.80	A104	17556.21	13167.15	6583.58	4389.05	3291.79
A 105	25236.51	18927.38	9463.69	6309.13	4731.85	A 105	23132.39	17349.29	8674.65	5783.10	4337.32
A106	31954.21	23965.65	11982.83	7988.55	5991.41	A 106	28725.68	21544.26	10772.13	7181.42	5386.06
A107	16890.77	12668.08	6334.04	4222.69	3167.02	A 107	16395.54	12296.65	6148.33	4098.88	3074.16
A108	34029.54	25522.15	12761.08	8507.38	6380.54	A108	31221.38	23416.04	11708.02	7805.35	5854.01
A109	17559.74	13169.81	6584.90	4389.94	3292,45	A 109	15556.68	11667.51	5833.76	3889.17	2916.88
A110	22140.97	16605.73	8302.87	5535.24	4151.43	A110	19757.62	14818.22	7409.11	4939.41	3704.55
A111	25193.90	18895.42	9447.71	6298.47	4723.86	A111	23526.39	17644.79	8822.40	5881.60	4411.20
A112	13447.23	10085.42	5042.71	3361.81	2521.36	A112	12191.26	9143.45	4571.72	3047.82	2285.86
A113	15601.33	11701.00	5850.50	3900.33	2925.25	A113	12236.46	9177.35	4588.67	3059.12	2294.34

	PARA UN	T=3.3					PARA UN	T=3.4			
acelerograma	Q≓1.8	Q=2	Q≠4	Q=6	Q≑8	acelenograma	Q¥1.8	Q=2	Q≓4	Q=6	Q ≠8
A 101	18182.99	13637.24	6818.62	4545.75	3409.31	A101	15938.62	11953.96	5976.98	3984.65	2988.49
A 102	6604.67	4953.50	2476.75	1651.17	1238.38	A 102	5688.39	4266.30	2133.15	1422.10	1066.57
A103	19985.61	14989.21	7494.60	4996.40	3747.30	A 103	17794.67	13346.00	6673.00	4448.67	3336.50
A 104	16224.19	12168.14	6084.07	4056.05	3042.04	A 104	13567.13	10175.35	5087.67	3391.78	2543.84
A 105	19352.32	14514.24	7257.12	4838.08	3628.56	A 105	15958.97	11969.23	5984.62	3989.74	2992.31
A 106	25249.21	18936.91	9468.46	6312.30	4734.23	A106	21820.67	16365.50	8182 75	5455.17	4091.38
A 107	15470.19	11602.64	5801.32	3867.55	2900.66	A 107	14870.00	11152.50	5576.25	3717.50	2788.13
A 108	27750.97	20813.23	10406.62	6937.74	5203.31	A 108	24496.87	18372.65	9186.33	6124.22	4593.16
A 109	13060.62	9795.46	4897.73	3265.15	2448.87	A 109	11066.41	8299.81	4149.90	2766.60	2074.95
A110	17454.32	13090.74	6545.37	4363.58	3272.69	A110	16184.41	12138.31	6069.15	4046.10	3034.58
A111	21209.74	15907.31	7953.65	5302.44	3976.83	A111	18474.51	13855.88	6927.94	4618.63	3463.97
A112	10531.64	7898.73	3949.37	2632.91	1974.68	A112	9599.23	7199.42	3599.71	2399.81	1799.86
A113	10860.97	8145.73	4072.87	2715.24	2036.43	A113	10184.97	7638.73	3819.37	2546.24	1909.68

	PARA UN	T=3.5					PARA UN	T=3.6			
acelenograma	Q=18	Ģ ≒2	Q≓4	Q=6.	Q=8	acelerograma	Q¥1.6	Q=2	Q⊨4	Q ≐ 6	Q≑8.
A101	14298.85	10724.14	5362.07	3574.71	2681.04	A101	13058.55	9793.91	4896.96	3264.64	2448.48
A 102	4850.04	3637.53	1818.76	1212.51	909.38	A102	4486.97	3365.23	1682.62	1121.74	841.31
A103	15117.79	11338.35	5669.17	3779.45	2834.59	A103	13038.32	9778.74	4889.37	3259.58	2444.69
A104	12233.61	9175.21	4587.60	3058.40	2293.80	A104	11838.77	8879.08	4439.54	2959.69	2219.77
A 105	15084.85	11313.64	5656.82	3771.21	2828.41	A105	14509.66	10882.24	5441.12	3627.41	2720.56
A106	19197.74	14398.31	7199.15	4799.44	3599.58	A106	17344.12	13008.09	6504.04	4336.03	3252.02
A107	14836.84	11127.63	5563.81	3709.21	2781.91	A107	14170.31	10627.73	5313.87	3542.58	2656.93
A108	22149.73	16612.29	8306.15	5537.43	4153.07	A108	19974.46	14980.85	7490.42	4993.62	3745.21
A 109	10531.74	7898.81	3949.40	2632.94	1974.70	A109	10213.57	7660,18	3830.09	2553.39	1915.04
A110	16221.09	12165.82	6082.91	4055.27	3041.46	A110	17208.44	12906.33	6453.17	4302.11	3226.58
A111	16112.72	12084.54	6042.27	4028.18	3021.13	A111	14525.28	10893.96	5446.98	3631.32	2723.49
A112	8768.55	6576.41	3288.21	2192.14	1644.10	A112	7937.56	5953.17	2976.58	1984.39	1488.29
A113	9832.21	7374.15	3687,08	2458.05	1843.54	A113	8948.27	6711.21	3355.60	2237.07	1677.80

	PARA UN	T=3.7					PARA UN	T=3.8			
acelerograma	Q≌1.8	Q ≑ 2	Q=4	Q=6	Q≑8	acelenograma	Q=1.8	Q=2	Q⇔4	Q ≐ 6	Q≑8
A101	13058,55	9793.91	4896.96	3264.64	2448.48	A101	10501.11	7875.83	3937.92	2625.28	1968.96
A102	4486.97	3365.23	1682.62	1121.74	841.31	A102	4265.16	3198.87	1599.44	1066.29	799.72
A103	13038.32	9778,74	4889.37	3259,58	2444.69	A103	13583.23	10187.42	5093 71	3395.81	2546.86
A104	11838.77	8879.08	4439.54	2959.69	2219.77	A104	9874.92	7406.19	3703.10	2468.73	1851.55
A105	14509.66	10882.24	5441.12	3627.41	2720.56	A105	11397.57	8548.18	4274.09	2849.39	2137.04
A106	17344.12	13008.09	6504.04	4336.03	3252.02	A106	14295.13	10721.35	5360.67	3573.78	2680.34
A107	14170.31	10627.73	5313.87	3542.58	2656.93	A107	11536.63	8652.47	4326.24	2884.16	2163.12
A108	19974.46	14980.85	7490.42	4993.62	3745.21	A108	15961.26	11970.95	5985.47	3990.32	2992.74
A109	10213.57	7660.18	3830.09	2553.39	1915.04	A109	9529.61	7147.21	3573.60	2382.40	1786.80
A110	17208.44	12906.33	6453.17	4302.11	3226.58	A110	18466.74	13850.05	6925.03	4616.68	3462.51
A111	14525.28	10893.96	5446.98	3631.32	2723.49	A111	12322.32	9241.74	4620.87	3080.58	2310.44
A112	7937.56	5953.17	2976.58	1984.39	1488.29	A112	7349.50	5512.13	2756.06	1837.38	1378.03
A113	8948.27	6711.21	3355.60	2237.07	1677.80	A113	6766.43	5074.82	2537.41	1691.61	1268.71

ESTA TESIS NO BEBE Salir de la Biblioteca

.
	PARA UN	T=3.9					PARA UN	T=4.0			
acelerograma	Q≓1.5	Q=2	Q=4	Q≑6	Q≐8	acelerograma	Q¥1.5	Q≐2	Q≐4	Q≐6	Q =8
A101	9437.90	7078.42	3539.21	2359.47	1769.61	A101	7930.67	5948.00	297.1 00	1982.67	1487.00
A102	4047.66	3035.75	1517.87	1011,92	758.94	A102	3623.13	2717.35	1358.68	905.78	679.34
A 103	13145.15	9858.86	4929.43	3286.29	2464.71	A103	11084.67	8313.50	4156.75	2771.17	2078.38
A104	8775.28	6581.46	3290.73	2193.82	1645.37	A 104	8264.67	6198.50	3099.25	2066.17	1549.63
A105	9996.79	7497.59	3748.79	2499.20	1874.40	A 105	9236.67	6927.50	3463.75	2309.17	1731.88
A106	13414.24	10060.68	5030.34	3353.56	2515.17	A106	12716.00	9537.00	4768.50	3179.00	2384.25
A107	10481.59	7861.19	3930.60	2620.40	1965.30	A107	8930.00	6697.50	3348.75	2232.50	1674.38
A108	14331.90	10748.92	5374.46	3582.97	2687.23	A108	12883.33	9662.50	4831.25	3220.83	2415.63
A109	8203.91	6152.94	3076.47	2050.98	1538.23	A109	6719.33	5039.50	2519.75	1679.83	1259.88
A110	18091.09	13568.32	6784.16	4522.77	3392.08	A110	17936.00	13452.00	6726.00	4484.00	3363.00
A111	11294.55	8470.91	4235.46	2823.64	2117.73	A111	9823.33	7367.50	3683.75	2455.83	1841.88
A112	6850.97	5138.23	2569.12	1712.74	1284.56	A112	6265.13	4698.85	2349.43	1566.28	1174.71
A113	7136.14	5352.10	2676.05	1784.03	1338.03	A113	7425.33	5569.00	2784.50	1856.33	1392.25

2.5

•

ANEXO D

2.7

ARCHIVOS DE ENTRADA Y SALIDA DEL PROGRAMA DE ANÁLISIS PASO A PASO DRAIN

A) ARCHIVO DE ENTRADA

START	STO	P	MARCO	DE 1	GDL											
4	4	0	2	1	1	2	0	0		0 1		1 2	1 1	0 1	. 0	0 0
.2467	4E+03															
1	0	.000	0	.000												
2	400	.000	0	.000												
- 3	0	.000	400.	.000												
4	400	.000	400	.000												
1	1	1	1	2	0											
3	0	1	1	4	0											
1	2	3	4													
.3	1.000	00000	0.0000	00000	.00000	0000	0	0	1.00	00						
1	0	4094	0	.040	1.	.000	1.	000	1.0	00		1.000		0.00)0	
4096	0	0	0	A	102											
1.5701	796370	.0000	000000	.0000	00000.	00000	000									
1	D	0	0	0	0	1	0	0	3	0	0	0				
4	2															
2	2	2	0	4	0	0										
1	22135	9.4	0.00	00.	188865	C+03.2	9724E	+044.0	4.0	2.0		(0.0	C).30	0
2	22135	9.4	0.00	00.	188865	E+03.2	9724E	+044.0	4.0	2.0		(0.0	C).30	0
1	1	1574	1.823	1574	.823											
2	1	1574	1.823	1574	.823											
.3	1	1574	1.823	1574	.823											
4	7	1574	1.823	1574	.823											
1	1	3	0	1	0	1	2	0	0	0	0	0.00	0.00)	0 0	0.00
2	2	4	0	2	0	3	4	0	0	0	0	0.00	0.00)	0 0	0.00
2	1	1	0	2	0	0										
1	1.000	000	0	3	.464E+	10 1E	+20	4.0	4.0	2.0		(0.0	C).30	00
1	1	1E+	+10	1E	+10											
2	1	1E+	+10	1E	+10											
1	3	4	0	1	0	1	2	0	0	0	0	0.00	0.00)	0 0	.00
STOP																

B) ARCHIVO DE SALIDA

Archivo de salida en el que se captura el valor de desplazamiento relativo absoluto.

NIVEL	DI	ESPLAZAMIEI	NTOS RELATI	RIGIDEZ	Service States				
	POSITIVO	TIEMPO	NEGATIVO	TIEMPO	ABSOLUTO	POSITIVA	NEGATIVA	ABSOLUTA	DEF. PERM.
1	5.0139	61.56	-9.4709	46.04	9.4709	3.1409	1.6628	1.6628	-0.7016

•

ANEXO E

Ŧ	r=0		r≑0	.05	r=(3.1	r≑0.2		
ı	b _m	Cm	b _m	C _m	ხ _ო	C _m	b _m	¢ _m	
0.1	-7.85E-05	2.64E+06	-1.69E-05	1.28E+06	-1.04E-05	9.85E+05	-9.53E-06	4.87E+05	
0.2	-5.25E+01	1.93E+00	-3.04E-05	8.02E+05	-2.05E-05	5.30E+05	-1.79E-05	2.61E+05	
0.3	-1.19E+01	4.00E+00	-1.47E+00	1.99E+01	-2.08E-05	5.80E+05	-1.52E-05	3.36E+05	
0.4	-5.23E+00	5.53E+00	-1.43E+01	2.49E+00	-7.75E-05	1.80E+05	-1.39E-05	3.82E+05	
0.5	-2.09E+00	8.73E+00	-1.67E+01	1.83E+00	-6.28E+00	2.691 +00	-2.21E-05	2.53E+05	
0.6	-2.97E+00	3.77E+00	-1.10E+01	1.71E+00	-1.57E+01	1.21E+00	-1.80E+00	3.45E+00	
0.7	-4.82E+00	1.42E+00	-8.70E+00	1.18E+00	-1.96E+01	7.11E-01	-7.29E+00	9.23E-01	
0.8	-4.16E-01	1.55E+01	-3.16E+00	3.05E+00	-7.44E+00	1.79E+00	-8.03E+00	1.37E+00	
0.9	-2.07E-05	2.66E+05	-1.05E+00	7.29E+00	-3.28E+00	3.18E+00	-7.74E+00	1.59E+00	
1	-1.91E-05	2.27E+05	-7.23E-02	7.61E+01	-1.44E+00	5.19E+00	-4.57E+00	2.24E+00	
1.1	-1.42E-05	2.22E+05	-2.43E-05	1.60E+05	-6.98E-01	7.52E+00	-2.75E+00	2.79E+00	
1.2	-1.28E-05	1.74E+05	-1.73E-05	1.51E+05	-3.99E-01	8.95E+00	-1.80E+00	3.02E+00	
1.3	-1.21E-05	1.14E+05	-1.58E-05	1.03E+05	-3.37E-01	6.77E+00	-1.41E+00	2.54E+00	
1.4	-1.35E-03	5.27E+02	-4.80E-02	1.75E+01	-3.36E-01	3.69E+00	-1.13E+00	1.83E+00	
1.5	-1.87E-02	9.32E+00	-7.06E-02	3.97E+00	-2.76E-01	1.83E+00	-9.94E-01	1.03E+00	
1.6	3.33E-06	4.55E+04	1.97E-06	5.34E+04	1.68E-07	4.03E+04	-1.23E+00	3.43E-01	
1.7	9.51E-06	4.01E+04	7.18E-06	5.02E+04	4.71E-06	6.37E+04	1.85E-06	7.85E+04	
1.8	1.06E-02	5.08E+01	1.23E-02	4.39E+01	1.23E-05	4.07E+04	5.84E-06	6.83E+04	
1.9	7.64E-02	8.70E+00	5.89E-02	1.13E+01	3.32E-02	1.90E+01	1.49E-05	3.74E+04	
2	5.58E-02	1.28E+01	5.62E-02	1.27E+01	4.54E-02	1.53E+01	2.19E-02	2.94E+01	
2.1	3.48E-02	2.08E+01	3.36E-02	2.17E+01	2.30E-02	3.11E+01	1.56E-02	4.36E+01	
2.2	1.07E-02	6.37E+01	1.32E-02	5.28E+01	1.06E-02	6.45E+01	8.24E-03	7.96E+01	
2.3	4.26E-03	1.51E+02	2.86E-02	2.36E+01	1.89E-02	3.51E+01	7.76E-03	8.19E+01	
2.4	1.11E-01	6.00E+00	1.03E-01	6.68E+00	8.36E-02	8.08E+00	4.44E-02	1.43E+01	
2.5	3.67E-06	1.68E+05	1.46E-01	4.65E+00	1.20E-01	5.555+00	8.73E-02	7.23E+00	
2.6	2.26E-01	2.87E+00	1.76E-01	3.86E+00	1.21E-01	5.43E+00	8.59E-02	7.28E+00	
2.7	1.17E-01	5.26E+00	1.70E-01	3.95E+00	1.37E-01	4.85E+00	8.54E-02	7.32E+00	
2.8	4.35E-02	1.35E+01	1.24E-01	5.37E+00	1.1 <u>9E-01</u>	5.56E+00	8.15E-02	7.65E+00	
2.9	1.71E-01	3.43E+00	2.35E-01	2.89E+00	1.88E-01	3.56E+00	1.46E-01	4.34E+00	
3	1.64E-01	3.16E+00	2.90E-01	2.25E+00	2.46E-01	2.65E+00	2.08E-01	3.01E+00	
3.1	5.41E-02	8.16E+00	2.24E-01	2.76E+00	2.05E-01	3.06E+00	2.07E-01	2.98E+00	
3.2	5.52E-03	7.50E+01	1.55E-01	3.80E+00	1.64E-01	3.71E+00	1.84E-01	3.31E+00	
3.3	7.32E-02	5.46E+00	2.08E-01	2.74E+00	1.70E-01	3.45E+00	1.42E-01	4.07E+00	
3.4	4.27E-01	1.00E+00	3.97E-01	1.44E+00	2.92E-01	1.97E+00	1.77E-01	3.11E+00	
3.5	7.06E-01	6.30E-01	4.48E-01	1.26E+00	3.0 <u>1</u> E-01	1.88E+00	1.91E-01	2.82E+00	
3.6	4.97E-01	8.11E-01	4. <u>59</u> E-01	1.22E+00	3.16E-01	1.77E+00	2.07E-01	2.57E+00	
3.7	5.49E-01	7.63E-01	6.70E-01	8.84E-01	4.21E-01	1.35E+00	2.51E-01	2.13E+00	
3.8	7.04E-01	6.35E-01	7.79E-01	7.71E-01	5.36E-01	1.08E+00	2.81E-01	1.88E+00	
3.9	5.61E-01	7.75E-01	6.57E-01	8.65E-01	5.31E-01	1.07E+00	3.36E-01	1.58E+00	
4	2.85E-01	1.22E+00	5.74E-01	9.18E-01	5.41E-01	1.00E+00	4.01E-01	1.29E+00	

Tabla E.1.a Valores de b_m y c_m de la ecuación 5.5 para valores de r=0, 0.05, 0.1 y 0.2.

•

+	r=().3	r≠(1.5	r≠0	75	r=().9
1	Þm	Cm	b _m	Cm	þ _m	Cm	bm	c _m
0.1	-1.33E-05	1.89E+05	-1.58E-05	6.45E+04	-1.34E-05	2.56E+04	-7.24E-06	1.58E+04
0.2	-1.47E-05	1.76E+05	-1.29E-05	8.21E+04	-8.38E-06	4.14E+04	-6.32E-06	1.86E+04
0.3	-1.17E-05	2.44E+05	-1.01E-05	1.18E+05	-6.99E-06	5.10E+04	-6.37E-06	1.86E+04
0.4	-1.25E-05	2.57E+05	-9.86E-06	1.27E+05	-6.58E-06	6.09E+04	-4.16E-06	3.28E+04
0.5	-1.15E-05	2.63E+05	-9.45E-06	1.57E+05	-7.10E-06	6.27E+04	-5.40E-06	2.68E+04
0.6	-1.60E-01	1.73E+01	-8.99E-06	1.17E+05	-2.65E-03	1.92E+02	-1.93E-02	1.12E+01
0.7	-1.89E+00	1.41E+00	-3.71E-01	1.81E+00	-3.96E-02	1.35E+00	3.34E-02	9.99E-01
0.8	-2.17E+00	2.25E+00	-2.97E-01	4.44E+00	-5.04E-02	6.37E+00	-1.39E-02	5.76E+00
0.9	-3.28E+00	2.09E+00	-3.09E-01	5.84E+00	-4.21E-02	1.08E+01	-8.43E-03	1.62E+01
1	-4.60E+00	1.79E+00	-6.02E-01	3.98E+00	-5.71E-02	9.58E+00	-1.28E-02	1.29E+01
1.1	-5.23E+00	1.57E+00	-1.18E+00	2.60E+00	-1.02E-01	6.53E+00	-1.84E-02	1.04E+01
1.2	-3.52E+00	1.83E+00	-1.96E+00	1.82E+00	-2.08E-01	3.99E+00	-3.31E-02	6.92E+00
1.3	-2.57E+00	1.77E+00	-3.02E+00	1.25E+00	-4.45E-01	2.28E+00	-7.84E-02	3.61E+00
1.4	-2.06E+00	1.40E+00	-4.24E+00	7.99E-01	-8.15E-01	1.31E+00	-1.80E-01	1.82E+00
1.5	-1.77E+00	9.31E-01	-3.95E+00	6.05E-01	-1.44E+00	7.33E-01	-3.23E-01	1.00E+00
1.6	-1.55E+00	5.28E-01	-2.98E+00	4.81E-01	-2.63E+00	4.06E-01	-5.90E-01	5.57E-01
1.7	-7.10E+07	1.67E-05	-7.63E+00	1.58E-01	-6.36E+00	1.86E-01	-1.23E+00	2.98E-01
1.8	3.37E-06	8.21E+04	-3.95E+07	1.82E-05	-1.49E+09	6.095-06	-1.81E+01	5.30E-02
1.9	7.26E-06	6.47E+04	2.55E-06	9.04E+04	4.55E-07	6.30E+04	-8.43E+08	4.62E-06
2	1.38E-05	4.16E+04	4.95E-06	7.85E+04	2.58E-06	7.38E+04	9.80E-07	5.13E+04
2.1	1.64E-05	3.80E+04	6.98E-06	6.84E+04	3.58E-06	7.54E+04	2.83E-06	5.08E+04
2.2	1.67E-05	3.66E+04	7.15E-06	6.73E+04	3.53E-06	7.27E+04	2.52E-06	5.03E+04
2.3	1.92E-05	3.11E+04	7.20E-06	6.54E+04	4.04E-06	6.49E+04	2.08E-06	5.07E+04
2.4	1.14E-02	5.21E+01	9.48E-06	5.03E+04	4.58E-06	6.05E+04	3.10E-06	4.26E+04
2.5	5.74E-02	1.02E+01	1.61E-05	2.87E+04	3.97E-06	6.06E+04	2.78E-06	4.10E+04
2.6	5.60E-02	1.04E+01	1.29E-03	3.63E+02	4.50E-06	5.57E+04	2.15E-06	4.64E+04
2.7	5.24E-02	1.12E+01	6.25E-03	7.76E+01	5.57E-06	5.07E+04	2.73E-06	4.42E+04
2.8	4.48E-02	1.30E+01	9.42E-03	5.20E+01	5.90E-06	5.09E+04	3.52E-06	3.96E+04
2.9	1.04E-01	5.62E+00	5.75E-02	8.47E+00	7.96E-06	3.67E+04	5.00E-06	2.94E+04
3	1.47E-01	3.88E+00	8.59E-02	5.39E+00	2.10E-02	1.29E+01	3.30E-06	3.20E+04
3.1	1.53E-01	3.68E+00	7.64E-02	5.89E+00	2.95E-02	9.39E+00	3.83E-06	2.60E+04
3.2	1.76E-01	3.23E+00	7.41E-02	6.05E+00	3.36E-02	8.66E+00	1.93E-02	7.28E+00
3.3	1.64E-01	3.39E+00	6.14E-02	6.91E+00	2.47E-03	1.04E+02	6.67E-04	1.97E+02
3.4	1.78E-01	2.97E+00	1.03E-01	3.94E+00	8.07E-06	2.63E+04	3.53E-06	2.74E+04
3.5	1.88E-01	2.75E+00	1.39E-01	2.94E+00	2.11E-05	9.56E+03	2.59E-06	3.09E+04
3.6	1.83E-01	2.80E+00	1.17E-01	3.49E+00	3.39E-02	6.54E+00	3.78E-06	2.20E+04
3.7	2.00E-01	2.56E+00	8.65E-02	4.61E+00	4.53E-02	5.33E+00	4.35E-06	2.10E+04
3.8	1.88E-01	2.64E+00	8.43E-02	4.66E+00	5.72E-02	4.4 <u>6</u> E+00	1.33E-02	8.11E+00
3.9	2.12E-01	2.32E+00	8.81E-02	4.44E+00	2.08E-02	1.16E+01	1.72E-02	7.32E+00
4	2.49E-01	1.87E+00	1.05E-01	3.48E+00	9.15E-03	2.23E+01	9.69E-03	1.09E+01

Tabla E.1.b Valores de b_m y c_m de la ecuación 5.5 para valores de r=0.3, 0.5, 0.75 y 0.9.

Figura E.1 Tendencia de los parámetros b y c de la función 4.5

El parámetro a se puede obtener directamente de acuerdo con la expresión 4.8 a partir de los parámetros b y c.

.

Ŧ),C			
	r=0	r×0.05	r=Q.1	r≈0.2	r≠03	r×0.5	r×0.75	₽.0≪
0.1	15	2.2	0.59	0.098	0.0094	0.0042	0.00062	0.0001
0.2	1.8	1.2	0.53	0.12	0.032	0.0061	0.001	0.00043
0.3	1.3	0.84	0.44	0.13	0.044	0.0084	0.0016	0.00079
0.4	0.93	0.6	0.4	0.14	0.055	0.0094	0.0925	0.0013
0.5	0.96	0.57	0.37	0.15	0.061	0.012	0.0038	0.0018
0.6	0.86	0.59	0.44	0.15	0.067	0.016	0.0047	0.0025
0.7	0.77	0.52	0.35	0.16	0.072	0.018	0.006	0.0033
0.8	0.74	0.47	0.41	0.16	0.083	0.023	0.0084	0.0048
0.9	0.67	0.47	0.39	0.18	0.08	0.028	0.013	0.0065
1	0.61	0.49	0.39	0.17	0.091	0.038	0.016	0.0087
1.1	0.6	0.51	0.4	0.17	0.096	0.042	0.021	0.013
1.2	0.6	0.5	0.36	0.17	0.098	0.046	0.028	0.019
1.3	0.56	0.47	0.37	0.19	0.11	0.055	0.033	0.024
1.4	0.48	0.44	0.35	0.2	0.11	0.066	0.039	0.027
1.5	0.48	0.42	0.35	0.2	0.12	0.075	0.047	0.037
1.6	0.47	0.41	0.36	0.2	0.13	0.083	0.06	0.045
1.7	0.51	0.41	0.34	0.22	0.14	0.084	0.06	0.047
1.8	0.49	0.41	0.34	0.22	0.14	0.1	0.064	0.051
1.9	0.46	0.38	0.29	0.22	0.16	0.11	0.077	0.051
2	0.43	0.36	0.3	0.22	0.18	0.13	0.095	0.064
2.1	0.45	0.35	0.29	0.23	0.19	0.13	0.098	0.056
2.2	0.39	0.35	0.29	0.23	0.2	0.13	0.1	0.064
2.3	0.41	0.35	0.29	0.22	0.19	0.13	0.089	0.062
2.4	0.42	0.36	0.3	0.24	0.18	0.12	0.088	0.062
2.5	0.41	0.38	0.29	0.24	0.18	0.11	0.091	0.056
2.6	0.46	0.38	0.27	0.25	0.14	0.11	0.088	0.057
2.7	0.45	0.38	0.27	0.25	0.14	0.096	0.075	0.049
2.8	0.47	0.38	0.28	0.24	0.13	0.098	0.074	0.038
2.9	0.46	0.37	0.28	0.23	0.12	0.091	0.06	0.032
3	0.47	0.34	0.29	0.23	0.095	0.08	0.053	0.026
3.1	0.51	0.32	0.29	0.22	01	0.077	0.05	0.023
3.2	0.5	0.33	0.29	0.22	0.088	0.064	0.041	0.019
3.3	0.55	0.38	0.28	02	0.096	0.06	0.041	0.012
3.4	0.55	0.38	0.3	0.19	0.089	0.057	0.032	0.0076
3.5	0.56	0.37	0.29	0.19	0.086	0.052	0.022	0.0055
3.6	0.6	0.36	0.28	0.18	0.083	0.047	0.010	0.0052
3.7	0.5	0.36	0.28	0.18	0.084	0.032	0.014	0.0033
3.8	0.62	0.4	0.28	0.17	0.083	0.027	0.0091	0.0027
3.9	0.62	0.41	0.28	0.16	0.068	0.025	0.0046	0.002
4	0.62	0.42	0.28	0.16	0.063	0.02	0.004	0.002

Tabla E.2 Resumen de los valores de b y c de la ecuación 4.5

BIBLIOGRAFÍA

1. Chopra, A. y Goel, R. K. (2002), "A modal pushover analysis procedure for estimating seismic demands for buildings", Earthquake Engineering and Structural Dynamics, Vol 31, pp.561-582.

2. Normas Técnicas Complementarias para Diseño por Sismo, (1995), Gaceta oficial del DF, Departamento del Distrito Federal, 27 de Febrero.

3. Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Concreto, (1996), Gaceta oficial del DF, Departamento del Distrito Federal, 25 de Marzo.

4. Díaz López, O. (1991), "Recopilación de Información Sobre Modelos para Representar el Comportamiento de Elementos Estructurales", Informe de investigación elaborado para CONACYT, No. 9706, Instituto de Ingeniería, UNAM, Septiembre.

5. Grigoriu, M., Ruiz, S.E. y Rosenblueth, E. (1988), "Nonstationary Models of Seismic Ground Acceleratiom", Earthquake Spectra, Vol 4, Number 3, pp 551-568.

6. Esteva, L. et al. (2001), "Criterios y Procedimientos para Diseño Sísmico Basado en Metas de Confiabilidad y Desempeño", Informe interno No. 31181U, Instituto de Ingeniería. UNAM, Enero.

7. Alamilla, J. (1997), "Simulación de Registros en el Valle de México Mediante Procesos Estocásticos Modulados en Amplitud y Frecuencia", Tesis de Maestría, DEPFI-UNAM.

8. Iwan, W. D. (1980), "Estimating Inelastic Response Spectra from Elastic Spectra", Earthquake Engineering and Structural Dynamics, Vol.8, pp.375-388.

9. Jacobsen, L. S. (1930), "Steady Force Vibrations as Influenced by Damping", Transactions ASME, APM, Vol. 52, pp.169-181.

9. Fernández, M. (2003), "Estimación de la Respuesta Sísmica Estructural Utilizando Sistemas Lineales Equivalentes de Múltiples Grados de Libertad", Tesis maestría, DEPFI-UNAM.

10. Miranda, E. y Ruiz-García, J. (2002), "Evaluation of Approximate Methods to Estimate Maximum Inelastic Displacements Demands", Earthquake Engineering and Structural Dynamics, Vol 31, pp.539-560.

11. Newmark, N. y Rosenblueth, E. (1971), "Earthquake Engineering and Structural Dynamics", Prentice Hall: Englewood Cliffs, NJ, pp.321-364.

12. Powell, G. (1973), "DRAIN-2D, User's Guide", Earthquake Engineering Research Center, University of California, Berkeley.

13. Prakash, V. Powell, G. y Campbell, S. (1993), "DRAIN-2DX, Base Program Description and User Guide, version 1.10", Earthquake Engineering Research Center, University of California, Berkeley, Report No. UCB/SEMM-93/17, Noviembre.

14. William, H. (1989), "Numerical Recipes 1.Numerical analysis. Applications of Computer Systems. Programming languages: Fortran language", Press Syndicate of the University of Cambridge, Chapter 10, pp.274-326.