00582

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS QUÍMICAS

TEMA DE TESIS

Síntesis y caracterización de cúmulos carbonílicos heteronucleares de osmio-estaño

> TESIS PARA OPTAR POR EL GRADO DE

DOCTOR EN CIENCIAS

PRESENTA

M. en C. José Luis Gárate Morales

TUTOR: Dr. Juan Manuel Fernández González

AÑO: Abril 2005

M343189

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

OF.CPCQ.051/05

BIÓL. FRANCISCO INCERA UGALDE Jefe de la Unidad de Administración del Posgrado P r e s e n t e

Me es grato informarle que el alumno JOSÉ LUIS GÁRATE MORALES, con número de cuenta 501058119, presentará su examen para optar por el grado de Doctor en Ciencias, quien defenderá el proyecto de investigación titulado: "Síntesis y caracterización de cúmulos carbonílicos heteronucleares de osmio-estaño", ante el siguiente jurado:

Presidente	Dr. Hugo Torrens Miquel
Primer vocal	Dra. Ángeles Paz Sandoval
Segundo vocal	Dra. María de Jesús Rosales Hoz
Tercer vocal	Dr. Armando Cabrera Ortiz
Secretario	Dr. Noe Zúñiga Villarreal
Primer suplente	Dra. Erika Martin Arrieta
Segundo suplente	Dr. Ronan Le Lagadec

Facultad de Química, UNAM CINVESTAV CINVESTAV Instituto de Química, UNAM Instituto de Química, UNAM Facultad de Química, UNAM Instituto de Química, UNAM

Nota: Se recuerda a los miembros del jurado que el plazo máximo para revisión de la tesis es de 30 días naturales a partir de la recepción de la misma

Sin otro particular de momento, aprovecho la ocasión para enviarle un cordial saludo.

"POR MI RAZA HABLARÁ EL ESPÍRITU" Cd. Universitaria, D.F. a 07 de febrero de 2005. A t e n t a m e n t e.

DR. MIGUEL COSTAS BASÍN Coordinador del Programa

c.c.p. Integrantes del Jurado Alumno Expediente Sección Escolar de la Coordinación de Posgrados, Facultad de Química Jurado asignado:

Presidente	Dr. Hugo Torrens Miquel
Primer Vocal	Dra. Ángeles Paz Sandoval
Segundo Vocal	Dra. María de Jesús Rosales Hoz
Tercer Vocal	Dr. Armando Cabrera Ortiz
Secretario	Dr. Noé Zúñiga Villarreal
Primer Suplente	Dra. Erika Martin Arrieta
Segundo Suplente	Dr. Ronan Le Lagadec

El presente trabajo se realizó en el laboratorio de Inorgánica 5, del Instituto de Química de la Universidad Nacional Autónoma de México, bajo la dirección del **Dr. Juan Manuel Fernández González**. Financiado a través del proyecto CONACYT 41487Q.

Sustentante

M. en C. Jose Luis Gárate Morales

Dr. Juan Manuel Fernández González

Asesor

Parte de este trabajo fue publicado en:

Gárate-Morales J. L., and Fernández-G J. M. Reactivity of [(μ-H)₂OS₃(CO)₁₀] WITH AMINOTRIBUTIYLSTANNANE AND AMINOTRIMETHYLSTANNANE DERIVATIVES Organometallics, 2004, 23, 3840-3846.

AGRADECIMIENTOS

Al Dr. Juan Manuel Fernández González por su invaluable apoyo y la confianza que me otorgó en la realización de este trabajo.

Al Comité tutorial:

Dra. Maria de Jesús Rosales Hoz y Dr. Noe Zúñiga Villarreal por compartir conmigo sus conocimientos y experiencia.

Al Instituto de Química de la UNAM, por las facilidades otorgadas para la elaboración del presente trabajo. En particular a los técnicos académicos: Dr. Alfredo Toscano (rayos X); M. en C. Simón Hernández Ortega (rayos X); M. en C. Javier Pérez (masas IE); Ing. Luis Velasco (masas FAB) y Q. I. Erendira García (IR).

Agradezco el apoyo financiero otorgado por la dirección general de estudios de posgrado de la UNAM (DGEP), el Consejo Nacional de Ciencia y Tecnología (CONACYT) y el programa de apoyo para estudios de posgrado (PAEP).

Abreviaturas y símbolos

R'NH	Amina secundaria (dimetilamina, pirrolidina, piper	idina, morfolina y
	tiomorfolina)	
<i>n</i> -Bu	n-Butilo	
Me	Metilo	
Ph	Fenilo	
IR	Infrarrojo	
Intensida	es en infrarrojo:	
(1) muy fuerte	
(1	fuerte	
(1	media	
(0	débil	
RMN	Resonancia magnética nuclear	
ppm	Partes por millón	
J	Constante de acoplamiento	
δ	Desplazamiento químico	
Hz	Hertz	
FAB	Bombardeo rápido de átomos	
m/z	Relación masa sobre carga	
HETCO	Espectro de correlación heteronuclear	
PM	Peso molecular	
p. f. ·	Punto de fusión	
1	Decacarbonil-(µ-hidruro)(dimetilamino)(tri-n-butilestanil)tr	iosmio
2	Decacarbonil-(µ-hidruro)(pirrolidina)(tri-n-butilestanil)trios	smio
2a	Decacarbonil-(µ-hidruro)(3, 4-dihidro-2Hpirrol)(tri-n-butilestanil)triosmio	
3	Decacarbonil-(µ-hidruro)(piperidina)(tri-n-butilestanil)trios	mio
4	Decacarbonil-(µ-hidruro)(morfolina)(tri-n-butilestanil)triosi	mio

- 5 Decacarbonil-(µ-hidruro)(tiomorfolina)(tri-*n*-butilestanil)triosmio
- 6 Decacarbonil-(μ-hidruro)(dimetilamino)(trimetilestanil)triosmio

v

-

7	Decacarbonil-(µ-hidruro)(pirrolidina)(trimetilestanil)triosmio
8	Decacarbonil-(µ-hidruro)(piperidina)(trimetilestanil)triosmio
9	Decacarbonil-(µ-hidruro)(morfolina)(trimetilestanil)triosmio
10	Decacarbonil-(µ-hidruro)(tiomorfolina)(trimetilestanil)triosmio
11	Undecacarbonil-(µ-hidruro)(trimetilestanil)triosmio
12	Decacarbonil-(µ-hidruro)(dimetilfenilfosfina)(trimetilestanil)triosmio
13	Decacarbonil-(µ-hidruro)bis(dimetilfenilfosfina)(trimetilestanil)triosmic
14	Decacarbonil-(µ-hidruro)tris(dimetilfenilfosfina)(trimetilestanil)triosmic
15	Decacarbonil-(μ -hidruro)(μ - η^2 -difenileteno)triosmio

vi

Índice General

		Pág.
Resumen		1
Abstract		2
Introducción		3
Objetivos		6

Capítulo 1.

Reactividad del dihidruro de decacarboniltriosmio hacia aminotrialquilestananos.

ecedentes	7
Cúmulos carbonílicos trinucleares $[M_3(CO)_{12}]$ (M = Fe, Ru y Os)	7
Reactividad del dihidruro de decacarboniltriosmio con ligantes neutros y aniónicos	8
Reactividad de cúmulos carbonílicos con elementos del grupo 14	10
Reactividad de cúmulos carbonílicos con aminas secundarias	15
	ecedentes Cúmulos carbonílicos trinucleares [M ₃ (CO) ₁₂] (M = Fe, Ru y Os) Reactividad del dihidruro de decacarboniltriosmio con ligantes neutros y aniónicos Reactividad de cúmulos carbonílicos con elementos del grupo 14 Reactividad de cúmulos carbonílicos con aminas secundarias

Discusión de resultados

piperidina y morfolina)

1.5 Síntesis y caracterización de los aminotrialquilestananos, R'NSnR₃ (R = Me, nBuy Ph y R'NH = dimetilamina, pirrolidina, piperidina, morfolina y tiomorfolina) 17 Reactividad decacarboniltriosmio 1.6 del dihidruro de con los aminotrialquilestananos, R'NSnR3 21 1.7 Análisis espectroscópico (IR, RMN ¹H, ¹³C, ¹¹⁹Sn y masas (FAB⁺) de los decacarbonil-(µ-hidruro)(amina)(trialquilestanil)triosmio, compuestos de $[HOs_3(CO)_{10}(R'NH)(SnR_3)]$. (R = Me y nBu y R'NH = dimetilamina, pirrolidina, 24 piperidina, morfolina y tiomorfolina) 1.8 Mecanismo propuesto formación de los compuestos para la [HOs₃(CO)₁₀(R'NH)(SnR₃)] 39 1.9 Análisis por difracción de rayos X en monocristal para los compuestos $[HOs_3(CO)_{10}(R'NH)(SnR_3)]$. (R = Me y/o nBu y R'NH = dimetilamina, pirrolidina,

Capítulo 2.

Análisis de la reactividad del

decacarbonil-(µ-hidruro)(piperidina)(trimetilestanil)triosmio (8)

Antecedentes

.

Reactividad		54
	Reactividad	Reactividad

Discusión de resultados

	55
2.2 Termolisis dei decacarbonii-(µ-hidruro)(piperidina)(trimetilestanii)triosmio	55
2.3 Reactividad del decacarbonil-(µ-hidruro)(piperidina)(trimetilestanil)triosmio con monóxido de carbono	57
2.4 Reactividad del decacarbonil-(µ-hidruro)(piperidina)(trimetilestanil)triosmio con dimetilfenilfosfina	60
2.5 Reactividad de Decacarbonil-(µ-hidruro)(piperidina)(trimetilestanil)triosmio con	74
difenilacetileno	
Conclusiones	76
Sección Experimental	78
Referencias	90
Lista de esquemas, figuras y tablas	98
Apéndice 1. Información cristalográfica	101
Apéndice 2. Espectros seleccionados de algunos compuestos	117
Apéndice 3. Artículo: Reactivity of $[(\mu-H)_2OS_3(CO)_{10}]$ WITH AMINOTRIBUTIYLSTANNANE AND AMINOTRIMETHYLSTANNANE DERIVATIVES	135

Resumen

La reacción del dihidruro de decacarboniltriosmio con aminotrialquilestananos, en una solución de éter etílico-hexano conduce a la formación de cúmulos heterometálicos de fórmula general $[(\mu-H)Os_3(CO)_{10}(R'NH)(SnR_3)]$ 1 - 10, {R'NH = dimetilamina (1, 6), pirrolidina (2, 7), piperidina (3, 8), morfolina (4, 9), tiomorfolina (5, 10), donde R = n-Bu (1 - 5) y Me (6 - 10)} como productos mayoritarios. De la reacción de (pirrolidil)tributilestanano y el cúmulo de osmio fue posible aislar y caracterizar el subproducto [(µ-H)Os₃(CO)₁₀(N=CHCH₂CH₂CH₂)(SnBu₃)] 2a con un rendimiento menor al 6%. En los compuestos 3, 6, 7, 8 y 9 la amina secundaria ocupa un sitio de coordinación, axial al plano formado por el triángulo de osmio, esta posición se logra estabilizar a través de un puente de hidrógeno intramolecular entre el grupo N-H y un carbonilo axial del cúmulo metálico. El grupo trialquilestanilo (SnBu₃ o SnMe₃) ocupa una posición ecuatorial en el cúmulo carbonílico lo cual es una característica común que presentan los sustituyentes voluminosos. Los compuestos 2a, 3, 5 - 9 se observa el denominado "efecto sombrilla". Todos los compuestos 1 - 10 y 2a se caracterizaron por IR, espectrometría de masa (FAB⁺) y RMN de ¹H, ¹³C y ¹¹⁹Sn. Por difracción de rayos x en monocristal, se estudiaron 3, 6, 7, 8, 9 y 2a, del compuesto 8 se obtuvieron también monocristales de un solvato 8. CHCl3.

Después de analizar y observar que las características de los compuestos obtenidos 1 - 10 fueron similares, se decidió analizar la reactividad del cúmulo carbonílico [(µ-H)Os₃(CO)₁₀(HNCH₂CH₂CH₂CH₂CH₂)(SnR₃)] 8 frente a monóxido de carbono, dimetilfenilfosfina y difenilacetileno de este análisis se obtuvieron y $[(\mu-H)Os_3(CO)_{11}(SnMe_3)]$ caracterizaron los siguientes cúmulos: 11 У [(µ-H)Os₃(CO)₁₀(PMe₂Ph)(SnMe₃)] 12 que son los productos de la sustitución de la piperidina del cúmulo 8, por monóxido de carbono y dimetilfenilfosfina respectivamente. El cúmulo [(µ-H)Os₃(CO)₉(PMe₂Ph)₂(SnMe₃)] 13 se obtienen de la sustitución de piperidina y de un grupo CO en el cúmulo 8 por dos grupos dimetilfenilfosfina. La conduce al cúmulo incorporación de dimetilfenilfosfina tres grupos [Os₃(CO)₁₀(PMe₂Ph)₃] 14 en un proceso de sustitución de la piperidina, un grupo CO y el grupo estanilo del cúmulo 8. Por último, de la reacción de 8 con difenilacetileno se obtuvo el compuesto $[(\mu-H)Os_3(CO)_{10})(\mu-\eta^2-PhCH=CPh)]$ 15

Abstract

The reaction of aminotributylstannane or aminotrimethylstannane derivatives with the dihydride of decacarbonyltriosmium in ether-hexane solution at room temperature affords the heterometallic clusters $[(\mu-H)Os_3(CO)_{10}(R'NH)(SnR_3)]$ (1–10), {R'NH = dimethylamine (1, 6), pyrrolidine (2, 7), piperidine (3, 8), morpholine (4, 9), tiomorpholine (5, 10) and R = n-Bu (1 – 5) and Me (6 – 10)} and the α -carbon-hydrogen bond activation of the secondary amine $[(\mu-H)Os_3(CO)_{10}(N=CHCH_2CH_2)(SnBu_3)]$ (2a) in low yield. In all the compounds the secondary amine ligand occupies a weak axial coordination site on the osmium triangle, eventually stabilized through the formation of intramolecular hydrogen-bonding interaction between the N-H and the axial carbonyl ligands. The stannyl ligand (SnBu₃ or SnMe₃) occupies an equatorial position on the osmium triangle, as expected for a bulky substituent. The metal carbonyl angles open out and the Os-C-O axes deviate from linearity so as to bring the carbonyl moieties closer to the tin atom in an "umbrella effect" for 3, 6, 7, 8, 9 and 2a. We were not able to grow single crystals for the compounds 1, 2, 4. 5, 10. However, the spectroscopic information (¹H-, ¹³C- and ¹¹⁹Sn NMR) is similar for compounds **1-10** and **2a**. Thus, it is assumed that they should present similar interactions in the triosmium cluster. The compounds were characterized by IR, ¹H, ¹³C and ¹¹⁹Sn NMR, mass spectra and elemental analysis. Solidstate structures of 3, 6, 7, 8, 8 CHCl₃, 9 and 2a were established by single crystal X-ray diffraction analyses.

The reactivity of $[(\mu-H)Os_3(CO)_{10}(HNCH_2CH_2CH_2CH_2CH_2)(SnR_3)]$ 8 towards carbon monoxide, dimethylphenylphosphine, and diphenylacetilene generate:

[(μ -H)Os₃(CO)₁₁(SnMe₃)] **11** y [(μ -H)Os₃(CO)₁₀(PMe₂Ph)(SnMe₃)] **12** as products of the substitution of the piperidine in the compound **8** for carbon monoxide and dimethylphenylphosphine respectively. The cluster [(μ -H)Os₃(CO)₉(PMe₂Ph)₂(SnMe₃)] **13** was the product of elimination the piperidine and one CO group in the cluster **8** by two dimethylphenylphosphine. The cluster [Os₃(CO)₁₀(PMe₂Ph)₃] **14** was obtained by the incorporation of three dimethyphenylphosphine in the substitution process. Finally, the cluster [(μ -H)Os₃(CO)₁₀()(μ - η ²-PhCH=CPh)] **15** was the product the reaction of **8** with diphenylacetilene.

Introducción.

Durante los últimos años la información acerca de la síntesis, caracterización y análisis de la reactividad de cúmulos heteronucleares con metales de transición ha estado en continuo desarrollo; en este aspecto se han descrito ejemplos sobre la incorporación de diferentes metales en la estructura del cúmulo, al igual que las modificaciones que presentan los compuestos orgánicos coordinados al cúmulo metálico, los que usualmente suelen presentar modos de coordinación poco comunes.¹

Se han sintetizado varios sistemas heteronucleares con metales de transición, ya que la presencia de dos o más metales diferentes en el mismo compuesto, abre nuevas posibilidades en la catálisis, debido a las características intrínsecas de los átomos que forman el enlace M-M'.² Aunque la mayor parte del trabajo publicado ha estado concentrado en desarrollar métodos de síntesis y el análisis de las propiedades de los compuestos obtenidos por la combinación de metales de transición, el uso de elementos del grupo 14 para generar compuestos heteronucleares también ha estado en contínuo desarrollo.³ Esto principalmente debido a que la presencia del átomo de estaño en superficies metálicas incrementa la selectividad de una gran variedad de transformaciones químicas. Por ejemplo, la presencia de estaño en la superficie del catalizador de rodio Rh/SiO₂ (Rh_s) aumenta la selectividad en la hidrogenación de aldehídos α , β -insaturados,^{4a} de igual forma la presencia de estaño en la superficie de níquel en el catalizador de Ni/SiO₂ (Ni_s) incrementa la selectividad en la reacción de isomerización del monoterpeno 3-careno al 2-careno.⁴

De aquí surge el interés en diseñar compuestos con estructuras bien definidas que permitan obtener información acerca de la relación estructura-reactividad que es un punto importante en la catálisis.^{4a}

De los cúmulos carbonílicos del grupo 8, son los de rutenio los que han sido usados principalmente para desarrollar procesos catalíticos,⁵ aunque los cúmulos de osmio han mostrado ser útiles al modelar estos procesos, por ejemplo la HDS

(hidrodesulfuración) y la HDN (hidrodenitrogenación), ya que contribuyen con información acerca de los factores que están involucrados en las diferentes etapas o estados de activación de moléculas orgánicas sobre el cúmulo metálico.⁶

Los métodos para incorporar elementos del grupo 14 a cúmulos metálicos se pueden agrupar de la siguiente forma:

a) La adición de especies R_2E (R = grupo orgánico y E = Ge o Sn) a los cúmulos $[M_3(CO)_{12}]$, $[M_3(CO)_{10}(MeCN)_2]$ (M = Ru, Os) o al $[(\mu-H)_2Os_3(CO)_{10}]$ llevada a cabo en condiciones de reacción suaves y con rendimientos altos.^{3b, 7}

b) La reacción de desplazamiento de ligantes lábiles, en los cúmulos $[M_3(CO)_{10}(MeCN)_2]$ y $[M_3(CO)_{11}(MeCN)]$ (M = Ru, Os) promovida por organoestananos y organogermanos.⁸

c) Y por último, la adición oxidante con hidruros del grupo 14, HER₃ (R = *n*Bu, Et y Ph y E = Si, Ge y Sn).⁹ al cúmulo insaturado [(μ -H)₂Os₃(CO)₁₀].

Los tres métodos son útiles para incorporar silicio, germanio, estaño o incluso plomo a la estructura del cúmulo metálico.

La reacción de aminoestananos ha sido documentada para derivados mononucleares, y de igual forma que los hidruros del grupo 14, estos reaccionan fácilmente con hidruros metálicos para generar el enlace metal – metal y liberar la amina durante la reacción.¹⁰ Sin embargo, la reacción con más de un centro metálico y aminoestananos no se encuentra documentada aun cuando la presencia de varios centros metálicos proveen la posibilidad de que la amina encuentre un sitio de coordinación disponible en el cúmulo metálico, como sucede en la reacción de sustitución o adición oxidante de los cúmulos $[Os_3(CO)_{10}(MeCN)_2]$, $[Os_3(CO)_{11}(MeCN)]$ y $[(\mu-H)_2Os_3(CO)_{10}]$ con los hidruros del grupo 14 donde el hidruro y el grupo trialquilestanilo se incorporan a la estructura del cúmulo de osmio, por ejemplo $[(\mu-H)Os_3(CO)_{11}(SnPh_3)]$, $[(\mu-H)Os_3(CO)_{10}(MeCN)(SnPh_3)]^8$ y $[(\mu-H)_3Os_3(CO)_{10}(ER_3)]$ (R = *n*Bu, Et y Ph y E = Si, Ge y Sn).^{9a}

El interés en la química de cúmulos metálicos con aminas coordinadas proviene de la comparación de la reactividad de las moléculas que contienen nitrógeno sobre una superficie metálica, ya que se ha propuesto que son los átomos de nitrógeno adsorbidos sobre la superficie los intermediarios claves de varios procesos industriales; como el proceso Haber y la oxidación de amoniaco.¹¹ La reactividad de aminas alifáticas hacia cúmulos carbonílicos ha generado una amplia diversidad de compuestos con ligantes coordinados por el átomo de nitrógeno por ejemplo: M-amino, M-imina, M-amida y M-nitruro.^{11, 12} Sin embargo, son pocos los compuestos en los que un grupo organoestanilo y un grupo amino están unidos en el mismo cúmulo metálico.¹³

De acuerdo con lo anterior, el principal interés de este trabajo fue el análisis de la reacción entre aminotrialquilestananos y el cúmulo insaturado de triosmio $[(\mu-H)_2Os_3(CO)_{10}]$ debido a la posibilidad de que la amina secundaria y el grupo organostanilo permanecieran unidos en la estructura del cúmulo de triosmio en el producto de reacción. La primera parte del trabajo describe la reactividad de una serie de aminotrialquilestananos con el dihidruro de decacarbonilo de triosmio en donde se determinó y caracterizó el producto favorecido de esta reacción. El análisis estructural de estos compuestos fue desarrollado por RMN heteronuclear e infrarrojo para todos los compuestos y por difracción de rayos X, en monocristal para los compuestos **3**, **6**, **7**, **8**, **9** y **2a**.

En la segunda parte del trabajo se analiza la reactividad del cúmulo carbonílico $[(\mu-H)Os_3(CO)_{10}(HNCH_2CH_2CH_2CH_2CH_2)(SnMe_3)]$ 8 hacia donadores de electrones como el monóxido de carbono, la dimetilfenilfosfina y el difenilacetileno. Los productos obtenidos 11 – 15 fueron caracterizados por IR, RMN y espectrometría de masas. Las estructuras de los compuestos 12, 13 y 14 se determinaron por difracción de rayos X, en monocristal.

Objetivos.

Objetivo General.

El principal interés en la reacción entre $[(\mu-H)_2Os_3(CO)_{10}]$ y aminotrialquilestananos emerge de la idea de que esta reacción puede producir una serie de nuevos derivados donde el grupo amino y el trialquilestanilo se incorporen a la estructura del cúmulo carbonílico. Esto nos permitiría analizar las características estructurales y de reactividad del cúmulo carbonílico de osmio-estaño frente a moléculas pequeñas.

Objetivos Particulares.

Reactividad del dihidruro de decacarboniltriosmio con aminoestananos

- Analizar la reactividad del [(μ-H)₂Os₃(CO)₁₀] hacia aminotrialquilestananos R'NSnR₃ (R = *n*Bu, Me y Ph, R'NH = dimetilamina, pirrolidina, piperidina, morfolina y tiomorfolina)
- Determinar si los efectos electrónicos y/o estéricos en el aminotrialquilestanano favorecen la formación de algún producto en particular al reaccionar con el cúmulo metálico.

Reactividad del decacarbonil-(µ-hidruro)(piperidina)(trimetilestanil)triosmio 8

- 3. Analizar la reacción de termólisis del cúmulo carbonílico 8
- Analizar la reactividad de 8 en presencia del monóxido de carbono, la dimetilfenilfosfina y el difenilacetileno.

Capítulo 1. Reactividad del dihidruro de decacarboniltriosmio hacia aminotrialquilestananos

Antecedentes

I. I Cúmulos carbonílicos trinucleares $[M_3(CO)_{12}]$ (M = Fe, Ru y Os)

La química derivada del cúmulo trinuclear $[M_3(CO)_{12}]$ (donde M = Fe, Ru, Os), especialmente donde M = Os y Ru ha sido particularmente bien documentada. Es bien conocido que la estabilidad de los enlaces M - M y M – CO se incrementa conforme se va descendiendo en el grupo 8, si bien es claro que no es posible discutir la estabilidad del cúmulo solamente en términos de la interacción M – M, se ha observado que la descomposición térmica al vacío del cúmulo $[Os_3(CO)_{12}]$ produce cúmulos carbonílicos de alta nuclearidad entre ellos $[Os_5(CO)_{16}]$, $[Os_5(CO)_{15}C]$, $[Os_6(CO)_{18}]$, $[Os_7(CO)_{21}]$, $[Os_8(CO)_{23}]$ y $[Os_8(CO)_{21}C]$ mientras que la termólisis del $[Fe_3(CO)_{12}]$ produce la fragmentación de los enlaces M –M para producir hierro metálico y $[Fe(CO)_{5}]$.¹⁴

Los cúmulos trinucleares de rutenio son más reactivos que los cúmulos trinucleares de osmio, esta característica hace que no se puedan transferir directamente los métodos sintéticos de un metal a otro; por ejemplo, el cúmulo $[(\mu-H)_2Ru_3(CO)_{10}]$ no se observa durante la hidrogenación del $[Ru_3(CO)_{12}]$ probablemente por que éste se convierte directamente al $[(\mu-H)_4Ru_4(CO)_{12}]$. Esto implica que la extensa química desarrollada por el $[(\mu-H)_2Os_3(CO)_{10}]$ no pueda ser duplicada para el rutenio. Por otra parte aunque las estructuras de los cúmulos de osmio y rutenio son muy similares, existe una marcada tendencia de los cúmulos de rutenio a presentar estructuras con grupos CO formando puentes.¹⁶

La reactividad de los cúmulos trinucleares de rutenio puede algunas veces ayudar en la síntesis de derivados de rutenio que no se pueden obtener para osmio por razones cinéticas. Sin embargo las especies mas reactivas de osmio $[Os_3(CO)_{11}L]$, $[Os_3(CO)_{10}L_2]$ y $\{(\mu-H)_2Os_3(CO)_{10}\}$ (L = ligante débilmente coordinado como acetonitrilo o cicloocteno), han permitido el continuo desarrollo de la química de los cúmulos trinucleares de osmio.¹⁷

1.2 Reactividad del dihidruro de decacarboniltriosmio con ligantes neutros y aniónicos

El dihidruro de decacarboniltriosmio, $[(\mu-H)_2Os_3(CO)_{10}]$, es un raro ejemplo de un cúmulo electrónicamente no saturado estable,¹⁵ su química está dominada por la adición nucleofílica de ligantes neutros o aniónicos por lo que su utilidad en síntesis depende de este aspecto, es decir de ser un cúmulo insaturado.¹⁶ Como tal, este compuesto presenta reacciones de adición rápidas, con una gran variedad de bases de Lewis, como se indica en el esquema 1.

Esquema 1. Adición de una base de Lewis al cúmulo trinuclear

En general cuando se adicionan ligantes neutros como PR₃, AsR₃, P(OR)₃, PhCN, MeCN, o 'BuCN se obtienen compuestos estables como $[(\mu-H)HOs_3(CO)_{10}L]$, las estructuras obtenidas se relacionan directamente con la estructura del $[Os_3(CO)_{12}]$ donde el hidruro terminal esta remplazando a un grupo CO. En general y principalmente por efectos estéricos, cuando L es un sustituyente voluminoso como PR₃, L ocupa una posición ecuatorial, en cambio cuando el grupo L es un grupo pequeño como el hidruro o acetonitrilo, L ocupa una posición axial respecto al plano formado por el triángulo metálico.¹⁷

En la literatura se encuentran descritos los parámetros cinéticos de la adición de nucleófilos al $[(\mu-H)_2Os_3(CO)_{10}]$ en términos de las propiedades electrónicas y estéricas de la base de Lewis. Dentro de este contexto, los valores de las constantes de velocidad determinadas para una serie de fosfinas fueron dependientes tanto del valor del ángulo de

cono de Tolman como del valor de pK_a , por lo que se propone que la adición de la base de Lewis es un proceso concertado donde se forma el aducto electrónicamente saturado [(μ -H)(H)Os₃(CO)₁₀L] (Esquema 2), como en el caso de la adición CO al cúmulo carbonílico.¹⁸

Esquema 2. Estado de transición propuesto para la adición de bases de Lewis.¹⁸

Este compuesto también presenta reacciones de inserción, (cuando L = alquino) en las que generalmente se asume, aunque sin mucha evidencia, que el producto de la adición se forma previo a la transferencia del hidrógeno del cúmulo de osmio al nuevo ligante. (Esquema 3.)

$$\begin{bmatrix} Os_{3}H_{2}(CO)_{10} \end{bmatrix} \xrightarrow{+L} \begin{bmatrix} Os_{3}H_{2}(CO)_{10}L \end{bmatrix} \xrightarrow{\text{Inserción}} \begin{bmatrix} Os_{3}H(LH)(CO)_{10} \end{bmatrix} \xrightarrow{-L} \begin{bmatrix} Os_{3}H(L-H)(CO)_{10}L \end{bmatrix} \xrightarrow{-L} \begin{bmatrix} Os_{3}H(L-H)(CO)_{10}L \end{bmatrix} \xrightarrow{-LH_{2}} \begin{bmatrix} Os_{3}H(LH)(CO)_{10}L \end{bmatrix}$$

Esquema 3 Reacción de inserción propuesta para el dihidruro de triosmio

El compuesto de inserción puede ser el producto final, aunque frecuentemente L reacciona para desplazar el compuesto hidrogenado LH_2 . Generalmente los alquinos presentan inserciones simples generando el producto $[Os_3H(LH)(CO)_{10}]$, en contraste, los alquenos (LH_2) se pierden en la reacción para dar productos por reacciones secundarias con el alqueno libre de la reacción ¹⁷

En general, el compuesto $[(\mu-H)_2Os_3(CO)_{10}]$, presenta adición de nucleófilos neutros (PR₃, CO, RNC, etc.); Sin embargo, esta adición ocurre también con aniones como se mencionó con anterioridad (halogenuros, hidruros, o carbonilmetalatos). Por ejemplo, la adición de metalatos de carbonilo como el K[Mn(CO)₅] genera el compuesto K[H₂Os₃(CO)₁₀{Mn(CO)₅}] como un sólido amarillo brillante, estable a temperatura ambiente el cual presenta señales en el espectro de RMN-¹H asignables a un hidruro terminal ($\delta = -10.4$, d) y un hidruro puente ($\delta -20.4$, d) estas características son muy similares a los productos obtenidos con donadores neutros.¹⁷ (esquema 1).

Utilizando al dihidruro de decacarboniltriosmio se han sintetizado varios sistemas heteronucleares con metales de transición, algunos ejemplos son los siguientes: $[(\mu-H)_2Os_3Fe(CO)_{13}]$,¹⁹ $[(\mu-H)_2Os_3Ir(\mu-Cl)(CO)_{12}]$,²⁰ $[(\mu-H)_3Os_3Rh(CO)_9(\eta^6-C_6H_5Me)]$,²¹ $[(\mu-H)_2Os_3Pt(CO)_{10}(PR_3)]$,²² $[(\mu-H)_2Os_3Ni(\mu-CO)_2(CO)_8(PPh_3)_2]$,²³ $[(\mu-H)_2Os_3Ir(\eta^5-C_5H_5)(CO)_{10}]$.²⁴ En estos compuestos se refleja la utilidad del cúmulo insaturado, $[(\mu-H)_2Os_3(CO)_{10}]$ para formar derivados heteronucleares Os₃M con otros metales de transición, éstos son cúmulos interesantes debido a las características intrínsecas del enlace heterometálico resultado de las diferencias en electronegatividad y número de coordinación de cada metal lo que conduce a variaciones interesantes, en las reacciones efectuadas, al compararse con los sistemas homonucleares.^{2a}

1. 3 Reactividad de cúmulos carbonílicos con elementos del grupo 14

La incorporación de elementos del grupo 14 a la estructura del cúmulo ha sido un tópico que ha estado en continuo desarrollo en los últimos años,²⁵ Lo que es más, se ha observado que la incorporación de estos elementos frecuentemente resaltan la estabilidad del cúmulo considerablemente.³⁶ En general, la química desarrollada para el estaño es la más amplia de su grupo (a excepción del carbono), debido al gran número de compuestos que pueden ser obtenidos con éste y los metales de transición. Esto se debe al hecho de que el estaño es el único elemento del grupo 14 que forma compuestos estables para derivados mono-, di-, tri- y tetra-sustituidos por el fragmento R₃Sn, en la serie R₃Sn- (ML_n) a Sn- $[ML_n]4$.²⁶

En términos generales la incorporación del estaño a la estructura del cúmulo carbonílico puede ser a través de reacciones de sustitución o adición oxidante al cúmulo carbonílico; en este sentido podemos dividir estas reacciones en dos grupos: las efectuadas con estanilenos SnR₂ y las efectuadas con organoestananos (HSnR₃), ambas se describen a continuación.

Adición de estanilenos

La adición de estanilenos a cúmulos carbonílicos es un método útil para incorporar elementos del grupo 14 a la estructura del cúmulo trinuclear.^{3b, 7} Se ha descrito la reactividad de estanilenos hacia cúmulos carbonílicos de osmio, rutenio, hierro e iridio, y se ha observado que la síntesis de estos compuestos M-Sn depende de ambos reactivos (elemento que forma el cúmulo trinuclear y el estanileno). Por ejemplo, la reacción de estanilenos requiere de la activación previa del $[Os_3(CO)_{12}]$ por la especie más reactiva $[Os_3(CO)_{11}L]$ (L = acetonitrilo) para poder incorporar el estanileno a la estructura del cúmulo carbonílico. En el caso del cúmulo trinuclear $[Ru_3(CO)_{12}]$ la reacción con el estanileno se efectúa rápidamente produciendo el derivado disustituido. La reacción del cúmulo trinuclear^{7e} (esquema 4). Estos patrones de reactividad están relacionados directamente con la energía de los enlaces M-CO y M-M que se incrementa al descender en el mismo grupo de la tabla periódica.¹⁴

Esquema 4. Reacciones de estanilenos y cúmulos metálicos 7c

La adición del estanileno SnR₂, R = CH(SiMe₃)₂ a $[(\mu-H)_2Os_3(CO)_{10}]$ a temperatura ambiente produce el cúmulo tetranuclear $[H_2Os_3(CO)_{10}SnR_2]$ con un 85% de rendimiento, una característica interesante de este compuesto es que ambos hidruros del dihidruro del decacarboniltriosmio permanecen en el producto de reacción.^{7d} Y, al igual que muchos otros cúmulos que contienen hidruros puente, este compuesto resultó ser reactivo, por ejemplo el $[H_2Os_3(CO)_{10}(SnR_2)]$ presenta rearreglos intermoleculares cuando se analiza su estabilidad en condiciones de termólisis en n-heptano (esquema 5).^{7e}

Esquema 5. Termólisis del cúmulo $[H_2Os_3(CO)_{10}(SnR_2)]^{7c}$

Adición de organoestananos

Las reacciones de desplazamiento en cúmulos carbonílicos $[Os_3(CO)_{12-n}(MeCN)_n](n = 1 \circ 2)$ con organoestananos HSnR₃ (R = *n*Bu o Ph) a temperatura ambiente, producen la inserción del grupo organoestanilo para generar los cúmulos carbonílicos del tipo [HOs₃(CO)₁₁(SnR₃)] o [HOs₃(CO)₁₁(MeCN)(SnR₃)] (esquema 6). En particular, el cúmulo trinuclear [HOs₃(CO)₁₁(SnPh₃)] reacciona con trifenilfosfina por cinco días para producir la eliminación reductora de HSnPh₃ y formar el cúmulo [Os₃(CO)₁₁(PPh₃)] que fue útil junto con la información espectroscópica al proponer la estructura del cúmulo trinuclear [HOs₃(CO)₁₁(SnR₃)]. Se observan características similares cuando se trabaja con organogermanos.⁸

$$R_{3}SnH + [Os_{3}(CO)_{1}(MeCN)] \longrightarrow [HOs_{3}(CO)_{1}(SnR_{3})]$$

60-70%

 $R = nBu \circ Ph$

$$Ph_3SnH + [Os_3(CO)_{10}(MeCN)_2] \longrightarrow [HOs_3(CO)_{10}(SnPh_3)(MeCN)]$$

70-75%

Esquema 6. Reacciones con organoestananos y cúmulos carbonílicos.

La reacción del dihidruro de decacarboniltriosmio con un exceso de HSnMe₃ por días ambiente cúmulo cuatro а temperatura produce el pentametálico $[(\mu-H)_2Os_3(CO)_{10}(SnMe_3)_2]$ (figura 1) que es el producto de la adición de dos grupos trimetilestanilo al cúmulo trinuclear de osmio,96 aunque se ha descrito que previo a la doble sustitución grupo trimetilestanilo, se debe formar el cúmulo del $[HOs_3(\mu-H)_2(CO)_{10}(SnMe_3)]$ resultado de la adición-oxidante por una molécula de HSnMe₃.^{9b}

Figura 1. Diagrama ORTEP del compuesto [(µ-H)₂Os₃(CO)₁₀(SnMe₃)₂]^{9b}

Recientemente se estudió la adición-oxidante de hidruros del grupo 14, HER₃ (ER₃ = SiEt₃, SiPh₃, GeBu₃, SnBu₃, SnPh₃) hacia el cúmulo [(μ -H)₂Os₃(CO)₁₀], describiéndose la interacción inicial del grupo H-ER₃ al igual que un donador de 2 electrones vía el enlace H-E, lo que se relaciona directamente con la adición de bases de Lewis, como por ejemplo las fosfinas. En esta reacción se obtiene como producto mayoritario el cúmulo tetrametálico [H₃Os₃(CO)₁₀(ER₃)], este tipo de compuestos existen como una mezcla de isómeros que difieren en la orientación de uno de los hidruros.^{9a} En el caso del compuesto [H₃Os₃(CO)₁₀(SiPh₃)] en la resolución de la estructura por difracción de rayos X, se logra determinar la presencia de los hidruros puente en el mapa de difracción aunque no con mucha exactitud. (Figura 2)²⁷

Figura 2. Diagrama ORTEP del compuesto [H₃Os₃(CO)₁₀(SiPh₃)]²⁷

En el compuesto presentado en la figura 2, se puede observar que el hidruro y el grupo trifenilsilano (-H y –SiPh₃) se incorporan a la estructura del cúmulo carbonílico $[(\mu-H)_2Os_3(CO)_{10}]$, lo cual, es interesante debido a que la reacción de hidridotrialquilestananos HSnR₃ o aminotrialquilestananos Me₂N-SnR₃ con hidruros metálicos mononucleares produce la formación del enlace Sn-M con buenos rendimientos y como subproductos de reacción solamente H₂ ó Me₂NH.^{10a} Con base en esto se podría esperar que la reacción del cúmulo carbonílico con el aminotrialquilestanano permita que la amina encuentre un sitio de coordinación vacante y se incorpore a la estructura del cúmulo carbonílico al igual que lo hace el hidruro de los compuestos HSnR₃. En este aspecto estudios preliminares de la reactividad de aminotrialquilestananos hacia el dihidruro de decacarboniltriosmio dan indicios de que ambos grupos, amino y trialquilestanano se incorporan a la estructura del cúmulo carbonílico.²⁸

1. 4 Reactividad de cúmulos carbonílicos con aminas secundarias

Existen pocos ejemplos, descritos en la literatura de aminas coordinadas al cúmulo carbonílico solamente en un modo σ N-M.^{13a, 29} Las reacciones de aminas secundarias con el cúmulo trinuclear [Os₃(CO)₁₀(CH₃CN)₂] producen derivados trinucleares que resultan de la trans-alquilación y/o activación del enlace C-H de los grupos alquílicos de la amina secundaria y en general la naturaleza de los productos obtenidos es sensible a la estructura y requerimientos estéricos de la amina empleada; por ejemplo, la reacción del cúmulo trinuclear con dietilamina y diisopropilamina produce la transalquilación de la amina secundaria como producto de reacción, mientras que la reacción del cúmulo trinuclear donde se observa la activación del enlace α C-H de la pirrolidina.³⁰ Se ha observado que los heterociclos aromáticos y/o alifáticos de nitrógeno presentan la activación del enlace α C-H de la amina utilizada^{6a} (esquema 7).

Esquema 7. Reacciones de cúmulos carbonílicos y aminas secundarias

El interés de este trabajo fue el análisis de la reacción del cúmulo insaturado de triosmio $[(\mu-H)_2Os_3(CO)_{10}]$ frente a una serie de aminotrialquilestananos debido a la posibilidad de incorporar el grupo amino y el organoestanilo a la estructura del cúmulo trinuclear en un solo paso.

Resultados

1.5 Síntesis y caracterización de los aminotrialquilestananos. $R'NSnR_3$ (R = Me, nBu y Ph y R'NH = dimetilamina, pirrolidina, piperidina, morfolina y tiomorfolina)

La importancia de los aminoestananos en síntesis ha sido atribuida a su reactividad comparada con la de un reactivo de Grignard, la cual se debe a la combinación de un enlace débil y altamente polar $\text{Sn}^{\delta +}-\text{N}^{\delta -}$ que reacciona fácilmente con sustratos polares.³¹ Con pocas excepciones, la mayoría de los aminoestananos son líquidos, extremadamente sensibles a la humedad y cuando son expuestos al aire liberan amina o amoniaco. Sin embargo, su estabilidad térmica es buena y pueden ser destilados sin descomponerse.³²

De los métodos de síntesis para los aminotrialquilestananos, la reacción de transmetalación de sales de litio y la de transaminación han permitido sintetizar un gran número de estos derivados, en el caso de la transaminación se aprovecha la volatilidad de $HNMe_2$ que se libera fácilmente cuando se hace uso de R₃SnNMe₂³³ (Ecuación 1 y 2.)

 $R_3SnCl + LiNR'R'' \rightarrow R_3SnNR'R'' + LiCl$

Ecuación 1. Reacción de transmetalación

 $Me_3SnNMe_2 + HNR'R'' \longrightarrow Me_3SnNR'R'' + HNMe_2$ Ecuación 2. Reacción de transaminación

A partir de las reacciones de transaminación y transmetalación se síntetizaron las series de aminotrialquilestananos que aquí se describen. Se utilizaron las siguientes aminas secundarias: dimetilamina, pirrolidina, piperidina, morfolina y tiomorfolina y como radicales estanilo se utilizaron los grupos trimetilestanilo, tributilestanilo y trifenilestanilo.

Los aminoestananos i, ii, iii, iv, x, xi, xii, xiii y xiv fueron sintetizados por reacciones de transmetalación y los derivados vii, viii, ix y x fueron sintetizados por reacciones de transaminación utilizando al aminoestanano vi, el derivado v se sintetizó

también por transaminación utilizando al derivado *i*. (tabla 1). En la literatura se encuentran descritas parte de las características espectroscópicas de algunos de estos compuestos (i, vi, vii, viii, xi).^{34, 35} También se ha descrito la síntesis de los compuestos *vii, viii y ix* por reacciones de transaminación de *vi*, en este caso las transaminaciones son llevadas a cabo *in situ*, por lo que estos aminotrialquilestananos no fueron caracterizados.³⁵ En este trabajo se describe la caracterización de todos los aminoestananos sintetizados para cuestiones comparativas.

Aminoestanano		Comp.	RMN ¹¹⁹ Sn
			δ (ppm)
(dimetilamino)tributilestanano	Me ₂ NSnBu ₃	i	58.64
(pirrolidil)tributilestanano	NSnBus	ii	58.59
(piperidil)tributilestanano	NSnBu ₃	iii	58.18
(morfolil)tributilestanano	O NSABU	iv	58.79
(tiomorfolil)tributilestanano	S NSnBug	ν	59.27
(dimetilamino)trimetilestanano	Mc2NSnMc3	vi	127.9, 87.89
(pirrolidil)trimetilestanano	NSnMe ₃	vii	128.01
(piperidil)trimetilestanano	NSnMe3	viii	128.1, 87.29
(morfolil)trimetilestanano	O NSTIME	ix	127.46
(tiomorfolil)trimetilestanano	S NSIME,	x	128.48, 91.53
(dimetilamino)trifenilestanano	MeչNSnPh3	xi	-87.75
(pirrolidil)trifenilestanano	NSnPh ₃	xii	-82.87
(piperidil)trifenilestanano	NSAPR3	xiii	-82.83
(morfolil)trifenilestanano	NSAPH	xiv	-82.20

Tabla 1. Datos espectroscópicos de RMN¹¹⁹Sn para los aminoestananos

* Adquirido de la casa comercial Aldrich

En el caso de los compuestos sintetizados se observó que el desplazamiento químico de ¹¹⁹Sn esta determinado por el tipo de sustituyente alquílico o arílico; por ejemplo, δ (¹¹⁹Sn) ~ 127 ppm para los derivados R'NSnMe₃, δ (¹¹⁹Sn) ~ 58 ppm para R'NSnBu₃ y δ (¹¹⁹Sn) ~ -82 ppm para R'NSnPh₃ y resulta ser independiente de las características del grupo amido (R'N-) como puede observarse en la figura 3.

Figura 3. Gráfica comparativa del δ (¹¹⁹Sn) en los aminotrialquilestananos sintetizados.

En el caso de los compuestos *vi, viii* y x se observaron dos señales en el espectro de ¹¹⁹Sn, esto se explica debido a que los aminoestananos tienden a asociarse en solución cuando los efectos estéricos lo permiten por lo que el caso de estos compuestos donde los grupos alquílicos del estaño son metilos la autoasociación se ve favorecida a concentraciones altas por lo que en el espectro de RMN ¹¹⁹Sn de los compuestos *vi, viii* y x una de las señales correspondería al monómero y la otra al dímero (esquema 8).³⁶

$$Me_3SnNMe_2 + Me_3SnNMe_2 \longrightarrow Me_3SnMe_3$$

 $Me_2N \longrightarrow SnMe_3$

Esquema 8 Esquema de autoasociación de los aminotrialquilestananos.³⁶

Los espectros de RMN ¹H y RMN ¹³C para los compuestos i - xiv que completan se la caracterización de los aminotrialquilestananos sintetizados, se presentan en la parte experimental.

,

.

1.6 Reactividad del dihidruro de decacarboniltriosmio frente a aminotrialquilestananos R'NSnR₃

De la adición oxidante del aminotrialquilestanano al dihidruro de decacarboniltriosmio se obtienen los cúmulos trinucleares de formula general $[(\mu-H)Os_3(CO)_{10}(HE)(SnR_3)]$ como productos mayoritarios (Esquema 9).

De esta reacción al trabajar con el (pirrolidil)tributilestanano (*ii*) además del compuesto $[(\mu-H)Os_3(CO)_{10}(HNCH_2CH_2CH_2CH_2)(SnBu_3)]$ 2, también se obtuvo el derivado $[(\mu-H)Os_3(CO)_{10}(N=CHCH_2CH_2CH_2)(SnBu_3)]$ 2a, en cantidad suficiente para poder completar la caracterización espectroscópica, se observaron también los compuestos 3a y 7a que de acuerdo con sus espectros de infrarrojo, podrían presentar similitud estructural con 2a, Sin embargo, los rendimientos de estos compuestos fueron muy bajos.

Reacción General:

Esquema 9. Reacción general de los derivados sintetizados.

Donde

Rendimiento		Rendimiento
(33%),	(6) R = metilo	(26%)
) (28%),	(7) $R = metilo$	(56%)
) (56%),	(8) $R = metilo$	(67%)
o (70%),	(9) $R = metilo$	(68%)
) (10%),	(10) $R = metilo$	(15%)
	Rendimiento (33%), (28%), (56%), (56%), (70%), (10%),	Rendimiento (33%), (6) $R = metilo$ (28%), (7) $R = metilo$ (56%), (8) $R = metilo$ (70%), (9) $R = metilo$ (10%), (10) $R = metilo$

En el esquema 9 se considera solo el producto mayoritario de la reacción, pero como se describió anteriormente, en algunos casos se obtienen los derivados 2a, 3a y 7a con bajos rendimientos. En ninguna de las reacciones analizadas se recupera el dihidruro de decacarboniltriosmio sin reaccionar aunque en todos los caso se observa un producto café que se queda adherido a la sílice en el proceso de purificación.

Respecto a las variaciones en el rendimiento de los cúmulos 1 - 10, de acuerdo con lo observado, podemos argumentarlos de la siguiente manera: en los compuestos 5 y 10 la posibilidad de fragmentación del anillo de tiomorfolina vía el enlace C-S ha sido previamente descrita al trabajar con tiomorfolina y [Ru₃(CO)₁₂],⁴¹ en nuestro caso, fue necesario trabajar a temperatura baja (-78 °C) para mejorar los rendimientos de 5 y 10. En los compuestos 1-4 y 6-9 el rendimiento no parece depender de la basicidad de la amina coordinada al cúmulo carbonílico (pK₄ de la dimetilamina = 10.77, pirrolidina = 11.30, piperidina = 11.12 y morfolina = 8.49), si no mas bien con las características (sin considerar a 2) de la estructura cíclica o acíclica de la amina secundaria; Por ejemplo, los compuestos 1 y 6 con dimetilamina coordinada al cúmulo, los rendimientos fueron bajos 33% y 26% respectivamente, en contraste 3, 4 y 7 – 9 que contienen aminas secundarias cíclicas coordinadas al cúmulo presentan rendimientos en el intervalo de 56 – 70 %.

Se llevaron a cabo las reacciones del dihidruro de decacarboniltriosmio con los aminotrifenilestananos (*xi al xiv*) utilizando condiciones similares a las reacciones con los otros aminotrialestananos. De acuerdo con el espectro de IR se puede asumir que se forman los compuestos [HOs₃(CO)₁₀(R'NH)(SnPh₃)] análogos a los anteriores, pero durante el proceso de cristalización se observó la precipitación de cristales transparentes que fueron caracterizados y correspondieron al tetrafenilestaño, debido a esto no se realizaron más intentos con la serie de aminotrifenilestananos.

Todos los cúmulos sintetizados 1 - 10 son sólidos de color amarillo brillante, estables a temperatura ambiente; aunque en solución (durante el proceso de cristalización) se observa que oscurecen. En el caso de los compuestos 2a, 3, 6, 7, 8 y 9se obtuvieron cristales de buena calidad para llevar a cabo los experimentos de difracción. En el caso de los derivados que contienen grupos *n*-butilo la obtención de monocristales adecuados no fue un proceso sencillo, probablemente debido a las características del grupo tributilestanilo que muchas veces le confiere a las muestras una buena solubilidad en disolventes orgánicos. De hecho, se ha descrito que los cúmulos que contienen grupos de tributilestanano forman productos aceitosos difíciles de cristalízar.^{13a} En nuestro caso se lograron obtener monocristales de dos compuestos con grupos *n*-tributilestanilo 2a y 3, los compuestos 1, 2, 4 y 5 se obtuvieron como sólidos cristalinos, sin ser posible obtener monocristales de la calidad adecuada para llevar la determinación por difracción de rayos X.

En la reacción del dihidruro de decacarboniltriosmio y los aminoestananos v y x fue necesario efectuar la reacción a -78 °C, (utilizando hielo seco y acetona) para aumentar los rendimientos del compuesto [HOs₃(CO)₁₀(tiomorfolina)(SnR₃)] debido a gue la reacción a temperatura ambiente sólo produce trazas del compuesto deseado.

1. 7 Análisis espectroscópico (IR, RMN¹H, ¹³C, ¹¹⁹Sn y masas (FAB⁺) de los compuestos decacarbonil-(μ -hidruro)(amina)(trialquilestanil)triosmio, [HOs₃(CO)₁₀(R'NH)(SnR₃)]. (R = Me y nBu y R'NH = dimetilamina, pirrolidina, piperidina, morfolina y tiomorfolina)

Infrarrojo.

La espectroscopia de infrarrojo es un método útil para determinar algunas de las características generales de los cúmulos carbonílicos.³⁷ En este trabajo, los espectros de IR de los compuestos 1-10, muestran ocho bandas con frecuencias de vibración CO en el intervalo 2090-1930 cm⁻¹ (Figura 4) asignables a carbonilos terminales, la forma e intensidad de todas las señales en los espectros es similar, esto nos permitió asumir que el arreglo y número de carbonilos unidos al triángulo de osmio es el mismo en todos los compuestos 1 - 10. En ninguno de los casos se encontraron bandas de vibración C-O en la región de los carbonilos puente (1750-1850 cm⁻¹).

En el caso del compuesto 2a el espectro de infrarrojo presenta nueve bandas de vibración CO similaros a las observadas para compuesto 2, en este caso sólo dos bandas se mueven ligeramente de posición con respecto al espectro de infrarrojo de 2; esto no es suficiente para esperar que la posición o número de carbonilos alrededor del cúmulo haya cambiado de manera significativa. (Tabla 2)

Comp.	IR(ciclohexano) v(CO)
2	2093(m), 2051(f), 2028(f), 2014(f), 1998(f), 1979(f), 1966(f), 1932(d)
2a	2093(m), 2067(m), 2053(f), 2028(f), 2013(f), 1998(f), 1989(f), 1978(f), 1914(d)

Tabla 2. Información de IR para 2 y 2a.

A partir del número de bandas de vibración del grupo CO podemos observar que la simetría local alrededor del triángulo metálico disminuye en comparación con la simetría del precursor, el dihidruro de decacarboniltriosmio, el cual presenta sólo cuatro bandas de vibración CO {2074(f), 2063(m), 2024(f), 1990(d)} Los espectros de IR de los compuestos 3a y 7a, tienen características similares a las de 2a, por lo que podría esperarse que su estructura molecular sea muy parecida. Sin embargo, la cantidad de producto fue insuficiente para continuar con su caracterización.

Figura 4 Espectro de IR del compuesto 1

Espectrometría de masas.

Los señales observadas en los espectros de masas FAB(+) para los compuestos 1-10 y 2a corresponden al patrón isotópico esperado para tres átomos de osmio y uno de estaño, de acuerdo con la cantidad de isótopos presentes en las muestras (% de abundancia)³⁸ Osmio: 186(1.58), 187(1.6), 188(13.3), 189(16.1), 190(26.4), 192(41.0); Estaño: 112(0.97), 114(0.65), 115(0.36), 116(14.53), 117(7.68), 118(24.22), 119(8.58), 120(32.59), 122(4.63), 124(5.79); Oxígeno: 16(99.76), 17(0.048), 18(0.20); Carbono: 12(98.90), 13(1.10) y Nitrógeno: 14(99.63), 15(0.37).

Del análisis se observa un patrón de fragmentación característico para cúmulos carbonílicos.³⁹ (Figura 5) donde se puede observar la pérdida consecutiva de grupos CO (28 unidades) y determinar la pérdida de la amina secundaria en todos los compuestos (Tabla 3).

Figura 5. Parte del Espectro de masas FAB(+) del compuesto 4.

En el espectro mostrado en la figura 5, se observa que el ion molecular corresponde a un valor de m/z = 1229 que coincide con la masa molecular esperada para el compuesto 4, en la primera fragmentación se observa la pérdida de dos grupos CO
seguida por la pérdida de la amina secundaria, en este caso morfolina, la fragmentación continua con la pérdida consecutiva de ocho grupos CO.

El patrón de fragmentación de todos los cúmulos carbonílicos de osmio-estaño 1 -10 es similar, las únicas diferencias son para 1, 2 y 5 donde el primer fragmento detectado corresponde al ión molecular menos dos grupos CO, en los compuestos 6 - 10el primer fragmento corresponde al ion molecular menos un grupo metilo. De cualquier manera en estos compuestos se observa la pérdida de la amina secundaria inmediatamente después como en el caso de los compuestos 1-5.

Las relaciones m/z de cada uno de los compuestos sintetizados se resume en la tabla 3. Se realizó una comparación entre la distribución isotópica experimental vs la calculada teóricamente, lo que confirmó el patrón isotópico observado con los átomos presentes. El compuesto 2a presenta un espectro de masas que es igual al espectro de masas del compuesto 2.

Compuesto	PM	FAB m/z	Fragmento detectado
1	1186.9	1130 (-2CO)	[C ₂₂ H ₃₅ NO ₈ Os ₃ Sn]
2	1212.9	1156 (-2CO)	[C ₂₄ H ₃₇ NO ₈ Os ₃ Sn]
3	1227.0	1228	{C ₂₇ H ₃₉ NO ₁₀ Os ₃ Sn]
4	1228.9	1229	[C ₂₆ H ₃₇ NO ₁₁ Os ₃ Sn]
5	1245.4	1188 (-2CO)	[C ₂₄ H ₃₇ NSO ₈ Os ₃ Sn]
6	1060.6	1046 (-CH ₃)	{C ₁₄ H ₁₄ NO ₁₀ Os ₃ Sn]
7	1086.6	1072 (-CH ₃)	[C ₁₆ H ₁₆ NO ₁₀ Os ₃ Sn]
8	1100.6	1085 (-CH ₃)	[C ₁₇ H ₁₈ NO ₁₀ Os ₃ Sn]
9	1102.6	1086 (-CH ₃)	[C ₁₆ H ₁₆ NO ₁₁ Os ₃ Sn]
10	1118.8	1103(-CH ₃)	[C ₁₆ H ₁₆ NSO ₁₀ Os ₃ Sn]
			the second se

Tabla 3. Datos de Espectrometría de Masas para 1 -10

RMN 'H

En los espectros de RMN de ¹H se observaron las señales características de los protones que corresponden a la amina secundaria y a los grupos alquílicos del estaño, además de una señal en frecuencias bajas que corresponde a un hidruro puente.

En el esquema 10 se presenta la estructura molecular que, en forma general, representará a los compuestos obtenidos. En la figura los átomos de hidrógeno y carbono son etiquetados con el fin de poder describir los desplazamientos químicos durante la discusión. En la tabla 4 se presentan los desplazamientos químicos observados en RMN ¹H, así como las constantes de acoplamiento.

Esquema 10 Nomenclatura utilizada al describir los hidrógenos y carbonos.

Comp.C1-H, C2-HC16-HN-HOsHOs $({}^{l}J^{117/119}sn^{-1}H)$ $({}^{l}J^{187}os^{-1}H)$ $({}^{l}J^{187}os^{-1}H)$ 12.90 (s)1.23 (m)2.79-16.01, (30.06)23.08 (m), 2.72 (m)1.23 (m)2.48-16.31, (30.09)33.11 (d), 2.84 (m)1.22 (m)2.40-16.15, (30.81)43.17 (m), 2.87 (d)1.21 (m)2.68-16.11, (29.88)52.75 (m), 2.52 (m)1.21 (m)2.75-16.06, (30.00)73.02 (m), 2.67 (m)0.55, (46.74)2.42-16.24, (33.00)83.08 (m), 2.85 (m)0.50, (46.74)2.39-16.12, (32.97)93.18 (m), 2.86 (m)0.53, (52.64)2.69-16.06, (33.00)102.75 (m), 2.51 (m)0.54, (45.00)2.90-16.03, (33.00)					
$ \begin{pmatrix} {}^{I}J^{117/119}{}_{Sn-H} \end{pmatrix} \qquad \begin{pmatrix} {}^{I}J^{187}{}_{Os-H} \end{pmatrix} \\ \begin{pmatrix} {}^{I}J^{187}{}_{Os-H} \end{pmatrix} \\ 1 & 2.90 (s) & 1.23 (m) & 2.79 & -16.01, (30.06) \\ 2 & 3.08 (m), 2.72 (m) & 1.23 (m) & 2.48 & -16.31, (30.09) \\ 3 & 3.11 (d), 2.84 (m) & 1.22 (m) & 2.40 & -16.15, (30.81) \\ 4 & 3.17 (m), 2.87 (d) & 1.21 (m) & 2.68 & -16.11, (29.88) \\ 5 & 2.75 (m), 2.52 (m) & 1.21 (m) & 2.75 & -16.06, (30.00) \\ \end{pmatrix} \\ \hline 6 & 2.91 (s) & 0.54, (46.71) & 2.78 & -15.98, (33.00) \\ 7 & 3.02 (m), 2.67 (m) & 0.55, (46.74) & 2.42 & -16.24, (33.00) \\ 8 & 3.08 (m), 2.85 (m) & 0.50, (46.74) & 2.39 & -16.12, (32.97) \\ 9 & 3.18 (m), 2.86 (m) & 0.53, (52.64) & 2.69 & -16.06, (33.00) \\ 10 & 2.75 (m), 2.51 (m) & 0.54, (45.00) & 2.90 & -16.03, (33.00) \\ \hline \end{cases}$	Comp.	С1-Н, С2-Н	C16-H	N-H	OsHOs
1 2.90 (s) 1.23 (m) 2.79 $-16.01, (30.06)$ 2 3.08 (m), 2.72 (m) 1.23 (m) 2.48 $-16.31, (30.09)$ 3 3.11 (d), 2.84 (m) 1.22 (m) 2.40 $-16.15, (30.81)$ 4 3.17 (m), 2.87 (d) 1.21 (m) 2.68 $-16.11, (29.88)$ 5 2.75 (m), 2.52 (m) 1.21 (m) 2.75 $-16.06, (30.00)$ 6 2.91 (s) $0.54, (46.71)$ 2.78 $-15.98, (33.00)$ 7 3.02 (m), 2.67 (m) $0.55, (46.74)$ 2.42 $-16.24, (33.00)$ 8 3.08 (m), 2.85 (m) $0.50, (46.74)$ 2.39 $-16.12, (32.97)$ 9 3.18 (m), 2.86 (m) $0.53, (52.64)$ 2.69 $-16.06, (33.00)$ 10 2.75 (m), 2.51 (m) $0.54, (45.00)$ 2.90 $-16.03, (33.00)$			$(J^{117/119} S_{n} - H)$		$(J^{187}O_{S} - H)$
1 $2.90 (s)$ $1.23 (m)$ 2.79 $-16.01, (30.06)$ 2 $3.08 (m), 2.72 (m)$ $1.23 (m)$ 2.48 $-16.31, (30.09)$ 3 $3.11 (d), 2.84 (m)$ $1.22 (m)$ 2.40 $-16.15, (30.81)$ 4 $3.17 (m), 2.87 (d)$ $1.21 (m)$ 2.68 $-16.11, (29.88)$ 5 $2.75 (m), 2.52 (m)$ $1.21 (m)$ 2.75 $-16.06, (30.00)$ 6 $2.91 (s)$ $0.54, (46.71)$ 2.78 $-15.98, (33.00)$ 7 $3.02 (m), 2.67 (m)$ $0.55, (46.74)$ 2.42 $-16.24, (33.00)$ 8 $3.08 (m), 2.85 (m)$ $0.50, (46.74)$ 2.39 $-16.12, (32.97)$ 9 $3.18 (m), 2.86 (m)$ $0.53, (52.64)$ 2.69 $-16.06, (33.00)$ 10 $2.75 (m), 2.51 (m)$ $0.54, (45.00)$ 2.90 $-16.03, (33.00)$					
2 3.08 (m), 2.72 (m) 1.23 (m) 2.48 -16.31, (30.09) 3 3.11 (d), 2.84 (m) 1.22 (m) 2.40 -16.15, (30.81) 4 3.17 (m), 2.87 (d) 1.21 (m) 2.68 -16.11, (29.88) 5 2.75 (m), 2.52 (m) 1.21 (m) 2.75 -16.06, (30.00) 6 2.91 (s) 0.54, (46.71) 2.78 -15.98, (33.00) 7 3.02 (m), 2.67 (m) 0.55, (46.74) 2.42 -16.24, (33.00) 8 3.08 (m), 2.85 (m) 0.50, (46.74) 2.39 -16.12, (32.97) 9 3.18 (m), 2.86 (m) 0.53, (52.64) 2.69 -16.06, (33.00) 10 2.75 (m), 2.51(m) 0.54, (45.00) 2.90 -16.03, (33.00)	1	2.90 (s)	1.23 (m)	2.79	-16.01, (30.06)
3 3.11 (d), 2.84 (m) 1.22 (m) 2.40 -16.15, (30.81) 4 3.17 (m), 2.87 (d) 1.21(m) 2.68 -16.11, (29.88) 5 2.75 (m), 2.52 (m) 1.21(m) 2.75 -16.06, (30.00) 6 2.91 (s) 0.54, (46.71) 2.78 -15.98, (33.00) 7 3.02 (m), 2.67 (m) 0.55, (46.74) 2.42 -16.24, (33.00) 8 3.08 (m), 2.85 (m) 0.50, (46.74) 2.39 -16.12, (32.97) 9 3.18 (m), 2.86 (m) 0.53, (52.64) 2.69 -16.06, (33.00) 10 2.75 (m), 2.51(m) 0.54, (45.00) 2.90 -16.03, (33.00)	2	3.08 (m), 2.72 (m)	1.23 (m)	2.48	-16.31, (30.09)
4 3.17 (m), 2.87 (d) 1.21(m) 2.68 -16.11, (29.88) 5 2.75 (m), 2.52 (m) 1.21(m) 2.75 -16.06, (30.00) 6 2.91 (s) 0.54, (46.71) 2.78 -15.98, (33.00) 7 3.02 (m), 2.67 (m) 0.55, (46.74) 2.42 -16.24, (33.00) 8 3.08 (m), 2.85 (m) 0.50, (46.74) 2.39 -16.12, (32.97) 9 3.18 (m), 2.86 (m) 0.53, (52.64) 2.69 -16.06, (33.00) 10 2.75 (m), 2.51(m) 0.54, (45.00) 2.90 -16.03, (33.00)	3	3.11 (d), 2.84 (m)	1.22 (m)	2.40	-16.15, (30.81)
5 2.75 (m), 2.52 (m) 1.21(m) 2.75 -16.06, (30.00) 6 2.91 (s) 0.54, (46.71) 2.78 -15.98, (33.00) 7 3.02 (m), 2.67 (m) 0.55, (46.74) 2.42 -16.24, (33.00) 8 3.08 (m), 2.85 (m) 0.50, (46.74) 2.39 -16.12, (32.97) 9 3.18 (m), 2.86 (m) 0.53, (52.64) 2.69 -16.06, (33.00) 10 2.75 (m), 2.51(m) 0.54, (45.00) 2.90 -16.03, (33.00)	4	3.17 (m), 2.87 (d)	1.21(m)	2.68	-16.11, (29.88)
62.91 (s)0.54, (46.71)2.78-15.98, (33.00)73.02 (m), 2.67 (m)0.55, (46.74)2.42-16.24, (33.00)83.08 (m), 2.85 (m)0.50, (46.74)2.39-16.12, (32.97)93.18 (m), 2.86 (m)0.53, (52.64)2.69-16.06, (33.00)102.75 (m), 2.51(m)0.54, (45.00)2.90-16.03, (33.00)	5	2.75 (m), 2.52 (m)	1.21(m)	2.75	-16.06, (30.00)
62.91 (s)0.54, (46.71)2.78-15.98, (33.00)73.02 (m), 2.67 (m)0.55, (46.74)2.42-16.24, (33.00)83.08 (m), 2.85 (m)0.50, (46.74)2.39-16.12, (32.97)93.18 (m), 2.86 (m)0.53, (52.64)2.69-16.06, (33.00)102.75 (m), 2.51(m)0.54, (45.00)2.90-16.03, (33.00)					
73.02 (m), 2.67 (m)0.55, (46.74)2.42-16.24, (33.00)83.08 (m), 2.85 (m)0.50, (46.74)2.39-16.12, (32.97)93.18 (m), 2.86 (m)0.53, (52.64)2.69-16.06, (33.00)102.75 (m), 2.51(m)0.54, (45.00)2.90-16.03, (33.00)	6	2.91 (s)	0.54, (46.71)	2.78	-15.98, (33.00)
83.08 (m), 2.85 (m)0.50, (46.74)2.39-16.12, (32.97)93.18 (m), 2.86 (m)0.53, (52.64)2.69-16.06, (33.00)102.75 (m), 2.51(m)0.54, (45.00)2.90-16.03, (33.00)	7	3.02 (m), 2.67 (m)	0.55, (46.74)	2.42	-16.24, (33.00)
93.18 (m), 2.86 (m)0.53, (52.64)2.69-16.06, (33.00)102.75 (m), 2.51(m)0.54, (45.00)2.90-16.03, (33.00)	8	3.08 (m), 2.85 (m)	0.50, (46.74)	2.39	-16.12, (32.97)
102.75 (m), 2.51(m)0.54, (45.00)2.90-16.03, (33.00)	9	3.18 (m), 2.86 (m)	0.53, (52.64)	2.69	-16.06, (33.00)
	10	2.75 (m), 2.51(m)	0.54, (45.00)	2.90	-16.03, (33.00)

Tabla 4. Datos de RMN ¹H para 1 - 10

En frecuencias bajas entre δ -15.98 a -16.31 ppm se observa una señal que se asigna al hídruro metálico (OsHOs), esta señal aparece en la zona esperada para hídruros que forman un puente entre dos átomos metálicos^{9b} además la señal se acopla a los átomos de ¹⁸⁷Os y presenta una constante de acoplamiento ¹J ¹_H.¹⁸⁷Os (abundancia natural ¹⁸⁷Os = 1.64%) alrededor de 29.88 a 33.00 Hz estos valores están en el intervalo previamente observado para cúmulos carboníticos similares.⁴⁰

La señal que corresponde al hidrógeno del grupo amino (tabla 4) no se pudo determinar por experimentos de intercambio hidrógeno-deuterio (utilizando mezclas de $CDCl_3 - D_2O$). Por lo que se asignó considerando la integración y observando que en el espectro de correlación HETCOR (¹H - ¹³C) esta señal no se acopla con ninguno de los carbonos presentes (figura 6).

Figura 6 Espectro de correlación HETCOR del compuesto 1

Se han descrito desplazamientos similares a los presentados en este trabajo para los protones del grupo NH, por ejemplo: $\delta = 3.08$ ppm para los protones del grupo NH₂Prⁱ en [Os₃(CO)₉(NH₂Prⁱ)(µ₂-CONHPrⁱ)(µ₂-C=NHPH)]^{12a} y $\delta = 2.84$ ppm para los protones del grupo NH₂ en [Ru₃(µ-H)(µ-η²-SCH₂CH₂NH₂)(CO)₉].⁴¹

En la serie de compuestos 1-10 la señal que corresponde al protón del grupo NH presenta ligeras variaciones en desplazamiento químico (tabla 4) que pueden ser atribuidas a la naturaleza básica de la amina secundaria coordinada al cúmulo carbonílico. Para los compuestos 2, 3, 7 y 8 las aminas coordinadas pirrolidina y piperidina comparten características similares en basicidad y se observa que la señal asignada al grupo NH aparece en $\delta = 2.48$ ppm para 2 y 2.40 ppm para 3 desplazamientos que son también similares. En contraste para los compuestos 1, 4, 6 y 8 las aminas

coordinadas dimetilamina y morfolina con valores de pK_a de 10.77 y 8.49 respectivamente, presentan diferencias en los desplazamientos químicos del protón del grupo NH por ejemplo $\delta = 2.79$ ppm para 1 y 2.68 ppm para 4 ppm.

Las señales que corresponden a los hidrógenos de la amina secundaria y los grupos alquílicos del estaño presentan desplazamientos en los intervalos esperados. En la tabla 4 consideramos a C3-H, C4-H y C16-H debido a que son los átomos de hidrógeno mas cercanos a los átomos de nitrógeno y estaño respectivamente, por lo que se espera que sean los que generen mayor información del ambiente químico que los rodea. (cúmulo carbonílico). Sin embargo como se describe en la tabla 4 no hay un cambio significativo en las series correspondientes 1 - 5 y 6 - 10.

Para el compuesto 2a se observan características similares a las del compuesto 2 de acuerdo a lo esperado, no se localiza el hidrógeno del grupo NH en el espectro de protón, y se observa una señal simple en 7.54 ppm que integra para uno, las demás señales en el espectro de RMN ¹H son similares a las del compuesto 2.

En general y de acuerdo con las reacciones con hidridoestananos o hidridosilanos la isomería esperada en este tipo de compuestos se debería únicamente a la posición del hidruro en el cúmulo carbonílico (esquema 11).

Esquema 11 Posíbles isómeros en los cúmulos de osmio-estaño sintetizados

La posibilidad de formar los isómeros I y II no puede descartarse fácilmente, ya que ambos isómeros pueden ser posibles debido a los efectos dinámicos del hidruro en los cúmulos carbonílicos.⁹ Considerando esto y debido a que en el espectro de RMN ¹H del compuesto 8 se observó la presencia de una señal que podría asignarse a ligeras impurezas del cúmulo en la zona de los hidruros, se realizó un experimento a baja temperatura donde se logró observar que a -40 °C se resuelven dos señales para el hidruro metálico con la misma constante de acoplamiento $(J_{0}^{187}O_{s}^{-1}H)$, al igual, se resuelven dos señales en la zona de los metilos del estaño en los espectros de RMN ¹H.

Figura 7 Ampliación del espectro de RMN ¹H del compuesto 8 a 20 °C (izquierda) y a -40 ^oC (derecha)

En la figura 7, se comparan los espectros de RMN ¹H en la zona de hidruros; a diferentes temperaturas, la señal marcada con asterisco en el espectro de la izquierda se define cuando el experimento se lleva a cabo a -40° C (derecha), las dos señales observadas a baja temperatura, se asocian a dos hidruros puente de cúmulos carbonílicos similares debido a que presentan desplazamientos químicos y constantes de acoplamiento (J^{187}_{OS} $^{1}_{H}$), similares, $\delta_{1} = -16.20$ (33 Hz) y $\delta_{2} = -16.22$ (30 Hz). Esto indica la presencia

de al menos dos isómeros en solución, que se encuentran en equilibrio a temperatura ambiente en el compuesto 8.

RMN¹³C

En los espectros de RMN ¹³C se observan las señales para el número de carbonos esperados para cada uno de los compuestos 1 - 10. Utilizando la misma numeración del esquema 8, en la tabla 5 se presentan parte de los desplazamientos químicos de la RMN ¹³C. Como se puede observar las señales que corresponden a los C1 y C2 están desplazadas a frecuencias altas debido al efecto electronegativo del nitrógeno, un efecto contrario se observa en la señal asignada al C16 donde los desplazamientos aparecen a frecuencias bajas debido al carácter electropositivo del átomo de estaño.

El compuesto 2a presenta señales en el espectro de RMN ¹³C similares a las observadas para el compuesto 2. De acuerdo con el espectro bidimensional HETCOR una de las señales del espectro de RMN ¹³C ($\delta = 183.23$ ppm) se acopla con la señal que aparece $\delta = 7.5$ ppm en el espectro de RMN ¹H. Con esta información se puede asumir la presencia de un grupo imino en el compuesto 2a. Esta propuesta no conduciría a diferencias significativas en los espectros de IR y masas previamente analizados como ya se discutió previamente.

En la zona de carbonilos unidos a metal del espectro de carbono, utilizando la abundancia natural de ${}^{13}C = 1.1\%$, se observan de 8 a 10 señales en el intervalo de 197.49 – 173.01 ppm para los compuestos 1-10. Cualitativamente se puede determinar que las señales a frecuencias altas 197 – 190 ppm pueden ser asignadas a los grupos CO del fragmento Os(CO)₃(SnR₃) de acuerdo con el efecto electrónico que esperamos que el átomo de estaño tenga sobre los carbonilos que comparten el mismo átomo de osmio y apoyados además en que se han descrito desplazamientos químicos altos alrededor de 200 ppm para grupos CO en cúmulos carbonílicos de rutenio cuando están presenten átomos de silicio o estaño en la estructura del cúmulo.¹³

Comp.	C1.C2	C16	C6 a) C15 (grupos CO)
	.,	$(J^{13}c^{-1)7/119}s_n)$	
1	53.70, 51.94	12.52	196.69, 192.36, 191.24, 185.12,
		(267.25)	177.65, 175.52, 174.40, 173.88,
			173.78
2	62.63, 60.38	12.57	196.94, 192.57, 191.38, 185.18,
			177.52, 174.91, 174.31, 174.23,
			173.94, 173.87
3	63.36, 61.12	12.50	196.77, 192.39, 191.30, 185.19,
		(259.2)	177.69, 175.29, 174.59, 174.21,
			173.99
4	61.64, 59.41	12.55	197.49, 193.15, 191.00, 184.86,
			177.39, 175.03, 174.22, 174.07,
			173.64
5	63.12, 69.77	12.57	197.64, 193.04, 191.10, 184.68,
			175.07, 174.26,170.69
6	53.59, 51.89	-5.55	196.14, 192.37, 190.89, 185.18,
			177.42, 175.29, 174.63, 174.23,
			173.68
7	62.58, 60.34	-5.49	196.31, 192.58, 191.09, 185.23,
			177.32, 174.69, 174.07, 173.81
8	63.28, 61.06	-5.62	196.22, 192.42, 191.01, 185.26,
			177.50, 175.04, 174.42, 173.85
9	61.41, 59.31	-5.58	196.91, 190.55, 184.81, 177.10,
			174.72, 174.31, 174.20,
			173.99,173.39
10	63.06, 60.72	-5.62	196.94, 193.18, 190.16, 184.94,
			177.39, 174.92, 174.65, 174.28,
			173.30

Tabla 5. Datos de	RMN ¹³ C	para 1 – 10).
-------------------	---------------------	-------------	----

Para asignar de una manera precisa las señales en el espectro de RMN ¹³C para los grupos carbonilos en el cúmulo metálico en los compuestos **1-10** se realizó un experimento de RMN ¹³C acoplado a hidrógeno utilizando la abundancia natural de ¹³C para el compuesto **8** (Figura 8).

Figura 8. Espectros del compuesto 8 de RMN ¹³C{¹H} desacoplado (superior) y acoplado a ¹H (inferior).

En la figura 8 se presentan los espectros de 13 C, en la parte superior se presenta el espectro desacoplado 13 C{¹H} y en la parte inferior se presenta el espectro de carbono acoplado donde se observan nueve señales, cinco de las cuales aparecen como señales dobles con constantes de acoplamiento pequeñas con el hidruro, con este tipo de valores en constantes de acoplamiento han sido previamente determinadas para cúmulos carbonílicos similares.⁴²

Las señales en 196.22 ppm $\binom{2}{J} \prod_{C_{-}}^{13} \prod_{H}^{-1} = 3.8 \text{ Hz}, \ {}^{2}J \prod_{C_{-}}^{13} \prod_{L=1}^{-119/117} \prod_{S_{n}}^{2} = 42.28 \text{ Hz}$) y 190.99 ppm $\binom{2}{J} \prod_{C_{-}}^{13} \prod_{H}^{-1} = 3.8 \text{ Hz}, \ {}^{2}J \prod_{C_{-}}^{13} \prod_{L=1}^{-119/117} \prod_{S_{n}}^{2} = 48.32 \text{ Hz}$), son asignadas a los carbonilos C6 y C8 considerando el hecho de que ambas señales presentan constantes de acoplamiento con el átomo de estaño.

Las señales en 192.41 ppm y 185.24 ppm son asignadas a los carbonilos C15, C12 debido a que en esta región aparecen los carbonilos axiales del fragmento Os(CO)₄ en . cúmulos saturados (en el espectro de RMN ¹³C de [Os₃(CO)₁₂] la señal asignada a los carbonilos axiales se presenta en $\delta = 182.3$ ppm).⁴³

La señal en 177.48 ppm ${}^{2}J_{C_{-H}}^{13} = 4.5$ Hz) se asigna al C7 haciendo una comparación directa con cúmulos parecidos,⁴⁰ la señal en 175.04 ppm ${}^{2}J_{C_{-H}}^{13} = 3.8$ Hz) puede ser asignada al C10 y la señal en 174.55 ppm ${}^{2}J_{C_{-H}}^{13} = 3.8$ Hz) al C11 considerando que el ambiente químico del C10 haría que esta señal se desplazara más hacia frecuencias altas en comparación con la señal del carbonilo C11.

La señal en 173.85 ppm corresponde a los carbonilos C14 y C13 considerando que las señales de los carbonilos ecuatoriales en RMN ¹³C aparecen en esta región (en el espectro de RMN ¹³C de $[Os_3(CO)_{12}]$ las señal asignada a los carbonilos ecuatoriales δ =170.4 ppm⁴¹) y por proceso de eliminación la señal en 174.33 ppm puede ser asignada al C9. En este caso se observa que la constante de acoplamiento del grupo carbonilo y el hidruro $J({}^{13}C - {}^{1}H)$ es igual independientemente de que el grupo carbonilo se encuentre en posición *cis* o *trans* al hidruro.

De acuerdo con la similitud de las señales en la zona de los carbonilos de metal en todos los compuestos 1 - 10 se puede considerar que en el intervalo entre 196 –190 ppm aparecen las señales de los carbonilos axiales del fragmento $Os(CO)_3SnR_3$ en tanto que alrededor de 182 ppm se esperan las señales de los otros carbonilos axiales y alrededor de 170.4 ppm los carbonilos ecuatoriales del fragmento $Os(CO)_4$ respectivamente.

RMN ¹¹⁹Sn

Aun cuando existen tres isótopos con espin nuclear de ½ (¹¹⁵Sn, ¹¹⁷Sn, ¹¹⁹Sn) el ¹¹⁹Sn es el isótopo utilizado debido a que es el más abundante de los tres 8.58% y el que presenta la mayor sensibilidad relativa. La correlación entre los parámetros observados por RMN de ¹¹⁹Sn tales como el desplazamiento y constantes de acoplamiento se puede relacionar con el número de coordinación del estaño(IV) incluso cuando se sabe existen otros factores que afectan este parámetro como las interacciones débiles, efectos del disolvente, auto asocíaciones y coordinación intramolecular.⁴⁴

En los espectros de RMN ¹¹⁹Sn se observa sólo una señal simple característica de la presencia de un solo átomo de estaño en la estructura. Los desplazamientos del espectro de RMN ¹¹⁹Sn determinados para los compuestos 1 - 10 se encuentran en dos grupos para 1-5 presentan valores cercanos a ~ -49 ppm y para 6-10 cercanos a ~ -68 ppm que están asociados a geometrías pseudotetraédricas en el átomo de estaño.³⁵

Para el caso del compuesto 2a el δ (¹¹⁹Sn) = -51.97 ppm es muy similar al del compuesto 2δ (¹¹⁹Sn) = -48.90 ppm. Esto vuelve a reforzar la propuesta de que no hay un cambio significativo en la estructura de 2a al compararla con el cúmulo 2.

Con base en el análisis espectroscópico se propone que en la estructura para los cúmulos carbonílicos de osmio-estaño 1 - 10 se presente los diez carbonilos unidos al triángulo de osmio, que el grupo estanilo se encuentre en posición ecuatorial al plano del triangulo de osmio debido a los efectos estéricos de este grupo, que serían minimizados en esta posición, respecto a la posición de la amina se asume que puede ser axial ya que se ha encontrado que los ligantes que contienen nitrógeno en cúmulos carbonílicos ocupan preferencialmente posiciones axiales al plano del triángulo.^{6, 16}

1.8 Mecanismo propuesto para la formación de los compuestos $[HOs_3(CO)_{10}(R'NH)(SnR_3)]$

Después de analizar la información espectroscópica de los compuestos obtenidos 1-10 y haciendo una comparación con los datos informados en la literatura se puede proponer que el aminoestanano reacciona como un donador de dos electrones de acuerdo al esquema 12.

Como ha sido sugerido para hídruros de trialquilestaño,⁹ la interacción inicial del grupo R'N-SnR₃ consistiría actuar como un donador de dos electrones, vía el enlace N-Sn con el cúmulo trinuclear (a). La siguiente interacción de acuerdo con las características del aminoestanano sería la transferencia de hidrógeno del cúmulo carbonílico al ligante,¹⁶ (b), lo que permitiría a la amina secundaria coordinarse en el sitio vacante generado de este proceso (c).

Esquema 12 Mecanismo sugerido para la interacción del aminotrialquilestanano y el cúmulo carbonílico.

1.9 Análisis por difracción de rayos X en monocristal para los compuestos $[HOs_3(CO)_{10}(R'NH)(SnR_3)]$ (R = Me y/o nBu y R'NH = dimetilamina, pirrolidina, piperidina y morfolina)

Las estructuras de 2a, 3, 6, 7, 8, 8 CHCl₃, y 9 fueron confirmadas por la técnica de difracción de rayos X en monocristal. En las figuras 10, 12, 14 y 16 se presentan las estructuras de los compuestos 6, 7, 8 y 9. En el apéndice 1 se presentan las figuras para las estructuras 2a, 3 y 8 CHCl₃. En la tabla 6 se resumen algunos datos seleccionados de distancias y ángulos de enlace.

La estructura del cúmulo carbonílico consiste de un triángulo escaleno con la amina secundaria coordinada en posición axial al plano formado por el triángulo metálico; en el mismo plano el grupo trialquilestanilo ocupa una posición ecuatorial; En todos las estructuras resueltas por difracción de monocristal, se determína la presencia de un hidruro formando un puente entre dos átomos de osmio. El hidruro para las estructuras 7 y 8 fue localizado en el mapa de densidad electrónica y para las estructuras 2a, 3, 6 y 9 la posición del hidruro fue asignada geométricamente.

El hidruro se localiza entre los átomos Os(1)-Os(2) de acuerdo con el alargamiento que presenta la distancia de enlace M-M 3.0401(11) Å en **2a**, 3.0159(7) Å en **3**, 3.0122(6) Å en **6**, 3.0148(3) Å en 7, 3.0179(4) Å en **8** y 3.0053(6) Å para **9** con respecto a la distancia de 2.877(3) Å encontrada para el enlace Os – Os en el $[Os_3(CO)_{12}]$.⁴⁶ Este tipo de distancias M-M se observan en compuestos que presentan hídruros puente en la estructura del cúmulo.^{40, 45} La asignación de la posición del hidruro es apoyada por el valor del ángulo de enlace C(5)-Os(1)-Os(2) que se encuentra abierto en valores mayores a 117° (tabla 6). Este tipo de características estructurales para los ángulos de enlace *cis* al hidruro puente son importantes al determinar la posición del hidruro del hidruro en el esqueleto del cúmulo carbonílico.⁴⁶

La amina secundaria actúa como un donador de dos electrones a través de un enlace de coordinación Os(2)-N(1) con valores en el intervalo de 2.226(10) – 2.201(4) Å

(tabla 6). Como se puede observar en la tabla 6, la distancia Os(2)-N(1) es larga cuando se compara, por ejemplo, con la distancia en $[Os_3(CO)_{11}(NCMe_3)]$; Os-N = 2.074 (23) Å o en $[Os_3(CO)_{10}(NCMe_3)_2]$ con distancias de enlace Os-N = 2.122 (15) y 2.133(13) Å.⁴⁷

En la literatura se encuentran descritos pocos cúmulos con aminas alifáticas coordinadas sólo de forma sigma (σ) al cúmulo metálico. En los pocos casos encontrados la distancia N-Os presentan características similares; por ejemplo: 2.282(13) Å para el enlace Os–NMe₃ coordinado ecuatorial al plano del triángulo de osmio en el compuesto $[Os_3(\mu-H)(CO)_9(NMe_3)(\mu-COC_4H_4N)];^{29a}$ 2.22(2) Å para el enlace Os–NMe₃ en el compuesto $[Os_3(CO)_9(NO_2)(NMe_3)];^{29b}$ y para el enlace Os-N del grupo (NH_2Pr^i) 2.2233(12) Å en $[Os_3(CO)_9(NH_2Pr^i)(\mu_2-CONHPr^j)(\mu_2-C=NHPH)].^{12a}$ En los compuestos estudiados **3**, **6** – **9** la distancia N-Os (tabla 6) presenta valores similares en el intervalo 2.282(13)–2.22(2) previamente descritos para el enlace Os –N en cúmulos de osmio. El ángulo con el carbonilo C(4)-Os(2)-N(1) en los compuestos **2a**, **3**, **6**, **7**, **8** y **9** es casi lineal y se encuentra en el intervalo de 172.8(4)–177.2(4)^o (tabla 6).

En el compuesto 2a se observa un grupo imino (C=N) originado por la pérdida del hidrógeno del enlace C-H α de la pirrolidina. La distancia de enlace Os(2)-N(1) = 2.185(1) que es ligeramente más grande que las distancias previamente informadas para compuestos similares por ejemplo: [H(µ-H)Os₃(CO)₁₀(HN=CPh₂],^{12b} Os-N = 2.150(4) Å, o [Os₃(µ-H)(µ-HNCHPh₂)(HN=CPh₂)(CO)₉],^{12c} Os-N = 2.167(7) Å. La distancia C(14)-N(1) = 1.277(15) es típica de enlace dobles C=N (1.28 Å) encontradas en cúmulos carbonílicos similares.^{12c} El grupo imino esta coordinado de forma terminal esto es interesante debido a que son pocos los ejemplos donde el grupo imino adopta este modo de coordinación en el cúmulo carbonílico^{12b, 12c} ya que regularmente los ligantes imínicos adoptan modos de coordinación η^2 o η^3 , ⁴⁸ debido a la posibilidad de que el grupo imino reaccione con los otros centros metálicos en el cúmulo.

	2a	e	6	7	80	6
Distancias						
Os(1)-Os(2)	3.0401(11)	3.0159(7)	3.0212(6)	3.0148(3)	3.0179(4)	3.0053(5)
Os(1)-Os(3)	2.8704(12)	2.8768(8)	2.8741(6)	2.8841(3)	2.8704(4)	2.8685(5)
Os(2)-Os(3)	2.8856(10)	2.9123(8)	2.9106(6)	2.9033(4)	2.9132(4)	2.9174(6)
Os(1)-Sn(1)	2.6929(14)	2.6994(11)	2.7021(8)	2.6847(4)	2.6953(5)	2.6909(8)
Os(2)-N(1)	2.185(10)	2.226(10)	2.208(10)	2.201(4)	2.214(5)	2.226(6)
Ángulos						
Os(3)-Os(1)-Os(2)	58.364(19)	59.181(18)	59.108(14)	58.917(8)	59.243(8)	59.507(14)
Os(1)-Os(3)-Os(2)	63.76(3)	62.790(18)	62.965(15)	62.788(7)	62.901(10)	62.581(14)
Os(3)-Os(2)-Os(1)	57.87(3)	58.029(18)	57.927(15)	58.295(7)	57.856(8)	57.913(12)
C(5)-Os(2)-Os(1)	121.0(4)	119.7(4)	119.1(3)	121.16(15)	117.2(2)	118.6(3)
C(4)-Os(2)-N(1)	172.8(4)	173.5(5)	176.6(4)	174.12(18)	176.5(2)	177.2(4)
C(2)-Os(1)-Sn(1)	86.5(4)	83.0(5)	83.8(3)	86.79(15)	81.05(18)	84.9(3)
C(1)-Os(1)-Sn(1)	82.7(4)	85.1(4)	83.5(3)	84.73(14)	85.26(18)	83.3(3)

Tabla 6. Distancias seleccionadas de enlace (Å) y ángulos ([°]) para 2a, 3, 6, 7, 8 y 9

.

.

42

ş

El enlace Os(1)-Sn(1) en los compuestos 2a, 3 y 6 - 9 presenta valores de longítud de enlace en el intervalo de 2.6847(4) - 2.7021(8) Å (tabla 6) que son similares a los valores descritos en compuestos comparables: 2.653(1) Å en [Os₁(µ-H)(µ₁-S)(µ₁- SCH_2)(CO)₇(PMe₂Ph)(SnMe₃)],⁴⁹ v 2.711(1)Å ел el compuesto trans-[Os(CO)₄(SnPh₃)₂].⁵⁰ Incluso las distancias son comparables a las encontradas para moléculas en las cuales el estaño forma un puente entre dos átomos de osmio.^{3b. 7} Los carbonilos alrededor del fragmento Os(CO)₃(SnR₃) en los compuestos 2a, 3, 6, 7, 8 y 9 presentan el denominado "efecto sombrilla" encontrado en derivados dinucleares M-Sn (M = metal de transición) donde se muestra la tendencia de los carbonilos a inclinarse hacia el átomo de estaño, que se pensaba era para ocupar espacio de manera eficiente.^{\$1} Este comportamiento en los compuestos 2a, 3, 6, 7, 8 y 9 se ve reflejado en los ángulos de enlace C(1)-Os(1)-Sn(1) y C(2)-Os(1)-Sn(1) que se encuentran alrededor de 83° (tabla 6). Este tipo de valores es similar a los previamente descritos para compuestos que contienen silicio o estaño en la estructura del cúmulo.⁹⁶ El efecto sombrilla, también ha sido asociado a los efectos electrónicos inherentes del grupo SnR3; de hecho, se espera que los grupos carbonilo se aproximen a estas regiones para maximizar el traslape de la densidad electrónica con el orbital molecular π^* sobre los carbonilos axiales⁵² como se observa en la figura 9.

Figura 9 Interacción propuesta que explica el "efecto sombrilla" ⁴⁶

Las distancias Os-CO en los compuestos 2a, 3, 6, 7, 8 y 9 se encuentran en los intervalos esperados de alrededor de 1.90 Å,⁴⁰ de hecho no existe un efecto apreciable en la distancia Os-CO en el carbonilo *trans* a la amina secundaria [Os(2) - C(4)] en ninguno de los compuestos.

En el caso del compuesto 2a las ligeras diferencias en la espectroscopia de IR y RMN heteronuclear se deben a que la única variación en la estructura es el grupo imino resultado de la activación del enlace α C-H de la pirrolidina (apéndice 1). Las distancias de enlace Os-Os y Os-Sn no se modifican de manera significativa en comparación con los compuestos 3, 6 - 9.

Figura 10 Diagrama ORTEP para el compuesto 6

Figura 11 Diagrama de empaquetamiento del compuesto 6

Figura 12 Diagrama ORTEP para el compuesto 7

Figura 13 Diagrama de empaquetamiento del compuesto 7

Figura 14 Diagrama ORTEP para el compuesto 8

Figura 15 Diagrama de empaquetamiento del compuesto 8

Figura 16 Diagrama ORTEP para el compuesto 9

Figura 17 Diagrama de empaquetamiento del compuesto 9

Interacciones intramoleculares

El enlace por puente de hidrógeno es una de las principales fuerzas de cohesión en cristales moleculares de compuestos orgánicos, organometálicos y de tipo inorgánico. Es bien conocido que esta interacción juega un papel importante en la determinación de la conformación de ácidos nucleicos, proteínas y polisacáridos.⁵³

En sistemas organometálicos, la formación de puentes de hidrógeno, del tipo XH HM (X = O, N; M = Os) son tan importantes que dirigen y estabilizan la estereoquímica del ligante en el cúmulo carbonílico. Por ejemplo, En los cúmulos $[H(\mu-H)Os_3(CO)_{11}(HN=CPh_2)]^{12b}$ y $[H(\mu-H)Os_3(CO)_{11}(NHEt_2)]^{54}$ el ligante axial, imino o amino, en principio podría presentarse en dos formas isomericas, *cis* o *trans* al hidruro terminal, de cualquier forma solo se observa el producto *cis* como producto único esto como resultado de la formación de un puente de hidrógeno intramolecular (figura 18).

Figura 18 Interacción NH HOs

En los compuestos 6, 7, 8 y 9 se observa una interacción intramolecular similar, N-H^{···} O entre la amina secundaria coordinada al átomo de osmio y el oxígeno del carbonilo vecino que actúa como aceptor (figura 19). Esta interacción juega un papel importante en la estabilización de la amina secundaria en posición axial en el cúmulo carbonílico, recordando que la distancia de enlace Os–N en estos compuestos es relativamente larga lo que implica una coordinación débil de acuerdo con lo descrito previamente por Raithby P.^{29a}

Figura 19 Interacción NH · OC-M

Las distancias d(D-H) y ángulos <(NHO) determinados para esta interacción en los compuestos 6 - 9, (tabla 7) se encuentran en intervalos similares al de la interacciones NH ... O de amidas primarias y secundarias con grupos carbonilos.⁵³

Tabla 7. Características de la interacción intramolecular.

Distancias en Å y ángulos en grados para 6, 7, 8 y 9.

N()	l)-H(I)C)(7)
-----	-------	-----	------

	6	7	8	9
d(N-H)	0.78(12)	0.72(4)	0.89(4)	0.68(8)
d(H O)	2.71(13)	2.50(5)	2.41(4)	2.45(9)
d(N O)	3.177(15)	3.074(6)	3.165(6)	3.004(9)
<(NHO)	120(11)	138(5)	142(4)	147(11)

Interacciones intermoleculares

El papel jugado por las interacciones C-H \cdots O en compuestos organometálicos, al determinar la estabilidad de la estructura molecular, es bien conocida y existe evidencia de que las interacciones C-H \cdots X (X = O, N, S, Cl y algunas veces Fluor) dirigen los procesos de nucleación de la estructura cristalina, además de que se ha determinado que estas interacciones, C-H \cdots O, son favorecidas en sistemas organometálicos donde los grupos CH y CO son abundates. Una característica importante de esta interacción es que es totalmente direccional con un ángulo <CO H, alrededor de 140°. ⁵⁵

En el análisis de los diagramas de empaquetamiento de las estructuras 2a, 3, y 5-9 se observó la presencia de la interacción C-H \cdots O, en términos generales las interacciones intermoleculares se encuentran entre los oxígenos de los carbonilos y los hidrógenos de la amina secundaria.⁵⁶ Por ejemplo, para el compuesto 6 este tipo de interacciones intermoleculares presentan los siguientes valores : d(C-H12c \cdots O2) = 2.65 Å y d(C-H12b \cdots O6) = 2.69 Å con ángulos de enlace <(CHO) = 136° y 120° respectivamente (figura 20). Para el compuesto 8 la interacción se presenta con el siguiente valor d(C-H14b \cdots O8) 2.62 Å y <(CHO) = 140° Los compuestos 2a, 3, 7, 8°CHCl₃ y 9 presentan interacciones similares. Como se puede observar los valores corresponden a lo esperado, es decir valores menores a 2.80 Å y ángulos alrededor de 140°. ^{55a}

En las figuras 11, 13, 15 y 17 se presentan los diagramas de empaquetamiento para los cúmulos carbonílicos 6, 7, 8 y 9.

Figura 20 interacción C-H ··· O en la red cristalina del compuesto 6

.

Capítulo 2. Análisis de la reactividad del decacarbonil-(μ-hidruro)(piperidina)(trimetilestanil)triosmio (8).

Antecedentes

Como se pudo observar de la información espectroscópica y estructural para los cúmulos carbonílicos $[HOs_3(CO)_{10}(R'NH)(SnR_3)]$ 1 – 10, todos comparten características similares, por esta razón se eligió solo uno de ellos para el análisis de la reactividad. Se elige el compuesto 8, por ser uno de los que se obtiene en un mejor rendimiento, para analizar la reactividad del enlace Os-N y Os-Sn de estos compuestos. El esquema 13 presenta la reactividad general encontrada frente a moléculas donadoras pequeñas como: monóxido de carbono, dimetilfenilfosfina y el acetileno.

Esquema 13 Diagrama de reactividad del compuesto 8.

2.1 Reactividad

Un tópico actual en la química de cúmulos carbonílicos es la posibilidad de que el centro metálico modifique la reactividad del ligante coordinado. Este hecho ha sido demostrado en los derivados de $[(\mu-H)Os_3(CO)_9(\mu_3-\eta^2-C_9H_5(R)N)]$ (R = algún sutituyente en la posición 3-, 4-, 5-, y 6- del anillo de la quinoleína) frente a diversos nucleofílos.⁵⁷ Con base en esta posibilidad, se han desarrollado una gran cantidad de investigaciones referentes a cúmulos carbonílicos de osmio y ligantes N-heterociclicos como: quinoleínas, pirazoles, imidazoles o pirroles.

En contraparte, la química de cúmulos carbonílicos con aminas alifáticas coordinadas de forma σ N-M es muy rara, algunos ejemplos de este modo de coordinación en cúmulos carbonílicos son: para R'NH = dimetilamina, pirrolidina, piperidina, morfolina y tiomorfolina en los compuestos [HOs₃(CO)₁₀(HE)(SnR₃)] descritos en este trabajo⁵⁸ para trimetilamina en [Os₃(μ -H)(CO)₉(NMe₃)(μ -COC₄H₄N)]^{29a} y [Os₃(CO)₉(NO₂)(NMe₃)],^{29b} para isopropilamina en [Os₃(CO)₉(NH₂Prⁱ)(μ ₂-CONHPrⁱ)(μ ₂-C=NHPH)]^{12a} y para el grupo NH₂R en [Ru₃(μ -H)(μ - η ²-SCH₂CH₂NH₂)(CO)₉].⁴¹

El hecho de que este modo de coordinación σ N-M en cúmulos carbonílicos sea poco frecuente, puede ser debido a que la presencia de más de un centro metálico en la estructura del compuesto permite que la amina encuentre diferentes posibilidades de reaccionar con los centros metálicos adyacentes. A este respecto se ha informado que la reacción de aminas secundarias y cúmulos carbonílicos producen reacciones de transalquilación o activación del enlace α C-H en la amina alifática.³⁰

Por otra parte se ha analizado la estabilidad del enlace Os-Sn en compuestos similares como $[Os_3(H)(CO)_{11}(SnPh_3)]$ frente a MeOH y PPh₃ a temperatura ambiente por varios días, en ambas reacciones se favorece la eliminación reductora del HSnPh₃ para producir los cúmulos trinucleares $[HOs_3(CO)_{10}(OH)]$ y $[Os_3(CO)_{11}(PPh_3)]$ respectivamente.⁸

2.2 Termólisis del decacarbonil-(µ-hidruro)(piperidina)(trimetilestanil)triosmio

La reacción de pirrolidina y $[Os_3(CO)_{10}(CH_3CN)_2]$ produce el cúmulo $[(\mu-H)(\mu-\eta^1-(NCH_2CH_2CH_2CH_2)Os_3(CO)_{10}]$ en un rendimiento del 7%, además del complejo μ -imidoilo $[(\mu-H)(\mu-\eta^1-(C=NCH_2CH_2CH_2)Os_3(CO)_{10}]$, en el que, se observa la activación del enlace α C-H de la pirrolidina.³⁰ La reacción de termólisis del primero compuesto produce cuantitativamente el complejo μ -imidoilo (esquema 14).

Esquema 14 Formación del complejo µ-imidoilo (se omiten los grupos CO por cuestión de claridad en la figura)

Tomando en consideración lo anterior se analizó la reacción del compuesto **8** en condiciones de termólisis utilizando tolueno. No se observó que en las condiciones de reacción utilizadas se de origen a la activación del enlace α C-H de la piperidina, como ocurre con la pirrolidina para el derivado descrito (esquema 14),³⁰ esto podría sugerir de manera general que el compuesto **8** no es un precursor directo de la activación del enlace α -C-H observada en el caso del compuesto **2a**. Sin embargo, debido a que no fue posible caracterizar el producto obtenido de la reacción de termólisis no se puede concluir de manera contundente este hecho.

La dificultad de caracterizar el producto de la termólisis fue debido a la baja solubilidad de este compuesto en disolventes comunes como Hexano, ciclohexano, CH_2Cl_2 , $CHCl_3$, tolueno, éter etílico, e incluso dimetilformamida. El espectro de

infrarrojo en pastilla presenta cuatro bandas en la región de carbonilos terminales IR (KBr) v(CO, cm⁻¹): 2096(d), 2051(h), 2011(f) 1942(m), aunque con esta información no es posible proponer una estructura para este compuesto.

En la literatura se encontró que existen compuestos similares $[Os_3(\mu-H)_3(CO)_{10}(SnMe_2H)]$ donde en la reacción de termólisis tampoco fue posible asignar una estructura al producto de reacción, en este caso a el producto obtenido se le agregó dimetilfenilfosfina.⁵⁹

,

2.3 Reactividad del decacarbonil-(μ-hidruro)(piperidina)(trimetilestanil)triosmio con monóxido de carbono.

El monóxido de carbono es uno de los ligantes utilizados para analizar la reactividad de cúmulos carbonílicos,^{2a} en general se ha descrito que la reacción de CO hacia el cúmulo insaturado $[(\mu-H)_2Os_3(CO)_{10}]$ es una reacción considerablemente lenta a temperatura ambiente que produce el cúmulo $[(\mu-H)(H)Os_3(CO)_{11}]$ en equilibrio con el $[(\mu-H)_2Os_3(CO)_{10}]$ y al elevar la temperatura se observa la pérdida de H₂ y la formación de $[Os_3(CO)_{12}]$.^{60a} En estado sólido se informan resultados similares.^{58b}

El compuesto **8** a condiciones de reflujo en ciclohexano, con un flujo vigoroso de CO en la solución, produce el compuesto $[(\mu-H)Os_3(CO)_{11}(SnMe_3)]$ **11**, (esquema 15) también se observaron trazas de dodecacarbonilo de triosmio $[Os_3(CO)_{12}]$ que resulta de sustitución del radical estanilo e hidruro por CO. En este caso, con fines de comparación, se utilizó el cúmulo carbonílico **6**; los resultados fueron muy similares a la reacción de **8** y CO, en las mismas condiciones se produce **11** y trazas de $[Os_3(CO)_{12}]$. A temperatura ambiente y flujo de CO no hay reacción, si bien en este caso la distancia de enlace Os-N para el compuesto **8** es relativamente larga, lo que se ha asociado a un enlace débil,^{28a} la amina secundaria (piperidina) se estabiliza a través de la formación de un puente de hidrógeno N-H ···· O como se describió previamente, lo que puede originar que a temperatura ambiente la sustitución por CO no ocurra.

Esquema 15 Reacción de 8 hacia CO

El compuesto **11** descompone a 100 grados centígrados antes de fundir. De acuerdo con la información en IR podemos observar que la simetría local de los grupos carbonilo alrededor del triángulo metálico aumenta con respectos a la simetría local de los carbonilos en el compuesto **8**; esto debido a que disminuyen las señales de vibración CO en la zona de carbonilos terminales en el espectro de IR de **11**.

El ion molecular m/z:1041 corresponde al esperado para el ion molecular de $Os_3C_{13}H_{10}O_{10}Sn$ y presenta un patrón isotópico característico del cúmulo carbonílico cuando hay estaño en la estructura del cúmulo, el proceso de fragmentación es similar al de los compuestos analizados previamente donde se observa la pérdida consecutiva de los grupos CO.

En espectro de RMN ¹H se observan sólo dos señales simples, la primera de ellas en $\delta = 0.86$ ppm que corresponde a los hidrógenos de los metilos del estaño, la segunda δ = -20.05 ppm que corresponde a un hidruro puente. En el espectro de RMN ¹³C se observan señales en $\delta = 177.88$, 174.78, 172.75, 171.58, 170.03 ppm que corresponden a los grupos carbonilo de la estructura, y un $\delta = -8.91$ ppm que, de acuerdo con el desplazamiento observado, corresponde a los carbonos de los metilos del estaño. En el espectro de RMN ¹¹⁹Sn se observa una señal simple en $\delta = -326.11$ ppm.

Los cúmulos trinucleares $[Os_3H(CO)_{11}(SnPh_3)]$ y $[Os_3H(CO)_{11}(Sn^nBu_3)]$ han sido previamente descritos⁸ y comparten características similares con los espectros de IR a las encontradas para el compuesto 11.

Comp.	IR v(CO)
$[Os_3H(CO)_{11}(SnPh_3)]$	2136(d), 2084(f), 2054(mf), 2030(m), 2020(m), 2002(f),
	1962(d)
$[Os_3H(CO)_{11}(Sn^nBu_3)]$	2136(d), 2083(f), 2053(mf), 2030(m), 2018(m),
	2000(f),1963(d)
$[(\mu-H)Os_3(CO)_{11}(SnMe_3)]$	2117 (m), 2073 (f), 2061 (f), 2031(f, ancha),
	1998(f), 1965(d)

 Tabla 8. Información de IR para 11 comparada con derivados similares.

En la tabla 8 podemos observar que existe un patrón similar en los espectros de IR; tres de estas bandas en el compuesto 11 se encuentran desplazadas y la banda en 2020 cm⁻¹ es muy ancha; sin embargo, de acuerdo con lo observado previamente en los espectros de IR de los compuestos 2 y 2a podemos asumir en términos generales que el derivado 11 comparte las características estructurales de los compuestos previamente descritos.⁸

Con base en esto y en la información espectroscópica se puede proponer que la estructura del compuesto **11** esta formada por el triángulo metálico de osmio con el estaño en posición axial, debido al efecto estérico del átomo de estaño. Aunque, el valor en frecuencias muy negativas $\delta = -326.11$ no coincide con el intervalo que se ha estado observando para derivados de Sn(IV) tetracoordinados –48 a –68 ppm, se ha descrito que en el compuesto [(CO)₄Os(Sn^tBu₂)]₂, el Sn(II) presenta un desplazamiento de –476.2 ppm en el espectro de RMN ¹¹⁹Sn.⁶¹ En el caso del compuesto **11** debido a las condiciones de reacción no se puede descartar la reducción del Sn(IV) a Sn(II).

De acuerdo con lo anterior y a las variaciones en el espectro de IR no se puede concluir que la estructura de 11, propuesta en el esquema 13, no presente modificaciones que sean las responsables de este comportamiento espectroscópico observado. Por lo que al igual que en la mayoría de los cúmulos carbonílicos es necesario crecer el monocristal del compuesto 11 para establecer la estructura molecular de este compuesto de manera inequívoca.

2.4 Reactividad del decacarbonil- $(\mu$ -hidruro)(piperidina)(trimetilestanil)triosmio con dimetilfenilfosfina

Los cúmulos carbonílicos sustituidos con fosfinas son de los más estudiados de una gran variedad de cúmulos carbonílicos de osmio. Una característica interesante de estos cúmulos es la tendencia de las fosfinas a ocupar sitios ecuatoriales con respecto al plano formado por el triángulo de osmio.⁶²

El método para incorporar fosfinas terciarias al cúmulo carbonílico consiste en la reacción de $[Os_3(CO)_{12}]$ con fosfinas terciarias PR₃ utilizando tolueno a reflujo de esta reacción se obtiene una mezcla de productos: mono sustituido $[Os_3(CO)_{11}(PR_3)]$, disustituido $[Os_3(CO)_{10}(PR_3)_2]$ y trisustituido $[Os_3(CO)_9(PR_3)_3]$ que pueden ser separados fácilmente en columna cromatográfica.⁶³ No existe evidencia de la formación de isómeros en la termólisis del cúmulo trinuclear de osmio y fosfinas terciarias. Aunque como se puede observar en el esquema 16, existe la posibilidad de isomería en la reacción con fosfinas y cúmulos carbonílicos.⁶⁴

Esquema 16 Tipos de isomería en la reacción de sustitución $\circ = CO$, $\bullet = PMe_2Ph$.⁶⁴

La reacción del compuesto 8 en presencia de PMe_2Ph a temperatura ambiente produce los compuestos [(μ -H)Os₃CO₁₀(PMe₂Ph)(SnMe₃)] 12,

 $[(\mu-H)Os_3CO_9(PMe_2Ph)_2(SnMe_3)]$ **13** y $[(\mu-H)Os_3CO_9(PMe_2Ph)_3]$ **14** dependiendo de la relación estequiométrica (esquema 17).

Esquema 17 Reacción de 8 con dimetilfenilfosfina

La reacción de 8 en presencia de dimetilfenilfosfina a temperatura ambiente en una relación estequiométrica 1:1 produce el cúmulo $[(\mu-H)Os_3CO_{10}(PMe_2Ph)(SnMe_3)]$ 12, resultado de la sustitución de la piperidina del compuesto 8 por una fosfina.

El compuesto **12** es un sólido amarillo que descompone en solución si hay presencia de humedad; esto se observó en el proceso de cristalización (3 semanas) debido a que se obtuvieron cristales que correspondieron al compuesto [OsH(OH)(CO)₉(PMe₂Ph)] previamente descrito por Deeming A. J. *et al.*⁶⁵

La caracterización espectroscópica del compuesto **12**, se lleva a cabo por las técnicas previamente utilizadas en el espectro de IR se definen tres bandas anchas 2090(d), 2050(m) y 2012 (d); la última de ellas presenta dos hombros que no logran definirse en 1960 y 1940 cm⁻¹ debido a esto no se asume nada respecto a la simetría de los grupos CO alrededor del triángulo metálico.

En espectro de masas (FAB⁺) el ion molecular corresponde a un m/z = 1139 (-CH₃) que corresponde a la formula del cúmulo [HOs₃CO₁₀(PMe₂Ph)(SnMe₃)] menos un grupo CH₃, el proceso de fragmentación continua con la pérdida consecutiva de grupos CO.

En el espectro de RMN ¹H a temperatura ambiente se observaron las señales características de los grupos fenilo, $\delta = 7.53$, y metilos $\delta = 2.80$, 2.25 de la dimetilfenilfosfina además de una señal simple en $\delta = 0.46 (J_{\rm H}^{1}-{}^{117/119}{}_{\rm Sn} = 48 \text{ Hz})$ que corresponde a los metilos del radical trimetilestanilo; en la zona de los hidruros metálicos se observaron dos de señales dobles en -18.46 (${}^{2}J_{\rm H}^{1}{}_{\rm H}^{31}{}_{\rm P} = 12 \text{ Hz}$) y -19.71 (${}^{2}J_{\rm H}^{1}{}_{\rm H}^{31}{}_{\rm P} = 12$ Hz) de intensidades relativas 1:5 (figura 21). Se han descrito desplazamientos y constantes de acoplamiento similares para cúmulos carbonílicos del tipo [H(μ -H)Os₃(CO)₁₀(fosfina)] (fosfina = PHEt₂, PH₂Ph, PHPh₂).⁶⁶

Figura 21 Ampliación del espectro de RMN ¹H del compuesto 12
En la figura 21, se presenta la ampliación del espectro de RMN¹H del compuesto 12, recientemente se ha descrito un espectro similar para el compuesto $[(\mu-H)Os_3(SiMe_2Et)(CO)_9(\mu-dppm)]$ (dppm = 1, 2- bis(difenil)fofinametano) como resultado de los efectos dinámicos favorecidos a temperatura ambiente de hidruro puente.⁶⁷

En el espectro de RMN ³¹P se observan también dos señales $\delta = -41.04$, -42.80, ppm con intensidades relativas aproximadamente de 1:5 de acuerdo con esta información y lo discutido previamente en el espectro de RMN ¹H en la zona de los hidruros, se propone la presencia de isómeros estructurales, que existen en disolución a temperatura ambiente para el compuesto **12**. De acuerdo a las constantes de acoplamiento J_{HP} observadas en el espectro de RMN ¹H se propone que la disposición de los grupos trimetilstanilo e hidruro deben sean muy similares (esquema 18).

12

Esquema 18 Reacción de **8** con PMe₂Ph. Relación estequiometrica 1:1

En el espectro de RMN ¹³C se observan los carbonos esperados para los sustituyentes de la fosfina δ = 136.06, 135.32, 131.30, 129.35, 128.57 ppm del grupo fenilo δ = 21.53, 21.16 ppm para los metilos y en δ = -6.08 ppm los metilos del estaño.

Se observan seis señales en δ = 191.09, 185.20, 175.68, 173.68, 171.16, 169.27 para los carbonilos de los grupos CO. En el espectro de RMN ¹¹⁹Sn sólo se observa una señal simple en -86.22 ppm.

De acuerdo con la espectroscopia analizada se observa que la reacción del compuesto 8 con una relación estequiométrica 1:1 de dimetilfenilfosfina produce la sustitución de la piperidina por una fosfina para generar el compuesto 12.

El compuesto 12 cocristaliza como dos moléculas independientes, 12A y 12B, en una unidad asimétrica, las distancias de enlace y ángulos de enlace seleccionados se presentan en la tabla 9. En la figura 22 se presenta el diagrama ORTEP para la molécula 12B.

Figura 22 Diagrama ORTEP para el compuesto 12B

	12A		
Distancias		Ángulos	
Os(1)-Os(2)	2.9000(5)	Os(2)-Os(1)-Os(3)	57.758(12)
Os(1)-Os(3)	3.0164(5)	Os(2)-Os(3)-Os(1)	59.078(12)
Os(2)-Os(3)	2.8592(5)	Os(3)-Os(2)-Os(1)	63.164(12)
Os(1)-P(1)	2.346(3)	C(8)-Os(3)-Sn(1)	89.6(3)
Os(3)-Sn(1)	2.6850(7)		
	12B		
Distancias		Ángulos	
Os(4)-Os(5)	3.0186(5)	Os(6)-Os(4)-Os(5)	59.104(12)
Os(4)-Os(6)	2.8578(5)	Os(6)-Os(5)-Os(4)	57.685(12)
Os(5)-Os(6)	2.9017(5)	Os(4)-Os(6)-Os(5)	63.211(12)
Os(5)-P(2)	2.347(2)	C(13)-Os(4)-Sn(2)	84.1(3)
Os(4)-Sn(2)	2.6751(7)		

 Tabla 9. Distancias seleccionadas de enlace (Å) y ángulos (°) para 12

La diferencia entre las dos moléculas **12A** y **12B** es que la estructura A presenta mayor desorden, Sin embargo, se puede observar en la tabla 9 que ambas moléculas comparten características similares en distancias y ángulos de enlace.

Es interesante observar que en el compuesto **12** se presentan los grupos SnMe₃ y PMe₂Ph en posición *cis* en la estructura del cúmulo carbonílico, aun cuando se presentaría menor repulsión estérica en la estructura *trans* (Esquema 19).

Esquema 19 Isoméros cis y trans del cúmulo de osmio.

La distancia de enlace más larga M – M en la estructura del cúmulo se presenta entre los átomos de Os(1) - Os(3) y Os(4) - Os(5) esto debido a la presencia del hidruro metálico en la estructura. En este caso los ángulos de enlace *cis* al hidruro, Sn(1) - Os(3) - Os(1) = $120.21(2)^{\circ}$, Sn(2) – Os(4) – Os(5) = $114.82(2)^{\circ}$, P(1) – Os(1) – Os(3) = $111.67(6)^{\circ}$ y P(2) –Os(5) – Os(4) = $115.11(6)^{\circ}$, son los que presentan los valores de ángulo mayores, esto se asocia directamente a la presencia del hidruro,⁴⁶ Aunque, para este caso en particular, no se pueden descartar los efectos de volumen de ambos sustituyentes SnMe₃ y PMe₂Ph.

En ambas moléculas la distancia Os-P es la misma Os(1)-P(1) = 2.346(3) Å y Os(5)-P(2) 2.347(2) Å. Una característica adicional de estas estructuras es la distancia Os(1)-Os(2) = 2.9000(5) Å y Os(5)-Os(6) = 2.9017(5) Å que son distancias que se encuentran entre los valores esperados debido al efecto del enlace *cis* Os–P.^{60a} La distancia de enlace Os-Sn está en el intervalo de los valores descritos previamente^{48, 49, 3b,} ⁷ Os(3) – Sn(1) = 2.6850(7) que es ligeramente mayor a la distancia Os(4)-Sn(2) = 2.6751(7). En ambas moléculas se observa el efecto denominado "sombrilla" ^{50, 51} para los carbonilos adyacentes al átomo de estaño C(8)-Os(3)-Sn(1) = 89.6(3)°, C(9)-Os(3)-Sn(1) = 83.5(3)°, C(11)-Os(4)-Sn(2) = 83.0(3)°, C(13)-Os(4)-Sn(2) = 84.1(3)°. Debido a que en la síntesis del compuesto 12 se obtuvo como subproducto el compuesto 13 en muy bajo rendimiento, se incremento la relación estequiométrica, cúmulo: fosfina 1:8, para favorecer la formación del compuesto 13 (esquema 20).

Relación estequiométrica 1:8

La caracterización espectroscópica del compuesto 13, se lleva a cabo por las técnicas previamente utilizadas, en el espectro de IR se observan cuatro bandas anchas 2080(d), 2020(m), 1995 (f) y 1957 (m), no se observaron bandas en la región de carbonilos puente. En el espectro masas (FAB+) el ion molecular del compuesto 13 corresponde a un m/z = 1128 (- PMe₂Ph), también se observa la pérdida consecutiva de grupos CO.

En el espectro de RMN ³¹P se observan dos señales $\delta = -40.85$ ppm (d, $J_{P}^{31} - J_{P}^{31}$ = 10.8 Hz), -44.55 ppm (d, $J_{P}^{31} - J_{P}^{31} = 10.8$ Hz) que corresponden a dos átomos de fósforo en la estructura del cúmulo carbonílico a diferencia de las señales observadas en el espectro de RMN ³¹P en el compuesto **12**, las señales observadas en el espectro de ³¹P para el compuesto **13** presentan la misma intensidad.

En el espectro de RMN ¹¹⁹Sn se observa una señal simple en -99.60 ppm.

Para el compuesto **13** se lograron crecer monocristales, de baja calidad cristalográfica, pero la colección de datos hay pérdida de disolvente. Aunque se pudo obtener información sobre la conectividad y distancias de enlace (figura 23).

Figura 23 Estructura molecular del compuesto 13

Tabla 10.	Distancias	seleccionadas	de enlace	(Å) v	ángulos	(°) para	13
Labla IV.	Distancias	sereceronadas	ue entuee	(4))	ungulos	() puru	10

	13
Distancias	
Os(1)-Os(2)	2.8973 (14)
Os(1)-Os(3)	2.8905(14)
Os(2)-Os(3)	3.034(16)
Os(1)-P(1)	2.3257(73)
Os(2)-P(2)	2.3379(69)
Os(3)-Sn(1)	2.6726(21)

Como se observa en la tabla 10, las distancias están en los intervalos esperados, aunque la desviación estándar es alta debido al problema planteado anteriormente. Al igual que el compuesto **12**, en la estructura del compuesto **13** se observa la estructura con mayor impedimento estérico donde los grupos dimetilfenilfosfina y trimetilestaño están en posición *cis*, esquema 21.

Esquema 21 Posibilidades de arreglos de los grupos dimetilfenilfosfina y trimetilestaño en el cúmulo de osmio 13

Las distancias de enlace, aun cuando la desviación estándar es alta, estan dentro de los intervalos observados previamente para el compuesto **12**. La distancia mas larga Os(2) - Os(3) = 3.034 (16) Å en el compuesto **13**, esta asociada a la presencia del hidruro que forma el puente entre los dos átomos de osmio. Las distancias Os(1) -P(1) = 2.3257(73) y Os(2)-P(2) = 2.3379 Å están en los intervalos observados previamente.⁶⁰ La distancia Os(3)-Sn(1) = 2.6726(21) es muy similar a las distancias Os-Sn previamente descritas.

Como se menciono anteriormente existe la posibilidad de obtener los derivados trisustituidos por dimetilfenilfosfina como producto de la reacción entre $[Os_3(CO)_{12}]$ y dimetilfenilfosfina considerando esto se realizó la reacción del cúmulo **8** con dimetilfenilfosfina utilizando un exceso de fosfina aprox. (15 equivalentes) con lo que fue posible obtener el cúmulo **14** (esquema 22).

Esquema 22 Reacción de **8** frente a PMe₂Ph. (Utilizando un exceso, 15 equivalentes, de fosfina)

El compuesto **14** se encuentra descrito en la literatura.⁶¹ Las características espectroscópicas concuerdan con lo esperado. En el espectro de IR se observan sólo dos bandas anchas v(CO) 1973 (mf), 1934 (m) lo que indica que la simetría local alrededor del triángulo de osmio es alta en comparación con la del precursor, el compuesto **8**. En el espectro de RMN ¹H presenta señales en la zona de protones aromáticos 7.48 ppm, y los metilenos de la fosfina 2.10 y 2.07 ppm. No se observan señales en la región de los hidruros metálicos. El espectro de RMN ¹³C presenta sólo una señal simple de baja intensidad en la zona de los carbonilos unidos a metal 195.63 ppm. En el espectro de RMN ³¹P se observa una señal simple en –48.10 ppm.

En este caso fue posible crecer cristales adecuados párale análisis por difracción de rayos X, se menciona que auque se conoce las características espectroscópicas de 14, la estructura de este compuesto no se ha descrito en la literatura.

El compuesto 14 cocristaliza como dos moléculas independientes 14A y 14B en una unidad asimétrica (Figura 24), las distancias de enlace y ángulos de enlace seleccionados se presentan en la tabla 11 y en la figura 25 se presenta el diagrama Ortep de la estructura 14A.

Figura 24 Moléculas 14A y 14B

Figura 25 Diagrama ORTEP para el compuesto 14A

The second spin device second a second	14A		
Distancias		Ángulos	
Os(1)-Os(3)	2.8836(4)	Os(3)-Os(1)-Os(2)	59.980(10)
Os(1)-Os(2)	2.8935(4)	Os(3)-Os(2)-Os(1)	59.839(9)
Os(2)-Os(3)	2.8877(4)	Os(1)-Os(3)-Os(2)	60.180(9)
Os(1)-P(1)	2.3450(18)		
Os(2)-P(2)	2.3358(19)		
Os(3)-P(3)	2.3251(18)		
Distancias		Ángulos	
	14B		
Os(4)-Os(6)	2.8831(4)	Os(6)-Os(4)-Os(5)	60.080(9)
Os(4)-Os(5)	2.8913(4)	Os(6)-Os(5)-Os(4)	59.819(9)
Os(5)-Os(6)	2.8907(4)	Os(4)-Os(6)-Os(5)	60.101(10)
Os(4)-P(4)	2.331(2)		
Os(5)-P(6)	2.3296(18)		
Os(6)-P(5)	2.3408(19)		

Tabla 11. Distancias seleccionadas de enlace (Å) y ángulos (°) para 14

En la tabla 11, se puede observar que ambas moléculas 14A y 14B comparten características similares, la diferencia entre las dos estructuras es la orientación del grupo aromático de la fosfina alrededor del triángulo de osmio en ambas forma un rehilete, sin embargo, el giro es lo que las hace diferentes (Figura 24). En ambos casos, se observa que las moléculas 14A y 14B presentan un triángulo metálico Os_3 más simétrico que los derivados previamente descritos, las distancias Os-Os observadas corresponden a los

valores de un cúmulo cerrado (descrito de esta forma porque las distancias M-M son casi iguales) con valores en el intervalos de 2.88 a 2.89 Å. Las distancias Os-P están alrededor de 2.33 Å (distancia promedio).

Las características estructurales del compuestos 14 son similares a las de su análogo de rutenio [Ru₃(CO)₉(PMe₂Ph)₃].^{60c}

,

2.5 Reactividad de Decacarbonil- $(\mu$ -hidruro)(piperidina)(trimetilestanil)triosmio con difenilacetileno

La síntesis de cúmulos carbonílicos con alquinos (RC=CR') como sustituyentes se ha desarrollado continuamente, debido al interés en la activación del enlace C=C sobre la superficie metálica de catalizadores.⁶⁸

Varios factores afectan la naturaleza del producto de reacción entre el cúmulo carbonílico y el alquino, por ejemplo, la activación térmica del $M_3(CO)_{12}$ (M = Fe, Ru, Os) con alquinos disustituidos produce derivados mononucleares, dinucleares, trinucleares y tetranucleares, en el caso particular de osmio, en que, el enlace M - M es más fuerte, los productos favorecidos son trinucleares. Algunos de los subproductos de reacción involucran la polimerización del alquino y la interacción con uno o más de los carbonilos del cúmulo.⁶⁹

El compuesto 8 en presencia de difenilacetileno bajo condiciones de reflujo en ciclohexano da lugar a el compuesto 15; en el que se propone la pérdida del grupo trimetilestanilo de la estructura del cúmulo carbonílico como de la amina secundaria (piperidina) esquema 23.

Esquema 23 Reacción de 8 con difenilacetileno

El compuesto 15 presenta un espectro de IR con seis bandas de vibración CO similares al compuesto $[(\mu-H)Os_3(CO)_{10}(\mu-\eta^2-PhCH=CPh)]$ previamente descrito por Shapley J. R,⁷⁰ (Tabla 12).

Tabla 12. Información de IR para 15 comparada con $[(\mu-H)Os_3(CO)_{10}(\mu-\eta^2-PhCH=CPh)]$

Compuesto	IR v(CO)		
$[(\mu-H)Os_3(CO)_{10}(\mu-\eta^2-PhCH=CPh)]$	2102(m), 2062(f), 2050(m), 2024(f), 2005(m),		
	1994(m), 1982(d), 1955(md)		
15	2097 (m), 2072 (f), 2042 (f), 2023(f), 2005(f),		
	1983(m).		

El espectro de masas de este compuesto concuerda con lo observado en el espectro de IR el ion molecular m/z: 1031 se puede asignar al compuesto $[(\mu-H)Os_3(CO)_{10}((\mu-\eta^2-PhCH=CPh)]]$. Además de que se observa la pérdida consecutiva de diez grupos CO en el espectro. (Figura 26)

Figura 26 Espectro de masas FAB del compuesto 15

El espectro de RMN ¹H concuerda con lo esperado entre $\delta = 7.30 - 7.13$ ppm y 6.87 - 6.73 ppm, se observan las señales que corresponden a los protones de los grupos aromáticos de la estructura, la señal del hidrógeno vinílico se observa en $\delta = 6.38$ ppm y el hidruro en $\delta = -18.72$ ppm.

Conclusiones

Se determinó que a partir de la reacción del dihidruro de decacarboniltriosmio y los aminoestanano R'N-SnR₃ se obtienen los derivados de fórmula general $[(\mu-H)Os_3(CO)_{10}(R'NH)(SnR_3)]$. (R'NH = dimetilamina, pirrolidina, piperidina, morfolina y tiomorfolina; R = Me, *n*Bu).

Se observó que las características del aminotrialquilestanano (i - x) empleado no influyeron en el tipo de compuesto obtenido, en todos los casos se observa que la adición oxidante del aminoestanano al cúmulo carbonílico conduce a cúmulos parecidos.

La amina secundaria (dimetilamina, pirrolidina, piperidina, morfolina y tiomorfolina) en todos los casos se coordina en posición axial al plano del triángulo formado por los átomos de osmio. Esta coordinación σ (N-M) para una amina alifática en un cúmulo carbonílico es poco común; sin embargo, en los compuestos sintetizados 1 – 10 este modo de coordinación fue el favorecido sobre la activación del enlace α C-H.

En el estudio de difracción de rayos x, en monocristal para los compuestos 2a, 3, 6, 7, 8 y 9 se analizaron las distancias de enlace Os – N, y no se observó alguna correlación con las características estericas y/o electrónicas de amina coordinada.

La amina secundaria se estabiliza en el cúmulo carbonílico en este modo de coordinación (σ N-M), al formar un puente de hidrógeno entre el hidrógeno del grupo NH y un oxígeno de un carbonilo axial del cúmulo carbonílico.

En el análisis de reactividad del compuesto **8** se observó que la pérdida de la amina secundaria en una reacción de sustitución es un proceso favorecido sobre la ruptura del enlace Os-Sn o Os-CO. De cualquier manera es posible introducir dos grupos L (donde L = CO o PMe₂Ph) en el cúmulo carbonílico de osmio-estaño. Por ejemplo, en condiciones de reflujo en ciclohexano se observa la pérdida del hidruro puente y del trimetilestanilo para generar el dodecacarbonilo de triosmio. A temperatura ambiente

76

usando dimetilfenilfosfina se observa la descarbonilación en lugar de la ruptura del enlace Os-Sn para formar el derivado disustituido por dimetilfenilfosfina.

	d (Os-Sn) (Å)	RMN ¹¹⁹ Sn
		δ(ppm)
8	2.6953(5)	-68.22
12	2.6850(7)	-88.22
13	2.6727(21)	-99.00

Por último, también fue posible hacer una correlación entre la distancia de enlace Os-Sn y el desplazamiento de ¹¹⁹Sn para algunos compuestos:

Como se observa conforme disminuye la distancia de enlace Os-Sn en la estructura molecular del compuesto, el desplazamiento en RMN¹¹⁹ Sn se desplaza hacia frecuencias más bajos, lo que es resultado de un mejor traslape entre los orbitales moleculares del átomo de estaño y el átomo de osmio que conduce a una mejor comunicación de la densidad electrónica.

Sección experimental.

Datos Generales: Todos los experimentos se llevaron a cabo en atmósfera de nitrógeno (a menos que se especifique lo contrario) usando la técnica Schlenk.

Los disolventes utilizados (hexano, diclorometano, éter etílico, tetrahidrofurano, decahidronaftaleno, metanol y etanol) se purificaron, destilaron y secaron de acuerdo con los procedimientos descritos en la literatura.⁷¹ Las aminas (piperidina, pirrolidina, morfolina y tiomorfolina) fueron secadas y destiladas sobre sodio metálico de acuerdo a la metodología previamente descrita;⁶⁵ la dimetilamina se condensó y recibió sobre KOH en un tubo Schlenk y se utilizó inmediatamente. Los cloruros de trialquilestaño fueron adquiridos de la casa comercial Aldrich.

Las reacciones fueron seguidas por cromatografía de capa fina y los productos de reacción fueron purificados en cromato folios (Merck Kieselgel 60 F_{254} -2mm) y/o en columna de gel de sílice 70-230, utilizando mezclas de disolventes como fase móvil.

Los espectros de IR fueron obtenidos de un espectrofotómetro Nicolet-750 utilizando soluciones de ciclohexano, CH₂Cl₂ o CCl₄ de acuerdo a la solubilidad de la muestra. Los espectros de RMN (heteronuclear) fueron obtenidos en un espectrofotómetro Jeol GX 300, utilizando las siguientes frecuencias ¹H (300 MHz), ¹³C (75 MHz), ¹¹⁹Sn (112 MHz). Los espectros de masas FAB e IE, fueron obtenidos en un espectrómetro Jeol JMS-SX102A utilizando alcohol *m*-nitrobencílico como matriz y en un JEOL JMS-AX505 HA a 70 eV, respectivamente. Los análisis elementales fueron determinados por Galbraith Laboratory, Inc. EEUU.

Determinación por difracción de rayos X en monocristal. Se obtuvieron cristales de la calidad adecuada para los compuestos 2a, 3, 5, 6, 7, 8 y 9 por el método de difusión lenta, en una mezcla de *n*-pentano-éter etílico (1:1) sobre una solución saturada en diclorometano del cúmulo carbonílico a -4 °C. El compuesto 8*CHCl*₃ se obtuvó por evaporación de la solución en CDCl₃ en el tubo de resonancia a -4°C. Los compuestos 11 y 12 se crecieron utilizando el método de difusión lenta de *n*-pentano sobre una solución de CHCl₃ y/o CH₂Cl₂ a -4 °C. El compuesto 14 se obtuvó por evaporación lenta de una solución de éter etílico a temperatura ambiente. Las determinaciones, de difracción de rayos X, se llevaron a cabo en un espectrofotómetro Bruker Smart Apex CCD con detector de área. Utilizando radiación monocromática de Mo K_{α} (0.71073 Å). Las estructuras de los compuestos fueron resueltas por métodos directos usando el programa SHELXS-97⁷² y refinadas por mínimos cuadrados (full matriz least-squares F2).

Métodos de Síntesis

a) Preparación de [Os₃(CO)₁₂]

En la primera parte del trabajo se obtuvo el *dodecacarbonilo de triosmio* de acuerdo a la metodología descrita.⁷³ En un autoclave con 20 ml de alcohol etílico (recién destilado) se agrego 1g de tetraóxido de osmio, después de cerrar el sistema se cargó con monóxido de carbono aproximadamente a 80 atm y se calentó a 175 °C utilizando un baño de aceite; el sistema se agitó mecánicamente por 7 horas. Después de enfriar (aprox. 12 h) se elimina la presión de monóxido restante del autoclave. Los cristales amarillos de *decacarbonilo de triosmio* se separan de la solución por filtración y se lavan tres veces con metanol frío. El producto obtenido es secado al vacío durante tres horas.

IR (ciclohexano), v(CO) 2070(f), 2036(f), 2003(f). Rto = 50%

Nota 1. El Os₃(CO)₁₂ también fue adquirido de la casa comercial Aldrich.

b) Preparación de $[(\mu-H)_2Os_3(CO)_{10}]$

A partir de la metodología descrita por Kaez et al.⁷⁴ se obtuvo el *dihidruro de decacarbonilo de triosmio*. 0.2 g de dodecacarbonilo de triosmio se colocaron en un matraz de tres bocas; en la boca central se coloca un refrigerante o una columna Vigreux, el termómetro se coloca en la segunda entrada y, por último la tercera se sella con un tapón abatible por el cual se burbujea hidrógeno. Se agregan aprox. 35 mL de decalina (decahidronaftaleno) y se calienta a 120 °C, conforme transcurre la reacción el color va tornándose rojizo después de 4 horas se obtiene una solución rojo-oscuro. La solución se deja enfriar a temperatura ambiente y se coloca en un matraz de una boca para destilar el disolvente a presión reducida. El sólido obtenido es purificado en una columna de gel de

ESTA TESIS NO SALE 79 DE LA BIBLIOTECA sílice 70-230, eluyendo con hexano, la fracción de color purpura corresponde al producto esperado el Dihidruro de decacarbonilo de triosmio. IR (ciclohexano) v(CO) 2074(f), 2063(m), 2024(f), 1990(d), Rto = 70%

Nota 2. Los rendimientos de la reacción son sensibles al aumento o disminución de la temperatura (+/- 10 °C), por esa razón es necesario verificar la temperatura durante todo el tiempo de reacción para controlar las ligeras variaciones que puedan ocurrir. **Nota 4**. Se puede calentar la solución ligeramente durante la destilación alrededor de 30-35 °C; sin embargo, se encontró que el calentamiento por arriba de esta temperatura causa que parte del producto descomponga durante este procedimiento por lo que se recomienda no calentar y destilar a vacío.

c) Preparación de los aminoestananos [R'N-SnR₃]

De acuerdo con la metodología descrita por Lappert y Jones³¹ se obtuvieron los siguientes compuestos:

(*Dimetilamino*)tributilestanano (i) RMN ¹H (CDCl₃) $\delta = 2.34$ (s, 6H), 1.57 (m, 6H), 1.27 (m, 12H), 0.84 (t, 9H). RMN ¹³C (CDCl₃) $\delta = 38.66, 28.28$ (J^{13}_{C} .^{117/119}_{Sn}= 29.7 Hz), 27.27 (J^{13}_{C} .^{117/119}_{Sn} = 60.5 Hz), 13.56, 13.07 (J^{13}_{C} .^{117/119}_{Sn} = 322.7 Hz). RMN ¹¹⁹Sn (CDCl₃) $\delta = 58.64$.

(*Piperidinil*)*tributilestanano (ii*): RMN ¹H (CDCl₃) δ = 2.78 (s, 4H), 1.65 (m, 6H), 1.52 (s, 6H), 1.33 (m, 12H), 0.90 (m, 9H). RMN ¹³C (CDCl₃) δ = 47.35, 28.12, 27.19, 25.15, 16.41, 13.63, 13.12 ($J^{13}C^{-117/119}$ sn = 329.7 Hz). RMN ¹¹⁹Sn (CDCl₃) δ = 58.18.

(*Pirrolidinil*)tributilestanano (iii): RMN ¹H (CDCl₃) δ = 2.75 (m, 4H), 1.58 (m, 10H), 1.26 (m, 12H), 0.83 (m, 9H). RMN ¹³C (CDCl₃) δ = 47.04, 28.26 ($J_{C}^{13}C_{17/119}s_{n}$ = 19.4 Hz), 27.27 ($J_{C}^{13}C_{17/119}s_{n}$ = 61.7 Hz), δ = 25.53, 13.51, 13.07 ($J_{C}^{13}C_{17/119}s_{n}$ = 330.7). RMN ¹¹⁹Sn (CDCl₃) δ = 58.59. (*Morfolinil*)tributilestanano (iv): RMN ¹H (CDCl₃) δ = 3.65 (m, 4H), 2.84 (m, 4H), 1.51 (m, 6H), 1.28 (m, 6H), 0.97 (t, 6H,), 0.87 (m, 9H). RMN ¹³C (CDCl₃) δ = 68.22, 46.62, 28.25 (J_{C}^{13} = 17.2 Hz), 27.34 (J_{C}^{13} = 17.2 Hz), 16.43 (J_{C}^{13} = 17.2 Hz), 17.14 (J_{C}^{13} = 62.7 Hz), 16.43 (J_{C}^{13} = 17.2 Hz), 13.76. RMN ¹¹⁹Sn (CDCl₃) δ = 58.79.

(*Tiomorfolinil*)*tributilestanano (v*): RMN ¹H (CDCl₃) δ = 3.22 (m, 2H), 3.09 (m, 2H), 2.57 (m, 2H) 2.43 (m, 2H), 1.62 (m, 6H), 1.51 (m, 6H), 1.30 (m, 6H,), 0.90 (m, 9H). RMN ¹³C (CDCl₃) δ = 47.97, 47.85, 28.63, 28.40, 28.32 (J^{13}_{C} .^{117/119}_{Sn} = 89.6 Hz), 13.65, 13.15 (J^{13}_{C} .^{117/119}_{Sn} = 490 Hz). RMN ¹¹⁹Sn (CDCl₃) δ = 59.27.

(*Dimetilamino*)trimetilestanano (vi): RMN ¹H (CDCl₃) δ = 2.32 (s, 6H), 0.40 (s, 9H, J ¹_{H -} ^{119/117}_{Sn} = 52.12 / 54.39 Hz). RMN ¹³C (CDCl₃) δ = 38.64, -7.13 (J ¹³_C ^{117/119}_{Sn} = 366.2/348.0 Hz). RMN ¹¹⁹Sn (CDCl₃) δ = 127.9, 84.18.

(*Piperidinil*)*trimetilestanano (vii*): RMN ¹H (CDCl₃) δ = 2.71 (s, 4H), 1.42 (s, 6H), 0.40 (s, 9H). RMN ¹³C (CDCl₃) δ = 47.31, 27.16, 25.12, -7.17 ($J^{13}_{C^{-117/119}}$ sn = 329.7 Hz). RMN ¹¹⁹Sn (CDCl₃) δ = 128.1, 87.89.

(*Pirrolidinil*)*trimetilestanano (viii*): RMN ¹H (CDCl₃) δ = 2.76 (m, 4H), 1.57 (m, 4H), 0.22 (s, 9H, $J_{H_{-}}^{1/7/119}$ _{Sn} = 55 Hz). RMN ¹³C (CDCl₃) δ = 47.15, 25.54, -2.10 ($J_{C_{-}}^{13}$ ^{117/119}_{Sn} = 390.2/370.7 Hz). RMN ¹¹⁹Sn (CDCl₃) δ = 128.01.

(*Morfolinil*)trimetilestanano (ix): RMN ¹H (CDCl₃) $\delta = 3.46$ (m, 4H), 2.65 (m, 4H), 0.11 (s, 9H, $J_{H_{-}}^{I_{I7/119}}s_n = 55.77$ Hz). RMN ¹³C (CDCl₃) $\delta = 68.00$, 46.46, -2.19 (J_{C}^{13} C. ^{117/119} $s_n = 361.0$ Hz). RMN ¹¹⁹Sn (CDCl₃) $\delta = 127.46$.

(*Tiomorfolinil*)*trimetilestanano (x*): RMN ¹H (CDCl₃) δ = 3.10 (m, H), 2.59 (m, H), 0.32 (s, H, $J_{H}^{-117/119}$ _{Sn} = 54 Hz). RMN ¹³C (CDCl₃) δ = 47.99, 28.43, -2.00. RMN ¹¹⁹Sn (CDCl₃) δ = 128.48, 91.53. (*Dimetilamino*)trifenilestanano (xi): RMN ¹H (CDCl₃) δ = 7.44-7.27 (m, 15H), 2.41 (s, 6H). RMN ¹³C (CDCl₃) δ = 136.52, 129.48, 128.55, 38.87. RMN ¹¹⁹Sn (CDCl₃) δ = -87.75.

(*Piperidinil*)trifenilestanano (xii): RMN ¹H (CDCl₃) δ = 7.44-7.27 (m, 15H), 2.74 (s, 4H), 1.51 (s, 6H). RMN ¹³C (CDCl₃) δ = 136.86, 129.48, 128.55, 47.84, 27.24, 25.16. RMN ¹¹⁹Sn (CDCl₃) δ = -82.87.

(*Pirrolidinil*)*trifenilestanano (xiii*): RMN ¹H (CDCl₃) $\delta == 7.44-7.27$ (m, 15H), 2.84 (s, 4H), 1.68 (s, 4H). RMN ¹³C (CDCl₃) $\delta = 136.53$, 129.48, 128.56, 47.21, 25.62. RMN ¹¹⁹Sn (CDCl₃) $\delta = -82.83$.

(*Tiomorfolinil*)*trifenilestanano (xiv*): RMN ¹H (CDCl₃) $\delta == 7.44-7.27$ (m, 15H), 3.67 (m, 4H), 2.86 (m, 4H). RMN ¹³C (CDCl₃) $\delta = 136.52$, 129.19, 128.57, 68.20, 46.58. RMN ¹¹⁹Sn (CDCl₃) $\delta = -82.20$.

d) Preparación de los cúmulos carbonílicos [(µ-H)Os₃(CO)₁₀(R'NH)(SnR₃)]

La metodología se describe para el compuesto 1 y es similar para los compuestos Se colocaron 50 mg (0.058 mmol) de $[(\mu-H)_2Os_3(CO)_{10}]$ disuelto en 2-8. aproximadamente 60 mL de una mezcla de éter etílico-hexano (5:1). A esta solución se le agregaron aproximadamente 22 mg (0.058 mmol) de (dimetilamino)tributilestaño, la mezcla se agitó vigorosamente por 30 minutos a temperatura ambiente, con atmósfera de nitrógeno. Después de ese tiempo la muestra, se concentró utilizando presión reducida. La mezcla fue separada utilizando cromatografía en capa fina con n-hexano/diclorometano (3:1) como eluyente. En todos los casos se separó y caracterizó el producto mayoritario.

Nota 4. Un exceso del aminoestanano $R'NSnR_3$ permite que se forme un compuesto color café el que queda adherido al gel de sílice de la columna durante el proceso de purificación.

 $[(\mu-H)Os_3(CO)_{10}(HNMe_2)(SnBu_3)]$ (1)

Rendimiento = 33 %. Análisis calculado Para $C_{24}H_{35}NO_{10}Os_3Sn: C, 24.29; H, 2.97; N,$ 1.18. Encontrado: C, 24.41; H, 3.02; N, 1.21. p. f. = 93-95 °C. **FAB**(+) *m/z*: 1130 (M⁺ -2CO). **IR** (ciclohexano) *v(CO)* 2094 (m), 2053 (f), 2029 (f), 2015 (f), 1999 (f), 1982 (f), 1969 (f) 1935(d). **RMN** ¹H (CDCl₃) δ = 2.90 (m, 6H), 2.79 (s, 1H), 1.56 (m, 6H), 1.35 (m, 6H), 1.23 (m, 6H), 0.90 (m, 9H), -16.01 (s, 1H, $J_{H}^{-187}O_{s}$ = 30.06 Hz). **RMN** ¹³C (CDCl₃) δ = 196.69, 192.36, 191.24, 185.12, 177.65, 175.52, 174.40, 173.88, 173.78 (CO's), 53.70, 51.94, 30.35 ($J_{C}^{-117/119}S_{n}$ = 18.2 Hz), 27.56 ($J_{C}^{-117/119}S_{n}$ = 60.5 Hz), 13.76, 12.52 ($J_{C}^{-117/119}S_{n}$ = 267.25 Hz). **RMN** ¹¹⁹Sn (CDCl₃) δ = -49.62.

$[(\mu-H)Os_3(CO)_{10}(HNCH_2CH_2CH_2CH_2)(SnBu_3)]$ (2)

Rendimiento = 28 %. Análisis calculado para C₂₆H₃₇NO₁₀Os₃Sn: C, 25.74; H, 3.07; N, 1.15. Encontrado: C, 25.74; H, 3.26; N, 1.13. p. f. = 108-110 °C. **FAB**(+) *m/z*: 1156 (M⁺ -2CO). **IR** (ciclohexano) v(CO) 2093 (m), 2051 (f), 2028 (f), 2014 (f), 1998 (f), 1979 (f), 1966 (f) 1932(d). **RMN** ¹H (CDCl₃) δ = 3.08, (m, 2H), 2.72 (m, 2H), 2.48 (m, 1H), 1.84 (m, 2H), 1.53 (m, 8H), 1.37 (m, 6H), 1.23 (m, 6H) 0.89 (m, 9H), -16.31 (s, 1H, $J_{\rm H-Os}^{187}$ 30.09 Hz). **RMN** ¹³C (CDCl₃) δ = 196.94, 192.57, 191.38, 185.18, 177.52, 174.91, 174.31, 174.23, 173.94, 173.87 (CO's), 62.63, 60.38, 30.38 ($J_{\rm C-}^{117/119}$ sn = 19.25 Hz), 27.57 ($J_{\rm C-}^{117/119}$ sn = 60.5 Hz), 27.67, 12.57. **RMN** ¹¹⁹Sn (CDCl₃) δ = -48.90.

 $[(\mu-H)Os_3(CO)_{10}(N=CH_2CH_2CH_2CH_2)(SnBu_3)]$ (2a)

Rendimiento = 6 %. **FAB**(+) (**a. r.**) *m/z*: 1211.0057 (calculado para C₂₆H₃₅O₁₀Os₃NSn, 1211.0061), p. f. = 85-88 °C. **IR** (ciclohexano) v(CO) 2093 (m), 2067 (m), 2053 (f), 2028 (f), 2013 (f), 1998 (f), 1989 (f), 1978 (f) 1941(d). **RMN** ¹**H** (CDCl₃) δ = 7.54 (s, 1H), 3.76, (m, 2H), 2.85 (m, 2H), 1.99 (m, 2H), 1.55 (m, 10H), 1.38 (m, 7H), 1.26 (m, 6H) 0.89 (m, 9H), -16.40 (s, 1H, J_{H}^{-187} _{Os} = 31.53 Hz). **RMN** ¹³**C** (CDCl₃) δ = 196.52, 191.27, 189.78, 185.61, 177.93, 175.55, 174.66, 174.45, 174.34, 173.01 (CO's), 183.23, 71.57, 38.20, 30.43, 27.62, 22.21, 13.80, 12.54. **RMN** ¹¹⁹**Sn** (CDCl₃) δ = -51.97.

[(µ-H)Os₃(CO)₁₀(HNCH₂CH₂CH₂CH₂CH₂)(SnBu₃)] (**3**)

Rendimiento = 56 %. Análisis calculado para C₂₇H₃₉NO₁₀Os₃Sn: C, 26.43; H, 3.20; N, 1.14. Encontrado: C, 26.03; H, 3.26; N, 1.13. p. f. = 92-95 °C. **FAB-(+)** *m/z*: 1228. **IR** (ciclohexano) v(CO) 2093 (m), 2052 (f), 2028 (f), 2014 (f), 1998 (f), 1979 (f), 1968 (f) 1934(d). **RMN** ¹**H** (CDCl₃) δ = 3.13 (s, 1H), 3.08 (s, 1H), 2.86 (m, 2H), 2.40 (m, 1H), 1.79 (s, 1H), 1.54 (m, 8H), 1.37 (m, 8H), 1.22 (m, 6H), 0.90 (m, 9H), -16.15 (s, 1H, J_{H}^{I} . ¹⁸⁷_{Os} = 30.81 Hz). **RMN** ¹³**C** (CDCl₃) δ = 196.77, 192.39, 191.30, 185.19, 177.69, 175.29, 174.59, 174.21, 173.99 (CO's), 63.36, 61.12, 30.34 ($J_{C}^{I3}C_{-}^{I17/I19}S_{n}$ = 18.2 Hz), 29.16, 28.86, 27.57 ($J_{C}^{I3}C_{-}^{I17/I19}S_{n}$ = 60.5 Hz), 21.79, 13.76, 12.50 ($J_{C}^{I3}C_{-}^{I17/I19}S_{n}$ = 259.2). **RMN** ¹¹⁹**Sn** (CDCl₃) δ = -50.05.

(**3a**) **IR** (ciclohexano) v(CO) 2093 (m), 2067(d), 2053 (f), 2029 (f), 2013 (f), 1998 (f), 1988(f), 1978 (f), 1942(d).

 $[(\mu-H)Os_3(CO)_{10}(HNCH_2CH_2OCH_2CH_2)(SnBu_3)]$ (4)

Rendimiento = 70 %. Análisis calculado para C₂₆H₃₇NO₁₁Os₃Sn: C, 26.09; H, 3.16; N, 1.13. Encontrado: C, 26.05; H, 3.22; N, 1.19. **FAB-(+)** *m/z*: 1229. p. f. = 78 - 80 °C. **IR** (ciclohexano) v(CO) 2094 (m), 2053 (f), 2028 (f), 2015 (f), 1999 (f), 1981 (f), 1965 (f) 1931(d). **RMN** ¹H (CDCl₃) δ = 3.70 (m, 2H), 3.43 (m, 2H), 3.17 (m, 2H), 2.89 (m, 2H), 2.68 (m, 1H), 1.52 (m, 6H), 1.35 (m, 6H) 1.21 (m, 6H), 0.88 (m, 9H), -16.11 (s, 1H, J¹_H.

¹⁸⁷_{Os} = 29.88 Hz). **RMN** ¹³C (CDCl₃) δ = 197.49, 193.15, 191.00, 184.86, 177.39, 175.03, 174.22, 174.07, 173.64 (CO groups), 69.16, 69.09, 61.64, 59.41, 30.34 (J_{C}^{13} $J_{C}^{117/1/9}$ s_n = 18.2 Hz), 27.54 (J_{C}^{13} $J_{C}^{117/1/9}$ s_n = 59.5 Hz), 13.76, 12.55. **RMN** ¹¹⁹Sn (CDCl₃) δ = -49.75.

 $[(\mu-H)Os_3(CO)_{10}(HNCH_2CH_2SCH_2CH_2)(SnBu_3)]$ (5)

Rendimiento = 10%. **FAB-(+)** *m/z*: 1188 (-2 CO). p. f. = 80 - 83 °C. **IR** (ciclohexano) v(CO) 2093 (m), 2053 (f), 2029 (f), 2016 (f), 1999 (f), 1984 (f), 1967 (f) 1932 (d). **RMN** ¹**H** (CDCl₃) δ = 3.32 (m, 2H), 3.21 (m, 2H), 2.75 (m, H), 2.52 (m, 2H), 2.34 (m, 2H), 1.55 (m, 6H), 1.38 (m, 6H) 1.21 (m, 6H), 0.90 (m, 6H), -16.06 (s, 1H, J_{H}^{-187} os = 30.00 Hz). **RMN** ¹³C (CDCl₃) δ = 197.64, 193.04, 191.10, 184.68, 175.07, 174.26, 170.69 (CO groups), 63.12, 69.77, 30.35, 30.17, 29.71, 27.57, 13.76, 12.57. **RMN** ¹¹⁹Sn (CDCl₃) δ = -49.98.

 $[(\mu-H)Os_3(CO)_{10}(HNMe_2)(SnMe_3)]$ (6)

Rendimiento = 27%. Análisis calculado para C₁₅H₁₇NO₁₀Os₃Sn: C, 16.99; H, 1.62; N, 1.32. Encontrado: C, 17.07; H, 1.72; N, 1.37. **FAB(+)** *m/z*: 1046 (-CH₃). p. f. = 113-115 ^oC. **IR** (ciclohexano) ν (*CO*) 2095 (m), 2053 (f), 2031 (f), 2015 (f), 1999 (f), 1984 (f), 1970 (f) 1937 (d). **RMN** ¹H (CDCl₃) δ = 2.91 (s, 6H), 2.78 (s, 1H), 0.54 (s, 9H, *J* ¹_H – ^{117/119}_{Sn} = 46.71 Hz), -15.98 (s, 1H, *J* ¹_H. ¹⁸⁷_{Os} = 33 Hz). **RMN** ¹³C (CDCl₃) δ = 196.14, 192.37, 190.89, 185.18, 177.42, 175.29, 174.63, 174.23, 173.68 (CO's), 53.59, 51.89, -5.55. **RMN** ¹¹⁹Sn (CDCl₃) δ = -68.19.

 $[(\mu-H)Os_3(CO)_{10}(HNCH_2CH_2CH_2CH_2)(SnMe_3)]$ (7)

Rendimiento = 56%. Análisis calculado para C₁₇H₁₉NO₁₀Os₃Sn: C, 18.79; H, 1.76; N, 1.29. Encontrado C, 18.83; H, 1.86; N, 1.32. **FAB-(+)** *m/z*: 1072 (-CH₃). p. f. = 125 -128 °C. **IR** (ciclohexano) v(CO) 2094 (m), 2053 (f), 2031 (f), 2014 (f), 1998 (f), 1981 (f), 1967 (f) 1933 (d). **RMN** ¹H (CDCl₃) δ = 3.02, (m, 2H), 2.67 (m, 2H), 2.42 (m, 1H), 1.78 (m, 2H), 1.59 (m, 2H), 0.55 (m, 9H, $J_{\rm H}^{1}$ -^{117/119}_{Sn} = 46.74 Hz), -16.24 (s, 1H, $J_{\rm H}^{1}$ -¹⁸⁷_{Os} = 33.00 Hz). **RMN** ¹³C (CDCl₃) δ = 196.31, 192.58, 191.09, 185.23, 177.32, 174.69, 174.07, 173.81 (CO's), 62.58, 60.34, 25.68, -5.49. **RMN** ¹¹⁹Sn (CDCl₃) δ = -67.54. (7a) IR (ciclohexano) v(CO) 2094 (m), 2054 (f), 2031 (f), 2014 (f), 1998 (f), 1990 (f), 1978(f), 1944 (d).

$[(\mu-H)Os_3(CO)_{10}(HNCH_2CH_2CH_2CH_2CH_2)(SnMe_3)]$ (8)

Rendimiento = 67%. Análisis calculado para $C_{18}H_{21}NO_{10}Os_3Sn: C, 19.69; H, 1.92; N, 1.27. Encontrado C, 19.69; H, 2.03; N, 1.36. FAB-(+)$ *m/z*: 1085 (-CH₃). p. f. = 146 - 149 ^oC. IR (ciclohexano)*v(CO)* $2094 (m), 2053 (f), 2030 (f), 2014 (f), 1998 (f), 1982 (f), 1969 (f) 1936 (d). RMN ¹H (CDCl₃) <math>\delta$ = 3.08 (m, 2H), 2.85 (m, 2H), 2.39 (m, 1H), 1.77 (m, 1H), 1.58 (m, 3H), 1.40 (m, 1H), 0.52 (m, 9H, $J_{H}^{1} - I_{H}^{117/119}s_n$ = 46.74 Hz), -16.12 (s, 1H, $J_{H}^{1} - I_{Os}^{187}$ = 32.97 Hz). RMN ¹³C (CDCl₃) δ = 196.22, 192.42, 191.01, 185.26, 177.50, 175.04, 174.42, 173.85 (CO's), 63.28, 61.06, 29.15, 28.84, 21.77, -5.62. RMN ¹¹⁹Sn (CDCl₃) δ = -68.05.

$$[(\mu-H)Os_3(CO)_{10}(HNCH_2CH_2OCH_2CH_2)(SnMe_3)] (9)$$

Г

Rendimiento = 69%. Análisis calculado para $C_{17}H_{19}NO_{11}Os_3Sn: C, 18.52; H, 1.74; N, 1.27. Encontrado C,18.76; H, 1.92; N, 1.36.$ **FAB-(+)***m/z:*1086 (-CH₃). p. f. = 138 - 140^oC**IR**(ciclohexano) v(CO) 2095 (m), 2054 (f), 2031 (f), 2015 (f), 1999 (f), 1983 (f), 1969 (f) 1937 (d).**RMN** $¹H (CDCl₃) <math>\delta$ = 3.73 (m, 2H), 3.41 (m, 2H), 3.18 (m, 2H), 2.86 (m, 2H), 2.69 (m, 1H), 0.53 (s, 9H, $J_{\rm H}^{-117/119}s_{\rm n}$ = 52.64 Hz), -16.06 (s, 1H, $J_{\rm H}^{-187}o_{\rm os}$ = 33.00 Hz). **RMN** ¹³C (CDCl₃) δ = 199.91, 190.55, 184.81, 177.10, 174.72, 174.31, 174.20, 173.99,173.39 (CO's), 69.07, 61.41, 59.31, -5.58. **RMN** ¹¹⁹Sn (CDCl₃) δ = - 67.82.

 $[(\mu-H)Os_3(CO)_{10}(HNCH_2CH_2SCH_2CH_2)(SnMe_3)]$ (10)

Rendimiento = 15%. **FAB-(+)** *m/z*: 1103 (-CH₃) p. f. = 142 – 145 °C. **IR** (ciclohexano) v(CO) 2094 (m), 20.70 (h), 2055 (f), 2031 (f), 2020 (f), 2000 (f), 1985 (f), 1967 (f) 1934 (d). **RMN** ¹**H** (CDCl₃) δ = 3.31 (m, 2H), 3.22 (m, 2H), 2.90 (m, H), 2.52 (m, 2H), 2.34 (m, 2H), 0.53 (s, 9H J_{H-}^{119} sn = 45 Hz), -16.03 (s, 1H, J_{H-}^{187} os = 30.00 Hz). **RMN** ¹³C δ = 196.94, 193.18, 190.16, 184.94, 177.39, 174.92, 174.65, 174.28, 173.30 (CO groups), 63.06, 60.72, 30.47 30.17, -5.62. **RMN** ¹¹⁹Sn (CDCl₃) δ = -67.76.

e) Análisis de la reactividad de $[(\mu-H)Os_3(CO)_{10}(R'NH)(SnR_3)]$

Debido a que el derivado 8 fue uno de los compuestos con rendimiento más alto se considera como modelo de reacción para el análisis de la reactividad.

Termólisis

Se analiza la termólisis del derivado **8** en los siguientes disolventes t olueno, ciclohexano y benceno. En todos los casos se colocan aproximadamente 50 mg del derivado **8** en un matraz de 50 mL de dos bocas y se agregan 30 mL del disolvente, por la otra boca se coloca el termómetro para medir la temperatura y se pone a reflujo; después se eliminó el disolvente y se analizaron los compuestos obtenidos. Se encontró que a temperatura de ebullición de ciclohexano el producto no descompone por lo menos en un período de reacción de 8 horas, al incrementar las condiciones de termólisis (a temperatura de ebullición de tolueno) se observa la formación de un compuesto oscuro, al eliminar el disolvente se obtiene un sólido de color café que no fue posible continuar caracterizando debido a su poca solubilidad en disolventes comunes, como hexano, diclorometano, éteres e incluso DMSO.

Compuesto color café producto de la termólisis

IR (KBr) v(CO, cm⁻¹): 2096(d), 2051(h), 2011(f) 1942(m)

Reacción de 8 hacia monóxido de carbono.

En un matraz de dos bocas se colocan 50 mg del cúmulo **8** y se agregan 50 mL de ciclohexano, por la otra boca se pasa una corriente vigorosa de CO, la solución se refluye por cuatro horas; después de este tiempo se eliminó el disolvente hasta obtener un sólido amarillo-café, el cual se purifica en columna de gel de sílice utilizando una mezcla de hexano-diclorometano(1:1) se obtienen dos compuestos. El segundo de ellos, de acuerdo con el espectro característico de infrarrojo, es dodecacarboniltriosmio.

$[HOs_3(CO)_{11}(SnMe_3)]$ (11)

Rendimiento = 71% **FAB-(+)** m/z: 1041, p. f. = 127-130 °C (100 °C se oscurece), **IR** (ciclohexano) v(CO) 2117 (d), 2073 (f), 2061 (f), 2030(f), 1996(f), 1965(d). **RMN** ¹**H** (CDCl₃) δ = 0.86 (s, 9H, $J_{\rm H}^{1} - {}^{117/119}{\rm sn}$ = 42 Hz), -20.05 (s, 1H). **RMN** ¹³C (CDCl₃) δ = 177.88, 174.78, 172.75, 171.58, 170.03 (CO's), -8.91. **RMN** ¹¹⁹Sn (CDCl₃) δ = -326.11.

 $[Os_3(CO)_{12}]$

Rendimiento = trazas, **IR** (ciclohexano) v(CO cm⁻¹): 2069(f), 2020(f), 2000 (d).

Reacción de 8 con dimetilfenilfosfina

En un matraz de bola de dos bocas se colocaron 50 mg (0.054 mmol) de (8). disuelto en aproximadamente 100 mL de una mezcla de éter etílico-ciclohexano (1:1). A esta solución se le agregaron aproximadamente 6.2 mg (0.054 mmol) de dimetilfenilfosfina. Se dejó a temperatura ambiente y en agitación constante toda la noche. La solución se concentró y se purificó en columna de gel de sílice, utilizando una mezcla de hexano-diclorometano (3:1), Se obtienen dos compuestos, el primero de ellos corresponde al derivado monosustituido por dimetilfenilfosfina, 12. El segundo de ellos se obtiene en un rendimiento muy bajo; y al parecer corresponde al derivado disustituido por demetilfenilfosfina, por esta razón, la reacción se lleva a cabo utilizando ocho equivalentes de dimetilfenilfosfina, en este caso se obtiene como producto mayoritario el compuesto disustituido por dimetilfenilfosfina, 13. El derivado trisustituido por dimetilfenilfosfina se obtuvó al trabajar con un exceso de dimetilfenilfosfina (15 equivalentes).

 $[HOs_3CO_{10}(PMe_2Ph)(SnMe_3)]$ (12)

Rendimiento = 42 % **FAB-(+)** m/z: 1139 (-1CH₃). p. f. = 115-118 °C **IR** (ciclohexano) v(*CO*) 2090 (d), 2050 (m), 2012 (f). **RMN** ¹**H** (CDCl₃) δ = 7.53 (m, 5H), 2.80, (s, 3H), 2.25 (s, 3H), 0.46 (s, 9H, $J_{\rm H}^{1} - {}^{117/119}{\rm sn} = 48$ Hz), 18.46 (${}^{2}J_{\rm H}^{1},{}^{31}{\rm P} = 12$ Hz) y 19.71 (${}^{2}J_{\rm H}^{1},{}^{31}{\rm P} = 12$ Hz). **RMN** ¹³C (CDCl₃) δ = 191.09, 185.20, 175.68, 173.68, 171.16, 169.27 (CO's), 136.06, 135.32, 131.30, 129.35, 128.57, 21.53, 21.16, -6.08. **RMN** ³¹P (CDCl₃) - 42.80, -41.04 ppm (singuletes). **RMN** ¹¹⁹Sn (CDCl₃) δ = -86.22.

$[HOs_3CO_9(PMe_2Ph)_2(SnMe_3)] (13)$

Rendimiento = 33 % **FAB-(+)** m/z: 1128 (- PMe₂Ph). p. f. = 130 - 135 °C **IR** (ciclohexano) v(*CO*) 2080 (m), 2020 (f), 1995 (f), 1957 (m). **RMN** ¹**H** (CDCl₃) δ = 7.48 (m, 10H), 2.19, (m, 12H), 0.39 (s, 9H, $J_{\rm H}^{-117/119}$ sn = 43 Hz), -19.73 (s, H) **RMN** ¹³**C** (CDCl₃) δ = no se determinaron (CO's), 130.66, 129.82, 129.19, 129.06, 128.71, 128.57, 128.43, 21.80, -6.48. **RMN** ³¹**P** (CDCl₃) -40.85 ppm (d, $J_{\rm H}^{-1} - {}^{31}$ p= 10.8 Hz), -44.55 ppm (d, $J_{\rm H}^{-1} - {}^{31}$ p= 10.8 Hz). **RMN** ¹¹⁹**Sn** (CDCl₃) δ = -99.60.

$[Os_3CO_9(PMe_2Ph)_3]$ (14)

Rendimiento = 14 % p. f. = 160-162 °C **IR** (ciclohexano) v(*CO*) 1973 (f), 1934 (m). **RMN** ¹**H** (CDCl₃) δ = 7.48 (m), 2.10, 2.07 (s) **RMN** ¹³**C** (CDCl₃) δ = 195.63 (CO's), 140.61, 128.40, 129.36, 22.49, 22.00. **RMN** ³¹**P** (CDCl₃) –48.10 ppm.

Reacción de 8 hacia difenilacetileno.

En un matraz de bola de dos bocas se colocaron 50 mg (0.054 mmol) del compuesto 8, disuelto en aproximadamente 50 mL de ciclohexano. A esta solución se le agregaron aproximadamente 12.4 mg (0.108 mmol) de difenilacetileno. La solución se coloca a reflujo por aprox. 4 horas, se concentra y se purifica en columna de gel de sílice se obtienen dos fracciones, una de ellas corresponde al compuesto 8 la siguiente fué identificada como el compuesto 15.

 $[(\mu-H)Os_3(CO)_{10}(PhCH=CPh)]$ 15

Rendimiento = 50 % p. f. = **FAB-(+)** *m/z*: 1031. **IR** (ciclohexano) v(*CO*) 2097 (m), 2072 (f), 2042 (f), 2023(m), 2005(f), 1983(m). **RMN** ¹**H** (CDCl₃) δ = 7.30 – 7.13 (m), 6.87 – 6.73 (m) 6.38 (s) –18.72 (s) **RMN** ¹³**C** (CDCl₃) δ = 135.76, 134.87, 131.56, 129.48, 128.83, 127.10, 126.14, 53.47. Referencias.

¹ Debido a la relevancia de la química de cúmulos metálicos la revista Coordination Chemistry Reviews presenta cada año un resumen de los artículos relacionados con la química de cúmulos metálicos. Algunos ejemplos recientes son: (a) Richmond, M. G. Coord. Chem. Rev., 2004, 248, 881. (b) Richmond, M. G. Coord. Chem. Rev., 2003, 241, 273. (c) Richmond, M. G. Coord. Chem. Rev., 2002, 228, 19. (d) Richmond, M. G. Coord. Chem. Rev., 2001, 214, 1. (e) Richmond, M. G. Coord. Chem. Rev., 2000, 241, 333. También el desarrollo de esta área se ve reflejado en las dos ediciones del Comprehensive Organometallic Chemistry donde se describen los avances desarrollados en la química de cúmulos carbonilicos hasta 1994.

² (a) Gladfelter, W. L.; Geoffroy, G. L. en *Advances in Organometallic Chemistry* Eds., Stone, F. G. A.; West, R., Academic Press. 1980; Vol. 18, p. 207. (b) Puddephatt, R. J., en *Metal Clusters in Chemistry*, Braunstein, P.; Eds., Oro, L. A.; Raithby, P. R., Wiley-VCH.; New York, 1999; Vol. 2, p 605. (c) Braunstein, P.; Rosé, J., en *Metal Clusters in Chemistry*, Braunstein, P.; Oro, L. A.; Raithby, P. R, Eds.; Wiley-VCH.; New York, 1999; Vol. 2, p 616. (d) Adams, R. D.; Captain, B. *J. Organomet. Chem.*, **2004**, 689, 4521.

³ (a) Braunstein, P.; Charles, C.; Kickelbick, G.; Schubert, U. Chem. Commun., 1997, 2093. (b) Cardin, D. J. en Metal Clusters in Chemistry, Braunstein, P.; Oro, L. A.; Raithby, P. R, Eds.; Wiley-VCH.; New York, 1999; Vol. 1, p 48.

⁴ (a) Lefebvre, F.; Candy, J. P.; Basset, J. M. en *Metal Clusters in Chemistry*, Braunstein, P.; Oro, L. A.; Raithby, P. R, Eds.; Wiley-VCH.; New York, 1999; Vol. 2. p 782. (b) Lesage, P.; Candy, J. P.; Hirigoyen, C.; Humblot, F.; Leconte, M.; Basset, J. M. J. Molec. Cat. A, Chem. 1996, 112, 303. (c) Mansour, A. E.; Candy, J. P.; Bournonville J. P.; Ferretti, O. A.; Basset, J. M. Angew. Chem. Int. Ed. Engl., 1989, 28, 347.

⁵ (a) Hermans, S.; Raja, R.; Thomas, J. M.; Johnson, B. F. G.; Sankar, G.; Gleeson, D. Angew. Chem. Int. Ed. Engl., 2001, 40, 1211. (b) Liu, G.; Hakimifard, M.; Garland, M. J.

Mol. Catal. A, 2001, 168, 33. (c) Chatani, N.; Asaumi, T.; Yorimitsu, S.; Ikeda, T.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc., 2001, 123, 10935. (d) Dyson, P. J. Coord. Chem. Rev., 2004, 248, 2443. (e) Laine, R. M. New J. of Chemistry. 1987, 11, 543.

⁶ (a) Eisenstadt, A.; Giandomenico, C. M.; Frederick, M. F.; Laine, R. M. *Organometallics*, **1985**, *4*, 2033. (b) Arce, A. J.; Arrojo, P.; De Sanctis, Y.; Márquez, M.; Deeming, A. J. J. Organomet. Chem., **1994**, *479*, 159. (c) D'Ornelas, L.; Castrillo, T.; Hernández, de B. L.; Narayan, A.; Atencio, R. Inorg. Chim. Acta, **2003**, *342*, 1. (d) Kiriakidou-Kazemifar, N. K.; Kretzschmar, E.; Carlsson, H.; Monari, M.; Selva, S.; Nordlander, E. J. Organomet. Chem., **2001**, *623*, 191.

⁷ (a) Cardin, C. J.; Cardin, D. J.; Convery, M. A.; Devereux, M. M. J. Chem. Soc., Chem. Commun., 1991, 687. (b) Bartlett, R. A.; Cardin, C. J.; Cardin, D. J.; Lawless, G. A.; Power, J. M.; Power, P. P. J. Chem. Soc., Chem. Commun., 1988, 312. (c) Cardin, C. J.; Cardin, D. J.; Lawless, G. A.; Power, J.M.; Power, M. B.; Hursthouse, M. B. J. Organomet. Chem., 1987, 325, 203. (d) Cardin, C. J.; Cardin, D. J.; Parge, H. E.; Power, J. M. J. Chem. Soc., Chem. Commun., 1984, 609. (e) Cardin, C. J.; Cardin, D. J.; Power, J. M.; Hursthouse, M. B. J. Am. Chem. Soc., 1995, 107, 505. (f) Cardin, C. J.; Cardin, D. J.; Convery, M. A.; Dauter, Z.; Fenske, D.; Devereux, M. M.; Power, J. M. J. Chem. Soc., Dalton Trans 1996, 1133.

⁸ Burgess, K.; Guerin, C.; Johnson, B. F. G.; Lewis, J. J. Organomet. Chem., 1985, 295, C3.

⁹ (a) Hall, R. J.; Serguievski, P.; Keister, J. B. Organometallics, **2000**, *19*, 4499. (b) Einstein, F. W. B.; Pomeroy, R. K.; Willis, A. C. J. Organomet. Chem., **1986**, *311*, 257.

¹⁰ (a) Cardin, D. J.; Lappert, M. F. J. Chem. Soc., Chem. Commun., 1966, 506. (b) Cardin,
 D. J.; Keppie, S. A.; Lappert, M. F. J. Chem. Soc. (A) 1970, 2594.

¹¹ (a)) Li, Y.; Wong, W. T.; Lin, Z. Y. Organometallics. 2003, 22, 1029.

¹² (a) Lu, K; Chen, C.; Lin, Y.; Gau, H.; Hong, F.; Wen, Y. Organometallics, 1993, 12, 2188. (b) Aime, S.; Diana, E.; Gobetto, R.; Milanesio, M.; Valls, E.; Viterbo, D. Organometallics, 2002, 21, 50. (c) Cabeza, J. A.; del Río, I.; Grepioni, F.; Riera, V. Organometallics, 2000, 19, 4643. (d) Li, Y.; Wong, W.T. Coord. Chem. Rev., 2003, 243, 191. (e) Andreu, P. L.; Cabeza, J. A.; Del Rio, I.; Riera, V.; Bois, C. Organometallics, 1996, 15, 3004.

¹³ (a) Cabeza, J. A.; García-Granda, S.; Llamazares, A.; Riera, V.; Van der Maelen, J. F. Organometallics, 1993, 12, 157. (b) Cabeza, J. A.; Franco, R. J.; Riera, V.; García-Granda, S.; Van der Maelen, J. F. Organometallics, 1995, 14, 3342. (c) Cabeza, J. A.; Llamazares, A.; Riera, V.; Triki, S.; Ouahab, L. Organometallics, 1992, 11, 3334. (d) Bois, C.; Cabeza, J. A.; Franco, R. J. Riera, V.; Saborit, E. J. Organomet. Chem., 1998, 564, 201.

¹⁴ Davison, J. L. en Comprehensive Organometallic Chemistry "the synthesis, reactions and structures of organometallic compounds"; Eds Wilkinson, G., Stone, F. G. A., Abel, E. W., 1984, V. 4., p 615.

¹⁵ (a) Broach, R. W.; Williams, J. M. Inorg. Chem. 1979, 18, 314. (b) Orpen, G. A.;
Rívera, V.; Bryan, E. G.; Pippard, D.; Sheldrick, G. M. J. Chem Soc. Chem. Commun.,
1978, 723. (c) Churchill, M. R.; Hollander, F. J.; Hutchinson, P. Inorg. Chem., 1977, 16,
2697.

¹⁶ Deeming, A. J. en Comprehensive Organometallic Chemistry (II); Eds Abel, E. W., Stone, F. G. A., Wilkinson, G., 1995, V. 7., cap. 12, p 683.

¹⁷ Deeming, A. J. en Advances in Organometallic chemistry; Eds West, R.; Stone, F. G.
A. 1986, V. 26., p 1.

¹⁸ (a) Hudson, H. E. R.; Poë, J. A., Organometallics, 1995, 14, 3238. (b) Neubrand, A.,
Poë, A. J.; Eldik, R. Organometallics, 1995, 14, 3249.

¹⁹ Churchill, R. M.; Bueno, C.; Hsu, L. W.; Plotkin, J. S.; Shore, S. G. Inorg. Chem. **1982**, 21, 1958.

²⁰ Farrugia, L. J.; Orpen, G. A.; Stone, F. G. A. Polyhedron, 1983, 2, 171.

²¹ Churchill, M. R.; Bueno, C. J. Organomet. Chem., 1983, 256, 357. (y referencias citadas.)

²² Farrugia, L. J.; Howard, J. A. K.; Mitrprachachon, P.; Stone, F. G. A. Woodward, P. J. Chem. Soc. Dalton Trans., **1981**, *1*, 162.

²³ Farrugia, L. J.; Howard, J. A. K.; Mitrprachachon, P.; Stone, F. G. A. Woodward P. J. Chem. Soc. Dalton Trans., **1981**, *1*, 171.

²⁴ Hsu, L.Y.; Hsu, W. L.; McCarthy, D.; Krause, J. A.; Chung, J. H.; Shore, S. G. J. Organomet. Chem., **1992**, 426, 121.

²⁵ (a) Garlaschelli, L.; Greco, F.; Peli, G.; Manassero, M.; Sansoni, M.; Pergoła, R. D. Dalton Trans., 2003, 4700. (b) Adams, R. D.; Captain, B.; Fu, W.; Smith, M. D. Inorg. Chem., 2004, 41, 5593. (c) Adams, R. D.; Captain, B.; Johanson, M.; Smith, J. L. J. Am. Chem. Soc., 2005, 127, 488.

²⁶ Young, J. F. en Advances in inorganic chemistry and radiochemistry, Eds Emeleus, H. J.; Sharpe, A. G., **1968**, V.11, p. 41.

²⁷ Willis, A. C.; Einstein, W. B.; Ramadan, R. M.; Pomeroy, R. K. Organometallics, 1983, 2, 935.

²⁸ Contreras-Rodríguez, J. G., Tesis de Licenciatura, Facultad de Química UNAM 2000.

²⁹ (a) Clarke, L. P.; Raithby, P. R.; Shields, G. P. Polyhedron, **1997**, *16*, 3775. (b) Johnson, B. F. G.; Lewis, J.; Raithby, P. R.; Zuccaro, C. J. Chem. Soc. Chem. Commun., **1979**, 916. (c) Adams, R. D.; Babin, J. E.; Kim, H. S. Inorg. Chem., **1986**, *25*, 1122.

³⁰ (a) Day, M.; Espitia, D.; Hardcastle, K. I.; Kabir, S. E.; McPhillips, T.; Rosemberg, E.; Gobetto, R.; Milone, L.; Osella, D. Organometallics, 1993, 12, 2309. (b) Adams, R. D.; Chen, G. Organometallics, 1992, 11, 3510. (c) Rosemberg, E.; Kabir, S. E.; Hardcastle, K. I.; Day, M.; Wolf, E. Organometallics, 1990, 9, 2214. (d) Adams, R. D.; Golembeski, N. M. Inorg. Chem., 1978, 17, 1969. (e) Shvo, Y.; Laine, R. M. J. Chem. Soc. Chem. Commun., 1980, 753.

³¹ Lappert, Power, Sanger, Srivastava. "metal and metalloid amide; synthesis, structure and physical and chemical properties." Ed., Ellis Harwood Limited, 1980, p 258.

³² Luijten, J. G. A.; Rijkens, F.; Van Der Kerk, G. J. M. Adv. Organomet. Chem., 1965, 3, 397-346.

³³ Jones, K., Lappert, M. F. J. Chem. Soc., 1965, 1944.

³⁴ (a) Lorberth, J. J. Organomet. Chem., **1969**, 16, 235. (b) Berghe, E. V. V.; Van Der Kelen, G. P. J. Organomet. Chem., **1973**, 61, 197.

³⁵ (a) Koza, D. J.; Nsiah, Y. A. J. Org. Chem., **2002**, 67, 5025, (b) Guram, A. S.; Buchwald, S. L. J. Am. Chem. Soc. **1994**, 116, 7901.

³⁶ (a) Petrosyan, V. S., Progress in NMR Spectroscopy, 1977, 11, 115. (b) Holecek, J. Nadvornik, M.; Handlir, K. Lycka, A. J. Organomet. Chem., 1986, 315, 299. (c) Pejchal, V.; Holeck, J., Nadvornik, M.; Lycka, A. Collect. Czench. Chem. Commun., 1995, 60, 1492.

³⁷ (a) Elschenbroich C.; Salzer A. Organometallics a concise introduction 2da. Ed., VCH Publisher, Inc., 1992, p 220. (b) Pruchnik F. P. Organometallic chemistry of the transition elements, Ed Facker J. P Jr., plenun press NY & London., 1990, p 32.

³⁸ Emsley, J., *The elements*, Oxford Chemistry Guides. (2 ed.), 1995.

³⁹ Johnson, B. F. G.; McIndoe, S. J. Coord. Chem. Rev. 2000, 200-202, 901.

⁴⁰ (a) Beatty, S. T.; Bergman, B.; Rosenberg, E.; Dastru, W.; Gobetto, R.; Milone, L.;
Viale, A. J. Organomet. Chem., 2000. 593-594, 226. (b) Holmgren, J. S.; Shapley, J. R.;
Belmonte, P. A. J. Organomet. Chem., 1985, 284, C5. (c) Farrugia, L. J.;
Organometallics, 1989, 8, 2410.

⁴¹ Hanif, M. K.; Hursthouse, M. B.; Kabir, S. E.; Malik, K. M. A.; Rosemberg, E. J. Organomet. Chem., **1999**, 580, 60.

⁴² Lu, C-Y.; Einstein, F. W.; Johnston, V. J.; Pomeroy, R. K. *Inorg. Chem.*, **1989**, *28*, 4212.

⁴³ (a) Foster, A.; Johnson, B. F. G.; Lewis, J.; Matheson, T. W.; Robinson, B. H.; Jackson, W. G. J. J. Chem. Soc. Chem. Commun, 1974, 1042. (b) Gallop, M. A.; Johnson, B. F. G.; Lewis, J. J. Chem Soc. Chem. Commun, 1987, 1831.

⁴⁴ Nadvornik, A.; Holecek, J.; Handlir, K. Lycka, A. J. Organomet. Chem., 1984, 275, 43.

⁴⁵ Churchill, M. R. DeBoer, B.; Rotella, F. J. Inorg. Chem., 1976, 15, 1843.

⁴⁶ Churchill, R. M.; Hollander, F. J. Inorg. Chem., 1978, 17, 3546.

⁴⁷ Dawson, P. A.; Johnson, B. F. G.; Lewis, J.; Puga, J.; Raithby, P. P.; Rosales, M. J. J. Chem. Soc. Dalton, 1982, 233.

⁴⁸ Aime, S.; Ferriz, M.; Gobetto, R.; Valls, E. Organometallics, 2000, 19, 707.

⁴⁹ Adams, R. D.; Katahira, D. A. Organometallics, 1982, 1, 460.

⁵⁰ Collman, J. P.; Murphy, D. W.; Fleischer, E. B.; Swift, D. Inorg. Chem., 1974, 13, 1.

⁵¹ Zubieta, J. A.; Zuckerman, J. J. Progress in inorganic chemistry. Ed. Lippard, S. J. 1978; V. 24, p. 251.

⁵² Leong, W.K.; Einstein, F. W. B.; Pomeroy, R. K. Organometallics, 1996, 15, 1582.

⁵³ Biradha, K.; Desiraju, G. R. Braga, D.; Grepioni, F. Organometallics, 1996, 15, 1284.

⁵⁴ (a) Aime, S.; Gobetto, R.; Valls, E. *Organometallics*, **1997**, *16*, 5140. (b) Aime, S.; Ferríz, M.; Gobetto, R.; Valls, E. *Organometallics*, **1999**, *18*, 2030. (c) Chao, M. H.; Kumaresan, S.; Wen Y.; Lin, S.; Hwu, J.; Lu, K. *Organometallics*, **2000**, *19*, 714. (d) Aime, S.; Chierotti, M. R.; Gobetto, R.; Russo, A.; Stchedroff, M. *Inorg. Chim. Acta*, **2003**, *351*, 251.

⁵⁵ (a) Braga, D.; Grepioni, F.; Biradha, K.; Pedireddi, V. R.; Desiraju, G. R. J. Am. Chem. Soc., 1995, 117, 3156. (b) Braga, D.; Grepioni, F.; Desiraju, G. R. Chem. Rev., 1998, 98, 1375.

⁵⁶ Analizadas en el programa MERCURY, <u>http://www.ccdc.cam.ac.uk</u>. Los archivos *cif* de estos compuestos se encuentran libres de cargo en la información de soporte en la referencia 58.

⁵⁷ (a) Abedin, Md. J.; Bergman, B.; Holmquist, R.; Smith, R.; Rosemberg, E.; Ciurash,
J.; Hardcastle, K.; Roe, J.; Vazquez, V.; Roe, C.; Kabir, S.; Roy, B.; Alam, S.; Azam, K.
A. Coord. Chem. Rev. 1999, 190-192, 975. (b) Rosemberg, E.; Kabir S. E.; Abedin, J.;
Hardcastle K. I. Organometallics, 2004, 23, 3982

⁵⁸ Gárate-Morales, J. L.; Fernández-G, J. M. Organometallics, 2004, 23, 3840.

⁵⁹ Leong, W. K.; Einstein, F. W. B.; Pomeroy, R. K. J. Cluster Sci., 1996, 7, 211.

⁶⁰ (a) Poë, A. J.; Sampson, C. N.; Smith, R. T.; Zheng, Y. J. Am. Chem. Soc., **1993**, 115, 3174. (b) Aime, S.; Dastru, W.; Gobetto, R. Organometallics, **1994**, 13, 4343.

⁶¹ Leong, W.K.; Einstein, F. W. B.; Pomeroy, R. K. J. Cluster Sci., 1996, 7, 121.

62 Leong, W.K.; Liu, Y. J. Organomet. Chem., 1999, 584, 174.

⁶³ (a) Bruce, M. 1.; Liddel, M. J.; Hughes, C. A.; Skelton, B. W.; White, A. H. J. *Organomet. Chem.*, **1988**, *347*, 157. (b) Bruce, M. I.; Liddel, M. J.; Hughes, C. A.; Patrick, J. M.; Skelton, B. W.; White, A. H. J. Organomet. Chem., **1988**, *347*, 181. (c) Bruce, M. I.; Liddel, M. J.; Shawkataly, O. B.; Hughes, C. A.; Skelton, B. W.; White, A. H. J. Organomet. Chem., **1988**, *347*, 207.

- ⁶⁴ Deeming, A. J.; Donovan-Mtunzi, S.; Kabir, S. E.; Mannig, P. J. J. Chem. Soc. Dalton Trans., 1985, 1037.
- ⁶⁵ Deeming, A. J.; Manning, P. J.; Rothwell, L. P.; Hursthouse, M. B.; Walker, N. P. C. J. Chem. Soc. Dalton Trans., **1984**, 2039.

⁶⁶ Aime, S.; Gobbeto, R.; Valls, E. Inorg. Chim. Acta, 1998, 275-276, 521.

- ⁶⁷ Deeming, A. J.; Hassan, Md. M.; Kabir S. E.; Nordlander E.; Tocher D. A.; *Dalton Trans.*, 2004, 3709.
- 68 Sappa, E.; Tiripicchio, A.; Braunstein, P. Chem. Rev., 1983, 83, 203.
- 69 Raithby, P. R.; Rosales, M. J. Adv. Chem. Radiochem. 1985, 29, 169.
- ⁷⁰ (a) Tachikawa, M.; Shapley, J. R.; Pierpont, C. G. J. Am. Chem. Soc., 1975, 97, 7172.
 (b) Clauss, A. D.; Tachikawa, M.; Shapley, J. R.; Pierpont, C. G., Inorg. Chem., 1981, 20, 1528.
- ⁷³ Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. *Purification of laboratory chemicals*; 2nd. Ed., Pergamon Press: New York, 1982.
- ⁷² G. M. Sheldrick, SHELXS-97. Crystal Structure Solution. Version 97-1. Institut. Anorg. Chemie. Gotinga, 1997.
- ⁷³ Drake, R. S.; Loveday, P. A. Inorg. Synth., 1990, 28, 230.

⁷⁴ (a) Kaesz, H. D. Inorg. Synth., 1990, 28, 238. (b) Knox, S. A. R.; Koepke, J. W.; Andrews, M. A.; Kaesz, H. D. J. Am. Chem. Soc., 1975, 97, 3942.

•
Lista de Esquemas, figuras y tablas.

Esquemas

Esquema I Adición de una base de Lewis al cúmulo trinuclear	8
Esquema 2 Estado de transición propuesto para la adición de bases de Lewis.	9
Esquema 3 Reacción de inserción propuesta para el hidruro de triosmio	9
Esquema 4 Reacciones de estanilenos y cúmulos metálicos	12
Esquema 5 Termólisis del cúmulo [H2Os3(CO)10(SnR2)]	12
Esquema 6 Reacciones con organoestananos y cúmulos carbonílicos	13
Esquema 7 Reacciones de cúmulos carbonílicos y aminas secundarias	16
Esquema 8 Esquema de autoasociación de los aminotrialquilestananos.	19
Esquema 9 Diagrama de los derivados sintetizados.	21
Esquema 10. Nomenclatura utilizada al descríbir los hidrógenos y carbonos.	28
Esquema 11 Posibles isómeros en los cúmulos de osmio-estaño sintetizados	31
Esquema 12 Mecanismo sugerido para la interacción del aminotrialquilestanano	
y el cúmulo carbonílico	39
Esquema 13 Diagrama de reactividad del compuesto 8.	53
Esquema 14 Formación del complejo µ-imidoilo	55
Esquema 15 Reacción de 8 hacia CO	57
Esquema 16 Tipos de isomería en la reacción de sustitución $\circ = CO$, $\bullet = PMe_2Ph$.	60
Esquema 17 Reacción de 8 con dimetilfenilfosfina	61
Esquema 18 Reacción de 8 con PMe ₂ Ph.Relación estequiométrica J:1	63
Esquema 19 Isómeros cis y trans del cúmulo de osmio.	66
Esquema 20 Reacción de 8 hacia PMe2Ph. Relación estequiométrica 1:6	67
Esquema 21 Posibilidades de arreglos de los grupos dimetilfenilfosfina y trimetilestaño	
en el cúmulo de osmio 13	69
Esquema 22 Reacción de 8 frente a PMe ₂ Ph. (Exceso de fosfina)	70
Esquema 23 Reacción de 8 con difenilacetileno	74

Figuras

Figura 1 Diagrama ORTEP del compuesto [(µ-H)2OS3(CO)10(SnMe3)2]	14
Figura 2. Diagrama ORTEP del compuesto [H ₃ Os ₃ (CO) ₁₀ (SiPh ₃)]]4
Figura 3 Grafica comparativa del δ (¹¹⁹ Sn) y los aminoestanano sintetizados.	19
Figura 4 Espectro de IR del compuesto 1	25
Figura 5 Parte del espectro de masas FAB(+) del compuesto 4.	26
Figura 6 Espectro de correlación HETCOR del compuesto 1	30
Fígura 7 Ampliación del espectro de RMN ¹ H a 20 °C (izquierda) y a -40 $^{\circ}$ C (derecha) de 8	32
Figura 8 Espectros de RMN ¹³ C (superior) y RMN ¹³ C acoplado a ¹ H (inferior)	
dei compuesto 8	35
Figura 9 Interacción propuesta que explica el "efecto sombrilla"	43
Figura 10 Diagrama ORTEP para el compuesto 6	45
Figura 11 Diagrama de empaquetamiento del compuesto 6	45
Figura 12 Diagrama ORTEP para el compuesto 7	46
Figura 13 Diagrama de empaquetamiento del compuesto 7	46
Fígura 14 Diagrama ORTEP para el compuesto 8	47
Figura 15. Diagrama de empaquetamiento del compuesto 8	47
Figura 16 Diagrama ORTEP para el compuesto 9	48
Figura 17. Diagrama de empaquetamiento del compuesto 9	48
Figura 18 Interacción NH - HOs	49
Figura 19 Interacción NH OC-M	50
Figura 20 interacción C-H ··· O en la red cristalina del compuesto 6	52
Figura 21 Ampliación del espectro de RMN ¹ H del compuesto 12	62
Figura 22 Diagrama ORTEP para el compuesto 12 (molécula b)	64
Figura 23 Estructura molecular del compuesto 13	68
Figura 24 Moléculas 14A y 14B	71
Figura 25 Diagrama de ORTEP para el compuesto 14B	71
Figura 26 Espectro de masas FAB del compuesto 15	7 5
Figura 27 Diagrama ORTEP para el compuesto 3	103
Figura 28 Diagrama ORTEP para el compuesto 2a	103
Figura 29 Diagrama ORTEP para el compuesto 8 CHCl ₃	104

Tablas

Tabla 1 Datos espectroscópicos de RMN ¹¹⁹ Sn para los aminoestananos	18
Tabla 2 Información de IR para 2 y 2a.	24
Tabla 3 Datos de Espectrometría de Masas para los cúmulos 1 -10	27
Tabla 4 Datos de RMN 'H para 1-10	29
Tabla 5 Datos de RMN ¹³ C para 1- 10	34
Tabla 6 Distancias seleccionadas de enlace (Å) y ángulos (°) para 2a, 3, 6, 7, 8 y 9.	42
Tabla 7 Características de la interacción intramolecular para 6, 7, 8 y 9.	50
Tabla 8 Información de IR para 11 comparada con derivados similares	59
Tabla 9 Distancias seleccionadas de enlace (Å) y ángulos (°) para 12	65
Tabla 10 Distancias seleccionadas de enlace (Å) y ángulos (°) para 13	68
Tabla 11 Distancias seleccionadas de enlace (Å) y ángulos (°) para 14	72
Tabla 12 Información de IR para 15 comparada con derivados similares .	75
Tabla 13. Información cristalográfica de 2a, 3, 6, 7, 8 y 9	101
Tabla 14 Información cristalográfica de 12, 13 y 14	102
Tabla 15 Longitudes de enlace [Å] y ángulos de enlace [°] para 2a.	105
Tabla 16 Longitudes de enlace [Å] y ángulos de enlace [°] para 3.	106
Tabla 17 Longitudes de enlace [Å] y ángulos de enlace [°] para 6.	107
Tabla 18 Longitudes de enlace [Å] y ángulos de enlace [°] para 7.	108
Tabla 19 Longitudes de enlace [Å] y ángulos de enlace [°] para 8.	109
Tabla 20 Longitudes de enlace [Å] y ángulos de enlace [°] para 8 CHCl3.	110
Tabla 21 Longitudes de enlace [Å] y ángulos de enlace [°] para 9	111
Tabla 22 Longitudes de enlace [Å] y ángulos de enlace [°] para 12	112
Tabla 23 Longitudes de enlace [Å] y ángulos de enlace [°] para 14	114

,

Apéndice 1. Información cristalográfica

Tabla 13. Información cristalográfica de 2a, 3, 6, 7, 8 y 9

	3	2a	9	L	8	8	6
formula	C ₂₇ H ₃₉ NO ₁₀ OS ₃ Sn	C ₂₆ H ₃₅ NO ₁₀ Os ₃ Sn	C ₁₅ H ₁₇ NO ₁₀ Os ₃ Sn	C ₁₆ H ₁₉ NO ₁₀ Os ₃ Sn	C ₁₈ H ₂₁ NO ₁₀ Os ₃ Sn	C ₁₉ H ₂₂ Cl ₃ NO ₁₀ Os ₃ Sn	C ₁₉ H ₁₉ NO ₁₁ Os ₃ Sn
PM	1226.88	1210.84	1060.59	1086.62	1100.65	1220.22	1102.62
Sistema Cristalino	Monoclínico	Monoclínico	Triclínico	Monoclinico	Monoclinico	Ortorrómbico	Triclínico
Grupo Espacial	$P 2_1/c$	C2/c	P-1	<i>P</i> 2 ₁ /n	$P 2_1/c$	P b c a	P-1
a/Å	17.794(1)	38.345(13)	9.405(1)	10.652(1)	10.717(1)	14.185(1)	10.417(1)
b/Å	11.656(1)	11.269(4)	10.557(1)	17.897(1)	17.096(1)	20.369(2)	11.093(1)
c/Å	17.483(1)	17.707(6)	12.768(1)	13.304(1)	15.517(1)	21.522(2)	12.765(1)
a/deg	06	06	83.848(1)	06	90	06	104.043(1)
B/deg	93.850(1)	114.094(8)	84.707(1)	101.656(1)	110.004(1	06	107.687(1)
γ/deg	06	06	77.250(1)	06	90	06	995.052(1)
Ζ	4	8	2	4	4	8	2
F(000)	2264	4448	944	1944	1976	4416	988
D _{Calc} . g/cm ⁻³	2.252	2.303	2.872	2.906	2.737	2.606	2.728
θ range, deg	2.09 a 25.00	1.16 a 25.13	1.61 a 25.00	1.93 a 32.52	1.84 a 32.51	1.89 a 25.00	1.75 a 24.99
μ, mm ⁻¹	11.232	11.634	16.544	16.339	15.194	13.318	15.123
R_1/R_{w2} ^c	0.0743/0.1039	0.0643/0.0934	0.0478/0.0862	0.0464/0.0432	0.0831/0.0548	0.0588/0.0983	0.0540/0.0566
$GOF \text{ on } F^2$	0.998	0.941	1.041	0.940	0.948	0.936	0.997

	12	13	14
formula	C42H40NO21OS6P2Sn	C ₂₈ H ₃₁ O9 Os ₃ P ₂ Sn	C66H66NO18OS6P6
PM	2321.26	1262.76	2474.21
Sistema Cristalino	Triclínico	Monoclínico	Triclínico
Grupo Espacial	<i>P</i> - 1	P21/c	<i>P</i> - 1
a/Å	10.2233(7) Å,	9.2480(14)	13.8232(9
b/Å	13.6660(10)	12.2445(19)	15.1164(9)
c/Å	22.7936(16)	31.985(5)	18.8947(16)
a/deg	83.957(2)	06	77.3760(10)
B/deg	82.170(2)	94.265(4)	87.1670(10)
γ/deg	77.567(2) [°]	90.	88.9510(10)
Ζ	6	4	2
F(000)	2092	2316	2304
${ m D}~{ m cale}.~{ m g/cm^{-3}}$	2.510	2.32	2.135
$\boldsymbol{\theta}$ range, deg	1.84 a 25.00	2.10 a 25.00°.	1.47 a 25.00
μ, mm ^{.1}	13.273	11.336	10.055
R_1/R_{w2} ^c	0.0507/0.0688	0.1649/ 0.1537	0.0431/0.0549
GOF on F ²	0.851	0.872	0.804

Ţ
~
13,
12,
de
alográfica
crist
uformación
Г
14.
Tabla

Figura 27 Diagrama ORTEP para el compuesto 3

Figura 28 Diagrama ORTEP para el compuesto 2a

Figura 29 Diagrama ORTEP para el compuesto 8CHCl₃

Os(1)-C(3)	1.887(16)	O(5)-C(5)	1 125(14)	
Os(1)-C(2)	1,933(15)	O(6)-C(6)	1.134(14)	
Os(1)-C(1)	1.935(14)	O(7)-C(7)	1 162(14)	
Os(1)- $Sn(1)$	2.6924(14)	O(8) - C(8)	1 135(14)	
$O_{S}(1) \cdot O_{S}(3)$	2 8704(12)			
$O_{S}(1) O_{S}(2)$	3.0401(11)		1 134/17)	
$O_{S}(1) = O_{S}(2)$) 884(14)	C(10) = C(10)	1.104(17)	
$O_{3}(2) - C(4)$	1.004(14)	C(11) - C(12)	1.493(18)	
$O_{S(2)}C(3)$	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C(12) - C(13)	1.49(2)	
$O_{3}(2) = C_{0}(0)$	1.900(10)	C(13) - C(14)	1.470(38)	
$O_{S}(2) - IN(1)$	2 183(10)		1.40(2)	
$O_{S(2)} - O_{S(3)}$	2 8850(10)	C(10) - C(17)	1.50(3)	
Os(3) - C(9)	18/8(17)	C(17)-C(18)	1.29(3)	
Os(3) - C(10)	1.891(18)	C(19)-C(20B)	32(4)	
Os(3)-C(7)	1.929(16)	C(19)-C(20)	1.87(4)	
Os(3)-C(8)	1,941(15)	C(20)-C(21)	1 24(7)	
Sn(1)-C(15)	2 091(17)	C(21)-C(22)	1.34(11)	
Sn(1)-C(19)	2 168(16)	C(20B)-C(21B)	1.30(7)	
Sn(1)-C(23)	2.23(2)	C(21B)-C(22B)	1.24(8)	
N(1)-C(14)	1.277(15)	C(23)-C(24)	1 35(3)	
N(1)-C(11)	1.415(15)	C(23)-C(24B)	1.38(12)	
O(1)-C(1)	1.124(13)	C(24)-C(25)	1.83(5)	
O(2)-C(2)	1.144(14)	C(25)-C(26)	1.60(5)	
O(3)-C(3)	1.)37(15)	C(24B)-C(25B)	1.62(14)	
0(4)-C(4)	1.150(13)	C(25B)-C(26B)	1.13(10	
C(3)-Os(1)-C(2)	88.0(6)	C(10)-O(3)-O(2)	104 2(5)	
C(3)-Os(1)-C(1)	88.9(5)	$\Gamma(7 - 0 < 3) - 0 < 2)$	86 7(4)	
$C(2)-O_{S}(1)-C(1)$	168.7(6)	C(3) - C(3) - C(2)	86 9(4)	
C(3)-Os(1)-Sn(1)	90.7(5)	$O_{\mathcal{C}}(1) = O_{\mathcal{C}}(2) = O_{\mathcal{C}}(2)$	63 76/31	
$C(2) \cap C(1) \subseteq C(1)$	96.5(A)	$C(15) S_{n}(1) C(10)$		
$C(2) = O_{S}(1) = S_{R}(1)$	80.3(4) 81 7(4)	C(15) = SII(1) + C(19)	103 1(7)	
C(1) - Os(1) - Si(1)	02.7(4) 100.1751	C(13)-SII(1)-C(23)	107.4(8)	
C(3) - OS(1) - OS(3)	100.1(3)	C(19)-Sn(1)-C(23)	102.7(8)	
C(2)-Os(1)-Os(3)	97.9(4)	C(15)-Sn(1)-Os(1)	112.5(5)	
C(1) - Os(1) - Os(3)	93.3(4)	C(19)-Sn(1)-Os(1)	113.4(5)	
Sn(1)-Os(1)-Os(3)	168.46(3)	C(23)-Sn(1)-Os(1)	114,8(6)	
C(3)-Os(1)-Os(2)	158.4(5)	C(14)-N(1)-C(11)	108.7(12)	
C(2)-Os(1)-Os(2)	95.3(4)	C(14)-N(1)-Os(2)	125.7(10)	
C(1)-Os(1)-Os(2)	91.6(4)	C(11)-N(1)-Os(2)	123.6(10)	
Sn(1)-Os(1)-Os(2)	110.75(3)	O(1)-C(1)-Os(1)	175.8(14)	
Os(3) - Os(1) - Os(2)	58.364(19)	O(2)-C(2)-Os(1)	177.7(12)	
C(4)-Os(2)-C(5)	88.5(5)	O(3)-C(3)-Os(1)	178 5(16)	
C(4)-Os(2)-C(6)	92.9(5)	O(4)-C(4)-Os(2)	174.9(11)	
C(5)-Os(2)-C(6)	98.9(5)	O(5)-C(5)-Os(2)	177.1(13)	
C(4)-Os(2)-N(1)	172.8(4)	O(6)-C(6)-Os(2)	178 9(13)	
C(5)-Os(2)-N(1)	84.7(5)	O(7)-C(7)-Os(3)	175 2(12)	
C(6)-Os(2)-N(1)	90.2(5)	O(8)-C(8)-Os(3)	174.1(14)	
C(4)-Os(2)-Os(3)	92.7(3)	O(9)-C(9)-Os(3)	176.6(14)	
C(5)-Os(2)-Os(3)	178.3(4)	O(10)-O(10)-Os(3)	179 1(16)	
$C(6) - O_{5}(2) - O_{5}(3)$	82.3(4)	N(1)-C(11)-C(12)	106 9(13)	
N(1) - Os(2) - Os(3)	94.2(3)	C(1)- $C(12)$ - $C(13)$	106 1(13)	
$C(4) - O_{3}(2) - O_{3}(1)$	87.0(4)	C(14)-C(13)-C(12)	100 9(13)	
C(5)-Os(2)-Os(1)	121.0(4)	N(1)-C(14)-C(13)	(159(14)	
C(6)-C(2)-C(1)	140 1(4)	$C(16) = C(15) = S_{0}(1)$	1169(13)	
N(1) - Os(2) - Os(1)	94.8(3)	C(15) C(15) C(17)	115 6(10)	
$\Omega(1) \cup \Omega(2) \cup \bigcup \Omega(1)$	57 87(3)	C(13) = C(13) = C(13)	115.0(17)	
$C(0) \cap (2) = C(10)$	100 7/7)	C(10) - C(10) - C(10)	10(3)	
C(9) - C(3) - C(10)	00.7(7)	$C(200)C(10)S_{-}(1)$	124(2)	
C(3) = C(3) = C(7)		C(20) - C(19) - 3n(1)	101.7(10)	
C(10) - Os(3) - C(7)	73.3(0)	C(21) + C(20) + C(19)	112(7)	
C(3) - C(3) - C(3)	73.U(0)	C(20)+C(21)+C(22)	118(10)	125(0)
	92.7(7)	C(19)-C(20B)-C(21B))	125(5)
C(7) - C(8)	1/0.5(6)	C(22B)-C(21B)-C(20	3)	(19(7)
C(9)-Os(3)-Os(1)	91.5(5)	C(24)-C(23)-Sn(1)		114.8(19)
C(10)-Os(3)-Os(1)	166 9(5)	C(24B)-C(23)-Sn(1)		160(5)
C(7)-Os(3)-Os(1)	89.1(4)	C(23)-C(24)-C(25)		101(2)
C(8)-Os(3)-Os(1)	82.0(4)	C(26)-C(25)-C(24)		86(3)
C(9)-Os(3)-Os(2)	155.1(5)	C(25B)-C(24B)-C(23))	115(8)
	· · · · · · · · · · · · · · · · · · ·	•		

Tabla 15	Longitudes	de enlace	[Å] y	ángulos	de	enlace	[°] рага	2a.
l'abla 15	Longitudes	de enlace	[A] y	' ángulos	de	enlace	[°] para	2a

_			
$O_{S}(1)-C(3)$	1.881(1.5)	O(5)-C(5)	1 [19(15)
$O_{\alpha}(1) O_{\alpha}(2)$	1.059(15)	C(c) = (c)	
05(1)=C(2)		0(0)-0(0)	1.132(13)
Os(1)-C(1)	5.960(15)	O(7)-C(7)	1.107(14)
Os(1)-Sn(1)	2.6994(11)	O(8)-C(8)	1.131(16)
$O_{S}(1) - O_{S}(3)$	2.8768(8)	O(9)-C(9)	1 20(2)
$O_{r}(1) O_{r}(2)$	20150(7)		1 1 20/16
$O_{S(1)} = O_{S(2)}$			
$O_{S}(2) - C(4)$	1.905(14)	N(1)-C(11)	1.503(16)
Os(2)-C(6)	1.907(17)	N(1)-C(15)	1.527(16)
$O_{2}(2) - C(5)$	1 930(15)	C(11)-C(12)	1.516(17)
$O_{\mathbf{r}}(2) N(1)$	7 776(10)	C(12) - C(12)	150(2)
$O_{S(2)} - O_{S(3)}$	2.9123(8)	C(13)-C(14)	1 50(2)
Os(3)-C(9)	1.75(2)	C(14)-C(15)	1.578(19)
Os(3)-C(10)	1,913(16)	C(16)-C(17)	1 50(3)
$O_{\mathbf{x}}(3) = C(7)$	1.948(15)	C(17)-C(18)	1 38(2)
$O_{2}(2) = O_{1}(2)$			
US(3)-C(8)	1.957(18)	C(18) - C(19)	1.44(3)
Sr(1)-C(20)	2.124(16)	C(20)-C(21)	1 53(2)
Sn(1)-C(16)	2,129(15)	C(21)-C(22)	1.58(2)
Sn(1)-C(24)	2 13(2)	concon	1 37(3)
	1.1.1(14)	C(24) $C(25)$	
O(1)-L(1)	1.171(14)	C(24)-C(25)	1.3/(3)
O(2)-C(2)	1.122(14)	C(25)-C(26)	1.53(5)
0(3)-C(3)	1.124(15)	C(26)-C(27)	1.13(5)
O(A) C(A)	1 128(13)	-()	
O(4) - C(4)	1.120(13)		
C(3)-Os(1)-C(2)	87.4(6)	C(8)-Os(3)-Os(2)	87 9(4)
C(1)-Os(1)-C(1)	88 4(6)	$O_{5}(1) - O_{5}(3) - O_{5}(2)$	62 790(18)
$C(2) O_{-}(1) C(1)$	167 3(6)	$C(20) S_{2}(1) C(16)$	106 9(7)
C(3)-Os(1)-Sn(1)	90.5(6)	C(20)-Sn(1)-C(24)	106 5(8)
C(2)-Os(1)-Sn(1)	83.0(5)	C(16)-Sn(1)-C(24)	105 2(7)
C(1)-Os(1)-Sn(3)	85 1(4)	C(20)-Sn(1)-Os(1)	112 2(5)
$C(2)$ $C_{r}(1)$ $C_{r}(2)$		$C(16) S_n(1) O_n(1)$	112 4(6)
			112.4(0)
C(2)-Os(1)-Os(3)	94.3(5)	C(24)-Sn(1)-Os(1)	1132(5)
$C(1)-O_{S}(1)-O_{S}(3)$	98.2(4)	C(11)-N(1)-C(15)	110.8(11)
Sn(1)-Os(1)-Os(3)	168 76(3)	C(1)-N(1)-O(2)	114 5(7)
C(2) O(1) O(2)	150 4/6)	CUS NUL CO	112 6(8)
C(3) = OS(1) = OS(2)	139.4(0)		
C(2)-Os(1)-Os(2)	93.3(5)	O(1)-C(1)-Os(1)	177 9(13)
C(1)-Os(1)-Os(2)	94.8(4)	O(2)-C(2)-Os(1)	177.6(15)
$S_{II}(1) - O_{S}(1) - O_{S}(2)$	109 96(3)	OGY-CGY-OSY	175 8(18)
$O_{2}(2) O_{2}(1) O_{2}(2)$		O(4) O(4) O(1)	
	57.101(10)	O(4) = O(4) = O(2)	
C(4)-Os(2)-C(6)	90.6(6)	O(5)-C(5)-Os(2)	17) 4(14)
C(4)-Os(2)-C(5)	88.0(6)	O(6)-C(6)-Os(2)	177.2(14)
$C(6)-O_{2}(2)-C(5)$	98.7(6)	O(7)-C(7)-Os(3)	177.2(13)
C(4) Or(2) N(1)	177 5(5)	O(1) = O(1) = O(2)	177 5(17)
C(4) = OS(2) = N(1)		0(8)-0(8)-05(3)	
C(6)-Os(2)-N(1)	93.2(5)	O(9)-C(9)-Os(3)	172(2)
C(5)-Os(2)-N(1)	86 2(5)	$O(10)-C(10)-O_{s}(3)$	[79.4(19)
C(4)-Os(2)-Os(3)	90.1(4)	N(1)-C(11)-C(12)	1121(11)
$C(\delta) O_{\tau}(2) O_{\tau}(3)$	97.6/5)	CUD CUD CUD	107 7(14)
	03.0(3)		
C(3)-Os(2)-Os(3)	177.1(4)	C(12) + C(13) + C(14)	111,2(14)
N(1)-Os(2)-Os(3)	95.5(3)	C(13)-C(14)-C(15)	114 6(15)
C(4)-Os(2)-Os(1)	89 8(5)	N(1)-C(15)-C(14)	108.4(11)
C(6) O(2) O(1)	14) 6(5)	C(17) C(16) So(1)	115 4(15)
	141.0(5)		
C(5)-Og(2)-Og(3)	1)9.7(4)	C(18)-C(17)-C(16)	124(2)
N(1)-Os(2)-Os(1)	90.5(3)	C(17)-C(18)-C(19)	120(3)
$O_{s(3)}-O_{s(2)}-O_{s(1)}$	58.029(18)	C(21)-C(20)-Sn(1)	115.9(13)
C(0) - C(10)	101 8(9)	C(20) - C(21) - C(22)	1)) 8(15)
C(0) = C(0) = C(10)	(1)	C(23) C(21) C(21)	
(3)-(3)+(1)	31.3(7)	(23) - (22) - (21)	13(2)
C(10)-Os(3)-C(7)	92.7(7)	C(25)-C(24)-Sn(1)	113.5(14)
C(9)-Os(3)-C(8)	93.4(7)	C(24)-C(25)-C(26)	129(3)
$C(10)-O_{3}(3)-C(8)$	90 4(7)	C(27)-C(26)-C(25)	110(5)
C(7) C(3) C(3)	171 5/6		
(19)-(19)-(19)-(19)	104.0(7)		
C(10)-Os(3)-Os(1)	93.9(6)		
C(7)-Os(3)-Os(1)	84.7(4)		
CIRLOWIN	80 5/5)		
	(), (), (), (), (), (), (), (), (), (),		
C(9)-Os(3)-Os(2)	101.5(7)		
C(10)-Os(3)-Os(2)	156.7(6)		
C(7)-Ox(3)-Ox(2)	87 ()(4)		

Tabla 16 Longitudes de enlace [Å] y ángulos de enlace [°] para 3.

$O_{s(1)}-C(3)$	1,886(12)	Sn(4)-C(15)	2.126(12)
Della Cul	1016(12)	$C_{-}(4) C(12)$	3 1 5 9 (1 2)
Os(1) - C(1)	1.920(12)	5n(4)-C(13)	2.158(12)
Os(1)-C(2)	1.935(12)	Sn(4)-C(14)	2.162(11)
Or(1) SP(A)	2 7021/81	<u>où cù í</u>	1 126(12)
03(1)-311(4)	2.7021(8)	0(1)-0(1)	1.130(13)
Os(1)-Os(3)	2.8741(6)	O(2)-C(2)	1.132(14)
$O_{S}(1) = O_{S}(2)$	3 0212(6)	O(3)- $C(3)$	1 106(13)
	1000/11		1.100(13)
$O_{3}(2) - C(4)$	1.888(11)	O(4)-C(4)	1.114(13)
$O_{5}(2) - C(6)$	1.906(11)	O(5)-C(5)	1 138(13)
	1 011(17)		
$U_{S(2)} - U_{S(3)}$	1,911(13)	O(0)-C(0)	1.130(12)
$O_{S(2)} - N(1)$	2 208(10)	O(7)-C(7)	1.139(13)
Or D Or D	10106/61		
03(2)-03(3)	2.9100(0)	O(a) - O(a)	1113(13)
Os(3)-C(10)	1.896(16)	O(9)-C(9)	1.101(13)
0(3)-(17)	1 930(12)	O(10), C(10)	1 124(16)
03(3)-C(7)	1 550(12)	0(10)-0(10)	1 124(10)
Os(3)-C(9)	1.932(13)	N(1)-C(12)	1.454(36)
0432-(18)	1944(11)	N(I)-C(II)	1463(13)
00(2) 0(0)			1 405(15)
$C(3)-O_{S}(1)-C(1)$	89.0(5)	C(14)-Sp(4)-Os(1)	110 3(4)
	00 3/(5)		
C(3) - OS(1) - C(2)	90.2(3)	C(12)-N(1)-C(11)	105.5(10)
$C(1)-O_{S}(1)-C(2)$	167.0(5)	$C(12) \cdot N(1) - Os(2)$	1)7.3(8)
C(1) C(1) S-(A)	04 7/42		
C(3) = OS(1) = SI(4)	90.3(4)	C(11)-N(1)-OS(2)	115.7(8)
C(1)-Os(1)-Sn(4)	83.5(3)	O(1)-O(1)-O(1)	174.0(11)
$C(3)$ $O_{C}(1)$ $S_{T}(4)$	02 9(1)		173 0(14)
C(2)-OS(1)-SN(4)	03.0(3)	O(2) + O(2) + O(3(1))	173.0(10)
C(3)-Os(1)-Os(3)	94.1(4)	O(3)-C(3)-Os(1)	176.6(13)
CULO (ILO (IL)	08 7(3)	(1) (2) (2) (2) (2)	122 6(0)
C(1) - Os(1) - Os(3)	98 2(3)	O(4) + C(4) + OS(2)	177.0(9)
C(2)-Os(1)-Os(3)	94.7(3)	$O(5)-C(5)-O_{5}(2)$	175.6(10)
Sp(A)_De(1)_De(3)	160 54(2)	0(6) ((6) (~(2))	171 8(12)
31(-)-03(1)-03(1)	109 94(2)	O(0) - O(0) - O(2)	171.0(12)
C(3)-Os(1)-Os(2)	153 2(4)	O(7)-C(7)-Os(3)	177.8(11)
C(1) = O(1) = O(2)	95 1(3)	O(8)-C(8)-O-(3)	174 9(9)
		0(0)-0(0)-03(3)	174.7(7)
C(2)-Os(1)-Os(2)	91,5(3)	O(9)-C(9)-Os(3)	177.6(11)
5n(4) - Os(1) - Os(2)	110.52(2)	O(10)-O(10)-O(3)	178 1(17
			1.0.1(17
Os(3) - Os(1) - Os(2)	39.108(14)		
C(4)-Os(2)-C(6)	90.6(5)		
C(A) OV(A) C(A)	00 4(4)		
C(4) = OS(2) = C(3)	89.4(4)		
$C(6)-O_{s}(2)-C(5)$	95.8(5)		
CIAN ON TANKIN	176 6141		
C(4) = OS(2) = N(1)	170.0(4)		
$C(6)-O_{3}(2)-N(1)$	91.8(4)		
C(S) OND N(L)	88 011		
C(3)=OS(2)=N(1)	88.0(4)		
$C(4)-O_{s}(2)-O_{s}(3)$	89.5(3)		
CIA CAN CAN	87 1/4)		
0,0,00,2,00,3)	07.1(4)		
C(5)-Os(2)-Os(3)	176.9(3)		
N(1)-0-(2)-0-(3)	93 0(3)		
	10.0(5)		
C(4)-Os(2)-Os(1)	88.8(3)		
$C(6)-O_{2}(2)-O_{3}(1)$	145.1(4)		
C(5) - Os(2) - Os(1)	1191(3)		
N(1)-Os(2)-Os(1)	90.6(3)		
0~1) 0-11 0-11	57 077/151		
(1)(3)-(3)(2)-(3)(1)	31.721(13)		
C(10)-Os(3)-C(7)	89.1(6)		
CUMANICION	97 7(6)		
C(7)-Os(3)-C(9)	96.0(5)		
$C(10)-O_{5}(3)-C(8)$	89.7(6)		
	146 7/51		
C(1)-Os(1)-C(8)	108.7(3)		
$C(9)-O_{S}(3)-C(8)$	95.2(5)		
C(10) C(1) C-(1)	102 2/5)		
C(10) - Os(3) - Os(1)	102.3(5)		
$C(7)-O_{3}(3)-O_{3}(1)$	83.4(3)		
C(0)_0~2) 0~(1)	150 0(4)		
	1.37 7(4)		
C(8)-Os(3)-Os(1)	85,9(3)		
CUDLO(2)-O(2)	165 3/5)		
L(/)-Us(3)-Us(2)	87.0(2)		
(9) - 0 + 3 + 0 + (2)	97 0(4)		
	46 7(7)		
L(8)-US(3)-US(2)	ōð./(J)		
Os(1)-Os(3)-Os(2)	62 965(15)		
C(16) C=(4) C(14)	105 5/5)		
C(13) - ST(4) - C(13)	(0)¢.cui		
C(15)-Sn(4)-C(14)	104.9(5)		
CULLSON CULL	105 6(5)		
C(13)-30(4)-C(14)	102.0(2)		
C(15)-Sn(4)-Os(1)	114.5(4)		
C(13)-Sn(4)-Ox1)	115105		
S(13) Sin(7) (S(1)			

 Tabla 17
 Longitudes de enlace [Å] y ángulos de enlace [°] para 6.

04(1)-C(3)	1.860(5)	Sc	o(1)-C(17)	2 144(5)
$U_{S(1)} - C_{2}$	1.924(5)	50	n(1)-C(13)	2 (67(5)
$O_{S}(1)$ - $C(1)$	1 933(5)	0	(1)-C(1)	1 132(5)
	2 (0/2/1)			
US(1)-Sn(1)	2 084 /(4)	0((2)-(2)	1.137(3)
Os(1)-Os(3)	2.8841(3)	Of	(3)-C(3)	1.166(5)
	2 (149/2)	~		1 1 3 4 (5)
Os(1) = Os(2)	5.0148(5)	U	(4)-(4)	1 1 3 4 (3)
$O_{S(1)}$ -H(1A)	1 69(4)	Ö	(5)-C(5)	1,132(5)
0.00 0(4)	1.000(5)	~	IAN CIAN	1 104(6)
Us(2) - C(4)	1.890(3)	0((0)-L(0)	1.124(5)
$O_{5}(2)-C(6)$	1.906(5)	Q	(7)-C(7)	1 14}(6)
				1 107(5)
$U_{S(2)}$ - $U_{(3)}$	1 901(5)	U((8)-(8)	1.137(3)
$O_{s(2)} N(1)$	2 203(4)	0((9)-C(9)	1.128(5)
r_{α}	2 0022/1	0		1 124(6)
$O_{S(2)} = O_{S(3)}$	2,9033(4)	0	(10) (10)	1124(0)
Os(2)-H(JA)	1 79(4)	N	(1)-C(14)	1 474(6)
$\Delta (\dot{x}) - (\dot{y})$	1015(5)	NI	ú chú	1 400(6)
03(3)-0(7)	1.91.9(3)	14		
Os(3)-C(10)	1.929(6)	N((I)-H(I)	0.72(4)
$O_{\mathbf{x}}(\mathbf{x}) = C(\mathbf{z})$	1.930(6)	C	(1)-C(12)	1.505(6)
Os(3)-C(8)	1.946(5)	C	(12)-C(13)	1.553(6)
SPULCUS	2133(5)	ci	(13) (14)	1 \$76(6)
31() () () ()	2.100(0)	5		1 220(0)
C(3)-O(1)-C(2)	91,09(19)	<u>^</u>	(7)-(14(3)-(7)8)	173 46(19)
		4		
C(3)-Os(1)-C(1)	89.3(Z)	C((9)-Os(3)-Os(1)	104 89(15)
C(2)-O(1)-C(1)	17) 5(2)	ci	(10)-0s(1)-0s(1)	91,21(16)
C(3)-Os(1)-Sn(1)	(۱۵) se (۱۵)	C((/)-Os(3)-Os(1)	93.99(15)
$C(2)-O_{2}(1)-S_{1}(1)$	86 79(15)	ci.	(8)-0-(3)-0-(1)	81 39(14)
C(1)-Os(1)-Sn(1)	54./J(14)	C((y)-Os(J)-Os(Z)	103.90(15)
C(3) + O(3) + O(3)	100 67(15)	C((10) - (3) - (3) - (3)	153 39(16)
		<u> </u>		
C(2)-Os(1)-Os(3)	88.40(15)	a	(7)-Os(3)-Os(2)	83.80(14)
$C(1) - O_{S}(1) - O_{S}(3)$	99.81(14)	C	(8)-0s(3)-0s(2)	89 89(13)
		0,0		
Sn(1) = Os(1) = Os(3)	100 914(11)	09	s(1)-Os(3)-Os(2)	62.788(7)
C(3)-Os(1)-Os(2)	159.06(15)	C((16)-Sn(1)-C(17)	104.4(2)
C(2) Cr(1) Cr(2)	A1 81(1))	~		
C(Z) = OS(T) = OS(Z)	92-01(13)	L((10)-311(1)-(13)	103.1(2)
C(1)-Os(1)-Os(2)	89.61(14)	C((17)-Sn(1)-C(15)	108.1(2)
		-0		
Sin(1) + Os(1) + Os(2)	109.100(12)	C((10)-20(1)-09(1)	117.15(10)
$O_{S}(3) - O_{S}(1) - O_{S}(2)$	58.917(8)	C	(17)-Sn(1)-Os(1)	110 75(16)
COND-ON HOLD	160 4(14)			110 75(14)
C(3)-OS(1)-D(1A)	107.4(14)	ч	(1) = 3n(1) = 0s(1)	110.73(14)
C(2)-Os(1)-H(1A)	91.1(14)	C((14)-N(1)-C(11)	104.2(4)
CONTRACTOR	86 8(1)2)	C C		110 000
	80.8(15)	L((14) = N(1) = OS(2)	119.0(3)
Sn(1)-Os(1)-H(1A)	78.2(14)	C	(11)-N(1)-Os(2)	117 6(3)
Or (1) OF (1) H(1A)	897(14)	C.	(14) N(1) H(1)	102(4)
	03.7(14)		(14)-11(1)	102(4)
Os(2)-Os(1)-H(1A)	31.0(14)	C((11)-N(1)-H(1)	100(4)
C(A) - C(A)	0(1/2)	0	(7) N(1) H(1)	112(4)
		0.	3(2)=11(1)=11(1)	
C(4)-Os(2)-C(5)	89.15(19)	O((1)-C(1)-Os(1))76.0(5)
C(6)-0x(2)-C(5)	95 8(2)	α.	22022001	177 6(5)
		01		
C(4)-Os(2)-N(1)	1/4.12(18)	0((J)-C(J)-Os(1)	1775(5)
$C(6)-O_{S}(2)-N(1)$	93.05(18)	Ω	(4)-C(4)-Os(2)	176.5(4)
C(3) - CS(2) - N(1)	30.27(18)	U((3)-C(3)-OS(2)	1 /4.0(3)
C(4)-Os(2)-Os(3)	87.18(14)	O((6)-C(6)-Os(2)	178.0(5)
City Delay Delay	84 78(15)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		יא איז אריו
(0)-(2)-(3(2)	D7 10(13)	0((1)-(1)-(3(3)	111 3(3)
C(5)-Os(2)-Os(3)	176.29(14)	O((8)-C(8)-Os(3)	175.3(4)
NULOCOLONIA	0735(1))	~	a ria ani	178 3/5)
111703(2)-05(3)		U(())-())-())())	1 (0.0(0))
C(4)-Os(2)-Os(1)	89.51(14)	O((10)-C(10)-Os(3)	178 3(5)
ດໃຫ້-ດະໃຫ້-ດະເປັນ	143 00(14)	N	$\dot{\mathbf{u}}$	104 5(4)
		14		
C(5)-Os(2)-Os(1)	121.16(15)	C((11)-C(12)-C(13)	107.2(4)
N(1) O(2) O(1)	8971(11)	ri	และดูเม่ะดูแว่	103 1(4)
\cup s(J)- \cup s(Z)- \bigcup s(I)	38.295(7)	N((1)-C(14)-C(13)	100.1(4)
C(4)-0x(2)-H(1A)	94 (x13)			
し(0)-US(2)-H(IA)	170.2(12)			
C(5)-Os(2)-H(1A)	92.6(12)			
N(I)-US(2)-H(IA)	مد ع(رع)			
$O_{S}(3)-O_{S}(2)-H(1A)$	87.2(12)			
CWIN CHANNEL	29 0(12)			
US(1)=US(2)=TI(1A)	29.0(13)			
C(9)-Os(3)-C(10)	102.6(2)			
CIAL DAY CON	0) 4(2)			
(7) - (3) - (7)	71.4(4)			
C(10)-Os(3)-C(7)	93.0(2)			
CIAN Derish Cran	01 e(z)			
(7)-(3)-(8)	21.7(4)			
C(10)-Os(3)-C(8)	91.7(2)			

		_		
Tabla 18	Longitudes de enlace	[Å] y ángulos de enlace	e [°] para 7.	

_

$\overline{Os(1)}$ - $\overline{C(3)}$	1.879(7)	Sn(1)-C(17)	2.164(7)
Os(1)-C(2)	1.910(7)	O(1)-C(1)	1.137(7)
Os(I)-C(I)	1.922(7)	O(2)-C(2)	1 158(7)
Os(1)-Sn(1)	2.6953(5)	0(3)-C(3)	1 136(7)
041)-043)	2.8704(4)	O(4)-C(4)	1 138(6)
$O_{S}(1) - O_{S}(2)$	3.0179(4)	0(5)-C(5)	1 135(7)
$O_{S(1)}$ -H(1A)	161(5)	O(6) + C(6)	1 143(7)
$O_{S}(2) = C(4)$	1 878(6)	$\alpha_{1} = \alpha_{1} = \alpha_{1$	1 1 38(7)
$O_{S}(2) - C(6)$	1 896(7)	O(8) - C(8)	1 144(7)
$O_{3}(2) = C(3)$	1 912(7)	0(9)-0(9)	1.142(7)
$O_{S}(2) \cdot N(1)$	2 2 4 (5)	$\alpha(0) = \alpha(0)$	1.141(7)
$O_{S(2)} - O_{S(1)}$	2 9132(4)		1.485(6)
$O_{2}(2) = O_{3}(3)$	(3, 5) = (3, 5)	N(1) C(15)	1.499(7)
$O_{2}(1) - C(10)$	1 805(7)	NULAU	0.80(4)
$O_{S}(3) - C(0)$	10,5(7)		1 500/8)
$O_{3}(2) = C(2)$	1 933(7)	C(12) - C(12)	1 \$00/0)
G(3)-C(8)	1 0 2 0 (9)	C(12) - C(13)	1.509(9)
$S_{n}(1) = C(1)$	1 737(0) 7 177(7)	C(13) - C(14)	1.554(8)
$S_{\pi}(1) = C(16)$	2 135(7)	C(14) - C(13)	1.304(8)
3n(1)-C(10)	2.130(0)		
$C(3)$ - $O_{2}(1)$ - $C(2)$	90.6(3)	C(9)-C(3)-C(7)	94 9(3)
CUPORILCU	91 5(3)	C(10) C(3) C(7)	89.0(3)
$C(2) - O_{\mathcal{C}}(1) - C(1)$	166.2(3)	C(9) - C(3) - C(8)	93 9(3)
$C(3)_{OS}(1)_{Sn}(1)$	01)(2)	C(7) - O3(3) - C(8)	171 ((3)
C(2) - Os(1) - Sn(1)	81.05(18)	C(1) = C(1)	94 9(7)
C(1) Os(1) Sn(1)	85 26/18	C(0) - O(3) - O(1)	163 0(2)
C(1) - Os(1) - Os(1)	05.20(18)	C(7) - Or(3) - Or(1)	85 60(19)
C(3) - Os(1) - Os(3)	06.30(18)	C(1) - Os(1) - Os(1)	85.07(18)
C(2) - Os(1) - Os(3)	06.84(18)	C(0) O(3) O(1)	(10)
C(1) - Os(1) - Os(3)	20 34(10)	C(10) - Os(3) - Os(2)	137.7(2)
C(2) C(1) C(3)	172.179(13)	$C(7) O_{2}(3) O_{3}(2)$	100.1(2) 00.07/10\
C(3) - Os(1) - Os(2)	155.5(2) 80.0(2)	C(7) = OS(3) = OS(2)	87.0/(16)
$C(2) = O_{S}(1) = O_{S}(2)$	67.7(<i>L</i>)	C(8) - OS(3) - OS(2)	87.70(18)
C(1) + Os(1) + Os(2)	73.70(17)	$O_{S(1)} - O_{S(3)} - O_{S(2)}$	62.901(10)
Sn(1) - Os(1) - Os(2)	113.179(14)	C(18) - Sn(1) - C(10)	100.1(3)
Os(3) - Os(1) - Os(2)	59.243(8)	C(18)-Sn(1)-C(17)	108.6(3)
C(3) - OS(1) - H(1A)	170.0(15)	C(16)-Sn(1)-C(17)	106.1(3)
C(2) - Os(1) - H(1A)	93.7(15)	C(18)-Sn(1)-Os(1)	110.60(18)
C(1)-Os(1)-H(1A)	86.2(15)	C(16)-Sn(1)-Os(1)	114.24(17)
Sn(1)-Os(1)-H(1A)	97.7(15)	C(1/)-Sn(1)-Os(1)	110.9(2)
Os(3)-Os(1)-H(1A)	/4.9(15)	C(11)-N(1)-C(15)	109 3(5)
Os(2)-Os(1)-H(1A)	16.7(15)	C(11)-N(1)-Os(2)	115.4(3)
C(4)-Os(2)-C(6)	89.3(3)	C(15)-N(1)-Os(2)	115.1(4)
C(4)-Os(2)-C(5)	88.4(3)	C(11)-N(1)-H(1)	103(3)
C(6)-Os(2)-C(5)	97.4(3)	C(15)-N(1)-H(1)	104(3)
C(4)-Os(2)-N(1)	176.5(2)	Os(2)-N(1)-H(1)	109(3)
C(6)-Os(2)-N(1)	91 9(2)	$O(1)-C(1)\cdot Os(1)$	177.0(6)
C(5)-Os(2)-N(1)	88.2(2)	O(2)-C(2)-Os(1)	175.5(6)
C(4)-Os(2)-Os(3)	89 95(18)	O(3)-C(3)-Os(1)	178.5(7)
C(6)-Os(2)-Os(3)	87.5(2)	O(4)-C(4)-Os(2)	175 2(6)
C(5)-Os(2)-Os(3)	174.8(2)	O(5)-C(5)-Os(2)	176.7(6)
N(1)-Os(2)-Os(3)	93.35(12)	O(6)-C(6)-Os(2)	178.8(6)
C(4)-Os(2)-Os(1)	90.09(19)	O(7)-C(7)-Os(3)	176.9(6)
C(6)-Os(2)-Os(1)	145.3(2)	O(8)-C(8)-Os(3)	175.8(6)
C(5)-Os(2)-Os(1)	1)7.2(2)	O(9)-C(9)-Os(3)	177.6(6)
N(1)-Os(2)-Os(1)	90 79(13)	O(10)-C(10)-Os(3)	179.9(9)
Os(3)-Os(2)-Os(1)	57.856(8)	N(1)-C(11)-C(12)	114.3(5)
C(4)-Os(2)-H(IA)	96.3(16)	C(11)-C(12)-C(13)	11.0(6)
C(6)-Os(2)-H(1A)	160.9(16)	C(12)-C(13)-C(14)	109.5(6)
C(5)-Os(2)-H(IA)	101.0(16)	C(15)-C(14)-C(13)	112.8(5)
N(1)-Os(2)-H(1A)	83.7(16)	N(1)-C(15)-C(14)	112.6(5)
Os(3)-Os(2)-H(1A)	74.3(16)		
Os(1)-Os(2)-H(1A)	17.4(16)		
C(10)-Os(3)-C(9)	102.1(3)		
C(10)-Os(3)-C(7)	91.0(3)		

 Tabla 19
 Longitudes de enlace [Å] y ángulos de enlace [°] para
 8.

Os(1)-C(3)	1.863(13)	O(2)-C(2)	1 127(13)
Os(1)-C(1)	1.920(12)	0(3)-C(3)	1 174(14)
$O_{\mathbf{s}}(\mathbf{l}) \cdot C(2)$	1 933(13)	O(4)-C(4)	1 161(12)
$O_3(1) = C(2)$	2 (02)(0)	O(4) - O(4)	
Us(1)-Sn(1)	2 0903(9)	O(3) + C(3)	1.109(13)
$O_{S}(1) - O_{S}(3)$	2.8655(6)	O(6)-C(6)	1.147(13)
Os(1)-Os(2)	3.0025(6)	O(7)-C(7)	1.161(13)
$O_{S}(2) - C(A)$	1 872(12)	0(8)-0(8)	1 137(14)
$O_{2}(2) C(4)$	1.905(12)		
	1.090(13)	0(9)-0(9)	1.102(14)
Os(2)-C(5)	1.887(12)	O(10)-C(10)	1.115(13)
$O_{s(2)}-N(1)$	2.252(9)	N(I)-C(II)	1.469(13)
Os(2)-Os(3)	2,9099(6)	N(1)-C(15)	1.479(14)
$O_{\mathbf{x}}(\mathbf{x}) - C_{\mathbf{x}}(\mathbf{x})$	1918(13)	C(1)- $C(12)$	1514(16)
$O_{-1}(2) C(2)$			
05(3)-C(7)	1.712(12)	C(12) - C(13)	1.310(18)
Os(3)-C(9)	1.930(14)	C(13)-C(14)	1_498(18)
Os(3)-C(8)	1.947(13)	C(14)-C(15)	1.483(18)
Sp(1)-C(18)	2.095(14)	C(19)-C(2)	1 53(2)
Sn(1) C(17)	2 (45(14))		1 62(2)
	2.143(14)		1.02(2)
Sn(1)-C(16)	2.100(14)	C(19)-Cl(3)	1.73(2)
O(1)-C(1) 1.139(13)			
C(3)-C(1)-C(1)	90.4(5)	C(18)-Sp(1)-C(16)	1093(8)
$C(2) O_{2}(1) C(1)$	00.9(5)	$C(17) S_{-}(1) C(16)$	101 3(3)
	50.0(S)	$C(17) \sin(1) - C(10)$	103.2(7)
C(1)-Os(1)-C(2)	165.4(4)	C(18)-Sn(1)-Os(1)	111.1(4)
C(3)-Os(1)-Sn(1)	94.3(4)	C(17)-Sn(1)-Os(1)	109.8(5)
C(1)-Os(1)-Sn(1)	80.5(3)	C(16)-Sn(1)-Os(1)	114.0(4)
C(2) C(1) Sp(1)	9 / 9 (2)	CULNULCUS	100.3(0)
	04.7(3)		109.3(9)
C(3)-US(1)-US(3)	95.2(4)	C(11)-N(1)-Os(2)	112.9(6)
C(1)-Os(1)-Os(3)	101 5(3)	C(15)-N(1)-Os(2)	116.9(8)
$C(2)-O_{S}(1)-O_{S}(3)$	92.9(3)	O(1)-C(1)-Os(1)	177.1(10)
Sr(1)-Os(1)-Os(3)	170 37(3)	ດຕົ້ງແກ່ງ	175 6(10)
$C(3) O_{2}(1) O_{2}(3)$	154 2(4)	O(2) = O(2) = O(1)	120 6(10)
C(3) - Os(1) - Os(2)	134,3(4)	O(3) - C(3) - O(1)	178.0(11)
C(1)-Os(1)-Os(2)	91.7(4)	O(4)-C(4)-Os(2)	175.1(11)
C(2)-Os(1)-Os(2)	[^] 93.6(3)	O(5)-C(5)-Os(2)	171.9(11)
Sp(1)-Os(1)-Os(2)	111 29(3)	0(6)-C(6)-0s(2)	179.3(12)
$O_{\alpha}(1) O_{\alpha}(1) O_{\alpha}(2)$	50 402(14)	O(2) O(2) O(2)	176 1(10)
	37.402(14)		170.1(10)
C(4)-Os(2)-C(6)	90.0(3)	O(8)-C(8)-Os(3)	175.0(11)
C(4)-Os(2)-C(5)	88.4(5)	O(9)-C(9)-Os(3)	179.2(12)
$C(6)-O_{5}(2)-C(5)$	98.0(5)	O(10)-C(10)-Os(3)	177.2(11)
$C(4) = O_{2}(2) \cdot N(1)$	175 6(4)	N(1)-C(1))-C(12)	112 7(9)
			112.2(7)
L(0)-OS(2)-N(1)	93.3(4)	C(11)-C(12)-C(13)	110.6(11)
C(5)-Os(2)-N(1)	88.3(4)	C(14)-C(13)-C(12)	111.1(12)
C(4)-Os(2)-Os(3)	86.5(3)	C(15)-C(14)-C(13)	111.3(11)
$C(6)-O_{5}(2)-O_{5}(3)$	87 0(4)	C(14)-C(15)-N(1)	113.6(11)
C(5) - O(2) - O(3)	172 0(4)	C(2) = C(10) = C(11)	129 8(16)
	172.7(4)		
N(1) - OS(2) - OS(3)	90.0(2)	C(2)-C(19)-C(3)	1172(16)
C(4)-Os(2)-Os(1)	88.9(4)	CI(1)-C(19)-CI(3)	1121(13)
C(6)-Os(2)-Os(1)	44 9(4)		
$C(5)-O_{5}(2)-O_{5}(1)$	117.0(4)		
	90.1(7)		
Os(3) - Os(2) - Os(1)	57.956(14)		
C(10)-Os(3)-C(7)	91.6(5)		
C(10)-Os(3)-C(9)	98.9(5)		
C(T) - O(x) - C(y)	93 6(5)		
C(10) C(1) C(1)	90 5/(()		
C(1)-Os(3)-C(8)	1/1/(2)		
C(9)-Os(3)-C(8)	94.6(5)		
C(10)-Os(3)-Os(1)	98.9(3)		
$C(T) \cap (1) \cap (1)$	ອດມີໃຈນັ		
	14) 7(A)		
C(3) + Os(3) + Os(1)	101.7(4)		
C(8)-Os(3)-Os(1)	(٤)م.ا٢		
C(10)-Os(3)-Os(2)	161.3(3)		
C(7)-Os(3)-Os(2)	85,8(3)		
C(9) - Oq(1) - Oq(2)	99 7(4)		
C(2) (-(2) (-(3))	01 4(3)		
Us(1)-Us(3)-Us(2)	02.042(15)		
C(18)-Sn(1)-C(17)	109.0(7)		

Yabla 20 Longitudes de enlace [Å] y ángulos de enlace [°] para 8'CHCl₃.

Os(1)-C(3) Os(1)-C(2) Os(1)-C(1) Os(1)-Os(3) Os(1)-Os(2) Os(2)-C(4) Os(2)-C(4) Os(2)-C(5) Os(2)-C(6) Os(2)-N(1) Os(2)-Os(3) Os(3)-C(9) Os(3)-C(9) Os(3)-C(9) Os(3)-C(9) Os(3)-C(10) Os(3)-C(10) Os(3)-C(10) Os(3)-C(10) Os(3)-C(10) Sn(1)-C(17) Sn(1)-C(16) Sn(1)-C(18B)	1.851(10) 1.911(10) 2.6909(8) 2.8685(5) 3.0053(5) 1.854(11) 1.879(11) 1.913(11) 2.226(6) 2.9174(6) 1.873(14) 1.873(14) 1.873(14) 1.883(11) 1.898(11) 1.939(11) 2.098(10) 2.123(10) 2.11(2)	Sn(1)-C(18) O(1)-C(1) O(2)-C(2) O(3)-C(3) O(4)-C(4) O(5)-C(5) O(6)-C(6) O(7)-C(7) O(8)-C(8) O(9)-C(9) O(10)-C(10) N(1)-C(15) N(1)-C(11) C(11)-C(12) C(12)-O(13) O(13)-C(14) C(14)-C(15)	2.13(2) 1.146(10) 1.145(9) 1.175(10) 1.150(10) 1.125(11) 1.175(10) 1.148(13) 1.148(13) 1.148(13) 1.144(11) 1.465(9) 1.508(11) 1.408(11) 1.425(10) 1.519(11)
$\begin{array}{c} C(3) - Os(1) - C(2) \\ C(3) - Os(1) - C(1) \\ C(2) - Os(1) - Sn(1) \\ C(2) - Os(1) - Sn(1) \\ C(3) - Os(1) - Sn(1) \\ C(3) - Os(1) - Os(3) \\ C(3) - Os(1) - Os(3) \\ C(1) - Os(1) - Os(3) \\ C(1) - Os(1) - Os(3) \\ C(3) - Os(1) - Os(2) \\ C(4) - Os(2) - C(5) \\ C(4) - Os(2) - C(6) \\ C(4) - Os(2) - N(1) \\ C(5) - Os(2) - N(1) \\ C(5) - Os(2) - N(1) \\ C(5) - Os(2) - Os(3) \\ C(5) - Os(2) - Os(1) \\ C(5) - Os(2) - Os(1) \\ C(5) - Os(2) - Os(1) \\ C(5) - Os(3) - C(10) \\ C(7) - Os(3) - C(10) \\ C(7) - Os(3) - C(8) \\ C(10) - Os(3) - Os(1) \\ C(10) - Os(3) - Os(2) \\ C(11) - Sn(1) - C(16) \\ \end{array}$	89.7(4) 90.5(4) 168.1(4) 92.0(3) 84 9(3) 83.3(3) 94 8(3) 94 3(3) 97.5(3) 173.17(2) 154.2(3) 93.9(2) 91.1(2) 113.76(2) 59.507(14) 89.7(4) 89.7(4) 89.7(4) 89.7(4) 89.7(4) 89.7(4) 89.7(4) 89.4(4) 97.3(5) 177.2(4) 88.3(3) 92 8(4) 84.5(3) 173.2(3) 86.2(4) 97.3(16) 89.3(16) 89.3(3) 118.6(3) 144.0(4) 89.91(16) 57.913(12) 94.6(5) 171.0(4) 89.2(4) 164.4(5) 87.4(3) 96.2(4) 83.6(3) 102.1(5) 83.8(3) 158.4(4) 91.9(3) 62.581(14) 105.4(5) 93.4(8)	C(16)-Sn(1)-C(18B)C(17)-Sn(1)-C(18)C(18)-Sn(1)-C(18)C(18B)-Sn(1)-Os(1)C(18B)-Sn(1)-Os(1)C(18)-Sn(1)-Os(1)C(18)-Sn(1)-Os(1)C(15)-N(1)-Os(2)C(1)-N(1)-Os(2)C(1)-N(1)-Os(2)C(1)-N(1)-Os(2)C(1)-C(1)-Os(1)O(2)-C(2)-Os(1)O(3)-C(3)-Os(1)O(3)-C(3)-Os(1)O(3)-C(3)-Os(2)O(5)-C(5)-Os(2)O(5)-C(5)-Os(2)O(5)-C(5)-Os(2)O(5)-C(5)-Os(2)O(5)-C(6)-Os(2)O(7)-C(7)-Os(3)O(8)-C(8)-Os(3)O(9)-C(9)-Os(3)O(10)-C(10)-Os(3)N(1)-C(11)-C(12)O(13)-C(14)-C(15)N(1)-C(15)-C(14)	120 8(8) 118.0(9) 90.2(9) 33.9(7) 114.2(3) 114.2(3) 114.0(7) 108.0(6) 114 0(7) 108.0(6) 113 7(5) 176.9(9) 175.9(9) 175.9(9) 175.9(9) 172.8(9) 172.8(9) 175.0(10) 176.7(15) 178.7(11) 111.5(7) 112.5(8) 109.2(7) 113 (8) 112.4(7)

Tabla 21 Longitudes de enlace [Å] y ángulos de enlace [°] para 9

0.412.000		A	1.77///
Us(1) - C(2)	1,896(10)	P(1)-C(26)	1.770(11)
$O_{s(1)}-C(3)$	1.924(10)	P(1)-C(24)	1,817(9)
Orth Cth	1 027(0)	PULACOS	1.820(0)
	1.927(7)		
Os(1)-P(1)	2.346(3)	O(1)-C(1)	1.126(9)
$O_{s(1)}-O_{s(2)}$	2,9000(5)	O(2)-C(2)	1.129(10)
	2 (1)64(5)	QUI CUI	1 157(10)
05(1)-05(3)		0(3)-0(3)	
Os(2)-C(6)	1,895(12)	O(4)-C(4)	1.144(10)
$O_{S(2)}-C(4)$	1.909(10)	O(5)-C(5)	1,144(11)
Oria) City	1 938(11)	CV6) CV6)	1 151(12)
Os(2) - C(3)	1.955(12)	$O(7) \cdot C(7)$	1,140(10)
Os(2)-Os(3)	2.8592(5)	O(8)-C(8)	1.168()1)
$O_{S}(3) - C(8)$	1.870(11)	(γ_{1})	1137(10)
09(3)-0(9)	1,910(10)		1.141(9)
Os(3)-C(10)	1.920(10)	O(11)-C(11)	1.)40(10)
$O_{s(3)}$ -Sn(1)	2 6850(7)	O(12) - C(12)	1 190(11)
0:(4)-((12)	1 877(11)	QUAL CUAL	1.107(0)
05(4)~(12)		0(13)-0(13)	1.12/(3)
Os(4)-C(1))	1.912(10)	O(14)-C(14)	1.118(9)
$O_{s}(4)-C(13)$	1.933(10)	O(15)-C(15)	1.151(9)
$O_{c}(A) = S_{c}(A)$	26751/7	O(16) O(16)	1120(0)
03(4)-51(2)	2.0751(7)	0(10)-0(10)	1.130(9)
Os(4)-Os(6)	2.8578(5)	O(17)-C(17)	1.131(10)
Os(4)-Os(5)	3,0186(5)	O(18)-C(18)	1.173(12)
Oxis CUS	1 \$95(10)	ດ້າຍັດບໍ່ຍໍ	1 140(10)
Os(S)-C(14)	1.943(9)	O(20)-C(20)	1,123(10)
Os(5)-C(16)	1.951(9)	C(37)-C(38)	1.345(13)
Or SI-P(2)	2 247(2)	C(17) C(42)	1 365(14)
Us(S)+Us(6)	2.9017(5)	C(38)-C(39)	1.354(38)
Os(6)-C(18)	1.856(12)	C(39)-C(40)	1.35(2)
$\Delta (x) = C(x)$	1917(1))	CIAM-CIAN	1 40(2)
			1.70(2)
Os(0) - C(19)	1.939(11)	C(41) - C(42)	1,370(17)
Os(6)-C(17)	1,945(11)	C(26)-C(31)	1,344(13)
Sn(1)-C(22A)	1.97(2)	C(26)-C(27A)	1 40(2)
	20(2)		1.40(2)
Sh(1)-C(23A)	2.04(2)	C(26)-C(27)	1.47(3)
Sn(1)-C(21)	2.166(9)	C(30)-C(29A)	1.40(4)
Sn(1)-C(22)	2 380(18)	COD CON	1 402(16)
	2.200(10)		1.1(2)
30(1)-C(23)	2.39(3)	C(30)-C(29)	1.41(3)
Sn(2)-C(33)	2.137(10)	C(27)-C(28)	1.41(4)
Sn(2)-C(32)	2 (49(1))	C(28)- $C(29)$	1 31(3)
5-(2) (24)	2144(1)	C(22, 1)	
351(2)=C(34)	2,100(11)	C(27A)C(28A)	1.44(3)
P(2)-C(35)	1.793(9)	C(28A)-C(29A)	1.30(4)
P(2)-C(36)	1,797(9)		
DOU CUT	1.910(10)		
			144 2422
C(2)-Os(1)-C(3)	90.1(4)	C(6)-Os(2)-Os(1)	166 3(3)
C(2)-Os(1)-C(1)	89,2(4)	$C(4)-O_{S}(2)-O_{S}(1)$	94.4(3)
C(1) O(1) C(1)	170 3(4)	C(T) Or(T) Or(L)	89 7(2)
	(7).5(3)		00.7(J)
C(2) = OS(1) = P(1)	97.3(3)	C(3)-Os(2)-Os(1)	87.7(3)
C(3)-Os(1)-P(1)	90.2(3)	$O_{S}(3) - O_{S}(2) - O_{S}(1)$	63,164(12)
C(I)-Og(I)-P(I)	89.9(3)	C(8) - O(3) - C(9)	91 7(4)
C(3) $C(3)$ $C(3)$ $C(3)$ $C(3)$	02 2/1)	C(9) - C(2) - C(10)	61 0(A)
C(2POS(1)-OS(2))	33.3(3)	C(0) - C(10)	93.0(4)
C(3)-Os(1)-Os(2)	90.3(3)	C(9)-Os(3)-C(10)	164.0(4)
$C(1)-O_{S}(1)-O_{S}(2)$	89.8(3)	C(8)-Os(3)-Sn(1)	89.6(3)
PULOCULOCO	169 43(6)	C(9) C+(3) S+(1)	83 5(2)
	105.45(0)		
C(2)-Os(1)-Os(3)	1510(3)	C(10)-Os(3)-Sn(1)	81.2(3)
C(3)-Os(1)-Os(3)	90.9(2)	C(8)-Os(3)-Os(2)	91.2(3)
C(1)-De(1)-De(1)	89 7(3)	(19) Detal Detal	99 6(3)
			05 (12)
r(1)- $Os(1)$ - $Os(3)$	111.07(0)	(10) - 0s(3) - 0s(2)	(2)0,22
Os(2)-Os(1)-Os(3)	57.758(12)	Sn(1)-Os(3)-Os(2)	176.77(2)
C(6)-Os(2)-C(4)	99.2(4)	C(8)-Os(3)-Os(1)	150,1(3)
-(-) $-(-)$ $-(-)$	01.024)	$C(0) C_{1}(2) C_{2}(1)$	00 5(2)
C(0) - Os(2) - C(1)	71.U(*)	C(7)-US(3)-US(1)	
C(4)-Os(2)-C(7)	96.4(4)	C(10)-Os(3)-Os(1)	93.0(3)
C(6)-Os(2)-C(5)	90.0(4)	Sp(1)-Os(3)-Os(1)	120.21(2)
$\Gamma(a)$, $\Gamma(c)$, $\Gamma(c)$	OA SCAS	$O_{\alpha}(2) O_{\alpha}(2) O_{\alpha}(1)$	59.078(12)
	27.0(7)		
C(1)-Os(2)-C(5)	108.7(4)	C(12)-Os(4)-C(11)	91.U(4)
C(6)-Os(2)-Os(3)	103.2(3)	C(12)-Os(4)-C(13)	90.1(4)
$C(4) - O_{1}(2) - O_{2}(3)$	157 5(3)	CUT O CALCULA	167 1(4)
			AD 6(2)
C(1) - Os(2) - Os(3)	541(3)	U(12)-Us(4)-Sn(2)	SU.2(2)
C(5)-Os(2)-Os(3)	86.7(3)	C(11)-Os(4)-Sn(2)	83.0(3)

Tabla 22	Longitudes	de enlace	{Å] y	ángulos	de	enlace	[°] рага	12

C(13)-Os(4)-Sn(2)	\$4.1(3)
C(12)-Os(4)-Os(6)	92 0(3)
C(11)-Os(4)-Os(6)	96 7(3)
CUBACKALOKA	96 (12)
	70.0(J)
Sn(2)-Os(4)-Os(6)	173.92(2)
C(12)-Os(4)-Os(5)	1547(3)
C(11)-Os(4)-Os(5)	92.1(3)
C(13)-Os(4)-Os(5)	92 4(3)
SP(2) Or A) Or (S)	114 82(2)
$\sin(2) - \cos(4) - \cos(5)$	114.62(2)
Os(6)-Os(4)-Os(5)	59.104(12)
CUSI-OSIS CUA	89.9(4)
C(15)-C(5)-C(16)	90.4(3)
$C(14) - O_{5}(5) - C(16)$	179.2(4)
	05 5(2)
C(13)-Os(3)-r(2)	(2)
C(14)-Os(5)-P(2)	89 5(3)
C(16)-()+(5)-P(2)	89 7(3)
C(15)-Os(5)-Os(6)	917(3)
$\Gamma(14)$ -Os(5)-Os(6)	91 9(3)
	00.0(3)
C(10) - Os(3) - Os(6)	88.8(3)
P(2)-Os(5)-Os(6))72.65(6)
CUSLOC(SLOC(A)	149 4/3)
C(14)-Os(5)-Os(4)	90.3(2)
$C(16)-O_{5}(5)-O_{5}(4)$	89 8(2)
B(1) Ac(5) A-(4)	11611/61
r(2) - Us(3) - Us(4)	11311(0)
0\$(6)-0\$(5)-0\$(4)	57.685(12)
$C(18) - O_{2}(6) C(20)$	100 4/5)
C(18)-OS(0)-C(20)	100.4(5)
C(18)-Os(6)-C(19)	89 7(5)
$C(20)-O_{5}(6)-C(19)$	93 8(4)
C(18) - Os(6) - C(17)	91.0(4)
$C(20)-O_{5}(6)-C(17)$	93.7(4)
$C(10) O_{-}(4) C(17)$	177 2/41
C(19) - OS(0) - C(17)	172.3(4)
C(18)-Os(6)-Os(4)	99.0(4)
$C(20) - O_{1}(6) - O_{2}(4)$	160 5(3)
C(19)-Os(0)-Os(4)	87.7(3)
	84 (())
C(17)-Os(6)-Os(4)	34.0(3)
C(17)-Os(6)-Os(4)	84.0(3)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5)	84.0(3) 162.2(4)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5)	34.0(3) 162 2(4) 97 4(3)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5)	84.0(3) 162 2(4) 97 4(3) 90 2(3)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5)	\$4.6(3) 162 2(4) 97 4(3) 90.2(3)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5) C(17)-Os(6)-Os(5)	84.0(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5) C(17)-Os(6)-Os(5) Os(4)-Os(6)-Os(5)	54.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5) C(17)-Os(6)-Os(5) Os(4)-Os(6)-Os(5) C(20) Sc(4)-Os(5)	34.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) 95 5(0)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5) C(17)-Os(6)-Os(5) Os(4)-Os(6)-Os(5) C(22A)-Sn(1)-C(23A	84.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5) C(17)-Os(6)-Os(5) Os(4)-Os(6)-Os(5) C(22A)-Sn(1)-C(23A C(22A)-Sn(1)-C(21)	84.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5) C(17)-Os(6)-Os(5) Os(4)-Os(6)-Os(5) C(22A)-Sn(1)-C(23A C(22A)-Sn(1)-C(21) C(23A)-Sn(1)-C(21)	\$4.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7) 113 8(6)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5) C(17)-Os(6)-Os(5) Os(4)-Os(6)-Os(5) C(22A)-Sn(1)-C(23A C(22A)-Sn(1)-C(21) C(23A)-Sn(1)-C(21)	84.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7) 113.8(6) 21.1(9)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5) C(17)-Os(6)-Os(5) Os(4)-Os(6)-Os(5) C(22A)-Sn(1)-C(23A C(22A)-Sn(1)-C(21) C(22A)-Sn(1)-C(21) C(22A)-Sn(1)-C(22)	\$4.6(3) 162 2(4) 97 4(3) 90.2(3) \$6.8(3) 63.211(12) .) \$5.5(9) 106.5(7) 113.8(6) 21.1(8)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5) C(17)-Os(6)-Os(5) Os(4)-Os(6)-Os(5) C(22A)-Sn(1)-C(23A C(22A)-Sn(1)-C(21) C(23A)-Sn(1)-C(21) C(23A)-Sn(1)-C(22) C(23A)-Sn(1)-C(22)	84.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12)) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5) C(17)-Os(6)-Os(5) Os(4)-Os(6)-Os(5) C(22A)-Sn(1)-C(23A C(22A)-Sn(1)-C(21) C(23A)-Sn(1)-C(21) C(22A)-Sn(1)-C(22) C(23A)-Sn(1)-C(22) C(23A)-Sn(1)-C(22)	84.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5) C(17)-Os(6)-Os(5) Os(4)-Os(6)-Os(5) C(22A)-Sn(1)-C(23A C(22A)-Sn(1)-C(21) C(23A)-Sn(1)-C(21) C(22A)-Sn(1)-C(22) C(21)-Sn(1)-C(22) C(21)-Sn(1)-C(22)	\$4.6(3) 162 2(4) 97 4(3) 90.2(3) \$6.8(3) 63.211(12) .) \$5.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5) C(17)-Os(6)-Os(5) Os(4)-Os(6)-Os(5) C(22A)-Sn(1)-C(23) C(23A)-Sn(1)-C(21) C(23A)-Sn(1)-C(22) C(21)-Sn(1)-C(22) C(22A)-Sn(1)-C(22) C(22A)-Sn(1)-C(22) C(22A)-Sn(1)-C(22) C(22A)-Sn(1)-C(22) C(22A)-Sn(1)-C(23)	34.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 103.5(5) 111.4(10)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5) C(17)-Os(6)-Os(5) Os(4)-Os(6)-Os(5) C(22A)-Sn(1)-C(2) C(22A)-Sn(1)-C(21) C(22A)-Sn(1)-C(22) C(21)-Sn(1)-C(22) C(21)-Sn(1)-C(22) C(22A)-Sn(1)-C(23) C(22A)-Sn(1)-C(23) C(22A)-Sn(1)-C(23) C(22A)-Sn(1)-C(23) C(22A)-Sn(1)-C(23) C(23A)-Sn(1)-C(34.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5) 111.4(10) 27.8(7)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5) C(17)-Os(6)-Os(5) C(22A)-Sn(1)-C(23A C(22A)-Sn(1)-C(21) C(22A)-Sn(1)-C(21) C(22A)-Sn(1)-C(22) C(23A)-Sn(1)-C(22) C(21)-Sn(1)-C(22) C(22A)-Sn(1)-C(23) C(23A)-Sn(1)	\$4.6(3) 162 2(4) 97 4(3) 90.2(3) \$6.8(3) 63.211(12) .) \$5.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5) 111.4(10) 27.8(7) 65.0(7)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5) C(17)-Os(6)-Os(5) Os(4)-Os(6)-Os(5) C(22A)-Sn(1)-C(21) C(22A)-Sn(1)-C(21) C(22A)-Sn(1)-C(22) C(21)-Sn(1)-C(22) C(22A)-Sn(1)-C(23) C(22A)-Sn(1)-C(23) C(21)-Sn(1)-C(21)-Sn(1)-C(23) C(21)-Sn(1)-C(21)-Sn(1)-C(21)-Sn(1	\$4.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5) C(17)-Os(6)-Os(5) Os(4)-Os(6)-Os(5) C(22A)-Sn(1)-C(21) C(22A)-Sn(1)-C(21) C(22A)-Sn(1)-C(22) C(21)-Sn(1)-C(22) C(22A)-Sn(1)-C(23) C(21)-Sn(1)-C(23) C(21)-Sn(1)-C(23) C(22)-Sn(34.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) a) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7) 132.2(8)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5) C(17)-Os(6)-Os(5) C(22A)-Sn(1)-C(23A C(22A)-Sn(1)-C(21) C(22A)-Sn(1)-C(22) C(23A)-Sn(1)-C(22) C(21)-Sn(1)-C(22) C(23A)-Sn(1)-C(23) C(21)-Sn(1)-C(23) C(22A)-Sn(1)-C(23) C(23A)-Sn(1)-	34.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7) 132.2(8) 123.4(7)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5) C(17)-Os(6)-Os(5) Os(4)-Os(6)-Os(5) C(22A)-Sn(1)-C(23) C(22A)-Sn(1)-C(21) C(22A)-Sn(1)-C(22) C(21)-Sn(1)-C(22) C(21)-Sn(1)-C(23) C(22A)-Sn(1)-C(23) C(22)-Sn(\$4.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7) 132.2(8) 123.4(7)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5) C(17)-Os(6)-Os(5) Os(4)-Os(6)-Os(5) C(22A)-Sn(1)-C(23A C(22A)-Sn(1)-C(21) C(22A)-Sn(1)-C(22) C(22A)-Sn(1)-C(22) C(22A)-Sn(1)-C(23) C(22A)-Sn(1)-C(23) C(21)-Sn(1)-C(23) C(21)-Sn(1)-C(23) C(21)-Sn(1)-C(23) C(21)-Sn(1)-C(23) C(21)-Sn(1)-C(23) C(22)-Sn(1)-C(23) C(22)-Sn(1)-C(23) C(22)-Sn(1)-C(23) C(22)-Sn(1)-C(23) C(22)-Sn(1)-C(23) C(23)-Sn(1)-Os(3) C(23)-Sn(1)-Os(3)	\$4.6(3) 162 2(4) 97 4(3) 90.2(3) \$6.8(3) 63.211(12) a) \$5.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7) 132.2(8) 123.4(7) 111.9(6)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5) C(17)-Os(6)-Os(5) Os(4)-Os(6)-Os(5) C(22A)-Sn(1)-C(23) C(22A)-Sn(1)-C(22) C(23A)-Sn(1)-C(22) C(23A)-Sn(1)-C(22) C(21)-Sn(1)-C(23) C(21)-Sn(1)-C(23) C(22A)-Sn(1)-C(23) C(22A)-Sn(1)-C(23) C(22A)-Sn(1)-C(23) C(22A)-Sn(1)-C(23) C(22A)-Sn(1)-C(23) C(22A)-Sn(1)-C(23) C(22A)-Sn(1)-C(23) C(22A)-Sn(1)-C(23) C(22A)-Sn(1)-Os(3) C(23A)-Sn(1)-Os(3) C(21)-Sn(1)-Os(3) C(21)-Sn(1)-Os(3)	34.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7) 132.2(8) 123.4(7) 111.9(6) 113.0(3)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5) C(17)-Os(6)-Os(5) Os(4)-Os(6)-Os(5) C(22A)-Sn(1)-C(23A C(22A)-Sn(1)-C(21) C(23A)-Sn(1)-C(22) C(21)-Sn(1)-C(22) C(21)-Sn(1)-C(23) C(21)-Sn(1)-C(23) C(22)-Sn(1)-C(23) C(22)-Sn(1)-C(23) C(22)-Sn(1)-C(23) C(22)-Sn(1)-C(23) C(22)-Sn(1)-Os(3) C(21)-Sn(1)-Sn(1)-Sn(1)-Sn(1)-Sn(1)-Sn(1)-Sn(1)-Sn(1)-Sn(1)-Sn(1)-S	34.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7) 132.2(8) 123.4(7) 111.9(6) 113.0(3) 108.3(5)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5) C(17)-Os(6)-Os(5) Os(4)-Os(6)-Os(5) C(22A)-Sn(1)-C(21) C(22A)-Sn(1)-C(21) C(22A)-Sn(1)-C(21) C(22A)-Sn(1)-C(22) C(21)-Sn(1)-C(22) C(22A)-Sn(1)-C(23) C(21)-Sn(1)-C(23) C(21)-Sn(1)-C(23) C(22)-Sn(1)-C(23) C(22)-Sn(1)-C(23) C(22)-Sn(1)-C(23) C(22)-Sn(1)-C(23) C(22)-Sn(1)-C(23) C(22)-Sn(1)-C(23) C(22)-Sn(1)-Os(3) C(22)-Sn(1)-Sn(1)-Os(3) C(22)-Sn(1)-Sn(84.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) a) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7) 132.2(8) 123.4(7) 111.9(6) 13.0(3) 108.3(5)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5) C(17)-Os(6)-Os(5) C(22A)-Sn(1)-C(23A) C(22A)-Sn(1)-C(21) C(22A)-Sn(1)-C(22) C(23A)-Sn(1)-C(22) C(21)-Sn(1)-C(22) C(21)-Sn(1)-C(23) C(21)-Sn(1)-C(23) C(21)-Sn(1)-C(23) C(22A)-Sn(1)-C(23) C(22A)-Sn(1)-C(23) C(22A)-Sn(1)-C(23) C(22A)-Sn(1)-C(23) C(22A)-Sn(1)-Os(3) C(22)-Sn(1)-Os(3) C(22)-Sn(1)-Os(3) C(23)-Sn(1)-Os(3) C(2	34.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7) 132.2(8) 123.4(7) 111.9(6) 13.0(3) 108.3(5) 103.1(6)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5) C(17)-Os(6)-Os(5) Os(4)-Os(6)-Os(5) C(22A)-Sn(1)-C(21) C(22A)-Sn(1)-C(21) C(22A)-Sn(1)-C(22) C(21)-Sn(1)-C(22) C(21)-Sn(1)-C(23) C(22A)-Sn(1)-C(23) C(22)-Sn(1)-C(23) C(22)-Sn(1)-C(23) C(22)-Sn(1)-C(23) C(22)-Sn(1)-Os(3) C(22)-Sn(1)-Os(3) C(23)-Sn(84.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7) 132.2(8) 123.4(7) 111.9(6) 113.0(3) 108.3(5) 103.1(6) 07.1(5)
C(17)-Os(6)-Os(4) C(18)-Os(6)-Os(5) C(20)-Os(6)-Os(5) C(19)-Os(6)-Os(5) C(17)-Os(6)-Os(5) Os(4)-Os(6)-Os(5) C(22A)-Sn(1)-C(21) C(22A)-Sn(1)-C(21) C(22A)-Sn(1)-C(21) C(22A)-Sn(1)-C(22) C(21)-Sn(1)-C(22) C(22A)-Sn(1)-C(23) C(21)-Sn(1)-C(23) C(21)-Sn(1)-C(23) C(22)-Sn(1)-C(23) C(22)-Sn(1)-C(23) C(21)-Sn(1)-C(23) C(22)-Sn(1)-C(23) C(21)-Sn(1)-Os(3) C(21)-Sn(1)-Os(3) C(23)-Sn(1)-Os(3) C(23)-Sn(1)-Os(3) C(23)-Sn(1)-Os(3) C(23)-Sn(1)-Os(3) C(23)-Sn(1)-Os(3) C(23)-Sn(1)-Os(3) C(23)-Sn(1)-Os(3) C(23)-Sn(2)-C(24)-Sn(2)-C(24) C(24)-Sn(2)-C(24)-Sn(2)-C(24) C(2	84.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) a) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7) 132.2(8) 123.4(7) 111.9(6) 13.0(3) 108 3(5) 107.1(5) 102.6(5)
$\begin{array}{c} C(17)-O_5(6)-O_5(4)\\ C(18)-O_5(6)-O_5(5)\\ C(20)-O_5(6)-O_5(5)\\ C(19)-O_5(6)-O_5(5)\\ C(17)-O_5(6)-O_5(5)\\ O_5(4)-O_5(6)-O_5(5)\\ C(22A)-Sn(1)-C(21)\\ C(22A)-Sn(1)-C(21)\\ C(22A)-Sn(1)-C(22)\\ C(21)-Sn(1)-C(22)\\ C(21)-Sn(1)-C(22)\\ C(21)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-O_5(3)\\ C(21)-Sn(1)-O_5(3)\\ C(22)-Sn(1)-O_5(3)\\ C(23)-Sn(1)-O_5(3)\\ C(23)-Sn(1)-O_5(3)$	84.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7) 132.2(8) 123.4(7) 111.9(6) 13.0(3) 108.3(5) 103.1(6) 107.1(5) 102.2(6(5)
$\begin{array}{c} C(17)-O_5(6)-O_5(4)\\ C(18)-O_5(6)-O_5(5)\\ C(20)-O_5(6)-O_5(5)\\ C(19)-O_5(6)-O_5(5)\\ O_5(4)-O_5(6)-O_5(5)\\ O_5(4)-O_5(6)-O_5(5)\\ C(22A)-Sn(1)-C(21)\\ C(22A)-Sn(1)-C(21)\\ C(22A)-Sn(1)-C(22)\\ C(22A)-Sn(1)-C(22)\\ C(22A)-Sn(1)-C(22)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-O_5(3)\\ C(23)-Sn(1)-O_5(3)\\ C(23)-Sn(1)-O_5(3)\\ C(23)-Sn(1)-O_5(3)\\ C(23)-Sn(1)-O_5(3)\\ C(33)-Sn(2)-C(34)\\ C(32)-Sn(2)-C(34)\\ \end{array}$	84.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7) 132.2(8) 123.4(7) 111.9(6) 113.0(3) 108.3(5) 103.1(6) 107.1(5) 102.6(5)
$\begin{array}{c} C(17) - O_5(6) - O_5(4) \\ C(18) - O_5(6) - O_5(5) \\ C(20) - O_5(6) - O_5(5) \\ C(19) - O_5(6) - O_5(5) \\ O_5(4) - O_5(6) - O_5(5) \\ O_5(4) - O_5(6) - O_5(5) \\ C(22A) - S_n(1) - C(23) \\ C(22A) - S_n(1) - C(21) \\ C(22A) - S_n(1) - C(22) \\ C(22A) - S_n(1) - C(22) \\ C(22A) - S_n(1) - C(22) \\ C(22A) - S_n(1) - C(23) \\ C(21) - S_n(1) - C(23) \\ C(22A) - S_n(1) - C(23) \\ C(21) - S_n(1) - C(23) \\ C(21) - S_n(1) - O_5(3) \\ C(21) - S_n(1) - O_5(3) \\ C(23) - S_n(2) - C(34) \\ C(33) - S_n(2) - C($	34.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7) 132.2(8) 123.4(7) 111.9(6) 113.0(3) 108 3(5) 103.1(6) 107.1(5) 105.2(5) 111.6(3)
$\begin{array}{c} C(17) - O_5(6) - O_5(4) \\ C(18) - O_5(6) - O_5(5) \\ C(20) - O_5(6) - O_5(5) \\ C(19) - O_5(6) - O_5(5) \\ O_5(4) - O_5(6) - O_5(5) \\ O_5(4) - O_5(6) - O_5(5) \\ C(22A) - Sn(1) - C(23A) \\ C(22A) - Sn(1) - C(21) \\ C(23A) - Sn(1) - C(22) \\ C(23A) - Sn(1) - C(22) \\ C(21) - Sn(1) - C(22) \\ C(21) - Sn(1) - C(23) \\ C(21) - Sn(1) - O_5(3) \\ C(23A) - Sn(1) - O_5(3) \\ C(23) - Sn(1) - O_5(3) \\ C(23) - Sn(2) - C(34) \\ C(33) - Sn(2) - C(34) \\ C(33) - Sn(2) - C(34) \\ C(33) - Sn(2) - O_5(4) \\ C(33) - Sn(2$	\$4.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7) 132.2(8) 123.4(7) 119.9(6) 13.0(3) 108.3(5) 103.1(6) 107.1(5) 102.6(5) 114.9(2)
$\begin{array}{c} C(17)-O_5(6)-O_5(4)\\ C(18)-O_5(6)-O_5(5)\\ C(20)-O_5(6)-O_5(5)\\ C(19)-O_5(6)-O_5(5)\\ O_5(4)-O_5(6)-O_5(5)\\ O_5(4)-O_5(6)-O_5(5)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(21)\\ C(22A)-Sn(1)-C(22)\\ C(22A)-Sn(1)-C(22)\\ C(22A)-Sn(1)-C(22)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(23A)-Sn(1)-O_5(3)\\ C(23)-Sn(1)-O_5(3)\\ C(23)-Sn(1)-O_5(3)\\ C(23)-Sn(1)-O_5(3)\\ C(23)-Sn(1)-O_5(3)\\ C(23)-Sn(1)-O_5(3)\\ C(23)-Sn(2)-C(34)\\ C(33)-Sn(2)-C(34)\\ C(32)-Sn(2)-O_5(4)\\ C(32)-Sn(2)-O_5(4)\\ \end{array}$	84.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7) 132.2(8) 123.4(7) 111.9(6) 113.0(3) 108.3(5) 103.1(6) 107.1(5) 102.6(5) 111.6(3) 114.8(3)
$\begin{array}{c} C(17)-O_5(6)-O_5(4)\\ C(18)-O_5(6)-O_5(5)\\ C(20)-O_5(6)-O_5(5)\\ C(19)-O_5(6)-O_5(5)\\ O_5(4)-O_5(6)-O_5(5)\\ O_5(4)-O_5(6)-O_5(5)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(21)\\ C(22A)-Sn(1)-C(22)\\ C(22A)-Sn(1)-C(22)\\ C(22A)-Sn(1)-C(22)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(23A)-Sn(1)-C(23)\\ C(23A)-Sn(1)-O_5(3)\\ C(22)-Sn(1)-O_5(3)\\ C(23)-Sn(1)-O_5(3)\\ C(23)-Sn(1)-O_5(3)\\ C(23)-Sn(1)-O_5(3)\\ C(23)-Sn(1)-O_5(3)\\ C(23)-Sn(1)-O_5(3)\\ C(23)-Sn(2)-C(34)\\ C(33)-Sn(2)-O_5(4)\\ C(32)-Sn(2)-O_5(4)\\ C(34)-Sn(2)-O_5(4)\\ C(34)-Sn(2)$	34.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7) 132.2(8) 123.4(7) 111.9(6) 13.0(3) 108 3(5) 103.1(6) 107.1(5) 102.6(5) 111.6(3) 114.8(3)
$\begin{array}{c} C(17)-O_5(6)-O_5(4)\\ C(18)-O_5(6)-O_5(5)\\ C(20)-O_5(6)-O_5(5)\\ C(19)-O_5(6)-O_5(5)\\ O_5(4)-O_5(6)-O_5(5)\\ O_5(4)-O_5(6)-O_5(5)\\ C(22A)-Sn(1)-C(23A)\\ C(22A)-Sn(1)-C(21)\\ C(23A)-Sn(1)-C(22)\\ C(23A)-Sn(1)-C(22)\\ C(23A)-Sn(1)-C(22)\\ C(21)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(21)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-O_5(3)\\ C(23)-Sn(1)-O_5(3)\\ C(23)-Sn(2)-C(34)\\ C(33)-Sn(2)-C(34)\\ C(33)-Sn(2)-O_5(4)\\ C(33)-Sn(2)-O_5(4)\\ C(34)-Sn(2)-O_5(4)\\ C(34)-Sn(2)-O_5(4$	84.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7) 132.2(8) 123.4(7) 11.9(6) 113.0(3) 108.3(5) 103.1(6) 107.1(5) 102.6(5) 111.6(3) 114.8(3) 114.6(3)
$\begin{array}{c} C(17) - O_5(6) - O_5(4) \\ C(18) - O_5(6) - O_5(5) \\ C(20) - O_5(6) - O_5(5) \\ C(19) - O_5(6) - O_5(5) \\ O_5(4) - O_5(6) - O_5(5) \\ O_5(4) - O_5(6) - O_5(5) \\ C(22A) - Sn(1) - C(23A) \\ C(22A) - Sn(1) - C(21) \\ C(22A) - Sn(1) - C(22) \\ C(22A) - Sn(1) - C(22) \\ C(22A) - Sn(1) - C(22) \\ C(22A) - Sn(1) - C(23) \\ C(22A) - Sn(1) - C(23) \\ C(21) - Sn(1) - C(23) \\ C(22) - Sn(1) - C(23) \\ C(21) - Sn(1) - O_5(3) \\ C(23) - Sn(1) - O_5(3) \\ C(23) - Sn(1) - O_5(3) \\ C(23) - Sn(2) - C(34) \\ C(33) - Sn(2) - C(34) \\ C(32) - Sn(2) - O_5(4) \\ C(34) - Sn(2) - O_5(4) \\ C(35) - P(2) - C(36) \\ \end{array}$	84.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) a) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7) 132.2(8) 123.4(7) 111.9(6) 113.0(3) 108.3(5) 103.1(6) 107.1(5) 102.6(5) 111.6(3) 114.8(3) 114.6(3) 102.4(5)
$\begin{array}{c} C(17)-O_5(6)-O_5(4)\\ C(18)-O_5(6)-O_5(5)\\ C(20)-O_5(6)-O_5(5)\\ C(19)-O_5(6)-O_5(5)\\ C(17)-O_5(6)-O_5(5)\\ O_5(4)-O_5(6)-O_5(5)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(21)\\ C(22A)-Sn(1)-C(22)\\ C(23A)-Sn(1)-C(22)\\ C(21)-Sn(1)-C(22)\\ C(21)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-O_5(3)\\ C(22)-Sn(1)-O_5(3)\\ C(21)-Sn(1)-O_5(3)\\ C(21)-Sn(1)-O_5(3)\\ C(23)-Sn(2)-C(34)\\ C(33)-Sn(2)-C(34)\\ C(33)-Sn(2)-O_5(4)\\ C(34)-Sn(2)-O_5(4)\\ C(34)-Sn(2)-O_5(4)\\ C(34)-Sn(2)-O_5(4)\\ C(35)-P(2)-C(37)\\ \end{array}$	84.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7) 132.2(8) 123.4(7) 111.9(6) 13.0(3) 108.3(5) 103.1(6) 107.1(5) 102.6(5) 111.6(3) 114.8(3) 114.8(3) 114.6(3) 102.4(5) 105.8(5)
$\begin{array}{c} C(17)-O_5(6)-O_5(4)\\ C(18)-O_5(6)-O_5(5)\\ C(20)-O_5(6)-O_5(5)\\ C(19)-O_5(6)-O_5(5)\\ O_5(4)-O_5(6)-O_5(5)\\ O_5(4)-O_5(6)-O_5(5)\\ C(22A)-Sn(1)-C(21)\\ C(22A)-Sn(1)-C(21)\\ C(22A)-Sn(1)-C(22)\\ C(22A)-Sn(1)-C(22)\\ C(21)-Sn(1)-C(22)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(23A)-Sn(1)-C(23)\\ C(23A)-Sn(1)-C(23)\\ C(23A)-Sn(1)-C(23)\\ C(23)-Sn(1)-O_5(3)\\ C(23)-Sn(1)-O_5(3)\\ C(23)-Sn(1)-O_5(3)\\ C(23)-Sn(2)-C(34)\\ C(32)-Sn(2)-C(34)\\ C(32)-Sn(2)-O_5(4)\\ C(35)-P(2)-C(37)\\ C(35)-P(2)-C(37)\\ C(35)-P(2)-C(37)\\ C(35)-P(2)-C(37)\\ \end{array}$	34.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7) 132.2(8) 123.4(7) 11.9(6) 113.0(3) 108.3(5) 103.1(6) 107.1(5) 102.6(5) 105.2(5) 111.6(3) 114.8(3) 114.8(3) 104.6(3) 102.4(5) 105.8(5)
$\begin{array}{c} C(17)-O_5(6)-O_5(4)\\ C(18)-O_5(6)-O_5(5)\\ C(20)-O_5(6)-O_5(5)\\ C(19)-O_5(6)-O_5(5)\\ O_5(4)-O_5(6)-O_5(5)\\ O_5(4)-O_5(6)-O_5(5)\\ C(22A)-Sn(1)-C(21)\\ C(22A)-Sn(1)-C(21)\\ C(22A)-Sn(1)-C(22)\\ C(22A)-Sn(1)-C(22)\\ C(22A)-Sn(1)-C(22)\\ C(22A)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-O_5(3)\\ C(23)-Sn(1)-O_5(3)\\ C(23)-Sn(1)-O_5(3)\\ C(23)-Sn(2)-C(34)\\ C(32)-Sn(2)-C(34)\\ C(32)-Sn(2)-O_5(4)\\ C(32)-Sn(2)-O_5(4)\\ C(35)-P(2)-C(35)\\ C(23)-P(2)-C(37)\\ C(23)-P(2)-$	34.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7) 132.2(8) 123.4(7) 111.9(6) 113.0(3) 108 3(5) 103.1(6) 107.1(5) 102.6(5) 111.6(3) 114.8(3) 114.6(3) 102.4(5) 105.8(5) 103.5(5)
$\begin{array}{c} C(17)-O_5(6)-O_5(4)\\ C(18)-O_5(6)-O_5(5)\\ C(20)-O_5(6)-O_5(5)\\ C(19)-O_5(6)-O_5(5)\\ O_5(4)-O_5(6)-O_5(5)\\ O_5(4)-O_5(6)-O_5(5)\\ C(22A)-Sn(1)-C(21)\\ C(22A)-Sn(1)-C(21)\\ C(22A)-Sn(1)-C(22)\\ C(21A)-Sn(1)-C(22)\\ C(21A)-Sn(1)-C(22)\\ C(21A)-Sn(1)-C(23)\\ C(21)-Sn(1)-C(23)\\ C(21)-Sn(1)-C(23)\\ C(21)-Sn(1)-C(23)\\ C(21)-Sn(1)-C(23)\\ C(21)-Sn(1)-C(23)\\ C(21)-Sn(1)-O_5(3)\\ C(22)-Sn(1)-O_5(3)\\ C(23)-Sn(1)-O_5(3)\\ C(23)-Sn(1)-O_5(3)\\ C(23)-Sn(2)-C(34)\\ C(33)-Sn(2)-C(34)\\ C(33)-Sn(2)-O_5(4)\\ C(34)-Sn(2)-O_5(4)\\ C(35)-P(2)-C(37)\\ C(35)-P(2)-O_5(5)\\ \end{array}$	\$4.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7) 132.2(8) 123.4(7) 119.9(6) 13.0(3) 108.3(5) 103.1(6) 107.1(5) 102.6(5) 114.8(3) 114.8(3) 114.6(3) 102.4(5) 103.5(5) 115.5(4)
$\begin{array}{c} C(17)-O_5(6)-O_5(4)\\ C(18)-O_5(6)-O_5(5)\\ C(20)-O_5(6)-O_5(5)\\ C(19)-O_5(6)-O_5(5)\\ O_5(4)-O_5(6)-O_5(5)\\ O_5(4)-O_5(6)-O_5(5)\\ C(22A)-Sn(1)-C(21)\\ C(22A)-Sn(1)-C(21)\\ C(22A)-Sn(1)-C(22)\\ C(22A)-Sn(1)-C(22)\\ C(22A)-Sn(1)-C(22)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-O_5(3)\\ C(23A)-Sn(1)-O_5(3)\\ C(23)-Sn(1)-O_5(3)\\ C(23)-Sn(1)-O_5(3)\\ C(23)-Sn(2)-C(34)\\ C(33)-Sn(2)-C(34)\\ C(33)-Sn(2)-C(34)\\ C(33)-Sn(2)-O_5(4)\\ C(35)-P(2)-C(37)\\ C(35)-P(2)-C(37)\\ C(35)-P(2)-C(37)\\ C(35)-P(2)-O_5(5)\\ C(35)-P(2)-O_5(5)\\ C(36)-P(2)-O_5(5)\\ C(36)-P(2)-O_5$	$\begin{array}{c} 84.6(3) \\ 162 2(4) \\ 97 4(3) \\ 90.2(3) \\ 86.8(3) \\ 63.211(12) \\ 85.5(9) \\ 106.5(7) \\ 113.8(6) \\ 21.1(8) \\ 105.5(8) \\ 103.5(5) \\ 111.4(10) \\ 27.8(7) \\ 95.9(7) \\ 132.2(8) \\ 123.4(7) \\ 111.9(6) \\ 113.0(3) \\ 108.3(5) \\ 103.1(6) \\ 107.1(5) \\ 102.6(5) \\ 103.1(6) \\ 107.1(5) \\ 102.6(5) \\ 105.2(5) \\ 111.6(3) \\ 114.8(3) \\ 114.8(3) \\ 114.6(3) \\ 102.4(5) \\ 105.8(5) \\ 103.5(5) \\ 115.5(4) \\ 115.5(4) \\ 116.1(4) \end{array}$
$\begin{array}{c} C(17)-O_5(6)-O_5(4)\\ C(18)-O_5(6)-O_5(5)\\ C(20)-O_5(6)-O_5(5)\\ C(19)-O_5(6)-O_5(5)\\ O_5(4)-O_5(6)-O_5(5)\\ O_5(4)-O_5(6)-O_5(5)\\ C(22A)-Sn(1)-C(21)\\ C(22A)-Sn(1)-C(21)\\ C(22A)-Sn(1)-C(22)\\ C(22A)-Sn(1)-C(22)\\ C(22A)-Sn(1)-C(22)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-O_5(3)\\ C(22)-Sn(1)-O_5(3)\\ C(23)-Sn(2)-C(34)\\ C(32)-Sn(2)-C(34)\\ C(32)-Sn(2)-O_5(4)\\ C(32)-Sn(2)-O_5(4)\\ C(35)-P(2)-C(37)\\ C(35)-P(2)-O_5(5)\\ C(36)-P(2)-O_5(5)\\ C(37)-P(2)-O_5(5)\\ C(37)-P(2)-P(5)\\ C(37)-P(2)-P(5)\\ C(3$	34.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7) 132.2(8) 123.4(7) 11.9(6) 113.0(3) 108 3(5) 103.1(6) 107.1(5) 102.6(5) 111.46(3) 102.4(5) 105.8(5) 103.5(5) 111.46(3) 102.4(5) 105.8(5) 103.5(5) 115.5(4) 116.1(4) 112.2(3)
$\begin{array}{c} C(17)-O_5(6)-O_5(4)\\ C(18)-O_5(6)-O_5(5)\\ C(20)-O_5(6)-O_5(5)\\ C(17)-O_5(6)-O_5(5)\\ O_5(4)-O_5(6)-O_5(5)\\ O_5(4)-O_5(6)-O_5(5)\\ C(22A)-Sn(1)-C(21)\\ C(22A)-Sn(1)-C(21)\\ C(22A)-Sn(1)-C(22)\\ C(21A)-Sn(1)-C(22)\\ C(21)-Sn(1)-C(22)\\ C(21)-Sn(1)-C(23)\\ C(21)-Sn(1)-C(23)\\ C(21)-Sn(1)-C(23)\\ C(21)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-O_5(3)\\ C(22)-Sn(1)-O_5(3)\\ C(23)-Sn(2)-C(34)\\ C(33)-Sn(2)-C(34)\\ C(33)-Sn(2)-C(34)\\ C(33)-Sn(2)-O_5(4)\\ C(33)-Sn(2)-O_5(4)\\ C(35)-P(2)-C(37)\\ C(35)-P(2)-O_5(5)\\ C(37)-P(2)-O_5(5)\\ C(37$	84.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7) 132.2(8) 123.4(7) 11.9(6) 113.0(3) 108.3(5) 103.1(6) 107.1(5) 102.6(5) 105.2(5) 111.4(3) 114.8(3) 114.8(3) 114.8(3) 114.8(3) 114.8(3) 114.2(3) 112.2(3)
$\begin{array}{c} C(17) - O_5(6) - O_5(4) \\ C(18) - O_5(6) - O_5(5) \\ C(20) - O_5(6) - O_5(5) \\ C(19) - O_5(6) - O_5(5) \\ O_5(4) - O_5(6) - O_5(5) \\ O_5(4) - O_5(6) - O_5(5) \\ C(22A) - Sn(1) - C(23A) \\ C(22A) - Sn(1) - C(21) \\ C(23A) - Sn(1) - C(22) \\ C(23A) - Sn(1) - C(22) \\ C(22A) - Sn(1) - C(23) \\ C(23A) - Sn(1) - C(23) \\ C(23A) - Sn(1) - O_5(3) \\ C(23) - Sn(2) - C(34) \\ C(33) - Sn(2) - C(34) \\ C(33) - Sn(2) - O_5(4) \\ C(35) - P(2) - C(37) \\ C(35) - P(2) - O_5(5) \\ C(36) - P(2) - O_5(5) \\ C(37) - P(2) - O_5(5) \\ C(37) - P(2) - O_5(5) \\ C(26) - P(1) - C(24) \\ \end{array}$	$\begin{array}{c} 84.6(3) \\ 162 2(4) \\ 97 4(3) \\ 90.2(3) \\ 86.8(3) \\ 63.211(12) \\ 85.5(9) \\ 106.5(7) \\ 113.8(6) \\ 21.1(8) \\ 105.5(8) \\ 103.5(5) \\ 111.4(10) \\ 27.8(7) \\ 95.9(7) \\ 132.2(8) \\ 123.4(7) \\ 111.9(6) \\ 113.0(3) \\ 108.3(5) \\ 103.1(6) \\ 107.1(5) \\ 102.6(5) \\ 103.1(6) \\ 107.1(5) \\ 102.6(5) \\ 105.2(5) \\ 111.6(3) \\ 114.8(3) \\ 114.8(3) \\ 114.6(3) \\ 102.4(5) \\ 103.5(5) \\ 115.5(4) \\ 116.1(4) \\ 112.2(3) \\ 106.2(5) \end{array}$
$\begin{array}{c} C(17)-O_5(6)-O_5(4)\\ C(18)-O_5(6)-O_5(5)\\ C(20)-O_5(6)-O_5(5)\\ C(19)-O_5(6)-O_5(5)\\ C(17)-O_5(6)-O_5(5)\\ O_5(4)-O_5(6)-O_5(5)\\ C(22A)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(21)\\ C(22A)-Sn(1)-C(22)\\ C(21A)-Sn(1)-C(22)\\ C(21)-Sn(1)-C(22)\\ C(21)-Sn(1)-C(23)\\ C(22A)-Sn(1)-C(23)\\ C(21)-Sn(1)-C(23)\\ C(23A)-Sn(1)-O_5(3)\\ C(21)-Sn(1)-O_5(3)\\ C(21)-Sn(1)-O_5(3)\\ C(21)-Sn(1)-O_5(3)\\ C(21)-Sn(1)-O_5(3)\\ C(23)-Sn(2)-C(34)\\ C(33)-Sn(2)-C(34)\\ C(33)-Sn(2)-O_5(4)\\ C(34)-Sn(2)-O_5(4)\\ C(34)-Sn(2)-O_5(5)\\ C(36)-P(2)-O_5(5)\\ C(36)-P(1)-C(24)\\ C(24)-P(1)-C(24)\\ C(24)-P(1)-C(24)$	34.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7) 132.2(8) 123.4(7) 111.9(6) 113.0(3) 108.3(5) 103.1(6) 107.1(5) 102.6(5) 111.6(3) 114.8(3) 114.8(3) 114.8(3) 105.8(5) 103.5(5) 115.5(4) 116.1(4) 112.2(3) 106.2(5)
$\begin{array}{c} C(17)-O_5(6)-O_5(4)\\ C(18)-O_5(6)-O_5(5)\\ C(20)-O_5(6)-O_5(5)\\ C(19)-O_5(6)-O_5(5)\\ O_5(4)-O_5(6)-O_5(5)\\ O_5(4)-O_5(6)-O_5(5)\\ C(22A)-Sn(1)-C(21)\\ C(22A)-Sn(1)-C(21)\\ C(22A)-Sn(1)-C(22)\\ C(21)-Sn(1)-C(22)\\ C(21)-Sn(1)-C(22)\\ C(22A)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-C(23)\\ C(22)-Sn(1)-O_5(3)\\ C(23)-Sn(1)-O_5(3)\\ C(23)-Sn(2)-C(34)\\ C(33)-Sn(2)-C(34)\\ C(33)-Sn(2)-C(34)\\ C(33)-Sn(2)-O_5(4)\\ C(35)-P(2)-O_5(5)\\ C(35)-P(2)-O_5(5)\\ C(36)-P(1)-C(24)\\ C(24)-Sn(1)-C(25)\\ C(24)-Sn(1)-C(25)\\ C(24)-Sn(2)-O_5(3)\\ C(25)-P(1)-C(23)\\ C(25)-P(1)-C(23)\\ C(25)-P(1)-C(23)\\ C(24)-P(1)-C(25)\\ C(25)-P(1)-C(25)\\ C(25)-P(1$	84.6(3) 162 2(4) 97 4(3) 90.2(3) 86.8(3) 63.211(12) .) 85.5(9) 106.5(7) 113.8(6) 21.1(8) 105.5(8) 103.5(5) 111.4(10) 27.8(7) 95.9(7) 132.2(8) 123.4(7) 11.9(6) 113.0(3) 108.3(5) 103.1(6) 107.1(5) 102.6(5) 105.2(5) 111.6(3) 114.6(3) 102.4(5) 103.5(5) 115.5(4) 116.1(4) 112.2(3) 106.2(5) 105.8(5) 103.5(5)

CAC BUD C-UD	111000	
C(20)-J(1)-Os(1)	114.9(4)	
C(24)-P(1)-Os(1)	112.8(3)	
C(25)-P(1)-Os(1)	113.6(3)	
O(1)-C(1)-Os(1)	176.1(8)	
	1757(0)	
O(3)-C(3)-Os(1)	1/0./(8)	
O(4)-C(4)-Os(2)	177.2(10)	
O(5)-C(5)-Os(2)	175.5(9)	
O(6)-C(6)-Os(2)	178 1(9)	
O(3) O(3) O(3)	1745(0)	
O(1) = C(1) = O(2)	174.3(3)	
O(8) - C(8) - Os(3)	177.0(9)	
O(9)-C(9)-Os(3)	176.5(10)	
O(10)-C(10)-Os(3)	175.7(9)	
O(11)-C(11)-Os(4)	175.6(8)	
ດໃນກົດໃນກາດສູ່ໜ້	176 600	
	175 0/0)	
O(14)-C(14)-Os(5)	175.6(8)	
O(15)-C(15)-Os(5)	175 6(9)	
O(16)-C(16)-Os(5)	177 0(8)	
O(17)-C(17)-Os(6)	178.4(9)	
O(18) O(18) O(6)	176 4(11)	
O(10) O(10) O(0)	176.4(11)	
0(19)-0(19)-09(0)	176.1(9)	
O(20)-C(20)-Os(6)	178.1(10)	
C(38)-C(37)-C(42)	119.3(11)	
C(38)-C(37)-P(2)	120.6(9)	
C(42)-C(37)-P(2)	1197(9)	
C(17) C(18) C(19)	121 2/141	
C(40) - C(39) - C(38)	139.1(17)	
C(39)-C(40)-C(41)	122.4(17)	
C(42)-C(41)-C(40)	115.3(17)	
C(37)-C(42)-C(41)	122.5(14)	
C(31)-C(26)-C(27A)	112 10145	
C(21) C(26) C(271)	1125(14)	
	(12.3(14))	
(2/A) - (20) - (27)	54.4(13)	
C(31)-C(26)-P(1)	122.7(9)	
C(27A)-C(26)-P(1)	120.3(13)	
C(27)-C(26)-P(1)	116.0(14)	
C(29A) C(30) C(31)	116(2)	
	16(2)	
C(29A) = C(30) = C(29)	40.0(17)	
C(31)-C(30)-C(29)	116 3(16)	
C(26)-C(31)-C(30)	121.5(13)	
C(28)-C(27)-C(26)	118(2)	
C(29)-C(28)-C(27)	119(3)	
C(28) C(20) C(20)	122(2)	
	144(2)	12(12)
C(26)-C(2/A)-C(28A)	124(2)
C(29A)-C(28A)-C(27	A)	114(3)
C(28A)-C(29A)-C(30)	118(3)

0-(1) 0(2)	1.020/0	0-(1) (21)	1 027/01
Os(1)-C(3)	1.830(8)	Us(4)~C(34)	1.937(8)
$O_{s(1)}-C(2)$	1.927(8)	Os(4)-C(36)	1 960(8)
ດແມ່-ແມ່	1.936(8)	$O_{S}(4) - P(4)$	2 331(2)
	2.2460(18)	$O_{1}(1) O_{2}(1)$	2.201(2)
$U_{S(1)-P(1)}$	2 3450(18)	Os(4) - Os(6)	2.8831(4)
$O_{s(1)}-O_{s(3)}$	2.8836(4)	Os(4)-Os(5)	2.8913(4)
$O_{\mathbf{x}}(1) = O_{\mathbf{x}}(2)$	2 8935(4)	0.(5)-0(38)	1 852/9)
	1.8(2(0))		
$U_{S(2)} - C(0)$	1.857(9)	Os(3) - C(37)	1.935(9)
$O_{S}(2)-C(5)$	1.944(8)	Os(5)-C(39)	1.941(8)
$O_{S}(2) - C(4)$	1.950(8)	Os(5)-P(6)	2 3296(18)
$O_{2}(2) D(2)$	2 2769(10)		2.0007(1)
$U_{S(2)} - P(2)$	2.3338(19)	Os(3) - Os(6)	2 8907(4)
Os(2)-Os(3)	2,8877(4)	Os(6)-C(41)) 842(9)
$O_{5}(3) - C(8)$	1.857(7)	$O_{5}(6) - C(42)$) 924(7)
		$O_{2}(4) O(40)$	1044(9)
05(3)-0(7)	1.545(7)	05(0)-0(40)	1.944(0)
Os(3)-C(9)	1.968(8)	Os(6)-P(5)	2,3408(19)
Os(3)-P(3)	2.3251(18)	P(4)-C(50)	1.815(7)
P(1)-C(16)	1 803(6)	P(A) C(AS)) £17(7)
1()-0(10)		F(4)-C(49)	1.017(7)
P(1)-C(17)	1,805(7)	P(4)-C(43)	1 823(7)
P(1)-C(10)	1.805(7)	P(5)-C(65)	1.806(7)
D(T) C(18)			
F(2)-C(18)		P(3)-C(00)	
P(2)-C(25)	1.804(8)	P(5)-C(59)	1.825(7)
P(2)-C(24)	1.832(8)	P(6)-C(57)	1.763(10)
P(A) C(AA)	1 917(6)	R(6) C(51)	1.800(8)
F(3) = C(32)	1.617(0)	P(0)-Q(31)	1.009(0)
P(3)-C(26)	1.825(6)	P(6)-C(58)	1.840(8)
P(3)-C(33)	1.826(7)	O(10)-C(34)	1.136(7)
	1 142(8)		1 160(7)
0(1)-0(1)	1.142(8)	O(11) - C(33)	1.130(7)
O(2)-C(2)	1.134(7)	O(12)-C(36)	1,124(7)
0(3)-C(3)	1 180(8)	O(13)-C(37)	1 1 3 2 (8)
	1 101(7)	0(14) 0(29)	
0(4)-0(4)	1.121(7)	0(14)-0(38)	1.173(9)
O(5)-C(5)	1.139(7)	Q(15)-C(39)	1.129(8)
O(6)-C(6)	1,167(9)	O(16)-C(40)	1.134(7)
OT CON	1 126(6)	OUT CAN	1 177(0)
	1.120(0)	0(17)-0(41)	
O(8)-C(8)	1.159(7)	O(18)-C(42)	1.130(7)
0(9)-C(9)	1 124(7)	C(43)-C(44)	1.367(9)
cumcun	1 374(8)	C(A3)-C(A8)	1 374(9)
C(10)-C(15)	1 380(9)	C(44)-C(45)	1.378(10)
C(11)-C(12)	1,382(10)	C(45)-C(46)	L356(10)
ດບໍ່ກໍດີບໍ່ກໍ	1.166(1))	CIAGO CIAZO	1.240(1)0)
(I))-((I4)	1.356(10)	L(47)-L(48)	1 306(10)
C(14)-C(15)	1.359(10)	C(51)-C(52)	1 355(10)
c(1)	1 334(12)	CISIÓ-CISSÓ	1 388(10)
(18)-(19)	1.387(12)	U(32)+ $U(33)$	1.383(14)
C(19)-C(20)	1.389(15)	C(53)-C(54)	37(2)
C(20) - C(21)	1 34(2)	C(54) - C(55)	1.30(2)
C(21) = C(22)	1.30(3)	(33)+(30)	1 382(13)
C(22)-C(23)	1.450(18)	C(59)-C(60)	1.360(10)
C(26)-C(31)	1.357(9)	C(59)-C(64)	1.376(9)
	()(9/9)		1 340(10)
C(20) C(27)	1.506(8)		1.309(10)
C(27)-C(28)	1 380(9)	C(61)-C(62)	1.352(11)
C(28)-C(29)	1.341(10)	C(62)-C(63)	1.379(12)
	1.255(10)	C(42) $C(44)$	1 274(11)
C(29) + C(30)		C(03) = C(04)	1.374(11)
C(30)-C(31)	1.378(10)		
Os(4)-C(35)	1,863(7)		
C(1) OKIN C(2)	01 2/2)	$O_{\alpha}(1) = O_{\alpha}(1) = O_{\alpha}(2)$	50 090(10)
$C(3) - O_{3}(1) - C(2)$	92.3(3)		33.300(10)
C(3)-Os(1)-C(1)	92.7(3)	C(6)-Os(2)-C(5)	92.9(3)
C(2)-Os(1)-C(1)	174.7(3)	C(6)-Os(2)-C(4)	91.7(3)
ດທີ່ມີດແມ່ນສະນ	98 8(2)	CISLOCIOLOGIA	175 4(3)
		$C(3)^{-}O(3) = C(3)$	101 2/22
U(2) = US(1) = P(1)	٥٦.٥(٢)	C(0)-OS(2)-P(2)	101.3(2)
C(1)-Os(1)-P(1)	91.1(2)	C(5)-Os(2)-P(2)	89.7(2)
CUPORITORN	160.0(2)	C(4)-0+(2)-P(2)	89.0(2)
$C(1) O_{\alpha}(1) O_{\alpha}(2)$		$\mathcal{L}(\mathcal{L}) \subset \mathcal{L}(\mathcal{L}) \subset \mathcal{L}(\mathcal{L})$	
L(2) - US(1) - US(3)	73.0(4)	U(0) - US(2) - US(3)	77.1(2)
C(1)-Os(1)-Os(3)	78.9(2)	C(5)-Os(2)-Os(3)	94.2(2)
P(1)-Os(1)-Os(3)	99.41(5)	$C(4)-O_{5}(2)-O_{5}(3)$	85.5(2)
C(1) - C(1) - C(1)	101 2(2)	P(2) = (-1) =	159 09(5)
-(3)-(3(1)-(3(2))	103.3(2)	r(2)=US(2)=US(3)	130.30(3)
C(2)-Os(1)-Os(2)	82.4(2)	C(6)-Os(2)-Os(1)	130.9(2)
C(1)-Os(1)-Os(2)	94.8(2)	C(5)-Os(2)-Os(1)	80.2(2)
PULANILAN	156 74(4)	C(4)-0x(2)-0x(1)	95 7(2)
· (1) ~ · (1) ~ · (2)		$\mathcal{L}_{\mathcal{L}}$	

Tabla 23 Longitudes de enlace [Å] y ángulos de enlace [°] para 14

-

P(2)-Os(2)-Os(1)	100.68(5)
Os(3)-Os(2)-Os(1)	59.839(9)
C(8)-Os(3)-C(7)	96.1(3)
C(8)-Os(3)-C(9)	92 0(3)
C(7)-Os(3)-C(9)	171.7(3)
C(8)-Os(3)-P(3)	95.8(2)
C(7)-Os(3)-P(3)	89.05(19)
C(9)-Os(3)-P(3)	91.8(2)
$C(8) - O_{S}(3) - O_{S}(1)$	101,1(2)
C(7)-Os(3)-Os(1)	79.87(19)
$C(9) - O_{3}(3) - O_{3}(1)$	97.0(2)
$P(3)_{O(3)_{O(3)_{O(1)}}}$	160 65(4)
C(8) - C(3) - C(2)	158 3(2)
C(0) - Os(2) - Os(2)	91 38(10)
C(0), O(2), O(2)	91.30(19) 60 A(2)
C(3) - O(3) - O(2)	30.4(2)
$\Gamma(3) - OS(3) - OS(2)$	104.71(4)
Os(1) = Os(3) = Os(2)	60.180(9)
C(10)-P(1)-C(17)	102 1(4)
C(16)-P(1)-C(10)	103.9(3)
C(17)-P(1)-C(10)	101.7(3)
C(16)-P(1)-Os(1)	[16.3(3)
C(17)-P(1)-Os(1)	116.9(3)
C(10)-P(1)-Os(1)	113.9(2)
C(18)-P(2)-C(25)	103.8(4)
C(18)-P(2)-C(24)	101.6(5)
C(25)-P(2)-C(24)	101.7(5)
C(18)-P(2)-Os(2)	113.7(3)
C(25)-P(2)-Os(2)	116.7(3)
$C(74)-P(2)-O_{2}(2)$	117 2(3)
C(32) P(3) C(26)	105 4(3)
$C(32)_{P(3)}C(33)$	101 2(3)
C(32)- $J(3)$ - $C(33)$	101.2(3)
C(20) P(1) C(33)	102.8(3)
C(32) = F(3) = OS(3)	111.6(2)
C(20) = C(3) + Cos(3)	111.0(2)
C(33) = P(3) = OS(3)	110.4(2)
O(1) + C(1) + Os(1)	174.4(7)
O(2) - C(2) - Os(1)	1/4.5(7)
O(3)-C(3)-Os(1)	178.4(7)
O(4)-C(4)-Os(2)	174.8(7)
O(5)-C(5)-Os(2)	174.1(7)
O(6)-C(6)-Os(2)	176.9(8)
O(7)-C(7)-Os(3)	174.5(6)
O(8)-C(8)-Os(3)	177 4(6)
O(9)-C(9)-Os(3)	174 9(6)
C(11)-C(10)-C(15)	115.9(7)
C(11)-C(10)-P(1)	123.3(6)
C(15)-C(10)-P(1)	120.7(5)
C(10)-C(11)-C(12)	120.9(8)
C(13)-C(12)-C(11)	121,4(8)
C(14)-C(13)-C(12)	118.3(8)
C(13)-C(14)-C(15)	120.2(8)
C(14)-C(15)-C(10)	123.3(7)
C(23)-C(18)-C(19)	1152(10)
C(23)-C(18)-P(2)	120 2(8)
C(19) - C(18) - P(7)	174 6(8)
C(18) $C(10)$ $C(20)$	121 5(13)
$C(2) \sum C(20) \sum C(20)$	121.3(10)
C(22) - C(20) - C(17)	127(2)
C(21) - C(22) - C(22)	112 2(10)
C(12) - C(22) - C(23)	125 5(14)
C(10) - C(23) - C(22)	123.3(14)
C(31) - C(20) - C(27)	10.0(0)
C(37) - C(20) - F(3)	124 1(3)
C(27)-C(26)-P(3)	119.1(5)
C(20)-C(2/)-C(28)	122.5(7)
C(29)-C(28)-C(27)	118.5(7)
C(28)-C(29)-C(30)	121.1(7)
C(29)-C(30)-C(31)	119.2(8)
C(26)-C(31)-C(30)	121.8(8)
C(35)-Os(4)-C(34)	90.7(3)
C(35)-Os(4)-C(36)	94.7(3)

C(34)-Os(4)-C(36)	174.1(3)
C(35)-Os(4)-P(4)	96.5(2)
C(34)-Os(4)-P(4)	93.2(2)
C(36)-Os(4)-P(4)	88.6(2)
C(35)-Os(4)-Os(6)	100.7(2)
C(34) - OS(4) - OS(5)	93.7(2)
P(4)-Os(4)-Os(6)	160 50(4)
C(35)-Os(4)-Os(5)	156.8(2)
C(34)-Os(4)-Os(5)	79.30(19)
C(36)-Os(4)-Os(5)	94.77(19)
P(4)-Os(4)-Os(5)	104.93(4)
Os(6)-Os(4)-Os(5)	60.080(9)
C(38)-Os(5)-C(37)	92.8(3)
C(38) - Os(3) - C(38)	93.9(3)
C(38)-Cs(3)-C(39)	101 4(2)
$C(37)-O_{S}(5)-P(6)$	89.8(2)
C(39)-Os(5)-P(6)	90.0(2)
C(38)-Os(5)-Os(6)	155.5(2)
C(37)-Os(5)-Os(6)	80.5(2)
C(39)-Os(5)-Os(6)	92.9(2)
P(6)-Os(5)-Os(6)	102.09(5)
C(38)-Os(5)-Os(4)	97 9(2)
C(37) - Os(5) - Os(4)	95.8(2)
P(6)_O(5)_O(4)	82.2(2) 159.60(6)
(0) - (0)	59 819(9)
C(41)-Os(6)-C(42)	91.6(3)
C(41)-Os(6)-C(40)	92.4(4)
C(42)-Os(6)-C(40)	175.9(3)
C(41)-Os(6)-P(5)	98.1(2)
C(42)-Os(6)-P(5)	89.3(2)
C(40)-Os(6)-P(5)	91.2(2)
C(41) - Os(6) - Os(4)	160.5(2)
$C(42) - O_{5}(0) - O_{5}(4)$	807(2)
P(5)-Os(6)-Os(4)	100.23(5)
C(41)-Os(6)-Os(5)	102.6(2)
C(42)-Os(6)-Os(5)	84.1(2)
C(40)-Os(6)-Os(5)	93.9(2)
P(5)-Os(6)-Os(5)	158.39(5)
Os(4)-Os(6)-Os(5)	60.101(10)
C(50) - P(4) - C(49)	102.8(4)
C(30)-F(4)-C(43)	102.9(3)
C(50)-P(4)-Os(4)	116.6(3)
C(49)-P(4)-Os(4)	117.2(3)
C(43)-P(4)-Os(4)	110.3(2)
C(65)-P(5)-C(66)	103.5(4)
C(65)-P(5)-C(59)	103.4(4)
C(66)-P(5)-C(59)	102 2(3)
C(65) - P(5) - Os(6)	116.0(3)
C(50) - P(5) - C(5)	1133(2)
C(57)-P(6)-C(51)	102.6(5)
C(57)-P(6)-C(58)	101 7(6)
C(51)-P(6)-C(58)	102 6/4
C(57)-P(6)-Os(5)	102 (14)
C(51)-P(6)-Os(5)	116.9(3)
	116.9(3) 113.6(2)
C(58)-P(6)-Os(5)	116.9(3) 113.6(2) 117.3(3)
C(58)-P(6)-Os(5) C(10)-C(34)-Os(4)	116.9(3) 113.6(2) 117.3(3) 175.5(6)
C(58)-P(6)-Os(5) O(10)-C(34)-Os(4) O(11)-C(35)-Os(4) O(11)-C(35)-Os(4)	116.9(3) 113.6(2) 117.3(3) 175.5(6) 177.9(7) 125.3(7)
C(58)-P(6)-Os(5) O(10)-C(34)-Os(4) O(11)-C(35)-Os(4) O(12)-C(36)-Os(4) O(13)-C(36)-Os(4)	116.9(3) 113.6(2) 117.3(3) 175.5(6) 177.9(7) 175.3(7)
C(58)-P(6)-Os(5) O(10)-C(34)-Os(4) O(11)-C(35)-Os(4) O(12)-C(36)-Os(4) O(13)-C(37)-Os(5) O(14)-C(38)-Os(5)	116.9(3) 113.6(2) 117.3(3) 175.5(6) 177.9(7) 175.3(7) 172.4(7) 178.0(7)
C(58)-P(6)-Os(5) O(10)-C(34)-Os(4) O(11)-C(35)-Os(4) O(12)-C(36)-Os(4) O(13)-C(37)-Os(5) O(14)-C(38)-Os(5) O(15)-C(39)-Os(5)	116.9(3) 113.6(2) 117.3(3) 175.5(6) 177.9(7) 175.3(7) 172.4(7) 178.0(7) 174.8(6)
$\begin{array}{c} C(58)-P(6)-Os(5)\\ O(10)-C(34)-Os(4)\\ O(11)-C(35)-Os(4)\\ O(12)-C(36)-Os(4)\\ O(13)-C(37)-Os(5)\\ O(14)-C(38)-Os(5)\\ O(15)-C(39)-Os(5)\\ O(16)-C(40)-Os(6)\\ \end{array}$	116.9(3) 113.6(2) 117.3(3) 175.5(6) 177.9(7) 175.3(7) 172.4(7) 178.0(7) 174.8(6) 175.1(7)
C(58)-P(6)-Os(5) O(10)-C(34)-Os(4) O(11)-C(35)-Os(4) O(12)-C(36)-Os(4) O(13)-C(37)-Os(5) O(14)-C(38)-Os(5) O(15)-C(39)-Os(5) O(16)-C(40)-Os(6) O(17)-C(41)-Os(6)	116.9(3) 113.6(2) 117.3(3) 175.5(6) 177.9(7) 175.3(7) 172.4(7) 178.0(7) 174.8(6) 175.1(7) 178.3(7)
C(58)-P(6)-Os(5) O(10)-C(34)-Os(4) O(11)-C(35)-Os(4) O(12)-C(36)-Os(4) O(13)-C(37)-Os(5) O(14)-C(38)-Os(5) O(15)-C(39)-Os(5) O(16)-C(40)-Os(6) O(17)-C(41)-Os(6) O(18)-C(42)-Os(6)	116.9(3) 113.6(2) 117.3(3) 175.5(6) 177.9(7) 175.3(7) 172.4(7) 178.0(7) 174.8(6) 175.1(7) 178.3(7) 174.5(7)

117.0(7)
121 2(5)
121.2(6)
121 5(7)
119.8(8)
119.6(8)
121.0(8)
121.2(7)
116.8(8)
119.1(7)
124.0(7)
121.7(11)
115.7(15)
127(2)
114 5(18)
123.7(12)
117.7(7)
119.5(6)
122.7(6)
122.5(8)
120.6(9)
117,5(9)
122.2(9)
119.5(9)

Apéndice 2 Espectros seleccionados de algunos compuestos

Los espectros de IR fueron obtenidos de un espectrofotómetro Nicolet-750 utilizando soluciones de ciclohexano. Los espectros de RMN heteronuclear fueron obtenidos en un espectrofotómetro Jeol GX 300, utilizando las siguientes frecuencias ¹H (300 MHz), ¹³C (75 MHz), ¹¹⁹Sn (112 MHz) usando cloroformo deuterado como disolvente.

Espectros para el compuesto 1

Decacarbonil-(µ-bidruro)(dimetilamino)(tri-ⁿbutilestanil)triosmio

Espectro 1. Infrarrojo (ampliación) del compuesto 1

Espectro 2. RMN ¹H del compuesto 1

Espectro 3. RMN ¹³C del compuesto 1

Espectro 4. RMN ¹¹⁹Sn del compuesto 1

Espectro 5 Masas FAB⁺ del compuesto 1

Decacarbonil-(µ-hidruro)(pirrolidina)(tri-ⁿbutilestanil)triosmio

Espectro 6. Infrarrojo (ampliación) del compuesto 2

Espectro 8. RMN ¹³C del Compuesto 2

Espectro 10. Masas FAB⁺ del Compuesto 2

Decacarbonil-(µ-hidruro)(piperidina)(tri-"butilestanil)triosmio

Espectro11. Infrarrojo (ampliación) del compuesto 3

Espectro15. Masas FAB⁺ del Compuesto 3

Decacarbonil-(µ-hidruro)(morfolina)(tri-"butilestanil)triosmio

Espectro 16. Infrarrojo (ampliación) del compuesto 4

Espectro 18. RMN ¹³C del Compuesto 4

Espectro 20. Masas FAB^+ del Compuesto 4

Espectro 21. Infrarrojo (ampliación) del compuesto 5

Espectro 23. Espectro de RMN ¹³C del Compuesto 5

Espectros para el compuesto 11

Undecacarbonil-(µ-bidruro)(tri-"butilestanil)triosmio

Espectro 25. Infrarrojo (ampliación) del compuesto 11

Espectro 26. RMN ¹H del Compuesto 11

Espectro 27. RMN ¹³C del Compuesto 11

Espectro 29. Masas FAB⁺ del Compuesto 11

Reactivity of $[(\mu - H)_2 Os_3(CO)_{10}]$ with Aminotributylstannane and Aminotrimethylstannane Derivatives

José Luis Gárate-Morales and Juan M. Fernández-G.*

Instituto de Química, UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510. México D. F., México

Received March 8, 2004

The reaction of aminotributylstannane or aminotrimethylstannane derivatives with the dihydride of decacarbonyltriosmium in ether-hexane solution (5:1) at room temperature affords the heterometallic clusters $[(\mu-H)Os_3(CO)_{10}(HE)(SnR_3)]$ (1–8) (HE = dimethylamine (1, 5), pyrrolidine (2, 6), piperidine (3, 7), and morpholine (4, 8)) and the α -carbon-hydrogen

bond activation of the secondary amine molety of (2) $[(\mu-H)-Os_3(CO)_{10}(\dot{N}=CHCH_2CH_2\dot{C}H_2)-$ (SnBu₃) (2a) in low yield. In all these heterometallic clusters the secondary amine ligand occupies a weak axial coordination site on the osmium triangle, eventually stabilized through the formation of intramolecular hydrogen-bonding interaction between the N-H and the axial carbonyl ligands. The stannyl ligand (SnBu3 or SnMe3) occupies an equatorial position on the osmium triangle, as expected for a bulky substituent. The metal carbonyl angles open out and the Os-C-O axes deviate from linearity so as to bring the carbonyl moleties closer to the tin atom in an 'umbrella effect', for 3, 5, 6, 7, 7', 8, and 2a. We were unable to grow single crystals for the compounds 1, 2, and 4. However, the spectroscopic information (¹H, ¹³C, and ¹¹⁹Sn NMR) is similar for compounds 1-8 and 2a. Thus, it is assumed that they should present similar interactions in the triosmium cluster. All the compounds were characterized by IR. ¹H. ¹³C. and ¹¹⁹Sn NMR. mass spectra, and elemental analysis. Solidstate structures of 3, 5, 6, 7, 7', 8, and 2a were established by single-crystal X-ray diffraction analyses.

Introduction

There has been considerable interest in the synthesis. characterization, and chemistry of transition metal clusters, including the reactivity modifications of organic ligands, unusual binding of organic substrates to several atoms, and recently the exploitation of the catalytic activity of heterometallic particles.¹ Over the years, metal-tin compounds have attracted attention because tin is often used as one component in many bimetallic catalysts, showing an increase of the selectivity in a variety of chemical transformations. Ib.c.2 Although ruthenlum-tin clusters have been used for this purpose, the triosmium clusters have proved to be useful systems for modeling heterogeneous catalytic processes such as HDN3a or HDS.3b,c Osmium clusters also contribute to the understanding of the factors involved in the different stages of activation of organic molecules by transition metals. In this sense, clusters having metal-tin bonds have been studied, showing that the synthesis of transition metal-tin clusters depends on both the tin reagent and the transition metal clusters.4-6 For example, maingroup metals can be incorporated into transition metal clusters (Os, Ru, Fe, Ir) via low-valent derivatives M'R2 (M' = Ge, Sn) in a controlled reaction under mild conditions and with good yield.4.5 The displacement reaction of the (CH3CN) ligand from the compounds $[M_3(CO)_{12-n}(CH_3CN)_n]$ (n = 1 or 2) by organogermanes and stannanes is a useful method for the preparation of triosmium and triruthenium-main-group metal clusters of the type $[M_3(H)(CO)_{11}(M'R_3)]$ and $[Os_3(H)(CO)_{10}]$ $(CH_3CN)(M'R_3)$ (M = Ru. Os: M' = Ge. Sn).⁶ The oxidative addition of $HM'R_3$ (M' = SI, Sn, or Ge and R = Et, Bu, or Ph) to the unsaturated cluster $[(\mu-H)_2Os_3-$

^{*} To whom correspondence should be addressed E-mail:

To whom correspondence should be addressed E-mail: jmanuel@servidor.unam.mx. (1) (a) Richmond, M. G. Coord. Chem. Rev. 2003, 241, 273. (b) Hermans, S.: Raja, R.: Thomas, J. M.; Johnson, B. F. G.; Sankar, G.; Cleeson, D. Angew. Chem., Int. Ed. 2001, 40. 1211. (c) Hermans. S.: Johnson, B. F. G. J. Chem. Soc. Chem. Commun. 2000, 1955. (2) (a) Lefebrre, F.; Candy, J. P.: Basset, J. M. In Metal Clusters in Chemistry, Braunstein, P., Oro, L. A., Raithby, P. R., Eds.; Wiley-VCH: New York, 1999; Vol. 2. p 782. (b) Lesage, P.: Candy, J. P.; Hirigoyen, C.; Humblot, F.; Leconte, M.; Basset, J. M. J. Mol. Catal. A: Chem. 1996, 112, 303. (c) Mansour, A. E.; Candy, J. P.: Bournon-ville, J. P.; Ferretti, O. A.; Basset, J. M. Angew. Chem., Int. Ed. Engl. 1989, 28, 347. 1989, 28. 347

^{(3) (}a) Elsenstadt, A.; Glandomenico, C. M.; Frederick, M. F.; Laine. R. M. Organometallics 1985, 4, 2033. (b) Sánchez-Delgado, R. A. J. Mol. Catal. 1994, 86, 287. (c) D'Ornelas, L.; Castrillo, T.; Hernández, de B. L.; Narayan, A.; Atencio, R. Inorg. Chim. Acta 2003, 342, 1.

⁽⁴⁾ Cardin, D. J. In Metal Clusters in Chemistry, Braunstein, P., Oro, L. A., Raithby, P. R., Eds.; Wiley-VCH: New York, 1999; Vol.), p 48.

 ^{(5) (}a) Cardin, C. J.; Cardin, D. J.; Convery, M. A.; Devereux, M.
 M. J. Chem. Soc., Chem. Commun. 1991, 687. (b) Bartlett, R. A.;
 Cardin, C. J.; Cardin, D. J.; Lawless, G. A.; Power, J. M.; Power, P. P. J. Chem. Soc., Chem. Commun. 1988, 312. (c) Cardin, C. J.; Cardin, D. J.; Lawless, G. A.; Power, J. M.; Power, M. B.; Hursthouse, M. B. J. D. J., Lawiess, G. A., Fuwer, J. M.; Power, M. B.; Hursthouse, M. B. J. Organomet. Chem. 1987, 325. 203. (d) Cardin. C. J.; Cardin, D. J.; Parge, H. E.; Power, J. M. J. Chem. Soc., Chem. Commun. 1984, 609.
(6) Burgess, K.; Guerln, C.; Jonhson, B. F. G.; Lewis, J. J. Organomet. Chem. 1985, 295, C3.

 $(CO)_{10}$ has been previously described.⁷ and its kinetics and mechanism showed that the product $[H_3Os_3(CO)_{10}]$ (ER₃)] is obtained for most of these reactions, where the hydrogen of HM'R₃ remains in the cluster.^{7a} Similar to the hydridostannanes, the aminostannanes react with hydride metal compounds to afford metal-metal bonds and a liberated amine.⁸ This fact is documented for monometallic centers,^{8b} but the reaction with a trinuclear cluster provides the opportunity to explore the chemistry of heterometallic clusters in which the amino moiety remains in the cluster compound after the reaction just like the hydrogen of the hydridostannane remains in the reaction for $[H_3Os_3(CO)_{10}(ER_3)]$.⁷ Most of the interest in nitrogen-metal cluster bonds stems from the comparison of their reactivity to that of nitrogen atoms bound to metal surfaces, because adsorbed nitrogen atoms are believed to be key intermediates in several industrial chemical processes such as the Haber process and the oxidation of ammonia.⁹ Examples of transition metal carbonyl clusters containing nitrogendonor ligands have been described for amino,¹⁰ imine,¹¹ amido,¹² and nitrene⁹ compounds in the literature. Nevertheless, only a few clusters containing nitrogenruthenium and tin-ruthenium bonds in the same compound have been reported. Some examples are [Ru3- $(\mu - H)(\mu_3, \eta^2 - ampy)(SnR_3)_2(CO)_8]$ (Hampy = 2-amino-6methylpyridine, R = Bu, Ph)^{13a} and [Ru₃(μ -H)₂(μ ₃, η ²dmpz)(SnR₃)₂(CO)₈]⁻ (hdmpz = 3,5-dimethylaminopyrazole), R = Bu, Ph).^{13b} As far as we are informed, no similar complexes with osmium clusters have been reported. The principal interest in the reaction between aminotrialkylstannanes and the unsaturated cluster $[H_2Os_3(CO)_{10}]$ stems from the idea that it affords a new class of stable compounds where the secondary amine and the stannyl group are tied together through an Os₃ unit. This would allow us to determine whether the stannyl group influences the stability of aliphatic secondary amines bonding in the heterometallic clusters or not.

Herein, the preparation and characterization of a series of novel osmium-tin clusters containing a secondary amine, N-Os bond and the trialkylstannyl ligands within the same cluster framework are reported.

Results and Discussion

Synthesis. The oxidative-addition reaction of $[(\mu H_{2Os_{3}(CO)_{10}}$ in the presence of aminostannanes gener-

ated a pale yellow, air stable, trinuclear cluster [(μ -H)Os₃(CO)₁₀(HE)(SnR₃)] (1-8) as the major product (Scheme 1). In addition, the α -carbon-hydrogen bond activation of the pyrrolidine ligand in $[(\mu - H)Os_3(CO)_{10}]$

 $(N = CHCH_2CH_2CH_2)(SnBu_3)$] (2a) was obtained in low yield.14 It has been reported that the reaction of secondary amines with $[Os_3(CO)_{12}]$ or $[Os_3(CO)_{10}(CH_3CN)_2]$ vields trinuclear products that result from the transalkylation^{15a} and/or carbon-hydrogen bond activation^{3.15} of the alkyl groups of the secondary amine; the nature of the products obtained is remarkably sensitive to the structure and steric requirements of the amine employed.¹⁵ For example, the α -carbon-hydrogen bond activation of pyrrolidine was obtained in the reaction with $[Os_3(CO)_{10}(CH_3CN)_2]$ as principal product, ^{15b} while the reaction of azetidine and the osmium cluster gener-

ated $[Os_3(CO)_{10}(\mu - \dot{N}CH_2CH_2\dot{C}H_2)(\mu - H)]$, which contains a four-membered heterocycle that bridges two of the metal atoms through its nitrogen atom.^{15c}

In this work, the use of the unsaturated cluster $[(\mu H_{2}Os_{3}(CO)_{10}$ and the aminostannanes allowed us to obtain clusters 1-8, where the amino ligand bonds one osmium on the cluster in a weak axial coordination site. This fact is interesting because it had been documented that the reaction with the osmium cluster and heterocyclic amines (including secondary amines) yields iminoyl clusters as principal products.3.15b The bulky stannyl groups are tied in the same cluster in the expected equatorial position.

G. Organometallics 1992, 11, 3510.

^{(7) (}a) Hall, R. J.; Serguievski, P.; Keister, J. B. Organometallics 2000, 19, 4499. (b) Einstein, F. W. B.; Pomeroy, R. K.; Willis, A. C. J. Organomet. Chem. 1986, 311, 257.

^{(8) (}a) Cardin, D. J.; Lappert, M. F. J. Chem. Soc., Chem. Commun. 1966, 506. (b) Cardin, D. J.; Keppie, S. A.; Lappert, M. F. J. Chem. Soc (A) 1970, 2594.

 ^{(9) (}a) Li, Y.; Wong, W. T.; Lin, Z. Y. Organometallics 2003, 22, 1029.
 (b) Li, Y.; Wong, W. T. Coord. Chem. Rev. 2003, 243, 191.
 (10) (a) Clarke, L. P.; Raithby, P. R.; Shields, G. P. Polyhedron 1997.

^{16, 3775. (}b) Johnson, B. F. G.; Lewis, J.; Raithby, P. R.; Zuccaro, C.

J. Chem. Soc., Chem. Commun. 1979, 916. (11) (a) Aime, S.; Diana, E.; Gobetto, R.; Milanesio, M.; Valis, E.; Viterbo, D. Organometallics 2002, 21, 50. (b) Aime, S.; Ferríz, M.; Gobetto, R.; Valls, E. Organometallics 1999, 18, 2030. (12) Cabeza, J. A.; del Río, I.; Grepioni, F.; Riera, V. Organometallics 2000, 14, 6442.

^{2000. 19. 4643.}

^{(13) (}a) Cabeza, J. A.; García-Granda, S.; Llamazares, A.; Riera, V.; Van der Maelen, J. F. Organometallics 1993, 12, 157. (b) Cabeza, J. A.; Franco, R. J.; Riera, V. Organometallics 1995, 14, 3342. (c) Cabeza, J. A.; Llamazares, A.; Riera, V.; Triki, S.; Ouahab, L. Organometallics 1992. 11. 3334.

⁽¹⁴⁾ A subproduct (probably the α -carbon-hydrogen bond activation of the secondary amine) was observed in all the reactions. The IR spectra for those subproducts are similar to the spectrum of Za. However, the quantity of product did not allow complete spectroscopic analysis. Compound 2a was obtained in enough quantity after repeating several times the reaction between (pyrrolidinyl)tributylstannane and the triosmium cluster

and the triosmium cluster. (15) (a) Rosenberg, E.; Kabir, S. E.; Hardcastle, K. I.; Day, M.; Wolf, E. Organometallics **1990**, *9*, 2214. (b) Day, M.; Espítia, D.; Hardcastle, K. I.; Kabir, S. E.; McPhillips, T.; Rosenberg, E.; Gobetto, R.; Milone, L.; Oseila, D. Organometallics **1993**, *12*, 2309. (c) Adams, R. D.; Chen,

Table 1. Selected Spectroscopic Information for 1-8, and 2a

compd	hydride 'H NMR^	CO groups ¹³ C NMR ⁶	¹¹⁹ Sn NMR"
1	~16.01, (30.06)	196.69, 192.36, 191.24, 185, 12, 177.65, 175.52, 174.40, 173.88, 173.78	-49.92
2	-16.31, (30.09)	196.89, 192.54, 191.38, 185.18, 177.50, 174.89, 174.32, 174.22, 174.93, 173.85	-48.90
2a	-16.40, (31.53)	196.52, 191.27, 189.78, 185.61, 177.93, 175.55, 174.66, 174.45, 173.01	-51.97
3	-16.15, (30.81)	196.77, 192.39, 191.30, 185.19, 177.69, 175.29, 174.59, 174.21, 173.21	-50.05
4	-16.11, (29.88)	197,49, 193,15, 191,00, 184,86, 177,39, 175,03, 174,22, 174,07, 173 64	-49.75
5	-15.98, (33.00)	196.14, 192.37, 190.89, 185.18, 177.42, 175.29, 174.63, 174.23, 173.68	-68.19
6	-16.24. (33.00)	196.31, 192.58, 191.09, 185.23, 177.32, 174.69, 174.07, 173.81	-67.54
7	- 16.12, (32.97)	196.20, 192.40, 191.03, 185.44, 177.45, 175.03, 174.42, 173.81	-68.22
8	-16.06. (33.00)	196.91, 190.55, 184.8), 177.10, 174.72, 174.20, 173.99, 173.39	-67.82

" δ ppn $V(J_{11}-m_{OS}$ Hz). In CDC)₃. " δ ppm in CDC)₃

Table 2. Crystallographic Data of 3, 2a, 5, 6, 7, 7', and 8

	3	2a	5	6	7	7'	8
formula	C27H39NO10-	C26H35NO10-	C15H17NO10-	C16H19NO10-	C18H21NO10-	C13H22Cl3NO10-	C19H19NO11-
	Os3Sn	Os3Sn	Os ₃ Sn	Os ₃ Sn	Os₃Sn	Os₃Sn	Os₃Sn
fw	1226.88	1210.84	1060.59	1086.62	1100.65	1220.22	1102.62
cryst syst	monoclinic	monoclinic	triclinic	monoclinic	monoclinic	orthorhombic	triclinic
space group	P21/c	Clic	PĪ	P21/n	P2,/c	Pbca	PĪ
a/A	17.794(1)	38.345(13)	9.405(1)	10.652(1)	10.717(1)	14.185(1)	10.417(1)
ЫÀ	11.656(1)	11.269(4)	10.557(1)	17.897())	17.0 96(1)	20.369(2))1.093(1)
dА	17.483(1)	17.707(6)	12.768(1)	13.304(1)	15.517(1)	21.522(2)	12.765(1)
α/deg	90	90	83.848(1)	90	90	90	104.043(1)
β/deg	93.850(1)	114.094(8)	84.707(1)	101.656(1)	110.004()	90	107.687(1)
y/deg	90	90	77.250(1)	90	90	90	95.052(1)
Ζ	4	8	2	4	4	8	2
F(000)	2264	4448	944	1944	1976	4416	988
D _{cak} ./g cm ⁻³	2.252	2.303	2.872	2.906	2.737	2.606	2.728
color/shape	yellow/plates	yellow/plates	yellow/prisms	yellow/prisms	yellow/	orange/prisms	yellow/needles
					parallelepipeds		
θ range/deg	2.09 to 25.00	1.16 to 25.13	1.61 to 25.00	1.93 to 32.52	1.84 to 32.51	1.89 to 25.00	1.75 to 24.99
jdmm⁻¹	11.232	11.634	16.544	16.339	15.194	13.318	15.123
R_1/R_{w2}^n	0.0743/0.1039	0.0643/0.0934	0.0478/0.0862	0.0464/0.0432	0.0831/0.0548	0.0588/0.0983	0.0540/0.0566
GOF on F ²	0.998	0.941	1.041	0.940	0.948	0.936	0.997

" R indices (all data).

Spectroscopic Information. The IR spectra of 1-8 exhibit eight carbonyl stretching frequency bands in the range 2090-1930, and the shape and intensity of the spectrum are similar in all the compounds, indicating that all share a similar local symmetry around the osmium triangle. No bands in the bridge carbonyl region were found. The ¹H NMR spectra of compounds I-8 show the signal assigned for one hydride around -16.00 ppm. as expected for a bridging hydride ligand⁶ (Table 1). and no significant changes are observed in the shielding for the hydride in 1-8 or 2a. The coupling constant J(187Os-1H) at natural abundance (187Os = 1.64%) for compounds 1-4 and 5-8 appears as a single set with values around 30 and 33 Hz, respectively (Table 1). These values are in the range previously observed for hydrides in triosmium clusters.¹⁶ The broad singlets in the range 2.40-2.79 are assignable to the hydrogen of the HN groups of the secondary amines coordinated to the osmium clusters 1-8. The ¹H NMR spectrum of the compound 2a shows a single resonance at $\delta = 7.48$ ppm, which can be assigned to a hydrogen atom of the imino group. The 13C{1H}NMR spectra at natural abundance $({}^{13}C = 1.1\%)$ for 1-8 show from 8 to 10 signals in the range 197.49-173.01 ppm (Table 1). For similar compounds $[(\mu-H)Os_3(CO)_9(NMe_3)(\mu-COC_4-$ H₄N)) ¹⁰a [H(μ -H)Os₃(CO)₁₀(HN=CPh₂], ¹¹a and [(μ -H)- $(\mu \cdot \eta^2 \cdot \dot{C} = \text{NCH}_2 CH_2 \dot{C}H_2)Os_3(CO)_{10}^{15b}$ the higher reso-

nances appear in the range between 186.01 and 183.50 ppm. which are assignable to the two mutually trans-

(16) Beatty, S. T.; Bergman, B.; Rosenberg, E.; Dastru, W.; Cobetto, R.; Milone, L.; Viale, A. J. Organomet. Chem. 2000, 593-594, 226. axial carbonyl groups of the Os(CO)₄ fragment of the triosmium clusters. In comparison the resonances in this range, 185-174 (Table I), should correspond to the $Os(CO)_4$ fragment in compounds 1-8 and 2a, and by a process of elimination the signals in the range 197-190 (Table 1) are assigned to CO groups in the fragment Os(CO)3(SnR3) according to the electronic effect that the tin atom has on the CO groups close to it. High chemical shifts (around 200 ppm) of the CO groups in ruthenium cluster compounds where silicon or tin atoms are tied to the cluster have been described.13a.r The 119Sn NMR for 1-4 show one signal around -50 and -67 ppm for 5-8 (Table 1). It has been reported that the difference in the tin shielding depends not only on electron density on the nuclei but also on the $d_{\pi}-d_{\pi}$ interaction between the two metal atoms and the values of δ ⁽¹⁾⁹Sn) defining the region with different coordination numbers of the central tin atom. Thus, the chemical shifts δ (¹¹⁹Sn) in 1-8 are assigned to a quasi-tetrahedral tin fourcoordinated compound. 17,18

Solid-State Structures of 3, 5, 6, 7, 7', 8, and 2a. The solid-state structures of 3, 5 6, 7, 7', 8, and 2a were established by single-crystal X-ray diffraction analyses. Crystal data are shown in Table 2, and some selected bond parameters are in Table 3. The molecular structures of 5, 6, 7, and 8 are portrayed in Figures 1, 2, 3, and 4, respectively. The metal framework for 3, 5, 6, 7, and 8 consists of an osmium scalene triangle with the

⁽¹⁷⁾ Petrosyan, V. S. Prog. Nucl. Magn. Reson. Spectrosc. 1977, 11, 115.

⁽¹⁸⁾ Holecek, J.; Nádvorník, M.; Handlir, N. K. J. Organomet. Chem. 1986, 315, 299.

			• •	0 . 0			
	Za	3	5	6	7	7′	8
			Distances				
Os(1) - Os(2)	3.0401(11)	3.0159(7)	3.0212(6)	3.0148(3)	3.0179(4)	3.0025(6)	3.0053(5)
Os(1) - Os(3)	2.8704(12)	2.8768(8)	2.8741(6)	2.8841(3)	2.8704(4)	2.8655(6)	2.8685(5)
Os(2) - Os(3)	2.8856(10)	2.9123(8)	2.9106(6)	2.9033(4)	2.9132(4)	2.9099(6)	2.9174(6)
Os(1) - Sn(1)	2.6929(14)	2.6994(11)	2,7021(8)	2.6847(4)	2.6953(5)	2.6903(9)	2.6909(8)
Os(2)-N(1)	2.185(10)	2.226(10)	2.208(10)	2.201(4)	2.214(5)	2.252(9)	2.226(6)
			Angles				
Os(3) - Os(1) - Os(2)	58.364(19)	59.181(18)	59.108(Ĭ4)	58.917(8)	59.243(8)	59.402(14)	59.507(14)
$O_{s(1)} - O_{s(3)} - O_{s(2)}$	63.76(3)	62.790(18)	62.965(15)	62.788(7)	62.901(10)	62.642(15)	62.581(14)
Os(3) - Os(2) - Os(1)	57.87(3)	58.029(18)	57.927(15)	58.295(7)	57.856(8)	57.956(14)	57.913(12)
C(4) - Os(2) - N(1)	172.8(4)	173.5(5)	176.6(4)	174.12(18)	176.5(2)	175.6(4)	177.2(4)
C(2)-Os(1)-Sn(1)	86.5(4)	83.0(5)	83.8(3)	86.79(15)	81.05(18)	80.5(3)	84.9(3)
C(I)-Os(I)-Sn(I)	82.7(4)	85.1(4)	83.5(3)	84.73(14)	85.26(18)	84.9(9)	83.3(3)

Figure 1. Molecular structure of 5 with the atomnumbering scheme.

Figure 2. Molecular structure of 6 with the atomnumbering scheme.

amine group perpendicular to the Os₃ plane. The location of the hydride was determined by diffraction analysis for 6 and 7 and geometrically assigned for 2b, 3, 5, and 8, and it was located undoubtedly between Os-(1)-Os(2) according to the lengthening of the metalmetal vector, which is associated with the bond length distances for 3, 5, 6, 7, 8, and 2a found in the range 3.0212(6)-3.0053(6) Å (Table 3), common for Os-Os bonds bridged by a hydrogen atom.¹⁹ The secondary amine ligand acts as a σ -two-electron donor through a coordination bond, N-Os(2) 2.226(10) Å for 3 and 2.201-(4) Å for 6 (Table 3). The distances are relatively long.

Figure 3. Molecular structure of 7 with the atomnumbering scheme.

Figure 4. Molecular structure of 8 with the atomnumbering scheme.

suggesting that the bond N(1)-Os(2) is weak in the structures 3, 5, 6, 7, 8, and 2a (Figures 1-4). There are just a few cluster compounds tied to an amine in a σ -coordination bond. However, some of these examples have similar Os-N distances: 2.282(13) Å found for the Os-NMe₃ equatorial bond in $[Os_3(\mu-H)(CO)_9(NMe_3)(\mu-H)(LA)($

 ^{(19) (}a) Lu, C. Y.; Einstein, F. W. B.; Johnston, V. J.; Pomeroy, R.
 K. Inorg. Chem. 1989, 28, 4212. (b) Churchill, M. R.; DeBoer, B.;
 Rotella, F. J. Inorg. Chem. 1976, 15, 1843.

Table 4. Hydrogen Bond Distances (Å) and Angles (deg) for 5, 6, 7, and 8

	D-H···A N(1)-H(1)····O(7)							
	5	6	7	7′	8			
<i>d</i> (D−H) <i>d</i> (H…A) <i>d</i> (D…A) ∠(DHA)	0.78(12) 2.71(13) 3.177(15) 120(11)	0,72(4) 2,50(5) 3,074(6) 138(5)	0.89(4) 2.41(4) 3.165(6) 142(4)	0.93(13) 2.48(12) 3.148(12) 129(10)	0.68(8) 2.45(9) 3.004(9) 147(11)			

COC₄H₄N)]^{10a} or 2.22(2) Å for Os-NMe3 in (Os3(CO)9- $(NO)_2(NMe_3)$.^{10c} The imine bond distance N-Os = 2.185(10) Å in 2a is slightly bigger than the distances reported for similar coordination modes of the imine (H(u-H)Os₃(CO)₁₀(HN=CPh₂)¹¹ (2.150(4) Å) or [Os₃(u-H)(µ-HNCHPh₂)(HN=CPh₂)(CO)₉]^{12e} (2.167(7) Å). The carbon-nitrogen bond length of 1.277(15) Å in 2a is typical of carbon-nitrogen double bonds (1.28 Å) in the closely related triosmium cluster [Os3(u-H)(u-HNCHPh2)-(HN=CPh₂)(CO)₉].^{12a} The angle C(4)-Os(2)-N(1) in 3. 5, 6, 7, and 8 is almost linear, for example, 173.5(5)° and 175.6(4)° for 3 and 7, respectively (Table 3). The distances for the Os(1)-Sn(1) bonds are around 2.69 Å (Table 3) and are similar to the terminal Os-Sn lengths reported in the literature: 2.653(1) Å in $[Os_3(\mu-H)(\mu_3-$ S) (µ3-SCH2) (CO)7 (PMe2Ph) (SnMe3) 20 and 2.711(1) Å in trans-[Os(CO)4(SnPh3)2).21 These lengths are also comparable with Os-Sn distances found for molecules in which the tin ligand bridges two osmlum atoms.^{4.5} The C(2)-Os(1)-Sn(1) and Os(1)-C(1)-Sn(1) angles for 3, 5. 6. 7, 7'. 8, and 2a are around 83° (Table 3). Similar angles were found in the cluster $(Os_3(\mu-H)_2(CO)_{10})$ (SnMe₃)₂] for the carbonyl groups in the fragment Os-(CO)3(SnMe3)7b and had been described for mononuclear metal carbonyl derivatives as the "umbrella effect", describing the tendency of the carbonyl system to lean toward the second metal atom to fill space more efficiently.22 However, in this work, all the structures present the "umbrella effect" in the $Os(CO)_3(SnR_3)$ fragment of the osmium cluster network. In particular two structures, 7 and 7', present the same effect in the C(2)-Os(1)-Sn(1) and Os(1)-C(1)-Sn(1) angles (around 83°) even though 7' is a solvate compound of 7 and consequently the packing effects are different. This suggests that the packing effects are not completely responsible of the "umbrella effect" in the cluster network. The presence of an intramolecular NH---O interaction between the amine proton donor and the oxygen of the carbonyl group was determined for 5, 6, 7, and 8 (Table 4). This is interesting because it has been suggested that similar XH...HM interactions are responsible for driving the stereochemistry of the resulting products.11 Then, the axial position of the secondary amine is stabilized by the NH…O interaction present in the cluster compounds 5, 6, 7, and 8.

There is no significant change between the series of Os-N distances in compounds 5 (dimethylamine), 6 (pyrrolidine), 7 (piperidine), and 8 (morpholine) independently of the inherent electronic requirements of each amine.

Conclusions

Nine triosmium carbonyl cluster complexes containing amino (1-8) and one (2a) containing imino terminal ligands derived from aminostannane compounds have been prepared and characterized. Compounds 1-8 have noteworthy structures due to a σ -nitrogen-metal coordination mode that has rarely been observed in the cluster compounds when allphatic heterocycle-amino ligands are present. 3a, 10,15 The secondary amine occupies an axial amino ligand probably stabilized by an intramolecular NH...O interaction. The a-carbon-hydrogen bond activation was not favored in this compound. as it is described for secondary amines.^{3a,15} The nature of the products was not sensitive to the structure and steric requirements of the aminostannane employed. Compounds 1, 2, and 4 share a similar structure with 2a, 3, 5, 6, 7, 7', and 8, in accord with the shielding of signals in the ¹³C and ¹¹⁹Sn NMR spectra for the carbonyl groups and tin, respectively (Table 1). In fact the IR spectra in cyclohexane solution show that the local symmetry around the osmium triangle is similar for all these compounds.

Experimental Section

General Data. All the reactions were carried out under nitrogen atmosphere using standard Schlenk techniques. Solvents were purified and dried according to standard literature procedures.23 Piperidine, pyrrolidine, and morpholine were dried and were freshly distilled prior to use. The starting materials (Os₃(CO)₁₂|²⁴ and [(µ-H)₂Os₃(CO)₁₀)²⁵ were prepared by literature methods. Reactions were monitored by analytical thin-layer chromatography (Merck Kleselgel 60 F254), and the products were separated by thin-layer chromatography (Merck Kieselge) 60 F254). IR spectra were recorded on a Nicolet-750 spectrometer in cyclohexane solution. ¹H (300 MHz), ¹³C (75 MHz), and ¹¹⁹Sn (112 MHz) NMR spectra were obtained on an JEOL GX 300 spectrometer, and SnMei was used as external reference for ¹¹⁹Sn spectra. Positive ionization fast atom bombardment (FAB) mass spectra were recorded on a JEOL JMS-SX-102A mass spectrometer, using m-nitrobenzyl alcohol as matrix solvent. The elemental analyses were performed by Galbraith Laboratory, Inc.

Crystal Structure Determination. Suitable X-ray quality crystals of 2a. 3. 5. 6. 7, and 8 were grown by slow layer diffusion of n-pentane-diethyl ether (1:1) into a saturated dichloromethane solution at -4 °C, and 7' was grown by slow evaporation of the CDCl3 in the resonance tube at -4 °C. The crystals were each mounted on a glass fiber, and diffraction experiments were performed on a Bruker Smart Apend CCD diffractometer with graphite-monocromated Mo Ku radiation. The unit-cell constants were obtained from the least-squares refinements of the observed reflections in the range 1.16° < 20 < 32.5°, using the Bruker SMART program.²⁰ Data were corrected for crystal decay with the Bruker SAINT Plus program.²⁶ All data sets were collected using the ω scan mode. Additional crystallographic data are collected in Table 2.

Structures of the compounds were solved by direct methods using the SHELXS-97 program²⁷ for 2a, 3, 5, 6, 7, 7', and 8, and the refinements were carried out by full matrix leastsquares on F2. Weigthed R-factors. Rw. and all goodness of fit

⁽²⁰⁾ Adams, R. D.; Katahira, D. A. Organometallics 1982, 1, 460. (21) Collman, J. P.; Murphy, D. W.; Fleischer, E. B.; Swift, D. Inorg. Chem. 1974. 13. 1.

⁽²²⁾ Zubleta, J. A.; Zuckerman, J. J. In Progress In Inorganic Chemistry, Lippard, S. J.; Ed.; 1978; Vol. 24, p 251.

⁽²³⁾ Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. Purification of Laboratory Chemicals, 2nd ed.; Pergamon Press: New York, 1982.
(24) Drake, R. S.; Loveday, P. A. Inorg. Synth. 1990, 28, 230.
(25) Kaesz, H. D. Inorg. Synth. 1990, 28, 238.
(26) Bruker AXS SMART, version 5.62; Bruker Inc.: Madison, WI.

^{2001.}

⁽²⁷⁾ Sheldrick, G. M. SHELXS-97, version 97-1; Gottingen Universlty: Gottingen, 1997.

Reactivity of AminotributyIstannane

indicators. S. were based on F^2 . The observed criterion of $F^2 > 2\sigma F^2$ was used only for calculating the *R*-factors. The number of observed reflections is presented in Table 2.

Preparation of Aminotrialkylstannanes Compounds. The aminotributylstannanes were prepared by transmetalation with lithlum salts of secondary amines²⁸ and the aminotrimethylstannanes by a transamination reaction using (dimethylamino)trimethylstannane according to the Lappert method.²⁸

(Dimethylamino) tributylstannane (i). 'H NMR (CDCl₃): δ 2.34 (s, 6H), 1.57 (m, 6H), 1.27 (m, 12H), 0.84 (t, 9H), ¹³C NMR (CDCl₃): δ 38.66, 28.28 ($J_{^{13}C^{-1}}$) = 29.7 Hz), 27.27 ($J_{^{13}C^{-1}}$): δ 38.66, 28.28 ($J_{^{13}C^{-1}}$) = 29.7 Hz), 27.27 ($J_{^{13}C^{-1}}$): δ 38.66, 28.28 ($J_{^{13}C^{-1}}$): $J_{^{13}C_{n}}$ = 322.7 Hz), 27.27 ($J_{^{13}C_{n}}$): $J_{^{13}C_{n}}$ = 322.7 Hz), 13.56, 13.07 ($J_{^{13}C_{n}}$): $J_{^{13}C_{n}}$ = 322.7 Hz).

(Piperidinyi) tributyIstannane (ii). ¹H NMR (CDCl₃): δ 2.78 (s. 4H). 1.65 (m, 6H), 1.52 (s. 6H), 1.33 (m, 12H), 0.90 (m. 9H). ¹³C NMR (CDCl₃): δ 47.35, 28.12, 27.19, 25.15, 16.41, 13.63, 13.12 ($J^{13}C^{-1121/9}Sn = 329.7$ Hz). ¹¹⁹Sn NMR (CDCl₃): δ 58.18.

(Pyrrolidinyl)tributylstannane (iii). ¹H NMR (CDCl₃): δ 2.75 (m, 4H), 1.58 (m, 10H), 1.26 (m, 12H), 0.83 (m, 9H). ¹³C NMR (CDCl₃): δ 47.04, 28.26 (J_{13}_{C} -10003 $_{Sn}$ = 19.4 Hz), 27.27 (J_{13}_{C} -10003 $_{Sn}$ = 61.7 Hz), δ 25.53, 13.51, 13.07 (J_{13}_{C} -10003 $_{Sn}$ = 330.7). ¹¹⁸Sn NMR (CDCl₃): δ 58.59.

(Morpholinyl)tributylstannane (iv). ¹H NMR (CDCl₃): δ 3.65 (m, 4H), 2.84 (m, 4H), 1.51 (m, 6H). 1.28 (m, 6H). 0.97 (L 6H.). 0.87 (m, 9H). ³C NMR (CDCl₃): δ 68.22, 46.62, 28.25 ($J_{^{12}C}$ - $III_{^{12}B_{5n}}$ = 17.2 Hz), 27.34 ($J_{^{13}C}$ - $III_{^{12}B_{5n}}$ = 62.7 Hz), 16.43 ($J_{^{13}C}$ - $III_{^{12}B_{5n}}$ = 348 Hz), 13.76. ¹¹⁹Sn NMR (CDCl₃): δ 58.79,

(Dimethylamino)trimethylstannane (v). ¹H NMR (CDCl₃): δ 2.32 (s, 6H), 0.40 (s, 9H, J_{1H} - 10910 $_{Sn}$ = 52.12/54.39 Hz). ¹³C NMR (CDCl₃): δ 38.64, -7.13 (J_{12} -10910 $_{Sn}$ = 366.2/ 348.0 Hz). ¹¹⁹Sn NMR (CDCl₃): δ 127.9, 84.18.

(Piperidinyl)trimethylstannane (vi). ¹H NMR (CDCl₃): δ 2.71 (s. 4H). 1.42 (s. 6H), 0.40 (s. 9H). ¹³C NMR (CDCl₃) δ 47.31, 27.16, 25.12, -7.17 ($\int_{2}^{12}C_{-1127119}S_{50} = 329.7$ Hz). ¹¹⁹Sn NMR (CDCl₃): δ 128.1, 87.89.

(Pyrrolidinyl)trimethylstannane (vil). 'H NMR (CDCl₃): δ 2.76 (m, 4H), 1.57 (m, 4H), 0.22 (s, 9H. J_{11} -¹¹²¹¹⁹Sn = 55 Hz). ¹³C NMR (CDCl₃): δ 47.15, 25.54, -2.10 (J_{12} -¹¹²¹¹⁹Sn = 390.2/370.7 Hz). ¹¹⁹Sn NMR (CDCl₃): δ 128.01.

(Morpholinyi) trimethylstannane (viii). ¹H NMR (CDCl₃): δ 3.46 (m, 4H), 2.65 (m, 4H), 0.11 (s. 9H, J_{1H} -107113_{Sn} = 55.77 Hz). ¹³C NMR (CDCl₃): δ 68.00. 46.46. -2.19 (J_{13} C-110143_{Sn} = 361.0 Hz). ¹¹⁹Sn NMR (CDCl₃): δ 127.46.

Reaction of Aminotrialkylstannanes with $[(\mu-H_2)Os_3-(CO)_{10}]$. Synthesis of $[(\mu-H)Os_3(CO)_{10}(HNMe_2)(SnBu_3)]$ (1). A 50 mg (0.058 mmol) amount of $[(\mu-H)_2Os_3(CO)_{10}]$ was dissolved in 40 mL of a mixture of diethyl ether-hexane (5: 1). To this solution was added ~22 mg (0.058 mmol) of (dimethylamino)tributylstannane, and the mixture was stirred at room temperature for 30 mln. The solvent was removed under reduced pressure, and the principal product was isolated by TLC using *n*-hexane-dichloromethane (3:1 v/v). A procedure analogous to that described for 1 was used for synthesiz-ing compounds 2-8.

[(μ-H)Os₃(CO)₁₀(HNMe₂)(SnBu₃)] (1). Yield = 33%. Anal. Calcd for C₂₄H₃₅NO₁₀Os₃Sn: C, 24.29; H, 2.97; N. 1.18. Found: C, 24.41; H, 3.02; N, 1.21. Mp: 93–95 °C. FAB-MS m/z 1130 (M⁴ – 2CO). IR (cyclohexane): ν (CO) 2094 (m). 2053 (s). 2029 (s). 2015 (s). 1999 (s). 1982 (s). 1969 (s) 1935(w). 'H NMR (CDCl₃): δ 2.90 (m, 6H), 2.79 (s, 1H), 1.56 (m, 6H). 1.35 (m, 6H), 1.23 (m, 6H). 0.90 (m, 9H), -16.01 (s, 1H, J_{1H} -isr_{0s} = 30.06 Hz). ¹³C NMR (CDCl₃): δ 196.69, 192.36. 191.24, 185.12, 177.65. 175.52, 174.40, 173.88, ¹73.78 (CO groups), 53.70, 51.94, 30.35 (J_{13C} -1111 mis_{5n} = 18.2 Hz), 27.56 (J_{13C} -1111 sn MMR (CDCl₃): δ -49.62. [(μ-H)Os₃(CO)₁₀(HNCH₂CH₂CH₂CH₂)(SnBu₃)] (2). Yield = 28%. Anal. Calcd for C₂₅H₃₇NO₁₀Os₃Sn: C. 25.74; H. 3.07; N. 1.15. Found: C. 25.74; H. 3.26; N. 1.13. Mp: 108–110 °C. FAB-MS *m*/z: 1156 (M⁺ – 2CO). IR (cyclohexane): ν (CO) 2093 (m). 2051 (s). 2028 (s). 2014 (s). 1998 (s). 1979 (s). 1966 (s) 1932(w). ¹H NMR (CDCl₃): δ 3.08, (m. 2H), 2.72 (m. 2H), 2.48 (m. 1H). 1.84 (m. 2H), 1.53 (m. 8H). 1.37 (m. 6H). 1.23 (m. 6H) 0.89 (m. 9H). –16.31 (s. 1H. $J_{\rm H-Os}$ ^{1/2} = 30.09 Hz). ¹³C NMR (CDCl₃): δ 196.94. 192.57, 191.38, 185.18, 177.52. 174.91. 174.31, 174.23, 173.94, 173.87 (CO groups). 62.63, 60.38, 30.38 ($J_{\rm NC}$ -¹¹⁰M_{Sn} = 19.25 Hz), 27.57 ($J_{\rm MC}$ -¹¹⁰M_{Sn} = 60.5 Hz). 27.67. 12.57. ¹¹⁹Sn NMR (CDCl₃): δ –48.90.

[(μ-H)Os₃(CO)₁₀(N=CH₂CH₂CH₂CH₂CH₂)(SnBu₃)] (2a). Yield = 6%. FAB-MS (high resolution) m/z. 1211.0057 (calcd for C₂₆H₃₅O₁₀Os₃NSn. 1211.0061). Mp: 85-88 °C. IR (cyclohexane): ν(CO) 2093 (m), 2067 (m), 2053 (s), 2028 (s), 2013 (s), 1998 (s). 1989 (s), 1978 (s) 1941(w). ¹H NMR (CDCl₃): δ 7.54 (s, 1H), 3.76, (m, 2H), 2.85 (m, 2H), 1.99 (m, 2H). 1.55 (m, 10H). 1.38 (m, 7H), 1.26 (m, 6H). 0.89 (m, 9H), -16.40 (s, 1H, J₁₁, ¹⁰O₆ = 31.53 Hz). ¹³C NMR (CDCl₃): δ 196.52, 191.27. (89.78, 185.61, 177.93, 175.55. 174.66, 174.45, 174.34, 173.01 (CO groups), 183.23, 71.57. 38.20, 30.43, 27.62, 22.21, 13.80. 12.54. ¹¹Sn NMR (CDCl₃): δ -51.97.

[(μ-H)Os₃(CO)₁₀(HNCH₂CH₂CH₂CH₂CH₂CH₂)(SnBu₃)] (3). Yleld = 56%. Anal. Calcd for C₂₇H₃₉NO₁₀Os₃Sn: C. 26.43; H. 3.20; N. 1.14. Found: C. 26.03; H. 3.26; N. 1.13. Mp: 92–95 °C. FAB-MS *m/z* 1228. IR (cyclohexane): ν (CO) 2093 (m), 2052 (s). 2028 (s). 2014 (s). 1998 (s). 1979 (s). 1968 (s) 1934-(w). ¹H NMR (CDCl₃): δ 3.13 (s. 1H). 3.08 (s. 1H). 2.86 (m, 2H). 2.40 (m. 1H), 1.79 (s. 1H). 1.54 (m. 8H), 1.37 (m. 8H). 1.22 (m. 6H). 0.90 (m. 9H), -16.15 (s. 1H, *J*'H-¹⁰/₁₀ s = 30.81 Hz). ¹³C NMR (CDCl₃): δ 196.77. 192.39. 191.30. 185.19. 177.69, 175.29. 174.59. 174.21. 173.99 (CO groups). 63.36 (*J*)₂-..^{171,13}sn = 60.5 Hz). 21.79. 13.76. 1250 (*J*³Ce-¹¹¹⁰/Sn = 259.2). ¹⁹Sn NMR (CDCl₃): δ -50.05.

[(μ-H)Os₃(CO)₁₀(HI^NCH₂CH₂OCH₂CH₂)(SnBu₂)] (4). Yield = 70%. Anal. Calcd for C₂₆H₃₇NO₁₁Os₃Sn: C, 26.09; H. 3.16; N. 1.13. Found: C, 26.05; H. 3.22; N. 1.19. FAB-MS *m/z* 1229. Mp: 70-80 °C. IR (cyclohexane): ν (CO) 2094 (m). 2053 (s). 2028 (s), 2015 (s), 1999 (s), 1981 (s), 1965 (s) 1931 (w). ¹H NMR (CDCl₃): δ 3.70 (m, 2H), 3.43 (m, 2H), 3.17 (m, 2H), 2.89 (m, 2H). 2.68 (m, 1H), 1.52 (m, 6H), 1.35 (m, 6H), 1.21 (m, 6H). 0.88 (m, 9H). -16.11 (s. 1H, J_{111} -Mr_{Os} = 29.88 Hz). ¹³C NMR (CDCl₃): δ 197.49, 193.15, 193.00. 184.86. 177.39, 375.03. 174.22, 174.07, 173.64 (CO groups), 69.16, 69.09, 61.64. 59.41, 30.34 ($J_{\Delta c}$ -1000 groups) = 18.2 Hz), 27.54 ($J_{\Delta c}$ -1000 groups) = 59.5 Hz), 13.76, 12.55. ¹¹⁹Sn NMR (CDCl₃): δ -49.75.

 $[(\mu-H)Os_3(CO)_{10}(HNMe_2)(SnMe_3)]$ (5). Yield = 26%. Anal. Calcd for C₁₅H₁₇NO₁₀Os₃Sn: C. 16.99; H. 1.62; N. 1.32. Found: C. 17.07; H. 1.72; N. 1.37. FAB-MS *m*/z 1046. Mp: 113-115 °C. IR (cyclohexane): ν (CO) 2095 (m). 2053 (s). 2031 (s). 2015 (s). 1999 (s). 1984 (s), 1970 (s) 1937 (w). ¹H NMR (CDCl₃): δ 2.91 (s. 6H), 2.78 (s. 1H), 0.54 (s. 9H. $\mathcal{J}_{H-1070}S_{m} =$ 46.71 Hz), -15.98 (s. 1H. $\mathcal{J}_{H-1070}S_{m} =$ 33 Hz). ¹³C NMR (CDCl₃): δ 196.14. 192.37, 190.89, 185.18. 177.42, 175.29. 174.63, 174.23, 173.68 (CO groups), 53.59. 51.89, -5.55. ¹¹⁹Sn NMR (CDCl₃): δ -68.19.

 $[(\mu-H)Os_3(CO)_{10}(HNCH_zCH_zCH_zCH_2(SnMe_x)]$ (6). Yield = 56%. Anal. Calcd for C₁₇H₁₉NO₁₀Os₃Sn: C, 18.79; H, 1.76; N, 1.29. Found: C, 18.83; H. J.86; N, 1.32. FAB-MS m/z 1072. Mp: 125-128 °C. IR (cyclohexane): ν (CO) 2094 (m), 2053 (s), 2031 (s), 2014 (s). 1998 (s), 1981 (s), 1967 (s) 1933 (w). 'H NMR (CDC)_3): δ 3.02, (m, 2H), 2.67 (m, 2H), 2.42 (m, 1H), 1.78 (m, 2H), 1.59 (m, 2H), 0.55 (m, 9H, $J_{1H-10010}s_n = 46.74$ Hz), -16.24 (s, 1H, $J_{1H-1070}s_n = 33.00$ Hz). ¹³C NMR (CDCl₃): δ 196.31,

⁽²⁸⁾ Jones, K.; Lappert, M. F. J. Chem. Soc. 1965, 1944.

192.58, 191.09, 185.23, 177.32, 174.69, 174.07, 173.81 (CO groups), 62.58, 60.34, 25.68, $-5.49,\ ^{119}Sn\ NMR\ (CDCl_3):\ \delta$ =67.54,

 $|\langle \mu \cdot H \rangle Os_3(CO)|_{10}(HNCH_2CH_2CH_2CH_2CH_2(2CH_2)(SnMe_3)]$ (7). Yield = 67%. Anal. Calcd for C₁₈H₂₁NO₁₀Os₃Sn: C. 19.69; H, 1.92; N, 1.27. Found: C. 19.69; H, 2.03; N, 1.36. FAB-MS *m/z* 1085 (-1CO). Mp: 146-149 °C. IR (cyclohexane): ν (CO) 2094 (m). 2053 (s). 2030 (s). 2014 (s). 1998 (s). 1982 (s). 1969 (s) 1936 (w). 'H NMR (CDCl₃): δ 3.08 (m. 2H). 2.85 (m. 2H). 2.39 (m. 1H). 1.77 (m. 1H). 1.58 (m. 3H), 1.40 (m. 1H). 0.52 (m. 9H, J_{11} . J_{11} . J_{12} : J_{13} = 46.74 Hz), -16.12 (s. 1H, J_{14} -Im₀₃ = 32.97 Hz). ¹²C NMR (CDCl₃): δ 196.22. 192.42. (91.01, 185.26, 177.50, 175.04, 174.42, 173.85 (CO groups), 63.28, 61.06. 29.15. 28.84, 21.77, -5.62. ¹¹⁹Sn NMR (CDCl₃): δ -68.05.

 $[(\mu \cdot H)Os_3(CO)_{10}(HNCH_2CH_2OCH_2CH_2)(SnMe_3)]$ (8). Yield = 68%. Anal. Calcd for C₁₇H₁₉NO₁₁Os₃Sn: C, 18.52; H, 1.74; N, 1.27. Found: C.18.76; H, 1.92; N, 1.36. FAB-MS *m*/z 1086 (~1CO). Mp: 138-140 °C. IR (cyclohexane): v(CO) 2095 (m). 2054 (s). 2031 (s). 2015 (s), 1999 (s), 1983 (s), 1969 (s) 1937 (w). 'H NMR (CDCl₃): δ 3.73 (m, 2H), 3.41 (m. 2H), 3.18 (m, 2H), 2.86 (m, 2H). 2.69 (m. 1H), 0.53 (s, 9H, J_H-10019_{Sn} = 52.64 Hz), -16.06 (s, 1H, J_{11-} ^{ing} $_{0x}$ = 33.00 Hz) 13 C NMR (CDCl₃): δ 199.91, 190.55, 184.81, 177.10, 174.72, 174.31, 174.20, 173.99, 173.39 (CO groups), 69.07, 61.41, 59.31, -5.58. 119 Sn NMR (CDCl₃): δ -67.82.

Acknowledgment. We gratefully acknowledge financial support from CONACYT (Project 41487Q) and Grant 112563 to J.L.G.-M., and DGEP-UNAM for a complementary grant to J.L.G.-M. We are grateful to Dr. Rubén A. Toscano for crystallographic work. We also thank Luis Velasco and Javier Pérez for technical assistance in mass spectrometry and José Guadalupe Rodríguez Contreras.

Supporting Information Available: Details of data collection parameters, bond lengths, bond angles, fractional atomic coordinates, and anisotropic thermal parameters for 2a, 3, 5, 6, 7, 7', and 8 are available free of charge via the Internet at http://pubs.acs.org.

OM0400301