

ESTUDIO EXPERIMENTAL EN TÚNELES DE SECCIÓN PORTAL CON RUGOSIDAD COMPUESTA PARA OBRAS DE DESVÍO

Carlos Cortés Cortés

TESIS

Presenta a la División de Estudios de Posgrado de la FACULTAD DE INGENIERÍA de la UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO

> como requisito para obtener el grado de

MAESTRO EN INGENIERÍA (HIDRÁULICA)

CIUDAD UNIVERSITARIA, D.F. (Enero del 2005)

m. 340909

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. Tesis que para obtener el grado de Maestro en Ingeniería Hidráulica

Presenta

Carlos Cortés Cortés

ESTUDIO EXPERIMENTAL EN TÚNELES DE SECCIÓN PORTAL CON RUGOSIDAD COMPUESTA PARA OBRAS DE DESVÍO

ASESOR

Dr. Humberto Marengo Mogollón

AGRADECIMIENTOS:

A mi director de tesis: Dr. Humberto Marengo Mogollón, por su amistad y paciencia. A los Maestros en Ingeniería:

Jaime E. Camargo Hernández y Oscar Ruiz Peña, por sus valiosas observaciones y comentarios.

A los revisores del presente trabajo:

Dr. Felipe I. Arreguín Cortés

Dr. Leonel Ochoa Alejo

Dra. Joselina Espinosa Ayala

M. en I. Victor Hugo Alcocer Yamanaka.

A la Comisión Federal de Electricidad (Laboratorio de Hidráulica).

A la Universidad Nacional Autónoma de México.

Al Instituto Mexicano de Tecnología del Agua.

DEDICATORIA:

A mi familia Angeles, Adriana y Carlos

ESTUDIO EXPERIMENTAL EN TÚNELES DE SECCIÓN PORTAL CON RUGOSIDAD COMPUESTA PARA OBRAS DE DESVÍO

- 8		ÍNDICE		
			Pág.	
1.	Intro	oducción	1	
	1.1	Aspectos generales	3	
		1.1.1 Descripción de las obras de desvío	3	
		1.1.2 Régimen del escurrimiento	4	
		1.1.3 Magnitud y frecuencia de las avenidas	4	
		1.1.4 Métodos de desvío	5	
		1.1.5 Desvío por medio de túneles	6	
	1.2	Tiempo que dura la construcción	7	
	1.3	Consecuencias en caso de falla	7	
	1.4	Obra de desvío de la C.H. Aguamilpa	9	
		1.4.1 Descripción de los túneles de desvío	9	
		1.4.2 Primera avenida	10	
		1.4.3 Segunda avenida	11	
2.	Aná	lisis dimensional y ecuaciones gobernantes	13	
	2.1.	Análisis dimensional	13	
	2.2	Dimensiones	14	
	2.3	Teorema Π de Buckingham	14	
	2.4	Fórmula general de pérdida de carga	14	
	2.5	Ecuaciones gobernantes	20	
		2.5.1 Flujo laminar y Turbulento	20	
		2.5.2 Viscosidad	20	

2.5.3	Esfuerzo cortante	21
2.5.4	Ecuación de Chézy	22
2.5.5	Ecuación de Manning	24
2.5.6	Flujo gradualmente variado	26
2.5.7	Ecuación de Bernoulli para el flujo variado	27
2.5.8	Ecuación de diferencial para el flujo variado	28
2.5.9	Pendiente del fondo del canal y clasificación de	
	perfiles del flujo	32
2.5.9.1	Rasgos básicos de los perfiles de flujo	34

Estado del Arte 3

		3.1	INTRO	DUCCIÓN	35
		3.2	Tipo d	le rugosidad superficial en túneles sin revestir	35
		3.3	Métod	los para el cálculo de la pérdida de carga por esfuerzo	
			cortan	te (fricción), en túneles sin revestir	37
		3.4	Rugos	sidad compuesta, conducto trabajando como canal	42
			3.4.1	Criterio de Horton y Einstein	42
			3.4.2	Criterio de Pavlouski, Mülhlhofer, Einstein y Banks	43
			3.4.3	Criterio de Marengo	43
		3.5	Rugos	sidad relativa	43
		3.6	Rugos	sidad compuesta, conducto trabajando a presión	45
		3.7	Model	los estudiados en Suecia	53
ł		3.8	Rugos	sidad distribuida	56
	4	Estu	idio ex	cperimental	
	4.1	Resu	men		62
	4.2	Objet	tivo del e	estudio	62
	4.3	Estuc	lio en m	nodelo hidráulico	62
		4.3.1	Instala	ación de pendiente variable	62
		4.3.2	Puesta	a a punto	66
	4.4	Regis	stros de	variables físicas	67

Perfiles del agua en el túnel	69
Coeficientes de rugosidad	70
Curvas carga hidráulica-gastos	71
Coeficientes de descarga	72
Pérdidas de carga hidráulica	72
Caída del gradiente de presión	73
Localización de la caída del gradiente de presión	73
Caída del gradiente de presión y números de Froude	74
	Perfiles del agua en el túnel Coeficientes de rugosidad Curvas carga hidráulica-gastos Coeficientes de descarga Pérdidas de carga hidráulica Caída del gradiente de presión Localización de la caída del gradiente de presión Caída del gradiente de presión y números de Froude

5 Análisis de resultados y ejemplo de aplicación

5.1	Introducción	187
5.2	Descripción del Proyecto Hidroeléctrico "El Cajón"	187
	5.2.1 Obra de desvío	187
5.3	Análisis de resultados	189
5.4	Túnel funcionando como canal, análisis teórico	199
5.5	Túnel funcionando a tubo lleno, análisis teórico	207
5.6	Ejemplo de aplicación	215
	5.6.1 Túnel funcionando como canal, análisis con programas	215
	5.6.2 Túnel funcionando a tubo lleno, análisis con programas	241

6 Conclusiones y recomendaciones

ŝ,

6.1	Conclusiones generales	259
6.2	Conclusiones respecto al estudio experimental	261
6.3	Recomendaciones para investigaciones futuras	264

INDICE DE FIGURAS, TABLAS Y GRAFICAS

Figura	Descripción	Pág.
Figura 1	Obras de contención y desvío, C.H. Aguamilpa.	9
Figura 2	Condiciones de la ataguía aguas arriba.	10
Figura 3	Hidrogramas de las dos avenidas, enero de 1992.	11
Fgura 4	Comportamiento de la ataguía y del túnel guante las avenidas.	12
Figura 2.1	Tramo de tubo circular recto.	15
Figura 2.2	Rapidez de deformación de un fluido Newtoniano.	20
Figura 2.3	Condiciones de equilibrio para un flujo constante.	21
Figura 2.4	Fuerzas actuantes sobre un volumen de control.	22
Figura 2.5	Ecuación de Bernoulli para flujo gradualmente variado.	27
Figura 2.6	Ecuación diferencial para flujo gradualmente variado.	28
Figura 2.7	Clasificación de perfiles para flujo gradualmente variado.	32
Figura 3.1	Tipos de rugosidad superficial en un túnel excavado con explosivos.	35
Figura 3.2	Sección típica de un túnel excavado en roca con explosivos.	38
Figura 3.3	Variación de la sección transversal en un túnel excavado con explosivos.	42
Figura 3.4	Sección transversal de un túnel excavado en roca sin revestir.	45
Figura 3.5	Sección transversal de un túnel con rugosidad compuesta.	46
Figura 3.6	Curvas de igual velocidad en un túnel excavado en roca.	48
Figura 4.1	Esquema del modelo físico.	63
Figura 4.2	Geometría del portal de entrada, probadas en el modelo.	64
Figura 4.3	Cueva carga hidráulica-gastos de la estructura aforadora.	66
Figura 4.4	Materiales utilizados en el estudio.	68
Figura 5.1	Sección y perfil del túnel tipo probado en el modelo.	188
Figura 5.2	Coeficientes de pérdida de carga "f" rugosidad total.	191
Figura 5.3	Coeficientes de pérdida de carga "f" rugosidad compuesta.	191
Figura 5.4	Coeficientes de descarga "Cd", rugosidad total.	197
Figura 5.5	Coeficientes de descarga "Cd", rugosidad compuesta.	197
Figura 5.6	Coeficientes de pérdida de carga "Ke", rugosidad total.	198
Figura 5.7	Coeficientes de pérdida de carga "K _e ", rugosidad compuesta.	198

	Contin	uación
Tablas	Descripción	Pág.
Tabla 1	Modelos probados por Czarnota.	53
Tabla 2	Rugosidad absoluta de los modelos de Czarnota.	56
Tabla 3	Valores de áreas y perímetros de los modelos de Czarnota.	59
Tabla 4	Valores del factor por ampliaciones y reducciones.	60
Tabla 5	Valores del factor de variación del área y de pérdida de	
	carga en los modelos de Czarnota.	61
Tabla 4a	Modelos estudiados en la instalación experimental.	69
Tabla 4b	Resumen de los coeficientes de rugosidad de los materiales.	71
Anexo 1		
Tabla 1.1	Perfiles del agua en el túnel, ensaye A31.	75
Tabla 1.2	Perfiles del agua en el túnel, ensaye A32.	76
Tabla 1.3	Perfiles del agua en el túnel, ensaye A33.	77
Tabla 1.4	Perfiles del agua en el túnel, ensaye A34.	78
Tabla 1.5	Perfiles del agua en el túnel, ensaye L31.	79
Tabla 1.6	Perfiles del agua en el túnel, ensaye L32.	80
Tabla 1.7	Perfiles del agua en el túnel, ensaye L33.	81
Tabla 1.8	Perfiles del agua en el túnel, ensaye L34.	82
Tabla 1.9	Perfiles del agua en el túnel, ensaye D31.	83
Tabla 1.10	Perfiles del agua en el túnel, ensaye D32.	84
Tabla 1.11	Perfiles del agua en el túnel, ensaye D33.	85
Tabla 1.12	Perfiles del agua en el túnel, ensaye D34.	86
Tabla 1.13	Perfiles del agua en el túnel, ensaye K31.	87
Tabla 1.14	Perfiles del agua en el túnel, ensaye K32.	88
Tabla 1,15	Perfiles del agua en el túnel, ensaye K33.	89
Tabla 1.16	Perfiles del agua en el túnel, ensaye K34.	90
Tabla 1.17	Perfiles del agua en el túnel, ensaye AL31.	91
Tabla 1.18	Perfiles del agua en el túnel, ensaye AL32.	92
Tabla 1.19	Perfiles del agua en el túnel, ensaye AL33.	93
Tabla 1.20	Perfiles del agua en el túnel, ensaye AL34.	94
Tabla 1.21	Perfiles del agua en el túnel, ensaye AD31.	95

			Continuación
	Tablas	Descripción	Pág.
	Tabla 1.22	Perfiles del agua en el túnel, ensaye AD32.	96
	Tabla 1.23	Perfiles del agua en el túnel, ensaye AD33.	97
	Tabla 1.24	Perfiles del agua en el túnel, ensaye AD34.	98
	Tabla 1.25	Perfiles del agua en el túnel, ensaye AK31.	99
	Tabla 1.26	Perfiles del agua en el túnel, ensaye AK32.	100
	Tabla 1.27	Perfiles del agua en el túnel, ensaye AK33.	101
00	Tabla 1.28	Perfiles del agua en el túnel, ensaye AK34.	102
	Anexo 2		
	Tabla 2.1	Coeficientes de Manning: ensayes: A31, A32, A33, A34.	103
	Tabla 2.2	Coeficientes de Darcy: ensayes: A31, A32, A33, A34.	104
	Tabla 2.3	Rugosidad relativa K/D: ensayes: A31, A32, A33, A34.	105
	Tabla 2.4	Coeficientes de Manning: ensayes: L31, L32, L33, L34.	106
	Tabla 2.5	Coeficientes de Darcy: ensayes: L31, L32, L33, L34.	107
	Tabla 2.6	Rugosidad relativa K/D: ensayes: L31, L32, L33, L34.	108
	Tabla 2.7	Coeficientes de Manning: ensayes: D31, D32, D33, D34.	109
	Tabla 2.8	Coeficientes de Darcy: ensayes: D31, D32, D33, D34.	110
	Tabla 2.9	Rugosidad relativa K/D: ensayes: D31, D32, D33, D34.	111
	Tabla 2.10	Coeficientes de Manning: ensayes: K31, K32, K33, K34.	112
	Tabla 2.11	Coeficientes de Darcy: ensayes: K31, K32, K33, K34.	113
	Tabla 2.12	Rugosidad relativa K/D: ensayes: K31, K32, K33, K34.	114
	Tabla 2.13	Coeficientes de Manning: ensayes: AL31, AL32, AL33, A	L34. 115
	Tabla 2.14	Coeficientes de Darcy: ensayes: AL31, AL32, AL33, AL34	4. 116
	Tabla 2.15	Rugosidad relativa K/D: ensayes: AL31, AL32, AL33, AL3	34. 117
	Tabla 2.16	Coeficientes de Manning: ensayes: AD31, AD32, AD33, A	AD34. 118
	Tabla 2.17	Coeficientes de Darcy: ensayes: AD31, AD32, AD33, AD	34. 119
	Tabla 2.18	Rugosidad relativa K/D: ensayes: AD31, AD32, AD33, AD	034. 120
	Tabla 2.19	Coeficientes de Manning: ensayes: AK31, AK32, AK33, A	K34. 121
	Tabla 2.20	Coeficientes de Darcy: ensayes: AK31, AK32, AK33, AK3	34. 122
	Tabla 2.21	Rugosidad relativa K/D: ensayes: AK31, AK32, AK33, AK	34. 123

Descripción

Continuación.....

Pág.

Tablas

Anexo 3

Tabla 3.1	Curva de elevaciones-gastos, ensayes: A31, A32, A33, A34.	124
Tabla 3.2	Curva de elevaciones-gastos, ensayes: L31, L32, L33, L34.	125
Tabla 3.3	Curva de elevaciones-gastos, ensayes: D31, D32, D33, D34.	126
Tabla 3.4	Curva de elevaciones-gastos, ensayes: K31, K32, K33, K34.	127
Tabla 3.5	Curva de elevaciones-gastos, ensayes: AL31, AL32, AL33, AL34.	128
Tabla 3.6	Curva de elevaciones-gastos, ensayes: AD31, AD32, AD33, AD34.	129
Tabla 3.7	Curva de elevaciones-gastos, ensayes: AK31, AK32, AK33, AK34.	130

Anexo 4

Tabla 4.1	Coeficiente de descarga, ensayes: A31, A32, A33, A34.	131
Tabla 4.2	Coeficiente de descarga, ensayes: L31, L32, L33, L34.	132
Tabla 4.3	Coeficiente de descarga, ensayes: D31, D32, D33, D34.	133
Tabla 4.4	Coeficiente de descarga, ensayes: K31, K32, K33, K34.	134
Tabla 4.5	Coeficiente de descarga, ensayes: AL31, AL32, AL33, AL34.	135
Tabla 4.6	Coeficiente de descarga, ensayes: AD31, AD32, AD33, AD34.	136
Tabla 4.7	Coeficiente de descarga, ensayes: AK31, AK32, AK33, AK34.	137

Anexo 5

Tabla 5.1	Coeficiente de pérdida por entrada, ensayes: A31, A32, A33, A34.	138
Tabla 5.2	Coeficiente de pérdida por entrada, ensayes: L31, L32, L33, L34.	139
Tabla 5.3	Coeficiente de pérdida por entrada, ensayes: D31, D32, D33, D34.	140
Tabla 5.4	Coeficiente de pérdida por entrada, ensayes: K31, K32, K33, K34.	141
Tabla 5.5	Coeficiente de pérdida por entrada, ensayes: AL31, AL32, AL33, AL34.	142
Tabla 5.6	Coeficiente de pérdida por entrada, ensayes: AD31, AD32, AD33, AD34.	143
Tabla 5.7	Coeficiente de pérdida por entrada, ensayes: AK31, AK32, AK33, AK34.	144

Anexo 6

Tabla 6.1	Caída del gradiente de presión en el túnel, ensaye A31.	145
Tabla 6.2	Caída del gradiente de presión en el túnel, ensaye A32.	146
Tabla 6.3	Caída del gradiente de presión en el túnel, ensaye A33.	147

	Con	tinuación
Tablas	Descripción	Pág.
Tabla 6.4	Calda del gradiente de presión en el túnel, ensaye A34.	148
Tabla 6.5	Caída del gradiente de presión en el túnel, ensaye L31.	149
Tabla 6.6	Caída del gradiente de presión en el túnel, ensaye L32.	150
Tabla 6.7	Caída del gradiente de presión en el túnel, ensaye L33.	151
Tabla 6.8	Caída del gradiente de presión en el túnel, ensaye L34.	152
Tabla 6.9	Caída del gradiente de presión en el túnel, ensaye D31.	153
Tabla 6.10	Caída del gradiente de presión en el túnel, ensaye D32.	154
Tabla 6.11	Caída del gradiente de presión en el túnel, ensaye D33.	155
Tabla 6.12	Caída del gradiente de presión en el túnel, ensaye D34.	156
Tabla 6.13	Caída del gradiente de presión en el túnel, ensaye K31.	157
Tabla 6.14	Caída del gradiente de presión en el túnel, ensaye K32.	158
Tabla 6.15	Caída del gradiente de presión en el túnel, ensaye K33.	159
Tabla 6.16	Caída del gradiente de presión en el túnel, ensaye K34.	160
Tabla 6.17	Caída del gradiente de presión en el túnel, ensaye AL31.	161
Tabla 6.18	Caída del gradiente de presión en el túnel, ensaye AL32.	162
Tabla 6.19	Caída del gradiente de presión en el túnel, ensaye AL33.	163
Tabla 6.20	Caída del gradiente de presión en el túnel, ensaye AL34.	164
Tabla 6.21	Caída del gradiente de presión en el túnel, ensaye AD31.	165
Tabla 6.22	Caída del gradiente de presión en el túnel, ensaye AD32.	166
Tabla 6.23	Caída del gradiente de presión en el túnel, ensaye AD33.	167
Tabla 6.24	Caída del gradiente de presión en el túnel, ensaye AD34.	168
Tabla 6.25	Caída del gradiente de presión en el túnel, ensaye AK31.	169
Tabla 6.26	Caída del gradiente de presión en el túnel, ensaye AK32.	170
Tabla 6.27	Caída del gradiente de presión en el túnel, ensaye AK33.	171
Tabla 6.28	Caída del gradiente de presión en el túnel, ensaye AK34.	172

Апехо 7

Tabla 7.1	Ubicación de la caída del gradiente de presión para el acrílico.	173
Tabla 7.2	Ubicación de la caída del gradiente de presión para la lija.	174
Tabla 7.3	Ubicación de la caída del gradiente de presión para el difusor.	175
Tabla 7.4	Ubicación de la caída del gradiente de presión para el klinter.	176

	Continuación.		
Tablas	Descripción	Pág.	
Tabla 7.5	Ubicación de la caída del gradiente de presión para el		
	Acrílico-lija.	177	
Tabla 7.6	Ubicación de la caída del gradiente de presión para el		
	Acrílico-difusor.	178	
Tabla 7.7	Ubicación de la caída del gradiente de presión para el		
	Acrílico-klinter.	179	
Anexo 8			
Tabla 8.1	Perfiles de Froude a lo largo del túnel, ensaye A34.	180	
Tabla 8.2	Perfiles de Froude a lo largo del túnel, ensaye L34.	181	
Tabla 8.3	Perfiles de Froude a lo largo del túnel, ensaye D34.	182	
Tabla 8.4	Perfiles de Froude a lo largo del túnel, ensaye K34.	183	
Tabla 8.5	Perfiles de Froude a lo largo del túnel, ensaye AL34.	184	
Tabla 8.6	Perfiles de Froude a lo largo del túnel, ensaye AD34.	185	
Tabla 8.7	Perfiles de Froude a lo largo del túnel, ensaye AK34.	186	
Tabla 5.1	Comparación de los coeficientes de pérdida de carga obtenidos en el		
	Modelo con los resultados de Czarnota.	192	
Tabla 5.1a	Rugosidad compuesta obtenida con diferentes criterios, ensaye AL31.	200	
Tabla 5.1b	Rugosidad compuesta obtenida con diferentes criterios, ensaye AL32.	200	
Tabla 5.1c	Rugosidad compuesta obtenida con diferentes criterios, ensaye AL33.	201	
Tabla 5.1d	Rugosidad compuesta obtenida con diferentes criterios, ensaye AL34.	201	
Tabla 5.1e	Rugosidad compuesta obtenida con diferentes criterios, ensaye AD31.	202	
Tabla 5.1f	Rugosidad compuesta obtenida con diferentes criterios, ensaye AD32.	202	
Tabla 5.1g	Rugosidad compuesta obtenida con diferentes criterios, ensaye AD33.	203	
Tabla 5.1h	Rugosidad compuesta obtenida con diferentes criterios, ensaye AD34.	203	
Tabla 5.1i	Rugosidad compuesta obtenida con diferentes criterios, ensaye AK31.	204	
Tabla 5.1j	Rugosidad compuesta obtenida con diferentes criterios, ensaye AK32.	204	
Tabla 5.1k	Rugosidad compuesta obtenida con diferentes criterios, ensaye AK33.	205	
Tabla 5.1I	Rugosidad compuesta obtenida con diferentes criterios, ensaye AK34.	205	
Tabla 5.2	Curva elevaciones gastos del túnel para los 7 modelo, So = 0,008.	195	

Continuación......

Tablas

Descripción

Pág.

Tabla 5.2a	Rugosidad compuesta obtenida con diferentes criterios, ensaye AL31.	209
Tabla 5.2b	Rugosidad compuesta obtenida con diferentes criterios, ensaye AL32.	209
Tabla 5.2c	Rugosidad compuesta obtenida con diferentes criterios, ensaye AL33.	210
Tabla 5.2d	Rugosidad compuesta obtenida con diferentes criterios, ensaye AL34.	210
Tabla 5.2e	Rugosidad compuesta obtenida con diferentes criterios, ensaye AD31.	211
Tabla 5.2f	Rugosidad compuesta obtenida con diferentes criterios, ensaye AD32.	211
Tabla 5.2g	Rugosidad compuesta obtenida con diferentes criterios, ensaye AD33.	212
Tabla 5.2h	Rugosidad compuesta obtenida con diferentes criterios, ensaye AD34.	212
Tabla 5.2i	Rugosidad compuesta obtenida con diferentes criterios, ensaye AK31.	213
Tabla 5.2j	Rugosidad compuesta obtenida con diferentes criterios, ensaye AK32.	213
Tabla 5.2k	Rugosidad compuesta obtenida con diferentes criterios, ensaye AK33.	214
Tabla 5.2I	Rugosidad compuesta obtenida con diferentes criterios, ensaye AK34.	214
Tabla 5.3a	Rugosidad compuesta obtenida con programas, ensaye AL34.	239
Tabla 5.3b	Rugosidad compuesta obtenida con programas, ensaye AD34.	239
Tabla 5.3c	Rugosidad compuesta obtenida con programas, ensaye AK33.	240
Tabla 5.4	Gastos probados en cada modelo para d/D = 3, casos I y II.	241
Tabla 5.5	Resultados obtenidos de los coeficientes de pérdida por cortante en	
	las paredes y bóveda, (caso I).	241
Tabla 5.6	Resultados obtenidos de los coeficientes de pérdida por cortante en	
	las paredes y bóveda, (caso II).	242

ESTUDIO EXPERIMENTAL EN TÚNELES DE SECCIÓN PORTAL CON RUGOSIDAD COMPUESTA PARA OBRAS DE DESVÍO

CAPÍTULO 1

INTRODUCCIÓN

CAPÍTULO 1 INTRODUCCIÓN

En este capítulo se presenta: el objetivo general de la tesis y la descripción particular de los objetivos de cada capítulo; los aspectos generales de las obras de desvío, el tiempo para su construcción, consecuencia en caso de falla, avenidas presentadas en Aguamilpa durante su construcción. Asimismo, se plantea la necesidad de estudiar la rugosidad compuesta en modelo físico para determinar la capacidad hidráulica del desvío.

1 INTRODUCCIÓN.

El objetivo general de la tesis consiste en:

- A. Estudiar desde el punto de vista teórico (formulación matemática) la pérdida de carga en túneles que permita estimar el coeficiente de rugosidad cuando se tenga diferentes rugosidades en la conducción (rugosidad compuesta), para la condición de funcionamiento como canal y túnel a presión.
- B. Presentar un estudio de rugosidad compuesta en modelo hidráulico, que contemple las diferentes geometrías, pendientes geométricas y condiciones de operación para obtener el mejor funcionamiento hidráulico de este tipo de estructuras.

Para alcanzar el objetivo general, se ha dividido el trabajo en seis capítulos, a continuación se describe el objetivo particular de cada uno de ellos.

Capítulo 1 Introducción.

El capítulo uno, tiene la finalidad de plantear el objetivo general de la tesis, dar una descripción breve sobre las obras de desvío, regímenes de escurrimiento y magnitud de las avenidas, se describen las contingencias ocurridas en el proyecto Aguamilpa y finalmente, se hace el planteamiento del estudio de rugosidad compuesta en modelo físico para determinar la capacidad hidráulica del desvío.

<u>Capítulo 2</u> Análisis dimensional y ecuaciones gobernantes.

En este capítulo, se describe la técnica del análisis dimensional y su aplicación a un conducto circular para deducir la fórmula general de pérdida de carga o ecuación de Darcy- Weisbach, así como, las consideraciones que hay que hacer para aplicarla a un conducto de cualquier sección geométrica; asimismo, se presentan las ecuaciones que gobiernan la resistencia del flujo en canales y conductos a presión.

Capítulo 3 Estado del arte.

En este capítulo se presentan los tipos de rugosidad superficial por efecto del sistema constructivo y los métodos para calcular la pérdida de carga por cortante en túneles sin revestir; se plantean los criterios teóricos para evaluar la rugosidad compuesta cuando el túnel trabaja como canal y aquellos cuando trabaja lleno; se describe el criterio de Nikuradse que es el que se adoptará en el presente estudio, asimismo, se estudia la rugosidad distribuida que toma en cuenta la ampliaciones que se presentan a lo largo del túnel.

Capitulo 4 Estudio experimental.

Se presentan en forma adimensional el funcionamiento hidráulico de un túnel de sección transversal en portal, para diferentes rugosidades, pendientes geométricas y relaciones de llenado. En la primera parte del estudio, se determina la rugosidad de los materiales existentes en el Laboratorio y en una segunda parte, se combinan para obtener una rugosidad compuesta.

<u>Capítulo 5</u> Análisis de resultados y ejemplo de aplicación.

En este capítulo, se presenta el análisis de resultados obtenidos en la parte experimental, se hace el análisis con los criterios teóricos para funcionamiento como canal y túnel a presión; finalmente, se presenta el ejemplo de aplicación a la obra de desvío del P. H. El Cajón con programas de computadora para canal y túnel lleno.

Capítulo 6 Conclusiones y recomendaciones.

Se presenta las conclusiones de tipo general del trabajo; las correspondientes al estudio teórico y al estudio experimental y finalmente las recomendaciones para investigaciones futuras donde se plantea la necesidad de realizar registros de campo cuando opere el desvío para compararlos con los resultados del modelo físico que permita reforzar los conceptos presentados y aplicar los resultados o experiencia obtenidas a futuros proyectos.

1.1 Aspectos generales.

1.1.1 Descripción de las obras de desvío.

Las obras de desvío son obras temporales que tienen por objeto dejar en seco el sitio de construcción de la cortina y sus obras auxiliares. El proyecto de una presa que se va a construir sobre el cauce de una corriente, debe tomar en cuenta el desvío del gasto de la corriente a un lado o a través del sitio de la presa durante el período de construcción, (Torres, 1980).

Elegir el método más adecuado para manejar el gasto de la corriente durante la construcción es fundamental para que el costo de la presa resulte económico.

El método elegido representará una disyuntiva entre el costo de construcción del desvío y la magnitud del riesgo que se corre. La elección adecuada reducirá al mínimo los daños ocasionados por las avenidas potenciales al trabajo en progreso con el mínimo costo.

Para obtener la mejor solución para el desvío, se deben tomar en cuenta los siguientes factores, (López, 1999).

- El régimen del escurrimiento
- Magnitud y frecuencia de las avenidas
- Métodos para hacer el desvío
- Tiempo en la construcción

- Las condiciones del sitio
- Consecuencias en caso de falla

A continuación se hace una descripción de los factores que se mencionaron.

1.1.2 Régimen del escurrimiento.

El escurrimiento del río debe ser encausado fuera del sitio durante la construcción de la cimentación y hasta que la cortina haya alcanzado un nivel de seguridad. Esto se logra con la construcción de una ataguía aguas arriba y otra aguas abajo. El flujo desviado puede pasar a través de túneles localizados en las laderas. La magnitud del escurrimiento por desviar determina de forma directa la capacidad de los túneles o la altura de las ataguías. Es decir, para una avenida, a mayor altura de las ataguías, el diámetro del túnel puede ser menor o viceversa. En este aspecto, cabe mencionar que la rugosidad del túnel juega un papel importante, la cual fija la capacidad hidráulica de la estructura.

No obstante, se deben considerar los eventos extremos que se han presentado recientemente en el centro y sureste de México, (Marengo, 2003).

1.1.3 Magnitud y frecuencia de las avenidas.

Con frecuencia, al construir una presa se presentan avenidas excepcionalmente grandes. Por supuesto, esta observación está ligada a la extensión del registro previo de avenidas y a la duración del periodo de construcción. En un examen global considerando la practica usual de la ingeniería Fahlbusch 1999, (Marengo, 2004), consideran que las obras de desvío se diseñan desde el punto de vista hidrológico con períodos de retorno que oscilan entre 30 a 50 años para la presa de tierra y enrocamiento y periodos de retorno de 10 a 20 años para las presas de concreto.

En términos generales, no es posible desde el punto de vista económico llevar a cabo un proyecto para desviar la mayor avenida que se haya presentado o que se estime que pueda ocurrir en el sitio y, por consiguiente la decisión será usar una menor. Por lo anterior hay que estimar el riesgo que se presenta con el tipo de desvío utilizado. En el caso de una presa de tierra, en la que quedan expuestas las grandes áreas de cimentación y la excavación de la estructura, o cuando el rebasamiento del terraplén en construcción puede producir serios daños o la pérdida de la obra parcialmente terminada, la importancia de eliminar el riesgo de inundación es relativamente grande. Este aspecto no es tan importante en el caso de una presa de concreto porque el agua de las avenidas puede, si la situación de las obras auxiliares lo permite, rebasar la cortina con pocos o ningún daño.

(Marengo, 2004), recomienda que al elegir la avenida de diseño, se deben considerar los siguientes aspectos:

- El tiempo que dura la construcción de la obra, con el objeto de determinar el número de estaciones en las que se producen avenidas.
- El costo de los posibles daños a la obra completa o en construcción de llegar a inundarse.
- La seguridad de los trabajadores y de los habitantes aguas abajo, en el caso de falla de la obra de desvío y que produzca inundaciones anormales.
- El costo de los retrasos para completar la obra.

Después de considerar los aspectos anteriores, debe tomarse en cuenta que las avenidas pueden repetir; por lo tanto, si en la obra de desvío se incluyen almacenamientos temporales para los escurrimientos del tipo que producen las lluvias aisladas, se deben disponer medios para evacuar esos almacenamientos dentro de un periodo razonable de tiempo, generalmente es de unos cuantos días.

1.1.4 Métodos de desvío.

En los métodos comunes para desviar la corriente durante el desplante de la cortina, se puede utilizar una o la combinación de las siguientes estructuras, (Torres, 1980).

- Túneles perforados en las laderas
- Canales provisionales a través de la cortina

- Conductos por debajo o a través del cuerpo de la cortina
- Desvíos a diferentes niveles del cuerpo de la cortina cuando ésta sea de concreto.

De los métodos anteriores, se hace una descripción breve al desvío por medio de túneles, que es el objeto del presente trabajo.

1.1.5 Desvío por medio de túneles.

Cuando en el sitio donde se va a desplantar la presa se cuenta con cañones angostos (zona de la boquilla), el desvío por medio de túneles resulta ser una de las mejores opciones, ya sea para una presa de concreto o de tierra. La corriente se desvía a un lado del área de construcción por túneles en una o ambas laderas.

La conveniencia de revestir el túnel de desvío puede depender; del costo de un túnel revestido con relación a un túnel mayor sin esta característica y de la misma capacidad hidráulica; de la naturaleza de la roca del túnel, y de que pueda quedar sin protección o ademe al paso de la corriente desviada; y de la calidad geológica del material. El proceso de construcción se inicia con la excavación del o los túneles de desvío; se realiza mediante el uso de equipo pesado y técnicas de construcción complejas, especialmente cuando se trata de túneles de secciones grandes.

La ataguía inicial que se comienza a levantar es la de aguas arriba y requiere del cierre del cauce de la corriente. El cierre debe ser cuidadosamente planeado para evitar que la corriente arrastre el material que se está colocando; esto se logra determinando las dimensiones y la cantidad de material para efectuar el cierre, tomando en cuenta la energía de la corriente durante las diferentes etapas del proceso. La operación se inicia, arrojando rocas desde camiones por una o ambas márgenes del río, (Marsal, 1975).

Una vez que se termina la construcción de la cortina, la obra de generación y de excedencias, se procede a cerrar el túnel de desvío con un tapón de concreto, a fin de iniciar el llenado del vaso de la presa; previamente se instala una compuerta que

permita continuar con los trabajos de construcción del tapón definitivo. Para ello se elige una sección en la que se construirán y colocarán guías, apoyos, malacates, etcétera, que permitirán colocar posteriormente la compuerta.

La resistencia de esta estructura debe ser tal que soporte la máxima carga de agua que pueda haber antes de colocar el tapón.

Cuando la obra de desvío esté formada por varios túneles se puede iniciar el cierre obturando alguno de ellos, por lo tanto la carga sobre sus compuertas podrá ser reducida; en cambio, el túnel que se cierre al final debe tener compuertas que resistan la carga que se alcanza al pasar el agua por la obra de excedencias.

El tapón de concreto antes mencionado, sirve para evitar el paso de la corriente por el túnel de desvío y reducir las filtraciones. Consiste en un colado masivo de concreto que cubre toda la sección del túnel y cuya longitud suele ser de dos o tres veces el diámetro del túnel. Para lograr un sello adecuado entre el tapón y la roca se dejan conductos en la periferia, por los que posteriormente se hacen inyecciones.

1.2 Tiempo que dura la construcción.

En el esquema para obras de desvío, se trata de seleccionar un conjunto de estructuras con características óptimas considerando la economía y los riesgos que pudieran presentarse. Dichas obras deberán ser tales que se puedan incorporar al programa de construcción con un mínimo de pérdidas y retrasos, (Lozoya, 1983).

1.3 Consecuencias en caso de falla.

Aunque en todo proyecto que se desarrolla se debe considerar el aspecto de seguridad y sus consecuencias en caso de existir una falla; no es hasta las últimas décadas, que en México, se le ha dado una mayor importancia; a éste aspecto, (Marengo, 1994), presenta en su tesis doctoral titulada "Análisis de riesgo de falla en presas de tierra y enrrocamiento ante avenidas", algunos aspectos que deben considerarse y las consecuencias que se tendrían en caso de existir una falla. En la referencia se menciona que, "el conocimiento mundial de los fenómenos hidrometeorológicos está avanzando significativamente, y se puede tener optimismo en cuanto a que los principios básicos de seguridad en presas están establecidos y disminuyen sensiblemente el riesgo de falla. De cualquier forma, a pesar del esfuerzo humano para controlar las grandes avenidas, pueden ocurrir eventos extraordinarios que sobrepasen las expectativas, en cuyo caso puede tenerse un margen de seguridad al instalar un sistema de emergencia aguas arriba y aguas abajo del sitio de la presa como ya se ha hecho en otros países".

Agrega que un análisis de seguridad permitirá, sin duda, construir presas más seguras y económicas y tomar en cuenta la confiabilidad que deben tener las estructuras temporales como las de desvio. Concluye que, "aunque no se han presentado fallas en grandes presas en México por desbordamiento, nuestro país está sujeto a trayectorias ciclónicas que han ocasionado que se presenten eventos que han rebasado las previsiones iniciales en grandes proyectos.

Como ejemplo, de lo anterior se menciona a continuación la contingencia presentada en el proyecto Aguamilpa durante su fase de construcción.

1.4 Obra de desvío de la C.H. Aguamilpa.

1.4.1 Descripción de los túneles de desvío

La obra de desvío (figura 1), se diseñó con un criterio determinístico para una avenida máxima de entrada de 6,700 m³/s (máxima histórica en 50 años), dicha obra está formada por dos túneles de sección portal

Figura 1 Obras de contención y desvío.

de 16 x 16 m, y longitudes de 1100 m en el túnel nº 1 y 1200 m en el túnel nº 2 con los datos geométricos señalados en la tabla (1), y una ataguía de materiales graduados de 55 m de altura, figura 2.

TÚNEL	LONGITUD (m)	CURVA 1			CURVA 2			ELEVACIÓN	
		R (m)	Δ	L _c (m)	R (m)	Δ	L _C (m)	Entrada (msnm)	Salida (msnm)
1	783,31	104,2	42°	76,39	196,61	23°	78,92	64	63
2	894,73	104,2	42°	76,39	196,61	23°	78,92	69	63

Tabla 1. Datos geométricos de los túneles de desvío del proyecto Aguamilpa.

Figura 2. Condiciones de la ataguía aguas arriba y de la presa durante las avenidas.

1.4.2 Primera avenida

La primera avenida extraordinaria abarcó del 16 al 20 de enero (1992), presentándose el pico instantáneo de 10,800 m³/s que corresponde a un gasto máximo medio diario de 9,334 m³/s, el día 18, como se aprecia en el hidrograma de la (figura 3). El nivel en el río aumentó paulatinamente a partir del día 15, cuando se encontraba a la elevación 70 msnm, cota usual en época de secas. En la mañana del día 17, el río ya había alcanzado la cota 86 y a las 0 horas del día 18 se encontraba en la 99 msnm. A partir de entonces creció aun más el ritmo de ascenso y empezaron a aparecer lloraderos a través de la ataguía a la elevación 108 msnm, (Marengo, 1992).

Figura 3. Hidrogramas de las dos avenidas de Enero de 1992.

A fin de evitar el rebasamiento de la estructura y su consiguiente colapso se tomó la decisión de abrir un tajo en la corona del dique fusible. Este empezó a degradarse paulatinamente, como estaba proyectado, y el agua entró al recinto comprendido entre la ataguía y la cortina, como se muestra en la (figura 4), (volumen aproximado de 2.5 x 10⁶ m³), llenándolo en 50 minutos. Catorce horas más tarde, en la madrugada del día 19, el agua alcanzaba la cota máxima de 123.6 msnm, apenas por debajo del nivel de la cara de la cortina y más de 5 m por arriba de la corona de la ataguía, figura 2.

1.4.3 Segunda avenida.

A partir de la madrugada del 19 de enero el nivel del agua en el río empezó a bajar a razón de 1.25 m/h en promedio hasta llegar a la elevación 75 msnm en la mañana del día 21. A esta cota se mantuvo hasta la noche del día 25. A partir de entonces se presentó la segunda avenida, con gasto máximo de 7,700 m³/s, alcanzando el río la cota 112.4 msnm en la madrugada del día 27 y entrando nuevamente al recinto de manera franca a través del canal fusible (cota 108 msnm), puesto que no se había reconstruido.

Capítulo 1

A partir de las primeras horas del día 27 el nivel del río descendió a una tasa promedio de 1.1 m/h hasta alcanzar la cota 80 msnm, dos días más tarde ya se encontraba a la 75 msnm, donde se mantuvo por espacio de 5 días, para después descender a la elevación 72 msnm, habitual en época de secas, (Marengo, 1992).

De no haber existido el canal fusible, el agua hubiera rebasado el coronamiento del ataguía trayendo consigo daños severos y un retraso significativo al programa de construcción.

Descarga por el canal fusiblePortal de salida túnel No 2 de AguamilpaFigura 4. Comportamiento del ataguía y túnel durante las avenidas (Enero, 1992).

Considerando los sucesos descritos anteriormente; (Marengo, 20001), hace el siguiente planteamiento: En el túnel de desvío de la C.H. Aguamilpa al considerar la avenida máxima de que se presentó en 1992 de 9,334 m³/s, ¿hubiera sido posible controlarla por la obra de desvío sin causar desbordamiento de la ataguía aguas arriba, colocando revestimiento en los túneles (concreto hidráulico en la plantilla y concreto lanzado en las paredes y bóveda)? En este caso para contestar el planteamiento anterior, se pretende que con la ayuda de un modelo hidráulico comprobar esas teorías y desarrollar una metodología_para estudiar la rugosidad compuesta en túneles de desvío. En este caso la metodología se aplicará al Proyecto el Cajón.

CAPÍTULO 2

Análisis dimensional y ecuaciones gobernantes

2 INTRODUCCIÓN.

En este capítulo se describe la técnica del análisis dimensional y su aplicación a un conducto circular para deducir la fórmula general de pérdida de carga o ecuación de Darcy- Weisbach, así como, la consideración que hay que hacer para aplicarla a un conducto de cualquier sección geométrica ; así mismo, se presentan las ecuaciones que gobiernan la resistencia del flujo en canales y conductos a presión y, finalmente se tratan las leyes que gobierna al flujo gradualmente variado y la clasificación de los perfiles de flujo.

2.1 Análisis dimensional.

La solución de casi todos los problemas de ingeniería relacionados con la mecánica de fluidos implica la aplicación de datos obtenidos por métodos experimentales, en muchas ocasiones, los datos experimentales son lo suficientemente generales como para poderse utilizar en distintos problemas, razón por la que se publican en manuales, revistas especializadas, (Roberson, 1991). Como ejemplo de estos datos se pueden citar a los coeficientes de resistencia en tubos. Sin embargo, en muchos de los problemas la forma geométrica de la estructura por la cual circula el fluido o las condiciones propias del mismo son tan particulares que se necesitan pruebas especiales sobre modelo para poder predecir los patrones del flujo; fluctuaciones de presión, velocidad, etc.

Para analizar modelos e interrelacionar los resultados experimentales es necesario emplear parámetros adimensionales. La ventaja de emplear parámetros adimensionales es que se pueden agrupar diferentes variables, obtenidas bajo geometrías diferentes y presentar los resultados en forma sencilla. Al proceso de obtener los parámetros adimensionales se le conoce como análisis dimensional, (Roberson, 1991).

13

2.2 Dimensiones.

Todas las variables utilizadas en ingeniería se expresan en términos de un número reducido de dimensiones fundamentales. En la mayoría de los problemas relacionados con la ingeniería las dimensiones fundamentales son: fuerza F, longitud L, y tiempo T; o en el sistema científico, en vez de fuerza, se emplea la masa M. Ambos sistemas se han aceptado como válidos.

2.3 Teorema TT de Buckingham.

Buckingham 1925 (Sotelo, 1979), demostró que el número de grupos adimensionales de variables (parámetros adimensionales) independientes necesarios para relacionar las variables de un proceso dado es igual a m-n, donde m es el número de variables que intervienen y n el número de dimensiones básicas incluidas en las variables. Este teorema se enuncia como: "Toda expresión dimensionalmente homogénea entre m magnitudes físicas, $F(A_1, B_2, C_3, ..., Z_m) = 0$, implica la existencia de una relación, f(π_1 , π_2 , π_3 , ..., π_{m-n}) = 0, entre m-n magnitudes adimensionales π_i , que son producto de las distintas potencias de las magnitudes A_1 , A_2 , A_3 , ..., A_m de la forma que:

$$\pi_{i} = A_{1}^{x_{1}} \quad B_{2}^{y_{2}} \quad C_{3}^{z_{3}} \cdots Z_{m}^{w_{m}}$$
(2.1)

En el siguiente apartado se hace la aplicación del teorema antes mencionado.

2.4 Fórmula general de pérdida de carga.

En un problema físico, el camino más adecuado para organizar y optimizar el trabajo experimental comienza por la aplicación de la teoría de la semejanza y el análisis dimensional.

El primer paso consiste en plantear el fenómeno que va a estudiarse. En este caso, se supone un tramo de tubería recta, figura (2.1), de longitud L y diámetro D, por el cual fluye un gasto permanente Q; el líquido es incompresible y tanto sus propiedades como las del material que constituye la tubería son datos del problema.

Figura 2.1 Tramo de tubo circular recto.

Como segundo paso, se deben identificar las variables físicas que gobiernan el fenómeno; una de las variables debe ser la que se está investigando, en éste caso, la pérdida de carga viene dada por la caída de presión ΔP y es una medida de la resistencia a través de la tubería. La resistencia está en función del diámetro D, de la tubería y de su longitud L; así como de la rugosidad absoluta k, o tamaño de la aspereza de la frontera sólida. Las demás se clasifican de la siguiente manera: las características cinemáticas del flujo, (velocidad media V, la densidad ρ y la viscosidad μ), ya que ésta está intimamente relacionada con la fricción (fuerza cortante) entre partículas. Se supondrá que se está trabajando con un tubo de rugosidad uniforme y uniformemente distribuida sobre la superficie, "criterio de Nikuradse". Resumiendo las variables que intervienen en el fenómeno, queda el arreglo de la siguiente manera.

$$D, V, \rho, \Delta P, \mu, L, \kappa$$
 (2.2)

El procedimiento de aplicación del teorema de Buckingham, es como sigue: Del arreglo (2.2), existen 7 magnitudes físicas, 3 de ellas dimensiones fundamentales, de donde 7-3 = 4 números π . Escogiendo el diámetro, la velocidad y la densidad como variables repetitivas con exponentes desconocidos y por la ecuación (2.1), se pueden agrupar entonces los cuatro parámetro π , como sigue:

 $\pi_1 = D^{x1} V^{y1} \rho^{z1} \Delta P$

$$\pi_2 = D^{x2} \vee^{y2} \rho^{z2} \mu$$
$$\pi_3 = D^{x3} \vee^{y3} \rho^{z3} L$$
$$\pi_4 = \kappa$$

Las magnitudes físicas con sus dimensiones en el sistema gravitacional [F, L, T] son:

Diámetro D = LVelocidad $V = LT^{-1}$ Densidad $\rho = FL^{-4}T^2$ Caída de presión $\Delta P = FL^{-2}$ Viscosidad absoluta $\mu = FL^{-2}T$ Longitud L = LRugosidad relativa $\kappa = L_1/L_2$

Sustituyendo las dimensiones en cada parámetro π , se tiene:

$$\pi_1 = \mathsf{D}^{\mathsf{x}1} \mathsf{V}^{\mathsf{y}1} \rho^{\mathsf{z}1} \Delta \mathsf{P} = [\mathsf{L}^{\mathsf{x}1}] [\mathsf{L}^{\mathsf{y}1} \mathsf{T}^{\mathsf{y}1}] [\mathsf{F}^{\mathsf{z}1} \mathsf{T}^{\mathsf{z}\mathsf{z}1} \mathsf{L}^{\mathsf{4}\mathsf{z}1}] [\mathsf{F} \mathsf{L}^{\mathsf{-2}}]$$
(2.3)

$$\pi_2 = \mathsf{D}^{x^2} \mathsf{V}^{y^2} \rho^{z^2} \mu = [\mathsf{L}^{x^2}] [\mathsf{L}^{y^2} \mathsf{T}^{-y^2}] [\mathsf{F}^{z^2} \mathsf{T}^{2z^2} \mathsf{L}^{-4z^2}] [\mathsf{F} \mathsf{L}^{-2} \mathsf{T}]$$
(2.4)

$$\pi_3 = \mathsf{D}^{x_3} \mathsf{V}^{y_3} \rho^{z_3} \mathsf{L} = [\mathsf{L}^{x_3}] [\mathsf{L}^{y_3} \mathsf{T}^{-y_3}] [\mathsf{F}^{z_3} \mathsf{T}^{2z_3} \mathsf{L}^{-4z_3}] [\mathsf{L}]$$
(2.5)

$$\pi_4 = K = [L_1/L_2]$$
 (2.6)

Para el primer parámetro π_1 , se tiene el siguiente sistema de ecuaciones:

[F]:	z ₁ + 1	= 0
[L]:	$x_1 + y_1 - 4z_1 - 2$	= 0
[T]:	-y1 +2z1	= 0

Resolviendo el sistema de ecuaciones, se tiene que:

$$Z_1 = -1$$
; $y_1 = -2$; $x_1 = 0$

Sustituyendo el valor de los exponentes en ec. (2.3), se tiene:

$$\pi_{1} = D^{x1} V^{y1} \rho^{z1} \Delta P = D^{0} V^{-2} \rho^{-1} \Delta P = \frac{\Delta P}{V^{2} \rho}$$

(2.7)

$$\Box > \pi_1 = Eu = \frac{\Delta P}{V^2 \rho}$$

que es el número de Euler.

De forma análoga, se determina el siguiente parámetro π_2 como:

[F]:	z ₂ + 1	= 0
[L]:	$x_2 + y_2 - 4z_2 - 2$	= 0
[T]:	$-y_2 + 2z_2 + 1$	= 0

Resolviendo el sistema:

 $Z_2 = -1$; $y_2 = -1$; $x_2 = -1$; al sustituir los valores en la ec. (2.4), resulta:

La ecuación (2.8) define al número de Reynolds.

El tercer parámetro, se determina resolviendo el siguiente sistema de ecuaciones:

[F] :	Z3	= 0
[L] :	x ₃ + y ₃ -4z ₃ +1	= 0
[T]:	-y ₃ +2z ₃	= 0

Resolviendo el sistema:

 $Z_3 = 0$; $y_3 = 0$; $x_3 = -1$; al sustituir los valores en ec. (2.5), resulta:

$$\pi_{3} = D^{x3} V^{y3} \rho^{z3} L = D^{-1} V^{0} \rho^{0} L = \frac{L}{D}$$

$$\pi_{3} = \frac{L}{D} \qquad \text{parámetro adimensional} \qquad (2.9)$$

Finalmente el cuarto parámetro π_4 , ya es un número adimensional, y se le conoce como rugosidad relativa que es igual a la rugosidad absoluta o tamaño de las asperezas entre el diámetro del conducto, esto es que: $\pi_4 = K = \frac{L_1}{L_2} = \frac{\kappa}{D}$, de manera que se puede

agrupar los cuatro números adimensionales como:

$$f_{\rm l}\left(\frac{\Delta P}{\rho V^2}, \frac{DV\rho}{\mu}, \frac{L}{D}, \frac{\kappa}{D}\right) \tag{2.10}$$

Al despejar la caída de presión de la (ec. 2.7), y como $\rho = \frac{\gamma}{g}$, se tiene la siguiente expresión:

$$\frac{\Delta P}{\gamma} = \frac{\left(P_1 - P_2\right)}{\gamma} = h_f = \frac{V^2}{2g} 2f_2\left(\operatorname{Re}, \frac{L}{D}, \frac{\kappa}{D}\right)$$
(2.11)

La (ec. 2.11) representa la caída de presión expresada en pérdida de altura. Reordenando:

$$h_f = 2f_2(\text{Re}, \frac{\kappa}{D})\frac{L}{D} \frac{V^2}{2g}$$
 (2.12)

A la cantidad $2f_2(Re, \kappa/D)$, se le llama factor de pérdida de carga f (fricción)

$$f = 2f_1(Re, \kappa/D) = f_2(Re, \kappa/D)$$
 (2.13)

Entonces a la ecuación (2.12), se puede escribir como:

$$h_f = f \frac{L}{D} \quad \frac{V^2}{2g} \tag{2.14}$$

Esta fórmula se le conoce como la ecuación de Darcy-Weisbach, y es útil para conocer la pérdida general de carga en un conducto trabajando a presión. Para ello, es preciso conocer el factor de pérdida de carga f, (esfuerzo cortante). De acuerdo con lo que propone el análisis dimensional, esto debe hacerse experimentalmente al realizar numerosas mediciones a fin de obtener la relación entre el factor de fricción y los dos parámetros de los cuales depende.

Las ecuaciones obtenidas por la técnica del análisis dimensional, son aplicables para un conducto recto y de sección circular; sin embargo, para aplicarlas a un conducto de sección no circular, se debe hacer la siguiente consideración.

El radio hidráulico es igual al área del conducto entre el perímetro mojado, es decir:

$$R_{h} = \frac{A}{P} = \frac{\pi D^{2}/4}{\pi D} = \frac{D}{4}$$
(2.15)

El radio hidráulico es un parámetro que depende de la forma de la sección. Para tubos circulares, $R_h = D/4$, además, suponiendo que las variaciones de R_h para secciones no circulares tienen el mismo significado que las variaciones de D para los circulos (W. Daily, 1975), entonces el número de Reynolds, la rugosidad relativa y la pérdida de carga se pueden calcular como:

$$R_e = \frac{4VR_h}{v}$$
(2.16)

$$\frac{\kappa}{D} = \frac{\kappa}{4R_h} \tag{2.17}$$

$$h_f = f \frac{L}{4R_h} \frac{V^2}{2g}$$
(2.18)

Para conductos de sección no circular.

Primer comentario.

Para situaciones de flujo gradualmente variado, se determinan los tirantes y las velocidades en las secciones extremas del tramo en estudio (d_1 , V_1 y d_2 , V_2); se establece la ecuación de la energía entre las dos secciones, y de ella se calcula la pérdida de energía que tiene lugar en dicho tramo, h_f , y posteriormente, se evalúa la pendiente de energía S_f , con la siguiente ecuación.

$$S_{f} = \frac{h_{f}}{L} = \overline{S_{f}} = \frac{1}{2} \left(S_{f_{1}} + S_{f_{2}} \right)$$
(2.19)

En el modelo hidráulico (Cap. 4), los coeficientes de resistencia de Darcy-Weisbach se estiman a partir del conocimiento del gasto, y de los perfiles de la superficie del agua. Bajo esta situación, la (ec. 2.18), se transforma en:

$$f = \frac{2S_f}{\frac{V_1^2}{8gRh_1} + \frac{V_2^2}{8gRh_2}}$$
(2.20)

2.5 Ecuaciones gobernantes.

2.5.1 Flujo laminar y turbulento.

Cuando en un flujo, las líneas de corriente se desplazan en forma ordenada y paralela, se trata de un flujo laminar, en caso contrario, cuando las líneas de corriente se interfieren entre sí, se produce una zona de mezclado dando lugar a al flujo turbulento. Gracias a las experiencias de Reynolds (1883), (Sotelo, 1979) se pudo hacer la clasificación anterior y se establece que el flujo será laminar o turbulento, cuando el número de Reynolds tome cierto valor, esto es que sí:

 $R_e \le 2200$, el flujo en el conducto es laminar, y si $R_e \ge 4000$, el flujo será turbulento y finalmente, cuando $2200 \le R_e \le 4000$, el flujo se encontrará en la zona de transición.

2.5.2 Viscosidad.

Palabra que proviene del latín "viscosus", que significa adherir, y es la propiedad que tienen los fluidos como resultado de su atracción molecular entre el movimiento diferencial de sus capas, (Elfman, 1991).

La rapidez de deformación del fluido está dada por la relación de triángulos semejantes como:

$$\frac{V}{Y} = \lim_{\Delta y \to 0} \frac{\Delta v}{\Delta y} = \frac{dv}{dy}$$
(2.21)

donde $\frac{dv}{dy}$ es el gradiente de velocidad, Newton demostró que el esfuerzo es proporcional al gradiente de velocidad y que la constante de proporcionalidad correspondía a la viscosidad dinámica del fluido, con ello encontró la ley que define el esfuerzo cortante para flujo viscoso unidimensional, como:
$$\tau_{yx} = \mu \frac{dv}{dy} \tag{2.22}$$

2.5.3 Esfuerzo cortante.

Si se considera el balance de fuerzas para un flujo a régimen permanente en un tubo horizontal como el que se ilustra en la figura (2.3), se tiene la siguiente ecuación.

Figura 2.3 Condiciones de equilibrio para flujo constante en un tubo.

$$\Delta p \pi r_0^2 = \tau_0 2 \pi r_0 \Delta L \tag{2.23}$$

Despejando el esfuerzo, τ_0 se tiene la siguiente ecuación:

$$\tau_0 = \frac{r_0}{2} \frac{\Delta p}{\Delta L} \tag{2.24}$$

La ecuación (2.24), es válida para flujo laminar o turbulento. La ecuación de Darcy-Weisbach, se puede expresar como (Streeter, 1988):

$$\Delta p = \gamma h_f = f \frac{\Delta L}{2r_0} \rho \frac{V^2}{2} \tag{2.25}$$

al sustituir la ecuación (2.25) en la ecuación (2.24), se obtiene que:

$$\tau_0 = \frac{f}{4} \rho \frac{V^2}{2} \tag{2.26}$$

Si $\frac{f}{4} = \lambda$, la ecuación (2.26) se expresa como:

$$\tau_0 = \lambda \frac{\rho}{2} V^2 \tag{2.27}$$

La ecuación (2.27) expresa que en flujos turbulentos con régimen permanente y uniforme en conductos de sección transversal constante, el esfuerzo cortante en la pared es aproximadamente proporcional al cuadrado de la velocidad promedio.

Donde λ es un coeficiente adimensional. En canales abiertos y conductos no circulares cerrados el esfuerzo cortante no es constante sobre la superficie. En estos casos se acostumbra usar τ_0 como el promedio del esfuerzo cortante en la pared, (Daily, 1975).

2.5.4 Ecuación de Chézy.

En la figura (2.4) se muestra un flujo uniforme a régimen permanente en un conducto ya sea abierto o cerrado. Para un canal abierto, p_1 y p_2 son iguales y el flujo ocurre como resultado de una reducción en la energía potencial $z_1 - z_2$. Para el caso de un conducto cerrado, el flujo ocurre, por una parte al producirse una caída de la energía potencial y por otra parte, cuando se presenta una caída de la presión p_1-p_2 , (Daily, 1975).

Si se plantea la ecuación de la energía o teorema de Bernoulli entre las secciones 1 y 2 para relacionar las pérdidas con la energía disponible, se tiene:

$$\frac{P_1}{\gamma} + \alpha_1 \frac{V_1^2}{2g} + Z_1 = \frac{P_2}{\gamma} + \alpha_2 \frac{V_2^2}{2g} + Z_2 + \sum h_{1-2}$$
(2.28)

En conductos cerrados la energía cinética es la misma en ambas secciones y entonces la pérdida será:

$$\sum h_{1-2} = \frac{P_1 P_2}{\gamma} + (Z_1 - Z_2)$$
(2.29)

Al considerar el supuesto de uniformidad, se puede plantear la ecuación de cantidad de movimiento lineal en la dirección x de la (figura 2.4), como:

$$\sum F_1 = 0 = (P_1 - P_2)A + \gamma ALsen\theta - \tau_0 LP$$

donde *P* es el perímetro mojado del conducto, es decir la porción de perímetro donde la pared está en contacto con el fluido. Como *Lsen* $\theta = Z_{1^-} Z_2$, entonces las pérdidas se pueden expresar como:

$$\frac{P_1 - P_2}{\gamma} + (Z_1 - Z_2) = \frac{\tau_0 LP}{\gamma A}$$
(2.30)

Al sustituir la ecuación (2.27) en la ecuación (2.30) y de acuerdo con la ecuación (2.29), se obtiene la siguiente expresión:

$$\sum h_{i-2} = \frac{\tau_0 LP}{\gamma A} = \lambda \frac{\rho}{2} V^2 \frac{LP}{\gamma A} = \lambda \frac{L}{R_h} \frac{V^2}{2g}$$
(2.31)

donde R_h es el radio hidráulico que ya se había considerado en el apartado anterior. Por otro lado al considerar la definición para la pendiente hidráulica, se tiene que:

$$S = \frac{h_L}{L} = \frac{\lambda}{R_h} \frac{V^2}{2g}$$
(2.32)

Al despejar V de la ecuación (2.32), se tiene:

Capítulo 2

$$V = \sqrt{\frac{2g}{\lambda}} \sqrt{R_h S} = C \sqrt{R_h S}$$
(2.33)

La ecuación (2.33) se le conoce como fórmula de Chézy y el coeficiente C o λ debe determinarse experimentalmente.

Para tubos, cuando $\lambda = \frac{f}{4}$ y $R_h = \frac{D}{4}$, se tiene, la ecuación (2.14) de Darcy. La ecuación de Darcy se aplica a canales abiertos como:

$$V = \sqrt{\frac{8g}{f}} \sqrt{R_h S} \tag{2.34}$$

2.5.5 Ecuación de Manning.

(Manning, 1889), presentó en una reunión de Ingenieros Civiles de Irlanda, una fórmula que expresaba la velocidad del flujo en términos de un parámetro de rugosidad, así como R_h y S, (Daily, 1975), posteriormente se simplificó al sistema métrico como:

$$V = \frac{1}{n} R_h^{\frac{2}{3}} S^{\frac{1}{2}}$$
(2.35)

El coeficiente n de rugosidad, se conoce como n de Manning. Se trata de una fórmula empírica basada en los trabajos experimentales de Bazin.

Si se compara las ecuaciones (2.33) y (2.35), se obtiene la siguiente ecuación:

$$C = \frac{1}{n} R_h^{\frac{1}{6}}$$
(2.36)

La expresión anterior establece de inmediato la relación entre la *n* de Manning y la C de Chézy. Sin embargo, basándose en los datos de los cuales partió Manning para establecer su fórmula y los usados por Chézy, Forchheimer estableció en 1926 como relación más adecuada, (Alcides, 1989).

$$C = \frac{1}{n} R_{h}^{\frac{1}{5}}$$
(2.37)

Segundo comentario.

La principal dificultad al utilizar la ecuación de Manning, o de Chézy, consiste en estimar adecuadamente un valor apropiado del coeficiente de resistencia. En términos generales, se espera que n y C dependan del número de Reynolds del flujo, de la rugosidad de la frontera y de la forma de la sección transversal del canal. Esto es equivalente a considerar que n y C se comportan de una manera análoga al factor de fricción f de Darcy – Weisbach utilizado para determinar la resistencia del flujo en tuberías, (Cortés, 2003)

Por lo anterior, muchos investigadores han sumado sus esfuerzos por estimar en forma sencilla y adecuada el coeficiente de resistencia al emplear independientemente una u otra fórmula.

La mayor parte de los problemas que se presentan en la práctica son con flujo turbulento y por esta razón se han desarrollado varias fórmulas para calcular las pérdidas por cortante (esfuerzo cortante) en canales o tuberías con ese flujo. Para aplicar la formula de Manning al modelo hidráulico (Cap. 4) y por lo expuesto en el primer comentario, la (ec. 2.35), se transforma en:

$$n = \left[\frac{2S_f}{V_1^2 R h_1^{-\frac{4}{3}} + V_2^2 R h_2^{-\frac{4}{3}}}\right]^{\frac{1}{2}}$$
(2.38)

Para transformar los valores del coeficiente de resistencia "f" al aplicar la ecuación de Darcy a la "n" equivalente de Manning. Con frecuencia se emplea la siguiente expresión.

$$n = \left(\frac{D}{4}\right)^{\frac{1}{6}} \sqrt{\frac{f}{8g}} \tag{2.39}$$

25

2.5.6 Flujo gradualmente variado.

El flujo gradualmente variado, es aquel en que las condiciones de circulación, si bien no varía en el tiempo, varía de sección en sección, aunque de forma gradual, por lo cual entre dos secciones cercanas las líneas de corriente son prácticamente paralelas y por tanto, puede considerarse que en cualquier sección ocurre una distribución hidrostática de presiones, (Alcides, 1989).

Los estudios teóricos del flujo gradualmente variado se basan en un conjunto de suposiciones básicas, admitidas como válidas hasta ahora. Dichas suposiciones son las siguientes:

 La pendiente de la línea de energía en una sección es la misma que corresponde al flujo uniforme que tuviera igual tirante y velocidad, por lo que puede calcularse utilizando cualquiera de las fórmulas correspondiente al régimen uniforme, por ejemplo, la de Manning o la de Chézy, ecuaciones (2,40; 2.41), respectivamente.

$$S_{f} = \left(\frac{Vn}{R_{h}^{\frac{2}{3}}}\right)^{2}$$

$$S_{f} = \left(\frac{V}{CR_{h}^{\frac{1}{2}}}\right)^{2}$$
(2.40)
(2.41)

- Solamente se consideran canales de pendiente suficientemente suave como para admitir que el tirante d y la profundidad de circulación y son prácticamente iguales, o lo que es igual que el cos θ = 1
- Las fórmulas corresponden a canales prismáticos.
- Se considera que los coeficientes de distribución de velocidad α y β son constantes a lo largo del canal e iguales a la unidad.
- Se supone que la rugosidad es dependiente del tirante y por consiguiente variable a todo lo largo del canal.

2.5.7 Ecuación de Bernoulli para el flujo gradualmente variado.

Entre dos secciones 1 y 2 de un canal con régimen gradualmente variado, (figura 2.5), se puede plantear la ecuación de Bernoulli, como:

Fig. 2.5 Ecuación de Bernoulli para flujo gradualmente variado.

$$Z_1 + y_1 + \alpha_1 \frac{V_1^2}{2g} = Z_2 + y_2 + \alpha_2 \frac{V_2^2}{2g} + hf_{1-2}$$
(2.42)

Pero como $h_f = \overline{S_f} \Delta X$, y

$$\overline{S_f} = \frac{S_{f1} + S_{f2}}{2}$$
(2.19)

De la primera suposición:

$$S_{f_1} = \left(\frac{V_1 n_1}{R_{h_1}^{\frac{2}{3}}}\right)^2$$
(2.43a)

У

$$S_{f_2} = \left(\frac{V_2 n_2}{R_{h_2}^{\frac{2}{3}}}\right)^2$$
(2.43b)

De esta forma puede replantearse la ecuación de Bernoulli como:

$$Z_1 + y_1 + \frac{V_1^2}{2g} = Z_2 + y_2 + \frac{V_2^2}{2g} + \frac{S_{f_1} + S_{f_2}}{2} \Delta X$$
(2.44)

Capítulo 2

Haciendo que:

$$y_1 + \frac{V_1^2}{2g} = E_1; \qquad y_2 + \frac{V_2^2}{2g} = E_2$$
 (2.45)

Y como

 $Z_1 - Z_2 = S_0 \Delta X$ (2.46)

Queda:

$$S_0 \Delta X + E_1 = E_2 + S_f \Delta X$$
 (2.47)

Finalmente

$$\Delta X = \frac{E_1 - E_2}{S_0 - \overline{S_f}}$$
(2.48)

2.5.8 Ecuación diferencial para el flujo gradualmente variado.

En una sección cualquiera, figura (2.6), se puede plantear que la carga total es:

Fig. 2.6 Ecuación diferencial para flujo gradualmente variado.

$$H = Z + d\cos\theta + \alpha \frac{V^2}{2g}$$
(2.49)

Si se deriva la ecuación anterior con respecto a un eje X, colineal con el fondo del canal, como se muestra en la figura (2.6), se tiene:

$$\frac{dH}{dX} = \frac{dZ}{dX} + \cos\theta \frac{dd}{dX} + \alpha \frac{d}{dX} \left(\frac{V^2}{2g}\right)$$
(2.50)

Como puede observarse en la figura (2.6), la variación de la carga total, H, con respecto a la distancia, es igual a la pendiente de energía, esto es:

$$\frac{dH}{dX} = -S_f \tag{2.51}$$

Análisis dimensional y ecuaciones gobernantes

El signo negativo se debe a que el valor de la carga total H decrece según el flujo avanza en la dirección X; además, en la figura:

$$\frac{dZ}{dX} = -S_0 \tag{2.52}$$

Por otra parte, puede expresarse que:

$$\frac{d}{dX}\left(\frac{V^2}{2g}\right) = \frac{d}{dd}\left(\frac{V^2}{2g}\right)\frac{dd}{dX}$$
(2.53)

A partir de lo anterior y sustituyendo las expresiones (2.51), (2.52) y (2.53) en la ecuación (2.50):

$$-S_{j} = -S_{0} + \cos\theta \frac{dd}{dX} + \alpha \frac{d}{dd} \left(\frac{V^{2}}{2g}\right) \frac{dd}{dX}$$
(2.54)

Despejando el valor de $\frac{dd}{dX}$

$$\frac{dd}{dX} = \frac{S_0 - S_f}{\cos\theta + \alpha \frac{d}{dd} \left(\frac{V^2}{2g}\right)}$$
(2.55)

De la ecuación (2.55), $\frac{dd}{dX}$ representa la pendiente de la superficie del agua, por lo que en su solución, hay que hacer tres consideraciones a saber:

- Si $\frac{dd}{dX} = 0$, la superficie del agua es paralela al fondo del canal, en cuyo caso el tirante corresponde al normal.
- Si $\frac{dd}{dX} < 0$, la pendiente de la superficie del agua es más fuerte que la del fondo del canal, lo que significa que el tirante va disminuyendo en la dirección del flujo.
- Si $\frac{dd}{dX} > 0$, indica que la pendiente de la superficie del agua es más suave que la del fondo del canal, y por lo tanto el tirante crece en la dirección del flujo.

La ecuación (2.55), puede adoptar otras formas, a partir de que θ sea pequeño, y cos θ = 1, y por tanto la profundidad y se aproxima al tirante d:

$$\frac{dy}{dx} = \frac{S_0 - S_f}{1 + \alpha \frac{d}{dy} \left(\frac{V^2}{2g}\right)}$$
(2.56)

Como $\frac{d}{dx}\left(\frac{V^2}{2g}\right) = -Fr^2$, por lo tanto la ecuación se puede expresar como:

$$\frac{dy}{dx} = \frac{S_0 - S_f}{1 - Fr^2}$$
(2.57)

Por otra parte, según la ecuación de Manning:

$$S_{0} = \left(\frac{Qn}{A_{n}Rh_{n}^{\frac{2}{3}}}\right)^{2}$$

$$S_{f} = \left(\frac{Qn}{ARh^{\frac{2}{3}}}\right)^{2}$$
(2.58)
(2.59)

Donde:

 A_n y R_{hn} , área y radio hidráulico, calculados para el tirante normal del canal con el gasto Q.

A y R_h, área y radio hidráulico, calculados con el tirante de circulación en la sección considerada.

El número de Froude para régimen crítico es:

$$Fr = \frac{V}{\sqrt{gd}} = \frac{Q}{A\sqrt{gd}} = \frac{1}{A\sqrt{d}}\frac{Q}{\sqrt{g}}$$
(2.60)

Pero como: $\frac{Q}{\sqrt{g}} = Ac\sqrt{dc}$ (2.61)

Donde Ac y dc, corresponden al área y al tirante crítico, por lo tanto:

$$Fr = \frac{Ac\sqrt{dc}}{A\sqrt{d}}$$
(2.62)

Replanteando la ecuación (2.57):

$$\frac{dy}{dx} = S_0 \frac{1 - \left(\frac{S_f}{S_0}\right)}{1 - Fr^2}$$
(2.63)

Análisis dimensional y ecuaciones gobernantes

y sustituyendo los valores de S_o , S_f y F_r expresados en las ecuaciones (2.58), (2.59) y (2.62):

$$\frac{dy}{dx} = S_o \frac{1 - \left(\frac{A_n R h_n^{2/3}}{A R h^{2/3}}\right)^2}{1 - \left(\frac{A_c \sqrt{d_c}}{A \sqrt{d}}\right)^2}$$
(2.64)

Es común designar a $AR_h^{\frac{2}{3}}$ como Y y a $A\sqrt{d}$ como Z, entonces la ecuación anterior toma la forma:

$$\frac{dy}{dx} = S_o \frac{1 - \left(\frac{Y_n}{Y}\right)^2}{1 - \left(\frac{Z_c}{Z}\right)^2}$$
(2.65)

En caso de trabajar con la ecuación de Chézy en lugar de la de Manning:

$$Y_n = \frac{Q}{C\sqrt{S}} \tag{2.66}$$

$$I = AK_h^2$$
 (2.07)

La ecuación (2.65), representa otra forma de presentar la ecuación dinámica del flujo gradualmente variado.

Capítulo 2

2.5.9 Pendiente del fondo del canal y clasificación de los perfiles del flujo.

Para una descarga dada en un túnel; los tirantes crítico y normal dividen el espacio del túnel en tres zonas, (Sotelo, 1997), figura (2.7).

Fig. 2.7 Clasificación de perfiles para el flujo gradualmente variado.

Zona 1. Aquella que se encuentra por encima tanto del tirante crítico como del normal; en esta zona ocurren los perfiles M1, S1 y C1. Zona 2. Comprendida entre el tirante normal y el crítico (ya sea que $y_n > y_c$ o $y_c > y_n$), ocurren los perfiles: H2, M2, C2, S2, y A2.

Zona 3. Región más próxima al fondo del canal, por debajo tanto del tirante normal como del crítico. En esta zona se presentan los perfiles: H3, M3, C3, S3, y A3.

De la clasificación anterior, la letra M, corresponde a una pendiente suave o subcrítica; la letra S, a una pendiente fuerte o supercrítica; la letra C, a una pendiente crítica; la letra H, pendiente horizontal o nula; y finalmente la letra A, corresponde a la pendiente adversa.

La forma de la superficie del agua depende del valor de la pendiente del fondo del canal y deben considerarse cinco casos posibles en dependencia de ese valor y su relación con la pendiente crítica. Los cinco casos posibles son:

Canal con pendiente subcrítica, se refiere a canales en los que el tirante decrece en la dirección del flujo, pero de forma tal que ($S_o < S_c$). En estos canales si existe el tirante normal y resulta ser mayor que el crítico ($y_n > y_c$). Perfiles tipo *M*.

Canales con pendiente supercrítica. Corresponde a canales con pendiente fuerte ($S_o > S_c$). En este caso ($y_n < y_c$) y se deben cumplir con las hipótesis en las que se sustentan las ecuaciones del régimen gradualmente variado. Se presentan los perfiles tipo *S*.

Canal con pendiente crítica. Se trata del caso de que para el gasto analizado el tirante crítico es igual al normal ($y_c = y_n$) y , por tanto, la pendiente del fondo es la crítica correspondiente al gasto que circula ($S_o = S_c$). Se presentan los perfiles tipo *C*.

Canal con pendiente horizontal. En estos canales, en los cuales $S_o = 0$, no puede hablarse del tirante normal, ya que este, en la ecuación de Manning, es teóricamente infinito. Los perfiles que se presentan son del tipo *H*.

Canal con pendiente adversa. Se denomina así los canales cuyo fondo se eleva gradualmente en la dirección del flujo ($S_0 < 0$). En este caso no existe el tirante normal,

ya que el régimen uniforme no puede llegar a producirse. Se presentan los perfiles tipo A.

2.5.9.1 Rasgos básicos de los perfiles hidráulicos.

Todos los perfiles hidráulicos que ocurren en el flujo gradualmente variado presentan cinco rasgos fundamentales, a partir de los cuales puede ser previsto cualitativamente el comportamiento de la superficie del agua en una conducción libre, (León, 1989). El análisis de los rasgos básicos se puede llevar acabo en cualquiera de las dos ecuaciones; (2.55) o (2.62), y parte de considerar el signo del denominador, esto es, sí el tirante del flujo es menor que el crítico, el régimen de circulación es supercrítico con un $F_r > 1$ y en caso contrario el régimen es subcrítico y por tanto $F_r < 1$, (Sotelo, 1997). De modo que:

Sí
$$y > y_c \Leftrightarrow 1 - Fr^2 > 0$$

Sí $y = y_c \Leftrightarrow 1 - Fr^2 = 0$
Sí $y < y_c \Leftrightarrow 1 - Fr^2 < 0$

Con respecto al signo del numerador, debe considerarse que cuando el tirante del flujo en una sección dada se encuentra por encima del tirante normal, la pendiente de energía es menor que la correspondiente al régimen uniforme y a su vez coincide con la pendiente del fondo, (Chow, 1981), o sea:

> Sí $y > y_n \Leftrightarrow S_0 - S_f > 0$ Sí $y = y_n \Leftrightarrow S_0 - S_f = 0$ Sí $y < y_n \Leftrightarrow S_0 - S_f < 0$

34

CAPÍTULO 3 ESTADO DEL ARTE

3.1 Introducción.

Este capítulo se estudian las diferentes rugosidades superficiales que se presentan en túneles excavados con barrenos y explosivos; se hace una revisión bibliográfica sobre el estudio de la pérdida de carga en túneles sin revestir; se estudia la rugosidad compuesta en túneles trabajando como canal y como túnel lleno; se estudia la rugosidad relativa (criterio de Nikuradse); y finalmente se estudia la rugosidad distribuida que toma en cuenta las ampliaciones y contracciones que se presentan a lo largo del túnel por efecto del sistema constructivo.

3.2 Tipos de rugosidad superficial en túneles sin revestir.

Un túnel excavado con barrenos y explosivos normalmente presenta cuatro tipos de rugosidad superficial; por barrenos (k_p), por fracturas en la estructura de la roca (k_l), la tipo cristal (k_k) y por sobreexcavación (k_r), figura (3.1), (Priha, 1969).

La rugosidad por el uso de barrenos (k_p), se obtiene a partir de la sección transversal teórica de proyecto y por el ángulo de barrenación. La posición correcta del extremo del barreno y al mantener su dirección extrema puede llegar a disminuir este tipo de rugosidad superficial.

La rugosidad por fracturamiento (k_i), es causada por fracturas impares y por el (clivaje o crucero)¹ de la estructura de la roca y depende básicamente del grado de espaciamiento de las fracturas y su relación con la dirección del túnel.

La rugosidad tipo cristal (k_k), depende de los tamaños de los cristales de roca y de cómo se lleva a cabo el desprendimiento de las fracturas en relación a la estructura de cristal (roca molida o triturada). A lo largo del túnel, la rugosidad tipo cristal es variable y su clasificación y medición en la práctica es prácticamente imposible.

La rugosidad por sobreexcavación (k_r), se obtiene como la altura promedio entre la superficie excavada y la huella que dejan los barrenos. La rugosidad por sobreexcavación, incluye el tipo cristal y por fracturamiento. Es causada por el efecto de los explosivos y de las características estructurales de la roca. Es variable a lo largo del túnel, sin embargo, en las zonas donde se presenta una estructura de roca triturada o molida, puede llegar al colapso y con ello aumentar la sección teórica considerada trayendo consigo el aumento de la rugosidad por sobreexcavación, (Priha, 1969).

 Propiedad que tienen ciertas rocas para romperse con relativa facilidad a lo largo de planos paralelos de superficies casi paralelas.

36

3.3 Métodos para el cálculo de pérdida de carga por cortante (fricción) en túneles sin revestir.

Método de Rahm.

El método consiste en hacer una distribución estadística de áreas medidas en distintas secciones, al final de la construcción del túnel con una frecuencia acumulativa del 99 y el 1% con la finalidad de estimar la sobreexcavación δ la cual se calcula con la siguiente fórmula, (Kumar, 1999).

$$\delta = \frac{A_{99\%} - A_{1\%}}{A_{1\%}} x100 \tag{3.1}$$

Donde

δ, es la sobreexcavación relativa, en porcentaje.

A_{99%} y A_{1%}, es la frecuencia acumulativa de las áreas para la distribución estadística del 1 y el 99%, respectivamente.

La rugosidad relativa del túnel, se puede calcular mediante la siguiente ecuación.

$$\delta^{-0,50} = 0,105 \log \frac{15}{k/R}$$
(3.2)

Donde:

k, R; es la rugosidad absoluta y radio hidráulico, en m.

La f de Darcy, se puede calcular a partir de δ mediante la siguiente relación empírica:

 $f = 0,00275\delta$ (3.3)

B. Método de Colebrook.

En este método la sobreexcavación normal t_m , de un túnel excavado en roca sin revestir, se define como la media de la diferencia entre el diámetro hidráulico medio y el diámetro hidráulico con el 1% de frecuencia acumulativa. La sobreexcavación normal t_m es igual a la rugosidad absoluta *k* superficial. El coeficiente pérdida de carga (cortante) *f*, se calcula con la siguiente ecuación, (Kumar, 1999).

$$f = 0.55 \frac{t_m x R^{1.5}}{(R+t_m)^{2.5}}$$
(3.4)

C. Método de Uval.

La sobreexcavación se determina como la diferencia entre el diámetro hidráulico medio y el diámetro nominal y es igual a la rugosidad absoluta equivalente *k*, la cual se estima con la siguiente ecuación, (Huval, 1969), figura (3.2).

Figura 3.2 Sección típica de un túnel excavado en roca con explosivos, portal y su equivalente a sección circular.

$$k = D_m - D_n = \sqrt{\frac{4}{\pi}} \left(\sqrt{A_m - A_n} \right) \tag{3.5}$$

La rugosidad relativa del túnel se expresa como:

$$\frac{D_m}{k} = \frac{1}{1 - \sqrt{\frac{A_n}{Am}}} \tag{3.6}$$

El coeficiente de pérdida de carga o f de Darcy, con diámetro D_m y un tamaño del grano de arena k_s , se calcula con la ecuación de Von Karman-Prandtl, como:

$$\frac{1}{\sqrt{f_m}} = 2\log\left(\frac{D_m}{k_s}\right) + 1.14 \tag{3.7}$$

En la figura (3.2), se observa la línea *A*, que representa el espacio libre o línea mínima de excavación para garantizar el área hidráulica de proyecto; línea *B* o línea para fines de pago, es aquella a la que se le especifica al contratista lo máximo que se le pagará por efecto de sobreexcavación y con ello se obliga a llevar un control estricto en su método constructivo y finalmente la línea de sobreexcavación o línea de excavación principal o promedio.

D. Método de Priha.

Priha (1969), propone la siguiente ecuación para evaluar el coeficiente de pérdida de carga *f*.

$$f = 0,0033x \, \delta x \frac{\left(A_{1\%}\right)^{0.50}}{\left(A_{1\%} + 9\right)^{0.50}} \tag{3.8}$$

E. Método de Reinius.

El método de Reinius, sugiere que la excavación del túnel debe hacerse en dirección del flujo y que el coeficiente de pérdida de carga f, varía dependiendo sí los trabajos de excavación se realizan en forma normal, cuidadosa y rápida, (Reinius, 1970). Propone las siguientes ecuaciones:

٠	Α.	Excavación normal	
	f =	$0,02 + 0,0016\delta$	(3.9)
•	В.	Excavación cuidadosa	
	$f = 0,03 + 0,00085\delta$		(3.10)
•	C.	Excavación rápida	
	$f = 0,01 + 0,0027\delta$		(3.11)

F. Método de Wright.

La sobreexcavación natural t_n de un túnel construido con barrenos y explosivos, se estima con la siguiente ecuación, (Kumar, 1999).

$$t_{n} = \frac{A_{50\%} - A_{1\%}}{0,50(P_{50\%} + P_{1\%})}$$
(3.12)

39

y la sobreexcavación relativa con:

$$\delta = 2\left(\frac{t_n}{R_{50\%}}\right) \left[\frac{1}{\left(1 - \frac{t_n}{2R_{50\%}}\right)^2}\right] x 100\%$$
(3.13)

G. Método de Johansen.

Johansen, define la rugosidad absoluta para una sección transversal dada mediante la siguiente ecuación, (Kumar, 1999).

$$k_i = \alpha + \beta \left(\frac{\Delta A_i}{\sqrt{A_i}}\right) \tag{3.14}$$

De acuerdo a la ecuación anterior, para m secciones transversales medidas a lo largo del túnel, la rugosidad absoluta se calcula con la siguiente ecuación.

$$k = \alpha + \beta \cdot \frac{1}{m} \sum_{i=1}^{m} \left(\frac{\Delta A_i}{\sqrt{A_i}} \right)$$
(3.15)

Donde, α y β son coeficientes que se determinan experimentalmente y normalmente tienen valores de 0,15 y 0,37 m, respectivamente.

H. Método de Solvik.

A la diferencia relativa de las áreas entre dos secciones transversales adyacentes dividida entre el perímetro, se conoce como la rugosidad absoluta k_i , y se puede calcular con la siguiente ecuación, (Kumar, 1999).

$$k_{i} = \frac{|A_{i} - A_{i-1}|}{P_{i}}$$
(3.16)

Este método considera una rugosidad absoluta $k_w = 0,15$ m para los muros y para obtener la rugosidad absoluta total de un túnel excavado con barrenos y explosivos hay que calcular un promedio de la rugosidad k_i obtenida por efecto de la variación del área a lo largo del túnel, mediante la siguiente ecuación.

$$\overline{k} = \frac{1}{m} \sum_{i=1}^{m} k_i \tag{3.17}$$

Entonces, la rugosidad absoluta total será:

$$k = k_w + \overline{k} \tag{3.18}$$

Finalmente el coeficiente de fricción, se obtiene con la siguiente expresión:

$$f = 0.49 \left(\frac{k}{4\overline{R}}\right)^{0.667}$$
(3.19)

Método de Czarnota.

Czarnota, estudió diferentes proyectos en modelo hidráulico. Del análisis de resultados encontró los siguientes coeficientes de pérdida de carga como los valores más representativos, (Elfman, 1991).

- Túnel excavado con barrenos y explosivos: f = 0,0730
- Túnel con muros y bóveda sin revestir y con plantilla de concreto hidráulico: f = 0,0623
- Túnel con muros y bóveda revestidos con concreto lanzado y plantilla sin revestir: f = 0,0519
- Túnel con muros y bóveda revestidos con concreto lanzado y con plantilla de concreto hidráulico: f = 0,0411

Los métodos descriptos anteriormente se basan en considerar la variación que sufre el área en distintas secciones transversales a lo largo del túnel, como se puede apreciar en la figura (3.3). En este caso, para conocer la variación del área, el método consistiría en registrar en cada sección, el ancho significativo más pequeño (b_a) y el más grande (b_y) de la plantilla, correspondientes a una altura representativa, h_k . Realizar este trabajo en la práctica profesional, es bastante difícil; sin embargo, es posible estimarla a partir del levantamiento que se realiza con fines de pago.

Figura 3.3 Variación de la sección transversal de un túnel excavado con barrenos y explosivos.

En la figura anterior l_{λ} , representa el intervalo de las secciones de registro, normalmente se toma l_{λ} = 2,50 m, aunque es factible tomar subsecciones intermedias a cada 25 cm para precisar los cálculos.

3.4 Rugosidad compuesta, conducto trabajando como canal.

Existen varios criterios para estimar el coeficiente de rugosidad equivalente en conductos trabajando como canal con rugosidad compuesta, (Chow, 1981).

Estos criterios se basan fundamentalmente en que se igualan las fuerzas resistentes del flujo en las áreas en las que se subdivide la sección. A continuación se presentan los criterios más usuales los cuales se verificarán con los resultados obtenidos en modelo físico.

3.4.1 Criterio de Horton y Einstein.

Dividen el área hidráulica en *N* partes; y de conocerse los perímetros mojados P₁, P₂, P₃, ..., P_N y los coeficientes de rugosidad n_1 , n_2 , n_3 , ..., n_N ; consideran que cada una de las subáreas tiene la misma velocidad que la sección completa, es decir, V_1 , V_2 , V_3 , ..., V_N ; de esta forma:

$$n = \left[\frac{\sum_{1}^{N} \left(P_{N} n_{N}^{1,5}\right)}{P}\right]^{\frac{5}{3}} = \frac{\left(P_{1} n_{1}^{1,5} + P_{2} n_{2}^{1,5} + \dots + P_{N} n_{N}^{1,5}\right)^{\frac{2}{3}}}{P^{\frac{2}{3}}}$$
(3.20)

3.4.2 Criterio de Pavlovski, Mülhlhofer, Einstein y Banks.

Consideran que la resistencia al flujo total es igual a la suma de las resistencias desarrolladas en cada una de las subáreas; de esta forma:

$$n = \left[\frac{\sum P_N n_N^2}{P}\right]^2 = \frac{\left(P_1 n_1^2 + P_2 n_2^2 + \dots + P_N n_N^2\right)^{\frac{1}{2}}}{P^{\frac{1}{2}}}$$
(3.21)

3.4.3 Criterio de Marengo.

Considera una rugosidad lineal, al conocer en cada sección los perímetros mojados P_1 , P_2 , P_3 , ..., P_N y los coeficientes de rugosidad n_1 , n_2 , n_3 , ..., n_N ; (Marengo 1995), de esta forma:

$$n = \frac{P_1 n_1 + P_2 n_2 + P_3 n_3 + \dots + P_N n_N}{P}$$
(3.22)

3.5 Rugosidad relativa.

Nikuradse (1933), publica sus investigaciones sobre las leyes de flujo en conductos lisos y rugosos, define la rugosidad de la pared del tubo e investiga la correlación entre la rugosidad y el factor de pérdida de carga. Trabaja con tuberías de rugosidad uniforme, para ello se vale del recurso de revestir internamente tubos lisos con granos de arena de tamaño clasificado.

Con los resultados de sus estudios teóricos y con el ajuste de los coeficientes que obtuvo experimentalmente, establece la siguiente ecuación para flujo turbulento en tuberías lisas y números de Reynolds superiores a los 100,000, (Sotelo, 1979).

$$f = \left(2\log_{10} \operatorname{Re}\sqrt{f} - 0.80\right)^{-2}$$
(3.23)

Además llevó a cabo el registro de velocidades en secciones transversales, que tuvieron como aporte el desarrollar la teoría semiempírica del flujo turbulento en tubos rugosos. Relaciona la rugosidad relativa, (κ/D) con el número de Reynolds, Re. Los valores de la rugosidad relativa (κ/D) estudiados por este investigador oscilan entre

 $0,000985 \le \kappa/D \le 0,0333$, a partir de los cuales le permitió establecer la siguiente ley para tubos rugosos a flujo turbulento, (Sotelo, 1979).

$$f = \left(2\log_{10}\frac{3,71D}{\kappa}\right)^{-2}$$
(3.24)

De la ecuación anterior al despejar la rugosidad relativa κ/D, se obtiene la siguiente expresión:

$$\frac{\kappa}{D} = \frac{3,71}{10^{\sqrt{f}}}$$
(3.25)

La ecuación (3.25) toma un papel importante en el presente trabajo, ya que con ella se analizarán los resultados obtenidos experimentalmente y permitirá conocer la rugosidad absoluta, " κ " de los materiales ensayados.

Adicionalmente, del análisis de sus registros de velocidades que llevó a cabo en tubos rectos de sección circular con superficies rugosas en flujo turbulento plenamente desarrollado, propuso la siguiente ecuación para evaluar la velocidad máxima.

$$V = \nu + 3.75 \left(\frac{\tau_0}{\rho}\right)^{1/2}$$
(3.26)

donde:

V, velocidad máxima del flujo, en m/s

v, velocidad media del flujo, en m/s

 τ_{0} , esfuerzo de corte en la pared del tubo, en kg/m²

 ρ , densidad del fluido, en kg s²/m⁴

por la ecuación (2.26).

$$\frac{\tau_0}{\rho} = f \frac{v^2}{8}; \qquad V = v \left(1 + 3.75 \left(\frac{f}{8} \right)^{\frac{1}{2}} \right)$$
(3.27)

3.6 Rugosidad compuesta, conducto trabajando a presión.

(Elfman, 1991) presenta al Instituto de Tecnología de Suecia un boletín técnico sobre "Túneles de Roca para Centrales Hidroeléctricas". Sus investigaciones más importantes se presentan a continuación.

(Lennart Rahm y Klas Cederwall, 1969), publicaron un trabajo acerca de la capacidad hidráulica de un túnel al considerar que la rugosidad de los muros y bóveda correspondía a la de la roca y la plantilla revestida con concreto hidráulico, con una rugosidad menor. Adicionalmente, consideraron la forma del túnel y la variación de la rugosidad con la relación de llenado, (Elfman 1991). En la figura (3.4) se muestra la sección del túnel que consideraron en el desarrollo de su investigación tomando como base las siguientes hipótesis:

Figura 3.4 Sección transversal de un túnel excavado en roca sin revestir.

- La velocidad máxima se presenta en el centro, por el eje del túnel y esta disminuye conforme las líneas de corriente se aproximaban a la frontera sólida de los muros, bóveda y plantilla.
- El flujo que circula por el túnel, se divide en dos partes; la primera que es afectada por la rugosidad de la plantilla con área tributaria A_b y la otro por la rugosidad de los muros y bóveda con área tributaria A_w.

- El área tributaria de la plantilla, queda definida por el área del triángulo cuya base es el ancho de la plantilla y sus lados quedan formados por dos líneas cuyo punto inicial son los vértices de la base (plantilla) y se interceptan en el eje del túnel, donde se registra la velocidad máxima. El área tributaria de los muros y bóveda es igual a: A_w = A_t - A_b, donde A_t, corresponde al área total.
- La capacidad total del túnel es igual aquella que se obtiene al considerar la pérdida ocasionada por las dos rugosidades; "rugosidad compuesta".

(Hans y Andersson, 1978), realizan una investigación sobre la pérdida de carga en un túnel excavado en roca con plantilla de concreto hidráulico de la Central Hidroeléctrica Ritsem al presentarse una avenida con transporta de material, (Elfman 1991).

Básicamente hace las mismas consideraciones de los investigadores anteriores, la figura (3.5) muestra la geometría del túnel donde realizaron sus estudios, al considerar las siguientes hipótesis:

Figura 3.5 Sección transversal de un túnel con rugosidad compuesta.

- El área total del túnel la divide en dos partes.
- En la parte inferior el flujo es afectado por la rugosidad de la plantilla; mientras que en la parte superior el flujo se afecta por la rugosidad de los muros y de la bóveda (rugosidad compuesta).

- El área tributaria de la plantilla Ab, es aproximada a un triángulo de altura a.
- El área de los muros y bóveda A_w, es igual a A_w = A_t A_b, donde A_t, es el área total del túnel.
- Tomaron en cuenta los esfuerzos cortantes generados por el área de influencia de la plantilla, τ_b, y los generados por los muros y bóveda del túnel τ_w, respectivamente.
- La pérdida de carga ocasionada por los dos flujos, son iguales.
- La velocidad máxima se presenta a lo largo del eje del túnel.
- La velocidad máxima que se presenta a la altura a del triángulo es igual a la velocidad al centro del arco con radio r de la bóveda del túnel.

(Czarnota, 1986), en su trabajo de tesis doctoral reporta los resultados obtenidos al estudiar en modelo físico a escala geométrica 1:10 un túnel con rugosidad compuesta. Las consideraciones generales en el desarrollo de su trabajo fueron las siguientes:

- Determina el coeficiente de pérdida de carga, al variar el área del túnel que se obtiene por efecto del sistema constructivo adoptado. En tal caso, da un acabado liso a los muros y bóveda del túnel, mientras que en la plantilla considera una rugosidad mayor; "vidrio esmerilado" (Plexi-glass). El coeficiente de pérdida de carga bajo estas condiciones fue de f = 0,0279.
- Posteriormente, mantuvo la variación del área; sólo que en este caso dio una rugosidad a los muros y bóveda la equivalente a la roca triturada, o (roca molida) manteniendo en la plantilla la rugosidad anterior, la del "vidrio esmerilado" (Plexiglass). El coeficiente de pérdida de carga fue de f = 0,0648. Este investigador, combinó diferentes rugosidades en los muros y bóveda con la plantilla.
- El número de Reynolds que consideró para realizar sus ensayos oscilaba entre 1,2 x 10⁶ < R_e < 1,4 x 10⁶. Y la rugosidad absoluta determinada a partir del coeficiente de pérdida de carga variaba entre 2 ≤ k ≤ 11,7 mm, considerando un valor medio de 5,70 mm.

Del análisis de sus resultados concluye lo siguiente:

- 1 El coeficiente de pérdida de carga "f" se vuelve independiente del número de Reynolds en el intervalo 1,2 x 10⁶ < R_e < 1,4 x 10⁶.
- El coeficiente de pérdida de carga total "f" es aproximadamente igual a la suma del coeficiente de pérdida de carga obtenido por la superficie rugosa " f_s " mas el factor de pérdida de carga obtenido al considerar la variación del área, ampliaciones y reducciones " f_a ", esto es que: $f = f_s + f_a$.
- 3 Observó que al considerar una rugosidad menor en la plantilla con respecto a la de los muros y bóveda del túnel, el coeficiente de pérdida de carga disminuye incrementando su capacidad de descarga.

(Elfman, 1991), basándose en los trabajos anteriores, establece la siguiente teoría. Considera un túnel con rugosidad compuesta, en la plantilla identifica la rugosidad por un tamaño equivalente de grano de arena κ_b , y en los muros y bóveda del túnel una rugosidad mayor identificada por κ_w . Al circular el flujo genera un esfuerzo cortante, τ_b en la porción del perímetro P_b y en las paredes y bóveda del túnel un esfuerzo cortante τ_w en la parte del perímetro P_w , como se observa en la figura (3.6).

Figura 3.6 Curvas de igual velocidad en un túnel excavado en roca.

En la figura anterior se observan las curvas de igual velocidad o isovelocidades, en la cual se registra la velocidad máxima en el centro y por el eje del túnel. El área de la sección transversal del túnel se divide en dos partes; el área tributaria que es afectada por la rugosidad de la plantilla A_b y que queda definida por las líneas punteadas, iniciando en el centro del túnel donde se registra la velocidad máxima y descendiendo hacia los vértices del túnel cortando a las líneas de igual velocidad en ángulo recto. En un punto arbitrario cualquiera sobre la línea punteada, la velocidad es igual sobre cualquier lado de esta línea y se acepta que no existe esfuerzo cortante sobre la superficie punteada a lo largo del túnel. El resto del área corresponde al área tributaria que es afectada por los muros y bóveda, A_w .

A partir de la teoría anterior, se deben cumplir las siguientes condiciones:

1 La fuerza cortante total que se desarrolla sobre la superficie del túnel, es igual a la suma de la fuerza de corte de la plantilla más la fuerza de corte de los muros y bóveda.

$$F = F_b + F_w \tag{3.28}$$

2 La velocidad máxima V del flujo, es igual a la velocidad de la plantilla V_b y esta a su vez igual a la velocidad de los muros y bóveda, V_w, esto es que:

$$V = V_{\mu} = V_{\mu} \tag{3.29}$$

3 La pérdida de carga ocasionada por la rugosidad de la plantilla h_b, es igual a la pérdida de carga que se genera por la rugosidad de los muros y bóveda del túnel h_w, respectivamente.

$$h_b = h_w \tag{3.30}$$

- El área total de la sección transversal del flujo con perímetro promedio P, es igual del área del flujo relativo a la parte del perímetro P_b y al área del flujo relativo a la parte del perímetro P_w.
- 5 La ley de Nikuradse para el factor de pérdida de carga de un flujo en un conducto con un solo tipo de rugosidad es aplicable al flujo correspondiente a la plantilla y al flujo a lo largo de los muros y bóveda.

)

De las condiciones anteriores se deducen las siguientes ecuaciones:

Condición 1

$$LP\tau_0 = LP_b\tau_b + LP_w\tau_w \tag{3.31}$$

donde τ_{θ} es el esfuerzo cortante promedio

De la ecuación (2.26), se tiene que:

$$\tau_{0} = \frac{f}{4} \rho \frac{V^{2}}{2} \qquad \qquad \tau_{b} = \frac{f_{p}}{4} \rho \frac{V_{b}^{2}}{2} \qquad \qquad \tau_{w} = \frac{f_{w}}{4} \rho \frac{V_{w}^{2}}{2} \qquad (3.32)$$

Al sustituir la expresión (3.32) en (3.31) y multiplicando y dividiendo por $\frac{8}{\rho L}$, se llega a

la siguiente expresión.

$$PV^{2}f = P_{b}V_{b}^{2}f_{b} + P_{w}V_{w}^{2}f_{w}$$
(3.33)

Condición 2

De acuerdo con la ecuación (3.27), la velocidad máxima se puede expresar como:

$$V\left[1+3,75(\frac{f}{8})^{\frac{1}{2}}\right] = V_{b}\left[1+3,75(\frac{f_{b}}{8})^{\frac{1}{2}}\right]$$
(3.34)
$$V\left[1+3,75(\frac{f}{8})^{\frac{1}{2}}\right] = V_{w}\left[1+3,75(\frac{f_{w}}{8})^{\frac{1}{2}}\right]$$
(3.35)

Condición 3

De acuerdo con la ecuación (2.14), la pérdida de carga la podemos expresar como:

$$\frac{V_b^2 L P_b f_b}{8gA_b} = \frac{V_w^2 L P_w f_w}{8gA_w}$$
(3.36)

Condición 4

 $A = A_b + A_w \tag{3.37}$

Condición 5

De la ecuación (3.24)

$$f = \left(2\log_{10}\frac{3,71D}{\kappa}\right)^{-2} = \left[1,74 + 2\log_{10}\frac{2A}{P_{\kappa}}\right]^{-2}$$
(3.38)

Por lo tanto, el factor de pérdida de carga lo podemos evaluar como:

$$f_b = \left[1,74 + 2\log_{10}\frac{2A_b}{\kappa_b P_b}\right]^{-2} \qquad y \qquad f_w = \left[1,74 + 2\log_{10}\frac{2A_w}{\kappa_w P_w}\right]^{-2} \tag{3.39}$$

Con la ayuda de las ecuaciones expuestas de la condición 1 a la condición 5, se resuelven los siguientes casos prácticos:

Caso I

Se desea determinar el factor de pérdida de carga en un túnel, en este caso, se desconocen las siguientes variables $f, f_b, f_w, v_b, v_w, A_b, A_w$, se proceder de la siguiente forma

Al sustituir las ecuaciones (3.34) y (3.35) en la ecuación (3.33), se obtiene la siguiente ecuación:

$$\frac{P}{\left(f^{-\frac{1}{2}}+1,33\right)^2} = \frac{P_b}{\left(f_b^{-\frac{1}{2}}+1,33\right)^2} + \frac{P_w}{\left(f_w^{-\frac{1}{2}}+1,33\right)^2}$$
(3.40)

Al sustituir v_b y v_w en la ecuación (3.36), resulta:

$$\frac{P_b}{A_b (f_b^{-\frac{1}{2}} + 1,33)^2} = \frac{P_w}{A_w (f_w^{-\frac{1}{2}} + 1,33)^2}$$
(3.41)

Por las ecuaciones. (3.37), (3.38) y (3.39), se tiene que:

$$\frac{P_b}{A_b(3,07+2\log_{10}\frac{2A_b}{\kappa_b P_b})^2} = \frac{P_w}{(A-A_b) \left[3,07+2\log_{10}\frac{2(A-A_b)}{\kappa_w P_w}\right]^2}$$
(3.42)

De la ecuación (3.42) se desconoce solamente el área tributaria de la plantilla, se resuelve en forma numérica, hasta que los dos miembros de la ecuación se igualen. Conocida A_b ; por la ecuación (3.37), se determina A_w y por la ecuación (3.39) se calcula $f_b y = f_w$, respectivamente, finalmente con la ecuación (3.40), se calcula f.

Caso II

En la práctica, el coeficiente de pérdida de carga *f* en túneles se determina experimentalmente dando diferentes acabados a la plantilla, por ejemplo concreto

hidráulico o roca, posteriormente se determina el diámetro equivalente del grano, κ_b o rugosidad absoluta; sin embargo, el diámetro equivalente κ_w de los muros y bóveda del túnel excavado en roca es desconocido. En este segundo caso, se tienen las siguientes incógnitas:

 $f_b, f_w, v_b, v_w, A_b, A_w, y \kappa_w$. El objetivo será encontrar el diámetro equivalente o rugosidad absoluta κ_w , para ello se procede de la siguiente forma:

De las ecuaciones (3.40 y 3.41) se llega a la siguiente ecuación:

$$\frac{P}{\left(f^{-\frac{1}{2}}+1,33\right)^2} = \left(1 + \frac{A_w}{A_b}\right) \frac{P_b}{\left(f^{-\frac{1}{2}}+1,33\right)^2}$$
(3.43)

Por la ecuación (3.37), se llega a la siguiente expresión:

$$\frac{P}{A(f^{-\frac{1}{2}}+1,33)^2} = \frac{P_b}{A_b(f^{-\frac{1}{2}}+1,33)^2}$$
(3.44)

De la ecuación (3.39)

$$\frac{P}{A(f^{-\frac{1}{2}}+1,33)^2} = \frac{P_b}{A_b(3,07+2\log_{10}\frac{2A_b}{\kappa_b P_b})^2}$$
(2.45)

De la ecuación anterior, la variable desconocida es el área de la plantilla, la ecuación se resuelve numéricamente; hasta que ambos miembros se igualen. Una vez conocida el área de la plantilla A_b , el área correspondiente a los muros y bóveda A_w , se calcula con la ecuación (3.37), los factores de pérdida de carga para la plantilla, muros y bóveda; f_b y f_w , se calculan con las ecuaciones. (3.39 y 3.41) respectivamente, y finalmente, la rugosidad absoluta k_w , con la ecuación (3.39).

Nota:

El valor de k_w es el tamaño del grano equivalente o rugosidad absoluta de los muros y bóveda del túnel, y corresponde a la rugosidad superficial y a la variación del área a lo largo del túnel por efecto de las ampliaciones y contracciones que sufre el túnel, figura (3.3).

3.7 Modelos estudiados en Suecia

Estudios recientes, (Marengo, 2004), (Elfman, 1991) reportan los modelos hechos por (Czarnota. 1986), quién comparó un túnel que tiene en prototipo una sección transversal con área de 7,5 m² y un perímetro mojado de diseño de 10,2 m. Se probaron modelos con diferentes tipos de rugosidad construidos con una escala de líneas Le = 10. Los modelos estudiados se describen en la tabla 1.

En ésta tabla, "A" está dado en m² y el factor f está calculado al considerar un número de Reynolds, $R_e = 1.3 \times 10^6$, ya que f es prácticamente independiente en la región 1.2 $\times 10^6 < R_e < 1.4 \times 10^6$.

La roca molida de los modelos 2, 3, 5, 7 y 9 se probaron con granos de arena que están en el rango de 2 a 11,7 mm con un valor medio de 5,7 mm.

Considerando la apreciación de Czarnota en la que comenta que la rugosidad distribuida, es parte del análisis, se puede comentar lo siguiente:

Modelo	Paredes y bóveda	Plantilla	A (m ²)	f
1	Sección	Plexiglas	0,0894	0,0279
2	Modelo 1 más superficie con rugosidad de roca molida	Plexiglas	0,0870	0,0648
3	Modelo 1 más superficie con rugosidad de roca molida	Roca molida	0,0861	0,0755
5	Modelo 3 más una capa de cemento con espesor uniforme de 2.3 mm	Roca molida	0,0864	0,0535
7	Modelo 5 más 2da. capa de cemento con espesor de 4.5 mm	Roca molida	0,0803	0,0327
9	Cemento con cimbra sección constante	Roca molida	0,0741	0,0292

Tabla 1 Modelos probados por Czarnota, 19	B6 (Marengo,	2004)
---	--------------	-------

En el modelo 1; $f_a = 0,0279 - 0,0111 = 0,0168$.

Donde 0,0111 es el valor del factor de fricción (esfuerzo cortante) que representa el factor de rugosidad superficial de un tubo liso con el mismo diámetro equivalente que el del túnel y el mismo número de Reynolds.

Para el modelo 3:

$$f_{1} = 0.0755 - 0.0168 = 0.0587$$

Donde $f_s = 0,0587$ corresponde a una plantilla con rugosidad que tiene un tamaño de grano medio k = 9,6 mm

Para el modelo 1 :	f = 0,0279
	$f_s = 0,0111$
	<i>f_a</i> = 0,0168
Para el modelo 3 :	f = 0,0755
	$f_s = 0,0587$
	$f_a = 0,0168$

Czarnota, también estudió los efectos de dos diferentes tipos de rugosidad distribuida a lo largo de la circunferencia del túnel. La comparación de los modelos de los túneles 2 y 3 en la tabla 1, indican que la relativa suavidad de la superficie del fondo del modelo 2 reduce el factor de la pérdida total de carga con un factor de 0,0107 para este caso.

De acuerdo con el autor, éste es el orden de magnitud de la reducción de pérdida de carga que se puede esperar en un prototipo de túnel en el cual la superficie rugosa, del fondo es colada con concreto.

Adicionalmente Czarnota midió el esfuerzo cortante de éste modelo 2, y determinó que el factor de pérdida de carga en el fondo solo debería ser f_b = 0,015

La pérdida de carga debido a la rugosidad del modelo 2 viene a ser la suma de las pérdidas de carga individuales para el fondo del túnel, las paredes y la bóveda, multiplicadas por las porciones de los perímetros que ellos representan. A manera de comprobación de los modelos de Czarnota se hicieron los siguientes cálculos:

a) Para el modelo 1 y un valor del área A = 0,0894 m², se consideró un tubo con diámetro D = 0,3374 m, gasto Q = 0,40 m³/s, V = 4,47 m/s y número de Reynolds R_e = 1,3 x 10⁶.

En este caso los resultados obtenidos con el programa de Marengo (2004) se obtuvo:

k	= 4 mm	k	= 1,3 mm
k/D	= 0,001185536	k/D	= 0,003853
V	= 4,47 m/s	V	= 4,474 m/s
Re	= 1306899	Re	= 1306899
Т	= 15°	Т	= 15°
v	=1,15 x 10 ⁻⁶	v	= 1,15 x 10 ⁻⁶
f	= 0,04021	f	= 0,0282
L	= 100m	L	= 100m
hf	= 12,151m	hf	= 8,5194m
n	= 0,015	п	= 0,0125

b) Los resultados para el modelo 3 con $A = 0,086 \text{ m}^2$; D = 3,31 m; $Q = 0,385 \text{ m}^3/\text{s}$; v = 4,47 m/s y $R_e = 1,3 \times 10^6$ se obtuvo:

k	= 9,6 mm	k	= 0,001 mm
k/D	= 0,0029003	k/D	= 0,0000003
V	= 4,47 m/s	V	= 4,474m/s
Re	= 1282212	Re	= 1282212
Т	= 15°	Т	= 15°
v	= 1,15 x 10 ⁻⁶	v	= 1,15 x 10 ⁻⁶
ſ	= 0,0563	f	= 0,0112
L	= 100 m	L	= 100 m
h_f	= 17,3679 m	h_f	= 3,4669 m
n	= 0,0177	n	= 0,0079
Capítulo 3

Modelo	А _ь (m ²)	f_b	A _w (m ²)	f_w	k _b (mm)	k _w (mm)
3	0,018	0,0623	0,0763	0,0802	9,6	20,0
5	0,0223	0,0574	0,0617	0,0522	9,6	7,080
7	0,287	0,0511	0,0516	0,0271	9,6	0,870
9	0,0287	0,0499	0,0454	0,0230	9,6	0,450
		The second second second		1.		1.0

Aplicando los programas desarrollados por Marengo (2004), se encuentran los valores indicados en la tabla (2) para los modelos establecidos por Czarnota:

Tabla 2. Rugosidad absoluta en paredes y bóveda de los modelos estudiados por Czarnota.

3.8 Rugosidad distribuida.

Considerando que todo túnel tiene una rugosidad más suave en el fondo del mismo debido en parte a la circulación normal durante su construcción y en parte a que se puede colocar una plantilla de concreto hidráulico en el piso para facilitar el proceso constructivo, y a que en las paredes y bóveda dicha rugosidad es más fuerte, (Marengo, 2004) "conclusión dos de los trabajos de Czarnota", se tiene:

$$f = f_s + f_a \tag{3.46}$$

Dónde:

f - es el factor de pérdidas de carga total del túnel.

f_s - es el factor de pérdidas de carga debido a la rugosidad superficial del túnel.

 f_a - es el factor de pérdida de carga debida al área que se ocasiona en la sección transversal del túnel.

(Elfman,1991); establece que en un túnel excavado en roca con explosivos, existen numerosas contracciones y ampliaciones que se reflejan en pérdidas de carga locales que a fin de cuentas se reflejan como pérdidas distribuidas a lo largo del túnel, ver figura (3.3).

El citado autor considera que el área local de cada sección del túnel que tiene una cierta longitud promedio "s", está asociada a una sección de excavación mínima A_1 y a una sección de excavación máxima A_2 ; de ésta manera, se tiene entonces que:

$$f_a = \omega_2 \Omega_{ea} \tag{3.47}$$

Dónde:

$$\Omega_{\theta} = \frac{D}{L} \sum_{i=1}^{n} \phi_i \tag{3.48}$$

Y se define un factor que toma en cuenta la variación del área Ω_{ee} :

$$\Omega_{eo} = \omega_3 \Omega_{\theta} = \omega_3 \frac{D}{L} \sum_{i=1}^{n} \phi_i$$
(3.49)

Dónde ω_3 > 1

$$\Rightarrow f_a = \omega_2 \omega_3 \frac{D}{L} \sum_{i=1}^n \phi_i$$
(3.50)

Considerando para cada sección que:

$$\phi = \alpha \left(\frac{A}{A_1} - \frac{A}{A_2}\right)^2 \tag{3.51}$$

La ecuación (3.50) se puede establecer como:

$$f_a = \omega_2 \omega_3 \frac{D}{L} \sum_{i=1}^n \alpha \left(\frac{A}{A_1} - \frac{A}{A_2} \right)^2 i$$
(3.52)

La aplicación real de ésta ecuación, implica poder medir cada sección del túnel excavado en forma muy precisa, lo cual se hace en la práctica profesional para efectos de pago; sin embargo para el diseño de un túnel se puede establecer en forma simplificada que:

$$\Rightarrow f_a = \omega \left(\frac{A}{As} - \frac{A}{A\iota}\right)^2 \tag{3.53}$$

57

Dónde:

ω, es un factor de corrección no dimensional.

A, es el promedio de las áreas de la sección transversal del túnel.

As, es el área significativa más pequeña del túnel.

AL, es el área significativa más grande del túnel.

El término $v_A = \left(\frac{A}{As} - \frac{A}{At}\right)^2$ puede interpretarse como el factor de corrección que toma en

cuenta la súbita contracción y ampliación que tiene un túnel; la ecuación (3.46) puede escribirse entonces como:

$$f = f_s + \omega \left(\frac{A}{As} - \frac{A}{AL}\right)^2$$
(3.54)

O bien:

$$f = f_s + \omega v_A \tag{3.55}$$

En el trabajo de (Elfman, 1991), se establecen mediciones y comparaciones en modelos hidráulicos para estimar la variación de la rugosidad en las paredes y bóveda de túnel utilizando el modelo 3 sin revestimiento, el modelo 5 con revestimiento de cemento de espesor uniforme, el modelo 7 con un revestimiento que es de menor espesor en cavidades y el modelo 9 que tiene un revestimiento de cemento y sección transversal constante.

Debido a que el área de la sección transversal de los modelos 3, 5 y 7 existen básicamente en paredes y bóveda, solo las porciones del flujo afectadas por estas superficies son consideradas. Los valores de sección transversal, perímetro mojado, diámetro hidráulico y factor de pérdidas de carga se muestran en la tabla 3.

Modelo	A Promedio (m ²)	P Promedio (m)	Diámetro Hidráulico promedio (m)	Factor de Pérdidas <i>f</i> _w		
3	0,0133	0,855	0,315	0,0802		
5	0,0139	0,838	0,295	0,0522		
7	0,0516	0,808	0,255	0,0271		
9	0,0454	0,754	0,241	0,0230		

Tabla 3. Valores de áreas, perímetros mojados, diámetro hidráulico y factor de pérdidas obtenidos para los modelos de Czarnota.

El valor de la rugosidad del fondo obtenida para el modelo 3 (Tabla 3) es K_b = 0.0096 m; en el que no se consideran variaciones por ampliación o reducción de la sección en la plantilla; el factor de pérdidas de fricción del flujo (ecuación 3.24) es:

$$f_s = \left(2\log\frac{3,71x0,315}{0,0096}\right)^{-2} = 0,0575 \tag{3.56}$$

Al ser $f_w = 0,0802$ (tabla 3), se tiene

 $f_a = 0,0802 - 0,0575 = 0,0227$

Para el modelo 3 se reportaron los valores de distancia relativa entre secciones (*S/D*), la longitud del túnel, y los valores del factor de ampliación y reducción asociados a las paredes y bóveda.

En la tabla (4), se muestran los resultados obtenidos para el modelo 3, cabe señalar que el valor significativo de a una cierta distancia *S/D*, se toma como el promedio de los valores calculados para esa distancia relativa.

Capítulo 3

Distancia relativa entre	Empezando en la	Longitud entre la primer y		$\Omega_{\theta} = \frac{D}{L} \sum_{i=1}^{n} \phi$			
secciones S/D	seccion	L	ΣΦ	Valor calculado	Valor significativo		
0,087	1	1183	0,0451	0,0120	0,0120		
0.175	1	1151	0,0444	0,0121			
0,175	2	1151	0,0523	0,0143	0,0132		
	1	1155	0,0421	0,0115			
0,262	2	2 1155		0,0094	0.0115		
	3	1073	0,0459	0,0135	0,0115		
	1	1100	0,0379	0,01090	1.000		
0,349	2	1100	0,0325	0,0093	0,0106		
	3	1100	0,0288	0,0082	1.4		
	4	1100	0,0492	0,0141			

Tabla 4. Valores del factor para túneles sin y con revestimiento, asociados a ampliaciones y reducciones en paredes y bóveda.

La regresión lineal que se obtiene para los valores significativos de Ωe y el ajuste con regresión lineal obedece a la siguiente ecuación:

$$\Omega e = 0,0133 - 0,0067 \frac{S}{D}$$
Para S = 0, $\Omega eo = 0,0133$
Como $f_a = \omega_2 \Omega_{e\theta}$; $f_a = 0,0227$
 $\Rightarrow \omega_2 = 1,71$
(3.57)

Al aplicar ésta metodología a los otros modelos se obtienen los resultados señalados en la tabla (5):

Modelo	Factor de variación del área	Factor de variación de pérdida de carga debida al área.	Factor de variación de pérdida de carga por rugosidad.	Factor de pérdida de carga total del flujo
	Ω_{eo}	f_a	f_s	ſ,,
3	0,0133	0,0227	0,0575	0,0802
5	0,0139	0,0236	0,0286	0,0522
7	0,0035	0,0048	0,0223	0,0271
9	0,0000	0,0000	0,0230	0,0230

Tabla 5. Valores del factor de variación del área, de pérdida de carga debida al área, rugosidad y pérdida de carga total del flujo en los modelos de Czarnota.

CAPÍTULO 4 Estudio experimental

4.1 Resumen.

Se presenta los resultados del funcionamiento hidráulico de un túnel de sección transversal en portal, para diferentes rugosidades, pendientes geométricas y relaciones de llenado. Así como, al combinar los distintos materiales obtener la rugosidad compuesta.

4.2 Objetivo del estudio.

Para verificar las teorías matemáticas expuestas en los capítulos anteriores, en el Laboratorio de Hidráulica de la Comisión Federal de Electricidad (CFE) se ha representado en una instalación de pendiente variable de 9 m de longitud, un túnel de sección transversal en portal de 13,3 cm, y un área efectiva de 158,62 cm² con el objeto de obtener su funcionamiento hidráulico, para diferentes rugosidades y relaciones de llenado.

4.3 ESTUDIO EN MODELO HIDRÁULICO.

4.3.1 Instalación de pendiente variable.

Descripción

Se describen a continuación las características principales de la instalación, el aforo de gastos, el procedimiento desarrollado para determinar la pérdida de carga en el túnel y los coeficientes de resistencia del flujo, y finalmente los resultados obtenidos.

Geometría

Plataforma inclinable

El ancho de la instalación es de 0,90 m de ancho efectivo tiene una longitud de 9,00 m, uno de sus extremos está articulado y el otro libre, el cual permite dar la inclinación o pendiente deseada, figura y fotos 4.1

La instalación permite colocar sobre ella una sección en canal o una sección en túnel.

Figura 4.1 Esquema del modelo físico.

Plataforma inclinable

Túnel instalado sobre plataforma

Fotos 4.1 Construcción del modelo físico.

Túnel

Consiste en una sección en portal de 0,133 x 0,133 m con área efectiva de 0,01586 m². Se probaron dos tipos de geometrías de entrada; con aristas vivas y redondeadas.

En este trabajo se reportan los resultados obtenidos con aristas redondeadas, que es la geometría adoptada para el proyecto ejecutivo del P.H. El Cajón, ver figura 4.2.

Figura 4.2 Geometría del portal de entrada probadas en el modelo.

Alimentación.

El agua del cárcamo es bombeada a un tanque elevado, de donde sale la toma que surte de agua al canal. La toma está constituida por una tubería de diez pulgadas de diámetro, codos verticales y válvula de compuerta, la cual permite controlar el gasto hacia la instalación. El agua de la alimentación llega al tanque del vertedor donde es aforada.

El vertedor es triangular, con contracciones de pared delgada y bien ventilado; la elevación de la cresta respecto al piso del tanque del vertedor es de 4,17 m. El vertedor descarga a un tanque colector, lugar en que el agua puede ser desviada a la instalación de pendiente variable o hacia el canal de retorno al cárcamo.

Aforo de gastos líquidos

Con objeto de verificar si la curva carga hidráulica contra gastos del vertedor seguía la ecuación de Gurley y Crimp, (Sotelo, 1981) válida para un ángulo de 60°, (en sistema métrico).

$$Q = 0.7621 h^{2,48}$$
(4.1)

Se procedió al aforo de los gastos, para lo cual fue necesario utilizar el tanque colector como tanque volumétrico.

El gasto máximo que logró sostenerse sin variaciones apreciables de la carga fue de 30 l/s, y correspondió a una carga sobre el vertedor de 27,13 cm. El limnímetro del vertedor quedó colocado a 1,10 m del vertedor, o sea a una distancia menor de diez veces la carga máxima esperada.

En la figura (4.3), al comparar la curva - gastos teórica con los datos de aforo, se observa que la curva casi se ajusta a los gastos aforados. Por lo tanto se decidió utilizar la ecuación experimental para determinar los gastos en la instalación, en lugar de otra ecuación teórica representada en (sistema métrico), por:

$$Q = 0.8152 h^{2.48}$$
 (4.2)

Figura 4.3 Curva carga hidráulica-gastos de la estructura aforadora.

4.3.2. Puesta a punto.

A continuación se definen algunos aspectos para el registro de las variables físicas.

Selección de pendientes.

De acuerdo con el perfil longitudinal de los túneles de las obras de desvío más usuales, se decidió representar las pendientes de 0,0007; 0,001; 0,004; y 0,008.

Puntos de registro.

La selección de los puntos de registro se realizó en secciones diferentes del túnel, espaciadas a distancias múltiplos de su diámetro, *D*; instalando en cada uno de ellos piezómetros en la plantilla del canal de llamada y del túnel, que permiten el registro del perfil del flujo, para diferentes relaciones de llenado, aguas arriba del túnel, por ejemplo, d/D = 0.25; 0.50; 0.75; 1.00; 1.50; 2.00; etc., al manejar el gasto mediante las válvulas de alimentación, ver figura (4.1).

Gasto de operación.

Establecido el nivel del agua en el canal de llamada para una relación de llenado d/D, se registra en el limnímetro del vertedor la carga hidráulica para conocer el gasto de operación asociado a la relación d/D, con la ayuda de la figura (4.3). Este procedimiento se repetía para cada relación de llenado, d/D.

Equipo de medición.

A lo largo del túnel se instalaron piezómetros, separados entre sí por múltiplos de la altura del túnel, *D*. Los piezómetros se instalaban perpendicularmente a la plantilla del túnel, y al centro del mismo, ver figura (4.1) donde se identifican como P_1 a P_{14} .

Una vez establecidas las condiciones del escurrimiento, se realizaban los registros en las secciones donde se habían instalado los piezómetros, anotando las lecturas de las elevaciones de la superficie del agua y las de la superficie de la plantilla del túnel obtenidas previamente a la realización de los ensayes. Al respecto hay que decir que en ocasiones era difícil precisar ambas elevaciones: por un lado, las oscilaciones de la superficie del agua dificultaban las mediciones; y por otra parte por algún elemento que obstruye la entrada del piezómetro entorpecía también las mediciones.

4.4 Registros de variables físicas

Para identificar los registros de las variables físicas, se tomaron en cuenta los siguientes aspectos:

- Los materiales disponibles en el Laboratorio: acrílico (A), lija (L), difusor (D), y
 klinter (K), figura (4.4).
- b. La geometría de entrada del túnel, figura (4.2) con abocinamiento y lumbrera (3)
- c. La pendiente del túnel: 0,0007 (1); 0,001 (2); 0,004 (3); y 0,008(4).

Klinter

Figura 4.4. Materiales utilizados en el estudio

Por ejemplo, si se utiliza como material del túnel el acrílico, la entrada abocinada y lumbrera, la pendiente de 0,0007; entonces, la identificación del ensaye sería A31. Para túneles con rugosidad diferente en la plantilla, material (*A*) y en las paredes-clave, material (*L*, *D* ó *K*) la identificación del ensaye en estudio sería *AL*, *AD*, Y *AK*.; la primera letra está asociada a la plantilla y la segunda a las paredes-clave. Bajo estos aspectos, se estudiaron en la instalación experimental los modelos que se presentan en la (tabla 4a). Los modelos de 1 a 4, sirvieron para conocer la rugosidad total de los materiales y los modelos del 5 a 7; al combinarlos obtener la rugosidad compuesta.

Modelo	Material	Pendie	entes, co	ef. de rug	osidad	Rugosidad
		0,0007	0,001	0,004	0,008	
1	Acrílico (A)					
2	Lija (<i>L</i>)					tal
3	Difusor (D)				1	To
4	Klinter (K)]
5	Acrílico-Lija (<i>AL</i>)					esta
6	Acrílico-Difusor (AD)					andu
7	Acrílico-Klinter (AK)			-		Con

Tabla 4	1a.	Modelos	estudiados	en la	instalación	experimental.
unia	i ca.	111000100	ooraaaaoo	onina	moturation	onportation dat.

En la tabla anterior, el valor de los coeficientes de rugosidad de cada uno de los materiales ensayados, es variable y dependerá en primera instancia de la pendiente del túnel seleccionada y en segunda de la relación de llenado *d/D*, de la cual se considera que el túnel trabaje como canal o a presión.

4.4.1 Perfiles del agua en el túnel.

Los perfiles del agua y el gasto de operación, se han registrado en el modelo, para diferentes relaciones de llenado del túnel, d/D; al representar los diferentes materiales, y pendientes longitudinales. En el anexo 1, tablas de la 1.1 a la 1.28, se presentan los perfiles de la superficie del agua a lo largo del túnel correspondiente a cada ensaye. De los resultados, se aprecia una pérdida de carga hidráulica:

1. Considerable en la entrada del túnel.

2. Gradual en el túnel, operando hasta una cierta distancia con una carga de presión por arriba de la clave del túnel y posteriormente por debajo de la clave.

4.4.2 Coeficientes de rugosidad.

La rugosidad de los materiales utilizados en el modelo hidráulico, acrílico, lija, difusor de acrílico, etc., o una combinación de ellas, se obtuvieron de los registros de perfiles del agua, obtenidos en el apartado anterior (anexo 1), al aplicar en primer instancia la ecuación de la energía entre las secciones 12*D* y 46*D*, ecuación (2.28); posteriormente la ecuación de Manning, ecuación (2.38); y Darcy – Weisbach, ecuación (2.20); y la rugosidad relativa con el criterio de Nikuradse, ecuación (3.25).

Los valores de los coeficientes "*n*" y "*f*" y la rugosidad relativa " κ/D ", se calcularon para diferentes pendientes y relaciones de llenado. En el anexo 2, tablas de la 2.1 a la 2.21, se presentan los valores de los coeficientes antes mencionados. Cabe mencionar al respecto, que los valores de resistencia obtenidos, por ejemplo para el acrílico o lucita, son similares a los reportados en la literatura técnica, lo que valida la metodología experimental empleada en este estudio.

Un resumen de los valores medios de los coeficientes de rugosidad, y la rugosidad relativa, se presentan en la tabla (4b). En esta tabla, es importante mencionar que el coeficiente que se presenta para cada pendiente corresponde al coeficiente global para túnel lleno y relación de llenado d/D = 3.

Modelo Material 0,0007 0,001 0,004 0,008 medic 1 A 0,00790 0,00840 0,00870 0,00850 0,008 2 L 0,01000 0,01100 0,01200 0,01200 0,0112 3 D 0,01200 0,01300 0,01300 0,01200 0,012 4 K 0,01900 0,02000 0,02100 0,02100 0,0202 4 K 0,01000 0,01100 0,01100 0,01100 0,0100 6 AD 0,01200 0,01200 0,01700 0,01100 0,01160 7 AK 0,01500 0,01700 0,01700 0,0160 Coeficientes "f" de Darcy-Weisbach 1 A 0,01520 0,01710 0,01930 0,0177 2 L 0,02440 0,02740 0,03300 0,03840 0,0953 3 D 0,03630 0,04170 0,03820 0,03630 0,0312 4 K
Coeficientes "n" de Manning 1 A 0,00790 0,00840 0,00870 0,00850 0,00840 2 L 0,01000 0,01100 0,01200 0,01200 0,0112 3 D 0,01200 0,01300 0,01300 0,01200 0,0124 4 K 0,01900 0,02000 0,02100 0,0200 0,02100 0,0200 4 K 0,01000 0,01100 0,01100 0,01100 0,0100 6 AD 0,01200 0,01200 0,01100 0,01100 0,01160 7 AK 0,01500 0,01700 0,01700 0,0160 Coeficientes "f" de Darcy-Weisbach I A 0,01520 0,01710 0,01300 0,0294 1 A 0,01520 0,01710 0,01300 0,0294 0,03300 0,03300 0,0294 2 L 0,02440 0,02740 0,03300 0,03630 0,0384 0,0294 3 D
1 A 0,00790 0,00840 0,00870 0,00850 0,00840 2 L 0,01000 0,01100 0,01200 0,01200 0,0111 3 D 0,01200 0,01300 0,01300 0,01200 0,0124 4 K 0,01900 0,02000 0,02100 0,02100 0,0200 4 K 0,01000 0,01100 0,01100 0,02100 0,0200 5 AL 0,01200 0,01200 0,01100 0,01100 0,0105 6 AD 0,01200 0,01200 0,01700 0,0116 7 AK 0,01500 0,01700 0,01700 0,0166 Coeficientes "f" de Darcy-Weisbach 1 A 0,01520 0,01710 0,01910 0,01930 0,0177 2 L 0,02440 0,02740 0,03300 0,03300 0,0387 3 D 0,03630 0,04170 0,03820
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
4 K 0,01900 0,02000 0,02100 0,02100 0,0200 5 AL 0,01000 0,01100 0,01100 0,01100 0,0108 6 AD 0,01200 0,01200 0,01100 0,01100 0,0116 7 AK 0,01500 0,01500 0,01700 0,01700 0,0160 Coeficientes "f" de Darcy-Weisbach
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
5 AL 0,01000 0,01100 0,01100 0,01100 0,0100 6 AD 0,01200 0,01200 0,01100 0,01100 0,01100 7 AK 0,01500 0,01500 0,01700 0,01700 0,0160 Coeficientes "f" de Darcy-Weisbach 0,01930 0,0177 2 L 0,02440 0,02740 0,03300 0,03300 0,0294 3 D 0,03630 0,04170 0,03820 0,03630 0,0387 4 K 0,08800 0,09900 0,10600* 0,08840 0,0953 5 AL 0,02600 0,03100 0,02800 0,0290 6 AD 0,03300 0,03300 0,03100 0,02800 0,0312 7 AK 0,05800 0,05800 0,06700 0,06100 0,0610 Rugosidad relativa k/D 1 A 0,00044 0,00067 0,00145 0,00133 0,0009
6 AD 0,01200 0,01200 0,01100 0,01100 0,01110 7 AK 0,01500 0,01500 0,01700 0,01700 0,0160 Coeficientes "/f" de Darcy-Weisbach 1 A 0,01520 0,01710 0,01910 0,01930 0,0177 2 L 0,02440 0,02740 0,03300 0,03300 0,0294 3 D 0,03630 0,04170 0,03820 0,03630 0,0387 4 K 0,08800 0,09900 0,10600* 0,08840 0,0953 5 AL 0,02600 0,03100 0,02800 0,0290 6 AD 0,03300 0,03300 0,03100 0,02800 0,0312 7 AK 0,05800 0,05800 0,06700 0,06100 0,0610 Rugosidad relativa k/D 1 A 0,00044 0,00067 0,00145 0,00133 0,0009
7 AK 0,01500 0,01500 0,01700 0,01700 0,0160 Coeficientes "f" de Darcy-Weisbach 1 A 0,01520 0,01710 0,01910 0,01930 0,0177 2 L 0,02440 0,02740 0,03300 0,03300 0,0294 3 D 0,03630 0,04170 0,03820 0,03630 0,0387 4 K 0,08800 0,09900 0,10600* 0,08840 0,0953 5 AL 0,02600 0,03100 0,03100 0,02800 0,0290 6 AD 0,03300 0,03300 0,03100 0,02800 0,0312 7 AK 0,05800 0,05800 0,06700 0,06100 0,0610 Rugosidad relativa k/D 1 A 0,00044 0,00067 0,00145 0,00133 0,0009
Coeficientes "/f" de Darcy-Weisbach 1 A 0,01520 0,01710 0,01910 0,01930 0,0177 2 L 0,02440 0,02740 0,03300 0,03300 0,0294 3 D 0,03630 0,04170 0,03820 0,03630 0,0387 4 K 0,08800 0,09900 0,10600* 0,08840 0,0953 5 AL 0,02600 0,03100 0,03100 0,02800 0,0290 6 AD 0,03300 0,03300 0,03100 0,02800 0,0312 7 AK 0,05800 0,05800 0,06700 0,06100 0,0610 Rugosidad relativa k/D 1 A 0,00044 0,00067 0,00145 0,00133 0,0009
1 A 0,01520 0,01710 0,01910 0,01930 0,0177 2 L 0,02440 0,02740 0,03300 0,03300 0,0294 3 D 0,03630 0,04170 0,03820 0,03630 0,0387 4 K 0,08800 0,09900 0,10600* 0,08840 0,0953 5 AL 0,02600 0,03100 0,03100 0,02800 0,0290 6 AD 0,03300 0,03300 0,03100 0,02800 0,0312 7 AK 0,05800 0,05800 0,06700 0,06100 0,0610 Rugosidad relativa k/D 1 A 0,00044 0,00067 0,00145 0,00133 0,0009
2 L 0,02440 0,02740 0,03300 0,03300 0,0294 3 D 0,03630 0,04170 0,03820 0,03630 0,0387 4 K 0,08800 0,09900 0,10600* 0,08840 0,0953 5 AL 0,02600 0,03100 0,03100 0,02800 0,0290 6 AD 0,03300 0,03300 0,03100 0,02800 0,0312 7 AK 0,05800 0,05800 0,06700 0,06100 0,0610 Rugosidad relativa k/D 1 A 0,00044 0,00067 0,00145 0,00133 0,0009
3 D 0,03630 0,04170 0,03820 0,03630 0,0387 4 K 0,08800 0,09900 0,10600* 0,08840 0,0953 5 AL 0,02600 0,03100 0,03100 0,02800 0,0290 6 AD 0,03300 0,03300 0,03100 0,02800 0,0312 7 AK 0,05800 0,05800 0,06700 0,06100 0,0610 Rugosidad relativa k/D 1 A 0,00044 0,00067 0,00145 0,00133 0,0009
4 K 0,08800 0,09900 0,10600* 0,08840 0,0953 5 AL 0,02600 0,03100 0,03100 0,02800 0,0290 6 AD 0,03300 0,03300 0,03100 0,02800 0,0312 7 AK 0,05800 0,05800 0,06700 0,06100 0,0610 Rugosidad relativa k/D 1 A 0,00044 0,00067 0,00145 0,00133 0,0009
5 AL 0,02600 0,03100 0,03100 0,02800 0,0290 6 AD 0,03300 0,03300 0,03100 0,02800 0,0312 7 AK 0,05800 0,05800 0,06700 0,06100 0,0610 Rugosidad relativa k/D 1 A 0,00044 0,00067 0,00145 0,00133 0,0009
5 AL 0,02600 0,03100 0,03100 0,02800 0,0290 6 AD 0,03300 0,03300 0,03100 0,02800 0,0312 7 AK 0,05800 0,05800 0,06700 0,06100 0,06100 Rugosidad relativa k/D 1 A 0,00044 0,00067 0,00145 0,00133 0,0009
6 AD 0,03300 0,03300 0,03100 0,02800 0,0312 7 AK 0,05800 0,05800 0,06700 0,06100 0,06100 Rugosidad relativa k/D 1 A 0,00044 0,00067 0,00145 0,00133 0,0009
7 AK 0,05800 0,05800 0,06700 0,06100 0,06100 Rugosidad relativa k/D 1 A 0,00044 0,00067 0,00145 0,00133 0,0009
Rugosidad relativa k/D 1 A 0,00044 0,00067 0,00145 0,00133 0,0009
1 A 0,00044 0,00067 0,00145 0,00133 0,0009
<u> </u>
3 <i>D</i> 0,00892 0,01392 0,01045 0,00905 0,0105
4 K 0,07723 0,09807 0,10805* 0,07784 0,0908
5 <i>AL</i> 0,00337 0,00579 0,00594 0,00425 0,0048
6 AD 0,00685 0,00759 0,00558 0,00388 0,0059
7 AK 0,0332 0,03324 0,04569 0,03605 0,0370

Tabla 4b Resumen de los coeficientes de rugosidad de los materiales, d/D = 3.

* valor poco confiable

4.4.3 Curva carga hidráulica-gastos.

Las curvas adimensionales "carga hidráulica-gastos", ($d/D - Qn/D^{8/3}$), se calcularon para diferentes pendientes y relaciones de llenado. En el anexo 3, tablas de la (3.1) a la (3.7), se muestran los valores y las graficas correspondientes de cada ensaye. Para su utilización es necesario conocer la rugosidad del túnel, coeficiente de Manning "*n*"; el gasto "*Q*"; y el diámetro del túnel "*D*".

4.4.4 Coeficiente de descarga.

Los coeficientes de descarga "*Cd*", (*Cd* - $Qn/D^{8/3}$), se calcularon para diferentes pendientes y relaciones de llenado, al aplicar la ecuación de la energía entre los piezómetros 2 y 14 (secciones -2*D* y 60*D*); que comprende la lumbrera de obturadores. En el anexo 4, tablas (4.1) al (4.7), se muestran los resultados. Para su utilización es necesario conocer la rugosidad del túnel, coeficiente de Manning "*n*"; el gasto "*Q*"; y el diámetro del túnel "*D*".

Los coeficientes de descarga "*Cd*" obtenidos a partir de la ecuación de gastos y de la energía, no son constantes: cambian con la relación de llenado; decrecen con una rugosidad mayor, y se incrementan con una pendiente geométrica del túnel menor.

4.4.5 Pérdidas de carga hidráulica.

Las pérdidas menores como resultado de la turbulencia en pleno desarrollo, expresadas en función de la carga de velocidad afectada por un coeficiente " K_e " llamado coeficiente de resistencia hidráulica que depende del tipo de pérdida y de la forma del túnel, se estimaron al considerar la geometría por entrada.

La pérdida de carga hidráulica " h_e ", se calcularon para diferentes pendientes y relaciones de llenado a partir de la ecuación de la energía, entre los piezómetros 2 y 4 (secciones -2D y 3D), incluyendo la lumbrera de obturadores. La pérdida es ocasionada por la contracción del flujo a la entrada del túnel. Los coeficientes de pérdida por entrada K_{e} , se estimaron a partir de la pérdida de carga hidráulica, h_{e} , mediante la expresión general de pérdida local $h_e = K_e V^2/2g$, anexo 5, tablas (5.1) a (5.7)

Los coeficientes de pérdida por entrada " k_e ", no son constantes por una parte por la asimetría del flujo a la entrada del túnel, y por otra parte a la forma de operar el túnel: a superficie libre, zona de transición y como orificio. Se obtuvieron para diferentes pendientes y relaciones de llenado, en el anexo 5, se presentan al graficar en el eje de las abscisas, la carga de velocidad y en el eje de las ordenadas, la pérdida de carga. El

coeficiente de pérdida por entrada, es aproximado mediante la ecuación de una línea recta que incluye las tres formas de operar el túnel.

4.4.6 Caída del gradiente de presión.

En túneles largos, la carga de presión se ve disminuida por la pérdida de energía del flujo ocasionada por los esfuerzos cortantes desarrollados en la vecindad de las fronteras sólidas, término mejor conocido como "fricción", dando lugar a que a una cierta distancia del portal de entrada, el gradiente de presión se localice por debajo de la clave del túnel. Lo que quiere decir, que esa distancia sería la longitud optima para la máxima eficiencia del túnel bajo esa condición hidráulica en particular. En el anexo 6, tablas (6.1) a (6.28) se muestran los resultados numéricos y las gráficas correspondientes en función del número de Froude.

4.4.7 Localización de la caída del gradiente de presión.

Como se comentó en el apartado anterior, la localización de la caída del gradiente de presión se produce, a una cierta distancia del portal de entrada del túnel. En el anexo 7, tablas (7.1) a (7.7), se presentan para las diferentes relaciones de llenado d/D la posición de la caída de presión L/D; por ejemplo, para un túnel con pendiente de S₀ = 0,001, una relación de llenado d/D = 2 y un número de Froude, $F_r = 1,09$; la posición de la caída de presión L/D, es igual a 33. Lo que significa, que a partir de esta distancia y hasta L/D = 60, el túnel trabaja no lleno y aunque hay una importante inclusión de aire, el funcionamiento hidráulico no puede determinarse ni existe una garantía de que trabaje como canal. En las fotos (4.2), se observa la inclusión de aire por la presencia de vórtices para la relación de llenado d/D = 2.

Vórtices que introducen aire al túnel.

4.4.8 Caída del gradiente de presión y números de Froude.

Al acelerarse el flujo por la caída de presión, los números de F_r se incrementan en el túnel por arriba de la unidad. En el anexo 8, tablas (8.1) a (8.7), se aprecian para las diferentes relaciones de llenado d/D, el incremento de los valores de Fr en el túnel a partir de la caída de presión L/D, por ejemplo, para un túnel construido con acrílico difusor, pendiente So = 0,008, una relación de llenado d/D = 2,50, y L/D = 46, el número de Froude es de F_r = 1,093 y se incrementa conforme L/D tiende a 60, ver tabla (8.3), anexo 8.

Es importante mencionar que, no importando la condición de funcionamiento del túnel (como canal, orificio y tubo lleno), se calculó el número de Froude al considerar como variable característica a $4R_h$, ecuación (2.15), en lugar del diámetro del túnel. De forma similar se hizo, cuando se utilizó el número de Reynolds, ecuación (2.16).

De las tablas (8.1) a la (8.7), se aprecia también que la sección de control se presenta en el interior del túnel.

Relación, L/D	-	Relación, d/D												
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000		
-4	0,240	0,465	0,697	0,922	1,170	1,417	1,657	1,875	2,145	2,407	2,647	2,887		
-2	0,232	0,465	0,712	0,937	1,185	1,425	1,665	1,905	2,152	2,407	2,647	2,902		
0	0,217	0,435	0,660	0,862	1,102	1,290	1,462	1,635	1,822	2,017	2,205	2,370		
3	0,204	0,407	0,617	0,812	0,992	1,112	1,187	1,292	1,397	1,517	1,607	1,734		
6	0,206	0,409	0,619	0,799	0,986	1,091	1,166	1,256	1,376	1,481	1,564	1,677		
9	0,209	0,411	0,614	0,794	0,974	1,071	1,139	1,221	1,304	1,409	1,491	1,611		
12	0,211	0,398	0,608	0,788	0,976	1,066	1,111	1,186	1,283	1,373	1,456	1,553		
20	0,216	0,389	0,584	0,756	0,929	1,004	1,034	1,086	1,169	1,236	1,304	1,394		
28	0,214	0,394	0,582	0,747	0,927	0,994	1,002	1,054	1,114	1,182	1,234	1,294		
38	0,214	0,371	0,559	0,716	0,866	0,934	0,934	0,949	0,994	1,039	1,076	1,114		
46	0,212	0,362	0,534	0,685	0,827	0,872	0,865	0,872	0,887	0,902	0,932	0,955		
54	0,203	0,330	0,488	0,630	0,750	0,870	0,840	0,848	0,848	0,870	0,878	0,915		
57	0,160	0,310	0,460	0,595	0,685	0,850	0,820	0,820	0,820	0,835	0,842	0,865		
60	0,147	0,259	0,372	0,469	0,522	0,687	0,687	0,702	0,702	0,717	0,717	0,747		
Q, en m³/s	0,001	0,003	0,005	0,008	0,011	0,014	0,017	0,019	0,021	0,023	0,025	0,026		
Yc, en m	0,017	0,036	0,055	0,073	0,089	0,102	0,111	0,117	0,121	0,124	0,126	0,127		
Trabaja Como			Canal			Túnel lleno								

Tabla 1.1 Perfiles del agua en el túnel para diferentes relaciones de llenado d/D, ensaye A31.

Relación L/D

Relación, L/D	Relación, d/D												
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000	
-4	0,240	0,472	0,697	0,915	1,162	1,402	1,635	1,882	2,130	2,392	2,632	2,887	
-2	0,232	0,472	0,705	0,945	1,170	1,432	1,650	1,905	2,152	2,392	2,640	2,895	
0	0,217	0,435	0,645	0,862	1,095	1,297	1,447	1,642	1,815	2,010	2,182	2,377	
3	0,205	0,408	0,610	0,798	0,993	1,128	1,188	1,300	1,390	1,473	1,593	1,705	
6	0,208	0,403	0,606	0,793	0,973	1,116	1,153	1,258	1,348	1,453	1,551	1,663	
9	0,189	0,406	0,594	0,789	0,961	1,096	1,134	1,216	1,299	1,404	1,494	1,591	
12	0,192	0,409	0,597	0,792	0,964	1,099	1,107	1,197	1,279	1,347	1,452	1,549	
20	0,185	0,402	0,575	0,755	0,927	1,040	1,025	1,092	1,145	1,212	1,287	1,347	
28	0,193	0,380	0,568	0,748	0,920	1,025	0,995	1,048	1,100	1,160	1,228	1,288	
38	0,195	0,368	0,540	0,698	0,893	0,968	0,915	0,945	0,983	1,013	1,058	1,095	
46	0,196	0,353	0,526	0,676	0,848	0,923	0,848	0,863	0,878	0,893	0,916	0,938	
54	0,166	0,324	0,474	0,624	0,781	0,879	0,819	0,841	0,856	0,871	0,879	0,901	
57	0,169	0,322	0,462	0,597	0,649	0,709	0,814	0,807	0,844	0,844	0,852	0,867	
60	0,150	0,270	0,367	0,472	0,525	0,585	0,690	0,705	0,705	0,705	0,720	0,735	
Q, en m³/s	0,001	0,003	0,005	0,008	0,012	0,014	0,018	0,020	0,021	0,023	0,025	0,026	
Yc, en m	0,019	0,037	0,055	0,074	0,090	0,102	0,113	0,118	0,121	0,124	0,126	0,127	
Trabaja Como			Canal			Túnel lleno							

Tabla 1.2 Perfiles del agua en el tunel para diferentes relaciones de llenado d/D, ensaye

Relación L/D

Relación, L/D		Relación, d/D													
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000			
-4	0,240	0,465	0,682	0,892	1,099	1,361	1,616	1,871	2,122	2,370	2,632	2,895			
-2	0,232	0,465	0,712	0,930	1,170	1,406	1,642	1,886	2,134	2,385	2,632	2,895			
0	0,187	0,382	0,607	0,810	1,039	1,207	1,380	1,575	1,755	1,942	2,122	2,265			
3	0,124	0,252	0,387	0,492	0,882	0,964	1,062	1,159	1,257	1,362	1,452	1,564			
6	0,114	0,264	0,399	0,654	0,901	0,954	1,036	1,141	1,231	1,333	1,423	1,531			
9	0,141	0,298	0,493	0,651	0,898	0,940	1,011	1,101	1,183	1,281	1,363	1,532			
12	0,153	0,325	0,490	0,648	0,907	0,925	1,000	1,075	1,154	1,237	1,323	1,402			
20	0,125	0,290	0,470	0,620	0,886	0,886	0,939	1,010	1,062	1,055	1,194	1,265			
28	0,164	0,322	0,494	0,667	0,824	0,877	0,903	0,963	1,012	1,068	1,109	1,177			
38	0,159	0,309	0,504	0,654	0,891	0,842	0,808	0,827	0,876	0,932	0,977	1,014			
46	0,169	0,326	0,499	0,649	0,878	0,799	0,799	0,806	0,821	0,836	0,855	0,866			
54	0,156	0,298	0,493	0,621	0,853	0,786	0,778	0,778	0,778	0,778	0,778	0,805			
57	0,145	0,280	0,438	0,584	0,873	0,794	0,790	0,790	0,790	0,790	0,790	0,790			
60	0,142	0,270	0,397	0,480	0,615	0,682	0,682	0,682	0,705	0,705	0,705	0,731			
Q, en m³/s	0,001	0,003	0,006	0,009	0,013	0,015	0,019	0,021	0,023	0,024	0,026	0,028			
Yc, en m	0,020	0,040	0,061	0,080	0,098	0,105	0,116	0,121	0,124	0,125	0,127	0,128			
Trabaja Como			Ca	nal					Túne	Túnel lleno					

Tabla 1.3 Perfiles del agua en el túnel para diferentes relaciones de llenado d/D, ensaye A33

Relación L/D

Relación, L/D		Relación, d/D												
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000		
-4	0,248	0,480	0,743	0,986	1,238	1,485	1,740	1,980	2,243	2,486	2,730	2,978		
-2	0,240	0,458	0,713	0,949	1,163	1,403	1,639	1,886	2,153	2,385	2,648	2,880		
0	0,203	0,390	0,619	0,833	1,035	1,200	1,384	1,575	1,729	1,890	2,055	2,213		
3	0,129	0,287	0,392	0,527	0,722	0,887	1,044	1,149	0,669	0,654	0,654	0,639		
6	0,123	0,254	0,393	0,517	0,667	0,892	1,042	1,151	0,701	0,704	0,708	0,716		
9	0,110	0,241	0,387	0,515	0,668	0,942	1,036	1,130	0,702	0,706	0,710	0,710		
12	0,130	0,246	0,392	0,524	0,681	0,936	1,019	1,109	0,711	0,704	0,711	0,711		
20	0,126	0,235	0,378	0,513	0,681	0,918	0,981	1,049	0,756	0,753	0,760	0,756		
28	0,123	0,224	0,374	0,498	0,659	0,929	0,989	1,045	0,805	0,809	0,820	0,820		
38	0,135	0,244	0,379	0,514	0,675	0,934	0,964	1,017	0,882	0,945	0,953	0,975		
46	0,128	0,233	0,376	0,496	0,653	0,916	0,923	0,953	0,901	0,891	0,878	0,857		
54	0,155	0,271	0,406	0,537	0,695	0,923	0,927	0,950	0,886	0,863	0,841	0,818		
57	0,141	0,246	0,392	0,520	0,670	0,891	0,921	0,932	0,854	0,835	0,812	0,786		
60	0,128	0,240	0,345	0,424	0,503	0,574	0,593	0,611	0,611	0,611	0,611	0,600		
Q, en m³/s	0,001	0,003	0,007	0,009	0,013	0,017	0,019	0,021	0,022	0,024	0,026	0,027		
Yc, en m	0,021	0,041	0,063	0,079	0,098	0,111	0,117	0,120	0,123	0,125	0,126	0,128		
Trabaja Como	Canal						Túne	l lleno	Canal					

Tabla	1.4 Perfiles	del agua en el túnel	para diferentes relaciones	de llenado d/D, ensaye A34
-------	--------------	----------------------	----------------------------	----------------------------

Relación L/D	Relación d/D													
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000		
-4	0,240	0,480	0,735	0,967	1,230	1,477	1,732	1,972	2,224	2,482	2,730	2,977		
-2	0,240	0,480	0,720	0,945	1,200	1,432	1,680	1,920	2,175	2,422	2,670	2,925		
0	0,217	0,450	0,671	0,877	1,117	1,335	1,530	1,732	1,935	2,126	2,340	2,561		
3	0,219	0,429	0,639	0,834	1,041	1,202	1,341	1,476	1,614	1,761	1,903	2,046		
6	0,206	0,416	0,615	0,821	1,005	1,163	1,294	1,429	1,549	1,688	1,804	1,954		
9	0,205	0,411	0,610	0,805	0,992	1,124	1,210	1,356	1,469	1,596	1,701	1,829		
12	0,203	0,406	0,608	0,811	0,976	1,107	1,208	1,313	1,418	1,527	1,632	1,748		
20	0,194	0,389	0,588	0,779	0,959	1,071	1,154	1,251	1,341	1,439	1,514	1,615		
28	0,199	0,394	0,578	0,747	0,919	1,017	1,058	1,137	1,197	1,272	1,328	1,407		
38	0,195	0,379	0,559	0,716	0,878	0,964	1,001	1,031	1,054	1,114	1,136	1,193		
46	0,197	0,354	0,531	0,685	0,812	0,921	0,928	0,981	0,970	0,985	0,985	1,007		
54	0,165	0,315	0,469	0,608	0,728	0,870	0,863	0,863	0,863	0,855	0,855	0,848		
57	0,126	0,265	0,411	0,553	0,647	0,857	0,835	0,835	0,827	0,801	0,805	0,790		
60	0,124	0,222	0,316	0,402	0,458	0,559	0,631	0,619	0,612	0,597	0,589	0,567		
Q, en m³/s	0,001	0,003	0,005	0,008	0,010	0,012	0,015	0,017	0,019	0,020	0,021	0,023		
Yc, en m	0,016	0,035	0,053	0,071	0,083	0,094	0,103	0,110	0,115	0,118	0,121	0,123		
Trabaja Como			Canal					-	lúnei llen	0				

Tabla 1.5 Perfiles del agua en el túnel para diferentes relaciones dellenado d/D. Ensaye L31.

79

Relación L/D	Relación d/D													
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000		
-4	0,248	0,496	0,750	0,975	1,222	1,477	1,725	1,957	2,227	2,486	2,737	2,985		
-2	0,241	0,481	0,712	0,937	1,185	1,447	1,680	1,920	2,182	2,422	2,670	2,910		
0	0,226	0,455	0,675	0,885	1,106	1,312	1,526	1,725	1,935	2,137	2,325	2,535		
3	0,221	0,439	0,644	0,828	1,023	1,184	1,323	1,454	1,608	1,743	1,882	2,028		
6	0,202	0,419	0,632	0,823	1,003	1,161	1,285	1,408	1,536	1,678	1,795	1,930		
9	0,201	0,415	0,620	0,804	0,984	1,134	1,235	1,340	1,464	1,576	1,696	1,816		
12	0,204	0,407	0,612	0,796	0,975	1,099	1,197	1,294	1,399	1,512	1,624	1,737		
20	0,201	0,403	0,605	0,777	0,950	1,070	1,152	1,231	1,332	1,422	1,512	1,602		
28	0,201	0,389	0,579	0,748	0,913	1,007	1,067	1,108	1,175	1,243	1,310	1,378		
38	0,200	0,380	0,570	0,724	0,874	0,960	0,983	1,020	1,058	1,099	1,137	1,189		
46	0,189	0,358	0,541	0,691	0,822	0,916	0,935	0,938	0,946	0,972	0,983	1,010		
54	0,174	0,317	0,478	0,609	0,729	0,875	0,868	0,868	0,834	0,834	0,841	0,830		
57	0,114	0,256	0,402	0,529	0,630	0,859	0,837	0,837	0,807	0,807	0,799	0,788		
60	0,102	0,207	0,307	0,397	0,438	0,562	0,611	0,611	0,589	0,589	0,574	0,559		
Q, en m³/s	0,001	0,003	0,005	0,008	0,011	0,013	0,015	0,017	0,019	0,020	0,021	0,023		
Yc, en m	0,016	0,035	0,054	0,071	0,086	0,096	0,105	0,111	0,116	0,119	0,122	0,124		
Trabaja Como			Canal					1	lúnel llen	0				

Tabla 1.6	Perfiles de	l agua en el	túnel para	diferentes	relaciones	de llenado	d/D.	Ensaye L32.
-----------	-------------	--------------	------------	------------	------------	------------	------	-------------

Relación L/D	Relación d/D													
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000		
-4	0,240	0,461	0,690	0,915	1,166	1,395	1,654	1,890	2,152	2,407	2,655	2,917		
-2	0,240	0,461	0,705	0,945	1,192	1,417	1,669	1,905	2,167	2,407	2,655	2,917		
0	0,202	0,416	0,667	0,866	1,091	1,282	1,507	1,687	1,894	2,100	2,302	2,505		
3	0,192	0,344	0,571	0,769	0,987	1,122	1,264	1,399	1,542	1,688	1,823	1,996		
6	0,200	0,365	0,571	0,766	0,973	1,089	1,231	1,344	1,468	1,603	1,741	1,891		
9	0,201	0,347	0,538	0,748	0,955	1,060	1,176	1,288	1,401	1,525	1,641	1,765		
12	0,205	0,333	0,543	0,738	0,940	1,038	1,143	1,240	1,349	1,462	1,567	1,687		
20	0,185	0,350	0,556	0,740	0,931	1,017	1,104	1,190	1,272	1,374	1,471	1,569		
28	0,168	0,359	0,562	0,727	0,914	0,959	1,019	1,087	1,132	1,177	1,263	1,327		
38	0,197	0,366	0,557	0,726	0,906	0,924	0,962	0,996	1,029	1,067	1,112	1,153		
46	0,195	0,364	0,559	0,713	0,859	0,904	0,908	0,923	0,926	0,964	0,983	1,009		
54	0,201	0,358	0,516	0,595	0,733	0,868	0,853	0,850	0,831	0,823	0,831	0,831		
57	0,153	0,303	0,445	0,584	0,682	0,839	0,843	0,820	0,798	0,783	0,779	0,783		
60	0,150	0,251	0,352	0,420	0,472	0,622	0,634	0,622	0,592	0,592	0,570	0,562		
Q, en m³/s	0,001	0,004	0,006	0,009	0,012	0,014	0,016	0,018	0,019	0,021	0,022	0,024		
Yc, en m	0,020	0,043	0,060	0,079	0,091	0,102	0,109	0,114	0,117	0,121	0,123	0,125		
Trabaja Como	-		Canal	1					fúnel llen	0		1		

Tabla 1.7 Perfiles del agua en el túnel para diferentes relaciones de llenado d/D. Ensaye L33.

Relación L/D	Relación d/D													
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000		
-4	0,240	0,491	0,735	0,975	1,234	1,474	1,725	1,958	2,235	2,475	2,731	2,970		
-2	0,236	0,465	0,705	0,934	1,163	1,403	1,654	1,883	2,156	2,400	2,648	2,895		
0	0,195	0,394	0,615	0,814	1,039	1,230	1,433	1,631	1,849	2,044	2,258	2,456		
3	0,137	0,272	0,399	0,504	0,864	1,018	1,160	1,288	1,449	1,569	1,727	1,884		
6	0,146	0,292	0,449	0,622	0,851	1,004	1,124	1,252	1,394	1,533	1,668	1,818		
9	0,170	0,342	0,507	0,672	0,867	1,006	1,126	1,242	1,392	1,512	1,647	1,786		
12	0,167	0,284	0,441	0,584	0,854	0,970	1,086	1,191	1,319	1,424	1,555	1,671		
20	0,168	0,265	0,408	0,576	0,816	0,940	0,966	1,041	1,120	1,218	1,300	1,390		
28	0,149	0,265	0,419	0,614	0,839	0,910	0,910	1,027	1,102	1,162	1,255	1,330		
38	0,192	0,330	0,492	0,642	0,792	0,863	0,889	0,919	0,964	1,002	1,047	1,107		
46	0,136	0,274	0,413	0,556	0,751	0,848	0,856	0,863	0,886	0,916	0,938	0,961		
54	0,125	0,252	0,395	0,552	0,702	0,845	0,822	0,770	0,762	0,762	0,803	0,807		
57	0,201	0,351	0,501	0,565	0,696	0,839	0,801	0,752	0,700	0,752	0,771	0,767		
60	0,203	0,300	0,405	0,510	0,563	0,675	0,675	0,668	0,668	0,660	0,653	0,653		
Q, en m³/s	0,001	0,003	0,006	0,009	0,013	0,015	0,017	0,018	0,020	0,021	0,023	0,024		
Yc, en m	0,018	0,037	0,058	0,077	0,097	0,104	0,110	0,115	0,118	0,121	0,123	0,125		
Trabaja Como			Ca	nal					Túne	lleno				

Tabla 1.8 Perfiles del agua en el túnel para dif	erentes relaciones de llenado d/D. Ensaye L34
--	---

Relación, L/D	Relación, d/D													
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000		
-4	0,240	0,472	0,735	0,982	1,230	1,470	1,717	1,965	2,212	2,482	2,730	2,985		
-2	0,240	0,472	0,712	0,960	1,200	1,432	1,672	1,935	2,182	2,437	2,685	2,932		
0	0,225	0,442	0,675	0,900	1,132	1,350	1,575	1,770	1,991	2,212	2,422	2,610		
3	0,212	0,429	0,643	0,857	1,044	1,228	1,397	1,539	1,697	1,858	2,001	2,154		
6	0,214	0,424	0,641	0,844	1,031	1,204	1,369	1,504	1,647	1,804	1,939	2,082		
9	0,209	0,419	0,636	0,842	1,022	1,176	1,334	1,461	1,592	1,739	1,866	2,001		
12	0,211	0,421	0,631	0,826	1,006	1,156	1,309	1,426	1,542	1,692	1,808	1,928		
20	0,209	0,411	0,614	0,801	0,966	1,098	1,229	1,319	1,420	1,525	1,615	1,716		
28	0,207	0,394	0,589	0,769	0,934	1,039	1,156	1,227	1,302	1,381	1,463	1,538		
38	0,191	0,371	0,559	0,728	0,855	0,956	1,043	1,084	1,121	1,166	1,215	1,256		
46	0,197	0,354	0,531	0,685	0,805	0,917	0,977	0,992	1,007	1,030	1,041	1,071		
54	0,188	0,323	0,488	0,623	0,720	0,795	0,889	0,881	0,870	0,863	0,855	0,848		
57	0,182	0,310	0,475	0,602	0,692	0,778	0,887	0,872	0,857	0,853	0,842	0,827		
60	0,162	0,252	0,349	0,424	0,481	0,507	0,582	0,631	0,642	0,642	0,642	0,627		
Q, en m³/s	0,001	0,002	0,005	0,008	0,010	0,012	0,013	0,015	0,016	0,018	0,020	0,021		
Yc, en m	0,015	0,032	0,052	0,069	0,082	0,091	0,099	0,104	0,108	0,114	0,118	0,124		
Trabaja Como			Canal				1		Fúnel llen	0				

Tabla 1.9 Perfiles del agua en el túnel para diferentes relaciones de llenado d/D, ensaye D31.

Relación, L/D	1	Relación, d/D													
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000			
-4	0,241	0,473	0,727	0,975	1,218	1,485	1,725	1,976	2,227	2,475	2,730	2,977			
-2	0,233	0,466	0,705	0,967	1,177	1,447	1,687	1,924	2,175	2,422	2,685	2,940			
0	0,218	0,451	0,656	0,885	1,125	1,357	1,575	1,766	1,999	2,190	2,407	2,610			
3	0,210	0,431	0,640	0,843	1,034	1,229	1,394	1,533	1,690	1,844	1,983	2,148			
6	0,213	0,419	0,632	0,831	1,022	1,213	1,371	1,498	1,648	1,787	1,937	2,076			
9	0,216	0,419	0,631	0,826	1,010	1,186	1,344	1,460	1,610	1,719	1,854	1,989			
12	0,215	0,414	0,623	0,822	0,994	1,167	1,309	1,437	1,561	1,673	1,804	1,913			
20	0,212	0,415	0,609	0,789	0,950	1,100	1,231	1,314	1,422	1,512	1,610	1,707			
28	0,212	0,404	0,583	0,748	0,909	1,048	1,157	1,224	1,310	1,378	1,460	1,528			
38	0,196	0,384	0,555	0,720	0,848	0,972	1,047	1,080	1,133	1,170	1,208	1,238			
46	0,204	0,362	0,526	0,683	0,796	0,923	0,983	0,991	1,013	1,021	1,032	1,058			
54	0,189	0,340	0,493	0,616	0,714	0,853	0,894	0,879	0,875	0,853	0,849	0,841			
57	0,189	0,328	0,469	0,597	0,687	0,796	0,889	0,871	0,867	0,844	0,822	0,822			
60	0,165	0,263	0,349	0,427	0,472	0,510	0,592	0,634	0,652	0,645	0,622	0,615			
Q, en m³/s	0,001	0,003	0,005	0,008	0,010	0,012	0,013	0,015	0,017	0,019	0,020	0,021			
Yc, en m	0,017	0,033	0,052	0,069	0,082	0,091	0,098	0,105	0,111	0,115	0,118	0,120			
Trabaja Como			Canal						Túnel llen	0		1			

Tabla	1.10	Perfiles d	el agua er	n el túnel	para diferentes	relaciones	de llenado d/[D, ensaye D32.
-------	------	------------	------------	------------	-----------------	------------	----------------	----------------

Relación, L/D	Relación, d/D													
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000		
-4	0,240	0,480	0,712	0,975	1,230	1,485	1,725	1,965	2,212	2,486	2,726	2,970		
-2	0,240	0,465	0,697	0,926	1,170	1,436	1,672	1,920	2,175	2,437	2,692	2,925		
0	0,214	0,405	0,645	0,870	1,099	1,324	1,537	1,751	1,957	2,167	2,374	2,584		
3	0,177	0,368	0,582	0,781	0,987	1,163	1,321	1,463	1,628	1,774	1,921	2,078		
6	0,163	0,376	0,564	0,778	0,980	1,153	1,299	1,434	1,584	1,726	1,876	2,011		
9	0,160	0,377	0,568	0,775	0,958	1,138	1,270	1,393	1,521	1,667	1,817	1,930		
12	0,172	0,378	0,569	0,768	0,963	1,113	1,237	1,360	1,473	1,612	1,754	1,870		
20	0,181	0,387	0,567	0,759	0,924	1,070	1,164	1,254	1,355	1,456	1,572	1,655		
28	0,176	0,374	0,554	0,738	0,892	1,012	1,102	1,199	1,244	1,323	1,402	1,488		
38	0,167	0,358	0,534	0,714	0,838	0,951	0,992	1,029	1,074	1,116	1,149	1,213		
46	0,184	0,353	0,510	0,679	0,784	0,911	0,934	0,945	0,960	0,979	0,994	1,016		
54	0,205	0,328	0,478	0,625	0,715	0,850	0,846	0,827	0,816	0,816	0,812	0,808		
57	0,205	0,333	0,483	0,614	0,708	0,858	0,843	0,828	0,820	0,813	0,798	0,790		
60	0,214	0,285	0,379	0,465	0,476	0,540	0,622	0,622	0,630	0,630	0,615	0,566		
Q, en m³/s	0,001	0,003	0,006	0,009	0,012	0,013	0,015	0,017	0,018	0,019	0,021	0,022		
Yc, en m	0,020	0,039	0,059	0,077	0,090	0,097	0,104	0,110	0,114	0,118	0,120	0,122		
Trabaja Como			Canal						rúnel llen	0				

Tabla 1.11 Perfiles del agua en el túnel para diferentes relaciones de llenado d/D, ensay	e D33.
---	--------

Relación, L/D						Relaci	ón, d/D				-	
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000
-4	0,240	0,480	0,731	0,975	1,226	1,493	1,736	1,980	2,213	2,475	2,723	2,963
-2	0,233	0,453	0,705	0,926	1,174	1,425	1,676	1,920	2,153	2,423	2,678	2,914
0	0,184	0,409	0,608	0,829	1,054	1,275	1,493	1,703	1,901	2,126	2,318	2,558
3	0,159	0,320	0,474	0,587	0,920	1,093	1,239	1,393	1,532	1,682	1,847	1,993
6	0,149	0,318	0,468	0,644	0,911	1,087	1,226	1,368	1,503	1,642	1,788	1,938
9	0,147	0,301	0,466	0,650	0,916	1,070	1,197	1,325	1,452	1,587	1,718	1,865
12	0,141	0,295	0,456	0,647	0,910	1,056	1,180	1,304	1,420	1,544	1,660	1,799
20	0,175	0,344	0,513	0,689	0,903	1,015	1,109	1,210	1,293	1,390	1,491	1,600
28	0,160	0,314	0,479	0,670	0,884	0,982	1,057	1,124	1,195	1,278	1,345	1,439
38	0,154	0,323	0,492	0,675	0,844	0,927	0,957	0,998	1,032	1,077	1,110	1,182
46	0,151	0,297	0,462	0,631	0,811	0,893	0,908	0,912	0,927	0,946	0,961	1,006
54	0,155	0,301	0,455	0,612	0,758	0,845	0,833	0,815	0,803	0,807	0,792	0,811
57	0,179	0,344	0,479	0,659	0,782	0,865	0,850	0,831	0,812	0,809	0,794	0,809
60	0,180	0,289	0,398	0,480	0,548	0,638	0,660	0,668	0,645	0,645	0,623	0,638
Q, en m³/s	0,001	0,003	0,006	0,010	0,013	0,015	0,016	0,018	0,019	0,019	0,020	0,022
Yc, en m	0,020	0,040	0,061	0,081	0,097	0,104	0,109	0,113	0,115	0,118	0,120	0,122
Trabaja Como			Canal					-	Fúnel llen	0		

Tabla	1.12	Perfiles de	agua en	el túnel	para diferentes	relaciones	de lienado d/	D, ensaye D34.
-------	------	-------------	---------	----------	-----------------	------------	---------------	----------------

Relación L/D	See 20					Relaci	ón d/D		_	_	_	
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000
-4	0,247	0,487	0,735	0,990	1,222	1,477	1,725	1,965	2,224	2,490	2,722	2,970
-2	0,247	0,484	0,716	0,975	1,207	1,459	1,702	1,942	2,197	2,475	2,700	2,955
0	0,244	0,476	0,697	0,960	1,200	1,425	1,702	1,886	2,100	2,370	2,572	2,812
3	0,234	0,452	0,666	0,902	1,116	1,307	1,506	1,701	1,888	2,117	2,293	2,499
6	0,233	0,446	0,645	0,881	1,069	1,256	1,444	1,624	1,793	2,022	2,172	2,367
9	0,235	0,449	0,647	0,876	1,056	1,244	1,431	1,604	1,761	1,979	2,106	2,316
12	0,233	0,451	0,646	0,867	1,051	1,209	1,388	1,561	1,703	1,898	2,041	2,221
20	0,239	0,426	0,618	0,831	0,989	1,124	1,270	1,428	1,544	1,709	1,821	1,986
28	0,222	0,409	0,582	0,784	0,919	1,036	1,167	1,294	1,384	1,519	1,609	1,737
38	0,214	0,386	0,559	0,746	0,851	0,968	1,069	1,163	1,234	1,331	1,406	1,504
46	0,208	0,369	0,523	0,692	0,793	0,880	0,970	1,030	1,071	1,135	1,191	1,247
54	0,165	0,300	0,443	0,589	0,679	0,728	0,791	0,840	0,866	0,915	0,938	0,975
57	0,152	0,295	0,403	0,535	0,610	0,658	0,707	0,748	0,763	0,827	0,827	0,857
60	0,109	0,214	0,274	0,368	0,402	0,439	0,462	0,477	0,484	0,514	0,514	0,529
Q, en m³/s	0,001	0,002	0,004	0,006	0,007	0,008	0,010	0,011	0,012	0,012	0,013	0,014
Yc, en m	0,015	0,028	0,043	0,057	0,066	0,074	0,082	0,086	0,090	0,094	0,098	0,102
Trabaja Como		Ca	nal		Túnel lleno							

Tabla 1.13 P	erfiles del agua	en el túnel par	a diferentes	relaciones	dellenado	d/D.	Ensaye H	<31
--------------	------------------	-----------------	--------------	------------	-----------	------	----------	-----

Relación L/D						Relaci	ón d/D	_				
-5,1	0,2500	0,5000	0,7500	1,0000	1,2500	1,5000	1,7500	2,0000	2,2500	2,5000	2,7500	3,0000
-4	0,2406	0,4960	0,7273	0,9898	1,2333	1,4773	1,7323	1,9798	2,2461	2,4748	2,7223	2,9623
-2	0,2406	0,4810	0,7160	0,9785	1,2108	1,4548	1,7098	1,9498	2,2123	2,4523	2,6998	2,9398
0	0,2406	0,4659	0,6898	0,9448	1,1733	1,4173	1,6573	1,8823	2,1298	2,3436	2,5798	2,7973
3	0,2286	0,4501	0,6590	0,9028	1,0975	1,3003	1,5028	1,6603	1,9041	2,0953	2,2903	2,4786
6	0,2165	0,4456	0,6433	0,8758	1,0593	1,2470	1,4383	1,6258	1,8208	1,9933	2,1808	2,3608
9	0,2195	0,4374	0,6425	0,8638	1,0473	1,2275	1,4226	1,5988	1,7788	1,9513	2,1163	2,2851
12	0,2226	0,4366	0,6343	0,8518	1,0316	1,2005	1,3806	1,5418	1,7143	1,8793	2,0443	2,1981
20	0,2155	0,4221	0,6123	0,8148	0,9646	1,1186	1,2798	1,4073	1,5611	1,6923	1,8311	1,9586
28	0,2010	0,4113	0,5828	0,7778	0,8976	1,0328	1,1678	1,2728	1,3928	1,4978	1,6178	1,7153
38	0,1997	0,3837	0,5553	0,7428	0,8513	0,9641	1,0653	1,1478	1,2378	1,3278	1,4028	1,4778
46	0,1927	0,3617	0,5183	0,6833	0,7806	0,8708	0,9496	1,0208	1,0808	1,1408	1,1783	1,2346
54	0,1594	0,3133	0,4438	0,5788	0,6536	0,7213	0,7851	0,8338	0,8788	0,9163	0,9388	0,9613
57	0,1474	0,2863	0,4093	0,5368	0,5929	0,6531	0,6943	0,7393	0,7768	0,8068	0,8293	0,8443
60	0,0977	0,2103	0,2848	0,3598	0,3934	0,4273	0,4498	0,4723	0,4873	0,5023	0,5173	0,5173
Q, en m³/s	0,0004	0,0021	0,0039	0,0057	0,0073	0,0084	0,0097	0,0108	0,0119	0,0126	0,0135	0,0143
Yc, en m	0,0102	0,0297	0,0445	0,0570	0,0676	0,0739	0,0811	0,0863	0,0918	0,0946	0,0985	0,1017
Trabaja		Ca	nal	1				Túne	lleno		-	

Tabla 1.14	Perfiles del agua er	n el túnel para	diferentes relaciones	de llenado d/D.	Ensaye K32.
------------	----------------------	-----------------	-----------------------	-----------------	-------------

Relación L/D	Relación d/D											
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000
-4	0,240	0,487	0,731	0,982	1,226	1,485	1,732	1,972	2,220	2,497	2,741	2,985
-2	0,240	0,480	0,709	0,967	1,207	1,447	1,702	1,950	2,197	2,475	2,722	2,951
0	0,247	0,442	0,667	0,930	1,162	1,395	1,635	1,867	2,092	2,351	2,580	2,794
3	0,229	0,421	0,631	0,882	1,073	1,272	1,471	1,666	1,872	2,082	2,288	2,479
6	0,226	0,414	0,616	0,853	1,051	1,224	1,408	1,603	1,790	1,996	2,176	2,356
9	0,238	0,418	0,613	0,853	1,041	1,206	1,386	1,577	1,757	1,948	2,128	2,286
12	0,235	0,419	0,618	0,854	1,023	1,188	1,353	1,529	1,698	1,882	2,047	2,200
20	0,237	0,414	0,609	0,822	0,980	1,115	1,257	1,411	1,550	1,715	1,850	1,977
28	0,228	0,412	0,592	0,787	0,926	1,046	1,154	1,282	1,394	1,514	1,638	1,739
38	0,234	0,407	0,579	0,767	0,879	0,981	1,074	1,168	1,254	1,352	1,434	1,509
46	0,236	0,405	0,559	0,728	0,829	0,904	0,979	1,039	1,099	1,163	1,223	1,279
54	0,227	0,370	0,580	0,651	0,718	0,778	0,831	0,872	0,913	0,955	0,981	1,003
57	0,217	0,348	0,490	0,603	0,670	0,715	0,760	0,798	0,828	0,862	0,884	0,918
60	0,180	0,274	0,345	0,427	0,461	0,487	0,510	0,532	0,540	0,555	0,570	0,570
Q, en m³/s	0,001	0,003	0,004	0,007	0,008	0,009	0,010	0,011	0,012	0,013	0,014	0,015
Yc, en m	0,018	0,034	0,049	0,064	0,073	0,078	0,083	0,089	0,093	0,096	0,100	0,104
Trabaja Como	C a n a l Túnel lleno											

Tabla 1.15 Perfiles del agua en el túnel para diferentes relaciones de llenado d/D. Ensaye K33.

Relación L/D
Relación L/D		Relación d/D										
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000
-4	0,240	0,495	0,720	0,971	1,219	1,474	1,740	1,958	2,243	2,475	2,730	2,970
-2	0,240	0,476	0,694	0,945	1,189	1,448	1,710	1,920	2,220	2,453	2,708	2,970
0	0,188	0,420	0,641	0,878	1,136	1,373	1,613	1,830	2,093	2,310	2,543	2,790
3	0,174	0,384	0,587	0,804	1,037	1,235	1,445	1,614	1,854	2,034	2,229	2,439
6	0,176	0,378	0,573	0,783	1,001	1,188	1,383	1,556	1,773	1,938	2,118	2,321
9	0,177	0,387	0,582	0,796	0,995	1,178	1,358	1,535	1,741	1,895	2,067	2,255
12	0,186	0,381	0,580	0,794	0,981	1,157	1,334	1,491	1,686	1,821	1,994	2,181
20	0,186	0,381	0,573	0,775	0,948	1,098	1,244	1,375	1,540	1,660	1,795	1,938
28	0,168	0,370	0,558	0,742	0,899	1,027	1,139	1,252	1,387	1,484	1,597	1,724
38	0,173	0,372	0,559	0,747	0,878	0,979	1,065	1,137	1,253	1,324	1,399	1,497
46	0,184	0,379	0,556	0,721	0,833	0,901	0,976	1,043	1,092	1,141	1,193	1,261
54	0,185	0,372	0,522	0,642	0,725	0,777	0,822	0,867	0,905	0,935	0,957	0,980
57	0,190	0,340	0,486	0,602	0,670	0,711	0,745	0,786	0,809	0,839	0,854	0,884
60	0,150	0,263	0,353	0,413	0,450	0,473	0,488	0,506	0,518	0,533	0,540	0,555
Q, en m³/s	0,001	0,003	0,005	0,008	0,009	0,010	0,011	0,012	0,014	0,014	0,015	0,015
Yc, en m	0,021	0,038	0,056	0,072	0,078	0,085	0,089	0,093	0,099	0,102	0,104	0,106
Trabaja Como		Ca	nal					Túne	lleno			1

|--|

Relación, L/D	Relación, d/D											
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000
-4	0,232	0,480	0,735	0,971	1,230	1,470	1,740	1,972	2,235	2,482	2,730	2,985
-2	0,232	0,465	0,709	0,945	1,181	1,410	1,699	1,901	2,167	2,419	2,655	2,917
0	0,210	0,439	0,671	0,889	1,132	1,320	1,530	1,725	1,920	2,107	2,325	2,501
3	0,201	0,414	0,639	0,846	1,033	1,164	1,314	1,427	1,596	1,686	1,809	1,952
6	0,195	0,401	0,619	0,818	1,013	1,151	1,283	1,399	1,515	1,628	1,752	1,872
9	0,197	0,404	0,621	0,816	1,007	1,139	1,262	1,371	1,476	1,570	1,686	1,799
12	0,199	0,406	0,619	0,814	0,994	1,126	1,242	1,336	1,437	1,542	1,651	1,763
20	0,183	0,389	0,603	0,816	0,970	1,083	1,176	1,218	1,338	1,424	1,506	1,615
28	0,184	0,379	0,582	0,754	0,927	1,032	1,088	1,141	1,189	1,253	1,324	1,388
38	0,180	0,364	0,563	0,720	0,866	0,971	1,016	1,043	1,073	1,106	1,151	1,181
46	0,174	0,347	0,538	0,692	0,823	0,947	0,970	0,977	0,977	1,007	1,030	1,052
54	0,158	0,323	0,491	0,626	0,731	0,885	0,889	0,878	0,863	0,863	0,863	0,863
57	0,148	0,310	0,456	0,595	0,673	0,872	0,857	0,823	0,797	0,790	0,782	0,767
60	0,132	0,252	0,406	0,454	0,511	0,556	0,668	0,653	0,627	0,612	0,597	0,574
Q, en m³/s	0,001	0,003	0,005	0,007	0,010	0,012	0,015	0,017	0,018	0,020	0,021	0,023
Yc, en m	0,015	0,033	0,051	0,068	0,083	0,093	0,103	0,110	0,115	0,119	0,122	0,124
Trabaja Como			Canal					1	Túnel Ilen	0		-

Tabla 1.17 Perfiles del agua en el túnel para diferentes relaciones de llenado d/D, ensaye AL31.

Relación, L/D						Relaci	ón, d/D					
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000
-4	0,233	0,492	0,746	0,982	1,233	1,477	1,740	1,976	2,227	2,494	2,722	2,989
-2	0,233	0,492	0,724	0,930	1,162	1,402	1,695	1,920	2,171	2,419	2,655	2,914
0	0,229	0,451	0,667	0,881	1,125	1,324	1,549	1,729	1,931	2,111	2,317	2,512
3	0,210	0,416	0,637	0,817	1,015	1,173	1,338	1,432	1,567	1,683	1,810	1,945
6	0,205	0,408	0,628	0,805	0,999	1,153	1,303	1,393	1,517	1,618	1,742	1,877
9	0,208	0,411	0,628	0,804	0,995	1,141	1,295	1,366	1,483	1,588	1,708	1,828
12	0,215	0,414	0,623	0,807	0,990	1,129	1,264	1,332	1,459	1,553	1,651	1,771
20	0,208	0,396	0,616	0,777	0,957	1,089	1,212	1,265	1,351	1,426	1,509	1,606
28	0,201	0,396	0,594	0,752	0,920	1,025	1,130	1,149	1,205	1,269	1,318	1,382
38	0,204	0,388	0,578	0,724	0,889	0,975	1,054	1,043	1,077	1,107	1,125	1,178
46	0,208	0,365	0,552	0,698	0,822	0,946	1,013	0,980	0,998	1,017	1,021	1,058
54	0,193	0,340	0,515	0,624	0,736	0,879	0,946	0,875	0,875	0,868	0,849	0,868
57	0,189	0,343	0,481	0,582	0,657	0,728	0,822	0,833	0,814	0,807	0,792	0,781
60	0,169	0,270	0,375	0,446	0,495	0,532	0,566	0,645	0,634	0,611	0,589	0,581
Q, en m³/s	0,001	0,003	0,005	0,008	0,010	0,013	0,014	0,017	0,019	0,020	0,022	0,023
Yc, en m	0,016	0,034	0,053	0,071	0,085	0,095	0,102	0,110	0,116	0,119	0,122	0,122
Trabaja Como			Canal						rúnel llen	0		1

Tabla 1.18 Perfiles del agua en el túnel para diferentes relaciones de llenado d/D, ensaye AL32.

Relación, L/D		Relación, d/D													
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000			
-4	0,240	0,472	0,735	0,967	1,241	1,477	1,736	1,991	2,254	2,482	2,730	2,981			
-2	0,232	0,465	0,701	0,922	1,177	1,417	1,665	1,916	2,171	2,411	2,674	2,906			
0	0,195	0,397	0,600	0,840	1,091	1,294	1,496	1,702	1,894	2,074	2,287	2,482			
3	0,169	0,338	0,537	0,739	0,976	1,114	1,231	1,373	1,493	1,621	1,763	1,887			
6	0,163	0,309	0,519	0,714	0,958	1,096	1,201	1,333	1,445	1,550	1,678	1,809			
9	0,148	0,321	0,531	0,737	0,955	1,093	1,191	1,300	1,412	1,517	1,637	1,750			
12	0,160	0,333	0,535	0,738	0,944	1,075	1,162	1,285	1,379	1,480	1,597	1,694			
20	0,155	0,312	0,500	0,710	0,946	1,055	1,119	1,209	1,291	1,366	1,471	1,554			
28	0,142	0,288	0,502	0,701	0,918	1,001	1,038	1,098	1,169	1,211	1,278	1,353			
38	0,159	0,324	0,527	0,711	0,902	0,966	0,966	1,007	1,044	1,063	1,101	1,149			
46	0,176	0,334	0,521	0,686	0,833	0,960	0,938	0,960	0,968	0,990	1,005	1,035			
54	0,178	0,317	0,463	0,632	0,718	0,906	0,861	0,861	0,850	0,850	0,842	0,835			
57	0,138	0,288	0,438	0,577	0,689	0,768	0,835	0,828	0,802	0,787	0,772	0,764			
60	0,150	0,266	0,382	0,465	0,517	0,529	0,656	0,641	0,626	0,611	0,596	0,577			
Q, en m³/s	0,001	0,003	0,006	0,009	0,012	0,014	0,016	0,018	0,020	0,021	0,022	0,024			
Yc, en m	0,020	0,038	0,058	0,073	0,090	0,099	0,109	0,113	0,118	0,121	0,123	0,125			
Trabaja Como			Canal						Fúnel llen	0					

Tabla 1.19 Perfiles del agua en el túnel para diferentes relaciones de llenado d/L), ensaye A	L33.
--	-------------	------

Relación, L/D		_				Relaci	ón, d/D					
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000
-4	0,240	0,480	0,720	0,964	1,223	1,481	1,733	1,973	2,235	2,486	2,730	2,985
-2	0,240	0,465	0,683	0,919	1,170	1,403	1,643	1,879	2,160	2,419	2,655	2,910
0	0,214	0,401	0,593	0,799	1,031	1,223	1,421	1,601	1,823	2,010	2,220	2,411
3	0,114	0,279	0,410	0,519	0,737	1,014	1,119	1,232	1,359	1,494	1,618	1,757
6	0,134	0,269	0,408	0,524	0,798	1,008	1,091	1,203	1,327	1,443	1,567	1,698
9	0,106	0,245	0,391	0,522	0,815	1,006	1,085	1,190	1,298	1,407	1,535	1,658
12	0,122	0,250	0,389	0,527	0,839	1,007	1,064	1,165	1,274	1,371	1,484	1,596
20	0,130	0,269	0,415	0,565	0,801	1,000	1,041	1,120	1,203	1,285	1,394	1,488
28	0,123	0,258	0,400	0,547	0,742	0,959	0,959	1,012	1,087	1,139	1,214	1,252
38	0,102	0,244	0,372	0,514	0,799	0,949	0,900	0,923	0,968	1,009	1,050	1,107
46	0,143	0,271	0,402	0,556	0,781	0,949	0,878	0,897	0,916	0,942	0,964	1,002
54	0,132	0,256	0,402	0,556	0,755	0,920	0,830	0,822	0,818	0,822	0,822	0,837
57	0,115	0,242	0,381	0,531	0,704	0,850	0,809	0,786	0,771	0,752	0,756	0,760
60	0,154	0,240	0,330	0,420	0,480	0,503	0,527	0,555	0,518	0,488	0,465	0,450
Q, en m³/s	0,001	0,003	0,006	0,010	0,013	0,015	0,016	0,018	0,019	0,019	0,020	0,022
Yc, en m	0,019	0,038	0,059	0,077	0,093	0,107	0,114	0,117	0,121	0,123	0,125	0,126
Trabaja Como			Ca	nal					Túne	llieno		

Tabla	1.20	Perfiles de	agua en	el túnel	para diferente	es relaciones	de llena	ido d/D	, ensaye AL34.
-------	------	-------------	---------	----------	----------------	---------------	----------	---------	----------------

Relación, L/D					-	Relaci	ón, d/D		-			
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000
-4	0,240	0,487	0,735	0,967	1,230	1,485	1,729	1,972	2,235	2,482	2,722	2,970
-2	0,232	0,472	0,712	0,937	1,192	1,447	1,695	1,912	2,164	2,426	2,670	2,910
0	0,225	0,454	0,660	0,885	1,110	1,339	1,560	1,755	1,946	2,152	2,351	2,554
3	0,212	0,426	0,624	0,834	1,018	1,187	1,344	1,506	1,599	1,734	1,862	1,963
6	0,199	0,413	0,615	0,806	0,990	1,151	1,305	1,436	1,530	1,662	1,782	1,898
9	0,201	0,407	0,606	0,801	0,985	1,139	1,277	1,416	1,499	1,619	1,739	1,851
12	0,203	0,409	0,604	0,796	0,964	1,107	1,238	1,362	1,441	1,549	1,658	1,767
20	0,194	0,385	0,573	0,756	0,921	1,056	1,154	1,251	1,289	1,379	1,450	1,529
28	0,192	0,383	0,563	0,732	0,882	1,009	1,099	1,189	1,204	1,253	1,317	1,392
38	0,191	0,371	0,544	0,701	0,836	0,941	1,009	1,073	1,039	1,069	1,099	1,140
46	0,174	0,339	0,501	0,658	0,782	0,895	0,962	1,003	0,970	0,970	0,992	1,018
54	0,150	0,293	0,439	0,563	0,683	0,750	0,803	0,878	0,806	0,795	0,788	0,791
57	0,137	0,272	0,418	0,550	0,670	0,730	0,726	0,782	0,805	0,793	0,778	0,775
60	0,132	0,237	0,334	0,417	0,462	0,503	0,541	0,578	0,649	0,642	0,631	0,627
Q, en m³/s	0,0008	0,0025	0,0050	0,0074	0,0100	0,0118	0,0137	0,0153	0,0170	0,0187	0,0204	0,0216
Yc, en m	0,0155	0,0329	0,0523	0,0684	0,0824	0,0911	0,0993	0,1053	0,1111	0,1158	0,1195	0,1218
Trabaja Como	Canal							1	únel llen	0		

Tabla 1	.21	Perfiles	del agua	en el túne	l para	diferentes	relaciones	de	llenado	d/D,	ensaye A	D31.

Relación, L/D	/D Relación, d/D											
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000
-4	0,241	0,481	0,739	0,982	1,222	1,477	1,725	1,965	2,220	2,467	2,715	2,970
-2	0,233	0,462	0,716	0,937	1,185	1,417	1,665	1,905	2,175	2,415	2,655	2,895
0	0,207	0,428	0,667	0,870	1,113	1,320	1,545	1,736	1,946	2,137	2,332	2,542
3	0,202	0,409	0,629	0,828	1,023	1,184	1,342	1,465	1,600	1,720	1,848	2,017
6	0,194	0,397	0,617	0,808	0,992	1,150	1,296	1,401	1,532	1,645	1,768	1,892
9	0,189	0,392	0,613	0,804	0,980	1,134	1,280	1,374	1,498	1,612	1,726	1,839
12	0,189	0,388	0,601	0,784	0,964	1,107	1,242	1,298	1,441	1,542	1,651	1,752
20	0,178	0,381	0,571	0,762	0,927	1,051	1,156	1,224	1,299	1,385	1,464	1,539
28	0,186	0,366	0,557	0,729	0,890	1,007	1,112	1,145	1,209	1,250	1,310	1,378
38	0,188	0,357	0,548	0,698	0,840	0,938	1,013	1,017	1,047	1,069	1,103	1,133
46	0,181	0,339	0,522	0,668	0,788	0,893	0,961	0,957	0,968	0,983	0,998	1,017
54	0,159	0,295	0,451	0,579	0,687	0,759	0,841	0,826	0,808	0,789	0,781	0,811
57	0,155	0,283	0,424	0,552	0,672	0,743	0,788	0,829	0,811	0,792	0,784	0,792
60	0,150	0,244	0,360	0,442	0,495	0,525	0,562	0,656	0,656	0,649	0,641	0,637
Q, en m³/s	0,0008	0,0027	0,0048	0,0077	0,0099	0,0118	0,0135	0,0157	0,0172	0,0188	0,0198	0,0215
Yc, en m	0,0159	0,0349	0,0513	0,0699	0,0819	0,0913	0,0986	0,1069	0,1117	0,1161	0,1183	0,1216
Trabaja Como			Canal				-		Túnel llen	0		- 1916

Tabla 1.22 Pe	erfiles del agua en el túne	para diferentes relaciones de	e llenado d/D.	, ensaye AD32.
---------------	-----------------------------	-------------------------------	----------------	----------------

Relación, L/D						Relación, d/D							
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000	
-4	0,240	0,480	0,727	0,975	1,237	1,477	1,725	1,957	2,224	2,482	2,707	2,947	
-2	0,232	0,457	0,697	0,930	1,177	1,425	1,657	1,905	2,149	2,407	2,647	2,895	
0	0,199	0,401	0,604	0,817	1,076	1,297	1,507	1,702	1,901	2,107	2,287	2,497	
3	0,169	0,346	0,522	0,739	0,957	1,133	1,272	1,396	1,516	1,662	1,789	1,939	
6	0,151	0,316	0,526	0,729	0,943	1,104	1,216	1,336	1,456	1,584	1,696	1,835	
9	0,141	0,310	0,516	0,726	0,932	1,082	1,195	1,303	1,427	1,551	1,648	1,791	
12	0,138	0,280	0,502	0,715	0,918	1,068	1,169	1,270	1,375	1,484	1,574	1,698	
20	0,129	0,309	0,500	0,695	0,871	1,010	1,085	1,164	1,220	1,310	1,396	1,490	
28	0,149	0,314	0,498	0,682	0,839	0,967	1,019	1,076	1,139	1,207	1,267	1,334	
38	0,152	0,302	0,489	0,677	0,827	0,932	0,962	0,973	0,988	1,033	1,059	1,104	
46	0,173	0,323	0,491	0,664	0,795	0,908	0,919	0,919	0,923	0,949	0,971	1,001	
54	0,171	0,317	0,463	0,617	0,718	0,823	0,838	0,816	0,801	0,808	0,778	0,808	
57	0,175	0,314	0,453	0,618	0,715	0,678	0,820	0,809	0,794	0,768	0,753	0,768	
60	0,180	0,277	0,379	0,465	0,525	0,562	0,671	0,671	0,679	0,664	0,656	0,652	
Q, en m³/s	0,001	0,003	0,006	0,009	0,011	0,013	0,015	0,017	0,018	0,020	0,021	0,023	
Yc,enm	0,019	0,038	0,058	0,076	0,089	0,097	0,105	0,111	0,115	0,118	0,121	0,124	
Trabaja Como	Canal						Túnel lleno						

Tabla 1.23 Perfiles del agua en el túnel para diferentes relaciones de llenado d/D, ensaye AD33.

Relación, L/D				_		Relaci	ación, d/D					
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000
-4	0,248	0,488	0,735	0,975	1,230	1,478	1,733	1,965	2,235	2,475	2,715	2,963
-2	0,240	0,465	0,698	0,930	1,163	1,403	1,650	1,890	2,160	2,415	2,648	2,888
0	0,375	0,555	0,791	1,001	1,219	1,418	1,628	1,819	2,044	2,160	2,445	2,633
3	0,125	0,260	0,384	0,497	0,823	0,977	1,149	1,280	1,427	1,509	1,682	1,805
6	0,119	0,266	0,408	0,551	0,809	0,993	1,117	1,229	1,361	1,496	1,612	1,736
9	0,117	0,256	0,485	0,575	0,822	0,987	1,107	1,205	1,340	1,452	1,572	1,685
12	0,126	0,250	0,404	0,565	0,809	0,966	1,079	1,157	1,289	1,394	1,506	1,611
20	0,111	0,239	0,393	0,576	0,775	0,910	0,985	1,053	1,143	1,240	1,315	1,398
28	0,119	0,232	0,393	0,584	0,783	0,899	0,955	0,989	1,072	1,139	1,199	1,263
38	0,109	0,233	0,372	0,518	0,769	0,859	0,874	0,904	0,934	0,975	1,013	1,047
46	0,128	0,256	0,406	0,567	0,773	0,848	0,856	0,863	0,878	0,912	0,938	0,961
54	0,140	0,256	0,410	0,571	0,725	0,807	0,785	0,781	0,777	0,766	0,770	0,770
57	0,119	0,239	0,377	0,516	0,666	0,820	0,790	0,767	0,760	0,749	0,752	0,749
60	0,135	0,240	0,360	0,465	0,540	0,660	0,675	0,664	0,653	0,686	0,694	0,679
Q, en m³/s	0,001	0,003	0,006	0,009	0,013	0,015	0,017	0,018	0,020	0,021	0,022	0,024
Yc, en m	0,020	0,039	0,059	0,078	0,096	0,104	0,111	0,115	0,119	0,121	0,123	0,125
Trabaja Como			Ca	nal					Túne	lieno		

Relación L/D	Relación d/D											
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000
-4	0,247	0,480	0,735	0,975	1,230	1,462	1,725	1,965	2,227	2,460	2,737	2,970
-2	0,247	0,472	0,712	0,945	1,200	1,440	1,687	1,942	2,190	2,437	2,700	2,940
0	0,244	0,465	0,701	0,915	1,174	1,387	1,627	1,860	2,085	2,310	2,535	2,752
3	0,227	0,437	0,654	0,861	1,082	1,251	1,457	1,652	1,847	2,004	2,199	2,409
6	0,225	0,439	0,656	0,844	1,054	1,215	1,406	1,579	1,752	1,984	2,067	2,224
9	0,216	0,441	0,659	0,831	1,041	1,184	1,371	1,544	1,709	1,859	2,024	2,189
12	0,214	0,428	0,634	0,814	1,021	1,156	1,336	1,493	1,658	1,786	1,951	2,086
20	0,216	0,411	0,614	0,779	0,970	1,083	1,251	1,394	1,529	1,683	1,776	1,904
28	0,203	0,383	0,574	0,721	0,889	0,987	1,114	1,219	1,339	1,407	1,523	1,617
38	0,206	0,379	0,566	0,713	0,859	0,949	1,061	1,159	1,241	1,316	1,399	1,466
46	0,186	0,343	0,519	0,640	0,782	0,842	0,940	1,007	1,060	1,105	1,150	1,195
54	0,180	0,323	0,473	0,574	0,675	0,728	0,803	0,851	0,889	0,926	0,960	0,968
57	0,175	0,317	0,460	0,550	0,655	0,700	0,775	0,820	0,842	0,880	0,913	0,925
60	0,143	0,237	0,334	0,391	0,469	0,477	0,529	0,559	0,582	0,589	0,597	0,604
Q, en m³/s	0,001	0,002	0,004	0,006	0,008	0,010	0,011	0,012	0,013	0,014	0,015	0,016
Yc, en m	0,016	0,031	0,048	0,062	0,074	0,081	0,087	0,094	0,098	0,102	0,106	0,109
Trabaja Como		Ca	nal		Túnel lleno							

Tabla	1.25	Perfiles	del agu	la en e	l túnel	para	diferentes	relaciones	dellenado d	/D. Ens	aye AK31.

Relación L/D					Relación d/D							
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000
-4	0,241	0,481	0,720	0,977	1,215	1,470	1,725	1,965	2,242	2,482	2,737	2,992
-2	0,241	0,481	0,712	0,960	1,207	1,447	1,695	1,935	2,190	2,460	2,707	2,974
0	0,222	0,458	0,686	0,960	1,155	1,395	1,635	1,837	2,077	2,325	2,535	2,771
3	0,225	0,446	0,689	0,873	1,071	1,270	1,465	1,668	1,825	2,028	2,197	2,388
6	0,224	0,427	0,681	0,853	1,041	1,221	1,405	1,558	1,731	1,937	2,087	2,256
9	0,223	0,426	0,635	0,841	1,021	1,209	1,374	1,520	1,689	1,884	2,038	2,195
12	0,215	0,422	0,631	0,822	1,002	1,167	1,332	1,482	1,647	1,823	1,962	2,116
20	0,208	0,411	0,605	0,796	0,957	1,107	1,257	1,385	1,520	1,670	1,786	1,902
28	0,193	0,419	0,568	0,733	0,875	1,010	1,123	1,220	1,325	1,449	1,535	1,640
38	0,211	0,384	0,574	0,735	0,855	0,975	1,065	1,148	1,249	1,343	1,425	1,489
46	0,185	0,347	0,518	0,668	0,781	0,863	0,950	1,006	1,066	1,130	1,175	1,208
54	0,182	0,328	0,466	0,601	0,691	0,755	0,811	0,856	0,901	0,954	0,976	0,995
57	0,181	0,328	0,462	0,574	0,668	0,724	0,777	0,822	0,859	0,904	0,938	0,957
60	0,165	0,259	0,345	0,424	0,472	0,510	0,532	0,555	0,585	0,607	0,622	0,630
Q, en m³/s	0,0009	0,0024	0,0045	0,0066	0,0087	0,0098	0,0115	0,0124	0,0136	0,0145	0,0154	0,0163
Yc, en m	0,0167	0,0321	0,0489	0,0631	0,0756	0,0815	0,0899	0,0939	0,0990	0,1025	0,1058	0,1088
Trabaja Como		Ca	nal	-				Túnel	lleno			

rabia 1.20 Permies del agua en el tunel para diferentes relaciones de lienado d/D. Ensaye Ar	Tabla 1.2	26 Perfiles del agua en el túnel p	oara diferentes relaciones	de llenado d/D. Ensay	/e AK32.
--	-----------	------------------------------------	----------------------------	-----------------------	----------

Relación L/D	Relación d/D												
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000	
-4	0,240	0,495	0,735	0,982	1,230	1,485	1,725	1,972	2,212	2,467	2,730	2,977	
-2	0,232	0,480	0,697	0,952	1,207	1,455	1,695	1,927	2,182	2,430	2,700	2,932	
0	0,210	0,427	0,667	0,907	1,155	1,380	1,612	1,815	2,047	2,254	2,501	2,726	
3	0,192	0,394	0,619	0,844	1,054	1,242	1,426	1,602	1,774	1,977	2,157	2,344	
6	0,204	0,391	0,605	0,811	1,021	1,201	1,374	1,531	1,689	1,869	2,034	2,214	
9	0,197	0,396	0,587	0,801	1,000	1,176	1,345	1,487	1,648	1,828	1,986	2,143	
12	0,183	0,374	0,580	0,790	0,985	1,150	1,312	1,458	1,600	1,765	1,915	2,054	
20	0,170	0,384	0,575	0,777	0,950	1,100	1,227	1,355	1,490	1,644	1,756	1,880	
28	0,176	0,367	0,554	0,719	0,873	1,004	1,109	1,192	1,304	1,417	1,507	1,589	
38	0,201	0,388	0,572	0,744	0,879	0,984	1,067	1,149	1,247	1,314	1,397	1,464	
46	0,184	0,371	0,536	0,686	0,814	0,889	0,949	1,001	1,061	1,106	1,159	1,196	
54	0,201	0,366	0,508	0,621	0,718	0,786	0,823	0,861	0,913	0,943	0,966	0,988	
57	0,202	0,367	0,502	0,614	0,708	0,760	0,802	0,839	0,880	0,888	0,933	0,955	
60	0,180	0,300	0,382	0,442	0,510	0,525	0,547	0,570	0,585	0,600	0,622	0,630	
Q, en m³/s	0,001	0,003	0,005	0,008	0,010	0,011	0,012	0,013	0,014	0,015	0,016	0,017	
Yc, en m	0,018	0,037	0,055	0,069	0,080	0,087	0,093	0,097	0,102	0,105	0,108	0,111	
Trabaja Como	Canal					Túnel lleno							

	Tabla 1	.27	Perfiles	del ag	gua en	el túnel	para	diferentes	relaciones	de	llenado d/D.	Ensaye	AK33
--	---------	-----	----------	--------	--------	----------	------	------------	------------	----	--------------	--------	------

Relación L/D	D Relación d/D										-	
-5,1	0,250	0,500	0,750	1,000	1,250	1,500	1,750	2,000	2,250	2,500	2,750	3,000
-4	0,233	0,495	0,735	0,975	1,238	1,478	1,725	1,950	2,235	2,490	2,715	2,985
-2	0,240	0,473	0,713	0,934	1,200	1,436	1,680	1,913	2,205	2,453	2,685	2,955
0	0,210	0,413	0,638	0,870	1,121	1,343	1,575	1,778	2,025	2,273	2,475	2,700
3	0,155	0,354	0,549	0,782	1,025	1,172	1,382	1,524	1,749	1,937	2,102	2,282
6	0,179	0,348	0,543	0,753	0,971	1,132	1,308	1,458	1,653	1,833	1,994	2,141
9	0,173	0,350	0,545	0,747	0,968	1,115	1,291	1,422	1,617	1,797	1,955	2,090
12	0,141	0,325	0,524	0,734	0,955	1,094	1,270	1,390	1,581	1,739	1,881	2,024
20	0,141	0,291	0,528	0,738	0,933	1,053	1,218	1,300	1,473	1,608	1,720	1,848
28	0,108	0,292	0,509	0,697	0,854	0,967	1,072	1,154	1,274	1,379	1,469	1,552
38	0,154	0,349	0,548	0,743	0,889	0,968	1,069	1,137	1,234	1,317	1,399	1,474
46	0,143	0,319	0,526	0,691	0,826	0,886	0,953	0,998	1,058	1,118	1,163	1,186
54	0,147	0,327	0,526	0,665	0,747	0,803	0,852	0,867	0,912	0,957	0,980	0,980
57	0,171	0,366	0,531	0,662	0,745	0,786	0,831	0,846	0,884	0,921	0,951	0,959
60	0,180	0,308	0,424	0,480	0,559	0,563	0,585	0,596	0,608	0,630	0,638	0,638
Q, en m³/s	0,001	0,003	0,006	0,008	0,011	0,012	0,013	0,014	0,015	0,016	0,017	0,018
Yc, en m	0,019	0,041	0,061	0,074	0,086	0,093	0,098	0,102	0,105	0,109	0,111	0,113
Trabaja Como	Canal					Túnel lleno						

Tabla 1.28 Perfi	les del agua en el túne	l para diferentes	relaciones de	llenado d/D.	Ensaye AK34.

Relación L/D

Relación de	So = 0	, 0007	So =	0, 001	So =	0, 004	So = (0, 008
llenado, d/D	Q, en m³/s	"n", m ^{-1/3} .s	Q, en m³/s	"n", m ^{-1/3} .s	Q, en m³/s	"n", m ^{-1/3} .s	Q, en m³/s	"n", m⁻ ^{1/3} .s
0,25	0,0010	0,0081	0,0011	0,0070	0,0012	0,0106	0,0013	0,0090
0,50	0,0028	0,0084	0,0030	0,0094	0,0033	0,0103	0,0034	0,0084
0,75	0,0054	0,0092	0,0054	0,0093	0,0063	0,0096	0,0066	0,0085
1,00	0,0082	0,0089	0,0085	0,0094	0,0094	0,0089	0,0093	0,0088
1,25	0,0112	0,0088	0,0115	0,0086	0,0133	0,0086	0,0133	0,0088
1,50	0,0144	0,0075	0,0144	0,0088	0,0151	0,0085	0,0170	0,0094
1,75	0,0171	0,0070	0,0178	0,0072	0,0189	0,0069	0,0190	0,0088
2,00	0,0192	0,0071	0,0196	0,0077	0,0209	0,0074	0,0206	0,0090
2,25	0,0214	0,0069	0,0214	0,0079	0,0228	0,0079	0,0222	0,0082
2,50	0,0228	0,0074	0,0229	0,0080	0,0242	0,0085	0,0241	0,0081
2,75	0,0245	0,0074	0,0245	0,0084	0,0261	0,0085	0,0258	0,0079
3,00	0,0258	0,0079	0,0257	0,0087	0,0275	0,0087	0,0273	0,0076

Tabla 2.1 Coeficiente de Manning del acrilico, ensayes: A31, A32, A33, A34.

Valor medio, n [$m^{-1/3}$.s] = 0.00787

0787

```
0.00836
```

```
0.00870
```

0.00854

Notas: Los coeficientes de rugosidad se calcularon entre las secciones 12D y 46D del portal de entrada, al utilizar las ecuaciones de energía

y de Manning.

Relación de	So = 0	, 0007	So = (0, 001	So = (), 004	So = (), 008
llenado, d/D	Q, en m³/s	"f"	Q, en m³/s	"f"	Q, en m³/s	"f"	Q, en m ³ /s	"f"
0,25	0,0010	0,0191	0,0011	0,0143	0,0012	0,0347	0,0013	0,0334
0,50	0,0028	0,0181	0,0030	0,0227	0,0033	0,0279	0,0034	0,0245
0,75	0,0054	0,0201	0,0054	0,0206	0,0063	0,0226	0,0066	0,0190
1,00	0,0082	0,0184	0,0085	0,0207	0,0094	0,0185	0,0093	0,0203
1,25	0,0112	0,0183	0,0115	0,0174	0,0133	0,0173	0,0133	0,0188
1,50	0,0144	0,0133	0,0144	0,0185	0,0151	0,0167	0,0170	0,0204
1,75	0,0171	0,0117	0,0178	0,0122	0,0189	0,0114	0,0190	0,0185
2,00	0,0192	0,0118	0,0196	0,0139	0,0209	0,0131	0,0206	0,0194
2,25	0,0214	0,0113	0,0214	0,0148	0,0228	0,0147	0,0222	0,0153
2,50	0,0228	0,0129	0,0229	0,0152	0,0242	0,0169	0,0241	0,0152
2,75	0,0245	0,0129	0,0245	0,0167	0,0261	0,0173	0,0258	0,0140
3,00	0,0258	0,0148	0,0257	0,0183	0,0275	0,0179	0,0273	0,0130

Tabla 2.2 Coeficiente de Darcy-Weisbach del acrilico, ensayes: A31, A32, A33, A34.

Valor medio, "f" 0,0152

0,0171

0,0191

0,0193

Notas: Los coeficientes de fricción se calcularon entre las secciones 12D y 48D del portal de entrada, al utilizar las ecuaciones de energía y de Darcy - Weisbach.

Relación de	elación de So = 0, 0007				So = 0, 001		So = 0, 004			So = 0, 008		
lienado, d/D	Re	"f"	к/D	Re	"f"	к/D	Re	"f"	к/D	Re	"f"	к/D
0,25	208905,66	0,0191	0,00089	233847,29	0,0143	0,00025	276987,20	0,0347	0,00767	318183,94	0,0334	0,00682
0,50	526305,27	0,0181	0,00072	536543,53	0,0227	0,00177	620475,62	0,0279	0,00375	712965,08	0,0245	0,00235
0,75	799144,27	0,0201	0,00111	813327,60	0,0206	0,00122	964372,80	0,0226	0,00176	1158723,71	0,0190	0,00087
1,00	1114769,21	0,0184	0,00076	1103917,27	0,0207	0,00125	1259356,78	0,0185	0,00078	1435929,26	0,0203	0,00115
1,25	1365732,18	0,0183	0,00074	1279148,14	0,0174	0,00061	1434606,95	0,0173	0,00059	1769213,05	0,0188	0,00084
1,50	1558759,44	0,0133	0,00017	1467569,56	0,0185	0,00078	1755110,26	0,0167	0.00050	1753540,59	0,0204	0,00118
1,75	1916226,14	0,0117	0,00009	1972961,82	0,0122	0,00011	2204947,48	0.0114	0,00008	1941943,84	0,0185	0,00079
2,00	2126604,01	0,0118	0,00009	2139640,36	0,0139	0,00021	2417607,92	0,0131	0,00016	2021564,48	0,0194	0,00096
2,25	2373343,82	0,0113	0,00007	2299179,97	0,0148	0,00028	2595174,73	0,0147	0,00028	2330442,54	0,0153	0,00033
2,50	2471479,25	0,0129	0,00015	2422861,93	0,0152	0,00033	2716207,29	0,0169	0,00053	2557701,68	0,0152	0,00033
2,75	2642031,66	0,0129	0,00015	2530489,73	0,0167	0,00050	2872644,21	0,0173	0,00059	2776286,74	0,0140	0,00022
3,00	2661332,91	0,0148	0,00029	2578676,22	0,0183	0,00074	3000120,19	0,0179	0,00068	3002762,34	0,0130	0,00015
Valores medi	os, "f", κ/D =	0,0152	0,00044	· · · · ·	0,0171	0,00067	· ·	0,0191	0,00145		0,0193	0,00133

Tabla 2.3 Coeficientes de pérdida de carga y rugosidad relativa, criterio de Nikuradse. Ensayes A31; A32; A33; A34.

Notas: Los coeficientes de fricción se calcularon entre las secciones 12D y 46D del portal de entrada, al utilizar las ecuaciones de energía y de Darcy - Weisbach.

Relación de	So = 0	, 0007	So = 0, 001		So =	0, 004	So = 0, 008		
llenado, d/D	Q, en m³/s	"n", m ^{-1/3} .s	Q, en m³/s	"n", m ^{-1/3} .s	Q, en m³/s	"n", m ^{-1/3} .s	Q, en m³/s	"n", m ^{-1/3} .s	
0,25	0,001	0,010	0,001	0,011	0,001	0,014	0,0010	0,014	
0,50	0,003	0,010	0,003	0,010	0,004	0,010	0,0030	0,012	
0,75	0,005	0,010	0,005	0,010	0,006	0,011	0,0058	0,011	
1,00	0,008	0,010	0,008	0,010	0,009	0,011	0,0089	0,012	
1,25	0,010	0,011	0,011	0,010	0,012	0,011	0,0130	0,012	
1,50	0,012	0,010	0,013	0,010	0,014	0,013	0,0150	0,012	
1,75	0,015	0,010	0,015	0,010	0,016	0,012	0,0167	0,012	
2,00	0,017	0,010	0,017	0,010	0,018	0,012	0,0184	0,011	
2,25	0,019	0,010	0,019	0,011	0,019	0,012	0,0198	0,011	
2,50	0,020	0,010	0,020	0,011	0,021	0,012	0,0213	0,011	
2,75	0,021	0,010	0,021	0,013	0,022	0,012	0,0225	0,011	
3,00	0,023	0,010	0,023	0,012	0,024	0,011	0,0236	0,012	

Tabla 2.4 Coeficiente de Manning de la lija, ensayes: L31; L32; L33; L34

Valor medio, n [m^{-1/3} .s] = 0.010

0.011

0.012

0.012

Notas: Los coeficientes de rugosidad se calcularon entre las secciones 12D y 46D del portal de entrada, al utilizar las ecuaciones de energía y de Manning.

Relación de	So = 0	, 0007	So = 0, 001		So = (), 004	So = 0, 008	
llenado, d/D	Q, en m³/s	ntu	Q, en m ³ /s	"f"	Q, en m³/s	"f"	Q, en m ³ /s	"f"
0,25	0,001	0,02927	0,001	0,03285	0,001	0,06175	0,001	0,06311
0,50	0,003	0,02365	0,003	0,02707	0,004	0,02503	0,003	0,04041
0,75	0,005	0,02235	0,005	0,02498	0,006	0,03088	0,006	0,03247
1,00	0,008	0,02192	0,008	0,02435	0,009	0,02876	0,009	0,03210
1,25	0,010	0,02759	0,011	0,02457	0,012	0,02955	0,013	0,03199
1,50	0,012	0,02372	0,013	0,02394	0,014	0,03735	0,015	0,03216
1,75	0,015	0,02212	0,015	0,02476	0,016	0,03150	0,017	0,02977
2,00	0,017	0,02395	0,017	0,02587	0,018	0,03066	0,018	0,02688
2,25	0,019	0,02373	0,019	0,02706	0,019	0,03392	0,020	0,02683
2,50	0,020	0,02558	0,020	0,02813	0,021	0,03227	0,021	0,02513
2,75	0,021	0,02481	0,021	0,02911	0,022	0,03280	0,023	0,02515
3,00	0,023	0,02476	0,023	0,03563	0,024	0,03173	0,024	0,02885

Tabla 2.5 Coeficientes de Darcy-Weisbach de la lija, ensayes: L31; L32; L33; L34

Valor medio, "f"

0,02445

0,02736

0,03385

0,03290

Notas: Los coeficientes de fricción se calcularon entre las secciones 12D y 46D del portal de entrada, al utilizar las ecuaciones de la energía y de Darcy - Weisbach.

Relación de		So = 0, 0007		So = 0, 001			So = 0, 004			So = 0, 008		
llenado, d/D	Re	"f"	к/D	Re	"f"	к/D	Re	۰f	к/D	Re	n f*	κ/D
0,25	18417,43	0,02927	0,00443	18460,531	0,03285	0,00647	24712,70	0,06175	0,03608	24550,53	0,06311	0,03794
0,50	49272,68	0,02365	0,00208	47429,325	0,02707	0,00339	64464,32	0,02503	0,00256	60106,72	0,04041	0,01208
0,75	74675,41	0,02235	0,00168	75364,066	0,02498	0,00254	87497,51	0,03088	0,00530	97091,35	0,03247	0,00623
1,00	107569,56	0,02192	0,00156	99715,627	0,02435	0,00232	112095,46	0,02876	0,00418	127533,05	0,03210	0,00601
1,25	121426,12	0,02759	0,00362	119507,427	0,02457	0,00239	118986,34	0,02955	0,00458	161304,26	0,03199	0,00594
1,50	132277,37	0,02372	0,00210	129866,123	0,02394	0,00218	143034,13	0,03735	0,00960	163055,36	0,03216	0,00605
1,75	157089,76	0,02212	0,00161	148176,031	0,02476	0,00246	154556,67	0,03150	0,00565	186071,23	0,02977	0,00469
2,00	1831062,02	0,02395	0,00218	166169,819	0,02587	0,00289	157326,60	0,03066	0,00517	215116,15	0,02688	0,00331
2,25	197704,56	0,02373	0,00211	180880,439	0,02706	0,00339	159951,22	0,03392	0,00716	232780,71	0,02683	0,00329
2,50	210578,09	0,02558	0,00277	186770,223	0,02813	0,00387	177572,87	0,03227	0,00611	249961,89	0,02513	0,00260
2,75	227397,80	0,02481	0,00248	194829,888	0,02911	0,00435	187331,88	0,03280	0,00643	255036,69	0,02515	0,00261
3,00	244266,59	0,02476	0,00246	345804,371	0,03563	0,00833	200198,32	0,03173	0,00579	266095,49	0,02885	0,00423
Valores medi	os, "f", κ/D =	0,02445	0,00242		0,02736	0,00372		0,03385	0,00822		0,03290	0,00791

0.00557

Tabla 2.6 Coeficientes de pérdida de carga y rugosidad relativa, criterio de Nikuradse. Ensayes L31; L32; L33; L34.

Notas: Los coeficientes de fricción se calcularon entre las secciones 6D y 38D del portal de entrada, al utilizar las ecuaciones de energía y de Darcy - Weisbach.

Relación de	So = 0), 0007	So = 0	0, 001	So = (0, 004	So = (0, 008
llenado, d/D	Q, en m³/s	"n", m ^{-1/3} .s	Q, en m³/s	"n", m ^{-1/3} .s	Q, en m³/s	"n", m ^{-1/3} .s	Q, en m³/s	"n", m ^{-1/3} .s
0,25	0,001	0,011	0,001	0,010	0,001	0,0111	0,001	0,012
0,50	0,002	0,012	0,003	0,012	0,003	0,0121	0,003	0,012
0,75	0,005	0,012	0,005	0,012	0,006	0,0116	0,006	0,013
1,00	0,008	0,012	0,008	0,012	0,009	0,0118	0,010	0,012
1,25	0,010	0,013	0,010	0,014	0,012	0,0123	0,013	0,012
1,50	0,012	0,012	0,012	0,013	0,013	0,0142	0,015	0,012
1,75	0,013	0,012	0,013	0,013	0,015	0,0127	0,016	0,012
2,00	0,015	0,013	0,015	0,013	0,017	0,0129	0,018	0,012
2,25	0,016	0,013	0,017	0,015	0,018	0,0128	0,019	0,012
2,50	0,018	0,013	0,019	0,015	0,019	0,0130	0,019	0,012
2,75	0,020	0,012	0,020	0,015	0,021	0,0132	0,020	0,012
3,00	0,021	0,012	0,021	0,015	0,022	0,0128	0,022	0,012

Tabla 2.7 Coeficiente de Manning del difusor, ensayes: D31, D3	2, D33, D34.
--	--------------

Valor medio, n [m^{-1/3} .s] =

0.012

0.013

0.013

0.012

Notas: Los coeficientes de rugosidad se calcularon entre las secciones 12D y 46D del portal de entrada, al utilizar las ecuaciones de energía y de Manning.

Relación de	So = 0	, 0007	So = 0, 001		So = 0	, 004	So = 0, 008	
llenado, d/D	Q, en m³/s	"f"	Q, en m³/s	"f"	Q, en m³/s	"f"	Q, en m³/s	"f"
0.05	0.001						0.001	0.040
0,25	0,001	0,037	0,001	0,031	0,001	0,037	0,001	0,046
0,50	0,002	0,036	0,003	0,035	0,003	0,038	0,003	0,040
0,75	0,005	0,033	0,005	0,033	0,006	0,033	0,006	0,039
1,00	0,008	0,032	0,008	0,035	0,009	0,032	0,010	0,032
1,25	0,010	0,040	0,010	0,044	0,012	0,035	0,013	0,034
1,50	0,012	0,035	0,012	0,039	0,013	0,044	0,015	0,034
1,75	0,013	0,037	0,013	0,040	0,015	0,038	0,016	0,033
2,00	0,015	0,038	0,015	0,041	0,017	0,039	0,018	0,033
2,25	0,016	0,040	0,017	0,050	0,018	0,039	0,019	0,035
2,50	0,018	0,037	0,019	0,050	0,019	0,040	0,019	0,036
2,75	0,020	0,036	0,020	0,051	0,021	0,042	0,020	0,036
3,00	0,021	0,036	0,021	0,051	0,022	0,040	0,022	0,036

Tabla 2.8 Coeficientes de Darcy-Weisbach del difusor, ensayes: D31, D32, D33, D34.

Valor medio, "f"

0,03634

0,04170

0,03823

0,03634

Notas: Los coeficientes de fricción se calcularon entre las secciones 12D y 46D del portal de entrada, al utilizar las ecuaciones de energía y de Darcy - Weisbach.

Relación de		So = 0, 0007			So = 0, 001			So = 0, 004			So = 0, 008	
llenado, d/D	Re	"f"	к/D	Re	•f"	к/D	Re	npi	κ/D	Re	"f"	к/D
0,25	16593,063	0,037	0,00898	19708,793	0,031	0,00535	26438,302	0,037	0,00949	27183,865	0,046	0,01772
0,50	44237,224	0,036	0,00862	43887,364	0,035	0,00797	57403,784	0,038	0,00995	61812,392	0,040	0,01188
0,75	71185,690	0,033	0,00658	72918,136	0,033	0,00682	89136,232	0,033	0,00632	98624,131	0,039	0,01106
1,00	100205,549	0,032	0,00594	95606,362	0,035	0,00755	113426,172	0,032	0,00624	129046,221	0,032	0,00600
1,25	119596,957	0,040	0,01186	112395,673	0,044	0,01541	132795,537	0,035	0,00795	153258,869	0,034	0,00751
1,50	140087,523	0,035	0,00795	116491,484	0,039	0,01087	142285,155	0,044	0,01546	161938,975	0,034	0,00714
1,75	156959,004	0.037	0,00900	121598,344	0,040	0,01168	146535,220	0,038	0,01037	181120,536	0,033	0,00685
2,00	169334,010	0,038	0,00982	134830,256	0,041	0,01302	160346,260	0,039	0,01131	198312,031	0,033	0,00681
2,25	169334,010	0,040	0,01203	253960,184	0,050	0,02203	171586,196	0,039	0.01109	209596,133	0,035	0,00770
2,50	193352,249	0,037	0,00942	277800,022	0,050	0,02129	178255,754	0,040	0,01214	219530,073	0,036	0,00861
2,75	210578,092	0,036	0,00853	296887,489	0,051	0,02289	181038,919	0,042	0,01344	232710,317	0,036	0,00855
3,00	225415,999	0,036	0,00833	313647,509	0,051	0,02217	184381,499	0,040	0.01162	244017,839	0,036	0,00876
Valores medi	os, *f*, ε/D =	0,03634	0,00892		0,04170	0,01392		0,03823	0,01045		0,03634	0,00905

Tabla 2.9 Coeficientes de pérdida de carga y rugosidad relativa, criterio de Nikuradse. Ensayes D31; D32; D33; D34.

Notas: Los coeficientes de fricción se calcularon entre las secciones 12D y 46D del portal de entrada, al utilizar las ecuaciones de energía y de Darcy - Weisbach.

Relación de	So = 0	, 0007	So = 0, 001		So = 0	0, 004	So = 0, 008	
llenado, d/D	Q, en m³/s	"n", m ^{-1/3} .s	Q, en m ³ /s	"n", m ^{-1/3} .s	Q, en m ³ /s	"n", m ^{-1/3} .s	Q, en m³/s	"n", m ^{-1/3} .s
0,25	0,001	0,013	0,000	0,026	0,001	0,021	0,0013	0,016
0,50	0,002	0,017	0,002	0,016	0,003	0,018	0,0031	0,018
0,75	0,004	0,018	0,004	0,017	0,004	0,019	0,0055	0,018
1,00	0,006	0,018	0,006	0,019	0,007	0,019	0,0080	0,018
1,25	0,007	0,021	0,007	0,022	0,008	0,023	0,0091	0,020
1,50	0,008	0,019	0,008	0,020	0,009	0,024	0,0104	0,024
1,75	0,010	0,019	0,010	0,020	0,010	0,020	0,0113	0,020
2,00	0,011	0,020	0,011	0,020	0,011	0,023	0,0123	0,023
2,25	0,012	0,020	0,012	0,019	0,012	0,023	0,0136	0,023
2,50	0,012	0,021	0,013	0,020	0,013	0,024	0,0143	0,023
2,75	0,013	0,021	0,013	0,020	0,014	0,023	0,0150	0,023
3,00	0,014	0,021	0,014	0,020	0,015	0,020	0,0153	0,023

	Tabla 2.10	Coeficiente de	Manning del	klinter. Ensav	ves: K31,	K32,	K33,	K34.
--	------------	----------------	-------------	----------------	-----------	------	------	------

Valor medio, n [m^{-1/3}.s] = 0.019

0.020

0.021

0.021

Notas: Los coeficientes de rugosidad se calcularon entre las secciones 12D y 46D del portal de entrada, al utilizar las ecuaciones de energía y de Manning.

Relación de	So = 0, 0007		So = 0, 001		So = (), 004	So = 0, 008	
llenado, d/D	Q, en m³/s	"f"	Q, en m³/s	nta	Q, en m³/s	۳f۳	Q, en m³/s	"f"
0,25	0,001	0,05160	0,000	0,19890	0,001	0,12328	0,0013	0,07691
0,50	0,002	0,07385	0,002	0,06829	0,003	0,08204	0,0031	0,08498
0,75	0,004	0,07479	0,004	0,06851	0,004	0,08203	0,0055	0,06990
1,00	0,006	0,07513	0,006	0,08459	0,007	0,08601	0,0080	0,06846
1,25	0,007	0,09627	0,007	0,10778	0,008	0,11169	0,0091	0,08055
1,50	0,008	0,08746	0,008	0,09764	0,009	0,12566	0,0104	0,10714
1,75	0,010	0,08961	0,010	0,09859	0,010	0,10034	0,0113	0,09286
2,00	0,011	0,09501	0,011	0,09320	0,011	0,09763	0,0123	0,09354
2,25	0,012	0,09823	0,012	0,09115	0,012	0,12360	0,0136	0,09397
2,50	0,012	0,10481	0,013	0,09511	0,013	0,12775	0,0143	0,09420
2,75	0,013	0,10343	0,013	0,09615	0,014	0,12470	0,0150	0,09663
3,00	0,014	0,10223	0,014	0,09500	0,015	0,09361	0,0153	0,10178

Tabla 2.11 Coeficientes de Darcy-Weisbach del klinter. Ensayes: K31; K32; K33; K34.

Valor medio, "f"

0,08770

0,09957

0,10653

0,08841

Notas: Los coeficientes de fricción se calcularon entre las secciones 12D y 46D del portal de entrada, al utilizar las ecuaciones de energía y de Darcy - Weisbach.

Relación de		So = 0, 0007			So = 0, 001			So = 0, 004			So = 0, 008	
llenado, d/D	Re	"f"	к/D	Re	"f"	к/D	Re	*P	к/D	Re	"f"	к/D
0,25	17776,90	0,05160	0,02334	9340,81	0,19890	0,28071	19854,18	0,12328	0,13975	27725,02	0,07691	0,05841
0,50	37498,29	0,07385	0,05364	37164,42	0,06829	0,04529	42777,16	0,08204	0,06664	52603,53	0,08498	0,07147
0,75	53955,61	0,07479	0,05509	57649,76	0,06851	0,04562	63052,07	0,08203	0,06662	77864,69	0,06990	0,04767
1,00	78860,10	0,07513	0,05562	71542,16	0,08459	0,07083	82343,48	0,08601	0,07320	97540,38	0,06846	0,04555
1,25	90562,62	0,09627	0,09077	84639,80	0,10778	0,11126	89885,89	0,11169	0,11838	99864,88	0,08055	0,06421
1,50	112018,59	0,08746	0,07562	88522,73	0,09764	0,09316	93537,55	0,12566	0,14418	106296,93	0,10714	0,11012
1,75	117390,16	0,08961	0,07926	93543,57	0,09859	0,09484	92418,06	0,10034	0,09792	104075,76	0,09286	0,08484
2,00	123366,39	0,09501	0,08856	90298,58	0,09320	0,08542	168378,51	0,09763	0,09314	184132,27	0,09354	0,08601
2,25	123366,39	0,09823	0,09419	100132,33	0,09115	0,08190	182425,67	0,12360	0,14034	203695,12	0,09397	0,08675
2,50	125802,01	0,10481	0,10591	105459,48	0,09511	0,08873	193538,03	0,12775	0,14806	214366,59	0,09420	0,08715
2,75	129617,93	0,10343	0,10343	113212,94	0,09615	0,09054	207568,70	0,12470	0,14238	224750,12	0,09663	0,09138
3,00	131714,03	0,10223	0,10129	119903,99	0,09500	0,08855	124364,41	0,09361	0,08614	230165,34	0,10178	0,10049
Valores medic	os, "f", κ/D =	0,08770	0,07723		0,09957	0,09807		0,10653	0,10973		0,08841	0,07784

Tabla 2.12 Coeficientes de pérdida de carga y rugosidad relativa, criterio de Nikuradse. Ensayes K31; K32; K33; K34.

-

Notas: Los coeficientes de fricción se calcularon entre las secciones 12D y 46D del portal de entrada, al utilizar las ecuaciones de energía y de Darcy - Weisbach.

Relación de	So = 0	, 0007	So =	0, 001	So = (0, 004	So = (0, 008
llenado, d/D	Q, en m³/s	"n", m ^{-1/3} .s	Q, en m³/s	"n", m ^{-1/3} .s	Q, en m³/s	"n", m ^{-1/3} .s	Q, en m³/s	"n", m ^{-1/3} .s
0,25	0,0008	0,010	0,0008	0,011	0,0011	0,011	0,0012	0,011
0,50	0,0025	0,010	0,0026	0,011	0,0031	0,011	0,0033	0,011
0,75	0,0048	0,011	0,0051	0,011	0,0058	0,011	0,0063	0,010
1,00	0,0074	0,011	0,0078	0,011	0,0087	0,011	0,0096	0,010
1,25	0,0102	0,012	0,0104	0,011	0,0116	0,011	0,0130	0,011
1,50	0,0122	0,010	0,0126	0,011	0,0136	0,013	0,0149	0,010
1,75	0,0146	0,010	0,0145	0,012	0,0162	0,011	0,0165	0,010
2,00	0,0166	0,010	0,0167	0,011	0,0177	0,011	0,0177	0,010
2,25	0,0183	0,010	0,0186	0,011	0,0197	0,011	0,0185	0,011
2,50	0,0199	0,010	0,0199	0,013	0,0213	0,011	0,0195	0,011
2,75	0,0215	0,010	0,0216	0,012	0,0223	0,013	0,0204	0,011
3,00	0,0227	0,010	0,0230	0,012	0,0240	0,011	0,0217	0,011

Tabla 2.13 Coeficientes	de Manning del	acrílico-lija.	Ensayes: AL31,	AL32,	AL33, AL34	1.
-------------------------	----------------	----------------	----------------	-------	------------	----

Valor medio, n [$m^{-1/3}$.s] =

0.010

```
0.011
```

0.011

0.011

Notas: Los coeficientes de rugosidad se calcularon entre las secciones 6D y 38D del portal de entrada, al utilizar las ecuaciones de energía y de Manning.

Relación de	So = 0	, 0007	So = (), 001	So = 0	, 004	So = 0	, 008
llenado, d/D	Q, en m³/s	"f"	Q, en m³/s	"f"	Q, en m³/s	"f"	Q, en m³/s	"f"
0,25	0,001	0,028	0,001	0,037	0,001	0,038	0,001	0,043
0,50	0,003	0,028	0,003	0,032	0,003	0,032	0,003	0,033
0,75	0,005	0,029	0,005	0,029	0,006	0,029	0,006	0,024
1,00	0,007	0,028	0,008	0,027	0,009	0,027	0,010	0,026
1,25	0,010	0,034	0,010	0,029	0,012	0,028	0,013	0,028
1,50	0,012	0,026	0,013	0,027	0,014	0,039	0,015	0,026
1,75	0,015	0,026	0,014	0,034	0,016	0,030	0,016	0,023
2,00	0,017	0,025	0,017	0,028	0,018	0,030	0,018	0,026
2,25	0,018	0,025	0,019	0,028	0,020	0,030	0,019	0,027
2,50	0,020	0,024	0,020	0,036	0,021	0,029	0,019	0,027
2,75	0,021	0,024	0,022	0,035	0,022	0,038	0,020	0,028
3,00	0,023	0,024	0,023	0,035	0,024	0,028	0,022	0,028

	o			<i></i>	-				
Tabla 2.14	Coeficientes de	e Darcv-We	eisbach del	acrílico-liia.	Ensaves	s AL31.	AL32.	AL33.	AL34.

Valor medio, "f" 0

```
io, "f" 0,02672
```

0,03136

0,03153

```
0,02808
```


Notas: Los coeficientes de fricción se calcularon entre las secciones 12D y 46D del portal de entrada, al utilizar las ecuaciones de energía y de Darcy - Weisbach.

Relación de		So = 0, 0007			So = 0, 001			So = 0, 004			So = 0, 008	
llenado, d/D	Re	"f"	к/D	Re	<u>۳</u>	к/D	Re	۳ť	к/D	Re	"P	к/D
0.25	18301.20	0.028	0.00400	17506.22	0.027	0.00041	26110.10	0.029	0.00005	24659.22	0.043	0.01421
0,20	10001,23	0,020	0,00400	17590,52	0,037	0,00941	20110,10	0,030	0,00995	24030,35	0,045	0,01421
0,50	45925,82	0,028	0,00374	45118,00	0,032	0,00588	56104,77	0,032	0,00584	60028,23	0,033	0,00639
0,75	69719,63	0,029	0,00411	72464,70	0,029	0,00413	84573,58	0,029	0,00443	88413,00	0,024	0,00215
1,00	99039,53	0,028	0,00397	97451,58	0,027	0,00339	107694,64	0,027	0,00323	127107,75	0,026	0,00281
1,25	122785,87	0,034	0.00737	115330,37	0,029	0,00433	118691,02	0,028	0,00371	152085,00	0,028	0,00378
1,50	126774,09	0,026	0,00296	121687,36	0,027	0,00321	127487,36	0,039	0,01130	150438,37	0,026	0,00306
1,75	151660,03	0,026	0,00286	216743,52	0,034	0,00718	152007,95	0,030	0,00471	189193,38	0,023	0,00183
2,00	174904,09	0,025	0,00261	152722,07	0,028	0,00361	265678,40	0,030	0,00507	199220,17	0,026	0,00277
2,25	195518,80	0,025	0,00244	160492,12	0,028	0,00386	295251,38	0,030	0,00466	210535,81	0,027	0,00320
2,50	212458,44	0,024	0,00214	298861,02	0,036	0,00839	178537,85	0,029	0,00440	217099,80	0,027	0,00344
2,75	229345,78	0,024	0,00208	323998,05	0,035	0,00816	187331,88	0.038	0,01002	223150,81	0,028	0,00372
3,00	241823,19	0,024	0,00224	344742,62	0,035	0,00798	201778,91	0,028	0,00401	207090,10	0,028	0,00365
Valores medic	os, "f", κ/D =	0,02672	0,00337		0,03136	0,00579		0,03153	0,00594		0,02808	0,00425

Tabla 2.15 Coeficientes de pérdida de carga y rugosidad relativa, criterio de Nikuradse. Ensayes AL31; AL32; AL33; AL34.

Notas: Los coeficientes de fricción se calcularon entre las secciones 12D y 46D del portal de entrada, al utilizar las ecuaciones de energía y de Darcy - Weisbach. En la fig 4.2, se muestra la geometría de entrada del túnel, con abocinamiento y lumbrera, condición 3

Relación de	So = 0	, 0007	So =	0, 001	So = (0, 004	So = (0, 008
llenado, d/D	Q, en m³/s	"n", m ^{-1/3} .s	Q, en m³/s	"n", m ^{-1/3} .s	Q, en m³/s	"n", m ^{-1/3} .s	Q, en m³/s	"n", m ^{-1/3} .s
0,25	0,001	0,010	0,001	0,009	0,001	0,010	0,001	0,010
0,50	0,002	0,011	0,003	0,009	0,003	0,009	0,003	0,010
0,75	0,005	0,011	0,005	0,011	0,006	0,010	0,006	0,010
1,00	0,007	0,011	0,008	0,011	0,009	0,011	0,009	0,011
1,25	0,010	0,011	0,010	0,012	0,011	0,012	0,013	0,011
1,50	0,012	0,011	0,012	0,012	0,013	0,014	0,015	0,011
1,75	0,014	0,011	0,013	0,014	0,015	0,012	0,017	0,011
2,00	0,015	0,013	0,016	0,011	0,017	0,012	0,018	0,011
2,25	0,017	0,014	0,017	0,012	0,018	0,012	0,020	0,011
2,50	0,019	0,011	0,019	0,013	0,020	0,012	0,021	0,011
2,75	0,020	0,011	0,020	0,014	0,021	0,012	0,022	0,012
3,00	0,022	0,013	0,021	0,013	0,023	0,011	0,024	0,012

Tabla 2.16 Coeficientes de Manning para el acrílico-difusor. Ensayes: AD31, AD32, AD33, AD34.

Valor medio, n [m^{-1/3} .s] =

0.012

0.012

0.011

0.011

Notas: Los coeficientes de rugosidad se calcularon entre las secciones 12D y 46D del portal de entrada, al utilizar las ecuaciones de energía y de Manning.

Relación de	So = 0	, 0007	So = 0), 001	So = 0	, 004	So = 0), 008
llenado, d/D	Q, en m³/s	"f"	Q, en m³/s	"f"	Q, en m³/s	"f"	Q, en m³/s	"f"
0,25	0,001	0,030	0,001	0,025	0,001	0,030	0,001	0,037
0,50	0,002	0,029	0,003	0,023	0,003	0,022	0,003	0,027
0,75	0,005	0,027	0,005	0,029	0,006	0,025	0,006	0,024
1,00	0,007	0,029	0,008	0,026	0,009	0,027	0,009	0,028
1,25	0,010	0,029	0,010	0,032	0,011	0,032	0,013	0,027
1,50	0,012	0,027	0,012	0,032	0,013	0,042	0,015	0,028
1,75	0,014	0,029	0,013	0,043	0,015	0,032	0,017	0,026
2,00	0,015	0,041	0,016	0,030	0,017	0,030	0,018	0,026
2,25	0,017	0,042	0,017	0,034	0,018	0,033	0,020	0,027
2,50	0,019	0,034	0,019	0,042	0,020	0,034	0,021	0,028
2,75	0,020	0,033	0,020	0,044	0,021	0,033	0,022	0,028
3,00	0,022	0,041	0,021	0,041	0,023	0,031	0,024	0,028
							• •	

Tabla 2.17	Coeficientes de l	Darcy-Weisbach	del acrílico-o	difusor. Ensav	ves: AD31.	AD32.	AD33, AD3
					,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Valor medio, "f" 0,03270

```
270
```

0,03340

```
0,03073
```

0,02785

Notas: Los coeficientes de fricción se calcularon entre las secciones 12D y 46D del portal de entrada, al utilizar las ecuaciones de energía y de Darcy - Weisbach.

Relación de		So = 0, 0007			So = 0,001			So = 0,004			So = 0, 008	
llenado, d/D	Re	agu .	к/D	Re	"p	к/D	Re	ngn	к/D	Re	пря	к/D
0,25	18512,44	0,030	0,00459	18339,83	0,025	0,00265	23571,16	0,030	0,00456	27423.32	0,037	0,00914
0,50	47075,58	0,029	0,00446	48490,18	0,023	0,00181	56222,37	0.022	0,00161	64785,98	0,027	0,00335
0,75	74745,04	0,027	0,00341	71100,45	0,029	0,00451	87600,88	0,025	0,00249	89213,81	0,024	0,00223
1,00	96201,16	0,029	0,00453	98515,23	0,026	0,00304	113219,46	0,027	0,00325	128671,86	0,028	0,00364
1,25	114904,43	0,029	0,00449	113189,49	0,032	0.00570	127837,20	0,032	0,00586	150215,12	0,027	0,00357
1,50	121324,17	0,027	0,00323	121814,57	0,032	0,00601	131975,76	0,042	0,01355	162484,72	0,028	0,00384
1,75	129076,34	0,029	0,00432	127704,37	0,043	0,01442	152046,27	0,032	0,00571	182056,10	0,026	0,00308
2,00	228805,16	0,041	0,01250	149557,48	0,030	0.00476	169768,24	0,030	0,00472	195435,85	0,026	0,00291
2,25	158778,50	0,042	0,01391	160924,25	0,034	0,00716	183825,52	0,033	0,00651	211368,27	0,027	0,00315
2,50	174628,28	0,034	0,00737	170770,25	0,042	0,01309	190745,24	0,034	0,00693	213793,38	0,028	0,00363
2,75	180239,75	0,033	0,00661	166266,02	0.044	0,01493	197497,79	0,033	0,00627	219361,18	0,028	0,00400
3,00	323998,05	0,041	0,01275	180475,37	0,041	0,01297	191284,19	0,031	0,00545	224530,37	0,028	0,00403
Valores medic	os, "f". к/D =	0,03270	0,00685	·	0,03340	0,00759		0,03073	0,00558		0,02785	0,00388

Tabla 2.18 Coeficientes de pérdida de carga y rugosidad relativa, criterio de Nikuradse. Ensayes AD31; AD32; AD33; AD34.

Notas: Los coeficientes de fricción se calcularon entre las secciones 12D y 46D del portal de entrada, al utilizar las ecuaciones de energía y de Darcy - Weisbach.

Relación de	So = 0	, 0007	So = (0, 001	So = (0, 004	So = (), 008
llenado, d/D	Q, en m ³ /s	"n", m ^{-1/3} .s	Q, en m³/s	"n", m ^{-1/3} .s	Q, en m³/s	"n", m ^{-1/3} .s	Q, en m³/s	"n", m ^{-1/3} .s
0,25	0,001	0,010	0,001	0,011	0,001	0,014	0,0011	0,012
0,50	0,002	0,013	0,002	0,014	0,003	0,013	0,0035	0,013
0,75	0,004	0,015	0,004	0,014	0,005	0,014	0,0062	0,014
1,00	0,006	0,014	0,007	0,015	0,008	0,015	0,0083	0,016
1,25	0,008	0,017	0,009	0,017	0,010	0,018	0,0107	0,016
1,50	0,010	0,015	0,010	0,016	0,011	0,019	0,0121	0,019
1,75	0,011	0,016	0,011	0,016	0,012	0,017	0,0132	0,017
2,00	0,012	0,017	0,012	0,016	0,013	0,019	0,0143	0,019
2,25	0,013	0,017	0,014	0,016	0,014	0,019	0,0153	0,019
2,50	0,014	0,017	0,015	0,017	0,015	0,019	0,0163	0,019
2,75	0,015	0,017	0,015	0,017	0,016	0,019	0,0170	0,019
3,00	0,016	0,017	0,016	0,017	0,017	0,017	0,0176	0,020

Tabla 2.19 Coeficiente de rugosidad del acrílico- klinter. Ensayes: AK31, AK32, AK33, AK34.

Valor medio, n [m^{-1/3} .s] =

0.015

0.015

0.017

Notas: Los coeficientes de rugosidad se calcularon entre las secciones 12D y 46D del portal de entrada, al utilizar las ecuaciones de enrergía y de Manning.

Relación de	So = 0	0007	So = 0), 001	So = 0	0, 004	So = 0	008
llenado, d/D	Q, en m ³ /s	ufn	Q, en m ³ /s	"f"	Q, en m ³ /s	"f"	Q, en m³/s	nfn
0,25	0,001	0,03051	0,001	0,03623	0,001	0,05936	0,0011	0,04959
0,50	0,002	0,04689	0,002	0,04772	0,003	0,04380	0,0035	0,04669
0,75	0,004	0,05377	0,004	0,04788	0,005	0,04600	0,0062	0,04637
1,00	0,006	0,04638	0,007	0,05066	0,008	0,05282	0,0083	0,05771
1,25	0,008	0,06199	0,009	0,06430	0,010	0,07105	0,0107	0,05644
1,50	0,010	0,05641	0,010	0,06382	0,011	0,08117	0,0121	0,07235
1,75	0,011	0,06311	0,011	0,06319	0,012	0,06785	0,0132	0,06413
2,00	0,012	0,06459	0,012	0,06428	0,013	0,06732	0,0143	0,06358
2,25	0,013	0,06836	0,014	0,06455	0,014	0,08100	0,0153	0,06818
2,50	0,014	0,06891	0,015	0,06717	0,015	0,08563	0,0163	0,06798
2,75	0,015	0,07046	0,015	0,06722	0,016	0,08676	0,0170	0,06863
3,00	0,016	0,07014	0,016	0,06877	0,017	0,06675	0,0176	0,07205
Va	lor medio, "f"	0,05846	. ,	0,05882	•	0,06746	· · · ·	0,06114

Tabla 2.20 Coeficientes de Darcy-Weisbach del acrílico-klinter. Ensayes: AK31, AK32, AK33, AK34.

Notas: Los coeficientes de fricción se calcularon entre las secciones 12D y 46D del portal de entrada, al utilizar las ecuaciones de la energía y de Darcy - Weisbach.

Relación de	So = 0, 0007			So = 0, 001			So = 0, 004			So = 0,008		
llenado, d/D	Re	"f"	κ/D	Re	"f"	к/D	Re	"p"	ĸ/D	Re	ngn	к/D
0,25	19189,02	0,03051	0,00509	19970,74	0,03623	0,00876	21933,22	0,05936	0,03290	25918,08	0,04959	0,02109
0,50	41029,62	0,04689	0.01822	41854,70	0,04772	0.01908	51813,52	0,04380	0,01514	63168,50	0,04669	0,01801
0,75	64739,10	0,05377	0,02589	65993,18	0,04788	0.01925	76705,93	0,04600	0.01730	90980,17	0,04637	0,01767
1,00	89377.61	0,04638	0,01769	84626,72	0,05066	0,02228	95719,27	0,05282	0.02477	104651,10	0,05771	0,03077
1,25	106884,08	0,06199	0,03640	100207,16	0.06430	0,03958	106402,45	0,07105	0,04939	118731,02	0,05644	0,02915
1,50	124312,13	0,05641	0,02912	104515,74	0,06382	0,03892	113121,92	0,08117	0.06522	126044,48	0,07235	0,05135
1,75	133977,58	0,06311	0,03794	110217,73	0,06319	0,03805	116583,02	0,06785	0,04465	126798,38	0,06413	0,03935
2,00	139181,44	0,06459	0,03999	104224,90	0,06428	0,03956	196453,34	0.06732	0,04388	120098,00	0,06358	0,03858
2,25	139181,44	0,06836	0,04540	114219,07	0,06455	0,03993	215948,71	0,08100	0,06495	128496,46	0,06818	0,04513
2,50	143528,55	0,06891	0,04621	121777,69	0,06717	0,04367	127656,61	0,08563	0,07256	136894,92	0,06798	0.04484
2,75	145398,92	0,07046	0,04850	129336,30	0,06722	0.04374	134375,38	0,08676	0,07445	143025,80	0,06863	0.04579
3,00	153969,99	0,07014	0,04803	136894,92	0,06877	0,04600	142773,84	0,06675	0,04306	147812,92	0,07205	0,05088
Valores medic	os, "f", к/D =	0,05846	0,03321		0,05882	0,03324		0,06746	0,04569		0,06114	0,03605

Tabla 2.21 Coeficientes de pérdida de carga y rugosidad relativa, criterio de Nikuradse. Ensayes AK31; AK32; AK33; AK34.

Notas: Los coeficientes de fricción se calcularon entre las secciones 12D y 46D del portal de entrada, al utilizar las ecuaciones de energía y de Darcy - Weisbach.

Relación	So = (0,0007	So =	0,001	So =	0,004	So =	0,008
d/D	Q, en m³/s	(Qxn)/D^8/3	Q, en m ³ /s	(Qxn)/D^8/3	Q, en m³/s	(Qxn)/D^8/3	Q, en m³/s	(Qxn)/D^8/3
0,00	0,0000	0,0000	0,0000	0,0000	0,0000	0,000	0,0000	0,0000
0,25	0,0010	0,0017	0,0011	0,0019	0,0012	0,0021	0,0013	0,0023
0,50	0,0028	0,0050	0,0030	0,0053	0,0033	0,0059	0,0034	0,0060
0,75	0,0054	0,0095	0,0054	0,0096	0,0063	0,0111	0,0066	0,0117
1,00	0,0082	0,0145	0,0085	0,0150	0,0094	0,0167	0,0093	0,0165
1,25	0,0112	0,0199	0,0115	0,0204	0,0133	0,0236	0,0133	0,0236
1,50	0,0144	0,0255	0,0144	0,0254	0,0151	0,0267	0,0170	0,0301
1,75	0,0171	0,0303	0,0178	0,0315	0,0189	0,0336	0,0190	0,0337
2,00	0,0192	0,0339	0,0196	0,0347	0,0209	0,0371	0,0206	0,0365
2,25	0,0214	0,0379	0,0214	0,0379	0,0228	0,0404	0,0222	0,0393
2,50	0,0228	0,0404	0,0229	0,0406	0,0242	0,0429	0,0241	0,0427
2,75	0,0245	0,0435	0,0245	0,0435	0,0261	0,0462	0,0258	0,0457
3,00	0,0258	0,0457	0,0257	0,0456	0,0275	0,0488	0,0273	0,0484

Tabla 3.1 Curva de elevaciones-gastos del túnel; material acrílico. Ensayes: A31, A32, A33, A34.

	So = (0,0007	So =	0,001	So =	0,004	So =	0,008
d/D	Q, en m³/s	(Qxn)/D^8/3						
0,00	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,25	0,001	0,002	0,001	0,002	0,001	0,003	0,001	0,002
0,50	0,003	0,006	0,003	0,006	0,004	0,009	0,003	0,007
0,75	0,005	0,012	0,005	0,012	0,006	0,015	0,006	0,014
1,00	0,008	0,019	0,008	0,019	0,009	0,022	0,009	0,021
1,25	0,010	0,024	0,011	0,025	0,012	0,028	0,013	0,031
1,50	0,012	0,030	0,013	0,031	0,014	0,034	0,015	0,036
1,75	0,015	0,035	0,015	0,036	0,016	0,039	0,017	0,040
2,00	0,017	0,040	0,017	0,040	0,018	0,043	0,018	0,044
2,25	0,019	0,044	0,019	0,044	0,019	0,045	0,020	0,047
2,50	0,020	0,046	0,020	0,048	0,021	0,050	0,021	0,050
2,75	0,021	0,050	0,021	0,051	0,022	0,053	0,023	0,053
3,00	0,023	0,053	0,023	0,055	0,024	0,057	0,024	0,056

Tabla 3.2 Curva de elevaciones-gastos del túnel; material lija. Ensayes: L31, L32, L33, L34.

Relación	So = 0,0007		So = 0,001		So =	0,004	So = 0,008	
d/D	Q, en m³/s	(Qxn)/D^8/3	Q, en m³/s	(Qxn)/D^8/3	Q, en m ³ /s	(Qxn)/D^8/3	Q, en m ³ /s	(Qxn)/D^8/3
0,00	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,25	0,001	0,002	0,001	0,003	0,001	0,003	0,001	0,003
0,50	0,002	0,007	0,003	0,007	0,003	0,009	0,003	0,009
0,75	0,005	0,013	0,005	0,014	0,006	0,016	0,006	0,017
1,00	0,008	0,020	0,008	0,021	0,009	0,024	0,010	0,026
1,25	0,010	0,027	0,010	0,027	0,012	0,031	0,013	0,035
1,50	0,012	0,032	0,012	0,032	0,013	0,036	0,015	0,040
1,75	0,013	0,037	0,013	0,036	0,015	0,040	0,016	0,045
2,00	0,015	0,041	0,015	0,041	0,017	0,045	0,018	0,048
2,25	0,016	0,043	0,017	0,046	0,018	0,049	0,019	0,050
2,50	0,018	0,049	0,019	0,050	0,019	0,053	0,019	0,053
2,75	0,020	0,053	0,020	0,054	0,021	0,056	0,020	0,055
3,00	0,021	0,056	0,021	0,057	0,022	0,060	0,022	0,059

Tabla 3.3 Curva de elevaciones-gastos del túnel; material difusor. Ensayes: D31, D32, D33, D34.

Relación	So = 0,0007		So =	0,001	So =	0,004	So =	0,008
d/D	Q, en m³/s	(Qxn)/D^8/3	Q, en m³/s	(Qxn)/D^8/3	Q, en m³/s	(Qxn)/D^8/3	Q, en m³/s	(Qxn)/D^8/3
0,00	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,25	0,001	0,003	0,000	0,002	0,001	0,004	0,0013	0,006
0,50	0,002	0,009	0,002	0,009	0,003	0,011	0,0031	0,013
0,75	0,004	0,016	0,004	0,017	0,004	0,019	0,0055	0,024
1,00	0,006	0,025	0,006	0,025	0,007	0,030	0,0080	0,035
1,25	0,007	0,031	0,007	0,032	0,008	0,035	0,0091	0,040
1,50	0,008	0,037	0,008	0,036	0,009	0,040	0,0104	0,045
1,75	0,010	0,043	0,010	0,042	0,010	0,044	0,0113	0,049
2,00	0,011	0,047	0,011	0,047	0,011	0,049	0,0123	0,053
2,25	0,012	0,051	0,012	0,052	0,012	0,053	0,0136	0,059
2,50	0,012	0,054	0,013	0,055	0,013	0,056	0,0143	0,062
2,75	0,013	0,058	0,013	0,059	0,014	0,060	0,0150	0,065
3,00	0,014	0,062	0,014	0,062	0,015	0,064	0,0153	0,067

Tabla 3.4 Curva de elevaciones-gastos del túnel; material klinter. Ensayes: K31, K32, K33, K34.

	So = 0,0007 $Q_{\rm ep} m^3/s$ (Qxp)/D/8/3		So =	0,001	So =	0,004	So =	0,008
d/D	Q, en m³/s	(Qxn)/D^8/3	Q, en m ³ /s	(Qxn)/D^8/3	Q, en m³/s	(Qxn)/D^8/3	Q, en m³/s	(Qxn)/D^8/3
0,00	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,25	0,001	0,002	0,001	0,002	0,001	0,003	0,001	0,003
0,50	0,003	0,006	0,003	0,006	0,003	0,007	0,003	0,008
0,75	0,005	0,011	0,005	0,012	0,006	0,014	0,006	0,015
1,00	0,007	0,017	0,008	0,018	0,009	0,021	0,010	0,022
1,25	0,010	0,024	0,010	0,024	0,012	0,027	0,013	0,031
1,50	0,012	0,029	0,013	0,030	0,014	0,032	0,015	0,035
1,75	0,015	0,034	0,014	0,034	0,016	0,038	0,016	0,039
2,00	0,017	0,039	0,017	0,039	0,018	0,042	0,018	0,042
2,25	0,018	0,043	0,019	0,044	0,020	0,046	0,019	0,044
2,50	0,020	0,047	0,020	0,047	0,021	0,050	0,019	0,046
2,75	0,021	0,050	0,022	0,051	0,022	0,052	0,020	0,048
3,00	0,023	0,053	0,023	0,054	0,024	0,056	0,022	0,051

Tabla 3.5 Curva de elevaciones-gastos del túnel, acrílico-lija. Ensayes: AL31, AL32, AL33, AL34

Relación	So = (),0007	So = 0,001		So = 0,004		So =	0,008
d/D	Q, en m³/s	(Qxn)/D^8/3						
0,00	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,25	0,001	0,002	0,001	0,002	0,001	0,003	0,001	0,003
0,50	0,002	0,006	0,003	0,007	0,003	0,008	0,003	0,008
0,75	0,005	0,012	0,005	0,012	0,006	0,014	0,006	0,015
1,00	0,007	0,018	0,008	0,019	0,009	0,022	0,009	0,022
1,25	0,010	0,024	0,010	0,024	0,011	0,028	0,013	0,032
1,50	0,012	0,029	0,012	0,029	0,013	0,032	0,015	0,037
1,75	0,014	0,034	0,013	0,033	0,015	0,037	0,017	0,042
2,00	0,015	0,037	0,016	0,039	0,017	0,042	0,018	0,045
2,25	0,017	0,042	0,017	0,042	0,018	0,045	0,020	0,049
2,50	0,019	0,046	0,019	0,046	0,020	0,049	0,021	0,052
2,75	0,020	0,050	0,020	0,049	0,021	0,052	0,022	0,055
3,00	0,022	0,053	0,021	0,053	0,023	0,056	0,024	0,058

Tabla 3.6 Curva de elevaciones-gastos del túnel, acrílico-difusor. Ensayes: AD31, AD32, AD33, AD34.

Relación	So = (0,0007	So =	0,001	So =	0,004	So =	0,008
d/D	Q, en m³/s	(Qxn)/D^8/3						
0,00	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
0,25	0,001	0,003	0,001	0,003	0,001	0,003	0,0011	0,004
0,50	0,002	0,008	0,002	0,008	0,003	0,011	0,0035	0,012
0,75	0,004	0,015	0,004	0,016	0,005	0,019	0,0062	0,022
1,00	0,006	0,022	0,007	0,023	0,008	0,027	0,0083	0,029
1,25	0,008	0,029	0,009	0,030	0,010	0,033	0,0107	0,037
1,50	0,010	0,034	0,010	0,034	0,011	0,038	0,0121	0,042
1,75	0,011	0,038	0,011	0,040	0,012	0,042	0,0132	0,046
2,00	0,012	0,043	0,012	0,043	0,013	0,046	0,0143	0,050
2,25	0,013	0,047	0,014	0,048	0,014	0,050	0,0153	0,053
2,50	0,014	0,051	0,015	0,051	0,015	0,053	0,0163	0,057
2,75	0,015	0,054	0,015	0,054	0,016	0,056	0,0170	0,060
3,00	0,016	0,058	0,016	0,057	0,017	0,059	0,0176	0,062

Tabla 3.7 Curva de elevaciones-gastos del túnel, acrílico-klinter. Ensayes: AK31, AK32, AK33, AK34.

Relación de	9	So = 0, 000	7		So = 0, 00 [.]	1	:	So = 0, 004	1		So = 0, 008	3
llenado, d/D	Q, en m³/s	nQ/D^8/3	Cd	Q, en m³/s	nQ/D^8/3	Cd	Q, en m ³ /s	nQ/D^8/3	Cd	Q, en m³/s	nQ/D^8/3	Cd
0,25	0,0010	0,0017	0,6257	0,0011	0,0019	0,6419	0,0012	0,0021	0,5084	0,0013	0,0023	0,4585
0,50	0,0028	0,0051	0,7554	0,0030	0,0053	0,7405	0,0033	0,0059	0,6444	0,0034	0,0061	0,5855
0,75	0,0054	0,0096	0,8021	0,0054	0,0097	0,8037	0,0063	0,0112	0,7275	0,0066	0,0118	0,7157
1,00	0,0082	0,0146	0,8396	0,0085	0,0151	0,8427	0,0094	0,0168	0,8113	0,0093	0,0166	0,7563
1,25	0,0112	0,0200	0,8793	0,0115	0,0206	0,8981	0,0133	0,0238	0,8337	0,0133	0,0237	0,8527
1,50	0,0144	0,0256	0,8186	0,0144	0,0256	0,8878	0,0151	0,0269	0,8384	0,0170	0,0303	0,8915
1,75	0,0171	0,0305	0,8557	0,0178	0,0317	0,8838	0,0189	0,0338	0,8770	0,0190	0,0339	0,8959
2,00	0,0192	0,0342	0,8506	0,0196	0,0349	0,8608	0,0209	0,0373	0,8851	0,0206	0,0367	0,8802
2,25	0,0214	0,0381	0,8683	0,0214	0,0381	0,8606	0,0228	0,0406	0,8713	0,0222	0,0396	0,8852
2,50	0,0228	0,0406	0,8435	0,0229	0,0408	0,8573	0,0242	0,0431	0,8639	0,0241	0,0430	0,9107
2,75	0,0245	0,0438	0,8525	0,0245	0,0438	0,8476	0,0261	0,0465	0,8769	0,0258	0,0460	0,9234
3,00	0,0258	0,0460	0,8186	0,0257	0,0459	0,8245	0,0275	0,0491	0,8517	0,0273	0,0487	0,9505

Tabla 4.1 Coeficiente de descarga, túnel de acrílico; ensayes A31, A32, A33, A34.

Relación de		$S_0 = 0.000$	7	So = 0, 001			So = 0, 004			Г	So = 0, 008	3
llenado, d/D	Q, en m³/s	nQ/D^8/3	Cd	Q, en m ⁹ /s	nQ/D^8/3	Cd	Q, en m³/s	nQ/D^8/3	Cd	Q, en m³/s	nQ/D^8/3	Cd
0,25	0,001	0,002	0,572	0,001	0,002	0,649	0,001	0,003	0,461	0,001	0,002	0,244
0,50	0,003	0,006	0,643	0,003	0,006	0,786	0,004	0,009	0,757	0,003	0,007	0,432
0,75	0,005	0,012	0,838	0,005	0,012	0,858	0,006	0,015	0,781	0,006	0,014	0,558
1,00	0,008	0,019	0,889	0,008	0,019	0,888	0,009	0,022	0,863	0,009	0,021	0,635
1,25	0,010	0,024	0,851	0,011	0,025	0,824	0,012	0,028	0,821	0,013	0,031	0,764
1,50	0,012	0,030	0,806	0,013	0,031	0,815	0,014	0,034	0,783	0,015	0,036	0,701
1,75	0,015	0,035	0,774	0,015	0,036	0,803	0,016	0,039	0,792	0,017	0,040	0,713
2,00	0,017	0,040	0,809	0,017	0,040	0,823	0,018	0,043	0,812	0,018	0,044	0,737
2,25	0,019	0,044	0,829	0,019	0,044	0,856	0,019	0,045	0,827	0,020	0,047	0,736
2,50	0,020	0,046	0,833	0,020	0,048	0,862	0,021	0,050	0,863	0,021	0,050	0,752
2,75	0,021	0,050	0,855	0,021	0,051	0,885	0,022	0,053	0,890	0,023	0,053	0,764
3,00	0,023	0,053	0,891	0,023	0,055	0,922	0,024	0,057	0,913	0,024	0,056	0,763

Tabla 4.2 Coeficiente de descarga, túnel con lija; ensayes: L31, L32, L33, L34.

Relación de	So = 0, 0007			So = 0, 001			So = 0, 004			So = 0, 008		
llenado, d/D	Q, en m³/s	nQ/D^8/3	Cd	Q, en m³/s	nQ/D^8/3	Cd	Q, en m ³ /s	nQ/D^8/3	Cd	Q, en m³/s	nQ/D^8/3	Cd
0,25	0,001	0,002	0,468	0,001	0,003	0,540	0,001	0,003	0,377	0,001	0,003	0,313
0,50	0,002	0,007	0,648	0,003	0,007	0,646	0,003	0,009	0,608	0,003	0,009	0,491
0,75	0,005	0,013	0,757	0,005	0,014	0,762	0,006	0,016	0,728	0,006	0,017	0,613
1,00	0,008	0,020	0,802	0,008	0,021	0,788	0,009	0,024	0,789	0,010	0,026	0,713
1,25	0,010	0,027	0,805	0,010	0,027	0,777	0,012	0,031	0,821	0,013	0,035	0,776
1,50	0,012	0,032	0,810	0,012	0,032	0,793	0,013	0,036	0,790	0,015	0,040	0,718
1,75	0,013	0,037	0,754	0,013	0,036	0,730	0,015	0,040	0,730	0,016	0,045	0,708
2,00	0,015	0,041	0,712	0,015	0,041	0,715	0,017	0,045	0,744	0,018	0,048	0,701
2,25	0,016	0,043	0,689	0,017	0,046	0,718	0,018	0,049	0,748	0,019	0,050	0,708
2,50	0,018	0,049	0,724	0,019	0,050	0,737	0,019	0,053	0,751	0,019	0,053	0,699
2,75	0,020	0,053	0,735	0,020	0,054	0,759	0,021	0,056	0,764	0,020	0,055	0,714
3,00	0,021	0,056	0,753	0,021	0,057	0,766	0,022	0,060	0,835	0,022	0,059	0,714

Tabla 4.3 Coeficiente de descarga, túnel de acrilico difusor; ensayes: D31; D32; D33; D34.

Relación de	5	So = 0,000	7		So = 0, 001			So = 0, 004	,		So = 0, 008	3
llenado, d/D	Q, en m³/s	nQ/D^8/3	Cd	Q, en m³/s	nQ/D^8/3	Cd	Q, en m³/s	nQ/D^8/3	Cđ	Q, en m³/s	nQ/D^8/3	Cd
0,25	0,001	0,003	0,475	0,000	0,002	0,341	0,001	0,004	0,175	0,001	0,006	0,387
0,50	0,002	0,009	0,579	0,002	0,009	0,613	0,003	0,011	0,486	0,003	0,013	0,488
0,75	0,004	0,016	0,667	0,004	0,017	0,678	0,004	0,019	0,574	0,005	0,024	0,592
1,00	0,006	0,025	0,668	0,006	0,025	0,661	0,007	0,030	0,622	0,008	0,035	0,665
1,25	0,007	0,031	0,669	0,007	0,032	0,641	0,008	0,035	0,617	0,009	0,040	0,633
1,50	0,008	0,037	0,644	0,008	0,036	0,653	0,009	0,040	0,597	0,010	0,045	0,633
1,75	0,010	0,043	0,649	0,010	0,042	0,654	0,010	0,044	0,574	0,011	0,049	0,617
2,00	0,011	0,047	0,638	0,011	0,047	0,639	0,011	0,049	0,569	0,012	0,053	0,612
2,25	0,012	0,051	0,628	0,012	0,052	0,637	0,012	0,053	0,568	0,014	0,059	0,617
2,50	0,012	0,054	0,596	0,013	0,055	0,612	0,013	0,056	0,550	0,014	0,062	0,602
2,75	0,013	0,058	0,599	0,013	0,059	0,605	0,014	0,060	0,546	0,015	0,065	0,593
3,00	0,014	0,062	0,597	0,014	0,062	0,609	0,015	0,064	0,558	0,015	0,067	0,565

Tabla 4.4 Coeficiente de descarga, túnel de klinter; ensayes: K31, K32, K33, K34.

Relación de	So = 0, 0007			:	So = 0, 001		, ,	So = 0, 004			So = 0, 008	3
llenado, d/D	Q, en m³/s	nQ/D^8/3	Cd	Q, en m³/s	nQ/D^8/3	Cd	Q, en m³/s	nQ/D^8/3	Cd	Q, en m³/s	nQ/D^8/3	Cd
0,25	0,001	0,002	0,556	0,001	0,002	0,482	0,001	0,003	0,433	0,001	0,003	0,317
0,50	0,003	0,006	0,681	0,003	0,006	0,628	0,003	0,007	0,463	0,003	0,008	0,529
0,75	0,005	0,011	0,696	0,005	0,012	0,729	0,006	0,014	0,696	0,006	0,015	0,675
1,00	0,007	0,017	0,772	0,008	0,018	0,817	0,009	0,021	0,773	0,010	0,022	0,742
1,25	0,010	0,024	0,811	0,010	0,024	0,847	0,012	0,027	0,814	0,013	0,031	0,872
1,50	0,012	0,029	0,798	0,013	0,030	0,845	0,014	0,032	0,835	0,015	0,035	0,912
1,75	0,015	0,034	0,733	0,014	0,034	0,810	0,016	0,038	0,766	0,016	0,039	0,935
2,00	0,017	0,039	0,779	0,017	0,039	0,778	0,018	0,042	0,779	0,018	0,042	0,899
2,25	0,018	0,043	0,806	0,019	0,044	0,807	0,020	0,046	0,817	0,019	0,044	0,961
2,50	0,020	0,047	0,831	0,020	0,047	0,828	0,021	0,050	0,845	0,019	0,046	1,024
2,75	0,021	0,050	0,862	0,022	0,051	0,874	0,022	0,052	0,853	0,020	0,048	1,186
3,00	0,023	0,053	0,887	0,023	0,054	0,888	0,024	0,056	0,901	0,022	0,051	1,112

Tabla 4.5 Coeficiente de descarga, túnel de acrílico-lija; ensayes: AL31, AL32, AL33, AL34.

Relación de	S	So = 0, 000 [.]	7		So = 0, 001			So = 0, 004	ļ		So = 0, 008	3
llenado, d/D	Q, en m³/s	nQ/D^8/3	Cd	Q, en m³/s	nQ/D^8/3	Cd	Q, en m³/s	nQ/D^8/3	Cd	Q, en m³/s	nQ/D^8/3	Cd
0.05	0.001	0.000	0.550	0.001	0.000	0.507	0.001	0.000	0.076	0.001	0.000	0.205
0,25	0,001	0,002	0,556	0,001	0,002	0,507	0,001	0,003	0,376	0,001	0,003	0,365
0,50	0,002	0,006	0,687	0,003	0,007	0,658	0,003	0,008	0,615	0,003	0,008	0,559
0,75	0,005	0,012	0,792	0,005	0,012	0,718	0,006	0,014	0,703	0,006	0,015	0,650
1,00	0,007	0,019	0,820	0,008	0,019	0,803	0,009	0,022	0,775	0,009	0,023	0,729
1,25	0,010	0,025	0,846	0,010	0,025	0,794	0,011	0,028	0,779	0,013	0,032	0,783
1,50	0,012	0,029	0,814	0,012	0,029	0,795	0,013	0,032	0,760	0,015	0,037	0,711
1,75	0,014	0,034	0,800	0,013	0,034	0,770	0,015	0,038	0,709	0,017	0,042	0,722
2,00	0,015	0,038	0,779	0,016	0,039	0,727	0,017	0,042	0,723	0,018	0,046	0,734
2,25	0,017	0,042	0,731	0,017	0,043	0,727	0,018	0,046	0,723	0,020	0,050	0,760
2,50	0,019	0,047	0,751	0,019	0,047	0,747	0,020	0,049	0,737	0,021	0,053	0,723
2,75	0,020	0,051	0,778	0,020	0,049	0,746	0,021	0,053	0,755	0,022	0,056	0,724
3,00	0,022	0,054	0,786	0,021	0,054	0,771	0,023	0,057	0,771	0,024	0,059	0,744

Tabla 4.6	Coeficiente de descarga,	túnel de acrílico-difusor; ensayes:	AD31,	AD32,	AD33,	AD34.
-----------	--------------------------	-------------------------------------	-------	-------	-------	-------

Relación de	S	So = 0, 000	7		So = 0, 001			So = 0, 004	ļ		So = 0, 008	3
llenado, d/D	Q, en m³/s	nQ/D^8/3	Cd									
0,25	0,001	0,003	0,549	0,001	0,003	0,518	0,001	0,004	0,355	0,0011	0,004	0,291
0,50	0,002	0,008	0,622	0,002	0,009	0,595	0,003	0,011	0,534	0,0035	0,013	0,482
0,75	0,004	0,016	0,700	0,004	0,016	0,685	0,005	0,019	0,641	0,0062	0,023	0,577
1,00	0,006	0,023	0,733	0,007	0,024	0,698	0,008	0,028	0,684	0,0083	0,031	0,622
1,25	0,008	0,031	0,706	0,009	0,032	0,672	0,010	0,035	0,665	0,0107	0,039	0,626
1,50	0,010	0,035	0,696	0,010	0,036	0,666	0,011	0,040	0,665	0,0121	0,044	0,640
1,75	0,011	0,040	0,656	0,011	0,042	0,674	0,012	0,044	0,650	0,0132	0,049	0,625
2,00	0,012	0,045	0,645	0,012	0,045	0,647	0,013	0,048	0,631	0,0143	0,052	0,621
2,25	0,013	0,049	0,623	0,014	0,050	0,626	0,014	0,053	0,631	0,0153	0,056	0,607
2,50	0,014	0,053	0,620	0,015	0,053	0,600	0,015	0,056	0,612	0,0163	0,060	0,593
2,75	0,015	0,056	0,610	0,015	0,056	0,588	0,016	0,059	0,588	0,0170	0,062	0,585
3,00	0,016	0,060	0,614	0,016	0,060	0,581	0,017	0,062	0,589	0,0176	0,064	0,575

Tabla 4.7 Coeficiente de descarga, túnel de acrílico-klinter; ensayes: AK31, AK32, AK33, AK34.

Relación		So = (0,0007			S0 =	0, 001			So =	0.004			So =	0,008		Trabaja
d/D	Q, en m³/s	he, en m	V²/2g, en m	Ke	Q, en m∛s	he, ên m	V²/2g, en m	Ke	Q, en m³/s	he, an m	V²/2g, an m	Ke	Q, en m¥s	he, en m	V7/2g. en m	Ke	Como
0,25	0,0010	0,0009	0,00352	0,2598	0,0011	0,0002	0,00429	0,0575	0,0012	0,0015	0,01517	0,1001	0,0013	0,0024	0,01638	0,1452	
0,50	0,0028	0,0011	0,00787	0,1390	0,0030	0,0014	0,00865	0,1593	0,0033	0,0030	0,02832	0,1064	0,0034	0,0047	0,02271	0,2075	
0,75	0,0054	0,0022	0,01230	0,1764	0,0054	0,0017	0,01279	0,1357	0,0063	0,0045	0,04246	0,1069	0,0066	0,0024	0,04583	0,0519	lan la
1,00	0,0082	0,0016	0,01738	0,0917	0,0085	0,0030	0,01906	0,1581	0,0094	0,0033	0,05933	0,0561	0,0093	0,0117	0,05032	0,2317	ື ບຶ
1,25	0,0112	0,0028	0,02546	0,1118	0,0115	0,0022	0,02727	0,0820	0,0133	0,0028	0,04052	0,0698	0,0133	0,0094	0,03574	0,1689	
1,50	0,0144	0,0029	0,04170	0,0702	0,0144	0,0019	0,04169	0,0456	0,0151	0,0038	0,04593	0,0835	0,0170	0,0103	0,06546	0,1578	
1,75	0,0171	0,0075	0,05928	0,1257	0,0178	0,0011	0,06388	0,0175	0,0189	0,0099	0,07249	0,1372	0,0190	0,0130	0,07295	0,1785	
2,00	0,0192	0,0105	0,07411	0,1416	0,0196	0,0063	0,07746	0,0809	0,0209	0,0133	0,08839	0,1502	0,0206	0,0188	0,08575	0,2195	•
2,25	0,0214	0,0112	0,09231	0,1217	0,0214	0,0122	0,09231	0,1326	0,0228	0,0166	0,10483	0,1585	0,0222	0,0245	0,17929	0,1364	lieu
2,50	0,0228	0,0165	0,10483	0,1573	0,0229	0,0194	0,10591	0,1836	0,0242	0,0224	0,11824	0,1895	0,0241	0,0160	0,2206	0,0727	eun
2,75	0,0245	0,0195	0,12171	0,1603	0,0245	0,0205	0,12170	0,1687	0,0261	0,0242	0,13732	0,1763	0,0258	0,0186	0,25282	0,0737	
3,00	0,0258	0,0237	0,13438	0,1760	0,0257	0,0272	0,13382	0,2034	0,0275	0,0281	0,15328	0,1830	0,0273	0,0084	0,29597	0,0282	

Tabla 5.1 Pérdida de carga hidráulica por entrada, túnel abocinado y lumbrera, ensayes A31, A32, A33, A34.

Nota: La pérdida de carga se calculo en las secciones -2D y 3D incluyendo la lumbrera de obluradores, sin ranuras; ni pila central. n = 0.0084, valor medio

Relación		So ≃ (), 0007			So =	0, 001			So =	0, 004			So =	0, 008		Trabaja
ď/D	Q, en m³/s	he, en m	V²/2g, en m	Ke	Q, en m³/s	he, en m	V²/2g, e∩ m	Ke	Q, en m¥s	he, en m	V²/2g, en m	Ke	Q, en m∛s	he, en m	V#/2g, en m	Ke	Como
0,25	0,001	0,001	0,002	0,476	0.001	0,001	0,002	0,393	0,001	0,003	0,006	0,486	0,001	0,008	0,009	0,878	
0,50	0,003	0,002	0,006	0,244	0,003	0,001	0,006	0,099	0,004	0,000	0,019	0,001	0,003	0,010	0,020	0,514	
0,75	0,005	0,002	0,010	0,179	0,005	0.000	0.011	0,018	0,006	0,003	0,019	0,140	0,006	0,011	0,007	0,030	nal
1,00	0,008	0,001	0,016	0,077	0,008	0,001	0,016	0,066	0,009	0,003	0,024	0,144	0,009	0,012	0,051	0,238	ů
1,25	0,010	0,003	0,020	0,151	0,011	0,001	0,023	0,033	0,012	0,004	0,028	0,136	0,013	0,007	0,040	0,167	
1,50	0,012	0,001	0,032	0,045	0,013	0,004	0,034	0,116	0,014	0,002	0,042	0,047	0,015	0,012	0,045	0,264	
1,75	0,015	0,004	0,044	0,085	0,015	0,004	0,046	0,090	0,016	0,004	0,054	0,071	0,017	0,015	0,057	0,265	
2,00	0,017	0,005	0,057	0,085	0,017	0,006	0,058	0,106	0,018	0,006	0,065	0,089	0,018	0,016	0,069	0,239	•
2,25	0,019	0,008	0,069	0,109	0,019	0,008	0,071	0,118	0,019	0,014	0,073	0,187	0,020	0,020	0,079	0,259	llen
2,50	0,020	0,013	0,077	0,164	0,020	0,011	0,082	0,133	0,021	0,009	0,090	0,101	0,021	0,025	0,091	0,271	únel
2,75	0,021	0,014	0,090	0,153	0,021	0,014	0,093	0,149	0,022	0,014	0,101	0,137	0,023	0,025	0,103	0,245	-
3,00	0,023	0,016	0,103	0,159	0,023	0,012	0,107	0,113	0,024	0,011	0,115	0,099	0,024	0,027	0,113	0,241	

Tabla 5.2 Pérdida de carga hidráulica por entrada, túnel abocinado y lumbrera. Ensayes: L31, L32, L33, L34.

Nota: La pérdida de carga se calculo en las secciones -2D y 3D incluyendo la lumbrera de obturadores, sin ranuras; ni pila central. n = 0.0084, valor medio

Relación		So = 0	0, 0007			So =	0, 001			So =	0,004			So =	0, 008		Trabaja
d/D	Q, en m³/s	he, en m	V³/2g, en m	Ke	Q, en m³/s	he, en m	V2/2g, en m	Ke	Q, en m¥s	he, en m	V2/29, en m	Ke	Q, en m³/s	he, en m	V2/2g, en m	Ke	Como
0,25	0,001	0,002	0,002	0,485	0,001	0,001	0,003	0,240	0,001	0,003	0,007	0,420	0,001	0,005	0,009	0,523	
0,50	0,002	0,002	0,005	0,298	0,003	0,000	0,006	0,037	0,003	0,003	0,013	0,244	0,003	0,009	0,017	0,502]
0,75	0,005	0,001	0,009	0,142	0,005	0,000	0,010	0,046	0.006	0,002	0,017	0,101	0,006	0,008	0,028	0,010	ual la
1,00	0,008	0,002	0,013	0,164	0,008	0,005	0,014	0,332	0,009	0,001	0,022	0,062	0,010	0,008	0,043	0,191	Ca
1,25	0,010	0,003	0,019	0,173	0,010	0,002	0,020	0,084	0,012	0,002	0,027	0,057	0,013	0,004	0,036	0,101	1
1,50	0,012	0,002	0,028	0,059	0,012	0,004	0,028	0,130	0,013	0,005	0,035	0,148	0,015	0,005	0,045	0,122	1
1,75	0,013	0,002	0,037	0,051	0,013	0,005	0,036	0,132	0,015	0,006	0,045	0,127	0,016	0,009	0,055	0,166	
2,00	0,015	0,009	0,045	0,200	0,015	0,008	0,046	0,164	0,017	0,009	0,055	0,163	0,018	0,012	0,063	0,194	
2,25	0,016	0,015	0,052	0,285	0,017	0,009	0,058	0,149	0,018	0,010	0,066	0,150	0,019	0,019	0,069	0,268	llen
2,50	0,018	0,013	0,066	0,190	0,019	0,010	0,069	0,139	0,019	0,015	0,077	0,196	0,019	0,027	0,077	0,353	únel
2,75	0,020	0,015	0,077	0,199	0,020	0,016	0,079	0,205	0,021	0,020	0,086	0,239	0,020	0,032	0.084	0,380	-
3,00	0,021	0,018	0,087	0,204	0,021	0,019	0,088	0,214	0,022	0,019	0,097	0,191	0,022	0,032	0,095	0,337	

Tabla 5.3 Pérdida de carga hidráulica por entrada, túnel abocinado y lumbrera, Ensayes: D31, D32, D33, D34.

Nota: La pérdida de carga se calculo en las secciones -2D y 3D incluyendo la lumbrera de obturadores, sin ranuras; ni pila central. n = 0.0084, valor medio

Relación		So =	0, 0007			So =	0. 001		1	S0 =	0, 004		1	So =	0, 008		Trabaja
d/D	Q, en m³/s	he, en m	V²/2g, en m	Ke	Q, en m∛s	he, en m	V²/2g, en m	Ke	Q, en m³/s	he, en m	V²/2g, en m	Ke	Q, en m³/s	he, en m	V²/2g, en m	Ke	Como
0,25	0,001	0,000	0,002	0,240	0,000	0,002	0,001	0,210	0,001	0,001	0,003	0,175	0,0013	0,004	0,009	0,493	
0,50	0,002	0,002	0,003	0,564	0,002	0,001	0,004	0,370	0,003	0,004	0,006	0,686	0,0031	0,006	0,010	0,595	1
0,75	0,004	0,003	0,005	0,544	0,004	0,003	0,006	0,530	0,004	0,005	0,008	0,612	0,0055	0,005	0,014	0,520	nal
1,00	0,006	0,004	0,007	0,499	0,006	0,004	0,007	0,601	0,007	0,004	0,011	0,358	0,0080	0,007	0,017	0,425	Ca
1,25	0,007	0,003	0,010	0,300	0,007	0,006	0,011	0,517	0,008	0,007	0,013	0,543	0,0091	0,008	0,017	0,500	1
1,50	0,008	0,007	0,014	0,496	0,008	0,008	0,014	0.545	0,009	0,009	0,017	0,533	0,0104	0,011	0,022	0,509]
1,75	0,010	0,008	0,019	0,412	0,010	0,010	0,019	0,511	0,010	0,013	0,021	0,622	0,0113	0,014	0,026	0,538	
2,00	0,011	0,010	0,023	0,425	0,011	0,016	0,023	0,703	0.011	0,015	0,025	0,584	0,0123	0.015	0.030	0.479	
2,25	0,012	0,015	0,027	0,552	0,012	0,014	0,029	0,471	0,012	0,016	0,030	0,531	0,0136	0,016	0,037	0,421	llen
2,50	0,012	0.017	0,032	0,543	0,013	0,017	0,032	0,528	0.013	0,021	0,034	0,625	0,0143	0,019	0,041	0,450	únel
2,75	0,013	0,020	0,035	0,556	0,013	0,019	0,037	0,515	0,014	0,021	0,039	0,554	0,0150	0,022	0,045	0,494	1 -
3,00	0,014	0,020	0,041	0,496	0,014	0,021	0,041	0,518	0,015	0,021	0,044	0,470	0,0153	0,027	0,048	0,569	

Tabla 5.4 Pérdida de carga hidráulica por entrada, túnel abocinado y lumbrera, Ensayes: K31, K32, K33, K34 .

Nota: La pérdida de carga se calculo en las secciones -2D y 3D incluyendo la lumbrera de obturadores, sin ranuras; ni pila central. n = 0.0084, valor medio

		So = 0	0, 0007			S0 =	0, 001		1	S0 =	0, 004			S0 =	0, 008		Trabaja
d/D	Q, en m-Vs	he, en m	V²/2g, en m	Ke	Q, en m³/s	he, en m	V²/2g, en m	Ke	Q, en m³/s	he, en m	V²/2g, en m	Ke	Q, en m³/s	he, en m	V²/2g, en m	Ke	Como
0,25	0,001	0,002	0,003	0,864	0,001	0,001	0,003	0,508	0,001	0,003	0,007	0,433	0,001	0,007	0,014	0,479	
0,50	0,003	0,002	0,006	0,302	0,003	0,005	0,006	0,766	0,003	0,006	0,013	0,463	0,003	0,011	0,020	0,577	
0,75	0,005	0,001	0,009	0,158	0,005	0,003	0,010	0,284	0,006	0,006	0,019	0,346	0,006	0,008	0,033	0,010	nal
1,00	0,007	0,002	0,013	0,125	0,008	0,002	0,016	0,107	0,009	0,005	0,023	0,225	0,010	0,011	0,048	0,230	Ca
1,25	0,010	0,001	0,021	0,051	0,010	0,000	0,022	0,014	0,012	0,003	0,028	0,126	0,013	0,012	0,053	0,218	
1,50	0,012	0,005	0,030	0,168	0,013	0,001	0,032	0,035	0,014	0,007	0,037	0,190	0,015	0.009	0,049	0,180	
1,75	0,015	0,010	0,043	0,238	0,014	800,0	0,042	0,182	0,016	0,009	0,053	0,169	0,016	0,011	0,066	0,160	
2,00	0,017	0,009	0,056	0,169	0,017	0,011	0,056	0,196	0,018	0,013	0,063	0,202	0,018	0,016	0,076	0,217	
2,25	0,018	0,011	0,068	0,155	0,019	0,013	0,070	0,185	0.020	0,016	0,078	0,202	0,019	0,024	0,088	0,272	llen
2,50	0,020	0,020	0,080	0,246	0,020	0,020	0,080	0,249	0,021	0,018	0,091	0,194	0,019	0,028	0,101	0,280	ünet
2,75	0,021	0,021	0,093	0,229	0,022	0,020	0,094	0,216	0,022	0,024	0,101	0,241	0,020	0,030	0,114	0,263	-
3,00	0,023	0,027	0,104	0,258	0,023	0,024	0,107	0,228	0,024	0,023	0,117	0,194	0,022	0,036	0,123	0,293	

Tabla 5.5 Pérdida de carga hidráulica por entrada, túnel abocinado y lumbrera. Ensayes: AL31, AL32, AL33, AL34.

Nota: La pérdida de carga se calculo en las secciones -2D y 3D incluyendo la lumbrera de obturadores, sin ranuras; ni pila central. n = 0.084, valor medio

Relación		So = (0, 0007			So ≃	0, 001			S0 =	0, 004			S0 =	0, 008		Trabaja
d/D	Q, en m³/s	he, en m	V²/2g, en m	Ke	Q, en m³/s	he, en m	V²/2g, en m	Ke	Q, en m³/s	he, eл m	V²/2g, en m	Ke	Q, en m¥s	he, en m	V²/2g, en m	Ke	Como
0,25	0,001	0,001	0,002	0,430	0,001	0,002	0,003	0,756	0,001	0.004	0,006	0,675	0,001	0,006	0.014	0,409	
0,50	0,002	0,002	0,006	0,310	0,003	0,001	0.007	0,172	0,003	0,005	0,013	0,376	0,003	0,006	0,025	0,253	1
0,75	0,005	0,003	0,010	0,284	0,005	0.004	0,010	0,372	0,006	Ō.007	0,020	0,348	0,006	0,008	0,039	0,009	la
1,00	0,007	0,002	0,014	0,140	0,008	0,002	0,015	0,130	0,009	0,006	0,023	0,248	0,009	0,010	0.054	0,176	Ca
1,25	0,010	0,005	0,020	0,263	0,010	0,004	0,020	0,210	0,011	0,007	0,026	0,277	0,013	0,010	0,042	0,228	1
1,50	0,012	0,009	0,028	0,313	0,012	0,005	0,028	0,184	0,013	0,009	0,034	0,251	0,015	0,017	0,046	0,369	1
1,75	0,014	0,011	0,038	0,289	0,013	0,008	0,037	0,228	0,015	0,009	0,046	0,187	0,017	0,015	0,058	0,255	
2,00	0,015	0,009	0,047	0,194	0,016	0,011	0,050	0,218	0,017	0,014	0,058	0,234	0,018	0,019	0,068	0,282	_
2,25	0,017	0,018	0,059	0,315	0,017	0,019	0,060	0,311	0,018	0,019	0,069	0,282	0,020	0,021	0,082	0,261	llen
2,50	0,019	0,023	0,071	0,326	0,019	0,023	0,072	0,319	0,020	0,024	0,079	0,297	0,021	0,036	0,090	0,395	inel
2,75	0,020	0,026	0,084	0,308	0,020	0,030	0,079	0,382	0,021	0,026	0,091	0,288	0,022	0,032	0,102	0,317	ц,
3,00	0,022	0,034	0,094	0,356	0,021	0,026	0,093	0,274	0,023	0,026	0,105	0,246	0,024	0,036	0,114	0,313	

Tabla 5.6 Pérdida de carga hidráulica por entrada. Ensayes: AD31, AD32, AD33, AD34.

Nota: La pérdida de carga se calculo en las secciones -2D y 3D incluyendo la lumbrera de obturadores, sin ranuras; ni pila central. n = 0.0084, valor medio

Relación		So = 0	0, 0007			So =	0, 001			So =	0,004			So =	0, 008		Trabaja
d/D	Q, en m¥s	he, en m	V²/2g, en m	Ke	Q, en m³/s	he, en m	V²/2g, en m	Кө	Q, en mª/s	he, en m	V%2g, en m	Ke	Q, en m∛s	he, en m	V²/2g, en m	Ke	Como
0,25	0,0009	0,0009	0,0024	0,3994	0,0009	0,0002	0,0027	0,0760	0,0010	0,0031	0,0044	0,7050	0,0011	0,0068	0,0083	0,8226	
0,50	0,0023	0,0013	0,0043	0,3056	0,0024	0,0011	0,0046	0,2352	0,0030	0,0046	0,0094	0,4909	0,0035	0,0051	0,0153	0,3302	1
0,75	0,0044	0,0016	0,0073	0,2231	0.0045	0,0002	0,0074	0,0228	0,0053	0,0016	0,0119	0,1380	0,0062	0,0063	0,0207	0,0098	a l
1,00	0,0064	0,0030	0,0097	0,3119	0,0066	0,0031	0,0101	0,3080	0,0076	0.0036	0,0140	0,2579	0,0083	0,0064	0,0191	0,3370	Sa l
1,25	0,0084	0,0030	0,0143	0,2108	0,0087	0,0046	0,0152	0,3055	0,0095	0,0054	0,0182	0,2938	0,0107	0,0053	0,0232	0,2298]
1,50	0,0096	0,0080	0,0186	0,4309	0,0098	0,0058	0,0194	0,2976	0,0109	0,0074	0,0240	0,3098	0,0121	0,0107	0,0296	0,3632]
1,75	0,0110	0,0077	0,0244	0,3173	0,0115	0,0057	0,0265	0,2146	0,0121	0,0092	0,0296	0,3119	0,0132	0,0092	0,0354	0,2591	
2,00	0,0124	0,0089	0,0311	0,2870	0,0124	0,0059	0,0311	0,1909	0,0131	0,0115	0,0347	0,3320	0,0143	0,0151	0,0413	0,3659	
2,25	0,0134	0,0106	0,0363	0,2925	0,0136	0,0126	0,0374	0,3376	0,0144	0,0152	0,0419	0,3632	0,0153	0,0179	0,0473	0,3792	lleu
2,50	0,0145	0,0167	0,0422	0,3961	0,0145	0,0164	0,0425	0,3862	0,0152	0,0163	0,0467	0,3496	0,0163	0,0195	0,0537	0,3623	ùnel
2,75	0,0154	0,0202	0,0476	0,4247	0,0154	0,0214	0,0479	0,4468	0,0160	0,0232	0,0517	0,4480	0,0170	0,0234	0,0586	0,3998	-
3,00	0,0165	0,0171	0,0547	0,3116	0,0163	0,0256	0,0537	0,4766	0,0170	0,0225	0,0584	0,3847	0,0176	0,0313	0,0626	0,5004	

Tabla 5.7 Pérdida de carga hidráulica por entrada. Ensayes: AK31, AK32, AK33, AK34.

Nota: La pérdida de carga se calculo en las secciones -2D y 3D incluyendo la lumbrera de obturadores, sin ranuras; ni pila central. n = 0.0084, valor medio

Tabla 6 1	Caída del	aradiente de	nresión en	el túnel	Ensave	∆31
rabia orr	Quidu doi	gradiente de	prosion on	or turnor.	LINGUYO	701

	d/D	= 1.50			d/D	= 1.75			d/D	= 2.00	
Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5
0,133	1,000	0,228	0,200	0,133	1,000	0,233	0,204	0,133	1,000	0,230	0,201
0,133	1,000	0,227	0,199	0,133	1,000	0,231	0,203	0,133	1,000	0,226	0,198
0,133	1,000	0,904	0,792	0,133	1,000	1,078	0,944	0,133	1,000	1,206	1,056
0,133	1,000	0,904	0,792	0,133	1,000	1,078	0,944	0,133	1,000	1,206	1,056
0,133	1,000	0,904	0,792	0,133	1,000	1,078	0,944	0,133	1,000	1,206	1,056
0,133	1,000	0,904	0,792	0,133	1,000	1,078	0,944	0,133	1,000	1,206	1,056
0,133	1,000	0,904	0,792	0,133	1,000	1,078	0,944	0,133	1,000	1,206	1,056
0,133	1,000	0,904	0,792	0,133	1,000	1,078	0,944	0,133	1,000	1,206	1,056
0,133	0,995	0,905	0,792	0,133	1,000	1,078	0,944	0,133	1,000	1,206	1,056
0,125	0,934	0,928	0,840	0,125	0,934	1,106	1,001	0,127	0,949	1,227	1,101
0,116	0,872	0,968	0,907	0,115	0,865	1,162	1,093	0,116	0,872	1,291	1,209
0,116	0,870	0,970	0,909	0,112	0,840	1,187	1,132	0,113	0,848	1,318	1,252
0,113	0,850	0,987	0,936	0,109	0,820	1,210	1,168	0,109	0,820	1,352	1,306
0,092	0,687	1,184	1,249	0,092	0,687	1,412	1,489	0,094	0,702	1,547	1,615
	d/D	= 2.25			d/D	= 2.50			d/D	= 2.75	
0,133	1,000	0,224	0,196	0,133	1,000	0,213	0,186	0,133	1,000	0,209	0,183
0,133	1,000	0,223	0,196	0,133	1,000	0,213	0,186	0,133	1,000	0,209	0,183
0,133	1,000	1,346	1,178	0,133	1,000	1,434	1,256	0,133	1,000	1,545	1,353
0,133	1,000	1,346	1,178	0,133	1,000	1,434	1,256	0,133	1,000	1,545	1,353
0,133	1,000	1,346	1,178	0,133	1,000	1,434	1,256	0,133	1,000	1,545	1,353
0,133	1,000	1,346	1,178	0,133	1,000	1,434	1,256	0,133	1,000	1,545	1,353
0,133	1,000	1,346	1,178	0,133	1,000	1,434	1,256	0,133	1,000	1,545	1,353
0,133	1,000	1,346	1,178	0,133	1,000	1,434	1,256	0,133	1,000	1,545	1,353
0,133	1,000	1,346	1,178	0,133	1,000	1,434	1,256	0,133	1,000	1,545	1,353
0,133	0,994	1,347	1,179	0,133	1,000	1,434	1,256	0,133	1,000	1,545	1,353
0,118	0,887	1,424	1,322	0,120	0,902	1,501	1,382	0,124	0,932	1,587	1,437
0,113	0,848	1,471	1,397	0,116	0,870	1,538	1,442	0,117	0,878	1,647	1,538
0,109	0,820	1,509	1,458	0,111	0,835	1,586	1,518	0,112	0,842	1,697	1,617
0,094	0,702	1,727	1,802	0,096	0,717	1,805	1,864	0,096	0,717	1,945	2,008

d/D = 3.00									
0,133	1,000	0,201	0,176						
0,133	1,000	0,200	0,175						
0,133	1,000	1,624	1,422						
0,133	1,000	1,624	1,422						
0,133	1,000	1,624	1,422						
0,133	1,000	1,624	1,422						
0,133	1,000	1,624	1,422						
0,133	1,000	1,624	1,422						
0,133	1,000	1,624	1,422						
0,133	1,000	1,624	1,422						
0,127	0,957	1,648	1,475						
0,122	0,917	1,685	1,540						
0,115	0,867	1,749	1,645						
0,100	0,749	1.970	1.993						

Tabla 6.2	Caída	del gradie	ente de	presión	en el	túnel.	Ensaye	A32
-----------	-------	------------	---------	---------	-------	--------	--------	-----

	d/D	= 1.50			d/D	= 1.75			d/D	= 2.00	
Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5
0,133	1,000	0,230	0,202	0,133	1,000	0,245	0,214	0,133	1,000	0,234	0,205
0,133	1,000	0,226	0,198	0,133	1,000	0,242	0,212	0,133	1,000	0,231	0,202
0,133	1,000	0,904	0,792	0,133	1,000	1,120	0,980	0,133	1,000	1,233	1,079
0,133	1,000	0,904	0,792	0,133	1,000	1,120	0,980	0,133	1,000	1,233	1,079
0,133	1,000	0,904	0,792	0,133	1,000	1,120	0,980	0,133	1,000	1,233	1,079
0,133	1,000	0,904	0,792	0,133	1,000	1,120	0,980	0,133	1,000	1,233	1,079
0,133	1,000	0,904	0,792	0,133	1,000	1,120	0,980	0,133	1,000	1,233	1,079
0,133	1,000	0,904	0,792	0,133	1,000	1,120	0,980	0,133	1,000	1,233	1,079
0,133	1,000	0,904	0,792	0,133	0,996	1,120	0,981	0,133	1,000	1,233	1,079
0,129	0,968	0,912	0,811	0,122	0,916	1,162	1,062	0,126	0,946	1,257	1,130
0,123	0,924	0,934	0,850	0,113	0,849	1,223	1,161	0,115	0,864	1,329	1,251
0,117	0,879	0,963	0,898	0,109	0,819	1,257	1,214	0,112	0,842	1,355	1,292
0,095	0,709	1,149	1,193	0,109	0,815	1,262	1,223	0,108	0,807	1,400	1,363
0,078	0,585	1,382	1,581	0,092	0,690	1,460	1,537	0,094	0,705	1,575	1,641
	d/D	= 2.25			d/D	d/D = 2.50 d/D = 2.75			= 2.75		
0,133	1,000	0,226	0,198	0,133	1,000	0,215	0,189	0,133	1,000	0,210	0,184
0,133	1,000	0,223	0,196	0,133	1,000	0,215	0,189	0,133	1,000	0,209	0,183
0,133	1,000	1,346	1,178	0,133	1,000	1,442	1,262	0,133	1,000	1,545	1,353
0,133	1,000	1,346	1,178	0,133	1,000	1,442	1,262	0,133	1,000	1,545	1,353
0,133	1,000	1,346	1,178	0,133	1,000	1,442	1,262	0,133	1,000	1,545	1,353
0,133	1,000	1,346	1,178	0,133	1,000	1,442	1,262	0,133	1,000	1,545	1,353
0,133	1,000	1,346	1,178	0,133	1,000	1,442	1,262	0,133	1,000	1,545	1,353
0,133	1,000	1,346	1,178	0,133	1,000	1,442	1,262	0,133	1,000	1,545	1,353
0,133	1,000	1,346	1,178	0,133	1,000	1,442	1,262	0,133	1,000	1,545	1,353
0,131	0,983	1,351	1,191	0,133	1,000	1,442	1,262	0,133	1,000	1,545	1,353
0,117	0,879	1,434	1,338	0,119	0,894	1,519	1,405	0,122	0,916	1,603	1,464
0,114	0,857	1,460	1,379	0,116	0,872	1,544	1,447	0,117	0,879	1,646	1,535
0,113	0,845	1,475	1,404	0,113	0,845	1,580	1,504	0,114	0,852	1,683	1,594
0,094	0,705	1,720	1,791	0,094	0,705	1,842	1,919	0,096	0,720	1,937	1,996

	d/D	= 3.00	
0,133	1,000	0,201	0,176
0,133	1,000	0,200	0,175
0,133	1,000	1,620	1,419
0,133	1,000	1,620	1,419
0,133	1,000	1,620	1,419
0,133	1,000	1,620	1,419
0,133	1,000	1,620	1,419
0,133	1,000	1,620	1,419
0,133	1,000	1,620	1,419
0,133	1,000	1,620	1,419
0,125	0,939	1,658	1,497
0,120	0,902	1,697	1,563
0,116	0,867	1,742	1,636
0,098	0,735	1,994	2.034

	d/D	= 1.75		d/D = 2.00				d/D = 2.25			
Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5
0,133	1,000	0,264	0,231	0,133	1,000	0,252	0,220	0,133	1,000	0,241	0,211
0,133	1,000	0,259	0,227	0,133	1,000	0,250	0,218	0,133	1,000	0,240	0,210
0,133	1,000	1,193	1,044	0,133	1,000	1,317	1,153	0,133	1,000	1,434	1,256
0,133	1,000	1,193	1,044	0,133	1,000	1,317	1,153	0,133	1,000	1,434	1,256
0,133	1,000	1,193	1,044	0,133	1,000	1,317	1,153	0,133	1,000	1,434	1,256
0,133	1,000	1,193	1,044	0,133	1,000	1,317	1,153	0,133	1,000	1,434	1,256
0,133	1,000	1,193	1,044	0,133	1,000	1,317	1,153	0,133	1,000	1,434	1,256
0,125	0,939	1,220	1,101	0,133	1,000	1,317	1,153	0,133	1,000	1,434	1,256
0,120	0,903	1,248	1,148	0,128	0,963	1,331	1,186	0,133	1,000	1,434	1,256
0,108	0,808	1,353	1,316	0,110	0,827	1,467	1,410	0,117	0,876	1,531	1,431
0,107	0,799	1,366	1,336	0,108	0,807	1,496	1,457	0,110	0,822	1,606	1,549
0,104	0,779	1,395	1,383	0,104	0,779	1,541	1,527	0,104	0,779	1,678	1,663
0,105	0,791	1,378	1,355	0,105	0,791	1.521	1,496	0,105	0,791	1,657	1,629
0,091	0,683	1,570	1,662	0,091	0,683	1,734	1,835	0,094	0,705	1,832	1,908
	d/D	= 2.50			d/D	= 2.75			d/D	= 3.00	
0,133	1,000	0,230	0,201	0,133	1,000	0,223	0,195	0,133	1,000	0,214	0,187
0,133	1,000	0,228	0,200	0,133	1,000	0,223	0,195	0,133	1,000	0,214	0,187
0,133	1,000	1,523	1,333	0,133	1,000	1,641	1,437	0,133	1,000	1,734	1,518
0,133	1,000	1,523	1,333	0,133	1,000	1,641	1,437	0,133	1.000	1,734	1,518
0,133	1,000	1,523	1,333	0,133	1,000	1,641	1,437	0,133	1,000	1,734	1,518
0,133	1,000	1,523	1,333	0,133	1,000	1,641	1,437	0,133	1,000	1,734	1,518
0,133	1,000	1,523	1,333	0,133	1,000	1,641	1,437	0,133	1,000	1,734	1,518
0,133	1,000	1,523	1,333	0,133	1,000	1,641	1,437	0,133	1,000	1,734	1,518
0,133	1,000	1,523	1,333	0,133	1,000	1,641	1,437	0,133	1,000	1,734	1,518
0,124	0,932	1,564	1,417	0,130	0,977	1,650	1,460	0,133	1,000	1,734	1,518
0,112	0,837	1,682	1,608	0,114	0,855	1,782	1,685	0,116	0,867	1,865	1,752
0,104	0,779	1,782	1,766	0,104	0,779	1,921	1,903	0,107	0,805	1,974	1,924
0,105	0,791	1,759	1,730	0,105	0,791	1,896	1,865	0,105	0.791	2,003	1,970
0,094	0,705	1,946	2,027	0,094	0,705	2,097	2,184	0,097	0,731	2,143	2,192

Tabla 6.3 Caída del gradiente de presión en el túnel. Ensaye A33

Notas:

	d/D	= 1.75			d/D	= 2.00	
Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5
0,133	1,000	0,246	0,215	0,133	1,000	0,234	0,205
0,133	1,000	0,261	0,228	0,133	1,000	0,246	0,215
0,133	1,000	1,196	1,047	0,133	1,000	1,297	1,136
0,133	1,000	1,196	1,047	0,133	1,000	1,297	1,136
0,133	1,000	1,196	1,047	0,133	1,000	1,297	1,136
0,133	1,000	1,196	1,047	0,133	1,000	1,297	1,136
0,133	1,000	1,196	1,047	0,133	1,000	1,297	1,136
0,131	0,984	1,201	1,052	0,133	1,000	1,297	1,136
0,132	0,991	1,199	1,049	0,133	1,000	1,297	1,136
0,129	0,966	1,209	1,058	0,133	1,000	1,297	1,136
0,123	0,925	1,235	1,081	0,127	0,955	1,317	1,153
0,124	0,929	1,232	1,079	0,127	0,952	1,319	1,155
0,123	0,923	1,237	1,083	0,124	0,935	1,332	1,166
0,079	0,594	1,805	1,580	0,082	0,613	1,898	1,662

Tabla 6.4 Caída del gradiente de presión en el túnel. Ensaye A34

	d/D	= 1.50			d/D	= 1.75			d/D	= 2.00	
Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, <u>m</u> /s	V/(gD)^0,5
0,133	1,000	0,190	0,167	0,133	1,000	0,191	0,167	0,133	1,000	0,191	0,167
0,133	1,000	0,196	0,172	0,133	1,000	0,197	0,173	0,133	1,000	0,196	0,172
0,133	1,000	0,787	0,689	0,133	1,000	0,927	0,811	0,133	1,000	1,054	0,923
0,133	1,000	0,787	0,689	0,133	1,000	0,927	0,811	0,133	1,000	1,054	0,923
0,133	1,000	0,787	0,689	0,133	1,000	0,927	0,811	0,133	1,000	1,054	0,923
0,133	1,000	0,787	0,689	0,133	1,000	0,927	0,811	0,133	1,000	1,054	0,923
0,133	1,000	0,787	0,689	0,133	1,000	0,927	0,811	0,133	1,000	1,054	0,923
0,133	1,000	0,787	0,689	0,133	1,000	0,927	0,811	0,133	1,000	1,054	0,923
0,133	1,000	0,787	0,689	0,133	1,000	0,927	0,811	0,133	1,000	1,054	0,923
0,129	0,966	0,795	0,696	0,133	1,000	0,927	0,811	0,133	1,000	1,054	0,923
0,123	0,923	0,813	0,712	0,124	0,931	0,954	0,835	0,131	0,983	1,059	0,927
0,116	0,872	0,843	0,738	0,115	0,865	1,000	0,875	0,115	0,865	1,138	0,996
0,114	0,859	0,853	0,746	0,111	0,837	1,025	0,897	0,111	0,837	1,166	1,021
0,075	0,561	1,257	1,100	0,084	0,632	1,316	1,152	0,083	0,621	1,523	1,334
	d/D	= 2.25			d/D	= 2.50			d/D	≖ 2.75	
0,133	1,000	0,187	0,164	0,133	1,000	0,177	0,155	0,133	1,000	0,174	0,153
0,133	1,000	0,192	0,168	0,133	1,000	0,182	0,159	0,133	1,000	0.178	0,156
0,133	1,000	1,166	1,021	0,133	1,000	1,233	1,079	0,133	1,000	1,331	1,166
0,133	1,000	1,166	1,021	0,133	1,000	1,233	1,079	0,133	1,000	1,331	1,166
0,133	1,000	1,166	1,021	0,133	1,000	1,233	1,079	0,133	1,000	1,331	1,166
0,133	1,000	1,166	1,021	0,133	1,000	1,233	1,079	0,133	1,000	1,331	1,166
0,133	1,000	1,166	1,021	0,133	1,000	1,233	1,079	0,133	1,000	1,331	1,166
0,133	1,000	1,166	1,021	0,133	1,000	1,233	1,079	0,133	1,000	1,331	1,166
0,133	1,000	1,166	1,021	0,133	1,000	1,233	1,079	0,133	1,000	1,331	1,166
0,133	1,000	1,166	1,021	0,133	1,000	1,233	1,079	0,133	1,000	1,331	1,166
0,129	0,972	1,176	1,029	0,131	0,987	1,237	1,083	0,131	0,987	1,335	1,169
0,115	0,865	1,259	1,102	0,114	0,857	1,339	1,172	0,114	0,857	1,446	1,266
0,110	0,829	1,299	1,137	0,107	0,803	1,409	1,233	0,107	0,807	1,515	1,327
0,082	0,613	1,706	1,493	0,080	0,598	1,847	1,617	0,079	0,591	2,020	1,768

Tabla 6.5 Caída del gradiente de presión en el túnel, ensaye L31.

	d/D = 3.00									
0,133	1,000	0,170	0,149							
0,133	1,000	0,173	0,152							
0,133	1,000	1,419	1,243							
0,133	1,000	1,419	1,243							
0,133	1,000	1,419	1,243							
0,133	1,000	1,419	1,243							
0,133	1,000	1,419	1,243							
0,133	1,000	1,419	1,243							
0,133	1,000	1,419	1,243							
0,133	1,000	1,419	1,243							
0,133	1,000	1,419	1,243							
0,113	0,850	1,551	1,358							
0,105	0,792	1,641	1,436							
0,076	0,568	2,238	1,959							

Portal de salida, So = 0,0007 d/D Yp, m Yp/D V, m/s V/(gD)^0,5 1,100 1,500 0,075 0,561 1,257 1,750 0,084 0,632 1,316 1,152 2,000 2,250 0,083 0,621 1,523 1,334 0,082 0,613 1,706 1,493 1,617 0,080 1,847 2,020 2,238 2,500 2,750 0,598 0,079 0,591 3,000 0,076 0,568 1,959

Tabla 6.6	Caída del	gradiente de	presión en e	l túnel. Ensa	ye L32
-----------	-----------	--------------	--------------	---------------	--------

	d/D	= 1.50			d/D	= 1.75			d/D	= 2.00	
Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5
0,133	1,000	0,197	0,172	0,133	1,000	0,197	0,172	0,133	1,000	0,195	0,171
0,133	1,000	0,201	0,176	0,133	1,000	0,202	0,177	0,133	1,000	0,199	0,174
0,133	1 1,000	0,813	0,711	0,133	1,000	0,949	0,831	0,133	1,000	1,070	0,937
0,133	1,000	0,813	0,711	0,133	1,000	0,949	0,831	0,133	1,000	1,070	0,937
0,133	1,000	0,813	0,711	0,133	1,000	0,949	0,831	0,133	1,000	1,070	0,937
0,133	1,000	0,813	0,711	0,133	1,000	0.949	0,831	0,133	1,000	1,070	0,937
0,133	1,000	0,813	0,711	0,133	1.000	0.949	0.831	0,133	1,000	1,070	0,937
0,133	1,000	0.813	0,711	0.133	1,000	0.949	0.831	0,133	1,000	1.070	0,937
0,133	1,000	0.813	0,711	0.133	1.000	0.949	0.831	0,133	1,000	1,070	0,937
0,128	0.963	0.822	0.720	0.131	0.985	0.953	0.834	0.133	1.000	1.070	0,937
0,122	0,918	0.843	0,738	0.125	0.937	0.973	0.852	0.125	0,941	1,095	0,958
0,117	0,877	0,868	0,760	0,116	0.870	1.020	0,893	0,116	0,870	1,150	1,007
0,115	0,861	0.879	0,770	0.112	0.839	1.048	0.917	0,112	0.839	1,181	1,034
0,075	0,564	1,291	1,131	0,081	0,613	1,390	1,217	0,081	0,613	1,566	1,371
	d/D	= 2.25			d/D	= 2.50	I		d/D	= 2.75	
0,133	1,000	0,189	0,165	0,133	1,000	0,182	0,159	0,133	1,000	0,177	0,155
0,133	1,000	0,193	0,169	0,133	1.000	0,187	0,164	0,133	1,000	0,181	0,159
0,133	1,000	1,177	1,030	0,133	1,000	1,267	1,110	0,133	1.000	1,353	1,185
0,133	1,000	1,177	1,030	0,133	1,000	1,267	1,110	0,133	1,000	1,353	1,185
0,133	1,000	1,177	1,030	0,133	1,000	1,267	1,110	0,133	1,000	1,353	1,185
0,133	1,000	1,177	1,030	0,133	1,000	1,267	1,110	0,133	1,000	1,353	1,185
0,133	1,000	1,177	1,030	0,133	1,000	1,267	1,110	0,133	1,000	1,353	1,185
0,133	1,000	1,177	1,030	0,133	1,000	1,267	1,110	0,133	1,000	1,353	1,185
0,133	1,000	1,177	1,030	0,133	1,000	1,267	1,110	0,133	1,000	1,353	1,185
0,133	1,000	1,177	1,030	0,133	1,000	1,267	1,110	0,133	1,000	1,353	1,185
0,126	0,948	1,199	1,050	0,130	0,974	1,276	1,117	0,131	0,986	1,358	1,189
0,111	0,836	1,302	1,140	0,111	0,836	1,403	1,228	0,112	0,843	1,487	1,302
0,108	0,809	1,337	1,170	0,108	0,809	1,440	1,260	0,107	0,801	1,549	1,356
0,078	0,590	1,788	1,565	0,078	0,590	1,925	1,685	0,076	0,575	2,108	1,846

d/D = 3.00								
0,133	1,000	0,174	0,152					
0,133	1,000	0,178	0,156					
0,133	1,000	1,452	1,271					
0,133	1,000	1,452	1,271					
0.133	1.000	1.452	1,271					
0,133	1,000	1,452	1,271					
0,133	1,000	1,452	1,271					
0,133	1,000	1,452	1,271					
0,133	1,000	1,452	1,271					
0,133	1,000	1,452	1,271					
0.133	1,000	1,452	1,271					
0,111	0,832	1,612	1,412					
0,105	0,790	1,681	1,472					
0,074	0,560	2,323	2,033					

	Portal de salida, So = 0,001									
d/D	Yp, m	Yp/D	V, m/s	V/(gD)^0,5						
1,500	0,075	0,564	1,291	1,131						
1,750	0,081	0,613	1,390	1,217						
2,000	0,081	0,613	1,566	1,371						
2,250	0,078	0,590	1,788	1,565						
2,500	0,078	0,590	1,925	1,685						
2,750	0,076	0,575	2,108	1,846						
3,000	0,074	0,560	2,323	2,033						

	d/D	= 1.50			d/D	= 1.75		d/D = 2.00			
Yp, m	Yp/D	V,m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V,m/s	V/(gD)^0,5
0,133	1,000	0,232	0,203	0,133	1,000	0,223	0,195	0,133	1,000	0,214	0,188
0,133	1,000	0,228	0,200	0,133	1,000	0,221	0,193	0,133	1,000	0,213	0,186
0,133	1,000	0,904	0,792	0,133	1,000	1,030	0,902	0,133	1,000	1,133	0,992
0,133	1,000	0,905	0,792	0,133	1,000	1,030	0,902	0,133	1,000	1,133	0,992
0,133	1,000	0,905	0,792	0,133	1,000	1,030	0,902	0,133	1,000	1,133	0,992
0,133	1,000	0,905	0,792	0,133	1,000	1,030	0,902	0,133	1,000	1,133	0,992
0,133	1,000	0,905	0,792	0,133	1,000	1,030	0,902	0,133	1,000	1,133	0,992
0,133	1,000	0,905	0,792	0,133	1,000	1,030	0,902	0,133	1,000	1,133	0,992
0,128	0,962	0,916	0,802	0,133	1,000	1,030	0,902	0,133	1,000	1,133	0,992
0,123	0,927	0,933	0,817	0,128	0,964	1,042	0,912	0,133	0,998	1,134	0,993
0,121	0,906	0,946	0,828	0,121	0,910	1,074	0,941	0,123	0,925	1,170	1,025
0,116	0,871	0,971	0,850	0,114	0,856	1,120	0,981	0,113	0,852	1,236	1,083
0,112	0,841	0,996	0,872	0,112	0,845	1,131	0,990	0,109	0,822	1,270	1,112
0,083	0,624	1,301	1,139	0,084	0,635	1,456	1,275	0,083	0,624	1,630	1,427
	d/D	= 2.25			d/D	= 2.50			d/D	= 2.75	
0,133	1,000	0,199	0,174	0,133	1,000	0,198	0,173	0,133	1,000	0,189	0,166
0,133	1,000	0,198	0,173	0,133	1,000	0,198	0,173	0,133	1,000	0,189	0,166
0,133	1,000	1,199	1,050	0,133	1,000	1,331	1,166	0,133	1,000	1,404	1,230
0,133	1,000	1,199	1,050	0,133	1,000	1,331	1,166	0,133	1,000	1,404	1,230
0,133	1,000	1,199	1,050	0,133	1,000	1,331	1,166	0,133	1,000	1,404	1,230
0,133	1,000	1,199	1,050	0,133	1,000	1,331	1,166	0,133	1,000	1,404	1,230
0,133	1,000	1,199	1,050	0,133	1,000	1,331	1,166	0,133	1,000	1,404	1,230
0,133	1,000	1,199	1,050	0,133	1,000	1,331	1,166	0,133	1,000	1,404	1,230
0,133	1,000	1,199	1,050	0,133	1,000	1,331	1,166	0,133	1,000	1,404	1,230
0,133	1,000	1,199	1,050	0,133	1,000	1,331	1,166	0,133	1,000	1,405	1,230
0,124	0,929	1,236	1,082	0,129	0,966	1,345	1,178	0,131	0,985	1,409	1,234
0,111	0,833	1,331	1,165	0,110	0,825	1,488	1,302	0,111	0,833	1,558	1,364
0,106	0,800	1,374	1,203	0,104	0,785	1,550	1,357	0,104	0,781	1,642	1,438
0,079	0,594	1,810	1,584	0,079	0,594	2,009	1,759	0,076	0,571	2,202	1,928

Tabla 6.7 Caída del	oradiente de p	resión en el	túnel, Ensa	ave L33

d/D = 3.00							
0,133	1,000	0,184	0,161				
0,133	1,000	0,184	0,161				
0,133	1,000	1,501	1,314				
0,133	1,000	1,501	1,314				
0,133	1,000	1,501	1,314				
0,133	1,000	1,501	1,314				
0,133	1,000	1,501	1,314				
0,133	1,000	1,501	1,314				
0,133	1,000	1,501	1,314				
0,133	1,000	1,501	1,314				
0,133	1,000	1,501	1,314				
0,111	0,833	1,665	1,458				
0,104	0,785	1,748	1,530				
0,075	0,564	2,385	2,088				

	Portal de salida, So = 0,004								
d/D	Yp, m	Yp/D	V,m/s	V/(gD)^0,5					
1,500	0,083	0,624	1,301	1,139					
1,750	0,084	0,635	1,456	1,275					
2,000	0,083	0,624	1,630	1,427					
2,250	0,079	0,594	1,810	1,584					
2,500	0,079	0,594	2,009	1,759					
2,750	0,076	0,571	2,202	1,928					
3,000	0,075	0,564	2,385	2,088					

	d/D	= 1.50			d/D	= 1.75			d/D	= 2. <u>00</u>	
Yp, m	Yp/D	V,m/s	V/(gD)^0,5	Yp, m	Yp/D	V,m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5
0,133	1,000	0,229	0,200	0,133	1,000	0,218	0,191	0,133	1,000	0,212	0,185
0,133	1,000	0,241	0,211	0,133	1,000	0,228	0,199	0,133	1,000	0,220	0,193
0,133	1,000	0,944	0,827	0,133	1,000	1,054	0,923	0,133	1,000	1,160	1,015
0,133	1,000	0,944	0,827	0,133	1,000	1,054	0,923	0,133	1,000	1,160	1,015
0,133	1,000	0,944	0,827	0,133	1,000	1,054	0,923	0,133	1,000	1,160	1,015
0,133	1,000	0,944	0,827	0,133	1,000	1,054	0,923	0,133	1,000	1,160	1,015
0,129	0,972	0,952	0,834	0,133	1,000	1,054	0,923	0,133	1,000	1,160	1,015
0,125	0,942	0,966	0,845	0,129	0,969	1,064	0,932	0,133	1,000	1,160	1,015
0,121	0,913	0,983	0,861	0,121	0,913	1,097	0,961	0,133	1,000	1,160	1,015
0,115	0,865	1,019	0,892	0,119	0,891	1,114	0,975	0,123	0,921	1,201	1,051
0,113	0,850	1,032	0,903	0,114	0,858	1,144	1,002	0,115	0,865	1,251	1,095
0,113	0,847	1,035	0,906	0,110	0,824	1,180	1,033	0,103	0,771	1,371	1,200
0,112	0,841	1,041	0,911	0,107	0,803	1,205	1,055	0,100	0,754	1,398	1,224
0,090	0,677	1,257	1,100	0,090	0,677	1,403	1,228	0,089	0,669	1,560	1,365
	d/D	= 2.25			d/D	= 2.50			d/D	= 2.75	
0,133	1,000	0,199	0,174	0,133	1,000	0,193	0,169	0,133	1,000	0,186	0,163
0,133	1,000	0,207	0,181	0,133	1,000	0,199	0,174	0,133	1,000	0,192	0,168
0,133	1,000	1,247	1,091	0,133	1,000	1,339	1,172	0,133	1,000	1,419	1,243
0,133	1,000	1,247	1,091	0,133	1,000	1,339	1,172	0,133	1,000	1,419	1,243
0,133	1,000	1,247	1,091	0,133	1,000	1,339	1,172	0,133	1,000	1,419	1,243
0,133	1,000	1,247	1,091	0,133	1,000	1,339	1,172	0,133	1,000	1,419	1,243
0,133	1,000	1,247	1,091	0,133	1,000	1,339	1,172	0,133	1,000	1,419	1,243
0,133	1,000	1,247	1,091	0,133	1,000	1,339	1,172	0,133	1,000	1,419	1,243
0,133	1,000	1,247	1,091	0,133	1,000	1,339	1,172	0,133	1,000	1,419	1,243
0,129	0,966	1,260	1,103	0,133	1,000	1,339	1,172	0,133	1,000	1,419	1,243
0,118	0,888	1,321	1,156	0,122	0,918	1,389	1,216	0,125	0,940	1,453	1,272
0,102	0,764	1,486	1,301	0,102	0,764	1,595	1,397	0,107	0,805	1,618	1,416
0,093	0,702	1,604	1,404	0,100	0,754	1,613	1,412	0,103	0,773	1,674	1,466
0,089	0,669	1,676	1,467	0,088	0,662	1,819	1,593	0,087	0,654	1,950	1,707

Tabla 6.8	Caída	del gradiente	de presión	en el túnel	. Ensave L34
		V			

	d/D	= 3.00	
0,133	1,000	0,179	0,157
0,133	1,000	0,183	0,161
0,133	1,000	1,486	1,301
0,133	1,000	1,486	1,301
0,133	1,000	1,486	1,301
0,133	1,000	1,486	1,301
0,133	1,000	1,486	1,301
0,133	1,000	1,486	1,301
0,133	1,000	1,486	1,301
0,133	1,000	1,486	1,301
0,128	0,963	1,504	1,317
0,108	0,809	1,688	1,478
0,102	0,769	1,761	1,541
0,087	0,654	2,042	1,788

	Portal de salida, So = 0,008								
d/D	Yp, m	Yp/D	V, m/s	V/(gD)^0,5					
1,500	0,090	0,677	1,257	1,100					
1,750	0,090	0,677	1,403	1,228					
2,000	0,089	0,669	1,560	1,365					
2.250	0,089	0,669	1,676	1,467					
2,500	0,088	0,662	1,819	1,593					
2,750	0,087	0,654	1,950	1,707					
3,000	0,087	0,654	2,042	1,788					

Tabla 6.9 C	aída del	gradiente de	presión e	en el	túnel.	Ensave	D31

	d/D	= 1.50			d/D	= 1.75			d/D	= 2.00	
Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5
0,133	1,000	0,179	0,157	0,133	1,000	0,177	0,155	0,133	1,000	0,172	0,150
0,133	1,000	0,184	0,161	0,133	1,000	0,182	0,159	0,133	1,000	0,174	0,153
0,133	1,000	0,736	0,644	0,133	1,000	0,850	0,744	0,133	1,000	0,944	0,827
0,133	1,000	0,736	0,644	0,133	1,000	0,850	0,744	0,133	1,000	0,944	0,827
0,133	1,000	0,736	0,644	0,133	1,000	0,850	0,744	0,133	1,000	0,944	0,827
0,133	1,000	0,736	0,644	0,133	1,000	0,850	0,744	0,133	1,000	0,944	0,827
0,133	1,000	0,736	0,644	0,133	1,000	0,850	0,744	0,133	1,000	0,944	0,827
0,133	1,000	0,736	0,644	0,133	1,000	0,850	0,744	0,133	1,000	0,944	0,827
0,133	1,000	0,736	0,644	0,133	1,000	0,850	0,744	0,133	1,000	0,944	0,827
0,128	0,959	0,746	0,653	0,133	1,000	0,850	0,744	0,133	1,000	0,944	0,827
0,122	0,919	0,762	0,667	0,130	0,979	0,854	0,748	0,132	0,994	0,946	0,828
0,106	0,797	0,846	0,740	0,119	0,891	0,898	0,786	0,118	0,884	1,004	0,879
0,104	0,780	0,861	0,754	0,118	0,889	0,899	0,787	0,116	0,874	1,011	0,885
0,068	0,508	1,297	1,135	0,078	0,583	1,306	1,143	0,084	0,632	1,341	1,174
	d/D	= 2.25		d/D = 2.50			d/D = 2.75				
0,133	1,000	0,163	0,142	0,133	1,000	0,164	0,144	0,133	1,000	0,161	0,141
0,133	1,000	0,165	0,144	0,133	1,000	0,167	0,146	0,133	1,000	0,164	0,144
0,133	1,000	1,007	0,881	0,133	1,000	1,141	0,999	0,133	1,000	1,233	1,079
0,133	1,000	1,007	0,881	0,133	1,000	1,141	0,999	0,133	1,000	1,233	1,079
0,133	1,000	1,007	0,881	0,133	1,000	1,141	0,999	0,133	1,000	1,233	1,079
0,133	1,000	1,007	0,881	0,133	1,000	1,141	0,999	0,133	1,000	1,233	1,079
0,133	1,000	1,007	0,881	0,133	1,000	1,141	0,999	0,133	1,000	1,233	1,079
0,133	1,000	1,007	0,881	0,133	1,000	1,141	0,999	0,133	1,000	1,233	1,079
0,133	1,000	1,007	0,881	0,133	1,000	1,141	0,999	0,133	1,000	1,233	1,079
0,133	1,000	1,007	0,881	0,133	1,000	1,141	0,999	0,133	1,000	1,233	1,079
0,133	1,000	1,007	0,881	0,133	1,000	1,141	0,999	0,133	1,000	1,233	1,079
0,116	0,872	1,080	0,945	0,115	0,865	1,231	1,078	0,114	0,857	1,339	1,172
0,114	0,859	1,091	0,955	0,114	0,856	1,240	1,086	0,112	0,844	1,354	1,185
0,086	0,643	1,406	1,231	0,086	0,643	1,592	1,394	0,086	0,643	1,721	1,507

	d/D = 3.00								
0,133	1,000	0,157	0,137						
0,133	1,000	0,160	0,140						
0,133	1,000	1,310	1,147						
0,133	1,000	1,310	1,147						
0,133	1,000	1,310	1,147						
0,133	1,000	1,310	1,147						
0,133	1,000	1,310	1,147						
0,133	1,000	1,310	1,147						
0,133	1,000	1,310	1,147						
0,133	1,000	1,310	1,147						
0,133	1,000	1,310	1,147						
0,113	0,850	1,432	1,253						
0,110	0,829	1,458	1,277						
0,084	0,628	1,871	1,638						

	Portal de salida, So = 0,0007								
d/D	Yp, m	Yp/D	V, m/s	V/(gD)^0,5					
1,500	0,068	0,508	1,297	1,135					
1,750	0,078	0,583	1,306	1,143					
2,000	0,084	0,632	1,341	1,174					
2,250	0,086	0,643	1,406	1,231					
2,500	0,086	0,643	1,592	1,394					
2,750	0,086	0,643	1,721	1,507					
3,000	0,084	0,628	1,871	1,638					

Notas:

	d/D	= 1.50			d/D	= 1.75			d/D	= 2.00	
Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V,m/s	V/(gD)^0,5
0,133	1,000	0,177	0,155	0,133	1,000	0,175	0,153	0,133	1,000	0,173	0,151
0,133	1,000	0,182	0,159	0,133	1,000	0,179	0,157	0,133	1,000	0,177	0,155
0,133	1,000	0,736	0,644	0,133	1,000	0,844	0,739	0,133	1,000	0,955	0,836
0,133	1,000	0,736	0,644	0,133	1,000	0,844	0,739	0,133	1,000	0,955	0,836
0,133	1,000	0,736	0,644	0,133	1,000	0,844	0,739	0,133	1,000	0,955	0,836
0,133	1,000	0,736	0,644	0,133	1,000	0,844	0,739	0,133	1,000	0,955	0,836
0,133	1,000	0,736	0,644	0,133	1,000	0,844	0,739	0,133	1,000	0,955	0,836
0,133	1,000	0,736	0,644	0,133	1,000	0,844	0,739	0,133	1,000	0,955	0,836
0,133	1,000	0,736	0,644	0,133	1,000	0,845	0,739	0,133	1,000	0,955	0,836
0,130	0,974	0,741	0,649	0,133	1,000	0,845	0,739	0,133	1,000	0,955	0,836
0,123	0,926	0,759	0,665	0,131	0,986	0,847	0,742	0,132	0,993	0,956	0,837
0,114	0,855	0,801	0,701	0,119	0,896	0,889	0,779	0,117	0,881	1,017	0,890
0,106	0,798	0,845	0,740	0,119	0,892	0,892	0,781	0,116	0,873	1,024	0,896
0,068	0,511	1,289	1,129	0,079	0,594	1,275	1,116	0,084	0,635	1,350	1,182
	d/D	= 2.25			d/D	= 2.50			d/D	= 2.75	
0,133	1,000	0,171	0,150	0,133	1,000	0,168	0,147	0,133	1,000	0,163	0,143
0,133	1,000	0,175	0,153	0,133	1,000	0,172	0,151	0,133	1,000	0,166	0,145
0,133	1,000	1,066	0,934	0,133	1,000	1,166	1,021	0,133	1,000	1,247	1,091
0,133	1,000	1,066	0,934	0,133	1,000	1,166	1,021	0,133	1,000	1,247	1,091
0,133	1,000	1,066	0,934	0,133	1,000	1,166	1,021	0,133	1,000	1,247	1,091
0,133	1,000	1,066	0,934	0,133	1,000	1,166	1,021	0,133	1,000	1,247	1,091
0,133	1,000	1,066	0,934	0,133	1,000	1,166	1,021	0,133	1,000	1,247	1,091
0,133	1,000	1,066	0,934	0,133	1,000	1,166	1,021	0,133	1,000	1,247	1,091
0,133	1,000	1,066	0,934	0,133	1,000	1,166	1,021	0,133	1,000	1,247	1,091
0,133	1,000	1,066	0,934	0,133	1,000	1,166	1,021	0,133	1,000	1,247	1,091
0,133	1,000	1,066	0,934	0,133	1,000	1,166	1,021	0,133	1,000	1,247	1,091
0,117	0,877	1,139	0,997	0,114	0,855	1,269	1,111	0,113	0,851	1,361	1,192
0,116	0,869	1,147	1,004	0,113	0,846	1,279	1,119	0,110	0,824	1,395	1,221
0,087	0,654	1,466	1,283	0,086	0,646	1,621	1,419	0,083	0,624	1,793	1,570

Tabla 6.10	Caída del gradiente	de presión en e	I túnel, Ensave D32

0,007	0,054	1,400	1,203							
d/D = 3.00										
0,133	1,000	0,158	0,138							
0,133	1,000	0,160	0,140							
0,133	1,000	1,317	1,153							
0,133	1,000	1,317	1,153							
0,133	1,000	1,317	1,153							
0,133	1,000	1,317	1,153							
0,133	1,000	1,317	1,153							
0,133	1,000	1,317	1,153							
0,133	1,000	1,317	1,153							
0,133	1,000	1,317	1,153							
0,133	1,000	1,317	1,153							
0,112	0,843	1,447	1,267							
0,110	0,824	1,474	1,290							
0,082	0,616	1,917	1,678							

Portal de salida, So = 0,001									
d/D	Yp, m	Yp/D	V, m/s	V/(gD)^0,5					
1,500	0.068	0,511	1,289	1,129					
1,750	0,079	0,594	1,275	1,116					
2,000	0,084	0,635	1,350	1,182					
2,250	0,087	0,654	1,466	1,283					
2,500	0,086	0,646	1,621	1,419					
2,750	0,083	0,624	1,793	1,570					
3,000	0,082	0,616	1,917	1,678					

Notas:

Tabla 6 11	Coído dol gradiante	do proción on a	Itinal Engous D22
1 abia 0.11	Calua del gradiente	de presion en e	i lunei. Ensaye D33

	d/D	= 1.50			d/D	= 1.75			d/D :	= 2.00	
Yp, m	Yp/D	V,m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5
0,133	1,000	0,199	0,175	0,133	1,000	0,194	0,170	0,133	1,000	0,190	0,166
0,133	1,000	0,206	0,180	0,133	1,000	0,200	0,175	0,133	1,000	0,194	0,170
0,133	1,000	0,828	0,725	0,133	1,000	0,938	0,821	0,133	1,000	1.042	0,912
0,133	1,000	0,828	0,725	0.133	1,000	0,938	0,821	0,133	1,000	1,042	0,912
0,133	1,000	0,828	0,725	0,133	1,000	0,938	0,821	0,133	1,000	1,042	0,912
0,133	1,000	0,828	0.725	0,133	1,000	0,938	0,821	0,133	1,000	1,042	0,912
0,133	1,000	0,828	0,725	0,133	1,000	0,938	0,821	0,133	1,000	1,042	0,912
0,133	1,000	0,828	0,725	0,133	1.000	0,938	0,821	0,133	1,000	1,042	0,912
0,133	1,000	0,828	0,725	0,133	1.000	0.938	0,821	0,133	1,000	1,042	0,912
0,127	0,953	0,842	0,737	0,132	0.994	0,939	0,822	0,133	1,000	1.042	0,912
0,122	0,914	0,862	0,754	0,125	0,936	0,962	0,842	0,126	0,948	1,063	0,930
0,113	0,852	0,904	0,791	0,113	0.848	1,027	0,899	0,110	0,829	1,161	1,016
0,114	0,860	0,897	0.786	0,112	0,845	1,029	0,901	0,110	0,830	1,160	1,015
0,072	0,541	1,371	1,200	0,083	0,624	1,349	1,181	0,083	0,624	1,499	1,312
		= 2.25			d/D	= 2.50			d/D =	2.75	
0,133	1,000	0,184	0,161	0,133	1,000	0,176	0,154	0,133	1,000	0,170	0,149
0,133	1,000	0,187	0,164	0,133	1,000	0,180	0,157	0,133	1,000	0,172	0,151
0,133	1,000	1,141	0,999	0,133	1,000	1,226	1,073	0,133	1,000	1,296	1,134
0,133	1,000	1,141	0,999	0,133	1,000	1,226	1,073	0,133	1,000	1,296	1,134
0,133	1,000	1,141	0,999	0,133	1,000	1,226	1,073	0,133	1,000	1,296	1,134
0,133	1,000	1,141	0,999	0,133	1,000	1,226	1,073	0,133	1,000	1,296	1,134
0,133	1,000	1,141	0,999	0,133	1,000	1,226	1,073	0,133	1,000	1,296	1,134
0,133	1,000	1,141	0,999	0,133	1,000	1,226	1,073	0,133	1,000	1,296	1,134
0,133	1,000	1,141	0,999	0,133	1,000	1,226	1,073	0,133	1,000	1,296	1,134
0,133	1,000	1,141	0,999	0,133	1,000	1,226	1,073	0,133	1,000	1,296	1,134
0,128	0,963	1,155	1,011	0,131	0,981	1,232	1,078	0,133	0,996	1,297	1,135
0,109	0,818	1,284	1,124	0,109	0,818	1,380	1,208	0,108	0,814	1,464	1,281
0,109	0,822	1,278	1,119	0,108	0,815	1,384	1,212	0,106	0,800	1,485	1,300
0,084	0,632	1,621	1,419	0,084	0,632	1,743	1,526	0,082	0,616	1,885	1,650
		0.00						0.004		1	

	d/D = 3.00								
0,133	1,000	0,166	0,146						
0,133	1,000	0,169	0,148						
0,133	1,000	1,382	1,210						
0,133	1,000	1,382	1,210						
0,133	1,000	1,382	1,210						
0,133	1,000	1,382	1,210						
0,133	1,000	1,382	1,210						
0,133	1,000	1,382	1,210						
0,133	1,000	1,382	1,210						
0,133	1,000	1,382	1,210						
0,133	1,000	1,382	1,210						
0,108	0,810	1,568	1,372						
0,105	0,792	1,597	1,398						
0,075	0,568	2,182	1,910						

Portal de salida, So = 0,004										
d/D	Yp, m	Yp/D	V, m/s	V/(gD)^0,5						
1,500	0,072	0,541	1,371	1,200						
1,750	0,083	0,624	1,349	1,181						
2,000	0,083	0,624	1,499	1,312						
2,250	0,084	0,632	1,621	1,419						
2,500	0,084	0,632	1,743	1,526						
2,750	0,082	0,616	1,885	1,650						
3,000	0,075	0,568	2,182	1,910						

	d/D = 1.50		Т		d/D	= 1.75	I			= 2.00	
Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5
0,133	1,000	0,225	0,197	0,133	1,000	0,214	0,187	0,133	1,000	0,201	0,176
0,133	1,000	0,235	0,206	0,133	1,000	0,221	0,194	0,133	1,000	0,208	0,182
0,133	1,000	0,938	0,821	0,133	1,000	1,038	0,908	0,133	1,000	1,116	0,977
0,133	1,000	0,938	0,821	0,133	1,000	1,038	0,908	0,133	1,000	1,116	0,977
0,133	1,000	0,938	0,821	0,133	1,000	1,038	0,908	0,133	1,000	1,116	0,977
0,133	1,000	0,938	0,821	0,133	1,000	1,038	0,908	0,133	1,000	1,116	0,977
0,133	1,000	0,938	0,821	0,133	1,000	1,038	0,908	0,133	1,000	1,116	0,977
0,133	1,000	0,938	0,821	0,133	1,000	1,038	0,908	0,133	1,000	1,116	0,977
0,131	0,984	0,942	0,824	0,133	1,000	1.038	0,908	0,133	1,000	1,116	0,977
0,124	0,929	0,966	0,846	0,128	0,959	1,052	0,921	0,133	1,000	1,116	0,977
0,119	0,895	0,988	0,865	0,121	0,910	1,082	0,947	0,122	0,914	1,160	1,016
0,113	0,847	1,028	0,900	0,111	0,835	1,149	1,006	0,109	0,817	1,257	1,101
0,115	0,867	1,010	0,885	0,113	0,852	1,132	0,991	0,111	0,833	1,238	1,084
0,085	0,639	1,318	1,154	0,088	0,662	1,410	1,234	0,089	0,669	1,500	1,313
·	d/D	= 2.25			d/D	= 2.50			d/D =	= 2.75	
0,133	1,000	0,188	0,165	0,133	1,000	0,177	0,155	0,133	1,000	0,168	0,147
0,133	1,000	0,194	0,170	0,133	1,000	0.181	0,158	0,133	1,000	0,171	0,150
0,133	1,000	1,166	1,021	0,133	1,000	1,226	1,073	0,133	1,000	1,281	1,122
0,133	1,000	1,166	1,021	0,133	1,000	1,226	1,073	0,133	1,000	1,281	1,122
0,133	1,000	1,166	1,021	0,133	1,000	1,226	1,073	0,133	1,000	1,281	1,122
0,133	1,000	1,166	1,021	0,133	1,000	1,226	1,073	0,133	1,000	1,281	1,122
0,133	1,000	1,166	1,021	0,133	1,000	1,226	1,073	0,133	1,000	1,281	1,122
0,133	1,000	1,166	1,021	0,133	1,000	1,226	1,073	0,133	1,000	1,281	1,122
0,133	1,000	1,166	1,021	0,133	1.000	1,226	1,073	0,133	1,000	1,281	1,122
0,133	1,000	1,166	1,021	0,133	1,000	1,226	1,073	0,133	1,000	1,281	1,122
0,124	0,929	1,202	1,052	0,126	0,948	1,250	1,094	0,128	0,963	1,297	1,135
0,107	0,805	1,330	1,164	0,108	0,809	1,392	1,219	0,106	0,794	1,478	1,294
0,108	0,814	1,318	1,154	0,108	0,811	1,390	1,217	0,106	0,795	1,475	1,292
0,086	0,647	1,620	1,419	0,086	0,647	1,703	1,491	0,083	0,624	1,842	1,613

Tabla 6.12 Caída del gradiente de presión en el túnel. Ensaye D34

0,000	0,647	1,0∠0	1,419	
	d/D	= 3.00		٦
0,133	1,000	0,165	0,144	
0,133	1,000	0,168	0,147	
0,133	1,000	1,368	1,197	
0,133	1,000	1,368	1,197	1
0,133	1,000	1,368	1,197	1
0,133	1,000	1,368	1,197	1
0,133	1,000	1,368	1,197	1
0,133	1,000	1,368	1,197	1
0,133	1,000	1,368	1,197	1
0,133	1,000	1,368	1,197	1
0,133	1,000	1,368	1,197	1
0,108	0,813	1,547	1,355	1
0,108	0,811	1,551	1,358	1
0,085	0,639	1,922	1,682	

	Portal de salida, So = 0,008										
d/D	Yp, m	Yp/D	V, m/s	V/(gD)^0,5							
1,500	0,085	0,639	1,318	1,154							
1,750	0,088	0,662	1,410	1,234							
2,000	0,089	0,669	1,500	1,313							
2,250	0,086	0,647	1,620	1,419							
2,500	0,086	0,647	1,703	1,491							
2,750	0,083	0,624	1,842	1,613							
3,000	0,085	0,639	1,922	1,682							

Notas:

	d/D	= 1.50			d/D = 1.75			d/D = 2.00			
Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5
0,133	1,000	0,128	0,112	0,133	1,000	0,128	0,112	0,133	1,000	0,123	0,108
0,133	1,000	0,130	0,114	0,133	1,000	0,129	0,113	0,133	1,000	0,125	0,109
0,133	1,000	0,529	0,463	0,133	1,000	0,616	0,540	0,133	1,000	0,677	0,593
0,133	1,000	0,529	0,463	0,133	1,000	0,616	0,540	0,133	1,000	0,677	0,593
0,133	1,000	0,529	0,463	0,133	1,000	0,616	0,540	0,133	1,000	0,677	0,593
0,133	1,000	0,529	0,463	0,133	1,000	0,616	0,540	0,133	1,000	0,677	0,593
0,133	1,000	0,529	0,463	0,133	1,000	0,616	0,540	0,133	1,000	0,677	0,593
0,133	1,000	0,529	0,463	0,133	1,000	0,616	0,540	0,133	1,000	0,677	0,593
0,133	1,000	0,529	0,463	0,133	1,000	0,616	0,540	0,133	1,000	0,677	0,593
0,129	0,970	0,534	0,467	0,133	1,000	0,616	0,540	0,133	1,000	0,677	0,593
0,117	0,882	0,563	0,493	0,129	0,972	0,621	0,544	0,133	1,000	0,677	0,593
0,097	0,729	0,657	0,575	0,106	0,793	0,711	0,623	0,112	0,842	0,745	0,652
0,088	0,660	0,721	0,631	0,094	0,709	0,785	0,688	0,100	0,750	0,820	0,717
0,059	0,440	1,076	0,942	0,062	0,463	1,193	1,044	0,064	0,478	1,268	1,111
	d/D	= 2.25			d/D	= 2.50			d/D :	= 2.75	
0,133	1,000	0,117	0,103	0,133	1,000	0,113	0,099	0,133	1,000	0,109	0,096
0,133	1,000	0,119	0,104	0,133	1,000	0,114	0,099	0,133	1,000	0,110	0,097
0,133	1,000	0,731	0,640	0,133	1,000	0,787	0,689	0,133	1,000	0,834	0,730
0,133	1,000	0,731	0,640	0,133	1,000	0,787	0,689	0,133	1,000	0,834	0,730
0,133	1,000	0,731	0,640	0,133	1,000	0,787	0,689	0,133	1,000	0,834	0,730
0,133	1,000	0,731	0,640	0,133	1,000	0,787	0,689	0,133	1,000	0,834	0,730
0,133	1,000	0,731	0,640	0,133	1,000	0,787	0,689	0,133	1,000	0,834	0,730
0,133	1,000	0,731	0,640	0,133	1,000	0,787	0,689	0,133	1,000	0,834	0,730
0,133	1,000	0,731	0,640	0,133	1,000	0,787	0,689	0,133	1,000	0,834	0,730
0,133	1,000	0,731	0,640	0,133	1,000	0,787	0,689	0,133	1,000	0,834	0,730
0,133	1,000	0,731	0,640	0,133	1,000	0,787	0,689	0,133	1,000	0,834	0,730
0,116	0,869	0,786	0,688	0,122	0,917	0,816	0,715	0,125	0,940	0,854	0,747
0,102	0,765	0,869	0,761	0,110	0,829	0,876	0,767	0,110	0,829	0,928	0,813
0,065	0,486	1,348	1,180	0,069	0,516	1,366	1,196	0,069	0,516	1,448	1,268

Tabla 6.13	Caída	del gradiente	de	presión	en	el	túnel.	Ensaye	K31
------------	-------	---------------	----	---------	----	----	--------	--------	-----

	d/D = 3.00									
0,133	1,000	0,108	0,095							
0,133	1,000	0,109	0,095							
0,133	1,000	0,899	0,787							
0,133	1,000	0,899	0,787							
0,133	1,000	0,899	0,787							
0,133	1,000	0,899	0,787							
0,133	1,000	0,899	0,787							
0,133	1,000	0,899	0,787							
0,133	1,000	0,899	0,787							
0,133	1,000	0,899	0,787							
0,133	1,000	0,899	0,787							
0,130	0,978	0,904	0,792							
0,114	0,859	0,974	0,853							
0,071	0,531	1,517	1,328							

Portal de salida									
d/D	Yp, m	Yp/D	V, m/s	V/(gD)^0,5					
1,500	0,059	0,440	1,076	0,942					
1,750	0,062	0,463	1,193	1,044					
2,000	0,064	0,478	1,268	1,111					
2,250	0,065	0,486	1,348	1,180					
2,500	0,069	0,516	1,366	1,196					
2,750	0,069	0,516	1,448	1,268					
3,000	0,071	0.531	1,517	1,328					

Yp, m Yp/D V, m/s V/(gD)^0,0,5 Yp, m Yp 0,133 1,000 0,127 0,112 0,133 1,1 0,133 1,000 0,129 0,113 0,133 1,4 0,133 1,000 0,527 0,461 0,133 1,4 0,133 1,000 0,527 0,461 0,133 1,4 0,133 1,000 0,527 0,461 0,133 1,4 0,133 1,000 0,527 0,461 0,133 1,4 0,133 1,000 0,527 0,461 0,133 1,4	p/D V, m/s 000 0,126 000 0,128 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612	V/(gD)^0,5 0,111 0,112 0,536 0,536 0,536 0,536 0,536 0,536 0,536	Yp, m 0,133 0,133 0,133 0,133 0,133 0,133 0,133 0,133 0,133	Yp/D 1,000 1,000 1,000 1,000 1,000 1,000 1,000	V, m/s 0,122 0,124 0,677 0,677 0,677 0,677 0,677	V/(gD)^0,5 0,107 0,109 0,593 0,593 0,593 0,593 0,593
0,133 1,000 0,127 0,112 0,133 1,1 0,133 1,000 0,129 0,113 0,133 1,0 0,133 1,000 0,527 0,461 0,133 1,0 0,133 1,000 0,527 0,461 0,133 1,0 0,133 1,000 0,527 0,461 0,133 1,0 0,133 1,000 0,527 0,461 0,133 1,0 0,133 1,000 0,527 0,461 0,133 1,0 0,133 1,000 0,527 0,461 0,133 1,0	000 0,126 000 0,128 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612	0,111 0,112 0,536 0,536 0,536 0,536 0,536 0,536 0,536	0,133 0,133 0,133 0,133 0,133 0,133 0,133 0,133 0,133	1,000 1,000 1,000 1,000 1,000 1,000 1,000	0,122 0,124 0,677 0,677 0,677 0,677	0,107 0,109 0,593 0,593 0,593 0,593 0,593
0.133 1,000 0,129 0,113 0,133 1,1 0,133 1,000 0,527 0,461 0,133 1,0 0,133 1,000 0,527 0,461 0,133 1,0 0,133 1,000 0,527 0,461 0,133 1,0 0,133 1,000 0,527 0,461 0,133 1,0 0,133 1,000 0,527 0,461 0,133 1,0 0,133 1,000 0,527 0,461 0,133 1,0	000 0,128 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612	0,112 0,536 0,536 0,536 0,536 0,536 0,536 0,536 0,536	0,133 0,133 0,133 0,133 0,133 0,133 0,133 0,133	1,000 1,000 1,000 1,000 1,000 1,000	0,124 0,677 0,677 0,677 0,677 0,677	0,109 0,593 0,593 0,593 0,593 0,593
0,133 1,000 0,527 0,461 0,133 1,1 0,133 1,000 0,527 0,461 0,133 1,0 0,133 1,000 0,527 0,461 0,133 1,0 0,133 1,000 0,527 0,461 0,133 1,0 0,133 1,000 0,527 0,461 0,133 1,0 0,133 1,000 0,527 0,461 0,133 1,0	000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612	0,536 0,536 0,536 0,536 0,536 0,536 0,536 0,536	0,133 0,133 0,133 0,133 0,133 0,133 0,133	1,000 1,000 1,000 1,000 1,000 1,000	0,677 0,677 0,677 0,677 0,677	0,593 0,593 0,593 0,593 0,593
0.133 1.000 0.527 0.461 0.133 1.000 0.133 1.000 0.527 0.461 0.133 1.000 0.133 1.000 0.527 0.461 0.133 1.000 0.133 1.000 0.527 0.461 0.133 1.000 0.133 1.000 0.527 0.461 0.133 1.000	000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612	0,536 0,536 0,536 0,536 0,536 0,536 0,536	0,133 0,133 0,133 0,133 0,133 0,133	1,000 1,000 1,000 1,000 1,000	0,677 0,677 0,677 0,677	0,593 0,593 0,593
0,133 1,000 0,527 0,461 0,133 1,0 0,133 1,000 0,527 0,461 0,133 1,0	000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612	0,536 0,536 0,536 0,536 0,536 0,536	0,133 0,133 0,133 0,133 0,133	1,000 1,000 1,000	0,677 0,677 0,677	0,593
0,133 1,000 0,527 0,461 0,133 1,0	000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612	0,536 0,536 0,536 0,536	0,133 0,133 0,133	1,000 1,000	0,677	0,593
	000 0,612 000 0,612 000 0,612 000 0,612 000 0,612 000 0,612	0,536 0,536 0,536	0,133	1,000	0.677	0.500
0,133 1,000 0,527 0,461 0,133 1,0	000 0,612 000 0,612 000 0,612	0,536 0,536	0,133	1 000	0,011	0,593
0,133 1,000 0,527 0,461 0,133 1,0	000 0,612 000 0,612	0,536	0.100	1,020	0,677	0,593
0,133 1,000 0,527 0,461 0,133 1,0	000 0,612		0,133	1,000	0,677	0,593
0,129 0,966 0,532 0,466 0,133 1,0	the second se	0,536	0,133	1,000	0,677	0,593
0,116 0,873 0,565 0,494 0,127 0,5	952 0.622	0.545	0,133	1,000	0.677	0,593
0,096 0,723 0,659 0,577 0,105 0,7	787 0.711	0.622	0.111	0.836	0,749	0,656
0,087 0,655 0,723 0,633 0,093 0,6	696 0.793	0.694	0.099	0.741	0.829	0.725
0,057 0,428 1,104 0,966 0,060 0,4	451 1,218	1,067	0,063	0,473	1,284	1,124
d/D = 2.25	d/D = 2.50			d/b =	2 75	
0.133 1.000 0.119 0.105 0.133 1.0	000 0 0114	0 100	0.133	1.000	0 111	0.098
0.133 1.000 0.121 0.106 0.133 1.0	000 0115	0,100	0 133	1,000	0.112	0.098
0.133 1.000 0.751 0.657 0.133 1.0	0,791	0.692	0 133	1.000	0 849	0.743
0.133 1.000 0.751 0.657 0.133 1.0	000 0.791	0.692	0 133	1 000	0.849	0.743
0.133 1.000 0.751 0.657 0.133 1.0	000 0,791	0.692	0.133	1,000	0.849	0.743
0.133 1.000 0.751 0.657 0.133 1.0	000 0791	0.692	0.133	1.000	0.849	0.743
0,133 1,000 0,751 0,657 0,133 1,6	000 0.791	0.692	0.133	1.000	0.849	0.743
0,133 1,000 0,751 0,657 0,133 1 10	000 0.791	0.692	0.133	1,000	0.849	0.743
0.133 1.000 0.751 0.657 0.133 1.0	000 0.791	0.692	0.133	1.000	0.849	0.743
0.133 1.000 0.751 0.657 0.133 1.0	000 0.791	0.692	0.133	1.000	0.849	0.743
0.133 1.000 0.751 0.657 0.133 1.0	000 0.791	0.692	0.133	1.000	0.849	0.743
0.117 0.881 0.800 0.700 0.122 0.5	0.820	0.718	0.125	0.941	0.868	0.760
0.104 0.779 0.880 0.770 0.108 0.8	309 0.898	0.786	0.111	0.831	0.943	0.826
0,065 0,489 1,380 1,208 0,067 0,5	504 1,406	1,231	0,069	0,519	1,466	1,283
d/D = 3.00	•	Portal de salida	1			
0,133 1,000 0,108 0.095 d	/D Yp. m	Yp/D	V.m/s	V/(aD)^0.5		
0,133 1,000 0,109 0,096 1.5	500 0.057	0.428	1.104	0.966		
0.133 1.000 0.899 0.787 1.7	750 0.060	0.451	1,218	1.067		
0.133 1.000 0.899 0.787 2.0	0.063	0.473	1.284	1,124		
0,133 1,000 0,899 0,787 2,2	250 0.065	0.489	1.380	1.208		
0.133 1.000 0.899 0.787 2.5	500 0.067	0.504	1,406	1.231		
0.133 1.000 0.899 0.787 2.7	0.069	0.519	1,466	1,283		
0.133 1.000 0.899 0.787 3.0	0.069	0.519	1.552	1.359		
0,133 1,000 0,899 0,787	0,000	0,010	.,	.,		
0,133 1,000 0,899 0,787						

Tabla 6.14 Caída del gradiente de presión en el túnel. Ensaye K32

0,133

0,128 0,113

0,069

1,000

0,964

0,846

0,519

0,899

0,909

0,985

1,552

0,787

0,796

0,863

1,359

	d/D	= 1.50			d/D	= 1 .75		d/D = 2.00			
Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V,m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5
0,133	1,000	0,139	0,122	0,133	1,000	0,131	0,115	0,133	1,000	0,128	0,112
0,133	1,000	0,143	0,125	0,133	1,000	0,133	0,117	0,133	1,000	0,130	0,113
0,133	1,000	0,577	0,505	0,133	1,000	0,636	0,556	0,133	1,000	0,707	0,619
0,133	1,000	0,577	0,505	0,133	1,000	0,636	0,556	0,133	1,000	0,707	0,619
0,133	1,000	0,577	0,505	0,133	1,000	0,636	0,556	0,133	1,000	0,707	0,619
0,133	1,000	0,577	0,505	0,133	1,000	0,636	0,556	0,133	1,000	0,707	0,619
0,133	1,000	0,577	0,505	0,133	1,000	0,636	0.556	0,133	1.000	0,707	0,619
0,133	1,000	0,577	0,505	0,133	1,000	0,636	0,556	0,133	1,000	0,707	0,619
0,133	1,000	0,577	0,505	0,133	1,000	0,636	0,556	0,133	1,000	0,707	0,619
0,131	0,983	0,580	0,507	0,133	1,000	0,636	0,556	0,133	1,000	0,707	0,619
0,121	0,906	0,603	0,528	0,131	0,981	0,639	0,559	0,133	1,000	0,707	0,619
0,104	0,780	0,675	0,591	0,111	0,833	0,705	0,617	0,116	0,874	0,757	0,663
0,095	0,717	0,728	0,637	0,101	0,762	0,759	0,664	0,106	0,800	0,810	0,709
0,065	0,489	1,060	0,928	0,068	0,511	1,114	0,975	0,071	0,534	1,186	1,038
	d/D	= 2.25			d/D	= 2.50		d/D = 2.75			
0,133	1,000	0,123	0,108	0,133	1,000	0,116	0,102	0,133	1,000	0,114	0,099
0,133	1,000	0,125	0,109	0,133	1,000	0,117	0,103	0,133	1,000	0,114	0,100
0,133	1,000	0,766	0,671	0,133	1,000	0,813	0,711	0,133	1,000	0,872	0,763
0,133	1,000	0,766	0,671	0,133	1,000	0,813	0,711	0,133	1,000	0,872	0,763
0,133	1,000	0,766	0,671	0,133	1,000	0,813	0,711	0,133	1,000	0,872	0,763
0,133	1,000	0,766	0,671	0,133	1,000	0,813	0,711	0,133	1,000	0,872	0,763
0,133	1,000	0,766	0,671	0,133	1,000	0,813	0,711	0,133	1,000	0,872	0,763
0,133	1,000	0,766	0,671	0,133	1,000	0,813	0,711	0,133	1,000	0,872	0.763
0,133	1,000	0,766	0,671	0,133	1,000	0,813	0,711	0,133	1,000	0,872	0,763
0,133	1,000	0,766	0,671	0,133	1,000	0,813	0,711	0,133	1,000	0,872	0,763
0,133	1,000	0,766	0,671	0,133	1,000	0,813	0,711	0,133	1,000	0,872	0,763
0,122	0,916	0,796	0,697	0,127	0,957	0,825	0,722	0,131	0,983	0,875	0,766
0,110	0,830	0,852	0,746	0,115	0,864	0,877	0,768	0,118	0,886	0,924	0,809
0,072	0,541	1,267	1,110	0,074	0,556	1,308	1,145	0,076	0,571	1,367	1,196
	d/D	= 3.00					Portal de salio	a			
0,133	1,000	0,112	0,098		d/D	Yp, m	Yp/D	V, m/s	V/(gD)^0,5		
0,133	1,000	0,113	0,099		1,500	0,065	0,489	1,060	0,928		
0,133	1,000	0,932	0,816		1,750	0,068	0,511	1,114	0,975		
0,133	1,000	0,932	0,816		2,000	0,071	0,534	1,186	1,038		

2,250

2,500

2,750

3,000

Tabla 6.15 Caída del gradiente de presión en el túnel. Ensaye K33

d/D = 3.00										
0,133	1,000	0,112	0,098							
0,133	1,000	0,113	0,099							
0,133	1,000	0,932	0,816							
0,133	1,000	0,932	0,816							
0,133	1,000	0,932	0,816							
0,133	1,000	0,932	0,816							
0,133	1,000	0,932	0,816							
0,133	1,000	0,932	0,816							
0,133	1,000	0,932	0,816							
0,133	1,000	0,932	0,816							
0,133	1,000	0,932	0,816							
0,133	1,000	0,932	0,816							
0,122	0,920	0,966	0,845							
0,076	0,571	1,462	1,280							

Notas: Geometría de la entrada, fig 4.2, condición 3 So = 0,004

0,541

0,556

0,571

0,571

1,267

1,308

1,367

1,462

1,110

1,145

1,196

1,280

0,071

0,072

0,074

0,076

0,076

0111-10

	d/D	= 1.50			d/D	= 1.75		d/D = 2.00			
Yp, m	Yp/D	V,m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V,m/s	V/(gD)^0,5
0,133	1,000	0,158	0,139	0,133	1,000	0,146	0,128	0,133	1,000	0,141	0,124
0,133	1,000	0,161	0,141	0,133	1,000	0,149	0,130	0,133	1,000	0,144	0.126
0,133	1,000	0,653	0,572	0,133	1,000	0,711	0,622	0,133	1,000	0,773	0,677
0,133	1,000	0,653	0,572	0,133	1,000	0,711	0,622	0,133	1,000	0,773	0,677
0,133	1,000	0,653	0,572	0,133	1,000	0,711	0,622	0,133	1,000	0,773	0,677
0,133	1,000	0,653	0,572	0,133	1,000	0,711	0,622	0,133	1,000	0,773	0,677
0,133	1,000	0,653	0,572	0,133	1,000	0,711	0,622	0,133	1,000	0,773	0,677
0,133	1,000	0,653	0,572	0,133	1,000	0,711	0,622	0,133	1,000	0,773	0,677
0,133	1,000	0,653	0,572	0,133	1,000	0,711	0,622	0,133	1,000	0,773	0,677
0,131	0,981	0,656	0,575	0,133	1,000	0,711	0,622	0,133	1,000	0,773	0,677
0,120	0,903	0,685	0,599	0,130	0,978	0,715	0,626	0,133	1,000	0,773	0,677
0,104	0,779	0,766	0,670	0,110	0,824	0,796	0,696	0,116	0,869	0,831	0,728
0,095	0,713	0,828	0,725	0,099	0,747	0,864	0,757	0,105	0,788	0,897	0,786
0,063	0,474	1,238	1,084	0,065	0,489	1,306	1,143	0,068	0,508	1,364	1,194
	d/D	= 2.25			d/D	= 2.50				= 2.75	
0,133	1,000	0,136	0,119	0,133	1,000	0,130	0,114	0,133	1,000	0,124	0,108
0,133	1,000	0,138	0,121	0,133	1,000	0,131	0,115	0,133	1,000	0,125	0,109
0,133	1,000	0,855	0,749	0,133	1,000	0,900	0,788	0,133	1,000	0,944	0,826
0,133	1,000	0,855	0,749	0,133	1,000	0,900	0,788	0,133	1,000	0,944	0,826
0,133	1,000	0,855	0,749	0,133	1,000	0,900	0,788	0,133	1,000	0,944	0,826
0,133	1,000	0,855	0,749	0.133	1,000	0,900	0,788	0,133	1,000	0,944	0,826
0,133	1,000	0,855	0,749	0,133	1,000	0,900	0,788	0,133	1,000	0,944	0,826
0,133	1,000	0,855	0,749	0,133	1,000	0,900	0,788	0,133	1,000	0,944	0,826
0,133	1,000	0,855	0,749	0,133	1,000	0,900	0,788	0,133	1,000	0,944	0,826
0,133	1,000	0,855	0,749	0,133	1,000	0,900	0,788	0,133	1,000	0,944	0,826
0,133	1,000	0,855	0,749	0,133	1,000	0,900	0,788	0,133	1,000	0,944	0,826
0,121	0,907	0,894	0,782	0,125	0,937	0,923	0,808	0,128	0,959	0,956	0,837
0,108	0,811	0,970	0,849	0,112	0,841	0,992	0,868	0,114	0,856	1,026	0,898
0,069	0,519	1,476	1,293	0,071	0,534	1,510	1,322	0,072	0,541	1,561	1,367

Tabla 6.16 Caída del gradiente de presión en el túnel. Ensaye K34

d/D = 3.00										
0,133	1,000	0,116	0,102							
0,133	1,000	0,116	0,102							
0,133	1,000	0,966	0,846							
0,133	1,000	0.966	0,846							
0,133	1,000	0,5166	0,846							
0,133	1,000	0,966	0,846							
0,133	1,000	0,966	0,846							
0,133	1,000	0,966	0,846							
0,133	1,000	0,966	0,846							
0,133	1,000	0,966	0,846							
0,133	1,000	0,966	0,846							
0,131	0,982	0,971	0,850							
0,118	0,886	1,025	0,898							
0.074	0.556	1 556	1.362							

Portal de salida V,m/s Yp/D V/(gD)^0,5 d/D Yp, m 1,500 0,063 0,474 1,238 1,084 1,750 0,065 0,489 1,306 1,143 2,000 0,068 0.508 1,364 1,194 2,250 0,069 0,519 1,476 1,293 2,500 0,071 0,534 1,510 1,322 2,750 3,000 0,072 0,541 1,561 1,367 0,556 1,556 1,362

		= 1.75	d/D			= 1.50	d/D			= 1.25	d/D	
)^0,5	V/(gD)^0,	V, m/s	Yp/D	Yp, m	V/(gD)^0,5	V, m/s	Yp/D	Yp, m	V/(gD)^0,5	V, m/s	Yp/D	Yp, m
65	0,165	0,189	1,000	0,133	0,163	0,186	1,000	0,133	0,163	0,186	1,000	0,133
69	0,169	0,194	1,000	0,133	0,170	0,194	1,000	0,133	0,169	0,193	1,000	0,133
55	0,805	0,920	1,000	0,133	0,671	0,766	1,000	0,133	0,560	0,639	1,000	0,133
35	0,805	0,920	1,000	0,133	0,671	0,766	1,000	0,133	0,560	0,639	1,000	0,133
05	0,805	0,920	1,000	0,133	0,671	0,766	1,000	0,133	0,560	0,639	1,000	0,133
05	0,805	0,920	1,000	0,133	0,671	0,766	1,000	0,133	0,560	0,639	1,000	0,133
05	0,805	0,920	1,000	0,133	0,671	0,766	1,000	0,133	0,560	0,640	0,997	0,133
05	0,805	0,920	1,000	0,133	0,671	0,766	1,000	0,133	0,564	0,644	0,972	0,129
05	0,805	0,920	1,000	0,133	0,671	0,766	1,000	0,133	0,577	0,659	0,929	0,124
06	0,806	0,920	1,000	0,133	0,676	0,772	0,974	0,130	0,602	0,688	0,869	0,116
12	0,812	0,928	0,972	0,129	0,683	0,780	0,949	0,126	0,626	0,715	0,825	0,110
51	0,851	0,972	0,891	0,119	0,711	0,812	0,887	0,118	0,692	0,790	0,733	0,098
73	0,873	0,997	0,859	0,114	0,718	0,820	0,874	0,116	0,746	0,852	0,675	0,090
32	1,082	1,236	0,670	0,089	1,078	1,232	0,557	0,074	0,979	1,119	0,512	0,068
		= 2.50	d/D			= 2.25	d/D			= 2.00	d/D :	
58	0,158	0,180	1,000	0,133	0,161	0,184	1,000	0,133	0,166	0,190	1,000	0,133
32	0,162	0,185	1,000	0,133	0,167	0,190	1,000	0,133	0,173	0,197	1,000	0,133
} 7	1,097	1,253	1,000	0,133	1,010	1,154	1,000	0,133	0,918	1,048	1,000	0,133
∂7	1,097	1,253	1,000	0,133	1,010	1,154	1,000	0,133	0,918	1,048	1,000	0,133
) 7	1,097	1,253	1,000	0,133	1,010	1,154	1,000	0,133	0,918	1,048	1,000	0,133
37	1,097	1,253	1,000	0,133	1,010	1,154	1,000	0,133	0,918	1,048	1,000	0,133
37	1,097	1,253	1,000	0,133	1,010	1,154	1,000	0,133	0,918	1,048	1,000	0,133
37	1,097	1,253	1,000	0,133	1,010	1,154	1,000	0,133	0,918	1,048	1,000	0,133
37	1,097	1,253	1,000	0,133	1,010	1,154	1,000	0,133	0,918	1,048	1,000	0,133
] 7	1,097	1,253	1,000	0,133	1,010	1,154	1,000	0,133	0,918	1,048	1,000	0,133
) 7	1,097	1,253	1,000	0,133	1,015	1,160	0,979	0,130	0,923	1,054	0,979	0,130
34	1,184	1,352	0,865	0,115	1,090	1,245	0,865	0,115	0,978	1,117	0,880	0,117
59	1,269	1,449	0,792	0,105	1,158	1,323	0,799	0,106	1,026	1,171	0,826	0,110
)5	1,605	1,833	0,613	0,082	1,442	1,648	0,628	0,084	1,260	1,439	0,655	0,087
	alida	Portal de sa				= 3.00	d/D :			= 2.75	d/D :	
vs V/(gl	V, m/s	Yp/D	Yp, m	d/D	0,150	0,171	1,000	0,133	0,155	0,177	1,000	0,133
9 0,	1,119	0,512	0,068	1,25	0,153	0,175	1,000	0,133	0,159	0,182	1,000	0,133
32 1,	1,232	0,557	0,074	1,500	1,249	1,427	1,000	0,133	1,185	1,353	1,000	0,133
36 1,	1,236	0,670	0,089	1,750	1,249	1,427	1,000	0,133	1,185	1,353	1,000	0,133
39 1,	1,439	0,655	0,087	2,000	1,249	1,427	1,000	0,133	1,185	1,353	1,000	0,133
1,	1,648	0,628	0,084	2,250	1,249	1,427	1,000	0,133	1,185	1,353	1,000	0,133
13 1,	1,833	0,613	0,082	2,500	1,249	1,427	1,000	0,133	1,185	1,353	1,000	0,133
27 1,	2,027	0,598	0,080	2,750	1,249	1,427	1,000	0,133	1,185	1,353	1,000	0,133
20 1,	2,220	0,576	0,077	3,000	1,249	1,427	1,000	0,133	1,185	1,353	1,000	0,133
					1,249	1,427	1,000	0,133	1,185	1,353	1,000	0,133
			Notas:		1,249	1,427	1,000	0,133	1,185	1,353	1,000	0,133
, condición (a, fig 4.2, co	de la entrada	Geometría o		1,348	1,539	0,865	0,115	1,278	1,460	0,865	0,115
		•	So = 0,0007		1,480	1,690	0,769	0,102	1,380	1,577	0,784	0,104
					1 944	2 220	0.576	0.077	1 775	2 0 2 7	0.598	0.080

Tabla 6.17 Caída del gradiente de presión en el túnel. Ensaye AL31

	d/D	= 1.50			d/D	= 1.75			d/D	= 2.00	
Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V,m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5
0,133	1,000	0,192	0,168	0,133	1,000	0,187	0,164	0,133	1,000	0,190	0,167
0,133	1,000	0,202	0,177	0,133	1,000	0,192	0,168	0,133	1,000	0,196	0,171
0,133	1,000	0,792	0,693	0,133	1,000	0,910	0,797	0,133	1,000	1,052	0,921
0,133	1,000	0,792	0,693	0,133	1,000	0,910	0,797	0,133	1,000	1,052	0,921
0,133	1,000	0,792	0,693	0,133	1,000	0,910	0,797	0,133	1,000	1,052	0,921
0,133	1,000	0,792	0,693	0,133	1.000	0,910	0,797	0,133	1,000	1,052	0,921
0,133	1,000	0,792	0,693	0,133	1.000	0,910	0,797	0,133	1,000	1,052	0,921
0,133	1,000	0,792	0.693	0,133	1,000	0.910	0,797	0,133	1,000	1,052	0,921
0,133	1,000	0.792	0.693	0.133	1.000	0.910	0.797	0.133	1.000	1.052	0,921
0,130	0,978	0.796	0.697	0.133	1.000	0.910	0.797	0.133	1.000	1,052	0,921
0,126	0,948	0,807	0.706	0.133	1.000	0.910	0.797	0,131	0.982	1.057	0,925
0,117	0,881	0.843	0.738	0.126	0.949	0.927	0.812	0,117	0,877	1,124	0,984
0,097	0.730	0.982	0.860	0.110	0.824	1.019	0.892	0.111	0.835	1,165	1.020
0,071	0,534	1,329	1,163	0,075	0,567	1,437	1,258	0,086	0,646	1,462	1,280
	d/D	≃ 2.25		d/D = 2.50						= 2.75	
0,133	1,000	0,188	0,165	0,133	1,000	0,180	0,157	0,133	1,000	0,179	0,156
0,133	1,000	0,193	0,169	0,133	1,000	0,185	0,162	0,133	1,000	0,183	0,160
0,133	1,000	1,172	1,026	0,133	1,000	1,255	1,099	0,133	1,000	1,360	1,191
0,133	1,000	1,172	1,026	0,133	1,000	1,255	1,099	0,133	1,000	1,360	1,191
0,133	1,000	1,172	1,026	0,133	1,000	1,255	1,099	0,133	1,000	1,360	1,191
0,133	1,000	1,172	1,026	0,133	1,000	1,255	1,099	0,133	1,000	1,360	1,191
0,133	1,000	1,172	1,026	0,133	1,000	1,255	1,099	0,133	1,000	1,360	1,191
0,133	1,000	1,172	1,026	0,133	1,000	1,255	1,099	0,133	1,000	1,360	1,191
0,133	1,000	1,172	1,026	0,133	1,000	1,255	1,099	0,133	1,000	1,360	1,191
0,133	1,000	1,172	1,026	0,133	1,000	1,255	1,099	0,133	1,000	1,360	1,191
0,133	1,000	1,172	1,026	0,133	1,000	1,255	1,099	0,133	1,000	1,360	1,191
0,117	0,877	1,251	1,096	0,116	0,870	1,348	1,181	0,113	0,851	1,485	1,300
0,109	0,816	1,321	1,156	0,108	0,809	1,425	1,248	0,106	0,794	1,569	1,374
0,084	0,635	1,656	1,450	0,081	0,613	1,837	1,608	0,078	0,590	2,066	1,809

Tabla 6.18 Caída del gradiente de presión en el túnel. Ensaye AL32

		.,	
		= 3.00	
0,133	1,000	0,173	0,152
0,133	1,000	0,178	0,155
0,133	1,000	1,447	1,267
0,133	1,000	1,447	1,267
0,133	1,000	1,447	1,267
0,133	1,000	1,447	1,267
0,133	1,000	1,447	1,267
0,133	1,000	1,447	1,267
0,133	1,000	1,447	1,267
0,133	1,000	1,447	1,267
0,133	1,000	1,447	1,267
0,116	0,870	1,555	1,362
0,104	0,783	1,690	1,479
0,077	0,583	2,227	1,949

Portal de salida										
d/D	Yp, m	Yp/D	V, m/s	V/(gD)^0,5						
1,500	0,071	0,534	1,329	1,163						
1,750	0,075	0,567	1,437	1,258						
2,000	0,086	0,646	1,462	1,280						
2,250	0,084	0,635	1,656	1,450						
2,500	0.081	0.613	1,837	1,608						
2,750	0,078	0,590	2,066	1,809						
3,000	0,077	0,583	2,227	1,949						

	d/D = 1.50				d/D	= 1.75		d/D = 2.00			
Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V,m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5
0,133	1,000	0.207	0.181	0.133	1.000	0.210	0.184	0.133	1.000	0.200	0,175
0,133	1,000	0.216	0,189	0,133	1.000	0.219	0.192	0.133	1,000	0,208	0,182
0,133	1,000	0.855	0,749	0.133	1,000	1.020	0.893	0,133	1,000	1,116	0.977
0,133	1,000	0.855	0,749	0.133	1.000	1.020	0.893	0.133	1.000	1,116	0.977
0,133	1,000	0.855	0,749	0.133	1.000	1.020	0.893	0.133	1.000	1,116	0,977
0,133	1,000	0.855	0,749	0.133	1.000	1.020	0.893	0.133	1.000	1.116	0.977
0,133	1,000	0.855	0.749	0.133	1,000	1.020	0.893	0,133	1.000	1.116	0.977
0,133	1.000	0.855	0,749	0.133	1,000	1.020	0.893	0.133	1.000	1,116	0.977
0,133	1,000	0.855	0.749	0.133	1,000	1.020	0.893	0.133	1.000	1,116	0.977
0.129	0.968	0.864	0.756	0.129	0.968	1.030	0.901	0.133	1.000	1.116	0.977
0,128	0.963	0.866	0.758	0.125	0.940	1.044	0.914	0.128	0.963	1.129	0.988
0,121	0,908	0.893	0.782	0.115	0.863	1,102	0.965	0.115	0.863	1.205	1.055
0,102	0,770	1,012	0.886	0.111	0.838	1,127	0.986	0.110	0.830	1.241	1,087
0,070	0,530	1,445	1,265	0,087	0,658	1,394	1,220	0,085	0,643	1,559	1,365
	d/D	= 2.25			d/D = 2.50 d/D =						
0,133	1,000	0,197	0,172	0,133	1.000	0,193	0,169	0,133	1,000	0.184	0,161
0,133	1,000	0,204	0,179	0.133	1.000	0.198	0.174	0.133	1.000	0,188	0,164
0,133	1,000	1,240	1,085	0,133	1.000	1.339	1,172	0,133	1.000	1,404	1,230
0,133	1,000	1,240	1,085	0.133	1.000	1.339	1,172	0.133	1.000	1,404	1,230
0,133	1,000	1,240	1.085	0.133	1.000	1.339	1,172	0.133	1.000	1.404	1,230
0,133	1,000	1,240	1.085	0.133	1.000	1.339	1,172	0,133	1,000	1,404	1,230
0,133	1,000	1,240	1.085	0.133	1.000	1.339	1,172	0,133	1.000	1,404	1,230
0,133	1,000	1,240	1,085	0,133	1.000	1,339	1,172	0,133	1,000	1,404	1,230
0,133	1,000	1,240	1.085	0,133	1.000	1,339	1,172	0,133	1,000	1,404	1,230
0,133	1,000	1,240	1,085	0,133	1.000	1.339	1,172	0,133	1,000	1,405	1,230
0,129	0,970	1,251	1,095	0,132	0,993	1,341	1,174	0,133	1,000	1,405	1,230
0,113	0,852	1,352	1,184	0,113	0,852	1,460	1,278	0,112	0,844	1,542	1,350
0,107	0,804	1,415	1,239	0,105	0,789	1,552	1,359	0,103	0,774	1,656	1,449
0,083	0,628	1,772	1,551	0,081	0,613	1,959	1,715	0,079	0,598	2,106	1,844
	d/D :	= 3.00					Portal de salida				
0,133	1,000	0,181	0,159		d/D	Yp, m	Yp/D	V, m/s	V/(gD)^0,5		
0,133	1,000	0,186	0,163		1,500	0,070	0,530	1,445	1,265		
0,133	1,000	1,513	1,324		1,750	0,087	0,658	1,394	1,220		
0,133	1,000	1,513	1,324		2,000	0,085	0,643	1,559	1,365		
0,133	1,000	1,513	1,324		2,250	0,083	0,628	1,772	1,551		
0,133	1,000	1,513	1,324		2,500	0,081	0,613	1,959	1,715		
0,133	1,000	1,513	1,324		2,750	0,079	0,598	2,106	1,844		
0,133	1,000	1,513	1,324		3,000	0,077	0,579	2,342	2,050		
0,133	1,000	1,513	1,324								
0,133	1,000	1,513	1,324								
0,133	1,000	1,513	1,324								
0,111	0,837	1,673	1,464		Notas:						
0,102	0,766	1,798	1,574		Geometría	de la entrad	a, fig 4.2, cond	ición 3			
0.077	0.579	2 342	2 050		$S_0 = 0.004$		-				

Tabla 6.19 Caída del gradiente de presión en el túnel. Ensaye AL33

	d/D	= 1.50			d/D	= 1.75			d/D =	= 2.00	
Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5
0,133	1,000	0.237	0.208	0.133	1.000	0.234	0,205	0,133	1,000	0,221	0,193
0,133	1,000	0.251	0.219	0.133	1,000	0.247	0.216	0.133	1,000	0.232	0,203
0,133	1,000	0.984	0.861	0,133	1.000	1,134	0.993	0,133	1,000	1,219	1.067
0,133	1,000	0.984	0.861	0.133	1,000	1,134	0.993	0.133	1.000	1,219	1,067
0,133	1,000	0.984	0.861	0.133	1.000	1.134	0.993	0,133	1.000	1,219	1,067
0.133	1,000	0.984	0.861	0.133	1.000	1,134	0.993	0.133	1,000	1,219	1,067
0,133	1,000	0.984	0,861	0.133	1.000	1,134	0.993	0.133	1.000	1,219	1,067
0,133	1,000	0.984	0,861	0.133	1.000	1.134	0.993	0,133	1,000	1,219	1,067
0,128	0,961	0.996	0.872	0.128	0,961	1,149	1.006	0.133	1,000	1,219	1,067
0.127	0.951	1.001	0.876	0.120	0.903	1,189	1.041	0.123	0.925	1.259	1,102
0.127	0.952	1.001	0.876	0.117	0.880	1 209	1.058	0.120	0.899	1.281	1,122
0.123	0.922	1.018	0.891	0.111	0.832	1,260	1,103	0.110	0.824	1.364	1,194
0.113	0.852	1.073	0.939	0.108	0.811	1,286	1,126	0.105	0.788	1.415	1,239
0,067	0,504	1,749	1,531	0,070	0,528	1,925	1,685	0,074	0,556	1,963	1,718
		= 2.25			d/D	2.75					
0.133	1.000	0.211	0.184	0.133	1 000	0.202	0 177	0.133	1.000	0.195	0.171
0.133	1.000	0.218	0.191	0.133	1,000	0,207	0.182	0.133	1.000	0.201	0,176
0.133	1.000	1.317	1,153	0 133	1 000	1 404	1,230	0.133	1.000	1,494	1.308
0.133	1.000	1.317	1,153	0.133	1,000	1.404	1,230	0.133	1.000	1.494	1,308
0.133	1.000	1.317	1,153	0.133	1,000	1 404	1,230	0.133	1.000	1,494	1.308
0.133	1.000	1.317	1,153	0 133	1,000	1 404	1,230	0.133	1.000	1,494	1,308
0.133	1,000	1,317	1,153	0.133	1,000	1 404	1 230	0.133	1.000	1.494	1.308
0.133	1,000	1.317	1 153	0.133	1,000	1 404	1,230	0 133	1,000	1,494	1.308
0.133	1,000	1 317	1 153	0 133	1,000	1 404	1,230	0 133	1,000	1 494	1,308
0,129	0.970	1.329	1 163	0.133	1,000	1 404	1,230	0 133	1,000	1,494	1,308
0.122	0.918	1,366	1 196	0.126	0.944	1 434	1,256	0.129	0.967	1,509	1,321
0.109	0.820	1 479	1,705	0.110	0.824	1 572	1,200	0,110	0.824	1 671	1.463
0.103	0.773	1.554	1,260	0 100	0.754	1.693	1 482	0,101	0.758	1,792	1,569
0,069	0,519	2,273	1,990	0.065	0,489	2.574	2.253	0.062	0,466	2,869	2,512
	d/D	2.00		-,			Portal de calida	-,			<u> </u>
0,133	1,000	0.186	0.163		d/D	Yp. m	Yp/D	V. m/s	V/(qD)^0.5		
0,133	1.000	0,191	0.167		1.500	0.067	0.504	1,749	1.531		
0.133	1,000	1,553	1.359		1.750	0.070	0.528	1.925	1.685		
0.133	1.000	1.553	1.359		2,000	0.074	0.556	1.963	1,718		
0.133	1,000	1.553	1,359		2,250	0.069	0.519	2,273	1.990		
0.133	1.000	1,553	1.359		2,500	0.065	0.489	2.574	2,253		
0.133	1.000	1.553	1,359		2 750	0.062	0.466	2,869	2,512		
0.133	1.000	1.553	1 359		3,000	0.060	0.451	3.082	2 698		
0.133	1.000	1.553	1.359		0,000	0,000	0,101	0,004	2,000		
0,133	1.000	1,553	1.359								
0.133	1.000	1,553	1,359								
0.112	0.839	1,713	1,500		Notas:						
0.101	0.762	1.855	1.624		Geometría	de la entrad	a fig 4.2, cond	ición 3			
0.060	0.451	3.082	2 698		$S_0 = 0.008$	as la sinidu	., ng, cond				
0,000	, 0, 101	0,002	2,000		0.000						

Tabla 6.20 Caída del gradiente de presión en el túnel. Ensaye AL34

	d/D	= 1.25		d/D ≈ 1.50					d/D	= 1.75		1
Yp, m	Yp/D	V,m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5	
0,133	1,000	0,182	0,159	0,133	1.000	0.178	0,156	0,133	1.000	0,178	0,156	7
0,133	1,000	0,188	0,164	0,133	1.000	0,183	0.160	0,133	1,000	0,181	0,159	1
0,133	1,000	0,627	0,549	0,133	1,000	0,741	0,648	0,133	1,000	0,861	0,753	1
0,133	1,000	0,627	0,549	0,133	1,000	0,741	0,648	0,133	1,000	0,861	0,753	7
0,132	0,993	0,627	0,549	0,133	1,000	0,741	0,648	0,133	1,000	0,861	0,753	7
0,131	0,987	0,627	0,549	0,133	1,000	0,741	0,648	0,133	1,000	0,861	0,753	1
0,129	0,967	0,633	0,554	0,133	1,000	0,741	0,648	0,133	1,000	0,861	0,753	
0,123	0,924	0,648	0,567	0,133	1,000	0,741	0,648	0,133	1,000	0,861	0,753	1
0,118	0,884	0,666	0,583	0,133	1,000	0,741	0.648	0,133	1,000	0,861	0,753	1
0,112	0,838	0,692	0,606	0,126	0,944	0,757	0,662	0,133	1,000	0,861	0,753	1
0,104	0,784	0,731	0,640	0,119	0,897	0,780	0.682	0,128	0,964	0,870	0,762	·
0,091	0,684	0,825	0,722	0,100	0,752	0,895	0.783	0,107	0,805	0,982	0,860	1
0.089	0,671	0,840	0,736	0.097	0,732	0.917	0.803	0.097	0,728	1,071	0,937	1
0,062	0,463	1,213	1,062	0,067	0,504	1,315	1,152	0,072	0,542	1,422	1,245]
	d/D	= 2.00			d/D	= 2.25				= 2.50		7
0,133	1,000	0,174	0,152	0,133	1,000	0,171	0,150	0,133	1,000	0,170	0,149	1
0,133	1,000	0,180	0,157	0,133	1,000	0,177	0,155	0,133	1,000	0,174	0,152]
0,133	1,000	0,961	0,841	0,133	1,000	1,072	0,939	0,133	1,000	1,179	1,033	
0,133	1,000	0,961	0,841	0,133	1,000	1,072	0,939	0,133	1,000	1,179	1,033	
0,133	1,000	0,961	0,841	0,133	1,000	1,072	0,939	0,133	1,000	1,179	1,033	1
0,133	1,000	0,961	0,841	0,133	1,000	1,072	0,939	0,133	1,000	1,179	1,033	4
0,133	1,000	0,961	0,841	0,133	1,000	1,072	0,939	0,133	1,000	1,179	1,033	4
0,133	1,000	0,961	0,841	0,133	1,000	1,072	0,939	0,133	1,000	1,179	1,033	4
0,133	1,000	0,961	0,841	0,133	1,000	1,072	0,939	0,133	1,000	1,179	1,033	4
0,133	1,000	0,961	0,841	0,133	1,000	1,072	0,939	0,133	1,000	1,179	1,033	4
0,133	1,000	0,961	0,841	0,129	0,972	1,081	0,946	0,129	0,972	1,189	1,041	1
0,117	0,880	1,024	0,897	0,108	0,808	1,219	1,067	0,106	0,797	1,356	1,187	1
0,104	0,784	1,120	0,980	0,107	0,807	1,221	1,069	0,106	0,795	1,358	1,189	1
0,077	0,579	1,485	1,300	0,087	0,651	1,480	1,296	0,086	0,643	1,646	1,441	
	d/D	= 2.75			d/D	= 3.00				Portal de sa	alida	
0,133	1,000	0,168	0,147	0,133	1,000	0,164	0,143	d/D	Yp, m	Yp/D	V, m/s	V/(gD)^0,5
0,133	1,000	0,172	0,150	0,133	1,000	0,167	0,146	1,25	0,062	0,463	1,213	1,062
0,133	1,000	1,281	1,122	0,133	1,000	1,360	1,191	1,500	0,067	0,504	1,315	1,152
0,133	1,000	1,281	1,122	0,133	1,000	1,360	1,191	1,750	0,072	0,542	1,422	1,245
0,133	1,000	1,281	1,122	0,133	1,000	1,360	1,191	2,000	0,077	0,579	1,485	1,300
0,133	1,000	1,281	1,122	0,133	1,000	1,360	1,191	2,250	0,087	0,651	1,480	1,296
0,133	1,000	1,281	1,122	0,133	1,000	1,360	1,191	2,500	0,086	0,643	1,646	1,441
0,133	1,000	1,281	1,122	0,133	1,000	1,360	1,191	2,750	0,084	0,632	1,820	1,593
0,133	1,000	1,281	1,122	0,133	1,000	1,360	1,191	3,000	0,084	0,628	1,943	1,701
0,133	1,000	1,281	1,122	0,133	1,000	1,360	1,191					
0,132	0,994	1,283	1,123	0,133	1,000	1,360	1,191	Notas:				
0,105	0,790	1,485	1,300	0,106	0,793	1,570	1,374	Geometría	de la entrada	a, fig 6.4, co	ndición 3	
0,104	0,780	1,499	1,313	0,103	0,777	1,598	1,399	So = 0,0007	7			
0,084	0,632	1,820	1,593	0,084	0,628	1,943	1,701					

Tabla 6.21 Caída del gradiente de presión en el túnel. Ensaye AD31

Tabla 6.22	Caída del	gradiente	de presión	en el túnel.	Ensaye AD32	
------------	-----------	-----------	------------	--------------	-------------	--

	d/D	= 1.25			d/D	= 1.50		d/D = 1.75]
Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5]
0,133	1,000	0,182	0,159	0,133	1,000	0,180	0,157	0,133	1,000	0,176	0,154	1
0,133	1,000	0,187	0,164	0,133	1,000	0,187	0,164	0,133	1,000	0,182	0,160	1
0,133	1,000	0,621	0,544	0,133	1,000	0,743	0,650	0,133	1,000	0,850	0,744	1
0,133	1,000	0,621	0,544	0,133	1,000	0,743	0,650	0,133	1,000	0,850	0,744	1
0,132	0,994	0,621	0,544	0,133	1,000	0,743	0,650	0,133	1,000	0,850	0,744	1
0,131	0,982	0,624	0,546	0,133	1,000	0,743	0,650	0.133	1,000	0,850	0,744	1
0,129	0,966	0,627	0,549	0,133	1,000	0,743	0,650	0,133	1,000	0,850	0,744	1
0,124	0,929	0,640	0,560	0,133	1,000	0,743	0,650	0,133	1,000	0,850	0,744	1
0,119	0,892	0,656	0,574	0,133	1,000	0,743	0,650	0,133	1,000	0,850	0,744	1
0,112	0,842	0,683	0,598	0,125	0,940	0,760	0,665	0,133	1,000	0,850	0,744	1
0,105	0,790	0,719	0,630	0,119	0,896	0,782	0,685	0,128	0,963	0,860	0,753	1
0,092	0,689	0,812	0,711	0,101	0,761	0,888	0,778	0,112	0,843	0,934	0,818	1
0,090	0,673	0,830	0,727	0,099	0,745	0,905	0,792	0,105	0,790	0,984	0,862	1
0,066	0,496	1,122	0,982	0,070	0,526	1,264	1,107	0,075	0,564	1,351	1,182]
	d/D	= 2.00			d/D	≈ 2.25			d/D	= 2.50]
0,133	1,000	0,180	0,158	0,133	1,000	0,175	0,153	0,133	1,000	0,172	0,150	
0,133	1,000	0,186	0,163	0,133	1,000	0,178	0,156	0,133	1,000	0,176	0,154]
0,133	1,000	0,989	0,866	0,133	1,000	1,085	0,950	0,133	1,000	1,186	1,038	
0,133	1,000	0,989	0,866	0,133	1,000	1,085	0,950	0,133	1,000	1,186	1,038	
0,133	1,000	0,989	0,866	0,133	1,000	1,085	0,950	0,133	1,000	1,186	1,038	
0,133	1,000	0,989	0,866	0,133	1,000	1,085	0,950	0,133	1,000	1,186	1,038	
0,133	1,000	0,989	0,866	0,133	1,000	1,085	0,950	0,133	1,000	1,186	1,038	
0,133	1,000	0.989	0,866	0,133	1,000	1,085	0,950	0,133	1,000	1,186	1,038	
0,133	1,000	0,989	0,866	0,133	1,000	1,085	0,950	0,133	1,000	1,186	1,038	
0,133	1,000	0,989	0,866	0,133	1,000	1,085	0,950	0,133	1,000	1,186	1,038	
0,128	0,959	1,003	0,878	0,129	0,971	1,094	0,958	0,131	0,986	1,190	1,042	
0,110	0,828	1,103	0,965	0,108	0,810	1,231	1,078	0,105	0,791	1,372	1,201	
0,111	0,831	1,100	0,963	0,108	0,813	1,227	1,074	0,106	0,794	1,368	1,198	
0,087	0,658	1,352	1,184	0,087	0,658	1,482	1,298	0,086	0,650	1,639	1,435]
	d/D	= 2.75			d/D	≃ 3.00				Portal de sa	alida	
0,133	1,000	0,164	0,144	0,133	1,000	0,163	0,143	d/D	Yp, m	Yp/D	V, m/s	V/(gD)^0,5
0,133	1,000	0,168	0,147	0,133	1,000	0,167	0,146	1,25	0,066	0,496	1,122	0,982
0,133	1,000	1,247	1,091	0,133	1,000	1,353	1,185	1,500	0,070	0,526	1,264	1,107
0,133	1,000	1,247	1,091	0,133	1,000	1,353	1,185	1,750	0,075	0,564	1,351	1,182
0,133	1,000	1,247	1,091	0,133	1,000	1,353	1,185	2,000	0,087	0,658	1,352	1,184
0,133	1,000	1,247	1,091	0,133	1,000	1,353	1,185	2,250	0,087	0,658	1,482	1,298
0,133	1,000	1,247	1,091	0,133	1,000	1,353	1,185	2,500	0,086	0,650	1,639	1,435
0,133	1,000	1,247	1,091	0,133	1,000	1,353	1,185	2,750	0,085	0,643	1,742	1,525
0,133	1,000	1,247	1,091	0,133	1,000	1,353	1,185	3,000	0,085	0,639	1,902	1,665
0,133	1,000	1,247	1,091	0,133	1,000	1,353	1,185		-			
0,133	1,000	1,247	1,091	0,133	1,000	1,353	1,185	Notas:				
0,104	0,783	1,454	1,273	0,108	0,813	1,530	1,339	Geometría	de la entrada	a, fig 4.2, co	ndición 3	
0,105	0,786	1,449	1,269	0,106	0,794	1,561	1,366	So = 0,001				
0,085	0,643	1,742	1,525	0,085	0,639	1,902	1,665					

0,133

0,133

0,108

0,102

1,434

1,434

1,626

1,698

1,971

1,000

1,000

0,810

0,770 0,654

1,256

1,256

1,424

1,486

1,725

	d/D	= 1.50			d/D	= 1.75			d/D =	2.00	
Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, <u>m/s</u>	V/(gD)^0,5
0,133	1,000	0,198	0,173	0,133	1,000	0,198	0,173	0,133	1,000	0,195	0,170
0,133	1,000	0,205	0,180	0,133	1,000	0,206	0,180	0,133	1,000	0,200	0,175
0,133	1,000	0,818	0,716	0,133	1,000	0,955	0,836	0,133	1,000	1,066	0,934
0,133	1,000	0,818	0,716	0,133	1.000	0.955	0.836	0,133	1,000	1,066	0,934
0,133	1,000	0,818	0,716	0,133	1.000	0,955	0,836	0,133	1,000	1,066	0,934
0,133	1,000	0,818	0,716	0,133	1,000	0,955	0,836	0,133	1,000	1,066	0,934
0,133	1,000	0,818	0,716	0,133	1,000	0.955	0,836	0,133	1,000	1,066	0,934
0,133	1,000	0,818	0,716	0,133	1,000	0,955	0,836	0,133	1,000	1,066	0,934
0,129	0,969	0,825	0,723	0.133	1.000	0.955	0.836	0,133	1,000	1,066	0,934
0,124	0,934	0,840	0,735	0,128	0.964	0.966	0,846	0,130	0,976	1,074	0,940
0,121	0,910	0,853	0,747	0,123	0.921	0.989	0,865	0,123	0,921	1,104	0,966
0,110	0,825	0,914	0,800	0,112	0.841	1.052	0,921	0,109	0,818	1,200	1,051
0,090	0,680	1,084	0,949	0.109	0.822	1.070	0.937	0,108	0,811	1,208	1,058
0,075	0,564	1,299	1,138	0,089	0,673	1,277	1,118	0,089	0,673	1,426	1,249
	d/D	- 2 25			d/D	- 2 50			d/D -	2 75	
0.133	1.000	0.186	0.163	0.133	1 000	0.179	0.157	0.133	1.000	0.177	0.155
0.133	1,000	0,193	0 169	0 133	1,000	0.185	0.162	0.133	1,000	0.181	0.158
0,133	1,000	1,160	1.015	0.133	1,000	1.247	1.091	0.133	1,000	1,339	1.172
0.133	1,000	1,160	1.015	0,133	1,000	1 247	1.091	0.133	1,000	1.339	1.172
0,133	1,000	1,160	1.015	0,133	1,000	1 247	1.091	0.133	1.000	1,339	1.172
0,133	1,000	1,160	1.015	0,133	1,000	1.247	1.091	0.133	1.000	1.339	1,172
0.133	1,000	1 160	1.015	0.133	1,000	1 247	1 091	0.133	1.000	1.339	1,172
0.133	1,000	1,160	1.015	0.133	1,000	1.247	1.091	0.133	1.000	1.339	1,172
0.133	1.000	1,160	1.015	0.133	1.000	1,247	1.091	0.133	1.000	1.339	1,172
0.132	0,991	1,162	1.018	0.133	1.000	1.247	1.091	0.133	1.000	1.339	1,172
0,123	0,925	1,198	1.049	0.127	0.951	1.268	1,110	0.130	0,974	1,348	1,181
0,107	0,803	1.325	1,160	0.108	0.810	1,414	1.238	0.104	0,780	1,566	1,371
0,106	0,796	1,335	1,168	0.102	0.770	1,476	1,292	0.100	0,755	1,612	1,411
0,090	0,680	1,535	1,344	0,088	0,665	1,685	1,475	0,087	0,658	1,829	1,601
	d/D	= 3.00					Portal de salida				
0.133	1.000	0.174	0.152		d/D	Yp. m	Yp/D	V.m/s	V/(aD)^0.5		
0.133	1.000	0.177	0.155		1.500	0.075	0.564	1.299	1.138		
0.133	1,000	1.434	1.256		1,750	0.089	0.673	1.277	1,118		
0.133	1,000	1,434	1.256		2.000	0.089	0.673	1,426	1,249		
0,133	1,000	1.434	1.256		2.250	0.090	0.680	1.535	1,344		
0.133	1,000	1.434	1.256		2.500	0.088	0.665	1.685	1,475		
0.133	1,000	1.434	1,256		2,750	0.087	0.658	1.829	1.601		
0,133	1.000	1.434	1.256		3.000	0.087	0.654	1,971	1,725		
0,133	1,000	1.434	1.256			-,	, -, L				

Tabla 6.23 Caída del gradiente de presión en el túnel. Ensaye AD33

Notas: Geometría de la entrada, fig 4.2, condición 3 So = 0,004

	d/D	= 1.50			d/D	= 1.75			d/D =	2.00	_		
Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5		
0,133	1,000	0,228	0,200	0,133	1,000	0,220	0,193	0,133	1,000	0,210	0,184		
0,133	1,000	0,241	0,211	0,133	1,000	0,231	0,202	0,133	1,000	0,218	0,191		
0,133	1,000	0,944	0,827	0,133	1,000	1,066	0,934	0,133	1,000	1,154	1,010		
0,130	0,979	0,950	0,831	0,133	1,000	1.066	0,934	0,133	1,000	1,154	1,010		
0,132	0,995	0,945	0,828	0,133	1.000	1.066	0,934	0,133	1,000	1,154	1,010		
0,132	0,989	0,947	0,829	0,133	1,000	1,066	0,934	0,133	1,000	1,154	1,010		
0,129	0,968	0,954	0,835	0,133	1,000	1,066	0,934	0,133	1,000	1,154	1,010		
0,121	0,912	0,983	0,861	0,131	0,987	1,069	0,936	0,133	1,000	1,154	1,010		
0,120	0,901	0,991	0,867	0,127	0.958	1.082	0,947	0,132	0,991	1,156	1,012		
0,115	0,861	1,022	0,895	0,117	0.876	1,140	0,998	0,121	0,906	1,206	1,056		
0,113	0,850	1,032	0,903	0,114	0,858	1,157	1,013	0,115	0,865	1,244	1,089		
),108	0,809	1,073	0,939	0,105	0,786	1,240	1,085	0,104	0,783	1,346	1,179		
0,109	0,822	1,059	0,927	0,105	0,792	1,233	1,079	0,102	0,769	1,367	1,196		
0,088	0,662	1,284	1,124	0,090	0,677	1,419	1,242	0,089	0,665	1,559	1,365		
		= 2.25			d/D ~ 2 50				d/D ≠ 2 75				
0.133	1.000	0.203	0.177	0.133	1 000	0 192	0.168	0.133	1.000	0.186	0.163		
0.133	1.000	0.210	0.184	0.133	1,000	0,197	0.172	0.133	1.000	0.191	0.167		
0.133	1.000	1.267	1,110	0.133	1.000	1.331	1,166	0.133	1.000	1.412	1.236		
0.133	1.000	1.267	1,110	0.133	1.000	1.331	1,166	0.133	1.000	1.412	1,236		
0,133	1.000	1.267	1,110	0.133	1.000	1.331	1,166	0.133	1.000	1,412	1,236		
0,133	1,000	1,267	1,110	0.133	1.000	1.331	1.166	0.133	1.000	1,412	1,236		
0,133	1,000	1,267	1,110	0.133	1.000	1.331	1,166	0.133	1,000	1,412	1,236		
0,133	1,000	1,267	1,110	0.133	1.000	1.331	1,166	0,133	1.000	1,412	1,236		
0,133	1,000	1.267	1,110	0.133	1.000	1.331	1,166	0,133	1,000	1,412	1,236		
0,125	0,936	1,300	1,138	0,130	0,978	1,339	1,173	0,133	1,000	1,412	1,236		
D,117	0,880	1,351	1,182	0,122	0,914	1,385	1,212	0,125	0,940	1,445	1,265		
0,104	0,779	1,485	1,300	0,102	0.768	1.580	1,383	0,103	0,771	1,668	1,461		
D,101	0,762	1,514	1,326	0,100	0,750	1,612	1,411	0,100	0,754	1,702	1,490		
0,087	0,654	1,741	1,524	0,092	0,688	1,744	1,527	0,093	0,695	1,831	1,603		
	d/D	= 3.00					Portal de salida	a					
0,133	1,000	0,180	0,158		d/D	Yp, m	Yp/D	V, m/s	V/(qD)^0,5				
0,133	1,000	0,185	0,162		1.500	0.088	0.662	1,284	1,124				
0,133	1,000	1,494	1,308		1,750	0,090	0,677	1,419	1,242				
0,133	1,000	1,494	1,308		2,000	0,089	0,665	1,559	1,365				
0,133	1,000	1,494	1,308		2,250	0,087	0,654	1,741	1,524				
0,133	1,000	1,494	1,308		2,500	0,092	0.688	1,744	1,527				
0,133	1,000	1,494	1,308		2,750	0,093	0,695	1,831	1,603				
0,133	1,000	1,494	1,308		3,000	0,091	0,680	1,977	1,731				
0,133	1,000	1,494	1,308	1			<u> </u>						

Tabla 6.24 Caída del gradiente de presión en el túnel. Ensaye AD34

1,494

1,494

1,511

1,765

1,808 1,977

0,133

0,128

0,103

0,100

0,091

1,000

0,963

0,771

0,750

0,680

1,308

1,323

1,545

1,583 1,731

	d/D	= 1.50			d/D :	= 1.75			d/D	= 2.00	
Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V,m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5
0,133	1,000	0,148	0,129	0,133	1,000	0,143	0,125	0,133	1,000	0,142	0,124
0,133	1,000	0,150	0,131	0,133	1,000	0,146	0,128	0,133	1,000	0,144	0,126
0,133	1,000	0,604	0,529	0,133	1,000	0,691	0,605	0,133	1,000	0, 7 81	0,684
0,133	1,000	0,604	0,529	0,133	1,000	0,691	0,605	0,133	1,000	0,781	0,684
0,133	1,000	0,604	0,529	0,133	1,000	0,691	0,605	0,133	1,000	0,781	0,684
0,133	1,000	0,604	0,529	0,133	1,000	0,691	0,605	0,133	1,000	0,781	0,684
0,133	1,000	0,604	0,529	0,133	1,000	0,691	0,605	0,133	1,000	0,781	0,684
0,133	1,000	0,604	0,529	0,133	1,000	0,691	0,605	0,133	1,000	0,781	0,684
0,132	0,989	0,606	0,530	0,133	1,000	0,691	0,605	0,133	1,000	0,781	0,684
0,127	0,951	0,615	0,538	0,133	1,000	0,691	0,605	0,133	1,000	0,781	0,684
0,112	0,844	0,664	0,581	0,125	0,942	0,707	0,619	0,133	1,000	0,781	0,684
0,097	0,729	0,750	0,657	0,107	0,805	0,789	0,690	0,114	0,853	0,851	0,745
0,093	0,701	0,778	0,681	0,103	0,777	0,812	0,711	0,109	0,822	0,876	0,767
0,064	0,478	1,133	0,992	0,071	0,531	1,167	1,022	0,075	0,561	1,248	1,093
	d/D :	= 2.25			d/D :	= 2.50			d/D :	= 2.75	
0,133	1,000	0,135	0,119	0,133	1,000	0,132	0,116	0,133	1,000	0,126	0,110
0,133	1,000	0,138	0,121	0,133	1,000	0,133	0,117	0,133	1,000	0,128	0,112
0,133	1,000	0,844	0,739	0,133	1,000	0,910	0,797	0,133	1,000	0,967	0,846
0,133	1,000	0,844	0,739	0,133	1,000	0,910	0,797	0,133	1,000	0,967	0,846
0,133	1,000	0,844	0,739	0,133	1,000	0,910	0,797	0,133	1,000	0,967	0,846
0,133	1,000	0,844	0,739	0,133	1,000	0,910	0,797	0,133	1,000	0,967	0,846
0,133	1,000	0,844	0,739	0,133	1,000	0,910	0,797	0,133	1,000	0,967	0,846
0,133	1,000	0,844	0,739	0,133	1,000	0,910	0,797	0,133	1,000	0,967	0,846
0,133	1,000	0,844	0,739	0,133	1,000	0,910	0,797	0,133	1,000	0,967	0,846
0,133	1,000	0,844	0,739	0,133	1,000	0,910	0,797	0,133	1,000	0,967	0,846
0,133	1,000	0,844	0,739	0,133	1,000	0,910	0,797	0,133	1,000	0,967	0,846
0,119	0,891	0.892	0,781	0,124	0,929	0,937	0,821	0,128	0,962	0,978	0,856
0,112	0,844	0,927	0,812	0,117	0,882	0,968	0,848	0,122	0,916	1,004	0,879
0,078	0,583	1,297	1,136	0,079	0,591	1,380	1,208	0,080	0,598	1,448	1,268
	d/D :	= 3.00					Portal de salida	a			

Tabla 6.25 Caída del gradiente de presión en el túnel. Ensaye AK31

d/D = 3.00										
0,133	1,000	0,125	0,109							
0,133	1,000	0,126	0,110							
0,133	1,000	1,036	0,907							
0,133	1,000	1,036	0,907							
0,133	1,000	1,036	0,907							
0,133	1,000	1,036	0,907							
0,133	1,000	1,036	0,907							
0,133	1,000	1,036	0,907							
0,133	1,000	1,036	0,907							
0,133	1,000	1,036	0,907							
0,133	1,000	1,036	0,907							
0,129	0,970	1,046	0,915							
0,123	0,927	1,069	0,936							
0.081	0.606	1 534	1 343							

Yp, m 0,064 V/(gD)^0,5 0,992 d/D Yp/D V, m/s 0,478 1,133 1,500 1,750 0,071 0,531 1,167 1,022 1,248 1,297 2,000 0,075 0,561 1,093 0,078 0,583 1,136 2,250 1,208 0,591 1,380 2,500 0,079 1,448 1,534 2,750 0,080 0,598 1,268 1,343 3,000 0,081 0,606

	d/D	= 1.50			d/D	= 1.75			d/D	≈ 2.00		
Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5	
0,133	1,000	0,150	0,131	0,133	1,000	0,149	0,131	0,133	1,000	0,142	0,124	
0,133	1,000	0,152	0,133	0,133	1,000	0,152	0,133	0,133	1,000	0,144	0,126	
0,133	1,000	0,617	0,540	0,133	1,000	0,721	0,631	0,133	1,000	0,781	0,684	
0,133	1,000	0,617	0,540	0,133	1,000	0,721	0,631	0,133	1,000	0,781	0,684	
0,133	1,000	0,617	0,540	0,133	1,000	0,721	0,631	0,133	1,000	0,781	0,684	
0,133	1,000	0,617	0,540	0,133	1,000	0,721	0,631	0,133	1,000	0,781	0,684	
0,133	1,000	0,617	0,540	0,133	1,000	0,721	0,631	0,133	1,000	0,781	0,684	
0,133	1,000	0,617	0,540	0,133	1,000	0,721	0,631	0,133	1,000	0,781	0,684	
0,133	1,000	0,617	0,540	0,133	1,000	0,721	0,631	0,133	1,000	0,781	0,684	
0,130	0,978	0,621	0,543	0,133	1,000	0,721	0,631	0,133	1,000	0,781	0,684	
0,115	0,865	0,665	0,583	0,127	0,952	0,733	0,642	0,133	1,000	0,781	0,684	
0,101	0,757	0,741	0,649	0,108	0,813	0,815	0,714	0,114	0,858	0,848	0,742	
0,097	0,726	0,769	0,673	0,104	0,779	0,845	0,740	0,110	0,824	0,875	0,766	
0,068	0,511	1,081	0,947	0,071	0,534	1,210	1,059	0,074	0,556	1,258	1,102	
	d/D	= 2.25			d/b	= 2.50		d/D = 2.75				
0,133	1,000	0,136	0,119	0,133	1,000	0,131	0,115	0,133	1,000	0,127	0,111	
0,133	1,000	0,140	0,122	0,133	1,000	0,133	0,116	0,133	1,000	0,128	0,112	
0,133	1,000	0,856	0,750	0,133	1,000	0,913	0,799	0,133	1,000	0,970	0,849	
0,133	1,000	0,856	0,750	0,133	1,000	0,913	0,799	0,133	1,000	0,970	0,849	
0,133	1,000	0,856	0,750	0,133	1,000	0,913	0,799	0,133	1,000	0,970	0,849	
0,133	1,000	0,856	0,750	0,133	1,000	0,913	0,799	0,133	1,000	0,970	0,849	
0,133	1,000	0,856	0,750	0,133	1,000	0,913	0,799	0,133	1,000	0,970	0,849	
0,133	1,000	0,856	0,750	0,133	1,000	0,913	0,799	0,133	1,000	0,970	0,849	
0,133	1,000	0,856	0,750	0,133	1,000	0,913	0,799	0,133	1,000	0,970	0,849	
0,133	1,000	0,856	0,750	0,133	1,000	0,913	0,799	0,133	1,000	0,970	0,849	
0,133	1,000	0,856	0,750	0,133	1,000	0,913	0,799	0,133	1,000	0,970	0,849	
0,120	0,904	0,897	0,785	0,127	0,956	0,927	0,811	0,130	0,979	0,975	0,854	
0,115	0,861	0,927	0,811	0,121	0,907	0,954	0,835	0,125	0,940	0,992	0,869	
0,078	0,586	1,309	1,146	0,081	0,609	1,345	1,177	0,083	0,624	1,395	1,221	

Tabla 6.26 Caída del gradiente de presión en el túnel. Ensaye AK32

d/D = 3.00										
0,133	1,000	0,123	0,107							
0,133	1,000	0,123	0,108							
0,133	1,000	1,026	0,899							
0,133	1,000	1,026	0,899							
0,133	1,000	1,026	0,899							
0,133	1,000	1,026	0,899							
0,133	1,000	1,026	0,899							
0,133	1,000	1,026	0,899							
0,133	1,000	1,026	0,899							
0,133	1,000	1,026	0,899							
0,133	1,000	1,026	0,899							
0,133	0,998	1,027	0,899							
0,128	0,959	1,040	0,911							
0.084	0.631	1 459	1 277							

Portal de salida V/(gD)^0,5 d/D Yp, m Yp/D V,m/s 1,500 1,750 0,068 0,511 1,081 0,947 0,071 0,534 1,210 1,059 0,556 1,102 2,000 0,074 1,258 1,309 1,146 2,250 0,078 0,586 1,177 2,500 0,081 0,609 1,345 2,750 3,000 0,083 0,624 1,395 1,221 0,084 0,631 1,459 1,277

0,132 0,127 0,084

0,991

0,958 0,632 1,073

1,086 1,521 0,939

0,951 1,332

	d/D	= 1.50			d/D	= 1.75		d/D = 2.00 Yp, m Yp/D V, m/s V/(gD 0,133 1,000 0,149 0,1 0,133 1,000 0,153 0,1 0,133 1,000 0,825 0,7 0,133 1,000 0,825 0,7 0,133 1,000 0,825 0,7 0,133 1,000 0,825 0,7 0,133 1,000 0,825 0,7 0,133 1,000 0,825 0,7 0,133 1,000 0,825 0,7 0,133 1,000 0,825 0,7 0,133 1,000 0,825 0,7 0,133 1,000 0,825 0,7 0,133 1,000 0,825 0,7 0,133 1,000 0,825 0,7 0,133 1,000 0,825 0,7 0,133 1,000 0,132 0,1 0,112 0,841 0,908 0,79			
Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5
0.133	1.000	0.165	0.145	0.133	1.000	0.158	0.138	0,133	1,000	0.149	0,131
0,133	1.000	0.169	0.148	0.133	1.000	0.161	0.141	0.133	1,000	0,153	0,134
0,133	1,000	0,686	0,601	0,133	1,000	0.762	0,667	0,133	1,000	0,825	0,722
0,133	1,000	0,686	0,601	0.133	1,000	0.762	0.667	0,133	1,000	0,825	0,722
0,133	1,000	0,686	0.601	0,133	1,000	0.762	0.667	0,133	1,000	0,825	0,722
0,133	1,000	0.686	0,601	0,133	1.000	0.762	0,667	0,133	1,000	0,825	0,722
0,133	1,000	0,686	0,601	0,133	1.000	0.762	0,667	0,133	1,000	0,825	0,722
0,133	1,000	0,686	0,601	0,133	1,000	0,762	0,667	0,133	1,000	0,825	0,722
0,133	1,000	0,686	0,601	0,133	1,000	0.762	0,667	0,133	1,000	0,825	0,722
0,131	0,987	0,688	0,603	0,133	1,000	0,762	0,667	0,133	1,000	0,825	0,722
0,119	0,891	0,725	0,635	0,127	0,951	0,775	0,679	0,133	1,000	0,825	0,722
0,105	0,788	0,797	0,697	0,110	0,825	0,851	0,745	0,115	0,863	0,891	0,780
0,101	0,762	0,819	0,717	0,107	0,804	0,870	0,762	0,112	0,841	0,908	0,795
0,070	0,526	1,168	1,023	0,073	0,549	1,243	1,089	0,076	0,571	1,293	1,132
	d/D	= 2.25			d/D	= 2.50			d/D =	2.75	
0,133	1,000	0,146	0,128	0,133	1,000	0,139	0,121	0,133	1,000	0,132	0,115
0,133	1,000	0,148	0,130	0,133	1,000	0,141	0,123	0,133	1,000	0,133	0,117
0,133	1,000	0,907	0,794	0,133	1,000	0,957	0,838	0,133	1,000	1,007	0,882
0,133	1,000	0,907	0,794	0,133	1,000	0,957	0,838	0,133	1,000	1,007	0,882
0,133	1,000	0,907	0,794	0,133	1,000	0,957	0,838	0,133	1,000	1,007	0,882
0,133	1,000	0,907	0,794	0,133	1,000	0,957	0,838	0,133	1,000	1,007	0,882
0,133	1,000	0,907	0,794	0,133	1,000	0,957	0,838	0,133	1,000	1,007	0,882
0,133	1,000	0,907	0,794	0,133	1,000	0,957	0,838	0,133	1,000	1,007	0,882
0,133	1,000	0,907	0,794	0,133	1,000	0,957	0,838	0,133_	1,000	1,007	0,882
0,133	1,000	0,907	0,794	0,133	1,000	0,957	0,838	0,133	1,000	1,007	0,882
0,133	1,000	0,907	0,794	0,133	1,000	0,957	0,838	0,133	1,000	1,007	0,882
0,122	0,916	0,942	0,825	0,126	0,946	0,977	0,855	0,129	0,968	1.017	0,890
0,117	0,883	0,964	0,844	0,118	0,890	1,012	0,886	0,124	0,935	1,034	0,905
0,078	0,586	1,386	1,213	0,080	0,601	1,427	1,249	0,083	0,624	1,449	1,268
-	d/D	= 3.00					Portal de salid	а			
0,133	1,000	0,128	0,112		d/D	Yp, m	Yp/D	V,m/s	V/(gD)^0,5		
0,133	1,000	0,130	0,114		1,500	0,070	0,526	1,168	1,023		
0,133	1,000	1,070	0,937		1,750	0,073	0,549	1,243	1,089		
0,133	1,000	1,070	0,937		2,000	0,076	0,571	1,293	1,132		
0,133	1,000	1,070	0,937		2,250	0,078	0,586	1,386	1,213		
0,133	1,000	1,070	0,937		2,500	0,080	0,601	1,427	1,249		
0,133	1,000	1,070	0,937		2,750	0.083	0,624	1,449	1,268		
0,133	1,000	1,070	0,937		3,000	0,084	0,632	1,521	1,332		
0,133	1,000	1,070	0,937			_					
0,133	1,000	1,070	0,937								
0,133	1,000	1,070	0,937								

Tabla 6.27 (Caída del gradiente	de presión en	el túnel.	Ensaye AK33
--------------	---------------------	---------------	-----------	-------------

	d/D	= 1.50			d/D	= 1.75			d/D =	2.00	
Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5	Yp, m	Yp/D	V, m/s	V/(gD)^0,5
0,133	1,000	0,184	0,161	0,133	1,000	0,173	0,151	0,133	1,000	0,165	0,144
0,133	1,000	0,190	0,166	0,133	1,000	0,177	0,155	0,133	1,000	0,168	0,147
0,133	1,000	0,762	0,667	0,133	1,000	0,834	0,730	0,133	1,000	0,900	0,788
0,133	1,000	0,762	0,667	0,133	1,000	0,834	0,730	0,133	1,000	0,900	0,788
0,133	1,000	0,762	0,667	0,133	1,000	0,834	0,730	0,133	1,000	0,900	0,788
0,133	1,000	0,762	0,667	0,133	1,000	0,834	0,730	0,133	1,000	0,900	0,788
0,133	1,000	0,762	0,667	0,133	1,000	0,834	0,730	0,133	1,000	0,900	0,788
0,133	1,000	0,762	0,667	0,133	1,000	0,834	0,730	0,133	1,000	0,900	0,788
0,129	0,969	0,769	0,673	0,133	1,000	0,834	0,730	0,133	1,000	0,900	0,788
0,129	0,970	0,769	0,673	0,133	1,000	0,834	0,730	0,133	1,000	0,900	0,788
0,118	0,888	0,807	0,707	0,127	0,955	0,847	0,741	0,133	1,001	0,900	0,788
0,107	0,805	0,869	0,760	0,114	0,854	0,908	0,795	0,116	0,869	0,968	0,847
0,105	0,788	0,884	0,774	0,111	0,833	0,925	0,810	0,113	0,848	0,986	0,863
0,075	0,564	1,210	1,060	0,078	0,586	1,274	1,115	0,080	0,598	1,350	1,182
	d/D	= 2.25			d/D	= 2.50			d/D =	2.75	
0,133	1,000	0,154	0,135	0,133	1,000	0,147	0,129	0,133	1,000	0,141	0,124
0,133	1,000	0,156	0,137	0,133	1,000	0,150	0,131	0,133	1,000	0,143	0,125
0,133	1,000	0,963	0,843	0,133	1,000	1,026	0,899	0,133	1,000	1,072	0,939
0,133	1,000	0,963	0,843	0,133	1,000	1,026	0,899	0,133	1,000	1,072	0,939
0,133	1,000	0,963	0,843	0,133	1,000	1,026	0,899	0,133	1,000	1,072	0,939
0,133	1,000	0,963	0,843	0,133	1,000	1,026	0,899	0,133	1,000	1,072	0,939
0,133	1,000	0,963	0,843	0,133	1,000	1,026	0,899 -	0,133	1,000	1,072	0,939
0,133	1,000	0,963	0,843	0,133	1,000	1,026	0,899	0,133	1,000	1,072	0,939
0,133	1,000	0,963	0,843	0,133	1,000	1,026	0,899	0,133	1,000	1,072	0,939
0,133	1,000	0,963	0,843	0,133	1,000	1,026	0,899	0,133	1,000	1,072	0,939
0,133	1,000	0,963	0,843	0,133	1,000	1,026	0,899	0,133	1,000	1,072	0,939
0,122	0,914	1,002	0,877	0,128	0,959	1,040	0,911	0,131	0,982	1,077	0,943
0,118	0,886	1,022	0,895	0,123	0,923	1,061	0,929	0,127	0,953	1,090	0,954
0,081	0,609	1,419	1,242	0,084	0,632	1,459	1,277	0,085	0,639	1,507	1,319

Tabla 6.28 Caída del gradiente de presión en el túnel. Ensaye AK34

94

	- ,	.,		
	d/D	= 3.00		1
0,133	1,000	0,133	0,116	1
0,133	1,000	0,134	0,117	1
0,133	1,000	1,108	0,970	1
0,133	1,000	1,108	0,970	1
0,133	1,000	1,108	0,970	1
0,133	1,000	1,108	0,970	1
0,133	1,000	1,108	0,970	
0,133	1,000	1,108	0,970	
0,133	1,000	1,108	0,970	
0,133	1,000	1,108	0,970	
0,133	1,000	1,108	0,970	
0,131	0,982	1,113	0,975	
0,128	0,961	1,122	0,983	
0,085	0,639	1,557	1,363	

Portal de salida **Yp, m** 0,075 V, m/s 1,210 V/(gD)^0,5 1,060 d/D Yp/D 1,500 0,564 0,078 0,586 1,115 1,274 1,750 2,000 0,080 0,598 1,350 2,250 0,081 0,609 1,419 1,242 2,500 0,084 0,632 1,459 1,277 2,750 0,085 0,639 1,507 1,319 0,639 1,557 3,000 0,085 1,363

Relación de		Pendiente									
Llenado	So = (0,0007	So =	0,001	<u>So</u> =	So = 0,004		0,008			
d/D	L/D	Fr	L/D	Fr	L/D	Fr	L/D	Fr			
1,50	25,00	0,840	23,00	0,79	4,00	0,84	Canal	-			
1,75	28,00	1,000	27,00	1,01	12,00	1,07	16	1,046			
2,00	33,20	1,100	33,00	1,09	23,00	1,18	40	1,125			
2,25	37,50	1,180	36,40	1,18	28,50	1,43	Canal				
2,50	40,00	1,380	39,00	1,33	33,50	1,42	Canal				
2,75	42,00	1,440	41,00	1,40	36,50	1,46	Canal				
3,00	43,20	1,470	43,00	1,45	39,00	1,75	Canal				

Tabla 7.1 Ubicación de la caída del gradiente de presión en el túnel. Ensayes: A31; A32; A33; A34

Relación de				Pend	ientes						
Llenado	So =	0,0007	So =	0,001	So =	0,004	So = 0,008				
d/D	L/D	Froude	L/D	Froude	L/D	Froude	L/D	Froude			
1,50	31,00	0,707	30,00	0,733	23,00	0,817	11,00	0,832			
1,75	38,00	0,865	37,00	0,840	30,00	0,929	17,00	0,931			
2,00	42,00	0,934	41,00	0,988	38,00	0,994	31,00	1,095			
2,25	43,00	1,044	42,00	1,078	40,00	1,122	35,00	1,101			
2,50	45,00	1,089	44,00	1,132	43,00	1,198	40,00	1,214			
2,75	46,00	1,176	45,00	1,197	44,00	1,243	42,00	1,270			
3,00	47,00	1,473	46,00	1,547	46,00	1,597	45,00	1,315			

Tabla 7.2 Ubicación de la caída del gradiente de presión en el túnel. Ensayes: L31; L32; L33; L34

L, Distancia apartir de la cual; el gradiente de presión está por debajo de la clave del túnel D, debido a la pérdida de energía por entrada y por los esfuezos cortantes a lo largo del túnel. Fr, número de Froude

Relación de		Pendientes										
Llenado	So = (0,0007	So = 0,001 So = 0,004			So = 0,008						
d/D	L/D	Froude	L/D	Froude	L/D	Froude	L/D	Froude				
1.05	10	0.550	4.5	0.500								
1,25	12	0,553	15	0,566								
1,50	32,00	0,666	35,00	0,657	30,00	0,755	24,00	0,823				
1,75	42,00	0,755	44,00	0,747	38,00	0,824	34,00	0,940				
2,00	45,00	0,830	45,00	0,840	40,00	0,955	38,00	0,976				
2,25	46,00	1,012	46,00	1,064	43,00	1,030	40,00	1,050				
2,50	47,00	1,158	47,00	1,202	45,00	1,088	43,00	1,093				
2,75	48,00	1,265	48,00	1,291	46,00	1,137	44,00	1,134				
3,00	49,00	1,359	49,00	1,379	47,00	1,524	46,00	1,502				

Tabla 7.3	Ubicación de	la caída del	gradiente de	presión en e	el túnel.	Ensayes:	D31; D32;	D33; D34
-----------	--------------	--------------	--------------	--------------	-----------	----------	-----------	----------

Relación de		Pendientes									
Llenado	So = (0,0007	So =	0,001	So =	0,004	So = 0,008				
d/D	L/D	Froude	L/D	Froude	L/D	Froude	L/D	Froude			
1,50	34,00	0,475	34,00	0,474	35,00	0,512	35,00	0,580			
1,75	44,00	0,552	43,00	0,558	45,00	0,564	44,00	0,633			
2,00	47,00	0,711	47,00	0,717	48,00	0,709	49,00	0,780			
2,25	49,00	0,738	49,00	0,746	51,00	0,728	50,00	0,782			
2,50	51,00	0,746	51,00	0,749	52,00	0,738	52,00	0,807			
2,75	52,00	0,771	52,00	0,784	54,00	0,773	53,00	0,836			
3,00	54,00	0,801	53,00	0,811	55,00	0,881	54,00	0,860			

Tabla 7.4	Ubicación de la	a caída del gradie	nte de presión er	n el túnel. Ensa	ves: K31: K32: K33: K34
	e 2.00001011 00 10	a ourau aor graaio		, or carlon Erioa	,00,10,,102,100,10

Relación de		Pendiente									
Llenado	So = (0,0007	So =	0,001	So =	0,004	So =	0,008			
d/D	L/D	Fr	L/D	Fr	L/D	Fr	L/D	Fr			
					1						
1,25	10,00	0,56									
1,50	33,00	0,69	33,00	0,71	28,00	0,77	22,00	0,87			
1,75	40,00	0,82	45,00	0,83	33,00	0,92	24,00	1,00			
2,00	44,00	0,93	46,00	0,93	40,00	1,01	29,00	1,15			
2,25	45,00	1,03	47,00	1,03	43,00	1,11	35,00	1,16			
2,50	46,00	1,27	48,00	1,27	45,00	1,18	38,00	1,25			
2,75	47,00	1,37	49,00	1,41	46,00	1,47	42,00	1,32			
3,00	49,00	1,45	50,00	1,46	48,00	1,60	46,00	1,64			

Tabla 7.5 Ubicación de la caída del gradiente de presión en el túnel. Ensayes: AL31; AL32; AL33; AL34

Relación de		Pendiente										
Llenado	So = (),0007	So = 0,001 So = 0,0			0,004	,004 So = 0,008					
d/D	L/D	Fr	L/D	Fr	L/D	Fr	L/D	Fr				
			1		1							
1,25	7,00	0,56	6,00	0,55								
1,50	29,00	0,68	30,00	0,76	21,00	0,73	9,00	0,83				
1,75	39,00	0,78	40,00	0,77	31,00	0,86	19,00	0,93				
2,00	46,00	0,96	42,00	0,90	35,00	0,95	28,00	1,01				
2,25	46,00	0,96	44,00	0,97	38,00	1,02	33,00	1,14				
2,50	47,00	1,05	46,00	1,05	40,00	1,14	37,00	1,17				
2,75	47,00	1,13	46,00	1,44	44,00	1,20	40,00	1,26				
3,00	48,00	1,54	47,00	1,49	47,00	1,58	45,00	1,32				

Tabla 7.6	Ubicación de la caída	del gradiente de	presión en el túnel. Er	nsaves: AD31:	AD32: AD33: AD34
1 00100 110	epicación de la carda	aor graatorito ao			

Relación de	Pendiente										
Llenado	So = 0),0007	So =	0,001	So = (0,004	So = 0,008				
d/D	d/D L/D Fr		L/D	Fr	L/D	L/D Fr		Fr			
1,50	27,00	0,53	32,00	0,55	31,00	0,61	25,00	0,67			
1,75	42,00	0,64	43,00	0,66	43,00	0,70	43,00	0,76			
2,00	46,00	0,81	47,00	0,80	46,00	0,84	46,00	0,91			
2,25	48,00	0,83	49,00	0,83	49,00	0,86	49,00	0,88			
2,50	51,00	0,85	52,00	0,83	52,00	0,88	52,00	0,91			
2,75	52,00	0,87	53,00	0,86	53,00	0,91	53,00	0,94			
3,00	53,00	0,93	55,00	0,90	54,00	0,94	54,00	0,98			

Tabla 7.7 Ubicación de la caída del gradiente de presión en el túnel. Ensayes: AK31; AK32; AK33; AK34

L, Distancia apartir de la cual; el gradiente de presión está por debajo de la clave del túnel D, debido a la pérdida de energía por entrada y por los esfuezos cortantes a lo largo del túnel. Fr, número de Froude

						Fro	ude					_
L/D d/D	0,25	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00
-4	0,208	0,201	0,203	0,187	0,190	0,190	0,168	0,149	0,130	0,121	0,113	0,105
-2	0,218	0,216	0,216	0,198	0,209	0,218	0,194	0,171	0,138	0,129	0,118	0,110
0	0,702	0,687	0,668	0,622	0,720	0,936	1,046	1,134	1,222	1,327	1,421	1,503
3	1,380	1,090	1,325	1,197	1,078	0,991	1,046	1,134	1,640	1,819	1,948	2,107
6	1,482	1,304	1,318	1,231	1,207	0,987	1,046	1,134	1,571	1,697	1,808	1,895
9	1,765	1,416	1,348	1,239	1,203	0,956	1,046	1,134	1,568	1,694	1,804	1,909
12	1,368	1,371	1,321	1,208	1,171	0,959	1,046	1,134	1,550	1,699	1,801	1,906
20	1,425	1,468	1,400	1,247	1,170	0,970	1,050	1,134	1,466	1,599	1,697	1,803
28	1,487	1,577	1,419	1,303	1,228	0,963	1,048	1,134	1,391	1,504	1,592	1,685
38	1,285	1,387	1,391	1,241	1,185	0,993	1,077	1,125	1,299	1,353	1,443	1,512
46	1,396	1,487	1,411	1,311	1,244	1,015	1,124	1,180	1,281	1,400	1,514	1,630
54	1,053	1,187	1,256	1,162	1,138	1,006	1,119	1,184	1,295	1,431	1,562	1,866
57	1,208	1,371	1,321	1,221	1,199	1,046	1,127	1,206	1,329	1,467	1,605	1,968
60	1,404	1,422	1,602	1,662	1,836	1,925	2,051	2,123	2,288	2,484	2,659	2,892
Q, en m³/s	0,0013	0,0034	0,0066	0,0093	0,0133	0,0170	0,0190	0,0206	0,0222	0,0241	0,0258	0,0273
Yc, en m	0,0214	0,0405	0,0631	0,0789	0,0978	0,1110	0,1165	0,1200	0,1228	0,1253	0,1264	0,1282

Tabla 8.1 Números de Froude para diferentes relaciones de llenado en el túnel: Ensaye A34

	Froude												
L/D d/D	0,25	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	
-4	0,171	0,172	0,181	0,183	0,186	0,169	0,148	0,135	0,117	0,107	0,091	0,091	
-2	0,088	0,187	0,192	0,195	0,204	0,177	0,157	0,143	0,123	0,112	0,103	0,094	
0	0,219	0,341	0,411	0,494	0,648	0,826	0,922	1,014	1,090	1,171	1,241	1,300	
3	0,997	1,048	0,505	1,230	0,829	0,826	0,922	1,014	1,090	1,171	1,241	1,300	
6	0,906	0,940	0,476	0,899	0,845	0,826	0,922	1,014	1,090	1,171	1,241	1,300	
9	0,720	0,741	0,448	0,803	0,826	0,826	0,922	1,014	1,090	1,171	1,241	1,300	
12	0,735	0,982	0,480	0,988	0,842	0,833	0,922	1,014	1,090	1,171	1,241	1,300	
20	0,733	1,086	0,499	1,006	0,891	0,844	0,931	1,014	1,090	1,171	1,241	1,300	
28	0,874	1,085	0,492	0,916	0,860	0,860	0,960	1,014	1,090	1,171	1,241	1,300	
38	0,600	0,781	0,455	0,859	0,928	0,959	1,033	1,095	1,101	1,171	1,241	1,300	
- 46	1,008	1,032	0,496	1,063	0,997	0,980	1,082	1,178	1,155	1,214	1,270	1,315	
- 54	1,144	1,172	1,149	1,073	1,095	0,985	1,138	1,366	1,299	1,395	1,415	1,643	
57	0,558	0,713	0,803	1,037	1,108	0,994	1,177	1,409	1,402	1,411	1,464	1,757	
60	0,552	0,902	1,105	1,208	1,515	1,337	1,493	1,669	1,794	1,958	2,111	2,210	
Q,en m³/s	0,001	0,003	0,006	0,009	0,013	0,015	0,017	0,018	0,020	0,021	0,023	0,024	
Yc, en m	0,018	0,037	0,058	0,077	0,097	0,104	0,110	0,115	0,118	0,121	0,123	0,125	

Tabla 8.2 Números de Froude para diferentes relaciones de llenado en el túnel: Ensaye L34

						Fro	ude					-
UD 0/D	0,25	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00
-4	0,198	0,195	0,197	0,196	0,188	0,165	0,144	0,127	0,111	0,098	0,089	0,084
-2	0,208	0,213	0,209	0,211	0,201	0,182	0,158	0,139	0,115	0,102	0,091	0,086
0	0,741	0,621	0,653	0,579	0,697	0,820	0,907	0,975	1,020	1,072	1,121	1,196
3	0,920	0,896	0,946	1,049	0,771	0,820	0,907	0,975	1,020	1,072	1,121	1,196
6	1,012	0,905	0,964	0,913	0,780	0,820	0,907	0,975	1,020	1,072	1,121	1,196
9	1,035	0,984	0,971	0,903	0,775	0,820	0,907	0,975	1,020	1,072	1,121	1,196
12	1,102	1,014	1,002	0,907	0,781	0,820	0,907	0,975	1,020	1,072	1,121	1,196
20	0,797	0,805	0,841	0,829	0,788	0,820	0,907	0,975	1,020	1,072	1,121	1,196
28	0,909	0,922	0,499	0,862	0,807	0,823	0,907	0,975	1,020	1,072	1,121	1,196
38	0,965	0,885	0,493	0,853	0,854	0,878	0,940	0,977	1,020	1,072	1,121	1,196
46	0,999	1,004	0,508	0,943	0,899	0,914	0,993	1,062	1,051	1,093	1,134	1,196
54	0,961	0,984	1,007	0,985	0,983	0,978	1,100	1,218	1,163	1,218	1,292	1,503
57	0,774	0,806	0,933	0,885	0,942	0,950	1,074	1,187	1,152	1,216	1,290	1,508
60	0,764	1,046	1,232	1,416	1,577	1,443	1,518	1,605	1,764	1,854	2,042	2,104
Q,en m³/s	0,001	0,003	0,006	0,010	0,013	0,015	0,016	0,018	0,019	0,019	0,020	0,022
Yc, en m	0,020	0,040	0,061	0,081	0,097	0,104	0,109	0,113	0,115	0,118	0,120	0,122

Tabla 8.3 Números de Froude para diferentes relaciones de llenado en el túnel: Ensaye D34

	Froude												
L/D d/D	0,25	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	
-4	0,212	0,174	0,176	0,164	0,133	0,115	0,098	0,0678	0,080	0,072	0,065	0,059	
-2	0,212	0,185	0,187	0,171	0,138	0,120	0,102	0,0373	0,081	0,073	0,066	0,059	
0	0,766	0,557	0,526	0,500	0,469	0,571	0,622	0,5436	0,748	0,787	0,825	0,845	
3	0,857	0,637	0,600	0,559	0,491	0,571	0,622	0,5436	0,748	0,787	0,825	0,845	
6	0,846	0,653	0,622	0,579	0,500	0,571	0,622	0,5436	0,748	0,787	0,825	0,845	
9	0,835	0,630	0,607	0,566	0,502	0,571	0,622	0,5436	0,748	0,787	0,825	0,845	
12	0,775	0,645	0,611	0,568	0,507	0,571	0,622	0,5436	0,748	0,787	0,825	0,845	
20	0,774	0,644	0,622	0,587	0,523	0,571	0,622	0,5436	0,748	0,787	0,825	0,845	
28	0,905	0,673	0,647	0,623	0,553	0,571	0,622	0,5436	0,748	0,787	0,825	0,845	
38	0,866	0,670	0,645	0,618	0,569	0,580	0,602	0,2066	0,748	0,787	0,825	0,845	
46	0,787	0,649	0,651	0,649	0,607	0,631	0,633	0,2279	0,748	0,787	0,825	0,845	
54	0,785	0,668	0,715	0,766	0,732	0,760	0,767	0,2765	0,782	0,807	0,836	0,858	
57	0,753	0,766	0,795	0,841	0,819	0,859	0,876	0,3223	0,848	0,867	0,897	0,954	
60	1,071	1,128	1,288	0,685	1,480	1,575	1,635	0,5046	1,795	1,809	1,858	1,826	
Q,en m³/s	0,001	0,003	0,005	0,008	0,009	0,010	0,011	0,012	0,014	0,014	0,015	0,015	
Yc, en m	0,021	0,038	0,056	0,072	0,078	0,085	0,089	0,093	0,099	0,102	0,104	0,106	

Tabla 8.4 Números de Froude para diferentes relaciones de llenado en el túnel: Ensaye K34

						Fro	ude					
L/D 0/D	0,25	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00
-4	0,177	0,182	0,184	0,186	0,192	0,175	0,160	0,141	0,123	0,112	0,104	0,094
-2	0,177	0,191	0,199	0,200	0,205	0,185	0,171	0,152	0,130	0,117	0,108	0,098
0	0,210	0,342	0,369	0,498	0,658	0,860	0,992	1,066	1,152	1,228	1,306	1,358
3	1,351	1,029	1,104	1,177	1,037	0,860	0,992	1,066	1,152	1,228	1,306	1,358
6	1,057	1,085	1,113	1,159	0,929	0,860	0,992	1,066	1,152	1,228	1,306	1,358
9	1,512	1,254	1,187	1,167	0,905	0,860	0,992	1,066	1,152	1,228	1,306	1,358
12	1,216	1,215	1,197	1,149	0,872	0,860	0,992	1,066	1,152	1,228	1,306	1,358
20	1,109	1,089	1,085	1,036	0,924	0,860	0,992	1,066	1,152	1,228	1,306	1,358
28	1,209	1,159	1,145	1,089	1,027	0,871	1,005	1,066	1,152	1,228	1,306	1,358
38	1,608	1,258	1,281	1,194	0,928	0,898	1,096	1,146	1,162	1,228	1,306	1,358
46	0,961	1,078	1,139	1,063	0,957	0,898	1,128	1,183	1,195	1,254	1,320	1,358
54	1,084	1,173	1,138	1,062	1,002	0,928	1,210	1,316	1,293	1,374	1,462	1,637
57	1,337	1,272	1,233	1,137	1,106	1,018	1,251	1,396	1,359	1,480	1,567	1,861
60	0,862	1,290	1,530	1,616	1,946	2,157	2,020	2,304	2,763	3,223	1,915	2,024
Q, en m³/s	0,0011	0,0031	0,0059	0,0089	0,0132	0,0156	0,0180	0,0194	0,0209	0,0223	0,0237	0,0247
Yc, en m	0,0186	0,0380	0,0585	0,0770	0,0933	0,1066	0,1139	0,1173	0,1206	0,1229	0,1249	0,1259

Tabla 8.5 Números de Froude para diferentes relaciones de llenado en el túnel: Ensaye AL,3,4

						Fro	ude				_	
L/D d/D	0,25	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00
-4	0,1834	0,1886	0,1857	0,1870	0,1861	0,1687	0,1497	0,1334	0,1185	0,1068	0,0986	0,0915
-2	0,1921	0,2025	0,2009	0,2008	0,2026	0,1767	0,1583	0,1414	0,1247	0,1108	0,1024	0,0951
0	0,2459	0,3882	0,4250	0,5036	0,6436	0,8259	0,9325	1,0087	1,1083	1,1642	1,2347	1,3061
3	1,2739	1,2088	1,2296	0,7151	0,8759	0,8305	0,9325	1,0087	1,1083	1,1642	1,2347	1,3061
6	1,3713	1,1731	1,1228	1,1022	0,8950	0,8267	0,9325	1,0087	1,1083	1,1642	1,2347	1,3061
9	1,4110	1,2409	0,8676	1,0342	0,8770	0,8279	0,9325	1,0087	1,1083	1,1642	1,2347	1,3061
12	1,2626	1,2858	1,1416	1,0609	0,8960	0,8338	0,9325	1,0087	1,1083	1,1642	1,2347	1,3061
20	1,5218	1,3757	1,1899	1,0295	0,9480	0,8599	0,9352	1,0087	1,1083	1,1642	1,2347	1,3061
28	1,3756	1,4409	1,1888	1,0093	0,9353	0,8665	0,9459	1,0106	1,1083	1,1642	1,2347	1,3061
38	1,5692	1,4293	1,2922	1,2083	0,9580	0,9643	1,0661	1,1090	1,1368	1,1712	1,2347	1,3061
46	1,2331	1,2427	1,1331	1,0554	0,9513	0,9798	1,0942	1,1711	1,1810	1,2107	1,2636	1,3217
54	1,0838	1,2409	1,1166	1,0443	1,0403	1,0440	1,2237	1,3323	1,2988	1,3815	1,4590	1,7592
57	1,3843	1,3779	1,2628	1,2145	1,1732	1,0229	1,2128	1,3641	1,3241	1,4093	1,4880	1,8271
60	1,1384	1,3650	1,3546	0,7389	1,5997	1,3816	1,5098	1,6735	1,8849	1,8408	1,9220	2,0979
Q, en m³/s	0,0011	0,0033	0,0059	0,0092	0,0129	0,0150	0,0169	0,0183	0,0201	0,0211	0,0224	0,0237
Yc, en m	0,0197	0,0394	0,0589	0,0781	0,0961	0,1044	0,1108	0,1148	0,1190	0,1210	0,1231	0,1249

Tabla 8.6 Números de Froude para diferentes relaciones de llenado en el túnel: Ensaye AD34

	Froude												
	0,25	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	
-4	0,195	0,195	0,194	0,170	0,153	0,134	0,117	0,1043	0,090	0,082	0,075	0,067	
-2	0,186	0,209	0,203	0,182	0,160	0,143	0,124	0,1103	0,092	0,083	0,076	0,068	
0	0,568	0,640	0,603	0,528	0,557	0,666	0,729	0,7874	0,842	0,898	0,938	0,969	
3	0,893	0,806	0,752	0,606	0,583	0,666	0,729	0,7874	0,842	0,898	0,938	0,969	
6	0,720	0,827	0,765	0,637	0,604	0,666	0,729	0,7874	0,842	0,898	0,938	0,969	
9	0,758	0,821	0,761	0,644	0,605	0,666	0,729	0,7874	0,842	0,898	0,938	0,969	
12	1,032	0,917	0,808	0,661	0,613	0,666	0,729	0,7874	0,842	0,898	0,938	0,969	
20	1,029	1,080	0,799	0,656	0,627	0,666	0,729	0,7874	0,842	0,898	0,938	0,969	
28	1,545	1,078	0,842	0,711	0,694	0,672	0,729	0,7874	0,842	0,898	0,938	0,969	
38	0,904	0,823	0,755	0,649	0,661	0,683	0,705	0,7385	0,842	0,898	0,938	0,969	
46	1,01 1	0,941	0,803	0,720	0,724	0,750	0,758	0,7881	0,842	0,898	0,938	0,969	
54	0,970	0,907	0,803	0,761	0,828	0,847	0,860	0,9090	0,876	0,910	0,942	0,984	
57	0,773	0,766	0,791	0,764	0,832	0,872	0,887	0,9369	0,894	0,928	0,953	1,002	
60	0,716	0,995	1,109	0,663	1,263	1,411	1,456	1,5290	1,591	1,607	1,650	1,705	
Q,en m³/s	0,001	0,003	0,006	0,008	0,011	0,012	0,013	0,014	0,015	0,016	0,017	0,018	
Yc, en m	0,019	0,041	0,061	0,074	0,086	0,093	0,098	0,102	0,105	0,109	0,111	0,113	

Tabla 8.7 Números de Froude para diferentes relaciones de llenado en el túnel: Ensaye AK34

ESTUDIO EXPERIMENTAL EN TÚNELES DE SECCIÓN PORTAL CON RUGOSIDAD COMPUESTA PARA OBRAS DE DESVÍO

CAPÍTULO 5

ANÁLISIS DE RESULTADOS Y EJEMPLO DE APLICACIÒN

CAPÍTULO 5 Análisis de resultados y ejemplo de aplicación

5.1 Introducción.

En este capítulo se hace el análisis de resultados obtenida en la parte experimental. Se presenta el ejemplo de aplicación al túnel No. 2 de la obra de desvío del P.H. El Cajón, y se presentan los resultados obtenidos con programas al considerar rugosidad compuesta, finalmente, se hace un análisis comparativo entre los resultados obtenidos experimentalmente y aquellos con los programas.

5.2 Descripción del Proyecto Hidroeléctrico "El Cajón".

El P.H. El Cajón, ubicado sobre el río Santiago en el Estado de Nayarit, está constituido por una cortina de enrocamiento con cara de concreto como elemento impermeable con elevación del parapeto a la cota 396,00 m, una obra de desvío integrada por dos túneles de sección portal de 14 m de diámetro, una obra de excedencias en canal ubicada en la margen derecha del cauce y una obra de generación que alojará dos unidades tipo Francis con una potencia total de 750 MW, obteniendo una generación de 1 228,64 GWh, además considerando el incremento de generación de 69,91 GWh que se obtendrá en la C. H. Aguamilpa por efecto de la regulación en El Cajón, resulta una generación total de 1298,55 GWh por año, (CFE, 2003).

5.2.1 Obra de desvío.

La obra de desvío se localiza en la margen izquierda y consta de dos túneles cuya longitud total es de 1 545 m, 734 m para el túnel No 1 y 811 m para el No 2, la sección transversal es del tipo portal, revestida con concreto hidráulico en plantilla y los muros laterales y bóveda se había concebido, en principio, revestidos con concreto lanzado. Al final, también los muros se construyeron de concreto hidráulico y únicamente concreto lanzado en la clave. La pendiente longitudinal en los túneles es de S₁ = 0,00340 y de S₂ = 0,00801 respectivamente. La obra de

desvío se complementa con 2 ataguías de materiales graduados localizadas aguas arriba y aguas abajo del río en la zona de construcción de la cortina.

Los resultados aquí presentados, se considera concreto hidráulico en la plantilla y lanzado en los muros y clave del túnel.

A continuación se muestra, en la figura (5.1), la sección y perfil del túnel tipo probado en el modelo físico.

Figura 5.1. Sección y perfil del túnel tipo probada en el modelo hidráulico.

En la figura anterior, se muestran las secciones 1 y 2 en donde fueron estimados los coeficientes de resistencia (Manning, Darcy y Nikuradse).

5.3 Análisis de resultados.

En el análisis se consideran los resultados obtenidos de los modelos 5, 6 y 7 tabla (4b) para las cuatro pendientes estudiadas, al hacer las consideraciones siguientes:

a) La escala de longitudes empleada fue de: Le = 1400/13,33 = 105

b) A partir de la escala de longitudes, se obtienen las escalas restantes:

Escala de gastos, $Q_e = Le^{5/2} = (105)^{5/2} = 112972,63$ Escala de velocidades; $V_e = Le^{1/2} = (105)^{1/2} = 10,25$ Escala de rugosidades; $n_e = Le^{-1/6} = (105)^{1/6} = 2,17$

c) El análisis se realizará al considerar todas las relaciones de llenado, es decir; d/D = 0,25 hasta 3,00, lo que quiere decir, mantener una elevación constante en el embalse para cada relación d/D. Esto con el objeto de aplicar los programas desarrollados por (Marengo, 2001), cuando el túnel trabaja como canal y los programas, desarrollados por el mismo autor, cuando el túnel trabaja a presión.

En las pruebas realizadas en el modelo, se registraron los valores de las cargas piezométricas en las que están implícitas las pérdidas de carga, deduciendo entonces los valores del coeficiente de rugosidad de Manning y Darcy en conjunto del túnel.

Por otra parte, se estimaron los valores de los coeficiente de resistencia antes mencionados en el modelo solo de acrílico para estimar la rugosidad asociada al modelo construido de éste material; se encontró un valor de:

$$n = 0,0178548 [m^{-1/3} s]$$
 valor escalado a prototipo
 $f_b = 0,0177$

Los valores anteriores corresponden a los considerados en la plantilla (concreto hidráulico), mientras que para los muros y clave (concreto lanzado), fueron variables y estaban en función del tirante registrado en las secciones de registro o lo que es lo mismo al gasto ensayado.
Anexo 1. Perfiles del agua en el túnel.

Los perfiles del agua, como se menciona en el subcapítulo (4.4.1), fueron la base para calcular todos los parámetros hidráulicos en el túnel. De un análisis detallado, se observa la pérdida de carga brusca a la entrada y cuando trabaja a presión se produce una caída del gradiente por debajo de la clave en la parte extrema del túnel aproximadamente 50D del portal de entrada, ver perfiles anexo 1.

Anexo 2 Coeficientes de rugosidad.

Obtenidos a partir de los perfiles del agua. Los coeficientes de resistencia de Manning y Darcy, se grafican en función del gasto, sin embargo estos últimos es factible presentarlos en función del número de Reynolds.

En las figuras (5.2) y (5.3), se muestran los coeficientes de pérdida de carga "f" de los materiales ensayados en el modelo en función del número de Reynolds para rugosidad total y compuesta respectivamente.

Del análisis de las figuras mencionadas anteriormente, se comenta lo siguiente:

- El número de Reynolds probado en el modelo físico al considerar las tres formas de operar el túnel, osciló en el intervalo de 2 x 10⁴ ≤ R_e ≤ 3 x 10⁵.
- La dispersión de los coeficientes de pérdida de carga fueron mayores con el aumento de la rugosidad del túnel y en este caso, la caída del gradiente de presión (*P/γ < D*) contribuye a que este fenómeno se produzca.
- El coeficiente de pérdida de carga osciló en el intervalo 0,017 < f < 0,095
- La rugosidad absoluta variaba entre 0,129 < k < 12,12 mm.
- En este caso, para la máxima condición extrema; d/D = 3, el coeficiente de pérdida de carga f, y los obtenidos por Czarnota, se indican en la tabla (5.1).

Figura 5.2 Coeficientes de pérdida de carga "f", modelos del 1 al 4, rugosidad total.

Figura 5.3 Coeficientes de pérdida de carga "f", modelos del 5 al 7, rugosidad compuesta.

modelo con los resultados de Uzarnota	a.		
Descripción del túnel	Coeficiente de pérdida	a de carga, f	
	CFE- Laboratorio	Czarnota	
Excavado en roca con barrenos y explosivos.	0,095	0,073	
Plantilla de concreto hidráulico y muros- bóveda sin	0.061	0.062	
revestir.			
Plantilla sin revestir y muros-bóveda revestidos con	0.038	0.052	
concreto lanzado.		_, _	
Plantilla de concreto hidráulico y muros- bóveda	0.031	0.041	
revestidos con concreto lanzado.	-,		

 Tabla 5.1 Comparación de los coeficientes de pérdida de carga obtenidos en el modelo con los resultados de Czarnota.

A continuación, se presenta en la tabla (4b), los valores de los coeficientes de resistencia de Manning, Darcy Weisbach y la rugosidad absoluta asociados a los gastos medios (suma del gasto de cada pendiente y dividido entre cuatro) que se obtuvieron del estudio experimental; modelos del 1 al 7, al considerar las distintas pendientes para la relación de llenado d/D = 3 que en este caso corresponde a la condición mas desfavorable para la descarga del túnel y además, a partir de este nivel se garantiza que el túnel trabaje a presión.

Modelo	Material	Pendie	entes, coefici	entes de rug	osidad	Gastos medios
		0,0007	0,001	0,004	0,008	m³/s
		Coef	icientes "n" d	de Manning		
1	А	0,01710	0,01880	0,01880	0,016500	3002,25
2	L	0,02170	0,02606	0,02390	0,026060	2643,56
3	D	0,02606	0,03250	0,02780	0,026060	2428,91
4	К	0,04561	0,04344	0,04344	0,049950	1646,57
					_	
5	AL	0,02172	0,02606	0,02389	0,023890	2581,42
6	AD	0,02389	0,02823	0,02389	0,026060	2541,88
7	AK	0,03692	0,03692	0,03692	0,043440	1880,99
		Coeficie	ntes "f" de D	arcy-Weisba	ch	
1	А	0,01480	0,01830	0,01790	0,01300	3002,25
2	L	0,02476	0,03563	0,03173	0,028850	2643,56
3	D	0,03600	0,05100	0,04000	0,036000	2428,91
4	К	0,10223	0,09500	0,09361	0,101780	1646,57
5	AL	0,02400	0,03500	0,02800	0,02800	2581,42
6	AD	0,04100	0,04100	0,03100	0,02800	2541,88
7	AK	0,07014	0,06877	0,06675	0,07205	1880,99
		Rug	osidad absol	uta k (mm)		
1	Α	4,06	10,360	9,5200	2,1000	3002,25
2	L	34,44	116,62	81,0600	59,220	2643,56
3	D	116,62	310,38	162,680	122,640	2428,91
4	К	1418,06	1239,70	1205,96	1406,86	1646,57
5	AL	31,36	111,72	56,1400	51,1000	2581,42
6	AD	178,50	181,58	76,3000	56,4200	2541,88
7	AK	672,42	644,00	602,8400	712,320	1880,99

Fabla 4b Resumen de los coeficientes	s de rugosidad de	los materiales para $d/D = 3$.
--------------------------------------	-------------------	---------------------------------

Del análisis de la tabla anterior, se obtienen los siguientes comentarios.

- El modelo 1, representa un túnel revestido con concreto hidráulico en el que no se tiene un estricto control de calidad en su acabado.
- Los modelos 2 y 3, representan un túnel revestido con concreto lanzado donde se tiene una sección irregularmente excavada.
- El modelo 4, representa un túnel excavado en roca con barrenos y explosivos donde el efecto de la sobreexcavación es significativo.

- Los modelos 5, 6 y 7, resultan de la combinación de los cuatro anteriores, al considerar en este caso concreto hidráulico en la plantilla y concreto lanzado o roca en los muros y clave del túnel.
- Al comparar los modelos 5, 6 y 7 con el modelo 4, se puede observar que con el hecho de colocar concreto lanzado en los muros y clava en vez de roca, el túnel aumente su capacidad de descarga. Este hecho se aclara mejor en el siguiente anexo.

Anexo 3. Curvas de elevaciones gastos.

Se presentan en el anexo 3 en forma adimensional. En este caso, se hace la aplicación al considerar el túnel 2 del Cajón. En la tabla (5.2), se muestran los gastos descargados al considerar diferentes acabados en el túnel: túnel revestido de concreto hidráulico (modelo 1); revestido de concreto lanzado (modelo 2 o 3); y túnel sin revestir (modelo 4).

Al hablar de la capacidad de descarga, tomemos como referencia el túnel sin revestir (modelo 4) para d/D = 3, (269 m), con un gasto de descarga de 1733 m³/s. En este caso, al colocar concreto hidráulico en la plantilla aumenta su descarga en un 15%, es decir, de los 1733 pasa a 1988 m³/s; (modelo 7). Si adicionalmente, se coloca concreto lanzado en los muros y clave del túnel, entonces su capacidad de descarga aumenta en un 56%, de los 1733 pasa a 2711 m³/s; (modelo 6). El arreglo final de los túneles del P.H. El Cajón, fue: plantilla y muros de concreto hidráulico y clave de concreto lanzada, por lo que sin duda la capacidad de descarga es a un mayor a la estimada en el modelo.

			Moo	delo				
Elev.	1	2	3	4	5	6	7	Teórica
Embalse			(Gasto,Q en m ³ /s	S			
227,00	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,00
230,50	146,86	115,47	134,00	142,88	135,57	112,97	125,51	170,00
234,00	384,11	340,42	372,78	348,34	372,81	338,92	389,76	440,00
237,50	745,62	654,09	708,98	619,04	711,73	677,84	702,69	800,00
241,00	1050,65	1010,54	1081,68	902,35	1084,54	1016,75	942,19	1225,00
244,50	1502,54	1467,44	1467,44	1026,12	1468,64	1468,64	1211,07	1630,00
248,00	1920,53	1694,59	1682,99	1172,20	1581,62	1694,59	1366,97	1780,00
251,50	2146,48	1891,51	1861,48	1275,48	1807,56	1920,53	1495,76	1940,00
255,00	2327,24	2081,16	2001,43	1387,12	1920,53	2069,61	1615,51	2130,00
258,50	2507,99	2236,54	2092,75	1534,50	2033,51	2273,86	1728,48	2275,00
262,00	2722,64	2401,62	2199,76	1614,89	2146,48	2388,64	1841,45	2440,00
265,50	2914,69	2546,46	2299,02	1693,11	2259,45	2533,17	1923,92	2580,00
269,00	3084,15	2666,36	2453,89	1733,90	2372,43	2711,34	1988,32	2725,00

Tabla 5.2 Curva de elevaciones-gastos del túnel para los 7 modelos, pendiente So = 0,008.

Variable		-	Coe	ficientes de resiste	encia		-
n [m ^{-1/3} s]	0,0182	0,0243	0,0272	0,0434	0,0237	0,0250	0,0348
f	0,0170	0,0294	0,0381	0,0953	0,0290	0,0312	0,0610
k [mm]	13,55	77,91	148,16	1272,18	67,73	83,58	518,60
k/D	0,0010	0,0056	0,0106	0,0909	0,0048	0,0060	0,0370
Gasto [m³/s]					638,52	977,44	254,41
%				1,00	1,37	1,56	1,15

Anexo 4. Coeficientes de descarga.

Presentados en el estudio experimental en forma adimensional al relacionarlos con el parámetro (Q n/D^8/3). Fueron estimados al establecer la ecuación de la energía entre dos sección; la primera, ubicada a 2D antes del portal de entrada del túnel y la segunda ubicada en el portal de salida (60D). En las figuras (5.4 y 5.5), se presentan en forma resumida para los 7 modelos estudiados. De las gráficas, se observa que a mayor rugosidad, el coeficiente o capacidad de descarga, es menor.

Anexo 5. Coeficientes de pérdida de carga por entrada.

Fueron estimados al establecer la ecuación de la energía entre dos secciones ubicadas a 2D antes del portal de entrada y 3D después de la entrada, lo que contempla la lumbrera para obturadores. Ya que por la contracción del flujo no fue posible calcular los coeficientes solo por el efecto de la entrada. En el anexo 5, se presentan en función de la energía cinética (carga de velocidad) y en las figuras (5.6 y 5.7), se muestran en forma resumida.

Al considerar valores medios, el coeficiente se estimó en el intervalo de 0,157< k_e < 0 517 (rugosidad total) y 0,236< k_e < 0, 419 (rugosidad compuesta).

Con respecto a los anexos 6, 7 y 8; no existe ningún comentario adicional, únicamente se ratifica lo descrito en el estudio experimental.

A continuación se considera la aplicación de los criterios teóricos de Horton y Einsten; Pavlovski, Mülhlhofer, Einstein y Banks; Marengo, expuestos en el capítulo tres, inciso (3.4), página 42. En primera instancia se analiza el túnel trabajando como canal y en segunda instancia para túnel lleno al comparar los resultados con los valores experimentales.

Figura 5.4 Coeficientes de descarga del túnel para los modelos del 1 al 4; rugosidad total.

Figura 5.5 Coeficientes de descarga del túnel para los modelos del 5 al 7; rugosidad compuesta.

Figura 5.6 Coeficientes de pérdida de carga en función de la carga de velocidad , modelo del 1 al 4 ; rugosidad total.

Figura 5.7 Coeficientes de pérdida de carga en función de la carga de velocidad, modelo del 5 al 7; rugosidad compuesta.

5.4 Túnel funcionando como canal, análisis teórico con distintos criterios.

Cuando el túnel trabaja como canal, se presenta una superficie de carácter ondulatorio que influye directamente en la pendiente de energía, debido a que el tirante en ocasiones se registra en una cresta o en un valle, como se observa en las siguientes fotos.

Funcionamiento hidráulico como canal.

En las -/tablas (5.1a) a la (5.1l); se presentan los resultados de los coeficientes de rugosidad de Manning "n" obtenidos teóricamente con los criterios mencionados y los registrados experimentalmente para los modelos 5, 6 y 7 (rugosidad compuesta) al considerar las cuatro pendientes estudiadas, tabla (4a), pág. 69, cabe aclarar que los valores que se indican en las tablas anteriores están escalados a prototipo.

Tirante en	Gasto Q, en	Tirante d, en	Perímetro	Perímetro	Perímetro	Rugosidad compuesta n _c , criterio de:				
embalse, en m	m³/s	m	P ₁ , en m	P ₂ , en m	P, en m	1	2	3	4	
	Funciona como canal									
3,50	90,64	2,21	14,00	4,41	18,41	0,01870	0,01876	0,01873	0,02093	
7,00	284,52	4,52	14,00	9,03	23,03	0,01896	0,01901	0,01898	0,02246	
10,50	545,18	7,54	14,00	15,07	29,07	0,01948	0,01955	0,01951	0,02378	
14,00	841,17	8,77	14,00	17,58	31,58	0,01961	0,01967	0,01964	0,02391	
17,50	1147,12	10,24	14,00	20,73	34,73	0,02125	0,02143	0,02133	0,02695	
21,00	1374,27	12,39	14,00	26,30	40,30	0,02037	0,02045	0,02041	0,02273	

Tabla 5.1a Rugosidad compuesta obtenida con diferentes criterios, análisis teórico; ensaye AL31.

Tabla 5.1b Rugosidad compuesta obtenida con diferentes criterios, análisis teórico; ensaye AL32.

Tirante en	Gasto Q, en	Tirante d, en	Perimetro	Perímetro	Perímetro	Ru	igosidad compu	esta n _e , criterio	de:	
embalse, en m	m³/s	m	P ₁ , en m	P ₂ , en m	P, en m	1	2	3	4	
	Funciona como canal									
3,50	93,56	2,9	14,00	5,24	19,24	0,01924	0,01937	0,01930	0,02456	
7,00	293,77	5,1	14,00	10,00	24,00	0,01971	0,01984	0,01977	0,02425	
10,50	574,22	7,73	14,00	15,14	29,14	0,02012	0,02024	0,02018	0,02383	
14,00	883,58	9,78	14,00	19,48	33,48	0,02042	0,02053	0,02047	0,02347	
17,50	1172,20	11,51	14,00	23,79	37,79	0,02064	0,02075	0,02070	0,02417	
21,00	1420,46	13,24	14,00	27,74	41,74	0,02046	0,02054	0,02050	0,02293	

- (1) Marengo
- (2) Mühlofer y Banks
- (3) Horton y Einstein
- (4) Experimental
- P1, acrílico (plantilla)
- P2, lija (muros y clave)

Coeficiente de rugosidad compuesta $n_{c},\,en\,\,m^{-1/3}\,s$

Tirante en	Gasto Q, en	Tirante d, en	Perímetro	Perímetro	Perímetro	Ru	gosidad compu	esta n _c , criterio	de:	
embalse, en m	m³/s	m	P ₁ , en m	P ₂ , en m	P, en m	1	2	3	4	
Funciona como canal										
3,50	129,70	2,23	14,00	4,46	18,46	0,02117	0,02197	0,02155	0,01966	
7,00	348,34	4,54	14,00	9,08	23,08	0,01921	0,01928	0,01924	0,02037	
10,50	654,09	7,38	14,00	14,75	28,75	0,02134	0,02161	0,02147	0,02096	
14,00	987,41	9,95	14,00	20,09	34,09	0,02160	0,02182	0,02170	0,02081	
17,50	1310,95	12,63	14,00	27,06	41,06	0,02224	0,02246	0,02235	0,02202	
21,00	1534,50	13,52	14,00	30,75	44,75	0,02502	0,02549	0,02526	0,02709	

Tabla 5.1c Rugosidad compuesta obtenida con diferentes criterios, análisis teórico; ensaye AL33.

Tabla 5.1d Rugosidad compuesta obtenida con diferentes criterios, análisis teórico; ensaye AL34.

Tirante en	Gasto Q, en	Tirante d, en	Perímetro	Perímetro	Perímetro	Ru	igosidad compu	esta n _c , criterio	de:	
embalse, en m	m³/s	m	P ₁ , en m	P ₂ , en m	P, en m	1	2	3	4	
	Funciona como canal									
3,50	134,00	2	14,00	4,00	18,00	0,02066	0,02131	0,02097	0,02483	
7,00	372,78	3,79	14,00	7,57	21,57	0,02082	0,02121	0,02101	0,02361	
10,50	708,98	5,62	14,00	14,01	28,01	0,02065	0,02084	0,02074	0,02065	
14,00	1081,68	7,78	14,00	15,56	29,56	0,02171	0,02201	0,02186	0,02243	
17,50	1467,44	10,93	14,00	22,34	36,34	0,02266	0,02298	0,02282	0,02472	
21,00	1682,99	13,29	14,00	29,61	43,61	0,02325	0,02354	0,02339	0,02277	

- (1) Marengo
- (2) Mühlofer y Banks
- (3) Horton y Einstein
- (4) Experimental
- P1, acrílico (plantilla)
- P₂, lija (muros y clave)

Coeficiente de rugosidad compuesta n_c, en m^{-1/3} s

Tirante en	Gasto Q, en	Tirante d, en	Perímetro	Perímetro	Perímetro	Rugosidad compuesta n _c , criterio de:					
embalse, en m	m³/s	m	P ₁ , en m	P ₂ , en m	P, en m	1	2	3	4		
	Funciona como canal										
3,50	90,64	2,31	14,00	4,20	18,20	0,01932	0,01951	0,01941	0,02127		
7,00	281,01	4,10	14,00	8,19	22,19	0,02071	0,02105	0,02087	0,02286		
10,50	563,35	7,01	14,00	14,02	28,02	0,02171	0,02205	0,02187	0,02303		
14,00	841,17	9,22	14,00	18,51	32,51	0,02216	0,02247	0,02231	0,02443		
17,50	1124,60	10,95	14,00	22,39	36,39	0,02481	0,02541	0,02512	0,02440		
21,00	1328,87	12,52	14,00	26,72	40,72	0,02349	0,02384	0,02367	0,02470		

Tabla 5.1e Rugosidad compuesta obtenida con diferentes criterios, análisis teórico; ensaye AD31.

Tabla 5.1f Rugosidad compuesta obtenida con diferentes criterios, análisis teórico; ensaye AD32.

Tirante en	Gasto Q, en	Tirante d, en	Perímetro	Perímetro	Perímetro	Rugosidad compuesta n _c , criterio de:					
embalse, en m	m³/s	m	P ₁ , en m	P ₂ , en m	P, en m	1	2	3	4		
	Funciona como canal										
3,50	93,89	2,53	14,00	5,03	19,03	0,01907	0,01917	0,01911	0,01994		
7,00	306,14	4,74	14,00	9,47	23,47	0,02092	0,02125	0,02108	0,02037		
10,50	547,30	7,31	14,00	14,62	28,62	0,02185	0,02220	0,02202	0,02405		
14,00	869,30	9,36	14,00	18,81	32,81	0,02281	0,02321	0,02301	0,02307		
17,50	1114,14	11,03	14,00	22,59	36,59	0,02579	0,02654	0,02617	0,02606		
21,00	1332,48	12,51	14,00	26,67	40,67	0,02436	0,02481	0,02459	0,02606		

Rugosidad compuesta n_c, criterio de:

(1) Marengo

- (2) Mühlofer y Banks (3) Horton y Einstein
- P1, acrílico (plantilla)
- P₂, difusor (muros y clave)

Coeficiente de rugosidad compuesta n_c, en m^{-1/3} s

Tirante en	Gasto Q, en	Tirante d, en	Perímetro	Perímetro	Perímetro	Ru	gosidad compu	esta n _c , criterio	de:
embalse, en m	m³/s	m	P ₁ , en m	P ₂ , en m	P, en m	1	2	3	4
				Funciona d	como canal				
3,50	119,41	2,42	14,00	4,83	18,83	0,01946	0,01965	0,01955	0,02099
7,00	348,34	4,52	14,00	9,03	23,03	0,02117	0,02157	0,02137	0,01969
10,50	654,09	6,88	14,00	13,76	27,76	0,02153	0,02185	0,02169	0,02190
14,00	995,09	9,29	14,00	18,67	32,67	0,02234	0,02267	0,02250	0,02327
17,50	1266,69	11,13	14,00	22,84	36,84	0,02333	0,02372	0,02352	0,02548
21,00	1467,44	12,71	14,00	27,34	41,34	0,02640	0,02709	0,02675	0,03001

Tabla 5.1g Rugosidad compuesta obtenida con diferentes criterios, análisis teórico; ensaye AD33.

Tabla 5.1h Rugosidad compuesta obtenida con diferentes criterios, análisis teórico; ensaye AD34.

Tirante en	Gasto Q, en	Tirante d, en	Perímetro	Perímetro	Perímetro	Ru	igosidad compu	esta n _c , criterio	de:		
embalse, en m	m³/s	m	P ₁ , en m	P ₂ , en m	P, en m	1	2	3	4		
	Funciona como canal										
3,50	129,70	1,79	14,00	3,58	17,58	0,01959	0,01988	0,01972	0,02171		
7,00	368,63	3,58	14,00	7,15	21,15	0,02081	0,02121	0,02101	0,02136		
10,50	672,07	5,68	14,00	14,01	28,01	0,02266	0,02316	0,02291	0,02114		
14,00	1033,96	7,93	14,00	15,99	29,99	0,02186	0,02218	0,02202	0,02301		
17,50	1457,98	10,82	14,00	22,08	36,08	0,02315	0,02353	0,02334	0,02438		
21,00	1694,59	11,87	14,00	24,77	38,77	0,02305	0,02337	0,02321	0,02444		

- (1) Marengo
- (2) Mühlofer y Banks
- (3) Horton y Einstein
- (4) Experimental
- P1, acrílico (plantilla)
- P2, difusor (muros y clave)

Tirante en	Gasto Q, en	Tirante d, en	Perímetro	Perímetro	Perímetro	Ru	gosidad compu	esta n _c , criterio	de:
embalse, en m	m³/s	m	P ₁ , en m	P ₂ , en m	P, en m	1	2	3	4
Funciona como canal									
3,50	112,97	2,52	14,00	5,04	19,04	0,02068	0,02120	0,02093	0,02203
7,00	340,05	4,52	14,00	9,03	23,03	0,02515	0,02673	0,02594	0,02918
10,50	598,75	7,27	14,00	14,55	28,55	0,02835	0,03015	0,02928	0,03256
14,00	858,59	8,03	14,00	16,07	30,07	0,02907	0,03089	0,03001	0,03045
17,50	1073,24	9,45	14,00	19,01	33,01	0,03349	0,03607	0,03486	0,03606
21,00	1231,40	10,19	14,00	20,61	34,61	0,03210	0,03417	0,03319	0,03351

Tabla 5.1i Rugosidad compuesta obtenida con diferentes criterios, análisis teórico; ensaye AK31.

Tabla 5.1 j Rugosidad compuesta obtenida con diferentes criterios, análisis teórico; ensaye AK32.

Tirante en	Gasto Q, en	Tirante d, en	Perímetro	Perímetro	Perímetro	Rugosidad compuesta n _c , criterio de:			
embalse, en m	m³/s	m	P ₁ , en m	P ₂ , en m	P, en m	1	2	3	4
				Funciona (como canal				
3,50	125,51	2,59	14,00	5,14	19,14	0,02833	0,03315	0,03071	0,02405
7,00	389,76	4,84	14,00	9,68	23,68	0,02510	0,02656	0,02583	0,02957
10,50	702,69	7,26	14,00	14,51	28,51	0,02748	0,02906	0,02829	0,03070
14,00	942,19	8,42	14,00	18,81	32,81	0,03141	0,03351	0,03251	0,03206
17,50	1211,07	10,93	14,00	22,34	36,34	0,03639	0,03923	0,03791	0,03704
21,00	1366,97	12,09	14,00	25,38	39,38	0,03476	0,03695	0,03593	0,03561

(1) Marengo

- (2) Mühlofer y Banks(3) Horton y Einstein
- P1, acrílico (plantilla)
- P2, klinter (muros y clave)

Tirante en	Gasto Q, en	Tirante d, en	Perímetro	Perímetro	Perímetro	Ru	Rugosidad compuesta n _c , criterio de:			
embalse, en m	m³/s	m	P ₁ , en m	P ₂ , en m	P, en m	1	2	3	4	
				Funciona d	como canal					
3,50	112,97	2,57	14,00	5,15	19,15	0,02530	0,02809	0,02666	0,03055	
7,00	340,05	5,20	14,00	10,40	24,40	0,02697	0,02896	0,02798	0,02835	
10,50	598,75	7,51	14,00	15,02	29,02	0,02951	0,03158	0,03058	0,03009	
14,00	858,59	9,61	14,00	19,35	33,35	0,03182	0,03396	0,03294	0,03277	
17,50	1073,24	11,39	14,00	23,50	37,50	0,03735	0,04025	0,03891	0,03900	
21,00	1231,40	12,44	14,00	26,47	40,47	0,04013	0,04327	0,04184	0,04171	

Tabla 5.1k Rugosidad compuesta obtenida con diferentes criterios, análisis teórico; ensaye AK33.

Tabla 5.11 Rugosidad compuesta obtenida con diferentes criterios, análisis teórico; ensaye AK34.

Tirante en	Gasto Q, en	Tirante d, en	Perímetro	Perímetro	Perímetro	Rugosidad compuesta n _c , criterio de:			
embalse, en m	m³/s	m	P ₁ , en m	P ₂ , en m	P, en m	1	2	3	4
				Funciona	como canal				
3,50	125,51	2,00	14,00	4,00	18,00	0,02165	0,02277	0,02219	0,02655
7,00	389,76	4,47	14,00	8,94	22,94	0,02655	0,02868	0,02762	0,02841
10,50	702,69	7,36	14,00	14,71	28,71	0,02900	0,03097	0,03002	0,03060
14,00	942,19	9,67	14,00	19,47	33,47	0,03085	0,03275	0,03185	0,03475
17,50	1211,07	11,56	14,00	23,92	37,92	0,03405	0,03623	0,03521	0,03558
21,00	1366,97	12,4	14,00	26,32	40,32	0,03973	0,04280	0,04140	0,04116

- (1) Marengo
- (2) Mühlofer y Banks
- (3) Horton y Einstein
- (4) Experimental
- P1, acrílico (plantilla)
- P₂, klinter (muros y clave)

De las tablas antes mencionadas, al comparar los valores teóricos con los obtenidos experimentalmente, se observa, que para las dos primeras pendientes (pendientes suaves), los valores teóricos difieren de los experimentales, y al aumentar la pendiente y rugosidad en el túnel, los resultados tienden a ser similares.

No obstante, la diferencia entre los resultados teóricos con los experimentales se debe a:

- Los efectos de escala entre modelo y prototipo.
- A la metodología experimental empleada para evaluar la pendiente de energía; es decir por lo expuesto en el primer comentario al final del inciso (2.4) del capítulo 2.
- Al efecto de la caída del gradiente de presión.
- Adicionalmente a la forma de cómo trabaja el túnel; como canal, zona de transición (orificio), y a túnel lleno.

Para las relaciones de llenado d/D = 1,25; 1,50 y 2;00, el túnel trabaja como orificio y se presentan vórtices que introducen aire al conducto que se traduce en una pérdida adicional que modifica la pendiente de energía, como se puede observar en las siguientes fotos.

Funcionamiento hidráulico como orificio.

5.5 Túnel funcionando a tubo lleno, análisis teórico con distintos criterios.

Cuando el túnel trabaja lleno, se presenta en su parte extrema una caída del gradiente de presión que es variable en el espacio y que depende en principio de la pendiente en estudio y de la rugosidad del túnel, ver anexos 6 y 7 del capítulo anterior. En este caso, al producirse la caída del gradiente de presión, el túnel demanda una cierta cantidad de aire para aumentar su eficiencia hidráulica y de existir las condiciones de incorporación de aire entonces, a partir del punto donde se registra la caída del gradiente de presión, este empezará a trabajar como canal como se observa en las siguientes fotos; al incorporar aire por los tubos piezometricos, el flujo se despega de la clave del túnel. Por otro lado, como es difícil que para este tipo de estructuras se presenten dichas condiciones o fuentes de incorporación de aire por su carácter de tipo temporal, entonces la caída del gradiente de presión se traduce en una importante pérdida que es difícil de evaluar desde el punto de vista teórico.

Caída del gradiente de presión.

Por lo expuesto anteriormente, la caída del gradiente de presión modifica la pendiente de energía, trayendo consigo un aumento en los coeficientes de pérdida de carga que físicamente no existen en el túnel, ó si se prefiere ver desde otro punto de vista. En túneles largos, la carga de presión se ve disminuida por la pérdida de energía del flujo ocasionada por los esfuerzos cortantes desarrollados en la vecindad de las fronteras sólidas, término mejor conocido como "fricción", dando lugar a que a una cierta distancia del portal de entrada, el gradiente de

presión se localice por debajo de la clave del túnel. Lo que quiere decir, que esa distancia sería la longitud optima para la máxima eficiencia del túnel bajo esa condición hidráulica en particular.

A continuación, en las tablas (5.2a) a la (5.2l); se presentan los coeficientes de rugosidad de Manning "n" para túnel lleno, obtenidos teóricamente con los criterios mencionados y los registrados experimentalmente para los modelos 5, 6 y 7 (rugosidad compuesta) al considerar las cuatro pendientes estudiadas, tabla (4a), pág. 69. Cabe aclarar que los valores que se indican en las tablas anteriores están escalados a prototipo.

Tirante en	Gasto Q, en	Tirante d, en	Perímetro	Perímetro	Perímetro	Rugosidad compuesta n _c , criterio de:			
embalse, en m	m³/s	m	P ₁ , en m	P ₂ , en m	P, en m	1	2	3	4
			Fι	unciona cor	no túnel lle	no			
24,50	1650,79	14,00	14,00	26,47	40,47	0,01989	0,01995	0,01991	0,02263
28,00	1880,76	14,00	14,00	25,98	39,98	0,02043	0,02052	0,02047	0,02235
31,50	2069,61	14,00	14,00	25,35	39,35	0,02035	0,02043	0,02038	0,02215
35,00	2248,92	14,00	14,00	25,35	39,35	0,02088	0,02100	0,02094	0,02176
38,50	2427,68	14,00	14,00	25,35	39,35	0,02066	0,02077	0,02071	0,02168
42,00	2559,76	14,00	14,00	25,35	39,35	0,02065	0,02076	0,02070	0,02190

Tabla 5.2a Rugosidad compuesta obtenida con diferentes criterios, análisis teórico; ensaye AL31.

Tabla 5.2b Rugosidad compuesta obtenida con diferentes criterios, análisis teórico; ensaye AL32.

Tirante en	Gasto Q, en	Tirante d, en	Perímetro	Perímetro	Perímetro	Rugosidad compuesta n _c , criterio de:			
embalse, en m	m³/s	m	P ₁ , en m	P ₂ , en m	P, en m	1	2	3	4
			Fi	unciona cor	no túnel lle	no			
24,50	1632,79	14,00	14,00	28,73	42,73	0,02072	0,02082	0,02077	0,02263
28,00	1887,21	14,00	14,00	28,95	42,95	0,02106	0,02118	0,02111	0,02324
31,50	2102,07	14,00	14,00	29,40	43,40	0,02141	0,02155	0,02148	0,02337
35,00	2251,41	14,00	14,00	31,26	45,26	0,02176	0,02192	0,02183	0,02322
38,50	2440,77	14,00	14,00	32,32	46,32	0,02206	0,02223	0,02214	0,02311
42,00	2597,05	14,00	14,00	35,98	49,98	0,02170	0,02183	0,02176	0,02302

Rugosidad compuesta n_c, criterio de:

- (1) Marengo
- (2) Mühlofer y Banks
- (3) Horton y Einstein
- (4) Experimental
- P1, acrílico (plantilla)
- P2, lija (muros y clave)

Coeficiente de rugosidad compuesta $n_{c},$ en $m^{\cdot 1/3}\,s$

∫abla 5.2c Rugosidad cor	npuesta obtenida con	diferentes criterios,	análisis teórico; ensay	/e AL33.
--------------------------	----------------------	-----------------------	-------------------------	----------

Tirante en	Gasto Q, en	Tirante d, en	Perímetro	Perímetro	Perímetro	Ru	gosidad compu	esta n _c , criterio	de:
embalse, en m	m³/s	m	P ₁ , en m	P ₂ , en m	P, en m	1	2	3	4
			Fι	unciona cor	no túnel lle	no			
24,50	1829,64	14,00	14,00	30,75	44,75	0,02276	0,02300	0,02288	0,02311
28,00	2001,43	14,00	14,00	14,01	28,01	0,02151	0,02182	0,02166	0,02337
31,50	2224,22	14,00	14,00	14,01	28,01	0,02189	0,02226	0,02207	0,02344
35,00	2401,62	14,00	14,00	35,98	49,98	0,02315	0,02338	0,02326	0,02285
38,50	2519,91	14,00	14,00	35,98	49,98	0,02325	0,02349	0,02337	0,02337
42,00	2714,25	14,00	14,00	35,98	49,98	0,02285	0,02306	0,02295	0,02298

Tabla 5.2d Rugosidad compuesta obtenida con diferentes criterios, análisis teórico; ensaye AL34.

Tirante en	Gasto Q, en	Tirante d, en	Perímetro	Perímetro	Perímetro	Rugosidad compuesta n _c , criterio de:			
embalse, en m	m³/s	m	P ₁ , en m	P ₂ , en m	P, en m	1	2	3	4
			Fi	unciona cor	no túnel lle	no			
24,50	1861,48	14,00	14,00	25,99	39,99	0,02275	0,02303	0,02288	0,02133
28,00	2001,43	14,00	14,00	26,82	40,82	0,02176	0,02194	0,02184	0,02252
31,50	2092,75	14,00	14,00	27,72	41,72	0,02188	0,02206	0,02197	0,02296
35,00	2199,76	14,00	14,00	29,15	43,15	0,02164	0,02180	0,02172	0,02317
38,50	2299,02	14,00	14,00	30,64	44,64	0,02255	0,02277	0,02265	0,02338
42,00	2453,89	14,00	14,00	35,98	49,98	0,02304	0,02326	0,02315	0,02313

(1) Marengo

- (2) Mühlofer y Banks
- (3) Horton y Einstein

- P1, acrílico (plantilla)
- P2, lija (muros y clave)

Tirante en	Gasto Q, en	Tirante d, en	Perímetro	Perímetro	Perímetro	Ru	gosidad compu	esta n _c , criterio	de:		
embalse, en m	m³/s	m	P ₁ , en m	P ₂ , en m	P, en m	1	2	3	4		
	Funciona como túnel lleno										
24,50	1544,19	14,00	14,00	30,48	44,48	0,02408	0,02445	0,02427	0,02500		
28,00	1723,66	14,00	14,00	14,01	28,01	0,02261	0,02310	0,02285	0,02906		
31,50	1924,05	14,00	14,00	31,05	45,05	0,02507	0,02553	0,02530	0,02583		
35,00	2116,11	14,00	14,00	31,05	45,05	0,02428	0,02465	0,02447	0,02593		
38,50	2299,02	14,00	14,00	33,42	47,42	0,02411	0,02445	0,02428	0,02541		
42,00	2440,77	14,00	14,00	14,01	28,01	0,02225	0,02268	0,02246	0,02493		

Tabla 5.2e Rugosidad compuesta obtenida con diferentes criterios, análisis teórico; ensaye AD31.

Tabla 5.2f Rugosidad compuesta obtenida con diferentes criterios, análisis teórico; ensaye AD32.

Tirante en	Gasto Q, en	Tirante d, en	Perímetro	Perímetro	Perímetro	Rugosidad compuesta n _c , criterio de:			
embalse, en m	m³/s	m	P ₁ , en m	P ₂ , en m	P, en m	1	2	3	4
			Fi	unciona con	no túnel lle	no			
24,50	1524,83	14,00	14,00	30,39	44,39	0,02478	0,02522	0,02500	0,02596
28,00	1775,17	14,00	14,00	30,13	44,13	0,02510	0,02558	0,02535	0,02427
31,50	1945,93	14,00	14,00	30,96	44,96	0,02780	0,02859	0,02821	0,02582
35,00	2127,88	14,00	14,00	32,32	46,32	0,02778	0,02853	0,02817	0,02553
38,50	2236,54	14,00	14,00	35,98	49,98	0,02842	0,02917	0,02881	0,02565
42,00	2427,68	14,00	14,00	35,98	49,98	0,02828	0,02901	0,02866	0,02501

(1) Marengo

- (2) Mühlofer y Banks (3) Horton y Einstein
- P₁, acrílico (plantilla)
- P2, difusor (muros y clave)

Coeficiente de rugosidad compuesta $n_{c},\,en\,\,m^{-1/3}\,s$

Tirante en	Gasto Q, en	Tirante d, en	Perímetro	Perímetro	Perímetro	Rugosidad compuesta n _e , criterio de:				
embalse, en m	m³/s	m	P ₁ , en m	P ₂ , en m	P, en m	1	2	3	4	
Funciona como túnel lleno										
24,50	1713,44	14,00	14,00	27,90	41,90	0,02430	0,02472	0,02451	0,02501	
28,00	1913,16	14,00	14,00	27,90	41,90	0,02456	0,02502	0,02479	0,02518	
31,50	2081,16	14,00	14,00	28,09	42,09	0,02449	0,02494	0,02472	0,02552	
35,00	2236,54	14,00	14,00	29,59	43,59	0,02487	0,02533	0,02510	0,02573	
38,50	2401,62	14,00	14,00	31,21	45,21	0,02528	0,02576	0,02553	0,02527	
42,00	2573,08	14,00	14,00	35,98	49,98	0,02501	0,02540	0,02520	0,02455	

Tabla 5.2g Rugosidad compuesta obtenida con diferentes criterios, análisis teórico; ensaye AD33.

Tabla 5.2h Rugosidad compuesta obtenida con diferentes criterios, análisis teórico; ensaye AD34.

Tirante en	Gasto Q, en	Tirante d, en	Perímetro	Perímetro	Perímetro	Rugosidad compuesta n _c , criterio de:						
embalse, en m	m³∕s	m	P ₁ , en m	P ₂ , en m	P, en m	1	2	3	4			
	Funciona como túnel lleno											
24,50	1913,16	14,00	14,00	25,07	39,07	0,02296	0,02328	0,02312	0,02371			
28,00	2069,61	14,00	14,00	25,37	39,37	0,02297	0,02328	0,02313	0,02364			
31,50	2273,86	14,00	14,00	25,99	39,99	0,02335	0,02370	0,02352	0,02407			
35,00	2388,64	14,00	14,00	27,54	41,54	0,02378	0,02415	0,02397	0,02493			
38,50	2533,17	14,00	14,00	28,93	42,93	0,02386	0,02422	0,02404	0,02527			
42,00	2679,68	14,00	14,00	30,37	44,37	0,02402	0,02439	0,02421	0,02527			

(1) Marengo

- (2) Mühlofer y Banks(3) Horton y Einstein
- P1, acrílico (plantilla)
- P2, difusor (muros y clave)

Coeficiente de rugosidad compuesta n_c , en m^{-1/3} s

Tirante en	Gasto Q, en	Tirante d, en	Perímetro	Perímetro	Perímetro	Rugosidad compuesta n _c , criterio de:				
embalse, en m	m³/s	m	P ₁ , en m	P ₂ , en m	P, en m	1	2	3	4	
Funciona como túnel lleno										
24,50	1240,44	14,00	14,00	23,10	37,10	0,03307	0,03511	0,03415	0,03545	
28,00	1401,99	14,00	14,00	24,90	38,90	0,03428	0,03642	0,03542	0,03584	
31,50	1514,96	14,00	14,00	26,47	40,47	0,03509	0,03726	0,03625	0,03683	
35,00	1632,45	14,00	14,00	28,28	42,28	0,03641	0,03867	0,03762	0,03692	
38,50	1734,13	14,00	14,00	30,34	44,34	0,03659	0,03873	0,03774	0,03724	
42,00	1859,53	14,00	14,00	30,90	44,90	0,03641	0,03849	0,03753	0,03713	

Tabla 5.2i Rugosidad compuesta obtenida con diferentes criterios, análisis teórico; ensaye AK31.

Tabla 5.2j Rugosidad compuesta obtenida con diferentes criterios, análisis teórico; ensaye AK32.

Tirante en	Gasto Q, en	Tirante d, en	Perimetro	Perímetro	Perímetro	Rugosidad compuesta n _c , criterio de:				
embalse, en m	m³/s	m	P ₁ , en m	P ₂ , en m	P, en m	1	2	3	4	
Funciona como túnel lleno										
24,50	1293,54	14,00	14,00	29,63	43,63	0,03569	0,03773	0,03679	0,03530	
28,00	1401,99	14,00	14,00	35,98	49,98	0,03559	0,03727	0,03649	0,03527	
31,50	1536,43	14,00	14,00	35,98	49,98	0,03526	0,03688	0,03613	0,03534	
35,00	1638,10	14,00	14,00	35,98	49,98	0,03591	0,03762	0,03683	0,03605	
38,50	1739,78	14,00	14,00	35,98	49,98	0,03607	0,03781	0,03701	0,03607	
42,00	1841,45	14,00	14,00	35,98	49,98	0,03589	0,03760	0,03681	0,03648	

- (1) Marengo
- (2) Mühlofer y Banks
- F 1, 401
- (3) Horton y Einstein(4) Experimental
- P₁, acrílico (plantilla)
- P₂, klinter (muros y clave)

Tirante en	Gasto Q, en	Tirante d, en	Perímetro	Perímetro	Perímetro	Rugosidad compuesta n _c , criterio de:				
embalse, en m	m³/s	m	P ₁ , en m	P ₂ , en m	P, en m	1	2	3	4	
Funciona como túnel lleno										
24,50	1366,97	14,00	14,00	29,59	43,59	0,03586	0,03793	0,03698	0,03658	
28,00	1479,94	14,00	14,00	14,01	28,01	0,03424	0,03793	0,03618	0,04212	
31,50	1626,81	14,00	14,00	14,01	28,01	0,03423	0,03793	0,03618	0,04090	
35,00	1717,18	14,00	14,00	35,98	49,98	0,04201	0,04462	0,04344	0,03595	
38,50	1807,56	14,00	14,00	35,98	49,98	0,04156	0,04411	0,04296	0,03619	
42,00	1920,53	14,00	14,00	35,98	49,98	0,03566	0,03734	0,03657	0,03594	

Tabla 5.2k Rugosidad compuesta obtenida con diferentes criterios, análisis teórico; ensaye AK33.

Tabla 5.21 Rugosidad compuesta obtenida con diferentes criterios, análisis teórico; ensaye AK34.

Tirante en	Gasto Q, en	Tirante d, en	Perímetro	Perímetro	Perímetro	Rugosidad compuesta n _c , criterio de:					
embalse, en m	m³/s	m	P ₁ , en m	P ₂ , en m	P, en m	1	2	3	4		
	Funciona como túnel lleno										
24,50	1495,76	14,00	14,00	29,86	43,86	0,03576	0,03779	0,03685	0,03634		
28,00	1615,51	14,00	14,00	35,98	49,98	0,04070	0,04311	0,04202	0,03492		
31,50	1728,48	14,00	14,00	35,98	49,98	0,04039	0,04276	0,04169	0,03572		
35,00	1841,45	14,00	14,00	35,98	49,98	0,04027	0,04262	0,04155	0,03552		
38,50	1923,92	14,00	14,00	35,98	49,98	0,04069	0,04311	0,04201	0,03581		
42,00	1988,32	14,00	14,00	35,98	49,98	0,04175	0,04432	0,04316	0,03669		

(1) Marengo

- (2) Mühlofer y Banks(3) Horton y Einstein
- P1, acrílico (plantilla)
- P2, klinter (muros y clave)

5.6 Ejemplo de aplicación.

A continuación se presentan los resultados obtenidos con programas de computadora elaborados por (Marengo, 2001), al considerar los criterio citados en el inciso (3.4) del capítulo 3, página 43. Los criterios anteriores consideran la igualación de las fuerzas resistentes del flujo en las áreas que se subdivide la sección. Con la aplicación de esta herramienta de cálculo, se obtienen los tirantes críticos y normales, la rugosidad compuesta con distintos criterios para una sección de túnel tipo portal.

Primero se aplican los programas cuando el túnel trabaja como canal, tablas (5.1d; 5.1h y 5.1l); paginas 201, 203 y 205, y posteriormente, cuando el túnel trabaja a presión, tablas (5.4; 5.5 y 5.6); paginas 241, 242 para la relación de llenado en el túnel de d/D = 3, al considerar los modelo 5, 6 y 7.

5.6.1 Túnel funcionando como canal, análisis con programas de computadora.

Resultados de los programas

Ensaye AL34; tirante d = 3,50 m; ver tabla (5.1d), pág. 202. LOS DATOS INICIALES SON: Gasto Pendiente Sección completa (m^3/s) (m) 134.000 14.000 0.00800 Rugosidad del concreto hidráulico Rugosidad del concreto lanzado 0.0179 0.0304 PARA EL TIRANTE CRÍTICO Yc Área S Crit P. mojado Rad. Hid Velocidad Ancho (m^2) (m) (m) (m) (m) (m/s) 2.106 29.482 18.212 1.619 4.545 14.000 0.00468

.	<i>,</i>	PARA EL	TIRANTE NO	RMAL	
Con la relaci Yn (m) 1.743	ón lineal, Área (m²) 24,408	la rugosidad e P. Mojado (m) 17.487	equivalente es i Rad. Hid. (m) 1.396	n _e = 0.02035 Velocidad (m/s) 5.490	Ancho (m) 14.000
La relación c	le llenado	o (en %) es Tir	antes		Áreas
		0.12	245		0.1395
Con la relaci Yn (m) 1.780	ón de Μι Área (m²) 24.915	ihlofer y Banks P. Mojado (m) 17.559	s, la rugosidad Rad. Hid. (m) 1.419	equivalente es Velocidad (m/s) 5.378	n _e = 0.02100 Ancho (m) 14.000
La relación c	le llenado	o (en %) es Tir	antes		Áreas
Con la relaci Yn (m) 1.761 La relación c	ón de Ho Área (m ²) 24.657 le llenado	orton y Einsten P. Mojado (m) 17.522 o (en %) es Tir 0.1	0.1271 , la rugosidad e Rad. Hid. (m) 1.407 antes 12581	quivalente es r Velocidad (m/s) 5.434	0.1424 n _e = 0.02067 Ancho (m) 14.000 Áreas 0.1409
Perfiles hidrái	ulicos en u	in túnel con sec	ción baúl		
Método del pa	aso directo)			
Análisis de pe	rfiles hidr	áulicos			
Para criterio li	neal opn :	= 1; de mulhofe	r opn = 2 y horto	n opn = 3	
Proporcionar	la velocida	ad en la entrada	1		
Se recomiend	a como co	peficiente de en	trada k _e = 1.00 s	i es brusca	
Se recomiend	a como co	peficiente de en	trada k _e = 0.20 s	i es suave	
El tirante del r	ío aguas a	arriba es; Ta. A	rriba = 3.5 m		
La velocidad o	del lago o	río aguas arriba	a es 1.09 m/s		
La longitud de	el túnel es	811m			
El coeficiente	empleado	o para la perdida	a por entrada es	0.20	
El perfil es tip	o S2				
El gasto anali	zado del t	únel es Q = 134	∔m³/s		
La pendiente	del túnel e	es So = 0.008			
La pérdida po	r entrada	es hent = 0.000	02 m		

EL PERFIL OBTENIDO ES:

Y (m) 2.086 1.986 1.886 1.786 EL FLUJ	A (m ²) 29.204 27.804 26.404 25.004 O SE NC	R.HID. (m) 1.607 1.547 1.486 1.423)RMALIZ	V (m/s) 4.588 4.819 5.075 5.359	n equiv (m ^{-1/3} s) 0.02073 0.02062 0.02051 0.02040	DE (m) 0.00000 0.01078 0.02886 0.05111	DX (m) 0.000 3.796 14.106 47.641	L (m) 0.000 3.796 17.902 65.544	E (m) 230.147 230.127 230.043 229.713
EL FLUJ	IO SE NO	ORMALIZ	A					

Ensaye AL34; tirante d = 7,00 m; ver tabla (5.1d), pág. 202.										
Gas (m³/s 372.	to 5) 78	LOS I Sección c (m) 14.00	DATOS INIC ompleta 00	IALES SON Per 0.	l: ndiente 00800					
Rugosida	id del concr 0.0179	eto hidráuli	со	Rugosidad del concreto lanzado 0.0263						
Yc (m)	Área P. (m²)	E CRITICC Velocidad (m/s)) Ancho (m)	S Crit						
4.165	58.316	22.331	2.611	6.392	14.000	0.00501				
$\begin{array}{c c} \mbox{PARA EL TIRANTE NORMAL}\\ \mbox{Con la relación lineal, la rugosidad equivalente es $n_e = 0.02066$\\ \mbox{Yn} & \mbox{Área} & \mbox{P. Mojado} & \mbox{Rad. Hid.} & \mbox{Velocidad} & \mbox{Ancho} \\ \mbox{(m)} & \mbox{(m^2)} & \mbox{(m)} & \mbox{(m)} & \mbox{(m)} \\ \mbox{3.497} & \mbox{48.963} & \mbox{20.995} & \mbox{2.332} & \mbox{7.614} & \mbox{14.000} \end{array}$										
La relaciór	n de llenado	(en %) es tir 0.24	antes 498			áreas 0.2798				
Con la rei Yn (m) 3.545	lación de M Área (m ²) 49.624	uhlofer y Ba P. Mojado (m) 21.089	anks, la rugo Rad. l (m 2.35	sidad equiv Hid. Vel) 3	alente es n ocidad (m/s) 7.512	e = 0.02106 Ancho (m) 14.000				
La relació	La relación de llenado (en %) es Tirantes Áreas 0.2532 0.2836									
Con la rel Yn (m) 3.522	Con la relación de Horton y Einsten, la rugosidad equivalente es $n_e = 0.02087$ YnÁreaP. MojadoRad. Hid.VelocidadAncho(m)(m²)(m)(m)(m)3.52249.30321.0432.3437.56114.000									
La relació	La relación de llenado (en %) es Tirantes Áreas									

0.2515

0.2818

El tirante del río aguas arriba es; T.A. Arriba = 7.00 m

La velocidad del lago o río aguas arriba es 1.52 m/s

La longitud del túnel es 811 m

El coeficiente empleado para la pérdida por entrada es 0.20

El perfil es tipo S2

El gasto analizado del túnel es Q = 372.78 m³/s

La pendiente del túnel es $S_o = 0.008$

La pérdida por entrada es hent = 0.00004

EL PERFIL OBTENIDO ES:

Y	A	R.HID.	V	nequiv	DE	DX	L	E		
(m)	(m²)	(m)	(m/s)	(m ^{-1/3} s)	(m)	(m)	(m)	(m)		
4.126	57.762	2.596	6.454	0.02098	0.00000	0.000	0.000	233.237		
4.026	56.362	2.556	6.614	0.02093	0.00677	2.517	2.517	233.223		
3.926	54.962	2.515	6.782	0.02088	0.01503	6.460	8.977	233.187		
3.826	53.562	2.474	6.960	0.02083	0.02417	12.539	21.515	233.111		
3.726	52.162	2.432	7.147	0.02078	0.03430	23.067	44.582	232.960		
3.626	50.762	2.389	7.344	0.02073	0.04556	45.583	90.165	232.641		
3.526	49.362	2.345	7.552	0.02068	0.05812	126.685	216.850	231.686		
EL FLU.	EL FLUJO SE NORMALIZA									

Ensaye AL34; tirante d = 10,50 m; ver tabla (5.1d), pág. 202.

LOS DATOS INICIALES SON:

Gasto Sección co (m ³ /s) (m)		completa		Pend	liente			
(m /s 708.	708.980 14.00				0.00800			
Rugosida	ad del cor 0.017	ncreto hidrául 79	ico	Rugosidad del concreto lanzado 0.0234				
		PAR	A EL TIRAN	ITE CR	ITICO			
Yc	Área	P. mojado	Rad. Hid	Velo	E CRITICO Velocidad Ancho		S Crit	
(m)	(m²)	(m)	(m)	(m/	s)	(m)		
6.394	89.518	26.788	3.342	7.92	20	14.000	0.00528	
		PAR	A FL TIRAN	ITE NO	RMAI			
Con la re	lación lin	eal, la rugosio	dad equivale	ente es i	$n_{\rm P} = 0.0$	2029		
Yn	Área	P. Mojad	o Rad	. Hid.	Veloc	cidad	Ancho	
(m)	(m ²)	(m)	(m)	(n	n/s)	(m)	
5.447	76.264	24.895	3.0	3.063 9.296			14.000	
La relació	ón de llen	ado (en %) e	s Tirantes				Áreas	
			0.3891				0.4359	

Y	А	R.HID.	V	nequiv	DE	DX	L	Е
(m)	(m²)	(m)	(m/s)	(m ^{-1/3} s)	(m)	(m)	(m)	(m)
8.346	116.724	3.801	9.267	0.02183	0.00000	0.000	0.000	239.711
8.246	115.348	3.781	9.378	0.02181	0.00504	5.035	5.035	239.676
8.146	113.968	3.761	9.491	0.02179	0.00915	11.514	16.549	239.593
8.046	112.586	3.740	9.608	0.02176	0.01347	23.223	39.772	239.420
7.946	111.200	3.719	9.727	0.02174	0.01799	50.735	90.507	239.032
EL FL	UJO SE N	ORMALIZ	A					

EL PERFIL OBTENIDO ES:

Ensaye AL34; tirante d = 17,50 m; ver tabla (5.1d), pág. 202.

LOS DATOS INICIALES SON:

Gasto	Sección co	mpleta	Pendi	ente	
(m /s) 1467.44	(m) 14.000)	0.00	800	
Rugosidad del	concreto hidráulico 0.0179	D R	lugosidad d	el concre 0.0257	to lanzado
Yc Área	PARA P. mojado F	EL TIRANTE Rad. Hid V	CRÍTICO elocidad (m/s)	Ancho	S Crit
10.116 140.1	34 34.458	4.067	10.472	12.537	0.00854
Con la relaciór Yn Á (m) (1	PARA n lineal, la rugosida Area P. Mojado m ²) (m)	EL TIRANTE d equivalente Rad. Hic (m)	NORMAL es n _e = 0.02 d. Veloci (m	2256 dad /s)	Ancho (m)
10.472 14	4.534 35.266	4.098	10.1	53	12.157
La relación de	llenado (en %) es ⁻	Tirantes 0.7480			Áreas 0.8261
Con la relaciór Yn Á (m) (1 10.636 14	n de Muhlofer y Bar Area P. Mojado m ²) (m) 6.512 35.647	nks, la rugosid Rad. Hic (m) 4.110	ad equivale I. Veloci (m, 10.0	nte es n _e dad /s) 16	a = 0.02291 Ancho (m) 11.963
La relación de	llenado (en %) es ⁻	Tirantes 0.7597			Áreas 0.8374
Con la relaciór Yn Á (m) (i 10.559 14	n de Horton y Einste Area P. Mojado m ²) (m) 5.593 35.468	en, la rugosida Rad. Hic (m) 4.105	ad equivaler J. Veloci (m, 10.0	nte es n _e dad /s) 79	= 0.02275 Ancho (m) 12.055

La relación de llenado (en %) es Tirantes 0.7542 Áreas 0.8321

El tirante del río aguas abajo es; T.R. Abajo = 6.92 m

La longitud del túnel es 811 m

El coeficiente empleado para la pérdida por salida es 0.30

El perfil es tipo M2

El gasto analizado del túnel es Q = $1467.44 \text{ m}^3/\text{s}$

La pendiente del túnel es $S_o \doteq 0.008$

1 de 10 - 193

La pérdida por salida es hsal = 0.00013

EL PERFIL	OBTENIDO ES:
-----------	--------------

Y	А	R.HID.	V	nequiv	DE	DX	L	E
(m)	(m²)	(m)	(m/s)	(m ^{-1/3} s)	(m)	(m)	(m)	(m)
10.017	138.896	4.057	10.565	0.02247	0.00000	0.000	0.000	236.206
10.117	140.155	4.067	10.470	0.02249	0.00170	2.722	2.722	236.227
10.217	141.403	4.077	10.378	0.02251	0.00177	3.855	6.577	236.259
10.317	142.641	4.086	10.288	0.02253	0.00512	16.968	23.545	236.400
10.417	143.869	4.094	10.200	0.02255	0.00836	55.265	78.810	236.850
EL FLU	JO SE NO	RMALIZ	A					

Ensaye AL34; tirante d = 21,00 m; ver tabla (5.1d), pág. 202

LOS DATOS INICIALES SON:

Gasto	Sección completa	Pendiente
(M ³ /S)	(M)	
1682.99	14.000	0.00800

Rugosidad del concreto hidráulico Rugosidad del concreto lanzado 0.0179 0.0258 PARA EL TIRANTE CRÍTICO Ýc Área P. mojado Rad. Hid Velocidad Ancho S Crit (m^2) (m) (m/s)(m) (m) (m) 10.906 149.695 36.287 ··· 4.125 11.243 11.618 0.00987

PARA EL TIRANTE NORMAL NO HAY SOLUCIÓN

El tirante del río aguas abajo es; T.R. Abajo = 7.45 m

La longitud del túnel es 811 m

El coeficiente empleado para la pérdida por salida es 0.30

El perfil es tipo M2

El gasto analizado del túnel es $Q = 1682.99 \text{ m}^3/\text{s}$

La pendiente del túnel es $S_o = 0.008$

La pérdida por salida es hsal = 0.00012

			EL	. PERFIL C	BTENIDO	ES:		
Y	А	R.HID.	V	nequiv	DE	DX	L	Е
(m)	(m²)	(m)	(m/s)	(m ^{-1/3} s)	(m)	(m)	(m)	(m)
10.804	148.501	4.120	11.333	0.02271	0.00000	0.000	0.000	237.850
10.904	149.670	4.125	11.245	0.02273	0.00184	0.942	0.942	237.856
11.004	150.825	4.129	11.159	0.02275	0.00165	0.917	1.859	237.865
11.104	151.967	4.133	11.075	0.02277	0.00503	3.038	4.897	237.894
11.204	153.093	4.136	10.993	0.02279	0.00831	5.465	10.361	237.946
11.304	154.205	4.137	10.914	0.02281	0.01150	8.256	18.617	238.024
11.404	155.301	4.139	10.837	0.02283	0.01460	11.482	30.099	238.130
11.504	156.382	4.139	10.762	0.02285	0.01760	15.220	45.319	238.270
11.604	157.445	4.138	10.689	0.02287	0.02054	19.586	64.904	238.447
11.704	158.491	4.136	10.619	0.02289	0.02340	24.692	89.596	238.668
11.804	159.518	4.134	10.550	0.02291	0.02619	30.703	120.299	238.940
11.904	160.527	4.130	10.484	0.02293	0.02892	37.799	158.098	239.271
12.004	161.516	4.126	10.420	0.02295	0.03160	46.214	204.312	239.672
12.104	162.485	4.120	10.358	0.02297	0.03421	56.195	260.507	240.156
12.204	163.432	4.113	10.298	0.02299	0.03679	68.054	328.561	240.737
12.304	164.357	4.105	10.240	0.02302	0.03933	82.085	410.646	241.433
12.404	165.259	4.096	10.184	0.02304	0.04183	98.562	509.208	242.263
12.504	166.137	4.085	10.130	0.02306	0.04430	117.629	626.837	243.249
12.604	166.989	4.073	10.078	0.02308	0.04675	139.117	765.955	244.409

Ensaye AD34; tirante d = 3,50 m; ver tabla (5.1h), pág. 204

LOS DATOS INICIALES SON:

Ga	sto	completa	ompleta Per				
(m [°] /s) (m) 129.70 14.000			00		0.00	800	
Rugosid	ad del cor 0.01	ico	Rugo	sidad c	lel concre 0.0263	eto lanzado	
		PAR	A EL TIBAN	ITE CRÍ	TICO		
Yc	Área	P. mojado	Rad. Hid	Veloc	idad	Ancho	S Crit
(m)	(m²)	(m)	(m)	(m/s	s)	(m)	
2.061	28.848	18.121	1.592	4.49	6	14.00	0.00425
		PAR	A FL TIRAN		RMAI		
Con la r	elación lin	eal. la rugosi	dad equivale	nte es r	$h_{\rm P} = 0.0$	1947	
Yn	Área	P. Mojad	o Rad	Hid.	Veloc	idad	Ancho
(m)	(m²)	(m)	(m)	(m	n/s)	(m)
1.658	23.216	6 17.317	1.	341	5.	587	14.00
La relac	ión de ller	nado (en %) e	s Tirantes				Áreas
			0.1184				0.1327

Con la relac Yn (m) 1.675	ción de Mu Área (m ²) 23.443	uhlofer y Ba P. Mojado (m) 17.349	anks, la ruç Rac 1	gosidad eq J. Hid. (m) .351	uivalente Velocidad (m/s) 5.533	es n _e = 0.0 Anch (m) 14.00	01976 0 00
La relación	de llenado	o (en %) es	Tirantes 0.1196			Área: 0.134	s 0
Con la relac Yn (m) 1.667	ción de Ho Área (m ²) 23.332	orton y Eins P. Mojado (m) 17.333	ten, la rug Rac 1	osidad equ J. Hid. (m) .346	uivalente e Velocidad (m/s) 5.559	es n _e = 0.0 Anch (m) 14.00	1962 o 00
La relación	de llenado	o (en %) es	Tirantes 0.1190			Área: 0.133	s 3
El tirante del	río aguas	arriba es; T.	A. Arriba =	3.50 m			
La velocidad	l del lago o	río aguas a	rriba es 1.0	59 m/s			
La longitud d	lel túnel es	811 m					
El coeficient	e empleado	o para la pér	dida por en	trada es 0	.20		
El perfil es ti	po S2	. ,	·				
El gasto ana	lizado del t	únel es Q =	129.70 m ³ /	S			
La pendiente	e del túnel e	es S _o = 0.00	8				
La pérdida p	or entrada	es hent = 0.	00002				
		El		BTENIDO	ES:		
Y A (m) (m ² 2.041 28.5 1.991 27.5 1.941 27.7 1.891 26.4 1.841 25.7 1.791 25.0 1.741 24.3 1.691 23.6 EL FLUJO S	R.H (m) 574 1.580 374 1.550 174 1.520 474 1.489 774 1.458 074 1.420 374 1.394 574 1.362 574 1.362	ID. V (m/s) 0 4.539 0 4.653 0 4.773 0 4.899 3 5.032 6 5.173 4 5.321 2 5.478 LIZA	nequiv (m ^{-1/3} s) 0.01975 0.01972 0.01968 0.01964 0.01961 0.01957 0.01953 0.01949	DE (m) 0.00000 0.00340 0.00758 0.01221 0.01735 0.02307 0.02945 0.03660	DX (m) 0.000 0.981 2.424 4.439 7.442 12.376 21.950 48.381	L (m) 0.000 0.981 3.402 7.843 15.285 27.661 49.611 97.992	E (m) 230.079 230.075 230.063 230.040 229.997 229.921 229.775 229.425

Ensaye AD34; tirante d = 7,00 m; ver tabla (5.1h), pág. 204.

LOS DATOS INICIALES SON:

Gasto	Sección completa	Pendiente
(m³/s)	(m)	
368.60	14.000	0.00800

-

Rugosidad del concreto hidráulico 0.0179				Rugo	osidad (del concre 0.0266	eto lanzado
Yc (m) 4.134	Área (m²) 57.879	PAR/ P. mojado (m) 22.268	A EL TIRA Rad. Hid (m) 2.599	NTE CRÍ Veloc (m/ 6.36	TICO cidad s) 58	Ancho (m) 14.00	S Crit 0.00505
Con la re Yn (m) 3.480	elación lin Área (m²) 48.718	PAR/ eal, la rugosic P. Mojado (m) 3 20.960	A EL TIRA lad equival D Ra	NTE NOI lente es r d. Hid. (m) 2.324	RMAL n _e = 0.0 Veloc (n 7.	2074 :idad 1/s) 566	Ancho (m) 14.00
La relaci	ión de ller	ado (en %) e	s Tirantes 0.2486				Áreas 0.2784
Con la re Yn (m) 3.53	elación de Área (m²) 0 49.414	e Muhlofer y B P. Mojado (m) 21.059	anks, la ru o Ra 2	gosidad d. Hid. (m) 2.346	equival Veloc (n 7.4	ente es n cidad n/s) 59	e = 0.02117 Ancho (m) 14.000
La relac	ión de ller	nado (en %) es	s Tirantes 0.2521				Áreas 0.2824
Con la re Yn (m) 3.50	elación de Área (m²) 5 49.076	e Horton y Eins a P. Mojado (m) 6 21.011	sten, la ruç D Ra	gosidad e d. Hid. (m) 2.336	equivale Veloc (n 7.	ente es n _e cidad n/s) 511	e = 0.02096 Ancho (m) 14.000
La relac	ión de ller	nado (en %) es	s Tirantes 0.2504				Áreas 0.2805
El tirante	del río agu dad del lac	uas arriba es; T	.A. Arriba =	- 7.00 m 505 m/s			
La longiti	ud del túne	el es 811 m					
El coefici	ente emple	eado para la pé	rdida por e	ntrada es	0.20		
El perfil e	es tipo S2		·				
El gasto	analizado	del túnel es Q =	= 368.60 m ³	/s			
La pendi	ente del tú	nel es $S_o = 0.00$	08				
La pérdic	la por entra	ada es hent = 0	0.00004				

EL PERFIL OBTENIDO ES:

Y (m)	A (m²)	R.HID. (m)	V (m/s)	nequiv (m ^{-1/3} s)	DE (m)	DX (m)	L (m)	E (m)
4.095 4.045 3.995 3.945 3.895 3.845 3.795 3.745 3.695 3.645 3.595 3.545 3.545 3.495	 57.328 56.628 55.928 55.228 54.528 53.828 53.128 52.428 51.728 51.028 50.328 49.628 48.928 	2.584 2.564 2.543 2.523 2.502 2.482 2.461 2.440 2.418 2.397 2.375 2.353 2.331	6.430 6.564 6.591 6.674 6.760 6.848 6.938 7.031 7.126 7.223 7.324 7.427 7.533	0.02107 0.02104 0.02102 0.02099 0.02097 0.02094 0.02091 0.02089 0.02086 0.02083 0.02081 0.02078 0.02075	0.00000 0.00241 0.00439 0.00647 0.00866 0.01097 0.01339 0.01595 0.01864 0.02149 0.02449 0.02767 0.03102	0.000 0.881 1.714 2.720 3.961 5.526 7.557 10.298 14.192 20.152 30.396 52.095 128 578	0.000 0.881 2.595 5.315 9.276 14.802 22.359 32.657 46.850 67.002 97.398 149.493 278.071	233.190 233.185 233.176 233.161 233.138 233.104 233.057 232.991 232.896 232.756 232.538 232.149 231.151
EL FLU	JO SE NO	ORMALIZ	A					

Ensaye AD34; tirante d = 10,50 m; ver tabla (5.1h), pág. 204.

LOS DATOS INICIALES SON:

(III /s)(III)672.10014.0000.00800Rugosidad del concreto hidráulico 0.0179Rugosidad del concreto lanzado 0.0274	I
Rugosidad del concreto hidráulico 0.0179 Rugosidad del concreto lanzado 0.0274	I
PARA EL TIRANTE CRÍTICO	
Yc Área P. mojado Rad. Hid Velocidad Ancho S Crit (m) (m^2) (m) (m) (m)	
6.17086.38626.3413.2807.78014.0000.0062	20
PARA EL TIRANTE NORMAL	
Con la relación lineal, la rugosidad equivalente es $n_e = 0.02210$	
Yn Área P. Mojado Rad. Hid. Velocidad Ancho	
(m) (m ²) (m) (m) (m/s) (m)	
5.576 78.057 25.151 3.104 8.610 14.000	
La relación de llenado (en %) es Tirantes Áreas	
0.3983 0.4461	
Con la relación de Muhlofer y Banks, la rugosidad equivalente es $n_e = 0.02265$ Vn Área P Mojado Bad Hid Velocidad Ancho	
(m) (m^2) (m) (m) (m/s) (m)	

5.676	79.468	25.353	3.135	8.458	14.000		
La relació	Áreas 0.4542						
Con la rela Yn (m) 5.628	ación de Ho Área (m ²) 78.790	orton y Einster P. Mojado (m) 25.256	n, la rugosidad e Rad. Hid. (m) 3.120	quivalente es Velocidad (m/s) 8.530	n _e = 0.02239 Ancho (m) 14.000		
La relació	Áreas 0.4503						
El tirante del río aguas arriba es; T.A. Arriba = 10.50 m							
La velocidad del lago o río aguas arriba es 1.829 m/s							
La longitud del túnel es 811 m							
El coeficiente empleado para la pérdida por entrada es 0.20							
El perfil es tipo S2							
El gasto analizado del túnel es Q = 672.10 m^3/s							
La pendiente del túnel es $S_o = 0.008$							

La pérdida por entrada es hent = 0.00006

EL PERFIL OBTENIDO ES:

Y	А	R.HID.	V	nequiv	DE	DX	L	Е
(m)	(m²)	(m)	(m/s)	(m ^{-1/3} s)	(m)	(m)	(m)	(m)
6.112	85.564	3.263	7.855	0.02232	0.00000	0.000	0.000	236.244
6.012	84.164	3.234	7.986	0.02228	0.00549	3.624	3.624	236.221
5.912	82.764	3.205	8.121	0.02224	0.01089	8.788	12.411	236.162
5.812	81.364	3.175	8.260	0.02220	0.01666	17.616	30.027	236.037
5.712	79.964	3.145	8.405	0.02216	0.02284	36.041	66.068	235.772
5.612	78.564	3.115	8.555	0.02212	0.02947	97.778	163.846	235.019
EL FLU	JO SE NO	ORMALIZA						

Ensaye AD34; tirante d = 14,00 m; ver tabla (5.1h), pág. 204.

LOS DATOS INICIALES SON:

Gasto	Sección completa	Pendiente
(m³/s)	(m)	
1034.000	14.000	0.00800

Rugosidad del concreto hidráulico 0.0179 Rugosidad del concreto lanzado 0.0254

PARA EL TIRANTE CRÍTICO								
Yc	Área	P. mojado	Rad. Hid	Velocidad	Ancho	S Crit		
(m) 8.189	(m 9 114	1 ²) .564	(m) 30.389 PA	(m 3.770 RA EL T) D IRANTE	(m/s) 9.026 NORM	(m) 13.797 AL	0.00666
----------------------------	-------------------------	--	---	--------------------------	--	-----------------------------	---	--
Con la Yn (m 7.59	relac) 91	ón linea Área (m ²) 106.270	l, la rugos P. Moja (m) 29.184	sidad equ .do I	uivalente Rad. Hio (m) 3.641	es n _e = d. V	: 0.02176 elocidad (m/s) 9.730	Ancho (m) 13.950
La rela	ción d	le llenad	o (en %)	es Tiran 0.542	tes 2			Áreas 0.6074
Con la Y (n 7.6	relaci n n) 82	ón de M Área (m ²) 107.538	uhlofer y P. Moja (m) 29.367	Banks, k do	a rugosid Rad. Hid (m) 3.662	lad equ d. V	ivalente es n elocidad (m/s) 9.615	_e = 0.02210 Ancho (m) 13.933
La rela	ción d	le llenad	o (en %)	es Tiran	tes			Áreas
Con la Yi (n 7.6	relaci n n) 40	ón de He Área (m ²) 106.945	orton y E P. Moja (m) 29.281	0.54 insten, la do	37 rugosida Rad. Hio (m) 3.652	ad equi d. V	valente es n _e elocidad (m/s) 9.669	0.6146 = 0.02194 Ancho (m) 13.941
La rela	ción d	le llenad	o (en %)	es Tiran 0.54	tes 57			Áreas 0.6112
El tirant	te del	río aguas	arriba es	; T.A. Arri	ba = 14.0	0 m		
La velo	cidad	del lago d	río agua	s arriba e	s 2.11 m/s	3		
La long	itud de	el túnel es	s 811 m					
El coefi	ciente	emplead	o para la	pérdida p	or entrada	a es 0.2	0	
El perfil	es tip	o S2						
El gasto	o anali	zado del	túnel es C	ຊ = 1034 r	n³/s			
La peno	diente	del túnel	es $S_o = 0$.008				
La pérd	lida po	r entrada	es hent =	= 0.00007				
				EL PERI	FIL OBTE	NIDO E	S:	
Y (m)	A (m2	P) (.HID. m)	V (m/s)	nequiv (m ^{-1/3} s)	DE (m)	DX (m)	L E (m) (m

(m)	(m2)	(m)	(m/s)	(m ^{-1/3} s)	(m)	(m)	(m)	(m)
8.113	113.511	3.754	9.109	0.02188	0.000	0.000	0.000	239.330
8.013	112.127	3.734	9.222	0.02186	0.005	4.626	4.626	239.298
7.913	110.741	3.712	9.337	0.02184	0.009	10.527	15.153	239.223
7.813	109.351	3.691	9.456	0.02181	0.013	20.797	35.950	239.070
7.713	107.960	3.669	9.578	0.02179	0.018	43.128	79.077	238.743
7.613	106.566	3.646	9.703	0.02176	0.023	128.752	207.830	237.736
EL FLUJO SE NORMALIZA								

Ensaye AD34; tirante d = 17,50 m; ver tabla (5.1h), pág. 204.

LOS E	DATOS INICIA	ALES SON:				
Gasto Sección co (m³/s) (m)	ompleta	Pendiente				
1458.000 14.0	00	0.00	0080			
Rugosidad del concreto hidráulio 0.0179	0	Rugosidad	del concre 0.0265	eto lanzado		
PARA Yc Área P. mojado (m) (m ²) (m)	EL TIRANTE Rad. Hid	E CRÍTICO Velocidad (m/s)	Ancho	S Crit		
10.079 139.669 34.375	4.063	10.439	12.573	0.00887		
PARA Con la relación lineal, la rugosida Yn Área P. Mojado (m) (m ²) (m) 10.655 146.733 35.690 La relación de llenado (en %) es	EL TIRANTE ad equivalent Rad. H (m) 4.11 Tirantes 0.7610	E NORMAL e es n _e = 0.0 lid. Veloo (r 1 9.9	02310 cidad n/s) 936	Ancho (m) 11.941 Áreas 0.8386		
Con la relación de Muhlofer y Ba Yn Área P. Mojado (m) (m ²) (m) 10.859 149.146 36.174	nks, la rugos Rad. H (m) 4.123	idad equival lid. Veloo (r 9.7	ente es n cidad n/s) 776	_e = 0.02353 Ancho (m) 11.681		
La relación de llenado (en %) es	Tirantes 0.7756			Áreas 0.8524		
Con la relación de Horton y Eins Yn Área P. Mojado (m) (m ²) (m) 10.763 148.018 35.945	ten, la rugosio Rad. H (m) 4.118	dad equivale lid. Veloc (n 3. 9.8	ente es n _e cidad n/s) 350	= 0.02333 Ancho (m) 11.805		
La relación de llenado (en %) es Tirantes Áreas 0.7688 0.8460						
El tirante del río aguas abajo es: T.I	R. Abajo = 6.47	7 m				
La longitud del túnel es 811 m						
El coeficiente empleado para la pérdida por salida es .0.30						
El perfil es tipo M2						

El gasto analizado del túnel es $Q = 1458 \text{ m}^3/\text{s}$

La pendiente del túnel es $S_o = 0.008$

La pérdida por salida es hsal = 0.00013

EL PERFIL OBTENIDO ES:

Y	A	R.HID.	V	nequiv	DE	DX	L	E
(m)	(m ²⁾	(m)	(m/s)	(m ^{-1/3} s)	(m)	(m)	(m)	(m)
9.981	138.441	4.053	10.532	0.02295	0.000	0.000	0.000	236.135
10.181	140.955	4.073	10.344	0.02300	0.000	0.170	0.170	236.136
10.381	143.428	4.091	10.165	0.02304	0.014	25.086	25.256	236.350
10.581	145.857	4.106	9.996	0.02309	0.026	108.134	133.390	237.241

Ensaye AD34; tirante d = 21,00 m; ver tabla (5.1h), pág. 204.

LOS DATOS INICIALES SON:

Gasto	Sección completa	Pendiente	
(m³/s)	(m)		
1694.600	14.000	0.00800	
Rugosidad del c	oncreto hidráulico	Rugosidad del concreto lan	zado
	0.0179	0.0260	

PARA EL TIRANTE CRÍTICO

Yc	Área	P. mojado	Rad. Hid	Velocidad	Ancho	S Crit
(m)	(m²)	(m)	(m)	(m/s)	(m)	
10.945	150.152	36.383	4.127	11.286	11.565	0.01004

PARA EL TIRANTE NORMAL NO HAY SOLUCION

El tirante del río aguas abajo es; T.R. Abajo = 7.04 m

La longitud del túnel es 811 m

El coeficiente empleado para la pérdida por salida es 0.30

El perfil es tipo M2

El gasto analizado del túnel es $Q = 1694.60 \text{ m}^3/\text{s}$

La pendiente del túnel es $S_o = 0.008$

La pérdida por salida es hsal = 0.00012

EL PERFIL OBTENIDO ES:

Y	А	R.HID.	V	nequiv	DE	DX	L	Е
(m)	(m²)	(m)	(m/s)	(m ^{-1/3} s)	(m)	(m)	(m)	(m)
10.843	148.959	4.122	11.376	0.02283	0.00000	0.000	0.000	237.939
11.043	151.272	4.131	11.202	0.02287	0.00022	0.105	0.105	237.940
11.243	153.529	4.136	11.038	0.02291	0.01334	7.561	7.666	238.014
11.443	155.725	4.139	10.882	0.02295	0.02612	17.325	24.992	238.178
11.643	157.855	4.138	10.735	0.02299	0.03821	29.880	54.872	238.456
11.843	159.914	4.133	10.597	0.02303	0.04971	46.130	101.002	238.874
12.043	161.896	4.124	10.467	0.02308	0.06069	67.197	168.199	239.473
12.243	163.796	4.110	10.346	0.02312	0.07125	94.272	262.470	240.298
12.443	165.604	4.092	10.233	0.02316	0.08148	128.142	390.612	241.405
12.643	167.314	4.068	10.128	0.02321	0.09149	168.002	558.614	242.840
12.843	168.915	4.039	10.032	0.02325	0.10139	209.464	768.077	244.617

Ensaye AK34; tirante d = 3,50 m; ver tabla (5.11), pág. 206.

LOS DATOS INICIALES SON:

Gasto	Gasto Sección completa		Pendiente		
125.500	14.000		0.00800		
Rugosidad del co C	ncreto hidráulico 0.0179	Rugo	sidad del coi 0.034	ncreto lanzado 48	
Yc Área (m) (m ²) 2.016 28.222	PARA EL P. mojado Rad. (m) (r 18.032 1.5 PARA EL	TIRANTE CRÍ Hid Veloc n) (m/s 65 4.44 TIRANTE NOF	TICO cidad Ancl s) (m 47 14.00 RMAL	no S Crit) 00 0.00510	
Con la relación lin Yn Área (m) (m ²) 1.715 24.011	ieal, la rugosidad eo a P. Mojado (m) 17.430	quivalente es r Rad. Hid. (m) 1.378	n _e = 0.02119 Velocidad (m/s) 5.227	Ancho (m) 14.000	
LA RELACION DE	LLENADO (EN %) ES	6 TIRANTES 0.1225	A 0.	REAS 1372	
Con la relación de Yn Área (m) (m ²) 1.775 24.85	e Muhlofer y Banks, a P. Mojado (m) 6 17.551	la rugosidad e Rad. Hid. (m) 1.416	equivalente e Velocidad (m/s) 5.049	es n _e = 0.02234 Ancho (m) 14.000	
La relación de ller	nado (en %) es Tira 0.12	ntes 268		Áreas 0.1421	

Con la rela	ción de H	orton y Einste	n, la rugosidad e	equivalente es	n _e = 0.02174
Yn	Área	P. Mojado	Rad. Hid.	Velocidad	Ancho
(m)	(m ²)	(m)	(m)	(m/s)	(m)
1.744	24.419	17.488	1.396	5.139	14.000
La relación	n de llenad	lo (en %) es T	irantes		Áreas
		(0.1246		0.1396

El tirante del río aguas arriba es; T.A. Arriba = 3.50 m

La velocidad del lago o río aguas arriba es 1.025 m/s

La longitud del túnel es 811 m

El coeficiente empleado para la pérdida por entrada es 0.20

El perfil es tipo S2

El gasto analizado del túnel es Q = 125.50 m³/s

La pendiente del túnel es $S_o = 0.008$

La pérdida por entrada es hent = 0.00002

EL PERFIL OBTENIDO ES:

Y	А	R.HID.	V	nequiv	DE	DX	L	Е	
(m)	(m²)	(m)	(m/s)	(m ^{-1/3} s)	(m)	(m)	(m)	(m)	
1.997	27.959	1.554	4.489	0.02161	0.000	0.000	0.000	230.012	
1.897	26.559	1.493	4.725	0.02146	0.011	4.695	4.695	229.986	
1.797	25.159	1.430	4.988	0.02131	0.030	20.450	25. 1 45	229.852	
EL FLU	EL FLUJO SE NORMALIZA								

Ensaye AK34; tirante d = 7,00 m; ver tabla (5.11), pág. 206.

LOS DATOS INICIALES SON:

Gasto	Sección completa	Pendiente
(m³/s)	(m)	
389.800	14.000	0.00800

Rugosidad del concreto hidráulico 0.0179 Rugosidad del concreto lanzado 0.0401

PARA EL TIRANTE CRÍTICO							
Yc	Área	P. mojado	Rad. Hid	Velocidad	Ancho	S Crit	
(m)	(m²)	(m)	(m)	(m/s)	(m)		
4.291	60.078	22.583	2.660	6.488	14.000	0.00790	

EL FLUJO SE NORMALIZA

			PARA	EL TI	RANTE I	NORMA	L		
Con la Y (r 4.2	relació n n) 269 (n lineal, Área (m²) 59.763	la rugosida P. Mojado (m) 22.538	ıd equ	iivalente Rad. Hid (m) 2.652	es n _e = I. Ve	0.02627 locidad (m/s) 6.522	Ancho (m) 14.00) 0
La rela	ación de	e llenado	(en %) es	Tirant 0.304	es 19			Áreas 0.3416	3
Con la Y (r 4.5	relació n n) 549 (n de Mu Área (m ²) 63.690	hlofer y Bar P. Mojado (m) 23.099	nks, la	a rugosid Rad. Hid (m) 2.757	ad equiv I. Ve	valente es locidad (m/s) 6.120	s n _e = 0.02 Ancho (m) 14.000	2874)
La rela	ación de	e llenado	e (en %) es	Tirant 0.324	ies 19			Áreas 0.3640	
Con la Y (r 4.4	relació n n) 113 6	n de Ho Área (m ²) 51.775	rton y Einst P. Mojado (m) 22.825	en, la	rugosida Rad. Hid (m) 2.706	ld equiv I. Ve	alente es locidad (m/s) 6.310	n _e = 0.02 Ancho (m) 14.000	753 >)
La rela	ación de	e llenado) (en %) es	Tirant 0.315	ies 52			Áreas 0.3531	I
El tiran	te del rí	o aguas a	arriba es; T.A	4. Arril	oa = 7.00	m			
La velo	cidad d	el lago o	río aguas ar	riba es	s 1.60 m/s				
La long	jitud del	túnel es	811 m						
El coef	iciente e	empleado	para la péro	dida po	or entrada	es 0.20)		
El perfi	l es tipo	S2			_				
El gast	o analiz	ado del tu	únel es Q = 3	389.80) m³/s				
La pen	diente d	lel túnel e	$s S_0 = 0.008$	3					
La péro	dida por	entrada	es hent = 0.0	00004					
			EL	. PERF	FIL OBTEI	NIDO ES	6:		
Y (m) 4.251	A (m ²⁾ 59.512	R. (m 2 2.6	HID. V) (m/s 545 6.55	/ s) 50	nequiv (m ^{-1/3} s) 0.02625	DE (m) 0.000	DX (m) 0.000	L (m) 0.000	E (m) 233.425

Ensaye AK34; tirante d = 10,50 m; ver tabla (5.11), pág. 206.

	LOS	DATOS	INICIAL	ES SON
--	-----	-------	---------	--------

Gasto	0	Sección c	ompleta		Pendi	ente	
(m°/s) 702.70	0	(m) 14 0	000		0.00	800	
Rugosidad	l del concr	eto hidráulia	00	Bugos	b bebia	el concre	to lanzado
ragoolaac	0.0)179		nago	ordad a	0.0396	
		PARA	A EL TIRAN	ITE CRÍ	TICO		
Yc	Área P.	mojado	Rad. Hid	Veloc	idad	Ancho	S Crit
(m)	(m^2)	(m)	(m)	(m/s	5)	(m)	
6.356 8	8.988 2	6.713	3.331	7.89	7	14.000	0.00996
		PARA	E TIRAN		RMAI		
Con la rela	ación lineal	. la rugosid	ad equivale	ente es n	$_{\rm e} = 0.02$	2870	
Yn	Área	P. Mojado	Rad	. Hid.	Veloci	dad	Ancho
(m)	(m²)	(m)	(m)	(m	/s)	(m)
6.990 9	97.860	27.980	3.498		7.181		14.000
	a da llanad	$\alpha \left(\alpha n \left(0 \right) \right) \alpha \alpha$	Tirontoo				Árooo
La relación	i de lienad	o (en %) es	0 4993				Aleas 0.5593
			0.4000				0.0000
Con la rela	ación de M	uhlofer y Ba	anks, la rug	osidad e	quivale	ente es ne	e = 0.03097
	,						
Yn	Area	P. Mojado	Rad	. Hid.	Veloci	dad	Ancho
(m)	(m²)	(m)	(m)	(m	/s)	(m)
7.403	103.643	28.807	3.5	98	6.78	30	13.977
La relaciór	n de llenad	o (en %) es	Tirantes				Áreas
			0.5288				0.5924
.	.,						
Con la rela	ación de H	orton y Eins	sten, la rugo	sidad ed	quivaler	nte es n _e	= 0.02990
Yn (m)	Area	P. Iviojado	Had	. HIQ.	veloci	dad /c)	Ancho
7 209	100 919	(III) 28.417	(3 F	551	6.96	(S) 33	13 994
1.200	100.010	20.417	0.0	51	0.00		10.004
La relaciór	n de llenad	o (en %) es	Tirantes				Áreas
			0.5149				0.5768
El tirante de	el río aguas	abajo es; T.	R. Abajo = 5	5.93 m			
La longitud	del túnel es	s 811 m					
El coeficien	to omnload	o nara la nói	rdida nor sal	ida es 0	30		
		o para la per	ulua pui sai	iua es 0.	00		
El perfil es l	tipo M2						
El gasto an	alizado del	túnel es Q =	702.70 m ³ /s	;			
		-					

La pendiente del túnel es $S_o = 0.008$

La pérdida por salida es hsal = 0.00010

EL PERFIL OBTENIDO ES:

Y	А	R.HID.	V	nequiv	DE	DX	L	Е
(m)	(m²)	(m)	(m/s)	(m ^{-1/3} s)	(m)	(m)	(m)	(m)
6.291	88.070	3.313	7.979	0.02813	0.000	0.000	0.000	230.035
6.491	90.870	3.368	7.733	0.02830	0.003	1.692	1.692	230.052
6.691	93.670	3.421	7.502	0.02846	0.021	17.593	19.285	230.213
6.891	96.470	3.472	7.284	0.02862	0.036	64.578	83.863	230.766

LOS DATOS INICIALES SON:

Ensaye AK34; tirante d = 14,00 m; ver tabla (5.11), pág. 206.

Gasto (m³/s)		Sección co (m)	ompleta		Pendie	ente	
942.200 Rugosidad	1 del concre 0.017	4.000 ` to hidráulic 9	0	.00800 Rugos	idad de	el concre 0.0402	eto lanzado
Yc Á (m) (r	rea P. n²)	PARA mojado (m)	LEL TIRAN Rad. Hid (m)	ITE CRÍT Veloci (m/s	TCO dad)	Ancho (m)	S Crit
7.717 10	8.015 2	9.436	3.670	8.72	3	13.926	0.01174
Con la relac Yn (m) 9.234	ción lineal, Área (m ²) 128.734	PARA la rugosida P. Mojado (m) 32.547	LETIRAN ad equivale Rad (3.9	TE NOR ente es n _e . Hid. m) 55	MAL = 0.03 Velocio (m/ 7.319	056 dad s) 9	Ancho (m) 13.268
La relación	de llenado	o (en %) es	Tirantes 0.6596				Áreas 0.7358
Con la relac Yn (m) 9.821	ción de Mu Área (m ²) 136.398	ihlofer y Ba P. Mojado (m) 33.807	nks, la rug Rad (4.0	osidad e . Hid. m))35	quivale Velocio (m/ 6.90	nte es n dad s) 8	_e = 0.03282 Ancho (m) 12.813
La relación	de llenado	o (en %) es	Tirantes 0.7015				Áreas 0.7796
Con la relac Yn (m) 9.545	ción de Ho Área (m ²) 132.833	rton y Eins P. Mojado (m) 33.210	ten, la rugo Rad (4.0	osidad eq . Hid. m) 000	uivalen Velocio (m/ 7.093	te es n _e dad s)	= 0.03177 Ancho (m) 13.042
La relación	de llenado	o (en %) es	Tirantes 0.6818				Áreas 0.7592

- El tirante del río aguas abajo es; T.R. Abajo = 6.72 m
- La longitud del túnel es 811 m
- El coeficiente empleado para la pérdida por salida es 0.30
- El perfil es tipo M2
- El gasto analizado del túnel es Q = 942.20 m³/s
- La pendiente del túnel es $S_o = 0.008$
- La pérdida por salida es hsal = 0.00012

EL PERFIL OBTENIDO ES:

Y (m)	A (m²)	R.HID. (m)	V (m/s)	nequiv (m ^{-1/3} s)	DE (m)	DX (m)	L (m)	E (m)
7.638	106.914	3.652	8.813	0.02949	0.000	0.000	0.000	232.096
7.838	109.699	3.696	8.589	0.02964	0.002	0.439	0.439	232.101
8.038	112.473	3.739	8.377	0.02978	0.020	5.534	5.973	232.162
8.238	115.236	3.780	8.176	0.02992	0.031	12.507	18.480	232.293
8.438	117.984	3.819	7.986	0.03005	0.043	22.623	41.103	232.517
8.638	120.716	3.856	7.805	0.03018	0.055	38.592	79.695	232.880
8.838	123.428	3.891	7.634	0.03031	0.065	67.478	147.173	233.485
9.038	126.119	3.925	7.471	0.03044	0.075	135.284	282.456	234.642
EL FLL	JJO SE NO	RMALIZA						

Ensaye AK34; tirante d = 17,50 m; ver tabla (5.11), pág. 206.

LOS DATOS INICIALES SON:

Gasto	Sección completa	Pendiente
(m³/s)	(m)	
1211.100	14.000	0.00800

Rugosidad del concreto hidráulico 0.0179 Rugosidad del concreto lanzado 0.0435

PARA EL TIRANTE CRÍTICO

Yc	Área	P. mojado	Rad. Hid	Velocidad	Ancho	S Crit
(m)	(m²)	(m)	(m)	(m/s)	(m)	
9.033	126.056	32.125	3.924	9.608	13.397	0.01558

PARA EL TIRANTE NORMAL NO HAY SOLUCION

El tirante del río aguas abajo es; T.R. Abajo = 7.82 m

La longitud del túnel es 811 m

El coeficiente empleado para la pérdida por salida es 0.30

El perfil es tipo M2

El gasto analizado del túnel es Q = $1211.10 \text{ m}^3/\text{s}$

La pendiente del túnel es $S_o = 0.008$

La pérdida por salida es hsal = 0.00013

EL PERFIL OBTENIDO ES:

Y	A	R.HID.	V	nequiv	DE	DX	L	Е
(m)	(m²)	(m)	(m/s)	(m ^{-1/3} s)	(m)	(m)	(m)	(m)
8.943	124.848	3.909	9.701	0.03226	0.000	0.000	0.000	234.239
9.143	127.526	3.941	9.497	0.03240	0.001	0.090	0.090	234.241
9.343	130.179	3.971	9.303	0.03254	0.015	2.117	2.208	234.272
9.543	132.802	3.999	9.120	0.03269	0.027	4.360	6.567	234.334
9.743	135.395	4.025	8.945	0.03282	0.039	6.844	13.412	234.428
9.943	137.954	4.049	8.779	0.03296	0.050	9.603	23.015	234.555
10.143	140.475	4.069	8.621	0.03310	0.060	12.671	35.686	234.717
10.343	142.956	4.088	8.472	0.03323	0.070	16.084	51.770	234.915
10.543	145.394	4.104	8.330	0.03336	0.078	19.883	71.653	235.153
10.743	147.785	4.117	8.195	0.03350	0.086	24.105	95.758	235.432
10.943	150.125	4.127	8.067	0.03363	0.094	28.786	124.545	235.756
11.143	152.411	4.134	7.946	0.03376	0.102	33.953	158.498	236.129
11.343	154.637	4.138	7.832	0.03389	0.108	39.616	198.113	236.554
11.543	156.801	4.139	7.724	0.03402	0.114	45.755	243.868	237.035
11.743	158.896	4.136	7.622	0.03415	0.120	52.309	296.177	237.573
11.943	160.917	4.129	7.526	0.03429	0.127	59.154	355.330	238.173
12.143	162.859	4.117	7.436	0.03442	0.132	66.078	421.408	238.833
12.343	164.714	4.102	7.353	0.03456	0.137	72.775	494.184	239.552
12.543	166.474	4.081	7.275	0.03470	0.142	78.831	573.015	240.325
12.743	168.131	4.054	7.203	0.03484	0.147	83.747	656.762	241.142
12.943	169.672	4.021	7.138	0.03499	0.153	86.994	743.756	241.990

Ensaye AK34; tirante d = 21,00 m; ver tabla (5.11), pág. 206.

LOS DATOS INICIALES SON:

Ga (m ³	sto /s)	Sección	completa	Pendiente				
1367.000		14.0	14.000		0.00800			
Rugosid	ad del co	ncreto hidráu 0.0179	lico	Rugosidad del concreto lanzad 0.0513				
		PAF	RA EL TIRAN	ITE CRÍTICO				
Yc	Área	P. mojado	Rad. Hid	Velocidad	Ancho	S Crit		
(m)	(m²)	(m)	(m)	(m/s)	(m)			
9.710	134.972	33.566	4.021	10.128	12.908	0.02239		

PARA EL TIRANTE NORMAL NO HAY SOLUCION

El tirante del río aguas abajo es; T.R. Abajo = 7.88 m

La longitud del túnel es 811 m

El coeficiente empleado para la pérdida por salida es 0.30

El perfil es tipo M2

El gasto analizado del túnel es Q = 1367 m³/s

La pendiente del túnel es $S_o = 0.008$

La pérdida por salida es hsal = 0.00013

EL PERFIL OBTENIDO ES:

Y	А	R.HID.	V	nequiv	DE	DX	L	Е
(m)	(m²)	(m)	(m/s)	(m ^{-1/3} s)	(m)	(m)	(m)	(m)
9.615	133.743	4.009	10.221	0.03728	0.000	0.000	0.000	235.440
9.815	136.324	4.034	10.028	0.03746	0.000	0.022	0.022	235.440
10.015	138.869	4.056	9.844	0.03763	0.014	1.018	1.040	235.462
10.215	141.376	4.076	9.669	0.03781	0.027	2.049	3.089	235.505
10.415	143.842	4.094	9.503	0.03798	0.038	3.113	6.202	235.568
10.615	146.264	4.109	9.346	0.03816	0.049	4.208	10.410	235.651
10.815	148.636	4.121	9.197	0.03833	0.059	5.329	15.738	235.752
11.015	150.957	4.130	9.056	0.03850	0.068	6.471	22.210	235.872
11.215	153.222	4.136	8.922	0.03867	0.077	7.629	29.839	236.011
11.415	155.427	4.139	8.795	0.03884	0.086	8.794	38.634	236.167
11.615	157.566	4.138	8.676	0.03902	0.094	9.957	48.591	236.340
11.815	159.635	4.133	8.563	0.03919	0.102	11.106	59.697	236.530
12.015	161.629	4.125	8.458	0.03936	0.108	12.227	71.923	236.736
12.215	163.540	4.112	8.359	0.03954	0.116	13.304	85.227	236.958
12.415	165.361	4.095	8.267	0.03972	0.122	14.320	99.548	237.195
12.615	167.085	4.072	8.181	0.03990	0.128	15.256	114.804	237.445
12.815	168.701	4.043	8.103	0.04009	0.135	16.089	130.893	237.709
13.015	170.198	4.007	8.032	0.04029	0.141	16.796	147.688	237.985
13.215	171.560	3.962	7.968	0.04050	0.148	17.350	165.038	238.272
EL FLU	JO SE NO	RMALIZA						

En las tablas (5.3a) a la (5.3c), se muestra en resumen los coeficientes de resistencia obtenidos con los programas para los tres criterios analizados cuando el túnel trabaja como canal. Del análisis de las tablas, al comparar los resultados con los obtenidos experimentalmente, se observa que son diferentes; en la mayoría de los casos son inferiores a los registrados en el modelo.

Tirante en	Gasto Q, en	Rugosidad compuesta n _c , criterio de:							
embalse, en m	m³/s	1	2	3	4				
		Funciona c	omo canal						
3,50	134,00	0,02035	0.02100	0,02067	0,02483				
7,00	372,78	0,02066	0,02106	0,02087	0,02361				
10,50	708,98	0,02029	0,02049	0,02040	0,02065				
14,00	1081,68	0,02172	0,02204	0,02040	0,02243				
17,50	1467,44	0,02256	0.02291	0,02275	0,02472				
21,00	1682,99	0,02306	-	-	0,02277				

Tabla 5.3a Rugosidad compuesta obtenida con programas de computadora; ensaye AL34.

Tabla 5.3b Rugosidad compuesta obtenida con programas de computadora; ensaye AD34.

Tirante en	Gasto Q, en		Rugosidad compue	sta n _c , criterio de:	
embalse, en m	m³/s	1	2	3	4
		Funciona c	omo canal		
3,50	129,70	0,01947	0,01976	0,01962	0,02171
7,00	368,63	0,02074	0,02117	0,02096	0,02136
10,50	672,07	0,02210	0,02265	0,02239	0,02114
14,00	1033,96	0,02176	0,02210	0,02194	0,02301
17,50	1457,98	0,02310	0,02353	0,02333	0,02438
21,00	1694,59	0,02325		-	0,02444

Rugosidad compuesta n_c, criterio de:

(1) Marengo

(2) Mühlofer y Banks

(3) Horton y Einstein

(4) Experimental

Coeficiente de rugosidad compuesta n_c , en m^{-1/3} s

Tirante en	Gasto Q, en		Rugosidad compu	esta n _c , criterio de:	
embalse, en m	m³/s	1	2	3	4
		Funciona	como canal	· · · · · · · · · · · · · · · · · · ·	
3,50	125,51	0,02119	0,02234	0,02174	0,02655
7,00	389,76	0,02627	0,02874	0,02753	0,02841
10,50	702,69	0,02870	0,03097	0,02990	0,03060
14,00	942,19	0,03056	0,03282	0,03177	0,03475
17,50	1211,07	0,03499	-	-	0,03558
21,00	1366,97	0,04050			0,04116

Tabla 5.3c Rugosidad compuesta obtenida con programas de computadora; ensaye A	K34.
--	------

Rugosidad compuesta n_c, criterio de:

- (1) Marengo
- (2) Mühlofer y Banks
- (3) Horton y Einstein

(4) Experimental

Coeficiente de rugosidad compuesta n_c , en m^{-1/3} s

5.6.2 Túnel funcionando a tubo lleno; análisis con programas de computadora, caso l y ll.

En este subcapitulo, se presentan los resultados obtenidos al aplicar los programas elaborados por (Marengo, 2004) a la teoría expuesta en el capitulo 3, pagina 52; caso I y posteriormente para el caso II.

Para ejemplificar la aplicación de los programas se consideran los modelos 5, 6 y 7 con una relación de llenado d/D = 3. En la tabla (5.4), se muestran el ensaye y el gasto probado en cada modelo, en la tabla (5.5), se presenta el resumen de los coeficientes de resistencia obtenidos con el programa, caso I.

Tabla 5.4 Gastos probados en cada modelo para d/D = 3; casos I y II.

Modelo			5				5			7	7	
Ensaye	AL31	AL32	AL33	AL34	AD31	AD32	AD33	AD34	AK31	AK32	АКЗЗ	AK34
Gasto	2559,76	2597,05	2714,25	2453,89	2440,80	2427,70	2573,10	2679,70	1859,50	1841,50	1920,50	1988,30

Tabla 5.5 resultados obtenidos (caso I) de los coeficientes de pérdida por cortante en las paredes y bóveda, áreas correspondientes, coeficientes de Darcy y de Manning considerando una rugosidad absoluta en la plantilla k_b = 20,30 mm.

Ensave	Gasto	Kw	Ab	A _w	f	f	Darcy	Manning	Caso
LIISaye	m³/s	(mm)	(m²)	(m²)	٩	'w	f	m ^{-1/3} .s	Casu
								1	1
AL31	2559,76	34,44	45,71	129,26	0,02192	0,02458	0,02383	0,02170	1
AL32	2597,05	116,62	38,05	136,92	0,02299	0,03469	0,03128	0,02486	I
AL33	2714,25	81,06	40,34	134,63	0,02264	0,03110	0,02866	0,02380	I
AL34	2453,89	59,22	42,31	132,66	0,02236	0,02844	0,02670	0,02297	I
AD31	2440,80	116,62	38,05	136,92	0,02299	0,03469	0,03128	0,02486	I
AD32	2427,70	310,38	31,92	143,05	0,02409	0,04816	0,04092	0,02844	I
AD33	2573,10	162,68	35,96	139,00	0,02333	0,03855	0,03407	0,02595	1
AD34	2679,70	122,73	37,73	137,23	0,02304	0,03524	0,03168	0,02502	I
AK31	1859,50	1418,06	22,65	152,32	0,02648	0,09229	0,07103	0,03747	Ι
AK32	1841,50	1239,70	23,45	151,52	0,02623	0,08630	0,06705	0,03640	I
AK33	1920,50	1205,96	23,61	151,35	0,02617	0,08515	0,06628	0,03619	I
AK34	1988,30	1406,86	22,69	152,27	0,02647	0,09192	0,07078	0,03740	1

A manera de comprobación, se aplicó el programa desarrollado por el mismo autor caso II, cuya teoría se desarrolla en el capítulo 3, página 53. En este caso, se consideraron los mismos ensayes de la tabla (5.4), solo que ahora se fijó el coeficiente de rugosidad de Darcy y se obtuvieron los resultados que se muestran en la tabla (5.6); cabe señalar que los resultados obtenidos son similares a los del caso I y a los obtenidos experimentalmente.

Tabla 5.6 resultados obtenidos (caso II) de los coeficientes de pérdida por cortante en las paredes y bóveda, áreas correspondientes, coeficientes de Darcy y de Manning considerando una rugosidad absoluta en la plantilla k_b = 20,30 mm.

Ensavo	Gasto	K _w	Ab	Aw	f	f	Darcy	Manning	Caso
LIISaye	m³/s	(mm)	(m²)	(m²)	ıр	۱W	f	m ^{-1/3} .s	Caso
AL31	2559,76	35,70	45,48	129,48	0,02194	0,02481	0,02400	0,02177	H
AL32	2597,05	179,76	35,33	139,64	0,02344	0,03984	0,03500	0,02630	П
AL33	2714,25	73,29	40,97	133,99	0,02254	0,03020	0,02800	0,02352	П
AL34	2453,89	73,25	40,97	133,99	0,02254	0,03020	0,02800	0,02352	11
AD31	2440,80	312,27	31,87	143,08	0,02409	0,04826	0,04100	0,02846	
AD32	2427,70	312,27	31,87	143,08	0,02409	0,04826	0,04100	0,02846	П
AD33	2573,10	112,45	38,27	136,68	0,02295	0,03430	0,03100	0,02475	11
AD34	2679,70	73,25	40,97	133,99	0,02254	0,03020	0,02800	0,02352	П
AK31	1859,50	1376,80	22,82	152,14	0,02642	0,09092	0,07014	0,03723	II
AK32	1841,50	1315,63	23,09	151,87	0,02633	0,08887	0,06877	0,03686	11
AK33	1920,50	1226,08	23,51	151,45	0,02620	0,08584	0,06675	0,03632	П
AK34	1988,30	1464,83	22,45	152,51	0,02654	0,09382	0,07205	0,03773	П

RESULTADOS DE LOS PROGRAMAS SOLUCION AL CASO I RUGOSIDADES COMPUESTAS

Ensaye AL31; d/D = 3; ver tabla (5.4)

RUGOS	IDAD	PERIME	TROS	EAS			
absoluta b(m)	absoluta w(m)	ZONA b	ZONA w	ZONA b	ZONA w		
0.02030	0.034440	14.0000	35.9912	45.7083	129.2609		
NO. REYNOLDS	TEMPI	ERATURA	VISC	OSIDAD CINE	EMATICA		
2183600		20		0.00010000			
EL GASTO ES Q	=			2559.760010			
EL AREA TOTAL E	ESA =			174.969193			
LA VELOCIDAD E	S V =		14.629775				
LA CARGA DE VE	LOCIDAD ES Hv	=		10.908782			
EL PERIMETRO T	OTAL ES P =		49.991196				
EL COEFICIENTE	DE FRICCIÓN EN	N b ES LAMb	0.021917				
EL COEFICIENTE	DE FRICCIÓN EN	N w ES LAMw	0.024579				
LA RUGOSIDAD F	RELATIVA PROME	EDIO ES		0.002042			
EL COEFICIENTE	DE FRICCIÓN ES	SLAM =		0.023826	i		
LA LONGITUD DE	811.00000						
LA PÉRDIDA DE C		14.12238	1				
EQUIVALENCIA C	ON LA FORMULA	6					
EL COEFICIENTE	DE MANNING ES		0.02170	C			

Ensaye AL32; d/D = 3; ver tabla (5.4)

RUGOS	SIDAD	PERIM	IETROS	AR	EAS
absoluta b(m)	absoluta w(m)	ZONA b	ZONA w	ZONA b	ZONA w
0.02030	0.116620	14.0000	35.9912	38.0509	136.9183
NO. REYNOLDS	TEMP	ERATURA	VISCO	OSIDAD CINE	EMATICA
2215410		20		0.00010000	
EL GASTO ES Q	=		:	2597.050049	
EL AREA TOTAL	ESA =			174.969193	
LA VELOCIDAD E	ESV =			14.842899	i
LA CARGA DE VI	ELOCIDAD ES HV	=		11.228932	

•

EL PERIMETRO TOTAL ES P $=$	49.991196
EL COEFICIENTE DE FRICCIÓN EN b ES LAMb	0.022988
EL COEFICIENTE DE FRICCIÓN EN w ES LAMW	0.034690
LA RUGOSIDAD RELATIVA PROMEDIO ES	0.006006
EL COEFICIENTE DE FRICCIÓN ES LAM =	0.031280
LA LONGITUD DEL TRAMO ANALIZADO L $=$	811.000000
LA PÉRDIDA DE CARGA ES hf =	19.085062
EQUIVALENCIA CON LA FORMULA DE MANNING	
EL COEFICIENTE DE MANNING ES $n =$	0.024864

Ensaye AL33; d/D = 3; ver tabla (5.4)

RUGOS	IDAD	PERIME	TROS	ARE	AS	
absoluta b(m)	absoluta w(m)	ZONA b	ZONA w	ZONA b	ZONA w	
0.02030	0.081060	14.0000	35.9912	40.3382	134.6310	
NO. REYNOLDS	TEMPE	RATURA	VISC	OSIDAD CINE	MATICA	
2315387		20		0.00010000		
EL GASTO ES Q	=			2714.250000		
EL AREA TOTAL E	ESA =			174.969193		
LA VELOCIDAD E	S V =		15.512731			
LA CARGA DE VE	LOCIDAD ES Hv	=	12.265281			
EL PERIMETRO T	OTAL ES P =		49.991196			
EL COEFICIENTE	DE FRICCIÓN EN	b ES LAMb	0.022638			
EL COEFICIENTE	DE FRICCIÓN EN	w ES LAMw	0.031101			
LA RUGOSIDAD R	RELATIVA PROME	DIO ES		0.004291		
EL COEFICIENTE	DE FRICCIÓN ES	LAM =	0.028659			
LA LONGITUD DEL TRAMO ANALIZADO L $=$			811.000000			
LA PÉRDIDA DE CARGA ES hf =				19.099709		
EQUIVALENCIA C	ON LA FORMULA					
EL COEFICIENTE	DE MANNING ES		0.023800			

Ensaye AL34; d/D = 3; ver tabla (5.4)

RUGO	DSIDAD	PERIM	IETROS	AR	EAS
absoluta b(m)	absoluta w(m)	ZONA b	ZONA w	ZONA b	ZONA w
0.02030	0.059220	14.0000	35.9912	42.3119	132.6573

NO. REYNOLDS	TEMPERATURA	VISCOSIDAD CINEMATICA
2093287	20	0.00010000
		2452 000002
EL GASTO ES Q -		2453.889893
EL AREA TOTAL ES A	=	174.969193
LA VELOCIDAD ES V :	=	14.024697
LA CARGA DE VELOCII	DAD ES Hv =	10.025083
EL PERIMETRO TOTAL	ESP =	49.991196
EL COEFICIENTE DE F	RICCIÓN EN b ES LAMb	0.022358
EL COEFICIENTE DE F	RICCIÓN EN w ES LAMw	0.028436
LA RUGOSIDAD RELAT	TIVA PROMEDIO ES	0.003237
EL COEFICIENTE DE F	RICCIÓN ES LAM =	0.026695
LA LONGITUD DEL TRA	MO ANALIZADO L =	811.000000
LA PÉRDIDA DE CARG	A ES hf =	14.541427
. EQUIVALENCIA CON L	A FORMULA DE MANNING	
EL COEFICIENTE DE M	IANNING ES n =	0.022970

Ensaye AD31; d/D = 3; ver tabla (5.4)

	RUGO	SIDAD	PERIM	ETROS	AR	EAS	
	absoluta b(m)	absoluta w(m)	ZONA b	ZONA w	ZONA b	ZONA w	
	0.02030	0.116620	14.0000	35.9912	38.0509	136.9183	
	NO. REYNOLDS	TEMP	ERATURA	VISCO	OSIDAD CINE	EMATICA	
	2082121		20		0.00010000		
	EL GASTO ES Q	=			2440.800049		
EL AREA TOTAL ES A =			174.969193				
	LA VELOCIDAD E	ESV =		13.949884			
	LA CARGA DE VI	ELOCIDAD ES Hv	=	9.918413			
	EL PERIMETRO	TOTAL ES P =		49.991196			
	EL COEFICIENTE	E DE FRICCIÓN E	N b ES LAMb	0.022988			
	EL COEFICIENTE	E DE FRICCIÓN E	N w ES LAMw	0.034690			
	LA RUGOSIDAD	RELATIVA PROM	EDIO ES	0.006006			
	EL COEFICIENT	E DE FRICCIÓN E	SLAM =		0.031280)	

LA LONGITUD DEL TRAMO ANALIZADO L $=$	811.000000
LA PÉRDIDA DE CARGA ES hf =	16.857660
EQUIVALENCIA CON LA FORMULA DE MANNING	
EL COEFICIENTE DE MANNING ES $n =$	0.024864

Ensaye AD32; d/D = 3; ver tabla (5.4)

RUGOS	IDAD	PERIME	ETROS	ARE	EAS	
absoluta b(m)	absoluta w(m)	ZONA b	ZONA w	ZONA b	ZONA w	
0.02030	0.310380	14.0000	35.9912	31.9176	143.0516	
NO. REYNOLDS	TEMPI	ERATURA	VISC	OSIDAD CINE	MATICA	
2070946		20		0.00010000		
EL GASTO ES Q	=			2427.699951		
EL AREA TOTAL	ESA =			174.969193		
LA VELOCIDAD E		13.875013				
LA CARGA DE VE	LOCIDAD ES Hv	=		9.812232		
EL PERIMETRO T	OTAL ES P =			49.991196		
EL COEFICIENTE	DE FRICCIÓN EN	N b ES LAMb		0.024090		
EL COEFICIENTE	DE FRICCIÓN EN	N w ES LAMw		0.048158		
LA RUGOSIDAD F	RELATIVA PROME	EDIO ES		0.015352		
EL COEFICIENTE	DE FRICCIÓN ES	SLAM =	0.040922			
LA LONGITUD DE	L TRAMO ANALIZ	ZADOL =	811.000000			
LA PÉRDIDA DE C	CARGA ES hf =		21.817930			
EQUIVALENCIA C	ON LA FORMULA		3			
EL COEFICIENTE	DE MANNING ES	S n =		0.028439)	

Ensaye AD33; d/D = 3; ver tabla (5.4)

RUGOSIDAD		PERIM	IETROS	S AREAS		
absoluta b(m)	absoluta w(m)	ZONA b	ZONA w	ZONA b	ZONA w	
0.02030	0.162680	14.0000	35.9912	35.9602	139.0090	
NO. REYNOLDS	TEMP	ERATURA	VISCO	DSIDAD CINE	MATICA	
2194980		20	(0.00010000		
EL GASTO ES Q	=			2573.100098		
EL AREA TOTAL	ESA =			174.969193		

LA VELOCIDAD ES V =	14.706018
LA CARGA DE VELOCIDAD ES Hv =	11.022781
EL PERIMETRO TOTAL ES P =	49.991196
EL COEFICIENTE DE FRICCIÓN EN 6 ES LAM6	0.023334
EL COEFICIENTE DE FRICCIÓN EN W ES LAMW	0.038551
LA RUGOSIDAD RELATIVA PROMEDIO ES	0.008228
EL COEFICIENTE DE FRICCIÓN ES LAM =	0.034074
LA LONGITUD DEL TRAMO ANALIZADO L $=$	811.000000
LA PÉRDIDA DE CARGA ES hf =	20.407887
EQUIVALENCIA CON LA FORMULA DE MANNING	
EL COEFICIENTE DE MANNING ES $n =$	0.025951

Ensaye AD34; d/D = 3; ver tabla (5.4)

RUGOS	SIDAD	PERIME	TROS	ARE	AS	
absoluta b(m)	absoluta w(m)	ZONA b	ZONA w	ZONA b	ZONA w	
0.02030	0.122640	14.0000	35.9912	37.7347	137.2344	
NO. REYNOLDS	TEMPE	ERATURA	VISC	OSIDAD CINE	MATICA	
2285914	2	20	1	0.00010000		
EL GASTO ES Q	=		2679.699951			
EL AREA TOTAL	ESA =			174.969193		
LA VELOCIDAD E	15.315268					
LA CARGA DE VELOCIDAD ES HV =			11.955016			
EL PERIMETRO 1	TOTAL ES P =		49.991196			
EL COEFICIENTE	E DE FRICCIÓN EN	b ES LAMb	0.023038			
EL COEFICIENTE	E DE FRICCIÓN EN	N w ES LAMw	0.035236			
LA RUGOSIDAD I	RELATIVA PROME	EDIO ES	0.006296			
EL COEFICIENTE	E DE FRICCIÓN ES	SLAM =	0.031676			
LA LONGITUD DE	EL TRAMO ANALIZ	ADOL =	811.000000			
LA PÉRDIDA DE	CARGA ES hf =			20.576502	2	
EQUIVALENCIA (EQUIVALENCIA CON LA FORMULA DE MANNING					
EL COEFICIENTE	E DE MANNING ES	S n =		0.025021		

RUGOS	SIDAD	PERIM	ETROS	AR	EAS	
absoluta b(m)	absoluta w(m)	ZONA b	ZONA w	ZONA b	ZONA w	
0.02030	1.418060	14.0000	35.9912	22.6513	152.3179	
NO. REYNOLDS	TEMP	ERATURA	VISCO	OSIDAD CINE	MATICA	
1586244		20		0.00010000		
EL GASTO ES Q	=		1	859.500000		
EL AREA TOTAL E	ESA =			174.969193		
LA VELOCIDAD E	S V =			10.627585		
LA CARGA DE VE		5.756655				
EL PERIMETRO T	49.991196					
EL COEFICIENTE	DE FRICCIÓN E	N b ES LAMb		0.026482		
EL COEFICIENTE	DE FRICCIÓN E	N w ES LAMw	0.092287			
LA RUGOSIDAD F	RELATIVA PROM	IEDIO ES	0.068782			
EL COEFICIENTE	DE FRICCIÓN E	SLAM =		0.071027		
LA LONGITUD DE	L TRAMO ANAL	IZADO L =		811.000000		
LA PÉRDIDA DE C	CARGA ES hf =			22.216671		
EQUIVALENCIA C	ON LA FORMUL	A DE MANNIN	G			
EL COEFICIENTE	DE MANNING E	S n =		0.037467	,	

Ensaye AK31; d/D = 3; ver tabla (5.4)

Ensaye AK32; d/D = 3; ver tabla (5.4)

RUGOS	SIDAD	PERIM	IETROS	AF	REAS	
absoluta b(m)	absoluta w(m)	ZONA b	ZONA w	ZONA b	ZONA w	
0.02030	1.239700	14.0000	35.9912	23.4502	151.5190	
NO. REYNOLDS	TEMF	PERATURA	VISC	OSIDAD CINE	EMATICA	
1570889		20		0.00010000		
EL GASTO ES Q	=			1841.500000		
EL AREA TOTAL	ESA =			174.969193		
LA VELOCIDAD E	ESV =			10.524710		
LA CARGA DE VE	ELOCIDAD ES H	v =	5.645745			
EL PERIMETRO TOTAL ES P =				49.991196		
EL COEFICIENTE	E DE FRICCIÓN E	EN b ES LAMb		0.02622	5	

.

•

EL COEFICIENTE DE FRICCIÓN EN W ES LAMW	0.086304	
LA RUGOSIDAD RELATIVA PROMEDIO ES	0.060179	
EL COEFICIENTE DE FRICCIÓN ES LAM =	0.067049	
LA LONGITUD DEL TRAMO ANALIZADO L $=$	811.000000	
LA PÉRDIDA DE CARGA ES hf =	20.568459	
EQUIVALENCIA CON LA FORMULA DE MANNING		
EL COEFICIENTE DE MANNING ES n =	0.036403	

Ensaye AK33; d/D = 3; ver tabla (5.4)

RUGOS	SIDAD	PERIME	ETROS	AR	EAS		
absoluta b(m)	absoluta w(m)	ZONA b	ZONA w	ZONA b	ZONA w		
0.02030	1.205960	14.0000	35.9912	23.6145	151.3547		
NO. REYNOLDS	TEMP	ERATURA	VISC	OSIDAD CINE	MATICA		
1638280		20		0.00010000			
EL GASTO ES Q	=		1920.500000				
EL AREA TOTAL			174.969193				
LA VELOCIDAD E		10.976218					
LA CARGA DE VE	ELOCIDAD ES HV	- =		6.140538			
EL PERIMETRO T	FOTAL ES P =		49.991196				
EL COEFICIENTE	E DE FRICCIÓN E	N b ES LAMb	0.026173				
EL COEFICIENTE	E DE FRICCIÓN E	N w ES LAMw	0.085148				
LA RUGOSIDAD I	RELATIVA PROM	IEDIO ES	0.058551				
EL COEFICIENTE	E DE FRICCIÓN E	SLAM =	0.066278				
LA LONGITUD DE	EL TRAMO ANAL	IZADO L =	811.000000				
LA PÉRDIDA DE CARGA ES hf =				22.113630)		
EQUIVALENCIA (EQUIVALENCIA CON LA FORMULA DE MANNING						
EL COEFICIENTE	e de manning e	S n =		0.036193			

RUGOS	SIDAD	PERIM	ETROS	ARI	EAS		
absoluta b(m)	absoluta w(m)	ZONA b	ZONA w	ZONA b	ZONA w		
0.02030	1.406860	14.0000	35.9912	22.6986	152.2706		
NO. REYNOLDS	TEMP	ERATURA	VISCO	OSIDAD CINE	MATICA		
1696117		20		0.00010000			
EL GASTO ES Q = 1988.300049							
EL AREA TOTAL		174.969193					
LA VELOCIDAD E	S V =	11.363715					
LA CARGA DE VE	LOCIDAD ES Hv	=		6.581754			
EL PERIMETRO 1	OTAL ES P =		49.991196				
EL COEFICIENTE	DE FRICCIÓN E	N b ES LAMb	0.026467				
EL COEFICIENTE	DE FRICCIÓN E	N w ES LAMw	0.091917				
LA RUGOSIDAD F	RELATIVA PROM	EDIO ES		0.068242			
EL COEFICIENTE	DE FRICCIÓN E	SLAM =		0.070782			
LA LONGITUD DE	EL TRAMO ANALI	ZADO L =		811.000000)		
LA PÉRDIDA DE (25.313305					
EQUIVALENCIA C	EQUIVALENCIA CON LA FORMULA DE MANNING						
EL COEFICIENTE	DE MANNING E	S n =		0.037402			

Ensaye AK34; d/D = 3; ver tabla (5.4)

RESULTADOS DE LOS PROGRAMAS SOLUCION AL CASO II RUGOSIDADES COMPUESTAS

Ensaye AL31; d/D = 3; ver tabla (5.4)

RUGOS	IDAD	PERIM	ETROS	AR	EAS	
absoluta b(m)	absoluta w(m)	ZONA b	ZONA w	ZONA b	ZONA w	
0.02030	0.035700	14.0000	35.9912	45.4838	129.4854	
NO. REYNOLDS	TEMP	ERATURA	VISC	OSIDAD CINE	EMATICA	
2183600		20		0.00010000		
EL GASTO ES Q	=			2559.760010		
EL AREA TOTAL I		174.969193				
LA VELOCIDAD E	S V =		14.629775			
LA CARGA DE VELOCIDAD ES Hv =				10.908782		
EL PERIMETRO T	OTAL ES P =			49.991196		
EL COEFICIENTE	DE FRICCIÓN EI	N b ES LAMb		0.021944		
EL COEFICIENTE	DE FRICCIÓN EI	N w ES LAMw		0.024810		
EL COEFICIENTE	DE DARCY ES L	AM =	0.024000			
LA RUGOSIDAD A	BSOLUTA PROM	IEDIO ES		0.031387	,	
LA RUGOSIDAD F	RELATIVA PROM	EDIO ES		0.002103	;	
LA LONGITUD DE	L TRAMO ANALIZ	ZADO L =	811.000000			
LA PÉRDIDA DE (CARGA ES hf =			14.225679	Ð	
EQUIVALENCIA C	ON LA FORMUL	A DE MANNIN	G			
EL COEFICIENTE	DE MANNING ES	Sn =		0.02177	9	

Ensaye AL32; d/D = 3; ver tabla (5.4)

RUGOSIDAD		PERIM	IETROS	AR	EAS
absoluta b(m)	absoluta w(m)	ZONA b	ZONA w	ZONA b	ZONA w
0.02030	0.179762	14.0000	35.9912	35.3325	139.6367
NO. REYNOLDS	TEMF	PERATURA	VISC	OSIDAD CIN	EMATICA
2215410		20		0.00010000	
EL GASTO ES Q	=			2597.050049)
EL AREA TOTAL	ESA =			174.969193	3
LA VELOCIDAD E	SV =			14.842899	9

LA CARGA DE VELOCIDAD ES Hv =	11.228932
EL PERIMETRO TOTAL ES P =	49.991196
EL COEFICIENTE DE FRICCIÓN EN b ES LAMb	0.023443
EL COEFICIENTE DE FRICCIÓN EN w ES LAMw	0.039836
EL COEFICIENTE DE DARCY ES LAM =	0.035000
LA RUGOSIDAD ABSOLUTA PROMEDIO ES	0.135105
LA RUGOSIDAD RELATIVA PROMEDIO ES	0.009052
LA LONGITUD DEL TRAMO ANALIZADO L $=$	811.000000
LA PÉRDIDA DE CARGA ES hf =	21.354628
EQUIVALENCIA CON LA FORMULA DE MANNING	
EL COEFICIENTE DE MANNING ES $n =$	0.026301

Ensaye AL33; d/D = 3; ver tabla (5.4)

RUGO	SIDAD	PERIM	IETROS	AR	EAS
absoluta b(m)	absoluta w(m)	ZONA b	ZONA w	ZONA b	ZONA w
0.02030	0.073253	14.0000	35.9912	40.9751	133.9941
NO. REYNOLDS	TEMF	PERATURA	VISC	OSIDAD CINI	EMATICA
2315387		20		0.00010000	
EL GASTO ES Q	=			2714.250000	
EL AREA TOTAL	ESA =			174.969193	•
LA VELOCIDAD E	ESV=			15.512731	
LA CARGA DE VI	ELOCIDAD ES Hv	=		12.265281	
EL PERIMETRO	TOTAL ES P =			49.991196	5
EL COEFICIENTE	E DE FRICCIÓN E	N b ES LAMb		0.022546	6
EL COEFICIENTE	E DE FRICCIÓN E	N w ES LAMw		0.030202	2
· EL COEFICIENTE	E DE DARCY ES L	-AM =		0.028000)
LA RUGOSIDAD	ABSOLUTA PRO	MEDIO ES		0.058423	3
LA RUGOSIDAD	RELATIVA PROM	EDIO ES		0.058423	3
LA LONGITUD DI	EL TRAMO ANALI	ZADO L =		811.00000	0
LA PÉRDIDA DE	CARGA ES hf =			18.66040	4
EQUIVALENCIA	CON LA FORMUL	A DE MANNIN	G		
EL COEFICIENTE	E DE MANNING E	S n =		0.02352	4

• Ensaye AL34; d/D = 3; ver tabla (5.4)

RUGOS	IDAD	PERIM	ETROS	AR	EAS	
absoluta b(m)	absoluta w(m)	ZONA b	ZONA w	ZONA b	ZONA w	
0.02030	0.073253	14.0000	35.9912	40.9751	133.9941	
NO. REYNOLDS	TEMP	PERATURA	VISC	OSIDAD CINI	EMATICA	
2093287		20		0.00010000		
EL GASTO ES Q	=			2453.889893		
EL AREA TOTAL	ESA =			174.969193		
LA VELOCIDAD ES V =				14.024697		
LA CARGA DE VELOCIDAD ES Hv =				10.025083		
EL PERIMETRO T	OTAL ES P =			49.991196		
EL COEFICIENTE	DE FRICCIÓN E	N b ES LAMb		0.022546		
EL COEFICIENTE	DE FRICCIÓN E	N w ES LAMw		0.030202		
EL COEFICIENTE	DE DARCY ES L	-AM =		0.028000		
LA RUGOSIDAD A	BSOLUTA PROM	VIEDIO ES		0.058423	3	
LA RUGOSIDAD F	RELATIVA PROM	EDIO ES		0.003914	ł	
LA LONGITUD DE	L TRAMO ANALI	ZADOL =		811.000000		
LA PÉRDIDA DE C	CARGA ES hf =			15.25216	6	
EQUIVALENCIA C	ON LA FORMUL	A DE MANNIN	G			
EL COEFICIENTE	DE MANNING E	S n =		0.02352	4	

Ensaye AD31; d/D = 3; ver tabla (5.4)

RUGOSIDAD PERIM		ETROS	AR	EAS	
absoluta b(m)	absoluta w(m)	ZONA b	ZONA w	ZONA b	ZONA w
0.02030	0.312274	14.0000	35.9912	31.8797	143.0895
NO. REYNOLDS	TEMF	PERATURA	VISC	OSIDAD CIN	EMATICA
2082121		20		0.00010000	
EL GASTO ES Q	=			2440.800049)
EL AREA TOTAL ES A =			174.969193		
LA VELOCIDAD E	S V =		13.949884		
LA CARGA DE VELOCIDAD ES Hv =			9.918413		
EL PERIMETRO TOTAL ES $P =$				49.991196	6
EL COEFICIENTE	DE FRICCIÓN E	N b ES LAMb		0.024098	В

EL COEFICIENTE DE FRICCIÓN EN W ES LAMW	0.048265
EL COEFICIENTE DE DARCY ES LAM =	0.041000
LA RUGOSIDAD ABSOLUTA PROMEDIO ES	0.230507
LA RUGOSIDAD RELATIVA PROMEDIO ES	0.015444
LA LONGITUD DEL TRAMO ANALIZADO L =	811.000000
LA PÉRDIDA DE CARGA ES hf =	22.095894
EQUIVALENCIA CON LA FORMULA DE MANNING	
EL COEFICIENTE DE MANNING ES $n =$	0.028466

Ensaye AD32; d/D = 3; ver tabla (5.4)

RUGOS	SIDAD	PERIME	TROS AREAS		
absoluta b(m)	absoluta w(m)	ZONA b	ZONA w	ZONA b	ZONA w
0.02030	0.312274	14.0000	35.9912	31.8797	143.0895
NO. REYNOLDS	TEMP	ERATURA	VISC	OSIDAD CINE	MATICA
2070946		20		0.00010000	
EL GASTO ES Q	=			2427.699951	
EL AREA TOTAL	ESA =			174.969193	
LA VELOCIDAD ES V =			13.875013		
LA CARGA DE VELOCIDAD ES Hv =			9.812232		
EL PERIMETRO TOTAL ES P =			49.991196		
EL COEFICIENTE	DE FRICCIÓN E	N b ES LAMb	0.024098		
EL COEFICIENTE	DE FRICCIÓN E	N w ES LAMw	0.048265		
EL COEFICIENTE	DE DARCY ES L	AM =	0.041000		
LA RUGOSIDAD A	BSOLUTA PROM	IEDIO ES		0.230507	
LA RUGOSIDAD F	RELATIVA PROMI	EDIO ES		0.015444	
LA LONGITUD DE	L TRAMO ANALI	ZADOL =	811.000000		
LA PÉRDIDA DE C	CARGA ES hf =			21.859346	3
EQUIVALENCIA C	ON LA FORMUL	A DE MANNING	;		
EL COEFICIENTE	DE MANNING ES	Sn =		0.028466	6

Ensaye AD33; d/D = 3; ver tabla (5.4)

RUGOSIDAD		PERIMETROS		AR	AREAS	
absoluta b(m)	absoluta w(m)	ZONA b	ZONA w	ZONA b	ZONA w	
0.02030	0.112455	14.0000	35.9912	38.2794	136.6898	

•

NO. REYNOLDS	TEMPERATURA	VISCOSIDAD CINEMATICA
2194980	20	0.00010000
EL GASTO ES Q =		2573.100098
EL AREA TOTAL ES A	=	174.969193
LA VELOCIDAD ES V	=	14.706018
LA CARGA DE VELOCI	DAD ES Hv =	11.022781
EL PERIMETRO TOTA	LESP =	49.991196
EL COEFICIENTE DE F	RICCIÓN EN b ES LAMb	0.022952
EL COEFICIENTE DE F	RICCIÓN EN w ES LAMw	0.034304
EL COEFICIENTE DE D	DARCY ES LAM =	0.031000
· LA RUGOSIDAD ABSO	LUTA PROMEDIO ES	0.086647
LA RUGOSIDAD RELA	TIVA PROMEDIO ES	0.005805
LA LONGITUD DEL TR	AMO ANALIZADO L =	811.000000
LA PÉRDIDA DE CARG	SA ES hf =	18.566856
EQUIVALENCIA CON L	A FORMULA DE MANNING	
EL COEFICIENTE DE M	MANNING ES n =	0.024752

Ensaye AD34; d/D = 3; ver tabla (5.4)

RUGOS	SIDAD	PERIM	ETROS	TROS AREAS		
absoluta b(m)	absoluta w(m)	ZONA b	ZONA w	ZONA b	ZONA w	
0.02030	0.073253	14.0000	35.9912	40.9751	133.9941	
NO. REYNOLDS	TEMP	ERATURA	VISCO	OSIDAD CINI	EMATICA	
2285914		20		0.00010000		
EL GASTO ES Q	=			2679.699951		
EL AREA TOTAL	ESA =			174.969193	}	
LA VELOCIDAD ES V =				15.315268		
LA CARGA DE VE	LOCIDAD ES Hv	2		11.955016		
EL PERIMETRO 1	TOTAL ES P =			49.991196		
EL COEFICIENTE	DE FRICCIÓN E	N b ES LAMb		0.022546		
EL COEFICIENTE	DE FRICCIÓN E	N w ES LAMw		0.030202		
EL COEFICIENTE	DE DARCY ES L	-AM =	0.028000			
LA RUGOSIDAD	ABSOLUTA PROM	MEDIO ES	0.058423			
LA RUGOSIDAD RELATIVA PROMEDIO ES				0.003914		
LA LONGITUD DE	EL TRAMO ANALI	ZADO L =		811.00000	0	

LA PÉRDIDA DE	ECARGA ES hf =			18.18836	6	
EQUIVALENCIA	CON LA FORMUL	A DE MANNIN	IG			
EL COEFICIENT	EL COEFICIENTE DE MANNING ES n =			0.02352	4	
Ensaye AK31;	d/D = 3; ver tabl	a (5.4)				
			IETROS	AR	EAS	
absoluta b(m)	absoluta w(m)	ZONA b	ZONA w	ZONA b	ZONA w	
0.02030	1.376802	14.0000	35.9912	22.8259	152.1433	
NO. REYNOLD	S TEMF	PERATURA	VISC	COSIDAD CIN	EMATICA	
1586244		20		0.00010000		
EL GASTO ES (2 =			1859.500000		
EL AREA TOTA	LESA =			174.969193	3	
LA VELOCIDAD	ES V =			10.627585	5	
LA CARGA DE V	/ELOCIDAD ES Hv			5.75665	5	
EL PERIMETRO	TOTAL ES P =			49.991196	6	
EL COEFICIENT	TE DE FRICCIÓN E	N b ES LAMb		0.026425	5	
EL COEFICIENT	TE DE FRICCIÓN E	N w ES LAMw	,	0.090920	D	
EL COEFICIEN	TE DE DARCY ES I	_AM =		0.070140	C	
LA RUGOSIDAE) ABSOLUTA PRO	MEDIO ES		0.996915		
LA RUGOSIDAE	O RELATIVA PROM	IEDIO ES		0.066792		
LA LONGITUD [DEL TRAMO ANAL	IZADO L =		811.00000	0	
LA PÉRDIDA DE	E CARGA ES hf =			21.93923	2	
EQUIVALENCIA	CON LA FORMUL	A DE MANNIN	IG			
	LE DE MANNING E	:S n =		0.03723	2	

Ensaye AK32; d/D = 3; ver tabla (5.4)

RUGOSIDAD		PERIM	PERIMETROS		AREAS	
absoluta b(m)	absoluta w(m)	ZONA b	ZONA w	ZONA b	ZONA w	
0.02030	1.315633	14.0000	35.9912	23.0958	151.8734	
NO. REYNOLDS	TEMF	PERATURA	VISC	OSIDAD CIN	EMATICA	
1570889		20		0.00010000		
EL GASTO ES Q	=			1841.500000)	
EL AREA TOTAL	ESA =			174.969193	3	

LA VELOCIDAD ES V =	10.524710
LA CARGA DE VELOCIDAD ES Hv =	5.645745
EL PERIMETRO TOTAL ES P $=$	49.991196
EL COEFICIENTE DE FRICCIÓN EN b ES LAMb	0.026337
EL COEFICIENTE DE FRICCIÓN EN w ES LAMW	0.088875
EL COEFICIENTE DE DARCY ES LAM =	0.068770
LA RUGOSIDAD ABSOLUTA PROMEDIO ES	0.952876
LA RUGOSIDAD RELATIVA PROMEDIO ES	0.063841
LA LONGITUD DEL TRAMO ANALIZADO L =	811.000000
LA PÉRDIDA DE CARGA ES hf =	21.096273
EQUIVALENCIA CON LA FORMULA DE MANNING	
EL COEFICIENTE DE MANNING ES n =	0.036867

Ensaye AK33; d/D = 3; ver tabla (5.4)

RUGOSIDAD		PERIMETROS		ARE	AREAS	
absoluta b(m)	absoluta w(m)	ZONA b	ZONA w	ZONA b	ZONA w	
0.02030	1.226080	14.0000	35.9912	23.5157	151.4535	
NO. REYNOLDS	REYNOLDS TEMPERATURA		VISCOSIDAD CINEMATICA			
1638280		20		0.00010000		
EL GASTO ES Q =			1920.500000			
EL AREA TOTAL ES A =			174.969193			
LA VELOCIDAD ES V =			10.976218			
LA CARGA DE VELOCIDAD ES Hv =			6.140538			
EL PERIMETRO TOTAL ES P =			49.991196			
EL COEFICIENTE DE FRICCIÓN EN b ES LAMb			0.026204			
EL COEFICIENTE DE FRICCIÓN EN W ES LAMW			0.085838			
EL COEFICIENTE DE DARCY ES LAM =			0.066750			
LA RUGOSIDAD ABSOLUTA PROMEDIO ES			0.888402			
LA RUGOSIDAD RELATIVA PROMEDIO ES			0.059522			
LA LONGITUD DEL TRAMO ANALIZADO L $=$			811.000000			
LA PÉRDIDA DE CARGA ES hf =			22.271179			
EQUIVALENCIA C	ON LA FORMUL	A DE MANNING	6			
EL COEFICIENTE	DE MANNING E	S n =		0.036321		

.

Ensaye AK34; d/D = 3; ver tabla (5.4)

RUGOSIDAD		PERIMETROS		AREAS			
absoluta b(m)	absoluta w(m)	ZONA b	ZONA w	ZONA b	ZONA w		
0.02030	1.464835	14.0000	35.9912	22.4587	152.5105		
NO. REYNOLDS	NO. REYNOLDS TEMPERATURA		VISC	VISCOSIDAD CINEMATICA			
1696117		20		0.00010000			
EL GASTO ES Q =				1988.300049			
EL AREA TOTAL ES A =				174.969193			
LA VELOCIDAD ES V =				11.363715			
LA CARGA DE VELOCIDAD ES Hv =				6.581754			
EL PERIMETRO TOTAL ES P =				49.991196			
EL COEFICIENTE DE FRICCIÓN EN 6 ES LAM6				0.026546			
EL COEFICIENTE DE FRICCIÓN EN W ES LAMW				0.093824			
EL COEFICIENTE DE DARCY ES LAM =				0.072050			
LA RUGOSIDAD ABSOLUTA PROMEDIO ES				1.060294			
LA RUGOSIDAD RELATIVA PROMEDIO ES				0.071038			
LA LONGITUD DEL TRAMO ANALIZADO L $=$				811.000000			
LA PÉRDIDA DE CARGA ES hf =				25.766838			
EQUIVALENCIA C	ON LA FORMUL	A DE MANNIN	G				
EL COEFICIENTE	DE MANNING E	S n =		0.03773	6		

•

CAPÍTULO 6

CONCLUSIONES Y RECOMENDACIONES

CAPÍTULO 6 Conclusiones y recomendaciones

6 Conclusiones y recomendaciones.

En este capítulo se presenta un resumen de los resultados obtenidos y se plantean actividades e investigaciones futuras que permitan reforzar los esquemas presentados y que al mismo tiempo, ayuden a comprender algunos fenómenos presentados durante el desarrollo de la investigación; como es el caso de la caída del gradiente de presión en túneles largos con mediana o escasa pendiente.

6.1 Conclusiones generales.

Las obras de desvío se consideran como obras de carácter temporal cuyo objetivo es desviar el agua de la zona de construcción para llevar a cabo los trabajos de cimentación (desplante) y cuerpo de la cortina, así como, sus obras complementarias, no obstante, y aunque dichas obras siguen siendo de carácter temporal, en la actualidad, se les ha dado una especial atención en cuanto a su diseño se refiere. Para llevar a cabo el diseño, se empleaba el análisis determinístico y con ello se obtenía la capacidad del desvío en forma conjunta (túneles y ataguías). La tendencia actual, es realizar los diseños con criterios probabilísticos a partir de la teoría de la confiabilidad y del método del segundo momento estadístico al considerar como aleatorias algunas variables de diseño, ya que se asocian los niveles constructivos con los riegos de falla, como ha quedado demostrado por (Marengo, 1998), en Aguamilpa.

Cualquiera que sea el método de análisis adoptado (determinístico o probabilístico), una de las variables a considerar, es el coeficiente de rugosidad de la estructura: un solo tipo de rugosidad o rugosidad compuesta (concreto hidráulico, concreto lanzado o roca).

Del estudio teórico.

Para dar cumplimiento al primer inciso del objetivo general de la tesis, en el capítulo 3 se presentó el estudio teórico, donde se trató en principio la rugosidad superficial de un túnel excavado con barrenos y explosivos; asimismo, se

Capítulo 6

consideraron los métodos mas importantes para estimar la pérdida de carga originada por los esfuerzos cortantes en túneles sin revestir. Al respecto, es importante mencionar que los métodos se presentan únicamente como información teórica, ya que para aplicarlos se requiere de información de campo que es difícil de obtener.

Como resultado del estudio teórico solo se hizo la aplicación de los criterios desarrollados en el subcapítulo (3.4, pág. 42), cuyos resultados difieren de los obtenidos experimentalmente cuando el túnel trabaja como canal y a presión; páginas 200 a la 205, y de la 209 a la 214, respectivamente. Las diferencias en los resultados son más que evidentes, dado que los criterios teóricos de hecho son equivalentes únicamente varían el exponente de sus términos, mientras que en el estudio experimental; además de considerar la forma de operar el túnel (canal, orificio, túnel lleno), intervienen otros fenómenos como son: la incorporación de aire, caída del gradiente de presión, fenómenos de tipo local, y el efecto de escala. Al aplicar los métodos teóricos, cuando se tienen pendientes suaves, se obtienen coeficientes de rugosidad menores a los registrados en el modelo y cuando la pendiente es mayor, los resultados tienden a los experimentales.

Actualmente, se esta llevando a cabo un análisis estadístico tendiente a encontrar los exponentes que puedan corregir los términos de los criterios expuestos, o en su defecto proponer uno nuevo para que los resultados que se obtengan - concuerden con los experimentales. En este trabajo no se incluye dicho análisis.

En todo el desarrollo experimental se aplicó el criterio de Nikuradse, adicionalmente, se consideró la metodología de (Elfman, 1991), que tiene como base las hipótesis de (Czarnota, 1986); específicamente los casos I y II que tratan de la solución a casos prácticos. En este caso, a partir de los registros de experimentales, se emplearon los programas elaborados por (Marengo, 2004) con el objeto de verificar los casos anteriores al compararlos con los obtenidos en el modelo. Los resultados se muestran en las tablas (5.5 y 5.6); págs. 241 y 242.

De las tablas anteriores, se observa que se obtiene en ambos casos prácticamente el mismo resultado y concuerdan con los experimentales. Es importante aclarar que los dos casos son válidos para túnel a presión.

6.2 Conclusiones respecto al estudio experimental.

Se estudiaron los modelos indicados en la tabla (4a), pág. 69 con la combinación de pendientes y para diferentes relaciones de llenado d/D; 7 modelos en total; los cuatro primeros con el objeto de obtener la rugosidad total de los materiales ensayados y los tres restantes al combinarlos, manteniendo siempre acrílico en la plantilla que hizo las veces de concreto hidráulico, obtener la rugosidad compuesta.

Del proceso de registros, se determinaron las siguientes variables:

 Los perfiles longitudinales del flujo al considerar diferentes relaciones de llenado d/D y que se presentan en forma adimensional en el anexo 1, pág. 75, al relacionar los parámetro d/D contra L/D.

Los coeficientes de rugosidad; Manning, Darcy y Nikuradse.

Se obtuvieron a partir de los perfiles del flujo, al plantear la ecuación de la energía entre las secciones 12D y 46D, ver (fig. 5.1, pág. 188) y (ec. 2.28, pág. 23), al considerar $\alpha_1 = \alpha_2 = 1$, con el objeto de conocer la pérdida de carga que ocurría entre las dos secciones, y posteriormente calcular la pendiente de energía que en combinación con la ecuación de Manning (ec. 2.38, pág. 25) se evaluarón los coeficientes de rugosidad de los materiales y al aplicar la ecuación de Darcy-Weisbach, (ec. 2.20, pág. 19) se obtuvieron los coeficientes de pérdida de carga por cortante, *f*, y finalmente con el criterio de Nikuradse (ec. 3.25, pág. 45), se determinó la rugosidad relativa k/D o tamaño equivalente del grano o rugosidad absoluta *K*.

Los coeficientes de resistencia obtenidos fueron variables y dependía entre otros factores de la pendiente del túnel y de la relación de llenado d/D. En la tabla (4b, pág. 72), se muestran los valores que fueron obtenidos para de d/D = 3 y en la última columna de la tabla, sus valores medios. En la pág. 193, se muestra nuevamente la misma tabla; solo que en este caso, se presentan en función al gasto medio.

En la tabla (5.1, pág. 192), se comparan los resultados obtenidos con los modelos de Czarnota, al considerar diferentes revestimientos en el túnel.

En las figuras (5.2 y 5.3, pág. 191), se presentan los coeficientes de pérdida de carga en función del número de Reynolds para la rugosidad total y compuesta respectivamente. Al analizar las figuras, se concluye lo siguiente:

- Todos los ensayes fueron realizados para números de Reynolds en el rango de 2 x 10⁴ < R_e < 3 x 10⁵
- El coeficiente de pérdida de carga osciló en el intervalo 0,017 < f < 0,095.
- La rugosidad absoluta entre 0,129 < k < 12,120 mm.

Las curvas de elevaciones-gastos

Se presentaron en forma adimensional al relacionar los parámetros d/D contra Qn/D^{8/3}. En el anexo 3, (pág. 124) se muestran las tablas y graficas correspondientes al considerar los siete modelos y las pendientes del túnel. En la tabla (5.2, pág. 195), se indican los resultados y las graficas al considerar la aplicación al túnel 2 de la obra de desvío del P.H. El Cajón con una pendiente geométrica de So = 0,008. Al analizar la tabla y grafica, se concluye que; de haber tomado la decisión de no revestir el túnel, este tendría una capacidad máxima de descarga de 1733 m³/s (modelo 4). En cambio, si se hubiera revestido en su totalidad con concreto hidráulico, la descarga máxima sería de 3084 m³/s (modelo 1); con un aumento del 77% en su capacidad, sin embargo, esta decisión resulta muy cara. Lo que es mas común, es considerar la plantilla de concreto hidráulico y muros y bóveda revestidos de concreto lanzado; que es la combinación del modelo 1 con el modelo 3, que dan origen al modelo 6, con una descarga máxima de 2711 m³/s al compararlo con el modelo 4, tiene un aumento en su capacidad de descarga del 56%.

Los coeficientes de descarga.

Se calcularon al plantear la ecuación de la energía entre las secciones -2D y 60D. Se representan de forma adimensional al relacionar el coeficiente de descarga Cd contra el parámetro Qn/D^{8/3}, en el anexo 4, pág. 131; se muestran en forma tabulada y su grafica correspondiente. En las figuras (5.4 y 5.5, pág. 197) se
Capítulo 6

presentan en forma resumida para los modelo del 1 al 4, rugosidad total y para los modelos 5 al 7, rugosidad compuesta, respectivamente.

5. Las pérdidas de carga por entrada.

Se determinaron al resolver la ecuación de la energía entre las secciones -2D y 3D que incluye la lumbrera para obturadores con el objeto de conocer la pérdida de carga por efecto de la geometría de entrada y de la lumbrera. Como la pérdida de carga es directamente proporcional a un coeficiente que depende de la geometría de entrada y de la carga de velocidad o energía cinética y esta última, de la rugosidad y pendiente del túnel y por supuesto de la relación de llenado d/D; entonces, se obtuvieron como resultado coeficientes de pérdida " K_e " variables. En el anexo 5, se presentan en forma tabulada y grafica para cada modelo y pendiente en el túnel, y en las figuras (5.6 y 5.7, pág. 198) en forma resumida, obteniendo los siguientes valores medios.

- K_e = 0,175 → (modelo 1)
- K_e = 0,157 ⇒ (modelo 2)
- K_e = 0,245 → (modelo 3)
- K_e = 0,517 → (modelo 4)
- K_e = 0,236 → (modelo 5)
- K_e = 0,311 → (modelo 6)
- K_e = 0,419 → (modelo 7)
- Caída del gradiente de presión en el túnel y su ubicación con respecto al portal de entrada.

En este punto no se hace ningún comentario adicional, únicamente se confirma lo descrito en los suncapítulos (4.4.6 y 4.4.7, pág. 73) del estudio experimental.

7. Los perfiles del No. de Froude para ubicar la sección de control.

Con objeto de que fuera ilustrativo el fenómeno de la caída del gradiente de presión y para observar a que distancia el flujo cambiaba de régimen, se tomó la decisión de calcular el número de Froude en cada sección de registro y presentarlo de manera grafica con el parámetro L/D. De esta manera y dado que

Capítulo 6

Conclusiones y recomendaciones

una vez que el gradiente de presión se encuentra por debajo de la clave del túnel, el flujo se acelera, como ya se comentó en el subcapítulo (4.4.8, pág. 74), entonces los números de Froude se calcularon para todas las relaciones de llenado. En el anexo 8, pág. 180, se muestran dichos cálculos. De un análisis detallado de esas graficas, se observan las relaciones de llenado en que el túnel trabaja en régimen subcrítico y aquellas para supercrítico, asimismo, se observa la distancia a la que ocurre el cambio de régimen y también la caída del gradiente cuando el flujo es acelerado.

6.3 Recomendaciones para investigaciones futuras.

De los resultados obtenidos y debido a los efectos de escala que resultan entre modelo y prototipo se recomienda en primera instancia, instrumentar la obra de desvío del P.H. El Cajón con el objeto de conocer el comportamiento hidráulico general y lo que es mejor aún, conocer, el o los coeficientes de rugosidad obtenidos a partir de registros de campo.

Para cumplir con el objetivo anterior y con el objeto de no interferir con los trabajos de ejecución de la obra, se recomienda que dicha instrumentación consista en:

- Construir escalas (pintar) en las ataguías de aguas arriba y abajo del cauce, hasta la corona de las mismas.
- Construir escalas (pintar) en los portales de entrada y salida de los túneles y canales de llamada y descarga, respectivamente.
- Obtener registros de gastos de la estación hidrométrica "La Playa" diariamente con intervalos de tiempo de cada 6 hrs., es decir los gastos que estén pasando a las (6, 12 y 18 hrs.).
- Asociar los gastos registrados en el punto anterior con los niveles del agua leídos en cada una de las escalas descriptas anteriormente.

Los resultados de los coeficientes de rugosidad obtenidos con el procesamiento de los registros anteriores dependerán en buena medida de la precisión con que

Capítulo 6

Conclusiones y recomendaciones

se tomen dichos registros, por lo que se recomienda que la persona que va a tomar los registros, tenga conocimientos mínimos de hidráulica, además, se recomienda el uso de cámara digital y/o binoculares, que faciliten la lectura de las escalas; ya que en la mayoría de los casos, dicha lectura, se hará de la margen opuesta del canal o incluso del propio cauce.

Asociar los gastos de la estación "La Playa" con lo niveles del agua registrados en las escales en el sitio del proyecto es una actividad difícil de realizar, sobre todo por la distancia a la que se encuentra ubicada la estación hidrométrica (43 km) del proyecto, en cuyo trayecto, seguramente se encuentran afluentes (tributarios) que aportan un gasto adicional al registrado en la estación hidrométrica. Además, se tienen que considerar el tiempo de traslado de la onda, en este caso, se recomienda utilizar la teoría de la onda viajera.

Una vez asociado el gasto, resolver el problema parece ser tarea fácil, siempre y cuando trabaje solo uno de los túneles, (túnel 1), la situación se complica cuando trabajan ambos túneles, sobre todo porque no se tiene bien precisado el gasto y sí a esto se le suman problemas de tipo local como son (fuertes depresiones del flujo, resaltos hidráulicos asociados a cambio de régimen, turbulencias, etc.). Entonces, como segunda instancia, se recomienda construir un nuevo modelo (modelo ocho), que permita facilitar la labor de campo; es decir una vez construido el modelo físico, se representarían las condiciones de frontera (aguas arriba y abajo) de la estructura y con ello se podría conocer el gasto que estaría circulado a través de la estructura para esa condición hidráulica en particular. Conocido el gasto y el resto de las variables hidráulicas (velocidad, presión, rugosidad, etc.), se haría el cambio de pendiente para simular el (túnel 2) bajo las mismas condiciones de frontera. El gasto total será igual a la suma de los gastos de ambos túneles.

Finalmente, se recomienda construir un modelo a escala mas chica donde se llevarían a cabo algunos ensayes que nos permitan inferir los efectos de escala entre los modelos anteriores con este último, con el objeto de corregir o en su caso proponer un nuevo criterio para el estudio de la rugosidad compuesta cuando el túnel trabaje como canal, ya que los resultados que aquí se presentan, con los distintos criterios teóricos, difieren hasta en un 20% (menor) a los obtenidos por el método experimental.

ESTUDIO EXPERIMENTAL EN TÚNELES DE SECCIÓN PORTAL CON RUGOSIDAD COMPUESTA PARA OBRAS DE DESVÍO

BIBLIOGRAFIA

BIBLIOGRAFÍA

- Alcides L. M., HIDRÁULICA DE CANALES. Ed. Pueblo y educación, Cd. De La Habana, Cuba, 1999.
 - 2 Cortés C. Camargo H., P.H. EL CAJÓN, "FUNCIONAMIENTO DE LA OBRA DE DESVÍO, EN MODELO HIDRÁULICO", C.F.E., Laboratorio de Hidráulica, reporte de avance, 2003.
 - 3 Comisión Federal de Electricidad, PROYECTO HIDROELÉCTRICO EL CAJÓN, Nayarit., Tríptico, Mayo 2003.
 - 4 Chow Ven Te., OPEN-CHANNEL HYDRAULICS. Internacional Student Edition, Tokio, Japan, 1981.
 - 5 Elfman Sten., ROCK TUNNELS FOR HYDROPOWER, Royal Institute of Technology, Suecia, 1991.
 - 6 Guaycochea D., FLUJO EN TUBERÍAS A PRESIÓN, UAM-Azcapotzalco, México, D.F., 1992.
 - 7 Huval J. C., HYDRAULIC DESIGN OF UNLINED ROCK TUNNELS. Journal of the Hydraulics Division. Proceedings of the American Society of Civil Engineers, July, 1969.
 - 8 Kumar Garnayak M., HYDRAULIC HEAD LOSSES IN AN UNLINED PRESSURE TUNNEL OF A HIGH HEAD POWER PLANT, École Polytechnique Fédérale de Lausanne, 1999.
 - 9 López Ferrer F.J., "TEORÍA DE LA CONFIABILIDAD APLICADA AL DISEÑO DE OBRAS DE DESVÍO EN PRESAS" Tesis de Licenciatura, Universidad Nacional Autónoma de México, 1999.
 - 10 Lewandowsky R. E., DISEÑO DE PRESAS PEQUEÑAS, Bureau of Reclamation "Derivación de las Corrientes Durante la Construcción de las Presas", Cia. Ed. Continental, S. A. de C. V., México, 1985.
 - 11 Lozoya Julio et. al., MANUAL DE DISEÑO DE OBRAS CIVILES, Hidrotecnía. A.2.1.2 Obras de Desvío, C.F.E- I.I.E., México, D.F., 1983.
 - 12 Marsal J. R. et. al., PRESAS DE TIERRA Y ENROCAMIENTO, Ed. Limusa, 1975.

- 13 Marengo Mogollón, H., EVENTOS EXTREMOS DE 1999 EN EL SURESTE MEXICANO. "Actualización del análisis hidrológico del complejo hidroeléctrico Grijalva, en Chiapas, Ingeniería Hidráulica en México, volumen XVIII, núm. 4, pp. 87-118, octubre-diciembre del 2003.
- 14 Marengo Mogollón, H. ANÁLISIS DEL RIESGO DE FALLA POR DESBORDAMIENTO DE LAS OBRAS DE CONTENCIÓN DEL P.H. AGUAMILPA DURANTE LAS AVENIDAS EXTRAORDINARIAS DE ENERO, 1992, Documento de ingreso a la Academia Mexicana de Ingeniería, México D.F. 1998.
- 15 Marengo Mogollón, H., ANÁLISIS DE RIESGO DE FALLA EN PRESAS DE TIERRA Y ENROCAMIENTO ANTE AVENIDAS, Tesis Doctoral, U.N.A.M., Cd. Universitaria, México, D.F., 1994.
- 16 Marengo M. H., PROGRAMAS PARA EL CÁLCULO DE PERFILES HIDRÁULICOS EN TÚNELES DE CONDUCCIÓN A SUPERFICIE LIBRE EN SECCIONES BAÚL CONSIDERANDO RUGOSIDADES COMPUESTAS. No. de registro obras con derecho de autor. 03-2001-0829113958800-01, México D.F. 2001.
- 17 Marengo Mogollón, H. PROGRAMAS PARA EL CÁLCULO DEL COMPORTAMIENTO HIDRÁULICO EN TÚNELES DE CONDUCCIÓN FUNCIONANDO A TUBO LLENO CONSIDERANDO RUGOSIDADES COMPUESTAS. No de registro obras con derecho de autor. 03-2004-070612272900-01., México, D.F. 2004.
- 18 Priha Seppo., HYDRAULIC PROPERTIES OF SMALL UNLINED ROCK TUNNELS. Journal of the Hydraulics Division. Proceedings of the American Society of Civil Engineers, July, 1969.
- 19 Roberson A.J. et. al., MECÁNICA DE FLUÍDOS, Ed. McGrawHill, Segunda edición, México, D.F., 1991.

- 20 Reinius Erlin., HEAD LOSSES IN UNLINED ROCK TUNNELS. Water Power July/Ausgust, 1970.
- 21 Sotelo A. G., APUNTES DE HIDRÁULICA II. Facultad de Ingeniería, UNAM. México, D.F., 1997.
- 22 Sotelo Avila G., HIDRÁULICA GENERAL VOLUMEN I FUNDAMENTOS; Limusa 1979, México, D.F.
- 23 Streeter L. V. et al., MECÁNICA DE LOS FLUIDOS, 3ra. edición, Ed. McGrawHill, México, D.F., 1988.
- 24 Torres Herrera F., OBRAS HIDRÁULICAS, Editorial Limusa, 1980.
- 25 W. Daily J. et. al., DINÁMICA DE LOS FLUIDOS CON APLICACIONES EN INGENIERÍA, Ed. Trillas, México, D.F., 1975.
- 26 W. Fox R. et al., INTRODUCCIÓN A LA MECÁNICA DE FLUIDOS, Ed. McGrawHill, México, D.F., 1989.