

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

> INSTITUTO DE ECOLOGIA POSGRADO EN CIENCIAS BIOLOGICAS

HISTORIA EVOLUTIVA DEL GENERO ABIES EN EL SUR DE MEXICO Y GUATEMALA: ESTRUCTURA GENETICA Y FLUJO GENICO.

Т		Ε		(5	Ι		S
QUE	PARA	OBTE	NER	El. C	GRADC	ACA	DEMICC) DE
DC	ост	ORA		ΕN	4 1	со	LOG	IA
Ρ	R	Е	S	E	N	Т	А	:
ER	IKA	۵	G		RE	ΡL	ANT	ER

DIRECTOR DE TESIS: DR. LUIS ENRIQUE EGUIARTE FRUNS

MEXICO, D. F.

FEBRERO DEL 2005

m: 341215

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

AGRADECIMIENTOS

Quiero agradecer en primer lugar al Dr. Luis Eguiarte, el director de esta tesis por toda su enseñanza, su paciencia durante tanto tiempo y su gran inteligencia en todos aspectos.

Al Dr. Daniel Piñero por su disposición a ayudarme, apoyarme y a resolver todas mis dudas y también por su amistad y sabios consejos. Al Dr. Furnier sin el cual hubiera sido muy difícil obtener el material para realizar la tesis y por su gran colaboración y apoyo principalmente al principio del trabajo.

A Andrés Keiman, Yolanda Nava, Patricia Delgado, Aldo Valera, Rodolfo Salas y Elleli Huerta por su ayuda en la recolección de material en el campo. A Rodrigo González, Eduardo Morales, Silvia Guzmán, Oliva Godínez, Aldo Valera y Laura Espinosa por su importante ayuda en el laboratorio durante distintas etapas del trabajo. A Alan Kelly y Justin Hicks por su asistenia técnica en el laboratorio durante mi estancia en la Universidad de Oregon y al Dr. John Willis y Dr. Michael Lynch por permitirme trabajar en sus laboratorios durante dicha estancia.

A Ariel Alvarez, Leigh Latta y Sue Ratner por su ayuda en el análisis de datos. Al comité tutorial (Dr. Luis Eguiarte, Dr. Daniel Piñero, Dr. Glenn Furnier), al Dr. Francisco Molina, Dr. Eduardo Morales y Dra. Sara Good por revisar y aportar comentarios importantes en distintas partes de esta tesis durante su realización.

Al resto de los revisores y sinodales: Drs. Alejandro Casas, Rafael del Castillo, David Gernandt, Francisco Molina y Ella Vázquez por sus correcciones y comentarios, los cuales enriquecieron el trabajo.

A todos mis compañeros del laboratorio de Evolución Molecular y Experimental: Arturo Silva, Laura Espinosa, Martha Rocha, Aldo Valera, Claudia Silva, Salvador Montes, Jordan Golubov, Amanda Castillo, Ana Noguez, Ana Escalante, Rodrigo González. René Cerritos, Andrea, Citiali y Toño con los cuales compartí mucho tiempo durante mi estancia en este laboratorio. Quiero agradecer especialmente a la Dra. Valeria Souza por su cariño, apoyo y su gran humor. Agradezco de manera especial a mis compañeros más cercanos del doctorado con los cuales pasé momentos muy divertidos y a veces estresantes: Elleli Huerta, Miguel Angel Soto, Arturo Silva, Ernesto Vega y Roberto Linding.

Quiero agradecer también a mis padres, Estela Planter, Esteban Aguirre y Ulises Beltrán y a mis hermanas Paola Aguirre e Ira Beltrán, los cuales siempre han tenido una gran confianza en mi, aún en las etapas más difíciles. Por último agradezco a mi esposo Eduardo Morales por toda su comprensión, apoyo y aliento durante el desarrollo de esta tesis y por hacerme feliz. Agradezco a mis hijas Emilia y Regina, las cuales me han dado la mayor felicidad de la vida.

Este trabajo se llevó acabo gracias al apoyo económico de la Comisión Nacional para el Uso de la Biodiversidad (CONABIO proyecto B138), CONACYT (proyecto 27983-N) y PADEP-UNAM.

Autorizo a la Dirección General de Bibliotecas de la UNAM a difundir en formeto electrónico e impreso al mi. trabain NOMERE DCIODAL FECHA: FIRMA:

INDICE

-Agradecimientos	
-Indice	1
-Resumen	3
-Abstract	4
Capitulo 1. Introducción	
Objetivo de la Tesis	5
 Genética de Poblaciones de Coníferas 	6
Flujo Génico	8
Métodos Genealógicos	13
Especies de Estudio	16
Tablas y Figuras	19
Literatura Citada	29

Capítulo 2. Low levels of genetic variation within and high levels of genetic differentiation among populations of species of *Abies* from southern Mexico and Guatemala.

•	Abstract	33
•	Introduction	33
•	Materials and Methods	34
•	Results	34
•	Discussion	36
•	Literature Cited	40

Capitulo 3. Phylogeography of *Ables* from southern Mexico and Guatemala: evidence of isolation by distance.

.

Abstract	44
Introduction	45
Materials and Methods	47
Results	52
	Abstract Introduction Materials and Methods Results

Discussion	55
Literature Cited	64
Tables and Figures	69
-Discusión General y Conclusiones	84

.

RESUMEN

Se analizaron los efectos de la distribución espacial y de factores históricos como la fragmentación del hábitat y aislamiento poblacional sobre la estructura genética de las poblaciones de Abies quaternalensis, A. religiosa, A. hickeli y A. flinckii, especies distribuidas en el sur de México y Guatemala. Para realizar este análisis se utilizaron marcadores biparentales/nucleares, como las isoenzimas, y microsatélites de cloroplasto que poseen una herencia paterna en las Pinaceae. Se encontraron niveles relativamente bajos de diversidad genética para 16 loci isoenzimáticos (con un rango de H_o promedio de 0.060 para A, quaternalensis a 0.113 para A. flinckii). En la mayoría de los casos se encontró un exceso de nomócigos (con un rango de Fis promedio de 0.074 en A. flinckii a 0.235 en A. guatemalensis) y niveles relativamente altos de diferenciación entre poblaciones, dentro de cada especie (con un rango de $\theta = F_{st}$ promedio de 0.073 en A. hickeli a 0.271 en A. flinckii). Los niveles de flujo génico encontrados fueron relativamente bajos (con un rango de Nm promedio de 0.672 en A. flinckii a 3,17 en A. hickeli). En el análisis de loci polimórficos de microsatélites de cloroplasto (cpSSRs) se detectaron 51 haplotipos diferentes, basándose en dos cpSSRs y se encontraron niveles altos de diversidad genética (con un rango de He promedio de 0.75 para A. flinckii a 0.95 para A. hickeli). Se estimaron niveles relativamente altos de flujo génico (con un rango de Nm promedio de 3.32 para A. guatemalensis a 16.74 para A. flinckii).

La historia evolutiva de las especies estudiadas se analiza con los resultados obtenidos. Los datos sugieren que el polen puede ser el agente primario de flujo génico, que las especies de *Abies* estudiadas divirgieron recientemente y que, con la excepción de *A. flinckii*, aún no presentan una clara separación a nivel molecular.

ABSTRACT

We analysed the effects of spatial distribution and historical factors such as habitat fragmentation and isolation of populations in the genetic structure of Abies quatemalensis, A. religiosa, A. hickeli and A. flinckii, species distributed in southern Mexico and Guatemala, Biparental/nuclear markers, such as isozvme markers and chloroplast markers, which are paternally inherited in Pinaceae were used in these analysis. Genetic diversity within populations was relatively low, measured for 16 isozyme loci (mean H_o ranging from 0.060 for A. guatemalensis to 0.113 for A. flinckii). Populations in most cases had an excess of homozygosity (mean F_{is} ranging from 0.074 in A. flinckii to 0.235 in A. guatemalensis) and high levels of among population differentiation within each species ($\theta = F_{st}$ ranging from 0.073 in *A. hickeli* to 0.271 in *A.* flinckii). Estimated levels of gene flow are relatively low (Nm ranging from 0.672 in A. flinckii to 3.17 en A. hickeli). In paternally inherited polymorphic chloroplast microsatellites (cpSSRs) a total of 51 haplotypes were detected based on two cpSSRs and high levels of diversity were found (mean He ranging from 0.75 for A. flinckii to 0.95 for A. hickeli). Estimated levels of gene flow were relatively high (Nm ranging from 3.32 for A. guatemalensis to 16.74 for A. flinckil).

The evolutionary history of the species studied is analyzed in the light of the results. The data suggest that pollen might be the primary agent of gene flow, and that the *Abies* species studied are recently derived, and with the exception of *A. flinckii*, they are still not clearly differentiated at the molecular level.

INTRODUCCIÓN

Actualmente se reconocen entre 39 y 55 especies de Abies en el mundo, (Rushforth 1989, Liu 1971, Farjon 1990, 1998), ocho de las cuales se encuentran en México, siendo seis de ellas endémicas. En el sur de México las especies de Abies se encuentran distribuidas en zonas de alta montaña, en poblaciones relativamente aisladas, separadas entre sí por varios kilómetros. Esta distribución parece estar influenciada por un periodo de calentamiento que siguió a la glaciación del Pleistoceno (Aguirre-Planter et al. 2000). Durante la última glaciación (~20 000 años antes del presente, AP) el clima en México era más frío (Lozano-García 1993), la temperatura era aproximadamente 6°C menor que en la actualidad (Vázquez-Selem y Heine 2004), lo que pudo favorecer la expansión de bosques de Abies. Existe evidencia paleobotánica y paleoclimática de que entre 12 500 y 9 000 años AP, al final del Pleistoceno, los bosques templados tuvieron su máximo desarrollo (Lozano-García 1993, Vázquez-Selem y Heine 2004). Por otro lado, Stute et al. (1995) encontraron evidencia fósil de que los límites del bosque templado estaban a unos 1000 m por debajo de su posición actual durante el último máximo glacial en el sureste de Estados Unidos. Esto sugiere que en México, durante la última glaciación, las especies templadas tuvieron una distribución más amplia que en el presente y las poblaciones de Abies pudieron haber estado en contacto (Aguirre-Planter et al. 2000). Posteriormente, después de 9000 años AP (incluyendo el presente), hubo un periodo de calentamiento y cuando la temperatura empezó a incrementarse la distribución de especies templadas se contrajo, ya que sus hábitats se hicieron más restringidos y fragmentados. Las poblaciones aisladas que encontramos en la actualidad pueden ser resultado de esta fragmentación, y probablemente muchas de ellas estuvieron conectadas entre sí en el pasado, lo que pudo haber influenciado significativamente la historia evolutiva y ecológica del género Abies en el sur de México.

Objetivo de la tesis

El objetivo general de esta tesis es analizar el efecto que tiene la distribución espacial de las especies y el efecto de factores históricos, como la fragmentación del hábitat y el aislamiento de las poblaciones, en la estructura genética poblacional de *Abies guatemalensis, A. religiosa, A. hickeli y A. flinckii* con un marcador biparental, nuclear como las isoenzimas y con un marcador de herencia paterna, como el cloroplasto. Se analiza también la importancia del flujo génico en la evolución de estas especies y se proponen algunos lineamientos para su conservación.

Esta tesis se encuentra formada por cuatro secciones: Una introducción en donde se hace una revisión de la genética de poblaciones de distintas coníferas y particularmente de distintas formas para estimar el flujo génico. La segunda sección es un articulo publicado en American Journal of Botany acerca de la estructura genética de los *Abies* del sur de México y Guatemala; la tercera sección es un artículo que trata de la filogeografía de estas mismas especies. En la última sección se hace una discusión de los resultados obtenidos en ambos estudios, comparando ambos tipos de marcadores moleculares e infiriendo la posible historia evolutiva de las especies estudiadas y algunas pautas que deben de tomarse en cuenta para su conservación.

Genética de poblaciones de coníferas

Los patrones de variación y estructura genética de una especie están determinados por diferentes procesos evolutivos que actúan en las poblaciones, tales como la selección, la mutación, la deriva génica, migración o flujo génico y la recombinación mediada por el sistema reproductivo (Eguiarte 1990, Avise 1994). Además, la estructura genética de cualquier especie también está influenciada por factores biogeográficos, demográficos y eventos históricos, como las rutas de migración y de colonización o eventos como la fragmentación (Avise 1994). Por lo tanto, en el material genético de cada especie tenemos un importante archivo de su historia evolutiva, y analizando los niveles y patrones de la variación genética y su genealogía, se pueden inferir los patrones históricos y evolutivos que han dado origen a las especies y poblaciones actuales.

El impacto de la fragmentación en la estructura genética y el flujo génico dentro de especies con poblaciones aisladas es un tema de particular interés en biología evolutiva y es aún poco entendido (White et al. 2002). La fragmentación disminuye el

tamaño de una población e incrementa su aislamiento, y sus efectos en la dinámica del flujo génico y en el posible incremento en la endogamia pueden influenciar directamente la estructura genética de una especie (White et al. 2002).

Se ha encontrado que la mayoría de las coníferas estudiadas poseen niveles altos de variación isoenzimática (Hamrick et al. 1992, Fady and Conkle 1993, El-Kassaby and Rilland 1996, Ledig 1998; ver Tabla 1) y bajos niveles de diferenciación entre poblaciones (Ledig et al. 1997, Ledig 1998, Tabla 1). Hamrick et al. (1992) reportan para siete especies de Abies una heterocigosis promedio de 0.145 y una diferenciación genética (G_{st}) de 0.063. Para 28 especies de pinos de zonas templadas, Ledig (1998) encontró una G_{st} promedio de 0.076, mientras que para ocho especies boreales y templadas de Picea el valor promedio de G_{st} fue de 0.047 (Ledig et al. 1997). La baja diferenciación entre poblaciones encontrada se considera que se debe principalmente a su sistema reproductivo. El género Abies, así como otros géneros de la familia Pinaceae, son plantas monoicas (Martínez 1948, Liu 1971, Welch 1991) y el polen es dispersado por viento, potencialmente a grandes distancias (Llepelt et al. 2002). Así, los niveles de flujo génico en coníferas pueden ser altos, disminuyendo los niveles de diferenciación entre poblaciones. Sin embargo, estos estudios se han realizado en coniferas de zonas boreales y de zonas templadas, con una distribución continua y amplia y con poblaciones grandes. En México muchas especies de conferas presentan poblaciones aisladas y fragmentadas, lo que indudablemente influye en los niveles y patrones de variación genética (Delgado et al. 1999; Aguirre-Planter et al. 2000, Molina-Freaner et al. 2001, Delgado et al. 2002)

Las poblaciones pequeñas y aisladas están por lo general sujetas a procesos como endogamia y pérdida de variación genética por deriva génica, y son especialmente susceptibles a la extinción (Frankham 1995, Keller y Waller 2002). La pérdida de heteroclgosis, en combinación con un incremento en la expresión de alelos recesivos deletéreos, resulta en depresión por endogamia (Mitton 1992). Muchas coníferas sufren una intensa depresión por endogamia (Franklin 1970, Sorensen 1982) y se ha encontrado que en general los genotipos provenientes de cruzas endogámicas exhiben una menor tasa de germinación, menor tasa de crecimiento y mayor mortalidad (Elistrand y Elam 1993). Por otro lado, el tamaño efectivo y la distribución de las poblaciones pueden afectar significativamente los patrones y niveles de variación genética, y consecuentemente tener implicaciones importantes para la conservación. Así, si la mayor parte de la variación genética se encuentra dentro de poblaciones, los programas de manejo y las reservas que protejan algunas poblaciones o incluso una sola población grande, pueden ser suficientes para conservar la mayor parte de la diversidad de la especie. En contraste, si las poblaciones se encuentran muy diferenciadas genéticamente, entonces sería necesario proteger un mayor número de poblaciones (Eguiarte 1990).

Flujo génico

El flujo génico se refiere a todos los mecanismos que resultan en el movimiento de genes de una población a otra. Puede deberse al movimiento de gametos, semillas o individuos juveniles o adultos (en animales y en los casos de algunas plantas) y se puede referir a genes nucleares o genomas uniparentales como la mitocondria o el cloroplasto, o puede estar mediado por la extinción y recolonización de poblaciones enteras (Slatkin 1985a).

Anteriormente se pensaba que el flujo génico en general era muy restringido y de poca importancia evolutiva (Levin 1981). Sin embargo, al estimar el flujo génico en distintas especies se pudo observar que los niveles estimados generalmente son altos (Riesberg y Burke 2001) y que pueden actuar como una fuerza que mantiene integrada a la especie. Los patrones y niveles de flujo génico determinan hasta que grado cada población de una especie es una unidad evolutiva independiente (Slatkin 1994). Si el flujo génico entre poblaciones de una especie es alto, entonces todas las poblaciones evolucionan de manera conjunta (en ausencia de selección), pero si es muy bajo, las poblaciones de una especie pueden divergir y evolucionar casi independientemente. Si continúa la diferenciación puede llegar a surgir aislamiento reproductivo, y en consecuencia, el establecimiento de linajes evolutivamente independientes.

Se han utilizado distintos métodos para estimar los niveles de flujo génico. Los métodos indirectos se basan principalmente en la observación de la distribución espacial de alelos en las poblaciones, utilizando las frecuencias alélicas obtenidas de muestras de distintas poblaciones y de esta manera se hacen inferencias sobre los

niveles o patrones de flujo génico entre las poblaciones (Slatkin 1985a). La mayoría de los modelos teóricos de flujo génico surgen de los conceptos desarrollados por Sewall Wright, basados en poblaciones continuas y utilizando un enfoque de aislamiento por distancia o en poblaciones como islas que se diferencian por mutación y deriva génica (Wright 1943). El modelo usado comúnmente para estimar flujo génico es el modelo de islas infinitas (infinite islands model) de Wright (1951). Este modelo considera condiciones en equilibrio entre un número infinito de islas o subpoblaciones de igual tamaño, que intercambian migrantes entre cualquiera de las islas con igual probabilidad, a una tasa constante. Las poblaciones pueden ser tratadas como réplicas, y el modelo se puede caracterizar con sólo dos parámetros: tamaño poblacional (N) y tasa de migración (m). La importancia de la deriva génica es proporcional a 1/N, mientras que la importancia del flujo génico es proporcional a m (Slatkin 1985a).

Otro modelo es el de "stepping-stone", introducido por Kimura (1953). En este modelo las poblaciones se localizan en una especie de enrejado de una, dos o tres dimensiones y los individuos sólo pueden moverse entre poblaciones adyacentes.

Wright (1951) introdujo un método para dividir el coeficiente de endogamia en una población subdividida en un componente debido a apareamientos no aleatorios dentro de poblaciones (F_{is}) y otro componente debido a la subdivisión entre poblaciones (F_{st}). F_{st} es definido como:

$$F_{st}=(H_T-H_{S_1})/H_T$$

en donde H_T es el promedio de la heterocigosis esperada en la población total, para todos los loci, y H_S es el promedio de la heterocigosis esperada dentro de subpoblaciones para todos los loci.

 F_{st} mide la reducción en la heterocigosis debida a diferenciación genética entre poblaciones y se relaciona con la migración de la siguiente manera:

$$F_{st} \approx 1/(4 Nm + 1)$$

F_{st} se estima mediante datos aloenzimáticos o moleculares y, el flujo génico efectivo puede posteriormente calcularse en el equilibrio como:

$$Nm \approx \frac{1}{4} (1/F_{st} - 1)$$

Bajo este modelo, de acuerdo con Wright (1969), una tasa de migración >1 en cada generación es suficiente para contrarrestar la diferenciación genética debida a deriva génica.

Crow y Aoki (1984) propusieron un modelo poblacional con un número finito de islas (modelo de n-islas), en el que el equivalente para alelos múltiples de F_{st} es el parámetro G_{st} de Nei (Nei 1973), definido como:

 $G_{st} \approx 1/(4Nm\alpha + 1)$

Donde $\alpha = [n/(n-1)]^2$, y n es el número de subpoblaciones

Este modelo asume que las poblaciones están en equilibrio y que las islas intercambian migrantes entre si con igual probabilidad a una tasa constante.

Otro método para estimar Nm es el de "alelos privados" (Slatkin 1985b,1981), mediante el cual se obtienen muestras de distintas localidades y se obtiene p(1), que es la frecuencia promedio de alelos que sólo están en una muestra. Slatkin (1985b) encontró que para el modelo de islas y el de "stepping stone",

log10[p(1)] está linealmente relacionado con log10(Nm), entonces

 $\log 10[p(1)] = a \log 10(Nm) + b$

donde p(1) es la frecuencia promedio de los alelos privados y *a* y *b* son constantes determinadas por datos simulados y dependen del número de individuos muestreados en cada subpoblación (ver Slatkin, 1985b). Este método y la estimación de *Nm* a partir de F_{st} son parecidos, ya que ambos se basan en analizar la dispersión de la distribución de las frecuencias alélicas entre poblaciones. Sin embargo, simulaciones han demostrado que el método de alelos privados es más sensible a errores en la colección de datos (Slatkin 1994).

Otro modelo relacionado con el flujo génico es el de "aislamiento por distancia", que examina la relación del flujo génico entre pares de poblaciones (*M*, equivalente a *Nm* entre pares de poblaciones) con la distancia geográfica (Slatkin, 1993). Bajo este modelo, se estiman valores de *M* a partir de valores para pares de poblaciones de θ (que es una medida de diferenciación entre poblaciones, Weir y Cockerham 1984) y Slatkin propone analizar con una regresión de log10*M* en log10*k* (*k*= distancia geográfica). Para determinar si existe una relación lineal significativa entre el flujo génico y la distancia entre poblaciones se utiliza comúnmente una prueba de Mantel (1967), ya que los valores de M para los diferentes pares de poblaciones no son independientes.

Una crítica común a la estimación de flujo génico basada en estimadores que utilizan la variación en las frecuencias alélicas, como F_{st} es que supone un modelo de estructura poblacional de islas infinitas que es poco real, ya que considera un número infinito de poblaciones, donde hay ausencia de selección o mutación, que el flujo génico no está afectado por la distancia geográfica entre poblaciones y que cada población está en un equilibrio entre migración y deriva (Slatkin y Barton 1989; Niegel 2002).

Slatkin y Barton (1989) revisaron la relación entre F_{st} y flujo génico, tanto teóricamente como mediante simulaciones, encontrando evidencia para apoyar el uso del modelo de islas. Estos autores concluyeron que en una población subdividida que está en equilibrio demográfico, tanto el método de F_{st} como el de alelos privados proveen estimados razonablemente correctos de *Nm* bajo una variedad de condiciones.

Por otro lado, Whitlock y McCauley (1999) proponen que existe evidencia de que muchos de los loci a partir de los cuales se estima F_{st} están sujetos a selección, y este factor puede tanto sobreestimar como subestimar los valores de F_{st} . Particularmente cuando la tasa de migración es muy baja (y en ausencia de deriva génica), la selección puede dominar el patrón de diferenciación. El ligamiento a alelos sujetos a selección local puede aumentar la F_{st} . Finalmente, la selección causada por depresión por endogamia puede sobrestimar la estimación de la migración (Whitlock y McCauley 1999). Sin embargo, Slatkin y Barton (1989) encontraron que la F_{st} en el modelo de islas no es muy sensible a la selección que favorece a uno o dos alelos, sólo es

importante si diferentes alelos se encuentran favorecidos en distintas localidades geográficas.

La tasa de mutación también puede afectar los patrones de diferenciación genética entre poblaciones. Aunque se propone que F_{st} no es muy sensible a las tasas de mutación, ésto sólo se cumple si los tamaños poblacionales son pequeños (de 1000 o menores) y las tasas de mutación son mucho menores que las tasas de migración (Crow y Aoki, 1984). En marcadores como microsatélites y secuencias de mitocondria, las tasas de mutación pueden ser muy altas, lo que puede disminuir F_{st} y determinar una sobreestimación de *Nm* (Hedrick 1999). Slatkin (1991) definió F_{st} en términos de tiempos de coalescencia entre alelos y desarrolló otro estimado, R_{st} , como un estimador de F_{st} que es relativamente insensible a tasas de mutación y más apropiado para loci que mutan en forma de paso a paso ("step-wise"). Sin embargo, R_{st} tiene una mayor varianza que otras medidas de diferenciación entre subpoblaciones, y es muy sensible a violaciones del modelo de mutación paso a paso (Gaggiotti et al. 1999) y, por lo tanto, no es claro que en la práctica ofrezca ventajas sobre F_{st} , aún en marcadores que teóricamente se ajustan al modelo de mutación paso a paso ("step-wise").

Otro problema en relación a la estimación de F_{st} , es el del equilibrio. El tiempo en generaciones requerido para que F_{st} esté cerca del equilibrio es 1/[2m+1/(2N)], donde *m* es la tasa de migración y *N* es el tamaño poblacional (Crow y Aoki 1984). Cuando no hay flujo génico, el tiempo requerido sería igual a 2*N*. Si existieron poblaciones grandes que estuvieron históricamente en contacto y que actualmente se encuentran aisladas, estarían fijadas para distintos alelos en el equilibrio, pero el tiempo requerido para aproximarse a ese equilibrio podría ser mayor a la edad de la mayoría de estas especies. Estos estimados darían estimaciones de flujo génico diferentes de cero en especies que han estado aisladas reproductivamente durante mucho tiempo (Niegel 2002).

El modelo de islas es una abstracción conveniente que aisla los efectos opuestos de deriva génica y flujo génico, y aunque F_{st} no siempre da estimaciones "exactas" de flujo génico, es poco probable que estos estimados estén sobrestimados por varios órdenes de magnitud (Niegel 2002). Niegel (2002) propone que el número de poblaciones no tiene que ser infinito, ni necesariamente muy grande para que F_{st} de

una estimación acertada de *Nm*, y que la mutación y la selección sólo son importantes cuando las poblaciones son muy grandes. Niegel (2002) también demuestra que aunque el flujo génico esté limitado por distancia, se espera que el valor total de F_{st} sea similar al obtenido por el modelo de islas (Slatkin y Barton 1989). El problema del uso de F_{st} surge cuando la deriva génica es un proceso débil (los tamaños efectivos de las poblaciones son grandes). F_{st} puede pensarse como un balance entre deriva génica y flujo génico y valores muy pequeños de flujo génico (<<1) pueden acercar F_{st} hacia 0.

En conclusión, los datos y simulaciones indican que el uso de F_{st} para estimar Nm es útil y sencillo. Los métodos indirectos tienen la ventaja de que pueden incorporar los efectos de todos los componentes históricos de la dispersión y se puede obtener un promedio de la variación en la dispersión a través del tiempo. Finalmente, los niveles de flujo génico estimados con F_{st} reflejan flujo génico histórico, no el flujo génico que está ocurriendo en el presente.

Métodos genealógicos

La distribución de la variación genética en poblaciones de plantas está fuertemente influenciada tanto por las fuerzas microevolutivas que están actuando, como son el flujo génico y la selección, así como también por la historia filogenética de las poblaciones y especies (Schaal et al. 2003). El uso de estadísticos tradicionales para determinar la estructura de las poblaciones, como los estadísticos F de Wright y otros métodos indirectos que utilizan las frecuencias alélicas, los cuales se mencionaron anteriormente, no toman en cuenta la información de las relaciones evolutivas de los variantes genéticos y por lo tanto no es posible distinguir entre efectos históricos y procesos recurrentes.

Muchas secuencias de genes proveen de una alta variación molecular que es neutral y que puede ser convertida a una genealogía. En este contexto, el uso de secuencias de ADN para inferir procesos evolutivos en el pasado a nivel poblacional, ha sido enriquecido por el concepto de filogeografía propuesto por Avise (1994). La filogeografía examina la distribución de la genealogía de alelos o haplotipos en un contexto geográfico, utiliza la información histórica contenida en los genes y caracteriza

la subdivisión de poblaciones al reconocer patrones geográficos de la estructura genealógica a lo largo del rango de distribución de una especie (Avise 1994).

A nivel poblacional es preferible el uso de redes de haplotipos en lugar de árboles filogenéticos, ya que la inferencia cladística de relaciones filogenéticas requiere que las variantes genéticas no formen linajes reticulados (Schaal et al. 1998). Las genealogías trazan las relaciones evolutivas entre haplotipos o alelos (Schaal et al. 2003) y con esta información se pueden reconstruir los procesos evolutivos con los principios de la coalescencia. Los métodos que utilizan estos principios tratan de modelar el pasado utilizando un proceso estocástico, la coalescencia, la cual se basa en el concepto de que las secuencias alélicas, o alelos en una población pueden ser rastreados hacia atrás en el tiempo hasta el punto en el que coalescen a la secuencia o alelo ancestral más reciente. Los patrones de coalescencia generalmente se representan usando árboles de genes que muestran la genealogía de los alelos en la población.

La idea principal detrás de la coalescencia es que, en ausencia de selección, los linajes muestreados pueden ser vistos hacia atrás en el tiempo "escogiendo" al azar a sus padres y cuando dos linajes escogen al mismo padre hay un evento de coalescencia. Eventualmente todos los linajes coalescen a un mismo y único linaje, por ejemplo, el ancestro común más reciente (Rosenberg y Nordborg 2002). Los métodos genealógicos son utilizados para estimar los parámetros del proceso genealógico que da como resultado a cada árbol. El proceso de coalescencia es una herramienta matemática poderosa que puede ser utilizada para estimar parámetros poblacionales como las tasas de mutación o migración y otros procesos (Rosenberg y Nordborg 2002).

Templeton et al. (1987, 1995) y Templeton (1998) han propuesto un análisis basado en los principios de coalescencia para conocer las relaciones entre poblaciones, que es el análisis de clados anidados. Bajo un contexto geográfico es posible obtener información de procesos históricos, como estimaciones más cercanas y más realistas de flujo génico, de la deriva génica o de la expansión, además de ayudar a estimar parámetros más complejos y modelos reales de estructura poblacional. Avise (2000) propone que los cambios en tamaños poblacionales o en niveles de flujo génico a través del tiempo dejan patrones que pueden reconocerse y estos patrones son

marcas de historias poblacionales particulares. Por ejemplo, se predice que las genealogías van a presentar una filogenia en forma de estrella en una población que se ha estado expandiendo (Avise 2000). En el análisis de clados anidados (NCPA, por las siglas en inglés, nested clade phylogeographical analisys) de Templeton et al. (1995), se reconstruyen redes de haplotipos que se unen en clados anidados con el programa TCS (Phylogenetic network estimation using statistical parsimony, Clement et al. 2000). Este algoritmo de anidamiento (Templeton et al. 1987) agrupa haplotipos y después clados, dependiendo del número de cambios mutacionales, separándolos paso a paso hasta que todos los haplotipos/clados queden agrupados y unidos en grupos de uno, dos o más pasos mutacionales, donde el último nivel de anidamiento comprende la red entera (Templeton et al. 1987). La relación entre haplotipos/clados y la geografía se puede examinar a través de un análisis estadístico llamado de "permutaciones", utilizando por ejemplo el programa GEODIS (A tool to perform the NCPA, Posada et al. 2000). Este análisis permite evaluar si existen asociaciones significativas entre la ubicación geográfica y las posiciones del haplotipo o del clado. En clados en los que hay una asociación significativa, se puede hacer un análisis de distancia, en la cual se comparan las distancias del clado D_c, que mide el rango geográfico de un clado en particular y la distancia del clado anidado D_{a} , que mide como un clado en particular se distribuye geográficamente en relación a sus clados evolutivamente más cercanos, clados hermanos (clados en la misma categoría de anidamiento). En particular, la distancia del clado mide la distancia promedio que existe entre un individuo que posee un haplotipo del clado de interés y el centro geográfico de todos los individuos que poseen haplotipos del mismo clado. La distancia del clado anidado mide la distancia promedio que existe entre un individuo que posee un haplotipo del clado de interés y el centro geográfico de todos los individuos que poseen haplotipos del siguiente nivel de anidamiento, que contiene al clado de interés (Templeton 1998). Los contrastes entre estas medidas de distancia entre clados externos (clados que no son nodos interiores en la red de haplotipos) y clados internos inmediatos son importantes para discriminar las causas potenciales de la estructuración geográfica de la variación genética (Templeton et al. 1995, Templeton 1998). Para determinar si las distintas medidas de distancia son significativas se realiza un análisis de permutaciones, el cual simula la hipótesis nula de una distribución geográfica al azar para todos los clados dentro de

una categoría o nivel de anidamiento (Templeton 1998). Los resultados se interpretan utilizando la clave de inferencias de Templeton (2004). Esta clave de inferencias proporciona una serie de criterios que permiten discriminar entre el papel que han jugado los eventos de flujo génico, el aislamiento por distancia, la expansión y los eventos de colonización a larga distancia en los procesos históricos que resultan en las relaciones observadas entre haplotipos/clados.

Especies de estudio

Farjon (1990, 1998) reconoce la existencia de 46 especies de *Abies* en el mundo, distribuidas en el hemisferio Norte aunque Liu (1971) considera que los taxa se agrupan en 39 y Rushforth (1987) propone hasta 55 especies. Se han propuesto varias clasificaciones para el género *Abies*, con base en diferentes características morfológicas (Martínez 1948, Liu 1971, Rushforth 1989, Farjon 1990, 1998). Martínez (1948) reporta ocho especies para México, seis de ellas endémicas, mientras que bajo su sistema de clasificación Liu (1971) considera que son seis las especies mexicanas, cuatro de ellas endémicas. De la misma manera, Farjon (1990, 1998) propone la existencia de seis especies en México, considerando a cuatro de ellas endémicas, mientras que Rushforth (1989) describió dos especies adicionales del oeste de México y Debreczy y Racz (1995) propusieron tres más.

Según la clasificación de Farjon (1990,1998), basada en características morfológicas (Tabla 2), los *Abies* distribuidos en México pertenecen a dos secciones: Sección *Grandis*. Engelm. Emend. Farjon et Rushforth. En esta sección se agrupan *A. concolor* (Gord. et Glend.) Lindl., *A. durangensis* Mart., *A. guatemalensis* Rehder y también *A. grandis* (Dougl.) Lindl., que no es una especie que se encuentre distribuida en México.

Sección Oiamel Franco, la cual se divide en:

Subsección *Religioseae* (Matzenko) Farjon et Rushforth, en la cual se encuentran agrupadas las especies *A. religiosa* (H. B. K.) Schl. et. Cham. y *A. vejarii* Mart. Subsección *Hickelianae* Farjon et Rushforth se encuentra *A. hickeli* Flous et. Gaussen.

En este trabajo se consideraron cuatro especies de *Abies* distribuidas en el sur de México y Guatemala, las cuales presentan distribuciones contrastantes (Tabla 3,

Figura 1). *Abies guatemalensis* (Figura 2), es la especie con la distribución más sureña, distribuida entre 2000 y 4000m de altitud en Guatemala y en los estados de Chiapas, Oaxaca, Guerrero, Jalisco, Hidalgo y San Luis Potosí en México (Martínez 1948, Donahue et al. 1985). Aunque tiene una distribución amplia, sus poblaciones están aisladas, formando manchones separados por grandes distancias. Esta especie era considerada común hasta 1940, pero se ha explotado ampliamente a lo largo de todo su rango de distribución y ahora se le considera en peligro de extinción. Su madera es muy preciada por su suavidad y se utiliza localmente como leña y carbón y como material para construcción. Sus árboles han sido intensamente talados, ya que esta especie crece en suelos profundos y fértiles de montaña, que son adecuados para la agricultura y el pastisaje. Se encuentra incluida en la NOM-ECOL-059-1994 como en peligro de extinción, también en la lista roja de plantas de la IUCN y en el apéndice 1 del CITES. Su comercio está prohibido en México y Guatemala.

Abies religiosa (Figura 3) está distribuida principalmente por arriba de los 2000m a lo largo del eje volcánico transversal, en los estados de Guerrero, Jalisco, Michoacán, México, Morelos, Hidalgo, Tlaxcala, Puebla y Veracruz, así como también en el Distrito Federal (Martínez 1948). Tiene una distribución más continua que *A. guatemalensis*. Posee un uso local artesanal, se emplea también para la elaboración de balsámicos y los árboles pequeños son utilizados como árboles de navidad. En algunas localidades son cultivados con este propósito y así como para la producción de madera.

A. religiosa var. emarginata Martínez se distribuye en los estados de Jalisco y Michoacán, y A. guatemalensis var. jaliscana Martínez tiene una distribución muy restringida al oeste de Jalisco. Rushforth (1989) consideró a estas dos variedades formando parte de una nueva especie, A. flinckii Rushforth. Observaciones de campo sugieren que estas variedades son morfológicamente similares y distintas de A. religiosa y A. guatemalensis. Difieren de estas últimas especies también en su fenología, empezando su crecimiento vegetativo hasta tres meses antes. En la Sierra de Manantlán árboles de A. religiosa y A. flinckii se encuentran entremezclados en el mismo sitio, manteniéndose sus diferencias morfológicas y fenológicas, lo que sugiere que se trata de especies diferentes, aisladas reproductivamente. Actualmente A. flinckii está considerada en la NOM-ECOL-059-1994 como especie que requiere protección especial. Abies hickeli (Figura 4) tiene una distribución limitada, con sólo algunas poblaciones en los estados de Oaxaca y Veracruz (Martínez 1948). Su madera se emplea para construir techos de casas (tejamanil) en regiones cercanas a donde crece. También se utiliza para la elaboración de muebles y los árboles pequeños se utilizan como árboles navideños. Actualmente se encuentra incluida en la NOM-ECOL-059-1994 como en peligro de extinción. Tabla 1. Número de poblaciones (N Pob), número de loci analizados (N loci), distribución, heterocigosis esperada (He), número promedio de alelos por locus (A), índice de fijación de Wright (F_{is}) y diversidad genética entre poblaciones para diferentes especies de coníferas.

Especies	N Pob	N loci	distribución	He	A	Fis	G _{st} /F _{st}	Referencia
A. balsamea				0.274	2.05	-0.008		Neale and Adams, 1985
A. balsamea	4	22	480 km	0.018	1.21	0.154	0.037	Shea and Furnier, 2002
A. fraseri				0.286 ^b	1.10	0.007	0.002	Diebel and Feret, 1991
A. alba						0.006	0.071	Breitenbach-Dorfer et al., 1997
A. alba		17		0.182	1.6			Fady and Conkle, 1993
A. cephalonica		17		0.221	2.0	0.234	0.048	Fady and Conkle, 1993
A. borisii regis		14		0.198	1.8			Fady and Conkle, 1993
A. lasiocarpa				0.124	1.6	0.341	0.017	Shea, 1990
A. kawakamii				0.283	2.2			Kormutak and Yang, 1998
A. guatemalensis	10	16	W	0.069	1.38	0.235	0.122	Este estudio
A. hickeli	6	16	N	0.100	1.5	0.121	0.021	Este estudio
A. religiosa	11	16	W	0.108	1.5	0.216	0.250	Este estudio
A. flinckii	6	16	N	0.113	1.6	0.074	0.271	Este estudio
P. flexilis				0.32	2.3		0.022	Schuster et al. 1989
P. flexilis	30		1384.6 km	0.166	2.46	0.108	0.101	Jorgensen et al. 2002
P. balfouriana	16	11	766.7 km	0.075	1.27	0.443south 0.203north	0.075south 0.242north	Oline et al. 2000
P. longaeva	3	36	13.4 km	0.122	1.92	0.078	0.011	Lee et al. 2002
P. torreyana					2.2		1.000	Ledig and Conkle 1983
P. pinceana				0.374	2.3	0.458	0.247	Molina-Freaner et al. 2001
P. pinceana				0.174	1.8	0.140	0.152	Ledig et al. 2001
P. lagunae				0.386	2.5	0.534	0.188	Molina-Freaner et al. 2001
P. muricata				0.346	2.1	0.307	0.161	Molina-Freaner et al. 2001
P. engelmanni				0.10	1.4		0.130	Bermeio 1993
P. rzedowskii				0.22	1.8		0.175	Delgado et al. 1999
P. caribaea				0.10	1.4		0.130	Matheson et al. 1989
P. oocarpa				0.19	2.2		0.104	Matheson et al. 1989
Pseudotsuga menziesii	49	20	402.86 km	0.163		0.008	0.045	El-Kassaby and Ritland 1990
Picea martinezii				0.111	1.39	0.044	0.024	Ledig et al. 2000

Tabla 2. Características morfológicas de Abies guatemalensis (Figura 2), A. guatemalensis var. tacanensis (considerada en este estudio como A. guatemalensis) A. guatemalensis var. jaliscana, (considerada en este estudio como A. flinckii) A. religiosa (Figura 3) A. religiosa var. emarginata (considerada en este estudio como A. flinckii), A. hickeli (Figura 4), A. oaxacana (considerada en este estudio como A. flinckii) y A. flinckii (Martínez 1948, Rushforth 1989, Farjon 1990, 1998)

Especie	canales resiniferos	ramillas	hojas	ápice hojas	hoja largo	estomas	altura	diámetro	cono	bráctea	Notas
A. guatemalənşis	2 sobre la epidermis o subepidermis, marginales	más o menos hirsutas, moradas rojizas	subdisticas o casi pectinadas extendidas casi en ángulo recto, acanaladas	obtuso o emarginado	20-55mm	cara Inferior de la hoja	35m	60-90cm	8 a 11.5cm por 4 a 5.5 de ancho, subsésiles	Indusa	Especie reconocida por todos los autores
A. guatemalensis var. tacanensis consklerado en este estudio como A. guatemalensis	2 sobre la epidermis	muy hirsutas, rojizas	extendidas, acanaladas hasta los dos terclos a partir de la base en la cara superior	emarginado	12-36mm	cara inferior rara vez en la superior	35m	60-90cm	10cmm por 4 de ancho, subsésit	exerta o casi Iguelando la altura de la escama	Subespecie propuesta por Martinez (1948), pero actualmente reconocida por otros autores como A. guatematensis
A. religiosa	2 en la cara Inferior, marginales, subepidermis	mās o menos hirsutas, rojīzas	subdisticas, alternas, en espirales, derechas o algo faicadas	agudo y cómeo, casi erguidas	20-30mm	cara superior e inferior de la hoja	35-45m, hasta 50 o 60m	1 a 1.50 o 1.80m	10 a 16cm por 4 a 6 de ancho, casl sésiles o con pedúnculo de 5 a 9mm	exertas y reflejadas, sobresallen do de 8 a 10 mm	Especie reconocida por todos los autores
A, hickeli	2 laterales en cara inferior, subepidermis y de 2 a 6 o hasta 10 accsesorios centrales, subepidermis y tejido en palizada	hirsutas, moradas rojizas o rojizas cafes	subdisticas, pecilnadas, lineares, derechas o ligeramente falcadas	angostado y claramente emarginado	19-25mm. extendidas, elgo pectinadas	cara inferior de la hoja	20-30m	70-90cm	7 a 8cm de targo por 3.5 a 7 de ancho, subsésiles con pedunculo hasta de 10mm	exerta, muy sallentes	Especie reconocida por todos los autores

A. oaxacana considerado en este estudio como A. hickeli	8-12 colocaciión variable, epidermis, subepidermis, clorénquima	Glabras con follaje aglomerado	Rectas, gruesas y tiesas	redondeado o truncado y ligeramente emarginado	22-30mm	cara inferior de la hoja	20-30m	70-90cm	9 a 12cm de largo por 4 a 5 de ancho, subsésiles o sésiles	poca saliente p igualando a la escama	Propuesta por Martinez (1948), pero considerada por otros autores como A. hickeli
A. guatemalensis var. jaliscana considerado en este estudio como A. flincki	2 en la cara inferior, cerca de las extremidades, subopidermis	hirsutas	subdíslicas	emarginado o truncado	26-65mm	cara superior e inferior de la hoja	20-30m	1.25m	6 a 9cm por 2.5 a 3cm de anchocon pedúnculo corto de unos 10mm	inclusas llegando a los dos tercios de altura de la escama	Considerada como A. <i>filincki</i> i por Rushforth (1989)
A. religiose var. emarginata considerado en este estudio como A. filnciúi	2 en la subepidermis	hirsutas	subdísticas, lineares, torcidas en la base	emarginado o (runcado	25-50mm, a veces hasta 60 o 70 mm	cara superior e Inferior de la hoja	45m	60cm a 1.20m	12.5 a 13.5 cm de largo por 3 a 4 de ancho	exerta, salientes y refiejedas	Considerada como A, fiincidi por Rushforth (1989)
A. flinckii	2		disticas o subdisticas	hendido						exerta/ inclusa	Rushforth (1989) Agrupa a A, guatemalensis var. jaliscana y a A. religiosa var. emarginata

Contraction of the local division of the loc			
Población Municipio y estado	Especie	Lat N/ long W	altitud
F14 Hidalgo, Michoacán	A. flinckii (Rushforth 1989) A. religiosa var. emarginata (Martínez 1948)	19° 35' 100° 45'	2340
F16 Villa Madero, Michoacán	A. flinckii (Rushforth 1989) A. religiosa var. emarginata (Martínez 1948)	19° 20' 101° 21'	2250
F17 Aguililla, Michoacán	A. flinckii (Rushforth 1989) A. religiosa var, emarginata (Martínez 1948)	18° 46' 102° 57'	2500
F18 Talpa de Allende, Jalisco	<i>A. flinckii</i> (Rushforth 1989) <i>A. guatemalensis</i> var <i>. jaliscana</i> (Martínez 1948)	20° 12' 104° 43'	2100
F19 Talpa de Allende, Jalisco	<i>A. flinckii</i> (Rushforth 1989) <i>A. guatemalensis</i> var. <i>jaliscana</i> (Martínez 1948)	20° 21' 104° 59'	2490
F20 Minantitlán, Colima	<i>A. flinckii</i> (Rushforth 1989) <i>A. religiosa</i> var. <i>emarginata</i> (Martínez 1948)	19° 27' 103° 56'	2500
G2 Santa Catarina Ixtepeji, Oaxaca	A. guatemalensis (Martínez 1948)	17° 10' 96° 30'	2800
G7 San Sebastián Río Hondo, Oaxaca	A. guatemalensis (Martínez 1948)	16° 11' 96° 18'	2500
G10 Cacahoatán, Chiapas	A. guatemalensis (Martínez 1948) A. guatemalensis var. tacanensis (Martínez 1948)	15° 07' 92° 07'	3330
G11 El Porvenir, Chiapas	A. guatemalensis (Martínez 1948)	15° 27' 92° 16'	2610
G41 El Progreso, Guatemala	A. guatemalensis (Martínez 1948)	15° 04' 89° 55'	2970
G42 Jalapa, Guatemala	A. guatemalensis (Martínez 1948)	14° 31' 90° 08'	2610

Tabla 3. Coordenadas geográficas y altitud (m) de las poblaciones de Abies flinckii (F), A. guatemalensis (G), A. hickeli (H) y A. religiosa (R) estudiadas.

G43 Sololá, Guatemala	A. guatemalensis (Martínez 1948)	14° 52' 91° 17'	2730
G44 Leonardo Bravo, Guerrero	A. guatemalensis (Martínez 1948)	17° 35' 99° 51'	2670
G51 Ciudad del Maíz, San Luis Potosí	A. guatemalensis (Martínez 1948)	22° 27' 99° 27'	1770
G52 Agua Blanca de Iturbide, Hidalgo	A. guatemalensis (Martínez 1948)	20° 21' 98° 20'	2310
H1 Santa Catarina Lachatao, Oaxaca	A. hickeli (Martínez 1948) A. oaxacana (Martínez 1948)	17° 10' 96° 22'	
H3 Ixtlán de Juarez, Oaxaca	A. hickeli (Martínez 1948) A. oaxacana (Martínez 1948)	17° 22' 96° 26'	2904
H4 Ixtlán de Juarez, Oaxaca	A. nickeli (Martínez 1948) A. zapotekensis (Debreczy and Racz 1995)	17° 27' 96° 24'	2530
H5 Zimatlán de Alvarez, Oaxaca	A. hickeli (Martínez 1948)	16° 44' 97° 07'	2600
H9 Santa María Yucuhiti, Oaxaca	A. hickeli (Martinez 1948)	17° 03' 97° 45'	3000
H46 Xometla, Veracruz	A. hickeli (Martínez 1948)	18° 58' 97°12'	2910
H47 Peróte, Veracruz	A. hickeli (Martínez 1948)	19° 31' 97°06'	3090
R12 Zinacantepec, Edo. de México	A. religiosa (Martínez 1948)	19° 11' 99° 48'	3240
R13 Villa de Allende Edo. de México	A. religiosa (Martínez 1948)	19° 26' 100° 10'	2800
R15 Querándaro, Michoacán	A. religiosa (Martínez 1948)	19° 40' 100° 49'	2880

R21 Minantitlán, Colima	A. religiosa (Martínez 1948)	19° 27' 103° 56'	2500
R22 Zapotitlán, Jalisco	A. religiosa (Martínez 1948) A. colimensis (Rushforth 1989)	19° 35' 103° 35'	3330
R45 Ciudad Serdán, Puebla	A. religiosa (Martínez 1948)	18° 58' 97° 21'	3060
R48 Peróte, Veracruz	A. religiosa (Martínez 1948)	19° 31' 97° 09'	3510
R49 Tlaxco, Tlaxcala	A. religiosa (Martínez 1948)	19° 41' 98° 05'	2760
R53 Mineral Real del Monte, Hidalgo	A. religiosa (Martínez 1948)	20° 09' 98° 42'	2940
R54 Atlautla, Edo. de México	A. religiosa (Martínez 1948)	19° 23' 98° 40'	3330
R55 Tancítaro, Michoacán	A. religiosa (Martínez 1948)	19° 23' 102° 19'	3030

Figura 1. Distribución de las poblaciones estudiadas de A. guatemalensis (G), A. religiosa (R), A. hickeli (H) y A. Flinckii (F). Información sobre coordenadas geográficas y altitud de cada población en la Tabla 3.

Figura 2. Dibujo de las características de la hoja y el cono de Abies guatemalensis (Farjon 1990)

Figura 4. Dibujo de las características de la hoja, cono y escama de Abies hickeli (Farjon 1990)

Literatura Citada

- Aguirre-Planter E, Furnier GR, Eguiarte LE (2000) Low levels of genetic variation within and high levels of genetic differentiation among populations of species of *Abies* from southern Mexico and Guatemala. *American Journal of Botany*, **87**, 362-371.
- Avise JC (1994) Molecular markers, natural history and evolution. Chapman and Hall, NY.
- Avise JC (2000) *Phylogeography: The History and Formation of Species*. Harvard University Press, Cambridge Ma.
- Bermejo-Velázquez B (1993) Genetic diversity and the mating system in *Pinus* engelmannii Carr. Ph dissertation. Madison, Wisconsin. University of Wisconsin.
- Breitenbach-Dorfer M, Konnert M, Pinsker W, Starlingen F, Geburek T (1997) The contact zone between two migration routes of silver fir Abies alba (Pinaceae), revealed by allozyme studies. *Plant Systematics and Evolution*, **206**, 259-272.
- Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. *Molecular Ecology*, 9, 1657-1660.
- Crow JF, Aoki K (1984) Group selection for a polygenic behavioural trait: estimating the degree of population subdivision. *Proc. Natl. Acad. Sci.* USA, **81**, 607
- Debreczy Z, Rácz (1995) New species and varieties of conifers from México. Phytologia, **78**, 217-243.
- Delgado P, Piñero D, Chaos A, Pérez-Nasser N, Alvarez-Buylla E (1999) High population differentiation and genetic variation in the endangered Mexican pine, *Pinus rzedowski* (Pinaceae). *American Journal of Botany* **86**, 669-676.
- Delgado P, Cuenca A, Escalante AE et al. (2002) Comparative genetic structure in pines: evolutionary and conservation consequences. *Rev. chil. hist. nat.*, **75**, 27-37.
- Diebel KE, Feret PP (1991) Isozyme variation within the Frasier fir (*Abies fraseri* (Pursh Poir.) populations on Mount Rogers, Virginia: lack of microgeographic. *Silvae Genetica*, **40**, 79-85.
- Donahue JK, Dvorak WS, Gutierrez EA, Kane MB (1985) Abies guatemalensis: a two year status report. CAMCORE. Bulletin of Tropical Forestry Number 3. School of Forest Resources, North Carolina State University, Raleigh, North Carolina, USA.
- Eguiarte LE (1990) Genética de poblaciones de Astrocaryum mexicanum Liebm. En los Tuxtlas, Veracruz. Tesis de Doctorado. Centro de Ecología /UACPyP del CCH, UNAM, México.
- El-Kassaby YA, Ritland (1996) Genetic variation in low elevation Douglas-fir of British Columbia and its relevance to gene conservation. *Biodiversity and Conservation*, **5**, 779-794.
- Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annual Review of Ecology & Systematics, 24, 217-242.
- Fady B, Conkle MT (1993) Allozyme variation and posible phylogenetic implications in *Abies cephalonica* Loudon and some related eastern Mediterranean firs. *Silvae Genetica*, **42**, 351-359.

- Farjon A (1990) Pinaceae: drawings and descriptions of the genera Abies, Cedrus, Pseudolarix, Keteleeria, Nothotsuga, Tsuga, Cathaya, Pseudotsuga, Larix and Picea. Königstein: Koeltz Scientific Books.
- Farjon A (1998) World checklist and bibliography of conifers. Royal Botanical Gardens, Kew.

Frankham R. (1995) Conservation Genetics. Annu. Rev. Genetics, 29, 305-327.

- Franklin EC (1970) Survey of mutant forms and inbreeding depression in species of the family *Pinaceae*. USDA For. Serv. Res. Pap. SE-61.
- Gaggiotti OE, Lange O, Rassmann K, Gliddon C (1999) A comparison of two indirect methods for estimating average levels of gene flow using microsatellite data. *Molecular Ecology*, 7, 1513-1520.
- Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. En: *Population genetics of forest trees* (eds Adams WT, Strauss SH, Copes DL, Griffin AR), pp. 95-124. Kluwer Academic Publishers, Boston Massachusetts, USA.

Hedrick PW (1999) Perspective: Highly variable loci and their interpretation in evolution and conservation. *Evolution*, **53**, 313-318.

Jorgensen S, Hamrick JL, Wells PV (2002) Regional patterns of genetic diversity in *Pinus flexilis* (Pinaceae) reveal complex species history. *American Journal of Botany*, 89, 792-800.

Keller LF, Waller DM (2002) Inbreeding effects in wild populations. *Trends in Ecology* and Evolution, **17**, 230-242.

Kimura M (1953) "Stepping-stone" model of population. Ann. Rep. Natl. Inst. Genet. Japan, 3, 62-63.

Kormutak A, Yang JC (1998) The genetics and embriology of Taiwan fir (Abies kawakamii (Hayata) Ito). Taiwan Journal of Forest Science, **13**, 1-78.

- Ledig FT (1998) Genetic variation in *Pinus*. In: *Ecology and biogeography of Pinus* (ed Richardson DM), pp. 251-280. Cambridge University Press, Cambridge, UK
- Ledig FT, Jacob-Cervantes B, Hodgskiss PD, Eguiluz-Piedra T (1997) Recent evolution and divergence among populations of rare Mexican endemic, Chihuahua spruce, following Holocene climatic warming. *Evolution*, **51**, 1815-1827.
- Ledig FT, Capó-Arteaga MA, Hodgkiss PD, Sbay H, Flores-López C, Conkle MT, Bermejo-Velázquez B (2001) Genetic diversity and the mating system of a rare Mexican piñon, *Pinus pinceana*, and a comparison with *Pinus maximartinezii* (Pinaceae). *American Journal of Botany*, **88**, 1977-1987.
- Lee S-W Ledig FT, Johnson DR (2002) Genetic variation at allozyme and RAPD markers in Pinus longaeva (Pinaceae) of the White Mountains, California. *American Journal of Botany*, **89**, 566-577.

Levin DA (1981) Dispersal versus gene flow in plants. Ann Missouri Bot. Gard., 68, 233-253.

- Liepelt S, Bialozyt R, Ziegenhagen B (2002) Wind-dispersed pollen mediates postglacial gene flow among refugia. *Proc. Natl. Acad. Sci.*, **99**, 14590-14594.
- Liu TS (1971) A monograph of the genus *Abies*. Department of Forestry College of Agriculture, National Taiwan University, Taipei, Taiwan, China.
- Lozano-García MS (1993) Late Pleistocene and Holocene paleoenvironments of Chalco lake, central Mexico. Quaternary Research, 40, 332-342.
- Mantel N (1967) The detection of disease clustering and generalized regression approach. Cancer Research, 27, 209-220.

Martínez M (1948) Los Abies mexicanos. Anales del Instituto de Biclogía de México, 19, 11-104.

Mitton JB (1992) The dynamic of mating systems of conifers. *New. Forests*, **6**, 197-216.

Molina-Freaner F, Delgado P, Pérez-Nasser N, Piñero D, Alvarez-Buylla E (2001) Do rare pines need different conservation strategies?: Evidence from three Mexican species. *Canadian Journal of Botany*, **79**,131-138.

Neale D, Adams WT (1985) Allozyme and mating system variation in balsam fir (Abies balsamea) across a continuus elevational transect. Canadian Journal of Botany 63, 2448-2453.

Nei M (1973) Analysis of gene diversity in subdivided populations. *Proc. Natl. Acad. Sci.*, 70, 3321-3323.

Neigel JE (2002) Is FST obsolete? Conservation Genetics, 3, 167-173.

Oline DK, Mitton JB, Grant MC (2000) Population and subspecific genetic differentiation in the foxtail pine (Pinus balfouriana). *Evolution*, **54**, 1813-1819.

Posada D, Crandall KA, Templeton AR (2000) GEODIS: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. *Molecular Ecology*, 9, 487-488.

Riesberg LH, Burke JM (2001) The biological reality of species: gene flow, selection and collective evolution. Taxon, **50**, 235-255.

Rosenberg NA, Nordborg M (2002) Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. *Nature Reviews Genetics*, **3**, 380-390.

Rushforth KD (1989) Two new species of Abies (Pinaceae) from western Mexico. Notes of the Royal Botanical Gardens of Edinburgh, 46, 101-109.

Schaal BA, Hayworth DA, Olsen KM, Rausher JT, Smith WA (1998) Phylogeographic studies in plants: problems and prospects. *Molecular Ecology*, 7, 465-474.

Schaal BA, Gaskin JF, Caicedo AL (2003) The Wilhelmine E. Key 2002 Invitational Lecture. Phylogeography, haplotype trees and invasive plant species. J Hered, 94, 197-204.

Schuster WS, Alles DL, Mitton JB (1989) Gene flow in limber pine: evidence from pollination phenology and genetic differentiation along an elevational transect. *American Journal of Botany*, **76**, 1395-1403.

Shea KL (1990) Genetic variation between and within populations of Engelmann spruce and subalpine fir. *Genome*, **33**, 1-8.

Shea KL, Furnier GR (2002) Genetic variation and population structure in central and isolated populations of balsam fir, *Abies balsamea* (Pinaceae) *American Journal of Botany*, 89, 783-791.

Slatkin M (1981) Estimating levels of gene flow in natural populations. *Genetics*, 99, 323-335.

Slatkin M (1985a) Gene flow in natural populations. Ann. Rev. Ecol. Syst., 16, 393-430.

Slatkin M (1985b) Rare alleles as indicators of gene flow. Evolution, 39, 53-65.

Slatkin M (1991) Inbreeding coefficients and coalescence times. *Genetic Research*, 58, 167-165.

Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. *Evolution*, **47**, 264-279.

Slatkin M (1994) Gene flow and population structure. En: *Ecological Genetics* (ed Real LA), pp. 3-18. Princeton University Press.

Slatkin M, Barton NH (1989) A comparison of three indirect methods for estimating average levels of gene flow. *Evolution*, **43**, 1349-1368.

- Sorensen FC (1982) The role of polyembryonal vitality in the genetic system of Conifers. Evolution, 36, 725-733.
- Stute M, Clark JF, Schlosser P, Broecker WS (1995) A 30,000 yr continental paleotemperature record derived from noble gases dissolved in groundwater from the San Juan Basin, New Mexico. *Quaternary Research*, **43**, 209-220.

Templeton AR (1998) Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. *Molecular Ecology*, 7, 381-397.

Templeton AR (2004) Statistical phylogeography: methods of evaluating and minimizing inference errors. *Molecular Ecology*, **13**, 789-809.

Templeton AR, Boerwinkle E, Sing CF (1987) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. I. Basic theory and an analysis of alcohol dehydrogenase activity in Drosophila. *Genetics*, **117**, 343-351.

Templeton AR, Routman E, Phillips C (1995) Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the Tiger salamander, *Ambystoma tigrinum*. *Genetics*, **140**, 767-782.

Vázquez-Selem L, Heine K (2004) Late Quaternary glaciations of México. In: Quaternary Glaciations – Extent and Chronology, Part III. (eds. Ehlers J, Gibbard PL), pp. 223-242.

Viard F, El-Kassaby YA, Ritland K (2001) Diversity and genetic structure in populations of *Pseudotsuga menziesii* (Pinaceae) at chloroplast microsatellite loci. *Genome*, 44, 336-344.

Wagner DB (1992) Nuclear, chloroplast and mithocondrial DNA polymorphisms as biochemical markers in population genetic analyses of forest trees. New Forestry, 6, 373-390.

Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. *Evolution* 38, 1358-1370.

Welch H J (1991) The conifer manual. vol. 1. Kluwer Academic Publishers, Boston, Massachusetts, USA.

White GM, DH Boshier, Powell W (2002) Increased pollen flow countracts fragmentation in a tropical dry forest: an example from *Swietenia humilis* Zuccarini. *Proc. Natl. Acad. Sci.* USA, **99**, 2038-2042.

Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: FST not equal to 1/(4Nm + 1). Heredity, 82, 117-25.

Wright S (1943) Isolation by distance. Genetics, 28, 114-138.

Wright S (1951) The genetical structure of populations. Annals of Eugenics, 15, 323-354.

Wright S (1969) Evolution and Genetics of Populations, vol.2, The theory of gene frequencies. University of Chicago Press, Chicago.
Low levels of genetic variation within and high levels of genetic differentiation among populations of species of *Abies* from southern Mexico and Guatemala¹

ERIKA AGUIRRE-PLANTER,² GLENN R. FURNIER,³ AND LUIS E. EGUIARTE

Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, México, D.F. 04510, México

Populations of Abies in southern Mexico and Guatemala (A. flinckii, A. guatemalensis, A. hickeli, and A. religiosa) have a patchy distribution. This pattern is particularly clear in A. guatemalensis. Genetic diversity within populations, measured by average heterozygosity at 16 isozyme loci, is lower than the range reported for most conifers (mean H_o ranging from 0.069 in A. guatemalensis to 0.113 in A. flinckii), while differentiation among populations is higher than that observed in most conifer species studied ($\theta = F_a$ ranging from 0.073 in A. hickeli to 0.271 in A. flinckii). Estimated levels of gene flow are low (ranging from 0.672 in A. flinckii to 3.17 in A. hickeli). Populations in most cases had an excess of homozygosity over that expected under Hardy-Weinberg equilibrium, suggesting some inbreeding (F_a ranging from 0.074 in A. flinckii to 0.235 in A. guatemalensis). A significant relationship between gene flow and geographic distance was observed in A. religiosa, but not in the other three taxa studied. The patterns of genetic variation appear to have been influenced by the distributions and histories of these species. Paleoclimatic evidence suggests that the ranges of these species retreated upwards during the Pleistocene glaciation and became fragmented during the warming period that followed. The populations could have passed through genetic bottlenecks that reduced genetic variation and led to interpopulation differentiation.

Key words: Abies flinckii; Abies guatemalensis; Abies hickeli; Abies religiosa; gene flow; genetic variation; genetic drift; inbreeding.

Most conifers studied have high levels of genetic diversity, as measured by isozymes (Hamrick, Godt, and Sherman-Broyles, 1992; Fady and Conkle, 1993; Matusova, 1995; El-Kassaby and Ritland, 1996). It has also been found that the majority of forest tree species show low levels of isozyme differentiation among populations. These studies have mostly been conducted with economically important conifers of widespread and often continuous distributions. The high within-population genetic diversity and low among-population differentiation observed in conifers have been attributed to common lifehistory traits, such as longevity and extensive gene flow (Hamrick, Godt, and Sherman-Broyles, 1992; Streiff et al., 1998). However, the biogeographic history of a species should also contribute significantly to current patterns of genetic variation.

¹ Manuscript received 16 February 1999; revision accepted 22 June 1999.

The authors thank Andrés Keiman-Freire, Yolanda Nava-Cruz, Patricia Delgado-Valerio, Aldo Valera, Rodolfo Salas, and Elleli Huerta-Ocampo for assisting in the field collections, Rodrigo González-Chauvet, Eduardo Morales, Silvia Guzmán-Beltrain, and Oliva Godinez-Ibarra for assisting in the laboratory, Ariel Alvarez, Leigh Latta, Sue Ratmer, and Eduardo Morales for assisting in the data analyses, and Francisco Molina-Freaner, Daniel Piñero, Eduardo Morales, Michael Lynch, and two anonymous reviewers for reading the manuscript. Financial support was provided by the Comision Nacional para el Uso y Conocimiento de la Biodiversidad (CONABIO grant B138 to G.R.F. and L.E.E.) and by the Instituto de Ecologia at the Universidad Nacional Autónoma de México.

² Author for correspondence (eaguirre@miranda.ecologia.unam.mx). ³ Current address: TEAMS Program, College of Education, B203 Payne, Arizona State University, Tempe, Arizona 85287-0911 USA. The Abies species of southern Mexico and Guatemala provide an excellent opportunity to study the effects of species distributions on patterns of genetic variation because the different species have contrasting geographical distributions. There are ~50 species of Abies (firs) in the world, distributed in the temperate regions of the Northern Hemisphere (Welch, 1991). Of these, Martinez (1948) listed eight species as occurring in Mexico, six of them endemic to the country. Liu (1971) reduced this number to six species, four of them endemic to Mexico. Farjon (1990) listed six species in Mexico, four of them endemic to the country. Rushforth (1989) has since described two additional species from western Mexico, and Debreczy and Racz (1995) have described three more.

We considered four species of Abies that occur in southern Mexico and Guatemala. Abies guatemalensis Rehder is the southernmost representative of the genus, distributed at altitudes between 2000 and 4000 m in El Salvador, Guatemala, Honduras, and the southern Mexican states of Chiapas, Oaxaca, Guerrero, Jalisco, Hidalgo, and San Luis Potosí (Martínez, 1948; Donahue et al., 1985). Although widely distributed, it has relatively few isolated populations and is considered a threatened species (FAO, 1986). Abies religiosa (H. B. K.) Schl. et Cham. is distributed principally above 2000 m along the Transversal Volcanic Belt, in the states of Guerrero, Jalisco, Michoacán, México, Morelos, Hidalgo, Tlaxcala, Puebla, and Veracruz and the Distrito Federal (Martínez, 1948). Its distribution is more continuous than that of A. guatemalensis. Abies religiosa var. emarginata Martínez is distributed in the states of Jalisco and Michoacán, and A. guatemalensis var. jaliscana Martínez has a very re-

Fig. 1. Locations of populations of *Abies flinckil* (F), *A. guatemalensis* (G), *A. hickeli* (H), and *A. religiosa* (R) sampled for isozyme analysis.

stricted distribution in western Jalisco. Martínez (1948) described these two varieties, but Rushforth (1989) subsequently combined them to form a new species, A. *flinckii* Rushforth. Our field observations suggest that these populations are indeed morphologically similar to each other and distinct from A. *religiosa* and A. guatemalensis. They differ even more strikingly in phenology from the latter two species, beginning vegetative growth as much as 3 mo earlier. The maintenance of very different morphologies and phenologies in trees of A. *flinckii* and A. *religiosa* intermixed at the same site in the Sierra de Manantlán strongly suggests that these are reproductively isolated separate species. *Abies hickeli* Flous et Gaussen has a limited range, with a few populations in the states of Oaxaca and Veracruz (Martinez, 1948).

In this study, we used isozyme markers to examine the levels and patterns of genetic variation in the *Abies* of southern Mexico and Guatemala. In particular, we were interested in the effects of species distribution and historical factors, such as habitat fragmentation and isolation of populations due to climatic changes.

MATERIALS AND METHODS

Branch samples were collected from 33 populations of Abies in southern Mexico and Guatemala. Included were ten populations of A. guatemalensis, 11 of A. religiosa, six of A. flinckil, and six of A. hickell (Fig. 1). These populations represent most of the geographic range covered by these species. Because of our need to collect vegetative buds, the short period in which Abies cones are intact before disintegrating, and the large geographic area we sampled, we were unable to sample cones from these populations in the field. The populations we sampled were, however, previously described based on vegetative and reproductive characteristics by Martinez (1948), Donahue et al. (1985), and/or samples in the Horbario Nacional (MEXU). Forty individuals were sampled in each population, when possible. In the laboratory, vegetative buds were removed from the branch samples and were stored at -80° C for further use in gel electrophoresis. We maintained branch samples

Standard methods for gel electrophoresis were followed (Conkle et al., 1982; Cheilak and Pitel, 1984). Buds from each individual were ground with extraction buffer (3:1 [v:v] mixture of buffer YO from Yeh and O'Malley [1980] and Vegl1 from Pitel and Cheliak [1984]). The extract was absorbed in 1.2 × 1.5 mm chromatographic paper wicks.

The enzyme analysis was done using two systems of electrode and gel buffers. The H buffer (Cheliak and Pitel, 1984) was used to assay shikimate dehydrogenase (SDH, Enzyme Commission number 1.1.1.25, two loci), isocitrate dehydrogenase (IDH, E.C. 1.1.1.41, one locus), phosphoglucomutase (PGM, E.C. 2.7.5.1, two loci), and menadione reductase (MNR, E.C. 1.6.99.2, one locus). The R buffer (Ridgeway, Sherburne, and Lewis, 1970) was used to assay leucine amino-peptidase (LAP, E.C. 3.4.11.1, one locus), phosphoglucoisomerase (PGI, E.C. 5.3.1.9, two loci), glutamic-oxaloacetic transaminase (GOT, E.C. 2.6.1.1, one locus), peroxidase (PER, E.C. 1.11.1.7, one locus), peptidase (PEP, E.C. 3.4.11.11, three loci), glutamate dehydrogenase (GDH, E.C. 1.4.1.3, one locus), and ribulosebiphosphate carboxylase (RUB, E.C. 4.1.1.39, one locus). Starch gels (12%) were run at 60 mA for 6-7 h on the H system and 4 h on the R system. All genotypic data for all individuals in this study are in the databases of the Comisión para el Uso y Conocimiento de la Biodiversidad (CONABIO; http://www.conabio.gob.mx) in Mexico City.

Allelic frequencies were obtained for each locus in each population. Based on these data, levels of polymorphism (P), observed (H_a) and Hardy-Weinberg expected (H_c) heterozygosity, and mean number of alleles per locus (A) were estimated with the program BIOSYS (Swofford and Selander, 1981). Wright's (1965) F statistics, total inbreeding (F_a), subdivision among populations (F_a), and inbreeding within populations (F_a) were estimated for each species by the method described in Weir and Cockerham (1984) ($F = F_{ib}$, $\theta = F_{ai}$ and $f = F_{ia}$), using the program FSTAT (version 1.2; Goudet, 1995). Partitioning of variation within and among species was estimated using the WRIGHT78 procedure of the program BIOSYS (Swofford and Selander, 1981).

An estimate of gene flow (Nm), the average effective number of migrants exchanged between populations in each generation, was calculated from θ , and also from the number and frequency of private alleles (Barton and Slatkin, 1986). Wright (1951) showed that in an island model, where equilibrium has been reached between genetic drift and migration, $Nm = (1 - \theta)/4\theta$, where θ is the proportion of total genetic diversity represented by differences among populations.

Nm can also be calculated from the number and frequency of private alleles, unique alleles found in only one population (Slatkin, 1985), as follows:

$\log_{10}[p(1)] = a \log_{10}(Nm) + b,$

where p(1) is the mean frequency of private alleles and a and b are constants determined by simulated data. We used values for a and b obtained for a sample size of 25 and corrected for our mean sample size (Barton and Slatkin, 1986). This method of estimating gene flow is likely to be more sensitive to errors in data collection (Slatkin, 1994).

The relationship of gene flow between pairs of populations (M) to geographic distance (Slatkin, 1993) was examined. Values of M were obtained by computing 0 (a measure of among-population differentiation; Weir and Cockerham, 1984) for each pair of locations using a program provided by Slatkin (isolation by distance program). A regression of $\log_{10}M$ on $\log_{10}K$ (k = geographic distance) was then constructed to see if there was a linear relationship. The significance of the relationship was evaluated by Mantel's (1967) test, since the usual statistical methods cannot be used because values of M from different pairs of populations are not independent. This was done for each taxon studied. Finally, we used PHYLIP (Felsenstein, 1995) to construct a neighbor joining tree (Saitou and Nei, 1987), based on Nei's unbiased genetic distances (Nei, 1978). One hundred bootstrap samples over loci were used to estimate the confidence of the branch points.

RESULTS

Levels of polymorphism and expected average heterozygosity were lowest for *A. guatemalensis*, intermediate for *A. hickeli*, and highest for *A. flinckii* and *A. religiosa* (Table 1). The range of variation among populations in 364

TABLE 1. Geographic coordinates, elevation (m), mean number of individuals analyzed per locus (N), mean number of alleles per locus (A), percentage of polymorphic loci (frequency of most common allele < 0.95) (P), observed heterozygosity (H_{a}), mean unbiased estimate of expected heterozygosity (H_{a}), and fixation index (F) across 16 isozyme loci for populations of *Ables flinckli* (F), *A. guatemalensis* (G), *A. hickeli* (H), and *A. religiosa* (R). Standard errors are in parentheses.

Population code	Lat N/ long W	clevation	N	A (SE)	P(%)	H, (SE)	н, (SÉ)	F (SE)
F14	19°35'	2340	26.6	1.7	25.0	0.055	0.089	0.284
F16	100-45	2250	24.4	(0.2)	27.5	(0.024)	(0.035)	(0.444)
	101°21'	2230	24.4	(0.2)	37.5	(0.059)	(0.158	-0.120
F17	18°46'	2500	19.6	1.4	12.5	0.031	0.064	0.322
	102°57'			(0.2)		(0.018)	(0.037)	(0.550)
F18	20°12'	2100	39.3	1.7	37.5	0.125	0.125	-0.006
	104°43′			(0.2)		(0.043)	(0.044)	(0.253)
F19	20°21'	2490	34.6	1.8	37.5	0.119	0.130	0.165
	104°59'			(0.2)		(0.048)	(0.044)	(0.426)
F20	19°27'	2500	29.9	1.4	31.3	0.097	0.109	0.027
	103°56'			(0.2)		(0.041)	(0.047)	(0.205)
A. flinckti mean			29.1	1.6	30.2	0.102	0.113	0.112
C 2				(0.17)	(10.0)	(0.054)	(0.033)	(0.174)
62	17*10	2800	30.8	1.3	25.0	0.047	0.060	0.124
67	96-36			(0.1)		(0.022)	(0.027)	(0.378)
07	10-11	2500	25.4	1.3	18.8	0.033	0.044	0.139
GIO	90 18 15°07'	2220	24.0	(0.1)		(0.016)	(0.023)	(0.254)
010	15 07	3330	28.8	1.4	25.0	0.051	0.072	0.250
GU	92 07	2610	26.1	(0.1)	10.0	(0.028)	(0.032)	(0.456)
011	029161	2010	30.1	1.4	18.8	0.072	0.070	0.107
G41	92 TO	2070	25.0	(0.2)	10.0	(0.032)	(0.033)	(0.440)
	80°55'	2970	33.8	1.3	15.8	0.043	0.058	0.173
G42	14°31'	2610	20.5	(0,1)	12.6	(0.020)	(0.027)	(0.280)
	90°08'	2010	20.5	(0.1)	12.5	0.040	0.058	0.083
G43	14°52'	2730	25.7	(0.1)	12.5	(0.027)	(0.036)	(0.139)
	91°17'	2,50	23.7	(0.1)	12.5	(0.025)	(0.003	(0.244)
G44	17°35'	2670	32.8	14	18.8	0.023)	0.030)	. (0.244)
	99°51'	2070	02.0	(0.1)	10.0	(0.024)	(0.041)	(0.387)
G51	22°27'	1770	27.6	1.4	25.0	0.075	0.090	0.209
	99°27′			(0.2)	2010	(0.038)	(0.043)	(0.285)
G52	20°21'	2310	33.3	1.7	25.0	0.070	0.094	0.331
	98°20'			(0.2)		(0.031)	(0.036)	(0.478)
A. guatemalensis mean			29.7	1.38	20.0	0.053	0.069	0.165
				(0.123)	(4.9)	(0.014)	(0.015)	(0.079)
HI	17°10′		30.8	1.6	31.3	0.041	0.090	0.394
112	96°22'			(0.2)		(0.017)	(0.034)	(0.451)
113	17-22	2904	31.4	1.4	18.8	0.055	0.087	0.179
H4	90-20	2520	10.4	(0.2)		(0.023)	(0.039)	(0.277)
114	069241	2530	10.6	1.3	12.5	0.078	0.073	-0.125
H5	16°44	2600	39.0	(0.1)	43.0	(0.055)	(0.047)	(0.551)
	97°07'	2000	36.9	(0.2)	43.8	0.145	0.135	-0.002
Н9	17°03'	3000	30.8	(0.2)	18.9	(0.030)	(0.031)	(0.270)
	97°45'	5000	39.0	(0.2)	10.0	(0.091	(0.087	-0.047
H46	18°58'	2910	28.6	(0.2)	43.8	0.115	(0.042)	(0.062)
	97°12′	2710	20.0	(0.2)	45.0	(0.042)	(0.045)	(0.357)
A. hickeli mean			30.2	1.53	28.2	0.088	0.100	0.085
				(0.15)	(13.6)	(0.038)	(0.025)	(0.186)
R12	19°11'	3240	31.1	1.8	43.8	0.121	0.155	0.133
	99°48′			(0.2)		(0.039)	(0.048)	(0.275)
R13	19°26'	2800	29.1	1.4	31.3	0.070	0.087	0.104
	100°10'			(0.2)		(0.031)	(0.039)	(0.207)
R15	19°40'	2880	35.9	1.4	31.3	0.051	0.080	0.332
2.4.	100°49′			(0.1)		(0.031)	(0.036)	(0.512)
K21	19°27'	2500	36.3	1.1	0.0	0.009	0.008	-0.036
P 22	103°56'			(0.1)		(0.006)	(0.006)	(0.006)
K.22	19°35'	3330	31.6	1.1	12.5	0.033	0.032	-0.041
P45	103-35'	20/0	24.5	(0.1)		(0.023)	(0.024)	(0.089)
K75	18.28	3000	36.5	1.8	37.5	0.105	0.128	0.136
	97-21			(0.2)		(0.038)	(0.041)	(0.320)

March 2000]

TABLE 1. Continued.

Population code	Lat N/ lung W	cievation	N	A (SE)	P(%)	H. (5Ē)	H, (SE)	F (SE)
R43	19°31′ 97°09′	3510	37.9	1.6	37.5	0.116 (0.037)	0.118 (0.039)	-0.032 (0.140)
R49	19°41′ 98°05′	2760	34.7	1.6	25.0	0.099 (0.044)	0.116 (0.050)	0.183 (0.247)
R53	20°09' 98°42'	2940	38.1	1.4 (0.2)	25.0	0.065 (0.032)	0.088 (0.042)	0.143 (0.262)
R54	19°23' 98°40'	3330	26.6	2.2	68.8	0.132 (0.033)	0.235 (0.048)	0.398 (0.301)
R55	19°23' 102°19'	3030	25.6	1.6 (0.1)	37.5	0.099 (0.047)	0.139 (0.049)	0.283 (0.503)
A. religiosa mean			33.0	1.54 (0.32)	31.8 (17.6)	0.082 (0.039)	0.108 (0.061)	0.146 (0.148)

expected heterozygosity was particularly high in *A. religiosa*, which included the population with the lowest genetic diversity (R21, $H_e = 0.008$), as well as the population with the highest value (R54, $H_e = 0.235$).

In most populations the fixation index (F) was near zero or positive (Table 1). The estimates were high in all species, with A. hickeli having the lowest value. Standard errors of F estimates for the populations were in general very high. The mean coefficient of inbreeding within subpopulations ($f = F_{\rm sb}$) and the total inbreeding coefficient ($F = F_{\rm h}$) estimates are generally positive, with the highest average values for A. guatemalensis and A. religiosa and the lowest for A. flinckii (Table 2). There is significant differentiation among populations in all four species, with relatively high $\theta = F_{\rm st}$ estimates for all species, particularly A. flinckii and A. religiosa (Table 2). The mean estimate of differentiation among populations ($F_{\rm st} = \theta$) considering all species is 0.280, with 0.221 due to differences among populations within species and only 0.056 due to differences among species.

The mean estimates of Nm obtained from θ for each species were 0.672 (95% confidence interval = 0.46-1.43) for A. flinckii, 1.8 (1.34-3.72) for A. guatemalensis, 0.75 (0.43-1.57) for A. religiosa, and 3.17 (1.83-11.65) for A. hickeli, with an overall mean of 1.6 (obtained with the mean θ , when we analyze all species together). Estimates of Nm calculated from the method of private alleles were 3.42 for A. flinckii, 2.88 for A. guatemalensis, 1.67 for A. religiosa, and 2.70 for A. hickeli. Estimates of Nm from private alleles were higher than estimates from θ . It has been shown that both methods can provide accurate estimates of Nm under several circumstances (Slatkin and Barton, 1989), but the method of private alleles is more sensitive to errors in data collection and could be less accurate in practice (Slatkin, 1994). Simulations done by Slatkin (1993) show that in a stepping stone model, M (gene flow) and geographic distance should be inversely correlated, with a slope of -1 in linearly distributed populations. This pattern was observed in A. religiosa, but not in any of the other species

(Fig. 2). The mean genetic distance (Nei, 1978) between populations of *A. flinckii* was 0.051 (SD = 0.035), between populations of *A. guatemalensis* 0.011 (0.009), between populations of *A. religiosa* 0.040 (0.033), and between populations of *A. hickeli* 0.010 (0.006). These estimates of genetic distances, particularly for *A. religiosa* and *A.* flinckii, are relatively high compared to other north-temperate conifers and show high differentiation between populations. This is in agreement with the estimates of θ . Considering all populations of all species together, the mean overall genetic distance was 0.040, similar to the mean genetic distances between populations within the same species. The phenogram constructed from these distances showed a monophyletic group for A. flinckii, within a group containing eight of the ten A. guatemalensis populations and distinct from the A. religiosa populations (Fig. 3). Abies hickeli populations from Oaxaca also formed a monophyletic group. Ables religiosa populations formed another monophyletic group that also included two populations of A. guatemalensis and the one population of A. hickeli from Veracruz. Within this group, there were two subgroups, one consisting of populations from the Mexico City area and west (G44, R12, R13, R15, R21, R22, R49, and R53) and the other consisting of populations principally from the Mexico City area and east (G52, H46, R45, R48, and R54, with R55 being the exception). Levels of confidence in the branch points of this phenogram are relatively low.

DISCUSSION

The levels of genetic diversity we observed in these Abies species were lower than means reported from studies of other gymnosperms (P = 71.1, A = 1.83, $H_c =$ 0.151), other temperate zone species (P = 63.5, A = 1.81, $H_{e} = 0.166$), and other species with outcrossing mating systems and wind-dispersed pollen (P = 53.0, A = 1.84, $H_e = 0.173$) (Hamrick, Godt, and Sherman-Broyles, 1992). The estimates were also lower than those reported for other species of Abies (Table 3). There are relatively few reports of natural populations of tree species with very low levels of genetic variation. Such low levels of variation usually occur in species with very narrow geographic distributions, species that are inbreeding colonizers (Brown and Marshall, 1981), or species with very small population sizes (Hartl and Clark, 1989). In many populations we observed hundreds of individuals, enough to counteract the effects of genetic drift. In some of the populations, however, we observed relatively low total sizes, particularly for *A. guatemalensis*, a species in which we found lower levels of heterozygosity. Estimates of expected heterozygosity varied from almost twofold to almost 30-fold among populations within species (0.064-

TABLE 2. Signi over	Weir and Cocl ficance of devia loci, and confid	herham's (1984 ations from zer lence intervals	t) estimates of \circ (• $P < 0.05$) were obtained	Wright's F states $P < 0.01$ by bootstrappi	tristics calcula , *** $P < 0.0$ ng over loci. A. guarematentis F_n	ted for each k 005) were test	ocus for all popu ed by using perm	ulations of Abi nutations. Mea A hicketi F,	es flinckii, A. ₂ uns and standa	guatematersis, rd devitations v	 A. hickeli, an wcre obtained A. religious F. 	by jackknifing
			1000			500.0	1 000	******	0.042000	0.966***	0 272***	0.000
GdhI	.000	1.000	-0.004			500.0		000	55.0	0.000.0	0.010	0.000
Gotl	0.129	0.238	0.125***	0.687	0.754	0.213	0.120	0.216	0.109	0.401	0.590	0.316
1dh2	-0.187	-0.125	0.052	-0.138	-0.009	0.114***	-0.215	0.010	0.185***	0.253	0.288	0.048
lanl		000.1	0.053	0.722	0.748	0.093	-0.032	-0.008	0.023*	0.110	0.200	0.101
Mnrl	1 000	1.000	0.011				0.002	~0.001	-0.003			
Penl										0.660	0.667	0.020**
Pens										0.498	0.498***	0.001
Pers	0.067	0.310	0.260	0.058	0.142***	0.089***	0.005	0.023	0.018	-0.021	0.141*	0.159***
Poil	0.125	0.160	0.040	0.321	0.373	0.076***	-0.022	-0.019	0.003	0.171	0.317***	0.176***
Poi2	0.365	0.586	0.348***	-0.024	-0.002	0.021*	0.325	0.325	0.004	0.810***	0.967***	0.824
Peml	0.025	0.465	0.451***	0.035	0.099	0.035***	0.345***	0.362**	0.026**	0.258	0.303***	0.060***
Pem2	-0.118	0.116	0.209***	-0.066	-0.040	0.024**	-0.068	-0.020	0.045*	0.242	0.340***	0.128***
Sdhl	-0.153	-0.006	0.128***	0.195***	0.303	0.134	0.200	0.217***	0.021	0.100*	0.302***	0.225
Sah2	0.025	0.436	0.421	1.000	1.000	0.095***				0.219*	0.340	0.155***
Mean	0.074	0.325	0.271***	0.235	0.330	0.122	0.121 ***	0.183	0.073***	0.216***	0.4 4 * * *	0.250***
SD	(0.057)	(0.072)	(0.058)	(0.101)	(0.106)	(0.024)	(0.065)	(0.046)	(0:030)	(0.078)	(0.089)	(0.054)
95% CI	- 027-0.194	0.166-0.438	0.149-0.351	0.080-0.477	0.144-0.557	0.063-0.157	-0.025 - 0.243	0.079-0.275	0.021-0.120	0.106-0.370	0.263-0.577	0.137-0.366

0.158 for A. flinckii, 0.044-0.094 for A. guatemalensis, 0.073-0.135 for A. hickeli, and 0.008-0.235 for A. religiosa), providing further evidence for the possible action of genetic drift on some of these populations.

The F and F_{is} values we observed suggest inbreeding in the analyzed populations. This was strongest for A. guatemalensis, but significant for all species. For A. guatemalensis and A. hickeli, values of F_{is} (0.235 and 0.121, respectively) were even higher than values of θ , indicating that a high portion of the total reduction in observed heterozygosity (F_{is}) is due to inbreeding within subpopulations, although interpopulational differentiation is also considerable, especially for A. guatemalensis. F_{is} was also high in A. religiosa (0.216), but lower than θ . While most conifers studied have displayed an excess of heterozygosity over that expected under Hardy-Weinberg equilibrium, heterozygote deficits have been reported for some predominantly outcrossing species (Parker and Hamrick, 1996), including Abies (Shea, 1990; Fady and Conkle, 1993; Table 3).

Estimates of θ for the populations analyzed show higher amounts of genetic differentiation among populations within species than that found for most other conifers and other species of *Abies*. This should not be surprising given the general bias in the literature toward studies of widespread, economically important conifers of the Northern Hemisphere. Mean θ values were 0.271 for *A. flinckii*, 0.122 for *A. guatemalensis*, 0.073 for *A. hickeli*, and 0.250 for *A. religiosa*. The relatively lower value for *A. hickeli* may be due to its more restricted geographic distribution, with all but one of the populations occurring in central Oaxaca. Hamrick and Godt (1996a) reported a mean $F_{\rm st}$ of 0.101 for a variety of species with wind-dispersed pollen, and Hamrick, Godt, and Sherman-Broyles (1992) reported mean $F_{\rm st}$ values of 0.063 for seven species.

The relatively high values of θ for the *Abies* species of southern Mexico and Guatemala reflect spatial genetic structure and suggest that genetic drift or selection or both have been important forces in their evolution. These results also suggest restricted levels of gene flow. The estimated levels of gene flow (Nm) in these species are lower than those needed to counteract genetic drift (Nm > 4; Jorgensen and Hamrick, 1997) and are lower than the mean values reported for other outcrossing species with wind-dispersed pollen (Hamrick, 1987).

Gene flow in A. religiosa is somewhat geographically restricted, with long-distance dispersal not sufficiently common to prevent isolation by distance. The sampled populations have likely existed for a long time, sufficient to permit isolation by distance to become apparent (Slatkin, 1993). The failure to detect an isolation by distance pattern in the other species could be due to continuing gene flow among populations, such as in the case of A. hickeli (Nm = 3.17), or due to the populations not being at drift-migration equilibrium because of historical events, such as recent range expansion or fragmentation of populations (Comes and Abbot, 1998). Gene flow may have been so restricted between even the closest populations within A. flinckii and A. guatemalensis that the regression between M and distance was not sensitive enough to detect a pattern of isolation by distance. Also,

Fig. 2. Plots of all pairwise $\log_{10}M$ (M = gene flow between pairs of populations) values against $\log_{10}k$ (k = geographic distance between pairs of populations). The linear regression equations and probabilities (p) of obtaining these relationships given the null hypothesis of no relationship between $\log_{10}M$ and $\log_{10}k$ are, respectively, $\log_{10}M = 0.0298 \log_{10}k - 0.207$ and p = 0.842 for Abies flinckil, $\log_{10}M = -0.253 \log_{10}k + 1.036$ and p = 0.537 for A. guatemalensis, $\log_{10}M = 0.122 \log_{10}k + 0.246$ and p = 0.881 for A. hickeli, and $\log_{10}M = -0.974 \log_{10}k + 2.366$ and p = 0.0053 for A. religiosa.

the very scattered and isolated populations of *A. guate-malensis* may not meet the assumption of the isolation by distance model.

Our phenogram provisionally suggests the existence of three major groups, *A. guatemalensis* (including *A. flinckii*), *A. hickeli*, and *A. religiosa*. We must caution, however, that the bootstrap confidence levels in this tree are low, likely due to the low levels of variation in the species, and further data from more variable markers will be necessary to draw firm phylogenetic conclusions.

While the populations of *Abies flinckii* form a monophyletic group, they are embedded within the *A. guatemalensis* group, suggesting that these may comprise a single species, as suggested by Martínez (1948) and Farjon (1990). This would not be entirely surprising, given the geographic distributions (Fig. 1) of the two species, but the great differences in phenology we observed between these species in the field suggest that they may be reproductively isolated. The clear difference between *A. flinckii* and *A. religiosa* is most strikingly apparent in populations F20 and R21, which represent trees mixed together on the same site in the Sierra de Manantlán. Although growing on the same site, their morphologies and phenologies are very different and no intermediates are found.

Branch lengths suggest that the populations of A.

flinckii and the westernmost populations of A. religiosa (R21, R22, and R55) have undergone the highest degree of differentiation. These populations are quite isolated geographically and are not very large, conditions that may have permitted accelerated differentiation due to genetic drift. The relatively high θ value for A. religiosa may be due, in part, to the divergence between the western (e.g., R15, R21, R22, R49, and R53) and easterm (e.g., R45 and R48) populations that we observed in the tree.

All three of the populations that did not cluster with their conspecific populations (G44, G52, and H46) fall clearly within the reported geographic range of A. religiosa. The vegetative morphological differences between these populations and A. religiosa are not great and the species may have been misidentified by those who originally described these sites. In our field observations of vegetative characteristics, these three populations differed from A. religiosa principally in having leaves that were emarginate at the apex instead of acute, obtuse, or rounded. None of the populations showed evidence of being a mixture of species or hybrids. These populations are quite geographically isolated from their conspecific populations, and it is possible that they have undergone a very high degree of generic drift and are now very different from the other populations in their species.

Fig. 3. Neighbor-joining dendrogram based on Nei's unbiased genetic distances between populations of *Abies flinckii* (F), *A. guatema*lensis (G), *A. hickeli* (H), and *A. religiosa* (R). See Fig. 1 for population locations. Numbers are bootstrap values (in percentages), values below 50 are not shown. Population H4 corresponds to the type site for A. zapotekensis Debreczy, Rácz, and Ramírez, a new species described by Debreczy and Racz (1995). Our data suggest that it is a population of A. hickeli. Population R22 corresponds to the type site of A. colimensis Rushforth & Narave, a new species described by Rushforth (1989). Our data suggest that it is a population of A. religiosa, although the branch length suggests that it is a relatively more differentiated population. Population G10 corresponds to the type site of A. guatemalensis var. tacanensis (Lundell) Martinez. Our data suggest that it is a population of A. guatemalensis.

The short branch lengths separating the three major groups in the phenogram are consistent with the low amount of differentiation accounted for by differences among species (0.056). This low level of interspecific differentiation may be considered somewhat surprising, but high levels of genetic drift and low levels of gene flow among populations within species could generate high levels of intraspecific differentiation without necessarily leading to high levels of interspecific differentiation.

The effect of present geographic distribution on the patterns of genetic structure is not entirely clear. We found lower levels of genetic variation in *A. guatemalensis* than in the rest of the taxa, which was expected because of its smaller and more isolated populations. We also found indications of higher levels of inbreeding in this species. In contrast to what we expected, levels of interpopulational differentiation were higher in *A. religiosa* than in *A. guatemalensis*, although in both cases they were rather high.

In temperate species, cycles of glacial and interglacial periods likely have played an important role in shaping the present genetic variation patterns of plant populations (Konnert and Bergmann, 1995). The last glacial period reached a peak between 25 000 and 18 000 yr ago (Roberts, 1998). During this period, land temperatures dropped as much as 20°C and ocean temperatures \sim 5°C. These climatic changes led to changes in the distributions of many species, with species of the Northern Hemisphere displaced southwards. Afterwards, when warming

TABLE 3. Percentage polymorphic loci (P), mean expected heterozygosity (H_c) , observed heterozygosity (H_b) , number of alleles per locus (A), Wright's fixation index (F_u) and total genetic diversity among populations $(G_u \text{ or } F_u)$ for different species of *Ables*.

Species	P" (%)	Н,	Н.	Å	F.	F,	Reference
A. balsamea		0.274	0.266	2.05	008		Neale and Adams, 1985
A. fraseri	30.8	0.286°	0.258	1.10	0.007	0.002	Diebel and Feret, 1991
A. alba			0.397		0.006	0.071	Breitenbach-Dorfer et al., 1997
A. alba	54.5	0.182	0 149	1.6			Fady and Conkle, 1993
A. cephalonica	72.7	0.221	0.161	2.0	0.234	0.048	Fady and Conkle, 1993
A. borisii regis	59.1	0.198	0.161	1.8			Fady and Conkle, 1993
A. laslocarpa	43.4	0.124	0.081	1.6	0.341	0.017	Shea, 1990
Abies from the eastern U.S.	42.1			1.4			Jacobs, Werth, and Guttman, 1984
A. kawakamii	78	0.283	0.033	2.2			Kormutak and Yang, 1998
A. hickeli	28.2°	0.100	0.088	1.5	0.121	0.021	This study
A. guatemalensis	205	0.069	0.053	1.38	0.235	0.122	This study
A. religiosa	31.84	0.108	0.082	1.5	0.216	0.250	This study
A. flinckli	30.2	0.113	0.102	1.6	0.074	0.271	This study

A locus was considered polymorphic if more than one allele was detected.

Based only on polymorphic loci.

^e A locus was considered polymorphic when the frequency of the most common allele was $\leq 95\%$.

March 2000]

began in the current interglacial period (~11 500 yr BP), species migrated northwards (Roberts, 1998).

The genus Abies has a long history in Mexico, with pollen present in Mexico at least as far south as Veracruz (Paraje Solo Formation), in the middle Pliocene (five million years ago; Graham, 1993, 1999). While we can estimate the current total sizes of these populations, we do not know their effective population sizes nor their historical sizes, both factors that can influence observed levels of variation. There are no detailed climatic data for Mexico during the glacial periods, but in general terms there is consistency in the data regarding the cold and dry climates during the glacial maximum (~18000 yr BP; Lozano-García, 1993). It is proposed that between 12 500 and 9000 yr BP, at the end of the Pleistocene, the climate was humid and colder than at present and forests reached their maximum development in Mexico (Lozano-García, 1993). This suggests that during the last glaciation temperate species had a broader distribution than at present in Mexico, and populations of species that are now isolated could have been in contact. After 9000 yr BP, the climate became warmer (Lozano-García, 1993), and populations could have been fragmented, becoming smaller and more isolated, with reduced effective population sizes (N_r) .

The Abies species of southern Mexico and Guatemala may have experienced fragmentation of populations and range retractions with the warming trend that peaked ~6000 yr BP. Their populations could have been displaced to higher regions, possibly causing a greater degree of isolation between populations than we observe at present. These populations may have passed through a number of genetic bottlenecks that led to a loss of genetic diversity and interpopulational differentiation due to genetic drift. Small population sizes could also have led to inbreeding and the observed heterozygote deficiencies (Nei, Maruyama, and Chakraborty, 1975). A number of the populations that we sampled have more than 100 individuals, which should be large enough to counteract genetic drift if all individuals reproduce, but Abies species are long-lived perennials with reproductive maturity at 20 yr and an average life span of 60 yr (Jacobs, Werth, and Guttman, 1984). If new variation is accumulated in proportion to the number of generations (meiotic events) over time, then these species may not have had enough time to recover the variation that they lost due to genetic drift.

The majority of conifers studied by isozyme analysis display relatively high levels of genetic diversity and low levels of interpopulational differentiation compared to other groups of plants. They also generally display genotypic frequencies consistent with Hardy-Weinberg equilibrium or an excess of heterozygotes. These conifers are mostly species with relatively large ranges in the North Temperate zones of Asia, North America, north of Mexico, and Europe. These areas were heavily impacted by Pleistocene glaciation, with much of their areas covered by ice. The current distributions of many of these species are very recent, not giving them enough time to develop high levels of interpopulational differentiation. Many of them were able to maintain relatively large continuous populations south of the glacial front during the Pleistocene, avoiding drastic losses of variation due to genetic drift. Their current large, often continuous populations help to maintain variation and prevent interpopulational differentiation and inbreeding.

In contrast, we observed relatively low levels of genetic diversity and relatively high levels of heterozygote deficiency and interpopulational differentiation in the Abies species of southern Mexico and Guatemala, suggesting the action of genetic drift and relatively low levels of gene flow. These same patterns were also observed by Keiman-Freire (1997) in a study of the Abies species of northern Mexico. Picea chihuahuana, another conifer with relatively small and isolated populations in northern Mexico, displayed the same pattern, with a low level of variation ($H_e = 0.093$), and high levels of heterozygote deficiency ($F_{\mu} = 0.185$) and interpopulational differentiation ($F_{st} = 0.248$) (Ledig et al., 1997). Pinus rzedowski, a conifer with a small number of populations in a restricted area of west-central Mexico (western Michoacan) displays considerably higher within-population diversity $(H_e = 0.219)$, but also has a significant deficiency of heterozygotes ($F_{is} = 0.247$) and a high level of interpopulational differentiation ($F_{\rm sc} = 0.175$; Delgado et al., 1999). These data suggest that the levels and patterns of genetic variation observed for conifers in the North Temperate zone (Hamrick, Godt, and Sherman-Broyles, 1992) are not consistent with those of the conifers of Mexico studied until now. Ge et al. (1998) also reported very high levels of interpopulation differentiation in Cathaya argyophylla, a conifer with a restricted distribution in southern China. Hamrick and Godt (1996b) pointed out that, not only life-history traits, such as those shared by conifers, influence the levels and distribution of genetic diversity among species, but also the phylogenetic, biogeographical, and evolutionary histories of the particular species are important.

From the standpoint of conservation, the high levels of interpopulation genetic differentiation we observed pose a real challenge. This may be the case for many Mexican conifers and much of the Mexican flora. Other isozyme studies of Mexican plant species have found relatively high levels of interpopulation differentiation (Izquierdo and Piñero, 1998; Núñez-Farfán et al., 1996; Cornejo-Romero, 1998; Martínez-Palacios, Eguiarte, and Furnier, 1999). This pattern of variation poses the challenge of preserving the many genetically distinct populations necessary to adequately capture the genetic variation of the species, within a country with strong social pressures to economically exploit the land (Carabias, Arriaga, and Cervantes, 1994).

LITERATURE CITED

- BARTON, N. H., AND M. SLATKIN. 1986. A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. *Heredity* 56: 409-415.
- BROWN, A. H. D., AND D. P. MARSHALL. 1981. Evolutionary changes accompanying colonization in plants. In G. E. Scudder and J. L Reveal [cds.], Evolution today: proceedings of the second international congress of systematic and evolutionary biology, 351–363. Hunt Institute for Botanical Documentation, Carnegie-Mellon University, Pittsburg, Pennsylvania, USA.
- BREITENBACH-DORFER, M., M. KONNERT, W. PINSKER, F. STARLINGEN, AND T. GEBUREK. 1997. The contact zone between two migration routes of silver fir Abies alba (Pinaceae), revealed by allozyme studies. Plant Systematics and Evolution 206: 259-272.

- CARABIAS, J., V. ARRIAGA, AND V. CERVANTES. 1994. Los recursos naturales de México y el desarrollo. In P. Pascual Moncayo and J. Woldenberg [eds.], Desarrollo, desigualdad y medio ambiente, 303-345. Editorial Cal y Arena, Mexico City, Mexico.
- CHELIAK, W. M., AND J. A. PITEL. 1984. Techniques for starch gel electrophoresis of enzymes from forest tree species. Canadian Forestry Service Information Report PI-X-42. Petawawa National Forestry Institute, Petawawa, Ontario, Canada.
- COMES, H. P., AND R. J. ABBOT. 1998. The relative importance of historical events and gene flow on the population structure of a Mediterranean ragwort, Senecio gallicus (Asteraceae). Evolution 52: 355-367.
- CONKLE, M. T., P. D. HODGKISS, L. B. NUNNALLY, AND S. C. HUNTER. 1982. Starch gel electrophoresis of pinc seed: a laboratory manual, U.S. Forest Service General Technical Report PSW-64.
- CORNEJO-ROMERO, A. 1998. Estructura genética poblacional de Rhizophora mangle en el Golfo de México. Tesis de licenciatura, Facultad de Ciencias, Universidad Nacional Autónoma de México, México, D.F.
- DEBRECZY, Z., AND I. RACZ. 1995. New species and varieties of conifers from Mexico. *Phytologia* 78: 217-243.
- DELGADO, P., D. PINERO, A. CHAOS, N. PÉREZ-NASSER, AND E. ALVAREZ-BUYLLA. 1999. High population differentiation and genetic variation in the endangered Mexican pine, *Pinus rzedowskii* (Pinaceae). *American Journal of Botany* 86: 669-676.
- DIEBEL, K. E., AND P. P. FERET. 1991. Isozyme variation within the Fraser fir (*Abies fraseri* (Pursh) Poir.) populations on Mount Rogers, Virginia: lack of microgeographic differentiation. *Silvae Genetica* 40: 79-85.
- DONAHUE, J. K., W. S. DVORAK, E. A. GUTIERREZ, AND M. B. KANE. 1985. Abies guatemalensis: a two year status report. CAMCORE. Bulletin of Tropical Forestry Number 3. School of Forest Resources, North Carolina State University, Raleigh, North Carolina, USA.
- EL-KASSABY, Y. A., AND K. RITLAND. 1996. Genetic variation in low elevation Douglas-fir of British Columbia and its relevance to gene conservation. Blodiversity and Conservation 5: 779-794.
- FADY, B., AND M. T. CONKLE. 1993. Allozyme variation and possible phylogenetic implications in *Abies cephalonica* Loudon and some related eastern Mediterranean firs. *Silvae Genetica* 42: 351-359.
- FAO. 1986. Databook on endangered tree and shrub species and provenances. FAO. Forestry Paper 77. Food and Agriculture Organization, Rome, Italy.
- FAPJON, A. 1990. Pinaceae: drawings and descriptions of the genera Abies, Cedrus, Pseudolaris, Keteleerla, Nothotsuga, Tsuga, Cathaya, Pseudotsuga, Lorix, and Picea. Koeltz Scientific Books, Konigstein, Germany.
- FELSENSTEIN, J. 1995. PHYLIP (Phylogeny Inference Package) version 3.572. Department of Genetics, University of Washington, Seattle, Washington, USA.GE, S., D. Y. HONG, H. G. WANO, Z. Y. LIU, AND C. M. ZHANG. 1998.
- GE, S., D. Y. HONG, H. G. WANO, Z. Y. LIU, AND C. M. ZHANG. 1998. Population genetic structure and conservation of an endangered conifer, Cathaya argyopl:ylla (Pinaceae). International Journal of Plant Sciences 159: 351-357.
- GOUDET, J. 1995. Fstat version 1.2: a computer program to calculate F statistics. Journal of Heredity 86: 485-486.
- GRAHAM, A. 1993. Historical factors and biodiversity in Mexico. In T. P. Ramammoorthy, R. Bye, A. Lor, and J. Fa [eds.], Biological diversity of Mexico: origins and distribution, 109–127. Oxford University Press, New York, New York, USA.

 1999. The tertiary history of the northern temperate element in the northern Latin American biota. American Journal of Botany 86: 32-38.

- HAMRICK, J. L. 1987. Gene flow and distribution of genetic variation in plant populations. In K. Urbanska [ed.], Differentiation patterns in higher plants, 53-67. Academic Press, New York, New York, USA.
- , AND M. J. W. GODT. 1996a. Effects of life history traits on genetic diversity in plant species. *Philosophical Transactions of the Royal Society of Landon, Series B* 1291-1298.
 - —, 1996b. Conservation genetics of endemic plant species. In J. C. Avise and J. L. Hamrick [eds.], Conservation genetics: case histories from nature, 281-302. Chapman and Hall, New York, New York, USA.

- _____, ____, AND S. L. SHERMAN-BROYLES. 1992. Factors influencing levels of genetic diversity in woody plant species. In W. T. Adams, S. H. Strauss, D. L. Copes, and A. R. Griffin [eds.], Population genetics of forest trees, 95-124. Kluwer Academic Publishers, Boston, Massachusetts, USA.
- HARTL, D. L., AND A. G. CLARK. 1989. Principles of population genetics, 2nd ed. Sinauer, Sunderland, Massachusetts, USA.
- IZQUIERDO, L. Y., AND D. PIÑERO. 1998. Allozyme divergence among four species of Podachmea s. l. and the status of Ursulaea (Bromeliaceae, Bromelioideae). Plant Systematics and Evolution, 213: 207-215.
- JACOBS, B. F., C. R. WERTH, AND S. I. GUTTMAN. 1984. Genetic relationships in Ables (fir) of eastern United States: an electrophoretic study. Canadlan Journal of Botany 62: 609-616.
- JORGENSEN, S. M., AND J. L. HAMRICK. 1997. Biogeography and population genetics of whitebark pine, Pinus albicaults. Canadian Journal of Forest Research 27: 1574-1585.
- KEIMAN-FREIRE, A. F. 1997. Niveles y patrones de variación isoenzimática en el género Abies del norte de México. Tesis de licenciatura, Facultad de Ciencias, Universidad Nacional Autónoma de México, México, D.F., México.
- KONNERT, M., AND F. BEROMANN. 1995. The geographical distribution of genetic variation of silver fir (*Ables alba*, Pinaceae) in relation to its migration history. *Plant Systematics and Evolution* 196: 19–30.
- KORMUTAK, A., AND J. C. YANG. 1998. The genetics and embryology of Taiwan fir (Ables kawakamll (Hayata) 1to). Taiwan Journal of Forest Science 13: 1-78.
- LEDIO, F. T., V. JACOB-CERVANTES, P. D. HODGSKISS, AND T. EQUILUZ-PIEDRA. 1997. Recent evolution and divergence among populations of a rare Mexican endemic, Chihuahua spruce, following Holocene climatic warming. *Evolution* 5: 1815–1827.
- LIU, T.-S. 1971. A monograph of the genus *Abies*. Department of Forestry. College of Agriculture, National Taiwan University, Taipei, Taiwan, China.
- LOZANO-GARCIA, M. S. 1993. Late Pleistocene and Holocene paleoenvironments of Chalco lake, central Mexico. Quaternary Research 40: 332-342.
- MANTEL, N. 1967. The detection of disease clustering and generalized regression approach. *Cancer Research* 27: 209-220.
- MARTÍNEZ, M. 1948. Los Abies mexicanos. Anales del Instituto de Biología de México 19: 11-104.
- MARTÍNEZ-PALACIOS, A., L. E. EGULARTE, AND G. R. FURNIER. 1999. Genetic diversity of the endangered endemic Agave victoria-reginae (Agavaceae) in the Chihuahuan desert. American Journal of Botany 86: 1093-1098.
- MATUSOVA, R. 1995. Genetic variation in 5 populations of silver fir (Abies alba Mill.). Blologia (Bratislava) 50: 53-59.
- NEALE, D., AND W. T. ADAMS. 1985. Allozyme and mating system variation in balsam fir (*Ables balsamea*) across a continous elevational transcot. *Canadian Journal of Botany* 63: 2448–2453.
- NEI, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. *Genetics* 89: 583-590.
 T. MARUYAMA, AND R. CHAKRABORTY. 1975. The bottleneck
- effect and genetic variability in populations. Evolution 29: 1-10. NUNEZ-FARFAN, J., C. A. DOMINGUEZ, R. DIRZO, L. E. EGUARTE, AND M. QUIJANO. 1996. Estudio génetico de las poblaciones de Rhizophora mangle en México. Informe final del proyecto CONABIO Número B214. México D.F., México.
- PARKER, K. C., AND J. L. HAMRICK. 1996. Genetic variation in sand pine (Pinus clausa). Canadian Journal of Forest Research 26: 244-254.
- PITEL, J. A., AND W. H. CHELIAK. 1984. Effect of extraction buffers on characterization of isoenzymes from vegetative tissues of five conifer species: a user's manual. Canadian Forestry Service Information Report PI-X-34. Petawawa National Forestry Institute, Petawawa, Ontario, Canada.
- RIDGEWAY, G. J., S. V. SHERBURNE, AND R. D. LEWIS. 1970. Polymorphism in the esterase of Atlantic herring. *Transactions of the American Fisherles Society* 99: 147-151.
- ROBERTS, N. 1998. The Holocene: an environmental history. Blackwell Publishers, Oxford, UK.
- RUSHFORTH, K. D. 1989. Two new species of Abies (Pinaceae) from

western Mexico. Notes of the Royal Botanical Gardens of Edinburgh 46: 101-109.

- SAITOU, N., AND M. NEI. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406-425.
- SHEA, K. L. 1990. Genetic variation between and within populations of Engelmann spruce and subalpine fir. Genome 33: 1-8.
- SLATKIN, M. 1985. Rare alleles as indicators of gene flow. Evolution 39: 53-65.
- -. 1993. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47: 264-279.
- . 1994. Gene flow and population structure. In L. A. Real [ed.], Ecological genetics, 3-18. Princeton University Press, Princeton, New Jersey, USA.
- -, AND N. H. BARTON. 1989. A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43: 1349-1368.
- STREIFF, R., T. LABBE, R. BACILIERI, H. STEINKELLNER, J. GLOSSL, AND

A. KREMER. 1998. Within-population genetic structure in Quercus robur L. and Quercus permane (Matt.) Liebl. assessed with isozymes and microsatellites. Molecular Ecology 7: 317-328. SworFORD, D. L., AND R. B. SELANDER. 1981. BIOSYS-1: a Fortran

- program for the comprehensive analysis of electrophoretic data in population genetics and systematics. Journal of Heredity 72: 281-283.
- WEIR, B. S., AND C. C. COCKERHAM. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370.
 WELCH, H. J. 1991. The conifer manual. vol. 1. Kluwer Academic
- Publishers, Boston, Massachusetts, USA.
- WRIGHT, S. 1951. The genetical structure of populations. Annals of Eugenics 15: 323-354.
- Ligenics 15: 323-334.
 Statistics with special regard to systems of mating. Evolution 19: 395-420.
 YEH, F. CH.-H., AND D. O'MALLEV. 1980. Enzyme variations in atural populations of Douglas-fit, Pseudostaga merzlesii (Mirb.) Franco, from British Columbia. 1. Genetic variation patterns in coastal populations. Silvae Genetica 29: 83-92.

Phylogeography of *Abies* from southern Mexico and Guatemala: evidence of isolation by distance.

E. Aguirre-Planter, D. Piñero, G. R. Furnier and L. E. Eguiarte Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, México, D.F. 04510, México

Keywords: Abies hickeli, A.guatemalensis, A. religiosa, A. flinckii, cpSSRs, phylogeography, ancestral polymorphisms.

Abstract

Paternally inherited polymorphic chloroplast microsatellites (cpSSRs) were used to examine genetic variation and to infer geographical distribution of pollen in 19 populations of Abies (eight of Abies guatemalensis, four of Abies religiosa, four of Abies hickeli and three of Abies flinckii) from southern Mexico and Guatemala. Populations of these species are distributed in mountain islands, some of them separated by many kilometers. A total of fifty-one different haplotypes were detected based on two cpSSRs, and high levels of haplotype diversity (He) were found (0.95 for A. hickeli, 0.89 for A. religiosa, 0.87 for A. guatemalensis, and 0.76 for A. flinckii). We used an analysis of molecular variance (AMOVA) to determine the hierarchical genetic structure of cpSSRs (88.4% variation within populations, 5.50% differentiation among populations of the same species and 5.66% differentiation among species), a neighbor-joining phenogram and a nested-clade distance analysis to provide insights into the evolutionary history of the species. Our results indicate that pollen could be the primary agent of gene flow ($F_{ST}=0.131$ for A. guatemalensis, 0.075 for A. religiosa, 0.065 for A. hickeli and 0.029 for A. flinckii), although isolation by distance in certain populations seems to be promoting differentiation. The nested clade analysis suggests allopatric fragmentation in one lower-level clade, population expansion in one clade and isolation by distance in some lower and higher-level clades. Our data suggest that the Abies species studied are recently derived and are still not clearly differentiated at the molecular level, a finding that is in accordance with our allozyme data and with the hypothesis that their populations became isolated during the period following the last Pleistocene glaciation (6 000 yr BP).

Introduction

The southernmost recognized species of Abies in America are A. guatemalensis, A. religiosa, A. hickeli and A. flinckii (Rushforth 1989; Aguirre-Planter et al. 2000). These species occur from San Luis Potosí in Mexico, to Guatemala. The phylogeography of southern species of Abies seems to be profoundly influenced by the warming period that followed the Pleistocene glaciation (Aguirre-Planter et al. 2000). During the last glaciation (~20 000 yr BP), climates were cooler and drier in Mexico (Lozano-García 1993), which could have favored the expansion of Abies. There is paleobotanical evidence that between 12 500 and 9 000 yr BP, at the end of the Pleistocene, temperate forests reached their maximum development in Mexico (Lozano-García 1993, Stute et al. 1995, Vázquez-Selem y Heine 2004). This information suggests that plant species of temperate forests had a broader distribution during the last glaciation than at present, and populations of Abies species from Mexico could have been in greater contact than at present (Aguirre-Planter et al. 2000). In the warming period after 9000 yr BP (including the present), as temperatures rose, the distribution of temperate species contracted since their habitats became more restricted and fragmented. Currently in Mexico and Guatemala, Abies species occur as isolated populations in mountain-top regions, often separated by many kilometers.

In a previous study we found low levels of genetic variation within populations and high levels of genetic differentiation among populations of southern species of *Abies* species at allozyme loci, suggesting that gene flow is limited and the random loss of alleles through genetic drift is relatively high (Aguirre-Planter et al. 2000). This pattern contrasts to what has generally been found in conifers of the northern temperate zone (Hamrick et al. 1992; Ledig 1998). However, high levels of genetic differentiation among populations have also been found in other conifer species in Mexico and Central and South America (Ledig et al. 1997; Allnutt et al. 1999; Matheson et al. 1989; Delgado et al. 1999; Molina-Freaner et al. 2001), a result that has similarly been attributed to the mountainous topography and associated to climatic heterogeneity. Gene flow in plants is mediated by pollen and seed dispersal. Since in conifers chloroplasts are primarily paternally inherited (Wagner 1992) and mitochondria maternally inherited, analyses of plastid genes provide information about the effects of male and/or female gene flow (Ennos 1994). In particular, comparing nuclear with chloroplast genetic markers allows inferences about pollen dispersal (McCauley 1995; Latta & Mitton 1997; Viard et al. 2001).

Microsatellite or SSR (Simple Sequence Repcat) markers in conifer chloroplast DNA (in both Pinus and Abies) have been useful for inferring population genetic processes because of their relatively high mutation rates (Powell et al. 1995; Vendramin et al. 1996; Vendramin and Ziegenhagen 1997). Since the effective population size of chloroplast markers is approximately one-half of that of diploid nuclear markers in hermaphroditic, outbreeding plant species (McCauley 1995), plastid markers are more sensitive indicators of bottleneck effects and genetic drift. Chloroplast SSRs can also be used to study lower (species/subspecies) taxonomic categories, since the chloroplast genome is assumed to be non-recombining (Clegg 1993), and they appear to have lower mutation rates than nuclear microsatellites, and it, leading to fewer errors in analyses due to homoplasy (Provan et al. 1999a). Homoplasy occurs when different copies of a locus are identical in state, although not identical by descent and it is related to the way mutation produces new alleles (Estoup et al. 2002). The mutational models generally proposed for microsatellites are the stepwise mutation model (SMM, Kimura & Ohta 1978), the infinite allele model (IAM, Kimura & Crow 1964) in which homoplasy is not expected, and the two-phase model (TPM, Di Rienzo et al. 1994). Homoplasy can affect the inferences drawn in a phylogeographic study.

In species with long generation times, such as conifers, cpSSRs markers have allowed the delineation of related groups. For instance, Bucci et al. (1998) used cpSSR markers to distinguish closely related taxa of the *halepensis*-complex of pine species, whereas Clark et al. (2000) were able to differentiate between *Abies fraseri*, *A. balsamea* and *A. balsamea* var. *phanerolepis*. In both cases differentiation was not possible using only allozyme data alone. Gugerli et al. (2001) found congruent

phylogenetic relationships among Pinus cembra, P. sibirica, and P. pumila, based on cpDNA microsatellites and mitochondrial nad1 intron 2 sequences. Using molecular markers such as cpSSRs enables us to detect phylogeographic patterns and population genetic structures. The study of geographical subdivisions and the historical processes that gave rise to them can be studied in detail by using a nested-clade phylogeographical analysis proposed by Templeton et al. (1995). This method defines a series of hierarchically nested clade using explicit nesting rules (Templeton et al. 1987, Templeton et al. 1992). Haplotypes are nested together in one-step clades, based on mutational steps. The one-step clades are nested together in two-step clades, and so on, until the last nesting level comprises the entire haplotype network. Based on the significant association between haplotype/clades and geography and on the NCPA inference key (Templeton, 2004) one can discriminate among population processes such as gene flow, from historical events such as range expansions, long distance colonization and fragmentation, that gave rise to the current configuration of population/haplotype variation (Templeton 2001).

In this study we used chloroplast microsatellite (cpSSRs) markers to examine the extent of genetic variation and the structure of current populations in *A*. *guatemalensis*, *A*. *hickeli*, *A*. *religiosa* and *A*. *flinckii*. We are particularly interested in addressing the importance that pollen flow and historical population events have had in shaping the current structure of populations within and among taxa. We are also interested in delimiting the taxonomic boundaries between the four taxa at the molecular level, since this was not possible in our previous allozyme study (Aguirre-Planter et al. 2000). Finally, by combining the information from this and our previous study, we propose conservation strategies for the genetic resources in each taxon.

Materials and methods

Species description

Four species of *Abies* from southern Mexico and Guatemala were studied: 1) *Abies* guatemalensis Rehder, the southernmost representative of the genus, which is found

in Guatemala, and the Mexican states of Chiapas, Oaxaca, Guerrero, Jalisco, Hidalgo and San Luis Potosí (Martínez 1948; Donahue et al. 1985). A. guatemalensis was considered a common species until 1940, but since then it has been widely exploited throughout its range and it is currently considered an endangered species. Wood of A. guatemalensis is locally used as construction material and as firewood and forests are cleared because of their fertile soils that have been used for agriculture and pasture. At the present time, although this species is widely distributed, it has relatively few isolated populations, and has consequently been designated as a threatened with extinction species (FAO 1986; CITES Appendix 1, http://www.cites.org/, included by the Mexican government in the NOM-ECOL-059-1994). 2) Abies religiosa (H. B. K.) Schl. et Cham. grows throughout the Transversal Volcanic Belt in the states of Guerrero, Jalisco, Michoacán, México, Morelos, Hidalgo, Tlaxcala, Puebla, Veracruz and Distrito Federal (Martínez 1948). Its distribution is more continuous than A. guatemalensis and its forests are sanctuaries for the monarch butterfly during ivernation. 3) A. hickeli Flouss et Gaussen, which has a restricted distribution, with only a few populations in the states of Oaxaca and Veracruz (Martínez 1948). The wood of this species is locally used for house and furniture construction and because of its extraction and depletion of populations, it is considered now as a threatened species by the Mexican government (NOM-ECOL-059-1994); and finally 4) A. flinckii Rushforth, which is distributed in Jalisco and Michoacán. A. flinckii was originally considered to be either Abies religiosa var. emarginata Martinez or A. guatemalensis var. jaliscana Martínez (Martínez 1948). It is currently considered as a species that requires special protection (NOM-ECOL-059-1994). Farjon (1990, 1998) used morphological characters to classify and divide the genus Abies in Mexico into different sections: Section Grandis Engelm. Emend. Farjon et Rushforth, including A. grandis (a species not found in Mexico), A. concolor, A. durangensis, A. guatemalensis and; Section Oyamel Franco, Subsection Religioseae (Matzenko) Farjon et Rushforth which comprises A. religiosa and A. vejarii and Subsection Hickelianae Farjon et Rushforth which includes only A. hickeli. A. flinckii is not considered as a species in Farion's classification, since it was

previously considered as two taxa: Abies religiosa var. emarginata and A. guatemalensis var. jaliscana.

Samples from 19 populations were selected for this study: eight populations of *A. guatemalensis*, four of *A. religiosa*, three of *A. flinckii*, and four of *A. hickeli* (Fig. 1). Sample sizes analyzed ranged from 13 to 29 trees per population (Table 1). Populations chosen are a subset of those investigated in a previous allozyme study (Aguirre-Planter et al. 2000).

DNA extraction and PCR analysis

Polymorphism at eight chloroplast microsatellite loci (Vendramin & Ziegenhagen 1997) was analysed, but only two of them were polymorphic, the same loci that have been found to be polymorphic in different species of Abies (Vendramin and Ziegenhagen 1997; Clark et al 2000). Microsatellite Pt 30204 is composed of three mononucleotide repeats and it is located in a protein gene, clpP (location refers to Pinus thunbergii), and microsatellite Pt 71936, which contains only a mononucleotide stretch of thymidine repeats and it is located in an intron containing reading frame, IRF169 (location refers to Pinus thunbergii) (Tasuya et al. 1994, Vendramin and Ziegenhagen 1997). Total DNA was isolated from leaf samples of all individuals using a CTAB mini-prep protocol (Vázquez-Lobo 1996). PCR amplifications were performed in a MJR PTC-100 thermal controller using approximately 25 ng of genomic DNA in a 15 µL volume reaction containing 10X Tag salts buffer (100 mM Tris-HCL pH 8.4, 500mM KCl, 60 µL of BSA (100mg/ml) and gelatin 1%), 0.2 mM of each dNTP, 2.5 mM of MgCl₂, 0.2 µM of each primer (one of the primers was end-labeled with infrared IRD dyes for visualization with a Li-Cor automated sequencing system) and 1 U of Tag polymerase. Amplification was carried out for an initial period of denaturation at 95°C for five min followed by 25 cycles of: 1 min of denaturation at 94°C, 1 min annealing at 55°C and 1 min extension at 72°C, with a final extension step at 72°C for 8 min. Five µL of formamide loading dye were added to each reaction and the samples were denatured at 80°C for 3 min prior to electrophoresis.

The PCR products were run on a 14%, 18 cm long denaturing polyacrylamide gel on a Li-Cor 4000L automated sequencer set at 50°C, 1000V, 35 mA and 25W. A 16-bit image of each gel was stored after each run. Infrared IRD-labelled size standards in the outermost and middle lanes were loaded on the same gel, as well as control samples of known size in each run. The size of each DNA fragment was estimated using the program RFLPSCAN 3.0 (SCANANALYTICS). This program assigns molecular weights to fragments by comparing the size of fragments in experimental samples to molecular weight standards and control individuals.

Data Analyses

The haplotype identity of each individual was established considering both loci. The number of haplotypes and haplotype frequencies were estimated for each population. Genetic diversity within populations was calculated as $H_e = [n/(n-1)](1-$

 Σp_i^2), where p_i is the frequency of the ith-haplotype and n is the number of individuals analysed (Nei 1987).

Population structure was assessed with the stepwise-mutation model, using R_{ST} (Slatkin 1995), which theoretically is a more accurate estimate for describing population structure based on SSR data, and with the infinite allele model, with F_{ST} (Wright 1965). In theory, R_{ST} performs better than F_{ST} under ideal conditions (large sample sizes and many loci), but when there are few loci and/or the divergence within the group is low, R_{ST} can lead to a serious bias in the estimation of gene flow and perform more poorly than F_{ST} (Gaggiotti et al. 1999).

A hierarchical analysis of molecular variance (AMOVA, Excoffier at al. 1992) was performed in order to partition genetic divergence among regions, among populations within regions, and within populations (ϕ_{CT} , ϕ_{SC} and ϕ_{ST} respectively). The significance of the obtained values was tested using a non-parametric permutation approach described in Excoffier et al. (1992). All of the analyses above were carried out using Arlequin v. 2000 (Schneider et al. 2000). Estimates of gene flow were obtained from mean estimates of F_{ST} and R_{ST} as Nm = $1/2 [(1/F_{ST}) - 1]$ (Wright 1951). To test for isolation by distance, the correlation

between gene flow (M) between pairs of populations and their geographic distance

were estimated for each species (Slatkin 1993). The significance of the correlations was tested by a Mantel test (Mantel 1967).

We constructed a neighbor-joining tree using PHYLIP (Felsenstein 1995), based on two distance matrices, Nei's unbiased genetic distance (D_A) (Nei 1978), and the stepwise distance (D_{sw}) of Shriver et al. (1995). We used the nested-clade analysis described in Templeton et al. (1987, 1992) to construct a haplotype network with a nested design, using the program TCS, version 1.13 (Clement et al. 2000). The nesting algorithm (Templeton et al. 1987) groups together haplotypes and clades by the number of mutational changes, separating them until all haplotypes/clades are joined and partitioned in 1, 2 or more mutational step groups. The final nesting level comprises the entire network. The relationship between haplotypes/clades is then examined by performing exact permutation contingency tests using GEODIS 2.0 (Posada et al. 2000), in order to evaluate if there are significant associations between geographic and haplotype/clade positions at each level of nesting. In clades where a significant association was found, a distance analysis was performed using GEODIS 2.0 (Posada et al. 2000) and the results interpreted using the inference key by Templeton (2004), which gives criteria to discriminate between the role that fragmentation events, gene flow, isolation by distance, population range expansion and/or long distance colonisation events have played in the historical processes that resulted in the current relationships among haplotype/clades.

Results

Genetic variation

Ten different size variants were found at locus Pt 71936 and 15 at locus Pt 30204. Combining the size variants at both loci produced a total of 51 different haplotypes (Table 2). Some of the populations had unique haplotypes, such as AG11 (2 unique haplotypes), AG41 (3 unique haplotypes), AH3 (2 unique haplotypes), AH47 (1 unique haplotype), R22 (2 unique haplotypes) and AF18 (2 unique haplotypes). Populations of *A. flinckii* had many unique haplotypes (7), while the other three species (*A. guatemalensis*, *A. hickeli* and *A. religiosa*) shared 20 haplotypes. Mean H_e was high for each of the four species examined (0.95 for *A. hickeli*, 0.89 for *A. religiosa*, 0.87 for *A. guatemalensis* and 0.76 for *A. flinckii*; Table 1). There were on average 11 haplotypes in populations of *A. neligiosa* and 6.33 in populations of *A. flinckii*. Population G51 had the lowest diversity (H_e = 0.566, 4 haplotypes); it is the most northern and isolated population of *A. guatemalensis*, and harbours one common haplotype with high frequency (Table 2) and three other haplotypes with low frequencies.

Genetic differentiation

The F_{ST} estimates indicate that there is lower differentiation among populations of *A. flinckii*, intermediate for *A. hickeli* and *A. religiosa*, and higher for *A. guatemalensis* (Table 3). On the other hand, R_{ST} , estimates indicate lower differentiation within *A. hickeli*, intermediate for *A. guatemalensis* and *A. flinckii* and higher for *A. religiosa* (Table 3). No significant correlation between estimates of F_{ST} and R_{ST} was found. Relatively high estimates of gene flow were obtained for the taxa studied (Table 3). The highest gene flow estimates were for *A. flinckii* (Nm= 16.74) and the lowest for *A. guatemalensis* (Nm= 3.32; Table 3). Caution should be taken with these estimates, since the analysis assumes that F_{ST} values are in equilibrium, and these values could be overestimates (see below). Correlations between the logarithm of pairwise gene flow (log MF_{ST}) and the logarithm of geographic distance between pairs of populations (to test for isolation by distance) were only significant using F_{ST} for A. guatemalensis (r = -0.4690, p = 0.002) (Fig. 2). This species does have the widest distribution (Fig 1). For R_{ST} none of the correlations were significant with any of the species.

Partitioning of genetic variation using AMOVA (Excoffier et al. 1992) shows that 88.4% of the total variation is due to variation within populations; differentiation among populations of the same species was only 5.50% and between species only 5.66%. Estimated values of differentiation among species was $F_{\rm ST}$ = 0.120 and $R_{\rm ST}$ = 0.204.

Phylogenetic analyses

The phenogram constructed with Nei's unbiased genetic distance (D_A) (Fig. 3) provides better resolution than the phenogram constructed using Shriver's distance (D_{SW}) (not shown), and therefore the discussion will be based only on the former. Both phenograms show a unique group for *A. flinckii*, but they do not discriminate well among the other three species (*A. guatemalensis*, *A. religiosa* and *A. hickeli*). There are three main groups in the phenogram. I) One including populations of *A. guatemalensis*, *A. religiosa* and *A. hickeli*, all in Mexico, although embedded in this group are three populations of *A. guatemalensis* {San Luis Potosí (G51), Chiapas (G11) and Guerrero (G44)} that are separated by longer terminal branches. II) A second group consisting only of populations of *A. guatemalensis* from Guatemala (G41 and G42). III) A third group consisting of all the populations of *A. flinckii*.

Nested clade analysis

The relationship between haplotypes/taxa is depicted in the nested haplotype network in Fig. 4. Clades 3-2 and 3-4 harbour many of the haplotypes, and moreover, many of them are shared between *A. guatemalensis*, *A. hickeli* and *A. religiosa*. The same situation also occurs, but to a lesser extent, in clade 3-1. Haplotypes 9, 10, 11, 12, 17, 18, 19 and 24 are the most common and widely distributed in populations of *A. guatemalensis*, *A. hickeli* and *A. religiosa*. Haplotypes in clade 3-3 are primarily from *A. flinckii*, with some haplotypes found in only one individual of another species. Clade 2-2 is disjoint from the other clades and harbours only rare haplotypes from *A. guatemalensis*. Clades outlined in color show significant geographic-clade associations. Based on the inference key of Templeton et al. (1995), an allopatric fragmentation event was detected in one-step clade, 1-17 (outlined in blue). A pattern of restricted gene flow resulting from isolation by distance was detected in clades 1-9, 1-16, 1-23, 2-2, 2-7, 2-10 and 3-4 (outlined in red). Finally, range expansion was detected in clade 1-13 (outlined in green).

Discussion

The geographical distribution of chloroplast DNA polymorphisms and levels of differentiation found among populations of each taxon suggest that pollen flow is relatively high. Distribution of ancestral shared haplotypes among populations of *A. guatemalensis*, *A. hickeli* and *A. religiosa* and the nested clade analysis suggest a recent diversification of these species.

Genetic variation

A total of 51 different haplotypes were found in the 373 individuals analysed. This is a relatively high number of haplotypes identified using two chloroplast microsatellite loci. Haplotypic diversity was also high in the four taxa studied (H_e = 0.87 for *A. guatemalensis*, H_e = 0.95 for *A. hickeli*, H_e = 0.76 for *A. flinckii* and H_e = 0.89 for *A. religiosa*). Similar levels of haplotypic diversity at these two chloroplast microsatellite loci have also been reported in populations of *Abies alba*, *Abies fraseri* and *Abies balsamea* (Vendramin et al. 1999; Clark et al. 2000) (Table 4). In general, we would expect to find such high levels of diversity, since mutation rates are estimated to be relatively high at microsatellite loci (although exceptions to this pattern can be seen in Provan et al. 1999b). In other conifers such as *Pinus halepensis*, *P. pinceana* and *Pseudotsuga menziesii*, levels of haplotypic diversity (H_e) are lower (Table 4). The high levels of diversity found in this study and in other European and North American *Abies* species (Clark et al. 2000), is due to the high number of size variants found at microsatellite Pt 30204 and to the existence of a high proportion of the two locus combinations.

Genetic differentiation

In both the island model and the isolation by distance model we expect a greater differentiation for paternally inherited chloroplast genes compared to biparentally inherited nuclear genes (Ennos 1994), since the effective population size of haploid organelle genes is one-half that of diploid nuclear genes (McCauley 1995). For instance, Vendramin et al. (1999) found higher or similar levels of genetic differentiation based on cpSSRs data (G_{ST} = 0.133) than previously found with allozymes in *A. alba* (G_{ST} = 0.095, Schroeder et al. 1989 and G_{ST} = 0.088, Bergmann

1994 in Vendramin et al. 1999). This pattern was also found in *Pinus pinceana* ($F_{ST} = 0.152$ for allozymes, Ledig et al. 2001 and $F_{ST} = 0.785$ for cpSSRs, Escalante 2001). Matos and Schaal (2000) also found higher levels of differentiation using chloroplast DNA markers in *Pinus hartwegii* and *P. montezumae*.

We also expected that small and isolated populations will be more affected by genetic drift at organelle loci than at nuclear genes, if rates of pollen and seed dispersal are similar. However, in our study we found that differentiation for paternally inherited genes was lower than that for biparentally inherited nuclear genes. F_{ST} and R_{ST} estimates for chloroplast microsatellites showed lower levels of differentiation than those found at allozyme loci in the same species (Aguirre-Planter et al. 2000), except for *A. guatemalensis*, where F_{ST} estimated with cpSSRs ($F_{ST} = 0.131$) is similar to that estimated with allozymes ($F_{ST} = 0.122$).

One possible explanation to this result is that chloroplast microsatellite data show us a different process from the allozyme data and indicate the importance of pollen flow in shaping the genetic structure of species. For instance, in *Pseudotsuga menziesii*, Viard et al. (2001) found significant among-population differentiation with allozyme data, but no differentiation among populations at cpSSR loci. They considered that this pattern is due to limited seed dispersal, relative to pollen dispersal. This could also be the case for the species of *Abies* we studied, since pollen in *Abies* is dispersed by wind and can travel long distances, while seeds are not expected to move as far as pollen because of their greater mass. Liepelt et al. (2002) showed that pollen-mediated gene flow has spanned a much greater distance than suggested from allozyme data in *Abies alba*. Hence, pollen may be the primary agent of gene flow between populations in the species studied.

Another possible explanation for the pattern of differentiation we observed is that mutation rates in microsatellite loci can be very high and this could lead to an underestimate of genetic differentiation based on F-statistics when migration is low (Hedrick 1999), which may be the case of the species studied. However, in a study with *P. torreyana*, Provan et al. (1999b) suggested that compared to nuclear microsatellites, chloroplast microsatellites have low mutation rates (ranging from 3.2×10^{-5} to 7.9×10^{-5}), and it is unlikely that they are of the order of magnitude of

migration rates. Therefore, mutations at cpSSRs loci would not appear to occur at a level that would confound analyses of population genetic structure.

Abies guatemalensis displays a higher degree of differentiation among populations and lower levels of gene flow (F_{ST} = 0.131, Nm= 3.32) at cpSSRs loci, with a significant pattern of isolation by distance, probably resulting from reduced dispersal and consequent genetic drift. This would be expected, since A. guatemalensis has a patchy, wide distribution with many isolated populations (Fig 1). In contrast, A. flinckii shows no significant differentiation among populations, possibly due to its more restricted distribution, with the populations being closer to each other, allowing pollen dispersal to reduce population differentiation. Levels of differentiation and gene flow in A. religiosa and A. hickeli are intermediate (F_{ST} = 0.075, Nm= 6.09 and F_{ST} = 0.065, Nm= 7.19, respectively), and lower than that found for A. alba (F_{ST} = 0.133) (Vendramin et al. 1999).

Genetic relationships among populations and species

It has been argued that the analysis of genetic relationships among populations and species using microsatellite loci is more accurate when using stepwise mutation models (Goldstein et al. 1995), but, as it was mentioned before, when there are few loci and/or the divergence within the group is low, which is the case for our data, it can lead to serious bias in estimating genetic relationships (Gaggiotti et al. 1999). In our study, the phenogram constructed with Nei's distance (D_A) had a better resolution to distinguish among the four taxa studied than Shriver's distance (D_{sw}), which is based on a stepwise mutation model. Goldstein et al. (1995) reported that 500 generations are needed to detect population divergence using R_{ST} at nuclear microsatellite loci. The slower mutation rate in cpDNA, coupled with a long generation time, means that a longer time is necessary to detect differentiation using the stepwise mutation model (Richardson et al. 2002). If we assume that Abies has a generation time of approximately 33 yr (Silvertown and Dodd 1999) and that populations of these species have been separated for approximately 9 000 yr (during the warmer period following the last glaciation), then only 272 generations have passed.

The branch lengths on the tree are short, with the exception of the *A. flinckii* group and populations G11, G44 and G51, which have undergone the highest degree of differentiation. Bootstrap values are low (<77), with the exception again of the node that separates *A. flinckii* and the one that separates populations of *A. guatemalensis* from Guatemala. This is consistent with the relatively low differentiation observed among species (F_{ST} = 0.120).

The phenogram suggests three major groups: One group containing populations of A. guatemalensis, A. religiosa, and A. hickeli in Mexico. Within this group, population G51 of A. guatemalensis exhibits the highest degree of divergence. This is the northernmost population of A. guatemalensis. It is markedly isolated and harbours relatively few mature trees, factors that could have caused it to have accelerated differentiation due to genetic drift. Population G51 might have been relatively recently founded causing it to have a high frequency of rare haplotypes due to random sampling of alleles. G44 also has a greater degree of divergence and it is also isolated, being the only population of A. guatemalensis in Guerrero. The second group clusters populations of A. guatemalensis from Guatemala (G41 and G42), apparently well differentiated from Mexican populations. A third group consists of populations of A. flinckii and shows species-specific haplotypes. We have also observed great differences in phenology in the field between A. flinckii and the other species, with the former beginning its vegetative growth as much as three months earlier. Even where trees of A. flinckii and A. religiosa are intermixed at the same site (Sierra de Manantlán), their phenology and their leaf morphology are very different, so we are confident that they can be considered distinct species. The nested geographical distance analysis (NCA) allows to infer phylogeographic events. An observed pattern in the higher nesting clade 3-4, that contains presumably the oldest haplotypes, is restricted gene flow due to isolation by distance. This pattern is also inferred in clades at lower nesting levels (1-9, 1-16, 1-23, 2-2, 2-7 and 2-10). We also inferred an allopatric fragmentation event in clades 1-17 and one event of recent expansion in clade 1-13. The NCA does not detect lineages that correspond to each species, although it separates populations of A. flinckii in a different group. While A. guatemalensis, A. hickeli and A. religiosa

58

share most of their haplotypes, clade 3-3 includes mainly haplotypes from A. flinckii. Haplotypes in this clade that do not belong to A. flinckii are present in only one or two individuals from populations of the other taxa and they could be the result of homoplasy (but see below). Clade 3-3 could be considered a different species (A. flinckii) under the biological and phylogenetic species concept. Nevertheless, according to Templeton (2001), to infer a species under the cohesion species concept from a phylogeographic NCA we need to detect fragmentation. We did not detect a fragmentation event within the A. flinckii clade. However, our data overwhelmingly support the proposal that A. flinckii is a distinct species. Our inability to detect it here could be caused by a lack of statistical power, resulting from insufficient number of trees and/or populations sampled, or to the number of loci used. The NCA demonstrates that restricted gene flow due to isolation by distance has been very important in shaping the genetic structure of populations of these Abies species. This result is consistent with the hypothesis that the climate warming, following the Pleistocene glaciation, resulted in isolation of populations in mountain-top regions.

The existence of widespread common haplotypes for *A. guatemalensis*, *A. hickeli* and *A. religiosa* is a clear suggestion of interspecific introgression and/or shared ancestral polymorphisms that predate the divergence of these species. The difference in morphology and phenology between these species (data not shown) suggests that they are mostly reproductively isolated. Phylogeographic approaches, such as the NCA, can potentially discriminate between the effects of on-going gene flow and shared polymorphisms caused by ancestral polymorphisms (Templeton 1998, 2001). In the NCA the most ancient haplotypes are typically located at the centre of the nested network. In our analysis, the ancient haplotypes are shared by *A. guatemalensis*, *A. religiosa* and *A. hickeli*. They predate the divergence of species, so we may infer that their distribution owes more to the persistence of ancestral polymorphisms than to recent gene flow. We cannot be confident in the conclusions drawn from our phylogeographic inferences if homoplasy is recurrent in the cpSSRs loci in our *Abies* species. Estoup et al. (2002) found that the large amount of variability at microsatellite loci can compensate for their homoplasious

evolution and that homoplasy depends on different evolutionary factors such as mutation rate, the effective population size and the time of divergence between populations. Mutation rates in chloroplast microsatellites (on the order of 10⁻⁵) are lower than in nuclear microsatellites (Provan et al. 1999a). Estoup et al. (2002) found that with these mutation rates and effective population sizes of less than 1000 homoplasy is almost nonexistent. Levels of homoplasy increase with the time of divergence (Provan et al. 2001; Estoup et al. 2002). If we assume, as mentioned before, that the time of divergence between these species is at most 272 generations ago, it would also support our suggestion that levels of homoplasy may not be affecting the patterns we are finding. Also, when homoplasy is high, linkage disequilibrium should be low, since the chloroplast genome is nonrecombinant (Provan et al. 2001). We found considerable levels of linkage disequilibrium in some haplotypes (table 5), suggesting low levels of homoplasy. Homoplasy is not expected under the infinite allele model (Estoup et al. 2002). We tested alternate mutation models (Cornuet & Luikart 1996) and found that the loci that we used are well-described by the infinite allele model (data not shown).

There are other studies that have employed microsatellites to infer phylogeographic structure and historical events in different species. For instance, Reush et al. (2001) used microsatellite loci to evaluate the effects of different historical events on genetic divergence among populations of threespine stickleback (*Gasterosteus aculeatus*). They argued that homoplasy was of minor importance in their study, because of the young age of *Gasterosteus* populations (< 12 000 years). Cuenca et al. (2003) used microsatellite data to perform a nested clade analysis (NCA, Templeton et al. 1995) to infer population history in *Pinus nelsonii*, and Marshall et al. (2002) employed cpSSRs to investigate phylogeography of *Pinus contorta*. By comparing the geographic distribution of populations (Fig.1) to the haplotype network (Fig. 4), it is clear that populations from the center of the distribution of *Abies* in Mexico and Guatemala (circled in the map), harbour the oldest haplotypes and that these haplotypes have persisted in populations of *A. guatemalensis*, *A. hickeli* and *A. religiosa*. Clearly, *A. flinckii* forms a different group. The completely different haplotypes for *A. flinckii*, along with their distinct polymorphic allozyme loci and very different phenology (Aguirre-Planter et al. 2000) may be the result of an early isolation of its populations followed by rapid diversification, or it may be the result of a different introduction from the north (see below).

Evolutionary history of the Southern Abies

Abies species could have migrated to the south througout either of two routes: 1) the Sierra Madre Occidental in the west, possibly representing the ancestral introduction that gave rise to A. flinckii, or 2) the Sierra Madre Oriental in the east, that could have given rise to A. guatemalensis, A. hickeli and A. religiosa. Some authors propose that northern temperate taxa migrated southward into Mexico during periods of glaciation in the Pleistocene (Deevey, 1949; Dressler 1954 in Perry et al. 1998). Other authors have postulated that these taxa began migrating into Mexico and Central America during the early and middle Tertiary (Chaney 1936; Stevermark 1950; Braun 1955; Martin and Harrel 1957 in Perry et al. 1998). The first occurrence of Abies in the fossil record of Mexico is from the Paraje Solo assemblage in the middle Pliocene (five million years ago) (Graham 1999), so the divergence of these species may be a relatively recent event (on an evolutionary scale). These populations may not have been isolated for a long time, since the Abies species may have experienced range retractions and fragmentation of populations with the warming period that peaked ~6 000 yr BP (Aguirre-Planter et al. 2000) and Abies species have relatively long generation times. As we mentioned before, considering a generation time of 33 yr approximately, only 272 generations at the most have passed since these populations have been isolated.

Our cpSSRs analyses suggest that southern species of *Abies* are recently derived. Although they may not be currently interbreeding, they have diverged so recently that some populations may still be in the process of speciation and they still share extensive ancestral polymorphisms. The low levels of cpSSRs differentiation and relatively higher allozyme (nuclear markers) differentiation among populations of *Abies* in southern Mexico and Guatemala may be attributed to limited seed dispersal and greater pollen movement, although isolation by distance seems to be promoting differentiation. Nevertheless, the estimates of gene flow should be taken with caution in these species, since populations are rather young and populations that were historically in contact and that are currently isolated could be eventually fixed for different alleles at equilibrium. The time required to reach equilibrium could be longer than the age of most of these species (Neigel 2002). Our analyses indicate that there are three clear genetic groups. One of *A. flinckii*, that has diverged more, another including populations of *A. guatemalensis* from Guatemala and a third one comprising *A. hickeli*, *A. religiosa* and *A. guatemalensis* from Mexico, in which we find ancestral haplotypes. We infer that populations in the central part of the distribution (H3, H4, H46, H47, R48, R49, G2, G7, G44) are probably the ancestral ones.

We consider that different kinds of molecular markers can give us a better picture of the overall history and resources of these species. This knowledge is a valuable tool for making decisions concerning the conservation or management of populations of the species. Previously, we concluded (Aguirre-Planter et al. 2000) that the high levels of genetic differentiation observed among populations suggested the importance of preserving many genetically distinct populations to conserve the genetic variation of the species. The cpSSR results suggest that we need to preserve populations from three distinct genetic groups and populations that have unique haplotypes like G41, G52, G7, R22 and H3. *A. guatemalensis*, a threatened species (FAO 1986; CITES, Appendix 1, http://www.cites.org/) has the highest levels of differentiation among populations and efforts must be focused on preserving its populations.

62

Acknowledgements

We thank Aldo Valera, Andrés Keiman, Yolanda Nava, and Paty Delgado for assistance in obtaining samples. Alan Kelly and Justin Hicks for technical assistance, as well as Dr. Vendramin for his help in testing our samples. Laboratory work was conducted at the University of Oregon in the laboratory of John Willis. We also thank Sara Good for reviewing the manuscript. This project was financially supported by PADEP-UNAM, by CONABIO (grant B138) and by CONACYT (grant 27983-N).

Literature Cited

- Aguirre-Planter E, Furnier GR, Eguiarte LE (2000) Low levels of genetic variation within and high levels of genetic differentiation among populations of species of *Abies* from southern Mexico and Guatemala. *American Journal* of Botany, 87, 362-371.
- Allnutt TR, Newton AC, Lara A, Premoli A, Armesto JJ, Vergara R, Gardner M (1999) Genetic variation in *Fitzroya cupressoides* (alerce), a threatened South American conifer. *Molecular Ecology*, 8, 975-987.
- Bucci G, Anzidei M, Madaghiele A, Vendramin GG (1998) Detection of haplotypic variation and natural hybridization in *halpensis*-complex pine species using chloroplast simple sequence repeat (SSR) markers. *Molecular Ecology*, 7, 1633-1643.
- Clark CM, Wentworth TR, O'Malley DM (2000) Genetic discontinuity revealed by chloroplast microsatellites in Eastern North American *Abies* (Pinaceae). *American Journal of Botany*, 87, 774-782.
- Clegg MT (1993) Chloroplast gene sequences and the study of plant evolution. Proceedings of the National Academy of Science of Science of the USA, 80, 363-367.
- Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. *Molecular Ecology*, 9, 1657-1660.
- Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. *Genetics*, **144**, 2001-2014.
- Cuenca A (2001) Variación y estructura genética de una especie de pino endémica de México (*Pinus nelsonii* Shaw). Tesis de licenciatura, Facultad de Ciencias, Universidad Nacional Autónoma de México, México, D.F., México.
- Cuenca A, Escalante AE, Piñero D (2003) Long distance colonization, isolation by distance, and historical demography in a relictual Mexican pinyon pine (*Pinus* nelsonii Shaw) as revealed by paternally inherited genetic markers (cpSSRs). Molecular Ecology, 12, 2087-2097.
- Delgado P, Piñero D, Chaos A, Pérez-Nasser, Alvarez-Buylla E (1999) High population differentiation and genetic variation in the endangered Mexican pine, *Pinus* rzedowski (Pinaceae). American Journal of Botany 86, 669-676.
- Di Rienzo A, Peterson AC, Garza JC, Valdés AM, Slatkin M (1994) Mutational processes of simple –sequence repeat loci in human populations. *Proceedings of the National Academy of Sciences* of the USA, 91, 3166-3170.
- Donahue JK, Dvorak WS, Gutierrez EA, Kane MB (1985) Abies guatemalensis: a two year status report. CAMCORE. Bulletin of Tropical Forestry Number 3. School of Forest Resources, North Carolina State University, Raleigh, North Carolina, USA.
- Echt CS, DeVerno LL, Anzidei M, Vendramin GG (1998) Chloroplast microsatellites reveal population genetic diversity in red pine, *Pinus resinosa* Ait. *Molecular Ecology*, 7, 307-316.
- Ennos RA (1994) Estimating the relative rates of pollen and seed migration among plant populations. *Heredity*, 72, 250-259.
- Escalante A (2001) Análisis de variación y flujo génico de poblaciones de *Pinus pinceana* usando como marcadores moleculares microsatélites de cloroplasto (cpSSR). Tesis

de licenciatura, Facultad de Ciencias, Universidad Nacional Autónoma de México, México, D.F., México.

- Estoup A, Jarne P, Cornuet JM (2002) Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. *Molecular Ecology*, 11, 1591-1604.
- Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance infered from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. *Genetics*, 131, 479-491.
- FAO (1986) Databook on endangered tree and shrub species and provenances. FAO. Forestry, 77. Food and agriculture organization, Rome, Italy.
- Farjon A (1990) Pinaceae: drawings and descriptions of the genera Abies, Cedrus, Pseudclarix, Keteleeria, Nothotsuga, Tsuga, Cathaya, Pseudotsuga, Larix and Picea. Königstein: Koeltz Scientific Books.
- Farjon A (1998) World checklist and bibliography of conifers. Royal Botanical Gardens, Kew.
- Felsenstein J (1995) PHYLIP (Phylogeny Inference Package) version 3.572. Department of Genetics. University of Washington, Seattle, Washington, USA.
- Gaggiotti OE, Lange O, Rassmann K, Gliddon C (1999) A comparison of two indirect methods for estimating average levels of gene flow using microsatellite data. *Molecular Ecology*, 7, 1513-1520.
- Goldstein DB, Linares AR, Cavalli-Sforza LL, Feldmas MW (1995) An evaluation of genetic distances for use with microsatellite loci. *Genetics*, 7, 463-471.
- Graham A (1999) The tertiary history of the northern temperate element in the northern Latin American biota. *American Journal of Botany*, **86**, 32-38.
- Gugerli F, Senn J, Anzidei M, Madaghiele A, Büchler U, Sperisen C, Vendramin GG (2001). Chloroplast microsatellites and mitochondrial nad1 intron 2 sequences indicate congruent phylogenetic relationships among Swiss stone pine (*Pinus cembra*), Siberian stone pine (*Pinus cibirica*), and Siberian dwarf pine (Pinus pumila). Molecular Ecology, 10, 1489-1497.
- Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. In: Population genetics of forest trees (eds Adams WT, Strauss SH, Copes DL, Griffin AR), pp. 95-124. Kluwer Academic Publishers, Boston Massachusetts, USA.
- Hedrick PW (1999) Ferspective: Highly variable loci and their interpretation in evolution and conservation. Evolution, 53, 313-318.
- Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theoretical and Applied Genetics, 38, 226-231.
- Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. *Genetics*, 49, 725-738.
- Kimura M, Ohta T (1978) Stepwise mutation model and distribution of allelic frequencies in a finite population. Proceedings of the National Academy of Science of Science of the USA, 75, 2868-2872.
- Latta RG, Mitton JB (1997) A comparision of population differentiation across four classes of gene marker in limber pine (*Pinus flexilis* James). Genetics, **46**, 1153-1163.
- Ledig FT (1998) Genetic variation in *Pinus*. In: Ecology and biogeography of *Pinus* (ed Richardson DM), pp. 251-280. Cambridge University Press, Cambridge, UK

- Ledig FT, Jacob-Cervantes B, Hodgskiss PD, Eguiluz-Piedra T (1997) Recent evolution and divergence among populations of rare Mexican endemic, Chihuahua spruce, following Holocene climatic warming. Evolution, 51, 1815-1827.
- Ledig FT, Capó-Arteaga MA, Hodgkiss PD, Sbay H, Flores-López C, Conkle MT, Bermejo-Velázquez B (2001) Genetic diversity and the mating system of a rare Mexican piñon, *Pinus pinceana*, and a comparison with *Pinus maximartinezii* (Pinaceae). *American Journal of Botany*, 88, 1977-1987.
- Liepelt S, Bialozyt R, Ziegenhagen B (2002) wind-dispersed pollen mediates post-glacial gene flow among refugia. Proc. Natl. Acad. Sci., 99, 14590-14594.
- Lozano-García MS (1993) Late Pleistocene and Holocene paleoenvironments of Chalco lake, central Mexico. *Quaternary Research*, 40, 332-342.
- Mantel N (1967) The detection of disease clustering and generalized regression approach. Cancer Research, 27, 209-220.
- Martínez M (1948) Los Abies mexicanos. Anales del Instituto de Biología de México, 19, 11-104.
- Marshall HD, Newton C, Ritland K (2002). Chloroplast phylogeography and evolution of highly polymorphic microsatellites in lodgepole pine (*Pinus contorta*). Theoretical and Applied Genetics, 104, 367-378.
- Matheson AC, Bell JC, Barnes RD (1989) Breeding systems and genetic structure in some Central American pine populations. Silvae Genetica, 38, 107-113.
- Matos JA, Schaal BA (2000) Chloroplast evolution in the *Pinus montezumae* complex: a coalescent approach to hybridization. *Evolution*, **54**, 1218-1233.
- McCauley DE (1995) The use of chloroplast DNA polymorphism in studies of gene flow in plants. Trends in Ecology and Evolution, 10, 198-202.
- Molina-Freaner F, Delgado P, Piñero D, Perez-Nasser N, Alvarez-Buylla E (2001) Do rare pines need different conservation strategies? Evidence from three mexican species. *Canadian Journal of Botany*, 79, 131-138.
- Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. *Genetics*, **89**, 583-590.
- Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York.
- Neigel JE (2002) Is FST obsolete? Conservation Genetics, 3, 167-173.
- Perry JP Jr, Graham A, Richardson DM (1998) The history of pines in Mexico and Central America. In *Ecology and biogeography of Pinus*. (ed Richardson DM), pp. 137-147. Cambridge University Press, Cambridge, UK.
- Posada D, Crandall KA, Templeton AR (2000) GEODIS: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. *Molecular Ecology*, 9, 487-488.
- Powell W, Morgante M, Mc Devitt R, Vendramin GG, Rafalski JA (1995) Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. *Proceedings of the National Academy of Science USA*, 92, 7759-7763.
- Provan J, Soranzo N, Wilson NJ, et al. (1998) Gene-pool variation in Caledonian and European Scots pine (*Pinus sylvestris* L.) revealed by chloroplast simple-sequence repeats. *Proceedings of the Royal Society of London*, 265, 1697-1705.
- Provan J, Soranzo N, Wilson NJ, Mc Nicol JW, Morgante M, Powell W (1999a) The use of uniparentally inherited simple sequence repeat markers in plant population studies

and systematics. In: *Molecular Systematics and Plant Evolution* (eds Hollingsworth PM, Bateman RM, Gornall RJ), pp. 35-50.

- Provan J, Soranzo N, Wilson NJ, Goldstein DB, Powell W (1999b) A low mutation rate for chloroplast microsatellites. Genetics, 153, 943-947.
- Provan J, Powell W, Hollingsworth M (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends in Ecology & Evolution, 16, 142-147.
- Reush TBH, Wegner KM, Kalbe M (2001) Rapid genetic divergence in postglacial populations of threespine stickleback (*Gasterosteus aculeatus*): the role of habitat type, drainage and geographical proximity. *Molecular Ecology*, **10**, 2435-2445.
- Richardson BA, Brunsfeld SJ, Klopfenstein NB (2002) DNA from bird-dispersed seed and wind-diseminated pollen provides insights into postglacial colonization and population genetic structure of whitebark pine (*Pinus albicaulis*). Molecular Ecology, 11, 215-227.
- Rushforth KD (1989) Two new species of Abies (Pinaceae) from western Mexico. Notes of the Royal Botanical Gardens of Edinburgh, 46, 101-109.
- Schneider S, Roessli D Excoffier L (2000) Arlequin ver. 2000: A software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.
- Shriver MD, Jin L, Boerwinkle E, Deka R, Ferrell RE, Chakraborty R (1995) A novel measure of genetic distance for highly polymorphic tandem repeat loci. *Molecular Biology and Evolution*, 12, 914-920.
- Silvertown J, Dodd M (1999) Evolution of life history in balsam fir (Abies balsamea) in sub-alpine forest. Proceedings of the Royal Society of London B. Biological Sciences, 266, 729-733.
- Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution, 47, 264-279.
- Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics, 7, 457-462.
- Stute M, Clark JF, Schlosser P, Broecker WS (1995) A 30,000 yr continental paleotemperature record derived from noble gases dissolved in groundwater from the San Juan Basin, New Mexico. *Quaternary Research*, 43, 209-220.
- Tasuya W, Tsudzuki J, Ito S, Nakashima K, Tsudsuki T, Sugiura M (1994) Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proceedings of the National Academy of Science of Science of the USA, 91, 9794-9798.
- Templeton AR (1998) Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. *Molecular Ecology*, **7**, 381-397.
- Templeton AR (2001) Using phylogeographic analyses of gene trees to test species, status and processes. *Molecular Ecology*, **10**, 779-791.
- Templeton AR (2004) Statistical phylogeography: methods of evaluating and minimizing inference errors. *Molecular Ecology*, **13**, 789-809.
- Templeton AR, Boerwinkle E, Sing CF (1987) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. I. Basic theory and an analysis of alcohol dehydrogenase activity in *Drosophila*. *Genetics*, 117, 343-351.

Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. *Genetics*, **132**, **619-632**.

- Templeton AR, Routman E, Phillips C (1995) Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the Tiger salamander, Ambystoma tigrinum. Genetics, 140, 767-782.
- Vázquez-Lobo A (1996) Evolución de hongos endófitos del género *Pinus*. Tesis de licenciatura, Facultad de Ciencias, Universidad Nacional Autónoma de México, México, D.F., México.
- Vázquez-Selem L, Heine K (2004) Late Quaternary glaciations of México. In: Quaternary Glaciations – Extent and Chronology, Part III. (eds. Ehlers J, Gibbard PL), pp. 223-242.
- Vendramin GG, Lelli L, Rossi P, Morgante M (1996) A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. *Molecular Ecology*, 5, 596-598.
- Vendramin GG, Ziegenhagen B (1997) Characterisation and inheritance of polymorphic plastid microsatellites in *Abies. Genome* 40, 857-864.
- Vendramin GG, Anzidei M, Madaghiele A, Bucci (1998) Distribution of genetic diversity in *Pinus pinaster* Ait. as revealed by chloroplast microsatellites. *Theoretical and Applied Genetics*, 97, 456-463.
- Vendramin GG, Degen RJ, Petit M, Anzidei M, Madaghiele A, Ziegenhagen B (1999) High levels of variation at *Abies alba* chloroplast microsatellite loci in Europe. *Molecular Ecology*, 8, 1117-1126.
- Viard F, El-Kassaby YA, Ritland K (2001) Diversity and genetic structure in populations of *Pseudotsuga menziesii* (Pinaceae) at chloroplast microsatellite loci. *Genome*, 44, 336-344.
- Wagner DB (1992) Nuclear, chloroplast and mithocondrial DNA polymorphisms as biochemical markers in population genetic analyses of forest trees. New Forestry, 6, 373-390.
- Wright S (1951) The genetical structure of populations. Annals of Eugenics, 15, 323-354.
- Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. *Evolution*, **19**, 395-420.
| Population | Lat N/Long W | Elevation | N | Nh | He |
|------------|----------------|-----------|-------|-------|---------------|
| AG2 | 17°10'/96°30' | 2800 | 25 | 13 | 0.930 (0.029) |
| AG7 | 16°11'/96°18' | 2500 | 19 | 11 | 0.930 (0.034) |
| AG11 | 15°27'/92°16' | 2610 | 22 | 10 | 0.822 (0.073) |
| AG41 | 15°04'/89°55' | 2970 | 17 | 14 | 0.978 (0.027) |
| AG42 | 14°31'/90°08' | 2610 | 18 | 6 | 0.843 (0.045) |
| AG44 | 17°35'/99°51' | 2670 | 21 | 12 | 0.933 (0.031) |
| AG51 | 22°27'/99°27' | 1770 | 17 | 4 | 0.566 (0.123) |
| AG52 | 20°21'/98°20' | 2310 | 21 | 13 | 0.929 (0.039) |
| mean | | | 20 | 10.37 | 0.87 |
| AH3 | 17°22'/96°26' | 2904 | 22 | 13 | 0.943 (0.028) |
| AH4 | 17°27'/96°24' | 2530 | 13 | 10 | 0.949 (0.051) |
| AH46 | 18°58'/97°12' | 2910 | 20 | 9 | 0.916 (0.031) |
| AH47 | 19°31'/97°06' | 3090 | 14 | 12 | 0.978 (0.034) |
| mean | | | 17.25 | 11 | 0.95 |
| AF16 | 19°20'/101°21' | 2250 | 29 | 8 | 0.818 (0.043) |
| AF18 | 20°12'/104°43' | 2100 | 19 | 5 | 0.766 (0.049) |
| AF20 | 19°27'/103°56' | 2500 | 22 | 6 | 0.667 (0.092) |
| mean | | | 23.34 | 6.34 | 0.76 |
| AR22 | 19°35'/103°35' | 3330 | 23 | 10 | 0.889 (0.039) |
| AR48 | 19°31'/97°09' | 3510 | 16 | 11 | 0.950 (0.036) |
| AR49 | 19°41'/98°05' | 2760 | 18 | 9 | 0.889 (0.049) |
| AR55 | 19°23'/102°19' | 3030 | 17 | 8 | 0.823 (0.082) |
| mean | | | 18.50 | 9.50 | 0.89 |

Table 1. Geographic coordinates, elevation (m), number of individuals analyzed (N), number of haplotypes (Nh) and haplotype diversity (H_{e}) in populations of *Abies guatemalensis* (AG), *A. hickeli* (AH), *A. flinckii* (AF) and *A. religiosa* (AR). Standard errors are in parentheses.

								Relat	ive freque	cncy									
				A gu	atemalen	sis					A hickeli	1	A	. flinckii		1	1. religios	a	
111-4																			
нарютуре																			
1 102 1 (0	AUZ	AG/	AUI	AU41	AU42	AQ44	AGST	AUNZ	AH3	AH4	AH40	AHA	AF10	AFIS	AF20	AKZ	AK48	AR49	AR33
1. 123 142			0.091																
2. 124 141			0.045																
3. 124 142		0.158	0.045			0.095				0.077		0.071					0.125		
4, 124 143	0.08	0.053	0.409			0.048						0.071							
5. 124 144			0.136									0,143				0.043			
6, 124 45	0.08		0.409												(
7. 124 146									0.091										
8. 125 141	0.04					0.048		Í				0.07)					0.062		
9.125 142	0.04 (0.158		0.059		0.048	0.176	0.095			0.05	0.071			1	0.043	0.188	0.270	
10. 125 143	0.16		0.045			0.19	0.059	0.238	0.091	0.077	0.1	0.071				0.261	0.125	0.167	0.059
11. 125 144	0.08	0.158	0.045				0.647	0.048	0.045			0.143				0.13		0.056	0.118
12. 125 145	0.04	0.158				0.048		0.048				0.071				0.13		0,056	0.059
13. 125 146									0.045			0.071							
14. 125 147								1								0.043			
15. 126 141	0.04	0.053																0.056	
16. 126 142	0.04			0.059	0,1)1	0.095		0.048		0.077	0.2								
17. 126 143	0.2	0.053		0.059	0.[1]	0.143		0.095	0.045	0.077	0.15	1					0.062	0.056	0.118
18. 126 144		0.053	0.045				0.118	0.143	0.182	0.077	0.1	0.071					0.062	0.167	0.412
19, 126 145			0.045						0.091	0.077	0.1				1	0 174	0.062		0.118
20, 126 146	0.04								0 136	0 077	0.05					0.041			
25 126 147	4.04										0.00	0.071				0.040			
22 126 148												0.071				0.043			
AL. 140 140																0.040			

Table 2 Chloroplast haplotype frequencies for Abies guatemalensis, A. hickell, A. flinckii and A. religiosa, allele sizes at locus Pt 30204 and Pt 71936.

70

.

23. 127 142	0.08					0.143					0.071				1	0.125		
24. 127 143	0.08	0.053	0.091	0.059	0.278	0.048	0,048	0.091	0.077	0.15					1		0.056	0.059
25. 127 144				0.059		0.048			0.154		Í				1		0.111	0.059
26. 127 145		0.158					0.048	0.045	0.231						0.087			
27. 127 148								0.045							1			
28. 128 142				0.118														
29. 128 143		0.053		0.059	0.222					0,1								
30. 128 144				J.1:8	0.222	0.048												
31. 128 145				0,118														
32.128 146				0.059												0.062		
33, 131 142				0.059														
34, 131-143				0.059	0.056													
35, 131-144													0.053					
36. 132 143												0.034	0.263	0.091				
37. 132 144							0.048					0.034		0.045				
38. 132 145												0.103						
39. 133 143												0.034		0.045				
40. 133 144				0.059								0,276	0_316	0.545		0.062		
41.133345								i				0.31	0.316	0_227				
42.133 146												0.138		0.045				
43. 134 145													0.053			0.062		
44. 134 146								0.045										
45. 134 147												0.069						
46, 143 124		0.053																
47. 144 124							0.048											
48. 145 124							0.048											
49. 145 327							0.048											
50, 146 127				0.059														
51. 155 144								0.045										
								•						-				

Table 3. Genetic differentiation among populations (F_{ST} and R_{ST}) revealed by cpSSRs and gene flow in A. guatemalensis, A. hickeli, A. flinckii and A. religiosa.

	F _{ST}	Nm	R _{ST}	Nm
A. guatemalensis	0.131 (p= 0.000)	3.32	0.104 (p= 0.003)	4.32
A. hickeli	0.065 (p= 0.003)	7.19	0.040 (p= 0.069)	11.86
A. flinckii	0.029 (p= 0.118)	16.74	0.116 (p= 0.012)	3.81
A. religiosa	0.075 (p= 0.004)	6.09	0.136 (p= 0.000)	3.18

Table 4. Number of individuals analyzed (N), number of haplotypes (N_{hapl}), haplotype diversity (H_{e}), number of polymorphic loci studied (N_{p}) and total genetic differentiation among populations (F_{ST} or R_{ST}) revealed by cpSSRs for different species of *Abies*, *Pinus* and *Pseudotsuga* menziesii.

Species	N	Nhapi	N _p	He	F _{ST} /R _{ST}	Reference
A. alba	714	90	2	0.85	$F_{\rm ST} = 0.133$	Vendramin et al. 1999
A. fraseri	26	16	2	0.84		Clark et al. 2000
A. balsamea	26	20	2	0.95		Clark et al. 2000
A. guatemalensis	160	31	2	0.87	$F_{\rm ST} = 0.131$ $R_{\rm ST} = 0.104$	This study
A. religiosa	74	21	2	0.89	$F_{\rm ST}$ = 0.075 $R_{\rm ST}$ = 0.136	This study
A. flinckii	70	10	2	0.76	$F_{\rm ST} = 0.029$ $R_{\rm ST} = 0.116$	This study
A. hickeli	69	21	2	0.95	$F_{\rm ST} = 0.065$ $R_{\rm ST} = 0.040$	This study
P. halepensis	127	28	8	0.222	$F_{\rm ST} = 0.308$ $R_{\rm ST} = 0.212$	Bucci et al. 1998
P. resinosa	159	23	9	0.568	$F_{\rm ST} = 0.121$	Echt et al. 1998
P sylvestris	330	174	13	0.978	$R_{\rm ST} = 0.32$	Provan et al. 1998
P. pinaster	240	34	7	0.81	$R_{\rm ST} = 0.235$	Vendramin et al, 1998
P. nelsonii	256	27	4	0.531	$F_{ST} = 0.131$ $R_{ST} = 0.05$	Cuenca 2001
P. pinceana	154	14	4	0.379	$F_{\rm ST} = 0.785$ $R_{\rm ST} = 0.938$	Escalante 2001
Pseudotsuga menziesii	323	5	3	0.38	$F_{\rm ST} = 0.02$	Viard et al. 2001

Haplotype	Population	r2	
143 125	AG2	0.012865028	
	AH3	0.094501353	
	AH4	0.277717588	
	AG11	0.001029338	
	AR22	0.226754301	
	AG44	0.040848016	
	AH46	0.019607843	
	AH47	0.023118814	
	AR48	0.083017154	
	AR49	0.003119193	
	AG51	0.008388336	
	AG52	0.096205061	
	ARSS	0.000440936	
Maan	Alos	0.06927702	
Wicall		0.00827792	
145 124	AG2	0.26046176	
145 124	A02	0.20040170	
143 124	AG2	0.000268286	
145 124	AG7	0.002594002	
	AG11	0.067783555	
	AGAA	0.00503413	
	AU47	0.104618658	
Maan	71147	0.036330726	
Wedli		0.030233720	
144 125	462	0 154589372	
144 125	AH3	0.000743161	
	AGT	0.000745101	
	AGII	0.23177333	
	AP22	0.016878303	
	AU47	0.010678505	
	AR4/	0.021900202	
	AR49	0.04191827	
	AGSI	0.041097921	
	AG52	0.065887239	
	AKSS	0.009350579	
Mean		0.088730006	
142 126	100	0.020796100	
145 120	AU2	0.020780199	
	AHS	0.078072907	
	AR4	0.003380653	÷
	AG/	0.017455277	
	AG41	0.052260778	
	AG42	0.035829129	
	AG44	0.037651199	
	AH46	0.375	
	AK48	0.030490335	
	AR49	0.011244561	
	AG52	0.004050086	
	AR55	0.028229188	
Mean		0.057871359	
142 122	1.00	0.00020525	
143 12/	AG2	0.00030525	

Table 5. Linkage Disequilibrium between two microsatellite loci for each haplotype, obtained with: r2=(PA-PAPB)2/PA(1-PA)PB(1-PB) (Hill & Robertson 1968)

	A 1/2	0.004501252	
	ALIA	0.094301333	
	AG7	0.02000/551	
	AGII	0.002594002	
	AG41	0.063376083	
	AG41	0.032200778	
	AG42	0.192232139	
	AU44	0.003667239	
	AR40	0.1/04/0588	
	AR49	0.003282/92	
	AG52	0.0068/2966	
Maria	AKSS	0.052260778	
Mean		0.062521125	
141 126	102	0.01204757	
141 120	AGZ	0.01294757	
	AG/	0.298250304	
	AR49	0.154066577	
Mean		0.155088151	
142 126	102	0.004280214	
142 120	AGZ	0.004289210	
	AH4	0.01016/40/	
	AG41	0.027352425	
	AG42	0.437570304	
	AG44	0.000436739	
	AH46	0.055555556	
	AG52	0.002015488	5
Mean		0.07676959	
142 127	100	0.1/00000	
142 127	AG2	0.1638322	
	AG44	0.064006064	
	AH47	0.280705814	
	AR48	0.183300718	
Mean		0.172961199	
146 126	400	0.020641667	
140 120	AG2	0.088541007	
	AH3	0.001404172	
	AH4	0.133261105	
	AR22	0.127221482	
212	AH46	0.035087719	
Mean		0.077103229	
146 126	100	0.000 100027	
145 125	AG2	0.000420875	
	AR22	0.206165476	
	AG44	0.100991748	
	AH47	0.076426265	•
	AR49	0.047372272	
	AG52	0.002492362	
	AR55	0.011935153	
Mean		0.063686307	
141 125	AG2	0.007397343	
	AG44	0.100991748	
	AH47	0.076426265	
	AR48	0.110163468	
Mean		0.073744706	

142 125	AG2	0.010003307	
	AP22	0.072904140	
	AG41	0.15056352	
	AG41	0.13030332	
	AU44	0.118/00229	
	AH40	0.000535948	
	AH4/	0.030819/19	
	AR48	0.009776998	
	AK49	0.30/4/9224	
	AG51	0.028575832	
	AG52	0.0377257	
Mean		0.072859331	
144 155	AH3	0.125481848	
144 126	AH3 0.	067846161	
	AH4	0.003386653	
	AG7	0.017455277	
	AG11	0.04082607	
	AH46	0.074074074	
	AH47	0.014146409	
	AD49	0.088774762	
	AD40	0.000774702	
	AR49	0.124230237	
	AGSI	0.04109/921	
	AG52	0.151613/1	
	AG55	0.018006551	
Mean		0.058316168	
145 126	AH3	0.029101957	
	AH4	0.034259129	
	AG11	0.470686382	
	AR22	0.112712097	
	AH46	0.074074074	
	AR48	0.088774762	
	AR55	0.000514471	
Mean		0.115731839	
146 124	AH3	0.214701344	
		0.211101211	
145 127	AH3	0.023436185	
	AH4	0.148526979	
	AG7	0.70168072	
	AR22	0.148418832	
	AG52	0.205507596	
Mean	1. 	0.245514062	
148 127	AH3	0.211782981	
146 125	443	0.005134826	
. 10 140	AH47	0.076426265	
Mean	A1147	0.040780546	
146 134	AH3	0.101056999	
144.107		0.05050000	
144 12/	AH4	0.050623903	

	AG41 AG44 AR49 AR55	0.052260778 0.041344837 0.099292286 0.004276655	
Mean	1105	0.049559692	
142 124	AH4	0.458288191	
	AG7	0.23177533	
	AG11	0.063299652	
	AG44	0.056799182	
	AH47	0.002793811	
	AR48	0.183300718	
Mean		0.166042814	
143 128	AG7	0.209276488	
	AG41	0.059638013	
	AG42	0.100270009	
	AH46	0.267143013	
Mean		0.159081881	
124 143	AG7	1	
141 124	AG11	0.02606820	
141 124	Adii	0.02090829	
144 124	AG11	0.001725419	
	AR22	0.213298262	
	AH47	0.035682946	
Mean		0.083568876	
142 123	AG11	0.635993011	
144 133	AF16	0.042357723	
	AF18	0.128662571	
	AF20	0.041605164	
	AG41	0.204106089	
	AR48	0.462686567	
Mean		0.175883623	
147 134	AF16	1	
145 132	AF16	0.029253576	
145 133	AF16	0.000402441	
1.0.100	AF18	0.128662571	
	AF20	0.046224426	
Mean		0.058429813	
143 132	AFIG	0.053540666	
145 152	AFIS	1	
	AF20	0 380731344	
Mean	AI-20	0.47809067	
146 100		0.0500001.50	
146 133	AF16	0.050833158	
	AF20	0.00/41/103	

Mean		0.02912513	
144 132	AF16 AF20 AG52	0.012253063 0.044060966 0.161429278	
Mean		0.072581102	
143 133	AF16	0.028721559	
Mean	AI 20	0.204726451	
144 131	AF18	0.096115881	
145 134	AF18 AR48	0.096115881 0.462686567	
Mean		0.279401224	
147 125	AR22	0.028848018	
148 126	AR22	0.127221482	
142 128	AG41	0.008105444	
142 131	AG41	0.027352425	
127 146	AG41	1	
144 128	AG41 AG42	0.001194601 0.357326478	
Mean	A044	0.279613174	
145 128	AG41	0.150261662	
143 131	AG41 AG42	0.052260778	
Mean		0.040938663	
146 128	AG41	0.070420184	
Mean	A1070	0.53521009	
147 129	AH47	0.458023139	
127 145	AG52	0.480318443	2
124 146	AG52	0.205507596	

Figure Captions

Fig 1. Locations of populations of *Abies guatemalensis* (G), *A. religiosa* (R), *A. hickeli* (H) and *A.flinckii* (F) sampled for cpSSRs analysis.

Fig 2. Plot of pairwise $\log_{10}M$ (M = gene flow calculated from F_{ST}) values, against $\log_{10}k$ (k = geographic distance between pairs of populations), for A. guatemalensis.

Fig 3. Neighbor-joining phenogram based on Nei's unbiased genetic distances between populations of *Abies guatemalensis* (G), *A. religiosa* (R), *A. hickeli* (H) and *A.flinckii* (F). Number are bootstrap values (in percentages), values below 50 are not shown.

Fig 4. Nested unrooted haplotype network. Haplotypes are designated by numbers, frequency of each haplotype is shown in table 2. Haplotypes pertain to taxa as follows: *A. guatemalensis A. hickeli A. religiosa and A. flinckii L* Lines separate haplotypes or clades that differ by one mutational step. A "0" designates inferred intermediate haplotypes. Clades outlined in color show significant clade-geographical associations. Outlined in red are clades where isolation by distance was detected, in blue clade 1-17 where a fragmentation event was detected and in green clade 1-13, where a range expansion event was detected. Haplotypes 2, 8, 15 and 51 are not included in the network, because of limitations in number of haplotypes accepted in the program.

ESTA TESIS NO SALE

Kms

DISCUSIÓN GENERAL Y CONCLUSIONES

La estructura genética de las especies del género *Abies* distribuidas al sur de la República Mexicana y en Guatemala, *Abies guatemalensis, A. religiosa, A. hickeli y A. flinckii,* presenta procesos como deriva génica, endogamia y bajos niveles de flujo génico a nivel isoenzimático. Por otro lado, la distribución geográfica de los haplotipos del cloroplasto y los datos de isoenzimas sugieren una diversificación relativamente reciente de estas especies.

La destrucción y fragmentación del hábitat han restringido la distribución de muchas especies de plantas a poblaciones pequeñas y aisladas, como es el caso para algunas poblaciones de *Abies* estudiadas. Estas poblaciones son más susceptibles a la extinción porque son propensas a la pérdida de variación genética por deriva génica y endogamia (Frankham 1995, Keller y Waller 2002). La extinción de una especie se traduce en una pérdida de diversidad a nivel familia a la cual le pertenece la especie. Esta pérdida de diversidad es mayor cuando la especie extinta tiene poca relación con las especies sobrevivientes de la familia, que cuando el parentesco es más cercano (Caballero y Toro, 2002).

Cuando las poblaciones de una especie permanecen pequeñas y aisladas durante varias generaciones, pueden ocurrir dos cosas desde el punto de vista genético. Por un lado, es posible que por deriva génica se fijen o pierdan distintos alelos al azar y los niveles de variación genética cuantitativa necesaria para la evolución adaptativa disminuyen (Keller y Waller 2002), y por lo tanto, la capacidad de las poblaciones para adaptarse a distintas condiciones. Por otro lado, es posible que se acumulen mutaciones deletéreas, ya que la selección es menos efectiva en poblaciones pequeñas (Lynch et al. 1995). Estos dos procesos son graduales, pero la endogamia actúa de una manera más rápida, incrementando la frecuencia de individuos homócigos para alelos idénticos por descendencia, lo que resulta en una reducción en la adecuación a la cual se le ha llamado depresión por endogamia (Ellstrand y Elam 1993, Keller y Waller 2002).

Procesos evolutivos en *Ables guatemalensis*, *A. hickell*, *A. religiosa* y *A. filnckil* que se infieren a partir de dos tipos de marcadores genéticos.

En el material genético de cada especie tenemos información acerca de su historia evolutiva y, al analizar los patrones de distribución de esta variación genética y su genealogía es posible inferir procesos evolutivos que ocurren en conjuntos de especies relacionadas. Existen distintos tipos de marcadores genéticos, que por su tasa de mutación pueden ser más o menos variables, lo cual permite analizar procesos evolutivos a distintas escalas. De la misma manera, la herencia de los marcadores puede ser distinta. En este estudio se utilizaron marcadores que tienen una herencia nuclear, isoenzimas y microsatélites de cloroplasto, estos últimos son regiones muy variables y en el caso de Abies, tienen una herencia paterna (Wagner 1992). La comparación de los patrones de variación entre marcadores de herencia nuclear y paterna permiten hacer inferencias acerca del movimiento del polen (McCauley 1995). Por otro lado, ambos tipos de marcadores pueden estar aportando información sobre distintos procesos de la historia de estas especies. Por su tasa de mutación más baja, las isoenzimas podrían dar información sobre la historia más antigua de las especies: se encontraron niveles relativamente bajos de diversidad genética, deficiencia de heterócigos y altos niveles de diferenciación entre poblaciones dentro de especies, lo que sugiere la ocurrencia de deriva génica, endogamia y bajos niveles de flujo génico. En el análisis de microsatélites de cloroplasto (cpSSRs) se encontraron niveles relativamente altos de flujo génico y niveles altos de diversidad. El cloroplasto tiene una herencia paterna en Abies (Wagner 1992) y por lo tanto puede migrar por polen y por semilla. Bajo cualquier modelo, ya sea el modelo de islas o el de aislamiento por distancia, se esperaría una mayor diferenciación para genes de herencia paterna en comparación con genes de herencia nuclear (Ennos 1994). En el caso de las especies de Abies estudiadas se encontró una mayor diferenciación con isoenzimas. Los bajos niveles de diferenciación encontrados con cpSSRs y los niveles relativamente más altos encontrados con isoenzimas

(genes nucleares) entre poblaciones de *Abies* en el sur de México y Guatemala, pueden ser atribuidos a una dispersión limitada de semillas y mayor movimiento de polen. De la misma manera, se infiere que el aislamiento por distancia está promoviendo cierto grado de diferenciación. Aunque no se tienen datos empíricos acerca de la dispersión del polen particularmente en *Abies*, Liepelt et al. (2002) demostraron que el flujo génico por polen es mucho mayor que el que previamente sugerían los datos de isoenzimas para *Abies alba*.

Sin embargo, los estimados de flujo génico deben de tomarse con cuidado en estas especies, ya que las poblaciones son relativamente jóvenes y las poblaciones que estuvieron históricamente en contacto y que actualmente están aisladas pueden tener eventualmente distintos alelos fijos en el equilibrio, pero el tiempo requerido para alcanzar este equilibrio puede ser mayor que la edad de la mayoría de estas especies (Neigel 2002).

En lo que respecta a las relaciones entre las especies, el fenograma realizado con los datos de isoenzimas sugiere la existencia de tres grupos principales: 1) *A. guatemalensis,* que incluye a *A. flinckii* (formando un grupo monofilético), 2) *A. hickeli* y 3) *A. religiosa.* Las ramas que separan los tres grupos son bastante cortas, lo que es consistente con la poca diferenciación encontrada entre especies y puede estar sugiriendo una separación reciente de las especies o flujo génico actual o reciente entre lo grupos.

El análisis de microsatélites de cloroplasto (cpSSRs) también sugiere que las especies de *Abies* del sur se separaron recientemente, y aunque probablemente se encuentren aisladas reproductivamente en la actualidad, divergieron tan recientemente que algunas poblaciones pueden estar todavía en proceso de especiación y todavía comparten muchos polimorfismos. Estos análisis indican que hay tres grupos genéticos bien diferenciados: 1) *A. flinckii*, que ha tenido una mayor divergencia, 2) otro grupo que incluye a poblaciones de *A. guatemalensis* de Guatemala y 3) un grupo que contiene a poblaciones de *A. hickeli*, *A. religiosa* y *A. guatemalensis* en México, en el cual encontramos

haplotipos ancestrales. Los resultados también sugieren que las poblaciones en la parte central de la distribución son las poblaciones ancestrales y que probablemente a partir de éstas migraron individuos hacia otras regiones.

Con ambos marcadores se puede diferenciar a *A. filnckii*. Sin embargo el estudio de isoenzimas pudo separar a los taxa *A. guatemalensis*, *A. religiosa* y *A. hickeli*, con excepción de algunas poblaciones (G44, G52 y H46), las cuales están agrupadas con *A. religiosa* y se encuentran aisladas de sus poblaciones conespecíficas y cercanas a poblaciones de *A. religiosa*, lo cual puede explicar estas diferencias. En el caso de los microsatélites, es posible separar a *A. flinckii*, como se mencionó anteriormente, y a las poblaciones de *A. guatemalensis* pertenecientes a Guatemala.

Se ha propuesto que el género Abies, al igual que otras especies de climas templados, migraron hacia el sur, hasta México, durante los periodos de glaciación en el Pleistoceno, que abarca desde hace 1.6 millones de años, hasta hace 11,000 años, habiendo ocurrido el último máximo glacial hace 18,000 años (Deevey, 1949; Dressler 1954 en Perry et al. 1998). En contraste, otros autores han postulado que estos taxa empezaron a migrar hacia México y América Central a principios del Terciario (hace 55 millones de años) y durante el Terciario medio (hace 23 millones de años) (Chaney 1936; Steyermark 1950; Braun 1955; Martin y Harrel 1957 en Perry et al. 1998). El primer registro fósil que se tiene en México del género Abies data de mediados del Plioceno (hace cinco millones de años) y es de la formación del Paraje Solo en Veracruz (Graham, 1993, 1999), por lo que se considera que efectivamente, la divergencia de estas especies puede ser un evento relativamente reciente en una escala evolutiva. Estas poblaciones pueden no haber estado aisladas durante mucho tiempo desde que experimentaron una disminución en su rango y una fragmentación en sus poblaciones en el periodo que siguió a la última glaciación (~18 000 años), durante el periodo de calentamiento que tuvo su máximo hace ~6 000 años (Aguirre-Planter et al. 2000) y considerando que las especies de Abies tienen tiempos generacionales relativamente largos. Si tomamos en cuenta que Abies tiene un tiempo generacional de aproximadamente 33 años

(Silvertown y Dodd 1999) y que han estado separadas por ~9 000 años, entonces han pasado alrededor de 272 generaciones, a lo más, desde que las poblaciones se encuentran aisladas.

La combinación de diferentes tipos de datos o diferentes marcadores con distintas tasas de mutación permite distinguir entre fenómenos recientes e históricos y pueden aportar un panorama más amplio de la historia de estas especies. Estos métodos, al mismo tiempo, constituyen herramientas importantes para tomar decisiones sobre conservación y manejo de las poblaciones y de las especies. Desde el punto de vista de la genética de la conservación, el análisis de isoenzimas, que muestra niveles altos de diferenciación entre poblaciones, sugiere la importancia de preservar la mayor cantidad posible de publaciones genéticamente distintas para conservar la mayor proporción posible de la variación genética de las especies. Por otro lado, los resultados obtenidos con cpSSR sugieren que se necesitan preservar poblaciones de tres grupos genéticos distintos y poblaciones que tienen haplotipos únicos, como G41, G52, G7, R22 y H3, así como también poner especial atención en preservar las poblaciones de A. guatemalensis, una especie amenazada (FAO 1986; CITES, Appendix 1, http://www.cites.org/), que es la que posee los niveles más altos de diferenciación entre sus poblaciones.

El propósito general en biología de la conservación es el de proteger la diversidad biológica y los procesos que la mantienen (Moritz 2002). Originalmente, la identificación de unidades de conservación intraespecíficas, es decir una población o grupo de poblaciones que amerita una prioridad de conservación, se ha basado en el reconocimiento de grupos monofiléticos (Moritz 1994). Dentro de un árbol filogenético cada rama o grupo de ramas monofilética se consideraría una unidad evolutiva significativa (ESU). Sin embargo, la manera de definir ESUs ha generado discusiones en la literatura, y se han hecho distintas críticas a esta definición (Crandall et al. 2000, Moritz 2002, Moran 2002).

Crandall et al. (2000) proponen que lo importante es mantener la estructura poblacional histórica, es decir, es importante considerar los procesos

evolutivos. Por lo tanto, y con este fin, el uso de redes de poblaciones es más útil cuando se tienen datos de genética de poblaciones. Para preservar procesos evolutivos el objetivo del manejo y la conservación debería ser el de preservar la red natural de conexiones genéticas entre poblaciones, más que sólo distintas poblaciones aisladas dentro de la red. Esto asegura que los procesos que mantienen la diversidad adaptativa y el potencial evolutivo sean conservados (Crandall et al. 2000). En este contexto, aparentemente la única especie que se encuentra bien diferenciada es *A. flinckii* y es la única que está funcionando como una entidad evolutiva independiente, las otras especies se encuentran conectadas genéticamente.

Perspectivas

Se han propuesto distintas clasificaciones basadas en características morfológicas para las especies de Abies estudiadas; sin embargo, para algunos taxa no existe consenso entre los autores (Martínez 1948, Liu 1971, Rushforth 1989, Farjon 1990, 1998), lo que sugiere que la taxonomía con información morfológica no ha podido resolver de manera adecuada la clasificación de estas especies. De la misma manera, en este estudio se pudo comprobar que la clasificación de estas especies no es muy clara y no es posible identificar a todas las especies genéticamente. Por lo tanto, es necesario encontrar otros marcadores moleculares para tratar de diferenciar a las especies. Algunas secuencias podrían ser utilizadas con este fin. Por ejemplo, las regiones secuenciadas por Suyama et al. (2000), quienes secuenciaron ocho regiones del cloroplasto en total: rbcL, matK, y seis regiones espaciadoras, para poder clarificar la posición filogenética de cinco especies de Abies de Japón. Por otro lado, Gernandt et al. (2003) secuenciaron ADN de cloroplasto de regiones de matK, rbcL y rpl16 para inferir las relaciones dentro de los pinos piñoneros (Pinus subsecciones Cembriodes y Nelsoniae). Es necesario poder clarificar las relaciones entre las especies de Abies de México, para poder entender y explicar de una manera mas detallada y contundente lo encontrado en este trabajo.

Referencias bibliográficas

- Aguirre-Planter E, Furnier GR, Eguiarte LE (2000) Low levels of genetic variation within and high levels of genetic differentiation among populations of species of *Abies* from southern Mexico and Guatemala. *American Journal of Botany*, **87**, 362-371.
- Caballero A, Toro MA (2002) Analysis of genetic diversity for the management of conserved subdivided populations. *Conservation Genetics*, **3**, 289-299.
- Crandall KA, Bininda-Edmonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. *Trends in Ecology and Evolution*, **15**, 290-295.
- Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. *Annual Review of Ecology & Systematics*, **24**, 217-242.
- Ennos RA (1994) Estimating the relative rates of pollen and seed migration among plant populations. *Heredity*, **72**, 250-259.
- FAO (1986) Databook on endangered tree and shrub species and provenances. FAO. *Forestry* **77**. Food and agriculture organization, Rome, Italy.
- Farjon A (1990) Pinaceae: drawings and descriptions of the genera Abies, Cedrus, Pseudolarix, Keteleeria, Nothotsuga, Tsuga, Cathaya, Pseudotsuga, Larix and Picea. Königstein: Koeltz Scientific Books.
- Farjon A (1998) World checklist and bibliography of conifers. Royal Botanical Gardens, Kew.
- Frankham R (1995). Conservation Genetics. Annu. Rev. Genetics, 2,305-327.
- Gernandt DS, Liston A, Piñero D (2003) Phylogenetics of *Pinus* Subsections *Cembroides* and *Nelsoniae* inferred from cpDNA sequences. *Systematic Botany*, **28**, 65**7**-673.
- Graham A (1993) Historical factors and biodiversity in Mexico. En: Ramamorty TP, Bye R, Lot A, Fa J (eds.) *Biological diversity of Mexico: origins and distribution*. Oxford University Press, New York, New York, USA.
- Graham A (1999) The tertiary history of the northern temperate element in the northern Latin American biota. *American Journal of Botany*, **86**, 32-38.
- Keller LF, Waller DM (2002) Inbreeding effects in wild populations. *Trends in Ecology and Evolution*, **17**, 230-242.
- Liepelt S, Bialozyt R, Ziegenhagen B (2002) wind-dispersed pollen mediates post-glacial gene flow among refugia. *Proc. Natl. Acad. Sci.*, **99**, 14590-14594.
- Liu TS (1971) A monograph of the genus *Abies*. Department of Forestry College of Agriculture, National Taiwan University, Taipei, Taiwan, China.
- Lynch M, Conery J, Bürger R (1995) Mutation accumulation and the extinction of small populations. *American Naturalist*, **146**, 489-518
- Martínez M (1948) Los Abies mexicanos. Anales del Instituto de Biología de México, **19**, 11-104.

McCauley DE (1995) The use of chloroplast DNA polymorphism in studies of gene flow in plants. *Trends in Ecology and Evolution* **10**, 198-202.

Moran P (2002) Current conservation genetics: building an ecological approach to the synthesis of molecular and quantitative genetic methods. *Ecology of Fresh Water Fish*, **11**, 30-55.

Moritz C (1994) Defining "Evolutionary Significant Units" for conservation. *Trends* in Ecology and Evolution, **9**, 373-375.

Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. *Systematic Biology*, **51**, 238-254.

Neigel JE (2002) Is F_{ST} obsolete? Conservation Genetics, 3, 167-173.

Perry JP Jr, Graham A, Richardson DM (1998) The history of pines in Mexico and Central America. En: *Ecology and biogeography of Pinus*. (ed Richardson DM), pp. 137-147. Cambridge University Press, Cambridge, UK.

Rushforth KD (1989) Two new species of *Abies* (Pinaceae) from western Mexico. Notes of the Royal Botanical Gardens of Edinburgh, **46**, 101-109.

Silvertown J, Dodd M (1999) Evolution of life history in balsam fir (*Abies* balsamea) in sub-alpine forest. *Proceedings of the Royal Society of London B. Biological Sciences*, **266**, 729-733.

Suyama Y, Yoshimaru H, Tsumura Y (2000) Molecular phylogenetic position of japanese Abies (Pinaceae) based on chloroplast DNA sequences. *Molecular Phylogenetics and Evolution*, **16**, 271-277.

Wagner DB (1992) Nuclear, chloroplast and mithocondrial DNA polymorphisms as biochemical markers in population genetic analyses of forest trees. *New Forestry*, **6**, 373-390.