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Abstract

The catalytic reduction of nitric oxide by H2 over the Pt(100) surface is studied as a function of partial pressures of the reactants.
The mathematical mean 8eld model, originally proposed by Makeev and Nieuwenhuys (J. Chem. Phys. 108 (1998a) 3740) shows kinetic
oscillations of the reaction products and near the critical point the dependence of the amplitude of oscillations on the partial pressures
ratio p is shown to be very close to that predicted for the Hopf supercritical bifurcation. The model has been extended to include the
e*ect of blocking sites (poisoning) on the catalyst surface. This e*ect changes the period of the oscillations. Di*usion of the adspecies
NO has also been studied and we show in what way it modi8es the nonlinear behavior of the kinetic oscillations and the transition to
chaos through period-doubling bifurcations. The in=uence of defects on global coupling as they are increased continuously is also studied.
Finally, we use Monte Carlo simulations to show the species distributions and growth as they oscillate in time.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The catalytic reduction of NO with either CO or H2 is
very important due to the contaminant e*ects of NO in air
(Egelho*, 1982). In general, heterogeneous catalysis of dif-
ferent adsorbates as CO+O2; CO+NO; NO+H2; NO+
NH3 on low index Pt single crystal surfaces show com-
plex dynamical behavior as oscillations, pattern formation
and chaotic behavior. This in e*ect has been reviewed by
Imbihl (1993), Slinko and Jaeger (1994) and Imbihl and
Ertl (1995).
In particular, the catalytic reduction of nitric oxide by

hydrogen over the Pt(100) surface has been the subject
of both experimental and theoretical studies. Among the
properties studied there is the so-called “surface explosion”
(Lesley and Schmidt, 1985) where the coadsorbed NO and
H2 react to form extremely narrow product peaks observed
in temperature-programmed reaction experiments. An-
other very interesting property is the occurrence of kinetic
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oscillations. These kinetic oscillations were found to occur
for gas reactant pressures in the range 10−6–10−5 mbar in
the range of temperatures from 430 to 500 K (Siera et al.,
1991; Madden and Imbihl, 1991; Cobden et al., 1992).
When there is adsorption of atoms in a surface their pres-

ence a*ects the position of the topmost substrate atoms and
at a certain coverage the surface may undergo a phase tran-
sition (SPT). An important feature of the system Pt(100)
is that the clean surface undergoes a “hex”-reconstruction,
but signi8cant local coverage of CO or NO lift this
hex-reconstruction to recover a 1 × 1-structure. If the cov-
erage of NO adsorbed on the 1 × 1 patches drop below
its critical value the surface transforms into the hex phase
again. Madden and Imbihl (1991) demonstrated that the
complex dynamical behavior shown by the NO + H2 reac-
tion on Pt(100) arises as a consequence of the 1× 1 → hex
phase transition and of the coexistence of multiple reaction
channels in which either N2 and H2O or NH3 appear as
reaction products.
To describe the occurrence of kinetic oscillations

Lombardo et al. (1993) proposed a model consist-
ing of seven ordinary di*erential equations for de-
scribing the coverage changes of six adsorbed species
(NO1×1;NOhex;NH1×1

3 ;H1×1;N1×1;O1×1), as well as
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an equation for the 1 × 1 → hex phase transformation.
Gruyters et al. (1996) proposed a new model based on a
strongly non-linear power law for the (1 × 1) − NO is-
land growth rate from the hex phase with an apparent re-
action order in the local NO coverage on the hex phase.
Cobden et al. (1992) proposed a di*erent mechanism to ex-
plain the kinetic oscillations. They used a “vacancy model”
in which the oscillations are due to autocatalytic surface re-
action, which increase the number of vacant sites for NO
dissociation. Makeev and Nieuwenhuys (1998a) have de-
veloped a mathematical model to prove that autocatalysis
of NO decomposition by vacant sites is one of the main
properties that keep the system oscillating. The other ma-
jor ingredient is the coverage dependency of the activation
energies for NO and CO desorption. In fact, the catalytic
reduction of NO by CO over Pt(100) exhibit a very simi-
lar dynamic behavior and in this system Fink et al. (1991b)
have shown that oscillatory behavior occurs in two windows.
In the low temperature window (around 400 K) the sys-
tem presents oscillatory behavior without involvement of the
surface structural transformation and in the upper tempera-
ture window (around 450 K)there is a coupling with surface
phase transition between the 1 × 1 and hex phase. Simi-
larly, the NO+H2=Pt(100) system at relatively low temper-
atures, oscillations take place on a surface that is completely
in the 1 × 1 structure. In fact, Makeev and Nieuwenhuys
(1998a) have shown that the 1 × 1 � hex is not essential
for producing oscillatory behaviour in the low temperature
window.
Most of the theoretical studies concerning catalytic ox-

idations or reduction on Pt assumed that adsorption and
reaction takes place on a substrate of pure metal without
any defects or impurities. However, it is not possible to re-
move all impurities in a real crystal sample. On the con-
trary, sometimes some foreign atoms can be intentionally
deposited on a given substrate to form a composite catalyst
for special use. The impurities decrease the number of avail-
able adsorption sites on the surface and can thus be consid-
ered as blocking sites. For example, Asakura et al. (1994,
1997) have shown that active reaction–di*usion media can
be constructed containing inert (passive or active) inclusions
and that the scale and nature of these inclusions can drasti-
cally a*ect spontaneous pattern formation on the modi8ed
substrate.
The most familiar description of heterogeneous catalytic

reactions is the mean 8eld approximation (MF) in the re-
action kinetics. Their validity is however limited since it
does not take into account the occurrence of stochastic
=uctuations (Peeters et al., 1990) and correlations. Among
the attempts to built more microscopic models Monte Carlo
(MC) simulations applied to surface reactions should be
mentioned. They have shown a great success since the
work of Zi* et al. (1986) on an irreversible monomer–
dimer reaction mimicking by example the CO oxidation on
a metal surface. A recent review of these simulations can
be found in the work by Zhdanov (2002). These simula-

tions incorporate the discreteness of the reactive events in
an intrinsic manner and are thus complementary of the MF
studies.
In this paper we make an study of the NO + H2=Pt(100)

reaction. First, we use the MF approach to study the low
temperature window and consequently do not consider the
(1 × 1) → hex SPT. We use the mathematical model pro-
posed by Makeev and Nieuwenhuys (1998a) which repro-
duces very well the experimental observations of surface
explosion, temperature programmed desorption spectra and
regular and chaotic oscillations of the NO + H2=Pt system.
This model is presented in Section 2. In Section 2.1 we ex-
tend the model to include the e*ect of impurities (blocking
sites) on the oscillations. In Section 3 we consider a nonuni-
form surface both in one and two-dimensions. This allows
considering spatial patterns through the inclusion of di*u-
sion of one of the reactants and the in=uence of defects. The
defects are considered here as sites with di*erent sticking
coeJcients.
Second, in Section 4 we make Monte Carlo simulations,

which show the coverage distributions on time and comple-
ments the MF calculations. Finally, Section 5 contains our
conclusions.

2. Model in an uniform surface

The following set of elementary step have been formu-
lated by Makeev and Nieuwenhuys (1998a):

k1
NO(g) + ∗ � NOads;

k2
(R1–R2)

k3
H2(g) + 2∗ � 2Hads;

k4
(R3–R4)

k5
NOads + ∗ � Nads + Oads;

k6
(R5–R6)

k7
2Nads * N2(g) + 2∗; (R7)

k8
Oads + Hads * OHads + ∗; (R8)

k9
Nads + Hads � NHads + ∗;

k10
(R9–R10)

k11
NHads + Hads * NH2ads + ∗; (R11)

k12
NH3ads * NH3(g) + ∗; (R12)
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k13
NH2ads + Hads * NH3ads + ∗; (R13)

k14
OHads + Hads * H2Oads + ∗; (R14)

k15
H2Oads * H2O(g) + ∗; (R15)

where * denotes a free adsorption site of the Pt(100)-(1×1)
surface; NO(g);H2(g) are the reactants in the gas-phase with
partial pressures pNO and pH2 , respectively. The reaction
products are N2(g);NH3(g) and H2O(g). Adsorbed species
are denoted by (NO)ads; (H)ads; (N)ads; (O)ads; (NH)ads,
and (NH3)ads.
This reaction mechanism includes adsorption/desorption

of NO and H2 (steps 1, 2 with rate constants ki), reversible
dissociation of (NO)ads (step 3), dinitrogen formation
(step 4), ammonia formation (steps 6–9) via intermedi-
ates (NH)ads and (NH2)ads and water formation (steps 5,10
–11) via (OH)ads intermediate. Besides, the desorption of
(H2O)ads and the hydrogenation of intermediates (OH)ads
and (NH2)ads are assumed to be fast processes. In this way
only six species are considered (surface coverages are de-
noted by �p; p = NO;H;N;O;NH;NH3). Furthermore the
non-ideality of the adsorbed layer is taken into account
through lateral interactions �ap. This quantity re=ects mi-
croscopically the in=uence of the local environment on the
activation energies of the elementary reaction steps and can
be considered as the di*erence of the lateral interactions in
the activated and ground states.
The temporal variation of surface coverages are then de-

scribed by the following coupled ordinary di*erential equa-
tions (ODEs):

d�NO(t)
dt

= R1 − R2 − R5 + R6; (1)

d�H(t)
dt

= 2R3 − 2R4 − 2R8 − R9 + R10 − 2R11; (2)

d�N(t)
dt

= R5 − 2R7 − R6 − R9 + R10; (3)

d�O(t)
dt

= R5 − R6 − R8; (4)

d�NH(t)
dt

= R9 − R10 − R11; (5)

d�NH3(t)
dt

= R11 − R12: (6)

Ri are the rate of the elementary steps (R1–R12) given
above:

R1 = k1pNOSNO�∗; R2 = k2�NOI2;

R3 = k2pH2sH2(�∗)
2; R4 = k4(�H)2I4;

Table 1
The energy and bare frequency parameters that enter the expression for
the various rate constants k = � exp(−E=RT )

Reaction step, � ��(s−1) E�(kcal=mol)

1 2:14× 105 mbar−1 0
2 1:7× 1015 mbar−1 37
3 8:28× 105 mbar−1 0
4 1012 25
5 2× 1015 28
6 2× 1015 23
7 1013 24
8 1013 13
9 109 15
10 1013 29
11 109 17.7
12 109 19

SNOk1 =1:93× 105(mbar−1 s−1); SH2k3 =1:656× 105(mbar−1 s−1).

R5 = k5�NO�∗I5; R6 = k6�N�O;

R7 = k7(�N)2I7;

R8 = k8�O�H;

R9 = k9�N�H; R10 = k10�NH�∗;

R11 = k11�NH�H;

R12 = k12�NH3 ;

where

�∗ = 1− �NO − �H − �N − �O − �NH − �NH3 − �d

k� = �� exp[− E�=(RT )]; �= 1; : : : ; 12;

I� =


�∗ +

6∑
p=1

�p exp[��p=(RT )]



m�

;

�∗ the fraction of empty sites, �d the fraction of blocked
sites,m� the number of nearest-neighbor sites, Si the sticking
coeJcient.
The factor I� takes into account the in=uence of lateral

interactions in the framework of the lattice-gas model for a
well-mixed adlayer. When there is no such lateral interac-
tions ��p = 0 and I� = 1. The kinetic parameters given in
Table 1 where taken from surface science studies by Fink
et al. (1991a), Dixon-Warren et al. (1995) and Makeev and
Nieuwenhuys (1998a). The parameters for lateral interac-
tions were taken from this last reference and are |��; i|¡ 2.
The model Eqs. (1)–(6) are strongly sti* and have to be
integrated with an adequate numerical procedure. We used
Gear’s method (1971) for solving sti* ODEs, which pro-
vides eJciency and accuracy of integration.
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Fig. 1. (a) H2O; NH3; N2 production rates vs time for
T = 434 K; pNO = 1:1 × 10−6 mbar and pH2 = 7:6 × 10−6 mbar; (b)
absorbate coverages of NO, NH and H.

2.1. Sustained oscillations and chaos: e:ect of poisoning

If the gas pressures are 8xed, self-sustained oscilla-
tions can be observed for certain temperatures. For exam-
ple, Fig. 1b shows oscillations in the coverages �NO; �NH
and �H with T = 434 K; pNO = 1:1 × 10−6 mbar and
pH2 = 7:6 × 10−6 mbar. The oscillation period is around
42 s which is very similar to that found experimentally.
When �NO is at a maximum there is low catalytic ac-
tivity (Fig. 1a shows the reaction rates for H2O;N2 and
NH3), the reaction is inhibited because the high adsorbate
coverage. Then the NO adlayer reacts and there is an au-
tocatalytic increase in the number of vacant sites causing
increases in the production rates, �NO decreases and the
other coverages increase. Finally �NO begins to increase
again and the reaction moves back into the low activity
state.
Slinko et al. (1992), showed the dependence of the oscil-

lation period, tosc, upon the temperature. They found that tosc
increases signi8cantly with decreasing temperature. Cobden
et al. (1992) observed a transition from periodic to aperi-
odic oscillations when the H2 partial pressure was lowered.
The transition to aperiodicity occurs via the Feigenbaum
scenario, that is, period-doublings, although period-3 and
period-5 oscillations were also found. The (very small)
region where complex and chaotic oscillations exist is

Table 2
Intervals of p where di*erent oscillations are found

Oscillatory period p, mean 8eld p with di*usion

1-period 2.565–10.27 2.574–10.0
2-period 2.516–2.564 2.522–2.573
4-period 2.5119–2.515 2.518–2.521
8-period 2.5111–2.5118 2.515–2.517
Chaos 2.5011–2.511 2.512–2.514

The case with di*usion refers to D = 3:85. See text.

located at the higher border of the temperature range for
oscillations.
To study this transition in our simulations we change the

governing parameter p = pH2 =pNO and all the calculations
were performed at T = 457 K. Table 2 shows the p inter-
vals where di*erent oscillations can be found. Fig. 2a–e (left
column) shows some time series for decreasing values of p.
Period-1 (P1) oscillations are shown for p=2:58; period-2
(P2) oscillations for p = 2:54; period-4 (P4) oscillations
for p = 2:513, period-8 (P8) oscillations for p = 2:5118.
Chaos is developed for p = 2:511. Additional information
concerning the doubling period to chaos can be obtained
by plotting the phase portrait (projection onto the (�NH; �NO
plane)(Fig. 2a–e, right column). Periodic attractors form
closed curves: for the period-n responses closed circuits with
n loops emerge. The aperiodic oscillations show a large
number of circuits. One important observation is that within
this temperature the oscillations are modulated: they are not
regular but show in all cases a modulation re=ecting the
presence of another frequency. A bifurcation diagram for
this model was calculated by Makeev and Nieuwenhuys
(1998a) revealing the period-doubling route to chaos and
an approximate structure of the periodic-chaotic windows.
In this diagram periodic and chaotic windows are encoun-
tered as p is varied. Indeed, changing the parameter p ki-
netic oscillations described by ordinary di*erential equations
arise usually via the Hopf supercritical bifurcation (Scott,
1991). According to this scenario the amplitude of oscilla-
tions near the critical point is proportional to (p − pcr)1=2.
An analysis of our calculations (Fig. 3) shows that this is
the case, the amplitude of oscillations of NO coverage is
proportional to (pNO − pcr

NO)
x with x = 0:488 ± 0:013, a

result which is acceptable for that predicted for the Hopf
bifurcation.
Now we consider the e*ect of blocking sites. As was men-

tioned before, the fact of having a fraction �d of available
sites blocked (as can be the case of poisoning) can reduce the
region of oscillatory behavior as has been shown by ChQavez
et al. (2000) for the CO+O2 reaction. Fig. 4 shows the e*ect
of increasing �d when P8 oscillations are set (Fig. 2d). As
can be seen a very small fraction (�d=0:00002) turns the P8
oscillations into P4. Increasing this fraction to �d=0:00195
turns the oscillations into a P2 oscillations and 8nally in-
creasing to �d=0:01 turns the oscillations into a P1. A further
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Fig. 2. Period-doubling route to chaos in the NO coverages as a function of time for di*erent values of the pressure ratio p = pH2 =pNO: (a) period-1,
(b) period-2, (c) period-4, (d) period-8, (e) chaos. The right colums are the corresponding phase portraits �NH vs �NO.

increases of the impurity fraction to �d = 0:0886 causes the
period to lengthen (Fig. 4e) and for larger values the oscilla-
tions disappear and a non-oscillatory steady state is reached.
If now T or P is changed, the oscillations change again. In the
last example by changing p back to p=1:8 P2 oscillations
are recovered. The existence range (p; T ) for oscillations is

now extended to (p; T; �d). Thus the model presented here is
very sensitive to the number of active available sites for cat-
alytic reactions as the blocked fraction that turned o* the os-
cillations is very low. This is mainly because the autocatalyis
of NO decomposition by vacant sites is the main mechanism
that keeps the system oscillating. We think that the �d
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Fig. 3. Amplitude of period-1 oscillations of NO coverage as a function
of p. Filled squares denotes the simulations and the solid line corresponds
to amplitud ∼ (p− pcr)x , with x = 0:488± 0:013.

fraction must be speci8c for each reaction and lattice but to
our knowledge this has not been veri8ed experimentally. For
the simplier reaction CO+O2=Pt(100) we have shown ana-
lytically and by MC simulations (ChQavez et al., 2000) that a
fraction �d=0:6 of impurities kill completely all oscillations.
This value is close to the percolation threshold for a square
lattice.
To 8nish with this section we want to comment about

the in=uence of including a surface reconstruction. As was
mentioned above, at relatively large temperatures, oscil-
lations take place on a largely hex-reconstructed surface.
Makeev and Nieuwenhuys (1998b) considered the problem
by adding to the original mechanism the irreversible mi-
gration of NO from the hex phase onto the 1 × 1 phase
(trapping) and the equation for the surface phase reconstruc-
tion developed by Fink et al. (1991b) and Lombardo et al.
(1993). According to this the driving force for the lifting
of the hex reconstruction by adsorbed particles is the higher
binding energy on the 1×1 phase as compared with the hex
phase. After nucleation the adsorbed particles are trapped
on the 1 × 1 regions and these islands grow in size while
maintaining a constant local coverage. If the coverage falls
below this critical value, the inverse transitions 1 × 1 is
realized.
Makeev and Nieuwenhuys (1998b) found that the

oscillations found in this way are very similar with

those reported in Section 2.1. They concluded that the
1 × 1 � hex SPT of Pt(100) is not essential for produc-
ing oscillations, in spite that the oscillations take place
on a hex-reconstructed surface at the high temperature
window.

3. Nonuniform surface

3.1. One dimension

Investigations of spatial structure formation in hetero-
geneous catalytic systems have been inspired by the ob-
servation of a large variety of patterns on the catalyst
surface during single crystal surface studies (Imbihl and
Ertl, 1995). In order to consider spatial structures di*usion
terms have to be included in the model presented before.
In a reaction–di*usion system, the concentrations Ci of
the chemical species are described by the following partial
di*erential equation (PDE)

@Ci

@t
= f(: :Cj; : :) + Di �2 Ci;

where Di is the di*usion coeJcient for the ith substance
and fi speci8es the reaction mechanism. As a 8rst approx-
imation we could consider only NO migration and take
D = 10−7 m2=s which is the value proposed by Imbihl
et al. (1985, 1986) for CO migration on Pt. This because
CO and NO have very similar behavior on Pt(100) (Fink
et al., 1991a, b). This value is high as compared to the cor-
responding D value for H;N and O (Makeev et al., 2001).
Mean-8eld reaction–di*usion equations treat di*usion of
distinct adspecies as independent. They neglect the adlayer
interactions and in this way chemical di*usion of each
species is in=uenced in a complicated way by the presence
of coadsorbed species. It has been recognized by Evans
(Tammaro and Evans, 1998) that a more complete descrip-
tion must include a tensorial coupling between di*usive
=uxes and coverage gradients of the di*erent adspecies and
a coverage dependence of the di*usion coeJcients. Such a
treatment is beyond the scope of the present work and we
have chosen instead to consider an Arrhenius form for di*u-
sion D=D0e−Ea=RT with D0 = 10−7 m2=s; Ea =7 kcal=mol
(Zhdanov, 1999).
In this section we restrict ourselves with solving the prob-

lem on a line. This is equivalent to consider that adsorbed
NO only di*uses in the x-direction. In the next section we
will consider the two-dimensional problem allowing then
the possibility of an anisotropy in di*usion. The equations
describing the system are then

@�NO
@t

= f(�NO; �i : : :) + De*
@2�NO
@x2

; (7)

d�i
dt

= f(�NO; : : : ; �i); (8)
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Fig. 4. E*ect of increasing the fraction of impurities: (a) period-8; (b) period-4; (c) period-2; (d) period-1; (e) lenghten of period-1.

i=H;N;O;NH;NH3 subject to the following boundary con-
ditions (=ux of NO at the boundaries is 0):

t = 0; �NO = �NO0 ; (9a)

x = 0;
d�NO
dt

= 0; (9b)

x = L;
d�NO
dt

= 0; (9c)

where L is the length of the ribbon or line.
As can be noted only Eq. (1) of the original model has

been modi8ed. The model consist now of one PDE coupled
with 5 ODE. To solve them we used the method of lines
in which one discretizes the di*usion term (we divide the
space into cells of length !x) and solve the ODE across a
whole line in space at each time step (see the appendix).
The following remarks are noticeable:

(i) Calculations are highly sensitive to D=!x and small
changes make die the oscillations.

(ii) The period of oscillations change slightly with respect
to the mean 8eld results (see Table 2).

Again we 8nd the period-doubling route to chaos as p is
decreased for �NO;prom, that is, the mean value of �NO taken
over all the cells. The time series are similar to those shown
in Fig. 2 and we observe P1, P2, P4, P8 and chaos. We have
also calculated the corresponding power spectrum for each
oscillatory record obtained by Fourier transforming the time
series. At 8rst, for example p= 2:58 a single peak with its
harmonics is exhibited. As p is varied the period changes
and more contributions in the power spectrum appear and
8nally for p=2:512 the peaks are immersed in a broad-band
structure, characteristic of aperiodic oscillations. We present
here only the next-maximummap (Fig. 5) for the time series.
The next-maximum map shows the accumulation of points
corresponding to periods-1 to 8 and the chaotic attractor
shows the characteristic single humped shape.
Fig. 6 shows the temporal behavior of �NO. Because

this is a one-dimensional treatment the picture shows the
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Fig. 5. Next-maximum map for the one-dimensional problem of di*usion: (a) period-1; (b) period-2; (c) period-4; (d) period-8; (e) chaos.

periodic behavior of a ribbon of a crystal divided in cells.
Fig. 6a–c corresponds to P1,P2 and chaotic oscillations,
respectively. Fig. 6d–f show the corresponding (top view)
projections. As can be seen regular equally spaced max-
imum NO coverages (light gray) are formed across the
crystal (Fig. 6d) as time goes on (P1). By changing p
the system evolves to P2 oscillations and this changes
the spacing between the adlayers (Fig. 6e) and for the
chaotic state (Fig. 6f) there is no regularity between these
layers.

3.2. Two-dimensions: e:ect of di:usivity

We consider now the two-dimensional case where again
only NO di*usion is important. However we consider the

possibility of an anisotry of the crystal, that is De* ; x �=
Dee* ;y. The equations must be modi8ed in order to include
the NO dependency on x and y. Eq. (7) is modi8ed then to

@�NO
@t

= f(�NO; �i : : :) + De* ; x
@2�NO
@x2

+ De* ;y
@2�NO
@y2

(10)

the rest of Eqs. (8), (9), are the same. To perform the
calculations we consider a square lattice corresponding
to a 0:05 × 0:05 mm crystal. We consider here a lattice
divided into 10 × 10 cells. Besides the governing param-
eter p we consider now the e*ect of the anisotropy in
di*usivity through the relation D = De* ;y=De* ; x. We
consider 8rst the case D = 1 and vary the parameter p.
In order to compare with the 1-dim case we take the
same values as before. Again double period transitions
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respectively. (d–f) show the corresponding projections (top view) showing the regular spacing in the periodic cases.

and chaos are obtained as p is varied but the numerical
values are slightly changed (see Table 2). For example
for p = 2:58 a P1 attractor is obtained but for p = 2:518
a P2 attractor is obtained instead of the P4 as was the
case before. For p = 2:50 P8 oscillations are obtained in-
stead of the chaotic oscillations as was the case before.
If D is now changed small variations are also obtained.
For a large value of D the results are very similar with
the 1-dim case. This is expected as large values of D
means a preferential di*usion in one direction. In fact,
for such value as D = 3:85 the numerical values ob-
tained for the transitions between the di*erent periods
are almost identical as the 1-dim case. We note that this
value of the anisotry D ∼ 4 has been also used for ex-
ample in modeling anisotropic chemical wave patterns
in the NO + H2 reaction on a Rh(110) surface by Ma-
keev et al. (2001). They used the di*usion coeJcients
H[1 S10] − dir ∼ 4 × 10−9 m2=s and H[001] − dir ∼
10−9 m2=s. They have also considered the di*usion coeJ-
cient of O[1 S10] − dir ∼ 1:75 × 10−15 m2=s and O[001] −
dir ∼ 4× O[1 S10].
In conclusion, if there is any crystal anisotropy, as de-

scribed by D, the oscillatory region is shifted. In this way
D could be interpreted as a new control parameter (as
was the case for the impurity fraction), at least theoreti-
cally, to obtain the di*erent transitions between oscillatory
states.

3.3. Two-dimensions: in=uence of defects

As has been shown before, considering a homogeneous
medium leads to the case of spatially uniform oscillations.
In a realistic system, however the properties of the medium
will not be spatially uniform, but defects will be present.
One can expect that defects will make synchronization more
diJcult. We analyze in this part what is the e*ect in the
global coupling as the number of defects is continuously
increased.
To this end the surface nonuniformity is modeled by

assuming di*erent sticking coeJcient of NO on the sur-
face of the catalyst caused by the large sensitivity of the
adsorption rate on surface dislocations. This for example
has been considered by Kurtanjek and Froment (1991) in
their investigation of oscillating oxidation of CO on Pt.
In our simulations the sticking coeJcients at some sites
across the crystal have been taken arbitrarily 15% larger
than the original values (Kurtanjek and Froment, 1991).
Fig. 7 shows the e*ect of putting 2,5,12 and 32 defects
symmetrically as is shown in the left part of the 8gure.
The initial condition corresponds to a P8 attractor, that
is, in the absence of any defects the 8nal attractor would
develop an 8-period orbit. We see that increasing the num-
ber of defects turns on the oscillations from P8 to P4
(Fig. 7a) to P2 (Fig. 7b and c) and with 32 defects to P1
(Fig. 7e).
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The left column of Fig. 7 shows �NO at t =10 s from the
beginning of the simulation and what is observed as time
goes on is that on the sites where defects are localized the
�NO peaks grow and decrease oscillating in time. This is
shown more explicitly in Fig. 8 where the three-dimensional
representations for the 8ve defects case shows �NO for times
t = 100 s (a); t = 110 s (b) and t = 120 s (c). We have
checked that placing randomly the defects do not change
appreciably the oscillatory behaviour.
Resuming, the mean value oscillates in time and locally

(�NO around the defects) also oscillates accordingly.

4. Monte Carlo simulations

Usually, catalytic reactions have been intensively stud-
ied by the use of mean-8eld modeling through ordinary
di*erential equations as we did in the preceding sections.
Such type of approach naturally involves a coarse grained
description, and spatial =uctuations that lie below the

typical length scale of the coarse graining (about 1 nm) are
entirely neglected. MF methods consider average environ-
ments of reactants and adsorption sites ignoring stochastic
=uctuations and correlations. Some of these limitations can
be partially overcome by the use of computer simulations
(Monte Carlo, Cellular Automata) where local environ-
ments are explicitly taken into account. These simulations
have witnessed a great success since the pioneering work of
Zi* et al. (1986) on an irreversible monomer–dimer reaction,
which mimics in a simple way the CO oxidation on a metal
surface. More re8ned simulations have been used to describe
the surface-catalyzed CO oxidation via the Langmuir–
Hinshelwood kinetics incorporing adsorbate-induced sur-
face reconstruction (Wu and Kapral, 1992; Danielak et al.,
1996; Zhadonv, 1999). They were successful in reproducing
the evolution of reactant coverages and reaction rates during
oscillations.
It is important to point out that the MC time is de-

8ned in these simulations via the adsorption–desorption–
reactions surface restructuring events (MC time steps)
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and is only roughly proportional to the actual time. An-
other limitation is imposed by the size of the lattices used
to mimic the surface. But even with these shortcomings
MC simulations is a powerful tool which contributes to
the understanding of the complex behaviour of catalytic
systems.
The Monte Carlo algorithm used in this work can be sum-

marized as follows:

The surface of the catalyst is considered to be a two-
dimensional lattice of active sites. The surface contains
N=300×300 sites with periodic boundary conditions, each
site surrounded by eight adjacent sites (this is the so-called
Moore neighborhood consisting of the eight nearest and
next-nearest neighbors). The dynamics takes place on two
regular two-dimensional lattices: one of them, Ls, is used to
represent the di*erent phases of the substrate. Each site is
assigned 0 if it is in the hex con8guration and 1 if it is in the
1×1. Adsorption, desorption and migration take place in the
other lattice, La, which contains exactly the same number of
sites or nodes. On this lattice the nodes can have the follow-
ing values: 0 (empty site), 1(site occupied by NO), 2 (site
occupied by H) or 3 (site with adsorbed oxygen). Adsorbed
species at node r can react with particles on neighboring
sites r ∈N (r), with N (r), the Moore neighborhood de8ned
above.

In general, one would need to take into account all the steps
R1–R18 but in practice the reaction can be reduced: at rela-
tively high temperatures (high window) the rate of NH3(g)
formation is lower than that of N2 desorption (consequently,
NH is neither appreciable). Then, for the purposes of our
simulation we consider the following simpli8ed mechanism
for the NO + H2 reaction:

k1
NO + ∗ � NOads;

k2
(M1–M2)

k3
H2 + ∗ � 2Hads;

k4
(M3–M4)

k5
NOads * Nads + Oads;

(M5)

kN
2Nads * N2 + 2∗; (M6)

kr
2Hads + Oads * H2O(g) + 2∗; (M5)

where * represents an empty active site on the catalytic
surface. In practice, Eq. (M6) is not considered, because
it is a very fast process. This means that nitrogen atoms
are essentially removed immediately after the adsorption
of NO takes place. The numerical implementation of these

reactions is essentially similarly to that presented in earlier
works (Danielak et al., 1996; ChQavez et al., 2000), for the
CO + O2 system.

Di*usion of the NO species will be considered through
random jumps of the adsorbed species at node r to one of the
empty nodes in the neighborhood. In this way we have now
8ve possible processes (adsorption, desorption, dissociation,
chemical reaction, di*usion) and the set of rate constants is
denoted by KI = (KI

1 ; : : : ; K
I
5), where the superscript I de-

notes the constants for the hex phase. A similar notation KII

is followed for the 1×1 phase. (In general the reaction rates
may be di*erent for the two surface phases). In particular
we will denote KH; KNO the adsorption constants for H and
NO, respectively. The rates of NO and H2 adsorption are
considered to be proportional to pNO and pH2 , respectively,
and the ratio p = KH=KNO is thus only proportional to the
ratio of Section 21. Finally, all the rates are slow compared
to NO di*usion.
The set of reaction rates de8nes the probability pi =

Ki=
∑

Ki, that the ith process is carried out at a lattice point.
Each time step consists of N applications of the composition
of the following operations:

1. A node r is chosen at random.
2. A process i is chosen with probability pi.
3. In the case of processes involving simultaneously two ad-

jacent nodes (hydrogen adsorption/desorption, chemical
reaction, surface di*usion), a second node is randomly
selected from N (r).

4. If the chosen process is sterically possible in the selected
site, it is carried out and values of the sites are updated. If
it is not possible, the trial is disregarded. In any case the
sequence is started over from step 1 above. If the phase
transformation step is selected then a substrate phase
transformation is attempted by the following mechanism.
Let us denote nNO(r) the number of molecules of NO ad-
sorbed at the neighborhood of node r on lattice La, and
n(1 × 1)(r) the number of sites of the neighborhood of
node r on lattice Ls which have surface structure (1×1).
We distinguish four basic steps:

(a) (1 × 1) domain formation mechanism. If all nodes
in N (r) on La are in the hex phase and nNO(r) = 9
(the neighborhood is covered by NO), then node r
is changed to (1× 1).

(b) (1×1) domain growth mechanism. If node r is in the
hex phase and nNO(r)¿rmax, then node r is changed
to (1×1) with probability F(n(1×1))=n(1×1)=9.
Here, rmax is a parameter which represents some
lower 8xed fractional coverage necessary for (1×1)
domain growth.

(c) hex domain formation. If all nodes in N (r) on La
are in the (1 × 1) phase and nNO(r) = 0, then node
r is changed to hex.

(d) hex domain growth. If node r is in the (1× 1) phase
and nNO(r)¡rmin, then node r is changed to hex
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Fig. 9. The production rate rH2O versus time (simulation steps) for three
di*erent values of p = KH2 =KNO. The simulations show the change in
period one (a) p= 0:003 to two (b) p= 0:002. The oscillations become
irregular and chaotic as p is further decreased to (c) p = 0:0008.

with probability F(n(1×1))=1−n(1×1)=9. Here,
rmax is a parameter which represents some upper
8xed fractional coverage necessary for hex domain
growth.

The phase transformation steps described in this way
mimic the real process (Danielak et al., 1996; ChQavez
et al., 2000) and are consistent with the Imbihl descrip-
tion of SPT, that is, with what is observed experimentally
(domain nucleation and growth). In our simulations we
use KNO as a control parameter and maintain constant the
other Ki. The results of the simulations are summarized in
Figs. 9–11.
Fig. 9 shows the oscillations in rH2O, the rate of H2O

production for three di*erent values of p= KH2 =KNO.
The 8gure shows single period oscillations (Fig. 9a) and

when p is decreased a period doubling is observed (Fig. 9b).
If p is further decreased the oscillatory behavior is lost and
we obtain irregular or chaotic oscillations (Fig. 9c). The
simulations do not show any tendencies for more than two
periods.
Fig. 10a shows �NO; �O and �H. The 8rst two are al-

most in phase whereas �H is out of phase. This agrees
with the results of Fig. 1b. Fig. 10b shows the �1×1 cov-
erage and the H2O production (multiplied by 1000). We
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Fig. 10. Oscillatory time series for p = 0:003: (a) bold line for NO
coverage, thin line for H and dash line for O; (b) thin line for �1×1 and
thick line for rH2O production (1000 times increased).

see in this 8gure that the maxima in �1×1 correlate roughly
with the minima in the rH2O peaks, that is, the maxima in
hex reconstruction correlates with maxima in H2O produc-
tion. To our knowledge there is not detailed experimental
data for the NO + H2 reaction to verify this, but this fact
has been well established for the similar reaction NO +
CO=Pt(100): the maximum in catalytic activity correlates
with the maximum in hex reconstruction (Veser and Imbihl,
1994).
In Fig. 11a–f we show snapshots of both the species

and substrate for three points of the times series shown
in Fig. 10b corresponding to times t = 50 000(a:u:) (this
the maximum in rH2O production) and at intervals Vt =
500 (a:u:) latter. We can see how the substrate evolves by
nucleation and growth of the 1 × 1 phase (black region in
Fig. 11b,d and f). The �1×1 fractions are successively (b)
0.19, (d) 0.41, (f) 0.62. The formation of islands is clearly
shown in Fig. 11d.
At the left column (Fig. 12a,c and e) the coverages are

(�NO=0:13; �H=0:22; �O=0:25); (�NO=0:22; �H=0:22; �O=
0:27); (�NO = 0:32; �H = 0:16; �O = 0:36).
At 8rst (Fig. 11a) there is an almost random distribution

of NO(dark gray), H(light gray) and O(black). This cor-
responds to the maximum in H2O production as the trials
O+2H in the simulation occurred more frequently. As time
goes on strong clustering occurs (Fig. 11c and e). Fig. 11f
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Fig. 11. (a–f). The temporal evolution of the species (left) and substrate (right) corresponding to the time series shown in Fig. 10a. The initial time is
t = 12 500 and increments of Vt = 500. For the species lattice, NO is shown in dark gray, O in black and H in light gray. For the substrate lattice, hex
is in white and 1× 1 in black.

corresponds to a maximum in �1×1 reconstruction, then this
fraction decreases and the lattice returns at the end of the
cycle.

5. Conclusions

Within the mathematical MF model proposed by Makeev
and Nieuwenhuys (1998a, b) for the NO + H2 reaction
on Pt(100)it has been shown that decreasing the control-
ling parameter p (ratio of partial pressures) causes the

system to undergo transitions from simple oscillations
to chaos through period-doubling bifurcations. Near the
critical point the dependence of the amplitude of oscil-
lations on the partial pressures ratio p is shown to be
very close to that predicted for the Hopf supercritical bi-
furcation. The inclusion of non-uniformities, in the form
of blocking sites or defects changes the oscillatory peri-
ods. The e*ect of increasing continuously the number of
defects is to decrease the period of oscillations. So we
can suggest the experimentalist that a way to change the
oscillatory behavior of their samples is to create defects
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(by annealing, for example). We have extended also the
model to consider a two dimensional lattice and show
that changes in the di*usivity in the x and y directions
also changes the oscillation periods. So a bifurcation di-
agram must consider besides the partial pressure ratio p,
the di*usivity D and the fraction of blocking sites �d or
defects.
We have presented also Monte Carlo simulations of the

oscillatory NO–H2 reaction on Pt(100). In this simulations
our results allow to correlate adsorption coverages and hex
fraction with H2O production.We also observe island forma-
tion during the oscillatory cycle which is in agreement with
the experiments. The simulations complements the mean
8eld approach by allowing the study of the =uctuations of
the surface coverages.
With the mechanism displayed in Eqs. (M1–M6) and

SPT we obtain oscillations in �NO; �H; �O and a period dou-
bling for rH2O. But this mechanism alone is not able to
show more than 2-period oscillations. In fact the studies by
Lombardo et al. (1993), Gruyters et al. (1996) which in-
cludes SPT do not show the appearance of chaos. The ap-
pearance of period doubling mechanism was shown to ap-
peared via the MF equations (Section 2.1) (without SPT)
due to the highly nonlinear character of the ODE Eqs. (1)–
(6) and the strong interactions. It is very diJcult to imple-
ment such interactions at the level of Monte Carlo rules. In
conclusion, Monte Carlo simulations who take into consid-
eration realistic mechanism of the NO+H2=Pt(100) reaction
to describe transition to chaos via period doubling are still
lacking.

Notation

De* e*ective di*usion coeJcient of chemisorbed
NO; m2 s−1.

D ratio of di*usion coeJcients of NO in directions x
and y.

I� lateral interactions
ki reaction rates
L characteristic length of catalyst
pNO NO partial pressure, bar
pH2 H2 partial pressure, bar
Ri rates of elementary reaction steps
Si sticking probabilities, i =NO;H2

t time, s
T catalyst temperature, K

Greek letters

�ap parameters of lateral interactions
�i fractional coverage of chemisorbed species, i =

NO;H;N;O;NH;NH3
�∗ fraction of free adsorption sites �d fraction of

blocked sites (impurities)
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Appendix

To solve the PDE (Eqs. (7–10)) we have used the method
of lines, in which one discretizes the di*usion term and
then solve the ODE problem across a whole line in space
at each time step. In this way the equations to solve in the
two-dimensional case are:

d�NO
dt

=f(�NO; �i : : :) + De* ; x
�k−1
NO − 2�kNO + �k+1

NO

!x

+De* ;y
�(k−1)−M
NO − 2�kNO + �(k+1)+M

NO

!y
;

M ×M is the number of lattice sites
N =M ×M + 5,
k = 1; 2; : : : ; N − 5,

d�i
dt

= f(�NO; : : : ; �i);

i=H;N;O; NH; NH3 subject to the following boundary con-
ditions:

t = 0; �NO = �NO0 ;

x = 0;
d�1NO
dx

= 0;
d�1NO
dy

= 0;

x = L;
d�MNO
dx

= 0;
d�MNO
dy

= 0:

Finally to solve these equations Gear’s method has been
employed with a high quality solver (IMSL).
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