

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE CIENCIAS

EXPANSIÓN DEL UNIVERSO

T E S I S

QUE PARA OBTENER EL TITULO DE ĺ S F С 0 Р R E S E Ν т Α : JOSÉ ÁNGEL BARRIENTOS PÉREZ

DIRECTOR DE TESIS: DR. AXEL DE LA MACORRA PETTERSSON MORIEL

> FACULTAD DE CIENCIAS SECCION ESCOLAR

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. ESTA TESIS NO SALL DE LA BIBLIOTECA

VNEVERDAD NACIONAL AVIMPMA I I MEXEC

> ACT. MAURICIO AGUILAR GONZÁLEZ Jefe de la División de Estudios Profesionales de la Facultad de Ciencias Presente

Comunicamos a usted que hemos revisado el trabajo escrito:

Expansión del Universo

realizado por José Angel Barrientos Pérez

con número de cuenta 8006068-8 , quien cubrió los créditos de la carrera de: Física

Dicho trabajo cuenta con nuestro voto aprobatorio.

Atentamente

Director de Tesis Dr. Axel de la Macorra Pettersson Moriel Propietario Dr. José Alejandro Ayala Mercado Propietario Propietario Dr. Gabriel Germán Velarde Suplente Dr. Marcelo Salgado Rodríguez Suplente Dra. Myriam Mondragón Ceballos Consejo Departamental d

Coordinadora de L GENCLAS PARTAMENTO DE FISICA

EXPANSIÓN DEL UNIVERSO

José Angel Barrrientos Pérez

Facultad de Ciencias, UNAM

截纳油"	e valinale (astro "propriedo defen	19625-1779-1728-2888 	et al garante and	\$890°-9.
Autoriz	o a la Diracción (a difundu an form	General de B	ibliotecas d	ala mel :
conte	aldo de mi	kapajo!	recepcio	nal.
NOM	BRE: DSC	Angel		
	Samer	itos t	erst	
S FECH	19-1	+905-04	1	
FIRM	1A:	Su	×	{
有些影响	A CONTRACTOR AND A CONTRACTOR	69	n i sana ana ang	and a sugar

A mi madre

A Carlos Bunge por su incondicional apoyo y gran amistad

A Connie

Agradecimientos

Al Dr. Axel de la Macorra por la directriz que me proporcionó para la realización de este trabajo.

A Alfredo García por las facilidades otorgadas en la empresa.

A José Chacón por la sugerencia del programa de titulación.

A todos mis amigos y compañeros que de alguna manera me motivaron e impulsaron en esta tarea.

Resumen

El objetivo de esta tesis es realizar una revisión de las recientes observaciones de las supernovas tipo Ia (SNe Ia) que muestran una expansión acelerada del Universo, con una componente principal de densidad desconocida, llamada energía obscura. Con los datos obtenidos de las supernovas ha sido posible medir con más precisión la contribución de las diferentes especies a la densidad total de energía y la aceleración del Universo. La expansión acelerada representa un cambio radical en la percepción que se tenía años atrás de la evolución del Universo; donde la expansión se pensaba desacelerada.

Actualmente, existen dos grupos de investigación en cosmología con las supernovas: The Supernova Cosmology Project y The High-z Supernova Search; ambos grupos han aportado evidencia observacional de una expansión acelerada del Universo.

En esta revisión se introduce brevemente el marco estándar de la cosmología con el Universo de Friedmann-Robertson-Walker, resultado de establecer una métrica de máxima simetría al Cosmos y de aplicar la Teoría de la Relatividad General de Einstein para describir la dinámica de la expansión. Después de esto, se dan las expresiones de los parámetros más importantes para explicar la historia global del Universo y se calcula la etapa de transición de una expansión desacelerada a acelerada, tomando en cuenta que existen hoy en día dos componentes principales en el Universo: materia (ordinaria y obscura) y quintaesencia o constante cosmológica; éste último componente ha sido introducido para denotar la energía obscura que actúa como el combustible que acelera la expansión. Se sigue de esto, una explicación de la cosmología mediante las supernovas, su uniformidad como objetos estándares para medir distancias; se proporcionan los datos que se han obtenido por parte de los dos grupos con esta clase de supernovas y los errores sistemáticos que se pudieran estar cometiendo en las observaciones. Se analizan los datos ajustándolos a diversos modelos y se explican los diagramas de Hubble que son fundamentales para explicar la expansión del Universo. Se dan explícitamente las restricciones en la densidad de energía para la materia y quintaesencia o energía obscura y se comparan los resultados con otro provecto actual que mide las fluctuaciones de la radiación de fondo cósmica que apoya un Universo plano y, finalmente, se dan las conclusiones.

Esta revisión esta enfocada a entender porque los datos en las mediciones de la distancia luminosidad de las supernovas conducen a una expansión acelerada del Universo; más que en la naturaleza del componente principal desconocido que alimenta esta expansión.

Índice

1.	Intr	oducción	2
2.	El n	nodelo estándar	3
	2.1.	Universos de FRW	3
	2.2.	Parámetros Cosmológicos	6
	2.3.	Etapa de transición	9
	2.4.	La radiación de fondo cósmica	10
3.	Cos	mología con las supernovas	12
	3.1.	Medidas de distancia	12
	3.2.	SNe Ia como indicadores de distancia	15
	3.3.	Errores sistemáticos	18
4.	Res	ultados cosmológicos	20
	4.1.	Datos observacionales	20
	4.2.	Diagramas de Hubble y ajuste de curvas	24
	4.3.	Valores actuales de los parámetros	29
	4.4.	Comparación con CMB	30
5.	Con	clusiones	31
6.	Refe	erencias	32
7.	Apé	endice A	36
	7.1.	Figuras y Tablas	36

1. Introducción

La evolución del Universo se explica generalmente en términos de la teoría de la Gran Explosión (Big Bang), en donde existió una fase temprana con densidades de materia y temperaturas muy altas; dando como resultado la expansión cósmica, el enfriamiento gradual y la subsiguiente condensación de la materia que ha formado las estrellas, galaxias y grupos de galaxias. Esta teoría predice el contenido de la materia bariónica y la radiación de fondo cósmica, ésta ultima ha sido confirmada experimentalmente con gran precisión y representa uno de los logros de la teoría.

Uno de los objetivos de la cosmología es entender la historia global del Universo, para lo cual se apoya en la Teoría de la Relatividad General; suponiendo un Universo homogéneo e isotrópico. Uno de los elementos más importantes en este paradigma es la tasa de expansión, conocida como parámetro de Hubble, así como también: el parámetro de desaceleración y la contribución de las diferentes especies en la densidad de energía. La evolución del cosmos tiene que ver con la geometría: si el Universo es abierto o plano, seguirá expandiéndose por siempre; si es cerrado, la expansión cesará eventualmente precedido de una contracción general. Esta geometría depende de la contribución total de densidades de energía de las diferentes especies. Un Universo plano implica una densidad de energía con un valor igual a la densidad crítica $\rho_{\rm crit}$, definido (como se verá más adelante) por: $\rho_{\rm crit} \equiv 3H^2/8\pi G$. Hace algunos años el contenido de energía total del Universo era desconocido, todo apuntaba a que la materia bariónica contribuía en un 5% de la densidad crítica, pero esto no explicaba la cinemática de las galaxias y grupos de galaxias, por lo tanto, un componente de masa tuvo que ser adicionado conocido como materia obscura. Sin embargo, surgió otro problema: de las observaciones de la evolución y determinaciones de masa de grupos de galaxias, la materia obscura y bariónica sólo podían explicar un 30% de la densidad crítica. Tomando en cuenta las mediciones de la radiación de fondo que apoyan un Universo plano y de las observaciones de las supernovas SNe Ia, un componente adicional tenía que ser considerado, llamado energía obscura, quintaesencia o constante cosmológica.

Las recientes observaciones de las supernovas del tipo Ia (SNe Ia) han producido un giro inesperado en la idea que se tenía de la evolución del Universo. Las investigaciones de hace algunos años sugerían una desaceleración en la expansión cósmica, sin embargo, la nueva evidencia observacional indica una expansión acelerada del Universo. Estas observaciones han proporcionado un valor para la densidad de materia $\Omega_M = 0.25^{+0.07}_{-0.06}$, energía obscura $\Omega_{\Lambda} = 0.75^{+0.06}_{-0.07}$ con $w = -1.05^{+0.15}_{-0.25}$, (Knop, 2003, et al) y constante de Hubble $H_0 = 72 \pm 3$ km/s/Mpc, (Spergel, 2003, et al).

2. El modelo estándar

2.1. Universos de FRW

Existe amplia evidencia astronómica de que los efectos de la agrupación de materia en el Universo, visto a grandes distancias $(10^9 \text{ pc}, \text{ donde 1 pc} = 3.2615 \text{ años luz})$, son despreciables; y por lo tanto, cualquier posición en el Cosmos es esencialmente equivalente. Por esta razón, el modelo estándar se basa en la hipótesis del *Principio Cosmológico*: nuestro Universo a gran escala es homogéneo e isotrópico en el espacio, es decir, es invariante ante translaciones y rotaciones, respectivamente. La evidencia más contundente del carácter isotrópico del Universo es la uniformidad de la temperatura de la radiación de fondo.

Aplicando el *Principio Cosmológico* a espacios de máxima simetría, se obtiene la métrica de Robertson-Walker:

$$ds^{2} = -dt^{2} + a^{2}(t) \left\{ \frac{dr^{2}}{1 - kr^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2} \right\} , \qquad (1)$$

donde (t, r, θ, ϕ) son las coordenadas en comovimiento (*comoving coordinates*), a(t) es el factor de escala cósmico y k es una constante que puede tomar los valores de +1, 0 o -1. Para k = 0 la métrica se reduce a la métrica euclidiana y por tal razón el Universo es plano; para k = +1 el Universo es cerrado y para k = -1 obtenemos una geometría hiperbólica abierta.

La evidencia de la expansión del Universo se conoce desde las observaciones de Hubble del corrimiento de la frecuencia de la luz emitida de fuentes distantes; este corrimiento está definido por:

$$z \equiv \frac{\lambda_0 - \lambda}{\lambda} , \qquad (2)$$

donde λ_0 es la longitud de onda de la luz observada. El corrimiento de las frecuencias puede ser escrito en términos del factor de escala a(t):

$$z+1 = \frac{a_0}{a(t)} , \qquad (3)$$

donde a_0 denota el factor de escala en el tiempo actual. Si z > 0 hay un corrimiento al rojo; si z < 0 un corrimiento al azul. Ya que el Universo se expande, hay un aumento en la longitud de onda, es decir, el corrimiento al rojo se debe a que la luz fue emitida cuando el Universo era más pequeño.

Si el Universo no es vacío, se puede escoger el modelo de materia y energía como un fluido perfecto. El tensor de energía momento para este fluido perfecto queda determinado por:

$$T_{\mu\nu} = (p+\rho)U_{\mu}U_{\nu} + pg_{\mu\nu} , \qquad (4)$$

donde ρ y p son las densidades de energía y presión, respectivamente, medidas en el marco de referencia en reposo; la cuadrivelocidad es $U^{\mu} = (1, 0, 0, 0)$ y el tensor de energía momento:

$$T^{\mu\nu} = \begin{pmatrix} \rho & 0 & 0 & 0 \\ 0 & & \\ 0 & g_{ij}p \\ 0 & & \end{pmatrix} ;$$
 (5)

si se baja un índice toma la siguiente forma: $T^{\mu}_{\nu} = \text{diag}(-\rho, p, p, p)$, donde la traza está dada por:

$$T = T^{\mu}_{\mu} = -\rho + 3p \;. \tag{6}$$

Para obtener una expresión del cambio en la densidad de energía respecto del

factor de expansión a, se utiliza la ley de la conservación de la energía. Si se considera la componente cero de la divergencia del tensor energía momento:

$$\nabla_{\mu}T_{0}^{\mu} = T_{0,\mu}^{\mu} + \Gamma_{\mu0}^{\mu}T_{0}^{0} - \Gamma_{\mu0}^{\lambda}T_{\lambda}^{\mu}$$
(7)

y ya que todos los fluidos perfectos en cosmología obedecen la ecuación $p = w\rho$, donde w es una constante independiente del tiempo. Por la ley de la conservación $\nabla_{\mu}T_{0}^{\mu} = 0$, tenemos:

$$\frac{\dot{\rho}}{\rho} = -3(1+w)\frac{\dot{a}}{a} , \qquad (8)$$

la cual se puede integrar para dar:

$$\rho \propto a^{-3(1+w)} ; \tag{9}$$

considerando el componente de materia para la cual w = 0, la densidad decrece en la forma siguiente:

$$\rho \propto a^{-3} ; \tag{10}$$

considerando ahora la radiación con ecuación de estado como $p = \frac{1}{3}\rho$, la evolución de la densidad es:

$$\rho \propto a^{-4} \tag{11}$$

y para la densidad de energía del vacío w = -1, por lo tanto:

$$\rho \propto \text{ const};$$
(12)

de esta manera, la densidad energía de la radiación disminuye más rápido que la densidad de energía de la materia y se cree que en las épocas tempranas del Universo la radiación dominaba sobre la materia.

Para encontrar la dinámica del Universo en expansión con la métrica de Robertson-Walker, se necesitan resolver las ecuaciones de Einstein para obtener la evolución del factor de escala:

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = 8\pi G T_{\mu\nu} , \ \mu, \nu = 0, 1, 2, 3$$
(13)

en donde no se ha considerado la constante cosmológica Λ . Esta ecuación también puede ser expresada como:

$$R_{\mu\nu} = 8\pi G \left(T_{\mu\nu} - \frac{1}{2} g_{\mu\nu} T \right) , \qquad (14)$$

donde $R_{\mu\nu}$ denota el tensor de Ricci y R es el escalar de curvatura.

El cálculo de la primera componente $\mu, \nu = 0$ es:

$$-3\frac{\ddot{a}}{a} = 4\pi G(\rho + 3p) , \qquad (15)$$

y para las otras componentes se llega la siguiente expresión:

$$\frac{\ddot{a}}{a} + 2\left(\frac{\dot{a}}{a}\right)^2 + 2\frac{k}{a^2} = 4\pi G(\rho - p) , \qquad (16)$$

pudiendo utilizar las ecuaciones (15) y (16) para obtener:

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) \tag{17}$$

у

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2} , \qquad (18)$$

ésta última conocida como la ecuación de Friedmann y junto con la métrica de la forma (1) definen los universos de Friedmann-Robertson-Walker.

2.2. Parámetros Cosmológicos

Para determinar la evolución del Universo se utilizan los parámetros cosmológicos H, $q \ge \Omega$, que nos proporcionan la tasa de expansión del Universo, el valor de la desaceleración y la densidad total de energía en el Universo, respectivamente. La elección

de estos parámetros no es al azar, su selección se basa en que son parámetros mesurables mediante observaciones del corrimiento al rojo y magnitud relativa de objetos con brillo intrínseco conocido como las Supernovas tipo Ia. A continuación se proporciona la definición de estos parámetros fundamentales que determinan la evolución del Universo.

La tasa de expansión es llamada el parámetro de Hubble:

$$H \equiv \frac{\dot{a}}{a} \tag{19}$$

y en general depende del tiempo. El valor actual de este parámetro se denota por H_0 .

El parámetro de desaceleración generalizado q, dependiente de z (propuesto por Robertson, Hoyle y Sandage), mide la razón de cambio de la tasa de expansión cósmica y está definido por:

$$q(z) \equiv -\frac{a\ddot{a}}{\dot{a}^2} = -\frac{\ddot{a}}{aH^2(z)} .$$
⁽²⁰⁾

Otro parámetro útil es el parámetro de densidad definido por:

$$\Omega \equiv \frac{8\pi G}{3H^2} \rho = \frac{\rho}{\rho_{\rm crit}} , \qquad (21)$$

donde la densidad crítica $\rho_{\rm crit}$ está dada por:

$$\rho_{\rm crit} = \frac{3H^2}{8\pi G} \ . \tag{22}$$

Esta expresión para la densidad crítica" (que en general cambia con el tiempo), está motivada debido a que la ecuación de Friedmann (18) puede ser escrita como:

$$\Omega - 1 = \frac{k}{H^2 a^2} , \qquad (23)$$

y por lo tanto, el signo de k está determinado por el valor de Ω . Obtenemos entonces,

los siguientes resultados importantes en Cosmología:

$$\begin{array}{lll} \rho &<& \rho_{\rm crit} \Longleftrightarrow \Omega < 1 \Longleftrightarrow k = -1 \Leftrightarrow {\rm abierto} \\ \rho &=& \rho_{\rm crit} \Leftrightarrow \Omega = 1 \Leftrightarrow k = 0 \Leftrightarrow {\rm plano} \\ \rho &>& \rho_{\rm crit} \Leftrightarrow \Omega > 1 \Leftrightarrow k = 1 \Leftrightarrow {\rm cerrado} \end{array}$$

Es útil representar las ecuaciones de Friedmann y los parámetros cosmológicos en términos de la densidad actual de energía de las diferentes especies y del corrimiento al rojo, ya que sus valores se pueden determinar experimentalmente. Para llegar a esta representación, se consideran todos los componentes posibles que contribuyen a la densidad total de energía en el Universo; se pueden expresar estas contribuciones individuales en términos de Ω_i , con la relación obvia: $\Omega_{\text{total}} = \sum_i \Omega_i$. Si se supone hoy en día, materia y energía obscura como los principales componentes del Universo (para el tiempo actual contribución de la densidad de radiación de fondo cósmica a 2.75 K es $\Omega_r \sim 10^{-4}$), se puede entonces, representarlos con las siguientes definiciones:

$$\Omega_M \equiv \frac{8\pi G}{3H^2} \rho_M, \qquad \Omega_\Lambda \equiv \frac{8\pi G}{3H^2} \rho_\Lambda, \qquad \Omega_k \equiv \frac{k}{a^2 H^2}, \tag{24}$$

y usando la expresión de la evolución de la densidad de energía de la ecuación (9), con constantes de integración: $\rho = \rho_0 \left(\frac{a_0}{a}\right)^{-3(1+w)}$; puesto en términos del corrimiento al rojo z, la componente *i*-ésima de la densidad de energía nos da:

$$\rho_i = \rho_{i0} \left(\frac{a_0}{a}\right)^{3(1+w_i)} = \rho_{i0}(1+z)^{3(1+w_i)}.$$
(25)

Con estas definiciones en mente, la ecuación para la aceleración del factor de escala (17) y la ecuación de Friedmann (18), pueden ser escritas de la manera siguiente, tomando sólo en cuenta materia y energía obscura como los principales componentes del Universo:

$$\frac{\ddot{a}}{a} = -\frac{H_0^2}{2} \left\{ \Omega_{M0} (1+z)^3 + \Omega_{\Lambda 0} (1+z)^{3(1+w)} (1+3w) \right\}$$
(26)

у

$$H^{2}(z) = H_{0}^{2} \left\{ \Omega_{M0}(1+z)^{3} + \Omega_{\Lambda 0}(1+z)^{3(1+w)} - \kappa_{0}(1+z)^{2} \right\} , \qquad (27)$$

con $\kappa_0 \equiv \sum_i \Omega_i - 1$. De esta manera el parámetro de desaceleración generalizado puede ser escrito de la forma siguiente:

$$q(z) \equiv -\frac{\ddot{a}}{aH^2(z)} = \frac{1}{2} \left\{ \frac{\Omega_{M0}(1+z)^3 + \Omega_{\Lambda 0}(1+z)^{3(1+w)}(1+3w)}{\Omega_{M0}(1+z)^3 + \Omega_{\Lambda 0}(1+z)^{3(1+w)} - \kappa_0(1+z)^2} \right\} , \qquad (28)$$

en donde básicamente se ha dividido la ecuación (26) entre (27). Para un Universo plano el parámetro de desaceleración se reduce a la siguiente expresión:

$$q(z) = \frac{1}{2} \left\{ \frac{1 + (\Omega_{\Lambda 0} / \Omega_{M 0})(1+z)^{3w}(1+3w)}{1 + (\Omega_{\Lambda 0} / \Omega_{M 0})(1+z)^{3w}} \right\}$$
(29)

y si calculamos el parámetro de desaceleración para el tiempo actual, es decir, para z = 0, considerando un Universo plano obtenemos la expresión:

$$q_0 = \frac{1}{2} \left\{ \Omega_{M0} + \Omega_{\Lambda 0} (1+3w) \right\} .$$
(30)

2.3. Etapa de transición

Considerando materia y energía obscura como los dos componentes principales que actúan en la dinámica del Universo, puede calcularse la época donde hubo un cambio de fase de un Universo desacelerado ($\ddot{a} < 0$) a acelerado ($\ddot{a} > 0$). Esta época de transición puede expresarse en términos del corrimiento al rojo z y su dependencia con los valores actuales de las densidades de energía. De esta manera, los resultados cosmológicos de las supernovas, proporcionan un valor para z en esta etapa.

Se calculará la etapa de transición de un Universo desacelerado a acelerado z_{ac} . Para ello, se hará uso de la ecuación de la aceleración del factor de escala (26), que nos proporciona el valor de la aceleración en términos de las densidades de energía. Este cambio toma lugar cuando $\ddot{a} = 0$, tenemos entonces que

$$\ddot{a} = 0 \quad \to \quad \Omega_{M0}(1+z)^3 + \Omega_{\Lambda 0}(1+z)^{3(1+w)}(1+3w) = 0$$
$$\to \quad z_{ac} = \left(-\frac{\Omega_{M0}}{(1+3w)\Omega_{\Lambda 0}}\right)^{\frac{1}{3w}} - 1 . \tag{31}$$

Se calculará el valor numérico de z_{ac} para los valores de las densidades de energía que se han encontrado con las observaciones de las supernovas. El cálculo anterior está basado únicamente en la teoría; hasta ahora no se ha aportado el estatus de las recientes observaciones astronómicas de las supernovas SNe Ia que apoyan la aceleración cósmica y un componente principal de energía desconocida, sin embargo, el cálculo se ha hecho explícito para después utilizarlo con los resultados que se proporcionarán en esta revisión.

2.4. La radiación de fondo cósmica

Hemos visto que la teoría de la Gran Explosión ha sido utilizada para explicar la evolución del Universo. Según esta teoría, nuestro Universo empezó en un estado muy denso y caliente que repentinamente empezó a expandirse, expansión que continua hasta nuestros días. Durante las primeras fracciones de segundo después de la explosión, el Universo pasó por una breve fase de expansión exponencial conocida como inflación. La materia bariónica se formó en el primer segundo y los núcleos de los elementos ligeros se crearon cuando el Universo sólo tenía unos minutos. Ya que toda la materia que normalmente encontramos está hecha de átomos, la materia bariónica es el ingrediente ordinario del Universo.

En las etapas muy tempranas del Universo, la materia se mantenía ionizada debido a las altas temperaturas, de tal manera, que el espacio estaba lleno de nucleones y electrones libres. La densidad de estos electrones libres era tan alta que la dispersión de Thompson produjo un Universo opaco a la radiación electromagnética. El Universo permaneció en un estado de plasma bariónico alrededor de 300,000 años después de la explosión cuando se había expandido y enfriado a unos 3000 K. En este momento, el Universo era suficientemente frío para que los electrones libres se unieran a los protones para formar hidrogeno neutro; proceso conocido como recombinación. Este proceso eventualmente disminuyó la densidad de los electrones libres y la trayectoria promedio de los fotones empezó a hacerse mucho más grande y la luz se propagó libremente. Esta luz que fue liberada durante la recombinación se ha enfriado hasta nuestros días, llegando a una temperatura aproximada a $T_0 = 2.73$ K. Esta luz la observamos hoy como la radiación de fondo cósmica (CMB). Podemos ver esta radiación como si viniera de una capa esférica, llamada superficie de la última dispersión.

A grandes escalas nuestro Universo es extremadamente homogéneo e isotrópico; sin embargo, si consideramos escalas más y más pequeñas las inhomogeneidades se hacen más palpables hasta llegar a grupos de galaxias, galaxias, estrellas, etc. Las teorías de formación de estructuras requieren que las semillas de las estructuras de hoy día, hayan sido las fluctuaciones en la densidad de materia en las primeras etapas del Universo. Estas inhomogeneidades dejaron su huella en la radiación de fondo y las observamos en la etapa actual como fluctuaciones (anisotropías) de la temperatura. La medición de estas fluctuaciones de temperatura nos dará información valiosa de las primeras etapas del Universo.

Con los datos obtenidos de las fluctuaciones de temperatura de la radiación de fondo es posible dar una estimación para los parámetros de la densidad de energía total en el Universo. Se han creado, en este sentido, varios proyectos: en 1992 el satélite COBE (Cosmic Background Explorer), midió fluctuaciones de temperatura del orden de $\delta T/T \sim 10^{-5}$. El proyecto más reciente WMAP (Wilkinson Microwave Anisotropy Probe) ha medido con más precisión estas fluctuaciones de temperatura.

La medición de las fluctuaciones de la temperatura de la radiación de fondo cósmica proporcionan resultados independientes para los parámetros cosmológicos. Estos resultados serán comparados al final de este trabajo con los resultados de las supernovas SNe Ia.

3. Cosmología con las supernovas

3.1. Medidas de distancia

La historia de la expansión del Universo puede trazarse con la ayuda de objetos luminosos estándares: cualquier objeto astronómico con magnitud absoluta conocida que puede ser identificado en un amplio rango de distancias. En esta sección se hará una revisión de como se miden las distancias astronómicas si se conoce la luminosidad absoluta del objeto, además de proporcionar las definiciones necesarias.

Existen varios métodos para medir las distancias a objetos astronómicos, uno de ellos se basa en el conocimiento de la luminosidad absoluta; que se puede comparar con la luminosidad aparente observada; o si se conoce el diámetro real del objeto, puede ser comparado con el diámetro angular observado. Para objetos que se encuentran cerca, las distancias pueden ser determinadas midiendo su paralaje, es decir, el corrimiento de la posición aparente del objeto causado por la rotación de la Tierra alrededor del Sol y por último, por su movimiento propio: el corrimiento en la posición aparente causado por el movimiento real del objeto relativo al Sol. Se considerará aquí el método de la luminosidad absoluta solamente.

La luminosidad aparente de un objeto en reposo a una distancia d puede ser definida como: $L/4\pi d^2$, siendo L la luminosidad absoluta de la fuente de luz. Esta es la motivación para definir la distancia luminosidad d_L de un objeto:

$$d_L = \left(\frac{L}{4\pi F}\right)^{1/2} \,, \tag{32}$$

siendo F el flujo de energía emitida por el objeto, por unidad de área por unidad de tiempo. Los astrónomos, en general, no hablan en términos de luminosidad aparente; más bien utilizan una magnitud aparente y absoluta. Para ello definen la magnitud aparente m de un objeto de una fuente de luz por su flujo relativo F a un flujo estándar F_s :

$$m \equiv -2.5 \log\left(\frac{F}{F_s}\right) \,, \tag{33}$$

donde $F_s = 3 \times 10^{-8} \,\mathrm{J}\,\mathrm{m}^{-2}\,\mathrm{s}^{-1}$ es aproximadamente el flujo del objeto más brillante en el cielo nocturno visto desde la Tierra. La magnitud absoluta M está definida como la magnitud aparente del objeto que tendría a una distancia de 10 pc:

$$M \equiv -2.5 \log \left[L/4\pi (10 \text{ pc})^2 F_s \right] , \qquad (34)$$

a la expresión m - M se le llama modulo distancia; esta cantidad es ampliamente utilizada en las observaciones astronómicas:

$$m - M = 5 \log(d_L/\text{Mpc}) + 25$$
. (35)

Ahora se expresará la distancia luminosidad en función del corrimiento al rojo z, del parámetro de desaceleración q y en términos de la contribución de las densidades de energía de las diferentes especies Ω_i . Para llegar a esto, se expande el factor de escala a(t) en series de potencias:

$$a(t_1) = a_0 + \dot{a}_0(t_1 - t_0) + \frac{1}{2}\ddot{a}_0(t_1 - t_0)^2 + O^3\left[t_1 - t_0\right]$$
(36)

y recordando las definiciones del parámetro de Hubble y del parámetro de desaceleración de las ecuaciones (19) y (20) respectivamente, para el tiempo actual t_0 , obtenemos la siguiente expresión para el factor de escala $a(t_1)$:

$$a(t_1) = a_0(1 + H_0(t_1 - t_0) - \frac{1}{2}q_0H_0^2(t_1 - t_0)^2 + \cdots) ; \qquad (37)$$

recordando que $1 + z \equiv \frac{a_0}{a}$, podemos expresar el corrimiento al rojo en términos del parámetro de Hubble y del parámetro de desaceleración actual:

$$z(t) = H_0(t_0 - t_1) + (1 + \frac{q_0}{2})H_0^2(t_0 - t_1)^2 , \qquad (38)$$

invirtiendo esta ecuación para $t_0 - t_1$ y calculando la expresión para $\int_{t_0}^{t_1} \frac{dt}{a(t)} = r_1$, donde

 r_1 es la distancia coordenada de la fuente de luz obtenemos:

$$r_1 = \frac{c}{a_0 H_0} \left[z - \frac{1}{2} \left(1 + q_0 \right) z^2 + \dots \right] .$$
(39)

Ahora se expresará la distancia luminosidad d_L en términos del factor de escala, la distancia coordenada r_1 y el corrimiento al rojo z. La distancia luminosidad no es la distancia de la fuente en el tiempo de emisión, ni tampoco al tiempo de detección, debido a la expansión del Universo. Si una fuente de luz en la coordenada en comovimiento $r = r_1$ emite un rayo de luz en el tiempo t_1 , y un dispositivo en r = 0 detecta la luz en $t = t_0$, la conservación de la energía $T^{\mu\nu}_{;\nu} = 0$, implica que:

$$F = \frac{L}{4\pi a_0^2 r_1^2 (1+z)^2} , \qquad (40)$$

0

$$d_L(z) = (1+z)a_0r_1 \tag{41}$$

y por lo tanto la expresión aproximada para pequeños z de la distancia luminosidad es:

$$d_L(z) = \frac{c}{H_0} \left[z + \frac{1}{2} (1 - q_0) z^2 + \cdots \right]$$
(42)

y la expresión general para cualquier z expresada en términos de las densidades de energía de las distintas especies que participan en la densidad total del Universo está dada por una integral numérica:

$$d_L(z) = \frac{c}{H_0} (1+z) |\kappa_0|^{-1/2} S\left\{ |\kappa_0|^{1/2} \int_0^z dz' [\sum \Omega_i (1+z')^{3(1+w_i)} - \kappa_0 (1+z')^2]^{-1/2} \right\};$$
(43)

con $\kappa_0 \equiv \sum_i \Omega_i - 1$, donde $S(x) = \sin x$, x o $\sinh x$, que corresponden a un Universo cerrado, plano y abierto respectivamente. En particular, para un Universo plano tenemos:

$$d_L(z) = \frac{c}{H_0}(1+z) \int_0^z dz' [\sum \Omega_i (1+z')^{3(1+w_i)}]^{-1/2} .$$
(44)

Estas expresiones para la distancia luminosidad sirven para ajustar los modelos teóricos a los datos observacionales de las supernovas SNe Ia.

3.2. SNe Ia como indicadores de distancia

A finales de la década de 1930, Walter Baade y Fritz Zwick señalaron la posibilidad de medir la expansión cósmica con las supernovas, ya que sus picos de luminosidad son suficientemente uniformes y pueden ser detectadas a distancias extremadamente grandes. De hecho, una supernova puede brillar por algunas semanas como una galaxia entera. En los años subsiguientes fueron medidas más supernovas y se agruparon en un conjunto heterogéneo de objetos astronómicos que poseían un amplio rango en sus picos intrínsecos de brillo, sin embargo, a principios de la década de 1980 se creó una clasificación de las supernovas valiéndose de sus características espectroscópicas, que permitió evidenciar la gran consistencia de las supernovas del tipo Ia.

Las supernovas están relacionadas con las últimas etapas de la evolución estelar. Las estrellas a lo largo de sus vidas permanecen estables en equilibrio hidrostático debido al balance entre la presión interna y la presión externa producto de las fuerzas gravitatorias. La presión interna es causada por la fusión nuclear que convierte el hidrógeno en helio y el peso mismo de las regiones exteriores al centro de la estrella causa la presión en sentido opuesto. Una supernova se forma cuando la presión gravitatoria supera la presión interna, causando que la estrella colapse y se produzca una violenta explosión termonuclear de carbono-oxigeno, liberando una gran cantidad de energía.

Las supernovas son clasificadas en dos tipos principales de acuerdo a sus características espectroscópicas. Específicamente hablando, las que contienen hidrógeno en su espectro óptico pertenecen al tipo SNe II; mientras que las que no contienen hidrógeno han sido designadas del tipo SNe I; estas a su vez, se clasifican en tres subgrupos: las del tipo SNe Ia son caracterizadas por una fuerte línea de absorción cerca de los 6150 Å, que se atribuye actualmente al Si I; las SNe Ib que carecen de ésta característica y muestran líneas de He I y, por último, las SNe Ic que carecen de líneas de silicio y de helio.

Además de estas características espectroscópicas y basándose en la posición donde

ocurren estas explosiones y la ausencia de nebulosas planetarias, ha permitido determinar el génesis de estos eventos. De acuerdo a estos hechos, se cree que el progenitor de las supernovas SNe Ia es un sistema binario consistente de una enana blanca y una gigante roja. Otros sistemas binarios se han teorizado para explicar la causa de las supernovas, pero no hay consistencia con la observación espectroscópica.

Aproximadamente la mitad de los todos los sistemas estelares observados son binarios, pero no todos ellos llegan a producir una supernova, ya que deben de tener características especiales. Después de haberse formado, las estrellas convierten el hidrógeno en helio y en la etapa siguiente queman el helio transformándolo en carbono, en esta etapa aumenta cientos de veces su tamaño convirtiéndose en una gigante roja. Eventualmente el helio se acaba y su núcleo se contrae convirtiéndose en una enana blanca con una densidad muy alta. En este sistema binario, la atracción gravitatoria de la enana blanca vence la débil gravedad de la gigante roja. Esto causa que la masa que se encuentra en las capas exteriores de la gigante roja sea absorbida por su compañera; dando como resultado un aumento en la masa de la enana blanca y una disminución en su tamaño. Este proceso continúa hasta que la masa de la enana blanca alcanza el *límite de Chandrasekhar* (1.44 la masa del Sol) en la cual la presión interna no puede balancear el incremento en la presión debido a la fuerza gravitatoria. En el centro de la enana blanca, la presión y la temperatura muy altas produce una onda explosiva que destruye la estrella convirtiéndola en una supernova.

El uso de las supernovas SNe Ia para determinar los parámetros cosmológicos descansa en la propiedad que poseen para actuar como indicadores estándares de distancias. Como habíamos mencionado, un indicador estándar de distancias es un objeto astronómico cuya magnitud absoluta puede ser determinada independientemente del lugar donde se encuentre. La magnitud absoluta junto con la magnitud aparente observada puede ser utilizada para calcular la distancia al objeto utilizando la ecuación (35). Esta propiedad que tienen las supernovas SNe Ia, se debe a que son el resultado del mismo proceso y a pesar de que existen algunas desviaciones, se comportan de manera extremadamente uniforme. Esta uniformidad fue reportada por vez primera por Gustav Tamman y su estudiante Bruno Leibundgut y confirmada por Mario Hamuy en 1990 obteniendo un conjunto de gran calidad de curvas de luz en el proyecto Calán/TololoSupernova Survey (CTSS). Las curvas de luz de las supernovas resultan de graficar la magnitud absoluta contra el tiempo (Véase la Fig. 1). A partir de esta inspección se han refinado las técnicas de observación y calibración por Phillips, Riess y Perlmutter.

Los métodos para medir la magnitud absoluta de las supernovas SNe Ia pueden dividirse en dos categorías dependiendo del conocimiento que se tenga del lugar donde se produce el evento. Si se conoce, por algún método, la distancia de la galaxia donde se hospeda la supernova y se observa la magnitud aparente m del evento, entonces podemos utilizar el módulo distancia para calcular la magnitud absoluta directamente:

$$M = m - 5\log(d_L/Mpc) - 25$$
 (45)

y si la distancia no se conoce, el pico de luminosidad puede ser inferido de los datos observacionales. Las técnicas para realizar esta inferencia involucran correcciones para muchos procesos que podrían afectar de manera negativa los resultados. Estos procesos, que se verán más a detalle posteriormente, incluyen extinción interestelar en la galaxia anfitriona, distorsión de la luz por efectos gravitatorio y una dispersión, aparentemente natural, en los picos de brillo, etc.

Una vez que la luminosidad de una supernova haya sido determinada, junto con la luminosidad y la magnitud absoluta de un objeto bien conocido (como el Sol), se obtendrá la magnitud absoluta de la supernova. Ha sido determinado que el pico para la magnitud absoluta de las supernovas SNe Ia es de:

$$M_{Ia} = -19.5 \pm 0.25 \text{ mag.} \tag{46}$$

Las supernovas se perfilan como objetos extremadamente uniformes para medir distancias y con ello los parámetros cosmológicos. Sin embargo, las supernovas SNe Ia son escasas: un par por milenio en una galaxia típica. Son de naturaleza aleatoria, haciendo complicada la programación de tiempo en los telescopios, son eventos breves y una vez descubiertas deben de ser medidas múltiples veces en unas semanas; o se corre el riesgo de no medir su pico de luminosidad, que es esencial para la calibración.

3.3. Errores sistemáticos

En 1992, Branch y Tamman publicaron un estudio donde concluyeron que la dispersión en la magnitud absoluta de las supernovas SNe Ia era < 0.25 mag., convirtiéndolas por mucho, en los objetos más uniformes para medir distancias. La uniformidad de las supernovas SNe Ia se hizo más evidente cuando su espectro fue estudiado a gran detalle desde el principio hasta el final del evento y actualmente se les considera los objetos más estándares para medir distancias astronómicas. Sin embargo, hay obstáculos para medir estas distancias utilizando las SNe Ia que pueden generar errores sistemáticos:

Extinción: Este efecto está relacionado con la absorción de la luz por polvo interestelar de la galaxia donde se hospeda la supernova o de la Vía Láctea, haciéndolas parecer más débiles. En el universo cercano se pueden encontrar supernovas SNe Ia en ambientes diferentes, pero según el trabajo de Mario Hamuy, sólo cerca del 10% tienen extinción significativa. Los astrónomos pueden corregir esta extinción observando dos o más longitudes de onda, removiendo efectos de primer orden, causados por el cambio en la extinción promedio de las supernovas por una función de z. Sin embargo, existen efectos de segundo orden, como una posible evolución de las propiedades promedio del polvo que interviene en la extinción que podría introducir errores sistemáticos. Este problema puede ser resuelto observando las supernovas SNe Ia distantes en una década, para deducir la ley de extinción de objetos individuales. Sin embargo, esta metodología requiere muchos recursos para completarse. Las observaciones actuales limitan este efecto < 0.06 mag., según Perlmutter, basado en sus observaciones de las supernovas en dos colores.

Efectos de Selección: El descubrimiento de las supernovas SNe Ia está sujeto a efectos de selección, tanto para supernovas SNe Ia cercanas o distantes. El efecto más significativo (Malmquist Bias), se refiere a descubrir supernovas intrínsicamente más brillantes que el promedio de la población completa en un volumen determinado. Los errores son proporcionales al cuadrado de la dispersión intrínseca del método para medir la distancia y ya que las supernovas SNe Ia son buenos indicadores de distancia, estos son aproximadamente del 0.01 mag. Se utilizan simulaciones de Montecarlo para estimar estos efectos de selección y removerlos del conjunto de datos. **Correcciones-K:** Estas correcciones se deben al incremento del corrimiento al rojo del espectro de las supernovas con la distancia, de esta manera, es difícil comparar el brillo de una supernova distante medida con un filtro determinado, con el brillo de una supernova cercana utilizando el mismo filtro. Estos errores pueden ser minimizados utilizando más de un filtro. La magnitud corregida de las supernovas puede expresarse de la forma siguiente:

$$m_i = 5 \log \left[\frac{d_L(z)}{\text{Mpc}} \right] + 25 + M_j + K_{ij}(z) , \qquad (47)$$

donde $d_L(z)$ está dada por la ecuación (43) y K_{ij} es la corrección cuando se utiliza el filtro *i* y después el filtro *j*.

Gravitational Lensing: La radiación de un objeto al viajar una gran distancia de donde fue emitido, hasta donde es detectado, puede interaccionar con las fluctuaciones de potenciales gravitatorios. En promedio, muchas de las trayectorias de luz pasarán por zonas con baja densidad de materia y los objetos aparecerán menos brillantes. Ocasionalmente, estos rayos de luz se encontrarán con zonas de densidad alta y su brillo será amplificado. La distribución de los flujos observados de las fuentes, es desvirtuado por este efecto, de tal forma que la gran mayoría de los objetos parecerán un poco más débiles que la distancia luminosidad canónica. En corrimientos del orden de $z \approx 0.5$, este efecto no representa un problema mayor. Sin embargo, el efecto escala aproximadamente con z^2 , del tal manera que para un $z \approx 1.5$, el efecto puede ser tan grande como un 25%. Puede, por lo tanto, limitar la precisión de las medidas de la distancia luminosidad, a pesar de que se calculen las correcciones necesarias midiendo la distorsión de las galaxias de fondo en la línea de visión de cada una de las supernovas SNe Ia.

Evolución: La evolución es un obstáculo muy grande para medir los parámetros cosmológicos. Las supernovas SNe Ia son eventos que ocurren a escalas estelares y no a escalas galácticas. Mario Hamuy graficó las curvas de luz de las supernovas SNe Ia versus el tipo de la galaxia anfitriona. Las supernovas en las galaxias sin formación de estrellas recientes, mostraban consistentemente curvas de luz que crecían y se desvanecían más rápido que las supernovas que estaban en galaxias sin formación estelar. Sin embargo,

una vez corregidas, la luminosidad no mostraba ninguna tendencia al tipo de galaxia anfitriona. Esta investigación empírica reafirmó el uso de las supernovas como indicadores de distancia, no importando la etapa de evolución estelar de la galaxia anfitriona.

Contaminación de la muestra: Otra posible fuente de error sistemático se presenta cuando la muestra contiene otro tipo de supernovas diferentes a las SNe Ia. Las supernovas SNe Ia tienen un brillo promedio entre cuatro y cuarenta veces más que otras supernovas. Sin embargo, verificar el espectro de una minoría de otras supernovas no es trivial: para grandes corrimientos al rojo, algunas de las características espectroscópicas más distintivas que las identifican como supernovas del tipo Ia, son recorridas fuera del rango de la frecuencia observada.

Adicionalmente a estos errores sistemáticos que se pudieran estar propagando en las mediciones, Alex Kim ha apuntado que existen errores irreducibles en el proceso de medición de las supernovas SNe Ia, esta clase de errores no pueden ser reducidos con un número muy grandes de mediciones. Ejemplos de esta clase podrían ser errores en la calibración y errores en la substracción de la galaxia, por lo cual, la precisión en las observaciones cosmológicas y la correcta caracterización de errores sistemáticos, son de vital importancia para no incurrir en conclusiones equivocadas acerca de la evolución del universo y el contenido de las diversas especies.

4. Resultados cosmológicos

4.1. Datos observacionales

En esta sección se presentarán los datos de las supernovas SNe Ia obtenidos en épocas recientes, proporcionados en su gran mayoría, por dos grupos dedicados a analizar la espectroscopía y fotometría de las supernovas, además de medir su distancia luminosidad.

El principio: La primera búsqueda de supernovas distantes empezó con el equipo danés de Nørgaard-Nielsen. Con gran esfuerzo y con cantidades muy grandes de tiempo de telescopio, descubrieron una supernova SNe Ia con un corrimiento al rojo de z = 0.3.

Esta supernova fue descubierta cuando ya había pasado su pico de luminosidad, que es esencial para el proceso de calibración y por tal razón tuvo poca utilidad. Sin embargo, mostró que existían supernovas con alto corrimiento al rojo que podían ser encontradas; pero eran complicadas para ser utilizadas como herramientas cosmológicas.

Poco antes de este descubrimiento en 1988, se inició una búsqueda de supernovas en el Lawrence Berkeley National Laboratory (LBNL) y en el Center for Particle Astrophysics; proyecto conocido hoy en día como Supernova Cosmology Project (SCP), con Saul Perlmutter como líder del grupo. El SCP se enfocó a objetos con un corrimiento al rojo z > 0.3 para medir, la entonces pensada, desaceleración del universo y en 1994 proporcionó evidencia convincente de que las supernovas, como la SN1992bi, podrían ser descubiertas cerca del máximo de brillo y con corrimientos mayores a z = 0.45. Este equipo desarrolló y demostró con éxito una estrategia observacional que garantizaba, de manera efectiva, el descubrimiento de las supernovas en una fecha determinada, todas antes o muy cercanas a su pico en sus curvas de luz (ver Fig. 2). En vez de descubrir una supernova a la vez en promedio, la nueva estrategia descubría un lote completo entre seis y doce o más, observando un número grande de galaxias en un período de dos a tres días, antes de la luna nueva. Comparando estas observaciones con las mismas hechas durante tres semanas después, fue posible seleccionar aquellas que seguían aumentando su brillo o estaban cerca del máximo.

El otro equipo de trabajo de investigación en las supernovas, *High-Z Supernova* Search Team (HZT), encabezado por Brian Schmidt, se concibió al final de 1994, cuando un grupo de astrónomos estaba convencido de la posibilidad de descubrir supernovas SNe Ia en gran número, con corrimientos al rojo z > 0.3, gracias a los recientes resultados que había obtenido el grupo de Perlmutter.

Con los telescopios más modernos es posible buscar las supernovas en un millón de galaxias con corrimiento z < 0.5 en una misma noche, observando un cuadrado de 1/3 de grado, y ya que a las supernovas SNe Ia les toma aproximadamente 20 días en evolucionar, desde que su luz es indetectable hasta su pico; tres semanas resultaron adecuadas para capturarlas en su nacimiento. Las supernovas no siempre son fáciles de identificar como nuevas estrellas por el brillo de la galaxia anfitriona y se tiene que

realizar todo un proceso de separación de imágenes. Este proceso involucra una gran cantidad de datos por noche que se tienen que almacenar, consistente en alinear las imágenes previamente tomadas, haciéndolas coincidir con las nuevas; realizando ajustes para que las imágenes sean lo más parecidas. Se toma la diferencia de las imágenes y se buscan nuevos objetos para encontrar los candidatos de supernovas SNe Ia. El promedio de objetos descubiertos en dos noches es de 50 y la nueva estrategia de ambos grupos de investigación (SCP y HZT) junto con otros equipos como el de Canada France Hawaii Telescope (CFHT), exploran los mismos campos varias veces al mes, en múltiples colores, por varios meses consecutivos. Este programa es más eficiente: descubre nuevos objetos y analiza su evolución, sin requerir grandes espacios de tiempo en un mismo telescopio.

Los resultados: Sandage describió el entendimiento de la evolución del Universo como la "La búsqueda de dos números". El primero de estos números es el parámetro de Hubble H_0 que mide la tasa de expansión actual; el segundo número es el parámetro de desaceleración q_0 . Como se verá más adelante, se ha encontrado evidencia de un componente adicional de densidad de energía Ω_{Λ} que participa en la aceleración, adicional al término de densidad de energía Ω_M . Estos valores han estado cambiando en el tiempo, desde que el equipo de Perlmutter publicará sus primeros resultados en 1995, hasta la época actual.

En 1995 el Supernova Cosmology Project presentó su primer resultado, basado en una sola supernova con z = 0.458, obteniendo un valor para el parámetro $\Omega_M =$ $0.2\pm0.6\pm1.1$, asumiendo que $\Omega_{\Lambda} = 0$. Posteriormente, el análisis del SCP para siete objetos, concluyó con un valor mucho más grande $\Omega_M = 0.88\pm0.6$, si $\Omega_{\Lambda} = 0$ o $\Omega_M =$ 0.94 ± 0.3 , si $\Omega_{\text{Total}} = 1$; sugiriendo una tasa de expansión desacelerada. Tal densidad de energía no concordaba con otras medidas independientes de Ω_M . Sin embargo, con la inclusión de sólo una supernova, SN1997ap con z = 0.83, se revisó y el valor quedó en $\Omega_M = 0.2\pm0.4$, si $\Omega_{\Lambda} = 0$, y $\Omega_M = 0.6\pm0.2$, si $\Omega_{\Lambda} = 1$. Mientras tanto el equipo HZTpublicó un análisis de cuatro objetos, incluyendo la supernova 1997ck con z = 0.97, a pesar de que no había ninguna certeza de que fuera del tipo Ia, debido a que su espectro era muy pobre. La conclusión de estos datos fue de $\Omega_M = -0.1\pm0.5$, asumiendo $\Omega_{\Lambda} = 0$ y $\Omega_M = 0.35 \pm 0.3$, suponiendo $\Omega_{\text{Total}} = 1$; inconsistente con el trabajo de Perlmutter de 1997, pero consistente con la revisión hecha por el mismo investigador en 1998. De ninguno de estos resultados podía inferirse una aceleración cósmica.

En una conferencia en enero de 1998, cuando se presentaban los resultados de ambos grupos donde se evidenciaba una pobre densidad Ω_M , Perlmutter sugirió, después de revisar los diagramas de Hubble, que el Universo probablemente presentaba una expansión acelerada, pero que esta conclusión no era del todo segura ya que los datos eran igualmente consistentes con una desaceleración; ya que los errores sistemáticos no habían sido evaluados adecuadamente.

En ese mismo año (1998), los dos grupos publicaron trabajos donde los resultados le dieron un cambio radical a las investigaciones. Riess y su equipo del *HZT* publicaron en el Astronomical Journal (1998): Observational Evidence from Supernovae for an Accelerating Universe and Cosmological Constant, donde presentaron resultados de 10 supernovas SNe Ia en el rango de $0.16 \le z \le 0.62$, combinados con datos previos, aumentaron la muestra a 16 supernovas SNe Ia con alto corrimiento al rojo y 34 cercanas; calcularon el valor de $\Omega_M = 0.24^{+0.56}_{-0.24}$, $\Omega_{\Lambda} = 0.72^{+0.72}_{-0.48}$ y $q_0 = -0.75 \pm 0.32$.

Perlmutter y sus colaboradores del *SCP* publicaron en el Astrophysical Journal: Measurements of Ω and Λ from 42 High-Redshifted Supernovae, en donde reportaron los datos de un grupo de supernovas SNe Ia en el rango $0.18 \leq z \leq 0.83$, junto con las supernovas del equipo de Mario Hamuy del proyecto Calán/Tololo Supernova Survey (CTSS), con z < 0.1. Encontraron un valor para la densidad de energía $\Omega_M =$ $0.28^{+0.09+0.05}_{-0.08-0.04}$, si $\Omega_M + \Omega_{\Lambda} = 1$. Las implicaciones cosmológicas hechas en esta publicación apuntaban un Universo con una contribución dominante de una constante cosmológica y encontraron un valor de $z \approx 0.37$ para la etapa donde se igualaban las densidades de energía; y el cambio de una expansión desacelerada a una acelerada en $(1+z)^3\Omega_M/2 = \Omega_{\Lambda}$, es decir, en $z \approx 0.73$; calculando este valor cuando explotó la SN 1997G, hace 6 mil millones de años.

Con la estrategia de descubrimiento en lotes se fueron acumulando cada vez más datos de supernovas SNe Ia y en el año 2003, Tonry y sus colaboradores del HZT (astro-ph/0305008), descubrieron y observaron 8 supernovas SNe Ia en el rango $0.3 \le z \le$

1.2, aumentando considerablemente el corrimiento al rojo respecto de las muestras anteriores. Estas observaciones fueron analizadas con métodos similares al de *SCP*, confirmando que las distancias luminosidad implican una expansión acelerada. Estas mediciones proporcionaron otra confirmación cuantitativa de la energía obscura o constante cosmológica, además de constituir una prueba cualitativa del origen de la aceleración cósmica. En total se presentaron los datos de 230 supernovas SNe Ia y se encontraron las siguientes restricciones en los parámetros cosmológicos: $\Omega_{\Lambda} - 1.4\Omega_M = 0.35 \pm 0.14$, considerando w = -1 en la ecuación de estado para la energía obscura o constante cosmológica y $\Omega_M = 0.28 \pm 0.05$. (Ver Tabla I)

En noviembre del 2003, el *SCP* publicó en *Astrophysical Journal* (Knop, et al), la medición de las densidades de energía para materia y energía obscura con 11 supernovas SNe Ia en el rango $0.36 \le z \le 0.86$, utilizando el *Hubble Space Telescope (HST)*; se combinaron los datos de las nuevas supernovas con los datos recopilados anteriormente por el mismo equipo, se calculó el valor de los parámetros $\Omega_M = 0.25^{+0.07}_{-0.06} \pm 0.04$ y $\Omega_{\Lambda} = 0.75^{+0.06}_{-0.07} \pm 0.04$, considerando un Universo plano con w = -1.

La publicación más reciente en este campo, hasta la fecha, la ha hecho el grupo de HZT en el Astrophysical Journal (Barris, et al) donde presentan las observaciones fotométricas y espectroscópicas de 23 SNe con corrimiento $0.34 \le z \le 1.03$, de las cuales, nueve han sido clasificadas sin ambigüedad como tipo Ia; y 15 SNe de ellas con $z \ge 0.7$. Adoptando la restricción de $\Omega_{\text{Total}} = 1$, obtuvieron los siguientes valores para la densidad de energía: $(\Omega_M, \Omega_\Lambda) = (0.33, 0.67)$.

Las observaciones más recientes apoyan la expansión acelerada del Universo con un componente principal desconocido que le han llamado energía obscura, quintaesencia o constante cosmológica. La contribución de la energía obscura es aproximadamente de 2 a 3 veces más grande que la densidad de energía de la materia, incluyendo esta última la bariónica y la obscura.

4.2. Diagramas de Hubble y ajuste de curvas

Los diagramas de Hubble se construyen graficando la magnitud m de la ecuación (35), con $M_{Ia} = -19.5 \pm 0.2$ mag, contra z, o contra $\log(z)$. De acuerdo a la expresión del

modulo distancia, la magnitud es una medida logarítmica de la distancia luminosidad. Las dos cantidades que intervienen en el diagrama de Hubble nos proporcionan la traza de la historia del Universo. El problema a resolver es: dada una curvatura en el diagrama de Hubble, identificar la existencia de una expansión acelerada o desacelerada. Para investigar tal aceleración (o desaceleración), primero se tienen que ajustar los datos experimentales a diversos modelos, donde intervienen distintos valores para las densidades de energía de las distintas especies que contribuyen en la densidad total del Universo. Con las densidades de energía seleccionadas para el modelo que mejor se ajuste a los datos experimentales, se puede obtener un valor para el parámetro de desaceleración actual, utilizando la ecuación (30).

Para ajustar los modelos teóricos a los datos experimentales, se toma el conjunto de datos de las magnitudes $(m_B)_{obs}$ observadas con las correcciones K y de extinción y se ajustan a la siguiente ecuación:

$$(m_B)_{\text{esperada}} = M' + 5\log D'_L(z;\Omega_M,\Omega_\Lambda) , \qquad (48)$$

donde $D'_L \equiv H_0 d_L$ y $M' = M_{Ia} - 5 \log(H_0) + 25$. En las observaciones de las supernovas SNe Ia, los valores experimentales que se proporcionan son z y $H_0 d_L$. La distancia luminosidad d_L se calcula con la integral numérica dada por la ecuación (43). Hay por lo tanto, tres parámetros para ajustar: Ω_M , Ω_Λ y M', donde el ajuste del último parámetro es realmente el ajuste del parámetro de Hubble actual H_0 . Cada uno de estos parámetros se varía en un amplio rango de valores (algunos inclusive sin significado físico), para calcular la magnitud esperada o teórica. El rango de valores puede ser por ejemplo: $\Omega_M = [0,3), \Omega_\Lambda = [-1,4)$ y M' = [-3.9,3.2). Con esto se obtiene un conjunto de valores para la magnitud esperada de la supernova SNe Ia con un determinado corrimiento al rojo z.

La Fig. 3, muestra el diagrama de Hubble y resume los resultados tanto de *SCP* y de *HZT*, durante los años 1998-1999. En este diagrama podemos observar que para valores de corrimiento al rojo z > 0.1, los modelos empiezan a diferenciarse. La curva que se puede tomar de referencia, se calcula para un Universo vacío, es decir, $(\Omega_M, \Omega_\Lambda) = (0, 0)$; naturalmente si calculamos el parámetro de desaceleración actual q_0 , para estas

densidades de energía, utilizando la expresión: $q_0 = \frac{1}{2} \{\Omega_{M0} + \Omega_{\Lambda0}(1+3w)\}$, obtenemos un valor nulo. Si no hay contribuciones de energía obscura o constante cosmológica $q_0 = \Omega_{M0}/2 > 0$, obteniendo desaceleración. La curva para este modelo estaría por debajo de la que corresponde a un Universo vacío $(\Omega_M, \Omega_\Lambda) = (0, 0)$. En un diagrama de Hubble, las curvas que están por arriba de la línea de referencia $(\Omega_{\text{total}} = 0)$, corresponden a modelos con $\Omega_\Lambda \neq 0$; y si se cumple la condición :

$$w < -\frac{1}{3} \left(\frac{\Omega_{M0}}{\Omega_{\Lambda 0}} + 1 \right)$$
(49)

el parámetro de desaceleración obedecerá la desigual dad $q_0 < 0$, es decir, se tendrá una expansión cósmica acelerada.

Para saber cual es la combinación de parámetros Ω_M , Ω_Λ y M' correcta, se utiliza la estadística de χ^2 . Esta estadística es una de las herramientas matemáticas que ha sido exitosamente utilizada en el análisis de datos experimentales y observacionales para encontrar la mejor estimación a un conjunto de datos. El objetivo de esta metodología es minimizar χ^2 , dado por la siguiente expresión:

$$\chi^{2} = \sum \frac{[(m)_{\rm obs} - (m)_{\rm esperada}]^{2}}{\{5\sigma[\langle \log(dH_{0})\rangle]\}^{2}} , \qquad (50)$$

en donde $\sigma[\langle \log(dH_0) \rangle]$ es la incertidumbre que se comete al medir la magnitud. Se ha adicionado un término de 500 km s⁻¹ para tomar en cuenta la incertidumbre debido a movimientos peculiares de la galaxia (Tonry, et al, 2003, *HZT*). En un ajuste moderadamente bueno, χ^2 debe ser del orden de los grados de libertad (dof), donde los grados de libertad se definen por: número de datos N- parámetros a ajustar. Esto implica que si $\chi^2/(dof) \approx 1$, se tendrá un buen ajuste.

En la siguiente tabla (Tabla A), tomada del trabajo New Constraints on Ω_M , Ω_Λ , and w from an independent set of 11 High-Redshift Supernovae observed with The Hubble Space Telescope by Knop, et al, (2003), se reportan los mínimos valores de χ^2 en el ajuste de parámetros Ω_M , Ω_Λ y M'. Se calcula la estadística para varios conjuntos de supernovas por separado, incluyendo el grupo P99 del HZT, y como puede observarse $\chi^2/({\rm dof})\approx 1.$

					Tabla A			
Fit			Min.	Ω_M	Ω_{Λ}			
No.	SNe	N_{SNe}	χ^2	for flat	for flat	$P(\Omega_M > 0)$	M'	α
			Fits	to the Low-	-Extinction	Primary Subs	set	
1	P99	46	52	$0.25\substack{+0.08 \\ -0.07}$	$0.75\substack{+0.07\\-0.07}$	0.9995	$-3.49 {\pm} 0.05$	1.58 ± 0.31
2	HST	29	30	$0.25\substack{+0.09 \\ -0.08}$	$0.75\substack{+0.08 \\ -0.09}$	0.9947	$-3.47 {\pm} 0.05$	$1.06{\pm}0.37$
3	SCP	54	60	$0.25\substack{+0.07 \\ -0.06}$	$0.75\substack{+0.06 \\ -0.07}$	0.9997	$-3.48 {\pm} 0.05$	$1.47{\pm}0.29$
		Fit	s Full I	Primary Sul	oset, with E	Extinction Cor	rections	
4	P99	48	56	$0.21\substack{+0.18 \\ -0.15}$	$0.79\substack{+0.15 \\ -0.18}$	0.9967	-3.55 ± 0.05	$1.30{\pm}0.30$
5	HST	33	39	$0.27\substack{+0.12 \\ -0.10}$	$0.73\substack{+0.10 \\ -0.12}$	0.9953	$-3.54 {\pm} 0.05$	$1.29{\pm}0.28$
6	SCP	58	65	$0.28\substack{+0.11 \\ -0.10}$	$0.72\substack{+0.10 \\ -0.11}$	0.9974	$-3.53 {\pm} 0.05$	$1.18{\pm}0.30$

Existe una versión alternativa al diagrama de Hubble m vs. z, utilizado frecuentemente en cosmología, donde se destaca más la aceleración o desaceleración cósmica para un modelo específico de densidades de materia y de energía obscura. Se construye tomando las diferencias de magnitud respecto de un Universo vacío, es decir, con $(\Omega_M, \Omega_\Lambda) = (0, 0)$. A este tipo de diagrama se le ha llamado diagrama residual de Hubble. Para encontrar una expresión analítica, comencemos por expresar esta magnitud residual de la siguiente forma:

$$\Delta (m - M) = (m - M)_{\Omega \neq 0} - (m - M)_{\Omega = 0}, \qquad (51)$$

donde el modulo distancia m - M, está proporcionado por la ecuación (35). Se puede entonces, escribir de manera general, la magnitud residual de la forma siguiente:

$$\Delta \left(m - M\right) = 5 \log \left\{ \frac{(d_L)_{\Omega \neq 0}}{(d_L)_{\Omega = 0}} \right\},\tag{52}$$

con la distancia luminosidad dada por la ecuación (43).

En el diagrama residual de Hubble se grafica la magnitud diferencial contra el logaritmo de z, es decir: $\Delta (m - M)$ vs. $\log(z)$. Con la expresión dada anteriormente para la magnitud diferencial, se podrían calcular las curvas esperadas para modelos con densidades de materia y energía obscura específicos. Para calcular la magnitud residual con los datos observacionales de las supernovas SNe Ia, se debe tener en cuenta que las mediciones que se reportan están dadas en términos de $D'_L \equiv H_0 d_L$ y por lo tanto, la expresión puede escribirse como:

$$\Delta \left(m - M\right) = 5 \log \left\{ \frac{\left(D'_L\right)_{\text{obs}}}{\left(H_0 d_L\right)_{\Omega = 0}} \right\}.$$
(53)

La dispersión en los datos observacionales puede obscurecer la tendencia con el corrimiento al rojo z. La técnica que usa el HZT y el SCP es tomar las medianas de las magnitudes en conjuntos de supernovas que no sobrepasen 0.25 en $\log(z)$ y que tampoco sean más de 50 SNe Ia (Ver Fig. 4 y 11).

En la Fig. 5 se muestra el diagrama residual de Hubble para distintos modelos cosmológicos. En el, se han representado las curvas teóricas de acuerdo a la ecuación (52), donde una $\Delta (m - M) > 0$, indica una expansión acelerada. La etapa de transición de un Universo desacelerado a uno acelerado está dada por la ecuación (31). También se ha considerado en esta gráfica modelos con una ecuación de estado $p = -\frac{2}{3}\rho$, para la energía obscura o constante cosmológica, además de w = -1.

El plano $\Omega_{\Lambda} - \Omega_{M}$, es otro diagrama igualmente utilizado en las observaciones de las supernovas SNe Ia; además de ser utilizado en las mediciones de la radiación de fondo cósmica y en la de abundancia de materia en clusters o grupos de galaxias. A este diagrama se le ha llamado *Plano cosmológico fundamental*, ya que nos resume la evolución misma del Universo, proporcionando restricciones a las distintas densidades de energía mediante regiones de probabilidad. La estadística de la ecuación (50), es adecuada para la determinación de los parámetros cosmológicos y como se mencionó anteriormente se explora un rango de valores, tanto de Ω_{M} , Ω_{Λ} y de M', es decir, a cada tripleta de parámetros, le corresponde un valor de χ^{2} . En este cálculo, diferentes valores de los parámetros producirán el mismo valor para χ^{2} . Estas curvas se grafican en el plano $\Omega_{\Lambda} - \Omega_{M}$, se calcula la expresión $\exp(-\chi^{2}/2)$, se normaliza y se obtiene la probabilidad para los contornos con χ^{2} constante. En la Fig. 6, se puede observar este plano para los datos de Knop, et al, 2003. Así mismo, en la Fig. 9, se muestran las regiones de probabilidad para un conjunto de supernovas de Tonry et al, 2003, con un corrimiento al rojo z > 0.01. Para encontrar estas regiones, se calculó la magnitud esperada utilizando las expresiones (35) y (43) para un conjunto de valores de Ω_{M} y Ω_{Λ} , donde los rangos de variación fueron [0, 1.2] y [0, 2], respectivamente. Para cada uno de estos valores de la magnitud esperada, se calculaba la estadística χ^{2} ; se ordenaban de menor a mayor y se elegía el valor de χ^{2} en un intervalo, después de esto, se graficaron los correspondientes valores de la densidad de energía obscura y materia.

Una variante del Plano cosmológico fundamental $\Omega_{\Lambda} - \Omega_{M}$, se construye con un Universo plano, graficando w de la energía obscura contra el parámetro de densidad de materia Ω_{M} . Este plano proporciona también restricciones para los parámetros considerados; mediante regiones de probabilidad. En la Fig. (10), se muestra un cálculo para diferentes modelos de energía obscura y materia con la restricción $\Omega_{T} = 1$. Se calculó la magnitud aparente esperada para cada valor del corrimiento al rojo z observado, variando los parámetros en los siguientes rangos w = [-2.5, -0.5] y $\Omega_{M} = [0, 1]$ y se calculaba la estadística χ^{2} . Considerando el valor reportado para $\Omega_{M} = 0.28\pm0.05$, de este conjunto de datos, obtenemos un rango para w de -0.75 < w < -1.14; por lo tanto una constante cosmológica w = -1, es válida, pero hay márgen para $w \neq -1$. Para un fluido perfecto (sin dispersión), w es la velocidad del sonido, por lo que se esperaría que $|w| \leq 1$. Los fluidos convencionales (campos escalares, como quintaesencia), siempre tienen w > -1. Los fluidos con w < -1, son altamente inestables y generan problemas teóricos muy importantes. El estudio de estos fluidos es tema de trabajo actual.

4.3. Valores actuales de los parámetros

Las mediciones de la distancia luminosidad en las supernovas SNe Ia se han ido refinando a lo largo de la última década. Las primeras mediciones mostraban, de hecho una gran desaceleración en la expansión cósmica. Estas mediciones han cambiado significativamente a lo largo de este período, sin embargo a partir de 1998 no han variado mucho y todas ellas concuerdan con una expansión cósmica del Universo. En la siguiente tabla (Tabla B), se muestran los valores actuales de los parámetros, citando la fuente primaria. En caso de que el parámetro sea deducido de la teoría, se especifica la ecuación de donde fue obtenida.

	Tabla B	
Valore	es actuales de los parán	netros cosmológicos
Parámetro	Valor	Fuente primaria
Ω_M	$0.25\substack{+0.07\\-0.06}$	Knop, et al, ApJ. 2003
Ω_{Λ}	$0.75\substack{+0.06\\-0.07}$	Knop, et al, ApJ. 2003
H_0	$72 \pm 3 \mathrm{km s^{-1} Mpc^{-1}}$	Spergel et al, ApJ,2003
q_0	-0.62	Ecuación (30)

Con estos valores se puede concluir que la etapa de transición de una expansión cósmica desacelerada a acelerada ocurrió cuando $z_{ac} = 0.817$, donde se ha utilizando la ecuación (31). Si comparamos este valor con los resultados de las fluctuaciones de temperatura de la radiación de fondo, en donde se ha encontrado que la época de la última dispersión, cuando los fotones se desacoplaron de la materia bariónica corresponden a un $z_{dec} = 1100$, se puede observar que el valor de transición de un Universo desacelerado a acelerado ocurrió en una época muy reciente.

4.4. Comparación con CMB

Con la caracterización de la estructura detallada de las fluctuaciones de la radiación de fondo cósmica es posible determinar los parámetros cosmológicos. Los últimos resultados de la sonda WMAP (Wilkinson Microwave Anisotropy Probe); dados a conocer por el equipo de Spergel, son consistentes con los resultados de las mediciones de la distancia luminosidad llevadas a cabo por el SCP y el HZT. Las conclusiones principales son un Universo plano con densidades de energía $(\Omega_M, \Omega_\Lambda) = (0.3, 0.7)$. Esta convergencia de resultados fortalecen en ambos sentidos las medidas de los distintos proyectos. La Fig. 7 muestra esta convergencia en el plano cosmológico $\Omega_M - \Omega_\Lambda$, adicionalmente se muestran los resultados de la determinación de masa en clusters o grupos de galaxias.

5. Conclusiones

De acuerdo a los resultados de las recientes observaciones de las supernovas SNe Ia, se concluye que existe una expansión acelerada del Universo, alimentada por una componente principal de energía desconocida con presión negativa. La precisión actual en las mediciones no tiene precedentes; y bajo la suposición de un Universo plano, la estimación de la densidades de energía con las SNe Ia es $(\Omega_M, \Omega_\Lambda) \approx (0.3, 0.7)$; con una desaceleración aproximada de $q_0 \approx -1/2$. Esta estimación de los parámetros cosmológicos es congruente con los resultados de otras técnicas independientes; como la medición de las fluctuaciones de la temperatura de la radiación de fondo cósmica y la estimación de masa en grupos de galaxias.

La calidad en los datos observacionales se debe, en primer lugar, a la utilización de las supernovas SNe Ia como objetos astronómicos estándares con luminosidad intrínseca conocida y evolución uniforme y, en segundo lugar, al desarrollo tecnológico de los telescopios y a la refinación de las técnicas espectroscópicas y fotométricas. Sin embargo, posibles fuentes de errores sistemáticos pueden desvirtuar la exactitud de las mediciones y por ello es necesario contar con programas bien diseñados que aumenten considerablemente el número de supernovas SNe Ia observadas en rangos superiores de corrimiento al rojo con una determinación completa de sus curvas de luz y espectro.

6. Referencias

- Bahcall, N. A., Ostriker, J. P., Perlmutter S, & Steinhardt, P. J., 1999, The Cosmic Triangle: Assessing the State of the Universe, astro-ph/9906463.
- 2. Barris, B.J, 2004, (High-Z Supernovae Search), Twenty-three high-redshift supernovae from The Institute for Astronomy deep survey: doubling the supernova sample at z > 0.7. Astrophys. J., 602:571-594.
- Caldwell, R.R., 2001, An Introduction to Quintessence, Department of Physics, Princeton University, NJ, URL: http://www.sbf1.if.usp.br/eventos/enfpc/xx/ procs/res302/res302.html.
- Camenzind, M., 2002, From Big Bang to Black Holes, (Landessternwarte K. Heidelberg), Lecture Notes, URL: http://www.lsw.uni-heidelberg.de/users/mcamenzi /BigBang.html.
- Carroll, S. M., 1997, Lecture Notes on General Relativity, Institute for Theoretical Physics, CA, [Online Version]: http://itp.ucsb.edu/~carroll/notes/.
- Carroll, S. M., 2001, The Cosmological Constant, *Living Rev. Relativity*, Vol. 4 [Online Article]: http://www.livingreviews.org/Articles/Volume4/2001-1carroll/.
- Drell, P. S., Loredo, T. J., & Wasserman I, 1999, Type Ia Supernovae, Evolution, and the Cosmological Constant, astro-ph/9905027.
- Filippenko, A. V. & Riess, A. G., 1998, Results from the High-Z Supernova Search Team, astro-ph/9807008.
- Filippenko, A. V., 2003, The Accelerating Universe and Dark Energy: Evidence from Type Ia Supernovae, astro-ph/0309739.
- 10. Freedman, W., et al, 2001, Astrophys. J.553,47.
- High-Z Supernovae Search Web Site, URL: http://cfa-www.harvard.edu/cfa/oir/ Research/supernovae/HighZ.html.

- Kim, A. G., Linder, E. V., Miquel, R., & Mostek, N., 2004, Effects of systematic uncertainties on the supernova determination of cosmological parameters, *R. Astron. Soc.* 347,909-920.
- 13. Kolb, E. W. & Turner, M.S., 1994, The Early Universe (Westview, Colorado).
- 14. Knop, R. A. et al, 2003, New constraints on Ω_M , Ω_{Λ} and w from an independent set of 11 High-Redshifts Supernovae observed with the Hubble Space Telescope, The Astrophysical Journal, 598:102-137.
- 15. Kreyszig, E., 1970, Introductory Mathematical Statistics, (Wiley, NY).
- Leibundgut, B., Schmidt, B., Spyromilio, J., & Phillips M, 2002, Cosmological Parameters as measured by Type Ia Supernovae, to appear in "Looking Deep in Southern Sky" (Springer, Heidelberg).
- Leibundgut, B., & Sollerman, J., 2001, A Cosmological Surprise: The Universe Accelerates, *Europhysics New*, Vol. 32, No.4.
- Linder, E. V., 2001, Understanding the Optimal RedShifts Range for the Supernovae Hubble Diagram, astro-ph/0108280.
- 19. Lazarides, G., 2002, Introduction to Cosmology, hep-ph/9904502.
- 20. Maeder, R. E., 2002, Programming in Mathematica, (Addison-Wesley, California).
- Padmanabhan, T., 2002, Cosmological Constant The Weight of the Vacuum, hep-th/0212290.
- Peebles, P. J. E., 2002, The Cosmological Constant and Dark Energy, astroph/0207347.
- Perlmutter, S. G., et al, 1999, Measurements of Ω anf Λ from 42 High-RedShift Supernovae, Astropyhys. J, 517,565.

- Perlmutter, S. G. et al, 1998, Cosmology from Type Ia Supernovae, astro-ph/ 9812473.
- Perlmutter, S.G., 2003, Supernovae, Dark Energy, and the Accelerating Universe, *Physics Today*, 53-60.
- Perlmutter, S. G. & Schmidt, B. P., 2003, Measuring cosmology with Supernovae, astro-ph/0303428.
- Riess, A., et al, 1998 (High-Z Supernovae Search), 1998, Observational Evidence from Supernovae for an Accelerating Universe and Cosmological Constant, Astronomical Journal, 116,1009.
- Riess, A., 2000, The Case for an Accelerating Universe from Supernovae, Astronomical Society, 112,1284-1299.
- 29. Schmidt, B, 2002, Understanding SNe Results, URL: http://astronomy.swin.edu.au.
- Schmidt, B, 2000, Measuring Global Curvature and Cosmic Acceleration with Supernovae, Erice NATO Winter School on Phase Transitions in the Early Universe, edited by Hector Vega y Norma Sánchez.
- 31. Schutz, B. F., 2002, A first course in general relativity, (Cambridge, UK).
- Spergel, D. N., et al, 2003, First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters, Astrophys. J. 148, 175.
- Steinhardt, P. J, & Caldwell, R. R., 2000, Quintessence, URL: http://physicsweb. org/toc/world/13/11/.
- Straumann, N., 2002, The history of the cosmological constant problem, grqc/0208027.
- 35. Supernova Cosmology Project Web Site, URL: http://supernova.LBL.gov.

- Tonry, J. L. et al, 2003, Cosmological Results from High-z Supernovae, astroph/0305008.
- Turner, S. M. & Riess, G. A., 2001, Do SNe Ia Provide Direct Evidence for Past Deceleration of the Universe? astro-ph/0106051.
- 38. The Understanding of the History of Our Universe by Cosmologists Evolves, URL: http://www.jupiterscientific.org/sciinfo/newcosmology.html/.
- Vishwakarma, R.G., 2003, Is the present expansion of the Universe really accelerating? astro-ph/0302357.
- 40. Weinberg S., 1972, Gravitation and Cosmology (Wiley, New York).
- 41. Wilkinson Microwave Anisotropy Probe (WMAP) Home Page, URL: http://map.gsfc.nasa.gov/.
- 42. Wolfram, S., 2002, Mathematica, A System for Doing Mathematics by Computer (Addison-Wesley, California).

7. Apéndice A

7.1. Figuras y Tablas

Fig. 1	Curvas de luz de supernovas SNe Ia cercanas medidas por el CTSS.	37
Fig. 2	Estrategia observacional para las SNe Ia que utilizó el SCP.	38
Fig. 3	Diagrama de Hubble resumiendo las observaciones del SCP y HZT	39
	de 1998-99.	
Fig. 4	Diagramas de Hubble de los resultados de Knop, et al, 2003.	40
Fig. 5	Diagrama residual de Hubble. Curvas teóricas para distintos modelos.	41
Fig. 6	Plano cosmológico de los resultados de Knop, et al, 2003.	42
Fig. 7	Plano cosmológico, mostrando resultados de SNe Ia, CMB y clusters,	43
	Knop, et al, 2003.	
Fig. 8	Ajuste de curvas para el conjunto de supernovas de Tonry, et al, 2003.	44
Fig. 9	Plano cosmológico $\Omega_{\Lambda} - \Omega_M$. Cálculo de las curvas con χ^2 constante	45
	para el conjunto de supernovas de Tonry, et al, 2003.	
Fig. 10	Plano $w - \Omega_M$. Curvas con χ^2 constante para el conjunto de	46
	supernovas de Tonry, et al, 2003.	
Fig. 11	Diagrama residual de Hubble para el conjunto de supernovas de Tonry,	47
	et al, 2003.	
Tabla I	Resumen de los datos para 230 supernovas de Tonry et al, 2003.	48

Figura 1: Parte superior: Curvas de luz de supernovas SNe Ia cercanas, medidas por Mario Hamuy con rango z = 0.001-0.1 en el proyecto CTSS (Calán/Tololo Supernovae Survey). Parte inferior: Curvas normalizadas por un factor que multiplica las escala en el tiempo, donde se observa un ajuste de todas las curvas con una recalibración.

Perimutter, et al., in Thermonuclear Supernovae, NATO ASI, v. 486 (1997)

Figura 2: La estrategia que utilizó el Supernovae Cosmology Project garantizaba el descubrimiento de las supernovas en una cierta fecha. Después de la luna nueva, se observaban de 50 a 100 campos con alta densidad de galaxias, cada una de ellas conteniendo al menos mil galaxias con alto corrimiento al rojo. La observación se realizaba tres semanas después con los mismos campos y se analizaban las imágenes. En promedio, se descubrían dos docenas de SNe Ia antes de la luna nueva. Se seguían las supernovas con espectroscopía en su pico máximo con el telescopio Keck y la fotometría durante dos meses con el CTIO, WIYN, INT y con el telescopio Hubble.

Figura 3: Diagrama de Hubble. Gráfica de la magnitud observada contra el corrimiento al rojo z. Se muestran mediciones de supernovas cercanas y lejanas combinándolas en una misma gráfica. Cuando $z \ge 0.1$, las predicciones cosmológicas empiezan a divergir, dependiendo de las densidades de energía para la masa y energía obscura o energía del vacío. Las curvas en rojo representan modelos con energía cero del vacío; y las densidad de masa variando desde la densidad crítica ρ_c , hasta un Universo vacío. La mejor aproximación (línea azul) se consigue cuando (Ω_M, Ω_Λ) = (0.3,0.7), implicando una expansión cósmica acelerada. Tomado de los trabajos de Riess, et al, Astron. J., 116, (1998) y Perlmutter et al, Astrophys. J., 517,(1999).

Figura 4: Diagramas de Hubble. Arriba: Gráfica de la magnitud utilizando una escala lineal en z. Se han graficado el promedio de las magnitudes en intervalos determinados. La curva sólida representa el mejor ajuste con $(\Omega_M, \Omega_\Lambda) = (0.25, 0.75)$. Otros dos modelos cosmológicos son mostrados para su comparación $(\Omega_M, \Omega_\Lambda) = (0.20, 0)$ y $(\Omega_M, \Omega_\Lambda) = (1, 0)$. Abajo: Diagrama residual de Hubble del promedio de los datos respecto de un Universo vacío, también se incluyen los modelos presentados arriba (Tomado de Knop, et al, 2003).

Figura 5: Diagrama residual de Hubble. $\Delta(m-M)$ vs. $\log(z)$ respecto de un Universo vacío. Se muestran las curvas teóricas para diversos modelos cosmológicos con distintas contribuciones de densidad de energía. Se observa que los modelos con expansión acelerada, $\Delta(m-M) > 0$, (líneas roja y negra), se refieren a contribuciones de energía obscura $\Omega_{\Lambda} = 0.7$. La transición de un Universo desacelerado a acelerado ocurre cuando $z_{ac} = \left(-\frac{\Omega_M}{(1+3w)\Omega_{\Lambda}}\right)^{\frac{1}{3w}} - 1.$

Figura 6: Plano $\Omega_{\Lambda} - \Omega_{M}$ obtenido de New constraints on Ω_{M} , Ω_{Λ} , and w From an independent set of 11 High-Redshift Supernovae observed with The Hubble Space Telescope, de Knop et al, 2003. Se encuentran graficadas las regiones de confianza al 68%, 90%, 95% y 99%. Se ha dibujado la línea para la cual $q_0 = 0$, que divide al plano en los dos tipos de expansión.

Figura 7: Plano Cosmológico $\Omega_{\Lambda} - \Omega_M$ que muestra las restricciones de parámetros con tres distintos métodos: SNe Ia, CMB y determinación de masa en clusters de galaxias. Existe una convergencia de los contornos de probabilidad en la intersección de las regiones, mostrando una expansión acelerada del Universo (Knop, et al, 2003).

Figura 8: *m* vs. *z*. Ajuste de curvas para el conjunto de supernovas de Tonry et al (2003), con z > 0.01 (195 SNe Ia). Los modelos que se muestran son $(\Omega_M, \Omega_\Lambda) = (0.3, 0.7), (0, 0), (1, 0)$ de arriba a abajo. Los valores de χ^2 calculados para estas cantidades de densidad de materia y energía obscura son: 289, 303 y 455, en el orden mencionado; mostrando que $(\Omega_M, \Omega_\Lambda) = (0.3, 0.7)$ es la mejor aproximación de los tres modelos (línea roja). La expresión para χ^2 que se utilizó esta dada por la ecuación (50).

Figura 9: Plano Cosmológico $\Omega_{\Lambda} - \Omega_{M}$. Cálculo de curvas con χ^{2} constante para el conjunto de 195 supernovas SNe Ia de Tonry et al (2003), con z > 0.01. En la gráfica se muestran las regiones, vistas de adentro hacia afuera, con los siguientes valores de χ^{2} : [287,288], [289,290], [291,294] y [295,300]. En el cálculo se varió $\Omega_{\Lambda} = [0, 2]$ y $\Omega_{M} = [0, 1.2]$ con un incremento de 0.01; y se utilizaron las ecuaciones (43) y (35) para calcular la distancia luminosidad y la magnitud relativa esperadas, respectivamente.

Figura 10: Plano $w - \Omega_M$. Curvas con χ^2 constante para el conjunto de 195 supernovas SNe Ia de Tonry, et al (2003), con z > 0.01; considerando un Universo plano $\Omega_M + \Omega_{\Lambda} = 1$. En la gráfica se muestran las regiones, vistas de adentro hacia afuera, con los siguientes valores de χ^2 : [288,289], [290,293], [294,299] y [300,307]. En el cálculo se varió $\Omega_M = [0,1]$ y w = [-2.5, -0.5] con un incremento de 0.01; y se utilizaron las ecuaciones (43) y (35) para calcular la distancia luminosidad y la magnitud relativa esperadas, respectivamente.

Figura 11: Diagrama residual de Hubble para las supernovas SNe Ia de Tonry et al, (2003). Se muestran las curvas de arriba a abajo $(\Omega_M, \Omega_\Lambda) = (0.3, 0.7), (0.3, 0.0)$ y (1.0, 0.0), respectivamente.

Tabla I

Resumen de los datos de 230 supernovas SNe Ia. Tomado de: Cosmological Results from High-z Supernovae, Tonry et al, 2003, astro-ph 0305008.

SN	111	611	2	Host	Ref.	log(cz)	$\langle \log (dH_0) \rangle$	±	$\langle A_V \rangle$	Contri
sn72E	314.840	30,080	0.0023	N 5253	16	2.839	2.399	0.033	0.10	RT
n80N	240.161	-56,689	0.0056	N1316	9	3.225	3.140	0.043	0.21	RT
sn81B	292.970	64,743	0.0072	N4536	2	3.334	3.077	0.041	0.25	RT
n81D	240.161	-56,689	0.0056	N1316	9	3.225	3.044	0.055	0.31	JT
sn86G	309.543	19,401	0.0027	N5128	26	2.908	2.440	0.035	0.49	RT
sn88U	8.737	-81,227	0.3100	Anon	24	4.968	5.096	0.072	0.10	RT
sn89B	241.991	64,403	0.0036	N3627	37	3.033	2.844	0.030	0.74	RST
sn90N	294.369	75,987	0.0044	N4639	21	3.120	3.204	0.035	0.30	RST
sn900	37.654	28,360	0.0307	M + 034403	10	3.964	3.977	0.025	0.09	RPJS'
sn90T	341.503	-31,526	0.0400	P63925	10	4.079	4.101	0.042	0.25	RJT
n90Y	232.645	-53,854	0.0390	Anon	10	4.068	3.985	0.039	0.54	RJT
n90af	330.823	-42,235	0.0500	Anon	10	4.176	4.149	0.026	0.06	RPJS'
n91M	30.392	45,900	0.0076	11151	5	3.358	3.397	0.030	0.00	R
sn91S	214.061	57,426	0.0560	U05691	10	4.225	4.283	0.042	0.11	RJT
sn91T	292.609	65,191	0.0070	N4527	21	3.322	2.961	0.028	0.50	RST
sn91U	311.824	36,212	0.0331	14232	10	3.997	3.938	0.032	0.47	RJST
n91ag	342.556	-31,639	0.0141	14919	10	3.626	3.626	0.025	0.11	RJST
n91bg	278.227	74.464	0.0042	N4374	4	3,100	3.064	0.035	0.02	RT
n92A	235.896	-54.059	0.0058	N1380	33	3.240	3.124	0.023	0.08	RST
n92G	184.623	59.851	0.0062	N3294	5	3.269	3.286	0.030	0.29	RT
n 92.1	263.540	23,545	0.0460	Anon	10	4.140	4.099	0.033	0.27	BJST
n92K	306.275	16,309	0.0112	E269-57	10	3.526	3.432	0.036	0.56	RJST
n92P	295.617	73,110	0.0265	13690	10	3,900	3.939	0.027	0.13	RPIS
n92ac	332.706	-41.988	0.0750	Anon	10	4.352	4.359	0.026	0.14	RPJS
n92ar	312 490	38 386	0.0262	E508-67	10	3 895	3 864	0.031	0.49	RPIS
n92al	347 337	- 38,490	0.0141	E234-69	10	3 626	3 636	0.026	0.06	RPIT
n92ac	1.776	-65.315	0.1010	Anon	10	4 481	4 513	0.027	0.04	RPIS
n92au	319 112	-65 883	0.0610	Anon	10	4 262	4 252	0.030	0.13	RIST
n02bc	245 694	-50 635	0.0186	F300-09	10	3 746	3 777	0.021	0.03	RDIS
n92be	274 611	-18 346	0.0360	Anon	10	4 033	4.036	0.021	0.03	PDIS
noabh	267 840	- 10,040	0.0450	Anon	10	4.035	4.000	0.030	0.22	DDIC
-02bi	62 264	47 320	0.0450	Anon	25	4.130	9.191	0.020	0.35	D
-02bl	265 026	47,235	0.4560	F156.08	10	4 940	4 999	0.035	0.11	DICT
-0011	205.030	-40,910	0.0380	E130-08	10	4.240	4.222	0.025	0.11	DDIC
-021-	344.129	-03,925	0.0430	E291-11 E250 57	10	4.110	4.095	0.022	0.06	RPJ5
-02bc	201.995	-80,348	0.0176	L302-57	10	3.727	3.145	0.021	0.04	RFJ5
-001	208.832	-51,090	0.0790	Anon	10	4.374	4.330	0.020	0.05	RFJ5
- 001	288.014	-59,428	0.0880	Anon	10	4.421	4.441	0.027	0.07	RPJS
19208	240.028	-55,345	0.0030	Anon	10	4.276	4.321	0.026	0.19	RPJS
193B	273.324	20,460	0.0710	Anon	10	4.328	4.345	0.026	0.32	RPJS
n93H	318.223	30,336	0.0251	E445-66	10	3.876	3.845	0.026	0.32	RJST
n930	312.414	28,926	0.0520	Anon	10	4.193	4.231	0.026	0.08	RPJS
n93ac	149.707	17,212	0.0490	P17787	30	4.167	4.206	0.043	0.49	RJST
n93ac	144.629	-63,220	0.0180	01071	30	3.732	3.684	0.024	0.17	RJST
n93ag	268.435	15,929	0.0500	Anon	10	4.176	4.209	0.026	0.26	RPJS
sn93ah	25.876	-76,771	0.0286	E471-27	10	3.933	3.933	0.032	0.18	RJST
sn94B	208.140	26,669	0.0900	Anon	29	4.431	4.507	0.030	0.00	R
sn94C	174.632	29,922	0.0510	M + 081523	29	4.184	4.139	0.036	0.00	R
sn94D	290.151	70,140	0.0027	N4526	27	2.908	3.003	0.026	0.06	RT
n94F	258.613	68,127	0.3540	Anon	25	5.026	5.155	0.075		Р
n94G	162.893	52,779	0.4250	Anon	25	5.105	5.105	0.100		P

	Tabla I
Resumen	SNIa-Continuación

SN	111	b11	z	Host	Ref.	log(cz)	$\langle \log (dH_0) \rangle$	±	$\langle A_V \rangle$	Contrib
sn94H	173.057	-53,517	0.3740	Anon	25	5.050	5.023	0.060		Р
sn94M	291.687	63,033	0.0244	N4493	30	3.864	3.835	0.026	0.40	RJST
sn94Q	64.384	39,680	0.0290	P59076	30	3.939	3.955	0.026	0.26	RJST
sn94S	187.377	85,142	0.0161	N4495	30	3.684	3.693	0.024	0.04	RJST
sn94T	318.017	59,838	0.0360	P46640	30	4.033	4.014	0.025	0.17	RJST
sn94U	308.732	54,772	0.0056	N4948	29	3.225	3.149	0.030	0.00	R
sn94ac	225.342	59,665	0.0054	N3370	30	3.209	3.295	0.028	0.29	RST
sn94al	163.157	-34,816	0.4200	Anon	25	5.100	5.189	0.064		Р
sn94am	173.104	-53,563	0.3720	Anon	25	5.047	5.131	0.057		Р
sn94an	69.409	-49,082	0.3780	Anon	25	5.054	5.195	0.081		Р
sn95D	230.027	39,659	0.0077	N2962	30	3.363	3.373	0.024	0.08	RST
sn95E	141.994	30,262	0.0116	N2441	30	3.541	3.559	0.034	2.18	RS
sn95K	259.953	43,327	0.4780	Anon	28	5.156	5.284	0.038	0.02	RT
sn95M	246.716	28,833	0.0530	Anon	29	4.201	4.243	0.044	0.10	RT
sn95ac	58.694	-55,049	0.0490	Anon	30	4.167	4.160	0.028	0.24	RJST
sn95ac	76.817	-56,240	0.0680	Anon	29	4.309	4.315	0.086	0.00	R
sn95ak	169.658	-48,982	0.0219	I1844	30	3.817	3.772	0.033	0.55	RJST
sn95al	192.179	50,835	0.0060	N3021	30	3.255	3.328	0.026	0.31	RST
sn95ao	178.196	-50,515	0.3000	Anon	29	4.954	4.957	0.156	0.00	R
sn95ap	179.359	-46,149	0.2300	Anon	29	4.839	4.893	0.120	0.00	R
sn95aq	113.341	-54,599	0.4530	Anon	25	5.133	5.313	0.064		Р
sn95ar	127.657	-58,471	0.4650	Anon	25	5.144	5.345	0.070		Р
sn95as	127.757	-58,339	0.4980	Anon	25	5.174	5.421	0.064		Р
sn95at	129.274	-58,142	0.6550	Anon	25	5.293	5.333	0.058		Р
sn95aw	165.472	-54,078	0.4000	Anon	25	5.079	5.151	0.056		Р
sn95ax	166.056	-53,909	0.6150	Anon	25	5.266	5.317	0.064		Р
sn95ay	176.870	-48,453	0.4800	Anon	25	5.158	5.271	0.062		Р
sn95az	202.114	-31,504	0.4500	Anon	25	5.130	5.181	0.061		Р
sn95ba	215.987	22,984	0.3880	Anon	25	5.066	5.209	0.057		Р
sn95bd	187.111	-21,660	0.0152	U03151	30	3.659	3.648	0.029	0.94	RJST
sn96C	99.624	65,036	0.0276	M + 082547	30	3.918	3.989	0.026	0.32	RJST
sn96E	253.120	34,311	0.4250	Anon	28	5.105	5.156	0.066	0.15	RT
sn96H	290.752	62,242	0.6200	Anon	28	5.269	5.397	0.043	0.04	RT
sn961	276.852	60,008	0.5700	Anon	28	5.233	5.356	0.053	0.07	RT
sn96J	253.221	34,301	0.3000	Anon	28	4.954	5.010	0.064	0.26	RT
sn96K	224.381	20,459	0.3800	Anon	28	5.057	5.183	0.049	0.03	RT
sn96R	259.070	54,356	0.1510	Anon	29	4.656	4.621	0.104	0.00	R
sn96T	247.589	37,000	0.2410	Anon	29	4.859	4.941	0.112	0.00	R
sn96U	259.357	68,005	0.4300	Anon	28	5.110	5.288	0.054	0.05	RT
sn96V	257.577	57,537	0.0250	N3644	29	3.875	3.871	0.057	0.00	R
sn96X	310.232	35,649	0.0078	N 5061	30	3.369	3.266	0.024	0.08	RST
sn96Z	253.609	22,559	0.0087	N 2935	30	3.416	3.387	0.036	0.55	RST
sn96ab	43.159	56,932	0.1240	Anon	30	4.570	4.621	0.032	0.05	RJST
sn96af	319.640	-43,222	0.1000	Anon	7	4.477	4.428	0.040	0.00	S
sn96ag	356.386	-49,535	0.1400	Anon	8	4.623	4.680	0.045	0.00	S
sn96ai	101.583	79,246	0.0041	N 5005	30	3.090	3.109	0.121	4.08	RS
sn96am	355.950	-49,361	0.0650	A 3809	8	4.290	4.356	0.043	0.32	S
sn96ao	265.439	-51,259	0.0580	A3128	8	4.240	4.240	0.067	0.52	S
sn96bk	111.255	54,881	0.0072	N 5308	30	3.334	3.298	0.041	0.81	RST
sn96bl	116.992	-51,302	0.0348	Anon	30	4.018	4.033	0.031	0.28	RJST

49

ESTA TESIS NO SAL»

SN	lu	611	2	Host	Ref.	log(cz)	$(\log (dH_0))$	±	(A_V)	Contrib
sn96bo	144.460	-48,956	0.0165	N0673	30	3.694	3.653	0.032	0.86	RST
sn96bv	157.337	17,972	0.0167	U03432	30	3.700	3.663	0.036	0.73	RJST
sn96bx	263.413	-46,747	0.0580	Anon	8	4.240	4.256	0.130	0.36	S
sn96cf	250.449	50,009	0.5700	Anon	25	5.233	5.333	0.060		Р
sn96cg	220.767	22,154	0.4900	Anon	25	5.167	5.299	0.057		Р
sn96ci	333.110	62,084	0.4950	Anon	25	5.171	5.245	0.056		P
sn96ck	301.409	62,096	0.6560	Anon	25	5.294	5.393	0.068		Р
sn96cl	256.574	48,668	0.8270	Anon	25	5.394	5.609	0.108		Р
sn96cm	10.891	46.743	0.4500	Anon	25	5.130	5.313	0.061		P
sn96cn	334.314	61.810	0.4300	Anon	25	5.110	5.305	0.060		P
8097E	140.201	25,814	0.0132	N2258	11	3.597	3.624	0.024	0.29	RJST
sn97F	204.472	-28.455	0.5800	Anon	25	5.240	5.371	0.061		P
sn97G	202.331	-26.508	0.7620	Anon	25	5.359	5.573	0.107		P
sn97H	202 374	-26 214	0.5260	Anon	25	5.198	5 309	0.057		P
sn 971	202.366	-26 207	0.1720	Anon	25	4 712	4 713	0.055		P
en 07 1	200 021	15 374	0 6190	Anon	25	5 260	5 430	0.068		P
en 97K	216 354	16 082	0.5920	Anon	25	5 249	5 563	0.081		P
en 071	220.026	21 876	0.5500	Anon	25	5 217	5 381	0.064		P
en 07N	220.020	22,000	0.1800	Anon	25	4 739	4 765	0.054		P
sn97.0	220.050	22,055	0.2740	Anon	20	5.050	5 262	0.069		P
sn970	220.000	48 254	0.4720	Anon	20	5.151	5.303	0.062		P
SL971	200.000	40,204	0.4720	Anon	2.5	5.131	5.301	0.050		P
sisiQ	230.878	40,379	0.4300	Anon	20	5.004	5.195	0.055		P
sn9/R	256.950	48,501	0.6570	Anon	25	5.294	5.445	0.061		P
88975	256.960	48,704	0.0120	Anon	25	5.264	5.417	0.058		P
sn971	124.772	62,369	0.0166	N4075	11	3.697	3.730	0.039	0.19	31
snyrac	220.010	22,485	0.3200	Anon	25	4.982	5.051	0.055		P
sn97al	220.026	22,419	0.5790	Anon	25	5.239	5.375	0.060		P
sn97ai	249.958	50,362	0.4500	Anon	25	5.130	5.245	0.070		P
sn97aj	256.605	48,217	0.5810	Anon	25	5.241	5.297	0.060		Р
sn97am	256.340	49,057	0.4160	Anon	25	5.096	5.193	0.057		Р
sn97ap	333.646	61,901	0.8290	Anon	25	5.395	5.543	0.060		P
sn97as	224.726	20,115	0.5080	Anon	17	5.183	5.158	0.049	0.44	RST
sn97aw	239.440	47,883	0.4400	Anon	17	5.120	5.355	0.050	0.36	RS
sn97bb	290.721	62,492	0.5180	Anon	17	5.191	5.356	0.049	0.04	RST
sn97bd	296.961	62,650	0.6710	Anon	17	5.304	5.200	0.065	0.99	ST
sn97bh	330.050	59,713	0.4200	Anon	17	5.100	5.242	0.049	0.33	RST
sn97bj	248.760	48,844	0.3340	Anon	17	5.001	5.070	0.051	0.20	ST
sn97bp	301.157	51,213	0.0095	N4680	11	3.455	3.416	0.025	0.44	RJST
sn97bq	136.293	39,485	0.0096	N3147	11	3.459	3.484	0.023	0.42	JST
sn97br	311.841	40,328	0.0080	E576-40	11:18	3.380	3.282	0.026	0.47	JT
sn97by	312.690	34,865	0.0450	A1736	8	4.130	4.084	0.039	0.16	S
sn97bz	259.751	56,407	0.0313	Anon	8	3.972	4.060	0.116	3.11	S
sn97cc	69.240	36,620	0.4400	Anon	28	5.120	5.228	0.041	0.03	RT
sn97cj	125.800	54,608	0.5000	Anon	28	5.176	5.323	0.047	0.05	RT
sn97ck	57.602	38,452	0.9700	Anon	28	5.464	5.638	0.075	0.17	RT
sn97cn	9.137	69,506	0.0175	N5490	11:36	3.720	3.730	0.026	0.06	JT
sn97cp	336.902	-45,466	0.1600	Anon	8	4.681	4.792	0.098	0.45	S
sn97cu	265.042	-51,213	0.0620	A 3128	8	4.269	4.240	0.045	0.00	S
sn97cw	113.095	-49,487	0.0164	N0105	11	3.692	3.674	0.028	1.04	JST
sn97dg	103.616	-33,984	0.0297	Anon	11	3.950	4.033	0.029	0.25	JST

 Tabla I

 Resumen SNIa-Continuación

SN	111	611	z	Host	Ref.	log(cz)	$\langle \log (dH_0) \rangle$	±	$\langle A_V \rangle$	Contrib
sn97do	171.001	25,269	0.0104	U03845	11	3.494	3.545	0.028	0.32	JST
sn97dr	253.245	-55,861	0.0750	A 3112	8	4.352	4.296	0.039	0.00	S
sn97dt	87.564	-39,122	0.0061	N7448	11	3.262	3.375	0.043	0.46	JT
sn97fb	242.377	-37,317	0.0530	A 3301	8	4.201	4.254	0.045	0.71	S
sn97fc	242.691	-37,596	0.0540	A 3301	8	4.209	4.230	0.039	0.10	S
sn97fd	264.995	-49,215	0.1900	Anon	8	4.756	4.888	0.065	0.00	S
sn97ff	125.906	54,831	1.7550	Anon	32	5.721	5.905	0.083	0.00	R
sn98D	63.777	72,905	0.0132	N5440	11	3.597	3.605	0.069	0.20	J
sn981	216.646	18,718	0.8870	Anon	34	5.425	5.575	0.053	0.25	JST
sn98J	238.498	32,106	0.8330	Anon	34	5.397	5.615	0.052	0.26	JST
sn98M	260.707	60,423	0.6300	Anon	34	5.276	5.396	0.045	0.28	RST
sn98V	43.942	13,346	0.0170	N6627	11	3.707	3.686	0.028	0.31	JST
sn98ab	124.861	75,194	0.0278	N4704	11	3.921	3.876	0.025	0.59	JST
sn98ac	239.012	31,832	0.4670	Anon	34	5.146	5.260	0.043	0.27	RST
sn98aj	238.163	31,312	0.8600	Anon	34	5.411	5.698	0.070	0.20	ST
sn98aq	138.837	60,269	0.0037	N3982	1	3.045	3.181	0.023	0.06	RST
sn98bp	43.643	20,481	0.0104	N6495	11	3.494	3.475	0.029	0.42	RJST
sn98br	6.580	50,757	0.0810	A 2029	8	4.385	4.442	0.063	0.39	S
sn98bu	234.413	57,020	0.0043	N3368	12	3.110	2.912	0.028	1.03	RST
sn98cm	332.822	62,779	0.0800	A1780	8	4.380	4.398	0.059	0.36	S
sn98co	41.520	-44,941	0.0171	N7131	11	3.710	3.729	0.046	0.28	JT
sn98cs	65.238	43,339	0.0327	U10432	11	3.991	3.956	0.037	0.03	RT
sn98de	122.031	-35,241	0.0157	N0252	11:23	3.673	3.727	0.024	0.68	JST
sn98dh	82.828	-50,644	0.0076	N7541	11	3.358	3.403	0.034	0.50	ST
sn98dk	102.856	-62,161	0.0120	U00139	11	3.556	3.571	0.028	0.80	JST
sn98dm	145.975	-67,406	0.0054	M + 010444	11	3.209	3.498	0.028	1.06	ST
sn98do	135.234	-61,849	0.0920	Anon	8	4.441	4.462	0.069	0.00	S
sn98dv	272.283	-40,300	0.1550	Anon	8	4.667	4.706	0.124	0.42	S
sn98dw	143.355	-77,658	0.0490	A0151	8	4.167	4.208	0.051	0.00	S
sn98dx	77.674	26,667	0.0538	U11149	11	4.208	4.175	0.030	0.05	JT
sn98dz	247.207	-56,375	0.0910	Anon	8	4.436	4.458	0.045	0.16	S
sn98ca	272.198	-39,821	0.0570	A 3266	8	4.233	4.314	0.043	0.58	S
sn98cc	166.295	20,711	0.0200	U03576	11	3.778	3.801	0.039	0.57	JST
sn98cf	125.882	-30,566	0.0170	U00646	11	3.707	3.650	0.028	0.08	JST
sn98eg	76.464	-42,060	0.0234	U12133	11	3.846	3.897	0.042	0.26	JT
sn98cs	143.189	-55,177	0.0095	N0632	11:20	3.455	3.438	0.031	0.33	JST
sn98fb	264.638	-51,045	0.0600	A 3128	8	4.255	4.262	0.059	0.00	S
sn99Q	215.915	17,925	0.4600	Anon	31:3	5.140	5.336	0.042	0.07	RST
sn99U	238.552	30,694	0.5000	Anon	3	5.176	5.321	0.070	0.02	ST
sn99X	186.585	39,591	0.0257	C180022	11	3.887	3.888	0.037	0.33	JT
sn99aa	202.725	30,313	0.0157	N 2595	11:20:15	3.673	3.684	0.032	0.01	RST
sn99ac	19.883	39,943	0.0099	N6063	11:20	3.472	3.478	0.023	0.42	JST
sn99ao	243.830	-20,023	0.0550	A 3392	8	4.217	4.242	0.039	0.26	S
sn99by	166.914	44,120	0.0027	N2841	6:20	2.908	3.067	0.167	0.72	ST
sn99cc	59.667	48,740	0.0316	N6038	11	3.977	3.983	0.029	0.13	RJST
sn99cl	282.270	76,509	0.0082	N4501	15	3.391	3.009	0.090	1.68	RS
sn99cp	334.851	52,708	0.0104	N5468	15	3.494	3.525	0.026	0.04	RJT
sn99cw	101.768	-67,906	0.0112	M-010201	11	3.526	3.469	0.034	0.17	J
sn99da	89.732	32,649	0.0121	N6411	14:20	3.560	3.623	0.044	0.58	RJST
sn99dk	137.349	-47.464	0.0141	U01087	14	3.626	3.686	0.039	0.07	RT

Tabla IResumen SNIa-Continuación

SN	lII	b11	2	Host	Ref.	log(cz)	$\langle \log (dH_0) \rangle$	±	$\langle A_V \rangle$	Contrib
sn99dq	152.839	-35,871	0.0136	N0976	11:20	3.610	3.548	0.023	0.35	JST
sn99cf	125.719	-50,086	0.0380	U00607	11	4.057	4.147	0.033	0.03	JT
sn99cj	130.442	-28,946	0.0127	N0495	11	3.581	3.684	0.031	0.08	JT
sn99ck	189.403	-8,234	0.0176	U03329	11	3.722	3.687	0.044	0.62	JT
sn99ff	168.784	-52,949	0.4550	Anon	35	5.135	5.289	0.048	0.16	RST
sn99fh	166.731	-53,793	0.3690	Anon	35	5.044	5.135	0.061	0.70	ST
sn99fj	166.879	-53,734	0.8150	Anon	35	5.388	5.564	0.051	0.09	RST
sn99fk	166.405	-53,167	1.0560	Anon	35	5.500	5.659	0.054	0.03	RST
sn99fm	167.075	-52,994	0.9490	Anon	35	5.454	5.580	0.053	0.04	RST
sn99fn	188.216	-31,901	0.4770	Anon	35	5.155	5.249	0.039	0.17	RST
sn99fv	84.298	-56,405	1.1990	Anon	35	5.556	5.651	0.068	0.24	RST
sn99fw	84.665	-56,682	0.2780	Anon	35	4.921	5.007	0.047	0.34	RST
sn99gd	198.835	33,977	0.0190	N2623	11	3.756	3.779	0.029	1.27	JT
sn99gh	255.048	23,736	0.0088	N2986	11	3.421	3.356	0.023	0.15	JST
sn99gp	143.251	-19,504	0.0260	U01993	11:20:14	3.892	3.933	0.028	0.15	RJST
sn00B	166.353	22,791	0.0193	N2320	11	3.762	3.740	0.039	0.38	JST
sn00bk	295.292	55,233	0.0266	N4520	14	3.902	3.911	0.030	0.26	RJT
sn00cc	149.096	32,004	0.0165	U04195	11:14	3.694	3.705	0.030	1.02	RJT
sn00cf	99.883	42,165	0.0360	M + 111925	11	4.033	4.112	0.032	0.13	RJST
sn00cn	53.445	23,318	0.0233	U11064	11	3.844	3.847	0.023	0.27	JST
sn00cx	136.506	-52,482	0.0070	N0524	11:19	3.322	3.320	0.023	0.02	RST
sn00dk	126.834	-30,344	0.0164	N0382	11	3.692	3.677	0.023	0.01	JST
sn00dz	84.367	-56,390	0.5000	Anon	13	5.176	5.352	0.053	0.07	RST
sn00ca	167.211	-61,402	0.4200	Anon	13	5.100	5.091	0.053	0.88	RST
sn00ec	166.295	-60,176	0.4700	Anon	13	5.149	5.340	0.043	0.04	RST
sn00ec	166.045	-53,429	0.4700	Anon	13	5.149	5.343	0.041	0.04	RST
sn00cg	167.097	-53,108	0.5400	Anon	13	5.209	5.236	0.049	0.17	RST
sn00ch	188.297	-31,651	0.4900	Anon	13	5.167	5.224	0.042	0.20	RST
sn00fa	194.167	15,479	0.0218	U03770	11	3.815	3.837	0.026	0.34	JST
sn01V	218.929	77,733	0.0162	N3987	22	3.686	3.662	0.023	0.20	JST

Tabla IResumen SNIa-Continuación