UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO **EN INGENIERÍA**

EFECTO DE LA GENERACIÓN DE OXÍGENO FOTOSINTÉTICO EN UN SISTEMA SÓLIDO-LÍQUIDO-GAS

> T E S

PARA OPTAR POR EL GRADO DE MAESTRA EN INGENIERÍA (INGENIERÍA AMBIENTAL) **PRESENTA**

MARÍA GUADALUPE SOTO ESQUIVEL

TUTORA: DRA. ING. MARÍA DEL CARMEN DURÁN DOMÍNGUEZ DE BAZÚA

2003

Autorizo a la Dirección General de Bibliotecas de ы UNAM a difundir en formato electrónico e impreso el contenido de mi trabajo recepcional. NOMBRE: Na. Guadolipe

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

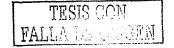
El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Jurado

Presidente	Dr. Germán Buitrón Méndez
Vocal	Dra. María del Carmen Durán Domínguez
	de Bazúa
Secretario	M. C. Lina María Cardoso Vigueros
Primer	Dr. Joan Genescá Llongueras
suplente	
Segundo	Dra. Gabriela Moeller Chávez
suplente	

Sitio en donde se realizó el trabajo de investigación:

Programa de Ingeniería Química Ambiental y Química Ambiental, Facultad de Química, UNAM. Laboratorios 301, 302 y 303. Conjunto E.


Facultad de Química, UNAM. Laboratorio de Tecnologías más limpias, B-201. Edificio B.

Sustentante

Maria Guadalupe Soto Esquivel

Tutor principal

Maria del Carmen Durán Dominguez de Bazúa

A Óscar...

... con amor, respeto y admiración.

A mis papás y mi tía...

... por estar conmigo desde siempre.

AGRADECIMIENTOS

La autora agradece:

Al Consejo Nacional de Ciencia y Tecnología (CONACYT) la beca otorgada para la realización de los estudios de maestría y la conclusión de los mismos con esta tesis.

A la DRA. ING. CARMEN DURÁN DE BAZÚA, por la tutoría recibida para la elaboración de esta tesis. Asimismo, se le agradecen las facilidades brindadas en el laboratorio del PIQAyQA.

AI DR. GERMÁN BUITRÓN y a la M.C. LINA CARDOSO, por su apoyo académico desde el Comité Tutoral.

Al DR. AGUSTÍN MUHLIA, del Centro de Ciencias de la Atmósfera, por la ayuda brindada en las mediciones de irradianza.

Al DR. JOAN GENESCÁ LLONGUERAS, por la asesoría recibida para la construcción y calibración de los electrodos.

A la DRA. GABRIELA MOELLER, por sus valiosos comentarios sobre este trabajo.

Al M.C. ROLANDO GARCÍA y la SRA. IRENE GONZÁLEZ; por el apoyo y las sonrisas otorgados durante mi segunda estancia en las instalaciones del PIQAyQA.

A la M.C.: HILDA CALDERÓN, por las atenciones y apoyo dados durante mi experimentación en el laboratorio B-201.

A todos los compañeros de la maestria (en especial a Selene, Anilú y Luz), por las palabras de aliento recibidas cuando los ánimos estuvieron bajos.

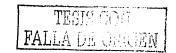
A los chicos del PIQAyQA, por los buenos momentos pasados en el laboratorio.


CONTENIDO

	en grande de la companya de la comp Antigoria de la companya de la comp	Página
Resumen		iĬ
Abstract		iii
Glosario de	términos	iv
Indice de ta	blas y figuras	· · · · · · · · · · · · · · · · · · ·
	Antecedentes	1
	I.1 Problemática	1
	I.2 Objetivo y alcances	2
	I.3 Hipótesis	2 3
Capitulo II	Fundamentos	4
	II.1 Definiciones	4
	II.2 Mecanismos de remoción de contaminantes en los	6
	humedales artificiales	0
	II.3 Transporte de oxígeno en los humedales artificiales	8 9
Capitula III	II.4 Irradianza recibida por las plantas en estudio	11
Capítulo III	Materiales y métodos III.1 Construcción de las columnas	11
	III.2 Alimentación de agua	13
	III.3 Presencia de luz UV	14
	III.4 Tiempo de residencia hidráulica (TRH)	14
	III.5 Construcción de los electrodos	15
	III.6 Análisis estadístico	15
Capítulo IV	Resultados experimentales y discusión	16
Capitulo IV	IV.1 Calibración de los electrodos de referencia	16
		16
	IV.2 Mediciones de irradianza	17
	IV.3 Parámetros fisicoquímicos IV.4 Diferencias de potencial	21
Capitula V		27
Capítulo V Anexos	Conclusiones y recomendaciones	28
Anexo A1.	Construcción del cistema evaccimental	28
Anexo A1.	Construcción del sistema experimental Metodologías analíticas	30
Anexo A3.		32
Anexo A3.	Resultados experimentales	32 71
Anexo A5.	Acervo fotográfico Análisis estadísticos	7 1 78
	Alialisis estatisticus	94
Bibliografía	医克雷氏 医马克氏管 医克克氏管 医乳腺管 计自动设置 医动物 医二氏管 医二氏管 医二氏管 医二氏管 医二氏管	94

RESUMEN

En México, aproximadamente 80% de las aguas residuales generadas son descargadas al ambiente sin un tratamiento adecuado. Esto conlleva a la búsqueda de opciones de tratamiento de aguas residuales viables técnica y económicamente. Una de estas opciones la representan los humedales artificiales o construidos (HC); éstos son sistemas de tratamiento en los que se llevan a cabo procesos físicos y bioquímicos para la transformación de compuestos orgánicos disueltos. El oxígeno molecular es muy importante en estos mecanismos de remoción, ya que se convierte en el reactivo limitante en los humedales, eliminando el material orgánico sólido y permitiendo su mineralización. Dentro de este contexto, en el laboratorio del Programa de Ingeniería Química Ambiental y Química Ambiental, de la Facultad de Química de la UNAM, se lleva a cabo un estudio que incluye la determinación del papel que juega la transferencia del oxígeno molecular en la zona radicular de las macrofitas. El estudio de que se habla plantea la determinación de la transferencia de oxígeno molecular del aire v el generado fotosintéticamente, hacia la zona de la raíz de la planta. Cuatro reactores con un volumen total de 20 L y un volumen de trabajo de 10 L y empacados con escoria volcánica (tezontle), fueron alimentados con agua residual sintética (R1 y R2) y con agua de la llave (R3 y R4). El agua residual sintética tenía un contenido de sacarosa, (NH₄)₂SO₄, Na₃PO₄.12H₂O, dando una relación C:N:P de 15:1:0.1. La carga orgánica se midió como demanda química de oxígeno (DQO) y fue de 800 mgL. Dos de los reactores (R1 y R3) tenían una mata de tule (Thypa latifolia), cada una y los dos reactores restantes (R" y R4) no tuvieron planta. Los reactores fueron totalmente sellados para disminuir la difusión del oxígeno de aire hacia las zonas empacadas. Los reactores se mantuvieron en un ambiente controlado a 28±2°C, con irradiación artificial constante equivalente a 20.6 Wm-2 parar las 15 lámparas instaladas, durante 12 horas diarias (de 7:00 a 19:00 h (12 horas de luz / 12 horas de oscuridad). Los resultados indican que el oxígeno fotosintético aumenta la conversión de sustratos adicionados en el agua residual sintética y medidos como DQO.


ABSTRACT

In Mexico, almost 80% of the wastewater generated are discharged without any treatment. In this situation is imperative to look for technical and economical correct options. Wetlands are excellent alternatives for this case. In these systems, organic material is transformed by biochemical action of bacteria present in the soil or inert supporting media and the plant root zone. Molecular oxygen is very important in the degradation mechanisms, since it becomes the limiting reagent. Wetlands also eliminate suspended organic material in wastewater and permit its mineralization. At laboratory level, the Program for Environmental Chemical Engineering and Chemistry (PECEC) from the Faculty of Chemistry, UNAM, has been studying the effect of molecular oxygen in these systems using macrophytes. Results on previous experiments already published have lead to this study and its objective is to study the effect of the molecular oxygen generated by photosynthesis, in an artificial lab scale wetland. Four 20-Liter reactors (10-L working volume) packed with volcanic lava were fed with synthetic wastewater (R1, R2) and tap water (R3, R4). Synthetic wastewater contained sucrose, (NH₄)₂SO₄, Na₃PO_{4.12}H₂O to give a C:N:P ratio (15:1:0.1) and 800 mg COD (total chemical oxygen demand)/L. Two reactors, R1, R3, had a single macrophyte (Thypa latifolia), and R2, and R4 had no plant. The reactors were fully covered to avoid or minimize the diffusion of atmospheric oxygen. Reactors were maintained in a 28±2°C room with artificial constant light irradiation (20.6 Wm-2 for the 15 lamps installed) from 7:00 to 19:00 hours (12h light/12 h dark). Results indicate that photosynthetic oxygen enhances the conversion of substrates added to the synthetic wastewater, measured as COD.

GLOSARIO DE TÉRMINOS

Aerobio	Proceso metabólico que es realizado en presencia de oxígeno. En este caso el oxígeno molecular es el aceptor de electrones
Anaerobio	Proceso metabólico realizado en ausencia de oxígeno y la generación de energía se efectúa por medio de la formación de ATP con reacciones de óxido-reducción
Anóxico	Proceso metabólico que se realiza en ausencia de oxígeno, y en donde compuestos oxidados como nitratos y nitritos actúan como aceptores de electrones
DBO ₅	Demanda bioquímica de oxígeno en cinco dias
DQOT	Demanda química de oxígeno total (mg mL ⁻¹)
HA	Humedal artificial
OD	Oxígeno disuelto
PTAR	Planta de tratamiento de aguas residuales (industriales o domésticas)
R1	Reactor de prueba, con planta macrofita y se regó con agua residual sintética
R2	Reactor testigo; sin planta macrofita y se regó con agua residual sintética
R3	Reactor testigo, con planta macrofita y se regó con agua corriente
R4	Reactor testigo, sin planta macrofita y se regó con agua corriente
Redox	Reacciones de óxido-reducción
-	그 🛖 그 그 그 그 그 그 그림, 그그 역사 이는 작업이 점점 교육으로 적실하고 해야 되면 점점 한다. 이 경험하고 하는 이 하는 사람이 되었다. 그리고 이 그 이 이 나는 사람이 다른 사람이 다른 사람이 되었다. 그리고 이 나는 사람이 다른 사람이 되었다. 그리고 아니라 다른 사람이 되었다. 그리고 아니라 다른 사람이 되었다.

ÍNDICE DE TABLAS Y FIGURAS

		Página
Tabla II.1	Mecanismos de remoción de contaminantes en los sistemas de humedales (Miranda, 2000)	6
Tabla III.1	Estratos del material de soporte en las columnas en estudio (Durán de Bazúa, <i>et al.</i> , 1998; Fenoglio, 2002)	11
Figura III.1	Reactores R1 (reactor de prueba, alimentado con agua residual sintética y dotado con planta macrofita) y R2 (reactor testigo regado con agua residual sintética y sin planta macrofita)	12
Figura III.2	Reactores R3 y R4. el primero se refiere al reactor testigo regado con agua corriente y dotado con planta macrofita y el segundo se refiere al reactor testigo regado con agua corriente y sin planta macrofita	12
Tabla III.2	Composición del agua residual sintética (Fenoglio et al., 2002)	14
Tabla IV.1	Mediciones obtenidas durante la calibración de los electrodos de referencia fabricados en el laboratorio	16
Figura IV.1	Dispositivo de medición de la irradianza emitida por dos de las lámparas utilizadas en la fase experimental	17
Figura IV.2	Resultados de las mediciones de demanda química de oxígeno total (DQO _T) realizadas a las muestras de los reactores R1 y R2 (con y sin planta y regados con agua residual sintética)	18
Figura IV.3	Resultados de las mediciones de conductividad eléctrica (CE) realizadas a las muestras de los reactores R1 y R2 (con y sin planta y regados con agua residual sintética)	19
Figura IV.4	Resultados de las mediciones de sólidos totales disueltos (STD) realizadas a las muestras de los reactores R1 y R2 (con y sin planta y regados con agua residual sintética)	20
Figura IV.5	Resultados de las mediciones de pH realizadas a las muestras de los reactores R1 y R2 (con y sin planta y regados con agua residual sintética)	21
Figura IV.6	Comparación de los electrodos A en los reactores R1, R2, R3 y R4, operando en la fase estable, a un TRH de 12 y 24 horas	22
Figura IV.7	Comparación de los electrodos B en los reactores R1, R2, R3 y R4, operando en la fase estable, a un TRH de 12 y 24 horas	23
Figura IV.8	Comparación de los electrodos C en los reactores R1, R2, R3 y R4, operando en la fase estable, a un TRH de 12 y 24 horas	25

	reactor Kr. (com planta y regado com agua residual.	
	sintética), operando a un TRH de 12 horas	
Tabla A.3.3.2	Mediciones de diferencia de potencial obtenidas en el	36
	reactor R2 (sin planta y regado con agua residual	
	sintética), operando a un TRH de 12 horas	
Tabla A.3.3.3	Mediciones de diferencia de potencial obtenidas en el	37
	reactor R3 (con planta y regado con agua corriente),	
	operando a un TRH de 12 horas	
Tabla A.3.3.4	Mediciones de diferencia de potencial obtenidas en el	38
	reactor R4 (sin planta y regado con agua corriente),	
	operando a un TRH de 12 horas	
Tabla A.3.3.5	Mediciones de diferencia de potencial obtenidas en el	39
	reactor R1 (con planta y regado con agua residual	
	sintética), operando a un TRH de 24 horas	
Tabla A.3.3.6	Mediciones de diferencia de potencial obtenidas en el	40
	reactor R2 (sin planta y regado con agua residual	
	sintética), operando a un TRH de 24 horas	
Tabla A.3.3.7	Mediciones de diferencia de potencial obtenidas en el	41
	reactor R3 (con planta y regado con agua corriente),	
	operando a un TRH de 24 horas	
Tabla A.3.3.8	Mediciones de diferencia de potencial obtenidas en el	42
1 4 5 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	reactor R4 (sin planta y regado con agua corriente),	
	operando a un TRH de 24 horas	
Figura A.3.3.1	Resultados de las mediciones de diferencia de	43
i igura A.S.S. I		43
	potencial, realizadas a las 7:00 horas, en el reactor R1,	
	a un TRH de 12 horas. Electrodo A, a 2 cm de la	
	superficie; electrodo B, a 10 cm de la superficie;	
F: A O O O	electrodo C, a 30 cm de la superficie	
Figura A.3.3.2	Resultados de las mediciones de diferencia de	43
	potencial, realizadas a las 9:00 horas, en el reactor R1,	
	a un TRH de 12 horas. Electrodo A, a 2 cm de la	
	superficie; electrodo B, a 10 cm de la superficie;	주요. 이 사람
	electrodo C, a 30 cm de la superficie	
그는 기가 가장 하다.		
Figura A.3.3.3	Resultados de las mediciones de diferencia de	44
	potencial, realizadas a las 11:00 horas, en el reactor	المناه المستراجين
	R1, a un TRH de 12 horas. Electrodo A, a 2 cm de la	
	superficie; electrodo B, a 10 cm de la superficie;	
	electrodo C, a 30 cm de la superficie	
	Marin Carlos	
	TESIS CO	31 L
	FALLA DE CA	· COUNT
	TALLA LIBA	VALLE EACH
	e of other particular and a 1990 of the source of the sour	

Diagrama demostrativo de la ubicación de los

Detalle del radiómetro con el que se hicieron las

Resultados de los análisis fisicoquímicos realizados al

Mediciones de diferencia de potencial obtenidas en el

reactor R1 (con planta y regado con agua residual

Valores de irradianza obtenidos con un radiómetro

influente y efluentes del dispositivo experimental

electrodos en los reactores

mediciones de irradianza

28/

32

33

34

35

Figura A.1.1

Figura A.3.1

Tabla A.3.1.1 Tabla A.3.2.1

Tabla A.3.3.1

Figura A.3.3.4	Resultados de las mediciones de diferencia de	44
	potencial, realizadas a las 13:00 horas, en el reactor R1, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie;	
Figura A.3.3.5	electrodo C, a 30 cm de la superficie Resultados de las mediciones de diferencia de potencial, realizadas a las 15:00 horas, en el reactor	45
	R1, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	
Figura A.3.3.6	Resultados de las mediciones de diferencia de potencial, realizadas a las 17:00 horas, en el reactor R1, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	45
Figura A.3.3.7	Resultados de las mediciones de diferencia de potencial, realizadas a las 19:00 horas, en el reactor R1, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	46
Figura A.3.3.8	Resultados de las mediciones de diferencia de potencial, realizadas a las 7:00 horas, en el reactor R2, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	46
Figura A.3.3.9	Resultados de las mediciones de diferencia de potencial, realizadas a las 9:00 horas; en el reactor R2, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	47
Figura A.3.3.10	Resultados de las mediciones de diferencia de potencial, realizadas a las 11:00 horas, en el reactor R2, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	47
Figura A.3.3.11	Resultados de las mediciones de diferencia de potencial, realizadas a las 13:00 horas, en el reactor R2, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	48 48
Figura A.3.3.12	Resultados de las mediciones de diferencia de potencial, realizadas a las 15:00 horas, en el reactor R2, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	

		ja samina
Figura A.3.3.13	Resultados de las mediciones de diferencia de	49
	potencial, realizadas a las 17:00 horas, en el reactor R2, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie;	
	electrodo C, a 30 cm de la superficie	
Figura A.3.3.14	Resultados de las mediciones de diferencia de	49
	potencial, realizadas a las 19:00 horas, en el reactor	
	R2, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie;	
	electrodo C, a 30 cm de la superficie	
Figura A.3.3.15	Resultados de las mediciones de diferencia de	50
	potencial, realizadas a las 7:00 horas, en el reactor R3,	
	a un TRH de 12 horas. Electrodo A, a 2 cm de la	
	superficie; electrodo B, a 10 cm de la superficie;	
	electrodo C, a 30 cm de la superficie	

Resultados de las mediciones de diferencia de Figura A.3.3.16 50 potencial, realizadas a las 9:00 horas, en el reactor R3, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie;

electrodo C, a 30 cm de la superficie

Figura A.3.3.17 Resultados de las mediciones de diferencia de potencial, realizadas a las 11:00 horas, en el reactor R3, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie Figura A.3.3.18 Resultados de las mediciones de diferencia de 51 potencial, realizadas a las 13:00 horas, en el reactor

	R3, a un TRH de 12 horas. Electrodo A, a 2 cm de la
	superficie; electrodo B, a 10 cm de la superficie;
	electrodo C, a 30 cm de la superficie
Figura A.3.3.19	Resultados de las mediciones de diferencia de 52
	potencial, realizadas a las 15:00 horas, en el reactor
	R3, a un TRH de 12 horas. Electrodo A, a 2 cm de la
	superficie; electrodo B, a 10 cm de la superficie;
	electrodo C, a 30 cm de la superficie
Figura A.3.3.20	Resultados de las mediciones de diferencia de 52

potencial, realizadas a las 17:00 horas, en el reactor R3, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie Figura A.3.3.21 Resultados de las mediciones de diferencia de 53 potencial, realizadas a las 19:00 horas, en el reactor R3, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie;

51

electrodo C, a 30 cm de la superficie

Figura A.3.3.22	Resultados de las mediciones de diferencia de	53
	potencial, realizadas a las 7:00 horas, en el reactor R4, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie;	
	electrodo C, a 30 cm de la superficie	
Figura A.3.3.23	Resultados de las mediciones de diferencia de potencial, realizadas a las 9:00 horas, en el reactor R4,	54
	a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	
Figura A.3.3.24	Resultados de las mediciones de diferencia de potencial, realizadas a las 11:00 horas, en el reactor R4, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	54
Figura A.3.3.25	Resultados de las mediciones de diferencia de potencial, realizadas a las 13:00 horas, en el reactor R4, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	55
Figura A 3 3 26	Resultados de las mediciones de diferencia de	55

potencial, realizadas a las 15:00 horas, en el reactor

electrodo C, a 30 cm de la superficie

F

Figura A.3.3.27

Figura A.3.3.28

Figura A.3.3.29

Figura A.3.3.30

R4, a un TRH de 12 horas. Electrodo A, a 2 cm de la

superficie; electrodo B, a 10 cm de la superficie;

Resultados de las mediciones de diferencia de

potencial, realizadas a las 17:00 horas, en el reactor R4, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie;

Resultados de las mediciones de diferencia de

potencial, realizadas a las 19:00 horas, en el reactor R4, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie:

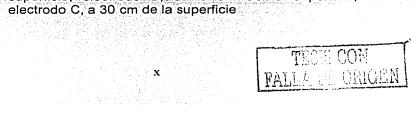
Resultados de las mediciones de diferencia de

potencial, realizadas a las 7:00 horas, en el reactor R1. a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie:

Resultados de las mediciones de diferencia de

potencial, realizadas a las 9:00 horas, en el reactor R1, a un TRH de 24 horas. Electrodo A, a 2 cm de la

superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie


56

56

57

57

ing the second of the second o	grad Alagowinda mawaka 44 ya 19 kilawa 1881 dan 18	en e
Figura A.3.3.31	Resultados de las mediciones de diferencia de potencial, realizadas a las 11:00 horas, en el reactor R1, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie;	58
Figura A.3.3.32	electrodo C, a 30 cm de la superficie Resultados de las mediciones de diferencia de potencial, realizadas a las 13:00 horas, en el reactor R1, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie;	58
Figura A.3.3.33	electrodo C, a 30 cm de la superficie Resultados de las mediciones de diferencia de potencial, realizadas a las 15:00 horas, en el reactor R1, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	59
Figura A.3.3.34	Resultados de las mediciones de diferencia de potencial, realizadas a las 17:00 horas, en el reactor R1, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	59
Figura A.3.3.35	Resultados de las mediciones de diferencia de potencial, realizadas a las 19:00 horas, en el reactor R1, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	60
Figura A.3.3.36	Resultados de las mediciones de diferencia de potencial, realizadas a las 7:00 horas, en el reactor R2, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	60
Figura A.3.3.37	Resultados de las mediciones de diferencia de potencial, realizadas a las 9:00 horas, en el reactor R2, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	61
Figura A.3.3.38	Resultados de las mediciones de diferencia de potencial, realizadas a las 11:00 horas, en el reactor R2, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	61
Figura A.3.3.39	Resultados de las mediciones de diferencia de potencial, realizadas a las 13:00 horas, en el reactor R2, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C a 30 cm de la superficie;	62

Figura A.3.3.40	Resultados de las mediciones de diferencia de potencial, realizadas a las 15:00 horas, en el reactor R2, a un TRH de 24 horas. Electrodo A, a 2 cm de la	62
	superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	
Figura A.3.3.41	Resultados de las mediciones de diferencia de potencial, realizadas a las 17:00 horas, en el reactor	63
	R2, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	
Figura A.3.3.42	Resultados de las mediciones de diferencia de potencial, realizadas a las 19:00 horas, en el reactor	63
	R2, a un TRH de 24 horas: Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	
Figura A.3.3.43	Resultados de las mediciones de diferencia de potencial, realizadas a las 7:00 horas, en el reactor R3, a un TRH de 24 horas Electrodo A, a 2 cm de la	64
그 그 그 그 그를 놓아 하셨다.	a on itsi de 24 holas, Liectiodo, A, a 2 chi de la	

superficie: electrodo B. a 10 cm de la superficie: electrodo C, a 30 cm de la superficie

Figura A.3.3.44 Resultados de las mediciones de diferencia de potencial, realizadas a las 9:00 horas, en el reactor R3, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie Figura A.3.3.45

> potencial, realizadas a las 11:00 horas, en el reactor R3, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie;

> Resultados de las mediciones de diferencia de

electrodo C, a 30 cm de la superficie

Figura A.3.3.46

64 Resultados de las mediciones de diferencia de 65

potencial, realizadas a las 13:00 horas, en el reactor R3, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie Figura A.3.3.47 Resultados de las mediciones de diferencia de 66 potencial, realizadas a las 15:00 horas, en el reactor R3, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie Figura A.3.3.48 Resultados de las mediciones de diferencia de 66 potencial, realizadas a las 17:00 horas, en el reactor R3, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie хi

65

Figura A.3.3.49	Resultados de las mediciones de diferencia de potencial, realizadas a las 19:00 horas, en el reactor R3, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	67
Figura A.3.3.50	Resultados de las mediciones de diferencia de potencial, realizadas a las 7:00 horas, en el reactor R4, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie;	67
Figura A.3.3.51	electrodo C, a 30 cm de la superficie Resultados de las mediciones de diferencia de potencial, realizadas a las 9:00 horas, en el reactor R4, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	68
Figura A.3.3.52	Resultados de las mediciones de diferencia de potencial, realizadas a las 11:00 horas, en el reactor R4, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	68
Figura A.3.3.53	Resultados de las mediciones de diferencia de potencial, realizadas a las 13:00 horas, en el reactor R4, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	69
Figura A.3.3.54	Resultados de las mediciones de diferencia de potencial, realizadas a las 15:00 horas, en el reactor R4, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	69
Figura A.3.3.55	Resultados de las mediciones de diferencia de potencial, realizadas a las 17:00 horas, en el reactor R4, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	70
Figura A.3.3.56	Resultados de las mediciones de diferencia de potencial, realizadas a las 19:00 horas, en el reactor R4, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie; electrodo C, a 30 cm de la superficie	70
Figura A.4.1	Multimetro digital utilizado	71
Figura A.4.2	Detalle del empacado de una columna	71
Figura A.4.3	Agua residual sintética en descomposición	71
Figura A.4.4	Detalle del dispositivo de medición de irradianza	72
Figura A.4.5	Detalle del dispositivo de medición de irradianza	72
Figura A.4.6	Detalle del dispositivo de medición de irradianza	73
Figura A.4.7	Detalle del dispositivo de medición de irradianza	73
	magaza Asara	

	estadístico F, para los valores de diferencia de potencial obtenidos en los electrodos A, B y C, del reactor R1, a las 7:00 horas, operando a un TRH de 12 horas	
Figura A.5.1	Rangos en el reactor R1 (con planta y regado con agua residual sintética), operando a un TRH de 12 horas. Medición de las 7:00 horas	80
Figura A.5.2	Desviación estándar del reactor R1 (con planta y regado con agua residual sintética), operando a un TRH de 12 horas. Medición de las 7:00 horas	80
Figura A.5.3	Valores de diferencia de potencial promedio en el reactor R1 (con planta y regado con agua residual sintética), operando a un TRH de 12 horas. Medición de las 7:00 horas	81
Figura A.5.4	Prueba de estadístico F para el reactor R1 (con planta y regado con agua residual sintética), operando a un TRH de 12 horas. Medición de las 7:00 horas	81
Figura A.5.5	Diferencias de potencial promedio en el electrodo A (a 2 cm de la superficie) en el reactor R1 (con planta y regado con agua residual sintética), operando a un TRH de 12 horas	82
Figura A.5.6	Diferencias de potencial promedio en el electrodo B (a 10 cm de la superficie) en el reactor R1 (con planta y regado con agua residual sintética), operando a un TRH de 12 horas	82
Figura A.5.7	Diferencias de potencial promedio en el electrodo C (a 30 cm de la superficie) en el reactor R1 (con planta y regado con agua residual sintética), operando a un TRH de 12 horas	83
Figura A.5.8	Diferencias de potencial promedio en el electrodo A (a 2 cm de la superficie) en el reactor R2 (sin planta y regado con agua residual sintética), operando a un TRH de 12 horas	83
	UIII TESIS CON	7
	FALLA DE ORIGEI	¥

Figura A.4.8

Figura A.4.9

Figura A.4.10

Figura A.4.11

Figura A.4.12

Figura A.4.13

Figura A.4.14

Tabla A.5.1

Detalle del radiómetro

experimento

regados con agua corriente

regados con agua residual sintética

Vista general del sistema experimental

Detalle del dispositivo de medición de irradianza Reactores R1 (reactor de prueba) y R2 (reactor testigo),

Reactores R4 (reactor testigo) y R3 (reactor testigo),

Detalle de dos de las lámparas utilizadas para en el

Detalle del sitio en donde se realizó el experimento; la

Valores de promedio, rango, desviación estándar y

temperatura se mantuvo en un intervalo de 28 ± 2°C

74

74

75

76

76

77

	OB 12 NOTAS	
Figura A.5.10	Diferencias de potencial promedio en el electrodo C (a	84
	30 cm de la superficie) en el reactor R2 (con planta y	
	regado con agua residual sintética), operando a un TRH	
L. Commercial and the speech of the first speech	de 12 horas	
Figura A.5.11	Diferencias de potencial promedio en el electrodo A (a 2	85
Figura A.S.TT		. 00
	cm de la superficie) en el reactor R3 (con planta y	
	regado con agua corriente), operando a un TRH de 12	
	horas	
Figura A.5.12	Diferencias de potencial promedio en el electrodo B (a	85
	10 cm de la superficie) en el reactor R3 (con planta y	
	regado con agua corriente), operando a un TRH de 12	
	horas	
Figura A.5.13	Diferencias de potencial promedio en el electrodo C (a	86
	30 cm de la superficie) en el reactor R3 (con planta y	
	regado con agua corriente), operando a un TRH de 12	해 계 원 보다
	horas	
Figura A.5.14	Diferencias de potencial promedio en el electrodo A (a 2	86
g	cm de la superficie) en el reactor R4 (sin planta y	
	regado con agua corriente), operando a un TRH de 12	
	horas	
Figura A.5.15		07
rigura A.S. 15	Diferencias de potencial promedio en el electrodo B (a	87
	10 cm de la superficie) en el reactor R4 (sin planta y	
	regado con agua corriente), operando a un TRH de 12	
	horas	
Figura A.5.16	Diferencias de potencial promedio en el electrodo C (a	87
	30 cm de la superficie) en el reactor R4 (con planta y	
	regado con agua corriente), operando a un TRH de 12	
	horas	
Figura A.5.17	Diferencias de potencial promedio en el electrodo A (a 2	88
	cm de la superficie) en el reactor R1 (con planta y	
	regado con agua residual sintética), operando a un TRH	
	de 24 horas	
Figura A.5.18	Diferencias de potencial promedio en el electrodo B (a	88
	10 cm de la superficie) en el reactor R1 (con planta y	
	regado con agua residual sintética), operando a un TRH	
	de 24horas	
Figura A.5.19	Diferencias de potencial promedio en el electrodo C (a	89
i igura A.S. 19		09
	30 cm de la superficie) en el reactor R1 (con planta y	
	regado con agua residual sintética), operando a un TRH	
	de 24horas	
Figura A.5.20	Diferencias de potencial promedio en el electrodo A (a 2	89
	cm de la superficie) en el reactor R2 (sin planta y	
	regado con agua residual sintética), operando a un TRH	
		7
	TESIS CON	1
	XIV TIATTA DE ODICA	Ná 🚶
	FALLA DE ORIGEI	74

Diferencias de potencial promedio en el electrodo B (a 10 cm de la superficie) en el reactor R2 (sin planta y regado con agua residual sintética), operando a un TRH

84

Figura A.5.9

de 12 horas

	de 24 horas	
Figura A.5.21	Diferencias de potencial promedio en el electrodo B (a 10 cm de la superficie) en el reactor R2 (sin planta y regado con agua residual sintética), operando a un TRH de 24 horas	90
Figura A.5.22	Diferencias de potencial promedio en el electrodo C (a 30 cm de la superficie) en el reactor R2 (con planta y regado con agua residual sintética), operando a un TRH de 24horas	90
Figura A.5.23	Diferencias de potencial promedio en el electrodo A (a 2 cm de la superficie) en el reactor R3 (con planta y regado con agua corriente), operando a un TRH de 24 horas	91
Figura A.5.24	Diferencias de potencial promedio en el electrodo B (a 10 cm de la superficie) en el reactor R3 (con planta y regado con agua corriente), operando a un TRH de 24 horas	91
Figura A.5.25	Diferencias de potencial promedio en el electrodo C (a 30 cm de la superficie) en el reactor R3 (con planta y regado con agua corriente), operando a un TRH de 24 horas	92
Figura A.5.26	Diferencias de potencial promedio en el electrodo A (a 2 cm de la superficie) en el reactor R4 (sin planta y regado con agua corriente), operando a un TRH de 24 horas	92
Figura A.5.27	Diferencias de potencial promedio en el electrodo B (a 10 cm de la superficie) en el reactor R4 (sin planta y regado con agua corriente), operando a un TRH de 24	93

Diferencias de potencial promedio en el electrodo C (a 30 cm de la superficie) en el reactor R4 (con planta y regado con agua corriente), operando a un TRH de 24

horas

Figura A.5.28

CAPÍTULO I

INTRODUCCIÓN

I.1 PROBLEMÁTICA

En México se generan aproximadamente 230 m³s⁻¹ de aguas residuales, de los cuales sólo el 15.3% de ellas son tratadas para ser descargadas a los cuerpos receptores y el resto son descargadas sin tratamiento alguno o tratadas en forma parcial. De la capacidad instalada de PTAR (industriales y domésticas), sólo opera el 70%, aproximadamente (CNA, 2003). Esto conlleva a una situación de deterioro, tanto ecológico, como de la calidad de vida de los habitantes del país (Luna Pabello et al.; 1997; Ramírez et al., 1997). Los problemas de tipo económico y político agravan la situación y aunado a esto puede hablarse de la falta de educación sobre aspectos de contaminación ambiental y de la búsqueda de solución a estas problemáticas, prevaleciente en la sociedad, ocasionando que el tratamiento de estos desechos líquidos se torne un problema de gran magnitud.

En vista de lo anterior, la búsqueda de opciones de tratamiento de aguas residuales viables técnica y económicamente (por su sencillez en la construcción, operación y mantenimiento), se hace una necesidad imperativa. Una de estas opciones la representan los humedales artificiales o construidos (HA o HC). Estos son sistemas de tratamiento en los que se llevan a cabo procesos físicos y bioquímicos para la transformación de compuestos orgánicos disueltos. Su diseño y construcción son relativamente sencillos y los costos de operación y mantenimiento son más bajos que los sistemas convencionales. Puede decirse que los HC representan una opción viable de tratamiento de aguas residuales en zonas suburbanas y rurales (Fenoglio, 2003; Fenoglio et al., 2002). Actualmente las plantas de tratamiento existentes en el país, basadas en humedales artificiales, son a nivel piloto. Se puede encontrar una descripción más detallada de esta situación en Miranda (2000).

Los HC se fundamentan en los siguientes principios básicos: La actividad bioquímica de los microorganismos; el aporte de oxígeno a través de los vegetales y un lecho que sirve como soporte, tanto para los microorganismos como para los vegetales, además de servir como material filtrante. En conjunto, estos elementos eliminan materiales orgánicos suspendidos en el agua residual (Cooper y Green, 1995; Reed, 1992) y biodegradan materiales disueltos susceptibles al tratamiento biológico hasta mineralizarlos (Hu, 1991).

No requieren sistemas de bombeo una vez que el agua residual llega a ellos, dado que al lecho se le proporciona una pendiente de entre 6 y 8% para facilitar el flujo del agua.

PAGINACIÓN DISCONTINUA

Por otro lado, tienen un período de vida útil relativamente largo, 25 años, cuando funcionan adecuadamente. No presentan malos olores y son estéticamente agradables. Las plantas se pueden cosechar para la manufactura de productos específicos (construcción, utensilios, etc.) de tipo artesanal.

Hablando de los inconvenientes del sistema, puede decirse que si hubiera infestaciones por plagas, las macrofitas se ven afectadas, sobre todo si hay monocultivos. Durante el período de estiaje, debido a que parte de las hojas van secándose, pueden ser propensos a sufrir daños por incendios, ya sean por accidente o por vandalismo. Aún cuando este tipo de sistemas tiene una eficiencia promedio del 90% (Brix, 1993; Hammer, 1993), no se cuenta con la información suficiente para garantizar su correcto funcionamiento en zonas distintas a donde se han determinado estas eficiencias.

Los estudios que plantean el efecto de la transferencia del oxígeno generado por las macrofitas durante la fotosíntesis al sistema radicular donde se encuentran las bacterias y su impacto en la bioconversión de la materia orgánica son relativamente escasos. Por ello, en esta investigación se plantea corroborar este fenómeno, experimentalmente, en sistemas a escala de banco.

Dentro de este contexto, en el laboratorio del Programa de Ingeniería Química Ambiental y Química Ambiental, de la Facultad de Química de la UNAM, se lleva a cabo un estudio que incluye la determinación del papel que juega la transferencia del oxígeno molecular en la zona radicular de las macrofitas.

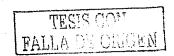
El estudio correspondiente al oxígeno difundido del aire a través de la alimentación secuenciada de agua residual al humedal artificial, fue realizado en México y Alemania, por un estudiante de la Maestría en Ciencias Químicas (Química Ambiental), de la Facultad de Química de la UNAM. Los resultados preliminares fueron dados a conocer en su tesis de grado (Fenoglio, 2003) y son citados a lo largo de este documento, ya que son parte complementaria del mismo. Este estudio plantea la determinación de la transferencia de oxígeno generado fotosintéticamente, hacia la zona de la raíz de la planta, de manera indirecta, usando potenciales de óxido-reducción.

I.2 OBJETIVO Y ALCANCES

Durante la elaboración del presente trabajo, se contempla el cumplimiento del siguiente objetivo:

Evaluar el efecto del oxígeno generado fotosintéticamente en la depuración de agua residual en columnas que simulan humedales artificiales.

Los alcances del proyecto implican construir un sistema modelo a escala de banco para seguir, de manera indirecta, mediante mediciones de potenciales de óxido-reducción la transferencia del oxígeno generado por la acción fotosintética de las macrofitas, a través del lecho poroso que sirve de soporte a los microorganismos y las macrofitas. Se emplearán electrodos construidos con materiales sencillos y se intercalibrarán con electrodos comerciales.


1.3 HIPÓTESIS

La hipótesis en que se basa este trabajo establece que: La degradación de la materia orgánica presente en agua residual sintética se realiza mediante la acción del consorcio bacteriano aerobio presente en la zona radicular de la planta macrofita facilitándose esta degradación por la presencia de oxígeno generado fotosintéticamente.

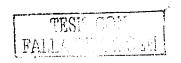
Esta degradación está limitada por la cantidad de oxígeno presente en la zona de la raíz, ya que durante el día se tiene la generación de oxígeno fotosintético y en la noche las macrofitas respiran como cualquier organismo aerobio, por lo que no generan oxígeno, lo que plantea un mecanismo secuenciado aerobio-anaerobio durante el día y la noche en el reactor.

Este mecanismo de transferencia de oxígeno durante el día es cuantificable mediante la medición de las diferencias de potencial redox presentes en el sistema.

A continuación se presentan los fundamentos en los que se basa este sistema.

CAPÍTULO II

FUNDAMENTOS


II.1 DEFINICIONES

Un humedal se define como un área de terreno totalmente inundado por aguas dulces o salobres. La inundación puede ser permanente o temporal, según sea la época del año. Existe en ellos vegetación propia de las zonas húmedas y adaptadas a la vida acuática o semi-acuática. Los humedales pueden ser naturales (pantanos, esteros, marismas, manglares, etc.) o artificiales, los cuales son sistemas creados por el hombre, a semejanza de los naturales, con la finalidad de usarlos en el tratamiento de las aguas residuales (Hammer y Bastian, 1989; Hammer, 1993; Bastian y Hammer, 1993; Vymazal et al., 1998).

Los humedales artificiales o construidos por el hombre son sistemas especificamente diseñados para tratar aguas residuales, como se ha comentado arriba. La filosofía del tratamiento consiste en aumentar la capacidad depuradora del sistema mediante la optimación de los procesos físicos, químicos y biológicos que ocurren en los sistemas naturales (Hammer y Bastian, 1989; Vymazal et. al., 1998).

Este método de uso de humedales para tratamiento de aguas residuales, conocido también como método de la rizosfera o de zona de la raíz (root method, en inglés), aprovecha las raíces de las plantas (hidrofitas) y sus consorcios microbianos para la degradación de los contaminantes orgánicos a compuestos simples asimilables por la misma planta. El principio fundamental del método se basa en el hecho de que la rizosfera (ambiente acuático que circunda las raíces de la planta) es altamente aerobio por el aporte de oxígeno que proviene del sistema vascular de los tallos y de las hojas de las plantas; asimismo, el movimiento natural de las raíces y rizomas mantiene la porosidad del medio plantado, permitiendo el flujo continuo de desechos a través de todo el sistema de lechos. De esta forma, el área circundante a las raíces es aerobia, mientras que las partes alejadas de ellas son anaerobias. La interacción de estos micro-ambientes permiten el desarrollo de una gran variedad de microorganismos como protozoarios, bacterias, hongos y algas (Rivera y Calderón, 1993).

Además de las altas eficiencias de remoción de carga orgánica y sólidos suspendidos que alcanzan los sistemas de este tipo, es importante resaltar su utilidad en la eliminación de nutrimentos, como el fósforo y el nitrógeno, del agua residual tratada en ellos (Haberl y Perfler, 1991).

Las plantas hidrofitas más utilizadas en estos sistemas pueden ser clasificadas en: (a) flotantes, como el lirio acuático (*Eichhornia sp*) y el chichicachtli (del Náhuatl *chichic*=amargo + *achtli*=semilla) o lentejilla (*Lemna sp*, *Hydrocotyle sp*, *Nimpha sp*); (b) emergentes, como los tules (*Typha sp*), los carrizos (*Phragmites sp*), el platanillo (*Canna sp*), la espadaña (*Scirpus sp*) y el ombligo de Venus (*Hydrocotyle sp*); (c) sub-emergentes, como *Elodea sp*, *Lobelia dortmanna* e *Isoetes lacustris* (Bishop y Eighmy, 1989; Brix, 1993; Zirschky y Reed, 1988).

Con base en esta clasificación de las hidrofitas, en términos generales, los HA o HC pueden clasificarse en tres tipos, de acuerdo con la forma de vida de las plantas vasculares dominantes en el ecosistema (Haberl, 1997): Sistemas de libre flotación, sistemas de raices emergentes y sistemas subemergentes.

En particular, los sistemas de raíces emergentes se clasifican en dos grupos, considerando la forma de alimentación: de flujo horizontal, los cuales tienen la característica de que el influente se introduce al sistema de forma lateral y de flujo vertical, en donde el influente es alimentado por la parte superior.

En función de la concentración y características de los contaminantes presentes en el agua que se pretende tratar, así como los requerimientos de carga que se deseen obtener, se elige uno u otro diseño.

De cualquier forma, es necesaria la implementación de un pretratamiento que facilite la remoción de los sólidos suspendidos de fácil sedimentación y que prolongue la vida útil del HC (previniendo su rápido azolvamiento).

El funcionamiento general del sistema se basa en que un lecho de raices, usando plantas emergentes, como los carrizos (*Phragmites sp*) y los tules (*Typha sp*), muy abundantes en México y ubicuas de muchas regiones del planeta, aporta una vía o ruta hidráulica por donde fluye el agua a tratar. Esta zona, llamada como ya se dijo, rizosfera, es el espacio entre los rizomas, las raíces y el área circundante. El movimiento de la trama radicular en crecimiento (raíces y rizomas) abriéndose espacio en el material inerte, previene la obstrucción del flujo de agua.

Los carrizos y los tules aportan el oxígeno a la rizosfera a través de las hojas, los tallos y rizomas de los vegetales mediante la fotosíntesis (Conley, 1991). Es recomendable que el sistema se encuentre permanentemente húmedo, para que las plantas crezcan adecuadamente. Al inicio es posible regar el humedal con agua corriente pero, a medida que las raíces de los vegetales crecen y maduran, se procede a la irrigación con agua residual hasta que ésta constituye el único aporte.

Los costos de inversión requeridos por los sistemas de humedales artificiales son muy bajos, comparados con los tratamientos convencionales ya que, dado que su vida útil es larga (hasta 25 años), los costos de mantenimiento también son bajos.

Por otro lado, si se tiene el cuidado de hacer un correcto diseño, la conducción del agua es por gravedad, lo que elimina una parte importante de los consumos energéticos y el consecuente gasto por este concepto (Reed, 1992).

Los desequilibrios en la operación debidos a fluctuaciones bruscas en el caudal o en los niveles de concentración de contaminantes, pueden controlarse mediante características específicas de los diseños, haciendo que el sistema opere más eficientemente.

II.2 MECANISMOS DE REMOCIÓN DE CONTAMINANTES EN LOS HUMEDALES ARTIFICIALES

El principio fundamental del mecanismo de remoción de material orgánico y nutrimentos, es el hecho de que la rizosfera, es decir, el ambiente fluido que circunda las raíces de la planta es altamente aerobio, por el aporte continuo de oxigeno de la planta (raíces, tallo y hojas) hacia el medio, debido al intercambio de O₂ por CO₂ que realiza la misma planta, a lo cual se debe añadir el movimiento natural de las raíces y rizomas que mantiene poroso el medio plantado, permitiendo el flujo continuo de desechos a través de todo el sistema. Se tienen así dos microambientes: Uno aerobio, cerca de la raíz (en la rizosfera) y otro anaerobio, en las partes alejadas de la misma, como ya se dijo arriba. Entre ambos realizan la degradación de los nutrimentos presentes en el agua residual, a compuestos más simples aprovechables por la planta o por otros organismos del sistema (Hammer, 1993; Rivera y Calderón, 1993).

La raíz influye en el suelo de varias maneras: Los niveles de CO₂ aumentan por la respiración de la raíz durante la noche y las concentraciones de oxígeno, agua y minerales se reducen, mientras que durante el día, la raíz y la planta entera producen oxígeno y consumen CO₂ mediante la fotosíntesis (Campbell, 1987; Rivera y Calderón, 1993).

La Tabla II.1 resume los mecanismos que tienen lugar en un humedal al interaccionar los elementos bióticos y abióticos del sistema.

Tabla II.1. Mecanismos de remoción de contaminantes en los sistemas de humedales (Miranda, 2000)

	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
MECANISMOS	CONTAMINANTE AFECTADO	DESCRIPCION
1 120	FISICOS	
Sedimentación	P) Sólidos sedimentables S) Sólidos coloidales I) DBO, N, F, metales orgánicos y refractarios, bacterias y virus	Sedimentación por gravedad y constituyentes contaminantes
Filtración	S) Sólidos sedimentables S) Sólidos coloidales	Partículas retenidas mecánicamente a medida que pasa el agua por el sustrato y masa de raíces

Adsorción	S) Sólidos coloidales	Fuerzas de atracción entre partículas (Van der Waals)
Volatilización	S) N	Volatilización del NH₃ del agua residual
	QUÍMICOS	
Precipitación	P) F y metales pesados	Formación y coprecipitación de compuestos insolubles
Adsorción	P) F y metales pesados S) Compuestos orgánicos refractarios	Adsorción sobre la superficie de sustrato y planta
Descomposición	P) Compuestos orgánicos refractarios	Descomposición o alteración de compuestos menos estables por fenómenos como irradiación UV, oxidación y reducción
	BIOLÓGICOS	
Metabolismo microbiano	P) Sólidos coloidales, DBO, N, orgánicos refractarios, metales pesados	Remoción de sólidos coloidales y orgánicos solubles por bacterias suspendidas y adheridas a las plantas
Metabolismo de las Plantas	S) Orgánicos refractarios, bacterias y virus	Consumo y metabolismo de orgánicos por las plantas. Las secreciones de las raíces pueden ser tóxicas a los organismos de origen entérico
Absorción de las plantas	S) N, F, metales pesados, orgánicos refractarios	Bajo condiciones apropiadas, cantidades significativas de estos contaminantes pueden ser tomados por las plantas
Muerte natural	P) Bacterias y virus	Decaimiento natural de microorganismos en ambientes

Donde: P) = Efecto primario; S) = Efecto secundario; I) = Efecto incidental; DBO = Demanda bioquímica de oxigeno; N = Nitrógeno; F = Fósforo

Los sólidos suspendidos en general son removidos en una unidad de pretratamiento mecánico que se recomienda exista antes del humedal; el resto de sólidos suspendidos es removido por sedimentación y filtración, una vez que el agua a tratar ha entrado a éste. Como se observa en la Tabla II.1, los tratamientos puramente físicos remueven un porcentaje importante de contaminantes como DBO₅, nutrimentos y microorganismos patógenos (Lord, 1982; Perfler y Haberl, 1994, 1995).

Los compuestos orgánicos solubles, en su mayoría, son degradados aerobiamente por bacterias fijas en la planta y en las superficies sedimentadas, aunque la degradación anaerobia puede ser importante en casos en los que la cantidad de O₂ no sea suficiente.

En ambos mecanismos se suceden una serie de transformaciones capaces de descomponer la materia orgánica (MO) en diferentes grados. Así, en el medio acuático tiene lugar una autodepuración que no es más que el resultado de los procesos de digestión, asimilación y metabolización de los compuestos orgánicos por microorganismos saprófitos (bacterias, hongos y protozoarios, entre otros).

En las reacciones de descomposición microbiana aerobia se consume O_2 y se producen CO_2 y H_2O , como se describe en las siguientes reacciones simplificadas (Ecs. II.1-II.5):

MO (carbono orgánico) + O₂			> CO₂	Ec. II.1
MO (hidrógeno orgánico) + O ₂	(bacterias)>	· H₂O	Ec. II.2
MO (nitrógeno orgánico) + O ₂	(bacterias)		· (NO	3) Ec. II.3
MO (azufre orgánico) + O2 (ba	cterias)		> (SO ₂	() ^{2*} Ec. II.4
MO (fósforo orgánico) + O2 (ba	acterias)	>	(PO	ຖ້³ື Ec. II.5

Por su parte, las reacciones anaerobias son procesos en los que, a partir de materia orgánica, se producen metano y dióxido de carbono (Brix, 1993; Manahan, 2002; Rivera y Calderón, 1993; Robles *et al.*, 1993):

MO (carbono e hidrógeno orgánicos) + (bacterias) ----->
$$CO_2$$
 + CH_4 Ec. II.6 MO (nitrógeno orgánico) + (bacterias) ----> NH_3 Ec. II.7 MO (azufre orgánico) + (bacterias) -----> H_2S Ec. II.8

Como estos dos microambientes coexisten en el sistema, se combinan mejorando de esta forma la depuración del aqua residual.

II.3 TRANSPORTE DE OXÍGENO EN LOS HUMEDALES ARTIFICIALES

El O₂ necesario para la degradación del material orgánico, presente en el agua residual a tratar, proviene de distintas fuentes: Directamente de la atmósfera por difusión a través del sedimento, por medio de la interfase agua-atmósfera o por la producción fotosintética de oxígeno en la planta y que ésta intercambia con el medio, a través de raíces, tallo y hojas (Brix, 1993).

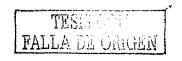
Durante el día, con el proceso de fotosíntesis, las plantas hacen una aportación importante de oxígeno. Se ha identificado que al utilizar plantas sembradas en el medio de soporte de los humedales, se generan condiciones tales que favorecen el desarrollo de microorganismos en la zona de la rizosfera y ayudan a la oxigenación de esta zona (Haberl, 1997), aumentando la capacidad de degradación aerobia de la materia orgánica (Brix, 1993). Por otro lado, la anatomía de la planta también ayuda al proceso de oxigenación del sistema, ya que los tallos, huecos en el centro, de las plantas macrofitas vasculares facilitan este proceso.

El medio de soporte es fundamental para garantizar la transferencia de masa (O_2 y CO_2 , así como micro y macromoléculas que forman el material contaminante del agua residual) y permitir el flujo de agua residual y sus contaminantes (Brix, 1993, Haberl, 1997).

En los humedales, el transporte interno de oxígeno puede ocurrir por difusión molecular pasiva, siguiendo los gradientes de concentración de un sistema lacustre. También puede ser por flujo convectivo del aire a través de los espacios internos libres de las plantas (Vymazal et al., 1998).

La difusión es el proceso mediante el cual, la materia es transportada de una parte del sistema a otra, como resultado del movimiento molecular. El movimiento neto de la materia será de los sitios con más alta concentración a sitios con más baja concentración, tendiendo hacia el equilibrio. Las tasas de difusión de los gases dependen del medio en que se lleva a cabo el proceso, el peso molecular del gas y de la temperatura. Estos factores se representan en el coeficiente de difusión del gas, misma que ha sido estandarizada para varias sustancias. Matemáticamente se expresa mediante la Ley de Fick.

En varias especies la convección juega un papel importante en la aireación de los tejidos bajo tierra. Otro mecanismo de transporte de gases en la zona de las raíces, es la "transpiración térmica"; ésta consiste en el movimiento del gas a través de una separación porosa cuando hay un gradiente de concentración "ayudado" por uno de temperatura a través de la separación (Vymazal et al., 1998).


La magnitud de la difusión del oxígeno a través de las plantas hacia la zona de la raiz, es aparentemente suficiente para la rizosfera y para oxidar el material anóxico adyacente.

La extensión de la oxigenación depende de varios factores, incluyendo la carga orgánica (medida como demanda bioquímica de oxígeno, DBO) y los procesos químicos que se llevan a cabo en el sustrato sólido, así como de la facilidad del oxígeno para "escapar" de la raiz de la planta, lo cual depende de cada planta (Brix, 1993; Vymazal et al., 1998).

El material inerte de los humedales está preferentemente bajo condiciones anaerobias, inducidas por la saturación y la inundación del medio. El resultado más significativo de su aislamiento del oxígeno atmosférico, es el cambio de las condiciones en su seno de ser aerobias oxidantes a anóxicas reductoras (Vymazal et al., 1998; Haberl, 1997).

II.4 IRRADIANZA RECIBIDA POR LAS PLANTAS EN ESTUDIO

Con el objeto de evaluar la fuente fotónica (ya que se usan lámparas en sustitución de la luz solar), se medirá la radiación que teóricamente reciben los sistemas en estudio (irradianza o irradiancia), a través de las lámparas.

La irradianza es la cantidad de energía por unidad de área. Como ejemplo, se puede pensar en un plato negro expuesto al sol. La irradianza es la cantidad de energía solar que calienta al plato. Si el sol está en el cenit habrá más energía para calentar el plato, que si estuviera en la puesta (casi en el horizonte), despreciando los efectos atmosféricos. La radiación que recibe la tierra diariamente del sol es de unos 1300 Wm⁻² (Manahan, 2002).

La irradianza fotosintéticamente activa es la energía emitida por el sol y recibida por las plantas y de la cual se sirven para realizar el proceso de la fotosintesis. Hay una relación directamente proporcional entre irradianza y oxígeno producido durante este proceso y que se puede expresar por medio de una curva de irradianza vs. oxígeno producido.

A continuación se presenta la metodología empleada en esta investigación.

CAPÍTULO III

MATERIALES Y MÉTODOS

Se realizó la construcción de un dispositivo experimental capaz de proporcionar información indirecta sobre el oxígeno presente en el sistema, mediante la medición de las diferencias de potencial en el sistema de estudio. Para ello se utilizaron unas columnas empacadas y provistas de electrodos redox, previamente construídas (Fenoglio, 2003). Los electrodos proporcionan lecturas de diferencias de potencial, las cuales fueron registradas en forma electrónica. Las columnas simularon un sistema de humedales construidos. Dos de las columnas contaban con matas de tules (*Typha sp*) y dos, controles, no tuvieron macrofitas. Dos de los reactores fueron regados con agua residual sintética, uno con macrofita y otro sin ella, para evaluar la remoción de la carga orgánica presente. Los otros dos fueron regados con agua de la llave (sin materia orgánica). A continuación se detalla la metodología que se siguió para alcanzar los objetivos planteados al inicio de este documento.

III.1 CONSTRUCCIÓN DE LAS COLUMNAS

Se emplearon cuatro columnas para simular los reactores. Las columnas fueron construidas con acrílico y contaban con 30 cm de diámetro y 60 cm de alto. Estaban empacadas con medio de soporte inerte, consistente de escoria volcánica, previamente lavada y esterilizada. La granulometría del medio está distribuida de acuerdo con la Tabla III.1 (Durán-de-Bazúa et al., 1998). En dos de ellas fueron colocadas macrofitas (tules provenientes de Xochimilco y adaptadas a la zona de la Ciudad Universitaria, *Typha sp*) y dos, que se emplearon como control, no contaron con planta (Fenoglio et al., 2002). A las dos primeras columnas se les identificó como R1 y R2, respectivamente; mientras que a las columnas restantes se les denominó R3 y R4. Las Figuras III.1 y III.2 muestran el dispositivo experimental que se describe arriba (en el Anexo A.1 se presentan las dimensiones y descripción prolija de los sistemas).

Tabla III.1. Estratos del material de soporte en las columnas en estudio (Durán-de-Bazúa et al., 1998: Fenoglio, 2002)

		1000, 100,09.0, 200.	- /
ſ	Diámetro granular (mm)	Grosor del estrato (cm)	Altura relativa a la parte inferior de la columna (mm)
Γ	4-8	20	110
Г	0.5-4	60	90
Γ	4-8	10	30
Γ	12-16	20	20

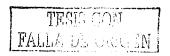
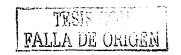


Figura III.1. Reactores R1 (reactor de prueba alimentado con agua residual sintética y dotado con planta macrofita) y R2 (reactor testigo regado con agua residual sintética y sin planta macrofita).

Figura III.2. Reactores R3 y R4. El primero se refiere al reactor testigo regado con agua corriente y dotado con planta macrofita y el segundo se refiere al reactor testigo regado con agua corriente y sin planta macrofita.

Puesto que se va a evaluar el papel que tiene el oxígeno producido por la fotosíntesis de las plantas, las columnas tienen una tapa plástica de color negro en la parte superior, para evitar al máximo el paso del oxígeno atmosférico hacia la zona de la raíz. Presenta un orificio por el que pasa la planta, para los reactores que la tienen. Los reactores control, sin planta, están totalmente sellados al paso del aire. También presentan un orificio para introducir la alimentación del agua.


Cada reactor tenía colocados tres electrodos de potencial redox (Cu/CuSO₄-Pt), construidos siguiendo la metodología propuesta por Fenoglio *et al.* (2002). Su posición en el reactor es a tres diferentes niveles con respecto de la parte superior de la columna (A=2, B=10 y C=30 cm, respectivamente), para evaluar los potenciales de óxido-reducción de la zona superior del reactor, de la zona intermedia y de la zona inferior. Las mediciones se realizaron manualmente con un multímetro digital modelo 390A de BK PRECISION. Esto se hace de forma intermitente y los datos son descargados a una computadora personal y almacenados para su posterior análisis.

Los reactores se fueron colocados en un cuarto a temperatura pseudo-controlada (T_{amb} = 28±2°C). Una ventaja es que no hay variaciones térmicas para la macrofita y los sistemas radiculares. Una desventaja es que hay una alta tasa de evapotranspiración y una rápida descomposición del agua residual sintética ya que ésta no se encuentra refrigerada. Para contrarrestar un poco este inconveniente se decidió mantener una alta humedad relativa en el sitio de trabajo, durante el mayor tiempo posible. Las mediciones que se hicieron de humedad relativa, durante dos semanas, arrojaron un valor promedio del 85%.

III.2 ALIMENTACIÓN DE AGUA

Como sustrato se utilizó un aqua sintética que contiene una relación C:N:P de 15:1:0.1, con una concentración, medida como DQO_T, de 800 mg/L. La Tabla III.2 presenta la composición del agua residual sintética, misma que se diluye en 20 L de agua (y que son para 24 horas de alimentación). El régimen de alimentación fue de 1.67 L/h aproximadamente, que se alimentaban en forma continua por gravedad, lo que daba un tiempo de residencia hidráulico de 12 horas. Los experimentos con este tiempo de residencia se realizaron hasta alcanzar la estabilidad, la cual se consideró cuando el valor de remoción de DQO_T tenga variaciones de ±10% en un lapso de 2 semanas. Se emplean las metodologías propuestas por la APHA (1992) para evaluar la degradación del agua residual sintética (como demanda química de oxígeno total, como sólidos disueltos totales y como conductividad eléctrica). Se verificó la evapotranspiración cada vez que se corroboró la rapidez de alimentación (midiendo volúmenes de entrada y salida en el mismo lapso). Se midieron valores de pH a la entrada y la salida de los reactores con un potenciómetro digital modelo 390A de BK PRECISION y se mide la temperatura del influente y el efluente con un termómetro de mercurio SAMA CT20, así como la temperatura del cuarto donde están colocados los reactores.

Sólo dos de las columnas (una con planta y la otra control, sin ella) fueron regadas con el agua residual sintética. Las otras dos se regaban con agua corriente (una con planta y la otra sin ella) para que funcionaran también como un control.

La determinación de la materia orgánica presente, medida como DQO $_{\text{T}}$, se realizó dos veces por semana y se midieron, además, valor de pH, conductividad eléctrica (CE), sólidos disueltos totales (SDT) y temperatura promedio, empleando un sistema de campo marca Corning.

Tabla III.2. Composición del agua residual sintética (Fenoglio et al., 2002)

Componente	Cantidad (g)	Concentración (mg/L)
Sacarosa (C)	16	800
Sulfato de amonio (N)	1.06	52.5
Fosfato de sodio (P)	0.1	5
Relación C:N:P	n.d.	15:1:0.1
Demanda química de oxígeno total, mg DQO _T /L	n.d.	≧800

n.d., no determinada

III.3 PRESENCIA DE LUZ UV

Para simular los períodos iluminados y sin iluminación solar, de 12 horas cada uno, se encendían y apagaban quince lámparas fluorescentes colocadas sobre las columnas mediante el uso de un controlador de tiempo, en el tiempo indicado (7 A.M., encendido y 7 P.M., apagado).

La irradianza emitida por las lámparas fue medida con un piranómetro (también conocido como solarimetro o radiómetro). Las lámparas fueron colocadas sobre un soporte que las ubica a diferentes alturas. El piranómetro se ubica debajo de ellas y envía una señal de diferencia de potencial (en µV) que es traducida a la medida de irradianza mediante una constante del equipo utilizado: 4.6 µVW¹m² Haciendo el cálculo correspondiente se obtuvo un valor de irradianza en Wm². Se realizaron mediciones durante una hora a la altura equivalente a la que tienen las lámparas con respecto a la parte superior de los reactores (0.65 m). El sitio de trabajo debe estar totalmente oscuro para obtener mejores resultados. Los datos obtenidos fueron enviados a una unidad de adquisición de datos y de aquí a una computadora personal (Muhlia, 2002).

III.4 TIEMPO DE RESIDENCIA HIDRÁULICA (TRH)

La fase experimental se dividió en dos partes, la primera incluyó el montaje, la aclimatación y la operación del sistema a un TRH de 12 horas hasta la estabilización del mismo, todo lo cual se llevó un período de 20 semanas.

La segunda parte se operó el sistema bajo un TRH de 24 horas, por un lapso de tiempo de 10 semanas; tiempo durante el cual alcanzó la estabilidad.

Dado que el sistema experimental fue instalado en un cuarto caliente con temperatura relativamente estable, fue necesario introducir una hielera para que el agua residual sintética de alimentación se conservara por más tiempo en buenas condiciones (sin descomponerse), cuando se trabajó con un TRH de 24 horas.

III.5 CONSTRUCCIÓN DE LOS ELECTRODOS

Los electrodos mencionados en el apartado anterior fueron construidos y calibrados como especifican Fenoglio *et al.* (2002). La metodología de construcción y calibración puede verse en el Anexo A.1 de este documento.

III.6 ANÁLISIS ESTADÍSTICO

Se realizó el cálculo de promedios semanales, de rangos, de desviaciones estándar y de estadísticos "F" de las mediciones de diferencia de potencial, con la finalidad de poder decir en qué momento se estabilizaron los electrodos de cada uno de los reactores del sistema experimental.

CAPÍTULO IV

RESULTADOS Y DISCUSIÓN

IV.1 CALIBRACIÓN DE LOS ELECTRODOS DE REFERENCIA

En la Tabla IV.1 pueden apreciarse los resultados obtenidos de la calibración de los electrodos de referencia (Cu-CuSO₄) respecto de un electrodo comercial; en este caso se trató de un electrodo de calomelanos (Hg/Hg₂Cl₂) saturado.

Tabla IV.1 Mediciones obtenidas durante la calibración de los electrodos de referencia fabricados en el laboratorio

ELECTRODO	Lectura 1 (mV)	Lectura 2 (mV)	PROMEDIO	DESV. EST.
1.75 1.75 Ave.	69	66	67.5	2.1213
2	Çd. V68	72	70	2.8284
3	68 ·	74	71	4.2426
4	67	72	69.5	3.5355
5	67	66	66.5	0.7071
6	70	73	71.5	2.1213
7,700	73	76	74.5	2.1213
8.	69	71	70	1.4142
9 ::	67	70	68.5	2.1213
10,000	73	70	71.5	2.1213
11846	72	67	69.5	3.5355
12	74	70	72	2.8284

IV.2 MEDICIONES DE IRRADIANZA

Se midió la irradianza emitida por dos de las lámparas que se tienen con las plantas y se obtuvo un valor promedio de 1.38 Wm⁻², y considerando las 15 lámparas que se tienen en el laboratorio, hace un total de 20.6 Wm⁻². El valor anterior es comparable al valor que representa la irradianza solar emitida al amanecer (Muhlia, 2002). Esta irradiación se mantuvo constante a lo largo de todos los experimentos.

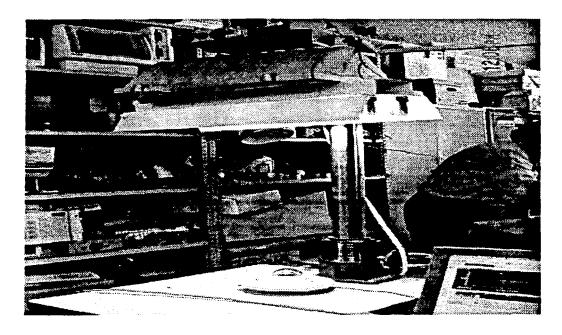


Figura IV.1. Dispositivo de medición de la irradianza emitida por dos de las lámparas utilizadas en la fase experimental.

IV.3 PARÁMETROS FISICOQUÍMICOS

Como se comentó en el capítulo anterior, la fase experimental del presente trabajo fue dividida en dos partes. La primera incluyó el montaje, aclimatación de las plantas y estabilización de los reactores operando a un tiempo de residencia hidráulico (TRH) de 12 horas. La segunda parte se abocó únicamente a la operación del sistema a un TRH de 24 horas. Las Figuras IV-2 a IV-5 presentan las tendencias observadas en lo que se refiere al análisis fisicoquímico.

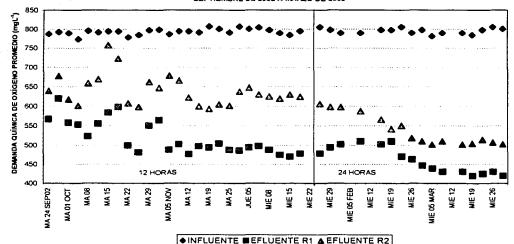
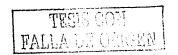
La DQO_T inicial para los reactores que reciben agua residual sintética es de 800±10 mgL⁻¹ y las remociones observadas durante la primera fase experimental (TRH=12 horas) son de 27% a 36% en el reactor de prueba R1 (con planta y regado con agua residual sintética), y de 5% a 22% en el testigo sin planta (denominado R2). Estos resultados coinciden con lo esperado de los sistemas en estudio, ya que la planta está "ayudando" a degradar el material orgánico presente en el agua de alimentación a R1 y R2.

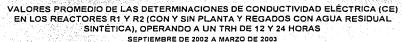
La etapa de estabilidad se ha alcanzado ya en la última parte de la primera fase experimental, como puede observarse de la Figura IV-2. Considerando que hay solamente una planta, la eficiencia alcanzada es razonable, ya que en un sistema similar, a escala prototipo se alcanza a condiciones climáticas de invierno entre 85 y 95% de eficiencia de depuración, medida como DQO_T, usando agua residual real de tipo sanitario (Rodríguez y Varela, 2003).

Los resultados observados durante el segundo período de experimentación se pueden apreciar en la misma figura (Figura IV-2). Las eficiencias de remoción se mantienen relativamente constantes y no hay cambios drásticos en éstas con respecto a las que se obtuvieron en la etapa anterior.

La eficiencia de remoción del sistema con planta fue de 30% que, con respecto al que no la tenía, que fue de 24%, indica una diferencia significativa. Es decir, sí hay una contribución del oxígeno fotosintético en el sistema y, por tanto, mejora la degradación de la materia orgánica presente en el agua residual sintética.

VALORES PROMEDIO DE LAS DETERMINACIONES DE DEMANDA QUÍMICA DE OXÍGENO TOTAL (DQOI) EN LOS REACTORES R1 Y R2 (CON Y SIN PLANTA Y REGADOS CON AGUA RESIDUAL SINTÉTICA), OPERANDO A UN TRH DE 12 Y 24 HORAS SEPTIEMBRE DE 2002 A MARZO DE 2003


Figura IV-2. Resultados de las mediciones de demanda química de oxígeno total (DQO_T) realizadas a las muestras de los reactores R1 y R2 (con y sin planta y regados con agua residual sintética)

Durante la primera etapa de experimentación, la conductividad eléctrica a la entrada es de 4800 a 5200 µScm⁻¹, saliendo entre 3800 y 4200 de R1 (con planta y regado con agua residual sintética) y entre 4000 y 4800 de R2, reactor sin planta y regado con agua residual sintética (Figura IV-3).

Lo anterior confirma lo que se observa con el comportamiento de la DQO_T, es decir, que está habiendo una mayor remoción del material presente en el agua residual de entrada, cuando ésta pasa por el reactor con planta (R1), que cuando pasa por el rector sin ésta (R2). Tiene una tendencia decreciente, que indica que el material inerte está reduciendo ya su lixiviación en el agua residual y que los sistemas siguen esa tendencia.

En lo que se refiere al segundo período de experimentación (TRH=24 horas), en la Figura IV-3, se puede observar una clara tendencia a la estabilidad del sistema. Los valores que se obtuvieron coinciden en su comportamiento con el observado en las tendencias de la DQO_T. Los valores de entrada siguieron manteniéndose en el mismo intervalo de los valores de la primera etapa. Por otro lado, los valores de conductividad eléctrica a la salida del sistema, van de 3000 a 2590 µScm⁻¹.

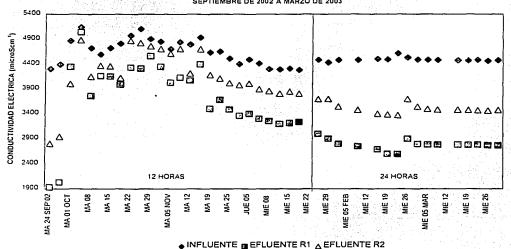


Figura IV-3. Resultados de las mediciones de conductividad eléctrica (CE) realizadas a las muestras de los reactores R1 y R2 (con y sin planta y regados con agua residual sintética)

Los sólidos disueltos totales a la entrada están entre 2300 y 2500 mgL⁻¹, saliendo de R1 entre 1400 mgL⁻¹ y 1800 mgL⁻¹ (durante la fase estable) y de R2 entre 1700 mgL⁻¹ y 2000 mgL⁻¹ (Figura IV-4). Esto se interpreta también de la misma manera que la conductividad eléctrica e indica que sí hay mayor remoción de contaminantes en el reactor que tiene la planta (R1), que en el que no la tiene (R2).

VALORES PROMEDIO DE LAS DETERMINACIONES DE SÓLIDOS DISUELTOS TOTALES
(SDT) EN LOS REACTORES R1 Y R2 (CON Y SIN PLANTA Y REGADOS CON AGUA
RESIDUAL SINTÉTICA), OPERANDO A UN TRH DE 12 Y 24 HORAS
SEPTIEMBRE DE 2002 A MARZO DE 2003

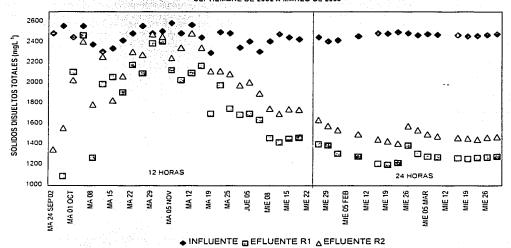
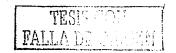



Figura IV-4. Resultados de las mediciones de sólidos totales disueltos (SDT) realizadas a las muestras de los reactores R1 y R2 (con y sin planta y regados con agua residual sintética)

Para el caso de la segunda etapa experimental (TRH=24 horas), se obtuvieron las mismas tendencias que las observadas en el comportamiento de la conductividad eléctrica (ver Figura IV-4). Los valores medidos a la salida de los reactores van de 1200 mgL⁻¹ a 1400 mgL⁻¹, en R1 (reactor con planta y regado con agua residual sintética) y de 1400 mgL⁻¹ a 1600 mgL⁻¹, en R2 (reactor sin planta y regado con agua residual sintética). Los valores de inicio, permanecieron en el mismo intervalo que el manejado en la etapa anterior.

Durante la primera fase experimental (TRH=12 horas), el valor del pH se mantiene entre 7 y 8 en el influente, mientras que sale entre 5.5 y 6 del reactor de prueba (R1); y entre 4.5 y 5.5 del testigo con planta (Figura IV-5). Esto se debe probablemente a la presencia de bacterias anaerobias en el reactor R2, ya que al no recibir oxígeno fotosintético generan ácidos orgánicos que acidifican el medio. Puede verse que el sistema que es "oxigenado" fotosintéticamente tiende a aumentar su valor de pH en el aqua de salida.

En la segunda etapa experimental (TRH=24 horas), los valores de pH a la salida de R1 (reactor con planta y regado con agua residual sintética) van de 6.5 a 7, es decir es un efluente poco ácido; mientras que en R2 (reactor sin planta y regado con agua residual sintética) los valores son más bajos, van de 5.1 a 5.9, la acidificación del medio es mayor.

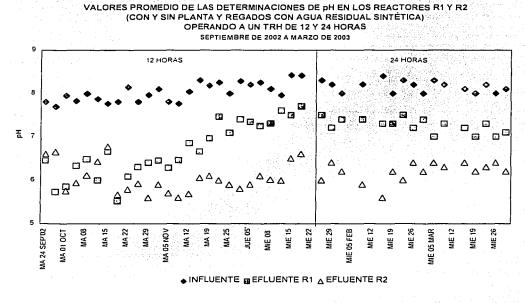


Figura IV-5. Resultados de las mediciones de pH realizadas a las muestras de los reactores R1 y R2 (con y sin planta y regados con agua residual sintética)

IV.4 DIFERENCIAS DE POTENCIAL

Como ya se ha comentado, los reactores del dispositivo experimental fueron identificados de la siguiente forma: R1, reactor de prueba, con planta y regado con agua residual sintética. R2, reactor testigo, regado con agua residual sintética y sin planta. R3, reactor testigo, regado con agua corriente y con planta. R4, reactor testigo, regado con agua corriente y sin planta. Del mismo modo, los electrodos presentes en los reactores fueron identificados como electrodo A, el superficial, a 2 cm de la superficie; electrodo B, el intermedio, a 10 cm de la misma y electrodo C, a 30 cm del limite superior, casi esta en el fondo del reactor.

En el Anexo A.3.3 de éste documento se pueden apreciar con detalle los valores de diferencia de potencial obtenidos de las mediciones hechas a las 7:00, 9:00, 11:00, 13:00; 15:00; 17:00 y 19:00 horas en los cuatro reactores (R1, R2, R3 y R4), operando a dos TRH, de 12 y de 24 horas. Estos resultados fueron graficados y tabulados en las Figuras A.3.3.1 a A.3.3.56 y Tablas A.3.3.1 a A.3.3.8, respectivamente.

La Figura IV-6 presenta un resumen de los datos obtenidos en los electrodos superficiales de los reactores durante las fases estables de ambas etapas experimentales (TRH de 12 y de 24 horas.

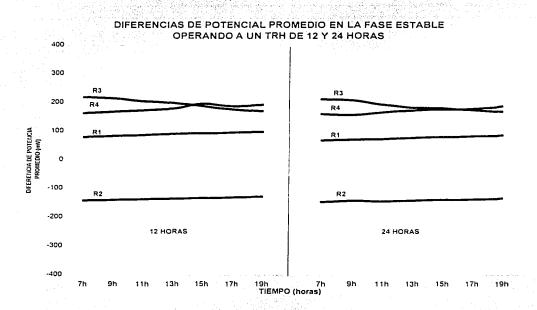


Figura IV-6. Comparación de los electrodos A en los reactores R1, R2, R3 y R4, operando en la fase estable, a un TRH de 12 y 24 horas.

Analizando el comportamiento del reactor R1 (con planta y regado con agua residual sintética), se puede observar que los valores de diferencia de potencial en el agua de entrada son menos positivos que los valores obtenidos del electrodo A (Figura IV-6), lo que se explica por la presencia de la planta en la zona en donde se colocó el electrodo A. Es decir, es una zona menos anaerobia. También puede verse que el electrodo B (a 10 cm de la superficie, ver Figura IV-7) tiene valores más negativos que el electrodo C (a 30 cm de la superficie, ver Figura IV-8). Esto es posible que se deba a la presencia de una comunidad microbiana aerobia que utiliza el poco oxígeno presente para llevar a cabo sus procesos metabólicos.

En la Figura IV-6 se pueden apreciar los valores de diferencia de potencial obtenidos en los electrodos superficiales (a 2 cm de la superficie) de cada uno de los reactores en estudio (el de prueba y los tres testigos). Sólo uno de los electrodos dio lecturas negativas, éste fue el electrodo del reactor R2 (testigo sin planta y regado con agua residual sintética), es decir que el ambiente en este sitio fue anaerobio. No había oxígeno disponible, más que el que se introducía disuelto en el agua de alimentación.

El resto de los electrodos dieron lecturas positivas. Es decir que el ambiente tenía condiciones aerobias. La zona superficial del reactor R3 resultó ser la más aerobia, lo cual se explica con la presencia de la planta y el hecho de que éste reactor fue regado con agua corriente (sin una carga orgánica presente para ser eliminada), de ahí que el reactor R1 (reactor de prueba, con planta y regado con agua residual sintética) fuese menos aerobio que el reactor R4 (reactor testigo, sin planta y regado con agua corriente). Ya que el oxígeno suministrado en el agua de alimentación y el generado por la fotosíntesis de la planta (en el caso del reactor R1), fue utilizado por la microfauna de la rizosfera para degradar la materia orgánica presente en el agua residual sintética; lo que no sucedió con el reactor R4, que sólo tenía presente el oxígeno disuelto en el agua alimentada (como se dijo arriba).

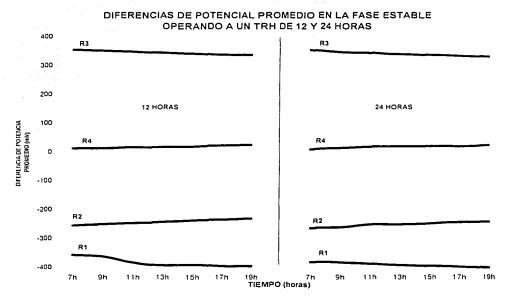


Figura IV-7 Comparación de los electrodos B en los reactores R1, R2, R3 y R4, operando en la fase estable, a un TRH de 12 y 24 horas.

Por otro lado, en la Figura IV-7 se observa el comportamiento del electrodo B (a 10 cm de la superficie). El electrodo B del reactor R3 sigue siendo el que presenta lecturas más positivas, indicando una mayor cantidad de oxígeno presente en la zona donde se localiza el mismo. A diferencia del electrodo A, del mismo reactor (R3), el reactor B indicó lecturas mucho más positivas que éste. Es decir que es más aerobia la zona intermedia que la superficial. Esto se puede deber a la generación de oxígeno fotosintético (en R3).

En el caso del electrodo B del reactor R4, se puede ver que presenta valores intermedios entre los reactores R3 y R2, los cuales disminuyeron hasta casi llegar a 0 mV. Esto indica que el poco oxígeno que llega al reactor disuelto en el agua de alimentación, es consumido por los microorganismos aerobios que se encuentren en la zona y, al no contar el reactor R4 con una planta que realice el proceso de fotosintesis, no puede recuperarlo y, por lo tanto, disminuye con respecto a los valores presentados por el electrodo A (colocado 8 cm por arriba del electrodo B).

En la Figura IV-6 se vio que la zona del electrodo superficial del reactor R1 (electrodo A) fue más aerobia que la zona del electrodo A del reactor R2. En el caso de los electrodos intermedios (electrodos B), sucede al revés. La zona más negativa (sin oxígeno) es la zona del electrodo B del reactor R1. Esto puede deberse a la presencia de comunidades microbianas presentes en la zona de la raíz (en el reactor R1).

Es decir, que la zona intermedia de la columna es la que presenta condiciones aerobias. Esto se debe a la presencia de la planta, ya que el testigo regado con agua corriente y sin planta, presenta lecturas de diferencia de potencial bien definidas: Valores altos en el electrodo superficial (A) que van disminuyendo hacia abajo (electrodos B y C, respectivamente). Es decir que la zona superficial es totalmente aerobia y disminuye la presencia del oxígeno conforme se avanza hacia abajo en la columna. Se trata pues, del reactor más aerobio de los cuatro reactores que integran el sistema experimental.

Para el caso de la segunda etapa (TRH=24 h), se observa que el electrodo A, del reactor R1, (a 2 cm de la superficie) tiende a estabilizarse en valores menos positivos que los alcanzados en la primera fase experimental. Esto puede explicarse porque la cantidad de oxígeno disuelto en el agua residual sintética de alimentación es menor, dado que se alimenta la mitad del agua que se alimentaba en la primera etapa.

Si el TRH aumenta, entonces se cuenta con más tiempo para degradar la misma cantidad de materia orgánica (800 mgL⁻¹), de este modo se requiere más oxígeno (del que se encuentra disuelto en el agua residual sintética y del producido por la fotosíntesis de la planta) y, es por esto que, los valores de los diferenciales de potencial en el electrodo A disminuyen con respecto a los valores obtenidos en la primera etapa de experimentación.

Dado lo anterior, se observa el mismo comportamiento para los electrodos B y C (a 10 y 30 cm de la superficie, respectivamente), ya que hay más tiempo para consumir el oxígeno presente en el sistema (Figuras A.3.3.29 a A.3.3.35).

El comportamiento de los electrodos del fondo (electrodos C) puede apreciarse en la Figura IV-8. Se corrobora que la zona del fondo de los reactores es la zona más anaerobia de todas las zonas estudiadas. Los valores de las diferencias de potencial son negativos en su totalidad, no hay valores por encima de los 0 mV.

También se observa en el comportamiento la misma tendencia que se apreció en el comportamiento de los electrodos A (superficiales) de los cuatro reactores. Aunque es interesante notar que los valores del electrodo C del reactor R1 y los del electrodo C del reactor R2, son casi los mismos. Además de que conforme avanza el tiempo (a lo largo del día) los valores del potencial se tornan más negativos, conforme van generándose ácidos orgánicos (Manahan, 2000).

Figura IV-8. Comparación de los electrodos C en los reactores R1, R2, R3 y R4, operando en la fase estable, a un TRH de 12 y 24 horas.

También es posible observar que los valores de las diferencias de potencial aumentan conforme aumentan las horas del día. Los valores positivos del electrodo A se hacen más positivos y los valores negativos de los electrodos B y C, se vuelven más negativos (Figuras A.3.3.1 a A.3.3.7).

Los reactores alcanzaron la fase estable, en ambas etapas de experimentación, cuando las lecturas de las diferencias de potencial comenzaron a ser reproducibles. Esto ocurrió, según el análisis estadístico expuesto en el anexo correspondiente, a las 13 semanas, para el tiempo de residencia de 12 horas y las 21 semanas para el tiempo de residencia de 24 horas, en promedio. Esto es contando desde el inicio, pero si se considera desde el cambio de tiempo de residencia (de 12 a 24 horas), se llegó a la estabilización en la primera semana de la segunda etapa.

Se pudo observar que el cambio de TRH en la operación de los sistemas no mejoró significativamente el desempeño de los mismos. Esto podría significar que el período de oscuridad (de 19:00 horas a 7:00 horas) no está afectando la eficiencia de remoción, que sería una medida indirecta del efecto del oxígeno fotosintético. Esto obviamente debe corroborarse realizando mediciones en el período de oscuridad lo que será la continuación de esta investigación.

Se puede decir que el cambio de TRH en la operación de los sistemas no mejoró significativamente el desempeño de los mismos. Esto podría significar que el período de oscuridad (de 19:00 horas a 7:00 horas) no esta afectando la eficiencia de remoción, que sería una medida indirecta del efecto del oxígeno fotosintético.

Durante la realización de la fase experimental, se tuvieron algunos problemas con la aclimatación de las plantas en un ambiente caliente, seco y cerrado, pero se solucionó manteniendo en forma permanente el espacio en donde se localizaba el sistema experimental con una humedad relativamente alta. De este modo, la humedad relativa del ambiente se incrementó hasta un 85% en promedio.

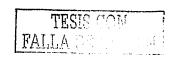
También se tuvieron algunos inconvenientes con el estado óptimo de las plantas, ya que éstas tienden a plagarse fácilmente con pulgones. Por lo anterior, las hojas de las plantas tenían que ser lavadas con agua jabonosa (poco jabón) en forma periódica.

CAPÍTULO V

CONCLUSIONES Y RECOMENDACIONES

V. 1 CONCLUSIONES

De las investigaciones realizadas se puede concluir lo siguiente:


- 1, Sí hay una contribución importante de oxígeno fotosintético en el sistema, lo cual, mejora la degradación de la materia orgánica presente en el agua residual sintética.
- 2. El cambio de TRH en la operación de los sistemas no mejoró significativamente el desempeño de los mismos.

V.2 RECOMENDACIONES

Es necesario hacer la determinación del perfil de comportamiento de las diferencias de potencial durante la noche, para llegar a un modelo que represente el comportamiento del oxígeno fotosintético en el humedal.

Si se desean continuar los experimentos, debe ponerse especial cuidado en la humedad del ambiente en donde se encuentre el sistema.

También es recomendable usar otra macrofita menos susceptible a las plagas, para continuar con la experimentación. Éstas pueden ser carrizos (*Phragmites sp*). Se ha observado en los humedales prototipo de la UNAM, que son más adaptables al clima y la fauna (plagas) de la Zona Metropolitana de la Ciudad de México (Rodríguez-Monroy, 2003; Rodríguez y Varela, 2003).

ANEXOS

A. 1 CONSTRUCCIÓN DEL SISTEMA EXPERIMENTAL

A.1.1 CONSTRUCCIÓN DE LAS COLUMNAS EMPACADAS

Para la construcción de las tuberías se utilizó tubería de PVC, de 30 cm de diámetro y 60 cm de longitud. En la parte inferior se colocó un tubo, de PVC de 1.5 in de diámetro y 30 cm de largo, con perforaciones que ayuden al drenado del agua desde el interior de la columna. Cada columna fue empacada con escoria volcánica (tezontle rojo), de 0.5 – 4 mm de diámetro granular, previamente lavado y esterilizado. Aproximadamente las alturas de 2, 10 y 30 cm, con respecto a la superficie de las columnas, se colocaron trozos de manguera que permitieran tomar muestras de la columna en determinado momento. A estas mismas distancias fueron colocados los electrodos.

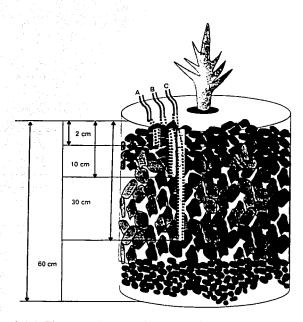
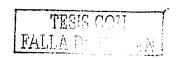



Figura A.1.1. Diagrama demostrativo de la ubicación de los electrodos en los reactores

A.1.2 CONSTRUCCIÓN Y CALIBRACIÓN DE ELECTRODOS

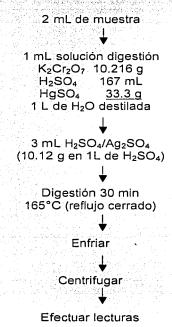
Los electrodos fueron construidos y calibrados como especifica Fenoglio (2003), en su tesis.

Aún cuando los electrodos de membrana proporcionan un método excelente para el análisis de oxígeno disuelto (OD) en aguas contaminadas (APHA, 1992), la experiencia en la utilización de estos electrodos, en esta prueba particularmente, es sumamente complicado, ya que para que la medición sea correcta, la lectura debe tomarse en un medio totalmente agitado. Por esta motivo, el parámetro de medición es el potencial redox, para el cual los electrodos utilizados son de operación más simple y de costo mucho menor. Las lecturas se están realizando utilizando un electrodo para cada punto de muestreo propuesto, y se hace en forma intermitente (Fenoglio, 2003).

La construcción de los electrodos de referencia para potencial es relativamente sencilla; para ello se utiliza un tubo de plástico de 1 cm de diámetro, en uno de cuyos extremos se coloca una membrana de intercambio iónico (en este caso corcho o madera). El tubo se llena por el otro lado con una solución de sulfato de cobre saturada y se agregan cristales de la misma sal para asegurar la saturación del medio. Posteriormente, se coloca una lámina de cobre acoplada a un alambre de cobre. El alambre de cobre se hace pasar a través de un tapón de plástico, que a su vez se acopla al otro extremo del tubo plástico (Fenoglio, 2003).

Para la construcción del electrodo de medición se utiliza un trozo de alambre de platino conectado a un tramo de cable de cobre. Para evitar la interferencia en la lectura, la conexión entre el alambre de platino y el cable de cobre debe estar perfectamente aislada. Estos electrodos producen una señal en mV, de baja impedancia, que puede ser captada y medida por una interfase y alimentada a una computadora para su posterior análisis (Fenogio, 2003).

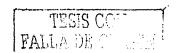
Para la calibración de los electrodos se construyeron curvas de calibración de diferencia de potencial v.s. oxígeno disuelto y potencial v.s. pH, bajo las mismas condiciones de alimentación de las columnas, con el fin de determinar, de manera indirecta la concentración de OD en cada punto. Para establecer una relación directa entre el potencial redox leído con un electrodo Cu/CuSO4 contra Pt y la lectura de OD utilizando un electrodo de membrana selectiva, en un vaso de precipitados de 400 mL, con agúa destilada y desoxigenada por ebullición, se burbujea aire utilizando una bomba de acuario, por ejemplo, y se miden simultáneamente el potencial redox utilizando el electrodo de referencia mencionado y un electrodo de membrana selectiva, hasta obtener el máximo valor de OD. Posteriormente, se agrega bisulfito de sodio para retirar el oxígeno disuelto por burbujeo. Esto se hace hasta obtener una lectura en cero en el equipo de lectura de OD (Fenoglio, 2003).


A.2 METODOLOGÍAS ANALÍTICAS

A.2.1 TÉCNICA DE DETERMINACIÓN DE DOOT

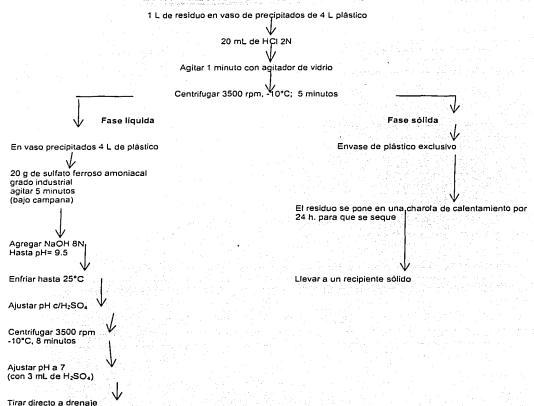
La determinación de la demanda química de oxígeno (DQO) se realizó mediante la aplicación de la técnica "micro", normalizada para su utilización en el laboratorio del Programa de Ingeniería Química Ambiental y Química Ambiental (PIQAyQA), de la Facultad de Química, UNAM (Oaxaca, 1997).

El diagrama de flujo correspondiente se presenta a continuación:


TÉCNICA "MICRO" PARA LA DETERMINACIÓN DE DQOT

Aproximadamente se generan 6 mL de residuos peligrosos, por cada muestra analizada. La estabilización y disposición de estos, se puede más adelante.

A.2.2 MEDICIÓN DE pH; TEMPERATURA; CONDUCTIVIDAD ELÉCTRICA (CE), SÓLIDOS DISUELTOS TOTALES (SDT) Y DIFERENCIA DE POTENCIAL


La medición de pH, temperatura, CE y SDT, se realizó con un medidor portátil. Mientras que la diferencia de potencial se midió con un multímetro digital modelo 390A de la marca BK PRECISION.

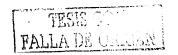
A.2.3 ESTABILIZACIÓN Y DISPOSICIÓN DE LOS RESIDUOS PELIGROSOS GENERADOS

La estabilización de los residuos peligrosos, generados durante la determinación de la DQO_T, se realizó mediante la técnica desarrollada en el PIQAyQA (Montuy, 1998) y cuyo diagrama de flujo se presenta a continuación.

ESTABILIZACIÓN DE RESIDUOS DE DOO

El proceso de estabilización de residuos peligrosos, no es una técnica que sea llevada a cabo con frecuencia, ya que los residuos generados en la determinación de la DQO son almacenados en un recipiente adecuado para ello y, después de un período de seis meses, son estabilizados. Al término de la estabilización, los productos obtenidos son recolectados por la Comisión de Seguridad de la Facultad de Química, bajo la supervisión del M.C. Eduardo Marambio Denett.

A.3 RESULTADOS EXPERIMENTALES


A.3.1 MEDICIONES DE IRRADIANZA

Como se mencionó en el capítulo III de este documento, las mediciones de irradianza fueron realizadas en el Laboratorio de Radiación, del Centro de Ciencias de la Atmósfera, bajo la supervisión del Dr. Agustín Muhlia.

La medición se llevó a cabo utilizando un radiómetro (Quantum sensor, en inglés), modelo LI 190SB, de LI-COR. El equipo esta diseñado para medir la radiación fotosintéticamente activa emitida por una fuente particular, misma que utilizan las plantas para llevar a cabo su proceso de fotosíntesis. Este equipo esta acoplado a una unidad de adquisición de datos que registraba las lecturas obtenidas (en μV). Después con un factor de conversión y la constante del equipo (4.6 μV/Wm⁻²), se obtuvieron los resultados de irradianza (en Wm⁻²) que se pueden apreciar en la Tabla A.3.1.1

Figura A.3.1.1 Detalle del radiómetro con el que se hicieron las mediciones de irradianza.

Table Tabl	Wm-2) 376-00 376
1	9.77. 00 14.01.
1	14E - 60 mmE
1,711-06	DBBE 400 2241-00 DBBE 400 DBBE
The color	236 - 00 001 - 500 001 - 500 001 - 500 001 - 500 001 - 500 001 - 500 001 - 500 001 - 00 001 -
2	344+40 nst+40 nst+40 gnt+00
1	118 - 00 218 - 00 218 - 00 218 - 00 200 - 00 000 - 00 000 - 00 000 - 00 000 - 00 201 - 00 171 - 00 111 - 00 114 - 00 114 - 00 116 - 00 116 - 00 117 - 00 000 -
1	2 115 - 00 2216 - 00 1346 - 00 1346 - 00 136 - 00 137 - 00 137 - 00 137 - 00 138 - 00 1
Main No.	286 - 00 306 - 00 307
Main Color	046 + 00 006 + 00 14E + 00 056 + 00 056 + 00 246 + 00 25F + 00 17E + 00 01 + 10 246 + 00 17E + 00 146 + 00 146 + 00 17E + 00 06 + 00 07E + 00
1	008 - 00 148 - 00 058 - 00 058 - 00 058 - 00 008 - 00 258 - 00 178 - 00 178 - 00 178 - 00 178 - 00 178 - 00 048 - 00 048 - 00 048 - 00
1	14E - 00 05E - 00 05E - 00 05E - 00 14E - 00 25E - 00 27E - 00 00E - 00 17E - 00 14E - 00 17E - 00 17E - 00 00E - 00
	05E+00 USE +00 USE +00 00E+00 25E+00 17E+00 UUE+00 11E+00 14E+00 17E+00 11E+00 00E+00 00E+00 00E+00 00E+00 00E+00 00E+00
Main Color	USE + 00 USE + 00 WHE + 00 WHE + 00 USE + 00 LITE + 00 USE + 00 LITE + 00 LITE + 00 LITE + 00 LITE + 00 USE + 00
MAD 002	### +00 90# +00 25F +00 17E +00 UUE +00 11E +00 14E +00 14E +00 17E +00 17E +00 19E +00 04E +00
MID GOP	008+00 248+00 258+00 171-00 008+00 118+00 148+00 148+00 148+00 178+00 198+00 048+00 048+00
MING GEF MING GEF MARK GEF	29E + 00 25F + 00 17E + 00 00E + 00 11E + 00 14E + 00 14E + 00 17E + 00 19E + 00 0ME + 00 04E + 00
1000 002 1.000	17E+00 00E+00 11E+00 14E+00 22E+00 14E+00 17E+00 14E+00 16E+00 08E+00 04E+00
Table 0.00	UUE+00 11E+00 14E+00 14E+00 17E+00 17E+00 0ME+00 02E+00
1306.00	11E+00 14E+00 22E+00 14E+00 17E+00 17E+00 04E+00 02E+00
1.000 0.00	146+00 226+00 146+00 176+00 176+00 046+00 026+00
1400 000	22E+00 14E+00 17E+00 17E+00 19E+00 08E+00 04E+00
1300 002 1300 003 1300 003 1300 003 1400 003 1400 003 1400 003 1300 003 1400 003 1300 003	146+00 176+00 176+00 196+00 086+00 036+00
1-14-16-00	17E+00 17E+00 19E+00 08E+00 03E+00
1.000 007	17E+00 19E+00 08E+00 02E+00
1	0.4E+00 0.8E+00 0.4E+00
1 1 1 1 1 1 1 1 1 1	04E+00 08E+00 04E+00
1 1 1 1 1 1 1 1 1 1	04E+00
1 1 1 1 1 1 1 1 1 1	01E+00
1800 002	
Table 002	
1000 007	1121: +00
Total Color	376.+00
Company Comp	20E+00
200 002	24E +00
2300.002	23E +00
2280 002	J46 +00
2400 002	28E+00
1	11E+00
24/20 002 13/20 003	201.00
130E-05	2011-00
Marie Obs. Mar	451.+00
2400 009	34E+00
2700 002	37F+00
MARCO MARC	20H+00
MAND 0002	456.+00
	2017 + 00
1.000-092	200+00
1 10 10 10 10 10 10 10	3 1 H + OO
1 10 10 10 10 10 10 10	40E+00
1 1 1 1 1 1 1 1 1 1	0517+00
1 1 1 1 1 1 1 1 1 1	01E+00
1400 002	146 100
1400 000 1401 00 140	005+00
130 002	V4E+00
144-00	01E+00
1430-002 1380-06 2476-00 0300-002 1460-06 2511-00 15000-002 0 486.00 2 2511-00 15000-002 0 486.00 2 2511-00 15000-002 0 486.00 2 2511-00 15000-002 0 486.00 2 2511-00 15000-002 0 486.00 2 2511-00 15000-002 0 486.00 2 2511-00 15000-002 0 486.00 2 2511-00 15000-002 0 486.00 2 2511-00 15000-002 0 486.00 1 2511-00 15000-002 0 486.00 1 2511-00 15000-002 0 486.00 1 2511-00 15000-002 0 486.00 1 2511-00 15000-002 0 486.00 1 2511-00 15000-002 0 486.00 1 2511-00 15000-002 0 486.00 1 2511-00 15000-002 0 486.00 1 2511-00 1 2511	00E+00
3000 002 1301-05 3 001-105 0280 002 144E-05 3 14E-06 15170 002 0 28E-06 1 1720 002 1 1720	146.00
3000 002 1 021:00 3 001:00 002 1 048:00 5 2 011:00 002 8 027:00 1 1 048:00 3 1 048:00 1 1 048:00 002 1 048:00 1 1 048:00	036 +00
1/80 002 1/81 005 1/81 005 1/81 002 1/81 002 1/81 105	04E+00
SH40 002	97E+00
3400 002 1.400 00	00E + 0D
3980-002	40E+00
4020 002 1408-05 3 050-00 9780 002 1 128-05 2 426-00 15480 002 9 560-06 2 426-06 4080 002 1 508-05 3 258-00 15480 002 9 560-06 1 408-00	00+1166
4080 002 1 12E-05 2 42E-00 0780 002 1 30E-05 3 10E-00 15540 002 8 14E-08 1	0HE+00 97E+00
	4/E+00
	946.00
1200 002 1 086:05 2 316:400 U400 0B2 1 486:05	HSE +00
1 1280 002 1 040-05 2 280-00 3000 002 1 302-00	80E - 00
4320 002 1 127-05 2 476-00 10020 002 1 438-00 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BOE + 00
4 400 002 1 426.05 3 086.00 10.00 002 1 476.00 3 195.00 15840 002 7 486.06 1	63E+00
3440 002 1 441 03 3 181 00 10200 002 1 516 05 3 281 00 15900 002 0 956 08 1	516+00
4500 002 1 33E-05 2 88E-00 10250 002 1 51E-05 3 28E-00 15980 002 8 00E-05 1	746+00
4170 002 1 186:05 2 576:400 10320 002 1 34E:05 2 01E:400 16020 012 7 35E:06 1	40E+00
4000 002 1 44E-09 3 14E+00 10380 002 1 48E-05 3 22E+00 10080 911 5 77E-06 1	54E+00
4740 002 1 42E-05 3 08E+00 10440 002 1 50E-05 3 25E+00 18140 002 7 27E-06 1	57E+00
4800 002 1 381-05 2 07E+00 10500 002 1 58E-05 3 39E+00 18200 002 8 40E-06 1	83E+00
480 002 1 13E-05 2 45E+00 10580 002 1 12E-05 2 42E+00 16280 03 7 005-08 1	54E+00 57E+00
4020 002 1 10E-05 2 40E+00 10M20 002 1 43E-05 3 11E+00 16020 002 7 22E-06 1	
	48H+00
5040 002 1 230:05 2 686:00 10740 002 1 546:05	66E+00
	/4E+00
5180 002 1 445-05 3 1457-00 1 1500-002	55E-00
7,0000 1,000	40E+00
4340 002 446605 3772.00 11410.002	40E+00
5400 002 147E-05 10HE VO	60+36+00
5460 002 1 486-05 3 37E+00 11220 002 1 19E-05 2 80E+00 18920 002 8 00E-06 1	#0E+00
	#0E+00 #0E+00 #3E+00 #5E+00
1940 002 1 2 18-00 2 12 18-00 2 02E-00	#06+00 #06+00
Burns 2 voit+02 Burns 2 73t(+02 Surns 2	#0E+00 #0E+00 #3E+00 #5E+00

Tabla A.3.1.1 Valores de irradianza obtenidos con un radiómetro

A.3.2 ANÁLISIS FISICOQUÍMICO

A continuación se muestran los datos tabulados de los análisis fisicoquímicos realizados al influente y efluentes del sistema experimental.

RESULTADOS DE LOS ANÁLISIS FISICOQUÍMICOS HECHOS AL AGUA RESIDUAL SINTÉTICA (INFLUENTE) Y A LOS EFLUENTES DE LOS REACTORES R1 Y R2

				IEMPO DE	RESIDENC	A HIDRAUL	ICA DE 12 I	HORAS				
FECHA		DQO (mgL ')	1	CE (mScm	')		SDT (mgL	,)		рH	
	E	E-R1	E-R2	E	E-R1	E-R2	E	E-R1	E-R2	E	E-R1	E-R2
MA 24 SEP'02	789	567	639	4300	1930	2800	2490	907	1350	73	5 95	6.1
JUE 26	793	620	677	4390	2030	2940	2560	1090	1560	7 19	5 23	6 15
MA 01 OCT	790	558	617	4860	4340	4000	2450	2110	2030	7 45	5.36	5.26
JUE 03	774	554	601	5140	5040	4880	2560	2470	2410	7.32	5 83	5 44
MA 08	796	523	659	4720	3760	4150	2380	1270	1790	7 49	5 98	5.61
JUE 10	791	555	668	4590	4160	4370	2310	1990	2260	7.37	5.5	5.93
MA 15	795	584	758	4720	4150	4360	2340	2060	1830	7 26	6.16	6 27
JUE 17	795	598	723	4810	3990	4120	2420	1910	2070	73	5 02	5 17
MA 22	779	499	608	4970	4330	4870	2490	2180	2310	764	5.58	5 29
JUE 24	785	482	598	5100	4310	4820	2560	2095	2280	73	58	5 42
MA 29	798	550	662	4900	4560	4760	2490	2390	2480	7 46	59	5.1
JUE 31	799	565	648	4850	4350	4710	2510	2410	2460	7.6	5.95	5.4
MA 05 NOV	787	488	678	4700	4030	4610	2590	2130	2250	73	5.78	52
JUE 07	795	502	665	4840	4130	4710	2490	2030	2350	7 26	5.96	5.1
MA 12	795	477	622	4790	4070	4210	2570	2100	2490	7 54	6 35	5.19
JUE 14	791	498	600	4930	4400	4700	2450	2170	2350	78	6.15	5.55
MA 19	807	494	593	4630	3500	4180	2300	1700	2120	7.68	6 46	56
JUE 21	801	504	605	4650	3680	4110	2500	1980	2120	7 75	6.96	5.5
MA 25	791	488	601	4510	3490	4020	2490	1750	2090	75	6 59	5.4
MA 03 DIC	807	486	638	4400	3360	3980	2350	1690	1980	7 78	6.9	5.3
JUE 05	801	191	648	4490	3400	4010	2410	1700	2010	7.7	6.84	5.4
MA 10	804	498	630	4410	3300	3900	2310	1640	1900	7.75	6.75	5.6
MIE OB	798	488	625	4300	3260	3860	2410	1460	1750	76	6.8	5.51
VIE 10	790	475	620	4290	3200	3810	2480	1420	1700	7 45	7.1	5 49
MIE 15	785	470	630	4310	3220	3850	2450	1455	1745	7 92	7 "	8
VIE 17 ENE'03	795	478	625	4285	3240	3810	2430	1465	1740	7 91	7.2	6.1
			TI	EMPO DE	RESIDENCI	A HIDRAUL	CA DE 24 P	HORAS			1. 27.7	1999
FECHA		DQO (mgL ⁻¹)			CE (mScm	')		SDT (mgL	')		рH	ni Talayê
	Е	E-R1	E-R2	E	E-R1	E+R2	Е	E-R1	E-R2	E	E-R1	E-R2
VIE 24 ENE 03	806	478	606	4485	3000	3700	2450	1400	1640	7.8	7: 39	ar, 5.5
MIE 29	798	494	598	4430	2900	3700	2410	1390	1580	7.7	6.7	5.9
VIE 31 ENE	790	502	598	4480	2800	3550	2420	1310	1540	7.5	6.9	5.7
MIE 05 FEB			į	i				i l				
VIE 07	790	510	587	4480	2750	3480	2460	1280	1500	7.7	6.9	5.4
MIE 12					1				1.0		基础 的	71.4
VIE 14	798	502	566	4500	2690	3400	2490	1210	1450	7.9	6.8	5.1
MIE 19	798	510	542	4490	2600	3390	2485	1200	1430	7.5	6.8	5.7
VIE 21	806	471	550	4610	2590	3375	2500	1220	1410	7.8	7	5.5
MIE 26	790	463	518	4530	2900	3700	2490	1390	1580	7.7	6.7	5.9
VIE 28 FEB	798	447	510	4490	2800	3550	2470	1310	1540	7,5	6.9	5.7
MIE 05 MAR	782	439	502	4485	2790	3500	2480	1280	1500	7.8	6.5	5.9
VIE 07	790	431	510	4480	2785	3490	2475	1275	1480	7.7	6.8	5.8
MIE 12				777								
VIE 14	790	431	502	4475	2790	3485	2470	1265	1465	7.6	6.7	5.9
MIE 19	785	420	505	4470	2780	3480	2460	1260	1460	7.5	6.5	5.7
VIE 21	798	425	515	4480	2784	3475	2465	1270	1450	7.7	6.8	5.8
			1.7	13. 1. 1. 1			1 2 2 2 2 3	100	177. 91. 33.410	100 March 1980	and the first of the	5 977 5

E = Entrada E-R1 = Salida reactor R1 E-R2 = Salida reactor R2

4465

507

MIE 26

VIE 28 MAR'03

805

130

Tabla A.3.2.1 Resultados de los análisis fisicoquímicos realizados al influente y efluentes del dispositivo experimental

3470

2473

2775

1275

1470

A.3.3 MEDICIONES DE DIFERENCIA DE POTENCIAL OBTENIDAS DE LOS

ELEC	<u>ا ب</u>	<u> </u>	יטכ	<u> </u>							1.0								1.5				7 -			- 19	-	$\overline{}$
	Ε.		,,	E-C	-	6:4	F.0	4-2	-		1 to 1	1.0	-			1.0	-		100	1.5		EA	_	6-6		1.4	f-0	16
FECHA	223	72.7	17.4	113 a	20.5	134	111	-7.6	230	4, ,	103.3	-0.0	26 0	-31	373	-37:	23.5	53.7	-1261	-17.3	29.9	501	-176.4	ъι	257	.; .	-(1) :	31.7
WA 23		41.7	92.5	-25 1	20.9	37.6	33 1	-22 1	22.5	40 7	21 6	47.1	22 5	19.9	-23 3	-1273	\$0 D	41 2	-192	-149 8			19.1	-163 4	:03	40 6	- 34 0	164.2
WE :4		24.0	3.4	27.9	30.2	21.4	-271 8	29" 2	23.9	10 2	-31.7	-980	29 0	94 G	27 6	206 3	21 5	125.0	26.3	10.0		172.6	-17.7	.163.4	217	99 1 202 5	42.0	23.0
.L 09	210	55 0	-228 1	25.4	20 5	75.0	124	.213	213	11/3	24 6	-26 4	20 5	78.4	19 4	-21 9	29 3	152 1	-2813	-234 0			-53 4 -36 7	48.9	26.0	25 2	40.3	177.3
V1E 06	25	54	-423	-20 8	217	15.2	-409	-212	19.0	19 1	-326	-45	26	11 1	410	-45 4 -49 7	20 S	25.7	-40 1	73 1	21 6		.1121	53.9	7,3	23 9	1100	50.2
	26.7	12.6	-47 1	-15 5	23.9	12.0	- 57 9	19 9	173	117	.47 I	341 8	23.0	14.7	200 0	-3890	21 0	59.2	3120	-156.0	28 7		1.50	3*94	24.2	65.4	-325.3	139.3
WA 12	27.3		210 5	325 2	17.9	12 9	-2451	-135.6	۱""	*11	-150 3	341	1				1											
UE 11	1.,,	97.0	19.2	-46.7					i				213	*****	.2653	-3493	29.4	126 8	-214 9	136 9			-301 5	-3473	25.4	146 3	315.9	-157 0
VIE 13	21.	44 7	-2115	.147	23 4	95 6	-2217	-152	21 4	103 5	-225 9	-169	24 8	126 1	-265 9	-376	21 6	139 0	-275	.1650	22 5	147	-249	.7619	24.5	140 0	2700	-358 9
10.16	1								}				1				1			1	Tu S		2824		20.5	23 1	290.0	79.6
V4 **		27.5	2113	-65.0	29 7	28 9	-220 0	754	24.6	32 8	235.2	-830	20 1	78.3	.154 1	63 1	29.0	43.0	271.4	431			-3824	240.5	203	133 3	-141.0	297.7
W-E 15		113	1164.1	-93.2	28.0	.7.9	147.5	46 \$	25.3	149.3	154 1	-35 4 -313 8	26.6	197.0		-1163	21.5	430	1308 7		***	•••			224	54 3	194.9	343.8
JUE 19			154.3	-2614	26.0	13.5	283 5 -356 8	-154 7	24 7	17.4	-191 3 -185	315 4	211	42.4	-369	320	24	74.3	-101	-138 0	26 5	85 5	-187	-346	1 24	/11	302 0	-327 8
V-E 20		49.6	-126.7	345 6	23.5	117.9	4123	112.5	20.5	120	416 0	-3151	26 3	140 0		-212 8	20.9	229 1	4360	316.9	29.4	:66 1	-349 0	-319.1	27.0	2** 2	-259 0	-121 1
W 24		1237	1195	.3.0	27.0		379 2	224 6	27.0	153 0	4163	-110 (Z# 0	1730	4100	-324 3				1					27.4	194 3	405.3	-343 *
wE 23		850	1 : 5	274.1	25 7	97.5	194.5	195.6	23 5	100.5	- 269 3	308.6	20 \$	**# 2	4-60	3145	27 0	129 6	378.3	132 4	293	250 3	391 0	-340 1	35.3	13.0	183.4	-339 7 -385 3
24	10.4		238 2	-317.5	20 1	49 5	-342 *	176 1	74.3	90 7	114 9	-1234	23.4	101.0		- 124 0	l	1815	-395 5	-346 2		199 0		-149 8	25.7	2150	401.2	-351 3
-6.27	20 0	15 1	-144 #	-326 9	24.0	105 7	-1910	-129 4	24 0	126 3	150 5	-116 *	250	114 0	-175 6	-3473	24.0	1810	-195 5	-344 2	74 5	199 0	-102 5	.107 0	l ""	4.30		-22.
10	l								32.5	147.3	3** 2	- C14.4	1				33.4	159.2	-174 2	-145 2	25 0	156 1	-380 1	1420	26.7	159.0	361.4	. 157 *
Walter		145.2	3*31	-71.2	25 a	150 4	3739	319 Z	12.5	165.2	154 5	-757	29.0	168.5	225 6	.75.5	10 5	166.2	-136 6	79.0	27.6	146 2		154.2	21.7	148 4	114.2	753
WE 32		165.2	-3732	-71.2	20 5		1660	-101	20 1	167.5	-162 4	127	'''				34 0	1000	-154 2	530	23 9		156 (419	24 0	1520	356 2	-129.4
VIE 04			-1510	-34 7	217	187 8	-351 3	47.9	28 1	170 2	-148 8	49.1	20 6	170 7	-148 9	-54 1	20 5	171 0	-348 3	.106 1	•••	172 1		.114.1	250	172 3	-354 9	4193
		,	-167 1	61 '	23.3		-373.2	407	2* 4	165 5	343 2	-32 (234	145.6	1577	-24.7	10 4	167 9	-190 1	25 5	24.6	47 1	363 4	-42 5	27.9	164.8	-161 6	-32 6
w.i	29.9	- 54 0	-1194	-35 1	32.0	1653	3433	1* 1	Ì				30 4	*25.7	351.5	-49 7	11.3	97.3	-152 6	-14.1		102 6	245 9	16 3	26.0	147.2	210 7	453
WE 79		149.5	129 8	-77.5	25 4		-1164	.19.1	79.4	.49.5	-112 5	78.4	33.5	116 9	-294 0 -338 1	-83 6	212	167 8	750 8	47.2	20.5		791 6	46 3 5C 2	277	1121	158.5	-737
74€11		.12.5	129 0	***	20.7	152.3	-329 1	223	21.0	128 7	-111.4	.14.1	32.0	157 6	-338 I	-254	30 4	1152	341 8	27.9	22 5	1110	-3547	10 2	24.1	***	-158 1	29.7
#E0		128 8	-347 6	-12.5	23 4	127 4	-346	-13 fl 52 f	22.5	128 7	-151 4	-15.1	133 9	120 1	4033	-23	12 .		-18 2	41.5		129.2		of 5	n	136 *	418.4	47.2
		114 9	-4173	25 1	29 *	37.4	-352 9	421	24 9	20.7	343 1	-111	l " ′				33.	141.0	-419.3	-155 #			402.2	-276.5	223	137.5	4173	283 1
VE 4	20 2	15 0	156.2	221.2	28.2	94.5	-3733	2450	250		359 3	-292 1	30.0	110 7	126.0	.2.9 1	37.5	135 4	4123	-354 3	31.1	. 42 3	420.0	352.7	22.3	*45 5	4752	200 1
74.7		56 1	444 0	212	20.	190.5	475	234 Z					13 7	154 3	4750	-2097	33 5	155 1	4292	226 6	29.7	146 3	435.5	312 1	23.4	*44.9	442.0	317.5
VIE 18	24	1100	-415	112 9	75 8	165 3	-423	320 6					121	166.6	-463	-312 6	10-4	148.0	-434 -456 2	.175 5	28.5	165 4	444	102 7	24	172 1	445 6	151
.22*	2	.452	-436 4	3*5 0	23 5		4.25	177.2	36 4	165.3	146.3	-34	360	165.4	45'0	333	30 S	1591	491 5	115 0	27.3	164.1	492 3	319 7	274	****	4000	155 6
AT 13	257		451.7	-348.2	27.3	146 9	-1490 -2591	369 5	344		218.3		18 9	158.4	4*9 5	266 4	15.0	1491	2104	.3.2.3			4+8 3	3191	11.3	110 5	200	-254 5
WE 23	30 *		-251.3	294.5	25 7	- 48 1	-259 1	-275.8	12.4	174 5	.74= 3		23.	602	105 6	2323	24.4	44.3	431.2	235 8			754.6	.00 5	111		-165 8	-210.4
	20 7	41	1457	245 2	26	47.4	-115 7	-210 5	38	47.4	96 7	229 6	7.5	65.6		-228 1	30 9	412	-100 5	-241.2	24	794	417	194 1	29	71 2	-40 6	-227 6
12.3	250		-245.2	343 1	26.0	10 5	-266 4	342 *	28.4	10 7	15" 5	3183	25.3	913	715 7	-294 8	20.4	86 1	2014	256)	29.4	857	-756 4	-117.2	:55	25 C	-2951	-374.1
WA 29	230		279.2	140.0	25.4		2990	349.3	28.5	48 1	-291.2	-146.2	1				75.5	16 4	3150	-15# C	25.5	10 1	326.0	146 5	26.0	15.9	-129 0	-164.7
WE 13	243	** *	265.2	-349.2	25 6	38 9	2.003	151 2	29.3		124.3	3 54 8	:5 4	11.2	.3.6.3	-154 2	21.4	14 0	-324 9	180 0		13.0	-3380	3"9 5 495 J	24.0	13.4	156 0	35*3
.0 11	29.1	-18	- 348 8	-344.2	29.4	12.5	-153 2	435.3	12 5	* 1 1	-355 0	-4 57 J	1				22 \$	***	349.3	4730	25 9	93.9	-1753	492.0	/*°	•,,	-38.6.2	438 3
14E 01 40V											-278 0		24 7	22.7	-285 4	.134 0	23,7	49 1	-294 3	-105 2	24.0	** 5	-299.3	389.3	27.9	150.1	-105 3	-398 4
1.004	33 4		-2450	365 :	25.4	90 5	270 1	-343 4	26.0	154	-2780	-159 2	24 /	85 7 85 7	.347 1	3740	257	34.6	-294 3	134 3	24 7	29 7	365 6	-150 0		104.6	141 9	3913
WE 26	29.8		2452	1 % 3 -318 2	29.6	97 5	32 0	-143 3	27.4	*3 6	- 182 2	444.5	237	35 7	379 1	4153	7	*. 1	-362 1	194 3	26.1	44.1	371.2	371.3	27.3	+9 1	372.3	-165 2
E37	25.1		-298 5	246.4		• • •		,	36 6		-150 0	2714	22	90 1	357.0	279.1	77.	954	-1610	1015	21.9		-1*93	.156 9	20.4	+9 4	380	-172.3
116.04	240		-3387		22.6		-340 0	-2914	28 4	** 0	-144 0	-110 #	24.7	81.3	.345 0	-3 50 4	29 7	42 A	-147 0	-365 7	22 5	95 F	-348 #	144.0	26.5	** 0	3513	374 2
	27 1	84 7	-3440	-354 7	22 4		352 5	3450	24 7	16 6	-154 0	-345 /	25 4	87 \$	-153 0	1580	24.7	207	-374 0	346 3	24.3	90 Z	-356 0	-127 J	23.1	97.0	-376.0	121 3
Mr. 12	23.6	64 /	350 3	-357 3	23 +	170	-156 0	-310 8					29.4	***	-164 0	-3457	20 1	40.4	-3/29	-288.7	20 \$	90 ·	162 3	189.0	22.0	97 1	-376 G	-3213
AE -3	24.3		-320 \$	343.5	24 8	18.4	1333	-344.6	22.4		3413	-198 2	25 4	25 S	-364 D	-348 7 -377 8	27.5	90 7	157 2	314.0	24 /	31.4	150 3	179.7	22 0	96.0	295.2	1913
12E 14	29 \$		-39*3	-140 0	213	19 2	-185 0	343.2	25 7	10 8	-343 0	-354.0	20 4	91.6		-377 \$	27 5	92 7	-3740	.2780	26 3		3750	1000	240	94 2	1000	-160 0
41E 19	28.2		-312 0	-1590	24 6 25 2		-339 2	-148.3	23.3		-392 1			87.0	-386 7	-3700	20.3	95 8	-295 4	275 0	29.4		-1.45 5	1,5 2	27.	85.7	-339 1	-1693
10.0	25.0		-378.0	1500	29.4	3. 5	-284 1	-140 4		•••			~				24.0	** *	-347 5	1771	27 5	H 1	-3912	314.0	,,,	94 3	-194 0	389.3
ue 20	···•				•	•		/					l				1								I			
JUE 21	26 7		- 146 0	-3700	25 4	49.7	-165 9	-385 1					207	#0 \$	-130 4		31.5	41 7	-184 7	181 3	29 9	12.0	124 9	-184 3	28.7	42 7	-199 0	-180 4
4-E 32	24 5		-389	-357 0	28	74 4	-386 7	-350	26	78 6	-390 \$	-365	27.5	78	-392 4	3614	10 7	79 6	-393 4	-375	24	124.5	-167 -166 J	-175 0	29	62 4 135 3	-398	-390 4
1335C	250		-372 5	-344.8	26 0	47.4	-160 5	-356 0	26.4	83.0	3417	-156 7	290	41	-199 /	-360 4	28.4	99 5	-196 a -190 7	-164 6			-193 2	-379 D	26.7	125 0	-1020	-380 9
VA 23	25.0		3.54	351 6	25.4		-375 1	154.7	20 5 29 0	850	-147 0 -345 5	-160 S	20.4	12 6	-340 4	.164.7	25.5	** 0	2607	172.4	25 0	99 5	-1910	-178.0	21.7	154.3	1970	-180 \$
WE 34	24.0		-172 6	352 0	28.6	84 S	-376 7 -380 S	194.9	29 0	** '	-380 %	- 704 ()	100	17.0	160 5	370 5	221	98 7	-124 0	173.4	259	101 5		349.3	743	104.6	-1980	186 3
10.25 11E-96		12.4	-379 f -379 f	-350	29 4	17 4	-3793	316 9	30.0	90 5	-343	-362.8	23.0	14	.344 8	-344	30 6	97.4	190 8	374	20	101 0	-394	300 6	20 9	107	-401	-384
1-34	30 5		375 6	152.6	25.4		-1742	150 0	26 0	***	-341 3	-1100	24 7	60 7	-1650	-362 6	23 7	93 5	347.0	1270 0	24 \$		-300 5	-174 0	279	106 0	396 0	-144 3
V4 13	29.8		-3734	150	214		-175 0	-150 0					25 8	41.6		-1050	21 6	920	-392 \$	-148 8	28.7		-3+4 3	173 0	24.0	97.6	-401 0	-3790
We 17	27 4		3773	154 2	29 8	16.3	-376 9	154 0	27.4	88 0	-3610	-364 0	23 7	90 5	-185 Q	-366 9	24.0	94 3	190 2	3750	26.8	** 1	-194 0	.379 3	3.0	122 0	196 0	-3850
108.12				ı					İ				i				ı								ì			
VIE 13	24 0		-370 \$	-150 1	22 6	46 0	-174 4	-354									١		-3467	.374 9			-194 G	-3/50	267	123.2	4012	-340 8
14-ENE 03	26 0		-172 5	150	280		-179 0	352 3	2*0		-3614	-1500	27 0	94 5	-384 O -389 7		31.5	97.6	-34# 7 -390 7	-371 5		77 8		-378 0	250	102 6	402.0	-3410
· · · · ·	29 3		-172 5	3493	25 G	14 3	-374 B	-352 4 -358 D	20 G	87 B	-1814	-150 0 -362 4	29 0	70 5	-340 7	- 30-4 2	22.	950	385 +	-170 1			189 3	-1/10	201	101 7	-105 0	-379 5
WE 08	210		-370 4	-343.0	29 D	84.7	-374 0	-357.0	33.0	80.0	-3778	-364.0	320	90.6	-166 0	-184 3	24 3	84 7	-393 7	378.0			1990	-361 0	22 1	103 4	402.0	-163 0
15-38 VIE 10	24.0		-374 5	.343.4	28 G	447	-374 0	-357.0	34 0	63.5	381	-360 1	۳,				12.5	94.7	-309 6	-110 8			-384 0	.275	23.0	103 8	-397	-300
VIE 10	12.2	50.0	-274 9	2005	24 3	84.0	-370 0	153.0	15 0		-184 9	-350 1	78.0	927	-190 0	-162 5	l								ł			
W 14								- 1					l				39 0	24 8	-362 0	-168 0	1							
WE IS	10 3	82 3	-375 0	.1450													260	98 0	-1810	-367 0			-387 4	-371 4	28 0	193 9	-184 0	-175 D -386 O
A-E **				-347.5	32 G		-379 6	-349.9	20 1	** *	347.0	-3170	38 0	95 6	-384 0	-360 0	27 0	68.4	-385 6	-149 Q	36 3		-190 D	-380 O	215	105 0	4050	-346 O
#1E 17	24 0		-374 0	-1000	34 0		-184 \$	-352 1	23 0	17.5	-310	-358	l				,,,	96.3	-200 0	.164.0	34 5	***	.300		1 "	***		-300
1.0.25				-347 0	39.0	60 4		-354 5	34 0	830	-394 0 -384 0	-360 t	37.0	95 7	-3070	.167 *	120	97.6		-163 0	25.5	104.0	-4023	-379 0	1	104 0	-401 0	388 0
WE 22	77.0		-274 5 -375 0	-342 3	40 1	17.0	-376 0	-344 \$	34.0		-364 0	-357 G	""	•••	.20. 0		""						-384 Q	-174.0	24.0	105 4	199 0	1750
44.55	4.0		1.33		_						_	ne trede		_					estrada							_	_	

Tabla A.3.3.1 Mediciones de diferencia de potencial obtenidas en el reactor R1 (con planta y regado con agua residual sintética), operando a un TRH de 12 horas

100			7 %		L		1				1 h			13				*					,			13.		
FECHA	-	€.4	€-8	6-0	ž	E-4	6.0	E.C	٤	E.A	£ 8	E-C	E.	€.4	£-B	£-C		E.A	E-0	8-0		-	E-a	6-0	E	E-A	£-B	8-6
1521	20.5	23	.,	***	4	190.2	* *	***	210	1574	12.1	913	23.5	159.3	73 46	.,,	23.5	1.47	.51	43	25.9	140 1	.53	11.	25.3	-15	nt 1	: ,
94.70	33.5	1754	-11.2	11.4	26.9	140 5	-61	11	27.5	178.2	-4.5	* 2	233	114.3	-154	5.5	27.0	1139	-191	,,	27.5	1/21	-11	-77	2.7	18.2	*1	٠,,
V 6 14	21.0	1744	-11.2	44.4	202	175 1	25.1	66.5	213	****	16.0	419	20.5	171.3	10.2	1222	200	179.5	17.9	1391	25.9	1155		145 2	24.5	1134	155.3	٠,٥
7E 06	25 0	135 5	76.2	137.3	217	132 4	-26 3	-134 9	,,,	130 0	-24.2	-134 1	26.0	126.6	-247	-199 3	20 3	124 6	-25 1	.210 E	25 7	116 7	-25 3	-214 1	26.0	-26 (-137 2	10 4
3. 39		1413	-154	1455	43.0	177.4		1505	11.3	- 15 7	of 1	.**67	24.0	*** 3	412	-15*4	20.4	*773	99.7	471.2	24.5	1715	45.7	-1142	27.4	457		24
w -	21.5	11.	< 1	2965	12 9	146.5	-2.4	.615	153	1954	3.	19.00	<i>i</i> 10		41	-145.7	i* 3	. 12 .	- 9	1117.7	,	180 1	. 5	-117.3	45.4			9.0
U£ **	29.	121.6	46.5	*65 *	Į.								l				l											
E*2	l												21.3	129.5	-29.3	127.5	23.6	115.0	-32 6	-1977 -1870	22.5	1670	.14 1 .15 8	180 2	26.5	34.0	-163 C	46.5
V1E 13	23.9	145 6	751	-168 0	214	147 0	-71 5	-172 4	2" 3	152 3	-34 8	-176.0	***	150 6	367	-177 \$	n•	1850	-36 1	.1828	и,	1670	43.	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		340		•••
	ŀ				257	47.	142	-64 !	24.5	-44	.14 *	141	20.3	53.9	-145	1111.5		51.9	-113	49.	32 5	47.4	112.5	411	.03	-124	413	413
A1	22.2	42.1	123	-85 G	26.2	4,,	120	440	29.3			44.1		51 1	421	*5*3	21.3	35.5	42.5	70.9	31.1	31.9	-12.6	75.	72.5	011	43.6	245
	l ::	12.3		42	1 27	101	-126	44.2	201	42.5	* 5	1914	77.5		9.0										21.4	-4.5	515	457
VIE 20	23.6	13 2	-113	425	10.1	47 6	-117	.77 2	24.5	94.5	12.1	-1797	nı	43 1	-133	-166 6	24.9	1120	-140	-41 7	28 5	135 7		46	24.0	-16.2	-34 3	-56 0
	24.3	17.5	18.5	451	:11	54.2	-27.3	40.7	25.9	~4 7	-21.2	19.4	સા	55 1	199	1.25	70.9	25.5	18.1	9273	29.4	59 7	-218	411	27.9		-73.3	÷.,
WA 24	24.0	4.5	*+2	29.1	5.3	4	.116	-91.2	21.5	54.2	*8.2	427.7	.43	42.9	-11	3112									27.4	22.4	1 1	17.1
0475	32.5	.155	1+5	-46 2	757	-191	-21.3	1126 1	23.5	40.4	22.1	276.6	20.5	<27	: • •	1427	27.3	411	.154	-1921	29.5	447	.179	427.5	35.7	;	44.1	***
1.624	30.5	76	*4.9		78.1	457	. 3 2		24.0	4.1		4807	254	294	-157	2111		-121 2	-24.6	437.0	24 0	-126 8	-37.1	-354.4	200	-324	170 2	131 0
VIE 27	29.0	-115 2	-16 4	-144 0	24.0	-110	-28 G 40 2	-118 1	28 0	-126 0 -45 7	30 1	3100	250	-118 4	4+5	-7363	29.9	41	-11.2	1944	21.2	45	-16.3	247.7	13.3	404	1423	-115 *
17	W 2	-)4 :	35:	*1 5	36.3	9 à	402	2710 2710	17.5	400		176.4	ж,	299	٠٠٠	., 30, 3	33.4	-121	31.7	36.2		422	-14.3	144		41.1	190.2	140.0
WE 25 227	26.2	533	400	2.6 A	10.3	512	44.3		12.4	442	01	175.4	.91	523	42.0	-246 :	30.5	-54.2	12.3	3:31	2.5	453	412	354 7		125	209.3	394
	26.2	22.2	-34.5	244.5	2.3	21.5	47.5		N:	-11	25.5	1.5	l '''				36 %	56 à	113	194.1	28.9	-55.2	42.2	1127	.4.2	14.3	256.1	1.1.
#1É 34	28 1	471	-163 8	296 7	217	46.6	426	-2010	28 1	49.1	160 8	-360 1	28 6	-527	411	790 0	20 5	-519	491	3780	21 7	-54 7	-590	-345.7	24 0	-59 1	262 0	-332 5
	111		1963	129.2	22.3	.69.5	19.2	219 :	27.4	*52	154.5	192.9	54	46.2		194.2	37.4	*52	111	9+0.2	.44	46.9	***	.45.4		*9 *	290.5	-1** 5
V4.3	29.5	499	427	110 4	1. 2	414	42.9	218.2	l				10.4	-10.5	44	-34* \$	31.9	413	.176.3	1899 2		46.4	~s.	140.9	.4.7	147	254.2	-1411
98.9	47.4	-26.4	-247.7	119.5	35.4	425	47 '	456.7	75 4	145	1914	-344.1	13 5	413	444	190 5	25.5	415	. 52 :	154.4	75.4	415	412	- 2	111	-13 *	34. 1	325.5
A-1 1	.51	15	. 51	122 5	·c.	4:5	1161.0	1597	l				52 S	47.5	414	-169	.51	44.1	1243	374.6	22.5	٠.,	-1570	375.4	28.5	-679 -534	348 0	-je; 5
4E 11	24 0	-52 9	-275 3	141	23.4	-56 7	126.0	-252 4	21.1	43.4	258 5 141 5	4111	31 4	43.9	410	3716	30 4	444	125.2	374.6	12.5	.513	-1530	375.4	26.5	-334	328.0	471.5
1 .: "	27.8	178 B	262.3	349.	.5 *	791	146.0	488.5	23.5	12.2	325 1	395	l ""			101.5	12-3	4.1	1217	344.1	3.5	44.3	. 40 3	4000		493	353	159
VA 15	25.0	24.8	265 F	164	312		41.0	2773	25.3	32.3	.334 5	1121	36.3	427		4572.0	31.4	42.3	354.7	149.9	,	41.	.19.2	125.5		54.6	24/1	444
76.2	.22		275.3	141.5	127			224.2	١		.,,.,		33 0	+0.2		.14* 1	33 5		377.6	145.6		NO 1	2153	-119.5	21.4	22.7	3.5	352 4
	111	-54.0	3481	349 7	25.6	-333	-1100	-298 0					32 1	451	-274 0	3491	39 4	44.5	-343 2	-339 6	28 3	411	-2550	3314	24 0	441	-369 4	J43 5
	1 3.7	1154.2	136		73.5		44.3	316.3	30.4	254.1	363.4	-14* 6	14.3	-155 5	291.3	-144.2	14.5	1153.4	121.5	-3+7.1	79.4		-316 1	179.5	5.3	1155.6	-345 *	315.4
V4.77	29.0	1584	244	124	200	1949	272.5	-32 5 7	1				24.9	.*** 5	-106.9	1.2.	11:1	.1743	1.0 7	257.5	21.5		-3*44	144 4		.**; ;	i.t s	75.4
9623	32.*	1156	-)614	31, 4	.5.	415	266.0	1912	27.4	121	3"1€	194.4	20.5	44.5	2"47	141.5	1e 3	490	-1440	3152	75.3	194.5	1194	116.9	15.2	. *5.3	1,5 7	-224 *
	.0.1	1175	35.4	-3-22	.0.1	459	444	-182.5	1				214	-9 1	1656	149 #	× 1	1711	-1%-2	195.4	75.5	.75.4	1.4.	1940	29 7	142.2	.344 *	0.2
V1€ 25	34.5	-1917	-371 2	478 5	34.0	-124.5	-255 4	174 5	30 0	-187 1		356.4		207 6	3593	354.0	10.0	217.4	306 1	357 1	24.0	-195 (120.4	354.1	29.0	-229.1	1256.3	-360 3
		2023	-325.3	184 5	25.4		423.7	159.3	19.5	1612	0.44	ite:	29.2	4.8.4	-1114	.,1%	25.5		132	desc	28.3	54.3		154 ;	29.3	1419	221.9	-111
VA 19	26.2	-1 ee 2 -156 2	125.3	184.5	1 .33	****	221.3	-159.0		17.5		3197	.9.4	491.2	-1115	121.1	20.3	142.5	1.9	325.0	22.6		1.1	-145.2	20.1		-3163	1155.3
VED.	25.5	100	1)6.	120	1 27		254.4	344	17.5	4.3	254	348						136.2	353 \$	121	25.0			1c* 4	24.3	155.3	353 *	200 2
2731 101	***		***		1		• * * •		~ .																1			
	22.4	*40 *	274.2	254 -		.144.3	2112	379 (26.3	1134	-346 7	414.2	24.5	112.	7'1'	3"":	23.7	.1412	.2*6 5	477.0	24.5	140.5	46.1	354 2	21.9	**4 1	263 0	-3427
V4.39	49.8	****	-2912	349	214	1114.1	2567	-35*2				1	25.5	1112.1	255	-36+1	21.6	. 1 1 2	1.4	-1**1	78 *		2500	39.	:	***	1/5 5	-378.2
W 5 15	2**	****	-35e 2	-11+ -		-124.3	-2101	-194.2		· 10 7		ાના	23 *	-146.5	251.1	154 3	21.9	156.9	246.4	145 #	25.5	4.24	-14, 1	1117	27.2	****	156.3	-111.2
.611	.7'	1724	1772.8	77.2					26.9	.55.5	154.3	32	22.1	19.5	141	151:		13.4	-349.0	314.2	27.9		145 7	147 -		149.2	42"	394.3
. E 68	24.0	-131 3	-136 \$	-379 2	22.6	-1157	-2180	-3830		-1270		-150 0	24 7	-131 4	-344 2	4810	29.7	-1100	-389 4	-389.0	22.3	-1470	395 6	4924	26.5	-1524	401 2	299.0
	234		-349.5	25"	22.0	.116.3 .126.3	249.3 245.2	3543	21	11172	o51.2	3673	29 4	-192 6 -139 2	-230 f	-354 S -354 J	34.5	***	3814	2153	32.5		-3161	353.5	231	1197.0	4127	431.0
VE 12	23.6	4123	3190	219 . 119 2	24.4	1114	296.5	364.3	٠,,	-123.4	200.2	-194.0	25.4	146.4	-2736	-3593	39.1	4155.2	-3512	.150.2	17.7	*14.5		144.7	27.3	1974	211	1177.0
12.9	No.	0.24.2		-154 7	2.1		2.1.	322.2				-116 5		-1110	-296.2	-356.7	27.5	.110 2	294.0	1923			32.3	3113	234	1320	-315.3	163 7
VE 13	20 0	-1160	211 0	3490	24 6	120 5	-240 4	4719	25 7	123 0	740	-177 0		-160 0	-284 0	170 0	20 0	-135 0	2710	3140	2a 5	.1153		3814	24 0	-128 0	289 0	-1940
	217	122.2	2221	360	21.7	154.0	252.3	1101		1610		377	19.5	4701	214.3	-1917	:83	1113	2813	191 +	.94	****	740 1	376.3		157.4	-22* \$	-2*5
ر. دی	26.2	123	2151	3-4 1	;61	112.5	475.1	.354.3									24 2	13/11	7525	1.54	27 2		245	315.1		.**03	259.5	146.1
46.00				- 1	l												l								i			
.7.25	26 7		33	-32*3	24.4	1465	4	32.4	1			1			-2437	-343 ;	3+ ÷	1100	.746	342.9		42.5		142 1	.8 7	1204	-2*2 2	242.2
AE 55	24 5	-1620	-249 6	2312	24.0	-142 0	.749 6	2313		-134 9		4197			-140 1	126.3	30 7	-155 6	-2210	360 4	24 0		-2350	334.8	29 0	-129 6	-553 0	3454
12 2 6	78.3		450.0	154.0	76.0	139	215 7	-319.0		135.3		3/10	-90	-1370	-539 D	1750	29.4	1320	2153	119.4	29.4		-23° 0	3/0	25.6	1250	279.5	112.5
91.77	74.0	*41.2	243.5	: NG 5	75.4	119.5	244.5	369.3		-136 I	239.7	375.7	35.4	-134.7	-239 5	-349.5	25.4	30.2	2364	1,140	215	129.5	231 2 230 8	4050	39.7	1213	2253	406.7
9 £ 34	24.2	142.9	-250 1 -45 2	-165 2	79.4	10 *	244.5	-365 C -379 3	29.3	16 3	246	, ,,		134.7	-239 5	-349.5	27.4	10.7	-231.3	3993		-1347		409.0		-1919 -1928	425.0	4067
/E 94	10 5	-140 1	452.7	-154.0	210	114 4	249 3	-384 0		-136.6	.745.6	-375 0		1123	-2401	-179 0	,	-130 7	234.7	384 1	25 0		230 5	1890	20.	126 0	715 4	-316 0
	13 4	147 5	287.5	352.5	25.4	1140 7	244.2	365 3		. 39 5		390 9		1350	239 5	-178 :	23.7	*1319	230.5	4212	.45	1 30 5		415 7	ļ ;·· ,	1127.5	420.5	4:9;
ua 1:	.9 9	14/ 5	745.9	3653	21.5	-140.1	241.3	36* 5				/		1357	2347	3793	27.6	1 36 4	216 3	-145.3	29.7		7309	ي هوړ.	36.3	175 \$	224.2	4973
v F · ·	214		230.1	358.3	39.1	1117.9	247.5	-154 7	27.4	135 9	246 1	-348 0			-240 0	3'50	24 9	133.1	238 5	-369 3		+28.3		-34° 1	27.3	129.3	-224.5	4313
12				,									1			- 1	l				1			J	ı			
V1E 13	74 9		-244 6	J92 G	22 6	-140 7	-244.0	3740									l				i			1	ı			
. Actab	26.3	-142.3	-2163	356.7	.92	-140 9	245.9	-269.8		. 171		-3613		.,32.2	2421	-369 7	31 5	.133.6		374.9	199	1337		1 5 5	26.7	1779.4	-227.9	-1.5 9
VA ;*	79.5		-2415	-160.0	293	-142 5	-245.2	-367.0		* 16 4		-145 8	29.0	135.5	-235 7	-372 5	26.9	132 4		-1"54		129.3		-1'10	25.3	1214	-225 0	3,43
9 E 25	:• :	.42.3	749 *	-36.0	200	135 7	248 5	165.3			245 3	-370 1					23.5	-132 5		1759		130 1		-1793	24.3		-275 0	340 5
*	25.2		416.5	-162 4	12.0	-140 9	245 9	.]4,4		-1373 -1342	2410	-169 0	35.0	-135 8	-739 9	-1125	32.5	-132 3 -130 2	-237.0 -235.7	374 C		-129 4	2350	175 9	77	127.0	-23C 4 -227 6	150 9 -180 2
VE 10	14 S 12 C	-138 6	241.5	358.8	26.6	-137 6 -137 4	243 0	-362 S	34 0	-134.2	-241 Z -246 B	-164.0	25 0	-132.5	.244 0	-374 1	1 *4.3	******	-413 (4134	~ `	.148 4	-6.11	4188	ı	-127 0	-447 9	-100 1
VA 14	120	-7433		302.3	,	194	7.0	120 ,	13.0	96 ()	.440 8	- 174 \$		12 3		3,41	l				l				1			
VE 15	39.0	.112.2	2415	352.0	l				1								39 0	130.0	-2370	-375 6	29.0	. 25 2	-234.5	3790	39.0		2250	-1413
			2442	162.5	22.3	- 19 9	244.2	-156.5	20.1	-1397	243 9	-3152	19 3	- 30 2	238.0	-3712	29.0		-21"			125 0		381 0	21.5		729 4	363.2
#1E 17	24 0		2413	3617	14 0	139.0	2450	3647		-136 0		-170 0					27 0	-131 2		3741		-126 0			24.0	-124 1	-227 0	-184 0
23		232.2	1412	162.5	39.0	138.2	249.7	364.2		1353		369.7				1	l				i				1			
									1							1			2315									-352 0
va je	773	.142.5	445.4	-351 0	43 1	-119 /	-244 9	-3450	JA 2	-1371	7383	-364 C	370	1353	-2357	170 1						.1324			12 1	-1303	729 4	
		3422	44.3	352.5	<u> </u>	-119.7 de la su					-738 T					E-G + El	120	-13+ 5	2323	-174.2	29.7	1324			32 S 34 S	1303	226.4 225.0	-193 t

Tabla A.3.3.2 Mediciones de diferencia de potencial obtenidas en el reactor R2 (sin planta y regado con agua residual sintética), operando a un TRH de 12 horas

f			7 m			,					<u> </u>		\Box	13							\Box	17		E-C		,,,	E-6 T	15
FECHA	£	£-A	t a	£-C	ī	E A	E &	E-C	£	E-A	6.4	E-C	19.0	E-A	19.7	E-C	13.0	154 D	29.2	250	TB 3	1413	14 3	9.7	35.3	24/	73.1	
02 SEP* 12	25.3	145.0	65.3	19.3	253	125.5	26 9	.25 G	350	165 T	65 1	450	19 0	153 0 57 6	39.3	-3 5	30.6	158.0	967	-250	39 3 35 8	345 8	94 1	26	36 3	101 3	90 S	35
AT 23	28.0	69.2	103 1	-91	25.9	130 1	99 9 34 5	-83	38 0	131 3	52 2	-9.1	20.5	132 0	22.0	-35	13.6	127 1	75.7	36	17 0	133 7	75 4	-96	22 0	116.0	74.2	.100
VE 34	250	151.7	12.2	47	25 0	148 7	201	.4.4	350	149.4	42 1		360	196 4	104 2	.42	39.9	145 4	98 7	126	36.0	128 7	97.1	-30	25 6	1163	99 (-10.9
34 55 VIE 56	250	164 8	126.2	10 2	237	154.2	131 8	.110	29 0	156 9	136 0	14.4	39 0	149 3	120 6	-10 8	35 0	145 6	118 5	12 4	14 0		1122	-10 7	19 G	1390	118.4	-11.2
121 19	230	169 0	25.2	10	25.8	177.5	16 6	12.5	25.5	119.3	39 8	.153	31.3	153 1	46 7	-11 5	307	146 5	55 5	-12.1		159 2		-123	140	16.5	75 8	-133
44.1G	32.0	121 1	110.5	-12.5	36.2	162.3	105.9		36 3	169 0	104 7	-11 2	38.0	172 8	466.9	-112	213	175 9	107 0	-12.1	450	174 9	**** 5	-726	3.0	*84.5	112 0	.110
VE 11	28 0	12.9	109 5	-23	ı				ı				l					149 8	179.9	.105	۱	.65 3			19 0	1740	26.2	.146
JuE 12	1				l								32.3	145 6	114 5	92	100	152 6	204 9	21.5		162 7			35.0	154 3	204 9	.1.5
√1€ 13	26.0	145 6	168 0	-133	150	149 9	175 4	-14 6	25 0	152 4	194 6	-16.6	ж.	149 5	210 5	-191	١ **	132 4	200 9	.21.3	"		203 0					
.316	ì				1		93.9		14.5	236 4	10.1	(13.7	l 30 5	226.5	75.5	-134	39.2	2193	92.6	-134	30.5	:99 8	57.2	-12.7	347	225 0	62.3	129
W4 17	79.7	265 5	125 8	-14.6	29.0	245.9	93.9	-13 1	190	243.5	127.1	-91	390	233.0	125 1	9.1	1 10 1	2315	122.5	-46		227 1		-61	36 8	237 1	122.4	-31
UE 13	20.9	245.7	140 3	2.5	30 3	242.4	129 1			221 8	1164	12.6	37.0	2197	125 1	15.7	1								73.2	249 1	.50 8	35 4
VE.20	240	212 1	145.3	15 4	29.0	212 0	135 0	56 9	36 0	233 0	142 1	62.4	340	253 1	141 5	721	+0 5	253 4	141 7	40 9		253 9			39.0	749 1	149 2	921
	300	212 0	239 5	32.5	35 0	219.3	241 8	91.9	39 3	243.9	246 4	112.2	14:3	248 9	252 1	1123	35 8	240 7	244.2	35.3	.59 4	248 1	543 8	86 9	37.3	240 3	:136	903
94 74	29.2	:49	246 1	44.3	37.0	247.3	248 9	19 6	38 3	251.2	2422	5C 3	19.0	239 1	245 2	*: 3						193 1			39.0 35.0	195.5	237.0	69.8
V€ 29	15 0	2+6 +	215 4	16 4	36.3	:58 S	2197	19.1		ж, з	234 9	*19	×,	1 +6 0	235 6	69 7	190	155.2	241 9	57.2	33.3	193 1	230 Z	20,	797		245 1	47.4
.UE 26	33.3	194 5	212.0	× 9	33.0	10+ 1	125.9	18 9		210.4	233 2	*4 1	145	251 4 230 9	249 d 235 B	56 7	36 8	275 1	261 0	64 1	14.1	231 2	241.7	47 3	191	229 2	244 1	70 1
70E 27	750	276 9	227 0	54 #	*61	224 6	225 9	46 9	39 0 35 0	231 2 154 9	2129	40 2	290	217.2	154 9	17.6	35 3	274.9	254.8	75.9		233 1		77.5	33 1	230 3	241.5	
10.30	36.3	153.6	128.3		19.5	259 2	102.3	19.7	39 5	227 6	2714	117	J '''			- 1	36.9	237 1	256.0	77.4	39.2	215 1	250 1	*6 0	263	229.0	244.5	-63
U4 11 DC1	33 3	15° 4	210 7	79.5	353	243.1	271.2	77.3		747 9	262.9	33.1	25.6	240 8	247 à	12.6	32.5	238 1	245.4	79.5	10.5	:36 1	244.9	*5.4	31.7	229 6	244.5	76 2
VE 22	357	263 1	2913		257	218 5	2*5 3	*2.4		254 1		15.5	1				13 7	212 5	259 1	40 Z		237 9		42.7	75.2	234 7	248 1	-93
1/E 24	12.6	237.0	260 7	43.0	20 0	242 1	257 3	41.4			Z59 1	60 4	36.7	230 ₽	260 5	41.9	10 5	219 4	244 3	421	37 0	221 9	2124	AD 1	19 4	226 9	2109	79 4
12.37	1				i				1				1				l								٠		185 *	
WA 28	13 \$	178.4	2025	*2.8	36 7	1525	295 1	95 6	Ì				35 9	127.6	159 1	74.5	36.4	146 1	:59:0	7.9		128.8		12.5	267	127.5	185 7	47 :
VE :3	30 1	130 5	1967	* 5 0	12.0	132.9	2057	19.4	313	122 2	157 8	58 5	267	121 2	166 5	65 9 31 6	18.0	115.5	2715	13.6	133	134 2		112.4	29.3	127.5	229.4	119.5
Juli 13	36 ·	*53 7	120 +	.3 4	16.4	127.5	2017	12.5					150	134 1	236 7	14 7	13 7	137.6	272 1	90.0		125.0			36.4	110 8	223 7	134 1
VE 11	10 7	117 9	265.4	12 1	347	141 6	269 7 245 5	65 7 25 7	330		236 5	25.5	39.0	127 1	224 3	817	390	1267	254 7	93 4	24.3	133 1		75.5	33.4	133 5	225 9	42.6
U 14	12.4	125 #	259.3	55 B	1110	132.5	245.5	19 7		133.4		74.4	۳,	.2. 1		•	14 5	119.7	259 1	.,,	20.5	147 2		54.4	10.6	145 2	272 1	19 4
UF 4	33 5	115.5	2124	49.3	13,0	129 7	290 2	10 5		147.1		84 7	+0.1	146 5	256 2	53 9	35.6	142.9	252.2	49 1	Mil	145 1	239 2	210	33.4	*47.1	··· ;	245 t
1.6.7	367	13.2	2184	49.5		145 3	250.5	20.1			•		39.0	129 5	259 5	*7.9	19.0	124.4	259 1	35 5	30 \$	133.5		52.5	35 3	136 0	: 94 5	73.5
18 14	34 7	128 1	275 6	49.5	230	143 6	269 5	94 1	ì				37.9	136 2	264 2	24 1	147	142 6	279.1	1344	15 0	145 3		30 B	19 5	144 1	253 #	89 7
60.21	33.0	*** 8	300 5	156	27.0	119.1	311.5	.15 2	ารง	121.5	316 5	-13.4	380	126.7	346 9	23.4	13 5	130 /	337.5	-215	16.0	175 3	K14	14.3	297	140.9	2714	-11 2
Va 22	36 9	1163	254 7	112.6	.91	1125	257 5	-13.0	ĺ				19 0	129 1	288 4	. 3.5	20.5	135.3	250 4	-139	17 3	139.3		-14.3	24.5	145.3	290 5	-13.6
VE 23	ы,	+0	275.6	129	25.0	119.5	287 9	-13.1	37.3	120.7	295 1	67	35.4	126 9	292 5	-176	39-7	123 7	297.6		36.9	139.7		. 7	200	163 1	300 7	. 25
€ 24	35 3	: '\$ '	102.3	. 9 3	27.3	1.6 2	300 2	-182				.73 0	13 6	173 4 202 4	303 1	-16 S	36.0	197 5	210.0	-20 4	190	164 7	294.0	20 6	24 7	199 4	295 1	.20 9
1°E 29	34 0	144 3	380 9	-19.1	26.6	213.4	100 d	49 9 22 4		215.3		-22 1	29.2	133.4	3139	22 1	J 📆 ;	127 1	319.7	21.3	,	125.1		22.5	29.7	129 7	305.9	.27.6
10.28	29 5	142.1	301	-21.5	27.4	140 1	3130	-214	347		3132	-211	.,,			••	, is	126.3	294.3	22.4	27.5	115.1	299.0	-21 5	34,	105 3	2793	
U4.29	314	139.2	3054	21.5	20.0	127.5	3130 TC8 2	-21.5		123 1		-22.2	,,,	119.4	3125	.211	200	128 1	1091	-155	.95	129.5		15.5	120	1317	114.1	-219
	29,	171.6	3131	21.5	1 2	153.2	3.50	20.4	35 7		3112	-199	1				31.7	159 1	313 1	-17.5	29.1	***	312.2	21.9	34 C	190 1	312 :	21.
VIE 21 NOV			• • •										ł												ŀ			
34	35.7	172.5	3143	20.0	29 1	159 3	316 1	.141	35 1	174 1	3156	-15 7	28.0	173 6	319 1	-20 7	273	173 6	3.01		281	-62.2		. 3.2	373		3127	-21.7
U4.05	24 1	156 9	3120	-15 2	247		315 6	1192	i				293			213	25.9	199 1	114 9	-219	ъ,	1813		-22.2	307	179.2	708 9	-22 5
VE 36	3C 4	1975	387.4	-143	33.9	1715	295 0	-147	35 9	178 2	300 1	-17 \$	27 9	189 1	318 1	-211	24.7	149 1	315 1	21.1	X 2		1:55	21.9	363	114.3	305.9	-221
	.90	1921	314.1	21.5									l			-22 0	75.0	194 3	122 a 319 1	-216	29 4		315.5	210	30 4	184 5	3100	221
V1E 04	27 €	\$5.0	299 6	-21 4	25 *	206 9	316 1	.21 4	33 4	2014		-22 5	20 7	196 3	319 1	22.5	314	2011	120 1	-20 9	22,		3176	210	3	7.03	319.2	2.5
] "]	x s	****	3.44	20.5	26.9	192.5	119.5	,0 8 21 3	29.4	182 1	121 3	-20 2	,	2109	356 1	20 /	29.0	2015	361.3	-20 9		207.5		21.6	30 /	2010	16 . 6	21.1
94.2	25.5	206.2	3190	20 1	25.5	2110	335.3		٠	218 1	170.5	-21 1	5.	2018	329 3	20.6	25.2	213 6	321 0	-211	32.0	209 7	3170	e	ъ,	218 1	324 3	.20 1
VE 13	32.9	2197	323 3	-20.2	24 7	2217	126.0	207					23.4	225 1	325 7	-216	170	224 0	320 1	-218		222 9		-21.5	133	217.5	326 1	.20 1
10E 15	33 0	209 5	318 4	.19 6	27.0	2131	321 0	201	28 4	214 0	323 2	-70 4	25 1	2100	120 4	-210	27 4	209 d	3120	-217	29.9	208 4	310 9	-21 9	27.1	206 7	308 7	-22 0
	25.7	214 1	114 6	-20.5	78.0		319.3	-20 6		209.0		20 1	22.4	2161	134 0	- 19 4	N a	213 1	V56 I	.190	н٥	.nr 3		-15 5	363		357 1	-15.5
UA 19	28 1	229.2	362 6	20.4	30 5	2257	159 0	-201					l				25.9	2135	357 6	2.0	37.1	257 8	327 \$	-186	39 5	2013	255 2	.194
V€.20					l								!				ļ				1				,,,	26.5	355.0	.17.3
,UE21	27.9	209.3	359 2	-20 +	29.4	259.9	358.3	-197	!				240	210 4		-197	37.9	209 I	357 0	.197	29 0 27 a	208.5		-17.6	37 3	266 3 180 1	355 8	-173
+1€ 22	28 4	219 3	352 1	-217	30.7	212 6	352 9	-30 0		210 1		-20 3	25 G 28 G	209 8 195 7	351 0	-20 9	12.5	183 3	348 8	-169	32 2	179 5		-16.1	20,	152.4	340 1	.15.4
	26.0	223 0	360 3	-25.6	243	2143	154 3 152 0	-251		2019		-19.4	200	195 7	3470	****	27.4	1833	344 0	-17 0	12.0	174 0	H20	-16 4	25.4	170 5	239 3	.149
94.23	200	220 5	356 1	-24 0 -24 0	213	213.6	152 0	-237			350 9	-22 1	100	194.0	348.0	-215	27 0	182 7	345 1	-18 6	360	179 0	1440	.17 4	23.4	177.3	337 0	.163
νε 	21.0	2217	357 4 359 1	-24.7	25.4	214.0	353 4 354 0	-240		4080			35 0	194 0	344.0	-22.5	247	194 0	3493	-20 2	290	176.0	344.1	-193	292	170 3	3410	.17 5
-12-25 -08-26	150	220 1	362 0	24.0	270	217.0	154 9	-225	340	210 7	354 0	-210	19 0	190 5	351 7	-17 6	150	164 9	348.0	-16 8	240	178 3	345 0	-150	27 0	172.0	343 7	.14 9
	1.0	2190	152 6	23 1	28.3	213 6	3517	,		198.7		219	28.0	187 6	346 0	-211	370	174 5	3413	.191			339 0	-17 \$.59.1	169.0	337 9	-190
WA 10	37.0	225 0	36 9	an:	23.0	2.10	360 *	-221					27 0	120 5	347 0	-29 8	29.0	164.0	345 9	.19 1		**9 4			280	174.0	318 '	163
¥€ 11	110	223 7	352.0	-26.3	26.0	2164	360 4	-24 5	40 0	207.0	357 4	-23 1	250	196.0	353 0	-20 4	260	187 3	351 2	- 1E 7	310	178 7	346 3	-17.4	39.4	170 8	715.0	-150
AE12					ŀ								1			-	ł				ı				l			
VE 13	28 0	223 6	360 5	-25 5	24 0	221 4	157 9	23.4				_	٠						349 6	-170	э.		3450		, s,	170 9	342.0	.149
*EYE :3	250	221 3	340 1	-24 5	29.0	2134	397 0	-240		2107		-210	270	2019	351 7 354 0	-16 B	313	189 7	349 6	.170	250		3490	-16.3	230	170 2	3450	-151
VA 37	23.0	2210	367.0	-250	250	2140	360 6	-241	29 0	294 0 201 9	356 0	-22 8	290	197 5	334 0	-204	235	181 0	3510	.12.4		176 5			243	170 9	3421	.190
V€ 34	210	2212	150 / 162 D	25 1	290	2137	254 3 357 G	-23 B -24 C	110	2017		-231	320	194 0	352 0	-20 3	240	185 6	348.0	-191		176 0			22 1		341 0	-14 6
70 09 VE 10	25 0	215 2	352 D 358 7	257	32.0		357 G	-240	24 0	2017	354 0	-21 0	٦,				323	180 6	348 1	-170		179 4			23.0	1710	340 5	-150
	32.2	220 0	354 7 358 Q	-251	24 0	214 5	334 6	-25 6		207 4		-22 3	280	196 0	346 0	-20 4		-			1				ì			
WA 14					l '''						,						l				ı				l			
UE 13	25.0	219.4	357 0	-250	1								l				204	179 9	349 1	-16 9		175 0			207			-147
,.E.6	320	217 \$	340 4	25.4	323		154 0	-248	30 4	200 0	354 0	-270	31 0	199 1	390 9	-218		164 0	344 6	-20 5		175 4			229		340 2	
VIE 17	35 0	215 /	150 0	-240	24 0		393 0	-231		199 9		-210					30 3	1820	347 0	-198	×s	173 0	342.0	-18 0	23 0	160 9	339 9	-17 4
20	24.5	2120	350 0	-210	35.7	2140		-241		205.6		-22 \$	ŀ							أصد	l				١		3310	-139
WA 21	22.9	2100	394 3	-25 6	219	2190	351 9	-249	23 7	209 7	345 7	-219	250	. 2014	340 3	-197			334 0 335 0	-170		185 0			1,,	1750		14.2
VE 22	27.0	2140	353 2	-25 0	L								ـــــا				23.0	180 0				170 3	130 1	50	٠,,,	164 7		
s influente d			E-A = E4	- woda	A 10 2 cm	de la bi	marticu		F.R . F	lectrod	a A (4 1	0 cm de	la supe	rticm		E-C + 1	Electrod	o C (a 34	cm de 1	a superf	1C 10)							

Eximisente del satisme. EA - Exectodo A (a 2 cm de la superficie)

Eximisente del satisme. EA - Exectodo C (a 30 cm de la superficie)

Tabla A.3.3.3 Mediciones de diferencia de potencial obtenidas en el reactor R3 (con planta y regado con agua corriente), operando a un TRH de 12 horas

																			i 21				7 7				n	
			T Pr	_	_	E-A	E-B	Ent	-	E-A	ę.B	8.6	-,-	f ;	E A	EC			E-B	£-C	<u> </u>	64		£-C		E-A		£-C
FECHA	E	1267	413	-1217	25.2	28.5	12.0	-1114	35.3		-18.4	-+6 5	39.0	7324	-23.6	-50.	390	153	44	34.5	39.0	126.2	-132	-50 5	390	127.5	-16 "	-19 6
WA 03	25.3	126 6	-134	62.4	360	126 7	-16 2	-618	36 0	127 4	-18 5	613	350	126.4	21.9	-657	36.6		-23.3	-67 5	15 8	131.5	-25 6	-53 5	36 0	132 6	-27 1	-64 1
₩£ 34	.33	135.2	25.6	66 1	25.9	135 #	29.5	-69 9	33 3	136 5	-315	-72.5	30 1	127 1	-35 6	.91 9	23 0	138 7	-36 1	-72 5	37 0		- 15 2	-66 6	220	140 9	-35 8	.74.4
در عن	23.0	143 2	-27 1	-69 5	26.1	143 9	-25 6	-58 4	35 0	144.4	-29 9	-69 5	360	147 0	-34 4	-63 1	39 0	147 5	16 9	72.3	36 9	150 7	414	-752	25.8	151 6	-118	.76 3
VIE 36	35 0	152.2	-32 6	-73 0	23.7	154 1	-33 \$	-71 9	29 0	136 4	-33 4	-72 5	39 0	157 6	-41 6	.750	31 0	135 1	-45 6	-79 1	38 0	115 3	-44 3	-78 6	39.0	158 6	-50 6	-77 \$ -101 9
50.00	29.0	127.5	~59	-65 9	25 5	128 9	-56 9	-75 €	25.3		42 9	45 9	37.0	145 6	-69 3	-949	30 /	152 6	.71 S	-110 5	34 0 45 0	165 0	-66 5	109 5	37.3	196 5	102 5	1115.5
WA 10	32 0	132 5	-75 4	-58 7	36.9	126 9	.79 6	-69.7	36 0	129 4	-610	- 54 3	16.0	131 5	-85 9	.135.9	215	135 7	.69 /	-107 5	'''	14 5	- 94 9		3, 3			
4€ 11	29.0	132 5	-19 6	-69 7	1				l				32.5	139 4	- 24 6	.165 7	30.2		-105 d	.179 3	29.0	157 1	-1127	.,,,	190	165 4	-116.7	-1120
20 € 12			-49 0	-94.7	350	133 9	-95 7	-115 6	25 0	1390	-99.5	-120 4	32.5	142 7	1047	-124 9	26.0			-131 0	27 8	156 0	-1127	136 5	35 0	1470	-114 9	-139 8
V1E 13	260	132 1	-89 0	.44 /		1339		.,,,,,	***				~.	,							1							
10 16 MA 17	25.2	159 1	13.6	-10.7	290	159 2	11 1	-812	36.0	161 6	12.3	-817	30 5	162 2	11 6	-85 /	.90	150 2	12 5	-90-4	30 5	156 2	73	-91.9	347	157 8	7.1	911
UE 13	20.0	144.5	17.1	199	200	142 1	17.5	.77 5	190	1519	18 5	-27.8	13.0	156 3	14.5	.76 1	36 \$	156 4	10 8	-50 9	31.1	*55 9	12.8	-910	36.6	119 2	12.3	61.3
	25.2	150.1	13.4	45 1	133	158 3	:41	43 5	33 5	145 6	17.4	93 4	370	153 3	17 8	-69.0	1				1			49.9	33 3	163 1	15 6	-69 5
41€ 2 0	26 3	139 5	15 8	49.1	290	141 8	14 0	-926	36 5	145 9	15 9	-95 6	36 0	157 6	16 6	-107 4	40 5	161 3	10 9	-44 7 -131 8	28.5	163 1	49	-199	19 0 17 0	163 1	13	-129 6
21	28 5	12.3	-3.9	-76 *	35.0	157.4	97	-857	19 Q	167.4	51	63 5	200	161 1	7.6	-93.5	15 6	163.5	7.1	-131 8		102 3	,,	70 3	19.0	149 1	12.0	-175.4
WA 24	29.3	168 4	*1 7	-1115	37.3	165.2	11 \$.1.53	38 0	159 1	14.5	-110 S	193	159 5	150	119 9	300	185.5	-4.1	.020.4	,,,	167 1	14.5	-121 1	150	171 9	15.3	1117.9
¥€.3	35.0	154 4	17.3	15	36 0	185 9	18 1	-1197	13 2	168 1	20.5	1190	307	1621	23 5	1197	,,,,	1000	.,,						28 7	·ez 5	20 1	-121 3
E 26	11.5	40.5	18.2		19 0	152.7		22.5	19.7	169 6	20 4	-101 6	200	177 0	21 0	.1196	34.6	163.9	25 2	-114.0	39 G	161 3	21 4	-1127	29.0	160 2	30 5	-111 6
(E 27	25 9	152 4	19.2	40.3	15 5	157 6	10.0	1193	15.3	165 3	13.7	-115 5	29.2	163 1	64	.116 5	150	1915	75	-115.0	250	159.4	61	1114.1	มร	159.1	8.4	-1142
44.21.001 (33.3	1614	15.6	1197	34.4	158 9	16.9	120 2	39 5	156 5	18.6	26.9				- 1	36 2	150 1	13.9	-23.2	.93	157.4		-1237	36 0	155 8	19.2	-123.3
VE 32	333	159 1	20 4	10.2	11 6	190.3	25.9	1321	14.2	158 9	16.3	129 1	15 6	166 5	12.6	.131.2	12 5	153 5	10 5	-114.5	101	158.0	6.3	-1237	317	158 1	9 6	-139 2
0 F 32	29,	1933	15.5	133.1	.,,	110 8	13.2	134.3	16 4	162.2	115	133 1	1				11 7	159 8	6.6	و دد ٠	26.0	1590	1.3	-135 7	35 3	* 56 5	2 4	-136 6
. B 04	32.6	1141	20 4	-132 5	28.0	144.3	20 4	-1473	34.0	150 5	24 6	-145 3	36 7	146 9	21 5	.144 5	30 5	150 1	17 4	-144 3	37 0	141 1	150	.144.5	19 8	139.9	14.5	-143 6
		135.4	12.5	1117.5	150	141 \$	13.4	-1123	42.0	*415	11 1	-11 9 t	28.0	1527	145	-1215	ı				42.6		17.8	-1253	42.2	1. 1	19.5	-145 6
WAGS	23 5	139 5	15 à	-1195	36 7	140 5	.6 *	-120.5					35.9	141.5	*2 5	-1216	36 4	129 0	12 4	137 4	35.5	136.0	11.6	139.4	267	152.3	12.5	-67 7
46.9	127	127.3	11 5	129 9	190	129 5	-21	-13C 7	31.0	1335	134	-1314	167	138 6	12.1	-1337	140	1,74 9	14.7	-194.2	33.0	138 1	16.2	.124.4	290	132.1	19.	125.5
.v£ 13	36 '	137 3	15.6	1.94	20.1	139 1	17.3	132.0					36 3	116.6	15 7	-133 T	13 1	1119	11 9	-130 2	123	112.2	19.7	1313	36.4	1150	16.9	-1340
VE 11	19.7	116 5	17 4	125 6	367 320	1187	19.5	-126.0	33 0	120 1	23.0	1130 1	15 Q 19 3	1161	10 6	-142 1	35 5	113.9	25 1	130 3	240	172 2	27.2	.144.2	13.4	:33 6	:6 5	.144 \$
13 14 94 19	32.4	129.5	16 5 30 4	-13g 3 143 5	13.6	122.0	30.9	-143.2	33.7		32.4	1420	.""		• • • •		143	134 5	27 7	416	20 5	122.5	25.9	-145.2	30.6	120.2	26.3	**43.2
VE 15	30.3	1714	22.4	43.9	147	122.5	200	150.2	35 2	192.4	12.0	144 1	40 1	162.5	29.6	.1.63	35 6	137 2	23.6	. 47 7	14.9	194.6	22.4	147.1	13 4	148.1	21.4	144 6
VE 13	,	:613	21.9	48	23.0	67.9	:15	47.1	,				29.3	141.5	20 6	-145.9	39 0	114.3	133	-147 2	30 5	103 9	19.5	-147.7	31.7	113 5	19.5	-747.1
12E 16	347	126 5	30 7	143 1	25 0	129 6	21.6	145 6					37 9	156 4	29 4	144.6	34.7	184 6	29 6	-147 0	150	145 3	29 2	-1447	19 5	147 5	30 5	.1 16 9
	333	1172	15.5	4.5	27.3		17.4	1413	19.5	125 3	19.6	.110 1	36 2	132.5	21.5	-1450	33 1	137 5	.n,	-1472	390	.48 7		137.0	297	N4 9	"7 2	
WA 22	36.9	134.3	.76	٠,	51	106.2	19.5	154.5					29.0	138 6	20.3	-1519	36 1	*50	25 (·139 d	31.5	32.2	.79 5	45	20 5	34.4	10.4	-146.5
V€ 23	347	91.5	17.5	133.4	33	79.9	16 6	-1365	37.3	.4.5	27.5	135 5	39.4	740	2.0	-1337	39.3	14.2	22 1	-132.5	350	74.2	25 1	148 7	263	74 1 67 2	22.3	129 /
.0€ 24	жs	93 5	** 4	20 *	21.3	760 F	*4.4	1111	Į				33 6	77.5	23.2	.117.2	+6 6	59.2	24 2 26 5	1014	350	71.3	21 6	-123.5	347	67 3	25 4	-109 4 -97 6
+1E 25	34.0	67 2	20 5	-107 6	23.0	63 5	20.6	.107 1	36 0	77 9	22 8	.105 8	39.0	79.5	24 3	105 5	16 0	64 3	26 5 30 3		34 1	129.3	28 1 30 3	97.5	25 9	131.4	31.4	311
	231	143 7	26.1	-34.6	711	125.4	78 5	-92 3	33 \$	1 16 7	29.2	-310	28.9	145 8	10 4	.32 d	36 /	132.2	30 3	32.3 -40.7	27.3	130.2	3C 6	37.5	1 ;;;	1267	30 3	- 22 2
VA 29	31.4	19.9	24 2	93.2	27.4	140 1	3. 9	-43 a	347	142 5	30 4	34 4 36 5	31.8	112.9	20.2	3.5	30 1	134 2	35.2	97.2	39.5	175.4	797	-23.4	320	95.1	314	-217
ME 13		42.3	25.9	21.3	12.7 14.3	1487	27.4	.131.1	35 7	150 9	313	-100 0	1,.	112.0	M.	***	317	159.0	12 9		293	191.2	16 5		1 20	175.0	37.5	95.7
.0 11 VE 31 NOV) " "	4: 1	2. 9		٦,	-40 \$.7.5		**							ì	1								1			
- E 31 NOV	15,	156.3	:5.3	1928	.,,	*55 *	31.2	-123 -	35 1	191 2	.95	-101 9	28 3	1817	30 1	.101.7	27.3	119 6	314	-103 1	25 1	111 9	31.3	-1715	17.0	150 \$	10 4	1231
VA 25	н,	149.4	24.5	101 7		154 2	.95	102.5					290	143 1	30 6	21.2	25 0	145.5	3C 2	196	34 1	*53.3	31 5	** 4	χ,	.5.0	13 6	-34 1
METS	×.	120	36 1	-103 4	33.6	1120	11 5	-1023	35 9	155 6	29.5	-132 5	27.0	154.2	25 1	.1073	240	140 3	22 4	-93.4	ωį	159 3	23 1	1121.4	36.0	158.1	19 3	-1013
.uE ;*	290	133 1		-105 f												- 1	28 3	179 5	23.7	-94 1	29 7	1743	23.1	94.3	34 7	1724	22 6	-27 1
VE 34	27.6	167.3	22 4	.105 7	25 4	149 6	74 3	-104 5	33 a	176 8	22 3	-102 e	20 7	188.4	21 4	1026	31.4	189 8	34 3	·101 9	28 4	194 6	18.8	130 1	204	199.7	16.1	-100 0
11	12.1	165 *	173	-129.0	.4 9	1713	. 7 9	-113 1	, e e	1747	15.5	-124 1	20 ÷	172 1	19.4	-121.9	.79 8	172 8	20.5	132.5	ъo	173 1	22 9	137.7	29.5	158.9	24 0	-145.7 -144.3
W4 12	23.6	174.0	17.5	-150 1	.55 5	175 1	. 5 5	-153 1					347	173.2	.01	-1493	26.0	1 27 1	22 1	-14* 2	12.0	173 \$	25.9	.1453	307	170 1	28 4	-1173
¥€ 13	.9 '	1993	109	-127 9	21.3	120 7	20.3	-129 5	27 1	184 3	20 2	-125 9	28.0	156 1	22 7	1243	35 2	188 2	25 1 28 5	-121 3 -138 0	130	1720	25 2	1413	נע ו	172.1	13.4	-1173
JL€ 14	17.9	194 7	19 5	-132 5	247	2016	25 1	-133 4				-131 2	23 4	173 4	28 G	135 2	37 Q	1750	28 5	-136 7	200	169.0	30 5	-129 1	27 8	171 5	33.4	1425
VIE 15	13.0	148 0	25 8	-916.5	27 8	150 7	29 9 27 1	1267	28.4	1520	35 0	-131 2	23 1	1503	36 0	.1343	27 4	185 4	33 2	-136 7	1 22	2010	1/3	-133.6	360	195 0	35 0	-131 3
4019 19 19	25.7	148 5	25 Z 27 O	135 3	33.0	152.2	27 1	-133 4		1/4 6	.94	-134 4	"*	****			25.9	1733	32 4	1149.0	17 1	162 0	376	-157.3	13 9	130 5	35 0	-165 4
VE 20	" "	149 5	47.0	.1353	l ~ '	134.3	***						1			l												
	27.9	155 1	24.0	1493	.94	167.3	:47	.172.5					240	178 9	25.9	.143.3	37 4	*85.0	27.4	.1*5 2	.90	149 0	25 1	- 46 5	190	196 1	28 4	-158 3
VE 22	28.4	177 0	24 9	166.3	307	180 2	25 4	166.0	26 4	167.2	26 1	.1430	250	148 3	27 4	.1120	34 6	178 4	28 8	-140 0	27 G	171 1	31 5	-1410	37 3	1729	30 0	-149 0
1,0256	25 0	100 0	150	.170 2	260	163 4	15.4	-164 0	25.4	175 6	17.8	-165.3	25 0	1190	100	-159J	29.4	110 5	24 1	-154.0	29.4	1940	29 0	. 1512	25 6	159 3	31 5	-145 0
W2 33	28.0	1551	14.9	- 58 3	254	174.2	18 7	.155 0	20 5	1733	20 5	-162 3	1			- 1	25.8	125 4	:60	-1913	25.9	149 3	29 0	-144 3	263	192 0	20 0	-140 \$
WE 34	24.0	100 9	-5 5	-112.2	28.5	*65 4	16 4	-164 2	.50	1710	19 1	· .ec 2	254	176 8	23 5	-156 3	214	1797	27 0	-154 0	27 6	164 0	29.0	-1410	217	190 \$	317	139.0
JU 05	26.6	199 7	-50	.110 4	29.1	163.4	16 4	-168 3	-				300	1749	19.5	.1543	22 5	114.2	23 7	-150 2	25.9	156 0	26 Q	.144.0	240	156 0	30 4	-1420
V1E 08	30 \$	197.4	147	.173 4	240	159 1	15 3	-159 1	10 9	160 8	17 1	-154 0	150	165 0	195	.147 0	30 4	169 0	20 0	-146 1	26.0	164 \$	25 7	143 4	20 0	170 0	25 0	-142 0
14.09	23.4	164.7	16.5	.1** \$	25 4	168.0	180	-168 7	29.3	1740	19.2	-165 0	247	1610	20 6	1560	237	146 0	24 0	-153 3	246	189 3	257	-1473	27 9	193 5	30 S 32 O	-1420
MA 10	29.6	.4, 3		-167 3	216	172 5	17.5	-165 1					25.8	165 6	23.0	.157.0	219	188 0	24 7 21 B	-151 3 -147 B	29 7	185 0	29.7	-1493	270	1897	32 0 29 5	-140 3
VE 11	27 4	162 0	156	-170 5	.31	165 9	16 4	-169.0	27.4	169.0	18.5	-156 0	237	1740	20 7	.151 8	24 9	178 5	218	-147 0		185 0	25.7		l "°		.,,	
.UE 12	١				22 6	169 4	28.0	.158.0													1				ı			
VE 13	240	1620	15 4	-1720	22 6	169 9	19 0	-159 6	27 0	170 4	20 S	-165 0	27 9	175.0	23 0	.1615	215	182 5	24 5	-154.7		192 5	29.0	-153 0	367	193 9	30 s	-140 \$
	26.0	169 7	16.0	-172.5	25.0	124.0	17 9	-165 3	27 0	1850	10.5	-1627	290	189 7	19 1	-159 3	26.9	190 5	20 6	-154.0	250	191 0	23 7	-1437	250	193.0	290	-149 0
4E 04	212	165 7	15 7	-170 5	290	174.0	16 1	-154 9	32.0	178 0	193	-180 0	٠				23 5	163 2		-1510	24 6		240	-1490	24 7	190 8	26 0	-145 6
4E 09	250	160 7	157	1122.4	123	1920	193	169 9	33 3	167.0	20 5	-165 0	320	169.0	23 5	.163 0	240	170 9	24 0	154 0	28.0	1720	29 0	-151 3	22 1	164 0	30 5	-1420
VIE 10	140	153 3	17.9	-168 0	26.0	169 0	18 0	-165 0	34 0	171 0	195	-161 0					32 5	174 8	23 5	154 9	30 1	176 0	28 0	-153 \$	27.0	169 0	310	-152.0
20 13	32 C	50 7	+4.3	175.3	243	164 7	13.4	-168 5	350	169 0	20.7	-161 2	28.0	1710	23 0	-159 0					1				l			
W4 14																i									l			
WE 19	29.0	166.0	15.2	1690													30 ÷	1820		-150 4		190 1		148 0	207	192 0	29.7	-144 9
.UE 16	320	151 3	*# 3	*2 C	32.0	153 0	18 7	-1720	30 4	169 0		-167 3	310	1710	24 0	- 169 9	320	1720		1930	320		25 9	-155 0	22 9	145 0	27 0	150 2
VIE 17	39 0	162 5	15 6	-173 0	38 0	155 0	160	-169 0	34 9	167 4	19.9	-165 7]	30 3	172 0	24 0	-160 0) »·	175 0	26 4	-152 9	25 0	186 0	50 0	-144.0
÷= 30	24.5	164 1	15.2	.171 0	357	1710	16.9	-167.0	35 1	1750		-159 0	l					194.0	21 5		١	197.0		-147 6	۱,,	2010	25.7	-144 5
W4.21	22 9	179.0	15.5	-172 0	219	175 9	180	-165 0	237	184 0	19.0	-161 0	25 0	130 0	19 9	·160 S	20 4	195.0	21 5	-152.5	22 0	197 0	22 9	-149 0	310	129.5	24 6	-143.9
¥€ 22	213	:63.3	150	-170 5									١.				-10	1007	410		1.44	- 10 3	42.0		, ,,,,			

Tabla A.3.3.4 Mediciones de diferencia de potencial obtenidas en el reactor R4 (sin planta y regado con agua corriente), operando a un TRH de 12 horas

11.			7 h		Т		3 n.		Т		11 h.	-	Τ-	-	13 h.		Г		5 h.		Γ.		7 h.	-			9 n.	
FECHA	E	E-A	E-8	EC	E	E-A	£a	E-€	ŧ	E4	E-8	£¢	E	£4	E-8	EC	E	E-4	E-8	E€	F	E-A	B-3	£C	E	E-A	£-8	E€
JU COMENEO	27.0	700	-375 3	.348.0	29.5	75.5	-3795	-352 G	32 5	790	-354 ()	-359 1	335	32 5	-389 7	362.3	25 6	89.0	-3950	-369.0	369	3),1	-356 0	-3750	25.0	25 0	4010	-381 0
VER	205	74 5	3703	352 0					330	78.0	-389 0	-362.0	350	35 0	-192 5	365 9	290	90 5	-156.0	-3724	27 0	330	-356 4	-3730	24 J	97 0	403 3	-384 0
C2.27	26.0	: 735	-3723	-3510	27.9	750	-374.1	-356 3	25.5	78.9	-3790	352.4	350	52.5	-384 5	-X59	243	34.7	-3897	-369 0	250	35 ?	-3910	1725	25 5	350	354.3	-384 0
94.33					1				ŀ				415	39 5	-387 0	-368 0	250	92.4	-350 5	-3759	302	*1	-396.3	-3790	22.6	39.5	-397.3	-323 9
W-E 29	24 1	75 8	-379 9	-351 0	l				26 9	30 7	-378 0	-369 3	15 9	87 9	-383 1	-374.9	26.4	30 4	-3390	-380 9	310	92 5	-192.0	-2490	24.3	98 0	-194 5	-295 0
.4.E 30	35.3	723	-374 5	-355 0	319	769	-3769	-159 0	29.0	790	-350 t	-364 0	24.5	30 5	-385 0	-369 0	290	85 0	-389 6	-3703	33.0	30 6	-230 1	-3780	25.0	361	-394.7	-291
VE 31-ENERS	25.2	70.5	-3796	-356 9	ı				290	759	-379.5	-367.3	20.3	78.4	-354.0	-372.2	257	34 5	257	3.50	23.7	36 1	-130 5	-385.0	12.7	95.0	-336.7	-392.3
U 03-FEB 03	2.5	70.0	3.53	-357 0	296	739	-376 B	-363 4	25.0	78 0	-380 5	-36"]	25.9	30 5	-384.7	-372 \$	30 5	557	382		25 3		-390 0	-3857	207	30.7	\ C 4	-393 0
W (A)				Ì				1				250	79 1	-354 7	-374 1	32	34 0	-389 0	-3:**3	357	3, 3	-250.1	-386 9	235	89.0	.354.3	-393 5
V:E 35	l				١				l				١.,															
.4.5	75.3	590	-376.3	-357 9	230	713	-377.0	.361.0	254	740	-3215	368 4	24.5	78.9	-3857	-374.2	22.9	237	-329 9				-390 5	-387.2	397	89.2	-354.5	-054.3
+807	323	19 5	3783	-352 1	١.,		111.		230	72.0	-322.3	368 9	29.0	79.0	-386.0	-375.3	250	725	390 5			337	392.2	-287.9	25.2	393	-0957	-335 1
U2 10	24.7	65 0	-377.0	358.0	1.40	735	-377.5	-362 9	27.0	75.3	-380 2	369.2	210	79.0	-3847	-375.4	347	790	-3847	3/11	3C 1	52.2	327.9	-373.7	354	57.0	-390.0	-255
W.E 12																												ļ
.E'3	322	62.)	-377.3	493	330	69.3	-375.0	-363.4	240	73 5	-381 0	-569.0	250	79.0	384.5	-375 7	243	79.0	-384 3	-3757	72.	107	388.1	-3790	301	34.3	-291.2	322.2
1811	312	685	-377.4	-352.9	~"	~.	• • • • • • • • • • • • • • • • • • • •		30 5	720	180 9	-369 5	325	75.6	3840	-176.0	25.9	75.5	-3843	3760			287.5	3321	110	127	392.0	-2293
11.17	250	57.9	377.3	-259 1	367	69.4	-378.0	.364.0	no	747	-330 5	-369 8	360	77.0	-325.0	-375.4	225	30.3	122.3	-307	21		-190.2	296	37.0	37.0	-395.3	-0009
Wa-3	1				"	•••		•••					227	78.5	-185.2	377.3	367	51.0	-352.5	2812	29 5	•	-190.0	430.2	35.0	27.5	-395 5	192.9
WIE 13	230	57.5	-377 6	-360 8					310	74 9	-380 7	-378 3	25 5	78.5	-385.9	-377.5	13.4	81.5	-1290	-3817	36 0		-390 8	350 4	29 0	58 3	-196 0	392.7
2.2	29.0	57 1	-1773	361 5	27.3	68.0	-3753	-365 5	33.0	707	-380 5	-3709	35.0	78.9	-386.0	-373.5	25.0	32 1	-389.0	-3223	25 0	#1	-092.1	292.3	73	390	350	-123 0
VE 21	23 0	57 3	-375.0	3619					349	750	-3220	-3724	347	77.4	-387 5	-379.0	320	33.6	-390 1	2277	29.0	357	-193 4	-352 *	ЖO	92.3	4367	333.2
1.23	25 3	57.4	-375.2	-362 5	25.0	590	-373.7	-366.3	27.0	74.0	-323+	-3730	360	751	-327.9	-3793	21 3	79.8	329 5	3237	3 4	120	-353 0	-393.1	24.3	34 9	-397 1	3940
W-25													387	747	-390 1	-330 5	25 0	780	-351.2	-3841	32.3	907	-354 5	-394.0	33.0	33 5	-39£ 3	-398.0
W.E 25	27.0	67.0	-379 3	-363 4					28 3	70 6	-385.7	-3740	nı	740	-3920	-3810	29 0	77 5	-393 5	-385 1	33.7	734	-395 7	-354 9	250	83.2	-336.7	-139 3
7.5.27	.39.3	66.}	-3199	3E3 9	330	587	-380 1	-367 5	35 5	700	-3360	3752	257	750	-392 3	-382.9	32.3	77.0	-256.0	-3360	35.0	751	-397.4	-335.0	29.3	33 9	138.3	4000
1E 23-FEE 23	32.0	57 0	330 2	-364.2					270	539	274	-3753	23 5	74.5	-393 5	-334.1	28.0	753	-397 5	270	393	32	-139 1	383	340	នរ	4010	4023
10 03-947 00	23 5	57.2	-3764	-358 1	25 0	59 1	-377 \$	-364 5	22 0	720	-327.0	3590	267	75.3	336 1	-374.6	22.3	77.9	390.2	-3784	25 9	30 1	-351 5	22.2	21 5	54 3	3367	394.6
A7.3													253	75.1	366 5	375.2	24.0	75.1	390 3	-3733	27 0	:93	-191 3	-322.1	257	324	35* 3	3943
W E 35	25 0	57 0	-377.2	-358.7					27.0	725	-333.1	-370.0	27.0	75.8	-387 2	-375.5	25 9	78.0	-3910	-3793	23 5	.91	-392 5	-388 7	24 0	82.3	-198.3	-395 1
.r.×	22.3	5€ 5	-377 5	-3590	250	59 4	-3755	-365 t	25.0	73-0	-383 /	325.3	.59	75.5	387 9	-1755	24.0	79 0	-391 3	-3793			392 9	-X29	393	33.4	-38-3	194.4
1E.7	25 0	56 3	-377 9	-359 2					29.0	73.4	-384.0	-370.5	20	75.0	-355 3	-376.3	30	78.0	-392.2	-2602			.333 *	-2893	24.3	32.3	352.3	ા≆)
LU 10	29.9	67 2	-378.2	-369 8	29.0	695	-3790	-365 4	28 9	70.2	-354.4	-3729	23.3	75.5	-388.3	375.2	357	75.5		-3752			-1923	20:5	33	31.2	-393 5	-329 7
W. 11				l				- 1					240	75.4	-388 6	-3767	29.0	75.4	-385 5	-3767	36 3	793	-392 9	-200 7	35.3	50.0	-223.8	-350.2
W:E 12				, [17.4		222.6												•••						•••			
CE13 VE14	330	57 O	-3793 -3809	3603	350	590	-380 1	-366 ?	259	-	-385 6	-3719	390	750 751	-389 9 -390 2	-377.3	257	750		-322	35.3			-214	120	30 :	-3950	-3910
VE 14	29 0	56 4 28 2		-360 9	37.0	69 0	-380 9	<u>", </u>	320		-3853	-372 #	330	76 D	390 2 390 7	-377.8	253	751		377.3				-3217	350	79.5	-3557	J313
W-13	23.0	£5	-380.3	-3613	31 '2	49.0	-300/3	-367 1	35.0		-3861	-3727	37 5 32 0	754	392 1	-375.2 -375.4	359 297	77 8 75 0	-354.7 -355.0	-0200 -0203		502 753		-391 7 -392 0	384	33.0 31.0	4020 4028	3979 3981
WE19	24 0	69.0	-3810	-362.1				- (29.7	71.5	-387.5	-373.3	250	749	-192.8	179.0	330	75.5	-195.6	3223			-397.0	3927	24.5	79.9	4034	-198 4
ມສ	31 3	57.4	3217	-362.5	29 0	590	-3818	-367 g	305	710	-387.9	-373.5	361	755	393 5	-379.4	25.0	79.0	-356.1	3230		302		393 3	310	510	474.2	2587
1821			~	~	•	~*	-2.10	~ '	~		3	***	~-				a. 0		232.1	~~`		**	***			3.0	-,-,	
12.3	28.0	530	-122.1	.3620				l	29 0	70.2	-327.0	-3700	190	72.0	392.0	-374.0	24.5	756	195.0	-3767	34	31.0	-158.0	.3850	157	22.5	4231	3560
wii										•••			345	745	393.4	-3757	37	768		-3750		302		-330.3	135	92.0	4520	356.0
WE 25	25.0	68.5	-381.5	-363.4					29.0	72.0	-386.7	374.0	15.0	74.9	-391.9	380.1	290	77.5		183.0		\$1.0		-395.0	291	12.9	4010	-397 3
AE 27	32 0	570	-380 9	363.3	35.0	58 5	-382 0	-3650	320		-3250	-3700	39.3	710	-192.0	-375.0	35 0	75.5		- 1	360			-384 7	257	50.0	402.0	-397 0
													,				,					• •						

Ela foftuente del sistema E.A.s Flectrodo A la 2 cm de la superficie) E.B.s Flectrodo B la 10 c

VE 25-MARTS | 350 | 580 | -3820 | -3840

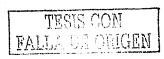

280 695 -3870 -3759 257 714 -3300 -3792 250 725 -3540 -3640 242 350 -3550 -3550 250 -314 -4010 -3999

Tabla A.3.3.5 Mediciones de diferencia de potencial obtenidas en el reactor R1 (con planta y regado con agua residual sintética), operando a un TRH de 24 horas

	Γ		7 h.		T		9 h.		Т		11 a.				13 h.			!	5 h.				17 h.			1	9 n.	
FECHA	E	E-A	E-8	E-C	E	E-A	E-B	₹.	E	E-4	E-B	E-C	Ē	E-A	E-3	E€	E	E-A	E-8	E-C	£	E-A	E-B	50	ŧ	Ē4	£4	10
20 23-ENE 22	27 2	-140 1	-252.1	-158.0	25	-138	-248.0	360 2	32 5	-1350	242.0	-3690	335	-1310	-238.0	-370 5	25.5	-125 4	-361	3*80	353	127 5	2367	-283 5	22.3	-1253	222.0	386.1
VE 24	20 5	-1420	-248.3	-359 0					330	-1387	-241 0	-372 0	35 0	-132.9	-238.0	3.50	290	-129 1	-231.0	-379 0	27.3	1267	-2297	-380 2	24.5	-124.3	-225.0	-383 0
10.27	250	-1403	-2497	-358.9	275	-139	-2450	-362.0	25.3	-1369	-2419	-3657	29.0	-133 5	-2380	369 7	240	-130.1	-2313	-3754	29 0	.129.4	-228.0	-382.0	235	-128.0	-224.9	-263 9
WAS	1			•	1				1				415	-137.2	-237 4	-369 0	250	-132 0	-232 6	-372.8	302	-128.0	-2290	-373.0	223	-1251	-2357	-379 3
W E 29	281	-140 0	-249 0	-359 9	1				26.9	-138 0	-242.0	-364 0	35.9	-135 0	-239 8	-372.0	26.4	-130.2	-235 0	-375 0	31.0	-127 3	-231 0	-379.0	24.3	-125 3	-227 9	-383 3
A.E.W	253	-139 5	-248.9	-357 9	310	-137	-245 1	-359 0	25 0	-136 0	-2403	-3620	240	-132 3	-237.9	3653	39.7	-128.0	-225 1	269 7	223	-126.4	-230.2	-3750	25.0	-124.3	-229 1	-383 0
VE 31-ENERS	23.7	138.0	-250 3	-360 9					290	-13E7	-2487	-365.0	20.6	-1350	245.0	-369.0	25.7	-132 3	-232.0	-3720	25.7	-130 1	-231 0	-273 9	32.3	429.0	-229 0	-380.1
11. 23 48873	20 5	1393	345 9	-358 1	20 6	-137 4	-2457	-3594	250	1362	-243.6	362	359	-1327	232.4	-369 0	29 5	-125.4	-235.0	-370 5	250	-125 9	-2314	3753	29.7	-1243	-228 3	-323 6
W.74	1				1				İ				250	-133 2	-239 0	369 5	232	-125 9	-2357	371.2	257	.127.4	-2319	2759	335	124 8	-225.4	-383.7
WIE 05									1								Į.											
JU 36	250	-1409	-2493	-558.9	20	-138.4	-246 5	-360 2	25.4	-137 0	-2417	-364 1	24.5	-1343	239 6	-369.9	23.3	-129 5	206.0	-371 5	25.9	-127.9	-2321	-3766	29.7	-125 3	533	-384 (
E ::	32.0	-141.7	-250.2	-359 2	1				28 0	-137 6	-242.0	-3547	25 0	-1317	240.0	-370 3	250	-129 9	237.4	-372.0	24.0	-22.4	-2325	3773	25.0	-125 6	2007	-384 6
EU 13	24.0	-1413	-2507	-359 5	240	-139 0	-247 0	-3607	27.0	-137.8	-242.5	-364 9	210	-1350	-240.3	-373.4	247	-1350	-240 3	-270.4	30 1	-130 6	-237.9	3724	38.4	-1257	-233.0	-377.3
V4 11	1				1				1				ı				1											
W.E 12	ŀ				1				l				1															
.UE 13	33 2	-141 3	250 3	-360 9	330	-139 7	-248 5	-361.8	240	-138 2	-243 0	-365 5	250	-1356	-344.8	370 9	240	-1356	ąu j	3703	320	-13* 5	-238.2	3723	30 1	-129.4	-233.8	-377 5
VE14	310	1423	-251.0	-X12	1				30 5	-139 0	-2436	-365 9	12 5	-1360	-2450	-3714	259	-136 0	-2450	-371.4	343	-132.1	-233 2	-373.0	130	-1300	-254 1	-378 3
LU 17	25 3	-1423	-2514	-361 5	367	-140 5	249.0	-3224	33 0	-1297	-243 9	-3719	260	-136 4	-245.4	-372.4	32 5	-132 5	-240 0	-373.6	21	-130 2	234.9	3783	37.0	224	-2354	-325 9
W 13	ĺ				1			-	Ì				307	-137.3	245 6	373.9	367	-132 3	-2427	-374 0	39 5	-:30 5	-2360	-3793	25.0	-128 5	-236	-326 4
V.E 13	23 0	-143.4	-2524	-362.4	1				38.0	-140 5	-244 9	-373.2	25 5	-137 8	245.0	-374 5	33.4	-133.2	-2413	-3"42	36 0	-1310	-236 5	-3794	29 0	-129 4	-237 0	-326.5
.1 X	390	-144.)	263.2	327	20	-141.2	-250.2	-363 t	330	1433	-245.5	-373 9	350	138.4	-242.3	-375 6	25 0	-1337	-237.3	375.0	25-3	-122 0	237 5	-380 2	36.5	130 g	252.3	-275
·E.	23.0	.143	252.2	-363 3	1				343	-1423	-2460	374.2	347	139 4	-2423	375.9	320	-134.2	-237.1	-376.0	39.3	-132.5	237.3	-322.0	25.3	- 335	-234	-388 9
12.74	25 0	-144.9	-253.5	363.5	25.0	-141 3	-250 9	-3640	27.0	-1427	-2467	-374 9	жı	-139 9	-242.7	-376.2	210	.134 9	-237.5	-376.3	254	-132 5	-238.2	-3227	24.9	-1309	-239 3	-3887
W.35	}				1								327	-1403	243 5	-377 1	25 0	-135 4	-237 9	377.7	nt	H32 9	-229 0	3833	23.0	-1313	223.4	-329 0
W.E 25	27 0	-145.9	-255 0	-364 3					28.0	-144 0	-247.5	-375.7	33 0	-140 3	-244 0	-377 5	29.0	-136.1	-238.2	-1793	33.7	-133 5	-239 4	-383.5	25 0	-132.3	-2433	-389 5
A:E 27	290	1460	-2553	.361 9	nı	-143 1	-251 6	-364.5	29 5	-147	-747.9	3750	257	-1436	-243	-380 1	12.3	-125 9	-238.9	-3820	35 C	-134.3	-2403	-384.1	39 3	-132 5	-240 5	369 9
VE 23-FEE 23	32.3	.145 5	-268.9	-X51	1				27 0	-1450	-2451	-375.4	23.5	.1410	-2450	-580.9	250	-136.2	-239.4	-3223	29.2	.*35 1	-2435	-2553	340	-133.4	-2411	-390.2
::: 23-MAP 63	23 3	-146 \$	-256.2	-365.9	25 0	-145 4	-352.0	-370 8	29.0	-1459	-248.5	-3766	357	-1416	-2457	-381 Z	223	-1423	-240.0	-322.9	25 9	:446	-2419	-259	21 5	-1337	-241 5	-390.2
W. H					ł								25 0	-147.5	-2459	-3813	24.0	-1430	-240.2	-380 2	27.2	.145.8	-2427	-264	35.7	-104.0	-2430	-3910
W.E.CS	25.3	-147 8	-253 4	-367 0				l	27.3	-147.0	-2497	-377 8	27 3	-143 \$	-246.3	381.0	26 9	-143.9	-240 6	-384 2	23 5	-146.2	-243.5	-287 3	24 0	-134 7	-241	-392.0
.9%	32.3	-148.2	-253 9	-367 5	250	-1463	-269.0	-3720	250	.147.5	-250 1	-378.0	25.3	-144 0	345 5	28:4	24.9	-145 1	-2409	-253	24.2	.473	-243.4	-389.2	39.5	-135 3	-244.7	-3927
7E 07	25.3	-149.3	-254.2	-368 0					29.0	-1481	-250 3	.F34	250	-144 6	-247 0	-221.0	25:0	.1455	-2413	-325.9	39.0	.147 3	-244.0	-3897	24.0	-1363	-245.0	-353 3
FR 40	29 3	.1493	-2511	-368.4	28.0	146.9	-269 9	3723	22.0	-1487	-250 5	-378.9	230	-1450	-247 5	-381.7	367	-145.9	-207.5	-3817	32.3	-146 1	-242.0	-38E 2	35.3	-147 9	.244 3	-1303
W 11								- 1					240	-1458	-248.0	-382 6	22.3	-145 8	248.0	-3425	% 3	-1467	-243 (-326 3	29.0	:483	-7450	-351 3
W:E 12								- 1																ŀ				
JE 13	340	-150 3	-255.2	.¥34	350	-147 5	-2720	-373.5	25.9	-151 2	-2523	-3792	29 0	-1464	-2487	-383 3	25.7	1454	-2487	2230	35 0	147 3	-2433	-387 0	32 0	1493	245 8	3524
VE !4	33 0	-151 0	-256 0	-3699				l	32.0	-1525	-253.0	-374.9	330	-147 9	-249 0	-383.5	35.5	-147 0	-249 0	-383 6	310	.1483	-244.0	-274	35 0	-1499	-246 1	-393 0
CU 17	29 0	-151 5	256 5	-3704	37 0	-146.7	-2724	-374 6	35 0	-1529	-2533	-3749	37 5	-1504	-249 8	-384 0	35 9	-1490	-245	-387 9	32 0	-151 0	2463	-192 5	38.4	-139 8	-249 0	-3557
Wait.								[320	-150.4	-250.2	-384 5	297	-150 9	-2450	382	120	-1510	-247.0	-393 3	39.0	-1400	-243 5	-336.0
WE 19	240	-152.4	-257 4	-3713	ļ.			ì	29.7	-153.5	-254.7	-376 0	35.0	-151.0	-250.9	-385.0	33.0	-152.1	-245 5	.3290	36.9	-152.9	-247 8	-393 6	24.5	-140 5	-250 1	-196.1
ומע	310	-1530	-258.0	-372.0	290	-143.7	-2732	-375 1	30 5	-1540	-2550	-3759	36 4	-1526	-251 5	-385.2	290	-1527	2460	329 5	27.5	-153 6	2487	-354.3	31.3	-141-0	-251 0	-397 0
4E 21								.				į												- 1				
19 24	25.9	-1520	-258 0	-371.9				- 1	29 0	-153.1	-254.0	-375 2	39 0	-150 4	-250.1	-383.4	24 5	-1470	-2450	-388.0	254	149 0	-247.0	-357.9	357	-1450	-248 0	-354 (
W-25								_ i					34.5	-149 5	-251 0	-384 0	357			-369 0		-1430		-3924	33.5	-138.0	-247.5	295 (
W E 25	28.0	-150.0	-258.9	3724				. [29.0	-149.0	-254.0	-375.9	35.0	-151.0	-250.0	-384.7	29.0			-192.1		-142.0		-393.5	29.0	-137.1	-249.7	-197 (
AE 27	120	-151 2	290	3731	350	-1450	-2720	-375.4	320		-255.T	377.0	19.5	-149.8	-2510	302.9	35.0			-390 7		-142.7		-354 0	25.7	136.5	-251.0	-358.0
	35 0	-1520	-2587	3723	190	g in	445 J	1.40	100	1000	-2560	-377.5	257	-147 0	-2490	-333.1	290		-248.5				-2500	- 1	250	-1350	-252 0	-199 0
	el sisten				2 cm de						*****					E-C = Ele	_			~			****	~		***		

Tabla A.3.3.6 Mediciones de diferencia de potencial obtenidas en el reactor R2 (sin planta y regado con agua residual sintética), operando a un TRH de 24 horas

	Γ		7 h	-			S h.	-	Т		11 h.		T.	-	3h.		Г	1	5 h.	_	Γ.		17 h.			1	9 n.	
FECHA	Ē	E-A	E-8	EC	Ε	E-A	£-8	EC	Ε	E-A	63	E€	£	E-A	E-8	E-€	£	£4	£-8	E€	Ę	£4	E-B	EC	Ē	E-A	E-8	EC
.1. 23-ENE 13	29.9	215.0	3650	38.5	120	2195	3601	-25 9	35.9	2519	3589	-260	35.9	1958	356 1	-24 1	25.9	1507	350.4	-199	25.3	1824	746.3	-15 5	125	(750	743.0	.45
VE 24	25.3	2:63	364.3	-25 1	1				360	2036	256 9	-257	380	1340	352 4	-23.1	302	1897	349.5	-150	22.4	1300	347.0	-169	330	1753	345.5	-137
:	39.5	2150	360 0	-28.5	39.0	2125	354 0	-257	290	2019	352 1	-22 0	357	1960	3493	-194	25 0	1557	348.1	-150	25 5	1735	J46 J	-127	35.9	167 3	345.2	-112
w.a	1												390	1958	350 1	-307	390	*397	348.0	-157	32.0	1703	346 9	-135	25.5	153.)	3450	122
V E 29	26.9	2160	362.0	-30.1	1				29 0	2563	354 0	25.0	12.0	2014	150.1	-20.1	27 0	197.1	348 7	-199	13.4	1910	345 0	-14.7	247	136 0	341 9	-112
	20	2215	161 S	-21.7	337	2153	360 0	-25 9	335	2107	1587	-24.1	25 0	203.0	354 0	23 5	32 0	1987	350.2	-83	350	130 5	346 5	-163	35	134 3	255	-137
NE SHENE (3	12.0	2190	3650	-29.5	1				32 0	290.1	354 0	-31	240	190 5	3495	-26 1	29.0	:3£1	3457	47.5	1		221	-15.2	35 3	1753	3400	-127
13-FEB 13	25.0	2156	3647	-30 1	25 6	214 9	350 5	-354	250	'39 5	353 5	-235	393	1553	243.3	-21 4	23.5	13E 0	345 1	.17.9			3413	-157	25.5	1747	132.3	-120
V2.74	1				ì				1				24.7	187.6	348.2	-22 0	340	1550	344 §	-13.4	35.5	1794	343.7	-15 0	250	174.0	329.3	-:43
₩.E 05	1				İ								l															
.036	32.5	217.5	3634	3:5	20.1	212.5	3491	-24	25.0		352 5	-25 3	257	187.0	347 5	-24.1	240	134.5	344.3	-190			343.3	15.4	25.0	173.5	331.2	-151
€ 97	13 \$	2179	ಜಾ	-319	i				32 5	138.0	352.3	-25 4	120	156.2	347.1	€4.8	25.4	184.0	343.5	-197			139 5	-153	25.0	1733	158 9	-154
LU 10	33	215.8	327	-32.4	123	2125	348.6	-30 f	120	197.4	3510	-25.7	250	136 0	146 9	-25.3	25.7	156 0	345 3	-25 3	23.3	1837	235	-203	X7	1790	139 1	-17.4
WA 11									l												l							
W.E 12	١				١	***		••	١.,,		***		۱			~.	۱		245.0	-35.5	۱		342.5			177.4	332.7	
JUE 13	313	2160	3619	-340	350	2099	347.5	-33 1	323	1961	350 6	-250	29.9	1347	3453	-26.5	356	134.4		-273			342.2	-533	320	177.0	332.7	-183 -187
1.3	333	215.4	361.5	-347	١.,	***	347.0	-131	130	1957	350 1	-394 -301	13 5	154.4	344 2	-27 3 -27 5	24 C 12 5	1809	3449 3419	-219			37.4	-23.5 -19.5	35 3 29 3	1773	334 5	47.5
5.0 17 WA 18	25 9	2151	3610	-35 0	3,	2090	J#7 0	-115	۰,۰	152	J47.	-30 1	32	1837	3413	-27.9	23	1902	3415	-219			277	-251	15 0	1702	354 1	-91
W.E 19	21.5	214.0	360 Z	-35 9					39 0	1947	348.7	-314	21	1830	3433	-25.7	и5	150 0	3410	-251			136.5	20 3	29 0	153 5	333.7	-19.0
4.25	22.5	213.5	353 7	-333 -364	28.3	207.3	3460	.547	250	194.0	348.0	-320	313	1824	3425	-32.1	25.3	1795	329.5	-231			337.0	-22:	N.S	169.2	124.3	.22
,E21	247	2130	359 0	-363	22.7	23/ 3	3400		22.	193.4	347.4	-124	350	1820	3420	X3 .	25	1790	1250	27.3		174.1		-231	351	1590	334 1	.21 2
1024	31	2125	332.0	-37.2	77.0	256.9	345 1	-35.3	29.0	193.0	347.0	-32.2	190	1517	3416	3:2	227	173.5	1357	2.5		1739		235	24.0	:52.4	133.4	-217
W 25	,			-3/ 2	" "	*76.3	3421	.333	""	22.0	34.3	.33 1	27	1210	310	313	357	1783	338.2	33		1735		239	213	-923	323	223
V.E 25	297	211 9	357.6	-38 2	1				290	192.0	246.2	-129	20	150 7	3497	-32.4	23.9	177.5	134.1	-28 3		173.1		-24 1	25 0	157 4	122 4	-22.7
1.527	23	2113	357 1	-23	243	me o	344.2	-36 0	350	191.4	3455	343	37	1502	X1	33.5	35 0	1770	337.4	321		7724		-250	29.0	157.5	322.3	-3:
VE 23-FEE 22	33.3	2:10	256.3	401		****	•		270	1910	3450	-350	215	130.0	3421		337	1*55	227.0	312		1723		-25 7	340	1664	1317	-23.5
	25.9	2139	356 1	405	25.0	225.7	350.9	-32.5	297	130 5		35 6	353	1793	129 5	-351	25.3	176.1	336 5	31.5		1913		35.2	35.5	156.0	351.2	242
يزعها									-		-		297	1786	129 1	-6E 3	22:	1754	336.4	-314	2*3	121.0	334.0	257	29.3	*555	330 7	-253
U E 05	29.5	210 0	355 0	415					25.7	159.5	Mi	-36 5	25 9	1780	138 5	-36.1	253	175 1	136 0	-319		179.5		27.4	25 2	165 0	330 0	-25 0
5.28	335	2297	354.7	423	247	203.4	3495	-324	29.0	:59 3	3430	-37.3	25.9	1773	338 3	-37.3	35.7	174 5	135.4	-324	37.2	172.2	112 9	273	33	164.2	325.4	254
.E7	27.0	239 1	3512	425	l				350	132.7	342 8	-37 €	25.0	177.3	137 5	-37.5	25.2	1743	335.3	ಖಾ	13.1	1527	122.4	25.4	293	1543	125.3	27.2
12.10	32.5	208.7	3510	430	290	203.0	356 5	219	36 9	188.2		-32.0	357	1758	337 1	-24.2	25.7	176.8	237 1	-22.2	32.3	1734	234.7	.343	29.7	1693	122 :	333
WA 11													23.0	1750	336.6	-389	25.0	176.0	226.8	-23	360	1729	334 2	-35 3	29-0	159 3	3315	292
W.E 12					Ī																			ļ				- 1
.LE 13	¥ 1	258.1	350 0	443	350	222.0	355.2	-402	35 9	187 5	341.7	-323	29 3	1755	136 5	-39.2	29 0	1755	336 S	-35.2	35 3	1727	334 3	-35.3	32 9	158.4	2213	-31.0
7E14	354	207.9	349.3	413				.	37 0	157.1	3410	-22.5	333	1750	336 0	400	25.5	1750	336 3	400	310	1720	113 5	-263	35 0	155.0	3310	-32.7
u17	38	207.5	349.5	. 445	37 0	.2017	3450	493	390	136 8	3434	-12.5	37 5	1746	335 2	413	35 9	1725	333.2	-364	220	157.7	330 4	-329	24	161.0	227 G	-31
VA 15				. 1									120	1745	334 3	419	297	1720	332.5	-37.0	35 3	157.0	330.0	-334	39 0	1597	325 5	-30 1
WE19	35 0	206.7	349.3	45.3				1	370	165.7	340 5	.39 9	35 0	1740	334 1	421	33 0	171 4	332.4	-37 5	36.9	166.3	129 7	-173	394	159 3	325.0	-30.3
35.23	337	XE I	348.5	453	29 0	200 5	3410	410	30.5	155 2	343 1	402	364	1735	334 5	430	290	1710	1120	-22.2	39	1660	325 5	-342	310	158.5	125 0	-310
•E 21																1												
10.24	25 3	258	351 0	40				- [250	185.1	342.0	-390	390	173 4	336 5	402	32.0	1697	335 0	-37.0	354	1659	2310	-35.3	35 7	158 5	3250	-293
W 25				- [ı					345	173 1	336.0	412	35 0	169 5	337.0	-38.0	135	165.4	3253	-35.9	335	152.2	329 0	-34
WE25	29.9	205.5	355.0	460				J	29 0	134.7	343.0	31.0	350	173.0	338.0	420	30.5	169.2	337 0	-350	15.5	165.0	335 9	-37 8	29 0	158 0	127.0	-27 0
AE27	335	252	3520	40	35 0	199 4	3450	425	320	1343	3410	-370	39.5	1728	3390	410	35 0	169 0	3350	.333	36 0	1547	3310	-35 1	125	157 5	323 0	-250
4 E 25-WAR 03	37.5	2550	353.4	457					ĸ	1920	3450	-350	337	170 4	3370	-393	290	158 0	3320	-310	380	:35	3307	343	£θ	156.0	325 0	-24.8
E = Influente de	el sistem	2	A = Elect	rodo A (a	2 cm de	la superf	icie)		E-8 = E	iectrodo	B (a 10 i	m de la s	uperficie	1	i	E-C = Elec	ctrodo ((a 30 cr	n de la s	uperficie	:							

Tabla A.3.3.7 Mediciones de diferencia de potencial obtenidas en el reactor R3 (con planta y regado con agua corriente), operando a un TRH de 24 horas

			n.		Т	,	h.			,	1 h.			1) h		Γ.	15	h.			1	7 h.			19	ħ.	
FECHA	E	E-4	Ea	EC	E	E-A	E-a	EC	E	E-A	£-8	£-C	E	E-A	Ε·a	EC	E	E-A	£-8	EC	E	E-A	£8	£C	E	E-A	E-8	EC
	_			_	32.3	1539	195	-1658	35.9	159 0	24 6	-150 2	35.9	1759	29 0	-156.4	26.9	179.0	30 5	-1510	390	185.4	32.3	-1467	32.5	189 0	35 0	.140
LL IDENEIS	29.3	160.0	155	-170 0 -169 8	323	.234	193	-1010	360	1724	22.4	-1594	200	1769	257	-156.0	302	1820	25.5	-1520		139 7		-149.0	330	1957	31.0	-145
7E 14	25.0	165 8	161	-1736	۱	169.0		-167.3	20	174 8	23.1	-163.5	357	1790	25 3	-1627	250	186.0	27 5	1560	26 5	189 0	29.0	-150 4	25.9	158.7	303	-145
נו נון	25	165 9	15.5	-1130	390	103.0	133	*107.3	""		6-3-1	-1033	130	154.6	23.5	160.5	290	129.0	25.9	-1529	12.0	195.7	23.0	-:457	25 0	199 1	29.7	-142
w.3	١			-170 6	ł				29.0	173.0	19,5	-165.5	120	179.0	23.4	-154.0	270	182.0	25.0	-1610	13.4	189 5	28.7	-154.9	24.7	196.0	30.2	-150
W E 29	25.9	153.5	15 8		١	159.8		-164 5	13.5	172.5	21.5	-160.2	250	1790	25 7	-157 0	32.0	182.5	251	-154 1	35.0	195.7	29.1	-150 1	33	189.0	29 0	-146
.E 30	2: 0	163.0	169	-168 9 -168 0	, n	1533	12.3	r:54 3	320	170 4	22.3	-157 3	24.0	1759	257	-154.3	292	:307	25.3	1504	29.2	154 7	31	1487	35.3	195 0	31.0	-143
VE 31-ENE03	32.0	164.0	16.5		۱			-1509	250	173.0	22.9	-157 5	29 0	1753	25.3	4552	235	130.2	27 5	150 9		154 3	39.2	.149.7	25.5	194.7	30 5	-143
33-468.33	25.0	'23 5	163	-158 4	433	1657	75.4	4130.3	رت.	1770	20	-127 9	247	1750	27.4	-156 1	240	180 0	27.3	-1520		134.0		-1497	25 3	194.2	30.2	-144
VA SI					1				}				• • • • • • • • • • • • • • • • • • • •	1199		*136	١	130 3			١	•		-				
W/E 05					l				۱	169 2	25 7	-1587	22.7	1743	27 1	-157.3	240	179.5	25.9	-1531	34.0	:23 4	21.1	-150.2	29 0	194.0	23	-144
A- 36	32.5	182 9	15 5	69.0	30.4	165 0	17.3	1526	25.0		25 1		220	1743	25 5	-153.4	×.	175 1	34	1537	219	153.4	33	152.9	350	193 6	392	-144
YEST	23.9	192.4	:53	-159.4					32 5	159 7	24.3	-1593	250	174.0	25.6	153.1	257	1740		156.2		175.5		-1537	257	183.3	27.5	-150
D 9	25.5	162 1	150	169 !	27 0	154 5	207	-153 3	32.0	1587	24.3	-1593	[•"		*2.0	1133 3	1	• •			~′			•••				
V2 11					Į .				ļ.				ļ				!				1							
W.E 12	l				l				١				25-0	.72.7	25.2	-157.7	25.6	1737	25.2	-*57.7	35.7	175.2	25.3	-153 2	ונו	153 5	27.4	-150
.LE 13	310	161 5	14.7	-1537	350	154.2	20 1	-152 5	320	158 3	24 5	-159 2	l .	173.7			240	1734	250	1530	פע		25 3	-150 5	350	1231	21	-150
\E!4	33.3	161 5	14.5	-168 9	l				333	158.0	24 3	-159.7	315	173.4	26.0	-1500 -1563	125	177.5	25.4	-1520	21		¥1	145 7	23.0	1927	21.1	-42
19 17	359	161 2	14]	-1680	290	152.1	19 \$	-154 0	נג	167.4	24 1	-158 3	393	173.0			•				l	182 1	25?	147.2	350	192.4	23	-:4:
AT :S	l				l								340	1725	25.0	-157.0	23	177.3	251	-1534 -1537	140		35.7	-148.2	29.0	192 0	27 6	-142
₩ E 19	24 6	150 7	143	-157 0	i i				390	156 9	23 4	-157.5	20.1	172.0	25 6	-1543	345	177 9	24.2	-151 f	25 0	132.5	X2	-1493	X:	191 5	27 1	-141
N M	12.5	150 3	133	-152.5	280	150.5	19 2	-1550	35 0	156.4	230	-153 9	34 0	171.5	25 1	-155.3	233	176.2							i .			4
VE 21	24.7	150 0	.3:	155.3					302	166 0	22.4	-157.0	35 9	1713	25 0	-159.2	335	176 3	24.0	**53.3	29.2	181 0	25.5	-147 5	250	191 1	357	
to 34	29.5	155 3	135	1614	27.5	151 0	19 1	-1530	28.0	165 0	23 5	- 57 8	390	172 5	25.4	-156.3	227	176.3	24.1	-1525	N 4		24.7	-149.0	24.0	196.0	27 5	-143
V2 25]								247	1*20	25 1	-157 4	357	176.4	240	-1523	32 3	.K. 3	25.4	-153.0	230	130.7	27.1	-143
W E 25	25.7	159 \$	13.2	-1530	1				29.0	154.7	23.0	-157 4	ж,	171 \$	24.8	-154 3	28.9	175 0	24.3	-1533	11.7	181.5	24.0	-153 8	25.9	130.3	25.9	-144
XE2	25.9	159 3	13.4	157.3	24.0	1507	187	-154 5	350	164.0	231	-1579	35.7	171.9	24.4	-154.0	35.3	1.53	24.0	1547	35.0		21	.155 (29.0	129 9	35.3	-142
. E 23-FEB 33	33.0	152.4	13 1	-167 \$	l				27 0	153 9	22 9	-1580	23.5	171.2	31.0	-156.0	25.7	175 4	23.4	1550		179.5	23 0	1969	340	190.2	23.1	.141
ಎಡಿಳಾವ	25.9	159 4	13 1	-1673	Z2 0	152 0	183	-154 0	297	165 9	22 5	-157.4	35 0	172 5	24.1	-155 3	35.3	1759	333	1547	26.5	1793	231	-16.1	25.5	130 0	24.9	-141
W H	İ				i								29.1	172 5	23 9	151.2	250	:754	23 1	-154.1	273	173.1	21	-159 4	293	159 7	24.5	-141
W.E 05	29.8	159.1	13 0	-157.5	1				26.7	154 7	22.1	-157 1	29.0	172.5	23 8	-1540	75.5	175.3	23 0	153.5	35 0	175 0	22.5	-156.1	22.0	189 6	25.0	-140
A) 36	33 5	159 3	125	-157.)	24.7	150 1	18.1	-154 1	250	154.3	22.0	-1565	25.9	172 4	24 0	-1537	367	1750	22 9	-1535	37.0	1757	21 3	-1550	29.5	189 5	251	-743
€ 37	27.3	159.3	12.2	-166 0					35 0	154 0	21 8	-156.0	25.0	172.1	23 3	-1534	299	174 9	22 6	-1527	ង៖	178.4	21 4	1557	25.3	1,59 4	27.0	-133
(U 13	32 5	158 3	12.1	-155.1	29 0	150.0	17 9	-1537	¥9	154.1	21 5	-1553	267	1720	27	-153 1	357	1720	23;	-1531	126	174 6	22 4	-1522	87	175.2	21.t	-155
W :1					1								23.3	171 7	23.4	-153 3	22:0	1717	23.4	-1530	353	174 2	22.1	-151 9	290	175.1	30 5	-155
W E 12	l				1				1								ì				1				ì			
JE 13	367	159.4	11.7	-165 1	35 0	149 8	17.5	-1539	35 9	153 3	21.0	-155 1	290	171 6	23.9	-1525	290	171 5	230	-1528	35 0	174.1	229	-151.2	320	178.0	30.3	-154
VEN	35.4	159 1	115	-1550					37 0	1537	20 6	-154.5	33 0	171.4	22 5	-1529	35.5	171 4	22 6	-1529	31 0	174 9	217	-151 0	35 0	177 5	200	-154
LU 17	36 8	159 0	11.4	-1547	37 0	1497	17.4	-1534	390	163 4	20 5	-154 2	37 5	171.1	22.1	-1524	359	174 1	21 5	-151 0	320	177 9	194	-154 1	72.4	187 6	290	-137
VA 15													320	171 0	22 0	-1521	297	174 0	21 1	-1507	350	177 5	192	.154 0	390	137.4	392	-137
W:E 19	35 0	158.7	11.2	-164 5	1				37.0	153.1	20.3	-1540	35 0	171.2	21.8	-1520	33.0	173 8	21.3	-150.6	36 9	177 0	190	-154 2	25 4	187 5	29.1	-133
JU 20	337	158.5	110	-154 2	290	113 1	170	-153 1	30 5	153 0	20.1	-154.1	364	171.3	21.4	-152.1	290	173 4	210	-1507	29 9	176 5	189	-154 3	310	157 2	29 0	-130
,E 21													l				ĺ								ĺ			
10 24	25 8	152.4	10.9	-154 0	1 - 5				290	162.5	20 2	-1540	390	171.2	21 3	-1519	320	173 1	20 4	-150 8	354	176.2	15.5	454.2	35 7	187 1	39 1	-136
W4 25		-											34.5	171.1	21.1	-1518	350	173.0	20 0	-150 4		175 4	18.5	-154 0	33.5	137 0	29 0	-134
WEX	29.9	158.2	10.7	-153 &					20	162.6	20.6	-153.8	35.4	171.0	20.7	-151.9	30.5	173.2	19.6	-150.6	35.0		18.2	-153.9	25.0	186.4	29.4	-13
- 1	25	158 0	10.3	-1637	15.0	149 1	15.9	-1524	32.0	1623	197	-153.5	191	169 7	20.4	-1520	350	172.9	19.4	-1507		1750	180	-154.1	32.5	156.1	297	-13
AE II		158.1	10.1	1639	330	1931	19.3	132	33.0	162.0	195	-153 6	267	159 5	20.2	-1517	290	172.5	130	150 5		175 1		-154.0	360	156.2	300	-13
. E 23.44P TS	37 0	130.1	IU.1	*1633	2.35,5				30	192.9	12.3	-123 0	14.1	1953	+4.4	312	, 2,4	4.4	.,,,		1 ~ 3				, ,,,,	~		

Tabla A.3.3.8 Mediciones de diferencia de potencial obtenidas en el reactor R4 (sin planta y regado con agua corriente), operando a un TRH de 24 horas

TESTO NY FALTAN

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R1 (CON PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 12 HORAS

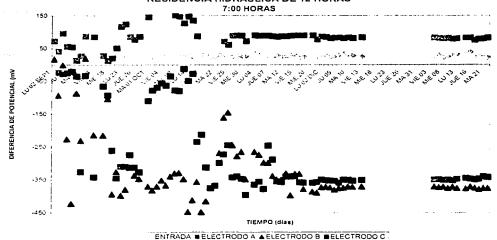


Figura A.3.3.1. Resultados de las mediciones de diferencia de potencial, realizadas a las 7:00 horas, en el reactor R1, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R1 (CON PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 12 HORAS

Figura A.3.3.2. Resultados de las mediciones de diferencia de potencial, realizadas a las 9:00 horas, en el reactor R1, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

· ENTRADA ■ ELECTRODO A ▲ ELECTRODO B ■ ELECTRODO C

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R1 (CON PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 12 HORAS

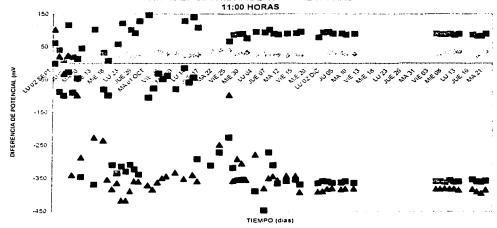
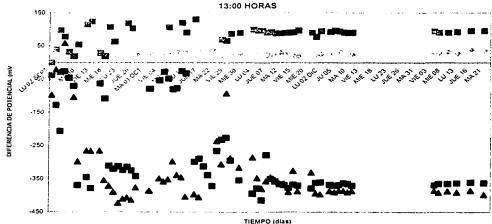
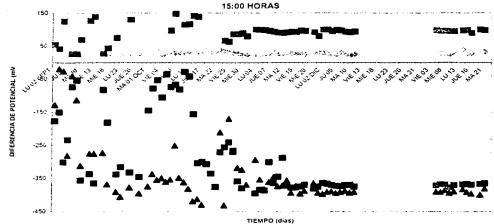



Figura A.3.3.3. Resultados de las mediciones de diferencia de potencial, realizadas a las 11:00 horas, en el reactor R1, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

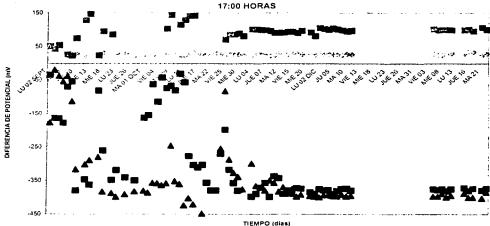
ENTRADA ■ ELECTRODO A ▲ ELECTRODO B ■ ELECTRODO C

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R1 (CON PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 12 HORAS



ENTRADA ■ELECTRODO A ▲ELECTRODO B ■ELECTRODO C

Figura A.3.3.4. Resultados de las mediciones de diferencia de potencial, realizadas a las 13:00 horas, en el reactor R1, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.



DIFERENCIAS DE POTENCIAL PARA EL REACTOR R1 (CON PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 12 HORAS

Figura A.3.3.5. Resultados de las mediciones de diferencia de potencial, realizadas a las 15:00 horas, en el reactor R1, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R1 (CON PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 12 HORAS

: ENTRADA BELECTRODO A A ELECTRODO B BELECTRODO C

Figura A.3.3.6. Resultados de las mediciones de diferencia de potencial, realizadas a las 17:00 horas, en el reactor R1, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R1 (CON PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 12 HORAS

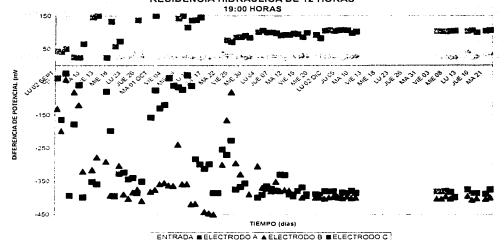


Figura A.3.3.7. Resultados de las mediciones de diferencia de potencial, realizadas a las 19:00 horas, en el reactor R1, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R2 (SIN PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 12 HORAS 7:00 HORAS

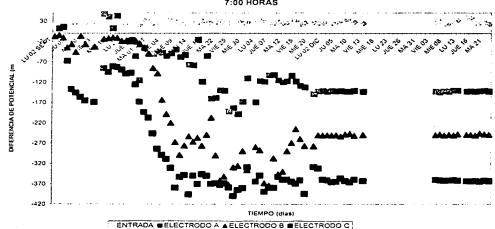
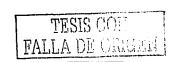



Figura A.3.3.8. Resultados de las mediciones de diferencia de potencial, realizadas a las 7:00 horas, en el reactor R2, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R2 (SIN PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 12 HORAS

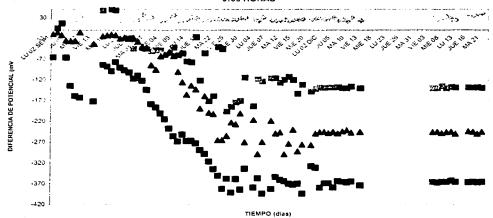
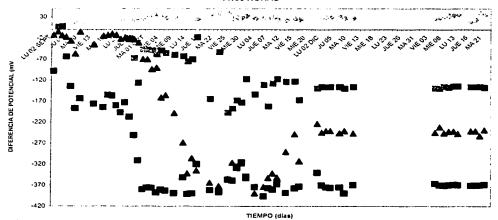
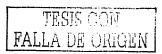



Figura A.3.3.9. Resultados de las mediciones de diferencia de potencial, realizadas a las 9:00 horas, en el reactor R2, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.


ENTRADA MELECTRODO A MELECTRODO B MELECTRODO C

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R2 (SIN PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 12 HORAS 11:00 HORAS

! ENTRADA ■ELECTRODO A ▲ ELECTRODO B ■ELECTRODO C

Figura A.3.3.10. Resultados de las mediciones de diferencia de potencial, realizadas a las 11:00 horas, en el reactor R2, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R2 (SIN PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 12 HORAS 13:00 HORAS

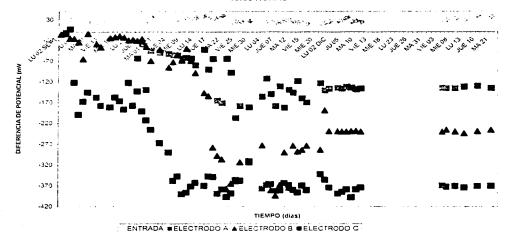
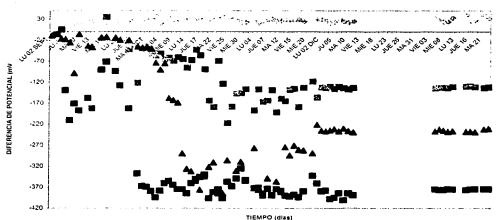
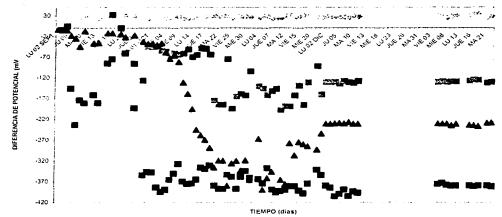


Figura A.3.3.11. Resultados de las mediciones de diferencia de potencial, realizadas a las 13:00 horas, en el reactor R2, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

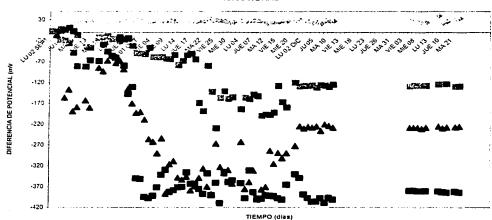
DIFERENCIAS DE POTENCIAL PARA EL REACTOR R2 (SIN PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 12 HORAS 15:00 HORAS




Figura A.3.3.12. Resultados de las mediciones de diferencia de potencial, realizadas a las 15:00 horas, en el reactor R2, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

ENTRADA ■ELECTRODO A A ELECTRODO B ■ELECTRODO C

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R2 (SIN PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA) - OPERANDO A UN TIEMPO DE **RESIDENCIA HIDRAULICA DE 12 HORAS**


17:00 HORAS

ENTRADA #ELECTRODO A A ELECTRODO B #ELECTRODO C

Figura A.3.3.13. Resultados de las mediciones de diferencia de potencial, realizadas a las 17:00 horas, en el reactor R2, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R2 (SIN PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 12 HORAS 19:00 HORAS

ENTRADA BELECTRODO A A ELECTRODO B BELECTRODO C

Figura A.3.3.14. Resultados de las mediciones de diferencia de potencial, realizadas a las 19:00 horas, en el reactor R2, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R3 (CON PLANTA Y REGADO CON AGUA CORRIENTE) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 12 HORAS

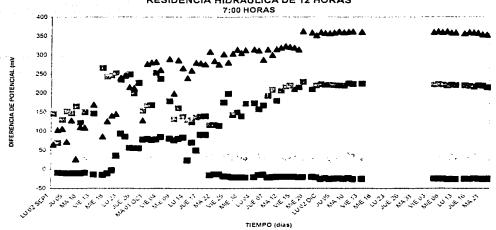


Figura A.3.3.15. Resultados de las mediciones de diferencia de potencial, realizadas a las 7:00 horas, en el reactor R3, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

ENTRADA MELECTRODO A A ELECTRODO B MELECTRODO C

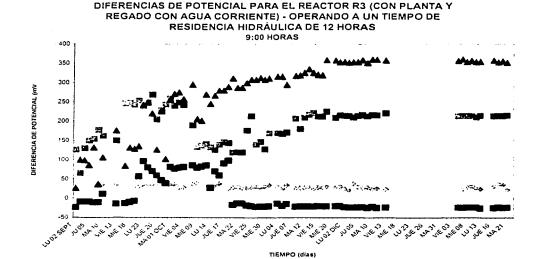
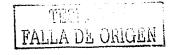
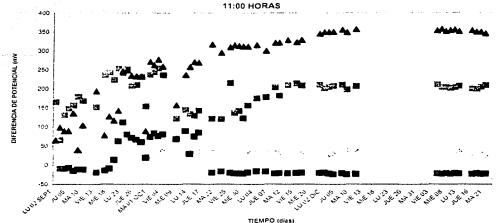




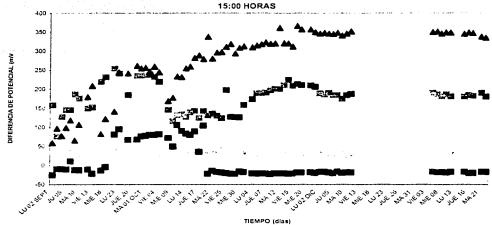
Figura A.3.3.16. Resultados de las mediciones de diferencia de potencial, realizadas a las 9:00 horas, en el reactor R3, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

· ENTRADA ■ELECTRODO A ▲ELECTRODO B ■ELECTRODO C

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R3 (CON PLANTA Y REGADO CON AGUA CORRIENTE) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 12 HORAS

- ENTRADA MELECTRODO A A ELECTRODO B MELECTRODO C

Figura A.3.3.17. Resultados de las mediciones de diferencia de potencial, realizadas a las 11:00 horas, en el reactor R3, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.


DIFERENCIAS DE POTENCIAL PARA EL REACTOR R3 (CON PLANTA Y

TIEMPO (dias) ENTRADA ■ELECTRODO A ▲ELECTRODO B ■ELECTRODO C

Figura A.3.3.18. Resultados de las mediciones de diferencia de potencial, realizadas a las 13:00 horas, en el reactor R3, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

Figura A.3.3.19. Resultados de las mediciones de diferencia de potencial, realizadas a las 15:00 horas, en el reactor R3, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

ENTRADA MELECTRODO A A ELECTRODO B MELECTRODO C

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R3 (CON PLANTA Y REGADO CON AGUA CORRIENTE) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 12 HORAS 17:00 HORAS

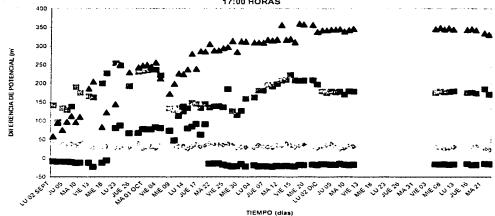
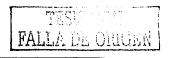
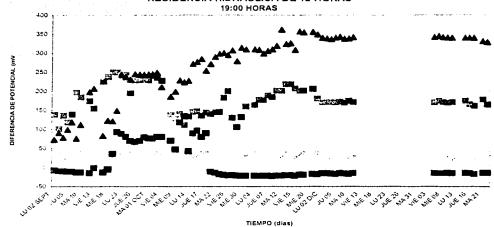




Figura A.3.3.20. Resultados de las mediciones de diferencia de potencial, realizadas a las 17:00 horas, en el reactor R3, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

+ ENTRADA ■ ELECTRODO A ▲ ELECTRODO B ■ ELECTRODO C

ENTRADA SELECTRODO A A ELECTRODO B SELECTRODO C

Figura A.3.3.21. Resultados de las mediciones de diferencia de potencial, realizadas a las 19:00 horas, en el reactor R3, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R4 (SIN PLANTA Y REGADO CON AGUA CORRIENTE) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 12 HORAS 7:00 HORAS

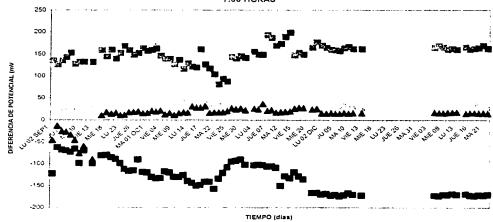


Figura A.3.3.22. Resultados de las mediciones de diferencia de potencial, realizadas a las 7:00 horas, en el reactor R4, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

> ENTRADA ■ELECTRODO A ▲ ELECTRODO B ■ELECTRODO C

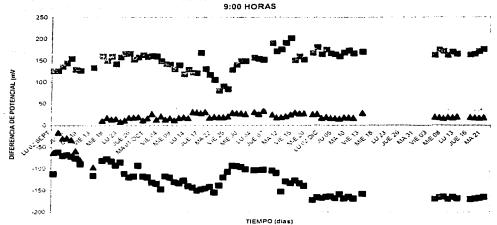


Figura A.3.3.23. Resultados de las mediciones de diferencia de potencial, realizadas a las 9:00 horas, en el reactor R4, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie: electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R4 (SIN PLANTA Y REGADO CON AGUA CORRIENTE) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 12 HORAS

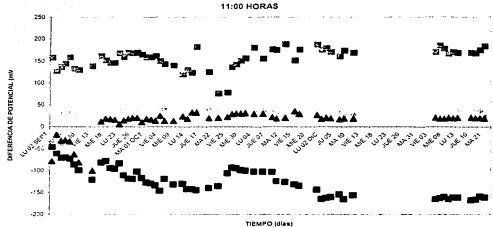


Figura A.3.3.24. Resultados de las mediciones de diferencia de potencial, realizadas a las 11:00 horas, en el reactor R4, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie;

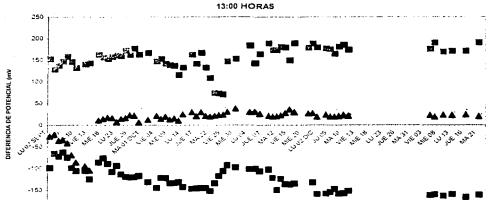


Figura A.3.3.25. Resultados de las mediciones de diferencia de potencial, realizadas a las 13:00 horas, en el reactor R4, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

TIEMPO (dias)

-200

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R4 (SIN PLANTA Y REGADO CON AGUA CORRIENTE) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 12 HORAS 15:00 HORAS

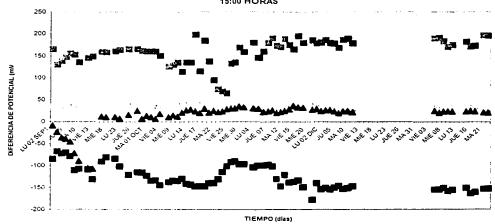


Figura A.3.3.26. Resultados de las mediciones de diferencia de potencial, realizadas a las 15:00 horas, en el reactor R4, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

- ENTRADA ■ELECTRODO A ▲ELECTRODO B ■ELECTRODO C

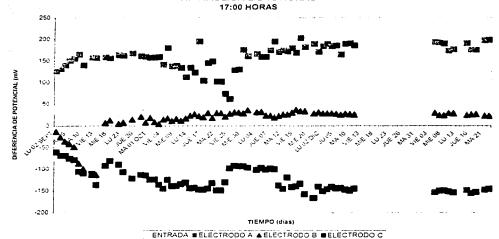


Figura A.3.3.27. Resultados de las mediciones de diferencia de potencial, realizadas a las 17:00 horas, en el reactor R4, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R4 (SIN PLANTA Y REGADO CON AGUA CORRIENTE) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 12 HORAS

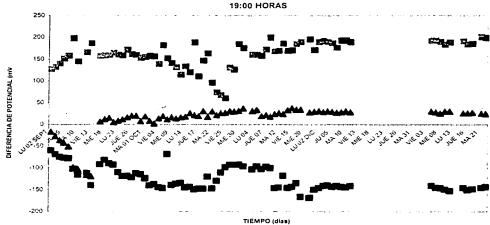
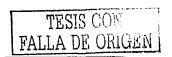
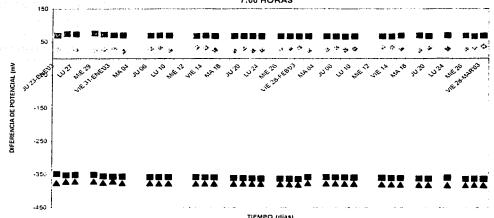
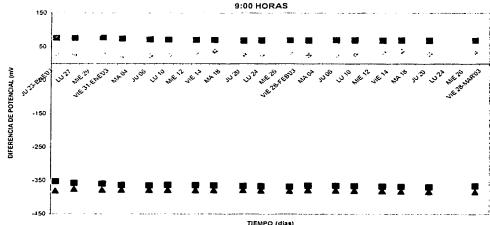
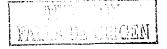




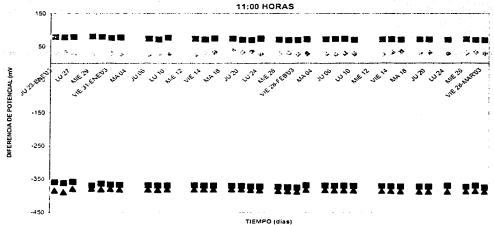
Figura A.3.3.28. Resultados de las mediciones de diferencia de potencial, realizadas a las 19:00 horas, en el reactor R4, a un TRH de 12 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

ENTRADA BELECTRODO A A ELECTRODO B BELECTRODO C


DIFERENCIAS DE POTENCIAL PARA EL REACTOR R1 (CON PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 24 HORAS 7:00 HORAS

ENTRADA #ELECTRODO A & ELECTRODO B #ELECTRODO C


Figura A.3.3.29. Resultados de las mediciones de diferencia de potencial, realizadas a las 7:00 horas, en el reactor R1, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.


DIFERENCIAS DE POTENCIAL PARA EL REACTOR R1 (CON PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 24 HORAS

DENTRADA ■ ELECTRODO A A ELECTRODO B ■ ELECTRODO C

Figura A.3.3.30. Resultados de las mediciones de diferencia de potencial, realizadas a las 9:00 horas, en el reactor R1, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

ENTRADA MELECTRODO A AELECTRODO B MELECTRODO C

Figura A.3.3.31. Resultados de las mediciones de diferencia de potencial, realizadas a las 11:00 horas, en el reactor R1, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R1 (CON PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 24 HORAS

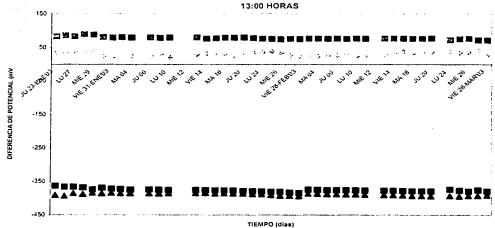
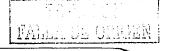
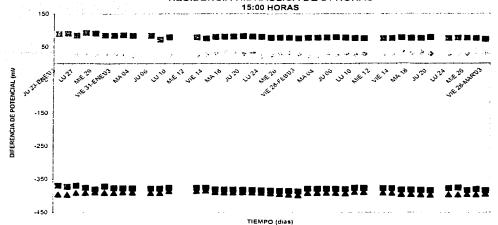
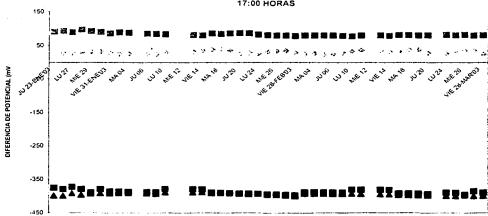




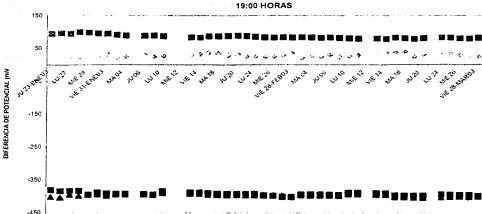
Figura A.3.3.32. Resultados de las mediciones de diferencia de potencial, realizadas a las 13:00 horas, en el reactor R1, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

- ENTRADA ■ ELECTRODO A ▲ ELECTRODO B ■ ELECTRODO C



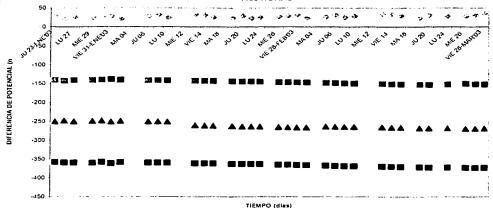
ENTRADA ELECTRODO A A ELECTRODO B ELECTRODO C

Figura A.3.3.33. Resultados de las mediciones de diferencia de potencial, realizadas a las 15:00 horas, en el reactor R1, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

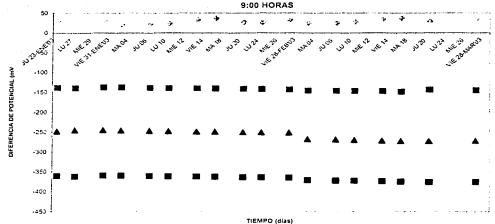

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R1 (CON PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 24 HORAS 17:00 HORAS

TIEMPO (días) - ENTRADA - ELECTRODO A A ELECTRODO B - ELECTRODO C

Figura A.3.3.34. Resultados de las mediciones de diferencia de potencial, realizadas a las 17:00 horas, en el reactor R1, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

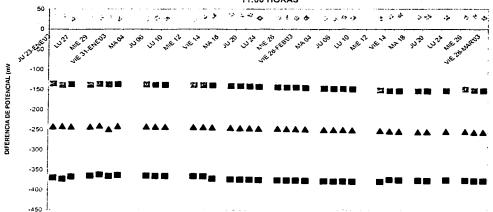

REGADO CON AGUA RESIDUAL SINTÉTICA) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 24 HORAS

TIEMPO (dias) - ENTRADA MELECTRODO A A ELECTRODO B MELECTRODO C


Figura A.3.3.35. Resultados de las mediciones de diferencia de potencial, realizadas a las 19:00 horas, en el reactor R1, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R2 (SIN PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 24 HORAS 7:00 HORAS

→ ENTRADA ■ELECTRODO A ▲ ELECTRODO B ■ELECTRODO C


Figura A.3.3.36. Resultados de las mediciones de diferencia de potencial, realizadas a las 7:00 horas, en el reactor R2, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

· ENTRADA #ELECTRODO A AELECTRODO B #ELECTRODO C

Figura A.3.3.37. Resultados de las mediciones de diferencia de potencial, realizadas a las 9:00 horas, en el reactor R2, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R2 (SIN PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 24 HORAS 11:00 HORAS

TIEMPO (dias)

ENTRADA SELECTRODO A AELECTRODO B SELECTRODO C

Figura A.3.3.38. Resultados de las mediciones de diferencia de potencial, realizadas a las 11:00 horas, en el reactor R2, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

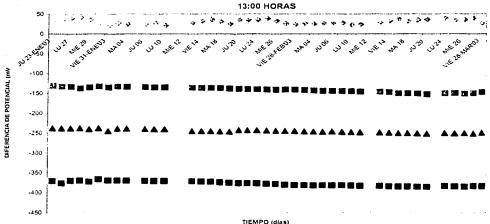


Figura A.3.3.39. Resultados de las mediciones de diferencia de potencial, realizadas a las 13:00 horas, en el reactor R2, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R2 (SIN PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 24 HORAS 15:00 HORAS

ENTRADA # ELECTRODO A A ELECTRODO B # ELECTRODO C

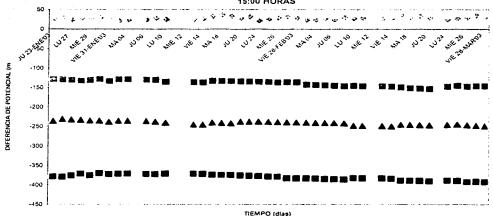
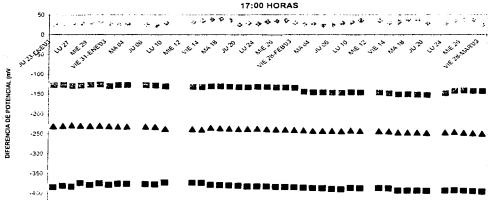
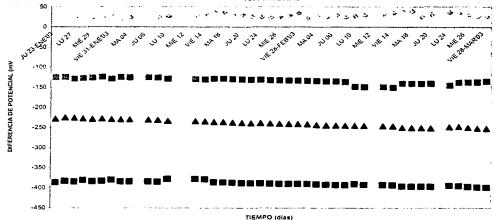



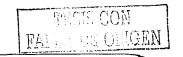
Figura A.3.3.40. Resultados de las mediciones de diferencia de potencial, realizadas a las 15:00 horas, en el reactor R2, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

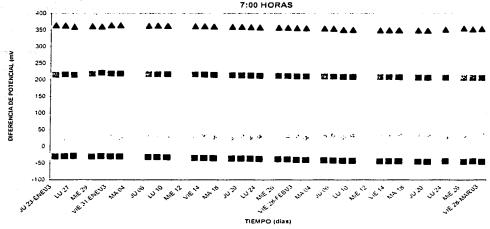
- ENTRADA ■ELECTRODO A ▲ELECTRODO B ■ELECTRODO C



TIEMPO (dias) ENTRADA #ELECTRODO A A ELECTRODO B BELECTRODO C

Figura A.3.3.41. Resultados de las mediciones de diferencia de potencial, realizadas a las 17:00 horas, en el reactor R2, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.


-450


DIFERENCIAS DE POTENCIAL PARA EL REACTOR R2 (SIN PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 24 HORAS 19:00 HORAS

· ENTRADA BELECTRODO A AELECTRODO B BELECTRODO C

Figura A.3.3.42. Resultados de las mediciones de diferencia de potencial, realizadas a las 19:00 horas, en el reactor R2, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

ENTRADA DELECTRODO A DELECTRODO B DELECTRODO C

Figura A.3.3.43. Resultados de las mediciones de diferencia de potencial, realizadas a las 7:00 horas, en el reactor R3, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B. a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R3 (CON PLANTA Y REGADO CON AGUA CORRIENTE) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 24 HORAS

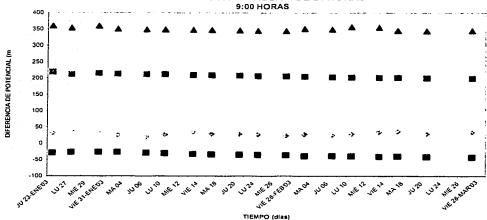
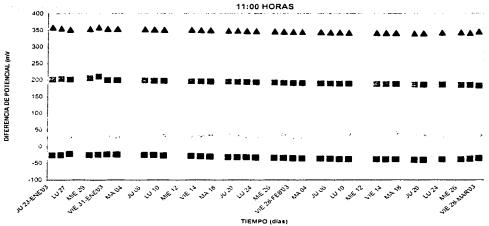
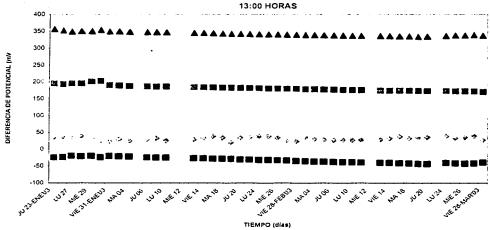
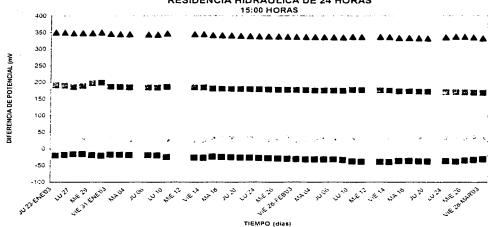



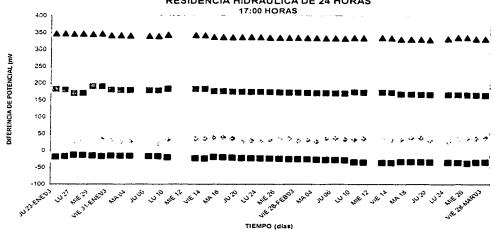
Figura A.3.3.44. Resultados de las mediciones de diferencia de potencial, realizadas a las 9:00 horas, en el reactor R3, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

+ ENTRADA ■ ELECTRODO A ▲ ELECTRODO B ■ ELECTRODO C

ENTRADA DELECTRODO A DELECTRODO DE DELECTRODO C
Figura A.3.3.45. Resultados de las mediciones de diferencia de potencial, realizadas a las 11:00 horas, en el reactor R3, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie.

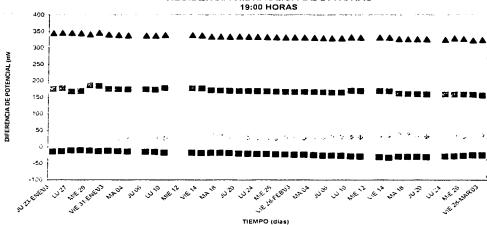
DIFERENCIAS DE POTENCIAL PARA EL REACTOR R3 (CON PLANTA Y REGADO CON AGUA CORRIENTE) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 24 HORAS


Figura A.3.3.46. Resultados de las mediciones de diferencia de potencial, realizadas a las 13:00 horas, en el reactor R3, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie

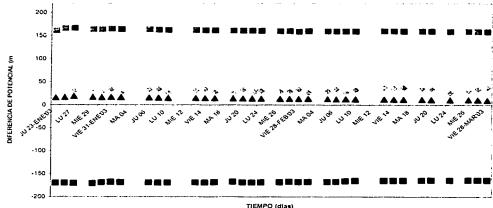
ENTRADA BELECTRODO A A ELECTRODO B BELECTRODO C

Figura A.3.3.47. Resultados de las mediciones de diferencia de potencial, realizadas a las 15:00 horas, en el reactor R3, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie


DIFERENCIAS DE POTENCIAL PARA EL REACTOR R3 (CON PLANTA Y REGADO CON AGUA CORRIENTE) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 24 HORAS

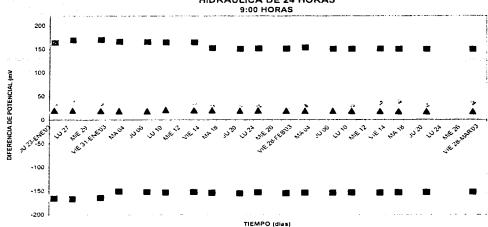
→ ENTRADA ■ELECTRODO A ▲ ELECTRODO B ■ELECTRODO C

Figura A.3.3.48. Resultados de las mediciones de diferencia de potencial, realizadas a las 17:00 horas, en el reactor R3, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie



ENTRADA BELECTRODO A A ELECTRODO B BELECTRODO C

Figura A.3.3.49. Resultados de las mediciones de diferencia de potencial, realizadas a las 19:00 horas, en el reactor R3, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie: electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie


DIFERENCIAS DE POTENCIAL PARA EL REACTOR R4 (SIN PLANTA Y REGADO CON AGUA CORRIENTE) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 24 HORAS 7:00 HORAS

ENTRADA SELECTRODO A A ELECTRODO B SELECTRODO C

Figura A.3.3.50. Resultados de las mediciones de diferencia de potencial, realizadas a las 7:00 horas, en el reactor R4, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie

ENTRADA BELECTRODO A A ELECTRODO B BELECTRODO C

Figura A.3.3.51. Resultados de las mediciones de diferencia de potencial, realizadas a las 9:00 horas, en el reactor R4, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la

Superficie DIFERENCIAS DE POTENCIAL PARA EL REACTOR R4 (SIN PLANTA Y REGADO CON AGUA CORRIENTE) - OPERANDO A UN TIEMPO DE RESIDENCIA

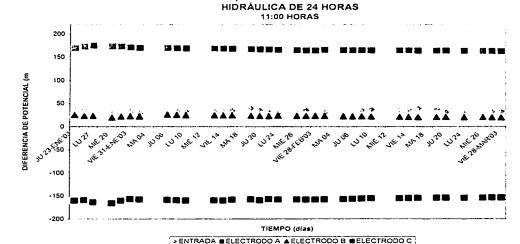
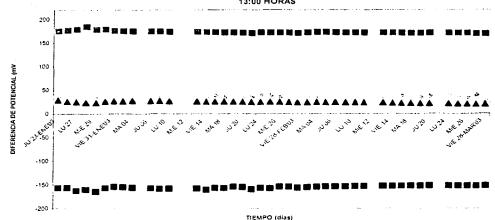



Figura A.3.3.52. Resultados de las mediciones de diferencia de potencial, realizadas a las 11:00 horas, en el reactor R4, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie

ENTRADA MELECTRODO A A ELECTRODO B MELECTRODO C

Figura A.3.3.53. Resultados de las mediciones de diferencia de potencial, realizadas a las 13:00 horas, en el reactor R4, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R4 (SIN PLANTA Y REGADO CON AGUA CORRIENTE) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 24 HORAS 15:00 HORAS

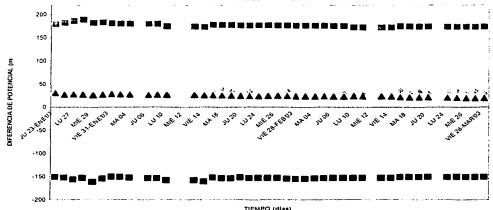
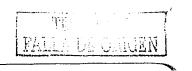
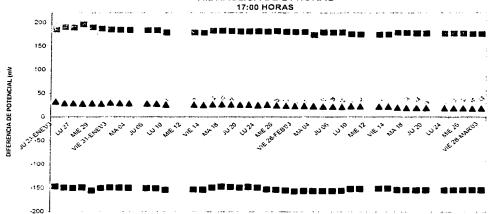




Figura A.3.3.54. Resultados de las mediciones de diferencia de potencial, realizadas a las 15:00 horas, en el reactor R4, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie

- ENTRADA ■ELECTRODO A ▲ ELECTRODO B ■ELECTRODO C

TIEMPO (dias) ENTRADA BELECTRODO A A ELECTRODO B BELECTRODO C

Figura A.3.3.55. Resultados de las mediciones de diferencia de potencial, realizadas a las 17:00 horas, en el reactor R4, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie

DIFERENCIAS DE POTENCIAL PARA EL REACTOR R4 (SIN PLANTA Y REGADO CON AGUA CORRIENTE) - OPERANDO A UN TIEMPO DE RESIDENCIA HIDRÁULICA DE 24 HORAS

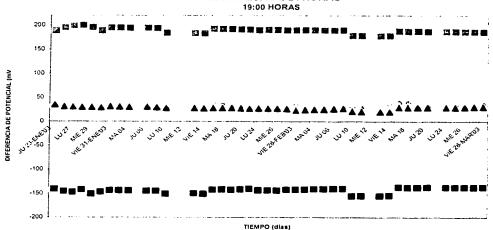
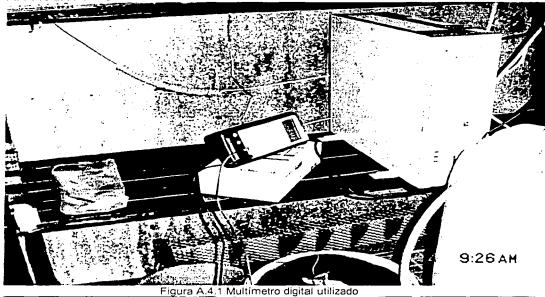
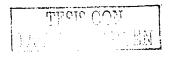


Figura A.3.3.56. Resultados de las mediciones de diferencia de potencial, realizadas a las 19:00 horas, en el reactor R4, a un TRH de 24 horas. Electrodo A, a 2 cm de la superficie; electrodo B, a 10 cm de la superficie y electrodo C, a 30 cm de la superficie

ENTRADA SELECTRODO A AELECTRODO B SELECTRODO C

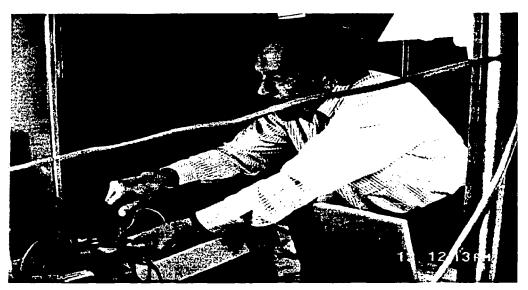
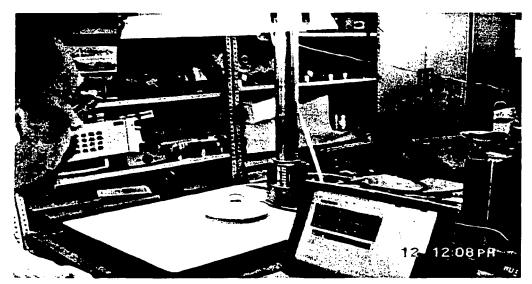
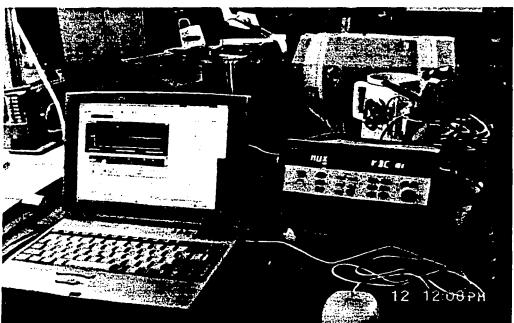


Figura A.4.2 Detalle del empacado de una columna




Figura A.4.3 Agua residual sintética en descomposición

Figuras A.4.6 y A.4.7 Detalles del dispositivo de medición de irradianza

TESIS FALLA III

Figuras A.4.8 y A.4.9 Detalle del radiómetro y del dispositivo de medición de irradianza

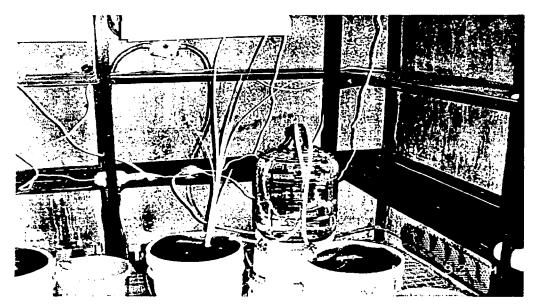


Figura A.4.10 Reactores R1 (reactor de prueba) y R2 (reactor testigo), regados con agua residual sintética

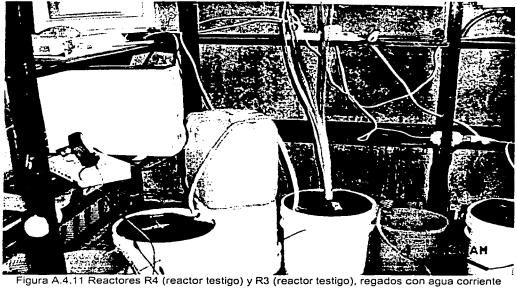


Figura A.4.12 Vista general del sistema experimental

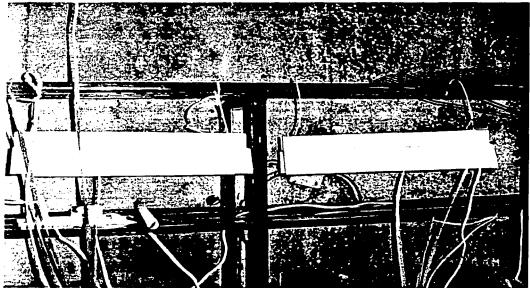
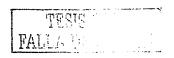



Figura A.4.13 Detalle de dos de las lámparas utilizadas para en el experimento

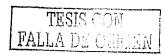



Figura A.4.14 Detalle del sitio en donde se realizó el experimento; la temperatura se mantuvo en un intervalo de 28 ± 2°C

A.5 ANÁLISIS ESTADÍSTICOS

Como se comentó en el Capítulo III, se realizó un análisis estadístico basado en el Estadístico "F". Se eligió este tipo de análisis considerando varios puntos: que se trataba de un proceso continuo; que sólo se estaba estudiando una variable (la diferencia de potencial, a su vez relacionada con la cantidad de materia orgánica presente en el sistema y con la DQO_T) y que la cantidad de datos existentes fue muy grande.

El cálculo del estadístico "F" permite demostrar en qué momento se llega a la fase de estabilidad. Es una herramienta que deja ver cuál es la desviación existente en cada uno de los electrodos con respecto a un comportamiento estable.

Para obtener el valor del estadístico F se calcula la desviación estándar de un conjunto de datos obtenidos durante un período de tiempo dado. Se calcula la relación de los cuadrados de las desviaciones estándar inicial y del período actual y, según el número de datos, se obtiene el valor buscado de una tabla estadística (AMTE, 2002).

A continuación se muestra un ejemplo (es el caso del reactor R1 en las mediciones de las 7:00 horas) de los gráficos y las tablas relacionadas con el análisis estadístico de que se habla arriba. Todos los datos obtenidos (de los diferentes reactores y horarios de medición) recibieron el mismo tratamiento estadísitico.

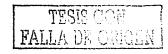
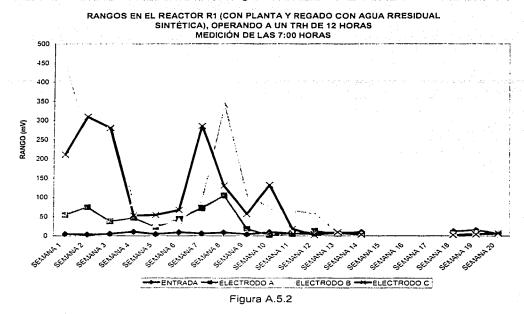


Tabla A.5.1


VALORES DE PROMEDIO, RANGO, DESVIACIÓN ESTÁNDAR Y ESTADÍSTICO F PARA LOS VALORES DE DIFERENCIA DE POTENCIAL OBTENIDOS DE LOS ELECTRODOS A, B Y C, DEL REACTOR R1 A LAS 7:00 HORAS, OPERANDO A UN TRH DE 12 HORAS

7 h.

		PROMEDIOS					RANGOS		
and the Section 178	ENTRADA	ELECTRODO A	ELECTRODO B	ELECTRODO O	g film to give	ENTRADA	ELECTRODO A	ELECTRODO B	ELECTRODO C
SEMANA 1	22.6	64.1	-144.9	17.2	SEMANA 1	4.5	54.3	440.4	210.9
SEMANA 2	25.7	52.8	-128.0	-184.1	SEMANA 2	3.1	74.4	249.7	309.3
SEMANA 3	20.3	27.2	-259.8	-191.6	SEMANA 3	5.1	37.9	289.9	280.1
SEMANA 4	26.3	97.6	-354.6	-306.8	SEMANA 4	10.8	46.8	85.4	52.9
SEMANA 5	26.7	161.1	-368.5	-78.8	SEMANA 5	4.1	22.7	30.5	54.0
SEMANA 6	27.9	150.3	·342.6	-53.7	SEMANA 6	9.4	44.2	38.4	67.3
SEMANA 7	27.1	136.9	-415.6	-167,7	SEMANA 7	6.0	72.1	92.0	284.8
SEMANA 8	25.7	123.6	-302.7	-312.0	SEMANA 8	9.0	104.7	340.7	129.8
SEMANA 9	26.0	84.6	-284.2	-356.8	SEMANA 9	4.0	17.6	103.9	56.0
SEMANA 10	27.9	88.6	-294.8	+327.0	SEMANA 10	9.4	2.9	73.7	131.6
SEMANA 11	27.1	87.5	-351.7	+346.2	SEMANA 11	6.0	4.6	66.5	18.0
SEMANA 12	24.5	86.3	-371.3	-358.3	SEMANA 12	5.0	12.2	57.0	2.0
SEMANA 13	26.9	83.1	-374.2	-353.4	SEMANA 13	6.5	4.9	9.0	9.2
SEMANA 14	28.7	81.9	-371.7	-351.6	SEMANA 14	9.4	3.0	3.6	3.4
SEMANA 15					SEMANA 15				
SEMANA 16					SEMANA 16				
SEMANA 17					SEMANA 17				
SEMANA 18	27.0	80.7	-371.7	-350.3	SEMANA 18	13.0	3.5	4.1	2.6
SEMANA 19	33.3	80.0	373.8	-347.4	SEMANA 19	15.0	7.0	5.5	4.0
SEMANA 20	24.7	80.2	-375.8	-343.1	SEMANA 20	6.0	4.0	3.5	6.9
PROMEDIO FASE							· ·	- 15	
ESTABLE	27.5	81.2	-352.1	-350.0					

				7 h.					
DESVIACIONES ESTÁNDAR (S)							ESTADISTICO (F		
	ENTRADA	ELECTRODO A	ELECTRODO B	ELECTRODO C		ENTRADA	ELECTRODO A	ELECTRODO B	ELECTRODO C
SEMANA 1	1 8507	20 9915	182 9608	92.7449	SEMANA 1	10	10	1.0	1.0
SEMANA 2	1.4477	38 6182	117.1283	173 2457	SEMANA 2	1.6	0.3	2.4	0.3
SEMANA 3	2 3027	16 3575	127.3684	134 3739	SEMANA 3	0.6	16	2.1	0.5
SEMANA 4	4 5539	20 9690	34 1576	19 6018	SEMANA 4	02	1.0	28 7	22.4
SEMANA 5	1 9103	10 5661	12.6012	23 0291	SEMANA 5	0.9	39	2108	16 2
SEMANA 6	3 7799	16 2761	15 8026	29.1164	SEMANA 6	02	1.7	134 0	10 1
SEMANA 7	2 2742	29 5332	37.4206	123 6345	SEMANA 7	07	0.5	239	0.6
SEMANA 8	3 3139	52.7901	159 3141	57.5819	SEMANA 8	0.3	02	1.3	2.6
SEMANA 9	1 7916	8 4360	45 2025	26 3566	SEMANA 9	1.1	6.1	16.4	12.4
SEMANA 10	3 7799	1 0559	28 5999	56 5600	SEMANA 10	02	395 2	40.9	2.7
SEMANA 11	2 2742	1 8480	25.9249	8.8268	SEMANA 11	0.7	129 0	462	1104
SEMANA 12	2.0759	6 0213	26 5754	0.9574	SEMANA 12	0.8	12.2	47.4	9383 6
SEMANA 13	2.5589	18111	3.5287	3 4843	SEMANA 13	0.5	134.3	2688 3	708.5
SEMANA 14	3 9611	1.5727	1 6840	1.6381	SEMANA 14	02	178 2	118042	3295 6
SEMANA 15					SEMANA 15				
SEMANA 16					SEMANA 16				
SEMANA 17					SEMANA 17				
SEMANA 18	4 8477	1 3918	1.7615	1 0198	SEMANA 18	0.1	227.5	10787 8	8270 8
SEMANA 19	6 898 1	3 3570	2.3958	1.7017	SEMANA 19	0.1	39.1	5831 8	2970 3
SEMANA 20	3 2146	2.0817	1.8930	3.5247	SEMANA 20	0.3	101 7	93415	692 4

Figura A.5.1

DESVIACIÓN ESTÁNDAR DEL REACTOR R1 (CON PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA), OPERANDO A UN TRH DE 12 HORAS MEDICIÓN DE LAS 7:00 HORAS

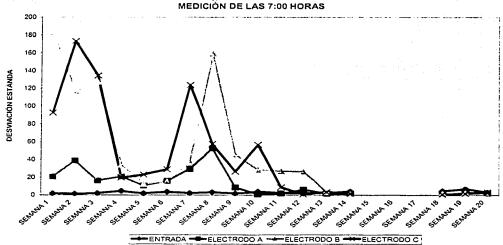
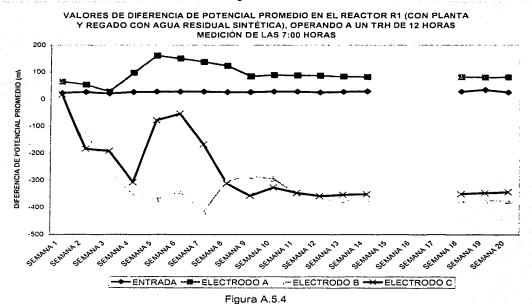



Figura A.5.3

PRUEBA DE ESTADÍSTICO F PARA EL REACTOR R1 (CON PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA), OPERANDO A UN TRH DE 12 HORAS

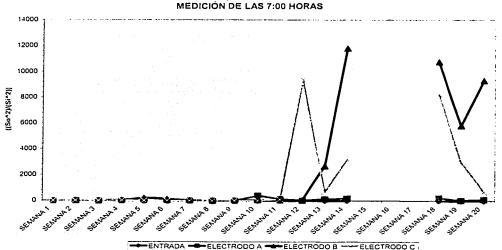
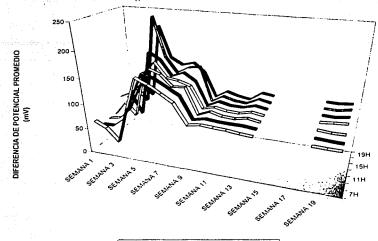



Figura A.5.5

DIFERENCIAS DE POTENCIAL PROMEDIO EN EL ELECTRODO A (A 2 cm DE LA SUPERFICIE) EN EL REACTOR R1 (CON PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA), OPERANDO A UN TRH DE 12 HORAS

☐7H ■9H ☐11H ☐ 13H ■15H ■17H ■19H

Figura A.5.6

DIFERENCIAS DE POTENCIAL PROMEDIO EN EL ELECTRODO B (A 10 cm DE LA SUPERFICIE) EN EL REACTOR R1 (CON PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA), OPERANDO A UN TRH DE 12 HORAS

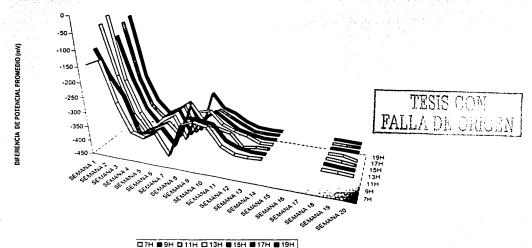


Figura A.5.7

DIFERENCIAS DE POTENCIAL PROMEDIO EN EL ELECTRODO C (A 30 cm DE LA SUPERFICIE) EN EL REACTOR R1 (CON PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA), OPERANDO A UN TRH DE 12 HORAS

Figura A.5.8

DIFERENCIAS DE POTENCIAL PROMEDIO EN EL ELECTRODO A (A 2 cm DE LA SUPERFICIE) EN EL REACTOR R2 (SIN PLANTA Y REGADO CON AGUA RESIDUAL

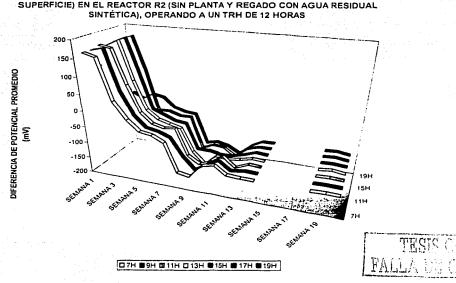


Figura A.5.9

DIFERENCIAS DE POTENCIAL PROMEDIO EN EL ELECTRODO B (A 10 cm DE LA SUPERFICIE) EN EL REACTOR R2 (SIN PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA), OPERANDO A UN TRH DE 12 HORAS

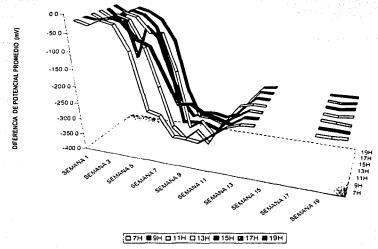


Figura A.5.10

DIFERENCIAS DE POTENCIAL PROMEDIO EN EL ELECTRODO C (A 30 cm DE LA SUPERFICIE) EN EL REACTOR R2 (SIN PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA), OPERANDO A UN TRH DE 12 HORAS

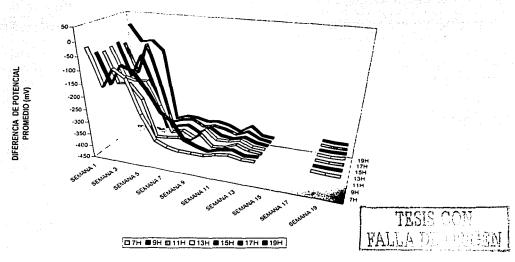


Figura A.5.11

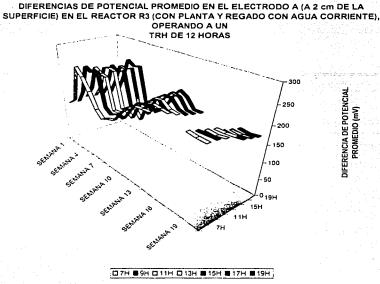


Figura A.5.12

DIFERENCIAS DE POTENCIAL PROMEDIO EN EL ELECTRODO B (A 10 cm DE LA SUPERFICIE) EN EL REACTOR R3 (CON PLANTA Y REGADO CON AGUA CORRIENTE), OPERANDO A UN TRH DE 12 HORAS

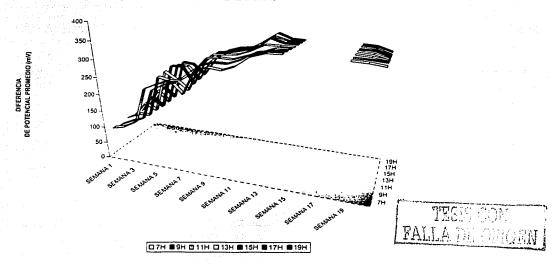
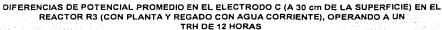



Figura A.5.13

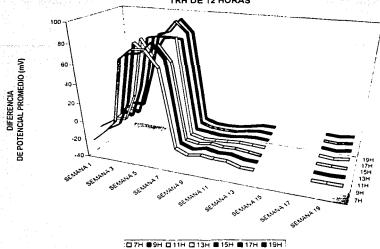


Figura A.5.14

DIFERENCIAS DE POTENCIAL PROMEDIO EN EL ELECTRODO A (A 2 cm DE LA SUPERFICIE) EN EL REACTOR R4 (SIN PLANTA Y REGADO CON AGUA CORRIENTE),
OPERANDO A UN TRH DE 12 HORAS

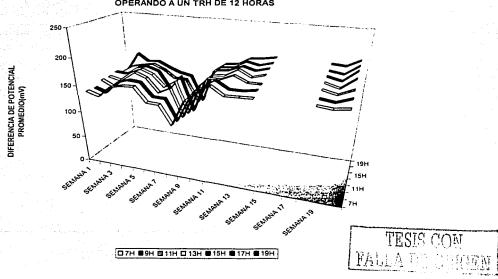


Figura A.5.15

DIFERENCIAS DE POTENCIAL PROMEDIO EN EL ELECTRODO B (A 10 cm DE LA SUPERFICIE) EN EL REACTOR R4 (SIN PLANTA Y REGADO CON AGUA CORRIENTE), OPERANDO A UN TRH DE 12 HORAS

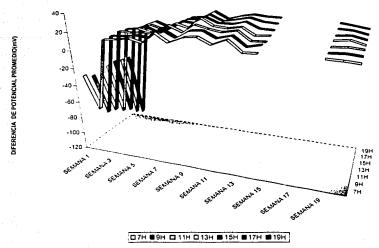


Figura A.5.16

DIFERENCIAS DE POTENCIAL PROMEDIO EN EL ELECTRODO C (A 30 cm DE LA SUPERFICIE) EN EL REACTOR R4 (SIN PLANTA Y REGADO CON AGUA CORRIENTE), OPERANDO A UN

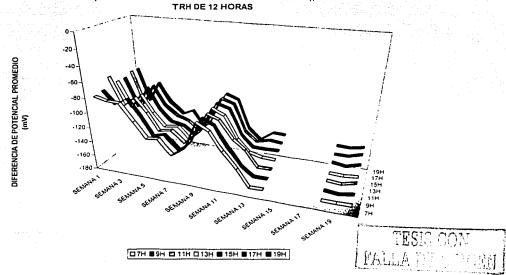


Figura A.5.17

DIFERENCIAS DE POTENCIAL PROMEDIO EN EL ELECTRODO A (A 2 cm DE LA SUPERFICIE) EN EL REACTOR R1 (CON PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA), OPERANDO A UN TRH DE 24 HORAS

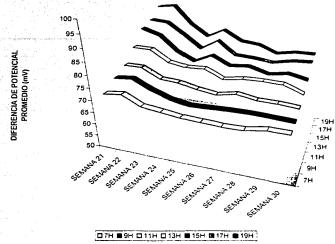


Figura A.5.18

DIFERENCIAS DE POTENCIAL PROMEDIO EN EL ELECTRODO B (A 10 cm DE LA SUPERFICIE) EN EL REACTOR R1 (CON PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA), OPERANDO A UN TRH DE 24 HORAS

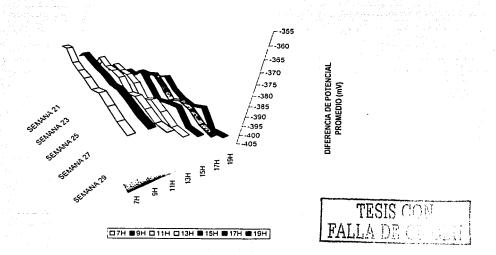
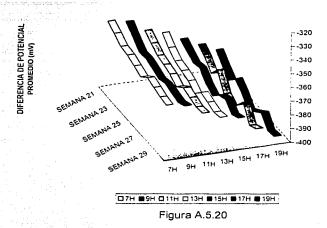
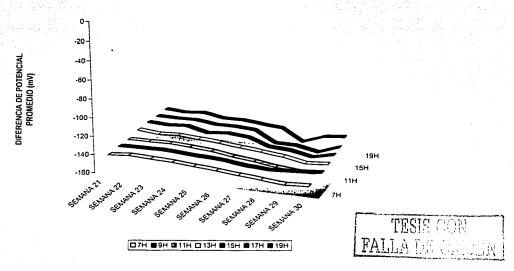




Figura A.5.19

DIFERENCIAS DE POTENCIAL PROMEDIO EN EL ELECTRODO C (A 30 cm DE LA SUPERFICIE) EN EL REACTOR R1 (CON PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA), OPERANDO A UN TRH DE 24 HORAS

DIFERENCIAS DE POTENCIAL PROMEDIO EN EL ELECTRODO A (A 2 cm DE LA SUPERFICIE) EN EL REACTOR R2 (SIN PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA), OPERANDO A UN TRH DE 24 HORAS

DIFERENCIAS DE POTENCIAL PROMEDIO EN EL ELECTRODO B (A 10 cm DE LA SUPERFICIE) EN EL REACTOR R2 (SIN PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA), OPERANDO A UN TRH DE 24 HORAS

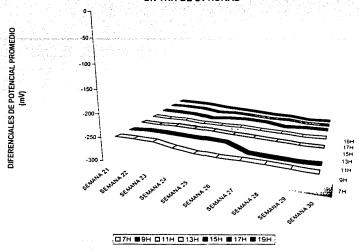


Figura A.5.22

DIFERENCIAS DE POTENCIAL PROMEDIO EN EL ELECTRODO C (A 30 cm DE LA SUPERFICIE) EN EL REACTOR R2 (SIN PLANTA Y REGADO CON AGUA RESIDUAL SINTÉTICA), OPERANDO A UN TRH DE 24 HORAS

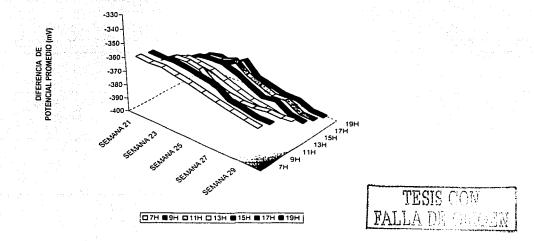


Figura A.5.23

DIFERENCIAS DE POTENCIAL PROMEDIO EN EL ELECTRODO A (A 2 cm DE LA SUPERFÍCIE) EN EL REACTOR R3 (CON PLANTA Y REGADO CON AGUA CORRIENTE), OPERANDO A UN TRH DE 24 HORAS

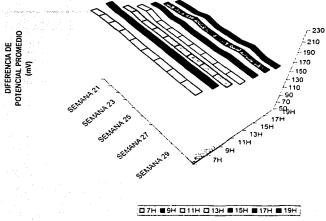


Figura A.5.24

DIFERENCIAS DE POTENCIAL PROMEDIO EN EL ELECTRODO B (A 10 cm DE LA SUPERFICIE) EN EL REACTOR R3 (CON PLANTA Y REGADO CON AGUA CORRIENTE), OPERANDO A UN TRH DE 24 HORAS

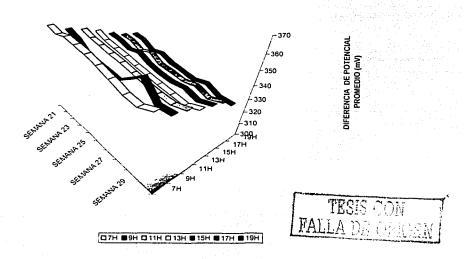


Figura A.5.25

DIFERENCIAS DE POTENCIAL PROMEDIO EN EL ELECTRODO C (A 30 cm DE LA SUPERFICIE) EN EL REACTOR R3 (CON PLANTA Y REGADO CON AGUA CORRIENTE), OPERANDO A UN TRH DE 24 HORAS

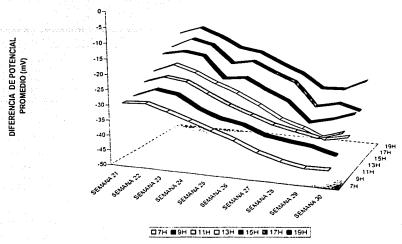
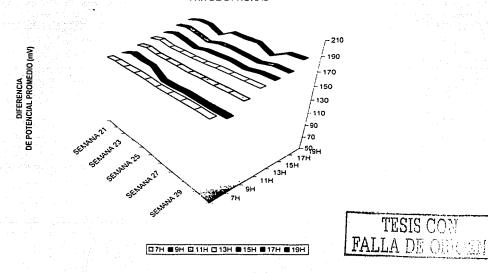
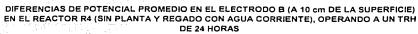
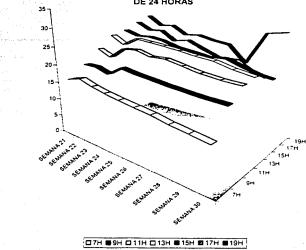
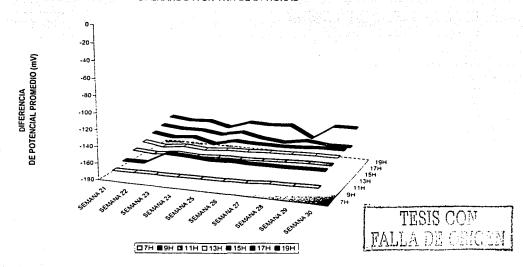
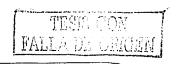





Figura A.5.26

DIFERENCIAS DE POTENCIAL PROMEDIO EN EL ELECTRODO A (A 2 cm DE LA SUPERFICIE) EN EL REACTOR R4 (SIN PLANTA Y REGADO CON AGUA CORRIENTE), OPERANDO A UN TRH DE 24 HORAS



DIFERENCIALES
DE POTENCIAL PROMEDIO (mV)

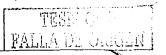

Figura A.5.28

DIFERENCIAS DE POTENCIAL PROMEDIO EN EL ELECTRODO C (A 30 cm DE LA SUPERFICIE) EN EL REACTOR R4 (SIN PLANTA Y REGADO CON AGUA CORRIENTE), OPERANDO A UN TRH DE 24 HORAS

BIBLIOGRAFÍA

- APHA (1992). Standard methods for the examination of water and wastewater analysis. 19a. Ed. American Public Health Association. AWWA (American Water Works Association) and WPCF (Water pollution Control Federation). Washington, D.C. EEUUA.
- AMTE (2002). Especificaciones del agua. Asociación Mexicana de Trabajo en Equipo Círculo de Control de Calidad "Delfines", de Cervecería Modelo, S.A. de C.V. Ganadores. En Memorias del XIII Concurso Nacional de Círculos de Control de Calidad. Acapulco, Guerrero. México.
- Bastian, R. K., Hammmer, D. A. (1993). Chapter 5: The use of constructed wetlands for wasterwater treatment and reuse. En: "Constructed wetlands for quality water improvement, Editado por G. A. Moshiri. CRC Inc. Pp. 59-68. Boca Raton, Florida. EEUUA.
- Bishop, P.L., Eighmy, T.T. (1989). Aquatic waste water treatment using *Elodea* nuttalli. J. WPFC. 61(5):641-648.
- Brix, H. (1993). Wastewater treatment in constructed wetlands: System design, removal process and treatment, performance. En "Constructed wetlands for water quality improvement". Editado por G. A. Moshiri. Lewis Publishers. Michigan, EEUUA.
- Campbell, R. (1987). Ecología microbiana, Tr. Javier Jiménez Ortega. Ed. Limusa, Caps. 2, 3, 4 y 5, 264 p. México, D.F. México.
- CNA. (2003). Estadísticas de plantas de tratamiento de aguas residuales. Comisión Nacional del Agua. México, D.F., México.
- Conley, L.M. (1991). An assessment of the root zone method of wastewater treatment, JWPCF, 63:239.
- Cooper, P., Green, B. (1995). Reed bed treatment systems for sewage treatment in the United Kingdom the first ten years experience. Wat. Environ. Res., 32(3):317-327.
- Durán-de-Bazúa, C., Luna-Pabello, V.M., Ramírez-Carrillo, H.F. (1998). Humedales artificiales de flujo horizontal y vertical. Patente 1998/010668. Registro ante el Instituto Mexicano de la Propiedad Industrial. México D.F. México.
- Fenoglio, F.E. (2003). Transferencia y difusión de oxígeno en sistemas que simulan humedales artificiales, Tesis de grado. Maestría en Ciencias (Ciencias Químicas, Química Ambiental). UNAM, México, D.F. México.

- Fenoglio, F.E., Genescá, J., Durán-de-Bazúa, C. (2002). Reduction-Oxidation potentials evaluation as an indirect measurement for dissolved oxygen in artificial wetlands lab models. En PROCEEDINGS 8th INTERNATIONAL CONFERENCE ON WETLANDS 2002. International Water Association. Ashora, Tanzania, Sept. 11-19, 2002. Pp. 606-614.
- Haberl, R. (1997). Humedales construidos en Europa con énfasis en Austria. En "Tercer seminario internacional de expertos en tratamiento de efluentes industriales y residuos". Editado por C. Durán-de-Bazúa, L.I. Ramírez-Burgos. Pub. PIQAyQA, Facultad de Química, UNAM. Lid Impresores. ISBN 968-36-
- Haberl, R., Perfler, R. (1991). Nutrient removal in a reed bed system, Wat. Sci.
- Hammer, D. A. (1993). Design constructed wetlands system to treat agricultural nonpoint source pollution. En "Created and natural wetlands for controling nonpoint source pollution". Capitulo 4. US EPA. Editado por R. K. Olson, C. K. Smoley. Pp. 71-111. Washington, D.C. EEUUA.
- Hammer, D. A., Bastian, R. K. (1989). Capítulo 2: Wetlands ecosystems: Natural water purifiers?. En "Constructed wetlands for wastewater treatment municipal, industrial and agricultural". Editado por D. A. Hammer. Lewis Publishers Inc. Pp. 5-19. Boca Ratón, Florida, EEUUA.


5876-8. México, D. F. México.

Tech., 23: 729-737.

- Hu, K. (1991). Overview: design of subsurface flow constructed wetland systems. Shangai Environ. Sci., 8(9): 7-12.
- Lord, R. D. (1982). Uso de plantas acuáticas para el tratamiento de aguas residuales, Recopilación. Centro Panamericano de Ecología Humana y Salud. Organización Panamericana de la Salud. Organización Mundial de la

Salud, Serie Bibliográfica No. 1, T. S. Schoor, Ed. México, D.F., México.

- Luna-Pabello, V. M., Durán, C., Ramírez, H., Fenoglio L., Sánchez, H. (1997). Los humedales artificiales. Una alternativa viable para el tratamiento de aguas residuales en zonas rurales. Anuario Latinoamericano de Educación Química, ALDEQ. Pp. 51-56. San Luis, Argentina.
- Manahan, S. E. (2002). Introduction to Environmental Chemistry. Curso de Posgrado Intensivo. Material didáctico. Programa de Maestría y Doctorado en Ciencias Químicas y PIQAyQA, Facultad de Química, UNAM. México, D.F., México.
- Miranda, R. M. (2000). Desarrollo, situación actual y aplicaciones de los humedales artificiales de flujo horizontal en México. Tesis de licenciatura. Facultad de Química, UNAM. México, D. F., México.

- Muhlia, A. (2002). Comunicación personal. Laboratorio de Radiación. Centro de Ciencias de la Atmósfera, UNAM. México D.F. México.
- Perfler, R., Haberl, R. (1994). Actual experiences with the use of reed bed systems for wastewater treatment in single households, Wat. Sci. Tech., 28(10): 141-148.
- Perfler, R., Haberl, R. (1995). Reed bed systems for water pollution control in rural areas, 3rd. Intl. Conf. Appropriate Waste Mgmt. Technologies for Developing Countries, NEERI, Nagpur, India.
- Ramírez, H., Fenoglio L., Durán, C., Luna-Pabello, V. M. (1997). Evaluación de la conductividad eléctrica y eficiencia de remoción de materia orgánica en columnas empacadas con grava. En: Memorias del Tercer Seminario Internacional de Expertos en el Tratamiento de Efluentes Industriales y Residuos. Editado por C. Durán-de-Bazúa, L.I. Ramírez-Burgos. Pub. PIQAyQA, Facultad de Química, UNAM. Lid Impresores. ISBN 968-36-5876-8. Pp. 191-196. México, D. F. México.
- Rivera, F., Calderón, A. (1993). Biotratamiento de aguas negras, ICYT, 15(203):12-15.
- Robles, E., Gallegos, M., Calderón, A., Sainz, G. (1993). Sistema de tratamiento de lechos de raíces. Remoción de materia orgánica, ICYT, 15(203):26-28.
- Reed, S.C. (1992). Constructed wetland design the first generation. Wat. Environ Res. 64(6):776-782.
- Rodríguez-Monroy, J. (2003). Remoción de nitrógeno en un sistema de tratamiento de aguas residuales usando humedales artificiales de flujo vertical a escala de banco. Tesis de licenciatura en revisión. Facultad de Química. UNAM. México D. F. México.
- Rodríguez, A. y Varela, E. (2003) Estudio del comportamiento de humedales artificiales como reactores de flujo pistón: alcance de la estabilidad. Tesis de Licenciatura. Facultad de Estudios Superiores, Zaragoza. UNAM. México D. F. México.
- Vymazal, J., Brix, H., Cooper, P.F., Haberl, R., Perfler, R., Laber, J. (1998). Removal mechanisms and types of constructed wetlands. En "Constructed wetlands for wastewater treatment in Europe". Backhuys Publishers, Leiden The Netherlands. Pp. 17-66.
- Zirschky, D., Reed, S.C. (1988). The use of duckweed for wastewater treatment. J. WPFC. 60(7):1253-1258.

