

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE ESTUDIOS SUPERIORES ZARAGOZA

Т E S S QUE PARA OBTENER EL TITULO DF ENIERO 0 11 1 44 СО E s R Е N Т ÷ JOSE LUIS / MARTINEZ COHETERO

ASESOR: DRA. GRACIELA BRAVO PEREZ

MEXICO, D. F.

SEPTIEMRE 2003

80521

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

PAGINACIÓN DISCONTINUA

FACULTAD DE ESTUDIOS SUPERIORES ZARAGOZA

JEFATURA DE LA CARRERA DE INGENIERIA QUIMICA

OFICIO: FESZ/JCIQ/059/03

ASUNTO: Asignación de Jurado

ALUMNO: MARTÍNEZ COHETERO JOSÉ LUIS Presente.

En respuesta a su solicitud de asignación de jurado, la jefatura a mi cargo, ha propuesto a los siguientes sinodales:

Presidente:	Fis. Carlos Javier Martínez Gómez
Vocal:	Dra. Graciela Bravo Pérez
Secretario:	M. en C. María de Lourdes Romero Villafranco
Suplente:	I.Q. Cuauhtémoc Lagos Chávez
Suplente:	I.I.Q. Alejandro Rubio Martínez

Sin más por el momento, reciba un cordial saludo.

A T E N T A M E N T E "POR MI RAZA HABLARA EL ESPIRITU" México, D. F., 5 de Junio de 2003

EL JEFE DE LA CARRERA

M. en C. ANDRÉS AQUINO CANCHOLA

3.

DEDICATORIAS

đ,

DEDICATORIAS:

Este trabajo se lo dedico primeramente a dios, por darme la oportunidad de vivir en este mundo, por darme la gracia, y el entendimiento necesario para poder llevar a cabo mis metas trazadas

A la virgen de Guadalupe por darme el temple necesario para lograr mis sueños.

A mis padres, Gabino y Ninfa, por su cariño y apoyo incondicional en los momentos difíciles.

A mis hermanos: Aaraón, Juan Francisco, Humberto, Araceli, Raúl y Oscar Gabino, por su constate apoyo y comprensión durante el desarrollo de este trabajo.

A la família Andrade Hernández, por su apoyo moral.

31 mis abuelos Basilio, Paulina y Leonor, así como a todos mis demás familiares que no se mencionan pero que están presentes, por apoyo que me brindaron.

A mis compañeros los patanes (Braulio, Andrés, Arturo, Martín, Pedro, Sergio, Enedino, Alejandro, Ángel, Minerva, Jazmin, Jarobo, Zula, Alenodoro, Ramiro, Ricardo, Blas, Juan Diego, Juan Carlos, Fabricio,) por los momentos de alegría que pasumos juntos.

Y a todas aquellas personas que me ayudaron a que este sueño se hiciera realidad.

AGRADECIMIENTOS:

A la Universidad por darme la oportunidad de formarme en sus aulas y a mis maestros, que compartieron conmigo sus conocimientos y la paciencia necesaria para lograr que esta meta llegara a buen termino.

A la Dra. Graciela Bravo Pérez por la paciencia que me tuvo para desarrollar este trabajo de tesis.

11 Instituto Mexicano del Petróleo por el financiamiento otorgado para la realización de este trabajo.

i

= 772

<u>8</u> ,8	INDICE	
RESUMEN		(iV)
CAPITULO I: INTRODUCCIÓN		
¿ Qué es la capa de O ₃ ?		(1)
Impacto de la radiación UV-B sobre las personas		(1)
¿ Porqué existen agujeros en la antártica si ahí se carece de contaminantes ?		(2)
¿ Cômo se destruye la capa de O ₃ ?		(2)
El O ₃ troposferico.		(2)
CAPITULO II: MARCO TEORICO		
2.1 MODELOS ATÓMICOS ANTIGUOS		(4)
2.2 PRINCIPIO DE INDETERMINACIÓN DE HEISENBERG		(7)
2.3 EL ASPECTO CORPUSCULAR DE LA LUZ (OSCILADORES DEL CUERPO NEGRO)	(8)
2.4 EL ASPECTO ONDULATORIO DE LAS PARTÍCULAS		(9)
2.5 ECUACIÓN DE SCHRODINGER		(10)
2.6 NUMEROS CUANTICOS		(11)
2.6.1 Numero cuántico principal (n)		(11)
2.6.2 Número cuántico secundario o azimutal (L)		(11)
2.6.3 Número cuántico magnético (m)		(11)
2.6.4 Numero cuántico de espín (S)	- 1	(11)
27 PRINCIPIO DE EXCLUSIÓN DE PAULI		(12)
2.8 FUNCIONES GAUSSIANAS	N	(13)
2.9 EL PROBLEMA DEL CAMPO CENTRAL		(13)
2.10 DETERMINATES DE SLATER		(14)
2.11 - TEORIA DEL ORBITAL MOLECULAR		(15)
2.12 - LA APROXIMMACION DE BORN-OPPENHEIMER		(16)
2.13 EL METODO DEL CAMPO AUTOCONSISTENTE DE HARTREE-FOCK		(17)
2.14 MÉTODOS DE CORRELACION ELECTRÓNICA		(19)
2.15 TEORIA DE PERTURBACIONES DE MOLLER - PLESSET		(20)
2.16 CUMULOS ACOPLADOS (CCSD(T))		(21)

A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY.

.....

11

CAPITULO III: METODOLOGÍA.	
3.1 DESCRIPCIÓN	(24)
3.2 ALGORITMO DE CALCULO	(24)
CAPITULO IV: RESULTADOS	
4.1 - REACCIONES DE ALCOXILOS	(28)
PARTE 4.1.1: REACCION: OH + NO ₃ \longrightarrow HO ₂ + NO ₂	(29)
PARTE 4.1.2: REACCION: CH_3O + NO_3 CH_3O_2 + NO_2	(32)
PARTE 4.1.3: REACCION: C2H5O + NO3 C2H5O2 + NO2	(35)
PARTE 4.1.4: REACCION: C3H7O + NO3 - C3H7O2 + NO2	(38)
PARTE 4.1.5: RESULTADOS GENERALES DE LAS REACCIONES DE ALCOXILOS	(41)
PARTE 4.1.6: PARÁMETROS COMO FUNCION DE LA REACCION	(42)
A) ENTALPIAS DE REACCION	(42)
B) MOMENTOS DIPOLARES	(43)
4.2 REACCIONES DE PEROXILOS	(44)
PARTE 4.2.1: REACCION: HO ₂ + NO ₃ OH + NO ₂ + O ₂	(45)
PARTE 4.2.2: REACCION: CH_3O_2 + NO_3 CH_3O + NO_2 + O_2	(46)
PARTE 4.2.3: REACCION: $C_2H_5O_2$ + NO ₃ \rightarrow C_2H_5H + NO ₂ + O ₂	(47)
PARTE 4.2.4: REACCION: $C_3H_7O_2$ + NO ₃ \rightarrow C ₃ H ₇ O + NO ₂ + O ₂	(49)
PARTE 4.2.5: RESULTADO GENERALES DE LAS REACCIONES DE PEROXILOS AL INCLUIR EFECTOS TERMICOS (CTG)	(52)
PARTE 4.2.6: PARÁMETROS COMO FUNCION DE LA REACCION	(53)
A) ENTALPIAS DE REACCION	(53)
B) MOMENTOS DIPOLARES	(54)
3 RESULTADOS COMPARATIVOS ENTRE ALCOXILOS Y PEROXILOS	(55)
APITULO V: CONCLUSIONES	(56)
	(57)
	(58)
IBLIOGRAFIA FALLA DE UNIVEN	(60)

iii

RESUMEN

En la primera parte de este trabajo se da una breve descripción del problema que representa el deterioro de la capa de ozono, así como una breve descripción de la forma en que esta capa es destruida, y las consecuencias en el planeta.

En la segunda parte del trabajo se da una reseña histórica de los fenómenos que fundamentan el trabajo teórico desarrollado, así como una descripción de los diferentes modelos atómicos, que dieron origen al desarrollo de la teoría cuántica. Asimismo una descripción de algunos métodos empleados para la aproximación a la solución de la ecuación de Schrödinger para sistemas multielectrónicos.

En la tercera parte se presenta la metodologia con la cual se llevó a cabo el desarrollo del presente trabajo. Los cálculos realizados se llevaron acabo utilizando el programa computacional Gaussian 98, de la computadora Cray del Instituto Mexicano del Petróleo.

En la cuarta parte se presentan los resultados obtenidos de las reacciones ambientales,

RO + NO3 --- RO2 + NO2.

con R = H, CH₃, C₂H₅ y C₃H₇

así como el análisis y comparación de los resultados con los experimentos. También se calculo la reacción,

RO2 + NO3 ---- RO + NO2 + O2,

con R = C₃H₇.

Esta reacción, junto con las demás reacciones de peroxi de radicales más ligeros, esto es, R = H, CH_3 , y C_2H_5 , calculadas anteriormente [1], se analizan incluyendo el efecto térmico.

En la quinta y ultima etapa se presentan las conclusiones.

CAPITULO I: INTRODUCCION

En el final de la década de los años 70[°] y principios de los 80[°] se puso al descubierto un grave problema en el ámbito mundial, el cual consiste en el adelgazamiento y destrucción de la capa de **ozono (O.)** estratosférico, lo cual inquietó a la comunidad internacional [2]. Y aunque se tuvieron que tomar medidas al respecto, el problema se aqudizó [2].

¿ Qué es la capa de O₃ ?

El O₃ es una molécula relativamente inestable formada de tres átomos de oxigeno. La capa de O₃ se encuentra a una altura de entre 40 y 50 km arriba de la Estratosfera (como se muestra en la Fig. 1) y actúa como un potente filtro solar, evitando el paso de la radiación ultravioleta llamada UV hacia la tierra, pasando por la Troposfera, que se encuentra de los 0 a 10 Km. de altura (ver Fig. 1). La radiación UV emite entre los 280 a 320 nanometros (nm) y produce daños en los seres vivos, dependiendo de la intensidad y tiempo de exposición. Se ha demostrado que la fotoquímica de los compuestos Cloróflucorcarbonados (CFCs), presentes en diversos productos comerciales como el freón, aerosoles, pinturas, et [2], dan origen a la existencia de aguigros en la capa de O₃. Los cuales se dan de septiembre a principios de noviembre, (que corresponde a la primavera del polo sur).

Fig. 1.- La atmosfera está formada por capas de gases que sustentan y protegen la vida en contra de las radiaciones dañinas.

Impacto de la radiación UV sobre las personas

- 1. Inicia y promueve cáncer a la piel.
- Daña el sistema inmunológico.
- 3. Provoca daño a los ojos, incluyendo cataratas.
- Hace más severas las quemaduras del sol y avejenta la piel.
- 5. Aumenta el riesgo de dermatitis.
- 6. Reduce el rendimiento de las cosechas, industria pesquera etc.
- 7. Daña material y equipamiento al aire libre.

¿ Porqué existen agujeros en la Antártica si ahí se carece de contaminantes ?

El 90% de los CFC se producen en el hemisferio norte. Europa, Rusia, Japón y EEUU. Estos CFCs suben a la Estratósfera con la ayuda de los vientos de las latitudes tropicales, originando que se trasladen a los polos. La Estratósfera contiene cloro (CI) en todas las latitudes. El Polo Sur cuenta con grandes extensiones rodeadas de mar, lo que provoca bajas temperaturas en la baja Estratósfera y una menor circulación del aire, creando nubes polares estratosféricas. Estas nubes facilitan un ambiente propicio para la destrucción de O₃ en la Primavera del Polo sur.

Mientras que en el Polo Norte. las temperaturas estratosféricas no descienden a un valor tan bajo ni durante tanto tiempo y hay una mayor circulacion de aire, formandose con esto menos nubes, con lo cual se disminuye la destrucción de O_3 . Es decir, que las condiciones atmosfericas son menos propicias para la destrucción de la capa de O_3 , aunque las concentraciones de CFCs sean mayores que en el Polo Sur.

¿ Cómo se destruye la capa de O₃ ?

La radiación UV disocia al CI de una molecula CFCs. El CI libre, se combina con moléculas de O₃, las cuales destruye (ver Fig. 2). El proceso es altamente dañino, ya que en promedio un átomo de CI es capaz de destruir hasta 100.000 moléculas de O₃. Y el proceso se detiene cuando el cloro se neutraliza con algún otro compuesto químico.

Fig. 2 - Un rayo UV libera un cloro de la molecula de CFC (a), el cloro liberado choca con la molecula de O₃ (b), provocando la destrucción del O₃ (c)

El O₃ troposférico.

La troposfera está constituida principalmente por dos gases: nitrógeno (N₂) y oxígeno (O₂). El primero representa el 78% y el segundo el 21% de la composición total. La temperatura ahí no es uniforme y llega a disminuirse hasta los -63° C. Seguida de la Troposfera se encuentra una capa de 1 Km. de espesor, denominada Tropopausa (ver Fig. 1) En esta capa el N₂ disminuye y aumenta el H₂ y el O₃. Este último se va acumulando más entre los 20 y 40 Km. de altura, es decir, en Le Estratósfera, formándose una capa llamada Ozonosfera, que es la que impide el paso de la radicación UV del Sol.

El O₃ esta presente en la Troposfera de forma natural. Una parte proviene de la Estratósfera. Otra parte proviene de los procesos naturales en la Biósfera, que es donde se dan emisiones de óxidos de nitrógeno (NO₃), que tienen su origen en procesos biológicos y en emisiones de los compuestos organicos volátiles (COVs, en conjunto, son las sustancias que se evaporan fácilmente como disolventes, combustibles líquidos y otros combuestos organicos). Los COVs pueden provenir de la vegetación, fermentación, volcanes y la misma urbanización. Las cantidades de O₃ a las que dan lugar estos procesos deberían ser pequeñas, según estatus ambientales ya establecidos. Sin embargo, llega a ser un problema cuando su concentración aumenta, es lo que conocemos como *contaminacion ambiental*.

El mejor ejemplo de contaminación del aire es el smog que ocurre en muchas ciudades, estas áreas urbanas del mundo sufren episodios de contaminación del aire, durante los cuales se producen niveles altos de O₃ a nivel del suelo, como resultado de reacciones inducidas por la luz entre los contaminantes. Este fenómeno se aenomina *smog fotoquímico*. Los principales reactivos del smog fuiciquímico son el oxido nítrico. NO y los

TESIS CON INTRODUCCION

hidrocarburos no quemados. Las concentraciones de estos compuestos químicos son unos ordenes de magnitud mayores que en el aire limpio.

Muchas de las actividades que realiza el hombre emiten altas concentraciones de COVs, que son precursores del O₃ [3]. Como mencionamos anteriormente en el proceso de smog fotoquímico la luz solar es un ingrediente vital para que se lleve a cabo la reacción, la luz sirve para incrementar la concentración de radicales libres que participan en la formación del smog, luego entonces es en Primavera y Verano cuando se alcanzan las máximas concentraciones del O₃, tropostérico. Los productos finales de del smog son el O₃, ácido nítrico y compuestos orgánicos (a veces nitrados) parcialmente oxidados.

COVs +	NO	+	luz solar		Ο3	+	HNO3	+	Compuestos Orgánicos
--------	----	---	-----------	--	----	---	------	---	----------------------

En este trabajo tratamos reacciones que son intermediarias para la formación de O₃ en la Troposfera. En las atmósferas contaminadas existen diversos COV que mediante reacciones de oxidación, ya sea con O₃. OH ó NO₃, pueden generar productos potenciales para la generación del O₃ troposférico [4]

Algunas de las reacciones importantes de estas atmósferas son los radicales peroxi (RO₂), y alcoxi (RO) con el radical nitrato (NO₃). El NO₃ es un radical oxidante que predomina en la química nocturna [5]. En zonas altamente pobladas se pueden encontrar concentraciones altas de los radicales alcoxi (RO) y peroxi (RO₂).

El canal de oxidación principal del radical peróxi es (6):

RO,	+	NO ₃		RO	+	NO,	+	О,	(1)
Por otra parte	en el caso	de R = C	H ₃ , el RO ₂ también pue	ede reac	cionar	con el O ₂	de la	forma siguie	nte:
CH30, +	о,			HO,	+	CH,O	,		(2)
Y a su vez el ⊢	IO2 reacci	ona en el :	mecanismo (1) para da	ar:					
но,	+	NO ₃	•	он	+	NO,	+	о,	(3)
De aqui que la	is reaccion	nes de oxi	dación de los peroxi so	on tambi	en bien	conocida	as com	no fuentes de	a producción
de radicales C	DH y HO2	[6]. El rac	dical alcoxi (RO) por	su parte	, reacc	iona con	el NC	3 regeneran	do el peroxi
(RO2) en la rea	acción (1):								
80	+	NO.		RO.	+	NO.			(4)

Pero esto resulta en una problemática experimental para medir las velocidades de reacción de (1) y (4), ya que las reacciones son dependientes una de la otra [7].

En este trabajo se hace el estudio teorico del radical hidróxilo (DH) y alcoxilos (CH₃O, C₂H₃O, y C₃H₃O), con el NO₃, así como del peroxilo C₃H₃O₂ con el NO₃. Para lo cual se realizó el cálculo de las estructuras de equilibrio de los reactantes, productos, intermedios y estados de transición, además de la determinación de las energías de formación y activación, así como las correcciones teóricas involucradas en la reacción. Esto, junto con los resultados teoricos que ya se tiene de las reacciones del tipo peroxilo con el NO₃, de C = 1, 2 y 3, y de la reacción (3) [1], proporcionara un panorama energético de los caminos de reacción es: Específicamente se investigaran los perífies energíetos de las reacciones:

он	+	NO ₃	 HO2 +	NO ₂			(I-A)
сн₃о	+	NO3	 CH3O2 +	NO2			(II-A)
C₂H₅O	+	NO3	 C2H8O2+	NO2			(III-A)
C3H7O	+	NO3	 C3H7O2 +	NO2			(IV-A)
C3H7O2	+	NO ₃	 C3H70 +	O 2	•	NO:	(IV-P)

CAPITULO II: MARCO TEORICO

La dualidad onda – particula fue uno de los más discutidos conceptos en el desarrollo de la física, las cuales se remontan hasta por lo menos Newton. Esta controversia se inicio a propósito de la luz, Newton la consideraba como un fenómeno corpuscular, esto debido a que las sombras proyectadas están bien definidas y por su propagación rectilinea, mientras que Huygens y Hooke la consideraban como una onda, pero como la rputación de Newton era tan grade que inhibió el desarrollo de la teoria onduiatoria hasta el comienzo del siglo XIX, cuando Thomas Young demostro las propiedades de interferencia de la luz. Posteriormente en 1816. Fresnel y Poisson prédijeron que se verian manchas brillantes detrás de obstáculos opaccos, es decir, el fenómeno de difracción, la observación de estas manchas por parte de Arago casi puso a la teoria ondulatoria asobre bases firmes.

Mientras la teoria ondulatoria se iba viendo firmemente establecida, las investigaciones de Maxwell en electromagnetismo que culminaron en 1873, indicaron que había que considerar a la luz como un movimiento ondulatorio y que la velocidad de onda podría calcularse a partir unicamente de parametros electricos. Los electrones después de su descubrimiento fueron considerados como particulas. Sin embargo, en 1925, con los experimentos de Davisson y Germer, se puso de manifesto en su naturaleza un aspecto ondulatorio revelado por sus propiedades de interferencia. La naturaleza dual, tanto de la luz como de los electrones, quedaba establecida experimentalmente.

Por lo que los científicos se ven en la necesidad de desarrollar nuevas teorias, para explicar el comportamiento de los electrones en los atomos y moléculas. Las nuevas teorias dieron como resultado la creación de la teoria cuantica. En este capitulo se da una breve explicación de los modelos atómicos, desde el de Dalton hasta el modelo de la mecanica cuantica.

2.1.- MODELOS ATOMICOS ANTIGUOS.

El primer concepto de atomo fue dado por **Demócrito** con una visión más filosófica en el siglo IV a. C. [8], que consideraba que era la sustancia elemental de cualquier objeto y debia permanecer constante. Trató de conciliar esa idea con el hecho de que en la materia ocurren cambios.

En 1803 **Dalton**, con una vision química, introduce la idea de la discontinuidad de la materia [9]. Sus postulados son 1 - La materia esta dividida en partículas indivisibles e inalterables llamadas átomos (que ya antes habían sido propuestos por Demócrito). 2 - Un elemento químico se caracteriza por las propiedades intrínsecas del atomo que lo representa. 3 - Elementos diferentes constan de átomos de diferentes características intrínsecas. 4 - Un compuesto químico se forma cuando se combinan atomos de diferentes especies, y los átomos conservan sus características al transformarse estos compuestos.

En 1904 **Thomsom** introduce la idea de que el átomo puede dividirse en las llamadas particulas fundamentales: electrón: con carga electrica negativa, protón: con carga eléctrica positiva.

Considero al àtomo como una gran esfera con carga eléctrica positiva, dentro de la cual los electrones se distribuyen en todo el àtomo lo mas alejados entre si. Es la teoria conocida como pudín de pasas, en la cual el pudín es la masa de la carga positiva, y las pasas los electrones. La esfera tiene un radio del orden de 10⁻¹⁰ m (Fig. 2.1).

Fig. 2.1 - Modelo de Thomson de un atomo

En 1911 Nutherrord, considera que, el nucleo permanece en reposo y el electrón gira alrededor de él en una órbita de radio r con velocidad v. Como los planetas giran alrededor del sol (este modelo es conocido como modelo planetario). El electrón tiene masa m, el núcleo M, y cargas de ellos son e^{*} y e respectivamente. (ver fig. 2.2).

Si aplicamos la *ley de Coulomb* [10] en este modelo, la cual dice que: "la fuerza ejercida (F) por una carga puntual sobre otra, està dirigida a lo largo de la linea que las une, es repulsiva si se trata de cargas iguales y atractiva si las cargas tienen signos opuestos, y varia inversamente al cuadrado de la distancia que separa a las cargas", es decir:

$$F = K \frac{q_1 q_2}{r^2}$$
(2.1)

Donde r = Distancia entre las dos cargas.

K = Constante de proporcionalidad de magnitud $9 * 10^{9} Nm^{2}_{C^{2}}$, (N = Newtons, m = metros, C = Coulombs).

q1 y q2 = Cargas eléctricas de las particulas 1 y 2 respectivamente.

Luego entonces la fuerza entre el núcleo y el electrón en el más simple de los átomos (aquel con un solo electron) se puede describir con esta ley.

La energía total de este sistema. E, estará dada por la cinética del electrón, $E_1 = \frac{1}{2}mv^2$ y la energía potencial

eléctrica: $V = K \frac{e(\tilde{e})}{r}$, de la interacción entre núcleo y electrón, y por lo tanto E es:

$$E = E_{c} + V = \frac{1}{2}mv^{2} - K\frac{c^{2}}{r}$$
(2.2)

Al girar el electrón alrededor del núcleo tiene una aceleración, resultado de la fuerza coulombiana, que lo hará cambiar continuamente su trayectoria (ver Fig. 2.3). Está fuerza, de acuerdo con la segunda ley de Newton, es

Esta relación es un caso particular del teorema del virial [11], que se satisface para cualquier sistema donde las fuerzas ejercidas son proporcionales a r^n , y en este caso, n = -2. Esto permite reescribir E en función de V o E_c, es decir:

$$E = -E_{\rm c} = -\frac{1}{2}mv^2$$
 obien $E = \frac{V}{2} = -\frac{kZe^2}{2r}$ (2.5)

El modelo de Rutherford falla porque según la electrodinámica clásica, el electrón acelerado deberá emitir radiación electromagnetica a una frecuencia v que coincide con la frecuencia del movimiento oscilatorio de la particula. Y como resultado, la energía del electrón se reduciría, haciéndolo girar cada vez más rápido y más cerca del núcleo hasta que se colapsara.

La ley de radiación de **Planck**, de la cual ampliaremos detalles más adelante, dice que tanto la absorción como la emisión de energía por parte de las particulas sucede en forma cuantizada. Definiendo esta energía como E_r, tenemos que:

$$E_{c} = nhv \quad con \quad n = 1, 2, 3, \dots,$$
 (2.6)

Donde *n* es un entero, *h* es la constante de acción de Planck con un valor de: $h = 6.625 \cdot 10^{-32}$ erg-sec, *v* es la frecuencia de la energia radiada o emitida. *h* tiene dimensiones de momento lineal por distancia o lo que es lo mismo de energia por tiempo. Cuando el átomo no absorbe ni emite radiación se encuentra en un estado estacionario y con una energia constante.

Niels Bohr en 1913 [9] incluyó en el modelo de Rutherford, el concepto de cuantización de Planck (dada en 1900), y su teoria condujo a la teoria cuántica moderna de la estructura atomica. En esta teoria los electrones ocupan diferentes *niveles de energía (capas u orbitas)* alirededor del núcleo. Los niveles estan divididos en

6

subniveles, designados por las letras: s para el primer subnivel, p para el segundo, d para el tercero, f para el cuarto y después siguiendo un orden alfabético.

El número de subniveles es igual al número del nivel de energía [8]. Es decir, el primer nivel tiene solamente un subnivel llamado 1s; el segundo nivel tiene dos subniveles llamados 2s. 2p. el tercero tiene tres. llamados 3s, 3p. y 3d y así sucesivamente. A estos subniveles se les denomina también como orbitales. Un orbital describirá una región espacial donde es probable encontrar a un electron. y es de una forma espacial especifica según el orbital de que se trata. También hay un límite en el número de electrones que puede haber en cada orbital te integral sobre todo el espacio del cuadrado de esta función (órbital), representa la probabilidad de encontrar al electrón en tal orbital. La energía del nivel aumenta a medida que se aumenta de nivel y consecuentemente aumenta su distancia al núcleo.

2.2.- PRINCIPIO DE INCERTIDUBRE DE HEISENBERG.

Este principio fue enunciado en 1927 por **W. Heisenberg** [9], y establece que es imposible conocer simultaneamente la posicion y la velocidad de una partícula, y por lo tanto es imposible determinar su trayectoria. Cuanto mayor sea la exactitud con que se conozca la posición mayor será el error en la velocidad, y viceversa. De aquí que solamente es posible determinar la probabilidad de que un electrón se encuentre en una región espacial con un momentum determinado. Para realizar una mediad (y "ver" al electrón) será necesario que el fotón choque con la particula (el electrón), con lo cual estará modificandose su posición y velocidad, introduciendose un error que es imposible eliminar, por muy perfectos que sean los instrumentos de medición.

Por ejemplo, un metodo para medir el impulso es el que considera la dispersión de un fotón por un electrón para determinar dicho impulso con exactitud. Para ello se requiere una medida muy precisa de las frecuencias v y v antes y después del choque. Sin embargo, para tener una v y v perfectamente definidas se necesita una onda que se extienda de $-\infty$ a ∞ , y la collisión del electrón puede tener lugar en cualquier punto de la onda. Por lo tanto, su posicion es completamente desconocida. La naturaleza es tal que no nos permite conocer x y ρ , con precisión. Este principio cambió la forma de entender la naturaleza, ya que se pasa de un conocimiento exacto a uno basado en probabilidades, a través de las "relaciones de incertidumbre".

Considerando el efecto de dualidad onda-partícula sobre la medida simultànea de la coordenada x y la componente x del momento lineal de una particula microscòpica. Partimos de un haz de partículas con momento lineal p, que se mueven en la dirección y, haciendolo incidir sobre una rendija, detrás de la cual se situa una placa fotografica (ver Fig. 2.4), las partículas que pasan a través de la rendija de anchura w tienen una incertidumbre w en la coordenada x en el momento de atravesar la rendija ilamando Δx a este entorno en los valores de y, se tiene $\Delta x = w$.

TES	7.18	COM
FALLA	ЪĘ	CIUCEN

componente x del momento: $\Delta p_{\perp} = psen\alpha$

Asi se tiene $\Delta x \Delta p_{1} = pscn \alpha$

CARITURO

Para calcular el angulo del primer mínimo se debe cumplir con la condición , que la diferencia de las distancias recorridas por las partículas que pasan por la rendija y las que pasan por el centro de la misma sea igual a

 $\frac{1}{2}\lambda$, siendo λ la longitud de onda de la onda asociada. La diferencia de entre los caminos recorridos es

entonces $\frac{1}{2}$ wsen α , y dado que λ esta dada por la relación de De Broglie la posición y el momento lineal de

una particula estará dentro de los límites que fija la relación de incertidumbre:

$$\Delta p_1 \Delta x = h$$

Indicando que el producto de las incertidumbres en x y en p_x estan en orden de magnitud de la constante de Plank.

Este principio demuestra que las trayectorias clásicas no tienen significado en el dominio de la mecánica cuantica. Esto es verdad no solo para x y p_{x} , sino para medidas representadas por cualquier par de operadores que no conmutan. Analogamente, si se mide la energía de un sistema con una incertidumbre ΔE , el tiempo al cual se refiere esta medicion tendrá una incertidumbre Δt , de tal forma que se deberá de cumplir la relación de incertidumbre

$$\Delta E \Delta t \ge h$$

(2.8)

(27)

(donde $(h = h_{2,..})$ denominada "*h* barra") es decir, que para medir la energía de un sistema con mayor precision se empleara un mayor tiempo.

2.3.- EL ASPECTO CORPUSCULAR DE LA LUZ (OSCILADORES DEL CUERPO NEGRO)

A continuacion se describe un experimento que muestra como la luz (ondas electromagnéticas) también exhibe propiedades corpusculares [12].

Sea un recipiente de paredes opacas con un agujero infinitesimal en la superficie. La radiación electromagnetica que entra por el agujero tiene una alta probabilidad de no salir del recipiente, así el agujero se comporta como un *cuerpo* negro. La radiación en el interior del recipiente y en equilibrio térmico a temperatura T sera la radiación de cuerpo negro. El campo electromagnetico en el interior de la cavidad será una superposicion de todos los modos característicos de vibración presentes. Cada modo representa un grado de liberad vibracional del campo de radiación [12] pero posee una misma energía kT, en el equilibrio térmico.

donde
$$k = 7.5688 * 10^{-16} J m^3 K^{-1}$$
, es la constante de Stefan-Boltzmann.

8

La ley de Rayleigh-Jeans (R-J) [9] predice exactamente la parte del espectro experimental correspondiente a bajas frecuencias. Para altas frecuencias el espectro observado es menos intenso que el predicho clásicamente y eventualmente tiende a cero, según la ley de R-J, y conduce a la catastrofe del ultravioleta [8]. Esta discrepancia con la realidad podría explicarse si no todos los grados de libertad asociados a las frecuencias altas participaran en el reparto de energía.

Figura 2.5 - Una cavidad es una buena aproximación a un cuerpo negro

El misterio fue explicado con la teoria de **Planck**, que dice que la energía de un modo vibracional de frecuencia v solo puede tomar valores discretos (ver Ec 2.6). Así, la energía solo puede crecer en magnitudes discontinuas y proporcionales a la frecuencia. La constante de proporcionalidad es h y las magnitudes de estas energías se llaman *cuantos*. La energía de un cuanto de frecuencia v es. E = hv, que es la ecuación (2.6) con n =1. La energía tendrá los valores permitidos (), hv, 2hv... para modos de frecuencia suficientemente baja (contribuciones pequeñas con respecto a la KT) w es la frecuencia agular dada por w = 2m.

Para modos de frecuencias altas, los intervalos de energía seran muy grandes comparados con las energías termicas, y por eso estos modos no participan en el reparto de energía. La energía promedio de un grado de libertad vibracional de frecuencia v a temperatura T sera:

$$\tilde{E} = \frac{hv}{e^{m_{e'}} - 1}$$
(2.9)

que se reduce a kT si $\hbar w'/kT \langle \langle 1 \rangle$ y es exponencialmente pequeña si $\hbar w/kT \rangle \rangle$]. La densidad de energía de la radiación del cuerpo negro para frecuencias entre w v dv quedaría entonces como:

$$E(v)kv = \frac{8\pi}{c^3} \frac{hv^3}{c^{(n+1)} - 1} dv$$
(2.10)

que es la *ley de radiación de Planck*, y explica perfectamente el experimento, además de haber sido el primer metodo para encontrar el valor de \hbar .

2.4.- EL ASPECTO ONDULATORIO DE LAS PARTÍCULAS.

Louis De Broglie [12] predice que las propiedades corpusculares de la luz y de cualquier particula descrita por la mecanica cuantica se les puede asociar un comportamiento ondulatorio descrito por un momento lineal p y una longitud de onda à. Ilamada longitud de onda de de Broglie, que se expresa como:

TESIS CON LLA DE UNIGEN

CAPITUL	.0 ()		MARCO TEORICO	C.
$\lambda = \frac{h}{n}$	0	$\lambda = \frac{2\pi h}{h}$		(2.11)

De Broglie propuso un número entero de semilongitudes de onda para una órbita de Bohr. Experimentos posteriores (Davisson y Germer [12]) verificaron cuantitativamente esta hipótesis. Tanto la hipótesis de De Broglie como el experimento de Davisson y Germer asignan a una misima entidad propiedades de particula y de onda. El experimento mencionado consta de un haz de electrones incidiendo sobre un cristal. Suponemos que el haz es tan debil que solo un electron es dispersado por el cristal. Por lo tanto no se obtiene un patron de dirfacción y el electrón será dispersado al azar. A medida que pasa el tiempo más electrones serán dispersados en direcciones preferentes, generándose un patrón de difracción. Con este experimento se demostró que. Los electrones poseen propiedades de particula y de onda, y la relación entre ellas esta dada por la relación de de Broglie (EC. 2.11).

Este aspecto y el Principio de Incertidumbre de Heisenberg forman los conceptos básicos del desarrollo de la mecánica cuántica.

2.5.- ECUACIÓN DE SCHRÖDINGER.

La verificación de las propiedades ondulatorias de los electrones indujo a Erwin Schrödinger a considerar de nuevo la analogía entre la óptica y el movimiento de las particulas

Para el sistema de un átomo con un electrón, el carácter ondulatorio del electrón se describirá definiendo una función de onda, $\psi(x,y,z,t)$, y utilizando una ecuación de onda, que matemáticamente es una ecuación diferencial de segundo grado, donde interviene la derivada de ψ , esto es:

$$\frac{\delta^2 \psi}{\delta x^2} + \frac{\delta^2 \psi}{\delta y^2} + \frac{\delta^2 \psi}{\delta z^2} + \frac{8\pi^2 m}{h^2} * \left[E \psi - V \psi \right] = 0$$
(2.12)

tanto el Laplaciano como V son operadores que aplican sobre ψ [12].

m = masa del electron. E = energia total del sistema. V = V(x, y, z).

Esta es la *ecuación de Schrodinger (ES)* para una particula. Al resolverla, se obtiene que ψ depende de una serie de parametros asociados a los números cuánticos, que en la siguiente sección discutiremos más ampliamente. La ecuación solo se cumplira cuando esos parametros tengan determinados valores permitidos, y es lo que se llamara una ecuación de eigenvalores.

Imponiendo las condiciones de los números cuánticos a ψ es posible calcular los valores propios de la energía, y el sistema solo podrá existir en ciertos estados cuánticos de energía.

La ES se puede resolver por el método de separación de variables, para lo cual se busca una solución particular en forma de producto.

$$\psi(x,t) = \psi(x)\Gamma(t) \tag{2.13}$$

(por simplicidad reduciremos las coordenadas espaciales a la dirección x)

Sustituyendo (2.13) en (2.12) lleva a una solución de la forma:

$$\frac{(2.14)}{\text{FALLA DE UNIGEN}}$$
(2.14)
(2.14)

El subindice α indica que se trata de la solución que corresponde a la constante de separación α . $w_{\alpha}(x)$ tiene que satisfacer la parte espacial de la ES. Normalizando (2.14) se puede resolver para obtener el valor numérico de E.

$$E = \psi_{\alpha}(x,t)E\psi_{\alpha}(x,t) = \int \psi_{\alpha}^{*} \left[-\frac{\hbar \partial \psi_{\alpha}}{i \partial t} \right] dx = \alpha$$
(2.15)

(Este procedimiento es aplicable para cualquier función de energía f(E) que pueda desarrollarse en serie de potencias). Ψ_{μ} será la función de un estado que le corresponde una energía E de un valor preciso y numerico igual a α . Sustituyendo α por E en la solución (2.14), queda que:

$$\psi_{i}(x,t) = \psi_{i}(x)e^{-itt}h$$
 (2.16)

y la parte espacial queda como :

$$E\psi_{i}(x) = -\frac{\hbar^{2}}{2m} \frac{d^{2}\psi_{i}}{dx^{2}} + l'(x)\psi(x)$$
(2.17)

y es la llamada ES independiente del tiempo.

2.6.- NUMEROS CUANTICOS.

2.6.1.- Numero cuántico principal (n).

El número cuantico in puede tomár valores enteros positivos a partir de uno, luego entonces, existe un conjunto de soluciones a la ES para cada valor de n. que especifica el nivel de energía asociado y esta relacionado con el tamaño de la nube electrónica [8].

2.6.2.- Número cuántico secundario o azimutal (I).

Los valores permitidos para l dependen del valor de n: | puede tomar valores desde 0 hasta (n - 1). Por lo tanto si n = 1, i solo puede ser 0; si n = 2, i puede ser 0 o 1, etc, el valor de l describe un subnivel especifico y determina la forma de la distribución probabilistica del electrón (ver Fig. 2.5). Estos subniveles son designados por letras, como s para l = 0, p para l = 1, d para l = 2, f para l = 3, etc. Así, para el caso más simple se podrá referir a la funcion de onda que describe al electron que ocupa el orbital 2s, en vez de decir que se le asocia un número cuántico principal n = 2 y un número cuántico azimutal l = 0

2.6.3.- Número cuantico magnético (m).

Los valores permitidos para este tercer número cuántico (m) dependen del valor de l. m puede tener cualquier valor entero entre +1 y -1. incluyendo el cero. Luego entonces se pueden tener 21 + 1 valores, m esta relacionado con la orientacion del orbital en presencia de un campo magnético.

2.6.4.- Numero cuántico de espin (S).

S es el momento angular intrinseco de un electron. En la física atómica y de particulas existen dos tipos de momento angular: el momento angular de espin. S. que se produce por la rotación del electrón alrededor de su propio eje (ver Fig. 2.5) y el momento angular orbital. L. que es causado por el movimento del electrón alrededor del núcleo. S es una propiedad fundamental de todas las partículas elementales, y existe aunque la partícula no se mueva, mientras que L no es así. El momento angular total de un electrón es una combinación de L y S.

Figura 2.6 forma de los orbitales atómicos.

La existencia de S fue sugerida en 1925 por Goudsmit y Uhlenbeck [9], para explicar las propiedades de los espectros atomicos. S solo puede adoptar determinados valores discretos, que son múltiplos enteros o semienteros de la unidad fundamental de S. Los bosones, por ejemplo, fotones, particulas alfa o mesones, tienen espín entero (0,1...). Los fermiones, entre los que figuran protones, neutrones y electrones, tienen espín semientero (1/2, 3/2...), y cumplen con el principio de exclusión de Pault, el cuaj se detalla más adelante.

Para el electrón. S tomará dos valores dependiendo del sentido de la rotación alrededor de su propio eje (ver figura 2.7) [9]. El conjunto de los cuatro números cuánticos (n, L, m_L, S) es lo que caracteriza a un electrón.

Fig. 2.7.- Según Goudsmit y Uhlenbeck, el giro del electrón produce un momento angular intrinseco. S, lo que trae aparejado un momento magnético μ, de sentido contrario, m, representa la proyección de S sobre el eje.

2.7.- PRINCIPIO DE EXCLUSIÓN DE PAULI.

El principio de exclusión de Pauli predice que dos electrones no pueden ocupar simultàneamente el mismo estado cuántico en la naturaleza. Sus números cuánticos no pueden ser idénticos. De ahí que para un electrón con un mismo número cuántico n. L y m. solo le queda que el número cuántico de espín, $m_{\rm S}$, sea diferente. Por ejemplo, cuando *n* es 1. el número orbital *L* y el número cuántico magnético $m_{\rm c}$ solo pueden tener el valor de 0, y el número cuantico de espín $m_{\rm S}$ podra ser + y o -y. Y solo habrá "tos combinaciones posibles de números

(2.18)

(2.19)

cuánticos para los dos electrones: (1, 0, 0, -(+y)) y (1, 0, 0, (-y)). Cuando n = 2, L puede ser $0 \circ 1$, m_L puede ser +1, 0, 0 - 1, $y m_S$ sea $+y \circ -y$. Existen ocho combinaciones posibles de estos números cuánticos. Por lo tanto, en la capa electrónica n = 2 puede haber un máximo de ocho electrones. La ley periódica se explica con este método de llenado de electrones en las capas de los átomos.

2.8.- FUNCIONES GAUSSIANAS

Funciones gaussianas son introducidas para calcular la integral de la energía en la ES. Pueden representarse en coordenadas polares por la ecuación:

$$X_{ulm}(r, \theta, \phi) = R_{ul}(r)Y_{lm}(\theta, \phi)$$

donde

 $R_{ut}(r) = r^{t} e^{\left(-\frac{2r}{n}\right)} L_{u+t}^{2t+t} \left(\frac{2Zr}{n}\right)$

У

 $Y_{lm}(\theta,\phi)$ corresponde a los armónicos esféricos.

- con L = Polinomios asociados de Laguerre [11].
 - n, I = Números cuánticos.

Z = Carga nuclear.

Sustituyéndose la parte radial por:

 $R_{\mu}(r,\alpha) = N(n,\alpha)r^{\mu-1}e^{-\alpha r^2}$

donde $N(n,\alpha) = 2^{n+1} \alpha^{2n+1} [(2n-1)]_{2}^{1} (2\pi)^{-\frac{1}{4}}$

TESIS CON FALLA DE CAUGEN

(2.20)

El factor elevado al cuadrado en (2.20) introduce una importante propiedad a las funciones gaussianas, que puede enunciarse como que "el producto de dos o más funciones gaussianas será siempre una función gaussiana". Esta propiedad posibilita el calculo analítico de las integrales de energía necesarias en la ES. Por esta razon las funciones gaussianas son de gran utilidad en calculos de estructuras electrónicas debido a que las integrales multidimensionales pueden ser factorizadas y reescritas en forma sencilla.

El orbital espacial de un electrón multiplicado por su función de espín, lo convierte en un espín-orbital EO.

2.9.- EL PROBLEMA DEL CAMPO CENTRAL.

Este problema surge cuando existe la interacción de dos o más electrones con un centro y además entre ellos mismos, por ejemplo el caso del atomo de helio [11]. Son dos partículas de masas m₁ y m₂, se mueven en un espacio tridimensional con una energía potencial que depende de la distancia entre las dos partículas y la distancia con respecto al centro o núcleo (fig. 2.8).

La energía potencial entre los electrones está dada por:

$$V(r_{-}) = V(x_{-}, y_{+}, z_{+}, x_{+}, y_{+}, z_{+})$$

Esto hace que, introduciendo coordenadas relativas y de centro de masa la ES pueda separarse en una ecuación para el centro de masa

(2.21)

$$E_{,s}\boldsymbol{\psi}_{,s} = -\frac{\hbar^2}{2M}\nabla_{,s}^2\boldsymbol{\psi}_{,s}, \qquad (2.22)$$

que depende de las coordenadas del centro de masa, y una para las coordenadas relativas al centro de masa [11].

$$E\psi_{(R)} = -\frac{\hbar^2}{2\mu} \nabla^2 \psi_R + V(r_a)\psi_{(R)} + V_{(N)}, \qquad (2.23)$$

que depende de las coordenadas relativas al centro de masa. La presencia del operador $\Gamma(r_n)$ en (2.23) impedirá una solución analitica a la ES. Luego entonces a partir de más de dos electrones en un sistema atomico o molecular las soluciones de la ES tendran que ser aproximadas.

2.10.- DETERMINATES DE SLATER

La función de onda para N-electrones se podrá representar como un producto de N espines-orbitales, [11] dada por:

$$\Phi = \prod_{i=1}^{N} S(i)$$
 (2.24)

y es llamada función de onda de Hartree. Cuenta con la limitante de que no es antisimétrica con respecto al cambio del par de electrones. La antisimetría se logra construyendo el siguiente determinante:

 $\det \Phi = (N!)^{-1} : \frac{S_1(1) - S_2(1) - \cdots - S_N(1)}{S_1(2) - S_2(2) - \cdots - S_N(2)},$ (2.25)

que se conoce como Determinante de Slater. Con este método se construyen funciones antisimétricas. El principio de antisimétria surge de la indistinguibilidad de los L'ectrones. Los electrones en el Helio, por ejemplo, son particulas equivalentes, caracterizadas por el mismo conjunto de propiedades físicas (masa, carga, etc.). Es como si cuando vemos un par de pelotas idénticas en el suelo, nos da lo mismo que la pelota de la derecha

ocupara el lugar de la izquierda o viceversa. El par de pelotas seguirla siendo el mismo antes y despues del intercambio, lo mismo pasa en los electrones del Helio, el intercambio de estos no debe tener ningún sentido físico [9].

No obstante desde el punto de vista matemático, si tiene sentido un intercambio, las coordenadas que describen la posición de ambos electrones deben intercambiarse en la teoría cuántica.

El postulado de que un sistema de electrones debe estar descrito por una función de onda antisimétrica con respecto al cambio de coordenadas de pares de electrones, se conoce como principio de antisimetría. Una función de onda de un sistema de particulas debe satisfacer la propiedad de simetría o antisimetría. Los sistemas compuestos por particulas idénticas con espin entero (s = 0, 1...) están siempre descritos por funciones de onda simétricas. Los sistemas de particulas idénticas con espin igual a la mitad de un entero non (s = %, 3/2, 5/2, ...), están siempre descritos por funciones de onda antisimétricas ante el intercambio de un par de particulas.

2.11.- TEORIA DEL ORBITAL MOLÉCULAR.

Es un metodo que explica el enlace que se forma cuando dos o mas átomos se unen para formar una molécula considerando los niveles de energia de los orbitales atómicos. En este método, se forma un orbital molecular por cada orbital atómico que es utilizado. Estos orbitales están asociados a una molécula como un todo, y nuevamente la integral sobre todo el espacio del cuadrado de un orbital molecular será la probabilidad de encontrar el electron en tal region de la molecula.

Los orbitales moleculares pueden ser enlazantes con un nivel de energía numéricamente inferior al de los orbitales atomicos que lo componen o antienlazante con un nivel de energía en general superior a aquel de los orbitales atomicos que lo componen [9].

Al traslaparse los orbitales, se puede sumar o restar la densidad electrónica en las áreas de traslape. Cuando se suma el traslape, aumenta la densidad electrónica entre los núcleos, dando lugar a una condición de enlace mas estable y a un orbital molecular de menor energía que los orbitales atómicos que dan origen al orbital molecular. Por el contrario, si los electrones ocupan un orbital molecular antienlazante, se obtiene un sistema de menor estabilidad es decir con mayor energía que la de los átomos aislados. Se podría presentar como ejemplo la combinacion de dos orbitales atómicos 1s (ver Fig. 2.9).

En el orbital enlazante $\sigma_{1,.}$ los dos orbitales 1s combinan sus densidades electronicas en la región de traslapamiento, mientras que en el orbital antienlazante se cancela una densidad con la otra. Ambos se denominan orbitales sigma (σ) (lo cual implica que son simetricos en relación con el eje internuclear): se indican como subindice los orbitales atómicos que se nan combinado. Para distinguir un orbital antienlazante se señala con un asterisco. σ_{n} . Basandonos en como se combinan los orbitales atómicos para producir orbitales

moleculares, se pueden establecer diagramas de niveles de energia moleculares para moléculas sencillas (ver Figs 2.9 y 2.10) Matematicamente un orbital molécular se construye como una *combinación lineal de orbitales atomicos* [11], esto es

CAPITULO I

2.12.- LA APROXIMACION DE BORN-OPPENHEIMER.

Si consideramos que los núcleos y los electrones son masas puntales y despreciamos la interacción espinorbita (L'S), el Hamiltoniano molécular se puede escribir como [14]:

$$\hat{H} = -\frac{\hbar^2}{2} \sum_{\alpha} \frac{1}{m_{\alpha}} \nabla_{\alpha}^2 - \frac{\hbar^2}{2m} \sum_{c} \nabla_{c}^2 + \sum_{\alpha} \sum_{\mu,\alpha} \frac{Z_{\alpha} Z_{\mu} c^2}{r_{\alpha\mu}} - \sum_{\alpha} \sum_{c} \frac{Z_{\alpha} c^2}{r_{\alpha}} + \sum_{c} \sum_{c} \frac{c^2}{r_{\alpha}} , \qquad (2.26)$$

donde α , β se refiere a núcleos, i y j a electrones, el primer término es el operador de la energía cinética de los núcleos, el segundo de la energía cinética de los electrones, el tercero de repulsiones entre núcleos, siendo r_{ab} la distancia entre núcleos α y β , de números atómicos Z_{a} , yZ_{b} , respectivamente, r_{a} es la distancia entre el electrón i y el núcleo α , y el ultimo término représenta repulsiones entre electrones i y j.

La función de onda y la energía para una molécula se calculará a partir de la ES:

$$II \psi(q_i, q_a) = E \psi(q_i, q_a)$$
(2.27)

donde $q_{i+q_{i+1}}$ representan coordenadas electrónicas y nucleares. La simplificación de que los núcleos sean mucho más pesados que los electrones ($m_{i,i}$) m) da por ende que estos se mueven mucho más despacio y una buena aproximación es considerar a los núcleos fijos. Despreciando el termino de energía cinética nuclear de (2.26) se tiene la siguiente ES para el movimiento electrónico:

$$\left(\vec{H}_{x}+V_{xx}\right)\boldsymbol{\psi}_{y}=U\boldsymbol{\psi}_{y}$$
(2.28)

Con el Hamiltoniano electrónico H., conteniendo:

$$II_{\perp} = -\frac{\hbar^2}{2m} \sum_{i} \nabla_i^2 + \sum_{\alpha} \sum_{i} \frac{Z_{\alpha} c^2}{r_{\alpha i}} + \sum_{i} \sum_{j \in I} \frac{c^2}{r_{\alpha j}}$$
(2.29)

У

$$V_{\rm NN} = \sum_{a} \sum_{b \neq a} \frac{Z_a Z_b e^2}{r_{ab}}$$
(2.30)

La energia U en (2.28) incluye la repulsión nuclear V_{NN} . Las distancias internucleares $r_{,NT}$ en (2.28) son fijas, es decir que mantienen un valor constante. Las configuraciones geométricas posibles serán infinitas y para cada una de ellas se puede resolver la ES para obtener un conjunto de funciones de onda electrónicas y energias electronicas, correspondiendo a cada arreglo molécular distinto. Así pues, las funciones de onda y energias electronicas dependen parametricamente de la configuración nuclear dada, y las representamos como:

$$U = U_{\alpha}(q_{\alpha})$$

donde n simboliza los números cuánticos.

Es decir que las variables en (2.28) son coordenadas electrónicas. La cantidad V_{NV} es independiente de estas coordenadas y es constante para una configuración nuclear dada.

La interpretación física de esta aproximación también se puede ver que cuando los núcleos cambian tigeramente su configuración, por ejemplo de q'_{n} a q''_{n} , los electrones se ajustan inmediatamente al cambio, pasando la función de onda de $\psi_{e} = (q_{e}, q'_{n})$ a $\psi_{e} = (q_{e}, q''_{n})$ y la energía electrónica $U = (q'_{u})$ a $l' = (q''_{n})$. Por lo tanto al moverse los núcleos la energía electrónica varia como una función de los parametros que define la configuración nuclear. Los electrones actúan como un muelle conectado a los núcleos. Conforme cambia la distancia internuclear varia la energía almacenada en el muelle por lo tanto la ES es:

$$H_{\infty}\psi_{\infty} = E_{\infty}\psi_{\infty} \tag{2.31}$$

donde

$$H_{X} = -\frac{\hbar^{2}}{2} \sum_{a} \frac{1}{m_{a}} \nabla_{a}^{2} + U(q_{a})$$
(2.32)

Las variables de la ES nuclear son las coordenadas nucleares representadas por (q_n) . El valor propio de la energía E en la ecuación (2.31) es la energía total de la molécula, ya que el Hamiltoniano (2.32) incluye los operadores que representan las energías nuclear y electronica.

La aproximación que consiste en separar los movimientos electrónico y nuclear y asume los núcleos fijos recibe el nombre de *aproximación de Born-Oppenheimer* [14] Este tratamiento matemático es una buena aproximación de la función de onda molécular verdadera es entonces:

$$w(q, q_{\alpha}) = \psi_{\lambda}(q_{\alpha}, q_{\alpha})\psi_{\lambda}(q_{\alpha})$$

$$s_{\Gamma} \left(\frac{m}{m}\right)^{\frac{1}{2}} \langle 1 \rangle$$
(2.33)

La aproximación de Born-Oppenheimer introduce un error pequeño en general para el caso de estados electronicos bajos, es decir, el fundamental y los primeros que le siguen en energía.

2.13.- EL METODO DEL CAMPO AUTOCONSISTENTE DE HARTREE-FOCK.

El metodo del campo autoconsistente de **Hartree-Fock** (HF) es un metodo óptimo dentro de la aproximación del orbital molecular para sistemas moleculares. Este método introduce conceptos y herramientas básicas e imprescindibles en el estudio de sistemas multielectronicos para determinar los valores de energías y distribuciones de cargas electrónicas. En esta parte se presentan los principales conceptos del metodo de HF aplicado al estudio de sistemas moleculares.

El problema es resolver la ES electrónica de un sistema molecular dentro de la aproximación de Born-Oppenheimer.

$$\begin{cases} -\sum_{n=2}^{\infty} \sum_{n=2}^{\infty} \sum_{r=1}^{\infty} \sum_{r=1}^{\infty} \sum_{r=1}^{\infty} \sum_{r=1}^{\infty} \sum_{r=1}^{\infty} \sum_{r=1}^{\infty} \left\{ \psi_{n}(r) = E \psi_{n}(r) \right\} \\ \downarrow SIS CON \end{cases}$$

$$(2.34)$$

$$\downarrow TALLA DE \qquad (2.34)$$

$$H = \varphi_i \mathcal{E}, \qquad (2.36)$$

donde a, es la energía orbital y donde el operador hamiltoniano efectivo HF es:

$$\hat{H}'' = -\frac{1}{2}\nabla_{1}^{2} - \sum_{\alpha} \frac{Z_{\alpha}}{r_{1\alpha}} + \sum_{i} \left[2\hat{J}_{i} - K_{i}\right]$$

y el operador de Coulomb J, es la energía potencial de interacción entre el electrón i y la nube electrónica

producida por la presencia de los demás electrones y el de intercambio \vec{K}_{r} proviene del requerimiento de que la función de onda sea antisimetrica con respecto al intercambio de los electrones. Estos operadores están definidos por:

$$J_{1} \varphi_{1} = \varphi_{1} \int \varphi_{1}^{2} \frac{1}{r_{12}} dv_{2}$$

$$K_{1} \varphi_{1} = \varphi_{1} \int \frac{\varphi_{1}^{2} \varphi_{1}}{r_{12}} dv_{2}$$

$$FALUA UE = CAUTEN$$
(2.37)

Los orbitales moleculares φ , deberán ser funciones propias del hamiltoniano HF, que además es hermítico [12], por lo que estos orbitales moleculares son ortogonales. La ortogonalidad simplifica los cálculos al hacer que muchas integrales se anulen.

La expresión para la energía molecular HF incluye integrales de Coulomb y de intercambio así como las energías orbitales \mathcal{E}_{i} .

$$E_{ij} = 2\sum_{n} \varepsilon_{i} - \sum_{n} \sum_{n} \left(2J_{ij} - K_{ij} \right) + V_{NN}$$
(2.38)

Aquí las sumatorias se extienden para el caso más simple que es el de n orbitales doblemente ocupados, $2\sum x_i$ es la suma de las energías de estos orbitales.

El funcional de primer orden de J es:

donde $\lambda_{\rm m}$ es la parte monoelectrónica del operador Hamiltoniano. La primera y la segunda doble sumatoria son de indices simétricos.

Haciendo $\delta I = 0$, se tiene una variación de $\delta \varphi$, que satisface las condiciones:

$$\begin{bmatrix} \lambda_{\mu} + \sum_{i} (2J_{i} - K_{i}) \end{bmatrix} \varphi_{i} = \sum_{i} \varphi_{i} \lambda_{\mu}$$

$$\begin{bmatrix} \lambda_{\mu} + \sum_{i} (2J_{i} - K_{i}) \end{bmatrix} \varphi_{i}^{*} = \sum_{i} \varphi_{i}^{*} \lambda_{\mu}$$
(2.40)
$$(2.41)$$

Conjugando el complejo de (2.41) y sustituyendo en (2.40) se obtiene

$$\sum_{i} \varphi_{i} \left(\lambda_{i} \lambda_{j}^{*} \right) = 0, \qquad (2.42)$$

como los orbitales $\{\varphi_i\}$ son linealmente independientes entonces:

 $\lambda_{\mu} = \lambda_{\mu}^{*}$

las ecuaciones (2.41) y (2.42) son las llamadas ecuaciones de HF. Las ecuaciones de HF pueden escribirse en forma matricial:

$$F\phi = \phi\lambda \tag{2.43}$$

donde F es el operador de HF definido por:

$$F = \lambda_{\mu} + \sum \left(2J_{\mu} - K_{\mu}\right), \tag{2.44}$$

 ϕ y λ se representan por:

 $\phi = [\phi_1 \phi_2 \phi_1 \dots \phi_N] \qquad \lambda = \begin{bmatrix} \lambda_{11} & \lambda_{12} \dots & \lambda_{113} \\ \lambda_{21} & \lambda_{22} \dots & \lambda_{123} \\ \dots & \dots & \dots \\ \lambda_{N1} & \lambda_{N2} \dots & \lambda_{N3} \end{bmatrix}$ (2.45)

es importante notar que la forma de (2.44) es de un operador monoelectronico. La sumatoria de los operadores de Coulomb y de intercambio representan la aproximación de un electrón.

2.14.- MÉTODOS DE CORRELACIÓN ELECTRÓNICA

La teoría de HF no da un tratamiento completamente adecuado de la *correlación electrónica* (interacción entre los electrones) en un sistema molecular, especialmente entre electrones de espín opuesto. Esto conduce a una energía de repulsión electrón-electrón alta y como consecuencia también a una energía total alta. Los resultados son a veces cercanos a los experimentos, pero en muchos casos no, y se requiere de mejores aproximaciones.

La función de onda también se puede representar como una combinación lineal de determinantes de Slater correspondientes a diferentes configuraciones electrónicas, y es lo que se conoce como *interacción de configuraciones*. Y es una mejor aproximación para tratar los efectos de la correlación electrónica.

Estos procedimientos teóricos son de uso común. A continuación se listan al según el orden de refinamiento de la correlación electronica: el Hartree-Fock (HF) [14], la teoría de perturbaciones Moller-Plesset truncada a segundo (MP2), tercero (MP3), o cuarto (MP4) orden. La interacción de configuraciones puede incluir excitaciones sencillas (se excita un solo electrón), dobles (se excitan dos electrones), triples, etc. Un metodo de este tipo es la teoría de cúmulos acoplados (CCSD(T)), que se detalla más adelante.

La calidad de un calculo ab-inito depende básicamente de dos factores, el tamaño del conjunto base empleado para el cálculo (la extension de las funciones gaussianas) y la manera en que se incluya la correlación electronica. Los calculos mas precisos son los más costosos computacionalmente.

Hay un grado de libertad adicional para el calculo de sistemas de capa abierta (moléculas con un electrón), como sucede en reacciones de adición de radicales. Los calculos se pueden realizar con una función de onda restringida, en términos del espín electronico (RHF) o no restringida (UHF) En el procedimiento RHF, los orbitales para los electrones α y li se consideran equivalentes. El método UHF es más adecuado. La teoría de perturbaciones Moller-Plesset basada en UHF se denota como UMP.

Puede llegar a ocurrir una contaminación de espin severa y puede ser inadmisible usar un procedimiento UMP, pues habra una representacion muy pobre del espin deseado. Habra una mejoría importante con proyecciones de espín, que se incluyen en la aproximación Moller-Plesset (PMP) para tales circunstancias. Para procedimientos mas sofisticados, tales como el de interacción de configuraciones o de cúmulos acoplados la diferencia entre las aproximaciones no restringidas (UACI, UCC) y restringidas son en general más pequeñas.

El método MP2/6-31G(d,p) representa un nivel de aproximación medio mientras que QCISD(T)/6-311+G(3df.2p) y CCSD(T)/6311+G(3df.2p) representan niveles de teoría muy razonables para los problemas moleculares relacionados con esta tesis. Aqui el rubro antes de la diagonal representa la aproximación para el calculo y despues de la diagonal la extension de las bases atómicas empleadas [15].

2.15.- TEORIA DE PERTURBACIONES DE MÖLLER-PLESSET.

La teoría de Perturbaciones Moller-Plesset se basa en dividir el Hamiltoniano electrónico en dos partes:

$$H = H_0 + \lambda V \tag{2.46}$$

Donde H_0 bien puede corresponder a la solución HF y λI^* es una perturbación de H_0 . Por lo tanto el valor de λI^* debe ser pequeño en comparación con H_0 (V es un operador de perturbación que nada tiene que ver con la energía potencial). La función de onda y la energía pueden expresarse como una serie de potencias:

$$\psi = \psi'' + \lambda \psi^{(1)} + \lambda^2 \psi^{(2)} + \lambda^3 \psi^{(3)} + \dots$$
(2.47)

$$E = E^{(i)} + \lambda E^{(1)} + \lambda^2 E^{(2)} + \lambda^3 E^{(3)} + \dots$$
(2.48)

y los valores de $E = E^{(1)}, E^{(2)}, \dots, E^{(n)}$, corresponderan a la energía de la perturbación de orden (n) de HF.

2.16.- CUMULOS ACOPLADOS (CCSD(T))

La ecuación fundamental en la teoría de cúmulos acoplados (CC) [1] es:

$$\psi = c' \Phi_0 \tag{2.49}$$

donde ψ es la función de onda molecular y Φ_n es la función de onda de Hatree-Fock. El operador c' se expande en una serie de Taylor como:

$$c' = 1 + \hat{T} + \frac{\hat{T}^2}{2!} + \frac{\hat{T}^3}{3!} + \dots = \sum_{k=0}^{n} \frac{\hat{T}^k}{k!}$$
(2.50)

donde T es el operador de agrupamiento (Cluster) y se escribe como:

$$\vec{T} = \vec{T}_1 + \vec{T}_2 + \dots + \vec{T}_n$$
 (2.51)

N es el número de electrones de la molécula y los operadores T_1, T_2, \dots se definen más adelante. ψ , en (2.50), se normaliza al final del cálculo. El operador T_1 representa la excitación de una particula y el operador T_2 representa la excitación de dos particulas con respecto a la configuración de referencia $\Phi_{n,2}$ es decir:

$$\hat{T}_{i} \Phi_{n} \equiv \sum_{n=N-1}^{r} \sum_{i=1}^{N} t_{i}^{n} \Phi_{i}^{n} , \qquad (2.52)$$

$$\hat{T}_{2} \Phi_{a} \equiv \sum_{n=a+1}^{i} \sum_{\alpha=i+1}^{i} \sum_{\alpha=i+1}^{N-1} r_{a}^{\alpha} \Phi_{\alpha}^{\alpha b}$$
(2.53)

 Φ_i^{\prime} és un determinante de Slater con la excitación de un electrón del orbital $\chi_i(1)$ al $\chi_i(1)$ y t_i^{\prime} es un coeficiente numérico cuyo valor depende de i y a. los cuales deben ser determinados para satisfacer la ecuación (2.49). El operador T_i aplicado a Φ_{ii} transforma a la función de onda en un determinante de Slater $\chi_i \dots \chi_N = \Phi$, que es una combinación lineal de todos los posibles determinantes de Slater de una excitación. $\Phi_{ii}^{\prime h}$ es un determinante de Slater de spin-orbitales ocupados χ_i y χ_i reemplazados por spin-orbitales virtuales χ_a y χ_h respectivamente. $t_i^{\prime h}$ es el correspondiente coeficiente numérico. Definiciones semejantes se aplican para $T_{ii} \dots T_{N}$.

El efecto del operador e^{2} en (2.49) expresa a ψ como una combinación lineal de determinantes que incluye a Φ_{a} y todas las posibles excitaciones de los electrones desde espinorbitales ocupados a virtuales.

La finalidad de realizar un calculo CC es encontrar los coeficientes $t_i^{\mu}, t_i^{\mu\nu}, t_i^{\mu\nu}, t_i^{\mu\nu}$... para todo i, j, k... y u, h, c...Estos coeficientes son llamados amplitudes y una vez encontragos, la función de onda ψ en (2.49) es conocida.

TES	SIS	CON	7
FALLA	DE	UNIGEN	

En lugar de incluir todos los operadores $\hat{T}_1, \hat{T}_2, \hat{T}_3, ..., \hat{T}_V$ en (2.51), se aproxima el operador \hat{T} para incluir únicamente algunos de estos operadores. La más importante contribución a \hat{T} viene de \hat{T}_2 [1]. La aproximación $\hat{T} \approx T_2$ corresponde a una:

$$\psi_{(c)} = e^{i_{c}} \Phi_{0} \tag{2.54}$$

y es la aproximación conocida como método de cúmulo acoplado doble (CCD). Expandiendo nuevamente T_2 a una serie de Taylor.

$$e^{f_2} = 1 + f_2 + \frac{1}{2}f_2^2 + \dots$$
 (2.55)

la correspondiente función de onda ψ_{err} contiene determinantes con sustituciones dobles, sustituciones cuádruples, sustituciones hexadruples y así sucesivamente. Las sustituciones cuádruples son las siguientes en importancia. Las excitaciones cuádruples en CCD son producidas por el operador $\frac{1}{2}T_2^2$. Se requiere encontrar las amplitudes CCD. Sustituyendo esta aproximación en (2,49) se tiene:

$$f l e^{l_1} \Phi_{\mu} = E e^{l_2} \Phi_{\mu}$$
(2.56)

multiplicando por Φ_{0} e integrado se obtiene:

$$\Phi_{\mu} \hat{H} e^{f_2} \Phi_{\mu} = E \Phi_{\mu} e^{f_2} \Phi_{\mu}$$
(2.57)

Las funciones $T_2 \Phi_{n+\frac{1}{2}} T^2 \Phi_{n}$, y así sucesivamente, contienen únicamente determinantes de Slater con al menos un orbital excitado. Los determinantes de Slater con orbitales excitados son ortonormales a Φ_n , por lo tanto. $\Phi_n e^{t} \Phi_n = \Phi_n \Phi_n = 1$.

y de (2.57) obtenemos:

$$\Phi_{p} \hat{H} e^{f_{p}} \Phi_{p} = E_{ccD}$$
(2.58)

Multiplicando la ecuación (2.56) por Φ_n^{ab} y dada la integración, queda:

$$\Phi_{\mu}^{ab} \hat{H} e^{f_{\mu}} \Phi_{\mu} = E_{eep} \Phi_{\mu}^{ab} e^{f_{\mu}} \Phi_{\mu}$$
(2.59)

Empleado (2.58) para eliminar E_{eee} de (2.59), obtenemos:

$$\Phi_{\mu\nu}^{\mu\nu} \hat{H} e^{f_2} \Phi_{\mu\nu}^{\nu} = \Phi_{\mu} \hat{H} e^{f_2} \Phi_{\mu\nu} \Phi_{\mu\nu}^{\mu\nu} e^{i_2} \Phi_{\mu\nu}$$
(2.60)

La primera integral del lado derecho de (2.60) es:

MARCO TEORICO

$$\Phi_{0} \vec{H} c^{f_{2}} \Phi_{0} = \Phi_{0} \vec{H} \left(1 + \vec{T}_{2} + \frac{1}{2} \vec{T}_{2}^{2} + \dots \right) \Phi_{0}$$

cortado en el segundo término tenemos que:

$$= \Phi_0 \hat{H} \Phi_0 + \Phi_0 \hat{H} \hat{T}_2 \Phi_0 = E_{HI} + \Phi_0 \hat{H} \hat{T}_2 \Phi_0$$
(2.61)

donde Em es la energía HF. La integral del lado izquierdo de (2.57) es:

$$\Phi_{\mu}^{ab} \hat{H} e^{f_2} \Phi_{\mu} = \Phi_{\mu}^{ab} \hat{H} \left(1 + f_2 + \frac{1}{2} f_2^2 \right) \Phi_0$$
(2.62)

Empleando la ortogonalidad entre determinantes de Stater, tenemos que:

$$\Phi_{\mu}^{ab} e^{f_{2}} \Phi_{0} = \Phi_{\mu}^{ab} T_{2}^{*} \Phi_{0}$$
(2.63)

empleado de (2.61) a (2.63) en (2.60), se obtiene:

$$\Phi_{\eta}^{ab} \hat{D} \left(1 + T_{2}^{*} + \frac{1}{2} T_{2}^{*} \right) \Phi_{0} = (E_{H} + \Phi_{0} \hat{D} T_{2} \Phi_{0}) \Phi_{\eta}^{ab} T_{2} \Phi_{0}$$
(2.64)

Con i = 1,..., n - 1; j = I + 1,...,n; a = n + 1,...; b= a+1,....

Empleamos la definición (2.53) de 7, en (2.64), y el resultado es un conjunto de ecuaciones no lineales simultaneas para las amplitudes desconocidas $r_a^{(n)}$, cuya forma es:

$$\sum_{r=1}^{m} a_{rr} x_{r} + \sum_{t=1}^{m} \sum_{s=1}^{t-1} b_{rs}^{t} x_{s} x_{t} + c_{r} = 0, \quad r = 1, 2, ..., m$$
(2.65)

donde x₁, x₂..., x_m son las amplitudes T_{ij}^{in} desconocidas. Las cantidades a_{rs} , b_{rst} , y c_r son constantes que involucran las energías orbitales y m es el número de amplitudes.

El siguiente paso es mejorar el método CCD incluyendo el operador \vec{T}_1 y tomando $\vec{T} = \vec{T}_1 + \vec{T}_2$ en e^T . Así obtenemos el metodo CC con singulente y doblete (CCSD). Con $\vec{T} = \vec{T}_1 + \vec{T}_2 + \vec{T}_3$, se obtiene el método CC con singulente, doblete, y triplete (CCSD(T)).

CAPITULO III: METODOLGIA

3.1.- DESCRIPCION.

Cuando se lleva a cabo una reacción química experimentalmente, se conoce solo el inicio y el final de esta, y generalmente se desconoce lo que sucede en el transcurso de los reactivos hacia los productos, ya que experimentalmente es muy difícil de controlar el camino que sigue una reacción.

Los cálculos ab-initio nos permiten conocer las distintas etapas por las que atraviesa una reacción química desde su inicio hasta su termino, así como las diferentes estructuras moleculares que se van generando durante el transcurso de la reacción.

Los avances en los algoritmos para realizar estos cálculos dentro de la Teoria del Orbital Molecular, así como el incremento en el poder de cómputo, ha hecho que su costo sea más accesible. Lo cual permite considerar el estudio de mayores sistemas moleculares y nos proporciona una mayor confiabilidad en las predicciones. Este enfoque de la quimica teórica se considera, a la par de las técnicas experimentales y es útil para estudiar las diferentes etapas de una reacción.

Para realizar un cálculo molecular, es necesario establecer la precisión que se requiere y el costo computacional que se puede alcanzar. Un factor a considerar es que el costo computacional se incrementará al aumentar el tamaño del sistema molecular.

Esta teoria también se puede emplear para determinar cantidades termoquímicas tales como las barreras energéticas que atraviesa una reacción o las entalpías de reacción. Una característica importante de los cálculos ab-initio es que las propiedades de interés se pueden obtener explicita y directamente.

Los cálculos ab-inito permiten obtener información de las geometrías moleculares (longitudes de enlace, ángulos de enlace, y ángulos diedros) involucradas en la reacción, perfiles energéticos a lo largo de las superficies de energía potencial de una reacción, frecuencias de vibración de las especies incluyendo aquellas de los estados de transición (te por sus siglas en ingles).

Estas frecuencias de vibración son útiles porque caracterizan rigurosamente a las geometrías de los puntos estacionarios a lo largo de la superficie de potencial. Es decir, mínimos locales o los puntos de silla de primer orden que representan al ts y que se emplean en el análisis termoquímico y cinético de la reacción. Determinar experimentalmente las geometrías y las frecuencias de vibración de las especies involucradas en una reacción es difícil, sobre todo para el caso de radicales.

En este trabajo se llevaron a cabo cálculos químico cuánticos empleando las bases atómicas extendidas del tipo 6-311g(d,p) [15] e introduciendo efectos de correlación electrónica a nivel perturbacional de segundo orden (MP2), así como cálculos de cúmulos acoplados CCSD(T) para cada una de las reacciones en estudio.

3.2.- ALGORITMO DE CALCULO

Como primer paso se propone una geometría inicial al azar para cada uno de las moléculas, que intervienen en cada reacción (reactivos, intermediarios y productos, ver figura 3.1). Esta se optimiza con un método Newton-Rapson de 2º orden (ver Apéndice A) para encontrar una estructura estable, que nos proporcione la energía de un mínimo local en la superficie de potencial. Para esto se aplicó el método MP2.

Como segundo paso se procede a calcular las frecuencias imaginarias de la geometria optimizada para comprobar que efectivamente se trata de un mínimo local. Estas frecuencias deberán de ser todas positivas. En caso de que no ser así la estructura geométrica obtenida no estaria en un mínimo energético, y por lo tanto no seria estable. Se tendría que proponer una nueva geométria y con esta llevar a cabo una nueva optimización.

METODOLOGÍA

Una vez que se ha obtenido una estructura geométricamente estable, se procede a mejorar el calculo energético de la estructura obtenida de la optimización MP2 aplicando un calculo CCSD(T). Estas etapas se muestran en la figura 3.1.

Para el calculo del ts se propone una estructura geomètrica inicial al azar, con el fin de obtener un màximo energètico que representarà a la geometria del ts. La energia de la reacción así obtenida corresponderà al punto màs alto en la superficie de potencial a lo largo de la coordenada de la reacción en estudio. Esto también se llevó a cabo con el nivel MP2. Como siguiente paso se calculan las frecuencias imaginarias para comprobar que efectivamente se trata de un maximo energètico. Para esto se debe contar con una frecuencia negativa la cual nos indicarà que estamos en un nivel maximo de energía. El modo de vibración de esta frecuencia negativa deberá corresponder a desplazamientos atómicos que muestren la tendencia a los productos que se quieren obtener. En caso de no ser así, o de que.

- 1. No se encuentre alguna frecuencia negativa.
- 2. Se encuentre dos o mas frecuencias negativas.

Se tendrá que proponer una nueva geometria inicial y volver a calcular el ts. Una vez que se tiene el ts se mejora el cálculo energético MP2, aplicando un cálculo CCSD(T), con la geometria obtenida del método MP2 (ver Fig. 3.2).

Los cálculos de optimización de las estructuras geométricas tanto de los reactivos, ts, intermediarios y productos se hicieron en el programa Gaussian 98 [16] de la computadora Cray del Instituto Mexicano del Petróleo.

TESL IA DE UNIT

. <u>.</u>

Fig. 3.1.- Diagrama de flujo para él calculo de las estructuras geométricas de reactivos, intermediarios y productos.

26

C 2

Fig. 3.2.- Diagrama de flujo para el cálculo de las estructuras geométricas de los estados de transición.

(4-A, 11-A, 111-A y IN-A)

CAPITULO IV: RESULTADOS

4.1- REACCIONES DE ALCOXILOS

Se llevaron a cabo cálculos químico cuánticos empleando las bases atómicas 6-311g(d.p), introduciendo efectos de correlacion electrónica a nivel MP2 y CCSD(T). Se utilizó el metodo MP2 para llevar a cabo la optimización de las geometrías tanto para los reactivos (reac), productos (prod), estados de transición (TS) e intermediarios (I), y con el segundo metodo se buscó mejorar las energías para cada una de las reacciones, es decir, se buscó obtener energías mas bajas para cada una de las entidades moleculares. Las reacciones de alcoxilos en estudio son:

$$RO + NO_3 \longrightarrow RO_2 + NO_2$$

con R = H, metil (CH₃), etil (C₂H₅), propil (C₃H₇)

Asimismo se hicieron calculos para la reacción de peroxilos:

$$RO_2 + NO_3 \longrightarrow RO + NO_2 + O_2$$

$$con R \approx propil(C_3H_7) \qquad (1V-P)$$

Esta reacción de peroxilos se calculó con el fin de comparar los datos obtenidos con la reacción de alcoxilos. Los resultados se presentarán para cada una de las reacciones por separado tanto para las reacciones de alcoxilos (Partes 4.1.1 a 4.1.5), como la de peroxilos (Partes 4.2.1 a 4.2.5). Los siguientes resultados se obtuvieron al llevar a cabo la optimización geométrica de reactivos, productos, TS e I.

Definiendo términos de nomenclatura se tiene:

 MI_{E} es la diferencia entre la sumatoria de las energías de los productos ($\sum PROD$) y la sumatoria de las energías de los reactivos ($\sum REAC$), y representa la entalpia de la reacción.

$$\mathcal{M}I_{u} = \sum PROD - \sum REAC$$

 \mathcal{M}_{t_1} es la diferencia entre el valor numérico de la energía del TS y la sumatoria de las energías de los reactivos, y representa a la energía de activación (E_1 ver apendice B) y esta dada por:

$$E_{i} = \Delta E_{i} = TS - \sum REAC$$

 $\Delta E_{\rm c}$ es la diferencia entre el valor numérico de la energía del intermediario menos el valor de la energía del TS y está dada por:

$$\Delta E_{s} = INTER - TS$$

 ΔE_i es la diferencia entre el valor de la energía del intermediano y la suma de las energías de los productos y esta dada por:

$$\Delta E_{3} = \sum PROD - INTER$$

ZPE es el factor de corrección a temperatura cero. CTG es el factor de corrección térmica, considerada a temperatura ambiente. Todos los valores estan dados en unidades atomicas (u.a.) a excepción de las detas $(M_{i}, E_{i}, M_{i}, y, M_{i})$ que estan dadas en Kcal/mol). En la Tabla 4.1 se puede observar que el dato de M que mejor se aproxima al Hato experimental es el obtenido por el metodo MP2+CTG y el que proporciona una menor barrera energetica (Ea) es el metodo CSD(T)+ZPE.

PARTE 4.1.1

 $OH + NO_3 \longrightarrow HO_2 + NO_2 I-A$

Los valores de energía - calculados para la reacción I-A se muestran en la Tabla 4.1, así como su perfil energetico se muestra en la Figura 4.1.1.1

	MP2	ZPE	MP2+ZPE	CCSD(T)	CCSD(T)+ZPE	CTG	CCSD(T)+CTG	MP2+CTG
REAC	<u>г</u>							
он	-75.57439	0.00878	-75.56561	-75.58917	-75.58039	-0.00813	-75.59730	.75.58252
NO.	-279.66345	0.01860	-279.64485	-279.66671	-279.64811	-0.00582	-279.67253	-279.66927
L REAG	+355.23784		-355.21046	-355.25588	-355.22850		-355.26983	-355.25179
PROD								
но,	+150.58798	0.01468	-150.57331	-150.61415	-150.59947	-0.00747	-150.62162	-150.59545
NO,	+204.66082	0.01050	-204.65031	-204.67313	-204.66262	-0.01353	-204.68666	-204.67435
2 PROD	-355.24880		-355.22362	-355.28728	-355.26210		-355.30828	-355.26980
TS	-355.19566	0.02428	-355.17138	-355.24472	-355.22044	-0.00486	-355.24958	-355.20082
INTER	-355.28823	0.02963	-355.25860	-355.32092	-355.29128	0.00174	-355.31918	-355.28649
NH. (*)	-6.88019		8.25882	-19.70297	-21.08410		-24.12624	-11.30346
NE. (*)	26.46783		24.52194	7.00293	5.05454		12.70505	32.16995
\E, (*)	-58.08984		-54.72893	-47.81510	-44.45420		-43.67107	-53.94581
\E. (*)	24.74182		21.94817	21.10920	18.31556		6.83978	10.47240

Tabla 4.1 Energias (ua) para la reacción I-A.

(*) Kcal/mol

Ha (10 - 15.3 | 17)

Figura 4.1.1.1.- Perfit energetico para la reacción I-A

Podemos observar en la Figura. 4.1.1.1 que la reacción atraviesa inicialmente por una barrera energética que liene un punto máximo (el cual corresponde al TS) para luego caer a un i energéticamente estable (es decir una estructura geométrica con una energía minima) antes de alcanzar los productos. También se puede ver que la energía del TS se ve altamente disminuida al aplicar el factor de corrección térmica en estos dos métodos (MP2 y CCSD(T)).

and the second second

En la Figura 4.1.1.2 se muestran las estructuras geométricas de los reactivos, productos, TS e I, así como sus parámetros geométricos más relevantes. Las distancias están dadas en Angstroms (A) y los ángulos en grados (?). Podemos observar que el enlace N-O de la molécula de NO₂ de los reactivos va sutriendo un relajamiento conforme va teniendo más interacción con la molécula de OH en la estructura del TS, hasta que este enlace se rompe para dar lugar a la formación del enlace O-O en la molécula de HO₂ que forma parte de los productos.

En la estructura del TS se indican también con flechas, los vectores de desplazamientos atòmicos correspondientes a la frecuencia negativa del cálculo del TS. Estos desplazamientos van de acuerdo con la coordenada de reacción. Esto es, hacia la formación del enlace O-O que formará el producto HO₂, así como a la reorientación de la molécula de NO₂ con respecto a este.

	ጥዓ	Sig	TILON
l	FAL	233	ĽN

REACTIVOS (OH + NO₃)

r1= 0.97

r1 = 1.24O-N-O = 120

TS (NO3 OH)

INTER (NO2 HO2)

r1 = 1.53r2 = 1.40O1-O2-H = 102.20

PRODUCTOS (HO2 + NO2)

TESIS COM FALLA DE _....JEN

Figura 4.1.1.2.- Entidades geométricas para la reacción I-A

RESULTADOS

PARTE 4.1.2

De forma similar a la Parte 4.1.1, en esta Sección mostramos en la Tabla 4.2 los datos energéticos para la reacción II-A, su perfil energético en la Figura 4.1.2.1, así como los parámetros geometricos más relevantes de esta reacción en la Figura 4.1.2.2.

CH ₂ O	+ NO.	 CH-O-	+	NO-	17-5
CH3O	- NO3	 CH3C2	-	NO2	113

Tabla 4.2 Energias (ua) para la reacción II-A.

	MP2	ZPE	MP2 + ZPE	CCSD(T)	CCSD(T)+ZPE	CTG	CCSD(T)+CTG	MP2+CTG
REAC	[_						
CH-O	-114.76263	0.037833	-114.724797	-114,79848	-114.760647	0.01490	-114.78358	-114.74773
NO,	-279.66345	0.01860	-279.64485	-279,66671	-279.64811	-0.00582	-279.67253	-279.66927
L REAC	-394.42608		-394.36965	-394.46519	-394.40876		-394.45611	-394.41699
PROD								
CH,O,	-189.77190	0.04411	-189.72780	-189.51817	-189.77407	0.01847	-189,79970	-189.75343
NO,	-204.66082	0.01050	-204.65031	-204,67313	-204.66262	-0.01353	-204.68666	-204.67435
1 PROD	-394.43272		-394.37811	-394,49130	-394.43669		-394.48636	-394.42778
TS	-394.38094	0.05356	-394.32738	-394,44617	-394.39261	0.02152	-394.42465	-394.35942
INTER	-394.47223	0.05823	-394.41399	-394.52507	-394.46684	0.02508	-394.49699	-394.44415
\H_ (*)	-4.16536		-5.31119	-16.38097	-17.52679		-18.98636	-6.77076
\E.(*)	28.32423		26.52016	11.93636	10.13229		19.73999	36.12786
۱E, (*)	-57.28161		-54.34929	-49.51262	-46.58030	-	-45.39809	-53.16707
\E, (*)	24.79202		22.51795	21.19529	18.92122	· · · · · · · · · · · · · · · · · · ·	6.67174	10.26846

(*) Kcal/mol

\Hu + + = -9.1 [18]

En la Tabla 4.2 se muestra al igual que en la reacción I- Λ que, el valor de ΛH_{μ} que más se acerca al dato experimental es el obtenido por el método MP2+CTG, y el que proporciona la menor Ea es el CCSD(T)+ZPE.

En la Figura 4.1.2.1 se puede ver que la reacción II- Λ se comporta de una forma similar a la reacción I- Λ , con la diferencia que al aplicar el factor CTG al calculo MP2, la Ea se hace más grande, sucediendo algo similar con el método CCSD(T) al aplicarle este mismo factor. Y en general se puede observar que los perfiles MP2+CTG y CCSD(T)+CTG son de mayor energía que el MP2 y CCSD(T), respectivamente. Mientras que en los perfiles de la reacción I- Λ (Figura 4.1.1.1) estos perfiles fueron de mayor energía.

Se puede apreciar en la Figura 4.1.2.2 que, al igual que en la reacción I-A. la geometría del TS es parecida a los reactivos (conformacion temprana), mientras que la del I, es ya parecida a los productos (conformacion tardia). El enlace C-O del reactivo CH_3O está contraido con respecto a su relajamiento en el enlace C-O1 de los productos.

El enlace O1-O2 en los productos casi no cambia con respecto a la reacción I-A. aunque si es mucho mas relajado que en la molécula de O2 ($r_{00} = 1.22$ A. ver ref [1]). El angulo C-O1-O2 en los productos es más grande al formado por H-O1-O2 de la reacción I-A.

٠

	TRETE	CONT	7
FAL.	1	EN	I

r1 = 1.40

TS (CH₃O NO₃)

r1 = 1.31 r2 = 2.36 C-O1-O2 = 107.07

INTER (CH3O2 NO2)

r1 = 1.53 r2 = 1.40 C-O1-O2 = 123.27

PRODUCTOS (CH₃O₂ + NO₂*)

r1 = 1.44 r2 = 1.30 C-O1-O2 = 110.72

TESIS CON FALLA DE CILCEN

Figura 4,1,2,2.- Entidades geométricas para la reacción II-A. "Las geometrias del NO₃ y NO₂ se pueden ver en la Figura 4,1,1,2.

PARTE 4.1.3

De forma similar a la Parte anterior, en esta Sección mostramos en la Tabla 4.3 los datos energéticos para la reacción $11-\Lambda$, su perfii energético en la Figura 4.1.3.1, así como los parametros geométricos más relevantes de esta reacción en la Figura 4.1.3.2.

	C ₂ H ₅ O	+ NO ₃		C ₂ H ₅ O ₂ +	NO ₂	111-3
--	---------------------------------	-------------------	--	--	-----------------	-------

Tabla 4.3 Energias (ua) para la reacción
--

	MPZ	ZPE	MP2+ZPE	CCSD(T)	CCSD(T)+ZPE	CTG	CCSD(T)+CTG	MP2+CTG
REAC								
C,H.O	-153.96111	0.067812	-153.893298	-154.01523	-153.947418	0.04106	-153.97417	-153.92005
NO,	+279.66345	0.01860	-279.64485	-279.66671	-279.64811	-0.00582	-279.67253	-279.66927
1 REAC	-433.62456		-433.53815	-433.68194	-433.59553		-433.64670	-433.58932
PROD								i
С,н.О,	-228.97264	0.073307	-228.899333	-229.0367	-228,963393	0.04551	-228.99119	-228.92713
NO;	-204.66082	0.01050	-204.65031	-204.67313	-204.66262	-0.01353	-204.68666	-204.67435
1 PROD	-433.63346		-433.54965	-433.70983	-433.62602		-433.67785	-433.60148
тѕ	-433.58200	0.08315	-433.49884	-433.66056	-433.57740	0.04880	-433.61176	-433.53320
INTER	-433.67257	0.08706	-433.58552	-433.74334	-433.65628	0.05502	-433.68832	-433.61756
Atta (*)	-5,58352		-7.21691	-17.49792	-19,13131		-19.54546	-7.63106
1E. (*)	26.70904		24.66338	13.41790	11.37224		21.92370	35.21484
\E; (*)	-56.83734		-54.38882	-51.94344	-49,49493		-48.03975	-52.93364
NE, C)	24.54478		22.50853	21.02763	18.99138		6.57D5B	10.08774

(*) Kcal/mol

\Ha Lap= -11.7 [19]

Figura 4.1.3.1- Perfil energético para la reacción III-A.

CAPITULO IV

En la Tabla 4.3 podemos observar que al igual que en la reacción I-A y II-A, el valor calculado del ΔH_{μ} que más se acerca al dato experimental es el MP2+CTG, y el que proporciona la menor E_A es el CCSD(T)+ZPE.

La Figura 4.1.3.1 muestra que, el comportamiento de esta reacción es similar a las reacciones I-A \searrow II-A, en su camino de reactivos a productos. A diferencia de las reacciones anteriores, en esta figura los perfiles de reacción MP2+CTG y CCSD(T)+CTG se separan mas notablemente de sus respectivos perfiles MP2 y CCSD(T). Es decir, que al aplicar el factor de corrección CTG, el perfil energetico aumenta más notablemente sus valores para esta reacción.

En la Figura 4.1.3,2 podemos ver que las estructuras geométricas son similares a las reacciones I-A y II-A, esto debido a que la geometria del TS es parecida a los reactivos y la del I es parecida a los productos.

El enlace C-O1 del reactivo sufre una relajación aun mayor que como sucedió en la reacción II-A, al llegar a los productos. El ángulo formado por C1-O1-O2 de productos de esta reaccion es muy similar al formado por C-O1-O2 de los productos de la reacción II-A.

Cabe mencionar que se realizaron calculos de irc (Intrinsic Reaction Coordinate) para las reacciones I-A, II-A y III-A, con el fin de confirmar que los 75 encontrados son los adecuados para las reacciones en estudio. Este calculo irc se inicia en la geometria del TS, por ejemplio la de energía con valor de -433.58200 ua (a nivel MP2), para la reacción III-A. El calculo avanza por un lado para la rema izquierda de la reacción, tendiente a los reactivos, alcanzando una energía de -433.618111 ua (valor calculado), y por la rama derecha tendiente al estado I. con un valor de -433.597806 ua Como se puede observar, el valor obtenido del lado de los reactivos es mas parecido al valor de estos (-433.62456 ua), mientras que el valor obtenido hacia el le esmas alto que la energía del 1. Sin embargo se asumo que este camino continuaría al estado I si se aumentara el numero de pasos del calculo, ya que la geometría del ultimo paso calculado es muy

a support of the second s	A DECK OF THE OWNER	
TY.	1.1	זאר
FALLA		

RESULTADOS COL

REACTIVOS (C2H5O + NO3*)

TS (C₂H₅O NO₃)

INTER (C2H5O2 NO2)

r1 = 1.53 r2 = 1.40 C1-O1-O2 = 122.10

PRODUCTOS (C2H5O2 + NO2*)

Figura 4.1.3.2.- Entidades geométricas para la reacción III-A. *Las geometrias del NO₂ y NO₂ se pueden ver en la Figura 4.1.1.2

PARTE 4.1.4

De forma similar a las partes anteriores de esta Sección, mostramos en la Tabla 4.4 los datos energéticos para la reacción IV-A, su perfil energético en la Figura 4.1.4.1, así como los parámetros geométricos más relevantes de esta reacción en la Figura 4.1.4.2.

$C_{3}H_{7}O_{2} + NO_{2} - C_{3}H_{7}O_{2} + NO_{2}$	IV-A
---	------

Tabla 4.4 Energias (ua) para la reacción IV-A.

	MP2	ZPE	MP2 + ZPE	CCSD(T)	CCSD(T)+ZPE	CTG	CCSD(T)+CTG	MP2+CTG
REAC								
C1H-0	-193.15799	0.09621	-193.06178	-193.22990	-193.13369	0.06824	-193.16166	-193.08975
NO.	-279.66345	0.01860	-279.64485	-279.66671	-279.64811	-0.00582	-279.67253	-279.66927
1 REAC	-472.82144		-472.70663	-472.89661	-472.78180		-472.83419	-472.75902
PROD								
C,H,O,	-268,16734	0.10204	-268.06530	-268.24901	-268.14697	0.07145	-268.17757	-268.09589
NO,	-204.66082	0.01050	-204.65031	-204.67313	-204.66262	-0.01353	-204.68666	-204.67435
1 PROD	-472.82816		-472.71562	-472.92214	-472.80960		-472.86422	-472.77024
TS	-472.77850	0.11208	-472.66598	-472.87326	-472.76118	0.07552	-472.79774	-472.70299
INTER	-472.86872	0.11606	-472.75266	-472.96712	-472.84106	0.08171	-472.87541	-472.78701
\H_ (*)	-4.21707		-5.63774	-16.02166	-17.44232		-18.84605	-7.D4146
1E. (*)	26,94096		25.50963	14.65012	12.93641		22.87230	35.16313
NE, (*)	-56.61081		-54.39384	-52.62384	-50.12450		-48.73709	+52.72406
1E1()	25.452777		23.246476	21.952063	19.745762		7.01875	10.51946

(*) Kcal/mol

Figura 4.1.4.1- Perfit energético para la reacción IV-A.

A diferencia de las reacciones I-A a III-A, para esta reacción no se cuenta con un dato experimental de ΔM_{μ} reportado en la literatura para poder comparario con los datos obtenidos en este trabajo. Si consideramos el acuerdo en los datos obtenidos para las reacciones anteriores, podríamos predecir que el dato experimental estaria alrededor del obtenido en el calculo MP2+CTG. El metodo que nos da la menor E_A es el CCSD(T)+2PE, como sucede en las reacciones anteriores.

En la Figura 4.1.4.1 se puede ver que el comportamiento es similar a los perfiles de las reacciones anteriores ($R \rightarrow TS \rightarrow I \rightarrow P$). Existe ademas una separación energetica ya mas marcada entre los perfiles de los métodos MP2 y CCSD(T) y estos mismos al aplicarles el factor de correccion CTG. Es importante observar que el ultimo paso, de l a productos, M_{e1}^{2} , en el perfil CCSD(T)+CTG y MP2+CTG, disminuye considerablemente la estabilización para I, viendose casi inmediato energeticamente el paso a P. De reactivos a TS (M_{e1}^{2}) y de TS a l (M_{e2}^{2}), estos mismos perfiles marcan gradientes energéticos bien definidos.

En la Figura 4.1.4.2 se observa que la tendencia que siguen los reactivos en su camino a productos es similar a las reacciones I-A al II-A. Una dierencia en esta reaccion es en el angulo formado por CI-OI-O2 tanto en el TS como en el I. En el TS este angulo es mas abietto que en las reacciones anteriores, por ejemplo, la reacción III-A. Nasí como en el este angulo es más contraido en IX-A que en III-A. Y estas diferencias son considerables, del orden de 14º Este mismo angulo (CI-OI-O2) en productos es muy parecido al formado por los mismos atomos en las reacciones II-A, tambien en productos, se muy parecido al formado por los mismos atomos en las reacciones II-A, y III-A, tambien en productos. Sera importante hacer notar que el angulo diedro entre C-O-O y O-C-C en el TS es de 178.11º y en P es de 178.54º, es decir, son similares Mientras que en reaccion II-A, por ejemplo, el angulo en el TS es de 178.95º y en cambio, en P es de 95.33º. La diferencia en los angulos diedros de P, de ambas reacciones se podría deber a que la cadena de C en el alcoxilo de la reaccion IV-A ha crecido y por lo tanto habra una mayor repulsion entre las densidades electrónicas de C3 con la terminal O1-O2, reorentándos el entel metil más o menos perpendicular al (casi) plano C2-C1-O1-O2 de P de la reaccion IV-A. La presencia de este metil debe consecuentemente influer en que el cambio que va teniendo el ángulo C-O-O a partir del TS hacia P sea diferente en la reaccion IV-A, que el la reaccion II-A. Este ángulo pasa por un minimo en 1 para la reaccion II-A.

También podemos notar que el enlace O1-O2 tiene su máximo en TS y se va contrayendo en l hasta llegar a una mínima distançia en P. Esta tendencia se mantiene para las cuatro reacciones.

TESIS COM

REACTIVOS (C3H7O + NO3*)

TS (C3H7O NO3)

r1 = 1.31 r2 = 2.34 C1-O1-O2 = 123.92

INTER (C3H7O2 NO2)

r1 = 1.54 r2 = 1.40 C1-O1-O2 = 108.35

PRODUCTOS(C3H7O2 + NO2*)

TESIS COM FALLA DE CLUGEN

Figura 4.1.4.2.- Entidades geométricas para la réacción IV-A. *Las geometrias del NO₃ y NO₂ se pueden ver en la Figura 4.1.1.2

PARTE 4.1.5 RESULTADOS GENERALES DE LAS REACCIONES DE ALCOXILOS.

Al llevarse a cabo las reacciones se tiene como primer paso un TS temprano, donde las estructuras geométricas tienden a ser más parecidas a los reactantes, para después encontrar un I con una estructura geométrica tardia, ya que tiende a ser parecida a los productos en sus parametros geométricos. Cabe mencionar que esta estructura I es energéticamente estable debido a que es una geometria que representa una energía minima en la superfície de potencial.

En base a las determinaciones de las geometrias y los valores energéticos calculados, se puede decir que el mecanismo de reaccion es:

El enlace O – N que deseamos que se rompa en la primera etapa, a partir de la molécula de NO₃, se va relajando al conformarse la estructura del complejo activo en el TS, hasta que se rompe completamente y se une al oxigeno del RO en el I. para después llegar a los productos.

Haciendo un analisis global de las reacciones de alcoxilos se puede decir que estas reacciones se comportan de una forma sistematica, ya que tanto sus perfiles de reacción como sus geometrías son muy similares en el camino que siguen estas de reactivos a productos.

Cabe señalar que al aplicar el factor de corrección CTG a los metodos MP2 y CCSD(T), hubo un aumento energetico conforme iba aumentando el numero de carbonos en la cadena de alcoxidos, ya que los perfiles se van separando cada vez mas, como se pudo apreciar a lo largo de las Figuras 4.1.4.1, 4.1.2.1, 4.1.3.1 y 4.1.4.1 e to para las reacciones con carbonos. Para la reacción sin C (1-A) e lefecto fue opuesto.

El metodo que proporciono mejores resultados es el CCSD(T) mas el factor de corrección ZPE, para proporcionar la menor Ea, en las cuatro reacciones de alcoxilos.

El metodo que nos proporciona una mejor aproximación en el calculo del ΔH es el MP2 más la corrección CTG, ya que nos arroja el valor mas cercano al dato experimental que se tiene para las tres primeras reacciones de alcoxidos.

Al aplicar el factor de correccion CTG a los metodos MP2 y CCSD(T), los mínimos energeticos de l con respecto a productos tienden a desestabilizarse (suben en energía) conforme se aumenta el numero de carbonos en la cadena de alcoxilos, disminuyendo así, a la energía requenda en la lotolisis para que la última etapa de la reaccion se lleve a cabo. Esta energía. $\Delta E_{\rm c}$, se mantiene en un orden de magnitud constante para estas dos metodologias, aunque sin embargo el método CCSD(T)+CTG, es el que proporciona siempre la $\Delta E_{\rm c}$, más baja.

Para la reacción IV-A que no cuenta con un dato experimental, nuestros valores se pueden tomar como datos predictivos

FALLA DE JUN

PARTE 4.1.6.- PARAMETROS COMO FUNCION DE LA REACCION

A) .- ENTALPIAS DE REACCION

En esta se parte se muestra el comportamiento de las entalplas de reacción para la serie de alcoxilos en estudio. Los datos numéricos se listan en la Tabla 4.5.

Tabla 4.5		/, de	las	reacciones	1- 4	a iv.	٠٨.
-----------	--	-------	-----	------------	------	-------	-----

HIREACCION	MP2	MP2 + ZPE	CCSD (T)	CCSD (T)+ZPE	CCSD(T)+CTG	MP2+CTG	\He er
1-1	-6.89	-8.26	-19.70	-21.08	-24.13	-11.30	-15.3
1 11-1 1	-4.16	-5.31	-16.38	-17.53	-18.99	-6.77	-9.1
101-3	-5.58	+7.22	-17.50	-19.13	-19.54	-7.63	-11.7
N.N	-4.22	-5.64	-16.02	-17.44	-18.85	-7.04	

Figura 4.1.6.1 Comportamiento del ΔH , en la serie de alcoxilos

En esta grafica se puede observar que el comportamiento oscilatorio de los datos teóricos es similar al experimental. La aproximación MP2 + CTG parece ser la que más se acerca a la tendencia experimental. El calculo MP2 es el que dio los valores de ΔH_{\odot} mas altos, y el CCSD(T)+CTG los más bajos. También se puede observar que el camuio se la reacción sin C a la reacción de 1C esta subestimado en todos los metodos excepto el CCSD(T)+CTG, que en particular, muestra acuerdo con el cambio experimental del 33%.

B).- MOMENTOS DIPOLARES.

Al ir pasando la reacción por diferentes etapas sucede que, las nubes electrónicas van distribuyéndose de formas diferentes en los arregios moleculares. Un dato explicit de estos cambios (a nivel MP2) son los valores de los momentos dipolares (MD), obtenidos en las diferentes configuraciones geométricas. Por ejemplo, analicemos para las geométricas del TS e l estos datos y comparemoslos con sus respectivas estructuras geométricas. Estos se listan en la Tabla 4.6. Los correspondientes comportamientos a lo largo del crecimiento del COV se muestran en la Figura 4.6.1.

Tabla 4.6 Momentos dipolares (MD) del TS e I para las reacciones de alcoxilos (Debies).

MD (REACCION)	I TS	
1- 1	3.39	2.41
11- N	5.19	3.00
111- X	5.47	3.14
N-N	5.52	3.11

Notamos que los valores del TS son mayores que los del I a lo largo de las reacciones. Notamos también que esto coincide con las correspondentes geometrías, en el I vertos que los dos oxígenos que no intervienen en la interacción, se mantienen practicamente fuera de lo que representaria mayormente al plano molecular. Mientras que en la estructura del TS, los oxígenos del complejo activo en su totalidad interacionan mas fuertemente con el resto de los átomos del complejo (esquema 1).

Esquema 1, Interacción molecular

Fig. 4.1.6.2 Comportamiento del momento dipolar en el TS (a) e I (b) a lo largo de las reacciones I-A a IV-A.

En la figura 4.1.6.2 podemos tambien ver que a medida que el COV es mayor habrá una mayor carga electronica que distribuir y el MD aumentara. Se puede observar que el comportamiento que siguen tanto tos TS como los estados I son similares. Existe un cambio significativo al pasar de la reacción sin C (L-A) a cuando se tiene un C (II-A). Cuando se pasa de la reacción con un C a la de 2C (III-A) el cambio que se observa es menor Y al pasar de la reacción III-A a la reacción con 3C (IV-A) el cambio es prácticamente imperceptible. Posteriormente parecerja que conforme valla aumentando la cadena de carbonos llegará un momento en el cual los momentos dipolares sean practicamente constantes.

4.2.- REACCIONES DE PEROXILOS

En esta sección se presenta el perfil energético de las reacción de peroxilos, aplicando el factor de corrección térmico. CTG, para complementar los datos de las reacciones I-P a III-P, obtenidos con anterioridad [1]. Esta corrección fue hecha para la serie de peroxilos:

$$RO_2 + NO_3 \longrightarrow RO + NO_2 + O_2$$

con R = H. CH₃ y C₂H₅

(I-P. II-P. III-P)

Esto se realizó con el fin de poder comparar los resultados obtenidos en la serie de alcoxilos, que fueron calculados en este trabajo.

Además, en este trabajo se realizaron los cálculos para la reacción de peroxilos cuando R = C₃H₇ (IV-P), así como su perfil energetico y sus parametros geométricos más relevantes. Esto debido a que no se contaba con información previa para poder comparar con la reacción IV-A de la serie de alcoxilos, que también se estudia en el presente trabajo.

En este trabajo solo se presentan las tablas con los valores de energía para las reacciones I-P a III-P. Sus perfiles energéticos y sus parámetros geométricos pueden consultarse en la referencia [1].

De igual forma que en la sección de alcoxilos definimos los siguientes términos:

 ΔH_{μ} es diferencia entre la sumatoria de las energías de los productos ($\sum PROD$) y la sumatoria de las energías de los reactivos ($\sum RE.IC$), y representa la entalpía de reacción.

$$\Delta H = \sum PROD - \sum REAC$$

 \mathcal{M}_1 es la diferencia entre el valor numérico de la energía de los reactivos ($\sum REAC$) y la energía del intermediario (INTER) y esta dada por:

$$\Delta E_1 = \sum REAC - INTER$$

 M_{2}^{2} es la diferencia entre el valor numérico de la energía del intermediario y el valor de la energía del TS, y representa la E_A y esta dada por:

$$\Delta E_{\star} = INTER - TS$$

 ΔE_{z} es la diferencia entre el valor de la energía del TS y la suma de las energías de los productos.

$$\Delta E_3 = TS - \sum PROD$$

ZPE es el factor de corrección a temperatura cero. CTG es el factor de corrección térmico, considerado a temperatura ambiente.

RESULTADOS

and a second of the second second

PARTE 4.2.1

Las correcciones hechas para la reacción I-P

 $HO_2 + NO_3 \longrightarrow OH + NO_2 + O_2 I-P$

de peroxilos se presentan en la Tabla 4.7 y su perfit energético en la Figura 4.2.1.1.

Tabla 4.7 Energias (ua) para la reacción I-P de la serie de peroxilos

	MP2	ZPE	MP2+ZPE	CCSD(T)	CCSD(T)+ZPE	CTG	CCSD(T)+CTG	MP2+CTG
							_	_
но,	-150.58798	0.01468	-150.57330	-150.6142	-150.59947	-0.00747	-150.62162	-150.59545
NO,	+279,66345	0.01860	-279.64485	-279.66671	-279.64811	-0.00582	-279.67253	-279.66927
REACT	-430.25143		-430.21815	-430.28086	-430.24758		-430.29414	-430.26472
PROD								
но	-75.57439	0.00878	-75.56561	-75.58917	-75.58039	-0.00813	-75.59730	-75.58252
NO;	-204.66082	0.01050	-204.66031	-204.67312	-204.66262	-0.01353	-204.68666	-204.67435
о,	-150.02994	0.00331	-150.02663	-150.03742	-150.03411	-0.01669	-150.05411	-150.04663
2PROD	-430.26515		-430.24256	-430.29972	-430.27713		-430.33807	-430.30350
INTER	-430,27395	0.03291	-430.24104	-430.31772	-430.28481	-0.00222	-430.31995	-430.27618
TS	-430.25876	0.02910	-430.22966	-430.28639	-430.25729	0.00332	-430.28307	-430.25544
\H_ (*)	-8 60817		-15.31688	-11.83420	-18.54291		-27.56432	-24.33833
(E-11)	-14 1338H		-14 36417	-23.13478	-23.36507		-16.19209	-7.19118
νE. (΄)	9.53365		7 14161	19.66218	17 27014		23.13917	13.01065
E. (1)	-4 00786		8 09416	-8.36148	12 44778		-34.51141	-30.15779

(*) Kcal/mol

\Hagap= -4 [17]

Figura 4.2.1.1.- Perfil energético para la reacción I-P de la serie de peroxilos

En la Tabla 4.7 podemos observar que el valor que mas se acerca al dato experimental de $M_{H_{el}}$ es el MP2. El MP2+ZPE es el que nos proporciona la menor Ea, mientras que aplicando el factor de CTG a los métodos MP2 y CCSO(T) los valores obtenidos para el $M_{H_{el}}$ están demasiado lejos del dato experimental.

En la Figura 4.2.1.1 podemos observar que primeramente encontramos un l y después una barrera representada en su cúspide por la estructura del TS. Vemos como aplicando el factor de corrección CTG a los métodos MP2 y CCSD(T) respectivamente, la barrera que hay del l a los productos aumenta energéticamente.

Cabe hacer notar que existe un cruzamiento de los perfiles energeticos MP2 con el MP2+CTG y de los perfiles CCSD(T) con el CCSD(T)+CTG en la región del TS a P. Otro cruzamiento importante ocurre entre el perfil MP2+CTG con el CCSD(T) en la región de los productos, arrojando valores mas estables para P el metodo MP2+CTG.

PARTE 4.2.2

Las correcciones térmicas hechas para la reacción II-P de peroxilos

CH3O2	+	NO_3	+	CH30 +	NO ₂	+	O2	H-P
-------	---	--------	---	--------	-----------------	---	----	-----

se incluyen en la Tabla 4.8 y su perfil energetico en la Figura 4.2.2.1.

Tabla 4.8 Energias (ua) para la reacción II-P de la serie de peroxilos.

	MP2	ZPE	MP2+ZPE	CCSD(T)	CCSD(T)+ZPE	CTG	CCSD(T)+CTG	MP2+CTG
REAC				-				
сн.о,	-189.7719	0.04411	-189.72780	-189.81817	-189.77407	0.01847	-189.79970	-189.75343
NO.	-279.66345	0.01860	-279.64485	-279.66671	-279.64812	-0.00582	-279.67253	-279.66927
1REAC	-469.43535		-469.37264	-469.48488	-469.42217		-469,47223	-469.42270
PROD								
CH O	-114.76263	0.03783	-114.72480	-114.7985	-114.76065	0.01490	-114,78358	-114.74773
NO,	-204.66082	0.01050	-204.65031	-204.67313	-204.66262	-0.01353	-204.68666	-204.67435
0,	-150.02994	0.00331	-150.02663	-150.0374	-150.03411	-0.01669	-150.05411	-150.04663
2.PROD	-469.45339		-469.40175	-469.50903	-469.45738		-469.52434	-469.46871
INTER	-469.45840	0.06113	-469.39727	-469.51993	-469.45880	0.029051	-469.49088	-469.42935
TS	-469.44503	0.05787	-469.38716	-469.49925	-469.44138	0.023741	-469.47551	-469.42129
5H# (*)	-11 31902		18.26178	-15 15373	-22.09649		-32.70169	-28 86702
5E (1)	14 46708		15.45414	-21.99524	-22.98230		-11,70168	-1.17352
1E. (1)	8 39223		6.34343	12.97551	10 92671		9.64347	5.06018
E (1)	-5 24404		-9 15088	-6.13384	10.04068		-20.64348	-29 75368

(*) Kcal/mol

\H. m+* -9 [18]

En la Tabla 4 8 podemos observar que al igual que en la reacción I-P, el valor de ΔH_{μ} que más se acerca al dato experimental es el MP2. El MP2+CTG es el que nos proporciona la menor Ea. Aplicando el factor de corrección termica a los metodos MP2 y CCSD(T), los valores obtenidos de ΔH_{μ} están demasiado lejos del dato experimental, como sucedio en la reacción antenor.

TRUE CON LLA DE CLUCEN

Figura 4.2.2.1.- Perfil energético para la reacción H-P de la serie de peroxilos

Al aplicar el factor de corrección CTG (como se aprecia en la figura 4.2.2.1) a los métodos MP2 y CCSD(T) existe un aumento energético en estos perfiles para esta reacción. Así mismo existe un cruzamiento de los perfiles CCSD(T) con el CCSD(T)+CTG hacia los productos, así como los perfiles MP2 con el MP2+CTG en la misma región (ΔE_1).

PARTE 4.2.3

Las correcciones térmicas hechas para la reacción (II-P de peroxilos

se presentan en la Tabla 4.9 y su perfil energético en la Figura 4.2.3.1.

En la Tabla 4.9 se puede apreciar que, al igual que en las reacciones I-P y II-P el valor que más se acerca al dato experimental de MI_{\odot} es el MP2, y el que proporciona una E_A menor es el MP2+CTG, aunque se le parece mucho el MP2+ZPE. El valor de MI_{\odot} también se aleja demasiado del dato experimental al ser aplicado el factor CTG a los metodos MP2 y CCSD(T), como sucede en las reacciones anteriores.

	MP2	ZPE	MP2+ZPE	CCSD(T)	CCSD(T)+ZPE	ста	CCSD(T)+CTG	MP2+CTG
REAC								
C,H.O,	-228.97264	0.07331	-228.89933	-229.03670	-228.96339	0.04551	-228.99119	-228.92713
NO,	-279.66345	0.01860	-279.64485	-279.66671	-279.64811	-0.00582	-279.67253	-279.66927
LREAC	-508.63609		-508,54418	-508.70341	+508.61150		-508.66372	-508.59640
PROD	-							
C,H.O	-153.96111	0.06781	-153.89330	-154.01523	-153,94742	0.04106	-153.97417	-153.92005
NO,	-204.66082	0.01050	-204.65031	+204.67313	-204.66262	-0.01353	-204.68666	-204.67435
0,	-150.02994	0.00331	-150.02663	-150.03742	-150.03411	-0.01669	-150.05411	-150.04663
1PROD	+508.65187		-508.57025	-508.72578	-508,64415		-508.71494	-508.64103
INTER	-508.65422	0.08979	-508.56443	-508.73485	-508.64507	0.05544	-508.67942	-508.59878
TS	-508.64552	0.08682	-508.55870	-508.71791	-508.63109	0.05059	-508.66732	-508.59493
1Hn (*)	-9 90085		16.35604	-14.03676	-20.49195		-32.14259	-28.00671
\E , (')	-11.37600		12.70694	-19.72309	-21.06402		-9.85160	-1.49471
NE. (*)	5.45802		3.59559	10.63178	8.76935		7 59090	2.41714
. E (()	1 98276		-7 24452	-4 93531	-8.19707		-29.88169	-28.92914

Tabla 4.9 Energias (ua) para la reacción III-P de la serie de peroxilos.

(*) Kcal/mol

14 est = -8 17

Figura 4.2.3.1.- Perfil energético para la reacción III-P de la serie de peroxilos

En la Figura 4.2.3.1 se observa que la energia ΔE , practicamente desaparece al aplicar el factor CTG en el metodo MP2, y al aplicario en el metodo CCSD(T) tambien tiende a desaparecer, aunque en menor grado. La etapa final que es el ir de TS a productos sigue presentando una ΔE , muy significativa, en esta aproximacion como en la reaccion anterior, aunque aquí no se da el cruzamiento de los perfiles.

RESULTADOS

PARTE 4.2.4

Los datos energéticos que se presentan en la Tabla 4.10 para la reacción

$$C_3H_7O_2$$
 + NO₃ \longrightarrow C_3H_7O + O₂ + NO₂ IN-I

and the state of the strength of the state state of the

fueron calculados en su totalidad durante el desarrollo del presente trabajo, así como su el perfil energético que se presenta en la Figura 4.2.4.1, y los parámetros geometricos más relevantes de la reacción se presentan en la Figura 4.2.4.2.

I adia 4.10 cherchas illar dara la reacción 11-1. de la serie de d	FOXIOS.
--	---------

	MP2	ZE	MP2 + ZE	CCSD (T)	CCSD (T) + ZE	CTG	CCSD(T)+CTG	MP2+CTG
REACTIVOS								
С,н.О,	-268.16734	0.10204	-268.06530	-268.24901	-268,14697	0.07145	-268.17757	-268.09589
NO,	-279.66345	0.01860	-279.64485	-279.66671	-279.64811	-0.00582	-279.67253	-279.66927
L REAC	-547.83079		-547.71015	-547.91572	-547,79508		-547.85009	-547.76516
PRODUCTOS								
C'H+D	-193.15799	0.09621	-193.06178	-193.22990	-193,13369	0.06824	-193.16166	-193.08975
NO,	-204.66082	0.01050	-204.65031	-204.67313	-204.66262	-0.01353	-204.68666	-204.67435
0,	-150.02994	0.00331	-150.02663	-150.03742	-150.03411	-0.01669	-150.05411	-150.04663
1 PROD	-547.84875		-547.73873	-547.94044	-547.83043		-547.90243	-547.81073
INTER	-547.84878	0.11866	-547.73012	-547.94729	-547.82863	0.08213	-547.86515	-547.78665
TS	-547.84637	0.11619	-547.73018	-547.93609	-547.81990	0.07907	-547.85702	-547.76730
· Ha (*)	-11.26719		-17.93504	-15 51037	-22.17822		-32.83949	-28.59632
∴£, (*)	-11.28815		-12.53186	-19.80544	21.04915		-9.44976	-0.93247
VE (*)	1 50933		-0.038 +	7.02276	5 47 534		5.10260	0.41083
E (*)	-1 48837		-5.26509	2 72769	-6 60441		-28.49234	-27.25302

(*) Kcal/mol

Figura 4.2.4,1.- Perfil energético para la reacción (V-P de la serie de peroxilos

Al igual que en la reacción IV-A, se carece de dato experimental para ΔH_{μ} , para poder compararlo con los valores obtenidos teóricamente. Pero, si tomáramos en consideración los resultados obtenidos para las reacciones i-l'a III-l', se podra decir que el valor experimental seguramente debiera estar alrededor del dato obtenido por método MP2 (notamos que las reacciones de esta serie se comportan sistemáticamente, véase por ejemplo que en esta reacción el dato MP2-z2PE es el que nos proporciona la menor Ea, parecido a como ha venido succelendo en las reacciones (-) el II-I).

En la Figura 4.2.4.1 se puede apreciar mejor el efecto de aplicar el factor CTG en los métodos MP2 y CCSD(T). ΔE , pràcticamente desaparece en el perfil MP2+CTG, como también sucedió en las reacciones anteriores. En el perfil CCSDT(T)+CTG se nota la misma tendencia, aunque en menor grado. Cabe notar que los perfiles energeticos no se cruzan en ninguna región, como si sucedió en las reacciones I-P y II-P. Los perfiles MP2+CTG y CCSD(T)+CTG son bastante más altos energéticamente que con respecto a los métodos MP2 y CCSD(T), que como se dio esta separación en las reacciones anteriores. También aquí los productos son demasiado estables al incluir el efecto CTG.

En lo que respecta al calculo MP2 al no existir una diferencia significativa en energia entre el 1 y el TS, así como, entre el TS y los productos. quiere decir que la reacción prácticamente se podria llevar en un solo paso, es decir de reactivos a productos.

En la Figura 4.2.4.2 se observa que las geometrias tanto del I como del TS son parecidas a los productos, lo cual también concuerda con los tipos de perfil encontrados.

TEST CON LIVE

RESULTADOS

REACTIVOS (C3H7O2 + NO3*)

INTER (C3H70 .. O2 .. NO2)

TS (C₃H₇O O₂ NO₂)

PRODUCTOS ($C_3H_7O + O_2 + NO_2^*$)

r1 = 1.38

Fig. 4 2.4.2- Parámetros geométricos para la reacción IV-P. "Las geometrías del NO3 y NO₂ se pueden ver en la Fig. 4.1.1.2

PARTE 4.2.5 RESULTADOS GENERALES DE PEROXILOS AL INCLUIR EFECTOS TERMICOS (CTG).

Haciendo un anàlisis general de la serie de peroxilos se puede decir que el comportamiento de esta serie es sistemático. Cabe hacer notar que en el método MP2+CTG la energía ΔE_1 tiende à desaparecer conforme se va aumentando el numero de carbonos en la cadena de peroxilos, hasta llegar practicamente de los reactivos al TS sin pasar por el I, y de allí a los productos. Consecuentemente la reacción IV-IV prácticamente no pasa por ningún lo TS, ya que la caída de reactivos al I (ΔE_1) es casi imperceptible, así como la barrera en TS, y se podría llegar directamente hasta los productos.

El método que mejores resultados proporciono para los valores de MI_{μ} en comparación con los datos experimentales fue el MP2.

Asimismo el método MP2+ZPE es el que proporcionó la menor barrera energètica (al ir del 1 a los productos) para las reacciones (-1' y (-1' y para las reacciones II-1' y liti-l' lo due la aproximacion MP2+CTG. Aunque en todas la reacciones los valores MP2+ZPE o MP2+CTG son muy similares.

En general el efecto CTG desestabilizó tanto las energías del 1 como de TS para todas las reacciones, excepto en l para la reacción I-P, donde este efecto estabilizó ligeramente al 1.

PARTE 4.2.6 PARAMETROS COMO FUNCION DE LA REACCION

A).- ENTALPIAS DE REACCION

En esta se parte se muestran en conjunto las entalplas de reacción para las reacciones de peroxilos. Estos valores se presentan en la Tabla 4.11.

Tabla 4.11	-ML,,	en las reacciones	de	peroxilos
------------	-------	-------------------	----	-----------

H (REACCION)	MP2	MP2+ZPE	CCSD(T)	CCSD(T)+ZPE	CCSD(T)+CTG	MP2+CTG	\H ++p
1-12	-8.61	-15.32	-11.83	-18.54	-27.56	-24.34	-4.00
11-12	-11.32	-18.26	-15.15	-22.10	-32.70	-32.70	-9.00
- 10-e	-9.90	-16.36	-14.04	+20.50	-32.14	-28.00	-8.00
<u>N-P</u>	-11.27	-17.94	-15.51	-22.18	-32.84	-28.60	

Figura 4.2.6.1- Comportamiento del ΔH , en la serie de peroxilos

Como podemos observar en la Figura 4.2.6.1, el comportamiento del ΔH_x teorico es a lo largo de estas reacciones similar al experimental. El comportamiento del ΔH_x aplicando la aproximación CCSD(T)+CTG tiene una caida significativa de la reacción sin C y la que tiene un C. Esta caida es la mas parecida al experimento, comparando con las otras metodologías, al igual que sucedió en la reacción de alcoxilos. Esta aproximación luego tiene una tendencia relativamente constante. Cuando aplicamos la aproximación *1P2+CTG existe una caida demasiado significativa de la reacción sin C a la que tiene un solo C, sobrepasando al cambio experimental. Asimismo esta aproximación luego tiene una solo C. a la de 2C. Y después de la reacción con 2C a la de 3C, el comportamiento es casi monotonico.

El nivel MP2 es el que más se acerca a los valores experimentales.

B).- MOMENTOS DIPOLARES

En la Tabla 4 12 mostramos los valores de los momentos dipolares en el TS e I de las reacciones de peroxilos y en la Figura 4.2.6.2 el comportamiento de los mismos.

Tabla 4.12 Momentos dipolares (MD) en el TS e I para las reacciones de peroxilos (Debies).

MD(REACCION)	TS	1
1-12	1.88	1.60
11-12	2.30	2.80
111.0	2.28	2.80
1N-1P	1.86	2.75

Fig. 4.2.6.2 Comportamiento del momento dipolar en el TS (a) e I (b) a lo largo de las reacciones I-P a IV-P.

Como podemos apreciar en la Figura 4.2.6.2 tanto en el TS como en el I, el comportamiento del momento dipolar, tiene un salto grande entre la reacción sin C y la que tiene un C. Después, entre la reacción que tiene un C y la que tiene 2C el comportamiento es casi monotónico. Para luego ir a la reacción de 3C con una disminucion muy considerable en el TS e irrelevante en el I.

La diferencia entre estos dos grafos nos deja entrever que aunque las geometrías del TS e I sean tardias, presentando tendencias ya marcadas hacia los productos, las distribuciones de carga electrónica a lo largo del perfil van siendo muy diferentes, repercutiendo en valores muy distintos de los momentos dipolares. Y mas notablemente se ve esta diferencia en el peroxi de 3C.

PARTE 4.3 RESULTADOS COMPARATIVOS ENTRE ALCOXILOS Y PEROXILOS

Comparando los resultados obtenidos para ambas series de reacciones se puede observar que:

Ambas reacciones son exotérmicas.

En el perfil energetico de los peroxilos, primero se encuentra un I de caràcter tardio y después se localiza el TS, también de caràcter tardio. Caso contrario en los alcoxilos, donde primero se tiene un TS temprano y posteriormente un I tardio. Cabe señalar que el TS de la reacción de peroxilos es negativo dado que se encuentira por debajo del valor energetico de los reactivos, mientras que en el caso de los alcoxilos es positivo para toda la serie.

En el caso del M_u el comportamiento teórico va de acuerdo con los datos experimentales en las dos series. Para los alcoxi la metodología MP2+CTG fue la más aproximada al experimento y para los peroxi fue la MP2.

La menor barrera energética para los peroxilos la proporciona el metodo MP2+CTG para las reacciones de 1 y 2C. mientras que, para la reaccion sin C y con 3C, la barrera mas baja la proporciona el método MP2+2PE. Aunque siempre fueron muy parecidos los valores de estas dos metodologías. Para los alcoxilos es el metodo CCSD(T)+2PE, el que proporciona la menor barrera

Al aplicar el factor de corrección CTG al método CCSD(T) en la serie de alcoxilos hubo una disminución importante en el cambio energético de la los productos conforme va aumentando el numero de carbonos en la cadena, por lo que si se sigue aumentando el numero de carbonos seguirá disminuyendo hasta que llegue un momento en que desaparecera para tener solo reactivos. TS y productos, lograndose una reacción elemental. En la serie de peroxilos ocurre algo similar al aplicar el factor de corrección CTG en el método MP2, siendo en esta serie mas notoria la desaparición del l.

Si aplicamos solo los métodos MP2 Y CCSE(T) a las series en estudio, en los alcoxilos el comportamiento en la coordenada de reacción se mantiene, es decir se tienen reactivos, TS, L y productos. En el caso de los peroxilos : aplicando el metodo MP2, conforme aumenta el número de carbonos, el Ly el TS tienden a desaparecer. Es decir, por el crecimiento de la cadena y no por efectos termicos.

Para el caso de las reacciones IV-A y IV-P que no cuentan con un dato experimental, fue de mucha utilidad el concomiento previo de los datos experimentales de las anteriores reacciones (I-A, II-A, IIIA, I-P, III-P). Esto debido a que nos dieron la pauta para poder predecir tanto los valores de ΔH_{μ} , la Ea, y el comportamiento en la coordenada de reacción.

Estos metodos computacionales proporcionan una buena aproximación de los datos termodinámicos de estas reacciones ($M_{i,y}$ y Ea), y se podrían corroborar con experimentos posteriores.

CAPITULO V: CONCLUSIONES

Las reacciones de alcoxilos tuvieron un comportamiento sistemático.

El efecto térmico CTG aumenta, si aumenta el número de C en la cadena de alcoxilos. Esto es de esperarse ya que se relaciona con la energía cinética de las moléculas, y mientras mas masivas, mayores valores energéticos producirán.

Consecuentemente se pudo notar que la presencia del intermediario que antecede a los productos en esta reacción tiende a desaparecer a medida que este efecto CTG aumenta. Lo que daria la pauta que a partir de un cierto número de carbonos en la reacción, esta seguramente se comportará como una reacción elemental, yendo de reactantes, al estado de transición y a productos.

La aproximación de MP2+CTG como la mas cercana a los valores experimentales reportados para ΔH_R , también es un resultado muy adecuado, ya que con la metodología MP2 es que se llevaron a cabo las oplimizaciones geométricas de reactantes y productos, involucrados en este valor, lo cual representa una aproximación de los efectos de correlación electrónica adecuada.

La menor Ea se consigue con el cálculo CCSD(T)+ZPE, que es un cálculo más sofisticado que el MP2, pero seguramente mas adecuado para involucrar complejos moleculares ya mayores en número de átomos, como son el TS y el I. Se busca un valor pequeño de la barrera energética porque la literatura experimental indica que se trata de una reacción rápida.

Los valores obtenidos para la reacción IV, que carece de dato experimental, quedan a nivel de predicción.

Para las reacciones de peroxilos también se pudo constatar que la aproximación MP2+CTG tiene la tendencia de desaparecer al I, a medida que aumenta la cadena de carbonos.

El mejor valor experimental para ΔH_{μ} lo proporciona la aproximación MP2.

La aproximación MP2+ZPE da el menor valor de Ea para las reacciones IP y IVP, mientras que la MP2+CTG es la que menor Ea proporciona a las reacciones IIP y IIIP. Aunque en realidad la corrección ZPE ó CTG son muy parecidas entre si, después de tomar en cuenta las energías ab initio del cálculo molecular.

El efecto CTG es tambien para esta reacción el de desestabilizar tanto al I como al TS. Y mencionamos ya que aumentando el número de C tiende a desaparecer I. Luego entonces queda la observación que la desestabilización del TS logra para las reacciones II y III, que la barrera energética quede arriba de los reactantes, y para las reacciones I y IV, aun con la desestabilización, el TS queda por debajo del reactante.

Tambien para los peroxilos la reacción IV-P queda a nivel de predicción. De hecho, los resultados calculados para las reacciones de C menor que 3, proporcionaron la pauta para poder predecir los valores por los cuales estaran ubicados los datos experimentales, de las reacciones IV-A y IV-P.

Los métodos ab-initio son una buena complementación a los procedimientos experimentales, porque, para determinar por ejemplo, los TS e I, que son etapas por la cuales pasa normalmente una reacción, su detección experimental es muy difícil o imposible.

Finalmente, por la comparación en magnitudes de las barreras energéticas determinadas para las reacciones de peroxi y alcoxi, se puede concluir que la reacción de peroxi será un tanto más espontánea y por lo tanto eficiente, que la de alcoxi.

OPTIMIZACION GEOMETRICA

APÉNDICE A

OPTIMIZACIÓN GEOMÉTRICA

Se llama optimización geométrica al proceso mediante el cual se encuentra un mínimo local a lo largo de la superficie de energia potencial para un arregio molecular. Este minimo proporciona una geometria molecular energéticamente estable sobre la superficie de potencial. Para N átomos la energía potencial será una función de 3N = 6 grados de libertad (3N = 5 para moléculas lineales).

La energía E obtenida dentro de la aproximación de Born-Oppenheimer es una función paramétrica de las coordenadas nucleares. Estas estarán dadas por:

 $\mathbf{x}^{t} = (x_{t}, x_{t}, \dots, x_{t_{t_{t_{t}}}})$, N es el número de átomos en la molécula.

Queremos ir de E(X) a E(X) definiendo $q = (X_1 - X)$. Expandemos la energía en una serie de Taylor alrededor de X:

 $E(X_1) = E(X) + q^{\dagger} f(X) + \frac{1}{2} q^{\dagger} H(X) q^{\dagger} + \dots$ (A-2.1)

donde el gradiente **f** es: $f_i = \frac{\partial E(X)}{\partial V_i}$ e i se refiere al i-esimo elemento en **X**.

Y un elemento del Hessiano H será: $H_{ij} = \frac{\partial E(X)}{\partial X}$

Quedándonos en la forma cuadrática para X = X_a, donde X_a describe un punto estacionario (f(X_a) = 0), A-2.1 se reduce a:

$$E(X_1) = E(X_e) + \frac{1}{2}q^{\dagger}H(X_e)q$$

Y de forma similar:

 $f(X_1) = f(X) + H(X)_0$

v para $X_1 = X_2$:

$$\mathbf{f}(\mathbf{X}) = -\mathbf{H}(\mathbf{X})\mathbf{q}$$

La solución de A-2.3, es el punto de partida de los procedimientos empleados para encontrar extremos de funciones multivariables, donde la forma funcional de E(X) no es explicita en X. Si H es no singular entonces:

$$q = -H^{1}(X)f(X)$$

Esto permite encontrar la solución X, desde cualquier X suficientemente próxima para que la función de energía sea parecida a la aproximación cuadrática. De joual forma, un estimado de E(X_), se obtiene de:

$$E(X_{*}) = E(X) - \frac{1}{2} q^{T} H(X) q$$
 (A-2.5)

De manera que estableciendo alcin criterio de convergencia, se pueden usar métodos analíticos para obtener tanto la geometria como la energia (Ec. A-2,4 y A-2,5), de un minimo local en la superficie de potencial, uno de estos metodos es el Newton-Raphson (20), empleado en estos cálculos.

(A-2.3)

(A-2.4)

APÉNDICE B

ENERGIA DE ACTIVACION

La mínima energía requerida para que una reacción ocurra, la llamamos energía de activación (ver figura B-1), y es la diferencia entre el estado de transición y los reactivos en la coordenada de reacción (la coordenada de reaccion es el eje de las abscisas donde se representa el valor que permite definir la posición de los átomos a lo largo del camino de reacción).

Coordenada de reaccion

El estado de transición es punto máximo relativo por que puede ser no absoluto, pues solo significa la menor cantidad de energía requerida para atravesar la barrera energética existente entre el estado inicial y final de una reaccion química. La energía necesaria para alcanzar el estado de transición proviene fundamentalmente de las colisiones intermoleculares que a la vez son función de la agitación térmica, para una reacción no fotolítica.

Desde un punto de vista termodinàmico las diferencias en energía entre el estado inicial y final de una reacción son de gran importancia. La energía total de la reacción sera la diferencia entre el contenido energético del estado final e inicial. Si esta diferencia es positiva significa que al producirse la reacción, el sistema aumenta su energía por lo que el proceso es endotermico. Una diferencia negativa caracteriza a una reacción exotermica, donde hay una disminucion de la energía del sistema, como se puede apreciar en la Fig. B-2.

En un proceso que se divide en dos partes: el sistema y los alrededores, el primero se refiere a la parte donde ocurre el proceso (en este caso la reacción), y todo lo demás que no esta dentro del proceso constituyen los alrededores.

Figura B-2: Características de un proceso exotérmico (a) y de un proceso endotermico (b).

ENERGIA DE ACTIVACIÓN

La energía térmica se asocia al movimiento de las moléculas del sistema. Los enlaces moleculares se consideran energía potencial. El calor asociado a una reacción se llama *entalpía* (ΔH). La entalpía es el cambio de calor que se da en una reacción guímica, el cual estabiliza a las moléculas al generar enlaces más fuertes y hace compuestos más ordenados.

Un sistema y sus alrededores tienden espontaneamente a desordenarse. La entropía (ΔS) es quién mide el grado de desorden de un sistema. De ahí que la entropía estabiliza a los materiales al desordenarios. Así que pareciera que ΔH y ΔS compiten en la estabilización de las sustancias. Los dos fenómenos afectan a una reacción y deciden la manera en que esta procede. Por ello requerimos de una cantidad que los considere a ambos.

Una manera de obtener el máximo de energía disponible en un proceso termodinámico, es usando la función denominada energía libre de Gibbs:

$$G = H - TS$$
.

Luego entonces, el cambio de una condición inicial a una final en el sistema, a Ticte será:

$$\Delta G = \Delta H - T \Delta S, \tag{B-1}$$

que es la expresión requerida para conectar a ΔH y ΔS .

Por otro lado, en una reacción cualquiera se tiene

$$\Delta G = \sum G \ productos - \sum G \ reactivos \ , \tag{B-2}$$

sustituyendo (B-2) en (B-1) a T = cte,

$$\Delta G = (H_P - H_r) - T(S_P - S_r)$$

$$= \Delta H - T\Delta S$$
(B-3)

donde $\Delta H \neq \Delta N$ son los cambios de entalpla y entropla respectivamente, del proceso en cuestión. Esta expresión a 0° K, se reduce a $\Delta G = \Delta H$. Si estrictamente se requiere calcular a T ambiente se aplica la corrección representaria al término – $T\Delta S$ en (B-3).

El signo de ΔG nos dice mucho de una reacción Si $\Delta G > 0$ indica que la reacción no es espontánea, requiere de energia para flevarse acabo (es endotermica ver Fig. B-2 (b)). Si $\Delta G = 0$ indica que la reacción ya ocurrió y esta en su estado final de equilibrio. Si $\Delta G < 0$ indica que la reacción es espontánea y no se necesita energía para que ocurra (es exotérmica ver Fig. B-1 (a)).

TESIS COT FALLA DE CAUVEN

الشيكاني دين الم

BIBLIOGRAFIA

[1].- N.N. García Ramos, TESIS LICENCIATURA, FES-Zaragoza, UNAM, noviembre del 2001.

[2].- Biblioteca de Consulta Microsoft® ENCARTA® 2002. © 1993-2001 Microsoft Corporation.

[3].- Seinfeld John H. CONTAMINACIÓN ATMOSFÉRICA, FUNDAMENTOS FÍSICOS Y QUÍMICOS, Instituto de Estudios de Administración Local, Madrid, 1978.

[4].- Finlayson-Pitts, B. J.; Pitts, N., ATMOSPHERIC CHEMISTRY: FUNDAMENTALS AND EXPERIMENTAL TECHNIQUES; Wiley-Interscience: New York, 1986.

[5].- Wayne, R. P. ATMOSPHERIC ENVIRONMENT, 1991, 25A, No. 1.

[6].- Hellis, F. Moorgat, G.K. Crowley, J., J. Phys. Chem. 1995 (99) 147 - 149.

[7].- Alok Ray, Véronique Daële, Isabelle Vassalli, Gilles Poulet, and Georges Le Bras, J. Phys. Chem. 1996 (100) 5737- 5744.

[8].- Redmore H. F. FUNDAMENTOS DE QUÍMICA, Prentice Hall, México 1981.

[9].- Cruz G. D., Chamizo J. A., Garritz A. ESTRUCTURA ATÓMICA UN ENFOQUE QUÍMICO, Addison-Eesley Iberoamericana. México, 1986.

[10].- Gutierrez A. C., OPTICA Y ELECTROMAGNETISMO, edit Limusa., Mexico 2000.

[11].- Pilar F. L. ELEMENTARY QUANTUM CHEMISTRY, McGraw-Hill, U.S.A, 1968.

[12].- Saxon D. S., ELEMENTOS DE MECÁNICA CUÁNTICA, Editorial Easo, S.A., México, 1986.

[13],- Levine I. N. QUANTUM CHEMISTRY. Prentice Hall,5th ed.USA,2000.

[14].- Szabo attila, Ostlund Niels. MODERN QUANTUM CHEMISTRY. INTRODUCTION TO ADVANCED ELECTRONIC STRUCTURE THEORY. Dover Publications, inc. New York, 1996.

[15],- James B. Foresman, Aeleen Frisch. EXPLORING CHEMISTRY WITH ELECTRONIC ESTRUCTURE METHODS. Second Edition, Gaussian, Inc Pittsburgh, PA,1996.

[16]- GAUSSIAN 98, Revision A.3, M.J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Chaliacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Reptogle, and J. A. Pople. Gaussian, Inc., Pittsburgh PA. (1998).

[17].- A. Mellouki, G. Le Bras, and G. Poulet, J. Phys. Chem. 1988 (92), 2229 - 2234 .

[18].- V. Daele, G. Laverdet, G. Le Bras and G. Poulet, J. Phys. Chem. 1995 (99) 1470- 1477.

(19).- P. Biggs, C. E. Canosa-Mas, J-M Fracheboud, D. E. Shallcross and R P. Wayne, J. Chem. Soc. Faraday Trans., 1995, (91), 817 - 825.

[20].- Nieto R. J. A. METODOS NUMERICOS EN LAS COMPUTADORAS DIGITALES. Editorial Limusa, México 1987.

[21].- Maron and Prutton FUNDAMENTOS DE FISICOQUÍMICA, Editorial Limusa, México, 1999.

TE	6		
 FALLA	ĽĽ	UNUTEN	