UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

POSGRADO EN CIENCIAS BIOLÓGICAS

FACULTAD DE CIENCIAS

CARACTERIZACIÓN MOLECULAR DE TRES GENES DE LA COFIA DE RAÍZ DE Zea mays

TESIS

QUE PARA OBTENER EL GRADO ACADÉMICO DE MAESTRA EN CIENCIAS (BIOLOGÍA CELULAR)

PRESENTA

TESIS CON FALLA DE ORIGEN

D3**4**6

MARIA DEL ROSARIO, LUJÁN DÍAZ

DIRECTORA DE TESIS: DRA. GLADYS ILIANA CASSAB LÓPEZ

MÉXICO, D.F.

OCTUBRE, 2003

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

PAGINACIÓN DISCONTINUA

TESIS CON FALLA DE ORIGEN

FACULTAD DE CIENCIAS DIVISIÓN DE ESTUDIOS DE POSGRADO POSGRADO EN CIENCIAS BIOLÓGICAS

NIVERADAD NACIONAL AVTONOMA DE MEXICO OFICIO FCIE/DEP/0255/03 Asunto: Asignación de Sinodales

DRA. GLADYS ILIANA CASSAB LÓPEZ

Presente.

Por este conducto me permito comunicarle que ha sido ratificado(a) como Director(a) de Tesis del(a) BIÓL. MARÍA DEL ROSARIO LUJAN DÍAZ, quien desarrolló el trabajo de tesis titulado: "CARACTERIZACIÓN MOLECULAR DE TRES GENES DE LA COFIA DE RAIZ DE Zea mays"

Asimismo comunico que el Comité Académico del Posgrado en Ciencias Biológicas en su sesión celebrada el día 31 de marzo del año en curso, ha designado a los siguientes sinodales para dictaminar si el trabajo que ha desarrollado como tesis el(a) alumno(a) antes mencionado(a) tiene los méritos para obtener el grado de Maestro(a) en Ciencias (Biología Celular).

CARGO

GRADO, NOMBRE COMPLETO

PRESIDENTE VOCAL SECRETARIO SUPLENTE SUPLENTE : DR. : DRA. : DRA. : DR. : DR. : DRA. GUILLERMO LAGUNA HERNÁNDEZ ALICIA ENRIQUETA BRECHU FRANCO GLADYS ILIANA CASSAB LÓPEZ LUIS FELIPE JIMÉNEZ GARCÍA GEORGINA PONCE ROMERO

Sin más por el momento, aprovecho la ocasión para enviarles un cordial saludo.

A tentamente, "POR MI RAZA HABLARÁ EL ESPÍRITU" Cd. Universitaria, D. F., a 07 abril del 2003.

JEFE DE LA DIVISIÓN

Autorize a la Dirección General de Bibliorecus de la
contenido de montrabelo completa
NOMBRE MULLA del Rocario
-topin Digz
FECHA: 20 10112003
FIRMA: ROCARIO LUAN DIAZ

DCRVVASR\cigs

Esta tesis se desarrolló en el laboratorio de la Dra. Gladys I. Cassab López en el Instituto de Biotecnología de la UNAM. Cuernavaca Morelos. Financiada por los proyectos IN 208999 DeGAPA y 25186N CONACYT.

TESIS CON FALLA DE ORIGEN

DEDICATORIAS

A mis padres Refugio Luján y Asunción Díaz

Por que con su apoyo y comprensión fué posible la realizacón del presente trabajo. Gracias.

A mi esposo Enrique Pineda Por su amor y paciencia durante todos los años compartidos. Te amo.

A mi sobrino Jorge David A quien deseo que siga adelante proponiéndose metas e ideales. Te quiero.

TECIS CON FALLA DE ORIGEN

AGRADECIMIENTOS

ı

A la Dra. Gladys I. Cassab López

Por que me dio la oportunidad de realizar esta tesis en su laboratorio y por su apoyo y enseñanza durante todos estos años.

A la Dra. Georgina Ponce Por su asesoría durante el desarrollo de mi trabajo y por enseñarme tantas cosas.

A todos los compañeros y amigos en el laboratorio Por haberme brindado su amistad y por todos los momentos compartidos.

A la UNAM

Por todo.

.

THETE CON

ÍNDICE

I.-RESUMEN

II.- INTRODUCCIÓN

II.1. Organización general de las plantas

II.2. La Raíz

II.3. Estructura de la raíz

- Cofia
- Meristemo apical (región de división celular)
- Zona de elongación
- Zona de maduración
- II.4. Cofia
- Funciones
- Tropismos

III.- ANTECEDENTES

III.I. Aislamiento de genes específicos de la cofia

III.II. Análisis de las secuencias de las clonas C109, C123 y C106 de cofia
III.III. Localización de los RNAs mensajeros de las clonas ZmC109, ZmC123,
ZmC106 y ZmC103 en la cofia.

IV.- OBJETIVOS

V.- HIPÓTESIS

FALLA DE ORIGEN

iv

páging

1

34

34

VI MATERIALES Y METODOS	35
VI.I. Cepas bacterianas, vectores (plásmidos y bacteriofagos),	marcadores
de peso molecular para DNA, oligonucleótidos, soluciones amo	rtiguadoras,
medios de cultivo y antibióticos.	35
VI.II. Aislamiento de DNA	40
Purificación de plásmidos en Escherichia coli	· •
VI.III. Digestión de DNA con enzimas de restricción	41
VI.IV. Electroforesis de DNA	41
VI.V. Aislamiento de fragmentos de DNA a partir de geles de aga	rosa 42
• Purificación con polvo de vidrio utilizando el kit "Geneclean"	•
VI.VI. Subclonado de fragmentos de DNA con extremos cohesivo	s 43
 Preparación de los vectores de clonación 	
 Preparación de los fragmentos de clonación 	
• Ligación	
VI.VII. Preparación de células de E. coli competentes para tra	nsformación
con plasmidos y método de transformación	44
 Preparación de células competentes 	
Método de transformación	
VI.VIII. Preparación de sondas radiactivas de DNA	45
VI.IX. Tamizado de la genoteca genómica de maíz	45
 Titulación de la genoteca genómica 	
 Transferencia de placas a filtros de membrana "nylon" 	ப்பி வாற்காம் பி
• Hibridación	FALLA DE ORIGEN
 Amplificación y purificación de DNA de fago 	·····
VI.X. Southern Blots	48
 Tratamiento del gel de agarosa 	
 Transferencia del DNA al filtro de membrana "nvlon" 	

 Fijación del filtro de membrana "nylon"con luz ultravioleta 	
VI.XI. Preparación de DNA de cadena sencilla	50
VI.XII. Secuenciación de DNA.	51
Desnaturalización y alineamiento del templado y el primer	
• Reacción de marcaje	
Reacción de terminación	
VI.XIII. Análisis comparativo de las secuencias.	53
VII RESULTADOS Y DISCUSIÓN	54
VII.I. Tamizado de un banco genómico de maíz	54
VII.II. Análisis del patrón de restricción de las clonas genómicas	
obtenidas	61
VII.III. Análisis por Southern blot de las clonas genómicas	63
VII.IV. Obtención de la secuencia completa de las clonas genómicas	66
VII.V. Análisis comparativo de las secuencias completas de las	clonas
genómicas	72
VIII CONCLUSIONES	76
IX BIBLIOGRAFÍA	78
X ANEXO I	89

•

•

.

iii

.

I.- RESUMEN

Las raíces de las plantas vasculares tienen en su ápice un grupo de células conocido como la cofia. Las funciones que se han atribuído a la cofia son: proteger al meristemo apical de la raíz, percibir estímulos ambientales y permitir el paso de la raíz a través del suelo, pero poco se conoce de los genes que puden estar involucrados. Para entender las funciones de la cofia a nivel molecular fueron identificados varios genes a partir de una genoteca de cDNA específica de cofia y DNA genómico de maíz. Se aislaron tres de estos genes, de los cuales dos son especifícos de cofia y el tercero se expresa además en la epidermis. Las secuencias de estos genes codifican para proteínas de la pared celular, que es una estructura que contiene proteínas y polisacáridos necesarios para el desarrollo de las plantas, por lo cual la caracterización de proteínas específicas de la cofia es una estratégia importante para entender las funciones de este tejido.

El objetivo del presente trabajo es caracterizar molecularmente a nuevos genes de la cofia a partir de tres clonas específicas de cDNA denominadas C103, C109 y T101T. La secuencia completa de estas clonas, se obtuvo después de tamizar un banco genómico de maíz (1,380,000 pfu), del cual se obtuvieron varias clonas positivas. La caracterización de los insertos contenidos en estas clonas se llevó a cabo mediante el análisis del patrón de restricción y un análisis tipo Southern. Los fragmentos clonados fueron secuenciados en su totalidad. El análisis de las secuencias mostró que la clona C109 codifica para un gen de maíz llamado ZmRCP2 cuya función no se conoce. La clona C103 es homólogo a la enzima UDP-galactosa-4-epimerasa, cuya función en plantas es la producción de UDP-D-galactosa utilizada en la

iv

biosíntesis de polímeros de la pared celular, también se requiere durante el metabolismo de ciertos polisacáridos tales como los galactomananos, que se encuentran típicamente como la principal reserva de energía en el endosperma de algunas semillas leguminosas. Por último, la clona T101T no tiene homología con ningún gen reportado, de tal manera que no se conoce su función y se sugiere que se trata de un nuevo gen de maíz.

v

II.- INTRODUCCIÓN

II.1. Organización general de las plantas

Las plantas tienen dos sistemas importantes, uno aéreo: el caulinar y otro subterráneo: el radicular. La porción aérea, incluye órganos tales como las hojas, brotes, flores, y frutos. La porción radicular incluye aquellas partes de la planta que se encuentran por debajo del nivel del suelo, tales como raíces, tubérculos, bulbos y rizomas.

El cuerpo de la planta se origina de la semilla que contiene células embrionarias que darán origen a todos los tejidos de la nueva planta después del proceso de germinación. El embrión de la planta presenta una raíz o radícula y un tallo con uno o dos cotiledones u hojas germinales. En el extremo del tallo y de la raíz se encuentran los tejidos meristemáticos que se encargan de la proliferación celular seguido por la diferenciación y crecimiento de estas células. Los órganos de los vegetales se componen de tejidos o grupos de células que realizan actividades específicas.

Las plantas están constituídas por diferentes tipos de tejidos: meristemos y tejidos adultos. El meristemo podría definirse como la región donde ocurre la mitosis, un tipo de división celular por la cual de una célula inicial se forman dos células hijas, con las mismas características y número cromosómico que la original. Los tejidos adultos tienen tres tipos básicos: el tejido fundamental que constituye el tejido de sostén de la planta, está formado por parénquima, colénquima y esclerénquima. El tejido epidérmico, cubre las superficies externas de plantas y es el encargado de la protección del cuerpo de la planta, respiración, pasaje de la luz, etc, y el tejido vascular que está compuesto por dos tejidos conductores: el xilema y el floema encargados del transporte de nutrientes, agua, hormonas y minerales dentro de la planta.

II.2. La Raíz

La raíz es la porción inferior del eje de la planta, que se desarrolla normalmente bajo el suelo. Presenta formas variadas, relacionadas con sus funciones; actúa como anclaje de la planta, absorbe agua y minerales, permite la conducción del agua y los minerales a las partes aéreas de la planta, almacena reservas alimenticias y produce hormonas. Las raíces pueden además enfrentar cambios en el medio ambiente a lo largo de su crecimiento. En el suelo pueden encontrar variaciones en humedad, temperatura, composición química y niveles de compactación. Aunque estas variables ambientales pueden afectar severamente diversos procesos en las células meristemáticas, la raíz completa puede contender con ellas y sobrevivir; las raíces son por lo tanto fuertemente homeostáticas.

El desarrollo de la raíz inicia con la aparición de la radícula o raíz rudimentaria, en la punta de la radícula, en la zona media del meristemo apical, se encuentra una región llamada zona quiescente donde hay muy poca o ninguna división celular. Todas las células alrededor de esta zona se dividen formando más células que derivan hacia la punta de la raíz y llegarán a formar parte de la cofia. Las células producidas del otro lado del meristemo apical, que forman diferentes columnas, en algún momento dejan de dividirse y empiezan a elongarse; finalmente, dejan de crecer y maduran como células especializadas con funciones particulares. Estos eventos formarán los tejidos primarios de la raíz. El crecimiento de la raíz en el suelo se produce en la zona de elongación. En la zona de maduración, las células han alcanzado su tamaño máximo y se han diferenciado.

Podemos distinguir tres tipos de raíces de acuerdo a su origen: raíces primarias, raíces pivotantes derivadas de la radícula del embrión y raíces adventicias originadas de cualquier otra parte de la planta (tallo, peciolo, etc). En las dicotiledóneas y gimnospermas el sistema radicular es pivotante: consta de una raíz principal de la cual salen las raíces laterales. Las partes

FALLA DE ORIGEN

maduras presentan crecimiento secundario y la absorción de agua se lleva a cabo por los extremos, a través de los pelos radiculares. En las monocotiledóneas el sistema radicular es fasciculado, formado por un manojo de raíces adventicias originadas en la base del tallo, las que pueden ramificarse pero nunca tienen crecimiento secundario.

Existen grandes variaciones en cuanto al tipo de raíz: raíces fibrosas, en las que numerosas raíces secundarias se originan de la raíz principal como sucede en muchas plantas herbáceas perennes y especialmente en las gramíneas; raíces pivotantes, donde la raíz primaria crece y rápidamente produce ramas laterales, constituyendo el sistema radical principal de la planta; raíces adventicias, donde las raíces brotan de cualquier región de la planta. La utilidad de estas raíces adventicias es variada, absorben el aqua y compuestos minerales y proporciona el sostén de la planta en el suelo. En maíz nacen raíces adventicias de varios nudos por encima del nivel del suelo; raíces axonoformas, tienen el eje preponderante, con raíces secundarias poco desarrolladas, como la del pino; raíces ramificadas, cuando la raíz principal se ramifica en primaria, éstas a su vez, vuelven a dividirse en secundarias, y así sucesivamente, como la del perejil; raíces fasciculadas, formadas por un haz de raíces, todas más o menos del mismo calibre como las del ajo, raíces tuberiformes, tienen forma de tubérculo, como la dalia; raíces aéreas, que viven en contacto con el aire, apoyándose sobre otros vegetales o piedras, pertenecen a plantas epífitas y no son parásitas porque se nutren por sí solas, ejemplos: orquídeas, clavel del aire; raíces acuáticas, que viven sumergidas en el agua, pero sin fijarse en el fondo, por lo general son muy reducidas porque desempeñan únicamente la fijación del vegetal, ya que la absorción la realiza por toda la superficie, ejemplos: repollito del aqua.

II.3. Estructura de la raíz

La anatomía interna de las raíces se observa examinando un corte longitudinal y transversal de una raíz.

En el corte longitudinal, se distinguen las zonas especializadas de desarrollo en las raíces: la cofia, el meristemo apical, la zona de células de elongación y la zona de maduración (Figura 1).

Figura 1. Corte longitudinal de una raíz de maíz mostrando sus zonas especializadas. CAP, cofia, MER, meristemo apical, DEZ, zona de elongación distal, EZ, zona de elongación, MAT, zona de maduración (Ishikawa y Evans, 1995).

TESIS CON MALLA DE ORIGE

La cofia

Las raíces de todas las plantas vasculares tienen en la punta un tejido distinto conocido como la cofia. La cofia percibe y procesa varios estímulos ambientales tales como la gravedad, luz, humedad, obstáculos, iones, temperatura, etc., cambiando la dirección del crecimiento de la raíz en relación con el estímulo. Se han podido diferenciar dos tipos básicos de construcción raíz-cofia. En raíces con tipo de construcción abierta, como en muchas dicotiledóneas, no existe una distinción morfológica entre la raíz y la cofia. Por el contrario, en raíces de construcción cerrada, como en pastos, existe una separación morfológica distintiva. De esta manera cuando se examina una raíz con tipo de construcción cerrada, tal diferencia nos permite determinar con seguridad, el fin del meristemo radical y el inicio de la cofia (Barlow, 1975).

Meristemo apical (región de división celular)

El crecimiento y diferenciación de la raíz están controlados por la actividad del meristemo apical que da lugar a todos los tejidos de la raíz. El meristemo está localizado sobre la periferia de una región inactiva conocida como el centro quiescente y en maíz, se producen diariamente entre 10,000 y 20,000 células nuevas. Las células del meristemo se dividen de tal manera que las células hijas interiores permanecen meristemáticas y las células hijas exteriores después de varias divisiones se diferencian para dar lugar a los diversos tejidos de la raíz (Feldman, 1994).

Zona de elongación

La región de elongación tiene entre 1-10 milímetros de longitud y se caracteriza por el crecimiento longitudinal de las células. En esta región también tienen lugar un número relativamente pequeño de divisiones celulares y el principio de la diferenciación de células de diversos tipos. La región de elongación se fusiona, en un extremo con el meristemo apical y en el otro, con la región de maduración.

FALLA DE ORIGEN

• Zona de maduración

La región de maduración, usualmente tiene de uno a varios centímetros de longitud. En este lugar las células han alcanzado esencia! nente su tamaño completo y gradualmente van teniendo su forma madura, así como su función (Cronquist, 1984).

En el corte transversal (en la zona de maduración), se distinguen los siguientes tejidos: epidermis, corteza, periciclo, xilema y floema (Figura 2).

Figura 2. Corte transversal de una raíz en su zona de maduración (Curtis, 1988).

La epidermis, representa la totalidad de la superficie de la raíz joven, además, absorbe agua y sales del suelo y protege a los tejidos internos; las

células epidérmicas se caracterizan por poseer delicadas emergencias tubulares conocidas como pelos radicales. En seguida, se encuentra la corteza, esta región se encuentra formada por células de parénguima de forma algo irregular, con muchos espacios intercelulares; la capa más interna de células de la corteza es la endodermis, tejido superficial que envuelve la región central de la raíz. En seguida de la endodermis se encuentra otra capa de células llamada periciclo; por división celular, el periciclo da origen a·las raíces laterales, que forman su salida a través de la corteza y la epidermis. En el interior del periciclo, se encuentran los tejidos vasculares; el xilema, transporta el agua a través de la planta y está formada por fibras y elementos de vasos, y el floema distribuye el alimento producido en las hojas hacia la raíz y otras partes de la planta. En los tejidos vasculares del cilindro central, el xilema está formando por cordones alternados con el floema; en dicotiledóneas hay 4 ó 5 cordones o polos xilemáticos denominándose raíces tetrarcas o pentarcas; se denominan poliarcas cuando los polos son numerosos, lo cual ocurre en las monocotiledóneas. El límite entre el cilindro central y el córtex presenta dos estratos celulares: el externo es la endodermis (regula la entrada de sales disueltas en el agua) y el interno es el periciclo (encargado de originar las raíces laterales y los meristemos secundarios en las raíces de dicotiledóneas).

II.4. Cofia

La cofia de la raíz (Figura 3 y 4A) percibe y procesa muchos estímulos del medio ambiente, su estructura consiste en un grupo pequeño de células especializadas organizadas en filas (Figura 5). El número de células que conforman una cofia en crecimiento activo generalmente se mantiene constante; sin embargo, las células son continuamente renovadas y a lo largo del tiempo cambian su posición desde la capa más interna, adyacente al meristemo, hasta que se encuentra en la capa periférica, después de lo cual son liberadas y forman parte del mucílago. Las células perifericas liberadas al suelo permanecen vivas hasta por un mes, y su función aún no está definida, existe una hipótesis que sugiere que estas células son capaces de mantener una comunicación intracelular con las células iniciales después de haber sido liberadas para inducir la división de nuevas células. (Zhang *et al.*, 1995., Brigham *et al.*, 1998). Además, en la rizosfera parece desempeñar un papel en la regulación de poblaciones de microorganismos que rodean a la raíz (Hawes y Lin, 1990., Hawes *et al.*, 2000).

Figura 3. La cofia está formada por células distintas a las del resto de la raíz. El meristemo apical se localiza en la parte superior donde inicia la cofia (Barlow, 1975).

En maíz, las células de la cofia provienen de una región meristemática conocida como el caliptrógeno; en esta región se encuentran las células con la mayor tasa de división mitótica de toda la planta. Una vez diferenciadas se pueden observar los estatocitos (células que perciben la gravedad), en las cuales resalta la posición del núcleo en la parte proximal y amiloplastos y retículo endoplásmico en la posición distal. (Figura 4B).

Posteriormente, en la capa periférica se localizan los dictiosomas (Figura 4C), que se encargan de la secreción del mucílago. Estos se encuentran en la parte distal produciendo vesículas llenas de mucílago que al fusionarse con la membrana plasmática liberan su contenido (Sievers y Hensel 1991). Por último las células de la periferia son liberadas debido a que sus paredes celulares son degradadas; en este estado pasan a formar parte del mucílago. Los productos de la secreción del mucílago difieren en varias especies estudiadas, pero sus componentes esenciales son polisacáridos y proteínas (Rougier, 1981). Los azúcares más abundantes son glucosa, galactosa y arabinosa, y en menor cantidad de ácido urónico y fucosa que constituye el 20% y 30% del mucílago de maíz, siendo menor su concentración en otras plantas (Chaboud, 1983). El mucílago participa en varios procesos fisiológicos de la raíz y aunque no se sabe con exactitud, se le atribuyen varias funciones como el mantenimiento del contacto planta-suelo, prevención contra la desecación de la raíz, protección contra agentes patógenos, estabilización de agregados de partículas del suelo y la acumulación selectiva de iones contra aluminio (Oades, 1978., Bengough et al., 1997).

LA DE ORIGEN

Figura 4. A) Cofia. Cada célula (estatocito) es generada por divisiones meristemáticas. La flecha denota la dirección de la gravedad. B) Estatocito. El núcleo (N) se encuentra en la porción proximal y el retículo endoplásmico (RE) en la porción distal. Los amiloplastos (a: almidón) se ubican sobre el retículo endoplásmico (Sievers y Hensel, 1991). C) Los dictiosomas (d) producen vesículas llenas de mucílago que se liberan al fusionarse con la membrana plasmática. La secreción es marcada por las flechas. N, núcleo; V, vacuolas; a, amiloplastos (Sievers y Hensel, 1991).

Figura 5. Estructura y desarrollo de la cofia (Barlow, 1975). La división celular ocurre en el meristemo de la cofia, las células renovadas se desplazan hacia la periferia de la cofia, después son liberadas y forman parte del mucílago. La región de la columela consta de células ricas en amiloplastos denominadas estatocitos. El tiempo requerido para renovar completamente la cofia es desde 1 a 7 días, dependiendo de las condiciones del crecimiento (Barlow, 1978; Clowes 1976, 1980).

Las cofias, especialmente de maíz, producen abundante mucílago que puede disminuir o aumentar en respuesta al cambio de humedad (Guinel y McCully, 1986). Sin embargo, al remover el mucílago de las raíces de maíz no afecta a los estímulos hidrotrópico y gravitrópico, (Takahashi *et al.*, 1991). Se hipotetiza que tanto la producción de mucílago como el fenómeno del hidrotropismo son una de las tantas características específicas de la cofia que están asociadas con las adaptaciones de las plantas a diversos ambientes en el suelo.

Funciones

Las funciones que se han atribuído a la cofia son: 1) proteger al meristemo apical de la raíz, 2) percibir estímulos ambientales, y 3) permitir el paso de la raíz en crecimiento a través del suelo. Las dos primeras funciones se observan en la cofia de todas las plantas, sean éstas terrestres, aéreas, o acuáticas. En cuanto a la última función, Haberlandt (1914), señaló que el mucílago secretado por las células periféricas de la cofia, funciona como lubricante facilitando el paso de la raíz a través del suelo. Darwin (1880), describió otras funciones de la cofia como son la sensibilidad a la gravedad (gravitropismo), a los gradientes de humedad (hidrotropismo), a la luz (fototropismo), al tacto (tigmotropismo) y a la temperatura (termotropismo).

Tropismos

Las plantas carecen de órganos de los sentidos pero son sensibles a diferentes estímulos del medio y reaccionan fundamentalmente mediante movimientos de crecimiento o tropismos. Si crecen hacia el estímulo el tropismo es positivo, si crecen en contra del estímulo el tropismo es negativo. Las respuestas a los diferentes tropismos varían continuamente por las diferencias que existen en el medio ambiente, como son: gradientes de humedad, distribución de nutrientes, calor, luz y oxígeno, entre otros. Según el tipo de estímulo, se pueden diferenciar distintos tipos de tropismos que a continuación se mencionan.

Gravitropismo

Es un tipo de respuesta que corresponde a los movimientos de los órganos de una planta inducidos y orientados por la acción de la gravedad. En una planta, el tallo y la raíz son afectados por este estímulo. El tallo crece en sentido opuesto a la fuerza de gravedad, por lo tanto presenta un gravitropismo negativo. Por el contrario, la raíz crece penetrando la tierra, en lo que constituye un gravitropismo positivo. Este tipo de respuesta asegura la función que tiene la raíz que es absorber el agua y las sales minerales, y además permite fijar y dar firmeza a la planta. Actualmente, varios autores describen tres fases en el fenómeno de gravitropismo: la percepción del estímulo (sensor de la gravedad), transducción de la señal (flujo de información) y la respuesta de la raíz (curvatura) (Feldman, 1985).

La percepción de la gravedad ocurre en la cofia (Darwin, 1880 y Juniper et al., 1966), en la que probablemente participe en la sedimentación de los amiloplastos en los estatocitos (Wilkins, 1984), aunque existen discrepancias acerca de su mecanismo. Se cree que la porción de la cofia capaz de detectar la gravedad es la zona central, denominada columela; ésta consta de células ricas en amiloplastos densos, repletos de gránulos de almidón. En las raíces orientadas verticalmente, los amiloplastos se sitúan en el extremo inferior de las células de la columela, hacia el ápice radicular. Segundos después de que las raíces reciben el estímulo gravitrópico, los amiloplastos de la columela abandonan su posición anterior y se sitúan a lo largo de lo que entonces es la nueva pared inferior de las células (Figura 6), este fenómeno de sedimentación parece desencadenar una serie de transducción de señales que curvan la raíz, como la activación de canales de calcio y muchos otros eventos que aún no han sido totalmente identificados (Legue *et al.*, 1997).

Figura 6. Esquema de los estatocitos con la distribución propuesta en la cofia de amiloplastos y retículo endoplásmico (RE) en relación a la gravedad (G) (Feldman, 1985).

En raíces que no responden a la gravedad, porque se les ha seccionado la cofia, la recuperación de la sensibilidad a la gravedad está directamente ligada a la formación y establecimiento de nuevos amiloplastos (Barlow y Grundwag, 1974). En 1989, Caspar y Pickard reportaron que una mutante de Arabidopsis thaliana que no almacena almidón fue capaz de responder al estímulo gravitrópico, aunque con menos intensidad. Simultáneamente, Kiss et al. (1989) indicaron que aún los amiloplastos sin almidón podrían funcionar como estatolitos. La atribución que se le da a los estatocitos como sensores de la gravedad se refuerza con experimentos de ablación con rayo laser en los que se destruyen las células centrales de la columela en la raíz de Arabidopsis y se disminuye drásticamente la respuesta gravitrópica (Blancaflor et al., 1998). La ablación de las células de la periferia de la cofia y células del ápice no alteraron la curvatura de la raíz. La ablación de células más internas correspondientes a la columela causan una fuerte inhibición en el efecto de la curvatura de la raíz sin afectar la velocidad del crecimiento.

Existen varias teorías acerca de lo que pasa después de que los amiloplastos se sedimentan en un lugar diferente al original. Se cree que al obedecer la fuerza de gravedad, se desplazan hacia el nuevo lado inferior y son detenidos por una inmensa red de microfilamentos de actina conectados a una región del estatocito rica en microtúbulos, retículo endoplásmico y membranas de los elementos del citoesqueleto provocando la salida de iones de calcio. (Pickard, 1985., Volkmann *et al.*, 1991). Evans *et al.* (1986) proponen que el calcio liberado activa el sistema de transporte del ácido indol acético (IAA) de una célula a otra hacia la porción inferior de la cofia. Sin embargo no existen evidencias sobre la interacción de los amiloplastos con los microfilamentos. Sobre las moléculas que intervienen en la transducción de la señal aún quedan muchas dudas; lo que sí se sabe es que el gravitropismo en raíces es eliminado al ser expuestas a elementos quelantes de calcio y/o algunos bloguedores de canales de calcio.

15

La transducción es la fase intermedia de la respuesta gravitrópica, involucra la comunicación de la dirección de la fuerza de gravedad en la cofia, desde el lugar donde se percibe hasta la región donde la raíz se curva. Se cree que el calcio es un segundo mensajero en la respuesta gravitrópica. Chandra et al (1982), demostraron mediante técnicas microscópicas que el calcio (Ca²⁺) se encuentra presente en los amiloplastos de las cofias de maíz, chícharo (Pisum sativum) y lechuga (Lactuca sativa). Posteriormente Evans y sus colaboradores (citados por Lee et al., 1983, 1984) y Roux (1984), presentaron evidencias de que el calcio tiene un papel importante en la detección de la gravedad para curvar la raíz. Lee et al. (1983) demostraron que el calcio podía descender por el interior de la cofia. Aplicaron calcio radioactivo a las raíces del maíz, orientaron las raíces en vertical y horizontalmente y midieron el movimiento de los iones radioactivos. En las raíces orientadas verticalmente, los iones radiactivos de calcio mostraban una distribución uniforme. En las raíces horizontales, por el contrario, el calcio radioactivo se desplazó hacia el lado inferior de la raíz. Por otra parte, Evans et al. (1986) aplicaron EDTA (que se une al calcio y lo inmoviliza) a las cofias de raíces de maíz y observaron que las raíces tratadas siguieron creciendo normalmente, pero perdieron toda sensibilidad a la aravedad. mientras que al eliminar el EDTA y remplazarlo por calcio, la capacidad de respuesta a la gravedad se recuperaba.

TESIS CON FALLA DE ORIGEN

La curvatura, es la fase final de la respuesta gravitrópica y resulta de la reorientación de la raíz en relación al vector de gravedad. Cuando la raíz es orientada en forma vertical, crece de forma uniforme, por el contrario, cuando la colocamos en forma horizontal, el lado superior crece más que el inferior: el crecimiento más lento de la parte inferior curva la raíz hacia abajo. Este cambio en el crecimiento diferencial de alguna manera genera una señal química o eléctrica en la cofia que produce la curvatura hacia la dirección de la gravedad (Moore *et al.*, 1989).

La hipótesis de Cholodny-Went propone que la curvatura resulta de la acumulación de alguna hormona inhibidora del crecimiento, en el lado inferior de la zona de elongación. En general se propone que el ácido indol acético (IAA) y el ácido abscísico (ABA) pudieran ser los responsables del inicio de esta reacción (Went y Thimann, 1937). Cuando una raíz es colocada en posición horizontal, la auxina se redistribuye por el lado inferior de la raíz, esta redistribución promueve el crecimiento en el lado superior e inhibe en el lado inferior de las raíces, resultando en una curvatura, ver figura 7 (Hasenstein et al., 1991). El transporte de auxinas está claramente involucrado en el gravitropismo de las raíces, los inhibidores del transporte de auxina tales como el ácido N-(1-naftil)talámico (NPA) y ácido triidobenzoico (TIBA) inhiben la curvatura de la raíz (Lee et al., 1984, Evans et al., 1992, Muday y Haworth, 1994). No obstante, la regulación del transporte de auxinas durante la gravirespuesta se desconoce. Se sugiere que la gravirespuesta y la reorientación de los microtubulos del citoesqueleto dependen del contenido de auxinas de la raíz (Blancaflor y Hasenstein, 1995). Sin embargo la destrucción de los microfilamentos con taxol y orizalina no inhiben el transporte de auxina y confirma que no es reguerido para la curvatura gravitrópica (Hasenstein et al , 1999). Por otro lado, la destrucción de actina con latrunculina B (Lat B) aumenta la gravirespuesta en la raíz de maíz (Hou Guichuan et al., 2003).

A) Orientación vertical

Figura 7. Esquema de la curvatura de la raíz, se propone que la curvatura resulta de la acumulación de alguna hormona inhibidora del crecimiento. Cuando la raíz es colocada en posición horizontal, la auxina promueve el crecimiento del lado superior de la raíz e inhibe el del lado resultando en una curvatura (Hasenstein *et al.*, 1991).

Hidrotropismo

Es el movimiento que realizan las raíces hacia gradientes de mayor humedad. La primera demostración del hidrotropismo en raíces fue por Knight en 1811, y Sachs en 1872. Este último autor, plantó semillas en una canasta colgante de malla llena de aserrín inclinado ligeramente, las plántulas de chícharo eran colgadas y sus raíces al elongarse no obedecían la fuerza de gravedad, permaneciendo adheridas al cilindro húmedo (Figura 8). Darwin (1880) uso el método de Sachs y también demostró hidrotropismo positivo en raíces de *Phaseolus vulgaris, Vicia faba, Avena sativa y Triticum aestivum*. Muchos trabajos hacen referencia del hidrotropismo positivo en raíces pero no han medido los gradientes de humedad alrededor de las raíces. Hooker (1915) construyó un higrómetro para determinar el gradiente de humedad requerido para la inducción del hidrotropismo y estudió este fenómeno, aplicando gradientes de humedad utilizando papel filtro con diferentes concentraciones de ácido sulfúrico en el lado contrario de las raíces, utilizando higrómetros para asegurarse de las concentraciones de humedad.

Figura 8. Hidrotropismo en raíces, demostrado por la técnica de Sachs (1872), cuando las raíces emergen de abajo del cilindro de malla se desvían de la fuerza de gravedad permaneciendo adheridas al cilindro húmedo.

Al igual que para la percepción del estímulo gravitacional, la localización del sistema sensorial del hidrotropismo es encontrado en la cofia (Jaffe et al., 1985), de tal manera que basta con removerla para que las raíces no dirijan su crecimiento hacia el gradiente de mayor humedad. Los estudios sobre el hidrotropismo han sido difíciles de realizar, principalmente por la interacción que mantiene con el gravitropismo, que depende de la intensidad de uno o ambos estímulos (Takahashi y Scott 1991; Takahashi et al., 1992a, 1992b, .1996). Por esta razón, fue necesario seleccionar mutantes insensibles a la gravedad como la mutante de chícharo ageotropum, que permite analizar al hidrotropismo sin que exista la interferencia con el gravitropismo (Jaffe et al., 1985). Las raíces de ageotropum responden hidrotrópicamente pero no gravitrópicamente, cuando ageotropum es introducida en una cámara cerrada con humedad relativa entre 98 y 86% con sus raíces en vermiculita seca; las raíces emergen de la vermiculita. Sin embargo, cuando no existe humedad relativa en la cámara, las raíces emergen pero después se doblan hacia la vermiculita húmeda.

Se demostró también que en la zona de elongación no existe percepción a gradientes de humedad (Takano *et al.*, 1995). Cuando la raíz de la mutante *ageotropum* es cortada a 1.5 y 2 mm de la punta ya no responde hidrotrópicamente (Jaffe *et al.*, 1985; Takahashi y Suge, 1991). Estos resultados indican que las células que perciben los gradientes de humedad se encuentran en la cofia. Aunque se sabe que es en esta parte, no se sabe cuales células ni que mecanismos se llevan a cabo para la percepción de los gradientes.

La transmisión de la señal hidrotrópica de la cofia a la región de elongación, se estudió con la curvatura hidrotrópica de ageotropum y la gravitrópica de la variedad Alaska; los resultados indican que las curvaturas son totalmente inhibidas si las raíces son tratadas previamente con EGTA que es un agente quelante de calcio. Sin embargo, si el EGTA es reemplazado antes de la hidroestimulación por calcio en solución, ha raíces recobran la capacidad de respuesta (Takano *et al.*, 1997). Por otro lado se demostró que el lantano, que es un bloqueador de canales de calcio, también inhibe la curvatura hidrotrópica y otros como nifedipina y verapimil no le afectan (Takano *et al.*, 1997). Estos resultados indican que el calcio apoplástico y la entrada de calcio a través de la membrana plasmática y algunos tipos de canales de calcio están involucrados en la señalización del hidrotropismo. Estos mecanismos de transducción pueden causar cambios en la extensibilidad de la pared celular para finalmente diferenciar el crecimiento en la región de elongación. Takahashi y colaboradores en 1999 aislaron un gen llamado endoxiloglucan transfersa (EXGT) por transcriptasa reversa (RT)-PCR usando poly(A)*RNA de raíz de chícharo *ageotropum*, la función de este gen es la regulación del crecimiento celular y se propone que puede ser utilizado como marcador para estudiar la relación entre los mecanismos de transducción y el crecimiento diferencial en el hidrotropismo.

La caracterización de mutantes que afecte alguna función de la cofia, tal como hidrotropismo, proveerá información sobre los procesos fisiológicos principales involucrados en este fenómeno. Recientemente, Eapen, D. y colaboradores (2003), desarrollaron un sistema de "screening" con un gradiente potencial de agua para el aislamiento de mutantes de *Arabidopsis* cuyas raíces responden negativamente al estímulo hidrotrópico. Se aisló una mutante llamada *nhr1* (no hydrotropic response) que continúa su desarrollo hacia el medio con el potencial de agua más bajo contrariamente al hidrotropismo positivo.

Tigmotropismo

En este tipo de respuesta, el estímulo detectado por la punta de raíces, o los tallos y/o hojas es el contacto físico. En el suelo, la dirección del crecimiento de las raíces frecuentemente es alterada, para escapar de los obstáculos que se atraviesan en su camino. El mecanismo por el cual escapan las raíces de los obstáculos no ha sido muy estudiado por la dificultad de mantener constante un estímulo tigmotrópico en las raíces y por la interacción que mantiene con otros estímulos del medio ambiente como por ejemplo la gravedad (Figura 9). Los sistemas que responden a la presencia de obstáculos y a la gravedad pudieran tener elementos comunes.

Okada y Shimura (1990), reportan que las raíces de Arabidopsis que crecen a lo largo de una superficie de agar en un ángulo de 45° , desarrollan una ondulación como resultado de una reversión periódica de rotación de la punta de las raíces que están en contacto con el agar. Por otro lado, Ishikawa y Evans (1992), concluyen que la curvatura de las raíces resulta de una respuesta tigmotrópica estimulada al aplicar calcio. Parece ser que el calcio tiene un papel funcional en la percepción del obstáculo, pero no se sabe todavía donde y cómo tales manipulaciones de calcio actúan a nivel celular (Fasano, J.M *et al.*, 2002). Otro factor que podría provocar una respuesta tigmotrópica es el pH que puede alterar la pared de las células de la cofia y de la zona de elongación (Fasano J.M *et al.*, 2001).

THAT CON FALLA DE ORIGEN

Figura 9. Interacción del tigmotropismo y el gravitropismo en la raíz primaria de *Arabidopsis thaliana*. El crecimiento lateral a través de la barrera representa una respuesta entre el crecimiento gravitropico y la información del obstáculo que percibe la cofia (Fasano *et al.*, 2002). Tamaño de la barra=1mm.

Fototropismo

Implica el crecimiento de la planta orientado por un estímulo luminoso. Cada parte de ella responde de distinta forma a este estímulo. En el caso del tallo, se observa un fototropismo positivo, porque crece hacia la fuente luminosa. En las hojas, se aprecia una reacción muy interesante. Estas adoptan diferentes posiciones que les permiten captar mejor la luz del sol. Además, los granos de clorofila que poseen también se desplazan en dirección a los rayos solares y esto permite hacer más eficiente el proceso de fotosíntesis. La raíz, en cambio, presenta un fototropismo negativo y se ha discutido mucho la necesidad de luz en la gravireacción porque la luz inhibe el crecimiento de la raíz ya que estás están ocultas en la tierra, sin embargo, Mandoli *et al* (1990) demostraron que la luz es capaz de penetrar varios milímetros dentro del suelo.

En el fototropismo las plantas responden con un crecimiento desigual, inducido por un cambio asimétrico de la luz que recibe la planta, de forma que provoca diferentes intensidades de crecimiento en la parte obscura y en la iluminada. Como consecuencia de esto, la respuesta fototrópica se manifiesta por una curvatura de la planta orientada por la luz. En 1880, Darwin descubrió que las puntas de las plantas se curvan primero y que la curvatura se extiende gradualmente hacia abajo a lo largo del tallo. Cubriendo las puntas con papel estaño se evitó la curvatura de la punta, por lo que concluyó que algún factor se transmitía desde la punta de la planta a las regiones inferiores causando la curvatura de la misma. Por otro lado, en los años 20, Cholodny especuló que la asimetría del crecimiento que provocaba la curvatura fototrópica era debida a una distribución asimétrica de la auxina desde la parte iluminada a la oscura, esto fue demostrado por Went en 1926 por lo que se le conoce como la teoría de Cholodny-Went. Según esta interpretación, las diferencias de crecimiento se deben un gradiente de concentración de auxina, que es superior en la parte oscura sobre la iluminada.

ISIS CON

El transporte polar de auxina puede ser inhibido a través de la aplicación de fitotropinas como el NPA. Philip J.J y colaboradores crecieron plantas de *Arabidopsis thaliana* con luz en un medio que contiene NPA y observaron que la elongación del hipocótilo, la raíz y el gravitropismo son fuertemente inhibidas. Cuando crecen en la obscuridad, el NPA interrumpe la respuesta de gravedad pero no afecta la elongación. Estos resultados indican que la luz tiene un efecto significativo sobre la inhibición inducida por NPA en *Arabidopsis thaliana* y se sugiere que la auxina tiene más importancia en respuestas de elongación en crecimiento con luz que en crecimiento en la obscuridad. Del mismo modo, en 1997, Watahiki M.K y colaboradores aislaron una mutante insensible a IAA (*msg1*) que no experimentó curvatura en el crecimiento del hipocótilo en ninguna de las concentraciones de IAA probadas, por lo anterior se sugiere que la auxina está implicada en los procesos de crecimiento diferencial en *Arabidopsis thaliana*.

Las plantas tienen varios receptores a la luz azul, que regulan diferentes aspectos de crecimiento y desarrollo. En recientes estudios se han identificado una clase nueva de receptores cinasa que son exclusivos de plantas; fototropina 1 (PHOT1) y fototropina 2 (PHOT2) (Briggs W.R. et al., 2001; Winslow R, et al., 2002). En arabidopsis, PHOT1 y PHOT2 median no sólo el fototropismo, sino que también inducen la migración de cloroplastos y la apertura de estomas. Los receptores phot 1 y phot 2 tienen dos dominios LOV (regulados por luz, oxígeno o voltaje), un dominio cinasa y actividad de autofosforilación y funcionan como un fotoreceptor para el fototropismo. Otros receptores reportados son los criptocromos 1 y 2 (CRY1 y CRY2) que se sugiere funcionan también como fotoreceptores para el fototropismo (Ahmad, M. et al., 1998), sin embargo estudios subsecuentes demuestran que la doble mutante cry1-cry2 conserva fototropismo normal sobre un rango grande de tratamientos con luz (Lascève, G. et al., 1999). Los criptocromos 1 y 2 son receptores que regulan el crecimiento del hipocótilo y el tiempo de floración; mientras que los fototropinas median el fototropismo en respuesta

a la luz azul. Además el fitocromo A también media varias respuestas a la luz azul (Chentao Lin, 2000, Todd Mockler, *et al.*, 2003).

TESIS CON FALLA DE ORIGEN

III. - ANTECEDENTES

III.I. Aislamiento de genes específicos de la cofia

Se aislaron nueve clonas a partir de un tamizado diferencial en un banco de $cDNA \lambda GEM-4$ específico de cofia de maíz utilizando como sondas los DNAs complementarios al RNA mensajero. Para identificar cuales de las nueve clonas son comunes, cada clona fue analizada por hibridación tipo Southern contra las ocho clonas de cDNA restantes. Este análisis reveló que la clona denominada C109 hibridaba con tres clonas (C104, C131 y C134), la clona llamada C123 hibridaba con dos clonas (C111 y C101) y la clona T101T hibridaba con una clona (TC101), sugiriendo que estos genes son altamente expresados en la cofia. Por otro lado, las clonas C103 y C106 no muestran homología con el resto de las clonas. De este modo, finalmente se aislaron cinco clonas diferentes: C109, C123, C106, C103 y T101T.

Un análisis anterior por hibridación tipo Northern con diferentes tejidos de maíz (raíz, cofia y hoja) indicó que las clonas C109, C123 y C106 se expresan únicamente en la cofia de la raíz, mientras que la expresión de la clona T101T no se encuentra en ningún tejido, lo cual podría deberse a que tiene una secuencia rica en AT en la región 3' no traducible, característica que presentan algunos RNAs mensajeros de vida corta o simplemente a que su RNA mensajero tiene un nivel de expresión muy bajo.

TESIS CON FALLA DE ORIGEN

III.II. Análisis de las secuencias de las clonas C109, C123 y C106 de cofia

La clona de cDNA C109 tiene una secuencia parcial de 982 pb, que codifica para dos posibles marcos de lectura abierto. El marco de mayor longitud predice una proteína clásica arabinogalactana (AGPs) con 31% de identidad, mientras que el marco de menor longitud es casi idéntico a una proteína llamada ZmRCP2 reportada en maíz que presenta un motivo conservado de cisteínas (Matsuyama *et al.*, 1999b).

Las AGPs son proteoglicanos de alto peso molecular que usualmente contienen 10% de proteína rica en prolina, alanina, serina y treonina y una porción alta en carbohidratos (90%) como galactosa, arabinosa, ácido urónico, glucosa, ramnosa, manosa y glucosamina. A pesar de su abundancia y extensa distribución en plantas no hay evidencias definitivas para su función aunque se cree que están implicadas en el crecimiento y desarrollo. Las AGPs clásicas contienen una estructura que incluyen la secuencia señal de anclaje-GPI (glicosilfosfatidilnositol) (Figura 10).

Figura 10. Estructura de las AGPs clásicas. Incluye la secuencia señal de anclaje-GPI.

En animales, esta señal provee una alternativa al dominio transmembranal para anclar proteínas a la superficie celular. Las proteínas con anclaje GPI participan en diferentes vías de transducción de señales. Por otro lado, ya se han clasificado genes de plantas que tienen homología con varios genes de animales y levaduras que codifican para AGPs clásicas (Tabla 1). En la tabla 1 se incluye la clona de cDNA C109 ya que tiene las características de las AGPs clásicas como el amino terminal hidrofóbico seguido por un dominio rico en prolina, alanina, serina o treonina, un carboxilo terminal donde está la señal de anclaje-GPI, seguido por un espacio de 4 a 8 aminoácidos y una cola hidrofóbica de 14 a 18 aminoácidos.

Tabla 1. Secuencias de AGPs clásicas que contienen una señal de anclaje de GPI.

CLONAS	SEÑAL DE ANCLAJE-GPI	
C109. Zea mays	TPRPAS \$SPLTAPWRVTRRLAVAVTTALLWCQRSLASPVPVAWVAKAWCARSNQGGVL	
AGPNa1. Nicotiana alata ^b	PTSSPN AASLNRVAVAGSAVVAIFAASLMF	
AGPc1. Pyrus communis ^b	DAIPPS & GTSAISR <u>VAIAGTALAGVFFAIVLA</u>	
Ptx3H6. ^{Pinus} taeda ^c	SPSSVS GASVTSNLEKAAILTAALAAVFFL	
BnSta39-4, Brassica napus ^c	PEVLDG	
LeAGP1 Licopersicon esculentum	SLNDES GAEKLKMLGSLVAGWAVMSWLLF	
pCK-H6. Gossypium hirsutum ^c	AGTDTSV GANQMWTVQKMMGSLAMGWALLNLMV	
pPsENOD5. <i>Pisumsativum</i> ^c	S & GAAAGHGFIVWLGASLPMLMFLIWL	
AtAGP1. Arabidopsisthailiana ^c	PGPAQG GAVSNIKFASFGSVAVMLTAAVLVI	
Donde: AtAGP1-5 . Obtenic b Confirmado experimer c Basado en proteínas co	las por ESTs 🚽 Sitio de corte Italmente Dominio Transmembranal	

Por otro lado, la proteína ZmRCP2 reportada en maíz tiene una alta homología (92%) con la secuencia de aminoácidos de otro marco de lectura de la clona C109 y con otras proteínas que codifican para plantas, pero no se conoce su función. El patrón de expresión de la proteína ZmRCP2 fue también detectado únicamente en la cofia. Con la obtención de la secuencia completa de la clona C109, se podrá verificar cual de las dos proteínas (AGP clásica o ZmRCP2) corresponde al mismo gen de la clona C109 o si solamente tiene homología entre alguna de ellas.

Los cDNAs de las clonas C106 y C123 son también secuencias parciales, tienen 452 pb y 428 pb respectivamente. La clona C106 codifica para GDP-Dmanosa-4-6-dehidratasa y la clona C123 codifica para una proteína rica en glicina, casi idéntica a una proteína rica en glicina ya reportada llamada ZmGRP4 (Matsuyama *et al.*, 1999a). Para obtener las secuencias completas de estas clonas se realizó un tamizado del banco genómico de maíz del cual se obtuvieron una clona para C106 (ZmC106) y dos clonas para C123 (ZmC123).

La secuencia de aminoácidos de la clona ZmC106 presenta una alta identidad a la enzima GDP-D-manosa-4-6-deshidratasa de arabidopsis (77%), Escherichia coli (57%), células HL-60 (55%) y cerebro de humano (54%). Esta enzima cataliza el primer paso en la síntesis de GDP-L-fucosa a partir de manosa (Bonin *et al.* 1997). La fucosa es el componente mayor del mucílago secretado por la cofia de maíz (Harris y Northcote, 1970).

La clona ZmC123 codifica para una proteína rica en glicinas llamada ZmGRP4 con 84% de identidad. Las proteínas ricas en glicinas son una clase de proteínas estructurales de la pared celular que juegan un papel importante en el desarrollo de tejido vascular (Cassab, 1998); su presencia en un tejido no vascular como lo es la cofia sugiere que las GRPs también participan en otros procesos de desarrollo.

III.III. Localización de los RNAs mensajeros de las clonas ZmC109, ZmC123, ZmC106 y ZmC103 en la cofia.

Utilizando la técnica de hibridación *in situ*, se analizó el nivel de expresión de estos genes en cortes de raíz de maíz variedad Merit. La sonda se sintetizó utilizando como templado las clonas de cDNA, con nucléotidos marcados con dioxigenina (Ponce *et al.*, 2000; ver Anexo I).

La expresión del RNA mensajero de la clona ZmC109 se restringe a las capas de la periferia de la cofia que incluye el 40% de las células de la cofia de maíz (Moore, 1984) (Figura 11A). Estas capas contienen las células que secretan mucílago. La señal de expresión de este gen es muy fuerte y también está presente en las células desprendidas de la cofia. Por otro lado, su patrón normal de expresión en cofias regeneradas después de la escisión de la cofia o ambos cofia y centro quiescente, se observó hasta que se distingue una cofia nueva (72 horas). Se sugiere que esta clona puede ser un marcador estructural de la cofia.

El RNA mensajero de la clona ZmC106 es detectado principalmente en la periferia de las células de la columela (Figura 11B). Esta expresión declina en las células que secretan mucílago. Al comparar las señales de los RNAs mensajeros de las clonas ZmC109 y ZmC106 en una sección transversal de la cofia, se observó que ambas señales se sobrelapan en dos capas externas de la cofia (dato no mostrado). Del mismo modo, el patrón de expresión de la clona C106 al igual que la clona C109 en cofias regeneradas, se observó hasta que la cofia está regenerada totalmente (48 horas) y se supone también que puede ser un marcador estructural.

El RNA mensajero de la clona ZmC123 se observó en las células laterales de la cofia y en la epidermis de la raíz (Figura 11C), su localización sugiere una nueva función en el desarrollo de la raíz e indica una similaridad entre la cofia lateral y la epidermis. Por otro lado, la cinética de expresión de esta clona se observó muy temprano en el proceso de regeneración (24 horas) y en contraste con las clonas ZmC109 y ZmC106 se sugiere que puede ser un marcador posicional.

La localización del RNA mensajero de la clona ZmC103 mostró que tiene un patrón de expresión que se sobrelapa con algunas capas de la cofia donde tienen también su expresión las clonas ZmC109 y ZmC106 (Figura 11D). La expresión se observa principalmente en las capas más externas de la cofia.

Figura 11. Patrón de expresión de cuatro genes específicos de cofia: C109, C103, C106 y C123. A La clona C109 se expresa en las capas de la periferia de la cofia, estas capas contienen las células que secretan mucílago. B La clona C106 se expresa en la periferia de las células de la columela. C La clona C123 se expresa en las células de la cofia lateral y en la epidermis de la raíz. D La clona C103 se sobrelapa con algunas capas de la cofia donde también se expresa las clonas C109 y C106.

TESIS CON FALLA DE ORIGEN

IV - OBJETIVOS

OBJETIVO GENERAL:

Aislamiento y caracterización molecular d<mark>e tres genes de la cofia de la raíz</mark> de maíz.

OBJETIVOS PARTICULARES:

a) Rastrear en un banco de DNA genómico de maíz las secuencias completas de las clonas C109 y T101T, utilizando el cDNA como sonda.

b) Obtener la secuencia de la clona de cDNA C103 y la secuencia genómica de las clonas C109 y T101T por el método de Sanger.

C) Verificar las secuencias obtenidas con las descritas en el banco de genes e inferir sobre sus posibles funciones en la cofia.

V.- HIPÓTESIS

Mediante la caracterización molecular de genes que se expresan en la cofia se podrá inferir o relacionar la función que dichos genes realizan en este tejido.

TESIS CON FALLA DE ORIGEN

VI. - MATERIALES Y METODOS

VI.I. Cepas bacterianas, vectores (plásmidos y bacteriófagos), marcadores de peso molecular para DNA, oligonucleótidos, soluciones amortiguadoras, medios de cultivo y antibióticos.

Cepas bacterianas

DH5 α : SupE44 \triangle lac (ø80lacZ \triangle M15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1.

XL1-Blue F': ::Tn10proA+B+lac19D(lacz)M15/recA1endA1gyrA96 (NaI") thi hsdR17 (rk-mk+) supE44 relA1 lac.

XL1-Blue MRA (P2): Δ (μ crA) 183 Δ (mcrCB-hsdSMR-mrr) 173 endA1 supE44 thi-1 gyrA96 relA1 lac (P2 lysogen).

Las cepas DH5 α y XL1-Blue F' de Escherichia coli se utilizan rutinariamente para técnicas de biología molecular como la extracción y amplificación de plásmidos y para la producción de DNA para secuencia. La cepa XL1-Blue MRA (P2) se usa para la infección con bacteriófago λ . Los cultivos de estas cepas se llevaron a cabo a 37°C en medio LB (Luria-Bertani) sólido o líquido según sea el caso.

Vectores (plásmidos y bacteriófagos)

pGEM-1. Es un plásmido de 2,865 pares de bases derivado de pUC13. El sitio múltiple de clonación "polylinker" se encuentra flanqueado por los promotores Sp6 y T7. Se usa como un vector de clonación así como para la síntesis de RNA *in vitro*. El plásmido tiene un gen que confiere resistencia a ampicilina.

pBluescript SK⁺. Es un plásmido de 2,958 pares de bases derivado de pUC19. La designación de SK indica la orientación del "polylinker", siendo para SK+ de *Kpn*I a SacI y para SK- de SacI a *Kpn*I. El "polylinker" tiene 21 sitios

únicos de enzimas de restricción, flanqueado por los promotores T3 y T7. Este vector puede ser usado para generar DNA de cadena sencilla en la presencia de fago ayudador (contiene F') y RNA *in vitro*. También tiene un gen que confiere resistencia a ampicilina.

 λ DASH II. Es un bacteriófago que contiene múltiples sitios de clonación (XbaI, SalI, EcoRI, BamHI, HindIII, SacI y XhoI) y es usado para clonar fragmentos grandes que van de 9 a 22 kilobases. El sitio policional está flanqueado por los promotores T3 y T7.

Marcadores de peso molecular para DNA

λHindIII (Boeringer-Manheim). Tamaños en pb 23130, 9416, 6557, 4361, 2332, 2027 y 564.
1Kb (Gibco). Tamaños en pb 12216, 11198, 10180, 9162, 8144, 7126, 6108, 5090, 4072, 3054, 2036, 1636, 1018 y 506.

Oligonucleótidos

Universales: Oligo T3. 5'-AATTAACCCTCACTAAAGGG-3' Oligo T7. 5'-TAATACGACTCACTATAGGG-3' Oligo Sp6. 5'-GATTTAGGTGACACTATAG-3'

Diseñados a parti	ir de las secuencias de las clonas:
Oligo C109.1.	5'-CCATCTCATCTCAGTGAATC-3'
Oligo C109.251.	5'-CAGGGTGAGCTCCATGCGGT-3'
Oligo T101T.123.	5'-GCCGTGGAGAACCCGCCGCT-3'
Oligo T101T.147.	5'-GCGACGACGAACACCGGCAA-3'
Oligo T101T.179.	5'-GGTGAAACGCCATCGTCCTA-3'
Oligo T101T.532.	5'-TAGGCAATCTCCAGCAGGTC-3

Soluciones amortiguadoras

Amortiguador TE. Este amortiguador se utiliza para resuspender DNA. Consta de tris-HCl 10 mM y EDTA 1mM pH 8.0.

Amortiguador TBE. Se usa como amortiguador de corrida en geles de agarosa o acrilamida. Para preparar el "stock" 10x se mezclan 108 g de tris base, 55 g de ácido bórico y 40 mL de EDTA 0.5 M (pH 8.0) en un litro de agua bidestilada.

Amortiguador TAE. Se usa también como amortiguador de corrida en geles de agarosa o acrilamida para análisis de DNA. Para preparar el "stock" 10x se mezclan 48.4 g de tris base, 11.42 mL de ácido bórico y 20 mL de EDTA 0.5 M (pH 8.0) en un litro de agua bidestilada.

Amortiguador de carga. Este amortiguador contiene azul de bromofenol 0.25%, xilen-cianol 0.25% y glicerol al 30% en agua bidestilada; se usa en la mezcla de DNA que va a ser analizada en un gel de agarosa. Para geles de agarosa con formaldehido consta de 50% de glicerol, 1mM de EDTA pH 8.0, azul de bromofenol 0.25% y xilen-cianol 0.25%

Amortiguador SET. Contiene 50mM de sacarosa, 25mM de Tris-HCl y 10mM de EDTA pH 8.0. Se usa para resuspender las minipreparaciones de DNA de plásmido.

Amortiguador SM. Es usado para resuspender fagos, su composición es 50mM de Tris-HCl pH 7.5, 100 mM NaCl, 8 mM de MgSO₄ y 0.01% de gelatina.

Medios de cultivo (para crecimiento de Escherichia coli)

Medios líquidos

Medio Luria-Bertani (LB). A 950 mL de agua desionizada agregar 10 g de bactotriptona, 5 g de extracto de levadura y 10 g NaCl. Agitar hasta que los solutos se disuelvan. Ajustar el pH a 7.0 con NaOH 1M y llevar a un volumen final de 1 L con agua desionizada. Esterilizar en autoclave durante 20 minutos a 15 libras/pulgada² y guardar a temperatura ambiente.

En el caso de que las bacterias vayan a usarse para ser infectadas por fago lambda, añadir maltosa 0.2% (el receptor del fago en la membrana externa es una proteína inducida por maltosa; maltoporina) y 10 mM de MgSO₄ (el fago se estabiliza con magnesio).

Medio 2×YT. A 900 mL de agua desionizada agregar 16 g de bacto-triptona, 10 g de bacto-extracto de levadura y 5 g de NaCl. Ajustar el pH a 7.0 con NaOH 5M y llevar a un volumen final de 1 L con agua desionizada, Esterilizar en autoclave.

Medios Sólidos

Al medio LB descrito arriba, agregar 15 g de bacto-agar. Esterilizar en autoclave. Dejar que el medio se enfríe hasta 50°C antes de agregar el antibiótico.

Agarosa suave. A 900 mL de agua desionizada agregar 10 g de bactotriptona, 5 g de bacto-extracto de levadura, 5 g de NaCl y 6 g de agarosa. Ajustar a un volumen final de 1 L con agua desionizada. Esterilizar en autoclave. Cuando la solución se ha enfriado, agregar 1 mL de MgSO₄ 1M por cada 100 mL. Para transferir placas de lisis a filtros es mejor utizar agarosa pues se pega menos a los filtros que el agar.

Preparación de cajas: Vaciar 20 mL de medio a cada caja de petri de 90 mm. Dejar 20 minutos a temperatura ambiente para que el agar solidifique. Almacenar a 4ºC. Antes de usar, secarlas en una campana de flujo laminar (dejando las tapas entreabiertas) durante 20 minutos.

Antibióticos

Las siguientes soluciones de antibióticos se preparan como soluciones "stock" 1000x y se almacenan a -20°C. Se añaden al medio una vez que el medio esterilizado al autoclave se ha enfriado:

Ampicilina (10 mg/mL). Disolver 50 mg en 5 mL de agua bidestilada. La concentración de la solución de trabajo es de 100 μ g/mL.

Tetraciclina (12.5 mg/mL). Disolver 12.5 mg en 1 mL de etanol. La concentración de la solución de trabajo es de 12.5 μ g/mL.

Kanamicina (50 mg/mL). Disolver 50 mg en 5 mL de agua bidestilada. La concentración de la solución de trabajo es de 25 μ g/mL.

VI.II. Aislamiento de DNA

Purificación de plásmidos en Escherichia coli (Rodriguez y Tait, 1983). Inocular una colonia bacteriana transformada en 3 mL de medio LB líguido con antibiótico durante toda la noche a 37ºC y 250 rpm. Transferir el cultivo a un tubo eppendorf de 1.5 mL y centrifugar 5 minutos a 12,000 rpm. Desechar el sobrenadante y resuspender la pastilla celular en 1 mL de amortiguador SET mediante agitación con vortex por 1 minuto. Centrifugar las células durante 5 minutos a 12,000 rpm y resuspender en 150 µL de amortiguador SET. Agregar 5 µL de RNAsa (ribonucleasa pancréatica A, 10 mg/mL) y 350 μL de mezcla lítica (solución 1:1, NaOH 0.4 M y SDS al 2%). Agitar por inversión el tubo e incubar en hielo durante 10 minutos. Agregar 250 µL de NaAc 3M pH 5.2 y continuar con la incubación en hielo durante 1 hora. Centrifugar 15 minutos a 12.000 rpm a 4°C y separar el sobrenadante. Agregar un volumen de isopropanol para precipitar el DNA y centrifugar 15 minutos a temperatura ambiente. Desechar el sobrenadante y lavar la pastilla con 1 mL de etanol al 70%, desechar el sobrenadante y secar el tubo 10 minutos a temperatura ambiente. Resuspender en 300 µL de agua bidestilada y agregar un volumen de fenol y otro de cloroformo, agitar con vórtex y centrifugar 5 minutos a 12,000 rpm. Pasar el sobrenadante a otro tubo y agregarle 1/2 volumen de NH_AC 7.5M y un volumen de isopropanol para precipitar el DNA y centrifugar nuevamente. Desechar el sobrenadante y lavar la pastilla con 1 mL etanol al 70%. Secar la pastilla y resuspender en 50 µL de agua bidestilada. Tomar 5 µL de DNA para realizar digestiones con enzimos de restricción.

VI.III. Digestión de DNA con enzimas de restricción

Se utilizan los amortiguadores adecuados para cada enzima, la temperatura de reacción para todas las enzimas es de $37^{\circ}C$ y las unidades de actividad definidas por los fabricantes es 1 unidad de enzima por 1 µg de DNA en un intervalo de 1 a 3 horas. En el caso de una digestión doble se usa el amortiguador más adecuado para ambas, primero se digiere el DNA con una enzima, se extrae con fenol y cloroformo con el fin de desactivar a la enzima, luego se precipita el DNA con isopropanol y NH₄Ac 7.5 M y se digiere con la otra enzima. Las digestiones se inactivan a $65^{\circ}C$ por 10 minutos o mediante extracción con fenol y cloroformo. Al final los productos de las digestiones se analizan en geles de agarosa.

VI.IV. Electroforesis de DNA

Electroforesis en gel de agarosa. La técnica para preparación de geles de agarosa es la descrita por Sambrook *et al.* (1989). Para el análisis y aislamiento de DNA de plásmido de 0.4 a 1 Kb de tamaño se utilizan geles horizontales de agarosa al 1.2% (las concentraciones de agarosa puede variar de 1 a 1.5% según el tamaño del fragmento), estos geles se corren a un voltaje de 90 a 150 volts usando el amortiguador TBE 1x y 2 μ L de amortiguador de carga (0.25% azul de bromofenol, 0.25% xilen-cianol y glicerol al 30% en agua bidestilada), por cada 10 μ L de DNA. Después de correr los geles se sumergen en una solución de bromuro de etidio (0.5 μ g/mL) durante 1 minuto. El gel se enjuagua en agua para remover el exceso de bromuro de etidio y al final se observa en el transiluminador de luz ultravioleta.

TESIS CON FALLA DE ORIGEN

VI.V. Aislamiento de fragmentos de DNA a partir de geles de agarosa Purificación con polvo de vidrio utilizando el kit "Gen clean"

Cortar la banda de interés del gel de agarosa. Para disolver la agarosa agregar 3 volumenes de NaI e incubar 5 minutos entre 45° y $55^{\circ}C$. Agregar 5 μ L de polvo de vidrio. Mezclar suavemente e incubar por 5 minutos a temperatura ambiente. Centrifugar por 30 segundos a 12,000 rpm y eliminar el sobrenadante. Lavar la pastilla 3 veces con 500 μ L de solución "New Wash" (14 mL de "new" concentrado en 280 mL de agua bidestilada y 310 mL de etanol al 100%) a $-20^{\circ}C$ y centrifugar por 30 segundos. Eluír el DNA resuspendiendo la pastilla con 15 μ L de agua bidestilada (2 veces, queda un volumen final de 30 μ L) e incubar 5 minutos entre 55° y $60^{\circ}C$. Analizar la concentración del DNA con 2 μ L en un gel de agarosa al 1.0%.

VI.VI. Subclonado de fragmentos de DNA con extremos cohesivos

• Preparación de los vectores de clonación

Digerir el plásmido Bluescript SK+ (Stratagene) con diferentes enzimas de restricción para linearizar sus extremos, en un volumen final de 50 μ L. Para evitar que durante la ligación se liguen los extremos del vector entre si mismos, tratar con fosfatasa alcalina para remover los grupos fosfato de los extremos 5[']. De esta manera, después de las digestiones con las enzimas de restricción extraer con fenol y cloroformo para inactivar la enzima, después ajustar el volumen del amortiguador de la fosfatasa alcalina (10x: Tris-HCl 0.5mol/L, EDTA 1mmol/L pH 8.5) adicionando 1 μ L de dicha enzima, incubar a 37°C durante 1 hora. Al final de la desfosforilación, extraer con fenol y cloroformo, precipitar el DNA con 1 volumen de isopropanol y 1/2 de NH₄Ac 7.5M.

Preparación de los fragmentos de clonación

Los fragmentos de DNA obtenidos de las digestiones hechas con diferentes enzimas de restricción se analizan en un gel de agarosa al 1.0%. La bandas esperadas se cortan con una navaja y se purifican con polvo de vidrio con el kit de "geneclean".

Ligación

Las condiciones de ligación fueron las siguientes: relación molar 1:3 de vector e inserto (100 ng de vector por 300 ng de inserto), 4 μ L de amortiguador de ligasa 5x, 1 μ l de T4 DNA ligasa y agua hasta un volumen final de 20 μ l, la reacción se dejó a temperatura ambiente toda la noche. Las transformaciones se llevaron a cabo por choque térmico utilizando todo ó 10 μ L de esta reacción.

VI.VII. Preparación de células de *Escherichia coli* competentes para transformación con plasmidos y métodos de transformación

• Preparación de células competentes

Inocular 25 mL de medio LB líquido con una colonia de la cepa deseada (JM101 o XL1-Blue) e incubar toda la noche a $37^{\circ}C$ con agitación a 250 rpm. Dividir el cultivo en dos matraces Fernback de 2.8 L que contengan 250 mL de LB líquido. Crecer a $37^{\circ}C$ y a 250 rpm hasta una densidad óptica de aproximadamente 0.6 de absorbancia a 560 nm. Transferir el cultivo en 2 botellas de centrifuga estériles mantenidas en hielo. Centrifugar a 7,000 rpm por 5 minutos a $4^{\circ}C$ y desechar el sobrenadante. Resuspender las células de cada botella con 100 mL de $CaCl_2 0.1M$ (frío) por agitación con vortex e incubar en hielo durante 4 horas. Centrifugar a 5,000 rpm por 5 minutos a $4^{\circ}C$ y decantar. Resuspender la pastilla celular en 10 mL de $CaCl_2 0.1M$ y 15% de glicerol frío con agitación suave. Incubar toda la noche en hielo. Al día siguiente alicuotar 200 µL en tubos eppendorf de 0.5 mL sobre hielo y congelar a $-70^{\circ}C$.

Método de transformación

Tomar un tubo de células competentes y descongelarlas lentamente sobre hielo. Una vez descongeladas agregarle 1 ng de DNA ó 20-25 ng de mezcla de ligación e incubar en hielo durante media hora. Agitar el tubo por lo menos cada diez minutos. Dar choque térmico durante 5 minutos a $37^{\circ}C$ y regresar al hielo por 5 minutos más. Pasar las células transformadas a tubos de ensayo de 13×100 mm con 1 mL de medio LB líquido e incubar durante 1 hora a $37^{\circ}C$ y 250 rpm para que se recuperen las células. Platear 100 µL en medio selectivo con antibiótico y dejar crecer toda la noche a $37^{\circ}C$. Si es mezcla de ligación platear toda la reacción después de concentrarla.

VI.VIII. Preparación de sondas radiactivas de DNA

Se utilizó el estuche comercial Multiprime Labelling System (Amersham Life Science). Para cada reacción se utilizaron entre 2 y 25 ng de DNA. Diluír el DNA en 10 μ L de agua y calentar 5 minutos entre 95 y 100°C para desnaturalizar. Poner en hielo. Agregar 4 μ L de los dNTPs (dGTP, dTTP, dATP), 5 μ L de buffer, 5 μ L primer, 5 μ L [³²P] dCTP y 2 μ L de enzima klenow. Llevar a un volumen final de 50 μ L con agua bidestilada. Mezclar e incubar 2 horas a 37°C. Centrifugar 10 minutos a 14,000 rpm y resuspender la pastilla con 150 μ L de NaOH 0.1 M. Agregar al tubo de hibridación.

VI.IX. Tamizado de la genoteca genómica de maíz

El banco genómico de Zea mays fue proporcionado por el Doctor Jorge Nieto Sotelo del Instituto de Biotecología-UNAM Este banco se construyó a partir de fragmentos de DNA genómico de maíz generados por digestión con la enzima Sau3AI y clonados al vector λ DASHII entre los sitios de BamHI (Nieto et al., 1999).

• Titulación de la genoteca genómica

Para realizar el tamizado se infectaron 100 μ L de células XL1-Blue MRA P2 suplementado con MgSO₄ 1M y maltosa 20%, (A₆₀₀=0.6-0.8) con 100 μ L de fagos a 2.5×10⁹ pfu/mL durante 20 minutos a 37^oC. Posteriormente, se les adicionaron 3 mL de agarosa suave (baño maria a 47^oC) y se vertieron sobre cajas petri que se incubaron a 37^oC durante 16 horas. Después de la incubación se dejaron las cajas a 4^oC para usarlas en la transferencia.

• Transferencia de placas a filtros de membrana "nylon"

Las placas de lisis generadas se transfirieron, por duplicado, a membranas de "nylon" con un tiempo de 2 y 4 minutos, respectivamente. Primero se selecciona el tamaño correcto de la membrana para ponerla en la superficie de agarosa suave por 2 minutos (4 minutos para replicas). Posteriormente,

cada membrana se trata durante 1 minuto con la solución de desnaturalización (1.5 M NaCl + 0.5 M NaOH), seguidos de 1 minuto de solución de neutralización (1.5 M NaCl + 1 M Tris-HCl pH 8.0) y 1 minuto en la solución de lavado $2\times$ SSPE (NaCl, NaH₂PO₄.H₂O, y EDTA pH de 7.4). Por último, el DNA de las placas de lisis se fija a la membrana con luz ultravioleta (0.12 julios de luz de 254 nm).

Hibridación

Después de la transferencia, el filtro se prehibrida en un tubo de hibridación por lo menos 30 minutos a $65^{\circ}C$ con una solución preparada con: 2.25 mL de NaH₂PO₄ 2M pH 7.2, 10.5 mL de SDS 10% y 2.25 mL de agua. El filtro prehibridado se hibrida con la sonda marcada con [³²P] dCTP adicionandola al tubo de hibridación donde se continua la incubación a $65^{\circ}C$ aproximadamente por 2 horas. Una vez terminada la hibridación se decanta la solución en desecho radioactivo y se lava a diferentes grados de astringencia (2×SSPE/0.1% SDS, 1×SSPE/0.1% SDS y 0.1×SSPE/0.1% SDS) incubando 15 minutos a $65^{\circ}C$ en el horno de hibridación. Se expone el filtro a un film X-OMAT de Kodak (20.3×25.4 cm) durante el tiempo necesario a -70°C.

• Amplificación y purificación de DNA de fago

Tomar con una pipeta pasteur (extremo angosto), una placa que coincida con la hibridación de la clona positiva y colocarla en un tubo eppendorf de 1.5 mL con 100 μ L de buffer SM. Guardar a 4°C durante toda la noche. Por otro lado, poner un cultivo de la cepa XL1-Blue MRA (P2) en 5 mL de LB líquido con 50 μ L de MgSO₄ 1M y 50 μ L de maltosa 20%, a 37°C durante toda la noche. Para absorber el fago con la bacteria agregar 500 μ L del cultivo anterior al tubo que contiene la placa de fago e incubar a 37°C por 20 minutos. Agregar la incubación anterior a 100 mL de LB líquido (previamente a 37°C) suplementado con 1 mL de MgSO₄ 1M en una matraz de 250 mL e incubar a 300 rpm a 37°C para que ocurra la lisis. Al finalizar la lisis adicionar 500 μ L

de cloroformo y centrifugar el cultivo a 10,000 rpm en el rotor JA20 10 minutos a 4°C y recuperar el sobrenadante. El sobrenadante (lisado) se centrifuga en el rotor 60Ti a 30,000 K a 4ºC durante 1 hora. Resuspender la pastilla obtenida en 2.5 mL de amortiguador SM y añadir RNAsa a 20 µg/mL y DNAsa 5µg/mL, incubar a 37°C por 30 minutos. Después de la incubación agregar 2.5 mL de Tris-HCI 0.3M, EDTA 100mM, SDS 1.25% pH 9 (Tris 1 M 0.75 mL, EDTA 0.5 M 0.5 mL, SDS 10% 0.312 mL y agua 0.937 mL) e incubar a 65°C por 10 minutos más. Añadir a la incubación anterior 2.5 mL de AcONa 3M pH 4.8 e incubar en hielo 10 minutos. Centrifugar y tomar el sobrenadante cuidando de no llevar el material floculado. Para precipitar la mezcla agregar 5 mL de isopropanol. Después de 15 minutos sobre hielo, centrifugar a 12,000 rpm durante 20 minutos a temperatura ambiente. Lavar la pastilla obtenida con etanol al 70%, secar y resuspender en 500 µL de TE. Posteriormente extraer la muestra con fenol-cloroformo y resuspender la pastilla con 100 µL de TE. Por último, corroborar la concentración del DNA en un gel de agarosa al 1.0% para el Southern blot.

VI.X. Southern Blots

(Transferencia de DNA desde geles a filtros de membrana)

• Tratamiento del gel de agarosa

Para transferir fragmentos de DNA desde geles de agarosa, se trata el gel antes de la desnaturalización dos veces 15 minutos con HCl 0.2 M (el azul de bromofenol debe volverse amarillo). Ello produce depurinación parcial y, durante el tratamiento alcalino, fragmentación. Para que se una el DNA al filtro de membrana "nylon" hay que desnaturalizarlo incubando dos veces 15 minutos con 500 mL de 1.5 M NaCl + 0.5 M NaOH y luego se neutraliza incubando 20 minutos con 500 mL 1.5 M NaCl + 1 M Tris-HCl pH 8.0 y 20 minutos con 20x SSPE. Las incubaciones se realizan con agitación. Este tratamiento elimina la tinción con bromuro de etidio por lo que ya no puede seguirse viendo el DNA con luz ultravioleta. Por tanto debe hacerse una foto del gel teñido antes de la transferencia, poniendo una regla graduada para identificar la posición del principio, la del final y la de los marcadores.

• Transferencia del DNA al filtro de membrana "nylon"

Para transferencia por capilaridad, colocar el gel encima del papel filtro Whatman 3MM que este comunicado con el líquido de transferencia (20x SSPE). El papel está sobre un vidrio apoyado en los bordes de la cámara y cubierto con tiras de papel que descienden y comunican con el líquido. Eliminar burbujas atrapadas entre el papel de filtro y el gel rodando un tubo horizontal y poner tiras de plástico (Saran Wrap, parafilm) en los bordes del gel para evitar que el líquido circule por la periferia. Colocar encima un trozo de filtro de membrana cortado del mismo tamaño que el gel y previamente mojado con 20x SSPE. Nuevamente eliminar burbujas atrapadas entre el gel y el filtro de membrana rodando un tubo de vidrio por encima. Colocar encima 2 trozos de papel de filtro mojados en 20x SSPE y cortados al mismo tamaño del gel. Poner encima servilletas de papel secas cortadas del mismo tamaño del gel y formando una pila de unos 7 cm. Al finar colocar una placa de vidrio

de las mismas dimensiones que lo anterior y con un peso de alrededor de 250 gr. Dejar la transferencia de 8 a 16 horas.

• 'Fijación del filtro de membrana "nylon" con luz ultravioleta

Lavar el filtro de "nylon" con 1x SSPE para quitarle restos de agarosa adheridos y cristales de sal. Fijar covalentemente el DNA al "nylon" iluminando con luz ultravioleta (0.12 júlios de luz de 254 nm).

Guardar el filtro a 4ºC hasta la hibridación con una sonda marcada radioactivamente con ³²P.

ON DISTU LA DE ORIGEN

VI.XI. Preparación de DNA de cadena sencilla

Partir de un cultivo de 3mL de LB con antibiótico (Amp. 100 µg/mL y Tc 12.5 µg/mL) de una colonia bacteriana transformada en XL1-Blue. Al día siguiente, inocular en 3 mL de medio 2×YT líquido con antibiótico 300 µL del cultivo anterior (7.5 x 10⁸ cel.). Incubar 30 minutos a 37°C con agitación en un matraz estéril de 50 mL y añadir el fago ayudador M13VCS (DO600 0.3 ó 2.5 x 10⁸ bacterias/mL) teniendo una relación de 20:1 (fago-células). Continuar la incubación a 37ºC con agitación por 8 horas. Centrifugar el medio por 15 minutos a 13,000 rpm y transferir el sobrenadante a tres tubos eppendorf (1mL c/u) cuidando de no transferir células. Añadir a cada tubo 250 µL (1/4 vol) de solución con NH4Ac 3.5 M, pH 7.5 20% y PEG al 20%. Mezclar los tubos por inversión y dejar a temperatura ambiente por 15 minutos y centrifugar por 20 minutos a 12,000 rpm en una microfuga descartando el sobrenadante. Centrifugar otros 2 minutos y volver a eliminar el sobrenadante. Resuspender la pastilla con 100 µl de amortiguador TE agitando en vortex y pasar a un solo tubo. Tratar con 500 µl de fenolcloroformo-isoamílico, transferir la fase acuosa a un tubo nuevo y extraer con 500 µl de cloroformo isoamílico, transferir la fase acuosa a un tubo nuevo. Precipitar el DNA añadiendo un volumen igual de NH4Ac 7.5M y 2 volumenes de etanol al 100%. Poner sobre hielo por 15 minutos y centrifugar por 20 minutos a 4ºC. Decantar el sobrenadante y lavar la pastilla con etanol al 70%. Secar y disolver la pastilla con 30 µL de agua bidestilada. Comprobar la concentración analizando 1 µL de DNA en un gel de agarosa al 1.0%. Guardar a a -20°C.

VI.XII. Secuenciación de DNA.

La secuenciación de DNA se llevó a cabo utilizando el método de dideoxinucleótidos terminadores de la síntesis de cadena (Sanger et al., 1977) utilizando los oligonucleótidos universales T3 y T7, así como oligonucleótidos específicos para las clonas. También fueron secuenciados algunos fragmentos de DNA mediante un secuenciador automático (Servicio de Secuenciación Fluorescente Automatizada del IBT), por el método de Taq FS Dye Terminator Cycle Sequencing y un secuenciador modelo 377-18 marca Perkin Elmer/Applied Biosystems.

Desnaturalización y alineamiento del templado y el primer

Agregar a 5 μ g de DNA de cadena doble, 0.1 volumen de NaOH 2M y 0.1 volmen de EDTA 2mM e incubar a 37°C durante 30 minutos. Posteriormente neutralizar la mezcla con 0.1 volumen de NaAc 3M pH 5.2 y precipitar con 2-4 volumenes de etanol absoluto frío a -70°C por 15 minutos. Centrifugar por 20 minutos y desechar el sobrenadante. Lavar la pastilla con etanol al 70% y resuspender en 7 μ L con agua destilada. Para alinear el templado con el primer añadir 2 μ L de amortiguador de reacción de secuenasa y 1 μ L del primer deseado.

Reacción de marcaje

Calentar la mezcla de alineamiento por 2 minutos a 65° C y enfriar lentamente durante 15 minutos hasta alcanzar una temperatura menor a 35° C. Centrifugar brevemente la mezcla en una picofuga y ponerla sobre hielo, agregar 1 µL de DTT 0.1 M, 2 µL de la mezcla diluida de marcaje, 0.5 µL ([³⁵S] dATP) y 2 µL de polimerasa diluida. Mezclar la reacción e incubar a temperatura ambiente por 5 minutos.

1	177337
1	- UIN
EALLA DE	ODICENT
	OURTRIN

Reacción de terminación

La reacción de marcaje se detiene con la mezcla de terminación. Para ello, debemos transferir 3.5 μ L de la reacción de marcaje a cada tubo eppendorf que contenga 2.5 μ L de cada dNTP (G, Å, T y C), mezclar e incubar a 37°C por 5 minutos. Después de la incubación agregar a la reacción 4 μ L de solución "stop" y guardar a -20°C. Antes de correr las muestras en el gel de secuenciación, calentar las reacciones a 75°C por 2 minutos y cargar 3 μ L de la reacción. Correr las muestras a 35 ó 40 watts y 2000 volts.

VI.XIII. Análisis comparativo de las secuencias

TESIS CON FALLA DE ORIGEN

El análisis consiste en buscar en bases de secuencias (reservorios de información donde se concentran todos los resultados de diferentes laboratorios) parámetros para decidir si la secuencia analizada es lo suficientemente parecida. Dentro de la información que se presenta, se encuentra el nombre y el número de acceso de cada secuencia, y es necesario identificar cuales de los fragmentos similares corresponden a una fase de lectura abierta y cuales son secuencias no codificadoras.

Los programas que se utilizaron son:

 GCG (Genetics Computer Group) también llamado Wisconsin, es un paquete integrado de más de 130 programas que permiten la manipulación y análisis de secuencias de nucleótidos y proteínas.

dirección: http://GCG.ceingebi.unam.mx/gcg-bin/seqweb.cgi

- BLAST. Localiza secuencias similares a un patrón en una base de secuencias existentes. La secuencia patrón puede ser de nucleótidos o de proteína. Este programa puede utilizar diferentes tablas de calificación de similaridad entre aminoácidos, con lo cual se adquiere mayor precisión. dirección: http://www.ncbi.nlm.nih.gov/blast/
- FASTA. También realiza búsqueda de secuencias similares entre un patrón y una base de secuencias. Para la búsqueda en bases de secuencias, Fasta es más sensible que Blast. Este programa se puede usar solamente para nucleótidos.

dirección: http://www2.ebi.ac.uk/fasta3/

 PLACE. Base de secuencias nucleotídicas que identifica elementos de DNA regulatorios en plantas.

dirección: http://www.dna.affrc.go.jp/htdocs/PLACE/

El análisis comparativo de las secuencias con programas de secuenciación genómica de otras especies, se llevó a cabo con las siguientes direcciones

- arroz: http://www.rice-research.org/ y http://www.tmri.org/
- arabidopsis: http://www.arabidopsis.org/home.html

VII. - RESULTADOS Y DISCUSIÓN

VII.I. Tamizado de un banco genómico de maíz.

Para obtener la secuencia completa de las clonas de cDNA C109 y T101T, se realizó un tamizado del banco genómico λ DASH II que fue construído con DNA de maíz (Nieto *et al.*, 1999). De acuerdo al tamaño del genoma haploide de 3X10⁶ Kb del maíz se tamizaron 1,380,000 pfu en un total de 28 cajas petri (150 x 15 mm) con 50,000 pfu cada una. Como sonda para el tamizado, se utilizaron diferentes fragmentos de las secuencias de las clonas de cDNA (Figura 12).

Se obtuvieron 10 clonas positivas utilizando una sonda a partir del 3'del cDNA de la clona C109. Para caracterizar los insertos contenidos en estas clonas se realizó un análisis del patrón de restricción con diferentes enzimas que mostró el mismo patrón de restricción para las 10 clonas. Para identificar cuales de los fragmentos de restricción corresponden a la secuencia de la clona de cDNA C109 se realizó un análisis tipo Southern usando la misma sonda 3' usada en el tamizado. La sonda hibridó con 2 fragmentos EcoRI/ClaI de aproximadamente 5 Kb y 2 Kb respectivamente. Dado que estos fragmentos son comunes en las 10 clonas, para los siguientes estudios seleccionamos únicamente una clona a la que denominamos C109.10. Los fragmentos de 5 Kb y 2Kb de la clona C109.10 fueron secuenciados parcialmente con los oligos T7 y T3. El análisis por BLAST mostró que las secuencias de ambos fragmentos si tienen homología con la clona de cDNA C109, pero no tienen las secuencia que corresponde al extremo 5' que contiene el codón de inicio. Para encontrar la secuencia del extremo 5' de la clona C109 se hizó un nuevo tamizado, pero ahora utilizando una sonda 5' de la clona de cDNA C109 (ver figura 12). Se obtuvieron tres clonas positivas. Los fragmentos de interés de estas clonas se determinaron analizando su patrón de restricción y por medio de un análisis tipo Southern. El análisis mostró que las tres clonas positivas tienen el mismo patrón de restricción e

hibridación. De tal manera que sólo nos enfocaremos a una de ellas, la llamada C109.II.3. Para determinar si ésta última clona tiene la secuencia completa, se realizó otro tamizado usando ambas sondas; las sondas 3'y 5' de la clona de cDNA C109 utilizadas en los tamizados anteriores. En la figura 13 se muestran los resultados obtenidos; las clonas positivas para la sonda 3' los son también para la sonda 5', de esto podemos concluir que estas clonas tienen la secuencia completa.

Por otro lado, se obtuvieron del tamizado con la sondas del cDNA de la clona T101T (Figura 12), cinco clonas (las clonas positivas para la sonda 3'son positivas también para la sonda 5'). Determinamos su patrón de restricción y por un análisis tipo Southern se identificó cuales de los fragmentos de restricción corresponden a la secuencia de la clona del cDNA T101T. El análisis mostró que las cinco clonas tienen fragmentos diferentes y que dos de ellas se obtuvieron de placas de fago falsos positivos ya que no hibridaron los DNAs en el Southern blot. De tal manera, sólo nos enfocaremos a tres de las cinco clonas y las llamaremos T101T.1, T101T.2V y T101T.500. En las figuras 14, 15 y 16 se muestran los tamizados obtenidos de las tres clonas seleccionadas.

En el caso de la clona de cDNA denominada C103 no fue necesario hacer un tamizado del banco genómico para obtener su secuencia completa. La secuencia parcial del inserto de esta clona con los oligonucleótidos Sp6 y T7 mostró que en el extremo 5' se encuentra el codón de inicio y en el extremo 3' el codón de término, por lo que se concluyó que esta clona de cDNA estaba completa.

TESIS CON FALLA DE ORIGEN

A Clona de cDNA C109

B Ciona de cDNA T101T

Figura 12. Mapa de restricción de las clonas de cDNA denominadas C109 y T101T. Las flechas representan la estrategia de secuenciación de los genes ZmC109 y ZmT101T utilizando diferentes oligonucleótidos y la ubicación de la sonda utilizada en el tamizado.

51

Figura 13. Tamizado de la genoteca genómica de maíz. Se hibridaron 1,380,000 pfu contra diferentes fragmentos de la secuencia de la clona de cDNA C109 marcados radioactivamente con [³²P] dCTP. El lavado de alta astringencia fue a 65°C, con SSC 0.1x /SDS 0.1%. En el 1er tamizado fueron aisladas tres clonas positivas. Se muestra el filtro positivo para la clona C109.II.3 (la flecha indica la señal positiva) de la cual se obtuvieron placas puras hasta el 3er tamizado.

Figura 14. Tamizado de la genoteca genómica de maíz. Se hibridaron 1,380,000 pfu contra la secuencia de la clona de cDNA T101T marcada radioactivamente con [32 P] dCTP. El lavado de alta astringencia fue a 65°C, con SSC 0.1x /SDS 0.1%. En el 1er tamizado fueron aisladas cinco clonas positivas. Se muestra el filtro positivo para la clona T101T.1 (la flecha indica la señal positiva) de la cual se obtuvieron placas puras hasta el 4⁹ tamizado.

Figura 15. Tamizado de la genoteca genómica de maíz. Se hibridaron 1,380,000 pfu contra la secuencia de la clona de cDNA T101T marcada radioactivamente con [³²P] dCTP. El lavado de alta astringencia fue a 65°C, con SSC 0.1× /SDS 0.1%. En el 1er tamizado fueron aisladas cinco clonas positivas. Se muestra el filtro positivo para la clona T101T.2V (la flecha indica la señal positiva) de la cual se obtuvieron placas puras hasta el 3er tamizado.

Figura 16. Tamizado de la genoteca genómica de maíz. Se hibridaron 1,380,000 pfu contra la secuencia de la clona de cDNA T101T marcada radioactivamente con [³²P] dCTP. El lavado de alta astringencia fue a 65°C, con SSC 0.1× /SDS 0.1%. En el 1er tamizado fueron aisladas cinco clonas positivas. Se muestra el filtro positivo para la clona T101T.500 (la flecha indica la señal positiva) de la cual se obtuvieron placas puras hasta el 3er tamizado.

VII.II. Análisis del patrón de restricción de las clonas genómicas obtenidas.

Para caracterizar los insertos contenidos en las clonas positivas C109.II.3, T101T.1, T101T.2V y T101T.500, se realizó un análisis del patrón de restricción, que consistió en digerir las clonas utilizando diferentes enzimas con el objeto de encontrar una enzima que digiera el DNA en varios fragmentos favoreciendo el análisis de secuenciación por subclonación. Se eligieron enzimas de restricción que cortaban en sitios internos de la secuencia de nucléotidos de los cDNAs. Las enzimas utilizadas fueron: ApaI, BamHI, BstxI, ClaI, EcoRI, NcoI, PstI, SalI y XhoI. La digestiones de las clonas presentaron un patrón de restricción diferente.

En la figura 17A se muestran los resultados obtenidos de la clona C109.II.3. De las digestiones obtenidas únicamente ApaI/BstXI (carril 2), ApaI/NcoI (carril 3) y PstI/BstXI (carril 4) liberaron un inserto de aproximadamente 1.1.Kb que corresponde al tamaño esperado.

Del mismo modo, en la figura 18A se muestran las digestiones de las clonas T101T.1, T101T.2V y T101T.500, el resultado mostró un patrón de restricción similar para las clonas, a pesar de que existen diferencias en el tamaño de los insertos. Las clonas fueron digeridas con *Apa*I ya que con esta enzima se libera el inserto del cDNA en dos fragmentos, lo que facilitaría la localización de la secuencia que contiene el codón de inicio. Los fragmentos liberados con la digestión *Apa*I tienen un tamaño aproximado de 3.0 Kb y 300 pb (carriles 3, 10 y 16), al parecer alguno de estos fragmentos corresponden a la secuencia completa de la clona de cDNA T101T.

MUD DIDIN FALLA DE ORIGEN

Por otro lado, se confirmó el tamaño del fragmento de la clona de cDNA C103 con una doble digestión EcoRI/XbaI (dato no mostrado), se eligieron estas enzimas ya que los sitios de restricción respectivos se encuentran flanqueando al inserto de la clona en el plásmido pGEM-1 (contenido en el bacteriofago λ GEM-4). El fragmento liberado es de aproximadamente 1.5 Kb y fue clonado en el plásmido Bluescript SK+/SK-. Posteriormente se obtuvo la secuencia de DNA de cadena sencilla con el fago ayudador M13VCS.

Para identificar cuales de los fragmentos de restricción corresponden a la secuencia del gen completo se realizó un análisis tipo Southern; los resultados se describen a continuación.

TESIS CON FALLA DE ORIGEN

VII.III. Análisis por Southern blot de las clonas genómicas.

Se realizó un Southern blot de las clonas positivas digeridas con diferentes enzimas para identificar cuales de los fragmentos de restricción hibridaban con la sondas específicas utilizadas en el tamizado.

El análisis por Southern blot de la clona C109.II.3 mostró que las sondas 3' y 5' del cDNA hibridaron con varios fragmentos de diferentes tamaños (figura 17B y 17C). De estos, se eligió trabajar con el fragmento obtenido con la digestión doble *ApaI/BstxI* (carril 2) que hibridó con las dos sondas respectivamente y que tienen el tamaño esperado.

Por otro lado, el resultado del análisis de las clonas T101T.1, T101T.2V y T101T.500 por Southern blot muestra que las digestiones obtenidas con *ApaI*, *ApaI/Sa/I* y *ApaI/PstI* dividen el cDNA en dos fragmentos (ver figuras 18B y 18C; carriles 3, 4, 7, 10, 11, 14, 16, 17 y 20). Los fragmentos de 3.0, 2.0 y 1.5 Kb hibridaron con mayor intensidad con la sonda 5' mientras que los fragmentos de 300 pb hibridaron con mayor intensidad con la sonda 3', por lo que concluimos que los fragmentos de 3.0, 2.0 y 1.5 Kb tienen la secuencia completa del gen. Estos fragmentos son comunes a todas las clonas por lo que, a pesar de que existen diferencias en el tamaño de los insertos, los fragmentos correspondientes a la secuencia de la clona de cDNA T101T son los mismos en cada clona, por lo que en los siguientes análisis se utilizó únicamente el fragmento *Apa*I de 3.0 Kb de la clona T101T.1, que es el sitio de hibridación de mayor tamaño.

Posteriormente, los fragmentos seleccionados fueron clonados en el vector pBluescript SK+ antecedidos por un promotor T3 y T7 respectivamente, para facilitar la estrategia de secuenciación de las clonas.

A Clona C109.II.3

Carriles: 1. 1 Kb; 2. Apa I/BstxI; 3. ApaI/NcoI; 4. PstI/BstxI; 5. ApaI/BamHI; 6. ApaI/SalI; 7. BamH/BstxI; 8. SalI/BstxI; 9. BamHI/NcoI; 10. SalI/NcoI; 11. BamHI/ClaI: 12. EcoRI/ClaI: 13. ApaI 14. NcoI; 15. BamHI; 16. BstxI; 17. PstI; 18. SalI: 19. EcoRI: 20. ClaI.

B Sonda 3 prima

C Sonda 5 prima

Figura 17. Análisis de hibridación tipo Southern del DNA genómico de la genoteca de maíz. A) Patrón de restricción del DNA con diferentes enzimas. Los fragmentos fueron separados por electroforesis en agarosa al 1.0% y teñidos con EtBr. B) Autoradiografía de la hibridación tipo Southern contra diferentes fragmentos de la clona de cDNA C109 marcada radioactivamente con [³²P] dCTP. El lavado de alta astringencia fue a 65°C, con SSC 0.1×/SDS 0.1%.

FALLA DE ORIGEN

Carriles: 1. λ HindIII/EcoRI; 2. SalI; 3. ApaI; 4. ApaI/SalI; 5. ApaI/BamHI; 6. ApaI/XhoI; 7. ApaI/PstI; 8. I Kb; 9. SalI; 10. ApaI; 11. ApaI/SalI; 12. ApaI/BamHI; 13. ApaI/XhoI; 14. ApaI/PstI; 15. SalI; 16. ApaI; 17. ApaI/SalI; 18. ApaI/BamHI; 19. ApaI/XhoI; 20. ApaI/PstI.

B Sonda 3 prima

C Sonda 5 prima

Figura 18. Análisis de hibridación tipo Southern del DNA genómico de la genoteca de maíz. A) Patrón de restricción del DNA con diferentes enzimas. Los fragmentos fueron separados por electroforesis en agarosa al 1.0% y teñidos con EtBr. B) Autoradiografía de la hibridación tipo Southern contra el cDNA de la clona T101T (se dividio en dos fragmentos: 5' y 3') marcada radioactivamente con [³²P] dCTP. El lavado de alta astringencia fue a 65°C, con SSC 0.1x /SDS 0.1%.

VII.IV. Obtención de la secuencia completa de las clonas genómicas.

Las clonas genómicas seleccionadas a partir del análisis tipo Southern blot fueron secuenciadas mediante el método de dideoxinucleótidos terminadores de la síntesis de cadena (Sanger *et al.*, 1977) utilizando los oligonucleótidos universales T3 y T7 específicos para el plásmido pBluescript SK+, y los oligonucleótidos específicos de las clonas de los cDNAs C109 y T101T (ver materiales y métodos). Las secuencias obtenidas fueron analizadas utilizando el paquete de programas de GCG, BLAST y FASTA. Los alineamientos de las secuencias obtenidas frente a las secuencias de los cDNAs confirmó la presencia de los extremos 3' y 5' e indicó la orientación del gen respecto a las clonas en el vector de clonación.

La secuencia genómica de la clona C109 contiene 1498 pb que exhibe un marco de lectura abierto de 350 aa (Figura 19). La secuencia se encuentra interrumpida por un intrón de 170 pb que interfiere con el marco abierto de lectura entre los nucleótidos 335 y 505. El intrón fue identificado por la presencia de secuencias conservadas aceptoras (3' AG) y donadoras (5' GT) de "splicing". Se realizó el análisis del uso de codones de la clona completa C109 utilizando el programa "Codon Preference" del paquete de GCG, para determinar el uso preferencial de codones de la secuencia, ya que un análisis anterior mostró que la secuencia del cDNA predice dos posibles marcos de lectura abierto (No. de Acceso en el GeneBank: AF134580). En la figura 20 se muestran los resultados de este análisis; la secuencia tiene un uso preferencial de codones en el primer marco de lectura.

Como parte de la caracterización de la secuencia de la clona C109, se identificó el sitio de inicio de la transcripción utilizando el programa "PLACE" (Plant cis-acting regulatory DNA elements) que es una base de secuencias nucleotídicas que identifica elementos de DNA regulatorios en plantas (Higo K, et al., 1999). El inicio de la transcripción se encontró a 62 pb corriente arriba del inicio de la traducción (ATG). La secuencia inicio de la FALLA DE ORIGEN

transcripción es CTC<u>A</u>TCT (donde <u>A</u> indica el nucleótido de inicio), que es una secuencia consenso de inicio de la transcripción en algunos genes de plantas que ya se han descrito (Joshi C.P., 1987). De igual manera, la señal consenso de poliadenilación AATAA reportada para otros genes de plantas (Morgen, B.D., et al., 1992) fue identificada en la posición +1430 a +1434 de la secuencia. En la figura 19 se muestran los elementos regulatorios encontrados.

Por otro lado, la secuencia genómica de la clona T101T tiene 1817 pb con un marco de lectura abierto de 70 aa (Figura 21). El análisis de esta secuencia identifica el inicio de transcripción (CCATCT) a 93 pb corriente arriba del inicio de traducción y a un elemento de inserción llamado Ds1 en la región 5[°] del promotor similar a un elemento reportado para la secuencia del gen ABP1 de maíz que juega un papel en la percepción de auxina (Elrouby *et al.*, 2000).

La secuencia de la clona de cDNA C103 tiene 1435 pb y contiene un marco de lectura abierto de 355 aa (Figura 22). La señal de poliadenilación consenso AATAA se identificó en la posición +1371 a +1375 de la secuencia.

ESIS CON A DE ORIGEN

1	CCATCICATCTCAGTGAATCATCACACGTACAGACAGCATCACAGCACTCACCCAGCGCG	60
61	CAGTACAACGCAAATGGCCAGGCTGGGAGCACTGATTCCGCTGGCCATCCTCCTGCTCGC	120
	MARLGALIPLAILLA	
121	CCCCGTCGCGCCACTGCCGCCTTCAGACAGGCCACCCAAGGCGCAGGGCCCAAGCC	180
	AVAATAAP'S DR P P K A Q G P K P	
181	GCACAAGGAGAAGGAGAAGGAGAAGCCCAAGCCCATGAAGGTGAAGTGCCGCCCCGTAA	240
	* * * * * * * * * * * * * * * * * * * *	
241	GCTCTACCCTTACTGCCCCGGCAAGCCGATGGAGTGCCCCGCCGAGTGTTCCCAGTCATG	300
	LYPYCPGRPMECPAECSOSC	
301	CTACGCCGACTGCAGCTCCTGCAAACCCGTCTGCGGTGAGCGCCGCGCGCG	360
	Y & D C S S C K P Y C	
361	ACATGTCCTTGGTGGTTTTTAATIGGCTGCCTTGCCGCAAGTTGATGGCCATGCATGTCAT	420
421	TGTCAAGTACTAACTGGCCGCCGTCACCGTCGCCGTCGCCCGGTGCCTGGTGCATTTGTT	480
481	ACGTACGTTTGTATATCGCATGCAGTGTGCAAGCGTGCCGGGGGCGTGCGGCGACCCGCG	540
541		600
241		000
601		660
001		000
661		720
001		14.0
721	CONTRACTOR CONCERNENCE OF CONCERNENCE OF CONCERNING ACCOUNT	780
		/00
781		940
.01		0.40
841		900
041		300
901	Calcer agent a clattagger a correct attag aga ga ga gar	960
201		300
961	GCALCEGTALGECGTCACEGCGACGACTECCTCCCCCACCTTCACCTTTCAACTTT	1020
201		
1021		1 0 0 0
		1080
1081		1140
1001		1.40
1141		1200
		1200
1 2 0 1		1260
1201		1200
1761		
	A O G Y Y O F F +	1950
1 2 2 1		1200
1301	CONCERNMENT COCCORCECTION TO CONCERNMENT COCCUSION AND CONCERNMENT	1380
1441	ATATATATATATASCOTOGOTOTTATCATTOTCATGACATTCACACCOCATAAGSCTIG	1440
~~• <u>~</u>		98

Figura 19. Secuencia nucleotídica y polipeptidica deducida de la clona C109. La clona C109 presenta un marco de lectura de 1498 pb que codifica para una proteína de 350 aminoácidos. La secuencia se encuentra interrumpida por un intrón de 170 pb entre los nucleótidos 335 y 505. El nucleótido +5 corresponde al sitio de inicio de transcripción. La señal consenso de poliadenilación se encuentra en letras remarcadas en la posición +1430 a +1434.

TECIS CON FALLA DE ORIGEN

Figura 20. Uso preferencial de codones de la clona C109.II.3. La figura muestra tres marcos de lectura donde la línea continua representa el uso de codones. La clona C109.II.3 presenta un uso preferencial de codones en el primer marco de lectura.

TESIS CON FALLA DE ORIGEN

69

1 CACCTACCTTCCACCTCCTTGGTTTCTCCCTTCCGCTCTTCAGTCTACTGCGTGGGA . 60 120 121 AAAAAGAAAGCAACACAAAATTITACCACCATTACCCACCACCGCGGTGCATGCTGTAGT 180 181 TAGCTTTTTGCCATCCGGCAAAGTCCATGGGAATTGGATAAGTGGAAGACTTGAGTAAGC 240 300 360 361 ATTTTTCCTATAGGATACATTCATATAGATTGCCACGTTAGTTCTGTTAGGCAATCTCCA 420 421 GCAGGTCGTGTAAACGCCCGTGCAAAATACTGTTTTGTACTGTAGATTGCACTGCTAGAA 480 481 GAGTGAAGTTTGAAATAATCAGTAAGATAGGAAGTGCGATAAAAAAATCTGTTGGAGATA 540 541 ATCTTAGCATGAGCTGTGCGTGATTTCCTTCCTAACAAAACCACGTGTTGTTTCCCACC 600 601 GCAGAGCACAGCATGACAGCAGCATTCTCTCGATTTTCATACATCTGGCGGTACGGTC 660 661 GTCCTTAATGGAAAGCACAGTCGTCTGACTCTAGTACTGTACCATACTTATAATATAATC 720 780 781 GTAGTTGGTACCATACTTATAATACAAGCACATCCACACGGGTCAACCTAAGGCTCGTGA 840 841 CGACTCCACTCCACGCGACGTGTAGACGCAACGCAAGTACGCAACGCAGGGGAAACGAAA 900 901 TGGAAGGGGAAAAGCAAGCTAGCTAGCCAGATTTGCATTCACAGTCCAAAAGCAACGAGT 960 961 GGTTGCAGCCTAACGAGATCTAACCTACTACTCGCTTTCCATTTTGTCAACCCCCCACAAA 1020 1021 ATCTCTTCCATACACGAGCGAACGCGGACATTCAAAAGTCCTTGCCGGACACGTCTCATG 1080 1081 CACGACCACGGACCACCCCATGCCCAACACCACCATTTAAGCATCCTCCCTTCTCCTCCT 1140 1141 CCCCCTCCTCCAAGTGAACTTACTACCACGTCTACACCCCATCTCACAAAGCTAAAAAAAC 1200 1201 GETATTIGCGCCTCCTCCCAAGTGACGTCGTCGCGCGCCCCCGGAGTATCTACC 1260 1261 TAGCTAGGCTAGGACGATGGCGTTACTCCGGTCGTCGACTGGCTGTTCGCCTGGCGGT 1320 **MALLRSCRLAVRVA** 1381 TCTGCCAGGCGGCCACGGGGGGGCGCCAGCGGGGTTCTCCACGGCGAACTTGCCGGTGTT 1440 L P G G H G G A S G G F S T A N L P V F 1441 CGTCGTCGCGAGGGCCCGGCCCAGCCGCCGAGGAGCTGGCCATTAGCAGTCCTGTGTACA 1500 **V V A R A G P S R R G A G H *** 1501 GACCTGCCTCTGCATGTCGTTCGAAGTCTTATTAATTCTCAAAGTGCAATCATTAATCAA 1560 1561 GGATTTTTTTCCCTCTCTTTTAATTTACTCTTCTAGCTACTACTTCTTCTGCTGTTTCAT 1620 1621 TGGTTCTTTGCCTGTTCTAAGGATGCTCAGCCCATAGCTTTCGATGTCGATCTGACAGGG 1680 1801 AAAAAAAAAAAAAAAAAAA 1817

Figura 21. Secuencia nucleotídica y polipeptídica deducida de la clona genómica T101T. La clona T101T tiene 1817 pb con un marco de lectura de 70 aminoácidos. En el recuadro se señala el sitio de transcripción y con letras subrayadas se resalta la secuencia que corresponde al elemento de inserción Ds1.

	1	. A	rcci	ATCO	CTG	TGA	CGG	GCG	ATC	CGA	GGG	CCT	ACC	GAC	GAT	GGI	GIC	:CGC	CGI	GCI	CCGG	60
	61	. A	CCA	rcer	rcgi	GAC	GGG	CGG	CGC	CGG	GTA	CAT	CGG	CAG	CCA	CAC	GGI	GCI	GCA	GCT	GCTG	120
		т	Ť	L	v	T	ø	G		G	¥	İ	G	8	H	T	v	L	Q	L	L	
	121	. Ci	AGCI	AGGC	CTI	CCG	CGT	CGT	CGT	CGT	CGA	CAA	CCT	CGA	CAA	CGC	CIC	CGA	GGC	CGC	CCIC	180
		0	0	g		R	v	v	v	v	D	N	L	D	×	A		×		<u> </u>	L	
	181	. Go	ccc	GGI	CGC	CGA	GCT	CGC	CGG	GCA	CGA	.CGG	CGC	CAA	CCT	CGI	CTI	CCA	CAA	GGI	IGAC	240
	241	~		~~~~			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ССТ		. С М. т.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				- -			ТС УП	1000	300
	241	. C.	-1CC	acier n	SCAG	50A	ع ال	GPT T.	U	GGA	-A1			erc e	SCA 1	1	GT-I			v	T	300
	301	- c	<u>م</u> بلين		- 	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>	тст	πĞG	د. م	പ്പ	com	с с а	CAA	ഹ്റ	<u>сс</u> т	ver.	чтр А	CTA	CGAC	360
	501	11			a	T.	T.		v	G	E	8	v	H	x	P	L	L	¥	¥	D	
	361	Ā	ACAZ	ACCT	GGT	cēg	CAC	CAT	CAC	ccr	CCT	CGA	GGT	GAT	GGC	TGC	GAA	cGo	CTG	CĀA	GAAG	420
		N	N	L	v	G	T	I	т	L	L	E	v	36			34	G	С	×	R	
	421	C	rGGI	GTI	CTC	GTC	ATC	TGC.	AAC	TGT	CTA	TGG	GTG	GCC	CAA	GGA	AGI	ACC	ATG	CAC	CGAA	480
		L	v		8	8	8	A	T	v	¥	G	w	₽	ĸ		v	₽	С	T	E	
	481	Gž	\AT7	rece	GCT	CTG	CGC	CAC	CAA	TCC	CTA	TGG	GCG	GAC	АЛА	GCT	TGI	GAT	TGA	AGA	CATC	540
		×		P	L	С		T	N	P	x	G	R	т	ĸ	L	v	I	E	Ð	I	
	541	т	SCCC	CGA	CGT	CCA	CCG	CTC	CGA	ccc	GGA	CTG	GAA	GAT	CAT	ACT	GCI	CAC	GTA	CTI	CAAC	600
		C	R	P	v	H	R	8	D	P	P	W	x	I	_ I _	L	L	R	Y		M	
	601		CGI	TGG	CGC	TCA	TCC	AAG	cee	GTA	CAT	CGG	CGA	AGA	ccc	CIG	CGG	FIGI	CCC	GAA	CAAC	660
•	~~~	P	v	G	A	H	P	8	G	Y	I	G		D		C	a	v	P			
	66T	- C1	GA1	GCC	CTA	CGT	GCA	GCA	AGT	CGC	TGT	TGG	GAG	GTT	ACC	TCA	cer	CAC	GG1	CIA	CGGG	720
		-		~		~~~	- U		Ň	~~~~	Ň	~~~~~	- R					~			~~~~	790
	121	T	ngga n	W L	R	-7-		D B	a	- AC	a	UP UP	506	1GA	TTA W	CAT T		V	161	- GA	T.	/80
	781	å		ഹം	CCA	- Ā. m		AGCO	~~~~	20.00	SAA	c m	- - -	CGA		-	CGA		<u>ъъ</u> т	AGG	CTTY TT	840
		Ä	D	a	H	I			L	R	R	L	H	E	D		D	R	Ť	a	C	040
	841	GA	AGT	GTA	CAA	TT	GGG	GAC	rGGJ	AAA	GGG	GACO	STO	GGT	GTT	GGA	AAT	GGI	GGC	тĞС	ATTC	900
			v	¥	N	L	G	т	G	ĸ	G	T	8	v	L	E	ж	v			7	
	901	GA	GAA	GGC	TTC	rggo	GAAG	GAA	AAT	CCC.	rcr	GGT	STT	CGC	TGG	GCG	AAG	ACC	CGG	AGA	CGCA	960
			ĸ	A	8	G	ĸ	ĸ	I	P	L	v		*	G	R	R	₽	9	Ð	А.	
	961	GA	GAT	CGT	CTA	CGCC	CGC	AAC.	rgco	CAAC	GGC	AGA	GAA	AGA	GCT	CAA	ATG	GAA	GGC	CAA	GTACI	L020
		Ť.	I	v	Y	A	*	т	A	x	*		ĸ	E	L	ĸ	W	x	*	ĸ	¥	
1	021	GG	GAT	CGA	GGA	GAT	FIG	CAG	AGA?	CTC	GTG	GAAG	CTG	GGC	GAG	CAA	GAA	CCC	GTA	CGG	CTAC	1080
		G	I	E	E	×	С	R	D	L	W	N	W	*	8	ĸ	30		Y	G	¥	
1	081	GC	TGG	GTC.	ACG	CGA	CAAG	CAGO	CAAJ	'IG	AC	CAC	CCA	ICC.	ATG	CAT	ccc	ATC	CTG	CAG	TAGG	1140
			G	8	R	D	M	8	ĸ	•												
1	141	AG	CAA	GCA	GCA	GCC.	TAT	rage	CT	1TGC	TAC	CCA:	raa'	TTA.	ATT	AGT	AAC	TCA	TCA	ATC	ATGC	1200
1	201	AT	ACA	TAA		SCC/	AGTO	ATC	-1G/	VIT2	1GG	GT/	ACTO	SCG	ATG	GGC	CIC	GCI	TCT	TCA	GIGT	1260
1	201 201	AT	AGA	3999 77 - 72	AGG	100	1996)فافاد	510	ALC:	r IG	ATA	FIC	T-I-L	TTL	TA	ACA	OLL	CCG	IAA	GATT	1320
1	125	AT	TAT	TAG	TAG		5.T.T.F	.GAI	CAT.	CAC1	ucci	AIGO	31°T(-T-D-	IGC	TAG	AGA	AGG	AAT	AAG	CICC	1380
T	191	AT	TCA	TAT	ACC.	I'AA(TA	AG/	YTA.	L'AT?	7.1.Y.	L'AC'	AIG	CAT	ICA	AAA	AAA	AAA	AAA	AA I	435	

Figura 22. Secuencia nucleotídica y polipeptídica de la clona de cDNA C103. La clona tiene 1,435 pb y contiene un marco de lectura abierto de 355 aminoácidos. Se identificó la señal de poliadenilación consenso AATAA en la posición +1371 a +1375 de la secuencia.

71

CIS I

VII.V. Análisis comparativo de las secuencias completas de las clonas genómicas.

La comparación de la secuencia de la clona C109 (ZmC109) con las secuencias proteícas descritas en bases de datos, usando el programa BLAST, identifican varias secuencias homólogas con plantas, incluyendo a proteínas de maíz, arroz y arabidopsis. El porcentaje de identidad entre la clona C109 y sus homólogos, es el siguiente: 98% con Zea mays (ZmRCP2) [No. de Acceso ABO21176], 61% con Oryza sativa (Osat) [No. de Acceso CAD4066.1], 60% con Zea mays (ZmRCP1) [No. de Acceso ABO21175], 60% con Arabidopsis thaliana (Atha1) [No. de Acceso BAB02467], y 50% con Arabidopsis thaliana (Atha2) [No. de Acceso BAB0320]. La figura 23 muestra el alineamiento entre estas proteínas. Las seis proteínas tienen un peptido señal putativo Nterminal hidrofóbico y un motivo de seis residuos de cisteínas conservados en tres pares de Cys-X-X-X-Cys.

La clona C109 predice una proteína con un alto porcentaje de identidad llamada ZmRCP2, que se expresa específicamente en la cofia de maíz (Matsuyama *et al.*, 1999b). Esta proteína contiene el motivo conservado de cisteínas y es similar a otras proteínas que codifican para plantas. Sin embargo aún no se conoce su función. El patrón de expresión de ambos C109 y ZmRCP2 fue detectado en las células secretoras de la cofia. La expresión del RNAm de la clona C109 es muy abundante en las capas de la periferia de la cofia que contienen las células que secretan mucílago (Figura 11A) y su cinética de expresión durante la regeneración de la cofia y centro quiescente después de cortarlos del resto de la raíz indica que se requiere la regeneración del centro quiescente para la expresión de este gen en la cofia.

-				and the second	and the second	المعريدة والمتحد بمراجع والمعار والمعار		•
maíz	Zm109	MARLGALIPL	AILLLAAVAA	TAAPSDRPPK	AQGPKPHKEK	EKEKPKPMKV	50	
maiz	ZmRCP2	MARLGALIPL	AIVLLAAVAA	TAAPSDRPPK	AQGPKPHKEK	EKEKPKPMKV	50	
arroz	CAD4066.1						56	1
mair	ZmpCP1	v	CTV/MAAAAA	LLOPASSOOA	VPDTPNLK	VGSNDRSTTL.	20	1
THELL Z	DEPOCACE						54	1
Achal	BABU2467			PSGSPPY	VPPPSDEE	EAAGARRV	335	12
Atha2	BAB85320	MARAYMAVAV	A-LFLVVVCA	AVSEAAK PP -	ASHPRLPPNY	HMINPGSSGL	48	18
			-	• •				105
m = 1 7	Zm109				* * *			1
marz	244203	KCRPRKL-YP	YCPGKPMECP	AECSQSCYAD	CSSCKPVC-C	: ASVPGA-CGU	97	1 23
maiz	ZmRCP2	KCRPRKL-YP	YCPGKPMECP	AECSQSCYAD	CSSCKPVC-\	CSVPGA#CGD	97	100
arroz	CAD4066.1	P	DCTVEPRACP	RGCRDMCYVH	CPTCKLVC-I	_ CELTGTECT	105	1 6=:
maíz	ZmRCP1	KCINIKSNKT	TCSATCN	ARCPHKCLIO	CPSCKTFCLA	DFYPGVSCOD	99	1 E
Athal	BAB02467	RCKKOR-SP	-CYGVEYTCP	ADCPRSCOVD	CVTCKPVC-N	CDKPGSVCOD	381	1
Atha?	BAB95320	CYPDOFT SCA	DEVENUE	AKC-NOT THE	ODCOVERON		101	1
Actiaz	BABOJJZU	GRADQEDSCA	DIRGRARGE		CESCAIFOR		, 101	
	-					• •		L
maíz	Zm109	PRFIGGDGNA	FYFHGRRDAD	FCVLSDRDLH	INAHFIGKHG	ADGMSRDFIN	147	
maiz	ZmRCP2	PRFIGGDGNA	FYFHGRRDAD	FCVLSDRDLH	INAHFIGKHG	ADGMSROPTH	147	
arroz	CAD4066.1	PREVOCIDENK	FUEHCEKDAD	FOLLSDANT H	TNAHETCKEN	A-AAAPINET	1 5 4	
	G-DCD1	EN VGGLGIN	FIIFIGIGICIAL	FCDDSDANLIN	TIME TORIO		134	
maiz	ZINRCPI	PRFTGADGNN	FYFHGKKDRD	FCIVSDAALH	INAHFIGKRN	-PAMSRDFTW	148	
Athai	BAB02467	PRFIGGDGLT	FYFHGKKDSN	FCLISDPNLH	INAHFICKRR	A-GMARDETW	430	
Atha2	BAB85320	PRFIGGDGNN	FYFHGKKDHD	FCIVSDADLH	INAHFIGKRN	PT-MSRDPTW	150	
	8-100	TOATAVLEDG	HELYVGARKT	AAWDDDVDRM	ELTLDGEPV-	RULPG-TO	193	
maiz	2.0109	TOATAWLEDG	HELVUGARKT	AAWTODDUUDEM	ET /TT.DCEEP/-		193	
maiz	ZmrCP2	VONCEPECC	HDI VI CURDOR	VIDE AVERT	VTOEDCA SE		200	
arroz	CAD4066.1	VOALGIRFGG	INTIMA	VRWDAAVDRL	VIIIIAAEV-	CLUAV-PA	200	
maíz	ZmRCP1	IQALGIRFAH	HHLYVAAORT	PRWDAAADHL	ALALDEDVD	VASILPREVG	TBB	
Atha1	BAB02467	VOSIAILFGT	HRLYVGALKT	ATWDDSVDRI	AVSFDGNVI-	S-LPQ-LD	475	
Atha2	BAB85320	IOALGIRFAD	HRLYMGALKT	AKWSSDVDRL	ELAFDGAPV-	DVPAO-LD	196	
-								
maíz	Zm109	AA-WISGA	VPALSVIRIS	A-ANGVLVSL	DGRP1 IRANA	VPITEEESRV	239	
maíz	ZmRCP2	AA-WISGA	VPALSVTRTS	A-ANGVLVSL	DGRFTIRANA	VPITEEESRV	239	
arroz	CAD4066.1	AS-WSPAS	VPALSVFRIG	P-ANGVVVRL	DGRFRIVANA	VPVTEEDSRI	246	
maíz	ZmRCP1	AR-WSPPT	APALSVTRTA	R-VNTVVVEL	RGAFRIVASV	VPITAEDSRI	244	
Atha1	BAB02467	GARWISSPGV	YPEVSVKRVN	TOTNNLEVEV	FOLLKTTARV	VPTTMEDSPT	525	
Achar	BAB02407	AB-MEC-AA	VIDCHT OR BURN	B-CONTAGE COT	ACTEDIMANU		242	
Acnaz	BAB85320	ALC-WED-AA	VEGLIVIKIA	A-INAVROQL	AGVEDIMANV	VPITERISRI	246	
maíz	Zm109	HRYGVTAD	DCLAHLDLAF	KEGALTADVH	GVVGOTYRSD	YVNR-FDURA	286	
maíz	ZmRCP2	HRYGVTAD	DCLAHLDLAF	KEGALTADAH	GVVGOTYPED	YUNR-HITCH	286	
	CIRCLES 1	HCYCL TAD	DOL ANT MUT P	VEVOTONDA			200	
arroz	CAD4086.1	HGIGLIND	DUITAHLINVAF	KF ISISADVA	GVLGUTIRPD	IVSAGVLOGA	294	
maiz	ZmRCP1	HNIGVREDDG	DILAHLDLGF	KF IDLIDDVH	GALGOLIGED	XXNS-LNYIS	293	
Athal	BAB02467	HGYDVRED	DELAHLDLGF	REQUISIONVD	GATCOLAR	YVSR-VKIGV	572	
Atha2	BAB85320	HNYGVTEE	DSLAHLDLGF	KFYDLSDDVH	GVLGOTYRSD	YVNK-LSVSA	289	
maíz	Zm109	EMDEMOCIDENT	VINDECT ER SP	CALABUADCO	COBD DO		224	
	ZmBCD2	SMPTROGDSN	TISSLFAAD	CAVARIAPSG	GSRDDGVA	MVSELAGI	334	
mer I Z		SMPIMJJDSN	TTSSLFAAD	CAVARYAPSG	GSRURDLGVA	MY SELMATOR	336	•
arroz	CAD4066.1	KIPVMGSAGK	YAVSDIFATD	CEVARFAGED	GALASSVG	MVDAPADALC	342	
maiz	ZmrCP1	NMPVMGGAPD	YLSSDLFSTD	CAVARFG	GRRHQ-QA	TAANIAMLTD	337	
Athal	BAB02467	HMPVMGGDRE	FOTTGLFAPD	CSAARFTGNG	DS-NNGRS	KL-ELPEMSC	618	
2+b-2	DADOF300	SMPUMGGAPS	YVASDTESAD	CAVARECHEA	Generation		320	
Acnaz	DAD000220	Sea viscontro		- white office			520	
maiz	2m109	ASGMGGQGVV	CKK				347	
maiz	ZmRCP2	SSGMGGQGVV	CKK				240	
arroz	CAD4066.1	GSGKGSAGLV	CKK				349	
maíz	ZmRCP1	DDDM					335	
Atha1	BAB02467	ASGLOGKOW	CKR				341	
242-2	DDD05300						631	
ACNA2	DAD03320							

Figura 23. Alineamiento múltiple de la clona C109 y otras proteínas relacionadas. Los aminoácidos que son conservados entre las proteínas se muestran en cuadros grises. El recuadro marca el peptido señal putativo que tienen las proteínas y los asteriscos indican un motivo de seis residuos de cisteínas conservados en tres pares de Cys-X-X-Cys. FALLA DE ORIGEN

El análisis por BLAST de la secuencia de la clona C103 (ZmC103) [No. de Acceso AAP68981] mostró que tiene un alto porcentaje de identidad con la enzima UDP-galactosa-4-epimerasa. Se realizaron alineamientos de la enzima con sus homólogos en otros organismos (Figura 24). Los resultados revelan un una identidad de 89% con Oriza sativa (Osat) [No. de Acceso BAC02925], 81% con Cyamopsis tetragonoloba (Ctet1) [No. de Acceso AJ005082], 81% con Arabidopsis thaliana (Atha) [No. de Acceso NP_194123],], 68% con Cyamopsis tetragonoloba (Ctet2) [No. de Acceso AJ005081], 68% con Pisum sativum (Psat) [No. de Acceso U31544] y 61% con Homo sapiens (Hsap) [No. de Acceso NP_000394].

La enzima UDPG epimerasa cataliza la conversión reversible de UDP-Dglucosa a UDP-D-galactosa. La principal función de esta enzima en plantas es la producción de UDP-D-galactosa utilizada en la biosíntesis de polímeros de la pared celular, incluyendo los galactomananos (Campbell *et al.* 1982). Este tipo de moléculas aparecen en las paredes celulares del endospermo de algunas semillas de leguminosas (ej. *Cyamopsis tetragonoloba*), donde juegan también un papel de reserva energética y absorción de agua. Contienen una cadena de manosas unidas por enlace $\beta(1-4)$ y cuando aparece un residuo de galactosa éste se une a la manosa mediante enlace $\beta(1-6)$.

Finalmente, el resultado de la búsqueda de secuencias similares por análisis tipo BLAST para la clona T101T (ZmT101T) [No. de Acceso AAP58405] muestra que no existe similitud alguna con proteínas ya reportadas, por lo que podría tratarse de un nuevo gen de maíz. Por análisis tipo Southern con DNA genómico de maíz y de arabidopsis, la sonda de cDNA T101T hibridó con un fragmento (1.5 Kb) del DNA genómico de la primera especie, pero no con la segunda. Estos resultados sugieren que el gene ZmT101T no está dentro del genoma de esta última especie (datos no mostrados) lo cual además es congruente con el análisis de secuencia mencionado.

74

						Fai	LA DE OR	IGEN
maíz arroz Ctet1 Atha Ctet2 Psat Hsap	ZmC103 BAC02925 GEP148 NP_194123 GEP142 U31544 NP_000394	MVSAVLRTIL MVSALLRTIL MSSOTVL MAKSVL MVSTL MVIL	VICGAGYIGS VICGAGYIGS VICGAGYIGS VICGAGYIGS VICGAGFIGS VICGAGFIGT VICGAGYIGS	HTVLOLLOG HTVLOLLOLG HTVLOLLLGG HTVLOLLEGG HTVVOLLKOG HTVVOLLKOG HTVVOLLNNG HTVLELLEAG	FRVVVL FRVVVL FRAVVV SAVVV FHVSII FNVSII YLPVVI	DNLD DNLD DNLD DNLD DNLD DNLD DNFD DNFD	NASEAALARV NASELAILRV NSSETAILRV NSSAASLORV NSVIDAVHRV NSVMEAVERV NAFRGSLIRRV	50 50 47 43 50 50 50
maíz arroz Ctetl Atha Ctet2 Psat Hsap	ZmC103 BAC02925 GEP148 NP_194123 GEP142 U31544 NP_000394	AELAGHDGAN RELAGHNANN KELAGKFAGN KKLAGENGNR RLLVGPLSSN REVVGSNSQN QEL/TGRS	LVFHKVDLRD LDFRKVDLRD LSFHKUDLRD LSFHQVDLRD LHFHHGDLRN LEFTLGDLRN VEFEEMDILD	RHALVDIFSS KOALDOIFSS RDALEKIFSS RPALEKIFSE IHDLDILFSK KDDLEKLFSK QGALORLFKK	HRFEAV ORFEAV TKFDSV TKFDAV SKFDAV SKFDAV YSFMAV		GLIKAVGESVH GLIKAVGIESVO GLIKAVGIESVE GLIKAVGIESVE GLIKAVGIESVE GLIKAVGIESVE	100 100 97 90 100 100
maíz arroz Ctetl Atha Ctet2 Psat Hsap	ZmC103 BAC02925 GEP148 NP_194123 GEP142 U31544 NP_000394	KPLLYYDNNL KPLLYYDNNL KPLLYYDNNL KPLLYYDNNL NPSNYYDNNL NPSRYFDNNL KPLDYYRVNL	VGTITLLEVM IGTITLLOVM IGTIVLFEVM VGTVTLLEVM VGTINLFOVM VGTINLYEVM TGTIQLLEIM	AANGCKKLVF AAHGCTKLVF AAHGCKKLVF AQYGCKNLVF SKFNCKKLVI AKHNCKKMVF KAHGVKNLVF	SSSATV SSSATV SSSATV SSSATV SSSATV SSSATV SSSATV	YGWP YGLP YGLP YGWP YGOP YGOP YGNP	KEVPCTEEPP KEVPCTEESP KEVPCTEESP KEVPCTEESP DOIPCVEDSN EKIPCVEDSN EKIPCVEDSN QYLPLDEAHP	150 150 147 147 147 150
maíz arroz Ctet1 Atha Ctet2 Psat Hsap	ZmC103 BAC02925 GEP148 NP_194123 GEP142 U31544 NP_000394	LCATNPYGRT LCAMNPYGRT ISAANPYGRT ISATNPYGRT LHAMNPYGRS LQAMNPYGRT TGCTNPYGKS	KLVIEDICRD KLVIEDMCRD KLFIEEICRD KLFIEEICRD KLFVEEVARD KLFIEEMIRD	VHRSDPDWKI LHASDPNWKI IYRAEQEWKI VHRSDSEWKI IQKAEPEWRI IQKAEPEWRI LCQADKTWNV	ILLRYF ILLRYF ILLRYF ILLRYF ILLRYF VLLRYF VLLRYF	NPVG NPVG NPVG NPVG NPVG NPVG NPTG	AHPSGYTGED AHPSGYTGED AHPSGYTGED AHPSGYTGED AHESGRIGED AHESGRIGED	200 200 197 189 200 200 200
maíz arroz Ctetl Atha Ctet2 Psat Hsap	ZmC103 BAC02925 GEP148 NP_194123 GEP142 U31544 NP_000394	PCGVPNNLMP PCGIPNNLMP PRGIPNNLMP PLGVPNNLMP PRGIPNNLMP PRGIPNNLMP PQGIPNNLMP	YVQQVAVGRL FVQQVAVGRR FVQQVAVGRR YVQQVAVGRR YIQQVAVARL YIQQVAVARL YIQQVAVGRL YVQQVAIGRR	PHLTVYGTDY PALTVYGTDY PALTVFGNDY PHLTVFGTDY PELNYGHDY PELNVYGHDY EALNVFGNDY	STKDGT NTKDGT TTSDGT KTKDGT PTKDGT PTRDGS DTEDGT	GVRD GVRD GVRD GVRD AIRD AIRD GVRD	YIHVVDLADG YIHVVDLADG YIHVVDLADG YIHVMDLADG YIHVMDLADG YIHVMDLADG YIHVVDLAKG	250 257 239 250 250 250 250
maíz arroz Ctetl Atha Ctet2 Psat Hsap	ZmC103 BAC02925 GEP148 NP_194123 GEP142 U31544 NP_000394	HIAALRKLHE HIAALRKLYE HIAALRKLND HIAALRKLDD HIAALRKLF- HIAALRKLFT HIAALRKLKE	DSDRIGCEVY DSDRIGCEVY PKIGCEVY LKISCEVY TTDNIGCTAY -SENIGCTAY -SENIGCTAY	NLGTCKGTSV NLGTCKGTSV NLGTCKGTSV NLGTCRGTSV NLGTCRGTSV NLGTCRGSSV NLGTCTGTGYSV	LEMVAA LEMVAA LEMVAA LEMVAA LEMVAA LOMVQA	FEKA FECA FECA FECA	SGROUPLVPA SGROUPLVPA SGROUPLVPA SGROUPLVPA SGROUPLVPA SGROUPLKVC SGROUPLKVC	300 300 281 280 299 300 297
maíz arroz Ctet1 Atha Ctet2 Psat Hsap	zmC103 BAC02925 GEP148 NP_194123 GEP142 U31544 NP_000394	GRRPGDAEIV GRRPGDAEIV GRRPGDAEVV GRRPGDAEVV PRRPGDATAV PRRPGDATEV ARREGDVAAC	YAATAKAEKE YAQTAKAEKE YASTNKAERE YASTEKAERE YASTEKAEKE YASTAKAEKE YANPSLAQEE	Lkwkakygie Lkwkakygve Lnwkakygid Lnwkakygie Lgwkakygve Lgwkakygve Lgwtaalgld	EMCRDI EMCRDI EMCRDI EMCRDI EMCRDI EMCRDI EMCRDI RMCEDI	MENNA MENNA MENNA MENNA MENNA	Sionpygyage Sionpygyage Sionpygyage Sionpygyage Sionpygyage Konpygyage Konpygyage	350 349 319 318 348 350 344
maíz arroz Ctetl Atha Ctet2 Psat Hsap	ZmC103 BAC02925 GEP148 NP_194123 GEP142 U31544 NP_000394	RDNS PDSS EDSS SNGS						354 353 349 348

Figura 24. Alineamiento múltiple de la clona C103 con sus homólogos en otros organismos. Los aminoácidos que son conservados entre las proteínas de diferentes organismos se muestran en cuadros grises.

MUD WOW

VIII. - CONCLUSIONES

Se caracterizaron molecularmente tres genes de la cofia de la raíz de maíz a partir de clonas específicas de cDNA denominadas C109, T101T y C103. La caracterización de genes expresados en la cofia es uno de los primeros pasos para entender cómo es que esta estructura dirige los movimientos de la raíz hacia o en contra de los estímulos ambientales.

Los genes ZmC109 y ZmT101T se aislaron a partir de un tamizado en un banco genómico de maíz utilizando como sondas diferentes fragmentos de las secuencias de las clonas de cDNA. Se obtuvo la secuencia completa de los genes ZmC109 y ZmT101T y de una clona de cDNA denominada C103.

- El marco de lectura abierto del gen ZmC109 es de 350 aa interrumpido por un intrón de 170 pb. La clona C109 muestra un uso preferencial de codones en el primer marco de lectura, corroborando de esta forma que el gen aislado codifica para una proteína de maíz llamada ZmRCP2 y no para una proteína AGP clásica. El análisis de la secuencia ha demostrado que el gen ZmC109 es muy similar a ZmRCP2 de maíz con 98% de identidad cuya función no se conoce.
- El análisis de la secuencia de ZmT101T mostró que no tiene homología con ninguna proteína descrita en el banco de genes, por lo que se sugiere que se trata de un nuevo gen de maíz.
- La secuencia nucleotídica del gen ZmC103 predice un marco de lectura abierto de 355 aa. El gen ZmC103 es homólogo a la enzima UDP-galactosa-4-epimerasa con 89% de identidad. La función de esta enzima en plantas es la producción de UDP-D-galactosa utilizada en la biosíntesis de polímeros de la pared celular.

En un futuro sería muy importante identificar los promotores contenidos en las clonas de la cofia con el fin de dilucidar los posibles mecanismos de la expresión de estos genes.

Además, la obtención de anticuerpos específicos, nos permitirá conocer mas sobre la localización intracelular de estas proteínas.

También sería importante conocer la localización y distribución mas específica de estos genes en otras especies de plantas, como arroz y arabidopsis con las que hemos encontrado una alta homología y poder analizar su función.

77

IX.- BIBLIOGRAFÍA

TECIE CON FALLA DE ORIGEN

1.- Ahmad M, Jarillo JA, Smirnova, O, Cashmore AR. 1998. Cryptochrome blue-light photoreceptors of *Arabidopsis* implicated in phototropism. Nature 392: 720-723.

2.- Barlow PW. 1975. The root cap. In the Development and Function of roots (J.G. Torrey and D.T. Clarkson) (eds.). Academic Press, London. 2: 21-54.

3.- Barlow PW, Grundwag M. 1974. The development of amyloplasts in cells of the quiescent centre of Zea roots in response to removal of the rot cap. Z. Pflanzenphysiol. 73: 56-64.

4.- Bengough AG, McKenzie BM. 1997. Sloughing of root cap cells decreases the frictional resistance to maize (*Zea mays* L.) root growth. J Exp Bot 48: 885-893.

5.- Blancaflor EB, Gilroy S. 1998. Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity. Plant Physiol. 116: 213-222.

6.- Blancaflor EB, Hasenstein KH. 1995. Time course and auxin sensitivity of cortical microtubule reorientation in maize roots. Protoplasma. 185:72-82.

7.- Bonin PC, Potter I, Vanzin GF, Reiter WD. 1997. The MUR1 gene of *Arabidopsis thaliana* encodes an isoform of GDP-D-mannose-4-6dehydratase, catalyzing the first step in the de novo synthesis of GDP-Lfucose. Proc Natl Acad Sci USA. 94: 2085-2090.

8.- Briggs WR. *et al.* 2001. The phototropin family of photoreceptors. Plant Cell 13, 993-997. 9.- Brigham LA, Woo H-H, Wen F, Hawes MC. 1998. Meristem-specific suppression of mitosis and a global switch in gene expression in the root cap of pea by endogenous signals. Plant Physiol. 118: 1223-1231.

10.- Campbell JM, Reid JSG. 1982. Galactomannan formation and guanosine 5-diphosphate-mannose: galactomannan mannosyltransferase in developing seeds of fenugreek (Trigonella foenum-graecum L., Leguminosae). Planta 155: 105-111.

11.- Caspar T, Pickard BG. 1989. Gravitropism in a starch-less mutant of Arabidopsis: implications for the starch-statolith theory of gravity sensing. Planta 177: 185-197.

12.- Cassab GI. 1998. Plant cell wall proteins. Annu Rev Plant Physyol Plant Mol Biol. 49: 281-309.

13.- Chaboud A. 1983. Isolation, purification and chemical composition of maize root cap slime. Plant Soil 73: 395-402.

14.- Chandra A, Chabot JF, Morrison GH, Leopold AC. 1982. Localization of calcium in amyloplasts of root cap cells using ion microscopy. Science. 26: 1221-1223.

15.- Chentao Lin. 2000. Plant blue-light receptors. Trends in Plant Science. 5: 337-342.

16.- Cronquist A. 1984. Introducción a la Botánica. Editorial. Continental. 2a edición. México, D.F. pág. 454-458.

17.- Curtis H. 1988. Biología. Editorial Médica Panamericana. 4a edición. México, D.F. pp.664.

79

STOTEC*

TESIS CON

18.- Darwin C. 1880. The power of Movement in plants. John Murray, London. pp. 129-200.

19.- Eapen D, Barroso ML, Campos ME, Ponce G, Corkidi G, Dubrovsky JG, Cassab GI. 2003. A no hydrotropic response root mutant that responds positively to gravitropism in Arabidopsis. Plant Physiology. 131: 536-546.

20.- Elrouby N, Bureau T.E. 2000. Molecular characterization of the Abp1 5'-flanking region in maize and the teosintes. Plant Physiology. 124: 369-377.

21.- Evans ML. What remains of the Cholodny-Went theory?. 1992. Plant Cell Environ. 15:767-8.

22.- Evans ML, Moore R, Hasenstein KH. 1986. How roots respond to gravity. Scientific American. 255: 100-107.

23.- Fasano JM, Massa GD, Gilroy S. 2002. Ionic signaling in plant responses to gravity and touch. J. Plant Growth Regul. 21: 71-88.

24.- Fasano JM, Swanson SJ, Blancaflor EB, Dowd PE, Kao T, Gilroy S. 2001. Changes in root cap pH are required for the gravity responses of the Arabidopsis root.

25.- Feldman L. 1985. Root gravitropism. Physiol. Plant. 63: 341-344.

26.- Feldman L. 1994. The Maize Root. In The Maize Handbook. Freeling, M., Walbot, V. New York: Springer Verlag. 4: 29-37.

27.- Guinel FC, McCully ME. 1986. Some water-related physical properties of maize root-cap mucilage. Plant Cell Environ 9: 657-666.

28.- Haberlandt G. 1914. "Physiological Plant Anatomy" (translation of 4th German edition by M. Drummond). MacMillan, London.

29.- Hasenstein KH. 1991. Measurement of circumnutation in maize roots. Microgravity. Sci Tech. 4: 262-266.

30.- Hasenstein KH, Blancaflor EB, Lee JS. 1999. The microtubule cytoskelon does not integrate auxin transport and gravitropism in maize roots. Physiologia Plantarum. 105:729-738.

31.- Hawes MC, Lin HJ. 1990. Correlation of pectolytic enzyme activity with the programmed release of cells from root caps of pea. Plant Physiol 94: 1855–1859.

32.- Hawes MC, Gunawardena U, Miyasaka S, Zhao X. 2000. The role of root border cells in plant defense. Trends in plant science. 5: 128-132.

33.- Higo K, Ugawa Y, Iwamoto M, Korenaga T. 1999. Plant cis-acting regulatory DNA elements (PLACE) database: 1999.Nucleic Acids Res. 27(1):297-300.

34.- Hooker HD. Jr. 1915. Hydrotropism in roots of *Lupinus albus*. Ann. Bot. 29, 265-283.

35.- Hou G, Mohamalawari DR, Blancaflor EB. 2003. Enhanced Gravitropism of Roots with a Disrupted Cap Actin Cytoskeleton. Plant Physiology. 131: 1360-1373.

36.- Ishikawa H, Evans ML. 1992. Induction of curvature in maize roots by calcium or by thigmostimulation: Role of the postmitotic isodiametric grow zone. Plant Physiol. 100: 762-768.

81

37.- Ishikawa H, Evans ML. 1995. Specialized zones of development in roots. Plant Physiol. 109: 725-727.

38.- Jaffe MJ, Takahashi H, Biro RL. 1985. A pea mutant for the study of hydrotropism in roots. Science 230: 445-447.

39.- Joshi CP. 1987. An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Research. 15: 6643-6653.

TTP CIS CON

40.- Juniper BE, Groves S, Landau-Schacher B, Audus LJ. 1966. Root cap and the perception of gravity. Nature 209: 93-94.

41.- Kiss JZ, Hertel, R, Sack FD. 1989. Amyloplasts are necesary for full gravitropic sensitivity in roots of *Arabidopsis thaliana*. Planta 177: 198-206.

42.- Knight TA. 1811. On the causes which influence the direction of the growth of roots. Philos. Trans. R. Soc. London, Biol. Sci. 2: 209-219.

43.- Lascève G. et al. 1999. Arabidopsis contains at least four independent blue-light-activated signal transduction pathways. Plant Physiol. 120. 605-614.

44.- Lee JS, Mulkey TJ, Evans ML. 1983. Gravity induced polar transport of calcium across root tips of maize. Plant Physiol. 73: 874-876.

45.- Lee JS, Mulkey TJ, Evans ML. 1984. Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors. Planta 160: 536-543.

46.- Legue V, Blancaflor E, Wymer C, Perbal G, Fantin D, Gilroy S. 1997. Cytoplasmic free Ca2+ in Arabidopsis roots changes in response to touch but not gravity. Plant Physiol. 114: 789-800.

47.- Mandoli DF, Ford GA, Waldron LJ, Nelson JA, Briggs WR. 1990. Some spectral properties of several soil types: implications for photomorphogenesis. Plant Cell Environ. 13: 287-294.

48.- Matsuyama T, Satoh H, Yamada Y, Hashimoto T. 1999(a). A maize glycine-rich protein is synthesized in the lateral root cap and accumulates in the mucilage. Plant Physiol. Jul; 120 (3): 665-674.

49.- Matsuyama T, Yasumura N, Funakoshi M, Yamada Y, Hashimoto T. 1999(b). Maize genes specifically expressed in the outermost cells of root cap. Plant Cell Physiol. 40 (5): 469-476.

50.- Mockler T, Yang H, Yu X, Parikh D, Cheng YC, Dolan S, Lin C. 2003. Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc Natl Acad Sci U S A. 100: 2140-2145.

51.- Moore R. 1984. Cellular volume and tissue portioning in caps of primary roots of *Zea mays*. Am J Bot. 71: 1452-1454.

52.- Moore R, McClelen CE. 1989. Characterizing pathways by which gravitropic effectors could move from the root cap to the root of primary roots of *Zea mays*. Ann Bot. 64: 415-423.

53.- Morgen BD, MacDonald MH, Leggewie G, Hurt AG. 1992. Several distinct types of sequence elements are required for efficient mRNA 3' end formation in a pea *rbcS* gene. Mol Cell Biol. 12: 5406-5414.

54.- Muday GK, Haworth P. 1994. Tomato root growth, gravitropism, and lateral development: correlation with auxin transport. Plant Physiol Biochem. 32(2):193-203.

55.- Nieto-Sotelo J, Kannan KB, Martínez LM, Segal C. 1999. Characterization of a maize heat-shock protein 101 gene, HSP101, enconding a ClpB/Hsp 100 protein homologue. Gene 230: 187-195.

56.- Oades JM. 1978. Mucilages at the root surface. Journal of Soil Science 29: 1-16.

57.- Okada K, Shimura Y. 1990. Reversible root-tip rotation in Arabidopsis seedlings induced by obstacle-touching stimulus. Science 250: 274-276.

58.- Ponce G, Luján R, Campos ME, Reyes A, Nieto-Sotelo J, Feldman LJ, Cassab GI. 2000. Three maize root-specific genes are not correctly expressed in regenerated caps in the absence of the quiescent center. Planta 211: 23-33

59.- Rodriguez RL, Tait RC. 1983. Recombinant DNA techniques: an introduction. Reading, Mass: Addison- Wesley, Massachussetts. Xviii. Pp. 236:il.

60.- Rougier M. 1981. Secretory activity of the root cap. In Encyclopedia of Plant Physiology, New Series, Vol. 13B, Plant Carbohydrates II. (W. Tanner, and F.A. Loewus, Eds.). Springer-Verlag, Berlin. pp. 542-574.

61.- Roux SJ. 1984. The cellular bases of gravity and light induced gravitropism. NASA Tech. Memorandum 86654: 51-53.

84

TTELE CON FALLA DE ORIGEN

62.- Sachs J. 1872. Ablenkung der wurzel von iher normalen wachstumsrichtung durch feuchte körper. Arb.D. Not. Inst. Würzburg 1: 209-222.

63.- Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press.

64.- Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74: 5463-5467.

65.- Sievers A, Hensel W. 1991. Root cap: Structure and function. In Plant Roots. The Hidden Half. Waisel, Y; Eshel, A and Kafkafi, U. New York. 4: 53-74.

66.- Takahashi H, Scott TK. 1991. Hydrotropism and its interaction with gravitropism in maize roots. Plant Physiol. 96: 558-564.

67.- Takahashi H, Brown CS,Dreschel TW, Scott TK. 1992(a). Hydrotropism in pea roots in a porous-tube water delivery system. HortScience. 27: 430-432.

68.- Takahashi H, Scott TK, Suge H. 1992(b). Stimulation of root elongation and curvature by calcium. Plant Physiol. 98: 246-252.

69.- Takahashi H, Suge H. 1991. Root hydrotropism of an agravitropic pea mutant, *ageotropum*. Physiol. Plant. 82: 24–31.

70.- Takahashi H, Takano M, Fuji N, Yamashita M, Suge H. 1996. Induction of hydrotropism in clino-rotated seedling roots of Alaska pea, *Pisum sativum* L. Plant Res. 109: 335-337. 71.- Takahashi H, Takano M, Fujii N, Higashitani A, Yamashita M, Hirasawa T, Nishitani K. 1999. Agravitropic mutant for the study of hydrotropism in seedling roots. Adv. Space Res. Vol. 23, No. 12: 2021-2028.

72.- Takano M, Takahashi H, Hirasawa T, Suge H. 1995 (b). Perception of a gradient of water potential by the root cap and a role of calcium in root hydrotropism. Plant Cell Physiol. 36: 59.

73.- Takano M, Takahashi H, Suge H. 1997. Calcium Requirement for the Induction of Hydrotropism and Enhancement of Calcium-Induced Curvature by Water Stress in Primary Roots of Pea, *Pisum sativum* L. Plant Cell Physiol. 38(4): 385-391

74.- Volkmann D, Buchen B, Hejnowicz Z, Tewinkel M, Sievers A. 1991. Oriented movement of statoliths studied in a reduced gravitational field during parabolic flights of rockets. Planta. 185: 153-61.

75.- Watahiki MK, Yamamoto KT. 1997. The massugul mutation of Arabidopsis identified with failure of auxin-induced growth curvature of hypocotyl confers auxin insensitivity to hypocotyl and leaf. Plant Physiol. 115(2): 419-426.

76.- Went FW, Thimann KV. 1937. Phytohormones. Macmillan, New York. Pp.294.

77.- Wilkins MB. 1984. Gravitropism. In Advanced Plant Physiology (M.B. Wilkins, ed.). Pitman, London. pp. 163-185.

78.- Winslow R. Briggs, John M. Christie. 2002. Phototropins 1 and 2: versatile plant blue-light receptors. Trends in Plant Science. 17(5):204-209.

79.- Zhang W, Cheng W, Wen M. 1995. Detachment of root cap cells of maize and its effects on the relationship between root and rhizosphere. Acta Phytophysiol Sin. 21: 340-346.

Free CON

X.- ANEXO 1

Georgina Ponce, Rosario Luján, Maria Eugenia Campos, Alejandra Reyes, Jorge Nieto-Sotelo, Lewis J. Feldman, Gladys I. Cassab. 2000. Three maize root-specific genes are not correctly expressed in regenerated caps in the absence of the quiescent center. Planta 211: 23-33.

TESIS CON FALLA DE ORIGEN

Three maize root-specific genes are not correctly expressed in regenerated caps in the absence of the quiescent center

Georgina Ponce¹, Rosario Luján¹, María Eugenia Campos¹, Alejandra Reyes¹, Jorge Nieto-Sotelo¹, Lewis J. Feldman², Gladys I. Cassab¹

¹Department of Plant Molecular Biology, Institute of Biotechnology, National Autonomous University of Mexico, P.O. Box 510-3, Cuernavaca, Mor., 62250, Mexico

²Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720, USA

Received: 22 September 1999 / Accepted: 9 November 1999

Abstract. The quiescent center is viewed as an architectural template in the root apical meristem of all angiosperm and gymnosperm root tips. In roots of Arabidopsis thaliana (L.) Heynh., the quiescent center inhibits differentiation of contacting initial cells and maintains the surrounding initial cells as stem cells. Here, the role of the quiescent center in the development of the maize (Zea mays L.) root cap has been further explored. Three maize root-specific genes were identified. Two of these were exclusively expressed in the root cap and one of them encoded a GDP-mannose-4,6dehydratase. Most likely these two genes are structural, tissue-specific markers of the cap. The third gene, a putative glycine-rich cell wall protein, was expressed in the cap and in the root epidermis and, conceivably is a positional marker of the cap. Microsurgical and molecular data indicate that the quiescent center and cap initials may regulate the positional and structural expression of these genes in the cap and thereby control root cap development.

Key words: Development (root cap) – Quiescent center – Root cap initials – Zea (root development)

Introduction

Root caps (RCs) are the terminal-most tissue of roots of most plants (Barlow 1975). For many years, it was believed that the RC functioned only to protect the apical meristem of the root. Within the past 25 years, however, functions of the RC have been shown to be considerably more diverse and to include regulation of many aspects of root development (Scheres et al. 1996).

Correspondance to: G. I. Cassab;

Root caps perceive and process many environmental stimuli, mediating the direction of root growth in relation to the stimulus gradient. Gravity (gravitropism), unilateral light (phototropism), touch (thigmotropism), gradients in temperature (thermotropism), humidity (hydrotropism), and ions and other chemicals (chemotropism) are all examples of environmental stimuli that are perceived and processed by the cap (Hasenstein and Evans 1988; Okada and Shimura 1990; Fortin and Poff 1991; Takahashi 1997).

In roots with a "closed" type of construction such as maize (Fig. 4A) and Arabidopsis, a distinct cap meristem, known as the root cap initials, is present. This layer of initials consists of the most rapidly dividing and least differentiated cells in the RC. As new RC cells are produced by the RC initials these derivatives are displaced through the RC, until they are finally released (sloughed-off) into the soil as border cells (Hawes and Lin 1990). During their passage to the outside of the cap, cells are transformed from statocytes (i.e. gravityperceiving cells) into secretion cells, which produce mucilage before they finally detach from the cap and differentiate into border cells (Barlow 1975; Hawes and Lin 1990). If these cells are allowed to accumulate, and are not sloughed off (by suspending the root in air), the RC meristem ceases initiating new cells, suggesting communication between border cells and the RC initials (Hawes and Lin 1990). There is also evidence that RC initials communicate with adjacent cells located basally (proximally) in the root proper. If the cap is excised, the adjacent root tissues alter their development and regenerate a new cap (Barlow 1974; Feldman 1976). This regeneration of a new cap occurs from a population of mitotically inactive root cells designated the quiescent center (QC). In experiments in which both the RC and OC are together excised a new RC re-forms, but not until after a new QC redevelops, leading to the suggestion that the QC functions as an architectural template, because it mainly retards cell differentiation, and not cell division (Feldman 1976, 1998). Recent work using laser ablation to destroy one or more QC cells in Arabidopsis roots has extended this view (van den Berg et al. 1997).

Abbreviations: GRP = glycine-rich protein: QC = quiescent center: RC = root cap

E-mail: gladys@ibt.unam.mx; Fax: + 52-73-13-99-88

In Arabidopsis the QC consists of four cells and is surrounded by contacting meristematic initials. When one or more of the QC cells is ablated the contacting RC initials, which normally lack starch, differentiate and develop starch grains. The results of the laser ablation studies also suggest that communication between the QC and RC extends only to contacting initial cells. Collectively, the surgical and ablation studies indicate that positional cues play a critical role in controlling the identity of the component tissues. In addition, the QC and the RC participate in the establishment of histological patterns in the root, as seen by genetic analysis of the *hobbit* and *hombadil* mutants (Scheres et al. 1996; Willemsen et al. 1998).

In the current work, we have isolated three maize root-specific genes. Two of these are cap-specific and one is expressed in the cap and also in the root epidermis. All of them apparently code for proteins or enzymes of the cell wall. Here, we propose that positional information is exchanged between the QC and the RC, resulting in the expression of cap-specific (tissue-specific) genes. We report on the expression of RC-specific markers in the regenerating RC and relate these results to the re-establishment of the QC.

Materials and methods

Plant material. Seeds of Zea mays L. cv. Merit (Asgrow Seed Co.) were germinated as described previously (Feldman and Briggs 1987). Two-day-old primary seedling roots were used in order to dissect RCs. Root caps were collected using a dissecting microscope in dim ($4 \times 10^{-14} \text{ Wm}^{-2}$) green (515–575 nm) light as the only illumination. Immediately after excision from the primary root, the cap was frozen by placing in contact with a glass slide resting on a block of dry ice. For the isolation of 750 ng of poly(A)⁺mRNA, approximately 10,000 caps were collected.

Isolation of total and $polyA^+mRNA$. Total RNA from RCs and decapitated root tips was prepared as described by (Rochester et al. 1986). Polyadenylated mRNA was isolated using the polyA tract mRNA isolation systems from Promega.

Construction and screening of a cDNA library. An RC cDNA library was constructed by using the Riboclone system from Promega using poly(A)⁺ RNA (approximately 0.75 µg). M-MLV reverse transcriptuse (200 U/µl) from Gibco-BRL was used instead of AMV-reverse transcriptuse from Promega. Any cDNAs above 300 bp were ligated to *EcoRI-Xbal-digested &GEM-4* and packaged in vitro with Gigapack II (Stratagene). A total of 2 × 10⁶ recombinants were obtained. Eighty thousand recombinants were screened by differential hybridization with single-stranded cDNA probes complementary to mRNA from either RCs or decapped root tips. The cDNA probes were prepared by polymerase chain reaction (PCR) amplification from 1 µg of total RNA from RCs and decapitated roots using a modified T primer [(TCG AGA TCT AGA GGT ACC (T)_{Nd}]. Confirmed positives were plaque-purified, and the cDNA inserts were subcloned into the *EcoRI-Xbal* sites of the BlueScript SK (+) and (-) plasmid (Stratagene).

Sequencing of DNA and sequence analysis. The nucleotide sequence of the cDNAs was determined either by the dideoxy method using [³⁵S]dATP (specific activity: > 37 TBq mmol⁻¹: NEN) and the 'Sequenase' (USB) or by automated DNA sequencing on an Applied Biosystems PE 377-18 apparatus using dye terminators. The DNA sequence analyses were performed on a VAX computer using the BLASTP and PILEUP programs of the GCG (Devereux et al. 1984; Wisconsin Package Version 9.1, Genetics Computer Group, Madison, Wis., USA). Hydrophobicity plots were done with the MacMolly program.

Screening a maize genomic library. A total of 1,380,000 plaqueforming units (pfu) was screened from an amplified maize genomic library (Nieto-Sotelo et al. 1999) with 2.5×10^9 pfu/ml, and thus the entire haploid genome size of maize was included.

Analysis of RNA gel blots. Samples of RNA were electrophoresed in agarose-formaldehyde gels as described by Maniatis et al. (1982). A ladder of RNA size standards (Gibco-BRL) was run to estimate the RNA size. After blotting to Nytran (Schleicher & Schuell), RNA was UV-cross-linked to the membrane. Prehybridization and hybridization were performed as described by Maniatis et al. (1989). 3 P-Labeled DNA probes were prepared by the random primer method (Feinberg and Volgestein 1983).

In-situ hybridization. Tissue preparations were lightly fixed in 4% paraformaldehyde in 1 M PBS (10 mM K-phosphate. 150 mM NaCl, pH 7.2) overnight at 4 °C. Tissues were then dehydrated in a graded ethanol/H₂O/xylene series (20, 30, 50, 75, 90, 95, 100% ethanol. 3:1 ethanol.xylene. 1:1 ethanol.xylene. 1:3 ethanol.xylene. 1

Microsurgical removal of the RC and QC. The RC and QC were removed surgically from 2-d-old seedling roots as described by Feldman (1976). Subsequent to the surgery, roots were returned to the dark, sampled periodically, fixed, dehydrated, embedded and sectioned as described above. Sections were then used for in-situ hybridization analysis with digoxigenin-labeled C109, C106 and C123 antisense and sense riboprobes (data not shown).

Results

. . .

Isolation of RC-specific genes. A λ GEM-4 cDNA library prepared from poly(A)* RNA isolated from maize RCs was differentially screened with single-stranded cDNA probes complementary to mRNA from either RCs or decapped root tips. Screening a total of 2 × 10⁶ recombinant phage yielded nine clones that hybridized to mRNA from RCs but not decapped root tips. One of the RC clones (C109) was chosen for DNA blot analysis against the other eight clones. This analysis revealed that three clones (C104, C131 and C134) cross-hybridized with clone C109, suggesting that this gene is highly expressed in the RC. Clone C123 was also selected for DNA blot analysis against the other remaining four RC clones. This experiment showed that only one clone (C111) cross-hybridized with the C123 clone (data not shown). A DNA blot analysis of the three remaining clones (C106, T101T and C103) did not show any homology between them. Thus, we isolated five different RC clones: C109, C123, C106, T101T, and C103, Clones C109, C106 and C123 were further analyzed.

A northern blot analysis was performed to study the expression of transcripts for clones C106. C109 and C123 in different maize tissues. This analysis indicated that these genes are only expressed in root caps (Fig. 1A-C).

G. Ponce et al.: Root-cap-specific genes of maize

Fig. 1A-D. Accumulation of mRNA of RC clones C106, C109 and C123 in different maize tissues. Lanes 1, 10 µg of total RNA from decapped primary roots; lanes 2, 10 µg of total RNA from root caps: lanes 3, 10 µg of total RNA from young leaves. A Autoradiography of a gel blot using cDNA clone C106 as a probe. B Autoradiography of a gel blot using cDNA clone C109 as a probe. C Autoradiography of a gel blot using cDNA clone C123 as a probe. D Ethidium bromide staining of the gel used for RNA blotting, which indicates equal loading of total RNA from decapped roots, root caps and leaves from blots shown in A-C

Sequence analysis of root cap clones C109, C106 and C123. C109 is a partial cDNA clone of 982 bp in length with two possible open reading frames (GenBank accesion number: AF134580). The longest open reading frame predicts a protein with 31% identity to both a putative glycosylphosphatidylinositol-anchored arabinogalactan protein (AGP) and to an epithelium-associated human mucin JUL7 (Dufosse et al. 1993). This predicted protein is highly hydrophilic, like mucin JUL7. However, it also includes a C-terminal hydrophobic region as seen in AGPPc1 (Chen et al. 1994) that may serve as a membrane anchor. The shortest open reading frame in clone C109 is identical to a novel plant protein recently reported in maize (Matsuyama et al. 1999a). This predicted protein is mostly hydrophobic with a region of regularly-spaced cysteine residues.

The cDNAs for clones C106 and C123 are also partial and are 452 bp and 428 bp in length, respectively. Since all three cDNAs are smaller than their corresponding mRNAs (see northern analysis, Fig. 1), we decided to isolate their related genomic clones. We obtained six genomic clones related to cDNA clone C109 (Zm109). one for C106 (Zm106), and two for C123 (Zm123A and Zm123B). The predicted amino acid sequence of clone ZmC106 presents a high overall identity to the GDP-D-mannose-4.6-dehydratase of Arabidopsis (77%). Escherichia coli (57%), HL-60 cells (55%), and human brain (54%) (Fig. 2). This enzyme catalyzes the first step in the de-novo synthesis of GDP-L-fucose (Bonin et al. 1997). Clone Zm123A codes for a putative glycine-rich cell wall protein and is highly similar (89% to GRPZm, and 68% to Zmall, respectively) to two glycine-rich proteins (GRPs) recently reported from maize (Matsuyama et al. 1999b) (Fig. 3A). Hydropathy analysis of the three maize GRPs shows that they are highly hydrophilic but that only Zmall contains an hydrophobic region in the C-terminal (Fig. 3B). Glycine-rich proteins are a class of structural wall proteins that seem to play important

roles in the development of the vascular tissue (Cassab 1998). Their presence in a non vascular tissue such as the RC suggests that GRPs also participate in other developmental processes.

Localization of C106, C109 and C123 transcripts in the RC. To determine the cellular localization of the transcripts for the three cap genes within the root, in-situ hybridization experiments were performed. The mRNA for clone C109 was restricted to the outer layers of the RC that include 40% of the cap cells of maize roots (Moore 1984) (Figs. 4B, 5B). These layers contain the mucilage-secreting cells. In addition, the signal was very strong and thus this gene may be expressed in large quantities. C109 mRNA was also present in the detached cells. The mRNA for clone C106 was primarily detected in the peripheral columella cells (Figs. 4B, 5D). Its expression declined in the mucilage-secreting cells. Bf comparing the signals of C109 and C106 mRNAs in transverse RC sections, we observed that both signal overlap in the two outer cell layers of the cap (data no shown). The mRNA for clone C123 was observed solely in the region that corresponds in dicotyledonous roots to SIS the lateral RC but it was also present in the roo epidermis (Figs. 4B, 5F). However, the signal disap peared in epidermal cells proximal to the root meristem In contrast, transcripts for clone C123 could not be detected by northern analysis in roots without caps (Fig. 1C).

A DR ORIGE

S

Expression of RC genes in developing caps after microsurgery of the RC and QC. Thus far we have shown that several genes are expressed preferentially, if not exclusively in the RC, and that the expression pattern is distinct for each of the three genes. We wished to explore the timing of the expression of these genes as the RC develops and whether this expression pattern is related to the development of the QC. For this we used a surgical approach to remove either the cap alone, or the cap plus the QC, and then followed the regeneration of the excised tissues. Using this approach we analyzed when and in which tissues these genes were expressed. When the cap alone is removed, QC cells at the distal (now exposed) surface of the root differentiate starch grains within about 12 h of the surgery, coincident with the ability of the root to again perceive gravity. Shortly thereafter, cells of the QC begin dividing, initiating a new RC and new RC initials. Forty-eight hours after this surgery the QC has re-formed to its pre-decapping dimensions. In the case of removal of both the RC and QC, regeneration of a new RC also occurs, but there is not any histological evidence of RC regeneration until a new QC begins to re-form (Feldman 1976). In roots from which only the cap has been excised, a complete new RC regenerates from reprogrammed distal QC cells after 72 h (Barlow 1974) (Fig. 6A-C). However, in roots from which both the QC and the cap have been removed, regeneration of the damaged apex arises from the region of tissue bordering on the excised QC (the proximal root meristem) (Feldman 1976). Thirty-six to 48 hours after surgery of the QC, a small but discrete QC

8-106	MAUGNERAN	MAN COCOMPO	THE PLUS AT A	DEPENDENCE TOOL	TROOM GETTE	
28100	MAUSINGAWAT.	ATAGGGUMDD	LTAPVPRALA	PARKVALITG	TICON CONFL	50
A. COBILADO	MASENNGSRS	DSESITAPKA	DSTVVE	P-RKIALITG	ITGOD GSYLT	45
HL-60 cells	MAHAPARCPS	ARGSG	DCFMC	KPRNUAT TTC	TTCOD GEVIA	40
hharin	M		00010			
uprain.	M				D GETLA	7
E. coli	M			SKVALITG	VIGOD GETLA	19
-						
Consensus	M A			-REVALITG	ITGOD GEVLA	50
Zm106	EXLLSEGTEV	EGLILRSENF	BTORLDBITH	DPHXVPSAPR	PPYR LFYADL	100
A thaliana	FELL CEGYEV	BOT. TO BCENE	MTOP THETYT	D PHNS/NW A	THETHYADY	- 63
	EL THOMOTHY	NO DINKS DINF	MT ANTIMITST	DFANVARA	- LIPER AND LIPER	34
HL-60 Cells	EFLLERGYEV	IGIVRESSSF	TGRIEELYK	NPOAHIEG	-NMKLHYGDL	87
hbrain	EFLLERGYEV	BGIVRESSSF	MTGRIENLYR	NPOAHTEG	-NMK LHYGDL	54
E coli	TTLIFEGYEV	BATTDBARCH	HERENDELTRO	DRUT CND	TTUINTCOL	žè
a. com	ST LALE NOTEV	1011/10103/03P	DIE NVDBIIQ	Deni-Car	-KERLAIGPL	05
Consensus	EFIJEEGTEV	NGT.BBSSSF	NT.BT.BT.	DPH	- MELHYCEL	100
7-106	CRESSIDENT	DATE BORVER	DAAOEWVAVE	PETDUVCADU	TATOAT BT I P	160
	SpS00mqqu	DAISFULVIE	FARGERVAVE	741FB1340V	Ini Galacie	150
A. CDAILADA	TDASSLARWI	DATENDEALE	TUTOREAVA	FEIPDYTADV	VATGALILLE	142
HL-60 cells	TDSTCLVKII	NEVK PTEITH	LGAOSEVKIS	FDLAETTADV	DGVGTLELLD	137
hbrain	TRETCIVITT	NEVE BTETYE	LCAOSEVETS.	PDT AP WTADY	DOVOTIBLED	104
E. COI1	SDTSNLTRIL	REVOPDEVIN	LGAMSEVAVS	FESPETTADV	DAMOTLELLE	115
Conconcus	THEC T DIT		LC NORTHANK	FF DETEND		160
Consensus	1030.0.411	· EAK PDEATE	TOYONAAAAA	A C . L L I WOA		100
28100	AVKLSR-	RPMRY YQAGS	BERFUSTPP-	PUXEDSPFHP	REFINANCA	195
A. thaliana	AVRSHTIDSG	RTVKY YOAGS	SEMPGSTPP-	POSETTPPHP	REPTARSECA	191
WI-60 cells	AVETCCLT	NSUKPYOPET	ST. VOLVOPT	BOYPOTHEVE	BEBYCANTY	164
HI-OC COIIS	AVAICOLIT	NSVKF IVASI	PETICKAGET	FURBILIEPIE	REFIGRARII	105
nprein	AVATCGLI	NSVKF YQAST	SELYGKVQEI	POKETTPFYP	REFTGAAKLY	152
E. coli	AIRFLGLE	KETRF TOAST	SELYGLVOET	PORETTPFYP	REPTAVARLY	163
Consensus	AVR. GL	VKF YOAST	BELYG.VQEI	POKETTPFYP	REFYAAARLY	200
_					_	
Sm106	AHWYTVWYRE	ATGVTACHGV	LF##ESPRRG	ENFVIENTR	AVGR IKVGLO	245
A. +haliana	AHMYTVNYBE	AVGLEACEGT	LEBRESPERG	PREVENTETTE	ALCH TRVGLO	241
	A VINCT 1/1/10/10/10	A WALL TALLING T	1	110000000000000000000000000000000000000	CULT TY C	535
WC-OA COITS	AIWIVV#PPAL	VEUT-LAAMAT		VUL ALEVISE	SVAR IILAG	233
hbrain	AYWIVVEFRE	ATNLFAVEGI	LFREESPREG	ANFVTRKISR	SVARIYLG	200
E. coli	AVMITTURVER	SYCHVACHOT	I.PHWPSPERG	TTTUTTY	ATANTAOGT.P	213
		DIGHIACAUI			MINU ANGOIN	
Consensus	AYWITVHYRE	ATGLFACEGI	LPHEESPRRG	ENFVTRAITR	AVA.IGL.	250
1=106	TRVFLGNLSA	A	DWGFAGDTVE	AMMINLOOPO	PGDYVVATEE	287
	THE PLOY		DISCOUNT	NHWI NO. CONT	TO DVID IS STORE	565
N. COM41808	TYPE TOUPON	J K	DWGENGDIVE	NUMBER	FUDIVVALLE	203
HL-60 Cells	OLEC	FSLGNLDAK R	DWGHAKDIVE	AMWLHLONDE	PEDFVIATGE	277
hbrain	OLEC	PSLGNLDAR B	DISCHARDYVE	AMMINIANDE	PEDEVIATOR	244
F coli	CCT VI CNMDC	1	DAME UN AT DAVY	NOMENT OOTO	PEDEWTARCU	265
A. CVII	SCHILGNADS	x	DINGHARDIVA	WANNERS CO	FEDE VINIGV	200
Consensus	LGNT		DISCHARDTVE	AMMINGOOF.	PEDEVIATCE	300
		• • • • •				
	CHONGER PT ON	APCVAG	14		-WOHN	210
	SHI YEEF LUA		<u> </u>			349
A. thallabe	GHTVEEFLDV	SFGYLGLN	W		KDYV	306
HL-60 cells	VHSVREEVER	STINIGTTV	MEGENENE	VGB	-CKETGEVHV	317
b based as	STREET STORE WITH THE	CHT UT ON TTY	LINCH STRATE	¥ 65	COM MOTO WATERAT	204
upress,	VID VIEV VER	OF DHI OKIIV	WEGKNERE	The second se	CREIGRAN	
E. CO11	OYSVROFVEN	AAAQLGIKLK	FEGIGVEEKG	IVVSVIGHDA	PGVKPGDVII	305
6		CT 0 1		6	C 111111	260
consensus	.HSTREFTE.	SF	WEGE		GRVHV	350
		Street Toph b		THORNES MEN		260
20100	VIDENSERPA	SVUSLAUDAI	RAPCK V LANWARP	KAGLÖFTAFU	NV UNDIBLAR	300
A. theliene	EIDORYFRPA	EVDNLOGDAS	RAKEVLGWRP	OVGFERLVKM	NVDEDLELAR	356
BL-60 cells	TVDLETYPPT	EVDFLOGDCT	BAKOKLINHEP	RVAFDELVRE	NVHADVELMR	367
hhrain		EVDEL OGECOM	TAYOF LAND	BUAFOFT VOF	MUUADURT	334
<u></u>	IV DAMES INPT	AADE POODCI	ARAGALINAR	AT A DELVKE		222
E. COI1	AVDPRIFRPA	EVETLLODPT	RAHERLGWRP	EITLKENVSE	AVANDLEAAK	355
Conconcie	UN EVENN		NAV TI MAN			400
CONSCIEUR	. VD. NICHPA		MAR	····		-00
		DDDTOOD				
28100	NERVLVDAGY	-RDPRQQP				3//
A. thaliene	REKVLVDAGY	-MDARQOP				373
WI-60 cells	TNP	NA				372
						3 20
opraio						ووو
	INF					
E. CO11	RHSLLRSHGY	DVAIALES				373
E. CO 11	KHSLLKSHGY	DVAIALES				373

10 06 17 Fig. 2. Genomic clone Zm106 05 encodes GDP-mannose-4.6-50 dehydratase and is specifically expressed in the RC of maize. 60 Alignment of the ZmC106 56 67 34 predicted protein sequence with other GDP-mannose-4,6-55 dehydratases. GenBank acces-00 sion numbers for the enzymes in the alignment are as follows: 77 73 72 39 73 ZmC106, AF134575; A. thaliana. U81805; HL-60 cells (human promyelocytic cells), AF042377; human brain (hbrain). 418 AF040260; E. coli, P32054

is evident but the distinctive architecture of the root apex is not clear (Fig. 6D.E) (Feldman 1976). Root cap initials that produce derivatives in a distal direction are evident approximately 72–84 h after the cap and QC are removed (Fig. 6F), and the QC reaches its maximum size (Feldman 1976). Here, we have confirmed the timing and sequence of these regenerative events. When only the cap was excised, C109 expression was first evident 72 h after removal of the cap and appeared in the outer layers of the regenerated cap (Fig. 6C) as in intact root sections from 2-d-old seedlings (Fig. 5B). At this stage, the anatomically discrete layer of RC initials was evident, indicating that the re-expression of C109 is preceded by both the development of a new QC and of new RC initials. However, when both the QC and the cap were excised, the expression pattern was very different. Even though a new layer of RC initials was not yet evident and the QC was small, the outer "caplike" cells very strongly expressed C109 after 48 h regeneration (Fig. 6E). The expression of C109 declined 72 h after excision, a stage at which the RC initials were evident (Fig. 6F). A pattern similar to that in intact roots was seen in caps that were allowed to regenerate for 96 h (Fig. 6G).

G. Ponce et al.: Root-cap-specific genes of maize

Zm123A						
GRPZm	MAGTKLISLG	LLVLIGIGLA	NAVRVARYSS	ADGTGTGEGQ	GGGYVNGGGS	50
Zmall	M	VQ	HA			5
C		이 것은 영화가 같다.				
consensus	M		•A			50
Zm123A						
GRPZm	GSGSGTGSGD	SSPYGVHTSA	GGGGAGGGAS	QNGGSGYGSG	SGSGSGSSTY	100
2mal1		SAS	GGGGGGGG-TS	OYGGSGYGSG	SGSGSGSSYI	37
Consensus			GGGG.GGS	O.GGSGYGSG	SGSGSGSS	100
				-		
Zm123A		G SENAGGTOG	GGGGGGQAGGY	ENSRAGES	GTGEGEEYA S	. 40
GRP2m	SQGGYYSGYG	E SENAGGTOG	GGGG GQAGGS	WHSHAQGEGE	GTGEGESTAN	150
2mal1	LVKEGYSGYG	ESSAGGTOG	GGGG RQAGGA	WHISEAQGEGE	GTGEGEETAN	87
Consensus	YSGYG	E SSNAGGTGG	GGGGGQAGG.	WEEHAQGEGE	GTGEGEETA N	150
2m123A	RYWDGSSEV-	gan angng gg	TGNSONGGGG	GGEGAGAGIG	SAYP	83
GRPZm	RNWDGSSGG-	-AN ANGING GG	TGNSQNGGGG	GGSGDGSGYA	NAYP	192
Zmall	RYWYGSSESR	CKC ANGING VA	QEIVETVEVV	GV EGAG SG Y G	NATPNFYI	135
Consensus	RYWDGSSE	. AN Angng gg	TGNSQNGGGG	GGSGAGSGYG	NA¥P	198
						Γ
201238		1111111111111	mmmmm		[[1]	1 °
				iittuu		L-1.5
				<u>_</u>		-
	o 1	.5 3	- E	46 (12 7	7
CROZ						F 11
GRF2A	ساعظها	am d m M & de lite a a a a a a a a a a a a a a a a a a a		a a a a a a a a a a a a a a a a a a a		•
						L-1.5

70

. העל האל אל אל אל האל האל האל האל היי האל היי היי האל הראד האי האל האל האל האל האל האל האל האל האל ה

48

104

71

139

95

174

119

Fig. 3. Genomic clone Zm123A encodes a protein similar to GRPs and is expressed in the RC and root epidermis, Top, alignment of the amino acid sequence encoded by genomic clone Zm123A with two maize GRPs. GenBank accession numbers are as follows: Zm123A. AF134579; GRPZm, AB014475; and Zmall. AF031083. Bottom, hydrophobicity analysis of the deduced amino acid sequences of clone Zm123A and two GRPs from maize, GRPZm and Zmall

The expression of clone C106 was different (Fig. 7A-G). Forty-eight hours after the removal of only the cap, this clone was intensely expressed in the outer layer of the developing new cap and not in the peripheral columella cells (Fig. 7B) as in intact roots (Fig. 5D). As the cap developed, the expression pattern for this clone was re-established in the peripheral columella cells (Fig. 7C). Twenty-four hours after both QC and cap were excised, clone C106 was detected at a low level in the new cells emerging from the site of QC excision (Fig. 7D). After 48 h, the outermost newly produced cap cells continued to express this gene (Fig. 7E). Nonetheless, it was not until the RC initials had reappeared that the expression pattern for clone C106 was localized to the cap in a pattern similar to that observed in intact, nonsurgically treated tissues (compare Fig. 7F to Fig. 5D). This pattern continued in RCs that had regenerated for 96 h since the signal was

35

24

Zmall

preferentially located in the peripheral columella cells (Fig. 7G).

The pattern of expression of C123 in regenerating tissues was quite different from that of either C106 or C109 (Fig. 8A-G). In roots from which the cap only had been excised. C123 expression was slight in the peripheral nascent cap cells and also in the root epidermis (Fig. 8A). At 48 h (Fig. 5F), expression increased around the entire regenerating cap and epidermal root cells (Fig. 8B). By 72 h, when the cap had nearly completely re-formed, the expression pattern was predominantely found in the lateral RC as in intact root tips (compare Fig. 8C to Fig. 5F). In apices allowed to regenerate for 24 h following removal of the root cap and QC, clone C123 was basically expressed in all the newly formed cell layers of the emerging cap and also in the epidermal root cells (Fig. 8D). This expression continued to be elevated in the 48-h-regenerated apex

G. Ponce et al.: Root-cap-specific genes of maize

but was now more accentuated in the lateral region of the regenerating root cap than in the central cap (Fig. 8E). However, by the time the regeneration had proceeded for 72 h, the expression of clone C123 had decreased in both the central and lateral cap (Fig. 8F). By 96 h after surgery, at a time when the new RC initials are anatomically distinct and the QC fully re-established, the expression pattern for this clone was confined

Fig. 4A.B. Schematic representation of the maize root apex. A The different constituents in the root tip. B The expression pattern of two RC-specific genes (clones C109 and C106) and one RC and epidermis gene (clone C123). Clone C109 is expressed in the outer cap made of secretory cells. Clone C106 is expressed in the periphery of the central cap made of columella cells. Clone C123 is expressed in the lateral cap and root epidermis

Fig. 5A-F. Differential expression of three maize genes in the maize root apex. In-situ hybridization analysis of three clones in median sections of 2-d-old primary maize roots (s.c. secretory cell; c. columella cell; *l*c. lateral cap cells; *e*. epidermis). A,B Clone C109 expression is only observed in the secretory cells of the RC, with antisense (B) but not sense (A) probes. C,D GDP-D-mannose-4,6-dehydratase (clone C106) mRNA is uniquely present in the peripheral columella cells of the cap, using antisense (D) but not sense (C) probes. E,F The GRP (clone C123) mRNA is distinctively shown in the lateral cap and in the root epidermal cells. using antisense (F) but not sense probes (E). Bar = 385 μ m

to the lateral cap cells and to the root epidermis (Fig. 8G), similar to intact roots (Fig. 5F).

Discussion

The isolation and characterization of genes uniquely expressed in the RC are the first steps for understanding the different activities known to occur in the cap. Further, the RC genes which we have here characterized are two putative cell wall proteins and one cell wall enzyme. Cell walls contain proteins and polysaccharides able to condition the development of a plant (Cassab 1998), and thus the characterization of cap-specific cell wall proteins may be an important step towards understanding how morphogenesis in the cap is regulated.

Structure of the C109, C106 and C123 gene products. One of the predicted proteins of the RC gene represented in clone C109 (ORF3) resembles the human tracheobronchial mucin (Dufosse et al. 1993) and a putative glycosylphosphatidylinositol-anchored classical arabinogalactan protein (Youl et al. 1998). Arabinogalactan proteins have been found as a component of maize RC mucilage (Bacic et al. 1986). The mucilage is the primary site for colonization of the root by microbial symbionts and pathogens. Alternatively, ORF2 in clone C109 predicts a protein that is identical to ZmRCP2, a recently reported novel plant protein, specifically expressed in the root cap of maize (Matsuyama et al. 1999a). This protein contains six conserved cysteine residues in three pairs of Cys-X-X-Cys, and is similar to several proteins encoded in Arabidopsis expressed sequence tags and genomic sequences, and to a somaticembryogenesis-associated cDNA from Picea glauca (Dong and Dunstan 1999; Matsuvama et al. 1999a). Since the mRNA for this gene is highly abundant in the secretory cells of the RC (Figs. 4B, 5D), one can suggest that the protein product is part of the mucilage secreted by the RC. In the mucilage, it may contribute to the physicochemical properties of this material and/or, it may interact with the microorganisms of the rhizosphere

The other RC gene. clone C106. encodes GDPmannose-4.6-dehydratase, which catalyzes the first step in the de-novo synthesis of GDP-fucose (Bonin et al. 1997). Fucose is a major component of the mucilage secreted by the RC of maize and is a distinctive feature of the particular differentiation state of the outer RC cells (Harris and Northcote 1970). In previous studies in which roots regenerating a cap were fed with [³H]_Lfucose, the autoradiographs showed that the label was concentrated over the cell walls immediately distal to the RC initials and not over the outermost mucilagesynthesizing cells as anticipated (Barlow 1974). The mRNA for the fucose-synthesizing enzyme was primarily observed in the periphery of the central cap (Figs. 4B. 5D), confirming this observation.

Finally, clone C123 encodes for a putative cell wall GRP. Glycine-rich proteins are structural wall proteins of unknown function, and their location in the lateral RC and epidermis suggests a new possible function in root development (Figs. 4B, 5F). In monocots, the lateral RC does not originate independently from the rest of the RC. During embryogenesis in monocots, the RC seems to organize as a whole, and thus the cap is not a composite of cells having two different origins (von Guttenberg 1968). This is not the case with many dicots, in which the peripheral and columella cells have different origins during embryogenesis. The columella portion, as for example in Arabidopsis, arises from cells not connected to the dermatogen but to the hypophysis, whereas the side (flank) portions of the cap have origins in dermatogen-associated cells (Dolan et al. 1993). Thus, in Arabidopsis, the epidermis and lateral root cap cells have a common origin. Interestingly, in maize, C123 mRNA was labelled in both the lateral cap and epidermis, apparently indicating a distinction between the columella and the lateral RC cells. In addition, this labelling pattern presumably also indicates a similarity between the lateral RC and the epidermis.

Expression of C109, C106 and C123 genes in regenerated caps after microsurgery. We used a surgical approach to remove either the cap alone, or the cap plus the QC, and then followed the regeneration of the excised tissues in order to examine the questions of when and where the three RC-specific genes were expressed. Our long-term goal is to understand the spatial differentiation and development of the many activities known to occur in the cap. By monitoring regeneration following removal of the cap only, or the cap plus the QC we have been able to show that as the cap is re-formed its normal gene expression activities occur in an atypical pattern (Fig. 9A,B). Even without knowing the exact roles of these gene products in RC function, we can nevertheless suggest that the onset of these activities may be related to a recovering of functions by the cap (e.g. gravity perception, mucilage secretion, etc.). In this regard, the sequential regaining of cap gene activities (e.g. C123 activities appear first, followed in time by C106 and C109 in decapped roots) may suggest that subsequent later-expressed genes may be regulated by the products of the genes expressed earlier (Fig. 9A,B). Moreover,

Fig. 6A-G. Expression patterns of clone C109 during regeneration of the maize RC, or RC and QC. A.B Upon complete removal of the cap, clone C109 expression is not detected in apices that have been regenerating from reactivated distal QC cells for 24 h (A) and 48 h (B). C The signal reappears 72 h after excising the cap when both the QC (asterisk) and RC initials (arrow, rc) can be distinguished. D-G Apices of seedling roots from which the RC and QC have been removed. After surgery, regeneration of new apical tissues from the proximal root meristem was allowed to proceed for 24 (D). 48 (E), 72 (F) and 96 (G) h. D Clone C109 expression is hardly evident. E Once the incipient cap is present in an apex, clone C109 expression is abundant in the outer cell layers. F, G By the time the RC initials (arrow, rci) and the QC are recognizable, the intensity of the signal of this gene has slightly decreased. Bar = 378 μ m

Fig. 7A-G. Expression pattern of clone C106 during regeneration of the maize RC, or RC and QC. A-C In-situ hybridization analysis of

because the re-establishment of normal gene expression patterns appears after the re-formation of the QC, this suggests that the newly re-formed QC may exert some clone C106 in newly forming caps 24 (A), 48 (B) and 72 (C) h following excision of the cap only. **A,B** Removal of the cap results in the induction of clone C106 in the outer cell layers of the 48-h nascent cap (B) but not in apices which have regenerated for only 24 h (A). C The pattern of expression for this gene is re-established in the columella cells as in intact roots (Fig. 5D) once the RC initials (*arrow*, *rci*) are noticeable (*asterisk*, QC). **D**-G Apex regeneration 24 (D), 48 (E), 72 (F), and 96 (G) h following removal of the cap and the QC. **D**, **E** In apices which have regenerated for 24 and 48 h, the expression of clone C106 is detected in the outer cell layers of the emerging cap. F Progression in the development of the new cap coincides with a light expression of clone C106 in few columella cells. **G** By the time the QC (*asterisk*) and RC initials (*arrow*, *rci*) are restored, clone C106 is highly expressed in the columella cells of the newly formed cap and to a lesser extent in the outer secretory cells. **Bar** = 337 µm

control over the gene expression pattern within the cap. For example, must the QC re-form prior to the expression of the RC genes? The kinetics of C109

G. Ponce et al.: Root-cap-specific genes of maize-

Fig. 8A=G. Expression pattern of clone C123 during regeneration of the maize RC, or RC and QC. A=C In-situ hybridization analysis of a putative glycine-rich cell wall protein (clone C123) in regenerating caps 24 (A), 48 (B) and 72 (C) h following excision of the cap only. A, B At 24 and 48 h after removal of the cap, clone C123 is primarily detected in the lateral region of the nascent cap and in the root epidermis. C In completely regenerated caps, clone C123 is highly expressed and distinctively localized in the lateral region of the cap and epidermis. D=G Apex regeneration 24 (D), 48 (E), 72 (F), and 96 (G) h after removal of the cap and the QC. D When the root proximal meristem is responding to the loss of the QC, clone e123 is intensely expressed in the newly formed cells of the future cap and in the root epidermis. E As the development of the incipient cap progresses, clone C123 continues to be strongly expressed in both the lateral cap and epidermis but is also seen in the columella cells. **F,G** Once the original pattern of cells in the distal meristem (*arraw*, *rci*; *asverisk*, QC) is restored, expression of clone C123 begins to decrease and is limited to the lateral region of the newly formed cap and to the root epidermis. Bar = 395 μ m

Fig. 9A,B. Schematic representation of clones C109, C106 and C123 expression patterns during root cap regeneration after excision of the cap A or both the cap and the QC B. The diagrams correspond to the images shown in Figs. 6.7 and 8

expression may indicate that re-formation of the QC is apparently required for proper gene expression in the RC (Fig. 9B). On the other hand, expression of clone C106 in regenerated caps following RC and QC excision is detected in the outermost cells of the emerging cap (Fig. 9B). But, it is not until the QC has reappeared that the expression pattern for clone C106 is restored to the peripheral columella cells. The expression pattern of clone C123 differs, Because C123 is expressed so rapidly following surgical manipulations, one might speculate that its initial expression pattern in the regenerating cap is not regulated by signals released by the QC (Fig. 8D, 9B). However, as the QC is being re-formed, C123 expression is seen preferentially in the lateral RC (Fig. 8E–G) as in intact roots (Fig. 5F).

The kinetics of expression of C109 differs developmentally depending upon what tissues have been excised (RC or RC plus QC) (Fig. 9A.B). Hence, this protein may play an important role in indicating the cellular differentiation (activity or identity) of the mucilagesecreting cells when the QC is not yet re-established. On the other hand, the kinetics of expression of clone C106 (GDP-mannose dehydratase) in regenerated caps after excision of either the cap or both the RC and the QC, practically follows the same pattern. The signal is initially detected in the outermost newly formed cap cells (Fig. 9A,B) but once the RC has been completely remodelled as a morphologically distinctive structure, its expression closely resembles the pattern observed in intact roots (Figs. 7C,G, 5D). These observations suggest that the appearance of C106 in the outermost cap cells of early regenerated caps (Figs. 7B,E, 9A,B) may indicate that this gene plays a role in determining future cap activities such as mucilage secretion. In other words, signalling between newly divided cells seems to direct the choice of developmental pathway and some of these signals may arise from the wall itself. In fact, C106 expression in the outermost cap cells precedes the appearance of clone C109 after excision of the RC only (Figs. 6B, 7B), and both RC and QC (Figs. 6D, 7D, 9B). In addition, fucose is a distinctive feature of the outer RC cells (Harris and Northcote 1970). Interestingly, in regenerating caps, higher expression of clone C123 always antecedes the appearance of both C109 and C106 (Fig. 9A.B). The early expression pattern of clone C123 in regenerating cap cells may indicate that this gene participates in early fate selection (future cap cells). In other words, nascent cells that express C123 could be identified by their newly emerged neighboring cells, and thus differentiate as cap cells.

Because the cap is the terminal-most tissue in the root we also wondered whether this expression pattern indicated structural (i.e. specific RC-expressed genes) or positional (i.e. genes expressed at the root tip) markers. Topping and Lindsey (1997) have recently distinguished these two types of markers (promotor trap marker) in roots of *Arabidopsis*. They showed that the promoter trap marker *POLARIS* (positional marker) was expressed in the correct position in root tips where one would expect to find several cell types, even if those cells did not actually form, as in *hydra* or *emb30 Arabidopsis* mutants.

This is in contrast to promoter trap markers such as COLUMELLA (structural marker) that was cell-type specific and was expressed only if the correct cell type (root cap) was differentiated. In maize roots following removal of the cap, the expression of clones C109 and C106 is not observed until roots have regenerated for 72 and 48 h, respectively (Figs. 6, 7, 9A). Because C109 and C106 are not appropriately expressed until a morphologically distinctive new RC is evident, we suggest that these may be structural, tissue-specific markers of activities specific to the RC. This contrasts with C123 which is expressed early in the regeneration process in the peripheral incipient cap cells. Consequently, we may hypothesize that C123 could be a positional marker, since it is expressed in whatever cells are the terminal, outermost cells of the new root cap (Figs. 8A,D, 9A,B). In early regenerated caps which developed from the proximal root meristem, expression of clone C123 in the epidermis was apparently higher (Fig. 8D,E). Here, clone C123 is now expressed in epidermal cells in close proximity to the meristem, and this expression disappeared once the QC had reformed. In the Arabidopsis root meristem, positional signals for proper differentiation appear to derive from more-mature cells to guide the cell fate of initials of the same cell type (van den Berg et al. 1995). In intact roots, C123 is not expressed in the newly formed epidermal cells but only in more-mature cells, further leading us to hypothesize that it might be a positional marker for the epidermis of the root. Collectively, these results are not simply the consequence of wounding associated with cap or QC surgery since several factors such as drought, radiation, heat or cold also produce an activation of the QC and regeneration of a new cap (Torrey and Feldman 1977). Further, we observe different patterns of expression of the three clones by excising either the cap only or both the QC and the cap. If wounding were responsible, the pattern of expression of these genes would be similar in all cases.

Previous work with Arabidopsis has shown that interactions between the QC and other root cells extend only to contacting cells (van den Berg et al. 1997). In maize we have shown that the QC re-forms, indeed needs to re-form prior to correct transcript expression, suggesting that the QC in maize, as in Arabidopsis, exerts control of the developmental status of contacting non-QC cells. But while our work with maize supports the view of van den Berg et al. (1997) of the importance of contact between the QC and adjacent cells, we also conclude that there may be fundamental differences in QC-regulation of transcript expression between these two root types. In maize, with its large QC, the timing of QC re-formation in relation to correct message re-expression in the cap suggests that the QC may regulate developmental events not only in contacting cells, but also in cells not contacting the QC, indeed some distance from the QC. Interestingly, one of the messages, C123, is re-expressed in the regenerating cap before the QC re-forms, but the location of this expression differs from that observed after QC re-formation. In addition. the mitotic activity of the RC initials was previously shown to be influenced by an extracellular signal from

G. Ponce et al.: Root-cap-specific genes of maize

the cap border cells (Brigham et al. 1998); thus the basis of cross-talk between these two populations of cells has already been established. Since the maize root meristem presumably utilizes a different mechanism for controlling cell differentiation than Arabidopsis the challenge is now to identify the QC signals that regulate the tissue-specific pattern of gene expression within the RC. It remains to be seen whether the putative cell wall components isolated in this work are implicated in guiding cellular differentiation in the cap. Critical testing of this hypothesis will rely on the molecular analysis of the C109, C106 and C123 gene activities, and the identification of the QC

We thank N. Kerk, I. Sussex and S. Gillmor for critical reading of the manuscript; S. Ruzin and D. Schichnes from the NSF Center of Plant Developmental Biology at UC Berkeley for excellent technical assistance with the in-situ hybridization experiments; René Hernández from the Sequencing Facility at IBt-UNAM, and the Sequencing facility at UC Berkeley; and, finally Y. Sánchez, for outstanding aid with the figures. We also acknowledge L. Castrejón for collecting root caps. This project was supported by the Consejo Nacional de Ciencia y Tecnologia (CONACYT) (Grant No. 25186N), and National Science Foundation-CONACYT (Grant No. E120.508).

References

- Bacic A, Moody SF, Clarke AE (1986) Structural analysis of secreted root slime from maize (Zea mays L.) Plant Physiol 80: 771-777
- Barlow PW (1974) Regeneration of the cap of primary roots of Zea mays. New Phytol 73: 937-954
- Barlow PW (1975) The root cap. In: Torrey JG, Clarkson DT (eds) The development and function of roots. Academic Press, London, pp 21-54
- Bonin PC, Potter I, Vanzin GF, Reiter W-D (1997) The MURI gene of Arabidopsis thaliana encodes an isoform of GDP-p-mannose-4.6-dehydratase, catalyzing the first step in the de novo synthesis of GDP-1-fucose. Proc Natl Acad Sci USA 94: 2085-2090
- Brigham LA, Woo H-H, Wen F, Hawes MC (1998) Meristemspecific suppression of mitosis and a global switch in gene expression in the root cap of pea by endogenous signals. Plant Physiol 118: 1223-1231
- Cassab GI (1998) Plant cell wall proteins. Annu Rev Plant Physiol Plant Mol Biol 49; 281-309
- Chen C-G, Pu Z-Y, Moritz RL, Simpson RJ, Bacic A, Clarke AE, Mau S-L (1994) Molecular cloning of a gene encoding an arabinogalactan-protein from pear (*Pyrus communis*) cell suspension culture. Proc Natl Acad Sci USA 91: 10305-10309
- Devereux J, Haeberli P, Smithies O (1984) A comprendensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12: 387-395
- Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular organization of the Arabidopsis thaliana root. Development 119: 71-84
- Dong J-Z, Dunstan DI (1999) Cloning and characterization of six embryogenesis-associated cDNAs from somatic embryos of *Picca glauca* and their comparative expression during zygotic embryogenesis. Plant Mol Biol 39: 859-864
- Dufosse J, Porchet N, Audie JP, Duperat GV, Laine A, Seuningen VI. Marrakchi S, Degand P, Aubert JP (1993) Degenerate 87 base pair tandem repeats create hydrophilic/hydrophobic alternating domains in human mucin peptides mapped to 11p15. Biochem J 293: 329–337
- Feinberg A, Volgestein B (1983) Addendum: a technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6-13

Feldman LJ (1976) The de novo origin of the quiescent center in regenerating root apices of Zea mays. Planta 128: 207-212

and the second
- Feldman LJ (1998) Not so quiet quiescent centers. Trends Plant Sci 3: 80-81
- Feldman LJ, Briggs WR (1987) Light-regulated gravitropism in seedling roots of maize. Plant Physiol 83: 241-243
- Fortin M-C, Poff KL (1991) Characterization of thermotropism in primary roots of maize: Dependence on temperature and temperature gradient, and interaction with gravitropism. Planta 184: 410-414
- Harris PJ, Northcote DH (1970) Patterns of polysaccharide biosynthesis in differentiating cells of maize root tips. Biochem J 120: 479-491
- Hasenstein KH, Evans ML (1988) Effects of cations on hormone transport in primary roots of Zea mays. Plant Physiol 86: 890-894
- Hawes MC, Lin HJ (1990) Correlation of pectolytic enzyme activity with the programmed release of cells from the root cap of *Pisum sativum*, Plant Physiol 94: 1855–1859
- Ishikawa H. Evans ML (1990) Electropism of maize roots: role of the root cap and relationship with gravitropism. Plant Physiol 94: 913–918
- Maniatis T, Frisch EF, Sambrook J (1982). Molecular cloning a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
- Matsuyama T, Yasumara N, Funakoshi M, Yamada Y, Hashimoto T (1999a) Maize genes specifically expressed in the outermost cells of root cap. Plant Cell Physiol 40: 469-476
- Matsuyama T, Satoh H, Yamada Y, Hashimoto T (1999b) A maize glycine-rich protein is synthesized in the lateral root cap and accumulates in the mucilage. Plant Physiol 120: 665-674
- Moore R (1984) Cellular volume and tissue portioning in caps of primary roots of Zea mays. Am J Bot 71: 1452-1454
- Nicto-Sotelo J, Kannan KB, Martinez LM, Segal C (1999) Characterization of a maize heat-shock protein 101 gene, HSP101, enconding a ClpB/Hsp100 protein homologue. Gene 230: 187-195
- Okada K, Shimura Y (1990) Reversible root tip rotation in Arabidopsis seedlings induced by obstacle-touching stimulus. Science 250: 274-276
- Rochester DE, Winter JA, Shah DM (1986) The structure and expression of maize genes encoding the major heat shock protein, hsp 70. EMBO J 5: 451-458
- Ruzin SE (1999) Plant Microtechnique. Oxford University Press, Oxford and New York
- Scheres B, McKhann H, van den Berg C, Willemsen V, Wolfenkelt H, de Vrieze G, Weisbeck P (1996) Experimental and genetic analysis of root development in *Arabidopsis thaliana*. Plant Soil 187: 97-105
- Takahashi H (1997) Hydrotropism: the current state of our knowledge. J Plant Res 110: 163-169
- Topping J, Lindsey, K (1997) Promoter trap markers differentiate structural and positional components of polar development in Arabidopsis. Plant Cell 9: 1713-1725
- Torrey JG, Feldman, LJ (1977) The organization and function of the root apex. Am Sci 65: 334-344
- van den Berg C, Willemsen V, Hage W, Weisbeek P, Scheres B (1995) Cell fate in the Arabidopsis root meristem determined by directional signalling. Nature 378: 62-65
- van den Berg, C, Willemsen V, Hendriks G, Weisbeek P, Scheres B (1997) Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390: 287-289

von Guttenberg H (1968) Der primäre Bau der Angiospermenwurzel (Handbuch der Pflanzenanatomie. 2, vollig neubearb. Auf. Spezieller Teil, Bd 8, T5. Borntraeger, Berlin

Willemsen V, Wolkenfelt H, de Vrieze G, Weisbeek P, Scheres B (1998) The HOBBIT gene is required for formation of the root meristem in the Arabidopsis embryo. Development 125: 521-531

Youl JJ, Bacic A, Oxley D (1998) Arabinogalactan-proteins from Nicotiana alata and Pyrus communis contain glycosylphosphatidyl-inositol membrane anchors. Proc Natl Acad Sci USA 95: 7921-7926.

