1162

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Vniverada Nacional Avfinma de Mexico

DIVISIÓN DE ESTUDIOS DE POSGRADO FACULTAD DE INGENIERÍA

ESTUDIO SOBRE LA EROSIÓN DE AVENIDAS EN CAUCES ARENOSOS

ΤΕSΙS

COMO REQUISITO PARA OBTENER EL GRADO DE MAESTRO EN INGENIERÍA (HIDRÁULICA)

> P R E S E N T A JOSÉ ALBERTO GRAJALES LÓPEZ

DIRECTOR DE TESIS M. en I. JOSÉ ANTONIO MAZA ÁLVAREZ

MÉXICO, D.F.

OCTUBRE DE 200

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Léeme lector, si te deleitas en mí; porque rarísimas veces he renacido al mundo. Porque la paciencia para tal profesión se encuentra en pocos que quieran componer de nuevo semejantes cosas. ¡Y venid, hombres, a ver los milagros que por tales estudios se descubren en la naturaleza!

Autorizo a la Dirección General de Bibliotecas de ... UNAM a difundir en formato electrónico e impreso a contenido de mi trabajo recepcional. NOMBRE: José Alberter Grandes Ihar: 24 FECHA: FIRMA:

Carlo Zammattio

A MI ABUELO[†]

FLORENCIO GRAJALES POLA

TESIS CON FALLA DE ORIGEN

AGRADECIMIENTOS

Este tema de tesis, fue desarrollado en el Instituto de Ingeniería como becario del mismo. Le agradezco al M. en I. Víctor Franco por la confianza depositada en mi, así como el apoyo brindado desde el inicio de la maestría

A los Sinodales, Dr. Jesús Gracia, Dr. Ramón Domínguez, Dr. Carlos A. Escalante, M. en I. José Antonio Maza Álvarez y M. en I. Víctor Franco, se les agradece las observaciones realizadas al trabajo, mejorando con ello los objetivos alcanzados.

En especial al M. en I. Maza Álvarez, quien me dedicó su valioso tiempo y su experiencia en este trabajo. Es un ejemplo a seguir y que le reitero las gracias por su amistad proporcionada.

A Margarita López H. por su valiosa dedicación y entusiasmo en la corrección del presente.

A todos los catedráticos que ayudaron en todo el proceso de la especialización; además a todos aquellos que no he mencionado pero que tienen alguna relación conmigo también les doy las gracias. Ya que son muchos, no los nombraré pero ellas y ellos ya saben quienes son.

INDICE

INTRODUCCIÓN

1. EROSIONES QUE AFECTAN EL FONDO DE UN CAUCE

1 1	Tinon	do	araalán	
1.1	l ipos	ae	erosion	

1.2 Factores que influyen en la profundidad de erosión de avenidas

1.3 Variables y unidades

2. EROSIÓN GENERAL O DE AVENIDAS

2.1 Método de Lischtvan y Levediev
2.1.1 Velocidad media del flujo
2.1.2 Velocidad media necesaria para empezar a erosionar el material del fondo.
2.1.3 Estimación de la erosión de avenidas en material homogéneo

2.2 Método de Maza-Álvarez y Echevarría-Alfaro (1973)

2.3 Método de Maza-Álvarez (2000)

2.4 Cálculo de la erosión de avenidas en materiales heterogéneos

5

3

5

5

7

10

17

19

19

21

22

23

25

3. PROFUNIDAD DE EROSIÓN EN AVENIDAS				
(MÉTODOS PROPUESTOS)				
3.1 Análisis dimensional	33			
3.1.1 Teorema de Buckingham	35			
3.1.2 Números adimensionales	37			
3.2 Primer método propuesto para estimar la erosión de avenidas	40			
3.3 Segundo método propuesto para estimar la erosión de avenidas	45			
4. VELOCIDAD MEDIA DE INICIO DE EROSIÓN	50			
(MÉTODOS PROPUESTOS)				
4.1 A partir de la ecuación 3.17	51			
4.2 A partir de la ecuación 3.30	55			
COMENTARIOS	57			
CONCLUSIONES	60			
APÉNDICE A	63			
ANEXO 1	68			
BIBLIOGRAFIA	100			
TIPOTO OC	· · · · · ·			

OBJETIVO

El objetivo principal de este trabajo es presentar ecuaciones que permitan determinar la profundidad de erosión de avenidas, en ríos con material granular en el fondo, lo cual sucede al paso de una creciente. Las dos fórmulas que se proponen para obtener dicha profundidad se basan en números adimensionales. La primera acepta como válidos los valores obtenidos de la ecuación de Lischtvan y Levediev; en cambio, la segunda se deduce a partir de datos de campo de los ríos Colorado, Mississippi, Red, Grande y canales de ACOP (USA), Leyes y Paraná (Argentina), Saskatchewan (Canadá) y varios ríos de Portugal. Los resultados se comparan con el del río Atchafalaya (USA) y los antes mencionados, excepto la corriente del Grande.

También se proponen fórmulas que permiten obtener la velocidad media erosiva o de inicio de erosión. Las ecuaciones fueron deducidas a partir de las fórmulas obtenidas para estimar la profundidad de erosión, con los dos criterios ya señalados.

INTRODUCCIÓN

Durante la época de lluvias, las precipitaciones ocasionan un aumento en el escurrimiento de los ríos, que puede provocar inundaciones con perjuicio a zonas de cultivos y asentamientos humanos, así como daños en obras civiles construidas en las márgenes de los ríos o dentro de su cauce.

Con el fin de que dichas obras (puentes, muros marginales, espigones, cruces subfluviales de tuberías, etc.) cumplan su propósito, se debe evitar que el descenso del nivel del fondo del río al paso de una avenida provoque una falla total o parcial en esas estructuras. Tal descenso es consecuencia del incremento de la velocidad de la corriente, que aumenta la capacidad de transporte de material sólido en suspensión del fondo; este fenómeno se conoce como erosión de avenidas o erosión general.

En el primer capítulo se indican los tipos de erosión que influyen en el fondo del cauce; pero sólo se describe la erosión de avenidas que es el objetivo de este trabajo y los factores que la afectan.

En el capítulo 2 se incluyen varios criterios para estimar la profundidad que alcanza el lecho de río al paso de una avenida, como los métodos de Lischtvan y Levediev, Maza-Álvarez y Echevarría, y de Maza-Álvarez.

En los capítulos 3 y 4 se presentan dos ecuaciones dimensionalmente homogéneas para obtener la erosión de avenidas en cauces arenosos y dos más que permiten estimar la velocidad media erosiva, deducidas a partir de las primeras.

Por último, se realizan algunos comentarios acerca de la forma de medir la erosión de avenidas en campo, así como una discusión sobre la manera de estimar la distribución del gasto unitario en la sección de interés.

1. EROSIONES QUE AFECTAN EL FONDO DE UN CAUCE

1.1 Tipos de erosión.

Las alteraciones que puede ocasionar la presencia de obras en las orillas de un río o dentro de éste se observan de manera inmediata en erosiones o sedimentaciones, las cuales pueden ser muy locales o bien abarcar grandes tramos. Para garantizar el funcionamiento adecuado de la obra, de manera cualitativa y cuantitativa, se deben conocer las posibles erosiones que podrían llegar a ocurrir y de ser necesario reducir su magnitud o anularla.

Las principales erosiones que influirán en la profundidad máxima que alcance el fondo del cauce son las siguientes:

- Erosión general o de avenidas
- Erosión por contracción o transversal
- Erosión en curvas
- Erosión al pie de obras rodeadas por la corriente
- Erosión al pie de obras unidas al margen
- Erosión aguas abajo de obras de almacenamiento
- Erosión aguas abajo de una descarga

- Erosión aguas arriba de corte de meandros y rectificaciones
- Erosión bajo tuberías.

Los primeros tres tipos de erosión no se deben a factores humanos, en tanto que los restantes son ocasionados por obras construidas en los ríos. La erosión por contracción puede también ser debida a la presencia de obras que reducen la sección hidráulica del río.

En este trabajo sólo se trata la erosión que puede ocurrir en una sección o zona del río al paso de una avenida. A continuación se presenta una breve descripción de este tipo de erosión.

Erosión general o de avenidas

Esta erosión ocurre independientemente de la existencia de una obra hecha por el hombre, ya que consiste en un descenso transitorio del fondo del río, que se produce al presentarse el escurrimiento directo de una precipitación considerable, donde la velocidad media del flujo es mayor que la que pueden soportar las partículas de un cauce sin provocar erosión.

Cuando las aguas tienden a bajar, el flujo disminuye su velocidad y capacidad de transporte, por lo que empieza a depositar materiales en mayor cantidad, de tal modo que al pasar la creciente el río recupera aproximadamente el nivel del fondo de su cauce original. Así pues, el fenómeno de la erosión solo puede observarse a través de equipos de medición que definen la evolución del fondo al paso de la avenida.

Si el río puede derramarse en una gran llanura de inundación, la erosión de avenidas es menor que la que ocurre en cauces delimitados por cantiles o bordos, esto obedece a que uno de los factores principales en el fenómeno es la velocidad de la corriente.

Es importante mencionar que en la literatura especializada no se encuentra el concepto de erosión de avenidas. Solamente Melville y Coleman (2000) de acuerdo con su clasificación, lo consideran como una erosión general a corto plazo, diferenciándolo de la erosión general a largo plazo.

La erosión general a largo plazo tiene una significativa longitud en la escala de tiempo, normalmente en el orden de varios años o más tiempo, e incluye una degradación progresiva casi permanente en el descenso del fondo del río, debido a cambios hidrometeorológicos, geomorfológicos o actividades humanas (Melville y Coleman, 2000).

1.2 Factores que influyen en la profundidad de erosión de avenidas

La profundidad y el área de erosión presentes en un río pueden ser afectados por algunos de los siguientes factores o por todos:

- Pendiente, alineación natural y movimientos del cauce. Para determinar esto, es necesario conocer en la zona de interés las secciones transversales, el desarrollo en planta del río y de ser posible indicar los corrimientos laterales que haya sufrido el cauce en épocas pasadas.
- Características del material del fondo. Para realizar los estudios geotécnicos se requiere efectuar varios sondeos; éstos se ejecutan, por ejemplo, para la construcción de puentes, o bien del cruce de una tubería bajo el fondo del río. De las muestras obtenidas de tales sondeos se puede determinar la estratigrafía, así como la curva granulométrica para los materiales no cohesivos::y el peso volumétrico seco para los materiales cohesivos.

Concentración del material transportado en suspensión. Se toman muestras de agua-sedimento con botellas de un litro de capacidad; posteriormente, se separa el material del fondo y el material de lavado. La forma práctica de hacer lo anterior consiste en pasar la muestra a través de una malla 200 cuya apertura es de 0.074 mm (valor cercano a 0.062 mm, establecido como separación entre ambos materiales). Las partículas retenidas en la malla corresponden al material de fondo y las que pasan al material de lavado. También se deben conocer la distancia a la orilla y la profundidad bajo la superficie libre a las que fue tomada la muestra.

Nivel de la superficie libre al pasar el gasto de diseño. Esto se obtiene mediante una sección de aforo y una escala en el sitio de interés, y al recopilar algunas observaciones aisladas que permitan construir una curva de elevaciones del agua contra los gastos que pasan por la sección. En general, es satisfactoria una curva obtenida de cinco puntos que corresponden a observaciones hechas en el periodo de avenidas de un año. Como el gasto de diseño será sin duda mayor que los observados, se extrapola la curva observada.

El gasto de diseño se selecciona en función de un periodo de retorno preestablecido. Para obtenerlo se pueden emplear las técnicas estadísticas aplicando ya sea una teoría distribucional o un análisis regional. La primera se utiliza cuando se cuenta con una serie de registros de las avenidas máximas presentadas en años anteriores en el lugar de interés, y la segunda cuando no se dispone de esos registros.

FALLA DE ORIGEN

Comentario

Para los propósitos de diseño, la determinación de la profundidad máxima producida por las erosiones es la acumulativa de todas éstas; es decir, si en una sección del río se desea obtener dicha profundidad, primero deben calcularse la erosión de avenidas, la transversal y la erosión en curvas, según sea el caso; posteriormente, a partir de las características geométricas e hidráulicas de las secciones ya erosionadas, se procede a calcular las erosiones locales.

1.3 Variables y unidades

Es importante señalar que algunas ecuaciones presentadas en este trabajo no son dimensionalmente correctas; por tanto, se deben respetar las unidades de cada una de las variables indicadas a continuación.

- A Área hidráulica de la sección transversal, en m². Está definida por el fondo de la sección antes de iniciarse la erosión y la elevación máxima del agua al paso de la avenida de diseño.
- Be Ancho efectivo de la superficie libre, en m. Para determinar Be en forma gráfica, al ancho real del cauce se le resta el ancho de todos los obstáculos.
 Cuando no existen obstáculos dentro del cauce, Be es igual al ancho total de la superficie libre de toda la sección principal del río (ver figura 1.1).

Si existen obstáculos, B_e se obtiene al proyectar en un plano perpendicular a la dirección del flujo todos los espacios libres. Es relevante que en el cruce de un puente el flujo sea paralelo al eje longitudinal de las pilas, pues de no ser así B_e se ve reducido notablemente.

- Di Diámetro de la muestra tal que el i% en peso es menor o igual que ese tamaño, en m. Así, el D₈₄ es el diámetro de la muestra en el que el 84 por ciento en peso es menor o igual que ese tamaño.
- D. Número o parámetro adimensional de la partícula. Su expresión es

$$D_{\bullet} = D_{i} \left(\frac{g \Delta}{v^{2}}\right)^{\frac{1}{3}}$$

Dm

Diámetro medio de las partículas que constituyen el fondo de un río, en m. Se obtiene de la relación

$$D_m = 0.01 \sum D_j p$$

- Djámetro medio correspondiente a la marca de clase de cada intervalo.
 Se calcula como (D_{min}D_{máx})^{0.5} siendo D_{min} y D_{máx} los diámetros mínimo y máximo de cada intervalo.
- P_j Porcentaje de partículas retenidas en cada marca de clase, en %.
 Equivale a la frecuencia relativa de cada intervalo.

Si la curva granulométrica sigue una ley del tipo log-normal de probabilidades, el diámetro medio también se puede determinar como

$$D_{m} = D_{50} \exp\left[\frac{1}{2} (Ln \ \sigma_{g})^{2}\right]$$

g Aceleración debida a la gravedad, en m/s².

h_m Tirante o profundidad media, en m. Se obtiene al dividir el área hidráulica A entre el ancho efectivo B_e.

$$h_m = \frac{A}{B_c}$$

El área A es definida por la sección transversal del río antes de iniciarse la erosión y la elevación del agua al paso de la avenida.

- h_o Tirante o profundidad inicial en una vertical cualquiera, en m. Es la profundidad entre el nivel del agua cuando se presenta el gasto de diseño Q_d
 y el nivel del fondo antes de iniciarse el proceso erosivo (ver figura 1.1).
- h_s Tirante o profundidad que alcanza el fondo ya erosionado, en m. Se mide en la misma vertical en que se mide h_o, entre la superficie libre del agua al paso de la avenida y el fondo erosionado (ver figura 1.1).
- n Coeficiente de rugosidad total en el tramo en estudio según Manning. Se puede valuar con la fórmula

$$n = \frac{R^{2/3} S^{1/2}}{U}$$

q Gasto unitario, en m^3/s m. Es el gasto que pasa en una franja unitaria con profundidad h_o (ver figura 1.1).

- Q_d Gasto o caudal de diseño de la avenida para el que se desea estimar la erosión general, en m³/s. El gasto esta asociado a un periodo de retorno T.
 Para el diseño de puentes éste varía entre 25 y 100 años.
- R Radio hidráulico, en m. Es la relación entre el área hidráulica A y el perímetro mojado P de la sección transversal

$$R = \frac{A}{D}$$

P Perímetro mojado de la sección transversal, en m.

S

т

- Pendiente de la pérdida de carga a lo largo del río, adimensional. Periodo de retorno: Es el intervalo de recurrencia o frecuencia del gasto de diseño, en años.
- U Velocidad media del agua en la sección transversal, en m/s.

$$U = \frac{Q_d}{A} = \frac{Q_d}{h_m B_e}$$

U. Velocidad de corte, en m/s. Esta dado por las siguientes expresiones

$$U_{\star} = \left(\frac{\tau_a}{\rho}\right)^{0.5} = \left(\frac{\rho g R S}{\rho}\right)^{0.5} = (g R S)^{0.5}$$

Cuando el río es muy ancho, $B_e \ge 40 h_m$, se cumple que $R \approx h_m$, Por tanto la ecuación anterior se puede escribir como

$$U_{\bullet} = (gh_{m}S)^{0.5}$$

- U_e Velocidad media que necesita el flujo para empezar a erosionar un material dado del fondo, en m/s.
- Ur Velocidad media del flujo, en m/s. Ésta es correspondiente a ho a medida que se produce el descenso del fondo.
- x Exponente obtenido a partir de los valores tabulados de Lischtvan y Levediev.
 Las ecuaciones fueron propuestas por Maza-Álvarez (1987). El exponente depende del D₈₄ y del γ_d para material granular y cohesivo, respectivamente.
 - El error máximo entre los valores tabulados y la ecuaciones propuestas es de 1.4% para material granular y de 1.03% para cohesivo. Maza-Álvarez (1987)

dividió en tres partes el rango de $0.00005 \text{ m} \le D_{84} \le 1.0 \text{ m}$ y en cada una de ellas se realizaron los ajustes que a continuación se presentan:

Para arenas, 0.00005 m \le D₈₄ \le 0.0028 m (error máx, 1.4%)

$$x = \frac{0.322}{D_{84}^{0.03}}$$

Para gravas y boleos, 0.0028 m \leq D₈₄ \leq 0.182 m (error máx. 1.0%)

$$x = \frac{0.223}{D_{84}^{0.092}}$$

Para boleos y cantos rodados, 0.182 m $\leq D_{84} \leq 1.0$ m (error máx. 1.0%)

$$x = \frac{0.191}{D_{84}^{0.187}}$$

También Maza-Álvarez realizó otro ajuste pero tomando en cuenta todo el rango de 0.00005 m $\leq D_{84} \leq 1.0$ m, aunque en este caso el error máximo es de 2.3% con respecto a los valores tabulados por Lischtvan y Levediev; sin embargo, para el rango de arenas y gravas llega a ser menor de 0.8 %

 $x = 0.44 - 1.633 D_{84}^{0.5} - 0.505 D_{84} + 1.89 D_{84}^{1.5} - 1.49 D_{84} Ln D_{84}$

Para el material cohesivo, obtuvo el siguiente ajuste

ß

$$x = \frac{\gamma_d^{0.725}}{66.28 + \gamma_d^{0.725}}$$

Coeficiente que toma en cuenta la compacidad del estrato del fondo del cauce, sin dimensiones. Su valor se obtiene mediante la ecuación propuesta por Maza-Álvarez (1994) que se deduce a partir de los datos de Lischtvan y Levediev, y se encuentra en función del periodo de retorno T del gasto de diseño (en años)

 $\beta = \frac{0.771 + 0.129 \, Ln \, T}{1 + 0.08 \, Ln \, T}$

Es válido para $15 \le T \le 1500$ años. El error máximo entre los datos de los autores anteriores y los obtenidos con la ecuación propuesta es de 0.8%.

Densidad relativa de las partículas dentro del agua, adimensional

$$\Delta = \frac{\gamma_s - \gamma}{\gamma} = S_s - 1$$

S_s Densidad relativa de las partículas, adimensional

$$S_s = \frac{\rho_s}{\rho} = \frac{\gamma_s}{\gamma}$$

- γ , γ_s Peso volumétrico del agua y de las partículas, respectivamente, en kgf / m³.
- ρ , ρ_s Densidad del agua y de las particulas, respectivamente, en kg / m³.

γ_d Peso volumétrico seco del material cohesivo, en kgf/m³. Es igual al peso seco
 W_s de la muestra entre su volumen inicial V_m

$$\gamma_d = \frac{W_s}{V_m}$$

 γ_m Peso específico de la muestra agua-sedimento, en kgf / m³. Por definición es la relación del peso total W_m y el volumen total de la muestra V_m

$$\gamma_m = \frac{W_m}{V_m}$$

μ Coeficiente de contracción. Toma en cuenta las contracciones laterales del flujo que se producen en las caras de los obstáculos que se encuentran dentro del cauce. A partir de los datos proporcionados por Lischtvan y Levediev, se valúa con la expresión indicada por Maza-Álvarez (1987), que depende de la velocidad media del flujo Ú y del claro entre pilas L

$$\mu = 1 - \frac{0.387}{I} U$$

Sin presencia de obstáculos $\mu = 1$.

- V Viscosidad cinemática del agua, en m² / s. Su valor para 20 °C es de 1X10⁻⁶ m²/s.
- σ_g Desviación estándar geométrica de la muestra de partículas del fondo, adimensional. Es una medida de dispersión que indica el alejamiento de los datos respecto de un valor central. Se define como

$$\sigma_{g} = \frac{1}{2} \left[\frac{D_{50}}{D_{16}} + \frac{D_{84}}{D_{50}} \right]$$

Si la granulometria de los sedimentos del río se ajusta a una distribución lognormal o logarítmica, se verifica que

$$\sigma_{\kappa} = \frac{D_{81}}{D_{50}} = \frac{D_{50}}{D_{16}} = \left(\frac{D_{84}}{D_{16}}\right)^{1/2}$$

Con rigor, en lugar de los diámetros D_{16} y D_{84} deben utilizarse $D_{15.87}$ y $D_{84.13}$, pero se han redondeado estos diámetros para fines prácticos. Las probabilidades de 15.87 y 84.13 %, tienen el valor de la variable aleatoria (Z) de -1 y 1 respectivamente, que corresponden a puntos de inflexión de la curva de la distribución normal estándar.

Velocidad de caída de las particulas naturales, en m/s. Su valor se obtiene de la expresión propuesta por Rubey, que establece

$$\omega_{i} = F_{1} \left[g \Delta D_{i} \right]^{0.5}$$
$$F_{1} = \left(\frac{2}{3} + \frac{36\nu^{2}}{g \Delta D_{i}^{3}} \right)^{0.5} - \left(\frac{36\nu^{2}}{g \Delta D_{i}^{3}} \right)^{0.5}$$

El subíndice en la velocidad de caída ω indica que el cálculo se realiza para un diámetro D_i.

Coeficiente adimensional que toma en cuenta el transporte de sedimentos en suspensión, el cual depende del peso específico de la mezcla de agua y sedimento γ_m (kgf/m³). Se puede obtener mediante la expresión propuesta por Maza-Álvarez (1987) que se basa en los datos de Lischtvan y Levediev, y el error máximo que se comete al utilizar esa expresión es de 0.42%,

$$= 0.38 + 0.618 \left(\frac{\gamma_m}{1000}\right)^2$$

.

Ψ

ω

Figura 1.1 Esquema de la erosión de avenidas

2. EROSIÓN GENERAL O DE AVENIDAS.

En este capítulo se mencionan algunos métodos que permiten estimar la erosión de avenidas. Pero antes, se explica de manera sucinta la forma en que Gluglielmini, en 1765 (según Levi, 1989), describe la erosión. " Para que haya erosión, se requiere que la fuerza que desgasta supere la resistencia de la tierra u otro material que forma el lecho del río;... además, es evidente que un río no irá profundizando su cauce hasta el infinito...; por tanto, hay que reconocer que, en cuanto el rio se socava, o bien la fuerza del agua va debilitándose poco a poco, o bien la resistencia del terreno va creciendo, o bien aquélla disminuye y ésta crece a un mismo tiempo, hasta que se alcanza una especie de equilibrio... Luego, tanto los fondos como los anchos de los lechos resultan determinados por la naturaleza, a saber, por la combinación de las causas actuantes con las resistentes..., y, por tanto, si los unos o los otros se alteran artificialmente, dichas causas actuantes nunca dejarán de devolverlos a su estado inicial." Sin embargo, "hay que considerar que la resistencia del fondo es la que iguala más pronto la potencia que se le opone, por ser dos las causas del igualamiento: el decrecer la pendiente del lecho y el reducirse la velocidad; mientras que la resistencia de los lados tarda mucho más en equilibrarse con la potencia contrapuesta, porque allí lo que se reduce es tan sólo la fuerza del agua, y esto es muv lentamente...Esta es la razón cual. por la en los ríos aue

escurren en cauces formados por material homogéneo, que el agua corroe fácilmente, el ancho es mayor que la profundidad".

La parte importante de lo mencionado anteriormente es el hecho de que después de haber pasado la avenida el perfil del fondo del cauce no regresará a su estado inicial si hay una alteración artificial y que dicho perfil se estabiliza mas pronto que el de las orillas.

Los ríos en todas sus secciones o en tramos se pueden encontrar en equilibrio o sujetos a procesos de sedimentación o erosión. Una determinada sección se encuentra en equilibrio cuando el nivel medio del fondo es casi constante en todos los estiajes; en cambio, en el proceso de sedimentación éste nivel se halla cada año en un estrato superior; y en el proceso de erosión sucede lo contrario de la sedimentación.

Al tratar la erosión de avenidas, se considera que todas las secciones y tramos del río se encuentran en un estado de equilibrio, con la intención de que el cálculo de la erosión con un gasto dado corresponda a cualquier año en que dicho caudal se presente. Si por el contrario el río se halla en un proceso de erosión o sedimentación, el cálculo de la erosión de avenidas solo será válido para el periodo de avenidas que sigue al estiaje en que se obtuvo la sección transversal empleada.

Hay que hacer notar que autores como Neill (1973), Breusers y Raudkivi (1991), y Melville y Coleman (2000), entre otros, consideran la erosión general como cualquier descenso del fondo que ocurra de manera generalizada en cierto tramo del río, tal como el que se presenta en los estrechamientos de un río, en presas aguas abajo o bien en la confluencia de ríos.

En este trabajo solo se tratará la erosión general o de avenidas a corto plazo; al respecto pocos autores han realizado observaciones y medidas en campo, por ejemplo: Leopold, Wolman y Miller (1964), Maza-Álvarez y Rico-Rodríguez (1970),

Brownlie (1982) y los argentinos Schreider, Scachi, Reynares y Franco (1999). En cuanto a fórmulas o procedimientos para calcular la erosión se encuentran los autores Lischtvan y Levediev (1959), Maza-Álvarez y Echevarría (1973), Maza-Álvarez (2000). A continuación se presentan las fórmulas correspondientes.

2.1 Método de Lischtvan y Levediev¹

Este método fue propuesto en 1959. Se basa en la condición de equilibrio entre la velocidad media del flujo, U_r, y la velocidad media necesaria para empezar a erosionar el material del fondo, U_e,

$$J_r = U_e \tag{2.1}$$

Es importante señalar que durante el paso de la avenida, el aumento del área hidráulica sólo se debe al incremento de la profundidad del cauce, es decir, que no hay erosiones laterales, por tanto el ancho permanece constante durante el proceso erosivo. Los ríos estables con un solo cauce y que conducen agua todo el año no manifiestan cambios en sus secciones transversales después del paso de la avenida, con excepción de las curvas, donde se pueden presentar erosiones laterales. Tal fenómeno no se trata en este trabajo.

2.1.1 Velocidad media del flujo

Lischtvan y Levediev establecieron la hipótesis de que el ancho medio de la sección permanece constante en el proceso erosivo. Para determinar la velocidad media del flujo, se parte del gasto unitario, que se obtiene de las ecuaciones de continuidad y Manning; para cauces muy anchos ($B_e/h_m \ge 40$) el radio hidráulico, R, se puede considerar aproximado al tirante h_m , $R \approx h_m$.

En cualquier franja unitaria se cumple que (ver figura 1.1)

¹ El significado y unidades de las variables indicadas en las ecuaciones se explican en el subcapítulo 1.3

Capítulo 2

$$q = \alpha h_a^{5/3}$$
(2.2)
$$\alpha = \frac{S^{1/2}}{n}$$
(2.3)

Se considera α constante para todas las verticales a lo ancho de la sección transversal.

Por otra parte, bajo la hipótesis de que el ancho medio es constante se cumplirá la siguiente relación conforme descienda el fondo,

Ċ

$$I = U_{f} h_{s}$$
 (2.4)

Al igualar las ecuaciones 2.2 y 2.4 y despejar la velocidad media del flujo, en la franja considerada dicha velocidad queda en función de la relación del tirante h_0 y del tirante cuando ocurre la erosión h_s ,

$$U_r = \frac{\alpha h_o^{sy_3}}{h_s}$$
(2.5)

El coeficiente α se puede estimar a partir de las características geométricas iniciales y el gasto de diseño Q_d, empleando las ecuaciones de continuidad y de Manning,

$$Q_d = \frac{1}{n} \mu B_e h_m^{5/3} S^{1/2} = \alpha \mu B_e h_m^{5/3}$$
(2.6)

El coeficiente α estimado es

$$\alpha = \frac{Q_d}{\mu B_e h_m^{5/3}} \tag{2.7}$$

 μ es un coeficiente de contracción que toma en cuenta la reducción del ancho en la sección de estudio, por encontrarse obstáculos dentro del cauce²; de lo contrario, μ =1.

[J
FALLA	ىلالا	URIGEN	

² Su estimación se presenta en el subcapítulo 1.3

(2.9)

2.1.2 Velocidad media necesaria para empezar a erosionar el material del fondo

Según Lischtvan y Levediev, la velocidad media que resiste el material del fondo antes de erosionarse, para materiales granulares o no cohesivos, esta dada por la relación

$$U_e = 4.7 \,\beta \,\psi \,\, D_{84}^{0.28} \,h_x^x \tag{2.8}$$

Con el rango de aplicación $0.00005 \text{ m} \le D_{84} \le 1.0 \text{ m}$

Para material cohesivo,

$$U_{e} = \frac{1}{5780} \beta \psi \gamma_{d}^{1.18} h_{x}^{x}$$

válida en el intervalo 800 kgf / $m^3 \le \gamma_d \le 2000$ kgf / m^3 .

El valor del exponente x está en función de D_{84} y γ_d para materiales granulares y cohesivos, respectivamente³. El coeficiente ψ toma en cuenta el transporte de sedimentos en suspensión y β considera la compacidad del estrato del fondo del cauce.

En la ecuación 2.8 se emplea el D_{84} en lugar de D_m , propuesto originalmente por Lischtvan y Levediev. Esta recomendación es dada por Maza-Álvarez y Rico-Rodríguez (1970) y se basa en los datos de campo donde se encontró que al utilizar D_m la erosión general calculada era mayor entre 10 y 15% que la real; por tanto, ellos sugirieron el uso del D_{84} , debido a un cierto acorazamiento del material en el fondo de la zona erosionada, sobre todo si tiene una granulometría extendida.

El diámetro D₈₄ corresponde aproximadamente al diámetro medio de la coraza para distribuciones log-normal o logarítmica de los tamaños de las partículas. En los lechos de los ríos de zona intermedia, los sedimentos suelen estar constituidos por

³ Para obtener el valor de x, ψ y β se presentan unas ecuaciones en el subcapítulo 1.3

gravas y arenas, y se ha comprobado que el tamaño de las partículas tiende a seguir la distribución de probabilidades tipo log-normal.

2.1.3 Estimación de la erosión de avenidas en material homogéneo

Con la condición de equilibrio en la que se basaron Lischtvan y Levediev, ec. 2.1, y considerando en la sección o tramo de interés una rugosidad constante, se estima la profundidad del fondo erosionado medido desde la superficie libre del agua, h_s , al sustituir las ecuaciones 2.5 y 2.8 ó 2.9 en la expresión 2.1.

Para erosión general en materiales no cohesivos (ecs. 2.5 y 2.8 en la ec.2.1),

$$h_{s} = \left[\frac{\alpha h_{o}^{5/3}}{4.7 \beta \psi D_{84}^{0.28}}\right]^{\frac{1}{1+s}}$$
(2.10)

expresión válida si 0.00005 m \leq D₈₄ \leq 1.0 m.

Para erosión general en materiales cohesivos (2.5 y 2.9 en 2.1),

$$h_{x} = \left[\frac{5780\,\alpha\,h_{o}^{5/3}}{\beta\,\psi\,\gamma_{d}^{1.18}}\right]^{\frac{1}{1+x}}$$
(2.11)

aplicable a 800 kgf / $m^3 \le \gamma_d \le 2000$ kgf / m^3 .

Es importante remarcar que en este trabajo sólo se realiza un estudio en materiales granulares, principalmente para ríos arenosos.

Schreider *et al* (1999) propusieron que una forma más precisa de obtener el perfil erosionado es trabajar con los gastos unitarios que pasan al momento del pico de la avenida. Estos autores contaron con datos del río Paraná, arroyo Leyes y río Coslastine, con los que se pudo verificar el método de Lischtvan y Levediev.

Las ecuaciones propuestas por Schreider *et al* se obtienen al sustituir la ecuación 2.2 en la 2.10 y la 2.11. En este caso se respeta el diámetro medio D_m propuesto por

Lischtvan y Levediev para materiales no cohesivos; es decir, la estimación del exponente x en la expresión 2.10 debe hacerse en función de D_m . Es importante señalar que Schreider *et al* no consideraron el coeficiente que toma en cuenta el transporte de sedimentos; por tanto supusieron $\psi = 1$ y consideraron el coeficiente de la compacidad del estrato del fondo del cauce $\beta = 1$.

Para erosión general en materiales no cohesivos (ec. 2.2 en ec. 2.10),

$$h_{s} = \left[\frac{q}{4.7 D_{m}^{0.28}}\right]^{\frac{1}{1+s}}$$
(2.12)

expresión válida si 0.00005 m \leq D₈₄ \leq 1.0 m.

Para erosión general en materiales cohesivos (ec. 2.2 en ec. 2.11),

$$h_s = \left[\frac{5780}{\gamma_d^{1.18}}\frac{q}{q}\right]^{\frac{1}{1+s}}$$

(2.13)

aplicable a 800 kgf / $m^3 \le \gamma_d \le 2000$ kgf / m^3 .

2.2 Método de Maza-Álvarez y Echevarría-Alfaro (1973)

Estos autores de manera semejante a Lischtvan y Levediev, también se basan en la condición de equilibrio entre la velocidad media del flujo y la velocidad media de inicio de erosión. Pero por su sencillez se recomienda aplicar el método para un cálculo rápido y aproximado en el rango de arenas.

El cálculo de la velocidad media de la corriente, Ur, se puede expresar como

$$U_r = \frac{Q_d}{A} = \frac{Q_d}{Bh_{ms}}$$
(2.14)

donde h_{ms} es la profundidad media del fondo al paso del caudal Q_d , en m; B, es el ancho de la superficie libre del agua, en m.

La velocidad media del flujo capaz de iniciar la erosión del fondo del cauce, U_e, está dada por una relación empírica. Dicha relación fue propuesta por Maza-Álvarez y Echevarría, con base en datos de ocho cruces de puentes y seis secciones inalteradas. Estas observaciones se hicieron en los ríos Baluarte, Santiago, Papaloapan, Zahuapan, La Antigua, Tulijá, Grijalva y Astuta; además se utilizaron las presentadas por Leopold, Wolman y Miller (1964) y de Hjülstrom presentados por Graf (1971).

La relación empírica es

$$U_{*} = 3.62 D_{**}^{0.2} h_{*}^{0.275}$$

válido para 0.0001 m \le D_m \le 0.0064 m.

Al igualar la ecuación 2.14 con la 2.15 y considerar $h_s = h_{ms}$ se obtiene la profundidad media en la sección transversal al pasar el Q_d ,

$$h_{ms} = \frac{0.365}{D_{m}^{0.157}} \left(\frac{Q_d}{B}\right)^{0.784}$$
(2.16)

para 0.0001 m $\leq D_m \leq 0.0064$ m.

La determinación de la máxima profundidad de erosión se encuentra dada por la ecuación 2.16 multiplicada por la relación h_o/h_m,

$$h_{s} = \frac{0.365}{D_{m}^{0.157}} \left(\frac{h_{a}}{h_{m}}\right) \left(\frac{Q_{d}}{B}\right)^{0.784}$$
(2.17)

aplicable a 0.0001 m $\leq D_m \leq 0.0064$ m.

El método de Maza-Álvarez y Echevarría (1973) es presentado en Melville y Coleman (2000) como un procedimiento para la predicción de la degradación general, es decir, como un estimador de la erosión general a largo plazo. Sin embargo, los autores del método mencionaron que sólo es aplicable a la erosión de

(2.18)

avenidas a corto plazo y lo recomienda para un cálculo rápido y bastante aproximado.

2.3 Método de Maza-Álvarez (2000)

El autor se basa en las siguientes cuatro hipótesis:

 Establece que el material del fondo es levantado y puesto en suspensión cuando la componente vertical ν' de la turbulencia es mayor que la velocidad de caída ω de las partículas⁴. Como el valor máximo de ν' está relacionado con la velocidad de corte U_o, se puede establecer lo que sigue

$U_{\bullet} = a \omega$

El coeficiente a expresa la relación entre la velocidad de corte y la velocidad de caída, que es un índice de la acción de mezclado debida a la turbulencia. Graf (1971) propone los valores siguientes como un indicativo de la separación de diferentes formas de transportes:

para inicio del arrastre en la capa de fondo: a > 0.1para inicio del transporte de suspensión: a > 0.4.

 El diámetro representativo del fondo, en la condición de máxima erosión general, es aquel en el que el 84%, en peso, es igual que ese tamaño o menor, D₈₄, por considerarse que el fondo se encuentra parcialmente acorazado al ocurrir la erosión máxima.

Se pensó en respetar los diámetros que se indican en las ecuaciones originalmente propuestas para acorazamientos parciales; pero, ante la incertidumbre del grado de acorazamiento que el fondo pueda alcanzar con la presencia de un alto transporte de sedimentos, se decidió emplear el D₈₄ para obtener la velocidad de caída ω de las partículas. El coeficiente *a* puede tomar en cuenta, al menos parcialmente, esa consideración

FALLA DE (

⁴ Ver significado y estimación de las variables en el subcapítulo 1.3

$U_* = a \omega_{84}$

(2.19)

- Durante la presencia de la avenida y, por tanto, del proceso erosivo del fondo, el ancho del cauce se conserva. Aún más, se considera que durante el cálculo el gasto a través de una franja unitaria se mantiene teóricamente constante, al descender el nivel del fondo.
- 4. Se toman como válidos los parámetros μ y β propuestos por Lischtvan y Levediev; en cambio, el coeficiente ψ no se considera tal como lo hicieron Schreider *et al*, ya que sus resultados, basándose en la fórmula de Lischtvan y Levediev, concordaron con las mediciones en campo.

A continuación se deducen dos ecuaciones para calcular la profundidad de erosión general, a partir de dos ecuaciones de resistencia al flujo, para cauces arenosos con transporte de sedimentos.

a) A partir de la ecuación de Cruickshank y Maza-Álvarez (1973)

Para obtener la velocidad media del flujo, estos autores propusieron dos fórmulas: una para régimen inferior, que corresponde al flujo sobre rizos y dunas, y otra para régimen superior correspondiente a fondo plano o con antidunas; ambas son válidas para 0.0007 m $\leq D_{50} \leq 0.008$ m. Por carecer de datos para la condición de régimen superior, a continuación se deduce la fórmula para estimar la profundidad de erosión general en el fondo de un río al paso de una avenida, con base en la ecuación para régimen inferior. Cabe mencionar que cuando el gasto formativo⁵ escurre por el río, en zona de planicie, lo hace generalmente en régimen inferior.

La velocidad media U para régimen inferior es

⁵ Inglis y Kellerhals lo consideran como aquel gasto máximo que es capaz de escurrir por el cauce principal sin desbordar; se aplica a ríos en planicie. En cambio Leopold y Maddock calcularon, a partir de avenidas máximas anuales en ríos americanos, que los gastos que llenan el cauce principal tienen un período de retorno promedio de 1.4 años; esto es aplicable en tramos donde el río no puede desbordarse.

$$= 7.58 \,\omega_{50} \left(\frac{h}{D_{84}}\right)^{0.634} \left(\frac{S}{\Delta}\right)^{0.456}$$

válida sí

$$\frac{1}{S} \ge 83.5 \left(\frac{h}{D_{84} \Delta}\right)$$

(2.21)

27

(2.20)

El subíndice en la velocidad de caída ω indica que debe emplearse el D₅₀ como diámetro representativo de la muestra y, por tanto, para el cálculo de dicha velocidad. El término h es la profundidad de la corriente en la vertical donde se desea obtener U, en m.

Para realizar el cálculo de la erosión, se supone en teoría que el caudal de diseño Q_d pasa por el área formada entre la elevación máxima de la superficie libre del agua y la sección transversal original, levantada antes de la época de crecientes. En la naturaleza esto no ocurre así, pues al presentarse la máxima elevación de agua también sucede la máxima erosión del fondo. La suposición anterior permite conocer la distribución de los gastos unitarios que existe a lo ancho de la sección transversal.

El caudal de diseño Q_d que pasa por la sección teórica ya descrita se puede expresar como

$$Q_{d} = \frac{7.58\,\omega_{50}\,B_{e}h_{m}^{1.634}}{D_{84}^{0.634}} \left(\frac{S}{\Delta}\right)^{0.456}$$
(2.22)

Al pasar el gasto Q_d , el caudal unitario que fluye por cualquier vertical con profundidad h_0 de ancho unitario, está dado de la manera siguiente

$$q_r = \frac{7.58\,\omega_{50}}{D_{84}^{0.634}} \left(\frac{S}{\Delta}\right)^{0.456}$$
(2.23)

Para establecer la distribución de los gastos unitarios, a lo ancho de una sección transversal, en función de la profundidad inicial, se divide la ecuación 2.22 entre la 2.23 y se despeja q_r ,

Capítulo 2

$$q_r = \frac{Q_d}{B_e} \left(\frac{h_o}{h_m}\right)^{1.634}$$
(2.24)

Con la condición de equilibrio, es decir, cuando se alcanza la elevación máxima del agua, la ecuación 2.23 queda como a continuación se expresa,

$$q_{e} = \frac{7.58\omega_{50}h_{s}^{1.634}}{D_{84}^{0.634}} \left(\frac{S}{\Delta}\right)^{0.456}$$
(2.25)

Para que la ecuación 2.25 quede en función de U_•, se multiplica y divide por $g^{0.456}$ y se agrupa (g h_s S)^{0.456} = U_{*}^{0.912}.

$$q_{e} = \frac{7.58\omega_{50} h_{s}^{1.178} U_{\star}^{0.912}}{D_{84}^{0.634} (g\,\Delta)^{0.456}} \tag{2.26}$$

Con base en lo establecido en la 3^{a} hipótesis, donde se considera que el gasto unitario permanece constante durante todo el proceso erosivo, se pueden igualar las ecuaciones 2.24 y 2.26, y de ello despejar la profundidad de erosión h_s,

$$h_{s} = \left[\frac{Q_{d}}{B_{c}} \left(\frac{h_{0}}{h_{m}}\right)^{1.634} \frac{D_{84}^{0.634} (g\Delta)^{0.456}}{7.58 \,\omega_{50} \, U_{\star}^{0.912}}\right]^{1.178}$$
(2.27)

De acuerdo con lo comentado en el segundo párrafo de la 2^a hipótesis y la condición establecida por la ecuación 2.19, la expresión 2.27 queda de la siguiente forma

$$h_{\rm s} = \left[\frac{Q_d}{B_{\rm e}} \left(\frac{h_0}{h_m}\right)^{1.634} \frac{D_{\rm 84}^{0.634} (g\,\Delta)^{0.456}}{7.58 \ a_c^{0.912} \ \omega_{\rm 84}^{1.912}}\right]^{1.178}$$
(2.28)

Si se cuenta con la distribución de los caudales unitarios, la fórmula para valuar la erosión de avenidas en función de estos últimos es

$$h_{s} = \left[q_{r} \frac{D_{84}^{0.634} (g \Delta)^{0.456}}{7.58 \ a_{c}^{0.592} \ \omega_{84}^{1.512}} \right]^{\frac{1}{178}}$$
(2.29)

 a_c es el coeficiente a de la ecuación 2.19, el subíndice indica que, en este caso, se debe emplear solo en el cálculo de la profundidad h_s , deducida a partir de la ecuación de resistencia al flujo propuesta por Cruickshank y Maza-Álvarez.

El coeficiente a_c, indicado en las ecuaciones 2.28 y 2.29, fue obtenido a partir de los resultados del método de Lischtvan y Levediev, utilizando los datos del río Paraná y del arroyo Leyes en Argentina, dentro del rango de las arenas finas y medias, que fueron proporcionados por Schreider *et al* y verificados con los datos de los ríos Magdalena en Colombia, y Mississippi en EUA

$$a_{c} = \exp\left[Ln\left(\frac{q_{r}^{0.19}}{D_{84}^{0.153}}\right) + \frac{3x10^{-8}LnD_{84} + 3.04x10^{-7}}{D_{84}^{2}} - 2.33\right]$$
(2.30)

donde q_r es el caudal unitario en la vertical en la que se desea determinar h_{s_r} el cual puede ser medido durante el paso de la avenida o cuantificado con la ecuación 2.24.

Las ecuaciones 2.28 a 2.30 pueden ser utilizadas dentro de los límites,

$$0.0001 \text{ m} \le D_{84} \le 0.50 \text{ m}$$
 (2.31)

$$5 \text{ m}^2/\text{s} \le q_r \le 70 \text{ m}^2/\text{s}$$
 (2.32)

Sin embargo, solamente han sido verificadas para

$$0.00014 \text{ m} \le D_{84} \le 0.0069 \text{ m}$$

$$q_{r} \le 55 \text{ m}^2/\text{s}.$$
 (2.34)

b) A partir de la ecuación de Manning

Esta fórmula tiene la ventaja de tomar en cuenta otras pérdidas hidráulicas adicionales en su coeficiente de rugosidad n, y no únicamente las pérdidas asociadas a la fricción del fondo y laderas. Sin embargo, dicho coeficiente debe ser obtenido con mucha precisión ya que influye en forma directa en la evaluación de la velocidad. La ecuación establece que

Capítulo 2

$$U = \frac{1}{n} h^{2/3} S^{1/2}$$
(2.35)

Al seguir el procedimiento mostrado al emplear la ecuación de resistencia al flujo propuesta por Cruickshank y Maza-Álvarez, se obtienen

Los caudales unitarios qr y qe, dados por las relaciones

$$q_{r} = \frac{Q_{d}}{B_{e}} \left(\frac{h_{o}}{h_{m}} \right)^{7/3} \qquad ; \qquad q_{e} = \frac{h_{s}^{7/6} (a_{m} \omega_{b4})}{n g^{0.5}}$$
(2.36)

La profundidad de erosión de avenidas h_s, en función de la profundidad inicial h_o, o del caudal q_r, al paso de una avenida Q_d

$$h_{s} = \left[\frac{Q_{d}}{B_{c}} \left(\frac{h_{o}}{h_{m}}\right)^{5/3} \frac{n \ g^{0.5}}{a_{m} \ \omega_{84}}\right]^{6/7} \qquad ; \qquad h_{s} = \left(\frac{q_{r} \ n \ g^{0.5}}{a_{m} \ \omega_{84}}\right)^{6/7} \qquad (2.37)$$

> El coeficiente am, en este caso se define como

$$a_{m} = \exp\left[0.87 + Ln\left(\frac{n q_{p_{44}}^{0.18}}{D_{g_{44}}^{0.315}}\right) + \frac{1.4x10^{-8} Ln D_{g_{44}} + 1.42x10^{-7}}{D_{g_{44}}^{2}}\right]$$
(2.38)

Los rangos de aplicación de las ecuaciones 2.37 y 2.38 son los indicados para las ecs. 2.31 y 2.32, es decir que son los mismos rangos en los cuales se pueden emplear las ecuaciones deducidas a partir de la ecuación de Cruickshank y Maza-Álvarez.

Las ecuaciones 2.28, 2.29 y 2.37 son válidas en cualquier sección del río, ya que en estrechamientos y en márgenes cóncavas de una curva se conoce las características geométricas de dichas secciones obtenidas en la época de estiaje.

El procedimiento aplicado en las ecuaciones de resistencia al flujo de Cruickshank y Maza-Álvarez y de Manning, puede ser empleado otras ecuaciones como la de Engelund, Brownlie, y otros. Cabe mencionar que las ecuaciones donde se toman por separado el efecto de la resistencia al flujo de las partículas y el de las ondulaciones del fondo, conducen a un procedimiento más complejo para determinar

la profundidad de erosión de avenidas; como ejemplo se encuentran las ecuaciones de Alam, Lovera y Kennedy, y Paris y Engelund.

2.4 Cálculo de la erosión de avenidas en materiales heterogéneos

Si el paso de una avenida en un cauce con rugosidad uniforme produce una erosión que descubre dos o más estratos formados de distintos materiales, entonces se dice que dentro de la zona erosionada la distribución del material del fondo del cauce es heterogénea, en estos casos la profundidad de erosión se obtiene por un método semigráfico o analíticamente por tanteos. A continuación se explica el último procedimiento, ya que con este cabe la posibilidad de hacer un pequeño programa de cómputo.

- a) Conocer la estratigrafía en la vertical donde se desea calcular la profundidad de erosión h_s.
- b) Se inicia el cálculo de la erosión con las características del material de la capa superior; utilizando una de las fórmulas mencionadas en los incisos anteriores.
- c) Si la profundidad h_s resultante cae dentro del estrato analizado, esa es la profundidad de erosión y termina el cálculo. No hay erosión si h_s teórica es menor que h_{o.}
- d) Si la profundidad h_s cae por debajo de la frontera inferior del estrato en estudio, significa que todo el material del primer estrato es removido y la erosión en ese caso depende del estrato inmediato inferior. Con las características de este último se realiza nuevamente el cálculo de h_s, conservando en las fórmulas el h_o original o bien se sustituyéndole por la profundidad h₁, que es la frontera entre el estrato superior e inferior; el uso de uno u otro no afecta el resultado (Figura 2.1).
- e) Se prosigue con uno de los dos procedimientos indicados en el inciso d), hasta que la profundidad de erosión h_s se localice dentro del último estrato analizado y en ese momento se detiene el cálculo.

Figura 2.1 Esquema de la erosión de avenidas en lechos de materiales

heterogéneos

TESIS CON FALLA DE ORIGEN

3. PROFUNDIDAD DE EROSION EN AVENIDAS (MÉTODOS PROPUESTOS)

A continuación se presentan dos métodos que permiten calcular la profundidad de erosión de avenidas, en ríos con material de fondo granular o no cohesivo. Estos métodos se basan en números adimensionales y su principal diferencia radica en el valor de la variable h_s (profundidad de erosión). Para el primer procedimiento se consideran como válidos los valores obtenidos por la ecuación de Lischtvan y Levediev. En cambio, para el segundo los valores son tomados de los datos obtenidos en campo en los diferentes ríos de Estados Unidos de América, Argentina, Portugal y Canadá.

3.1 Análisis dimensional.

El análisis dimensional provee de una poderosa herramienta en la formulación de problemas que desafían la solución analítica y que deben ser resueltos experimentalmente. Los métodos del análisis dimensional se basan sobre el principio de la homogeneidad dimensional de Fourier (1822), el cual establece que una ecuación que expresa una relación física entre cantidades debe ser dimensionalmente homogénea; esto es, que las dimensiones de cada lado de la ecuación deben ser las mismas.

33

Capítulo 3

Las ecuaciones que se deducen a partir de números adimensionales tienen la ventaja de ser dimensionalmente correctas. Además, este análisis permite reducir el número de variables de un problema, simplificándolo en forma importante, ya que la información crece geométricamente con cada nueva variable.

Cuando una ecuación describe un fenómeno físico, cada variable (independiente o dependiente) además de tener un valor numérico tiene una dimensión, o sea una combinación de unidades de referencia (por ejemplo: masa, longitud, tiempo). Conviene notar que la selección de estas unidades es arbitraria; podrían haberse escogido otras variables como unidades, siempre que se cumpla con el requisito de que sea un grupo de unidades completo e independiente.

El análisis dimensional tiene una restricción: en él solo pueden intervenir cantidades físicas que contengan un significado cuantitativo; por tanto, excluye, por ejemplo, la escala de dureza de Moh (talco=1, gis=2, calcita=3, fluorita=4, apatita=5, feldespato=6, etc.), o la escala de Beaufor para la velocidades del viento (clama=0, ventolina=1, flojito=3, flojo=4, bonacible=4, fresquito=5, fresco=6, etc.).

En problemas donde hay pocos antecedentes se debe ser muy cuidadoso al seleccionar las variables. Si se toman menos variables que las necesarias, los resultados serán erráticos y mostrarán dispersiones inesperadas. Si se toman más variables de las necesarias, aumentará la complejidad del problema, aunque analizando los resultados será posible detectar la variable o variables superfluas. Estas son las que se pueden poner en función de otras variables que aparecen en el problema (Echávez Aldape, 1996).

Es importante indicar que al usar el análisis dimensional se pueden presentar alguna de las desventajas siguientes:

A pesar de que las variables involucradas están comprendidas en un rango finito de valores, al utilizar productos adimensionales estos pueden tener valores infinitos.

- Se pueden originar correlaciones espurias, o sea, correlaciones que aparecen por repetir variables en los productos adimensionales, y tales correcciones pueden llevar a aparentes tendencias a pesar de que las variables sean independientes entre sí.
- Se reduce el número de variables, pero se puede complicar la expresión que las relaciona entre sí.
- Pueden aparecer variables sin interés para el problema pero que, por necesidades dimensionales, es necesario incluir.

Para encontrar los productos adimensionales hay que dar los siguientes pasos:

- Seleccionar la variable dependiente y verificar que todas las demás variables sean independientes entre si, esto es, que alguna no se pueda poner en función de las otras.
- Construir la matriz de los exponentes para encontrar el rango de la matriz dimensional (n) suele ser, aunque no siempre, igual al número mínimo de dimensiones independientes requeridas para especificar las dimensiones de todas las variables.
- Encontrar los números adimensionales con la aplicación del teorema π o teorema de Buckingham.

3.1.1 Teorema de Buckingham⁶

El método del análisis dimensional de Rayleigh fue mejorado por Buckingham (1915). Este método generalizado se conoce como el teorema π que establece que en un problema físico en el que se tengan m cantidades o variables que incluyan n dimensiones, las variables se pueden agrupar en m-n parámetros adimensionales independientes. En efecto, sean A₁, A₂, A₃, ..., A_m las variables consideradas, se

⁶ Streeter y Wylie (1983)

supone que todas estas cantidades son esenciales para resolver el problema, lo cual se puede expresar mediante la relación funcional

$$=(A_1, A_2, A_3, \dots, A_m) = 0$$
 (3.1)

Si π_1 , π_2 , ..., representan parámetros o números adimensionales que agrupan a las variables A₁, A₂, A₃, ..., todas estas incluyendo n dimensiones, el teorema de Buckingham establece la existencia de una ecuación de la forma

$$f(\pi_1, \pi_2, \pi_3, \dots, \pi_{m-n}) = 0$$
(3.2)

El método para determinar los números adimensionales π consiste en seleccionar n de las m cantidades A, con diferentes dimensiones, de manera que contengan entre todas ellas las n dimensiones y emplearlas como variables repetidas. Es esencial que ninguna de las n cantidades seleccionadas como variables que se repiten se pueda derivar de las otras variables repetitivas al combinarlas con las cantidades A restantes, para formar así cada número adimensional π . Por ejemplo, supóngase que A₁, A₂ y A₃ contienen las dimensiones M, L y T, no necesariamente en cada una de ellas, pero sí en forma colectiva. Entonces el primer número adimensional seria

$$\pi_1 = A_1^{x_1} A_2^{y_1} A_3^{z_1} A_4 \tag{3.2}$$

el segundo quedaría como

$$\pi_2 = A_1^{x_2} A_2^{y_2} A_3^{z_2} A_4 \tag{3.3}$$

y así sucesivamente hasta el número

$$\pi_{m-n} = A_1^{x_{m-n}} A_2^{y_{m-n}} A_3^{z_{m-n}} A_m$$
(3.3)

Los exponentes en estas expresiones deberán determinarse de tal manera que cada número resulte adimensional; entonces, se sustituyen las dimensiones de las cantidades A y los exponentes M, L y T se igualan a cero por separado, y se forman así tres ecuaciones con tres incógnitas para cada número π , y es posible determinar los exponentes *x*, *y*, *z*, por tanto, el número π .

Si solo se tienen dos dimensiones, entonces se seleccionan dos de las cantidades A como variables repetitivas, obteniéndose dos ecuaciones con dos incógnitas para cada parámetro π .

En muchos casos, el arreglo dimensional de algunas de las variables del problema se puede obtener por simple inspección. El caso más simple se tiene cuando dos cantidades poseen las mismas dimensiones, siendo el cociente de las dos cantidades un número adimensional.

3.1.2 Números adimensionales 7

Con la aplicación del teorema π de Buckingham, a continuación se presentan los diferentes números adimensionales y su interrelación que permitirán obtener las ecuaciones para estimar la profundidad de erosión general o de avenidas.

La profundidad de erosión h_s depende principalmente de los parámetros que se indican a continuación,

 $h_s = f(h_0, Q_d, B_e, h_m, q, D_{84}, \omega_{84}, v, \Delta, \sigma_g, S, g)$ (3.4) En la relación funcional 3.4 se observa que algunas variables dependen de otras que aparecen en la misma relación, por lo que enseguida se mencionan la dependencia de esas variables.

La pendiente S, la desviación estándar geométrica σ_g y la densidad relativa de las partículas Δ son números adimensionales por sí solos. Sin embargo, la pendiente se puede despejar de la igualdad U, = $(gh_mS)^{0.5}$ (cuando $B_e \ge 40h_m$) y expresarse de la siguiente manera,

$$S = \frac{U_{\star}^2}{g h_m}$$

(3.5)

⁷ El significado y unidades de las variables indicadas en las ecuaciones se explican en el subcapítulo 1.3

El tirante medio h_m , en este caso, es aquel que se obtiene cuando se presenta la avenida de diseño; por tanto, esa profundidad es la media que alcanza el fondo ya erosionado, h_{ms} . Además, al tomar en cuenta la segunda hipótesis de Maza-Álvarez (2000), indicada en el subcapítulo 2.3,

$$U_{\star} = a \omega_{84}$$
 (3.6)

donde el coeficiente *a* es función del gasto unitario q y el diámetro D_{84} . La pendiente puede quedar como

$$S = \frac{(a \,\omega_{84})^2}{g \,h_{m_s}}$$
(3.7)

Así pues, el valor de la pendiente depende del gasto unitario, del diámetro D_{84} , así como de la profundidad media de erosión, h_{ms} .

En cambio, la velocidad de caída ω_{84} es función principalmente del diámetro representativo, en este caso D₈₄ (ver subcapítulo 1.3).

Para la distribución de los gastos unitarios a lo ancho de la sección transversal se puede emplear la ecuación 2.24 o 2.36. Cuando se estima dicha distribución a partir de alguna ecuación de resistencia al flujo, el valor del exponente varia alrededor de 5/3; en este caso, el correspondiente a la de Cruickshank y Maza es de 1.634 y a la de Manning 5/3.

Así pues, la profundidad de erosión de avenidas queda en función de las siguientes variables independientes,

$$h_s = f(h_{o_1}, Q_{d_1}, B_{e_1}, h_{m_1}, D_{84}, \nu, g)$$
 (3.8)

$$h_s = f(q_1 \ \omega_{84})$$
 (3.9)

o bien

FALLA JE URI

$$h_s = f(q, D_{84}, v, g)$$
 (3.10)

(3.11)

$h_{s} = f(h_{o_{1}}, Q_{d_{1}}, B_{e_{1}}, h_{m_{1}}, \omega_{84})$

En la relación 3.8 aparecen todas las variables importantes que determinan la profundidad de erosión, en cambio, en la 3.9 solo queda en función del gasto unitario q y de la velocidad de caída ω_{84} . Pero las dos últimas relaciones (3.10 y 3.11) son combinaciones de las antes mencionadas, por tal razón, cuando se les aplique a todas las funciones un método para determinar números adimensionales, es posible que aparezcan números repetidos.

Con la finalidad de obtener el mayor números adimensionales, se aplicó el teorema π de Buckingham a las funciones 3.8 a 3.11, derivándose los catorce números adimensionales siguientes (ver apéndice A),

π_{1}	$=\frac{h_{s}}{D_{84}}$	$\pi_{6} = \frac{D_{84}^{5} g}{Q_{d}^{2}}$	$\pi_{11} = \frac{h_s}{h_o}$	
π_2	$=\frac{h_o}{D_{84}}$	$\pi_{1} = \frac{\omega_{84} h_{s}}{q}$	$\pi_{12} = \frac{Q_d}{h_d^2 \omega_8}$	 (3.12)
π_3	$=\frac{B_e}{D_{84}}$	$\pi_8 = \frac{h_s}{D_{84}}$	$\pi_{13} = \frac{B_e}{h_o}$	
π_4	$=\frac{h_m}{D_{84}}$	$\pi_{g} = \frac{v}{q}$	$\pi_{14} = \frac{h_m}{h_o}$	
π_5	$=\frac{D_{84} \nu}{Q_{\prime\prime}}$	$\pi_{10} = \frac{D_{84}^3 g}{g^2}$		en de george de la Composition de la composition Composition de la composition de la comp

Se observa que π_1 y π_8 son iguales así que uno de los dos no es considerado. Además, no se realizó un análisis con los números adimensionales que contienen las variables h_o y h_m, debido a que no se tienen esos datos de campo. La densidad relativa Δ y desviación estándar geométrica σ_g como son adimensionales, se pueden combinar con π_{10} , por ejemplo, y quedar

Capítulo 3

$$\pi_{10a} = \frac{D_{84}^3 g \Delta}{q^2} \qquad \qquad \pi_{10b} = \frac{D_{84}^3 g \Delta \sigma_g}{q^2} \qquad (3.13)$$

El conocido número adimensional del sedimento no se encuentra entre los números adimensionales indicados en la 3.12, pero si es importante tomarlo en consideración porque tiene la ventaja de que solo se encuentra principalmente, en función del diámetro representativo D₈₄

$$D_{\star} = D_i \left(\frac{g}{\nu^2}\right)^3$$
(3.14)

Por último, la profundidad de erosión h_s se encuentra contenida en los números π_7 y π_8 que se relacionaron con π_3 , π_5 , π_6 , π_9 , π_{10} , π_{10a} , π_{10b} , D_{*} y combinaciones de ellos.

3.2 Primer método propuesto para estimar la erosión de avenidas

En este primer procedimiento para obtener una expresión que permita estimar la profundidad de erosión de avenidas se consideran como válidos los resultados que se obtienen de la ecuación 2.12 (método Lischtvan y Levediev), tal como se basan las ecuaciones 2.28, 2.29 y 2.37 propuestas por Maza-Álvarez (2000). La diferencia radica en que, en este procedimiento se trabajaron con números adimensionales, por tanto la igualdad resultante es dimensionalmente homogénea.

Como primer paso se supuso diferentes valores de D_{84} (0.0001, 0.001, 0.01, 0.1 y 1 m) y gastos unitarios q desde 10 hasta 100 m²/s. Con estos valores se estimó la profundidad de erosión a través de la ecuación 2.12. Cabe mencionar que en este caso se consideró el coeficiente β que toma en cuenta la compacidad del estrato del fondo del cauce y el coeficiente ψ que toma en cuenta el transporte de sedimentos en suspensión con un valor igual a 1.

Posteriormente, se prosiguió con el análisis de los diferentes números adimensionales indicados en el último párrafo del apartado 3.1.2, presentándose la mejor combinación con los números adimensionales π_6 y (π_7)⁻¹. Ver figura 3.1.

Figura 3.1 Relación de los números π_6 y $(\pi_7)^{-1}$

Es importante remarcar que la h_s empleada en esta relación fue calculada con la expresión de Lischtvan y Levediev. En la figura se observa claramente la importancia del diámetro característico del fondo del cauce y esto queda de manifiesto con la intervención de un tercer número adimensional D_{*}. La correspondencia de estos números adimensionales se obtuvo con la expresión

$$\frac{h_s}{D_{84}} = a_1 \left(\frac{q}{\nu}\right)^{b_1} \tag{3.15}$$

donde

$$a_1 = 2.67 D_*^{-1.161} \text{ y b}_1 = 0.72$$
 (3.16)

Al despejar h_s de la ecuación 3.15 y realizar las operaciones pertinentes que permitan simplificar la expresión se obtiene finalmente que

$$h_{v} = 2.67 D_{84} \left(\frac{q}{v}\right)^{0.72} D_{*}^{-1.161}$$
(3.17)

o bien

$$h_{x} = \frac{2.67 \nu^{0.054}}{(g \Delta)^{0.387}} \frac{q^{0.72}}{D_{84}^{0.161}}$$
(3.18)

Si $v = 0.000001 \text{ m}^2/\text{s}$, g = 9.81 m/s² y Δ = 1.65 se tiene

$$\overline{h_s} = 0.4311 \frac{q^{0.72}}{D_{e_s}^{0.161}}$$
(3.19)

A pesar de que la ecuación 3.18 fue deducida a partir de la expresión de Lischtvasn y Levediev para las diferentes combinaciones de gastos unitarios y Diámetro representativo D_{84} , al compararlos se observa una discrepancia en los valores de gastos unitarios pequeños; así pues, sólo se podrá emplear la ecuación 3.18 en lugar de la igualdad 2.12 si se respetan los límites siguientes, donde el erro es menor al 10 % entre ambas (Tabla 3.1).

Para arenas y gravas

$$0.0001 \text{ m} \le D_{84} \le 0.05 \text{ m}$$
 (3.20)

 $q \ge 5 \text{ m}^2/\text{s}$
 (3.21)

 Para arenas, gravas y cantos pequeños
 (3.22)

 $0.0001 \text{ m} \le D_{84} \le 0.1 \text{ m}$
 (3.22)

 $q \ge 10 \text{ m}^2/\text{s}$
 (3.23)

 Para arenas, gravas, cantos y boleos
 (3.24)

 $q \ge 20 \text{ m}^2/\text{s}$
 (3.25)

Pero, solamente ha sido verificado para

	0.0002 m ≤ D ₈₄ ≤ 0.08 m	(3.26)
TFIN	$a < 55 m^{2}/c$	(3.97)
FALLA DE ORIGEN		(3.27)

	q, en m²/s							
D ₈₄ , en m	5	10	15	20	40	60	80	100
0.0001	5.158	3.951	3.238	2.729	1.491	0.760	0.237	0.169
0.0002	3.457	2.418	1.804	1.367	0.305	0.322	0.769	1.117
0.0004	1.834	1.035	0.565	0.230	0.582	1.060	1.401	1.666
0.0008	0.289	0.175	0.448	0.642	1.111	1.387	1.583	1.735
0.0010	0.193	0.527	0.723	0.862	1.198	1.395	1.535	1.644
0.0050	3.650	2.640	2.053	1.639	0.648	0.072	0.334	0.648
0.0080	4.763	3.221	2.329	1.701	0.204	0.662	1.271	1.742
0.0100	5.334	3.519	2.472	1.736	0.017	1.028	1.739	2.287
0.0500	10.914	6.924	4.657	3.078	0.630	2.736	4.204	5.327
0.0800		8.555	5.933	4.111	0.151	2.563	4.239	5.519
0.1000		9.431	6.639	4.702	0.178	2.378	4.151	5.505
0.5000				8.124	0.784	3.276	6.057	8.159
0.8000				8.977	0.440	4.240	7.428	9.828
1.0000				10.582	1.832	2.962	6.226	8.682

Tabla 3.1 Error porcentual con respecto al método de Lischtvan y Levediev

En la igualdad 3.17 y 3.18 se observa claramente que son expresiones dimensionalmente homogéneas, esta es una ventaja que permite trabajar dichas ecuaciones en cualquier sistema de unidades conocidos.

La comparación de los datos medidos con los calculados (Figura 3.2) se realizó con los datos de campo de los ríos que se encuentran en U.S.A. (Atchafalaya, Colorado, Mississippi, Red y canales de ACOP), Argentina (Leyes y Paraná), Canadá (Saskatchewan) y Portugal (varios); estos datos fueron extraídos de la referencia Brownlie 1982 con excepción de los ríos de Argentina que fueron proporcionados por Schreider *et al*, para su uso se consideró que la granulometría de los sedimentos se ajustan a una distribución log-normal y se les asignó una $\sigma_{q} = 2$.

Por último la Figura 3.2 es válida tanto para la expresión 3.17. a 3.19 como para la ecuación 2.12. Puesto que el coeficiente a_1 y el exponente b_1 se obtuvieron aceptando los resultados de Lischtvan y Levediev.

Profundidad medida, en m

3.3 Segundo método propuesto para estimar la erosión de avenidas

En este caso los valores de las diferentes variables que intervienen en los números adimensionales indicados en 3.12 son los datos obtenidos en campo de distintos ríos (ver ANEXO 1). Es importante enumerar las consideraciones tomadas en el análisis:

- La granulometría de los sedimentos se ajustan a una distribución log-normal para así poder obtener el diámetro D₈₄.
- La profundidad h_o = h_m, con esto el caudal unitario es constante en toda la sección transversal del cauce.
- Para los ríos de Argentina (Leyes y Paraná) se consideró una σ_g =2, ya que los datos fueron proporcionados sin esta información por Schreider *et al.*

Se realizó un análisis con todos los números adimensionales y sus combinaciones que se señalan en el último párrafo del apartado 3.1.2. A continuación se presenta la mejor correlación π_6 y (π_7)⁻¹ (Figura 3.3).

En la Figura 3.3 se indica el promedio del D_{84} y σ_g para cada grupo de datos; los valores de σ_g se encuentran muy cerca uno del otro, por lo que no se observa su influencia en el valor de la profundidad de erosión h_s. En cambio el diámetro característico D_{84} queda de manifiesto con D_{*} siendo este un tercer número adimensional que interviene en la relación.

La relación de estos parámetros adimensionales se vinculan de la manera siguiente

$$\frac{h_s}{D_{84}} = a_2 \left(\frac{q}{\nu}\right)^{b_2}$$
(3.28)

donde

 $a_2 = 6.7 D_*^{-1.18}$ $b_2 = 2/3$ (3.29)

o bien

$$h_{x} = \frac{6.7 \nu^{0.12}}{(g \Delta)^{0.393}} \frac{q^{2/3}}{D_{st}^{0.18}}$$
(3.30)

Si v = 0.000001 m²/s, g = 9.81 m/s² y Δ = 1.65 se tiene

$$h_{s} = 0.4271 \frac{q^{2/3}}{D_{84}^{0.18}}$$
(3.31)

Figura 3.3 Relación de los números π_6 y (π_7)⁻¹, con datos de campo

Al comparar las curvas teóricas de las profundidades de erosión que se obtienen a partir de las ecuaciones 2.12 y 3.30 para los diferentes diámetros D_{84} con gastos unitarios q desde 5 a 80 m²/s (Figura 3.4), se observa que las intersecciones de estas curvas varian de acuerdo al tamaño de la particula característica del fondo del cauce. En este caso para D_{84} =0.0001 m hasta D_{84} =1 m, las intersecciones se presentan en un rango pequeño de gastos unitarios desde 8.8 hasta 13.44 m²/s, por lo que se ha decidido como gasto medio de estas intersecciones a 10 m²/s, ya que con éste en el rango especificado de D_{84} , el valor de la profundidad de erosión determinada por la ecuación 2.12 o 3.30 no es mayor del 10 % una de la otra. Por lo que los límites de aplicación de la ecuación 3.30 pueden quedar de la manera siguiente:

$0.0001 \text{ m} \le D_{84} \le 1$	0	m			(3.32)
	20		7.5		
q ≥ 10 m²/s					(3.33)

Pero, solamente verificado para

- $0.0002 \text{ m} \le D_{84} \le 0.08 \text{ m}$ (3.34)
 - $q \ge 55 \text{ m}^2/\text{s}$ (3.35)
 - $\sigma_{\rm q} \le 4 \tag{3.36}$

Al observar los datos de campo (ANEXO 1) en las columnas donde se indican los valores de la desviación estándar geométrica (σ_g), estos se encuentran en su mayoría alrededor de 2 con un máximo de 4. Por tal razón, en la ecuación 3.30 no interviene esta variable que toma en cuenta la dispersión de las partículas del fondo del cauce. Su importancia puede inferirse claramente ya que entre más dispersas se encuentren las partículas del fondo menos erosión se presenta con respecto a las que tienen una distribución uniforme.

Finalmente, al comparar las profundidades calculadas con la expresión 3.30 y las medidas en campo (Figura 3.5), queda de manifiesto que los valores de los ríos Leyes y Paraná, principalmente, se encuentran dentro de los límites \pm 10%, esto no se observa en la figura 3.2 para profundidades mayores a 25 m.

10

Gasto unitario, en m²/s

Lo comentado anteriormente reafirma el hecho de que la expresión 3.30 proporciona profundidades menores a las que se pueden obtener con la ecuación 2.12 o 3.18.

D₈₄ = 1 m

Profundidad calculada, en m

1

1

Profundidad medida, en m

Capítulo 4

4. VELOCIDAD MEDIA DE INICIO DE EROSIÓN (MÉTODOS PROPUESTOS)

En este capítulo se presentan dos procedimientos para la obtención de la velocidad media de la corriente que permite el inicio de erosión en cauces con material de fondo no cohesivo. Es importante señalar que varias fórmulas empíricas han sido propuestas pero ninguna de ellas ha tenido un uso generalizado. Entre las que se pueden mencionar la ecuación de Lischtvan y Levediev (ec. 2.8), y Maza-Álvarez y Echevarría (ec. 2.15).

Las ecuaciones propuestas para estimar la velocidad media de inicio de erosión U_e son dimensionalmente homógeneas, debido a que se deducen a partir de las ecuaciones propuestas en el capítulo anterior (3.17 y 3.30), estas últimas se fundamentan en números adimensionales.

La velocidad se encuentra en función, principalmente, de la profundidad de la corriente o del gasto unitario y el diámetro representativo de las particulas que constituyen el fondo del cauce.

El diámetro representativo o característico considerado en este trabajo es el D₈₄.

FALLA DE ORIGEN

4.1 A partir de la ecuación 3.17

En la ecuación 3.17 se observa que la profundidad de erosión se encuentra en función del D_{84} y del caudal unitario q, pero como se sabe q = U_e h, entonces al sustituir esta última expresión en la igualdad 3.17 y despejando la U_e se deduce que

$$U_{e} = 0.2556 \,\nu \, h^{0.389} \left(\frac{D_{*}^{1.5125}}{D_{84}^{1.389}} \right) \tag{4.1}$$

donde

$$D_{\star} = D_{84} \left(\frac{g}{\nu^2}\right)^3$$
(4.2)

Al sustituir la ecuación 4.2 en 4.1 y al simplificarlo se tiene

$$U_{e} = 0.2556 \frac{(g\Delta)^{0.5375}}{v^{0.075}} h^{0.389} D_{84}^{0.2235}$$
(4.3)

o bien, si g=9.81 m/s², ∆=1.65 y v=0.000001 m²/s queda como

$$U_e = 3.22 \ h^{0.389} \ D_{84}^{0.2235} \tag{4.4}$$

Si se desea encontrar le ecuación de la velocidad media erosiva en función del caudal unitario q y del diámetro representativo D_{84} , para ello en la igualdad 3.17 se sustituye el valor de h por q/U_e y se despeja la velocidad U_e

$$U_{e} = 0.3745 \nu^{0.72} q^{0.28} \left(\frac{D_{*}^{1.161}}{D_{84}} \right)$$
(4.5)

o bien

$$U_e = 0.3745 \frac{(g\Delta)^{0.387}}{v^{0.054}} q^{0.28} D_{84}^{0.161}$$
(4.6)

si g = 9.81 m/s², Δ =1.65 y v=0.000001 m²/s queda como

$$U_{e} = 2.32 \ q^{0.28} \ D_{84}^{0.161} \tag{4.7}$$

Para definir los límites de aplicación de las expresiones 4.1 y 4.5 es necesario realizar una comparación con la velocidad media crítica. Pero existen varios criterios

que permiten estimar esta velocidad por ejemplo: Maza-Álvarez y García, Neill, Garde (véase García Flores y Maza-Álvarez 1997) o bien la U.S.S.R. (véase la figura 7.3 y 7.5 de Chow 1994).

En la Figura 4.1 se presenta una comparación de los criterios antes mencionados para diferentes D_{84} con $\sigma_g = 2$ y una profundidad de la corriente de h = 1 m. Es importante señalar que las expresiones de Neill y de Maza-Álvarez y García son dimensionalmente homogéneas, pero en la figura se observa que el criterio de Neill proporciona los valores más altos de velocidades medias críticas dentro del rango de arenas y gravas. Por tal razón la comparación con la velocidad media de erosión sólo se realizó con este criterio.

La expresión de Neill que permite estimar la velocidad media crítica U_c para cauces no cohesivos es

$$U_{c} = 1.414 \sqrt{g} \overline{\Delta D_{m}} \left(\frac{h}{D_{m}}\right)^{\gamma_{6}}$$
(4.8)

En este caso se consideró que el diámetro característico de las partículas que constituyen el fondo del cauce es el D_{84} .

La máxima velocidad media del flujo que pueden soportar las particulas de un cauce sin provocar erosión se le denomina velocidad máxima permisible o no erosiva, en este caso, la fuerza de sustentación que está fluctuando no sobrepasa aún el peso sumergido de las partículas. Por lo que la velocidad media de inicio de erosión no debe ser inferior a la velocidad U_c, por ello U_e/U_c debe ser mayor a 1. Así pues al dividir la ecuación 4.3 entre la ecuación 4.8 se llega a uno de los límites de aplicación de la ecuación 4.1,

$$\frac{0.181 (g \ \Delta)^{0.0375}}{\nu^{0.075}} \frac{h^{0.2223}}{D_{Ba}^{0.1098}} > 1$$
(4.9)

si se utiliza g=9.81 m/s², Δ =1.65 y v=0.000001 m²/s se puede simplificar a

$$= 0.566 \cdot \frac{h^{0.2223}}{D_{84}^{0.1098}} > 1$$
(4.10)

Para el caso de la ecuación 4.5 su límite de aplicación se obtiene al sustituir la expresión 3.18 en 4.9, y queda como

$$\frac{0.225}{(g\,\Delta)^{0.0485}\,\nu^{0.0629}}\,\frac{q^{0.16}}{D_{84}^{0.1457}}>1\tag{4.11}$$

o bien

$$0.469 \frac{q^{0.16}}{D_{84}^{0.1457}} > 1 \tag{4.12}$$

Como las expresiones 4.1 y 4.5 se dedujeron a partir de la ecuación 3.17, estas deben respetar también el rango de aplicación para el tamaño representativo de las partículas indicado en 3.24. Es importante señalar que para h >12.91 m o g >113.55

m²/s satisfacen la condición $U_e > U_c$ para todo el rango especificado del diámetro característico D_{84} .

La comparación de las velocidades medidas en campo y calculadas con la expresión 4.1 ó 4.5, Figura 4.2, se observa que los resultados son aceptables, principalmente, en los ríos de Argentina (Leyes y Paraná).

Velocidad medida, en m/s

4.2 A partir de la ecuación 3.30

De acuerdo con el procedimiento indicado en el apartado 4.1 se procedió de manera semejante con la expresión 3.30; por lo que la velocidad media de erosión en este caso es

$$U_{e} = 0.0576 \nu h^{0.5} \left(\frac{D_{*}^{1.77}}{D_{84}^{1.5}} \right) = 3.58 D_{84}^{0.27} h^{0.5}$$
(4.13)

válida para

$$\frac{0.041(g\,\Delta)^{0.09}}{\nu^{0.18}}\frac{h^{0.333}}{D_{eA}^{0.063}} = 0.633\frac{h^{0.333}}{D_{eA}^{0.063}} > 1 \tag{4.14}$$

O bien, la velocidad media erosiva se puede estimar en función de q y D_{84} , de la manera siguiente

$$U_{e} = 0.1492 \nu^{\frac{2}{3}} q^{\frac{1}{3}} \left(\frac{D_{\star}^{1.18}}{D_{84}} \right) = 2.34 D_{84}^{0.18} q^{\frac{1}{3}}$$
(4.15)

válida para

$$\frac{0.0768}{(q\Delta)^{0.0415} \nu^{0.14}} \frac{q^{0.222}}{D_{04123}^{0.123}} = 0.4733 \frac{q^{0.222}}{D_{04123}^{0.123}} > 1$$
(4.16)

así como los límites presentados en 3.32 y 3.33.

Cabe señalar que para h >3.95 m ó q >29.1 m²/s se satisface la ecuación 4.14 o 4.16 dentro del rango 0.0001 m $\leq D_{84} \leq 1$ m donde la velocidad media erosiva U_e es mayor a la velocidad media crítica U_c.

Por último, al realizar la comparación de las velocidades medias medias en campo y las calculadas con la expresión 4.13 ó 4.15 (Figura 4.3), se observa que son aceptables. Los datos proporcionados por Schreider *et al*, correspondientes a mediciones de los ríos Paraná y Leyes, son bastante confiables ya que se obtuvieron cuando se presentaba la erosión del fondo. En cambio, los datos de los demás ríos son tomados de Brownlie (1982) que fueron obtenidos con otro

propósito, por lo que no fue posible saber si había ocurrido la erosión del lecho del cauce.

Velocidad medida, en m/s

TFOID CON
FALLA DE ORIGEN

Comentarios

COMENTARIOS.

En las expresiones propuestas (3.18 y 3.26), que permiten estimar la de profundidad de erosión causada por el paso de una avenida, se observa que se encuentran principalmente en función del caudal unitario q.

Para obtener la distribución de los gastos unitarios en una determinada sección transversal de un río, pueden presentarse algunas de las siguientes dificultades:

- La casi imposibilidad de medirlos al instante del paso de la avenida de diseño,
- El peligro que puede presentarse al medir las profundidades y velocidades medias, durante una gran avenida. Por ejemplo, en aquellos rios que transportan mucho material flotante, como ramas y troncos, que pueden afectar ó arrastrar el equipo de medición,
- La corta duración de los hidrogramas de una avenida, puede imposibilitar la medición de todos los caudales unitarios de un mismo Q_d. No es el caso de los ríos de planicie, en que el caudal máximo puede durar horas o días.

Si de algún modo se superan los inconvenientes antes mencionados para obtener la distribución de los caudales unitarios durante el paso de una avenida de diseño deseada, sus valores llevan implícito el conocimiento de las velocidades medias y de

las profundidades de erosión, por tal razón este último no requiere ser calculado nuevamente, puesto que el perfil del fondo erosionado es conocido en forma real.

En la investigación de Schreider *et al* obtuvieron la distribución de los gastos unitarios, en determinadas secciones de los ríos Leyes y Paraná, que emplearon para estimar la profundidad de erosión con la ecuación 2:12; con ello verificaron la certidumbre de los resultados obtenidos por la expresión de Lischtvan y Levediev, básicamente en la clasificación de la arenas; al comparar los valores estimados de h_s con los h_s medidos en campo.

Se puede concluir que el conocimiento de la distribución de los caudales unitarios es útil para verificar la validez de lo métodos que necesitan de esta información para estimar la profundidad de erosión de avenidas, o bien, obtener expresiones tales como la ecuaciones 2.24 y 2.36 que permiten inferir dicha distribución.

Por otra parte, las mediciones en campo de la erosión de avenidas pueden realizarse con alguno de los siguientes procedimientos, aunque pueden crearse otros.

Medición del nivel del fondo por medio de ecosonda.

Por comodidad, economía y seguridad las mediciones deben realizarse sobre un puente. Sin embargo con este procedimiento se presentan ciertos inconvenientes tales como la velocidad del agua que puede afectar las mediciones, los cuerpos flotantes que pueden destruir el sensor, además resulta costoso tener personal esperando el paso del pico de la avenida. La ventaja de este procedimiento es que permite detectar todos los movimientos verticales del fondo y seguirlos a lo largo del tiempo.

- Medición con una serie de pozos ligeramente mayores a la profundidad teórica de la erosión esperada.
 - Los pozos se construyen en estiaje y se rellenan con un material trazador como pedacería de ladrillo u otro. Después de la época de avenidas se retira el material

del fondo hasta que se localiza la parte superior del material trazador. La profundidad señalada se asocia a la máxima avenida del periodo de lluvias anterior. Para localizar de manera rápida los pozos se le coloca a cada uno de ellos una varilla, la que puede sobresalir un metro, aproximadamente, sobre el nivel del fondo en estiaje; o bien, con levantamientos topográficos de precisión. La desventaja de este procedimiento es que solo se obtiene un dato por época de avenidas y por pozo.

 Medición con tubos entre 1" y 2" de diámetro y con discos perforados en su centro con un diámetro mayor al del tubo.

Se hacen penetrar los tubos de 6 a 10 m, dependiendo de la magnitud de la erosión esperada. Para su hincado se acoplan a una bomba, posteriormente se inserta un disco de plomo en cada tubo hasta que descanse en el fondo. Cuando el fondo descienda también el disco lo hará, por lo que al localizarlo en el estiaje siguiente se puede conocer la profundidad que ocasionó la avenida máxima de la época de lluvias anterior. Además de la desventaja indicada en el método anterior, este se encuentra sujeto al vandalismo y a la corriente cuando arrastra árboles y ramas por lo que el tubo puede ser doblado o sacado de su lugar.

Conclusiones

CONCLUSIONES

Uno de los diferentes tipos de erosiones que puede ocurrir en una sección o zona de un río es el ocasionado por el paso de una avenida, que sea capaz de transportar en suspensión a las partículas que constituyen el lecho del río. Pero muy pocos investigadores le han dado la importancia debida, por lo que en este trabajo se han presentado dos procedimientos para estimar dicha profundidad de erosión. Los resultados fueron comparados con datos de campo, los cuales son aceptables tal como se observa en las figuras 3.2 y 3.5.

La primera expresión propuesta es la 3.18, que se encuentra en función principalmente del diámetro característico D_{84} , y del gasto unitario q. Pero para este último parámetro es necesario inferir su distribución en función de las profundidades iniciales, con ecuaciones como la 2.24 y 2.36. Por tal razón, el perfil del fondo erosionado será paralelo al perfil del fondo inicial.

Los resultados que se obtienen con el primer procedimiento, dentro de los límites indicados de la 3.20 a la 3.27, son semejantes a los obtenidos con la expresión de Lischtvan y Levediev, con error del 10 %. La diferencia radica en que la ecuación 3.18 es dimensionalmente homogénea.

En la figura 3.2 se muestran los valores calculados de h_s con la expresión 3.18 y los h_s medidos. Como se observa en figura, la mayoría de los datos llegan a tener diferencias de ± 30%, pero cuando las profundidades son mayores de los 12 m no llegan a exceder el ± 10%. Es importante señalar que los ríos Leyes y Paraná fueron calculados para medir directamente la profundidad de erosión de avenidas; en cambio, en los demás ríos no se sabe si ocurrió o no dicha erosión.

En la expresión 3.30, para la estimación de la profundidad de erosión, se observa que también se encuentra en función del diámetro representativo y del caudal unitario, pero esta expresión se dedujo a partir del análisis de campo de diferentes ríos (ANEXO 1). Es importante remarcar que por información insuficiente no se consideró en el análisis la variable de la desviación estándar geométrica σ_g . Esta variable indica el grado de dispersión del tamaño de las particulas del lecho del cauce, su importancia puede inferirse fácilmente, ya que a mayor dispersión menor erosión, esto es consecuencia de que el fondo puede acorazarse y normalmente el D₈₄ es mayor.

El límite señalado en 3.32 para el segundo procedimiento propuesto se basa principalmente en la intersección de las curvas teóricas, indicadas en la figura 3.4. En ella se recomienda el uso de la ecuación 3.30 para q \ge 10 m²/s. La comparación de valores calculados y medidos se observa en la figura 3.5; donde coinciden los comentarios realizados con la figura 3.2.

Por otra parte, se puede decir que no existen datos de campo acerca de las velocidades medias que inician la erosión del fondo. Es por eso que se han supuesto como verdaderos los resultados obtenidos con las ecuaciones 3.18 y 3.30. A partir de ellas se proponen las ecuaciones 4.1 y 4.5, 4.13 y 4.15, respectivamente, que tienen la ventaja de ser dimensionalmente homogéneas.

Para definir los límites de aplicación de las ecuaciones que permiten estimar la velocidad media erosiva, fue necesario realizar una comparación con la velocidad media crítica, que es la máxima velocidad media del flujo que pueden soportar las partículas de un cauce sin provocar erosión. Estos límites se encuentran definidos en las expresiones 4.9, 4.11, 4.14 y 4.19.

Por último, los coeficientes y exponentes indicados en 3.16 y 3.29 son susceptibles de ser corregidos siempre y cuando se cuenten con datos suficientes; sobre todo para cauces que se encuentren constituidos en su fondo por arenas y gravas, dado que las ecuaciones propuestas solamente fueron verificadas para 0.0002 m $\leq D_{84} \leq 0.08$ m y q ≤ 55 m²/s.

APÉNDICE A

Determinación de números adimensionales utilizando el teorema π de Buckingham

La profundidad de erosión general o de avenidas puede quedar en función de las siguientes variables independientes (la definición de cada una ellas se indican en el subcapítulo 1.3)

$$h_s = f(h_o, Q_d, B_e, h_m, D_{84}, v, g)$$
 (A.1)

$$h_s = f(q, \omega_{84})$$
 (A.2)

o bien

$$h_s = f(q, D_{84}, v, g)$$
 (A.3)

$$h_s = f(h_{o_1} Q_d, B_{e_1} h_{m_1}, \omega_{84})$$
 (A.4)

A continuación se obtienen los números adimensionales a partir de un análisis dimensional a las relaciones funcionales del A.1 al A.4, empleando el teorema π explicado en el subcapítulo 3.1.1. Las unidades de referencia en este caso son la longitud, el tiempo y la masa (L, T, M).

Para la relación A.1

Las cantidades físicas son m = 8 (h_s, h_o, Q_d, B_e, h_m, D₈₄, v, g)

Las unidades son n = 2 (L,T)

Por lo que m – n = 8 – 2 = 6 números adimensionales (π_1 , π_2 , π_3 , π_4 , π_5 , π_6)

 $h_s, h_o, B_e, h_m, D_{84} \rightarrow L$

$$Q_d \rightarrow L^3 T^{-1}$$

 $\nu \rightarrow L^2 T^{-1}$

 $q \rightarrow L T^{-2}$

Se consideran como variables repetidas Qd y D84 por lo que

(A.5)

$\pi_1 = Q_d^{x1} D_{84}^{y1} h_s = (L^3 T^{-1})^{x1} (L)^{y1} (L)$

 $3x_1 + y_1 + 1 = 0$ -x₁ = 0

Solución del sistema de ecuaciones $x_1 = 0$, $y_1 = -1$, por tanto,

$$\pi_1 = Q_d^0 D_{84}^{-1} h_s = \frac{h_s}{D_{84}}$$

 $\begin{aligned} \pi_2 &= \mathbf{Q}_d^{-x^2} \mathbf{D}_{84}^{y^2} \mathbf{h}_0 = (\mathbf{L}^3 \mathbf{T}^{-1})^{x^2} (\mathbf{L})^{y^2} (\mathbf{L}) \\ 3x_2 + y_2 + 1 &= 0 \\ -x_2 &= 0 \end{aligned}$

Solución del sistema de ecuaciones $x_2 = 0$, $y_2 = -1$, por tanto,

$$\tau_2 = Q_d^0 D_{b4}^{-1} h_0 = \frac{h_0}{D_{b4}}$$
(A.6)

 $\pi_3 = Q_d^{x3} D_{B4}^{y3} B_e = (L^3 T^{-1})^{x3} (L)^{y3} (L)$

 $3x_3 + y_3 + 1 = 0$

-x₃ = 0

Solución del sistema de ecuaciones $x_3 = 0$, $y_3 = -1$, por tanto,

$$r_3 = Q_d^0 D_{84}^{-1} B_\theta = \frac{B_\theta}{D_{84}}$$
(A.7)

 $\pi_4 = Q_d^{x^4} D_{84}^{y^4} h_m = (L^3 T^{-1})^{x^4} (L)^{y^4} (L)$

 $3x_4 + y_4 + 1 = 0$

-x₄ = 0

Solución del sistema de ecuaciones $x_4 = 0$, $y_4 = -1$, por tanto,

$$\pi_4 = Q_d^0 D_{B4}^{-1} h_m = \frac{h_m}{D_{B4}}$$
(A.8)

 $\pi_5 = Q_d x^5 D_{84} y^5 v = (L^3 T^{-1})^{x5} (L)^{y5} (L^2 T^{-1})$

 $3x_5 + y_5 + 2 = 0$

$$-x_5 -1 = 0$$

Solución del sistema de ecuaciones $x_5 = -1$, $y_5 = 1$, por tanto,

$$\pi_{5} = Q_{d}^{-1} D_{84}^{1} \nu = \frac{D_{84} \nu}{Q_{d}}$$
(A.9)
ALLA DE ORIGEN

(A.10)

 $\pi_6 = Q_d x^6 D_{84} g = (L^3 T^{-1})^{x_6} (L)^{y_6} (L T^{-2})$ 3x₆ +y₆+1 = 0

 $-x_6$ -2 = 0

Solución del sistema de ecuaciones $x_6 = -2$, $y_6 = 5$, por tanto,

$$\pi_6 = Q_d^{-2} D_{84}^5 v = \frac{D_{84}^5 g}{Q_d^2}$$

Para la relación funcional A.2

Las cantidades físicas son m = 3 (h_s , ω_{84} , q)

Las unidades son n = 2 (L,T)

Por lo que m – n = 3 – 2 = 1 número adimensional (π_7)

 $h_s \rightarrow L$

 $q \rightarrow L^2 T^{-1}$

 $\omega_{84} \rightarrow L T^{-1}$

Se escogen como variables repetidas q y ω_{84} por lo que

$$\pi_7 = q^{x7} \omega_{84}^{y7} h_s = (L^2 T^{-1})^{x7} (L T^{-1})^{y7} (L)$$

2 x₇ +y₇ +1 = 0
-x₇ - y₇ = 0

Al resolver el sistema de ecuaciones se tiene que $x_7 = -1$, $y_7 = 1$ así que

$$\pi_7 = q^{-1} \omega_{84}^1 h_s = \frac{\omega_{84} h_s}{q}$$
(A.11)

Para la relación funcional A.3

Las cantidades físicas son m = 5 (h_s, q, D₈₄, v, g)

Las unidades son n = 2 (L,T)

Por lo que m – n = 5 – 2 = 3 números adimensionales (π_8 , π_9 , π_{10})

 $h_s, D_{84} \rightarrow L$

 $q \rightarrow L^2 T^{-1}$

$$v \rightarrow L^2 T^1$$

 $g \rightarrow L T^{-2}$

(A.12)

Se escogen como variables repetidas q y D₈₄ por lo que

$$\begin{aligned} \pi_8 &= q^{x8} \, D_{84}{}^{y8} \, h_s = (L^2 \, T^{-1})^{x8} \, (L)^{y8} \, (L) \\ 2x_8 \, + y_8 + 1 \, = \, 0 \\ - x_8 &= \, 0 \end{aligned}$$

Solución del sistema de ecuaciones $x_8 = 0$, $y_8 = -1$, por tanto,

 π_8

$$=q^0 D_{84}^{-1} h_s = \frac{h_s}{D_{84}}$$

 $\begin{aligned} \pi_9 &= q^{x9} D_{84}{}^{y9} v = (L^2 T^{-1})^{x9} (L)^{y9} (L^2 T^{-1}) \\ 2x_9 + y_9 + 2 &= 0 \\ -x_9 & -1 &= 0 \end{aligned}$

Solución del sistema de ecuaciones $x_7 = -1$, $y_7 = 0$, por tanto,

$$\pi_9 = q^{-1} \mathcal{D}_{84}^0 \, \nu = \frac{\nu}{q} \tag{A.13}$$

 $\pi_{10} = q^{\times 10} D_{84}^{\times 10} g = (L^2 T^{-1})^{\times 10} (L)^{\times 10} (L T^{-2})$

 $2x_{10} + y_{10} + 1 = 0$

 $-x_{10}$ -2 = 0

Solución del sistema de ecuaciones $x_{10} = -2$, $y_{10} = 3$, por tanto,

$$\pi_{10} = q^{-2} D_{84}^3 g = \frac{D_{84}^3 g}{q^2}$$
(A.14)

Para la relación funcional A.4

Las cantidades físicas son m = 6 (h_s , h_o , Q_d , B_e , h_m , ω_{84})

Las unidades son n = 2 (L,T)

Por lo que m – n = 6 – 2 = 4 números adimensionales (π_{11} , π_{12} , π_{13} , π_{14})

 $h_s, h_o, B_e, d_m \rightarrow L$

$$Q_d \rightarrow L^{\circ} T^{\circ}$$

 $\omega_{84} \rightarrow L T^{-1}$
(A.16)

Se escogen como variables repetidas $h_0 y \omega_{84}$ por lo que

$$\pi_{11} = h_0^{x11} \omega_{84}^{y11} h_s = (L)^{x11} (L T^{-1})^{y11} (L)$$

 $x_{11} + y_{11} + 1 = 0$ - $y_{11} = 0$

-y₁₁ = 0

Solución del sistema de ecuaciones $x_{11} = -1$, $y_{11} = 0$, por tanto,

$$\pi_{11} = h_o^{-1} \omega_{B4}^0 h_s = \frac{h_s}{h_o}$$
(A.15)

 $\pi_{12} = h_0^{x12} \omega_{84}^{y12} Q_d = (L)^{x12} (L T^{-1})^{y12} (L^3 T^{-1})$

 $x_{12} + y_{12} + 3 = 0$

-y₁₂ - 1 = 0

Solución del sistema de ecuaciones x₁₂ = -2, y₁₂ = -1, por tanto,

$$\pi_{12} = h_0^{-2} \,\omega_{\bar{8}4}^{-1} \,Q_d = \frac{Q_d}{h_0^2 \,\omega_{\bar{8}4}}$$

 $\pi_{13} = h_0^{\times 13} \omega_{84}^{\times 13} B_e = (L)^{\times 13} (L T^{-1})^{\times 13} (L)$

 $x_{13} + y_{13} + 1 = 0$

-y₁₃ = 0

Solución del sistema de ecuaciones $x_4 = -1$, $y_4 = 0$, por tanto,

$$_{13} = h_o^{-1} \omega_{84}^0 B_\theta = \frac{B_\theta}{h_o}$$
(A.17)

 $\pi_{14} = h_0^{x14} \omega_{84}^{y14} h_m = (L)^{x14} (L T^{-1})^{y14} (L)$

 $x_{14}+y_{14}+1=0$

 $-y_{14} = 0$

Solución del sistema de ecuaciones $x_{14} = -1$, $y_{14} = 0$, por tanto,

$$\pi_{14} = h_o^{-1} \omega_{84}^0 h_m = \frac{h_m}{h_o} \tag{A.18}$$

TESIS CON FALLA DE ORIGEN

Río Atchafalaya (USA)

Toffaleti, F. B. (1968)

No.	Q(m³/s)	B(m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	ឹទ	D ₈₄ (m)	3
1	13846.521	483.717	28.625	14.112	2.028	0.00017	1.300	0.00022	0.00005
2	14186.313	503.224	28.191	14.722	1.915	.0:00018	1.440	0.00026	0.00005
3	12147.561	457.200	26.569	13.747	1.933	0.00023	1.680	0.00038	0.00005
4	12572.301	476.097	26.407	14.204	1.859	0.00017	::: 1:370	0.00023	0.00005
5	12005.981	457.200	26.260	13.411	1.958	0.00023	1.630	0.00037	0.00005
∹6 è.	11496-293	454 152	25.314	13.289	1.905	0.00026	1.630	0.00043	0.00005
7	11779.453	469.696	25.079	14.539	1.725	0.00029	1.900	0.00055	0.00004
8	11637.873	468.782	24.826	14:752	1.683	0.00027	1.790	0.00048	0.00004
9	11241.449	454.152	24.753	13.167	1.880	0.00019	1.470	0.00027	0.00005
10	10222.073	451.104	22.660	13.228	`1.71 3	0.00019	1.470	0.00028	0.00004
11	9174.382	417.576	21.971	13.381	1.642	0.00018	1.530	0.00028	0.00004
12	9542.490	448.056	21.298	13.868	1.536	0.00023	1.750	0:00040	0.00005
13	8523.114	412.394	20.667	13.807	1.497	0.00019	1.510	0.00029	0.00004
14	8438.166	408.432	20.660	11.643	1.774	0.00014	1.430	0.00020	0.00004
15	8353.218	414.528	20.151	12.070	1.670	0.00022	1.620	0.00035	0.00004
16	8664.694	435.864	19.879	12.954	1.535	0.00029	_1.710 ;	0.00049	0.00004
17	8041.742	406.298	19.793	13.625	1.453	0.00018	1.490	0.00027	0.00004
18	8523.114	435.864	19:555	12.802	1.528	0.00016	1.340	0.00022	0.00004
19	7786.898	411.479	18.924	10.881	1.739	0.00015	1.530	0.00022	0.00004
20 -	7985.110	438.912	18.193	11.857	1.534	0.00018	_1.390	0.00024	0.00004
21	6852.470	402.336	17.032	11.003	1.548	0.00016	1.270	0.00020	0.00003
22	6597.626	393.192	16.780	12.863	1.305	0:00017	2.000	0:00035	0.00003
23	5493.302	408.432	13.450	11.247	1.196	0.00012	1.780	0.00022	0.00004
24	5380.038	405.384	⊴ 13 .271	10:881	្ត1.220	0.00023	1.700	0:00039	0.00003
25	4983.614	387.096	12.874	9.418	1.367	0.00011	1.910	0.00020	0.00003
26	4615.507	390.144	11.830	9.053	1:307	0.00016	1.280	0.00020	0.00003
27	3850.975	340.461	11.311	10.851	1.042	0.00030	1.850	0.00056	0.00002
28	4162.451	396.240	10:505	10.546	0.996	0:00012	. 1.780,	0.00022	0.00003
29	3482.867	350.520	9.936	9.296	1.069	0.00018	1.480	0.00027	0.00002
30	3624.447	368.808	9.827	- 8.108	<u>1'.212</u>	0.00016	1.520	0.00024	0.00002
31	3539.499	365.760	9.677	8.321	1.163	0.00012	1.740	0.00021	0.00002
32	3284.655	350.520	9.371	7.864	1.192	0.00009	1.720 ·	0.00015	0.00002
33	3624.447	390.144	9.290	10.089	0.921	0.00012	1.780	0.00022	0.00003
34	3397.919	373.075	9.108	10.516	0.866	0.00025	1.570	0.00039	0.00003
35	3086.443	374.904	8.233	9.979	0.825	0.00012	1.780	0.00022	0.00003
36	2729.661	344.424	7.925	8,230	0.963	0:00018	1.500 -	0.00027	0.00002
37	2766.472	349.300	7.920	10.485	0.755	0.00021	1.930	0.00041	0.00003
38	2500.302	329.184	7.595	10.455	6 0.727 .	0.00020	1:650	0.00032	0.00002
39	2415.354	327.355	7.378	10.577	0.698	0.00022	1.810	0.00040	0.00002

Río Atchafalaya (USA) Toffaleti, F. B. (1968)

σg Q(m³/s) q(m²/s) V(m/s) D₈₄(m) S No. B(m) y(m) D₅₀ (m) 10.516 40 2474.817 335.889 7.368 0.00017 1.960 0.701 0.00033 0.00002 41 2554:102 348:081 7.338 9.906 0.741 0.00015 1.870 0.00028 0.00003 9.906 42 2421.017 334.975 7.227 0.730 0.00022 1.740 0.00038 0.00002 43 2287.932 327.660 6.983 9.876 10.707 0.00022 1.790 0.00038 0.00002 2287.932 327.965 6.976 10.180 0.685 0.00020 1.680 0.00033 0.00002 44 0.00024 1.890 0.00046 0.00002 45 2358.722 - 338.328 - 6.972 46 2327.574 334.365 6.961 9.205 0.756 0.00015 1.660 0.00024 0.00002 47 2279.437 331.013 6.886 9.937 0.693 0.00020 1.650 0.00033 0.00002 48 2282.269 333.756 6.838 9.937 0.688 0.00020 1.720 0.00035 0.00002 322.478 49 2177.499 6.752 10.241 0.659 0.00023 1.780 0.00041 0.00002 50 2154.847 321.869 6.695 10.302 0.650 0.00020 1.610 0.00032 0.00002 51 2143.520 328.269 6.530 0.663 0.00021 1.770 0.00037 0.00002 9.845 52 2044.414 321.564 6.358 9.967 0.638 0.00020 1.520 0.00030 0.00002 53 1769.749 323.088 5.478 7.041 0.778 0.00013 1.700 0.00021 0.00002 54 1707.454 323.088 5.285 7.590 0.696 0.00013 1.680 0.00023 0.00001 55 1449.778 316.992 4.574 6.919 0.661 0.00011 1.840 0.00021-0.00001 0.00009 56 1393.146 316.992 4.395 6.889 0.638 2.040 0.00019 0.00001 57 1376.157 316.992 4.341 7:193 0.604 0.00012 1.760 0.00022 0.00001 58 1262.893 316.992 3.984 6.614 0.602 0.00010 1.960 0.00019 0.00001 59 1240.240 313.944 3.951 6.797 0.581 0.00012 1.810 0.000227-0.00001 60 1237.408 313.944 3.941 6.736 0.585 0.00009 2.030 0.00019 0.00001 61 1237.408 316.992 6:797 0.574 3.904 0.00011 1.830 0.00020 0.00001 62 1214.756 316.992 3.832 6.401 0.599 0.00012 1.760 0.00021 0.00001 63 1200.598 .316.992 0.00012 1.820, 0.00022, 0.00001 3.787 6.462 0.586% 64 1169.450 313.944 3.725 6.828 0.546 2.060 0.00010 0.00021 0.00001 1073.176 313.944 65 3.418 6.889 0.496 0.00009 2.160 0.00019 0.00001 66 843.817 310.896 2.714 6.431 0.422 0.00011 0.00020 0.00001 1.890 67 719.226 307.848 2.336 6.248 0.374 0.00010 2.100 0.00020 0.00001 68 637.110 307.848 2.070 6.218 0.00022 0.00001 0.333 0.00014 1.570

Anexo 1

Río Colorado (USA)

U.S. Bureau of Reclamation (1958)

No.	Q(m³/s)	B(m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	σ	D ₈₄ (m)	S
1	408.386	112.773	3.621	2.874	1.260	0.00025	1.350	0.00033	0.00031
2	389.583	114.908	3,390	3.030	1.1,19	0.00023	.1:410	0.00032	0.00020
3	370.611	111.642	3.320	2.621	1.266	0.00028	1.420	0.00039	0.00016
4	358:774	110.152	3:257	3:371	0.966	0.00025	1:500	0.00038	0.00022
5	360.502	114.729	3.142	3.139	1.001	0.00038	1.410	0.00053	0.00026
6	348.750	111.593	3.125	3:338	0.936	0.00026	1:410	0:00037	0.00020
7	362.456	117.031	3.097	2.832	1.094	0.00030	1.320	0.00040	0.00019
8	359.992	1.16.805	3.082	3.088	0.998	0.00027	1,740	0.00047	0.00013
9	334.139	109.064	3.064	2.630	1.165	0.00024	1.400	0.00034	0.00028
10	345.437	114,345	3.021	3:066	0.985	0.00036	(1:340)	0.00048	0.00023
11	454.316	160.672	2.828	3.313	0.853	0.00018	1.240	0.00022	0.00017
12,	413.426	148.294	2.788	3.37.1	, 0:827	0.00024	1:350	0.00032	0.00018
13	315.733	114.008	2.769	2.783	0.995	0.00034	1.300	0.00044	0.00023
-14	310,608	113.093	2.746	2.405	1.142	0.00035	1.310	0.00046	0.00019
15	443.159	162.431	2.728	3.594	0.759	0.00020	1.260	0.00025	0.00013
16	307.096	113.613,	2.703	2:874,-	0.940	0.00030	1:450	0.00043	0.00022
17	303.925	113.052	2.688	2.829	0.950	0.00032	1.550	0.00050	0.00021
18	293.504	110.277	2.662	3.048	0.873	0.00028	1.540	0.00042	0.00015
19	296.761	112.776	2.631	2.804	0.938	0.00040	1.460	0.00058	0.00023
20	293.278	112:227	2.613	3.115	3₊0 <mark>:</mark> 839)	0.00028	1:410	0.00039	0.00019
21	387.658	149.087	2.600	3.085	0.843	0.00028	1.720	0.00048	0.00021
22	272.776	108.450	2.515	2.676	0.940	0.00070	3:120	0.00217	0.00010
23	279.770	112.773	2.481	2.722	0.911	0.00040	1.520	0.00061	0.00015
24	359.199	146.210	2:457	• 2.957	0.831	0.00027	1.790	0.00048	0:00013
25	274.220	112.506	2.437	2.655	0.918	0.00037	1.390	0.00051	0.00021
.26	269.945	112.790	2.393	2.676	0.8942);	0.00034	៍1.310 ្ត	<0.00045	0:00022
27	344.616	144.789	2.380	2.624	0.907	0.00032	1.470	0.00047	0.00011
28.1.	243:525	103:010	2.364	2.570	: 0.920 , 1	0.00030	1:390	0.00042	0:00018
29	344.899	146.373	2.356	2.698	0.874	0.00034	1.910	0.00065	0.00016
30	245.762	105:788	2.323	2.396	0.970	0.00026	1:370 ·	0.00036	0.00011
31	324.624	140.966	2.303	2.673	0.861	0.00040	1.750	0.00070	0.00015
32 (1	335.838	146.538	2.292	2.853	0.803	0.00023	1.630	0.00037	0.00006
33	324.794	141.753	2.291	2.923	0.784	0.00024	1.490	0.00036	0.00009
34	324.228	144.341	·2.246 ·	2.963	0.758 g	0.00027	1.340	0.00036	0.00017
35	330.712	147.690	2.239	3.136	0.714	0.00023	1.350	0.00031	0.00007
`36≏.	328.475	146.969;	2.235	. 2.908 🗄	0:769	0.00020	1.600 🗧	0.00032	0.00007
37	308.654	139.538	2.212	2.637	0.839	0.00032	1.520	0.00049	0.00012
38 1	229.961	103.972	2.212	2.402	.0.921	0.00032	0 1:380 📜	0.00044	0.00022
39	348.297	159.877	2.179	3.889	0.560	0.00018	1.300	0.00023	0.00004

Rio Colorado (USA)

U.S. Bureau of Reclamation (1958)

			U.S. D	uleau ol i	Reclamau	011 (1330)			
No.	Q(m³/s)	B(m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	σa	D ₈₄ (m)	S
40	343.653	157.903	2.176	2.819	0.772	0.00020	1.280	0.00025	0.00014
41	301.8581	139.974	2:157	2:542	0.848	0.00040	1.660	0.00066	0.00015
42	240.070	111.676	2.150	2.222	0.967	0.00037	1.410	0.00052	0.00019
43	221.494	103.946	2131	32:310 M	0.922	0.00032	1:440	0:00046	0.00022
44	221.721	104.272	2.126	2.469	0.861	0.00029	1.340	0.00038	0.00024
45	219.116	107.581	2.037	2.527	0.806	0.00027	1:320	0.00036	0.00027
46	288.832	142.096	2.033	2.579	0.788	0.00023	1.460	0.00033	0.00007
47	210.281	104.226	2.018	2.064	0.978	0.00031	1.220	0.00038	0.00007
48	220.305	109.444	2.013	2.874	0.700	0.00032	1.480	0.00047	0.00021
49	223.618	112:220	1.993	2:490.1	0.800	0.00036	1.340	0.00048	0.00017
50	219.795	110.586	1.988	2.057	0.966	0.00034	1.370	0.00047	0.00019
51	279.770	142.122	1.969	2.621	0:751	0.00020	1:360	0.00027	0.00015
52	500.161	254.550	1.965	2.195	0.895	0.00036	1.480	0.00053	0.00018
53	217:0770	110.924	1.957	2.222	0.881	0.00033	1.430	0.00047	0.00022
54	198.898	103.277	1.926	2.253	0.855	0.00030	1.480	0.00044	0.00028
55	194.905	101,492	1:920	12.292 M	0.838	0.00029	-1:470	0.00043	0.00017
56	209.800	110.904	1.892	2.243	0.843	0.00035	1.430	0.00049	0.00023
57	294:439	158.254	1:861	2.762	0.674	0.00021	1.320	0.00028	0:00010
58	191.932	104.826	1.831	2,256	0.812	0.00043	1.860	0.00080	0.00014
59	184:201	102.426	1:798	1.911	0.941	0.00030	1.360	0.00041	0.00027
60	196.066	110.056	1.782	2.036	0.875	0.00030	1.440	0.00043	0.00026
61	178:113	100 973	1.764	2.076	0.850	0.00034	1.530	0.00052	0.00013
62	272.861	155.802	1.751	2.621	0.668	0.00016	1.460	0.00023	0.00013
63	175.593	102.425,	1.714	2.064	0.831	0.00034	1:400	0.00047,	0.00041
64	239.107	140.223	1.705	2.426	0.703	0.00021	1.460	0.00030	0.00013
65	187.599	110,693	1.695	2.176 A		0.00036	1.530	0:00055	0.00017
66	173.158	102.768	1.685	2.042	0.825	0.00025	1.440	0.00036	0.00015
67	241:826	143,793	1.682	2.990	0.562	0.00020	1;280	0.00026	0.00035
68	181.653	109.786	1.655	1.929	0.858	0.00032	1.420 -	0.00045	0.00021
69	181.171	110.668	1.637	2.155	,0.760	0.00034	1.470	0.00050	0.00018
70	226.535	139.332	1.626	2.438	0.667	0.00029	1.410	0.00041	0.00008
71.	403.572	253.097	1.595	2:298	0.694	0.00031	1.360	0.00042	0.00014
72	228.942	146.620	1.561	2.701	0.578	0.00023	1.480	0.00034	0.00015
73	234.492	153,280	1.530	2.640	0.580	0.00016	1.580	0.00024	0.00008
74	152.373	101.890	1.495	1.920	0.779	0.00029	1.320	0.00038	0.00020
75	137.875	92.644	1.488	1.929	0.771	0.00024	1.370	0.00032	0.00020
76	216.907	146.029	1.485	2.027	0.733	0.00022	1.330	0.00029	0.00010
77	158:404	110.320	1:436	, 1.914	0.750	0.00030	1.460	0.00044	0.00017
78	155.516	109,930	1.415	1,929	0.733	0.00033	1.460	0.00047	0.00017

Río Colorado (USA) U.S. Bureau of Reclamation (1958)

No.	Q(m³/s)	B(m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	σ _g	D ₈₄ (m)	S
79	154.468	110.108	1.403	1.856	0.756	0.00029	1.490	0.00044	0.00021
·80	183,776	136.166	1.350	2.009	0.672	0.00027	1.510	0.00041	0.00016
81	203.117	151.821	1.338	2.246	0.596	0.00025	1.330	0.00033	0.00010
82	135.921	106.430	1.277	1.673	₩0.763	0.00032	1.480	0.00047,	0.00022
83	169.901	137.422	1.236	1.594	0.776	0.00032	1.370	0.00044	0.00011
84 -	166.078	134.579	1.234 -	- 1.908	0.647	0.00029	1:450	0.00041	0:00010
85	131.447	107.538	1.222	1.570	0.779	0.00029	1.430	0.00041	0.00023
86	128.898	106.772	1.207	1.509	0.800	0.00033	1.410	0.00047	0.00023
87	118.195	99.950	1.183	2.009	0.589	0.00028	1.540	0.00043	0.00011
88	157:357	134:736	1:168	1.936	0.603	0.00026	1,490	0.00039	0.00020
89	111.653	96.287	1.160	1.993	0.582	0.00026	1.610	0.00042	0.00015
90	109.161	95.167	1:147	1:545	0.742	0.00028	1:410	0.00039	0.00028
91	121.762	108.145	1.126	1.535	0.733	0.00030	1.450	0.00044	0.00022
92	121.111	107.587	1.126	1.484	0.758	0.00027	1.440	0.00039	0.00033
93	161.746	151.911	1.065	2.091	0.509	0.00022	1.360	0.00029	0.00006
94	254:200	247:276	1.028	1.460	0.704	0.00027	1.440	0.00039	0.00017
95	108.227	106.985	1.012	1.369	0.739	0.00032	1.650	0.00052	0.00025
96	96.787	95.732	1.011	1.905	0.531	0.00028	1,680	0.00047	0.00013
97	105.339	106.349	0.990	1.402	0.706	0.00031	1.680	0.00052	0.00023
98	133.995	136.717	0:980	1:469	_0.667 ;	0.00029	1.560	0,00044	0.00018
99	132.240	136.106	0.972	1.454	0.668	0.00032	1.420	0.00045	0.00039
100;	127.709	132.522	0.964	.1.683	0.573	0.00029	1.540	0.00044	0.00010
101	115.250	136.144	0.847	1.372	0.617	0.00031	1.440	0.00045	0.00018
102	105.339	130,541	±0:807	∷1:509 ₽	0.535	10.00029	1.490	0:00043	0.00006
103	77.532	103.075	0.752	1.134	0.663	0.00031	1.450	0.00045	0.00021
104	92:030	130:539	0.705	1:487	0.474	0.00031	1:410	0.00044	0.00007
105	83.336	240.529	0.346	0.954	0.363	0.00032	1.530	0.00048	0.00009

1	THE ST OON
	LUN CON
TTA	
I H'A	
1 1 1 1	UNIT DE OUIGEN

Río Grande (USA) Nordin, C. F., Beverage, C. P. (1965)

	Nordin, C. F., Beverage, C. P. (1965)										
No.	Q(m³/s)	B(m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	σ	D ₈₄ (m)	S		
1	207.273	40.234	5,152	2.472	2.084	0.00031	1.590	0.00050	0.00230		
2 S	264.471	39 624	6.675	3.118	2:141	0.00043	1.580	0.00068	0.00246		
3	268,719	44,196	6.080	2.859	2.127	0.00053	2.120	0.00112	0.00240		
4	285.992	42 672	6:702	3.112	2.154	0,00037	2.680	0:00100	0.00220		
5	243 234	41.148	5.911	2.731	2.164	0.00191	6.730	0.01285	0.00231		
6	147.526	39.319	3.752	1.911	1.963	0.00057	2.800	0:00158	0.00163		
7	141.580	38,100	3.716	2.192	1.696	0.00047	4.110	0.00195	0.00131		
8	35.961	36.576	0.983	1.058	0.930	0.00033	1.980, 1	0.00066	0.00133		
9	78.718	36.881	2.134	1.615	1.321	0.00141	4.050	0.00570	0.00159		
10	113,264.	39:014	2.903	2.326	1.248	0.00093	2.650	0.00247	0.00072		
11	77.869	35.052	2.222	1.448	1.534	0.00038	1.860	0.00071	0.00081		
12	25 711	29 566	0.870	1:012	0.859	0.00057	2.700	0:00154	0.00196		
13	30.864	29.070	1.062	1.100	0.965	0.00066	1.950	0.00128	0.00098		
14	169:896	39.624	4.288	2.393	1.792	0.00119	7.210	0.00858	0.00092		
15	41.341	34.138	1.211	1.027	1.179	0.00038	1.830	0.00070	0.00129		
16	19.368	33:223	0.583	0:765	0.762	0.00053	1.900	0.00101*	0.00129		
17	11.779	63.398	0.186	0.357	0.521	0.00047	1.760	0.00083	0.00129		
18	8.750	53.950	0.162	0:308	0.527	0.00063	2.400	0.00151	0.00129		
19	15.319	87.782	0.175	0.299	0.584	0.00310	6.270	0.01941	0.00129		
20*	20.076	91.440	0.220	0.372	0.590	0.00147	7:200	0.01056	0.00129		
21	33.130	91.440	0.362	0.527	0.687	0.00061	2.080	0.00127	0.00129		
22	45.022	86.563	0.520	0.576	10.903	0.00034	2.840	0.00096	0.00129		
23	24.946	91.440	0.273	0.408	0.668	0.00033	1.940	0.00064	0.00129		
24	18.887	62:179	0.304	0.527	0.576	0.00036	5.230	0.00190	0.00129		
25	22.200	89.916	0.247	0.378	0.653	0.00026	1.610	0.00042	0.00129		
26	7.475	52:426	0.143	0.311	:::0.459	0.00032	1.580	0.00051	0.00129		
27	7.136	53.340	0.134	0.293	0.457	0.00029	1.700	0.00049	0.00129		
28	14.158	54.254	0.261	0.457	0.571	0.00034	1:600	0.00054	0.00129		
29	1.920	23.470	0.082	0.277	0.295	0.00031	2.240	0.00070	0.00129		
30	4.078	26.822	0.152	0.360	0.423	0.00038	1:440	.0.00055	0.00129		
31	8.325	30.480	0.273	0.488	0.560	0.00035	1.760	0.00061	0.00129		
32	9.826	35.052	0.280	0.454 +	0.617	0.00038	1:380	0.00052	0.00129		
33	9.259	35.052	0.264	0.436	0.606	0.00042	1.440	0.00060	0.00129		
34	13.139	37.795	0.348	0.503	0.691	0.00041	1.370	0:00056	0.00129		
35	13.139	38,405	0.342	0.521	0.656	0.00040	1.380	0.00056	0.00129		
36	13.252	-39.014	0:340	0.521	0.652	0.00039	1.320	0.00051	0.00129		
37	14.243	39.624	0.359	0.543	0.663	0.00041	1.380	0.00056	0.00129		
38:	14.639	37.795	0.387	0.558	0.694	0.00047	1.760	0.00083	0.00129		
39	14.979	40.538	0.370	0.530	0.697	0.00050	1.720	0.00086	0.00129		

73

Anexo 1

Río Grande (USA) Nordin, C. F., Beverage, C. P. (1965)

S No. $Q(m^3/s)$ B(m) q(m²/s) y(m) V(m/s) D₅₀ (m) σg D₈₄(m) 0.00121 40 11.723 36.576 0.321 0.485 0.661 0.00064 1.880 0.00129 0.00116 0.00129 41 4:361 28:956 0:151 0.457 0.00061 1.910 0.329 0.222 0.396 0.559 0.00053 1.730 0.00091 0.00129 - 42 7.702 34.747 43 . 29,449 85:344 0.345 0,463 0.745 0.00070 2.320 0.00162 0.00129 44 14.554 49.987 0.291 0.530 0.549 0.00031 1.670 0.00052 0.00129 0.536 0.504 -1.640 0.00043 0.00129 45 7:419 27:432 0.270 0.00026 11.393 0.591 0.632 0.00021 1.420 0.00030 0.00129 46 30.480 0.374 47 4:559 26.213 0.174 0,433 0.402 0:00041 1.940 0.00079 0.00129 48 25.003 82.601 0.303 0.372 0.814 0.00041 3.880 0.00158 0.00129 49 32.563 0.445 0.861 0.00036 1.720 0.00062 0.00129 85.039 0.383 50 6.569 27.127 0.242 0.448 0.540 0.00048 2.360 0.00113 0.00129 51 5.805 27:432 0.212 0.421 0.503 0.00037 2.140 0.00079 0.00129 52 0.517 0.00024 2.240 4.842 25.603 0.189 0.366 0.00054 0.00129 28.042 0.175 0.00025 1.650 53 4:899 0.360. 0.486 0.00041 0:00129 54 9.967 41.148 0.242 0.390 0.621 0.00042 2.080 0.00087 0.00129 55 10.902 31!899 0.342 0.408 0.8374 0.00033 1.550 0.00051 0.00129 56 13.705 34.747 0.394 0.384 1.027 0.00036 1.440 0.00051 0.00129 57. 15:800 38:100 0:415 0.433 0.958 0.00038 1:530 0.00058 0:00129 58 15.715 39.624 0.397 0.494 0.803 0.00039 1.520 0.00059 0.00129 59 16:508 42:672 0:387 0.476 0.81410.00042 21220 0.00093 0.00129 13.535 0.342 0.506 60 39.624 0.675 0.00038 1.720 0.00065 0.00129 61 26:560 P78.943 0.336 0.485 0.694 0.00049 1.840 0.00089 0.00129 62 27.297 91.440 0.299 0.439 0.680 0.00046 1.970 0.00091 0.00129 63 26.022 73:457 0.354 0.442 0.801 0.00033 1.920 0.00062 0.00129 64 35.395 85.649 0.413 0.497 0.832 0.00026 4.240 0.00109 0.00129 65 15.744 78.029 0.202 0.287 0.704 0.00027 1.670 0.00045 0.00129 66 26.702 71.018 0.376 0.400 0.941 0.00039 2.670 0.00103 0.00129 3.570 67 20,133 80.467 0.250 0.375 0.667 0.00033 0.00119 0.00129 68 1.829 16.002 0.114 0.427 0.268 0.00026 2.000 0.00052 0.00129 69 0.983 18.593 0.053 0.274 0.193 0.00035 1.610 0.00057 0.00129 98.257 70 86.258 1.139 0.777 1.466 0.00025 1.650 0.00041 0.00129 71 94.859 87.478 1.084 0.765 1:417 1.510 0.00036 0.00055 0.00129 72 156.304 90.526 1.727 2.009 0.859 0.00039 1.860 0.00073 0.00129 73 135.917 88.697 1.532 0.954 1.606 0.00036 1.440 0.00052 0.00129 74 225.395 73.878 3.051 1.198 2.547 0.00040 7.160 0.00286 0.00129 1:247 75 252.012 99.974 2.521 2:022 0.00044 5.890 0.00260 0.00120 76 277.780 102.108 2.720 1.338 2.033 0.00031 19.550 0.00612 0.00127 .77 245.783 89.916 2733 0.00061 1:478 1.849 12:290 0.00747 0.00127 78 141.297 90.526 1.561 1.110 1.407 0.00060 3.370 0.00203 0.00123

FALLA DE ORIGEN

de constant de servic

Río Grande (USA) Nordin, C. F., Beverage, C. P. (1965)

No.	Q(m³/s)	B(m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	σg	D ₈₄ (m)	5
79	143.279	90.830	1.577	1.228	1.284	0.00065	3.200	0.00206	0.00113
80	57.765	86.868	0.665	0.683	0.974	0.00047	2.060	0.00097	0.00118
81	28.316	80.162	0.353	0.521	0.678	0.00071	4.050	0.00286	0.00118
82	59.180	86.868	0.681	0.665	1.025	0.00034	2.010	0.00068	0.00134
83	104.203	87.782	1.187	0.860	1.381	0.00044	2.460	0.00109	0.00137
84	74.188	85.649	0.866	0.729	1:189	0.00042	4.640	0.00197 , (0.00137
85	19.085	85.344	0.224	0.332	0.673	0.00106	10.820	0.01143	0.00128
86	12.940	46.634	0.277	0.421	.0.660	0:00040	1:680	0.00066	0.00150
87	11.723	46.634	0.251	0.412	0.611	0.00058	9.800	0.00564	0.00150
88	15.914	46.634	0.341	0.463	0.737	0.00040	2.110	0.00083	0.00150
89	21.577	64.618	0.334	0.494	0.676	0.00040	1.460	0.00059	0.00150
90	* 33.130	68.580	0.483	0.616	0.785	0.00052	2.110	0.00109	0.00150
91	48.420	84.125	0.576	0.631	0.912	0.00050	1.800	0.00090	0.00150
92	26.022	.81.0773	0.321.	0.476	0.675	0.00036	.1.710	0.00062	0.00150
93	21.379	67.970	0.315	0.460	0.683	0.00040	1.720	0.00068	0.00150
,94	22.285	79.858	0.279	0.418	0.668	0.00034	1.600	0.00055	0.00150
95	9.344	44.196	0.211	0.351	0.603	0.00046	1.910	0.00088	0.00150
96	.10.222	60.350	0.169	0.253	0:669	0.00017	2.170	0.00038	0.00150
97	15.942	53.645	0.297	0.436	0.682	0.00045	1.900	0.00086	0.00150
98	4.785	27:432	0.174	0.326	0.535	0.00040	1:520	0.00060	0.00150
99	8.325	45.720	0.182	0.329	0.553	0.00044	1.930	0.00085	0.00150
100	8.636	45.720	0:189	0.317	0.596	0.00047	2.250	0.00106	0.00150
101	7.136	50.597	0.141	0.284	0.497	0.00025	2.650	0.00065	0.00150
102	10,194	52.426	.0.194	0.351	0.555	0.00034	1.760	0.00060	0.00150
103	10.449	52.426	0.199	0.323	0.617	0.00040	1.640	0.00065	0.00150
104	10.137	52.426	0:193	୦.32 6	0.593	0.00029	1:980	0.00058	0.00150
105	10,930	22.860	0.478	0.561	0.853	0.00037	1.620	0.00059	0.00150
106	13.733	. 53.035	0.259	0.387 <i>c</i> ,	0.669	0.00040	2.840	0.00113	0.00150
107	14.583	51.511	0.283	0.408	0.693	0.00040	1.480	0.00059	0.00150
108	16.452	54:254	0.303	0.427	0.711	0.00038-	1.690	0.00064	0.00150
109	13.592	54.254	0.251	0.378	0.663	0.00031	2.070	0.00063	0.00150
110	12.629	53.645	0.235	0.463	0.508.	0.00054	2.410		0.00150
111	33.413	43.586	0.767	0.847	0.905	0.00041	2.020	0.00082	0.00150
112	44:739	44.501	1.005	0.893	1.126	0.00029	1.670	0.00049	0.00150
113	8.750	46.025	0.190	0.354	0.538	0.00042	1.640	0.00069	0.00150
114	12.827	53.035	0.242	0.418;	0.579	0:00045	2.040	0.00091	0.00150
115	10.364	47.244	0.219	0.296	0.742	0.00041	1.670	0.00069	0.00150
116	24.408	39.014	.0.626	0.6552	÷ 0.955	0.00045	2.990	0.00135	0.00150
117	32.280	46.330	0.697	0.619	1.126	0.00037	2.210	0.00083	0.00150

Río Grande (USA) Nordin, C. F., Beverage, C. P. (1965)

Nordin, C. F., Beverage, C. P. (1965)										
No.	Q(m³/s)	B(m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	ag	D ₈₄ (m)	S	
118	7.475	44.502	0.168	0.341	0.492	0.00038	1.650	0.00062	0.00150	
119	5:833	35:357	0.165	0.296	0.558	0.00054	1.670	0.00091	0.00150	
120	6.654	39.624	0.168	0.320	0.525	0.00053	1.750	0.00092	0.00150	
121	7:730	37.795	0.205	0.357	0:574	0.00037	1.800	0.00067	0.00150	
122	10.534	38.405	0.274	0.405	0.677	0.00032	1.680	0,00053	0.00150	
123	12.063	33.833	. 0.357	0.433	0.824	0.00031	1:730	0.00054	0.00150	
124	14.073	33.833	0.416	0.506	0.822	0.00044	1.700	0.00075	0.00150	
125	17.414	35.052	0.497	0,540	0:921	0.00035	1.820	0.00064	0.00150	
126	16.168	47.854	0.338	0.399	0.846	0.00029	1.700	0.00050	0.00150	
127	14.809	«45.720	0.324	0.381	0.850	0.00020	1:950	0.00039:	0.00150	
128	17.131	64.922	0.264	0.290	0.911	0.00022	1.660	0.00036	0.00150	
129	13.535	35:966	0.376	0.479	0.786	0.00034	1.760	0.00059	0.00150	
130	24.437	78.638	0.311	0.390	0.797	0.00050	17.050	0.00844	0.00150	
131	14.385 -	32.004	0.449	0:597	0.752	0.00024	1.610	0.00038	0.00150	
132	25.258	65.532	0.385	0.445	0.866	0.00038	2.020	0.00077	0.00150	
133	26.306	65 227	0:403	0.457	.:0.882	0.00033	1.610	0.00053	0.00150	
134	35.395	80.162	0.442	0.448	0.985	0.00030	6.540	0.00198	0.00150	
135	116.961	45.720	÷.0.371.	0.540	0.6887	0.00039	2.290	0.00089	0.00150	
136	25.145	61.570	0.408	0.521	0.784	0.00040	1.740	0.00070	0.00150	
137	18:887	60.046	0.315	0:442	0 712	0.00030	1.690	0.00050	0.00150	
138	2.945	43.282	0.068	0.262	0.260	0.00034	1.700	0.00058	0.00150	
139	7.249	32,918	0.220	0.372	0.592	0.00058	1.720	0.00099	0.00150	
140	101.371	42.672	2.376	1.503	1.581	0.00038	8.040	0.00306	0.00150	
141	85:231.	43.891	1.942	1:213	.1.601 -	0.00029	1.730	0.00050	0.00150	
142	146.111	45.720	3.196	1.698	1.882	0.00037	6.160	0.00229	0.00150	
143)	134.784	45.415	2.968	1.634	1.817	0.00071	2:580	0.00184	0.00150	
144	232.191	62.484	3.716	1.695	2.193	0.00517	11.030	0.05699	0.00176	
145	275.231	63,703;	4.321	,1.881	2.297	0.00108	11.850	0.01276	0.00193	
146	243.234	60.960	3.990	1.829	2.182	0.00057	4.500	0.00256	0.00168	
147	144.978	57:302	2:530	1.369	0 1 849 ji	0.00051	1.980	0.00102	0.00151	
148	141.863	56.998	2.489	1.363	1.827	0.00100	10.440	0.01044	0.00151	
149	62.295	55:474	1.123	0.832		0.00043	2.400	0.00104	0.00091	
150	28.882	55.169	0.524	0.661	0.792	0.00054	21.670	0.01162	0.00100	
151	62.295	53.950	1.155	0.823	1.403	0.00023	1.590	0.00037	0.00115	
152	101.371	49.682	2.040	1.219	1.674	0.00029	1.850	0.00054	0.00126	
153	71.073	51.206	1:388	0.945	1.469	0.00024	1.880	0.00045	0.00108	
154	19.255	49.378	0.390	0.536	0.727	0.00045	2.010	0.00091	0.00197	
155	77.303	82.906	0.932	0.750	1:244	0.00023	1.710	0.00040	0.00089	
156	183.771	82.906	2.217	1.106	2.003	0.00041	1.620	0.00066	0.00084	
	r		0.27	-1						

Río Grande (USA) Nordin, C. F., Beverage, C. P. (1965)

No.	Q(m³/s)	B(m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	σg	D ₈₄ (m)	S
157	173.860	82.906	2.097	1.155	1.815	0.00030	1.610	0.00048	0.00083
158	136.766	82.906	1.650	1.064	1:551	0.00035	1.590	0.00055	0.00079
159	78.152	81.991	0.953	0.841	1.133	0.00032	1.630	0.00053	0.00076
160	58.331	82.296	0.709	.0.820	0.864	0.00027	1.720	0.00046	0.00080
161	43.607	82.296	0.530	0.655	0.809	0.00034	1.610	0.00055	0.00086
162	15.602	80.772	0:193	0.381	0.507	0.00029	1.780	0.00052	0.00086
163	72.772	82.296	0.884	0.811	1.091	0.00035	1.580	0.00055	0.00093
164	60.879	82.296	0,740	0.780	0.948	0.00034	1.610	0.00055	0.00086
165	59.180	82.296	0.719	0.756	0.951	0.00034	1.930	0.00065	0.00083
166	37.943	81.686	20.465	0.652	0.712	0.00033	1:610	0.00053	0:00086
167	21.492	72.238	0.298	0.439	0.678	0.00037	1.820	0.00068	0.00086
168	17.273	79.858	0.216	0.360	0:601	0.00028	1.780	0.00049	0.00086
169	17.641	81.077	0.218	0.375	0.580	0.00037	1.620	0.00060	0.00086
170	20.982	85.344	0.246	0.393	0.625	0.00033	1.630	0.00053	0.00086
171	18.490	77.724	0.238	0.402	0.591	0.00033	1.650	0.00054	0.00086
172	26.051	83.515	0.312	0.433	0.721	0.00031	1.580	0,00050	0.00086
173	28.316	81.077	0.349	0.457	0.764	0.00026	1.940	0.00050	0.00086
174	27.920	80:162	0.348	0.393 -	0.886	0.00028	1:700	0,00047	0.00086
175	11.185	74.371	0.150	0.341	0.441	0.00022	1.810	0.00039	0.00086
176	5.635	24.079	0.234*	0.451	(t0.519)	0.00036	1.520	0.00055	0.00086
177	2.786	27.127	0.103	0.241	0.427	0.00034	1.620	0.00055	0.00086
178	15.970	79.858	0.200	0.326	0.613	0.00020	1.440	0.00028	0.00086
179	16.225	52.121	0.311	0.518	0.601	0.00036	1.470	0.00054	0.00086
180	14.045	79.248	0.177	0.314	0.565	0.00022	1.930	0.00043	0.00086
181	13.960	65.227	0.214	0.399	0.536	0.00030	1.690	0.00051	0.00086
182	17.329	89.611	0.193	0.335	0.577	0.00034.	1.560	0:00054	0.00086
183	13.563	48.768	0.278	0.518	0.537	0.00032	2.990	0.00095	0.00086
184	5.267,	14.021	0.376	0.591	0.635	0:00028	1.700	0.00047	,0.00086
185	7.645	54.864	0.139	0.284	0.492	0.00023	2.110	0.00048	0.00086
186	0.498	.8.839	0.056	0.159	0.356	0.00030	1.790	0.00054	0.00086
187	2.299	32.918	0.070	0.177	0.395	0.00030	1.620	0.00048	0.00086
188	44.739	83:820	0.534	0.469	1.137	0.00035	1.720	0.00060	0.00086
189	117.511	82.601	1.423	0.933	1.525	0.00029	1.730	0.00049	0.00086
190	-87.213	82.906	1.052	0.668	1.576	0.00030	1.690	0.00051	0.00086
191	80.701	82.601	0.977	0.744	1.314	0.00027	1.670	0.00044	0.00086
192	146.111	82.601	1.769	0.991	. 1.786	0.00028	1.640	0.00046	0.00086
193	129.404	82.601	1.567	0.924	1.696	0.00025	1.600	0.00041	0.00086
194	194.248	82.296	2.360	1.122	2.104	0.00033	1.810	0.00060	0.00080
195	235.589	82.601	2.852	1.359	2.098	0.00030	1.760	0.00053	0.00080

Rio Grande (USA) Nordin, C. F., Beverage, C. P. (1965)

Rio Grande (USA)									
			Nordin	i, C. F., B	leverage,	C. P. (196	5)		
								_	_
No.	Q(m³/s)	B(m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	ag	D ₈₄ (m)	S
196	245,783	82.296	2.987	1.253	2.384	0.00039	1.440	0.00057	0.00079
197	285.992	83.210	3.437	1.463	2.349.,	0.00030	1.640	0.00049	0.00080
198	231.059	82.906	2.787	1.323	2.107	0.00031	1.570	0.00049	0.00083
199.	164.233	82)296	1.996	1:046	1.909	40.00036	1.510	0.00055	0.00074
200	122.891	81.077	1.516	0.814	1.863	0.00037	1.640	0.00061	0.00076
201	1113.264	81:382	1.392'	0.902	1.543	0.00027:	, 1.890	0.00052	0.00076
202	171.029	83.210	2.055	1.036	1.983	0.00038	1.430	0.00054	0.00080
203	17.046	39.014	0.437	0.561	0.779	0.00033	1.890	0.00063	0.00086
204	59.464	81.991	0.725	0.780	0.929	0.00033	1.660	0.00054	0.00083
205	35.112	40.538	0.866	1.049	0:826	0.00031	1.630	0.00051	0:00083
206	57.481	81.686	0.704	0.893	0.788	0.00028	1.700	0.00048	0.00082
207	63.145%	81.382	0,77,6	0.805	0.964	0:00022	1.630	0.00037	0.00083
208	95.142	82.296	1.156	0.951	1.216	0.00023	1.600	0.00037	0.00083
209	63.994	81:686	0.783	-0.710	1.103	0.00022	1:480	0.00032	0.00085
210	151.207	84.125	1.797	0.981	1.832	0.00025	8.700	0.00221	0.00086
211	27.948	67.970	0.411.	0.469	0.876	0.00037	1.640	0.00061	0.00080
212	12.827	69.190	0.185	0.305	0.608	0.00042	1.830	0.00078	0.00079
213*	7.589:0	23:470	0.323	0.533	0.606	0.00038	.1.390	0.00053	0.00110
214	2.860	25.603	0.112	0.369	0.303	0.00040	1.590	0.00063	0.00110
215	18.972.4	101.498	. 0,187,	:0:335	t0:557;;	0.00030	1.630	<:0.00049	0.00110
216	10.930	103.022	0.106	0.213	0.497	0.00024	1.820	0.00043	0.00110
217	3.624**.	29!261	0.124	0.351	0,353	0.00028	1:660	0.00046	30.00110
218	20.416	110.338	0.185	0.320	0.578	0.00033	1.620	0.00053	0.00110
219	12.148	41.453	0.293	0.472	0.620	0.00031	1.570 :	0.00049	0.00110
220	40.209	101.194	0.397	0.479	0.830	0.00023	1.620	0.00038	0.00110
221	17.981	103.632	s 0.174	0.335	0.517	0.00032	1.690	0.00054	0.00110
222	40.209	101.498	0.396	0.497	0.797	0.00034	1.640	0.00055	0.00110
223	<u>36.811</u>	106.680	.0.345	0.527	0.654	0.00035	1:680	0.00058	0.00110
224	10.987	35.052	0.313	0.631	0.497	0.00025	1.840	0.00046	0.00110
225	9.004	39.624%	0:227	0.393	0.578	0.00035	1.730	0.00061	0.00110
226	12.091	41.148	0.294	0.509	0.577	0.00037	1.560	0.00058	0.00110
227	1.948	16!764	0.116	0.232	0.502	0.00037	1.620	0.00059	0.00110
228	4.870	29.261	0.166	0.415	0.402	0.00028	1.770	0.00050	0.00110
229	6.683	31.394	0.213	0.415	0.514	0,00038	1.600	0.00061	0.00110
230	29.449	74.981	0.393	0.405	0.969	0.00024	1.800	0.00044	0.00110
231	10.364	39.014	0.266	0.442	0.601	0.00036	1.620	0.00058	0.00110
232	2.036	9.601	0.212	0.418	0.508	0.00033	1.550	0.00051	0.00110
233	2.294	17.678	0.130	0.280	0.463	0.00040	1.510	0.00060	0.00110
234	0.677	7.925	0.085	0.216	0.395	0.00036	1.510	0.00055	0.00110

Rio Grande (USA) Nordin, C. F., Beverage, C. P. (1965)

S D₈₄(m) V(m/s) D₅₀ (m) σg No. $Q(m^3/s)$ B(m) q(m²/s) y(m) 0.00052 0.00110 0.568 0.00033 1.600 235 6.994 46.939 0.149 0.262 1.660 0.00062 0.00110 0.348 0.523 0.00038 236 9.854 54.254 0.182 0.00110 0.299 0.585 0.00023 1.780 0.00042 237 12.572 71.933 0.175 0.00049 0.00110 0.00030 1.640 238 6.852 41.148 0.167 0:320 0:520 0.259 0.564 0.00034 1.570 0.00054 0.00110 108.204 0.146 239 15.800 1:520 0.00051 0.00110 0.575 0.00034 47.244 0.237 0.412 240 11.185 0.488 0.00027 1.660 0.00044 0.00110 8.297 48.463 0.171 0.351 241 1.400 0.00051 0.00110 26.518 0.141 0.338 0.417 0.00037 242 3.738 0.611 0.00036 1.380 0.00049 0.00110 243 7.957 29.870 0.266 0.436 0.573 0.00030 1.610 0.00048 0.00110 121.920 0.209 0.366 244 25.541 0.00036 1.640 0.00060 0.00110 29.261 0.198 0.463 0.428 245 5.805 0.430 0.00029 23:774 0:088 0.204 1.650 0.00049 0.00110 246 2.087 0.00033 0.00053 0.00110 0.463 0.548 1.600 247 7.504 29.566 0.254 1.193 🖤 0.00030 1.740 0.00052 0.00110 99.67.0 0.716 .0,600 248 71.356 1.052 0.00025 1.740 0.00044 0.00110 249 39.076 99.060 0.394 0.375 250 22.398 99.670 0.225 0.442 0.508 0.00046 1:740 0.00080 0.00110 0.00071 0.00110 0.180 0.371 0.00045 1.580 251 1.444 21.641 0.067 33.528 0.085 0.201 0.424 0.00037 1.370 0.00051 0.00110 252 2.860 0.396 0.614 0.00036 1.420 0.00051 0.00110 253 11.496 47.244 0.243 254 12.176 40.538 0.300 0.485 0.620 0.00035 1.810 0.00062 0.00110 0.00032 0.00056 0.00110 0.564 0.587 1.760 255 17.046 51.511 0.331 0.00052 16.480 45:415 0:363 0.530 0.684 0.00033 1.590 0:00110 256 0.799 0.00034 1.480 0.00051 0.00110 257 17.131 50.597 0.339 0.424 258 19:142 56.693 0.338 0.437 0.773 0.00040 1.580 0.00064 0.00110 1.520 0.00057 0.00110 259 16.140 68.275 0.236 0.402 0.588 0.00037 0.844 1.243 0.00028 1.730 0.00049 0.00110 260 106.185 101.194 1.049 1.170 0.921 1.271 0.00030 1.860 0.00055 0.00110 261 114.113 97.536 1,206 0.00019 1.760 0.00033 0.00110 262 86.081 97:536 0.883 0.732 0.00068 155.738 98.755 1.577 1.231 1.281 0.00036 1.870 0.00110 263 0.00052 0.00110 1.025 0.00033 1.590 264 142.996 99.060 1.444 1.408 0.00036 1.550 0.00055 0.00069 24.994 0.107 0.320 0.334 265 2.673 31.699-0.00031 1.630 0.00051 266 6.031 0.190 0.387 0.492 0.00069 80.772 0.280 0.505 0.00031 1.540 0.00048 0.00069 267 11.440 0.142 268 5.323 45.720 0.116 0.344 0:338 0.00033 1.610 0.00052 0.00069 4.049 0.251 0.707 0.354 0.00017 1.420 0.00025 0.00069 269 16.154 1.620 0.00048 0.00069 270 2.107 13.716 0.154 0.317 0.485 0.00030 0.00023 1.610 0.00037 0.00069 271 1.356 20,117 0.067 0.207 0.325 272 3.058 21.946 0.139 0.290 0.481 0.00026 1.680 0:00044 0.00069 273 1.059 11.887 0.089 0.235 0.380 0.00031 1.650 0.00051 0.00069

STA YESIS MC SAT

BEELLO THE

79

Rio Grande (USA) Nordin, C. F., Beverage, C. P. (1965)

No. Q(m³/s) B(m) q(m²/s) V(m/s) D₅₀ (m) $D_{84}(m)$ S y(m) σg 274 2.447 18.593 0.320 0.00030 0.00051 0.00069 0.132 0.412 1.690 275 4.644 19:812 0.234 0.445 0.527 0.00033 1.610 0.00053 0.00069 276 15.376 0.247 0.466 0.530 0.00026 1.690 0.00044 0.00069 62.179 277 8.948 35.662 0.251 0.412 0.610 0.00036 1.470 0.00052 0.00069 0.220 278 10.817 49.073 0.405 0.544 0.00035 1.460 0.00051 0.00069 279.5.210.26.213 0.199. 0.399 0.498 0.00028 1.630 0.00046 0.00069 280 2.917 29.870 0.244 0.400 1.610 0.00053 0.00069 0.098 0.00033 281 12.997 82.906 0.157, 0.329 0.476 0.00025 1.870 0.00047 0.00069 282 18.434 63.094 0.292 0.378 0.773 0.00032 0.00050 0.00069 1.570 283 33.413 78.638 0.425 0.476 0.894 0.00033 1.550 0.00050 0.00069 284 107.318 118.872 0.903 0.00048 0.00069 0.780 1.157 0.00029 1.660 1.650 0.00043 0.00069 285 83.532 120.396 0.694 0.652 1:064 0.00026 286 118.927 120.396 0.988 1.266 0.00022 1.600 0.00036 0.00069 0.780

TESIS CON FALLA DE ORIGEN

and the second sec

:	Toffaleti, F. B. (1968)									
No.	Q(m³/s)	B(m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	σ	D ₈₄ (m)	S	
1	21605.088	542.544	39.822	17.282	2.304	0.00066	1.920	0.00126	0.00013	
2	19934 448.	548.640	36.334	16.764	2.167	0.00068	2.010	0.00137	0.00012	
3	19084.976	575.462	33.165	13.686	2.423	0.00046	2.000	0.00092	0.00011	
4	28825.680	1109.472	25.981	16.429	_1.581	0.00031	1:660	0.00051	0.00004	
	13251.885	532.181	24.901	15.240	1.634	0.00066	1.920	0.00126	0.00008	
67	26560.400	1097.280	24.206	15:667	1.545	0.00034	1.450	÷0.00050	0.00003	
7	26305.552	1103.375	23.841	14.813	1.609	0.00019	1.590	0.00030	0.00004	
8	26079.024	1097,280	23,767	15.057	1.578	0.00026	1.630	0.00042	0.00004	
9	26022.384	1103.375	23.584	14.966	1.576	0.00017	1.380	0.00023	0.00003	
10	25965.760	1103:375	23.533	14.813	1.589	0.00020	1.720	0.00035	0.00003	
11	11637.873	505.968	23.001	12.070	1.906	0.00017	1.370	0.00024	0.00008	
12	24465.008	1103.375	22.173	14:417	.1:538	0.00019	1.590	0.00030	0.00004	
13	24295.120	1103.375	22.019	14.448	1.524	0.00019	1.550	0.00029	0.00004	
14,	,24295,120	1103.375	22:019	14:691	. 1:499	0,00019	1:590	0:00030	0.00003	
15	10958.269	523.036	20.951	13.716	1.528	0.00076	1.990	0.00152	0.00005	
16	22850.992	1,100.328	20.767	15:453	1.344	0.00030	1.690		0.00004	
17	10760.077	518.160	20.766	11.948	1.738	0.00056	1.990	0.00112	0.00011	
18	22652.784	1,103,375	20.530	13.442	1.527	0.00019	1.590	0.00030	0.00004	
19	22029.840	1097.280	20.077	14.630	1.372	0.00020	1.550	0.00031	0.00004	
20	410278,705	513.588	20.014	11.400	(d . 1.756)	40.00041	1:870	0.00077	0.00008	
21	22058.144	1103.375	19.992	13.807	1.448	0.00019	1.590	0.00030	0.00003	
22	10165.441	516.635	19,676	12:253	1.606	0.00061	2!050	0.001251	0.00009	
23	9910.597	508.711	19.482	11.400	1.709	0.00043	1.950	0.00084	0.00010	
24	21208.672	1100.328	19.275	13/228	⇔ 1:457	0.00020	1:550	0.00031	0.00004	
25	21010.464	1100.328	19.095	12.985	1.471	0.00018	1.500	0.00027	0.00003	
26	8777.958	510.844	17.183	10.668	1.611.	0:00036	2:210	0:00078	.0.00011	
27	8409.850	494.995	16.990	10.851	1.566	0.00048	2.130	0.00102	0.00008	
28	18490.336	1097.280	. 16.851	12.527	1.345	0:00019	1.590	0.00030	0.00004	
29	8523.114	507.796	16.785	10.638	1.578	0.00048	2.130	0.00102	0.00010	
30	8409.850	502.920	16:722	11.064	1.511	0.00029	1.790	0.00052	0.00010	
31	18122.224	1088.135	16.654	12.893	1.292	0.00021	1.620	0.00033	0.00003	
32	8523.114	513.893	16,585 🐇	10.942	a 1.516 🦟	0.00048	1.960	0.00094	0.00007	
33	8239.954	509.625	16.169	10.363	1.560	0.00024	1.950	0.00046	0.00009	
34	17414.336	1085.088	16.049	12.558	1,278	0.00023	1.690	0.00039	0.00003	
35	8183.322	514.502	15.905	10.424	1.526	0.00023	2.020	0.00046	0.00007	
36	8126.690	518,160	15.684	10.729	1.462	0.00044	1.930	0.00085	0.00011	
37	16932.960	1085.088	15.605	12.375	1.261	0.00020	1.640	0.00033	0.00004	
38	17017:904	1091.184	15.596	12:131	1.286	0.00020	1.620	0.00032	0.00004	
39	7871.846	510.844	15.409	11.095	1.389	0.00053	2.760	0.00147	0.00006	

TESIS CON FALLA DE ORIGEN

				ronaleu,	F. D. (180	0)				
No.	Q(m³/s)	B(m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	σg	D ₈₄ (m)	S	
40	7786.898	507.187	15.353	10.211	1.504	0.00025	1.950	0.00049	0.00008	
410	16338.328	1072.896	15.228	12,558	1.213	0.00020;	1.580	0;00031	0.00003	
-42	7362.158	498.653	14.764	10.119	1.459	0.00039	2.400	0.00093	0.00008	
43	15177.372	1066:800	14 227	11.521	1.235	0.00019	1.530	0.00029	0.00004	
- 44	7322.516	515.721	14.199	9.815	1.447	0.00021	1.680	0.00036	0.00012	
245	6909.102	494.995	13.958	9.876	1.413	0:000397	2:400	0.00093	0.00009	
46	6909,102	507.187	13.622	10.272	1.326	0.00022	2.860	0.00061	0.00006	
47	6880.786	505:968	13.599	9.327	1:458	0.00037	1:760	0:00065	0.00012	
48	6824.154	505.358	13.504	9.997	1.351	0.00060	2,000	0.00119	0.00007	
49	14214.629	1054.608	13.479	11:461	1:176	0.00019	1.530	0.00029	0.00003	
50	6795.838	504.748	13.464	11.217	1.200	0.00074	1.850	0.00137	0.00004	
. 51 ≞	67.10.890	499.262	13.442 💽	9.479	1:418	0.00042	1.910 🖓	0.00079	0.00011	
52	6795.838	508.406	13.367	9.876	1.354	0.00042	1.910	0.00080	0.00010	
53	13931.469	1051,560	13.248	11:765	1:126-	0.00019	1:490	0.00029	0.00003	
54	6625.942	505.968	13.096	10.973	1.193	0.00076	2.810	0.00214	0.00003	
55	6399:414	499.872	12(802	9.571	1:338	0.00039	2.400	0.00093	0.00009	
56	6257.834	499.872	12.519	9.601	1.304	0.00041	2.450	0.00100	0.00008	
57	6257.834	501.701	12:473	9,784,	1.275	0.00016;	1.330	0.00022	0.00006	
58	6229.518	501.091	12.432	10.058	1.236	0.00037	1.710	0.00063	0.00011	
59	6257.834	504.139	12.413	9.967	1:245	0.00045	2.790	0.00124-)	0.00005	
60	6201.202	501.701	12.360	10.211	1.211	0.00031	2.650	0.00083	0.00003	
61	6059.622	494:385**	12:257	9.540	1.285	0.00034	1:600	0:00054	0.00009	
62	6059.622	494.385	12.257	9.510	1.289	0.00032	2.570	0.00081	0.00007	
.63 ·	6070.949	511.454	11.870	9.723	1.221	0.00032	2.590	0.00083	0.00011	
64	5946.358	502.920	11.824	10.485	1.128	0.00066	2.740	0.00181	0.00004	
65	12204.193	1033.271	11,811	9.57.1	1.234	0.00019	1:490	0;00028	0.00004	
66	5719.830	499.872	11.443	9.662	1.184	0.00016	1.370	0.00022	0.00004	
67	11637.873	1027.176	11.330	14.478	.√0.783 ∭	0.00030	1.630	0.00049	0.00003	
68	11751.137	1042.416	11.273	11.125	1.013	0.00030	1.630	0.00049	0.00003	
69	5578.250	498.348	11.193	9.175	1:220,	2 0:00021	2:770	.0.00059	.0.00007	
70	5606.566	502.920	11.148	10.119	1.102	0.00072	1.860	0.00133	0.00004	
. 7.1 2	5436.670	497.738	10.923	9.327	1.171	.0.00062	2:240	0.00139	0.00005	
72	5323.406	495.300	10.748	8.992	1.195	0.00021	2.770	0.00059	0.00006	
73	10703.445	1014.984	10.545	10:272	1.027	0.00020	1:610	0:00033	0.00003	
74	5266.774	499.567	10.543	9.449	1.116	0.00063	2.370	0.00148	0.00005	
7,5	10561.865	1008.888	10.469	9.205	1.137	0.00018	.1.530	0:00027	0.00004	
76	10901.657	1045.464	10.428	10.699	0.975	0.00025	1.810	0.00046	0.00003	
77	10590.181	1024.128	10.341	10.577.	0.978	(0.00029) ii	1.800	0.00053	0.00003	
78	5068.562	492.861	10.284	8.565	1.201	0.00018	1.390	0.00024	0.00008	

. e construction estimated

120 (C. 20. 20 (C. 2000))

	an a	an later rates al regionar	and the second		issippi (O	34)			
		n na hair An thair		Toffalet	i, F. B. (196	58)			
No.	Q(m³/s)	B(m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	σ	D ₈₄ (m)	S
79	5040.246	492.252	10.239	8.534	1.200	0.00018	1.390	0.00024	0.00006
80	10505.233	1033 271	10:167	10.607	0,959	.0.00030	1.630	0:00049)	0.00003
. 81	4983.614	491.032	10.149	8.504	1.193	0.00020	2.980	0.00058	0.00007
82	5040.246	499,872	10.083	9.815	1:027	0.00055	2:160	0.001185	0.00004
83	4953.298	491.947	10.069	9.053	1.112	0.00046	1.900	0.00088	0.00007
84	4898.667	486:765	10:064	8.900	:-1.131e	i4 0.00055	2.050	0.00114	0.00005
85	4870.351	494.385	9.851	8.504	1.158	0.00031	1.720	0.00054	0.00010
86,	9825.650	1002.792	9.798:**	8.931	1.097	+0.000,19	1:590	0.00030	0:00004
87	4870.351	497.433	9.791	8.565	1.143	0.00031	1.800	0.00056	0.00010
·88-	4813.719	493.776	9.749	9.662	1.009 *	0.00076	2.810	0.00214	0.00003
89	4700.455	492.252	9.549	8.332	1.146	0.00024	3.760	0.00090	0.00006
90	4728.771	497.738	9.501.0	9:235	1.029	0.00064	1.780	0.00114	0.00003
91	4615.507	486.156	9.494	8.382	1.133	0.00022	1.710	0.00038	0.00007
92	4530.559	486.156	9.319	8.504	1.096,	0.00021	2:150	0.00045	0.00006
93	4502.243	486.156	9.261	8.413	1.101	0.00020	1.600	0.00031	0.00007
94	4502.243	486.156	9.261	8.413		, 0.00020**	l.600 ⊡	0.00031.	0.00007
95	4558.875	496.823	9.176	9.632	0.953	0.00050	2.000	0.00100	0.00003
96	4388.979	483.108	9.085 🖓 🖉	7.986	1.138	0.00021	1:630	0.00034	0:00007
97	4190.767	482.803	8.680	8.352	1.039	0.00060	2.260	0.00135	0.00005
98-	4134.135	485.241	8.520	8.077	1.055	0.00043	1.900	0.00082	0.00010
99	4049.187	480.365	8.429	8.016	1.052	0.00046	1.890	0.00087	0.00005
100	4020.871	480:365	8.370	7:986	1.048	0.00022	2.410	0.00052	0.00006
101	3992.555	480.365	8.312	8.016	1.037	0.00050	1.830	0.00092	0.00008
102	3907.607	481.889	.8.109	7.772	1.043	0.00022	1.660	0.00036	0.00007
103	3907.607	481.889	8.109	7.772	1.043	0.00022	1.660	0.00036	0.00009
104	8041.742	993.647	8.093	9.540	0!848	0:00031	1.700 🔅	0.00052;	0.00002
105	3850.975	484.022	7.956	7.468	1.065	0.00022	1.780	0.00040	0.00011
106	3850.975	484.632	. 7.946.	7.742	•. . 1.026	0.00046	2.790	0.00128	0.00005
107	3822.659	486.461	7.858	7.559	1.040	0.00037	1.740	0.00064	0.00009
108	3766.027	480,974	7.830	7.772	ya 1.007	0.00063	2.650	0.00168	0.00003
109	3681.079	481.279	7.649	7.651	1.000	0.00055	1.810	0.00100	0.00008
110	3624.447	475.488	7.623	7.529	1.012	0.00046	2.140	0.00098	0.00007
111	7503.738	987.552	7.598	8.931	0.851	0.00030	1.630	0.00049	0.00003
112	7447.106	987:552	7.541	9.175	∴n 0:822 d	0.00030	÷1:630	0.00049	0.00003
113	3624.447	486.156	7.455	7.468	0.998	0.00043	2.420	0.00103	0.00005
114.	3567.815	479:145	7:446	(6:584 in)	1.131	0.00017	1:350	. 0:00023	0.00008
115	3426.235	478.536	7.160	7.986	0.897	0.00073	2.650	0.00194	0.00004
116	6937.418	978:407	7.091	8.565	0:828	0.00030	1,630	0.00049	0.00002
117	3397.919	480.974	7.065	7.346	0.962	0.00036	2.300	0.00083	0.00007

83

Anexo I

				Toffaleti	F. B. (196	8)			
					,				ini An an tao
No.	Q(m³/s)	B(m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	σg	D ₈₄ (m)	S
118	3256,339	472.744	6.888	7.346	0.938	0.00030	2.410	0.00073	0.00006
119	3256 339	472 744	6.888	7.346	0.938	+0.00030	2:410	0.00073	0.00006
120	6456.046	938.784	6.877	8.839	0.778	0.00031	1.630	0.00051	0.00002
121	6540 994	972.312	6,727	8.595	0.783.1	0.00030	1.630	0.00049	0.00003
122	3114.759	478.536	6.509	7.315	0.890	0.00067	2.280	0.00153	0.00006
123	3086,443	477.926	6.458	6:736	0.959	0.00039	1:990	0.00078	0.00009
124	3001.495	474.878	6.321	6.828	0.926	0.00051	1.940	0.00099	0.00008
125	3029.811	480,060	6.311	7.742	0.815	0.00055	2.190	0:00120	0.00003
126	2888.231	472.440	6.113	6.949	0.880	0.00048	2.010	0.00096	0.00008
127	2916.547	477 621	6:106	6:401	0:954	0.00044	2.120	0.00094	0:00006
128	5493.302	914.400	6.008	6.919	0.868	0.00019	1.580	0.00030	0.00004
129	2789.125	469!392	5.942	6.949 G	0:855	0.00031	1.990	0:00062	0.00007
130	2831.599	477.621	5.929	6.944	0.854	0.00029	2.540	0.00074	0.00006
131	5323:406	914:400	5.822.0	8.230	0:707	0.00030	1.630	0.00049	0.00002
132	5125.194	908.303	5.643	6.736	0.838	0.00019	1.590	0.00030	0.00004
.133	2633.387	469.392	5.610	6:645	0.844	0.00059	2.480	0.00145	0.00006
134	2627.724	469.392	5.598	5.944	0.942	0.00056	2.360	0.00132	0.00009
1135	5096.878	911:352	5.593×:	7.925	0.706	~0.00031	1.610	0.00050	0.00002
136	4955.298	905.256	5.474	8.108	0.675	0.00030	1.650	0.00050	0.00002
137	4898.667	900.303	5.441	7.833	0.695	0.00032	,2.200	0.00071	0.00002
138	4813.719	911.352	5.282	7.833	0.674	0.00031	1.590	0.00049	0.00002
139	2486.144	471.220	5.276	6.401	0.824	0.00027	2:080	0.00056	0.00006
140	4700.455	908.303	5.175	7.590	0.682	0.00035	1.470	0.00051	0.00002
141	4615.507	908.303	5.081	7.772	0.654;	0.00030	1.630	0.00049	0.00002
142	4530.559	899.160	5.039	7.498	0.672	0.00032	1.600	0.00050	0.00002
143	4502:243	1908.303	4!957	7.681	0.645	0.00029	1:650	0.00047	0.00002
144	2299.258	470.611	4.886	5.547	0.881	0.00062	2.550	0.00158	0.00010
145	2279.437	470.916	4.840	6.035	0:802	.0.00022	2.330	0.00050	0:00007
146	2279.437	470.916	4.840	6.035	0.802	0.00022	2.330	0.00050	0.00009
147	2270.942	469.392	4.838	5.974	(; : 0.810), .	0.00058	2.460	0.00141	0.00007
148	4332.347	896.112	4.835	7.529	0.642	0.00032	1.560	0.00050	0.00002
149	4275.715	896.112	4.771	7.529	0.634	0.00029	1.660	0.00048	0.00002
150	2208.647	465.429	4.745	6.066	0.782	0.00030	2.080	0.00062	0.00007
151	4247:399	896.112	4.740	7:590	0.625	0:00030	1.630	0.00050	0.00002
152	2101.046	464.515	4.523	5.639	0.802	0.00040	2.000	0.00080	0.00010
153	2115.204 -	474.878	4.454	- 16:523	0.683	0.00060	4.070	0.00244	0.00005
154	2064.235	471.830	4.375	6.340	0.690	0.00113	3.560	0.00402	0.00005
155	2004.772	467.258	4.291	5.608	0.765	0.00028	2.320	0.00066	0.00005
156	1885.845	463.905	4.065	5.547	0.733	0.00028	2.330	0.00065	0.00005

84

No.	Q(m³/s)	B(m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	σg	D ₈₄ (m) S
157	1911.329	472.135	4.048	6.187	0.654	0.00056	2.870	0.00160 0.00005
158	1885.845	471.525	3.999	6.157	0.650	0.00062	3.250	0.00200 0.00006
159	1806 560	470.916	3:836	6.096	0.629	0.00058	2.640	0.00153 0.00006
160	1766.918	462.686	3.819	5.395	0.708	0.00026	2.640	0.00069 0.00006
1614	1755.591.	470.611	3.730	6.005	0.621	0.00051	2,590	0.00133 0.00007
162	1633.832	459.638	3.555	5.182	0.686	0.00032	1.950	0.00063 0.00010
163	1560.211	460.248	3.390	4.816	0.704	0.00030	1.940	0.00057-0.00013
164	1512.074	455.980	3.316	4.938	0.672	0.00023	2.210	0.00051 0.00008
165	1512.074	457.200	3:307	4.663	0.709	0.00047	2:540	0.00120 0.00007

TESIS CON FALLA DF

a 112 C 113

Río Red (USA) Toffaleti, F. B. (1968)

No.	Q(m³/s)	B(m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	σ	D ₈₄ (m)	S
1	1537.558	182.880	8.407	7.376	1.140	0.00020	2,160	0.00044	0.00008
2	1339.346	178.308	7.511	7.254	1.035	0.00022		0.00048	0.00007
3	1296.872	177.698	7.298	7.056	1.034	0.00017	1.540	0.00026	0.00007
4	1115,650	175.260	6.366	6.401	0:995	0.00022	2:190	³ 0.00047	0.00008 -
5	1019.376	173.126	5.888	7.071	0.833	0.00015	2.820	0.00043	0.00007
;6 %	925.933	170:383	5.434	5.791	0.938	0.00012	1.650	0.00020	0.00008
7	863.638	170.383	5.069	5.822	0.871	0.00012	2.260	0.00028	0.00008
<i>i</i> 8	736.216	165.506	4.448	5.151	0.864	0.00016	1.670	0.00026	0.00008
9	702.237	169.164	4.151	6.157	0.674	0.00020	2.150	0.00042	0.00007
10	594:636	168.554	3.528	5.273	0.669	0.00017	2:080	0.00035	0,00008
11	535.172	166.116	3.222	4.115	0.783	0.00013	1.660	0.00022	0.00008
12	461.551	164.897	2.799	4.389	2 0.638	0.00011	1.690	0.00018	0.00008;
13	421.908	159.410	2.647	3.749	0.706	0.00017	1.540	0.00026	0.00008
14	407.750	162.154	2.515	4.176		0.00016	1.310	0:00021	0.00008
15	396.424	162.763	2.436	4.389	0.555	0.00010	1.630	0.00017	0.00008
16	362.445	156.972	2.309	3:749	0.616	0.00011	1.600	0.00017	0.00008
17	334.129	155.753	2.145	3.780	0.568	0.00017	1.420	0.00024	0.00008
18	331,297	160.325	2.066	4.420	0.468	0.00016	2.000	0.00031	80000.0
19	278.063	140.513	1.979	3.719	0.532	0.00011	1.630	0.00018	0.00008
20`	263:056	150.571	1.747	3.658	0.478	0.000091	1.460	0.00014	0.00008
21	253.994	146.304	1.736	3.170	0.548	0.00018	1.520	0.00027	0.00008
22	274.948	160.020	1.718	3.719	0.462	0.00018	2.030	0.00036	0:00008
23	223.696	130.454	1.715	3.383	0.507	0.00019	1.560	0.00029	0.00007
24	255.693	149.352	1.712	3.658	0.468	0.00010	1:630	0.00017	0:00008
25	242.951	146.304	1.661	3.551	0.468	0.00011	1.640	0.00018	0.00008
26	229.360	145.085	1.581	3.261	0.485	0.00016	1.830	0:00029:	0.00008
27	206.707	138.989	1.487	3.505	0.424	0.00011	1.590	0.00017	0.00008
28	199.628	139.903	1.427	3.505	0.407	0.00010	1:500	0.00014	0.00007
29	206.707	159.410	1.297	3.505	0.370	0.00010	1.590	0.00016	0.00008
30 e	190.283	155.753	1.222	2.999	0.407	0.00015	1.620	0.00024	0.00007
					a second a second s	Contraction of the second of the second	1. A 1990 A 11 A 12 A 13 A 14	the second se	a set of a second set of a set of a

,

Canales de ACOP (USA) MahMood, K., et al (1979)

						in a substance			
No.	Q(m³/s)	B(m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	σg	D ₈₄ (m)	S
1	528.676	123.444	4,283	3.719	1.152	0.00011	1.270	0.00014	0.00006
2.5	391:056	92.050	4.248	3.658	1.161	0.00016	1.340	0.00021	0.00015
3	486.823	123.444	3,944	4.267	0.924	0.00020	1.530	0.00030	0.00010
'4	481.924	123.444	3.904	4.298	0.908	0.00036	1:280	0.00047	80000.0
5	428.151	113.995	3.756	3.688	1.018	0.00021	1.300	0.00027	0.00012
6	380.578	101/498	. 3:750 ·	2.896	1\295	0,00018	1.340	0.000241	0.00011
7	414.474	111.557	3.715	3.688	1.007	0.00021	1.290	0.00028	0.00012
82	417.419	112.471	3.711	3.658	1.015	20:00020	1.250	0.00025	0,00012
9	451.399	121.920	3.702	4.237	0.874	0.00020	1.390	0.00028	0.00010
10	412:038	111.862	r 3683	3.627	'. 1.016 ₆	0.00017	1.230	0.00021	0,00012
11	441.290	120.396	3.665	4.084	0.897	0.00021	1.310	0.00027	0.00009
12	423.252	118.262	3,579`	3.627	0.987	0.00026	1.300	0.00034	0.00012
13	404.619	114.300	3.540	3.566	0.993	0.00020	1.310	0.00026	0.00012
14	393.208	111.862-,	3.515	3:566	0.986 *	0.00024	1.290	0.00031	0.00012
15	395.133	113.081	3.494	3.810	0.917	0.00022	1.260	0.00028	0.00006
16	412.718	118.262	3.490	3.597	3-0.970 h	0.00022	1:290	0.00028	0.00012
17	458.082	131.369	3.487	3.048	1.144	0.00023	1.470	0.00033	0.00015
18	412.293	118.262-	3.486	3.627	0.961	A0.00023	1.270	0.00030	0.00012
19	450.804	131.978	3.416	3.018	1.132	0.00020	1.390	0.00028	0.00015
20	394.765	117.653	3,355	-3!536	0.949	0.00028	1.330	0.00037*	**0(00011
21	371.800	113.386	3.279	3.505	0.935	0.00023	1.370	0.00032	0.00012
22	392.698	119.786	3.278	3.566		0.00028	1.400	0.00039	0.00011
23	363.645	110.947	3.278	3.444	0.952	0.00028	1.380	0.00038	0.00012
24	357.755	111.252	3.216	3.536	0.909	-: 0.00020	1.340	0.00027	0.00012
25	388.054	121.920	3.183	3.658	0.870	0.00033	1.390	0.00046	0.00011
26	387.686	122.225	3.172	···3:719	;∻0.853 N	o.00028	1.370	*0.00038	0.00011
27	346.712	110.642	3.134	3.322	0.943	0.00025	1.340	0.00034	0.00012
28	349.458	111.557	3:133	3.414	0.918	0.00023	1.410	0.00032	0.00012
29	349.968	112.166	3.120	3.475	0.898	0.00021	1.300	0.00027	0.00011
30	342.945	110.947	3.091	3.292	0.939	0.00025	1:430	0.00036	0.00012
31	355.716	116.738	3.047	3.261	0.934	0.00030	1.350	0.00040	0.00011
32	362.909	120.091.	3:022	3.566	0.847	0.00027	1.360	0.00037	0.00011.
33	375.651	125.882	2.984	3.810	0.783	0.00027	1.490	0.00040	0.00012
34	337.282	116.434	2.897	3.200	0.905	0.00029	1:370	0:00040	0.00011
35	363.333	128.016	2.838	2.774	1.023	0.00026	1.380	0.00036	0.00009
36	321.510	. 119.786 ·	2.684	3.414	0.786	0.00017	1.430	0.00024	0.00009
37	169.675	70.714	2.399	1.890	1.270	0.00016	1.420	0.00023	0.00013
38	169.080	72.238	2:341	-2:469	0.948	10.00016	1.300	0.00021	0.00012
39	297 157	128.321	2.316	2,560	0.904	0.00015	1.160	0.00018	0.00010

Canales de ACOP (USA) MahMood, K., et al (1979)

				MahMood	I, K., et al ('	1979)			
No.	Q(m³/s)	B(m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	σ	D ₈₄ (m)	S
40	297.412	129.235	2.301	2.621	0.878	0.00019	1.360	0.00025	0.00010
41	267.651	117.348	2:281	2:804	·v+0.813	0.00031	1:400	0.00044	0.00011
42	291.267	128.626	2.264	2.591	0.874	0.00018	1.330	0.00023	0.00010
43	153 307	70.714	2.168	2.103	1.031	0.00017	1.490	0.00026	0.00013
44	156.479	72.238	2.166	2.408	0.900	0.00016	1.280	0.00021	0.00015
45	153.817	7.1.628	2.147	2.347	0.915	0.00014	1.290	0.00019	0.00017
46	279.799	135.941	2.058	2.317	0.889	0.00029	1.370	0,00040	0.00011
47.	183.833	91.135	2.017	2,195	0.919	0.00017	1.560	0.00027	0.00014
48	140.140	70.104	1.999	2.347	0.852	0.00013	1.400	0.00018	0.00013
49	137.818	69.190	1.992	2.377		0.00013	1.400	0.00018	0:00013
50	138.045	70.409	1.961	2.408	0.814	0.00012	1.390	0.00016	0.00015
51	139:744	71.933	1.943	2:225	0.873	0.00015	/ 1:300	0.00019	0.00011
52	224.439	120.701	1.859	2.499	0.744	0.00020	1,750	0.00034	0.00008
53	130.456	70.409	1.853	2:347	0.789	0.00013	.1.560	0.00020	0.00013
54	166.871	90.526	1.843	1.890	0.975	0.00018	1,360	0.00024	0.00011
.55	90.416	49.378	1.831	2.134	0.858	0.00017	1:220:	0.00021	0.00015
56	89.481	49.682	1.801	2.164	0.832	0.00019	1.290	0.00024	0.00015
57.	85.205	47.854	1.781	2.103	0.847	0.00017	1.210	0.00020	0.00013
58	87.499	49.378	1.772	2.195	0.807	0.00018	1.230	0.00022	0.00014
59	86.338	49.378,	1.749	2:164	0.808.	0.00017	1.220	0.00021	0.00015
60	86.536	49.682	1.742	2.164	0.805	0.00021	1.300	0.00027	0.00015
61	85.319	49.073	1.739	.2:164	0.803	0.00017	1.220	0.00021	0.00015
62	86.253	49.682	1.736	2.225	0.780	0.00019	1.250	0.00023	0.00015
63	222.089	128.016	1.735	2.256		0.00023	1.420	0.00032	0.00010
64	61.731	35.662	1.731	2.530	0.684	0.00013	1.200	0.00015	0.00007
65	84.016	49.378	1.701	2.164	0:786	0.00017	1.290	0.00022	0.00015
66	83.308	49.073	1.698	2.073	0.819	0.00018	1.250	0.00022	0.00014
67	79.174	46.939	1.687 .	2:438	0.692	0.00014	-1:230	0.00017	0.00010
68	78.551	46.634	1.684	2.317	0.727	0.00015	1.200	0.00018	0.00011
69	151.240	90.221	1.676	1:890	0.887	0.00012	1.290	0.00015	0.00015
70	77.107	46.330	1.664	2.256	0.738	0.00015	1.220	0.00018	0.00011
71	233.104	140.208	1.663	2.073	0.802	0.00021	1.340	0.00028	0.00010
72	81.524	49.073	1.661	2.134	0.779	0.00018	1.240	0.00023	0.00015
.73	77.277	46.634	1:657	2:256	0.735	0.00015	1.220	0.00018	0.00011
74	207.619	126.187	1.645	2.164	0.760	0.00027	1.410	0.00038	0.00010
75	75.833	46.330	1.637	2.347	0.697	0.00016	1.170	20.00019	0.00011
76	80.193	49.073	1.634	2.042	0.800	0.00018	1.230	0.00022	0.00015
77	75.861	46.634	1.627	2.317		0.00015	1.230	0.00018	0.00011
78	75.323	46.330	1.626	2.286	0.711	0.00016	1.180	0.00019	0.00010

Anexo 1

Canales de ACOP (USA) MahMood, K., et al (1979)

				MahMood	l, K., et al ('	1979)			
No.	Q(m³/s)	B(m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	σg	D ₈₄ (m)	S
79	58.333	35.966	1.622	2.469	0.657	0.00012	1.250	0.00015	0.00009
80	74.841	46.634	1:605	. 2.286	0.702	0.00015	1:200	0.00018	0.00011
81	74.218	46.634	1.592	2.286	0.696	0,00016	1.170	0.00018	0.00011
82	74:105	46.634	1.589 · <u>·</u>	2.225	0.714	0.00014	1.240	0.00018	0.00012
83	73.595	46.634	1.578	2.256	0.700	0.00015	1.230	0.00018	0.00011
84	79.599	50.597	1.573	2134-	0.737	0.00019	-1.250	0.00024	~0,00015
85	56.294	35,966	1,565	2.286	0.685	0.00014	1.340	0.00018	0.00008
86	55.643	35.662	1:560	2.347:	0.665	0.00011	1.320	0.00015	0.00008
87	110.719	71.018	1.559	2.164	0.720	0.00018	1.290	0.00023	0.00014
88	72.661	46.634	1.558	§2.317	0.673	0.00015	1:230	0.00018	0.00012
89	72.661	46.634	1.558	2.347	0.664	0.00016	1.190	0.00019	0.00011
90	75.691	49.073	1.542	12:164	0:713	0.00019	1,250	0.00024	0.00015
91	71.925	46.634	1.542	2.317	0.666	0.00015	1.230	0.00018	0.00011
92,	54.368	35,357	1.538		0.7018	0.00013	1.250	0.00016	0:00009
93	54.736	35.662	1.535	2.195	0.699	0.00012	1.220	0.00015	0.00009
94	55.161	35,966	1.534	2.225	0.689	0.00011	1.250	0.00014	0.00008
95	54.142	35.357	1.531	2.256	0.679	0.00011	1.250	0.00014	0.00007
96	71:302	46.634	1.529	. 2.103	0.727.	0.00021	1.380	0.00029	0.00010
97	70.707	46.634	1.516	2.164	0.701	0.00015	1.250	0.00018	0.00010
98 5	70.424	46.634	1.510	2.195	0.688	0.00014	1.250	0.00018	.0.00012
99	70.396	46.634	1.510	2.317	0.652	0.00014	1.250	0.00018	0.00012
100	70.396	46.634	1,510		0.698 🤛	, 0.00014J	an 1:25 0	0.00018	0.00010
101	52.924	35.357	1.497	2.164	0.692	0.00013	1.270	0.00017	0.00009
102	52:471	35.357	1.484	2.286	0.649	0.00012	1.230	0.00015	0.00009
103	70.028	47.244	1.482	2.164	0.685	0.00015	1.190	0.00018	0.00012
104	68.130,	46.025	1.480	2.073	0.714	0.00015	1.210	0.00018	0.00013
105	52.273	35.357	1.478	2.256	0.655	0.00012	1.270	0.00015	0.00007
106	69.178	46.939	1:474	2.164	s≩0.681,	0.00016	1.240	0.00020	0.00010
107	52.414	35.662	1.470	2.530	0.581	0.00012	1.180	0.00014	0.00008
108	51.876	35.357	1.467	2.195	0.669	0.00012	1:220.	0:00015	0.00009
109	52.131	35.662	1.462	2.286	0.639	0.00011	1.250	0.00014	0.00008
110	68.782	47.244	1:456	2.225		0.00016	1.160.	0.00018	0.00015
111	51.905	35.662	1.455	2.195	0.663	0.00014	1.280	0.00017	0.00009
112	67.847	46.634	1.455	2:134		, 0:00016	1.190.	0.00019	0.00012
113	67.706	46.634	1.452	2.164	0.671	0.00015	1.240	0.00018	0.00011
114	179.557	124.358	1.444	2.042	0.707	0.00022	1.390	0.00031	0.00011
115	51.423	35.662	1.442	2.317	0.622	0.00011	1.220	0.00014	0.00007
116	68.838	47.854	1.439	2.195 6	0.655	0.00015	1.180	0.00018	0.00015
117	67.111	46.939	1.430	2.134	0.670	0.00015	1.240	0.00019	0.00011
							· · · -		

Canales de ACOP (USA) MahMood, K., et al (1979)

								a shi wa sa iy	
No.	Q(m³/s)	- B (m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	αg	D ₈₄ (m)	S
118	50.602	35.662	1.419	2.225	0.638	0.00013	1.230	0.00016	0.00007
119	65.922	46.634	1.414	2:164	0.653	0,00015	1.260	30.00019	0.00011
120	97.438	70.409	1.384	2.103	0.658	0.00015	1.330	0.00020	0.00013
121	48.620**	35:662	1:363	2.317	40.589	0.00012 *	1:260	0.00015	0.00007
122	63.770	47.549	1.341	2.164	0.620	0.00016	1.170	0.00018	0.00015
123	158.093	118:872	1:330	2.225	0.598	10.00008	1.260	-(0.00010)	0.00007
124	56.804	46.330	1.226	1.920	0.639	0.00014	1.250	0.00018	0.00011
125	56.889	47.244	1.204	,2.042	0.590	10.00015	1.210	0.00018;	0.00015
126	146.625	126.492	1.159	1.707	0.679	0.00020	1.600	0.00032	0.00009
127,	99.477	86.563	1.149	1.646	0.698	0.00019	1.550	0:00030	0,00013
128	98.939	86.563	1.143	1.646	0.694	0.00017	1.490	0.00025	0.00013
129	96.589	86.563	<1.116 €	1.615	0.691	0.00013	1.410	0.00018	0.00014
130	76.937	69.494	1.107	1.829	0.605	0.00011	1.520	0.00016	0.00013
131	136:317	127.406	11070	1.768	10.605	0.00013	1.420	0.00019	0.00009
132	94.267	88.392	1.066	1.463	0.729	0.00008	1.270	0.00011	0.00014
133	49.639	46.634	1.064	1.676	0.635	0.00015	1.190	0.00017	0.00011
134	52.131	49.073	1.062	1.433	0.742	0.00014	1.200	0.00017	0.00015
135	47.827 ····	46.330	1,032	1.798	0.574	0.00017	1.250	0.00021	0.00011
136	90.529	88.392	1.024	1.524	0.672	0.00015	1.550	0.00023	0.00014
137	85.290	88.392	0.965	1.463	0.660	0.00016	1.530	0.00025	0.00013
138	92.794	100.889	0.920	1.402	0.656	0.00015	1.520	0.00023	0.00011
139	44.004	48:768	-0.902	11:341	0.673	0.00018	1.200	0.00021	0.00014
140	110.124	125.578	0.877	1.859	0.472	0.00024	1.440	0.00035	0.00009
141	75.606	88:392	0.855	1.463	0.585	0.00009	1.320	0.00012	0.00009
142	29.591	35.662	0.830	1.676	0.495	0.00009	1.310	0.00011	0.00009
143	77.985	94.183	• 0:828 •	1.433	0.578	÷0.00014	1:370	ି 0:0001 9	0.00014
144	80.561	100.279	0.803	1.372	0.586	0.00018	1.640	0.00029	0.00009
145	78.919	99.670	. 0.792	1.341	0.590	0.00017	1.500	0.00025	0.00010
146	74.303	94.793	0.784	1.494	0.525	0.00015	1.290	0.00019	0.00014
147	68.923	124.968	0.552	1.463	0.377	0.00020	1.500	0.00029	0.00005
148	41.881	99.060	0.423	1.006	0.420	0.00016	1.280	0.00021	0.00010
149	28.770	85.649	0.336	0.914	0.367	0.00015	1.560	0.00024	0.00012
150	27.496	86.258	0.319	0.914	0.349	0.00013	1.590	0.00020	0.00014
151	29.478	93.269	0.316	0.762	0.415	0.00015	1.460	0.00022	0.00009

Thur	- NŢ
FALLA DE	ORIGEN

Río Saskatchewan Norte y Río Elbow (Canadá) Samide, G. W. (1971)

				Samide	e, G. W. (19	∋ 71)	·		
No.	Q(m³/s)	B(m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	σg	D ₈₄ (m)	S
r et	39.144	6,096	6.421	2.743	2.341	0.02919	1.980	0.05779	0.00158
2	39.144	6.096	6.421	2.743	2.341	0.03414	1.770	0.06043	0,00158
3	36.899	6.096	6.053	2.530	2.393	0.03152	2.270	0.07154	0.00158
4	36,471	6.096	5.983	2.438	2:454	0.02273	2.010	0.04568	*0.00158
5	36.428	6.096	5.976	2.530	2.362	0.02745	2.020	0.05544	0.00158
6	34.643	6.096	5.683	2.530	ay 2.246 🛸	0.02438	1.750	0.04266	0.00158
7	34.411	6.096	5,645	2.499	2.258	0.01959	2.210	0.04330	0.00158
8`	33,109	6.096	5.431	2.195	. 2.475	0.01760	2:470	0.04347	0.00158
9	31.681	6.096	5.197	2.256	2.304	0.02154	2,100	0.04523	0.00158
10	31.605	6:096	<u>5.185</u>	3 2.469	2:100	0,02381	2.000)	0.04761	0.00158
11	31.079	6.096	5.098	2.134	2.390	0.03722	2.050	0.07631	0.00158
12.	30.499	6.096	5.003	2:073	2.414	0.02437	1.890	0.04606	
13	30.029	6.096	4.926	2.286	2.155	0.01399	1.830	0.02561	0.00158
14	29.552	6.096	4.848	2.377	2.039	-0.01931.	2.000	0.03862	0.00158
15	29.378	6.096	4.819	2.012	2.396	0.03083	2.270	0.06998	0.00158
ୀ6 ୍	29.303	6.096	4:807	.2.012	2.38972	#0.02813	1:800	0.05064	4 0.00158 4
17	27.908	6.096	4.578	1.951	2.347	0.02433	1.930	0.04695	0.00158
18.	26.982	. 6.096 💷	4.426	1.981	2.234	0.01864	2,300	0.04287	0.00158
19	26.902	6.096	4.413	2.042	2.161	0.02064	2.110	0.04356	0.00158
20	26.544	6.096	4:354	. 1 .920	2.2685	0.04517	1.500	0.06775	.0.00158
21	26.470	6.096	4.342	1.829	2.374	0.02910	2.170	0.06315	0.00158
22	26.469	6.096	4.342	1.829	2:374	0:03253	2.060	0.06701	0.00158
23	26.028	6.096	4.270	1.829	2.335	0.02200	2.030	0.04466	0.00158
24	26.028	6.096	4.270	1.829	<u>, 2.335 </u>	0.02410	2:190	0.05278	0.00158
25	26.028	6.096	4.270	1.829	2.335	0.02230	1.950	0.04349	0.00158
26	25.156	6.096	4:127	2.042	2.021	0.04030	1.860	.0.07495	0.00158
27	24.287	6.096	3.984	2.164	1.841	0.01361	1.900	0.02585	0.00158
28	24.157	6.096	3.963	1:798	2.204	0.03070	2.090	0:06417-	0:00158
29	24.157	6.096	3.963	1.798	2.204	0.03192	1.990	0.06351	0.00158
30	24.103	6.096	3.954	1:707	2:316	0:03131	2.380	0.07451	0:00158
31	24.071	6.096	3.949	2.012	1.963	0.02831	2.200	0.06228	0.00158
32	11.621	3.048	3.813	, 1.372 ↔	2:780	0.03116	2.060	0.06420	0.00745
33	22.138	6.096	3.632	1.768	2.054	0.02019	2.080	0.04199	0.00158
34	10.803	3.048	3.544	<u>_1.067</u> ∖.	3.322	0.05092	2:130	0.10845	0.00745
35	10.491	3.048	3.442	1.189	2.895	0.05092	1.620	0.08248	0.00745
36	9.986	.3.048		4 1.15 8	2.829	0.07611	2:340;	0.17810	0.00745
37	19.878	6.096	3.261	1.829	1.783	0.02055	2.640	0.05424	0.00158
38	19.583	6.096	- 3)212	1,555	2,066	0.02256	2.150	0.04850	0.00158
39	7.349	3.048	2.411	0.853	2.825	0.04418	1.740	0.07687	0.00745

91

Rio Saskatchewan Norte y Rio Elbow (Canadá) Samide, G. W. (1971)

No.	Q(m³/s)	B(m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	σg	D ₈₄ (m)	S
40	7.053	3.048	2.314	0.793	2.920	0.05764	1.660	0.09568	0.00745
41.	6.881, 🕬	3:048	2.257	0.823	1. 2.743	0.04134	1.630	0.06738	0.00745
42	6.881	3.048	2.257	0.823	2.743	0.03806	1.750	0.06660	0.00745
43	46.868 With	3.048	- 2.253	1.006	2,240	0.02740	1.780	0.04877	0.00745
44	6.011	3.048	1.972	0.884	2.231	0.04510	2.020	0.09111	0.00745
45	15.971 ····	3.048	1.959	0.7934	2.472	0.05489	1.900	0.10429	0.00745
46	5.831	3.048	1.913	0.793	2.414	0.04940	2.070	0.10225	0.00745
47	5.707.	3.048	1.872	0.884	2.118	0.04123	2.010	0.08287	0.00745
48	5.691	3.048	1.867	0.793	2.356	0.02546	2.350	0.05983	0.00745
49	1.5.336×1002	3.048	d ⊈ 1:751	0.853	2.051	0.03049	1,900	0.05793	0:00745
50	5.253	3.048	1.723	0.732	2.356	0.03101	1.990	0.06171	0.00745
: 51,	5.253 ¹⁻¹⁻¹	3.048	1.723	0.762	2.261	0.03310	2.070	0.06851	0.00745
52	4.955	3.048	1.626	0.793	2.051	0.05751	1.990	0.11444	0.00745
53	4.908	3.048	1.610	0.823	1.957	0.01409	1:850	50.02606	0.00745
54	4.710	3.048	1.545	0.732	2.112	0.02912	1.940	0.05650	0.00745
:55	4.710	3.048	1.545	0.732	. 2.112	0.03493	1.630	0.05693	0.00745

Rios de Portugal bils (1973) Peterson y Howells (1973)

				Peterson	y Howells (1973)			
No.	Q(m³/s)	B(m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	σ	D ₈₄ (m)	S
1⊖	659.980	188.790	3.496	2.427	1.441	0.00260	2.300	0.00599	0.00082
22	639.981	187.699	3.410	2.441	1,397	0.00260	2:300	0.00599	0.00082
3	614.981	188.000	3.271	2.377	1.376	0.00260	2.300	0.00599	0.00079
4	613,982	188.939	× 3.250	2.316	1:403	0.00260	2.300	0.00599	0.00081
5	579.982	187.900	3.087	2.334	1.323	0.00260	2.300	0.00599	0.00077
6	574.983	187.400	-x, 3.068, - s	2.153	1.425	0.00260	2.300	0.00599	0.00075
7	544.984	188.500	2.891	2.131	1.357	0.00260	2.300	0.00599	0.00079
8	196.994	71.000	2.775	2.165	1.282	.0.00220	.2.120	0.00467	0.00094
9	189.994	71.799	2.646	2.288	1.156	0.00220	2.120	0.00467	0.00083
10	477.986	187.601	2.548	1:849	1:378	0.00260	2:300	0.00599	0.00095
11	180.994	71.201	2.542	2.261	1.124	0.00220	2.120	0.00467	0.00078
12	178.994	71.000	2,521	2.135		0.00220	2.120	0.00467	0.00091
13	469.986	187.601	2.505	2.042	1.227	0.00260	2.300	0.00599	0.00077
14	178.994	71.500	2.503	2.188	1.144	0.00220	2.120	0.00467	0:00076
15	174.995	71.101	2.461	2.348	1.048	0.00220	2.120	0.00467	0.00095
. 16	173.995	71.000 🖻	2.451	2.207	. 1.110	0.00220	2.120	0.00467	0.00077
17	174.995	71.500	2.447	2.148	1.139	0.00220	2.120	0.00467	0.00077
18	451.986	187.501	. 2.41.1	. 1.993	1.209	0.00260	2.300	0.00599	0.00074
19	169.995	71.000	2.394	2.207	1.085	0.00220	2.120	0.00467	0.00074
20	165.995	70.899	e-12.341.	2.162	a • 1.083	0.00220	2:120	0.00467	0.00089
21	165.995	71.299	2.328	2.028	1.148	0.00220	2.120	0.00467	0.00075
22	432.587	187.601	2,306	1.759	1.311	0.00260	2:300	0.00599	0.00091
23	161.995	70.899	2.285	2.102	1.087	0.00220	2.120	0.00467	0.00086
_24	161.995	70.899	2.285	1.948	1.173	0.00220	2.120	0.00467	0.00089
25	160.995	70.899	2.271	2.024	1.122	0.00220	2.120	0.00467	0.00095
26	159.995	70.799	2.260	1.873.	· 1.207, · ·	0.00220	2:120	0.00467	0.00093
27	159.995	70.899	2.257	2.046	1.103	0.00220	2.120	0.00467	0.00087
28	160.995	71.601	2:249	2.097	1.072	0.00220	2.120	0.00467	0.00097
29	158.995	70.799	2.246	2.075	1.082	0.00220	2.120	0.00467	0.00083
30	158.995	70.799	2.246	41.805	1.244	0.00220	2:120	0.00467	0.00091
31	157.995	70.799	2.232	2.177	1.025	0.00220	2.120	0.00467	0.00097
32	157.995	71.000	2.225	2.097	1.061	0.00220	2:1207	0:00467	0.00078
33	157.995	71.101	2.222	2.132	1.042	0.00220	2.120	0.00467	0.00089
34	156.995	70.899	2.214	1.994	1.110	0.00220	2.120	0.00467	0.00095
35	156.995	71.399	2.199	1.939	1.134	0.00220	2.120	0.00467	0.00095
36	155.995	71.201	.2.191	1.977	1.108	0,00220	2.120	0.00467	0.00075
37	409.988	187.269	2.189	1.856	1.180	0.00260	2.300	0.00599	0.00074
38	153.995	71.201	§ 2.163	1.917.	, 1.128	0.00220	2.120	0.00467	0.00088
39	152.995	70.899	2.158	1.907	1.132	0.00220	2.120	0.00467	0.00081

Peterson v Howells (1973)										
					,	()				
No.	Q(m³/s)	B(m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	σ	D ₈₄ (m)	S	
40	152,995	70.899	2.158	1.907	1.132	0.00220	2.120	0.00467	0.00094	
. 41	152.995	³ 70.899	2.158	1:9074	્ર 1.132	0.00220	2.120	0.00467	0.00094	
42	151.995	70.701	2.150	1.802	1.193	0.00220	2.120	0.00467	0.00091	
43 -	151.995	70.701	2.150.7	1.802	1.193	0.00220	2:120	0.00467	0.00090	
44	151.995	71.101	2.138	2.141	0,999	0.00220	2.120	0.00467	0.00074	
45	151.995	71.101	-3 2.138 F	. .2.141 ≩.	0.999	0.00220	2.120	0.00467	0.00073	
46	150.995	70.701	2.136	1.792	1.192	0.00220	2.120	0.00467	0.00089	
47	(150.995	70.799	2.133	(*`1.828 ^{**} *	1.167	0.00220	2.1203	20.00467	0.00092	
48	150.995	70.799	2.133	1.801	1.185	0.00220	2.120	0.00467	0.00088	
49	150.995	70.799	2.133 or	(1.927¢	1.107	0.00220	2,120	0:00467	0.00095	
50	150.995	70.799	2.133	2.013	1.060	0.00220	2.120	0.00467	0.00088	
51	150.995	. 70.899 t	2.130 -		1.037	0.002207	2.120	0.00467	0.00091	
52	150.995	71.101	2.124	2.131	0.997	0.00220	2.120	0.00467	0.00074	
53	149.995	70.701	2.122	1.787	1.187	0.00220	2.120	0.00467	,0.00090	
54	149.995	70.701	2.122	1.777	1.194	0.00220	2.120	0.00467	0.00087	
55,	149,995	70.799	2.119	2.057	1.030,	.0.00220	2.120	0.00467	0.00091	
56	149.995	70.899	2.116	1.867	1.133	0.00220	2.120	0.00467	0.00092	
-57	148.995	71.101	., 2.096	1.860	1.127	.0.00220	2.120	0:00467	0.00088	
58	147.995	70.701	2.093	1.881	1.113	0.00220	2.120	0.00467	0.00087	
ì59,	147.995	70.799 *	12.090	1.897 c	¥_1.102	0.00220	2.120	0.00467	0.00091	
60	146.995	70.701	2.079	1.911	1.088	0.00220	2.120	0.00467	0.00087	
61	146.995	70.799	2.076	del1.887	1.100	0.00220	.,2.120	0.00467	0.00093	
62	145.995	70,799	2.062	1.877	1.099	0.00220	2.120	0.00467	0.00089	
63	145.995	70.799	2.062	1:988	1.037, *	0.00220	2.120	0.00467	0.00089	
64	143.996	70.899	2.031	2.035	0.998	0.00220	2.120	0.00467	0.00089	
65	∴142.996 <u>}</u>	70.899.*	2.017	. 1.948	1.035	.0.00220	2.120	0.00467	0.00089	
66	142.996	71.000	2.014	1.782	1.130	0.00220	2.120	0.00467	0.00090	
67	141.996	70.899	2.003	2.015	0.994	0.00220	2.120	0.00467	0.00088	
68	140.996	70.701	1.994	1.816	1.098	0.00220	2.120	0.00467	0.00090	
69	140.996	70.701	1.994	1.836-0	1.086	0.00220	2.120	0.00467	0.00087	
70	140.996	70.799	1.991	1.703	1.170	0.00220	2.120	0.00467	0.00089	
71	140.996 🛔	70.799	1.991	1.973	1.010 <u>-</u>	0.00220	2.120	0.00467	0.00088	
72	140.996	70.799	1.991	1.973	1.010	0.00220	2.120	0.00467	0.00087	
73	369.989	186.001	1,989	(* 1 .833 ; 1	1.085	0.00260	2.300	0.00599	0.00068	
74	140.996	70.899	1.989	2.017	0.986	0.00220	2.120	0.00467	0.00076	
75	139.996	70.799	1.977	1.737	्. 1.138	0.00220	2.120	0:00467	0.00087	
76	138.996	70.799	1.963	1.948	1.008	0.00220	2.120	0.00467	0.00085	
77	137.996	70.899	1.946	. 1.819	1.070	0.00220	2.120 h	.0.00467	0.00076	
78	137.996	70.899	1.946	1.980	0.983	0.00220	2.120	0.00467	0.00087	

Rios de Portugal Peterson y Howells (1973)

No.	Q(m³/s)	B(m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	σ	D ₈₄ (m)	S	j.
79	357.589	184,599	1.937	1.739	1.114	0.00260	2.300	0.00599	0.00084	
80	136.996	70:799	1:935	1.695	1,142	0.00220	2.120	0.00467	0.00082	Î
81	136.996	70.799	1.935	1.632	1.186	0.00220	2.120	0.00467	0.00087	Ż
82	136.996	70.899	5,1.932	1.908	1.013	0.00220	2.120	0.00467	0.00085 -	1000
83	134.996	70.701	1.909	1.614	1.183	0.00220	2.120	0.00467	0.00088	
84	134.996	70.899	1.904	1.938	0.982	0.00220	2.120	0.00467.	0.00084	1
85	349.989	184.099	1.901	1.727	1.101	0.00260	2.300	0.00599	0.00072	
86	133.996	71.000	1.887	1.877	1.005	0.00220	2.120	0.00467	0.00074	ş
87	133.496	70.799	1,886	1.726	1.093	0.00220	2.120	0.00467	0.00076	j,
88	130.996	70.799	1.850	1.912	0.968	0.00220	2.120	0.00467	0.00087	į
89	128.496	70.799	1.815	1.676	1.083	0.00220	2.120	0.00467	0.00076	
90	127.996	70.701	. 1.810 y		1:139	0:00220 :	a. 2.120 -	0.00467	0.00088	1000
91	123.996	70.601	1.756	1.556	1.129	0.00220	2.120	0.00467	0.00089	
.92	123.996	70.799	1.751	1.621	1.081	0.00220	2:120	0.00467	0.00075	ł
93	122.996	70.601	1.742	1.536	1.134	0.00220	2.120	0.00467	0.00087	
.94	320.390	184.099	1.740	1.549.	1.123	0:00260	2.300	. 0.00599/a	0.00093	÷
95	122.996	70.701	1.740	1.574	1.105	0.00220	2.120	0.00467	0.00088	
96	121.996	70.701	1.726	_1.608 <u>;</u>	1.073	0.00220	2.120,	0.00467	0.00070	1
97	317.990	185.300	1.716	1.700	1.010	0.00260	2.300	0.00599	0.00076	
98	120.996	70.701	1.711	;;₁1.559 <u>;</u> ;	1.098	0.00220	2:120	0.00467	0.00088	
99	119.996	70.701	1.697	1.504	1.129	0.00220	2.120	0.00467	0.00089	
100	118.996	70.500	-1.688	1.513 <u>-</u> ([[]1.115]]	0.00220	÷ 2,120 ·	0.00467-2	. 0.00088	
101	309.991	184.099	1.684	1.676	1.005	0.00260	2.300	0.00599	0.00065	
102	305.191	184.050	1.658	1:493	1.110	0,00260	- 2:300	0.00599	0.00085	
103	116.996	70.601	1.657	1.471	1.127	0.00220	2.120	0.00467	0.00089	
104	116.496	70.701	1.648	1.558	्र°1:058क	0:00220	2.120	0.00467	0.00068	
105	299.991	185.001	1.622	1.651	0.982	0.00260	2.300	0.00599	0.00078	
106	113.997	.70.500	1.617	1.484	1.089	0,00220	2.120	0.00467	0.00083	Ľ,
107	297.991	185.001	1.611	1.631	0.988	0.00260	2.300	0.00599	0.00077	
108	113.497	70.601;	1.608		1:050	0.00220	2.120	0.00467	0.00068	ł
109	294.991	183.999	1.603	1.601	1.001	0.00260	2.300	0.00599	0.00061	
110	111.997	70.500		1.464	1:085	0.00220	2.120	0.00467;	0.00083	1
111	108.997	70.400	1.548	1.441	1.074	0.00220	2.120	0.00467	0.00083	
112	279.791	183.999	31:521 ₃ (4.1.357 ().	315121sh	0.00260	2.300	0.00599	0.00075	1
113	106.997	70.500	1.518	1.413	1.0/4	0,00220	2.120	0.00467	0.00085	a
114	106.997	/0.601	1.516	1.502	01.009	.0.00220	2.120	0.00467	0.00070	Č
115	105.997	70.400	1.506	1.406	1.0/1	0.00220	2.120	0.00467	0.00084	
116	103.997	70.400	21:477	1.376	1.073	0.00220	2.120	0.00467	0.00079	ģ
117	102.997	70.400	1.463	1.420	1,030	0.00220	2.120	0.00467	0.00075	

Anexo 1

TESIS CON FALLA DE ORIGEN

Rios de Portugal

Peterson y Howells (1973)

No.	Q(m³/s)	B(m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	σg	D ₈₄ (m)	S	
118	101.997	70.400	1.449	1.405	1.031	0.00220	2:120	0.00467	0.00086	r r
119	101.997	70.500	1.447	1.459	0.991	0.00220	2.120	0.00467	0.00072	
120	101.997	70.500	1.447	1.455		0.00220	2.120	0.00467	÷0.00071	
121	261.992	185.001	1.416	1.518	0.933	0.00260	2,300	0.00599	0.00078	
122	259.992	183.849	1:414	1.360	1:040	0.00260	2.300	0.00599	0.00089	
123	98.997	70.400	1.406	1.326	1.060	0.00220	2.120	0.00467	0.00077	
124	254.392	183.800	1.384	1.352	1,024	0.00260	2.300	0.00599	0.00092	•
125	252.992	184.401	1.372	1.426	0.962	0.00260	2.300	0.00599	0.00072	
126	96.497	70.500	1.369	1.390	. 0.985	0.00220	2.120	0.00467	0.00076	
127	95.997	70.400	1.364	1.351	1.010	0.00220	2.120	0.00467	0.00076	
128	95.997	70.400	1:364	1:305	1.045	0.00220	2.120	0.00467	0.00088	
129	93.997	70.400	1.335	1.331	1.003	0.00220	2.120	0.00467	0.00073	
130	227.993W	-183.999	1:239	1:324	0.936	0:00260	2.300	0.00599	0.00073	
131	86.997	70.299	1.238	1.234	1.003	0.00220	2.120	0.00467	0.00073	
132	86.797	70.400	1.233	1.200	1.027	0.00220	2.120+	0:00467	0.00073	
133	221.793	183.800	1.207	1.185	1.018	0.00260	2.300	0.00599	0.00078	
134	83.997	70.198,	1.197	1:206	0.993 .	0.00220	2.120	0.00467	0.00074	
135	83.997	70.198	1.197	1.195	1.001	0.00220	2.120	0.00467	0.00074	
136	211.993	177:400	1.195	1.213	0.9857.j	0.00260	2.300	0.00599	0.00079	
137	218.493	183.599	1.190	1.223	0.973	0.00260	2.300	0.00599	0.00094	
138 -	82.997	70.400	41.179	1.150	1.025	0.00220	2.120	0.00467	0.00075	
139	215.593	183.651	1.174	1.161	1.011	0.00260	2.300	0.00599	0.00080	
140	80.997	-70:101	31.155	1.771	0.652	0.00220	2.120	0.00467	0.00073	
141	201.994	177.250	1.140	1.184	0.963	0.00260	2.300	0.00599	0.00083	
142	78.998	70.101	<u>.</u> 1.127	1:152	0.978	0.00220	2.120	0.00467	0.00073	
143	196.994	176.001	1.119	1.157	0.967	0.00260	2.300	0.00599	0.00086	
.144 -	77.998	70.400	1.108	_1.161	0.955	0.00220	2.120	0.00467	0.00077	
145	77.898	70.400	1.107	1.100	1.006	0.00220	2.120	0.00467	0.00075	
146	77.048	70.400	1.094	1.076	1.018	0.00220	. 2.120	0.00467	0.00077	
147	196.994	183.459	1.074	1.121	0.958	0.00260	2.300	0.00599	0.00081	
148	196.994	183.630	1.073	§1.111	0.966	0.00260	2.300	0.00599	0.00081	
149	74.998	70.400	1.065	1.131	0.942	0.00220	2.120	0.00467	0.00073	
150	74.998	70.500	1.064	1.111 e	\Q.958	0.00220	2.120	0.00467	0.00072	
151	192.494	180.999	1.064	1.144	0.930	0.00260	2.300	0.00599	0.00094	
152	194.094	182.901	1.061	1.094	0.970	0.00260	2.300+	0.00599	0.00071	
153	73.998	70.000	1.057	1.092	0.968	0.00220	2.120	0.00467	0.00084	
154	191.194	183.499	1.042	1.087 **	0.959	0.00260	2:300	0.00599	0.00080	
155	184.994	183.499	1.008	1.056	0.954	0.00260	2.300	0.00599	0.00087	

Rios de Portugal Peterson y Howells (1973)

No.	Q(m³/s)	B(m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	σg	D ₈₄ (m)	S
156	177.994	176.750	1.007	1.078	0.935	0.00260	2.300	0.00599	0.00081
157	169,995	176.601	0.963	1.039	0.927	0.00260	2.300	0.00599	0.00080
158	172.995	183.349	0.944	0.887	1.063	0.00260	2.300	0.00599	0.00087
159	66:398	70:400	0.943.	1.093	45-0.863	0.00220	2:120	0.00467,	0.00074
160	171.995	183.499	0.937	0.996	0.941	0.00260	2.300	0.00599	0,00089
161	170.895	183.401	-0.932	1:017	-0.916	0.00260	2.300	0.00599	0.00082
162	65.498	70.400	0.930	0.960	0.969	0.00220	2.120	0.00467	0.00073
163	166.995	183.441	0.910	0.957	0:952	0.00260	2.300	0.00599	0.00088
164	159.995	176.351	0.907	1.000	0.907	0.00260	2.300	0.00599	0.00079
165	162.795	182.999	0.890	0.984	0.904	0.00260	2.300	0:00599	0.00073
166	121.996	140.001	0.871	0.911	0.956	0.00260	2.300	0.00599	0.00082
167.	59.998	69.900	0.858	.0.953	0.900	0.00220	2.120	0.00467	0.00078
168	152.395	182.999	0.833	0,895	0.931	0.00260	2.300	0.00599	0.00087
169	58.298	70.400	0.828	0.880	0.941	0.00220	2.120	0.00467	0.00073
170	83.297	102.001	0.817	0.930	0.878	0.00260	2.300	0.00599	0.00085
171	56.498	70:400	0.803	0.860	0:933	0.00220	, 2.120	0.00467	0.00072
172	145.995	183.249	0.797	0.838	0.951	0.00260	2.300	0.00599	0.00086
173	129.996	165.150	0.787	0,840 -	; 0.937;	0.00260	2:300	0.00599	0.00062
174	132.996	169.399	0.785	0.923	0.851	0.00260	2.300	0.00599	0.00071
175	136.996	175.799	0.779	0.910	0.856	0.00260 %	2.300	0:00599	0.00071
176	141.996	182.999	0.776	0.853	0.910	0.00260	2.300	0.00599	0.00082
177	127.996	168.499	0:760 ci	0.903	0.841.	10.00260	2.300	0.00599 ×	0.00068
178	136.996	182.801	0.749	0.836	0.896	0.00260	2.300	0.00599	0.00086
179	104.697	140.001	0.748	. 0.822	. 0.909	0.00260	2:300	0.00599	0.00087
180	119.996	166.601	0.720	0.868	0.830	0.00260	2.300	0.00599	0.00065
181	124.996	180.551	0.692	0.805	0.860	0.00260	2.300	0.00599	0.00068
182	78.398	114.001	0.688	0.791	0.869	0.00260	2,300	0.00599	0.00073
183	124.496	182.200	0.683	0.789	0.866	0.00260	2.300	0.00599	0.00085
184	111.997	164.949	0.679	0.821	0.827	0.00260	2.300	0.00599	0.00062
185	117.996	179.600	0.657	0.779	0.844	0.00260 🐫	2,300	0.00599-	္ခ်ုံဝဲဝဝ81
186	45.499	69.699	0.653	0.773	0.844	0.00220	2.120	0.00467	0.00075
187	114,997	178.500	0.644	0.758	0:850	0.00260	2.300	0.00599	0.00081
188	89.897	140.001	0.642	0.724	0.887	0.00260	2.300	0.00599	0.00077
189	43.999	69.699	0.631	0.754	0.838	0.00220	2.120	0.00467	0.00072
190	114.897	182.401	0.630	0.647	0.973	0.00260	2.300	0.00599	0.00091
191	96.997	163:199	.0.594	0:725	0.820	0.00260	2.300	0.00599	0.00054
192	40.999	69.699	0.588	0.718	0.819	0.00220	2.120	0.00467	0.00073
193	101.497	173.349	0.586	0.705	0.831	0.00260	2.300	0.00599	0.00076
194	39.999	69.699	0.574	0.703	0.816	0.00220	2.120	0.00467	0.00073

97

Rios de Portugal Peterson y Howells (1973)

No.	Q(m³/s)	B(m)	q(m²/s)	y(m)	V(m/s)	D ₅₀ (m)	σg	D ₈₄ (m)	S
195	39.999	70.400	0.568	0.668	0.851	0.00220	2,120	0.00467	0.00067
196	37:999	69.699	0.545	0.664	0.821	0.00220	2.120	0:00467	0.00063
197	59.598	109.999	0.542	0.690	0.785	0.00260	2,300	0.00599	0.00069
198	86.997	161.599	0.538	0.676	0.796	0.00260	2:300	0.00599	0.00074
199	37.499	69.699	0.538	0.674	0.798	0.00220	2.120	0.00467	0.00067
200	84.997	161.001	0.528	0,663	0.796	0.00260	: 2.300	0.00599	0.00068
201	35.999	69.699	0.516	0.634	0.814	0.00220	2.120	0.00467	0.00062
202	70.998	138.400	0.513	0:586	0:875	0.00260	2,300	0.00599	0.00079
203	88.997	173.599	0.513	0.597	0.859	0.00260	2.300	0.00599	0.00082
204	88.197	173.599	0.508	0.592	0:858	0.00260	2.300	0.00599	0.00080
205	34.999	69.601	0.503	0.625	0.804	0.00220	2.120	0.00467	0.00062
206	72.998;	146:950	. 0.497	0.648	0.766*	0.00260	2,300	0.00599	0.00077
207	74.998	155.000	0.484	0.627	0.772	0.00260	2.300	0.00599	0.00067
208	-32.999	69.699	0.473 · · · ·	0.634	0.747	0:00220	2.120	0.00467	0.00066
209	67.998	145.399	0.468	0.604	0.775	0.00260	2.300	0.00599	0.00079
210	29.999	69.500	0.432	0.565	. *:0:765	.t.0.00220	2.120	0.00467	0.00066
211	57.998	137.251	0.423	0.563	0.751	0.00260	2.300	0.00599	0.00081
212	28.999	69.500	0.417- 7	0.550	0.759	- 0.00220	2.120	0.00467	0.00071
213	49.998	135.999	0.368	0.522	0.704	0.00260	2.300	0.00599	0.00073
214	47.999;	134:450	N 0.357	0.512	0.697	0.00260	2:300	0.00599	0.00073
215	42.499	130.500	0.326	0.479	0.680	0.00260	2.300	0.00599	0.00072
216	41.999	131.350	0.320	0:479	0.668	0.00260	2.300	0.00599	0.00071
217	39.999	126.650	0.316	0.479	0.660	0.00260	2.300	0.00599	0.00071
218	36:499	124.249	0.294	0.458	0.642	_0.00260	2.300	0.00599	0.00070

TECIS CON
FALLA DE ORIGEN

Río Leyes (Argentina)

Schreider et al (1999)

No.	q (m²/s)	y (m)	V(m/s)
1	14.550	12.000	1.213
2	27.290	17.500	1,559
3	34.090	20.000	1.705
4	41:490	.→22.500 -:	1.844
5	49.450	25.000	1.978
6	54.500	26:500	2.057
7	52.790	26.000	2.030
	16.780	14.500	1:157
9	22.960	17.500	1.312
10	25.190	18.500	1.362
11	27.500	19.500	1.410
12	31.1.10	21.000	1.481
13	34.900	22.500	1.551
14	37.530	23.500	1:597
15	40.230	24.500	1.642
. 16	44.420	26.000 {	1.708
17	49.810	27.850	1.789

Río Paraná (Argentina)

Schreider et al (1999)

No.	q (m²/s)	y (m)	V(m/s)
1	16.890	13.630	1.239
2.	,211220	15.630	1.358
3	24.720	17.130	1.443
4.	27.180	418.130.)	1.499
5	29.720	19.130	1.554
6	32.350	20.130	1.607
7	35.070	21.130	1.660
8 🗧	37.890	22.130	1.7.12
9	40.780	23.130	1.763
10	42.260	23.630	1.7,88
11	43.760	24.130	1.814
	45.280	24.6307	_ 1.838 <
13	5.030	5.270	0.954
····14	11.620	10.100	

D₈₄ = 0.0002 m σ_g = 2.0

D₈₄ = 0.0002 m σ_g = 2.0

BIBLIOGRAFIA

- 1. Breusers H. N. C., Raudkivi A. J. (1991), "Scouring" Rotterdam. A. A. Balkema, Netherlands.
- 2. Brownlie, W.R (1982), "Prediction of Flow Depth and Sediment Discharge in Open Channels", Thesis to obtain the Ph. D., CALTEC, Pasadena, California, USA.
- 3. Chow V. (1994), "Open Channel hydraulics", Mc Graw-Hill.
- Cruickshank C., and Maza-Alvarez J.A. (1973), "Flow Resistance in Sand Bed Channels". Proc. International Symposium on River Mechanics, IAHR, Vol 1, Bangkok, Thailand, 337-345.
- Echávez Aldape G. (1996); "Introducción a los modelos hidráulicos de fondo fijo y a la ingeniería experimental", Universidad Nacional Autónoma de México, Consejo Nacional de Ciencia y Tecnología y la Asociación Mexicana de Hidráulica, México.
- García Flores M. y Maza-Álvarez J.A. (1998), "Origen y propiedades de los sedimentos", Capítulo 7 manual de Ingeniería de Ríos, Series del Instituto de Ingeniería UNAM, No. 601, México.
- Garcia Flores y Maza-Álvarez J.A. (1997), "Inicio de movimiento y acorazamiento", Capítulo 8 del manual de Ingeniería de Ríos, Serie del Instituto de Ingeniería UNAM, No. 592, México.
- Graf W.H. (1971), "Hydraulics of Sediment Transport". Mc Graw Hill Book Co., New York.
- Juárez Badillo E. Y Rico Rodríguez A. (1963), "Fundamentos de la Mecánica de Suelos", México.
- Leopold L.B., Wolman M. and Miller J.P. (1964). "Fluvial processes in geomorphology". W. H. Freeman and Company, San Francisco.
- 11. Levediev V. V. (1959). "Gidrologia i Gidraulika v Mostovom Doroshnom, Staitielsvie", text in russian, Leningrad.
- 12. Levi Enzo, (1989), "El agua según la ciencia", Ediciones Castell Mexicana, S.A. México.

- Maza Álvarez J.A. (2000), "Erosión General en Cauces con Material Granular", Memorias XIX Congreso Latinoamericano de Hidráulica, Córdoba Argentina, 319-328.
- 14.Maza Álvarez J.A. y Echevarría Alfaro F. J. (1973), "Contribution to the study of general scour", Proc., International Symposium on River Mechanics, I.A.H.R., Bangkok, Thailand, 795-803.
- Maza Álvarez J.A. y Grajales J.A. (2000), "Velocidades Medias de Inicio de Erosión", Memorias XIX Congreso Latinoamericano de Hidráulica, Córdoba Argentina, 471-480.
- Maza Álvarez J.A., García Flores M. (1996) "Transporte de sedimentos", Capitulo
 10 del Manual De Ingeniería de Ríos. Serie del Instituto de Ingeniería UNAM, 584, México.
- Melville B.C. and Coleman S. E. (2000), "Bridge Scour", Water Resources Publications, LLC, New Zealand.
- Memoria (1989), "Socavación en puentes y obras menores", Asociación mexicana de ingeniería de vias terrestres: Sociedad mexicana de mecánica de suelos, México.
- 19. Neill, C.R. (1973), "Guide to bridge hydraulics", Roads and Trasportation Assoc. Of Canada, Uinversity of Toronto Press, Toronto, Canada.
- 20. Puig de la Porra J. B., Rosales M., Tellez J. (1970), "Socavación en cauces naturales". Secretaría de Obras Públicas, Seminario de Proyecto de Drenaje en Vías Terrestres y Aeropistas, México.
- 21. Schreider M, Scachi G., Reynares M. y Franco F. (1999). "Aplicación del método de Lischtvan-Levediev para calcular la socavación en fondos arenosos". Memorias del Congreso Internacional de Ingeniería Hidráulica, La Habana, Cuba.
- 22. Streeter V. L. y Wylie B. E. (1983), "Fluids Mechanics", by McGraw-Hill Inc., U.S.A.
- 23. Zammattio C. (1980), "Leonardo scienziato", Giunti Barbera, Florencia.

