UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE QUIMICA DIVISION DE ESTUDIOS SUPERIORES

EFECTO DE LAS CONDICIONES AMBIENTALES EN LA DETERMINACION DE LA EXERGIA QUIMICA Y SU IMPACTO EN EL ANALISIS EXERGICO DE EQUIPOS Y PROCESOS

TESIS

PARA OBTENER EL GRADO DE: MAESTRA EN INGENIERIA QUIMICA (PROCESOS) PRESENTA:

MARISOL GARFIAS VAZQUEZ

DIRECTOR DE TESIS: DR. RICARDO RIVERO RODRIGUEZ

MEXICO, D.F.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

ESTA TESIS NO SALL DE LA BIBLIOTECA

Autorizo a la Dirección General de Bibliotecas de la UNAM a difundir en formato electrónico e impreso el contento de mi trabajo recepcional. NOMBRE: Mariso Gartías Vázquez FECHA: 29 JOCTUbre / 2002 FIRMA: Mariso Gartías Vázquez

an an an 1999 ann an 1999 ann an 1999. An an an Arthread an Arthre Arthread an Art

COORDINACIÓN DEL PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA

BIOL. FRANCISCO J. INCERA UGALDE. Jefe de la Unidad de Administración del Posgrado. P r e s e n t e.

Me es grato informarle que la alumna GARFIAS VAZQUEZ MARISOL presentará próximamente su examen para obtener el grado de Maestría en Ingeniería Química (Procesos) (Clave 479) ante el siguiente jurado:

Presidente: Vocal: Secretario: Primer Suplente: Segundo Suplente: Dr. Enrique Rodolfo Bazúa Rueda (FQ) M. en C. Roberto del Río Soto (PEMEX) Dr. Reynaldo Sandoval González (FQ) Dr. Roberto Best y Brown (CIE) Dr. Jaime Cervantes de Gortari (FI)

Sin otro particular de momento, aprovecho la ocasión para enviarle un cordial saludo.

A t e n t a m e n t e "POR MI RAZA HABLARÁ EL ESPÍRITU" Ciudad Universitaria, D. F., 22 de mayo de 2002.

El Coordinador JESÚS RIVERA RODRÍGUEZ

C.c.p. Integrantes del Jurado. C.c.p. Departamento de Control Escolar de la Facultad de Química. C.c.p. Interesado. *ggm.

TE	SIS	CON	and the second se
FALLA	DE	ORIGEN	

Sede: División de Estudios de Posgrado, Facultad de Ingeniería. Primer Piso. Cd. Universitaria, México, D.F., C.P. 04510. Tel./Fax: 5550-9383

A mís padres

.

Agradecímientos

Al Instituto Mexicano del Petróleo por la beca que me otorgó para realizar mis estudios de maestría, que sín está oportunidad hubiera sido difícil de lograr.

Al Dr. Ricardo Rivero Rodríguez por la magnifica atención y consejos que siempre me brindo al dirigirme la tesis.

A los sínodales: Dr. Enríque Bazúa Rueda, M. en C. Roberto del Río Soto, Dr. Reynaldo Sandoval González, Dr. Roberto Best y Brown y Dr. Jaíme Cervantes de Gortarí por sus valíosas observaciones al presente trabajo:

A los Ingenieros Químicos José Luís Cano Domínguez y Martha Leticia Jiménez Alarcón por su respaldo para realizar estudios de posgrado y concluir el trabajo de tesis. Índice

 = 	Resumen	iii
	Introducción	1
•	Nomenclatura	5
	Índices de tablas y figuras	11
•	Capítulo I: Conceptos básicos de exergia	17
	1.1 Definición de Exergia.	17
	1.2 Medio ambiente de referencia.	20
	1.3 Modelo de Szargut para el cálculo de exergia química de una	
	sustancia.	22
	1.4 Exergia fisica y química de mezclas.	20
	1.5 Analisis de Exergia.	21
•	Capítulo II: Determinación de la exergia química estándar de los elementos	33
	2.1 Exergia química estandar de los elementos contenidos en el aire atmosférico.	34
	2.1.1 Efecto en el vator de exergia química estandar al variar la humedad relativa del aire.	36
	2.1.2 Efecto en el valor de exergia química estandar de los elementos por el cambio de concentración de CO ₂ en el aire.	39
	2.2 Exergia química estandar de los elementos contenidos en la hidrosfera.	42
	2.2.1 Efecto en el valor de exergia química estandar de los elementos por un cambio de salinidad.	56
	litosfera.	77
■.	Capítulo III: Efecto de las condiciones ambientales en el valor de exergia química estándar de los elementos	89
	3.1 Efecto de la temperatura del medio en el valor de exergia química estándar.	90
	3.2 Efecto del cambio de la presión atmosférica en el valor de exergia química estándar.	120
_	Conítulo Nu Imposto do los condiciones embientales en el sufficie	· ·
	exércico de equipos y procesos	197
	4.1 Descripción del proceso a analizar.	128

.....**i**

4.2 Simulación de la columna Desisobutanizadora.	130
4.2.1 Bases de la simulación.	131
4.2.2 Validación del modelo de simulación y resultados.	142
4.3 Análisis de Exergia de la columna Desisobutanizadora.	146
4 3.1 Exercia de las corrientes.	147
4.3.2 Balances de entalpia y exercia y determinación de lo	S
parámetros exérgicos.	163
4.3.3 Análisis de exergia de la Columna Desisobutanizadora al considerar las condiciones del medio del caso base	han an a
(Minatitlán).	
4.3.4 Efecto de las condiciones ambientales en el análisit	S 476
exergico de los equipos y del proceso bajo estudio.	1/0
	193
Apéndice A: Exercia química estándar de los elementos a diferente:	S
valores de las distintas propiedades del medio ambiente analizadas	199
en de la segura de l	· · · · · · · · · · · · · · · · · · ·
Apéndice B da la	219
B.1 Parametros de interacción del modelo de Pitzer entre ione	S
presentes en el agua de mar. P.2. Veleres de A ^{US} de la resseién de formación de las especies de	219
$B.2$ values de Δn de la reacción de formación de las especies de referencia a 25°C.	221
Apéndice C: Programa para el cálculo de exergia química estánda	I r
de compuestos EXQCOMP	225
C.1 Algoritmo.	228
C.2 Resultados del cálculo de exergia química estándar de lo	S
elementos y de los compuestos metano y sultato terroso a condicione	S and
	233
Apéndice D	237
D 1 - Resultados de la simulación de la columna Desisobutanizadora	237
D.2 Cálculo de exergia física de las corrientes que integran l columna Desisobutanizadora, para cada uno de los medios d	a
referencia seleccionados.	245
D.3 Exergía química estándar de los compuestos presentes en e	
D 4 - Resultados del análisis de evergia de la column	248
Desisobutanizadora	a 254
a da anti-a da anti- A da anti-a da anti-a A da anti-a	
 Referencias 	261
an a	
and the second	

RESUMEN

La exergia química de una sustancia, trabajo máximo que se obtiene al llevarla al equilibrio químico con el ambiente, se determina a condiciones normales de temperatura y presión (25°C y 1 atm) y a partir de la concentración promedio de las especies en el ambiente. Pero, dependiendo del lugar geográfico y de la estación del año, las condiciones del medio difieren del promedio.

El objetivo del presente trabajo fue investigar el efecto de las condiciones ambientales y de la concentración de las especies en el valor de exergia química, así como su impacto en el análisis de exergia de procesos. Para lo cual, se desarrollo un programa para automatizar el cálculo de exergia química de cualquier compuesto, a partir de los elementos que lo conforman y en función de las condiciones ambientales.

La condición ambiental que tiene mayor efecto sobre el valor de exergia química es la temperatura. El agua es la sustancia cuya exergia química se modifica más al cambiar las condiciones ambientales. Al disminuir la temperatura aumenta la exergia química de los hidrocarburos, a presión atmosférica y humedad relativa constantes.

El enfriamiento con agua o con aire y el calentamiento en un horno son los procesos cuyos parámetros exérgicos sufren un mayor cambio al variar las condiciones. El desempeño de una columna de destilación mejora si las condiciones del ambiente son cercanas a las promedio.

El método de exergia permite evaluar bajo cuáles condiciones ambientales se mejora la operación de un sistema, desde el punto de vista de uso eficiente de energía.

INTRODUCCIÓN

El uso eficiente de la energía ha sido pieza fundamental en el análisis de procesos industriales, a partir de la primera crisis de los precios del petróleo en la década de los años setenta, y con el lanzamiento de programas de ahorro de energía. El análisis de exergia es una metodología que se basa en las dos leyes de la termodinámica —conservación de la energía y degradación de la misma— y que permite detectar y evaluar de forma cuantitativa las causas de irreversibilidad termodinámica en procesos químicos y térmicos.

La exergia de un sistema es una medida de la calidad de la energía que contiene y de su alejamiento con respecto al medio ambiente, ya que se define como el trabajo mínimo necesario para producir una sustancia en un estado específico a partir de las especies presentes en el ambiente, por medio de procesos reversibles en los que se intercambia calor y materia sólo con el medio ambiente. La exergia de una sustancia se divide en dos componentes: exergia física y química. La primera se obtiene al llevar a la sustancia de sus condiciones de presión y temperatura hasta el equilibrio físico con el ambiente, a composición constante. La segunda es el resultado de llevar a la sustancia al equilibrio químico con el medio a temperatura y presión constantes.

La determinación de la exergia química de una sustancia en su estado estándar, se realiza con base en las condiciones ambientales y en la concentración de las especies en el medio de referencia (atmósfera, hidrosfera y litosfera), las cuales suelen ser las condiciones normales de temperatura y presión, esto es, 25°C y 1 atm, y la concentración promedio de las especies en el medio a estas condiciones.

an Although a start of the second second start and second second second second second second second second seco

El que la exergia química estándar de una sustancia se exprese a las condiciones normales se debe a que la mayoría de la información termodinámica y de concentración de las especies de referencia en el medio está disponible a dichas condiciones; además de que éstas son las que se consideran como el promedio en el medio ambiente. Sin embargo, dependiendo del lugar geográfico y de la estación del año, las condiciones del medio difieren del promedio.

Por lo que el objetivo principal del presente trabajo de tesis es investigar el efecto de la temperatura ambiental, de la presión atmosférica y de la concentración de las especies de referencia —humedad relativa del aire, concentración de dióxido de carbono en el aire y contenido de sales en el agua de mar—, en el valor de exergia química estándar de elementos y compuestos, así como su impacto en el análisis de exergia de un proceso.

Para llevar a cabo lo anterior se desarrolla un programa para sistematizar el cálculo de exergia química estándar de cualquier compuesto, a partir de la exergia química de los elementos que lo conforman y en función de las condiciones ambientales del medio. Para esto, se analiza el procedimiento de determinación de la exergia química estándar de la mayoría de los elementos de la tabla periódica y cuyas sustancias de referencia se encuentran en la atmósfera, hidrosfera y litosfera.

Conviene mencionar que el valor de exergia química estándar a condiciones normales de temperatura y presión de la mayoría de los elementos, así como para un gran número de compuestos orgánicos e inorgánicos se encuentra publicado en la literatura; sin embargo, no existe un programa que realice el cálculo de exergia química y que por consiguiente facilite el análisis de exergia de un sistema.

Para el estudio del impacto de las condiciones ambientales en el uso eficiente de la energía de un proceso, basado en el método de exergia, se selecciona la Columna Desisobutanizadora de la Sección de Preparación de Carga de una planta Isomerizadora de Butanos, que incluye un horno como rehervidor de la columna de destilación; y se supone que dicha columna opera en las siguientes cuatro ciudades con diferentes condiciones ambientales: Minatitlán en México, Jericó en Israel, Cusco en Perú y Québec en Canadá. A partir de los balances de entalpia y exergia del proceso,

se determinan las pérdidas irreversibles de exergia y su potencial de mejoramiento en cada uno de los medios de referencia seleccionados.

No obstante que la variación de la temperatura ambiente pudiera ser la condición que tuviera mayor efecto en la exergia química estándar de una sustancia, por ser la variable de la que dependen tanto el cambio en la energía libre de Gibbs de la reacción de referencia y la concentración de las especies en el medio, se espera que este efecto sea relativamente pequeño.

En cuanto al impacto que tengan las condiciones ambientales en el desempeño de un proceso, éste podría ser importante en el caso de aquellos procesos que estén en contacto directo con su medio ambiente o que las condiciones de las corrientes involucradas dependan directamente de las condiciones del medio, por ejemplo, enfriamiento con agua o con aire.

h ann an t-richte an an an Araba a Arth Araba (1997). An gha an t-richte an an an Araba (1997). An an Araba (1997) an t-richte an Arthreite an Arthreite.

4

الم المحكم ا المحكم المحكم

Nomenclatura

.

NOMENCLATURA

•

At	alcalinidad total del agua de mar
A_{ϕ}	coeficiente de la teoría electrostática de Debye-Hückel
a	actividad
<i>B</i> y <i>B</i> '	términos correspondientes al segundo coeficiente virial del modelo de
	Pitzer
B_I	relación entre las constantes aparentes de disociación del ión bicarbonato
	y del ácido carbónico
B_2	relación entre las constantes aparentes de disociación del ión bicarbonato
	y del ácido bórico
Bt	contenido de boro totatzen el agua de mar
b_y	número de moléculas del elemento adicional y presente en una molécula
	del ión de referencia del agua de mar
С	tercer coeficiente virial del modelo de Pitzer
Cl	
C^{ϕ}_{MX}	parámetro de interacción entre el catión M y el anión X , para el cálculo del
	tercer coeficiente virial del modelo de Pitzer
Ct	contenído de carbono total en el agua de mar de a servición de servición
ΔC_p	cambio en la capacidad calorífica a presión constante
C _i	fracción molar del elemento en la forma de la especie i
E_{cel}	potencial de la celda de la reacción redox
Efl	pérdidas de efluentes
Ex	exergia
\overline{Ex}	exergia molar parcial
F.	número de Faraday (96,500 coulomb/mol); fórmula química de un
	compuesto o elemento
f_1 y f_2	expresiones definidas en función de la fuerza iónica y de las constantes α_1
	y a ₂
⊿G	cambio de energía libre de Gibbs

.

ţ

.

8	aceleración de la gravedad
H	entalpia; humedad absoluta attactivity data attac
Ħ	entalpia molar parcial
ΔH	cambio de entalpia
ΔH_{fase}	diferencia de calores por cambio de fase dentro de un intervalo de
	temperaturas, entre los productos y reactivos de una reacción.
$\Delta H_{mezclado}$	
h	altitud
h _c	coeficiente de transferencia de calorada a calendaria de calorada de calorada de calorada de calorada de calor
ť	fuerza iónica de una solución electrolítica assessantes paradates de
n IDE statistics statistics	n úmero de identificación dan estas una labora de laborada esta a seconda esta esta esta esta esta esta esta est
Irr	pérdidas irreversibles de exergia
^{z+} , ^{z-}	símbolo químico del ión de referencia contenido en el agua de mar
$m{j}^{(1)}$, and the transformation	número de iones de referencia del agua de mar formados a partir de una
K	constante de equilibrio termodinámica de una reacción
k	constante estequiométrica o aparente de una reacción
k _g	-coeficiente de transferencia de masa des consultativas a data esta da compositiona de la composition
l _i	número de átomos del elemento en la molécula de la especie i de
	referencia presente en la litosfera de la deservación de la deservación de la deservación de la deservación de
$ln \gamma '_{EL}$	expresión derivada por Pitzer de la teoría electrostática de Debye-Hückel
	para el cálculo del coeficiente de actividad de especies iónicas en solución
M_o	peso molecular promedio de los componentes de la capa externa de la
	corteza terrestre
т	concentración molal o molalidad
N	polinomio de la expresión de contenido de carbono total (Ecuación 3-20);
	e flujo molar de logies de la construcción de divelego logista creative de la construcción de la constru
NCOMP	número de compuestos a determinar su exergia química estándar
NEL	número de elementos que conforman un compuesto
n	número de moles
nc	número de componentes de una mezcla

-

ne	número de electrones que intervienen en la reacción redox	
no	concentración molar promedio en la capa externa de la corteza terrestre	
Р	presión	
P°	presión de vapor	
PA	peso atómico	
PCI	poder calorífico inferior del gas combustible	
Pex	pérdidas totales de exergia	
pН	logaritmo negativo de la concentración de ión hidrógeno	
PM	peso molecular	
Pot	potencial de mejoramiento	
\mathcal{Q}	carga térmica	
q	concentración total de ión bicarbonato en el agua de mar	
R	constante universal del estado gaseoso	
r	concentración total de ión carbonato en el agua de mar	
S	entropia; salinidad convencional del agua de mar	
SB	salinidad base	
S_T	salinidad total	
ΔS	cambio de entropia	
Т	temperatura absoluta	
t	temperatura	
ν	velocidad; coeficiente estequiométrico	
W	trabajo	
W	fracción en peso	
X	expresión definida en función del segundo y tercer coeficiente virial del	
	modelo de Pitzer y, de la concentración molal y carga eléctrica de los	
	iones en solución	
x	fracción molar	
Ζ	polinomio de la expresión de contenido de carbono total (Ecuación 3-20)	
Z	altura; carga eléctrica del ión de referencia presente en el agua de mar	

Símbolos griegos			
$\alpha_1 y \alpha_2$	constantes cuyo valor de	pende del tipo de carga eléctrica de los	
	iones M y X	- 1 m.	• .
$eta_{ extsf{HSO4-}}$	constante estequiométri	ca de asociación del ión bisulfato	•
$\beta^{0}_{MX}, \beta^{1}_{MX}, \mathbf{y} \beta^{2}_{MX}$	parámetros de interacci	ón entre el catión M y el anión X , para	a el
	cálculo del segundo coe	ficiente virial del modelo de Pitzer	N+ + -
Δ	aumento o incremento		
∇	disminución o decremen	nin andre senten in de la sente sind de la sente d T elo nia de la sente de la s	
ε	efectividad		(1, 1, 1)
φ	humedad relativa del air	e atmosférico	· · ·
γ	coeficiente de actividad	an a	
λ	calor latente de evapora	ición	Ţ.
η	eficiencia	and an and a start of the second	
V	número de iones que co	mponen la sal iónica MX	•
θ	temperatura de Carnot		
ζ	rendimiento		
			12
Superíndices			ţ.
o estado está	ándar		
Subíndices		in an the source in the second second	
a cual	quier anión en solución	en e	
Bh bulb	o húmedo		
	puesto químico	$\gamma_{\rm eff} = \gamma_{\rm eff} + \gamma_{\rm$	
comb gas		án an calucián: condicián crítico	
	centracional, cualquier cat	on en solucion, condición critica	
f físio	a: reacción de formación		
J 1151Co			

Nomenclatura

Página 9

8	potencial
h	calor; aire húmedo
i	inercial; especie o componente de una mezcla
k	productos
l	componente diferente de <i>i</i> en una mezcla
Μ	catión
m	materia
n	condiciones normales de temperatura (25°C), presión (1 atm.) y
	concentración de las especies
ntp	neta producida
nts	neta suministrada
0	medio ambiente, estado muerto
р	mecánica
q	química
r	reaccional; reacción de referencia
S	sustancial; específica
TOT	total
t	térmica
tte	total de entrada
tts	total de salida
uts	útil a la salida
ν	cinética
W	trabajo
X	anión
у	reactivos adicionales en la reacción de referencia
Z	reactivos

e an an thair an an an an an an an Arrien air an Arrien an Arrien an Arrien an Arrien an Arrien an Arrien an Ar An an tha an tha an an an Arrien an Arrien

No. 1

 $\mathbb{E}_{\mathcal{G}} = \mathbb{E}_{\mathcal{G}} \left[\mathbb{E}_{\mathcal{G}} \left[\mathbb{E}_{\mathcal{G}} \left[\mathbb{E}_{\mathcal{G}} \right] \mathbb{E}_{\mathcal{G}} \right] \right]^{-1}$

. •

Sec.

arte esta da companya en esta companya esta companya esta companya esta companya esta companya esta companya e Benetico

....

.

.

ÍNDICE DE TABLAS

. . .

•	Tabla 2.1 Exergia química estándar de los elementos presentes en la atmósfera a condiciones normales de temperatura y presión (humedad relativa = 0.7 y concentración de $CO_2 = 345$ ppmv).	35
•	Tabla 2.2 Exergia química estándar (kJ/gmol) de los elementos contenidos en la atmósfera a diferentes valores de humedad relativa.	37
. 14 14 15	Tabla 2.3 Exergia química estándar (kJ/gmol) de los elementos contenidos en la atmósfera a diferentes valores de concentración de CO2.	40
•	Tabla 2.4 Desviación porcentual con respecto al valor de exergia química estándar a 345 ppmv de CO2.	41
•	Tabla 2.5 Concentración de las especies en mayor proporción en el agua de mar. Salinidad: 35‰.	46
	Tabla 2.6 Concentración total de los elementos en el agua de mar (μ g/L).	48
	Tabla 2.7 Fracción en peso y molalidad de las especies en el agua de mar, salinidad: 35‰.	51
•	Tabla 2.8 Exergia química estándar de los elementos contenidos en la hidrosfera a condiciones normales de temperatura y presión (Salinidad = 35% y <i>pH</i> = 8.1).	55
■ • : .	Tabla 2.9 Efecto en el valor de exergia química estándar de los elementos presentes en la hidrosfera al aumentar la salinidad ($pH = 8.1$).	58
•	Tabla 2.10 Exergia química estándar del cadmio y del plomo al considerar como especies de referencia al Cd^{2+} y al Pb^{2+} (<i>pH</i> = 8.1).	60
•	Tabla 2.11 Efecto sobre el valor de pH al variar la salinidad.	64
•	Tabla 2.12 Efecto en el valor de exergia química estándar de los elementos contenidos en la hidrosfera al incrementar la salinidad (se considera el cambio en el valor de pH).	65
• • •	Tabla 2.13 Coeficientes de actividad (en base molal) de los iones libres presentes en la hidrosfera a partir del modelo de Pitzer.	68
•	Tabla2.14Comparaciónentrelosvaloresde γ_i determinadosexperimentalmente y los calculados con el modelo de Pitzer (Salinidad 35‰).	69
•	Tabla 2.15 Coeficientes de actividad (en base molal) de los compuestos iónicos y no iónicos presentes en el agua de mar.	72
• •	Tabla 2.16 Efecto en el valor de exergia química estándar de los elementos presentes en la hidrosfera al aumentar la salinidad (se considera el cambio en los valores de coeficiente de actividad, $pH = 8.1$).	73

•	Tabla 2.17 Efecto en el valor de exergia química estándar de los elementos contenidos en la hidrosfera al aumentar la salinidad (se considera el cambio en los valores de pH y coeficientes de actividad).	75
	Tabla 2.18 Exergia química estándar de las especies presentes en la corteza terrestre a condiciones normales de temperatura y presión.	79
•	Tabla 2.19 Concentración molar promedio de algunos elementos en la corteza terrestre (kgmol/kg), de acuerdo con diferentes fuentes de información.	81
	Tabla 2.20 Exergia química estándar del Al_2O_3 a partir de dos valores distintos de exergia química estándar del aluminio.	83
•	Tabla 2.21 Exergia química estándar del germanio y hafnio a partir de dos valores distintos de energía libre de formación de sus especies de referencia.	85
• •	Tabla 2.22 Exergia química estándar de los elementos contenidos en lalitosfera a condiciones normales de temperatura y presión.	86
	Tabla 3.1 Efecto del valor de $\Delta C_p {}^{\circ}_f$ en el valor de $\Delta G_f {}^{\circ}_f$, en el intervalo de temperaturas considerado.	94
■ ; `s	Tabla 3.2 Efecto en el valor de ΔG_f° a 50°C al no considerar el calor de fusión de las sustancias que cambian de fase entre 0°C y 50°C.	94
. 	Tabla 3.3 Efecto en el valor de ΔG_f° a -40°C al no considerar el calor de fusión de las sustancias que cambian de fase entre 0°C y -40°C.	95
•	Tabla 3.4 Efecto de la temperatura del medio en el valor de ΔG_f° de las especies de referencia.	97
	Tabla 3.5 Presión parcial en kPa de las especies presentes en la atmósfera a diferentes valores de temperatura del medio ($P = 101.325$ kPa, $\phi = 0.7$, concentración de CO ₂ = 345 ppmv).	99
↓,*• ■	Tabla 3.6 Relación de concentraciones de especies disueltas en el agua de mar a diferentes valores de temperatura (salinidad de 35‰).	103
	Tabla 3.7. - Efecto en el valor de Ex_q° de los elementos al tener el medio una temperatura entre 0 y 50°C.	107
	Tabla 3.8 Comparación del cambio en el valor de exergia química por un cambio de temperatura, de dos especies de estructura química similar pero con fracción molar muy diferente.	111
	Tabla 3.9 Efecto en el valor de Ex_q° de los elementos cuando la temperatura es menor a 0°C. Análisis de escenarios.	114
	Tabla 3.10 Exergia química estàndar del CH ₄ y FeSO ₄ a diferentes valores de temperatura del medio ($P = 1$ atm, $\phi = 0.7$, concentración de CO ₂ = 345 ppmv y salinidad = 35‰).	118
	· "我要你的你,你们就是你的你,你就是你的你,你不是你的你?""你?""你?""你?""你""你""你""你""你"	

٦.

	Tabla 3.11 Exergia química estándar del CH ₄ y FeSO ₄ a diferentes valores de temperatura del medio. Presión parcial del agua en el aire constante. ($P = 1$ atm, concentración de CO ₂ = 345 ppmv y salinidad = 35‰).	119
•	Tabla 3.12 Efecto de la presión atmosférica en el valor de exergia química estándar de los elementos.	121
•	Tabla 3.13 Presión parcial y fracción molar de las especies presentes en el aire a diferentes valores de presión atmosférica ($T = 25^{\circ}$ C, $\phi = 0.7$, concentración de CO ₂ = 345 ppmv).	124
	Tabla 4.1 Composición, flujo y condiciones de operación de las corrientes de alimentación a la columna Desisobutanizadora.	131
a .	Tabla 4.2 Condiciones de operación de diseño de la columna Desisobutanizadora.	132
	Tabla 4.3 Cambio de presión en los diferentes equipos.	132
	Tabla 4.4 Condiciones ambientales consideradas en las diferentes ciudades.	134
	Tabla 4.5 Temperatura de bulbo húmedo y del agua de enfriamiento en las diferentes ciudades bajo estudio.	137
■	Tabla 4.6 Composición molar del gas combustible y flujo molar requerido de oxígeno.	139
■.	Tabla 4.7 Poder calorífico inferior del gas combustible y temperatura de flama, a diferentes condiciones de referencia.	140
•	Tabla 4.8 Comparación de resultados entre lo que indica el diseño y la simulación de la columna Desisobutanizadora.	143
# 1,	Tabla 4.9 Consumo de servicios auxiliares en la torre Desisobutanizadora.	145
•	Tabla 4.10 Comparación del valor de exergia física de las corrientes de la columna Desisobutanizadora, a diferentes condiciones de T_o y P_o del medio.	149
•	Tabla 4.11 Propiedades termodinámicas de dos corrientes con diferente comportamiento en su valor de exergia física al cambiar T_o y P_o .	151
	Tabla 4.12 Comparación del valor de exergia química estándar de los compuestos presentes en el sistema bajo estudio, a diferentes condiciones ambientales.	154
•	Tabla 4.13 Variación del valor de ΔG_f° de los compuestos presentes en el sistema bajo estudio, al cambiar la temperatura del medio ambiente.	156
•	Tabla 4.14 Efecto en el valor de exergia química estándar por el cambio de cada una de las condiciones ambientales.	157
•	Tabla 4.15 Comparación del valor de exergia química de las corrientes de la columna Desisobutanizadora, a diferentes condiciones ambientales del medio.	159
	Tabla 4.16 Comparación del valor de exergia total de las corrientes de la columna Desisobutanizadora, a diferentes condiciones ambientales del medio.	162

.13

		•
Índices	de Tablas y	Figuras

Tabla B.1 Parámetros de interacción.	21
• Tabla B.2 Calor estándar de formación a 25°C de las especies d referencia.	e 22,
Tabla C.1 Definición de las condiciones del medio.	22
 Tabla C.2 Número de identificación de los elementos en el program EXQCOMP. 	a 22
 Tabla C.3 Información requerida por el programa EXQCOMP para el cálcul de Ex_q° del metano y del sulfato ferroso. 	0 22
• Tabla D.1 Balance de materia y energía de la columna Desisobutanizadora	23
 Tabla D.2 Composición y propiedades termodinámicas del gas combustible del aire y de los gases de combustión. Minatitlán (T_o = 25°C, P_o = 1 atm).) 24
 Tabla D.3 Composición y propiedades termodinámicas del gas combustible del aire y de los gases de combustión. Jericó (T_o = 33°C, P_o = 1.03 atm). 	24
 Tabla D.4 Composición y propiedades termodinámicas del gas combustible del aire y de los gases de combustión Cusco (T_o = 21°C, P_o = 0.67 atm). 	, 24
 Tabla D.5 Composición y propiedades termodinámicas del gas combustible del aire y de los gases de combustión. Québec (T_o = -16°C, P_o = 1 atm). 	e, 24
• Tabla D.6 Cálculo de exergia física (condiciones ambientales de Minatitlár $T_o = 25^{\circ}$ C, $P_o = 1$ atm).	n: 24
• Tabla D.7 Cálculo de exergia física (condiciones ambientales de Jerico $T_o = 33^{\circ}$ C, $P_o = 1.03$ atm).	b: 24
Tabla D.8 Cálculo de exergia física (condiciones ambientales de Cusco $T_o = 21^{\circ}$ C, $P_o = 0.67$ atm).): 24
Tabla D.9 Cálculo de exergia física (condiciones ambientales de Québec $T_o = -16^{\circ}$ C, $P_o = 1$ atm).	24 24
Tabla D.10 Cambio de energía libre de Gibbs y calor normal estándar d formación de los compuestos presentes en la columna Desisobutanizadora	e 24
 Tabla D.11 Parámetros exérgicos por equipo de la Column Desisobutanizadora (condiciones ambientales de Minatitlán: T_o = 25°C, P_o = 	a 1
$\phi = 0.75, S = 36\%$).	25
• Iapla D.12 Parametros exergicos por equipo de la Column Desisobutanizadora (condiciones ambientales de Jericó: $T_o = 33^{\circ}$ C, $P_o = 1.0$ atm. $\phi = 0.7$, $S = 41^{\circ}$).	a 3 25
 Tabla D.13 Parámetros exérgicos por equipo de la Column Desisobutanizadora (condiciones ambientales de Cusco: T_o = 21°C. P_o = 0.6 	а 7
atm, $\phi = 0.3$, $S = 35\%$).	25

Índices de Tablas y Figuras

1

-	Tabla D.14 Parámetros exérgicos por equipo de la Columna Desisobutanizadora (condiciones ambientales de Québec: $T_o = -16^{\circ}$ C, $P_o = 1$ atm. $\phi = 0.5$, $S = 32$ %).	258			
 Tabla D.15 Parámetros exérgicos del condensador de la columna cuando éste es un aereoenfriador. 					
•	Tabla D.16 Parámetros exérgicos de todo el sistema. Condensación del producto de domo con agua de enfriamiento.	259			
	Tabla D.17 Parámetros exérgicos de todo el sistema. Condensación del producto de domo en un aereoenfriador.	259			
	n an ann an a	· ·			

	na en	:
	ÍNDICE DE FIGURAS	
		·.
	Figura 1.1 Formas de exergia	18
=	Figura 1.2 Exercia de la materia	20
	Figura 1.3 Modelo de Szargut para calcular exergia guímica.	20
	Figura 1.4 Enfriamiento con agua. Par receptor-donador	- 20 - 30
•	Figura 2.1 Desviación porcentual del valor de exergia química estándar al variar el contenido de agua en la atmósfera.	38
	Figura 2.2 Efecto de la concentración de CO ₂ en su valor de exergia química estándar.	<u>)</u> 39
•	Figura 2.3 Desviación porcentual del valor de exergia química estándar con respecto a 345 ppmv de CO ₂ .	_ 41
■	Figura 2.4 Esquema para el cálculo de exergia química estándar de los elementos contenidos en la hidrosfera.	42
	Figura 2.5 Formación del ión sulfato en una celda electroquímica con electrodo estándar de hidrógeno.	43
•	Figura 3.1 Variación de la presión parcial de las especies del aire atmosférico al cambiar la temperatura.	100
•	Figura 3.2 Variación del valor de <i>pH</i> del agua de mar al cambiar la temperatura.	104
•	Figura 3.3 Efecto de la temperatura en el término $ln\gamma'_{EL}$ de Debye-Hückel para el cálculo de coeficientes de actividad.	105
•	Figura 3.4 Desviación porcentual del valor de exergia química estándar de las especies de la atmósfera al cambiar la temperatura del medio.	109

15

Índices de Tablas y Figuras

 Figura 3.5 Efecto en el valor de exergia química estándar de compuestos al cambiar la temperatura del medio. 	19
Figura 3.6 Desviación porcentual del valor de exergia química estándar de las especies del aire al cambiar la presión atmosférica.	25
Figura 3.7 Efecto en el valor de exergia química estándar de compuestos al cambiar la presión atmosférica.	26
Figura 4.1 Columna Desisobutanizadora de la Planta Isomerizadora de n-Butanos.	29
 Figura 4.2 Diagrama de bloques para el análisis de exergia de la columna Desisobutanizadora de la Planta Isomerizadora de n-Butanos. 	46
 Figura 4.3 Flujos de entrada y salida de exergia a considerar en el análisis global de la columna Desisobutanizadora. 	47
 Figura 4.4 Distribución de las pérdidas totales de exergia en la Columna Desisobutanizadora. Condiciones ambientales de Minatitlán. 	71
 Figura 4.5 Porcentaje del total de pérdidas por irreversibilidades en cada equipo de la Columna Desisobutanizadora. Condiciones ambientales de Minatitlán. 	72
 Figura 4.6 Efectividad en cada uno de los equipos que conforman la columna Desisobutanizadora, para las condiciones ambientales de Minatitlán. 	73
Figura 4.7 Porcentaje del total del potencial de mejoramiento en cada equipo de la Columna Desisobutanizadora. Condiciones ambientales de Minatitlán. 1	174
 Figura 4.8 Efecto de la variación de las condiciones del medio de referencia en las pérdidas de exergia por irreversibilidades en cada equipo y en el total del proceso. 	177
 Figura 4.9 Efecto de la variación de las condiciones del ambiente en las pérdidas de exergia por efluentes en cada equipo y en el total del proceso. 	177
 Figura 4.10 Efecto de la variación de las condiciones del medio de referencia en la efectividad de cada equipo de la columna Desisobutanizadora. 	178
 Figura 4.11 Efecto de la variación de las condiciones ambientales en el potencial de mejoramiento de cada equipo y del total del proceso. 	178
 Figura 4.12 Efecto de las condiciones ambientales en el análisis de exergia del condensador de la columna Desisobutanizadora cuando se utiliza un aereoenfriador. 	185
 Figura 4.13 Efecto de las condiciones ambientales en el análisis global del sistema. (Condensación del producto de domo con agua de enfriamiento). 	190
 Figura 4.14 Efecto de las condiciones ambientales en el análisis global del sistema. (Condensación del producto de domo en un aereoenfriador). 	191
n en	-

CAPÍTULO I

CONCEPTOS BÁSICOS DE EXERGIA

1.1.- Definición de Exergia.

La Termodinámica estudia las transformaciones de la energía y la interacción de ésta con la materia. Las condiciones generales bajo las que se observan todas estas transformaciones se conocen como la primera y la segunda leyes de la termodinámica.

La **Primera Ley** establece que la energía no puede ser creada ni destruida y que en todo proceso real su cantidad permanece constante. En procesos en estado estacionario, la cantidad de energía se expresa generalmente por medio de la función termodinámica *Entalpia*.

Por otro lado, la **Segunda Ley** señala que la energía en todo proceso se degrada y por lo tanto su calidad disminuye. La calidad de la energía que contiene el proceso se expresa por medio de otra función termodinámica llamada **Exergia**.

La energía total de un sistema se puede dividir en dos términos: aquella energía que es útil o utilizable para llevar a cabo una acción (exergia) y aquélla que no es útil (anergia).

La parte utilizable puede ser obtenida al llevar al sistema al equilibrio con el medio ambiente. Por lo tanto, la exergia es proporcional al alejamiento del sistema de su medio ambiente y dicho alejamiento se define por la diferencia entre las propiedades a las condiciones de temperatura, presión y composición del sistema y las que prevalecen

en el ambiente. Cuando se han alcanzado las condiciones del ambiente, la energía útil para realizar una acción desaparece. Este estado se conoce como muerto en donde el valor de exergia es cero.

1.1.1.- Formas de la Exergia.

La exergia se manifiesta principalmente de dos formas: una asociada con una transferencia de energía, que no es transportada por la materia, y otra asociada con la energía que contiene la materia, energía transportada por la misma materia. En la Figura 1.1 se presentan las diferentes formas de la exergia [1].

: *	a Alata ara ar	Función de transferencia		
		Exergia del trabajo	$E_{x_w} = W^{\mathrm{abs},\mathrm{product}(\mathrm{abs}),\mathrm{product}$	-
•	Star E.	Exergia del calor	$Ex_h = Q \ \theta = Q \ (I - T_o/T)$:
		Función de estado	a province a state of the second state of the	7
		Exergia de la materia	$Ex_m = Ex_i + Ex_s$	
			$E\!x_i = E\!x_g$ (=) $E\!x_g$ (•
		Exergia potencial	$Ex_g = g (z - z_o)$	
		Exergia cinética	$E_{x_{\nu}} = \frac{1}{2} \left(v_{\nu}^2 + v_{\rho}^2 \right)$	
		Exergia sustancial	$Ex_s = Ex_f + Ex_q$	
		 Exergia física 	$Ex_f = (H - H_o) - T_o (S - S_o) \text{ a } x \text{ cte.}$	
6 (6.1) 1	•	└───◆ Exergia química	$Ex_q = (H - H_o) - T_o (S - S_o)$ a T y P ctes.	

Figura 1.1.- Formas de exergia.

En el primer caso la exergia es una función de la transferencia y sus dos formas son: la exergia del trabajo, Ex_w , trabajo extraído o suministrado y, la exergia del calor Ex_h , que representa el trabajo máximo que se puede extraer de una fuente de calor. En el segundo caso la exergia es una propiedad de la materia, Ex_m , y está conformada por la exergia inercial Ex_i , que está asociada a la cantidad de materia y no al tipo de materia y, por la exergia sustancial Ex_s , la cual sí depende del tipo de materia.

and the stranger of the second second

La exergia inercial está compuesta por la exergía cinética Ex_{ν} , resultado de la velocidad, y de la exergia potencial Ex_g , resultado de la posición de la materia en el campo gravitacional de la Tierra.

La exergia sustancial a su vez se divide en la exergia física Ex_f y en la exergia química Ex_q .

La exergia física es el trabajo que se obtiene al llevar a un sistema a las condiciones de temperatura (exergia térmica, Ex_t) y presión (exergia mecánica, Ex_p) del medio ambiente a composición constante.

La exergia química es el trabajo que se extrae al llevar a una sustancia al equilibrio químico con el ambiente por medio de un proceso isotérmico e isobárico. La exergia química es la suma de dos términos: uno resultado de las reacciones necesarias para producir, a partir de la composición de la sustancia, las especies que se encuentran en el ambiente (exergia reaccional, Ex_r); y otro término que es resultado de igualar la concentración química de las especies producidas a la concentración de ellas mismas en el ambiente (exergia concentracional, Ex_c).

En la Figura 1.2 [1], se muestran los diferentes términos que conforman la exergia de la materia así como las condiciones de las que se parte para su cálculo hasta llegar a las condiciones del estado muerto o medio ambiente.

Figura 1.2.- Exergia de la materia.

Cabe hacer notar que en procesos químicos la exergia inercial se puede considerar despreciable con respecto a la exergia sustancial, por lo que, en el análisis de procesos generalmente sólo se determina la exergia física y química.

1.2.- Medio ambiente de referencia.

El valor de exergia depende del modelo de medio ambiente que se seleccione como referencia. De forma estricta, el modelo a seguir de medio ambiente, que contenga las especies de referencia, debe en primer lugar satisfacer los requerimientos de equilibrio termodinámico, ser práctico desde un punto de vista técnico y ser consistente con la teoría económica para la optimización de procesos. Para lo cual, se requiere que las sustancias estables en el medio ambiente en equilibrio tengan un valor de exergia de cero, además, el medio ambiente de referencia debe ser lo más cercano al medio ambiente natural. Sin embargo, el medio ambiente natural que nos rodea no está en

equilibrio termodinámico. Un requerimiento adicional es que el modelo debe ser capaz de proveer de un indicador económico para el valor de exergia, esto es, el valor de exergia de las especies en abundancia en el medio ambiente debe ser menor que el de aquéllas en menor concentración. El cumplimento simultáneo de todas las condiciones anteriores no es fácil.

Existen diferentes modelos de medio ambiente de referencia propuestos para la determinación de exergia, algunos de los cuales se basan en un medio en equilibrio termodinámico, pero cuya composición y parámetros difieren bastante de la realidad. Otros, por el contrario, utilizan las especies que se encuentran en abundancia en un medio real para el cálculo de exergia, aunque dicho medio no esté en equilibrio. Muñoz y Michaelides [3] analizaron recientemente el efecto que tienen cada uno de los diferentes modelos en el análisis de exergia de una planta de fuerza, y encontraron que varios de los modelos de medio ambiente que no se basan en un estado de equilibrio, sino en un medio real, arrojan resultados más adecuados y consistentes. Esto tiene mayor importancia cuando se determinan las pérdidas de exergia en sistemas abiertos, en donde, hay interacción entre las corrientes del proceso y las especies del medio.

El modelo de referencia que se utiliza en el presente trabajo es el medio ambiente real propuesto por Szargut [2,4], modelo que no está en equilibrio termodinámico. De acuerdo con Szargut, para el cálculo de exergia química de una sustancia se deben seleccionar como especies de referencia aquéllas que representen los productos más probables de una interacción entre la sustancia bajo consideración y los componentes que se encuentran en el ambiente natural.

Las especies de referencia pueden ser componentes gaseosos de la atmósfera, especies disueltas en el agua de mar y componentes sólidos presentes en la superficie terrestre. Los parámetros promedio, que caracterizan a cada medio del que se seleccione una especie de referencia, como por ejemplo la temperatura ambiente, la presión parcial en el aire, la concentración en el agua de mar o en la corteza terrestre, son el nivel cero o estado muerto para el cálculo de exergia.

une de la factor de la c

1.3.- Modelo de Szargut para el cálculo de exergia guímica de una sustancia.

Con el propósito de simplificar el cálculo, Szargut sugiere que la exergia química que se determina en el estado estándar a condiciones normales de temperatura y presión $(T_n = 298.15 \text{ K y } P_n = 1 \text{ atm})$, tomando en cuenta la concentración promedio de las especies de referencia en el medio, se considere como una exergia química estándar.

Se entiende como estado estándar el estado particular de una sustancia a la temperatura T definido por acuerdo general a las condiciones de referencia de presión, composición y estado físico. El estado estándar empleado en este trabajo para gases es de compuesto puro en estado de gas ideal a 1 atm, y en el caso de líquidos y sólidos el de compuestos puros en estado real a 1 atm.

一方法 人名英格兰人姓氏克格德的变体

Andre alle entre ter andre service and the service of a least group with a network of the restau water count and the De acuerdo con el modelo propuesto por Szargut [4] (Figura 1.3), el cálculo de exergia química de una sustancia comprende cinco etapas. En la primera etapa, la sustancia a condiciones iniciales de T_o y P_o alcanza la temperatura y presión del estado estándar normal $(T_n \ y P_n)$ por medio de un proceso reversible que involucra intercambio de calor con el medio ambiente.

age to called an interaction and account of a second second second second second second second second second se Posteriormente, en una segunda etapa se lleva a cabo la reacción estándar de referencia a las condiciones normales de T_n y P_n , para que a partir de la sustancia y de alguna de las especies que se encuentran en el medio ambiente, se obtengan especies del mismo ambiente (exergia reaccional, Exr). Una máquina de Carnot asegura el intercambio de calor reversible con el medio ambiente. Por ejemplo, si se quisiera determinar la exergia química del metano, la reacción de referencia podría ser la combustión de dicho compuesto con el oxígeno contenido en el aire:

and the appropriate of the second $CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$

Figura 1.3.- Modelo de Szargut para calcular exergia química.

Por medio de un cambio reversible e isotérmico, en una tercera etapa se iguala la concentración que tienen las especies producidas en el estado estándar normal (exergia concentracional, Ex_c). Al igual que en el paso anterior, una fuente de calor y una máquina de Carnot se involucran en esta etapa. Es importante hacer notar que el trabajo máximo que se obtiene en la segunda y tercera etapa corresponde a la exergia química estándar en condiciones normales.

En la cuarta etapa, el estado de las especies de referencia cambia de manera reversible de las condiciones normales de T_n y P_n a la temperatura y presión del medio ambiente, T_o y P_o . Finalmente, en una quinta etapa por medio de un proceso isotérmico

e isobárico, se alcanza el valor de concentración de las especies de referencia en el medio ambiente real, x_o .

Al realizar un balance global de exergia en el modelo antes planteado se obtienen las siguientes relaciones:

$$Ex_{q} = Ex_{q}^{o} + W_{1} + (Q_{2} + Q_{3})\frac{(T_{n} - T_{o})}{T_{n}} + W_{4} + W_{5}$$
 (1-2)

En donde Ex_q^o es la exergia química estándar de la sustancia a condiciones normales, y cuyo valor se extrae de las tablas publicadas por Szargut [4]. El término W_1 es la exergia física del compuesto que se obtiene al pasar de las condiciones de T_o y P_o a las condiciones normales de T_n y P_n , esto es,

$$W_1 = (H_o - H_n) - T_n (S_o - S_n)$$
(1-3)

El flujo de calor Q_2 , transferido durante la etapa dos, es proporcional a la producción de entropia de la reacción de referencia a condiciones normales, y por consiguiente igual a la diferencia entre el cambio de entalpia normal estándar y el cambio de energía libre de Gibbs normal estándar para la reacción de referencia, es decir,

$$Q_2 = \Delta H_r^o - \Delta G_r^o = T_n \, \Delta S_r^o \tag{1-4}$$

El cambio de energía libre de Gibbs normal estándar se obtiene a partir de la exergia química estándar de las especies involucradas en la reacción de referencia de acuerdo a la siguiente ecuación:

$$\Delta G_r^o = \sum n_k E x_{q_k}^o - \sum n_y E x_{q_y}^o - E x_q^o$$

$$(1-5)$$

En donde n_k y n_y corresponden, respectivamente, al número de moles de productos y de reactivos adicionales (reactivos diferentes a la sustancia bajo consideración). Por otro lado, el flujo de calor Q_3 que se transfiere en la etapa tres corresponde a la diferencia de

exergia química estándar entre reactivos adicionales y productos de la reacción de referencia.

$$Q_{3} = \sum n_{y} E x_{q_{y}}^{o} - \sum n_{k} E x_{q_{k}}^{o}$$
(1-6)

El término W_4 representa la diferencia de exergia física entre reactivos adicionales y productos de la reacción de referencia.

$$W_{4} = \sum n_{y} E x_{f_{y}} - \sum n_{k} E x_{f_{k}}$$
(1-7)

El trabajo obtenido en la etapa cinco, W_5 , corresponde a la diferencia entre la exergia concentracional entre reactivos adicionales y productos de la reacción de referencia. Si las especies de referencia bajo consideración se encuentran en el aire atmosférico y si se considera que dichas especies tienen un comportamiento de gas ideal, entonces la expresión de la diferencia de exergia concentracional referida a una mol de mezcla es:

$$W_{5} = RT_{n} \left(\sum n_{y} \ln \frac{x_{oy}}{x_{ny}} - \sum n_{k} \ln \frac{x_{ok}}{x_{nk}} \right)$$
(1-8)

Cabe señalar que cuando se escogen las condiciones de temperatura, presión y composición del estado estándar normal como las condiciones del medio ambiente a las que se encuentran las especies de referencia, W_1 , W_4 y W_5 son cero.

1.4.- Exergia física y química de mezclas.

La exergia física de un sistema multicomponente se determina a partir de,

$$Ex_{f} = \left| \left(H - H_{o} \right) - T_{o} \left(S - S_{o} \right) \right|_{x}$$

$$(1 - 9)$$

and the second second

En donde, H y S son la entalpia y entropia a las condiciones de temperatura y presión en que se encuentra el sistema y, H_o y S_o entalpia y entropia a las condiciones de temperatura (T_o) y presión (P_o) del medio ambiente. El cálculo de exergia física de una corriente de proceso es relativamente sencillo cuando se utiliza un simulador de procesos. Por el contrario, la determinación de exergia química de una mezcla a partir de una ecuación similar a la ecuación 1-9, pero a T_o y P_o constantes, no es sencilla, ya que el cálculo involucra muchas reacciones de referencia.

En un sistema multicomponente, la exergia molar parcial del componente *i* en la mezcla se define como:

$$\overline{Ex}_{i} = \left(\frac{\partial Ex}{\partial n_{i}}\right)_{P,T,n_{lel}}$$
(1-10)

A partir de esta definición, Kameyama [5] obtiene la siguiente expresión para la exergia molar parcial del componente *i*:

$$\overline{Ex}_i = Ex_i^o + RT_o \ln a_i + (1 - T_o/T) (\overline{H}_i - H_i^o)$$
(1-11)

En donde, Ex_i° , a_i , H_i^{-} y H_i° son la exergia estándar, la actividad, la entalpia molar parcial y la entalpia estándar del componente *i*, respectivamente. Al utilizar la ecuación de Euler para obtener la exergia molar de la mezcla a partir de los valores de exergia molar parcial de cada componente resulta que,

$$Ex = \sum_{i=1}^{nc} x_i \ \overline{Ex}_i \tag{1-12}$$

$$Ex = \sum_{i=1}^{n_c} x_i Ex_i^o + RT_o \sum_{i=1}^{n_c} x_i \ln a_i + (1 - T_o/T) \sum_{i=1}^{n_c} x_i (\overline{H}_i - H_i^o)$$
(1-13)

$$Ex = \sum_{i=1}^{nc} x_i Ex_i^o + RT_o \sum_{i=1}^{nc} x_i \ln a_i + (1 - T_o/T) \Delta H_{mezclado}$$
(1-14)

La suma del segundo y tercer término representa la exergia en exceso (exergia composicional [6]), la cual corrige el efecto por mezclado, de manera que la exergia química de una mezcla multicomponente es menor que la suma de la exergia de todos los componentes puros que conforman la mezcla. Para una solución ideal, el calor de mezclado ($\Delta H_{mezclado}$) es igual a cero.

A partir de lo anterior, la exergia química molar de la mezcla, la cual se determina a partir de la exergia química estándar y de la fracción molar de cada uno de los componentes presentes en la mezcla, se expresa de la siguiente manera:

$$Ex_{q} = \sum_{i=1}^{nc} x_{i} Ex_{q_{i}}^{o} + RT_{o} \sum_{i=1}^{nc} x_{i} \ln a_{i}$$
(1-15)

En donde, la actividad del componente *i*, a presiones bajas, se iguala a su fracción molar (x_i) en el caso de una solución ideal o, a su fracción molar por su coeficiente de actividad (γ_i) cuando se considera una solución real.

1.5.- Análisis de Exergia.

Como se menciona en la introducción, el objetivo principal del análisis de exergia es encontrar los puntos críticos de un sistema, en donde existe la posibilidad de reducir las pérdidas de exergia, es decir, las pérdidas de energía útil para realizar trabajo, y así aumentar la eficiencia del sistema. Sín embargo, la decisión final de tales mejoras debe recaer en una evaluación económica, ya que una modificación al sistema conlleva una inversión de capital [1].

La aplicación del análisis de exergia se basa en el método de bloques, en el que al sistema bajo estudio se le considera como un bloque el cual puede tener interacción con sus alrededores ya sea por medio de una transferencia de calor, trabajo o materia.
El método de bloques no tiene ninguna restricción en cuanto al tamaño, es decir, un bloque puede representar todo un proceso industrial o un equipo del complejo.

A partir de las propiedades de las corrientes de entrada y salida de cada bloque, se realizan los balances de entalpia y exergia para finalmente determinar los parámetros exérgicos, los cuales sirven para evaluar en forma cuantitativa y cualitativa cómo opera el sistema desde un punto de vista de uso de energía.

an an indiana an ang kana galamang kanang ang kanang kanang kanang kanang kanang kanang kanang kanang kanang ka

a na ang katalog katalog na panaka na katalog katalog katalog katalog katalog katalog katalog katalog katalog k

1.5.1.- Parámetros exérgicos [1].

Existen tres tipos de parámetros exérgicos: cuantitativos, cualitativos y aquéllos que combinan los dos tipos anteriores.

Los parámetros exérgicos cuantitativos permiten evaluar las pérdidas de exergia de un sistema. Las pérdidas totales de exergia (*Pex*) son la suma de las pérdidas irreversibles y de efluentes.

and a second second

$$Pex = Irr + Efl \tag{1-16}$$

Las pérdidas irreversibles de exergia (*Irr*) de un sistema, debidas a las irreversibilidades termodinámicas de los procesos dentro del sistema, se obtienen por medio de la diferencia entre la exergia total de entrada (Ex_{tte}) y la exergia total de salida (Ex_{tts}), o por medio del teorema de Gouy-Stodola:

$$Irr = \sum Ex_{entrada} - \sum Ex_{salida} = Ex_{tte} - Ex_{tts} = T_o \sum \Delta S \qquad (1-17)$$

1. 医疗疗法 医子宫结核 医结核的 医结核的 医子宫的 医白色的 化化合物 化合金 网络小麦属白色的

En donde, $\Sigma \Delta S$ es la suma del incremento de entropia de todas las corrientes que participan en el sistema. De acuerdo con la Ecuación 1-17, las pérdidas irreversibles de exergia dependen sólo de la temperatura del ambiente de referencia y no de otra condición del medio.

Si al sistema se le considera como un par receptor-donador, las pérdidas irreversibles de exergia también son la diferencia entre la exergia neta suministrada (Ex_{nts}) por la fuente o donador y la exergia neta producida (Ex_{ntp}) cedida al receptor, es decir,

$$Irr = Ex_{nts} - Ex_{ntp} \tag{1-18}$$

Por otro parte, las pérdidas de exergia por efluentes (*Efl*) son iguales a la suma de exergia de todas las corrientes arrojadas al ambiente, como pueden ser gases de combustión, gases quemados enviados a desfogue, agua de enfriamiento de retorno, agua arrojada al drenaje, pérdidas de calor, aire caliente de los aereoenfriadores, etc.

Otro parámetro cuantitativo importante es la exergia útil a la salida (Ex_{uts}), la cual se obtiene al restarle a la exergia total de salida, las pérdidas de efluentes.

$$Ex_{uis} = Ex_{us} - Efl \tag{1-19}$$

El balance general de exergia alrededor de cada bloque es entonces,

$$Ex_{tte} = Ex_{uts} + Irr + Efl = Ex_{uts} + Pex$$
(1-20)

Tanto las pérdidas irreversibles, las de efluentes y las totales de exergia son aditivas, lo cual quiere decir que, las pérdidas de exergia de un sistema compuesto por un cierto número de bloques son iguales a la suma de pérdidas de exergia de cada bloque.

Con el fin de comparar las pérdidas de exergia y la operación entre diferentes sistemas, se definen los siguientes parámetros cualitativos: eficiencia, efectividad y rendimiento; los cuales permiten evaluar el alejamiento entre la operación real del sistema y la operación máxima que se podría obtener desde el punto de vista de la segunda ley de la termodinámica. La eficiencia mide la fracción de exergia total de entrada que no se pierde debido a las irreversibilidades termodinámicas del proceso, es decir,

$$\eta = \frac{Ex_{tts}}{Ex_{tte}} = 1 - \frac{Irr}{Ex_{tte}}$$
(1-21)

Por otro lado, la efectividad es la medida de la capacidad del sistema para producir el efecto deseado, esto es, la fracción de exergia neta suministrada que aprovecha el sistema para llevar a cabo su función.

$$\varepsilon = \frac{Ex_{mp}}{Ex_{ms}} = 1 - \frac{Irr}{Ex_{ms}}$$
(1-22)

Para procesos reversibles, la eficiencia y la efectividad alcanzan su valor máximo de uno.

La diferencia entre eficiencia y efectividad se puede observar de manera más clara al analizar un cambiador de calor enfriado con agua, en donde la corriente de proceso es el donador de energía y el agua de enfriamiento el receptor (ver Figura 1.4).

Figura 1.4.- Enfriamiento con agua. Par receptor-donador.

En la Figura 1.4, *I* y 2 son las corrientes de proceso caliente de entrada y de salida, respectivamente, *ae* el agua de enfriamiento de entrada y *ar* el agua de retorno.

En este caso, la eficiencia termodinámica del intercambio de calor estará dada por la relación entre la exergia total de salida del sistema y la exergia total de entrada al sistema, esto es,

$$\eta = \frac{Ex_{tts}}{Ex_{tte}} = \frac{(Ex_2 + Ex_{ar})}{(Ex_1 + Ex_{ae})}$$
(1-23)

Mientras que la efectividad será igual a la fracción de exergia neta suministrada por la corriente de proceso o donador ($Ex_1 - Ex_2$), que recibe el agua de enfriamiento o receptor ($Ex_{ar} - Ex_{ae}$), exergia neta producida, con el objetivo de enfriar la corriente de proceso. Es decir,

$$\varepsilon = \frac{Ex_{ntp}}{Ex_{nts}} = \frac{(Ex_{ar} - Ex_{ae})}{(Ex_1 - Ex_2)}$$
(1-24)

Por lo tanto, los valores numéricos de efectividad y eficiencia son diferentes.

La definición de rendimiento varía dependiendo del objetivo de la operación pero, en general, se define como la relación entre la exergia útil a la salida y la exergia total de entrada. A diferencia de los valores de eficiencia y de efectividad, el valor de rendimiento no se puede utilizar para comparar sistemas de diferente naturaleza.

$$\zeta = \frac{Ex_{uts}}{Ex_{tte}} = 1 - \frac{Pex}{Ex_{tte}}$$
(1-25)

El potencial de mejoramiento de un sistema combina los parámetros exérgicos cuantitativos y cualitativos para evaluar qué tanto y qué tan fácil el sistema puede ser mejorado con fines de optimización. Rivero propuso en 1988 que dicho parámetro se puede obtener a partir de un potencial absoluto, definido por las pérdidas irreversibles, por un potencial relativo, que está en función de la efectividad del sistema, y de un potencial ambiental, representado por las pérdidas de efluentes.

$$Pot = Irr(1-\varepsilon) + Efl \qquad (1-26)$$

Con el fin de lograr una función óptima en un sistema es importante analizar primero los bloques con los potenciales de mejoramiento más alto.

32

الجامعة المحاج المعاد يعنه المعاد المحاجم والمركز المحروم والمحاج المحرور المحرور المحرور المحرور المحرور المح المحروم محرور المحرور المحرور المحروم والمحرور المحرور المحرور المحرور المحرور المحرور المحرور المحرور المحرور ا المحروم المحرور المحرور

الم معالم المالي المالية من المعالية المراجعة المراجعة المعالية المراجعة المراجعة من المعالم المعالية المعالية المحاججة المحاججة المحاججة المحاججة معهم المحاججة من محال المحاجة المحاجة المحاجة المحاجة المحاجة المحاجة المحا المحاجة المحاجة

a traditional de la companya de la c A servicio de la companya de la comp

.

CAPÍTULO II

DETERMINACIÓN DE LA EXERGIA QUÍMICA ESTÁNDAR DE LOS ELEMENTOS

Con base en los valores de exergia química estándar de los elementos, se puede determinar el valor de exergia química de cualquier compuesto químico por medio de un balance de exergia en la reacción de formación, esto es,

En donde, ΔG_f° es la energía libre de formación normal estándar del compuesto (kJ/mol), n_{el} es el número de moles del elemento por cada mol de compuesto formado y $Ex_q^{\circ}_{el}$ es la exergia química estándar del elemento (kJ/mol).

 $Ex_q^o = \Delta G_f^o + \sum_{el} n_{el} Ex_{q_{el}}^o$

Para determinar la exergia química estándar de un elemento es necesario referirse a la especie más abundante que lo contenga, y conocer con exactitud la concentración de dicha especie en el medio, así como sus propiedades.

En las siguientes secciones se presenta el cálculo de exergia química estándar a condiciones normales de temperatura y presión ($t_n = 25^{\circ}$ C y $P_n = 1$ atm) de la mayoría de los elementos de la tabla periódica, de acuerdo al medio en donde se encuentra la especie de referencia de cada uno, es decir, ya sea en la atmósfera, en la hidrosfera o en la litosfera. De manera paralela se analiza el cambio en el valor de exergia química estándar de los elementos al variar la concentración de las especies en el medio ambiente.

n de la transmissión de la construction de la construcción de la construcción de la construcción de la constru En submissión de la construcción de and a star we go a star

2.1.- Exergia química estándar de los elementos contenidos en el aire atmosférico.

Las especies gaseosas que se encuentran en la atmósfera tienen la ventaja de que su concentración se puede medir con exactitud y que ésta prácticamente no cambia con el tiempo (excepto el bióxido de carbono). Por lo que las especies presentes en la atmósfera se consideran como especies de referencia para determinar la exergia química estándar de los siguientes elementos: carbono, hidrógeno, oxígeno, nitrógeno, argón, neón, helio, criptón, xenón y deuterio.

Si se considera que las especies presentes en la atmósfera se comportan como gases ideales a las condiciones de temperatura y presión que caracterizan el aire atmosférico, la exergia química estándar de dichas especies se expresa como:

$$Ex_{q_i}^{o} = R T_n \ln \frac{P_n}{P_{i_n}} = R T_n \ln \frac{1}{x_{i_n}}$$
(2-2)

En donde, P_n es la presión total estándar, P_{in} la presión parcial de la especie *i*, x_{in} la fracción molar de la especie, T_n la temperatura absoluta estándar y, R la constante general de los gases ideales.

La presión parcial del agua en el aire atmosférico, P_{H20} , se obtiene a partir de la definición de humedad relativa (ϕ), esto es,

$$\phi = \frac{P_{H_2O}}{P_{H_2O}^o}$$
(2-3)

En donde, P°_{H2O} es la presión de vapor del agua a la temperatura de bulbo seco, que en este caso corresponde, a la temperatura absoluta a condiciones estándar, T_n . El efecto de la temperatura en el valor de la presión de vapor del agua se obtiene al utilizar la expresión de Antoine:

$$\ln P_{H_{2O}}^{o} = 18.3036 - \frac{3816.44}{(T - 46.13)}$$
(2-4)

En esta ecuación, la presión de vapor esta expresada en mmHg y la temperatura en grados Kelvin. La presión de vapor del agua a 298.15 K es de 3.14 kPa.

En la Tabla 2.1 se presentan los valores de exergia química estándar de los elementos contenidos en la atmósfera que se obtienen al considerar las condiciones normales de temperatura y presión (T_n = 298.15K y P_n = 101.325 kPa), una humedad relativa de 0.7 y una concentración de CO₂ de 345 ppm en volumen. En la misma tabla, se muestra la desviación porcentual entre el valor calculado de exergia química estándar y el que predice Szargut [2, 4].

	*	Especie de referencia				<i>Ex_q° del elemento, kJ/gmol</i>		
e Antonio estable		Fracción molar en	Presión parcial en	Fracción molar en		Determinada en el		
Elemento químico	Fórmula química	el aire seco	el medio, kPa	el aire húmedo	Ex _q °, kJ/gmol	presente trabajo	Szargut	Desviación, % ^(a)
Ar (g)	Ar	9.33x10 ⁻³	0.9249	9.13x10 ⁻³	11 64	11.64	11.69	-0.42
C (s)	CO ₂	3.45x10 ⁻⁴	0.0342	3.38x10 ⁻⁴	19.82	410.27	410.26	0.00
D _{2 (g)}	D ₂ O		3.42x10 ⁻⁴	3.38x10 ⁻⁶	31.23	263.90	263.79	0.04
H _{2 (g)}	H ₂ O	la destadas	2.2002	0.02171	9.49	236.12	236.09	0.01
He (g)	He	5x10 ⁻⁶	5x10 ⁻⁴	4.89x10 ⁻⁶	30.31	30.31	30.37	-0.19
Kr _(g)	Kr	1x10 ⁻⁶	1x10 ⁻⁴	9.78x10 ⁻⁷	34.30	34.30	34.36	-0.17
N _{2 (g)}	N ₂	0.7803	77.355	0.7634	0.67	0.67	0.72	-7.07
Ne (g)	Ne	1.8x10 ⁻⁵	1.78x10 ⁻³	1.76x10 ⁻⁵	27.14	27.14	27.19	-0.20
O _{2 (g)}	O ₂	0.2099	20.808	0.2054	3.92	3,92	3.97	-1.16
Xe (g)	Xe	9x10 ⁻⁸	1x10 ⁻⁵	<u>8.81x10-8</u>	40.27	40.27	40.33	-0.15

Tabla 2.1.- Exergia química estándar de los elementos presentes en la atmósfera a condiciones normales de temperatura y presión (humedad relativa = 0.7 y concentración de CO₂ = 345 ppmv).

(a) Con respecto al valor que indica Szargut

Vale la pena señalar, que la exergia química estándar de los elementos que no se encuentran como tales en la atmósfera (C, D₂, H₂), se determina por medio de la ecuación 2-1 y considerando las siguientes reacciones de formación de las especies de referencia:

 C + O_2 $\Delta G_{f \ CO2}^{\circ} = -394.38 \text{ kJ/gmol [7]}$
 $D_2 + \frac{1}{2} O_2$ $D_2 O$
 $M_{f \ D20}^{\circ} = -234.63 \text{ kJ/gmol [7]}$
 $H_2 + \frac{1}{2} O_2$ $H_2 O$
 $\Delta G_{f \ H20}^{\circ} = -228.59 \text{ kJ/gmol [8]}$

La diferencia que existe entre los valores de exergia química estándar aquí determinados con los que indica Szargut, se debe a que dicho autor considera una presión promedio total de 99.31 kPa y no 101.325 kPa, como base para el cálculo de la composición del aire atmosférico.

En los resultados anteriores se puede apreciar que entre mayor es la concentración de una especie en el medio, el valor de su exergia química estándar disminuye, lo cual se explica por una menor exergia concentracional, es decir, es menor el trabajo que se obtiene al cambiar la concentración de la especie de referencia como sustancia pura a la concentración de ésta en el medio, a temperatura y presión del medio constante.

Si bien, el valor de exergia química estándar de los elementos que no se encuentran como tales en el medio (como son el carbono, el hidrógeno y el deuterio) depende principalmente de la energía libre de la reacción de formación de la especie de referencia, también influyen en su magnitud, el valor de exergia química estándar de los elementos adicionales que participan en la reacción y el de la especie de referencia; por lo que la abundancia de los componentes presentes en el medio también repercute, aun cuando en menor medida, en el valor de exergia química estándar de dichos elementos.

2.1.1.- Efecto en el valor de exergia química estándar al variar la humedad relativa del aire.

El contenido de agua en el aire atmosférico varía dependiendo del lugar geográfico, aún más, en un mismo lugar la humedad cambia según la estación del año. En la Tabla 2.2 se presentan los valores de exergia química estándar de los elementos y especies de referencia presentes en la atmósfera, determinados a diferentes valores de humedad

. .

relativa y a condiciones normales de temperatura y presión. En el Apéndice A.1, se muestran los resultados en detalle del cálculo de exergia química estándar de los elementos a diferentes valores de humedad relativa y que se obtienen con el programa EXQCOMP desarrollado en el presente trabaio.

Con el fin de observar el efecto de la humedad relativa en el valor de exergia química estándar de un hidrocarburo, se incluye al metano en el análisis.

			Hu	ımedad Rela	tiva	*
	Especie	0.1	0.3	0.5	0.7	0.9
	Ar	11.59	11.61	11.63	11.64	11.66
	С	410.27	410.27	410.27	410.27	410.27
	D_2	268.75	266.02	264.75	263.90	263.27
	H ₂	240.97	238.24	236.96	236.12	235.49
	Не	30.26	30.28	30.29	30,31	30.33
	Kr	34.25	34.27	34.29	34.30	34.32
	N ₂	0.62	0.64	0.65	0.67	0.69
	Ne	27.09	27.10	27.12	27.14	27.15
	O ₂	3.88	3.89	3.91	3.92	3.94
	Xe	40.22	40.24	40.25	40.27	40.29
	CO2	19.77	19.78	19.80	19.81	19.83
.:	D_2O	36.05	33.33	32.07	31.23	30.61
	H ₂ O	14.32	11,59	10.33	9.49	8.87
	CH₄	841.41	835.95	833.40	831.72	830.45
e e su pri	· · · ·					

Tabla 2.2 Exergía química estándar (kJ/gmol) de los elementos	
contenidos en la atmósfera a diferentes valores de humedad relativa	a.]

La reacción de referencia que se utiliza para obtener la exergia química estándar del metano es:

and the second secon $C + 2H_2$ $\rightarrow CH_4$ $\rightarrow CH_4$

and the second En la Figura 2.1, se muestra cómo cambia el valor de exergia química estándar, al

considerar una humedad relativa diferente a 0.7, para los elementos que se encuentran en mayor proporción en la atmósfera y para aquellas especies que se ven directamente afectadas en su valor de exergia por un cambio de humedad (se mantiene la misma relación de presiones parciales entre el óxido de deuterio y el agua).

Figura 2.1.- Desviación porcentual del valor de exergia química estándar al variar el contenido de agua en la atmósfera.

De los resultados anteriores, se observa que al disminuir el contenido de agua en el aire atmosférico disminuye la exergia química estándar de los elementos, lo cual se debe a que, al disminuir la concentración de agua en la atmósfera, aumenta la proporción del resto de las especies presentes en el aire, provocando que disminuya la exergia concentracional de las especies de referencia.

a sa ta Ata a

Sin embargo, en el caso de los elementos hidrógeno y deuterio, y de las especies agua, óxido de deuterio y metano, al disminuir la humedad relativa del aire aumenta su valor de exergia química, esto debido a que tales sustancias están relacionadas directamente ya sea con la concentración de agua o con el valor de exergia química del hidrógeno, como es el caso del metano, el cual se forma a partir de dos moléculas de hidrógeno y una de carbono. Vale la pena hacer notar que el valor de exergia química estándar del carbono no se ve afectado por un cambio en el contenido de agua en el aire, lo cual se debe a que la diferencia entre el valor de exergia química estándar de las especies (bióxido de carbono y oxígeno) a partir de las cuales se obtiene la exergia química del carbono, permanece constante al variar la humedad relativa.

2.1.2.- Efecto en el valor de exergia química estándar de los elementos por el cambio de concentración de CO₂ en el aire.

La concentración de CO_2 en la atmósfera se ha incrementado a partir del inicio del proceso de industrialización, debido al aumento de las emisiones de dicho gas procedentes del consumo de combustibles fósiles. En la Figura 2.2 se observa que el valor de exergia química del CO_2 disminuyó tan sólo 2.2 por ciento en el último siglo, al aumentar su concentración en el aire en 19.4 por ciento.

Figura 2.2.- Efecto de la concentarción de CO₂ en su valor de exergia química estándar.

En la Tabla 2.3 se muestran los valores de exergia química estándar de los elementos y especies presentes en el aire, que se obtienen al considerar las diferentes concentraciones de bióxido de carbono registradas, durante el periodo comprendido entre 1900 y 1990, en núcleos de hielo (Siple y Polo Sur) y (desde 1958) por los

observatorios de Mauna Loa en Hawai [9]. El ejercicio se realiza a condiciones normales de temperatura y presión y suponiendo una humedad relativa del aire de 0.7. En este análisis, también, se incluye el efecto sobre el valor de exergia química estándar del metano a un cambio en la concentración de CO₂. Los resultados completos de este análisis se presentan en el Apéndice A.2.

	Pa	rtes por mill	por millón en volumen de CO2 (Año de registro)					
Especie	297.4 (1900)	305.2 (1930)	311.8 (1950)	326.1 (1970)	338.3 (1980)	355.0 (1990)		
Ar	11.64	11.64	11.64	11.64	11.64	11.64		
C	410.64	410.57	410.52	410.41	410.32	410.20		
D ₂	263.90	263.90	263.90	263.90	263.90	263.90		
H ₂	236.12	236.12	236.12	236.12	236.12	236.12		
Here	30:31	30.31	30.31	30.31	30.31	30.31		
Kr	34.30	34.30	34.30	34.30	34.30	34.30		
N ₂	0.67	0.67	0.67	0.67	0.67	0.67		
Ne	27.14	27.14	27.14	27.14	27.14	27.14		
O ₂	3.92	3.92	3.92	3.92	3.92	3.92		
Хе	40.27	40.27	40.27	40.27	40.27	40.27		
CO ₂	20.18	20 .12	20.07	19.95	19.86	19.74		
D ₂ O	31.23	31.23	31.23	31.23	31.23	31.23		
H ₂ O	9.49	9.49	9.49	9.49	9.49	9.49		
CH4	832.09	832.02	831.97	831.86	831.77	831.65		

Tabla 2.3.- Exergia química estándar (kJ/gmol) de los elementos contenidos en la atmósfera a diferentes valores de concentración de CO₂.

En la Tabla 2.4 y en la Figura 2.3 se muestra que el valor de exergia química estándar de sustancias diferentes al CO_2 no se modifica apreciablemente, si se considera una concentración de CO_2 diferente a 345 ppmv (valor que considera Szargut). Aun más, en el caso del carbono y metano, cuyos valores de exergia química dependen en gran medida del valor de exergia química del bióxido de carbono, la desviación de sus valores de exergia química cuando la concentración de CO_2 es de 345 ppmv, es menor del 0.1 por ciento.

Por otro lado, se observa que los valores de exergia química del agua y del óxido de deuterio no se alteran al cambiar la concentración de CO₂, lo cual se debe a que la concentración de agua, y por consiguiente de óxido de deuterio, en el aire no depende

de la proporción del resto de las especies presentes en el aire seco, sino de la temperatura y de la presión total del medio.

Tabla 2.4.- Desviación porcentual con respecto al valor de exergia química estándar a 345 ppmv de CO₂.

	Partes por millón en volumen de CO2 (Año de reg						
	297.4	305.2	311.8	326.1	338.3	355.0	
Especie	(1900)	(1930)	(1950)	(1970)	(1980)	(1990)	
Ar	-1.0x10 ⁻³	-8.5x10 ⁻⁴	-7.1x10 ⁻⁴	-4.0x10 ⁻⁴	-1.4x10 ⁻⁴	2.1x10 ⁻⁴	
C ·	9.0x10 ⁻²	7.4x10 ⁻²	6.1x10 ⁻²	3.4x10 ⁻²	1.2x10 ⁻²	-1.7x10 ⁻²	
D ₂	2.2x10 ⁻⁵	1.9x10 ⁻⁵	1.6x10 ⁻⁵	8.9x10 ⁻⁶	3.2x10 ⁻⁶	-4.7x10 ⁻⁶	
H ₂	2.5x10⁻⁵	2.1x10 ⁻⁵	1.7x10⁻⁵	9.9x10 ⁻⁶	3.5x10 ⁻⁶	-5.3x10 ⁻⁶	
He	-3.9x10 ⁻⁴	-3.3x10 ⁻⁴	-2.7x10 ⁻⁴	-1.5x10 ⁻⁴	-5.5x10 ⁻⁵	8.2x10 ⁻⁵	
Kr	-3.4x10 ⁻⁴	-2.9x10 ⁻⁴	-2.4x10 ⁻⁴	-1.4x10 ⁻⁴	-4.9x10 ⁻⁵	7.2x10 ⁻⁵	
N ₂	-1.8x10 ⁻²	-1.5x10 ⁻²	-1.2x10 ⁻²	-7.0x10 ⁻³	-2.5x10 ⁻³	3.7x10 ⁻³	
Ne	-4.3x10 ⁻⁴	-3.6x10 ⁻⁴	-3.0x10 ⁻⁴	-1.7x10 ⁻⁴	-6.2x10 ⁻⁵	9.1x10⁻⁵	
O ₂	-3.0x10 ⁻³	-2.5x10 ⁻³	-2.1x10 ⁻³	-1.2x10 ⁻³	-4.3x10 ⁻⁴	6.3x10 ⁻⁴	
Xe	-2.9x10 ⁻⁴	-2.5x10 ⁻⁴	-2.0x10 ⁻⁴	-1.2x10 ⁻⁴	-4.1x10 ⁻⁵	6.2x10 ⁻⁵	
CO_2	1.86	1.53	1.26	0.7 <u>1</u>	0.25	-0.36	
D_2O	0.00	0.00	0.00	0.00	0.00	0.00	
H₂O	0.00	0.00	0.00	0.00	0.00	0.00	
CH₄	4.4x10 ⁻²	3,7x10 ⁻²	3.0x10 ⁻²	1.7x10 ⁻²	5.9x10 ⁻³	8.4x10 ⁻³	

Figura 2.3.- Desviación porcentual del valor de exergia química estándar con respecto a 345 ppmv de CO₂.

2.2.- Exergia química estándar de los elementos contenidos en la hidrosfera.

Szargut [2, 4] recomienda que, en lo posible, se seleccionen componentes presentes en la corteza terrestre como especies de referencia para el resto de los elementos que no se encuentran en la atmósfera. Sin embargo, la concentración de muchos de estos componentes no está bien definida, por lo que se seleccionan especies disueltas en el agua de mar cuya composición se conoce con bastante exactitud.

Morris, Steward y Szargut [4], proponen el esquema de la Figura 2.4 para determinar la exergia química estándar de los elementos cuyas especies de referencia están disueltas en el agua de mar. Los pasos 1 y 2 del esquema, corresponden a los pasos 2 y 3 del modelo propuesto por Szargut para el cálculo de exergia química (Figura 1.3).

一方,一方方,有方的前方有效。 法依据任何状

Como se mencionó en el Capítulo I, parte de la exergia química de una sustancia se obtiene al producir la especie de referencia a partir de la sustancia, o en este caso, del elemento bajo consideración (exergia reaccional). En el primer paso del esquema de la Figura 2.4, se introduce un mol del elemento de interés y elementos adicionales que se encuentran en la especie de referencia a una celda electroquímica, la cual contiene un electrodo de hidrógeno y opera a condiciones normales de temperatura y presión. Si la especie a formar es un ión positivo, se introduce a la celda el ión hidrógeno en una solución ideal monomolar y se obtiene gas hidrógeno y se produce el ión hidrógeno. Considerar al electrodo normal de hidrógeno, cuyo potencial tiene un valor de cero volts por convención, tiene como fin el que se lleven a cabo las semireacciones de oxidación o reducción necesarias para la formación de la especie de referencia.

De acuerdo al modelo antes planteado, la formación del ión sulfato, principal especie presente en el agua de mar que contiene el elemento azufre, a partir de una mol de azufre y dos moles de oxígeno, se efectúa en una celda electroquímica como se muestra en la Figura 2.5.

Figura 2.5.- Formación del ión sulfato en una celda electroquímica el comparación del ión sulfato en una celda electroquímica electroquímica el comparación del ión sulfato en una celda electroquímica el comparación del ión sulfato en una celda electroquímica el comparación del ión sulfato en una celda electroquímica el comparación del ión sulfato en una celda electroquímica electroquímica el comparación del ión sulfato en una celda electroquímica electroquímica electroquímica electroquímica electroquímica electroquímica electroquímica electroquímica electroquímica

그는 그는 것 같아요. 것 같아요. 그는 것 같아요. 그는 것 같아요. 나는 것 같아요. 나는 것 같아요. 나는 것 같아요.

en en en la seconda en en la seconda de Escanda en la seconda de la

Las semirreacciones y la reacción global que tienen lugar en la celda son:

S° S° <u>→</u>	S ⁶⁺ + 6e	oxidación
20 ₂ + 8e	40 ²⁻	reducción
H₂►	2H ⁺ + 2e	oxidación
S° + 2O ₂ + H ₂ →	SO4 ²⁻ + 2H ⁺	a af an trainn N

En la segunda etapa, por medio de un proceso isotérmico e isobárico, se alcanza la concentración que tienen en el agua de mar la especie formada y el ión hidrógeno (exergia concentracional). Cabe señalar que los dos procesos son reversibles y que en cada uno hay intercambio de calor con los alrededores.

Del esquema anterior se deriva la siguiente ecuación para el cálculo de exergia química estándar, en kJ/gmol, del elemento de interés:

$$Ex_{q_{el}}^{o} = -j\Delta G_{f_{i}}^{o} + \frac{1}{2}jz_{i}Ex_{q_{H_{2}}}^{o} - j\sum_{y}b_{y}Ex_{q_{y}}^{o} - 2.303RT_{n}jz_{i}(pH) - jRT_{n}\ln(m_{i_{n}}\gamma_{i}) \qquad (2-5)$$

en donde, ΔG_{fi}^{o} es la energía libre de formación estándar, en kJ/gmol, del ión de referencia *i*, *j* el número de iones de referencia formados a partir de una molécula del elemento, *z_i* el número de cargas eléctricas elementales del ión de referencia, *b_y* el número de moléculas del elemento adicional presente en una molécula del ión de referencia, *m_{in}* la molalidad del ión de referencia en el agua de mar a condiciones estándar (mol/kg_{H2O}) y, γ_i el coeficiente de actividad de la especie de referencia (escala molal). El valor de *pH* es una medida del contenido de iones hidrógeno en la solución. En el caso de la formación del ión sulfato, el valor del parámetro *j* es 1, el de *z*_{SO42}- es igual a -2 y el de *b*_{O2} equivale a 2.

Los tres primeros términos del lado derecho de la Ecuación 2-5, se obtienen de un balance de exergia de la reacción de formación de la especie de referencia a partir del elemento considerado y del resto de las especies que participan en la reacción. Por otro

and the second second

lado, los dos últimos términos representan el trabajo máximo que se obtiene al cambiar la concentración de la especie de referencia y del ión hidrógeno de 1 molal a la que tienen dichas especies en el agua de mar a condiciones normales de temperatura y presión.

El coeficiente de actividad de las especies disueltas en el agua de mar depende principalmente de la fuerza iónica (I) de la solución, y ésta a su vez de la concentración y carga eléctrica de todas las especies disueltas en el agua de mar, como se indica a continuación:

$$I = \frac{1}{2} \sum_{i} m_{i} z_{i}^{2}$$
 (2-6)

Se puede observar que la exergia química de un elemento contenido en la hidrosfera va a depender en gran medida de la salinidad del agua (S), es decir, del contenido de sales disueltas en el agua de mar.

Los oceanógrafos miden la salinidad del agua en gramos de sal por kilogramo de agua de mar o en partes por mil (‰) [10, 11]. El valor promedio de salinidad es de 35‰, es decir, cada kilogramo de agua de mar contiene 35 gramos de sales y 965 gramos de agua pura. La salinidad convencional es una cantidad definida la cual está directamente relacionada a propiedades medibles del agua de mar, como por ejemplo, la conductividad, el índice de refracción, etc. La salinidad también se puede definir en función de la Clorolinidad, *Cl* (‰) (Ecuación 2-7), la cual equivale a la masa de cloruro que precipita al adicionar nitrato de plata en un kilogramo de agua de mar [11].

$$S = 1.80655 Cl$$
 (2-7)

La salinidad convencional es ligeramente menor a la salinidad total (S_T), es decir, a la masa total de sólidos disueltos. Las dos cantidades se relacionan entre sí por medio de la ecuación:

services the services at approximation theorem and a service sub-La concentración de las especies que están en mayor proporción en el agua de mar (99.99% en peso del total de las especies disueltas) se presenta en la Tabla 2.5 para un valor de salinidad de 35‰, según diferentes autores.

		t v griti	Refer	encia	<u>e la miente s</u>	en de la propose.
— Éspecie	Szargut, 1988 [4]	Riley, 1971 [12]	Wilson, 1975 [13]	Whitfield y Turner, 1981 [11]	Duxbury, 1991 [10]	Swenson, 2000 [14]
Total de boro ^(a)	0.00445	0.00445	0.0045	·····	0.004	
B(OH) ₃	0.02042			0.02596		
H ₄ BO ₄	0.00643					
Br	0.0673	0.0674	0.0673	0.0671	0.067	0.070
Total de carbono ^(a)	0.0276		1. en 1. en 1. en 1.		<i>K</i> .	an a
HCO ₃	0.1253	0.142		0.1421	0.140	0.146
CO32.	0.0139			[4.4]	the second	
Ca ²⁺	0.4123	0.412	0.4121	0.4116	0.410	0.419
Cl	19.353	19.344	19.354	19.353	19,350	19.350
F. F. State and State and State	0.00139	0.00128	0.0013	0.00114	0.001	
K ⁺	0.3991	0.399	0.399	0.3992	0.39	0.390
	1.2918	1.294	1.290	1.2946	્ 1.29	1.304
Na⁺	10.768	10.773	10.77	10.763	10.76	10.710
SO42-	2.712	2.712	2.712	2.713	2.71	2.690
Sr⁴⁺	0.00814	0.0079	0.0079	0.0079	0.008	an a

este este en Tabla 2.5.- Concentración de las especies en mayor proporción de las especies en mayor proporción en el agua de mar. Salinidad: 35‰

No existe gran discrepancia entre las diferentes referencias bibliográficas para los valores de concentración de las principales especies contenidas en la hidrosfera, excepto en el caso del ión bicarbonato. Szargut publica un valor menor de concentración de HCO₃⁻ en comparación al valor que indican otras fuentes. Jo cual se puede deber a que en éstas últimas el valor de concentración de ión bicarbonato incluye la concentración del ión carbonato. en en l'alle de l'un la second a de la second de la seconda de la seconda de la seconda de la seconda de la se

计计学 医骨髓 网络动物的 网络动物的 网络动植物 化分离子分子 El resto de los elementos disueltos en el agua de mar tiene concentraciones de menos de una parte por millón, ya que las especies que los contienen cuentan con tiempos de

States and a state

residencia bajos debido a que están estrechamente relacionados con el ciclo de vida de los organismos marinos.

En la Tabla 2.6, se muestra una comparación de la concentración promedio de todos los elementos contenidos en la hidrosfera de acuerdo a diferentes publicaciones. Se puede observar que en el caso de los elementos que se encuentran en muy baja concentración en el agua de mar, especialmente la plata, el cobre, el manganeso y el níquel, existen diferencias apreciables en los valores de concentración entre diversas fuentes, aun para un mismo valor de salinidad. Analíticamente, es difícil determinar la concentración de las especies disueltas en el agua de mar que se encuentran en baja proporción; éstas se determinan por medio de constantes de equilibrio, por lo que la concentración de dichas especies no sólo depende del contenido total de sales, sino también del valor de pH de la solución, de las especies consideradas y de las constantes de formación de las mismas.

 A. A. A	
 A. A. Martin and M. M. Martin and M Martin and M. Martin and M Martin and M. Martin and M Martin and M. Martin and Ma Martin and Martin and M Martin and Martin and Martin Martin and Martin and Mar	
n de la companya de Regiones de la companya de la company Regiones de la companya de la company Regiones de la companya de la company	\$
 Construction of the state of	23
en ja sentra en la serie de la serie d La serie de la s	. 1
and the second secon	3
	(+ ; \$
	.; A1
	420 - 420
	,
\mathcal{F}_{i} , F	, in the second s
When the second	
n an	
「「「「」」「「」」」「「」」」」」「「」」」」」「「」」」」」」」「「」」」」	r N
993) Georgia a recentio A de 1910 regeneration	

An en presserie tabojo estaven en en el entre en el entre equita des actea adoresa distença el entre entre el entre Gradadig fanada en 1 frysteada e Maria en entre:

Capítulo II Página 48

				Refer	encia	,	and the second	
		·····				······································		Circulator
		~		Whitfield y				Boot
	Szargut,	Riley, 1071	Brewer,	I urner, 1091	Dietrich,	Groves,	Duxbury,	Corporation
Flemento	. [4]	[12]	[15]	1901 [11]	1900	1989 [17]	1991 [10]	2000 [18]
Químico	S=35%	S=35.08% ^(a)	S=33.2% ^(a)	S=35%	S=34.3%	S=34.3%	S=35%	S=34.34% ^(a)
Ag	0.28	0.1	0.04	0.043	0.04	0.31	0.003	
As	3.0	2.3	3.7	3.75	3	10.2-20.5	1.74	
Au	0.011	0.005	0.004	0.04	0.004	0.006	0.005	
В	4.6E+03	4.5E+03	4.4E+03	4.5E+03	4.6E+03	4.7E+03	4.1E+03	
Ва	- 21	30	2	20.1	30	51.2	14.0	
Bi	0.02	0.02	0.02		0.02		4E-05	
Br	6.9E+04	6.8E+04	6.7E+04	6.9E+04	6.7E+04	6.7E+04	6.9E+04	a the second second
C.	2.8E+04	2.8E+04	2.8E+04	2.9E+04	2.8E+04	2.9E+04	1.1	an an an B
Ca	4.22E+05	4.22E+05	4.12E+05	4.21E+05	4.10E+05	4.09E+05	4.20E+05	4.11E+05
Cd	0.02	0.05	0.1	0.10	0.11	Ne gante inter	0.08	· · · · · · · · · · · · · · ·
CI	1.98E+07	1.987E+07	1.88E+07	1.98E+07	1.90E+07	1.94E+07	1.98E+07	1.95E+07
Co	0.39	0.08	0.05	0.05	0.10		0.001	
Cs	0.3	0.5	0.4	0.4	0.50	2.1	0.3	
Cu	6.4	3	0.5	0.5	3.0	1.02-10.2	0.3	1.02-10.2
7	1.4E+03	1.4E+03	1.3E+03	1.14E+03	1.30E+03	1.43E+03	1.02E+03	1.43E+03
Hg	0.1	0.05	0.03	0.04	0.03	0.031	0.001	
1	64	60	60	60	60	51.2	51.2	50.8
К	4.09E+05	4.16E+05	3.8E+05	4.11E+05	3.98E+05	3.89E+05	3.99E+05	3.90E+05
Li	170	180	180	181	. 170	102	174	
Mg	1.32E+06	1.33E+06	1.29E+0	1.34E+06	1.35E+06	1.30E+06	1.32E+06	1.30E+06
Mn	0.4	2	0.2	0.2	2.0	1.02-10.2	0.03	0.99-9.9
Мо	10	10	10	10	10	0.51	11.26	0.51
Na	1.10E+07	1.11E+07	1.077E+07	1.101E+07	1.07E+07	1.081E+07	1.101E+07	1.082E+07
Ni	6.6	2	1.7	1.76	2.0	0.10	0.51	0.10
Р	88	70	60	60.1	70	1.02-102.3		1.02-102.2
Pb	0.02	0.03	0.03	0.02	0.03	4.09	0.002	
Rb	120	120	120	119.7	120	204.7	122.8	
S	9.26E+05	9.28E+05	9.05E+05	9.27E+05	9.01E+05	9.05E+05	9.26E+05	8.59E+05
Se	0.09	0.45	0.2	0.2	0.4	4.09	0.13	0.41
Sr	8.3E+03	8.5E+03	8E+04	8.0E+03	7.7E+03	1.3E+04	8.2E+03	
W	0.1	0.12	0.1	0.09	0.1		0.09	
Zn	6.5	5	4.9	4.9	10	5.12	0.41	5.1

Tabla 2.6.- Concentración total de los elementos en el agua de mar (µg/L). S: salinidad.

(a) Valor determinado a partir de la concentración de cloruro (Ecuación 2-7) y considerando una densidad del agua de mar a 25°C de 1.02336g/cm³ [19].

En el presente trabajo se considera la concentración de los elementos contenidos en el agua de mar que informa Szargut [4], quien se basa en los trabajos realizados por Goldberg, Turekian y Dyrssen y Wedborg [19].

(2 - 9)

En la Tabla 2.7 se muestran los resultados del cálculo de la fracción en peso y concentración molal de cada especie para una salinidad de 35‰, considerando, en lo posible, todas las especies disueltas en el agua de mar.

La determinación de la fracción en peso de cada especie (w_i) disuelta en el agua de mar, se realiza a partir de la fracción en peso total del elemento bajo consideración (w_{el}), de la fracción molar del elemento en la forma de la especie (c_i), y al considerar que cada mol de especie contiene un mol del elemento; esto es,

$$w_i = w_{el} \left(\frac{PM_i}{PA_{el}}\right) c_i$$

en donde, PM_i y PA_{el} corresponden al peso molecular de la especie y al peso atómico del elemento, respectivamente.

La fracción molar del elemento en la forma de la especie (c_i) se selecciona a partir del trabajo de Dyrssen y Wedborg, quienes por medio de constantes de formación en agua de mar a 25°C de las principales especies y de constantes de estabilidad de las especies en menor concentración, determinan la proporción que existe entre la mayoría de las especies disueltas en el agua de mar para un valor de salinidad de 35 ‰ y *pH* de 8.12.

Es importante señalar que al asignar la fracción molar c_i de cada especie, se debe cumplir con la concentración total en el agua de mar de cada uno de los elementos que conforman la especie, de acuerdo al valor de concentración de la Tabla 2.6 (Szargut). Por ejemplo, si se asigna una fracción molar de 0.396 a la especie NaSO₄⁻ como la fracción molar del total de azufre que está presente como dicha especie, la masa equivalente de sodio en la especie debe ser tal que, la masa total de sodio (como elemento) en el agua de mar se conserve en 1.1x10⁷ µg/L. La mayoría de las fracciones molares c_i consideradas en el presente trabajo para cada especie, equivalen al valor seleccionado por Szargut, excepto en el caso de las fracciones de las especies que contienen el elemento arsénico. Szargut considera que el 50% en mol del arsénico presente en el agua de mar existe como el ión HAsO₄²⁻, y el resto como H₂AsO₄⁻ y AsO₄³⁻ (comunicación personal). Sin embargo, a partir de las constantes de disociación a 25°C de cada par ácido-base [20], esto es,

	$(f_{i}) = (f_{i}) f_{i}^{2} f_{i}^$	(1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2		Market a three to be a set
 H₃AsO₄	\leftarrow	$H^+ + H_2AsO_4$	$K_1 = 6 \times 10^{-3}$	na ann an tha bhairte a' thairte ann an tha
H₂AsO₄ ⁻	\longleftrightarrow	H⁺ + HAsO₄²-	K ₂ =1.05x10 ⁻⁷	in the system of the system of the
HAsO42-	<>	H ⁺ + AsO₄ ³⁻	K ₃ =3x10 ⁻¹²	u senius și sur dan de la contra dan si tra-

se obtiene un porcentaje molar de 93.23% para el ión $HAsO_4^{2^-}$ y de 6.736% y 0.037% para las especies $H_2AsO_4^{-}$ y $AsO_4^{3^-}$, respectivamente, al considerar un *pH* de 8.12.

La concentración molal (moles por kilogramo de agua pura) de cada una de las especies presentes en la hidrosfera, a partir de la fracción en peso de cada especie, está dada por:

	建糖煤 奇怪 化分元管		e de la compañía de las		an e tha Ann a chuir	
$\{i_{ij}\}_{j=1}^{n}$	a nga salahara salah	di ya ya da da	(1)	tooo	a fan i se	$\sum_{i=1}^{n} \frac{1}{i} \sum_{j=1}^{n} \frac{1}{i} \sum_{j$
		$m_i = v$	$v_i \left(\frac{1}{PM_i}\right) \left(\frac{1}{(1-1)}\right)$	$\frac{1000}{-S/1000}$		(2 – 10)
	e de la composición d	Set of the second			$(M_{1},M_{2},M_{$	a a san an an a' an a'

El tercer factor del lado derecho de la Ecuación 2-10 corresponde a la relación entre los kilogramos de agua de mar y los kilogramos de agua pura.

Tabla 2.7.- Fracción en peso y molalidad de las especies en el agua de mar, salinidad: 35‰.

Elemento Químico (estado)	Fracción peso total del elemento, g/g _{sw}	Especie	Porcentaje molar (c,x100)	Peso molecular de la especie	Peso atómico del elemento	Fracción peso de la especie, g/g _{sw}	Molalidad de la especie, mol/kg _{H20}
Ag (s)	2.80E-10	AgCl ₂	100.0	178.77	107.87	4.64E-10	2.69E-09
As (s)	3.00E-09	HAsO42-	93.227	139.92	74.92	5.22E-09	3.87E-08
		H ₂ AsO ₄	6.736	140.92	74.92	3.80E-10	2.80E-09
		AsO ₄ ³⁻	0.037	138.92	74.92	2.06E-12	1.54E-11
Au (s)	1.10E-11	AuCl ₂	100.0	267.87	196.97	1.50E-11	5.79E-11
B (s)	4.45E-06	B(OH) ₃	80.2	61.81	10.81	2.04E-05	3.42E-04
• • •	· · · · · · · · · · · · · · · · · · ·	H₄BO₄ ,	15.1	78.81	10.81	4.90E-06	6.44E-05
Ba (s)	2.10E-08	Ba ²⁺	90.0	137.34	137.34	1.89E-08	1.43E-07
		BaSO ₄	10.0	233.40	137.34	3.57E-09	1.58E-08
Bi (s)	2.00E-11	BiO⁺	100.0	224.98	208.98	2.15E-11	9.92E-11
Br ₂ (I)	6.73E-05	Br	100.0	79.91	79.91	6.73E-05	8.73E-04
С	2.76E-05	HCO ₃	84.3	61.00	12.01	1.18E-04	2.01E-03
and and an and an an an		CO3 ²⁻	3.5	60.00	12.01	4.87E-06	8.41E-05
	· · · · ·	CO ₂	0.6	44.00	12.01	6.47E-07	1.52E-05
Ca (s)	4.12E-04	Ca ²⁺	90.9	40.08	40.08	3.75E-04	9.69E-03
		CaHCO ₃ ⁺	0.3565	101.08	40.08	3.71E-06	3.80E-05
		CaCO ₃	0.7298	100.08	40.08	7.51E-06	7.78E-05
		CaB(OH)4 ⁺	0.09404	118.89	40.08	1.15E-06	1.00E-05
Cd (s)	2.00E-11		37.5	183.31	112.40	1.22E-11	6.92E-11
		Cd ²⁺	1.8	112,40	112.40	3.60E-13	3.32E-12
		CdCl ⁺	29.2	147.85	112.40	7.68E-12	5.39E-11
		CdCl ₃	27.9	218.76	112.40	1.09E-11	5.15E-11
· · · /		CdOHCI	2.9	164.85	112.40	8.51E-13	5.35E-12
		CdBr ⁺	0.2	192.31	112.40	6.84E-14	3.69E-13
an da da		CdCO ₃	0.2	172.40	112.40	6.14E-14	3.69E-13
	******	CdSO₄	0.2	208.46	112.40	7.42E-14	3.69E-13
Cl ₂ (g)	1.94E-02	CI	100.0	35.45	35.45	1.94E-02	5.66E-01
Co (s)	3.90E-10	Co ²⁺	100.0	58.93	58.93	3.90E-10	6.86E-09
Cs.(s)	3.00E-10	Cs⁺	100.0	132.91	132.91	3.00E-10	2.34E-09
Cu (s)	6.40E-09	Cu ²⁺	0.7	63.54	63.54	4.48E-11	7.31E-10
		CuOH⁺	3.7	80.54	63.54	3.00E-10	3.86E-09
		CuCO ₃	21.6	123.54	63.54	2.69E-09	2.25E-08
	. *	CuOHCI	65.2	115.99	63.54 ·	7.62E-09	6.81E-08
		CuCl⁺	5.8	98.99	63.54	5.78E-10	6.06E-09
		CuCl ₂	1.6	134.45	63.54	2.17E-10	1.67Ê-09
			0.7	169.90	63.54	1.20E-10	7.31E-10
			0.5	205.35	63.54	1.03E-10	5.22E-10

Elemento r	Fracción Deso total del		Porcentaie	Peso	Peso	Fracción peso de la	Molalidad de
Químico	elemento.	· ·	molar	molecular de	atómico del	especie.	la especie.
(estado)	g/g _{sw}	Especie	$(c_{i} \times 100)$	la especie	elemento	g/g _{sw}	mol/kg _{H20}
F ₂ (g)	1.39E-06	F	51.0	19.00	19.00	7.09E-07	3.87E-05
		MgF⁺	47.0	43.31	19.00	1.49E-06	3.56E-05
	· · ·	CaF⁺	2.0	59.08	19.00	8.64E-08	1.52E-06
Hg (l)	1.00E-10	HgCl ₄ ²⁻	65.8	342.40	200.59	1.12E-10	3.40E-10
		HgCl ₃	12.0	306.95	200.59	1.84E-11	6.20E-11
		HgCl ₂	3.0	271.50	200.59	4.06E-12	1.55E-11
ter en de la composition de la composit	i ili ili ili ili ili ili ili ili ili i	HgBr ₂	0.1	360.41	200.59	1.80E-13	5.17E-13
<i>"</i>	9 a	HgClBr	1.1	315.95	200.59	1.73E-12	5.68E-12
the start	1 A A A A A A A A A A A A A A A A A A A	HgCl ₂ Br	4.3	351.41	200.59	7.53E-12	2.22E-11
	e de la composición d	HgCl ₃ Br ²⁻	12.3	386.86	200.59	2.37E-11	6.36E-11
		HgClBr ₂	0.5	395.86	200.59	9.87E-13	2.58E-12
		HgCl ₂ Br ₂ ²⁻	0.6	431.31	200.59	1.29E-12	3.10E-12
		HgOHCI	0.2	253.04	200.59	2.52E-13	1.03E-12
l ₂ (s)	6.40E-08	10 ₃ -	100.0	174.90	126.90	8.82E-08	5.23E-07
K (s)	3.99E-04	K ⁺	98.8	39.10	39.10	3.94E-04	1.04E-02
	te setter F	KHCO₃	0.005	100.10	39.10	5.11E-08	5.29E-07
$\sum_{i=1}^{n-1} (i-1)^{i-1} = \sum_{i=1}^{n-1} (i-1)^{i-1} = $		KCO3	0.005	99.10	39.10	5.06E-08	5.29E-07
Li (s)	1.70E-07	Li ⁺ ;	100.0	6.94	6.94	1.70E-07	2.54E-05
Mg (s)	1.29E-03	Mg ²⁺	91.86	24.31	24.31	1.19E-03	5.06E-02
		MgHCO ₃ ⁺	0.10	85.31	24.31	4.53E-06	5.51E-05
un e s Ng Rey y		MgCO ₃	0.10	84.31	24.31	4.48E-06	5.51E-05
	te y direct	MgB(OH)₄ ⁺	0.0182	103.12	24.31	9.97E-07	1.00E-05
Mn (s)	4.00E-10	Mn ²⁺	100.0	54.94	54.94	4.00E-10	7.55E-09
Mo (s)	1.00E-08	MoO42-	100.0	159.94	95.94	1.67E-08	1,08E-07
Na (s)	1.08E-02	Na	97.6	22.99	22.99	1.05E-02	4.74E-01
		NaHCO ₃	0.005	83.99	22.99	1.97E-06	2.43E-05
		NaCO ₃	0.005	82.99	22:99	1.94E-06	2.43E-05
Ni (s)	6.60E-09	Ni ²⁺	100.0	58.71	58.71	6.60E-09	1.17E-07
P (s)	8.80E-08	HPO42-	16.5	95.97	30.97	4.50E-08	4.86E-07
	20-33G S	H ₂ PO ₄	0,5	96.97	30.97	1.32E-09	1.41E-08
1. 1 1. 1 3.	en reen		0.1	137,05	30.97	3.50E-10	2.65E-09
いい いい たんびちかう	n a chuir an chuire an c A' BHAALH B	MgH ₂ PO ₄ ⁺	0.1	121.29	30.97	3.10E-10	2.65E-09
	en alternationen anternationen	CaHPO₄	34.2	136.05	30.97	1.32E-07	1.01E-06
	1000 新新教授者 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -	MgHPO ₄	34.2	120.29	30.97	1.17E-07	1.01E-06
는 11 습관 	11 - 1972. No 1972.	PO4 3-	0.023	94.97	30.97	6.21E-11	6.77E-10
		CaPO₄	7.2	135.05	30.97	2.76E-08	2.12E-07
		MgPO4	7.2	119.29	30.97	2.44E-08	2.12E-07
	NY 1277	5. ¹ 1 - 198		() : () :			
n an start a	10.8 kg	\$8.1.S		e de la contra de la			
					2		
4		9. B	e en		2.		

Tabla 2.7.- Fracción en peso y molalidad de las especies en el agua de mar, salinidad: 35‰ (continuación).

Elemento Químico (estado)	Fracción peso total del elemento, g/g _{sw}	Especie	Porcentaje molar (c,x100)	Peso molecular de la especie	Peso atómico del elemento	Fracción peso de la especie, g/g _{sw}	Molalidad de la especie, mol/kg _{H20}
 Pb (s)	2.00E-11	PbCl ₂	42.3	278.10	207.19	1.14E-11	4.23E-11
		Pb ²⁺	4.5	207.19	207.19	9.00E-13	4,50E-12
		PbOH⁺	10.2	224.19	207.19	2.21E-12	1.02E-11
· ·		PbC1 ⁺	18.9	242.64	207.19	4.43E-12	1.89E-11
		PbHCO ₃ ⁺	1.4	268.19	207.19	3.62E-13	1.40E-12
		PbCO ₃	0.4	267.19	207.19	1.03E-13	4.00E-13
		PbSO ₄	0.5	303.25	207.19	1.46E-13	5.00E-13
		PbCl ₃	9.2	313.55	207.19	2.78E-12	9.20E-12
		PbCl ₄ ²⁻	3.6	349.00	207.19	1.21E-12	3.60E-12
		PbOHCl	8.8	259.64	207.19	2.21E-12	8.80E-12
		PbBr⁺	0.2	287.10	207.19	4.16E-14	1.50E-13
Rb (s)	1.20E-07	Rb⁺,	100.0	85.47	85.47	1.20E-07	1.46E-06
S (s)	9.05E-04	SO42-	42.3	96.06	32.06	1.15E-03	1.24E-02
	· .	CaSO ₄	2.88	136.14	32.06	1.11E-04	8.43E-04
	· · · ·	KSO4	0.436	135.17	32.06	1.66E-05	1.28E-04
· ·	·	MgSO ₄	14.8	120.38	32.06	5.03E-04	4.33E-03
		NaSO ₄	39.6	119.05	32.06	1.33E-03	1.16E-02
Se (s)	9.00E-11	SeO42-	100.0	142.96	78.96	1.63E-10	1.18E-09
Sr (s)	8.14E-06	Sr ²⁺	90.0	87.62	87.62	7.33E-06	8.67E-05
•		SrSO ₄	10.0	183.68	87.62	1.71E-06	9.63E-06
U	3.30E-09	UO2(CO3)34-	100.0	450.03	238.03	6.24E-09	1.44E-08
W (s)	1.00E-10	WO4 ²⁻	100.0	247.85	183.85	1.35E-10	5.64E-10
Zn (s)	6.50E-09	Zn ²⁺	16.1	65.37	65.37	1.05E-09	1.66E-08
	e de la	ZnOH⁺	2.3	82.37	65.37	1.88E-10	2.37E-09
		ZnHCO ₃ ⁺	0.3	126.37	65.37	3.77E-11	3.09E-10
		ZnCO ₃	3.3	125.37	65.37	4.11E-10	3.40E-09
	the set of	ZnSO4	1.9	161.43	65.37	3.05E-10	1.96E-09
		ZnCl⁺	44.3	100.82	65.37	4.44E-09	4.57E-08
		ZnCl ₂	15.4	136.28	65,37	2.09E-09	1.59E-08
		ZnCl ₃	1.7	171.73	65.37	2.90E-10	1.75E-09
		ZnCl ₄ ²⁻	2.3	207.18	65.37	4.74E-10	2.37E-09
1.5	<u>.</u>	ZnOHCI	12.5	117.82	65.37	1.46E-09	1.29E-08

Tabla 2.7.- Fracción en peso y molalidad de las especies en el agua de mar, salinidad: 35‰ (continuación).

Total (g/g_{sw}) = 0.035183

Con las especies y las fracciones molares c_i consideradas, se obtiene un valor de salinidad total de 35.183‰, valor muy cercano al que se logra a partir de la Ecuación 2-8 (S_T = 35.19‰) para una salinidad convencional de 35‰.

A partir de la molalidad y carga eléctrica de cada especie se obtiene un valor de fuerza iónica (Ecuación 2-6) de 0.6782 mol/kg_{H20} (0.670 mol/l), valor muy similar al que predicen Dyrssen y Wedborg [19] de 0.6745 mol/kg_{H20} (0.666 mol/l), al considerar una salinidad de 35‰.

Los resultados del cálculo de exergia química estándar a condiciones normales de temperatura y presión (T = 298.15K y P = 101.325 kPa) de los elementos contenidos en el agua de mar y la desviación porcentual con respecto al valor que indica Szargut [4] para una salinidad de 35‰, se presentan en la Tabla 2.8.

En general, la especie de referencia seleccionada para el cálculo de exergia química estándar de cada elemento es aquella que está en mayor concentración en el agua de mar; sin embargo, en algunos casos, debido a que no se cuenta con información de la energía libre de formación de estas especies, se seleccionan otras especies como referencia aun cuando su concentración es menor, como es el caso del Cu^{2^+} , del $HPO_4^{2^-}$ y del Zn^{2^+} .

Es importante señalar que Szargut supone un valor de pH de 8.1 en promedio y como coeficientes de actividad de las especies de las que no se tiene información experimental, los valores de 0.6 para los iones monovalentes pesados, 0.2 para los iones divalentes simples, 0.1 para los iones divalentes complejos y 1 para los compuestos no iónicos. Con fines de comparación, los resultados de la Tabla 2.8 se obtuvieron a partir de los valores de pH y coeficiente de actividad utilizados por Szargut; además, en este ejercicio, se utilizaron como valores de exergia química estándar del hidrógeno y oxígeno aquellos que predice Szargut, es decir, 236.09 y 3.97 kJ/mol, respectivamente.

en en generaliseer en e

· · ·		Especie de re	ferencia	Ex _g ° del ele kJ/am			
				· · · ·	Determinada en el		
Elemento Químico (a)	Fórmula química	mi mol/kg _{H20}	$\Delta G_{f}^{o} = kJ/mol$	Υï	presente trabajo	Szargut	Desviación % ^(c)
Ag (s)	AgCl ₂	2.69E-09	-215.5	0.6	70.23	70.2	-0.04
As (s)	HAsO42	3.87E-08	-714.7	0.1	493.12	494.6	0.30
Au (s)	AuCl ₂	5.79E-11	-151.17	0.6	15.42	15.4	-0.11
B (s)	B(OH) ₃	3.42E-04	-968.84	1	628.53	628.5	0.00
Ba (s)	Ba ²⁺	1.43E-07	-561	0.2	747.67	747 7	0.00
Bi _(s)	BiO⁺	9.92E-11	-146.4	0.6	274.58	274.5	-0.03
Br _{2 (0}	Br	8.73E-04	-103.97	0.68	101.16	101.2	0.04
Ca (s)	Ca ²⁺	9.69E-03	-553.41	0.21	712.38	712.4	0.00
Cd (s)		6.92E-11	-359.4	1	293.74	293.8	0.02
Cl _{2 (a)}	CI	0.5658	-131.26	0.68	123.65	123.6	-0.04
	Co ²⁺	6.86E-09	-54.4	0.2	248.59	248.6	0.00
Cs (s)	Cs⁺	2.34E-09	-282.23	0.6	404.56	404.4	-0.04
	Cu ²⁺	7.31E-10	65.52	0.2	134.23	134.2	-0.02
F _{2 (a)}	F	3.87E-05	-278.82	0.68	466.31	466.3	0.00
Ham	HaCl₄ ²⁻	3.40E-10	-446.9	0.1	115.75	115.9	0.13
12.60	103	5.23E-07	-128	0.6	174.72	174.7	-0.01
•2 (5) K (c)	K,	1.04E-02	-282.44	0.64	366.66	366.6	-0.02
1i	117	2.54E-05	-294	0.68	397.99	393.0	0.00
Mak	Ma ²⁺	5.06E-02	-456.32	0.23	610.97	611.0	0.01
Mn _(c)	Mn ²⁺	7.55E-09	-228	0.2	421.96	422.0	0.01
Mo (a)	MoQ₄ ²⁻	1.08E-07	-836.4	0.1	730.32	730.3	0.00
Na (a)	Na⁺	0.4739	-262.048	0.68	336.66	336.6	-0.02
Nico	Ni ²⁺	1.17E-07	-45.6	0.2	232.77	232 7	-0.03
P (a)		4.86E-07	-1089.3	0.1	861.45	861.4	-0.01
Pb (a)	PbCl ₂	4.23E-11	-297.19	1	232.75	232.8	0.02
Rh (s)	Rh ⁺	1.46F-06	-282.4	0.6	388 79	388.6	-0.05
S (s)	SO/2-	1.24F-02	-744 63	0 11	609 44	609.6	0.03
Se (a)	SeQ ²	1 18F-09	-441 4	01	346 52	346 5	0.00
Sr (s)	Sr ²⁺	8.67E-05	-559.4	0.2	730 18	730.2	0.00
M .	WO.2-	5.64E-10	-920.5	0.1	827.45	827 5	0.00
ττ (s) Ζn	7n ²⁺	1 66E-08	-147 308	0.1	330 31	330.2	-0.03
(a) Estado:	sólido (s)	daseoso (a) v lía	uido (1)	0.2	333.31	333.2	-0.03

Tabla 2.8.- Exergia química estándar de los elementos contenidos en la hidrosfera a condiciones normales de temperatura y presión (Salinidad = 35% v pH = 8.1).

(b) Valores leídos del libro de Szargut [4]

(c) Con respecto al valor que indica Szargut

Los valores de energía libre de formación normal estándar de las especies de referencia disueltas en el agua de mar que utiliza Szargut, se cotejaron con los publicados por Wagman, et. al. [21] en 1982, cuya fecha es posterior a las de las

referencias en las que se basa Szargut para efectuar sus estimaciones, sin encontrar diferencias apreciables.

Los valores de exergia química estándar de los elementos contenidos en la hidrosfera calculados en el presente trabajo coinciden con aquellos que obtiene Szargut. El considerar una fracción molar del arsénico en la forma del ión $HAsO_4^{2^2}$ diferente al que propone Szargut, provoca una diferencia mínima en el valor de exergia química estándar del arsénico (0.3%).

Conviene mencionar que los valores de exergia química estándar mostrados en la Tabla 2.8, son preliminares, ya que posteriormente serán afectados por los valores de pH y coeficiente de actividad de la especie de referencia calculados de manera rigurosa en función de la salinidad.

2.2.1.- Efecto en el valor de exergia química estándar de los elementos por un cambio de salinidad.

La salinidad del agua de los océanos está asociada con la latitud. Valores bajos de salinidad se presentan en zonas en donde ocurren precipitaciones continuas o en áreas polares donde las sales del agua se diluyen por la fusión de agua fresca congelada, aunque durante el invierno la salinidad aumenta debido al proceso contrario. Un ejemplo de lo anterior es el Mar Báltico, cuyo contenido de sales fluctúa entre 5 y 15‰. Por otro lado, en regiones sub-tropicales en donde las precipitaciones son escasas y alta la evaporación del agua, la salinidad puede alcanzar un valor de 40‰, como es el caso del Mar Rojo en donde además, por estar rodeado de tierra, no hay entradas de agua fresca. Debido a la variación que existe en el contenido de sales del agua de mar, en el presente trabajo se analiza su efecto en el valor de exergia química estándar de los elementos contenidos en la hidrosfera.

La relación de concentración entre las especies que se encuentran en mayor proporción en el agua de mar no cambia al variar la salinidad (*Principio de Composición* *Constante*), debido a que el agua de mar es una solución que está bien mezclada y a que estas especies no intervienen en ningún proceso biológico y químico que se llevan a cabo en el mar.

A pesar de que el principio de composición constante a un cambio de salinidad no aplica para las especies que se encuentran en baja concentración en el agua de mar; por simplificación, en el presente estudio se considera que la proporción entre todas las especies disueltas en el agua permanece constante al evaluar el efecto de un cambio de salinidad en el valor de exergia química de los elementos contenidos en la hidrosfera.

En la Tabla 2.9 se presentan los valores de exergia química estándar de los elementos contenidos en la hidrosfera, a condiciones normales de temperatura y presión, para un valor de salinidad de 40 partes por mil y, la desviación porcentual con respecto al valor de exergia química cuando la salinidad es de 35‰. En este ejercicio se considera que el pH del agua de mar y los coeficientes de actividad de las especies de referencia no cambian al variar la salinidad.

Al aumentar el contenido de sales disueltas en el agua de mar y por consiguiente la concentración de las especies de referencia, la exergia química de los elementos contenidos en la hidrosfera debe disminuir al ser menor la exergia concentracional. Sin embargo, para los elementos plata, oro, cadmio, mercurio y plomo, cuyas especies de referencia contienen cloro, sus valores de exergia química tiene un comportamiento contrario a lo esperado, es decir, se encuentra que al incrementarse la salinidad, aumenta el valor de exergia química estándar. La exergia química del cloro se modifica al variar la salinidad, lo que no ocurre con la exergia química del oxígeno o del hidrógeno, que forman parte de algunas especies presentes en el agua de mar, ya que su valor de exergia química es aquel determinado a partir de la atmósfera y, por lo tanto se mantiene constante al cambiar la salinidad. En el caso de los elementos cuyas especies de referencia de la hidrosfera contienen cloro, al aumentar la salinidad a 40‰, el cambio por la disminución del valor de exergia química del cloro tiene un efecto

Exergia Química Estándar de los Elementos

mayor en el cálculo de exergia química del elemento (Ecuación 2-5) que el cambio por un aumento en la concentración de la especie de referencia, lo que provoca que la exergia química de estos elementos aumente. 动动 动行家 网络众家

Salinidad = 35‰ Salinidad = 40‰							
с., ¹	Elemento Químico _(a)	Especie de Referencia	m _i mol/kg _{H20}	Ex _g ° _{el} kJ/gmol	m _i mol/kg _{H2O}	Ex _g ° _{el} kJ/gmol	Desviación % ^(b)
	Ag (s)	AgCl ₂	2.69E-09	70.23	3.07E-09	70.56	1987 19 0:47 (18 Processes) -
6 Č .	As (s)	HAsO4 ²⁻	3.87E-08	493.12	4.42E-08	492.79	-0.07
	Au _(s)	AuCl ₂	5.79E-11	15.42	6.61E-11	15.75	2.14
	В _(s)	B(OH) ₃	3.42E-04	628.53	3.91E-04	628.20	-0.05
	Ba _(s)	Ba ²⁺	1.43E-07	747.67	1.63E-07	747.34	-0.04
	Bi _(s)	BiO⁺	9.92E-11	274.58	1.13E-10	274.25	-0.12
11.47	Br _{2 (I)}	Br Scholar	8.73E-04	101.16	9.97E-04	100.50	-0.65
Start 1	Ca _(s)	Ca ²⁺	9.69E-03	712.38	1.11E-02	712.05	-0.05
· • • • • •	Cd _(s)	CdCl ₂	6.92E-11	293.74	7.90E-11	294.07	0.11
$\{ x_i \}_{i=1}^{n}$	Cl _{2 (g)}		0.5658	123.65	-:0.6465 cc	122.99	-0.53
	Co (s)	Co ²⁺	6.86E-09	248.59	7.84E-09	248.26	-0.13
1 M 1	Cs (s)	Cs⁺	2.34E-09	404.56	2.67E-09	404.23	-0.08
00 P	Cu _(s)	• Cu ²⁺	7.31E-10	134.23	8.35E-10	133.89	-0.25
	F _{2 (g)}	F	3.87E-05	466.31	4.42E-05	465.65	-0.14
	Hg _(i)	HgCl ₄ ²	3.40E-10	115.75	3.88E-10	116.74	0.86
	l _{2 (s)}	10 ₃ -	5.23E-07	174.72	5.97E-07	174.06	-0.38
	K (s)	K⁺	1.04E-02	366.66	1.19E-02	366.33	-0.09
	LI (s)	Li ⁺	2.54E-05	392.99	2.90E-05	392.66	-0.08
2. ¹ . 1. 1	Mg _(s)	Mg ²⁺	5.06E-02	610.97	5.78E-02	610.64	-0.05
	Mn _(s)	Mn ²⁺	7.55E-09	421.96	8.62E-09	421.63	-0.08
	Mo _(s)	MoO ₄ ²⁻	1.08E-07	730.32	1.23E-07	729.99	-0.05
	Na (s)	Na⁺	0.4739	336.66	0.5415	336.33	-0.10
	Ni _(s)	Ni ²⁺	1.17E-07	232.77	1.33E-07	232.44	-0.14
	P (s)	HPO4 ²⁻	4.86E-07	861.45	5.55E-07	861.12	-0.04
	Pb (s)	PbCl ₂	4.23E-11	232.75	4.84E-11	233.08	0.14
	Rb _(s)	Rb⁺	1.46E-06	388.79	1.66E-06	388.46	-0.09
h t h	S (s)	SO4 ²⁻	1.24E-02	609.44	1.41E-02	609.11	-0.05
	Se _(s)	SeO42-	1.18E-09	346.52	1.35E-09	346.18	-0.10
•	Sr _(s)	Sr ²⁺	8.67E-05	730.18	9.90E-05	729.85	-0.05
	W (s)	WO4 ²⁻	5.64E-10	827.45	6.44E-10	827.12	-0.04
· :.	Zn (s)	Zn ²⁺	1.66E-08	339.31	1.90E-08	338,98	-0.10

Tabla 2.9.- Efecto en el valor de exergia química estándar de los elementos presentes en la hidrosfera al aumentar la salinidad (pH = 8.1).

(a) Estado: sólido (s), gaseoso (g) y líquido (l)
(b) Con respecto a los valores de exergia química cuando la salinidad es de 35‰

El resultado anterior indica que las especies seleccionadas como de referencia para el cálculo de exergia química de los elementos plata, oro, cadmio, mercurio y plomo no son adecuadas, por lo que es necesario seleccionar otras especies, ya sea que estén presentes en la hidrosfera o en la litosfera. En el caso de la plata y el oro, las únicas especies presentes en el agua de mar que contienen a dichos elementos son los iones AgCl₂⁻ y AuCl₂, respectivamente, (ver Tabla 2.7). Para estos elementos se sugiere seleccionar una especie presente en la corteza terrestre. En el caso del mercurio, el resto de las especies disueltas en el agua de mar que lo contienen son, además de otros cloruros, bromuros de mercurio. La exergia química del bromo se determina a partir del ión Br⁻ presente en el agua de mar, por lo que el seleccionar alguno de los bromuros de mercurio podría representar el mismo problema que en el caso del ión HgCl₄²⁻; por lo que también se recomienda escoger una especie de la litosfera como referencia para el elemento mercurio.

En el caso del cadmio y del plomo, las especies presentes en la hidrosfera que se pueden seleccionar como referencia son los iones Cd^{2+} y Pb^{2+} , no obstante que su concentración es muy baja (ver Tabla 2.7). En la Tabla 2.10, se presentan los valores de exergia química estándar del cadmio y del plomo, para una salinidad de 35 y 40 partes por mil, al considerar como especies de referencia al Cd^{2+} y al Pb^{2+} , respectivamente. El valor de energía libre de formación de estas especies se calculó a partir de la ecuación de Nerst y de los potenciales normales de la celda de la reacción redox (E_{cel} °) para la formación de dichas especies [22], esto es,

$$\Delta G_f^o = -n_e F E_{cel}^o \tag{2-11}$$

en donde, n_e es el número de electrones que intervienen en la reacción redox y F es el número de Faraday (96,500 coulomb/mol).

El valor de coeficiente de actividad de los iones Cd²⁺ y Pb²⁺ se fijó en 0.2, de acuerdo al criterio empleado por Szargut en la selección del coeficiente de actividad de los iones divalentes simples en solución acuosa.

and the second second

and the second second second second second

Tabla 2.10 Exergia química estándar del cadmio y del plomo al considerar con	no
especies de referencia al Cd ²⁺ y al Pb ²⁺ (pH = 8.1).	

All and the second s

	Especie de Referencia		Salinidad = 35‰		Salinida		
Elemento Químico	Fórmula	∆G _{f i} kJ/mol	m _i mol/kg _{H2O}	Ex _q ° _{el} kJ/gmol	m _i mol/kg _{H20}	Ex _g ° _{el} kJ/gmol	Desviación % ^(a)
Cd (s)	Cd ²⁺	-77.78	3.3E-12	290.98	3.7E-12	290.66	-0.11
Pb _(s)	Pb ²⁺	-24.32	4.5E-12	236.77	5.0E-12	236.44	-0.14

(s) Estado sólido

(a) Con respecto a los valores de exergia química cuando la salinidad es de 35‰

Los valores de exergia química estándar del cadmio y del plomo presentados en la Tabla 2.10 para una salinidad de 35‰, son muy similares a los que se obtienen al considerar como especies de referencia al CdCl₂ y al PbCl₂. Sin haber incluido en el cálculo de exergia química, la variación de los valores de *pH* y coeficiente de actividad por una diferencia en el contenido de sales, se obtienen resultados satisfactorios cuando se seleccionan como especies de referencia a los iones Cd²⁺ y Pb²⁺, ya que el valor de exergía química del elemento disminuye cuando se incrementa la salinidad.

2.2.1.1.- Variación en el valor de *pH* al cambiar la salinidad y su efecto en el valor de exergia química estándar de los elementos.

en An an an an Anna Anna A

El valor de pH del agua de mar está dentro del intervalo de 7.8 a 8.2 [12, 23]. La variación en la concentración de iones hidrógeno es regida principalmente por el sistema del bióxido de carbono y en menor medida por la presencia del ácido bórico [11, 12, 24]. Las reacciones involucradas son:

Sistema del CO2:

an second files of the

 $CO_{2} (gas) \longleftrightarrow CO_{2} (disuelto)$ $CO_{2} + H_{2}O \longleftrightarrow H_{2}CO_{3}$ $H_{2}CO_{3} \longleftrightarrow H^{+} + HCO_{3}^{-}$ $HCO_{3}^{-} \longleftrightarrow H^{+} + CO_{3}^{2-}$

end that there is a set of the second

Sistema del Boro:

 $(1 + 1)^{1/2} = (1 + 1)^{1/2} \sum_{i=1}^{n} (1 + 1)^{1/2} \sum_{i=1}^{n}$

 $H_3BO_3 + H_2O \iff H^+ + B(OH)_4^-$

(1,2) is the second second

Las constantes aparentes de disociación que describen el equilibrio son:

$$k_{1C} = \frac{[H^+][HCO_3^-]}{[H_2CO_3]}$$
(2-12).

$$k_{2C} = \frac{[H^+][CO_3^{2-}]}{[HCO_3^-]}$$
(2-13)
$$k_B = \frac{[H^+][B(OH)_4^-]}{[H_3BO_3]}$$
(2-14)

La cantidad entre corchetes corresponde a la concentración de la especie en moles por kilogramo de agua de mar (mol/kg_{sw}). La concentración total de HCO_3^- , CO_3^{2-} y $B(OH)_4^-$ incluye la concentración tanto del ión libre como la de aquellos que forman complejos con otras especies disueltas en el agua de mar, como son el Mg^{2+} y Ca^{2+} .

Existen tres escalas diferentes para medir el *pH* del agua de mar [25]: la del *National Bureau of Standards*, la de *concentración total de ión hidrógeno* y la de *concentración de ión hidrógeno libre*. En el presente trabajo se utiliza la escala de concentración total de ión hidrógeno, la cual fue propuesta por Hansson [26, 27] en 1973 y en la que el *pH* se determina por medio de electrodos calibrados en soluciones reguladoras (buffer) de agua de mar sintética. Hansson obtuvo constantes de disociación del ácido carbónico y del ácido bórico a diferentes valores de salinidad y temperatura. Almgren [28] propone las siguientes correlaciones para determinar las constantes k_{1C} , k_{2C} y k_B , a partir de los resultados de Hansson:

$$pk_{1c} = 841/T + 3.272 - 0.0101S + 0.0001S^2$$
 (2-15)

$$pk_{n0} = 1373/T + 4.854 - 0.01935S + 0.000135S^2$$
 (2-16)

$$pk_{\rm P} = 1026/T + 5.527 - 0.0158S + 0.00016S^2 \tag{2-17}$$

Estas expresiones son válidas para un intervalo de salinidad de 20 a 40‰ y temperatura de 5 a 30°C y; en donde la temperatura está expresada en grados Kelvin y la salinidad en partes por mil.

Debido a que en el agua de mar existen iones (principalmente el ión sulfato) susceptibles de ser protonados por el ión hidrógeno presente en la solución, Hansson considera que la concentración total del ión hidrógeno $[H^{t}]_{TOT}$ de las Ecuaciones 2-12, 2-13 y 2-14, comprende tanto al ión libre como a aquellas especies formadas por protonación, como es el caso del ión HSO₄, esto es,

$$[H^+]_{TOT} = [H^+] + [HSO_4^-] = [H^+] + \beta_{HSO_4^-} [H^+][SO_4^{2-}]$$
(2-18)

La constante de asociación del ión bisulfato (β_{HSO4-}) se obtiene por medio de la expresión propuesta por Khoo, et al. [29], la cual está dada en función de la temperatura expresada en grados Kelvin y de la fuerza iónica de la solución en mol/kg_{H20}. La expresión para determinar β_{HSO4-} (Ecuación 2-19) es válida para valores de temperatura entre 5 y 40°C y de salinidad entre 20 y 40‰.

$$\log \beta_{HSO_4^-} = 647.59/T - 6.3451 + 0.019085T - 0.52081^{\frac{1}{2}}$$
(2-19)

Al despejar la concentración del ión hidrógeno $[H^+]$ de la Ecuación 2-18 y aplicar el inverso del logaritmo a cada término, se obtiene la siguiente ecuación que permite determinar el *pH* del agua de mar:

$$pH = pH_{TOT} + \log\left(1 + \beta_{HSO_4^-} [SO_4^{2-}]\right)$$
(2-20)

and the second second

Por lo tanto, si se considera que la proporción de todas las especies disueltas en el agua de mar permanece constante para cualquier valor de salinidad, y al seleccionar la constante de disociación del ión bicarbonato para calcular el pH total según se define en la Ecuación 2-13, se reduce la determinación del valor de pH a una salinidad y temperatura dada a los siguientes pasos:

1. Cálculo de la concentración molar (mol/kg_{sw}) total de las especies HCO₃⁻, CO₃²⁻ y SO₄²⁻

en andere in a finiske og finger af er finiske and til statiske av till by indere som som

- $[HCO_{3}^{-}] = (m_{HCO3^{-}} + m_{CaHCO3^{+}} + m_{KHCO3} + m_{MgHCO3^{+}} + m_{NaHCO3} + m_{PbHCO3^{+}} + m_{ZnHCO3^{+}})$ (1-S/1000)
- $[CO_3^{2-}] = (m_{CO32-} + m_{CaCO3} + m_{CdCO3} + m_{CuCO3} + m_{KCO3-} + m_{MgCO3} + m_{NaCO3-} + m_{PbCO3} + m_{UO2(CO3)34-} + m_{ZnCO3}) (1-S/1000)$ (2 22)
- $[SO_4^{2-}] = (m_{BaSO4} + m_{CdSO4} + m_{PbSO4} + m_{SO42-} + m_{CaSO4} + m_{KSO4-} + m_{MgSO4} + m_{NaSO4-} + m_{SrSO4} + m_{ZnSO4}) (1-S/1000)$ (2-23)
- 2. Con las concentraciones totales del ión carbonato y bicarbonato y por medio de las Ecuaciones 2-13 y 2-16 se obtiene la concentración total del ión hidrógeno $[H^+]_{TOT}$ presente en la solución.
- 3. A partir de la expresión 2-19, se calcula la constante de asociación del ión HSO₄; la cual esta dada en kg_{H20}/mol, por lo que es necesario dividir el valor de β_{HSO4} por la relación kg_{H20}/kg_{SW}, es decir, (1-*S*/1000), y así mantener la misma base de concentración que en los pasos 1 y 2.
- 4. Finalmente, con la concentración total del ión sulfato, con los valores de $[H^+]_{TOT}$ y β_{HSO4-} y por medio de la Ecuación 2-20 se determina el valor de *pH*, el cual estará dado en base molar (mol/kg_{sw}). Debido a que en la ecuación de exergia química
estándar de los elementos presentes en la hidrosfera (Ecuación 2-5), la concentración de las especies está dada en moles por kilogramo de agua pura (base molal), es necesario dividir la concentración del ión hidrógeno entre (1-*S*/1000).

가슴 집에 집에 있는 것 같아요. 이렇게 가지 않는 것 같아요. 가지 않는 것 같아요. 가지 않는 것 같아요. 가지 않는 것 같아요.

En la Tabla 2.11 se muestra que el valor de pH no varía notablemente cuando el contenido de sales se modifica, lo cual se debe a que el agua de mar es una disolución tampón, es decir, se tiene en solución tanto al ácido como a la base correspondiente de tal forma que, si se presenta un cambio en la concentración del ácido o de la base, la concentración de iones hidrógeno no se altera significativamente.

Salinidad ‰	[HCO₃] mol/kg _{sw}	[CO ₃ ²⁻] mol/kg _{sw}	[SO₄²⁻] mol/kg _{sw}	Fuerza lónica mol/kg _{H20}	$pH^{(a)}$
20	1.17x10 ⁻³	1.33x10 ⁻⁴	1.61x10 ⁻²	0.379	8.27
30	1.75x10 ⁻³	1.99x10 ⁻⁴	2.41×10 ⁻²	0.575	8.17
35	2.05x10 ⁻³	2.33x10⁻⁴	2.82x10 ⁻²	0.678	8.12
40	2.33x10 ⁻³	2.65x10 ⁻⁴	3.21x10 ⁻²	0.775	8.08

Tabla 2.11.- Efecto sobre el valor de pH al variar la salinidad.

(a) En base moial (mol/kg_{H2O})

La ligera disminución en el valor de pH al aumentar la salinidad del agua de mar es razonable ya que al mismo tiempo que incrementa la concentración de las especies involucradas en los sistemas de bióxido de carbono y boro, también aumenta la concentración de los iones calcio y magnesio, lo que provoca que aumente la formación de complejos de estos cationes con los iones bicarbonato, carbonato y borato, disminuyendo ligeramente su concentración, y que, por consiguiente, las reacciones de disociación del ácido carbónico, del ión bicarbonato y del ácido bórico se desplacen a la formación del ión hidrógeno, incrementándose así su concentración.

Con base en los valores de pH calculados en función de la salinidad, se determinaron los valores de exergia química estándar, a condiciones normales de temperatura y presión, de los elementos presentes en el agua de mar para una salinidad de 35 y 40‰. Los resultados se presentan en la Tabla 2.12. Cabe señalar que en este ejercicio, se

mantienen constantes e iguales los coeficientes de actividad que considera Szargut a un cambio de salinidad.

		<i>Ex_q°</i> del elem	· · · ·	
Elemento Químico _(a)	Especie de Referencia	Salinidad = 35‰ pH = 8.12	Salinidad = 40‰ <i>pH</i> = 8.08	Desviación % ^(b)
Ag (s)		70.12	70.68	0.79
As (s)	HAsO42-	493.34	492.56	-0.16
Au (s)	AuCl ₂	15.31	15.86	3.61
B (s)	B(OH)3	628.53	628.20	-0.05
Ba (s)	Ba ²⁺	747.46	747.57	0.02
Bi (s)	BiO⁺	274.47	274.37	-0.04
Br _{2 (1)}	Br	101.38	100.27	-1.09
Ca (s)	Ca ²⁺	712.16	712.28	0.02
Cd (s)	CdCl ₂	293.53	294.30	0.26
Cl _{2 (g)}	Cl	123.86	122.76	-0.89
Co (s)	Co ²⁺	248.38	248.49	0.05
Cs (s)	Cs⁺	404.46	404.35	-0.03
Cu _(s)	Cu ²⁺	134.01	134.12	0.08
$F_{2(g)}$	F	466.53	465.43	-0.24
Hg (I)	HgCl ₄ ²⁻	115.53	116.97	1.24
2 (s)	103	174.94	173.83	-0.63
K _(s)	K⁺	366.55	366.44	-0.03
Li _(s)	Li ⁺	392.88	392.77	-0.03
Mg _(s)	Mg ²⁺	610.75	610.86	0.02
Mn _{. (s)}	Mn ²⁺	421.74	421.85	0.03
Mo _(s)	MoO4 ²⁻	730.54	729.76	-0.11
Na _(s)	Na⁺	336.55	336.44	-0.03
Ni _(s)	Ni ²⁺	232.56	232.67	0.05
P _(s)	HPO42-	861.67	860.89	-0.09
Pb (s)	PbCl ₂	232.54	233.31	0.33
Rb _(s)	Rb⁺	388.68	388.57	-0.03
S _(s)	SO42-	609.65	608.88	-0 .13
Se (s)	SeO ₄ ²⁻	346.73	345.96	-0.22
Sr _(s)	Sr ²⁺	729.97	730.08	0.02
W _(s)	WO4 ²⁻	827.66	826.89	-0.09
Zn (s)	Zn ²⁺	339,10	339.21	0.03

Tabla 2.12.- Efecto en el valor de exergia química estándar de los elementos contenidos en la hidrosfera al incrementar la salinidad (se considera el cambio en el valor de pH).

(a) Estado: sólido (s), gaseoso (g) y líquido (l)

(b) Con respecto a los valores de exergia química cuando la salinidad es de 35‰

*****______ 6.6 g

.

1.1

Al considerar en el cálculo de exergia química estándar de los elementos, el cambio en el valor de pH por un aumento en el contenido de sales en el agua de mar, no se logran resultados satisfactorios para catorce elementos, ya que la desviación en su valor de exergia química para una salinidad de 40‰ es positiva, con respecto al valor de exergia química a una salinidad de 35‰; es decir, al aumentar la concentración de las especies aumenta la exergia química estándar, contrario a lo esperado. La desviación es mayor para los elementos cuyas especies contienen cloro y que mostraban el mismo comportamiento cuando el valor de pH permanecía constante al cambiar la salinidad. Los siete elementos restantes que presentan una desviación positiva, aunque en menor medida, en su valor de exergia química al aumentar la salinidad, son: bario, calcio, cobalto, cobre, magnesio, manganeso, níquel, estroncio y zinc. En estos siete elementos la especie de referencia es el catión libre con valencia 2 más.

2.2.1.2.- Determinación de los coeficientes de actividad de las especies disueltas en el aqua de mar. 1.2.2.3

100

Los coeficientes de actividad de las especies disueltas en el agua de mar se calculan con el modelo de Pitzer para solución de electrolitos [30], el cual combina la teoría electrostática de Debye-Hückel para interacciones de largo alcance con una expansión tipo virial para interacciones de corto alcance. Si se considera que las interacciones ocurren tan sólo entre dos iones al mismo tiempo y que las cargas eléctricas de éstos son de diferente signo, el coeficiente de actividad del catión M y del anión X está dado por: en an s Second

$$\ln \gamma_{M} = (z_{M} / z_{X}) \ln \gamma_{EL} + 2 \sum_{a} m_{a} X_{a} + \sum_{c} \sum_{a} m_{c} m_{a} (z_{M}^{2} B_{ca} + 2 z_{M} C_{ca})$$
(2-24)

$$\ln \gamma_{X} = (z_{X} / z_{M}) \ln \gamma_{EL} + 2 \sum_{c} m_{c} X_{c} + \sum_{c} \sum_{a} m_{c} m_{a} (z_{X}^{2} B_{ca} + 2 z_{X} C_{ca})$$
(2-25)

1 A 1

donde,

$$\ln \gamma_{EL} = A_{\phi} \left| z_M z_X \right| \left[I^{\frac{1}{2}} / (1 + 1.2I^{\frac{1}{2}}) + 1.6667 \ln(1 + 1.2I^{\frac{1}{2}}) \right]$$
(2-26)

$$X_a = B_{Ma} + \left(\sum_c m_c z_c\right) C_{Ma} \tag{2-27}$$

$$X_{c} = B_{cX} + \left(\sum_{c} m_{c} z_{c}\right) C_{cX}$$

$$(2-28)$$

$$B_{MX} = \beta_{MX}^{0} + (2\beta_{MX}^{1} / \alpha_{1}^{2}\mathbf{I})f_{1}(\alpha_{1}) + (2\beta_{MX}^{2} / \alpha_{2}^{2}\mathbf{I})f_{1}(\alpha_{2})$$
(2-29)

$$B'_{MX} = (2\beta^{1}_{MX} / \alpha^{2}_{1}I^{2})f_{2}(\alpha_{1}) + (2\beta^{2}_{MX} / \alpha^{2}_{2}I^{2})f_{2}(\alpha_{2})$$
(2-30)

$$f_1(\alpha_n) = 1 - (1 + \alpha_n I^{\frac{1}{2}}) \exp(-\alpha_n I^{\frac{1}{2}})$$
(2-31)

$$f_2(\alpha_n) = (1 + \alpha_n \mathbf{I}^{\frac{1}{2}} + 0.5\alpha_n^2 \mathbf{I}) \exp(-\alpha_n \mathbf{I}^{\frac{1}{2}}) - 1 \qquad (2 - 32)$$

with which a start the

$$C_{MX} = C_{MX}^{\phi} / 2 \left[z_{M} z_{X} \right]^{\frac{1}{2}}$$
(2-33)

 $(g_{ij})_{ij}$ is a static set of $(g_{ij})_{ij}$, where $(g_{ij})_{ij}$ is a static set of $(g_{ij})_{ij}$

 m_i y z_i son la concentración molal y la carga eléctrica del ión *i*, respectivamente; A_{ϕ} el coeficiente de la teoría electrostática de Debye-Hückel, para el agua a 25°C A_{ϕ} tiene un valor de -0.392; I la fuerza iónica total molal de la solución (Ecuación 2-6); y Σ_a y Σ_c indican la suma de las propiedades de todos los aniones y cationes. Los parámetros de interacción β^0_{MX} , β^1_{MX} , β^2_{MX} y C^{ϕ}_{MX} se reportan en la literatura [31-37] para la mayoría de los pares de iones presentes en el agua de mar y se listan en el Apéndice B del presente trabajo. Los valores de α_1 y α_2 dependen del tipo de carga eléctrica de los iones M y X: si la interacción se da entre dos iones con carga igual a 2, α_1 =1.4 y α_2 =12, para el resto de las interacciones α_1 =2 y α_2 =0.

En la Tabla 2.13, se muestran los valores de coeficientes de actividad en base molal de los cationes y aniones libres presentes en el agua de mar, determinados con el modelo de Pitzer para diferentes valores de salinidad.

ंत

Salinidad	1, ‰	30	35	40		30	35	40
mol/kg _{H2}	o nica, o	0.575	0.678	0.775		0.575	0.678	0.775
	Catión				Anión			
	H⁺	0.720	0.722	0.725	OH	0.636	0.625	0.617
	Ag⁺	0.544	0.523	0.506	Cl	0.706	0,703	0.701
	Au⁺	0.544	0.523	0.506	HAsO4 ²⁻	0.153	0.138	0.127
	Ba ²⁺	0.198	0.189	0.182	H ₂ AsO ₄	0.574	0.554	0.536
	BiO ⁺	0.544	0.523	0.506	AsO ₄ ³⁻	0.018	0.015	0.013
	Ca ²⁺	0.218	0.211	0.206	B(OH)4	0.414	0.385	0.36
	Cd ²⁺	0.089	0.077	0.068	SO42-	0.141	0.128	0.119
	Co ²⁺	0.224	0.217	0.212	Br	0.730	0.730	0.73 ⁻
	Cs⁺	0.586	0.570	0.557	HCO ₃ ⁻	0.576	0.559	0.544
	Cu ²⁺	0.198	0.189	0.183	CO32-	0.053	0.045	0.040
	Mg ²⁺	0.241	0.236	0.233	F	0.593	0.576	0.563
	Hg ²⁺	0.087	0.075	0.066	1O ₃	0.543	0.523	0.50
	K⁺	0.627	0.614	0.604	MoO4 ²⁻	0.087	0.075	0.06
	Li⁺	0.727	0.729	0.732	HPO₄ ²	0.135	0.120	0.10
	Mn ²⁺	0.232	0.224	0.219	H ₂ PO ₄	0.526	0.503	0.48
	Na⁺	0.662	0.653	0.646	PO₄ ³⁻	0.017	0.014	0.012
	Ni ²⁺	0.228	0.221	0.217	SeO42-	0.087	0.075	0.06
	Pb ²⁺	0.206	0.196	0.189	WO4 ²⁻	0.087	0.075	0.06
	Rb ⁺	0.614	0.600	0.589				
	Sr ²⁺	0.217	0.209	0.203	e en grandere			ar e c
	UO ₂ ²⁺	0.257	0.253	0.250				
$\mathbb{V}_{n} = \mathbb{V}_{n}$	Zn ²⁺	0.213	0.203	0.196			er er de f	1.150

Tabla 2.13.- Coeficientes de actividad (en base molal) de los iones libres presentes en la hidrosfera a partir del modelo de Pitzer.

化学生 化氯化化物化化化氯化化化化化化化物化化物化化化化化化化化化物化物化化化化化化

Al aumentar el contenido de sales en el agua de mar y por consiguiente la fuerza iónica, el coeficiente de actividad de los iones libres disminuye, sin embargo, en los casos de los iones Li⁺, H⁺ y Br⁻ se presenta el comportamiento contrario. En el caso del ión hidrógeno, el coeficiente de actividad se incrementa ligeramente al aumentar la salinidad y, en el caso del ión bromuro, su actividad permanece prácticamente constante. Al comparar (Tabla 2.14) los valores de coeficientes de actividad de los iones libres estimados en el presente trabajo con los determinados experimentalmente en soluciones con una fuerza iónica parecida a la del agua de mar a una salinidad de 35‰, se observa que, en general, el modelo de Pitzer reproduce adecuadamente los valores de coeficiente de actividad experimentales, excepto en el caso del ión carbonato. Esto se explica ya que tan sólo existe información de parámetros de interacción del ión carbonato con los cationes Na⁺ y Mg²⁺ que, si bien son los de mayor

concentración en el agua de mar, no son los únicos con los que interactúa el ión carbonato.

experimentalmente y los calculados con el modelo de Pitzer (Salinidad 35‰).					
lón	Dato experimental ^{a)} I=0.7 mol/kg _{H20}	Modelo de Pitzer I=0.678 mol/kg _{H20}	Por ciento de error		
Na⁺	0.68	0.653	4		
Mg ²⁺	0.23	0.236	3		
Ca ²⁺	0.21	0.211	1		
K⁺	0.64	0.614	4		
Cľ	0.68	0.703	3		
SO4 ²⁻	0.11	0.128	16		
HCO ₃	0.55	0.559	2		
CO_3^{2-}	0.02	0.045	125		

Tabla 2.14.- Comparación entre los valores de γ_i determinados

(a) Valores leídos del libro de Szargut [4]

Conviene mencionar que los valores calculados para los coeficientes de actividad de los iones libres y su comportamiento al variar la fuerza iónica de la solución coinciden con los estimados por Whitfield [38], quien calculó, por medio del modelo de Pitzer, los coeficientes de actividad de los iones presentes en el agua de mar, incluyendo en su estimación, especies que están en baja concentración.

Al analizar los valores de la Tabla 2.13 se observa que, como lo establece Szargut existe una relación entre el tipo de ión y la magnitud del valor de coeficiente de actividad; esto es, para iones monovalentes simples el valor de coeficiente de actividad es mayor a 0.6, para los iones monovalentes pesados entre 0.5 y 0.6, para los iones divalentes simples alrededor de 0.2, para los iones divalentes complejos 0.1 y para los iones complejos con una carga eléctrica de tres, el coeficiente de actividad es alrededor de 0.01.

Con base en lo anterior, no se consideran adecuados los valores de coeficientes de actividad de los iones Cd2+ y Hg2+ obtenidos a partir del modelo de Pitzer, ya que el valor estimado (menor a 0.1) está por debajo de 0.2, valor esperado para este tipo de iones. El resultado anterior es posible que se deba a que en el cálculo del coeficiente de

actividad no se incluyen las interacciones entre dichos cationes con el ión cloruro, principal anión presente en el agua de mar, por no contar con los parámetros de interacción de las sales correspondientes.

e constante estado en processo da terra constante de la maisma da constante en constante da maisma da constante

Ahora bien, para determinar el coeficiente de actividad de compuestos iónicos se utiliza la Ecuación 2-34, en donde v_M y v_X son el número de iones M y X que componen a la and a second sal iónica y $v = v_M + v_X$. 1.2.5.1

$$\gamma_{MX^*} = \left(\gamma_M^{\nu_M} \gamma_X^{\nu_X}\right)^{\gamma_\nu} \tag{2-34}$$

Los compuestos iónicos, cuyos coeficientes de actividad se requieren conocer, son: HgCl4²⁻, AgCl₂ y AuCl₂. En el caso del ión HgCl4²⁻, el valor de coeficiente de actividad para una salinidad de 35‰ resulta de 0.45, valor muy diferente al que considera Szargut de 0.1 para iones divalentes complejos y que coincide con los valores estimados en el presente trabajo con el modelo de Pitzer; por lo que se considera que el valor de coeficiente de actividad del ión HgCl42 es igual al valor que se obtenga para el ión HAsO42. El coeficiente de actividad de los iones AgCl2 y AuCl2 para una salinidad de 35‰ es 0.637, valor que resulta ligeramente alto para este tipo de ión, pero que se considera razonable.

in a meaning, be a sole and a constant of the Constant at a second second discussion of the

El coeficiente de actividad del ácido bórico se obtiene a partir del valor de la constante de equilibrio termodinámico (K_B) de la reacción de ionización y del coeficiente de actividad de los iones hidrógeno y borato obtenidos a partir del modelo de Pitzer, esto E. Bernardon, e. C. C. M. Communications and the first state of the first state of the first state of the sta es. contractor interaction of the end of the second contraction to the structure of the contract of the contract of

$$[\gamma_{H^*} [B(OH)_4^{-}] \gamma_{B(OH)_4^{-}}]$$
 (2-35)

 $K_B = \frac{[H^+]\gamma_{H^+} [B(OH)_4]\gamma_B}{[B(OH)_3]\gamma_{B(OH)_3}}$ an sheke wa minaana 1995 minaa waxaa alif si girayaa aa alifa ku a mulata ku a mulata ku ò bién a la substance de la segura para de la constanción de la substance de la segura de la segura de la segura de la

$$\gamma_{B(OH)_3} = \frac{k_B}{K_B} \gamma_{H^+} \gamma_{B(OH)_4}$$
(2-36)

a second a second s

en donde k_B es la constante de asociación estequiométrica o aparente de la reacción de ionización y está dada por la Ecuación 2-17, en base molar (mol/kg_{sw}). Hershey, et.al. [35] mencionan un valor de pK_B de 9.237 a 25°C para la reacción de ionización del ácido bórico. Se supone que dicha constante de equilibrio está dada en base molal (mol/kg_{H20}). Para una salinidad de 35‰, se obtiene un valor de coeficiente de actividad del B(OH)₃ de 1.22 (en base molal), valor cercano al que estiman Millero y Schreiber [39] de 1.1 para sales no iónicas formadas a partir de cationes y aniones monovalentes, al utilizar el modelo del par iónico para la determinación de coeficientes de actividad y suponiendo una fuerza iónica de la solución de 0.7 molal.

En el caso de la especie PbCl₂, la reacción de referencia es la formación de la misma, y de igual forma que en el caso del ácido bórico, su coeficiente de actividad se determina a partir de la definición de la constante de equilibrio termodinámico de la reacción, que en este caso se define como:

$$Pb^{2+} + 2 Cl^- \leftrightarrow PbCl_2$$

$$K_{PbCl_{2}} = \frac{[PbCl_{2}]\gamma_{PbCl_{2}}}{[Pb^{2+}]\gamma_{Pb^{2+}}[Cl^{-}]^{2}\gamma_{Cl^{-}}^{2}}$$
(2-37)

La constante de asociación estequiométrica de la reacción de formación del PbCl₂, está dada por la relación que guardan en el equilibrio la concentración molal del cloruro de plomo y la concentración molal de los iones libres que lo conforman, es decir.

$$k_{PbCl_2} = \frac{[PbCl_2]}{[Pb^{2+}][Cl^-]^2}$$
(2-38)

Al sustituir la Ecuación 2-38 en la 2-37, el coeficiente de actividad del PbCl₂ es igual a

$$\gamma_{PbCl_2} = \frac{K_{PbCl_2}}{k_{PbCl_2}} \gamma_{Pb^{2*}} \gamma_{Cl^-}^2$$
(2-39)

Millero y Byrne [37] determinaron experimentalmente un valor de 2.03 para $log K_{PbCl2}$ a 25°C para la reacción de formación del PbCl₂ y estimaron un valor de constante de asociación estequiométrica de 14.53 (en base molal) de una solución de agua de mar con una fuerza iónica de 0.723 molal. Debido a que no se tiene información del efecto que tiene un cambio en la fuerza iónica en el valor de k_{PbCl2} , en el presente trabajo se supondrá que su valor es constante a cualquier salinidad.

化可调试 网络小麦 医鼻腔下部 网络小麦属小砂麦属小砂麦属 化过程分词 法利益的 化过去分

A partir de la Ecuación 2-39, para una salinidad de 35‰ (I=0.678 molal), se obtiene un valor de coeficiente de actividad para el PbCl₂ de 0.714, valor muy cercano al que estiman Millero y Byrne de 0.745 en una solución de agua de mar con una fuerza iónica de 0.723 molal.

El procedimiento para determinar el coeficiente de actividad del CdCl₂ deber ser igual al del PbCl₂, sin embargo, no se dispone de información de las constantes de equilibrio y de asociación estequiométrica de la reacción de formación del cloruro de cadmio, por lo que se supondrá que

 $\gamma_{CdCl_2} = \gamma_{PbCl_2}$

En la Tabla 2.15, se presentan los valores de coeficientes de actividad de los compuestos iónicos y no iónicos bajo estudio a diferentes valores de fuerza iónica.

Tabla 2.15.- Coeficientes de actividad (en base molal)

de los compuestos iónicos y no iónicos presentes en el agua de mar					
Salinidad, ‰	30,-	35	40		
Fuerza lónica, mol/kg _{H2O}	0.575	0.678	0.775		
Compuesto:					
HgCl ₄ ²⁻	0,153	0.138	0.127		
AgCl ₂	0.647	0.637	0.629		
AuCl ₂	0.647	0.637	0.629		
B(OH) ₃	1.219	1.218	1.203		
PbCl ₂	0.7 <u>57</u>	0.714	0.683		

El resultado del cálculo de exergia química estándar de los elementos presentes en el agua de mar para una salinidad de 35 y 40‰, al considerar los valores de coeficiente de actividad de las especies de referencia estimados a partir del modelo de Pitzer, se presenta en la Tabla 2.16. En este ejercicio se mantiene el valor de pH del agua de mar en 8.1.

		Ex _q ° del elem	ento, kJ/gmol		
Elemento	Especie de			Desviaciói	n - 2 - 4
Químico (a)	Referencia	Salinidad = 35‰	Salinidad = 40‰	% ^(b)	
Ag (s)		70.25	70.59	0.50	
As (s)	HasO ₄ ²⁻	492.32	492.19	-0.03	
Au (s)		15.43	15.78	2.25	
B (s)	B(OH) ₃	628.04	627.74	-0.05	
Ba _(s)	Ba ²⁺	747.82	747.58	-0.03	
Bi (s)	BiO⁺	274.92	274.67	-0.09	
Br _{2 (I)}	Br	100.81	100.14	-0.67	
Ca _(s)	Ca ²⁺	712.37	712.09	-0.04	
Cd (s)	CdCl ₂	294.74	295.17	0.14	1
	Cl	123.48	122.84	-0.52	
Co (s)	Co ²⁺	248.39	248.11	-0.11	
Cs (s)	Cs⁺	404.69	404.42	-0.07	
Cu (s)	Cu ²⁺	134.36	134.12	-0.18	
$F_{2(g)}$	F	467.13	466.59	-0.12	
Hgi	HgCl ₄ ²⁻	115.27	116.44	1.01	
l _{2 (s)}	IO ₃	175.41	174.91	-0.28	
K (s)	s K ⁺	366.76	366.47	-0.08	
Li (s)	Li⁺	392.82	392.48	-0.09	
Mg (s)	Mg ²⁺	610.90	610.61	-0.05	2 - ² - 1
Mn _(s)	Mn ²⁺	421.68	421.41	-0.06	
Mo (s)	MoO ₄ ²⁻	729.70	729.56	-0.02	
Na (s)	Na⁺	336.76	336.46	-0.09	
Ni (s)	Ni ²⁺	232.53	232.24	-0.12	· · ·
P (s)	HPO₄ ²⁻	861.00	860.91	-0.01	
Pb (s)	PbCl ₂	233.75	234.18	0.18	
Rb (s)	Rb⁺	388.79	388.50	-0.07	
S (s)	SO4 ²⁻	609.05	608,91	-0.02	
Se _(s)	SeO4 ²⁻	345.89	345.75	-0.04	
Sr (s)	Sr ²⁺	730.08	729.82	-0.04	
W (s)	WO4 ²⁻	826.83	826.69	-0.02	
Zn (s)	Zn ²⁺	339.27	339.04	-0.07	

Tabla 2.16.- Efecto en el valor de exergia química estándar de los elementos presentes en la hidrosfera al aumentar la salinidad (se considera el cambio en los valores de coeficiente de actividad, pH = 8.1).

(a) Estado: sólido (s), gaseoso (g) y líquido (l)

(b) Con respecto a los valores de exergia química cuando la salinidad es de 35%,

Si en el cálculo de exergia química estándar se considera tan sólo el cambio en el valor de coeficiente de actividad por una variación de salinidad, se observa que al aumentar el contenido de sales, se incrementa el valor de exergia química estándar de los elementos cuyas especies de referencia contienen cloro y no así la exergia química de los elementos cuyas especies de referencia son cationes divalentes simples; contrario a lo que ocurría cuando el valor de coeficiente de actividad se mantenía constante y sólo se consideraba el cambio del valor de pH a un incremento de salinidad.

En la Tabla 2.17, se presentan los valores de exergia química estándar de los elementos presentes en el agua de mar para una salinidad de 35 y 40‰, al incluir en el cálculo los valores de *pH* y coeficiente de actividad estimados de manera rigurosa en función del contenido de sales. También se presenta el valor de exergia química estándar del cadmio y plomo cuando se consideran como especies de referencia a los iones Cd^{2+} y Pb^{2+} , respectivamente.

Al combinar el efecto del incremento en la salinidad en los valores de pH y coeficientes de actividad de las especies de referencia, resulta que la exergia química estándar se incrementa tanto en los elementos cuyas especies de referencia contienen cloro como en los elementos cuyas especies de referencias son cationes divalentes simples; de igual manera, que en el cálculo cuando sólo se consideraba el cambio de pH, que daba también una desviación mayor en el valor de exergia química de los elementos cuyas especies de referencia contienen cloro. El resultado anterior es erróneo ya que al incrementar el contenido de las especies en el medio, el trabajo máximo que se produce al cambiar la concentración de las especies como sustancias puras a la que poseen en el medio (exergia concentracional) debe de disminuir, en lugar de aumentar, y si la reacción de los elementos también debe disminuir.

· · · ·		Ex _q ° del elem		
Elemento Químico _(a)	Especie de Referencia	Salinidad = 35‰ pH = 8.12	Salinidad = 40‰ pH = 8.08	Desviación % ^(b)
Ag		70.14	70.71	0.81
As (s)	HasO42-	492.53	491.97	-0.11
Au (s)	AuCl ₂	15.32	15.89	3.71
B (s)	B(OH) ₃	628.04	627.74	-0.05
Ba _(s)	Ba ²⁺	747.60	747.80	0.03
Bi _(s)	BiO⁺	274.81	274.79	-0.01
Br _{2 (I)}	Br	101.03	99.92	-1.10
Ca (s)	Ca ²⁺	712.15	712.32	0.02
Cd (s)		294.53	295.40	0.29
	Cd ²⁺	293.08	293.49	0.14
	Cl	123.70	122.61	0.88
Co (s)	Co ²⁺	248.18	248.34	0.07
Cs (s)	Cs⁺	404.58	404.53	-0.01
Cu _(s)	Cu ²⁺	134.15	134.35	0.15
F _{2 (g)}	- F	467.35	466.37	-0.21
Hg ()	HgCl ₄ ²⁻	115.05	116.67	1.40
2 (s)	1O ₃	175.62	174.68	-0.54
K (s)	K ⁺	366.65	366.58	-0.02
Li _(s)	Li ⁺	392.71	392.59	-0.03
Mg _(s)	Mg ²⁺	610.69	610.83	0.02
Mn _(s)	Mn ²⁺	421.46	421.63	0.04
Mo (s)	MoO4 ²⁻	729.92	729.33	-0.08
Na _(s)	Na	336.65	336.57	-0.02
Ni _(s)	Ni ²⁺	232.31	232.47	0.07
P (s)	HPO42.	861.22	860.69	-0.06
Pb (s)	PbCl ₂	233.53	234.40	0.37
e e ven	Pb ²⁺	236.54	236.75	0.09
Rb _(s)	Rb [↑]	388.68	388.62	-0.02
S _(s)	SO42	609.27	608.69	-0.10
Se _(s)	SeO4 ²⁻	346.11	345.53	-0.17
Sr _(s)	Sr ²⁺	729.86	730.04	0.02
W (s)	WO4 ²⁻	827.04	826.46	-0 .07
Zn (a)	Zn ²⁺	339.06	339.26	0.06

Tabla 2.17.- Efecto en el valor de exergia química estándar de los elementos contenidos en la hidrosfera al aumentar la salinidad (se considera el cambio en los valores de pH y coeficientes de actividad).

(a) Estado: sólido (s), gaseoso (g) y líquido (l)

. .

(b) Con respecto a los valores de exergia química cuando la salinidad es de 35‰

Por otro lado, con base en el análisis realizado, se observa que la variación en el valor de pH por un cambio en la salinidad tiene un efecto mayor en el valor de exergia química estándar que la variación del coeficiente de actividad. De acuerdo con la

Ecuación 2-5, el término que representa el cambio en concentración del ión hidrógeno de una solución 1 molal a la concentración que posee en el medio, dada por el pH, es afectado por la carga eléctrica de la especie. Si se considera que en el caso de los cationes divalentes simples, el efecto en el valor de exergia química de los elementos por un cambio en el valor de pH es del doble que para otros elementos, sería erróneo; ya que en el caso de los aniones divalentes complejos, como por ejemplo el SO₄²⁻, al aumentar la salinidad sí disminuye la exergia química del elemento azufre, aunque en el caso de los aniones divalentes complejos también influye en el valor de exergia química del elemento bajo consideración, la exergia química de los elementos adicionales presentes en la especie de referencia.

El que no se obtengan resultados satisfactorios en la variación del valor de exergia química estándar de algunos elementos al variar la salinidad, se podría justificar en el caso de aquellos elementos cuyas especies de referencia se encuentran en baja concentración en el agua de mar, ya que por lo mismo son poco estables en este medio; sin embargo, en el caso de los elementos calcio, magnesio y estroncio no se encuentra explicación lógica debido a que sus especies de referencia (Ca²⁺, Mg²⁺, Sr²⁺) están en alta concentración. Por lo tanto, se recomienda seleccionar especies de la corteza terrestre como referencia en el cálculo de exergia química estándar de los elementos Ag, Au, Ba, Ca, Cd, Co, Cu, Hg, Mg, Mn, Ni, Pb, Sr y Zn.

Es importante mencionar que Szargut, en su última publicación sobre el cálculo de exergia química estándar de los elementos [2], encontró que cuando se utiliza el valor de exergia química de los elementos bario, calcio, cobalto, magnesio, manganeso, estroncio y flúor determinado a partir de una especie del agua de mar, para evaluar la exergia química de compuestos presentes en la corteza terrestre que contienen a dichos elementos, el valor de exergia química del compuesto resulta negativo, por lo que recomienda no considerar especies de la hidrosfera para estos elementos. Por otro lado, Szargut sugiere utilizar el oro sólido como especie de referencia para el elemento oro, ya que el valor de exergia química a partir de esta especie es mayor que el valor que resulta cuando se selecciona al ión AuCl₂ disuelto en el agua de mar.

En conclusión, se recomienda utilizar especies presentes en la hidrosfera como referencia para la determinación de la exergia química estándar de los siguientes elementos: arsénico, boro, bismuto, bromo, cloro, cesio, yodo, potasio, litio, molibdeno, sodio, fósforo, rubidio, azufre, selenio y tungsteno. El efecto por un cambio de salinidad del agua de mar en el valor de exergia química estándar de dichos elementos es muy pequeño. El elemento que presenta la mayor desviación (1.1%) en su valor de Ex_q° al aumentar la salinidad de 35 a 40‰ es el bromo.

Los resultados de exergia química estándar de los elementos contenidos en el agua de mar a condiciones normales de temperatura y presión, que genera el programa EXQCOMP al considerar una salinidad de 35‰ se muestran en el Apéndice C, mientras que aquellos obtenidos al suponer una salinidad de 40‰ se presentan en el Apéndice A.3.

2.3.- Exergia química estándar de los elementos contenidos en la litosfera.

La mayoría de los elementos de la tabla periódica se encuentran en la capa externa de la Tierra y su concentración en este medio es mucho mayor que en otros; sin embargo, debido a que la corteza terrestre es heterogénea y que las especies que contienen a estos elementos se presentan en muy diversas formas, la determinación de la concentración de cada especie resulta difícil.

Szargut [2, 4] propone que las especies de referencia sólidas se traten como componentes de una solución ideal y formula una composición para este medio sólido ideal homogéneo con las especies que se encuentran en mayor concentración en la capa externa de la corteza terrestre, como son los óxidos, hidróxidos, carbonatos, silicatos, sulfatos y cloruros de metales. Szargut establece que la exergia química estándar de las especies en dicho medio se puede determinar por medio de la siguiente expresión:

$$Ex_{a}^{o} = -R T_{n} \ln x_{c}$$
 and $Ex_{a}^{o} = -R T_{n} \ln x_{c}$

La fracción molar promedio (x_{in}) de la especie de referencia *i* se calcula a partir de la concentración molar promedio ($n_{o el}$) en kgmol/kg del elemento bajo consideración en la capa externa de la corteza terrestre, esto es,

$$x_{i_n} = \frac{1}{l_i} n_{oel} c_i M_o$$
 (2-41)

en donde, I_i es el número de átomos del elemento en la molécula de la especie de referencia, c_i es la fracción de la concentración total del elemento que aparece en la forma de la especie de referencia y M_o es el peso molecular promedio de los componentes de la capa externa de la corteza terrestre. Szargut determina un valor de M_o igual a 135.5 kg/kgmol para la composición del medio sólido que considera.

En la Tabla 2.18, se presentan los valores de exergia química estándar, a condiciones normales de temperatura y presión (T = 298.15K y P = 101.325 kPa), de las especies de referencia presentes en la litosfera al considerar la concentración promedio ($n_{o el}$) de los elementos en la corteza terrestre y la fracción (c_i) del elemento en la forma de la especie de referencia que indica Szargut [2]. En la misma tabla, se muestra la desviación porcentual entre el valor calculado de exergia química estándar y el que predice Szargut [2].

Entre menor es la fracción molar de una especie en la corteza terrestre, mayor es su exergia química estándar, ya que el valor de su exergia concentracional aumenta, es decir, aumenta el trabajo que se obtiene al cambiar la concentración de la especie como componente puro a la que posee en el medio, a temperatura y presión constante.

and the second second

ere a la construction de la constru

	Elemento	Especie	de refe	rencia	2	Ex_q^o de la especi	e, kJ/gmol	· · ·
						Determinada		- - (a)
Címol	n _{o el}	Eérondo autorioa		,		en el presente	Constraint	Desviación [®]
		Formula quimica	<i>C_i</i>				Szargut	<u> </u>
Ag	3.7E-10	AGCI	0.02		1.00E-09	51.30	51.4	-0.07
AI .	3.1E-03	Al2SIU5	0.01%	 		10.32	10.3	U, 10 0.22
Au Do	2.02-11	Au Baso	0.0	4		30.62	20.5	0.23
Da Ro	3.1=-07	Be-SiO	0.01	. 2	2 10E-07	38.11	38.1	-0.04
Ca	1 0=-03		0.01	1	1 40E-03	16 30	16 3	-0.02
Cd	1.8E-09		0.05	1	1.22E-08	45 17	45.2	-0.02
Ce	4.3E-07	CeO ₂	0.02	1	1.17E-06	33.87	33.8	0.01
Co	4.2E-07	CoFe ₂ O ₄	0.005	: 1 -	2.85E-07	37.36	40.1	-6.83
Cr	2.0E-06	K ₂ Cr ₂ O ₇	0.01	2	1.36E-06	33,49	33.4	0.28
Cu	8.7E-07		0.05	- 1 -	5.89E-06	29.85	29.8	0.16
Dy	1.8E-08	Dy(OH) ₃	0.02	15 1 6	4.88E-08	41.73	41.7	0.08
Er	1.7E-08	Er(OH) ₃	0.02	: 1 ·	4.61E-08	41.87	41.9	-0.06
Eu	7.9E-09	Eu(OH) ₃	0.02	1	2.14E-08	43.77	43.8	-0.06
F	3.3E-05	CaF ₂ •3Ca ₃ (PO ₄) ₂	0.01	2	2.24E-05	26.54	26.6	-0.21
Fe	1.0E-03	Fe ₂ O ₃	0.1	2	6.78E-03	12.38	12.4	-0.16
Ga	2.2E-07	Ga ₂ O ₃	0.02	2	2.98E-07	37.25	37.2	0.12
Gd	3.4E-08	Gd(OH) ₃	0.02	1 - 2	9.21E-08	40.16	40.2	-0.11
Ge	1.4E-08	GeO ₂	0.05	1	9.49E-08	40.08	40.1	-0.04
Hf	1.7E-08	HfO ₂	0.05	1	1.15E-07	39.60	39.5	0.26
Hg	4.0E-10	HgCl ₂	0.01	1	5.42E-10	52.89	52.9	-0.02
Ho	7.2E-09	Ho(OH) ₃	0.02	1	1.95E-08	44.00	43.9	0.24
1 n -	0.7E-10		0.05	2	2.952-09	48.69	48.7	-0.02
_Ir Los∵	3.3E-12			- 1 - 1	3.39E-12	65.32	65.3	0.04
La			0.02	्याः	5.90E-07	30.03	30.0	0.08
Ma	2.5 <u>-</u> -05 9.6 <u>-</u> 04		0.02		8 675-04	40.20	40.∠ 1/ g	19 09
Mn	1 7E-05		0.01	. 1	2.30E-05	26.47	20.8	97.26
Nb	2 2E-07	Nh ₂ O ₂	0.01	2	1 49F-07	38.96	20.0	_0.09
Nd	1.9E-07	Nd(OH)	0.02	1	5.15F-07	35.89	35.9	-0.03
Ni	1.3E-06	NiO	0.01	1	1.76E-06	32.84	32.8	0.13
Os	5.0E-13	OsO₄	0.005	1	3.39E-13	71.18	71.2	-0.03
Pb	7.7E-08	PbCO ₃	0.01	1	1.04E-07	39.85	40	-0.38
Pd	9.4E-11	PdO	0.005	. 1	6.37E-11	58.20	58.2	-0.01
Pr	5.8E-08	Pr(OH) ₃	0.02	1	1.57E-07	38.83	38.8	0.08
Pt	2.6E-11	PtO ₂	0.005	1	1.76E-11	61.38	61.3	0.13
Pu	6.2E-20	PuO ₂	0.01	1	8.40E-20	108.88	108.9	-0.02
Ra	4.4E-15	RaSO ₄	0.05	° 1 ≦	2.98E-14	77.20	77.2	0.00
Re	5.4E-12	Re ₂ O ₇	0.01	2	3.66E-12	65.28	65.3	-0.04
Rh	9.7E-12	Rh ₂ O ₃	0.005	2	3.29E-12	65.54	65.5	0.07
Ru	1.0E-12	RuO ₂	0.005	1	6.78E-13	69.46	69.5	-0.06
Sb	1.6E-09	Sb ₂ O ₅	0.001	2	1.08E-10	56.88	56.8	0.14
Sc	<u>1.1E-07</u>	Sc ₂ O ₃	0.05	2	3.73E-07	36.69	36.7	-0.02

Tabla 2.18.- Exergia química estándar de las especies presentes en la corteza terrestre a condiciones normales de temperatura y presión.

(a) Con respecto al valor que indica Szargut

ESTA TESIS NO SALE DE LA BIBLIOTECA

			leonunuaeit	лц. <u>— — — — — — — — — — — — — — — — — — —</u>	
Eler	nento	Especie	de referencia	Ex _g ° de la espec	ie, kJ/gmol
Símbolo	n _{o el} kmol/kg	Fórmula química	$c_i l_i x$	Determinada en el presente in trabajo	Desviación ^(a) Szargut %
Si	1.0E-02	SiO ₂	0.3 1 4.07	E-01 2.23	2.2 1.43
Sm Such	4.0E-08	Sm(OH) ₃	0.02 1 1.08	E-07 39.75	39.7 0.14
Sn markets	1.7E-08	SnO ₂	0.2 1 4.61	E-07 36.17	36.2 -0.09
Sr	4.3E-06	SrCO ₃	0.05 1 2.91	E-05 25.89	25.9 -0.05
Ta 🛸 🗉	1.1E-08	Ta ₂ O ₅	0.01 2 7.45	E-09 46.39	46.4 -0.02
Tb	6.3E-09	Tb(OH) ₃	0.02 1 1.71	E-08 44.34	44.9 -1.26
Te	1.4E-11	TeO ₂	0.005 1 9.49	E-12 62.92	62.9 0.02
Th 🐨 🗄	4.0E-08	ThO ₂	0.05 1 2.71	E-07 37.48	37.5 -0.05
Ti (2017)	1.2E-04	TiO ₂	0.01 1 1.63	E-04 21.63	21.7 -0.34
TI je	2.2E-09	Tl ₂ O ₄	0.01 2 1.49	E-09 50.38	60.4 -16.59
Tm 🔬 🖞	2.8E-09	Tm(OH) ₃	0.02 1 7.59	E-09 46.35	46.3 0.10
$\boldsymbol{U} = \{\boldsymbol{v}_i\}_{i \in I}$	1.1E-08	UO ₃ •H ₂ O	0.01 1 1.49	E-08 44.67	44.7 -0.06
$ V_{\rm e} = \epsilon_{\rm e} e^{-i t}$	2.7E-06	V ₂ O ₅	0.01 2 1.83	E-06 32.75	31 5.64
Y	3.7E-07	Y(OH) ₃	0.02 1 1.00	E-06 34.24	34.2 0.12
Yb og sta	1.7E-08	Yb(OH) ₃	0.02 1 4.61	E-08 41.87	41.9 -0.06
Zn	1.1E-06	ZnCO ₃	0.05 1 7.45	E-06 29.27	29.3 -0.11
Zr	1.8E-06	ZrSiO ₄	0.1 1 2.44	E-05 26.33	26.4 -0.27

 Tabla 2.18.- Exergia química estándar de las especies presentes en la corteza terrestre

 a condiciones normales de temperatura y presión

 (continunción)

(a) Con respecto al valor que indica Szargut

Los valores de exergia química estándar de las especies que contienen a los elementos cobalto, magnesio, manganeso, talio y vanadio, obtenidos en el presente estudio, son muy diferentes a los valores de exergia química que indica Szargut. La razón de estas diferencias se debe a que los valores considerados de fracción molar x_m de la especie y número de átomos l_i del elemento en la molécula de la especie de referencia, difieren de los valores empleados por Szargut. El valor de l_i no está explícito en el artículo de Szargut [2].

En el caso del compuesto CoFe₂O₄, Szargut obtiene un valor de 9.5x10⁻⁸ como fracción molar de la especie, diferente a 2.85x10⁻⁷; valor aquí calculado por medio de la Ecuación 2-41 y a partir del valor de concentración molar de cobalto en la litosfera de $4.2x10^{-7}$ kgmol/kg, que reporta Szargut. Para obtener el valor de $x_{CoFe2O4n} = 9.5x10^{-8}$, el valor de $n_{o Co}$ tendría que ser igual a $1.4x10^{-7}$ kgmol/kg, en lugar de $4.2x10^{-7}$. Al revisar diferentes fuentes de información (ver Tabla 2.19), la mayoría coinciden en que la concentración de cobalto en la corteza terrestre es cercana a $4.2x10^{-7}$ kgmol/kg, por lo

que se considera que los valores obtenidos de fracción molar y exergia química estándar del CoFe₂O₄ en el presente trabajo son los correctos.

	Referencia					
Elemento Químico	Szargut, 1989 [2]	Fairbridge, 1972 [40]	WebElements, 2000 [41]	Turner, et. al. 1980 [42]	The Open University Course Team, 1989 [23]	Riley, 1971 [12]
Co	4.2e-7	4.9e-7	5.1e-7	2.2e-7	4.2e-7	4.2e-7
Mg	9.6e-4	1.1e-3	1.2e-3	6.7e-4	9.5e-4	8.2e-4
Mn	1.7e-5	1.9e-5	2.0e-5	1.3e-5		1.7e-5
TI	2.2e-9	3.5e-9	2.6e-9	2.2e-9		2.2e-9
V 1	2. <u>7e-6</u>	2.7e-6	3.7e-6	1.9e-6		2.7e-6

Tabla 2.19.- Concentración molar promedio de algunos elementos en la corteza terrestre (kgmol/kg), de acuerdo con diferentes fuentes de información.

Respecto a la especie que contiene al magnesio, Szargut estima un valor de fracción molar del Mg₃Si₄O₁₀(OH)₂ de 2.6x10⁻³, en lugar de 8.67x10⁻⁴, valor determinado en el presente estudio al considerar un valor de $n_{o\ el}$ y l_i igual a 9.6x10⁻⁴ kgmol/kg y 3, respectivamente. Para obtener el valor de $x_{in} = 2.6x10^{-3}$, el valor de $n_{o\ el}$ tendría que ser igual a 2.9x10⁻³ kgmol/kg ó que l_i se considerara igual a uno. De acuerdo con diferentes autores, la concentración de magnesio en la litosfera es cercana al valor de 9.6x10⁻⁴ kgmol/kg que indica Szargut, por lo que probablemente Szargut utiliza un valor de l_i igual a uno en lugar de tres, valor aquí empleado ya que una molécula de la especie bajo consideración contiene tres átomos de magnesio. Se supone que los valores de fracción molar y exergia química estándar de la especie Mg₃Si₄O₁₀(OH)₂ obtenidos en el presente estudio son los correctos.

La diferencia entre el valor de exergia química estándar del MnO₂ indicado por Szargut y el aquí estimado podría deberse a un error de lectura, ya que el valor determinado de fracción molar de la especie es 2.3×10^{-5} y el que indica Szargut es 2.3×10^{-4} . Si el valor de x_{MnO2n} fuera igual a 2.3×10^{-4} , la concentración del manganeso en la corteza terrestre tendría que ser de 1.7×10^{-4} , diferente al valor empleado en el presente estudio y al que indica Szargut de 1.7×10^{-5} . De la misma manera que en los casos anteriores, diversos autores coinciden con el valor de concentración del elemento presentado por Szargut;

por lo que se consideran correctos los valores de fracción molar y exergia química estándar del bióxido de manganeso estimados en el presente trabajo.

Debido a que la fracción molar del Tl₂O₄ calculada en el presente estudio coincide con el valor que reporta Szargut de 1.5×10^{-9} , se cree que la diferencia entre los valores de exergia química estándar de dicha especie se debe a un error de escritura, por lo que el valor correcto de Ex_q° TI2O4 es 50.4 kJ/gmol.

Finalmente, en el caso del V₂O₅, el valor de exergia química de la especie aquí calculado resulta diferente al determinado por Szargut ya que dicho autor determina un valor de fracción molar de la especie de 3.7×10^{-6} , diferente al estimado de 1.8×10^{-6} para la misma especie. Esta diferencia en el valor de fracción molar podría deberse a que Szargut considera un valor diferente de concentración molar de vanadio ó a que utiliza un valor de *I*_i igual a uno, en lugar de dos, valor supuesto en el presente trabajo. De acuerdo a diferentes referencias, el valor de concentración molar de vanadio en la litosfera es de 2.7×10^{-6} kgmol/kg, el mismo que indica Szargut, por lo tanto se cree que Szargut utiliza un valor de *I*_i igual a uno. Debido a que una molécula de V₂O₅ contiene dos átomos de vanadio, se considera que los valores de fracción molar y exergia química del V₂O₅ determinados en este estudio son los correctos.

an early and an indicate a second second second and the second second second second second second second second

La exergia química estándar de cada elemento presente en la litosfera se determina por medio de un balance de exergia en la reacción de formación de la especie de referencia que lo contiene (Ecuación 2-1), para lo cual se requiere conocer los valores de exergia química estándar del resto de los elementos que participan en la reacción y del valor de energía libre de formación normal estándar de la especie de referencia.

and the many second second

Es importante mencionar que los valores de energía libre de formación normal estándar de las especies presentes en la litosfera que utiliza Szargut en sus cálculos de exergia química estándar de los elementos, se compararon con los publicados por Perry [7], Wagman, et. al. [21], Latimer [22], Barin [43] y en el CRC Handbook [44]. En general, los valores de ΔG_f° que se informan en dichas referencias son muy parecidos a los

empleados por Szargut, excepto en el caso de las especies silimanita (Al₂SiO₅), y de los óxidos de germanio y hafnio (GeO₂ y HfO₂, respectivamente).

En el caso de la silimanita, Szargut utiliza un valor de ΔG_f° igual a –2,625.9 kJ/gmol, mientras que en otras referencias el valor que se indica es de –2,440.9 kJ/gmol (7% diferente). Si se utiliza el valor de energía libre de formación de la silimanita que informa Szargut para calcular la exergia química estándar del aluminio, se obtiene un valor de 888.2 kJ/gmol, al considerar los valores de exergia química estándar de la silimanita, del oxígeno y del silicio que predice Szargut de 15.3, 3.97 y 854.9 kJ/gmol, respectivamente. Sin embargo, si se utiliza el valor de ΔG_f° igual a –2,440.9 kJ/gmol, el valor de exergia química estándar del aluminio resulta de 795.7 kJ/gmol, 10.4% menor que el valor obtenido a partir del valor de ΔG_f° que señala Szargut.

Con el propósito de medir el efecto del valor de exergia química estándar del aluminio, obtenido a partir de dos valores distintos de energía libre de formación de la silimanita, en la magnitud de exergia química estándar de otros compuestos que contengan al aluminio, se estimó la exergia química estándar del óxido de aluminio (Al_2O_3), especie presente en la corteza terrestre. En la Tabla 2.20, se presentan los valores de exergia química estándar del óxido de aluminio valores de exergia química estándar del óxido de aluminio. El valor de energía libre de formación normal estándar del Al_2O_3 que se utiliza en este ejercicio es de -1,582.4 kJ/gmol, utilizado por Szargut y cotejado con el que se indica en el CRC Handbook [44].

Tabla 2.20 Exergia química	estándar del Al ₂ O ₃ a partir de dos
valores distintos de exergia	química estándar del aluminio ^(a) .

$E x_q Al$	Ex_{a} Al2O3
kJ/gmol	kĴ/gmol
888.2	199.9
795.7	15.0
	888.2 795.7

(a) Al ocupar un valor de Ex_q°₀₂ = 3.97 kJ/gmol

(b) De acuerdo con Szargut [2]

(c) Según Wagman [21] y Barin [43]

El valor de exergia química estándar del óxido de aluminio, al utilizar el valor de $Ex_q^{\circ}_{Al}$ de 888.2 kJ/gmol es trece veces mayor que el valor que se obtiene cuando se considera un valor de $Ex_q^{\circ}_{Al}$ de 795.7 kJ/gmol. Si se determina el valor de exergia química estándar del óxido de aluminio por medio de la ecuación 2-40, con base en la información de concentración molar promedio de aluminio en la corteza terrestre y de la fracción del aluminio total en la forma de la especie Al₂O₃ ($c_i = 0.005$) que indica Szargut [2], se obtiene un valor de 17 kJ/gmol, cercano al obtenido cuando se utiliza un valor de exergia química del aluminio de 795.7 kJ/gmol. Aun cuando la expresión 2-40 utilizada para el cálculo de exergia química estándar de las especies presentes en la corteza terrestre es aproximada y tiene cierto error (según lo establece Szargut), se considera apropiado el valor de $Ex_q^{\circ}_{Al2O3}$ de 17 kJ/gmol y; por lo tanto, en el presente trabajo se considera como correcto el valor de -2,440.9 kJ/gmol como energía libre de formación normal estándar de la silimanita.

En los casos del óxido de germanio y hafnio, la diferencia entre el valor de energía libre de formación que indica Szargut y el publicado en otras fuentes es de alrededor del 5 y 6%, respectivamente (ver Tabla 2.21). Al contrario del caso de la silimanita, al utilizar los diferentes valores de ΔG_f° del GeO₂ y del HfO₂ y la expresión 2-40 para determinar la exergia química estándar de los elementos germanio y hafnio, no se obtienen diferencias importantes, como sí lo es en el caso del aluminio. Debido a que las diferencias mencionadas no son considerables y a que no se cuenta con información de otras especies presentes en la litosfera que contengan a los elementos germanio y hafnio para corroborar el valor de exergia química estándar de dichos elementos y por consiguiente el valor de energía libre de formación de los óxidos de germanio y hafnio, se consideran adecuados los valores de ΔG_f° del GeO₂ y del HfO₂ y del HfO₂ utilizados por Szargut.

especies de referencia ^(a) .								
	E	specie de referencia	a <u></u>					
Elemento químico	Fórmula química	∆G _f ° _i kJ/mol	Ex _q ° _i kJ/gmol	Ex _q ° _{el} kJ/gmol				
Ge	GeO ₂	-521.5 ^(b) -497.0 ^(c)	40.1 40.1	557.6 533.1				
Hf	HfO₂	-1,027.4 ^(b) -1.088.2 ^{(c), (d)}	39.6 39.6	1,063.0 1.123.8				

 Tabla 2.21.- Exergia química estándar del germanio y hafnio a partir de dos valores distintos de energía libre de formación de sus

 Image: serie de referencie (a)

(a) Al ocupar un valor de $Ex_q^{\circ}_{02} = 3.97 \text{ kJ/gmol}$

(b) De acuerdo con Szargut [2]

(c) Según Wagman [21]

(d) De acuerdo con Perry [7] y Barin [43]

En la Tabla 2.22 se muestran los valores de exergia química estándar obtenidos a condiciones normales de temperatura y presión de los elementos contenidos en la corteza terrestre. Con el fin de comparación, en este ejercicio, se utilizan los valores que predice Szargut de exergia química estándar de los elementos (H₂, O₂, C, Cl₂, S, K y P) cuyas especies de referencia están ya sea en el aire atmosférico o en el agua de mar, y que se requieren en el cálculo de exergia química de los elementos presentes en la litosfera, por estar contenidos también en las especies de referencia de este medio.

La diferencia de 10.4%, entre el valor calculado de exergia química estándar del aluminio y el valor que indica Szargut (ver Tabla 2.22), se debe a que el valor de energía libre de formación de la especie de referencia considerado es distinto al que utiliza Szargut.

Por otro lado, las pequeñas diferencias que se producen entre los valores estimados de exergia química estándar del resto de los elementos y aquellos que predice Szargut, se deben a que en el cálculo de exergia química de los elementos se utilizan los valores de exergia química estándar de las especies de referencia obtenidos en este trabajo; por lo que en los casos en donde existe una diferencia considerable entre el valor obtenido de exergia química de la especie y el valor que estima Szargut, existe también diferencia, aunque en menor grado, entre los valores de exergia química estándar del elemento, como es el caso del manganeso.

	Especie	de referenc	ia	$\overline{Ex_q}^o$ del element	to, kJ/gmol	
	· · · · ·			Determinada en		•
Elemento	N.1.7	Ex_{q}^{o}	$\Delta G_{f'i}^{o}$	el presente		Desviąción
Químico _(a)	Fórmula química	kJ/mol	kJ/mol	trabajo	Szargut	% ⁽⁰⁾
Ag _(s)	AgCI	51.36	-109.80	99.36	99.40	-0.04
Al _(s)	Al ₂ SiO ₅	15.32	-2440.99	795.71	888.20	-10.41
Αu (s)	Au	50.62	0	50.62	50.50	0.23
За _(s)	BaSO ₄	30.69	-1361.9	775.05	775.10	-0.01
Be _(s)	Be ₂ SiO ₄	38.11	-2033.3	604.26	604.40	-0.02
Bi _(s)	Bi ₂ O ₃	54.57	-493.7	271.16	270.30	0.32
Ca _(s)	CaCO ₃	16.30	-1129	729.08	729.10	0.00
Cd (s)		45.17	-669.4	298.35	298.20	0.05
Ce (s)	, CeO ₂	33.87	-1024.8	1054.70	1054.60	0.01
C0 (s)	CoFe ₂ O ₄	37.36	-1032.6	313.40	312.00	0.45
Cr (s)	K ₂ Cr ₂ O ₇	33.49	-1882.3	584.35	584.30	0.01
Cu (s)	CuCO ₃	29.85	-518.9	132.53	132.50	0.03
Dy (s)	Dy(OH) ₃	41.73	-1294.3	975.94	975.90	0.00
Er (s)	Er(OH) ₃	41.87	-1291	972.78	972.80	0,00
Eu (s)	Eu(OH) ₃	43.77	-1320.1	1003.78	1003.80	0.00
F _{2 (g)}	CaF ₂ • 3Ca ₃ (PO ₄) ₂	26.54	-12985.3	504.99	504.90	0.02
Fe (s)	Fe ₂ O ₃	12.38	-742.2	374.31	374.30	0.00
Ga _(s)	Ga ₂ O ₃	37.25	-998.6	514.95	514.90	0.01
Gd _{u(s)}	Gd(OH) ₃	40.16	-1288.9	968.97	969.00	0.00
Ge (s)	GeO ₂	40.08	-521.5	557.61	557.60	0.00
Hf _(s)	HfO ₂	39.60	-1027.4	1063.03	1062.90	0.01
Hg (i)	HgCl ₂	52.89	-178.7	107.99	108.00	-0.01
Ho _(s)	Ho(OH) ₃	44.00	-1294.8	978.71	978.60	0.01
In _(s)	In ₂ O ₃	48.69	-830.9	436.82	436.80	0.00
ir _(s)	IrO ₂	65.32	-185.6	246.95	246.80	0.06
La (s)	La(OH) ₃	35.53	-1319.2	994.64	994.60	0.00
Lu _(s)	Lu(OH) ₃	46.26	-1259.6	945.77	945.70	0.01
Mg _(s)	Mg ₃ Si ₄ O ₁₀ (OH) ₂	17.48	-5543	626.91	626.10	0.13
Mn _(s)	MnO ₂	26.47	-465.2	487.70	482.00	1.18
Nb _(s)	Nb ₂ O ₃	38.96	-1766.4	899.70	899.70	0,00
Nd (s)	Nd(OH) ₃	35.89	-1294.3	970.10	970.10	0.00
Ni (s)	NIO and the factor factor	32.84	-211.71	242.57	242.50	0.03
Os (s)	OsO ₄	71.18	-305.1	368.34	368.10	0.06
Pb (s)	PbCO ₃	39.85	-625.5	249.13	249.30	-0.07
Pd (s)	PdO	58.20	-82.5	138.71	138.60	0.08
Pr (s)	Pr(OH) ₃	38.83	-1285.1	963.84	963.80	0.00
Pt _(s)	PtO ₂	61.38	-83.7	141.11	141.00	0.08
Pu (s)	PuO ₂	108.88	-995.1	1100.01	1100.00	0.00
Ra (s)	RaSO ₄	77.20	-1364.2	823.86	823.90	0.00
Re (s)	Re ₂ O ₇	65.28	-1067.6	559.49	559.50	0.00

Tabla 2.22.- Exergia química estándar de los elementos contenidos en la litosfera a condiciones normales de temperatura y presión.

(a) Estado: sólido (s), gaseoso (g) y líquido (l) (b) Con respecto al valor que indica Szargut

	Especie	Especie de referencia			<i>Ex_q°</i> del elemento, kJ/gmol		
Elemento Químico _(a)	Fórmula química	Ex _q ° _i kJ/mol	∆G _f ° _i kJ/mol	Determinada en el presente trabajo	Szargut	– Desviación % ^(b)	
Rh (s)	Rh ₂ O ₃	65.54	-299.8	179.69	179.70	0.00	
Ru (s)	RuO ₂	69.46	-253.1	318.59	318.60	0.00	
Sb (s)	Sb ₂ O ₅	56.88	-829.3	438.13	438.10	0.01	
Sc (s)	Sc ₂ O ₃	36.69	-1819.7	925.22	925.20	0.00	
Si (s)	SiO ₂	2.23	-856.7	854.96	854.90	0.01	
Sm (s)	Sm(OH) ₃	39.75	-1314	993.66	993.60	0.01	
Sn (s)	SnO ₂	36.17	-519.6	551.80	551.90	-0.02	
Sr (s)	SrCO ₃	25.89	-1140.1	749.77	749.80	0.00	
Ta (s)	Ta ₂ O ₅	46.39	-1911.6	974.03	974.00	0.00	
Tb _(s)	Tb(OH) ₃	44.34	-1314.2	998.45	998.40	0.00	
Te (s)	TeO ₂	62.92	-270.3	329.25	329.20	0.01	
Th _(s)	ThO ₂	37.48	-1169.1	1202.61	1202.60	0.00	
Ti (s)	TiO ₂	21.63	-889.5	907.16	907.20	0.00	
TI (s)	Tl ₂ O ₄	50.38	-347.3	194.87	194.90	-0.02	
Tm (s)	Tm(OH)₃	46.35	-1265.5	951.76	951.70	0.01	
U (s)	$UO_3 \cdot H_2O$	44.67	-1395.9	1196.54	1196.60	0.00	
V _(s)	V_2O_5	32.75	-1419.6	721.21	720.40	0.11	
Y (s)	Y(OH)₃	34.24	-1291.4	965.55	965.50	0.01	
Yb _(s)	Yb(OH) ₃	41.87	-1262.5	944.28	944.30	0.00	
Zn (s)	ZnCO ₃	29.27	-731.6	344.65	344.70	-0.01	
Zr (s)	ZrSiO ₄	26.33	-1919.5	1082.93	1083.40	-0.04	

Tabla 2.22.- Exergia química estándar de los elementos contenidos en la litosfera a condiciones normales de temperatura y presión (continuación).

(a) Estado: sólido (s), gaseoso (g) y líquido (l)

(b) Con respecto al valor que indica Szargut

Como se puede apreciar en la Tabla 2.22, el valor de exergia química estándar del elemento depende en gran medida del valor de energía libre de formación de su especie de referencia.

En el Apéndice C se presentan los valores de exergia química estándar de los elementos contenidos en la litosfera a condiciones normales de temperatura y presión, que arroja el programa EXQCOMP desarrollado en este trabajo de tesis.

t	n gan			88
·			 	

	A	N		· .	. • . •	
	· · · · ·					
	n y na ser Na ser					
		4				
						. *
No. 1 Sec.				1 1 M		٤,
_ ·			."		200 ⁽¹⁾	
		· ·	. *			
· · ·				· • .		•
	4				· · ·	
				- 5		
	- - 	-1	• •	•		
 				N. A.	$\int_{\mathbb{R}^{d}} dx = \int_{\mathbb{R}^{d}} dx$	
$\frac{1}{2}$, $\frac{1}{2}$						
- 1 - N		* I				
÷		a sana ing s				- 4, ^{1, 1}
•						ан са ж
		····				
	· · ·					
÷.,	. N		. T	$\{ f_{i,k} \in \mathcal{I}_{k} \}$		
1			1. 1. 1.		- - 	

المستقلم في والمستقلم من المنه ومن المستقلم والمركز المستقلم المن المستقلم المستقلم المستقلم والمستقلم المن وال الملكة منه وجود المستقلم من الملكة المركز المستقلم المستقلم المستقلم والمستقلم المركز المستقلم والمستقلم والمست المستقلم من المستقلم المستقلم المستقلم المستقلم المستقلم المستقلم المستقلم والمستقلم المستقلم المستقلم والمستقل produced and set of the set

CAPÍTULO III

and the second second

EFECTO DE LAS CONDICIONES AMBIENTALES EN EL VALOR DE EXERGIA QUÍMICA ESTÁNDAR DE LOS ELEMENTOS

a ser a ser en er

En el capítulo II, se determinó la exergia química estándar de la mayoría de los elementos de la tabla periódica a condiciones normales de temperatura y presión, es decir, a 25°C y 1 atm. De manera simultánea, se analizó el efecto en el valor de exergia química estándar cuando varía la concentración promedio de las especies de referencia en el medio. En el presente capítulo se estudia el impacto en el valor de exergia química estándar de diferentes condiciones de temperatura y presión a las normales.

and the second second

La exergia química estándar de una sustancia se suele expresar a condiciones normales de temperatura y presión debido a que la mayoría de la información termodinámica y de concentración de las especies en el medio está disponible a dichas condiciones; además de que estas condiciones son las que se consideran como el promedio en el medio ambiente. Sin embargo, dependiendo del lugar geográfico y de la estación del año, las condiciones del medio difieren del promedio.

En regiones del hemisferio norte, por ejemplo, Canadá, la temperatura ambiente durante el invierno alcanza un valor promedio de –20°C o menos; mientras que en lugares cercanos al ecuador, durante el verano, la temperatura del medio llega a ser mayor de 40°C [45, 46]. Por otro lado, la temperatura del agua de mar superficial fluctúa entre 30°C o más en aguas tropicales, a –2°C por debajo del hielo Ártico [11, 45].

Con relación a la presión atmosférica, existen regiones en la superficie de la Tierra cuya altura sobre el nivel del mar es de varios miles de metros; como es el caso de La Paz en Bolivia, la cual es la ciudad más alta del mundo (3,625 m sobre el nivel de mar) y por lo que el valor de presión atmosférica en este lugar se reduce a 0.65 atm; la Ciudad de

Efecto de las Condiciones Ambientales en la Exergia Química de Elementos Capítulo III Página 90

Cusco en Perú, cuya altitud es de 3,415 metros y en donde el valor de presión atmosférica es igual a 0.67 atm; y la Ciudad de México, situada a 2,240 metros sobre el nivel del mar, con una presión atmosférica de 0.77 atm. En contraste, en otros puntos de la Tierra, la superficie está por debajo del nivel mar, como por ejemplo Los Países Bajos (Holanda) en donde la mitad del territorio está por debajo del nivel del mar, o la Ciudad de Jericó ubicada a 2 Km de Jerusalén en Israel y a 244 metros por debajo del nivel del mar, por lo que, la presión atmosférica en este lugar es ligeramente mayor a 1 atm [46].

3.1.- Efecto de la temperatura del medio en el valor de exergia química estándar.

e e server la consigna para la construcción de contra el contra de la construcción de construcción de construc

En la presente sección se discute el efecto que tiene la temperatura del ambiente en la magnitud de la exergia química estándar de los elementos, al considerar como condiciones extremas para los sistemas terrestres -40°C como temperatura mínima y 50°C como temperatura máxima.

La exergia química estándar de cualquier sustancia depende estrechamente de la temperatura del medio ambiente, ya que su valor fija el cambio de energía libre de Gibbs estándar de la reacción de referencia en el equilibrio y de alguna manera la concentración de las especies de referencia en el medio; por lo que al cambiar la temperatura del medio también se modifican estas propiedades. En las siguientes sub-secciones se analiza el cambio en el valor de ΔG° de la reacción de formación de las especies de referencia de la reacción de formación de las especies de referencia y en la concentración de las especies en el medio, utilizados

en la determinación de exergia química estándar de los elementos, al variar la temperatura del ambiente dentro del intervalo de temperaturas antes señalado.

3.1.1.- Efecto de la temperatura en el valor de ΔG° .

and the state of the

La variación en el cambio de energía libre de Gibbs estándar de una reacción con respecto a la temperatura está dada por la Ecuación 3-1, [47].

$$\frac{\partial \left(\Delta G^{o} / RT \right)}{\partial T} \bigg|_{P} = -\frac{\Delta H^{o}}{RT^{2}}$$
(3-1)

El cambio de entalpia estándar de la reacción también depende de la temperatura. Si no hay cambio de fase en el intervalo comprendido entre la temperatura normal T_n (298.15 K) y la temperatura del medio T, el calor estándar de la reacción en función de la temperatura es igual a:

$$\Delta H^{o} = \Delta H^{o}_{T_{n}} + \int_{T_{n}}^{T} \Delta C^{o}_{p} dT \qquad (3-2)$$

El cambio en la capacidad calorífica estándar de la reacción (ΔC_p°) es igual a la diferencia de capacidades caloríficas estándar entre los productos y los reactivos de la reacción, esto es,

$$\Delta C_{p}^{o} = \sum_{k} v_{k} C_{p_{k}}^{o} - \sum_{z} v_{z} C_{p_{z}}^{o}$$
(3-3)

Contract of the second second

En donde, v_k y v_z son los coeficientes estequiométricos de los productos y reactivos, respectivamente, que participan en la reacción. La capacidad calorífica de gases, líquidos y sólidos se expresa normalmente en función de la temperatura mediante ecuaciones empíricas basadas en datos experimentales [48]. La forma general de este tipo de ecuaciones es:

$$C_{p}^{o} = a + bT + cT^{2} + \frac{d}{T^{2}} + eT^{3}$$
 (3-4)

Al sustituir el cambio de entalpia estándar de la reacción (Ecuación 3-2) en la Ecuación 3-1 se obtiene la siguiente expresión:

$$d\left(\frac{\Delta G^{\circ}}{RT}\right) = -\int_{T_n}^T \frac{\left(\Delta H_{T_n}^{\circ} + \int_{T_n}^T \Delta C_p^{\circ} dT\right)}{RT^2} dT \qquad (3-5)$$

Efecto de las Condiciones Ambientales en la Exergia Química de Elementos Capítulo III Página 92

Finalmente, al integrar la Ecuación 3-5, desde la temperatura normal T_n hasta la temperatura del medio T, se obtiene la siguiente expresión a partir de la cual se determina ΔG° para cualquier valor de temperatura del ambiente, con base en las propiedades a 25°C.

e je se služi s na slove se statje o se stora se obječa konserve sa najveja je se stati na stati sa slove sto

$$\Delta G^{\circ} = \Delta G_{T_n}^{\circ} \frac{T}{T_n} + \Delta H_{T_n}^{\circ} \left(1 - \frac{T}{T_n}\right) + \Delta a \left(T - T_n - T \ln \frac{T}{T_n}\right) - \frac{\Delta b}{2} \left(T - T_n\right)^2$$

$$-\frac{\Delta c}{6}\left(T^{3}+2T_{n}^{3}-3TT_{n}^{2}\right)-\frac{\Delta d}{2}\left(\frac{1}{T}+\frac{T}{T_{n}^{2}}-\frac{2}{T_{n}}\right)-\frac{\Delta e}{12}\left(T^{4}+3T_{n}^{4}-4TT_{n}^{3}\right) \qquad (3-6)$$

Cabe señalar que Δa , Δb , Δc , Δd , y Δe , corresponden a la diferencia de las constantes a, b, c, d, y e, respectivamente, de la expresión de capacidad calorífica en función de T, entre los productos y los reactivos de la reacción. Los valores de dichas constantes o bien los valores de capacidad calorífica estándar a una temperatura dada, están disponibles en diversas publicaciones [7, 8, 21, 43, 44, 48, 49], para los elementos y especies de referencia que se consideran en este estudio.

En el Apéndice B.2, se presenta el calor estándar de formación a 25°C de cada una de las especies de referencia, que se utiliza en el presente estudio para corregir el valor de ΔG_f° al variar la temperatura. En dicho apéndice se explica la procedencia de cada valor.

Si en el intervalo comprendido entre la temperatura a condiciones normales y la temperatura del medio existe cambio de fase de alguna de las sustancias que participan en la reacción, es necesario incluir en la Ecuación 3-5 el calor latente de fusión o vaporización, según sea el caso, o si hay un cambio de un estado sólido a otro entonces considerar el calor de transición, así como incluir también la capacidad calorífica de la sustancia en su nuevo estado físico.

Por ejemplo, en el caso de la reacción de formación del ión Cs⁺, en una celda electroquímica con un electrodo normal de hidrógeno, el estado físico estándar del elemento cesio puro a 25°C es sólido, pero a partir de 28.5°C su estado es líquido, por lo tanto a temperaturas mayores de 25°C es necesario considerar las siguientes reacciones de formación del ión Cs⁺:

$$T = 25^{\circ}C$$
 $Cs_{(s)} + H^{+}_{(ac)} \longrightarrow Cs^{+}_{(ac)} + \frac{1}{2}H_{2(g)}$

.

 $T > 28.4^{\circ}\text{C}$ $Cs_{(l)} + H^{+}_{(ac)} \rightarrow Cs^{+}_{(ac)} + \frac{1}{2}H_{2(g)}$

El calor de fusión del cesio a 28.4°C es de 2.092 kJ/gmol. Entonces, la variación del cambio de energía libre de Gibbs estándar de formación del Cs⁺, a temperaturas mayores a 25°C está dada por la Ecuación 3-7.

$$d\left(\frac{\Delta G^{\circ}}{RT}\right) = -\int_{T_n}^T \frac{\left(\Delta H_{T_n}^{\circ} + \int_{T_n}^{T_{furiton}} \Delta C_{p_1}^{\circ} dT + \int_{T_{furiton}}^T \Delta C_{p_2}^{\circ} dT + \Delta H_{fase}\right)}{RT^2} dT \qquad (3-7)$$

En $\Delta C_p \circ_1$ se considera la capacidad calorífica del cesio en estado sólido, mientras que en $\Delta C_p \circ_2$, la capacidad calorífica del cesio como líquido. El valor de ΔH_{fase} es la diferencia de calores que se presentan por un cambio de fase entre productos y reactivos. En este caso ΔH_{fase} es igual a –2.092 kJ/gmol; el signo negativo obedece a que el elemento cesio es un reactivo. Si se suponen valores constantes de $\Delta C_p \circ_1$ y $\Delta C_p \circ_2$ en sus respectivos intervalos de temperatura, el valor de $\Delta G_f \circ$ del ión Cs⁺ a cualquier temperatura mayor a 25°C, es igual a:

$$\Delta G^{\circ} = \Delta G_{T_n}^{\circ} \frac{T}{T_n} + \left(1 - \frac{T}{T_n}\right) \left[\Delta H_{T_n}^{\circ} + \Delta C_{p_1}^{\circ} \left(T_{fusion} - T_n\right) - \frac{\Delta C_{p_2}^{\circ} \ln \frac{T}{T_n}}{\left(\frac{1}{T} - \frac{1}{T_n}\right)} - \Delta C_{p_2}^{\circ} T_{fusion} + \Delta H_{fusion} \right]$$

(3-8)

Dentro del intervalo de temperaturas considerado en el presente estudio, el impacto que tiene el cambio de capacidad calorífica estándar de la reacción de formación sobre el valor de ΔG_f° es casi nulo, como se observa en la Tabla 3.1 para algunos casos al considerar las temperaturas de 40 y 5°C. Por lo tanto en el presente análisis no se considera el valor de ΔC_p° para determinar el cambio de energía libre de Gibbs a una temperatura diferente de 25°C.

intervalo de temperaturas considerado.								
			ΔG_f° ,	kJ/gmol				
· ·	Especie	Temperatura °C	Al considerar $\Delta C_p \circ_f$	Sin considerar $\Delta C_p^{\circ}_f$	Desviación ^(a) %			
n en	K ₂ Cr ₂ O ₇	40 5	-1874.184	-1874.172	-6e-4			
. *	CO2	40	-394 4203	-394 4206	-1e-5 8e-5			
		5	-394.3178	-394.3184	2e-4			
	Cs⁺	40 ^(b)	-284.0099	-284.0203	4e-3			
	. <u></u>	5	<u>-279.8807</u>	-279.9132	0.01			

Tabla 3.1.- Efecto del valor de $\Delta C_p \circ_f$ en el valor de $\Delta G_f \circ$, en el intervalo de temperaturas considerado.

Sec. 53

(a) Con respecto al valor ΔG_f° cuando se considera el ΔC_p°

(b) Se incluye el efecto en ΔH_f° por cambio de fase del elemento cesio ($T_{fusión} = 28.4^{\circ}$ C)

Además del cesio, en el intervalo de temperaturas de 0°C a 50°C, los elementos y especies de referencia que sufren cambio de fase son el fósforo ($T_{fusión} = 44.2$ °C), el rubidio ($T_{fusión} = 39.1$ °C), el galio ($T_{fusión} = 29.8$ °C), y el tetraóxido de osmio ($T_{fusión} = 40.15$ °C). En la Tabla 3.2 se observa que, sin considerar el valor de ΔC_p °, la variación en el valor de ΔG_f ° a 50°C de las especies relacionadas con las sustancias antes mencionadas es menor al 0.5% al no considerar el calor de fusión.

Tabla 3.2 Efecto en el valor	de ΔG_f° a 50°C al no considerar el calor
de fusión de las sustancias	que cambian de fase entre 0°C y 50°C.

	ΔG_f°	ΔG_{f}° , kJ/gmoj			
	Al considerar	Sin considerar			
Especie	ΔH_{fase}	ΔH_{fase}	Desviación ^(a) , %		
Cs⁺	-284.9156	-285.0910	0.06		
HPO4 ²⁻	-1072.0809	-1072.2918	0.02		
Rb⁺	-285.091	-285.2752	0.06		
Ga ₂ O ₃	-990.8833	-991.8207	0.09		
OsO4	-299.0424	-297.8461	-0.40		

(a) Con respecto al valor ΔG_f° cuando se considera el ΔH_{fase}

Entre 0°C y -40°C de temperatura, los elementos que sufren cambio de fase son el bromo con una temperatura de fusión igual a -7.2°C, el cloro que condensa a partir de -34°C, y el mercurio que a -38.9°C su estado físico es sólido.

Es importante señalar que el agua de mar se congela alrededor de -2° C, temperatura en la cual, las especies que sirven de referencia para determinar la exergia química estándar de los elementos contenidos en la hidrosfera, como son el bromo y el cloro, no existen ya más en solución, por lo que se comete un error al considerar un valor de $\Delta G_{f^{\circ}}$ de dichas especies a temperaturas por debajo de -2° C. Sin embargo, como se discutirá más tarde, existe gran incertidumbre sobre la especie que contiene a dichos elementos en el agua de mar congelada. Si se considera que por debajo del punto de fusión del agua de mar, las especies iónicas Br⁻ y Cl⁻ aún existen en solución acuosa, el valor de su energía libre de Gibbs estándar de formación a -40° C varía 1.1% y 1.6%, respectivamente, cuando no se considera el calor por cambio de fase de los elementos bromo y cloro (ver Tabla 3.3).

En el caso del cloruro de mercurio, especie de la corteza terrestre que contiene los elementos mercurio y cloro, su valor de energía libre de Gibbs de formación a -40°C es 2.6% diferente al valor estimado cuando no se considera el cambio de fase de los elementos involucrados. Ahora bien, el impacto que tiene la diferencia entre los valores de ΔG_f° del HgCl₂ en el valor de exergia química estándar del mercurio, es tan sólo de 0.5%.

de rusion de las sustancias que campian de lase entre 0 0 y -40 C.								
-	$\Delta G_f^{\circ}, k$	$\Delta G_f^{\circ}, kJ/gmol$						
Especie	Al considerar AH _{fase}	Sin considerar ΔH_{fase}	Desviación ^(a) , %					
Br	-108.9793	-107.8026	-1.1					
Cl	-141.3111	-139.0864	-1.6					
HgCl ₂	-193.6206	-188.6631	-2.6					

Tabla 3.3.- Efecto en el valor de ΔG_f° a -40°C al no considerar el calor de fusión de las sustancias que cambian de fase entre 0°C y -40°C.

(a) Con respecto al valor ΔG_f° cuando se considera el ΔH_{fase}

Debido a que en el intervalo de temperaturas de -40° C a 50°C, la diferencia en el valor ΔG_f° de las especies no es considerable si no se considera el calor que se produce por el cambio de fase de algunos de los elementos y especies de referencia, no se incluirá tal efecto en la determinación del ΔG_f° a una temperatura diferente a la normal; por lo tanto la expresión 3-6 se reduce a:

$$\Delta G^o = \Delta G^o_{T_n} \frac{T}{T_n} + \Delta H^o_{T_n} \left(1 - \frac{T}{T_n}\right)$$

"你你们,我们就能是你不能了了。"你们,你就是我们你要说你了。我们你不是你你不是你的吗?""你们,你就是要吗?"

and the second state of the second state of the second state in the

Es importante señalar que al no encontrar el valor de calor estándar de formación a 25°C del ión BiO⁺ en ninguna de las referencias consultadas, se decide determinar la exergia química estándar del bismuto considerando como especie de referencia al Bi₂O₃ presente en la litosfera, cuyas propiedades termodinámicas sí se conocen. A partir de un valor de n_{oBi} igual a 8.1x10⁻¹⁰ kgmol/kg, c_{Bi2O3} de 0.005 y ΔG_f° del Bi₂O₃ de -493.7 kJ/gmol, información que indica Szargut [2], se obtiene un valor de $Ex_q^{\circ}_{Bi}$ igual a 271.19 kJ/gmol, valor parecido a 274.81 kJ/gmol, exergia química del bismuto al tomar como especie de referencia al ión BiO⁺.

En la Tabla 3.4 se muestran los valores de ΔG_f° de las especies de referencia a diferentes valores de temperatura. En general, al aumentar la temperatura, la reacción de formación de las especies de referencia es menos espontánea, excepto en el caso de las especies CO₂, Cs⁺, K⁺, Li⁺, Na⁺ y Rb⁺ cuyo valor absoluto de ΔG_f° aumenta. Las especies que presentan una mayor desviación en su valor de ΔG_f° a 0 y 50°C con respecto a la temperatura de 25°C son el IO₃⁻ (6.1%) y el PtO₂ (5.3%).

Tabla 3.4.- Efecto de la temperatura del medio en el valor de ΔG_f° de las especies de referencia.

		1	~= 0°C	T = 25°C	T	= 50°C
		ΔG_{f}°	Desviación ^(a)	ΔG_f°	ΔG_{f}°	Desviación ^(a)
Elemento	Especie	kJ/gmol	%	kJ/gmol	kJ/gmol	%
			Atmósfera	-		
C (s)	CO ₂	-394.3	-0.02	-394.4	-394.5	0.02
$H_{2(g)}$,	- H ₂ O	-229.7	0.49	-228.6	-227.5	-0.49
D _{2 (g)}	D ₂ O	-235.9	0.52	-234.6	-233.4	-0.52
·····			Hidrosfera	•		
As _(s)	HAsO4 ²⁻	-730.8	2.25	-714.7	-698.6	-2.25
B _(s)	B(OH) ₃	-977.5	0.90	-968.8	-960.2	-0.90
Br _{2 (I)}	Br	-105.4	1.42	-104.0	-102.5	-1.42
Cl _{2 (g)}	Cl	-134.3	2.29	-131.3	-128.2	-2.29
Cs _(s)	Cs⁺	-279.4	-1.01	-282.2	-285.1	1.01
l _{2 (s)}	10 ₃	-135.8	6.11	-128.0	-120.2	-6.11
K _(s)	K	-279.8	-0.92	-282.4	-285.0	0.92
Li _(s)	Li ⁺	-292.7	-0.44	-294.0	-295.3	0.44
Mo _(s)	MoO ₄ ²⁻	-849.9	1.62	-836.4	-822.9	-1.62
Na _(s)	Na⁺	-260.2	-0.70	-262.0	-263.9	0.70
P _(s)	HPO42	-1106.3	1.56	-1089.3	-1072.3	-1.56
Rb _(s)	Rb⁺	-279.5	-1.02	-282.4	-285.3	1.02
S _(s)	SO4 ²	-758.4	1.85	-744.6	-730.8	-1.85
Se _(s)	SeO4	-454.6	3.00	-441.4	-428.2	-3.00
W (s)	WO ₄ ²⁻	-936.8	1.78	-920.5	-904.2	-1.78
			Litosfera			el. Alto de la compositione
Ag _(s)	AgCI	-111.2	1.32	-109.8	-108.4	-1.32
Al (s)	Al ₂ SiO ₅	-2453.3	0.50	-2441.0	-2428.7	-0.50
Ba _(s)	BaSO ₄	-13/1.3	0.69	-1361.9	-1352.5	-0.69
Be _(s)		-2043.1	0.48	-2033.3	-2023.5	-0.48
	BI ₂ O ₃	-500.4	1.36	-493.7	-487.0	-1.36
		-1135.5	0.58	-1129.0	-1122.5	-0.58
		-0/0.2	1.02	-009.4	-662.6	-1.02
		-1029.5	0.46	-1024.8	-1020.1	-0.46
		-1041.0	0.87	-1032.6	-1023.6	-0.87
		-1097.4	0.80	-1082.3	-1867.2	-0.80
		-525.4	1.24	-510.9	-512.4	-1.24
Dy (s) Er		-1303.5	0.60	-1294.3	-1283.1	-0.86
		-1302.2	0.80	-1291.0	-12/9.8	-0.86
⊏u (s) ⋿	$Eu(OH)_3$	-1001.0	0.64	-1320.1	-1308.9	-0.84
Г2 (g) Бо	$Car_2 \cdot 3Ca_3(PO_4)_2$	-13049.1	0.49	-12905.3	-12921.5	, -0.49
		-749.1	0.93	-/42.2	-/35.3	-0.93
Ga (s) Gd		-1000.2	0.70	-990.0 1799 0	-991.0	-U./b
Ge (s)		-1300.1	0.07	-1200.9	-12/1.1	-U.Ö/
GC (s) Ыf		-020.4	0.93	-J21.J	-010.0	-0.93
ын (s) Ша		-1032.4	0.49	-102/,4	-1022.4	-0.49
⊡y() Ho		-102.0	2.14	-1/8./	-1/4.9	-2.14
гто _(s)		-1306.0	0.86	-1294.8	-1283.6	-0.86
III (s)	_in ₂ O ₃	-838.3	0.90	-830.9	-823.5	-0.90

(a) Con respecto al valor de ΔG_f° a 25°C.

		T	= 0°C	T = 25°C	T = 5	50°C
		ΔG_{f}°	Desviación ^(a)	ΔG_{f}°	ΔG_{f}°	Desviación ^(a)
Elemento	Especie	kJ/gmol	%	kJ/gmol	kJ/gmol	%
Ir _(s)	IrO ₂	-190.0	2.36	-185.6	-181.2	-2.36
La _(s)	La(OH)3	-1330.4	0.85	-1319.2	-1308.0	-0.85
Lu _(s)	Lu(OH) ₃	-1270.8	0.89	-1259.6	-1248.4	-0.89
Mg _(s)	Mg ₃ Si ₄ O ₁₀ (OH) ₂	-5574.8	0.57	-5543	-5511.2	-0.57
Mn _(s)	MnO ₂	-469.8	0.99	-465.2	-460.6	-0.99
Nb (s)	Nb ₂ O ₃	-1777.6	0.63	-1766.4	-1755.2	-0.63
Nd (s)	Nd(OH) ₃	-1305.5	0.86	-1294.3	-1283.1	-0.86
Ni _(s)	NiO	-214.1	. 1.11	-211.71	-209.4	-1.11
Os (s)	OsO4	-312.5	2.44	-305.1	-297.7	-2.44
Pb (s)	PbCO ₃	-631.7	0.99	-625.5	-619.3	-0.99
Pd (s)	PdO	-85.0	3.08	-82.5	-80.0	-3.08
Pr (s)	Pr(OH) ₃	-1296.3	0.87	-1285.1	-1273.9	-0.87
Pt (s)	PtO ₂	-88.1	5.31	-83.7	-79.3	-5.31
Pu (s)	PuO ₂	-999.5	0.44	-995.1	-990.7	-0.44
Ra _(s)	RaSO ₄	-1373.5	0.68	-1364.2	-1354.9	-0.68
Re _(s)	Re ₂ O ₇	-1082.8	1.42	-1067.6	-1052.4	-1.42
Rh _(s)	Rh ₂ O ₃	-306.7	2.29	-299.8	-292.9	-2.29
Ru _(s)	RuO ₂	-257.6	1.79	-253.1	-248.6	-1.79
Sb (s)	Sb ₂ O ₅	· -841.2	1.43	-829.3	-817.4	-1.43
Sc _(s)	Sc ₂ O ₃	-1826.7	0.38	-1819.7	-1812.7	-0.38
Si _(s)	SiO ₂	-861.3	0.53	-856.7	-852.1	-0.53
Sm _(s)	Sm(OH) ₃	-1325.2	0.85	-1314	-1302.8	-0.85
Sn _(s)	SnO ₂	-524.7	0.99	-519.6	-514.5	-0.99
Sr _(s)	SrCO ₃	-1146.8	0.59	-1140.1	-1133.4	-0.59
Ta _(s)	Ta ₂ O ₅	-1922.9	0.59	-1911.6	-1900.3	-0.59
Tb _(s)	Tb(OH) ₃	-1325.4	0.85	-1314.2	-1303.0	-0.85
Te _(s)	TeO ₂	-274.7	1.62	-270.3	-265.9	-1.62
Th _(s)	ThO ₂	-1173.9	0.41	-1169.1	-1164.3	-0.41
Ti _(s)	TiO ₂	-894.1	0.52	-889.5	-884.9	-0.52
TI _(s)	Tl ₂ O ₄	-360.3	3.74	-347.3	-334.3	-3.74
Tm _(s)	Tm(OH) ₃	-1276.7	0.88	-1265.5	-1254.3	-0.88
U _(s)	UO3 •H2O	-1407.6	0.84	-1395.9	-1384.2	-0.84
V (s)	V ₂ O ₅	-1430.6	0.77	-1419.6	-1408.6	-0.77
Y _(s)	Y(OH) ₃	-1301.7	0.80	-1291.4	-1281.1	-0.80
Yb _(s)	Yb(OH) ₃	-1273.7	0.88	-1262.5	-1251.3	-0.88
Zn _(s)	ZnCO ₃	-738.4	0.93	-731.6	-724.8	-0.93
Zr _(s)	ZrSiO ₄	-1929.1	0.50	-1919.5	-1909.9	-0.50

Tabla 3.4.- Efecto de la temperatura del medio en el valor de ΔG_f° de las especies de referencia (continuación).

(a) Con respecto al valor de ΔG_f° a 25°C.

.

Efecto de las Condiciones Ambientales en la Exergia Química de Elementos Capítulo III Página 99

3.1.2.- Efecto de la temperatura del medio en la concentración de las especies de referencia.

En la Tabla 3.5 se observa que, para una presión atmosférica y una humedad relativa del aire atmosférico dadas, al aumentar la temperatura, disminuye la presión parcial de las especies presentes en la atmósfera, excepto en el caso del agua y del óxido de deuterio, cuyas presiones parciales aumentan. Esto se debe a que al incrementarse la temperatura del medio, de acuerdo con la expresión de Antoine (Ecuación 2-4), aumenta la presión de vapor del agua, incrementándose la fracción mol del agua en el aire. Al aumentar la concentración del H₂O y la del D₂O, para un valor de presión atmosférica constante, disminuye la concentración del resto de las especies en el medio, aunque la proporción entre ellas permanece constante.

Tabla 3.5.- Presión parcial en kPa de las especies presentes en la atmósfera a diferentes valores de temperatura del medio $(P = 101.325 \text{ kPa}, \phi = 0.7, \text{ concentración de CO}_2 = 345 \text{ ppmv}).$

	Temperatura, *C								
Especie	5	10	20	25	30	40	50		
Ar	0.9416	0.9376	0.9304	0.9249	0.9179	0.8973	0.8649		
CO ₂	0.0348	0.0347	0.0344	0.0342	0.0339	0.0332	0.0320		
Не	5.05E-04	5.02E-04	4.99E-04	4.96E-04	4.92E-04	4.81E-04	4.64E-04		
Kr	1.01E-04	1.00E-04	9.97E-05	9.91E-05	9.84E-05	9.62E-05	9.27E-05		
N ₂	78.75	78.42	77.81	77.35	76.76	75.05	72.34		
Ne	1.82E-03	1.81E-03	1,79E-03	1.78E-03	1.77E-03	1.73E-03	1.67E-03		
02	21.19	21.10	20.93	20.81	20.65	20.18	19.45		
Xe	9.1E-06	9.0E-06	9.0E-06	8.9E-06	8.9E-06	8.7E-06	8.3E-06		
H₂O	0.415	0.844	1.619	2.200	2.954	5.151	8.630		
D ₂ O	6.45E-05	1.31E-04	2.52E-04	3.42E-04	4.59E-04	8.01E-04	1.34E-03		

El efecto de la temperatura en el valor de presión parcial del agua es mayor a temperaturas por encima de los 25°C que a menores temperaturas (ver Figura 3.1); por ejemplo, a 50°C la presión parcial del agua en el aire aumenta un 292% con respecto al valor a 25°C, mientras que a 0°C la presión parcial del agua se reduce en un 81%, aun cuando la diferencia de temperatura con respecto a 25°C es la misma. La desviación del valor de presión parcial del D₂O con respecto al valor a 25°C sigue el mismo
comportamiento que en el caso del agua. La presión parcial del resto de las especies presentes en el aire a 50°C es 6.5% menor con respecto al valor a la temperatura normal, mientras que a 0°C la presión parcial aumenta tan sólo un 1.8%.

and the second State of the second 1.17 医腹股上部 人名法法克德斯 输出的转让工具机 Con el fin de evaluar el efecto que tiene la temperatura del medio, dentro del intervalo

comprendido entre 0 y 50 grados centígrados, en la concentración de las especies disueltas en el agua de mar, se analizan los sistemas de bióxido de carbono y de boro; para lo cual, se determina la concentración de las especies involucradas en dichos sistemas con base en las constantes aparentes de disociación k_{IC}, k_{2C} y k_B del ácido carbónico y del ácido bórico en función de la temperatura y de la salinidad (Ecuaciones 2-15, 2-16 y 2-17) y de las definiciones de alcalinidad total At, contenido total de carbono Ct y de boro Bt en el agua de mar [12, 28], esto es, $\{\cdot,\cdot\}$

 $At = [HCO_3^-] + 2[CO_3^{2-}] + [B(OH)_4^-]$

(3 - 10)

and the second second

$$Ct = [H_2CO_3] + [HCO_3^-] + [CO_3^{2-}]$$
(3-11)

and an in the second $Bt = [H_3BO_3] + [B(OH)_4]$ (3-12) , Los valores de *At*, *Ct* y *Bt* se pueden conocer a partir del valor de salinidad, al definir cantidades específicas de estas variables que sean características de un cuerpo de agua de mar con cierta salinidad [12]. Es decir, a partir de los valores de concentración de las especies disueltas en el agua de mar de la Tabla 2.7, se sabe que para una salinidad de 35‰ (*Cl* = 19.374‰) los valores de *At*, *Ct* y *Bt* son de 2.591x10⁻³ mol/kg_{sw}, 4.12x10⁻⁴ mol/kg_{sw} y 2.3x10⁻³ mol/kg_{sw}, respectivamente, por lo que la alcalinidad *At*_s, el carbono *Ct*_s y el boro *Bt*_s específicos, serán iguales a:

$$At_s = \frac{At \times 10^3}{Cl} = \frac{At \times 10^3}{S/1.80655} = 0.1337$$
(3-13)

$$Ct_s = \frac{Ct \times 10^3}{S/1.80655} = 0.1187 \tag{3-14}$$

$$Bt_s = \frac{Bt \times 10^3}{S/1.80655} = 0.0213 \tag{3-15}$$

Con el fin de simplificar se definen las siguientes relaciones: $B_{1} = \frac{k_{2C}}{k_{1C}} = \frac{[CO_{3}^{2^{-}}][H_{2}CO_{3}]}{[HCO_{3}^{-}]^{2}} \qquad (3-16)$ $B_{2} = \frac{k_{2C}}{k_{B}} = \frac{[CO_{3}^{2^{-}}][H_{3}BO_{3}]}{[HCO_{3}^{-}][B(OH)_{4}^{-}]} \qquad (3-17)$

A partir de las Ecuaciones 3-10, 3-11, 3-12, 3-16, y 3-17 se obtienen las siguientes expresiones en donde $q = [HCO_3^-] y r = [CO_3^{2-}]$:

$$At = q + 2r + \frac{Bt}{1 + B_2 q/r}$$
(3-18)

$$Ct = q + r + \frac{B_1 q^2}{r}$$
(3-19)

Al despejar r de la Ecuación 3-18 y sustituirla en la Ecuación 3-19, se obtiene la siguiente expresión para determinar el carbono total en función de la concentración total del ión bicarbonato (q), de la alcalinidad total y del contenido de boro total.

$$Ct = q + \left[\frac{Z + \sqrt{Z^2 + 8N}}{4}\right] + \frac{4B_1 q^2}{Z + \sqrt{Z^2 + 8N}}$$
(3-20)

en donde,

$$Z = At - q - 2B_2q - Bt \tag{3-21}$$

$$N = AtB_2 q - B_2 q^2 \tag{3-22}$$

Para un valor de salinidad dado se puede considerar que los valores totales de alcalinidad, contenido de carbono y de boro se mantienen constantes al cambiar la temperatura, por lo que en la Ecuación 3-20 la única incógnita es la concentración total del ión bicarbonato (q). Al pasar Ct del lado derecho de la Ecuación 3-20 se tiene la función f(q) = 0, cuyo valor de q que satisfaga la función, será la concentración total del ión bicarbonato correspondiente a una temperatura del medio dada. Por medio del método iterativo de *Newton-Raphson* se determina el valor de q a partir de un valor inicial q_o . El nuevo valor de q en cada iteración se estima por medio de:

$$q = q_o - \frac{f(q_o)}{f'(q_o)}$$
 (3-23)

en donde $f(q_o)$ y $f'(q_o)$ son la función f y la derivada de f, respectivamente, evaluadas en q_o .

En la Tabla 3.6 se muestra la relación de concentraciones entre las especies involucradas en los sistemas de bióxido de carbono y boro así como el valor de pH_{TOT} ([H⁺] + [HSO₄]) del aqua de mar, a diferentes valores de temperatura y al considerar un contenido de sales de 35‰. Al variar la temperatura, la relación de concentraciones entre el ión carbonato y el ión bicarbonato (principales especies que contienen al carbono) permanece casi constante, no así en el caso de la relación entre el contenido de ácido carbónico y de ión bicarbonato, la cual a 50°C es 27% mayor que la relación entre estas dos especies a 25°C. Con relación a las especies que contienen boro, el cociente de concentraciones entre el ión borato y el ácido bórico cambia hasta un 18% a 0°C con respecto al valor a 25°C. Por otro lado, la variación del valor de pH_{TOT} en el intervalo de temperaturas considerado es menor al 5%, en relación con el valor a 25°C.

agua de mar a diferentes valores de temperatura (salinidad de 35‰).								
Temperatura °C	[CO ₃ ²⁻] / [HCO ₃ -]	[H ₂ CO ₃] / [HCO ₃]	[B(OH)₄] / [H₃BO₃]	pH _{TOT} ^(a)				
50	0.118	0.010	0.207	7.66				
40	0.115	0.009	0.219	7.79				
30	0.112	0.008	0.232	7.92				
25	0.110	0.007	0.239	7.99				
20	0.109	0.007	0.247	8.06				
10	0.105	0.006	0.263	··· 8.21				
5	0.104	0.006	0.273	8.29				
0	0.102	0.006	0.282	8.38				

Relación de concentraciones de conceier de

(a) En base molar (mol/kgsw)

Lo anterior indica que la concentración de las principales especies disueltas en el agua de mar no se ve afectada por un cambio en la temperatura, considerando un valor constante de salinidad. Aun cuando el efecto que tiene considerar una temperatura diferente a 25°C es mayor en el caso de las especies que están en menor concentración, su proporción con respecto a las principales especies siempre es baja. Por lo tanto en el presente análisis se considerará que, dentro del intervalo de temperaturas entre 0°C y 50°C y para un valor constante de salinidad. la proporción entre las especies del agua de mar permanece constante; no así el valor de pH del agua de mar cuyo cambio al modificarse la temperatura del medio sí se tomará en cuenta.

En la Figura 3.2 se observa que al aumentar la temperatura, el valor de pH del agua de mar disminuye. Los valores de pk_{1C} , pk_{2C} y pk_B son inversamente proporcionales a la temperatura, por lo que, al incrementarse la temperatura, las constantes de disociación de los ácidos carbónico y bórico aumentan y como la relación de concentraciones de base a ácido permanece constante, la concentración de iones hidrógeno también aumenta.

cambiar la temperatura (S: salinidad).

De acuerdo con lo que indican Silvestre y Pitzer [50], el efecto de la temperatura en los valores de los parámetros de interacción β^0_{MX} , β^1_{MX} , β^2_{MX} y C^{ϕ}_{MX} , que se utilizan en el modelo de Pitzer para el cálculo de los coeficientes de actividad de los iones libres en el agua de mar, es poco apreciable, ya que las derivadas de dichos parámetros con respecto a la temperatura son pequeñas; por lo que un cambio de hasta 20°C no tiene repercusión en el valor de los parámetros de interacción. Según Pitzer, el coeficiente A_{ϕ} de la teoría electrostática de Debye-Hückel varía ligeramente con la temperatura. En la Figura 3.3 se muestra el efecto de la temperatura en el valor de $In\gamma'_{EL}$, al considerar los

valores de A_{ϕ} que informa Pitzer [51] entre 0°C y 50°C, y una fuerza iónica de 0.678 mol/kg_{H20} correspondiente a una salinidad de 35‰.

Figura 3.3.- Efecto de la temperatura en el término $ln\gamma''_{EL}$ de Debye-Hückel para el cálculo de coeficientes de actividad.

Para un valor de fuerza iónica dado, al aumentar la temperatura del medio, la actividad de los iones libres en solución disminuye ligeramente en el intervalo de temperaturas considerado; el valor de $ln\gamma'_{EL}$ disminuye alrededor de un 5% a la temperatura de 50°C con respecto al valor a 25°C, lo que equivale a menos de 3% en el valor de γ'_{EL} . Por lo tanto no se considera en el presente estudio el efecto de la temperatura en el valor de los coeficientes de actividad de los iones libres presentes en el agua de mar.

El coeficiente de actividad del ácido bórico, especie de referencia del elemento boro, se determina a partir de las constantes de equilibrio K_B y aparente k_B de la reacción de ionización. El efecto de la temperatura en el valor de la constante aparente de ionización se obtiene a partir de la Ecuación 2-17 y en el caso de la constante de equilibrio termodinámico se sabe que ésta es igual a:

$$\ln K = -\frac{\Delta G_r^o}{RT} \tag{3-24}$$

Al combinar las ecuaciones 3-9 y 3-24, se obtiene la expresión 3-25 que corrige el valor de K_B cuando la temperatura del medio es diferente a 25°C, sin considerar el cambio en la capacidad calorífica de la reacción.

$$\ln K = \ln K_{T_n} + \frac{\Delta H_{rT_n}^o}{RT_n} \left(1 - \frac{T_n}{T}\right)$$
(3-25)

 K_{Tn} es la constante de equilibrio a 25°C en base molal, y $\Delta H_r^{\circ}_{Tn}$ el calor normal estándar de la reacción de ionización del ácido bórico. El valor de $\Delta H_r^{\circ}_{Tn}$ es de 14.12 kJ/gmol, calculado a partir de la diferencia entre los calores de formación de los productos y los reactivos de la reacción de ionización del ácido bórico. Al aumentar la temperatura en la que se lleva a cabo la reacción, la constante de equilibrio aumenta ya que la reacción en este caso es endotérmica. Por ejemplo, el valor de pK_B a 40°C es igual a 9.118, 1.3% menor que el valor de pK_B de 9.237 a 25°C.

Respecto a la concentración de las especies de la corteza terrestre se considera que ésta no cambia con la temperatura del medio. 3.1.3.- Efecto en el valor de exergia química estándar de los elementos al cambiar la temperatura del medio entre 0 y 50°C.

En la Tabla 3.7 se muestran los valores de exergia química estándar de los elementos cuando la temperatura del medio es de 0°C, 25°C y 50°C, así como la desviación porcentual del valor de exergia química con respecto al valor a 25°C. Los resultados completos de la determinación de exergia química estándar de los elementos a 0 y 50°C que arroja el programa EXQCOMP se presentan en el Apéndice A.4.

and the second provide the second provide the second second second second second second second second second s

 $T = 0^{\circ}C$ $T = 25^{\circ}C$ T = 50°C Desviación^(a) Desviación^(a) Especie de $Ex_{g}^{\circ}_{el}$ $Ex_{g_{el}}$ $Ex_{g}^{\circ}_{el}$ referencia kJ/gmol kJ/gmol kJ/gmol % Elemento % Atmósfera Ar (g) -8.7 11.64 12.80 9.9 Ar 10.63 C (s) 410.27 411:67 0.3 CO_2 408.86 -0.3 He 27.73 -8.5 30.31 33.03 9.0 He (a) Kr (g) Kr 31.38 -8.5 34.30 37.36 8.9 0.67 0.91 35.3 -14.5 N_2 0.57 N_{2 (g)} -8.5 29.59 9.0 Ne (g) Ne 24.82 27.14 O_2 3.55 -9.4 3.92 4.43 13.0 $O_{2(g)}$ Xe (g) Xe 36.85 -8.5 40.27 43.83 8.8 $H_{2(g)}$ H_2O 240.41 1.8 236.12 231.88 -1.8 1.0 263.90 261.37 $D_{2(g)}$ 266.48 -1.0 D_2O Hidrosfera HAsO₄² As (s) 495.03 0.5 492.58 490.48 -0.4 B (s) B(OH)₃ 629.72 628.07 626.14 -0.3 0.3 Br Br_{2 ()} 92.63 -8.3 101.00 110.01 8.9 Ci_{2 (g)} -2.1 CĽ 121.05 123.67 126.94 2.6 Cs⁺ -0.7 404.60 407.25 Cs (s) 401.62 0.7 103 177.95 1.3 175.73 173.74 -1.1 12 (s) K K (s) 367.15 0.1 366.67 365.86 -0.2 Li[†] Li (s) 393.30 0.1 392.73 391.83 -0.2 Mo (s) MoO₄²⁻ 733.47-0.3 731.32 729.55 -0.2 Na[†] Na (s) 338.71 0.6 336.67 334.30 -0.7 HPO42 P (s) 865.15 0.5 861.26 857.72 -0.4 Rb¹ 387.05 388.69 Rb (s) -0.4 390.02 0.3 SO42-S (s) 614.28 609.33 0.8 604.75 -0.8 SeO42-Se (s) 348.41 0.3 347.52 346.99 -0.2 W (s) WO₄² 828.45 832.31 0.5 824.96 -0.4 Litosfera 99.33 Ag (s) AgCl 97.78 -1.6 100.55 1.2 AI (s) Al₂SiO₅ 799.35 0.5 795.75 792.04 -0.5 Au (s) Au 46.37 -8.4 50.62 54.86 8.4 Ba (s) BaSO₄ 778.04 775.41 0.3 772.13 -0.4 Be (s) Be₂SiO₄ 605.58 0.2 604.28 602.91 -0.2 Bi (s) 272.55 271.20 Bi₂O₃ 0.5 269.74 -0.5 Ca (s) CaCO₃ 736.29 1.0 729.14 721.79 -1.0 Cd (s) CdCO₃ 303.40 1.7 298.42 293.23 -1.7 Ce (s) CeO₂ 1056.99 0.2 1054.74 1052.36 -0.2 C0 (s) CoFe₂O₄ 313.62 0.1 313.42 313.15 -0.1 Cr (s) K₂Cr₂O₇ 590.66 584.36 1.1 578.15 -1.1 Cu (s) CuCO₃ 4.5 138.51 132.60 -4.6 126.47 Dy (s) Dy(OH)₃ 977.75 0.2 975.97 973.91 -0.2 Er (s) Er(OH)3 974.58 0.2 972.81 970.76 -0.2 Eu (s) Eu(OH)₃ 1005.42 0.2 1003.81 1001.92 -0.2 CaF₂ • 3Ca₃(PO₄)₂ F_{2 (g)} 477.03 -5.7 505.76 532.83 5.4

Tabla 3.7.- Efecto en el valor de Ex_q° de los elementos al tener el medio una temperatura entre 0 y 50°C.

(a) Con respecto al valor de $Ex_q^{\circ}_{el}$ a 25°C.

	·	$T = 0^{\circ}C$		T = 25°C	T = 5	$T = 50^{\circ}C$	
	Especie de	$Ex_q^{\circ}_{el}$	Desviación ^(a)	$Ex_q^{\circ}_{el}$	$Ex_q^{\circ}_{el}$	Desviación ^(a)	
Elemento	referencia	kJ/gmol	%	kJ/gmol	kJ/gmol	%	
Fe _(s)	Fe ₂ O ₃	377.54	0.9	374.35	371.05	-0.9	
Ga _(s)	Ga ₂ O ₃	517.51	0.5	514.98	512.35	-0.5	
Gd _(s)	Gd(OH) ₃	970.90	0.2	968.99	966.80	-0.2	
Ge (s)	GeO ₂	559.54	0.3	557.66	555.64	-0.4	
Hf _(s)	HfO ₂	1065.14	0.2	1063.08	1060.88	-0.2	
Hg ()	HgCl ₂	109.93	1.9	107.92	105.25	-2.5	
Ho _(s)	Ho(OH)3	980.33	0.2	978.74	976.87	-0.2	
In _(s)	In ₂ O ₃	438.81	0.4	436.85	434.79	-0.5	
lr _(s)	IrO ₂	246.27	-0.3	247.00	247.60	0.2	
La _(s)	La(OH) ₃	996.96	0.2	994.66	992.08	-0.3	
Lu (s)	Lu(OH) ₃	947.19	0.1	945.79	944.12	-0.2	
Mg _(s)	Mg ₃ Si ₄ O ₁₀ (OH) ₂	630.03	0.5	626.93	623.71	-0.5	
Mn (s)	MnO ₂	490,49	0.6	487.75	484.87	-0.6	
Nb (s)	Nb ₂ O ₃	903,96	0.5	899.74	895.41	-0.5	
Nd (s)	Nd(OH) ₃	972.39	0.2	970.13	967.58	-0.3	
Ni (s)	NIO	242.37	-0.1	242.59	242.75	0.1	
OS (s)	OsO4	370.64	0.6	368.43	365 94	-0.7	
Pb (s)	PbCO ₃	253 99	1.9	249 20	244 19	-2.0	
Pd (s)	PdO	136 58	-16	138 73	140 82	1.5	
Pr (s)	Pr(OH) ₂	965.89	0.2	963.87	961 57	-0.2	
Pt (a)	PtO ₂	140 83	-0.2	141 16	141 35	0.1	
Pu	PuO ₂	1095 72	-0.4	1100.05	1104 25	0.4	
	RaSO₄	822 81	-0.2	824 22	824 99	0.1	
Re (s)	Re ₂ O ₇	565.08	. 10	559 57	553 82	-1.0	
Rh (s)	Rh ₂ O ₂	180.69	0.5	179 73	178.66	-0.6	
Ru (a)	RuO	317 72	-0.3	318 63	319 41	0.0	
Sb (a)	Sh ₂ O _∈	442 20	0.0	438 18	433 99	_1.0	
SC (s)	SC ₂ O ₂	927 48	0.0	925 25	922 92	-1.0	
Si (a)	SiO	859 75	0.6	855.01	850 13	-0.5	
Sm (s)	Sm(OH)	995.63	0.0	-903.69	001 /6	-0.2	
Sn (s)	SnO ₂	554 30	04	551 84	549 24	-0.2	
Sr (s)	SrCO ₂	756 33	0.4	749.83	7/3 12	-0.9	
Ta (s)		978.26	0.0	974.00	060 75	-0.9	
Tb _(c)		1000.03	0.4	974.03	909.75	-0.4	
Te _(s)	TeO ₂	328 77	-0.2	320.47	320.03	-0.2 :	
Th _(a)	ThO ₂	1204 72	0.2	1202 66	1200 46	0.1	
Ti (s)		010 30	0.2	007.20	002 88	-0.2	
		100.66	0.4 2.4	104.02	903.00	-0.4	
Tm (s)		199.00	2.4	154.52	190,03	-2.5	
(s) [] (s)		1200.02	0.1	901./0 1106.60	950,11 1104 04	-0.2 :	
		1200.90 706 06	0.4 0.6	1190.00	7191.91	-0.4	
¥.(s) ▼		123.03	0.0	121.21	110.51	-0.7	
' (s) Vh		907.11	U.2	903.57	903.076	-0.2	
TD (s)		940.00	0.2	944.31	942.26	-0.2	
∠ll (s) 7r		351.03	1.8	344./1	338.18	-1.9	
<u>د</u> (s)	215104	1086.35	0.3	1082.97	1079.46	-0.3	

Tabla 3.7 Efecto en el valo	r de Ex_q^{o} de	los elementos	s al tener el	medio una
temperatur	a entre 0 v 5	50°C (continua	ción).	

(a) Con respecto al valor de $Ex_{q^{\circ}el}$ a 25°C.

.

.....

Efecto de las Condiciones Ambientales en la Exergia Química de Elementos Capítulo III Página 109

La concentración de las especies contenidas en el aire atmosférico se modifica sustancialmente al cambiar la temperatura del medio, por lo que el valor de exergia química de un elemento presente en el aire se ve afectado principalmente por el cambio de concentración de la especie de referencia más que por la diferencia en el valor de temperatura y en el valor de ΔG_f° de la especie de referencia (en el caso del CO₂, H₂O y D₂O), aumentando la exergia química del elemento si la concentración de la especie de referencia del elemento si la concentración de la especie disminuye, y viceversa.

Al aumentar la temperatura e incrementarse la concentración del H₂O y D₂O en la atmósfera, a presión atmosférica y humedad relativa constante, la exergia química de estas especies disminuye (ver Figura 3.4), y por lo tanto también la exergia química estándar del H₂ y D₂. Por ejemplo, a 50°C la exergia química estándar del agua y del óxido de deuterio se reduce en 30.3% y 3.4%, respectivamente, con respecto al valor a 25°C, mientras que la exergia química estándar de los elementos hidrógeno y deuterio a 50°C disminuye en menos del 2% con respecto al valor a 25°C.

Figura 3.4.- Desviación porcentual del valor de exergia química estándar de las especies de la atmósfera al cambiar la tempertura de medio.

Por otra parte, al aumentar la presión parcial del agua y disminuir la concentración del resto de las especies presentes en el aire, aumenta la exergia química estándar de

- - -

dichas especies; cuando la temperatura es de 50°C el incremento en el valor de exergia química estándar con respecto a la temperatura a condiciones normales es de 35.3% en el caso del nitrógeno, de 13% en el caso del oxígeno, de 10% en el caso del argón, como se muestra en la Figura 3.4, y de alrededor de 9% en el caso del resto de las especies que se encuentran en menor concentración en el aire. Aunque la exergia química estándar del bióxido de carbono aumenta en 9.3% a 50°C, con respecto al valor a 25°C, la exergia química del elemento carbono sólo aumenta ligeramente (0.3%).

En el caso de los elementos presentes en el agua de mar y en la corteza terrestre, en donde no se considera cambio de concentración de las especies por cambio de temperatura, en general, al aumentar la temperatura disminuye su valor de exergia química estándar. Lo cual es razonable ya que al aumentar la temperatura de la reacción en que se convierte al elemento a su especie de referencia y disminuir su espontaneidad (ver Tabla 3.4), se requiere un mayor trabajo de los alrededores para llevar a cabo la reacción y por consiguiente disminuye la exergia reaccional o trabajo máximo útil que se puede obtener de dicha reacción.

En el caso de los elementos Br₂, Cl₂, Cs, Rb, Ag, Au, F₂, Ir, Ni, Pd, Pt, Pu, Ra, Ru, y Te, al aumentar la temperatura sus valores de exergia química se incrementan. Con relación al cesio y al rubidio lo anterior se explica ya que al aumentar la temperatura se incrementa también el cambio de energía libre de Gibbs de la reacción de referencia.

Sin embargo, el comportamiento del valor de exergia química estándar de los elementos al variar la temperatura no se debe relacionar sólo con la tendencia y con la magnitud del cambio del valor de ΔG_f° de la reacción de formación de la especie de referencia ya que en los casos del Br₂, Cl₂, K, Li, Na, Ag, F₂, Ir, Ni, Pd, Pt, Pu, Ra, Ru, y Te, al modificarse la temperatura el cambio en el valor de exergia química estándar no tiene la misma tendencia que el cambio en el valor de ΔG_f° de la especie de referencia. Entonces, el cambio en el valor de exergia química estándar de los elementos del agua de mar y de la corteza terrestre al variar la temperatura también va a depender del

cambio en los valores de Ex_q° de la especie de referencia y de los otros elementos que estén contenidos en la especie.

Ahora bien, el cambio en el valor de exergia química de las especies de referencia depende no sólo del cambio en la temperatura ambiente, sino también de la magnitud de la concentración de la especie en el medio, aun cuando dicha concentración no se altere al variar la temperatura. Por ejemplo, al comparar el comportamiento del valor de exergia química con la temperatura de los elementos radio y bario, los cuales tienen como especies de referencia sustancias con estructura química similar (RaSO₄ y BaSO₄, respectivamente), se observa que al aumentar la temperatura, la exergia química del Ra aumenta mientras que la del Ba disminuye, aun cuando el cambio en el valor de ΔG_f° de sus especies de referencia sea el mismo. Lo anterior se debe a que el cambio en el valor de exergia química del sulfato de radio es mucho mayor que el cambio en el valor de exergia química del sulfato de bario para un mismo incremento de temperatura, lo cual se explica ya que la fracción molar del RaSO₄ es aproximadamente 10⁸ veces menor que la fracción molar del BaSO₄ (ver Tabla 3.8).

			T =2	25°C	T={	50°C	
Elemento	Especie de referencia		Ex _q ° _{el} kJ/gmol	Ex _q °; kJ/gmol	Ex _q ° _{el} kJ/gmol	Ex _q ° _i kJ/gmol	Cambio en Ex _q °i kJ/gmol
Ra _(s)	RaSO ₄	3.0e-14	824.22	77.2	824.99	83.7	6.5
Ba (s)	BaSO₄	4.2e-6	775.41	30.7	772.13	33.3	2.6

Tabla 3.8.- Comparación del cambio en el valor de exergia química por un cambiode temperatura, de dos especies de estructura química similarpero con fracción molar muy diferente.

Vale la pena recordar que el término correspondiente a la exergia química de las especies es el producto de la temperatura por el logaritmo natural de la concentración de la especie, por lo que, por cada orden de magnitud que sea menor la fracción molar de la especie, el resultado de multiplicar el logaritmo natural de la concentración de la especie por la temperatura es 9% menor. Por lo que, mientras menor es la concentración de una especie en el medio, mayor es el efecto por un cambio de

temperatura en el valor de exergia química de la especie de referencia y por consiguiente en el valor de exergia química del elemento.

Los elementos contenidos en el agua de mar y en la corteza terrestre que presentan una mayor desviación en su valor de exergia química estándar a 0 y 50°C con respecto al valor a condiciones normales de temperatura del medio son el bromo (8.9%), el oro (8.4%), el flúor (5.7%), el cobre (4.6%), el cloro (2.6%), el mercurio (2.5%), el talio (2.5%) y el plomo (2%). En el caso del oro, cuya especie de referencia es el oro sólido, se puede observar que la variación porcentual en el valor de exergia química estándar es resultado sólo de la diferencia de temperatura, ya que su concentración permanece constante.

3.1.4.- Efecto en el valor de exergia química estándar de los elementos al variar la temperatura del medio entre 0 y -40°C.

Cuando se consideran temperaturas del medio por debajo de los cero grados centígrados se presenta un problema en el cálculo de exergia química estándar de los elementos ya que el agua de mar se congela a -2°C y por consiguiente las especies de referencia disueltas en el agua de mar ya no existen como tales. Lo anterior no tiene efecto en el caso de los elementos presentes en el aire atmosférico ya que la determinación de su exergia química estándar no depende de la exergia química de los elementos contenidos en la hidrosfera, sin embargo, la exergia química de algunos de los elementos presentes en el acergia química de algunos de los elementos presentes en la corteza terrestre (Ag, Ba, Cr, F₂, Hg y Ra) depende del valor de exergia del cloro, potasio, fósforo y azufre, elementos presentes en el agua de mar.

La información acerca de la composición del agua de mar congelada es casi nula. Millero [52] indica que el agua de mar congelada contiene una relación mayor de iones SO₄²⁻ a iones Cl⁻ con respecto al agua de mar sin congelar, ya que se incorporan iones sulfato al hielo. También la relación de calcio a cloro cambia debido a la precipitación de carbonato de calcio en el mar congelado. El suponer una composición de agua de mar congelada resultaría muy complicado, por lo que, para determinar adecuadamente la exergia química estándar de los elementos presenten en la hidrosfera y en la litosfera cuando la temperatura del medio es menor que el punto de fusión del agua de mar, se propone suponer los siguientes escenarios:

<u>Escenario 1,-</u> La determinación de la exergia química de los elementos contenidos en el agua de mar y en la corteza terrestre se lleva a cabo a la misma temperatura a la que se encuentra el aire atmosférico, considerando, que si la temperatura es menor a -2°C, el agua de mar no se congela y la proporción entre las especies disueltas permanece constante.

<u>Escenario 2.-</u> La exergía química estándar de los elementos presentes en la hidrosfera y en la litosfera se calcula a condiciones normales de temperatura (25°C) cuando la temperatura del aire atmosférico sea inferior a -2°C.

<u>Escenario 3.-</u> Si la temperatura de la atmósfera es menor a -2°C, la exergia química de los elementos contenidos en el agua de mar se determina a 0°C y la de los elementos de la corteza terrestre a la misma temperatura a la que se encuentra el aire.

<u>Escenario 4.-</u> Tanto la exergia química de los elementos contenidos en el agua de mar como los que están en la corteza terrestre se calculan a 0°C, cuando la temperatura del aire atmosférico sea menor a -2°C.

En la Tabla 3.9 se presentan los valores de exergia química estándar de los elementos, que se obtienen cuando la temperatura del aire atmosférico es igual a -40°C y al considerar cada uno de los escenarios antes descritos. En la misma tabla se presenta la desviación porcentual del valor de exergia química con respecto al valor a 25°C que se obtiene en cada uno de los escenarios. Con el fin de corroborar que el valor de exergia química estándar de cada elemento conserve su tendencia por debajo de los 25°C, se presenta la desviación porcentual del valor de exergia química cuando la temperatura del medio es igual a 0°C, esto es, cuando el agua de mar aún está en fase líquida.

		te ele.			Esce	nario			
		1			2)		4 North Ann
	1997 - C.	$T_{Aire} = -$	40°C	$T_{Aire} =$	-40°C	$T_{Aire} =$	-40°C	$T_{Aire} =$	-40°C
		$T_{Agua} = -$	40°C	T _{Agua} =	≈25°C	T _{Agua} =	= 0°C	TAgua	= 0°C
	T = 0°C	$T_{Tierra} = \cdot$	<u>-40°C</u>	T _{Tierra} =	= 25°C	$T_{Tierra} =$	-40°C	T _{Tierra}	<u>= 0°C</u>
1949 - ¹⁹⁴⁹ - ¹⁹⁴⁹	Desv. ^(a)	$Ex_{q}^{\circ}_{el}$	Desv. ^(a)	Ex _q ° _{el}	Desv. ^(a)	$Ex_q^{\circ}_{el}$	Desv. ^(a)	$Ex_q^{\circ}_{el}$	Desv. ^(a)
Elemento	%	kJ/gmol	%	kJ/gmol	<u>%</u>	kJ/gmol	%	kJ/gmol	%
				Atmó	sfera		an an an Ar	A garaga	New York
Ar (g)	-8.7	9.1	-22.2	9.1	-22.2	9.1	-22.2	9.1	-22.2
C _(\$)	-0.3	406.6	-0.9	406.6	-0.9	406.6	-0.9	406.6	-0.9
He _(g)	-8.5	23.7	-21.9	23.7	-21.9	23.7	-21.9	23.7	-21.9
Kr _(g)	-8.5	26.8	-21.9	26.8	-21.9	26.8	-21.9	26.8	-21.9
N _{2 (g)}	-14.5	0.5	-28.1	0.5	-28.1	0.5	-28.1	0.5	-28.1
Ne _(g)	-8.5	21.2	-22.0	21.2	-22.0	21.2	-22.0	21.2	-22.0
O _{2 (g)}	-9.4	3.0	-22.9	3.0	-22.9	3.0	-22.9	3.0	-22.9
Xe _(g)	-8.5	31.4	-21.9	31.4	-21.9	31.4	-21.9	31.4	-21.9
$H_{2(g)}$	1.8	247.6	4.9	247.6	4.9	247.6	4.9	247.6	eat 4,9
D _{2 (g)}	<u> </u>	270.9	2.7	270.9	2.7	270.9	2.7	270.9	2.7
_				Hidro	sfera		an seine		
As _(s)	0.5	499.0	1.3	477.2	-3.1	485.3	-1.5	485.3	-1.5
B (s)	0.3	631.8	0.6	612.2	-2.5	619.7	-1.3	619.7	-1.3
Br _{2 (I)}	-8.3	79.6	-21.2	89.5	-11.4	85.5	-15.4	85.5	-15.4
Cl _{2 (g)}	-2.1	117.2	-5.2	112.2	-9.3	113.9	-7.9	113.9	-7.9
Cs _(s)	-0.7	396.7	-2.0	410.3	1.4	405.2	0.2	405.2	0.2
l _{2 (s)}	1.3	181.7	3.4	167.0	-5.0	172.4	-1.9	172.4	-1.9
K _(s)	0.1	367.7	0.3	372.4	1.6	370.7	1.1	370.7	: 1 . 1
Li _(s)	0.1	394.0	0.3	398.5	1.5	396.9	1.1	396.9	1.1
Мо _(s)	0.3	737.2	0.8	721.7	-1.3	727.3	-0.5	727.3	-0.5
Na _(s)	0.6	341.8	1.5	342.4	1.7	342.3	1.7	342.3	1.7
P _(s)	0.5	871.5	<u>1.2</u>	845.9	-1.8	855.4	-0.7	855.4	-0.7
Rb _(s)	-0.4	384.2	-1.1	394.4	1.5	390.6	0.5	390.6	0.5
S (s)	0.8	622.4	2.2	599.7	-1.6	608.2	-0.2	608.2	-0.2
Se _(s)	0.3	350.1	0.7	337.8	-2.8	342.3	-1.5	342.3	-1.5
W (s)	0.5	838.7	1.2	818.8	-1.2	826.2	-0.3	826.2	-0.3
				Litos	fera				
Ag _(s)	-1.6	95.1	-4.2	105.1	5.8	96.8	-2.6	101.4	2.1
Al _(s)	0.5	805,1	1.2	796.4	0.1	805.1	1.2	799.7	0.5
Au _(s)	-8.4	39.6	-21.8	50.6	0.0	39.6	-21.8	46.4	-8.4
Ba _(s)	0.3	781.9	0.8	786.9	1.5	796.2	2.7	785.2	1.3
Be _(s)	0.2	607.6	0.6	604.7	0.1	607.6	0.6	605,8	0.3
Bi _(s)	0.5	274.7	1.3	271.9	0.2	274.7	1.3	272.9	0.6
Ca _(s)	1.0	747.6	2.5	734.1	0.7	747.6	2.5	7.39.3	1.4
Cd _(s)	1.7	311.3	4.3	303.4	17	311.3	4.3	306.4	2.7
Ce _(s)	0.2	1060.5	0.5	1055.6	0.1	1060.5	0.5	1057.5	0.3
Co _(s)	0.1	313.9	0.2	313.9	0.1	313.9	0.2	313.9	0.1
Cr (s)	1.1	600.8	2.8	580.2	-0.7	597.8	2.3	588.0	0.6
Cu _(s)	4.5	147.9	11.5	137.6	3.8	147.9	11.5	141.5	6.8
Dy _(s)	0.2	980.0	0.4	960.1	-1.6	980.0	0.4	967.8	-0.8
Er _(s)	0.2	976.8	0.4	957.0	-1.6	976.8	0.4	964.6	-0.8

Tabla 3.9.- Efecto en el valor de Ex_q° de los elementos cuando la temperatura es menor a 0°C. Análisis de escenarios.

(a) Desviación porcentual con respecto al valor de $Ex_{g^{\circ}el}$ a 25°C

Tabla 3.9.- Efecto en el valor de Ex_q° de los elementos cuando la temperatura es menor a 0°C. Análisis de escenarios (continuación).

i = k

			(00111	Esc	enario			
		1		2		3	4	1
		$T_{} = -40^{\circ}C_{}$	τ	_ = -40°C	<i>T</i> ., =	-40°C	$T_{} =$	-40°C
and the second second		$T_{Aire} = -40^{\circ}C$	C I Aire	= 25°C	Aire T	-0°C	Aire –	
	$T = 0^{\circ}C$	$T_{Agua} = -40^{\circ}$	$C T_{Tian}$	= 25°C	T _{Tierra} =	-40°C	T Agua T Tiarra	= 0°C
N	· D (a)		(a) E 0	Dagus (a)	<u> </u>	Door (a)		(a)
Flomonto	Desv	$Ex_{q^{\circ}el}$ Des	V. EX _{q°el}	Desv.	Ex _q el	Desv.	Ex _q ° _{el}	Desv.
Elemento			<u>a ku/yinu</u>	1 70	1007 4	70	005.4	
Eu (s) E'a a	-5.7	1007.4 0	4 900.0 (8 550.0	-1.5	526.0	0.4 12	990.4 511.3	-U.O 11
F2 (g)	-0.7	382.6 2	2 375.0	0.0	382.6	22	377.9	10
1°€ (s) Ga ⇔	0.5	521.5 1	3 5157	0.1	521.5	13	517.9	06
Gd	0.2	973.4 0	5 953.1	-1.6	973.4	0.5	960.9	-0.8
Ge	0.3	562.5 0	9 558.6	0.2	562.5	0.9	560.1	0.4
Hf (s)	0.2	1068.4 0	.5 1064.0	0.1	1068.4	0.5	1065.7	0.2
Hg	1.9	112.8 4	.5 119.4	10.6	116.2	7.6	117.1	8.5
Ho	0.2	982.3	.4 962.9	-1.6	982.3	0.4	970.3	-0.9
In _(s)	0.4	441.9 1	.2 437.5	0.2	441.9	1.2	439.2	0.5
Ir _(s)	-0.3	245.0 -0	.8 247.9	0.4	245.0	-0.8	246.8	-0.1
La _(s)	0.2	1000.1 0	.5 978.8	-1.6	1000.1	0.5	987.0	-0.8
Lu _(s)	0.1	948.9 0	.3 929.9	-1.7	948.9	0.3	937.2	-0.9
Mg _(s)	0.5	634.9 1	.3 623.7	-0.5	634.9	1.3	628.0	0.2
Mn _(s)	0.6	494.8 1	4 488.6	0.2	494.8	1.4	491.0	0.7
Nb (s)	0.5	910.7 1	.2 900.4	0.1	910.7	1.2	904.4	0.5
Nd _(s)	0.2	975.4 0	.5 954.3	-1.6	975.4	0.5	962.4	-0.8
NI (s)	-0.1	242.0 -0	1,3 243.0	0.2	242.0	-0.3	242.6	0.0
OS (s)	0.6	3/4.0 1	5 370.2	0.5	374.0	1.5	3/1./	0.9
PD (s)	1.9	201.0 5	U 204.2	2.0	201.0	5.0	257.0	3.1
Pu (s) Dr	-1.0	133.1 -4	5 0/9.0	U.3 _1 C	133.1	-4.1	055.0	-1.4
Dt	-0.2 -0.2	140.2 -0	.3 940.0	-1.0 A A	140.2	-0.7	935.9	-0.5
	-0.2	1088 7 -1	0 1101 0	0.0	1088 7	-0.7	1006.2	_0.3
Ra (s)	-0.2	820.2	15 8357	1.4	834.5	12	830.0	0.5
Re (s)	1.0	573.8 2	5 561.1	0.3	573.8	2.5	566.0	1.1
Rh (s)	0.5	182.2 1	.4 180.4	0.4	182.2	1.4	181 1	0.8
Ru (s)	-0.3	316.2 -0).8 319.5	0.3	316.2	-0.8	318.2	-0.1
Sb (s)	0.9	448.6 2	.4 439.3	0.3	448.6	2.4	442.9	1.1
	0.2	931.0 0	.6 925.9	0.1	931.0	0.6	927.9	0.3
Si _(s)	0.6	867.3 1	.4 855.9	0.1	867.3	1.4	860.3	0.6
Sm (_{s)}	0.2	998.2 0	.5 977.8	-1.6	998.2	0.5	985.7	<u>6. –0.8</u>
Sn _(s)	0.4	558.2 1	.1 552.7	0.2	558.2	1.1	554.8	0.5
Sr _(s)	0.9	766.6 2	.2 754.8	0.7	766.6	2.2	759.4	1.3
Ta _(s)	0.4	984.9 1	.1 975.2	0.1	984.9	1.1	9 78.9	0.5
Τb _(s)	0.2	1001.9 0	.3 982.6	-1.6	1001.9	0.3	990.1	-0.8
Te _(s)	-0.2	327.9 -0).4 330.2	0.3	327.9	-0.4	329.3	0.0
Th _(s)	0.2	1207.9 0	.4 1203.6	0.1	1207.9	0.4	1205.2	0.2
Ti (s)	0.4	915.4 0	.9 908.1	0.1	915.4	0.9	910.9	0.4
TI (s)	Z.4	207.2 6	.3 195.8	0.5	207.2	6.3	200.2	2.7
Tm _(s)	0.1	<u> 954.8 0</u>	.3 935.9		954.8	0.3	943.2	-0.9

(a) Desviación porcentual con respecto al valor de $Ex_q^{\circ}_{el}$ a 25°C

			(continuacion).	· · · · · · · · · · · · · · · · · · ·	
		A STATE STATE	E	scenario	and the second
		1	2		4
		· T _{Aire} = -40°C	$T_{Aire} = -40^{\circ}C$	$T_{Aire} = -40^{\circ}C$	<i>T_{Aire}</i> = -40°C
1. Tu	•	$T_{Agua} = -40^{\circ}C$	$T_{Agua} = 25^{\circ}C$	$T_{Agua} = 0^{\circ}C$	$T_{Agua} = 0^{\circ}C$
	T = 0°C	$T_{Tierra} = -40^{\circ}C$	$T_{Tierra} = 25^{\circ}C$	$T_{Tierra} = -40^{\circ}C$	$T_{Tierra} = 0^{\circ}C$
	Desv. ^(a)	Ex _a ° _{el} Desv	(a) Ex _a ° _{el} Desv. ^(a)	$Ex_{q}^{\circ}_{el} Desv^{(a)}$	Ex _a ° _{el} Desv. ^(a)
Elemento	%	kJ/gmol %	kJ/gmol %	kJ/gmol %	kJ/gmol %
U (s)	0.4	1207.5 0.9	1186.9 -0.8	1207.5 0.9	1194.9 -0.1
V _(s)	0.6	733.1 1.6	722.4 0.2	733.1 1.6	726.5 0.7
Y (s)	0.2	969.0 0.4	949.7 -1.6	969.0 0.4	957.1 - 0.9
Yb _(s)	0.2	948.3 0.4	928.5 -1.7	948.3 0.4	936.1 -0.9
Zn (s)	1.8	361.0 4.7	349.7 1.5	361.0 4.7	354.1 2.7
Zr (s)	0.3	1091.7 0.8	<u> </u>	1091.7 0.8	1086.9 0.4
· · · · · ·					

Tabla 3.9.- Efecto en el valor de Ex_q° de los elementos cuando la temperatura es menor a 0°C. Análisis de escenarios

(a) Desviación porcentual con respecto al valor de $Ex_{a}^{\circ}_{el}$ a 25°C

1. 14

1.1.2

Si la exergia química de un elemento a 0°C es menor que el valor a 25°C, se espera que al disminuir aún más la temperatura la tendencia se conserve, y viceversa. El único escenario que cumple con la anterior suposición para todos los elementos, es el número uno, en el que la exergia química estándar de los elementos del agua de mar y de la corteza terrestre se determina a la misma temperatura a la que se encuentra el aire atmosférico, suponiendo que las especies disueltas en el agua de mar permanecen como tales aún cuando la temperatura está por debajo del punto de fusión del agua de mar. En la Tabla 3.9 se remarcan los casos que no siguen el comportamiento esperado.

El considerar que la composición del agua de mar es la misma aun congelada es erróneo, sin embargo, debido a que la variación del valor de exergia química de los elementos, que dependen de la exergia de elementos de la hidrosfera, a temperaturas menores a 0°C con respecto al valor a 25°C es muy similar en los diferentes escenarios, excepto en el caso del flúor, y debido a que con esta suposición se mantiene el comportamiento del valor de exergia química de todos los elementos, se considera apropiada dicha suposición para determinar la exergia química de los elementos a temperaturas entre 0 y -40° C.

Efecto de las Condiciones Ambientales en la Exergia Química de Elementos Capítulo III Página 117

Los elementos que presentan un mayor cambio en su valor de exergia química a -40°C con respecto al valor a 25°C son principalmente los presentes en el aire atmosférico, ya que su concentración varía considerablemente al disminuir la concentración de vapor de agua en la atmósfera, ejemplo de esto son, el nitrógeno con una desviación de 28%, el oxígeno con una variación de casi 23% y el resto de los elementos que se encuentran como tales en el aire con una desviación de 22%. La variación del valor de exergia química estándar del hidrógeno es casi 5%.

En el caso de los elementos contenidos en el agua de mar, los que presentan una mayor desviación de su valor de exergia química a -40°C con respecto a condiciones normales de temperatura son el bromo (21.2%), el cloro (5.2%), y el yodo (3.4%). Por otro lado, los elementos de la corteza terrestre que tienen un mayor cambio en su valor de exergia química estándar al disminuir la temperatura hasta -40°C son el oro (21.8%), el cobre (11.5%), el flúor (14.8%), el talio (6.3%), el plomo y el zinc (5%) y en menor medida la plata, el cadmio, el paladio y el mercurio con una desviación de alrededor de 4%.

Para el resto de los elementos de la Tabla Periódica la variación del valor de exergia química estándar al disminuir la temperatura del medio es pequeña, menor de 3% a -40°C con respecto al valor a 25°C.

والمحافظ والمتعادية والمتعادية والمتحافظ والمتعادية والمتعار والمعادي والمعاد

En el Apéndice A.4 se muestran los resultados completos del cálculo de exergia química estándar de los elementos cuando la temperatura del medio es igual a -40°C y que se obtienen con el programa EXQCOMP, el cual se basa en el primer escenario para la determinación de exergia química estándar a temperaturas menores a 0°C.

· 사람은 물건 이 것 같아요. 이 문화에 이 가지 않는 것 같아요. 이 가지 않는 것 같아.

Con el propósito de observar el efecto de la temperatura del medio en el cálculo de exergia química estándar de compuestos, a partir de la exergia química de los elementos que los conforman, se determinó con el programa EXQCOMP el valor de Ex_q° del metano y del sulfato ferroso a diferentes valores de temperatura, manteniendo la presión atmosférica igual a la normal, la humedad relativa del aire en 0.7, la

concentración de CO₂ en 345 ppmv y la salinidad del agua de mar en 35‰. Los resultados de este ejercicio se presentan en la Tabla 3.10.

Tabla 3.10 Exergia química estándar del CH ₄ y FeSO ₄ a diferentes valores							
de temperatura del medio							
$(P = 1 \text{ atm}, \phi = 0.7, \text{ concentración de CO}_2 = 345 \text{ ppmv y salinidad} = 35\%).$							

		-40	0	25	50
CH₄	ΔG_f° , kJ/gmol Ex_q° , kJ/gmol	-56.04 845.75	-52.81 836.87	-50.79 831.72	-48.78 826.66
FeSO₄	ΔG_f° , kJ/gmol Ex _a °, kJ/gmol	-841.49 169.62	-827.01 171.92	-817.96 173.57	-808.91 175.76

Al aumentar la temperatura del ambiente y por consiguiente al disminuir la Ex_q° del H₂, disminuye el valor de exergia química del metano al igual que se reduce el cambio en la energía libre de Gibbs de su reacción de formación. Debido a que la Ex_q° del carbono varía muy poco con la temperatura y que el metano está conformado por el doble de moléculas de hidrógeno que de carbono, el cambio en el valor de exergia química del metano depende estrechamente del cambio en el valor de exergia química del hidrógeno.

En el caso del sulfato ferroso, cada molécula de este compuesto contiene dos moléculas de O₂ por una molécula de Fe y una de S, por lo que al aumentar la temperatura e incrementarse considerablemente el valor de Ex_q° del O₂, el valor de Ex_q° del sulfato ferroso aumenta, aunque los valores de $-\Delta G_f^\circ$ y de Ex_q° del hierro y del azufre disminuyan.

En la Figura 3.5 se muestra la desviación porcentual del valor de Ex_q° a condiciones normales del metano y del sulfato ferroso al cambiar la temperatura. El efecto es pequeño, presentándose la mayor variación a --40°C, temperatura en la que el valor de Ex_q° es 1.7% mayor en el caso del CH₄ y 2.3% menor en el caso del FeSO₄, con respecto al valor a 25°C.

Figura 3.5.- Efecto en el valor de exergia química estándar de compuestos al cambiar la temperatura del medio.

Cabe mencionar que si se mantiene fija la presión parcial del agua en el aire y por consiguiente constante la humedad absoluta de éste al cambiar la temperatura, el valor de exergia química estándar del metano y del sulfato ferroso tiene un comportamiento contrario al mostrado en la Figura 3.5. Esto es, al aumentar la temperatura aumenta la exergia química del metano y disminuye la del sulfato ferroso. Los resultados de dicha consideración y que son obtenidos con el programa EXQCOMP se listan en la Tabla 3.11.

valores de temperatura del medio. Presión parcial del agua en el aire constante. (<i>P</i> = 1 atm, concentración de CO ₂ = 345 ppmv y salinidad = 35‰).								
			······································					
•·····		-40	0	25	50			
CH₄	<i>Ex_g°</i> , kJ/gmol	825.30	829.25	831.72	834.18			
FeSO ₄	<i>Ex</i> _g °, kJ/gmol	179.81	175.70	173.57	172.13			

Tabla 3.11.- Exergia química estándar del CH₄ y FeSO₄ a diferentes

El efecto de la temperatura en el valor de exergia química estándar del metano presentado en la Tabla 3.11 coincide con lo determinado por Rivero. Montero y Garfias [53], sin embargo, el mantener la humedad absoluta del aire constante, implica un cambio en su humedad relativa, debido a la variación de la presión de vapor del agua.

3.2.- Efecto del cambio de la presión atmosférica en el valor de exergia química estándar.

En esta sección se analíza el efecto que tiene el cambio de presión atmosférica sobre el valor de exergia química estándar de los elementos. Aun cuando existen lugares en la Tierra con una altura sobre el nivel del mar mayor a 4,000 m, se considerarán sólo aquellas altitudes en donde existe población y en donde es factible que se lleve a cabo algún proceso químico, por lo que, se considera como altitud máxima 3,625 metros (La Paz, Bolivia) con un valor de 0.65 atm de presión atmosférica, y como altitud mínima –244 metros (Jericó, Israel), con una presión atmosférica de 1.03 atm.

经过分的 化基本生活 化过度 化结合物 经收益的 机合金 化合金 化合金化合金

La presión atmosférica guarda la siguiente relación con la altura [54]:

भूत भू द्वारा हे एक अनुसार तेव भूतरा प्रत्ये प्रायंत्र हो बन्दी सामना भूति व भूति हो भूति हो भूति हो भूति हो भ	
where the construction respectively area $\ln \frac{P_2}{P} = -\frac{PM_{aire} gh}{PT}$ and the first sector of the sector	(3-26)
un entre and a second secon	terro septembre
and a new provide the second contract of the second second second second second second second second second sec	io en la criadeixa
obien, networks between the transfer and the weather states and the second states and the second states and the second	e sonstrugt angewoor
$P_2 = P_1 e^{-Bh}$	(3−27))
	e su M

en donde, P_2 es la presión atmosférica a la altura h, P_1 la presión atmosférica al nivel del mar, esto es, 760 mmHg (1 atm), h la altura sobre el nivel del mar, B es una constante que incluye al peso molecular del aire PM_{aire} , la constante de aceleración de la gravedad g, la constante general del gas ideal R y la temperatura T. La constante B tiene un valor de 1.168x10⁻⁴ m⁻¹ a 25°C.

"我们的你们,我们就是你的你们,我们们就是你的你的你?""你们,我们就是你们的你们的你?""你们就是你们的你?""你不是你的你?""你不是你的你?""你不是你不是 "你们我们们你?""你们,你们你们你?""你们你?""你们你?""你们你?""你们你?""你们你?""你们你?""你们你?""你们你?""你们你?""你们你?""

En la Tabla 3.12, se presenta el valor de exergia química estándar de cada elemento a 25°C, al considerar una presión atmosférica de 0.65 y 1.03 atm, y se compara con su valor a la condición normal de presión, es decir, a 1 atm. Los resultados completos de la determinación de exergia química estándar de los elementos al suponer valores de

este state data e estate

化合金 化化合金 建胶的 医外外外的 化乙烯酸 化合物分析 化基金合金

presión atmosférica diferentes a la normal y utilizando el programa EXQCOMP, se presentan en el Apéndice A.5.

۰.

cstandar de los ciementos.								
	$P = 0.65 atm \qquad P = 1 atm$				<u>P = 1.03 atm</u>			
	Especie de	$Ex_q^{\circ}_{el}$	Desviación ^(a)	$Ex_q^{\circ}_{el}$	$Ex_q^{\circ}_{el}$	Desviación ^(a)		
Elemento	referencia	kJ/gmol	%	kJ/gmol	kJ/gmol	<u>%</u>		
		• .	Atmósfera		· .			
Ar _(g)	Ar	11.67	0.26	11.64	11.64	-0.01		
C _(s)	CO ₂	410.27	0.00	410.27	410.27	0.00		
He _(g)	He	30.34	0.10	30.31	30,31	-0.01		
Kr _(g)	Kraa	34.33	0.09	34.30	34.30	0.00		
N _{2 (g)}	N ₂	0.70	4.48	0.67	0.67	-0.15		
Ne (g)	Ne	27.17	0.11	27.14	27.13	-0.01		
O _{2 (g)}	O ₂	3.95	0.76	3.92	3.92	-0.05		
Xe _(g)	Xe	40.30	0.07	40.27	40.27	0.00		
H _{2 (g)}	H ₂ O	235.04	-0.46	236.12	236.20	0.03		
D _{2 (g)}	D ₂ O	262.82	-0.41	263.90	263,98	0.03		
· .			Hidrosfera			1 · ·		
As _(s)	HAsO₄ ²	494.14	0.32	492.58	492.47	-0.02		
B _(s)	B(OH) ₃	629.65	0.25	628.07	627.96	-0.02		
Br _{2 (I)}	Br	102.08	1.07	101.00	100.93	-0.07		
Cl _{2 (g)}	Cľ	124.75	0.88	123.67	123.60	-0.06		
Cs (s)	Cs⁺	404.06	-0.13	404.60	404.64	0.01		
l _{2 (s)}	1O3	176.72	0.57	⁰ 175.73	175.66	-0.04		
K _(s)	K [*]	366.12	-0.15	366.67	366.70	0.01		
Li _(s)	Li⁺	392.18	-0.14	392.73	392.76	0.01		
Mo _(s)	MoO ₄ ²⁻	732.35	0.14	731.32	731.25	-0.01		
Na _(s)	Na	336.13	-0.16	336,67	336.71	0.01		
P (s)	HPO4 ²⁻	862.83	0.18	861.26	861.15	-0.01		
Rb (s)	Rb⁺	388.15	-0.14	388.69	388.73	0.01		
S (s)	SO4	610.36	0.17	609.33	609.26	-0.01		
Se _(s)	SeO42-	348.54	0.29	347.52	347.45	-0.02		
W (s)	WO4 ²⁻	829.48	0.12	828.45	828.38	-0.01		
			Litosfera					
Ag _(s)	AgCl	98.79	-0.54	99.33	99.36	0.04		
Al _(s)	Al ₂ SiO ₅	795.73	0.00	795.75	795.75	0.00		
Au _(s)	Au	50.62	0.00	50.62	50.62	0.00		
Ba _(s)	BaSO ₄	774.33	- 0.14	775.41	775.48	0.01		
Be _(s)	Be ₂ SiO ₄	604.27	0.00	604.28	604.28	0.00		
Bi _(s)	Bi ₂ O ₃	271.17	-0.01	271.20	271.20	0.00		
Ca _(s)	CaCO ₃	729.10	-0.01	729.14	729.15	0.00		
Cd (s)		298.37	-0.02	298.42	298.42	0.00		
Ce (s)	CeO ₂	1054.71	0.00	1054.74	1054.75	0.00		
Co (s)	CoFe ₂ O ₄	313.40	0.00	313.42	313.42	0.00		

1		· · · ·				
				1 N. A.		
Tabla 3.	12 Efecto	de la presión	n atmosférica	en el valo	r de exercia	química
		octánd	ar de les elen	ontoo	..	
		estanua	ar ue los eleir	jenios.		

(a) Con respecto al valor de $Ex_q^{\circ}_{el}$ a 25°C.

_

		P = 0	0.65 atm	P = 1 atm	<i>P</i> = 1	.03 atm
	Especie de	Ex _a ° _{el}	Desviación ^(a)	Ex _g ° _{el}	$Ex_{q}^{\circ}_{el}$	Desviación ^(a)
Elemento	referencia	kJ/gmol	%	kJ/gmol	kJ/gmol	%
Cr (s)	K ₂ Cr ₂ O ₇	584.85	0.08	584.36	584.33	-0.01
Cu (s)	CuCO ₃	132.55	-0.03	132.60	132.60	0.00
Dy (s)	Dy(OH) ₃	977.55	0.16	975.97	975.86	-0.01
Er _(s)	Er(OH) ₃	974.39	0.16	972.81	972.70	-0.01
Eu (s)	Eu(OH) ₃	1005.39	0.16	1003.81	1003.70	-0.01
$F_{2(q)}$	$CaF_2 \cdot 3Ca_3(PO_4)_2$	496.47	-1.84	505.76	506.41	0.13
Fe (s)	Fe ₂ O ₃	374.33	-0.01	374.35	374.35	0.00
Ga (s)	Ga ₂ O ₃	514.96	0.00	514.98	514.98	0.00
Gd (s)	Gd(OH) ₃	970.57	0.16	968.99	968.88	-0.01
Ge (s)	GeO ₂	557.63	-0.01	557.66	557.66	0.00
Hf (s)	HfO ₂	1063.05	0.00	1063.08	1063.08	0.00
Hg 🕧 👘	HgCl ₂	106.83	-1.00	107.92	107.99	0.07
Ho (s)	Ho(OH)3	980.32	0.16	978.74	978.63	-0.01
In _(s)	In ₂ O ₃	436.83	-0.01	436.85	436.85	0.00
Ir (s)	IrO ₂	246 97	-0.01	247.00	247.00	0.00
La _(s)	La(OH) ₃	996.24	0.16	994.66	994.55	-0.01
Lu (s)	Lu(OH) ₃	947.37	0.17	945.79	945.68	-0.01
Mg (s)	Mg ₃ Si ₄ O ₁₀ (OH) ₂	627.27	0.05	626.93	626.90	0.00
Mn _(s)	MnO ₂	487.72	-0.01	487.75	487.75	0.00
Nb (s)	Nb ₂ O ₃	899.72	0.00	899.74	899.74	0.00
Nd (s)	Nd(OH)3	971.70	0.16	970.13	970.02	-0.01
Ni _(s)	NIO	242.58	-0.01	242.59	242.59	0.00
Os _(s)	OsO ₄	368.37	-0.02	368.43	368.43	0.00
Pb (s)	PbCO3	249.15	-0.02	249.20	249.20	0.00
Pd (s)	PdO a single sin	138.72	-0.01	138.73	138.73	0.00
Pr _(s)	Pr(OH) ₃	965.45	0.16	963.87	963.76	-0.01
Pt (s)	PtO ₂	141.13	-0.02	141.16	141.16	0.00
Pu _(s)	PuO ₂	1100.02	0.00	1100.05	1100.06	0.00
Ra _(s)	RaSO ₄	823.14	-0.13	824.22	824.29	0.01
Re _(s)	Re ₂ O ₇	559.52	-0.01	559.57	559.58	0.00
Rh _(s)	Rh ₂ O ₃	179.71	-0.01	179.73	179.73	0.00
Ru _(s)	RuO ₂	318.60	-0.01	318.63	318.64	0.00
Sb _(s)	Sb ₂ O ₅	438.15	-0.01	438.18	438.19	0.00
Sc _(s)	SC ₂ O ₃	925.23	0.00	925.25	925.26	0.00
Si _(s)	SiO ₂	854.98	0.00	855.01	855.01	0.00
Sm _(s) -	Sm(OH) ₃	995.27	0.16	993.69	993.58	-0.01
Sn _(s)	SnO ₂	5 51.81	-0.01	551.84	551.85	0.00
Sr _(s)	SrCO ₃	749.79	-0.01	749.83	749.84	0.00
Та _(s)	Ta ₂ O ₅	974.05	0.00	974.09	974.09	0.00
Tb _(s)	Tb(OH) ₃	1000.05	0.16	998.47	998.36	-0.01
Те _(s)	TeO ₂	329.26	-0.01	329.29	329.29	0.00
Th _(s)	ThO ₂	1202.63	0.00	1202.66	1202.66	0.00
Ti _(s)	TiO ₂	907.17	0.00	907.20	907.20	0.00
Τl _(s)	Tl ₂ O ₄	194.89	-0.02	194.92	194.92	0.00

Tabla 3.12 Efecto de la presión atmosférica en el valor de exe	rgia química
estándar de los elementos (continuación).	

(a) Con respecto al valor de $Ex_{g^{\circ}el}$ a 25°C.

estandar de los elementos (continuación).						
Tm (s) Tm(OH)3	953.36	0.17	951.78	951.67	-0.01	
$U_{(s)}$ $UO_3 \cdot H_2O$	1197.63	0.09	1196.60	1196.53	-0.01	
V (s) V ₂ O ₅	721.23	-0.01	721.27	721.27	0.00	
Y (s) Y(OH) ₃	967.15	0.16	965.57	965.46	-0.01	
Yb _(s) Yb(OH) ₃	945.89	0 17	944.31	944.20	-0.01	
Zn (s) ZnCO ₃	344.67	-0.01	344.71	344.72	0.00	
Zr (s) ZrSiO ₄	1082.94	0.00	1082.97	1082.98	0.00	
(a) Con respecto al valor de Ex_a° , a 25°C.						
		a (,	. :	

Tabla 3.12.- Efecto de la presión atmosférica en el valor de exergia química

En general, el efecto de la presión atmosférica sobre el valor de exergia química de los elementos es muy pequeño, y en algunos casos prácticamente nulo.

3

En el caso de los elementos cuyas especies de referencia están presentes en la atmósfera, al disminuir la presión atmosférica, disminuye la exergia química del hidrógeno y del deuterio y aumenta la exergia química del resto de los elementos contenidos en el aire, presentándose la mayor desviación en el caso del nitrógeno, cuyo valor de exergia aumenta 4.5% a 0.65 atm con respecto a su valor a 1 atm.

AP 16 我的人的人口,这些我们的问题,我们就是这个人的是你们的这些我们的事实。"第二人的问题,我们的问题,我们就能能 Al variar la presión atmosférica, las presiones parciales del agua y del óxido de deuterio en el aire se mantienen constantes ya que sus valores dependen sólo de la temperatura y de la humedad relativa; sin embargo, la presión parcial del resto de las especies presentes en la atmósfera sí se modifica, aun cuando la proporción entre ellas permanece constante. Por consiguiente, al variar la presión parcial de las especies diferentes al H₂O y al D₂O y manteniendo la de éstas últimas constante, la fracción molar de todas las especies cambia al variar la presión total.

En la Tabla 3.13 se muestra la presión parcial y la fracción molar de cada una de las especies contenidas en el aire a los diferentes valores de presión atmosférica considerados en este estudio.

en en el 1996 de la companya de la c ely anno la seconda decontación de l'arte en la taxa entre entre seconda de la seconda entre de la seconda de s 20 5 200 met Alexandra Alexandra da la companya elemente de la contra da la elemente de la contra de la contra

	(T = 25°C, ϕ =0.7, concentración de CO ₂ = 345 ppmv).				
	P = 0	65 atm	P = 1 atm	P = 1.03 atm	
Especie	x_i	P _i , atm	$x_i = P_i$	x_i	P _i , atm
Ar	9.0E-03	5.9E-03	9.1E-03	9.1E-03	9.4E-03
CO_2	3.3E-04	2.2E-04	3.4E-04	3.4E-04	3.5E-04
He	4.8E-06	3.1E-06	4.9E-06	4.9E-06	5.0E-06
Kr	9.7E-07	6.3E-07	9.8E-07	9.8E-07	1.0E-06
N ₂	7.5E-01	4.9E-01	7.6E-01	7.6E-01	7.9E-01
Ne	1.7E-05	1.1E-05	1.8E-05	1.8E-05	1.8E-05
O ₂	2.0E-01	1.3E-01	2.1E-01	2.1E-01	2.1E-01
Xe	8.7E-08	5.7E-08	8.8E-08	8.8E-08	9.1E-08
H ₂ Ò	3.3E-02	2.2E-02	2.2E-02	2.1E-02	2.2E-02
D_2O	5.2E-06	3.4E-06	3.4E-06	3.3E-06	3.4E-06

 Tabla 3.13.- Presión parcial y fracción molar de las especies presentes en el aire a diferentes valores de presión atmosférica

En la Tabla anterior se observa que al disminuir la presión atmosférica de 1 a 0.65 atm, y por lo tanto 35% la presión parcial de las especies diferentes al H₂O y al D₂O, la disminución de su fracción molar en el aire es de tan solo 1.2%, mientras que el aumento en la fracción molar del agua y del óxido de deuterio es de casi 54%. Esto provoca que la exergia química estándar del agua y del óxido de deuterio disminuya alrededor de 11% y 3.4%, respectivamente (ver Figura 3.6), ya que al aumentar la concentración de la especie disminuye su exergia concentracional. Al reducirse la exergia química estándar del agua y del óxido de deuterio también se reduce la exergia química del hidrógeno y del deuterio, aunque en menor medida, esto es, 0.5% a 0.65 atm con respecto al valor cuando se considera la presión atmosférica al nivel del mar.

and the second second second

Al disminuir la fracción molar del resto de las especies presentes en la atmósfera por la reducción de presión atmosférica, aumenta la exergia química de dichas especies, como se muestra en la Figura 3.6. Cuando la presión atmosférica es igual a 0.65 atm, la exergia química del nitrógeno aumenta 4.5% y la del resto de las especies en menos de 1%, con respecto a su valor a 1 atm de presión del aire.

Conviene señalar que la exergia química estándar del carbono no varía al cambiar la presión atmosférica, al igual que ocurre cuando se consideran diferentes valores de humedad relativa del aire. Esto se debe a que, además de que no se altera el valor de ΔG_f° del dióxido de carbono, la diferencia entre el valor de exergia química del CO₂ y O₂

es la misma para cualquier valor de presión atmosférica, ya que el cambio en la condición del medio, como es la humedad relativa y la presión atmosférica, provoca el mismo cambio en la concentración y por consiguiente en el valor de exergia química de dichas especies, a partir de las cuales se determina la exergia química del carbono.

Figura 3.6.- Desviación porcentual del valor de exergia química estándar de las especies del aire al cambiar la presión atmosférica.

En relación con los elementos cuyas especies de referencia están contenidas en la hidrosfera y en la litosfera, el cambio en su valor de exergia química estándar al cambiar la presión atmosférica se debe solamente a la variación del valor de exergia química de los elementos cuyas especies de referencia están presentes en el aire atmosférico y que conforman las especies de referencia del agua de mar y de la corteza terrestre, ya que al modificarse la presión atmosférica no se altera la concentración de estas últimas en el medio. Los elementos que presentan una mayor desviación en su valor de exergia química estándar al disminuir la presión atmosférica hasta 0.65 atm son el flúor (1.8%), el bromo (1.1%) y el mercurio (1%). El valor de exergia química estándar del resto de los elementos cambia en menos de 1% cuando se tiene el límite inferior de presión atmosférica.

Como se observa en la Figura 3.7, al disminuir la presión atmosférica a 0.65 atm, la exergia química estándar del metano disminuye 0.3% con respecto al valor a 1 atm. En este caso el valor de exergia química del metano sólo se ve afectado por el cambio en el valor de exergia química del hidrógeno, ya que los valores de exergia química del carbono y cambio en la energía libre de Gibbs de la reacción de formación del metano no se alteran al variar la presión atmosférica.

Figura 3.7.- Efecto en el valor de exergia química estándar de compuestos al cambiar la presión atmosférica.

En el caso del sulfato ferroso, su valor de exergia química aumenta 0.6% cuando la presión atmosférica es de 0.65 atm con respecto a su valor a la condición normal de presión, la misma tendencia que presentan los valores de Ex_q° del oxígeno y del azufre al disminuir la presión del aire.

CAPÍTULO IV

IMPACTO DE LAS CONDICIONES AMBIENTALES EN EL ANÁLISIS EXÉRGICO DE EQUIPOS Y PROCESOS

Con el propósito de observar el efecto que tienen las condiciones ambientales en el análisis de exergia de un proceso, en el presente capítulo, se estudia la torre Desisobutanizadora de la Sección de Preparación de Carga de una Planta Isomerizadora de Butanos, suponiendo que dicha torre opera en las siguientes cuatro ciudades con diferentes condiciones ambientales:

- i. Minatitlán en México,
- ii. Jericó en Israel,
- iii. Cusco en Perú y
- iv. Québec en Canadá.

La selección del sistema bajo estudio, se debe a que éste incluye a la mayoría de las operaciones unitarias involucradas en un proceso, esto es, separación (columna de destilación), reacción química (combustión), intercambio de calor (calentamiento con vapor y con gases de combustión en un horno y, enfriamiento con agua y aire), y flujo de fluidos (bombas y válvulas).

A continuación se presenta la descripción del sistema a analizar y las bases de la simulación del mismo para la determinación de las propiedades termodinámicas de las corrientes involucradas en el proceso, así como de las condiciones de operación de los equipos y del consumo de los servicios auxiliares necesarios para realizar el análisis de exergia.

Posteriormente, se muestran los resultados de la simulación de la columna Desisobutanizadora y, con base en el método de exergia, se destacarán las posibles fuentes de pérdidas de energía así como el potencial de mejoramiento del proceso. Finalmente, se estudiará el efecto que tiene el suponer condiciones diferentes del medio ambiente de referencia en el cálculo de exergia de las corrientes involucradas en el proceso y en el valor de los parámetros exérgicos en cada uno de los equipos que **人**动的 网络拉马马拉 conforman al proceso bajo estudio.

4.1.- Descripción del proceso a analizar.

El diseño que servirá como base para el análisis de exergía, es la planta "Isomerizadora de n-Butanos" diseñada por IFP North America, Inc. para la Refinería Gral. Lázaro Cárdenas, que se localiza en Minatitlán, Veracruz. La unidad está diseñada para procesar 11,000 BPD estándar de una alimentación rica en n-Butano.

El objetivo de una planta isomerizadora de butanos es la conversión de la parafina a su isómero, el cual tiene el mismo peso molecular pero un arreglo molecular diferente, esto es, una estructura ramificada que le confiere mayor número de octano. La reacción de isomerización se lleva a cabo en una atmósfera de hidrógeno sobre un lecho fijo de · 동생 의 방송 동생은 일을 수요? 것이 문화 방송의 가격 감독 가격 이 것을 catalizador de platino. an early of the court of the trace of the

La función de la columna Desisobutanizadora bajo estudio, dentro de la sección de preparación de carga, es la de recuperar el iso-butano contenido en la corriente rica en n-Butano de alimentación a la planta y en el efluente del reactor de isomerización. Es importante mencionar que el efluente del reactor no contiene hidrógeno ya que previamente, en una columna estabilizadora, se retiran los compuestos ligeros. En la Figura 4.1 se muestra un esquema del sistema a analizar y se indica la clave asignada and the second second second second second a cada equipo así como el número de cada corriente. 计正式编制 法法规保证 法认为人

La corriente de alimentación de butanos a 67°C y 24.3 kg/cm² abs. se calienta hasta una temperatura de 100°C con vapor de baja presión en el cambiador de calor EA-1. A 海滨 教授 网络小花 医肾盂 医前方的 出现 化乙酰胺 医马克氏系统 化基本化化基金

the second second

continuación, la corriente de butanos se alimenta a la guarda de azufre cuyo objetivo es eliminar el azufre que pudiera contener la carga y así proteger al catalizador del reactor.

Cabe señalar que la guarda de azufre no se analiza en el presente estudio, por lo que a dicho proceso se le considera como una caja negra en la que sólo se toman en cuenta las condiciones de operación a la entrada y a la salida del equipo. La presión de la corriente procedente de la guarda de azufre se mantiene por arriba del valor de la presión de vapor (21.0 kg/cm² abs.) del líquido de butanos alimentados para evitar vaporización en la guarda de azufre.

Figura 4.1.- Columna Desisobutanizadora de la Planta Isomerizadora de n-Butanos.

La corriente procedente de la guarda de azufre se vaporiza parcialmente, al reducirle su presión hasta 8.2 kg/cm² abs: en la válvula V-1, y se introduce en el plato 43 de la torre Desisobutanizadora (DA-1).

Por otro lado, el efluente del reactor de isomerización de n-butanos se alimenta en el plato 22 de la columna de destilación a una presión de 8.0 kg/cm² abs. y temperatura de 62°C.

La torre Desisobutanizadora contiene 79 platos. Del plato 61 de la columna se extrae una corriente lateral de n-Butano que se carga al reactor de isomerización; esta corriente consiste de sólo vapor, sin embargo, posteriormente, en el aereoenfriador EC-1 se condensa totalmente, al llevarla a una temperatura de 60°C.

La corriente del domo rica en iso-Butano se condensa en el cambiador de calor EA-2 por medio de agua de enfriamiento. Parte del iso-Butano se envía mediante la bomba GA-1 a la torre como reflujo y el resto a límite de batería como producto a 41.5°C y 11.2 kg/cm² abs.

El producto líquido (pentanos y más pesados) del fondo de la columna se bombea (GA-2) hacia el rehervidor de la columna, el cual es un calentador a fuego directo (H-1) y en donde se vaporiza parcialmente la corriente que regresa al fondo de la columna. Parte de la corriente de pentano se desvía antes de entrar al horno y se entrega como producto a una presión de 16 kg/cm² abs.

4.2.- Simulación de la columna Desisobutanizadora.

Con el fin de determinar los flujos de exergia de todas las corrientes involucradas en el proceso es necesario contar con los balances de materia, entalpia y entropia, por lo cual se realiza la simulación de las condiciones de operación de diseño de la columna

Desisobutanizadora y de los equipos involucrados que se incluyen en el análisis. Para llevar a cabo lo anterior, se utilizó el Simulador de Procesos Aspen Plus, versión 10.0-1. a a state the second

4.2.1.- Bases de la simulación.

4.2.1.1.- Características de las corrientes de alimentación a la columna Desisobutanizadora.

La composición, el flujo y las condiciones de temperatura y presión de la corriente de alimentación de butanos y del efluente del reactor que se considerarán en el presente estudio para realizar la simulación de la columna Desisobutanizadora, se presentan en la Tabla 4.1. n an ann an Aonaichtean ann an tagach ann ann an Aonaichtean an Aonaichtean an Aonaichtean an tarachtean ann an Ann an Aonaichtean ann an tagach ann ann ann ann an Aonaichtean ann an Aonaichtean ann ann ann ann ann ann ann a

Componente	Alimentación de butanos % peso	Efluente del reactor de isomerización % peso
Etano		4.1×10 ⁻⁴
Propano	0.13	0.21
iso-Butano	34.33	50.75
n-Butano	65.10	47.40
neo-Pentano	0.25	0.61
iso-Pentano	0.01	0.93
n-Pentano	0.18	0.10
Total	100.0	100.0
Flujo másico, kg/h	41,997	21,006
Flujo molar, kgmol/h	722.2	360.5
Flujo volumétrico, m ³ /h	82.4	61.7
Temperatura, °C	67	62
Presión, kg/cm ² abs.	24.3	8.0

Conviene señalar que la corriente de alimentación de butanos a la planta está saturada con agua, la cual debe recuperarse en el producto de domo de la columna. Desisobutanizadora de acuerdo con el diseño.

 $(p, N, r)^{1/2}$

.

A REAL AND

4.2.1.2.- Condiciones de operación y especificación de los productos.

Las condiciones de temperatura y presión en que opera la columna Desisobutanizadora según el diseño, son mostradas en la Tabla 4.2.

•	Presión, kg/cm² abs.:		Section and a section of the
	Tanque de reflujo	6.9	
	Domo	7.7	
	Fondo	8.4	and the second second second second
•	Temperatura, °C:		u velo in constanti e gran e tota t
	Tanque de reflujo	41	a second part of the second second second
an an an Arthread	Domo	55	
ere e transformere e	Fondo	104	

La pureza de la corriente de iso-butano producto, según la especificación indicada en el diseño, debe ser de 96% en peso como mínimo y no debe contener más de 3.5% de nbutano. Por otro lado, la cantidad de pentanos en la extracción de n-butano lateral de la torre Desisobutanizadora puede ser de hasta 1% en peso.

En la Tabla 4.3, se muestran las diferencias de presión entre las corrientes de entrada y salida de proceso en el resto de los equipos involucrados en el sistema bajo consideración. Estos cambios de presión son los indicados en el diseño o bien los necesarios para cumplir con la presión de diseño de la columna Desisobutanizadora.

		ΔP , kg/cm ²	
	Cambiadores de calor:		
	EA-1	0.3	
	<u>EA-2</u>	0.8	
all the second	EC-1	0.4	
	Horno:		
 - 117 	H-1	3.1	
	Bombas:		
	GA-1	4.3	1
	GA-2	7.6	
	Válvulas:		
	V-1	15.88	
	V-2	0.16	
	V-3	3.5	
	V-4	4.4	

4.2.1.3.- Condiciones ambientales en cada una de las ciudades en que se analiza la operación del sistema bajo consideración.

Como se mencionó anteriormente, en el presente capítulo se llevará a cabo un análisis de exergia de la columna Desisobutanizadora suponiendo que ésta se encuentra ubicada en cuatro lugares distintos, operando con las mismas condiciones de diseño pero bajo diferentes condiciones ambientales. Para lo anterior, se escogió como caso base la ciudad de Minatitlán, en Veracruz, México, por tener dicha ciudad condiciones ambientales similares a las normales de temperatura, presión, humedad relativa del aire y salinidad del agua de mar ($T_n = 25^{\circ}$ C, $P_n = 1$ atm, $\phi = 0.7$, S = 35 ‰). Con el fin de observar el efecto de un aumento de la temperatura y de la salinidad en el análisis de exergia se seleccionó la ciudad de Jericó en Israel, la cual tiene una temperatura promedio en el verano de 33°C y está situada al norte del Mar Muerto, cuyo contenido de sales es de 41‰.

Por ser una de las ciudades más altas del mundo, se estudia el desempeño del sistema bajo análisis en Cusco, Perú, ciudad que se encuentra a 80 km al sur de Machu Pichu y que por su altitud (3,415 m) tiene una presión atmosférica muy por debajo de la normal (0.67 atm). Se supone que la humedad relativa del aire en el caso de Cusco es de 0.3; esto con el propósito de notar el efecto de un cambio de humedad en el análisis de exergia del proceso.

Finalmente, se selecciona la ciudad de Québec, Canadá, la cual por estar a nivel del mar presenta casi las mismas condiciones ambientales que Minatitlán, sin embargo, durante el invierno la temperatura ambiente desciende a –16°C.

En la Tabla 4.4, se muestran las condiciones ambientales consideradas en cada una de las cuatro ciudades. Es importante señalar que, excepto en el caso de Québec, la temperatura del medio indicada en la Tabla 4.4 corresponde al promedio durante el verano y, la selección del valor de salinidad es de acuerdo a la latitud de cada lugar [10, 46].

	Lugar			
	Minatitlán	Jericó	Cusco	Québec
Temperatura ambiente, °C	25	33 a	21	-16
Presión atmosférica, atm	1	1.03	0.67	1
Humedad relativa	0.75	0.7	0.3	Ò.5
Salinidad, ‰	36	41	566 35 6 Mail 6	32 32 3

Tabla 4.4.- Condiciones ambientales consideradas en las diferentes ciudades.

Es importante señalar que, aun cuando la presión barométrica es diferente en cada una de las diferentes ciudades, se considerará que la presión absoluta de operación en cada punto del sistema bajo estudio es la misma en cualquiera de las cuatro ciudades, modificándose tan sólo la presión manométrica.

and the second second

4.2.1.4.- Servicios auxiliares.

1. Agua de enfriamiento.-

La temperatura del agua de enfriamiento depende de la temperatura y del contenido de humedad del aire. La temperatura de bulbo húmedo es un indicador del contenido de humedad del aire y desde un punto de vista ideal, ésta es la temperatura teórica más baja a la que se puede enfriar el agua en una torre de enfriamiento, en donde se pone en contacto el agua con el aire. Debido a que en una torre de enfriamiento no es posible establecer un contacto total entre toda el agua y el aire fresco, la temperatura del agua a la salida de la torre se acerca a la de bulbo húmedo del aire, pero nunca la iguala. La magnitud del acercamiento de temperaturas entre el agua de enfriamiento y la de bulbo húmedo, depende del diseño de la torre, en la práctica, las torres de enfriamiento rara vez se diseñan para acercamientos menores a 5°F [7], o bien 2.8°C.

Por consiguiente, para conocer la temperatura del agua de enfriamiento a utilizar en el condensador de la columna Desisobutanizadora, es necesario determinar primero la temperatura de bulbo húmedo, la cual va a depender de las condiciones ambientales del lugar.

and the second second

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

La temperatura de bulbo húmedo es la temperatura de equilibrio dinámico obtenida por una superficie de agua cuando la velocidad de transferencia de calor por convección a la superficie, es igual a la velocidad de transferencia de masa (por la evaporación del agua) que se aleja de tal superficie. En el equilibrio y suponiendo que no hay cambio en la temperatura de bulbo seco (temperatura del aire), el balance de calor en la superficie es

$$k_{g}\lambda\left(H_{Bh}-H\right)=h_{c}\left(t-t_{Bh}\right)$$

$$(4-1)$$

En donde, k_g es el coeficiente de transferencia de masa en lb/hft²atm; λ es el calor latente de evaporación del agua en BTU/lb; h_c es el coeficiente de transferencia de calor en BTU/hft²°F; *t* es la temperatura de la mezcla aire-vapor de agua (temperatura de bulbo seco) en °F y; t_{Bh} es la temperatura de bulbo húmedo del aire en °F. La humedad absoluta, *H*, es igual a las libras de vapor de agua contenidas en una libra de aire seco. Si se considera un comportamiento de gas ideal, la humedad absoluta se determina por medio de:

$$H = \frac{PM_{H_{2}O} P_{H_{2}O}}{PM_{aire} \left(P - P_{H_{2}O}\right)}$$
(4-2)

 PM_{H2O} y PM_{aire} son los pesos moleculares del agua y del aire, 18 y 29, respectivamente; P_{H2O} la presión parcial del agua en atm y; P la presión total del aire en atm. Vale la pena recordar que, de acuerdo con la Ecuación 2-3, la presión parcial del agua en el aire se puede obtener a partir de la humedad relativa (ϕ) y de la presión de vapor del agua (P°_{H2O}) evaluada a la temperatura del aire t; es decir,

$$P_{H_2O} = \phi \ P_{H_2O}^o \tag{4-3}$$
Por otra parte, el valor de H_{Bh} , corresponde a la humedad de saturación del aire, punto en el que la presión parcial del agua en el aire a una temperatura dada, se iguala a la presión de vapor del agua a la misma temperatura, la cual será la temperatura de bulbo húmedo. Por lo tanto, H_{Bh} estará dada por la Ecuación 4-4.

$$H_{Bh} = \frac{PM_{H_2O} P_{H_2O}^{o}}{PM_{aire} \left(P - P_{H_2O}^{o}\right)}$$
(4-4)

El valor de presión de vapor del agua de la Ecuación 4-4 se determina a la temperatura de bulbo húmedo.

Al sustituir las Ecuaciones 4-2, 4-3 y 4-4 en 4-1, se obtiene la siguiente expresión:

$$\frac{PM_{H_2O}}{PM_{aire}} \left[\frac{P_{H_2O_{t_{Bh}}}^o}{P - P_{H_2O_{t_{Bh}}}^o} - \frac{\phi P_{H_2O_t}^o}{P - \phi P_{H_2O_t}^o} \right] = \frac{h_c}{k_g \lambda} (t - t_{Bh})$$
(4-5)

De acuerdo con Perry [7], para la mezcla aire-agua, la relación $h_c l k'_g$ es cercana a 0.22. El calor latente de vaporización del agua se estima por medio del método de Watson [48], en el que a partir de un valor de calor latente conocido λ_l a la temperatura t_l , se determina el calor latente de vaporización a cualquier temperatura por medio de la siguiente relación:

$$\frac{\lambda_2}{\lambda_1} = \left(\frac{t_c - t_2}{t_c - t_1}\right)^{0.38} \tag{4-6}$$

Se sabe que la temperatura crítica del agua, t_c , es igual a 374.15°C, o bien 705.14°F, y que a 100°F el calor latente de vaporización del agua es de 1,037.1 BTU/lb (2,411.7 J/g). En este caso la temperatura t_2 corresponde a la de bulbo húmedo.

Debido a que se conoce la presión atmosférica, la humedad relativa del aire y la temperatura del aire en cada una de las ciudades consideradas, la única incógnita en la Ecuación 4-5 es la temperatura de bulbo húmedo, la cual se determina fácilmente a través de un proceso iterativo de prueba y error que comprende los siguientes pasos:

- a) se fija un valor inicial de t_{Bh}
- b) a partir de la expresión de Antoine (Ecuación 2-4) se determina la presión de vapor del agua a *t* y t_{Bh}.
- c) se evalúa el término a la derecha y a la izquierda de la igualdad de la Ecuación 4-5
 y,
- d) si la diferencia entre estos dos términos es menor a 1x10⁻⁴, el valor de t_{Bh} es la solución, sino es así, entonces se fija un nuevo valor de temperatura de bulbo húmedo y se continua con el paso b.

En la Tabla 4.5, se presentan los valores de temperatura de bulbo húmedo y de agua de enfriamiento que se obtienen al considerar las condiciones ambientales de las ciudades de Minatitlán, Jericó y Cusco. Se supone un acercamiento de 5°F (2.8°C) entre la temperatura del agua de enfriamiento y la de bulbo húmedo.

diferentes ciudades bajo estudio.									
		Lugar							
State of the second	Minatitlán	Jericó	Cusco						
Temperatura de bulbo húmedo, °C	21.2	28.2	9.7						
Temperatura del agua de enfriamiento, °C	24.0	31.0	12.5						

 Tabla 4.5.- Temperatura de bulbo húmedo y del agua de enfriamiento en las

 diferentes ciudades bajo estudio.

Entre menor es la humedad del aire, la diferencia entre la temperatura ambiente y la de bulbo húmedo aumenta, lo que permite alcanzar una temperatura menor del agua de enfriamiento; como es el caso de Cusco, en donde se considera una humedad relativa de 0.3 y la temperatura del agua es 8.5°C menor que la ambiente, mientras que en Minatitlán, la humedad relativa es de 0.75 y el agua de enfriamiento es 3.8°C menor que la temperatura ambiente.

1.1

Ahora bien, el agua de enfriamiento se suministra a 5.5 kg/cm² abs. y se considera el mismo incremento de temperatura y caída de presión del agua ($\Delta T = 10.8$ °C y $\Delta P = 0.58$ kg/cm²) a través del condensador EA-2 de la columna de destilación, en cualquiera de las ciudades bajo análisis.

Debido a que a -16°C, temperatura ambiente supuesta en la ciudad de Québec, el agua se encuentra en estado sólido, se considera que el servicio de condensación del producto de domo de la columna Desisobutanizadora se realiza con un aereoenfriador.

2. Aire de enfriamiento.-

Las condiciones de temperatura y presión del aire de enfriamiento corresponden a las condiciones ambientales que prevalecen en cada una de las ciudades.

3. Gas Combustible.-

La presión a la que entran tanto el gas combustible como el aire al quemador del horno H-1 es de 4.5 kg/cm² abs., mientras que la temperatura de entrada corresponde a la del

ambiente.

En la Tabla 4.6, se presenta la composición del gas combustible a utilizar y las reacciones de combustión que se llevan a cabo en el quemador. En la misma tabla, además, se muestra el flujo molar de oxígeno requerido en cada reacción tomando como base un kgmol de gas combustible y considerando que la combustión es completa.

Aun cuando el nitrógeno suele reaccionar con el oxígeno del aire, se supondrá que la cantidad de óxidos de nitrógeno que se forman es despreciable.

Componente	% mol	Reacción de combustión	kgmol de O ₂ requerido por kgmol de gas combustible
Hidrógeno	52.0	$H_{2 (g)} + 1/2O_{2 (g)} \rightarrow H_2O_{(g)}$	0.2600
Metano	25.0	$CH_{4 (g)} + 2O_{2 (g)} \rightarrow CO_{2 (g)} + 2H_2O_{(g)}$	0.5000
Etano	6.2	$C_2H_{6 (g)}$ + 3.5O _{2 (g)} \rightarrow 2CO _{2 (g)} + 3H ₂ O (g)	0.2170
Propano	8.8	$C_3H_8_{(g)}$ + 5O _{2 (g)} \rightarrow 3CO _{2 (g)} + 4H ₂ O _(g)	0.4400
Butano	5.8	$C_4H_{10 (g)} + 6.5O_{2 (g)} \rightarrow 4CO_{2 (g)} + 5H_2O_{(g)}$	0.3770
Etileno	0.1	$\mathrm{C_{2}H_{4~(g)}}$ + 3 $\mathrm{O_{2~(g)}}$ $ ightarrow$ 2 $\mathrm{CO_{2~(g)}}$ + 2 $\mathrm{H_{2}O_{(g)}}$	0.0030
Propileno	1.0	$C_{3}H_{6 (g)}$ + 4.5O _{2 (g)} \rightarrow 3CO _{2 (g)} + 3H ₂ O (g)	0.0450
Ácido sulfhídrico	0.1	$H_2S_{(g)}$ + 1.5O _{2 (g)} \rightarrow SO _{2 (g)} + $H_2O_{(g)}$	0.0015
Nitrógeno	0.2	and a second	
Monóxido de carbono	0.8	$CO_{(g)} + 1/2O_{2(g)} \rightarrow CO_{2(g)}$	0.0040
Total	100.0		1.8475

	fabla 4.6 Com	posición molar del o	gas combustible y flu	io molar requerido de oxígeno.
--	---------------	----------------------	-----------------------	--------------------------------

El consumo de gas combustible se determina a partir de la eficiencia térmica (η_i) en el horno, cuyo valor es igual a la relación entre el calor absorbido por la corriente de proceso (Q_{abs}) y el calor liberado por los gases de combustión (Q_{lib}), es decir,

$$\eta_t = \frac{Q_{abs}}{Q_{lib}} \tag{4-7}$$

El flujo de calor absorbido estará dado por el requerimiento de calentamiento de la corriente de proceso y debido a que las condiciones de operación en el rehervidor de la columna Desisobutanizadora son independientes del lugar geográfico, el calor absorbido siempre será el mismo. Por otro lado, el calor liberado por la reacción de combustión es igual al flujo molar de gas combustible (N_{comb}) por el poder calorífico inferior del combustible (*PCI*):

and the second second

$$Q_{lib} = N_{comb} PCI \tag{4-8}$$

El poder calorífico inferior del combustible es el calor de la reacción de combustión por mol de gas combustible a condiciones de T y P de referencia. Debido a que en el presente trabajo se analiza el efecto de las condiciones ambientales en el valor de exergia y que son éstas las condiciones de referencia, se determinó el poder calorífico del gas combustible para cada una de las condiciones de temperatura y presión de las cuatro ciudades bajo estudio. La determinación del poder calorífico del gas combustible se realizó a partir de la suma de los calores de combustión a las condiciones de T y Pde referencia de cada componente del gas combustible por su fracción mol, esto es,

$$PCI = \sum_{i}^{nc} x_{i} \Delta H_{i}^{o}$$

$$(4-9)$$

the second s

El calor de combustión de cada sustancia que compone al gas combustible se obtuvo al calcular el reactor de combustión con el simulador Aspen Plus, especificándole a éste las reacciones indicadas en la Tabla 4.6 y las condiciones de temperatura y presión de referencia.

All and the second second

网络小鼠 医小鼠科 化二苯基苯基 化乙基乙基 化丁烯二乙基乙基 网络小鼠 网络小鼠 医鼻子 化过度分子 化电子分子

En la Tabla 4.7 se muestra el poder calorífico del gas combustible al considerar la temperatura ambiente y presión atmosférica de cada una de las ciudades en donde se analiza la operación del horno.

			Lu	gar	· · · · · · · · · · · · · · · · · · ·	
		Minatitlán	Jericó	Cusco	Québec	
	Temperatura ambiente, °C	25	33	21	-16	
-	Presión atmosférica, atm	1	1.03	0.67	1	
•	Poder calorífico, kcal/kgmol	-184,534	-184,525	-184,510	-184,603	1
	Temperatura de flama, °C	1,918	1,924	1,915	1,888	1.5.

Tabla 4.7.- Poder calorífico inferior del gas combustible y temperatura de flama, a diferentes condiciones de referencia.

El efecto por el cambio de las condiciones de T y P de referencia en el poder calorífico del gas combustible es casi nulo; sin embargo, se observa que al aumentar la temperatura de referencia el poder calorífico del gas combustible disminuye, lo cual se explica ya que aun cuando algunos reactivos, como por ejemplo el n-butano, tienen una capacidad calorífica mayor que los productos de la combustión, la cantidad de éstos últimos es mayor, por lo que al aumentar la temperatura de la reacción, los productos absorben parte del calor generado. Al tomar en cuenta las condiciones ambientales de Cusco, el poder calorífico disminuye con respecto al valor cuando se consideran las condiciones normales ($T_n = 25^{\circ}$ C y $P_n = 1$ atm) como de referencia, aun cuando la temperatura en Cusco es inferior. Lo anterior se debe a que al ser menor la presión de referencia, se reduce el volumen de los gases que absorben parte del calor liberado en la reacción.

En la Tabla 4.7 se muestra para cada una de las ciudades bajo estudio, la temperatura de flama de los gases de combustión la cual se obtiene al considerar una combustión adiabática. Entre mayor es la temperatura del gas combustible y del aire, mayor es la temperatura de los gases de combustión.

Ahora bien, para conocer el flujo de aire necesario para que se lleve a cabo la combustión se sabe que, de acuerdo con la Tabla 4.6, por cada kgmol de gas combustible se requieren alrededor de 1.85 kgmol de oxígeno. Si se considera un exceso de aire de 15%, la cantidad de oxígeno necesario es de 2.1 kgmol por cada kgmol de gas. Al suponer que el aire esta compuesto por un 21% de oxígeno y el resto de nitrógeno, el flujo molar de aire requerido en el quemador por cada kgmol de gas combustible será de 10.14 kgmol/h.

Una vez conocido el valor de Q_{abs} para las condiciones de operación de la corriente de proceso, el poder calorífico del gas combustible (Tabla 4.7), y estableciendo una eficiencia térmica del horno de 80%, el flujo molar de gas combustible se determina a partir de la Ecuación 4-8.

4. Vapor -

En el cambiador de calor EA-1 se utiliza, como medio de calentamiento, vapor saturado de baja presión, esto es, 4.5 kg/cm² abs., que corresponde a una temperatura de 147.5°C. El vapor de agua se condensa totalmente en el cambiador EA-1 y se reduce su presión 0.04 kg/cm² abs. al pasar a través de dicho equipo.

4.2.1.5.- Modelo de propiedades termodinámicas.

Para el cálculo de las propiedades termodinámicas de cada una de las corrientes involucradas en el sistema se selecciona el método de cálculo de propiedades GRAYSON que proporciona el simulador de procesos Aspen-Plus [55]. Este método utiliza la correlación de Grayson-Streed para el cálculo de coeficientes de fugacidad para el estado de referencia; el modelo de Scratchard-Hildlebrand para determinar los coeficientes de actividad; la ecuación de estado de Redlich-Kwong para calcular las propiedades de la fase vapor; la ecuación de estado de Lee-Kesler para evaluar la entalpia del vapor y del líquido y; el método API para determinar el volumen molar, la viscosidad y la tensión superficial del líquido.

La selección del método de propiedades GRAYSON se debe principalmente a que éste reproduce adecuadamente la separación del agua contenida en la alimentación de butanos en la columna Desisobutanizadora, además de que es el recomendado para sistemas que se encuentran a presiones bajas o moderadas y que contengan hidrocarburos y gases ligeros, características que corresponden al sistema bajo estudio.

Las propiedades del agua se evalúan con las tablas de vapor del National Bureau of Standards (STEAMNBS), incluidas en el conjunto de métodos de cálculo de propiedades del simulador Aspen Plus.

4.2.2.- Validación del modelo de simulación y resultados.

Se compara en la Tabla 4.8 la composición de los productos de la columna Desisobutanizadora, el reflujo de destilado y la vaporización en el rehervidor de dicha columna, las cargas térmicas de los equipos de intercambio de calor y la potencia de las bombas de acuerdo a lo que indica el diseño, con los valores que se obtuvieron al llevar a cabo la simulación del sistema con el simulador de procesos Aspen Plus. Cabe señalar que los resultados de la simulación que se indican en la Tabla 4.8, son independientes de la ciudad en donde esté operando el sistema, ya que las condiciones de operación son las mismas. El balance de materia y energía completo del sistema, se presenta en el Apéndice D.1

Producto Especificación	Diseño	Simulación
• iso-Butano		
Composición en % peso:	· · ·	
– Agua	0.03	5x10 ⁻⁶
- propano	0.41	0.41
– iso-butano ≥ 96.0	97.00	99.06
– n-butano ≤ 3.5	2.56	0.54
Total (% peso)	100	100
Total (kg/h)	24,265	24,241
n-Butano		
Composición en % peso:		· · ·
- iso-butano	4.00	2.73
– n-butano	95.00	96.34
– neo-pentano	0.60	0.60
$-$ iso-pentano $\} \le 1.0$	0.34	0.30
– n-pentano	0.06	0.03
Total (% peso)	100	100
Total (kg/h)	17,191	17,188
Pentano y más pesados		
Composición en % peso:		
– iso-butano	0.04	0.00
– n-butano	10.25	0.09
- neo-pentano	1.13	0.02
– iso-pentano	42.17	47.07
- n-pentano	46.41	52.81
Total (% peso)	100	100
Total (kg/h)	158.0	162.4
Reflujo de destilado en la torre DA-1:	11	11.5
Reflujo de fondo en la torre DA-1:	4,549	4,738
Vaporización en el rehervidor de la torre DA-1:	0.5	0.5
Carga térmica (Mkcal/h) en los equipos de	·	
intercambio de calor:		
• EA-1	0.99	0.96
• EA-2	22.92	23.69
• EC-1	3.07	3.08
• H-1	24.50	24.85
Potencia (kW) en las bombas:		
• GA-1	108	115.32
• GA-2	395	386.72

Tabla 4.8.- Comparación de resultados entre lo que indica el diseñoy la simulación de la columna Desisobutanizadora.

En la Tabla 4.8 se observa que, en general, el modelo de simulación reproduce adecuadamente el balance de materia y energía que indica el diseño, sin embargo, en la simulación se obtiene una mejor separación de los productos.

La mejor separación de los productos se debe principalmente a un mayor agotamiento del producto de fondo, ya que la temperatura del fondo de la torre Desisobutanizadora (111.4°C) obtenida en la simulación es mayor a lo que señala el diseño (104°C), aun cuando se obtiene el mismo dato para la temperatura en el domo (55°C) y de vaporización en el rehervidor. Al ser mayor la temperatura del fondo de la torre, para la misma presión de operación, la fase vapor de la corriente que regresa a la columna, es una fase más rica en compuestos intermedios y pesados, lo que ayuda a un mejor agotamiento de la corriente producto del fondo de la torre y a una mejor separación de los productos.

Por otro lado, en la simulación el reflujo tanto de la corriente de destilado como del producto de fondo a la columna Desisobutanizadora es 4% mayor con respecto al diseño, lo cual aumenta la rectificación y el agotamiento en la torre, y por consiguiente una mejor separación de componentes. El aumento de flujo en la columna provoca que aumente la carga térmica en el condensador y en el rehervidor, sin embargo, la relación entre el calor que se obtiene en el condensador y el calor que es necesario agregar al sistema en el rehervidor es similar a la que indica el diseño ($Q_{EA-2}/Q_{H-1} = 0.94$).

Es muy probable que el diseño se haya calculado con otro modelo de propiedades termodinámicas diferente al utilizado en el presente trabajo, ya que para una misma presión de operación en el fondo de la torre Desisobutanizadora, en la simulación se obtiene una temperatura 7.4°C mayor que la que indica el diseño.

En la Tabla 4.9 se muestran los consumos de agua y aire de enfriamiento, de gas combustible y aire para la reacción de combustión en el horno y de vapor de calentamiento necesarios en la operación del sistema bajo estudio, en cada una de las ciudades consideradas.

	Lugar						
	Minatitlán	Jericó	Cusco	Québec			
Agua de enfriamiento (kg/h) en EA-2:	2,203,000	2,203,000	2,203,000				
Aire de enfriamiento (kg/h) en:							
- EC-1	622,683	622,683	622,683	622,683			
– EA-2				5,000,000			
Gas combustible (kgmol/h) en H-1:	168.36	168.37	168.38	168.29			
Aire (kgmol/h) para la combustión en H-1:	1,703.33	1,703.40	1,703.54	1,702.69			
Vapor de calentamiento (kg/h) en EA-1:	1,900	1,900	1,900	1,900			
				· · · · · · · · · · · · · · · · · · ·			

Tabla 4.9.- Consumo de servicios auxiliares^(a) en la torre Desisobutanizadora.

(a) La potencia eléctrica no se incluye en esta tabla.

Cabe señalar que el cambio de temperatura de la corriente que da el servicio en cada equipo de intercambio de calor se mantiene constante sin importar el lugar en donde esté operando la planta, por lo que, aunado a que la carga de transferencia de calor de cada equipo es la misma, el flujo de agua y aire de enfriamiento, así como de vapor, no se modifica al cambiar las condiciones ambientales del lugar. Sin embargo, las propiedades termodinámicas (entalpia y entropia) del agua y del aire de enfriamiento si cambian al modificarse las condiciones ambientales.

Mientras menor es la temperatura ambiente y por consiguiente mayor el poder calorífico del gas combustible, menor es el consumo de éste, como es el caso de la ciudad de Québec.

Las propiedades termodinámicas de las corrientes que dan el servicio ya sea de calentamiento o de enfriamiento en cada uno de los equipos de intercambio de calor, se presentan en el Apéndice D.1 para cada una de las ciudades consideradas.

(b) the first difference of second second second states in the second s second se second sec second sec

4.3.- Análisis de Exergia de la columna Desisobutanizadora.

En la Figura 4.2 se muestra el diagrama de bloques considerado en el presente análisis, en donde cada bloque corresponde a un equipo del sistema bajo estudio. En cada bloque se consideran todas las corrientes de entrada y salida que representan un flujo de exergia.

Figura 4.2.- Diagrama de bloques para el análisis de exergia de la columna Desisobutanizadora de la Planta Isomerizadora de n-Butanos.

Con el fin de comparar el valor de los parámetros exérgicos del condensador (EA-2) en el caso de que éste opere en Québec y por consiguiente utilice aire como medio de enfriamiento, con respecto al valor bajo las condiciones ambientales de Minatitlán, Jericó y Cusco, se realizará un análisis simultáneo de dicho equipo en éstas tres ciudades, suponiendo que utiliza aire en lugar de agua de enfriamiento para condensar la corriente que sale del domo.

Se realizará, también, el análisis considerando al sistema como un solo bloque, sin incluir a la válvula V-2 y al aereoenfriador EC-1. En la Figura 4.3 se muestran las corrientes del esquema de la Figura 4.2 que participan en el análisis de exergia global del sistema.

4.3.1.- Exergia de las corrientes.

Al considerar a la exergia inercial casi despreciable con respecto a la sustancial, como se señaló en el Capítulo I, la exergia de una sustancia se determina tan sólo a partir de su exergia física y química.

4.3.1.1.- Exergia física.

En la Tabla 4.10 se presenta una comparación de la exergia física de cada una de las corrientes involucradas en el sistema, entre el valor obtenido considerando las

condiciones ambientales del caso base (Minatitlán) y el valor cuando se suponen otras condiciones de temperatura y presión del medio. En el Apéndice D.2, se presenta el cálculo a detalle de exergía física a partir de la Ecuación 1-9 y de los valores de entalpia y entropia de cada corriente a las condiciones de T y P en que se encuentra la corriente y a las condiciones de T_o y P_o del medio ambiente.

e de l'égleer Maria e l'Alexandre d'a est a bree de la companya de la companya est est est a la companya de la

Al final de la Tabla 4.10 se muestran los valores de exergia física del servicio de enfriamiento a la entrada y a la salida del condensador EA-2, cuando se utiliza aire en lugar de agua, para cada uno de los cuatro diferentes medios ambientes de referencia. Conviene señalar que aun cuando se trate de aire, se mantiene el mismo nombre de la corriente de entrada y de salida de la corriente que cuando se utiliza agua de enfriamiento, esto es, CW1 y CW2. En este caso se puede observar que, al tener el aire de entrada al condensador las mismas condiciones de temperatura y presión que las ambientales, el valor de su exergia física es cero.

Aun cuando el flujo de exergia física mostrado en la Tabla 4.10 es total, es decir, está dado en kJ/h y por consiguiente es una propiedad que depende de la masa (propiedad extensiva), se observa que, para un cierto medio de referencia, mientras mayor es la temperatura y presión de una corriente, mayor es su valor de exergia física.

and a state of the fight of the set of the

ak a staar sekser en het meerijn tot het met in skriver oor stropping een op stjongen op een een de oor oor oo oor oor een stropping faar keelen oor een een geweeren oor oor oor een oor een oor een oor een oor een oor een o geweere stropping faar taak een stekerte.

oversen a speciel of the second s

e de la companya de Espanya

				Lugar			
-	Minatitlán	Jeric	Ó	Cuso	0	Québ	ec
<i>T₀</i> , °C [−]	25	33		21		-16	<u>;</u>
Po, atm	1	1.03	3	0.67	7	1	
1	Ex	Ex_t	Desv. ^(a)	Ex_{f}	Desv. ^(a)	Exr	Desv. ^(a)
Corriente	kJ/h	kJ/h	%	kJ/h	%	kJ/h	%
1	2,089,046	2,384,840	14.2	2,600,566	24.5	1,427,741	-31.7
2	1,003,267	1,150,587	14.7	1,258,201	25.4	605,432	-39.7
3	2,687,441	2,890,964	7.6	3,245,098	20.8	2,499,027	-7,0
4	2,385,978	2,581,412	8.2	2,947,678	23.5	2,239,019	-6.2
5	22,889,601	22,912,718	0.1	27,636,993	20.7	24,819,468	8.4
6	15,267,605	17,746,951	16.2	18,786,883	23.1	4,609,300	-69.8
7 7	15,267,604	17,746,950	16.2	18,786,882	23.1	4,609,300	-69.8
.8	15,606,970	18,084,230	15.9	19,127,291	22.6	4,959,353	-68.2
9	14,356,134	16,634,852	15.9	17,594,315	22.6	4,561,881	-68,2
10	1,250,118	1,448,547	15.9	1,532,096	22.6	397,244	-68,2
11	14,127,358	16,399,937	16.1	17,368,608	22.9	4,364,565	-69.1
12	3,089,024	3,070,619	-0.6	3,694,272	19.6	4,207,950	36.2
13	3,067,294	3,048,305	-0.6	3,672,832	19.7	4,189,208	36.6
14	1,475,774	1,760,410	19.3	1,929,500	30.7	1,041,608	-29.4
15	24,175,639	20,346,007	-15.8	25,115,744	3.9	48,788,558	101.8
16	25,435,371	21,602,324	-15.1	26,377,182	3.7	50,065,787	96.8
17	25,428,219	21,596,250	-15.1	26,369,765	3.7	50,051,709	96.8
18	5,366	4,539	-15.4	5,565	3.7	10,563	96,8
19	24,887,607	21,041,133	-15.5	25,836,406	3.8	49,585,439	99,2
20	46,867,156	40,820,073	-12.9	48,935,096	4.4	82,870,538	76.8
W2	0.0057100	0.0020260	-64.5	0.0076929	34.7	0.1182676	1971.2
CW1	554,891	376,042	-32.2	2,454,544	342.3	(b)	
CW2	3,117,845	966,152	-69.0	1,148,670	-63.2	(b)	
A2	423,452	412,767	-2.5	429,139	1.3	487,712	15.2
A3	6,239,546	6,284,497	0.7	7,817,823	25.3	5,373,737	-13;9
C1	617,061	621,327	0.7	773,048	25.3	531,598	-13.9
CA	6,856,478	6,905,956	0.7	8,590,575	25.3	5,904,844	-13.9
G1 -	99,183,218	98,285,954	-0.9	101,086,650	1.9	103,289,124	4.1
G2 -	18,023,071	17,614,222	-2.3	19,678,623	9.2	19,550,986	8.5
LP1	1,334,085	1,235,620	-7.4	1,383,435	3.7	1,917,080	43.7
LP2	159,276	137,531	-13.7	170,266	6.9	349,080	119.2
CW1	0	0		0		0	araanaa p ^{aa} lammanaa ahaanaa ahaa ahaa ahaa _{na}
CW2	3,120,916	3,042,125	-2.5	3,161,097	1.3	3,595,253	15.2

Tabla 4.10.- Comparación del valor de exergia física de las corrientes de la columna Desisobutanizadora, a diferentes condiciones de T_o y P_o del medio.

(a) Desviación con respecto al valor de exergia física a las condiciones ambientales de Minatitián
 (b) Se supone aire como medio de enfriamiento en lugar de agua

Según Szargut [4], si la temperatura del sistema es mayor que la temperatura del medio ambiente, al aumentar la temperatura de referencia la exergia física debe disminuir. De igual forma, si la presión del sistema es mayor que la presión de referencia, al aumentar esta última la exergia física debe bajar. Lo anterior parece razonable ya que al aumentar la temperatura y la presión del medio, el alejamiento entre el sistema y el medio se reduce y por consiguiente disminuye el trabajo que se puede obtener al llevar al sistema de su condición de T y P a las condiciones que prevalecen en el medio.

Sin embargo, de acuerdo con los resultados obtenidos, lo anterior no siempre se cumple, ya que para la mitad de las corrientes del sistema bajo estudio, al aumentar la temperatura ambiente se incrementa su exergia física (Jericó), o bien, si disminuye la temperatura del medio se reduce la exergia física (Québec), con respecto al caso base (Minatitlán). Estas corrientes corresponden a las dos alimentaciones de la columna Desisobutanizadora, a la extracción lateral rica en butano, a las corrientes localizadas en la parte superior de la columna, al gas combustible y al aire alimentado al quemador.

Al analizar las propiedades termodinámicas de las diferentes corrientes, se observa que el incremento o reducción en la exergia física de una corriente al cambiar las condiciones del medio depende de la fase física en que se encuentra dicha corriente tanto a las condiciones de T y P del sistema como a las condiciones de T_o y P_o del medio, ya que el valor de entalpia y entropia de la corriente es diferente si se trata de un líquido o de un vapor.

0.7,830

Por ejemplo, las corrientes 13 y 14, que corresponden a la entrada y a la salida del aereoenfriador EC-1, respectivamente, tienen la misma composición y aunque poseen niveles de temperatura y presión parecidos, las dos presentan diferente fase física. Esto es, la corriente 13 de entrada al equipo es un vapor a 70.6°C y 8.1 kg/cm² abs., mientras que la corriente 14 de salida es líquida a la temperatura de 60°C y 7.7 kg/cm² abs. A estas condiciones, la entalpia y la entropia de la corriente 13 (ver Tabla 4.11) son iguales a -1.23×10^8 J/kgmol y a -3.7×10^5 J/kgmol-K, respectivamente, por otro lado los valores de *H* y *S* de la corriente 14 son iguales a -1.43×10^8 J/kgmol y a -4.28×10^5 J/kgmol.

Cuando se considera el cambio de condiciones de referencia de Minatitlán a Québec, la condición que se modifica es la temperatura ya que la presión atmosférica en ambos

化合物 化化物合成合物 的复数分子 化合合合金

lugares es la misma. De acuerdo con Szargut y con el valor de temperatura de las corrientes 13 y 14, al suponer la temperatura de Québec de -16°C, la exergia física de estas corrientes debiera aumentar con respecto a sus valores de exergia a la temperatura de Minatitlán de 25°C. En el caso de la corriente 13, lo anterior sí se cumple va que sus valores de entalpia y entropia al estar en fase vapor son mayores que las propiedades de la corriente a 25°C y mucho mayores que las propiedades a --16°C, y por lo tanto los valores de H-H_o y S-S_o de la corriente 13, a partir de los cuales se obtiene la exergia física, crecen entre menor es la temperatura de referencia, dando como resultado que la exergia física de la corriente aumente.

Sin embargo, en el caso de la corriente 14, sus valores de entalpia y entropia a las condiciones de T y P del sistema son más parecidos a los valores de H_o y S_o de la corriente a -16°C y 1.03 kg/cm² (Québec) que a sus valores de entalpia y entropía a 25°C y 1.03 kg/cm² (Minatitlán), ya gue a las condiciones de temperatura y presión del sistema y de Québec la corriente es líquida, mientras que a las condiciones de T_o y P_o de Minatitlán la corriente está en fase vapor. Esto provoca que a una menor temperatura del medio de referencia, los valores de H-Ho y S-So disminuyan y por consiguiente también se reduzca la exergia física, en lugar de aumentar.

	rabla 4.11 Propiedades termodinamicas de dos corrientes con diferente comportamiento en su valor de exergia física al cambiar T_o y P_o .										
·- :	an tha an ant an the state of a state of a state of the s	<i>Т,</i> °С	P kg/cm² abs	Fase	H J/kgmol	S J/kgmol-K					
•	Corriente de entrada al aereoenfriador EC-1 (13)	70.6	8.11	Vapor	-1.23x10 ⁸	-3.70x10 ⁵					
٠	Corriente de salida del aereoenfriador EC-1 (14)	60	7.71	Líquido	-1.43x10 ⁸	-4.28x10 ⁵					
٠	Jericó	33	1.06	Vapor	-1.26x10 ⁸	-3.64x10 ⁵					
•	Minatitlán (caso base)	25	1.03	Vapor	-1.27x10 ⁸	-3.66x10 ⁵					
•	Québec	-16	<u></u>	Liquido	-1.54x10 ⁸	-4.64x10 ⁵					

and a structure of the state of the

Aquellas corrientes cuyo valor de exergia física disminuye al considerar las condiciones del medio de Jericó con respecto al valor de exergia a las condiciones ambientales de Minatitlán, su exergia física aumenta cuando se suponen las condiciones que prevalecen en Québec, y viceversa.

El efecto que tiene el cambio de temperatura de referencia en el valor de exergia física es muy grande, ya que un pequeño cambio de temperatura del medio, representa una desviación importante en el valor de exergia física. Por ejemplo, en el caso de Jericó, en donde la temperatura ambiente es tan sólo ocho grados centígrados mayor a la temperatura normal, el valor de exergia física, para la mayoría de las corrientes involucradas en el sistema que se está analizando, varía en alrededor del 15% con respecto al valor que se obtiene a la temperatura ambiente normal de 25°C; y en algunos casos, como por ejemplo el agua de enfriamiento de salida del condensador de la torre, dicha variación es mayor a 60%.

En el caso de Québec, en donde la temperatura ambiente es 41°C menor que la temperatura ambiente normal, la diferencia en el valor de exergia física de las corrientes con respecto al valor obtenido en Minatitlán es en promedio de 50%, y en muchos casos esta diferencia es de 100% o incluso mayor.

La exergia física de las corrientes cuya temperatura depende directamente de la temperatura del medio, como son el aire de salida de los aereoenfriadores, el gas combustible, el aire para combustión, y los gases de combustión a la entrada y a la salida del horno, varía poco al cambiar la temperatura de referencia, en relación con la variación de la exergia física del resto de las corrientes del sistema. La exergia física del agua de enfriamiento, cuya temperatura está en función de la temperatura ambiente y de la humedad del aire, sí varía considerablemente al cambiar la temperatura del medio.

Ahora bien, en el caso de Cusco, en donde la presión atmosférica es mucho menor a la normal, la exergia física de la mayoría de las corrientes aumenta con respecto al caso de Minatitlán. Este comportamiento es razonable dado que es mayor la diferencia entre la condición de presión del sistema y la del medio.

La única corriente cuyo valor de exergia física disminuye al reducirse la presión atmosférica es el agua a la salida del condensador de la columna. Esto se debe a que

.

en el caso de esta corriente el efecto sobre el valor de exergia física por un cambio de temperatura del medio es mayor que por la disminución en la presión atmosférica. Es decir, al ser la humedad relativa del aire en Cusco (0.3) muy baja en comparación con la que prevalece en Minatitlán (0.75) y por consiguiente ser mucho menor la temperatura del agua de enfriamiento en Cusco (12.5°C) con respecto a la temperatura del agua de enfriamiento en Minatitlán (24°C), la temperatura del agua a la salida del condensador en Cusco (23.3°C) es mucho más cercana al valor de temperatura del ambiente (21°C), que el valor de temperatura del agua en el caso de Minatitlán (34.8°C) con respecto a la temperatura ambiental (25°C), por lo que las propiedades termodinámicas del agua a la salida del condensador a T y P en Cusco serán más cercanas a sus valores a las condiciones del medio ambiente que en el caso de Minatitlán, resultando un valor de exergia física menor.

La variación del valor de exergia física con la presión atmosférica es en promedio del 20% en el caso de Cusco y, aunque para algunas corrientes la desviación de su exergia física no rebasa el 10%, en el caso de la corriente de agua de enfriamiento que entra al condensador de la torre, dicha variación es mayor al 300%, con respecto al valor de exergia física que se obtiene a las condiciones ambientales de Minatitlán.

4.3.1.2.- Exergia química.

La exergia química de cada corriente se determina por medio de la Ecuación 1-15, con los valores de la fracción mol de los componentes que conforman la mezcla, del valor de exergia química estándar de cada compuesto y suponiendo que la mezcla es una solución ideal ($\gamma_i = 1$).

La exergia química estándar de cada compuesto presente en el sistema bajo estudio, se determinó para cada uno de los cuatro medios de referencia a partir de la exergia química estándar de los elementos que los conforman, por medio del programa *EXQCOMP* desarrollado en el presente trabajo.

En la Tabla 4.12 se compara el valor de exergia química estándar de cada compuesto al considerar las diferentes condiciones ambientales en donde opera la columna Desisobutanizadora. En la misma tabla se incluyen los valores de Ex_q° del carbono y azufre, esto con el fin de observar el efecto que tiene el cambio en su valor de exergia en el valor de Ex_q° de los compuestos que los contienen al cambiar las condiciones del medio. En el Apéndice D.3 se presentan los valores de ΔG° y ΔH° de la reacción de formación de cada compuesto y que son requeridos para determinar su exergia química estándar. En el mismo apéndice se listan los resultados que arroja el programa EXQCOMP de Ex_q° de cada compuesto para las diferentes condiciones de referencia.

_				Lugar			
	Minatitlán	Ji	ericó	Cu	SCO	Qué	bec
<i>T_o</i> , °C	25	. ,	33	2	21	-1	6
P _o , atm	1	1	1.03	0.	67	1	
ϕ	0.75		0.7	· 0	.3	0.	5
<u> </u>	36		41	3	35	32	2
Compuesto	Exq	Ex_q°	Desv."	Ex _q °	Desv."	Ex_q°	Desv. ^(a)
(estado)	kJ/gmol	kJ/gmol	%	kJ/gmol	<u>%</u>	kJ/gmol	%
H ₂ O _(g)	9.32	8.63	-7.40	11.06	. 18.67	15.20	63.09
H ₂ O ())	0.73	0.99	36.09	1.99	173.83	1.73	138.43
H _{2 (g)}	235.95	234.84	-0.47	237.90	0.83	243.94	3.39
CH _{4 (g)}	831.30	830.18	-0.14	834.67	0.40	841.68	1.25
C ₂ H _{6 (g)}	1495.35	1494.31	-0.07	1500.08	0.32	1507.61	0.82
C ₃ H _{8 (g)}	2150.89	2149.96	-0.04	2156.97	0.28	2164.92	0.65
i-C ₄ H _{10 (g)}	2802.55	2801.85	-0.03	2809.92	0.26	2817.70	0.54
n-C ₄ H _{10 (g)}	2804.82	2803.99	-0.03	2812.25	0.26	2820.60	0.56
Neo-C ₅ H _{12 (g)}	3451.44	3451.07	-0.01	3460.04	0.25	3467.17	0.46
i-C ₅ H _{12 (g)}	3452.03	3451.37	-0.02	3460.77	0.25	3469.26	0.50
n-C ₅ H _{12 (l)}	3457.43	3457.41	0.00	3465.85	0.24	3471.36	0.40
O _{2 (g)}	3.93	4.06	3.36	3.84	-2.14	3.34	-14.99
N _{2 (g)}	0.67	0.72	6.69	0.63	-5.94	0.53	-20.95
$C_2H_{4(g)}$	1360.41	1359.52	-0.07	1363.67	0.24	1369.62	0.68
$C_3H_{6(g)}$	2001.04	2000.19	-0.04	2005.68	0.23	2012.32	0.56
$H_2S_{(g)}$	812.50	808.70	-0.47	814.29	0.22	830.10	2 .17
CO (g)	274.90	274.69	-0.07	274.99	0.03	275.98	0.40
CO _{2 (g)}	19.75	20.31	2.82	19.45	-1.49	16.98	-14.00
SO _{2 (g)}	313.42	311.13	-0.73	313.04	-0.12	321.09	2.45
C (s)	410.20	410.65	0.11	409.97	-0.06	407.90	-0.56
S (s)	609.39	607.06	-0.38	609.05	-0.06	617.23	1.29

Tabla 4.12.- Comparación del valor de exergia química estándar de los compuestos presentes en el sistema bajo estudio, a diferentes condiciones ambientales (*¢*: humedad relativa, *S*: salinidad).

(a) Desviación con respecto al valor de exergia química estándar a las condiciones ambientales de Minatitlán

Es importante señalar que en el cálculo de exergia química de las corrientes que contienen agua se utilizó la exergia química estándar del agua líquida y tan sólo en el caso de los gases producto de la combustión se empleó el valor de exergia química estándar del agua vapor, por lo que en la Tabla 4.12 se incluyen ambos valores, los cuales son muy diferentes.

En la Tabla 4.12 se observa que si un compuesto está presente como tal en el medio, como por ejemplo el agua, el oxígeno, el nitrógeno y el bióxido de carbono, su valor de exergia química estándar será pequeño con respecto al valor de Ex_q° de compuestos que no están en el medio (metano, etano, pentano, ácido sulfhídrico, etc).

Por otro lado, la variación en el valor de Ex_q° de los compuestos que están presentes como tales en el medio es mayor al cambiar las condiciones ambientales que la variación en el valor de Ex_q° de aquellos que no están presentes. Por ejemplo, el valor de Ex_q° del agua líquida aumenta 174% cuando se suponen las condiciones ambientales de Cusco con respecto a su valor en el caso base (Minatitlán), mientras que el valor de Ex_q° del metano se incrementa tan sólo 0.4%.

Cabe hacer notar que entre mayor es la cadena de un hidrocarburo, el efecto por un cambio en las condiciones ambientales en su valor de exergia química estándar es menor, como se muestra en la Tabla 4.12.

Como se ha mencionado, la exergia química estándar de un compuesto depende tanto del valor del cambio de energía libre de Gibbs de su reacción de referencia, como de la exergia química de los elementos o compuestos que lo conforman. En la Tabla 4.13 se muestra como cambia el valor de ΔG° de la reacción de formación de cada compuesto al cambiar la temperatura del medio. En dicha tabla se observa que el valor de ΔG_f° de las parafinas de cuatro y cinco carbonos varía considerablemente con la temperatura.

and the second secon

 1.1.121 				Lugar		1		
	Minatitlán	Je	ericó	C	usco	Québec		
<i>T_o</i> , °C	25		33		21		-16	
Compuesto (estado)	⊿G _f ° kJ/gmol	⊿G _f ° kJ/gmol	Desviación ^(a) %	∆G _f ° kJ/gmol	Desviación ^(a) %	⊿G _f ° kJ/gmol	Desvíación ^(a) %	
H ₂ O ()	-237.19	-235.88	-0.55	-237.84	0.28	-243.88	2.82	
CH _{4 (g)}	-50.79	-50.15	-1.27	-51.12	0.64	-54.10	6.51	
$C_2H_{6(g)}$	-32.89	-31.50	-4.22	-33.58	2.11	-40.01	21.65	
C ₃ H _{8 (g)}	-23.49	-21.33	-9.18	-24.57	4.59	-34.54	47.05	
i-C₄H _{10 (g)}	-17.97	-14.93	-16.96	-19.50	8.48	-33.60	86.93	
n-C ₄ H _{10 (g)}	-15.71	-12.78	-18.63	-17.17		-30.70	95.45	
neo-C ₅ H _{12 (g)}	-15.23	-11.18	-26.56	-17.25	13.28	-35.96	136.12	
i-C ₅ H _{12 (g)}	-14.64	-10.89	-25.62	-16.52	12.81	-33.87	131.31	
n-C ₅ H _{12 (I)}	-9,25	-4.85	-47.53	-11.44	23.77	-31.77	243.61	
$C_2H_{4(g)}$	68.12	68.55	0.62	67.91	-0.31	65.94	-3.20	
C ₃ H _{6 (g)}	62.61	63.74	1.81	62.04	-0.90	56.81	-9.27	
$H_2S_{(g)}$	-32.84	-33.19	1.05	-32.67	-0.53	-31.07	-5,40	
CO (g)	-137.27	-137.98	0.52	-136.91	-0.26	-133.59	-2.68	
CO _{2 (g)}	-394.38	-394.40	0.01	-394.37	-0.003	-394.26	-0.03	
SO _{2 (g)}	-299.90	-299.99	0.03	-299.86	-0.01	-299.48	-0.14	

Tabla 4.13.- Variación del valor de ΔG_f° de los compuestos presentes en el sistema bajo estudio, al cambiar la temperatura del medio ambiente.

(a) Con respecto al valor de ΔG_f° a la temperatura ambiente de Minatitlán

.

En los dos capítulos anteriores se pudo observar que la temperatura ambiente tiene un mayor efecto en el valor de exergia química estándar que las otras condiciones ambientales. En este ejercicio se analizan cuatro lugares geográficos con diferentes condiciones ambientales y en donde la combinación de éstas pudiera disminuir el efecto de la temperatura en el valor de exergia química estándar.

Con el propósito de conocer qué condición ambiental es la que está controlando la exergia química de los elementos y compuestos en cada una de las ciudades consideradas se preparó la Tabla 4.14, la cual se basa en los resultados obtenidos en los dos capítulos anteriores al variar cada condición ambiental y dejando fijas las demás.

Las flechas de la Tabla 4.14 indican aumento o disminución de exergia química estándar al variar una condición ambiental. Las flechas que están inclinadas

representan el comportamiento del valor de exergia química que coincide con los resultados obtenidos y que fueron presentados en la Tabla 4.12.

Luca	Variación con respecto a Minatitlán	x _{H20} en el aire	x del resto de las especies del aire	Ex _q ° _{H2O}	Er °un	<i>Ex_q°</i> del resto de las especies del aire	Fr °a	Er °ouu	•
Jeric	$ \begin{array}{c} T_{o}\uparrow\\ P_{o}\uparrow\\ \phi\downarrow\\ S\uparrow \end{array} $	↑ ↓ ↓	↓ ↑ ↑	<i>⊥ (0)</i> ↓ ↑	<u></u> ↓ ↑ ↑	7 ↓ ↓		<i>Lin₀ CH4</i> ↓ ↑	
Cusc	$ \begin{array}{c} T_{o} \downarrow \\ P_{o} \downarrow \\ \phi \downarrow \\ S \downarrow \end{array} $	↓ ↑ ↓	↑ ↓ ↑	↑ ↓ ↑	↑ ↓ ↑	1 1 1	↑ ↑ ↓ ↓	1 ↓ 1	
Québ	$\begin{array}{c} T_o \downarrow \\ P_o \\ \phi \downarrow \\ S \downarrow \end{array}$	1	↑ ↑	1	1 1	4	••••• ••••• ↓ ↑	1 1	

Tabla 4.14 Efecto en el valor	de exergia quíi	mica estándar por e	el cambio de
cada una de las condiciones	ambientales (ø	: humedad relativa, S	: salinidad).

Cuando la presión atmosférica y la humedad relativa del aire tienen un comportamiento contrario, es decir, que la primera aumenta mientras que la segunda disminuye, con respecto a las condiciones normales, el efecto en el valor de exergia química estándar es el mismo, como se puede observar en el caso de Jericó.

En general, la variación en la temperatura ambiente es la condición que controla el cambio en el valor de exergia química estándar, sin embargo, cuando la humedad relativa del aire disminuye mucho con respecto al valor a condiciones normales, como es el caso de Cusco ($\phi = 0.3$), la disminución de la humedad relativa tiene mayor efecto en el valor de exergia química estándar que la disminución de la temperatura. De acuerdo con los resultados obtenidos en el capítulo III, al disminuir la temperatura, permaneciendo constantes la presión atmosférica, la humedad relativa y la salinidad del agua de mar, la exergia química estándar del agua presente en el aire y del hidrógeno aumentan, la del resto de las especies contenidas en la atmósfera disminuye y la del

azufre aumenta. Sin embargo, al disminuir la humedad relativa del aire, dejando fijo el valor de T_o , P_o y S, se obtiene el mismo resultado que en el caso de la variación de la temperatura excepto en el valor de exergia química estándar del azufre, el cual disminuye en lugar de aumentar, y que coincide con lo que ocurre en Cusco.

Ahora bien, al aumentar la temperatura ambiente e incrementarse la concentración del vapor de agua en el aire, disminuye la concentración del resto de las especies presentes en el aire por lo que disminuye la exergia química del agua vapor y del hidrógeno y aumenta la exergia química estándar del oxígeno, nitrógeno y del bióxido de carbono; y viceversa.

El cambio en el valor de exergia química estándar de las parafinas, olefinas y del ácido sulfhídrico al cambiar las condiciones del medio es controlado por el cambio en el valor de exergia química estándar del hidrógeno, aun en el caso del n-pentano cuyo valor de ΔG_f° varía considerablemente con la temperatura.

Con respecto al monóxido de carbono y al bióxido de azufre, el cambio en su valor de exergia química estándar está regido por el cambio en el valor de ΔG_f° en el primer caso y por el cambio en el valor de Ex_q° del azufre en el segundo caso.

(1, 2, 2, 3) = (1, 2, 3) + (

Por otro lado, en el caso del agua líquida, cuando la temperatura es mayor a 25°C el cambio en el valor de ΔG_f° es el que controla el cambio en el valor de su exergia química estándar, sin embargo, cuando la temperatura ambiente es menor a la normal, el cambio en el valor de Ex_q° del hidrógeno tiene un mayor efecto que el cambio en el valor de Ex_q° del agua líquida.

20년 : 100kg 1월 6470일 등 10 mm - 10 mm

and the state of the

Finalmente, en la Tabla 4.15 se presenta el valor de exergia química de las corrientes que conforman el sistema bajo estudio al considerar las condiciones ambientales de las cuatro ciudades en las que opera el sistema.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(\$\phi: humedad relativa, S: salinidad).							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	•.	· · · · · · ·			Lugar			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	Minatitlán	Jericó		Cusco		Québec	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>T</i> _o , °C	25	33		21		-16	
	P _o , atm	1	1.03	· .	0.67		1	
S, % 36 41 35 32 Ex, Corriente Ex, kJh Desv. ^(a) kJh Ex, kJh Desv. ^(a) % Ex, kJh Desv. ^(a) % <t< td=""><td>ø</td><td>0.75</td><td>0.7</td><td></td><td>0.3</td><td></td><td>0.5</td><td></td></t<>	ø	0.75	0.7		0.3		0.5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S, ‰	36	41	781	35			
Contente KJ/I Xe KJ/I Ke KJ/I Ke KJ/I Ke KJ/I Ke KI/I Ke KI/I Ke KI/I Ke	Comionto	Exq	Ex_q	Desv."	E_{X_q}	Desv.	Ex_q	Desv.'-/
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Comente	KJ/II	KJ/II	70	KJ/II	70	KJ/II	<u>%</u>
2 1,012,137,244 -0.03 1,015,109,818 0.26 1,018,098,844 0.56 3 2,024,782,334 2,024,183,574 -0.03 2,030,146,959 0.26 2,036,181,230 0.56 5 14,592,315,900 14,588,607,246 -0.03 14,630,680,877 0.26 14,671,365,127 0.54 6 14,592,315,900 14,588,607,251 -0.03 14,630,680,882 0.26 14,671,365,131 0.54 7 14,592,315,905 14,588,607,251 -0.03 14,630,680,882 0.26 14,671,365,131 0.54 9 13,422,800,277 13,419,388,852 -0.03 13,458,090,456 0.26 13,495,514,043 0.54 10 1,168,844,074 1,168,547,011 -0.03 1,3458,090,456 0.26 1,871,803,727 0.56 13 1,861,322,114 1,860,769,873 -0.03 1,866,250,586 0.26 1,871,803,727 0.56 14 1,861,322,114 1,860,769,873 -0.03 1,866,250,586 0.26 1,871,803,727 0.56 15 36,831,653,500 36,827,708,450 -0.01 3,692,36	1	2,024,782,334	2,024,183,574	-0.03	2,030,146,959	0.20	2,036,181,230	0.56
3 2,024,782,334 2,024,183,574 -0.03 2,030,146,959 0.26 2,036,181,230 0.56 4 2,024,782,334 2,024,183,574 -0.03 2,030,146,959 0.26 2,036,181,230 0.56 5 14,592,315,900 14,588,607,246 -0.03 14,630,680,887 0.26 14,671,365,127 0.54 6 14,592,315,905 14,588,607,251 -0.03 14,630,680,882 0.26 14,671,365,131 0.54 8 14,592,315,905 14,588,607,251 -0.03 14,630,680,882 0.26 14,671,365,131 0.54 9 13,422,800,277 13,419,388,852 -0.03 13,458,090,456 0.26 1,3495,514,043 0.54 10 1,168,844,074 1,168,547,011 -0.03 1,171,917,107 0.26 1,175,175,914 0.54 11 13,422,800,277 13,419,388,852 -0.03 1,866,250,586 0.26 1,871,803,727 0.56 13 1,861,322,114 1,860,769,873 -0.03 1,866,250,586 0.26 1,871,803,727 0.56 14 1,861,322,114 1,860,769,873 -	2	1,012,430,551	1,012,137,244	-0.03	1,015,109,818	0.20	1,018,098,844	0.56
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	2,024,782,334	2,024,183,574	-0.03	2,030,146,959	0.20	2,036,181,230	0.50
5 14,592,315,900 14,588,607,246 -0.03 14,630,680,877 0.26 14,671,365,127 0.54 6 14,592,315,905 14,588,607,251 -0.03 14,630,680,882 0.26 14,671,365,131 0.54 7 14,592,315,905 14,588,607,251 -0.03 14,630,680,882 0.26 14,671,365,131 0.54 9 13,422,800,277 13,419,388,852 -0.03 13,458,090,456 0.26 13,495,514,043 0.54 10 1,168,844,074 1,186,547,011 -0.03 1,171,917,107 0.26 1,175,175,914 0.54 11 13,422,800,277 13,419,388,852 -0.03 13,458,090,456 0.26 1,871,803,727 0.56 12 1,861,322,114 1,860,769,873 -0.03 1,866,250,586 0.26 1,871,803,727 0.56 14 1,861,322,114 1,860,769,873 -0.03 1,866,250,586 0.26 1,871,803,727 0.56 14 1,861,322,114 1,860,769,873 -0.01 36,923,362,755 0.25 36,999,451,933 0.46 16 36,831,653,500 36,827,708,450	4	2,024,782,334	2,024,183,574	-0.03	2,030,146,959	0.20	2,036,181,230	0.56
6 14,592,315,900 14,588,607,251 -0.03 14,630,680,827 0.26 14,671,365,131 0.54 7 14,592,315,905 14,588,607,251 -0.03 14,630,680,882 0.26 14,671,365,131 0.54 8 14,592,315,905 14,588,607,251 -0.03 13,458,090,456 0.26 14,671,365,131 0.54 9 13,422,800,277 13,419,388,852 -0.03 13,458,090,456 0.26 13,495,514,043 0.54 10 1,168,844,074 1,168,547,011 -0.03 1,171,1917,107 0.26 1,175,175,914 0.54 11 13,422,800,277 13,419,388,852 -0.03 13,458,090,456 0.26 1,871,803,727 0.56 13 1,861,322,114 1,860,769,873 -0.03 1,866,250,586 0.26 1,871,803,727 0.56 14 1,861,322,114 1,860,769,873 -0.01 3,6923,362,755 0.25 36,999,451,933 0.46 16 36,831,653,500 36,827,708,450 -0.01 3,6923,362,755 0.25 36,991,644,914 0.46 17 36,823,881,887 36,819,937,669	5	14,592,315,900	14,588,607,246	-0.03	14,630,680,877	0.26	14,671,365,127	0.54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	14,592,315,900	14,588,607,246	-0.03	14,630,680,877	0.26	14,671,365,127	0.54
8 14,592,315,905 14,588,607,251 -0.03 14,630,680,882 0.26 14,671,365,131 0.54 9 13,422,800,277 13,419,388,852 -0.03 13,458,090,456 0.26 13,495,514,043 0.54 10 1,168,844,074 1,168,547,011 -0.03 13,458,090,456 0.26 13,495,514,043 0.54 12 1,861,322,114 1,860,769,873 -0.03 1,866,250,586 0.26 1,871,803,727 0.56 13 1,861,322,114 1,860,769,873 -0.03 1,866,250,586 0.26 1,871,803,727 0.56 14 1,861,322,114 1,860,769,873 -0.03 1,866,250,586 0.26 1,871,803,727 0.56 15 36,831,653,500 36,827,708,450 -0.01 36,923,362,755 0.25 36,999,451,933 0.46 17 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 18 7,771,348 7,70,516 -0.01 7,790,699 0.25 7,806,753 0.46 19 36,823,881,887 36,819,937,669 -0.01	7	14,592,315,905	14,588,607,251	-0.03	14,630,680,882	0.26	14,671,365,131	0.54
9 13,422,800,277 13,419,388,852 -0.03 13,458,090,456 0.26 13,495,514,043 0.54 10 1,168,844,074 1,168,547,011 -0.03 1,171,917,107 0.26 1,175,175,914 0.54 11 13,422,800,277 13,419,388,852 -0.03 13,458,090,456 0.26 13,495,514,043 0.54 12 1,861,322,114 1,860,769,873 -0.03 1,866,250,586 0.26 1,871,803,727 0.56 13 1,861,322,114 1,860,769,873 -0.03 1,866,250,586 0.26 1,871,803,727 0.56 14 1,861,322,114 1,860,769,873 -0.03 1,866,250,586 0.26 1,871,803,727 0.56 15 36,831,653,500 36,827,708,450 -0.01 36,923,362,755 0.25 36,999,451,933 0.46 16 36,831,687 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 18 7,771,348 7,770,516 -0.01 7,790,699 0.25 7,806,753 0.46 19 36,823,881,887 36,819,937,669 -0.01	8	14,592,315,905	14,588,607,251	-0.03	14,630,680,882	0.26	14,671,365,131	0.54
10 1,168,844,074 1,168,547,011 -0.03 1,171,917,107 0.26 1,175,175,914 0.54 11 13,422,800,277 13,419,388,852 -0.03 13,458,090,456 0.26 13,495,514,043 0.54 12 1,861,322,114 1,860,769,873 -0.03 1,866,250,586 0.26 1,871,803,727 0.56 14 1,861,322,114 1,860,769,873 -0.03 1,866,250,586 0.26 1,871,803,727 0.56 15 36,831,653,500 36,827,708,450 -0.01 36,923,362,755 0.25 36,999,451,933 0.46 16 36,831,653,500 36,827,708,450 -0.01 36,915,571,791 0.25 36,999,451,933 0.46 17 36,823,881,887 36,819,937,669 -0.01 7,790,699 0.25 7,806,753 0.46 19 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,919,644,914 0.46 20 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 20 0.0915341 0.1245670 36.09 </td <td>9</td> <td>13,422,800,277</td> <td>13,419,388,852</td> <td>-0.03</td> <td>13,458,090,456</td> <td>0.26</td> <td>13,495,514,043</td> <td>0.54</td>	9	13,422,800,277	13,419,388,852	-0.03	13,458,090,456	0.26	13,495,514,043	0.54
11 13,422,800,277 13,419,388,852 -0.03 13,458,090,456 0.26 13,495,514,043 0.54 12 1,861,322,114 1,860,769,873 -0.03 1,866,250,586 0.26 1,871,803,727 0.56 13 1,861,322,114 1,860,769,873 -0.03 1,866,250,586 0.26 1,871,803,727 0.56 14 1,861,322,114 1,860,769,873 -0.03 1,866,250,586 0.26 1,871,803,727 0.56 15 36,831,653,500 36,27,708,450 -0.01 36,923,362,755 0.25 36,999,451,933 0.46 17 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 18 7,771,348 7,770,516 -0.01 7,790,699 0.25 7,806,753 0.46 19 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 20 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 W2 0.0915341 0.12452670 36.09	10	1,168,844,074	1,168,547,011	-0.03	1,171,917,107	0.26	1,175,175,914	0.54
12 1,861,322,114 1,860,769,873 -0.03 1,866,250,586 0.26 1,871,803,727 0.56 13 1,861,322,114 1,860,769,873 -0.03 1,866,250,586 0.26 1,871,803,727 0.56 14 1,861,322,114 1,860,769,873 -0.03 1,866,250,586 0.26 1,871,803,727 0.56 15 36,831,653,500 36,827,708,450 -0.01 36,923,362,755 0.25 36,999,451,933 0.46 16 36,831,653,500 36,827,708,450 -0.01 36,923,362,755 0.25 36,999,451,933 0.46 17 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 18 7,771,348 7,770,516 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 20 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 W2 0.0915341 0.1245670 36.09 0.2506470 173.83 0.2182445 138.43 CW1 88,782,540 120,822,520 36.09 <t< td=""><td>11</td><td>13,422,800,277</td><td>13,419,388,852</td><td>-0.03</td><td>13,458,090,456</td><td>0.26</td><td>13,495,514,043</td><td>0.54</td></t<>	11	13,422,800,277	13,419,388,852	-0.03	13,458,090,456	0.26	13,495,514,043	0.54
13 1,861,322,114 1,860,769,873 -0.03 1,866,250,586 0.26 1,871,803,727 0.56 14 1,861,322,114 1,860,769,873 -0.03 1,866,250,586 0.26 1,871,803,727 0.56 15 36,831,653,500 36,827,708,450 -0.01 36,923,362,755 0.25 36,999,451,933 0.46 16 36,823,881,887 36,819,937,669 -0.01 36,923,362,755 0.25 36,999,451,933 0.46 18 7,771,348 7,770,516 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 19 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 20 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 20 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 20 0.915341 0.1245670 36.09 0.2506470 173.83 0.2182445 138.43 CW1 88,782,540 120,822,520 36.09	12	1,861,322,114	1,860,769,873	-0.03	1,866,250,586	0.26	1,871,803,727	0.56
14 1,861,322,114 1,860,769,873 -0.03 1,866,250,586 0.26 1,871,803,727 0.56 15 36,831,653,500 36,827,708,450 -0.01 36,923,362,755 0.25 36,999,451,933 0.46 16 36,831,653,500 36,827,708,450 -0.01 36,923,362,755 0.25 36,999,451,933 0.46 17 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 18 7,771,348 7,770,516 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 20 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 W2 0.0915341 0.1245670 36.09 0.2506470 173.83 0.2182445 138.43 CW1 88,782,540 120,822,520 36.09 243,112,520 173.83 (b) A2 0 0 0 0 0 0 0 0 A3 0 0 0 0 0 0 0 0 1.33,318,494	13	1,861,322,114	1,860,769,873	-0.03	1,866,250,586	0.26	1,871,803,727	0.56
15 36,831,653,500 36,827,708,450 -0.01 36,923,362,755 0.25 36,999,451,933 0.46 16 36,823,881,887 36,819,937,669 -0.01 36,923,362,755 0.25 36,999,451,933 0.46 17 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 18 7,771,348 7,770,516 -0.01 7,790,699 0.25 7,806,753 0.46 19 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 20 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 W2 0.0915341 0.1245670 36.09 0.2506470 173.83 0.2182445 138.43 CW1 88,782,540 120,822,520 36.09 243,112,520 173.83 (b) 138.43 CW2 88,782,540 120,822,520 36.09 243,112,520 173.83 (b) 138.43 CW1 88,782,540 120,822,520 36.09 243,112,520 1	14	1,861,322,114	1,860,769,873	-0.03	1,866,250,586	0.26	1,871,803,727	0.56
16 36,831,653,500 36,827,708,450 -0.01 36,923,362,755 0.25 36,999,451,933 0.46 17 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 18 7,771,348 7,770,516 -0.01 7,790,699 0.25 7,806,753 0.46 19 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 20 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 W2 0.0915341 0.1245670 36.09 0.2506470 173.83 0.2182445 138.43 CW1 88,782,540 120,822,520 36.09 243,112,520 173.83 (b) A2 0 0 0 0 0 0 0 0 A3 0 <t< td=""><td>15</td><td>36,831,653,500</td><td>36,827,708,450</td><td>-0.01</td><td>36,923,362,755</td><td>0.25</td><td>36,999,451,933</td><td>0.46</td></t<>	15	36,831,653,500	36,827,708,450	-0.01	36,923,362,755	0.25	36,999,451,933	0.46
17 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 18 7,771,348 7,770,516 -0.01 7,790,699 0.25 7,806,753 0.46 19 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 20 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 20 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 W2 0.0915341 0.1245670 36.09 0.2506470 173.83 0.2182445 138.43 CW1 88,782,540 120,822,520 36.09 243,112,520 173.83 0.2182445 138.43 CW2 88,782,540 120,822,520 36.09 243,112,520 173.83 0.2182445 138.43 CW2 88,782,540 120,822,520 36.09 243,112,520 173.83 0.2182445 138.43 CW2 88,782,540 120,822,520 36.09 243,112,520 <td< td=""><td>16</td><td>36,831,653,500</td><td>36,827,708,450</td><td>-0.01</td><td>36,923,362,755</td><td>0.25</td><td>36,999,451,933</td><td>0.46</td></td<>	16	36,831,653,500	36,827,708,450	-0.01	36,923,362,755	0.25	36,999,451,933	0.46
18 7,771,348 7,770,516 -0.01 7,790,699 0.25 7,806,753 0.46 19 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 20 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 W2 0.0915341 0.1245670 36.09 0.2506470 173.83 0.2182445 138.43 CW1 88,782,540 120,822,520 36.09 243,112,520 173.83 0.2182445 138.43 CW2 88,782,540 120,822,520 36.09 243,112,520 173.83 (b) A2 0 0 0 0 0 0 0 A3 0	17	36,823,881,887	36,819,937,669	-0.01	36,915,571,791	0.25	36,991,644,914	0.46
19 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 20 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 W2 0.0915341 0.1245670 36.09 0.2506470 173.83 0.2182445 138.43 CW1 88,782,540 120,822,520 36.09 243,112,520 173.83 0.2182445 138.43 CW2 88,782,540 120,822,520 36.09 243,112,520 173.83 (b) A2 0 0 0 0 0 0 0 0 A3 0 <td< td=""><td>18</td><td>7,771,348</td><td>7,770,516</td><td>-0.01</td><td>7,790,699</td><td>0.25</td><td>7,806,753</td><td>0.46</td></td<>	18	7,771,348	7,770,516	-0.01	7,790,699	0.25	7,806,753	0.46
20 36,823,881,887 36,819,937,669 -0.01 36,915,571,791 0.25 36,991,644,914 0.46 W2 0.0915341 0.1245670 36.09 0.2506470 173.83 0.2182445 138.43 CW1 88,782,540 120,822,520 36.09 243,112,520 173.83 (b) CW2 88,782,540 120,822,520 36.09 243,112,520 173.83 (b) A2 0 0 0 0 0 0 0 0 C1 134,050,979 133,862,356 -0.14 134,609,448 0.42 135,728,742 1.25 CA 132,796,228 132,619,650 -0.13 133,318,494 0.39 134,564,301 1.33 G1 3,265,595 3,096,442 -5.18 3,765,146 15.30 5,015,095 53.57 G2 3,265,595 3,096,442 -5.18 3,765,146 15.30 5,015,095 53.57 LP1 76,568 104,200 36.09 209,666 173.83 182,562 138.43 LP2 76,568 104,200	19	36,823,881,887	36,819,937,669	-0.01	36,915,571,791	0.25	36,991,644,914	0.46
W2 0.0915341 0.1245670 36.09 0.2506470 173.83 0.2182445 138.43 CW1 88,782,540 120,822,520 36.09 243,112,520 173.83 (b) CW2 88,782,540 120,822,520 36.09 243,112,520 173.83 (b) A2 0 0 0 0 0 0 0 0 A3 0 <td>20</td> <td>36,823,881,887</td> <td>36,819,937,669</td> <td>-0.01</td> <td>36,915,571,791</td> <td>0.25</td> <td>36,991,644,914</td> <td>0.46</td>	20	36,823,881,887	36,819,937,669	-0.01	36,915,571,791	0.25	36,991,644,914	0.46
CW1 88,782,540 120,822,520 36.09 243,112,520 173.83 (b) CW2 88,782,540 120,822,520 36.09 243,112,520 173.83 (b) A2 0 0 0 0 0 A3 0 0 0 0 0 CL1 134,050,979 133,862,356 -0.14 134,609,448 0.42 135,728,742 1.25 CA 132,796,228 132,619,650 -0.13 133,318,494 0.39 134,564,301 1.33 G1 3,265,595 3,096,442 -5.18 3,765,146 15.30 5,015,095 53.57 G2 3,265,595 3,096,442 -5.18 3,765,146 15.30 5,015,095 53.57 G2 3,265,595 3,096,442 -5.18 3,765,146 15.30 5,015,095 53.57 LP1 76,568 104,200 36.09 209,666 173.83 182,562 138.43 LP2 76,568 104,200 36.09 209,666 173.83 182,562 138.43 CW1	W2	0.0915341	0.1245670	36.09	0.2506470	173.83	0.2182445	138.43
CW2 88,782,540 120,822,520 36.09 243,112,520 173.83 (b) A2 0 0 0 0 0 0 0 A3 0 0 0 0 0 0 0 C1 134,050,979 133,862,356 -0.14 134,609,448 0.42 135,728,742 1.25 CA 132,796,228 132,619,650 -0.13 133,318,494 0.39 134,564,301 1.33 G1 3,265,595 3,096,442 -5.18 3,765,146 15.30 5,015,095 53.57 G2 3,265,595 3,096,442 -5.18 3,765,146 15.30 5,015,095 53.57 LP1 76,568 104,200 36.09 209,666 173.83 182,562 138.43 LP2 76,568 104,200 36.09 209,666 173.83 182,562 138.43 CW1 0 0 0 0 0 0 0 0 CW2 0 0 0 0 0 0 0 0	CW1	88,782,540	120,822,520	36.09	243,112,520	173.83	(b)	
A2 0 0 0 0 A3 0 0 0 0 0 C1 134,050,979 133,862,356 -0.14 134,609,448 0.42 135,728,742 1.25 CA 132,796,228 132,619,650 -0.13 133,318,494 0.39 134,564,301 1.33 G1 3,265,595 3,096,442 -5.18 3,765,146 15.30 5,015,095 53.57 G2 3,265,595 3,096,442 -5.18 3,765,146 15.30 5,015,095 53.57 LP1 76,568 104,200 36.09 209,666 173.83 182,562 138.43 LP2 76,568 104,200 36.09 209,666 173.83 182,562 138.43 CW1 0 0 0 0 0 0 0 0 CW2 0 0 0 0 0 0 0 0	CW2	88,782,540	120,822,520	36.09	243,112,520	173.83	(b)	
A3 0 0 0 0 C1 134,050,979 133,862,356 -0.14 134,609,448 0.42 135,728,742 1.25 CA 132,796,228 132,619,650 -0.13 133,318,494 0.39 134,564,301 1.33 G1 3,265,595 3,096,442 -5.18 3,765,146 15.30 5,015,095 53.57 G2 3,265,595 3,096,442 -5.18 3,765,146 15.30 5,015,095 53.57 LP1 76,568 104,200 36.09 209,666 173.83 182,562 138.43 LP2 76,568 104,200 36.09 209,666 173.83 182,562 138.43 CW1 0 0 0 0 0 0 0 0 CW2 0 0 0 0 0 0 0 0 0	A2	0	0		0		0	
C1 134,050,979 133,862,356 -0.14 134,609,448 0.42 135,728,742 1.25 CA 132,796,228 132,619,650 -0.13 133,318,494 0.39 134,564,301 1.33 G1 3,265,595 3,096,442 -5.18 3,765,146 15.30 5,015,095 53.57 G2 3,265,595 3,096,442 -5.18 3,765,146 15.30 5,015,095 53.57 LP1 76,568 104,200 36.09 209,666 173.83 182,562 138.43 LP2 76,568 104,200 36.09 209,666 173.83 182,562 138.43 CW1 0 0 0 0 0 0 0 0 CW2 0 0 0 0 0 0 0 0 0	A3	0	. 0		0		0	. 14
CA 132,796,228 132,619,650 -0.13 133,318,494 0.39 134,564,301 1.33 G1 3,265,595 3,096,442 -5.18 3,765,146 15.30 5,015,095 53.57 G2 3,265,595 3,096,442 -5.18 3,765,146 15.30 5,015,095 53.57 LP1 76,568 104,200 36.09 209,666 173.83 182,562 138.43 LP2 76,568 104,200 36.09 209,666 173.83 182,562 138.43 CW1 0 0 0 0 0 0 0 0 CW2 0 0 0 0 0 0 0 0 0	C1	134,050,979	133,862,356	-0.14	134,609,448	0.42	135,728,742	1.25
G1 3,265,595 3,096,442 -5.18 3,765,146 15.30 5,015,095 53.57 G2 3,265,595 3,096,442 -5.18 3,765,146 15.30 5,015,095 53.57 LP1 76,568 104,200 36.09 209,666 173.83 182,562 138.43 LP2 76,568 104,200 36.09 209,666 173.83 182,562 138.43 CW1 0 0 0 0 0 0 0 CW2 0 0 0 0 0 0 0	CA	132,796,228	132,619,650	-0.13	133,318,494	0.39	134,564,301	1.33
G2 3,265,595 3,096,442 -5.18 3,765,146 15.30 5,015,095 53.57 LP1 76,568 104,200 36.09 209,666 173.83 182,562 138.43 LP2 76,568 104,200 36.09 209,666 173.83 182,562 138.43 CW1 0 0 0 0 0 0 0 CW2 0	G1	3,265,595	3,096,442	-5.18	3,765,146	15.30	5,015,095	53.57
LP176,568104,20036.09209,666173.83182,562138.43LP276,568104,20036.09209,666173.83182,562138.43CW100000CW200000	G2	3,265,595	3,096,442	-5.18	3,765,146	15.30	5,015,095	53.57
LP276,568104,20036.09209,666173.83182,562138.43CW100000CW200000	LP1	76,568	104,200	36.09	209,666	173.83	182,562	138.43
CW1 0	LP2	76,568	104,200	36.09	209,666	173.83	182,562	138.43
CW2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CW1	0	·0		0		0	
	CW2	0	0		0			111

 Tabla 4.15.- Comparación del valor de exergia química de las corrientes de la columna

 Desisobutanizadora, a diferentes condiciones ambientales del medio

 (1) trabana de la columna

(a) Con respecto al valor de exergia química a las condiciones ambientales de Minatitlán

(b) Se supone aire como medio de enfriamiento en lugar de agua

El efecto al variar las condiciones ambientales en el valor de exergia química de las corrientes de proceso depende de la naturaleza y composición de la mezcla. La

variación en el valor de Ex_q de las corrientes que contienen hidrocarburos es muy pequeña y del mismo orden que la variación en el valor de Ex_q° de los hidrocarburos mostrada en la Tabla 4.12, al variar las condiciones del medio ambiente de referencia.

El valor de exergia química de las corrientes que contienen agua, como son el agua decantada, el agua de enfriamiento y el vapor de calentamiento, varía de igual forma que el valor de exergia química estándar del agua líquida al variar las condiciones ambientales. Por ejemplo, en el caso de Cusco la exergia química de estas corrientes es 174% mayor que su valor a las condiciones de Minatitlán.

En el caso del gas combustible (corriente C1), el cual está compuesto por 52 %mol de hidrógeno, 25 %mol de metano y el resto por diversos hidrocarburos de cadena más larga, la variación en su valor de exergia química al cambiar las condiciones ambientales es la misma que presenta el valor de exergia química estándar del metano. Aunque la concentración del metano es la mitad de la del hidrógeno en el gas combustible, el valor de Ex_q° molar del metano es 3.5 veces mayor que el valor de Ex_q° del hidrógeno, por lo que el cambio en el valor de Ex_q° del metano controla el cambio en el valor de exergia química del gas combustible. En el caso de Québec, la exergia química del gas combustible aumenta 1.25% con respecto a su valor a las condiciones de Minatitlán, la misma variación que presenta el valor de exergia química estándar del metano para el mismo cambio de condiciones.

Al igual que en el caso anterior, el cambio en el valor de exergia química de los gases producto de la combustión (corriente G1) no está controlado por el cambio en el valor de exergia química estándar del compuesto en mayor proporción, en este caso el nitrógeno (72 %mol), sino por el cambio en el valor de Ex_q° del agua vapor que, aun cuando su concentración es mucho menor (17 %mol) que la del nitrógeno, su valor de exergia química estándar (9.32 kJ/h a condiciones normales) es mucho mayor que la exergia química estándar del nitrógeno (0.67 kJ/h a condiciones normales). Por ejemplo, cuando se suponen las condiciones ambientales de Québec, la exergia química de los gases producto de la combustión y la exergia química estándar del agua vapor aumentan alrededor del 54% y 63%, respectivamente, con respecto a su valor a las condiciones de Minatitlán, mientras que el valor de exergia química estándar del nitrógeno disminuye 21%, para el mismo cambio de condiciones.

Debido a que la corriente de aire, está compuesta por las mismas especies y a la misma concentración que aquéllas presentes en el medio, su valor de exergia química es cero.

4.3.1.3.- Exergia total.

En la Tabla 4.16 se presenta el valor de exergia total de cada corriente para cada uno de los medios ambientes de referencia y que resulta de agrupar el valor de exergia química y física.

Al combinar los valores de exergia física y química, se observa que la variación en la exergia total de las corrientes al modificar las condiciones del medio está regida por el cambio en el valor de exergia química, ya que en la mayoría de los casos el valor de exergia química es mucho mayor que el de exergia física, o bien, el cambio en el valor de exergia química es mayor que el cambio en el valor de exergia física aun cuando a veces el valor de exergia física sea mayor que el de exergia química, como ocurre con la corriente de vapor condensado (LP2) que sale del calentador EA-1.

En el caso de las corrientes correspondientes a los gases producto de la combustión (corrientes G1 y G2), y al vapor de calentamiento (corriente LP1) su exergia física es mayor que su exergia química, por lo que la variación en su valor de exergia total estará controlada por el cambio en el valor de exergia física.

La exergia de las corrientes de aire es exergia física pura, por lo tanto el cambio en su valor de exergia al modificarse las condiciones ambientales depende solamente de la variación en dicho tipo de exergia.

				Lugar	1	<u></u>	
	Minatitlán	Jericó		Cusco	en en forst	Québec	
<i>T</i> _o , °C	25	33		21		-16	
P _o , atm	1	1.03		0.67	1	1	
ϕ	0.75	0.7		0.3	engenfamili	0.5	
<u> </u>	36	41	a (ar	35	a (a)	32	
Corriente	Ex L In	Ex	Desv.	Ex	Desv.	Ex	Desv. ^w
Contente	KJ/II	KJ/11	70	KJ//I	70	KJ/II	<u> </u>
1	2,026,871,380	2,026,568,414	-0.01	2,032,747,525	0.29	2,037,608,971	0.53
2	1,013,433,828	1,013,287,831	-0.01	1,016,368,019	0.29	1,018,704,276	0.52
3	2,027,409,775	2,027,074,538	-0.02	2,033,392,056	0.29	2,038,080,257	0.00
4	2,027,168,311	2,026,764,985	-0.02	2,033,094,637	0.29	2,038,420,249	0.50
5	14,615,205,502	14,011,519,904	-0.03	14,658,317,871	0.29	14,696,184,595	0.55
6		14,606,354,197	-0.01	14,649,467,760	0.29	14,075,974,427	0.47
	14,607,583,510	14,606,354,201	-0.01	14,649,467,764	0.29	14,675,974,430	0.47
8	14,607,922,875		-0.07	14,649,808,173	0.29	14,070,324,484	0.47
9 40	13,437,156,411	13,435,023,704	-0.07	13,475,684,771	0.29	13,500,075,924	0.47
10	1,170,094,192	1,169,995,558	-0.01	1,1/3,449,203	0.29	1,175,573,158	······································
11	13,436,927,634	13,435,788,789	-0.01	13,475,459,064	0.29	13,499,878,608	0.47
12	1,864,411,139	1,863,840,491	-0.03	1,869,944,858	0.30	1,876,011,677	0.62
al ars <mark>13</mark> ecc	1,864,389,408	1,863,818,177	-0.03	1,869,923,419	0.30	1,875,992,935	0.62
14	1,862,797,888	1,862,530,283	-0.01	1,868,180,086	0.29	1,872,845,336	0.54
15	36,855,829,140	36,848,054,457	-0.02	36,948,478,499	0.25	37,048,240,492	0.52
16	36,857,088,871	36,849,310,774	-0.02	36,949,739,937	0.25	37,049,517,720	0.52
17	36,849,310,105	36,841,533,919	-0.02	36,941,941,556	0.25	37,041,696,623	0.52
18	7,776,715	7,775,055	-0.02	7,796,264	0.25	7,817,316	0.52
19	36,848,769,494	36,840,978,802	-0.02	36,941,408,197	0.25	37,041,230,353	0.52
20	36,870,749,043	36,860,757,742	-0.03	36,964,506,887	0.25	37,074,515,451	0.55
W2	0.0972441	0.1265930	30.18	0.2583399	165.66	0.3365121	246.05
CW1	89,337,431	121,198,562	35.66	245,567,064	174.88	(D)	
CW2	91,900,385	121,788,672	32.52	244,261,190	165.79	(0)	
A2	423,452	412,767	-2,52	429,139	1.34	487,712	15.18
A3	6,239,546	6,284,497	0.72	7,817,823	25.29	5,373,737	-13.88
C1	134,668,040	134,483,683	-0.14	135,382,495	0.53	136,260,339	1.18
CÂ	139,652,706	139,525,607	-0.09	141,909,069	1.62	140,469,146	0.58
G1	102,448,813	101,382,396	-1.04	104,851,796	2.35	108,304,219	5.72
G2	21,288,666	20,710,664	-2.72	23,443,769	10.12	24,566,081	15.40
LP1	1,410,653	1,339,820	-5.02	1,593,102	12.93	2,099,641	48.84
LP2	235,844	241,731	2.50	379,933	61.09	531,641	125.42
CW1	0	0		0		0	
CW2	3,120,916	3,042,125	-2.5	3,161,097	1.3	3,595,253	15.2

Tabla 4.16.- Comparación del valor de exergia total de las corrientes de la columnaDesisobutanizadora, a diferentes condiciones ambientales del medio(\$\phi\$: humedad relativa, \$\mathcal{S}\$: salinidad).

(a) Con respecto al valor de exergia total a las condiciones ambientales de Minatitlán
 (b) Se supone aire como medio de enfriamiento en lugar de agua

e e estas contratas actividades e conservationes

Las corrientes que presentan un mayor cambio en su valor de exergia al variar las condiciones del medio son las que están compuestas sólo por agua (el agua decantada

en el domo de la columna Desisobutanizadora, el agua de enfriamiento a la entrada y a la salida del condensador de la columna, y el vapor de calentamiento a la entrada y a la salida del cambiador EA-1). La variación en el valor de exergia en algunas de estas corrientes al considerar las condiciones de Cusco y Québec rebasa el 150%, con respecto a su valor a las condiciones de Minatitlán.

4.3.2.- Balances de entalpia y exergia y determinación de los parámetros exérgicos.

A continuación se presentan de forma general los balances de energía, de acuerdo con la primera y segunda ley de la termodinámica, en cada uno de los equipos que integran el sistema que se analiza en el presente trabajo, a partir de los cuales se obtienen los parámetros exérgicos definidos en el Capítulo I. También se muestran los balances de entalpia y exergia, así como los parámetros exérgicos, cuando se analiza el sistema de manera global.

• Válvulas:

Balance de entalpia: $H_1 = H_2$ Balance de exergia: $Ex_1 = Ex_2 + Irr$ Parámetros exérgicos: $Irr = Ex_1 - Ex_2 = Ex_{tte} - Ex_{tts}$ $Ex_{nts} = Ex_1 - Ex_2$ $Ex_{nts} = Ex_1 - Ex_2$ $Ex_{ntp} = 0$ Efl = 0Pex = Irr

$$Ex_{uts} = Ex_2$$

 $\eta = Ex_{tts} / Ex_{tte} = Ex_2 / Ex_1$

and a Martin e

Impacto de las Condiciones Ambientales en el Análisis de Exergia Capítulo IV Página 164

$$\varepsilon = Ex_{ntp} / Ex_{nts} = 0$$

$$\xi = Ex_{uts} / Ex_{tte} = \eta$$

$$Pot = Irr (1 - \varepsilon) + Efl = Irr$$

Bombas:

新闻学校的 化化学学学 化乙基苯基 网络马马马

and the second second

and a second second second second second

a an an an 19 an thair an an 19 an thair ann an tag an tao an an Anna Anna Anna Anna An Balance de entalpia: $H_1 + W = H_2$ allo constructions and the state of the state Balance de exergia: $Ex_1 + W = Ex_2 + Irr$ den generale de l'active de la secondación en el la deservición de la constante de la defense el comparación

Parámetros exérgicos:

 $Irr = Ex_1 + W - Ex_2 = Ex_{tte} - Ex_{tts}$ $Ex_{nts} = W$ $Ex_{ntp} = Ex_2 - Ex_1$ Efl = 0Pex = Irr $Ex_{uts} = Ex_2$ gada da esta carefeĝ $\eta = Ex_{tts} / Ex_{tte} = Ex_2 / (Ex_1 + W)$ $\varepsilon = Ex_{ntp} / Ex_{nts} = (Ex_2 - Ex_1) / W$ $\xi = E x_{uts} / E x_{tte} = \eta$ $Pot = Irr (1 - \varepsilon) + Efl = Irr (1 - \varepsilon)$

Enfriamiento con agua:

ae: agua de entrada; ar: agua de retorno

Balance de entalpia:	Por el lado de la corriente de proceso	$H_1 = H_2 + Q$			
	Por el lado del agua de enfriamiento	$H_{ae} + Q = H_{ar}$			
	and the second				
Balance de exergia:	$Ex_1 + Ex_{ae} = Ex_2 + Ex_{ar} + Irr$				
Parámetros exérgicos:	$Irr = Ex_1 + Ex_{ae} - (Ex_2 + Ex_{ar}) = Ex_{tte} - Ex_{tts}$				
· · · ·	$Ex_{nts} = Ex_1 - Ex_2$				
	$Ex_{ntp} = Ex_{ar} - Ex_{ae}$				
	$Efl = Ex_{ar} - Ex_{ae} = Ex_{ntp}$				
	$Pex = Irr + Efl = Ex_1 - Ex_2 = Ex_{nts}$	a Shiri a sa sa sa			
	$Ex_{uts} = Ex_2$	•			
	$\eta = Ex_{tts} / Ex_{tte} = (Ex_2 + Ex_{ar}) / (Ex_1 + Ex_{ae})$				
	$\varepsilon = Ex_{ntp} / Ex_{nts} = (Ex_{ar} - Ex_{ae}) / (Ex_1 - Ex_2)$				
	$\xi = Ex_{uts} / Ex_{tte} = Ex_2 / (Ex_1 + Ex_{ae})$				
	$Pot = Irr (1 - \varepsilon) + Efl$				

• Aereoenfriadores:

af: aire frío; ac: aire caliente

Balance de entalpia:Por el lado de la corriente de proceso $H_1 = H_2 + Q$ Por el lado del aire $H_{af} + W + Q = H_{ac}$

Balance de exergia:	$Ex_1 + Ex_{af} + W = Ex_2 + Ex_{ac} + Irr$; en donde $Ex_{af} = 0$
Parámetros exérgicos:	$Irr = Ex_1 + W - (Ex_2 + Ex_{ac}) = Ex_{tte} - Ex_{tts}$

Impacto de las Condiciones Ambientales en el Análisis de Exergia Capítulo IV Página 166

 $Ex_{nts} = (Ex_1 - Ex_2) + W$ $Ex_{ntp} = Ex_{ac} - Ex_{af} = Ex_{ac}$ $Efl = Ex_{ac}$ $Pex = Irr + Efl = (Ex_1 - Ex_2) + W = Ex_{nts}$ $Ex_{uts} = Ex_2$ $\eta = Ex_{tts} / Ex_{tte} = (Ex_2 + Ex_{ac}) / (Ex_1 + W)$ $\varepsilon = Ex_{ntp} / Ex_{nts} = Ex_{ac} / (Ex_1 - Ex_2 + W)$ $\xi = Ex_{uts} / Ex_{tte} = Ex_2 / (Ex_1 + W)$ $Pot = Irr (1 - \varepsilon) + Efl$

Calentamiento con vapor:

لأسرعونه فتعرير المحاري الرافعا فر

ve: vapor de entrada; vc: vapor condensado

Balance de entalpia: Por el lado de la corriente de proceso $H_1 + Q = H_2$ Por el lado del vapor de calentamiento $H_{ve} = H_{vc} + Q$ Balance de exergia: $Ex_1 + Ex_{ve} = Ex_2 + Ex_{vc} + Irr$ Parámetros exérgicos: $Irr = Ex_1 + Ex_{ve} - (Ex_2 + Ex_{vc}) = Ex_{tte} - Ex_{tts}$ $Ex_{nts} = Ex_{ve} - Ex_{vc}$ $Ex_{ntp} = Ex_2 - Ex_1$ Efl = 0Pex = Irr $Ex_{uts} = Ex_2 + Ex_{vc}$ $\eta = Ex_{tts} / Ex_{tte} = (Ex_2 + Ex_{vc}) / (Ex_1 + Ex_{ve})$ $\varepsilon = Ex_{ntp} / Ex_{nts} = (Ex_2 - Ex_1) / (Ex_{ve} - Ex_{vc})$

$$\xi = Ex_{uts} / Ex_{tte} = \eta$$

$$Pot = Irr (1 - \varepsilon)$$

• Calentamiento en un horno:

2 1 ge

ge: gases de entrada; gs: gases de salida

Balance de entalpia:

Por el lado de la corriente de proceso Por el lado de los gases de combustión $H_1 + Q = H_2$ $H_{ge} = H_{gs} + Q$

Section and the

Balance de exergia:

 $Ex_1 + Ex_{ge} = Ex_2 + Ex_{gs} + Irr$

Parámetros exérgicos:

$$Irr = Ex_{1} + Ex_{ge} - (Ex_{2} + Ex_{gs}) = Ex_{tte} - Ex_{tts}$$

$$Ex_{nts} = Ex_{ge} - Ex_{gs}$$

$$Ex_{ntp} = Ex_{2} - Ex_{1}$$

$$Efl = Ex_{gs}$$

$$Pex = Irr + Efl$$

$$Ex_{uts} = Ex_{2}$$

$$\eta = Ex_{tts} / Ex_{tte} = (Ex_{2} + Ex_{gs}) / (Ex_{1} + Ex_{ge})$$

$$\varepsilon = Ex_{ntp} / Ex_{nts} = (Ex_{2} - Ex_{1}) / (Ex_{ge} - Ex_{gs})$$

$$\xi = Ex_{uts} / Ex_{tte} = Ex_{2} / (Ex_{1} + Ex_{ge})$$

$$Pot = Irr (1 - \varepsilon) + Efl$$

Reactor de combustión adiabático:

ca: combustible más aire; g: gases producto de la combustión

Balance de entalpia:

 $H_{ca} = H_g$

Balance de exergia:

$$Ex_{ca} = Ex_g + Irr$$

$$Irr = Ex_{ca} - Ex_g = Ex_{tie} - Ex_{tis}$$

$$Ex_{nts} = \nabla Ex_q = Ex_{q ca} - Ex_{q g}$$

$$Ex_{ntp} = \Delta Ex_f = Ex_{fg} - Ex_{fca}$$

$$Efl = 0$$

$$Pex = Irr$$

는 NG 전문 이상에 가장 것을 가운 것으로 ³

Parámetros exérgicos:

$$Ex_{uts} = Ex_g$$

$$\eta = Ex_{tts} / Ex_{tte} = Ex_g / Ex_{ca}$$

$$\varepsilon = Ex_{ntp} / Ex_{nts} = \Delta Ex_f / \nabla Ex_g$$

$$\xi = \nabla Ex_g / \Delta Ex_f = 1 / \varepsilon$$

$$Pot = Irr (1 - \varepsilon)$$

• Transferencia de masa en la columna:

Debido a que el condensador y el rehervidor de la columna Desisobutanizadora se analizaron como dos equipos independientes, se realiza a continuación el balance de energía y la determinación de los parámetros considerando tan sólo la transferencia de masa en la columna, como se muestra a continuación:

A1: primera alimentación; *A2*: segunda alimentación; *EL*: extracción lateral; *D*: producto de domo; *F*: producto de fondo; *RD*: reflujo del producto de domo; *RF*: reflujo del producto de fondo.

Balance de entalpia:
$$H_{Al} + H_{A2} + H_{RD} + H_{RF} = H_D + H_F + H_{EL}$$
Balance de exergia: $Ex_{Al} + Ex_{A2} + Ex_{RD} + Ex_{RF} = Ex_D + Ex_F + Ex_{EL} + Irr$ Parámetros exérgicos: $Irr = (Ex_{A1} + Ex_{A2} + Ex_{RD} + Ex_{RF}) - (Ex_D + Ex_F + Ex_{EL})$ $Irr = Ex_{tte} - Ex_{tts}$ $Ex_{nts} = \nabla Ex_f = Ex_f$ entrada $- Ex_f$ salida $Ex_{nts} = (Ex_{fA1} + Ex_{fA2} + Ex_{FD}) + (Ex_{fD} + Ex_{fF}) + Ex_{fEL})$ $Ex_{ntg} = \Delta Ex_q = Ex_q$ salida $- Ex_q$ entrada $Ex_{ntp} = (Ex_{qD} + Ex_{qF} + Ex_{qEL}) - (Ex_{qA1} + Ex_{qA2} + Ex_{qRD} + Ex_{qRF})$ $Efl = 0$ $Pex = Irr$ $Ex_{nts} = Ex_{tts}$ $q = Ex_{tts} / Ex_{tte}$ $q = Ex_{tts} / Ex_{tte}$ $q = Ex_{tts} / Ex_{tte} = \eta$ $Pot = Irr (1 - \varepsilon)$

Análisis global del sistema:

Las corrientes de entrada, salida y trabajo que se consideran en éste análisis de exergia global corresponden a las indicadas en la Figura 4.3.

Balance de entalpia: $\Sigma H_{corrientes de entrada} + \Sigma W = \Sigma H_{corrientes de salida}$

Balance de exergia: $\Sigma Ex_{corrientes de entrada} + \Sigma W = \Sigma Ex_{corrientes de salida} + Irr$

Parámetros exérgicos:

DS: $Irr = (\Sigma Ex \ corrientes \ de \ entrada} + \Sigma W) - (\Sigma Ex \ corrientes \ de \ salida) = Ex_{tte} - Ex_{tts}$ $Ex_{nts} = [(Ex_{C1} + Ex_{A3} - Ex_{G2}) + \Sigma W + (Ex_{LP1} - Ex_{LP2})]$ $- [Ex_{CW2} - Ex_{CW1}]$ $Ex_{ntp} = (Ex_{10} + Ex_{W2} + Ex_{12} + Ex_{18}) - (Ex_1 + Ex_2)$ $Efl = Ex_{CW2} - Ex_{CW1} + Ex_{G2}$ Pex = Irr + Efl $Ex_{uts} = Ex_{10} + Ex_{W2} + Ex_{12} + Ex_{18} + Ex_{LP2}$ $\eta = Ex_{tts} / Ex_{tte}$ $\varepsilon = Ex_{ntp} / Ex_{nts}$ $\xi = Ex_{uts} / Ex_{tte}$ $Pot = Irr (1 - \varepsilon) + Efl$

Es importante señalar que cuando se considera un aereoenfriador como condensador de la columna Desisobutanizadora, en lugar de un cambiador de calor que utiliza agua como medio de enfriamiento, las corrientes CWI y CW2 corresponden al aire de entrada y salida del aereoenfriador y; que es necesario incluir el consumo de energía del aereoenfriador como una corriente de trabajo (W_{E4-2}) adicional de entrada al sistema.

En el Apéndice D.4 se presentan los resultados completos del cálculo de los parámetros exérgicos del sistema bajo estudio y de cada uno de los equipos que lo integran, para las condiciones ambientales de referencia de Minatitlán, Jericó, Cusco y Québec.

4.3.3.- Análisis de exergia de la Columna Desisobutanizadora, al considerar las condiciones del medio del caso base (Minatitlán).

A partir de los parámetros exérgicos obtenidos para el sistema bajo estudio, al considerar las condiciones de referencia de Minatitlán, se observa que alrededor del 83% de las pérdidas totales de exergia corresponden a irreversibilidades termodinámicas, es decir, al incremento de entropia que se produce al llevar a cabo el proceso, y el 17% restante a las pérdidas de exergia por corrientes arrojadas al medio ambiente (ver Figura 4.4).

Figura 4.4.- Distribución de las pérdidas totales de exergia en la Columna Desisobutanizadora. Condiciones ambientales de Minatitlán.

La mayoría de las pérdidas de exergia por efluentes (89%) se deben alto contenido de energía que se pierde con los gases de salida del horno que sirve como rehervidor de la columna. El resto de las pérdidas de exergia por efluentes corresponden principalmente a la energía contenida en el agua de salida del condensador de la columna (10.6%) y en muy baja proporción al aire caliente de salida del aereoenfriador.

En la Figura 4.5 se observa que el equipo en el cual se presentan las mayores pérdidas de exergia por irreversibilidades es el horno, alrededor del 51% del total; esto sin considerar la reacción de combustión, en la cual se generan casi 32% de las pérdidas totales de exergia por irreversibilidades.
Impacto de las Condiciones Ambientales en el Análisis de Exergia Capítulo IV Página 172

Figura 4.5.- Porcentaje del total de pérdidas por irreversibilidades en cada equipo de la Columna Desisobutanizadora. Condiciones ambientales de Minatitlán.

A la columna Desisobutanizadora se alimenta la carga de butano a la planta y el producto de fondo de la columna Estabilizadora, la cual es una corriente que proviene de la misma torre Desisobutanizadora. A pesar de que se vuelven a mezclar dos corrientes que ya se separaron previamente, las irreversibilidades originadas por este hecho representan tan solo el 11% de las pérdidas totales de exergia por irreversibilidades, si se considera sólo la transferencia de masa en la columna, es decir, sin incluir al condensador y al rehervidor.

.

Las pérdidas de exergia por irreversibilidades en el condensador representan el 4.3% del total, y en el caso del enfriamiento con aire, del calentamiento con vapor y del cambio de presión en bombas y válvulas, estas pérdidas son casi despreciables en relación con el total.

Por otro lado, los procesos que presentan una mayor efectividad en su operación desde el punto de vista de uso de la energía son el bombeo del producto de domo y el de fondo de la columna (0.82 y 0.91 respectivamente), la reacción de combustión en los quemadores del horno (0.71) y en menor medida el calentamiento con vapor (0.51), como se muestra en la Figura 4.6. Esto significa que, la energía suministrada en estos equipos es aprovechada adecuadamente para producir el cambio necesario para que se cumpla el objetivo del proceso.

Los procesos en donde se presenta la menor efectividad son la transferencia de masa en la columna y la reducción de presión en las válvulas, en la cual la efectividad es nula ya que la expansión en una válvula es un proceso disipativo en donde la energía suministrada se pierde totalmente.

En el caso de la transferencia de masa en la columna de separación la efectividad es apenas de 0.1, lo cual se debe a que el incremento que se da en la exergia química del sistema (exergia neta producida) es muy pequeño en relación con la disminución de exergia física (exergia neta suministrada) que es necesario para que se lleve a cabo la separación. Cabe recordar que la exergia química de una mezcla es menor que la suma de la exergia química de los componentes que la conforman, por lo que en una separación siempre se obtiene un aumento en la exergia química. Debido a que en el horno las pérdidas de exergia por irreversibilidades y por efluentes son altas y que su efectividad es baja, es el equipo con el mayor potencial de mejoramiento del sistema (67.8%), como se muestra en la Figura 4.7. Se recomienda analizar la posibilidad de sustituir el horno por un cambiador de calor que utilice vapor como medio de calentamiento, ya sea de media o de alta presión, ya que la temperatura que se maneja en el fondo de la torre (111°C) es menor que la temperatura del vapor de media presión (270°C a 20 kg/cm² man.). Con esto se evitaría utilizar una corriente con un alto contenido de energía como son los gases producto de la combustión para producir el cambio relativamente pequeño que se requiere en el rehervidor de la columna de separación. O bien, si se decide utilizar el horno, se pueden utilizar los gases de salida para generar vapor en una caldera en lugar de enviarlos a desfogue, y así reducir las pérdidas de exergia por efluentes.

Figura 4.7.- Porcentaje del total del potencial de mejoramiento en cada equipo de la Columna Desisobutanizadora. Condiciones ambientales de Minatitlán.

Aunque las pérdidas de exergia por irreversibilidades en la reacción de combustión son altas, su potencial de mejoramiento es de 11.2% del total del sistema, debido a su alta efectividad. En este caso, podría resultar más eficiente utilizar como combustible un gas con un menor contenido de hidrógeno ya que la exergia química estándar de éste y del agua vapor que se produce en la reacción es inferior que la exergia química estándar de hidrocarburos y de los otros productos de la combustión (CO₂ y SO₂). El utilizar un combustible con menor contenido de hidrógeno provoca que disminuya la cantidad de agua vapor en los gases producto de la combustión, aumentando así la exergia química o trabajo útil de los gases y por consiguiente disminuyendo la diferencia entre la exergia del gas combustible y la de los gases producto, dando como resultado que las irreversibilidades sean menores. Lo anterior podría aumentar la efectividad, si es que la exergia neta producida por el incremento de exergia física se mantuviera igual, ya que la exergia neta suministrada disminuiría al ser igual a la disminución de exergia química del proceso.

En el caso de la transferencia de masa en la columna de separación, su potencial de mejoramiento (12.2% del total) representa prácticamente las pérdidas de exergia por irreversibilidades en este equipo, ya que no hay efluentes y la efectividad es muy baja, por lo que para reducir el aumento de entropía sería conveniente no mezclar el efluente del reactor de isomerización con la corriente de la que ya ha sido previamente separada.

El potencial de mejoramiento en el condensador de la columna corresponde al 6.2% del total del sistema. Para reducir las pérdidas totales de exergia en el condensador, es recomendable realizar un análisis de integración térmica con otras corrientes del proceso que por su nivel de temperatura pudieran absorber parte del calor que cede el producto de domo en el condensador. Aun cuando lo anterior requiere de un estudio de factibilidad técnico-económica, a simple vista, la propuesta reduciría las pérdidas de exergia por efluentes, las cuales son el 33.6% de las pérdidas totales de exergia en el equipo.

Cuando se considera un aereoenfriador como condensador de la Columna Desisobutanizadora, en lugar de un cambiador de calor que utiliza agua como medio de enfriamiento, la efectividad en el condensador aumenta de 0.34 a 0.41 (ver Apéndice D.4, Tabla D.15), debido a que la exergia neta producida aumenta por ser igual al flujo

Impacto de las Condiciones Ambientales en el Análisis de Exergia Capítulo IV Página 176

de exergia del aire caliente de salida del aereoenfriador, ya que la exergia del aire de entrada es cero. Sin embargo, dicha exergia neta producida es también la exergia que se pierde en la corriente de aire caliente arrojada al ambiente, la cual es mayor en el caso de un aereoenfriador que cuando se utiliza agua para la condensación; por lo que un aereoenfriador no sería un sustituto total adecuado de un condensador enfriado con agua, además de que por el bajo coeficiente de transferencia de calor del aire se requeriría de un enorme flujo de aire y por consiguiente de un aereoenfriador muy grande y costoso.

Al realizar el análisis de exergia del sistema de manera global cuando se utiliza un condensador que utiliza agua de enfriamiento, sin considerar la válvula V-2 y el aereoenfriador EC-1 (ver apéndice D.4, Tabla 16), la efectividad del proceso resulta de 0.016, el cual es muy bajo, y el potencial de mejoramiento de aproximadamente 140 MkJ/h. Para este mismo análisis, pero considerando que la condensación del producto de domo se realiza en un aereoenfriador, la efectividad se reduce a 0.005, mientras que el potencial de mejoramiento aumenta a 387.5 MkJ/h (apéndice D.4, Tabla 17), lo cual se debe al aumento considerable en las pérdidas de exergia por irreversibilidades.

and a start of the start of the

En este punto se puede decir que si se analiza el equipo como un solo bloque y al sistema de manera global, pueden surgir incongruencias. Esto es, si consideramos la condensación como un solo bloque, resulta que el aereoenfriador tiene un mejor desempeño que si se utiliza agua en la condensación. Sin embargo, cuando se realiza el análisis global del sistema, se obtienen mejores resultados al utilizar agua de enfriamiento.

4.3.4.- Efecto de las condiciones ambientales en el análisis exérgico de los equipos y del proceso bajo estudio.

En las Figuras 4.8, 4.9, 4.10 y 4.11 se muestra la variación en el valor de pérdidas de exergia por irreversibilidades y por efluentes, de efectividad y de potencial de mejoramiento, con respecto a su valor a las condiciones del caso base (Minatitlán),

cuando se consideran las condiciones ambientales de las ciudades de Jericó, Cusco, y Québec, para cada uno de los equipos que integran el sistema bajo estudio.

Desviación porcentual con respecto a las condiciones de Minatitlán

Figura 4.8.- Efecto de la variación de las condiciones del medio de referencia en las pérdidas de exergia por irreversibilidades en cada equipo y en el total del proceso.

Figura 4.9.- Efecto de la variación de las condiciones del ambiente en las pérdidas de exergia por efluentes en cada equipo y en el total del proceso.

Desviación porcentual con respecto a las condiciones de Minatitián

and a star of · 在于这些人的意思,这些人们是是一些人的意思。 and the second states aliteration (anglead)

 $(1, 0, 2, \dots, 0)$

Desviación porcentual con respecto a las condiciones de Minatitián

Figura 4.11.- Efecto de la variación de las condiciones ambientales en el potencial de mejoramiento de cada equipo y del total del proceso.

Como se señaló en el primer capítulo del presente trabajo, las pérdidas de exergia por irreversibilidades (Ecuación 1-17) son directamente proporcionales a la temperatura del medio y no dependen de otra condición. Esto se puede observar en la Figura 4.8, donde la desviación porcentual de las pérdidas de exergia por irreversibilidades con respecto a sus valores a las condiciones del medio normales es igual a la desviación por temperatura.

Sin embargo, lo anterior no sucede en el caso de los procesos de enfriamiento con agua y con aire, ya que las condiciones de operación de estas corrientes cambian al variar el medio, debido a que dependen directamente de la temperatura ambiente, presión atmosférica y humedad relativa del aire (agua de enfriamiento). De hecho, estos procesos son los que sufren un mayor cambio en sus parámetros exérgicos al cambiar las condiciones del medio. Por ejemplo, en Cusco, en donde la temperatura ambiental es 1.3% menor que en Minatitlán, las pérdidas de exergia por irreversibilidades en el condensador que utiliza agua como medio de enfriamiento aumentan 100% con respecto a su valor a condiciones normales. Por otra parte, en el caso del aereoenfriador, al suponer las condiciones del medio que prevalecen en Jericó (temperatura del medio 2.7% mayor que en Minatitlán), las irreversibilidades disminuyen 25% con respecto a las que se obtienen en este equipo a las condiciones de Minatitlán.

Cabe hacer notar que el condensador de la columna de separación y el aereoenfriador son los únicos dos equipos en los que, al aumentar la temperatura del medio, las pérdidas de exergia por irreversibilidades y el potencial de mejoramiento se reducen con respecto a sus valores a la temperatura ambiental normal.

Otro proceso cuyos valores de pérdidas de exergia por efluentes y efectividad varían de manera importante con las condiciones del medio es el calentamiento en el horno, que al igual que en el caso de la condensación con agua y del enfriamiento con aire, está en contacto con el ambiente por medio de los efluentes. Por ejemplo, cuando se consideran las condiciones de Québec, las pérdidas de exergia por efluentes y la efectividad en el calentamiento con los gases producto de la combustión aumentan

Impacto de las Condiciones Ambientales en el Análisis de Exergia

15.4% y 46.8%, respectivamente, con respecto a sus valores a las condiciones de Minatitlán.

La efectividad y el potencial de mejoramiento del calentamiento con vapor también cambian, aunque en menor medida que en los casos anteriores, de manera apreciable al variar las condiciones ambientales. En este caso al igual que en el de la condensación con agua está involucrada el agua líquida, sustancia cuya exergia cambia considerablemente al variar las condiciones del medio.

Como se mencionó en secciones anteriores, al variar las condiciones del medio de referencia, el cambio de exergia de la mayoría de las corrientes involucradas en la columna Desisobutanizadora está controlado por el cambio en el valor de su exergia química, excepto en los casos de las corrientes correspondientes a los gases producto de la combustión G1 y G2, al vapor de calentamiento LP1 y a las diferentes corrientes de aire, cuyos valores de exergia dependen principalmente de su exergia física. Ahora bien, la condición ambiental que tiene mayor efecto sobre el valor de exergia química es la temperatura, si es que la humedad relativa del aire no es muy baja, por lo que el siguiente análisis acerca del efecto de las condiciones ambientales en el valor de los parámetros exérgicos de cada tipo de equipo o proceso está centrado en el cambio de la temperatura ambiental, no obstante que serán comentados los casos en donde sea otra la condición que influya de manera importante en el valor de dichos parámetros.

Válvulas y bombas:

En relación con las válvulas se observa que al disminuir la temperatura (Cusco y Québec) y al aumentar la exergia de la corriente de proceso de salida más que lo que aumenta la exergia de la corriente de entrada a la válvula (ver Tabla 4.16), dismínuyen las irreversibilidades así como el potencial de mejoramiento ya que en el caso de las válvulas la efectividad es cero y no hay pérdidas de exergia por efluentes. En el caso de las bombas ocurre lo mismo, es decir, al disminuir la temperatura del medio se reducen las pérdidas de exergia por irreversibilidades al disminuir la diferencia de exergia entre

an geologic complete a sea conseque a de temperatura de 1904

las corrientes de proceso. Además, al aumentar la exergia de las corrientes se incrementa también la exergia neta producida y, como la exergia suministrada (potencia) no se modifica, la efectividad en este tipo de operación aumenta, disminuyendo así el potencial de mejoramiento.

Por lo tanto, la operación de las válvulas y bombas será más eficiente en lugares más fríos; como es el caso de Québec; en donde las irreversibilidades y el potencial de mejoramiento en la bomba de reflujo del producto de domo (GA-1) disminuyen hasta 14% y 26%, respectivamente, y la efectividad aumenta 3.2%, con respecto a sus valores a las condiciones ambientales normales.

• Enfriamiento con agua:

Cuando se consideran las condiciones ambientales de Jericó, las pérdidas de exergia por irreversibilidades en el condensador disminuyen casi 10% con respecto a su valor a las condiciones de Minatitlán, mientras que en Cusco estas pérdidas aumentan 100%. Esto se debe a que en el caso de Jericó el aumento en el valor de Ex_{tte} es menor que el aumento en el valor de Ex_{tte} provocando que las irreversibilidades disminuyan, mientras que en Cusco el aumento en el valor de Ex_{tte} , dando como resultado mayores pérdidas de exergia por irreversibilidades. Conviene señalar que en ambos casos tanto la exergia total de entrada como la exergia total de salida aumentan, ya que para cualquier cambio que se presente en las condiciones ambientales con respecto a las condiciones normales, la exergia del agua líquida aumenta al incrementarse su exergia química, y este incremento es mucho mayor que el cambio de exergia de otras corrientes (ver Tabla 4.16).

Ahora bien, en el caso de Jericó, el que el aumento en el valor de Ex_{tte} sea menor que el aumento en el valor de Ex_{tts} se debe a que la disminución en el valor de exergia de la corriente 5 de entrada al condensador (0.03%) es mayor que la disminución de exergia de la corriente 6 de salida del condensador (0.01%), con respecto a las condiciones de Minatitlán. Mientras que en Cusco, el aumento en la exergia de la corriente 5 de entrada

al condensador (0.295%) es ligeramente mayor que el aumento en la exergia de la corriente 6 de salida del equipo (0.287%), con respecto a sus valores a las condiciones del caso base; lo que provoca que el incremento en el valor de Ex_{tte} sea mayor que el aumento en el valor de Ex_{tte} .

Al modificarse las condiciones del medio, el incremento en el valor de exergia de la corriente de agua de enfriamiento de entrada al condensador siempre es mayor que el aumento que se presenta en la exergia de la corriente de agua de salida, por lo que la diferencia de exergia entre la corriente de agua a la salida y a la entrada al condensador, que equivale a la exergia neta producida y a las pérdidas de exergia por efluentes, siempre es menor que cuando se supone la temperatura ambiente de Minatitlán (25°C).

Por otro lado, al aumentar la temperatura ambiente (Jericó), la exergia neta suministrada disminuye, ya que la exergia de las corrientes de proceso disminuye con la temperatura, pero como la disminución del valor de Ex_{ntp} es mucho mayor que lo que se reduce la Ex_{nts} , la efectividad del condensador baja con respecto al caso base. Cuando la temperatura del medio disminuye (Cusco), el valor de Ex_{nts} aumenta al incrementarse la exergia de las corrientes de proceso y como la Ex_{ntp} disminuye independientemente del cambio de T_o , la efectividad del condensador disminuye también en Cusco.

Aun cuando la efectividad del condensador enfriado con agua disminuye en Jericó, el potencial de mejoramiento se reduce con respecto al caso base; lo cual se debe a que también disminuyen las pérdidas de exergia por irreversibilidades y por efluentes. En Cusco, por el contrario, el valor de *Pot* aumenta debido a que el valor de *Irr* se incrementa mucho y a que la efectividad se reduce, a pesar de que las pérdidas por efluentes disminuyen, en comparación con sus valores a las condiciones de Minatitlán.

Por lo tanto, desde el punto de vista de uso eficiente de la energía, la condensación de una corriente mediante agua de enfriamiento conviene llevarla a cabo en un lugar caliente y con humedad relativa alta como es el caso de Jericó, ya que la temperatura del agua de enfriamiento de entrada al condensador es más cercana a la temperatura del medio, provocando con esto que las pérdidas de exergia por efluentes e irreversibilidades sean menores. Cabe recordar que aproximadamente 34% de las pérdidas totales de exergia en el condensador son debidas al efluente. Sin embargo, al ser menor el acercamiento de temperaturas entre la corriente de proceso y el agua de enfriamiento, el área de intercambio de calor crece mucho, incrementándose la inversión del equipo.

Cuando se consideran las condiciones del medio de Jericó, las pérdidas de exergia por efluentes en el condensador disminuyen 77% con respecto a su valor a las condiciones de Minatitlán, y aunque su efectividad se reduce 66%, el potencial de mejoramiento en este equipo disminuye casi 22% con respecto a su valor a las condiciones normales. Con relación al área de intercambio de calor, ésta se incrementa de 1,740m², bajo las condiciones ambientales de Minatitlán, a 2,794 m² en Jericó, 61% más de área, considerando en ambos casos la misma carga de calor y el mismo flujo de agua.

In Enfriamiento con aire:
In Enfriamiento con aire:
In Enfriamiento con aire:
In the second secon

Al aumentar la temperatura del médio disminuye la exergia de todas las corrientes involucradas en el aereoenfriador, por lo que disminuyen los valores de exergia total de entrada y de salida; pero como la disminución en el valor de Ex_{tte} es mayor que la reducción en el valor de Ex_{tts} , la diferencia entre estas dos cantidades es menor con respecto a su valor a la temperatura ambiente normal y por lo tanto resultan menores las pérdidas de exergia por irreversibilidades. En los casos de Cusco y Québec, en donde la temperatura ambiente es menor que la temperatura normal, se incrementan los valores de Ex_{tte} y Ex_{tts} al aumentar la exergia de las corrientes con respecto a sus valores de Minatitlán, y como dicho incremento es mayor en la exergia total de entrada que en la exergia total de salida, las irreversibilidades aumentan con respecto al caso base.

Debido a que en el caso del enfriamiento con aire las pérdidas de exergia por efluentes y la exergia neta producida corresponden a la exergia del aire de salida, cuando se da un aumento en la temperatura del medio y por consiguiente se reduce la exergia del aire de salida por disminuir su exergia física, se reducen también los valores de *Efl* y Ex_{ntp} . Por otro lado, al mantenerse prácticamente constante el valor de potencia necesaria para el funcionamiento del aereoenfriador y disminuir la exergia neta suministrada. Sin embargo, la disminución en el valor de Ex_{nts} es mayor que la reducción en el valor de Ex_{ntp} , por lo que la efectividad en este equipo aumenta al aumentar la temperatura del medio; y como los valores de *Irr* y *Efl* disminuyen, el potencial de mejoramiento también disminuye.

Al igual que en el caso de la condensación con agua de enfriamiento, la operación de un aereoenfriador será más eficiente energéticamente entre mayor es la temperatura del medio. Por ejemplo, en el caso de Jericó las pérdidas de exergia por irreversibilidades y efluentes en el aereoenfriador se reducen 25% y 2.5%, respectivamente, con respecto a sus valores cuando se considera como medio de referencia Minatitlán, lo que provoca que aumente la efectividad en este equipo en 20% y disminuya el potencial de mejoramiento en 21%. Sin embargo, al igual que en el caso del condensador, el tamaño del equipo puede aumentar considerablemente entre menor es el acercamiento de temperaturas entre la corriente de proceso y el aire.

En la Figura 4.12 se muestra la variación de los parámetros exérgicos del condensador de la columna Desisobutanizadora al cambiar las condiciones ambientales, cuando la condensación del producto de domo se realiza en un aereoenfriador en lugar de en un cambiador de calor que utiliza agua como medio de enfriamiento.

a bara se a companya se a serie a companya da serie da serie da serie a serie da serie para da serie para da se A companya da serie d A companya da serie d

Al igual que en el aereoenfriador EC-1 que enfría la extracción lateral de la columna, si la condensación se realiza con aire, mientras mayor es la temperatura del medio menores son las pérdidas de exergia, mayor la efectividad del proceso y menor el potencial de mejoramiento.

an an an an an Arrange. An an an an an Arrange an Arrange

Al comparar el cambio en los parámetros exérgicos cuando aumenta la temperatura del medio, entre utilizar un condensador con agua y un aereoenfriador, se observa que la disminución en pérdidas por irreversibilidades y en el potencial de mejoramiento es mayor si se utiliza un aereoenfriador. Por otro lado, si se utiliza un aereoenfriador, al incrementarse la temperatura del medio, la efectividad aumenta en lugar de disminuir como ocurre en el caso de una condensación con agua. Lo anterior se debe a que como en un aereoenfriador el valor de Ex_{ntp} es igual a la exergia de la corriente de aire de salida y está disminuye poco con la temperatura en comparación con la disminución en el valor de Ex_{nts} , la efectividad aumenta; mientras que la Ex_{ntp} en el caso de la condensación con agua está dada por la diferencia entre la exergia del agua de salida y

de entrada, y como la exergia del agua cambia considerablemente con la temperatura, también el valor de Ex_{ntp} , cuya disminución es mayor que la reducción en Ex_{nts} al aumentar la temperatura, reduciéndose así la efectividad del proceso.

n na de la substituía.

en an shift build an an a' the secondari

Calentamiento con vapor:

Cuando la temperatura del medio se reduce, aumenta la exergia tanto de las corrientes de proceso y de vapor a la entrada como de las corrientes a la salida del calentador que utiliza vapor, con respecto a sus valores cuando se considera la temperatura normal de 25°C. La exergia del agua vapor de salida aumenta considerablemente con la disminución de la temperatura ambiente, debido a que su valor de exergia química aumenta significativamente, lo que provoca que el aumento en la exergia total de salida sea mucho mayor que el incremento de la exergia total de entrada, por lo que la diferencia entre estas dos cantidades, esto es, las irreversibilidades, se reducen con respecto a su valor a las condiciones del medio normales.

Al aumentar la exergia de todas las corrientes involucradas en el calentamiento con vapor cuando la temperatura disminuye, la exergia neta producida y suministrada también aumentan; sin embargo, debido a que el incremento del valor de Ex_{np} es mayor que el del valor de Ex_{nts} , la efectividad del equipo aumenta y, como las pérdidas por irreversibilidades disminuyen y no hay pérdidas por efluentes, el potencial de mejoramiento de este equipo se reduce.

(1,2,2,3) is the set of the se

Cuando se consideran las condiciones ambientales de Québec, las pérdidas por irreversibilidades disminuyen casi 14%, la efectividad aumenta 34% y el potencial de mejoramiento se reduce 44% en el calentador con vapor, con respecto a los valores obtenidos cuando se suponen las condiciones del caso base. Por consiguiente, el calentamiento con vapor es más eficiente entre menor es la temperatura del medio de referencia.

Calentamiento en un horno:

Al disminuir la temperatura del medio de referencia y aumentar la exergia de las corrientes de proceso y de los gases producto de la combustión, se incrementa la exergia total a la entrada y a la salida del horno y; como la exergia de los gases de salida del horno aumenta de manera apreciable al reducirse la temperatura ambiente, el aumento del valor de Ex_{tts} es mayor que el incremento de Ex_{tte} , por lo que las irreversibilidades disminuyen.

En el caso del calentamiento en el horno las pérdidas de exergia por efluentes son iguales a la exergia de los gases arrojados al ambiente, y como la exergia de esta corriente aumenta al disminuir la temperatura, el valor de *Efl* aumenta. Por otro lado, como al disminuir la temperatura ambiental aumenta la exergia de todas las corrientes involucradas en este equipo, la exergia neta producida y suministrada aumenta, pero como el valor de *Ex_{ntp}* se incrementa más que el valor de *Ex_{nts}*, la efectividad se eleva.

No obstante que, al considerar tanto las condiciones del medio de Cusco y de Québec, las pérdidas por irreversibilidades disminuyen, las pérdidas por efluentes aumentan y la efectividad se incrementa, con respecto al caso base, en el caso de Cusco el potencial de mejoramiento del horno aumenta, mientras que en Québec disminuye. Esto se debe a que en Cusco el incremento de las pérdidas por efluentes (10%) es mucho mayor que la reducción en pérdidas por irreversibilidades (1.5%), con respecto a las condiciones ambientales de Minatitlán, provocando que el valor de *Pot* aumente. En contraste, en el caso de Québec, el incremento del valor de *Efl* (15.4%) es cercano al decremento en las pérdidas por irreversibilidades (14.8%), por lo que, aunado a que la efectividad del equipo se incrementa bastante en el caso de Québec (47%), el potencial de mejoramiento en el horno se reduce, con respecto al caso base.

El que el incremento en el valor de *Efl* sea mayor que la reducción en el valor de *Irr* en el caso de Cusco, con respecto a las condiciones ambientales de Minatitlán, se debe a que la exergia de los gases de salida del horno (principalmente exergia física), además

de aumentar por disminuir la temperatura del medio, se incrementa aun más por ser menor la presión atmosférica en Cusco (0.67atm) en comparación con la presión en Minatitlán (1atm); lo que no ocurre en Québec, en donde la presión atmosférica es la misma que en Minatitlán.

el geologica de seres

.

Aun cuando a mayores temperaturas del medio, las pérdidas de exergia por efluentes se reducen en el calentamiento en un horno, la operación de este proceso será más eficiente entre menor sea la temperatura de referencia y mientras mayor sea la presión atmosférica, esto es, mientras más cerca del nivel del mar se encuentre este proceso. Al disminuir la temperatura del medio hasta -16°C con respecto a la temperatura ambiental normal de 25°C, el potencial de mejoramiento se reduce casi 15%.

Reacción de combustión:

Entre menor es la temperatura del medio mayor es la exergia de la corriente que contiene al gas combustible y al aire (CA) y de la corriente de gases producto de la combustión (G1), y como el cambio es mayor en la exergia de los gases que en la exergia de la corriente que entra al quemador, las irreversibilidades del sistema disminuyen.

· · · · · ·

and a second second

La exergia neta producida en una reacción química está dada por la diferencia entre la exergia física de los productos menos la de los reactivos. Al disminuir la temperatura del medio, permaneciendo la presión atmosférica constante e igual a la normal, la exergia física de los gases aumenta mientras que la exergia de la mezcla reactiva disminuye lo que da como resultado que el valor de Ex_{ntp} aumente. Sin embargo, cuando además de disminuir la temperatura ambiente, la presión atmosférica se reduce, la exergia física de la corriente de entrada al reactor aumenta, por lo que el aumento en el valor de exergia neta producida resulta insignificante.

Debido a que la diferencia entre la exergia química de la mezcla de gas combustible y aire y la exergia química de los gases producto (exergia neta suministrada), cambia muy poco al modificarse las condiciones del medio, la efectividad de la reacción aumenta cuando se incrementa la Ex_{ntp} por el decremento en la temperatura del medio. Al disminuir las pérdidas por irreversibilidades y aumentar la efectividad de la reacción, el potencial de mejoramiento disminuye. Si además de disminuir la temperatura, la presión atmosférica se reduce, la disminución en el valor de *Pot* es muy pequeño, por lo que la reacción de combustión tendrá un mejor desempeño en lugares más fríos pero en donde la presión atmosférica se mantenga cercana de la normal.

Cuando se consideran las condiciones ambientales de Québec, las pérdidas irreversibles en la reacción de combustión disminuyen casi 14%, su efectividad aumenta 5.5% y su potencial de mejoramiento se reduce hasta un 25%, con respecto a los valores obtenidos a las condiciones ambientales de Minatitlán.

Transferencia de masa en la columna:

Si se considera en el análisis sólo la transferencia de masa en la columna de separación sin incluir el condensador y el rehervidor, es decir, tan sólo las corrientes de entrada y salida del bote, las cuales están compuestas por hidrocarburos, se observa que al disminuir la temperatura del medio e incrementarse la exergia total de las corrientes de salida más que lo que lo hacen las de entrada, las irreversibilidades en este proceso disminuyen.

Sin embargo, al disminuir la temperatura ambiente, la efectividad de la separación también se reduce ya que la exergia neta producida (la cual es igual a la exergia química de salida menos la exergia química de entrada) se reduce, debido a que el incremento de exergia química a la entrada es mayor que el incremento de exergia química a la entrada de este proceso varía muy poco al cambiar las condiciones del medio y dado que al disminuir la temperatura ambiente las pérdidas de exergia disminuyen, el potencial de mejoramiento se reduce.

Por ejemplo en el caso de Québec, las pérdidas de exergia por irreversibilidades en la transferencia de masa disminuyen casi 14%, mientras que el potencial de mejoramiento se reduce 13.5%, aun cuando su valor de efectividad disminuye casi 2%, con respecto a los valores obtenidos en Minatitlán. Por lo tanto, es conveniente llevar a cabo la separación de una mezcla en lugares fríos, si es que se desea reducir irreversibilidades, pero si el objetivo es mejorar su efectividad, se deberá realizar su operación en lugares con temperatura ambiente elevada.

Análisis global del proceso:

En la Figura 4.13 se muestra el efecto de las condiciones ambientales sobre el análisis de exergia global del sistema bajo estudio, esto es, considerando un solo bloque y que el condensador utiliza agua como medio de enfriamiento. En este análisis no se incluye al aereoenfriador EC-1 y a la válvula V-2.

a na shekara na shekara na shekara na shekara ka shekara ka shekara ka shekar

Figura 4.13.- Efecto de las condiciones ambientales en el análisis global del sistema (Condensación del producto de domo con agua de enfriamiento).

No obstante que las pérdidas de exergia por efluentes disminuyen al considerar una temperatura del medio diferente a la normal (11% en el caso de Jericó y 7% en el caso de Cusco), el potencial de mejoramiento del sistema global aumenta, debido a la considerable disminución de las pérdidas por efluentes en el condensador de la columna de separación (ver Figura 4.9),. Aun en el caso de Cusco en donde la efectividad del proceso aumenta (1.5%), el potencial de mejoramiento se incrementa, esto por el aumento de las pérdidas totales de exergia. Por lo que, sobre la base de los resultados obtenidos, la columna Desisobutanizadora tendrá un mejor funcionamiento si las condiciones del medio son cercanas a las normales.

Al analizar el efecto de las condiciones ambientales sobre el valor de los parámetros exérgicos del sistema, pero considerando que se utiliza un aereoenfriador como condensador de la columna, se observa que mientras menor es la temperatura mejor es el funcionamiento del sistema desde el punto de vista de uso de energía (ver Figura 4.14).

Desviación porcentual con respecto a las condiciones de Minatitlán

En el caso de Québec, por ejemplo, la efectividad aumenta 60% y el potencial de mejoramiento disminuye 2%, con respecto a sus valores a las condiciones ambientales de Minatitlán. Cabe señalar que lo anterior no significa que el proceso de condensación con aire sea más eficiente que con agua de enfriamiento, ya que la efectividad a condiciones normales del sistema global que utiliza un condensador enfriado con agua es igual a 0.016, mientras que si se considera un aereoenfriador, la efectividad se reduce a 0.005; por lo que un aumento del valor de efectividad de 60% al disminuir la temperatura, cuando se considera que la condensación se lleva a cabo en un aereoenfriador, significa que la efectividad crece de 0.005 a 0.009, un valor de efectividad menor aún que el que se obtiene si se considera agua como medio de enfriamiento.

a a server d'art l'altress dit i en antitut a relevant a server trans a culture a letta a construct den serv servici d'esta d'art a culture d'arte a construction d'art d'art de la culture en la culture de la serve antide serv

化合物化合物 化合理分子合理分子合理分子合理分子合理分子合理分子合理分子

a de la companya de la Andréa de la companya de la Esta de la companya d

and the second second

CONCLUSIONES

El objetivo propuesto al desarrollar la tesis se satisfizo ampliamente, entre otras cosas, al desarrollar un programa para la determinación de la exergia química estándar de cualquier compuesto químico a partir de su reacción de formación y de las propiedades del medio ambiente de referencia, esto es, temperatura ambiente, presión atmosférica, humedad relativa del aire, concentración de CO₂ en el aire y salinidad del agua de mar, lo cual permitió estudiar el efecto de las condiciones ambientales en el valor de exergia química estándar de elementos y compuestos. Es importante mencionar que con el programa EXQCOMP se reproducen adecuadamente los valores publicados en la literatura de exergia química estándar a condiciones normales de los elementos de la Tabla Periódica así como de los compuestos analizados; y que dicho programa agiliza mucho los cálculos cuando se desea evaluar un sistema a condiciones ambientales diferentes a las normales.

La condición ambiental que tiene mayor efecto sobre el valor de exergia química estándar de un elemento o un compuesto es la temperatura, ya que de ella depende no sólo el valor de cambio de energía libre de Gibbs de la reacción de referencia, sino también la concentración de la especie de referencia en el medio. Dicho efecto es mayor si la sustancia está presente tal cual en el medio ambiente, como por ejemplo, el nitrógeno, el oxígeno, el agua, etc.

El efecto en el valor de exergia química estándar de un elemento por el cambio en la presión atmosférica, en la humedad relativa del aire y en la salinidad del agua de mar es pequeño; mientras que el efecto por el aumento en la concentración de CO₂ en el aire es prácticamente nulo.

Starship of the 198

Se recomienda seleccionar especies de la corteza terrestre como referencia en el cálculo de exergia química estándar de los elementos plata, oro, bario, calcio, cadmio, cobalto, cobre, mercurio, magnesio, manganeso, níquel, plomo, estroncio y zinc; ya que

Conclusiones

si se utiliza una especie de la hidrosfera se obtiene un comportamiento erróneo en la variación de la exergia química estándar de dichos elementos al cambiar la salinidad del agua de mar.

El agua es la sustancia cuya exergia química se modifica más al cambiar las condiciones ambientales, debido a que su concentración en el medio es la que más se altera al variar alguna de las propiedades del ambiente. El cambio en el valor de exergia química estándar del agua puede ser en el caso del vapor mayor de 50%, mientras que para el líquido mayor de 100%.

the average of the state of a set of the first state En el caso de los hidrocarburos, conviene mencionar que, a presión atmosférica y humedad relativa constantes, entre menor es la temperatura del medio mayor es la exergia química estándar, lo cual se debe a que el cambio en el valor de exergia química de este tipo de compuestos es controlado por la variación en el valor de Exa° del hidrógeno, elemento que se encuentra en mayor proporción en la molécula de un hidrocarburo. La exergia química estándar del hidrógeno y del agua vapor ---especie de referencia del hidrógeno--- aumentan al disminuir la temperatura por la reducción en la humedad absoluta del aire, si se considera la humedad relativa constante. Sin embargo, si se mantiene constante la humedad absoluta del aire al disminuir la temperatura, la exergia química estándar de los hidrocarburos se reduce por el aumento en la humedad relativa del aire, debido a la reducción de la presión de vapor del agua al disminuir la temperatura. Con lo anterior se concluye que al variar la temperatura, no es posible considerar tanto a la humedad relativa como a la humedad absoluta del aire constantes. va que alguna de las dos se altera. 一种"清楚"的"武臣","是'臣'的'''","是'臣'的'''","是'臣'的'''"。

Ahora bien, si se mantienen constantes la temperatura ambiente y la presión atmosférica, al disminuir la humedad relativa del aire y por consiguiente la humedad absoluta ya que la presión de vapor del agua se mantiene constante, mayor es la exergia química estándar de un hidrocarburo. Por otro lado, si la presión atmosférica disminuye, a temperatura y humedad relativa constantes, la exergia química estándar de un hidrocarburo disminuye, ya que aumenta la fracción molar del agua en el aire al

Conclusiones

reducirse la concentración del resto de las especies presentes en el aire. Entre más larga es la cadena de un hidrocarburo, un cambio en las condiciones ambientales tiene un menor efecto sobre su valor de exergia química.

Al realizar el análisis de exergia en cada uno de los equipos que integran la Columna Desisobutanizadora, se observa que los procesos que sufren un mayor cambio en sus parámetros exérgicos al variar las condiciones del medio son el enfriamiento con agua o con aire y el calentamiento en un horno, procesos que involucran corrientes cuyas condiciones de operación dependen directamente de las condiciones ambientales o bien están en contacto con el ambiente mediante los efluentes.

Aun cuando las pérdidas de exergia por irreversibilidades son directamente proporcionales a la temperatura del medio y no dependen de otra condición ambiental, en el caso de los procesos de enfriamiento con agua y aire, la variación porcentual de las pérdidas de exergia por irreversibilidades al cambiar el medio de referencia; no es la misma que la desviación porcentual por el cambio en la temperatura ambiental. Esto se debe a que las condiciones de operación del agua y del aire cambian al variar el medio, por lo que el sistema de enfriamiento ya no es el mismo bajo diferentes condiciones ambientales. Aun más, al incrementarse la temperatura del medio, las pérdidas de exergia por irreversibilidades en estos procesos disminuyen en lugar de aumentar y viceversa.

El que la utilización de la energía sea mejor a ciertas condiciones ambientales que a otras depende del tipo de proceso. En el caso del enfriamiento con agua y aire, entre mayor es la temperatura del medio, menores son las pérdidas de exergia por irreversibilidades y efluentes, sin embargo, al ser menor el acercamiento de temperaturas entre la corriente de proceso y el medio de enfriamiento, la inversión del equipo puede aumentar considerablemente. En el caso del enfriamiento con agua al aumentar la temperatura ambiente tan solo 8°C las pérdidas totales de exergia se reducen en alrededor de 32%, mientras que el área de intercambio de calor aumentaría en 61%.

Conclusiones

El calentamiento en el horno, en donde se presentan las mayores pérdidas por irreversibilidades y efluentes de todo el sistema, se lleva a cabo de manera más eficiente entre menor sea la temperatura del medio y mientras el proceso se encuentre más cerca del nivel del mar, a pesar de que se incrementan las pérdidas de exergia por efluentes. Por ejemplo, cuando la temperatura ambiente es de -16°C, la efectividad de la operación de este proceso aumenta 47%, mientras que las pérdidas de exergia en los gases que salen del horno al ambiente aumentan 15%, con respecto a sus valores a condiciones normales.

Al igual que en el caso del calentamiento en el horno, la reacción de combustión tiene un mejor desempeño en los lugares más fríos y más cercanos al nivel del mar analizados. Para las válvulas, bombas y el proceso de calentamiento con vapor, su efectividad aumenta mientras menor es la temperatura del ambiente. En cuanto a la transferencia de masa dentro de la columna de separación, las irreversibilidades se reducen cuando el proceso se lleva a cabo en lugares fríos.

Al analizar el sistema en forma global, se observa que en general se tiene un mejor desempeño si las condiciones del ambiente son cercanas a las normales. Por otro lado, si se considera que la condensación del producto de domo se realiza en un aereoenfriador, mientras menor es la temperatura mejor es el uso de la energía en el sistema, sin embargo, dicho aprovechamiento es menor que si se considera que la condensación se lleva a cabo con agua de enfriamiento.

Se sugiere realizar el estudio que se llevo a cabo en el presente trabajo para evaluar el efecto de las condiciones ambientales en el análisis de exergia de procesos tales como el secado y la desalinización del agua de mar, debido a que la operación de estos sistemas depende considerablemente de la temperatura del medio, de la presión atmosférica y de la humedad del aire.

El análisis de exergia es una metodología útil que permite detectar las irreversibilidades en un proceso, determinar la energía útil que se pierde por medio de las corrientes arrojadas al ambiente y encontrar los puntos en donde se puede mejorar el proceso. Se demuestra en el presente trabajo que el método de exergia permite también evaluar bajo cuáles condiciones ambientales se mejora la operación del sistema, desde el punto de vista del uso eficiente de la energía. Sin embargo, la decisión final sobre la localización y el diseño de un proceso depende también de otros factores, como son por ejemplo, el mercado, el costo de inversión del equipo y los costos de operación.

4.11.1.1.1

APÉNDICE A

A continuación se presentan los resultados generados con el programa desarrollado en el presente trabajo de tesis para la determinación de la exergia química estándar de cualquier compuesto químico a partir de la exergia química estándar de los elementos que lo componen (EXQCOMP), al considerar diferentes condiciones del medio ambiente a las que normalmente se suponen en el cálculo de exergia química estándar, es decir, temperatura de 25°C, presión de 1 atm, humedad relativa del aire de 0.7, concentración de dióxido de carbono de 345 ppmv, y salinidad del agua de mar de 35‰.

A.1.- Exergia química estándar de los elementos presentes en la atmósfera a diferentes valores de humedad relativa del aire (condiciones normales de temperatura y presión)

Ejercicio 1: $\phi = 0.1$

Las condiciones del medio especificadas son:

25.0 °C
1.0000 atm
345.0 ppmv
0.100
35.183 por mi

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

		Composición	de la especie	Ex	۹°
		(fracc	ión mol)	(kJ/	gmol)
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento
Ar(g)	Ar	0.9331E-02	0.9302E-02	11.595	11.595
C (g)	CO2	0.3450E-03	0.3440E-03	19.769	410.268
He (g)	He	0.5001E-05	0.4985E-05	30.264	30.264
Kr(g)	Kr	0.1000E-05	0.9970E-06	34.254	34.254
N2(g)	N2	0.7804E+00	0.7780E+00	0.622	0.622
Ne(g)	Ne	0.1800E-04	0.1795E-04	27.089	27.089
02 (g)	02	0.2099E+00	0.2093E+00	3.877	3.877
Xe(g)	Xe	0.9001E-07	0.8973E-07	40.222	40.222
H2 (g)	H20	0.0000E+00	0.3102E-02	14.317	240.968
D2 (g)	D 20	0.0000E+00	0.4822E-06	36.054	268.750

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS.-

Compuesto	Exq° (kJ/gmol)
CH4	841.410

Apéndice A

Página 200

Ejercicio 2: $\phi = 0.3$

Las condiciones del medio especificadas son:

.

Temperatura:	25.0 °C
Presión:	1.0000 atm
Concentración de CO2:	345.0 ppmv
Humedad relativa:	0.300
Salinidad:	35.183 por mil
	しかし コント かいしき しょう 一緒 一般 しきかく 一部に 長振 ひいきょうかい ない

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

		Composición d	de la especie	Exc	4°	
$\gamma \rightarrow \gamma \gamma$	and the second	(fracci	ión mol)	(kJ/0	gmol)	111 - A St.
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento	
Ar(g)	Ar	0.9331E-02	0.9244E-02	11.610	11.610	
C (g)	CO2	0.3450E-03	0.3418E-03	19.784	410.268	
He(g)	He	0.5001E-05	0.4954E-05	30.280	30.280	ean perek par
Kr(g)	Kr	0.1000E-05	0.9908E-06	34.269	34.269	
N2 (g)	N2	0.7804E+00	0.7731E+00	0.638	0.638	
Ne(g)	Ne	0.1800E-04	0.1783E-04	27.104	27.104	
02 (g)	02	0.2099E+00	0.2080E+00	3.893	3.893	
Xe(g)	Xe	0.9001E-07	0.8917E-07	40.238	40.238	
H2 (g)	H2O	0.0000E+00	0.9306E-02	11.594	238.237	
D2 (g)	D20	0.0000E+00	0.1447E-05	33.331	266.019	
		and the second		an a	a shi Qarar	영화 소문 전문 문문

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS.~

	e sur esta d		and the second	 	and the second second	100 A.S. 1 - A	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	•
Compuesto	Exq°	(kJ/gmol)					
CH4	6	335.948						

March March & Constraint and Archive Sciences (1996)

Ejercicio 3: $\phi = 0.5$

Las condiciones del medio especificadas son:

	Lo oppositionado som		و فيرد يندي و
Temperatura:	25.0 °C		
Presión:	1.0000 atm	and the second	117 A.
Concentración de CO2:	345.0 ppmv	and the second	1 Mar Harden and March 1999
Humedad relativa:	0.500		计标志 计按定字符
Salinidad:	35.183 por mil		
· · ·	in the second		en average de la constante de l

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

		the second se				
		Composición	de la especie	Ex	q°	
	•	(frace	ción mol)	(kJ/	gmol)	그는 문화가 같아.
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento	
Ar(g)	Ar	0.9331E-02	0.9186E-02	11.626	11.626	- 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14
C (g)	CO2	0.3450E-03	0.3397E-03	19.800	410.268	
He(g)	He	0.5001E-05	0.4923E-05	30.295	30.295	1.1
Kr(g)	Kr	0.1000E-05	0.9846E-06	34.285	34.285	• •
N2 (g)	N2	0.7804E+00	0.7683£+00	0.653	0.653	1 1 - ¹
Ne(g)	Ne	0.1800E-04	0.1772E-04	27.120	27.120	1. A. A. A.
02 (g)	02	0.2099E+00	0.2067E+00	3.908	3.908	1. T
Xe(g)	Xe	0.9001E-07	0.8861E-07	40.254	40.254	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
H2(g)	H20	0.0000E+00	0.1551E-01	10.327	236.963	1
D2 (g)	D20	0.0000E+00	0.2411E-05	32.065	264.745	

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS.-

Compuesto	Exq° (kJ/gmol)
CH4	833.400

Ejercicio 4: $\phi = 0.9$

Las condiciones del medio especificadas son:

Temperatura:	25.0 °C
Presión:	1.0000 atm
Concentración de CO2:	345.0 ppmv
Humedad relativa:	0.900
Salinidad:	35.183 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

		Composición d	de la especie	Ex	q°
		(fracc:	ión mol)	(kJ/	gmol)
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento
Ar(g)	Ar	0.9331E-02	0.9070E-02	11.657	11.657
C (g)	CO2	0.3450E-03	0.3354E-03	19.831	410.268
He(g)	He	0.5001E-05	0.4861E-05	30.327	30.327
Kr(g)	Kr	0.1000E-05	0.9722E-06	34.316	34.316
N2 (g)	N2	0.7804E+00	0.7586E+00	0.685	0.685
Ne(g)	Ne	0.1800E-04	0.1750E-04	27.151	27.151
02 (g)	02	0.2099E+00	0.2041E+00	3.940	3.940
Xe(g)	Хе	0.9001E-07	0.8750E-07	40.285	40.285
H2 (g)	H20	0.0000E+00	0.2792E-01	8.870	235.490
D2 (g)	D20	0.0000E+00	0.4340E-05	30,608	263.272

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUÍMICOS ESPECIFICADOS.-

Compuesto CH4

Exq° (kJ/gmol) 830.455

A.2.- Exergia química estándar de los elementos contenidos en el aire al considerar los diferentes valores de concentración en ppmv de CO2 (297.4, 305.2, 311.8, 326.1, 338.3 y 355) registrados entre los años de 1900 y 1990. (condiciones normales de temperatura y presión)

Ejercicio 1: 297.4 ppmv de CO₂ (1900)

Las condiciones del medio especificadas son:

Temperatura:	25.0 °C
Presión:	1.0000 atm
Concentración de CO2:	297.4 ppmv
Humedad relativa:	0.700
Salinidad:	35.183 por mi

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA .-

		Composición de la especie		Exq°	
		(fracción mol)		(kJ/	gmol)
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento
Ar(g)	Ar	0.933139E-02	0.912873E-02	11.641348	11.641348
C(g)	CO2	0.297434E-03	0.290975E-03	20.183225	410.636223
He (g)	He	0.500074E-05	0.489214E-05	30.310704	30.310704
Kr(g)	Kr	0.100015E-05	0.978428E-06	34.300209	34.300209
N2 (g)	N2	0.780416E+00	0.763467E+00	0.668996	0.668996
Ne(g)	Ne	0.180027E-04	0.176117E-04	27.135501	27.135501

1

Apéndice A						Página 202
				· · · · · · · · · · · · · · · · · · ·		
O2 (g) Xe (g) H2 (g) D2 (g)	02 Xe H20 D20	0.209931E+00 0.900134E-07 0.000000E+00 0.000000E+00	0.205372E+00 0.880585E-07 0.217141E-01 0.337523E-05	3.923803 40.269071 9.493369 31.230755	3.923803 40.269071 236.120670 263.903359	jan jak Polisi
EXERGIA QUIM	CA ESTANI	DAR DE LOS COM	PUESTOS QUIMICO:	S ESPECIFICA	DOS	
Compuesto CH4	Exq° f	(kJ/gmol) 332.085				
Ejercicio 2: 30	5.2 ppmv	de CO ₂ (1930)	n age an that the	· · · · · ·		
Las condicion	nes del me	edio especific	adas son:	a sa an t		
Temperatura: Presión: Concentració Humedad rel: Salinidad:	ón de CO2: ativa:	25.0 °C 1.0000 atm 305.2 ppmv 0.700 35.183 por	mil			
EXERGIA QUIM	ICA ESTANI	DAR DE LOS ELE	MENTOS PRESENTE	S EN LA ATMO	SFERA	
	•	Composición	de la especie	Ea	د م ً	

Carl March 1991

		Composición	de la especie	Ex	ຊິ .
		(frac	ción mol)	(kJ/(gmol)
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento
Ar(g)	Ar	0.933131E-02	0.912866E-02	11.641368	11.641368
C (g)	CO2	0.305263E-03	0.298633E-03	20.118824	410.571802
He (g)	He	0.500070E-05	0.489210E-05	30.310723	30.310723
Kr(g)	Kr	0.100014E-05	0.978420E-06	34.300229	34,300229
N2 (g)	N2	0.780410E+00	0.763461E+00	0.669016	0.669016
Ne(g)	Ne	0.180025E-04	0.176116E-04	27.135520	27.135520
02 (q)	02	0.209930E+00	0.205370E+00	3.923822	3.923822
Xe(q)	Xe	0.900127E-07	0.880578E-07	40.269090	40.269090
H2 (q)	H20	0.000000E+00	0.217141E-01	9.493369	236.120661
. D2 (q)	D20	0.00000E+00	0.337523E+05	31.230755	263.903350

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS.-

Exq[°], (kJ/gmol) is a protective state to the state of t Compuesto CH4 832.020

Ejercicio 3: 311.8 ppmv de CO₂ (1950)

Las condiciones del medio especificadas son:

Temperatura:	25.0 °C
Presión:	1.0000 atm
Concentración de CO2:	311.8 ppmv
Humedad relativa:	0.700
Salinidad:	35.183 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

	1	and the second		6	
• •		Composición	de la especie	Ex	°
		(fracción mol)		(kJ/gmol)	
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento
Ar(g)	Ar	0.933125E-02	0.912860E-02	11.641384	11.641384
C (g)	CO2	0.311872E-03	0.305099E-03	20.065730	410.518693
He (g)	He	0.500067E-05	0.489207E-05	30.310740	30.310740
Kr(g)	Kr	0.100013E-05	0.978414E-06	34.300245	34.300245
N2(g)	N2	0.780405E+00	0.763456E+00	0.669032	0.669032
Ne(g)	Ne	0.180024E-04	0.176114E-04	27.135537	27.135537
02 (g)	02	0.209928E+00	0.205369E+00	3.923838	3.923838

Xe(g)	Xe	0.900121E-07	0.880572E-07	40.269107	40.269107
H2(g)	H20	0.000000E+00	0.217141E-01	9.493369	236.120652
D2 (g)	D20	0.00000E+00	0.337523E-05	31.230755	263.903342

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS.-

Compuesto	Exq° (kJ/gmol)
CH4	831.967

Ejercicio 4: 326.1 ppmv de CO₂ (1970)

Las condiciones del medio especificadas son:

Temperatura:	25.0 °C
Presión:	1.0000 atm
Concentración de CO2:	326.1 ppmv
Humedad relativa:	0.700
Salinidad:	35.183 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

		Composición	de la especie	Exc	q°
		(frac	ción mol)	(kJ/gmol)	
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento
Ar(g)	Ar	0.933112E-02	0.912847E-02	11.641420	11.641420
C (g)	CO2	0.326129E-03	0.319046E-03	19,954925	410.407852
He(g)	He	0.500060E-05	0.489200E-05	30.310775	30.310775
Kr(g)	Kr	0.100012E-05	0.978400E-06	34.300280	34.300280
N2(g)	N2	0.780394E+00	0.763445E+00	0.669067	0.669067
Ne(g)	Ne	0.180022E-04	0.176112E-04	27.135572	27.135572
02 (g)	02	0.209925E+00	0.205366E+00	3,923874	3.923874
Xe(g)	Xe	0.900108E-07	0.880560E-07	40.269142	40.269142
H2(g)	H2O	0.000000E+00	0.217141E-01	9.493369	236.120635
D2 (g)	D20	0.00000E+00	0.337523E-05	31.230755	263,903324

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS .-

Compuesto	Exq° (kJ/gmol)
CH4	831.856

Ejercicio 5: 338.3 ppmv de CO₂ (1980)

Las condiciones del medio especificadas son:

Temperatura:	25.0 °C
Presión:	1.0000 atm
Concentración de CO2:	338.3 ppmv
Humedad relativa:	0.700
Salinidad:	35.183 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

		Composición de la especie		Exq°			
Elemento Especie		(frace	ción mol)	(kJ/gmol)			
		Aire seco	Aire húmedo	Especie	Elemento		
Ar(g)	Ar	0.933100E-02	0.912836E-02	11.641450	11.641450		
C(g)	C02	0.338296E-03	0.330949E-03	19.864128	410.317024		
He(g)	He	0.500054E-05	0.489194E-05	30.310805	30.310805		
Kr(g)	Kr	0.100011E-05	0.978388E-06	34.300311	34.300311		
N2(g)	N2	0.780384E+00	0.763436E+00	0.669097	0.669097		
Ne(g)	Ne	0.180019E-04	0.176110E-04	27.135602	27.135602		
02 (g)	02	0.209923E+00	0.205364E+00	3.923904	3,923904		
Xe(g)	Xe	0.900097E-07	0.880549E-07	40.269172	40.269172		

H2 (g) H2O D2 (g) D2O	0.000000E+00 0.000000E+00	0.217141E-01 0.337523E-05	9.493369 31.230755	236.120620 263.903309	· · · · ·
EXERGIA QUIMICA ESTAN	DAR DE LOS COMP	UESTOS QUIMICOS	ESPECIFICA	DOS	
Compuesto Exq [°]	(kJ/gmol) 831 765		· · · ·		a di serie d
	001.700			·	
Ejercicio 6: 355 ppmv de	e CO ₂ (1990)				
Las condiciones del m	edio especifica	das son:			
Temperatura:	25.0 °C	$(1-2) = -\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}$	** 1997 -	an Na Shakara an Arab	$(1, \dots, 1) \in \mathcal{I}_{n+1}^{+}(0, 1)$
Presión:	1.0000 atm		· · · .		t star geben.
Concentración de CO2 Humedad relativa:	: 355.0 ppmv 0.700		ender for der Solder er ender	·	
Salinidad:	35.183 por m	il	an sainin a An sainin an	and a second second Second second	n an ann an Anna. An Anna Anna Anna Anna
EXERGIA QUIMICA ESTAN	dar de los elem	ENTOS PRESENTES	EN LA ATMO	SFERA	an tagt i 1919. An
	Composición	de la especie	Ex		10 - 10° a A
	(fracc	ión mol)	(kJ/	gmol)	
Elemento Especie Ar(g) Ar	Aire seco 0.933085E-02	Aire humedo $0.912821E-02$	LSpecie 11.641491	Elemento 11.641491	
C (g) CO2	0.355032E-03	0.347322E-03	19.744435	410.197290	e forst and a second
He(g) He	0.500045E-05	0.489186E-05	30.310847	30.310847	
Kr(g) Kr	0.100009E-05	0.978372E-06	34.300352	34.300352	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
N2(g) $N2$	0.780371E+00 0.190016E-04	0.7634236+00	0.669139	27 135644	
$O^2(\alpha)$ O^2	0.1000105+04	0.1781076-04	3 923945	3 923945	
Xe(a) Xe	0.900082E-07	0.880534E-07	40.269214	40.269214	• • • • •
H2 (g) H2O	0.000000E+00	0.217141E-01	9.493369	236.120599	
D2 (g) D2O	0.000000E+00	0.337523E-05	31,230755	263.903288	
EXERGIA QUIMICA ESTAN	DAR DE LOS COMP	UESTOS QUIMICOS	ESPECIFICA	DOS	en e
Compuesto Exq [°]	(kJ/gmol)	an an 1999 an thui an Araba an	- i,		
CH4	831.646			(and a start of the start of th	
				• *:	
			n transformation and the second	annan Alber	terse so
A.3 Exergia químic	a estándar de	los elementos	s contenid	os en la hie	drosfera al
considerar una salinio	lad de 40‰. (col	ndiciones normale	es de tempe	ratura y presió	n)
			ere Kanalari atau atau	÷ .	n in de la seconda de la s Esta de la seconda de la se
			ter en ser en	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	e in the shirt of
Las condiciones del m	edio especifica	das son:			en and and a set of All the set of a set
Temperatura: Presión:	25.0 °C			, ala a al	an an Ataba
Concentración de CO2	: 345.0 ppmv				
Humedad relativa:	0.700				
Salinidad:	40.000 por 1	<u>nt</u>	· :		
EXERGIA QUIMICA ESTAN	DAR DE LOS ELEM	IENTOS CONTENIDO	S EN EL AGU	JA DE MAR	
Fracción masa y mola	lidad de las es	pecies (S=40.00	0 por mil):	н 1 - А.	
ESPECIE a/as	w amol/kaH20		alasu	amol/kau2	n ·
AgC12- 0.528E	-09 0.307E-08	HAs042-	0.594E-0	0.442 E - 0	7
H2As04- 0.432E	-09 0.319E-08	As043-	0.234E-1	L1 0.175E-10	0
				· · · · · · · · · · · ·	÷.,
	· · · · · ·	· -			

_

Apéndice A

AuCl2-	0.170E-10 ·	0.661E-10	B (OH) 3	0.232E-04	0.391E-03	,
B (OH) 4-	0.557E-05	0.736E-04	Ba2+	0.215E-07	0.163E-06	
BaSO4	0.406E-08	0.181E-07	BiO+	0.245E-10	0.113E-09	
Br-	0.765E-04	0.997E-03	HCO3-	0.134E-03	0.229E-02	
CO32-	0.553E-05	0.961E-04	CO2	0.736E-06	0.174E-04	
Ca2+	0.426E-03	0.111E-01	CaHCO3+	0.421E-05	0.434E-04	
CaCO3	0.854E-05	0.889E-04	CaB(OH)4+	0.131E-05	0.115E-04	
cdc12	0.139E-10	0.790E-10	Cd2+	0.409E-12	0.379E-11	
cdCl+	0.873E-11	0.615E-10	CdC13-	0.123E-10	0.588E-10	1.1
CdOHC]	0.967E-12	0.611E-11	CdBr+	0.778E-13	0.421E-12	1 A.
CdC03	0.698E-13	0.421E - 12	CdSO4	0.843E-13	0.421E-12	
c1-	0.220E-01	0.646E+00	Co2+	0.443E-09	0.784E-08	
Cet	0.341E-09	0 267E-08	Cu2+	0.509E - 10	0.835E-09	
CUONA	0.341E-09	0 441E-08	CuCO3	0 306E-08	0.258E-07	1.1
CUONT	0.8668-08	0.7788-07	CuCl+	0.6578-09	0 6925-08	
Cuonei cuclà	0.2468-09	0.1018-08	CuCl3-	0.1368-09	0.0020 00	. *
	0.2405-09	0.1916-00	Eucro F-	0.1308-05	0.0335-05	
	0.1106-09	0.1905-09	т. Со. 171	0.00000-00	0 1720 05	
Mgr+	0.1096-03	0.40/6-04	Uart Nacl2	0.9056-07	0.1736-05	
HgC142-		0.3005-09	Hycis-	0.2096-10	0.7008-10	
HgC12	0.4626-11	0.17/E = 10	HGBTZ Hardlan	0.2046-12	0.5906~12	
HgClBr	0.19/E-11	0.6495 - 11	HGCIZBr-	0.8566-11	0.254E-10	
HgC13Br2-		0.7265-10	HGCIBEZ-	0.1126-11	0.2956-11	
HgC12Br22-	0.14/6-11	0.354E-11	HOHCI	0.28/E-12	0.118E-11	
103-	0.1005-06	0.59/6-06	K+	0.4486-03	0.1198-01	e 11
KHCO3	0.581E-07	0.604E-06	KCO3-	0.5/5E-0/	0.604E-06	
Li+	0.1936-06	0.2908-04	Mg2+	0.135E-02	0.578E-01	
MgHCO3+	0.515E-05	0.629E-04	MgCO3	0.509E-05	0.629E-04	÷
MgB (OH) 4+	0.113E-05	0.115E-04	Mn2+	0.455E-09	0.862E-08	
Mo042-	0.190E-07	0.123E-06	Na+	0.120E-01	0.541E+00	
NaHCO3	0.224E-05	0.277E-04	NaCO3-	0.221E-05	0.277E-04	
Ni2+	0.750E-08	0.133E-06	HPO42-	0.512E-07	0.555E-06	
H2P04-	0.150E - 08	0.162E-07	CaH2PO4+	0.398E-09	0.303E-08	
MgH2PO4+	0.353E-09	0.303E-08	CaHPO4	0.150E-06	0.115E-05	4. S.
MgHPO4	0.133E-06	0.115E-05	PO43-	0.706E - 10	0.774E-09	
CaPO4-	0.314E-07	0.242E-06	MgPO4-	0.277E-07	0.242E-06	ete fia sut
PbC12	0.130E-10	0.484E-10	Pb2+	0.102E-11	0.514E-11	
PbOH+	0.251E-11	0.117E-10	PbCl+	0.503E-11	0.216E-10	
PbHCO3+	0.412E - 12	0.160E-11	PbC03	0.117E-12	0.457E-12	بې 10 11 - 12
PbSO4	0.166E-12	0.572E-12	PbCl3-	0.317E-11	0.105E-10	
PbC142-	0.138E-11	0.412E-11	PbOHCl	0.251E-11	0.101E-10	1100
PbBr+	0.473E-13	0.171E-12	Rb+	0.136E-06	0.166E-05	
SO42-	0.130E-02	0.141E-01	CaSO4	0.126E-03	0.963E-03	$(M, n) = \{0, 1, \dots, n\}$
KSO4-	0.189E-04	0.146E-03	MgSO4	0.572E-03	0.495E-02	
NaSO4-	0.151E-02	0.132E-01	Se042-	0.185E-09	0.135E-08	
Sr2+	0.833E-05	0.990E-04	SrSO4	0.194E-05	0.110E-04	
UO2 (CO3) 34-	0.709E-08	0.164E-07	WO42-	0.153E-09	0.644E-09	•
2n2+	0.119E-08	0.190E-07	ZnOH+	0.214E-09	0.271E-08	
ZnHCO3+	0.429E-10	0.353E-09	ZnCO3	0.468E-09	0.389E-08	1
ZnSO4	0.347E-09	0.224E-08	ZnCl+	0.505E-08	0.522E-07	
ZnCl2	0.237E-08	0.181E-07	ZnCl3-	0.330E-09	0.200E-08	
ZnC142-	0.539E-09	0.271E-08	ZnOHC1	0.166E~08	0.147E~07	

Fuerza Iónica = 0.77491 gmol/kgH20

pH= 8.0801 (en escala molal)

Coeficientes de actividad de los iones (escala molal):

ION	GAMA	ION	GAMA
H+	0.72545	Ag+	0.50634
Au+	0.50634	Ba2+	0.18186
BiO+	0.50634	Ca2+	0.20629
Cd2+	0.06810	Co2+	0.21238

Cs+	0.55655	Cu2+	0.18270
Mg2+	0.23277	Hg2+	0.06564
K+	0.60403	Li+	0.73154
Mn2+	0.21857	Na+	0.64610
Ni2+	0.21680	Pb2+	0.18862
Rb+	0.58877	Sr2+	0.20314
U022+	0.25031	Zn2+	0.19565
OH-	0.61673	C1-	0.70054
HAsO42-	0.12716	H2A304-	0.53636
As043-	0.01286	B (OH) 4-	0.36081
SO42~	0.11899	Br-	0.73114
HCO3-	0.54419	CO32-	0.04034
F-	0.56261	103-	0.50566
Mo042-	0.06547	HPO42-	0.10858
H2PO4-	0.48410	PO43-	0.01159
Se042-	0.06547	W042-	0.06547

Coef. de actividad de B(OH)3 : 1.20335

EXERGIA QUIMICA ESTANDAR DE CADA ELEMENTO:

Elemento	Exq° (kJ/gmol)	Elemento	Exq° (kJ/gmol)	
As(s)	492.014	B(s)	627.765	
Br2(1)	99 885	C12(g)	122.580	· · · . :
Cs(s)	404.548	I2(s)	174.790	
K(s)	366.599	Li(s)	392.606	
Mo(s)	730.875	Na(s)	336.585	
P(s)	860.734	Rb(s)	388.632	
S(S)	608.749	Se(s)	347.069	
W(s)	828.003	1. J.		
			and the second	i.

A.4.- Exergia química estándar de los elementos al considerar valores de temperatura del medio diferentes a la normal.

Ejercicio 1: $T = 50^{\circ}C$

Las condiciones del medio especificadas son:

Temperatura:	50.0 °C
Presión:	1.0000 atm
Concentración de CO2:	345.0 ppmv
Humedad relativa:	0.700
Salinidad:	35.183 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

		Composición d	de la especie	Ex	q°	
		(fracc:	(fracción mol)		(kJ/gmol)	
Elemento	Especie	Àire seco	Aire húmedo	Especie	Elemento	
Ar(g)	Ar	0.9331E-02	0.8536E-02	12.798	12.798	
C (g)	CO2	0.3450E-03	0.3156E-03	21.657	411.674	
He (g)	He	0.5001E-05	0.4575E-05	33.033	33.033	
Kr(g)	Kr	0.1000E-05	0.9149E-06	37.357	37.357	
N2 (g)	N2	0.7804E+00	0.7139E+00	0.905	0.905	
Ne(g)	Ne	0.1800E-04	0.1647E-04	29.591	29.591	
02 (g)	02	0.2099E+00	0.1920E+00	4.433	4.433	
Xe(g)	Xe	0.9001E-07	0.8234E-07	43.826	43.826	
H2 (g)	H20	0.0000E+00	0.8517E-01	6.618	231.881	
D2 (g)	D20	0.0000E+00	0.1324E-04	30.178	261.371	

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN EL AGUA DE MAR.-

Fracción masa y molalidad de las especies (S = 35.183 por mil):

ESPECTE G/GSW GMOT/KGH2O ESPECTE G/GSW GI	mol/kgH2O
AgC12- 0.464E-09 0.269E-08 HAsO42- 0.522E-08	0.387E-07
H2AS04- 0.380E-09 0.280E-08 AS043- 0.206E-11	0.154E-10
Aucl2- 0.150E-10 0.579E-10 B(OH)3 0.204E-04	0.342E-03
B(OH)4- 0.490E-05 0.644E-04 Ba2+ 0.189E-07	0.143E-06
Bas04 0.357E-08 0.158E-07 BiO+ 0.215E-10	0.992E-10
Br = 0.673E - 04 0.873E - 03 HCO3 = 0.118E - 03	0.201E-02
CO32- 0.487E-05 0.841E-04 CO2 0.647E-06	0.152E-04
Ca2+ 0.375E-03 0.969E-02 CaHCO3+ 0.371E-05	0.380E-04
$C_{2}C_{0}$ 0.751E-05 0.778E-04 CaB(OH)4+ 0.115E-05	0.100E-04
CdC12 0.122E-10 0.692E-10 Cd2+ 0.360E-12	0.332E-11
CdC1+ 0.768E-11 0.539E-10 CdC13- 0.109E-10	0.515E - 10
$\begin{array}{cccccccc} cccccccccccccccccccccccccccc$	0.3698-12
CdCO2 = 0.614F - 13 = 0.369F - 12 = CdSO4 = 0.742F - 13	0 3698-12
Cl_{-} 0.194E-01 0.566E+00 Co2+ 0.390E-09	0.686E-08
C_{r+} 0.300F-09 0.234F-08 Cu2+ 0.448E-10	0.731E - 09
$C_{\rm VOWL}$ 0.300E-09 0.254E-08 CuC03 0.269E-08	0.7315 07
C_{10017} 0.3622 09 0.6912 07 C_{107} 0.5782 09	0.2255 01
(10HCI 0.702E-00 0.001E 07 CuCli 0.070E 09 0.0012 0.012E	0.00000000
$C_{1}C_{1}C_{2}$ 0.21/E-09 0.16/E-00 $C_{1}C_{2}C_{2}$ 0.120E-09	0.7316-02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1526-05
$H_{\rm H}$ ~ H_{\rm H} $H_{\rm H}$ ~ H_{\rm H} $H_{\rm H}$ ~ H_{\rm H} $H_{\rm H}$ $H_{\rm H}$ $H_{\rm H}$ $H_{\rm H}$ ~ H_{\rm H} $H_{\rm H}$ ~ H_{\rm H} H ~ H_{\rm H} $H_{\rm H}$ ~ H_{\rm H} H	0.6206-10
HgC12 $0.406E-11 0.155E-10$ HgBr2 $0.180E-12$	0.5176-12
HgclBr 0.173E-11 0.568E-11 Hgcl2Er- 0.753E-11	0.2226-10
HgCl3Br2- 0.23/E-10 0.636E-10 HgClBr2- 0.98/E-12	0.258E-11
HgC12Br22- 0.129E-11 0.310E-11 HgOHCI 0.252E-12	0.103E-11
103 - 0.882E - 07 0.523E - 06 K + 0.394E - 03	0.104E-01
KHCO3 0.511E-07 0.529E-06 KCO3- 0.506E-07	0.529E-06
Li+ 0.170E-06 0.254E-04 Mg2+ 0.119E-02	0.506E-01
MgHCO3+ 0.453E-05 0.551E-04 MgCO3 0.448E-05	0.551E-04
MgB(OH) 4+ 0.997E-06 0.100E-04 Mn2+ 0.400E-09	0.755 E - 08
MoO42- 0.167E-07 0.108E-06 Na+ 0.105E-01	0.474E+00
NaHCO3 0.197E-05 0.243E-04 NaCO3- 0.194E-05	0.243E-04
Ni2+ 0.660E-08 0.117E-06 HPO42- 0.450E-07	0.486E-06
H2PO4- 0.132E-08 0.141E-07 CaH2PO4+ 0.350E-09	0.265E-08
MgH2P04+ 0.310E-09 0.265E-08 CaHP04 0.132E-06	0.101E-05
MgHP04 0.117E-06 0.101E-05 PO43- 0.621E-10	0.677E-09
CaPO4- 0.276E-07 0.212E-06 MgPO4- 0.244E-07	0.212E-06
PbC12 0.114E-10 0.423E-10 Pb2+ 0.900E-12	0.450E-11
PbOH+ 0.221E-11 0.102E-10 PbCl+ 0.443E-11	0.189E-10
PbHco3+ 0.362E-12 0.140E-11 PbCo3 0.103E-12	0.400E-12
Pbso4 0.146E-12 0.500E-12 PbCl3- 0.278E-11	0.920E-11
PbCl42- 0.121E-11 0.360E-11 PbOHCl 0.221E-11	0.880E-11
PbBr+ 0.416E-13 0.150E-12 Rb+ 0.120E-06	0.146E-05
S042- 0.115E-02 0.124E-01 CaSO4 0.111E-03	0.843E-03
KS04- 0.166E-04 0.128E-03 MgS04 0.503E-03	0.433E-02
NaSO4- 0.133E-02 0.116E-01 SeO42- 0.163E-09	0.118E-08
Sr2+ 0.733E-05 0.867E-04 SrS04 0.171E-05	0.963E-05
UO2(CO3)34- 0.624E-08 0.144E-07 WO42- 0.135E-09	0.564E-09
Zn2+ 0.105E-08 0.166E-07 ZnOH+ 0.188E-09	0.237E-08
ZnHCO3+ 0.377E-10 0.309E-09 ZnCO3 0.411E-09	0.340E-08
ZnSO4 0.305E-09 0.196E-08 ZnCl+ 0.444E-08	0.457E-07
ZnC12 0.209E-08 0.159E-07 ZnC13- 0.290E-09	0.175E-08
ZnC142- 0.474E-09 0.237E-08 ZnOHCl 0.146E-08	0.129E-07

Fuerza Iónica = 0.67818 gmol/kgH20

pH= 7.8678 (en escala molal)
OsO4

PdO

PtO2

0.339E-12

0.637E-10

0.176E-10

77.14

63.08

66.53

Página 208

	uobiviuuu				e North		$(A_{i}) = (A_{i})^{A_{i}} (A_{i})^{A_{i}}$
ION	GAMA		ION	GAMA			
H+	0.72188	$(T_{ij})_{i \in \mathbb{N}} \to T_{ij}$	Aq+	0.52308	and the first		10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
A11+	0.52308		Ba2+	0.18871			
BiO+	0 52308		Ca2+	0.21121	1999 - 19		
Cd2+	0.02500	$(A_{1},A_{2},A_{3},A_{$	Co2+	0 21683	the second second	1 A 1	1. A.
Cat	0.07094		Cu2+	0 18022	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	4	and the second second
Ma21	0.00900		Uu2T	0.10922	1		2. 16
Mg27	0.23300		nyzt	0.07975		5. T.	
KT N O I	0.61435		71-7 7	0.72033	1	1. 1 A	in taken
MINZ+	0.22392	and a start	Nat	0.05270	• •	1. 1	
N12+	0.22100		PDZ+	0.19603			
Rb+	0.60004		Sr2+	0.20867			
U022+	0.25250		Zn2+	0.20317	and the second		and a second
OH-	0.62512		C1-	0.70256		an a	
HAsO42-	0.13834		H2AsO4-	0.55369			
As043-	0.01511		B (OH) 4-	0.38451			· · · · ·
S042-	0.12848		Br-	0.72970	1997 - 1997 -	a di seconda di second Seconda di seconda di se	
нсоз-	0.55852	÷ • • *	C032-	0.04545			· · · ·
F-	0.57638		I03-	0.52254	an a		
Mo042-	0.07463		HPO42-	0.11993	e pre its		
H2P04-	0.50322		P043-	0.01377			
Se042-	0.07463	and a start	W042-	0.07463			
		1997 - N. S.	1111 - K.C. (M.		· ;	1	
Coef, de	actividad de B(OH13 :	1.44673	1. A. A. A.	1997 - Ale Ale	Sec. 1	
0001. 40	doorvraad de Di	011, 0	11110/0	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		2010 B	
EVERGIA OF	ITMTCA POTANDAD	DE CADA	ET EMENTO.		· · ·		sector and
DVDVQIU OC	THICK DIMUM	DI CADA		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	gen i de Ag	. 44 - 19	S. Sugar
Flowerto	Terrar ⁰ / le T / and		Flomento	Elter ^o (le T)	(mno1)		
Plemenco	EXQ ~ (KJ/GII		Elemenco	EVG (VO)	giior)	.*	a ser de la ser
AS(S)	490.475		B(S)	626.1	140		1.111
Br2(1)	110.014		C12(g)	126.9	38	5 A.	
CS(S)	407.254	· · ·	12(S)	1/3.7	/44	· • •	
K(s)	365.861		Li(s)	391.8	325		
Mo(s)	729.545		Na(s)	334.2	298		
P(s)	857.721	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	Rb(s)	390.0)17		
S(s)	604.753		Se(s)	346.9	93		
W(s)	824.961					· · ·	and a second sec
EXERGIA QU	JIMICA ESTANDAR	DE LOS E	LEMENTOS CON	TENIDOS EN I	LA CORTEZA	TERRESTRE	
			1 w 1				n an an Araba. An t-an an Araba, an an Araba, an Araba.
Fracción m	nolar y exergia	química	estándar de	las especies	s de refer	encia:	
			2 N				
Especie	Xi	Exqi	Especi	e	Xi	Exqi	44
		(kJ/mol)	· · · ·			(kJ/mol)	5 S.
AgCl	0.100E-08	55.67	Al2Si	05	0.207E-02	16.61	41 L 4
Au	0.136E-08	54.86	BaSO4		0.420E-05	33.26	
Be2SiO4	0.210E-06	41.31	Bi203	1. Sec.	0.274E-09	59.15	2 - A -
CaCO3	0.140E-02	17.66	CdCO3	• *	0.122E-07	48.96	
CeO2	0.117E-05	36.71	CoFe2	04	0.285E-06	40.49	
K2Cr207	0.135E-05	36.30	CuCO3		0.589E-05	32 35	
DV (OH) 3	0 488E-07	45.23	Er (OH	13	0.4618-07	45 20	1.512
EU (OH) 3	0.2148-07	47 45	C=F0+	3Ca3 (P04) 2	0 224#=04	29 77	1997
Ea203	0.2170-07 0 670F-07	12 12	C-202	JCaJ (107/2	0.2098-04		
C4 (01/3	0.0705-02	10.36	GazOS		0.2905-00		11. I.
Gu (OR) 3	0.9215-07	43.32	GeUZ	÷ .	0.9495-07	43.45	- <u>19</u>
	0.1155-06	42.92	HgC12		0.5426-09	51.32	5
HO (OH) 3	0.195E-07	4/.69	In203		U.295E-08	52.77	54 A. J.
1r02	U.359E-11	/0.80	La (OH	13	U.596E-06	38.51	
Lu (OH) 3	0.786E-08	50.14	Mg3Si	4010 (OH) 2	0.867E-03	18.94	
MnO2	0.230E-04	28.69	Nb203	·· · ·	0.149E-06	42.23	
Nd (OH) 3	0.515E-06	38.90	NiO		0.176E-05	35.60	

PbCO3

Pr(OH)3

Pu02

0.104E-06

0.157E-06

0.840E-19 118.01

43.19

42.09

Coeficientes de actividad de los iones (escala molal):

.

BaSO4	0.298E-13	83.67	Re207	0.3	66E-11	70.75
Ph203	0 3298-11	71 04	Ruc20,	0.6	778-12	75.28
Ch205	0.1098 00	61 65	502	0.0	738-06	20 77
50205	0.1086-09	01.00	30203	0.5	/JE-00	12 00
S102	0.40/E+00	2.42	Sm (OH) 3	0.1	088-06	43.09
SnO2	0.461E-06	39.20	SrC03	0.2	91E-04	28.06
Ta205	0.745E-08	50.28	Tb (OH) 3	0.1	71E-07	48.05
TeO2	0.948E-11	68.19	ThO2	0.2	71E-06	40.63
TiO2	0.163E-03	23.44	T1204	0.1	49E-08	54.60
Tm (OH) 3	0.759E-08	50.23	U03*H20	0.1	49E-07	48.42
V205	0 183E-05	35.50	Y (OH) 3	0.1	00E-05	37.11
Vh (OH) 3	0 4618-07	45 39	ZnC03	0.7	458-05	31 72
	0.2448-04	20 54	211000	•••	101 00	
213104	0.2446-04	20.34	1. j - j - j - j - j - j - j - j - j - j			
EXERGIA QUI	MICA ESTANDAR	DE CADA E	LEMENTO:	£ *		
	_					· · · · ·
Elemento	Exq° (kJ/qm	ol)	Elemento	Exq (kJ/gmo.	1)	
Ag(s)	100.552		Al(s)	792.042	· .	· ·
Au(s)	54.860		Ba(s)	772.126		
Be(s)	602.913	e di e	Bi(s)	269.739	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	
Cals	721.790		cd(s)	293.225		
Ca(s)	1052 356		(Co(s)	313 146	a an	a second seco
Ce(3)	579 149		Cu(s)	126 474		
CI(3)	072 010	- x	Cu(3) En(a)	070 762		
Dy(s)	973.910		· ET.(2)	570.703		
Eu(S)	1001.922		F2(g)	532.829	· .	
Fe(s)	371.047		Ga(s)	512.346		
Gd(s)	966.801		Ge(s)	555.639		
Hf(s)	1060.879		Hg(l)	105.252	n an an Arras	
Ho(s)	976.871		In(s)	434.790		
Ir(s)	247.595		La(s)	992.084		
Lu(s)	944.115		Mg(s)	623.714		
Mn(s)	484.866	1997 - 19	Nb(s)	895.411	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Nd(s)	967.578		Ni(s)	242.746		
Os(s)	365.940		Pb(s)	244.189		e dan birtin birtin.
Dd(g)	140 817		Pr(s)	961 566		
$E_{C}(D)$	1/1 3/0		Du(e)	1104 250	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	a part apart de part
PL(3)	141.J49		Fu(3) Do(r)	552 910		
Ra(S)	170 (50)		Re(S)	210 400		
Rn(s)	178.059	11 A.	Ru(S)	000 001		
SD(S)	433.990	and the second second	SC(S)	922.921		
Si(s)	850.125	· · · · · ·	Sm(S)	991.464		• • • •
Sn(s)	549.243		Sr(s)	743.127		
Ta(s)	969.745		Tb(s)	996.630		
Te(s)	329.673		Th(s)	1200.463		
Ti(s)	903.877	1. A.	Tl(s)	190.030	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Tm(s)	950.109		U(s)	1191.907		
V(s)	716.514		Y(s)	963.760		- <u>7</u> .2
Yb(s)	942.263		Zn(s)	338.184		
Zr(s)	1079.461	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		She she and	1.	and the second second
				Tana Babbatht		
EXERGIA QUI	IMICA ESTANDAR	DE LOS CO	MPUESTOS QUIM	ICOS ESPECIFI	CADOS	
Compuesto	Exq°(kJ	(gmol)				111 + 11
CH4	826.	659		1 L		
FeSO4	175.	757	A second second	•		
	e se		<u>,</u> , , , , , , , , , , , , , , , , , ,	÷	e de la prace	
	· · · · · · · · ·	· ·	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	а К	1.1.1.1.1.1.1.1	and the first sector
Ejercicio 2:	$T = 0^{\circ}C$		·	*	an an teach	and the second second
		1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		1		
Las condici	iones del medio	especifi	cadas son:	-G. ()		
		a a car		1010	···	
Mommowsterr	na an a	0.0 ° ~	ener An an an an an Arrient an Arrient			
remperatu	HARAN AND AND AND AND AND AND AND AND AND A			1 - 1 - N 		
resion:	n an an an Anna Anna Anna Anna An Anna Anna	a.uuuu atm	L to the		and the SA SA	· · · · · · · · · · · · · · · · · · ·
Concentrac	cion de CO2: 3	45.0 ppmv			a The te	
Humedad re	elativa: (.700	And a third	2010	and the second	131 i.A

Salinidad: 35.183 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

		Composición ((fracc:	de la especie ión molj	Exq° (kJ/gmol)		
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento	
Ar(g)	Ar	0.9331E-02	0.9293E-02	10.625	10.625	
C (g)	CO2	0.3450E-03	0.3436E-03	18.113	408.863	
He (g)	He	0.5001E-05	0.4980E-05	27.729	27.729	
Kr(g)	Kr	0.1000E-05	0.9960E-06	31.384	31.384	
N2 (g)	N2	0.7804E+00	0.7772E+00	0.572	0.572	
Ne(g)	Ne	0.1800E-04	0.1793E-04	24.820	24.820	
02 (g)	02	0.2099E+00	0.2091E+00	3.554	3.554	
Xe(g)	Xe	0.9001E-07	0.8964E-07	36.852	36.852	
H2(g)	H20	0.0000E+00	0.4097E-02	12.484	240.406	
D2 (g)	D20	0.0000E+00	0.6369E-06	32.399	266.481	

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN EL AGUA DE MAR.-

Fracción masa y molalidad de las especies (S = 35.183 por mil):

NOTA: LO MISMO QUE EN EL EJERCICIO 1 A T=50°C

Fuerza Iónica = 0.67818 gmol/kgH20

pH= 8.4824 (en escala molal)

Coeficientes de actividad de los iones (escala molal):

NOTA: LO MISMO QUE EN EL EJERCICIO 1 A T=50°C

Coef. de actividad de B(OH)3 : 0.99314

EXERGIA QUIMICA ESTANDAR DE CADA ELEMENTO:

Elemento	Exq° (kJ/gmol)	Elemento	Exq° (kJ/gmol)
As(s)	495.031	B(S)	629.715
Br2(1)	92.632	C12(g)	121.052
Cs(s)	401.617	I2(s)	177.948
K(s)	367.146	Li(s)	393.301
Mo(s)	733.474	Na(s)	338.713
P(s)	865.148	Rb(s)	387.047
S(S)	614.282	Se(s)	348.412
W(s)	832.312		

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN LA CORTEZA TERRESTRE .-

Fracción molar y exergia química estándar de las especies de referencia:

Especie	Xi	Exqi (kJ/mol)	Especie	Xi	Exqi (kJ/mol)
AgCl	0.100E-08	47.06	Al2si05	0.207E-02	14.04
Au	0.136E-08	46.37	BaSO4	0.420E-05	28.12
Be2SiO4	0.210E-06	34.92	Bi203	0.274E-09	50.00
CaCO3	0.140E-02	14.93	CdC03	0.122E-07	41.38
CeO2	0.117E-05	31.03	CoFe2O4	0.285E-06	34.23
K2Cr207	0.135E-05	30.68	CuCO3	0.589E-05	27.35
Dy (OH) 3	0.488E-07	38.23	Er(OH)3	0.461E-07	38.36
Eu (OH) 3	0.214E-07	40.10	CaF2*3Ca3(PO4)2	0.224E-04	24.32
Fe203	0.678E-02	11.34	Ga2O3	0.298E-06	34.12
Gd (OH) 3	0.921E-07	36.79	GeO2	0.949E-07	36.72
HfO2	0.115E-06	36.28	HgCl2	0.542E-09	48.45

Apéndice A			· ··	Página 211
Ho (OH) 3	0.195E-07 40.3	1 In2O3 0.295E~08	44.61	··· ·
IrO2	0.359E-11 59.8	5 La(OH)3 0.596E-06	32.55	
Lu (OH) 3	0.786E-08 42.3	8 Mg3Si4O10(OH)2 0.867E-03	16.01	
MnO2	0.230E-04 24.2	5 Nb203 0.149E-06	35.70	1. S. A.
Nd (OH) 3	0.515E-06 32.8	8 NiO 0.176E-05	30.09	
0s04	0.339E-12 65.2	1 PbCO3 0.104E-06	36.51	•
PdO	0.637E-10 53.3	2 Pr(OH)3 0.157E-06	35.58	
PtO2	0.176E-10 56.2	3 PuO2 0.840E-19	99.75	. ⁸ .
RaSO4	0.298E-13 70.7	3 Re207 0.366E-11	59.80	
Rh203	0.329E-11 60.0	5 RuO2 0.677E-12	63.63	
Sb205	0.108E-09 52.1	1 Sc203 0.373E-06	33.62	
SiO2	0.407E+00 2.0	4 Sm (OH) 3 0.108E-06	36.42	
SnO2	0.461E-06 33.1	3 SrCO3 0.291E-04	23.72	
Ta205	0.745E-08 42.5	0 Tb (OH) 3 0.171E-07	40.62	.*
TeO2	0.948E-11 57.6	4 ThO2 0.271E-06	34.34	and the second sec
TiO2	0.163E-03 19.8	1 T1204 0.149E -08	46.16	
Tm (OH) 3	0.759E-08 42.4	6 UO3*H2O 0.149E-07	40.93	1141
V205	0.183E-05 30.0	0 Y (OH) 3 0.100E-05	31.37	1. 10 a. 1
Yb (OH) 3	0.461E-07 38.3	6 ZnCO3 0.745E-05	26.81	
ZrSiO4	0.244E-04 24.1	2	· · ·	
EVEDCIA OUTM	דרם פפייזאות הפרמה		194 195	
EVERGIA COIN	ICA ESTANDAR DE CAD	A ELEPTENIC.		
Elemento	Exq° (kJ/gmol)	Elemento Exq° (kJ/gmol)	2 -	
Ag(s)	97.778	Al(s) 799.350		
Au(s)	46.372	Ba(s) 778.041	est.	
Be(s)	605.577	Bi(s) 272.545		
Ca(s)	736.286	Cd (s) 303.397	: 	
Ce(s)	1056.990	Co(s) 313.622	an Arna Ch	
Cr(s)	590.660	Cu(s) 138.507		
Dy(s)	977.745	Er(s) 974.575		
Eu(s)	1005.415	F2(g) 477.033	· · ·	
Fe(s)	377,543	Ga(s) 517.509		
Gd(s)	970.901	Ge(s) 559.544		
Hf(s)	1065.141	Hg(1) 109.933	• . •	
Ho(s)	980.326	In(s) 438.810		an a
Ir(s)	246.265	La(s) 996.960		
Lu(s)	947.191	Mg(s) 630.033		
Mn(s)	490.487	Nb(s) 903.963		
Nd(s)	972.394	Ni(s) 242.366		1 A.W.
Os(s)	370.636	Pb(s) 253.990		
Pd(s)	136.580	Pr(s) 965.888	1 . i	
Pt(s)	140.826	Pu(s) 1095.719		the second s
Ra(s)	822.806	Re(s) 565.080		and the second second
Rh(s)	180.694	Ru(s) 317.719		
Sb(s)	442.203	Sc(s) 927.481		
Si(s)	859.751	Sm(s) 995.632		
Sn(s)	554.303	Sr(s) 756.331	5	•
Ta(s)	978.261	Tb(s) 1000.029		
Te(s)	328.771	Th(s) 1204.715		· · ·
Ti(s)	910.387	Tl(s) 199.662		
Tm(s)	953.171	U(s) 1200.975		· · · · · · · · · · · · · · · · · · ·
V(s)	725.851	Y(s) 967.108		
Yb(s)	946.075	Zn(s) 351.033		server and
Zr(s)	1086.346			

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS.-

Compuesto		Exq° (kJ/gmol)
CH4		836.865
FeSO4		171.923
	•	· · ·

Ejercicio 3: $T = -40^{\circ}C$

Las condiciones del medio especificadas son:

Temperatura:	-40.0 °C
Presión:	1.0000 atm
Concentración de CO2:	345.0 ppmv
Humedad relativa:	0.700
Salinidad:	35.183 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

		Composición (fracc:	Exq° (kJ/gmol)		
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento
Ar(q)	Ār	0.9331E-02	0.9330E-02	9.061	9.061
C (q)	CO2	0.3450E-03	0.3450E-03	15.453	406.614
He(q)	He	0.5001E-05	0.5000E-05	23.660	23.660
Kr (q)	Kr	0.1000E-05	0.1000E-05	26.780	26.780
N2 (q)	N2	0.7804E+00	0.7803E+00	0.481	0.481
Ne (q)	Ne	0.1800E-04	0.1800E-04	21.177	21.177
02 (g)	02	0.2099E+00	0.2099E+00	3.026	3.026
Xe(q)	Хе	0.9001E-07	0.9000E-07	31.448	31.448
H2 (q)	H20	0.0000E+00	0.1125E-03	17.626	247.587
D2 (g)	D20	0.0000E+00	0.1748E-07	34.624	270.929

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN EL AGUA DE MAR.-

Fracción masa y molalidad de las especies (S=35,183 por mil):

NOTA: LO MISMO QUE EN EL EJERCICIO 1 A T=50°C

Fuerza Iónica = 0.67818 gmol/kgH20

pH= 9.3043 (en escala molal)

Coeficientes de actividad de los iones (escala molal):

NOTA: LO MISMO QUE EN EL EJERCICIO 1 A T=50°C

Coef. de actividad de B(OH)3 : 0.65442

EXERGIA QUIMICA ESTANDAR DE CADA ELEMENTO:

Elemento	Exq° (kJ/gmol)		Elemento	Exq° (kJ/gmol)
As(s)	499.037		B(s)	631.771
Br2(1)	79.619	4	C12(g)	117.234
Cs(s)	396.662		I2(s)	181.679
K(s)	367.727		Li(s)	394.035
Mo(s)	737.159		Na(s)	341.799
P(s)	871.451		Rb(s)	384,225
S(s)	622.447		Se(s)	350.091
W(s)	838,735			

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN LA CORTEZA TERRESTRE.-

Fracción molar y exergia química estándar de las especies de referencia:

Especie	Xi	Exqi	Especie	Xi	Exqi	· · · ·
		(kJ/mol)		· · · · ·	(kJ/mol)	
AgCl	0.100E-08	40.16	Al2SiO5	0.207E-02	11.98	
Au	0.136E-08	39.58	BaSO4	0.420E-05	24.00	
Be2SiO4	0.210E-06	29.81	Bi203	0.274E-09	42.68	

Página 212

a Alt 1947 - Anto 1947 - Anto

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

.

1. 14

1.04

2.53

1.1.1.1

- 19 B

1. 1. 1.

2999 -

1999. 1999.

na Set

 $(k, 1, \ell)$

CaCO3	0.140E-02	12.74	CdCO3	0.122E-07	35.32	
CeO2	0.117E-05	26.48	CoFe2O4	0.285E-06	29.22	
K2Cr207	0.135E-05	26.19	CuCO3	0.589E-05	23.34	
Dy (OH) 3	0.488E-07	32.63	Er(OH)3	0.461E-07	32.75	
Eu (OH) 3	0.214E-07	34.23	CaF2*3Ca3(PO4)2	0.224E-04	20.76	
Fe203	0.678E-02	9.68	Ga2O3	0.298E-06	29.13	
Gd (OH) 3	0.921E-07	31.40	Ge02	0.949E-07	31.35	
Hf02	0.115E-06	30.97	HgCl2	0.542E-09	41.36	
но (ОН) З	0.195E-07	34.41	In203	0.295E-08	38.08	
IrO2	0.359E-11	51.08	La (OH) 3	0.596E-06	27.78	
Lu (OH) 3	0.786E-08	36.17	Mg3Si4O10(OH)2	0.867E-03	13.67	
MnO2	0.230E-04	20.70	Nb203	0.149E-06	30.47	
Nd (OH) 3	0.515E-06	28.07	NiO	0.176E-05	25.68	
0s04	0.339E-12	55.66	PbC03	0.104E-06	31.16	
PdO	0.637E-10	45.51	Pr (OH) 3	0.157E-06	30.37	•
PtO2	0.176E-10	48.00	PuO2	0.840E-19	85.14	
RaSO4	0.298E-13	60.37	Re207	0.366E-11	51.05	
Rh203	0.329E-11	51.25	RuO2	0.677E-12	54.31	
Sb205	0.108E-09	44.48	Sc203	0.373E-06	28.69	
SiO2	0.407E+00	1.74	Sm (OH) 3	0.108E-06	31.09	
SnO2	0.461E-06	28.28	SrC03	0.291E-04	20.24	
Ta205	0.745E-08	36.28	Tb (OH) 3	0.171E-07	34.67	
TeO2	0.948E-11	49.20	ThO2	0.271E-06	29.31	
TiO2	0.163E-03	16.91	T1204	0.149E-08	39.40	
Tm (OH) 3	0.759E-08	36.24	UO3*H20	0.149E-07	34.93	
V205	0.183E-05	25.61	Y (OH) 3	0.100E-05	26.77	
үр (он) 3	0.461E-07	32.75	ZnCO3	0.745E-05	22.89	
ZrSiO4	0.244E-04	20.59				

EXERGIA QUIMICA ESTANDAR DE CADA ELEMENTO:

XERGIA QUI	IMICA ESTANDAR DE CADA	ELEMENTO:		-	
Elemento	Exg° (kJ/cmol)	Elemento	Exa° (kJ/amol)	2. 1. 1.	
Aq(s)	95.112	Al(s)	805,064		the grant and a second
Au(s)	39.581	Ba(s)	781.881		
Be(s)	607.620	Bi(s)	274.659	•	
Ca(s)	747.620	Cd(s)	311.272		
Ce(s)	1060.523	Co(s)	313.916	ι.	
Cr(s)	600.811	Cu(s)	147.871		· ·
Dy(s)	980.011	Er(s)	976.822	1. A.	
Eu(s)	1007.407	F2 (g)	430.747		
Fe(s)	382.610	Ga (s)	521.509	· .	
Gd(s)	973.378	Ge(s)	562.493		
Hf(s)	1068.376	Hg(1)	112.786		
Ho(s)	982.287	In(s)	441.894		
Ir(s)	245.025	La(s)	1000.058	2.5	
Lu(s)	948.850	Mg(s)	634.851		
Mn(s)	494.809	Nb(s)	910.674	1. A.	
Nd(s)	975.443	Ni(s)	241.975		
Os(s)	374.044	Pb(s)	261.569		
Pd(s)	133.103	Pr(s)	968.543		
Pt(s)	140.232	Pu(s)	1088.720		
Ra(s)	820.171	Re(s)	573.783		
Rh(s)	182.192	Ru(s)	316.192	· · · ·	
Sb(s)	448.554	Sc(s)	930.998		
Si(s)	867.276	Sm(s)	998.163		1
Sn(s)	558.177	Sr(s)	766.632		
Ta(s)	984.856	Tb(s)	1001.946	1. S.	·
Te(s)	327.875	Th(s)	1207,942		
Ti(s)	915.419	Tl(s)	207.193		· .
Tm(s)	954.818	U(s)	1207.519		
V(s)	733.102	Y(s)	968,983		
Yb(s)	948.322	Zn(s)	361.049		
Zr(s)	1091.679	· ,			

S. 1

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS -

Compuesto	Exq° (kJ/gmol)
CH4	845.750
FeSO4	169.617

A.5.- Exergia química estándar de los elementos al considerar valores de presión atmosférica diferentes a la normal.

· .

Ejercicio 1: P = 0.65 atm

Las condiciones del medio especificadas son:

Temperatura: Presión:	25.0 °C 0.6500 atm
Concentración de CO2:	345.0 ppmv
Humedad relativa:	0.700
Salinidad:	35.183 por mil

EXERGIA QUINICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA -

· .		Composición	de la especie	Exe	q°
_		(LLace.	ION MOL	(KU/	gmor)
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento
Ar(g)	Ar	0.9331E-02	0.9019E-02	11.671	11.671
C (g)	CO2	0.3450E-03	0.3335E-03	19.845	410.268
He (g)	He	0.5001E-05	0.4833E-05	30.341	30.341
Kr (g)	Kr	0.1000E-05	0.9667E-06	34.330	34.330
N2 (g)	N2	0.7804E+00	0.7543E+00	0.699	0.699
Ne(g)	Ne	0.1800E-04	0.1740E-04	27.165	27.165
02 (g)	02	0.2099E+00	0.2029E+00	3.954	3.954
Xe(g)	Xe	0.9001E-07	0.8700E-07	40.299	40.299
H2 (g)	H20	0.0000E+00	0.3341E-01	8.426	235.038
D2 (g)	D20	0.0000E+00	0.5193E-05	30.163	262.821

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN EL AGUA DE MAR.-Fracción masa y molalidad de las especies (S=35.183 por mil):

NOTA: LO MISMO QUE EN EL EJERCICIO 1 A T=50°C (SECCIÓN A.4) Fuerza Iónica = 0.67818 gmol/kgH20

pH= 8.1189 (en escala molal)

Coeficientes de actividad de los iones (escala molal):

NOTA: LO MISMO QUE EN EL EJERCICIO 1 A T=50°C (SECCIÓN A.4) Coef. de actividad de B(OH)3 : 1.21772

EXERGIA QUIMICA ESTANDAR DE CADA ELEMENTO:

Elemento	Exq° (kJ/gmol)	Elemento	Exq° (kJ/amol)
As(s)	494.144	B(s)	629.646
Br2(1)	102.082	C12(g)	124.753
Cs(s)	404.057	I2(s)	176.724
K(s)	366.124	Li(s)	392.184

c,

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN LA CORTEZA TERRESTRE.-

Fracción molar y exergia química estándar de las especies de referencia:

Especie	Xi	Exqi	Especie	Xi	Exqi	1.
		(kJ/mol)		·	(kJ/mol)	
AgCl	0.100E-08	51.36	Al2SiO5	0.207E-02	15.32	
Au	0.136E-08	50.62	BaSO4	0.420E-05	30.69	
Be2SiO4	0.210E-06	38.11	Bi2O3	0.274E-09	54.57	
CaCO3	0.140E-02	16.30	CdCO3	0.122E - 07	45.17	· · · ·
CeO2	0.117E-05	33.87	CoFe2O4	0.285E-06	37.36	
K2Cr207	0.135E-05	33.49	CuCO3	0.589E-05	29.85	
Dy (OH) 3	0.488E-07	41.73	Er(OH)3	0.461E-07	41.87	$ F_{i} = F_{i} $
Eu (OH) 3	0.214E-07	43.77	CaF2*3Ca3(PO4)2	0.224E-04	26.54	· * ·
Fe203	0.678E-02	12.38	Ga2O3	0.298E-06	37.25	
Gd (OH) 3	0.921E-07	40.16	GeO2	0.949E-07	40.08	
Hf02	0.115E-06	39.60	HgCl2	0.542E-09	52.89	
Но (ОН) З	0.195E-07	44.00	In203	0.295E-08	48.69	-
IrO2	0.359E-11	65.32	La (OH) 3	0.596E-06	35.53	
Lu (OH) 3	0.786E-08	46.26	Mg3Si4010(OH)2	0.867E-03	17.48	
MnO2	0.230E-04	26.47	Nb203	0.149E-06	38.96	eu griet
Nd (OH) 3	0.515E-06	35.89	NiO	0.176E-05	32.84	S. 19
OsO4	0.339E-12	71.18	PbCO3	0.104E-06	39.85	1984 (j. 1984) 1985 - 1986 (j. 1986) 1986 - 1986 (j. 1986)
PdO	0.637E-10	58.20	Pr(OH)3	0.157E-06	38.83	
PtO2	0.176E-10	61.38	PuO2	0.840E-19	108.88	· · ·
RaSO4	0.298E-13	77.20	Re207	0.366E-11	65.28	
Rh203	0.329E-11	65.54	RuO2	0.677E-12	69.46	
Sb205	0.108E-09	56.88	Sc203	0.373E-06	36.69	
SiO2	0.407E+00	2.23	Sm (OH) 3	0.108E-06	39.75	
SnO2	0.461E-06	36.17	SrC03	0.291E-04	25.89	
Ta205	0.745E-08	46.39	Tb (OH) 3	0.171E-07	44.34	
TeO2	0.948E-11	62.92	ThO2	0:271E-06	37.48	
TiO2	0.163E-03	21.63	T1204	0.149E-08	50.38	-
Tm (OH) 3	0.759E-08	46.35	U03*H20	0.149E-07	44.67	· .
V205	0.183E-05	32.75	Y (OH) 3	0.100E-05	34.24	
Yb (OH) 3	0.461E-07	41.87	ZnCO3	0.745E-05	29.27	1.1
ZrSiO4	0.244E-04	26.33				
					•	

EXERGIA QUIMICA ESTANDAR DE CADA ELEMENTO:

Elemento	Exq° (kJ/gmol)	Elemento	Exq° (kJ/gmol)
Ag(s)	98.786	Al(s)	795.726
Au(s)	50.616	Ba(s)	774.326
Be(s)	604.265	Bi(s)	271.172
Ca(s)	729.098	Cd(s)	298.371
Ce(s)	1054.713	Co(s)	313.404
Cr(s)	584.853	Cu(s)	132.550
Dy(s)	977.546	Er(s)	974.388
Eu(s)	1005.387	F2(g)	496.465
Fe(s)	374.325	Ga(s)	514.958
Gd(s)	970.569	Ge(s)	557.631
Hf(s)	1063.050	Hg(l)	106.834
Ho(s)	980.317	In(s)	436.830
Ir(s)	246.970	La(s)	996.241
Lu(s)	947.371	Mg(s)	627.268
Mn(s)	487.716	Nb(s)	899.717
Nd(s)	971.704	Ni(s)	242.576
Os(s)	368.368	Pb(s)	249.150

	······································			······································		
Pd(s)	138.719)	Pr(s)	965.445		
Pt(s)	141.127	l i de la companya de	Pu(s)	1100.024	1.1	1
Ra(s)	823.137	1	Re(s)	559.520		
Rh(s)	179.706	5 1	Ru(s)	318.604		9 a. 1
Sb(s)	438.146	,	Sc(s)	925.231	•	
Si(s)	854.978	1	Sm(s)	995.267		
Sn(s)	551.814		Sr(s)	749.789	De la del de la Co	di waxa di ka
Ta(s)	974.053		Tb(s)	1000.048		
Te(s)	329.262		Th(s)	1202.629	and the first state	a tha sha a shi ta
Ti(s)	907.172		T1(S)	194.886		
Tm(s)	953.358		U(S)	1197.627		
V (S)	721.232		Y(S) Rm(r)	967.152		
1D(S)	945.888		Zn(S)	344.669	114 114	
Zr(S)	1082.943	i .				
EVEDCIA ON	ITMICA POWANDAD	DE LOS COMPI	IRSTOR OUTMECO	9 990907 07	CADOS -	
EVERGIA DO	JIMICA ESIANDAR	DE LOS COMPU	DESIUS QUIMICO	S ESPECIFI	CADOJ	
Compuesto		T/mol)				
CH4	820	0/gmor)) 551			n ar stra ar st	
Fas04	174	628				
16904	1	1.020	a a construction of the second se			
Ejercicio 2:	<i>P</i> = 1.03 atm	4	20 20	41 y 14		4
w 1%					and the second	. 11
Las condic	ciones del medi	.o especificad	ias son:	· .	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
e		an e sega		÷.,	and the second second	
Temperatu	ira:	25.0 °C	5 t.	· ,	100 A 100 A	the second
Presión:		1.0300 atm	in the second second	1. A. A.	e de la Alexander	
Concentra	ación de CO2:	345.0 ppmv		•		E good
Humedad r	celativa:	0.700	1 - Marca Car	11 a. 1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
Salinidad	i:	35.183 por mi	11	$S^{0}(x) \to y$		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
		· · · · · · · · · · · · · · · · · · ·				
		R DE LOS ELEME	INTOS PRESENTE	S EN LA AT	MOSFERA	in the second
EXERGIA QU	JIMICA ESTANDAR					
EXERGIA QU	JIMICA ESTANDAR	Composición d	le la especie	1949 - E	Exa	
EXERGIA QU	JIMICA ESTANDAR	Composición d (fracci	de la especie ión mol)	(k	Exq [°]	
EXERGIA QU Elemento	JIMICA ESTANDAR Especie	Composición c (fracci Aire seco	de la especie Lón mol) Aire húmedo	(k Especie	Exq [°] J/gmol} Elemento	1000 1000 1000 1000
EXERGIA QU Elemento Ar(q)	JIMICA ESTANDAR Especie Ar	Composición d (fracci Aire seco 0.9331E-02	de la especie ión mol) Aire húmedo 0.9134E-02	(k Especie 11.640	Exq° J/gmol} Elemento 11.640	11 20 11 11 21 21 21 21 21 21 21 21 21 21 21
EXERGIA QU Elemento Ar(g) C(g)	JIMICA ESTANDAR Especie Ar CO2	Composición c (fracci Aire seco 0.9331E-02 0.3450E-03	de la especie ión mol) Aire húmedo 0.9134E-02 0.3378E-03	(k Especie 11.640 19.814	Exq° [J/gmol} Elemento 11.640 410.268	
EXERGIA QU Elemento Ar(g) C(g) He(g)	JIMICA ESTANDAR Especie Ar CO2 He	Composición c (fracci Aire seco 0.9331E-02 0.3450E-03 0.5001E-05	de la especie ión mol) Aire húmedo 0.9134E-02 0.3378E-03 0.4895E-05	(k Especie 11.640 19.814 30.309	Exq° [J/gmol] Elemento 11.640 410.268 30.309	۰۰۰ ۱۹۰۹ ۱۹۹۵ ۱۹۹۵ ۱۹۹۰ ۱۹۹۰ ۱۹۹۰ ۱۹۹۰ ۱
EXERGIA QU Elemento Ar(g) C(g) He(g) Kr(g)	JIMICA ESTANDAR Especie Ar CO2 He Kr	Composición c (fracci Aire seco 0.9331E-02 0.3450E-03 0.5001E-05 0.1000E-05	de la especie ión mol) Aire húmedo 0.9134E-02 0.3378E-03 0.4895E-05 0.9790E-06	(k Especie 11.640 19.814 30.309 34:299	Exq° .J/gmol} Elemento 11.640 .410.268 .30.309 .34.299	
EXERGIA QU Elemento Ar(g) C(g) He(g) Kr(g) N2(g)	JIMICA ESTANDAR Especie Ar CO2 He Kr N2	Composición c (fracci Aire seco 0.9331E-02 0.3450E-03 0.5001E-05 0.1000E-05 0.7804E+00	de la especie ión mol) Aire húmedo 0.9134E-02 0.3378E-03 0.4895E-05 0.9790E-06 0.7639E+00	(k Especie 11.640 19.814 30.309 34.299 0.668	Exq° .J/gmol} Elemento 11.640 410.268 30.309 34.299 0.668	۵۰۰ ۱۹۹۹ کی ۲ ۱۹۹۹ کی ۲ ۱۹۹۹ کی ۲ ۱۹۹۹ کی ۲ ۱۹۹۹ کی ۲
EXERGIA QU Elemento Ar(g) C(g) He(g) Kr(g) N2(g) Ne(g)	JIMICA ESTANDAR Especie Ar CO2 He Kr N2 Ne	Composición c (fracci Aire seco 0.9331E-02 0.3450E-03 0.5001E-05 0.1000E-05 0.7804E+00 0.1800E-04	de la especie ión mol) Aire húmedo 0.9134E-02 0.3378E-03 0.4895E-05 0.9790E-06 0.7639E+00 0.1762E-04	(k Especie 11.640 19.814 30.309 34.299 0.668 27.134	Exq° .J/gmol} Elemento 11.640 410.268 30.309 34.299 0.668 27.134	۵۰۰ ۱۹۹۹ ۱۹۹۹ ۱۹۹۹ ۱۹۹۹ ۱۹۹۹ ۱۹۹۹ ۱۹۹۹ ۱
EXERGIA QU Elemento Ar(g) C(g) He(g) Kr(g) N2(g) Ne(g) O2(g)	JIMICA ESTANDAR Especie Ar CO2 He Kr N2 Ne O2	Composición o (fracci Aire seco 0.9331E-02 0.3450E-03 0.5001E-05 0.1000E-05 0.7804E+00 0.1800E-04 0.2099E+00	de la especie ión mol) Aire húmedo 0.9134E-02 0.3378E-03 0.4895E-05 0.9790E-06 0.7639E+00 0.1762E-04 0.2055E+00	(k Especie 11.640 19.814 30.309 34.299 0.668 27.134 3.922	Exq°	۲۰۰۰ ۲۰۰۹ ۲۰۰۹ ۲۰۰۹ ۲۰۰۹ ۲۰۰۹ ۲۰۰۹ ۲۰۰۹
EXERGIA QU Elemento Ar(g) C(g) He(g) Kr(g) N2(g) Ne(g) O2(g) Xe(g)	JIMICA ESTANDAR Especie Ar CO2 He Kr N2 Ne O2 Xe	Composición c (fracci Aire seco 0.9331E-02 0.3450E-03 0.5001E-05 0.1000E-05 0.7804E+00 0.1800E-04 0.2099E+00 0.9001E-07	de la especie ión mol) Aire húmedo 0.9134E-02 0.3378E-03 0.4895E-05 0.9790E-06 0.7639E+00 0.1762E-04 0.2055E+00 0.8811E-07	(k Especie 11.640 19.814 30.309 34.299 0.668 27.134 3.922 40.268	Exq° .J/gmol} Elemento 11.640 410.268 30.309 34.299 0.668 27.134 2.3.922 40.268	۲۰۰۰ ۱۹۹۹ ۱۹۹۹ ۱۹۹۹ ۱۹۹۹ ۱۹۹۹ ۱۹۹۹ ۱۹۹۹
EXERGIA QU Elemento Ar(g) C(g) He(g) Kr(g) N2(g) Ne(g) O2(g) Xe(g) H2(g)	JIMICA ESTANDAR Especie Ar CO2 He Kr N2 Ne O2 Xe H2O	Composición o (fracci Aire seco 0.9331E-02 0.3450E-03 0.5001E-05 0.1000E-05 0.7804E+00 0.1800E-04 0.2099E+00 0.9001E-07 0.0000E+00	de la especie ión mol) Aire húmedo 0.9134E-02 0.3378E-03 0.4895E-05 0.9790E-06 0.7639E+00 0.1762E-04 0.2055E+00 0.8811E-07 0.2108E-01	(k Especie 11.640 19.814 30.309 34.299 0.668 27.134 3.922 40.268 9.567	Exq° [J/gmol] Elemento 11.640 410.268 30.309 34.299 0.668 27.134 2.3.922 40.268 236.195	
EXERGIA QU Elemento Ar(g) C(g) He(g) Kr(g) N2(g) Ne(g) O2(g) Xe(g) H2(g) D2(g)	JIMICA ESTANDAR Especie Ar CO2 He Kr N2 Ne O2 Xe H2O D2O	Composición c (fracci Aire seco 0.9331E-02 0.3450E-03 0.5001E-05 0.1000E-05 0.7804E+00 0.1800E-04 0.2099E+00 0.9001E-07 0.0000E+00 0.0000E+00	de la especie ión mol) Aire húmedo 0.9134E-02 0.3378E-03 0.4895E-05 0.9790E-06 0.7639E+00 0.1762E-04 0.2055E+00 0.8811E-07 0.2108E-01 0.3277E-05	(k Especie 11.640 19.814 30.309 34.299 0.668 27.134 3.922 40.268 9.567 31.304	Exq° [J/gmol] Elemento 11.640 410.268 30.309 34.299 0.668 27.134 2.3.922 40.268 236.195 263.977	
EXERGIA QU Elemento Ar(g) C(g) He(g) Kr(g) N2(g) Ne(g) O2(g) Xe(g) H2(g) D2(g)	JIMICA ESTANDAR Especie Ar CO2 He Kr N2 Ne O2 Xe H2O D2O	Composición o (fracci Aire seco 0.9331E-02 0.3450E-03 0.5001E-05 0.1000E-05 0.7804E+00 0.1800E-04 0.2099E+00 0.9001E-07 0.0000E+00 0.0000E+00	de la especie ión mol) Aire húmedo 0.9134E-02 0.3378E-03 0.4895E-05 0.9790E-06 0.7639E+00 0.1762E-04 0.2055E+00 0.8811E-07 0.2108E-01 0.3277E-05	(k Especie 11.640 19.814 30.309 34.299 0.668 27.134 3.922 40.268 9.567 31.304	Exq° [J/gmol] Elemento 11.640 410.268 30.309 34.299 0.668 27.134 2.3.922 40.268 236.195 263.977	
EXERGIA QU Elemento Ar(g) C(g) He(g) Kr(g) N2(g) Ne(g) O2(g) Xe(g) H2(g) D2(g) EXERGIA QU	JIMICA ESTANDAR Especie Ar CO2 He Kr N2 Ne O2 Xe H2O D2O JIMICA ESTANDAR	Composición o (fracci Aire seco 0.9331E-02 0.3450E-03 0.5001E-05 0.1000E-05 0.7804E+00 0.1800E-04 0.2099E+00 0.9001E-07 0.0000E+00 0.0000E+00 2 DE LOS ELEME	de la especie ión mol) Aire húmedo 0.9134E-02 0.3378E-03 0.4895E-05 0.9790E-06 0.7639E+00 0.1762E-04 0.2055E+00 0.8811E-07 0.2108E-01 0.3277E-05	(k Especie 11.640 19.814 30.309 34:299 0.668 27.134 3.922 40.268 9.567 31.304 OS EN EL A	Exq° .J/gmol} Elemento 11.640 410.268 30.309 .34.299 0.668 .27.134 2.3.922 40.268 .236.195 .263.977 AGUA DE MAR	
EXERGIA QU Elemento Ar(g) C(g) He(g) Kr(g) N2(g) Ne(g) O2(g) Xe(g) H2(g) D2(g) EXERGIA QU	JIMICA ESTANDAR Especie Ar CO2 He Kr N2 Ne O2 Xe H2O D2O JIMICA ESTANDAR	Composición o (fracci Aire seco 0.9331E-02 0.3450E-03 0.5001E-05 0.1000E-05 0.7804E+00 0.1800E-04 0.2099E+00 0.9001E-07 0.0000E+00 0.0000E+00 2 DE LOS ELEME	de la especie ión mol) Aire húmedo 0.9134E-02 0.3378E-03 0.4895E-05 0.9790E-06 0.7639E+00 0.1762E-04 0.2055E+00 0.8811E-07 0.2108E-01 0.3277E-05	(k Especie 11.640 19.814 30.309 34.299 0.668 27.134 3.922 40.268 9.567 31.304	Exq° .J/gmol} Elemento 11.640 410.268 30.309 .34.299 0.668 .27.134 2.3.922 40.268 .236.195 .263.977 AGUA DE MAR	
EXERGIA QU Elemento Ar(g) C(g) He(g) Kr(g) N2(g) Ne(g) O2(g) Xe(g) H2(g) D2(g) EXERGIA QU Fracci¢n	JIMICA ESTANDAR Especie Ar CO2 He Kr N2 Ne O2 Xe H2O D2O JIMICA ESTANDAR masa y molalid	Composición o (fracci Aire seco 0.9331E-02 0.3450E-03 0.5001E-05 0.1000E-05 0.7804E+00 0.1800E-04 0.2099E+00 0.9001E-07 0.0000E+00 0.0000E+00 & DE LOS ELEMM lad de las esp	de la especie ión mol) Aire húmedo 0.9134E-02 0.3378E-03 0.4895E-05 0.9790E-06 0.7639E+00 0.1762E-04 0.2055E+00 0.8811E-07 0.2108E-01 0.3277E-05 ENTOS CONTENID	(k Especie 11.640 19.814 30.309 0.668 27.134 3.922 40.268 9.567 31.304 OS EN EL A 83 por mil	Exq° [J/gmol] Elemento 11.640 410.268 30.309 34.299 0.668 27.134 2.3.922 40.268 236.195 263.977 AGUA DE MAR	
EXERGIA QU Elemento Ar(g) C(g) He(g) Kr(g) N2(g) Ne(g) O2(g) Xe(g) H2(g) D2(g) EXERGIA QU Fracci¢n	JIMICA ESTANDAR Especie Ar CO2 He Kr N2 Ne O2 Xe H2O D2O JIMICA ESTANDAR masa y molalid	Composición o (fracci Aire seco 0.9331E-02 0.3450E-03 0.5001E-05 0.1000E-05 0.7804E+00 0.1800E-04 0.2099E+00 0.9001E-07 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	de la especie ión mol) Aire húmedo 0.9134E-02 0.3378E-03 0.4895E-05 0.9790E-06 0.7639E+00 0.1762E-04 0.2055E+00 0.8811E-07 0.2108E-01 0.3277E-05 ENTOS CONTENID Decies (S=35.1	(k Especie 11.640 19.814 30.309 0.668 27.134 3.922 40.268 9.567 31.304 OS EN EL P 83 por mil	Exq° [J/gmol] Elemento 11.640 410.268 30.309 34.299 0.668 27.134 2.3.922 40.268 236.195 263.977 AGUA DE MAR	
EXERGIA QU Elemento Ar (g) C (g) He (g) Kr (g) N2 (g) Ne (g) O2 (g) Xe (g) H2 (g) D2 (g) EXERGIA QU Fracci¢n	JIMICA ESTANDAR Especie Ar CO2 He Kr N2 Ne O2 Xe H2O D2O JIMICA ESTANDAR masa y molalid NOTA: LO MI	Composición o (fracci Aire seco 0.9331E-02 0.3450E-03 0.5001E-05 0.1000E-05 0.7804E+00 0.1800E-04 0.2099E+00 0.9001E-07 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	de la especie ión mol) Aire húmedo 0.9134E-02 0.3378E-03 0.4895E-05 0.9790E-06 0.7639E+00 0.1762E-04 0.2055E+00 0.8811E-07 0.2108E-01 0.3277E-05 ENTOS CONTENID Decies (S=35.1	(k Especie 11.640 19.814 30.309 34.299 0.668 27.134 3.922 40.268 9.567 31.304 OS EN EL A 83 por mil A T=50°C	Exq° .J/gmol) Elemento 11.640 410.268 30.309 .34.299 0.668 .27.134 2.3.922 .40.268 .236.195 .263.977 AGUA DE MAR .): (SECCIÓN A.4)	
EXERGIA QU Elemento Ar(g) C(g) He(g) Kr(g) N2(g) Ne(g) O2(g) Xe(g) H2(g) D2(g) EXERGIA QU Fracci¢n	JIMICA ESTANDAR Especie Ar CO2 He Kr N2 Ne O2 Xe H2O D2O JIMICA ESTANDAR masa y molalid NOTA: LO MI	Composición o (fracci Aire seco 0.9331E-02 0.3450E-03 0.5001E-05 0.1000E-05 0.7804E+00 0.1800E-04 0.2099E+00 0.9001E-07 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	de la especie ión mol) Aire húmedo 0.9134E-02 0.3378E-03 0.4895E-05 0.9790E-06 0.7639E+00 0.1762E-04 0.2055E+00 0.8811E-07 0.2108E-01 0.3277E-05 ENTOS CONTENID Decies (S=35.1 L EJERCICIO 1	(k Especie 11.640 19.814 30.309 34.299 0.668 27.134 3.922 40.268 9.567 31.304 OS EN EL A 83 por mil A T=50°C	Exq° .J/gmol) Elemento 11.640 410.268 30.309 .34.299 0.668 .27.134 2.3.922 40.268 .236.195 .263.977 AGUA DE MAR .): (SECCIÓN A.4)	
EXERGIA QU Elemento Ar(g) C(g) He(g) Kr(g) N2(g) Ne(g) O2(g) Xe(g) H2(g) D2(g) EXERGIA QU Fracci¢n	JIMICA ESTANDAR Especie Ar CO2 He Kr N2 Ne O2 Xe H2O D2O JIMICA ESTANDAR masa y molalid NOTA: LO MI	Composición o (fracci Aire seco 0.9331E-02 0.3450E-03 0.5001E-05 0.1000E-05 0.7804E+00 0.1800E-04 0.2099E+00 0.9001E-07 0.0000E+00 0.0000E+00 0.0000E+00 8 DE LOS ELEMM dad de las esp ISMO QUE EN EN	de la especie ión mol) Aire húmedo 0.9134E-02 0.3378E-03 0.4895E-05 0.9790E-06 0.7639E+00 0.1762E-04 0.2055E+00 0.8811E-07 0.2108E-01 0.3277E-05 ENTOS CONTENID Decies (S=35.1 L EJERCICIO 1	(k Especie 11.640 19.814 30.309 34.299 0.668 27.134 3.922 40.268 9.567 31.304 OS EN EL A 83 por mil A T=50°C	Exq° :J/gmol} :Elemento) 11.640 410.268 30.309 34.299 0.668 27.134 2.3.922 40.268 236.195 263.977 AGUA DE MAR .): (SECCIÓN A.4)	
EXERGIA QU Elemento Ar(g) C(g) He(g) Kr(g) N2(g) Ne(g) O2(g) Xe(g) H2(g) D2(g) EXERGIA QU Fracci¢n	JIMICA ESTANDAR Especie Ar CO2 He Kr N2 O2 Xe H2O D2O JIMICA ESTANDAR masa y molalid NOTA: LO MI	Composición o (fracci Aire seco 0.9331E-02 0.3450E-03 0.5001E-05 0.1000E-05 0.7804E+00 0.1800E-04 0.2099E+00 0.9001E-07 0.0000E+00 0.0000E+00 8 DE LOS ELEMM dad de las esp ISMO QUE EN EN 8 gmol/kgH20	de la especie ión mol) Aire húmedo 0.9134E-02 0.3378E-03 0.4895E-05 0.9790E-06 0.7639E+00 0.1762E-04 0.2055E+00 0.8811E-07 0.2108E-01 0.3277E-05 ENTOS CONTENID Decies (S=35.1 L EJERCICIO 1	(k Especie 11.640 19.814 30.309 34.299 0.668 27.134 3.922 40.268 9.567 31.304 OS EN EL P 83 por mil A T=50°C	Exq° [J/gmol] Elemento 11.640 410.268 30.309 34.299 0.668 27.134 2.3.922 40.268 236.195 263.977 AGUA DE MAR .): (SECCIÓN A.4)	
EXERGIA QU Elemento Ar(g) C(g) He(g) Kr(g) N2(g) Ne(g) O2(g) Xe(g) H2(g) D2(g) EXERGIA QU Fracci¢n Fuerza Ić pH= 8.11	JIMICA ESTANDAR Especie Ar CO2 He Kr N2 O2 Xe H2O D2O JIMICA ESTANDAR masa y molalid NOTA: LO MI Onica = 0.67818	Composición o (fracci Aire seco 0.9331E-02 0.3450E-03 0.5001E-05 0.1000E-05 0.7804E+00 0.1800E-04 0.2099E+00 0.9001E-07 0.0000E+00 0.0000E+00 8 DE LOS ELEMM dad de las esp (SMO QUE EN EN 3 gmol/kgH20 molal)	de la especie ión mol) Aire húmedo 0.9134E-02 0.3378E-03 0.4895E-05 0.9790E-06 0.7639E+00 0.1762E-04 0.2055E+00 0.8811E-07 0.2108E-01 0.3277E-05 ENTOS CONTENID Decies (S=35.1 L EJERCICIO 1	(k Especie 11.640 19.814 30.309 0.668 27.134 3.922 40.268 9.567 31.304 OS EN EL A 83 por mil A T=50°C	Exq° :J/gmol} :Elemento) 11.640 410.268 30.309 34.299 0.668 27.134 2.3.922 40.268 236.195 263.977 AGUA DE MAR .): (SECCIÓN A.4)	
EXERGIA QU Elemento Ar(g) C(g) He(g) Kr(g) N2(g) Ne(g) O2(g) Xe(g) H2(g) D2(g) EXERGIA QU Fracci¢n Fuerza Ić pH= 8.11	JIMICA ESTANDAR Especie Ar CO2 He Kr N2 O2 Xe H2O D2O JIMICA ESTANDAR masa y molalid NOTA: LO MI Onica = 0.67818	Composición o (fracci Aire seco 0.9331E-02 0.3450E-03 0.5001E-05 0.1000E-05 0.7804E+00 0.1800E-04 0.2099E+00 0.9001E-07 0.0000E+00 0.0000E+00 8 DE LOS ELEMM dad de las esp ISMO QUE EN EN 8 gmol/kgH20 molal)	de la especie ión mol) Aire húmedo 0.9134E-02 0.3378E-03 0.4895E-05 0.9790E-06 0.7639E+00 0.1762E-04 0.2055E+00 0.8811E-07 0.2108E-01 0.3277E-05 ENTOS CONTENID Decies (S=35.1 L EJERCICIO 1	(k Especie 11.640 19.814 30.309 0.668 27.134 3.922 40.268 9.567 31.304 OS EN EL F 83 por mil A T=50°C	Exq° :J/gmol) :Elemento 11.640 410.268 30.309 34.299 0.668 27.134 2.3.922 40.268 236.195 263.977 AGUA DE MAR .): (SECCIÓN A.4)	
EXERGIA QU Elemento Ar(g) C(g) He(g) Kr(g) N2(g) Ne(g) O2(g) Xe(g) H2(g) D2(g) EXERGIA QU Fracci¢n Fuerza Ić pH= 8.11 Coeficient	JIMICA ESTANDAR Especie Ar CO2 He Kr N2 O2 Xe H2O D2O JIMICA ESTANDAR masa y molalid NOTA: LO MI Onica = 0.67818 189 (en escala tes de activida	Composición o (fracci Aire seco 0.9331E-02 0.3450E-03 0.5001E-05 0.1000E-05 0.7804E+00 0.1800E-04 0.2099E+00 0.9001E-07 0.0000E+00 0.0000E+00 8 DE LOS ELEMM dad de las esp (SMO QUE EN EN 8 gmol/kgH20 molal) ad de los ione	de la especie ión mol) Aire húmedo 0.9134E-02 0.3378E-03 0.4895E-05 0.9790E-06 0.7639E+00 0.1762E-04 0.2055E+00 0.8811E-07 0.2108E-01 0.3277E-05 ENTOS CONTENID Decies (S=35.1 L EJERCICIO 1	(k Especie 11.640 19.814 30.309 0.668 27.134 3.922 40.268 9.567 31.304 OS EN EL F 83 por mil A T=50°C al):	Exq° [J/gmol] Elemento 11.640 410.268 30.309 34.299 0.668 27.134 2.3.922 40.268 236.195 263.977 AGUA DE MAR): (SECCIÓN A.4)	
EXERGIA QU Elemento Ar(g) C(g) He(g) Kr(g) N2(g) Ne(g) O2(g) Xe(g) H2(g) D2(g) EXERGIA QU Fracci¢n Fuerza Ić pH= 8.11 Coeficient	JIMICA ESTANDAR Especie Ar CO2 He Kr N2 O2 Xe H2O D2O JIMICA ESTANDAR masa y molalid NOTA: LO MI Onica = 0.67818 189 (en escala tes de activida	Composición o (fracci Aire seco 0.9331E-02 0.3450E-03 0.5001E-05 0.1000E-05 0.7804E+00 0.1800E-04 0.2099E+00 0.9001E-07 0.0000E+00 0.9001E-07 0.0000E+00 8 DE LOS ELEMH dad de las esp (SMO QUE EN E) 8 gmol/kgH20 molal) ad de los ione	de la especie ión mol) Aire húmedo 0.9134E-02 0.3378E-03 0.4895E-05 0.9790E-06 0.7639E+00 0.1762E-04 0.2055E+00 0.8811E-07 0.2108E-01 0.3277E-05 ENTOS CONTENID Decies (S=35.1 L EJERCICIO 1	(k Especie 11.640 19.814 30.309 0.668 27.134 3.922 40.268 9.567 31.304 OS EN EL F 83 por mil A T=50°C al):	Exq° [J/gmol] Elemento 11.640 410.268 30.309 34.299 0.668 27.134 2.3.922 40.268 236.195 263.977 AGUA DE MAR): (SECCIÓN A.4)	
EXERGIA QU Elemento Ar(g) C(g) He(g) Kr(g) N2(g) Ne(g) O2(g) Xe(g) H2(g) D2(g) EXERGIA QU Fracci¢n Fuerza Ić pH= 8.11 Coeficient	JIMICA ESTANDAR Especie Ar CO2 He Kr N2 O2 Xe H2O D2O JIMICA ESTANDAR masa y molalid NOTA: LO MI Onica = 0.67818 189 (en escala tes de activida NOTA: LO MI	Composición o (fracci Aire seco 0.9331E-02 0.3450E-03 0.5001E-05 0.1000E-05 0.7804E+00 0.1800E-04 0.2099E+00 0.9001E-07 0.0000E+00 0.9001E-07 0.0000E+00 0.0000E+00 8 DE LOS ELEMH dad de las esp (SMO QUE EN E) ad de los ione (SMO QUE EN E)	de la especie ión mol) Aire húmedo 0.9134E-02 0.3378E-03 0.4895E-05 0.9790E-06 0.7639E+00 0.1762E-04 0.2055E+00 0.8811E-07 0.2108E-01 0.3277E-05 ENTOS CONTENID Decies (S=35.1 L EJERCICIO 1	(k Especie 11.640 19.814 30.309 0.668 27.134 3.922 40.268 9.567 31.304 OS EN EL A 83 por mil A T=50°C al):	Exq° (J/gmol) Elemento 11.640 410.268 30.309 34.299 0.668 27.134 2.3.922 40.268 236.195 263.977 AGUA DE MAR): (SECCIÓN A.4)	
EXERGIA QU Elemento Ar(g) C(g) He(g) Kr(g) N2(g) Ne(g) O2(g) Xe(g) H2(g) D2(g) EXERGIA QU Fracci¢n Fuerza Ić pH= 8.11 Coeficient	JIMICA ESTANDAR Especie Ar CO2 He Kr N2 O2 Xe H2O D2O JIMICA ESTANDAR masa y molalid NOTA: LO MI Onica = 0.67818 189 (en escala tes de activida NOTA: LO MI	Composición o (fracci Aire seco 0.9331E-02 0.3450E-03 0.5001E-05 0.1000E-05 0.7804E+00 0.1800E-04 0.2099E+00 0.9001E-07 0.0000E+00 0.9001E-07 0.0000E+00 8 DE LOS ELEMH dad de las esp (SMO QUE EN EI 8 gmol/kgH20 molal) ad de los ione	de la especie ión mol) Aire húmedo 0.9134E-02 0.3378E-03 0.4895E-05 0.9790E-06 0.7639E+00 0.1762E-04 0.2055E+00 0.8811E-07 0.2108E-01 0.3277E-05 ENTOS CONTENID Decies (S=35.1 L EJERCICIO 1	(k Especie 11.640 19.814 30.309 0.668 27.134 3.922 40.268 9.567 31.304 OS EN EL A 83 por mil A T=50°C al): A T=50°C	Exq° LJ/gmol) Elemento 11.640 410.268 30.309 34.299 0.668 27.134 2.3.922 40.268 236.195 263.977 AGUA DE MAR): (SECCIÓN A.4)	
EXERGIA QU Elemento Ar(g) C(g) He(g) Kr(g) N2(g) Ne(g) O2(g) Xe(g) H2(g) D2(g) EXERGIA QU Fracci¢n Fuerza Ić pH= 8.11 Coeficient	JIMICA ESTANDAR Especie Ar CO2 He Kr N2 O2 Xe H2O D2O JIMICA ESTANDAR masa y molalid NOTA: LO MI 50nica = 0.67818 189 (en escala tes de activida NOTA: LO MI actividad de E	Composición o (fracci Aire seco 0.9331E-02 0.3450E-03 0.5001E-05 0.1000E-05 0.7804E+00 0.1800E-04 0.2099E+00 0.9001E-07 0.0000E+00 0.0000E+00 0.0000E+00 8 DE LOS ELEMH dad de las esp (SMO QUE EN EI 8 gmol/kgH20 molal) ad de los ione (SMO QUE EN EI 8 (OH)3 : 1.21	de la especie ión mol) Aire húmedo 0.9134E-02 0.3378E-03 0.4895E-05 0.9790E-06 0.7639E+00 0.1762E-04 0.2055E+00 0.8811E-07 0.2108E-01 0.3277E-05 ENTOS CONTENID pecies (S=35.1 L EJERCICIO 1 EJERCICIO 1 1772	(k Especie 11.640 19.814 30.309 34.299 0.668 27.134 3.922 40.266 9.567 31.304 OS EN EL A 83 por mil A T=50°C al): A T=50°C	Exq° .J/gmol) Elemento 11.640 410.268 30.309 .34.299 .0.668 .27.134 .27.134 .236.195 .263.977 AGUA DE MAR .): (SECCIÓN A.4)	
EXERGIA QU Elemento Ar(g) C(g) He(g) Kr(g) N2(g) Ne(g) O2(g) Xe(g) H2(g) D2(g) EXERGIA QU Fracci¢n Fuerza Ić pH= 8.11 Coeficient Coef. de	JIMICA ESTANDAR Especie Ar CO2 He Kr N2 O2 Xe H2O D2O JIMICA ESTANDAR masa y molalid NOTA: LO MI 50nica = 0.67818 189 (en escala tes de activida NOTA: LO MI actividad de E	Composición o (fracci Aire seco 0.9331E-02 0.3450E-03 0.5001E-05 0.1000E-05 0.7804E+00 0.1800E-04 0.2099E+00 0.9001E-07 0.0000E+00 0.9001E-07 0.0000E+00 8 DE LOS ELEMH dad de las esp (SMO QUE EN EN 3 gmol/kgH20 molal) ad de los ione (SMO QUE EN EN (SMO QUE EN EN (SMO QUE EN EN) (SMO QUE EN EN)	de la especie ión mol) Aire húmedo 0.9134E-02 0.3378E-03 0.4895E-05 0.9790E-06 0.7639E+00 0.1762E-04 0.2055E+00 0.8811E-07 0.2108E-01 0.3277E-05 ENTOS CONTENID Decies (S=35.1 L EJERCICIO 1 L EJERCICIO 1 1772	(k Especie 11.640 19.814 30.309 34.299 0.668 27.134 3.922 40.268 9.567 31.304 OS EN EL A 83 por mil A T=50°C al): A T=50°C	Exq° (J/gmol) Elemento 11.640 410.268 30.309 34.299 0.668 27.134 2.3.922 40.268 236.195 263.977 AGUA DE MAR): (SECCIÓN A.4)	

EXERGIA QUIMICA ESTANDAR DE CADA ELEMENTO:

Elemento	Exq° (kJ/gmol)	Elemento	Exq° (kJ/gmol)
As(s)	492.471	B(s)	627.958
Br2(1)	100.925	Cl2(g)	123.596
Cs(s)	404.635	I2(s)	175.662
K(S)	366.703	Li(s)	392.762
Mo(s)	731.253	Na(s)	336.705
P(s)	861.153	Rb(s)	388.731
S(S)	609.262	Se(s)	347.447
W(s)	828.381		

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN LA CORTEZA TERRESTRE.-

Fracción molar y exergia química estándar de las especies de referencia:

NOTA: LO MISMO QUE EN EL EJERCICIO 1 A P=0.65 atm DE ESTA SECCIÓN

EXERGIA QUIMICA ESTANDAR DE CADA ELEMENTO:

Elemento	Exq° (kJ/gmol)	Elemento	Exq° (kJ/gmol)
Ag(s)	99.364	Al(s)	795,750
Au(s)	<u>50.616</u>	Ba(s)	775.482
Be(s)	604.280	Bi(s)	271.196
Ca(s)	729.145	Cd(s)	298.418
Ce(s)	1054.745	Co(s)	313.420
Cr(s)	584.330	Cu(s)	132.597
Dy(s)	975.858	Er(s)	972.699
Eu(s)	1003.699	F2 (g)	506.405
Fe(s)	374.349	Ga(s)	514.981
Gd(s)	968.881	Ge(s)	557.663
Hf(s)	1063.081	Hg(l)	107.991
Ho(s)	978.629	In(s)	436.853
Ir(s)	247.001	La(s)	994.553
Lu(s)	945.683	Mg(s)	626.904
Mn(s)	487.748	Nb(s)	899.741
Nd(s)	970.016	Ni(s)	242.592
Os(s)	368.431	Pb(s)	249.197
Pd(s)	138.734	Pr(s)	963.757
Pt(s)	141.159	Pu(s)	1100.056
Ra(s)	824.294	Re(s)	559.575
Rh(s)	179.730	Ru(s)	318.635
Sb(s)	438.186	Sc(s)	925.255
Si(s)	855.009	Sm(s)	993.578
Sn(s)	551.845	Sr(s)	749.836
Ta(s)	974.092	Tb(s)	998.360
Te(s)	329.293	Th(s)	1202.660
Ti(s)	907.203	Tl(s)	194.918
Tm(s)	951.670	U(s)	1196.533
V(s)	721.272	Y(s)	965.464
Yb(s)	944.199	Zn(s)	344.716
Zr(s)	1082.975	<u></u>	

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS.-

Compuesto	Exq° (kJ/gmol)
CH4	831.865
FeSO4	173.495

		$(a,b) \in \mathbb{R}^{n} \setminus \{a,b\} \in \mathbb{R}^{n}$
- ¹	$p_{i}(x) = p_{i}(x)$	
		· · · · · · · · · · · · · · · · · · ·

218

			production of the second second	
	· · · · · ·			$(x,y) \in \{x,y\}$
		and the second second	· · ·	1 - 1
		;		14. E.S.
	· · · · ·		and the second	1. A
			en e	and a second
		1		
	•			
	·			14 14
		-		N.,
			•	and the second second second
		,		and the second sec
		1	and the second	
		· · ·		
			and the second	
	1	• ·		
			· · · · · · · · · · · · · · · · · · ·	1. C.
				· · ·
				1
		1.1	and the second second	1.8
		. *		11 - AM
	10 m			
	•		· · · · · ·	
			P	

 $\left(x_{i} \right) \in \mathcal{X}^{(m-1)} \left(x_{i} \right) \left$

NG POTONES.

APÉNDICE B

B.1.- Parámetros de interacción del modelo de Pitzer entre iones presentes en el agua de mar.

A continuación se presentan los parámetros de interacción entre los diferentes iones del agua de mar y que son considerados en la determinación de los coeficientes de actividad de las especies por medio del modelo de Pitzer. La información proviene de diversas publicaciones [31-37].

· · · · ·		de interaccion.	racción.				
Sal (MX)		$\beta^{(0)}_{MX}$	$\beta^{(1)}{}_{MX}$	$\beta^{(2)}_{MX}$ C^{φ}_{MX}	m _i máx.		
HCI		0.17750	0.29450	0.00080	.6		
HBr		0.19600	0.35640	0.00827	3		
Ba(OH) ₂	$\{G_{i,j}^{k}\}_{j\in \mathbb{N}}$	0.17175	1.20000	1	0.1		
BaCl ₂		0.26280	1.49625	0,01 938 - -0,01938	18		
BaSO₄ ^(a)	$(\mathcal{T}_{i_1,\ldots,i_k})_{i_1,\ldots,i_k} = \sum_{j=1}^k (1-i_j)^{i_j} (1-i_j)^{i_j}$	0.20000	2.65000	-55.7	0.004-0.011		
BaBr ₂		0.31455	1.56975	-0.01596	2		
CaCl ₂		0.31590	1.61400	-0.00034	2.5		
CaBr ₂	9 - ¹⁴ - 14	0.38160	1.61325	-0.00257	2		
CaSO₄		0.20000	2.65000	-55.7	0.004-0.011		
Ca[B(OH) ₄];	2	-1.57000	-4.49000	-0.17000			
CdSO₄		0.20530	2.61700	-48.07 0.01140	0.005-3.5		
CoCl ₂	Sec. 1	0.36428	1.47525	-0.01522	5 (1997) - 3 1		
CoBr ₂		0.42698	1.65975	-0.00067	2		
CoSO₄	La servere e	0.20000	2.70000	-30.7	0.006-0.1		
CsOH		0.15000	0.30000	1. A. A. 1			
CsCl		0.03000	0.05580	0.00038	5		
CsBr		0.02790	0.01390	0.00004	5		
Cs ₂ SO ₄		0.08880	1.11075	-0.00600	1.8		
CsF		0.13060	0.25700	-0.00430	3.2		
CuCl ₂		0.30803	1.37625	-0.04043	2		
CuSO₄		0.23580	2.48500	-47.35 -0.00120	0.005-1.4		
MgCl ₂		0.35235	1.68150	0.00519	4 5		
MgBr ₂		0.43268	1.75275	0.00312	5		
Mg[B(OH)₄]	2	-0.21000	-4.98000	-0.36000	$\lambda_{1} = 0$		
MgSO₄		0.22100	3.34300	-37.23 0.02500	0.006-3		
Mg[HCO ₃] ₂		0.01930	0.58400		• •		
MgCO₃	. ¹⁹	2.83300	-15.06900	-204.9 -0.97000			
KOH	11 a.	0.12980	0.32000	0.00410	55		
KCI	· ·	0.04835	0.21220	-0.00084	4 8		
K ₂ HAsO ₄		0.12960	1.64850	-0.01782	1		

(a) Se consideran los mismos parámetros que para el CaSO₄

		Ununuacion	•		
Sal (MX)	B ⁽⁰⁾ MX	$\beta^{(1)}_{MX}$	$\beta^{(2)}{}_{MX}$	C ^P _{MX}	m _i máx.
H ₂ AsO ₄	-0.05840	0.06260	. Sectors	an an sharin	1.2
(₃AsO₄	0.49940	4.34067		-0.12994	0.7
<₂SO₄	0.04995	0.77925			0.7
KBr	0.05690	0.22120		-0.00180	5.5
KHCO3	-0.00050	-0.01300			
< F	0.08089	0.20210		0.00093	2
<₂HPO₄	0.02475	1.27425	An an an an Ar	0.01639	
H ₂ PO ₄	-0.06780	-0.10420	an a sanna a	an teangla taon	1.8
K₃PO₄	0.37293	3.97200	s el centre a	-0.08679	0.7
.ioh	0.01500	0.14000		1	4
LiCI	0.14940	0.30740		0.00359	S. S. Boko
LiBr	0.17480	0.25470		0.00530	2.5
_i2SO4	0.13628	1.27050		-0.00399	3
MnCl ₂	0.32723	1.55025	en e stande	~0.02050	2.5
MnSO₄ ····	0.20100	2.98000	n na ga dan s	0.01820	0.1-4
MnBr ₂	0.44655	1.34477	• •	-0.02269	5.64
VaOH	0.08640	0.25300	n na Karana La Argana	0.00440	6
NaCi	0.07650	0.26640		0.00127	6
Na₂HAsO₄	0.03053	1.62975		0.00180	1
laH₂AsO₄	-0.04420	0.28950	the state		1.2
la₃AsO₄	0.23880	3.93000	an a	-0.04773	0.7
laB(OH)₄	-0.05260	0.11040	11114	0.01540	
la₂SO₄	0.01958	1.11300		0.00497	4
laBr	0.09730	0.27910	· · · ·	0.00116	4
laHCO3	0.02770	0.04110			
la ₂ CO ₃	0.18975	0.84600		-0.04803	1.5
laF	0.02150	0.21070			1
la₂HPO₄	-0.05828	1.46550		0.02938	1
VaH ₂ PO ₄	-0.05330	0.03960	an a	0.00795	6
la₃PO₄	0.17813	3.85133		-0.05154	07
VICI2	0.34793	1.58100		-0.00372	2.5
Niso₄	0.17020	2.90700	-40.06	0.03660	0.005-2.5
PbCl ₂ ^(a)	0.26018	1.64250		-0.08798	12
2bSO₄ ^(b)	0.20000	2.65000	-55.7		0.004-0.011
₹bCl	0.04410	0.14830		-0.00101	5
Rb₂SO₄	0.05790	1,11075	an a	-0.00010	5 1 B
RbBreese	0.03960	0.15300		-0.00144	5
Rof	0.11410	0.28420		-0.01050	35
, =. SrCl₂	0 28575	1 66725	2	-0.00130	
SrBr ₂	0 33113	1 71150		0.00123	· · · · · ·
SrSQ4 ^(b)	0.00110	2 65000	-55 7	0.00123.,	0 004-0 011
	0.20000	1.64400	-00.7	-0.03696	0.00
10-80	0.72100	1 82700		0.03060	∠
ZnCla	0.02200	1.027.00		-0.01700 0.00700	C-1.U
ZnSO4	0.20010	2,88300	-27 01	000000	0.005.3.5
7nDr-	0.1949U	4 62405	-52.01	0.02900	0.000-3.5
	<u>0.40598</u>	1.03425		-0.10792	1.6

Tabla B.1.- Parámetros de interacción (continuación)

(a) Se suponen los mismos parámetros que para el ZnCl₂
 (b) Se consideran los mismos parámetros que para el CaSO₄

B.2.- Valores de ΔH° de la reacción de formación de las especies de referencia a 25°C.

En la Tabla B.2, se listan los valores de cambio de entalpia normal estándar de la reacción de formación de las especies de referencia, los cuales se utilizan para corregir el valor de ΔG_f° a 25°C cuando es otra la temperatura a la que se lleva a cabo la reacción.

En general, el valor de ΔH_f° a condiciones normales se leyó de la misma referencia bibliográfica de la que proviene el valor de ΔG_f° utilizado en este trabajo; sin embargo, debido a que para algunas especies no se reporta el valor de ΔH_f° o no se dispone de la referencia en la que Szargut se basa para establecer el valor de ΔG_f° que él considera, el calor normal estándar de la reacción de formación se determina por medio de la Ecuación 1-4 del capítulo I, ahora explicita para ΔH_f° , y a partir de los valores de cambio de energía libre de Gibbs estándar y cambio de entropia estándar a 25°C de la reacción, esto es,

$$\Delta H_f^o = \Delta G_f^o + T_n \Delta S_f^o \tag{B-1}$$

El valor de ΔS_f° , es decir, la diferencia de entropia normal estándar entre el producto y los reactivos de la reacción de formación de la especie de referencia, se obtiene a partir de los valores de entropia estándar a 25°C (S°_{298K}) de cada una de las sustancias presentes en la reacción. Los valores de S°_{298K} de los elementos así como de la mayoría de los óxidos, sulfatos y carbonatos de metales presentes en la corteza terrestre se listan en el CRC Handbook [44].

En el caso de las especies, cuyos valores de ΔG_f° utilizados en el presente trabajo no coinciden con los señalados en las referencias consultadas y que además sus valores de S°_{298K} no están disponibles, el valor de $T_n \Delta S_f^{\circ}$ se obtiene a partir de los valores de ΔH_f° y ΔG_f° que se indican para estas especies en el libro de Wagman [21], o bien en el CRC Handbook para el caso de las especies CuCO₃ y SiO₂.

Debido a que no se dispone de información de los valores de ΔH_f° y de entropía normal estándar de los hidróxidos de los elementos correspondientes al grupo de las tierras raras de la Tabla Periódica, es decir, Dy(OH)₃, Er(OH)₃, Eu(OH)₃, Gd(OH)₃, Ho(OH)₃, Lu(OH)₃, Nd(OH)₃, Pr(OH)₃, Sm(OH)₃, Tb(OH)₃, Tm(OH)₃, y Yb(OH)₃, el calor normal estándar de formación de estas especies se obtiene al considerar el valor de $T_n\Delta S_f^{\circ}$ del La(OH)₃, valor que resulta de la diferencia entre los valores de ΔH_f° y ΔG_f° que se indican para el La(OH)₃ en el libro de Latimer [22]. Aún cuando el Lantano pertenece al grupo de los metales de transición, las propiedades de este elemento se parecen a las de los elementos del grupo de las tierras raras, por lo que se utiliza el valor de $T_n\Delta S_f^{\circ}$ del La(OH)₃ para obtener el cambio de entalpia normal estándar de los hidróxidos de los elementos del grupo de las tierras raras.

En ninguna de las referencias bibliográficas consultadas se encontraron las propiedades termodinámicas de las especies Nb₂O₃ y Tl₂O₄, por lo que se consideran los valores de ΔH_f° del Nb₂O₅ y Tl₂O₃ que se publican en los libros de Wagman y CRC Handbook, respectivamente.

Reveals as any caster is a new setting of a constraint of the setting of the other of a constraint of the set and the set a

Standardspace of a Construction and a second of the Analysis of the Construction and a second of the Analysis o The Analysis of the Analysi

Especie	∆H _f °, kJ/gmol	Referencia	Especie	ΔH_{f}° , kJ/gmol	Referencia
Ar	0		Gd(OH)₃	-1421.9	(C)
CO ₂	-393.5065	Perry [7]	GeO ₂	-579.63	(a)
He	0		HfO ₂	-1087.18	(a)
Kr	0			-224.4	(b)
N_2	0		Ho(OH) ₃	-1427.8	(c)
Ne	0		In ₂ O ₃	-919.67	(a)
O ₂	0		lrO ₂	-237 .75	(a)
Xe	0		La(OH)₃	-1452.2	(C)
H ₂ O	-241.8221	Perry [7]	Lu(OH) ₃	-1392.6	(C)
D ₂ O	-249.2364	Reid [8]	Mg ₃ Si ₄ O ₁₀ (OH) ₂	-5922.5	Wagman [21]
HAsO42-	-906.34	Wagman [21]	MnO ₂	-519.95	(a)
B(OH) ₃	-1072.32	Wagman [21]	Nb ₂ O ₃	-1899.5	Wagman [21]
Br	-121.55	Wagman [21]	Nd(OH)₃	-1427.3	(C)
Cľ	-167.159	Wagman [21]	NiO	-239.67	(a)
Cs⁺	-248.11	Barner [49]	OsO4	-393.8	(a)
IO ₃	-221.3	Wagman [21]	PbCO ₃	-699.17	(a)
K⁺	-251.45	Barner [49]	PdO	-112.81	(a)
Li ⁺	-278 .65	Barner [49]	Pr(OH) ₃	-1418.1	(C)
MoO ₄ ²⁻	-997.87	Barner [49]	PtO ₂	-136.72	(a)
Na⁺	-240.12	Wagman [21]	PuO ₂	-1047.87	(a)
HPO₄ ²⁻	-1292.14	Wagman [21]	RaSO₄	-1474.75	(a)
Rb⁺	-248.11	Barner [49]	Re ₂ O ₇	-1248.84	(a)
SO42	-909.27	Wagman [21]	Rh ₂ O ₃	-381.76	(a)
SeO42-	-599.1	Barner [49]	RuO ₂	-307.24	(a)
WO4 ²⁻	-1115.4	Barner [49]	Sb ₂ O ₅	-971.02	(a)
AgCl	-127.068	Barner [49]	Sc ₂ O ₃	-1902.91	(a)
	-2587.76	Wagman [21]	SiO ₂	-911.09	(b)
Au	0		Sm(OH)₃	-1447	(C)
BaSO₄	-1474.2	(a)		-580.7	Wagman [21]
Be ₂ SiO ₄	-2150.1	(b)	SrCO ₃	-1220.1	Wagman [21]
Bi ₂ O ₃	-573.88	Wagman [21]	Ta ₂ O ₅	-2046.46	(a)
CaCO ₃	-1207.11	(a)	Tb(OH) ₃	-1447.2	(C)
CdCO ₃	-750.6	Wagman [21]	TeO ₂	-322.6	Wagman [21]
CeO ₂	-1081.06	(a)	ThO ₂	-1226.7	(b)
CoFe ₂ O ₄	-1139.8	(b)	TiO ₂	-944.7	Wagman [21]
K ₂ Cr ₂ O ₇	-2062	(b)	Tl ₂ O ₄	-502.07	CRC [44]
CuCO ₃	-595.88	(b)	Tm(OH)₃	-1398.5	(C)
Dy(OH)₃	-1427.3	(c)		-1535	(b)
Er(OH)₃	-1424	(C)	V ₂ O ₅	-1550.6	Wagman [21]
Eu(OH)₃	-1453.1	(C)	Y(OH)₃	-1414	(b)
CaF ₂ • 3Ca ₃ (PO ₄) ₂	-13746.3	(b)	Yb(OH) ₃	-1395.5	(C)
Fe ₂ O ₃	-824.2	Wagman [21]	ZnCO ₃	-812.86	(b)
Ga ₂ O ₃	-1089.56	(a)	ZrSiO ₄	-2033.8	(b)

Tabla B.2.- Calor estándar de formación a 25°C de las especies de referencia.

(a) por medio de la ecuación B-1

(b) al suponer el valor de $T_n\Delta S_f^{\circ}$ obtenido a partir de los valores de ΔH_f° y ΔG_f° que se indican en el libro de Wagman [21] o en el CRC Handbook [44], según sea el caso

(c) al considerar $T_n\Delta S_f^\circ$ = -133 kJ/gmol, calculado a partir de los valores de ΔH_f° y ΔG_f° del La(OH)₃ que se indican en el libro de Latimer [22]

				s ^{an} a thaga		
		a ta su tas.				
		1				• •
			· · ·		. :	
		the trace	· . · .			- . 1 -
	1. de 1.	$(1,1) \in [N^{-1}]$			•	
		;			:	
			and the second			1 T . 1
				a station and a station		1. A.
	•		$T \sim C$		1. A A	
	4 N.		$(1,1)^{(1)} \in \mathbb{R}^{n}$			
	•	2 A 1			1 1	
			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		29 - C C C C C C C C	* ₂
		$\int_{\Omega_{1}} dr = \int_{\Omega_{1}} dr$			and the second sec	
,			.*	(1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,		•
	. :					3
		- · · ·				1. S. 197
	. •	11 12			an shu bhu	- - -
		· · ·			12 T	
:					1998	
,		· .	· · · ·			1997 - B
1				的一种人物的		
		1999 - 1999 -		$= \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1$		
	1. 1 1					in the
		1. A.	1994 ^{- 1}			$\mathcal{L}_{\mathrm{res}} = \mathcal{L}_{\mathrm{res}}^{\mathrm{res}}$
				· . ·		
5						
	. 1		· · · · ·		· · ·	
			· · · · · · · · · · · · · · · · · · ·	and the second second		
		• . • •				
			-			
	1. 		48 A.		11	
	· ,					
		57 S.	and the second		1	

et d

Z24

: .

APÉNDICE C

PROGRAMA PARA EL CÁLCULO DE EXERGIA QUÍMICA ESTÁNDAR DE COMPUESTOS EXQCOMP

Con el fin de sistematizar el cálculo de exergia química estándar de cualquier compuesto químico a partir de la exergia química estándar de los elementos que lo conforman, se desarrolló el programa denominado EXQCOMP, escrito con el lenguaje de programación Fortran77.

En el programa EXQCOMP, se determina en primer lugar la exergia química estándar de la mayoría de los elementos de la Tabla Periódica, con base en las condiciones normales de temperatura, presión y concentración de las especies de referencia presentes en el medio ambiente (aire atmosférico, hidrosfera y litosfera); o si el usuario desea, puede modificar dichas condiciones a las que prevalecen en el medio bajo el cual esté sujeto el proceso analizado. Las condiciones modificables del medio y las unidades en que deben expresarse en el programa EXQCOMP, se listan en la Tabla C.1. and the second secon

1abla C.1 Definición de las condiciones del medio.								
Condición del medio	Unidades	Condición normal						
Temperatura	Grados centígrados	25 °C						
Presión	Atmósferas	1 atm						
Concentración de CO ₂ en el aire	Partes por millón en volumen	345 ppmv						
Humedad relativa del aire		0.7						
Salinidad del agua de mar	Partes por mil	35 ‰						

and the state of the

Debido a que el valor de exergia química de los elementos contenidos en la corteza terrestre depende del valor de exergia química del hidrógeno, oxígeno, carbono, cloro, azufre, potasio y fósforo, cuyas especies de referencia están presentes en el aire atmosférico y en el agua de mar; y que a su vez el valor de exergia química de los elementos determinado a partir de especies de referencia disueltas en el agua de mar depende del valor de exergia química estándar del H₂, O₂ y C, estimados a partir de la especie presente en la atmósfera; la secuencia con la que se calcula la exergia química estándar de los elementos en el programa EXQCOMP, de acuerdo al medio en donde se encuentra su especie de referencia, es: 1) atmósfera, 2) hidrosfera y 3) litosfera; por lo que el proceso de cálculo no es cíclico.

Una vez establecidas las condiciones del medio ambiente y determinada la exergia química estándar de los elementos, se procede a calcular la exergia química del compuesto o compuestos químicos especificados por el usuario por medio de la ecuación C-1 (o ecuación 2-1)

$$Ex_q^o = \Delta G_f^o + \sum_{el} n_{el} Ex_{qel}^o$$

Para lo cual es necesario que el usuario establezca la reacción de formación del compuesto, proporcionando el número de identificación de cada elemento dentro del programa (ver Tabla C.2), el coeficiente estequiométrico de cada elemento en su forma molecular por cada mol de compuesto formado, y el cambio de energía libre de Gibbs estándar de la reacción de formación a condiciones normales, en kJ/gmol. Sí la temperatura del medio es diferente a 25°C, es necesario proporcionar el cambio de entalpia estándar de la reacción de formación del compuesto a 25°C, con el fin de corregir el valor de ΔG_f° a la nueva temperatura en que se lleva a cabo la reacción.

	Elemento Químico (estado)	Número	Elemento Químico (estado)	Elemento Químico Número (estado) Número				
	Ar (g)	1	Cs (s)	15	Ba (s)	29		
	C (s)	2	l _{2 (s)}	16	Be (s)	30		
	He (g)	3	K (s)	17	Bi (s)	31		
a t	Kr (g)	4 3. 4	Li _(s)	18		32		
	N _{2 (g)}	5	Mo (s)	19	Cd (s)	33		
	Ne (g)	6	Na (s)	20	Ce (s)	34		
	$O_2(q)$	7	P (s)	21	Co (s)	35		
	Xe (g)	8	Rb _(s)	22	Cr (s)	36		
1	$H_{2(g)}$	9	S (s)	23	Cu (s)	37		
	$D_{2(q)}$	10	Se (s)	24	Dy (s)	38		

			(continua	icion).		
_	Elemento Químico		Elemento Químico		Elemento Químico	
	(estado)	Número	(estado)	Número	(estado)	Número
	As (s)	11	W (s)	25	Er _(s)	39
	B (s)	12	Ag (s)	26	Eu _(s)	40
an di	Br _{2 (1)}	13	Al (s)	27	F _{2 (g)}	41
	Cl _{2 (g)}	14	Au _(s)	28	Fe _(s)	42
	Ga (s)	43	Os (s)	58	Sr (s)	73
	Gd (s)	44	Pb (s)	59	Ta _(s)	74
	Ge (s)	45	Pd (s)	60	Tb (s)	75
	Hf (s)	46	Pr (s)	61	Te (s)	76
	Hg ()	47	Pt (s)	62	Th _(s)	77
	Ho (s)	48	Pu (s)	63	Ti (s)	78
	In _(s)	49	Ra (s)	64	TI (s)	79
	lr _(s)	50	Re (s)	65	Tm _(s)	80
. •	La _(s)	51	Rh (s)	66	U (s)	81
	Lu _(s)	52	Ru (s)	67	V (s)	82
. ,	Mg _(s)	53	Sb (s)	68	Y _(s)	83
100	Mn _(s)	54	Sc (s)	69	Yb (s)	84
	Nb (s)	55	Si _(s)	70	Zn _(s)	85
	Nd (s)	56	Sm _(s)	71	Zr _(s)	86
_ <	Ni _(s)	57	Sn _(s)	72		<u> </u>

Tab	la (C.2	Nú	mer	0	de io	lentifica	ición	de los	elemen	itos	en el	prog	rama	EXQ	COMP
						- 1.	i in a se	(co	ntinuac	ión).		1.16				11 A.

El programa EXQCOMP genera un archivo de resultados (*OUTCOMP*), el cual contiene la información proporcionada por el usuario con relación a las condiciones del medio, y los siguientes resultados de acuerdo al medio en que se encuentre la especie de referencia de cada elemento:

 Aire atmosférico.- Composición molar de las especies presentes en el aire (base seca y húmeda) y la exergia química estándar de las especies y de los elementos contenidos en la atmósfera.

and the second second

 Hidrosfera - Fracción masa y concentración molal de todas las especies disueltas en el agua de mar; la fuerza iónica y el valor de *pH* de la solución; los valores de coeficientes de actividad de los iones libres y del ácido bórico; y la exergia química estándar de los elementos presentes en éste medio.

100510-0

- A. 1997

1.1

 $a_{3} + c_{1}^{2} c_{1}^{2} b$

사가 실험

 $\mathcal{E}_{n,2}$

17

5.5

Litosfera - Fracción molar y exergia química estándar de las especies de referencia presentes en la corteza terrestre y el valor de exergia química de los elementos 15.738 ASA contenidos en estas especies. 3 84 S S grande S

Finalmente, en el archivo de resultados, se presenta una lista con los resultados obtenidos en el cálculo de exergia química estándar de los compuestos definidos por el 0.0 1.1 usuario. 1. N. E. . A . ર્થ સંસ

C.1.- Algoritmo.

Sec. 2019

En las siguientes páginas se muestra el algoritmo de cálculo en el que se basa el programa EXQCOMP para la determinación de exergia química estándar de compuestos químicos y, posteriormente, los resultados que se presentan en el archivo de salida OUTCOMP del cálculo de exergia química estándar del metano y sulfato ferroso (a manera de ejemplo) a partir de la exergia química estándar de los elementos que los forman, al considerar las condiciones normales de temperatura, presión y concentración de las especies en el medio ambiente.

essense respuérie d'al ac La información requerida por el programa EXQCOMP para la determinación de exergia eathraight cei química estándar del metano y sulfato ferroso se presenta en la Tabla C.3. そうにんしょう わたざわ ちわ きにいられる あみ

Fórmula química del compuesto ^(a)	∆G _f ° _{com} e ^(b) kJ/gmol	Número de elementos que conforman al compuesto	Fórmula molecular de cada elemento	Número de Identificación de cada elemento	Coeficiente estequiométrico de cada elemento
CH _{4 (g)}	-50.79	2 1. 196 (197 (197 (197 (197	C Ĥ ₂	2 10 40 10 9 10 10	1 2.54 - 1.9 <mark>2</mark> 988896596
FeSO _{4 (s)}	-817.96	3	Fe of	42	an the t ain in the
1. It (4.) 	·····.	atili segitter	S	23 7	y - Hendrich 1 . gescheren ge Nichten die <mark>2</mark> . gescheren gescher

Tabla C.3.- Información requerida por el programa EXQCOMP para el cálculo de Er 9 del metano v del sulfato forroso and the second second second

(a) Estado: (g) gas, (s) sólido

(b) Valores leídos del libro de Perry [7]

C.2	Resultados del	cálculo de	exergia química	estándar de	los elementos	y de los
		the second second		All the second second	 A start st Start start st Start start st Start start st Start start sta	· · ·
comr	waetae matana i	u culfata farr	aca a condiciona	e normalae	· · · · ·	

vompuestos metano y s		ondicione	o normarco.	and the second	24 4 4
	and the second second	a shekara		$(1-1)^{H_{1}} = \frac{1}{2} \left(1 - \frac{1}{2} \right)^{H_{1}} = \frac{1}{2} \left(1$	eer ange s
	1	2 11 - E			
Las condiciones del med	lio especificadas	son:	•		
Temperatura:	25.0 °C		· ·		
Presión:	1.0000 atm	· · · · ·	and when the		$M_{1} = 0$
Concentración de CO2:	345.0 ppmv	1 A	in the second second		
Humedad relativa	0.700		and the state of the	and the second second	2.5
Salinidad:	35.183 por mil	19 (11) 19	1 Constants of the	and the second second	The second se
			(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		- 11 gent
EXERGIA QUIMICA ESTANDA	R DE LOS ELEMENT	OS PRESEN	TES EN LA ATI	MOSFERA	

 $M \in \{1,2\}$

	(Composición d	le la especie	Exq°	,
	•	(fracci	ón mol)	(kJ/gn	nol)
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento
Ar(g)	Ar	0.9331E-02	0.9128E-02	11.641	11.641
C (g)	CO2	0.3450E-03	0.3375E-03	19.815	410.268
He(g)	He	0.5001E-05	0.4892E-05	30.311	30.311
Kr(g)	Kr	0.1000E-05	0.9784E-06	34.300	34.300
N2(g)	N2	0.7804E+00	0.7634E+00	0.669	0.669
Ne (g)	Ne	0.1800E-04	0.1761E-04	27.136	27.136
02 (g)	02	0.2099E+00	0.2054E+00	3.924	3.924
Xe(g)	Xe	0.9001E-07	0.8805E-07	40.269	40.269
H2(g)	H2O	0.0000E+00	0.2171E-01	9.493	236.121
D2 (g)	D20	0.0000E+00	0.3375E-05	31.231	263.903
EXERGIA QUI	MICA ESTANDAR	DE LOS ELEME	NTOS CONTENIDO	S EN EL AGUA	DE MAR
Fracción m	asa y molalida	ad de las esp	ecies (S=35.18	3 por mil):	
ESPECIE	g/gsw	gmol/kgH2O	ESPECIE	g/gsw	gmol/kgH2O
AgCl2-	0.464E-09	0.269E-08	HAsO42-	0.522E-08	0.387E-07
H2AsO4-	0.380E-09	0.280E-08	As043-	0.206E-11	0.154E-10
AuCl2-	0.150E-10	0.579E-10	B (OH) 3	0.204E-04	0.342E-03
B (OH) 4-	0.490E-05	0.644E-04	Ba2+	0.189E-07	0.143E-06
BaSO4	0.357E-08	0.158E-07	BiO+	0.215E-10	0.992E-10
Br-	0.673E-04	0.873E-03	HCO3-	0.118E-03	0.201E-02
CO32-	0.487E-05	0.841E-04	CO2	0.647E-06	0.152E-04
Ca2+	0.375E-03	0.969E-02	CaHCO3+	0.371E-05	0.380E-04
CaCO3	0.751E-05	0.778E-04	CaB (OH) 4+	0.115E-05	0.100E-04
CdC12	0.122E-10	0.692E-10	Cd2+	0.360E-12	0.332E-11
CdCl+	0.768E-11	0.539E-10	CdC13-	0.109E-10	0.515E-10
CdOHC1	0.851E-12	0.535E-11	CdBr+	0.684E-13	0.369E-12
CdCO3	0.614E-13	0.369E-12	CdSO4	0.742E-13	0.369E-12
C1-	0.1946-01	0.566E+00	Co2+	0.390E-09	0.686E-08
C <+	0 3008-09	0.234E-08	C112+	0.448E - 10	0.731E-09
CuOH+	0.300E-09	0.386E-08	CuCO3	0.269E-08	0.225E-07
CUOHCI	0 762E-08	0.681E-07	CuCl+	0 578E-09	0.606E-08
	0 2178-09	0 1678-08	CuCl3-	0 120E-09	0.731E-09
CuC142-	0.103E-09	0.5228-09	F-	0 7098-06	0.387E-04
MaF+	0.100E-05	0.356E-04	CaF+	0 864E-07	0.152E-05
Hac142-	0.112E-09	0 340E-09	Hac13-	0.1848-10	0.1020 00
HgC12	0.406F-11	0.1558-10	HgBr2	0 180E-12	0.517E - 12
Haclar	0.4000 11	0.5688-11	HgCl2Br-	0.7538-11	0.0170 12
Hacl3Br2-	0.170511	0.5000 11	HgClBr2-	0.9875-12	0.2588-11
Hacl2Br22	- 0.237510	0.3108-11	HACHCI	0.2528-12	0.1039-13
TO3-	0.882E - 07	0.5105 11	NT KT	0.2025 12	0 104F-01
TO2	0.0025 07	0.5298-06	KCO3-	0.5945 03	0.1045 01
	0.1708-06	0.3295-00	Ma2+	0.1108-02	0.5255-00
Marcost	0.1708-00	0.2546-04	Mg2+	0.1196-02	0.5508-01
Map (OU) A+	0.4335-03	0.3316-04	MgC03	0.4486-05	0.3318-04
MgB (OR) 41	0.9976-00	0.1005-04	Pill2 T	0.4006-09	0.7556-00
M0042-	0.1075-07	0.1008-00	Nat N-GOD	0.1036-01	0.4/45400
Nancos:	0.1975-05	0.2436-04	Nacos-	0.1946-05	0.2435-04
NIZ+	0.6605-08	0.11/5-06	HP042-	0.4506-07	0.486E-06
HZPO4-	0.1326-08	0.1416-07	CaH2PO4+	0.3506-09	0.265E-08
MGHZPO4+	0.310E-09	U.265E-08	CaHPO4	U.132E-06	0.1016-05
MGHPO4	U.117E-06	U.101E-05	P043-	U.621E-10	U.6//E-09
CaP04-	U.276E-07	0.212E-06	MgPO4-	U.244E-07	U.212E-06
PDC12	U.114E-10	0.423E-10	Pb2+	0.900E-12	0.450E-11
PbOH+	U.221E-11	0.102E-10	PbC1+	0.443E-11	0.189E-10
PbHCO3+	0.362E-12	0.140E-11	PbC03	0.103E-12	0.400E-12
PbS04	0.146E-12	0.500E-12	PbC13-	0.278E-11	0.920E-11
PbC142-	0.121E-11	0.360E-11	PbOHC1	0.221E-11	0.880E-11
PbBr+	0.416E-13	0.150E-12	Rb+	0.120E-06	0.146E-05
SO42-	0.115E-02	.0.124E-01	CaSO4	0.111E-03	0.843E-03
KSO4-	0.166E-04	0.128E-03	MgSO4	0.503E-03	0.433E-02

NaSO4- Sr2+ UO2(CO3)34- Zn2+ ZnHCO3+ ZnSO4 ZnC12 ZnC142-	0.133E-02 0.733E-05 0.624E-08 0.105E-08 0.377E-10 0.305E-09 0.209E-08 0.474E-09	0.116E-01 0.867E-04 0.144E-07 0.166E-07 0.309E-09 0.196E-08 0.159E-07 0.237E-08	SeO42- SrSO4 WO42- ZnOH+ ZnCO3 ZnCl+ ZnCl3- ZnOHCl	0.163E-09 0.171E-05 0.135E-09 0.188E-09 0.411E-09 0.444E-08 0.290E-09 0.146E-08	0.118E-08 0.963E-05 0.564E-09 0.237E-08 0.340E-08 0.457E-07 0.175E-08 0.129E-07
Fuerza Iónic pH= 8.1189	ca = 0.67818 g (en escala mo	mol/kgH2O lal)			
Coeficientes	de actividad	de los ione	s (escala mola	al):	
ION	GAMA	ION	GAN	1A	
H+	0.72188	Ag+	0.523	308	
Au+	0.52308	Ba2+	0.188	371	
BiO+	0.52308	Ca2+	0.211	121	-
Cd2+	0.07694	Co2+	0.216	583	· · · · ·
Cs+	0.56983	Cu2+	0.189	922	·
Mg2+	0.23588	Hg2+	0.074	179	
к і	0.61435	Li+	0.728	353	
Mn2+	0.22392	Na+	0.652	276	
Ni2+	0.22100	Pb2+	0.196	603	
Rb+	0.60004	Sr2+	0.208	367	
UO22+	0.25250	Zn2+	0.203	317	
OH-	0.62512	- Cl-	0.702	256	
HAsO42-	0.13834	H2As	04- 0.553	369	94 (A)
As043-	0.01511	B (OH)4- 0.384	451	
S042-	0.12848	Br-	0.729	970	
HCO3-	0.55852	CO32	- 0.045	545	
F-	0.57638	I03-	0.522	254	
MoO42-	0.07463	HPO4	2- 0.119	993	
H2P04-	0.50322	PO43	~ 0.013	377	
Se042-	0.07463	W042	- 0.074	463	
Coef. de act	tividad de B(C	H)3: 1.21	772		
					· · · ·
EXERGIA QUIM	ICA ESTANDAR I	E CADA ELEM	ENTO:	· · ·	
		· · ·		• •	
Elemento	Exq° (kJ/gmo	ol) El	emento Exc	q° (kJ/gmol)	
As(s)	492.579		B(s)	628.067	
Br2(1)	100.999		C12 (g)	123.670	:
Cs(s)	404.598	•	I2(s)	175.731	
K(s)	366.666		Li(s)	392.725	
Mo(s)	731.324	· · · ·	Na(s)	336.668	
P(s)	861.261	н. С. С. С	Rb(s)	388.694	i -
S(s)	609.332	· ·	Se(s)	347.518	
W(s)	828.452	· -			
EXERGIA QUIM	ICA ESTANDAR I	DE LOS ELEME	NTOS CONTENIDO	OS EN LA CORTE:	ZA TERRESTRE
Fracción mola	ar v exercia c	númica está	ndar de las e	species de refe	rencia:
Especie	Xi	Exgi	Especie	Xi	Exai
~		(kJ/mol)	~		(kJ/mol)
AaC1	0.100E-08	51.36	Al2SiO5	0.207E~(12 15.32
Au	0.136E-08	50.62	BaSO4	0.420E-0	30.69
Be2SiO4	0.210E-06	38.11	Bi203	0.274E-0)9 54.57
CaCO3	0.140E-02	16.30	CdC03	0_1221	7 45 17
Ce02	0.117E - 05	33.87	COFe204	0,1225 0 285p-(16 27 26
K2Cr207	0.135E-05	33,49	CuC03	0.200E-0)5 07.00)5 29.95
Dy (OH) 3	0 4885-07	41 73	Er (04) 3	0.JU9E-0	75 49.05 17 41 07
E11 (OFF) 3	0.2148-07	43 77	C=E2+3C=3 (1	0,4016-1 0,4016-1)/ 34.0/
Fa202	0.6782-03	12 28	Care Juda (1	CURIZ U.ZZ40-1 0.0005-4	13 20.04 NG 07 AF
C4 (0H) 3	0.0708-02 0 9218-07	12.JO 40 16	GazUS CoO2	0.2985-0	
	V • 22 III - U /		Geoz	0.9496-0	JI 40.08

• •

Hfo2	0.115E-06	39.60	HaC	12	0.5	42E-09 52	.89
	0.1058.07	44 00		02	0.2	055-09 /9	69
HO (UH) 3	0.1956-07	44.00	1112	03	0.2	95 <u>16</u> -00 10	· · · ·
IrO2	0.359E - 11	65.32	La (OH) 3	0.5	966-06 35	.55
Lu (OH) 3	0.786E-08	46.26	Mg3	Si4010(OH	()2. 0.8	67E-03 17	.48
MnO2	0.230E-04	26.47	Nb2	03	0.1	49E-06 38	.96
NO (OH) 3	0.515E-06	35.89	NiO)	0.1	76E-05 32	.84
0004	0.339E - 12	71 18	PhC	03	0 1	04E-06 39	. 85
0504	0.3396-12	/1.10	FDC Dw/		0.1		00
PdO	0.63/E-10	58.20	Pr(OH) 3	0.1	5/E-06 30	.0.
PtO2	0.176E-10	61.38	PuO	2	0.8	40E-19 108	.88
RaSO4	0.298E-13	77.20	Re2	:07	. 0.3	66E-11 65	.28
Rh203	0.329E-11	65.54	RuO	2	0.6	77E-12 69	.46
Sh205	0 108E-09	56.88	Sc2	03	0.3	73E-06 36	69
ci 02	0 4078+00	2 23	Sm (0813	0 1	088-06 39	75
5102	0.4078700	2.40	n n n n n n n n n n n n n n n n n n n	011/0			0.000 Telebra (1990) (1990) 0.000
Sh02	0.461E-06	36.17	510	.03	, 0.2	916-04 23	- 0 9 Gran
Ta205	0.745E-08	46.39) מד	OH) 3	0.1	/IE-0/ 44	.34
TeO2	0.948E-11	62.92	ThC)2	0.2	71E-06 37	.48 🔬 🔬
TiO2	0.163E-03	21.63	T12	204	0.1	49E-08 50	.38
Tm (OH) 3	0.759E-08	46.35	UO3	3*H2O	0.1	49E-07 44	.67
1205	0.183 = 0.5	32 75	V (C	NH) 3	0 1	008-05 34	24
V200 V1 (011) 0	0.1036 03	41 07	700	202	0.1		27 C
L (OH) 3	0.4616-07	41.87	ZIIC	. 03	. 0.7	436-03 23	• 41
ZrSiO4	0.244E-04	26.33	a an tha tha an			15 Star 1 (199	y tr
					19		
EXERGIA QUI	MICA ESTANDAR D	E CADA	ELEMENTO:		÷	1160 6	
					-		
Elemento	Exa° (kJ/amo	1)	Elemento	b Exa	(kJ/cmc	1)	· · · · · · · · · · · · · · · · · · ·
Dec(e)	00 327	-,	Al/e		705 748		
Ag(S)	55.527		Ba(a)		775 100	1 - C - S	
Au(s)	50.616		ba (S)	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	773.400		$\mathcal{L} = \{ \mathcal{L} : \mathcal{L} \in \mathcal{L} : \mathcal{L} \in \mathcal{L} \}$
Be(s)	604.280		B1 (S)	1111	271.195	· · · · · · · · · · · · · · · · · · ·	1.443334
Ca(s)	729.143		Cd(s)		298.416	1 1 N 1 N 1	111 111 114 114 114 114 114 114 114 114
Ce(s)	1054.743		Co(s)		313.419	the second	
Cr(s)	584.364		Cu(s)		132.595		
Dv(s)	975.967		Er(s)	1	972.808		· · · · · ·
F11 (a)	1003 808		E2 (a)		505 763		
Du(S) Re(a)	274 247		[2(g)		514 000	• • • • • • • • • •	
re(s)	3/4.34/		Ga(S)		514.900		
Gd(s)	968.990		Ge(S)		557.661	a second stars	
Hf(s)	1063.080		Hg(1)		107.917		
Ho(s)	978.738		In(s)	A Lotter	436.852	1	- Carlos Annaisa
Ir(s)	247.000		La(s)		994.661		
Lu(s)	945,792		Ma(s)		626.927		e
(>) Mn (s)	487.746		Nb(s)		899 739		en e
Mal(a)	070 125	a ser a s	$M_{\rm H}^{\pm}(c)$	8 1 S 4	2/2 501	い お話 ((i_{i},j_{i})
Nu(s)	970.125	11 A.	$N \perp (S)$	a the second	242.391	to strend shared	
U\$(S)	368.428		PD(S)	1	249.195	and provide a second	1 A - 2 같이.
Pd(s)	138.733	1.	Pr(s)	1	963.866		1
Pt(s)	141.157		Pu(s)		1100.054	1. N.	6.6.36
Ra(s)	824.220		Re(s)		559.572		
Rh(s)	179,729		Ru(s)		318,634	1	
Sh(s)	438 184		Sc(s)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	925 254	$C^{(n)}$	x
55(3) Si(a)	955 007		Se(5)		003 697		5 S S S S S S S S S S S S S S S S S S S
51(S) 55()	000.UU/		Sm(S)		393.00/		
$\operatorname{Sn}(s)$	551.843		sr(s)	· · · · ·	149.834		a de la company
Ta(s)	974.090		Tb(s)		998.469	1 A.	
Te(s)	329.292		Th(s)		1202.659		 The second s
Ti(s)	907.202	· · ·	Tl(s)		194.916		
Tm(s)	951.779		U(s)	-	1196.604		La Viene de la Companya
V(s)	721 270		V/e)	-	965 572		
vh/-1	011 200		+ (-)	1	244 713	and the set of the	
ID(S)	944.308		zn(s)	· .	344./13		
Zr(s)	1082.973				÷ 1		$(a_1,a_2,\ldots,a_{n-1}) \in \mathbb{R}^n$

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS.-

•

. .

		and the second
Compuesto		Exq° (kJ/gmol)
CH4		831.716
FeSO4	•	173.568

,

أحير بالحلال والمعا

APÉNDICE D

D.1.- Resultados de la simulación de la columna Desisobutanizadora.

A continuación se presenta el balance de materia y entalpia de la columna Desisobutanizadora de la Sección de Pre-tratamiento de Carga de una Planta Isomerizadora de Butanos. El número de corriente corresponde al indicado en los esquemas de las Figuras 4.1 y 4.2 del capítulo IV.

i ubiu Diiti	<u>Buluitoo uo i</u>	, , , , ,			<u>o da anticada o</u>	
Corriente	1	2	3	4	5	6
Fase:	Líquido	Mezcla	Líquido	Mezcla	Vapor	Líquido
Componentes: kmol/h						and and a second
– Agua	1.95E-04	0	1.95E-04	1.95E-04	9.87E-04	9.87E-04
 Hidrógeno 	0	1.14E-09	0	0	1.42E-08	1.42E-08
- Metano	0	8.61E-07	0	0	1.07E-05	1.07E-05
– Etano	0	2.85E-03	0	0	3.56E-02	3,56E-02
– Propano	1.2286	1.0113	1.2286	1.2286	27.9431	27.9431
– i-Butano	248.0853	183.413	248.0853	248.0853	5157.6663	5157.6663
– n-Butano	470.3613	171.3053	470.3613	470.3613	27.9482	27.9482
– neo-Pentano	1.4435	1.7647	1.4435	1.4435	1.84E-04	1.84E-04
– i-Pentano	5.82E-02	2.718	5.82E-02	5.82E-02	9.20E-09	9.20E-09
– n-Pentano	1.0477	0.281	1.0477	1.0477	2.71E-11	2.71E-11
Componentes: kg/h	10 M	a da ser	1997 - C. A.	• •		ter de me
– Agua	3.52E-03	0	3.52E-03	3.52E-03	1.78E-02	1.78E-02
 Hidrógeno 	0	2.30E-09	0	0	2.87E-08	2.87E-08
– Metano	2. • • • • • • • 0	1.38E-05	. . 0	0	1.72E-04	1.72E-04
– Etano	0	8.57E-02	0	0	1.0693	1.0693
– Propano	54.1769	44.5948	54.1769	54.1769	1232 1965	1232.1965
– i-Butano	1.44E+04	1.07E+04	1.44E+04	1.44E+04	3.00E+05	3.00E+05
– n-Butano	2.73E+04	9956.8509	2.73E+04	2.73E+04	1624.4453	1624.4453
 neo-Pentano 	104.1489	127.3235	104.1489	104.1489	1.33E-02	1.33E-02
 i-Pentano 	4,1991	196.1044	4.1991	4.1991	6.64E-07	6.64E-07
 n-Pentano 	75.5918	20.2742	75.5918	75.5918	1.96E-09	1.96E-09
Fluio total:						
kmol/h	722.225	360,496	722.225	722.225	5.213.595	5.213.595
ka/h	41,997	21,006	41,997	41,997	302.640	302.640
m ³ /h	82.38	61.68	92.74	780.57	15,991	571.03
Variables de estado:	07 4404	00 405	100 0100			
Temperatura, °C	67.1164	62.105	100.8103	65.5328	55.1502	41
Presión, kg/cm ²	24.3332	7.9532	24.0332	8.1532	7 7332	6.9332
Fracción mol del vapor	0	1.96E-02	0	0.3359	1	0
Entalpia, J/kgmol	-1.4370E+08	-1.4570E+08	-1.3811E+08	-1.3811E+08	-1.3329E+08	-1.5231E+08
Entropia, J/kgmol-K	-4.2409E+05	-4.2697E+05	-4.0812E+05	-4.0672E+05	-3.8894E+05	-4.4783E+05
Densidad, kg/m°	509.804	340.543	452.860	53.803	18.926	529,985
Peso molecular	58.149	58.269	58.149	58.149	58.048	58.048

Tabla D.1.- Balance de materia y energía de la columna Desisobutanizadora.

Corriente	. 7	8	9	10	11	12
Fase:	Liquido	Líquido	Líquido	Líquido	Liquido	Vapor
Componentes: kmol/h	•	•		- 		s
– Agua	8.61E-04	8.61E-04	7.92E-04	6.90E-05	7.92E-04	· · · · O
 Hidrógeno 	1.42E-08	1.42E-08	1.31E-08	1.14E-09	1.31E-08	0
 Metano 	1.07E-05	1.07E-05	9.86E-06	8.59E-07	9.86E-06	0
- Etano	3.56E-02	3.56E-02	3.27E-02	2.85E-03	3.27E-02	0
 Propano 	27.9431	27.9431	25.7032	2.2382	25.7032	7.56E-08
- i-Butano	5157.6663	5157.6663	4744.2917	413.129	4744.2917	18.1229
 n-Butano 	27.9482	27.9482	25.7169	2.2386	25.7169	639.5132
- neo-Pentano	1.84E-04	1.84E-04	1.69E-04	1.47E-05	1.69E-04	3,2129
 i-Pentano 	9.20E-09	9.20E-09	8.45E-09	7.37E-10	8.45E-09	1.5806
 n-Pentano 	2.71E-11	2.71E-11	2.49E-11	2.17E-12	2.49E-11	0.1601
Componentes: kg/h						
- Agua	1.55E-02	1.55E-02	1.43E-02	1.24E-03	1.43E-02	0
– Hidrógeno	2.87E-08	2.87E-08	2.64E-08	2.30E-09	2.64E-08	0
– Metano	1.72E-04	1.72E-04	1.58E-04	1.38E-05	1.58E-04	0 .
– Etano	1.0693	1.0693	0.9836	8.57E-02	0.9836	0
– Propano	1232.1965	1232.1965	1133.4247	98.6989	1133.4247	3.33E-06
 i-Butano 	3.00E+05	3.00E+05	2.76E+05	2.40E+04	2.76E+05	1053.3671
– n-Butano	1624.4453	1624.4453	1494.7556	130.118	1494.7556	3.72E+04
– neo-Pentano	1.33E-02	1.33E-02	1.22E-02	1.06E-03	1.22E-02	231.8182
 i-Pentano 	6.64E-07	6.64E-07	6 10E-07	5.32E-08	6.10E-07	114.0465
- n-Pentano	1.96E-09	1.96E-09	1.80E-09	1.57E-10	1.80E-09	11.5525
Eluio total:		1				
kmol/h	5 213 504	5 213 504	4 795 746	417 609	4 795 746	662 590
ka/h	302 640	302 640	278 380	24 241	278 380	38 581
m ³ /h	571.03	571.75	525.93	45.80	525.99	1 986 16
Variables de astado						
Temperatura °C		11 1831	A1 A831	41 4831	11 522	70 8070
Presión ka/cm ²	6 9332	11 2332	11 2332	11 2332	7 7332	8 2716
Eracción mol del vanor	0.0002 0	11.2002	11.2002	11.2002	1.1552	0.2710
Entalnia J/kamol	-1 5231E+08	-1 5223E+08	-1 5223E+08	-1 5223E±08	-1 52235+08	1 22105+09
Entropia J/kamoLK	-1.32312+05	-1.3223E+08	-1.3223E+05	-1.3223E+06	-1.3223E+00	-1.2319E+00
Densidad ka/m ³	520 085	-4.4//0E+03	-4.4770E300	520 321	-4.47020703	-3.7043E+03
Peso molecular	58 048	58 049	58 0/8	58 048	52 0/20	19.420
	00.040	00.040	00.040	00.040	50.040	30.220
 If the second sec	N	· · ·	and a second	11 N		16.00
the second second second		5 - L	an a			
a de la compañía de l	_ 1	1. <u>1.</u> 1. 1.		11 HL 1	· .	$\Delta = \delta =$
•		1	<i></i>			1. A M L
			1			
		The second				
	t at in the second s	20 A				
						$\mathcal{L}_{\mathcal{L}} = \{ f_{\mathcal{L}} \}_{\mathcal{L}}$
$(r_{i}, r_{i}) \in \mathbb{R}^{n}$		Market Mark	1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -	1 () () () () () () () () () (1. T	
				1000 - 1000 N		1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -
			1. S. S. S.	÷.,		
			1.16			
	1	· .				
	· .		· . ·	1	-	

Tabla D.1.- Balance de materia y energía de la columna Desisobutanizadora (continuación).

.

Corriente	13	14.	15	16	. 17	18
Fase:	Vapor	Líquido	Líquido	Líquido	Líquido	Líquido
Componentes: kmol/h			-			
– Agua	0	0	0	0	. 0	· 0
 Hidrógeno 	0		0	0	¹ × 0	• 0
- Metano	0	0	. 0	0	19. juli - O	0
 Etano 	0	0	0	0	0	0
– Propano	7.56E-08	7.56E-08	9.49E-17	9.49E-17	9.49E-17	0
– i-Butano	18.1229	18.1229	3.46E-03	3.46E-03	3.46E-03	7.30E-07
– n-Butano	639,5132	639.5132	12.6184	12.6184	12.6157	2.66E-03
– neo-Pentano	3.2129	3.2129	2.1476	2.1476	2.1471	4.53E-04
– i-Pentano	1.5806	1.5806	5021.0104	5021.0104	5019.951	1.0594
 n-Pentano 	0.1601	0.1601	5632.7236	5632.7236	5631.5351	1.1885
Componentes: kg/h	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		14 1	* 4		•
– Agua	. 0	. 0	0	0	0	0
 Hidrógeno 	0	0	0	0	0	. 0
- Metano	0	· 0	0	0		0
– Etano	0	0	0	0	0	0
 Propano 	3.33E-06	3.33E-06	4.18E-15	4.18E-15	4.18E-15	8.83E-19
– i-Butano	1053.3671	1053.3671	0.201	0.201	0.201	4.24E-05
- n-Butano	3.72E+04	3.72E+04	733.4268	733.4268	733.2721	0.1547
- neo-Pentano	231.8182	231.8182	154.9519	154.9519	154.9192	3.27E-02
 i-Pentano 	114.0465	114.0465	3.62E+05	3.62E+05	3.62E+05	76.4384
 n-Pentano 	11.5525	11.5525	4.06E+05	4.06E+05	4.06E+05	85.7509
Eluio totol:				· · ·		
muju total.	662 600	660 500	10 660	10 660	40.000	0.0540
Kino/n	29 691	20 594	760 560	760 560	760,400	2.2010
m ³ /h	2 020 27	30,001	109,000	1 407 01	1 406 00	102.3708
<u> </u>	2,030.21	12.99	1,494.30	1,497.21	1,490.90	0.3159
Variables de estado:						
Temperatura, °C	70.5845	60	111.3549	112.0328	112.0328	112.0328
Presión, kg/cm ²	8.1122	7.7122	8.4332	16.0332	16.0332	16.0332
Fracción mol del vapor	. 1	0	0	0	0	0
Entalpia, J/kgmol	-1.2319E+08	-1.4267E+08	-1.6010E+08	-1.5997E+08	-1.5997E+08	-1.5997E+08
Entropia, J/kgmol-K	-3.7034E+05	-4.2762E+05	-4.9699E+05	-4.9695E+05	-4.9695E+05	-4.9695E+05
Densidad, kg/m ³	19.003	528,593	514.975	513.994	513.994	513.994
Peso molecular	58.228	58.228	72.134	72.134	72.134	72.134

Tabla D.1.- Balance de materia y energía de la columna Desisobutanizadora (continuación).

.

.

11 21

		2		011) .		
	Corriente	19	20	W2	LP1	LP2
	Fase:	Líquido	Mezcla	Líquido	Vapor	Scarsh Líquido (verue)
	Componentes: kmo	l/h	4			$\mathcal{F}(A_{n}^{*}, c)$
	– Agua	. t. O	0	1.26E-04	105.466	105,466
	 Hidrógeno 		0	0	0	0 0
	- Metano		0	·0	0	0
	- Etano	 - - - -	- 8 (b.s) - 2 0 3	11688 N. 1997 10 9	CH. 7 0	s sa 0 . ≦
11.5	– Propano	the last 9.49E-17		S. A. O .	: Aria O	C (1872 0 0-1
	– i-Butano	3.46E-03	3.46E-03	- 0 -	(x. 24.8) 0	t, rasgji 0 -n −
• 4 4 10	– n-Butano	12.6157	12.6157	0.	. ja ka 🛛 🚺	eennas Se l on –
$N_{\rm H} = 0$	 neo-Pentano 	2.1471	2.1471	0 .	B O	oj€\$8µ⇒ 0 ⊡ -
с.	 i-Pentano 	5019.951	5019.951		€£, a O	cabat par 🛛 🕁 👘
	 л-Pentano 	5631.5351	5631.5351	0	. 0	star serer0amob
	Componentes: kg/h	-)	. (j.	(<u>).</u>		(strift) -
	– Agua	0	.0	2.27E-03	1900	ette 1,900 -t
	 Hidrógeno 	. · · · · · · · · · · · · · · · · · · ·	0	.0	0	76135 0 135 -
	 Metano 	· · · · · · · · · · · · · · · · · · ·	0	0 .	0	O r 2
	– Etano	. 0	0,	0 .	175 militari O	94549 0 66 - x
1997) 1997	– Propano	4.18E-15	4.18E-1 5	0	532 mie 💦 🚺 🚺	ольд. О (
$dd^{-1} dr$	– i-Butano	0.201	0.201	-5-M € - Q	- Teleford O	000100 -
	 n-Butano 	733.2721	733.2721	esta (se	C≫ (517 0)	oosgrænes 0 en e
24 - ST	 neo-Pentano 	154.9192	154.9192	★ 19 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	0	o. (136 0) 1
pes (P	 i-Pentano 	3.62E+05	3.62E+05	0	0	0 e e e e e 0 e
	– n-Pentano	4.06E+05	4.06E+05	0	0	0.
	Fluio total:	S PARTS - FR	يې ورد و	r in the	1. 1. 19 e	ನಿರ್ದಾರ್ಭ ಕ್ರೋಗ್ರೀಕ್ರಿ
n an an Airtíne th	kmol/h	10.666	10.666	1.261E-04	105,466	105.466
an a	ka/h	769,400	769,400	2.271E-03	1.900	1.900
	m ³ /h	1,496.82	17.791	2.289E-06	795.59	2.07
						niming si bak istel
	, vanables de estado		Al	1.2	(* <u>.</u>)%	Shi siyatata ay ta
영상	Temperatura, °C	112.0143	112.086	41	i∋ ⇒ 147.4889	147.1637 Jacobs
	Fresion, kg/cm ⁻	11.6332	8.5332	6.9332	4.5332	185 (6): 4:4932 :00:00
· · · ·	Entolnio Illianol		4 50005 (00	0.0400		ରେ ପରୁ ଅନ୍ତେମ୍ବର ଜନ୍ମ ଅନ୍ତେମ କ
	Entarpia, J/kgmot	-1.099/E+U8	-1.50228+08	-2.8400E+08.	-2.3829E+08	-2.7654E+08
5	Encropia, J/Kgmol-P	-4.90/8E+05	-4.7099E+05	-1.3919E+05	-4.6140E+04	-1.3707E+05
	Densidad, kg/m	514.U21	43.246	992.076	2.388	919:689
	reso molecular	12.134	12,134	18,015	78.015	18.015

Tabla D.1.- Balance de materia y energía de la columna Desisobutanizadora

En las Tablas D.2, D.3, D.4 y D.5 se presenta la composición y las propiedades termodinámicas de las corrientes de gas combustible, aire y gases de combustión, así como las corrientes que dan servicio de enfriamiento (agua y aire), y que cambian dependiendo de las condiciones ambientales de las ciudades consideradas.

y ue ius gase	s de combus	aon, minant	ian (10 - 20 V	$r_0 = 1 \text{ auny}$	• <u></u> .
Corriente	A3	C1	CA	G1.	G2
Fase:	Vapor	Vapor	Vapor	Vapor	Vapor
Componentes: kmol/h				1 NB 4	an tha tha she an a'
– Agua	0	0	· 0	316.6821	316.6821
- Hidrógeno	0	87.5463	87.5463	0 `	0
– Metano	0	42.0896	42.0896	. 0	· · · · · · 0
– Etano	0	10.4382	10.4382	0	1995 O
- Propano	0	14.8155	14.8155	0	0
– n-Butano	0	9.7647	9.7647	0	0
- Oxígeno	357.6984	: 0	357.6984	46.6563	46.6563
 Nitrógeno 	1345.6274	0.3367	1345.9641	1345.9641	1345 9641
- Etileno	0	0.1683	0.1683	0	0
- Propileno	0	1.6835	1.6835	0	0
 Ácido sulfhídrico 	0 D	0.1683	0.1683	0	· · · · · · · · · · · · · · · · · · ·
 Monóxido de carbono 	0	1.3468	1.3468	0 · · · · · · · · · · · · · · · · · · ·	- - - 0
 Dióxido de carbono 	0	. 0	0	153.2061	153.2061
 Dióxido de azufre 		- 0	0	0.1683	0.1683
Flujo total:				-	* 1.5.7
kmol/h	1,703.33	168.36	1,871.68	1,862.68	1,862.68
kg/h	49,142	2,514.93	51,657	51,657	51,657
m ³ /h	9,479	934.13	10,414	76,375	25,534
Variables de estado:				1. A. A. A.	
Temperatura, °C	25	25	25.00	1918.03	459 45
Presión, kg/cm ²	4.53	4.53	4.53	4.53	4.53
Fracción mol del vapor	. 1	1	1	1	1
Entalpia, J/kgmol	-2.8107E+04	-4.1030E+07	-3.7162E+06	-3.7342E+06	-5.9599E+07
Entropia, J/kgmol-K	-8.1046E+03	-7.7792E+04	-1.1872E+04	5.7131E+04	1.5900E+04
Densidad, kg/m ^s	5 184	2.692	4.961	0.676	2.023
Peso molecular	28.850	14.938	27.599	27.732	27.732

Tabla D.2	Composición y	propiedades	termodinámica	is del gas	combustible,	del aire
	y de los gases	de combustió	n. Minatitlán (T	, = 25°C, .	$P_o = 1$ atm).	

Tabla D.2.- Composición y propiedades termodinámicas del agua y del airede enfriamiento. Minatitlán ($T_o = 25^{\circ}$ C, $P_o = 1$ atm)

والمرور المتحاد المراجع والمراجع	و الحادية بينون الن	e e e e e e e e e e e e e e e e e e e		
Corriente	CW1	CW2	A1	A2
Fase:	Líquido	Líquido	Vapor	Vapor
Componentes: kmol/h				[킹이상은 11] 의견이 11일 - 1
- Agua	1.22E+05	1.22E+05	0	0
- Oxígeno	· 0	0	4532.4675	4532.4675
– Nitrógeno	0	0	1.71E+04	1.71E+04
Flujo total:				
kmol/h	122,290	122,290	21,583	21,583
kg/h	2,203,000	2,203,000	622,680	622,680
m ³ /h	2,208.49	2,215.68	527,800	564,110
Variables de estado:	×.			
Temperatura, °C	24	34.78	25	45.46
Presión, kg/cm²	5.53	4.95	1.03	1.03
Fracción mol del vapor	0	0	1.	1
Entalpia, J/kgmol	-2.8589E+08	-2.8507E+08	-6.4203E+03	5.9160E+05
Entropia, J/kgmol-K	-1.6338E+05	-1.6070E+05	4.2545E+03	6.1944E+03
Densidad, kg/m ³	997.514	994.276	1.180	1.104
Peso molecular	18.015	18.015	28.850	28.850

Corriente	A3	C1	CA	G1	G2
Fase:	Vapor	Vapor	Vapor	Vapor	Vapor
Componentes: kmol/h				and and a	
- Agua	0	0	0	316.6964	316.6964
 Hidrógeno 	· 0	87.5503	87.5503	0	· · · 0
– Metano	0	42.0915	42.0915	0	0
- Etano	0	10.4386	10.4386	0	0
 Propano 	0	14.8162	14.8162	0	0
– n-Butano	0	9.7652	9.7652	0	• • • • • • • • • • • • • • • • • • •
- Oxígeno	357.7146	0	357.7146	46.6584	46.6584
 Nitrógeno 	1345.6884	0.3367	1346.0251	1346.0251	1346.0251
– Etileno	. · · · O	0.1683	0.1683	0	0
- Propileno	O	1.6836	1.6836	. 0	0
 Ácido sulfhídrico 	.	0.1683	0.1683		0
 – Monóxido de carbono 	. · · 0	1.3469	1.3469	<u>.</u> 0	2 0
 Dióxido de carbono 	- m O	0	0	153.213	153.213
- Dióxido de azufre	0	. 0	0	0.1683	0.1683
Flujo total:					1 day satu
kmol/h	1,703.40	168.37	1,871.77	1,862.76	1,862.76
kg/h	49,144	2,515.05	51,659	51,659	51,659
m ³ /h	9,737	959.75	10,697	76,586	25,790
Variables de estado:					• • • • • •
Temperatura, °C	33	33	<u>,</u> 33	1923.99	466.75
Presión, kg/cm ²	4.53	4.53	4.53	4.53	4.53
Fracción mol del vapor	. 1	1	1	1	· . · 1
Entalpia, J/kgmol	2.0688E+05	-4.0704E+07	-3.4730E+06	-3.4898E+06	-5.9352E+07
Entropia, J/kgmol-K	-7.3266E+03	-7.6710E+04	-1.1067E+04	5.7243E+04	1.6235E+04
Densidad, kg/m ³	5.047	2.621	4.829	0.675	2.003
Peso molecular	28.850	14.938	27.599	27.732	27.732

Tabla D.3.- Composición y propiedades termodinámicas del gas combustible, del aire y de los gases de combustión. Jericó ($T_o = 33^{\circ}$ C, $P_o = 1.03$ atm).

Tabla D.3.- Composición y propiedades termodinámicas del agua y del aire
de enfriamiento. Jericó ($T_o = 33^{\circ}$ C, $P_o = 1.03$ atm)

(continuación).								
Corriente	CW1	CW2	AT	A2				
Fase:	Líquido	Líquido	Vapor	Vapor				
Componentes: kmol/h								
– Agua	1.22E+05	1.22E+05	. 0	0				
- Oxígeno	Ű 0	0	4532.4675	4532.4675				
– Nitrógeno	0	0	1.71E+04	1.71E+04				
Flujo total:		·.						
kmol/h	122,290	122,290	21,583	21,583				
kg/h	2,203,000	2,203,000	622,680	622,680				
m³/h	2,212.87	2,221.47	526,750	562,020				
Variables de estado:								
Temperatura, °C	. 31	41.78	33	53.45				
Presión, kg/cm ²	5.53	4.95	1.06	1.06				
Fracción mol del vapor	0	· 0	1	1				
Entalpia, J/kgmol	-2.8536E+08	-2.8455E+08	2.2718E+05	8.2520E+05				
Entropia, J/kgmol-K	-1.6163E+05	-1.5900E+05	4.7906E+03	6.6815E+03				
Densidad, kg/m ³	995.541	991.685	1.182	1.108				
Peso molecular	18.015	18.015	28.850	28.850				
	and the second		and the second sec	and the second second				

Corriente	A3	C1	CA	G1	G2
Fase:	Vapor	Vapor	Vapor	Vapor	Vapor
Componentes: kmol/h					
– Agua	0	0	0	316.7223	316.7223
 Hidrógeno 	. 0	87.5574	87.5574	0	0
– Metano	0	42.0949	42.0949	0	0
 Etano 	. 0	10.4395	10.4395	0	0
- Propano	0	14.8174	14.8174	0	0
– n-Butano	0	9.766	9.766	0	0
- Oxígeno	357.7438	0	357.7438	46.6622	46.6622
 Nitrógeno 	1345.7983	0.3367	1346 1351	1346.1351	1346.1351
- Etileno	0	0,1683	0.1683	0	0
 Propileno 	0	1.6838	1.6838	0	0
 Ácido sulfhídrico 	0	0.1683	0,1683	.0	0
 Monóxido de carbono 	0	1.347	1.347	0	0
 Dióxido de carbono 	. 0	0	0	153.2255	153.2255
 Dióxido de azufre 	0	0	0	0.1683	0.1683
Flujo total:					
kmol/n	1,703.54	168.38	1,871.92	1,862.91	1,862.91
kg/h	49,148	2,515.25	51,663	51,663	51,663
m ³ /h	9,351	921.45	10,273	76,281	25,418
Variables de estado:			• • •	· · · · ·	
Temperatura, °C		21	21	1915.06	456.05
Presión, kg/cm ²	4.53	4.53	4.53	4.53	4.53
Fracción mol del vapor	1	1	1	1	1 - 1 - 1 - 1 -
Entalpia, J/kgmol	-1.4561E+05	-4.1192E+07	-3.8377E+06	-3.8563E+06	-5.9714E+07
Entropia, J/kgmol-K	-8.5014E+03	-7.8339E+04	-1.2282E+04	5.7076E+04	1.5742E+04
Densidad, kg/m ³	5.256	2.730	5.029	0.677	2.033
Peso molecular	28.850	14.938	27.599	27.732	27.732
	1		1	and the second	

Tabla D.4.- Composición y propiedades termodinámicas del gas combustible, del aire y de los gases de combustión. Cusco ($T_e = 21^{\circ}$ C, $P_e = 0.67$ atm).

Tabla D.4.- Composición y propiedades termodinámicas del agua y del aire de enfriamiento. Cusco ($T_o = 21^{\circ}$ C, $P_o = 0.67$ atm)

Corriente	CW1	CW2	A1	A2					
Fase:	Líquido	Líquido	Vapor	Vapor					
Componentes: kmol/h			-						
– Agua	1.22E+05	1.22E+05	0	0					
 Oxígeno 	0	. 0	4532.4675	4532.4675					
 Nitrógeno 	0	0	1.71E+04	1.71E+04					
Flujo total:									
kmol/h	122,290	122,290	21,583	21,583					
kg/h	2,203,000	2,203,000	622,680	622,680					
m³/h	2,203.69	2,208.15	776,110	830,220					
Variables de estado:									
Temperatura, °C	12.5	23.28	21	41.47					
Presión, kg/cm ²	5.53	4.95	0.69	0.69					
Fracción mol del vapor	0	0	1	1					
Entalpia, J/kgmol	-2.8675E+08	-2.8594E+08	-1.2111E+05	4.7691E+05					
Entropia, J/kgmol-K	-1.6636E+05	-1.6357E+05	7.1833E+03	9.1488E+03					
Densidad, kg/m ³	999.687	997.666	0.802	0.750					
Peso molecular	18.015	18.015	28.850	28.850					
Corriente	A3	C1	CA	5					
---	-------------	-------------	-------------	----------------	---				
Fase:	Vapor	Vapor	Vapor	Vapor	Vapor				
Componentes: kmol/h				7.355.655	- General Constants				
– Agua	0	Ū., 10	· · · · O	316.5636	316.5636				
- Hidrógeno	0	87.5136	87.5136	0	0				
- Metano	0	42.0738	42.0738	0	0. 2000				
– Etano	0	10.4343	10.4343	0	0				
– Propano	0	14.81	14.81	0	0				
– n-Butano	0	9.7611	9.7611	0	0 j				
– Oxigeno	357.5646	0	357.5646	46.6388	46 6388				
 Nitrógeno 	1345.124	0.3365	1345.4606	1345.4606	1345,4606				
- Etileno	0	0.1683	0.1683	0	0				
- Propileno	0	1.6829	1.6829	0	0				
 Ácido sulfhídrico 	0	0.1683	0.1683	Ö	6949 <u>2929</u> 6 0				
 Monóxido de carbono 	0	1.3463	1.3463	0	0				
 Dióxido de carbono 	0	0	0	153.1488	153.1488				
- Dióxido de azufre	. .	0	- 0	0.1683	0.1683				
Flujo total:					Second Second				
kmol/h	1,702.69	168.30	1,870.98	1,861.98	1,861.98				
kg/h	49,123	2,513.99	51,637	51,637	51,637				
m³/h	8,154	802.26	8,957	75,286	24,207				
Variables de estado:			() ()	11 M (1) 11	na et societa vigitalise. Como como como				
Temperatura, °C	-16	-16	-16.00	1887.58	421.72				
Presión, kg/cm ²	4.53	4.53	4.53	4.53	4.53				
Fracción mol del vapor	1	1	1	1	1				
Entalpia, J/kgmol	-1.2333E+06	-4.2650E+07	-4.9587E+06	-4 9827E+06	-6.0868E+07				
Entropia, J/kgmol-K	-1.2454E+04	-8.3647E+04	-1.6356E+04	5.6558E+04	1.4121E+04				
Densidad, kg/m ³	6.024	3.134	5.765	0.686	2.133				
Pesò molecular	28.850	14.938	27.599	27.732	27,732				

Tabla D.5	Composición y	propiedades	termodinámicas	del gas	combustible,	del aire
	v de los gases	de combustió	n. Québec $(T_{2} =$	-16°C. P.	= 1 atm).	ويعتد وراد ويتحاد والأر

Tabla D.5.- Composición y propiedades termodinámicas del agua y del aire de enfriamiento. Québec ($T_{\rho} = -16^{\circ}$ C, $P_{\rho} = 1$ atm)

Corriente	CW1	CW2	A1	A2				
Fase:	Liquido	Líquido	Vapor	Vapor				
Componentes: kmol/h			1. 1. 1. 1. 1.	રાયતઘર્ષ મહત્વવિધ કે				
- Oxígeno	36395	36395	4532.4655	4532,4655				
– Nitrógeno	136910	136910	1.71E+04	1.71E+04				
Flujo total:								
kmol/h	173,310	173,310	21,583	21,583				
kg/h	5,000,000	5,000,000	622,680	622,680				
_m³/h	3,653,400.00	3,933,000.00	454,990	491,370				
Variables de estado:		1-2 ·						
Temperatura, °C	-16	3.60	-16	4.48				
Presión, kg/cm ²	1.03	1.03	1.03	1.03				
Fracción mol del vapor	1	. 1	1 ¹¹¹	- 1919 - 1				
Entalpia, J/kgmol	-1.2038E+06	-6.3146E+05	-1.2038E+06	-6.0579E+05				
Entropia, J/kgmol-K	-6.6170E+01	2.0789E+03	-6.6170E+01	2.1715E+03				
Densidad, kg/m ³	1.369	1.271	1,369	1.267				
Peso molecular	28.850	28.850	28.850	28.850				
	· · · · ·		a a secondaria de la composición de la	n an				

D.2.- Cálculo de exergia física de las corrientes que integran la columna Desisobutanizadora, para cada uno de los medios de referencia seleccionados.

En las Tablas D.6, D.7, D.8, D.9 se presenta el cálculo de exergia física, a partir de la Ecuación 1-9, de cada una de las corrientes involucradas en el sistema bajo estudio para cada una de las ciudades seleccionadas. Cabe mencionar que los valores de entalpia (H_o) y entropia (S_o) a las condiciones de temperatura T_o y presión P_o del medio ambiente se determinaron para cada corriente con el simulador de procesos Aspen Plus.

(condiciones ambientales de Minatitlán: $T_o = 25^{\circ}$ C, $P_o = 1$ atm).							
2010 - 11 A	H	Ho	S	So	Ex_{t}	N	Ex
Corriente	J/kgmol	J/kgmol	J/kgmol-K	J/kgmol-K	J/kgmol	kgmol/h	kJ/h
1	-1.4370E+08	-1.2927E+08	-4.2409E+05	-3.6599E+05	2,892,515	722.2248	2,089,046
2	-1.4570E+08	-1-3108E+08	-4.2697E+05	-3.6860E+05	2,783,016	360,4963	1,003,267
3	-1.3811E+08	-1.2927E+08	-4.0812E+05	-3.6599E+05	3,721,060	722,2248	2,687,441
4	-1.3811E+08	-1.2927E+08	-4.0672E+05	-3.6599E+05	3,303,650	722.2248	2,385,978
5	-1.3329E+08	-1.3500E+08	-3.8894E+05	-3.7995E+05	4,390,369	5213.5945	22,889,601
6	-1.5231E+08	-1.3500E+08	-4.4783E+05	-3.7995E+05	2,928,422	5213,5945	15,267,605
7	-1.5231E+08	-1.3500E+08	-4.4783E+05	-3.7995E+05	2,928,422	5213.5943	15,267,604
8	-1.5223E+08	-1.3500E+08	-4.4778E+05	-3.7995E+05	2,993,515	5213.5943	15,606,970
9	-1.5223E+08	-1.3500E+08	-4.4778E+05	-3.7995E+05	2,993,515	4795.7456	14,356,134
10	-1.5223E+08	-1.3500E+08	-4.4778E+05	-3.7995E+05	2,993,515	417.6089	1,250,118
11	-1.5223E+08	-1.3500E+08	-4.4762E+05	-3.7995E+05	2,945,811	4795.7456	14,127,358
12	-1.2319E+08	-1.2657E+08	-3.7045E+05	-3.6615E+05	4,662,045	662.5900	3,089,024
13	-1.2319E+08	-1.2657E+08	-3.7034E+05	-3.6615E+05	4,629,249	662.5900	3,067,294
14	-1.4267E+08	-1.2657E+08	-4,2762E+05	-3.6615E+05	2,227,281	662.5900	1,475,774
15	-1.6010E+08	-1.7606E+08	-4.9699E+05	-5.4292E+05	2,265,971	10669.0000	24,175,639
16	-1.5997E+08	-1.7606E+08	-4.9695E+05	-5.4292E+05	2,384,045	10669.0000	25,435,371
17	-1.5997E+08	-1.7606E+08	-4.9695E+05	-5.4292E+05	2,384,045	10666.0000	25,428,219
18	-1.5997E+08	-1.7606E+08	-4.9695E+05	-5.4292E+05	2,384,045	2.2510	5,366
19	-1.5997E+08	-1.7606E+08	-4.9678E+05	-5.4292E+05	2,333,359	10666.0000	24,887,607
20	-1.5022E+08	-1.7606E+08	-4.7099E+05	-5.4292E+05	4,394,071	10666.0000	46,867,156
W2	-2.8460E+08	-2.8582E+08	-1.5919E+05	-1.6313E+05	45,289	0.0001	0.00571
CW1	-2.8589E+08	-2.8582E+08	-1.6338E+05	-1.6313E+05	4,538	122290.0000	554,891
CW2	-2.8507E+08	-2.8582E+08	-1.6070E+05	-1.6313E+05	25,496	122290.0000	3,117,845
A2	5.9160E+05	-6.4203E+03	6.1944E+03	4.2545E+03	19,620	21583.0000	423,452
A3	-2.8107E+04	-6.4203E+03	-8.1046E+03	4.2545E+03	3,663,155	1703.3258	6,239,546
C1 1	-4.1030E+07	-4.0999E+07	-7.7792E+04	-6.5395E+04	3,665,166	168,3583	617 061
CA	-3.7162E+06	-3.6937E+06	-1.1872E+04	4.9012E+02	3,663,266	1871.6842	6,856,478
G1	-3.7342E+06	-7.9621E+07	5.7131E+04	-1.8801E+04	53,247,674	1862.6770	99,183,218
G2	-5.9599E+07	-7.9621E+07	1.5900E+04	-1.8801E+04	9,675,897	1862.6770	18,023,071
LP1	-2.3829E+08	-2.8582E+08	-4.6140E+04	-1.6313E+05	12,649,432	105,4660	1,334,085
LP2	-2.7654E+08	-2.8582E+08	-1.3707E+05	-1.6313E+05	1,510,211	105.4660	159,276

Tabla D.6.- Cálculo de exergia física diciones ambientales de Minatitlán: $T = 25^{\circ}$ C. P = 1 atm)

1

	H	Ho	S	So	Ex_f	N	Ex_f
Corriente	J/kgmol	J/kgmol	J/kgmol-K	J/kgmol-K	J/kgmol	kgmol/h	kJ/h
1	-1.4370E+08	-1.2848E+08	-4.2409E+05	-3.6359E+05	3,302,075	722.2248	2,384,840
2 .	-1.4570E+08	-1.3029E+08	-4.2697E+05	-3.6621E+05	3,191,674	360.4963	1,150,587
3	-1.3811E+08	-1.2848E+08	-4.0812E+05	-3.6359E+05	4,002,860	722.2248	2,890,964
4	-1.3811E+08	-1.2848E+08	-4.0672E+05	-3.6359E+05	3,574,250	722.2248	2,581,412
5	-1.3329E+08	-1.3421E+08	-3.8894E+05	-3.7759E+05	4,394,803	5213,5945	22,912,718
6	-1.5231E+08	-1.3421E+08	-4.4783E+05	-3.7759E+05	3,403,976	5213,5945	17,746,951
7	-1.5231E+08	-1.3421E+08	-4.4783E+05	-3.7759E+05	3,403,976	5213,5943	17,746,950
8	-1.5223E+08	-1.3421E+08	-4.4778E+05	-3.7759E+05	3,468,669	5213,5943	18,084,230
9	-1.5223E+08	-1.3421E+08	-4 4778E+05	-3.7759E+05	3,468,669	4795.7456	16,634,852
10	-1.5223E+08	-1.3421E+08	-4.4778E+05	-3.7759E+05	3,468,669	417.6089	1 448 547
11	-1.5223E+08	-1.3421E+08	-4.4762E+05	-3.7759E+05	3,419,685	4795.7456	16,399,937
12	-1.2319E+08	-1.2577E+08	-3.7045E+05	-3.6374E+05	4,634,267	662,5900	3,070,619
13	-1.2319E+08	-1.2577E+08	-3.7034E+05	-3.6374E+05	4,600,590	662,5900	3,048,305
14	~1.4267E+08	-1.2577E+08	-4.2762E+05	-3.6374E+05	2,656,862	662.5900	1,760,410
15	-1.6010E+08	-1.7470E+08	-4.9699E+05	-5.3845E+05	1,907,021	10669.0000	20,346,007
16	-1.5997E+08	-1.7470E+08	-4.9695E+05	-5.3845E+05	2,024,775	10669,0000	21,602,324
17	-1.5997E+08	-1.7470E+08	-4.9695E+05	-5.3845E+05	2,024,775	10666.0000	21,596,250
18	-1.5997E+08	-1.7606E+08	-4.9695E+05	-5.4292E+05	2,016,285	2.2510	4,539
19	-1.5997E+08	-1.7470E+08	-4.9678E+05	-5.3845E+05	1,972,730	10666.0000	21,041,133
20	-1.5022E+08	-1.7470E+08	-4.7099E+05	-5.3845E+05	3,827,121	10666.0000	40,820,073
W2	-2.8460E+08	-2.8521E+08	-1.5919E+05	-1.6113E+05	16,069	0.0001	0.00203
CW1	-2.8536E+08	-2.8521E+08	~1.6163E+05	-1.6113E+05	3,075	122290,0000	376,042
CW2	-2.8455E+08	-2.8521E+08	-1.5900E+05	~1.6113E+05	7,901	122290.0000	966,152
A2	8.2520E+05	2.2718E+05	6.6815E+03	4.7906E+03	19,125	21583.0000	412,767
A3	2.0688E+05	2.2718E+05	-7.3266E+03	4.7906E+03	3,689,377	1703.4031	6,284,497
C1	-4.0704E+07	-4.0674E+07	-7.6710E+04	-6.4558E+04	3,690,335	168.3660	621,327
CA	-3.4730E+06	-3.4519E+06	-1.1067E+04	1.0533E+03	3,689,534	1871.7691	6,905,956
G1	-3.4898E+06	-7.8407E+07	5.7243E+04	-1.5119E+04	52,763,574	1862.7615	98,285,954
G2	-5.9352E+07	-7.8407E+07	1.6235E+04	-1.5119E+04	9,455,973	1862.7615	17,614,222
LP1	-2.3829E+08	-2.8521E+08	-4.6140E+04	-1.6113E+05	11,715,812	105.4660	1,235,620
LP2	-2.7654E+08	-2.8521E+08	-1.3707E+05	-1.6113E+05	1,304,031	105.4660	137,531

Tabla D.7.- Cálculo de exergia física (condiciones ambientales de Jericó: $T_o = 33^{\circ}$ C, $P_o = 1.03$ atm).

Tabla D.8.- Cálculo de exergia física (condiciones ambientales de Cusco: $T_o = 21^{\circ}$ C, $P_o = 0.67$ atm).

2,3

1

	H	Ho	\boldsymbol{S}^{-}	So	Ex_f	N	Ex_f
Corriente	J/kgmol	J/kgmol	J/kgmôl-K	J/kgmol-K	J/kgmol	kgmol/h	kJ/h
1	-1.4370E+08	-1.2959E+08	-4.2409E+05	-3.6388E+05	3,600,772	722.2248	2,600,566
2	-1.4570E+08	-1.3140E+08	-4.2697E+05	-3.6649E+05	3,490,192	360,4963	1,258,201
3	-1.3811E+08	-1.2959E+08	-4.0812E+05	-3.6388E+05	4,493,196	722.2248	3,245,098
4	-1.3811E+08	-1.2959E+08	-4.0672E+05	-3.6388E+05	4,081,386	722.2248	2,947,678
5	-1.3329E+08	-1.3532E+08	-3.8894E+05	-3.7782E+05	5,300,948	5213.5945	27,636,993
6	-1.5231E+08	-1.3532E+08	-4.4783E+05	-3.7782E+05	3,603,442	5213.5945	18,786,883
7	-1.5231E+08	-1.3532E+08	-4.4783E+05	-3.7782E+05	3,603,442	5213 5943	18,786,882
8	-1.5223E+08	-1.3532E+08	-4.4778E+05	-3.7782E+05	3,668,734	5213.5943	19,127,291
9	-1.5223E+08	-1.3532E+08	-4.4778E+05	-3.7782E+05	3,668,734	4795,7456	17,594,315
10	-1.5223E+08	-1.3532E+08	-4.4778E+05	-3.7782E+05	3,668,734	417.6089	1,532,096
11	-1.5223E+08	-1.3532E+08	-4.4762E+05	-3.7782E+05	3,621,670	4795.7456	17,368,608
12	-1.2319E+08	-1.2688E+08	-3.7045E+05	-3.6404E+05	5,575,502	662.5900	3,694,272
13	-1.2319E+08	-1.2688E+08	-3.7034E+05	-3.6404E+05	5,543,145	662.5900	3,672,832
14	-1.4267E+08	-1.2688E+08	-4.2762E+05	-3.6404E+05	2,912,057	662,5900	1,929,500
_15	-1.6010E+08	-1.6809E+08	-4.9699E+05	-5.1615E+05	2,354,086	10669.0000	25,115,744

	H	Ho	S	So	Ex_{f}	N	Ex_f		
Corriente	J/kgmol	J/kgmol	J/kgmol-K	J/kgmol-K	J/kgmol	kgmol/h	kJľn		
16	-1.5997E+08	-1.6809E+08	-4.9695E+05	-5.1615E+05	2,472,320	10669.0000	26,377,182		
17	-1.5997E+08	-1.6809E+08	-4.9695E+05	-5.1615E+05	2,472,320	10666.0000	26,369,765		
18	-1.5997E+08	-1.6809E+08	-4.9695E+05	-5.1615E+05	2,472,320	2.2510	5,565		
19	-1.5997E+08	-1.6809E+08	-4.9678E+05	-5.1615E+05	2,422,315	10666.0000	25,836,406		
20	-1.5022E+08	-1.6808E+08	-4.7099E+05	-5.1611E+05	4,587,952	10666.0000	48,935,096		
W2	-2.8460E+08	-2.8612E+08	-1.5919E+05	-1.6415E+05	61,016	0.0001	0.00769		
CW1	-2.8675E+08	-2.8612E+08	-1.6636E+05	-1.6415E+05	20,072	122290.0000	2,454,544		
CW2	-2,8594E+08	-2.8612E+08	-1.6357E+05	-1.6415E+05	9,393	122290.0000	1,148,670		
A2	4.7691E+05	-1.2111E+05	9.1488E+03	7.1833E+03	19,883	21583.0000	429,139		
Á3	-1.4561E+05	-1.2111E+05	-8.5014E+03	7.1833E+03	4,589,157	1703.5422	7,817,823		
C1	-4,1192E+07	-4.1157E+07	-7.8339E+04	-6.2612E+04	4,591,097	168.3797	773,048		
CA	-3.8377E+06	-3.8123E+06	-1.2282E+04	3.4058E+03	4,589,174	1871.9219	8,590,575		
G1	-3,8563E+06	-7.9326E+07	5.7076E+04	-1.5020E+04	54,262,662	1862.9136	101,086,650		
G2	-5,9714E+07	-7.9326E+07	1.5742E+04	-1.5020E+04	10,563,358	1862.9136	19,678,623		
LP1	-2.3829E+08	-2.8612E+08	-4.6140E+04	-1.6415E+05	13,117,359	105.4660	1,383,435		
LP2	-2.7654E+08	-2.8612E+08	-1.3707E+05	<u>-1.6415E+05</u>	1,614,418	105.4660	170,266		
	and the second second								

Tabla D.8.- Cálculo de exergia física (condiciones ambientales de Cusco: $T_o = 21^{\circ}$ C, $P_o = 0.67$ atm). (continuación)

بالقياصة الربيات المترجية والأر

Tabla D.9.- Cálculo de exergia física (condiciones ambientales de Québec: $T_a = -16^{\circ}$ C, $P_a = 1$ atm).

	H	Ho	<u> </u>	S,	Ex_f	N	Ex_{f}	
Corriente	J/kgmol	J/kgmol	J/kgmol-K	J/kgmol-K	J/kgmol	kgmol/h	kJ/h	
1	-1.4370E+08	-1.5568E+08	-4.2409E+05	-4.6299E+05	1,976,865	722.2248	1,427,741	
2	-1.4570E+08	-1.5720E+08	-4.2697E+05	-4.6516E+05	1,679,442	360.4963	605,432	
3	-1.3811E+08	-1.5568E+08	-4.0812E+05	-4.6299E+05	3,460,180	722.2248	2,499,027	
4	-1.3811E+08	-1.5568E+08	-4.0672E+05	-4.6299E+05	3,100,170	722.2248	2,239,019	
5	-1.3329E+08	-1.6015E+08	-3.8894E+05	-4.7488E+05	4,760,529	5213.5945	24,819,468	
6	-1.5231E+08	-1.6015E+08	-4.4783E+05	-4.7488E+05	884,093	5213.5945	4,609,300	
7	-1.5231E+08	-1.6015E+08	-4.4783E+05	-4.7488E+05	884,093	5213.5943	4,609,300	
8	-1.5223E+08	-1.6015E+08	-4.4778E+05	-4.7488E+05	951,235	5213.5943	4,959,353	
9	-1.5223E+08	-1.6015E+08	-4.4778E+05	-4.7488E+05	951,235	4795.7456	4,561,881	
10	-1.5223E+08	-1.6015E+08	-4.4778E+05	-4.7488E+05	951,235	417.6089	397,244	
11	-1.5223E+08	-1.6015E+08	-4.4762E+05	-4.7488E+05	910,091	4795.7456	4,364,565	
12	-1.2319E+08	-1.5361E+08	-3.7045E+05	-4.6405E+05	6,350,760	662.5900	4,207,950	
13	-1.2319E+08	-1.5361E+08	-3.7034E+05	-4.6405E+05	6,322,474	662.5900	4,189,208	
14	-1.4267E+08	-1.5361E+08	-4.2762E+05	-4.6405E+05	1,572,026	662.5900	1,041,608	
15	-1.6010E+08	-1.8273E+08	-4.9699E+05	-5.6721E+05	4,572,927	10669.0000	48,788,558	
16	-1.5997E+08	-1.8273E+08	-4.9695E+05	-5.6721E+05	4,692,641	10669.0000	50,065,787	
17	-1.5997E+08	-1.8273E+08	-4.9695E+05	-5.6721E+05	4,692,641	10666.0000	50,051,709	
18	-1.5997E+08	-1.8273E+08	-4.9695E+05	-5.6721E+05	4,692,641	2.2510	10,563	
19	~1.5997E+08	-1.8273E+08	-4.9678E+05	-5.6721E+05	4,648,926	10666.0000	49,585,439	
20	-1.5022E+08	-1.8273E+08	-4.7099E+05	-5.6720E+05	7,769,599	10666.0000	82,870,538	
W2	-2.8460E+08	~2.9451E+08	-1.5919E+05	-1.9408E+05	938,037	0.0001	0.11827	
CW1	-1.2038E+06	-1.2038E+06	-6.6170E+01	-6.6170E+01	0	173310.0000	0	
CW2	-6.3146E+05	-1.2038E+06	2.0789E+03	-6.6170E+01	20,745	173310.0000	3,595,253	
A2	-6.0579E+05	-1.2038E+06	2.1715E+03	-6.6170E+01	22,597	21583.0000	487,712	
A3	-1.2333E+06	-1.2038E+06	-1.2454E+04	-6.6170E+01	3,156,031	1702.6886	5,373,737	
C1	-4.2650E+07	-4.2609E+07	-8.3647E+04	-7.1204E+04	3,158,717	168.2954	531,598	
· CA	-4.9587E+06	-4.9282E+06	-1.6356E+04	-3.9644E+03	3,156,010	1870.9840	5,904,844	
G1	-4.9827E+06	-8.3053E+07	5.6558E+04	-3.1319E+04	55,472,729	1861.9802	103 289 124	
G2	-6.0868E+07	-8.3053E+07	1.4121E+04	-3.1319E+04	10,500,104	1861.9802	19.550.986	
LP1	-2.3829E+08	-2.9451E+08	-4.6140E+04	-1.9408E+05	18,177,229	105.4660	1.917.080	
LP2	-2.7654E+08	-2.9451E+08	-1.3707E+05	-1.9408E+05	3,309,879	105.4660	349,080	

D.3.- Exergia química estándar para cada una de los medios de referencia seleccionados.

En la Tabla D.10, se presentan los valores de cambio de energía libre Gibbs y de calor normal estándar de la reacción de formación de cada compuesto presente en la columna Desisobutanizadora y que son requeridos por el programa *EXQCOMP* para la determinación de su exergia química estándar. Los valores de ΔG_f° y ΔH_f° a 25°C son los que indica Perry [7].

Posteriormente, se presentan los resultados que arroja el programa EXQCOMP de exergia química estándar de los elementos y de los compuestos presentes en el sistema bajo estudio, tomando en cuenta las condiciones ambientales de Minatitlán, Jericó, Cusco y Québec.

Nombre del compuesto	o Fórmula química	Estado físico	∆G _f ° _{25°C} kJ/gmol	∆H _f ° _{25°C} kJ/gmol	en in de la composition de la compositio En la composition de la En la composition de la
Agua	H ₂ O	líquido	-237 186	-285.835	<u>.</u>
Metano	CH₄	gas	-50.793	-74.846	
Etano	C ₂ H ₅	gas	-32.886	-84.666	19
Propano	C ₃ H ₈	gas	-23.489	-103.845	6-
iso-Butano	i-C ₄ H ₁₀	gas	-17.974	-131.593	
n-Butano	n-C₄H ₁₀	gas	-15.706	-124.731	<u>ê</u>
neo-Pentano	neo-C ₅ H ₁₂	gas	-15.229	-165.976	ų).
iso-Pentano	.i-C5H12	gas	-14.644	-154,471	
n-Pentano	n-C₅H ₁₂	Ifquido	-9.246	-173.047	
Etileno	C ₂ H ₄	gas	68.123	52.282	
Propileno	C ₃ H ₆	gas	62.608	20.413	· · ·
Ácido sulfhídrico	H ₂ S	gas	-32.844	-19.957	
Monóxido de carbono	CO	gas	-137.266	-110.523	11
Dióxido de carbono	CO ₂	gas	-394.377	-393.507	" (
Dióxido de azufre	SO ₂	gas	-299.904	-296.808	
					14. ¹ 1
Caso 1: Minatitlán	с. 1997 — С				
Las condiciones del medi	o especificadas son:			anto applications generalitation di generalitation	
Temperatura:	25.0 °c	n si ta		n an Aun an An Strain Maria	i.
Presion: Concentración de CO2:	355.0 ppmv				
Humedad relativa: Salinidad:	0.750 36.000 por mil		• * * # 1		
EXERGIA QUIMICA ESTANDAR	DE LOS ELEMENTOS PR	ESENTES EN LA	ATMOSFER	4	· · ·

Tabla D.10.- Cambio de energía libre de Gibbs y calor normal estándar de formación de los compuestos presentes en la columna Desisobutanizadora.

. ¹

		Composición (de la especie	E	xq°	
		(fracc:	ión mol)	(kJ	/gmol)	
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento	
Ar(q)	Ār	0.9331E-02	0.9114E-02	11.645	11.645	
C (q)	CO2	0.3550E-03	0.3468E-03	19.748	410.197	
He (a)	Не	0.5000E-05	0.4884E-05	30.315	30.315	
Kr(q)	Kr	0.1000E-05	0.9768E-06	34.304	34.304	
N2 (q)	N2	0.7804E+00	0.7622E+00	0.673	0.673	
Ne(q)	Ne	0.1800E-04	0.1758E-04	27.140	27.140	
02 (q)	02	0.2099E+00	0.2050E+00	3.928	3.928	
Xe(q)	Xe	0.9001E-07	0.8791E-07	40.273	40.273	
H2 (q)	H20	0.0000E+00	0.2327E-01	9.322	235.948	
D2 (q)	D20	0.0000E+00	0.3616E-05	31.060	263.730	

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN EL AGUA DE MAR.-

Elemento	Exq° (kJ/gmol)	Elemento	Exq°	(kJ/gmol)	·
As(s)	492.729	B(s)		628.264	
Br2(1)	100.973	C12(g)	1.1	123.649	1
Cs(s)	404.503	I2(s)		163.940	`
K(s)	366.567	Li(s)		392.618	
Mo(s)	731.408	Na(s)		336.567	
P(s)	861.418	Rb(s)		388.597	
S(S)	609.393	Se(s)		347.602	and the second second
W(s)	828.536				an a

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN LA CORTEZA TERRESTRE.-

Elemento	Exq° (kJ/gmol)	Elemento	Exq° (kJ/gmol)		
Ag(s)	99,338	Al(s)	795.745		
Au(s)	50.616	Ba(s)	775.340	ers Aller	a ser a s
Be(s)	604.278	Bi(s)	271.192		and the second
Ca(s)	729.208	Cd(s)	298.481		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Ce(s)	1054.739	Co(s)	313.417	4 g	
Cr(s)	584.455	Cu(s)	132.660		an air
Dy(s)	976.220	Er(s)	973.062		
Eu(s)	1004.061	F2 (g)	504.128	2	
Fe(s)	374.344	Ga(s)	514.977		
Gd(s)	969.244	Ge(s)	557.657		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Hf(s)	1063.076	Hg(l)	107.938		1. 4.
Ho(s)	978.991	In(s)	436.849	•.2	
Ir(s)	246.996	La(s)	994.915		
Lu(s)	946.045	Mg(s)	626.982	e parte de la composición de la composi La composición de la c	
Mn(s)	487.742	Nb(s)	899.736		
Nd(s)	970.378	Ni(s)	242.589	and the second second	1 # 4
Os(s)	368.420	Pb(s)	249.260		· · ·
Pd(s)	138.731	Pr(s)	964.120		4
Pt(s)	141.153	Pu(s)	1100.050		
Ra(s)	824.152	Re(s)	559.565	- ,	· · . ·
Rh(s)	179.726	Ru(s)	318.630		: :
Sb(s)	438.179	Sc(s)	925.251	e e trê g	
Si(s)	855.003	Sm(s)	993.941	1. N.	1.1.1
Sn(s)	551.839	Sr(s)	749.899		
Ta(s)	974.085	Tb(s)	998.722		
Te(s)	329.288	Th(s)	1202.655		*
Ti(s)	907.198	Tl(s)	194.912		
Tm(s)	952.032	U(s)	1196.769	1	
V(s)	721.265	Y(s)	965.826		
Yb(s)	944.562	Zn(s)	344.778		
Zr(s)	1082.969				

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS.-

Compuesto	Exq° (kJ/gmol)	ана стана стана Стана стана стан	÷.,		
H2O	0.726				
CH4	831.300	1	· · · · ·	2.1 L	and the second
C2H6	1495.351				
СЗН8	2150.893				
IC4H10	2802.553		the second second		
NC4H10	2804.821	and the second sec	and Alexandra and		
NEOC5H12	3451.443	and a second second	at so at a second		11
IC5H12	3452.028		$ \mathbf{x}_{1} = \mathbf{x}_{1} $ (1)		
NC5H12	3457.426	and the second second	ч.		
C2H4	1360.413	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		19 A.	2000
СЗН6	2001.043	and the States	the state of the state of		1. J. 1. N. N.
H2S	812.496		and the second second	* <u>*</u>	
со	274.895				
SO2	313.417	te en el construction de la	all the second of the	متعقيل والمركب والمحافظ	din ang ang

Caso 2: Jericó			
Las condiciones del med	lio especificadas	son:	
Temperatura:	33.0 °C		
Presión: Concentración de CO2:	1.0289 atm 355.0 ppmv		
Humedad relativa: Salinidad:	0.700 41.000 por mil	1 <u>.</u>	

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

		Composición	de la especie	Ex	a	1 = -1000
		(frace	ión mol)	(kJ/	gmol)	
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento	•* •*
Ar(g)	Ār	0.9331E-02	0.9017E-02	11.985	11.985	1 1 A
C (g)	CO2	0.3550E-03	0.3431E-03	20.305	410.645	• • • •
He (g)	He	0.5000E-05	0.4832E-05	31.155	31.155	
Kr(g)	Kr	0.1000E-05	0.9665E-06	35.252	35.252	
N2 (g)	N2	0.7804E+00	0.7541E+00	0.718	0.718	1997 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 -
Ne(g)	Ne	0.1800E-04	0.1740E-04	27.895	27.895	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
02 (g)	02	0.2099E+00	0.2029E+00	4.060	4.060	
Xe(g)	Xe	0.9001E-07	0.8698E-07	41.381	41.381	•
H2(g)	H20	0.0000E+00	0.3363E-01	8.635	234.839	
D2 (g)	D20	0.0000E+00	0.5227E-05	30.955	263.168	

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN EL AGUA DE MAR.-

Elemento	Exq° (kJ/gmol)	Elemento E	(kJ/qmol)
As(s)	491.080	B(s)	627.013
Br2(1)	102.368	C12(g)	123.230
Cs(s)	405.462	I2(s)	161.690
K(S)	366.402	Li(s)	392.366
Mo(s)	730.109	Na(s)	335.882
P(s)	859.349	Rb(s)	389.117
S(S)	607.055	Se(s)	346.704
W(s)	826,689		

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN LA CORTEZA TERRESTRE.-

Elemento	Exq° (kJ/gmol)	Elemento	Exq° (kJ/gmol)
Ag(s)	100.463	Al(s)	794.582
Au(s)	51.974	Ba(s)	775.223
Be(s)	603.855	Bi(s)	270.749
Ca(s)	726.902	Cd(s)	296.867
Ce(s)	1054.006	Co(s)	313.345
Cr(s)	582.428	Cu(s)	130.748

Dy(s) 975.50	4	Er(s)	972.350		
Eu(s) 1003.40	0	F2(g)	518.294		1. A.
Fe(s) 373.31	1 /	Ga(s)	514.157		
Gd(s) 968.48	5	Ge(s)	557.040		
Hf(s) 1062.40	2	Hg(1)	108.551		•
Ho(s) 978.33	6	ln(s)	436.212		
Ir(s) 247.21	7	La(s)	994.896		
Lu(s) 945.45	1	Mg(s)	625.892		
Min(s) 486.85	1	Nb(s)	898.374		
Nd(s) 969.50	6	Ni(s)	242.654		1. C.
Os(s) 367.68	5	Pb(s)	247.705		
Pd(s) 139.41	3	Pr(s)	963.326		
Pt(s) 141.24	5	Pu(s)	1101.423	a to t	
Ra(s) 825.32	9	Re(s)	557.777		1. A.
Rh(s) 179.40	б	Ru(s)	318.908		
Sb(s) 436.87	5	Sc(s)	924.527		
Si(s) 853.47	1	Sm(s)	993.172		
Sn(s) 551.03	8	Sr(s)	747.800	• • •	
Ta(s) 972.73	3	Tb(s)	998.076		
Te(s) 329.44	0	Th(s)	1201.982		
Ti(s) 906.16	4	TI(S)	193.379		÷ .
Tm(s) 951.44	0	U(S)	1195.079		
V(s) 719.78		Y(S)	964.920		• *
1D(S) 943.85	0	Zn(S)	342.730		
2r(s) 1081.87	6				
EVERTA OUTMICA ESTANDA	MALE TOS COM	DITESTOS OTITMIC	א המספרדיים	י פריקאי	•
BARGIA QUIMICA EDIANDA	K DE EUS COM	CONDICO DOINIC	S BEFECILIC	-AD03	
Compuesto Exg° (kJ/mol)			a da	
H20	0.988	(1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
CH4 83	0.175	· · · ·		est and pitches	
C2H6 149	4.310	1			1 <u>1</u>
СЗН8 214	9.957				
IC4H10 280	1.848				
NC4H10 280	3.993			(g(t)) = (f(t))	
NEOC5H12 345	1.073				1. A.
IC5H12 345	1.365			A State of the second	
NC5H12 345	7.407				N
C2H4 135	9.516				· · ·
СЗН6 200	0.191	•			
H2S 80	8.704				
CO 27	4.692			· · · · · ·	
so2 31	1.129				
Caso 3: Cusco	and the second second				
Caso J. Cusco					
Las condiciones del med	io especific	adas son:		the second se	
	-				
Temperatura:	21.0 °C	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Presión:	0.6710 atm				
Concentración de CO2:	355.0 ppmv				
Humedad relativa:	0.300				
Salinidad:	35.000 por :	mil			

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

		Composición ((fracc	de la especie ión mol)	Exq°		
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento	
Ar(g)	Âr	0.9331E-02	0.9229E-02	11.458	11.458	
C (g)	CO2	0.3550E-03	0.3512E-03	19.453	409.973	
He(g)	He	0.5000E-05	0.4946E-05	29.877	29.877	
Kr(g)	Kr	0.1000E-05	0.9892E-06	33.813	33.813	

.

N2 (a)	N2	0.7804E+00	0.7719E+00	0.633	0.633	
Ne (a)	Ne	0.1800E-04	0.1781E-04	26.745	26.745	
$02(\pi)$	02	0.20998+00	0.2076E+00	3.844	3.844	
$V_{\Delta}(q)$	No.	0.0001E-07	0 8903E-07	39 702	39.702	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
AC(9)	1120	0.90018-07	0.10967-01	11 060	237 904	
nZ(g)	H20	0.00006+00		22 505	257.903	
D2 (g)	020	0.00008+00	0.10898-00	32.505	203.414	
					-	1
EXERGIA QUIMI	CA ESTANDAR	DE LOS ELE	MENTOS CONTENIL	DOS EN EL AGU	JA DE MAR	
	a		ی ۲۰ از	0	, the set	the transport
Elemento	Exq (kJ/g	mol)	Elemento Ex	(kJ/gmol)). 	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
As(s)	491.352	· · · ·	B(s)	626.727		1. 1. A.
Br2(1)	98.570		C12(g)	122.160	1. 1. 1. 1. 1. 1.	
Cs(s)	404.690	1	I2(s)	163.518	158 J. 18	
K(S)	367.312		Li(s)	393.389	Barta a d	
Mo(s)	730.593		Na(s)	337.566	- AB	
P(s)	860.262	· · · · ·	Rb(s)	389.000	1.	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
S(S)	609.054		Se(s)	346.586	4	and a second
W(s)	827.994	1 A A A A A A A A A A A A A A A A A A A				
EXERGIA OUTMI	CA ESTANDAR	DE LOS ELE	MENTOS CONTENTI	OS EN LA COL	RTEZA TERRE	STRE -
Dubuotit gouit						2 (12 C
Flomento	Exa° (kJ/a	moll	Elemento Es	a° (kJ/mo)	A CONTRACTOR STATE	5 TE \$ 18 P
Elemenco	00 675 00 675	mor)		706 340		$\chi * \pm \mu \chi$
Ag(S)	10 023	1 A.	AL(S) Re(s)	776 041	8 . s	
Au(S)	49.937		Da(S)	770.941		$_{1}a_{2}$ M
Be(S)	004.497		B1(S)	2/1.420	역사 이 관계했다.	6 h e 3 di
Ca(s)	, /30.386		Ca(s)	299.313		
Ce(s)	1055.123	• • * •	Co(s)	313.462	an taona Albana A	a film all and and a
Cr(s)	584.837		Cu(s)	133.641		
Dy(s)	974.501		Er(s)	971.340	an an the second	$\phi \to \phi \to \phi \to \phi \phi \phi \phi$
Eu(s)	1002.315		F2(g)	510.133		1. S.
Fe(s)	374.874		Ga(s)	515.400	1	° ,4°5
Gd(s)	967.545		Ge(s)	557.983	1	
Hf(s)	1063.430		Hg(l)	109.331	9.2 g 1	4.472.8
Ho(s)	977.242		In(s)	437.181	5.216.2	1
Ir(s)	246.902		La(s)	992.847		
Ľu(s)	944.265		Mg(s)	627.072	A Second Second	an a
Mn(s)	488.205		Nb(s)	900.430		n an
Nd(s)	968.737		Ni(s)	242.565		an an an Array an Ar
Os(s)	368.822		Pb(s)	250.063		en e
Pd(s)	138.399	1	Pr(s)	962.439		10 N J
Pt(s)	141.125		Pu(s)	1099.381	inter Cautoria. Na subt	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
Ra(s)	825.105		Re(s)	560.489		- 12 C
Rh(s)	179.899)	Ru(s)	318.508	 V 21 V 21 	
Sb(s)	438.852		Sc(s)	925 625	:	
Si(s)	855 787		Sm (s)	992 248		
Sn(s)	552 257	,	Sr(s)	750 974		والأجريد بالكار وكمار الديار
211(3) Ta(e)	974 793		51.(5) Th(c)	006 069		
10(3) To(a)	220 220			1002 000	and the second	and the Bridger and the
10(5) Ti (a)	223.223		III(S)	1203.000		
11(2) Mm (2)	501.134 050 051		11 (S) 11 (S)	1106,0%0		an a
TH(S)	33U.251		U(S) V(=)	1190.240		
V (S)	722.028		1(S)	964.202		an an Correction and
(z) ar	942.840	1	Zn(s)	345.825		n an tao ing kaoping an Tao ing kaoping ang kaoping ang
Zr(S)	1083.533					
				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
EXERGIA QUIMI	CA ESTANDAR	DE LOS CON	IPUESTOS QUIMIC	DS ESPECIFIC	ADOS	· · ·
						er politik en reiter
Compuesto	Exq°(k	J/gmol)				

Compuesto	Exd (KJ/dmor)
H20	1.988
CH4	834.666
С2Н6	1500.079
СЗН8	2156.970
1C4H10	2809.916
NC4H10	2812.246

NEOC5H12	3460.041			
IC5H12	3460.772			
NC5H12	3465.849	1. S. 1. S. 1.	,	
C2H4	1363.666	· · ·	the provide the second s	
СЗНб	2005.675		6 - 1	
H2S	814.287	A CARL AND A CARL		
со	274.988			
S02	313.036		. A	
		-		1. T
		1. A. A.		
<u>Caso 4: Quebec</u>	$p_{\rm eff} = 10^{-1}$ cm s $^{-1}$		Sec. 2. Sec.	a series de la competencia de la compet
Las condiciones del	l medio especificadas	son:		· · · ·
			No. 1	: •
Temperatura:	-16.0 °C			• · · · ·
Presión:	1.0000 atm	$F_{i}(0) = \sum_{i=1}^{n} e_{i}(0)$	8 * 1 × 1 × 1	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Concentración de (CO2: 355.0 ppmv			х. ¹
Humedad relativa:	0.500		11 - 12 - 14 - 14 - 14 - 14 - 14 - 14 -	
Salinidad:	32.000 por mil		Second Constants	1 e - 1 - 1

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

		Composición (de la especie	Ex	q°	4 (1997) - M ^{ar} ia
		(fracc:	ión mol)	(kJ/	'gmol)	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento	
Ar(q)	Ar	0.9331E-02	0.9323E-02	9.995	9.995	
C (q)	CO2	0.3550E-03	0.3547E-03	16.984	407.902	- ha (
He (q)	He	0.5000E-05	0.4996E-05	26.097	26.097	
Kr(q)	Kr	0.1000E-05	0.9993E-06	29.538	29.538	17 PM - 19
N2 (g)	N2	0.7804E+00	0.7797E+00	0.532	0.532	
Ne(q)	Ne	0.1800E-04	0.1799E-04	23.359	23.359	121111
02 (g)	02	0.2099E+00	0.2097E+00	3.339	3.339	1 BA 221
Xe(a)	Xe	0.9001E-07	0.8993E-07	34.686	34.686	
H2 (q)	H20	0.0000E+00	0.8181E-03	15.198	243.937	
D2 (q)	D20	0.0000E+00	0.1272E-06	33.946	268.919	1.24
				1.5		10 C

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN EL AGUA DE MAR.-

Elémento	Exq° (kJ/gmol)	Elemento	Exq° (kJ/gmol)	
As(s)	495.979 🚲 🗤	B(S)	629.760 (1997) (1997) (1997) (1997)	/**
Br2(1)	87.433	C12(g)	119.517	~ <
Cs(s)	400.016	I2(s)	169.340	
K(s)	367.769	Li(s)	394.015	
Mo(s)	734.551	Na(s)	340.348	25
P(s)	866.992	Rb(s)	386.305	÷ .
S(s)	617.233	Se(s)	348.687	
W(s)	834.484	and a start and the start of the start of the	n na h-air an an an an an ann an Anna an ann an ann an	• *

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN LA CORTEZA TERRESTRE.-

Elemento	Exq° (kJ/gmol)	Elemento	Exq° (kJ/gmol)	
Ag(s)	96.716	Al(s)	801.639	
Au(s)	43.656	Ba(s)	- 779.900 - 111 - 111 - 111 - 111 - 111	
Be(s)	606.396	Bi(s)	273.394	
Ca(s)	740.886	Cd(s)	306.614	
Ce(s)	1058.407	Co(s)	313.742	
Cr(s)	594.337	Cu(s)	142.319	
Dy(s)	976.294	Er(s)	973.117	
Eu(s)	1003.855	F2(g)	461.956	
Fe(s)	379.573	Ga(s)	519.112	
Gd(s)	969.535	Ge(s)	560.727	
Hf(s)	1066.439	Hg(1)	111.082	
Ho(s)	978.753	In(s)	440.046	
Ir(s)	245.773	La(s)	991.415	

• • • • • •	045 400		C31 743		
Lu(s)	945.498	MG(S)	631.743		
Mn(s)	492.220	ND(S)	906.650		
NG(S)	971.256	N1(S)	242.212		
OS(S)	372.007	PD(S)	257.089		
Pa(s)	135.191	Pr(s)	964.593		
Pt(s)	140.592	Pu(s)	1092.923		
Ra(s)	822.075	Re(S)	568.568		
Rh(s)	181.296	Ru(S)	317.112		
Sb(s)	444./48	SC(S)	928.891		
S1(S)	862.765	Sm(s)	994.287		
$\operatorname{Sn}(\mathbf{s})$	555.857	Sr(s)	/60.518		
Ta(s)	980.904	TD(S)	1206 010	· · · · ·	e trata de la com
Te(s)	328.417	Th(S)	1206.010		
T1(S)	912.404	TL(S)	202.678		et et al sus s''
Tm(s)	951.4/3	U(S)	1202.942		二、 等于 等于 生
V(s)	728.756	Y(s)	966.876	$(e^{\frac{1}{2}})^{(n)}=(e^{\frac{1}{2}})^{(n)}e^{\frac{1}{2}}e^{$	$e = \frac{1}{2} e = \frac{1}{2} e^{-\frac{1}{2}}$
Yb(s)	944.617	Zn(s)	355.106	$1 \leq N_{\rm eff} \leq 1.04 \leq 1$	化二乙酰氨酸乙乙
Zr(s)	1088.483			<u> </u>	e hai eve
ERGIA QUI	MICA ESTANDAR DE LOS CO	MPUESTOS QUIMI	COS ESPECIFICADO	5 . – :	NG ARAB I
Compuesto	Exq [°] (kJ/gmol)				
H2O -	1.731	and the second			
CH4	841.675	1 · · · ·		r 1. ¹	
C2H6	1507.609				
C3H8	2164.915				
	2817.695			•	
IC4H10		and the second			
IC4H10 NC4H10	2820.595		, , , , , , , , , , , , , , , , , , , ,		
IC4H10 NC4H10 NEOC5H12	2820.595 3467.174		and the second sec		· · · ·
IC4H10 NC4H10 NEOC5H12 IC5H12	2820.595 3467.174 3469.260				
IC4H10 NC4H10 NEOC5H12 IC5H12 NC5H12	2820.595 3467.174 3469.260 3471.361				2
IC4H10 NC4H10 NEOC5H12 IC5H12 NC5H12 C2H4	2820.595 3467.174 3469.260 3471.361 1369.623				
IC4H10 NC4H10 NEOC5H12 IC5H12 NC5H12 C2H4 C3H6	2820.595 3467.174 3469.260 3471.361 1369.623 2012.323				
IC4H10 NC4H10 NEOC5H12 IC5H12 NC5H12 C2H4 C3H6 H2S	2820.595 3467.174 3469.260 3471.361 1369.623 2012.323 830.098			• • •	

D.4.- Resultados del análisis de exergia de la columna Desisobutanizadora.

A continuación se presentan los valores de los parámetros exérgicos de cada uno de los equipos involucrados en la Columna Desisobutanizadora (Tablas D.11, D.12, D.13 y D.14); del condensador de la columna si éste fuera un aereoenfriador en Minatitlán, Jericó y Cusco (Tabla D.15) y; del sistema completo cuando se considera que el condensador de la columna utiliza agua como medio de enfriamiento (Tabla D.16) y cuando la condensación se realiza en un aereoenfriador (Tabla D.17), al considerar las condiciones ambientales de las cuatro ciudades seleccionadas.

Tabla D.11 Parámetros exérgicos por equipo de la Columna Desisobutanizadora	L
(condiciones ambientales de Minatitlán: $T = 25^{\circ}$ C, $P = 1$ atm. $\phi = 0.75$, $S = 36\%$).	

Εσυίρο	Ex., kJ/h	Exan kJ/h	Irr. kJ/h	Ex., kJ/h	Ex., kJ/h	Efl. kJ/h
- Rombac	Lowiger thereit		,	2		
	14 607 008 676	14 607 022 875	75 801	415 166	220 266	0
GA-1	14,007,990,070	14,007,922,073	10,001	410,100	339,300	0
GA-2	30,857,221,332	30,857,088,871	132,401	1,392,193	1,259,732	. 0
 Válvulas 						
V-1	2,027,469,775	2,027,168,311	301,464	301,464	· · · O	- O
V-2	1,864,411,139	1,864,389,408	21,731	21,731	. 0	· 0
V-4	36,849,310,105	36,848,769,494	540,612	540,612	- O	0 [1]
• Enfriamiento d	on agua				2 - 2 - 8 - 92	
EA-2	14,704,542,932	14,699,483,890	5,059,042	7,621,996	2,562,954	2,562,954
 Aereoenfriado 	r					
EC-1	1,864,398,034	1,863,221,340	1,176,693	1,600,146	423,452	423,452
 Calentamiento 	o con vapor				en se fan te	$= 1.5\times M_{\odot}^{-1}$
EA-1	2,028,282,033	2,027,705,619	576,414	1,174,809	598,395	- 0
Horno		· ·				- 1 - E
H-1	36,951,218,307	36,892,037,709	59,180,599	81,160,148	21,979,549	21,288,666
 Reactor 						- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1
Combustión	139,652,706	102,448,813	37,203,893	129,530,633	92,326,740	18. algun 1 0 .
 Transferencia 	de masa			· · · · · ·	na gregari	Service and
DA-1	53,348,278,816	53,335,445,780	12,833,036	14,229,493	1,396,457	<u> </u>
al ¹² a second	с., ^н и,	SUMA =	117,101,745		SUMA =	24,275,072
		1 A A	•			

Tabla D.11.- Parámetros exérgicos por equipo de la Columna Desisobutanizadora (condiciones ambientales de Minatitlán: $T_o = 25^{\circ}$ C, $P_o = 1$ atm, $\phi = 0.75$, S = 36%) (continuación).

			(conunu	aciony.				
Equipo		Pex, kJ/h	Ex _{uts} , kJ/h	η		ε	ξ	Pot, kJ/h
Bombas								and the second second
: GA-1		75,801	14,607,922,875	1.0000	1.1	0.8174	1.0000	13,840
GA-2	2	132,461	36,857,088,871	1.0000	$(\mathbf{z}_{i})_{i \in \mathcal{I}} \in \mathcal{I}_{i}$	0.9049	1.0000	12,603
 Válvulas 			•					
V-1		301,464	2,027,168,311	0.9999		0.0000	0,9999	301,464
V-2	and the second	21,731	1,864,389,408	1.0000		0.0000	1.0000	21,731
V-4		540,612	36,848,769,494	1.0000	÷*	0.0000	1.0000	540.612
• Enfriamie	nto con agu	a		· · ·			a start to	and the second
EA-2		7,621,996	14,607,583,505	0.9997		0.3363	0.9934	5,920,855
 Aereoenfi 	riador							and the second sec
EC-1		1,600,146	1,862,797,888	0.9994	2 ¹	0.2646	0.9991	1,288,753
 Calentam 	iento con va	apor					, j. Staat	a gran a
EA-1	1 ¹	576,414	2,027,705,619	0.9997	. • •	0.5094	0.9997	282,814
 Horno 								
H-1	· · · ·	80,469,264	36,870,749,043	0.9984	$(1,1,\infty)$	0.2708	0.9978	64,442,151
 Reactor 						· ·		
Combusti	ón	37,203,893	102,448,813	0.7336	•	0.7128	1.4030	10,685,732
• Transfere	ncia de mas	sa						
DA-1		12,833,036	53,335,445,780	0.9998	· · ·	0.0981	0.9998	11,573,625
S	SUMA =	141,376,817					SUMA =	95,084,180

Equipo	Ex _{tte} , kJ/h	Ex _{tts} , kJ/h	Irr, kJ/h	Ex _{nts} , kJ/h	Ex _{ntp} , kJ/h	Efl, kJ/h
Bombas						n tek e
GA-1	14,606,769,367	14,606,691,481	77,886	415,166	337,280	. 0
GA-2	36,849,446,650	36,849,310,774	135,876	1,392,193	1,256,317	· 0
 Válvulas 						Reg Set e
 V-1 	2,027,074,538	2,026,764,985	309,553	309,553	0 .	· · · · 0
V-2	1,863,840,491	1,863,818,177	22,314	22,314	O	0
V-4	36,841,533,919	36,840,978,802	555,117	555,117	i (µ − 0	0
 Enfriamiento col 	n agua				an stranding s	1 - 1 - 6 - ²⁶
EA-2	14,732,718,526	14,728,142,869	4,575,657	5,165,768	590,110	590,110
 Aereoenfriador 						n de la stars
EC-1	1,863,826,797	1,862,943,050	883,747	1,296,514	412,767	412,767
Calentamiento c	on vapor				jir se daes	a a Mitshey a
1 EA-1	2,027,908,234	2,027,316,270	591,965	1,098,089	506,124	· 0
 Homo 						
⇒ H-1	36,942,361,198	36,881,468,406	60,892,792	80,671,731	19,778,940	20,710,664
 Reactor 						in the second
Combustión 🦉	139,525,607	101,382,396	38,143,211	129,523,208	91,379,997	
• Transferencia de	e masa			-	ann chàch	(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
DA-1	53,336,599,347	53,323,414,913	13,184,434	14,622,664	1,438,229	: O
		SUMA =	119,372,552		SUMA =	21,713,542

Tabla D.12.- Parámetros exérgicos por equipo de la Columna Desisobutanizadora (condiciones ambientales de Jericó: $T_a = 33^{\circ}$ C. $P_a = 1.03$ atm. $\phi = 0.7$, S = 44%).

Tabla D.12.- Parámetros exérgicos por equipo de la Columna Desisobutanizadora (condiciones ambientales de Jericó: $T_o = 33^{\circ}$ C, $P_o = 1.03$ atm, $\phi = 0.7$, S = 41%)

		(ບຸດແຄນ	uacion).			
Equipo	Pex, kJ/h	Ex _{uts} , kJ/h	η.	8	ξ	Pot, kJ/h
Bombas						a da da g
GA-1	77,886	14,606,691,481	0.99999	0.81240	0.99999	14,612
GA-2	135,876	36,849,310,774	1.00000	0.90240	1.00000	13,261
 Válvulas 						
V-1	309,553	2,026,764,985	0.99985	0.00000	0.99985	309,553
V-2	22,314	1,863,818,177	0.99999	0.00000	0.99999	22,314
V-4	555,117	36,840,978,802	0.99998	0.00000	0.99998	555,117
 Enfriamiento con a 	gua				19 - 19 <u>1</u>	Martin and Carlo
EA-2	5,165,768	14,606,354,197	0.99969	0.11423	0.99142	4,643,068
Aereoenfriador	1				1	r and the second
EC-1	1,296,514	1,862,530,283	0.99953	0.31837	0.99930	1.015.159
Calentamiento con	vapor				a e presente	
EA-1	591,965	2.027 316.270	0.99971	0.46091	0.99971	319,120
• Horno	· · · , •					,
	81,603,456	36.860.757.742	0.99835	0.24518	0.99779	66.673.879
Reactor						
Combustión	38,143,211	101,382,396	0.72662	0.70551	1.41741	11.232.771
• Transferencia de m	nasa		· ·			
DA-1	13,184,434	53,323,414,913	0.99975	0.09836	0.99975	11.887.664
SUMA =	141,086,093		ter en alter a ser alter a		SUMA =	96,686,517

.

Tabla D.13.- Parámetros exérgicos por equipo de la Columna Desisobutanizadora (condiciones ambientales de Cusco: $T_c = 21^{\circ}$ C, $P_c = 0.67$ atm. $\phi = 0.3$, S = 35%).

Equipo	Ex _{tte} , kJ/h	Ex _{tts} , kJ/h	Irr, kJ/h	Ex _{nts} , kJ/h	Ex _{ntp} , kJ/h	Efl, kJ/h
Bombas						· ·
GA-1	14,649,882,931	14,649,808,173	74,758	415,166	340,409	0
GA-2	36,949,870,692	36,949,739,937	130,754	1,392,193	1,261,439	0
 Válvulas 						
V-1	2,033,392,056	2,033,094,637	297,419	297,419	0	0
V-2	1,869,944,858	1,869,923,419	21,439	21,439	. 0	0
V-4	36,941,941,556	36,941,408,197	533,359	533,359	0	. 0
 Enfriamiento 	con agua					
EA-2	14,903,884,935	14,893,728,950	10,155,984	8,850,111	1,305,874	1,305,874
Aereoenfriad	or			1.		
EC-1	1,869,932,039	1,868,609,225	1,322,814	1,751,952	429,139	429,139
 Calentamient 	to con vapor					•
EA-1	2,034,340,627	2,033,771,989	568,638	1,213,169	644,531	0
• Horno			•			
H-1	37,046,259,993	36,987,950,655	58,309,338	81,408,028	23,098,690	23,443,769
Reactor				A state of the second		
Combustión	141,909,069	104,851,796	37,057,273	129,553,348	92,496,075	0
• Transferenci	a de masa				a na an	
DA-1	53,489,428,607	53,476,741,227	12,687,379	14,062,575	1,375,196	0
		SUMA =	121,159,155		SUMA =	25,178,781

Tabla D.13.- Parámetros exérgicos por equipo de la Columna Desisobutanizadora (condiciones ambientales de Cusco: $T_o = 21^{\circ}$ C, $P_o = 0.67$ atm, $\phi = 0.3$, S = 35%)

	<u> </u>	(continua	ción).			All All All All
Equipo	Pex, kJ/h	Exuts, kJ/h	η	ε	ξ	Pot, kJ/h
Bombas	·		· · ·			
GA-1	74,758	14,649,808,173	0.99999	0.81993	0.99999	13,461
GA-2	130,754	36,949,739,937	1.00000	0.90608	1.00000	12,280
 Válvulas 						
V-1	297,419	2,033,094,637	0.99985	0.00000	0.99985	297,419
V-2	21,439	1,869,923,419	0.99999	0.00000	0.99999	21,439
V-4	533,359	36,941,408,197	0.99999	0.00000	0.99999	533,359
• Enfriamiento con a	gua		•			
EA-2	11,461,858	14,649,467,760	0.99932	0.14755	0.98293	9,963,297
 Aereoenfriador 					·	
EC-1	1,751,952	1,868,180,086	0.99929	0.24495	0.99906	1,427,931
Calentamiento con	vapor					
EA-1	568,638	2,033,771,989	0.99972	0.53128	0.99972	266,533
Horno						
H-1	81,753,107	36,964,506,887	0.99843	0.28374	0.99779	65,208,433
Reactor						
Combustión	37,057,273	104,851,796	0.73887	0.71396	1.40064	10,599,814
• Transferencia de m	nasa	, · ·)				
DA-1	12,687,379	53,476,741,227	0.99976	0.09779	0.99976	11,446,666
SUMA =	146,337,936				SUMA =	99,790,632

an Angel

(00		-,,-	
Equipo	Ex _{tte} , kJ/h	Ex _{tts} , kJ/h	Irr, kJ/h	Ex _{nts} , kJ/h	Ex _{ntp} , kJ/h	Efl, kJ/h
Bombas	· · · · · · · · · · · · · · · · · · ·					a an an Ann
GA-1	14,676,389,597	14,676,324,484	65,113	415,166	350,054	0
GA-2	37,049,632,685	37,049,517,720	114,964	1,392,193	., 1,277,229	0
 Válvulas 						and the life of the
V-1	2,038,680,257	2,038,420,249	260,008	260,008	. 0	0
V-2	1,876,011,677	1,875,992,935	18,742	18,742	. 0	0
V-4	37,041,696,623	37,041,230,353	466,270	466,270	0	j.s. 0
Aereoenfriadore	S				n Angela Herberge	aggreen a l
EC-1	1,876,001,339	1,873,333,048	2,668,291	3,156,003	487,712	487,712
EA-2	14,696,251,570	14,679,569,679	16,681,891	20,277,143	3,595,253	3,595,253
Calentamiento d	con vapor	5	e hatata eta	an ta sha	-	
EA-1	2,039,708,612	2,039,211,899	496,713	1,568,000	1,071,287	.
Horno		and a second	an a thurs	and the second second	na en	
H-1	37,149,534,572	37,099,081,532	50,453,040	83,738,138	33,285,098	24,566,081
Reactor	second to the term	n geografie en en	 A state 	nata nat s ia	\$ 5	
Combustión	140,469,146	108,304,219	32,164,927	129,549,206	97,384,279	
• Transferencia d	e masa	and the second second		in the Vice		
DA-1	53,631,518,585	53,620,436,763	11,081,822	12,263,578	. 1,181,757	
		SUMA =	114,471,781		SUMA =	28,649,045
	and a state of the second			1 a 4 2	A see a laste	- K -13 K -14- Z-1

Tabla D.14.- Parámetros exérgicos por equipo de la Columna Desisobutanizadora (condiciones ambientales de Québec: $T_{r} = -16^{\circ}$ C. $P_{r} = 1$ atm. $\phi = 0.5$. S = 32%).

Tabla D.14.- Parámetros exérgicos por equipo de la Columna Desisobutanizadora (condiciones ambientales de Québec: $T_o = -16^{\circ}$ C, $P_o = 1$ atm, $\phi = 0.5$, S = 32%)

		(continua	ución). 🐘 🔬	an in the parts	ian Chuckey	
Equipo	Pex, kJ/h	Exutsi kJ/h	η	ε	ξ	Pot, kJ/h
Bombas	an an an an an an Arran. An		4			
GA-1	65,113	14,676,324,484	1.00000	0.84316	1.00000	10,212
GA-2	114,964	37,049,517,720	1.00000	0.91742	1.00000	9,493
Válvulas						
V-1	260,008	2,038,420,249	0.99987	0.00000	0.99987	260,008
V-2	18,742	1,875,992,935	0.99999	0.00000	0,99999	18,742
V-4	466,270	37,041,230,353	0.99999	0.00000	0.99999	466,270
Aereoenfriadores	and the second sec					
EC-1	3,156,003	1,872,845,336	0.99858	0.15453	0.99832	2,743,660
EA-2	20,277,143	14,675,974,427	0.99886	0,17731	0.99862	17,319,349
Calentamiento con	vapor					n in an
EA-1	496,713	2,039,211,899	0,99976	0.68322	0.99976	157,350
• Horno		en in grand e			· · · · · · · · · · · · · · · · · · · ·	الغاني. مراكب بوقوية والحور وال
H-1	75,019,121	37,074,515,451	0.99864	0.39749	0.99798	54.964.526
Reactor			i de la constante de la constan La constante de la constante de			
Combustión	32,164,927	108,304,219	0.77102	0.75172	1.33029	7,986,020
• Transferencia de m	asa					
DA-1	11,081,822	53,620,436,763	0.99979	0.09636	0.99979	10,013,943
SUMA =	143,120,826				SUMA =	93 949 573

Lugar	Ex _{tte} , kJ/h	Ex _{tts} , kJ/h	Irr, kJ/h	Ex _{nts} , kJ/h	Ex _{ntp} , kJ/h	Efl, kJ/h			
Minatitlán	14,615,274,259	14,610,704,422	4,569,837	7,690,754	3,120,916	3,120,916			
Jericó	14,611,588,673	14,609,396,322	2,192,351	5,234,476	3,042,125	3,042,125			
Cusco	14,658 <u>,38</u> 4,846	14,652,628,858	5,755,988	8,917,086	<u>3,1</u> 61,097	3,161,097			

Tabla D.15.- Parámetros exérgicos del condensador de la columna cuando éste es un aereoenfriador.

Tabla D.15.- Parámetros exérgicos del condensador de la columna cuando éste es un aereoenfriador (continuación).

Equipo	Pex, kJ/h	Ex _{uts} , kJ/h	η	ε	ξ	Pot, kJ/h
Minatitlán	7,690,754	14,607,583,505	0.9997	0.4058	0.9995	5,836,309
Jericó	5,234,476	14,606,354,197	0.9998	0.5812	0,9996	3,960,345
Cusco	8,917,086	14,649,467,760	0.9996	0.3545	0,9994	6,876,594

Tabla D.16.- Parámetros exérgicos de todo el sistema ^(a) Condensación del producto de domo con agua de enfriamiento.

Lugar	Ex _{tte} , kJ/h	Ex _{tts} , kJ/h	Irr, kJ/h	Ex _{nts} , kJ/h	Ex _{ntp} , kJ/h	Efl, kJ/h
Minatitlán	3,273,768,237	3,155,706,940	118,061,296	120,038,135	1,976,838	23,851,620
Jericó	3,304,970,166	3,184,352,171	120,617,994	122,372,853	1,754,858	21,300,775
Cusco	3,441,283,387	3,319,275,217	122,008,171	124,082,952	2,074,781	22,137,895
(a) Maran impluise la	with all MON at a second	onfrieder EC 1				

(a) No se incluye la válvula V-2 y el aerecenfriador EC-1

Tabla D.16.- Parámetros exérgicos de todo el sistema ^(a) Condensación del producto de domo con agua de enfriamiento (continuación)

	outeren uer proude		<u>uguu uv +</u> []		een naav	olony.
Equipo	Pex, kJ/h	Ex _{uts} , kJ/h	η	ε	ξ	Pot, kJ/h
Minatitlán	141,912,916	3,042,517,890	0.9639	0.0165	0.9294	139,968,633
Jericó	141,918,769	3,041,852,835	0.9635	0.0143	0.9204	140,189,076
Cusco	144,146,066	3,051,570,258	0.9645	0.0167	0.8868	142,105,977
(.)		- aufair dan EO 4				

(a) No se incluye la válvula V-2 y el aereoenfriador EC-1

Tabla D.17.- Parámetros exérgicos de todo el sistema ^(a) Condensación del producto de domo en un aereoenfriador.

Lugar	Ex _{tte} , kJ/h	Ex _{tts} , kJ/h	Irr, kJ/h	Ex _{nts} , kJ/h	Ex _{ntp} , kJ/h	Efl, kJ/h
Minatitlán	3,431,958,212	3,066,927,472	365,030,741	367,007,579	1,976,838	24,409,582
Jericó	3,431,121,943	3,065,605,624	365,516,319	367,271,178	1,754,858	23,752,789
Cusco	3,436,827,503	3,078,175,124	358,652,379	360,727,160	2,074,781	26,604,866
Québec	3,442,965,504	3,088,095,127	354,870,377	357,959,282	3,088,905	28,161,333
(a) No co inclusio l	a véhada V 2 v al aarac	confrieder EC 4				

(a) No se incluye la válvula V-2 y el aereoenfriador EC-1

Tabla D.17.- Parámetros exérgicos de todo el sistema ^(a) Condensación del producto de domo en un aereoenfriador (continuación).

						· · · · · ·
Equipo	Pex, kJ/h	Ex _{uts} , kJ/h	η	ε	ξ	Pot, kJ/h
Minatitlán	389,440,323	3,042,517,890	0.89364	0.00539	0.88653	387,474,133
Jericó	389,269,109	3,041,852,835	0.89347	0.00478	0.88655	387,522,635
Cusco	385,257,245	3,051,570,258	0.89564	0.00575	0.88790	383,194,397
Québec	383,031,711	3,059,933,793	0.89693	0.00863	0.88875	379,969,461

(a) No se incluye la válvula V-2 y el aereoenfriador EC-1

ZG

 Construction and product of an analysis of the construction $(1-\epsilon) = (1-\epsilon)^{-1}$ A real training subsects of

· · ·	and the second second	and the second	e a la presenta de la	(1) States and prove that is a present of the state of	A second s
			· · · · ·		
 .s					
an an Airtean	1	i se	1	化合成性 化化合物 计算机编制 化分子	. <u>}</u> -
	and a second s				

and the second second second second second second second as a second second second second second second second

|--|--|

1.4	1 S S S S S S S S S S S S S S S S S S S	and the second second second second	· · · ·	en an an training at a sea	 A state of the sta	and the second	en and an
1.1	$\{x_1, \dots, x_n\} \in \mathbb{R}$					11,11,11,11,11,11,11,11,11,11,11,11,11,	
	ere di						a 11 a 1865 - La el composito de la composito d La Martina de la composito de la
	Sec. 1	11.00			이 가지 않는 것 같은 것 같이.	1. 25 2. 24	en e
34 A.	1.11		Part of the		$(A_{i},A_{i}) = \sum_{i=1}^{n} (A_{i},A_{i}) = \sum_{i=1}^{n} $		$(x_{ij}) \in \{1, \dots, n_{ij}\}$
		· · · ·	A THE SECOND	алан на такон на тако Такон на такон на так	and a second second second	and the second second second	and the second

^{an} an coltered out the case of the ground of the collected states of all the

	in the second		じょうたけ あんごう			- -
$= \left\{ \begin{array}{c} 1 & 1 & 1 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \end{array} \right\}$	n na stanioù Referenzezhoù		n an	and the second	and a second	ده بایم ها برید ا معدهایی. از ۱۳۵۰
a and state to a state of the second state of the second state of the second state of the second state of the s	$\frac{1}{2} \left[-\frac{1}{2} \left[\frac{1}{2} $	an de transformer	and the second sec		and the start of the	- N - N - N
and an anna an a		an a				
				· · · · · · ·	and de la servició de La servició de la serv	and a second second Second second

in the second second in the **Marke** spectrum states and the public of the second s

e an an Arrest $(1) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ g dien.

t i e se a constante a tradição en terra e a constante atoma.

 $= \max_{i=1}^{n-1} \frac{e^{i \omega_i \omega_i}}{\omega_i} e^{i \omega_i \omega_i} e^{i \omega_i} e^{i \omega_i \omega_i} e^{i \omega_i \omega_i} e^{i \omega_i \omega_i} e^{i \omega_i \omega_i} e^{i \omega_i}$.

M. S. G. Grand

REFERENCIAS

- 1. Rivero, R.; Anava A., "Exergy Analysis of Industrial Processes: Energy-Economy-Ecology", Latin American Applied Research, ISSN: 0327-0793, vol. 27, no. 4, 1997, pp. 191-205. والمراجعة والمحاجب والمتعاد والمراجع والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد والمتعاد و
- 2. Szargut, J., "Chemical Exergies of the Elements", Applied Energy, vol. 32, 1989, p.p. 269-286. service in the second second . .
- 3. Muñoz, J.R.; Michaelides E.E., "The Impact of the Model of the Environment in Exergy Analyses", Journal of Energy Resources Technology, vol. 121, Dec. 1999. pp. 268-276. a second second second second

- 1 ¹ 1 4. Szargut, J.; Morris, D.R.; Steward, F.R., "Exergy Analysis of Thermal, Chemical, and Metallurgical Processes", Hemisphere, New York, 1988.
- 5. Kameyama, H.; Yoshida, K., Yamauchi, S.; Fueki, K., "Evaluation of Reference Exergies for the Elements", Applied Energy, vol. 11, 1982, pp. 69-83.
- 6. Rivero, R.; Anaya A., "Exergy Analysis of a Distillation Tower for Crude Oil Fractionation", AES, ISBN: 07918-0582-4, vol. 21, G. Tsatsaronis, R.G. Baiura, W.F. Kenney and G.M. Reistad, editors, American Society of Mechanical Engineers, New York, 1990, pp. 55-62.
- 7. Perry, R.H.; Chilton, C.H., "Manual del Ingeniero Químico", 2ª Ed., McGraw-Hill de México, México, 1982. 第一日 计正式存在分词 网络马马马马马马
- 8. Reid, R.C.; Prausnitz, J.M.; Sherwood, T.K., "The Properties of Gases and Liquids", 3th Ed., *McGraw-Hill Book Company*, 1977.
- 9. CESPEDES, "Cambio Climático Global: El Reto del Sector Privado en América Latina", Centro de Estudios del Sector Privado para el Desarrollo Sustentable. Fuente original: Instituto Nacional de Ecología, México, 1998.
- 10 Duxbury-Duxbury, "An Introduction to the World's Oceans", 3th Ed., Dubuque, 1991.
- 11. Whitfield, M.; Turner, D. R., Sea Water as an Electrochemical Medium, in: "Marine Electrochemistry: A practical introduction", Whitfield, M. and Jagner, D., John Wiley y Sons Ltd., 1981.
- 12 Riley, J.P., "Introduction to Marine Chemistry", Academic Press, London, 1971.

- Wilson, T.R.S., Salinity and the Major Elements of Sea Water, in: "Chemical Oceanography", Riley and Skirrow, vol.1, 2^d Ed., Academic Press, Inc., New York, 1975.
- 14. Swenson, H., "Why is the Ocean Salty?", 2000, http://oceanography.palomar.edu/salty_ocean.htm.
- 15. Brewer, P.G., Minor Elements in Sea Water, in: "Chemical Oceanography", Riley and Skirrow, vol.1, 2d. Ed., Academic Press, Inc., New York, 1975.
- 16. Dietrich, G.; Kalle K., "General Oceanography", 2^{d.} Ed., Wiley Interscience, 1980.

17. Groves, D., "The Oceans", John Wiley, New York, 1989.

- 18. Circultaror Boot Corporation, "Relative composition of Sea Soaks, Sea Water and Tissue Culture Media", 2000, http://www.circulatorboot.com/introduction/seasoaks.html.
- 19 Dyrssen, D.; Wedborg, M., Equilibrium calculations of the speciation of elements in seawater, In: "The Sea", E.D. Golderberg, editor, *Wiley Interscience*, vol. 5, 1974, p. 181-195.
- 20. Skoog, D. A.; West, D. M., "Química Analítica", 4ª Ed., McGraw-Hill, España, 1990.
- 21. Wagman, D.D.; William, H.E.; Parker V.B.; Schumm R.H.; Halow, I.; Bailey, S.M.; Churney, K.L.; Nuttall, R.L., "The nbs tables of chemical thermodynamic properties: Selected values for inorganic and C1 and C2 organic subtances in SI units", *American Chemical Society and the American Institute of Physics for the National Bureau of Standards*, New York, 1982.
- 22. Latimer, W. M., "The oxidation states of the elements and their potentials in aqueous solutions", *Prentice-Hall*, New York, 1952.
- 23. The Open University Course Team, "Seawater: It's composition properties and behaviour", *Pergamon Press*, 1989.
- 24 Gieskes, J. M., The Alkalinity-Total Carbon Dioxide System in Seawater, In: "The Sea", E.D. Golderberg, editor, *Wiley Interscience*, vol. 5, 1974, p. 123-149.
- 25 Culberson, C.H., Direct Potentiometry, in: "Marine Electrochemistry: A practical introduction", Whitfield, M. and Jagner, D., John Wiley y Sons Ltd., 1981.
- 26 Hansson, I., "A new set of acidity constants for carbonic acid and boric acid in sea water", *Deep-Sea Research*, vol. 20, 1973, p.p. 461-478.
- 27. Hansson, I., "A new set of pH-scales and standard buffers for sea water", *Deep-Sea Research*, vol. 20, 1973, p.p. 479-491.

Referencias

- 28. Almgren, T.; Dyrssen, D.; Strandberg; M., "Determination of pH on the moles per Kg seawater scale (M_w)", *Deep-Sea Research*, vol. 22, 1975, p.p. 635-646.
- 29. Khoo, K.H.; Ramette, R.W.; Culberson, C.H.; Bates, R.G., "Determination of hydrogen ion concentrations in seawater from 5 to 40°C: Standard potentials at salinities from 20 to 45‰", *Anal. Chem.*, vol. 49, 1977, p.p. 29-34.
- 30. Pitzer, K.S.; Kim, J.J., "Thermodynamics of Electrolytes IV. Activity and Osmotic Coefficients for Mixed Electrolytes", *Journal of the American Chemical Society*, vol. 96, 1974, p.p. 5701-5707.
- 31. Pitzer, K.S.; Mayorga, G., "Thermodynamics of Electrolytes II. Activity and Osmotic Coefficients for Strong Electrolytes with One or Both Ions Univalent", *The Journal of Physical Chemistry*, vol. 77, No. 19, 1973, p.p. 2300-2308.
- 32. Pitzer, K.S.; Mayorga, G., "Thermodynamics of Electrolytes III. Activity and Osmotic Coefficients for 2-2 Electrolytes", *Journal of Solution Chemistry*, vol. 3, No. 7, 1974, p.p. 539-546.
- 33. Pitzer, K.S.; Peiper, J.C., "Activity Coefficients of Aqueous NaHCO₃", *The Journal of Physical Chemistry*, vol. 84, No. 19, 1980, p.p. 2396-2398.
- 34 Millero, F.J.; Thurmond, V., "The Ionization of Carbonic Acid in Na-Mg-CI Solutions at 25°C", Journal of Solution Chemistry, vol. 12, No. 6, 1983, p.p. 401-412.
- 35. Hershey, J.P.; Fernández, M.; Milne, P.J.; Millero, F.J., "The Ionization of boric acid in NaCl, Na-Ca-CI and Na-Mg-CI solutions at 25°C", *Geochimica et Cosmochimica Acta*, vol. 50, 1986, p.p. 143-148.
- 36. Balarew, C.; Rabadjieva, D.; Tepavitcharova, S.; Christov, C.; Angelova, O., "Thermodynamic Study of the Aqueous Rubidium and Manganese Bromide System", *Journal of Solution Chemistry*, vol. 28, No. 7, 1999, p.p. 949-958.
- 37. Millero, F.J.; Byrne, R.H., "Use of Pitzer's equations to determine the media effect on the formation of lead chloro complexes", *Geochimica et Cosmochimica Acta*, vol. 48, 1984, p.p. 1145-1150.
- 38. Whitfield, M., "The extension of chemical models for sea water to include trace components at 25°C and 1 atm pressure", *Geochimica et Cosmochimica Acta*, vol. 39, 1975, p.p. 1545-1557.
- 39. Millero, F.J.; Schreiber, D.R., "Use of the ion pairing model to estimate activity coeficients of the ionic components of natural waters", *American Journal of Science*, vol. 282, 1982, p.p. 1508-1540.

ł

- 40. "The Encyclopedia of Geochemistry and Enviromental Sciences", R.W. Fairbridge, editor, *Van Nostrand Reinhold Company*, New York, 1972.
- 41. "WebElements, The periodic table on the www", 2000 http://webelements.com/webelements/scholar/properties/definitions
- Turner, D.R.; Dickson, A.G.; Whitfield, M., "Water-Rock partition coefficients and the composition of natural waters – A reassessment", *Marine Chemistry*, vol. 9, 1980, p.p. 211-218.
- 43. Barin, I.; "Thermochemical Data of Pure Subtances", VCH Verlagsgesellschaft mbH, Weinheim, Federal Republic of Germany, 1993.
- 44. "CRC Handbook of Chemistry and Physics". Robert C. Weast, editor, 55th. Ed., CRC Press, 1975.
- 45. Grant Gross, M., "Oceanography: A View of the Earth", 3th Ed., Prentice-Hall, Inc., Englewood Cliffs, N.J., 1982.
- 46. "Encarta 98 Encyclopedia", Microsoft Corporation, 1998 Edition.
- 47. Walas, S.M., "Phase Equilibria in Chemical Engineering", Butterworth Publishers, USA, 1985.
- 48 Smith, J.M.; Van Ness, H.C., "Introduction to Chemical Engineering Thermodynamics", 4^ª Ed., *McGraw-Hill, Inc.*, USA, 1987.
- 49 Barner, H.E.; Scheuerman, R.V., "Handbook of Thermochemical Data for Compounds and Aqueous Species", *John Wiley*, N. Y., 1978.
- 50. Silvester, L. F.; Pitzer, K.S., "Thermodynamics of Electrolytes. X. Enthalpy and the Effect of Temperature on the Activity Coefficients", *Journal of Solution Chemistry*, vol. 7, No. 5, 1978, p.p. 327-337.
- 51. Pitzer, K.S., Theory: Ion Interaction Approach, In: "Activity Coefficients in Electrolyte Solutions", R.M. Pytkowicz, editor, *CRC Press*, vol. 1, 1979.
- 52. Millero, F.J.; Sohn M. L., "Chemical Oceanography", CRC Press, 1992.
- 53 Rivero, R.; Montero, G.; Garfias, M., "Efecto de la temperatura ambiental en la determinación de la exergia química de parafinas", *Revista del Instituto Mexicano de Ingenieros Químicos, A.C.*, vol. 9-12, Año XLII, 2001, p.p. 197-205.
- 54. Perry, J.H., "Chemical Engineers' Handbook", 3th. Ed., McGraw-Hill, USA, 1949.

55. Manual del Simulador de Procesos Aspen Plus.