

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE QUIMICA DIVISION DE ESTUDIOS SUPERIORES

EFECTO DE LAS CONDICIONES AMBIENTALES EN LA DETERMINACION DE LA EXERGIA QUIMICA Y SU IMPACTO EN EL ANALISIS EXERGICO DE EQUIPOS Y PROCESOS

TESIS

PARA OBTENER EL GRADO DE:

MAESTRA EN INGENIERIA QUIMICA

(PROCESOS)

PRESENTA:

MARISOL GARFIAS VAZQUEZ

DIRECTOR DE TESIS: DR. RICARDO RIVERO RODRIGUEZ

MEXICO, D.F.

2002

TESIS CON FALLA DE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

ESTA TESIS NO SALL DE LA BIBLIOTECA

Autorizo a la Dirección General de Bibliotecas de la UNAM a difundir en formato electrónico e impreso el contenido de mi trabajo recapcional.

大学生,1967年,1

and the property of the second property of the

COORDINACIÓN DEL PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA

BIOL. FRANCISCO J. INCERA UGALDE. Jefe de la Unidad de Administración del Posgrado. P r e s e n t e.

Me es grato informarle que la alumna GARFIAS VAZQUEZ MARISOL presentará próximamente su examen para obtener el grado de Maestría en Ingeniería Química (Procesos) (Clave 479) ante el siguiente jurado:

Presidente:

Dr. Enrique Rodolfo Bazúa Rueda (FQ)

Vocal:

M. en C. Roberto del Río Soto (PEMEX)

Secretario:

Dr. Reynaldo Sandoval González (FQ)

Primer Suplente:

Dr. Roberto Best y Brown (CIE)

Segundo Suplente:

Dr. Jaime Cervantes de Gortari (FI)

Sin otro particular de momento, aprovecho la ocasión para enviarle un cordial saludo.

Atentamente "POR MI RAZA HABLARÁ EL ESPÍRITU"

Ciudad Universitaria, D. F., 22 de mayo de 2002.

El Coordinador

DR. JESÚS RIVERA RODRÍGUEZ

C.c.p. Integrantes del Jurado.

C.c.p. Departamento de Control Escolar de la Facultad de Química.

C.c.p. Interesado.

ggm.

TESIS CON FALLA DE ORIGEN

A mís padres

Agradecimientos

Al Instituto Mexicano del Petróleo por la beca que me otorgó para realizar mis estudios de maestría, que sin está oportunidad hubiera sido dificil de lograr.

Al Dr. Ricardo Rivero Rodríguez por la magnifica atención y consejos que siempre me brindo al dirigirme la tesis.

A los sinodales: Dr. Enríque Bazúa Rueda, M. en C. Roberto del Río Soto; Dr. Reynaldo Sandoval González, Dr. Roberto Best y Brown y Dr. Jaime Cervantes de Gortari por sus valiosas observaciones al presente trabajo.

A los Ingenieros Químicos José Luis Cano Dominguez y Martha Leticia Jiménez Alarcón por su respaldo para realizar estudios de posgrado y concluir el trabajo de tesis.

	ÍNDICE AND	
•		
•	Resumen	iii
•	Introducción	1
•	Nomenclatura	5
	Índices de tablas y figuras	11
•	Capítulo I: Conceptos básicos de exergia	17
	1.1 Definición de Exergia.	17
	1.2 Medio ambiente de referencia.	20
	1.3 Modelo de Szargut para el cálculo de exergia química de una sustancia.	22
	1.4 Exergia física y química de mezclas.	25
	1.5 Análisis de Exergia.	27
•	Capítulo II: Determinación de la exergia química estándar de los elementos	33
	 2.1 Exergia química estándar de los elementos contenidos en el aire atmosférico. 	34
	 2.1.1 Efecto en el valor de exergia química estándar al variar la humedad relativa del aire. 	36
	2.1.2 Efecto en el valor de exergia química estándar de los elementos por el cambio de concentración de CO ₂ en el aire.	39
	2.2 Exergia química estándar de los elementos contenidos en la hidrosfera.	42
	2.2.1 Efecto en el valor de exergia química estándar de los elementos por un cambio de salinidad.	56
	2.3 Exergia química estándar de los elementos contenidos en la litosfera.	77
■.	Capítulo III: Efecto de las condiciones ambientales en el valor de exergia química estándar de los elementos	89
	 3.1 Efecto de la temperatura del medio en el valor de exergia química estándar. 	90
	3.2 Efecto del cambio de la presión atmosférica en el valor de exergia química estándar.	120
•	Capítulo IV: Impacto de las condiciones ambientales en el análisis exérgico de equipos y procesos	127
	4.1 Descripción del proceso a analizar.	128

	4.2 Simulación de la columna Desisobutanizadora.	130
	4.2.1 Bases de la simulación.	131
	4.2.2 Validación del modelo de simulación y resultados.	142
	4.3 Análisis de Exergia de la columna Desisobutanizadora.	146
	4.3.1 Exergia de las corrientes.	147
J	 4.3.2 Balances de entalpia y exergia y determinación de los parámetros exérgicos. 	163
:,	4.3.3 Análisis de exergia de la Columna Desisobutanizadora, al considerar las condiciones del medio del caso base	
	(Minatitlán).	171
s **	4.3.4 Efecto de las condiciones ambientales en el análisis exérgico de los equipos y del proceso bajo estudio.	176
	Conclusiones	193
•	Apéndice A: Exergia química estándar de los elementos a diferentes	
_ {	valores de las distintas propiedades del medio ambiente analizadas	199
	Apéndice But de la contraction del contraction de la contraction d	219
:	B.1 Parámetros de interacción del modelo de Pitzer entre iones	
	presentes en el agua de mar.	219
W	B.2 Valores de ΔH° de la reacción de formación de las especies de referencia a 25°C.	221
	는 사람들은 사용하는 사용하는 것이 되었다. 그는 사람들은 사용을 보고 있는 것이 되었다. 그는 사용을 받는 것이 되었다. 	
•	Apéndice C: Programa para el cálculo de exergia química estándar	
'n.	de compuestos EXQCOMP	225
	C.1 Algoritmo. C.2 Resultados del cálculo de exergia química estándar de los	228
	elementos y de los compuestos metano y sulfato ferroso a condiciones normales.	233
1.		200
.	Apéndice D	237
	D.1 Resultados de la simulación de la columna Desisobutanizadora.	237
. •	columna Desisobutanizadora, para cada uno de los medios de	
	referencia seleccionados.	245
	sistema a las diferentes condiciones ambientales	248
ξ¥.	Desisobutanizadora.	254
٠.,		,
•	Referencias	261

RESUMEN

La exergia química de una sustancia, trabajo máximo que se obtiene al llevarla al equilibrio químico con el ambiente, se determina a condiciones normales de temperatura y presión (25°C y 1 atm) y a partir de la concentración promedio de las especies en el ambiente. Pero, dependiendo del lugar geográfico y de la estación del año, las condiciones del medio difieren del promedio.

El objetivo del presente trabajo fue investigar el efecto de las condiciones ambientales y de la concentración de las especies en el valor de exergia química, así como su impacto en el análisis de exergia de procesos. Para lo cual, se desarrollo un programa para automatizar el cálculo de exergia química de cualquier compuesto, a partir de los elementos que lo conforman y en función de las condiciones ambientales.

La condición ambiental que tiene mayor efecto sobre el valor de exergia química es la temperatura. El agua es la sustancia cuya exergia química se modifica más al cambiar las condiciones ambientales. Al disminuir la temperatura aumenta la exergia química de los hidrocarburos, a presión atmosférica y humedad relativa constantes.

El enfriamiento con agua o con aire y el calentamiento en un horno son los procesos cuyos parámetros exérgicos sufren un mayor cambio al variar las condiciones. El desempeño de una columna de destilación mejora si las condiciones del ambiente son cercanas a las promedio.

El método de exergia permite evaluar bajo cuáles condiciones ambientales se mejora la operación de un sistema, desde el punto de vista de uso eficiente de energía.

INTRODUCCIÓN

El uso eficiente de la energía ha sido pieza fundamental en el análisis de procesos industriales, a partir de la primera crisis de los precios del petróleo en la década de los años setenta, y con el lanzamiento de programas de ahorro de energía. El análisis de exergia es una metodología que se basa en las dos leyes de la termodinámica —conservación de la energía y degradación de la misma— y que permite detectar y evaluar de forma cuantitativa las causas de irreversibilidad termodinámica en procesos químicos y térmicos.

La exergia de un sistema es una medida de la calidad de la energía que contiene y de su alejamiento con respecto al medio ambiente, ya que se define como el trabajo mínimo necesario para producir una sustancia en un estado específico a partir de las especies presentes en el ambiente, por medio de procesos reversibles en los que se intercambia calor y materia sólo con el medio ambiente. La exergia de una sustancia se divide en dos componentes: exergia física y química. La primera se obtiene al llevar a la sustancia de sus condiciones de presión y temperatura hasta el equilibrio físico con el ambiente, a composición constante. La segunda es el resultado de llevar a la sustancia al equilibrio químico con el medio a temperatura y presión constantes.

La determinación de la exergia química de una sustancia en su estado estándar, se realiza con base en las condiciones ambientales y en la concentración de las especies en el medio de referencia (atmósfera, hidrosfera y litosfera), las cuales suelen ser las condiciones normales de temperatura y presión, esto es, 25°C y 1 atm, y la concentración promedio de las especies en el medio a estas condiciones.

El que la exergia química estándar de una sustancia se exprese a las condiciones normales se debe a que la mayoría de la información termodinámica y de concentración de las especies de referencia en el medio está disponible a dichas condiciones; además de que éstas son las que se consideran como el promedio en el medio ambiente. Sin

embargo, dependiendo del lugar geográfico y de la estación del año, las condiciones del medio difieren del promedio.

Por lo que el objetivo principal del presente trabajo de tesis es investigar el efecto de la temperatura ambiental, de la presión atmosférica y de la concentración de las especies de referencia —humedad relativa del aire, concentración de dióxido de carbono en el aire y contenido de sales en el agua de mar—, en el valor de exergia química estándar de elementos y compuestos, así como su impacto en el análisis de exergia de un proceso.

Para llevar a cabo lo anterior se desarrolla un programa para sistematizar el cálculo de exergia química estándar de cualquier compuesto, a partir de la exergia química de los elementos que lo conforman y en función de las condiciones ambientales del medio. Para esto, se analiza el procedimiento de determinación de la exergia química estándar de la mayoría de los elementos de la tabla periódica y cuyas sustancias de referencia se encuentran en la atmósfera, hidrosfera y litosfera.

Conviene mencionar que el valor de exergia química estándar a condiciones normales de temperatura y presión de la mayoría de los elementos, así como para un gran número de compuestos orgánicos e inorgánicos se encuentra publicado en la literatura; sin embargo, no existe un programa que realice el cálculo de exergia química y que por consiguiente facilite el análisis de exergia de un sistema.

Para el estudio del impacto de las condiciones ambientales en el uso eficiente de la energía de un proceso, basado en el método de exergia, se selecciona la Columna Desisobutanizadora de la Sección de Preparación de Carga de una planta Isomerizadora de Butanos, que incluye un horno como rehervidor de la columna de destilación; y se supone que dicha columna opera en las siguientes cuatro ciudades con diferentes condiciones ambientales: Minatitlán en México, Jericó en Israel, Cusco en Perú y Québec en Canadá. A partir de los balances de entalpia y exergia del proceso,

se determinan las pérdidas irreversibles de exergia y su potencial de mejoramiento en cada uno de los medios de referencia seleccionados.

No obstante que la variación de la temperatura ambiente pudiera ser la condición que tuviera mayor efecto en la exergia química estándar de una sustancia, por ser la variable de la que dependen tanto el cambio en la energía libre de Gibbs de la reacción de referencia y la concentración de las especies en el medio, se espera que este efecto sea relativamente pequeño.

En cuanto al impacto que tengan las condiciones ambientales en el desempeño de un proceso, éste podría ser importante en el caso de aquellos procesos que estén en contacto directo con su medio ambiente o que las condiciones de las corrientes involucradas dependan directamente de las condiciones del medio, por ejemplo, enfriamiento con agua o con aire.

en de la composition d de la composition del composition de la c

ing significant programment and the programment of the significant of the significant programment of the significant programment of the significant of the significant programment of the significant of th

en de la composition de la transcription de la transcription de la composition de la composition de la composit La composition de l La composition de la La composition de la composition del composition de la composition del composition de la composition de la composition del composition del composition de la composition del composition de la composition de la compositio

NOMENCLATURA

At	alcalinidad total del agua de mar
A_{ϕ}	coeficiente de la teoría electrostática de Debye-Hückel
а	actividad en la
<i>B</i> y <i>B</i> '	términos correspondientes al segundo coeficiente virial del modelo de
	Pitzer
B_I	relación entre las constantes aparentes de disociación del ión bicarbonato
	y del ácido carbónico
B_2	relación entre las constantes aparentes de disociación del ión bicarbonato
·	y del ácido bórico
Bt	contenido de boro totalæn el agua de mar
b_y	número de moléculas del elemento adicional y presente en una molécula
	del ión de referencia del agua de mar
C	tercer coeficiente virial del modelo de Pitzer
Cl	clorolinidad estado est
C^{ϕ}_{MX}	parámetro de interacción entre el catión M y el anión X , para el cálculo del
	tercer coeficiente virial del modelo de Pitzer
Ct	contenido de carbono total en el agua de mar
ΔC_p	cambio en la capacidad calorífica a presión constante
C_i	fracción molar del elemento en la forma de la especie i
E_{cel}	potencial de la celda de la reacción redox
Efl	pérdidas de efluentes
Ex	exergia
\overline{Ex}	exergia molar parcial
F_{+}	número de Faraday (96,500 coulomb/mol); fórmula química de un
	compuesto o elemento
f_1 y f_2	expresiones definidas en función de la fuerza iónica y de las constantes $lpha_1$
	y α_2
ΔG	cambio de energía libre de Gibbs

g	aceleración de la gravedad
H	entalpia; humedad absoluta
$ar{H}$	entalpia molar parcial
ΔН	cambio de entalpia
ΔH_{fase}	diferencia de calores por cambio de fase dentro de un intervalo de
	temperaturas, entre los productos y reactivos de una reacción.
$\Delta H_{mezclado}$	calor de mézclado
h	altitud (AAA)
h_c	coeficiente de transferencia de calor
ť	fuerza iónica de una solución electrolítica
	n <mark>úmero de identificación</mark> ato wolso (18 18) gran de viga en 18 si en 19 se se el 18 si en 19 se el 19 se el 19 se
Irr	pérdidas irreversibles de exergia
z+, z-	símbolo químico del ión de referencia contenido en el agua de mar
$f^{i_1\dots i_n}$	número de iones de referencia del agua de mar formados a partir de una
	molécula del elemento de la virga de la
<i>K</i>	constante de equilibrio termodinámica de una reacción
k	constante estequiométrica o aparente de una reacción
k_g	coeficiente de transferencia de masa se apropular se a ligita de la coeficiente de transferencia de masa se a ligita de la coeficiente de transferencia de masa se a ligita de la coeficiente de transferencia de masa se a ligita de la coeficiente de transferencia de masa se a ligita de la coeficiente de transferencia de masa se a ligita de la coeficiente de transferencia de masa se a ligita de la coeficiente de la coeficient
l_i	número de átomos del elemento en la molécula de la especie i de
	referencia presente en la litosfera
$ln \ \gamma \ '_{EL}$	expresión derivada por Pitzer de la teoría electrostática de Debye-Hückel
	para el cálculo del coeficiente de actividad de especies iónicas en solución
M_o	peso molecular promedio de los componentes de la capa externa de la
	corteza terrestre
m	concentración molal o molalidad
N	polinomio de la expresión de contenido de carbono total (Ecuación 3-20);
	eflujo molar de li percese de por la deflacé por participado e el proposición de la composición de la composic
NCOMP	número de compuestos a determinar su exergia química estándar
NEL .	número de elementos que conforman un compuesto
n	número de moles
nc	número de componentes de una mezcla

n_e	número de electrones que intervienen en la reacción redox
n_o	concentración molar promedio en la capa externa de la corteza terrestre
P	presión
P°	presión de vapor
PA	peso atómico
PCI	poder calorífico inferior del gas combustible
Pex	pérdidas totales de exergia
pН	logaritmo negativo de la concentración de ión hidrógeno
PM	peso molecular
Pot	potencial de mejoramiento
Q	carga térmica
q	concentración total de ión bicarbonato en el agua de mar
R	constante universal del estado gaseoso
r	concentración total de ión carbonato en el agua de mar
S	entropia; salinidad convencional del agua de mar
SB	salinidad base
S_T	salinidad total
ΔS	cambio de entropia
T	temperatura absoluta
t	temperatura
v	velocidad; coeficiente estequiométrico
W	trabajo
w	fracción en peso
X	expresión definida en función del segundo y tercer coeficiente virial del
	modelo de Pitzer y, de la concentración molal y carga eléctrica de los
	iones en solución
x	fracción molar
Z	polinomio de la expresión de contenido de carbono total (Ecuación 3-20)
z	altura; carga eléctrica del ión de referencia presente en el agua de mar
	·

,只是这个女子,这一个女孩的一样的女子。

Símbolos griegos		•
α_1 y α_2	constantes cuyo valor depende del tipo de carga eléctrica de	los
	iones M y X	
$eta_{ ext{ iny HSO4-}}$	constante estequiométrica de asociación del ión bisulfato	
$\beta^0_{MX}, \beta^1_{MX}, \mathbf{y} \beta^2_{MX}$	parámetros de interacción entre el catión M y el anión X ,	para el
	cálculo del segundo coeficiente virial del modelo de Pitzer	NA .
Δ	aumento o incremento	
∇	disminución o decremento	:
arepsilon	efectividad	+ 25.2
φ	humedad relativa del aire atmosférico	· y · *
γ	coeficiente de actividad	
λ	calor latente de evaporación	Ţ
η	eficiencia	* .
v	número de iones que componen la sal iónica MX	•
θ	temperatura de Carnot	•
<i>r</i>	rendimiento	*v*
ל	Torramione	

Superindices

o estado estándar

Subindices

а	cualquier anión en solución	ng series and
Bh	bulbo húmedo	
COMP comb	compuesto químico gas combustible	
c	concentracional; cualquier catión en solución; condició	n crítica
el	elemento	•
f	física; reacción de formación	

g	potencial
h	calor; aire húmedo
i	inercial; especie o componente de una mezcla
<i>k</i>	productos
l	componente diferente de i en una mezcla
M	catión
m	materia
n	condiciones normales de temperatura (25°C), presión (1 atm.) y
	concentración de las especies
ntp	neta producida
nts	neta suministrada
0	medio ambiente, estado muerto
p	mecánica
q	química
r	reaccional; reacción de referencia
S	sustancial; específica
TOT	total
t	térmica
tte	total de entrada
tts	total de salida
uts	útil a la salida
v	cinética
w	trabajo
X	anión
у	reactivos adicionales en la reacción de referencia
Z	reactivos

the second of th The state of the s egickych acest. T Carlo Maria

> Company of the Company of the A Fr. 334

ÍNDICE DE TABLAS

•	Tabla 2.1 Exergia química estándar de los elementos presentes en la atmósfera a condiciones normales de temperatura y presión (humedad relativa = 0.7 y concentración de CO_2 = 345 ppmv).	35
•	Tabla 2.2 Exergia química estándar (kJ/gmol) de los elementos contenidos en la atmósfera a diferentes valores de humedad relativa.	37
	Tabla 2.3 Exergia química estándar (kJ/gmol) de los elementos contenidos en la atmósfera a diferentes valores de concentración de CO ₂ .	40
	Tabla 2.4 Desviación porcentual con respecto al valor de exergia química estándar a 345 ppmv de CO ₂ .	41
• / 1	Tabla 2.5 Concentración de las especies en mayor proporción en el agua de mar. Salinidad: 35‰.	46
•	Tabla 2.6 Concentración total de los elementos en el agua de mar (μg/L).	48
•	Tabla 2.7 Fracción en peso y molalidad de las especies en el agua de mar, salinidad: 35‰.	51
•	Tabla 2.8 Exergia química estándar de los elementos contenidos en la hidrosfera a condiciones normales de temperatura y presión (Salinidad = 35% y $pH = 8.1$).	5 5
•	Tabla 2.9 Efecto en el valor de exergia química estándar de los elementos presentes en la hidrosfera al aumentar la salinidad ($pH = 8.1$).	58
•	Tabla 2.10 Exergia química estándar del cadmio y del plomo al considerar como especies de referencia al Cd^{2+} y al Pb^{2+} ($pH = 8.1$).	60
•	Tabla 2.11 Efecto sobre el valor de pH al variar la salinidad.	64
•	Tabla 2.12 Efecto en el valor de exergia química estándar de los elementos contenidos en la hidrosfera al incrementar la salinidad (se considera el cambio en el valor de <i>pH</i>).	65
•	Tabla 2.13 Coeficientes de actividad (en base molal) de los iones libres presentes en la hidrosfera a partir del modelo de Pitzer.	68
a	Tabla 2.14 Comparación entre los valores de γ _i determinados experimentalmente y los calculados con el modelo de Pitzer (Salinidad 35‰).	69
•	Tabla 2.15 Coeficientes de actividad (en base molal) de los compuestos iónicos y no iónicos presentes en el agua de mar.	72
•	Tabla 2.16 Efecto en el valor de exergia química estándar de los elementos presentes en la hidrosfera al aumentar la salinidad (se considera el cambio en los valores de coeficiente de actividad. $nH = 8.1$)	70

•	Tabla 2.17 Efecto en el valor de exergia química estándar de los elementos contenidos en la hidrosfera al aumentar la salinidad (se considera el cambio en los valores de pH y coeficientes de actividad).	75
•	Tabla 2.18 Exergia química estándar de las especies presentes en la corteza terrestre a condiciones normales de temperatura y presión.	79
•	Tabla 2.19 Concentración molar promedio de algunos elementos en la corteza terrestre (kgmol/kg), de acuerdo con diferentes fuentes de información.	81
	Tabla 2.20 Exergia química estándar del Al ₂ O ₃ a partir de dos valores distintos de exergia química estándar del aluminio.	83
•	Tabla 2.21 Exergia química estándar del germanio y hafnio a partir de dos valores distintos de energía libre de formación de sus especies de referencia.	85
•	Tabla 2.22 Exergia química estándar de los elementos contenidos en la litosfera a condiciones normales de temperatura y presión.	86
	Tabla 3.1 Efecto del valor de ΔC_p ° en el valor de ΔG_f °, en el intervalo de temperaturas considerado.	94
• ; * ;	Tabla 3.2 Efecto en el valor de ΔG_f° a 50°C al no considerar el calor de fusión de las sustancias que cambian de fase entre 0°C y 50°C.	94
•	Tabla 3.3 Efecto en el valor de ΔG_f° a -40°C al no considerar el calor de fusión de las sustancias que cambian de fase entre 0°C y -40°C.	95
5Z36	Tabla 3.4 Efecto de la temperatura del medio en el valor de ΔG_f° de las especies de referencia.	97
***	Tabla 3.5 Presión parcial en kPa de las especies presentes en la atmósfera a diferentes valores de temperatura del medio ($P = 101.325 \text{ kPa}$, $\phi = 0.7$, concentración de $CO_2 = 345 \text{ ppmv}$).	99
} ₃ ''. #	Tabla 3.6 Relación de concentraciones de especies disueltas en el agua de mar a diferentes valores de temperatura (salinidad de 35%).	103
	Tabla 3.7. - Efecto en el valor de Ex_q ° de los elementos al tener el medio una temperatura entre 0 y 50°C.	107
- 	Tabla 3.8 Comparación del cambio en el valor de exergia química por un cambio de temperatura, de dos especies de estructura química similar pero con fracción molar muy diferente.	111
·	Tabla 3.9. - Efecto en el valor de Ex_q° de los elementos cuando la temperatura es menor a 0°C. Análisis de escenarios.	114
	Tabla 3.10 Exergia química estàndar del CH ₄ y FeSO ₄ a diferentes valores de temperatura del medio ($P=1$ atm, $\phi=0.7$, concentración de CO ₂ = 345 ppmv y salinidad = 35‰).	118

•	Tabla 3.11 Exergia química estándar del CH_4 y $FeSO_4$ a diferentes valores de temperatura del medio. Presión parcial del agua en el aire constante. ($P = 1$ atm, concentración de $CO_2 = 345$ ppmv y salinidad = 35‰).	119
•	Tabla 3.12 Efecto de la presión atmosférica en el valor de exergia química estándar de los elementos.	121
	Tabla 3.13 Presión parcial y fracción molar de las especies presentes en el aire a diferentes valores de presión atmosférica ($T = 25$ °C, $\phi = 0.7$, concentración de $CO_2 = 345$ ppmv).	124
•	Tabla 4.1 Composición, flujo y condiciones de operación de las corrientes de alimentación a la columna Desisobutanizadora.	131
•	Tabla 4.2 Condiciones de operación de diseño de la columna Desisobutanizadora.	132
	Tabla 4.3 Cambio de presión en los diferentes equipos.	132
•	Tabla 4.4 Condiciones ambientales consideradas en las diferentes ciudades	134
•	Tabla 4.5 Temperatura de bulbo húmedo y del agua de enfriamiento en las diferentes ciudades bajo estudio	137
a	Tabla 4.6 Composición molar del gas combustible y flujo molar requerido de oxígeno.	139
■.	Tabla 4.7 Poder calorífico inferior del gas combustible y temperatura de flama, a diferentes condiciones de referencia.	140
•	Tabla 4.8 Comparación de resultados entre lo que indica el diseño y la simulación de la columna Desisobutanizadora.	143
• .	Tabla 4.9 Consumo de servicios auxiliares en la torre Desisobutanizadora.	145
•	Tabla 4.10 Comparación del valor de exergia física de las corrientes de la columna Desisobutanizadora, a diferentes condiciones de T_o y P_o del medio.	149
	Tabla 4.11 Propiedades termodinámicas de dos corrientes con diferente comportamiento en su valor de exergia física al cambiar T_o y P_o .	151
•	Tabla 4.12 Comparación del valor de exergia química estándar de los compuestos presentes en el sistema bajo estudio, a diferentes condiciones ambientales.	154
•	Tabla 4.13 Variación del valor de ΔG_f° de los compuestos presentes en el sistema bajo estudio, al cambiar la temperatura del medio ambiente.	156
•	Tabla 4.14 Efecto en el valor de exergia química estándar por el cambio de cada una de las condiciones ambientales.	157
• : .	Tabla 4.15 Comparación del valor de exergia química de las corrientes de la columna Desisobutanizadora, a diferentes condiciones ambientales del medio.	159
=	Tabla 4.16 Comparación del valor de exergia total de las corrientes de la columna Desisobutanizadora, a diferentes condiciones ambientales del medio.	162

•	Tabla B.1 Parámetros de interacción.	219
•	Tabla B.2 Calor estándar de formación a 25°C de las especies de referencia.	223
•	Tabla C.1 Definición de las condiciones del medio.	225
 E	Tabla C.2 Número de identificación de los elementos en el programa EXQCOMP.	226
• }}	Tabla C.3 Información requerida por el programa EXQCOMP para el cálculo de Ex_q° del metano y del sulfato ferroso.	228
*	Tabla D.1 Balance de materia y energía de la columna Desisobutanizadora.	237
	Tabla D.2 Composición y propiedades termodinámicas del gas combustible, del aire y de los gases de combustión. Minatitlán ($T_o = 25$ °C, $P_o = 1$ atm).	241
=	Tabla D.3 Composición y propiedades termodinámicas del gas combustible, del aire y de los gases de combustión. Jericó ($T_o = 33$ °C, $P_o = 1.03$ atm).	242
•	Tabla D.4. - Composición y propiedades termodinámicas del gas combustible, del aire y de los gases de combustión Cusco ($T_o = 21$ °C, $P_o = 0.67$ atm).	243
.	Tabla D.5 Composición y propiedades termodinámicas del gas combustible, del aire y de los gases de combustión. Québec ($T_o = -16$ °C, $P_o = 1$ atm).	244
• . ■.	Tabla D.6 Cálculo de exergia física (condiciones ambientales de Minatitlán: $T_o = 25$ °C, $P_o = 1$ atm)	245
x 5 - 24 ■	Tabla D.7 Cálculo de exergia física (condiciones ambientales de Jericó: $T_o = 33$ °C, $P_o = 1.03$ atm).	246
m r≥	Tabla D.8 Cálculo de exergia física (condiciones ambientales de Cusco: $T_o = 21$ °C, $P_o = 0.67$ atm).	246
	Tabla D.9 Cálculo de exergia física (condiciones ambientales de Québec: $T_o = -16$ °C, $P_o = 1$ atm).	247
• • 24	Tabla D.10 Cambio de energía libre de Gibbs y calor normal estándar de formación de los compuestos presentes en la columna Desisobutanizadora.	248
•	Tabla D.11 Parámetros exérgicos por equipo de la Columna Desisobutanizadora (condiciones ambientales de Minatitlán: $T_o = 25$ °C, $P_o = 1$ atm, $\phi = 0.75$, $S = 36$ %).	255
• ************************************	Tabla D.12 Parámetros exérgicos por equipo de la Columna Desisobutanizadora (condiciones ambientales de Jericó: T_o = 33°C, P_o = 1.03 atm, ϕ =0.7, S = 41‰).	256
■ -3.	Tabla D.13 Parámetros exérgicos por equipo de la Columna Desisobutanizadora (condiciones ambientales de Cusco: T_o = 21°C, P_o = 0.67 atm, ϕ =0.3, S = 35‰).	257
		_0,

•	Tabla D.14 Parámetros exérgicos por equipo de la Columna Desisobutanizadora (condiciones ambientales de Québec: $T_o = -16$ °C, $P_o = 1$ atm, $\phi = 0.5$, $S = 32$ %).	258
•	Tabla D.15 Parámetros exérgicos del condensador de la columna cuando éste es un aereoenfriador.	259
•	Tabla D.16 Parámetros exérgicos de todo el sistema. Condensación del producto de domo con agua de enfriamiento.	259
•	Tabla D.17 Parámetros exérgicos de todo el sistema. Condensación del producto de domo en un aereoenfriador.	259

	and the control of t The control of the c	8
٠	ÍNDICE DE FIGURAS	
	en en en en en en en el francis de la companya de La companya de la co	٠,
•	Figura 1.1 Formas de exergia	18
	Figura 1.2 Exergia de la materia	20
	Figura 1.3 Modelo de Szargut para calcular exergia química.	23
	Figura 1.4 Enfriamiento con agua. Par receptor-donador.	30
•	Figura 2.1 Desviación porcentual del valor de exergia química estándar al variar el contenido de agua en la atmósfera.	38
=	Figura 2.2 Efecto de la concentración de CO ₂ en su valor de exergia química estándar.	39
•	Figura 2.3 Desviación porcentual del valor de exergia química estándar con respecto a 345 ppmv de CO ₂ .	41
= .	Figura 2.4 Esquema para el cálculo de exergia química estándar de los elementos contenidos en la hidrosfera.	42
•	Figura 2.5 Formación del ión sulfato en una celda electroquímica con electrodo estándar de hidrógeno.	43
•	Figura 3.1 Variación de la presión parcial de las especies del aire atmosférico al cambiar la temperatura.	100
•	Figura 3.2 Variación del valor de pH del agua de mar al cambiar la temperatura.	104
	Figura 3.3 Efecto de la temperatura en el término $\ln \gamma_{EL}$ de Debye-Hückel para el cálculo de coeficientes de actividad.	105
•	Figura 3.4 Desviación porcentual del valor de exergia química estándar de las especies de la atmósfera al cambiar la temperatura del medio.	109

•	Figura 3.5 Efecto en el valor de exergia química estándar de compuestos al cambiar la temperatura del medio.	119
∎tie Egint	Figura 3.6 Desviación porcentual del valor de exergia química estándar de las especies del aire al cambiar la presión atmosférica.	125
• .	Figura 3.7 Efecto en el valor de exergia química estándar de compuestos al cambiar la presión atmosférica.	126
•	Figura 4.1 Columna Desisobutanizadora de la Planta Isomerizadora de n-Butanos.	129
•	Figura 4.2 Diagrama de bloques para el análisis de exergia de la columna Desisobutanizadora de la Planta Isomerizadora de n-Butanos.	146
•	Figura 4.3 Flujos de entrada y salida de exergia a considerar en el análisis global de la columna Desisobutanizadora.	147
•	Figura 4.4 Distribución de las pérdidas totales de exergia en la Columna Desisobutanizadora. Condiciones ambientales de Minatitlán.	171
	Figura 4.5 Porcentaje del total de pérdidas por irreversibilidades en cada equipo de la Columna Desisobutanizadora. Condiciones ambientales de Minatitlán.	172
5	Figura 4.6 Efectividad en cada uno de los equipos que conforman la columna Desisobutanizadora, para las condiciones ambientales de Minatitlán.	173
• • •	Figura 4.7 Porcentaje del total del potencial de mejoramiento en cada equipo de la Columna Desisobutanizadora. Condiciones ambientales de Minatitlán.	174
■., 14 14	Figura 4.8 Efecto de la variación de las condiciones del medio de referencia en las pérdidas de exergia por irreversibilidades en cada equipo y en el total del proceso.	177
■ ,	Figura 4.9 Efecto de la variación de las condiciones del ambiente en las pérdidas de exergia por efluentes en cada equipo y en el total del proceso.	177
F * :	Figura 4.10 Efecto de la variación de las condiciones del medio de referencia en la efectividad de cada equipo de la columna Desisobutanizadora.	178
•	Figura 4.11 Efecto de la variación de las condiciones ambientales en el potencial de mejoramiento de cada equipo y del total del proceso.	178
• .	Figura 4.12 Efecto de las condiciones ambientales en el análisis de exergia del condensador de la columna Desisobutanizadora cuando se utiliza un aereoenfriador.	185
•	Figura 4.13 Efecto de las condiciones ambientales en el análisis global del sistema. (Condensación del producto de domo con agua de enfriamiento).	
	Figura 4.14 Efecto de las condiciones ambientales en el análisis global del sistema. (Condensación del producto de domo en un aereoenfriador).	191
	en e	

CAPÍTULO I

CONCEPTOS BÁSICOS DE EXERGIA

1.1.- Definición de Exergia.

La Termodinámica estudia las transformaciones de la energía y la interacción de ésta con la materia. Las condiciones generales bajo las que se observan todas estas transformaciones se conocen como la primera y la segunda leyes de la termodinámica.

La **Primera Ley** establece que la energía no puede ser creada ni destruida y que en todo proceso real su cantidad permanece constante. En procesos en estado estacionario, la cantidad de energía se expresa generalmente por medio de la función termodinámica *Entalpia*.

Por otro lado, la **Segunda Ley** señala que la energía en todo proceso se degrada y por lo tanto su calidad disminuye. La calidad de la energía que contiene el proceso se expresa por medio de otra función termodinámica llamada **Exergía**.

La energía total de un sistema se puede dividir en dos términos: aquella energía que es útil o utilizable para llevar a cabo una acción (exergia) y aquélla que no es útil (anergia).

$$Ex = (H - H_o) - T_o (S - S_o)$$

$$\downarrow \qquad \qquad \downarrow$$
Energía Energía Energía
$$util \qquad total \qquad no util$$
(1 - 1)

La parte utilizable puede ser obtenida al llevar al sistema al equilibrio con el medio ambiente. Por lo tanto, la exergia es proporcional al alejamiento del sistema de su medio ambiente y dicho alejamiento se define por la diferencia entre las propiedades a las condiciones de temperatura, presión y composición del sistema y las que prevalecen

en el ambiente. Cuando se han alcanzado las condiciones del ambiente, la energía útil para realizar una acción desaparece. Este estado se conoce como muerto en donde el valor de exergia es cero.

1.1.1.- Formas de la Exergia.

La exergia se manifiesta principalmente de dos formas: una asociada con una transferencia de energía, que no es transportada por la materia, y otra asociada con la energía que contiene la materia, energía transportada por la misma materia. En la Figura 1.1 se presentan las diferentes formas de la exergia [1].

Figura 1.1.- Formas de exergia.

En el primer caso la exergia es una función de la transferencia y sus dos formas son: la exergia del trabajo, Ex_w , trabajo extraído o suministrado y, la exergia del calor Ex_h , que representa el trabajo máximo que se puede extraer de una fuente de calor. En el segundo caso la exergia es una propiedad de la materia, Ex_m , y está conformada por la exergia inercial Ex_i , que está asociada a la cantidad de materia y no al tipo de materia y, por la exergia sustancial Ex_s , la cual sí depende del tipo de materia.

gy a 1980 agregoration in to be a contraction

La exergia inercial está compuesta por la exergia cinética Ex_v , resultado de la velocidad, y de la exergia potencial Ex_g , resultado de la posición de la materia en el campo gravitacional de la Tierra.

La exergia sustancial a su vez se divide en la exergia física Ex_f y en la exergia química Ex_q .

La exergia física es el trabajo que se obtiene al llevar a un sistema a las condiciones de temperatura (exergia térmica, Ex_t) y presión (exergia mecánica, Ex_p) del medio ambiente a composición constante.

La exergia química es el trabajo que se extrae al llevar a una sustancia al equilibrio químico con el ambiente por medio de un proceso isotérmico e isobárico. La exergia química es la suma de dos términos: uno resultado de las reacciones necesarias para producir, a partir de la composición de la sustancia, las especies que se encuentran en el ambiente (exergia reaccional, Ex_r); y otro término que es resultado de igualar la concentración química de las especies producidas a la concentración de ellas mismas en el ambiente (exergia concentracional, Ex_c).

En la Figura 1.2 [1], se muestran los diferentes términos que conforman la exergia de la materia así como las condiciones de las que se parte para su cálculo hasta llegar a las condiciones del estado muerto o medio ambiente.

Figura 1.2.- Exergia de la materia.

Cabe hacer notar que en procesos químicos la exergia inercial se puede considerar despreciable con respecto a la exergia sustancial, por lo que, en el análisis de procesos generalmente sólo se determina la exergia física y química.

1.2.- Medio ambiente de referencia.

El valor de exergia depende del modelo de medio ambiente que se seleccione como referencia. De forma estricta, el modelo a seguir de medio ambiente, que contenga las especies de referencia, debe en primer lugar satisfacer los requerimientos de equilibrio termodinámico, ser práctico desde un punto de vista técnico y ser consistente con la teoría económica para la optimización de procesos. Para lo cual, se requiere que las sustancias estables en el medio ambiente en equilibrio tengan un valor de exergia de cero, además, el medio ambiente de referencia debe ser lo más cercano al medio ambiente natural. Sin embargo, el medio ambiente natural que nos rodea no está en

equilibrio termodinámico. Un requerimiento adicional es que el modelo debe ser capaz de proveer de un indicador económico para el valor de exergia, esto es, el valor de exergia de las especies en abundancia en el medio ambiente debe ser menor que el de aquéllas en menor concentración. El cumplimento simultáneo de todas las condiciones anteriores no es fácil.

Existen diferentes modelos de medio ambiente de referencia propuestos para la determinación de exergia, algunos de los cuales se basan en un medio en equilibrio termodinámico, pero cuya composición y parámetros difieren bastante de la realidad. Otros, por el contrario, utilizan las especies que se encuentran en abundancia en un medio real para el cálculo de exergia, aunque dicho medio no esté en equilibrio. Muñoz y Michaelides [3] analizaron recientemente el efecto que tienen cada uno de los diferentes modelos en el análisis de exergia de una planta de fuerza, y encontraron que varios de los modelos de medio ambiente que no se basan en un estado de equilibrio, sino en un medio real, arrojan resultados más adecuados y consistentes. Esto tiene mayor importancia cuando se determinan las pérdidas de exergia en sistemas abiertos, en donde, hay interacción entre las corrientes del proceso y las especies del medio.

El modelo de referencia que se utiliza en el presente trabajo es el medio ambiente real propuesto por Szargut [2,4], modelo que no está en equilibrio termodinámico. De acuerdo con Szargut, para el cálculo de exergia química de una sustancia se deben seleccionar como especies de referencia aquéllas que representen los productos más probables de una interacción entre la sustancia bajo consideración y los componentes que se encuentran en el ambiente natural.

Las especies de referencia pueden ser componentes gaseosos de la atmósfera, especies disueltas en el agua de mar y componentes sólidos presentes en la superficie terrestre. Los parámetros promedio, que caracterizan a cada medio del que se seleccione una especie de referencia, como por ejemplo la temperatura ambiente, la presión parcial en el aire, la concentración en el agua de mar o en la corteza terrestre, son el nivel cero o estado muerto para el cálculo de exergia.

ing the Artist American

1.3.- Modelo de Szargut para el cálculo de exergia guímica de una sustancia.

Con el propósito de simplificar el cálculo, Szargut sugiere que la exergia química que se determina en el estado estándar a condiciones normales de temperatura y presión $(T_n = 298.15 \text{ K y } P_n = 1 \text{ atm})$, tomando en cuenta la concentración promedio de las especies de referencia en el medio, se considere como una exergia química estándar.

regional regions reserve companye com in it is in its reserve if

Se entiende como estado estándar el estado particular de una sustancia a la temperatura T definido por acuerdo general a las condiciones de referencia de presión, composición y estado físico. El estado estándar empleado en este trabajo para gases es de compuesto puro en estado de gas ideal a 1 atm, y en el caso de líquidos y sólidos el de compuestos puros en estado real a 1 atm.

De acuerdo con el modelo propuesto por Szargut [4] (Figura 1.3), el cálculo de exergia química de una sustancia comprende cinco etapas. En la primera etapa, la sustancia a condiciones iniciales de T_o y P_o alcanza la temperatura y presión del estado estándar normal $(T_n \ y P_n)$ por medio de un proceso reversible que involucra intercambio de calor con el medio ambiente.

egy to the egy end and an income a could be a country of expension of the area to a 150 and the 150 an

taga ay mining mining ay ay ng mga ngangan mga kaling ay may kang ataga mga mga na taga ay ang mga gantaga

Posteriormente, en una segunda etapa se lleva a cabo la reacción estándar de referencia a las condiciones normales de T_n y P_n , para que a partir de la sustancia y de alguna de las especies que se encuentran en el medio ambiente, se obtengan especies del mismo ambiente (exergia reaccional, Ex_r). Una máquina de Carnot asegura el intercambio de calor reversible con el medio ambiente. Por ejemplo, si se quisiera determinar la exergia química del metano, la reacción de referencia podría ser la combustión de dicho compuesto con el oxígeno contenido en el aire:

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$$

40、 **40%, 基本**的大概,以为1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1

Figura 1.3.- Modelo de Szargut para calcular exergia química.

Por medio de un cambio reversible e isotérmico, en una tercera etapa se iguala la concentración que tienen las especies producidas en el estado estándar normal (exergia concentracional, Ex_c). Al igual que en el paso anterior, una fuente de calor y una máquina de Carnot se involucran en esta etapa. Es importante hacer notar que el trabajo máximo que se obtiene en la segunda y tercera etapa corresponde a la exergia química estándar en condiciones normales.

En la cuarta etapa, el estado de las especies de referencia cambia de manera reversible de las condiciones normales de T_n y P_n a la temperatura y presión del medio ambiente, T_o y P_o . Finalmente, en una quinta etapa por medio de un proceso isotérmico

e isobárico, se alcanza el valor de concentración de las especies de referencia en el medio ambiente real, x_o .

Al realizar un balance global de exergia en el modelo antes planteado se obtienen las siguientes relaciones:

$$Ex_{q} = Ex_{q}^{o} + W_{1} + (Q_{2} + Q_{3}) \frac{(T_{n} - T_{o})}{T_{n}} + W_{4} + W_{5}$$
 (1-2)

En donde Ex_q^o es la exergia química estándar de la sustancia a condiciones normales, y cuyo valor se extrae de las tablas publicadas por Szargut [4]. El término W_I es la exergia física del compuesto que se obtiene al pasar de las condiciones de T_o y P_o a las condiciones normales de T_n y P_n , esto es,

$$W_1 = (H_o - H_n) - T_n (S_o - S_n) \tag{1-3}$$

El flujo de calor Q_2 , transferido durante la etapa dos, es proporcional a la producción de entropia de la reacción de referencia a condiciones normales, y por consiguiente igual a la diferencia entre el cambio de entalpia normal estándar y el cambio de energía libre de Gibbs normal estándar para la reacción de referencia, es decir,

引起性 网络阿拉尔 医二氏试验检尿病 化多氯化 经基础 经收益员

$$Q_2 = \Delta H_r^o - \Delta G_r^o = T_n \Delta S_r^o \tag{1-4}$$

El cambio de energía libre de Gibbs normal estándar se obtiene a partir de la exergia química estándar de las especies involucradas en la reacción de referencia de acuerdo a la siguiente ecuación:

$$\Delta G_r^o = \sum n_k E x_{q_k}^o - \sum n_y E x_{q_y}^o - E x_q^o$$
 (1-5)

En donde n_k y n_y corresponden, respectivamente, al número de moles de productos y de reactivos adicionales (reactivos diferentes a la sustancia bajo consideración). Por otro lado, el flujo de calor Q_3 que se transfiere en la etapa tres corresponde a la diferencia de

exergia química estándar entre reactivos adicionales y productos de la reacción de referencia.

$$Q_{3} = \sum n_{y} E x_{q_{y}}^{o} - \sum n_{k} E x_{q_{k}}^{o}$$
 (1-6)

El término W_4 representa la diferencia de exergia física entre reactivos adicionales y productos de la reacción de referencia.

$$W_4 = \sum n_y \, Ex_{f_y} - \sum n_k \, Ex_{f_k} \tag{1-7}$$

El trabajo obtenido en la etapa cinco, W_5 , corresponde a la diferencia entre la exergia concentracional entre reactivos adicionales y productos de la reacción de referencia. Si las especies de referencia bajo consideración se encuentran en el aire atmosférico y si se considera que dichas especies tienen un comportamiento de gas ideal, entonces la expresión de la diferencia de exergia concentracional referida a una mol de mezcla es:

$$W_{5} = RT_{n} \left(\sum n_{y} \ln \frac{x_{oy}}{x_{ny}} - \sum n_{k} \ln \frac{x_{ok}}{x_{nk}} \right)$$
 (1-8)

Cabe señalar que cuando se escogen las condiciones de temperatura, presión y composición del estado estándar normal como las condiciones del medio ambiente a las que se encuentran las especies de referencia, W_I , W_4 y W_5 son cero.

1.4.- Exergia física y química de mezclas.

La exergia física de un sistema multicomponente se determina a partir de,

$$Ex_{f} = \left| \left(H - H_{o} \right) - T_{o} \left(S - S_{o} \right) \right|_{r} \tag{1-9}$$

En donde, H y S son la entalpia y entropia a las condiciones de temperatura y presión en que se encuentra el sistema y, H_o y S_o entalpia y entropia a las condiciones de temperatura (T_o) y presión (P_o) del medio ambiente. El cálculo de exergia física de una corriente de proceso es relativamente sencillo cuando se utiliza un simulador de procesos. Por el contrario, la determinación de exergia química de una mezcla a partir de una ecuación similar a la ecuación 1-9, pero a T_o y P_o constantes, no es sencilla, ya que el cálculo involucra muchas reacciones de referencia.

En un sistema multicomponente, la exergia molar parcial del componente *i* en la mezcla se define como:

$$\overline{Ex}_{i} = \left(\frac{\partial Ex}{\partial n_{i}}\right)_{P,T,n_{1zi}} \tag{1-10}$$

A partir de esta definición, Kameyama [5] obtiene la siguiente expresión para la exergia molar parcial del componente *i*:

$$\overline{Ex}_i = Ex_i^o + RT_o \ln a_i + (1 - T_o/T)(\overline{H}_i - H_i^o)$$
 (1-11)

En donde, Ex_i° , a_i , H_i° y H_i° son la exergia estándar, la actividad, la entalpia molar parcial y la entalpia estándar del componente i, respectivamente. Al utilizar la ecuación de Euler para obtener la exergia molar de la mezcla a partir de los valores de exergia molar parcial de cada componente resulta que,

$$Ex = \sum_{i=1}^{nc} x_i \overline{Ex}_i \tag{1-12}$$

$$Ex = \sum_{i=1}^{nc} x_i Ex_i^o + RT_o \sum_{i=1}^{nc} x_i \ln a_i + (1 - T_o/T) \sum_{i=1}^{nc} x_i (\overline{H}_i - H_i^o)$$
 (1-13)

$$Ex = \sum_{i=1}^{nc} x_i Ex_i^o + RT_o \sum_{i=1}^{nc} x_i \ln a_i + (1 - T_o/T) \Delta H_{mezclado}$$
 (1-14)

La suma del segundo y tercer término representa la exergia en exceso (exergia composicional [6]), la cual corrige el efecto por mezclado, de manera que la exergia química de una mezcla multicomponente es menor que la suma de la exergia de todos los componentes puros que conforman la mezcla. Para una solución ideal, el calor de mezclado ($\Delta H_{mezclado}$) es igual a cero.

A partir de lo anterior, la exergia química molar de la mezcla, la cual se determina a partir de la exergia química estándar y de la fracción molar de cada uno de los componentes presentes en la mezcla, se expresa de la siguiente manera:

$$Ex_{q} = \sum_{i=1}^{nc} x_{i} Ex_{q_{i}}^{o} + RT_{o} \sum_{i=1}^{nc} x_{i} \ln a_{i}$$
 (1-15)

En donde, la actividad del componente i, a presiones bajas, se iguala a su fracción molar (x_i) en el caso de una solución ideal o, a su fracción molar por su coeficiente de actividad (γ_i) cuando se considera una solución real.

1.5.- Análisis de Exergia.

Como se menciona en la introducción, el objetivo principal del análisis de exergia es encontrar los puntos críticos de un sistema, en donde existe la posibilidad de reducir las pérdidas de exergia, es decir, las pérdidas de energía útil para realizar trabajo, y así aumentar la eficiencia del sistema. Sín embargo, la decisión final de tales mejoras debe recaer en una evaluación económica, ya que una modificación al sistema conlleva una inversión de capital [1].

La aplicación del análisis de exergia se basa en el método de bloques, en el que al sistema bajo estudio se le considera como un bloque el cual puede tener interacción con sus alrededores ya sea por medio de una transferencia de calor, trabajo o materia.

El método de bloques no tiene ninguna restricción en cuanto al tamaño, es decir, un bloque puede representar todo un proceso industrial o un equipo del complejo.

A partir de las propiedades de las corrientes de entrada y salida de cada bloque, se realizan los balances de entalpia y exergia para finalmente determinar los parámetros exérgicos, los cuales sirven para evaluar en forma cuantitativa y cualitativa cómo opera el sistema desde un punto de vista de uso de energía.

1.5.1.- Parámetros exérgicos [1].

Existen tres tipos de parámetros exérgicos: cuantitativos, cualitativos y aquéllos que combinan los dos tipos anteriores.

Los parámetros exérgicos cuantitativos permiten evaluar las pérdidas de exergia de un sistema. Las pérdidas totales de exergia (*Pex*) son la suma de las pérdidas irreversibles y de efluentes.

$$Pex = Irr + Efl (1-16)$$

人名英格兰姓氏 化二氯甲基酚 医二甲基酚 医二氏试验检尿病 医二甲基甲基甲基

医海耳氏试验检试验 医乳腺 医二氏病 经卸货帐款 化水流 化二氯甲酚 医格兰氏管 医电影电影

and the second of the second o

1. 医人名德国 更为的 · 克曼 · 数 · 国 · 通过的自己 · 利油气料 · 经 · 如

And the second s

and the statement of the company of the second distance of the constitution.

Las pérdidas irreversibles de exergia (Irr) de un sistema, debidas a las irreversibilidades termodinámicas de los procesos dentro del sistema, se obtienen por medio de la diferencia entre la exergia total de entrada (Ex_{tte}) y la exergia total de salida (Ex_{tts}), o por medio del teorema de Gouy-Stodola:

$$Irr = \sum Ex_{entrada} - \sum Ex_{salida} = Ex_{tte} - Ex_{tts} = T_o \sum \Delta S$$
 (1-17)

En donde, $\Sigma \Delta S$ es la suma del incremento de entropia de todas las corrientes que participan en el sistema. De acuerdo con la Ecuación 1-17, las pérdidas irreversibles de exergia dependen sólo de la temperatura del ambiente de referencia y no de otra condición del medio.

and the second s

Si al sistema se le considera como un par receptor-donador, las pérdidas irreversibles de exergia también son la diferencia entre la exergia neta suministrada (Ex_{nts}) por la fuente o donador y la exergia neta producida (Ex_{ntp}) cedida al receptor, es decir,

$$Irr = Ex_{nts} - Ex_{ntn} ag{1-18}$$

Por otro parte, las pérdidas de exergia por efluentes (*Efl*) son iguales a la suma de exergia de todas las corrientes arrojadas al ambiente, como pueden ser gases de combustión, gases quemados enviados a desfogue, agua de enfriamiento de retorno, agua arrojada al drenaje, pérdidas de calor, aire caliente de los aereoenfriadores, etc.

Otro parámetro cuantitativo importante es la exergia útil a la salida (Ex_{uts}), la cual se obtiene al restarle a la exergia total de salida, las pérdidas de efluentes.

$$Ex_{mir} = Ex_{mr} - Efl \tag{1-19}$$

El balance general de exergia alrededor de cada bloque es entonces,

$$Ex_{tte} = Ex_{uts} + Irr + Efl = Ex_{uts} + Pex$$
 (1-20)

Tanto las pérdidas irreversibles, las de efluentes y las totales de exergia son aditivas, lo cual quiere decir que, las pérdidas de exergia de un sistema compuesto por un cierto número de bloques son iguales a la suma de pérdidas de exergia de cada bloque.

Con el fin de comparar las pérdidas de exergia y la operación entre diferentes sistemas, se definen los siguientes parámetros cualitativos: eficiencia, efectividad y rendimiento; los cuales permiten evaluar el alejamiento entre la operación real del sistema y la operación máxima que se podría obtener desde el punto de vista de la segunda ley de la termodinámica.

16 10 17

La eficiencia mide la fracción de exergia total de entrada que no se pierde debido a las irreversibilidades termodinámicas del proceso, es decir,

$$\eta = \frac{Ex_{tts}}{Ex_{tts}} = 1 - \frac{Irr}{Ex_{tts}}$$
 (1-21)

Por otro lado, la efectividad es la medida de la capacidad del sistema para producir el efecto deseado, esto es, la fracción de exergia neta suministrada que aprovecha el sistema para llevar a cabo su función.

有一种大多种类似的 化自动放射 网络马马马克 经自由 经销售 电影 化二氯化物 化氯化氯化 电电流 建二氯化物 医血管

$$\varepsilon = \frac{Ex_{ntp}}{Ex_{nts}} = 1 - \frac{Irr}{Ex_{nts}} \tag{1-22}$$

Para procesos reversibles, la eficiencia y la efectividad alcanzan su valor máximo de uno.

La diferencia entre eficiencia y efectividad se puede observar de manera más clara al analizar un cambiador de calor enfriado con agua, en donde la corriente de proceso es el donador de energía y el agua de enfriamiento el receptor (ver Figura 1.4).

Figura 1.4.- Enfriamiento con agua. Par receptor-donador.

En la Figura 1.4, *I* y 2 son las corrientes de proceso caliente de entrada y de salida, respectivamente, *ae* el agua de enfriamiento de entrada y *ar* el agua de retorno.

En este caso, la eficiencia termodinámica del intercambio de calor estará dada por la relación entre la exergia total de salida del sistema y la exergia total de entrada al sistema, esto es,

$$\eta = \frac{Ex_{tts}}{Ex_{ne}} = \frac{(Ex_2 + Ex_{ar})}{(Ex_1 + Ex_{ae})}$$
 (1-23)

Mientras que la efectividad será igual a la fracción de exergia neta suministrada por la corriente de proceso o donador $(Ex_1 - Ex_2)$, que recibe el agua de enfriamiento o receptor $(Ex_{ar} - Ex_{ae})$, exergia neta producida, con el objetivo de enfriar la corriente de proceso. Es decir,

$$\varepsilon = \frac{Ex_{ntp}}{Ex_{nts}} = \frac{(Ex_{ar} - Ex_{ae})}{(Ex_1 - Ex_2)}$$
 (1-24)

Por lo tanto, los valores numéricos de efectividad y eficiencia son diferentes.

La definición de rendimiento varía dependiendo del objetivo de la operación pero, en general, se define como la relación entre la exergia útil a la salida y la exergia total de entrada. A diferencia de los valores de eficiencia y de efectividad, el valor de rendimiento no se puede utilizar para comparar sistemas de diferente naturaleza.

$$\zeta = \frac{Ex_{uts}}{Ex_{ne}} = 1 - \frac{Pex}{Ex_{ne}} \tag{1-25}$$

El potencial de mejoramiento de un sistema combina los parámetros exérgicos cuantitativos y cualitativos para evaluar qué tanto y qué tan fácil el sistema puede ser mejorado con fines de optimización. Rivero propuso en 1988 que dicho parámetro se puede obtener a partir de un potencial absoluto, definido por las pérdidas irreversibles, por un potencial relativo, que está en función de la efectividad del sistema, y de un potencial ambiental, representado por las pérdidas de efluentes.

$$Pot = Irr(1 - \varepsilon) + Efl \tag{1-26}$$

Con el fin de lograr una función óptima en un sistema es importante analizar primero los bloques con los potenciales de mejoramiento más alto.

grant and the same services of the grown has been also been also as the same services of the same of t

CAPÍTULO II

DETERMINACIÓN DE LA EXERGIA QUÍMICA ESTÁNDAR DE LOS ELEMENTOS

Con base en los valores de exergia química estándar de los elementos, se puede determinar el valor de exergia química de cualquier compuesto químico por medio de un balance de exergia en la reacción de formación, esto es,

$$Ex_q^o = \Delta G_f^o + \sum_{el} n_{el} Ex_{q_{el}}^o$$
 (2-1)

En donde, ΔG_f° es la energía libre de formación normal estándar del compuesto (kJ/mol), n_{el} es el número de moles del elemento por cada mol de compuesto formado y $Ex_q^{\circ}_{el}$ es la exergia química estándar del elemento (kJ/mol).

Para determinar la exergia química estándar de un elemento es necesario referirse a la especie más abundante que lo contenga, y conocer con exactitud la concentración de dicha especie en el medio, así como sus propiedades.

En las siguientes secciones se presenta el cálculo de exergia química estándar a condiciones normales de temperatura y presión (t_n = 25°C y P_n = 1 atm) de la mayoría de los elementos de la tabla periódica, de acuerdo al medio en donde se encuentra la especie de referencia de cada uno, es decir, ya sea en la atmósfera, en la hidrosfera o en la litosfera. De manera paralela se analiza el cambio en el valor de exergia química estándar de los elementos al variar la concentración de las especies en el medio ambiente.

2.1.- Exergia química estándar de los elementos contenidos en el aire atmosférico.

Las especies gaseosas que se encuentran en la atmósfera tienen la ventaja de que su concentración se puede medir con exactitud y que ésta prácticamente no cambia con el tiempo (excepto el bióxido de carbono). Por lo que las especies presentes en la atmósfera se consideran como especies de referencia para determinar la exergia química estándar de los siguientes elementos: carbono, hidrógeno, oxígeno, nitrógeno, argón, neón, helio, criptón, xenón y deuterio.

Si se considera que las especies presentes en la atmósfera se comportan como gases ideales a las condiciones de temperatura y presión que caracterizan el aire atmosférico, la exergia química estándar de dichas especies se expresa como:

$$Ex_{q_i}^o = R T_n \ln \frac{P_n}{P_{in}} = R T_n \ln \frac{1}{x_{in}}$$
 (2-2)

En donde, P_n es la presión total estándar, P_{in} la presión parcial de la especie i, x_{in} la fracción molar de la especie, T_n la temperatura absoluta estándar y, R la constante general de los gases ideales.

La presión parcial del agua en el aire atmosférico, P_{H2O} , se obtiene a partir de la definición de humedad relativa (ϕ), esto es,

$$\phi = \frac{P_{H_2O}}{P_{H_2O}^o}$$
 (2-3)

En donde, P°_{H2O} es la presión de vapor del agua a la temperatura de bulbo seco, que en este caso corresponde, a la temperatura absoluta a condiciones estándar, T_n . El efecto de la temperatura en el valor de la presión de vapor del agua se obtiene al utilizar la expresión de Antoine:

$$\ln P_{H_2O}^o = 18.3036 - \frac{3816.44}{(T - 46.13)} \tag{2-4}$$

En esta ecuación, la presión de vapor esta expresada en mmHg y la temperatura en grados Kelvin. La presión de vapor del agua a 298.15 K es de 3.14 kPa.

En la Tabla 2.1 se presentan los valores de exergia química estándar de los elementos contenidos en la atmósfera que se obtienen al considerar las condiciones normales de temperatura y presión ($T_n = 298.15$ K y $P_n = 101.325$ kPa), una humedad relativa de 0.7 y una concentración de CO_2 de 345 ppm en volumen. En la misma tabla, se muestra la desviación porcentual entre el valor calculado de exergia química estándar y el que predice Szargut [2, 4].

Tabla 2.1.- Exergia química estándar de los elementos presentes en la atmósfera a condiciones normales de temperatura y presión (humedad relativa = 0.7 y concentración de CO₂ = 345 ppmv).

		Especie de referencia				Ex_q^o del elemento, kJ/gmol		
Elemento químico	Fórmula química	Fracción molar en el aire seco	Presión parcial en el medio, kPa	Fracción molar en el aire húmedo	Ex _q °, kJ/gmol	Determinada en el presente trabajo	Szargut	Desviación, % ^(a)
Ar (g)	Ar	9.33x10 ⁻³	0.9249	9.13x10 ⁻³		11.64	11.69	-0.42
C (s)	CO ₂	3.45x10 ⁻⁴	0.0342	3.38×10 ⁻⁴	19.82	410.27	410.26	0.00
D _{2 (g)}	D ₂ O		3.42x10 ⁻⁴	3.38×10 ⁻⁶	31.23	263.90	263.79	0.04
H _{2 (g)}	H ₂ O	in the case	2.2002	0.02171	9.49	236.12	236.09	0.01
He (g)	He	5x10 ⁻⁶	5x10 ⁻⁴	4.89x10 ⁻⁶	30.31	30.31	30.37	-0.19
Kr (g)	Kr	1x10 ⁻⁶	1x10 ⁻⁴	9.78x10 ⁻⁷	34.30	34.30	34.36	-0.17
N _{2 (g)}	N_2	0.7803	77.355	0.7634	0.67	0.67	0.72	-7.07
Ne (g)	Ne say	1.8x10 ⁻⁵	1.78x10 ⁻³	1.76x10 ⁻⁵	27.14	27.14	27.19	-0.20
O _{2 (g)}	O ₂	0.2099	20.808	0.2054	3.92	3.92	3.97	-1.16
Xe (g)	Xe	9x10 ⁻⁸	1x10 ⁻⁵	-8.81x10 ⁻⁸	40.27	40.27	40.33	-0.15

⁽a) Con respecto al valor que indica Szargut

Vale la pena señalar, que la exergia química estándar de los elementos que no se encuentran como tales en la atmósfera (C, D₂, H₂), se determina por medio de la ecuación 2-1 y considerando las siguientes reacciones de formación de las especies de referencia:

C + O₂
$$\longrightarrow$$
 CO₂ $\triangle G_{f CO2}^{o} = -394.38 \text{ kJ/gmol } [7]$

D₂ + ½ O₂ \longrightarrow D₂O $\triangle G_{f D2O}^{o} = -234.63 \text{ kJ/gmol } [7]$

H₂ + ½ O₂ \longrightarrow H₂O $\triangle G_{f H2O}^{o} = -228.59 \text{ kJ/gmol } [8]$

La diferencia que existe entre los valores de exergia química estándar aquí determinados con los que indica Szargut, se debe a que dicho autor considera una presión promedio total de 99.31 kPa y no 101.325 kPa, como base para el cálculo de la composición del aire atmosférico.

En los resultados anteriores se puede apreciar que entre mayor es la concentración de una especie en el medio, el valor de su exergia química estándar disminuye, lo cual se explica por una menor exergia concentracional, es decir, es menor el trabajo que se obtiene al cambiar la concentración de la especie de referencia como sustancia pura a la concentración de ésta en el medio, a temperatura y presión del medio constante.

Si bien, el valor de exergia química estándar de los elementos que no se encuentran como tales en el medio (como son el carbono, el hidrógeno y el deuterio) depende principalmente de la energía libre de la reacción de formación de la especie de referencia, también influyen en su magnitud, el valor de exergia química estándar de los elementos adicionales que participan en la reacción y el de la especie de referencia; por lo que la abundancia de los componentes presentes en el medio también repercute, aun cuando en menor medida, en el valor de exergia química estándar de dichos elementos.

2.1.1.- Efecto en el valor de exergia química estándar al variar la humedad relativa del aire.

El contenido de agua en el aire atmosférico varía dependiendo del lugar geográfico, aún más, en un mismo lugar la humedad cambia según la estación del año. En la Tabla 2.2 se presentan los valores de exergia química estándar de los elementos y especies de referencia presentes en la atmósfera, determinados a diferentes valores de humedad

relativa y a condiciones normales de temperatura y presión. En el Apéndice A.1, se muestran los resultados en detalle del cálculo de exergia química estándar de los elementos a diferentes valores de humedad relativa y que se obtienen con el programa EXQCOMP desarrollado en el presente trabajo.

Con el fin de observar el efecto de la humedad relativa en el valor de exergia química estándar de un hidrocarburo, se incluye al metano en el análisis.

Tabla 2.2.- Exergia química estándar (kJ/gmol) de los elementos contenidos en la atmósfera a diferentes valores de humedad relativa.

	Humedad Relativa										
Especie	0.1	0.3	0.5	0.7	0.9						
Ar	11.59	11.61	11.63	11.64	11.66						
С	410.27	410.27	410.27	410.27	410.27						
D ₂	268.75	266.02	264.75	263.90	263.27						
H ₂	240.97	238.24	236.96	236.12	235.49						
He	30.26	30.28	30.29	30,31	30.33						
Kr	34.25	34.27	34.29	34.30	34.32						
N ₂	0.62	0.64	0.65	0.67	0.69						
Ne	27.09	27.10	27.12	27.14	27.15						
O_2	3.88	3.89	3.91	3.92	3.94						
Xe	40.22	40.24	40.25	40.27	40.29						
CO ₂	19.77	19.78	19.80	19.81	19.83						
D_2O	36.05	33.33	32.07	31.23	30.61						
H ₂ O	14.32	11,59	10.33	9.49	8.87						
CH ₄	841.41	835.95	833.40	831.72	830.45						

La reacción de referencia que se utiliza para obtener la exergia química estándar del metano es:

and grade the control of the first of the control o

C +
$$2H_2$$
 \rightarrow CH₄ $\Delta G_{f CH4}^{\circ}$ = -50.79 kJ/gmol [7]

En la Figura 2.1, se muestra cómo cambia el valor de exergia química estándar, al considerar una humedad relativa diferente a 0.7, para los elementos que se encuentran en mayor proporción en la atmósfera y para aquellas especies que se ven directamente

afectadas en su valor de exergia por un cambio de humedad (se mantiene la misma relación de presiones parciales entre el óxido de deuterio y el agua).

Figura 2.1.- Desviación porcentual del valor de exergia química estándar al variar el contenido de aqua en la atmósfera.

De los resultados anteriores, se observa que al disminuir el contenido de agua en el aire atmosférico disminuye la exergia química estándar de los elementos, lo cual se debe a que, al disminuir la concentración de agua en la atmósfera, aumenta la proporción del resto de las especies presentes en el aire, provocando que disminuya la exergia concentracional de las especies de referencia.

Sin embargo, en el caso de los elementos hidrógeno y deuterio, y de las especies agua, óxido de deuterio y metano, al disminuir la humedad relativa del aire aumenta su valor de exergia química, esto debido a que tales sustancias están relacionadas directamente ya sea con la concentración de agua o con el valor de exergia química del hidrógeno, como es el caso del metano, el cual se forma a partir de dos moléculas de hidrógeno y una de carbono.

Vale la pena hacer notar que el valor de exergia química estándar del carbono no se ve afectado por un cambio en el contenido de agua en el aire, lo cual se debe a que la diferencia entre el valor de exergia química estándar de las especies (bióxido de carbono y oxígeno) a partir de las cuales se obtiene la exergia química del carbono, permanece constante al variar la humedad relativa.

2.1.2.- Efecto en el valor de exergia química estándar de los elementos por el cambio de concentración de CO2 en el aire.

La concentración de CO2 en la atmósfera se ha incrementado a partir del inicio del proceso de industrialización, debido al aumento de las emisiones de dicho gas procedentes del consumo de combustibles fósiles. En la Figura 2.2 se observa que el valor de exergia química del CO₂ disminuyó tan sólo 2.2 por ciento en el último siglo, al aumentar su concentración en el aire en 19.4 por ciento.

Figura 2.2.- Efecto de la concentarción de CO2 en su valor de exergia química estándar.

En la Tabla 2.3 se muestran los valores de exergia química estándar de los elementos y especies presentes en el aire, que se obtienen al considerar las diferentes concentraciones de bióxido de carbono registradas, durante el periodo comprendido entre 1900 y 1990, en núcleos de hielo (Siple y Polo Sur) y (desde 1958) por los observatorios de Mauna Loa en Hawai [9]. El ejercicio se realiza a condiciones normales de temperatura y presión y suponiendo una humedad relativa del aire de 0.7. En este análisis, también, se incluye el efecto sobre el valor de exergia química estándar del metano a un cambio en la concentración de CO₂. Los resultados completos de este análisis se presentan en el Apéndice A 2.

Tabla 2.3.- Exergia química estándar (kJ/gmol) de los elementos contenidos en la atmósfera a diferentes valores de concentración de CO₂.

						The state of the s
	Pa	rtes por mill	ón en volum	en de CO₂ (A	ño de regist	ro)
Especie	297.4 (1900)	305.2 (1930)	311.8 (1950)	326.1 (1970)	338.3 (1980)	355.0 (1990)
Ar	11.64	11.64	11.64	11.64	11.64	11.64
c 1 2 2	410.64	410.57	410.52	410.41	410.32	410.20
D_2	263.90	263.90	263.90	263.90	263.90	263.90
H ₂	236.12	236.12	236.12	236.12	236.12	236.12
He · · · · · · · ·	30:31	30.31	30.31	30.31	30.31	30.31
Kr	34.30	34.30	34.30	34.30	34.30	34.30
N ₂	0.67	0.67	0.67	0.67	0.67	0.67
Ne	27.14	27.14	27.14	27.14	27.14	27.14
O ₂	3.92	3.92	3.92	3.92	3.92	3.92
Xe	40.27	40.27	40.27	40.27	40.27	40.27
CO ₂	20.18	20.12	20.07	19.95	19.86	19.74
D ₂ O	31.23	31.23	31.23	31.23	31.23	31.23
H ₂ O	9.49	9.49	9.49	9.49	9.49	9.49
CH₄	832.09	832.02	831.97	831.86	831.77	831.65

En la Tabla 2.4 y en la Figura 2.3 se muestra que el valor de exergia química estándar de sustancias diferentes al CO₂ no se modifica apreciablemente, si se considera una concentración de CO₂ diferente a 345 ppmv (valor que considera Szargut). Aun más, en el caso del carbono y metano, cuyos valores de exergia química dependen en gran medida del valor de exergia química del bióxido de carbono, la desviación de sus valores de exergia química con respecto al valor de exergia química cuando la concentración de CO₂ es de 345 ppmv, es menor del 0.1 por ciento.

Por otro lado, se observa que los valores de exergia química del agua y del óxido de deuterio no se alteran al cambiar la concentración de CO₂, lo cual se debe a que la concentración de agua, y por consiguiente de óxido de deuterio, en el aire no depende

de la proporción del resto de las especies presentes en el aire seco, sino de la temperatura y de la presión total del medio.

Tabla 2.4 Desviación porcentua	l con respecto al valo	r de exergia química
estándar a	345 ppmv de CO ₂ .	

	Pa	Partes por millón en volumen de CO2 (Año de registro)									
Especie	297.4 (1900)	305.2 (1930)	311.8 (1950)	326.1 (1970)	338.3 (1980)	355.0 (1990)					
Ar .	-1.0x10 ⁻³	-8.5x10 ⁻⁴	-7.1x10 ⁻⁴	-4.0x10 ⁻⁴	-1.4x10 ⁻⁴	2.1x10 ⁻⁴					
C	9.0x10 ⁻²	7.4x10 ⁻²	6.1x10 ⁻²	3.4x10 ⁻²	1.2x10 ⁻²	$-1.7x10^{-2}$					
D_2	2.2x10 ⁻⁵	1.9x10 ⁻⁵	1.6x10 ⁻⁵	8.9x10 ⁻⁶	3.2x10 ⁻⁶	-4.7x10 ⁻⁶					
H_2	2.5x10 ⁻⁵	2.1x10 ⁻⁵	1.7x10 ⁻⁵	9.9x10 ⁻⁶	3.5x10 ⁻⁶	-5.3x10 ⁻⁶					
He	-3.9x10 ⁻⁴	-3.3×10 ⁻⁴	-2.7x10 ⁻⁴	-1.5x10 ⁻⁴	-5.5x10 ⁻⁵	8.2x10 ⁻⁵					
Kr	-3.4x10 ⁻⁴	-2.9x10 ⁻⁴	-2.4x10 ⁻⁴	-1.4x10 ⁻⁴	-4.9x10 ⁻⁵	7.2x10 ⁻⁵					
N ₂	-1.8x10 ⁻²	-1.5x10 ⁻²	-1.2x10 ⁻²	-7.0x10 ⁻³	-2.5x10 ⁻³	3.7x10 ⁻³					
Ne	-4.3x10 ⁻⁴	-3.6x10 ⁻⁴	-3.0x10 ⁻⁴	-1.7x10 ⁻⁴	-6.2x10 ⁻⁵	9.1x10 ⁻⁵					
O ₂	-3.0x10 ⁻³	-2.5x10 ⁻³	-2.1x10 ⁻³	-1.2x10 ⁻³	-4.3x10 ⁻⁴	6.3x10 ⁻⁴					
Xe	-2.9x10 ⁻⁴	-2.5x10 ⁻⁴	-2.0x10 ⁻⁴	-1.2x10 ⁻⁴	-4.1x10 ⁻⁵	6.2x10 ⁻⁵					
CO_2	1.86	1.53	1.26	0.71	0.25	-0.36					
D_2O	0.00	0.00	0.00	0.00	0.00	0.00					
H ₂ O	0.00	0.00	0.00	0.00	0.00	0.00					
CH ₄	4.4x10 ⁻²	3,7x10 ²	3.0x10 ⁻²	1.7x10 ⁻²	5.9x10 ⁻³	-8.4x10 ⁻³					

Figura 2.3.- Desviación porcentual del valor de exergia química estándar con respecto a 345 ppmv de CO₂.

2.2.- Exergia química estándar de los elementos contenidos en la hidrosfera.

Szargut [2, 4] recomienda que, en lo posible, se seleccionen componentes presentes en la corteza terrestre como especies de referencia para el resto de los elementos que no se encuentran en la atmósfera. Sin embargo, la concentración de muchos de estos componentes no está bien definida, por lo que se seleccionan especies disueltas en el agua de mar cuya composición se conoce con bastante exactitud.

Morris, Steward y Szargut [4], proponen el esquema de la Figura 2.4 para determinar la exergia química estándar de los elementos cuyas especies de referencia están disueltas en el agua de mar. Los pasos 1 y 2 del esquema, corresponden a los pasos 2 y 3 del modelo propuesto por Szargut para el cálculo de exergia química (Figura 1.3).

Figura 2.4.- Esquema para el cálculo de exergia química estándar de los elementos contenidos en la hidrosfera.

THE SHEET THE SAME OF THE SECRET WHEN

Como se mencionó en el Capítulo I, parte de la exergia química de una sustancia se obtiene al producir la especie de referencia a partir de la sustancia, o en este caso, del elemento bajo consideración (exergia reaccional). En el primer paso del esquema de la Figura 2.4, se introduce un mol del elemento de interés y elementos adicionales que se encuentran en la especie de referencia a una celda electroquímica, la cual contiene un electrodo de hidrógeno y opera a condiciones normales de temperatura y presión. Si la especie a formar es un ión positivo, se introduce a la celda el ión hidrógeno en una solución ideal monomolar y se obtiene gas hidrógeno a condiciones normales. Si el ión de referencia es negativo, se introduce gas hidrógeno y se produce el ión hidrógeno. Considerar al electrodo normal de hidrógeno, cuyo potencial tiene un valor de cero volts por convención, tiene como fin el que se lleven a cabo las semireacciones de oxidación o reducción necesarias para la formación de la especie de referencia.

De acuerdo al modelo antes planteado, la formación del ión sulfato, principal especie presente en el agua de mar que contiene el elemento azufre, a partir de una mol de azufre y dos moles de oxígeno, se efectúa en una celda electroquímica como se muestra en la Figura 2.5.

化二氯化物 化环烷 化二氯化铁 化二氯甲二氯甲烷二甲基甲烷 医异种毒素

is the proposed of the control of the control of the contest of th

Las semirreacciones y la reacción global que tienen lugar en la celda son:

S°
$$\longrightarrow$$
 S⁶⁺ + 6e oxidación
 $2O_2 + 8e \longrightarrow 4O^2$ reducción
 $H_2 \longrightarrow 2H^+ + 2e$ oxidación
S° + $2O_2 + H_2 \longrightarrow SO_4^{2-} + 2H^+$

En la segunda etapa, por medio de un proceso isotérmico e isobárico, se alcanza la concentración que tienen en el agua de mar la especie formada y el ión hidrógeno (exergia concentracional). Cabe señalar que los dos procesos son reversibles y que en cada uno hay intercambio de calor con los alrededores.

Del esquema anterior se deriva la siguiente ecuación para el cálculo de exergia química estándar, en kJ/gmol, del elemento de interés:

$$Ex_{q_{el}}^{o} = -j\Delta G_{f_{i}}^{o} + \frac{1}{2}jz_{i}Ex_{q_{H_{2}}}^{o} - j\sum_{v}b_{y}Ex_{q_{y}}^{o} - 2.303RT_{n}jz_{i}(pH) - jRT_{n}\ln(m_{i_{n}}\gamma_{i}) \qquad (2-5)$$

en donde, $\Delta G_{f}^{\, o}$ es la energía libre de formación estándar, en kJ/gmol, del ión de referencia i,j el número de iones de referencia formados a partir de una molécula del elemento, z_i el número de cargas eléctricas elementales del ión de referencia, b_y el número de moléculas del elemento adicional presente en una molécula del ión de referencia, m_{in} la molalidad del ión de referencia en el agua de mar a condiciones estándar (mol/kg_{H2O}) y, γ_i el coeficiente de actividad de la especie de referencia (escala molal). El valor de pH es una medida del contenido de iones hidrógeno en la solución. En el caso de la formación del ión sulfato, el valor del parámetro j es 1, el de z_{SO42} es igual a -2 y el de b_{O2} equivale a 2.

Los tres primeros términos del lado derecho de la Ecuación 2-5, se obtienen de un balance de exergia de la reacción de formación de la especie de referencia a partir del elemento considerado y del resto de las especies que participan en la reacción. Por otro

lado, los dos últimos términos representan el trabajo máximo que se obtiene al cambiar la concentración de la especie de referencia y del ión hidrógeno de 1 molal a la que tienen dichas especies en el agua de mar a condiciones normales de temperatura y presión.

El coeficiente de actividad de las especies disueltas en el agua de mar depende principalmente de la fuerza iónica (I) de la solución, y ésta a su vez de la concentración y carga eléctrica de todas las especies disueltas en el agua de mar, como se indica a continuación:

$$I = \frac{1}{2} \sum_{i} m_i z_i^2 \tag{2-6}$$

Se puede observar que la exergia química de un elemento contenido en la hidrosfera va a depender en gran medida de la salinidad del agua (S), es decir, del contenido de sales disueltas en el agua de mar.

Los oceanógrafos miden la salinidad del agua en gramos de sal por kilogramo de agua de mar o en partes por mil (‰) [10, 11]. El valor promedio de salinidad es de 35‰, es decir, cada kilogramo de agua de mar contiene 35 gramos de sales y 965 gramos de agua pura. La salinidad convencional es una cantidad definida la cual está directamente relacionada a propiedades medibles del agua de mar, como por ejemplo, la conductividad, el índice de refracción, etc. La salinidad también se puede definir en función de la Clorolinidad, Cl (‰) (Ecuación 2-7), la cual equivale a la masa de cloruro que precipita al adicionar nitrato de plata en un kilogramo de agua de mar [11].

$$S = 1.80655 \, Cl$$
 (2-7)

A CONTRACTOR OF THE STATE OF TH

La salinidad convencional es ligeramente menor a la salinidad total (S_T) , es decir, a la masa total de sólidos disueltos. Las dos cantidades se relacionan entre sí por medio de la ecuación:

$$S_T = 1.00544 S \tag{2-8}$$

La concentración de las especies que están en mayor proporción en el agua de mar (99.99% en peso del total de las especies disueltas) se presenta en la Tabla 2.5 para un valor de salinidad de 35‰, según diferentes autores.

and the first of the second of the constraint of the second of the second and the second of the seco

Tabla 2.5.- Concentración de las especies en mayor proporción en el agua de mar. Salinidad: 35‰ grand angled and also specifications.

a Milay a de laga di ita	1 1 1	i v garaj	Refer	encia	sasan e vij	n shukke chenn y
Especie	Szargut, 1988 [4]	Riley, 1971 [12]	Wilson, 1975 [13]	Whitfield y Turner, 1981 [11]	Duxbury, 1991 [10]	Swenson, 2000 [14]
Total de boro ^(a)	0.00445	0.00445	0.0045		0.004	<u>*************************************</u>
B(OH)₃	0.02042			0.02596		
H ₄ BO ₄ ⁻	0.00643					
Br.	0.0673	0.0674	0.0673	0.0671	0.067	0.070
Total de carbono ^(a)	0.0276			re in law gan binnings .		
HCO₃	0.1253	0.142		0.1421	0.140	0.146
CO ₃ ²⁻	0.0139			No.		
Ca ²⁺	0.4123	0.412	0.4121	0.4116	0.410	0.419
Cl	19.353	19.344	19.354	19.353	19.350	19.350
and the second second	0.00139	0.00128	0.0013	0.00114	0.001	ta ay day ya ga ee ay
K ⁺	0.3991	0.399	0.399	0.3992	0.39	0.390
\sim Mg^{2+} and the first \sim	1.2918	1.294	1.290	1.2946	્ 1∴29	1.304
Na ⁺	10.768	10.773	10.77	10.763	10.76	10.710
SO ₄ ²⁻	2.712	2.712	2.712	2.713	2.71	2.690
eebaae <mark>Sr²*</mark>	0.00814	0.0079	0.0079	0.0079	800.0	العام برغيا أنه المر <u>اح أنا أن عاد الما</u>

. Netronio Mario del 1964 e en el 1979 de la 1980, in espera de la filla madel·las

154

No existe gran discrepancia entre las diferentes referencias bibliográficas para los valores de concentración de las principales especies contenidas en la hidrosfera. excepto en el caso del ión bicarbonato. Szargut publica un valor menor de concentración de HCO₃ en comparación al valor que indican otras fuentes, lo cual se puede deber a que en éstas últimas el valor de concentración de ión bicarbonato incluye la concentración del ión carbonato. de la Collegia de la Collegia de Collegia de la Collegia de la Collegia de Collegia de Collegia de Collegia de

in to be that the town in the definition between El resto de los elementos disueltos en el agua de mar tiene concentraciones de menos de una parte por millón, ya que las especies que los contienen cuentan con tiempos de

Statistics of the second

13V26AL4

A mora a problem 8000 i na america (1000 de 179)

१९ १ - १ - ४ - इस्ट्रान् वस्त्रमानुनी र एड व्यवकरी प्र**ाक्षवं**च वर्ग

্রান্ত বিষ্ণালয় করে। বিষ্ণালয় বিষ্ণালয় বিষ্ণালয় বিষ্ণালয় করে। বিষ্ণালয় করে করে করে করে করে করে করে করে ক

residencia bajos debido a que están estrechamente relacionados con el ciclo de vida de los organismos marinos.

En la Tabla 2.6, se muestra una comparación de la concentración promedio de todos los elementos contenidos en la hidrosfera de acuerdo a diferentes publicaciones. Se puede observar que en el caso de los elementos que se encuentran en muy baja concentración en el agua de man especialmente la plata, el cobre, el manganeso y el níquel, existen diferencias apreciables en los valores de concentración entre diversas fuentes, aun para un mismo valor de salinidad. Analíticamente, es difícil determinar la concentración de las especies disueltas en el agua de mar que se encuentran en baja proporción; éstas se determinan por medio de constantes de equilibrio, por lo que la concentración de dichas especies no sólo depende del contenido total de sales, sino también del valor de pH de la solución, de las especies consideradas y de las constantes de formación de las mismas.

Tabla 2.6.- Concentración total de los elementos en el agua de mar (µg/L). S: salinidad.

				Refer	encia	,	1945	
						···· <u>·</u>		Circulator
				Whitfield y		_		Boot
15/4/2019	Szargut, 1988	Riley, 1971	Brewer, 1975	Turner,	Dietrich,	Groves, 1989	Duxbury, 1991	Corporation 2000
Elemento		[12]	1975 [15]	1981 [11]	1980 [16]		1991 [10]	
Químico	S=35%	S=35.08% ^(a)	S=33.2% ^(a)	S=35%	S=34.3%	S=34.3%	S=35%	S=34.34% ^(a)
Ag	0.28	0.1	0.04	0.043	0.04	0.31	0.003	
As	3.0	2.3	3.7	3.75	3	10.2-20.5	1.74	
Au	0.011	0.005	0.004	0.04	0.004	0.006	0.005	
В	4.6E+03	4.5E+03	4.4E+03	4.5E+03	4.6E+03	4.7E+03	4.1E+03	A Paris Communication of the C
Ва	21	30	2	20.1	30	51.2	14.0	en e
Bi	0.02	0.02	0.02		0.02		4E-05	
Br ·	6.9E+04	6.8E+04	6.7E+04	6.9E+04	6.7E+04	6.7E+04	6.9E+04	with the stage of
C, .	2.8E+04	2.8E+04	2.8E+04	2.9E+04	2.8E+04	2.9E+04	14	
Ca	4.22E+05	4.22E+05	4.12E+05	4.21E+05	4.10E+05	4.09E+05	4.20E+05	4.11E+05
Cd	0.02	0.05	0.1	0.10	0.11	5- 12 1 5- 1 5- 1 5- 1 5- 1 5- 1 5- 1 5-	0.08	
CI	1.98E+07	1.987E+07	1.88E+07	1.98E+07	1.90E+07	1.94E+07	1.98E+07	1.95E+07
Co	0.39	0.08	0.05	0.05	0.10		0.001	
Cs	0.3	0.5	0.4	0.4	0.50	2.1	0.3	
Cu	6.4	3	0.5	0.5	3.0	1.02-10.2	0.3	1.02-10.2
F	1.4E+03	1.4E+03	1.3E+03	1.14E+03	1.30E+03	1.43E+03	1.02E+03	1.43E+03
Hg	0.1	0.05	0.03	0.04	0.03	0.031	0.001	
1	64	60	60	60	60	51.2	51.2	50.8
K	4.09E+05	4.16E+05	3.8E+05	4.11E+05	3.98E+05	3.89€+05	3.99E+05	3.90E+05
Li	170	180	180	181	. 170	102	174	
Mg	1.32E+06	1.33E+06	1.29E+0	1.34E+06	1.35E+06	1.30€+06	1.32E+06	1.30E+06
Mn	0.4	2	0.2	0.2	2.0	1.02-10.2	0.03	0.99-9.9
Mo	10	10	10	10	10	0.51	11.26	0.51
Na	1.10E+07	1.11E+07	1.077E+07	1.101E+07	1.07E+07	1.081E+07	1.101E+07	1.082E+07
Ni	6.6	2	1.7	1.76	2.0	0.10	0.51	0.10
Р	88	70	60	60.1	70	1.02-102.3		1.02-102.2
Pb	0.02	0.03	0.03	0.02	0.03	4.09	0.002	
Rb	120	120	120	119.7	120	204.7	122.8	
S	9.26E+05	9.28E+05	9.05E+05	9.27E+05	9.01E+05	9.05E+05	9.26E+05	8.59E+05
Se	0.09	0.45	0.2	0.2	0.4	4.09	0.13	
Sr	8.3E+03	8.5E+03	8E+04	8.0E+03	7.7E+03	1.3E+04	8.2E+03	
W	0.1	0.12	0.1	0.09	0.1		0.09	
<u>Z</u> n	6.5	5	4.9	4.9	10	5.12	0.41	5.1

(a) Valor determinado a partir de la concentración de cloruro (Ecuación 2-7) y considerando una densidad del agua de mar a 25°C de 1.02336g/cm³ [19].

En el presente trabajo se considera la concentración de los elementos contenidos en el agua de mar que informa Szargut [4], quien se basa en los trabajos realizados por Goldberg, Turekian y Dyrssen y Wedborg [19].

En la Tabla 2.7 se muestran los resultados del cálculo de la fracción en peso y concentración molal de cada especie para una salinidad de 35‰, considerando, en lo posible, todas las especies disueltas en el agua de mar.

La determinación de la fracción en peso de cada especie (wi) disuelta en el agua de mar, se realiza a partir de la fracción en peso total del elemento bajo consideración (w_{el}) , de la fracción molar del elemento en la forma de la especie (c_i) , y al considerar que cada mol de especie contiene un mol del elemento; esto es,

$$w_i = w_{el} \left(\frac{PM_i}{PA_{el}} \right) c_i \tag{2-9}$$

en donde, PM_i y PA_{el} corresponden al peso molecular de la especie y al peso atómico del elemento, respectivamente.

La fracción molar del elemento en la forma de la especie (c_i) se selecciona a partir del trabajo de Dyrssen y Wedborg, quienes por medio de constantes de formación en aqua de mar a 25°C de las principales especies y de constantes de estabilidad de las especies en menor concentración, determinan la proporción que existe entre la mayoría de las especies disueltas en el agua de mar para un valor de salinidad de 35 ‰ y pH de 8.12.

Es importante señalar que al asignar la fracción molar c_i de cada especie, se debe cumplir con la concentración total en el agua de mar de cada uno de los elementos que conforman la especie, de acuerdo al valor de concentración de la Tabla 2.6 (Szargut). Por ejemplo, si se asigna una fracción molar de 0.396 a la especie NaSO4 como la fracción molar del total de azufre que está presente como dicha especie, la masa equivalente de sodio en la especie debe ser tal que, la masa total de sodio (como elemento) en el agua de mar se conserve en 1.1x10⁷ μg/L.

La mayoría de las fracciones molares c_i consideradas en el presente trabajo para cada especie, equivalen al valor seleccionado por Szargut, excepto en el caso de las fracciones de las especies que contienen el elemento arsénico. Szargut considera que el 50% en mol del arsénico presente en el agua de mar existe como el ión HAsO₄²⁻, y el resto como H₂AsO₄⁻ y AsO₄³⁻ (comunicación personal). Sin embargo, a partir de las constantes de disociación a 25°C de cada par ácido-base [20], esto es,

$$H_3AsO_4 \longleftrightarrow H^+ + H_2AsO_4^- K_1 = 6x10^{-3}$$
 $H_2AsO_4 \longleftrightarrow H^+ + HAsO_4^{2-} K_2 = 1.05x10^{-7}$
 $HAsO_4^{2-} \longleftrightarrow H^+ + AsO_4^{-3-} K_3 = 3x10^{-12}$

se obtiene un porcentaje molar de 93.23% para el ión $HAsO_4^2$ y de 6.736% y 0.037% para las especies H_2AsO_4 y AsO_4^3 , respectivamente, al considerar un pH de 8.12.

La concentración molal (moles por kilogramo de agua pura) de cada una de las especies presentes en la hidrosfera, a partir de la fracción en peso de cada especie, está dada por:

[additional and the state of the process of the pr

$$m_i = w_i \left(\frac{1}{PM_i}\right) \left(\frac{1000}{(1 - S/1000)}\right)$$
 (2 - 10)

The Spring of the recent of the first state of the state of the

El tercer factor del lado derecho de la Ecuación 2-10 corresponde a la relación entre los kilogramos de agua de mar y los kilogramos de agua pura.

and the description of the contract of the con-

an mand a **Chair** aminata a calanti park an an a calanta a calanta a calanta a calanta a calanta a calanta a cala

and a viewa who helega become all magnifes have all to a to the color of the colors who have a first a

ELECTRICAL PROPERTY OF A PROPERTY OF A STATE OF A STATE

Tabla 2.7.- Fracción en peso y molalidad de las especies en el agua de mar, salinidad: 35‰.

Quimico (estado) elemento, (estado) g/gene (estado) Especie (c,x100) molar da especie elemento especie, g/gene (mol/kg)+20 la especie, mol/kg)+20 la especie, mol/kg)+20 la especie, elemento g/gene (mol/kg)+20 la especie, mol/kg)+20 la especie, mol/kg)+20 la especie, elemento g/gene (mol/kg)+20 la especie, mol/kg)+20 la especie	_ ~			Salinic	lad: 35‰.	1	:	
As (s)	Elemento Químico (estado)	peso total del elemento,		molar	molecular de	atómico del	peso de la especie,	Molalidad de la especie, mol/kg _{H2O}
H ₂ ASO ₄ 6.736 140.92 74.92 3.80E-10 2.80E-09 ASO ₄ 0.037 138.92 74.92 2.06E-12 1.54E-11 Au (s) 1.10E-11 AuCl ₂ 100.0 267.87 196.97 1.50E-11 5.79E-11 B (s) 4.45E-06 B(OH) ₃ 80.2 61.81 10.81 2.04E-05 3.42E-04 H ₄ BO ₄ 15.1 78.81 10.81 4.90E-06 6.44E-05 Ba (s) 2.10E-08 Ba ²⁺ 90.0 137.34 137.34 1.89E-08 1.43E-07 BaSO ₄ 10.0 233.40 137.34 3.57E-09 1.58E-08 Bi (s) 2.00E-11 BiO* 100.0 224.98 208.98 2.15E-11 9.92E-11 Br ₂ (l) 6.73E-05 Br 100.0 79.91 79.91 6.73E-05 8.73E-04 C 2.76E-05 HCO ₃ 84.3 61.00 12.01 1.18E-04 2.01E-03 CO ₂ 3.5 60.00 12.01 4.87E-06 8.41E-05 CO ₂ 0.6 44.00 12.01 6.47E-07 1.52E-05 Ca (s) 4.12E-04 Ca ²⁺ 90.9 40.08 40.08 3.75E-04 9.69E-03 CaHCO ₃ 0.3565 101.08 40.08 3.71E-06 3.80E-05 CaB(OH) ₄ 0.09404 118.89 40.08 1.15E-06 1.00E-05 Ca(s) 2.00E-11 CdC ₂ 37.5 183.31 112.40 1.22E-11 6.92E-11 CdC ²⁺ 1.8 112.40 112.40 3.60E-13 3.32E-12 CdCl ²⁻ 29.2 147.85 112.40 7.88E-12 5.39E-11 CdCl ³⁻ 27.9 218.76 112.40 6.44E-14 3.69E-13 CdGCO ₃ 0.2 172.40 112.40 6.14E-14 3.69E-13 CdGCO ₃ 0.2 172.40 112.40 6.14E-14 3.69E-13 CdCO ₃ 0.2 172.40 112.40 6.14E-14 3.69E-13 CdSO ₄ 0.2 208.46 112.40 7.42E-14 3.69E-13 CdSO ₃ 0.2 172.40 112.40 6.14E-14 3.69E-13 CdCO ₃ 0.2 172.40 112.40 6.14E-14 3.69E-13 CdSO ₃ 0.2 172.40 112.40 6.14E-14 3.69E-13 CdSO ₃ 0.2 172.40 112.40 6.14E-14 3.69E-13 CdCO ₃ 0.2 172.40 112.40	Ag (s)	2.80E-10	AgCl ₂	100.0	178.77	107.87	4.64E-10	2.69E-09
ASQ4 0.037 136.92 74.92 2.06E-12 1.54E-11 Au (s) 1.10E-11 AuCl ₂ 100.0 267.87 196.97 1.50E-11 5.79E-11 B (s) 4.45E-06 B(OH) ₃ 80.2 61.81 10.81 2.04E-05 3.42E-04 H ₄ BO ₄ , 15.1 78.81 10.81 4.90E-06 6.44E-05 Ba (s) 2.10E-08 Ba ²⁺ 90.0 137.34 137.34 1.89E-08 1.43E-07 BaSO ₄ 10.0 233.40 137.34 3.57E-09 1.58E-08 Bi (s) 2.00E-11 BiO 100.0 224.98 208.98 2.15E-11 9.92E-11 Br ₂ (l) 6.73E-05 Br 100.0 79.91 79.91 6.73E-05 8.73E-04 C 2.76E-05 HCO ₃ 84.3 61.00 12.01 1.18E-04 2.01E-03 CO ₂ 3.5 60.00 12.01 4.87E-06 8.41E-05 CO ₂ 0.6 44.00 12.01 6.47E-07 1.52E-05 Ca (s) 4.12E-04 Ca ²⁺ 90.9 40.08 40.08 3.71E-06 3.80E-03 CaHCO ₃ 0.3565 101.08 40.08 3.71E-06 3.80E-05 CaB(OH) ₄ 0.09404 118.89 40.08 1.15E-06 1.00E-05 Cd (s) 2.00E-11 CdC ₂ 37.5 183.31 112.40 1.22E-11 6.92E-11 Cd ²⁺ 1.8 112.40 112.40 3.60E-13 3.32E-12 CdCl ²⁺ 29.9 164.85 112.40 7.68E-12 5.39E-11 CdC ²⁺ 1.8 112.40 112.40 3.60E-13 3.32E-12 CdCl ²⁺ 29.2 147.85 112.40 7.68E-12 5.39E-11 CdG ²⁺ 0.2 192.31 112.40 6.84E-14 3.69E-13 CdGC ₃ 0.2 172.40 112.40 3.60E-13 3.32E-12 CdCC ₃ 0.2 172.40 112.40 7.42E-14 3.69E-13 CdC ₃ 0.2 192.31 112.40 6.84E-14 3.69E-13 CdC ₃ 0.2 192.31 112.40 7.42E-14 3.69E-13 CdC ₃ 0.2 172.40 112.40 7.42E-14 3.69E-13 CdC ₄ 0.2 208.46 112.40 7.42E-14 3.69E-13 CdC ₄ 0.2 208.54 5.54E-11 7.31E-10 CdC ₄ 1.94E-02 Cl 100.0 35.45 35.45 1.94E-02 5.66E-01 CuCl ₄ 1.94E-02 Cl 100.0 35.45 35.45 1.94E-02 5.66E-01 CuCl ₄ 1.94E-02 Cl 100.0 35.45 35.45 1.94E-02 5.66E-01 CuCl ₄ 1.94E-02 Cl 100.0 35.45 35.45 1.94E-02 5.66E-01 CuCl ₄ 1.96E-03 63.54 63.54 2.69E-09 2.25E-08 CuClCl ₄ 1.96E-03 63.54 5.57E-10 6.06E-09 CuCl ₄ 1.96E-03 63.54 5.57E-10 6.06E-09 CuCl ₅	As (s)	3.00E-09	HAsO ₄ ²	93.227	139.92	74.92	5.22E-09	3.87E-08
Au (s) 1.10E-11 AuCl ₂ 100.0 267.87 196.97 1.50E-11 5.79E-11 B (s) 4.45E-06 B(OH) ₃ 80.2 61.81 10.81 2.04E-05 3.42E-04 H ₄ BO ₄ , 15.1 78.81 10.81 4.90E-06 6.44E-05 Ba (s) 2.10E-08 Ba ^{2*} 90.0 137.34 137.34 1.89E-08 1.45E-07 BaSO ₄ 10.0 233.40 137.34 3.57E-09 1.58E-08 Bi (s) 2.00E-11 BiO* 100.0 224.98 208.98 2.15E-11 9.92E-11 Br ₂ (l) 6.73E-05 Br 100.0 79.91 79.91 6.73E-05 8.73E-04 C 2.76E-05 HCO ₃ 84.3 61.00 12.01 1.18E-04 2.01E-03 CO ₃ * 3.5 60.00 12.01 1.18E-04 2.01E-03 CO ₃ * 3.5 60.00 12.01 4.87E-06 8.41E-05 CO ₂ 0.6 44.00 12.01 6.47E-07 1.52E-05 Ca(s) 4.12E-04 Ca ^{2*} 90.9 40.08 40.08 3.71E-06 3.80E-05 CaCO ₃ 0.7298 100.08 40.08 3.71E-06 3.80E-05 CaCO ₃ 0.7298 100.08 40.08 7.51E-06 7.76E-05 CaB(OH) ₄ * 0.09404 118.89 40.08 1.15E-06 1.00E-05 Cd (s) 2.00E-11 CdCl ₂ 37.5 183.31 112.40 1.22E-11 6.92E-11 CdCl ₂ 27.9 218.76 112.40 3.60E-13 3.32E-12 CdCl ₃ 27.9 218.76 112.40 1.09E-11 5.15E-11 CdCl ₂ 27.9 218.76 112.40 6.44E-14 3.69E-13 CdCO ₃ 0.2 172.40 112.40 6.44E-14 3.69E-13 CdCO ₃ 0.2 10.0 12.40 112.40 6.44E-14 3.69E-13 6.40 112.40 6.44E-14 3.69E			H ₂ AsO ₄	6.736	140.92	74.92	3.80E-10	2.80E-09
B (s)			AsO ₄ 3-	0.037	138.92	74.92	2.06E-12	1.54E-11
H _A BO ₄ , 15.1 78.81 10.81 4.90E-06 6.44E-05 Ba (s) 2.10E-08 Ba ²⁺ 90.0 137.34 137.34 1.89E-08 1.43E-07 BaSO ₄ 10.0 233.40 137.34 3.57E-09 1.58E-08 Bi (s) 2.00E-11 BiO' 100.0 224.98 208.98 2.15E-11 9.92E-11 Br ₂ (l) 6.73E-05 Br 100.0 79.91 79.91 6.73E-05 8.73E-04 C 2.76E-05 HCO ₃ 84.3 61.00 12.01 1.18E-04 2.01E-03 CO ₃ 3.5 60.00 12.01 4.87E-06 8.41E-05 CO ₂ 0.6 44.00 12.01 6.47E-07 1.52E-05 Ca (s) 4.12E-04 Ca ²⁺ 90.9 40.08 40.08 3.75E-04 9.69E-03 CaHCO ₃ 0.3565 101.08 40.08 3.71E-06 3.80E-05 CaCO ₃ 0.7298 100.08 40.08 7.51E-06 7.78E-05 CaB(OH) ₄ 0.09404 118.89 40.08 1.15E-06 1.00E-05 Cd (s) 2.00E-11 CdCl ₂ 37.5 183.31 112.40 1.22E-11 6.92E-11 CdC ²⁻ 1.8 112.40 112.40 3.60E-13 3.32E-12 CdCl ⁴⁻ 29.2 147.85 112.40 7.68E-12 5.39E-11 CdCl ₂ 27.9 218.76 112.40 8.51E-13 5.35E-12 CdGCd 1.2.9 164.85 112.40 8.51E-13 5.35E-12 CdGCd 1.2.9 164.85 112.40 6.84E-14 3.69E-13 CdCO ₃ 0.2 172.40 112.40 6.84E-14 3.69E-13 CdCO ₃ 0.2 208.46 112.40 7.42E-14 3.69E-13 CdCO ₃ 0.2 172.40 112.40 6.84E-14 3.69E-13 CdCO ₃ 0.2 172.40 112.40 6.84E-14 3.69E-13 CdCO ₃ 0.2 172.40 112.40 6.84E-14 3.69E-13 CdCO ₃ 0.2 208.46 112.40 7.42E-14 3.69E-13 CdCO ₃ 0.2 172.40 112.40 6.84E-14 3.69E-10 CdCO ₃ 0.2 172.40 112.40 6.84E-14 3.69E-13 CdCO ₃ 0.2 172	Au (s)	1.10E-11	AuCl ₂	100.0	267.87	196.97	1.50E-11	5.79E-11
Ba (s)	B (s)	4.45E-06	В(ОН)3	80.2	61.81	10.81	2.04E-05	3.42E-04
Bi (s) 2.00E-11 BiO* 100.0 233.40 137.34 3.57E-09 1.58E-08 Bi (s) 2.00E-11 BiO* 100.0 224.98 208.98 2.15E-11 9.92E-11 Br₂ (l) 6.73E-05 Br 100.0 79.91 79.91 6.73E-05 8.73E-04 C 2.76E-05 HCO₃ 84.3 61.00 12.01 1.18E-04 2.01E-03 C CO₂² 3.5 60.00 12.01 4.87E-06 8.41E-05 C CO₂ 0.6 44.00 12.01 6.47E-07 1.52E-05 C Ca (s) 4.12E-04 Ca²² 90.9 40.08 40.08 3.75E-04 9.69E-03 C CaCO₃ 0.7298 100.08 40.08 3.71E-06 3.80E-05 C CaCO₃ 0.7298 100.08 40.08 7.51E-06 7.78E-05 C Ca(s) 2.00E-11 CdCl₂ 37.5 183.31 112.40 1.22E-11 6.92E-11 Cd²² 1.8 112.40 112.40 3.60E-13 3.32E-12 CdCl₃ 27.9 218.76 112.40 7.68E-12 5.39E-11 CdCl₃ 27.9 218.76 112.40 8.51E-13 5.35E-12 CdClβ² 0.2 192.31 112.40 8.51E-13 5.35E-12 CdCO3 0.2 172.40 112.40 6.84E-14 3.69E-13 CdCO3 0.2 172.40 112.40 6.14E-14 3.69E-13 CdSO4 0.2 208.46 112.40 7.42E-14 3.69E-13 CdCO3 3.90E-10 Cs² 100.0 35.45 35.45 1.94E-02 5.66E-01 CuCH³ 3.7 80.54 63.54 2.69E-09 2.25E-08 CuCHG¹ 5.8 98.99 63.54 5.78E-10 6.08E-09 CuCl³ 5.8 98.99 63.54 5.78E-10 6.08E-09			H₄BO₄,	15.1	78.81	10.81	4.90E-06	6.44E-05
Bi (s) 2.00E-11 BiO* 100.0 224.98 208.98 2.15E-11 9.92E-11 Br₂ (l) 6.73E-05 Br² 100.0 79.91 79.91 6.73E-05 8.73E-04 C 2.76E-05 HCO₃ 84.3 61.00 12.01 1.18E-04 2.01E-03 CO₃² 3.5 60.00 12.01 4.87E-06 8.41E-05 CO₂ 0.6 44.00 12.01 6.47E-07 1.52E-05 Ca (s) 4.12E-04 Ca²² 90.9 40.08 40.08 3.75E-04 9.69E-03 CaHCO₃* 0.3565 101.08 40.08 3.71E-06 3.80E-05 CaCO₃ 0.7298 100.08 40.08 7.51E-06 7.78E-05 CaB(OH)₄* 0.09404 118.89 40.08 1.15E-06 1.00E-05 Cd(s) 2.00E-11 CdCl₂ 37.5 183.31 112.40 1.22E-11 6.92E-11 CdCl² 1.8 112.40 112.40 3.60E-13 3.32E-12 CdCl¹ 29.2 147.85 112.40 7.68E-12 5.39E-11 CdOHCl 2.9 164.85 112.40 1.09E-11 5.15E-11 CdClG¹ 0.2 192.31 112.40 8.51E-13 5.35E-12 CdSO₄ 0.2 192.31 112.40 6.84E-14 3.69E-13 CdCCO₃ 0.2 172.40 112.40 6.14E-14 3.69E-13 CdSO₄ 0.2 208.46 112.40 7.42E-14 3.69E-13 CdSO₃ 3.90E-10 Co²⁺ 100.0 35.45 35.45 1.94E-02 5.66E-01 Co (s) 3.90E-10 Co²⁺ 100.0 132.91 132.91 3.00E-10 2.34E-09 CS (s) 3.00E-10 Cs² 100.0 132.91 32.91 3.00E-10 2.34E-09 Cu (s) 6.40E-09 Cu²⁺ 0.7 63.54 63.54 4.48E-11 7.31E-10 CuCO₃ 21.6 123.54 63.54 2.69E-09 2.25E-08 CuCHCl 65.2 115.99 63.54 7.62E-09 6.81E-08 CuCH² 5.8 98.99 63.54 5.78E-10 6.06E-09 CuCl² 1.6 134.45 63.54 2.17E-10 1.67E-09 CuCl₂ 1.6 134.45 63.54 2.17E-10 1.67E-09	Ba (s)	2.10E-08	Ba ²⁺	90.0	137.34	137.34	1.89E-08	1.43E-07
Br₂ (I) 6.73E-05 Br 100.0 79.91 79.91 6.73E-05 8.73E-04 C 2.76E-05 HCO₃ 84.3 61.00 12.01 1.18E-04 2.01E-03 C C 3² 3.5 60.00 12.01 4.87E-06 8.41E-05 C C 2 0.6 44.00 12.01 6.47E-07 1.52E-05 C 3 (s) 4.12E-04 C 3² 90.9 40.08 40.08 3.75E-04 9.69E-03 C A C C C C C C C C C C C C C C C C C			BaSO₄	10.0	233.40	137.34	3.57E-09	1.58E-08
C 2.76E-05 HCO3 84.3 61.00 12.01 1.18E-04 2.01E-03 CO32 3.5 60.00 12.01 4.87E-06 8.41E-05 CO2 0.6 44.00 12.01 6.47E-07 1.52E-05 Ca (s) 4.12E-04 Ca22 90.9 40.08 40.08 3.75E-04 9.69E-03 CaHCO3 0.7298 100.08 40.08 7.51E-06 7.78E-05 CaB(OH)4 0.09404 118.89 40.08 7.51E-06 1.00E-05 Cd (s) 2.00E-11 CdC1 237.5 183.31 112.40 1.22E-11 6.92E-11 CdC1 29.2 147.85 112.40 7.68E-12 5.39E-11 CdC1 29.2 147.85 112.40 7.68E-12 5.39E-11 CdBr 0.2 192.31 112.40 8.51E-13 5.35E-12 CdBr 0.2 192.31 112.40 6.84E-14 3.69E-13 CdCO3 0.2 172.40 112.40 6.84E-14 3.69E-13 CdSO4 0.2 208.46 112.40 7.42E-14 3.69E-13 CdSO4 0.2 208.46 112.40 7.42E-14 3.69E-13 CdSO4 0.2 208.46 112.40 7.42E-14 3.69E-13 CdSO3 3.90E-10 Co22 100.0 58.93 58.93 3.90E-10 6.86E-09 Cs (s) 3.90E-10 Cs 100.0 132.91 132.91 3.00E-10 2.34E-09 CuCl5 0.7 63.54 63.54 4.48E-11 7.31E-10 CuCH² 5.8 98.99 63.54 7.62E-09 6.81E-08 CuCl5 0.7 169.90 63.54 1.20E-10 7.31E-10 1.67E-09 CuCl5 0.7 169.90 63.54 1.20E-10 7.31E-10	Bi (s)	2.00E-11	BiO [⁺]	100.0	224.98	208.98	2.15E-11	9.92E-11
CO3 ² 3.5 60.00 12.01 4.87E-06 8.41E-05 CO2 0.6 44.00 12.01 6.47E-07 1.52E-05 Ca (s) 4.12E-04 Ca ²⁺ 90.9 40.08 40.08 3.75E-04 9.69E-03 CaHCO3 ⁺ 0.3565 101.08 40.08 3.71E-06 3.80E-05 CaCO3 0.7298 100.08 40.08 7.51E-06 7.78E-05 CaB(OH)4 ⁺ 0.09404 118.89 40.08 1.15E-06 1.00E-05 Cd (s) 2.00E-11 CdCl2 37.5 183.31 112.40 1.22E-11 6.92E-11 Cd ²⁺ 1.8 112.40 112.40 3.60E-13 3.32E-12 CdCl ⁺ 29.2 147.85 112.40 7.68E-12 5.39E-11 CdCl3 27.9 218.76 112.40 1.09E-11 5.15E-11 CdOHCl 2.9 164.85 112.40 8.51E-13 5.35E-12 CdCG ²⁺ 0.2 192.31 112.40 6.84E-14 3.69E-13 CdCO3 0.2 172.40 112.40 6.14E-14 3.69E-13 CdSO4 0.2 208.46 112.40 7.42E-14 3.69E-13 CdSO4 0.2 208.46 112.40 7.42E-14 3.69E-13 CdSO3 3.90E-10 Co ²⁺ 100.0 35.45 35.45 1.94E-02 5.66E-01 Co (s) 3.90E-10 Co ²⁺ 100.0 132.91 132.91 3.00E-10 2.34E-09 CS (s) 3.00E-10 Cs ⁺ 100.0 132.91 132.91 3.00E-10 2.34E-09 Cu (s) 6.40E-09 Cu ²⁺ 0.7 63.54 63.54 4.48E-11 7.31E-10 CuOH ⁺ 3.7 80.54 63.54 2.69E-09 2.25E-08 CuOHCl 65.2 115.99 63.54 7.62E-09 6.81E-08 CuCl4 5.8 98.99 63.54 5.78E-10 6.06E-09 CuCl5 0.7 169.90 63.54 1.20E-10 7.31E-10	Br ₂ (I)	6.73E-05	Br	100.0	79.91	79.91	6.73E-05	8.73E-04
CO2 0.6 44.00 12.01 6.47E-07 1.52E-05 Ca (s) 4.12E-04 Ca ²⁺ 90.9 40.08 40.08 3.75E-04 9.69E-03 CaHCO3* 0.3565 101.08 40.08 3.71E-06 3.80E-05 CaCO3 0.7298 100.08 40.08 7.51E-06 7.78E-05 CaB(OH)4* 0.09404 118.89 40.08 1.15E-06 1.00E-05 Cd (s) 2.00E-11 CdCl2 37.5 183.31 112.40 1.22E-11 6.92E-11 Cd ²⁺ 1.8 112.40 112.40 3.60E-13 3.32E-12 CdCl* 29.2 147.85 112.40 7.68E-12 5.39E-11 CdCl3* 27.9 218.76 112.40 1.09E-11 5.15E-11 CdOHCl 2.9 164.85 112.40 8.51E-13 5.35E-12 CdBr* 0.2 192.31 112.40 6.84E-14 3.69E-13 CdCO3 0.2 172.40 112.40 6.84E-14 3.69E-13 CdSO4 0.2 208.46 112.40 7.42E-14 3.69E-13 CdSO4 0.2 208.46 112.40 7.42E-14 3.69E-13 CdSO4 0.2 208.46 112.40 7.42E-14 3.69E-13 CdSO3 3.90E-10 Co ²⁺ 100.0 35.45 35.45 1.94E-02 5.66E-01 Co (s) 3.90E-10 Co* 100.0 132.91 132.91 3.00E-10 2.34E-09 CS (s) 3.00E-10 Cs* 100.0 132.91 132.91 3.00E-10 2.34E-09 Cu (c) 6.40E-09 Cu ²⁺ 0.7 63.54 63.54 4.48E-11 7.31E-10 CuOH* 3.7 80.54 63.54 2.69E-09 2.25E-08 CuCOG3 21.6 123.54 63.54 2.69E-09 2.25E-08 CuCOHCl 65.2 115.99 63.54 7.62E-09 6.81E-08 CuCl2 1.6 134.45 63.54 2.17E-10 1.67E-09 CuCl3 0.7 169.90 63.54 1.20E-10 7.31E-10	С	2.76E-05	HCO ₃	84.3	61.00	12.01	1.18E-04	2.01E-03
Ca (s) 4.12E-04			CO ₃ ²	3.5	60.00	12.01	4.87E-06	8.41E-05
CaHCO₃* 0.3565 101.08 40.08 3.71E-06 3.80E-05 CaCO₃ 0.7298 100.08 40.08 7.51E-06 7.78E-05 CaB(OH)₄* 0.09404 118.89 40.08 1.15E-06 1.00E-05 Cd (s) 2.00E-11 CdCl₂ 37.5 183.31 112.40 1.22E-11 6.92E-11 CdC¹* 29.2 147.85 112.40 7.68E-12 5.39E-11 CdCl⁵* 27.9 218.76 112.40 7.68E-12 5.39E-11 CdOHCl 2.9 164.85 112.40 8.51E-13 5.35E-12 CdBrˆ* 0.2 192.31 112.40 6.84E-14 3.69E-13 CdCO₃ 0.2 172.40 112.40 6.14E-14 3.69E-13 CdSO₃ 0.2 172.40 112.40 6.14E-14 3.69E-13 CdSO₃ 0.2 172.40 112.40 6.14E-14 3.69E-13 CdSO₃ 0.2 208.46 112.40 7.42E-14 3.2 20E-10 7.42E-14 20E-10 7.42E-14 20E-10 7.			CO ₂	0.6	44.00	12.01	6.47E-07	1.52E-05
CaCO₃ 0.7298 100.08 40.08 7.51E-06 7.78E-05 CaB(OH)₄* 0.09404 118.89 40.08 1.15E-06 1.00E-05 Cd (s) 2.00E-11 CdCl₂ 37.5 183.31 112.40 1.22E-11 6.92E-11 Cd²* 1.8 112.40 112.40 3.60E-13 3.32E-12 CdCl* 29.2 147.85 112.40 7.68E-12 5.39E-11 CdCl₃ 27.9 218.76 112.40 1.09E-11 5.15E-11 CdOHCl 2.9 164.85 112.40 8.51E-13 5.35E-12 CdBr* 0.2 192.31 112.40 6.84E-14 3.69E-13 CdCO₃ 0.2 172.40 112.40 6.14E-14 3.69E-13 CdSO₄ 0.2 208.46 112.40 7.42E-14 3.69E-13 CdSO₄ 0.2 208.46 112.40 7.42E-14 3.69E-13 Cl₂(g) 1.94E-02 Cl¹ 100.0 35.45 35.45 1.94E-02 5.66E-01 Co (s) 3.90E-10 Co²* 100.0 58.93 58.93 3.90E-10 6.86E-09 Cs (s) 3.00E-10 Cs* 100.0 132.91 132.91 3.00E-10 2.34E-09 Cu (s) 6.40E-09 Cu²* 0.7 63.54 63.54 4.48E-11 7.31E-10 CuCO₃ 21.6 123.54 63.54 2.69E-09 2.25E-08 CuCHCl₃ 1.6 134.45 63.54 2.17E-10 1.67E-09 CuCl₂ 1.6 134.45 63.54 2.17E-10 1.67E-09 CuCl₃ 0.7 169.90 63.54 1.20E-10 7.31E-10	Ca (s)	4.12E-04	Ca ²⁺	90.9	40.08	40.08	3.75E-04	9.69E-03
CaB(OH)₄⁺ 0.09404 118.89 40.08 1.15E-06 1.00E-05 Cd (s) 2.00E-11 CdCl₂ 37.5 183.31 112.40 1.22E-11 6.92E-11 Cd²⁺ 1.8 112.40 112.40 3.60E-13 3.32E-12 CdCl¹ 29.2 147.85 112.40 7.68E-12 5.39E-11 CdCl₃ 27.9 218.76 112.40 1.09E-11 5.15E-11 CdOHCl 2.9 164.85 112.40 8.51E-13 5.35E-12 CdBr¹* 0.2 192.31 112.40 6.84E-14 3.69E-13 CdCO₃ 0.2 172.40 112.40 6.14E-14 3.69E-13 CdSO₄ 0.2 208.46 112.40 7.42E-14 3.69E-13 Cl₂(g) 1.94E-02 Cl⁻ 100.0 35.45 35.45 1.94E-02 5.66E-01 Co (s) 3.90E-10 Co²⁺ 100.0 58.93 58.93 3.90E-10 6.86E-09 Cs (s) 3.00E-10 Cs⁴			CaHCO ₃ ⁺	0.3565	101.08	40.08	3.71E-06	3.80E-05
Cd (s) 2.00E-11			CaCO ₃	0.7298	100.08	40.08	7.51E-06	7.78E-05
CdCl ²⁺ 1.8 112.40 112.40 3.60E-13 3.32E-12 CdCl ¹⁺ 29.2 147.85 112.40 7.68E-12 5.39E-11 CdCl ₃ 27.9 218.76 112.40 1.09E-11 5.15E-11 CdOHCl 2.9 164.85 112.40 8.51E-13 5.35E-12 CdBr ¹⁺ 0.2 192.31 112.40 6.84E-14 3.69E-13 CdCO ₃ 0.2 172.40 112.40 6.14E-14 3.69E-13 CdSO ₄ 0.2 208.46 112.40 7.42E-14 3.69E-13 CdSO ₄ 0.2 208.46 112.40 7.42E-14 3.69E-13 Cl ₂ (g) 1.94E-02 Cl ⁻ 100.0 35.45 35.45 1.94E-02 5.66E-01 Co (s) 3.90E-10 Co ²⁺ 100.0 58.93 58.93 3.90E-10 6.86E-09 Cs (s) 3.00E-10 Cs ⁺ 100.0 132.91 32.91 3.00E-10 2.34E-09 Cu (s) 6.40E-09 Cu ²⁺ 0.7 63.54 63.54 4.48E-11 7.31E-10 CuOH ¹⁺ 3.7 80.54 63.54 3.00E-10 3.86E-09 CuCO ₃ 21.6 123.54 63.54 2.69E-09 2.25E-08 CuOHCl 65.2 115.99 63.54 7.62E-09 6.81E-08 CuCl ² 5.8 98.99 63.54 7.62E-09 6.81E-08 CuCl ² 1.6 134.45 63.54 2.17E-10 1.67E-09 CuCl ₃ 0.7 169.90 63.54 1.20E-10 7.31E-10			CaB(OH) ₄ ⁺	0.09404	118.89	40.08	1.15E-06	1.00E-05
CdCl [†] 29.2 147.85 112.40 7.68E-12 5.39E-11 CdCl ₃ 27.9 218.76 112.40 1.09E-11 5.15E-11 CdOHCl 2.9 164.85 112.40 8.51E-13 5.35E-12 CdBr [†] 0.2 192.31 112.40 6.84E-14 3.69E-13 CdCO ₃ 0.2 172.40 112.40 6.14E-14 3.69E-13 CdSO ₄ 0.2 208.46 112.40 7.42E-14 3.69E-13 Cl ₂ (g) 1.94E-02 Cl 100.0 35.45 35.45 1.94E-02 5.66E-01 Co (s) 3.90E-10 Co ²⁺ 100.0 58.93 58.93 3.90E-10 6.86E-09 Cs (s) 3.00E-10 Cs [†] 100.0 132.91 132.91 3.00E-10 2.34E-09 Cu (s) 6.40E-09 Cu ²⁺ 0.7 63.54 63.54 4.48E-11 7.31E-10 CuCO ₃ 21.6 123.54 63.54 2.69E-09 2.25E-08 CuCHCl 65.2 115.99 63.54 7.62E-09 6.81E-08 CuCl [†] 5.8 98.99 63.54 7.62E-09 6.81E-08 CuCl ₂ 1.6 134.45 63.54 2.17E-10 1.67E-09 CuCl ₃ 0.7 169.90 63.54 1.20E-10 7.31E-10	Cd (s)	2.00E-11	CdCl ₂	37.5	183.31	112.40	1.22E-11	6.92E-11
CdCl ₃ 27.9 218.76 112.40 1.09E-11 5.15E-11 CdOHCl 2.9 164.85 112.40 8.51E-13 5.35E-12 CdBr ⁺ 0.2 192.31 112.40 6.84E-14 3.69E-13 CdCO ₃ 0.2 172.40 112.40 6.14E-14 3.69E-13 CdSO ₄ 0.2 208.46 112.40 7.42E-14 3.69E-13 Cl ₂ (g) 1.94E-02 Cl ⁻ 100.0 35.45 35.45 1.94E-02 5.66E-01 Co (s) 3.90E-10 Co ²⁺ 100.0 58.93 58.93 3.90E-10 6.86E-09 Cs (s) 3.00E-10 Cs ⁺ 100.0 132.91 132.91 3.00E-10 2.34E-09 Cu (s) 6.40E-09 Cu ²⁺ 0.7 63.54 63.54 4.48E-11 7.31E-10 CuOH ⁺ 3.7 80.54 63.54 3.00E-10 3.86E-09 CuCO ₃ 21.6 123.54 63.54 2.69E-09 2.25E-08 CuOHCl 65.2 115.99 63.54 7.62E-09 6.81E-08 CuCl ⁺ 5.8 98.99 63.54 5.78E-10 6.06E-09 CuCl ₃ 0.7 169.90 63.54 1.20E-10 7.31E-10	t t		Cd ²⁺	1.8	112.40	112.40	3.60E-13	3.32E-12
CdOHCl 2.9 164.85 112.40 8.51E-13 5.35E-12 CdBr ⁺ 0.2 192.31 112.40 6.84E-14 3.69E-13 CdCO ₃ 0.2 172.40 112.40 6.14E-14 3.69E-13 CdSO ₄ 0.2 208.46 112.40 7.42E-14 3.69E-13 Cl ₂ (g) 1.94E-02 Cl 100.0 35.45 35.45 1.94E-02 5.66E-01 Co (s) 3.90E-10 Co ²⁺ 100.0 58.93 58.93 3.90E-10 6.86E-09 Cs (s) 3.00E-10 Cs ⁺ 100.0 132.91 132.91 3.00E-10 2.34E-09 Cu (s) 6.40E-09 Cu ²⁺ 0.7 63.54 63.54 4.48E-11 7.31E-10 CuOH ⁺ 3.7 80.54 63.54 3.00E-10 3.86E-09 CuCO ₃ 21.6 123.54 63.54 2.69E-09 2.25E-08 CuOHCl 65.2 115.99 63.54 7.62E-09 6.81E-08 CuCl ⁺ 5.8 98.99 63.54 5.78E-10 6.06E-09 CuCl ₂ 1.6 134.45 63.54 2.17E-10 1.67E-09 CuCl ₃ 0.7 169.90 63.54 1.20E-10 7.31E-10			CdCl	29.2	147.85	112.40	7.68E-12	5.39E-11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			CdCl ₃	27.9	218.76	112.40	1.09E-11	5.15E-11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 1		CdOHCI	2.9	164.85	112.40	8.51E-13	5.35E-12
CdSO ₄ 0.2 208.46 112.40 7.42E-14 3.69E-13 Cl ₂ (g) 1.94E-02 Cl 100.0 35.45 35.45 1.94E-02 5.66E-01 Co (s) 3.90E-10 Co ²⁺ 100.0 58.93 58.93 3.90E-10 6.86E-09 Cs (s) 3.00E-10 Cs ⁺ 100.0 132.91 132.91 3.00E-10 2.34E-09 Cu (s) 6.40E-09 Cu ²⁺ 0.7 63.54 63.54 4.48E-11 7.31E-10 CuOH ⁺ 3.7 80.54 63.54 3.00E-10 3.86E-09 CuCO ₃ 21.6 123.54 63.54 2.69E-09 2.25E-08 CuOHCl 65.2 115.99 63.54 7.62E-09 6.81E-08 CuCl ⁺ 5.8 98.99 63.54 5.78E-10 6.06E-09 CuCl ₂ 1.6 134.45 63.54 2.17E-10 1.67E-09 CuCl ₃ 0.7 169.90 63.54 1.20E-10 7.31E-10			CdBr ⁺	0.2	192.31	112.40	6.84E-14	3.69E-13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			CdCO ₃	0.2	172.40	112.40	6.14E-14	3.69E-13
Co (s) 3.90E-10 Co ²⁺ 100.0 58.93 58.93 3.90E-10 6.86E-09 Cs (s) 3.00E-10 Cs ⁺ 100.0 132.91 132.91 3.00E-10 2.34E-09 Cu (s) 6.40E-09 Cu ²⁺ 0.7 63.54 63.54 4.48E-11 7.31E-10 CuOH ⁺ 3.7 80.54 63.54 3.00E-10 3.86E-09 CuCO ₃ 21.6 123.54 63.54 2.69E-09 2.25E-08 CuOHCl 65.2 115.99 63.54 7.62E-09 6.81E-08 CuCl ⁺ 5.8 98.99 63.54 5.78E-10 6.06E-09 CuCl ₂ 1.6 134.45 63.54 2.17E-10 1.67E-09 CuCl ₃ 0.7 169.90 63.54 1.20E-10 7.31E-10	Mark Sharper residence on a community with the same of		CdSO ₄	0.2	208.46	112.40	7.42E-14	3.69E-13
Cs (s) 3.00E-10 Cs ⁺ 100.0 132.91 132.91 3.00E-10 2.34E-09 Cu (s) 6.40E-09 Cu ²⁺ 0.7 63.54 63.54 4.48E-11 7.31E-10 CuOH ⁺ 3.7 80.54 63.54 3.00E-10 3.86E-09 CuCO ₃ 21.6 123.54 63.54 2.69E-09 2.25E-08 CuOHCl 65.2 115.99 63.54 7.62E-09 6.81E-08 CuCl ⁺ 5.8 98.99 63.54 5.78E-10 6.06E-09 CuCl ₂ 1.6 134.45 63.54 2.17E-10 1.67E-09 CuCl ₃ 0.7 169.90 63.54 1.20E-10 7.31E-10	Cl ₂ (g)	1.94E-02	***************************************	100.0	35.45	35.45	1.94E-02	5.66E-01
Cu (s) 6.40E-09 Cu ²⁺ 0.7 63.54 63.54 4.48E-11 7.31E-10 CuOH ⁺ 3.7 80.54 63.54 3.00E-10 3.86E-09 CuCO ₃ 21.6 123.54 63.54 2.69E-09 2.25E-08 CuOHCl 65.2 115.99 63.54 7.62E-09 6.81E-08 CuCl ⁺ 5.8 98.99 63.54 5.78E-10 6.06E-09 CuCl ₂ 1.6 134.45 63.54 2.17E-10 1.67E-09 CuCl ₃ 0.7 169.90 63.54 1.20E-10 7.31E-10	Co (s)	3.90E-10		100.0	58.93	58.93	3.90E-10	6.86E-09
CuOH ⁺ 3.7 80.54 63.54 3.00E-10 3.86E-09 CuCO ₃ 21.6 123.54 63.54 2.69E-09 2.25E-08 CuOHCI 65.2 115.99 63.54 7.62E-09 6.81E-08 CuCI ⁺ 5.8 98.99 63.54 5.78E-10 6.06E-09 CuCI ₂ 1.6 134.45 63.54 2.17E-10 1.67E-09 CuCI ₃ 0.7 169.90 63.54 1.20E-10 7.31E-10	Cs.(s)	3.00E-10		100.0	132.91	132.91	3.00E-10	2.34E-09
CuCO3 21.6 123.54 63.54 2.69E-09 2.25E-08 CuOHCI 65.2 115.99 63.54 7.62E-09 6.81E-08 CuCI* 5.8 98.99 63.54 5.78E-10 6.06E-09 CuCl2 1.6 134.45 63.54 2.17E-10 1.67E-09 CuCl3 0.7 169.90 63.54 1.20E-10 7.31E-10	Cu (s)	6.40E-09	Cu ²⁺	0.7	63.54	63.54	4.48E-11	7.31E-10
CuOHCI 65.2 115.99 63.54 7.62E-09 6.81E-08 CuCl⁺ 5.8 98.99 63.54 5.78E-10 6.06E-09 CuCl₂ 1.6 134.45 63.54 2.17E-10 1.67E-09 CuCl₃ 0.7 169.90 63.54 1.20E-10 7.31E-10			CuOH [↑]	3.7	80.54	63.54	3.00E-10	3.86E-09
CuCl* 5.8 98.99 63.54 5.78E-10 6.06E-09 CuCl2 1.6 134.45 63.54 2.17E-10 1.67E-09 CuCl3 0.7 169.90 63.54 1.20E-10 7.31E-10			CuCO ₃	21.6	123.54	63.54	2.69E-09	2.25E-08
CuCl ₂ 1.6 134.45 63.54 2.17E-10 1.67E-09 CuCl ₃ 0.7 169.90 63.54 1.20E-10 7.31E-10			CuOHCI	65.2	115.99	63.54	7.62E-09	6.81E-08
CuCl ₃ 0.7 169.90 63.54 1.20E-10 7.31E-10			CuCl [⁺]	5.8	98.99	63.54	5.78E-10	6.06E-09
2			CuCl ₂	1.6	134.45	63.54	2.17E-10	1.67Ё-09
CuCl ₄ ²⁻ 0.5 205.35 63.54 1.03E-10 5.22E-10			_	0.7	169.90	63.54	1.20E-10	7.31E-10
			CuCl ₄ ²⁻	0.5	205.35	63.54	1.03E-10	5.22E-10

Tabla 2.7.- Fracción en peso y molalidad de las especies en el agua de mar, salinidad: 35‰ (continuación).

	Fracción					Fracción	
Elemento p			Porcentaje	Peso	Peso		Molalidad de
	elemento,		molar	molecular de	atómico del	especie,	la especie,
(estado)	9/9 _{sw}	Especie	(c _i x100)	la especie	elemento	g/g _{sw}	mol/kg _{H2O}
F ₂ (g)	1.39E-06	F	51.0	19.00	19.00	7.09E-07	3.87E-05
	**	MgF⁺	47.0	43.31	19.00	1.49E-06	3.56E-05
· · ·		CaF [⁺]	2.0	59.08	19.00	8.64E-08	1.52E-06
Hg (I)	1.00E-10	HgCl ₄ ²	65.8	342.40	200.59	1.12E-10	3.40E-10
		HgCl ₃	12.0	306.95	200.59	1.84E-11	6.20E-11
		HgCl₂	3.0	271.50	200.59	4.06E-12	1.55E-11
	A STA	HgBr ₂	0.1	360.41	200.59	1.80E-13	5.17E-13
W 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Anna Maria	HgClBr	1.1	315.95	200.59	1.73E-12	5.68E-12
** ** ** ** ** ** ** ** ** ** ** ** **	2 m 2 m 2	HgCl₂Br	4.3	351.41	200.59	7.53E-12	2.22E-11
ar Arag		HgCl₃Br ²	12.3	386.86	200.59	2.37E-11	6.36E-11
		HgClBr ₂	0.5	395.86	200.59	9.87E-13	2.58E-12
		HgCl ₂ Br ₂ ²	0.6	431.31	200.59	1.29E-12	3.10E-12
		HgOHCI	0.2	253.04	200.59	2.52E-13	1.03E-12
l ₂ (s)	6.40E-08	1O ₃	100.0	174.90	126.90	8.82E-08	5.23E-07
K (s)	3.99E-04	K⁺	98.8	39.10	39.10	3.94E-04	1.04E-02
4.		KHCO ₃	0.005	100.10	39.10	5.11E-08	5.29E-07
$(\chi, \chi, \varphi, \varphi, \varphi)$		KCO ₃	0.005	99.10	39.10	5.06E-08	5.29E-07
Li (s)	1.70E-07	Li [†] ;	100.0	6.94	6.94	1.70E-07	2.54E-05
Mg (s)	1.29E-03	Mg ²⁺	91.86	24.31	24.31	1.19E-03	5,06E-02
100		MgHCO ₃ ⁺	0.10	85.31	24.31	4.53E-06	5.51E-05
		MgCO ₃	0.10	84.31	24.31	4.48E-06	5.51E-05
and the second second	ter en de serviciones de la companya	MgB(OH) ₄ ⁺	0.0182	103.12	24.31	9.97E-07	1.00E-05
Mn (s)	4.00E-10	Mn ²⁺	100.0	54.94	54.94	4.00E-10	7.55E-09
Mo (s)	1.00E-08	MoO ₄ ²⁻	100.0	159.94	95.94	1.67E-08	1,08E-07
Na (s)	1.08E-02	Na [†]	97.6	22.99	22.99	1.05E-02	4,74E-01
		NaHCO ₃	0.005	83.99	22.99	1.97E-06	2,43E-05
2 d		NaCO ₃	0.005	82.99	22:99	1.94E-06	2.43E-05
Ni (s)	6.60E-09	Ni ²⁺	100.0	58.71	58.71	6.60E-09	1.17E-07
P (s)	8.80E-08	HPO ₄ 2-	16.5	95.97	30.97	4.50E-08	4.86E-07
	10-239 h		0.5	96.97	30.97	1.32E-09	
. ૯૦ <i>૦,૦</i> ૦ ફો	Objection a	+	0.1	137,05	30.97	3.50E-10	** .
	01-2053 01-2053	MgH₂PO₄ ⁺	0.1	121.29	30.97	3.10E-10	
		CaHPO	34.2	136.05	30.97	1.32E-07	1.01E-06
	11.365	MgHPO ₄	34.2	120.29	30.97	1.17E-07	1.01E-06
10 F/16 2	P# 3890.4	PO ₄ 3-	0.023	94.97	30.97	6.21E-11	6,77E-10
a di sa di Sa		CaPO₄	7.2	135.05	30.97	2.76E-08	
	77 EST	MgPO ₄	7.2		30.97	2.44E-08	2.12E-07
100	N 325 P	5 (1) 198	\$4. 80°				

\$5 P

67.59 N 13

Tabla 2.7.- Fracción en peso y molalidad de las especies en el agua de mar, salinidad: 35‰ (continuación).

Elemento Químico	Fracción peso total del elemento,		Porcentaje molar	Peso molecular de	Peso	Fracción peso de la especie,	Molalidad de la especie,
(estado)	g/g _{sw}	Especie	(c _i x100)	la especie	elemento	g/g _{sw}	na especie, mol∕kg _{H2O}
Pb (s)	2.00E-11	PbCl ₂	42.3	278.10	207.19	1.14E-11	4.23E-11
		Pb ²⁺	4.5	207.19	207:19	9.00E-13	4.50E-12
		PbOH ⁺	10.2	224.19	207.19	2.21E-12	1.02E-11
, ,		PbCl [⁺]	18.9	242.64	207.19	4.43E-12	1.89E-11
		PbHCO₃ ⁺	1.4	268.19	207.19	3.62E-13	1.40E-12
		PbCO ₃	0.4	267.19	207.19	1.03E-13	4.00E-13
	•	PbSO ₄	0.5	303.25	207.19	1.46E-13	5.00E-13
		PbCl ₃	9.2	313.55	207.19	2.78E-12	9.20E-12
		PbCl ₄ ²⁻	3.6	349.00	207.19	1.21E-12	3.60E-12
	-	PbOHCI	8.8	259.64	207.19	2.21E-12	8.80E-12
·		PbBr⁺	0.2	287.10	207.19	4.16E-14	1.50E-13
Rb (s)	1.20E-07	Rb⁺,	100.0	85.47	85.47	1.20E-07	1.46E-06
S (s)	9.05E-04	SO ₄ ²	42.3	96.06	32.06	1.15E-03	1,24E-02
		CaSO ₄	2.88	136.14	32.06	1.11E-04	8.43E-04
	- I	KSO₄	0.436	135.17	32.06	1.66E-05	1.28E-04
		MgSO₄	14.8	120.38	32.06	5.03E-04	4.33E-03
41. /A		NaSO ₄	39.6	119.05	32.06	1.33E-03	1.16E-02
Se (s)	9.00E-11	SeO ₄ ²⁻	100.0	142.96	78.96	1.63E-10	1.18E-09
Sr (s)	8.14E-06	Sr ²⁺	90.0	87.62	87.62	7.33E-06	8.67E-05
		SrSO ₄	10.0	183.68	87.62	1.71E-06	9.63E-06
U	3.30E-09	UO2(CO3)34-	100.0	450.03	238.03	6.24E-09	1.44E-08
W (s)	1.00E-10	WO ₄ ²⁻	100.0	247.85	183.85	1.35E-10	5.64E-10
Zn (s)	6.50E-09	Zn ²⁺	16.1	65.37	65.37	1.05E-09	1,66E-08
Same and		ZnOH⁺	2.3	82.37	65.37	1.88E-10	2.37E-09
		ZnHCO3 ⁺	0.3	126.37	65.37	3.77E-11	3.09E-10
		ZnCO ₃	3.3	125.37	65.37	4.11E-10	3.40E-09
4.3	the section	ZnSO₄	1.9	161.43	65.37	3.05E-10	1.96E-09
		ZnCl⁺	44.3	100.82	65.37	4.44E-09	4.57E-08
		ZnCl ₂	15.4	136.28	65.37	2.09E-09	1.59E-08
	•	ZnCl ₃	1.7	171.73	65.37	2.90E-10	1.75E-09
		ZnCl ₄ ²	2.3	207.18	65.37	4.74E-10	2.37E-09
<u>,, 4</u>	<u> </u>	ZnOHCI	12.5	117.82	65.37	1.46E-09	1.29E-08

 $Total (g/g_{sw}) = 0.035183$

Con las especies y las fracciones molares c_i consideradas, se obtiene un valor de salinidad total de 35.183‰, valor muy cercano al que se logra a partir de la Ecuación 2-8 (S_T = 35.19‰) para una salinidad convencional de 35‰.

A partir de la molalidad y carga eléctrica de cada especie se obtiene un valor de fuerza iónica (Ecuación 2-6) de 0.6782 mol/kg_{H2O} (0.670 mol/l), valor muy similar al que predicen Dyrssen y Wedborg [19] de 0.6745 mol/kg_{H2O} (0.666 mol/l), al considerar una salinidad de 35‰.

Los resultados del cálculo de exergia química estándar a condiciones normales de temperatura y presión (T = 298.15K y P = 101.325 kPa) de los elementos contenidos en el agua de mar y la desviación porcentual con respecto al valor que indica Szargut [4] para una salinidad de 35‰, se presentan en la Tabla 2.8.

En general, la especie de referencia seleccionada para el cálculo de exergia química estándar de cada elemento es aquella que está en mayor concentración en el agua de mar; sin embargo, en algunos casos, debido a que no se cuenta con información de la energía libre de formación de estas especies, se seleccionan otras especies como referencia aun cuando su concentración es menor, como es el caso del Cu²⁺, del HPO₄²⁻ y del Zn²⁺.

Es importante señalar que Szargut supone un valor de pH de 8.1 en promedio y como coeficientes de actividad de las especies de las que no se tiene información experimental, los valores de 0.6 para los iones monovalentes pesados, 0.2 para los iones divalentes simples, 0.1 para los iones divalentes complejos y 1 para los compuestos no iónicos. Con fines de comparación, los resultados de la Tabla 2.8 se obtuvieron a partir de los valores de pH y coeficiente de actividad utilizados por Szargut; además, en este ejercicio, se utilizaron como valores de exergia química estándar del hidrógeno y oxígeno aquellos que predice Szargut, es decir, 236.09 y 3.97 kJ/mol, respectivamente.

o en la propia de de de de la companya de la compa

Tabla 2.8.- Exergia química estándar de los elementos contenidos en la hidrosfera a condiciones normales de temperatura y presión (Salinidad = 35% y pH = 8.1).

			nidad = 359	700 y <i>p11</i>	Ex_a^o del ele	emento		
		Especie de re	eferencia		Ex _q deren		•	
					Determinada en el			
Elemento Químico _(a)	Fórmula química	m _i mol/kg _{H20}	$\Delta G_{f\ i}^{o\ (b)}$ kJ/mol	γi	presente trabajo	Szargut	Desviación % ^(c)	
Ag _(s)	AgCl ₂	2.69E-09	-215.5	0.6	70.23	70.2	-0.04	
As (s)	HAsO ₄ ²	3.87E-08	-714.7	0.1	493.12	494.6	0.30	
Au _(s)	AuCl ₂	5.79E-11	-151.17	0.6	15.42	15.4	-0.11	
B (s)	B(OH) ₃	3.42E-04	-968.84	1	628.53	628.5	0.00	
Ba _(s)	Ba ²⁺	1.43E-07	-561	0.2	747.67	747.7	0.00	
Bi _(s)	BiO⁺	9.92E-11	-146.4	0.6	274.58	274.5	-0.03	
Br _{2 (i)}	Br	8.73E-04	-103.97	0.68	101.16	101.2	0.04	
Ca _(s)	Ca ²⁺	9.69E-03	-553.41	0.21	712.38	712.4	0.00	
Cd (s)	CdCl ₂	6.92E-11	-359.4	1	293.74	293.8	0.02	
Cl _{2 (g)}	Cl	0.5658	-131.26	0.68	123.65	123.6	-0.04	
Co (s)	Co ²⁺	6.86E-09	-54.4	0.2	248.59	248.6	0.00	
Cs (s)	Cs [⁺]	2.34E-09	-282.23	0.6	404.56	404.4	-0.04	
Cu (s)	Cu ²⁺	7.31E-10	65.52	0.2	134.23	134.2	-0.02	
F _{2 (g)}	F	3.87E-05	-278.82	0.68	466.31	466.3	0.00	
Hg (₀₎	HgCl ₄ ²⁻	3.40E-10	-446.9	0.1	115.75	115.9	0.13	
l _{2 (s)}	IO ₃	5.23E-07	-128	0.6	174.72	174.7	-0.01	
K (s)	K⁺	1.04E-02	-282.44	0.64	366.66	366.6	-0.02	
Li _(s)	Li [≁]	2.54E-05	-294	0.68	392.99	393.0	0.00	
Mg (s)	Mg ²⁺	5.06E-02	-456.32	0.23	610.97	611.0	0.01	
Mn _(s)	Mn²⁺	7.55E-09	-228	0.2	421.96	422.0	0.01	
Mo _(s)	MoO_4^2	1.08E-07	-836.4	0.1	730.32	730.3	0.00	
Na _(s)	Na [⁺]	0.4739	-262.048	0.68	336.66	336.6	-0.02	
Ni _(s)	Ni ²⁺	1.17E-07	-45.6	0.2	232.77	232.7	-0.03	
P (s)		4.86E-07	-1089.3	0.1	861.45	861.4	-0.01	
Pb (s)	PbCl ₂	4.23E-11	-297.19	1	232.75	232.8	0.02	
Rb (s)	Rb [⁺]	1.46E-06	-282.4	0.6	388.79	388.6	-0.05	
S (s)	SO ₄ 2-	1.24E-02	-744.63	0.11	609.44	609.6	0.03	
Se (s)	SeO ₄ ²	1.18E-09	-441.4	0.1	346.52	346.5	0.00	
Sr (s)	Sr ²⁺	8.67E-05	-559.4	0.2	730.18	730.2	0.00	
W (s)	WO ₄ ² -	5.64E-10	-920.5	0.1	827.45	827.5	0.01	
Zn (s)	Zn ²⁺	1.66E-08	-147.308	0.2	339.31	339.2	-0.03	

⁽a) Estado: sólido (s), gaseoso (g) y líquido (l)

Los valores de energía libre de formación normal estándar de las especies de referencia disueltas en el agua de mar que utiliza Szargut, se cotejaron con los publicados por Wagman, et. al. [21] en 1982, cuya fecha es posterior a las de las

⁽b) Valores leídos del libro de Szargut [4]

⁽c) Con respecto al valor que indica Szargut

referencias en las que se basa Szargut para efectuar sus estimaciones, sin encontrar diferencias apreciables.

Los valores de exercia química estándar de los elementos contenidos en la hidrosfera calculados en el presente trabajo coinciden con aquellos que obtiene Szargut. El considerar una fracción molar del arsénico en la forma del ión HAsO₄² diferente al que propone Szargut, provoca una diferencia mínima en el valor de exergia química estándar del arsénico (0.3%).

Conviene mencionar que los valores de exergia química estándar mostrados en la Tabla 2.8, son preliminares, va que posteriormente serán afectados por los valores de pH y coeficiente de actividad de la especie de referencia calculados de manera rigurosa en función de la salinidad.

2.2.1.- Efecto en el valor de exergia química estándar de los elementos por un cambio de salinidad.

La salinidad del aqua de los océanos está asociada con la latitud. Valores baios de salinidad se presentan en zonas en donde ocurren precipitaciones continuas o en áreas polares donde las sales del agua se diluyen por la fusión de agua fresca congelada, aunque durante el invierno la salinidad aumenta debido al proceso contrario. Un ejemplo de lo anterior es el Mar Báltico, cuyo contenido de sales fluctúa entre 5 y 15%. Por otro lado, en regiones sub-tropicales en donde las precipitaciones son escasas y alta la evaporación del agua, la salinidad puede alcanzar un valor de 40‰, como es el caso del Mar Rojo en donde además, por estar rodeado de tierra, no hay entradas de agua fresca. Debido a la variación que existe en el contenido de sales del agua de mar. en el presente trabajo se analiza su efecto en el valor de exergia química estándar de los elementos contenidos en la hidrosfera.

La relación de concentración entre las especies que se encuentran en mayor proporción en el agua de mar no cambia al variar la salinidad (Principio de Composición Constante), debido a que el agua de mar es una solución que está bien mezclada y a que estas especies no intervienen en ningún proceso biológico y químico que se llevan a cabo en el mar.

A pesar de que el principio de composición constante a un cambio de salinidad no aplica para las especies que se encuentran en baja concentración en el agua de mar; por simplificación, en el presente estudio se considera que la proporción entre todas las especies disueltas en el agua permanece constante al evaluar el efecto de un cambio de salinidad en el valor de exergia química de los elementos contenidos en la hidrosfera.

En la Tabla 2.9 se presentan los valores de exergia química estándar de los elementos contenidos en la hidrosfera, a condiciones normales de temperatura y presión, para un valor de salinidad de 40 partes por mil y, la desviación porcentual con respecto al valor de exergia química cuando la salinidad es de 35‰. En este ejercicio se considera que el *pH* del agua de mar y los coeficientes de actividad de las especies de referencia no cambian al variar la salinidad.

Al aumentar el contenido de sales disueltas en el agua de mar y por consiguiente la concentración de las especies de referencia, la exergia química de los elementos contenidos en la hidrosfera debe disminuir al ser menor la exergia concentracional. Sin embargo, para los elementos plata, oro, cadmio, mercurio y plomo, cuyas especies de referencia contienen cloro, sus valores de exergia química tiene un comportamiento contrario a lo esperado, es decir, se encuentra que al incrementarse la salinidad, aumenta el valor de exergia química estándar. La exergia química del cloro se modifica al variar la salinidad, lo que no ocurre con la exergia química del oxígeno o del hidrógeno, que forman parte de algunas especies presentes en el agua de mar, ya que su valor de exergia química es aquel determinado a partir de la atmósfera y, por lo tanto se mantiene constante al cambiar la salinidad. En el caso de los elementos cuyas especies de referencia de la hidrosfera contienen cloro, al aumentar la salinidad a 40‰, el cambio por la disminución del valor de exergia química del cloro tiene un efecto

mayor en el cálculo de exergia química del elemento (Ecuación 2-5) que el cambio por un aumento en la concentración de la especie de referencia, lo que provoca que la exergia química de estos elementos aumente. 3000 \$100 pdf.

Tabla 2.9.- Efecto en el valor de exergia química estándar de los elementos presentes en la hidrosfera al aumentar la salinidad (pH = 8.1).

* 1		i kanala i	Salinidad	f = 35‰	Salinidad	= 40%	The other wild by Like (II)
e _{ne}	Elemento Químico _(a)	Especie de Referencia	m _i mol/kg _{H2O}	Ex _q ° _{el} kJ/gmol	m _i mol/kg _{H2O}	Ex _q ° _{el} kJ/gmol	Desviación % ^(b)
100	Ag (s)	AgCl ₂	2.69E-09	70.23	3.07E-09	70.56	0.47
en e	As (s)	HAsO ₄ ²	3.87E-08	493.12	4.42E-08	492.79	-0.07
•••	Au (s)	AuCl ₂	5.79E-11	15.42	6.61E-11	15.75	2.14
	B (s)	B(OH) ₃	3.42E-04	628.53	3.91E-04	628.20	-0.05
	Ba _(s)	Ba ²⁺	1.43E-07	747.67	1.63E-07	747.34	-0.04
	Bi (s)	BiO [⁺]	9.92E-11	274.58	1.13E-10	274.25	-0.12
77.47	Br _{2 (1)}	Br	8.73E-04	101.16	9.97E-04	100.50	-0.65
1145	Ca _(s)	Ca ²⁺	9.69E-03	712.38	1.11E-02	712.05	-0.05
	Cd (s)	CdCl ₂	6.92E-11	293.74	7.90E-11	294.07	0.11
100	Cl _{2 (g)}	*CI;	0.5658	123.65	0.6465	122.99	-0.53
F	Co (s)	Co ²⁺	6.86E-09	248.59	7.84E-09	248.26	-0.13
	Cs (s)	Cs ⁺	2.34E-09	404.56	2.67E-09	404.23	-0.08
- 11	Cu (s)	∘Cu ²⁺	7.31E-10	134.23	8.35E-10	133.89	-0.25
	F _{2 (g)}	F ⁻	3.87E-05	466.31	4.42E-05	465.65	-0.14
	Hg (i)	HgCl₄²-	3.40E-10	115.75	3.88E-10	116.74	0.86
	l _{2 (s)}	1O ₃	5.23E-07	174.72	5.97E-07	174.06	-0.38
2 1 2	K (s)	K [†]	1.04E-02	366.66	1.19E-02	366.33	-0.09
	Li (s)	LI ⁺ N	2.54E-05	392.99	2.90E-05	392.66	-0.08
# 151.7	Mg (s)	Mg ²⁺	5.06E-02	610.97	5.78E-02	610.64	-0.05
	Mn _(s)	Mn ²⁺	7.55E-09	421.96	8.62E-09	421.63	-0.08
1 %	Mo (s)	MoO ₄ ²⁻	1.08E-07	730.32	1.23E-07	729.99	-0.05
7	Na (s)	Na [⁺]	0.4739	336.66	0.5415	336.33	
,	Ni _(s)	Ni ²⁺	1.17E-07	232.77	1.33E-07	232.44	-0.14
	P (s)	HPO ₄ ²⁻	4.86E-07	861.45	5.55E-07	861.12	-0.04
3	Pb _(s)	PbCl ₂	4.23E-11	232.75	4.84E-11	233.08	0.14
	Rb _(s)	Rb ⁺	1.46E-06	388.79	1.66E-06	388.46	-0.09
2.15	S (s)	SO ₄ ²	1.24E-02	609.44	1.41E-02	609.11	-0.05
100	Se (s)	SeO ₄ ²	1.18E-09	346.52	1.35E-09	346.18	-0.10
•	Sr (s)	Sr ²⁺	8.67E-05	730.18	9.90E-05	729.85	-0.05
	W (s)	WO ₄ ²	5.64E-10	827.45	6.44E-10	827.12	-0.04
1.	Zn (s)	Zn ²⁺	1.66E-08	339.31	1.90E-08	338.98	-0.10

⁽a) Estado: sólido (s), gaseoso (g) y líquido (l)

with a part of the entropy and an open week that the case of the c

⁽b) Con respecto a los valores de exergia química cuando la salinidad es de 35%

El resultado anterior indica que las especies seleccionadas como de referencia para el cálculo de exergia química de los elementos plata, oro, cadmio, mercurio y plomo no son adecuadas, por lo que es necesario seleccionar otras especies, ya sea que estén presentes en la hidrosfera o en la litosfera. En el caso de la plata y el oro, las únicas especies presentes en el agua de mar que contienen a dichos elementos son los iones AgCl₂⁻ y AuCl₂⁻, respectivamente, (ver Tabla 2.7). Para estos elementos se sugiere seleccionar una especie presente en la corteza terrestre. En el caso del mercurio, el resto de las especies disueltas en el agua de mar que lo contienen son, además de otros cloruros, bromuros de mercurio. La exergia química del bromo se determina a partir del ión Br⁻ presente en el agua de mar, por lo que el seleccionar alguno de los bromuros de mercurio podría representar el mismo problema que en el caso del ión HgCl₄²⁻; por lo que también se recomienda escoger una especie de la litosfera como referencia para el elemento mercurio.

En el caso del cadmio y del plomo, las especies presentes en la hidrosfera que se pueden seleccionar como referencia son los iones Cd^{2+} y Pb^{2+} , no obstante que su concentración es muy baja (ver Tabla 2.7). En la Tabla 2.10, se presentan los valores de exergia química estándar del cadmio y del plomo, para una salinidad de 35 y 40 partes por mil, al considerar como especies de referencia al Cd^{2+} y al Pb^{2+} , respectivamente. El valor de energía libre de formación de estas especies se calculó a partir de la ecuación de Nerst y de los potenciales normales de la celda de la reacción redox (E_{cel} °) para la formación de dichas especies [22], esto es,

$$\Delta G_f^o = -n_e F E_{cel}^o \tag{2-11}$$

网络阿拉马克伊尔 医髓炎 经通过股份 医牙髓管 医电流管

Control of the first of the fir

en donde, n_e es el número de electrones que intervienen en la reacción redox y F es el número de Faraday (96,500 coulomb/mol).

El valor de coeficiente de actividad de los iones Cd²⁺ y Pb²⁺ se fijó en 0.2, de acuerdo al criterio empleado por Szargut en la selección del coeficiente de actividad de los iones divalentes simples en solución acuosa.

医乳腺溶解性原因性皮肤病 医多二氏试验检试验

Tabla 2.10.- Exergia química estándar del cadmio y del plomo al considerar como especies de referencia al Cd^{2+} y al Pb^{2+} (pH = 8.1).

Elemento Químico	Especie de Referencia		Salinidad = 35‰		Salinidad = 40‰		
	Fórmula	∆G° _i kJ/mol	m _i mol/kg _{H2O}	Exq ^o el kJ/gmol	m _i mol/kg _{H2O}	Ex _q ° _{el} kJ/gmol	Desviación % ^(a)
Cd (s)	Cd ²⁺	-77.78	3.3E-12	290.98	3.7E-12	290.66	-0.11
Pb (s)	Pb ²⁺	-24.32	4.5E-12	236.77	5.0E-12	236.44	-0.14

(s) Estado sólido

Los valores de exergia química estándar del cadmio y del plomo presentados en la Tabla 2.10 para una salinidad de 35‰, son muy similares a los que se obtienen al considerar como especies de referencia al CdCl₂ y al PbCl₂. Sin haber incluido en el cálculo de exergia química, la variación de los valores de *pH* y coeficiente de actividad por una diferencia en el contenido de sales, se obtienen resultados satisfactorios cuando se seleccionan como especies de referencia a los iones Cd²⁺ y Pb²⁺, ya que el valor de exergía química del elemento disminuye cuando se incrementa la salinidad.

2.2.1.1.- Variación en el valor de pH al cambiar la salinidad y su efecto en el valor de exergia química estándar de los elementos.

El valor de *pH* del agua de mar está dentro del intervalo de 7.8 a 8.2 [12, 23]. La variación en la concentración de iones hidrógeno es regida principalmente por el sistema del bióxido de carbono y en menor medida por la presencia del ácido bórico [11, 12, 24]. Las reacciones involucradas son:

Sistema del CO2:

$$CO_2$$
 (gas) \longleftrightarrow CO_2 (disuelto)
 $CO_2 + H_2O \longleftrightarrow H_2CO_3$
 $H_2CO_3 \longleftrightarrow H^+ + HCO_3$
 $+CO_3 \longleftrightarrow H^+ + CO_3^{2-}$

⁽a) Con respecto a los valores de exergia química cuando la salinidad es de 35‰

Sistema del Boro:

$$H_3BO_3 + H_2O \longleftrightarrow H^+ + B(OH)_4$$

A GARAGE STATE OF THE STATE OF

Las constantes aparentes de disociación que describen el equilibrio son:

$$k_{1C} = \frac{[H^+][HCO_3^-]}{[H_2CO_3]}$$
 (2-12),

$$k_{2C} = \frac{[H^+][CO_3^{2-}]}{[HCO_3^+]}$$
 (2-13)

$$k_B = \frac{[H^+][B(OH)_4^-]}{[H_3BO_3]} \tag{2-14}$$

La cantidad entre corchetes corresponde a la concentración de la especie en moles por kilogramo de agua de mar (mol/kg_{sw}). La concentración total de HCO₃, CO₃² y B(OH)₄ incluye la concentración tanto del ión libre como la de aquellos que forman complejos con otras especies disueltas en el agua de mar, como son el Mg²⁺ y Ca²⁺.

Existen tres escalas diferentes para medir el pH del agua de mar [25]: la del *National Bureau of Standards*, la de *concentración total de ión hidrógeno* y la de *concentración de ión hidrógeno libre*. En el presente trabajo se utiliza la escala de concentración total de ión hidrógeno, la cual fue propuesta por Hansson [26, 27] en 1973 y en la que el pH se determina por medio de electrodos calibrados en soluciones reguladoras (buffer) de agua de mar sintética. Hansson obtuvo constantes de disociación del ácido carbónico y del ácido bórico a diferentes valores de salinidad y temperatura. Almgren [28] propone las siguientes correlaciones para determinar las constantes k_{JC} , k_{2C} y k_{B} , a partir de los resultados de Hansson:

$$pk_{1C} = 841/T + 3.272 - 0.0101S + 0.0001S^{2}$$
 (2-15)

$$pk_{2C} = 1373/T + 4.854 - 0.01935S + 0.000135S^2$$
 (2-16)

$$pk_B = 1026/T + 5.527 - 0.0158S + 0.00016S^2$$
 (2-17)

Estas expresiones son válidas para un intervalo de salinidad de 20 a 40‰ y temperatura de 5 a 30°C y; en donde la temperatura está expresada en grados Kelvin y la salinidad en partes por mil.

Debido a que en el agua de mar existen iones (principalmente el ión sulfato) susceptibles de ser protonados por el ión hidrógeno presente en la solución, Hansson considera que la concentración total del ión hidrógeno $[H^{\dagger}]_{TOT}$ de las Ecuaciones 2-12, 2-13 y 2-14, comprende tanto al ión libre como a aquellas especies formadas por protonación, como es el caso del ión HSO₄, esto es,

$$[H^+]_{TOT} = [H^+] + [HSO_4^-] = [H^+] + \beta_{HSO_4^-} [H^+][SO_4^{2-}]$$
 (2-18)

La constante de asociación del ión bisulfato (β_{HSO4-}) se obtiene por medio de la expresión propuesta por Khoo, et al. [29], la cual está dada en función de la temperatura expresada en grados Kelvin y de la fuerza iónica de la solución en mol/kg_{H20}. La expresión para determinar β_{HSO4-} (Ecuación 2-19) es válida para valores de temperatura entre 5 y 40°C y de salinidad entre 20 y 40‰.

$$\log \beta_{HSO_4^-} = 647.59/T - 6.3451 + 0.019085T - 0.5208I^{1/2}$$
 (2-19)

Al despejar la concentración del ión hidrógeno $[H^{\dagger}]$ de la Ecuación 2-18 y aplicar el inverso del logaritmo a cada término, se obtiene la siguiente ecuación que permite determinar el pH del agua de mar:

$$pH = pH_{TOT} + \log\left(1 + \beta_{HSOT} [SO_4^{2-}]\right)$$
 (2-20)

Por lo tanto, si se considera que la proporción de todas las especies disueltas en el agua de mar permanece constante para cualquier valor de salinidad, y al seleccionar la constante de disociación del ión bicarbonato para calcular el pH total según se define en la Ecuación 2-13, se reduce la determinación del valor de pH a una salinidad y temperatura dada a los siguientes pasos:

tion of the property of the contract of the co

1. Cálculo de la concentración molar (mol/kg_{sw}) total de las especies HCO₃-, CO₃²- y SO₄²-:

ing paggarang paggarang digital paggarang paggarang paggaran digital panggaran kabang paggarang kabang bandapa

$$[HCO3] = (mHCO3 + mCaHCO3 + mKHCO3 + mMgHCO3 + mNaHCO3 + mPbHCO3 + mZnHCO3 + (2 - 21))$$

CHAIRE BEET TO A SHEET COME COME THE SHEET CONTINUES FOR MICHAIRE SHEET BEET TO A SHEET WAS SHEET OF

$$[CO32-] = (mCO32 + mCaCO3 + mCdCO3 + mCuCO3 + mKCO3 + mMgCO3 + mNaCO3 + mPbCO3 + mUO2(CO3)34 + mZnCO3) (1-S/1000) (2-22)$$

$$[SO42-] = (mBaSO4 + mCdSO4 + mPbSO4 + mSO42 + mCaSO4 + mKSO4 + mMgSO4 + mNaSO4 + mSrSO4 + mZnSO4) (1-S/1000) (2-23)$$

- 2. Con las concentraciones totales del ión carbonato y bicarbonato y por medio de las Ecuaciones 2-13 y 2-16 se obtiene la concentración total del ión hidrógeno $[H^+]_{TOT}$ presente en la solución.
- 3. A partir de la expresión 2-19, se calcula la constante de asociación del ión HSO₄, la cual esta dada en kg_{H2O}/mol, por lo que es necesario dividir el valor de β_{HSO4}, por la relación kg_{H2O}/kg_{SW}, es decir, (1-S/1000), y así mantener la misma base de concentración que en los pasos 1 y 2.
- 4. Finalmente, con la concentración total del ión sulfato, con los valores de $[H^+]_{TOT}$ y β_{HSO4-} y por medio de la Ecuación 2-20 se determina el valor de pH, el cual estará dado en base molar (mol/kg_{SW}). Debido a que en la ecuación de exergia química

estándar de los elementos presentes en la hidrosfera (Ecuación 2-5), la concentración de las especies está dada en moles por kilogramo de agua pura (base molal), es necesario dividir la concentración del ión hidrógeno entre (1-S/1000).

En la Tabla 2.11 se muestra que el valor de *pH* no varía notablemente cuando el contenido de sales se modifica, lo cual se debe a que el agua de mar es una disolución tampón, es decir, se tiene en solución tanto al ácido como a la base correspondiente de tal forma que, si se presenta un cambio en la concentración del ácido o de la base, la concentración de iones hidrógeno no se altera significativamente.

Tabla 2.11.- Efecto sobre el valor de pH al variar la salinidad.

Salinidad ‰	[HCO₃¯] mol/kg _{sw}	[CO3 ²⁻] mol/kg _{sw}	[SO ₄ ²⁻] mol/kg _{sw}	Fuerza lónica mol/kg _{H2O}	pH ^(a)
20	1.17x10 ⁻³	1.33x10 ⁻⁴	1.61x10 ⁻²	0.379	8.27
30	1.75×10 ⁻³	1.99x10 ⁻⁴	2.41×10 ⁻²	0.575	8.17
35	2.05x10 ⁻³	2.33x10 ⁻⁴	2.82x10 ⁻²	0.678	8.12
40	2.33x10 ⁻³	2.65x10 ⁻⁴	3.21x10 ⁻²	0.775	8.08

(a) En base moial (mol/kgH2O)

La ligera disminución en el valor de *pH* al aumentar la salinidad del agua de mar es razonable ya que al mismo tiempo que incrementa la concentración de las especies involucradas en los sistemas de bióxido de carbono y boro, también aumenta la concentración de los iones calcio y magnesio, lo que provoca que aumente la formación de complejos de estos cationes con los iones bicarbonato, carbonato y borato, disminuyendo ligeramente su concentración, y que, por consiguiente, las reacciones de disociación del ácido carbónico, del ión bicarbonato y del ácido bórico se desplacen a la formación del ión hidrógeno, incrementándose así su concentración.

Con base en los valores de pH calculados en función de la salinidad, se determinaron los valores de exergia química estándar, a condiciones normales de temperatura y presión, de los elementos presentes en el agua de mar para una salinidad de 35 y 40‰. Los resultados se presentan en la Tabla 2.12. Cabe señalar que en este ejercicio, se

mantienen constantes e iguales los coeficientes de actividad que considera Szargut a un cambio de salinidad.

Tabla 2.12.- Efecto en el valor de exergia química estándar de los elementos contenidos en la hidrosfera al incrementar la salinidad (se considera el cambio en el valor de pH).

		ento, kJ/gmol		
Elemento Químico (a)	Especie de Referencia	Salinidad = 35‰ pH = 8.12	Salinidad = 40% $pH = 8.08$	Desviación % ^(b)
Âg (s)	AgCl ₂	70.12	70.68	0.79
As (s)	HAsO ₄ ²	493.34	492.56	-0.16
Au (s)	AuCl ₂	15.31	15.86	3.61
B (s)	B(OH) ₃	628.53	628.20	-0.05
Ba (s)	Ba ²⁺	747.46	747.57	0.02
Bi _(s)	BiO⁺	274.47	274.37	-0.04
Br _{2 (I)}	Br [*]	101.38	100.27	-1.09
Ca (s)	Ca ²⁺	712.16	712.28	0.02
Cd (s)	CdCl ₂	293.53	294.30	0.26
Cl _{2 (g)}	CI	123.86	122.76	-0.89
Co (s)	Co ²⁺	248.38	248.49	0.05
Cs (s)	Cs⁺	404.46	404.35	-0.03
Cu (s)	Cu ²⁺	134.01	134.12	0.08
F _{2 (g)}	· F	466.53	465.43	-0.24
Hg (i)	HgCl ₄ 2-	115.53	116.97	1.24
l _{2 (s)}	103	174.94	173.83	-0.63
Κ (s)	K ⁺	366.55	366.44	-0.03
Li (s)	Li [*]	392.88	392.77	-0.03
Mg (s)	Mg ²⁺	610.75	610.86	0.02
Mn (s)	Mn ²⁺	421.74	421.85	0.03
Mo (s)	MoO ₄ 2-	730.54	729.76	-0.11
Na (s)	Na⁺	336.55	336.44	-0.03
Ni _(s)	Ni ²⁺	232.56	232.67	0.05
P (s)	HPO ₄ 2-	861.67	860.89	-0.09
Pb (s)	PbCl ₂	232.54	233.31	0.33
Rb (s)	Rb ⁺	388.68	388.57	-0.03
S (s)	SO ₄ ²⁻	609.65	608.88	-0.13
Se (s)	SeO ₄ ²	346.73	345.96	-0.22
Sr (s)	Sr ²⁺	729.97	730.08	0.02
W (s)	WO ₄ ²⁻	827.66	826.89	-0.09
Zn (s)	Zn ²⁺	339.10	339.21	0.03

(a) Estado: sólido (s), gaseoso (g) y líquido (l)

⁽b) Con respecto a los valores de exergia química cuando la salinidad es de 35%

Al considerar en el cálculo de exergia química estándar de los elementos, el cambio en el valor de pH por un aumento en el contenido de sales en el agua de mar, no se logran resultados satisfactorios para catorce elementos, ya que la desviación en su valor de exergia química para una salinidad de 40% es positiva, con respecto al valor de exergia química a una salinidad de 35%; es decir, al aumentar la concentración de las especies aumenta la exergia química estándar, contrario a lo esperado. La desviación es mayor para los elementos cuyas especies contienen cloro y que mostraban el mismo comportamiento cuando el valor de pH permanecía constante al cambiar la salinidad. Los siete elementos restantes que presentan una desviación positiva, aunque en menor medida, en su valor de exergia química al aumentar la salinidad, son: bario, calcio, cobalto, cobre, magnesio, manganeso, níquel, estroncio y zinc. En estos siete elementos la especie de referencia es el catión libre con valencia 2 más.

2.2.1.2.- Determinación de los coeficientes de actividad de las especies disueltas en el agua de mar.

Los coeficientes de actividad de las especies disueltas en el agua de mar se calculan con el modelo de Pitzer para solución de electrolitos [30], el cual combina la teoría electrostática de Debye-Hückel para interacciones de largo alcance con una expansión tipo virial para interacciones de corto alcance. Si se considera que las interacciones ocurren tan sólo entre dos iones al mismo tiempo y que las cargas eléctricas de éstos son de diferente signo, el coeficiente de actividad del catión M y del anión X está dado por:

$$\ln \gamma_M = (z_M / z_X) \ln \gamma_{EL} + 2 \sum_a m_a X_a + \sum_c \sum_a m_c m_a (z_M^2 B_{ca} + 2 z_M C_{ca})$$
 (2-24)

$$\ln \gamma_X = (z_X / z_M) \ln \gamma_{EL} + 2 \sum_c m_c X_c + \sum_c \sum_a m_c m_a (z_X^2 B_{ca} + 2 z_X C_{ca})$$
 (2-25)

donde,

$$\ln \gamma_{EL}' = A_{\phi} \left| z_M z_X \right| \left[I^{\frac{1}{2}} / (1 + 1.2I^{\frac{1}{2}}) + 1.6667 \ln(1 + 1.2I^{\frac{1}{2}}) \right]$$
 (2-26)

$$X_{a} = B_{Ma} + \left(\sum_{c} m_{c} z_{c}\right) C_{Ma}$$

$$X_{c} = B_{cX} + \left(\sum_{c} m_{c} z_{c}\right) C_{cX}$$

$$(2-27)$$

$$X_{o} = B_{cX} + \left(\sum_{c} m_{c} z_{c}\right) C_{cX}$$
 (2-28)

$$B_{MX} = \beta_{MX}^{0} + (2\beta_{MX}^{1} / \alpha_{1}^{2} \mathbf{I}) f_{1}(\alpha_{1}) + (2\beta_{MX}^{2} / \alpha_{2}^{2} \mathbf{I}) f_{1}(\alpha_{2})$$
 (2-29)

$$B'_{MX} = (2\beta_{MX}^{1} / \alpha_{1}^{2} I^{2}) f_{2}(\alpha_{1}) + (2\beta_{MX}^{2} / \alpha_{2}^{2} I^{2}) f_{2}(\alpha_{2})$$
 (2-30)

$$f_1(\alpha_n) = 1 - (1 + \alpha_n I^{1/2}) \exp(-\alpha_n I^{1/2})$$
 (2-31)

$$f_1(\alpha_n) = 1 - (1 + \alpha_n I^{\frac{1}{2}}) \exp(-\alpha_n I^{\frac{1}{2}})$$

$$f_2(\alpha_n) = (1 + \alpha_n I^{\frac{1}{2}} + 0.5\alpha_n^2 I) \exp(-\alpha_n I^{\frac{1}{2}}) - 1$$
(2 - 32)

$$C_{MX} = C_{MX}^{\phi} / 2 |z_{M} z_{X}|^{\frac{1}{2}}$$
 (2-33)

Representation of the second of the first

 m_i y z_i son la concentración molal y la carga eléctrica del ión i, respectivamente; A_{ϕ} el coeficiente de la teoría electrostática de Debye-Hückel, para el agua a 25°C A_ϕ tiene un valor de -0.392; I la fuerza iónica total molal de la solución (Ecuación 2-6); y Σ_a y Σ_c indican la suma de las propiedades de todos los aniones y cationes. Los parámetros de interacción β^0_{MX} , β^1_{MX} , β^2_{MX} y C^ϕ_{MX} se reportan en la literatura [31-37] para la mayoría de los pares de iones presentes en el agua de mar y se listan en el Apéndice B del presente trabajo. Los valores de α_1 y α_2 dependen del tipo de carga eléctrica de los iones M y X: si la interacción se da entre dos iones con carga igual a 2, α_1 =1.4 y α_2 =12, para el resto de las interacciones α_1 =2 y α_2 =0.

En la Tabla 2.13, se muestran los valores de coeficientes de actividad en base molal de los cationes y aniones libres presentes en el agua de mar, determinados con el modelo de Pitzer para diferentes valores de salinidad.

Tabla 2.13.- Coeficientes de actividad (en base molal) de los iones libres presentes en la hidrosfera a partir del modelo de Pitzer.

marte prese				harm are			
Salinidad, ‰	30	35	40		30	35	40
Fuerza lónica,			1.				
mol/kg _{H2O}	0.575	0.678	0.775		0.575	0.678	0.775
Catión				Anión			
H⁺	0.720	0.722	0.725	OH	0.636	0.625	0.617
Ag⁺	0.544	0.523	0.506	Cl	0.706	0.703	0.701
Au⁺	0.544	0.523	0.506	HAsO ₄ ²	0.153	0.138	0.127
Ba ²⁺	0.198	0.189	0.182	H ₂ AsO ₄	0.574	0.554	0.536
BiO⁺	0.544	0.523	0.506	AsO ₄ 3-	0.018	0.015	0.013
Ca ² ⁺	0.218	0.211	0.206	B(OH)₄	0.414	0.385	0.361
Cd ²⁺	0.089	0.077	0.068	SO ₄ 2-	0.141	0.128	0.119
Co ²⁺	0.224	0.217	0.212	Br	0.730	0.730	0.731
Cs⁺	0.586	0.570	0.557	HCO ₃	0.576	0.559	0.544
Cu ²⁺	0.198	0.189	0.183	CO ₃ ²⁻	0.053	0.045	0.040
Mg ²⁺	0.241	0.236	0.233	F F	0.593	0.576	0.563
Hg ²⁺	0.087	0.075	0.066	1O ₃	0.543	0.523	0.506
K⁺	0.627	0.614	0.604	MoO_4^{2-}	0.087	0.075	0.065
Li⁺	0.727	0.729	0.732	HPO ₄ ²	0.135	0.120	0.109
Mn ²⁺	0.232	0.224	0.219	H ₂ PO ₄	0.526	0.503	0.484
Na [⁺]	0.662	0.653	0.646	PO ₄ 3-	0.017	0.014	0.012
Ni ²⁺	0.228	0.221	0.217	SeO ₄ 2-	0.087	0.075	0.065
Pb ²⁺	0.206	0.196	0.189	WO ₄ ²⁻	0.087	0.075	0.065
Rb⁺	0.614	0.600	0.589				
Sr ²⁺	0.217	0.209	0.203	Service Control	9	14577	version and
UO ₂ ²⁺	0.257	0.253	0.250				
Zn ²⁺	0.213	0.203	0.196	$\mathbb{N}(t)^{\mathcal{F}} = \mathbb{N}^{r_{\mathcal{F}}} = \mathbb{N}^{r_{\mathcal{F}}}$		er er kolf	and the

Al aumentar el contenido de sales en el agua de mar y por consiguiente la fuerza iónica, el coeficiente de actividad de los iones libres disminuye, sin embargo, en los casos de los iones Li⁺, H⁺ y Br se presenta el comportamiento contrario. En el caso del ión hidrógeno, el coeficiente de actividad se incrementa ligeramente al aumentar la salinidad y, en el caso del ión bromuro, su actividad permanece prácticamente constante. Al comparar (Tabla 2.14) los valores de coeficientes de actividad de los iones libres estimados en el presente trabajo con los determinados experimentalmente en soluciones con una fuerza iónica parecida a la del agua de mar a una salinidad de 35‰, se observa que, en general, el modelo de Pitzer reproduce adecuadamente los valores de coeficiente de actividad experimentales, excepto en el caso del ión carbonato. Esto se explica ya que tan sólo existe información de parámetros de interacción del ión carbonato con los cationes Na⁺ y Mg²⁺ que, si bien son los de mayor

THE CONTRACTOR OF THE PROPERTY OF STREET AND A STREET

concentración en el agua de mar, no son los únicos con los que interactúa el ión carbonato.

Tabla 2.14.- Comparación entre los valores de γ_i determinados experimentalmente y los calculados con el modelo de Pitzer (Salinidad 35%).

	1		
lón	Dato experimental ^a I=0.7 mol/kg _{H20}	Modelo de Pitzer I=0.678 mol/kg _{H2O}	Por ciento de error
Na [†]	0.68	0.653	4
Mg ²⁺ Ca ²⁺	0.23	0.236	3
Ca ²⁺	0.21	0.211	1
K [⁺]	0.64	0.614	4
Cl	0.68	0.703	3
SO ₄ 2-	0.11	0.128	- 16
HCO ₃	0.55	0.559	2
CO ₃ ²⁻	0.02	0.045	125

(a) Valores leídos del libro de Szargut [4]

Conviene mencionar que los valores calculados para los coeficientes de actividad de los iones libres y su comportamiento al variar la fuerza iónica de la solución coinciden con los estimados por Whitfield [38], quien calculó, por medio del modelo de Pitzer, los coeficientes de actividad de los iones presentes en el agua de mar, incluyendo en su estimación, especies que están en baja concentración.

Al analizar los valores de la Tabla 2.13 se observa que, como lo establece Szargut. existe una relación entre el tipo de ión y la magnitud del valor de coeficiente de actividad, esto es, para iones monovalentes simples el valor de coeficiente de actividad es mayor a 0.6, para los iones monovalentes pesados entre 0.5 y 0.6, para los iones divalentes simples alrededor de 0.2, para los iones divalentes complejos 0.1 y para los iones complejos con una carga eléctrica de tres, el coeficiente de actividad es alrededor de 0.01.

Con base en lo anterior, no se consideran adecuados los valores de coeficientes de actividad de los iones Cd2+ y Hg2+ obtenidos a partir del modelo de Pitzer, ya que el valor estimado (menor a 0.1) está por debajo de 0.2, valor esperado para este tipo de iones. El resultado anterior es posible que se deba a que en el cálculo del coeficiente de actividad no se incluyen las interacciones entre dichos cationes con el ión cloruro, principal anión presente en el agua de mar, por no contar con los parámetros de interacción de las sales correspondientes.

Ahora bien, para determinar el coeficiente de actividad de compuestos iónicos se utiliza la Ecuación 2-34, en donde v_M y v_X son el número de iones M y X que componen a la sal iónica y $v = v_M + v_X$.

$$\gamma_{MX^{\pm}} = \left(\gamma_M^{\nu_M} \gamma_X^{\nu_X}\right)^{\nu_\nu} \tag{2-34}$$

KIND AND AND AND THE PROPERTY OF THE STATE O

Los compuestos iónicos, cuyos coeficientes de actividad se requieren conocer, son: $HgCl_4^{2-}$, $AgCl_2^{-}$ y $AuCl_2^{-}$. En el caso del ión $HgCl_4^{2-}$, el valor de coeficiente de actividad para una salinidad de 35‰ resulta de 0.45, valor muy diferente al que considera Szargut de 0.1 para iones divalentes complejos y que coincide con los valores estimados en el presente trabajo con el modelo de Pitzer, por lo que se considera que el valor de coeficiente de actividad del ión $HgCl_4^{2-}$ es igual al valor que se obtenga para el ión $HAsO_4^{2-}$. El coeficiente de actividad de los iones $AgCl_2^{-}$ y $AuCl_2^{-}$ para una salinidad de 35‰ es 0.637, valor que resulta ligeramente alto para este tipo de ión, pero que se considera razonable.

El coeficiente de actividad del ácido bórico se obtiene a partir del valor de la constante de equilibrio termodinámico (K_B) de la reacción de ionización y del coeficiente de actividad de los iones hidrógeno y borato obtenidos a partir del modelo de Pitzer, esto es.

BANGER PRACTICES OF A AREA OF EMPLOYED AND A SECTION OF A

$$K_{B} = \frac{[H^{+}]\gamma_{H^{+}} [B(OH)_{4}^{-}]\gamma_{B(OH)_{4}^{-}}}{[B(OH)_{3}]\gamma_{B(OH)_{3}}}$$
(2-35)

o bién, se semplé en misseum (no sérem e écés dificilipé per le combiné de la combiné

$$\gamma_{B(OH)_3} = \frac{k_B}{K_B} \gamma_{H^+} \gamma_{B(OH)_4} \tag{2-36}$$

en donde k_B es la constante de asociación estequiométrica o aparente de la reacción de ionización y está dada por la Ecuación 2-17, en base molar (mol/kg_{sw}). Hershey, et.al. [35] mencionan un valor de p K_B de 9.237 a 25°C para la reacción de ionización del ácido bórico. Se supone que dicha constante de equilibrio está dada en base molal (mol/kg_{H2O}). Para una salinidad de 35‰, se obtiene un valor de coeficiente de actividad del B(OH)₃ de 1.22 (en base molal), valor cercano al que estiman Millero y Schreiber [39] de 1.1 para sales no iónicas formadas a partir de cationes y aniones monovalentes, al utilizar el modelo del par iónico para la determinación de coeficientes de actividad y suponiendo una fuerza iónica de la solución de 0.7 molal.

En el caso de la especie PbCl₂, la reacción de referencia es la formación de la misma, y de igual forma que en el caso del ácido bórico, su coeficiente de actividad se determina a partir de la definición de la constante de equilibrio termodinámico de la reacción, que en este caso se define como:

$$Pb^{2+} + 2 Cl^{-} \longleftrightarrow PbCl_{2}$$

$$K_{PbCl_2} = \frac{[PbCl_2]\gamma_{PbCl_2}}{[Pb^{2+}]\gamma_{Pb^{2+}}[Cl^-]^2\gamma_{Cl^-}^2}$$
 (2-37)

La constante de asociación estequiométrica de la reacción de formación del PbCl₂, está dada por la relación que guardan en el equilibrio la concentración molal del cloruro de plomo y la concentración molal de los iones libres que lo conforman, es decir,

$$k_{PbCl_2} = \frac{[PbCl_2]}{[Pb^{2+}][Cl^-]^2}$$
 (2-38)

Al sustituir la Ecuación 2-38 en la 2-37, el coeficiente de actividad del PbCl₂ es igual a

$$\gamma_{PbCl_2} = \frac{K_{PbCl_2}}{k_{PbCl_1}} \gamma_{Pb^{2+}} \gamma_{Cl}^2$$
 (2-39)

Millero y Byrne [37] determinaron experimentalmente un valor de 2.03 para $log\ K_{PbCl2}$ a 25°C para la reacción de formación del PbCl₂ y estimaron un valor de constante de asociación estequiométrica de 14.53 (en base molal) de una solución de agua de mar con una fuerza iónica de 0.723 molal. Debido a que no se tiene información del efecto que tiene un cambio en la fuerza iónica en el valor de k_{PbCl2} , en el presente trabajo se supondrá que su valor es constante a cualquier salinidad.

A partir de la Ecuación 2-39, para una salinidad de 35‰ (I=0.678 molal), se obtiene un valor de coeficiente de actividad para el PbCl₂ de 0.714, valor muy cercano al que estiman Millero y Byrne de 0.745 en una solución de agua de mar con una fuerza iónica de 0.723 molal.

El procedimiento para determinar el coeficiente de actividad del CdCl₂ deber ser igual al del PbCl₂, sin embargo, no se dispone de información de las constantes de equilibrio y de asociación estequiométrica de la reacción de formación del cloruro de cadmio, por lo que se supondrá que

$$\gamma_{CdCl_2} = \gamma_{PbCl_2}$$

En la Tabla 2.15, se presentan los valores de coeficientes de actividad de los compuestos iónicos y no iónicos bajo estudio a diferentes valores de fuerza iónica.

Tabla 2.15.- Coeficientes de actividad (en base molal) de los compuestos iónicos y no iónicos presentes en el agua de mar.

Salinidad, %	30,_	35	40
Fuerza lónica, mol/kg _{H2O}	0.575	0.678	0.775
Compuesto:			
HgCl ₄ ²⁻	0.153	0.138	0.127
AgCl ₂	0.647	0.637	0.629
AuCl ₂	0.647	0.637	0.629
B(OH)₃	1.219	1.218	1.203
PbCl ₂	0.757	0.714	0.683

El resultado del cálculo de exergia química estándar de los elementos presentes en el agua de mar para una salinidad de 35 y 40‰, al considerar los valores de coeficiente de actividad de las especies de referencia estimados a partir del modelo de Pitzer, se presenta en la Tabla 2.16. En este ejercicio se mantiene el valor de *pH* del agua de mar en 8.1.

Tabla 2.16.- Efecto en el valor de exergia química estándar de los elementos presentes en la hidrosfera al aumentar la salinidad (se considera el cambio en los valores de coeficiente de actividad, pH = 8.1).

		Ex _q ° del elem		
Elemento Químico (a)	Especie de Referencia	Salinidad = 35‰	Salinidad = 40%	Desviación % ^(b)
Ag (s)	AgCl ₂	70.25	70.59	0.50
As (s)	HasO ₄ ²	492.32	492.19	-0.03
Au (s)	AuCl ₂	15.43	15.78	2.25
B (s)	B(OH) ₃	628.04	627.74	-0.05
Ba _(s)	Ba ²⁺	747.82	747.58	-0.03
Bi (s)	BiO [⁺]	274.92	274.67	-0.09
Br _{2 (I)}	Br ⁻	100.81	100.14	-0.67
Ca (s)	Ca ²⁺	712.37	712.09	-0.04
Cd (s)	CdCl ₂	294.74	295.17	0.14
Cl _{2 (g)}	CI	123.48	122.84	-0.52
Co (s)	Co ²⁺	248.39	, 248.11	-0.11
Cs (s)	Cs [⁺]	404.69	404.42	-0.07
Cu (s)	Cu ²⁺	134.36	134.12	-0.18
F _{2 (g)}	F	467.13	466.59	-0.12
Hg (i)	HgCl₄²⁻	115.27	116.44	1.01
l _{2 (s)}	IO ₃	175.41	174.91	-0.28
K (s)	. K ⁺	366.76	366.47	-0.08
Li (s)	Li ⁺	392.82	392.48	-0.09
Mg (s)	Mg ²⁺	610.90	610.61	-0.05
Mn _(s)	Mn ²⁺	421.68	421.41	-0.06
Mo (s)	MoO ₄ ²	729.70	729.56	-0.02
Na (s)	Na [⁺]	336.76	336.46	-0.09
Ni (s)	Ni ²⁺	232.53	232.24	-0.12
P (s)	HPO ₄ 2-	861.00	860.91	-0.01
Pb _(s)	PbCl ₂	233.75	234.18	0.18
Rb (s)	Rb [⁺]	388.79	388.50	-0.07
S (s)	SO ₄ ²⁻	609.05	608.91	-0.02
Se (s)	SeO ₄ ²	345.89	345.75	-0.04
Sr (s)	Sr ²⁺	730.08	729.82	-0.04
W (s)	WO ₄ ²⁻	826.83	826.69	-0.02
Zn (s)	Zn ²⁺	339.27	339.04	-0.07

(a) Estado: sólido (s), gaseoso (g) y líquido (l)

⁽b) Con respecto a los valores de exergia química cuando la salinidad es de 35‰

Si en el cálculo de exergia química estándar se considera tan sólo el cambio en el valor de coeficiente de actividad por una variación de salinidad, se observa que al aumentar el contenido de sales, se incrementa el valor de exergia química estándar de los elementos cuyas especies de referencia contienen cloro y no así la exergia química de los elementos cuyas especies de referencia son cationes divalentes simples; contrario a lo que ocurría cuando el valor de coeficiente de actividad se mantenía constante y sólo se consideraba el cambio del valor de pH a un incremento de salinidad.

En la Tabla 2.17, se presentan los valores de exergia química estándar de los elementos presentes en el agua de mar para una salinidad de 35 y 40‰, al incluir en el cálculo los valores de pH y coeficiente de actividad estimados de manera rigurosa en función del contenido de sales. También se presenta el valor de exergia química estándar del cadmio y plomo cuando se consideran como especies de referencia a los iones Cd^{2+} y Pb^{2+} , respectivamente.

Al combinar el efecto del incremento en la salinidad en los valores de pH y coeficientes de actividad de las especies de referencia, resulta que la exergia química estándar se incrementa tanto en los elementos cuyas especies de referencia contienen cloro como en los elementos cuyas especies de referencias son cationes divalentes simples; de igual manera, que en el cálculo cuando sólo se consideraba el cambio de pH, que daba también una desviación mayor en el valor de exergia química de los elementos cuyas especies de referencia contienen cloro. El resultado anterior es erróneo ya que al incrementar el contenido de las especies en el medio, el trabajo máximo que se produce al cambiar la concentración de las especies como sustancias puras a la que poseen en el medio (exergia concentracional) debe de disminuir, en lugar de aumentar, y si la reacción de formación de las especies de referencia es la misma, la exergia química estándar de los elementos también debe disminuir.

Tabla 2.17.- Efecto en el valor de exergia química estándar de los elementos contenidos en la hidrosfera al aumentar la salinidad (se considera el cambio en los valores de pH y coeficientes de actividad).

		Ex _q ° del elem			
Elemento Químico (a)	Especie de Referencia	Salinidad = 35‰ pH = 8.12	Salinidad = 40% ₀ pH = 8.08	Desviación % ^(b)	
Ag (s).	AgCl ₂	70.14	70.71	0.81	
As (s)	HasO ₄ ²	492.53	491.97	-0.11	
Au (s)	AuCl ₂	15.32	15.89	3.71	
B (s)	B(OH) ₃	628.04	627.74	-0.05	
Ba _(s)	Ba ²⁺	747.60	747.80	0.03	
Bi (s)	BiO ⁺	274.81	274.79	-0.01	
Br _{2 (I)}	Br	101.03	99.92	-1.10	
Ca _(s)	Ca ²⁺	712.15	712.32	0.02	
Cd (s)	CdCl ₂	294.53	295.40	0.29	
	Cd ²⁺	293.08	293.49	0.14	
Cl _{2 (g)}	Cl	123.70	122.61	-0.88	
Co (s)	Co ²⁺	248.18	248.34	0.07	
Cs (s)	Cs ⁺	404.58	404.53	-0.01	
Cu (s)	Cu ²⁺	134.15	134.35	0.15	
F _{2 (g)}	F	467.35	466.37	-0.21	
Hg (i)	HgCl ₄ ²	115.05	116.67	1.40	
l _{2 (s)}	1O ₃	175.62	174.68	-0.54	
K (s)	K ⁺	366.65	366.58	-0.02	
Li (s)	. Li [*]	392.71	392.59	-0.03	
Mg (s)	Mg ²⁺	610.69	610.83	0.02	
Mn (s)	Mn ²⁺	421.46	421.63	0.04	
Mo (s)	MoO ₄ ²⁻	729.92	729.33	-0.08	
Na _(s)	Na	336.65	336.57	-0.02	
Ni _(s)	Ni ²⁺	232.31	232.47	0.07	
P (s)	HPO4 ²⁻	861.22	860.69	-0.06	
Pb (s)	PbCl ₂	233.53	234.40	0.37	
5 4 6 6	Pb ²⁺	236.54	236.75	0.09	
Rb _(s)	Rb⁺	388.68	388.62	-0.02	
S (s)	SO ₄ ²	609.27	608.69	-0.10	
Se (s)	SeO ₄ ²⁻	346.11	345.53	-0.17	
Sr (s)	Sr ²⁺	729.86	730.04	0.02	
W (s)	WO ₄ ²⁻	827.04	826.46	-0.07	
Zn (s)	Zn ²⁺	339.06	339.26	0.06	

(a) Estado: sólido (s), gaseoso (g) y líquido (l)

Por otro lado, con base en el análisis realizado, se observa que la variación en el valor de pH por un cambio en la salinidad tiene un efecto mayor en el valor de exergia química estándar que la variación del coeficiente de actividad. De acuerdo con la

⁽b) Con respecto a los valores de exergia química cuando la salinidad es de 35‰

Ecuación 2-5, el término que representa el cambio en concentración del ión hidrógeno de una solución 1 molal a la concentración que posee en el medio, dada por el pH, es afectado por la carga eléctrica de la especie. Si se considera que en el caso de los cationes divalentes simples, el efecto en el valor de exergia química de los elementos por un cambio en el valor de pH es del doble que para otros elementos, sería erróneo; ya que en el caso de los aniones divalentes complejos, como por ejemplo el SO_4^{2-} , al aumentar la salinidad sí disminuye la exergia química del elemento azufre, aunque en el caso de los aniones divalentes complejos también influye en el valor de exergia química del elemento bajo consideración, la exergia química de los elementos adicionales presentes en la especie de referencia.

El que no se obtengan resultados satisfactorios en la variación del valor de exergia química estándar de algunos elementos al variar la salinidad, se podría justificar en el caso de aquellos elementos cuyas especies de referencia se encuentran en baja concentración en el agua de mar, ya que por lo mismo son poco estables en este medio; sin embargo, en el caso de los elementos calcio, magnesio y estroncio no se encuentra explicación lógica debido a que sus especies de referencia (Ca²+, Mg²+, Sr²+) están en alta concentración. Por lo tanto, se recomienda seleccionar especies de la corteza terrestre como referencia en el cálculo de exergia química estándar de los elementos Ag, Au, Ba, Ca, Cd, Co, Cu, Hg, Mg, Mn, Ni, Pb, Sr y Zn.

Es importante mencionar que Szargut, en su última publicación sobre el cálculo de exergia química estándar de los elementos [2], encontró que cuando se utiliza el valor de exergia química de los elementos bario, calcio, cobalto, magnesio, manganeso, estroncio y flúor determinado a partir de una especie del agua de mar, para evaluar la exergia química de compuestos presentes en la corteza terrestre que contienen a dichos elementos, el valor de exergia química del compuesto resulta negativo, por lo que recomienda no considerar especies de la hidrosfera para estos elementos. Por otro lado, Szargut sugiere utilizar el oro sólido como especie de referencia para el elemento oro, ya que el valor de exergia química a partir de esta especie es mayor que el valor que resulta cuando se selecciona al ión AuCl₂ disuelto en el agua de mar.

En conclusión, se recomienda utilizar especies presentes en la hidrosfera como referencia para la determinación de la exergia química estándar de los siguientes elementos: arsénico, boro, bismuto, bromo, cloro, cesio, yodo, potasio, litio, molibdeno, sodio, fósforo, rubidio, azufre, selenio y tungsteno. El efecto por un cambio de salinidad del agua de mar en el valor de exergia química estándar de dichos elementos es muy pequeño. El elemento que presenta la mayor desviación (1.1%) en su valor de Ex_q° al aumentar la salinidad de 35 a 40% es el bromo.

Los resultados de exergia química estándar de los elementos contenidos en el agua de mar a condiciones normales de temperatura y presión, que genera el programa EXQCOMP al considerar una salinidad de 35‰ se muestran en el Apéndice C, mientras que aquellos obtenidos al suponer una salinidad de 40‰ se presentan en el Apéndice A.3.

2.3.- Exergia química estándar de los elementos contenidos en la litosfera.

La mayoría de los elementos de la tabla periódica se encuentran en la capa externa de la Tierra y su concentración en este medio es mucho mayor que en otros; sin embargo, debido a que la corteza terrestre es heterogénea y que las especies que contienen a estos elementos se presentan en muy diversas formas, la determinación de la concentración de cada especie resulta difícil.

Szargut [2, 4] propone que las especies de referencia sólidas se traten como componentes de una solución ideal y formula una composición para este medio sólido ideal homogéneo con las especies que se encuentran en mayor concentración en la capa externa de la corteza terrestre, como son los óxidos, hidróxidos, carbonatos, silicatos, sulfatos y cloruros de metales. Szargut establece que la exergia química estándar de las especies en dicho medio se puede determinar por medio de la siguiente expresión:

$$Ex_{q_i}^o = -R T_n \ln x_{in} \qquad (2-40)$$

La fracción molar promedio (x_{in}) de la especie de referencia i se calcula a partir de la concentración molar promedio $(n_{o\ el})$ en kgmol/kg del elemento bajo consideración en la capa externa de la corteza terrestre, esto es,

in a fireful dialogical policify policiones established by the break of the conjugate periods for a fireful by

$$x_{in} = \frac{1}{l_i} n_{oel} c_i M_o \tag{2-41}$$

en donde, l_i es el número de átomos del elemento en la molécula de la especie de referencia, c_i es la fracción de la concentración total del elemento que aparece en la forma de la especie de referencia y M_o es el peso molecular promedio de los componentes de la capa externa de la corteza terrestre. Szargut determina un valor de M_o igual a 135.5 kg/kgmol para la composición del medio sólido que considera.

En la Tabla 2.18, se presentan los valores de exergia química estándar, a condiciones normales de temperatura y presión (T = 298.15 K y P = 101.325 kPa), de las especies de referencia presentes en la litosfera al considerar la concentración promedio ($n_{o\,el}$) de los elementos en la corteza terrestre y la fracción (c_i) del elemento en la forma de la especie de referencia que indica Szargut [2]. En la misma tabla, se muestra la desviación porcentual entre el valor calculado de exergia química estándar y el que predice Szargut [2].

Entre menor es la fracción molar de una especie en la corteza terrestre, mayor es su exergia química estándar, ya que el valor de su exergia concentracional aumenta, es decir, aumenta el trabajo que se obtiene al cambiar la concentración de la especie como componente puro a la que posee en el medio, a temperatura y presión constante.

and the contract of the second of the contract of the contract

Tabla 2.18.- Exergia química estándar de las especies presentes en la corteza terrestre a condiciones normales de temperatura y presión.

						ratura y presió		
Elei	nento	Especie	de refe	rencia	<u> </u>	Ex_q^o de la espec	ie, kJ/gmol	
<u> </u>				·		Determinada		(0)
	$n_{o el}$		*	_		en el presente		Desviación ^(a)
Símbolo	kmol/kg	Fórmula química	C_i	l_i	x_{in}	trabajo	Szargut	%
Ag	3.7E-10	AgCl	0.02	1	1.00E-09	51.36	51.4	-0.07
Al 🔝	3.1E-03	Al ₂ SiO ₅	0.01	2	2.07E-03	15.32	15.3	0.16
Au	2.0E-11	Au	0.5	1	1.36E-09	50.62	50.5	0.23
Ba	3.1E-06	BaSO ₄	0.01	1.	4.20E-06	30.69	30.7	-0.04
Be	3.1E-07	Be ₂ SiO ₄	0.01	2	2.10E-07	38.11	38.1	0.04
Ca	1.0E-03	CaCO ₃	0.01	1	1.40E-03	16.30	16.3	-0.02
Cd	1.8E-09	CdCO ₃	0.05	1	1.22E-08	45.17	45.2	-0.07
Ce E	4.3E-07	CeO ₂	0.02	1	1.17E-06	33.87	33.8	0.20
Co	4.2E-07	CoFe ₂ O ₄	0.005	1 7	2.85E-07	37.36	40.1	-6.83
Cr	2.0E-06	K ₂ Cr ₂ O ₇	0.01	2	1.36E-06	33.49	33.4	0.28
Cu	8.7E-07	CuCO ₃	0.05	1	5.89E-06	29.85	29.8	0.16
Dy 🗀	1.8E-08	Dy(OH) ₃	0.02	1	4.88E-08	41.73	41.7	0.08
Er	1.7E-08	Er(OH)3	0.02	.:13	4.61E-08	41.87	41.9	-0.06
Eu	7.9E-09	Eu(OH) ₃	0.02	1.	2.14E-08	43.77	43.8	-0.06
F	3.3E-05	CaF ₂ •3Ca ₃ (PO ₄) ₂	0.01	2	2.24E-05	26.54	26.6	-0.21
Fe :	1.0E-03	Fe ₂ O ₃	0.1	2	6.78E-03	12.38	12.4	-0.16
Ga	2.2E-07	Ga ₂ O ₃	0.02	2	2.98E-07	37.25	37.2	0.12
Gd	3.4E-08	Gd(OH) ₃	0.02	1	9.21E-08	40.16	40.2	-0.11
Ge	1.4E-08	GeO ₂	0.05	1	9.49E-08	40.08	40.1	-0.04
Hf	1.7E-08	HfO_2	0.05	1	1.15E-07	39.60	39.5	0.26
Hg	4.0E-10	HgCl ₂	0.01	1	5.42E-10	52.89	52.9	-0.02
Но	7.2E-09	Ho(OH) ₃	0.02	1	1.95E-08	44.00	43.9	0.24
in:	8.7E-10	In ₂ O ₃	0.05	2	2.95E-09	48.69	48.7	-0.02
lr	5.3E-12	IrO ₂	0.005	1	3.59E-12	65.32	65.3	0.04
La	2.2E-07	La(OH) ₃	0.02	1	5.96E-07	35.53	35.5	0.08
Lu	2.9E-09	Lu(OH)₃	0.02	.1	7.86E-09	46.26	46.2	0.13
Mg	9.6E-04	Mg ₃ Si ₄ O ₁₀ (OH) ₂	0.02	3	8.67E-04	17.48	14.8	18.08
Mn	1.7E-05	MnO ₂	0.01	1	2.30E-05	26.47	20.8	27.26
Nb	2.2E-07	Nb_2O_3	0.01	2	1.49E-07	38.96	39	-0.09
Nd	1.9E-07	Nd(OH) ₃	0.02	1	5.15E-07	35.89	35.9	-0.02
Ni	1.3E-06	NiO	0.01	1	1.76E-06	32.84	32.8	0.13
Os	5.0E-13	OsO ₄	0.005	1	3.39E-13	71.18	71.2	-0.03
Pb	7.7E-08	PbCO ₃	0.01	1	1.04E-07	39.85	40	~0.38
Pd	9.4E-11	PdO	0.005	. 1	6.37E-11	58.20	58.2	-0.01
Pr	5.8E-08	Pr(OH)₃	0.02	1	1.57E-07	38.83	38.8	0.08
Pt	2.6E-11	PtO ₂	0.005	1	1.76E-11	61.38	61.3	0.13
Pu	6.2E-20	PuO ₂	0.01	1	8.40E-20	108.88	108.9	-0.02
Ra	4.4E-15	RaSO ₄	0.05	1.	2.98E-14	77.20	77.2	0.00
Re	5.4E-12	Re ₂ O ₇	0.01	2	3.66E-12	65.28	65.3	-0.04
Rh	9.7E-12	Rh_2O_3	0.005	2	3.29E-12	65.54	65.5	0.07
Ru	1.0E-12	RuO_2	0.005	1	6.78E-13	69.46	69.5	-0.06
Sb	1.6E-09	Sb ₂ O ₅	0.001	2	1.08E-10	56.88	56.8	0.14
Sc	1.1E-07	Sc ₂ O ₃	0.05	2	3.73E-07	36.69	36.7	-0.02
		alor que indica Szaro						

(a) Con respecto al valor que indica Szargut

Tabla 2.18.- Exergia química estándar de las especies presentes en la corteza terrestre a condiciones normales de temperatura y presión (continuación).

Eler	nento	Especie	de referenci	a Ex	ç° de la especi	e, kJ/gmol	· · · · · · · · · · · · · · · · · · ·
	:	and the second		D	eterminada		14
	no el		1	er	el presente		Desviación ^(a)
Símbolo	kmol/kg	Fórmula química	$c_i = l_i$	x_{in}	trabajo	Szargut	%
Si	1.0E-02	SiO ₂	0.3 1	4.07E-01	2.23	2.2	1.43
Sm 👢	4.0E-08	Sm(OH) ₃	0.02 1	1.08E-07	39.75	39.7	0.14
Sn market	1.7E-08	SnO ₂	0.2	4.61E-07	36.17	36.2	-0.09
Sr	4.3E-06	SrCO ₃	0.05 1	2.91E-05	25.89	25.9	-0.05
Ta 😘 🗉	1.1E-08	Ta ₂ O ₅	0.01 2	7.45E-09	46.39	46.4	-0.02
Tb 1	6.3E-09	Tb(OH) ₃	0.02 1	1.71E-08	44.34	44.9	-1.26
Te	1.4E-11	TeO ₂	0.005 1	9.49E-12	62.92	62.9	0.02
Th 🐭 🕾	4.0E-08	ThO ₂	0.05 1	2.71E-07	37.48	37.5	-0.05
Ti 🛒	1.2E-04	TiO ₂	0.01 1	1.63E-04	21.63	21.7	-0.34
TI TO	2.2E-09	Tl ₂ O ₄	0.01 2	1.49E-09	50.38	60.4	-16.59
Tm	2.8E-09	Tm(OH) ₃	0.02 1	7.59E-09	46.35	46.3	0.10
U with	1.1E-08	UO₃ •H₂O	0.01 1	1.49E-08	44.67	44.7	-0.06
V . 4.5	2.7E-06	V_2O_5	0.01 2	1.83E-06	32.75	31 🕟	5.64
Υ	3.7E-07	Y(OH) ₃	0.02 1	1.00E-06	34.24	34.2	0.12
Yb	1.7E-08	Yb(OH) ₃	0.02 1	4.61E-08	41.87	41.9	-0.06
Zn	1.1E-06	ZnCO ₃	0.05 1	7.45E-06	29.27	29.3	-0.11
Zr	1.8E-06	ZrSiO₄	0.1	2.44E-05	26.33	26.4	-0.27

(a) Con respecto al valor que indica Szargut

Los valores de exergia química estándar de las especies que contienen a los elementos cobalto, magnesio, manganeso, talio y vanadio, obtenidos en el presente estudio, son muy diferentes a los valores de exergia química que indica Szargut. La razón de estas diferencias se debe a que los valores considerados de fracción molar x_{in} de la especie y número de átomos l_i del elemento en la molécula de la especie de referencia, difieren de los valores empleados por Szargut. El valor de l_i no está explícito en el artículo de Szargut [2].

En el caso del compuesto $CoFe_2O_4$, Szargut obtiene un valor de $9.5x10^{-8}$ como fracción molar de la especie, diferente a $2.85x10^{-7}$; valor aquí calculado por medio de la Ecuación 2-41 y a partir del valor de concentración molar de cobalto en la litosfera de $4.2x10^{-7}$ kgmol/kg, que reporta Szargut. Para obtener el valor de $x_{CoFe_2O_4n} = 9.5x10^{-8}$, el valor de n_{oCo} tendría que ser igual a $1.4x10^{-7}$ kgmol/kg, en lugar de $4.2x10^{-7}$. Al revisar diferentes fuentes de información (ver Tabla 2.19), la mayoría coinciden en que la concentración de cobalto en la corteza terrestre es cercana a $4.2x10^{-7}$ kgmol/kg, por lo

que se considera que los valores obtenidos de fracción molar y exergia química estándar del CoFe₂O₄ en el presente trabajo son los correctos.

Tabla 2.19.- Concentración molar promedio de algunos elementos en la corteza terrestre (kgmol/kg), de acuerdo con diferentes fuentes de información.

		37.	* *			
			Refe	rencia		
Elemento	Szargut, 1989	Fairbridge, 1972	2000	Turner, et. al. 1980	The Open University Course Team, 1989	Riley, 1971
Químico	[2]	[40]	[41]	[42]	[23]	[12]
Со	4.2e-7	4.9e-7	5.1e-7	2.2e-7	4.2e-7	4.2e-7
Mg	9.6e-4	1.1e-3	1.2e-3	6.7e-4	9.5e-4	8.2e-4
Mn	1.7e-5	1.9e-5	2.0e-5	1.3e-5		1.7e-5
Ti	2.2e-9	3.5e-9	2.6e-9	2.2e-9		2.2e-9
<u>v</u> :	2.7e-6	2.7e-6	3.7e-6	1.9e-6		2.7e-6

Respecto a la especie que contiene al magnesio, Szargut estima un valor de fracción molar del $Mg_3Si_4O_{10}(OH)_2$ de $2.6x10^{-3}$, en lugar de $8.67x10^{-4}$, valor determinado en el presente estudio al considerar un valor de $n_{o\ el}$ y l_i igual a $9.6x10^{-4}$ kgmol/kg y 3, respectivamente. Para obtener el valor de $x_{in}=2.6x10^{-3}$, el valor de $n_{o\ el}$ tendría que ser igual a $2.9x10^{-3}$ kgmol/kg ó que l_i se considerara igual a uno. De acuerdo con diferentes autores, la concentración de magnesio en la litosfera es cercana al valor de $9.6x10^{-4}$ kgmol/kg que indica Szargut, por lo que probablemente Szargut utiliza un valor de l_i igual a uno en lugar de tres, valor aquí empleado ya que una molécula de la especie bajo consideración contiene tres átomos de magnesio. Se supone que los valores de fracción molar y exergia química estándar de la especie $Mg_3Si_4O_{10}(OH)_2$ obtenidos en el presente estudio son los correctos.

La diferencia entre el valor de exergia química estándar del MnO_2 indicado por Szargut y el aquí estimado podría deberse a un error de lectura, ya que el valor determinado de fracción molar de la especie es $2.3x10^{-5}$ y el que indica Szargut es $2.3x10^{-4}$. Si el valor de x_{MnO2n} fuera igual a $2.3x10^{-4}$, la concentración del manganeso en la corteza terrestre tendría que ser de $1.7x10^{-4}$, diferente al valor empleado en el presente estudio y al que indica Szargut de $1.7x10^{-5}$. De la misma manera que en los casos anteriores, diversos autores coinciden con el valor de concentración del elemento presentado por Szargut:

por lo que se consideran correctos los valores de fracción molar y exergia química estándar del bióxido de manganeso estimados en el presente trabajo.

Debido a que la fracción molar del Tl₂O₄ calculada en el presente estudio coincide con el valor que reporta Szargut de 1.5x10⁻⁹, se cree que la diferencia entre los valores de exergia química estándar de dicha especie se debe a un error de escritura, por lo que el valor correcto de Ex_a° _{Tl2O4} es 50.4 kJ/gmol.

Finalmente, en el caso del V₂O₅, el valor de exergia química de la especie aquí calculado resulta diferente al determinado por Szargut ya que dicho autor determina un valor de fracción molar de la especie de 3.7x10⁻⁶, diferente al estimado de 1.8x10⁻⁶ para la misma especie. Esta diferencia en el valor de fracción molar podría deberse a que Szargut considera un valor diferente de concentración molar de vanadio ó a que utiliza un valor de li igual a uno, en lugar de dos, valor supuesto en el presente trabajo. De acuerdo a diferentes referencias, el valor de concentración molar de vanadio en la litosfera es de 2.7x10⁻⁶ kgmol/kg, el mismo que indica Szargut, por lo tanto se cree que Szargut utiliza un valor de li igual a uno. Debido a que una molécula de V₂O₅ contiene dos átomos de vanadio, se considera que los valores de fracción molar y exergia química del V₂O₅ determinados en este estudio son los correctos.

La exergia química estándar de cada elemento presente en la litosfera se determina por medio de un balance de exergia en la reacción de formación de la especie de referencia que lo contiene (Ecuación 2-1), para lo cual se requiere conocer los valores de exergia química estándar del resto de los elementos que participan en la reacción y del valor de energía libre de formación normal estándar de la especie de referencia.

the first the term of the first of the state of the second

Burner of the second control of the field of the second of the second of the second of the second of the second

Es importante mencionar que los valores de energía libre de formación normal estándar de las especies presentes en la litosfera que utiliza Szargut en sus cálculos de exergia química estándar de los elementos, se compararon con los publicados por Perry [7]. Wagman, et. al. [21], Latimer [22], Barin [43] y en el CRC Handbook [44]. En general, los valores de ΔG_f° que se informan en dichas referencias son muy parecidos a los empleados por Szargut, excepto en el caso de las especies silimanita (Al_2SiO_5), y de los óxidos de germanio y hafnio (GeO_2 y HfO_2 , respectivamente).

En el caso de la silimanita, Szargut utiliza un valor de ΔG_f° igual a -2,625.9 kJ/gmol, mientras que en otras referencias el valor que se indica es de -2,440.9 kJ/gmol (7% diferente). Si se utiliza el valor de energía libre de formación de la silimanita que informa Szargut para calcular la exergia química estándar del aluminio, se obtiene un valor de 888.2 kJ/gmol, al considerar los valores de exergia química estándar de la silimanita, del oxígeno y del silicio que predice Szargut de 15.3, 3.97 y 854.9 kJ/gmol, respectivamente. Sin embargo, si se utiliza el valor de ΔG_f° igual a -2,440.9 kJ/gmol, el valor de exergia química estándar del aluminio resulta de 795.7 kJ/gmol, 10.4% menor que el valor obtenido a partir del valor de ΔG_f° que señala Szargut.

Con el propósito de medir el efecto del valor de exergia química estándar del aluminio, obtenido a partir de dos valores distintos de energía libre de formación de la silimanita, en la magnitud de exergia química estándar de otros compuestos que contengan al aluminio, se estimó la exergia química estándar del óxido de aluminio (Al₂O₃), especie presente en la corteza terrestre. En la Tabla 2.20, se presentan los valores de exergia química estándar del óxido de aluminio calculados a partir de un balance de exergia en su reacción de formación y considerando los dos valores obtenidos de exergia química estándar del aluminio. El valor de energía libre de formación normal estándar del Al₂O₃ que se utiliza en este ejercicio es de –1,582.4 kJ/gmol, utilizado por Szargut y cotejado con el que se indica en el CRC Handbook [44].

Tabla 2.20.- Exergia química estándar del Al₂O₃ a partir de dos valores distintos de exergia química estándar del aluminio ^(a).

∆G _f ° _{Al2SiO5} kJ/mol	Ex _q ° _{Al} kJ/gmol	Ex _q ° _{Al2O3} kJ/gmol
-2,625.9 ^(b)	888.2	199.9
-2,440.9 ^(c)	795.7	15.0

⁽a) Al ocupar un valor de Ex_q°₀₂ = 3.97 kJ/gmol

⁽b) De acuerdo con Szargut [2]

⁽c) Según Wagman [21] y Barin [43]

El valor de exergia química estándar del óxido de aluminio, al utilizar el valor de $Ex_q^{\circ}_{Al}$ de 888.2 kJ/gmol es trece veces mayor que el valor que se obtiene cuando se considera un valor de $Ex_q^{\circ}_{Al}$ de 795.7 kJ/gmol. Si se determina el valor de exergia química estándar del óxido de aluminio por medio de la ecuación 2-40, con base en la información de concentración molar promedio de aluminio en la corteza terrestre y de la fracción del aluminio total en la forma de la especie Al_2O_3 (c_i = 0.005) que indica Szargut [2], se obtiene un valor de 17 kJ/gmol, cercano al obtenido cuando se utiliza un valor de exergia química del aluminio de 795.7 kJ/gmol. Aun cuando la expresión 2-40 utilizada para el cálculo de exergia química estándar de las especies presentes en la corteza terrestre es aproximada y tiene cierto error (según lo establece Szargut), se considera apropiado el valor de $Ex_q^{\circ}_{A/2O3}$ de 17 kJ/gmol y, por lo tanto, en el presente trabajo se considera como correcto el valor de -2,440.9 kJ/gmol como energía libre de formación normal estándar de la silimanita.

En los casos del óxido de germanio y hafnio, la diferencia entre el valor de energía libre de formación que indica Szargut y el publicado en otras fuentes es de alrededor del 5 y 6%, respectivamente (ver Tabla 2.21). Al contrario del caso de la silimanita, al utilizar los diferentes valores de ΔG_f° del ${\rm GeO_2}$ y del ${\rm HfO_2}$ y la expresión 2-40 para determinar la exergia química estándar de los elementos germanio y hafnio, no se obtienen diferencias importantes, como sí lo es en el caso del aluminio. Debido a que las diferencias mencionadas no son considerables y a que no se cuenta con información de otras especies presentes en la litosfera que contengan a los elementos germanio y hafnio para corroborar el valor de exergia química estándar de dichos elementos y por consiguiente el valor de energía libre de formación de los óxidos de germanio y hafnio, se consideran adecuados los valores de ΔG_f° del ${\rm GeO_2}$ y del ${\rm HfO_2}$ utilizados por Szargut.

Capítulo II

Tabla 2.21.- Exergia química estándar del germanio y hafnio a partir de dos valores distintos de energía libre de formación de sus especies de referencia ^(a).

	<u>E</u>	Especie de referencia				
Elemento químico	Fórmula química	∆G _f °; kJ/mol	$Ex_q^{o}_i$ kJ/gmol	Ex _q ° _{el} k J/gm ol		
Ge	GeO ₂	-521.5 ^(b)	40.1	557.6		
<u></u>		-497.0 ^(c)	40.1	533.1		
Hf	HfO₂	-1,027.4 ^(b)	39.6	1,063.0		
•	3.48	-1,088.2 ^{(c). (d)}	39.6	1,123.8		

⁽a) Al ocupar un valor de Ex_q°_{O2} = 3.97 kJ/gmol

(c) Según Wagman [21]

En la Tabla 2.22 se muestran los valores de exergia química estándar obtenidos a condiciones normales de temperatura y presión de los elementos contenidos en la corteza terrestre. Con el fin de comparación, en este ejercicio, se utilizan los valores que predice Szargut de exergia química estándar de los elementos (H₂, O₂, C, Cl₂, S, K y P) cuyas especies de referencia están ya sea en el aire atmosférico o en el agua de mar, y que se requieren en el cálculo de exergia química de los elementos presentes en la litosfera, por estar contenidos también en las especies de referencia de este medio.

La diferencia de 10.4%, entre el valor calculado de exergia química estándar del aluminio y el valor que indica Szargut (ver Tabla 2.22), se debe a que el valor de energía libre de formación de la especie de referencia considerado es distinto al que utiliza Szargut.

Por otro lado, las pequeñas diferencias que se producen entre los valores estimados de exergia química estándar del resto de los elementos y aquellos que predice Szargut, se deben a que en el cálculo de exergia química de los elementos se utilizan los valores de exergia química estándar de las especies de referencia obtenidos en este trabajo; por lo que en los casos en donde existe una diferencia considerable entre el valor obtenido de exergia química de la especie y el valor que estima Szargut, existe también diferencia, aunque en menor grado, entre los valores de exergia química estándar del elemento, como es el caso del manganeso.

⁽b) De acuerdo con Szargut [2]

⁽d) De acuerdo con Perry [7] y Barin [43]

Tabla 2.22.- Exergia química estándar de los elementos contenidos en la litosfera a condiciones normales de temperatura y presión.

	Especie de referencia Ex_q^o del elemento, kJ/gmol							
Elemento Químico _(a)	Fórmula química	Ex _q ° _i kJ/mol	ΔG_f^s , kJ/mol	Determinada en el presente trabajo	Szargut	- Desviación % ^(b)		
Ag _(s)	AgCl	51.36	-109.80	99.36	99.40	-0.04		
Al (s)	Al ₂ SiO ₅	15.32	-2440.99	795.71	888.20	-10.41		
4u (s)	Au	50.62	0	50.62	50.50	0.23		
За _(s)	BaSO ₄	30.69	-1361.9	775.05	775.10	-0.01		
Зе _(s)	Be ₂ SiO ₄	38.11	-2033.3	604.26	604.40	-0.02		
3i _(s)	Bi ₂ O ₃	54.57	-493.7	271.16	270.30	0.32		
Ca (s)	CaCO ₃	16.30	-1129	729.08	729.10	0.00		
Cd (s)	CdCO ₃	45.17	-669.4	298.35	298.20	0.05		
Ce (s)	, CeO ₂	33.87	-1024.8	1054,70	1054.60	0.01		
Co (s)	CoFe ₂ O ₄	37.36	-1032.6	313.40	312.00	0.45		
Cr (s)	K ₂ Cr ₂ O ₇	33.49	-1882.3	584.35	584.30	0.01		
Cu (s)	CuCO ₃	29.85	-518.9	132.53	132.50	0.03		
) у _(s)	Dy(OH) ₃	41.73	-1294.3	975.94	975.90	0.00		
Ξr _(s)	Er(OH) ₃	41.87	-1291	972.78	972.80	0.00		
Ξu _(s)	Eu(OH) ₃	43.77	-1320.1	1003.78	1003.80	0.00		
2 (g)	CaF ₂ • 3Ca ₃ (PO ₄) ₂	26.54	-12985.3	504.99	504.90	0.02		
Ee (s)	Fe ₂ O ₃	12.38	-742.2	374.31	374.30	0.00		
За _(s)	Ga ₂ O ₃	37.25	-998.6	514.95	514.90	0.01		
Gd _(s)	Gd(OH) ₃	40.16	-1288.9	968.97	969.00	0.00		
Ge (s)	GeO₂	40.08	-521.5	557.61	557.60	0.00		
⊣f _(s)	HfO ₂	39.60	-1027.4	1063.03	1062.90	0.01		
dg (i)	HgCl ₂	52.89	-178.7	107.99	108.00	-0.01		
-9 (() Ho (s)	Ho(OH) ₃	44.00	-1294.8	978.71	978.60	0.01		
n _(s)	In ₂ O ₃	48.69	-830.9	436.82	436.80	0.00		
r (s)	IrO ₂	65.32	-185.6	246.95	246.80	0.06		
. (s) ₊a _(s)	La(OH) ₃	35.53	-1319.2	994.64	994.60	0.00		
.u _(s)	Lu(OH) ₃	46.26	-1259.6	945.77	945.70	0.01		
√lg _(s)	Mg ₃ Si ₄ O ₁₀ (OH) ₂	17.48	-5543	626,91	626.10	0.13		
√n (s)	MnO ₂	26.47	-465.2	487.70	482.00	1.18		
Vb (s)	Nb ₂ O ₃	38.96	-1766.4	899.70	899.70	0,00		
vid (s)	Nd(OH) ₃	35.89	-1294.3	970.10	970.10	00.0		
1u (s) 1i _(s)	NiO (1)	32.84	-211.71	242.57	242.50	0.03		
Os _(s)	OsO ₄	71.18	-305.1	368.34	368.10	0.03		
25 (s) Pb (s)	PbCO ₃	39.85	-625.5	249.13	249.30	-0.07		
Pd (s)	PdO 3	58.20	-82.5	138.71	138.60	0.07		
Pr _(s)	Pr(OH) ₃	38.83	-1285.1	963.84	963.80	0.00		
or (s) Pt _(s)	PtO ₂	61.38		141.11				
	PuO ₂	108.88	-03.7 -995.1		141.00	0.08		
Pu _(s)	RaSO₄		-995.1 -1364.2	1100.01 823.86	1100.00	0.00		
Ra _(s) Re _(s)	RaSO₄ Re₂O ₇	77.20 65.28	-1364.2 -1067.6	823.86 559.49	823.90 559.50	0.00 0.00		

⁽a) Estado: sólido (s), gaseoso (g) y líquido (l) (b) Con respecto al valor que indica Szargut

Tabla 2.22.- Exergia química estándar de los elementos contenidos en la litosfera a condiciones normales de temperatura y presión (continuación).

	Especie	de referenc	ia	Ex_q^o del eleme		
Elemento Químico _(a)	Fórmula química	Ex _q ° _i kJ/mol	∆G°; kJ/mol	Determinada en el presente trabajo	Szargut	- Desviación % ^(b)
Rh (s)	Rh ₂ O ₃	65.54	-299.8	179.69	179.70	0.00
Ru (s)	RuO ₂	69.46	-253.1	318.59	318.60	0.00
Sb (s)	Sb ₂ O ₅	56.88	-829.3	438.13	438.10	0.01
Sc (s)	Sc ₂ O ₃	36.69	-1819.7	925.22	925.20	0.00
Si (s)	SiO ₂	2.23	-856 <i>.</i> 7	854.96	854.90	0.01
Sm (s)	Sm(OH) ₃	39.75	-1314	993.66	993.60	0.01
Sn (s)	SnO ₂	36.17	-519.6	551.80	551.90	-0.02
Sr (s)	SrCO ₃	25.89	-1140.1	749.77	749.80	0.00
Ta (s)	Ta ₂ O ₅	46.39	-1911.6	974.03	974.00	0.00
Tb (s)	Tb(OH) ₃	44.34	-1314.2	998.45	998.40	0.00
Te (s)	TeO ₂	62.92	-270.3	329.25	329.20	0.01
Th (s)	ThO ₂	37.48	-1169.1	1202.61	1202.60	0.00
Ti (s)	TiO ₂	21.63	-889.5	907.16	907.20	0.00
TI (s)	Tl ₂ O ₄	50.38	-347.3	194.87	194.90	-0.02
Tm (s)	Tm(OH)₃	46.35	-1265.5	951.76	951.70	0.01
U (s)	UO ₃ •H ₂ O	44.67	-1395.9	1196.54	1196.60	0.00
V (s)	V_2O_5	32.75	-1419.6	721.21	720.40	0.11
Y (s)	Y(OH) ₃	34.24	-1291.4	965.55	965.50	0.01
Yb (s)	Yb(OH) ₃	41.87	-1262.5	944.28	944.30	0.00
Zn (s)	ZnCO ₃	29.27	-731.6	344.65	344.70	-0.01
Zr (s)	ZrSiO ₄	26.33	-1919.5	1082.93	1083.40	-0.04

⁽a) Estado: sólido (s), gaseoso (g) y líquido (l)

Como se puede apreciar en la Tabla 2.22, el valor de exergia química estándar del elemento depende en gran medida del valor de energía libre de formación de su especie de referencia.

En el Apéndice C se presentan los valores de exergia química estándar de los elementos contenidos en la litosfera a condiciones normales de temperatura y presión, que arroja el programa EXQCOMP desarrollado en este trabajo de tesis.

⁽b) Con respecto al valor que indica Szargut

en de la composition La composition de la La composition de la La composition de la composition della composition della

				•	and the second	
and the second						
		t principality 1 principality 1 principality	2.4			
		177		74 - 1 1	1 147 1 147	* 4
		*		# * ‡		
•			1 2		and the second second	
No. 20 Aug.	10 % - 10 % - 10 % - 10 % - 10 %	e e e e e e e e e e e e e e e e e e e	200	1 N	•	4,
	4.5	100		24 24	2.4	
	13 13	* * * * * * * * * * * * * * * * * * * *		* * *	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
V.	81 ×					
		e to see the	1 3 °	13 - 1	,	•
			4			
		X				
		• • •				
					lw √	
		i di		2 - 1 2 - 1 2 - 2 2 - 4	11.24 Entropy to	
	•	g sekiri Horis		y		F 44
		e Marie de la				•
, ** :	**************************************	* *		:		
		2.5				
* .	. 5	4.7 A.		4 4 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i to v	
1	*					
		·			Selection of the selection of the	*

and security of the security of the security of the security of the experimental entering of the experimental control of the security of the s province the province of the state of

and the second of the second o and the second of the second o Carachera Caracher (1966) (1966) Carachera Carachera (1966) Carachera (1966) Carachera (1966) Carachera (1966)

CAPÍTULO III

EFECTO DE LAS CONDICIONES AMBIENTALES EN EL VALOR DE EXERGIA QUÍMICA ESTÁNDAR DE LOS ELEMENTOS

En el capítulo II, se determinó la exergia química estándar de la mayoría de los elementos de la tabla periódica a condiciones normales de temperatura y presión, es decir, a 25°C y 1 atm. De manera simultánea, se analizó el efecto en el valor de exergia química estándar cuando varía la concentración promedio de las especies de referencia en el medio. En el presente capítulo se estudia el impacto en el valor de exergia química estándar de diferentes condiciones de temperatura y presión a las normales.

La exergia química estándar de una sustancia se suele expresar a condiciones normales de temperatura y presión debido a que la mayoría de la información termodinámica y de concentración de las especies en el medio está disponible a dichas condiciones; además de que estas condiciones son las que se consideran como el promedio en el medio ambiente. Sin embargo, dependiendo del lugar geográfico y de la estación del año, las condiciones del medio difieren del promedio.

En regiones del hemisferio norte, por ejemplo, Canadá, la temperatura ambiente durante el invierno alcanza un valor promedio de -20°C o menos; mientras que en lugares cercanos al ecuador, durante el verano, la temperatura del medio llega a ser mayor de 40°C [45, 46]. Por otro lado, la temperatura del agua de mar superficial fluctúa entre 30°C o más en aguas tropicales, a -2°C por debajo del hielo Ártico [11, 45].

Con relación a la presión atmosférica, existen regiones en la superficie de la Tierra cuya altura sobre el nivel del mar es de varios miles de metros; como es el caso de La Paz en Bolivia, la cual es la ciudad más alta del mundo (3,625 m sobre el nivel de mar) y por lo que el valor de presión atmosférica en este lugar se reduce a 0.65 atm; la Ciudad de Cusco en Perú, cuya altitud es de 3,415 metros y en donde el valor de presión atmosférica es igual a 0.67 atm: y la Ciudad de México, situada a 2,240 metros sobre el nivel del mar, con una presión atmosférica de 0.77 atm. En contraste, en otros puntos de la Tierra, la superficie está por debajo del nivel mar, como por ejemplo Los Países Bajos (Holanda) en donde la mitad del territorio está por debajo del nivel del mar, o la Ciudad de Jericó ubicada a 2 Km de Jerusalén en Israel y a 244 metros por debajo del nivel del mar, por lo que, la presión atmosférica en este lugar es ligeramente mayor a 1 atm [46].

3.1.- Efecto de la temperatura del medio en el valor de exergia química estándar.

Kanadaran darah gerapagai kalandar Narabasa berapadan kalandar kalandar darah dari dari dari dari dari dari da

in a section of the property of the first

Burners and the contract of th

En la presente sección se discute el efecto que tiene la temperatura del ambiente en la magnitud de la exergia química estándar de los elementos, al considerar como condiciones extremas para los sistemas terrestres -40°C como temperatura mínima y 50°C como temperatura máxima.

La exergia química estándar de cualquier sustancia depende estrechamente de la temperatura del medio ambiente, ya que su valor fija el cambio de energía libre de Gibbs estándar de la reacción de referencia en el equilibrio y de alguna manera la concentración de las especies de referencia en el medio; por lo que al cambiar la temperatura del medio también se modifican estas propiedades. En las siguientes sub-secciones se analiza el cambio en el valor de ΔG° de la reacción de formación de las especies de referencia y en la concentración de las especies en el medio, utilizados en la determinación de exergia química estándar de los elementos, al variar la temperatura del ambiente dentro del intervalo de temperaturas antes señalado.

3.1.1.- Efecto de la temperatura en el valor de ∆G°.

Appropriate Control to the second of the

La variación en el cambio de energía libre de Gibbs estándar de una reacción con respecto a la temperatura está dada por la Ecuación 3-1, [47].

$$\frac{\partial \left(\Delta G^{o}/RT\right)}{\partial T}\bigg|_{P} = -\frac{\Delta H^{o}}{RT^{2}} \tag{3-1}$$

El cambio de entalpia estándar de la reacción también depende de la temperatura. Si no hay cambio de fase en el intervalo comprendido entre la temperatura normal T_n (298.15 K) y la temperatura del medio T_n el calor estándar de la reacción en función de la temperatura es igual a:

$$\Delta H^o = \Delta H_{T_n}^o + \int_{T_n}^T \Delta C_p^o dT \tag{3-2}$$

El cambio en la capacidad calorífica estándar de la reacción (ΔC_p °) es igual a la diferencia de capacidades caloríficas estándar entre los productos y los reactivos de la reacción, esto es,

$$\Delta C_p^o = \sum_k v_k C_{p_k}^o - \sum_z v_z C_{p_z}^o \tag{3-3}$$

En donde, v_k y v_z son los coeficientes estequiométricos de los productos y reactivos, respectivamente, que participan en la reacción. La capacidad calorífica de gases, líquidos y sólidos se expresa normalmente en función de la temperatura mediante ecuaciones empíricas basadas en datos experimentales [48]. La forma general de este tipo de ecuaciones es:

$$C_p^o = a + bT + cT^2 + \frac{d}{T^2} + eT^3$$
 (3-4)

Al sustituir el cambio de entalpia estándar de la reacción (Ecuación 3-2) en la Ecuación 3-1 se obtiene la siguiente expresión:

$$d\left(\frac{\Delta G^{o}}{RT}\right) = -\int_{T_{n}}^{T} \frac{\left(\Delta H_{T_{n}}^{o} + \int_{T_{n}}^{T} \Delta C_{p}^{o} dT\right)}{RT^{2}} dT$$
(3-5)

Finalmente, al integrar la Ecuación 3-5, desde la temperatura normal T_n hasta la temperatura del medio T, se obtiene la siguiente expresión a partir de la cual se determina ΔG° para cualquier valor de temperatura del ambiente, con base en las propiedades a 25°C.

$$\Delta G^{o} = \Delta G_{T_{n}}^{o} \frac{T}{T_{n}} + \Delta H_{T_{n}}^{o} \left(1 - \frac{T}{T_{n}} \right) + \Delta a \left(T - T_{n} - T \ln \frac{T}{T_{n}} \right) - \frac{\Delta b}{2} \left(T - T_{n} \right)^{2}$$

$$- \frac{\Delta c}{6} \left(T^{3} + 2T_{n}^{3} - 3T T_{n}^{2} \right) - \frac{\Delta d}{2} \left(\frac{1}{T} + \frac{T}{T_{n}^{2}} - \frac{2}{T_{n}} \right) - \frac{\Delta e}{12} \left(T^{4} + 3T_{n}^{4} - 4T T_{n}^{3} \right)$$
(3-6)

Cabe señalar que Δa , Δb , Δc , Δd , y Δe , corresponden a la diferencia de las constantes a, b, c, d, y e, respectivamente, de la expresión de capacidad calorífica en función de T, entre los productos y los reactivos de la reacción. Los valores de dichas constantes o bien los valores de capacidad calorífica estándar a una temperatura dada, están disponibles en diversas publicaciones [7, 8, 21, 43, 44, 48, 49], para los elementos y especies de referencia que se consideran en este estudio.

En el Apéndice B.2, se presenta el calor estándar de formación a 25°C de cada una de las especies de referencia, que se utiliza en el presente estudio para corregir el valor de ΔG_f° al variar la temperatura. En dicho apéndice se explica la procedencia de cada valor.

Si en el intervalo comprendido entre la temperatura a condiciones normales y la temperatura del medio existe cambio de fase de alguna de las sustancias que participan en la reacción, es necesario incluir en la Ecuación 3-5 el calor latente de fusión o vaporización, según sea el caso, o si hay un cambio de un estado sólido a otro entonces considerar el calor de transición, así como incluir también la capacidad calorífica de la sustancia en su nuevo estado físico.

Por ejemplo, en el caso de la reacción de formación del ión Cs⁺, en una celda electroquímica con un electrodo normal de hidrógeno, el estado físico estándar del elemento cesio puro a 25°C es sólido, pero a partir de 28.5°C su estado es líquido, por lo tanto a temperaturas mayores de 25°C es necesario considerar las siguientes reacciones de formación del ión Cs⁺:

$$T = 25^{\circ}\text{C}$$
 $Cs_{(s)} + H^{+}_{(ac)} \longrightarrow Cs^{+}_{(ac)} + \frac{1}{2}H_{2(g)}$

$$T > 28.4$$
°C $Cs_{(i)} + H^{+}_{(ac)} \longrightarrow Cs^{+}_{(ac)} + \frac{1}{2} H_{2(g)}$

El calor de fusión del cesio a 28.4°C es de 2.092 kJ/gmol. Entonces, la variación del cambio de energía libre de Gibbs estándar de formación del Cs⁺, a temperaturas mayores a 25°C está dada por la Ecuación 3-7.

$$d\left(\frac{\Delta G^{o}}{RT}\right) = -\int_{T_{n}}^{T} \frac{\left(\Delta H_{T_{n}}^{o} + \int_{T_{n}}^{T_{fuston}} \Delta C_{p_{1}}^{o} dT + \int_{T_{fuston}}^{T} \Delta C_{p_{2}}^{o} dT + \Delta H_{fase}\right)}{RT^{2}} dT \qquad (3-7)$$

En ΔC_p °₁ se considera la capacidad calorífica del cesio en estado sólido, mientras que en ΔC_p °₂, la capacidad calorífica del cesio como líquido. El valor de ΔH_{fase} es la diferencia de calores que se presentan por un cambio de fase entre productos y reactivos. En este caso ΔH_{fase} es igual a –2.092 kJ/gmol; el signo negativo obedece a que el elemento cesio es un reactivo. Si se suponen valores constantes de ΔC_p °₁ y ΔC_p °₂ en sus respectivos intervalos de temperatura, el valor de ΔG_f ° del ión Cs⁺ a cualquier temperatura mayor a 25°C, es igual a:

$$\Delta G^{o} = \Delta G_{T_{n}}^{o} \frac{T}{T_{n}} + \left(1 - \frac{T}{T_{n}}\right) \left[\Delta H_{T_{n}}^{o} + \Delta C_{p_{1}}^{o} \left(T_{fusion} - T_{n}\right) - \frac{\Delta C_{p_{2}}^{o} \ln \frac{T}{T_{n}}}{\left(\frac{1}{T} - \frac{1}{T_{n}}\right)} - \Delta C_{p_{2}}^{o} T_{fusion} + \Delta H_{fusion}\right]$$

Dentro del intervalo de temperaturas considerado en el presente estudio, el impacto que tiene el cambio de capacidad calorífica estándar de la reacción de formación sobre el valor de ΔG_f° es casi nulo, como se observa en la Tabla 3.1 para algunos casos al considerar las temperaturas de 40 y 5°C. Por lo tanto en el presente análisis no se considera el valor de ΔC_p° para determinar el cambio de energía libre de Gibbs a una temperatura diferente de 25°C.

Tabla 3.1.- Efecto del valor de ΔC_p° en el valor de ΔG_f° , en el intervalo de temperaturas considerado.

Especie	Temperatura C	Al considerar $\Delta C_p^{\circ}_f$	Sin considerar $\Delta C_p^{\circ}_f$	Desviación ^(a) %	
K ₂ Cr ₂ O ₇	40	-1874.184	-1874.172	-6e-4	
	5	-1893.1603	-1893.1368	-1e-3	
CO2	40	-394.4203	-394.4206	8e-5	
	5	-394.3178	-394.3184	2e-4	
Cs⁺	40 ^(b)	-284.0099	-284.0203	4e-3	
	5	-279.8807	-279.9132	0.01	

⁽a) Con respecto al valor ΔG_f° cuando se considera el ΔC_p°

Además del cesio, en el intervalo de temperaturas de 0°C a 50°C, los elementos y especies de referencia que sufren cambio de fase son el fósforo ($T_{fusión}$ = 44.2°C), el rubidio ($T_{fusión}$ = 39.1°C), el galio ($T_{fusión}$ = 29.8°C), y el tetraóxido de osmio ($T_{fusión}$ = 40.15°C). En la Tabla 3.2 se observa que, sin considerar el valor de ΔC_p °, la variación en el valor de ΔG_f ° a 50°C de las especies relacionadas con las sustancias antes mencionadas es menor al 0.5% al no considerar el calor de fusión.

Tabla 3.2.- Efecto en el valor de ΔG_f° a 50°C al no considerar el calor de fusión de las sustancias que cambian de fase entre 0°C y 50°C.

	∆G _f °,			
	Al considerar	Sin considerar	– Desviación ^(a) , %	
Especie	ΔH_{fase}	ΔH_{fase}		
Cs ⁺	-284.9156	-285.0910	0.06	
HPO ₄ ²	-1072.0809	-1072.2918	0.02	
Rb⁺	-285.091	-285.2752	0.06	
Ga ₂ O ₃	-990.8833	-991.8207	0.09	
OsO ₄	-299.0424	-297.8461	-0.40	

⁽a) Con respecto al valor ΔG_f° cuando se considera el ΔH_{fase}

⁽b) Se incluye el efecto en ΔH_f° por cambio de fase del elemento cesio ($T_{fusión} = 28.4^{\circ}$ C)

Entre 0°C y -40°C de temperatura, los elementos que sufren cambio de fase son el bromo con una temperatura de fusión igual a -7.2°C, el cloro que condensa a partir de -34°C, y el mercurio que a -38.9°C su estado físico es sólido.

Es importante señalar que el agua de mar se congela alrededor de -2° C, temperatura en la cual, las especies que sirven de referencia para determinar la exergia química estándar de los elementos contenidos en la hidrosfera, como son el bromo y el cloro, no existen ya más en solución, por lo que se comete un error al considerar un valor de ΔG_f° de dichas especies a temperaturas por debajo de -2° C. Sin embargo, como se discutirá más tarde, existe gran incertidumbre sobre la especie que contiene a dichos elementos en el agua de mar congelada. Si se considera que por debajo del punto de fusión del agua de mar, las especies iónicas Br y Cl aún existen en solución acuosa, el valor de su energía libre de Gibbs estándar de formación a -40° C varía 1.1% y 1.6%, respectivamente, cuando no se considera el calor por cambio de fase de los elementos bromo y cloro (ver Tabla 3.3).

En el caso del cloruro de mercurio, especie de la corteza terrestre que contiene los elementos mercurio y cloro, su valor de energía libre de Gibbs de formación a -40°C es 2.6% diferente al valor estimado cuando no se considera el cambio de fase de los elementos involucrados. Ahora bien, el impacto que tiene la diferencia entre los valores de ΔG_f° del HgCl₂ en el valor de exergia química estándar del mercurio, es tan sólo de 0.5%.

Tabla 3.3.- Efecto en el valor de ΔG_f° a -40°C al no considerar el calor de fusión de las sustancias que cambian de fase entre 0°C y -40°C.

=	∆G _f °, k			
Especie	Al considerar ΔH_{fase}	Sin considerar ΔH_{fase}	Desviación ^(a) , %	
Br ⁻	-108.9793	-107.8026	-1.1	
C1	-141.3111	-139.0864	-1.6	
HgCl ₂	-193.6206	-188.6631	-2.6	

⁽a) Con respecto al valor ΔG_f^{\diamond} cuando se considera el ΔH_{fase}

Debido a que en el intervalo de temperaturas de -40° C a 50° C, la diferencia en el valor ΔG_f° de las especies no es considerable si no se considera el calor que se produce por el cambio de fase de algunos de los elementos y especies de referencia, no se incluirá tal efecto en la determinación del ΔG_f° a una temperatura diferente a la normal; por lo tanto la expresión 3-6 se reduce a:

$$\Delta G^{o} = \Delta G_{T_{n}}^{o} \frac{T}{T_{n}} + \Delta H_{T_{n}}^{o} \left(1 - \frac{T}{T_{n}}\right)$$
 (3-9)

teran artist of the weather by the color of the color of

Es importante señalar que al no encontrar el valor de calor estándar de formación a 25° C del ión BiO^{+} en ninguna de las referencias consultadas, se decide determinar la exergia química estándar del bismuto considerando como especie de referencia al $\mathrm{Bi}_2\mathrm{O}_3$ presente en la litosfera, cuyas propiedades termodinámicas sí se conocen. A partir de un valor de $n_{o\mathrm{Bi}}$ igual a 8.1×10^{-10} kgmol/kg, $c_{\mathrm{Bi}2\mathrm{O}3}$ de 0.005 y ΔG_f° del $\mathrm{Bi}_2\mathrm{O}_3$ de -493.7 kJ/gmol, información que indica Szargut [2], se obtiene un valor de Ex_q° _{Bi} igual a 271.19 kJ/gmol, valor parecido a 274.81 kJ/gmol, exergia química del bismuto al tomar como especie de referencia al ión BiO^{+} .

En la Tabla 3.4 se muestran los valores de ΔG_f° de las especies de referencia a diferentes valores de temperatura. En general, al aumentar la temperatura, la reacción de formación de las especies de referencia es menos espontánea, excepto en el caso de las especies CO_2 , Cs^+ , K^+ , Li^+ , Na^+ y Rb^+ cuyo valor absoluto de ΔG_f° aumenta. Las especies que presentan una mayor desviación en su valor de ΔG_f° a 0 y 50°C con respecto a la temperatura de 25°C son el IO_3^- (6.1%) y el PtO_2 (5.3%).

Tabla 3.4.- Efecto de la temperatura del medio en el valor de ΔG_f° de las especies de referencia.

		especie	es de referen	cia.	· .			
	· · · · · · · · · · · · · · · · · · ·	$T = 0^{\circ}C$		$T = 25^{\circ}C$	$T = 50^{\circ}C$			
		ΔG_f°	Desviación ^(a)	ΔG_f°	ΔG_f°	Desviación ^(a)		
Elemento	Especie	kJ/gmol	%	kJ/gmol	kJ/gmol	%		
Atmósfera								
C (s)	CO ₂	-394.3	-0.02	-394.4	-394.5	0.02		
H _{2 (g)}	, H₂O	-229.7	0.49	-228.6	-227.5	-0.49		
D _{2 (g)}	D ₂ O	-235.9	0.52	-234.6	-233,4	-0.52		
~ .			Hidrosfera					
As _(s)	HAsO ₄ ²	-730.8	2.25	-714.7	-698.6	-2.25		
B (s)	B(OH)₃	-977.5	0.90	-968.8	-960.2	-0.90		
Br _{2 (I)}	Br	-105.4	1.42	-104.0	-102.5	-1.42		
Cl _{2 (g)}	Cl	-134.3	2.29	-131.3	-128.2	-2.29		
Cs (s)	Cs ⁺	-279.4	-1.01	-282.2	-285.1	1.01		
l _{2 (s)}	IO ₃	-135.8	6.11	-128.0	-120.2	-6.11		
K (s)	K ⁺	-279.8	-0.92	-282.4	-285.0	0.92		
Li _(s)	Li ⁺	-292.7	-0.44	-294.0	-295.3	0.44		
Mo (s)	MoO ₄ ²⁻	-849.9	1.62	-836.4	-822.9	-1.62		
Na _(s)	Na [⁺]	-260.2	-0.70	-262.0	-263.9	0.70		
P (s)	HPO ₄ ²	-1106.3	1.56	-1089.3	-1072.3	-1.56		
Rb _(s)	Rb^t	-279.5	-1.02	-282.4	-285.3	1.02		
S (s)	SO ₄ ²	-758.4	1.85	-744.6	-730.8	-1.85		
Se (s)	SeO ₄ ²⁻	-454.6	3.00	-441.4	-428.2	-3.00		
W (s)	WO ₄ ²	-936.8	1.78	-920 .5	-904.2	-1.78		
â		t. 2004	Litosfera		,	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
Ag (s)	AgCl	-111.2	1.32	-109.8	-108.4	-1.32		
Al (s)	Al ₂ SiO ₅	-2453.3	0.50	-2441.0	-2428.7	-0.50		
Ba _(s)	BaSO₄	-1371.3	0.69	-1361.9	-1352.5	-0.69		
Be (s)	Be ₂ SiO ₄	-2043.1	0.48	-2033.3	-2023.5	-0.48		
Bi _(s)	Bi ₂ O ₃	-500.4	1.36	-493.7	-4 87.0	-1.36		
Ca _(s)	CaCO ₃	-1135.5	0.58	-1129.0	-1122.5	-0.58		
Cd (s)	CdCO ₃	-676.2	1.02	-669.4	-662.6	-1.02		
Ce (s)	CeO ₂	-1029.5	0.46	-1024.8	-1020.1	-0.46		
Co (s)	CoFe ₂ O ₄	-1041.6	0.87	-1032.6	-1023.6	-0.87		
Cr (s)	K ₂ Cr ₂ O ₇	-1897.4	0.80	-1882.3	-1867.2	-0.80		
Cu (s)	CuCO ₃	-525.4	1.24	-518.9	-512.4	-1.24		
Dy (s)	Dy(OH)₃	-1305.5	0.86	-1294.3	-1283.1	-0.86		
Er (s)	Er(OH) ₃	-1302.2	0.86	-1291.0	-1279.8	-0.86		
Eu (s)	Eu(OH)₃	-1331.3	0.84	-1320.1	-1308.9	-0.84		
F _{2 (g)}	CaF ₂ • 3Ca ₃ (PO ₄) ₂	-13049.1	0.49	-12985.3	-12921.5	0.49		
Fe (s)	Fe ₂ O ₃	-749.1	0.93	-742.2	-73 5.3	-0.93		
Ga _(s)	Ga ₂ O ₃	-1006.2	0.76	-998.6	-991.0	-0.76		
Gd _(s)	Gd(OH) ₃	-1300.1	0.87	-1288.9	-1277.7	-0.87		
Ge (s)	GeO ₂	-526.4	0.93	-521.5	<i>-</i> 516.6	-0.93		
Hf _(s)	HfO ₂	-1032.4	0.49	-1027.4	-1022.4	-0.49		
Hg _(I)	HgCl ₂	-182.5	2.14	-178.7	-174.9	-2.14		
Ho (s)	Ho(OH) ₃	-1306.0	0.86	-1294.8	-1283.6	-0.86		
In (s)	_In ₂ O ₃	-838.3	0.90	-830.9	823.5	-0.90		

(a) Con respecto al valor de ΔG_f ° a 25°C.

Tabla 3.4.- Efecto de la temperatura del medio en el valor de ΔG_{f}° de las especies de referencia (continuación).

de referencia (continuación).							
		T	= 0°C;	T = 25°C	T = 50	D,C	
		ΔG_f°	Desviación ^(a)	ΔG_f°	ΔG_f° [esviación ^(a)	
Elemento	Especie	kJ/gmol	%	kJ/gmol	kJ/gmol	%	
Ir (s)	IrO ₂	-190.0	2.36	-185.6	-181.2	-2.36	
La _(s)	La(OH)₃	-1330.4	0.85	-1319.2	-1308.0	-0.85	
Lu _(s)	Lu(OH) ₃	-1270.8	0.89	-1259.6	-1248.4	-0.89	
Mg (s)	Mg ₃ Si ₄ O ₁₀ (OH) ₂	-5574.8	0.57	-5543	-5511.2	-0.57	
Mn _(s)	MnO ₂	-469.8	0.99	-465.2	-460.6	-0.99	
Nb (s)	Nb ₂ O ₃	-1777.6	0.63	-1766.4	-1755.2	-0.63	
Nd (s)	Nd(OH) ₃	-1305.5	0.86	-1294.3	-1283.1	-0.86	
Ni _(s)	NiO	-214.1	1.11	· -211.71	-209.4	-1.11	
Os (s)	OsO ₄	-312.5	2.44	-305.1	-297.7	-2.44	
Pb _(s)	PbCO ₃	-631.7	0.99	-625.5	-619.3	-0.99	
Pd _(s)	PdO	-85.0	3.08	-82.5	-80.0	-3.08	
Pr _(s)	Pr(OH) ₃	-1296.3	0.87	-1285.1	-1273.9	-0.87	
Pt (s)	PtO ₂	-88.1	5.31	-83.7	-79.3	-5.31	
Pu (s)	PuO ₂	-9 99.5	0.44	-995.1	-990.7	-0.44	
Ra (s)	RaSO₄	-1373.5	0.68	-1364.2	-1354.9	-0.68	
Re (s)	Re ₂ O ₇	-1082.8	1.42	-1067.6	-1052.4	-1.42	
Rh (s)	Rh ₂ O ₃	-306.7	2.29	-299.8	-292.9	-2.29	
Ru (s)	RuO ₂	-257.6	1.79	-253.1	-248.6	-1.79	
Sb (s)	Sb ₂ O ₅	· -841.2	1.43	-829.3	-817.4	-1.43	
Sc (s)	Sc ₂ O ₃	-1826.7	0.38	-1819.7	-1812.7	-0.38	
Si _(s)	SiO ₂	-861.3	0.53	-856.7	-852.1	-0.53	
Sm (s)	Sm(OH) ₃	-1325.2	0.85	-1314	-1302.8	-0.85	
Sn _(s)	SnO ₂	-524.7	0.99	-519.6	-514.5	-0.99	
Sr (s)	SrCO ₃	-1146.8	0.59	-1140.1	-1133.4	-0.59	
Ta _(s)	Ta₂O ₅	-1922.9	0.59	-1911.6	-1900.3	-0.59	
Tb _(s)	Tb(OH) ₃	-1325.4	0.85	-1314.2	-1303.0	-0.85	
Te (s)	TeO ₂	-274.7	1.62	-270.3	-265.9	-1.62	
Th (s)	ThO ₂	-1173.9	0.41	-1169.1	-1164.3	-0.41	
Ti (s)	TiO ₂	-894.1	0.52	-889.5	-884.9	-0.52	
TI (s)	TI ₂ O ₄	-360.3	3.74	-347.3	-334.3	-3.74	
Tm _(s)	Tm(OH) ₃	-1276.7	0.88	<i>-</i> 1265.5	-1254.3	-0.88	
U (s)	UO ₃ •H ₂ O	-1407.6	0.84	-1395.9	-1384.2	-0.84	
V _(s)	V_2O_5	-1430.6	0.77	-1419.6	-1408.6	-0.77	
Y (s)	Y(OH) ₃	-1301.7	0.80	-1291.4	-1281.1	-0.80	
Yb _(s)	Yb(OH) ₃	-1273.7	0.88	-1262.5	-1251.3	-0.88	
Zn _(s)	ZnCO ₃	-738.4	0.93	-731.6	-724.8	-0.93	
Zr _(s)	ZrSiO ₄	-1929.1	0.50	-1919.5	-1909.9	-0.50	

⁽a) Con respecto al valor de ΔG_f° a 25°C.

3.1.2.- Efecto de la temperatura del medio en la concentración de las especies de referencia.

En la Tabla 3.5 se observa que, para una presión atmosférica y una humedad relativa del aire atmosférico dadas, al aumentar la temperatura, disminuye la presión parcial de las especies presentes en la atmósfera, excepto en el caso del agua y del óxido de deuterio, cuyas presiones parciales aumentan. Esto se debe a que al incrementarse la temperatura del medio, de acuerdo con la expresión de Antoine (Ecuación 2-4), aumenta la presión de vapor del agua, incrementándose la fracción mol del agua en el aire. Al aumentar la concentración del H₂O y la del D₂O, para un valor de presión atmosférica constante, disminuye la concentración del resto de las especies en el medio, aunque la proporción entre ellas permanece constante.

Tabla 3.5.- Presión parcial en kPa de las especies presentes en la atmósfera a diferentes valores de temperatura del medio $(P=101.325 \text{ kPa}, \phi=0.7, \text{ concentración de CO}_2=345 \text{ ppmv}).$

Temperatura, °C Especie 5 10 20 30 40 50 25 0.9416 0.9376 0.9304 0.9249 0.9179 Ar. 0.8973 0.8649 0.0348 0.0347 0.0344 CO2 0.0342 0.0339 0.0332 0.0320 He 5.05E-04 5.02E-04 4.99E-04 4.96E-04 4.92E-04 4.81E-04 4.64E-04 1.00E-04 Kr 1.01E-04 9.97E-05 9.91E-05 9.84E-05 9.62E-05 9.27E-05 78.75 77.81 N_2 78.42 77.35 76.76 75.05 72.34 1.82E-03 Ne 1.81E-03 1.79E-03 1.78E-03 1.77E-03 1.73E-03 1.67E-03 O_2 21,19 21.10 20.93 20.81 20.65 20.18 19.45

8.9E-06

2.200

3.42E-04

8.9E-06

2.954

4.59E-04

8.7E-06

5.151

8.01E-04

8.3E-06

8.630

1.34E-03

9.0E-06

1.619

2.52E-04

Χe

H₂O

 D_2O

9.1E-06

0.415

6.45E-05

9.0E-06

0.844

1.31E-04

El efecto de la temperatura en el valor de presión parcial del agua es mayor a temperaturas por encima de los 25°C que a menores temperaturas (ver Figura 3.1); por ejemplo, a 50°C la presión parcial del agua en el aire aumenta un 292% con respecto al valor a 25°C, mientras que a 0°C la presión parcial del agua se reduce en un 81%, aun cuando la diferencia de temperatura con respecto a 25°C es la misma. La desviación del valor de presión parcial del D₂O con respecto al valor a 25°C sigue el mismo

comportamiento que en el caso del agua. La presión parcial del resto de las especies presentes en el aire a 50°C es 6.5% menor con respecto al valor a la temperatura normal, mientras que a 0°C la presión parcial aumenta tan sólo un 1.8%.

Figura 3.1.- Variación de la presión parcial de las especies del aire atmosférico al cambiar la temperatura.

医海波氏缝术 医经常性病病病病 网络阿尔斯斯斯

Con el fin de evaluar el efecto que tiene la temperatura del medio, dentro del intervalo comprendido entre 0 y 50 grados centígrados, en la concentración de las especies disueltas en el agua de mar, se analizan los sistemas de bióxido de carbono y de boro; para lo cual, se determina la concentración de las especies involucradas en dichos sistemas con base en las constantes aparentes de disociación k_{IC} , k_{2C} y k_{B} del ácido carbónico y del ácido bórico en función de la temperatura y de la salinidad (Ecuaciones 2-15, 2-16 y 2-17) y de las definiciones de alcalinidad total At, contenido total de carbono Ct y de boro Bt en el agua de mar [12, 28], esto es,

$$At = [HCO_3^-] + 2[CO_3^{2-}] + [B(OH)_4^-]$$
 (3-10)

$$Ct = [H_2CO_3] + [HCO_3^-] + [CO_3^{2-}]$$
 (3-11)

$$Bt = [H_3BO_3] + [B(OH)_4^-]$$
 (3-12)

Los valores de At, Ct y Bt se pueden conocer a partir del valor de salinidad, al definir cantidades específicas de estas variables que sean características de un cuerpo de agua de mar con cierta salinidad [12]. Es decir, a partir de los valores de concentración de las especies disueltas en el agua de mar de la Tabla 2.7, se sabe que para una salinidad de 35‰ (Cl = 19.374‰) los valores de At, Ct y Bt son de 2.591x10⁻³ mol/kg_{sw}, $4.12x10^{-4}$ mol/kg_{sw} y $2.3x10^{-3}$ mol/kg_{sw}, respectivamente, por lo que la alcalinidad At_s , el carbono Ct_s y el boro Bt_s específicos, serán iguales a:

$$At_s = \frac{At \times 10^3}{Cl} = \frac{At \times 10^3}{S/1.80655} = 0.1337$$
 (3-13)

$$Ct_s = \frac{Ct \times 10^3}{S/1.80655} = 0.1187 \tag{3-14}$$

$$Bt_s = \frac{Bt \times 10^3}{S/1.80655} = 0.0213 \tag{3-15}$$

Con el fin de simplificar se definen las siguientes relaciones:

$$B_1 = \frac{k_{2C}}{k_{1C}} = \frac{[CO_3^{2-}][H_2CO_3]}{[HCO_3^{-}]^2}$$
 (3-16)

$$B_{2} = \frac{k_{2C}}{k_{B}} = \frac{[CO_{3}^{2-}][H_{3}BO_{3}]}{[HCO_{3}^{-}][B(OH)_{4}^{-}]}$$
(3-17)

A partir de las Ecuaciones 3-10, 3-11, 3-12, 3-16, y 3-17 se obtienen las siguientes expresiones en donde $q = [HCO_3^-]$ y $r = [CO_3^{-2}]$:

$$At = q + 2r + \frac{Bt}{1 + B_2 \frac{q}{r}}$$
 (3-18)

$$Ct = q + r + \frac{B_1 q^2}{r} ag{3-19}$$

Al despejar r de la Ecuación 3-18 y sustituirla en la Ecuación 3-19, se obtiene la siguiente expresión para determinar el carbono total en función de la concentración total del ión bicarbonato (q), de la alcalinidad total y del contenido de boro total.

$$Ct = q + \left[\frac{Z + \sqrt{Z^2 + 8N}}{4} \right] + \frac{4B_1 q^2}{Z + \sqrt{Z^2 + 8N}}$$
 (3-20)

en donde,

$$Z = At - q - 2B_2q - Bt \tag{3-21}$$

$$N = AtB_2 q - B_2 q^2 \tag{3-22}$$

Para un valor de salinidad dado se puede considerar que los valores totales de alcalinidad, contenido de carbono y de boro se mantienen constantes al cambiar la temperatura, por lo que en la Ecuación 3-20 la única incógnita es la concentración total del ión bicarbonato (q). Al pasar Ct del lado derecho de la Ecuación 3-20 se tiene la función f(q) = 0, cuyo valor de q que satisfaga la función, será la concentración total del ión bicarbonato correspondiente a una temperatura del medio dada. Por medio del método iterativo de Newton-Raphson se determina el valor de q a partir de un valor inicial q_o . El nuevo valor de q en cada iteración se estima por medio de:

$$q = q_o - \frac{f(q_o)}{f(q_o)} \tag{3-23}$$

en donde $f(q_o)$ y $f'(q_o)$ son la función f y la derivada de f, respectivamente, evaluadas en q_o

granity general Albertain a tentral

En la Tabla 3.6 se muestra la relación de concentraciones entre las especies involucradas en los sistemas de bióxido de carbono y boro así como el valor de pH_{TOT} ([H $^+$] + [HSO $_4$]) del agua de mar, a diferentes valores de temperatura y al considerar un contenido de sales de 35‰. Al variar la temperatura, la relación de concentraciones entre el ión carbonato y el ión bicarbonato (principales especies que contienen al carbono) permanece casi constante, no así en el caso de la relación entre el contenido de ácido carbónico y de ión bicarbonato, la cual a 50°C es 27% mayor que la relación entre estas dos especies a 25°C. Con relación a las especies que contienen boro, el cociente de concentraciones entre el ión borato y el ácido bórico cambia hasta un 18% a 0°C con respecto al valor a 25°C. Por otro lado, la variación del valor de pH_{TOT} en el intervalo de temperaturas considerado es menor al 5%, en relación con el valor a 25°C.

Tabla 3.6.- Relación de concentraciones de especies disueltas en el agua de mar a diferentes valores de temperatura (salinidad de 35‰).

Temperatura			and the same of th	4 4 5
°C _	[CO ₃ ²]/[HCO ₃]	[H ₂ CO ₃] / [HCO ₃]	[B(OH) ₄] / [H ₃ BO ₃]	$pH_{TOT}^{\;\;(a)}$
50	0.118	0.010	0.207	7.66
40	0.115	0.009	0,219	⇒7.79
30	0.112	0.008	0.232	7.92
25	0.110	0.007	0.239	7.99
20	0.109	0.007	0.247	8.06
10	0.105	0.006	0.263	·** 8.21
5	0.104	0.006	0.273	8.29
0	0.102	0.006	0.282	8.38

(a) En base molar (mol/kgsw)

Lo anterior indica que la concentración de las principales especies disueltas en el agua de mar no se ve afectada por un cambio en la temperatura, considerando un valor constante de salinidad. Aun cuando el efecto que tiene considerar una temperatura diferente a 25°C es mayor en el caso de las especies que están en menor concentración, su proporción con respecto a las principales especies siempre es baja. Por lo tanto en el presente análisis se considerará que, dentro del intervalo de temperaturas entre 0°C y 50°C y para un valor constante de salinidad, la proporción entre las especies del agua de mar permanece constante; no así el valor de pH del

agua de mar cuyo cambio al modificarse la temperatura del medio sí se tomará en cuenta.

En la Figura 3.2 se observa que al aumentar la temperatura, el valor de pH del agua de mar disminuye. Los valores de pk_{IC} , pk_{2C} y pk_{B} son inversamente proporcionales a la temperatura, por lo que, al incrementarse la temperatura, las constantes de disociación de los ácidos carbónico y bórico aumentan y como la relación de concentraciones de base a ácido permanece constante, la concentración de iones hidrógeno también aumenta.

Figura 3.2.- Variación del valor de pH del agua de mar al cambiar la temperatura (S: salinidad).

De acuerdo con lo que indican Silvestre y Pitzer [50], el efecto de la temperatura en los valores de los parámetros de interacción β^0_{MX} , β^1_{MX} , β^2_{MX} y C^ϕ_{MX} , que se utilizan en el modelo de Pitzer para el cálculo de los coeficientes de actividad de los iones libres en el agua de mar, es poco apreciable, ya que las derivadas de dichos parámetros con respecto a la temperatura son pequeñas; por lo que un cambio de hasta 20°C no tiene repercusión en el valor de los parámetros de interacción. Según Pitzer, el coeficiente A_ϕ de la teoría electrostática de Debye-Hückel varía ligeramente con la temperatura. En la Figura 3.3 se muestra el efecto de la temperatura en el valor de $In\gamma'_{EL}$, al considerar los

valores de A_{ϕ} que informa Pitzer [51] entre 0°C y 50°C, y una fuerza iónica de 0.678 mol/kg_{H2O} correspondiente a una salinidad de 35‰.

Figura 3.3.- Efecto de la temperatura en el término $\ln \gamma$ $'_{EL}$ de Debye-Hückel para el cálculo de coeficientes de actividad.

Para un valor de fuerza iónica dado, al aumentar la temperatura del medio, la actividad de los iones libres en solución disminuye ligeramente en el intervalo de temperaturas considerado; el valor de $ln\gamma'_{EL}$ disminuye alrededor de un 5% a la temperatura de 50°C con respecto al valor a 25°C, lo que equivale a menos de 3% en el valor de γ'_{EL} . Por lo tanto no se considera en el presente estudio el efecto de la temperatura en el valor de los coeficientes de actividad de los iones libres presentes en el agua de mar.

El coeficiente de actividad del ácido bórico, especie de referencia del elemento boro, se determina a partir de las constantes de equilibrio K_B y aparente k_B de la reacción de ionización. El efecto de la temperatura en el valor de la constante aparente de ionización se obtiene a partir de la Ecuación 2-17 y en el caso de la constante de equilibrio termodinámico se sabe que ésta es igual a:

$$\ln K = -\frac{\Delta G_r^o}{RT} \tag{3-24}$$

Al combinar las ecuaciones 3-9 y 3-24, se obtiene la expresión 3-25 que corrige el valor de K_B cuando la temperatura del medio es diferente a 25°C, sin considerar el cambio en la capacidad calorífica de la reacción.

$$\ln K = \ln K_{T_n} + \frac{\Delta H_{rT_n}^o}{RT_n} \left(1 - \frac{T_n}{T} \right)$$
 (3-25)

 K_{Tn} es la constante de equilibrio a 25°C en base molal, y $\Delta H_r^{\circ}_{Tn}$ el calor normal estándar de la reacción de ionización del ácido bórico. El valor de $\Delta H_r^{\circ}_{Tn}$ es de 14.12 kJ/gmol, calculado a partir de la diferencia entre los calores de formación de los productos y los reactivos de la reacción de ionización del ácido bórico. Al aumentar la temperatura en la que se lleva a cabo la reacción, la constante de equilibrio aumenta ya que la reacción en este caso es endotérmica. Por ejemplo, el valor de pK_B a 40°C es igual a 9.118, 1.3% menor que el valor de pK_B de 9.237 a 25°C.

Respecto a la concentración de las especies de la corteza terrestre se considera que ésta no cambia con la temperatura del medio.

and the second of the second of the second of the second

3.1.3.- Efecto en el valor de exergia química estándar de los elementos al cambiar la temperatura del medio entre 0 y 50°C.

En la Tabla 3.7 se muestran los valores de exergia química estándar de los elementos cuando la temperatura del medio es de 0°C, 25°C y 50°C, así como la desviación porcentual del valor de exergia química con respecto al valor a 25°C. Los resultados completos de la determinación de exergia química estándar de los elementos a 0 y 50°C que arroja el programa EXQCOMP se presentan en el Apéndice A.4.

Tabla 3.7.- Efecto en el valor de Ex_q° de los elementos al tener el medio una temperatura entre 0 y 50°C.

<u> </u>	<u> </u>		ura entre 0 y		- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_ -
•			= 0°C	$T = 25^{\circ}C$	$T = \xi$	
Elemento	Especie de referencia	Ex _g ° _{el} kJ/gmol	Desviación ^(a) %	Ex _g ° _{el} kJ/gmol	Ex _g ° _{el} [kJ/gmol	Desviación ^(a) %
2101110			Atmósfera			
Ar _(g)	Ar	10.63	-8.7	11.64	12.80	9.9
C (s)	CO ₂	408.86	-0.3	410.27	411.67	0.3
He (g)	He	27.73	-8.5	30.31	33.03	9.0
Kr _(g)	Kr	31.38	-8.5	34.30	37.36	8.9
N _{2 (g)}	N ₂	0.57	-14.5	0.67	0.91	35.3
Ne (g)	Ne	24.82	-8.5	27.14	29.59	9.0
O _{2 (g)}	O ₂	3.55	-9.4	3.92	4.43	13.0
Xe _(g)	Xe	36.85	-8.5	40.27	43.83	8.8
H _{2 (g)}	H ₂ O	240.41	1.8	236.12	231.88	-1.8
D _{2 (g)}	D_2O	266.48	1.0	263.90	261.37	-1.0
		* * .:	Hidrosfera			
As (s)	HAsO ₄ ²	495.03	0.5	492.58	490.48	-0.4
B (s)	B(OH) ₃	629.72	0.3	628.07	626.14	-0.3
Br _{2 (I)}	Br ⁻	92.63	-8.3	101.00	110.01	8.9
Cl _{2 (g)}	CI	121.05	-2.1	123.67	126.94	2.6
Cs (s)	Cs [⁺]	401.62	-0.7	404.60	407.25	0.7
l _{2 (s)}	1O ₃	177.95	1.3	175.73	173.74	-1.1
K (s)	K ⁺	367.15	0.1	366.67	365.86	-0.2
Li (s)	Li ⁺	393.30	0.1	392.73	391.83	-0.2
Mo (s)	MoO ₄ ²⁻	733.47	0.3	731.32	729.55	-0.2
Na (s)	Na [†]	338.71	0.6	336.67	334.30	-0 7
P (s)	HPO ₄ ²⁻	865.15	0.5	861.26	857.72	-0.4
Rb (s)	Rb⁺	387.05	-0.4	388.69	390.02	0.3
S (s)	SO ₄ ²	614.28	0.8	609.33	604.75	-0.8
Se (s)	SeO ₄ ²⁻	348.41	0.3	347.52	346.99	-0.2
W (s)	WO ₄ 2-	832.31	0.5	828.45	824.96	-0.4
		, , , , , , , , , , , , , , , , , , ,	Litosfera			arrania, ogé-spiranten arrana arr
Ag (s)	AgCl	97.78	-1.6	99.33	100.55	1.2
Al (s)	Al ₂ SiO ₅	799.35	0.5	795.75	792.04	-0.5
Au (s)	Au	46.37	-8.4	50.62	54.86	8.4
Ba (s)	BaSO ₄	778.04	0.3	775.41	772.13	-0.4
Be (s)	Be ₂ SiO ₄	605.58	0.2	604.28	602.91	-0.2
Bi _(s)	Bi ₂ O ₃	272.55	0.5	271.20	269.74	-0.5
Ca (s)	CaCO ₃	736.29	1.0	729.14	721.79	-1.0
Cd (s)	CdCO ₃	303.40	1.7	298.42	293.23	-1.7
Ce (s)	CeO ₂	1056.99	0.2	1054.74	1052.36	-0.2
Co (s)	CoFe ₂ O ₄	313.62	0.1	313.42	313.15	-0.1
Cr (s)	K ₂ Cr ₂ O ₇	590.66	1.1	584.36	578.15	-1.1
Cu (s)	CuCO ₃	138.51	4.5	132.60	126.47	-4.6
Dy (s)	Dy(OH)₃	977.75	0.2	975.97	973.91	-0.2
Er (s)	Er(OH) ₃	974.58	0.2	972.81	970.76	-0.2
Eu (s)	Eu(OH) ₃	1005.42		1003.81	1001.92	-0.2
F _{2 (g)}	CaF ₂ • 3Ca ₃ (PO ₄)		-5.7	505.76	532.83	5.4

(a) Con respecto al valor de $Ex_{q^{\circ}el}$ a 25°C.

TESIS CON FALLA DE ORIGEN

	· · · · · · · · · · · · · · · · · · ·	tre 0 y 50°C (c = 0°C	T = 25°C	T = 50°C		
· · · · · · · · · · · · · · · · · · ·	Especie de	$Ex_q^{\circ}_{el}$	Desviación ^(a)	$Ex_q^{\circ}_{el}$	$Ex_q^{\circ}_{el}$	Desviación
Elemento	referencia	kJ/gmol	_%	kJ/gmol	kJ/gmol	%
Fe (s)	Fe ₂ O ₃	377.54	0.9	374.35	371.05	-0.9
Ga (s)	Ga ₂ O ₃	517.51	0.5	514.98	512.35	-0.5
Gd (s)	Gd(OH) ₃	970.90	0.2	968.99	966.80	-0.2
Ge (s)	GeO ₂	559.54	0.3	557.66	555.64	-0.4
Hf (s)	HfO ₂	1065.14	0.2	1063.08	1060.88	-0.2
Hg (₀)	HgCl₂	109.93	1.9	107.92	105.25	-2.5
Но _(s)	Ho(OH) ₃	980.33	0.2	978.74	976.87	-0.2
n _(s)	In ₂ O ₃	438.81	0.4	436.85	434.79	-0.5
r _(s)	IrO ₂	246.27	-0.3	247.00	247.60	0.2
_a (s)	La(OH)₃	996.96	0.2	994.66	992.08	-0.3
_u (s)	Lu(OH) ₃	947.19	0.1	945.79	944.12	-0.2
Vig _(s)	Mg ₃ Si ₄ O ₁₀ (OH) ₂	630.03	0.5	626.93	623.71	-0.5
Vin _(s)		490.49	0.6	487.75	484.87	-0.6
اله (s)	Nb ₂ O ₃	903.96	0.5	899.74	895.41	-0.5
Vd (s)	Nd(OH) ₃	972.39	0.2	970.13	967.58	-0.3
Vi (s)	NiO	242.37	-0.1	242.59	242.75	0.1
_(s) Ds _(s)	OsO ₄	370.64	0.6	368.43	365.94	-0.7
ob (s)	PbCO ₃	253.99	1.9	249.20	244.19	-0.7 - 2.0
od (s)	PdO	136.58	-1.6	138.73	140.82	1.5
or (s) Pr _(s)	Pr(OH) ₃	965.89	0.2	963.87		
' (s) Pt _(s)			-0.2 -0.2		961.57	-0.2
u (s)	PtO ₂	140.83		141.16	141.35	0.1
a _(s) Ra _(s)	PuO ₂	1095.72	-0.4	1100.05	1104.25	0.4
	RaSO₄	822.81	-0.2	824.22	824.99	0.1
₹e _(s)	Re₂O ₇	565.08	- 1.0	559.57	553.82	-1.0
Rh (s)	Rh₂O₃	180.69	0.5	179.73	178.66	-0.6
Ru (s)	RuO ₂	317.72	-0.3	318.63	319.41	0.2
Sb _(s)	Sb ₂ O ₅	442.20	0.9	438.18	433.99	-1.0
C (s)	Sc ₂ O ₃	927.48	0.2	925.25	922.92	-0.3
i (s)	SiO ₂	859.75	0.6	855.01	850.13	-0.6
Sm _(s)	Sm(OH) ₃	995.63	0.2	993.69	991.46	-0.2
Sn _(s)	SnO ₂	554.30	0.4	551.84	549.24	-0.5
Sr _(s)	SrCO ₃	756.33	0.9	749.83	743.13	-0.9
a _(s)	Ta₂O₅	978.26	0.4	974.09	969.75	-0.4
b (s)	Tb(OH)₃	1000.03	0.2	998.47	996.63	-0.2
e (s)	TeO ₂	328.77	-0.2	329.29	329.67	0.1
h (s)	ThO ₂	1204.72	0.2	1202.66	1200.46	-0.2
i (s)	TiO ₂	910.39	0.4	907.20	903.88	-0.4
T (s)	Tl ₂ O ₄	199.66	2.4	194.92	190.03	-2.5
m (s)	Tm(OH) ₃	953.17	0.1	951.78	950.11	-0.2
J _(s)	UO ₃ •H ₂ O	1200.98	0.4	1196.60	1191.91	-0.4
(s)	V_2O_5	725.85	0.6	721.27	716.51	- 0.7
(s)	Y(OH) ₃	967.11	0.2	965.57	963.076	-0.2
∕b _(s)	Yb(OH) ₃	946.08	0.2	944.31	942.26	-0.2
Zn _(s)	ZnCO ₃	351.03	1.8	344.71	338.18	-1.9
Zr (s)	ZrSiO ₄	1086.35	0.3	1082.97	1079.46	-0.3

(a) Con respecto al valor de $Ex_q^{\circ}_{el}$ a 25°C.

La concentración de las especies contenidas en el aire atmosférico se modifica sustancialmente al cambiar la temperatura del medio, por lo que el valor de exergia química de un elemento presente en el aire se ve afectado principalmente por el cambio de concentración de la especie de referencia más que por la diferencia en el valor de temperatura y en el valor de ΔG_f° de la especie de referencia (en el caso del CO₂, H₂O y D₂O), aumentando la exergia química del elemento si la concentración de la especie disminuye, y viceversa.

Al aumentar la temperatura e incrementarse la concentración del H₂O y D₂O en la atmósfera, a presión atmosférica y humedad relativa constante, la exergia química de estas especies disminuye (ver Figura 3.4), y por lo tanto también la exergia química estándar del H₂ y D₂. Por ejemplo, a 50°C la exergia química estándar del agua y del óxido de deuterio se reduce en 30.3% y 3.4%, respectivamente, con respecto al valor a 25°C, mientras que la exergia química estándar de los elementos hidrógeno y deuterio a 50°C disminuye en menos del 2% con respecto al valor a 25°C.

Figura 3.4.- Desviación porcentual del valor de exergia química estándar de las especies de la atmósfera al cambiar la tempertura de medio.

Por otra parte, al aumentar la presión parcial del agua y disminuir la concentración del resto de las especies presentes en el aire, aumenta la exergia química estándar de

dichas especies; cuando la temperatura es de 50°C el incremento en el valor de exergia química estándar con respecto a la temperatura a condiciones normales es de 35.3% en el caso del nitrógeno, de 13% en el caso del oxígeno, de 10% en el caso del argón, como se muestra en la Figura 3.4, y de alrededor de 9% en el caso del resto de las especies que se encuentran en menor concentración en el aire. Aunque la exergia química estándar del bióxido de carbono aumenta en 9.3% a 50°C, con respecto al valor a 25°C, la exergia química del elemento carbono sólo aumenta ligeramente (0.3%).

En el caso de los elementos presentes en el agua de mar y en la corteza terrestre, en donde no se considera cambio de concentración de las especies por cambio de temperatura, en general, al aumentar la temperatura disminuye su valor de exergia química estándar. Lo cual es razonable ya que al aumentar la temperatura de la reacción en que se convierte al elemento a su especie de referencia y disminuir su espontaneidad (ver Tabla 3.4), se requiere un mayor trabajo de los alrededores para llevar a cabo la reacción y por consiguiente disminuye la exergia reaccional o trabajo máximo útil que se puede obtener de dicha reacción.

En el caso de los elementos Br₂, Cl₂, Cs, Rb, Ag, Au, F₂, Ir, Ni, Pd, Pt, Pu, Ra, Ru, y Te, al aumentar la temperatura sus valores de exergia química se incrementan. Con relación al cesio y al rubidio lo anterior se explica ya que al aumentar la temperatura se incrementa también el cambio de energía libre de Gibbs de la reacción de referencia.

Sin embargo, el comportamiento del valor de exergia química estándar de los elementos al variar la temperatura no se debe relacionar sólo con la tendencia y con la magnitud del cambio del valor de ΔG_f° de la reacción de formación de la especie de referencia ya que en los casos del Br₂, Cl₂, K, Li, Na, Ag, F₂, Ir, Ni, Pd, Pt, Pu, Ra, Ru, y Te, al modificarse la temperatura el cambio en el valor de exergia química estándar no tiene la misma tendencia que el cambio en el valor de ΔG_f° de la especie de referencia. Entonces, el cambio en el valor de exergia química estándar de los elementos del agua de mar y de la corteza terrestre al variar la temperatura también va a depender del

cambio en los valores de Ex_a ° de la especie de referencia y de los otros elementos que estén contenidos en la especie.

Ahora bien, el cambio en el valor de exergia química de las especies de referencia depende no sólo del cambio en la temperatura ambiente, sino también de la magnitud de la concentración de la especie en el medio, aun cuando dicha concentración no se altere al variar la temperatura. Por ejemplo, al comparar el comportamiento del valor de exergia química con la temperatura de los elementos radio y bario, los cuales tienen como especies de referencia sustancias con estructura química similar (RaSO₄ y BaSO₄, respectivamente), se observa que al aumentar la temperatura, la exergia química del Ra aumenta mientras que la del Ba disminuye, aun cuando el cambio en el valor de ΔG_f° de sus especies de referencia sea el mismo. Lo anterior se debe a que el cambio en el valor de exergia química del sulfato de radio es mucho mayor que el cambio en el valor de exergia química del sulfato de bario para un mismo incremento de temperatura, lo cual se explica ya que la fracción molar del RaSO₄ es aproximadamente 108 veces menor que la fracción molar del BaSO₄ (ver Tabla 3.8).

Tabla 3.8.- Comparación del cambio en el valor de exergia química por un cambio de temperatura, de dos especies de estructura química similar pero con fracción molar muy diferente.

			T=2	25°C	T=5	50°C	
Especie de Elemento referencia		x _i	Ex _q ° _{el} kJ/gmol	Ex _q °, kJ/gmol	Ex _q ° _{el} kJ/gmol	Ex _q °; kJ/gmol	Cambio en $Ex_q^{\circ}_i$ kJ/gmol
Ra (s)	RaSO ₄	3.0e-14	824.22	77.2	824.99	83.7	6.5
Ba _(s)	BaSO ₄	4.2e-6	775.41	30.7	772.13	33.3	2.6

Vale la pena recordar que el término correspondiente a la exergia química de las especies es el producto de la temperatura por el logaritmo natural de la concentración de la especie, por lo que, por cada orden de magnitud que sea menor la fracción molar de la especie, el resultado de multiplicar el logaritmo natural de la concentración de la especie por la temperatura es 9% menor. Por lo que, mientras menor es la concentración de una especie en el medio, mayor es el efecto por un cambio de temperatura en el valor de exergia química de la especie de referencia y por consiguiente en el valor de exergia química del elemento.

Los elementos contenidos en el agua de mar y en la corteza terrestre que presentan una mayor desviación en su valor de exergia química estándar a 0 y 50°C con respecto al valor a condiciones normales de temperatura del medio son el bromo (8.9%), el oro (8.4%), el flúor (5.7%), el cobre (4.6%), el cloro (2.6%), el mercurio (2.5%), el talio (2.5%) y el plomo (2%). En el caso del oro, cuya especie de referencia es el oro sólido, se puede observar que la variación porcentual en el valor de exergia química estándar es resultado sólo de la diferencia de temperatura, ya que su concentración permanece constante.

3.1.4.- Efecto en el valor de exergia química estándar de los elementos al variar la temperatura del medio entre 0 y -40°C.

Cuando se consideran temperaturas del medio por debajo de los cero grados centígrados se presenta un problema en el cálculo de exergia química estándar de los elementos ya que el agua de mar se congela a -2°C y por consiguiente las especies de referencia disueltas en el agua de mar ya no existen como tales. Lo anterior no tiene efecto en el caso de los elementos presentes en el aire atmosférico ya que la determinación de su exergia química estándar no depende de la exergia química de los elementos contenidos en la hidrosfera, sin embargo, la exergia química de algunos de los elementos presentes en la corteza terrestre (Ag, Ba, Cr, F₂, Hg y Ra) depende del valor de exergia del cloro, potasio, fósforo y azufre, elementos presentes en el agua de mar.

La información acerca de la composición del agua de mar congelada es casi nula. Millero [52] indica que el agua de mar congelada contiene una relación mayor de iones SO_4^{2-} a iones CI^- con respecto al agua de mar sin congelar, ya que se incorporan iones sulfato al hielo. También la relación de calcio a cloro cambia debido a la precipitación de carbonato de calcio en el mar congelado.

El suponer una composición de agua de mar congelada resultaría muy complicado, por lo que, para determinar adecuadamente la exergia química estándar de los elementos presenten en la hidrosfera y en la litosfera cuando la temperatura del medio es menor que el punto de fusión del agua de mar, se propone suponer los siguientes escenarios:

Escenario 1.- La determinación de la exergia química de los elementos contenidos en el agua de mar y en la corteza terrestre se lleva a cabo a la misma temperatura a la que se encuentra el aire atmosférico, considerando, que si la temperatura es menor a -2°C, el agua de mar no se congela y la proporción entre las especies disueltas permanece constante.

<u>Escenario 2.-</u> La exergia química estándar de los elementos presentes en la hidrosfera y en la litosfera se calcula a condiciones normales de temperatura (25°C) cuando la temperatura del aire atmosférico sea inferior a -2°C.

Escenario 3.- Si la temperatura de la atmósfera es menor a -2°C, la exergia química de los elementos contenidos en el agua de mar se determina a 0°C y la de los elementos de la corteza terrestre a la misma temperatura a la que se encuentra el aire.

Escenario 4.- Tanto la exergia química de los elementos contenidos en el agua de mar como los que están en la corteza terrestre se calculan a 0°C, cuando la temperatura del aire atmosférico sea menor a -2°C.

En la Tabla 3.9 se presentan los valores de exergia química estándar de los elementos, que se obtienen cuando la temperatura del aire atmosférico es igual a -40°C y al considerar cada uno de los escenarios antes descritos. En la misma tabla se presenta la desviación porcentual del valor de exergia química con respecto al valor a 25°C que se obtiene en cada uno de los escenarios. Con el fin de corroborar que el valor de exergia química estándar de cada elemento conserve su tendencia por debajo de los 25°C, se presenta la desviación porcentual del valor de exergia química cuando la temperatura del medio es igual a 0°C, esto es, cuando el agua de mar aún está en fase líquida.

Tabla 3.9.- Efecto en el valor de Ex_q° de los elementos cuando la temperatura es menor a 0°C. Análisis de escenarios.

	· · · · · · · · · · · · · · · · · · ·	<u> 10 lanes</u>	ř. i <i>p</i>	nálisis de d	escenario	S			
					Esce	enario	1011 309	and the second	e te
			1	2	2	. 3	3	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1 57 5 5 5
		$T_{dira} =$	-40°C	$T_{Aire} =$	-40°C	$T_{Aire} =$	-40°C	$T_{Aire} =$	
		$T_{Agua} =$	-40°C	$T_{Agua} =$	25°C	T_{Agua} :	= 0°C	T_{4aua} :	= 0°C
	T = 0°C	$T_{Tierra} =$	-40°C	T _{Tierra} =	= 25°C	T _{Tierra} =	-40°C	Trierra	= 0°C
	Desv. ^(a)		Desv. ^(a)		Desv. ^(a)		Desv. ^(a)	. 19	Desv. ^(a)
Elemento	Desv."	$Ex_q^{\circ}_{ei}$	besv.	Exq el	~/	Ex _q ° _{el} kJ/gmol	Desv.	Exq ^o el	
Elemento	70	kJ/gmol	76	kJ/gmol		KJ/GIIIOI	70	kJ/gmol	70
				Atmó.			7 5 10 A 1 10	Pagirinah	Sept. 17. 12
Ar (g)	-8.7	9.1	-22.2	9.1	-22.2	9.1	-22.2	9.1	-22.2
C (s)	-0.3	406.6	-0.9	406.6	-0.9	406.6	-0.9	406.6	-0.9
He _(g)	-8.5	23.7	-21.9	23.7	-21.9	23.7	-21.9	23.7	-21.9
Kr (g)	-8.5	26.8	-21.9	26.8	-21.9	26.8	-21.9	26.8	-21.9
N _{2 (g)}	-14.5	0.5	-28.1	0.5	-28.1	0.5	-28.1	0.5	-28.1
Ne (g)	-8.5	21.2	-22.0	21.2	-22.0	21.2	-22.0	21.2	-22.0
O _{2 (g)}	-9.4	3.0	-22.9	3.0	-22.9	3.0	-22.9	3.0	-22.9
Xe _(g)	-8.5	31.4	-21.9		-21.9	31.4	-21.9	31.4	-21.9
H _{2 (g)}	1.8	247.6	4.9	247.6	4.9	247.6	4.9	247.6	- 4,9
D _{2 (g)}	1.0	270.9	2.7	270.9	2.7	270.9	2.7	270.9	2.7
۸۵	. 0.5	400.0	4.9	Hidro	and the second second	405.0	4.5	405.0	4.5
As _(s)	0.5	499.0	1.3	477.2	-3.1	485.3	1.5	485.3	-1.5
B _(s)	0.3	631.8 79.6	0.6 -21.2	612.2	-2.5	619.7	-1.3	619.7	-1.3
Br _{2 (I)}	-8.3 -2.1	117.2	-21.2 -5.2	89.5 112.2	-11.4 -9.3	85.5	-15.4	85.5	-15.4
Cl _{2 (g)}	-2.1 -0.7	396.7	-3.2 -2.0	410.3	-9.3 1.4	113.9 405.2	-7.9 0.2	113.9	-7.9
Cs (s)		390.7 181.7	3.4	167.0	-5.0	172.4	-1.9	405.2 172.4	0.2 -1.9
l _{2 (s)}	0.1	367.7	0.3	372.4	1.6	370.7	-1.9 1.1		-1.3 -1.1
K _(s) Li _(s)	0.1	394.0	0.3	398.5	1.5	376.7 396.9	1.1	396.9	1.1
Mo (s)	0.3	737.2	0.8	721.7	-1.3	727.3	-0.5	727.3	-0.5
Na (s)	0.6	341.8	1.5	342.4	1.7	342.3	1.7	342.3	1.7
P _(s)	0.5	871.5	1.2	845.9	-1.8	855.4	-0.7	855.4	-0.7
Rb (s)	-0.4	384.2	-1.1	394.4	1.5	390.6	0.5	390.6	0.5
S _(s)	0.8	622.4	2.2	599.7	-1.6	608.2	-0.2	608.2	-0.2
Se (s)	0.3	350.1	0.7	337.8	-2.8	342.3	-1.5	342.3	-1,5
W (s)	0.5	838.7	1.2	818.8	-1.2	826.2	-0.3	826.2	-0.3
	- Militaria - Carifferi Caramana Arramana (- Carama		Total Company of the	Litos					
Ag (s)	-1.6	95.1	-4.2	105.1	5.8	96.8	-2.6	101.4	2.1
Al (s)	0.5	805,1	1.2	796.4	0.1	805.1	1.2	799.7	0.5
Au (s)	-8.4	39.6	-21.8	50.6	0.0	39.6	-21.8	46.4	-8.4
Ba (s)	0.3	781.9	8.0			796.2	2.7	785.2	1.3
Be (s)	0.2	607.6	0.6	604.7	0.1	607.6	0.6	605.8	0.3
Bi (s)	0.5	274.7	1.3	271.9	0.2	274.7	1.3	272.9	0.6
Ca (s)	1.0	747.6	2.5	734.1	0.7	747.6	2.5	739.3	1.4
Cd (s)	1.7	311.3	4.3	303.4		311.3	4.3	306.4	2.7
Ce (s)	0.2	1060.5	0.5	1055.6	0.1	1060.5	0.5	1057.5	0.3
Co (s)	0.1	313.9	0.2	313.9	0.1	313.9	0.2	313.9	0.1
Cr (s)	1.1	600.8	2.8	580.2	-0.7	597.8		588.0	0.6
Cu (s)	4.5	147.9	11.5	137.6	3.8	147.9	11.5	141.5	6.8
Dy (s)	0.2	980.0	0.4	960.1	-1.6	980.0	0.4	967.8	-0.8
Er (s)	0.2	976.8	0.4	957.0	-1.6	976.8	0.4	964.6	-0.8
				de Evo a 25					

(a) Desviación porcentual con respecto al valor de $Ex_{q^{\circ}el}$ a 25°C

Tabla 3.9.- Efecto en el valor de Ex_q° de los elementos cuando la temperatura es menor a 0°C. Análisis de escenarios (continuación).

,		(continuacion).	enario	
	1	2	3	4
A 3¥ 1 × 1	$T_{Aire} = -40$ °C	$T_{Aire} = -40^{\circ}C$	$T_{Aire} = -40$ °C	$T_{Aire} = -40^{\circ} \text{C}$
en e	$T_{Agua} = -40^{\circ}C$	$T_{Agua} = 25^{\circ}\text{C}$	$T_{Agua} = 0$ °C	$T_{Agua} = 0$ °C
$T = 0^{\circ} \mathbf{C}$	$T_{Tierra} = -40$ °C	$T_{Tierra} = 25^{\circ}$ C	$T_{Tierra} = -40^{\circ}C$	$T_{Tierra} = 0^{\circ}C$
Desv. ^(a)				
Elemento %	Ex _q ° _{el} Desv. ^(a) kJ/gmol %	Ex _q ° _{el} Desv. ^(a) kJ/gmol %	$Ex_q^{\circ}_{el}$ Desv. $^{(a)}$ kJ/gmol $\%$	$E_{X_q}{}^_{el}$ Desv. $^{ ext{(a)}}$ kJ/gmol $\%$
Eu (s) 0.2	1007.4 0.4	988.0 -1.6	1007.4 0.4	995.4 -0.8
F _{2 (g)} -5.7	430.7 -14.8	559.0 10.5	526.9 4.2	511.3 1.1
Fe (s) 0.9	382.6 2.2	375.0 0.2	382.6 2.2	377.9 1.0
Ga (s) 0.5	521.5 1.3	515.7 0.1	521.5 1.3	517.9 0.6
Gd (s) 0.2	973.4 0.5	953.1 -1.6	973.4 0.5	960.9 -0.8
Ge (s) 0.3	562.5 0.9	558.6 0.2	562.5 0.9	560.1 0.4
Hf (s) 0.2	1068.4 0.5	1064.0 0.1	1068.4 0.5	1065.7 0.2
Hg (I) 1.9	112.8 4.5	119.4 10.6	116.2 7.6	117.1 8.5
Ho (s) 0.2	982.3 0.4	962.9 -1.6	982.3 0.4	970.3 -0.9
In (s) 0.4	441.9 1.2	437.5 0.2	441.9 1.2	439.2 0.5
Ir (s) -0.3	245.0 -0.8	24 7.9 0.4	245.0 -0.8	246.8 -0. 1
La (s) 0.2	1000.1 0.5	978.8 -1.6	1000.1 0.5	987.0 -0.8
Lu (s) 0.1	948.9 0.3	929.9 -1.7	948.9 0.3	937.2 -0.9
Mg (s) 0.5	634.9 1.3	623.7 -0.5	634.9 1.3	628.0 0.2
Mn (s) 0.6	494.8 1.4	488.6 0.2	494.8 1.4	491.0 0.7
Nb (s) 0.5	910.7 1.2	900.4 0.1		904.4 0.5
Nd (s) 0.2	975.4 0.5	954.3 -1.6	975.4 0.5	962.4 -0.8
Ni (s) -0.1	242.0 -0.3	243.0 0.2	242.0 -0.3	242.6 0.0
Os (s) 0.6	374.0 1.5	370.2 0.5	374.0 1.5	371.7 0.9
Pb (s) 1.9	261.6 5.0	254.2 2.0	261.6 5.0	257.0 3.1
Pd (s) -1.6	133.1 -4.1	139.2 0.3	133.1 -4.1	136.8 -1.4
Pr _(s) : 50.2	968.5 0.5	948.0 -1.6	968.5 0.5	955.9 -0.8
Pt (s) -0.2	140.2 -0.7	142.1 0.6	140.2 -0.7	141.4 0.1
Pu (s) -0.4	1088.7 -1.0	1101.0 0.1	1088.7 -1.0	1096.2 -0.3
Ra (s) -0.2	820.2 -0.5	835.7 1.4	834.5 1.2	830.0 0.7
Re (s) 1.0	573.8 2.5	561.1 0.3	573.8 2.5	566.0
Rh (s) 0.5	182.2 1.4	180.4 0.4	182.2 1.4	181.1 0.8
Ru (s) -0.3	316.2 -0.8	319.5 0.3	316.2 -0.8	318.2 -0.1
Sb (s) 0.9	448.6 2.4	439.3 0.3	448.6 2.4	442.9 1.1
Sc (s) 0.2	931.0 0.6	925.9 0.1	931.0 0.6	927.9 0.3
Si (s) 0.6	867.3 1.4	855.9 0.1	867.3 1.4	860.3 0.6
Sm (s) 0.2	998.2 0.5	977.8 -1.6	998.2 0.5	985.7 -0.8
Sn (s) 0.4	558.2 1.1	552.7 0.2	558.2 1.1	554.8 0.5
Sr _(s) 0.9	766.6 2.2	754.8 0.7	766.6 2.2	759.4 1.3
Ta _(s) 0.4	984.9 1.1	975.2 0.1	984.9 1.1	978.9 0.5
$Tb_{(s)}^{(s)}$ 0.2	1001.9 0.3	982.6 -1.6	1001.9 0.3	990.1 -0.8
Te (s) -0.2	327.9 -0.4	330.2 0.3	327.9 -0.4	329.3 0.0
Th (s) 0.2	1207.9 0.4	1203.6 0.1	1207.9 0.4	1205.2 0.2
Ti (s) 0.4	915.4 0.9	908.1 0.1	915.4 0.9	910.9 0.4
TI (s) 2.4	207.2 6.3	195.8 0.5	207.2 6.3	200.2 2.7
	954.8 0.3	935.9 -1.7	954.8 0.3	943.2 -0.9

⁽a) Desviación porcentual con respecto al valor de $Ex_q^{\circ}_{el}$ a 25°C

Tabla 3.9.- Efecto en el valor de Ex_q° de los elementos cuando la temperatura es menor a 0°C.

Análisis de escenarios

				(COllenia	uacivily.				
					Esce	nario	4. 1.4	Astronomic State	
			1		2	3		4	1
	•	$T_{Aire} =$	-40°C	$T_{Aire} =$	-40°C	$T_{Aire} =$	-40°C	$T_{Aire} =$	-40°C
		$T_{Agua} =$	-40°C	T_{Agua} :	= 25°C	$T_{Agua} =$	= 0°C	T_{Agua} :	= 0°C
	$T = 0^{\circ}C$	$T_{Tierra} =$	-40°C		= <u>25°C</u>	T _{Tierra} =			= 0°C
	Desv. (a)	$Ex_{a}^{o}_{el}$	Desv.(a)	$Ex_q^{\circ}_{el}$	Desv. (a)	$Ex_q^{\circ}_{el}$	Desv. (a)	$Ex_{\sigma}^{\circ}_{el}$	Desv. ^(a)
Elemento	%	kJ/gmol	%	kJ/gmol	%	kJ/gmol	%	kJ/gmol	%
U (s)	0.4	1207.5	0.9	1186.9	-0.8	1207.5	0.9	1194.9	-0.1
V (s)	0.6	733.1	1.6	722.4	0.2	733.1	1.6	726.5	0.7
Y (s)	0.2	969.0	0.4	949.7	-1.6	969.0	0.4	957.1	-0.9
Yb _(s)	0.2	948.3	0.4	928.5	-1.7	948.3	0.4	936.1	-0.9
Zn (s)	1.8	361.0	4.7	349.7	1.5	361.0	4.7	354.1	2.7
Zr _(s)	0.3	1091.7	8.0	1083.9	0.1	1091.7	8.0	1086.9	0.4

(a) Desviación porcentual con respecto al valor de Ex_{q^0el} a 25°C

Si la exergia química de un elemento a 0°C es menor que el valor a 25°C, se espera que al disminuir aún más la temperatura la tendencia se conserve, y viceversa. El único escenario que cumple con la anterior suposición para todos los elementos, es el número uno, en el que la exergia química estándar de los elementos del agua de mar y de la corteza terrestre se determina a la misma temperatura a la que se encuentra el aire atmosférico, suponiendo que las especies disueltas en el agua de mar permanecen como tales aún cuando la temperatura está por debajo del punto de fusión del agua de mar. En la Tabla 3.9 se remarcan los casos que no siguen el comportamiento esperado.

El considerar que la composición del agua de mar es la misma aun congelada es erróneo, sin embargo, debido a que la variación del valor de exergia química de los elementos, que dependen de la exergia de elementos de la hidrosfera, a temperaturas menores a 0°C con respecto al valor a 25°C es muy similar en los diferentes escenarios, excepto en el caso del flúor, y debido a que con esta suposición se mantiene el comportamiento del valor de exergia química de todos los elementos, se considera apropiada dicha suposición para determinar la exergia química de los elementos a temperaturas entre 0 y -40°C.

Los elementos que presentan un mayor cambio en su valor de exergia química a -40°C con respecto al valor a 25°C son principalmente los presentes en el aire atmosférico, ya que su concentración varía considerablemente al disminuir la concentración de vapor de agua en la atmósfera, ejemplo de esto son, el nitrógeno con una desviación de 28%, el oxígeno con una variación de casi 23% y el resto de los elementos que se encuentran como tales en el aire con una desviación de 22%. La variación del valor de exergia química estándar del hidrógeno es casi 5%.

En el caso de los elementos contenidos en el agua de mar, los que presentan una mayor desviación de su valor de exergia química a -40°C con respecto a condiciones normales de temperatura son el bromo (21.2%), el cloro (5.2%), y el yodo (3.4%). Por otro lado, los elementos de la corteza terrestre que tienen un mayor cambio en su valor de exergia química estándar al disminuir la temperatura hasta -40°C son el oro (21.8%), el cobre (11.5%), el flúor (14.8%), el talio (6.3%), el plomo y el zinc (5%) y en menor medida la plata, el cadmio, el paladio y el mercurio con una desviación de alrededor de 4%.

Para el resto de los elementos de la Tabla Periódica la variación del valor de exergia química estándar al disminuir la temperatura del medio es pequeña, menor de 3% a -40°C con respecto al valor a 25°C.

and the second second to the second second

En el Apéndice A.4 se muestran los resultados completos del cálculo de exergia química estándar de los elementos cuando la temperatura del medio es igual a -40°C y que se obtienen con el programa EXQCOMP, el cual se basa en el primer escenario para la determinación de exergia química estándar a temperaturas menores a 0°C.

Con el propósito de observar el efecto de la temperatura del medio en el cálculo de exergia química estándar de compuestos, a partir de la exergia química de los elementos que los conforman, se determinó con el programa EXQCOMP el valor de Ex_q° del metano y del sulfato ferroso a diferentes valores de temperatura, manteniendo la presión atmosférica igual a la normal, la humedad relativa del aire en 0.7, la

concentración de CO₂ en 345 ppmv y la salinidad del agua de mar en 35‰. Los resultados de este ejercicio se presentan en la Tabla 3.10.

Tabla 3.10.- Exergia química estándar del CH₄ y FeSO₄ a diferentes valores de temperatura del medio

 $(P = 1 \text{ atm}, \phi = 0.7, \text{ concentración de CO}_2 = 345 \text{ ppmv y salinidad} = 35\%).$

			Temperate	ura, °C	
		-40	0	25	50
CH₄	ΔG_f° , kJ/gmol Ex_q° , kJ/gmol	-56.04 845.75	-52.81 836.87	-50.79 831.72	-48.78 826.66
FeSO ₄	$\Delta G_{\rm f}^{\circ}$, kJ/gmol $Ex_{ m g}^{\circ}$, kJ/gmol	-841.49 169.62	-827.01 171.92	-817.96 173.57	-808.91 175.76

Al aumentar la temperatura del ambiente y por consiguiente al disminuir la Ex_q ° del H_2 , disminuye el valor de exergia química del metano al igual que se reduce el cambio en la energía libre de Gibbs de su reacción de formación. Debido a que la Ex_q ° del carbono varía muy poco con la temperatura y que el metano está conformado por el doble de moléculas de hidrógeno que de carbono, el cambio en el valor de exergia química del metano depende estrechamente del cambio en el valor de exergia química del hidrógeno.

En el caso del sulfato ferroso, cada molécula de este compuesto contiene dos moléculas de O_2 por una molécula de Fe y una de S, por lo que al aumentar la temperatura e incrementarse considerablemente el valor de Ex_q° del O_2 , el valor de Ex_q° del sulfato ferroso aumenta, aunque los valores de $-\Delta G_f^\circ$ y de Ex_q° del hierro y del azufre disminuyan.

En la Figura 3.5 se muestra la desviación porcentual del valor de Ex_q° a condiciones normales del metano y del sulfato ferroso al cambiar la temperatura. El efecto es pequeño, presentándose la mayor variación a -40° C, temperatura en la que el valor de Ex_q° es 1.7% mayor en el caso del CH₄ y 2.3% menor en el caso del FeSO₄, con respecto al valor a 25°C.

Figura 3.5.- Efecto en el valor de exergia química estándar de compuestos al cambiar la temperatura del medio.

Cabe mencionar que si se mantiene fija la presión parcial del agua en el aire y por consiguiente constante la humedad absoluta de éste al cambiar la temperatura, el valor de exergia química estándar del metano y del sulfato ferroso tiene un comportamiento contrario al mostrado en la Figura 3.5. Esto es, al aumentar la temperatura aumenta la exergia química del metano y disminuye la del sulfato ferroso. Los resultados de dicha consideración y que son obtenidos con el programa EXQCOMP se listan en la Tabla 3.11.

Tabla 3.11.- Exergia química estándar del CH₄ y FeSO₄ a diferentes valores de temperatura del medio.

Presión parcial del agua en el aire constante.

(P = 1 atm, concentración de $CO_2 = 345$ ppmv y salinidad = 35%).

		Temperatura, °C				
		-40	0	25	50	
CH₄	Ex_q° , kJ/gmol	825.30	829.25	831.72	834.18	
FeSO ₄	Ex_q° , kJ/gmol	179.81	175.70	173.57	172.13	

El efecto de la temperatura en el valor de exergia química estándar del metano presentado en la Tabla 3.11 coincide con lo determinado por Rivero, Montero y Garfias [53], sin embargo, el mantener la humedad absoluta del aire constante, implica un cambio en su humedad relativa, debido a la variación de la presión de vapor del agua.

3.2.- Efecto del cambio de la presión atmosférica en el valor de exergia química estándar.

En esta sección se analíza el efecto que tiene el cambio de presión atmosférica sobre el valor de exergia química estándar de los elementos. Aun cuando existen lugares en la Tierra con una altura sobre el nivel del mar mayor a 4,000 m, se considerarán sólo aquellas altitudes en donde existe población y en donde es factible que se lleve a cabo algún proceso químico, por lo que, se considera como altitud máxima 3,625 metros (La Paz, Bolivia) con un valor de 0.65 atm de presión atmosférica, y como altitud mínima –244 metros (Jericó, Israel), con una presión atmosférica de 1.03 atm.

and the control of th

La presión atmosférica guarda la siguiente relación con la altura [54]:

sa presidente del terrigorie di la discolar di porte di Piè i del la coloria possiblem de disserbo La hien

en donde, P_2 es la presión atmosférica a la altura h, P_1 la presión atmosférica al nivel del mar, esto es, 760 mmHg (1 atm), h la altura sobre el nivel del mar, B es una constante que incluye al peso molecular del aire PM_{aire} , la constante de aceleración de la gravedad g, la constante general del gas ideal R y la temperatura T. La constante B tiene un valor de $1.168 \times 10^{-4} \, \text{m}^{-1}$ a $25 \, ^{\circ}\text{C}$.

En la Tabla 3.12, se presenta el valor de exergia química estándar de cada elemento a 25°C, al considerar una presión atmosférica de 0.65 y 1.03 atm, y se compara con su valor a la condición normal de presión, es decir, a 1 atm. Los resultados completos de la determinación de exergia química estándar de los elementos al suponer valores de

presión atmosférica diferentes a la normal y utilizando el programa EXQCOMP, se presentan en el Apéndice A.5.

Tabla 3.12.- Efecto de la presión atmosférica en el valor de exergia química estándar de los elementos.

			0.65 atm	P = 1 atm		1.03 atm
	Especie de	$Ex_q^{\circ}_{el}$	Desviación ^(a)	$Ex_{q^{\circ}el}$	$Ex_q^{\circ}_{el}$	Desviación ⁶
<u>Elemento</u>	referencia	kJ/gmol	<u>%</u>	kJ/gmol	kJ/gmol	<u>%</u>
		•	Atmósfera			
Ar _(g)	Ar	11.67	0.26	11.64	11.64	-0.01
C (s)	CO ₂	410.27	0.00	410.27	410.27	0.00
He _(g)	He	30.34	0.10	30.31	30.31	-0.01
Kr (g)	Kr	34.33	0.09	34.30	34.30	0.00
N _{2 (g)}	N_2	0.70	4.48	0.67	0.67	-0.15
Ne (g)	Ne	27.17	0.11	27.14	27.13	-0.01
$O_{2(g)}$	O ₂	3.95	0.76	3.92	3.92	-0.05
Xe (g)	Xe	40.30	0.07	40.27	40.27	0.00
H _{2 (g)}	H ₂ O	235.04	-0.46	236.12	236.20	0.03
D _{2 (g)}	D_2O	262.82	-0.41	263.90	263,98	0.03
			Hidrosfera			
As _(s)	HAsO ₄ ²	494.14	0.32	492.58	492.47	-0.02
B (s)	B(OH) ₃	629.65	0.25	628.07	627.96	-0.02
Br _{2 (l)}	Br	102.08	1.07	101.00	100.93	-0.07
Cl _{2 (g)}	CI	124.75	0.88	123.67	123.60	-0.06
Cs (s)	Cs⁺	404.06	-0.13	404.60	404.64	0.01
l _{2 (s)}	IO ₃	176.72	0.57	175.73	175.66	
K (s)	K ⁺	366.12	-0.15	366.67	366.70	0.01
Li (s)	Li⁺	392.18	-0.14	392.73	392.76	0.01
Mo (s)	MoO ₄ ²⁻ .	732.35	0.14	731.32	731.25	-0.01
Na (s)	Na [*]	336.13	-0.16	336.67	336.71	0.01
P (s)	HPO ₄ 2-	862.83	0.18	861.26	861.15	-0.01
Rb (s)	Rb [⁺]	388.15	-0.14	388.69	388.73	0.01
S (s)	SO ₄ ²	610.36	0.17	609.33	609.26	-0.01
Se (s)	SeO ₄ ²	348.54	0.29	347.52	347.45	-0.02
W (s)	WO ₄ ²⁻	829.48	0.12	828.45	828.38	-0.01
The second secon			Litosfera			The second secon
Ag (s)	AgCl	98.79	-0.54	99.33	99.36	0.04
Al (s)	Al ₂ SiO ₅	795.73	0.00	795.75	795.75	0.00
Au (s)	Au	50.62	0.00	50.62	50.62	0.00
Ba (s)	BaSO ₄	774.33	-0.14	775.41	775.48	0.01
Be (s)	Be₂SiO₄	604.27	0.00	604.28	604.28	0.00
Bi (s)	Bi ₂ O ₃	271.17	-0.01	271.20	271.20	0.00
Ca (s)	CaCO ₃	729.10	-0.01	729.14	729.15	
Cd (s)	CdCO ₃	298.37	-0.02	298.42	298.42	0.00
Ce (s)	CeO ₂	1054.71	0.00	1054.74	1054.75	0.00
Co (s)	CoFe ₂ O ₄	313.40	0.00	313.42	313.42	0.00
	pecto al valor de E		0.00	0.0.72	010.42	0.00

Tabla 3.12.- Efecto de la presión atmosférica en el valor de exergia química estándar de los elementos (continuación).

		P = 0	0.65 atm	P = 1 atm	$P = \gamma$	1.03 atm
	Especie de	$Ex_q^{\circ}_{el}$	Desviación ^(a)	$Ex_q^{\circ}_{el}$	$Ex_q^{\circ}_{el}$	Desviación ⁽
Elemento	referencia	kJ/gmol	%	kJ/gmol	kJ/gmol	%
Cr (s)	K ₂ Cr ₂ O ₇	584.85	0.08	584.36	584.33	-0.01
Cu (s)	CuCO ₃	132.55	-0.03	132.60	132.60	0.00
Dy (s)	Dy(OH) ₃	977.55	0.16	975.97	975.86	-0.01
Er (s)	Er(OH) ₃	974.39	0.16	972.81	972.70	-0.01
Eu (s)	Eu(OH) ₃	1005.39	0.16	1003.81	1003.70	-0.01
F _{2 (g)}	CaF ₂ • 3Ca ₃ (PO ₄) ₂	496.47	-1.84	505.76	506.41	0.13
Fe (s)	Fe ₂ O ₃	374.33	-0.01	374.35	374.35	0.00
Ga (s)	Ga ₂ O ₃	514.96	0.00	514.98	514.98	0.00
Gd (s)	Gd(OH) ₃	970.57	0.16	968.99	968.88	-0.01
Ge (s)	GeO ₂	557.63	-0.01	557.66	557.66	0.00
Hf (s)	HfO ₂	1063.05	0.00	1063.08	1063.08	0.00
Hg (i)	HgCl ₂	106.83	-1.00	107.92	107.99	0.07
Ho (s)	Ho(OH) ₃	980.32	0.16	978.74	978.63	-0.01
In _(s)	In ₂ O ₃	436.83	-0.01	436.85	436.85	0.00
Ir (s)	IrO ₂	246.97	-0.01	247.00	247.00	0.00
La (s)	La(OH) ₃	996.24	0.16	994.66	994.55	-0.01
Lu (s)	Lu(OH) ₃	947.37	0.17	945.79	945.68	-0.01
Mg (s)	Mg ₃ Si ₄ O ₁₀ (OH) ₂	627.27	0.05	626.93	626.90	0.00
Mn (s)	MnO ₂	487.72	-0.01	487.75	487.75	0.00
Nb (s)	Nb_2O_3	899.72	0.00	899.74	899.74	0.00
Nd (s)	Nd(OH) ₃	971.70	0.16	970.13	970.02	-0.01
Ni _(s)	NiO	242.58	-0.01	242.59	242.59	0.00
Os (s)	OsO ₄	368.37	-0.02	368.43	368.43	0.00
Pb (s)	PbCO ₃	249.15	-0.02	249.20	249.20	0.00
Pd (s)	PdO	138.72	-0.01	138.73	138.73	0.00
Pr _(s)	Pr(OH) ₃	965.45	0.16	963.87	963.76	-0.01
Pt (s)	PtO ₂	141.13	-0.02	141.16	141.16	0.00
Pu (s)	PuO ₂	1100.02	0.00	1100.05	1100.06	0.00
Ra (s)	RaSO ₄	823.14	-0.13	824.22	824.29	0.01
Re (s)	Re ₂ O ₇	559.52	-0.01	559.57	559.58	0.00
Rh (s)	Rh ₂ O ₃	179.71	-0.01	179.73	179.73	0.00
Ru (s)	RuO ₂	318.60	-0.01	318.63	318.64	0.00
Sb _(s)	Sb ₂ O ₅	438.15	-0.01	438.18	438.19	0.00
Sc _(s)		925.23	0.00	925.25	925.26	0.00
Si _(s)		854.98	0.00	855.01	855.01	0.00
Sm (s)	Sm(OH) ₃	995.27	0.16	993.69	993.58	-0.01
Sn (s)	SnO ₂	551.81	-0.01	551.84	551.85	0.00
Sr (s)	SrCO ₃	749.79	-0.01	749.83	749.84	0.00
Ta _(s)	Ta ₂ O ₅	974.05	0.00	974.09	974.09	0.00
Tb _(s)	Tb(OH) ₃	1000.05	0.16	998.47	998.36	-0.01
Te (s)	TeO ₂	329.26	-0.01	329.29	329.29	0.00
Th (s)	ThO ₂	1202.63	0.00	1202.66		
Ti (s)	TiO ₂	907.17	0.00		1202.66	0.00
TI (s)	Tl ₂ O ₄	194.89	•	907.20	907.20	0.00
	specto al valor de $Ex_q^{\circ}_{el}$		-0.02	194.92	194.92	0.00

Tabla 3.12.- Efecto de la presión atmosférica en el valor de exergia química estándar de los elementos (continuación).

Tm _(s) Tm(OH) ₃	953.36	0.17	951.78	951.67	-0.01
U _(s) UO ₃ •H ₂ O	1197.63	0.09	1196.60	1196.53	-0.01
$V_{(s)}$ V_2O_5	721.23	-0.01	721.27	721.27	0.00
$Y_{(s)}$ $Y(OH)_3$	967.15	0.16	965.57	965.46	-0.01
Yb (s) Yb(OH) ₃	945.89	0.17	944.31	944.20	-0.01
Zn (s) ZnCO ₃	344.67	-0.01	344.71	344.72	0.00
Zr (s) ZrSiO ₄	1082.94	0.00	1082.97	1082.98	0.00

⁽a) Con respecto al valor de $Ex_q^{\circ}_{el}$ a 25°C.

En general, el efecto de la presión atmosférica sobre el valor de exergia química de los elementos es muy pequeño, y en algunos casos prácticamente nulo.

En el caso de los elementos cuyas especies de referencia están presentes en la atmósfera, al disminuir la presión atmosférica, disminuye la exergia química del hidrógeno y del deuterio y aumenta la exergia química del resto de los elementos contenidos en el aire, presentándose la mayor desviación en el caso del nitrógeno, cuyo valor de exergia aumenta 4.5% a 0.65 atm con respecto a su valor a 1 atm.

programment in the contract of the processing of the contract for the contract of the contract

Al variar la presión atmosférica, las presiones parciales del agua y del óxido de deuterio en el aire se mantienen constantes ya que sus valores dependen sólo de la temperatura y de la humedad relativa; sin embargo, la presión parcial del resto de las especies presentes en la atmósfera sí se modifica, aun cuando la proporción entre ellas permanece constante. Por consiguiente, al variar la presión parcial de las especies diferentes al H₂O y al D₂O y manteniendo la de éstas últimas constante, la fracción molar de todas las especies cambia al variar la presión total.

En la Tabla 3.13 se muestra la presión parcial y la fracción molar de cada una de las especies contenidas en el aire a los diferentes valores de presión atmosférica considerados en este estudio.

grangering in Aller Michael (1986), in the respect to the entry of the interest of the first tent of

ng nga kurang ang kapakén dianggalangan nangginan kurangan pangginangan mengalabbah an nelabahan dianggan ber

ely angre de souver opinitous en sitoue. Planto el combigue a tre la sitoue de la combinación de set en combig

HOUSE AND MEDITOR OF ALL PERKEN HER OLD ON THE PROPERTY OF THE THEOLOGY OF THE CASE OF THE CASE OF THE CASE OF

and the company of th

 $(T = 25^{\circ}\text{C}, \phi = 0.7, \text{ concentración de CO}_{2} = 345 \text{ ppmv}).$

	1 - 20 0, φ-0.1, concentracion de 002 - 040 ppinty.					
	P = 0.65 atm		P = 1 atm	P = 1.03 atm		
Especie	x_i	P_i , atm	$x_i = P_i$	x_i	P_i , atm	
Ar	9.0E-03	5.9E-03	9.1E-03	9.1E-03	9.4E-03	
CO_2	3.3E-04	2.2E-04	3.4E-04	3.4E-04	3.5E-04	
He	4.8E-06	3.1E-06	4.9E-06	4.9E-06	5.0E-06	
Kr	9.7E-07	6.3E-07	9.8E-07	9.8E-07	1.0E-06	
N_2	7.5E-01	4.9E-01	7.6E-01	7.6E-01	7.9E-01	
Ne	1.7E-05	1.1E-05	1.8E-05	1.8E-05	1.8E-05	
O_2	2.0E-01	1.3E-01	2.1E-01	2.1E-01	2.1E-01	
Xe	8.7E-08	5.7E-08	8.8E-08	8.8E-08	9.1E-08	
H ₂ O	3.3E-02	2.2E-02	2.2E-02	2.1E-02	2.2E-02	
D_2O	5.2E-06	3.4E-06	3.4E-06	3.3E-06	3.4E-06	

En la Tabla anterior se observa que al disminuir la presión atmosférica de 1 a 0.65 atm, y por lo tanto 35% la presión parcial de las especies diferentes al H₂O y al D₂O, la disminución de su fracción molar en el aire es de tan solo 1.2%, mientras que el aumento en la fracción molar del agua y del óxido de deuterio es de casi 54%. Esto provoca que la exergia química estándar del agua y del óxido de deuterio disminuya alrededor de 11% y 3.4%, respectivamente (ver Figura 3.6), ya que al aumentar la concentración de la especie disminuye su exergia concentracional. Al reducirse la exergia química estándar del agua y del óxido de deuterio también se reduce la exergia química del hidrógeno y del deuterio, aunque en menor medida, esto es, 0.5% a 0.65 atm con respecto al valor cuando se considera la presión atmosférica al nivel del mar.

Al disminuir la fracción molar del resto de las especies presentes en la atmósfera por la reducción de presión atmosférica, aumenta la exergia química de dichas especies, como se muestra en la Figura 3.6. Cuando la presión atmosférica es igual a 0.65 atm, la exergia química del nitrógeno aumenta 4.5% y la del resto de las especies en menos de 1%, con respecto a su valor a 1 atm de presión del aire.

Conviene señalar que la exergia química estándar del carbono no varía al cambiar la presión atmosférica, al igual que ocurre cuando se consideran diferentes valores de humedad relativa del aire. Esto se debe a que, además de que no se altera el valor de ΔG_f° del dióxido de carbono, la diferencia entre el valor de exergia química del CO₂ y O₂

es la misma para cualquier valor de presión atmosférica, ya que el cambio en la condición del medio, como es la humedad relativa y la presión atmosférica, provoca el mismo cambio en la concentración y por consiguiente en el valor de exergia química de dichas especies, a partir de las cuales se determina la exergia química del carbono.

Figura 3.6.- Desviación porcentual del valor de exergia química estándar de las especies del aire al cambiar la presión atmosférica.

En relación con los elementos cuyas especies de referencia están contenidas en la hidrosfera y en la litosfera, el cambio en su valor de exergia química estándar al cambiar la presión atmosférica se debe solamente a la variación del valor de exergia química de los elementos cuyas especies de referencia están presentes en el aire atmosférico y que conforman las especies de referencia del agua de mar y de la corteza terrestre, ya que al modificarse la presión atmosférica no se altera la concentración de estas últimas en el medio. Los elementos que presentan una mayor desviación en su valor de exergia química estándar al disminuir la presión atmosférica hasta 0.65 atm son el flúor (1.8%), el bromo (1.1%) y el mercurio (1%). El valor de exergia química estándar del resto de los elementos cambia en menos de 1% cuando se tiene el límite inferior de presión atmosférica.

Como se observa en la Figura 3.7, al disminuir la presión atmosférica a 0.65 atm, la exergia química estándar del metano disminuye 0.3% con respecto al valor a 1 atm. En este caso el valor de exergia química del metano sólo se ve afectado por el cambio en el valor de exergia química del hidrógeno, ya que los valores de exergia química del carbono y cambio en la energía libre de Gibbs de la reacción de formación del metano no se alteran al variar la presión atmosférica.

Figura 3.7.- Efecto en el valor de exergia química estándar de compuestos al cambiar la presión atmosférica.

En el caso del sulfato ferroso, su valor de exergia química aumenta 0.6% cuando la presión atmosférica es de 0.65 atm con respecto a su valor a la condición normal de presión, la misma tendencia que presentan los valores de Ex_q° del oxígeno y del azufre al disminuir la presión del aire.

CAPÍTULO IV

IMPACTO DE LAS CONDICIONES AMBIENTALES EN EL ANÁLISIS EXÉRGICO DE EQUIPOS Y PROCESOS

Con el propósito de observar el efecto que tienen las condiciones ambientales en el análisis de exergia de un proceso, en el presente capítulo, se estudia la torre Desisobutanizadora de la Sección de Preparación de Carga de una Planta Isomerizadora de Butanos, suponiendo que dicha torre opera en las siguientes cuatro ciudades con diferentes condiciones ambientales:

- i. Minatitlán en México.
- ii. Jericó en Israel,
- iii. Cusco en Perú y
- iv. Québec en Canadá.

La selección del sistema bajo estudio, se debe a que éste incluye a la mayoría de las operaciones unitarias involucradas en un proceso, esto es, separación (columna de destilación), reacción química (combustión), intercambio de calor (calentamiento con vapor y con gases de combustión en un horno y, enfriamiento con agua y aire), y flujo de fluidos (bombas y válvulas).

A continuación se presenta la descripción del sistema a analizar y las bases de la simulación del mismo para la determinación de las propiedades termodinámicas de las corrientes involucradas en el proceso, así como de las condiciones de operación de los equipos y del consumo de los servicios auxiliares necesarios para realizar el análisis de exergia.

Posteriormente, se muestran los resultados de la simulación de la columna Desisobutanizadora y, con base en el método de exergia, se destacarán las posibles

n it stage in the same all in although a back and an it is

fuentes de pérdidas de energía así como el potencial de mejoramiento del proceso. Finalmente, se estudiará el efecto que tiene el suponer condiciones diferentes del medio ambiente de referencia en el cálculo de exergia de las corrientes involucradas en el proceso y en el valor de los parámetros exérgicos en cada uno de los equipos que conforman al proceso bajo estudio.

4.1.- Descripción del proceso a analizar.

El diseño que servirá como base para el análisis de exergia, es la planta "Isomerizadora de n-Butanos" diseñada por IFP North America, Inc. para la Refinería Gral. Lázaro Cárdenas, que se localiza en Minatitlán, Veracruz. La unidad está diseñada para procesar 11,000 BPD estándar de una alimentación rica en n-Butano.

El objetivo de una planta isomerizadora de butanos es la conversión de la parafina a su isómero, el cual tiene el mismo peso molecular pero un arreglo molecular diferente, esto es, una estructura ramificada que le confiere mayor número de octano. La reacción de isomerización se lleva a cabo en una atmósfera de hidrógeno sobre un lecho fijo de catalizador de platino.

La función de la columna Desisobutanizadora bajo estudio, dentro de la sección de preparación de carga, es la de recuperar el iso-butano contenido en la corriente rica en n-Butano de alimentación a la planta y en el efluente del reactor de isomerización. Es importante mencionar que el efluente del reactor no contiene hidrógeno ya que previamente, en una columna estabilizadora, se retiran los compuestos ligeros. En la Figura 4.1 se muestra un esquema del sistema a analizar y se indica la clave asignada a cada equipo así como el número de cada corriente.

La corriente de alimentación de butanos a 67°C y 24.3 kg/cm² abs. se calienta hasta una temperatura de 100°C con vapor de baja presión en el cambiador de calor EA-1. A

continuación, la corriente de butanos se alimenta a la guarda de azufre cuyo objetivo es eliminar el azufre que pudiera contener la carga y así proteger al catalizador del reactor.

Cabe señalar que la guarda de azufre no se analiza en el presente estudio, por lo que a dicho proceso se le considera como una caja negra en la que sólo se toman en cuenta las condiciones de operación a la entrada y a la salida del equipo. La presión de la corriente procedente de la guarda de azufre se mantiene por arriba del valor de la presión de vapor (21.0 kg/cm² abs.) del líquido de butanos alimentados para evitar vaporización en la guarda de azufre.

Figura 4.1.- Columna Desisobutanizadora de la Planta Isomerizadora de n-Butanos.

La corriente procedente de la guarda de azufre se vaporiza parcialmente, al reducirle su presión hasta 8.2 kg/cm² abs. en la válvula V-1, y se introduce en el plato 43 de la torre Desisobutanizadora (DA-1).

Por otro lado, el efluente del reactor de isomerización de n-butanos se alimenta en el plato 22 de la columna de destilación a una presión de 8.0 kg/cm² abs. y temperatura de 62°C.

La torre Desisobutanizadora contiene 79 platos. Del plato 61 de la columna se extrae una corriente lateral de n-Butano que se carga al reactor de isomerización; esta corriente consiste de sólo vapor, sin embargo, posteriormente, en el aereoenfriador EC-1 se condensa totalmente, al llevarla a una temperatura de 60°C.

La corriente del domo rica en iso-Butano se condensa en el cambiador de calor EA-2 por medio de agua de enfriamiento. Parte del iso-Butano se envía mediante la bomba GA-1 a la torre como reflujo y el resto a límite de batería como producto a 41.5°C y 11.2 kg/cm² abs.

El producto líquido (pentanos y más pesados) del fondo de la columna se bombea (GA-2) hacia el rehervidor de la columna, el cual es un calentador a fuego directo (H-1) y en donde se vaporiza parcialmente la corriente que regresa al fondo de la columna. Parte de la corriente de pentano se desvía antes de entrar al horno y se entrega como producto a una presión de 16 kg/cm² abs.

4.2.- Simulación de la columna Desisobutanizadora.

Con el fin de determinar los flujos de exergia de todas las corrientes involucradas en el proceso es necesario contar con los balances de materia, entalpia y entropia, por lo cual se realiza la simulación de las condiciones de operación de diseño de la columna

Desisobutanizadora y de los equipos involucrados que se incluyen en el análisis. Para llevar a cabo lo anterior, se utilizó el Simulador de Procesos Aspen Plus, versión 10.0-1.

4.2.1.- Bases de la simulación.

4.2.1.1.- Características de las corrientes de alimentación a la columna Desisobutanizadora.

La composición, el flujo y las condiciones de temperatura y presión de la corriente de alimentación de butanos y del efluente del reactor que se considerarán en el presente estudio para realizar la simulación de la columna Desisobutanizadora, se presentan en la Tabla 4.1.

Tabla 4.1.- Composición, flujo y condiciones de operación de las corrientes de alimentación a la columna Desisobutanizadora.

Componente	Alimentación de butanos % peso	Efluente del reactor de isomerización % peso	
Etano		4.1×10 ⁻⁴	
Propano	0.13	0.21	
iso-Butano	34.33	50.75	
n-Butano	65.10	47.40	
neo-Pentano	0.25	0.61	
iso-Pentano	0.01	0.93	
n-Pentano	0.18	0.10	
Total	100.0	100.0	
Flujo másico, kg/h	41,997	21,006	
Flujo molar, kgmol/h	722.2	360.5	
Flujo volumétrico, m³/h	82.4	61.7	
Temperatura, °C	67	62	
Presión, kg/cm² abs.	24.3	8.0	

Conviene señalar que la corriente de alimentación de butanos a la planta está saturada con agua, la cual debe recuperarse en el producto de domo de la columna Desisobutanizadora de acuerdo con el diseño.

4.2.1.2.- Condiciones de operación y especificación de los productos.

Las condiciones de temperatura y presión en que opera la columna Desisobutanizadora según el diseño, son mostradas en la Tabla 4.2. Beneric Control of State Control of the

Tabla 4.2.- Condiciones de operación de diseño de la columna Desisobutanizadora.

•	Presión, kg/cm² abs.:	
	Tanque de reflujo	6.9
	Domo	7.7
	Fondo	
•	Temperatura, °C:	
	Tanque de reflujo	16 35 m. 18 <mark>41</mark> 1. 26 mmaya - 1. apagese (16. ap
• •	Domo	55 · · · · · · · · · · · · · · · · · ·
	Fondo	<u> 1 40 40 7 5104 (1346 50 60)</u> 59 1 0 55 60 1 1

La pureza de la corriente de iso-butano producto, según la especificación indicada en el diseño, debe ser de 96% en peso como mínimo y no debe contener más de 3.5% de nbutano. Por otro lado, la cantidad de pentanos en la extracción de n-butano lateral de la torre Desisobutanizadora puede ser de hasta 1% en peso.

En la Tabla 4.3, se muestran las diferencias de presión entre las corrientes de entrada y salida de proceso en el resto de los equipos involucrados en el sistema bajo consideración. Estos cambios de presión son los indicados en el diseño o bien los necesarios para cumplir con la presión de diseño de la columna Desisobutanizadora.

Tabla 4.3.- Cambio de presión en los diferentes equipos.

			ΔP, kg/cm ²	
•	Cambiadores de calor			
	at the second of the second	EA-1	0.3	
		EA-2	8.0	
		EC-1	0.4	
•	Horno:			
		H-1	3.1	
•	Bombas:			
	·	GA-1	4.3	
		GA-2	7.6	
•	Válvulas:			
		V-1	15.88	
		V-2	0.16	
		V-3	3.5	
		V-4	4.4	

4.2.1.3.- Condiciones ambientales en cada una de las ciudades en que se analiza la operación del sistema bajo consideración.

Como se mencionó anteriormente, en el presente capítulo se llevará a cabo un análisis de exergia de la columna Desisobutanizadora suponiendo que ésta se encuentra ubicada en cuatro lugares distintos, operando con las mismas condiciones de diseño pero bajo diferentes condiciones ambientales. Para lo anterior, se escogió como caso base la ciudad de Minatitlán, en Veracruz, México, por tener dicha ciudad condiciones ambientales similares a las normales de temperatura, presión, humedad relativa del aire y salinidad del agua de mar (T_n = 25°C, P_n = 1 atm, ϕ = 0.7, S = 35 ‰). Con el fin de observar el efecto de un aumento de la temperatura y de la salinidad en el análisis de exergia se seleccionó la ciudad de Jericó en Israel, la cual tiene una temperatura promedio en el verano de 33°C y está situada al norte del Mar Muerto, cuyo contenido de sales es de 41‰.

Por ser una de las ciudades más altas del mundo, se estudia el desempeño del sistema bajo análisis en Cusco, Perú, ciudad que se encuentra a 80 km al sur de Machu Pichu y que por su altitud (3,415 m) tiene una presión atmosférica muy por debajo de la normal (0.67 atm). Se supone que la humedad relativa del aire en el caso de Cusco es de 0.3; esto con el propósito de notar el efecto de un cambio de humedad en el análisis de exergia del proceso.

Finalmente, se selecciona la ciudad de Québec, Canadá, la cual por estar a nivel del mar presenta casi las mismas condiciones ambientales que Minatitlán, sin embargo, durante el invierno la temperatura ambiente desciende a –16°C.

En la Tabla 4.4, se muestran las condiciones ambientales consideradas en cada una de las cuatro ciudades. Es importante señalar que, excepto en el caso de Québec, la temperatura del medio indicada en la Tabla 4.4 corresponde al promedio durante el verano y, la selección del valor de salinidad es de acuerdo a la latitud de cada lugar [10, 46].

Tabla 4.4.- Condiciones ambientales consideradas en las diferentes ciudades.

	Lugar			
	Minatitlán	Jericó	Cusco	Québec
Temperatura ambiente, °C	25	33	21	-16
Presión atmosférica, atm	1	1.03	0.67	1
Humedad relativa	0.75	0.7	0.3	0.5
Salinidad, ‰	36	41	35 t 54 5 t	32

Es importante señalar que, aun cuando la presión barométrica es diferente en cada una de las diferentes ciudades, se considerará que la presión absoluta de operación en cada punto del sistema bajo estudio es la misma en cualquiera de las cuatro ciudades, modificándose tan sólo la presión manométrica.

4.2.1.4.- Servicios auxiliares.

1. Agua de enfriamiento.-

La temperatura del agua de enfriamiento depende de la temperatura y del contenido de humedad del aire. La temperatura de bulbo húmedo es un indicador del contenido de humedad del aire y desde un punto de vista ideal, ésta es la temperatura teórica más baja a la que se puede enfriar el agua en una torre de enfriamiento, en donde se pone en contacto el agua con el aire. Debido a que en una torre de enfriamiento no es posible establecer un contacto total entre toda el agua y el aire fresco, la temperatura del agua a la salida de la torre se acerca a la de bulbo húmedo del aire, pero nunca la iguala. La magnitud del acercamiento de temperaturas entre el agua de enfriamiento y la de bulbo húmedo, depende del diseño de la torre, en la práctica, las torres de enfriamiento rara vez se diseñan para acercamientos menores a 5°F [7], o bien 2.8°C.

Por consiguiente, para conocer la temperatura del agua de enfriamiento a utilizar en el condensador de la columna Desisobutanizadora, es necesario determinar primero la temperatura de bulbo húmedo, la cual va a depender de las condiciones ambientales del lugar.

La temperatura de bulbo húmedo es la temperatura de equilibrio dinámico obtenida por una superficie de agua cuando la velocidad de transferencia de calor por convección a la superficie, es igual a la velocidad de transferencia de masa (por la evaporación del agua) que se aleja de tal superficie. En el equilibrio y suponiendo que no hay cambio en la temperatura de bulbo seco (temperatura del aire), el balance de calor en la superficie es

$$k_g \lambda \left(H_{Bh} - H \right) = h_c \left(t - t_{Bh} \right) \tag{4-1}$$

En donde, k_g' es el coeficiente de transferencia de masa en lb/hft²atm; λ es el calor latente de evaporación del agua en BTU/lb; h_c es el coeficiente de transferencia de calor en BTU/hft²°F; t es la temperatura de la mezcla aire-vapor de agua (temperatura de bulbo seco) en °F y; t_{Bh} es la temperatura de bulbo húmedo del aire en °F. La humedad absoluta, H, es igual a las libras de vapor de agua contenidas en una libra de aire seco. Si se considera un comportamiento de gas ideal, la humedad absoluta se determina por medio de:

$$H = \frac{PM_{H_2O} P_{H_2O}}{PM_{aire} (P - P_{H_2O})}$$
 (4-2)

 PM_{H2O} y PM_{aire} son los pesos moleculares del agua y del aire, 18 y 29, respectivamente; P_{H2O} la presión parcial del agua en atm y; P la presión total del aire en atm. Vale la pena recordar que, de acuerdo con la Ecuación 2-3, la presión parcial del agua en el aire se puede obtener a partir de la humedad relativa (ϕ) y de la presión de vapor del agua (P°_{H2O}) evaluada a la temperatura del aire t; es decir,

$$P_{H_2O} = \phi \ P_{H_2O}^o \tag{4-3}$$

Por otra parte, el valor de H_{Bh} , corresponde a la humedad de saturación del aire, punto en el que la presión parcial del agua en el aire a una temperatura dada, se iguala a la presión de vapor del agua a la misma temperatura, la cual será la temperatura de bulbo húmedo. Por lo tanto, H_{Bh} estará dada por la Ecuación 4-4.

$$H_{Bh} = \frac{PM_{H_2O} P_{H_2O}^o}{PM_{circ} (P - P_{H_2O}^o)}$$
(4-4)

El valor de presión de vapor del agua de la Ecuación 4-4 se determina a la temperatura de bulbo húmedo.

Al sustituir las Ecuaciones 4-2, 4-3 y 4-4 en 4-1, se obtiene la siguiente expresión:

$$\frac{PM_{H_2O}}{PM_{aire}} \left[\frac{P_{H_2O_{t_{Bh}}}^o}{P - P_{H_2O_{t_{Bh}}}^o} - \frac{\phi P_{H_2O_t}^o}{P - \phi P_{H_2O_t}^o} \right] = \frac{h_c}{k_g \lambda} \left(t - t_{Bh} \right)$$
(4-5)

De acuerdo con Perry [7], para la mezcla aire-agua, la relación $h_c I k'_g$ es cercana a 0.22. El calor latente de vaporización del agua se estima por medio del método de Watson [48], en el que a partir de un valor de calor latente conocido λ_I a la temperatura t_I , se determina el calor latente de vaporización a cualquier temperatura por medio de la siguiente relación:

$$\frac{\lambda_2}{\lambda_1} = \left(\frac{t_c - t_2}{t_c - t_1}\right)^{0.38} \tag{4-6}$$

Se sabe que la temperatura crítica del agua, t_c , es igual a 374.15°C, o bien 705.14°F, y que a 100°F el calor latente de vaporización del agua es de 1,037.1 BTU/lb (2,411.7 J/g). En este caso la temperatura t_2 corresponde a la de bulbo húmedo.

Debido a que se conoce la presión atmosférica, la humedad relativa del aire y la temperatura del aire en cada una de las ciudades consideradas, la única incógnita en la Ecuación 4-5 es la temperatura de bulbo húmedo, la cual se determina fácilmente a través de un proceso iterativo de prueba y error que comprende los siguientes pasos:

- a) se fija un valor inicial de t_{Bh}
- b) a partir de la expresión de Antoine (Ecuación 2-4) se determina la presión de vapor del agua a t y t_{Bh} ,
- c) se evalúa el término a la derecha y a la izquierda de la igualdad de la Ecuación 4-5 v.
- d) si la diferencia entre estos dos términos es menor a $1x10^{-4}$, el valor de t_{Bh} es la solución, sino es así, entonces se fija un nuevo valor de temperatura de bulbo húmedo y se continua con el paso b.

En la Tabla 4.5, se presentan los valores de temperatura de bulbo húmedo y de agua de enfriamiento que se obtienen al considerar las condiciones ambientales de las ciudades de Minatitlán, Jericó y Cusco. Se supone un acercamiento de 5°F (2.8°C) entre la temperatura del agua de enfriamiento y la de bulbo húmedo.

Tabla 4.5.- Temperatura de bulbo húmedo y del agua de enfriamiento en las diferentes ciudades bajo estudio.

		Lugar	
and the second s	Minatitlán	Jericó	Cusco
Temperatura de bulbo húmedo, °C	21.2	28.2	9.7
Temperatura del agua de enfriamiento, °C	24.0	31.0	12.5

Entre menor es la humedad del aire, la diferencia entre la temperatura ambiente y la de bulbo húmedo aumenta, lo que permite alcanzar una temperatura menor del agua de enfriamiento; como es el caso de Cusco, en donde se considera una humedad relativa de 0.3 y la temperatura del agua es 8.5°C menor que la ambiente, mientras que en Minatitlán, la humedad relativa es de 0.75 y el agua de enfriamiento es 3.8°C menor que la temperatura ambiente.

Ahora bien, el agua de enfriamiento se suministra a 5.5 kg/cm² abs. y se considera el mismo incremento de temperatura y caída de presión del agua ($\Delta T = 10.8$ °C y $\Delta P = 0.58$ kg/cm²) a través del condensador EA-2 de la columna de destilación, en cualquiera de las ciudades bajo análisis.

Debido a que a -16°C, temperatura ambiente supuesta en la ciudad de Québec, el agua se encuentra en estado sólido, se considera que el servicio de condensación del producto de domo de la columna Desisobutanizadora se realiza con un aereoenfriador.

2. Aire de enfriamiento.-

Las condiciones de temperatura y presión del aire de enfriamiento corresponden a las condiciones ambientales que prevalecen en cada una de las ciudades.

Gas Combustible.-

La presión a la que entran tanto el gas combustible como el aire al quemador del horno H-1 es de 4.5 kg/cm² abs., mientras que la temperatura de entrada corresponde a la del ambiente.

En la Tabla 4.6, se presenta la composición del gas combustible a utilizar y las reacciones de combustión que se lleván a cabo en el quemador. En la misma tabla, además, se muestra el flujo molar de oxígeno requerido en cada reacción tomando como base un kgmol de gas combustible y considerando que la combustión es completa.

Aun cuando el nitrógeno suele reaccionar con el oxígeno del aire, se supondrá que la cantidad de óxidos de nitrógeno que se forman es despreciable.

Tabla 4.6.- Composición molar del gas combustible y flujo molar requerido de oxígeno.

Componente	% mol	Reacción de combustión	kgmol de O ₂ requerido por kgmol de gas combustible
Hidrógeno	52.0	$H_{2 (g)} + 1/2O_{2 (g)} \rightarrow H_2O_{(g)}$	0.2600
Metano	25.0	$CH_{4 (g)} + 2O_{2 (g)} \rightarrow CO_{2 (g)} + 2H_{2}O_{(g)}$	0.5000
Etano	6.2	$C_2H_{6 (g)} + 3.5O_{2 (g)} \rightarrow 2CO_{2 (g)} + 3H_2O_{(g)}$	0.2170
Propano	8.8	$C_3H_{8 (g)} + 5O_{2 (g)} \rightarrow 3CO_{2 (g)} + 4H_2O_{(g)}$	0.4400
Butano	5.8	$C_4H_{10 (g)} + 6.5O_{2 (g)} \rightarrow 4CO_{2 (g)} + 5H_2O_{(g)}$	0.3770
Etileno	0.1	$C_2H_{4 (g)} + 3O_2_{(g)} \rightarrow 2CO_2_{(g)} + 2H_2O_{(g)}$	0.0030
Propileno	1.0	$C_3H_{6 (g)} + 4.5O_{2 (g)} \rightarrow 3CO_{2 (g)} + 3H_2O_{(g)}$	0.0450
Ácido sulfhídrico	0.1	$H_2S_{(g)} + 1.5O_{2(g)} \rightarrow SO_{2(g)} + H_2O_{(g)}$	0.0015
Nitrógeno	0.2		
Monóxido de carbono	8.0	$CO_{(g)} + 1/2O_{2(g)} \rightarrow CO_{2(g)}$	0.0040
Total	100.0		1.8475

El consumo de gas combustible se determina a partir de la eficiencia térmica (η_i) en el horno, cuyo valor es igual a la relación entre el calor absorbido por la corriente de proceso (Q_{abs}) y el calor liberado por los gases de combustión (Q_{lib}) , es decir,

$$\eta_t = \frac{Q_{abs}}{Q_{lib}} \tag{4-7}$$

El flujo de calor absorbido estará dado por el requerimiento de calentamiento de la corriente de proceso y debido a que las condiciones de operación en el rehervidor de la columna Desisobutanizadora son independientes del lugar geográfico, el calor absorbido siempre será el mismo. Por otro lado, el calor liberado por la reacción de combustión es igual al flujo molar de gas combustible (N_{comb}) por el poder calorífico inferior del combustible (PCI):

$$Q_{lib} = N_{comb} PCI (4-8)$$

El poder calorífico inferior del combustible es el calor de la reacción de combustión por mol de gas combustible a condiciones de T y P de referencia. Debido a que en el presente trabajo se analiza el efecto de las condiciones ambientales en el valor de

exergia y que son éstas las condiciones de referencia, se determinó el poder calorífico del gas combustible para cada una de las condiciones de temperatura y presión de las cuatro ciudades bajo estudio. La determinación del poder calorífico del gas combustible se realizó a partir de la suma de los calores de combustión a las condiciones de T y P de referencia de cada componente del gas combustible por su fracción mol, esto es,

$$PCI = \sum_{i}^{nc} x_{i} \Delta H_{i}^{o} \tag{4-9}$$

El calor de combustión de cada sustancia que compone al gas combustible se obtuvo al calcular el reactor de combustión con el simulador Aspen Plus, especificándole a éste las reacciones indicadas en la Tabla 4.6 y las condiciones de temperatura y presión de referencia.

En la Tabla 4.7 se muestra el poder calorífico del gas combustible al considerar la temperatura ambiente y presión atmosférica de cada una de las ciudades en donde se analiza la operación del horno.

Tabla 4.7.- Poder calorífico inferior del gas combustible y temperatura de flama, a diferentes condiciones de referencia.

		Luga	ar	* : * * * * * * * * * * * * * * * * * *
	Minatitlán	Jericó	Cusco	Québec
Temperatura ambiente, °C	25	33	21	-16
Presión atmosférica, atm	1	1.03	0.67	1
Poder calorífico, kcal/kgmol	-184,534	-184,525	-184,510	-184,603
Temperatura de flama, °C	1,918	1,924	1,915	1,888

El efecto por el cambio de las condiciones de T y P de referencia en el poder calorífico del gas combustible es casi nulo; sin embargo, se observa que al aumentar la temperatura de referencia el poder calorífico del gas combustible disminuye, lo cual se explica ya que aun cuando algunos reactivos, como por ejemplo el n-butano, tienen una capacidad calorífica mayor que los productos de la combustión, la cantidad de éstos últimos es mayor, por lo que al aumentar la temperatura de la reacción, los productos absorben parte del calor generado.

Al tomar en cuenta las condiciones ambientales de Cusco, el poder calorífico disminuye con respecto al valor cuando se consideran las condiciones normales ($T_n = 25$ °C y $P_n =$ 1 atm) como de referencia, aun cuando la temperatura en Cusco es inferior. Lo anterior se debe a que al ser menor la presión de referencia, se reduce el volumen de los gases que absorben parte del calor liberado en la reacción.

En la Tabla 4.7 se muestra para cada una de las ciudades bajo estudio, la temperatura de flama de los gases de combustión la cual se obtiene al considerar una combustión adiabática. Entre mayor es la temperatura del gas combustible y del aire, mayor es la temperatura de los gases de combustión.

Ahora bien, para conocer el flujo de aire necesario para que se lleve a cabo la combustión se sabe que, de acuerdo con la Tabla 4.6, por cada kamol de das combustible se requieren alrededor de 1.85 kgmol de oxígeno. Si se considera un exceso de aire de 15%, la cantidad de oxígeno necesario es de 2.1 kgmol por cada kamol de gas. Al suponer que el aire esta compuesto por un 21% de oxígeno y el resto de nitrógeno, el flujo molar de aire requerido en el quemador por cada kamol de gas combustible será de 10.14 kgmol/h.

Una vez conocido el valor de Q_{abs} para las condiciones de operación de la corriente de proceso, el poder calorífico del gas combustible (Tabla 4.7), y estableciendo una eficiencia térmica del horno de 80%, el flujo molar de gas combustible se determina a partir de la Ecuación 4-8.

4. Vapor -

En el cambiador de calor EA-1 se utiliza, como medio de calentamiento, vapor saturado de baja presión, esto es. 4.5 kg/cm² abs., que corresponde a una temperatura de 147.5°C. El vapor de agua se condensa totalmente en el cambiador EA-1 y se reduce su presión 0.04 kg/cm² abs. al pasar a través de dicho equipo.

4.2.1.5.- Modelo de propiedades termodinámicas.

Para el cálculo de las propiedades termodinámicas de cada una de las corrientes involucradas en el sistema se selecciona el método de cálculo de propiedades GRAYSON que proporciona el simulador de procesos Aspen-Plus [55]. Este método utiliza la correlación de Grayson-Streed para el cálculo de coeficientes de fugacidad para el estado de referencia; el modelo de Scratchard-Hildlebrand para determinar los coeficientes de actividad; la ecuación de estado de Redlich-Kwong para calcular las propiedades de la fase vapor; la ecuación de estado de Lee-Kesler para evaluar la entalpia del vapor y del líquido y; el método API para determinar el volumen molar, la viscosidad y la tensión superficial del líquido.

La selección del método de propiedades GRAYSON se debe principalmente a que éste reproduce adecuadamente la separación del agua contenida en la alimentación de butanos en la columna Desisobutanizadora, además de que es el recomendado para sistemas que se encuentran a presiones bajas o moderadas y que contengan hidrocarburos y gases ligeros, características que corresponden al sistema bajo estudio.

Las propiedades del agua se evalúan con las tablas de vapor del National Bureau of Standards (STEAMNBS), incluidas en el conjunto de métodos de cálculo de propiedades del simulador Aspen Plus.

4.2.2.- Validación del modelo de simulación y resultados.

Se compara en la Tabla 4.8 la composición de los productos de la columna Desisobutanizadora, el reflujo de destilado y la vaporización en el rehervidor de dicha columna, las cargas térmicas de los equipos de intercambio de calor y la potencia de las bombas de acuerdo a lo que indica el diseño, con los valores que se obtuvieron al llevar a cabo la simulación del sistema con el simulador de procesos Aspen Plus.

Cabe señalar que los resultados de la simulación que se indican en la Tabla 4.8, son independientes de la ciudad en donde esté operando el sistema, ya que las condiciones de operación son las mismas. El balance de materia y energía completo del sistema, se presenta en el Apéndice D.1

Tabla 4.8.- Comparación de resultados entre lo que indica el diseño y la simulación de la columna Desisobutanizadora.

Producto Espec	cificación Diseño	Simulación
• iso-Butano		
Composición en % peso:		
– Agua	0.03	5x10 ⁻⁶
- propano	0.41	0.41
– iso-butano ≥	96.0 97.00	99.06
– n-butano ≤	3.5 2.56	0.54
Total (% peso)	100	100
Total (kg/h)	_ 24,265	24,241
• n-Butano		
Composición en % peso:		
iso-butano	4.00	2.73
– n-butano	95.00	96.34
- neo-pentano	0.60	0.60
– iso-pentano	1.0 0.34	0.30
– n-pentano	0.06	0.03
Total (% peso)	100	100
Total (kg/h)	17,191	17,188
Pentano y más pesados		
Composición en % peso:		
– iso-butano	0.04	0.00
– n-butano	10.25	0.09
neo-pentano	1.13	0.02
– iso-pentano	42.17	47.07
- n-pentano	46.41	52.81
Total (% peso)	100	100
Total (kg/h)	158.0	162.4
Reflujo de destilado en la torre DA-1:	11	11.5
Reflujo de fondo en la torre DA-1:	4,549	4,738
Vaporización en el rehervidor de la to	rre DA-1: 0.5	0.5
Carga térmica (Mkcal/h) en los equipe	os de	
intercambio de calor:		
• EA-1	0.99	0.96
• EA-2	22.92	23.69
• EC-1	3,07	3.08
• H-1	24.50	24.85
Potencia (kW) en las bombas:	•	
• GA-1	108	115.32
• GA-2	395	386.72

En la Tabla 4.8 se observa que, en general, el modelo de simulación reproduce adecuadamente el balance de materia y energía que indica el diseño, sin embargo, en la simulación se obtiene una mejor separación de los productos.

La mejor separación de los productos se debe principalmente a un mayor agotamiento del producto de fondo, ya que la temperatura del fondo de la torre Desisobutanizadora (111.4°C) obtenida en la simulación es mayor a lo que señala el diseño (104°C), aun cuando se obtiene el mismo dato para la temperatura en el domo (55°C) y de vaporización en el rehervidor. Al ser mayor la temperatura del fondo de la torre, para la misma presión de operación, la fase vapor de la corriente que regresa a la columna, es una fase más rica en compuestos intermedios y pesados, lo que ayuda a un mejor agotamiento de la corriente producto del fondo de la torre y a una mejor separación de los productos.

Por otro lado, en la simulación el reflujo tanto de la corriente de destilado como del producto de fondo a la columna Desisobutanizadora es 4% mayor con respecto al diseño, lo cual aumenta la rectificación y el agotamiento en la torre, y por consiguiente una mejor separación de componentes. El aumento de flujo en la columna provoca que aumente la carga térmica en el condensador y en el rehervidor, sin embargo, la relación entre el calor que se obtiene en el condensador y el calor que es necesario agregar al sistema en el rehervidor es similar a la que indica el diseño ($Q_{EA-2}/Q_{H-1} = 0.94$).

Es muy probable que el diseño se haya calculado con otro modelo de propiedades termodinámicas diferente al utilizado en el presente trabajo, ya que para una misma presión de operación en el fondo de la torre Desisobutanizadora, en la simulación se obtiene una temperatura 7.4°C mayor que la que indica el diseño.

En la Tabla 4.9 se muestran los consumos de agua y aire de enfriamiento, de gas combustible y aire para la reacción de combustión en el horno y de vapor de calentamiento necesarios en la operación del sistema bajo estudio, en cada una de las ciudades consideradas.

Tabla 4.9.- Consumo de servicios auxiliares (a) en la torre Desisobutanizadora.

	Lugar							
	Minatitlán	Jericó	Cusco	Québec				
Agua de enfriamiento (kg/h) en EA-2: Aire de enfriamiento (kg/h) en:	2,203,000	2,203,000	2,203,000					
– EC-1 – EA-2	622,683	622,683	622,683	622,683 5,000,000				
Gas combustible (kgmol/h) en H-1:	168.36 1,703.33	168.37	168.38	168.29				
Aire (kgmol/h) para la combustión en H-1: Vapor de calentamiento (kg/h) en EA-1:	1,703.33	1,703.40 1,900	1,703.54 1,900	1,702.69 1,900				

⁽a) La potencia eléctrica no se incluye en esta tabla.

Cabe señalar que el cambio de temperatura de la corriente que da el servicio en cada equipo de intercambio de calor se mantiene constante sin importar el lugar en donde esté operando la planta, por lo que, aunado a que la carga de transferencia de calor de cada equipo es la misma, el flujo de agua y aire de enfriamiento, así como de vapor, no se modifica al cambiar las condiciones ambientales del lugar. Sin embargo, las propiedades termodinámicas (entalpia y entropia) del agua y del aire de enfriamiento si cambian al modificarse las condiciones ambientales.

Mientras menor es la temperatura ambiente y por consiguiente mayor el poder calorífico del gas combustible, menor es el consumo de éste, como es el caso de la ciudad de Québec.

Las propiedades termodinámicas de las corrientes que dan el servicio ya sea de calentamiento o de enfriamiento en cada uno de los equipos de intercambio de calor, se presentan en el Apéndice D.1 para cada una de las ciudades consideradas.

4.3.- Análisis de Exergia de la columna Desisobutanizadora.

En la Figura 4.2 se muestra el diagrama de bloques considerado en el presente análisis, en donde cada bloque corresponde a un equipo del sistema bajo estudio. En cada bloque se consideran todas las corrientes de entrada y salida que representan un flujo de exergia.

Figura 4.2.- Diagrama de bloques para el análisis de exergia de la columna Desisobutanizadora de la Planta Isomerizadora de n-Butanos.

Con el fin de comparar el valor de los parámetros exérgicos del condensador (EA-2) en el caso de que éste opere en Québec y por consiguiente utilice aire como medio de enfriamiento, con respecto al valor bajo las condiciones ambientales de Minatitlán, Jericó y Cusco, se realizará un análisis simultáneo de dicho equipo en éstas tres

ciudades, suponiendo que utiliza aire en lugar de agua de enfriamiento para condensar la corriente que sale del domo.

Se realizará, también, el análisis considerando al sistema como un solo bloque, sin incluir a la válvula V-2 y al aereoenfriador EC-1. En la Figura 4.3 se muestran las corrientes del esquema de la Figura 4.2 que participan en el análisis de exergia global del sistema.

Figura 4.3.- Flujos de entrada y salida de exergia a considerar en el análisis global de la columna Desisobutanizadora.

4.3.1.- Exergia de las corrientes.

Al considerar a la exergia inercial casi despreciable con respecto a la sustancial, como se señaló en el Capítulo I, la exergia de una sustancia se determina tan sólo a partir de su exergia física y química.

4.3.1.1.- Exergia física.

En la Tabla 4.10 se presenta una comparación de la exergia física de cada una de las corrientes involucradas en el sistema, entre el valor obtenido considerando las

医双毛体 建二氯化氢硫氢硫镍 化复杂合金管 化新亚原

Market a Special Control

condiciones ambientales del caso base (Minatitlán) y el valor cuando se suponen otras condiciones de temperatura y presión del medio. En el Apéndice D.2, se presenta el cálculo a detalle de exergía física a partir de la Ecuación 1-9 y de los valores de entalpia y entropia de cada corriente a las condiciones de T y P en que se encuentra la corriente y a las condiciones de T_o y P_o del medio ambiente.

en de la graditación de la Argentación de la Argentación de la composition de la Argentación de la Cardena de C

Al final de la Tabla 4.10 se muestran los valores de exergia física del servicio de enfriamiento a la entrada y a la salida del condensador EA-2, cuando se utiliza aire en lugar de agua, para cada uno de los cuatro diferentes medios ambientes de referencia. Conviene señalar que aun cuando se trate de aire, se mantiene el mismo nombre de la corriente de entrada y de salida de la corriente que cuando se utiliza agua de enfriamiento, esto es, CW1 y CW2. En este caso se puede observar que, al tener el aire de entrada al condensador las mismas condiciones de temperatura y presión que las ambientales, el valor de su exergia física es cero.

Aun cuando el flujo de exergia física mostrado en la Tabla 4.10 es total, es decir, está dado en kJ/h y por consiguiente es una propiedad que depende de la masa (propiedad extensiva), se observa que, para un cierto medio de referencia, mientras mayor es la temperatura y presión de una corriente, mayor es su valor de exergia física.

en la companya di estado de la companya de la comp

Tabla 4.10.- Comparación del valor de exergia física de las corrientes de la columna Desisobutanizadora, a diferentes condiciones de T_o y P_o del medio.

				Lugar			
_	Minatitlán	Jeric	<u> </u>	Cusc	0	Québ	
T_o , °C	25	33	_	21	_	-16	i
P_o , atm	1	1.03	<u> </u>	0.67	<u> </u>	1	
Corriente	Ex _f kJ∕h	Ex _f kJ/h	Desv. ^(a) %	Ex _f kJ/h	Desv. ^(a) %	Ex _f kJ/h	Desv. ^(a) %
1	2,089,046	2,384,840	14.2	2,600,566	24.5	1,427,741	-31.7
2	1,003,267	1,150,587	14.7	1,258,201	25.4	605,432	-39.7
3	2,687,441	2,890,964	7.6	3,245,098	20.8	2,499,027	-7.0
4	2,385,978	2,581,412	8.2	2,947,678	23.5	2,239,019	-6.2
5	22,889,601	22,912,718	0.1	27,636,993	20.7	24,819,468	8.4
6	15,267,605	17,746,951	16.2	18,786,883	23.1	4,609,300	-69.8
7	15,267,604	17,746,950	16.2	18,786,882	23.1	4,609,300	-69.8
8	15,606,970	18,084,230	15.9	19,127,291	22.6	4,959,353	-68.2
9	14,356,134	16,634,852	15.9	17,594,315	22.6	4,561,881	-68,2
10	1,250,118	1,448,547	15.9	1,532,096	22.6	397,244	-68,2
11	14,127,358	16,399,937	16.1	17,368,608	22.9	4,364,565	-69.1
12	3,089,024	3,070,619	-0.6	3,694,272	19.6		36.2
13	3,067,294	3,048,305	-0.6	3,672,832	19.7		36.6
14	1,475,774	1,760,410	19.3	1,929,500	30.7	1,041,608	-29.4
15	24,175,639	20,346,007	-15.8	25,115,744	3.9		101.8
. 16	25,435,371	21,602,324	-15.1	26,377,182	3.7	50,065,787	96.8
17	25,428,219	21,596,250	-15.1	26,369,765	3.7	50,051,709	96.8
18	5,366	4,539	-15.4	5,565	3.7	10,563	96.8
19	24,887,607	21,041,133	-15.5	25,836,406	3.8	49,585,439	99,2
20	46,867,156	40,820,073	-12.9	48,935,096	4.4	82,870,538	76.8
W2	0.0057100	0.0020260	-64.5	0.0076929	34.7	0.1182676	1971.2
CW1	554,891	376,042	-32.2	2,454,544	342.3	(b)	
CW2	3,117,845	966,152	-69.0	1,148,670	-63.2	(b)	
A2	423,452	412,767	-2.5	429,139	1.3	487,712	15.2
A3	6,239,546	6,284,497	0.7	7,817,823	25.3	5,373,737	-13.9
C1	617,061	621,327	0.7	773,048	25.3	531,598	-13.9
CA	6,856,478	6,905,956	0.7	8,590,575	25.3	5,904,844	-13.9
G1 -	99,183,218	98,285,954	-0.9	101,086,650	1.9		4.1
G2	18,023,071	17,614,222	-2.3	19,678,623	9.2	19,550,986	8.5
LP1	1,334,085	1,235,620	-7.4	1,383,435	3.7	1,917,080	43.7
LP2	159,276	137,531	-13.7		6.9	349,080	119.2
CW1	0	0		0	Pilone	O	removed parameter manners and a section of
CW2	3,120,916	3,042,125	-2.5	3,161,097	1.3	3,595,253	15.2

⁽a) Desviación con respecto al valor de exergia física a las condiciones ambientales de Minatitlán

Según Szargut [4], si la temperatura del sistema es mayor que la temperatura del medio ambiente, al aumentar la temperatura de referencia la exergia física debe disminuir. De igual forma, si la presión del sistema es mayor que la presión de referencia, al aumentar esta última la exergia física debe bajar. Lo anterior parece razonable ya que al

⁽b) Se supone aire como medio de enfriamiento en lugar de agua

aumentar la temperatura y la presión del medio, el alejamiento entre el sistema y el medio se reduce y por consiguiente disminuye el trabajo que se puede obtener al llevar al sistema de su condición de T y P a las condiciones que prevalecen en el medio.

Sin embargo, de acuerdo con los resultados obtenidos, lo anterior no siempre se cumple, ya que para la mitad de las corrientes del sistema bajo estudio, al aumentar la temperatura ambiente se incrementa su exergia física (Jericó), o bien, si disminuye la temperatura del medio se reduce la exergia física (Québec), con respecto al caso base (Minatitlán). Estas corrientes corresponden a las dos alimentaciones de la columna Desisobutanizadora, a la extracción lateral rica en butano, a las corrientes localizadas en la parte superior de la columna, al gas combustible y al aire alimentado al quemador.

Al analizar las propiedades termodinámicas de las diferentes corrientes, se observa que el incremento o reducción en la exergia física de una corriente al cambiar las condiciones del medio depende de la fase física en que se encuentra dicha corriente tanto a las condiciones de T y P del sistema como a las condiciones de T_o y P_o del medio, ya que el valor de entalpia y entropia de la corriente es diferente si se trata de un líquido o de un vapor.

Por ejemplo, las corrientes 13 y 14, que corresponden a la entrada y a la salida del aereoenfriador EC-1, respectivamente, tienen la misma composición y aunque poseen niveles de temperatura y presión parecidos, las dos presentan diferente fase física. Esto es, la corriente 13 de entrada al equipo es un vapor a 70.6°C y 8.1 kg/cm² abs., mientras que la corriente 14 de salida es líquida a la temperatura de 60°C y 7.7 kg/cm² abs. A estas condiciones, la entalpia y la entropia de la corriente 13 (ver Tabla 4.11) son iguales a –1.23x10⁸ J/kgmol y a –3.7x10⁵ J/kgmol-K, respectivamente, por otro lado los valores de *H* y *S* de la corriente 14 son iguales a –1.43x10⁸ J/kgmol y a –4:28x10⁵ J/kgmol.

Cuando se considera el cambio de condiciones de referencia de Minatitlán a Québec, la condición que se modifica es la temperatura ya que la presión atmosférica en ambos

lugares es la misma. De acuerdo con Szargut y con el valor de temperatura de las corrientes 13 y 14, al suponer la temperatura de Québec de –16°C, la exergia física de estas corrientes debiera aumentar con respecto a sus valores de exergia a la temperatura de Minatitlán de 25°C. En el caso de la corriente 13, lo anterior sí se cumple ya que sus valores de entalpia y entropia al estar en fase vapor son mayores que las propiedades de la corriente a 25°C y mucho mayores que las propiedades a –16°C, y por lo tanto los valores de H-H_o y S-S_o de la corriente 13, a partir de los cuales se obtiene la exergia física, crecen entre menor es la temperatura de referencia, dando como resultado que la exergia física de la corriente aumente.

Sin embargo, en el caso de la corriente 14, sus valores de entalpia y entropia a las condiciones de T y P del sistema son más parecidos a los valores de H_o y S_o de la corriente a -16° C y 1.03 kg/cm² (Québec) que a sus valores de entalpia y entropía a 25° C y 1.03 kg/cm² (Minatitlán), ya que a las condiciones de temperatura y presión del sistema y de Québec la corriente es líquida, mientras que a las condiciones de T_o y P_o de Minatitlán la corriente está en fase vapor. Esto provoca que a una menor temperatura del medio de referencia, los valores de H- H_o y S- S_o disminuyan y por consiguiente también se reduzca la exergia física, en lugar de aumentar.

Tabla 4.11.- Propiedades termodinámicas de dos corrientes con diferente comportamiento en su valor de exergia física al cambiar T_a y P_a .

grander og alle skipte på ett plante et 🔏 Waster av et e et et er et et e

	,	P		H	S
	<i>T,</i> ° C	kg/cm² abs	Fase	J/kgmol	J/kgmol-K
 Corriente de entrada al aereoenfriador EC-1 (13) 	70.6	8.11	Vapor	-1.23x10 ⁸	-3.70x10 ⁵
 Corriente de salida del aereoenfriador EC-1 (14) 	60	7.71	Líquido	-1.43x10 ⁸	-4.28x10 ⁵
• Jericó	33	1.06	Vapor	-1.26x10 ⁸	-3.64x10 ⁵
 Minatitlán (caso base) 	25	1.03	Vapor	-1.27x10 ⁸	-3.66x10 ⁵
 Québec 	-16		Liquido	-1.54x10 ⁸	-4.64×10 ⁵

Aquellas corrientes cuyo valor de exergia física disminuye al considerar las condiciones del medio de Jericó con respecto al valor de exergia a las condiciones ambientales de Minatitlán, su exergía física aumenta cuando se suponen las condiciones que prevalecen en Québec, y viceversa.

El efecto que tiene el cambio de temperatura de referencia en el valor de exergia física es muy grande, ya que un pequeño cambio de temperatura del medio, representa una desviación importante en el valor de exergia física. Por ejemplo, en el caso de Jericó, en donde la temperatura ambiente es tan sólo ocho grados centígrados mayor a la temperatura normal, el valor de exergia física, para la mayoría de las corrientes involucradas en el sistema que se está analizando, varía en alrededor del 15% con respecto al valor que se obtiene a la temperatura ambiente normal de 25°C; y en algunos casos, como por ejemplo el agua de enfriamiento de salida del condensador de la torre, dicha variación es mayor a 60%.

En el caso de Québec, en donde la temperatura ambiente es 41°C menor que la temperatura ambiente normal, la diferencia en el valor de exergia física de las corrientes con respecto al valor obtenido en Minatitlán es en promedio de 50%, y en muchos casos esta diferencia es de 100% o incluso mayor.

La exergia física de las corrientes cuya temperatura depende directamente de la temperatura del medio, como son el aire de salida de los aereoenfriadores, el gas combustible, el aire para combustión, y los gases de combustión a la entrada y a la salida del horno, varía poco al cambiar la temperatura de referencia, en relación con la variación de la exergia física del resto de las corrientes del sistema. La exergia física del agua de enfriamiento, cuya temperatura está en función de la temperatura ambiente y de la humedad del aire, sí varía considerablemente al cambiar la temperatura del medio.

Ahora bien, en el caso de Cusco, en donde la presión atmosférica es mucho menor a la normal, la exergia física de la mayoría de las corrientes aumenta con respecto al caso de Minatitlán. Este comportamiento es razonable dado que es mayor la diferencia entre la condición de presión del sistema y la del medio.

La única corriente cuyo valor de exergia física disminuye al reducirse la presión atmosférica es el agua a la salida del condensador de la columna. Esto se debe a que

en el caso de esta corriente el efecto sobre el valor de exergia física por un cambio de temperatura del medio es mayor que por la disminución en la presión atmosférica. Es decir, al ser la humedad relativa del aire en Cusco (0.3) muy baja en comparación con la que prevalece en Minatitlán (0.75) y por consiguiente ser mucho menor la temperatura del agua de enfriamiento en Cusco (12.5°C) con respecto a la temperatura del agua de enfriamiento en Minatitlán (24°C), la temperatura del agua a la salida del condensador en Cusco (23.3°C) es mucho más cercana al valor de temperatura del ambiente (21°C), que el valor de temperatura del agua en el caso de Minatitlán (34.8°C) con respecto a la temperatura ambiental (25°C), por lo que las propiedades termodinámicas del agua a la salida del condensador a T y P en Cusco serán más cercanas a sus valores a las condiciones del medio ambiente que en el caso de Minatitlán, resultando un valor de exergia física menor.

La variación del valor de exergia física con la presión atmosférica es en promedio del 20% en el caso de Cusco y, aunque para algunas corrientes la desviación de su exergia física no rebasa el 10%, en el caso de la corriente de agua de enfriamiento que entra al condensador de la torre, dicha variación es mayor al 300%, con respecto al valor de exergia física que se obtiene a las condiciones ambientales de Minatitlán.

4.3.1.2.- Exergia química.

La exergia química de cada corriente se determina por medio de la Ecuación 1-15, con los valores de la fracción mol de los componentes que conforman la mezcla, del valor de exergia química estándar de cada compuesto y suponiendo que la mezcla es una solución ideal ($\gamma_i = 1$).

La exergia química estándar de cada compuesto presente en el sistema bajo estudio, se determinó para cada uno de los cuatro medios de referencia a partir de la exergia química estándar de los elementos que los conforman, por medio del programa *EXQCOMP* desarrollado en el presente trabajo.

En la Tabla 4.12 se compara el valor de exergia química estándar de cada compuesto al considerar las diferentes condiciones ambientales en donde opera la columna Desisobutanizadora. En la misma tabla se incluyen los valores de Ex_q° del carbono y azufre, esto con el fin de observar el efecto que tiene el cambio en su valor de exergia en el valor de Ex_q° de los compuestos que los contienen al cambiar las condiciones del medio. En el Apéndice D.3 se presentan los valores de ΔG° y ΔH° de la reacción de formación de cada compuesto y que son requeridos para determinar su exergia química estándar. En el mismo apéndice se listan los resultados que arroja el programa EXQCOMP de Ex_q° de cada compuesto para las diferentes condiciones de referencia.

Tabla 4.12.- Comparación del valor de exergia química estándar de los compuestos presentes en el sistema bajo estudio, a diferentes condiciones ambientales (φ: humedad relativa, δ: salinidad).

				Lugar			
- -	Minatitlán	Je	ericó	Cu	SCO	Qué	bec
<i>T₀</i> , °C ¯	25		33		21	-1	6
P_o , atm	1		.03		67	. 1	
ing that it is the 🎉	0.75		0.7		3		5
S, %	36		41		35	3	
Compuesto (estado)	Ex _q ° kJ/gmol	Ex _q ° kJ/gmol	Desv. ^(a) %	Ex _q ° k J/gm ol	Desv. ^(a) %	Ex _q ° kJ/gmol	Desv. ^(a) %
H ₂ O (g)	9.32	8.63	-7.40	11.06	. 18.67	15.20	63.09
H ₂ O (I)	0.73	0.99	36.09	1.99	173.83	1.73	138.43
H _{2 (g)}	235.95	234.84	-0.47	237.90	0.83	243.94	3.39
CH _{4 (g)}	831.30	830.18	-0.14	834.67	0.40	841.68	1.25
C ₂ H _{6 (g)}	1495.35	1494.31	-0.07	1500.08	0.32	1507.61	0.82
C ₃ H _{8 (g)}	2150.89	2149.96	-0.04	2156.97	0.28	2164.92	0.65
i-C ₄ H _{10 (g)}	2802.55	2801.85	-0.03	2809.92	0.26	2817.70	0.54
n-C ₄ H _{10 (g)}	2804.82	2803.99	-0.03	2812.25	0.26	2820.60	0.56
Neo-C ₅ H _{12 (g)}	3451.44	3451.07	-0.01	3460.04	0.25	3467.17	0.46
i-C ₅ H _{12 (g)}	3452.03	3451.37	-0.02	3460.77	0.25	3469.26	0.50
n-C ₅ H _{12 (I)}	3457.43	3457.41	0.00	3465.85	0.24	3471.36	0.40
O _{2 (g)}	3.93	4.06	3.36	3.84	-2.14	3.34	-14.99
N _{2 (g)}	0.67	0.72	6.69	0.63	-5.94	0.53	-20.95
C ₂ H _{4 (g)}	1360.41	1359.52	-0.07	1363.67	0.24	1369.62	0.68
C ₃ H _{6 (g)}	2001.04	2000.19	-0.04	2005.68	0.23	2012.32	0.56
H ₂ S _(g)	812.50	808.70	-0.47	814.29	0.22	830.10	2.17
CO (g)	274.90	274.69	-0.07	274.99	0.03	275.98	0.40
$CO_{2(g)}$	19.75	20.31	2.82	19.45	-1.49	16.98	-14.00
SO _{2 (g)}	313.42	311.13	-0.73	313.04	- 0.12	321.09	2.45
C (s)	410.20	410.65	0.11	409.97	-0.06	407.90	-0.56
S (s)	609.39	607.06	-0.38	609.05	-0.06	617.23	1.29

⁽a) Desviación con respecto al valor de exergia química estándar a las condiciones ambientales de Minatitlán

Es importante señalar que en el cálculo de exergia química de las corrientes que contienen agua se utilizó la exergia química estándar del agua líquida y tan sólo en el caso de los gases producto de la combustión se empleó el valor de exergia química estándar del agua vapor, por lo que en la Tabla 4.12 se incluyen ambos valores, los cuales son muy diferentes.

En la Tabla 4.12 se observa que si un compuesto está presente como tal en el medio, como por ejemplo el agua, el oxígeno, el nitrógeno y el bióxido de carbono, su valor de exergia química estándar será pequeño con respecto al valor de Ex_q° de compuestos que no están en el medio (metano, etano, pentano, ácido sulfhídrico, etc).

Por otro lado, la variación en el valor de Ex_q° de los compuestos que están presentes como tales en el medio es mayor al cambiar las condiciones ambientales que la variación en el valor de Ex_q° de aquellos que no están presentes. Por ejemplo, el valor de Ex_q° del agua líquida aumenta 174% cuando se suponen las condiciones ambientales de Cusco con respecto a su valor en el caso base (Minatitlán), mientras que el valor de Ex_q° del metano se incrementa tan sólo 0.4%.

Cabe hacer notar que entre mayor es la cadena de un hidrocarburo, el efecto por un cambio en las condiciones ambientales en su valor de exergia química estándar es menor, como se muestra en la Tabla 4.12.

Como se ha mencionado, la exergia química estándar de un compuesto depende tanto del valor del cambio de energía libre de Gibbs de su reacción de referencia, como de la exergia química de los elementos o compuestos que lo conforman. En la Tabla 4.13 se muestra como cambia el valor de ΔG° de la reacción de formación de cada compuesto al cambiar la temperatura del medio. En dicha tabla se observa que el valor de ΔG_f° de las parafinas de cuatro y cinco carbonos varía considerablemente con la temperatura.

Tabla 4.13.- Variación del valor de ΔG_f° de los compuestos presentes en el sistema bajo estudio, al cambiar la temperatura del medio ambiente.

e 1 1 12 2			1.6	Lugar			
	Minatitlán	J	ericó	C	usco	Q	uébec
<i>T₀</i> , °C	25		33		21	, t	-16
Compuesto (estado)	∆G _f ° kJ/gmol	∆G _f ° kJ/gmol	Desviación ^(a) %	$\Delta G_f^{f o}$ kJ/gmol	Desviación ^(a) %_	∆G _f ° kJ/gmol	Desviación ^(ə) %
H ₂ O (I)	-237.19	-235.88	-0.55	-237.84	0.28	-243.88	2.82
CH _{4 (g)}	-50.79	-50.15	-1.27	-51.12	0.64	-54.10	6.51
C ₂ H _{6 (g)}	-32.89	-31.50	-4.22	-33.58	2.11	-40.01	21.65
C ₃ H _{8 (g)}	-23.49	-21.33	-9.18	-24.57	4.59	-34.54	47.05
i-C ₄ H _{10 (g)}	-17.97	-14.93	-16.96	-19.50	8.48	-33.60	86.93
n-C ₄ H _{10 (g)}	-15.71	-12.78	-18.63	-17.17		-30.70	95.45
neo-C ₅ H _{12 (g)}	-15.23	-11.18	-26.56	-17.25	13.28	-35.96	136.12
i-C ₅ H _{12 (g)}	-14.64	-10.89	-25.62	-16.52	12.81	-33.87	131.31
n-C ₅ H _{12 (I)}	-9.25	-4.85	-47.53	-11.44	23.77	-31.77	243.61
C ₂ H _{4 (g)}	68.12	68.55	0.62	67.91	-0.31	65.94	-3.20
C ₃ H _{6 (g)}	62.61	63.74	1.81	62.04	-0.90	56.81	-9.27
H ₂ S (g)	-32.84	-33.19	1.05	-32.67	-0.53	-31.07	-5.40
CO _(g)	-137.27	-137.98	0.52	-136.91	-0.26	-133.59	-2.68
CO _{2 (g)}	-394.38	-394.40	0.01	-394.37	-0.003	-394.26	-0.03
SO _{2 (g)}	-299.90	-299.99	0.03	-299.86	-0.01	-299.48	-0.14

(a) Con respecto al valor de ΔG_f° a la temperatura ambiente de Minatitlán

En los dos capítulos anteriores se pudo observar que la temperatura ambiente tiene un mayor efecto en el valor de exergia química estándar que las otras condiciones ambientales. En este ejercicio se analizan cuatro lugares geográficos con diferentes condiciones ambientales y en donde la combinación de éstas pudiera disminuir el efecto de la temperatura en el valor de exergia química estándar.

Con el propósito de conocer qué condición ambiental es la que está controlando la exergia química de los elementos y compuestos en cada una de las ciudades consideradas se preparó la Tabla 4.14, la cual se basa en los resultados obtenidos en los dos capítulos anteriores al variar cada condición ambiental y dejando fijas las demás.

Las flechas de la Tabla 4.14 indican aumento o disminución de exergia química estándar al variar una condición ambiental. Las flechas que están inclinadas

representan el comportamiento del valor de exergia química que coincide con los resultados obtenidos y que fueron presentados en la Tabla 4.12.

Tabla 4.14.- Efecto en el valor de exergia química estándar por el cambio de cada una de las condiciones ambientales (ϕ : humedad relativa, S: salinidad).

	Variación con	Х _{Н20}	x del resto de las			Ex_q° del resto de las		
Lugar	respecto a Minatitlán	en el aire	especies del aire	$Ex_q^{\circ}_{H2O}$	$Ex_q^{\circ}_{H2}$	especies del aire	Ex_q° s	Ex _a ° _{CH4}
	$T_o \uparrow$	1	↓	4	4	1	↓	4
Jericó	$P_o \uparrow$	1	·· 🕇 : **	·	· 🛧 🖰	\downarrow	1	↑
Jenco	$\phi \downarrow$	↓	↑	↑	↑	↓ ::	- 4	1
	<u>s↑</u>						<u> </u>	
	$T_o \downarrow$	1	\uparrow	1	<i>†</i>	4	\uparrow	1
Cusco	$P_o \downarrow$. ************************************	↓ .	↓	↓ ↓	1	↑	. ↓
04300	ø↓ S↓	↓	1	. + 7 2	↑ .	<i>*</i>	14, 4 ≠ 1, 14 1. 1 ↑	1
·	$T_o \downarrow$	1	↑	1	1	1	1	1
Québec	P_o			1			troples.	
Gueneo	$\phi \downarrow$	1	↑	1	<i>†</i>	4	\downarrow	<i>†</i>
	$s\downarrow$. 1	

Cuando la presión atmosférica y la humedad relativa del aire tienen un comportamiento contrario, es decir, que la primera aumenta mientras que la segunda disminuye, con respecto a las condiciones normales, el efecto en el valor de exergia química estándar es el mismo, como se puede observar en el caso de Jericó.

En general, la variación en la temperatura ambiente es la condición que controla el cambio en el valor de exergia química estándar, sin embargo, cuando la humedad relativa del aire disminuye mucho con respecto al valor a condiciones normales, como es el caso de Cusco (ϕ = 0.3), la disminución de la humedad relativa tiene mayor efecto en el valor de exergia química estándar que la disminución de la temperatura. De acuerdo con los resultados obtenidos en el capítulo III, al disminuir la temperatura, permaneciendo constantes la presión atmosférica, la humedad relativa y la salinidad del agua de mar, la exergia química estándar del agua presente en el aire y del hidrógeno aumentan, la del resto de las especies contenidas en la atmósfera disminuye y la del

azufre aumenta. Sin embargo, al disminuir la humedad relativa del aire, dejando fijo el valor de T_o , P_o y S, se obtiene el mismo resultado que en el caso de la variación de la temperatura excepto en el valor de exergia química estándar del azufre, el cual disminuye en lugar de aumentar, y que coincide con lo que ocurre en Cusco.

Ahora bien, al aumentar la temperatura ambiente e incrementarse la concentración del vapor de agua en el aire, disminuye la concentración del resto de las especies presentes en el aire por lo que disminuye la exergia química del agua vapor y del hidrógeno y aumenta la exergia química estándar del oxígeno, nitrógeno y del bióxido de carbono; y viceversa.

El cambio en el valor de exergia química estándar de las parafinas, olefinas y del ácido sulfhídrico al cambiar las condiciones del medio es controlado por el cambio en el valor de exergia química estándar del hidrógeno, aun en el caso del n-pentano cuyo valor de ΔG_f° varía considerablemente con la temperatura.

Con respecto al monóxido de carbono y al bióxido de azufre, el cambio en su valor de exergia química estándar está regido por el cambio en el valor de ΔG_f° en el primer caso y por el cambio en el valor de Ex_q° del azufre en el segundo caso.

Por otro lado, en el caso del agua líquida, cuando la temperatura es mayor a 25°C el cambio en el valor de ΔG_f° es el que controla el cambio en el valor de su exergia química estándar, sin embargo, cuando la temperatura ambiente es menor a la normal, el cambio en el valor de Ex_q° del hidrógeno tiene un mayor efecto que el cambio en el valor de ΔG_f° sobre el valor de Ex_q° del agua líquida.

Finalmente, en la Tabla 4.15 se presenta el valor de exergia química de las corrientes que conforman el sistema bajo estudio al considerar las condiciones ambientales de las cuatro ciudades en las que opera el sistema.

preferences appeal of the fill

Called Control of Section 1995

Tabla 4.15.- Comparación del valor de exergia química de las corrientes de la columna Desisobutanizadora, a diferentes condiciones ambientales del medio (¢: humedad relativa, S: salinidad).

•		(y. Hame	dad Icida	va, S: salinidad) Lugar		**************************************	
-	Minatitlán	Jericó	<u> </u>	Cusco		Québec	
T₀, °C ¯	25	33		21	· · · · · · · · · · · · · · · · · · ·	-16	
P_o , atm	1	1.03		0.67		1	
φ	0.75	0.7		0.3		0.5	
S, %	36	53 × 13 × 41	And the second	35	1 4	32	
	Ex_q	Ex_q	Desv. (8)	Ex_q	Desv. (a)	Ex_q	Desv.(a)
Corriente	kJ/h	kJ/h	%	kJ/h	%	kJ/h	<u>%</u>
1	2,024,782,334	2,024,183,574	-0.03	2,030,146,959	0.26	2,036,181,230	0.56
2	1,012,430,561	1,012,137,244	-0.03	1,015,109,818	0.26	1,018,098,844	0.56
3	2,024,782,334	2,024,183,574	-0.03	2,030,146,959	0.26	2,036,181,230	0.56
4	2,024,782,334	2,024,183,574	-0.03	2,030,146,959	0.26	2,036,181,230	0.56
5	14,592,315,900	14,588,607,246	-0.03	14,630,680,877	0.26	14,671,365,127	0.54
6	14,592,315,900	14,588,607,246	-0.03	14,630,680,877	0.26	14,671,365,127	0.54
7	14,592,315,905	14,588,607,251	-0.03	14,630,680,882	0.26	14,671,365,131	0.54
8	14,592,315,905	14,588,607,251	-0.03	14,630,680,882	0.26	14,671,365,131	0.54
9	13,422,800,277	13,419,388,852	-0.03	13,458,090,456	0.26	13,495,514,043	0.54
10	1,168,844,074	1,168,547,011	-0.03	1,171,917,107	0.26	1,175,175,914	0.54
11	13,422,800,277	13,419,388,852	-0.03	13,458,090,456	0.26	13,495,514,043	0.54
12	1,861,322,114	1,860,769,873	-0.03	1,866,250,586	0.26	1,871,803,727	0.56
13	1,861,322,114	1,860,769,873	-0.03	1,866,250,586	0.26	1,871,803,727	0.56
14	1,861,322,114	1,860,769,873	-0.03	1,866,250,586	0.26	1,871,803,727	0.56
15	36,831,653,500	36,827,708,450	-0.01	36,923,362,755	0.25	36,999,451,933	0.46
16	36,831,653,500	36,827,708,450	-0.01	36,923,362,755	0.25	36,999,451,933	0.46
17	36,823,881,887	36,819,937,669	-0.01	36,915,571,791	0.25	36,991,644,914	0.46
18	7,771,348	7,770,516	-0.01	7,790,699	0.25	7,806,753	0.46
19	36,823,881,887	36,819,937,669	-0.01	36,915,571,791	0.25	36,991,644,914	0.46
20	36,823,881,887	36,819,937,669	-0.01	36,915,571,791	0.25	36,991,644,914	0.46
W2	0.0915341	0.1245670	36.09	0.2506470	173.83	0.2182445	138.43
CW1	88,782,540	120,822,520	36.09	243,112,520	173.83	(p)	
CW2	88,782,540	120,822,520	36.09	243,112,520	173.83	(b)	
A2	0	0		0		0	
A3	0	. 0		0		0	. 1.3
C1	134,050,979	133,862,356	-0.14	134,609,448	0.42	135,728,742	1.25
CA	132,796,228	132,619,650	-0.13	133,318,494	0.39		1.33
G1	3,265,595	3,096,442	-5.18	3,765,146	15.30	5,015,095	53.57
G2	3,265,595	3,096,442	-5.18	3,765,146	15.30	5,015,095	53.57
LP1	76,568	104,200	36.09	209,666	173.83	182,562	138.43
LP2	76,568	104,200	36.09	209,666	173.83	182,562	138.43
CW1	0	0	,	0			
CW2	0	0		. 0		0	1 t 1

⁽a) Con respecto al valor de exergia química a las condiciones ambientales de Minatitlán

El efecto al variar las condiciones ambientales en el valor de exergia química de las corrientes de proceso depende de la naturaleza y composición de la mezcla. La

⁽b) Se supone aire como medio de enfriamiento en lugar de agua

variación en el valor de Ex_q de las corrientes que contienen hidrocarburos es muy pequeña y del mismo orden que la variación en el valor de Ex_q ° de los hidrocarburos mostrada en la Tabla 4.12, al variar las condiciones del medio ambiente de referencia.

El valor de exergia química de las corrientes que contienen agua, como son el agua decantada, el agua de enfriamiento y el vapor de calentamiento, varía de igual forma que el valor de exergia química estándar del agua líquida al variar las condiciones ambientales. Por ejemplo, en el caso de Cusco la exergia química de estas corrientes es 174% mayor que su valor a las condiciones de Minatitlán.

En el caso del gas combustible (corriente C1), el cual está compuesto por 52 %mol de hidrógeno, 25 %mol de metano y el resto por diversos hidrocarburos de cadena más larga, la variación en su valor de exergia química al cambiar las condiciones ambientales es la misma que presenta el valor de exergia química estándar del metano. Aunque la concentración del metano es la mitad de la del hidrógeno en el gas combustible, el valor de Ex_q ° molar del metano es 3.5 veces mayor que el valor de Ex_q ° del hidrógeno, por lo que el cambio en el valor de Ex_q ° del metano controla el cambio en el valor de exergia química del gas combustible. En el caso de Québec, la exergia química del gas combustible aumenta 1.25% con respecto a su valor a las condiciones de Minatitlán, la misma variación que presenta el valor de exergia química estándar del metano para el mismo cambio de condiciones.

Al igual que en el caso anterior, el cambio en el valor de exergia química de los gases producto de la combustión (corriente G1) no está controlado por el cambio en el valor de exergia química estándar del compuesto en mayor proporción, en este caso el nitrógeno (72 %mol), sino por el cambio en el valor de Ex_q° del agua vapor que, aun cuando su concentración es mucho menor (17 %mol) que la del nitrógeno, su valor de exergia química estándar (9.32 kJ/h a condiciones normales) es mucho mayor que la exergia química estándar del nitrógeno (0.67 kJ/h a condiciones normales). Por ejemplo, cuando se suponen las condiciones ambientales de Québec, la exergia química de los gases producto de la combustión y la exergia química estándar del agua

vapor aumentan alrededor del 54% y 63%, respectivamente, con respecto a su valor a las condiciones de Minatitlán, mientras que el valor de exergia química estándar del nitrógeno disminuye 21%, para el mismo cambio de condiciones.

Debido a que la corriente de aire, está compuesta por las mismas especies y a la misma concentración que aquéllas presentes en el medio, su valor de exergia química es cero.

4.3.1.3.- Exergia total.

En la Tabla 4.16 se presenta el valor de exergia total de cada corriente para cada uno de los medios ambientes de referencia y que resulta de agrupar el valor de exergia química y física.

Al combinar los valores de exergia física y química, se observa que la variación en la exergia total de las corrientes al modificar las condiciones del medio está regida por el cambio en el valor de exergia química, ya que en la mayoría de los casos el valor de exergia química es mucho mayor que el de exergia física, o bien, el cambio en el valor de exergia química es mayor que el cambio en el valor de exergia física aun cuando a veces el valor de exergia física sea mayor que el de exergia química, como ocurre con la corriente de vapor condensado (LP2) que sale del calentador EA-1.

En el caso de las corrientes correspondientes a los gases producto de la combustión (corrientes G1 y G2), y al vapor de calentamiento (corriente LP1) su exergia física es mayor que su exergia química, por lo que la variación en su valor de exergia total estará controlada por el cambio en el valor de exergia física.

La exergia de las corrientes de aire es exergia física pura, por lo tanto el cambio en su valor de exergia al modificarse las condiciones ambientales depende solamente de la variación en dicho tipo de exergia.

Tabla 4.16.- Comparación del valor de exergia total de las corrientes de la columna Desisobutanizadora, a diferentes condiciones ambientales del medio (φ: humedad relativa, δ: salinidad).

			**** * * * * * * * * * * * * * * * * *	Lugar	1	and the second second	
-	Minatitlán	Jericó		Cusco		Québec	
T₀, °C	25	33		21		-16	
P_o , atm	1	1.03		0.67		1	
ϕ	0.75	0.7		0.3	er Makifa kari	0.5	
S, ‰	36	41		35		32	/al
	Ex	Ex	Desv. (a)	Ex	Desv.(a)	Ex	Desv.(a)
Corriente	kJ/h	kJ/h	<u>%</u>	kJ/h	%	kJ/h	<u> %</u>
1	2,026,871,380	2,026,568,414	-0.01	2,032,747,525	0.29	2,037,608,971	0.53
2	1,013,433,828	1,013,287,831	-0.01	1,016,368,019	0.29	1,018,704,276	0.52
3	2,027,469,775	2,027,074,538	-0.02	2,033,392,056	0.29	2,038,680,257	0.55
4	2,027,168,311	2,026,764,985	-0.02	2,033,094,637	0.29	2,038,420,249	0.56
5	14,615,205,502	14,611,519,964	-0.03	14,658,317,871	0.29	14,696,184,595	0.55
6	14,607,583,505	14,606,354,197	-0.01	14,649,467,760	0.29	14,675,974,427	0.47
7	14,607,583,510	14,606,354,201	-0.01	14,649,467,764	0.29	14,675,974,430	0.47
8	14,607,922,875	14,606,691,481		14,649,808,173	0.29	14,676,324,484	0.47
9	13,437,156,411	13,436,023,704	-0.01	13,475,684,771	0.29	13,500,075,924	0.47
10	1,170,094,192	1,169,995,558	-0.01	1,173,449,203	0.29	1,175,573,158	0.47
11	13,436,927,634	13,435,788,789	-0.01	13,475,459,064	0.29	13,499,878,608	0.47
12	1,864,411,139	1,863,840,491	-0.03	1,869,944,858	0.30	1,876,011,677	0.62
i na <mark>13</mark> ada	1,864,389,408	1,863,818,177	-0.03		0.30		0.62
14	1,862,797,888	1,862,530,283	-0.01	1,868,180,086	0.29	1,872,845,336	0.54
15	36,855,829,140	36,848,054,457	-0.02	36,948,478,499	0.25	37,048,240,492	0.52
16	36,857,088,871	36,849,310,774	-0.02	36,949,739,937	0.25	37,049,517,720	0.52
17	36,849,310,105	36,841,533,919	-0.02	36,941,941,556	0.25	37,041,696,623	0.52
18	7,776,715	7,775,055	-0.02	7,796,264	0.25	7,817,316	0.52
19	36,848,769,494	36,840,978,802	-0.02	36,941,408,197	0.25	37,041,230,353	0.52
20		36,860,757,742	-0.03	36,964,506,887	0.25	37,074,515,451	0.55
W2	0.0972441	0.1265930	30.18	0.2583399	165.66	0.3365121	246.05
CW1	89,337,431	121,198,562	35.66	245,567,064	174.88	(b)	
CW2	91,900,385	121,788,672	32.52	244,261,190	165.79	(b)	
A2	423,452	412,767	-2.52	429,139	1.34	487,712	15.18
A3	6,239,546	6,284,497	0.72	7,817,823	25.29	5,373,737	-13.88
, C1 ,	134,668,040	134,483,683	-0.14	135,382,495	0.53	136,260,339	1.18
CA	139,652,706	139,525,607	-0.09	141,909,069	1.62	140,469,146	0.58
G1.4.4.4	102,448,813	101,382,396	-1.04	104,851,796	2.35	108,304,219	5.72
G2	21,288,666	20,710,664	-2.72	23,443,769	10.12	24,566,081	15.40
LP1	1,410,653	1,339,820	-5.02	1,593,102	12.93	2,099,641	48.84
LP2	235,844	241,731	2.50	379,933	61.09	531,641	125.42
CW1	0	0	* •	0		0	
CW2	3,120,916	3,042,125	-2.5	3,161,097	1.3	3,595,253	15.2

⁽a) Con respecto al valor de exergia total a las condiciones ambientales de Minatitlán

e production contact at the little of the little of the

Las corrientes que presentan un mayor cambio en su valor de exergia al variar las condiciones del medio son las que están compuestas sólo por agua (el agua decantada

⁽b) Se supone aire como medio de enfriamiento en lugar de agua

化电路线 化氯化二醇 建氯化铵银矿 医颅

en el domo de la columna Desisobutanizadora, el agua de enfriamiento a la entrada y a la salida del condensador de la columna, y el vapor de calentamiento a la entrada y a la salida del cambiador EA-1). La variación en el valor de exergia en algunas de estas corrientes al considerar las condiciones de Cusco y Québec rebasa el 150%, con respecto a su valor a las condiciones de Minatitlán.

4.3.2.- Balances de entalpia y exergia y determinación de los parámetros exérgicos.

A continuación se presentan de forma general los balances de energía, de acuerdo con la primera y segunda ley de la termodinámica, en cada uno de los equipos que integran el sistema que se analiza en el presente trabajo, a partir de los cuales se obtienen los parámetros exérgicos definidos en el Capítulo I. También se muestran los balances de entalpia y exergia, así como los parámetros exérgicos, cuando se analiza el sistema de manera global.

Válvulas:

Balance de entalpia:

$$H_1 = H_2$$

Balance de exergia:

$$Ex_1 = Ex_2 + Irr$$

$$Irr = Ex_1 - Ex_2 = Ex_{tte} - Ex_{tts}$$

$$Ex_{nts} = Ex_1 - Ex_2$$

$$Ex_{ntp} = 0$$

$$Efl = 0$$

$$Pex = Irr$$

$$Ex_{uts} = Ex_2$$

$$\eta = Ex_{tts} / Ex_{tte} = Ex_2 / Ex_1$$

Descriptive in

$$\varepsilon = Ex_{ntp} / Ex_{nts} = 0$$

$$\xi = Ex_{uts} / Ex_{tte} = \eta$$

$$Pot = Irr (1 - \varepsilon) + Efl = Irr$$

· Bombas:

nak dan gampi perdalah kelajir mbalaji perdak daja keli di akendan indiba kelika yala dikemi dampadin da

我们是对我们出现了,可能不是一次的,我们是我们是对我们的对象。 "我们的时候,这一个女人的,我们就是这样的,我们是我们不是一个<mark>的</mark>我的。"

Balance de entalpia: $H_1 + W = H_2$

-Balance de exergia: $Ex_1 + W = Ex_2 + Irr$

Parámetros exérgicos: $Irr = Ex_1 + W - Ex_2 = Ex_{tte} - Ex_{tts}$

 $Ex_{nts} = W$

 $Ex_{ntp} = Ex_2 - Ex_1$

Efl = 0

Pex = Irr

 $Ex_{uts} = Ex_2$

 $\eta = Ex_{tts} / Ex_{tte} = Ex_2 / (Ex_1 + W)$

 $\varepsilon = Ex_{ntp} / Ex_{nts} = (Ex_2 - Ex_1) / W$

 $\xi = Ex_{uts} / Ex_{tte} = \eta$

 $Pot = Irr (1 - \varepsilon) + Efl = Irr (1 - \varepsilon)$

• Enfriamiento con agua:

ae: agua de entrada; ar: agua de retorno

Por el lado de la corriente de proceso Balance de entalpia:

 $H_1 = H_2 + O$

Por el lado del agua de enfriamiento

 $H_{ae} + O = H_{ar}$

Balance de exergia:

$$Ex_1 + Ex_{ae} = Ex_2 + Ex_{ar} + Irr$$

Parámetros exérgicos:

$$Irr = Ex_1 + Ex_{ae} - (Ex_2 + Ex_{ar}) = Ex_{tte} - Ex_{tts}$$

$$Ex_{nts} = Ex_1 - Ex_2$$

$$Ex_{ntp} = Ex_{ar} - Ex_{ae}$$

$$Efl = Ex_{ar} - Ex_{ae} = Ex_{nip}$$

$$Pex = Irr + Efl = Ex_1 - Ex_2 = Ex_{nts}$$

$$Ex_{uts} = Ex_2$$

$$\eta = Ex_{tts} / Ex_{tte} = (Ex_2 + Ex_{ar}) / (Ex_1 + Ex_{ae})$$

$$\varepsilon = Ex_{ntp} / Ex_{nts} = (Ex_{ar} - Ex_{ae}) / (Ex_1 - Ex_2)$$

$$\xi = Ex_{uts} / Ex_{tte} = Ex_2 / (Ex_1 + Ex_{ae})$$

$$Pot = Irr (1 - \varepsilon) + Efl$$

Aereoenfriadores:

af: aire frío; ac: aire caliente

Balance de entalpia:

Por el lado de la corriente de proceso $H_1 = H_2 + Q$

Por el lado del aire

 $H_{af} + W + Q = H_{ac}$

Balance de exergia:

$$Ex_1 + Ex_{af} + W = Ex_2 + Ex_{ac} + Irr$$
; en donde $Ex_{af} = 0$

$$Irr = Ex_1 + W - (Ex_2 + Ex_{ac}) = Ex_{tte} - Ex_{tts}$$

$$Ex_{nts} = (Ex_1 - Ex_2) + W$$

$$Ex_{ntp} = Ex_{ac} - Ex_{af} = Ex_{ac}$$

$$Efl = Ex_{ac}$$

$$Pex = Irr + Efl = (Ex_1 - Ex_2) + W = Ex_{nts}$$

$$Ex_{uts} = Ex_2$$

$$\eta = Ex_{tts} / Ex_{tte} = (Ex_2 + Ex_{ac}) / (Ex_1 + W)$$

$$\varepsilon = Ex_{ntp} / Ex_{nts} = Ex_{ac} / (Ex_1 - Ex_2 + W)$$

$$\xi = Ex_{uts} / Ex_{tte} = Ex_2 / (Ex_1 + W)$$

$$Pot = Irr (1 - \varepsilon) + Efl$$

Calentamiento con vapor:

ve: vapor de entrada; vc: vapor condensado

Balance de entalpia:

Por el lado de la corriente de proceso $H_1 + Q = H_2$

Por el lado del vapor de calentamiento

 $H_{ve} = H_{vc} + Q$

Balance de exergia:

$$Ex_1 + Ex_{ve} = Ex_2 + Ex_{vc} + Irr$$

$$Irr = Ex_1 + Ex_{ve} - (Ex_2 + Ex_{vc}) = Ex_{tte} - Ex_{tts}$$

$$Ex_{nts} = Ex_{ve} - Ex_{vc}$$

$$Ex_{ntp} = Ex_2 - Ex_1$$

$$Efl = 0$$

$$Pex = Irr$$

$$Ex_{uts} = Ex_2 + Ex_{vc}$$

$$\eta = Ex_{tts} / Ex_{tte} = (Ex_2 + Ex_{vc}) / (Ex_1 + Ex_{ve})$$

$$\varepsilon = Ex_{ntp} / Ex_{nts} = (Ex_2 - Ex_1) / (Ex_{ve} - Ex_{vc})$$

$$\xi = Ex_{uts} / Ex_{tte} = \eta$$

$$Pot = Irr (1 - \varepsilon)$$

Calentamiento en un horno:

ge: gases de entrada; gs: gases de salida

Balance de entalpia:

Por el lado de la corriente de proceso

 $H_1 + Q = H_2$

Por el lado de los gases de combustión

 $H_{ge} = H_{gs} + Q$

Balance de exergia:

$$Ex_1 + Ex_{ge} = Ex_2 + Ex_{gs} + Irr$$

$$Irr = Ex_1 + Ex_{ge} - (Ex_2 + Ex_{gs}) = Ex_{tte} - Ex_{tts}$$

$$Ex_{nts} = Ex_{ge} - Ex_{gs}$$

$$Ex_{ntp} = Ex_2 - Ex_1$$

$$Efl = Ex_{gs}$$

$$Pex = Irr + Efl$$

$$Ex_{uts} = Ex_2$$

$$\eta = Ex_{tts} / Ex_{tte} = (Ex_2 + Ex_{gs}) / (Ex_1 + Ex_{ge})$$

$$\varepsilon = Ex_{ntp} / Ex_{nts} = (Ex_2 - Ex_1) / (Ex_{ge} - Ex_{gs})$$

$$\xi = Ex_{uts} / Ex_{tte} = Ex_2 / (Ex_1 + Ex_{ge})$$

$$Pot = Irr (1 - \varepsilon) + Efl$$

• Reactor de combustión adiabático: >

$$Q = 0$$

ca: combustible más aire; g: gases producto de la combustión

Balance de entalpia:

 $H_{ca} = H_g$

Balance de exergia:

 $Ex_{ca} = Ex_g + Irr$

Parámetros exérgicos:

 $Irr = Ex_{ca} - Ex_g = Ex_{tte} - Ex_{tts}$

 $Ex_{nts} = \nabla Ex_q = Ex_{q ca} - Ex_{q g}$

 $Ex_{ntp} = \Delta Ex_f = Ex_{fg} - Ex_{fca}$

Efl = 0

Pex = Irr

 $Ex_{uts} = Ex_{g}$

 $\eta = Ex_{tts} / Ex_{tte} = Ex_g / Ex_{ca}$

 $\varepsilon = Ex_{ntp} / Ex_{nts} = \Delta Ex_f / \nabla Ex_q$

 $\xi = \nabla E x_q / \Delta E x_f = 1 / \varepsilon$

 $Pot = Irr (1 - \varepsilon)$

Transferencia de masa en la columna:

Debido a que el condensador y el rehervidor de la columna Desisobutanizadora se analizaron como dos equipos independientes, se realiza a continuación el balance de energía y la determinación de los parámetros considerando tan sólo la transferencia de masa en la columna, como se muestra a continuación:

AI: primera alimentación; A2: segunda alimentación; EL: extracción lateral; D: producto de domo; F: producto de fondo; RD: reflujo del producto de domo; RF: reflujo del producto de fondo.

Balance de entalpia:

$$H_{A1} + H_{A2} + H_{RD} + H_{RF} = H_D + H_F + H_{EL}$$

Balance de exergia:

$$Ex_{A1} + Ex_{A2} + Ex_{RD} + Ex_{RF} = Ex_{D} + Ex_{F} + Ex_{EL} + Irr$$

$$Irr = (Ex_{A1} + Ex_{A2} + Ex_{RD} + Ex_{F}) - (Ex_D + Ex_F + Ex_{EL})$$

$$Irr = Ex_{tte} - Ex_{tts}$$

$$Ex_{nts} = \nabla Ex_f = Ex_{fentrada} - Ex_{fsalida}$$

$$Ex_{nts} = \left(Ex_{fAI} + Ex_{fA2} + Ex_{fRD} + Ex_{fRF}\right) - \left(Ex_{fD} + Ex_{fF} + Ex_{fEL}\right)$$

$$Ex_{ntp} = \Delta Ex_q = Ex_{q \text{ salida}} - Ex_{q \text{ entrada}}$$

$$Ex_{ntp} = (Ex_{qD} + Ex_{qF} + Ex_{qEL}) - (Ex_{qAI} + Ex_{qA2} + Ex_{qRD} + Ex_{qRF})$$

$$Efl = 0$$

$$Pex = Irr$$

$$Ex_{uts} = Ex_{tts}$$

$$\eta = Ex_{tts} / Ex_{tte}$$

$$\varepsilon = Ex_{ntp} / Ex_{nts} = \Delta Ex_a / \nabla Ex_f$$

$$\xi = Ex_{uts} / Ex_{tte} = \eta$$

$$Pot = Irr (1 - \varepsilon)$$

• Análisis global del sistema:

Las corrientes de entrada, salida y trabajo que se consideran en éste análisis de exergia global corresponden a las indicadas en la Figura 4.3.

Balance de entalpia:

 $\Sigma H_{corrientes\ de\ entrada} + \Sigma W = \Sigma H_{corrientes\ de\ salida}$

Balance de exergia:

 $\sum Ex_{corrientes\ de\ entrada} + \sum W = \sum Ex_{corrientes\ de\ salida} + Irr$

Parámetros exérgicos:

DS:
$$Irr = (\Sigma Ex_{corrientes de entrada} + \Sigma W) - (\Sigma Ex_{corrientes de salida}) = Ex_{tte} - Ex_{tts}$$

$$Ex_{nts} = [(Ex_{C1} + Ex_{A3} - Ex_{G2}) + \Sigma W + (Ex_{LP1} - Ex_{LP2})]$$

$$- [Ex_{CW2} - Ex_{CW1}]$$

$$Ex_{ntp} = (Ex_{10} + Ex_{W2} + Ex_{12} + Ex_{18}) - (Ex_{1} + Ex_{2})$$

$$Efl = Ex_{CW2} - Ex_{CW1} + Ex_{G2}$$

$$Pex = Irr + Efl$$

$$Ex_{uts} = Ex_{10} + Ex_{W2} + Ex_{12} + Ex_{18} + Ex_{LP2}$$

$$\eta = Ex_{tts} / Ex_{tte}$$

$$\varepsilon = Ex_{ntp} / Ex_{nts}$$

$$\xi = Ex_{uts} / Ex_{tte}$$

$$Pot = Irr (1 - \varepsilon) + Efl$$

TABLE OF THE RESERVE AND AMERICAN PROPERTY OF

Es importante señalar que cuando se considera un aereoenfriador como condensador de la columna Desisobutanizadora, en lugar de un cambiador de calor que utiliza agua como medio de enfriamiento, las corrientes CWI y CW2 corresponden al aire de entrada y salida del aereoenfriador y; que es necesario incluir el consumo de energía del aereoenfriador como una corriente de trabajo (W_{E4-2}) adicional de entrada al sistema

En el Apéndice D.4 se presentan los resultados completos del cálculo de los parámetros exérgicos del sistema bajo estudio y de cada uno de los equipos que lo integran, para las condiciones ambientales de referencia de Minatitlán, Jericó, Cusco y Québec.

4.3.3.- Análisis de exergia de la Columna Desisobutanizadora, al considerar las condiciones del medio del caso base (Minatitlán).

A partir de los parámetros exérgicos obtenidos para el sistema bajo estudio, al considerar las condiciones de referencia de Minatitlán, se observa que alrededor del 83% de las pérdidas totales de exergia corresponden a irreversibilidades termodinámicas, es decir, al incremento de entropia que se produce al llevar a cabo el proceso, y el 17% restante a las pérdidas de exergia por corrientes arrojadas al medio ambiente (ver Figura 4.4).

Figura 4.4.- Distribución de las pérdidas totales de exergia en la Columna Desisobutanizadora. Condiciones ambientales de Minatitlán.

La mayoría de las pérdidas de exergia por efluentes (89%) se deben alto contenido de energía que se pierde con los gases de salida del horno que sirve como rehervidor de la columna. El resto de las pérdidas de exergia por efluentes corresponden principalmente a la energía contenida en el agua de salida del condensador de la columna (10.6%) y en muy baja proporción al aire caliente de salida del aereoenfriador.

En la Figura 4.5 se observa que el equipo en el cual se presentan las mayores pérdidas de exergia por irreversibilidades es el horno, alrededor del 51% del total; esto sin considerar la reacción de combustión, en la cual se generan casi 32% de las pérdidas totales de exergia por irreversibilidades.

Figura 4.5.- Porcentaje del total de pérdidas por irreversibilidades en cada equipo de la Columna Desisobutanizadora. Condiciones ambientales de Minatitlán.

A la columna Desisobutanizadora se alimenta la carga de butano a la planta y el producto de fondo de la columna Estabilizadora, la cual es una corriente que proviene de la misma torre Desisobutanizadora. A pesar de que se vuelven a mezclar dos corrientes que ya se separaron previamente, las irreversibilidades originadas por este hecho representan tan solo el 11% de las pérdidas totales de exergia por irreversibilidades, si se considera sólo la transferencia de masa en la columna, es decir, sin incluir al condensador y al rehervidor.

Las pérdidas de exergia por irreversibilidades en el condensador representan el 4.3% del total, y en el caso del enfriamiento con aire, del calentamiento con vapor y del cambio de presión en bombas y válvulas, estas pérdidas son casi despreciables en relación con el total.

Por otro lado, los procesos que presentan una mayor efectividad en su operación desde el punto de vista de uso de la energía son el bombeo del producto de domo y el de fondo de la columna (0.82 y 0.91 respectivamente), la reacción de combustión en los quemadores del horno (0.71) y en menor medida el calentamiento con vapor (0.51), como se muestra en la Figura 4.6. Esto significa que, la energía suministrada en estos

equipos es aprovechada adecuadamente para producir el cambio necesario para que se cumpla el objetivo del proceso.

Los procesos en donde se presenta la menor efectividad son la transferencia de masa en la columna y la reducción de presión en las válvulas, en la cual la efectividad es nula ya que la expansión en una válvula es un proceso disipativo en donde la energía suministrada se pierde totalmente.

En el caso de la transferencia de masa en la columna de separación la efectividad es apenas de 0.1, lo cual se debe a que el incremento que se da en la exergia química del sistema (exergia neta producida) es muy pequeño en relación con la disminución de exergia física (exergia neta suministrada) que es necesario para que se lleve a cabo la separación. Cabe recordar que la exergia química de una mezcla es menor que la suma de la exergia química de los componentes que la conforman, por lo que en una separación siempre se obtiene un aumento en la exergia química.

Debido a que en el horno las pérdidas de exergia por irreversibilidades y por efluentes son altas y que su efectividad es baja, es el equipo con el mayor potencial de mejoramiento del sistema (67.8%), como se muestra en la Figura 4.7. Se recomienda analizar la posibilidad de sustituir el horno por un cambiador de calor que utilice vapor como medio de calentamiento, ya sea de media o de alta presión, ya que la temperatura que se maneja en el fondo de la torre (111°C) es menor que la temperatura del vapor de media presión (270°C a 20 kg/cm² man.). Con esto se evitaría utilizar una corriente con un alto contenido de energía como son los gases producto de la combustión para producir el cambio relativamente pequeño que se requiere en el rehervidor de la columna de separación. O bien, si se decide utilizar el horno, se pueden utilizar los gases de salida para generar vapor en una caldera en lugar de enviarlos a desfogue, y así reducir las pérdidas de exergia por efluentes.

Figura 4.7.- Porcentaje del total del potencial de mejoramiento en cada equipo de la Columna Desisobutanizadora. Condiciones ambientales de Minatitlán.

Aunque las pérdidas de exergia por irreversibilidades en la reacción de combustión son altas, su potencial de mejoramiento es de 11.2% del total del sistema, debido a su alta efectividad. En este caso, podría resultar más eficiente utilizar como combustible un gas con un menor contenido de hidrógeno ya que la exergia química estándar de éste y del

agua vapor que se produce en la reacción es inferior que la exergia química estándar de hidrocarburos y de los otros productos de la combustión (CO₂ y SO₂). El utilizar un combustible con menor contenido de hidrógeno provoca que disminuya la cantidad de agua vapor en los gases producto de la combustión, aumentando así la exergia química o trabajo útil de los gases y por consiguiente disminuyendo la diferencia entre la exergia del gas combustible y la de los gases producto, dando como resultado que las irreversibilidades sean menores. Lo anterior podría aumentar la efectividad, si es que la exergia neta producida por el incremento de exergia física se mantuviera igual, ya que la exergia neta suministrada disminuiría al ser igual a la disminución de exergia química del proceso.

En el caso de la transferencia de masa en la columna de separación, su potencial de mejoramiento (12.2% del total) representa prácticamente las pérdidas de exergia por irreversibilidades en este equipo, ya que no hay efluentes y la efectividad es muy baja, por lo que para reducir el aumento de entropía sería conveniente no mezclar el efluente del reactor de isomerización con la corriente de la que ya ha sido previamente separada.

El potencial de mejoramiento en el condensador de la columna corresponde al 6.2% del total del sistema. Para reducir las pérdidas totales de exergia en el condensador, es recomendable realizar un análisis de integración térmica con otras corrientes del proceso que por su nivel de temperatura pudieran absorber parte del calor que cede el producto de domo en el condensador. Aun cuando lo anterior requiere de un estudio de factibilidad técnico-económica, a simple vista, la propuesta reduciría las pérdidas de exergia por efluentes, las cuales son el 33.6% de las pérdidas totales de exergia en el equipo.

Cuando se considera un aereoenfriador como condensador de la Columna Desisobutanizadora, en lugar de un cambiador de calor que utiliza agua como medio de enfriamiento, la efectividad en el condensador aumenta de 0.34 a 0.41 (ver Apéndice D.4, Tabla D.15), debido a que la exergia neta producida aumenta por ser igual al flujo

Service of the confidence of the confidence of

de exergia del aire caliente de salida del aereoenfriador, ya que la exergia del aire de entrada es cero. Sin embargo, dicha exergia neta producida es también la exergia que se pierde en la corriente de aire caliente arrojada al ambiente, la cual es mayor en el caso de un aereoenfriador que cuando se utiliza agua para la condensación; por lo que un aereoenfriador no sería un sustituto total adecuado de un condensador enfriado con agua, además de que por el bajo coeficiente de transferencia de calor del aire se requeriría de un enorme flujo de aire y por consiguiente de un aereoenfriador muy grande y costoso.

Al realizar el análisis de exergia del sistema de manera global cuando se utiliza un condensador que utiliza agua de enfriamiento, sin considerar la válvula V-2 y el aereoenfriador EC-1 (ver apéndice D.4, Tabla 16), la efectividad del proceso resulta de 0.016, el cual es muy bajo, y el potencial de mejoramiento de aproximadamente 140 MkJ/h. Para este mismo análisis, pero considerando que la condensación del producto de domo se realiza en un aereoenfriador, la efectividad se reduce a 0.005, mientras que el potencial de mejoramiento aumenta a 387.5 MkJ/h (apéndice D.4, Tabla 17), lo cual se debe al aumento considerable en las pérdidas de exergia por irreversibilidades.

En este punto se puede decir que si se analiza el equipo como un solo bloque y al sistema de manera global, pueden surgir incongruencias. Esto es, si consideramos la condensación como un solo bloque, resulta que el aereoenfriador tiene un mejor desempeño que si se utiliza agua en la condensación. Sin embargo, cuando se realiza el análisis global del sistema, se obtienen mejores resultados al utilizar agua de enfriamiento.

4.3.4.- Efecto de las condiciones ambientales en el análisis exérgico de los equipos y del proceso bajo estudio.

En las Figuras 4.8, 4.9, 4.10 y 4.11 se muestra la variación en el valor de pérdidas de exergia por irreversibilidades y por efluentes, de efectividad y de potencial de mejoramiento, con respecto a su valor a las condiciones del caso base (Minatitlán),

cuando se consideran las condiciones ambientales de las ciudades de Jericó, Cusco, y Québec, para cada uno de los equipos que integran el sistema bajo estudio.

Figura 4.8.- Efecto de la variación de las condiciones del medio de referencia en las pérdidas de exergia por irreversibilidades en cada equipo y en el total del proceso.

Figura 4.9.- Efecto de la variación de las condiciones del ambiente en las pérdidas de exergia por efluentes en cada equipo y en el total del proceso.

Figura 4.10.- Efecto de la variación de las condiciones del medio de referencia en la efectividad de cada equipo de la columna

Desisobutanizadora.

BELLEVILLE TO THE SECOND STATE OF THE SECOND STATE OF

Figura 4.11.- Efecto de la variación de las condiciones ambientales en el potencial de mejoramiento de cada equipo y del total del proceso.

Como se señaló en el primer capítulo del presente trabajo, las pérdidas de exergia por irreversibilidades (Ecuación 1-17) son directamente proporcionales a la temperatura del medio y no dependen de otra condición. Esto se puede observar en la Figura 4.8, donde la desviación porcentual de las pérdidas de exergia por irreversibilidades con respecto a sus valores a las condiciones del medio normales es igual a la desviación por temperatura.

Sin embargo, lo anterior no sucede en el caso de los procesos de enfriamiento con agua y con aire, ya que las condiciones de operación de estas corrientes cambian al variar el medio, debido a que dependen directamente de la temperatura ambiente, presión atmosférica y humedad relativa del aire (agua de enfriamiento). De hecho, estos procesos son los que sufren un mayor cambio en sus parámetros exérgicos al cambiar las condiciones del medio. Por ejemplo, en Cusco, en donde la temperatura ambiental es 1.3% menor que en Minatitlán, las pérdidas de exergia por irreversibilidades en el condensador que utiliza agua como medio de enfriamiento aumentan 100% con respecto a su valor a condiciones normales. Por otra parte, en el caso del aereoenfriador, al suponer las condiciones del medio que prevalecen en Jericó (temperatura del medio 2.7% mayor que en Minatitlán), las irreversibilidades disminuyen 25% con respecto a las que se obtienen en este equipo a las condiciones de Minatitlán.

Cabe hacer notar que el condensador de la columna de separación y el aereoenfriador son los únicos dos equipos en los que, al aumentar la temperatura del medio, las pérdidas de exergia por irreversibilidades y el potencial de mejoramiento se reducen con respecto a sus valores a la temperatura ambiental normal.

Otro proceso cuyos valores de pérdidas de exergia por efluentes y efectividad varían de manera importante con las condiciones del medio es el calentamiento en el horno, que al igual que en el caso de la condensación con agua y del enfriamiento con aire, está en contacto con el ambiente por medio de los efluentes. Por ejemplo, cuando se consideran las condiciones de Québec, las pérdidas de exergia por efluentes y la efectividad en el calentamiento con los gases producto de la combustión aumentan

15.4% y 46.8%, respectivamente, con respecto a sus valores a las condiciones de Minatitlán.

La efectividad y el potencial de mejoramiento del calentamiento con vapor también cambian, aunque en menor medida que en los casos anteriores, de manera apreciable al variar las condiciones ambientales. En este caso al igual que en el de la condensación con agua está involucrada el agua líquida, sustancia cuya exergia cambia considerablemente al variar las condiciones del medio.

Como se mencionó en secciones anteriores, al variar las condiciones del medio de referencia, el cambio de exergia de la mayoría de las corrientes involucradas en la columna Desisobutanizadora está controlado por el cambio en el valor de su exergia química, excepto en los casos de las corrientes correspondientes a los gases producto de la combustión G1 y G2, al vapor de calentamiento LP1 y a las diferentes corrientes de aire, cuyos valores de exergia dependen principalmente de su exergia física. Ahora bien, la condición ambiental que tiene mayor efecto sobre el valor de exergia química es la temperatura, si es que la humedad relativa del aire no es muy baja, por lo que el siguiente análisis acerca del efecto de las condiciones ambientales en el valor de los parámetros exérgicos de cada tipo de equipo o proceso está centrado en el cambio de la temperatura ambiental, no obstante que serán comentados los casos en donde sea otra la condición que influya de manera importante en el valor de dichos parámetros.

Válvulas y bombas:

En relación con las válvulas se observa que al disminuir la temperatura (Cusco y Québec) y al aumentar la exergia de la corriente de proceso de salida más que lo que aumenta la exergia de la corriente de entrada a la válvula (ver Tabla 4.16), disminuyen las irreversibilidades así como el potencial de mejoramiento ya que en el caso de las válvulas la efectividad es cero y no hay pérdidas de exergia por efluentes. En el caso de las bombas ocurre lo mismo, es decir, al disminuir la temperatura del medio se reducen las pérdidas de exergia por irreversibilidades al disminuir la diferencia de exergia entre

医电流环境 化二氢磺基甲基甲基 医乳肿性的 医皮肤 医外皮性 医原性性

las corrientes de proceso. Además, al aumentar la exergia de las corrientes se incrementa también la exergia neta producida y, como la exergia suministrada (potencia) no se modifica, la efectividad en este tipo de operación aumenta, disminuyendo así el potencial de mejoramiento.

Por lo tanto, la operación de las válvulas y bombas será más eficiente en lugares más fríos; como es el caso de Québec; en donde las irreversibilidades y el potencial de mejoramiento en la bomba de reflujo del producto de domo (GA-1) disminuyen hasta 14% y 26%, respectivamente, y la efectividad aumenta 3.2%, con respecto a sus valores a las condiciones ambientales normales.

Enfriamiento con agua:

Cuando se consideran las condiciones ambientales de Jericó, las pérdidas de exergía por irreversibilidades en el condensador disminuyen casi 10% con respecto a su valor a las condiciones de Minatitlán, mientras que en Cusco estas pérdidas aumentan 100%. Esto se debe a que en el caso de Jericó el aumento en el valor de Ex_{tte} es menor que el aumento en el valor de Ex_{tte} provocando que las irreversibilidades disminuyan, mientras que en Cusco el aumento en el valor de Ex_{tte} es mayor que el aumento en el valor de Ex_{tts} , dando como resultado mayores pérdidas de exergía por irreversibilidades. Conviene señalar que en ambos casos tanto la exergia total de entrada como la exergia total de salida aumentan, ya que para cualquier cambio que se presente en las condiciones ambientales con respecto a las condiciones normales, la exergia del agua líquida aumenta al incrementarse su exergia química, y este incremento es mucho mayor que el cambio de exergia de otras corrientes (ver Tabla 4.16).

Ahora bien, en el caso de Jericó, el que el aumento en el valor de Ex_{tte} sea menor que el aumento en el valor de Ex_{tts} se debe a que la disminución en el valor de exergia de la corriente 5 de entrada al condensador (0.03%) es mayor que la disminución de exergia de la corriente 6 de salida del condensador (0.01%), con respecto a las condiciones de Minatitlán. Mientras que en Cusco, el aumento en la exergia de la corriente 5 de entrada

al condensador (0.295%) es ligeramente mayor que el aumento en la exergia de la corriente 6 de salida del equipo (0.287%), con respecto a sus valores a las condiciones del caso base; lo que provoca que el incremento en el valor de Ex_{tte} sea mayor que el aumento en el valor de Ex_{tte} .

Al modificarse las condiciones del medio, el incremento en el valor de exergia de la corriente de agua de enfriamiento de entrada al condensador siempre es mayor que el aumento que se presenta en la exergia de la corriente de agua de salida, por lo que la diferencia de exergia entre la corriente de agua a la salida y a la entrada al condensador, que equivale a la exergia neta producida y a las pérdidas de exergia por efluentes, siempre es menor que cuando se supone la temperatura ambiente de Minatitlán (25°C).

Por otro lado, al aumentar la temperatura ambiente (Jericó), la exergia neta suministrada disminuye, ya que la exergia de las corrientes de proceso disminuye con la temperatura, pero como la disminución del valor de Ex_{ntp} es mucho mayor que lo que se reduce la Ex_{nts} , la efectividad del condensador baja con respecto al caso base. Cuando la temperatura del medio disminuye (Cusco), el valor de Ex_{nts} aumenta al incrementarse la exergia de las corrientes de proceso y como la Ex_{ntp} disminuye independientemente del cambio de T_o , la efectividad del condensador disminuye también en Cusco.

Aun cuando la efectividad del condensador enfriado con agua disminuye en Jericó, el potencial de mejoramiento se reduce con respecto al caso base; lo cual se debe a que también disminuyen las pérdidas de exergia por irreversibilidades y por efluentes. En Cusco, por el contrario, el valor de *Pot* aumenta debido a que el valor de *Irr* se incrementa mucho y a que la efectividad se reduce, a pesar de que las pérdidas por efluentes disminuyen, en comparación con sus valores a las condiciones de Minatitlán.

Por lo tanto, desde el punto de vista de uso eficiente de la energía, la condensación de una corriente mediante agua de enfriamiento conviene llevarla a cabo en un lugar caliente y con humedad relativa alta como es el caso de Jericó, ya que la temperatura

del agua de enfriamiento de entrada al condensador es más cercana a la temperatura del medio, provocando con esto que las pérdidas de exergia por efluentes e irreversibilidades sean menores. Cabe recordar que aproximadamente 34% de las pérdidas totales de exergia en el condensador son debidas al efluente. Sin embargo, al ser menor el acercamiento de temperaturas entre la corriente de proceso y el agua de enfriamiento, el área de intercambio de calor crece mucho, incrementándose la inversión del equipo.

人名英格兰姓氏 电电流控制 医电影电影电影 电影 经基础的证据 人名英格兰人姓氏克克特的变体

Cuando se consideran las condiciones del medio de Jericó, las pérdidas de exergia por efluentes en el condensador disminuyen 77% con respecto a su valor a las condiciones de Minatitlán, y aunque su efectividad se reduce 66%, el potencial de mejoramiento en este equipo disminuye casi 22% con respecto a su valor a las condiciones normales. Con relación al área de intercambio de calor, ésta se incrementa de 1,740m², bajo las condiciones ambientales de Minatitlán, a 2,794 m² en Jericó, 61% más de área, considerando en ambos casos la misma carga de calor y el mismo flujo de agua.

化硫酸钠 计对象结构的 医睫孔畸胎 化重新管理 医肾上腺 计电路通知电路 电压压电路

·通报、1、1997年的1997年,1997年,1997年,1997年,1997年,1997年的1997年,1997年,1997年

• Enfriamiento con aire:

Al aumentar la temperatura del medio disminuye la exergia de todas las corrientes involucradas en el aereoenfriador, por lo que disminuyen los valores de exergia total de entrada y de salida; pero como la disminución en el valor de Ex_{tte} es mayor que la reducción en el valor de Ex_{tts} , la diferencia entre estas dos cantidades es menor con respecto a su valor a la temperatura ambiente normal y por lo tanto resultan menores las pérdidas de exergia por irreversibilidades. En los casos de Cusco y Québec, en donde la temperatura ambiente es menor que la temperatura normal, se incrementan los valores de Ex_{tte} y Ex_{tts} al aumentar la exergia de las corrientes con respecto a sus valores a las condiciones de Minatitlán, y como dicho incremento es mayor en la exergia total de entrada que en la exergia total de salida, las irreversibilidades aumentan con respecto al caso base.

Debido a que en el caso del enfriamiento con aire las pérdidas de exergia por efluentes y la exergia neta producida corresponden a la exergia del aire de salida, cuando se da un aumento en la temperatura del medio y por consiguiente se reduce la exergia del aire de salida por disminuir su exergia física, se reducen también los valores de Efl y Ex_{ntp} . Por otro lado, al mantenerse prácticamente constante el valor de potencia necesaria para el funcionamiento del aereoenfriador y disminuir la exergia de las corrientes de proceso al aumentar la temperatura, disminuye el valor de exergia neta suministrada. Sin embargo, la disminución en el valor de Ex_{nts} es mayor que la reducción en el valor de Ex_{ntp} , por lo que la efectividad en este equipo aumenta al aumentar la temperatura del medio; y como los valores de Irr y Efl disminuyen, el potencial de mejoramiento también disminuye.

Al igual que en el caso de la condensación con agua de enfriamiento, la operación de un aereoenfriador será más eficiente energéticamente entre mayor es la temperatura del medio. Por ejemplo, en el caso de Jericó las pérdidas de exergia por irreversibilidades y efluentes en el aereoenfriador se reducen 25% y 2.5%, respectivamente, con respecto a sus valores cuando se considera como medio de referencia Minatitlán, lo que provoca que aumente la efectividad en este equipo en 20% y disminuya el potencial de mejoramiento en 21%. Sin embargo, al igual que en el caso del condensador, el tamaño del equipo puede aumentar considerablemente entre menor es el acercamiento de temperaturas entre la corriente de proceso y el aire.

En la Figura 4.12 se muestra la variación de los parámetros exérgicos del condensador de la columna Desisobutanizadora al cambiar las condiciones ambientales, cuando la condensación del producto de domo se realiza en un aereoenfriador en lugar de en un cambiador de calor que utiliza agua como medio de enfriamiento.

Figura 4.12.- Efecto de las condiciones ambientales en el análisis de exergia del condensador de la columna Desisobutanizadora cuando se utiliza un aereoenfriador.

Al igual que en el aereoenfriador EC-1 que enfría la extracción lateral de la columna, si la condensación se realiza con aire, mientras mayor es la temperatura del medio menores son las pérdidas de exergia, mayor la efectividad del proceso y menor el potencial de mejoramiento.

Al comparar el cambio en los parámetros exérgicos cuando aumenta la temperatura del medio, entre utilizar un condensador con agua y un aereoenfriador, se observa que la disminución en pérdidas por irreversibilidades y en el potencial de mejoramiento es mayor si se utiliza un aereoenfriador. Por otro lado, si se utiliza un aereoenfriador, al incrementarse la temperatura del medio, la efectividad aumenta en lugar de disminuir como ocurre en el caso de una condensación con agua. Lo anterior se debe a que como en un aereoenfriador el valor de Ex_{ntp} es igual a la exergia de la corriente de aire de salida y está disminuye poco con la temperatura en comparación con la disminución en el valor de Ex_{nts} , la efectividad aumenta; mientras que la Ex_{ntp} en el caso de la condensación con agua está dada por la diferencia entre la exergia del agua de salida y

医牙壳细胞的 有证的支持 经特别

de entrada, y como la exergia del agua cambia considerablemente con la temperatura, también el valor de Ex_{mp} , cuya disminución es mayor que la reducción en Ex_{mts} al aumentar la temperatura, reduciéndose así la efectividad del proceso.

• Calentamiento con vapor:

Cuando la temperatura del medio se reduce, aumenta la exergia tanto de las corrientes de proceso y de vapor a la entrada como de las corrientes a la salida del calentador que utiliza vapor, con respecto a sus valores cuando se considera la temperatura normal de 25°C. La exergia del agua vapor de salida aumenta considerablemente con la disminución de la temperatura ambiente, debido a que su valor de exergia química aumenta significativamente, lo que provoca que el aumento en la exergia total de salida sea mucho mayor que el incremento de la exergia total de entrada, por lo que la diferencia entre estas dos cantidades, esto es, las irreversibilidades, se reducen con respecto a su valor a las condiciones del medio normales.

Al aumentar la exergia de todas las corrientes involucradas en el calentamiento con vapor cuando la temperatura disminuye, la exergia neta producida y suministrada también aumentan; sin embargo, debido a que el incremento del valor de Ex_{nip} es mayor que el del valor de Ex_{nis} , la efectividad del equipo aumenta y, como las pérdidas por irreversibilidades disminuyen y no hay pérdidas por efluentes, el potencial de mejoramiento de este equipo se reduce.

国民,他的特别的最后,我们的现在分词,只要是一点的时候,我们就是这种的时候的一定,这个现在的转数,如何说的一点转 多麻麻

ing the contract of the contra

Cuando se consideran las condiciones ambientales de Québec, las pérdidas por irreversibilidades disminuyen casi 14%, la efectividad aumenta 34% y el potencial de mejoramiento se reduce 44% en el calentador con vapor, con respecto a los valores obtenidos cuando se suponen las condiciones del caso base. Por consiguiente, el calentamiento con vapor es más eficiente entre menor es la temperatura del medio de referencia.

• Calentamiento en un horno:

Al disminuir la temperatura del medio de referencia y aumentar la exergia de las corrientes de proceso y de los gases producto de la combustión, se incrementa la exergia total a la entrada y a la salida del horno y; como la exergia de los gases de salida del horno aumenta de manera apreciable al reducirse la temperatura ambiente, el aumento del valor de Ex_{tts} es mayor que el incremento de Ex_{tte} , por lo que las irreversibilidades disminuyen.

En el caso del calentamiento en el horno las pérdidas de exergia por efluentes son iguales a la exergia de los gases arrojados al ambiente, y como la exergia de esta corriente aumenta al disminuir la temperatura, el valor de Efl aumenta. Por otro lado, como al disminuir la temperatura ambiental aumenta la exergia de todas las corrientes involucradas en este equipo, la exergia neta producida y suministrada aumenta, pero como el valor de Ex_{nip} se incrementa más que el valor de Ex_{nis} , la efectividad se eleva.

No obstante que, al considerar tanto las condiciones del medio de Cusco y de Québec, las pérdidas por irreversibilidades disminuyen, las pérdidas por efluentes aumentan y la efectividad se incrementa, con respecto al caso base, en el caso de Cusco el potencial de mejoramiento del horno aumenta, mientras que en Québec disminuye. Esto se debe a que en Cusco el incremento de las pérdidas por efluentes (10%) es mucho mayor que la reducción en pérdidas por irreversibilidades (1.5%), con respecto a las condiciones ambientales de Minatitlán, provocando que el valor de *Pot* aumente. En contraste, en el caso de Québec, el incremento del valor de *Efl* (15.4%) es cercano al decremento en las pérdidas por irreversibilidades (14.8%), por lo que, aunado a que la efectividad del equipo se incrementa bastante en el caso de Québec (47%), el potencial de mejoramiento en el horno se reduce, con respecto al caso base.

El que el incremento en el valor de *Efl* sea mayor que la reducción en el valor de *Irr* en el caso de Cusco, con respecto a las condiciones ambientales de Minatitlán, se debe a que la exergia de los gases de salida del horno (principalmente exergia física), además

de aumentar por disminuir la temperatura del medio, se incrementa aun más por ser menor la presión atmosférica en Cusco (0.67atm) en comparación con la presión en Minatitlán (1atm); lo que no ocurre en Québec, en donde la presión atmosférica es la misma que en Minatitlán.

Aun cuando a mayores temperaturas del medio, las pérdidas de exergia por efluentes se reducen en el calentamiento en un horno, la operación de este proceso será más eficiente entre menor sea la temperatura de referencia y mientras mayor sea la presión atmosférica, esto es, mientras más cerca del nivel del mar se encuentre este proceso. Al disminuir la temperatura del medio hasta -16°C con respecto a la temperatura ambiental normal de 25°C, el potencial de mejoramiento se reduce casi 15%.

Reacción de combustión:

Entre menor es la temperatura del medio mayor es la exergia de la corriente que contiene al gas combustible y al aire (CA) y de la corriente de gases producto de la combustión (G1), y como el cambio es mayor en la exergia de los gases que en la exergia de la corriente que entra al quemador, las irreversibilidades del sistema disminuyen.

La exergia neta producida en una reacción química está dada por la diferencia entre la exergia física de los productos menos la de los reactivos. Al disminuir la temperatura del medio, permaneciendo la presión atmosférica constante e igual a la normal, la exergia física de los gases aumenta mientras que la exergia de la mezcla reactiva disminuye lo que da como resultado que el valor de Ex_{ntp} aumente. Sin embargo, cuando además de disminuir la temperatura ambiente, la presión atmosférica se reduce, la exergia física de la corriente de entrada al reactor aumenta, por lo que el aumento en el valor de exergia neta producida resulta insignificante.

Debido a que la diferencia entre la exergia química de la mezcla de gas combustible y aire y la exergia química de los gases producto (exergia neta suministrada), cambia muy poco al modificarse las condiciones del medio, la efectividad de la reacción aumenta cuando se incrementa la Ex_{mp} por el decremento en la temperatura del medio. Al disminuir las pérdidas por irreversibilidades y aumentar la efectividad de la reacción, el potencial de mejoramiento disminuye. Si además de disminuir la temperatura, la presión atmosférica se reduce, la disminución en el valor de Pot es muy pequeño, por lo que la reacción de combustión tendrá un mejor desempeño en lugares más fríos pero en donde la presión atmosférica se mantenga cercana de la normal.

Cuando se consideran las condiciones ambientales de Québec, las pérdidas irreversibles en la reacción de combustión disminuyen casi 14%, su efectividad aumenta 5.5% y su potencial de mejoramiento se reduce hasta un 25%, con respecto a los valores obtenidos a las condiciones ambientales de Minatitlán.

• Transferencia de masa en la columna:

Si se considera en el análisis sólo la transferencia de masa en la columna de separación sin incluir el condensador y el rehervidor, es decir, tan sólo las corrientes de entrada y salida del bote, las cuales están compuestas por hidrocarburos, se observa que al disminuir la temperatura del medio e incrementarse la exergia total de las corrientes de salida más que lo que lo hacen las de entrada, las irreversibilidades en este proceso disminuyen.

Sin embargo, al disminuir la temperatura ambiente, la efectividad de la separación también se reduce ya que la exergia neta producida (la cual es igual a la exergia química de salida menos la exergia química de entrada) se reduce, debido a que el incremento de exergia química a la entrada es mayor que el incremento de exergia química a la salida. Como la efectividad de este proceso varía muy poco al cambiar las condiciones del medio y dado que al disminuir la temperatura ambiente las pérdidas de exergia disminuyen, el potencial de mejoramiento se reduce.

Por ejemplo en el caso de Québec, las pérdidas de exergia por irreversibilidades en la transferencia de masa disminuyen casi 14%, mientras que el potencial de mejoramiento se reduce 13.5%, aun cuando su valor de efectividad disminuye casi 2%, con respecto a los valores obtenidos en Minatitlán. Por lo tanto, es conveniente llevar a cabo la separación de una mezcla en lugares fríos, si es que se desea reducir irreversibilidades, pero si el objetivo es mejorar su efectividad, se deberá realizar su operación en lugares con temperatura ambiente elevada.

Análisis global del proceso:

En la Figura 4.13 se muestra el efecto de las condiciones ambientales sobre el análisis de exergia global del sistema bajo estudio, esto es, considerando un solo bloque y que el condensador utiliza agua como medio de enfriamiento. En este análisis no se incluye al aereoenfriador EC-1 y a la válvula V-2.

Figura 4.13.- Efecto de las condiciones ambientales en el análisis global del sistema (Condensación del producto de domo con agua de enfriamiento).

No obstante que las pérdidas de exergia por efluentes disminuyen al considerar una temperatura del medio diferente a la normal (11% en el caso de Jericó y 7% en el caso de Cusco), el potencial de mejoramiento del sistema global aumenta, debido a la considerable disminución de las pérdidas por efluentes en el condensador de la columna de separación (ver Figura 4.9),. Aun en el caso de Cusco en donde la efectividad del proceso aumenta (1.5%), el potencial de mejoramiento se incrementa, esto por el aumento de las pérdidas totales de exergia. Por lo que, sobre la base de los resultados obtenidos, la columna Desisobutanizadora tendrá un mejor funcionamiento si las condiciones del medio son cercanas a las normales.

Al analizar el efecto de las condiciones ambientales sobre el valor de los parámetros exérgicos del sistema, pero considerando que se utiliza un aereoenfriador como condensador de la columna, se observa que mientras menor es la temperatura mejor es el funcionamiento del sistema desde el punto de vista de uso de energía (ver Figura 4.14).

Figura 4.14.- Efecto de las condiciones ambientales en el análisis global del sistema (Condensación del producto de domo en un aereoenfriador).

En el caso de Québec, por ejemplo, la efectividad aumenta 60% y el potencial de mejoramiento disminuye 2%, con respecto a sus valores a las condiciones ambientales de Minatitlán. Cabe señalar que lo anterior no significa que el proceso de condensación con aire sea más eficiente que con agua de enfriamiento, ya que la efectividad a condiciones normales del sistema global que utiliza un condensador enfriado con agua es igual a 0.016, mientras que si se considera un aereoenfriador, la efectividad se reduce a 0.005; por lo que un aumento del valor de efectividad de 60% al disminuir la temperatura, cuando se considera que la condensación se lleva a cabo en un aereoenfriador, significa que la efectividad crece de 0.005 a 0.009, un valor de efectividad menor aún que el que se obtiene si se considera agua como medio de enfriamiento.

医铁线结合 医大大性病 化对抗性 化二氯化二甲基酚 医皮肤 化二氯化甲二氯化二甲基乙二甲基乙二甲基乙二甲基乙二甲基酚 医二氯甲基酚 医二氯甲基酚

to describe the control of the control of

Contracting the Contracting Co

CONCLUSIONES

El objetivo propuesto al desarrollar la tesis se satisfizo ampliamente, entre otras cosas, al desarrollar un programa para la determinación de la exergia química estándar de cualquier compuesto químico a partir de su reacción de formación y de las propiedades del medio ambiente de referencia, esto es, temperatura ambiente, presión atmosférica, humedad relativa del aire, concentración de CO₂ en el aire y salinidad del agua de mar, lo cual permitió estudiar el efecto de las condiciones ambientales en el valor de exergia química estándar de elementos y compuestos. Es importante mencionar que con el programa EXQCOMP se reproducen adecuadamente los valores publicados en la literatura de exergia química estándar a condiciones normales de los elementos de la Tabla Periódica así como de los compuestos analizados; y que dicho programa agiliza mucho los cálculos cuando se desea evaluar un sistema a condiciones ambientales diferentes a las normales.

La condición ambiental que tiene mayor efecto sobre el valor de exergia química estándar de un elemento o un compuesto es la temperatura, ya que de ella depende no sólo el valor de cambio de energía libre de Gibbs de la reacción de referencia, sino también la concentración de la especie de referencia en el medio. Dicho efecto es mayor si la sustancia está presente tal cual en el medio ambiente, como por ejemplo, el nitrógeno, el oxígeno, el agua, etc.

El efecto en el valor de exergia química estándar de un elemento por el cambio en la presión atmosférica, en la humedad relativa del aire y en la salinidad del agua de mar es pequeño; mientras que el efecto por el aumento en la concentración de CO₂ en el aire es prácticamente nulo.

Se recomienda seleccionar especies de la corteza terrestre como referencia en el cálculo de exergia química estándar de los elementos plata, oro, bario, calcio, cadmio, cobalto, cobre, mercurio, magnesio, manganeso, níquel, plomo, estroncio y zinc; ya que

si se utiliza una especie de la hidrosfera se obtiene un comportamiento erróneo en la variación de la exergia química estándar de dichos elementos al cambiar la salinidad del agua de mar.

El agua es la sustancia cuya exergia química se modifica más al cambiar las condiciones ambientales, debido a que su concentración en el medio es la que más se altera al variar alguna de las propiedades del ambiente. El cambio en el valor de exergia química estándar del agua puede ser en el caso del vapor mayor de 50%, mientras que para el líquido mayor de 100%.

En el caso de los hidrocarburos, conviene mencionar que, a presión atmosférica y humedad relativa constantes, entre menor es la temperatura del medio mayor es la exergia química estándar, lo cual se debe a que el cambio en el valor de exergia química de este tipo de compuestos es controlado por la variación en el valor de Ex_q° del hidrógeno, elemento que se encuentra en mayor proporción en la molécula de un hidrocarburo. La exergia química estándar del hidrógeno y del agua vapor —especie de referencia del hidrógeno— aumentan al disminuir la temperatura por la reducción en la humedad absoluta del aire, si se considera la humedad relativa constante. Sin embargo, si se mantiene constante la humedad absoluta del aire al disminuir la temperatura, la exergia química estándar de los hidrocarburos se reduce por el aumento en la humedad relativa del aire, debido a la reducción de la presión de vapor del agua al disminuir la temperatura. Con lo anterior se concluye que al variar la temperatura, no es posible considerar tanto a la humedad relativa como a la humedad absoluta del aire constantes, ya que alguna de las dos se altera.

Ahora bien, si se mantienen constantes la temperatura ambiente y la presión atmosférica, al disminuir la humedad relativa del aire y por consiguiente la humedad absoluta ya que la presión de vapor del agua se mantiene constante, mayor es la exergia química estándar de un hidrocarburo. Por otro lado, si la presión atmosférica disminuye, a temperatura y humedad relativa constantes, la exergia química estándar de un hidrocarburo disminuye, ya que aumenta la fracción molar del agua en el aire al

an was assistance in the same of the same of the same

reducirse la concentración del resto de las especies presentes en el aire. Entre más larga es la cadena de un hidrocarburo, un cambio en las condiciones ambientales tiene un menor efecto sobre su valor de exergia química.

Al realizar el análisis de exergia en cada uno de los equipos que integran la Columna Desisobutanizadora, se observa que los procesos que sufren un mayor cambio en sus parámetros exérgicos al variar las condiciones del medio son el enfriamiento con agua o con aire y el calentamiento en un horno, procesos que involucran corrientes cuyas condiciones de operación dependen directamente de las condiciones ambientales o bien están en contacto con el ambiente mediante los efluentes.

Aun cuando las pérdidas de exergia por irreversibilidades son directamente proporcionales a la temperatura del medio y no dependen de otra condición ambiental, en el caso de los procesos de enfriamiento con agua y aire, la variación porcentual de las pérdidas de exergia por irreversibilidades al cambiar el medio de referencia; no es la misma que la desviación porcentual por el cambio en la temperatura ambiental. Esto se debe a que las condiciones de operación del agua y del aire cambian al variar el medio, por lo que el sistema de enfriamiento ya no es el mismo bajo diferentes condiciones ambientales. Aun más, al incrementarse la temperatura del medio, las pérdidas de exergia por irreversibilidades en estos procesos disminuyen en lugar de aumentar y viceversa.

El que la utilización de la energía sea mejor a ciertas condiciones ambientales que a otras depende del tipo de proceso. En el caso del enfriamiento con agua y aire, entre mayor es la temperatura del medio, menores son las pérdidas de exergia por irreversibilidades y efluentes, sin embargo, al ser menor el acercamiento de temperaturas entre la corriente de proceso y el medio de enfriamiento, la inversión del equipo puede aumentar considerablemente. En el caso del enfriamiento con agua al aumentar la temperatura ambiente tan solo 8°C las pérdidas totales de exergia se reducen en alrededor de 32%, mientras que el área de intercambio de calor aumentaría en 61%.

El calentamiento en el horno, en donde se presentan las mayores pérdidas por irreversibilidades y efluentes de todo el sistema, se lleva a cabo de manera más eficiente entre menor sea la temperatura del medio y mientras el proceso se encuentre más cerca del nivel del mar, a pesar de que se incrementan las pérdidas de exergia por efluentes. Por ejemplo, cuando la temperatura ambiente es de -16°C, la efectividad de la operación de este proceso aumenta 47%, mientras que las pérdidas de exergia en los gases que salen del horno al ambiente aumentan 15%, con respecto a sus valores a condiciones normales.

Al igual que en el caso del calentamiento en el horno, la reacción de combustión tiene un mejor desempeño en los lugares más fríos y más cercanos al nivel del mar analizados. Para las válvulas, bombas y el proceso de calentamiento con vapor, su efectividad aumenta mientras menor es la temperatura del ambiente. En cuanto a la transferencia de masa dentro de la columna de separación, las irreversibilidades se reducen cuando el proceso se lleva a cabo en lugares fríos.

Al analizar el sistema en forma global, se observa que en general se tiene un mejor desempeño si las condiciones del ambiente son cercanas a las normales. Por otro lado, si se considera que la condensación del producto de domo se realiza en un aereoenfriador, mientras menor es la temperatura mejor es el uso de la energía en el sistema, sin embargo, dicho aprovechamiento es menor que si se considera que la condensación se lleva a cabo con agua de enfriamiento.

Se sugiere realizar el estudio que se llevo a cabo en el presente trabajo para evaluar el efecto de las condiciones ambientales en el análisis de exergia de procesos tales como el secado y la desalinización del agua de mar, debido a que la operación de estos sistemas depende considerablemente de la temperatura del medio, de la presión atmosférica y de la humedad del aire.

Conclusiones Página 197

El análisis de exergia es una metodología útil que permite detectar las irreversibilidades en un proceso, determinar la energía útil que se pierde por medio de las corrientes arrojadas al ambiente y encontrar los puntos en donde se puede mejorar el proceso. Se demuestra en el presente trabajo que el método de exergia permite también evaluar bajo cuáles condiciones ambientales se mejora la operación del sistema, desde el punto de vista del uso eficiente de la energía. Sin embargo, la decisión final sobre la localización y el diseño de un proceso depende también de otros factores, como son por ejemplo, el mercado, el costo de inversión del equipo y los costos de operación.

and a second of the control of the c in the control of the second o

lambara d

APÉNDICE A

A continuación se presentan los resultados generados con el programa desarrollado en el presente trabajo de tesis para la determinación de la exergia química estándar de cualquier compuesto químico a partir de la exergia química estándar de los elementos que lo componen (EXQCOMP), al considerar diferentes condiciones del medio ambiente a las que normalmente se suponen en el cálculo de exergia química estándar. es decir, temperatura de 25°C, presión de 1 atm, humedad relativa del aire de 0.7, concentración de dióxido de carbono de 345 ppmv, y salinidad del agua de mar de 35‰.

A.1.- Exergia química estándar de los elementos presentes en la atmósfera a diferentes valores de humedad relativa del aire (condiciones normales de temperatura y presión)

Ejercicio 1: $\phi = 0.1$

Las condiciones del medio especificadas son:

25.0 °C Temperatura: Presión: 1.0000 atm Concentración de CO2: 345.0 ppmv

Humedad relativa: 0.100

Salinidad: 35.183 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA .-

			the state of the s		
		Composición	de la especie	Exq°	
		(fracc	ión mol)	(kJ/gmol)	
Elemento	Especie	. Aire seco	Aire húmedo	Especie	Elemento
Ar(g)	Ar	0.9331E-02	0.9302E-02	11.595	11.595
C (g)	CO2	0.3450E-03	0.3440E-03	19.769	410.268
He (g)	He	0.5001E-05	0.4985E-05	30.264	30.264
Kr(g)	Kr	0.1000E-05	0.9970E-06	34.254	34.254
N2 (g)	N 2	0.7804E+00	0.7780E+00	0.622	0.622
Ne(g)	Ne	0.1800E-04	0.1795E-04	27.089	27.089
02 (g)	02	0.2099E+00	0.2093E+00	3.877	3.877
Xe(g)	Xe	0.9001E-07	0.8973E-07	40.222	40.222
H2 (g)	H2O	0.0000E+00	0.3102E-02	14.317	240.968
D2 (g)	D20	0.0000E+00	0.4822E-06	36.054	268.750

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS .-

Exq° (kJ/gmol) Compuesto 841.410 CH4

militar a la compania ang Pa

and \$100 (\$100) 对于自己的

付款 - 「April Act 100 円 (10 g/2 g/2 min Act 2 g/2 min Act

that are property of a specification

Ejercicio 2: $\phi = 0.3$

Las condiciones del medio especificadas son:

Temperatura: Presión: Concentración de CO2:

25.0 °C 1.0000 atm 345.0 ppmv

Humedad relativa:

0.300

Salinidad:

35.183 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

			de la especie		q°	
,		(fracc	ión mol)	(kJ/	gmol)	100
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento	•
Ar(g)	Ar	0.9331E-02	0.9244E-02	11.610	11.610	
C (g)	CO2	0.3450E-03	0.3418E-03	19.784	410.268	
He (g)	He	0.5001E-05	0.4954E-05	30.280	30.280	r Janak Ja
Kr(g)	Kr	0.1000E-05	0.9908E-06	34.269	34.269	
N2 (g)	N2	0.7804E+00	0.7731E+00	0.638	0.638	14. M. 好人的数 13
Ne(g)	Ne	0.1800E-04	0.1783E-04	27.104	27.104	
02 (g)	02	0.2099E+00	0.2080E+00	3.893	3.893	14.14
Xe(g)	Xe	0.9001E-07	0.8917E-07	40.238	40.238	
H2 (g)	H20	0.0000E+00	0.9306E-02	11.594	238.237	
D2 (q)	D20	0.0000E+00	0.1447E-05	33.331	266.019	

EXERGIA OUIMICA ESTANDAR DE LOS COMPUESTOS OUIMICOS ESPECIFICADOS .-

Compuesto CH4

Exq° (kJ/gmol) 835.948

Ejercicio 3: $\phi = 0.5$

Las condiciones del medio especificadas son:

Temperatura: Presión:

25.0 °C 1.0000 atm 345.0 ppmv

Concentración de CO2: Humedad relativa:

0.500

Salinidad:

35.183 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

		Composición	de la especie	E	xq°
		(frace	ción mol)	(kJ	/gmol)
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento
Ar(g)	Ar	0.9331E-02	0.9186E-02	11.626	11.626
C (g)	CO2	0.3450E-03	0.3397E-03	19.800	410.268
He(g)	He	0.5001E-05	0.4923E-05	30.295	30.295
Kr(g)	Kr	0.1000E-05	0.9846E-06	34.285	34.285
N2 (g)	N2	0.7804E+00	0.7683£+00	0.653	0.653
Ne(g)	Ne	0.1800E-04	0.1772E-04	27.120	27.120
02 (g)	02	0.2099E+00	0.2067E+00	3.908	3.908
Xe(g)	Хe	0.9001E-07	0.8861E-07	40.254	40.254
H2 (g)	H20	0.0000E+00	0.1551E-01	10.327	236.963
D2 (g)	D20	0.0000E+00	0.2411E-05	32.065	264.745

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS.-

Compuesto

Exq° (kJ/gmol)

CH4

833.400

Ejercicio 4: $\phi = 0.9$

Las condiciones del medio especificadas son:

Temperatura: 25.0 °C
Presión: 1.0000 atm
Concentración de CO2: 345.0 ppmv
Humedad relativa: 0.900

Salinidad: 35.183 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

		Composición	de la especie	Exq°	
		(fracc	ión mol)	(kJ/gmol)	
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento
Ar(g)	Ar	0.9331E-02	0.9070E-02	11.657	11.657
C (g)	CO2	0.3450E-03	0.3354E-03	19.831	410.268
He (g)	He	0.5001E-05	0.4861E-05	30.327	30.327
Kr(g)	Kr	0.1000E-05	0.9722E-06	34.316	34.316
N2 (g)	N2	0.7804E+00	0.7586E+00	0.685	0.685
Ne (g)	Ne	0.1800E-04	0.1750E-04	27.151	27.151
02 (g)	02	0.2099E+00	0.2041E+00	3.940	3.940
Xe(g)	Х́е	0.9001E-07	0.8750E-07	40.285	40.285
H2 (g)	H20	0.0000E+00	0.2792E-01	8.870	235.490
D2 (g)	D20	0.0000E+00	0.4340E-05	30.608	263.272

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUÍMICOS ESPECIFICADOS.-

Compuesto Exq* (kJ/gmol) CH4 830.455

A.2.- Exergia química estándar de los elementos contenidos en el aire al considerar los diferentes valores de concentración en ppmv de CO₂ (297.4, 305.2, 311.8, 326.1, 338.3 y 355) registrados entre los años de 1900 y 1990. (condiciones normales de temperatura y presión)

Ejercicio 1: 297.4 ppmv de CO₂ (1900)

Las condiciones del medio especificadas son:

Temperatura: 25.0 °C
Presión: 1.0000 atm
Concentración de CO2: 297.4 ppmv
Humedad relativa: 0.700

Salinidad: 35.183 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA .-

		Composición de la especie		Exq°	
	4.5	(frace	ción mol)	(kJ/	gmol)
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento
Ar(g)	Ar	0.933139E-02	0.912873E-02	11.641348	11.641348
C (g)	CO2	0.297434E-03	0.290975E-03	20.183225	410.636223
He(g)	Нe	0.500074E-05	0.489214E-05	30.310704	30.310704
Kr(g)	Kr	0.100015E-05	0.978428E-06	34.300209	34.300209
N2 (g)	N2	0.780416E+00	0.763467E+00	0.668996	0.668996
Ne (g)	Ne	0.180027E-04	0.176117E-04	27.135501	27.135501

02 (g)	02	0.209931E+00	0.205372E+00	3.923803	3.923803
Xe(g)	Хe	0.900134E-07	0.880585E-07	40.269071	40.269071
H2 (g)	. H2O	0.000000E+00	0.217141E-01	9.493369	236.120670
D2 (g)	D20	0.000000E+00	0.337523E-05	31.230755	263.903359

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS .-

Compuesto Exq° (kJ/gmol) CH4 832.085

Ejercicio 2: 305.2 ppmv de CO₂ (1930)

Las condiciones del medio especificadas son:

Temperatura: 25.0 °C
Presión: 1.0000 atm
Concentración de CO2: 305.2 ppmv
Humedad relativa: 0.700
Salinidad: 35.183 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

		Composición	de la especie	Ex	a°
		(frace	ción mol)	(kJ/e	gmol)
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento
Ar(g)	Ar	0.933131E-02	0.912866E-02	11.641368	11.641368
C(g)	CO2	0.305263E-03	0.298633E-03	20.118824	410.571802
He(g)	He	0.500070E-05	0.489210E-05	30.310723	30.310723
Kr(g)	Kr	0.100014E-05	0.978420E-06	34.300229	34,300229
N2 (g)	N2	0.780410E+00	0.763461E+00	0.669016	0.669016
Ne (g)	Ne	0.180025E-04	0.176116E-04	27.135520	27.135520
02 (g)	02	0.209930E+00	0.205370E+00	3.923822	3.923822
Xe(g)	Хe	0.900127E-07	0.880578E-07	40.269090	40.269090
H2 (g)	H20	0.000000E+00	0.217141E=01	9.493369	236.120661
D2 (g)	D20	0.000000E+00	0.337523E+05	31.230755	263.903350

interest of the state of

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS -

Compuesto Exq° (kJ/gmol)
CH4 832.020

Ejercicio 3: 311.8 ppmv de CO₂ (1950)

Las condiciones del medio especificadas son:

Temperatura: 25.0 °C
Presión: 1.0000 atm
Concentración de CO2: 311.8 ppmv
Humedad relativa: 0.700
Salinidad: 35.183 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

	• .	Composición	de la especie	Ex	q°	
		(frace	ción mol)	(kJ/	gmol)	
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento	
Ar(g)	Ar	0.933125E-02	0.912860E-02	11.641384	11.641384	
C (g)	CO2	0.311872E-03	0.305099E-03	20.065730	410.518693	
He(g)	Нe	0.500067E-05	0.489207E-05	30.310740	30.310740	
Kr(g)	Kr	0.100013E-05	0.978414E-06	34.300245	34.300245	
N2 (g)	N2	0.780405E+00	0.763456E+00	0.669032	0.669032	
Ne(g)	Ne	0.180024E-04	0.176114E-04	27.135537	27.135537	
02 (g)	02	0.209928E+00	0.205369E+00	3.923838	- 3.923838	

Xe(g)	Xe	0.900121E-07	0.880572E-07	40.269107	40.269107
H2 (g)	H20	0.000000E+00	0.217141E-01	9.493369	236.120652
D2 (g)	D20	0.000000E+00	0.337523E-05	31.230755	263.903342

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS .-

Compuesto Exq° (kJ/gmol) CH4 831.967

Ejercicio 4: 326.1 ppmv de CO₂ (1970)

Las condiciones del medio especificadas son:

Temperatura:
Presión:

25.0 °C 1.0000 atm

Concentración de CO2: Humedad relativa:

326.1 ppmv 0.700

Salinidad:

35.183 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA .-

	•	Composición	de la especie	Ex	q°
		(frac	ción mol)	(kJ/gmol)	
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento
Ar(g)	Ar	0.933112E-02	0.912847E-02	11.641420	11.641420
C (g)	CO2	0.326129E-03	0.319046E-03	19.954925	410.407852
He(g)	He	0.500060E-05	0.489200E-05	30.310775	30.310775
Kr(g)	Kr	0.100012E-05	0.978400E-06	34.300280	34.300280
N2 (g)	N2	0.780394E+00	0.763445E+00	0.669067	0.669067
Ne(g)	Ne	0.180022E-04	0.176112E-04	27.135572	27.135572
02 (g)	02	0.209925E+00	0.205366E+00	3.923874	3.923874
Xe(g)	Xe	0.900108E-07	0.880560E-07	40.269142	40.269142
H2(g)	H20	0.000000E+00	0.217141E-01	9.493369	236.120635
D2 (g)	D20	0.000000E+00	0.337523E-05	31.230755	263.903324

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS .-

Compuesto CH4 Exq° (kJ/gmol) 831.856

Ejercicio 5: 338.3 ppmv de CO₂ (1980)

Las condiciones del medio especificadas son:

Temperatura: Presión: 25.0 °C 1.0000 atm 338.3 ppmv

Concentración de CO2: Humedad relativa:

0.700

Salinidad:

35.183 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

		Composición	de la especie	Exq°	
		(frace	ción mol)	(kJ/	gmol)
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento
Ar(g)	Ar	0.933100E-02	0.912836E-02	11.641450	11.641450
C (g)	CO2	0.338296E-03	0.330949E-03	19.864128	410.317024
He(g)	He	0.500054E-05	0.489194E-05	30.310805	30.310805
Kr(g)	Kr	0.100011E-05	0.978388E-06	34.300311	34.300311
N2 (g)	N2	0.780384E+00	0.763436E+00	0.669097	0.669097
Ne(g)	Ne	0.180019E-04	0.176110E-04	27.135602	27.135602
02 (g)	02	0.209923E+00	0.205364E+00	3.923904	3.923904
Xe(g)	Хe	0.900097E-07	0.880549E-07	40.269172	40.269172

dans i

Miner costs (Albert Tephress)

H2(g) H2O 0.000000E+00 0.217141E-01 9.493369 236.120620 D2(g) D2O 0.000000E+00 0.337523E-05 31.230755 263.903309

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS .-

Compuesto Exq° (kJ/gmol) CH4 831.765

Ejercicio 6: 355 ppmv de CO₂ (1990)

Las condiciones del medio especificadas son:

Temperatura: 25.0 °C
Presión: 1.0000 atm
Concentración de CO2: 355.0 ppmv
Humedad relativa: 0.700

Salinidad: 35.183 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

		Composición	Exq°		
		(frace	ción mol)	(kJ/gmol)	
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento
Ar(g)	Ar	0.933085E-02	0.912821E-02	11.641491	11.641491
C(g)	CO2	0.355032E-03	0.347322E-03	19.744435	410.197290
He (g)	He	0.500045E-05	0.489186E-05	30.310847	30.310847
Kr (g)	Kr	0.100009E-05	0.978372E-06	34.300352	34.300352
N2 (g)	N2	0.780371E+00	0.763423E+00	0.669139	0.669139
Ne(g)	Ne	0.180016E-04	0.176107E-04	27.135644	27.135644
02 (q)	02	0.209919E+00	0.205360E+00	3.923945	3.923945
Xe(g)	Хe	0.900082E-07	0.880534E-07	40.269214	40.269214
H2 (g)	н20	0.000000E+00	0.217141E-01	9.493369	236.120599
D2 (g)	D20	0.000000E+00	0.337523E-05	31.230755	263.903288

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS.-

Compuesto Exq° (kJ/gmol) CH4 831.646

A.3.- Exergia química estándar de los elementos contenidos en la hidrosfera al considerar una salinidad de 40‰. (condiciones normales de temperatura y presión)

Las condiciones del medio especificadas son:

Temperatura: 25.0 °C
Presión: 1.0000 atm
Concentración de CO2: 345.0 ppmv
Humedad relativa: 0.700

Salinidad: 40.000 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN EL AGUA DE MAR.-

Fracción masa y molalidad de las especies (S=40.000 por mil):

ESPECIE g/gsw gmol/kgH20 ESPECIE g/gsw gmol/kgH20 AgCl2-0.528E-09 0.307E-08 HAs042-0.594E-08 0.442E-07 As043-H2As04-0.432E-09 0.319E-08 .0.234E-11 0.175E-10

Página 205

AuCl2-	0.170E-10 ·	0.661E-10	B (OH) 3	0.232E-04	0.391E-03
B(OH)4-	0.557E-05	0.736E-04	Ba2+	0.215E-07	0.163E-06
BaSO4	0.406E-08	0.181E-07	BiO+	0.245E-10	0.113E-09
Br-	0.765E-04	0.997E-03	HCO3-	0.134E-03	0.229E-02
CO32-	0.553E-05	0.961E-04	CO2	0.736E-06	0.174E-04
Ca2+	0.426E-03	0.111E-01	CaHCO3+	0.421E-05	0.434E-04
CaCO3	0.854E-05	0.889E-04	CaB (OH) 4+	0.131E-05	0.115E-04
CdC12	0.139E-10	0.790E-10	Cd2+	0.409E-12	0.379E-11
CdCl+	0.873E-11	0.615E-10	CdC13-	0.123E-10	0.588E-10
CdOHC1	0.967E-12	0.611E-11	CdBr+	0.778E-13	0.421E-12
	0.698E-13	0.421E-12	CdSO4	0.843E-13	0.421E-12
CdCO3	0.220E-01	0.421E-12 0.646E+00	Co2+	0.443E-09	0.784E-08
C1-		0.267E-08	Cu2+	0.509E-10	0.784E-08
Cs+	0.341E-09		CuCO3	A.	0.835E-09 0.258E-07
CuOH+	0.341E-09	0.441E-08		0.306E-08	
CuOHCl	0.866E-08	0.778E-07	CuCl+	0.657E-09	0.692E-08
CuCl2	0.246E-09	0.191E-08	CuCl3-	0.136E-09	0.835E-09
CuC142-	0.118E-09	0.596E-09	F-	0.806E-06	0.442E-04
MgF+	0.169E-05	0.407E-04	CaF+	0.983E-07	0.173E-05
HgC142-	.0.128E-09	0.388E-09	HgCl3-	0.209E-10	0.708E-10
HgCl2	0.462E-11	0.177E-10	HgBr2	0.204E-12	0.590E~12
HgClBr	0.197E-11	0.649E-11	HgCl2Br-	0.856E-11	0.254E-10
HgCl3Br2-	0.270E-10	0.726E-10	HgClBr2-	0.112E-11	0.295E-11
HgCl2Br22-	0.147E-11	0.354E-11	HgOHC1	0.287E-12	0.118E-11
103-	0.100E-06	0.597E-06	K+	0.448E-03	0.119E-01
KHCO3	0.581E-07	0.604E-06	KCO3-	0.575E-07	0.604E-06
Li+	0.193E-06	0.290E-04	Mg2+	0.135E-02	0.578E-01
MgHCO3+	0.515E-05	0.629E-04	MgC03	0.509E-05	0.629E-04
MgB (OH) 4+	0.113E-05	0.115E-04	Mn2+	0.455E-09	0.862E-08
MoO42-	0.190E-07	0.123E-06	Na+	0.120E-01	0.541E+00
NaHCO3	0.224E-05	0.277E-04	NaCO3-	0.221E-05	0.277E-04
Ni2+	0.750E-08	0.133E-06	HPO42-	0.512E-07	0.555E-06
H2PO4-	0.150E-08	0.162E-07	CaH2PO4+	0.398E-09	0.303E-08
MgH2PO4+	0.353E-09	0.303E-08	CaHPO4	0.150E-06	0.115E-05
MgHPO4	0.133E-06	0.115E-05	PO43-	0.706E-10	0.774E-09
CaPO4-	0.314E-07	0.242E-06	MqPO4-	0.277E-07	0.242E-06
PbC12	0.130E-10	0.484E-10	Pb2+	0.102E-11	0.514E-11
PbOH+	0.251E-11	0.117E-10	PbCl+	0.503E-11	0.216E-10
PbHCO3+	0.412E-12	0.160E-11	PbC03	0.117E-12	0.457E-12
	0.166E-12	0.572E-12	PbCl3-	0.317E-12	0.105E-10
PbSO4					
PbC142-	0.138E-11	0.412E-11	PboHC1	0.251E-11	0.101E-10
PbBr+	0.473E-13	0.171E-12	Rb+	0.136E-06	0.166E-05
SO42-	0.130E-02	0.141E-01	CaSO4	0.126E-03	0.963E-03
KSO4-	0.189E-04	0.146E-03	MgSO4	0.572E-03	0.495E-02
NaSO4-	0.151E-02	0.132E-01	Se042-	0.185E-09	0.135E-08
Sr2+	0.833E-05	0.990E-04	SrSO4	0.194E-05	0.110E-04
UO2 (CO3) 34-	0.709E-08	0.164E-07		0.153E-09	0.644E-09
2n2+	0.119E-08	0.190E-07	ZnOH+	0.214E-09	0.271E-08
ZnHCO3+	0.429E-10	0.353E-09	ZnCO3	0.468E-09	•
ZnSO4	0.347E-09	0.224E-08	ZnCl+	0.505E-08	0.522E-07
ZnCl2	0.237E-08	0.181E-07	ZnCl3-	0.330E-09	0.200E-08
ZnC142-	0.539E-09	0.271E-08	ZnOHCl	0.166E~08	0.147E~07
	,				

Fuerza Iónica = 0.77491 gmol/kgH20

pH= 8.0801 (en escala molal)

Coeficientes de actividad de los iones (escala molal):

ION	GAMA	ION	GAMA
H+	0.72545	Ag+	0.50634
Au+	0.50634	Ba2+	0.18186
BiO+	0.50634	Ca2+	0.20629
Cd2+	0.06810	Co2+	0.21238

Cs+	0.55655	Cu2+	0.18270
Mg2+	0.23277	Hg2+	0.06564
K+	0.60403	Li+	0.73154
Mn2+	0.21857	Na+	0.64610
Ni2+	0.21680	Pb2+	0.18862
Rb+	0.58877	Sr2+	0.20314
UO22+	0.25031	Zn2+	0.19565
OH-	0.61673	c1-	0.70054
HAs042-	0.12716	H2As04-	0.53636
As043-	0.01286	B (OH) 4-	0.36081
SO42-	0.11899	Br-	0.73114
HCO3-	0.54419	CO32-	0.04034
F-	0.56261	103-	0.50566
MoO42-	0.06547	HPO42-	0.10858
H2PO4-	0.48410	PO43-	0.01159
Se042-	0.06547	WO42-	0.06547

Coef. de actividad de B(OH)3: 1.20335

EXERGIA QUIMICA ESTANDAR DE CADA ELEMENTO:

Elemento	Exq° (kJ/gmo1)	Elemento	Exq° (kJ/gmol)
As(s)	492.014	B(s)	627.765
Br2(1)	99 885	C12(g)	122.580
Cs(s)	404.548	I2(s)	174.790
K(s)	366.599	Li(s)	392.606
Mo(s)	730.875	Na(s)	336.585
P(s)	860.734	Rb(s)	388.632
S(s)	608.749	Se(s)	347.069
W(s)	828.003	x y ² →	

A.4.- Exergia química estándar de los elementos al considerar valores de temperatura del medio diferentes a la normal.

Ejercicio 1: T = 50°C

Las condiciones del medio especificadas son:

Temperatura: 50.0 °C
Presión: 1.0000 atm
Concentración de CO2: 345.0 ppmv
Humedad relativa: 0.700

Salinidad: 35.183 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

		Composición de la especie		Exq°	
- 1		(fracción mol)		(kJ/gmol)	
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento
Ar(g)	Ar	0.9331E-02	0.8536E-02	12.798	12.798
C (g)	CO2	0.3450E-03	0.3156E-03	21.657	411.674
He (g)	He	0.5001E-05	0.4575E-05	33.033	33.033
Kr(g)	Kr	0.1000E-05	0.9149E-06	37.357	37.357
N2 (g)	N2	0.7804E+00	0.7139E+00	0.905	0.905
Ne(g)	Ne	0.1800E-04	0.1647E-04	29.591	29.591
02 (g)	02	0.2099E+00	0.1920E+00	4.433	4.433
Xe(g)	Xe	0.9001E-07	0.8234E-07	43.826	43.826
H2(g)	H20	0.0000E+00	0.8517E-01	6.618	231.881
D2 (g)	D20	0.0000E+00	0.1324E-04	30.178	261.371

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN EL AGUA DE MAR.-

Fracción masa y molalidad de las especies (S = 35.183 por mil):

ESPECIE	g/gsw	gmol/kgH20	ESPECIE	g/gsw	gmol/kgH2O
AgCl2-	0.464E-09	0.269E-08	HAsO42-	0.522E-08	0.387E-07
H2As04-	0.380E-09	0.280E-08	As043-	0.206E-11	0.154E-10
AuCl2-	0.150E-10	0.579E-10	B (OH) 3	0.204E-04	0.342E-03
B(OH)4-	0.490E-05	0.644E-04	Ba2+	0.189E-07	0.143E-06
BaSO4	0.357E-08	0.158E-07	BiO+	0.215E-10	0.992E-10
Br-	0.673E-04	0.873E-03	HC03-	0.118E-03	0.201E-02
CO32-	0.487E-05	0.841E-04	CO2	0.647E-06	0.152E-04
Ca2+	0.375E-03	0.969E-02	CaHCO3+	0.371E-05	0.380E-04
CaCO3	0.751E-05	0.778E-04	CaB (OH) 4+	0.115E-05	
CdC12	0.122E-10	0.692E-10	Cd2+	0.360E-12	
CdCl+	0.768E-11	0.539E-10	CdC13-	0.109E-10	0.515E-10
CdOHC1	0.851E-12	0.535E-11	CdBr+	0.684E-13	0.369E-12
CdC03	0.614E-13	0.369E-12	CdSO4	0.742E-13	0.369E-12
Cl-	0.194E-01	0.566E+00	Co2+	0.390E-09	0.686E-08
Cs+	0.300E-09	0.234E-08	Cu2+	0.448E-10	0.731E-09
CuOH+	0.300E-09	0.386E-08	CuCO3	0.269E-08	0.225E-07
	0.762E-08	0.681E-07	CuCl+	0.578E-09	0.606E-08
CuOHC1	0.762E-00 0.217E-09	0.167E-08	CuCl3-	0.120E-09	0.731E-09
CuCl2	0.103E-09	0.522E-09	F-	0.709E-06	
CuCl42-			r- CaF+	0.864E-07	0.387E-04
MgF+	0.149E-05	0.356E-04			
HgC142-	0.112E-09	0.340E-09	HgCl3-	0.184E-10	0.620E-10
HgC12	0.406E-11	0.155E-10	HgBr2	0.180E-12	0.517E-12
HgClBr	0.173E-11	0.568E-11	HgCl2Br-	0.753E-11	0.222E-10
HgCl3Br2-	0.237E-10	0.636E-10	HgClBr2-	0.987E-12	0.258E-11
HgCl2Br22-	0.129E-11	0.310E-11	HgOHC1	0.252E-12	0.103E-11
IO3-	0.882E-07	0.523E-06	K+	0.394E-03	0.104E-01
кнсо3	0.511E-07	0.529E-06	KCO3-	0.506E-07	0.529E-06
Li+	0.170E-06	0.254E-04	Mg2+	0.119E-02	0.506E-01
MgHCO3+	0.453E-05	0.551E-04	MgCO3	0.448E-05	0.551E-04
MgB (OH) 4+	0.997E-06	0.100E-04	Mn2+	0.400E-09	0.755E-08
MoO42-	0.167E-07	0.108E-06	Na+	0.105E-01	0.474E+00
NaHCO3	0.197E-05	0.243E-04	NaCO3-	0.194E-05	0.243E-04
Ni2+	0.660E-08	0.117E-06	HPO42-	0.450E-07	0.486E-06
H2PO4-	0.132E-08	0.141E-07	CaH2PO4+	0.350E-09	0.265E-08
MgH2PO4+	0.310E-09	0.265E-08	CaHPO4	0.132E-06	0.101E-05
MgHPO4	0.117E-06	0.101E-05	PO43-	0.621E-10	0.677E-09
CaPO4-	0.276E-07	0.212E-06	MgP04-	0.244E-07	0.212E-06
PbC12	0.114E-10		Pb2+	0.900E-12	0.450E-11
PbOH+	0.221E-11	0.102E-10	PbCl+	0.443E-11	0.189E-10
PbHCO3+	0.362E-12	0.140E-11	PbC03	0.103E-12	0.400E-12
PbSO4	0.146E-12	0.500E-12	PbCl3-	0.278E-11	0.920E-11
PbC142-	0.121E-11	0.360E-11	PbOHCl	0.221E-11	0.880E-11
PbBr+	0.416E-13	0.150E-12	Rb+	0.120E-06	0.146E-05
SO42-	0.115E-02	0.124E-01	CaSO4	0.111E-03	0.843E-03
KSO4-	0.166E-04	0.128E-03	MgSO4	0.503E-03	0.433E-02
NaSO4-	0.133E-02	0.116E-01	Se042-	0.163E-09	0.118E-08
Sr2+	0.733E-05	0.867E-04	SrSO4	0.171E-05	0.963E-05
UO2 (CO3) 34-	0.624E-08	0.144E-07	WO42-	0.135E-09	0.564E-09
Zn2+	0.105E-08	0.166E-07	ZnOH+	0.188E-09	0.237E-08
ZnHCO3+	0.377E-10	0.309E-09	ZnCO3	0.411E-09	0.340E-08
ZnSO4	0.305E-09	0.196E-08	ZnCl+	0.444E-08	0.457E-07
ZnCl2	0.209E-08	0.159E-07	ZnCl3-	0.290E-09	0.175E-08
ZnC142-	0.474E-09		ZnOHCl	0.146E-08	0.129E-07
	J			0.1101 00	O.ISJB O7

Fuerza Iónica = 0.67818 gmol/kgH2O

pH= 7.8678 (en escala molal)

Tan Kumhum Kumbu Tan Kumba Tan Masama Masama

Coeficientes de actividad de los iones (escala molal):

ION	GAMA		ION	GAMA
H+	0.72188	10000	Ag+	0.52308
Au+	0.52308		Ba2+	0.18871
BiO+	0.52308		Ca2+	0.21121
Cd2+	0.07694		Co2+	0.21683
Cs+	0.56983	· .	Cu2+	0.18922
Mg2+	0.23588		Hg2+	0.07479
K+	0.61435	*	Li+	0.72853
Mn2+	0.22392		Na+	0.65276
Ni2+	0.22100		Pb2+	0.19603
R b +	0.60004		Sr2+	0.20867
UO22+	0.25250	A Total	Zn2+	0.20317
OH-	0.62512		C1-	0.70256
HAs042-	0.13834		H2AsO4-	0.55369
As043~	0.01511	•	B (OH) 4-	0.38451
S042-	0.12848		Br-	0.72970
HCO3-	0.55852		CO32-	0.04545
F-	0.57638		103-	0.52254
MoO42-	0.07463		HPO42-	0.11993
H2PO4-	0.50322		PO43-	0.01377
SeO42-	0.07463		WO42-	0.07463

Coef. de actividad de B(OH)3: 1.44673

EXERGIA QUIMICA ESTANDAR DE CADA ELEMENTO:

Elemento	Ex	q° (kJ/gmol)	Elemento	Exq° (kJ/gmol)	
As(s)	1	490.475	B(s)	626.140	
Br2(1)		110.014	C12(g)	126.938	
Cs(s)	100	407.254	12(s)	173.744	
K(s)	100	365.861	Li(s)	391.825	Take 18 July 1
Mo(s)		729.545	Na(s)	334.298	
P(s)	200	857.721	Rb(s)	390.017	2000年至1月1日
S(s)	57	604.753	Se(s)	346.993	
W(s)		824.961		gradient de la company	

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN LA CORTEZA TERRESTRE.-

Fracción molar y exergia química estándar de las especies de referencia:

			· ·		
Especie	Хi	Exqi	Especie	Xi	Exqi
	•	(kJ/mol)			(kJ/mol)
AgCl	0.100E-08	55.67	Al2SiO5	0.207E-02	16.61
Au	0.136E-08	54.86	BaSO4	0.420E-05	33.26
Be2SiO4	0.210E-06	41.31	Bi203	0.274E-09	59.15
CaCO3	0.140E-02	17.66	CdC03	0.122E-07	48.96
CeO2	0.117E-05	36.71	CoFe204	0.285E-06	40 49
K2Cr2O7	0.135E-05	36.30	CuCO3	0.589E-05	32.35
Dy (OH) 3	0.488E-07	45.23	Er(OH)3	0.461E-07	45.39
Eu (OH) 3	0.214E-07	47.45	CaF2*3Ca3(PO4)2	0.224E-04	28.77
Fe203	0.678E-02	13.42	Ga203	0.298E-06	40.37
Gd (OH) 3	0.921E-07	43.52	GeO2	0.949E-07	43.45
HfO2	0.115E-06	42.92	HgCl2	0.542E-09	57.32
Ho (OH) 3	0.195E-07	47.69	In203	0.295E-08	52.77
IrO2	0.359E-11	70.80	La (OH) 3	0.596E-06	38.51
Lu (OH) 3	0.786E-08	50.14	Mg3Si4O10(OH)2	0.867E-03	18.94
MnO2	0.230E-04	28.69	Nb203	0.149E-06	42.23
Nd (OH) 3	0.515E-06	38.90	NiO	0.176E-05	35.60
Os04	0.339E-12	77.14	PbC03	0.104E-06	43.19
PdO	0.637E-10	63.08	Pr(OH)3	0.157E-06	42.09
PtO2	0.176E-10	66.53	PuO2	0.840E-19	118.01

and the control of th

 $(1+\epsilon)^{-1} = (1+\epsilon)^{-1} = (1+$

Andrew State of Additional

CONTRACTOR STANKED SHAWA

1.00

46.0°

10.00

10.00 10.00

RaSO4	0.298E-13	83.67	Re207	0.366E-11	70.75
Rh203	0.329E-11	71.04	RuO2	0.677E-12	75.28
Sb205	0.108E-09	61.65	Sc203	0.373E-06	39.77
SiO2	0.407E+00	2.42	Sm (OH) 3	0.108E-06	43.09
SnO2	0.461E-06	39.20	SrC03	0.291E-04	28.06
Ta205	0.745E-08	50.28	Tb (OH) 3	0.171E-07	48.05
TeO2	0.948E-11	68.19	ThO2	0.271E-06	40.63
TiO2	0.163E-03	23.44	T1204	0.149E-08	54.60
Tm (OH) 3	0.759E-08	50.23	UO3*H2O	0.149E-07	48.42
V205	0.183E-05	35.50	Y (OH) 3	0.100E-05	37.11
Yb (OH) 3	0.461E-07	45.39	ZnCo3	0.745E-05	31.72
ZrSiO4	0.244E-04	28.54			.:

EXERGIA QUIMICA ESTANDAR DE CADA ELEMENTO:

		• *	
Elemento	Exq° (kJ/gmc		Exq° (kJ/gmol)
Ag(s)	100.552	Al(s)	792.042
Au(s)	54.860	Ba(s)	772.126
Be(s)	602.913	Bi(s)	269.739
Ca(s)	721.790	Cd(s)	293.225
Ce(s)	1052.356	Co(s)	313.146
Cr(s)	578.148	Cu(s)	126.474
Dy(s)	973.910	Er(s)	970.763
Eu(s)	1001.922	F2 (g)	532.829
Fe(s)	371.047	Ga(s)	512.346
Gd(s)	966.801	Ge (s)	555.639
Hf(s)	1060.879	Hg(l)	105.252
Ho(s)	976.871	$\operatorname{In}(s)$	434.790
Ir(s)	247.595	La(s)	992.084
Lu(s)	944.115	Mg(s)	623.714
Mn(s)	484.866	Nb(s)	895.411
Nd(s)	967.578	Ni(s)	242.746
Os(s)	365.940	Pb(s)	244.189
Pd(s)	140.817	Pr(s)	961.566
Pt(s)	141.349	Pu(s)	1104.250
Ra(s)	824.985	Re(s)	553.819
Rh(s)	178.659	Ru(s)	319.409
Sb(s)	433.990	Sc(s)	922.921
Si(s)	850.125	Sm(s)	991.464
Sn(s)	549.243	Sr(s)	743.127
Ta(s)	969.745	$\mathbf{Tb}(\mathbf{s})$	996.630
Te(s)	329.673	$\operatorname{Th}(s)$	1200.463
Ti(s)	903.877	Tl(s)	190.030
Tm(s)	950.109	U(s)	1191.907
V(s)	716.514	Y(s)	963.760
Yb(s)	942.263	Zn(s)	338.184
Zr(s)	1079.461		Programme and the second

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS.-

Compuesto	44.4	Exq°	(kJ/gmol)
CH4	1. 1. 2.2		826.659
FACO/	100	٠.,	176 757

Ejercicio 2: T = 0°C

Las condiciones del medio especificadas son:

Temperatura:	0.0 °C
Presión:	1.0000 atm
Concentración de	CO2: 345.0 ppmv
Humedad relativa:	. 60.700

Salinidad:

35.183 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA .-

		Composición	de la especie	Ex	q°
•			ión molj	(kJ/gmol)	
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento
Ar(g)	Ar	0.9331E-02	0.9293E-02	10.625	10.625
C(g)	CO2	0.3450E-03	0.3436E-03	18.113	408.863
He(g)	He	0.5001E-05	0.4980E-05	27.729	27.729
Kr(g)	Kr	0.1000E-05	0.9960E-06	31.384	31.384
N2 (g)	N2	0.7804E+00	0.7772E+00	0.572	0.572
Ne(g)	Ne	0.1800E-04	0.1793E-04	24.820	24.820
02 (g)	02	0.2099E+00	0.2091E+00	3.554	3.554
Xe(g)	Хe	0.9001E-07	0.8964E-07	36.852	36.852
H2 (g)	H2O	0.0000E+00	0.4097E-02	12.484	240.406
D2 (g)	D20	0.0000E+00	0.6369E-06	32.399	266.481

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN EL AGUA DE MAR.-

Fracción masa y molalidad de las especies (S = 35.183 por mil):

NOTA: LO MISMO QUE EN EL EJERCICIO 1 A T=50°C

Fuerza Iónica = 0.67818 gmol/kgH2O

pH= 8.4824 (en escala molal)

Coeficientes de actividad de los iones (escala molal):

NOTA: LO MISMO QUE EN EL EJERCICIO 1 A T=50°C

Coef. de actividad de B(OH)3: 0.99314

EXERGIA QUIMICA ESTANDAR DE CADA ELEMENTO:

Elemento	Exq° (kJ/gmol)	Elemento	Exq° (kJ/gmol)
As(s)	495.031	B(s)	629.715
Br2(1)	92.632	Cl2(g)	121.052
Cs(s)	401.617	I2(s)	177.948
K(s)	367.146	Li(s)	393.301
Mo(s)	733.474	Na(s)	338.713
P(s)	865.148	Rb(s)	387.047
S(s)	614.282	Se(s)	348.412
W(s)	832.312		

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN LA CORTEZA TERRESTRE.-

Fracción molar y exergia química estándar de las especies de referencia:

Especie	Xi	Exqi	Especie	Xi	Exqi
	•	(kJ/mol)			(kJ/mol)
AgCl	0.100E-08	47.06	Al2SiO5	0.207E-02	14.04
Au	0.136E-08	46.37	BaSO4	0.420E-05	28.12
Be2SiO4	0.210E-06	34.92	Bi203	0.274E-09	50.00
CaCO3	0.140E-02	14.93	CdC03	0.122E-07	41.38
CeO2	0.117E-05	31.03	CoFe2O4	0.285E-06	34.23
K2Cr207	0.135E-05	30.68	CuCO3	0.589E-05	27.35
Dy (OH) 3	0.488E-07	38.23	Er(OH)3	0.461E-07	38.36
Eu (OH) 3	0.214E-07	40.10	CaF2*3Ca3(PO4)2	0.224E-04	24.32
Fe203	0.678E-02	11.34	Ga203	0.298E-06	34.12
Gd (OH) 3	0.921E-07	36.79	GeO2	0.949E-07	36.72
HfO2	0.115E-06	36.28	HgCl2	0.542E-09	48.45

Ho (OH) 3	0.195E-07	40.31	In203	0.295E-08	44.61
IrO2	0.359E-11	59.85	La (OH) 3	0.596E-06	32.55
Lu (OH) 3	0.786E-08	42.38	Mg3Si4O10(OH)2	0.867E-03	16.01
MnO2	0.230E-04	24.25	Nb203	0.149E-06	35.70
Nd (OH) 3	0.515E-06	32.88	NiO	0.176E-05	30.09
OsO4	0.339E-12	65.21	PbC03	0.104E-06	36.51
PdO	0.637E-10	53.32	Pr(OH)3	0.157E-06	35.58
PtO2	0.176E-10	56.23	PuO2	0.840E-19	99.75
RaSO4	0.298E-13	70.73	Re207	0.366E-11	59.80
Rh203	0.329E-11	60.05	RuO2	0.677E-12	63.63
Sb205	0.108E-09	52.11	Sc203	0.373E-06	33.62
SiO2	0.407E+00	2.04	Sm (OH) 3	0.108E-06	36.42
SnO2	0.461E-06	33.13	srco3	0.291E-04	23.72
Ta205	0.745E-08	42.50	Tb (OH) 3	0.171E-07	40,62
TeO2	0.948E-11	57.64	ThO2	0.271E-06	34.34
TiO2	0.163E-03	19.81	T1204	0.149E-08	46.16
Tm (OH) 3	0.759E-08	42.46	UO3*H2O	0.149E-07	40.93
V205	0.183E-05	30.00	Y (OH) 3	0.100E-05	31.37
Yb (OH) 3	0.461E-07	38.36	ZnCO3	0.745E-05	26.81
ZrSiO4	0.244E-04	24.12		* *	
•					12.1

EXERGIA QUIMICA ESTANDAR DE CADA ELEMENTO:

Elemento	Exq° (kJ/gmol)	Elemento	Exq° (kJ/gmol)	* * 	$\sqrt{\xi}$. The second ϵ
Aq(s)	97.778	Al(s)	799.350	1.5	.14
Au(s)	46,372	Ba(s)	778.041		
Be(s)	605.577	Bi(s)	272.545		and the second
Ca(s)	736.286	Cd (s)	303.397		
Ce(s)	1056.990	Co(s)	313.622		
Cr(s)	590.660	Cu (5)	138.507		
Dy(s)	977.745	Er(s)	974.575		
Eu(s)	1005.415	F2 (g)	477.033		
Fe(s)	377.543	Ga(s)	517.509		
Gd(s)	97 0.901	Ge(s)	559.544	•	25
Hf(s)	1065.141	Hg(1)	109.933	1 m + 1 m +	
Ho(s)	980.326	In(s)	438.810		
Ir(s)	246.265	La(s)	996.960		
Lu(s)	947.191	Mg(s)	630.033	*	
Mn(s)	490.487	Nb(s)	903.963		
Nd(s)	972.394	Ni(s)	242.366		1.50
Os(s)	370.636	Pb(s)	253.990		
Pd(s)	136.580	Pr(s)	965.888		
Pt(s)	140.826	Pu(s)	1095,719	- 1 M - 1	****
Ra(s)	822.806	Re(s)	565.080	1	
Rh(s)	180.694	Ru(s)	317.719		
Sb(s)	442.203	Sc(s)	927.481	•	
Si(s)	859.751	Sm(s)	995.632	4	
Sn(s)	554.303	Sr(s)	756.331	4	`
Ta(s)	978.261	Tb(s)	1000.029		
Te(s)	328.771	Th(s)	1204.715		
Ti(s)	910.387	Tl(s)	199.662		•
Tm(s)	953.171	U(s)	1200.975		
V(s)	725.851	Y(s)	967.108	•	
Yb(s) Zr(s)	946.075 1086.346	Zn(s)	351.033	÷	

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS.-

Compuesto		$\mathbf{E}\mathbf{x}\mathbf{q}^{\circ}$	(kJ/gmol)
CH4	•		336.865
FeSO4			171.923

Ejercicio 3: T = -40°C

Las condiciones del medio especificadas son:

Temperatura: -40.0 °C
Presión: 1.0000 atm
Concentración de CO2: 345.0 ppmv

Humedad relativa: 0.700 Salinidad: 35.183 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

		•	de la especie	Ex	•
		(fracc:	ión mol)	(kJ/	gmol)
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento
Ar(g)	Ar	0.9331E-02	0.9330E-02	9.061	9.061
C (q)	CO2	0.3450E-03	0.3450E-03	15.453	406.614
He(g)	He	0.5001E-05	0.5000E-05	23.660	23.660
Kr (g)	Kr	0.1000E-05	0.1000E-05	26.780	26.780
N2 (g)	N2	0.7804E+00	0.7803E+00	0.481	0.481
Ne(q)	Ne	0.1800E-04	0.1800E-04	21.177	21.177
02 (g)	02	0.2099E+00	0.2099E+00	3.026	3.026
Xe(g)	Хe	0.9001E-07	0.9000E-07	31.448	31.448
H2 (g)	H20	0.0000E+00	0.1125E-03	17.626	247.587
D2 (g)	D20	0.0000E+00	0.1748E-07	34.624	270.929

EXERGIA OUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN EL AGUA DE MAR.-

Fracción masa y molalidad de las especies (S=35.183 por mil):

NOTA: LO MISMO QUE EN EL EJERCICIO 1 A T=50°C

Neg e

15.5

14.5

× , , ;

Fuerza Iónica = 0.67818 qmol/kgH20

pH= 9.3043 (en escala molal)

Coeficientes de actividad de los iones (escala molal):

NOTA: LO MISMO QUE EN EL EJERCICIO 1 A T=50°C

Coef. de actividad de B(OH)3: 0.65442

EXERGIA QUIMICA ESTANDAR DE CADA ELEMENTO:

Elemento	Exq° (kJ/gmol)		Elemento	Exq°	(kJ/gmol)
As(s)	499.037		B(s)		631.771
Br2(1)	79.619	~	C12(g)	100	117.234
Cs(s)	396.662		I2(s)		181.679
K(s)	367.727		Li(s)		394.035
Mo(s)	737.159		Na(s)	•	341.799
P(s)	871.451		Rb(s)		384.225
S(s)	622.447		Se(s)		350.091
W(s)	- 838.735				

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN LA CORTEZA TERRESTRE.-

Fracción molar y exergia química estándar de las especies de referencia:

Especie	Xi	Exqi (kJ/mol)	Especie	Xi	Exqi (kJ/mol)
AgCl	0.100E-08	40.16	Al2SiO5	0.207E-02	11.98
Au	0.136E-08	39.58	BaSO4	0.420E-05	24.00
Be2SiO4	0.210E-06	29.81	Bi203	0.274E-09	42.68

CaCO3	0.140E-02	12.74	CdCO3	0.122E-07	35.32
CeO2	0.117E-05	26.48	CoFe2O4	0.285E-06	29.22
K2Cr2O7	0.135E-05	26.19	CuCO3	0.589E-05	23.34
Dy (OH) 3	0.488E-07	32.63	Er (OH) 3	0.461E-07	32.75
Eu (OH) 3	0.214E-07	34.23	CaF2*3Ca3(PO4)2	0.224E-04	20.76
Fe203	0.678E-02	9.68	Ga203	0.298E-06	29.13
Gd (OH) 3	0.921E-07	31.40	GeO2	0.949E-07	31.35
HfO2	0.115E-06	30.97	HgCl2	0.542E-09	41.36
Ho (OH) 3	0.195E-07	34.41	In203	0.295E-08	38.08
IrO2	0.359E-11	51.08	La (OH) 3	0.596E-06	27.78
Lu (OH) 3	0.786E-08	36.17	Mg3Si4O10(OH)2	0.867E-03	13.67
MnO2	0.230E-04	20.70	Nb203	0.149E-06	30.47
Nd (OH) 3	0.515E-06	28.07	NiO	0.176E-05	25.68
0s04	0.339E-12	55.66	PbC03	0.104E-06	31.16
PdO	0.637E-10	45.51	Pr(OH)3	0.157E-06	30.37
PtO2	0.176E-10	48.00	PuO2	0.840E-19	85.14
RaSO4	0.298E-13	60.37	Re207	0.366E-11	51.05
Rh203	0.329E-11	51.25	RuO2	0.677E-12	54.31
Sb205	0.108E-09	44.48	Sc203	0.373E-06	28.69
SiO2	0.407E+00	1.74	Sm(OH)3	0.108E-06	31.09
Sn02	0.461E-06	28.28	SrCO3	0.291E-04	20.24
Ta205	0.745E-08	36.28	Tb (OH) 3	0.171E-07	34.67
TeO2	0.948E-11	49.20	ThO2	0.271E-06	29.31
TiO2	0.163E-03	16.91	T1204	0.149E-08	39.40
Tm (OH) 3	0.759E-08	36.24	U03*H20	0.149E-07	34.93
V205	0.183E-05	25.61	Y (OH) 3	0.100E-05	26.77
Yb (OH) 3	0.461E-07	32.75	ZnCO3	0.745E-05	22.89
ZrSiO4	0.244E-04	20.59			

EXERGIA QUIMICA ESTANDAR DE CADA ELEMENTO:

Elemento	Exq° (kJ/gmol)	Elemento	Exq° (kJ/gmol)
Ag(s)	95.112	Al(s)	805.064
Au(s)	39.581	Ba(s)	781.881
Be(s)	607.620	Bi(s)	274.659
Ca(s)	747.620	Cd(s)	311.272
Ce(s)	1060.523	Co(s)	313.916
Cr(s)	600.811	Cu(s)	147.871
Dy(s)	980.011	Er(s)	976.822
Eu(s)	1007.407	F2 (g)	430.747
Fe(s)	382.610	Ga(s)	521.509
Gd(s)	973.378	Ge(s)	562.493
Hf(s)	1068.376	Hg(1)	112.786
Ho(s)	982.287	In(s)	441.894
Ir(s)	245.025	La(s)	1000.058
Lu(s)	948.850	Mg(s)	634.851
Mn(s)	494.809	Nb(s)	910.674
Nd(s)	975.443	Ni(s)	241.975
Os(s)	374.044	Pb(s)	261.569
Pd(s)	133.103	Pr(s)	968.543
Pt(s)	140.232	Pu(s)	1088.720
Ra(s)	820.171	Re(s)	573.783
Rh(s)	182.192	Ru(s)	316.192
Sb(s)	448.554	Sc(s)	930.998
Si(s)	867.276	Sm(s)	998.163
Sn(s)	558.177	Sr(s)	766.632
Ta(s)	984.856	Tb(s)	1001.946
Te(s)	327.875	Th(s)	1207.942
Ti(s)	915.419	Tl(s)	207.193
Tm(s)	954.818	U(s)	1207.519
V(s)	733.102	Y(s)	968.983
Yb(s)	948.322	Zn(s)	361.049
Zr(s)	1091.679		

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS --

Compuesto Exq° (kJ/gmol) CH4 845.750 FeSO4 169.617

A.5.- Exergia química estándar de los elementos al considerar valores de presión atmosférica diferentes a la normal.

<u>Ejercicio 1: *P* = 0.65 atm</u>

Las condiciones del medio especificadas son:

Temperatura: 25.0 °C
Presión: 0.6500 atm
Concentración de CO2: 345.0 ppmv
Humedad relativa: 0.700
Salinidad: 35.183 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA -

• •	1 1	Composición o	de la especie	Ex	q°
		(fracci	ión mol)	(kJ/	gmol)
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento
Ar(g)	Ar	0.9331E-02	0.9019E-02	11.671	11.671
C(g)	CO2	0.3450E-03	0.3335E-03	19.845	410.268
He (g)	Нe	0.5001E-05	0.4833E-05	30.341	30.341
Kr (g)	Kr	0.1000E-05	0.9667E-06	34.330	34.330
N2 (g)	N2	0.7804E+00	0.7543E+00	0.699	0.699
Ne(g)	Ne	0.1800E-04	0.1740E-04	27.165	27.165
02 (g)	02	0.2099E+00	0.2029E+00	3.954	3.954
Xe(g)	Xe	0.9001E-07	0.8700E-07	40.299	40.299
H2 (g)	H20	0.0000E+00	0.3341E-01	8.426	235.038
D2 (g)	D20	0.0000E+00	0.5193E-05	30.163	262.821

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN EL AGUA DE MAR.-

Fracción masa y molalidad de las especies (S=35.183 por mil):

NOTA: LO MISMO QUE EN EL EJERCICIO 1 A T=50°C (SECCIÓN A.4)

Fuerza Iónica = 0.67818 gmol/kgH20

pH= 8.1189 (en escala molal)

Coeficientes de actividad de los iones (escala molal):

NOTA: LO MISMO QUE EN EL EJERCICIO 1 A T=50°C (SECCIÓN A.4)

Coef. de actividad de B(OH)3 : 1.21772

EXERGIA QUIMICA ESTANDAR DE CADA ELEMENTO:

Elemento	Exq° (kJ/gmol)	• •	Elemento	Exq° (kJ/gmol)
As(s)	494.144	٠.	B(s)	629.646
Br2(1)	102.082		C12(g)	124.753
Cs(s)	404.057		I2(s)	176.724
K(s)	366.124		Li(s)	392.184

Mo(s)	732.347	4	Na(s)		336.127
P(s)	862.826		Rb(s)		388.153
S(s)	610.356	. •	Se(s)	,	348.541
W(s)	829.475				

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN LA CORTEZA TERRESTRE.-

Fracción molar y exergia química estándar de las especies de referencia:

Especie	Xi	Exqi	Especie	Xi	Exqi
		(kJ/mol)	e e	* * *	(kJ/mol)
AgCl	0.100E-08	51.36	Al2SiO5	0.207E-02	15.32
Au	0.136E-08	50.62	BaSO4	0.420E-05	30.69
Be2SiO4	0.210E-06	38.11	Bi2O3	0.274E-09	54.57
CaCO3	0.140E-02	16.30	CdC03	0.122E-07	45.17
CeO2	0.117E-05	33.87	CoFe2O4	0.285E-06	37.36
K2Cr2O7	0.135E-05	33.49	CuCO3	0.589E-05	29.85
Dv (OH) 3	0.488E-07	41.73	Er (OH) 3	0.461E-07	41.87
Eu (OH) 3	0.214E-07	43.77	CaF2*3Ca3(PO4)2	0.224E-04	26.54
Fe203	0.678E-02	12.38	Ga203	0.298E-06	37.25
Gd (OH) 3	0.921E-07	40.16	GeO2	0.949E-07	40.08
Hf02	0.115E-06	39.60	HgCl2	0.542E-09	52.89
Ho (OH) 3	0.195E-07	44.00	In203	0.295E-08	48.69
IrO2	0.359E-11	65.32	La (OH) 3	0.596E-06	35.53
Lu (OH) 3	0.786E-08	46.26	Mg3Si4O10(OH)2	0.867E-03	17.48
MnO2	0.230E-04	26.47	Nb203	0.149E-06	38.96
Nd (OH) 3	0.515E-06	35.89	NiO	0.176E-05	32.84
0s04	0.339E-12	71.18	PbC03	0.104E-06	39.85
PdO	0.637E-10	58.20	Pr(OH)3	0.157E-06	38.83
PtO2	0.176E-10	61.38	PuO2	0.840E-19	108.88
RaSO4	0.298E-13	77.20	Re207	0.366E-11	65.28
Rh203	0.329E-11	65.54	RuO2	0.677E-12	69.46
Sb205	0.108E-09	56.88	Sc203	0.373E-06	36.69
SiO2	0.407E+00	2.23	Sm (OH) 3	0.108E-06	39.75
Sn02	0.461E-06	36.17	srco3	0.291E-04	25.89
Ta205	0.745E-08	46.39	Tb (OH) 3	0.171E-07	44.34
TeO2	0.948E-11	62.92	ThO2	0.271E-06	37.48
TiO2	0.163E-03	21.63	T1204	0.149E-08	50.38
Tm(OH)3	0.759E-08	46.35	U03*H20	0.149E-07	44.67
V205	0.183E-05	32.75	Y (OH) 3	0.100E-05	34.24
Yb (OH) 3	0.461E-07	41.87	ZnCO3	0.745E-05	29.27
ZrSiO4	0.244E-04	26.33		e to the second	•
			· · · · · · · · · · · · · · · · · · ·		

EXERGIA QUIMICA ESTANDAR DE CADA ELEMENTO:

Elemento	Exq° (kJ/gmol)	Elemento	Exq° (kJ/gmol)
Ag(s)	98.786	Al(s)	795.726
Au(s)	50.616	Ba(s)	774.326
Be(s)	604.265	Bi(s)	271.172
Ca(s)	729.098	Cd(s)	298.371
Ce(s)	1054.713	Co(s)	313.404
Cr(s)	584.853	Cu(s)	132.550
Dy(s)	977.546	Er(s)	974.388
Eu(s)	1005.387	F2 (g)	496.465
Fe(s)	374.325	Ga(s)	514.958
Gd(s)	970.569	Ge(s)	557.631
Hf(s)	1063.050	Hg(1)	106.834
Ho(s)	980.317	In(s)	436.830
Ir(s)	246.970	La(s)	996.241
Lu(s)	947.371	Mq(s)	627.268
Mn(s)	487.716	Nb(s)	899.717
Nd(s)	971.704	Ni(s)	242.576
Os(s)	368.368	Pb(s)	249.150

Service Contract Contract Contract

4-7-6-6

- 3 B - 1764 y - 54

Pd(s)	138.719	Pr(s)	965.445
Pt(s)	141.127	Pu(s)	1100.024
Ra(s)	823.137	Re(s)	559.520
Rh(s)	179.706	Ru(s)	318.604
Sb(s)	438.146	Sc(s)	925.231
Si(s)	854.978	Sm(s)	995.267
Sn(s)	551.814	Sr(s)	749.789
Ta(s)	974.053	Tb(s)	1000.048
Te(s)	329.262	Th(s)	1202.629
Ti(s)	907.172	T1(s)	194.886
Tm(s)	953.358	U(s)	1197.627
V(s)	721,232	Y(s)	967.152
Yb(s)	945.888	Zn(s)	344.669
Zr(s)	1082.943		

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS .-

Compuesto	:	Exq° (kJ/gmol)
CH4		829.551
FeSO4		174.628

Ejercicio 2: P = 1.03 atm

Las condiciones del medio específicadas son:

Temperatura: 25.0 °C
Presión: 1.0300 atm Concentración de CO2: 345.0 ppmv Humedad relativa: 0.700

Salinidad: 35.183 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA: - 🖟

			de la especie ión mol)	Exq°
Elemento	Especie	Aire seco	Aire húmedo	Especie Elemento
Ar(g) =	Ar	0.9331E-02	0.9134E-02	11.640 11.640
C (g)	CO2	0.3450E-03	0.3378E-03	19.814 410.268
He(g)	He	0.5001E-05	0.4895E-05	30.309 : 30.309
Kr(g)	Kr	0.1000E-05	0.9790E-06	34.299 4.34.299
N2(g)	N2	0.7804E+00	0.7639E+00	0.668 0.668
Ne(g)	Ne	0.1800E-04	0.1762E-04	27.134 / 27.134
02 (g)	02	0.2099E+00	0.2055E+00	3.922 3.922
Xe(g)	Xe	0.9001E-07	0.8811E-07	40.268 40.268
H2 (g)	H20	0.0000E+00	0.2108E-01	9.567 236.195
D2 (g)	D20	0.0000E+00	0.3277E-05	31.304 263.977

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN EL AGUA DE MAR .-

Fracción masa y molalidad de las especies (S=35.183 por mil):

NOTA: LO MISMO QUE EN EL EJERCICIO 1 A T=50°C (SECCIÓN A.4)

Fuerza Iónica = 0.67818 gmol/kgH20

pH= 8.1189 (en escala molal)

Coeficientes de actividad de los iones (escala molal):

NOTA: LO MISMO QUE EN EL EJERCICIO 1 A T=50°C (SECCIÓN A.4)

Coef. de actividad de B(OH)3 : 1.21772

EXERGIA QUIMICA ESTANDAR DE CADA ELEMENTO:

Elemento	Exq° (kJ/gmol)	Elemento	Exq° (kJ/gmol)
As(s)	492.471	B(s)	627.958
Br2(1)	100.925	Cl2(g)	123.596
Cs(s)	404.635	I2(s)	175.662
K(s)	3 66.703	Li(s)	392.762
Mo(s)	731.253	Na(s)	336.705
P(s)	861.153	Rb(s)	388.731
S(S)	609.262	Se(s)	347.447
W(s)	828.381		

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN LA CORTEZA TERRESTRE.-

Fracción molar y exergia química estándar de las especies de referencia:

NOTA: LO MISMO QUE EN EL EJERCICIO 1 A P=0.65 atm DE ESTA SECCIÓN

EXERGIA QUIMICA ESTANDAR DE CADA ELEMENTO:

Elemento	Exq° (kJ/gmol)	Elemento	Exq° (kJ/gmol)
Ag(s)	99.364	Al(s)	795,750
Au(s)	50.616	Ba(s)	775.482
Be(s)	604.280	Bi(s)	271.196
Ca(s)	729.145	Cd(s)	298.418
Ce(s)	1054.745	Co(s)	313.420
Cr(s)	584.330	Cu(s)	132.597
Dy(s)	975.858	Er(s)	972.699
Eu(s)	1003.699	F2 (g)	506.405
Fe(s)	374.349	Ga(s)	514.981
Gd(s)	968.881	Ge(s)	557.663
Hf(s)	1063.081	$\operatorname{Hg}(1)$	107.991
Ho (s.)	978.629	In(s)	436.853
Ir(s)	247.001	La(s)	994.553
Lu(s)	945.683	Mg(s)	626.904
Mn(s)	487.748	Nb(s)	899.741
Nd(s)	970.016	Ni(s)	242.592
Os(s)	368.431	Pb(s)	249.197
Pd(s)	138.734	Pr(s)	963.757
Pt(s)	141.159	Pu(s)	1100.056
Ra(s)	824.294	Re(s)	559.575
Rh(s)	179.730	Ru(s)	318.635
Sb(s)	438.186	Sc(s)	925.255
Si(s)	855.009	Sm(s)	993.578
Sn(s)	551.845	Sr(s)	749.836
Ta(s)	974.092	Tb(s)	998.360
Te(s)	329.293	Th(s)	1202.660
Ti(s)	907.203	Tl(s)	194.918
Tm(s)	951.670	U(s)	1196.533
V(s)	721.272	Y(s)	965.464
Yb(s)	944.199	Zn(s)	344.716
Zr(s)	1082.975	_	

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS.-

Compuesto	Exq° (kJ/gmol)
CH4	831.865
FeSO4	173.495

and the second of the second o

e de la companya de la co

・ The Company of th

APÉNDICE B

B.1.- Parámetros de interacción del modelo de Pitzer entre iones presentes en el agua de mar.

A continuación se presentan los parámetros de interacción entre los diferentes iones del agua de mar y que son considerados en la determinación de los coeficientes de actividad de las especies por medio del modelo de Pitzer. La información proviene de diversas publicaciones [31-37].

Tabla B.1.- Parámetros de interacción.

Sal (MX)		$\beta^{(0)}_{MX}$	$\beta^{(1)}_{MX}$	$\beta^{(2)}_{MX}$	C^{φ}_{MX}	m, máx.
HCI		0.17750	0.29450		0.00080	6
HBr		0.19600	0.35640	1.754	0.00827	3
Ba(OH) ₂	of the second	0.17175	1.20000			0.1
BaCl ₂		0.26280	1.49625	3, 513	-0.01938	1.8
BaSO₄ ^(a)	the same	0.20000	2.65000	-55.7		0.004-0.011
BaBr ₂		0.31455	1.56975	280	-0.01596	2
.CaCl ₂		0.31590	1.61400		-0.00034	2.5
CaBr ₂	g. Mark	0.38160	1.61325	Type thought	-0.00257	· · · · 2
CaSO ₄		0.20000	2.65000	-55.7		0.004-0.011
°Ca[B(OH)₄]	2 **	-1.57000	-4.49000		-0.17000	
CdSO ₄	•	0.20530	2.61700	-48.07	0.01140	0.005-3.5
CoCl ₂		0.36428	1.47525	52. A 5 P.	-0.01522	5 (1995 .≈3)
CoBr ₂		0.42698	1.65975	1 9 h	-0.00067	2
CoSO₄	14.00	0.20000	2.70000	-30.7		0.006-0.1
CsOH		0.15000	0.30000	1.0		
CsCl		0.03000	0.05580		0.00038	5
CsBr	7% 1.1	0.02790	0.01390		0.00004	5
Cs ₂ SO ₄		0.08880	1.11075		-0.00600	1.8
CsF		0.13060	0.25700	rayin ta	-0.00430	3.2
CuCl ₂		0.30803	1,37625	79 (1944)	-0.04043	2
CuSO ₄	54 C	0.23580	2.48500	-47.35	-0.00120	0.005-1.4
MgCl ₂		0.35235	1.68150		0.00519	4.5
MgBr ₂		0.43268	1.75275	1	0.00312	5
Mg[B(OH)4]	2	-0.21000	-4.98000		-0.36000	5, 47
MgSO₄		0.22100	3.34300	-37.23	0.02500	0.006-3
Mg[HCO ₃] ₂		0.01930	0.58400			
MgCO₃	. *	2.83300	-15.06900	-204.9	-0.97000	
KOH	** .	0.12980	0.32000	* * * .	0.00410	5.5
KCI		0.04835	0.21220	7.1	-0.00084	4.8
K₂H A \$O₄		<u>0.1</u> 2960	1.64850	<u> </u>	-0.01782	1

⁽a) Se consideran los mismos parámetros que para el CaSO4

Tabla B.1.- Parámetros de interacción (continuación).

		ontinuación				
Sal (MX)	$\beta^{(0)}_{MX}$	$\beta^{(1)}_{MX}$	$\beta^{(2)}_{MX}$	C^{φ}_{MX}	m _i máx.	
KH₂AsO₄	-0.05840	0.06260	1 Take Care	rankar ili ali.	1.2	
K ₃ AsO ₄	0.49940	4.34067		-0.12994	0.7	
K ₂ SO ₄	0.04995	0.77925			0.7	1 93
KBr	0.05690	0.22120		-0.00180	5.5	
KHCO₃	-0.00050	-0.01300				
KF	0.08089	0.20210	to Maria	0.00093	4 11 (1 .2 1	.100
K₂HPO₄	0.02475	1.27425		0.01639		
KH₂PO₄	-0.06780	-0.10420	North Control	ಕರ್ಷ ಕೊಂಡಿಗಳು ಇವರ -	1.8	1. t = 1.
K₃PO₄	0,37293	3.97200	4	-0.08679	ovej eggi 0.7 .	to bi
LiOH	0.01500	0.14000			4	*******
LiCI	0.14940	0.30740	Į.	0.00359	rouse Hak <mark>o</mark> r,	132.27
LiBr	0.17480	0.25470		0.00530	2.5	
Li ₂ SO₄	0.13628	1.27050		-0.00399	3	
MnCl ₂	0.32723	1.55025	and an expectation	~0.02050	2.5	
MnSO ₄	0.20100	2.98000		0.01820	0.1-4	
MnBr ₂	0.44655	1.34477		-0.02269	5.64	
NaOH	0.08640	0.25300		0.00440	6	
NaCl	0.07650	0.26640		0.00127	6	
Na₂HAsO₄	0.03053	1.62975		0.00180	1	
NaH ₂ AsO ₄	-0.04420	0.28950	Name of the second		1.2	
Na₃AsO₄	0.23880	3.93000		-0.04773	0.7	
NaB(OH) ₄	-0.05260	0.11040	1 4 1 34 1	0.01540	- A	
Na ₂ SO ₄	0.01958	1.11300		0.00497	4	
NaBr	0.09730	0.27910		0.00116	4	
NaHCO ₃	0.02770	0.04110				
Na ₂ CO ₃	0.18975	0.84600	100	-0.04803	1.5	
NaF	0.02150	0.21070	and the second			
Na ₂ HPO ₄	-0.05828	1.46550	* 1	0.02938	1	
NaH ₂ PO ₄	-0.05330	0.03960		0.00795	66	
Na ₃ PO ₄	0.17813	3.85133		-0.05154	0.7	
NiCl ₂	0.34793	1.58100		-0.00372	2.5	
ŅìSO₄	0.17020	2:90700	-40.06	0.03660	0.005-2.5	
PbCl ₂ (a)	0.26018	1.64250		-0.08798	1.2	
PbSO ₄ (b)	0.20000	2.65000	-55.7		0.004-0.011	
RbCl	0.04410	0.14830	1977 - 1 1981 - 1981	-0.00101	.5	
Rb ₂ SO₄	0.05790	1.11075	en e	-0.00010	1.8	
RbBr	0.03960	0.15300		-0.00144	5	
RbF	0.11410	0.28420	Andrew Comment	-0.01050	3.5	
SrCl₂	0.28575	1.66725		-0.00130	4	
SrBr₂	0.33113	1.71150		0.00123		
SrSO ₄ (b)	0.20000	2.65000	-55.7		0.004-0.011	
UO ₂ Cl ₂	0.42735	1:64400	55.7	-0.03686	2	
UO ₂ SO ₄	0.32200	1.82700		-0.01760	0.1-5	
ZnCl ₂		1.64250	en e	-0.08798	1.2	
ZnSO ₄	ექანებები 0.26018 - გარების ის 0.19490	2.88300	-32.81		0.005-3.5	
ZnBr ₂	0.46598	1.63425	-UZ.UT	-0.10792	1.6	

 ⁽a) Se suponen los mismos parámetros que para el ZnCl₂
 (b) Se consideran los mismos parámetros que para el CaSO₄

B.2.- Valores de ΔH° de la reacción de formación de las especies de referencia a 25°C.

En la Tabla B.2, se listan los valores de cambio de entalpia normal estándar de la reacción de formación de las especies de referencia, los cuales se utilizan para corregir el valor de ΔG_f° a 25°C cuando es otra la temperatura a la que se lleva a cabo la reacción.

En general, el valor de ΔH_f° a condiciones normales se leyó de la misma referencia bibliográfica de la que proviene el valor de ΔG_f° utilizado en este trabajo; sin embargo, debido a que para algunas especies no se reporta el valor de ΔH_f° o no se dispone de la referencia en la que Szargut se basa para establecer el valor de ΔG_f° que él considera, el calor normal estándar de la reacción de formación se determina por medio de la Ecuación 1-4 del capítulo I, ahora explicita para ΔH_f° , y a partir de los valores de cambio de energía libre de Gibbs estándar y cambio de entropia estándar a 25°C de la reacción, esto es,

$$\Delta H_f^o = \Delta G_f^o + T_n \Delta S_f^o \qquad (B-1)$$

El valor de ΔS_f° , es decir, la diferencia de entropia normal estándar entre el producto y los reactivos de la reacción de formación de la especie de referencia, se obtiene a partir de los valores de entropia estándar a 25°C (S°_{298K}) de cada una de las sustancias presentes en la reacción. Los valores de S°_{298K} de los elementos así como de la mayoría de los óxidos, sulfatos y carbonatos de metales presentes en la corteza terrestre se listan en el CRC Handbook [44].

En el caso de las especies, cuyos valores de ΔG_f° utilizados en el presente trabajo no coinciden con los señalados en las referencias consultadas y que además sus valores de S°_{298K} no están disponibles, el valor de $T_n \Delta S_f^{\circ}$ se obtiene a partir de los valores de ΔH_f° y ΔG_f° que se indican para estas especies en el libro de Wagman [21], o bien en el CRC Handbook para el caso de las especies CuCO₃ y SiO₂.

1 1

Debido a que no se dispone de información de los valores de ΔH_f° y de entropía normal estándar de los hidróxidos de los elementos correspondientes al grupo de las tierras raras de la Tabla Periódica, es decir, Dy(OH)₃, Er(OH)₃, Eu(OH)₃, Gd(OH)₃, Ho(OH)₃, Lu(OH)₃, Nd(OH)₃, Pr(OH)₃, Sm(OH)₃, Tb(OH)₃, Tm(OH)₃, y Yb(OH)₃, el calor normal estándar de formación de estas especies se obtiene al considerar el valor de $T_n\Delta S_f^{\circ}$ del La(OH)₃, valor que resulta de la diferencia entre los valores de ΔH_f° y ΔG_f° que se indican para el La(OH)₃ en el libro de Latimer [22]. Aún cuando el Lantano pertenece al grupo de los metales de transición, las propiedades de este elemento se parecen a las de los elementos del grupo de las tierras raras, por lo que se utiliza el valor de $T_n\Delta S_f^{\circ}$ del La(OH)₃ para obtener el cambio de entalpia normal estándar de los hidróxidos de los elementos del grupo de las tierras raras.

The first of the control of the first property of the control of t

En ninguna de las referencias bibliográficas consultadas se encontraron las propiedades termodinámicas de las especies Nb_2O_3 y Tl_2O_4 , por lo que se consideran los valores de ΔH_f° del Nb_2O_5 y Tl_2O_3 que se publican en los libros de Wagman y CRC Handbook, respectivamente.

ing the control of the principle of the state of the stat

i kantala tanggan menggalah menggalah di kantalah diberah di senggan sebebah di diberah sebagai bebahan berah Banggan menggan menggan menggan menggan menggan penggan penggan penggan berah di sebagai penggan penggan pengg

to a light of the Cartier and the contraction

s all la comment and the comment of the comment of

大型的电子,1992年,有别的4、4、10、1992年,1992年,1992年,1992年,1992年,1992年,1992年,1992年,1992年,1992年,1992年,1992年,1992年,1992年,1992年

the feet was a factor of the conference of the same and the second of the first and the second of the second of

and the second of the control of the

Tabla B.2.- Calor estándar de formación a 25°C de las especies de referencia.

Especie	ΔH_f° , kJ/gmol	Referencia	Especie	ΔH_f° , kJ/gmol	Referencia
Ar	0		Gd(OH)₃	-1421.9	(c)
CO ₂	-393.5065	Perry [7]	GeO ₂	-579.63	(a)
He	0		HfO ₂	-1087.18	(a)
Kr.	0		HgCl₂	-224.4	(b)
N_2	0		Ho(OH)₃	-1427.8	(c)
Ne	0		In ₂ O ₃	-919.67	(a)
O_2	0		IrO ₂	-237 .75	(a)
Xe	0		La(OH)₃	-1452.2	(c)
H ₂ O	-241.8221	Perry [7]	Lu(OH)₃	-1392.6	(c)
D_2O	-249.2364	Reid [8]	Mg ₃ Si ₄ O ₁₀ (OH) ₂	-5922.5	Wagman [21]
HAsO ₄ ²	-906.34	Wagman [21]	MnO ₂	-519.95	(a)
B(OH)₃	-1072.32	Wagman [21]	Nb ₂ O ₃	-1899.5	Wagman [21]
Br [*]	-121.55	Wagman [21]	Nd(OH)₃	-1427.3	(c)
Cl	-167.159	Wagman [21]	NiO	-239 .67	(a)
Cs⁺	-248.11	Barner [49]	OsO ₄	-393.8	(a)
IO ₃	-221.3	Wagman [21]	PbCO₃	-699.17	(a)
K⁺	-251.45	Barner [49]	PdO	-112.81	(a)
Li⁺	-278.65	Barner [49]	Pr(OH)₃	-1418.1	(c)
MoO ₄ ²⁻	-997.87	Barner [49]	PtO ₂	-136.72	(a)
Na [⁺]	-240.12	Wagman [21]	PuO ₂	-1047.87	(a)
HPO₄ ²⁻	-1292.14	Wagman [21]	RaSO₄	-1474 .75	(a)
Rb [⁺]	-248.11	Barner [49]	Re ₂ O ₇	-1248.84	(a)
SO ₄ ²	-909.27	Wagman [21]	Rh ₂ O ₃	-381.76	(a)
SeO ₄ ²⁻	-599.1	Barner [49]	RuO ₂	-307.24	(a)
WO ₄ ²⁻	-1115.4	Barner [49]	Sb ₂ O ₅	- 971.02	· (a)
AgCl	-127.068	Barner [49]	Sc ₂ O ₃	-1902.91	(a)
Al ₂ SiO ₅	<i>-</i> 2587.76	Wagman [21]	SiO ₂	-911.09	(b)
Au	0		Sm(OH)₃	-1447	(c)
BaSO₄	-1474.2	(a)	SnO ₂	- 580.7	Wagman [21]
Be₂SiO₄	-2150.1	(b)	SrCO₃	-1220.1	Wagman [21]
Bi_2O_3	-573.88	Wagman [21]	Ta ₂ O ₅	-2046.46	(a)
CaCO ₃	-1207.11	(a)	Tb(OH)₃	-1447.2	(c)
CdCO ₃	-750.6	Wagman [21]	TeO ₂	-322.6	Wagman [21]
CeO ₂	-1081.06	(a)	ThO ₂	-1226.7	(b)
CoFe ₂ O ₄	-1139.8	(b)	TiO ₂	-944.7	Wagman [21]
$K_2Cr_2O_7$	-2062	(b)	Tl ₂ O ₄	-502.07	CRC [44]
CuCO₃	-595.88	(b)	Tm(OH)₃	-1398.5	(c)
Dy(OH)₃	-1427.3	(c)	UO₃ •H₂O	-1535	(b)
Er(OH)₃	-1424	(c)	V ₂ O ₅	-1550.6	Wagman [21]
Eu(OH)₃	-1453.1	(c)	Y(OH)₃	-1414	(b)
CaF ₂ • 3Ca ₃ (PO ₄) ₂	-13746.3	(b)	Yb(OH)₃	-1395.5	(c)
Fe_2O_3	-824.2	Wagman [21]	ZnCO ₃	-812.86	(b)
Ga ₂ O ₃	-1089.56	(a)	ZrSiO ₄	-2033.8	(b)

⁽a) por medio de la ecuación B-1

⁽b) al suponer el valor de $T_n \Delta S_f^\circ$ obtenido a partir de los valores de ΔH_f° y ΔG_f° que se indican en el libro de Wagman [21] o en el CRC Handbook [44], según sea el caso

⁽c) al considerar $T_n \Delta S_f^{\circ} = -133$ kJ/gmol, calculado a partir de los valores de ΔH_f° y ΔG_f° del La(OH)₃ que se indican en el libro de Latimer [22]

			and the second s			
		**	11	.*		
			* 4		. :	
		7 2 7 4 4	200	\$		ut e
	96		* .	•		
	• • • • • • • • •			•		
	*do	150			:	
	•	•				
	•	1	7 3 3	•	:	
	•			100		# T ; #
		7 (5 °C)		the state of the state of	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	**
	•		• , , -	the State of the Control		
•	1 14 15 17			100		and the first
	÷ ,		$T \to t^{\mu}$		1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	
	4. No.	16.	a the			+ .*
			1		1 2 2	
		+ 3 +			4	*
		7.	* * * * * * * * * * * * * * * * * * *	file Alberta	1 to 1 to 1	• ;
	· · · · · · · · · · · · · · · · · · ·	1.18	San State Control	to in the early	etter og til sig som etter og	4 · · · · · · · · · · · · · · · · · · ·
_		+ 1	· · ·	for the second second		4.
	#		200			,
		* * *	4.5			* * * * * * * * * * * * * * * * * *
		de por t			F 1.184	
					7.	
:	9			and the second	100	
;	•			e de la companya de l	1.1.1.1	4.5
1				the property		***
	•	1000				
	4.4	1 × 3	The second	•		* * * * * * * * * * * * * * * * * * *
	$\mathcal{L}_{\mathcal{A}}^{(k)}(A) = \left(\frac{1}{2} \left(\frac{1}{$	÷4.			100	$\varphi_{i,i} \circ \mathcal{T}^{i,j}$
ř	in the state of the			•	$\mathcal{C}_{p} = \mathcal{R}_{p}$	1000
3		4.5 t	+ vi			
	- 1					7.0
	* * * * * * * * * * * * * * * * * * * *	V 1 2	•	The second second		
			+ ** · · · · · · · · · · · · · · · · · ·		1 1 1 1 X	
		100		•		
			• • •			
	1 2.2	**	10.00			1. 4.3
	• •		$g_{n+1}(A(a)) = \frac{1}{n} \left(\frac{1}{n} \right)$			part to the same
				•		
					4 - 4 - 5	* *
			1.4,	4.5		18 J

APÉNDICE C

PROGRAMA PARA EL CÁLCULO DE EXERGIA QUÍMICA ESTÁNDAR DE COMPUESTOS *EXQCOMP*

Con el fin de sistematizar el cálculo de exergia química estándar de cualquier compuesto químico a partir de la exergia química estándar de los elementos que lo conforman, se desarrolló el programa denominado **EXQCOMP**, escrito con el lenguaje de programación *Fortran77*.

En el programa EXQCOMP, se determina en primer lugar la exergia química estándar de la mayoría de los elementos de la Tabla Periódica, con base en las condiciones normales de temperatura, presión y concentración de las especies de referencia presentes en el medio ambiente (aire atmosférico, hidrosfera y litosfera); o si el usuario desea, puede modificar dichas condiciones a las que prevalecen en el medio bajo el cual esté sujeto el proceso analizado. Las condiciones modificables del medio y las unidades en que deben expresarse en el programa EXQCOMP, se listan en la Tabla C.1.

Tabla C.1.- Definición de las condiciones del medio.

Condición del medio	Unidades	Condición normal
Temperatura	Grados centígrados	25 °C
Presión	Atmósferas	1 atm
Concentración de CO ₂ en el aire	Partes por millón en volumen	345 ppmv
Humedad relativa del aire		0.7
Salinidad del agua de mar	Partes por mil	35 ‰

Debido a que el valor de exergia química de los elementos contenidos en la corteza terrestre depende del valor de exergia química del hidrógeno, oxígeno, carbono, cloro, azufre, potasio y fósforo, cuyas especies de referencia están presentes en el aire atmosférico y en el agua de mar; y que a su vez el valor de exergia química de los elementos determinado a partir de especies de referencia disueltas en el agua de mar

depende del valor de exergia química estándar del H₂, O₂ y C, estimados a partir de la especie presente en la atmósfera; la secuencia con la que se calcula la exergia química estándar de los elementos en el programa EXQCOMP, de acuerdo al medio en donde se encuentra su especie de referencia, es: 1) atmósfera, 2) hidrosfera y 3) litosfera; por lo que el proceso de cálculo no es cíclico.

Una vez establecidas las condiciones del medio ambiente y determinada la exergia química estándar de los elementos, se procede a calcular la exergia química del compuesto o compuestos químicos especificados por el usuario por medio de la ecuación C-1 (o ecuación 2-1)

The problem of the second of
$$Ex_q^o = \Delta G_f^o + \sum_{el} n_{el}^e Ex_{q|el}^o$$
 . The second problem is $(C-1)$ where C

Para lo cual es necesario que el usuario establezca la reacción de formación del compuesto, proporcionando el número de identificación de cada elemento dentro del programa (ver Tabla C.2), el coeficiente estequiométrico de cada elemento en su forma molecular por cada mol de compuesto formado, y el cambio de energía libre de Gibbs estándar de la reacción de formación a condiciones normales, en kJ/gmol. Sí la temperatura del medio es diferente a 25°C, es necesario proporcionar el cambio de entalpia estándar de la reacción de formación del compuesto a 25°C, con el fin de corregir el valor de ΔG_f ° a la nueva temperatura en que se lleva a cabo la reacción.

Tabla C.2.- Número de identificación de los elementos en el programa EXQCOMP.

	Elemento Químico (estado)	Número	Elemento Químico (estado)	Número	Elemento Químico (estado)	Número
	Ar _(g)	1	Cs (s)	15	Ba _(s)	29
	C (s)	2	l _{2 (s)}	16	Be _(s)	30
	He _(g)	3	K (s)	17	Bi (s)	31
	Kr (g)	4 4	Li _(s)	18	Ca _(s)	32
	$N_{2(g)}$	5	Mo (s)	19	Cd (s)	33
÷	Ne (g)	6	Na _(s)	20	Ce (s)	34
	O _{2 (g)}	7	P (s)	21	Co (s)	35
	Xe (g)	8	Rb (s)	22	Cr (s)	36
11	H _{2 (g)}	9	S (s)	23	Cu (s)	37
	D _{2 (g)}	10	Se (s)	24	Dy (s)	38

Tabla C.2.- Número de identificación de los elementos en el programa EXQCOMP (continuación).

		(COHAHA	aciony.		
Elemento Químico		Elemento Químico	10 × 20	Elemento Químico	
(estado)	Número	(estado)	Número	(estado)	Número
As (s)	11	W (s)	25	Er (s)	39
B (s)	12	Ag (s)	26	Eu (s)	40
Br _{2 (1)}	13	Al (s)	27	F _{2 (g)}	. 41
Cl _{2 (g)}	14	Au _(s)	28	Fe _(s)	42
Ga (s)	43	Os (s)	58	Sr (s)	73
Gd (s)	44	Pb _(s)	59	Ta _(s)	74
Ge (s)	45	Pd _(s)	60	Tb (s)	75
Hf (s)	46	Pr _(s)	61	Te (s)	76
Hg (I)	47	Pt (s)	62	Th (s)	77
Ho (s)	48	Pu (s)	63	Ti (s)	78
In _(s)	49	Ra (s)	64	T1 (s)	79
Ir (s)	50	Re (s)	65	Tm _(s)	80
La _(s)	51	Rh (s)	66	U (s)	81
Lu (s)	52	Ru (s)	67	V _(s)	82
Mg (s)	53	Sb _(s)	68	Y (s)	83
Mn (s)	54	Sc (s)	69	Yb _(s)	84
Nb (s)	55	Si _(s)	70	Zn (s)	85
Nd (s)	56	Sm (s)	71	Zr _(s)	86
Ni (s)	57	Sn _(s)	72		

El programa EXQCOMP genera un archivo de resultados (*OUTCOMP*), el cual contiene la información proporcionada por el usuario con relación a las condiciones del medio, y los siguientes resultados de acuerdo al medio en que se encuentre la especie de referencia de cada elemento:

- Aire atmosférico. Composición molar de las especies presentes en el aire (base seca y húmeda) y la exergia química estándar de las especies y de los elementos contenidos en la atmósfera.
- Hidrosfera Fracción masa y concentración molal de todas las especies disueltas en el agua de mar; la fuerza iónica y el valor de pH de la solución; los valores de coeficientes de actividad de los iones libres y del ácido bórico; y la exergia química estándar de los elementos presentes en éste medio.

HOSTICAL)

กระหวาน เริ่ม อกเดือก คระบาทเยาสโอก

1.7

Litosfera.- Fracción molar y exergia química estándar de las especies de referencia presentes en la corteza terrestre y el valor de exergia química de los elementos oscustavet i contenidos en estas especies. grandy 5

Finalmente, en el archivo de resultados, se presenta una lista con los resultados obtenidos en el cálculo de exergia química estándar de los compuestos definidos por el usuario.

C.1.- Algoritmo.

Sec. 2 (1984)

En las siguientes páginas se muestra el algoritmo de cálculo en el que se basa el programa EXQCOMP para la determinación de exergia química estándar de compuestos químicos y, posteriormente, los resultados que se presentan en el archivo de salida OUTCOMP del cálculo de exergia química estándar del metano y sulfato ferroso (a manera de ejemplo) a partir de la exergia química estándar de los elementos que los forman, al considerar las condiciones normales de temperatura, presión y concentración de las especies en el medio ambiente. ten di la la la la della desa la Maria Maria della della

La información requerida por el programa EXQCOMP para la determinación de exergia química estándar del metano y sulfato ferroso se presenta en la Tabla C.3.

Tabla C.3.- Información requerida por el programa EXQCOMP para el cálculo de Ex.º del metano y del sulfato ferroso.

Fórmula química del compuesto ^(a)	∆G _f ° _{COMP} ^(b) kJ/gmol	Número de elementos que conforman al compuesto	Fórmula molecular de cada elemento	Número de identificación de cada elemento	Coeficiente estequiométrico de cada elemento
CH _{4 (g)}	-50.79	2 1. 38. 14. 35. 41.	C H ₂	2 7 47 9 47	1 2014 (3 <mark>2</mark> 3000)3
FeSO _{4 (s)}	-817.96	3	Fe	42	and the continue the lines
1. 11 4.3 	# *		\sim	7	j i mir spe <mark>j 1</mark> . j počevilje v daži pis <mark>Ž</mark>anos pre s

⁽a) Estado: (g) gas, (s) sólido

⁽b) Valores leídos del libro de Perry [7]

1

41 3

C.2.- Resultados del cálculo de exergia química estándar de los elementos y de los compuestos metano y sulfato ferroso a condiciones normales. ear ough

Las condiciones del medio especificadas son:

Temperatura: 25.0 °C

Presión:

1.0000 atm

Concentración de CO2: 345.0 ppmv

Humedad relativa:

0.700

Salinidad:

35.183 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

			de la especie ión mol)	Exq° (kJ/qmol)		
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento	
Ar(q)	Ar	0.9331E-02	0.9128E-02	11.641	11.641	
C (g)	CO2		0.3375E-03	19.815	410.268	
He (g)	He		0.4892E-05	30.311	30.311	
Kr (q)	Kr	0.1000E-05	0.9784E-06	34.300	34.300	
N2 (g)	N2	0.7804E+00	0.7634E+00	0.669	0.669	
Ne (g)	Nе	0.1800E-04	0.1761E-04	27.136	27.136	
02 (g)	02	0.2099E+00	0.2054E+00	3.924	3.924	
Xe(q)	Хe	0.9001E-07	0.8805E-07	40.269	40.269	
H2 (g)	H2O	0.0000E+00	0.2171E-01	9.493	236.121	
D2 (g)	D20	0.0000E+00	0.3375E-05	31.231	263.903	

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN EL AGUA DE MAR.-

Fracción masa	y molalidad	de las espec	cies (S=35.183	por mil):	
ESPECIE	g/gsw	gmol/kgH2O	ESPECIE	g/gsw	gmol/kgH2O
AgCl2-	0.464E-09	0.269E-08	HAs042-	0.522E-08	0.387E-07
H2AsO4-	0.380E-09	0.280E-08	As043-	0.206E-11	0.154E-10
AuCl2-	0.150E-10	0.579E-10	B (OH) 3	0.204E-04	0.342E-03
B (OH) 4-	0.490E-05	0.644E-04	Ba2+	0.189E-07	0.143E-06
BaSO4	0.357E-08	0.158E-07	BiO+	0.215E-10	0.992E-10
Br-	0.673E-04	0.873E-03	HCO3-	0.118E-03	0.201E-02
CO32-	0.487E-05	0.841E-04	CO2	0.647E-06	0.152E-04
Ca2+	0.375E-03	0.969E-02	CaHCO3+	0.371E-05	0.380E-04
CaCO3	0.751E-05	0.778E-04	CaB (OH) 4+	0.115E-05	0.100E-04
CdC12	0.122E-10	0.692E-10	Cd2+	0.360E-12	0.332E-11
CdCl+	0.768E-11	0.539E-10	CdCl3-	0.109E-10	0.515E-10
CdOHCl	0.851E-12	0.535E-11	CdBr+	0.684E-13	0.369E-12
CdC03	0.614E-13	0.369E-12	CdSO4	0.742E-13	0.369E-12
Cl-	0.194E-01	0.566E+00	Co2+	0.390E-09	0.686E-08
Cs+	0.300E-09	0.234E-08	Cu2+	0.448E-10	0.731E-09
CuOH+	0.300E-09	0.386E-08	CuCO3	0.269E-08	0.225E-07
CuOHC1	0.762E-08	0.681E-07	CuCl+	0.578E-09	0.606E-08
CuCl2	0.217E-09	0.167E-08	CuCl3-	0.120E-09	0.731E-09
CuC142-	0.103E-09	0.522E-09	,F − .5	0.709E-06	0.387E-04
MgF+	0.149E-05	0.356E-04	CaF+	0.864E-07	0.152E-05
HgCl42-	0.112E-09	0.340E-09	HgCl3-	0.184E-10	0.620E-10
HgC12	0.406E-11	0.155E-10	HgBr2	0.180E-12	0.517E-12
HgClBr	0.173E-11	0.568E-11	HgCl2Br-	0.753E-11	0.222E-10
HgC13Br2-	0.237E-10	0.636E-10	HgClBr2-	0.987E-12	0.258E-11
HgCl2Br22-	0.129E-11	0.310E-11	HgOHCl	0.252E-12	0.103E-11
103-	0.882E-07	0.523E-06	K+	0.394E-03	0.104E-01
кнсоз	0.511E-07	0.529E-06	KC03-	0.506E-07	0.529E-06
Li+	0.170E-06	0.254E-04	Mg2+	0.119E-02	0.506E-01
MgHCO3+	0.453E-05	0.551E-04	MgCO3	0.448E-05	0.551E-04
MgB (OH) 4+	0.997E-06	0.100E-04	Mn2+	0.400E-09	0.755E-08
Mo042-	0.167E-07	0.108E-06	Na+	0.105E-01	0.474E+00
NaHCO3	0.197E-05	0.243E-04	NaCO3-	0.194E-05	0.243E-04
Ni2+	0.660E-08	0.117E-06	HPO42-	0.450E-07	0.486E-06
H2PO4-	0.132E-08	0.141E-07	CaH2PO4+	0.350E-09	0.265E-08
MgH2PO4+	0.310E-09	0.265E-08	CaHPO4	0.132E-06	0.101E-05
MgHPO4	0.117E-06	0.101E-05	PO43-	0.621E-10	0.677E-09
CaPO4-	0.276E-07	0.212E-06	MgPO4-	0.244E-07	0.212E-06
PbC12	0.114E-10	0.423E-10	Pb2+	0.900E-12	0.450E-11
PbOH+	0.221E-11	0.102E-10	PbCl+	0.443E-11	0.189E-10
PbHCO3+	0.362E-12	0.140E-11	PbCO3	0.103E-12	0.400E-12
PbSO4	0.146E-12	0.500E-12	PbCl3-	0.278E-11	0.920E-11
PbC142-	0.121E-11	0.360E-11	PboHCl	0.221E-11	0.880E-11
PbBr+	0.416E-13	0.150E-12	Rb+	0.120E-06	0.146E-05
SO42-	0.115E-02	.0.124E-01	CaSO4	0.111E-03	0.843E-03
KS04-	0.166E-04	0.128E-03	MgSO4	0.503E-03	0.433E-02

NaSO4-	0.133E-02	0.116E-01	Se042-	0.163E-09	0.118E-08
Sr2+	0.733E-05	0.867E-04	SrSO4	0.171E-05	0.963E-05
UO2 (CO3) 34-	0.624E-08	0.144E-07	WO42-	0.135E-09	0.564E-09
Zn2+	0.105E-08	0.166E-07	ZnOH+	0.188E-09	0.237E-08
ZnHCO3+	0.377E-10	0.309E-09	ZnCO3	0.411E-09	0.340E-08
ZnSO4	0.305E-09	0.196E-08	ZnCl+	0.444E-08	0.457E-07
ZnCl2	0.209E-08	0.159E-07	ZnCl3-	0.290E-09	0.175E-08
ZnC142-	0.474E-09	0.237E-08	ZnOHCl	0.146E-08	0.129E-07

Fuerza Iónica = 0.67818 gmol/kgH20 pH= 8.1189 (en escala molal)

Coeficientes de actividad de los iones (escala molal): ION GAMA ION GAMA 0.72188 0.52308 Ag+ 0.52308 0.18871 Ba2+ Au+ 0.52308 0.21121 BiO+ Ca2+ 0.07694 Co2+ 0.21683 Cd2+ 0.56983 0.18922 Cs+ Cu2+ Mg2+ 0.23588 Hg2+ 0.07479 0.72853 K+ 0.61435 Li+ 0.22392 0.65276 Na+ Mn2+ 0.22100 Pb2+0.19603 Ni2+ 0.20867 0.60004 Sr2+ Rb+ 0.25250 Zn2+ 0.20317 UO22+ 0.62512 Cl-0.70256 HAs042-0.13834 H2As04-0.55369 0.01511 B (OH) 4-0.38451 As043-0.12848 0.72970 SO42-Br-HCO3-0.55852 CO32-0.04545 F-0.57638 IO3-0.52254 MoO42-0.07463 HPO42-0.11993 H2P04-0.50322 PO43~ 0.01377 W042-SeO42-0.07463 0.07463 Coef. de actividad de B(OH)3 : 1.21772

EXERGIA QUIMICA ESTANDAR DE CADA ELEMENTO:

Elemento	Exq° (kJ/gmol)	Elemento	Exq° (kJ/gmol)
As(s)	492.579	B(s)	628.067
Br2(1)	100.999	Cl2(g)	123.670
Cs(s)	404.598	I2(s)	175.731
K(s)	366.666	Li(s)	392.725
Mo(s)	731.324	Na(s)	336.668
P(s)	861.261	Rb(s)	388.694
S(s)	609.332	Se(s)	347.518
W(s)	828.452		

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN LA CORTEZA TERRESTRE.-

Fracción molar y exergia química estándar de las especies de referencia:

Especie	Xi	Exqi	Especie	Xi	Exqi
		(kJ/mol)			(kJ/mol)
AgCl	0.100E-08	51.36	Al2SiO5	0.207E-02	15.32
Au	0.136E-08	50.62	BaSO4	0.420E-05	30.69
Be2SiO4	0.210E-06	38.11	Bi203	0.274E-09	54.57
CaCO3	0.140E-02	16.30	CdC03	0.122E-07	45.17
CeO2	0.117E-05	33.87	CoFe2O4	0.285E-06	37.36
K2Cr2O7	0.135E-05	33.49	CuCO3	0.589E-05	29.85
Dy (OH) 3	0.488E-07	41.73	Er(OH)3	0.461E-07	41.87
Eu (OH) 3	0.214E-07	43.77	CaF2*3Ca3(PO4)2	0.224E-04	26.54
Fe203	0.678E-02	12.38	Ga203	0.298E-06	37.25
Gd (OH) 3	0.921E-07	40.16	GeO2	0.949E-07	40.08

 $||A||_{\mathcal{I}_{2}(\mathcal{O}_{N})}$ 4 Q 1.55 27.0 13139

- : - ws

200

 $(x,y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ 1.44.13.44

1. 1. 1. 1. 1. 1. 1. 1.

5.37

4

17.19.1 \$

. 450 Å

Survey Says g the side

の表現の の表現の 対象数別の ままする ものをもの。

BARRAS SA WALLEY STORMAN

Andrew Service Control of the Contro

Light of Lamb to bank

al and which they be work as the Total Karaman and all the

HfO2	0.115E-06	39.60	HgC12	0.542E-09 52.89	
Ho (OH) 3	0.195E-07	44.00	In203	0.295E-08 48.69	
IrO2	0.359E-11	65.32	La (OH) 3	0.596E-06 35.53	
Lu (OH) 3	0.786E-08	46.26	Mg3Si4O10(OH)2	0.867E-03 17.48	
MnO2	0.230E-04	26.47	Nb203	0.149E-06 38.96	
Nd (OH) 3	0.515E-06	35.89	NiO	0.176E-05 32.84	
0s04	0.339E-12	71.18	PbC03	0.104E-06 39.85	
PdO	0.637E-10	58.20	Pr (OH) 3	0.157E-06 38.83	
PtO2	0.176E-10	61.38	PuO2	0.840E-19 108.88	·
RaSO4	0.298E-13	77.20	Re207	0.366E-11 65.28	
Rh203	0.329E-11	65.54	RuO2	0.677E-12 69.46	
Sb205	0.108E-09	56.88	Sc203	0.373E-06 36.69	77.50
SiO2	0.407E+00	2.23	Sm (OH) 3	0.108E-06 39.75	
SnO2	0.461E-06	36.17	SrCO3	0.291E-04 25.89	San
Ta205	0.745E-08	46.39	Tb (OH) 3	0.171E-07 44.34	Steel 4
TeO2	0.948E-11	62.92	ThO2	0.271E-06 37.48	474
TiO2	0.163E-03	21.63	T1204	0.149E-08 50.38	A survival
Tm (OH) 3	0.759E-08	46.35	U03*H20	0.149E-07 44.67	* 75 Tes
V205	0.183E-05	32.75	Y (OH) 3	0.100E-05 34.24	* - 2 .*
Yb (OH) 3	0.461E-07	41.87	ZnCO3	0.745E-05 29.27	or it
ZrSiO4	0.244E-04	26.33	ancos (A)	0.7438-03 23.27	अभिन्न
712TO4	0.2345-04	20.33	- I		3.75

EXERGIA QUIMICA ESTANDAR DE CADA ELEMENTO:

			· · ·
Elemento	Exq° (kJ/gmol)	Elemento	Exq° (kJ/gmol)
Ag(s)	99.327	Al(s)	795.748
Au(s)	50.616	Ba(s)	775.408
Be(s)	604.280	Bi(s)	271.195
Ca(s)	729.143	Cd(s)	298.416
Ce(s)	1054.743	Co(s)	313.419
Cr(s)	584.364	Cu(s)	132.595
Dy(s)	975.967	Er(s)	972.808
Eu(s)	1003.808	F2 (g)	505.763
Fe(s)	374.347	Ga(s)	514.980
Gd(s)	968.990	Ge(s)	557.661
Hf(s)	1063.080	Hg(1)	107.917
Ho(s)	978.738	In(s)	436.852
Ir(s)	247.000	La(s)	994.661
Lu(s)	945.792	Mg(s)	626.927
Mn(s)	487.746	Nb(s)	899.739
Nd(s)	970.125	Ni(s)	242.591
Os(s)	368.428	Pb(s)	249.195
Pd(s)	138.733	Pr(s)	963.866
Pt(s)	141.157	Pu(s)	1100.054
Ra(s)	824.220	Re(s)	559.572
Rh(s)	179.729	Ru(s)	318.634
Sb(s)	438.184	Sc(s)	925.254
Si(s)	855.007	Sm(s)	993.687
Sn(s)	551.843	Sr(s)	749.834
Ta(s)	974.090	Tb(s)	998.469
Te(s)	329.292	Th(s)	1202.659
Ti(s)	907.202	Tl (s)	194.916
Tm(s)	951.779	U(s)	1196.604
V(s)	721.270	Y(s)	965.573
Yb(s)	944.308	Zn(s)	344.713
Zr(s)	1082.973		

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUÍMICOS ESPECIFICADOS.-

Compuesto	Exq° (kJ/gmol)
CH4	831.716
FeSO4	173.568

APÉNDICE D

D.1.- Resultados de la simulación de la columna Desisobutanizadora.

A continuación se presenta el balance de materia y entalpia de la columna Desisobutanizadora de la Sección de Pre-tratamiento de Carga de una Planta Isomerizadora de Butanos. El número de corriente corresponde al indicado en los esquemas de las Figuras 4.1 y 4.2 del capítulo IV.

Tabla D.1.- Balance de materia y energía de la columna Desisobutanizadora.

Corriente	1	2	3	4	5	6
Fase:	Líquido	Mezcla	Líquido	Mezcla	Vapor	Líquido
Componentes: kmol/h						and English
– Agua	1.95E-04	0	1.95E-04	1.95E-04	9.87E-04	9.87E-04
 Hidrógeno 	0	1.14E-09	0	0	1.42E-08	1.42E-08
- Metano	0	8.61E-07	0	0	1.07E-05	1.07E-05
Etano	0	2.85E-03	0	0	3.56E-02	3,56E-02
– Propano	1.2286	1.0113	1.2286	1.2286	27.9431	27.9431
i-Butano	248.0853	183,413	248.0853	248.0853	5157.6663	5157.6663
- n-Butano	470.3613	171.3053	470.3613	470.3613	27.9482	27.9482
- neo-Pentano	1.4435	1.7647	1.4435	1.4435	1.84E-04	1.84E-04
i-Pentano	5.82E-02		5.82E-02	5.82E-02	9.20E-09	9.20E-09
n-Pentano	1.0477	0.281	1.0477	1.0477	2.71E-11	2.71E-11
Componentes: kg/h	W 20	124	2000	+ N		han dalame.
– Agua	3.52E-03	0	3.52E-03	3.52E-03	1.78E-02	1.78E-02
 Hidrógeno 	0	2.30E-09	0	, 0	2.87E-08	2.87E-08
Metano		1.38E-05	. : .0	0	1.72E-04	1.72E-04
– Etano	0	8.57E-02	• • • • • • • • • • • • • • • • • • • •	0 11.5	1.0693	1:0693
Propano	54.1769	44.5948	54.1769	54.1769	1232.1965	1232.1965
i-Butano	1.44E+04	1.07E+04	1.44E+04	1.44E+04	3.00E+05	3.00E+05
n-Butano	2.73E+04	9956.8509	2.73E+04	2.73E+04	1624.4453	1624.4453
 neo-Pentano 	104.1489	127.3235	104.1489	104.1489	1.33E-02	1.33E-02
i-Pentano	4.1991	196.1044	4.1991	4.1991	6.64E-07	6.64E-07
n-Pentano	75.5918	20.2742	75.5918	75.5918	1.96E-09	1.96E-09
Flujo total:						•
kmol/h	722.225	360.496	722.225	722.225	5,213,595	5,213.595
kg/h	41,997	21,006	41,997	41,997	302,640	302,640
m³/h	82.38	61.68	92.74	780.57	15,991	571.03
Variables de estado:						
Temperatura, °C	67.1164	62.105	100.8103	65.5328	55.1502	41
Presión, kg/cm²	24.3332	7.9532	24.0332	8.1532		6.9332
Fracción mol del vapor	0	1.96E-02	0	0.3359	1	0.0002
Entalpia, J/kgmol	-1.4370E+08	-1.4570E+08	-1.3811E+08	-1.3811E+08	-1.3329E+08	-1.5231E+08
Entropia, J/kgmol-K	-4.2409E+05	-4.2697E+05	-4.0812E+05	-4.0672E+05	-3.8894E+05	-4.4783E+05
Densidad, kg/m ³	509.804	340.543	452.860	53.803	18.926	529.985
Peso molecular	58.149	58.269	58.149	58.149	58.048	58.048
					VV.V-10	00.040

Tabla D.1.- Balance de materia y energía de la columna Desisobutanizadora (continuación).

Corriente	. 7	8	9	10	11	12
Fase:	Líquido	Líquido	Líquido	Líquido	Líquido	Vapor
Componentes: kmol/h					e garage	
– Agua	8.61E-04	8.61E-04	7.92E-04	6.90E-05	7.92E-04	0
 Hidrógeno 	1.42E-08	1.42E-08	1.31E-08	1.14E-09	1.31E-08	0
- Metano	1.07E-05	1.07E-05	9.86E-06	8.59E-07	9.86E-06	0
- Etano	3.56E-02	3.56E-02	3,27E-02	2.85E-03	3.27E-02	0
- Propano	27.9431	27.9431	25.7032	2.2382	25.7032	7.56E-08
- i-Butano	5157.6663	5157.6663	4744.2917	413.129	4744.2917	18.1229
- n-Butano	27.9482	27.9482	25.7169	2.2386	25.7169	639.5132
- neo-Pentano	1.84E-04	1.84E-04	1.69E-04	1.47E-05	1.69E-04	3,2129
i-Pentano	9.20E-09	9.20E-09	8.45E-09	7.37E-10	8.45E-09	1.5806
- n-Pentano	2.71E-11	2.71E-11	2.49E-11	2.17E-12	2.49E-11	0.1601
Componentes: kg/h						
- Agua	1.55E-02	1.55E-02	1.43E-02	1.24E-03	1.43E-02	0
- Hidrógeno	2.87E-08	2.87E-08	2.64E-08	2.30E-09	2.64E-08	0
- Metano	1.72E-04	1.72E-04	1.58E-04	1.38E-05	1.58E-04	0
- Etano	1.0693	1.0693	0.9836	8.57E-02	0.9836	0
- Propano	1232.1965	1232.1965	1133.4247	98.6989	1133.4247	3.33E-06
- i-Butano	3.00E+05	3.00E+05	2.76E+05	2.40E+04	2.76E+05	1053.3671
- n-Butano	1624.4453	1624.4453	1494.7556	130.118	1494.7556	3.72E+04
- πeo-Pentano	1.33E-02	1.33E-02	1.22E-02	1.06E-03	1.22E-02	231.8182
- i-Pentano	6.64E-07	6.64E-07	6 10E-07	5.32E-08	6.10E-07	114.0465
- n-Pentano	1.96E-09	1.96E-09	1.80E-09	1.57E-10	1.80E-09	11.5525
Flujo total:				* *		
kmol/h	5,213.594	5,213.594	4,795.746	417.609	4,795.746	662,590
kg/h	302,640	302,640	278,380	24,241	278,380	38,581
m ³ /h	571.03	571.75	525.93	45.80	525.99	1,986.16
Variables de estado.			[s : _ 1	Contract of		
Temperatura, °C	41	41.4831	41.4831	41.4831	41.532	70.8979
Presión, kg/cm ²	6.9332	11.2332	11.2332	11.2332	7.7332	8.2716
Fracción moi del vapor	0.0002	0	0	0	0	1
Entalpia, J/kgmol	-1.5231E+08	-1.5223E+08	-1.5223E+08	-1.5223E+08	•	-1.2319E+08
Entropia, J/kgmol-K	-4.4783E+05	-4.4778E+05	-4.4778E+05	-4.4778E+05	-4.4762E+05	
Densidad, kg/m ³	529.985	529.321	529.321	529.321	529.254	19.425
Peso molecular	58.048	58.048	58.048	58.048	58.048	58.228
(1101000101	33.346	30.340	33.340	00.040	00,040	00.220
$\mathcal{L}_{\mathcal{A}} = \mathcal{L}_{\mathcal{A}} = $			and a second	17.5	***	16 2
		9	and the second second			
		A SECTION		the state of the s		

\$2.00

Tabla D.1.- Balance de materia y energía de la columna Desisobutanizadora (continuación).

Corriente	13	14	15	16	17	18
Fase:	Vapor	Líquido	Líquido	Líquido	Líquido	Liquido
Componentes: kmol/h					•	
- Agua	0	0	. 0	0	· · · · · · · · · · · · · · · · · · ·	. 0
 Hidrógeno 	0	. 0	0	0	¹ = 0	. 0
 Metano 	0	0	0	0	14. A1. 4 0	0
Etano	0	0	. 0	0	0	0
Propano	7.56E-08	7.56E-08	9.49E-17	9.49E-17	9.49E-17	0
i-Butano	18.1229	18.1229	3.46E-03	3.46E-03	3.46E-03	7.30E-07
n-Butano	639.5132	639.5132	12.6184	12.6184	12.6157	2.66E-03
neo-Pentano	3.2129	3.2129	2.1476	2.1476	2.1471	4.53E-04
i-Pentano	1.5806	1.5806	5021.0104	5021.0104	5019.951	1.0594
n-Pentano	0.1601	0.1601	5632.7236	5632.7236	5631.5351	1.1885
Componentes: kg/h				* *		
- Agua	. 0	. 0	0	0 -	0	0
 Hidrógeno 	0	0	0	0	0	. 0
- Metano	0	0	0	0		0
– Etano	0	0	0	0	0	0
 Propano 	3.33E-06	3.33E-06	4.18E-15	4.18E-15	4.18E-15	8.83E-19
i-Butano	1053.3671	1053.3671	0.201	0.201	0.201	4.24E-05
- n-Butano	3.72E+04	3.72E+04	733.4268	733.4268	733.2721	0.1547
- neo-Pentano	231.8182	231.8182	154.9519	154.9519	154.9192	3.27E-02
i-Pentano	114.0465	114.0465	3.62E+05	3.62E+05	3.62E+05	76.4384
- n-Pentano	11.5525	11.5525	4.06E+05	4.06E+05	4.06E+05	85.7509
Flujo total:	4	•				
kmol/h	662.590	662.590	10,669	10,669	10,666	2.2510
kg/h	38,581	38,581	769,560	769,560	769,400	162.3768
m³/h	2,030.27	72.99	1,494.36	1,497.21	1,496.90	0.3159
Variables de estado:					· ·	
Temperatura, °C	70,5845	60	111.3549	112.0328	112.0328	112.0328
Presión, kg/cm ²	8.1122	7.7122	8.4332	16.0332	16.0332	16.0332
Fracción mol del vapor	. 1	0	0	0	0	0
Entalpia, J/kgmol	-1.2319E+08	-1.4267E+08	-1.6010E+08	-1.5997E+08	-1.5997E+08	-1.5997E+08
Entropia, J/kgmol-K		-4.2762E+05	-4.9699E+05	-4.9695E+05	-4.9695E+05	-4.9695E+05
Densidad, kg/m ³	19.003	528.593	514.975	513.994		513.994
Peso molecular	58.228	58.228	72.134	72.134	72.134	72.134

Tabla D.1.- Balance de materia y energía de la columna Desisobutanizadora (nantimenal fat

_					tinuacio	911).			
<u> </u>	Corriente		19	<u> </u>	20		W2	LP1	LP2
F	ase:		Líquido		Mezcla		Líquido	Vapor	Scar & Líquido que
C	Componentes: kmo	<i>Vh</i>			• .		a" V		$\langle \mathcal{F}_{ij}^{i} \mathcal{F}_{ij}^{i} \rangle e^{i \hat{\lambda}_{ij}}$
	Agua	1.	.0		0	1.	26E-04	105.466	1.05.466
	 Hidrógeno 	-,1	-0		.0		0	0	
	Metano	=	0		0		·0	0	0 (0 €)
	- Etano	er dig	.a. 1.0	A 54		.13%1.	0 4.07	. "	o ș÷ç. 0 .≪
1	 Propano 	J	9.49E-17		49E-17	s y.	0	O	
	i-Butano	M2000	3.46E-03		46E-03	Fist	0 1		
1000	n-Butano		12.6157		12.6157		0	. 0	
	 neo-Pentano 	45.00	2.1471		2.1471	Ç i	-0.85	. 0	** *** **
	i-Pentano		5019.951		019.951		: 0 ,7 (*)	: C	
	л-Pentano		631.5351	563	31.5351		0 .	C	្សស្លា នគាំក្រភព 0 am
(Componentes: kg/h)			÷		(y		<i>इन्छ</i> चुकी
	- Agua	d.	.0		.0	2.	27E-03	1900	
	 Hidrógeno 		.0		:0		.0	0	
	 Metano 		.0		0		·: 0	0	
. *	- Etano	, Y:	. 0	de la se		- 25 A	•		
1.1	- Propano	4.00	4.18E-15	, , , ,	18E-15	-	T 1	_	
17	- i-Butano	100	0.201		0.201	·	. 0	, O	
	– n-Butano		733.2721		33.2721	00 in 1899	.0	est C	3
4.7	- neo-Pentano		154.9192		54.9192		0	· · · · · · · · ·	
F[5]	- i-Pentano		3.62E+05	2017	62E+05		0	C	
	- n-Pentano		4.06E+05	4.	06E+05		0		0.
) F	Flujo total;	a Pelijit	1.7	and the second	/Y		Carlos Santa	29	right.
k k	mol/h	4,250	10,666		10,666	1.2	61E-04	105.466	105.466 🕏
i, k	g/h 🚋 🍇 💡	9 1 24	769,400		769,400	2.2	71E-03	1,900	1,900 🐴
n	n ³ /h		1,496.82		17,791	2.2	89E-06	795.59	2.07
	/ariables de estado	Marana and		.31			Harit.	×9:	Or symbolsky
	emperatura, °C		112.0143		112.086		•	147.4889	
	Presión, kg/cm²	177 S	11.6332	Service Service	8.5332		6.9332		1477903764 1985 (str 4:4932 00
	racción mol del va	กดา				e +2,05		4.0002 1	
	Intalpia, J/kgmol	•							-2.7654E+08
	Entropia, J/kgmol-k						19E+05 -4.		
	Densidad, kg/m ³		514.021		43.246		992.076	2.388	
	Peso molecular		72.134	1.25	72.134		18.015	18.015	

En las Tablas D.2, D.3, D.4 y D.5 se presenta la composición y las propiedades termodinámicas de las corrientes de gas combustible, aire y gases de combustión, así como las corrientes que dan servicio de enfriamiento (agua y aire), y que cambian dependiendo de las condiciones ambientales de las ciudades consideradas.

Tabla D.2.- Composición y propiedades termodinámicas del gas combustible, del aire y de los gases de combustión. Minatitlán ($T_o = 25^{\circ}$ C, $P_o = 1$ atm).

Corriente y de los gase	A3	C1	CA	G1.	. G2
Fase:	Vapor	Vapor	Vapor	Vapor	Vapor
Componentes: kmol/h	•				A second of the
– Agua	0	0	. 0	316.6821	316.6821
 Hidrógeno 	0	87.5463	87.5463	0	0
Metano	0	42.0896	42.0896	. 0	0
- Etano	0	10.4382	10.4382	0	· · · · · · · • • • • • • • • • • • • •
- Propano	0	14.8155	14.8155	0	0
– n-Butano	0	9.7647	9.7647	0	0
- Oxígeno	357.6984	. 0	357.6984	46.6563	46.6563
Nitrógeno	1345.6274	0:3367	1345.9641	1345.9641	1345 9641
- Etileno	0	0.1683	0.1683	0	0
- Propileno	0	1.6835	1.6835	0	0
 Ácido sulfhídrico 	0	0.1683	0.1683	0	0
 Monóxido de carbono 	0	1.3468	1.3468	0	· · · · · · · · · · · · · · · · · · ·
 Dióxido de carbono 	0	0	0	153.2061	153.2061
 Dióxido de azufre 		. 0	0	0.1683	0.1683
Flujo total:				-	* 1977
kmol/h	1,703.33	168.36	1,871.68	1,862.68	1,862.68
kg/h	49,142	2,514.93	51,657	51,657	51,657
m³/h	9,479	934.13	10,414	76,375	25,534
Variables de estado:				ty a light	
Temperatura, °С	25	25	25.00	1918.03	459 45
Presión, kg/cm²	4.53	4.53	4.53	4.53	4.53
Fracción mol del vapor	. 1	1	1	1	
Entalpia, J/kgmol	-2.8107E+04	-4.1030E+07	-3.7162E+06	-3.7342E+06	-5.9599E+07
Entropia, J/kgmol-K	-8.1046E+03	-7.7792E+04	-1.1872E+04	5.7131E+04	1.5900E+04
Densidad, kg/m ^s	5.184	2.692	4.961	0.676	2.023
Peso molecular	28.850	14.938	27.599	27.732	27.732

Tabla D.2.- Composición y propiedades termodinámicas del agua y del aire de enfriamiento. Minatitlán (T_o = 25°C, P_o = 1 atm) (continuación).

Corriente	er en	CW1	CW2	A1	A2
Fase:		Líquido	Liquido	Vapor	Vapor
Componentes:	kmol/h			\$ 17 Table	होत्ती और गाँउ प्रतिकारी गाँउ है। -
- Agua		1.22E+05	1.22E+05	0	0
 Oxígeno 		. 0	0	4532.4675	4532.4675
 Nitrógeno 		0	0	1.71E+04	1.71E+04
Flujo total:					
kmol/h	¥ .	122,290	122,290	21,583	21,583
kg/h		2,203,000	2,203,000	622,680	622,680
m ³ /h		2,208.49	2,215.68	527,800	564,110
Variables de es	stado:			and the second s	
Temperatura, °	C	24	34.78	25	45.46
Presión, kg/cm	2	5.53	4.95	1.03	1.03
Fracción mol d	el vapor	0	0.	1.	1
Entalpia, J/kgmol		-2.8589E+08	-2.8507E+08	-6.4203E+03	5.9160E+05
Entropia, J/kgr	nol-K	-1.6338E+05	-1.6070E+05	4.2545E+03	6.1944E+03
Densidad, kg/n		997.514	994.276	1.180	1.104
Peso molecula		18.015	18.015	28.850	28.850

Tabla D.3.- Composición y propiedades termodinámicas del gas combustible, del aire y de los gases de combustión. Jericó ($T_o = 33$ °C, $P_o = 1.03$ atm).

Corriente	. A3	C1	CA	G1	G2
Fase:	Vapor	Vapor	Vapor	Vapor	Vapor
Componentes: kmol/h	•			10 June 1	44.54
– Agua	0	0	0	316.6964	316.6964
 Hidrógeno 	0	87.5503	87.5503	0	0
- Metano	0	42.0915	42.0915	0	0
- Etano	0	10.4386	10.4386	0	. 0
- Propano	. 0	14.8162	14.8162	0	0
– n-Butano	. 0	9.7652	9.7652	0	0
- Oxígeno	357.7146	0	357.7146	46.6584	46.6584
 Nitrógeno 	1345.6884	0.3367	1346.0251	1346.0251	1346.0251
- Etileno	0	0.1683	0.1683	0	0
- Propileno	0	1.6836	1.6836	0	0
 Ácido sulfhídrico 	- 14 m O	0.1683	0.1683		0
 – Monóxido de carbono 	0	1.3469	1.3469	<u>.</u> 0	. 0
 Dióxido de carbono 	· · · · · 0	0	. 0	153,213	153.213
 Dióxido de azufre 	0	. 0	0	0.1683	0.1683
Flujo total:					
kmol/h	1,703.40	168.37	1,871.77	1,862.76	1,862.76
kg/h	49,144	2,515.05	51,659	51,659	51,659
m³/h	9,737	959.75	10,697	76,586	25,790
Variables de estado:					
Temperatura, °C	33	33	. 33	1923.99	466.75
Presión, kg/cm²	4.53	4.53	4.53	4.53	4.53
Fracción mol del vapor	. 1	1	1	1	1
Entalpia, J/kgmol	2.0688E+05	-4.0704E+07	-3.4730E+06	-3.4898E+06	-5.9352E+07
Entropia, J/kgmol-K	-7.3266E+03	-7.6710E+04	-1.1067E+04	5.7243E+04	1.6235E+04
Densidad, kg/m ³	5.047	2.621	4.829	0.675	2.003
Peso molecular	28.850	14.938	27.599	27.732	27.732

Tabla D.3.- Composición y propiedades termodinámicas del agua y del aire de enfriamiento. Jericó ($T_o = 33$ °C, $P_o = 1.03$ atm) (continuación).

(continuación).							
Corriente	CW1	CW2	AT	A2			
Fase:	Líquido	Líquido	Vapor	Vapor			
Componentes: kmol/h							
Agua	1.22E+05	1.22E+05	. 0	0			
 Oxígeno 	0	0	4532.4675	4532.4675			
 Nitrógeno 	0	0	1.71E+04	1.71E+04			
Flujo total:				and the second s			
kmol/h	122,290	122,290	21,583	21,583			
kg/h	2,203,000	2,203,000	622,680	622,680			
m ³ /h	2,212.87	2,221.47	526,750	562,020			
Variables de estado:				· · · · · · · · · · · · · · · · · · ·			
Temperatura, °C	. 31	41.78	33	53.45			
Presión, kg/cm²	5.53	4.95	1.06	1.06			
Fraccion mol del vapor	0	0	1	1			
Entalpia, J/kgmol	-2.8536E+08	-2.8455E+08	2.2718E+05	8.2520E+05			
Entropia, J/kgmol-K	-1.6163E+05	-1.5900E+05	4.7906E+03	6.6815E+03			
Densidad, kg/m³	995.541	991.685	1.182	1.108			
Peso molecular	18.015	18.015	28.850	28.850			

Tabla D.4.- Composición y propiedades termodinámicas del gas combustible, del aire v de los gases de combustión. Cusco ($T_c = 21^{\circ}$ C. $P_c = 0.67$ atm).

Corriente	es de combus A3		CA	G1	G2
Fase:	Vapor	Vapor	Vapor	Vapor	Vapor
Componentes: kmol/h	•	•	•	•	
– Agua	0	0	0	316.7223	316.7223
 Hidrógeno 	. 0	87.5574	87.5574	0	0
– Metano	. 0	42.0949	42.0949	0	0
- Etano	0	10.4395	10.4395	0	0
- Propano	0	14.8174	14.8174	0	0
- n-Butano	0	9.766	9.766	0	0
- Oxígeno	357.7438	0	357.7438	46.6622	46.6622
 Nitrógeno 	1345.7983	0.3367	1346:1351	1346.1351	1346.1351
- Etileno	0	0.1683	0.1683	0	0
- Propileno	0	1.6838	1.6838	0	0
 Ácido sulfhídrico 	0	0.1683	0.1683	.0	0.
 Monóxido de carbono 	· • • • • • • • • • • • • • • • • • • •	1 347	1.347	0	0
 Dióxido de carbono 	0	0	0	153.2255	153.2255
 Dióxido de azufre 	. 0	0	. 0	0.1683	0.1683
Flujo total:	Land () - Prince () - Anna ()				Make the state of
kmol/h	1,703.54	168.38	1,871.92	1,862.91	1,862.91
kg/h	49,148	2,515.25	51,663	51,663	51,663
m ³ /h	9,351	921.45	10,273	76,281	25,418
Variables de estado:				· · · · · · · · · · · · · · · · · · ·	
Temperatura, °C	. 21	21	21	1915.06	456.05
Presión, kg/cm²	4.53	4.53	4.53	4.53	4.53
Fracción mol del vapor	1	1	1	. 1	1
Entalpia, J/kgmol	-1.4561E+05	-4.1192E+07	-3.8377E+06	-3.8563E+06	-5.9714E+07
Entropia, J/kgmol-K	-8.5014E+03	-7.8339E+04	-1.2282E+04	5.7076E+04	1.5742E+04
Densidad, kg/m ³	5.256	2.730	5.029	0.677	2.033
Peso molecular	28.850	14.938	27.599	27.732	27.732

Tabla D.4.- Composición y propiedades termodinámicas del agua y del aire de enfriamiento. Cusco ($T_o = 21$ °C, $P_o = 0.67$ atm) (continuación).

Corriente	CW1	CW2	A1	A2
		MINTER CONTRACTOR		
Fase:	Liquido	Liquido	Vapor	Vapor
Componentes: kmol/h			-	
– Agua	1.22E+05	1.22E+05	0	0
Oxígeno	0	. 0	4532.4675	4532.4675
 Nitrógeno 	0	0	1.71E+04	1.71E+04
Flujo total:			-	:
kmol/h	122,290	122,290	21,583	21,583
kg/h	2,203,000	2,203,000	622,680	622,680
m ³ /h	2,203.69	2,208.15	776,110	830,220
Variables de estado:				Parametra de la composición del composición de la composición de la composición del composición de la
Temperatura, °C	12.5	23.28	21	41.47
Presión, kg/cm²	5.53	4.95	0.69	0.69
Fracción mol del vapor	0	0	1	1
Entalpia, J/kgmol	-2.8675E+08	-2.8594E+08	-1.2111E+05	4.7691E+05
Entropia, J/kgmol-K	-1.6636E+05	-1.6357E+05	7.1833E+03	9.1488E+03
Densidad, kg/m ³	999.687	997.666	0.802	0.750
Peso molecular	18.015	18.015	28.850	28.850

Tabla D.5.- Composición y propiedades termodinámicas del gas combustible, del aire y de los gases de combustión. Québec ($T_o = -16^{\circ}$ C, $P_o = 1$ atm).

Corriente	A3	C1	CA	G1	G2
Fase:	Vapor	Vapor	Vapor	Vapor	Vapor
Componentes: kmol/h				15.350.050	dubbers digestable
– Agua	0	0	0	316.5636	316.5636
- Hidrógeno	0	87.5136	87.5136	0 1	0
- Metano	0	42.0738	42.0738	0	0. 2000
– Etano	0	10.4343	10.4343	0	20 N. C.
– Propano	0	14.81	14.81	0	0
n-Butano	0	9.7611	9.7611	0	⊬ंकाली ते । 0
Oxigeno	357.5646	0	357.5646	46.6388	46.6388
 Nitrógeno 	1345.124	0.3365	1345.4606	1345.4606	1345.4606
- Etileno	0	0.1683	0.1683	0	- 12,890 £ _0
- Propileno	0	1.6829	1.6829	0 (0
 Ácido sulfhídrico 	0	0.1683	0.1683	0	⁵⁰⁵
 Monóxido de carbono 	0	1.3463	1.3463	0	· Andrews in the contract of t
 Dióxido de carbono 	0	0	. 0	153.1488	153.1488
 Dióxido de azufre 	0	0		0.1683	0.1683
Flujo total:					garan engere
kmol/h	1,702.69	168.30	1,870.98	1,861.98	1,861.98
kg/h	49,123	2,513.99	51,637	51,637	51,637
m ³ /h	8,154	802.26	8,957	75,286	24,207
Variables de estado:			43	11 Y 2,30	d et a la letta vigit bilae i La la la la letta
Temperatura, °C	-16	-16	-16.00	1887.58	421.72
Presión, kg/cm²	4.53	4.53	4.53	4.53	4.53
Fracción mol del vapor	1.	1	1	1	
Entalpia, J/kgmol	-1.2333E+06	-4.2650E+07	-4.9587E+06	-4 9827E+06	-6.0868E+07
Entropia, J/kgmol-K	-1.2454E+04	-8.3647E+04	-1.6356E+04	5.6558E+04	1.4121E+04
Densidad, kg/m ³	6.024	3.134	5.765	0.686	2.133
Peso molecular	28.850	14.938	27.599	27.732	27.732

Tabla D.5.- Composición y propiedades termodinámicas del agua y del aire de enfriamiento. Québec $(T_o = -16^{\circ}\text{C}, P_o = 1 \text{ atm})$ (continuación).

<u> </u>	(continu	uacionj.	Anna y and a simple to the	and the section of th
Corriente	CW1	CW2		A2
Fase:	Liquido	Liquido	Vapor	Vapor
Componentes: kmol/h			0.000	(विकास कर्मा की कर्म के विकास के व
- Oxígeno	36395	36395	4532.4655	4532,4655
_ – Nitrógeno	136910	136910	1.71E+04	1.71E+04
Flujo total:				TARREST STATE
kmol/h	173,310	173,310	21,583	21,583
kg/h	5,000,000	5,000,000	622,680	622,680
m³/h	3,653,400.00	3,933,000.00	454,990	491,370
Variables de estado:		A		The state of the s
Temperatura, °C	-16	3.60	-16	4.48
Presión, kg/cm²	1.03	1.03	1.03	1.03
Fracción mol del vapor	1	1	1	n di Asse 🕌
Entalpia, J/kgmol	-1.2038E+06	-6.3146E+05	-1.2038E+06	-6.0579E+05
Entropia, J/kgmol-K	-6.6170E+01	2.0789E+03	-6.6170E+01	2.1715E+03
Densidad, kg/m ³	1.369	1.271	1.369	1.267
Peso molecular	28.850	28.850	28.850	28.850
				1 1 1

D.2.- Cálculo de exergia física de las corrientes que integran la columna Desisobutanizadora, para cada uno de los medios de referencia seleccionados.

En las Tablas D.6, D.7, D.8, D.9 se presenta el cálculo de exergia física, a partir de la Ecuación 1-9, de cada una de las corrientes involucradas en el sistema bajo estudio para cada una de las ciudades seleccionadas. Cabe mencionar que los valores de entalpia (H_o) y entropia (S_o) a las condiciones de temperatura T_o y presión P_o del medio ambiente se determinaron para cada corriente con el simulador de procesos Aspen Plus.

Tabla D.6.- Cálculo de exergia física (condiciones ambientales de Minatitlán: $T_a = 25$ °C. $P_a = 1$ atm).

H		(COHOIC	lones amble	ilitales de M	mautiai i. 10	- 25 C, 1 o	– I aun <i>ij</i> .	
Corriente J/kgmol J/kgmol J/kgmol-K J/kgmol-K J/kgmol-K J/kgmol-K kgmol/h kJ/h 1 -1,4370E+08 -1,2927E+08 -4,2409E+05 -3,6599E+05 2,982,515 722,2248 2,089,046 2 -1,4570E+08 -1,310E+08 -4,2697E+05 -3,6699E+05 2,783,016 360.4963 1,003,267 3 -1,3811E+08 -1,2927E+08 -4,0872E+05 -3,6699E+05 3,721,060 722,2248 2,385,978 5 -1,3329E+08 -1,3500E+08 -4,0672E+05 -3,6599E+05 3,303,650 722,2248 2,385,978 6 -1,5231E+08 -1,3500E+08 -4,4783E+05 -3,7995E+05 2,928,422 5213,5945 15,267,605 7 -1,5231E+08 -1,3500E+08 -4,478E+05 -3,7995E+05 2,993,515 5213,5945 15,267,605 8 -1,5223E+08 -1,3500E+08 -4,4778E+05 -3,7995E+05 2,993,515 4795,745 14,356,134 10 -1,5223E+08 -1,3500E+08 -4,4778E+05 -3,7995E+05	2	\overline{H}	H_o	S	S _o	Ex_t	N	Ex_t
2 -1.4570E+08 -1.3108E+08 -4.2697E+05 -3.6680E+05 2,783,016 360.4963 1,003,267 3 -1.3811E+08 -1.2927E+08 -4.0872E+05 -3.6599E+05 3,721,060 722.2248 2,687,441 4 -1.3811E+08 -1.3500E+08 -3.8894E+05 -3.7995E+05 3,03,660 722.2248 2,385,978 5 -1.3329E+08 -1.3500E+08 -3.8894E+05 -3.7995E+05 4,390,369 5213.5945 22,889,601 6 -1.5231E+08 -1.3500E+08 -4.4783E+05 -3.7995E+05 2,928,422 5213.5945 15,267,604 7 -1.5231E+08 -1.3500E+08 -4.478E+05 -3.7995E+05 2,928,422 5213.5943 15,606,970 9 -1.5232E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2,993,515 5213.5943 15,606,970 9 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2,993,515 5213.5943 15,606,970 9 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2,993,515 4795.7456 14,356,134 10 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2,993,515 4795.7456 14,356,134 11 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2,993,515 4795.7456 14,127,358 12 -1.2319E+08 -1.2657E+08 -3.7045E+05 -3.6615E+05 4,662,045 662.5900 3,089,024 13 -1.2319E+08 -1.2657E+08 -3.7034E+05 -3.6615E+05 4,662,045 662.5900 3,089,024 14 -1.4267E+08 -1.2657E+08 -4.2762E+05 -3.6615E+05 4,629,249 662.5900 3,089,024 14 -1.4267E+08 -1.7606E+08 -4.9699E+05 -5.4292E+05 2,285,971 10669.0000 25,425,371 17 -1.5997E+08 -1.7606E+08 -4.9699E+05 -5.4292E+05 2,384,045 10669.0000 25,428,219 18 -1.5997E+08 -1.7606E+08 -4.9699E+05 -5.4292E+05 2,384,045 10669.0000 25,428,219 18 -1.5997E+08 -1.7606E+08 -4.9699E+05 -5.4292E+05 2,384,045 10666.0000 25,428,219 19 -1.5997E+08 -1.7606E+08 -4.9699E+05 -5.4292E+05 2,384,045 10666.0000 25,428,219 19 -1.5997E+08 -1.7606E+08 -4.9699E+05 -5.4292E+05 2,384,045 10666.0000 25,428,219 10 -1.5997E+08 -1.7606E+08 -4.9699E+05 -5.4292E+05 2,384,045 10666.0000 25,428,219 10 -1.59	Corriente	J/kgmol		J/kgmol-K	J/kgmol-K		kgmol/h	kJ/h
3 -1.3811E+08 -1.2927E+08 -4.0812E+05 -3.6599E+05 3,721,060 722.2248 2,385,978 4 -1.3811E+08 -1.2927E+08 -4.0672E+05 -3.6599E+05 3,303,650 722.2248 2,385,978 5 -1.3329E+08 -1.3500E+08 -4.8783E+05 -3.7995E+05 2,928,422 5213,5945 15,267,605 7 -1.5231E+08 -1.3500E+08 -4.4783E+05 -3.7995E+05 2,928,422 5213,5943 15,267,604 8 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2,928,422 5213,5943 15,267,604 9 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2,933,515 5213,5943 15,267,604 1 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2,933,515 5213,5943 15,267,604 9 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2,933,515 5213,5943 15,267,604 1 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2,933,515 5213,5943 15,267,604 1 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2,933,515 47795,7456 14,356,134 1 -1.5223E+08 -1.3500E+08 -4.478E±05 -3.7995E+05 2,933,515 47795,7456 14,325,118 1 -1.5223E+08 -1.3500E+08 -4.478E±05 -3.7995E+05 2,933,515 4775,7456 14,127,358 1 -1.2319E+08 -1.2657E±08 -3.7045E±05 -3.6615E±05 4,622,045 662,5900 3,089,024 1 -1.2319E±08 -1.2657E±08 -3.7045E±05 -3.6615E±05 4,622,049 662,5900 3,089,024 1 -1.4267E±08 -1.2657E±08 -4.2762E±05 -3.6615E±05 4,622,249 662,5900 3,087,224 1 -1.5997E±08 -1.7606E±08 -4.9695E±05 -5.4292E±05 2,384,045 10666,0000 25,435,371 2 -1.5997E±08 -1.7606E±08 -4.9695E±05 -5.4292E±05 2,384,045 10666,0000 25,435,371 3 -1.2997E±08 -1.7606E±08 -4.9695E±05 -5.4292E±05 2,384,045 10666,0000 25,435,371 3 -1.5997E±08 -1.7606E±08 -4.9695E±05 -5.4292E±05 2,384,045 10666,0000 25,435,371 3 -1.5997E±08 -1.7606E±08 -4.9695E±05 -5.4292E±05 2,384,045 10666,0000 25,435,371 3 -1.5997E±08 -1.7606E±08 -4.9695E±05 -5.4292E±05 2,384	1	-1.4370E+08	-1.2927E+08	-4.2409E+05	-3.6599E+05	2,892,515	722.2248	2,089,046
4 -1.3811E+08 -1.2927E+08 -4.0672E+05 -3.6599E+05 3,303,650 722.2248 2,385,978 5 -1.3232E+08 -1.3500E+08 -3.8894E+05 -3.7995E+05 4,900,369 5213.5945 15,267,604 6 -1.5231E+08 -1.3500E+08 -4.4783E+05 -3.7995E+05 2,928,422 5213.5943 15,267,604 8 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2,993,515 5213.5943 15,267,604 9 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2,993,515 476.6089 1,250,118 10 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2,993,515 417.6089 1,250,118 11 -1.5223E+08 -1.3500E+08 -4.4762E+05 -3.7995E+05 2,993,515 417.6089 1,250,118 11 -1.2319E+08 -1.2657E+08 -3.7045E+05 -3.6615E+05 4,662,045 662,5900 3,089,024 13 -1.2319E+08 -1.2657E+08 -3.7045E+05 -3.6615E+05 4,629,	2	-1.4570E+08	-1-3108E+08	-4.2697E+05	-3.6860E+05	2,783,016	360.4963	1,003,267
5 -1.3329E+08 -1.3500E+08 -3.8894E+05 -3.7995E+05 4,390,369 5213.5945 22,889,601 6 -1.5231E+08 -1.3500E+08 -4.4783E+05 -3.7995E+05 2,928,422 5213.5945 15,267,605 7 -1.5231E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2,928,422 5213.5943 15,267,605 8 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2,993,515 5213.5943 15,606,970 9 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2,993,515 4795.7456 14,356,134 10 -1.5223E+08 -1.3500E+08 -4.476E+05 -3.7995E+05 2,993,515 417.6089 1,250,118 11 -1.5223E+08 -1.3500E+08 -4.476E+05 -3.7995E+05 2,993,515 417.6089 1,250,118 11 -1.5223E+08 -1.2657E+08 -3.7045E+05 -3.6615E+05 2,945,811 4795.7456 14,127,358 12 -1.2319E+08 -1.2657E+08 -3.7045E+05 -3.6615E+05 4,	3	-1.3811E+08	-1.2927E+08	-4.0812E+05	-3.6599E+05	3,721,060	722,2248	2,687,441
6 -1.5231E+08 -1.3500E+08 -4.4783E+05 -3.7995E+05 2,928,422 5213,5945 15,267,604 7 -1.5231E+08 -1.3500E+08 -4.478E+05 -3.7995E+05 2,928,422 5213,5945 15,267,604 8 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2,993,515 5213,5943 15,606,970 9 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2,993,515 4795,7456 14,356,134 10 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2,993,515 417,6089 1,250,118 11 -1.5223E+08 -1.3500E+08 -4.4762E+05 -3.7995E+05 2,993,515 417,6089 1,250,118 12 -1.2319E+08 -1.2657E+08 -3.7034E+05 -3.6615E+05 4,662,045 662,5900 3,089,024 13 -1.249E+08 -1.2657E+08 -4.2762E+05 -3.6615E+05 4,662,045 662,5900 1,475,774 15 -1.6010E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384	4	-1.3811E+08	-1.2927E+08	-4.0672E+05	-3.6599E+05	3,303,650	722.2248	2,385,978
7 -1.5231E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2.993,515 5213.5943 15,606,970 9 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2.993,515 5213.5943 15,606,970 1 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2.993,515 4795.7456 14,356,134 10 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2.993,515 4795.7456 14,356,134 11 -1.5223E+08 -1.3500E+08 -4.4762E+05 -3.7995E+05 2.993,515 4795.7456 14,356,134 11 -1.5223E+08 -1.3500E+08 -4.4762E+05 -3.7995E+05 2.993,515 4795.7456 14,250,118 11 -1.5223E+08 -1.3500E+08 -4.4762E+05 -3.7995E+05 2.945,811 4795.7456 14,127,358 12 -1.2319E+08 -1.2657E+08 -3.7045E+05 -3.6615E+05 4,629,249 662.5900 3,089,024 13 -1.2319E+08 -1.2657E+08 -4.2762E+05 -3.6615E+05 4,629,249 662.5900 3,087,294 14 -1.4267E+08 -1.2667E+08 -4.2762E+05 -3.6615E+05 2,227,281 662.5900 1,475,774 15 -1.6010E+08 -1.7606E+08 -4.9699E+05 -5.4292E+05 2,265,971 10669.0000 24,175,639 16 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 10669.0000 25,435,371 17 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 10666.0000 25,435,371 18 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 10666.0000 25,435,371 19 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 10666.0000 25,428,219 18 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 10666.0000 25,428,219 18 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,333,359 10666.0000 24,887,607 20 -1.5022E+08 -1.7606E+08 -4.9678E+05 -5.4292E+05 2,333,359 10666.0000 24,887,607 20 -1.5022E+08 -1.6338E+05 -1.6313E+05 45,289 0.0001 0.00571 CW1 -2.8589E+08 -2.8582E+08 -1.6378E+05 -1.6313E+05 45,289 0.0001 0.00571 CW2 -2.8507E+08 -2.8582E+08 -1.6070E+05 -1.6313E+05 45,289 0.0001 9.00571 CW2 -2.8507E+04 -6.4203E+03 -1.6338E+05 -1.6313E+05 45,289 0.0001 9.00571 CW3 -2.8509E+07 -7.9621E+07 5.7131E+04 -6.5395E+04 3,665,166 168.3583 617,061 CA -3.7162E+06 -3.6937E+06 -1.1872E+04 4.9012E+02 3,663,266 1871.6842 6,856,478 G1 -3.7342E+06 -7.9621E+07 5.7131E+04 -1.8801E+04 5,675,897 1862.6770 99,183,218 G2 -5.9599E+07 -7.9621E+07 1.5900E+04 -1.8801E+04	5		-1.3500E+08	-3.8894E+05	-3.7995E+05	4,390,369	5213.5945	22,889,601
8 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2,993,515 5213.5943 15,606,970 9 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2,993,515 4795.7456 14,356,134 10 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2,993,515 417.6089 1,250,118 11 -1.5223E+08 -1.3500E+08 -4.4762E+05 -3.7995E+05 2,993,515 417.6089 1,250,118 12 -1.2319E+08 -1.2657E+08 -3.7045E+05 -3.6615E+05 4,662,045 662,5900 3,089,024 13 -1.2319E+08 -1.2657E+08 -3.7034E+05 -3.6615E+05 4,662,045 662,5900 3,087,294 14 -1.4267E+08 -1.2657E+08 -4.2762E+05 -3.6615E+05 2,227,281 662,5900 1,475,774 15 -1.6010E+08 -1.7606E+08 -4.9699E+05 -5.4292E+05 2,384,045 10669,000 25,435,371 17 -1.5997E+08 -1.7606E+08 -4.9678E+05 -5.4292E+05 2,3	6	-1.5231E+08	-1.3500E+08	-4.4783E+05	-3.7995E+05	2,928,422	5213,5945	15,267,605
9 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2,993,515 4795.7456 14,356,134 10 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2,993,515 417.6089 1,250,118 11 -1.5223E+08 -1.3500E+08 -4.4762E+05 -3.7995E+05 2,945,811 4795.7456 14,127,358 12 -1.2319E+08 -1.2657E+08 -3.7045E+05 -3.6615E+05 4,662,045 662.5900 3,089,024 13 -1.2319E+08 -1.2657E+08 -4.2762E+05 -3.6615E+05 4,629,249 662.5900 3,067,294 14 -1.4267E+08 -1.2657E+08 -4.2762E+05 -3.6615E+05 2,227,281 662.5900 3,067,294 14 -1.4267E+08 -1.7606E+08 -4.9699E+05 -5.4292E+05 2,265,971 10669.0000 24,175,639 16 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 10669.0000 24,175,639 16 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 10666.0000 25,428,219 18 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 10666.0000 25,428,219 18 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 10666.0000 24,887,607 19 -1.5997E+08 -1.7606E+08 -4.9678E+05 -5.4292E+05 2,384,045 10666.0000 24,887,607 19 -1.5997E+08 -1.7606E+08 -4.9678E+05 -5.4292E+05 2,384,045 10666.0000 24,887,607 19 -1.5997E+08 -1.7606E+08 -4.9678E+05 -5.4292E+05 2,384,045 10666.0000 24,887,607 19 -1.5997E+08 -2.8582E+08 -1.6313E+05 45,289 0.0001 0.00571 10666.0000 24,887,607 10666.0000 24,887,607 10666.0000 24,887,607 10666.0000 24,887,607 10666.0000 24,887,607 10666.0000 24,887,607 10666.0000 24,887,607 10666.0000 24,887,607 10666.0000 24,887,607 10666.0000 24,887,607 10666.0000 24,887,607 10666.0000 24,887,607 10666.0000 24,887,607 10666.0000 24,887,607 10666.0000 24,887,166 1069.0000 24,887,607 10666.0000 24,887,607 106	7	-1.5231E+08	-1.3500E+08	-4.4783E+05	-3.7995E+05		5213.5943	15,267,604
10 -1.5223E+08 -1.3500E+08 -4.4778E+05 -3.7995E+05 2,993,515 417.6089 1,250,118 11 -1.5223E+08 -1.3500E+08 -4.4762E+05 -3.7995E+05 2,945,811 4795,7456 14,127,358 12 -1.2319E+08 -1.2657E+08 -3.7045E+05 -3.6615E+05 4,620,045 662.5900 3,089,024 13 -1.267E+08 -1.2657E+08 -3.7034E+05 -3.6615E+05 4,629,249 662.5900 3,067,294 14 -1.4267E+08 -1.2657E+08 -4.2762E+05 -3.6615E+05 2,227,281 662.5900 1,475,774 15 -1.6010E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 10669.0000 24,175,639 16 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 10669.0000 25,435,371 17 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 10666.0000 25,428,219 18 -1.5997E+08 -1.7606E+08 -4.9678E+05 -5.4292E+05 <	8	-1.5223E+08	-1.3500E+08	-4.4778E+05	-3.7995E+05	2,993,515	5213.5943	15,606,970
11 -1.5223E+08 -1.3500E+08 -4.4762E+05 -3.7995E+05 2,945,811 4795,7456 14,127,358 12 -1.2319E+08 -1.2657E+08 -3.7045E+05 -3.6615E+05 4,662,045 662,5900 3,089,024 13 -1.2319E+08 -1.2657E+08 -3.7034E+05 -3.6615E+05 4,629,249 662,5900 3,067,294 14 -1.4267E+08 -1.2657E+08 -4.2762E+05 -3.6615E+05 2,227,281 662,5900 1,475,774 15 -1.6010E+08 -1.7606E+08 -4.9699E+05 -5.4292E+05 2,384,045 10669,0000 24,175,639 16 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 10666,0000 25,438,371 17 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 10666,0000 25,428,219 18 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 2.2510 5,366 19 -1.5997E+08 -1.7606E+08 -4.9678E+05 -5.4292E+05 2,333,359 10666,0000 24,887,607 20 -1.592E+08		-1.5223E+08			-3.7995E+05			14,356,134
12 -1.2319E+08 -1.2657E+08 -3.7045E+05 -3.6615E+05 4,662,045 662,5900 3,089,024 13 -1.2319E+08 -1.2657E+08 -3.7034E+05 -3.6615E+05 4,629,249 662,5900 3,067,294 14 -1.4267E+08 -1.2657E+08 -4.2762E+05 -3.6615E+05 2,227,281 662,5900 1,475,774 15 -1.6010E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 10669,0000 24,175,639 16 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 10669,0000 25,428,219 18 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 2.2510 5,366 19 -1.5997E+08 -1.7606E+08 -4.9678E+05 -5.4292E+05 2,333,359 10666,0000 24,887,607 20 -1.5022E+08 -1.7606E+08 -4.999E+05 -5.4292E+05 4,394,071 10666,0000 24,887,607 W2 -2.8460E+08 -2.8582E+08 -1.5919E+05 -1.6313E+05 4,					-3.7995E+05	2,993,515	417.6089	
13 -1.2319E+08 -1.2657E+08 -3.7034E+05 -3.6615E+05 4,629,249 662.5900 3,067,294 14 -1.4267E+08 -1.2657E+08 -4.2762E+05 -3.6615E+05 2,227,281 662.5900 1,475,774 15 -1.6010E+08 -1.7606E+08 -4.9699E+05 -5.4292E+05 2,265,971 10669.0000 24,175,639 16 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 10669.0000 25,435,371 17 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 10666.0000 25,428,219 18 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 10666.0000 24,887,607 20 -1.5997E+08 -1.7606E+08 -4.9678E+05 -5.4292E+05 2,333,359 10666.0000 24,887,607 20 -1.5022E+08 -1.7606E+08 -1.5919E+05 -5.4292E+05 4,394,071 10666.0000 46,867,156 W2 -2.8460E+08 -2.8582E+08 -1.5919E+05 -1.6313E+05		-1.5223E+08	-1.3500E+08	-4.4762E+05	-3.7995E+05	2,945,811	4795.7456	14,127,358
14 -1.4267E+08 -1.2657E+08 -4.2762E+05 -3.6615E+05 2,227,281 662.5900 1,475,774 15 -1.6010E+08 -1.7606E+08 -4.9699E+05 -5.4292E+05 2,265,971 10669.0000 24,175,639 16 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 10669.0000 25,435,371 17 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 10666.0000 25,428,219 18 -1.5997E+08 -1.7606E+08 -4.9678E+05 -5.4292E+05 2,384,045 10666.0000 24,887,607 20 -1.5022E+08 -1.7606E+08 -4.9678E+05 -5.4292E+05 2,333,359 10666.0000 24,887,607 20 -1.5022E+08 -1.7606E+08 -4.7099E+05 -5.4292E+05 4,394,071 10666.0000 24,887,607 W2 -2.8460E+08 -2.8582E+08 -1.5919E+05 -1.6313E+05 45,289 0.0001 0.00571 CW1 -2.8589E+08 -2.8582E+08 -1.6070E+05 -1.6313E+05 25,496 122290.0000 3,117,845 A2 5.9160E+05 <td></td> <td>-1.2319E+08</td> <td></td> <td>-3.7045E+05</td> <td>-3.6615E+05</td> <td>4,662,045</td> <td>662.5900</td> <td>3,089,024</td>		-1.2319E+08		-3.7045E+05	-3.6615E+05	4,662,045	662.5900	3,089,024
15 -1.6010E+08 -1.7606E+08 -4.9699E+05 -5.4292E+05 2,265,971 10669.0000 24,175,639 16 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 10669.0000 25,435,371 17 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 10666.0000 25,428,219 18 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 2.2510 5,366 19 -1.5997E+08 -1.7606E+08 -4.9678E+05 -5.4292E+05 2,333,359 10666.0000 24,887,607 20 -1.5022E+08 -1.7606E+08 -4.7099E+05 -5.4292E+05 4,394,071 10666.0000 24,887,607 20 -1.5022E+08 -1.7606E+08 -1.5919E+05 -1.6313E+05 45,289 0.0001 0.00571 CW1 -2.8589E+08 -2.8582E+08 -1.6070E+05 -1.6313E+05 4,538 122290.0000 554,891 CW2 -2.8507E+08 -2.8582E+08 -1.6070E+05 -1.6313E+05 25,496 122290.0000 3,117,845 A2 5.9160E+05 <td< td=""><td>13</td><td>-1.2319E+08</td><td>-1.2657E+08</td><td>-3.7034E+05</td><td>-3.6615E+05</td><td></td><td>662.5900</td><td></td></td<>	13	-1.2319E+08	-1.2657E+08	-3.7034E+05	-3.6615E+05		662.5900	
16 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 10669.0000 25,435,371 17 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 10666.0000 25,428,219 18 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 2.2510 5,366 19 -1.5997E+08 -1.7606E+08 -4.9678E+05 -5.4292E+05 2,333,359 10666.0000 24,887,607 20 -1.5022E+08 -1.7606E+08 -4.7099E+05 -5.4292E+05 4,394,071 10666.0000 24,887,607 20 -1.5022E+08 -1.7606E+08 -4.7099E+05 -5.4292E+05 4,394,071 10666.0000 24,887,607 W2 -2.8460E+08 -2.8582E+08 -1.5919E+05 -1.6313E+05 45,289 0.0001 0.00571 CW1 -2.8589E+08 -2.8582E+08 -1.6070E+05 -1.6313E+05 25,496 122290.0000 554,891 CW2 -2.8507E+08 -2.8582E+08 -1.6070E+05 -1.6313E+05 25,496 122290.0000 3,117,845 A2 5.9160E+05 <t< td=""><td></td><td>-1.4267E+08</td><td>1 4 3</td><td></td><td>-3.6615E+05</td><td>2,227,281</td><td>662.5900</td><td></td></t<>		-1.4267E+08	1 4 3		-3.6615E+05	2,227,281	662.5900	
17 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 10666.0000 25,428,219 18 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 2.2510 5,366 19 -1.5997E+08 -1.7606E+08 -4.9678E+05 -5.4292E+05 2,333,359 10666.0000 24,887,607 20 -1.5022E+08 -1.7606E+08 -4.7099E+05 -5.4292E+05 4,394,071 10666.0000 46,867,156 W2 -2.8460E+08 -2.8582E+08 -1.5919E+05 -1.6313E+05 45,289 0.0001 0.00571 CW1 -2.8589E+08 -2.8582E+08 -1.6378E+05 -1.6313E+05 4,538 122290.0000 554,891 CW2 -2.8507E+08 -2.8582E+08 -1.6070E+05 -1.6313E+05 25,496 122290.0000 3,117,845 A2 5.9160E+05 -6.4203E+03 -8.1046E+03 4.2545E+03 19,620 21583.0000 423,452 A3 -2.8107E+04 -6.4203E+03 -8.1046E+03 4.2545E+03 3,663,155 1703.3258 6,239,546 C1 -4.1030E+07 -4.0999E+							10669.0000	
18 -1.5997E+08 -1.7606E+08 -4.9695E+05 -5.4292E+05 2,384,045 2.2510 5,366 19 -1.5997E+08 -1.7606E+08 -4.9678E+05 -5.4292E+05 2,333,359 10666.0000 24,887,607 20 -1.5022E+08 -1.7606E+08 -4.7099E+05 -5.4292E+05 4,394,071 10666.0000 46,867,156 W2 -2.8460E+08 -2.8582E+08 -1.5919E+05 -1.6313E+05 45,289 0.0001 0.00571 CW1 -2.8589E+08 -2.8582E+08 -1.6338E+05 -1.6313E+05 4,538 122290.0000 554,891 CW2 -2.8507E+08 -2.8582E+08 -1.6070E+05 -1.6313E+05 25,496 122290.0000 3,117,845 A2 5.9160E+05 -6.4203E+03 6.1944E+03 4.2545E+03 19,620 21583.0000 423,452 A3 -2.8107E+04 -6.4203E+03 -8.1046E+03 4.2545E+03 3,663,155 1703.3258 6,239,546 C1 -4.1030E+07 -4.0999E+07 -7.7792E+04 -6.5395E+04 3,663,266 1871.6842 6,856,478 G1 -3.7342E+06 -7.9621E+07<						2,384,045	10669.0000	25,435,371
19 -1.5997E+08 -1.7606E+08 -4.9678E+05 -5.4292E+05 2,333,359 10666.0000 24,887,607 20 -1.5022E+08 -1.7606E+08 -4.7099E+05 -5.4292E+05 4,394,071 10666.0000 46,867,156 W2 -2.8460E+08 -2.8582E+08 -1.5919E+05 -1.6313E+05 45,289 0.0001 0.00571 CW1 -2.8589E+08 -2.8582E+08 -1.6338E+05 -1.6313E+05 4,538 122290.0000 554,891 CW2 -2.8507E+08 -2.8582E+08 -1.6070E+05 -1.6313E+05 25,496 122290.0000 3,117,845 A2 5.9160E+05 -6.4203E+03 6.1944E+03 4.2545E+03 19,620 21583.0000 423,452 A3 -2.8107E+04 -6.4203E+03 -8.1046E+03 4.2545E+03 3,663,155 1703.3258 6,239,546 C1 -4.1030E+07 -4.0999E+07 -7.7792E+04 -6.5395E+04 3,663,166 168.3583 617,061 CA -3.7162E+06 -3.6937E+06 -1.1872E+04 -1.8801E+04 53,247,674 1862.6770 99,183,218 G2 -5.9599E+07 -7.962		-1.5997E+08	-1.7606E+08		-5.4292E+05	2,384,045	10666.0000	25,428,219
20 -1.5022E+08 -1.7606E+08 -4.7099E+05 -5.4292E+05 4,394,071 10666.0000 46,867,156 W2 -2.8460E+08 -2.8582E+08 -1.5919E+05 -1.6313E+05 45,289 0.0001 0.00571 CW1 -2.8589E+08 -2.8582E+08 -1.6338E+05 -1.6313E+05 4,538 122290.0000 554,891 CW2 -2.8507E+08 -2.8582E+08 -1.6070E+05 -1.6313E+05 25,496 122290.0000 3,117,845 A2 5.9160E+05 -6.4203E+03 6.1944E+03 4.2545E+03 19,620 21583.0000 423,452 A3 -2.8107E+04 -6.4203E+03 -8.1046E+03 4.2545E+03 3,663,155 1703.3258 6,239,546 C1 -4.1030E+07 -4.0999E+07 -7.7792E+04 -6.5395E+04 3,665,166 168.3583 617,061 CA -3.7162E+06 -3.6937E+06 -1.1872E+04 4.9012E+02 3,663,266 1871.6842 6,856,478 G1 -3.7342E+06 -7.9621E+07 5.7131E+04 -1.8801E+04 53,247,674 1862.6770 18,023,071 LP1 -2.3829E+08 -2.8582E+			,		-5.4292E+05	2,384,045	2.2510	
W2 -2.8460E+08 -2.8582E+08 -1.5919E+05 -1.6313E+05 45,289 0.0001 0.00571 CW1 -2.8589E+08 -2.8582E+08 -1.6338E+05 -1.6313E+05 4,538 122290.0000 554,891 CW2 -2.8507E+08 -2.8582E+08 -1.6070E+05 -1.6313E+05 25,496 122290.0000 3,117,845 A2 5.9160E+05 -6.4203E+03 6.1944E+03 4.2545E+03 19,620 21583.0000 423,452 A3 -2.8107E+04 -6.4203E+03 -8.1046E+03 4.2545E+03 3,663,155 1703.3258 6,239,546 C1 -4.1030E+07 -4.0999E+07 -7.7792E+04 -6.5395E+04 3,665,166 168.3583 617,061 CA -3.7162E+06 -3.6937E+06 -1.1872E+04 4.9012E+02 3,663,266 1871.6842 6,856,478 G1 -3.7342E+06 -7.9621E+07 5.7131E+04 -1.8801E+04 53,247,674 1862.6770 18,023,071 LP1 -2.3829E+08 -2.8582E+08 -4.6140E+04 -1.6313E+05 12,649,432	19	-1.5997E+08	-1.7606E+08	-4.9678E+05	-5.4292E+05	2,333,359	10666,0000	24,887,607
CW1 -2.8589E+08 -2.8582E+08 -1.6338E+05 -1.6313E+05 4,538 122290.0000 554,891 CW2 -2.8507E+08 -2.8582E+08 -1.6070E+05 -1.6313E+05 25,496 122290.0000 3,117,845 A2 5.9160E+05 -6.4203E+03 6.1944E+03 4.2545E+03 19,620 21583.0000 423,452 A3 -2.8107E+04 -6.4203E+03 -8.1046E+03 4.2545E+03 3,663,155 1703.3258 6,239,546 C1 -4.1030E+07 -4.0999E+07 -7.7792E+04 -6.5395E+04 3,665,166 168.3583 617,061 CA -3.7162E+06 -3.6937E+06 -1.1872E+04 4.9012E+02 3,663,266 1871.6842 6,856,478 G1 -3.7342E+06 -7.9621E+07 5.7131E+04 -1.8801E+04 53,247,674 1862.6770 99,183,218 G2 -5.9599E+07 -7.9621E+07 1.5900E+04 -1.8801E+04 9,675,897 1862.6770 18,023,071 LP1 -2.3829E+08 -2.8582E+08 -4.6140E+04 -1.6313E+05 12,649,432 105.4660 1,334,085					-5.4292E+05		10666.0000	46,867,156
CW2 -2.8507E+08 -2.8582E+08 -1.6070E+05 -1.6313E+05 25,496 122290.0000 3,117,845 A2 5.9160E+05 -6.4203E+03 6.1944E+03 4.2545E+03 19,620 21583.0000 423,452 A3 -2.8107E+04 -6.4203E+03 -8.1046E+03 4.2545E+03 3,663,155 1703.3258 6,239,546 C1 -4.1030E+07 -4.0999E+07 -7.7792E+04 -6.5395E+04 3,665,166 168.3583 617,061 CA -3.7162E+06 -3.6937E+06 -1.1872E+04 4.9012E+02 3,663,266 1871.6842 6,856,478 G1 -3.7342E+06 -7.9621E+07 5.7131E+04 -1.8801E+04 53,247,674 1862.6770 99,183,218 G2 -5.9599E+07 -7.9621E+07 1.5900E+04 -1.8801E+04 9,675,897 1862.6770 18,023,071 LP1 -2.3829E+08 -2.8582E+08 -4.6140E+04 -1.6313E+05 12,649,432 105.4660 1,334,085		-2.8460E+08	-2.8582E+08	-1.5919E+05	-1.6313E+05		0.0001	0.00571
A2 5.9160E+05 -6.4203E+03 6.1944E+03 4.2545E+03 19,620 21583.0000 423,452 A3 -2.8107E+04 -6.4203E+03 -8.1046E+03 4.2545E+03 3,663,155 1703.3258 6,239,546 C1 -4.1030E+07 -4.0999E+07 -7.7792E+04 -6.5395E+04 3,665,166 168.3583 617,061 CA -3.7162E+06 -3.6937E+06 -1.1872E+04 4.9012E+02 3,663,266 1871.6842 6,856,478 G1 -3.7342E+06 -7.9621E+07 5.7131E+04 -1.8801E+04 53,247,674 1862.6770 99,183,218 G2 -5.9599E+07 -7.9621E+07 1.5900E+04 -1.8801E+04 9,675,897 1862.6770 18,023,071 LP1 -2.3829E+08 -2.8582E+08 -4.6140E+04 -1.6313E+05 12,649,432 105.4660 1,334,085						4,538	122290.0000	
A3 -2.8107E+04 -6.4203E+03 -8.1046E+03 4.2545E+03 3,663,155 1703.3258 6,239,546 C1 -4.1030E+07 -4.0999E+07 -7.7792E+04 -6.5395E+04 3,665,166 168.3583 617,061 CA -3.7162E+06 -3.6937E+06 -1.1872E+04 4.9012E+02 3,663,266 1871.6842 6,856,478 G1 -3.7342E+06 -7.9621E+07 5.7131E+04 -1.8801E+04 53,247,674 1862.6770 99,183,218 G2 -5.9599E+07 -7.9621E+07 1.5900E+04 -1.8801E+04 9,675,897 1862.6770 18,023,071 LP1 -2.3829E+08 -2.8582E+08 -4.6140E+04 -1.6313E+05 12,649,432 105.4660 1,334,085						25,496	122290.0000	3,117,845
C1							21583.0000	
CA -3.7162E+06 -3.6937E+06 -1.1872E+04 4.9012E+02 3,663,266 1871.6842 6,856,478 G1 -3.7342E+06 -7.9621E+07 5.7131E+04 -1.8801E+04 53,247,674 1862.6770 99,183,218 G2 -5.9599E+07 -7.9621E+07 1.5900E+04 -1.8801E+04 9,675,897 1862.6770 18,023,071 LP1 -2.3829E+08 -2.8582E+08 -4.6140E+04 -1.6313E+05 12,649,432 105.4660 1,334,085		-2.8107E+04		-8.1046E+03	4.2545E+03			6,239,546
G1 -3.7342E+06 -7.9621E+07 5.7131E+04 -1.8801E+04 53,247,674 1862.6770 99,183,218 G2 -5.9599E+07 -7.9621E+07 1.5900E+04 -1.8801E+04 9,675,897 1862.6770 18,023,071 LP1 -2.3829E+08 -2.8582E+08 -4.6140E+04 -1.6313E+05 12,649,432 105.4660 1,334,085	The second secon				-6.5395E+04			617,061
G2 -5.9599E+07 -7.9621E+07 1.5900E+04 -1.8801E+04 9,675,897 1862.6770 18,023,071 LP1 -2.3829E+08 -2.8582E+08 -4.6140E+04 -1.6313E+05 12,649,432 105.4660 1,334,085						3,663,266	1871.6842	6,856,478
LP1 -2.3829E+08 -2.8582E+08 -4.6140E+04 -1.6313E+05 12,649,432 105.4660 1,334,085			the state of the s		-,	53,247,674	1862.6770	99,183,218
1,001,000	G2	-5.9599E+07		1.5900E+04	-1.8801E+04	9,675,897	1862.6770	18,023,071
	LP1	-2.3829E+08	-2.8582E+08	-4.6140E+04	-1.6313E+05	12,649,432	105.4660	1,334,085
	LP2	-2.7654E+08	-2.8582E+08	-1.3707E+05	-1.6313E+05	1,510,211	105.4660	

Tabla D.7.- Cálculo de exergia física (condiciones ambientales de Jericó: $T_o = 33$ °C, $P_o = 1.03$ atm).

	(COIIUI		cillaics de		33 C, F, -	1.00 atilij.	
	H	H_o	\boldsymbol{s}	S _o	Ex_f	N	Ex_f
Corriente	J/kgmol	J/kgmol	J/kgmol-K	J/kgmol-K	J/kgmol	kgmol/h	kJ/h
1	-1.4370E+08	-1.2848E+08	-4.2409E+05	-3.6359E+05	3,302,075	722.2248	2,384,840
2 -	-1.4570E+08	-1.3029E+08	-4.2697E+05	-3.6621E+05	3,191,674	360.4963	1,150,587
3	-1.3811E+08	-1.2848E+08	-4.0812E+05	-3.6359E+05	4,002,860	722.2248	2,890,964
4	-1.3811E+08	-1.2848E+08	-4.0672E+05	-3.6359E+05	3,574,250	722.2248	2,581,412
5	-1.3329E+08	-1.3421E+08	-3.8894E+05	-3.7759E+05	4,394,803	5213.5945	22,912,718
6	-1.5231E+08	-1.3421E+08	-4.4783E+05	-3.7 75 9E+05	3,403,976	5213,5945	17,746,951
7	-1.5231E+08	-1.3421E+08	-4.4783E+05	-3.7759E+05	3,403,976	5213,5943	17,746,950
8	-1.5223E+08	-1.3421E+08	-4.4778E+05	-3.7759E+05	3,468,669	5213,5943	18,084,230
9	-1.5223E+08	-1.3421E+08	-4.4778E+05	-3.7759E+05	3,468,669	4795.7456	16 634 852
10	-1.5223E+08	-1.3421E+08	-4.4778E+05	-3.7759E+05	3,468,669	417.6089	1,448,547
11	-1.5223E+08	-1.3421E+08	-4.4762E+05	-3.7759E+05	3,419,685	4795.7456	16,399,937
12	-1.2319E+08	-1.2577E+08	-3.7045E+05	-3.6374E+05	4,634,267	662,5900	3,070,619
13	-1.2319E+08	-1.2577E+08	-3.7034E+05	-3.6374E+05	4,600,590	662.5900	3,048,305
14	~1.4267E+08	-1.2577E+08	-4.2762E+05	-3.6374E+05	2,656,862	662.5900	1,760,410
15	-1.6010E+08	-1.7470E+08	-4.9699E+05	-5.3845E+05	1,907,021	10669,0000	20,346,007
16	-1.5997E+08	-1.7470E+08	-4.9695E+05	-5.3845E+05	2,024,775	10669.0000	21,602,324
17	-1.5997E+08	-1.7470E+08	-4.9695E+05	-5.3845E+05	2,024,775	10666,0000	21,596,250
18	-1.5997E+08	-1.7606E+08	-4.9695E+05	-5.4292E+05	2,016,285	2.2510	4,539
19	-1.5997E+08	-1.7470E+08	-4.9678E+05	-5.3845E+05	1,972,730	10666,0000	21,041,133
20	-1.5022E+08	-1.7470E+08	-4.7099E+05	-5.3845E+05	3,827,121	10666.0000	40,820,073
W2	-2.8460E+08	-2.8521E+08	-1.5919E+05	-1.6113E+05	16,069	0.0001	0.00203
CW1	-2.8536E+08	-2.8521E+08	-1.6163E+05	-1.6113E+05	3,075	122290,0000	376,042
CW2	-2.8455E+08	-2.8521E+08	-1.5900E+05	-1.6113E+05		122290.0000	966,152
A2	8.2520E+05	2.2718E+05	6.6815E+03	4.7906E+03	19,125	21583.0000	412,767
A3	2.0688E+05	2.2718E+05	-7.3266E+03	4.7906E+03	3,689,377	1703.4031	6,284,497
C1	-4.0704E+07	-4.0674E+07	-7.6710E+04	-6.4558E+04	3,690,335	168.3660	621,327
CA	-3.4730E+06	-3.4519E+06	-1.1067E+04	1.0533E+03	3,689,534	1871.7691	6,905,956
G1	-3.4898E+06	-7.8407E+07	5.7243E+04	-1.5119E+04	52,763,574	1862.7615	98,285,954
G2	-5.9352E+07	-7.8407E+07	1.6235E+04	-1.5119E+04	9,455,973	1862.7615	17,614,222
LP1	-2.3829E+08	-2.8521E+08	-4.6140E+04	-1.6113E+05	11,715,812	105.4660	1,235,620
LP2	-2.7654E+08	-2.8521E+08	-1.3707E+05	-1.6113E+05	1,304,031	105.4660	137,531

Tabla D.8.- Cálculo de exergia física (condiciones ambientales de Cusco: $T_o = 21$ °C, $P_o = 0.67$ atm).

	H	H_o	s	So	Ex_f	. N	Ex_f
Corriente	J/kgmol	J/kgmol	J/kgmôl-K	J/kgmol-K	_J/kgmol	kgmol/h	kJ/h
1	-1.4370E+08	-1.2959E+08	-4.2409E+05	-3.6388E+05	3,600,772	722.2248	2,600,566
2	-1.4570E+08	-1.3140E+08	-4.2697E+05	-3.6649E+05	3,490,192	360,4963	1,258,201
3	-1.3811E+08	-1.2959E+08	-4.0812E+05	-3.6388E+05	4,493,196	722.2248	3,245,098
4	-1.3811E+08	-1.2959E+08	-4.0672E+05	-3.6388E+05	4,081,386	722.2248	2,947,678
5	-1.3329E+08	-1.3532E+08	-3.8894E+05	-3.7782E+05	5,300,948	5213.5945	27,636,993
6	-1.5231E+08	-1.3532E+08	-4.4783E+05	-3.7782E+05	3,603,442	5213.5945	18,786,883
7.	-1.5231E+08	-1.3532E+08	-4.4783E+05	-3.7782E+05	3,603,442	5213.5943	18,786,882
8	-1.5223E+08	-1.3532E+08	-4.4778E+05	-3.7782E+05	3,668,734	5213.5943	19,127,291
9	-1.5223E+08	-1.3532E+08	-4.4778E+05	-3.7782E+05	3,668,734	4795,7456	17,594,315
10	-1.5223E+08	-1.3532E+08	-4.4778E+05	-3.7782E+05	3,668,734	417.6089	1,532,096
11	-1.5223E+08	-1.3532E+08	-4.4762E+05	-3.7782E+05	3,621,670	4795.7456	17,368,608
12	-1.2319E+08	-1.2688E+08	-3.7045E+05	-3.6404E+05	5,575,502	662.5900	3,694,272
13	-1.2319E+08	-1.2688E+08	-3.7034E+05	-3.6404E+05	5,543,145	662.5900	3,672,832
14	-1.4267E+08	-1.2688E+08	-4.2762E+05	-3.6404E+05	2,912,057	662.5900	1,929,500
15	-1.6010E+08	-1.6809E+08	-4.9699E+05	-5.1615E+05	2,354,086	10669.0000	25,115,744

Tabla D.8.- Cálculo de exergia física (condiciones ambientales de Cusco: $T_o = 21$ °C, $P_o = 0.67$ atm). (continuación)

	(55111111111111111111111111111111111111						
	H	H_o	S	S_o	Ex_f	N	Ex_f
Comiente	J/kgmol	J/kgmol	J/kgmol-K	J/kgmol-K	J/kgmol	kgmol/h	kJ/h
16	-1.5997E+08	-1.6809E+08	-4.9695E+05	-5.1615E+05	2,472,320	10669.0000	26,377,182
17	-1.5997E+08	-1.6809E+08	-4.9695E+05	-5.1615E+05	2,472,320	10666.0000	26,369,765
18	-1.5997E+08	-1.6809E+08	-4.9695E+05	-5.1615E+05	2,472,320	2.2510	5,565
. 19	-1.5997E+08	-1.6809E+08	-4.9678E+05	-5.1615E+05	2,422,315	10666.0000	25,836,406
20	-1.5022E+08	-1.6808E+08	-4.7099E+05	-5.1611E+05	4,587,952	10666.0000	48,935,096
. W2	-2.8460E+08	-2.8612E+08	-1.5919E+05	-1.6415E+05	61,016	0.0001	0.00769
CW1	-2.8675E+08	-2.8612E+08	-1.6636E+05	-1.6415E+05	20,072	122290.0000	2,454,544
CW2	-2.8594E+08	-2.8612E+08	-1.6357E+05	-1.6415E+05	9,393	122290.0000	1,148,670
A 2	4.7691E+05	-1.2111E+05	9.1488E+03	7.1833E+03	19,883	21583.0000	429,139
Á3	-1.4561E+05	-1.2111E+05	-8.5014E+03	7.1833E+03	4,589,157	1703.5422	7,817,823
C1	-4,1192E+07	-4.1157E+07	-7.8339E+04	-6.2612E+04	4,591,097	168.3797	773,048
CA	-3.8377E+06	-3.8123E+06	-1.2282E+04	3.4058E+03	4,589,174	1871.9219	8,590,575
G1	-3.8563E+06	-7.9326E+07	5.7076E+04	-1.5020E+04	54,262,662	1862.9136	101,086,650
G2	-5.9714E+07	-7.9326E+07	1.5742E+04	-1.5020E+04	10,563,358	1862.9136	19,678,623
LP1	-2.3829E+08	-2.8612E+08	-4.6140E+04	-1.6415E+05	13,117,359	105.4660	1,383,435
_ LP2	-2.7654E+08	-2.8612E+08	-1.3707E+05	-1.6415E+05	1,614,418	105.4660	170,266

Tabla D.9.- Cálculo de exergia física (condiciones ambientales de Québec: $T_o = -16$ °C, $P_o = 1$ atm).

	H	H_{o}	S	S _o	Ex_f	N	Ex_f
Corriente	J/kgmol	J/kgmol	J/kgmol-K	J/kgmol-K	J/kgmol	kgmol/h	kJ/h
1	-1.4370E+08	-1.5568E+08	-4.2409E+05	-4.6299E+05	1,976,865	722.2248	1,427,741
2	-1.4570E+08	-1.5720E+08	-4.2697E+05	-4.6516E+05	1,679,442	360.4963	605,432
3	-1.3811E+08	-1.5568E+08	-4.0812E+05	-4.6299E+05	3,460,180	722.2248	2,499,027
4	-1.3811E+08	-1.5568E+08	-4.0672E+05	-4.6299E+05	3,100,170	722.2248	2,239,019
5	-1.3329E+08	-1.6015E+08	-3.8894E+05	-4.7488E+05	4,760,529	5213.5945	24,819,468
6	-1.5231E+08	-1.6015E+08	-4.4783E+05	-4.7488E+05	884,093	5213.5945	4,609,300
7	-1.5231E+08	-1.6015E+08	-4.4783E+05	-4.7488E+05	884,093	5213.5943	4,609,300
8	-1.5223E+08	-1.6015E+08	-4.4778E+05	-4.7488E+05	951,235	5213.5943	4,959,353
9	-1.5223E+08	-1.6015E+08	-4.4778E+05	-4.7488E+05	951,235	4795.7456	4,561,881
10	-1.5223E+08	-1.6015E+08	-4.4778E+05	-4.7488E+05	951,235	417.6089	397,244
11	-1.5223E+08	-1.6015E+08	-4.4762E+05	-4.7488E+05	910,091	4795.7456	4,364,565
12	-1.2319E+08	-1.5361E+08	-3.7045E+05	-4.6405E+05	6,350,760	662.5900	4,207,950
13	-1.2319E+08	-1.5361E+08	-3.7034E+05	-4.6405E+05	6,322,474	662.5900	4,189,208
14	-1.4267E+08	-1.5361E+08	-4.2762E+05	-4.6405E+05	1,572,026	662.5900	1,041,608
15	-1.6010E+08	-1.8273E+08	-4.9699E+05	-5.6721E+05	4,572,927	10669.0000	48,788,558
16	-1.5997E+08	-1.8273E+08	-4.9695E+05	-5.6721E+0 <u>5</u>	4,692,641	10669.0000	50,065,787
17	-1.5997E+08	-1.8273E+08	-4.9695E+05	-5.6721E+05	4,692,641	10666.0000	50,051,709
18	-1.5997E+08	-1.8273E+08	-4.9695E+05	-5.6721E+05	4,692,641	2.2510	10,563
19	~1.5997E+08	-1.8273E+08	-4.9678E+05	-5.6721E+05	4,648,926	10666.0000	49,585,439
20	-1.5022E+08	-1.8273E+08	-4.7099E+05	-5.6720E+05	7,769,599	10666.0000	82,870,538
W2	-2.8460E+08	-2.9451E+08	-1.5919E+05	-1.9408E+05	938,037	0.0001	0.11827
CW1	-1.2038E+06		-6.6170E+01	-6.6170E+01	, 0	173310.0000	0
CW2	-6.3146E+05	-1.2038E+06	2.0789E+03	-6.6170E+01	20,745	173310.0000	3,595,253
' A2	-6.0579E+05	-1.2038E+06	2.1715E+03	-6.6170E+01	22,597	21583.0000	487,712
A3	-1.2333E+06	-1.2038E+06	-1.2454E+04	-6.6170E+01	3,156,031	1702.6886	5,373,737
C1	-4.2650E+07	-4.2609E+07	-8.3647E+04	-7.1204E+04	3,158,717	168.2954	531,598
· CA	-4.9587E+06	-4.9282E+06	-1.6356E+04	-3.9644E+03	3,156,010	1870.9840	5,904,844
G1	-4.9827E+06	-8.3053E+07	5.6558E+04	-3.1319E+04	55,472,729	1861.9802	103,289,124
G2	-6.0868E+07	-8.3053E+07	1.4121E+04	-3.1319E+04	10,500,104	1861.9802	19,550,986
LP1	-2.3829E+08	-2.9451E+08	-4.6140E+04	-1.9408E+05	18,177,229	105.4660	1,917,080
LP2	-2.7654E+08	-2.9451E+08	-1.3707E+05	-1.9408E+05	3,309,879	105.4660	349,080

D.3.- Exergia química estándar para cada una de los medios de referencia seleccionados.

En la Tabla D.10, se presentan los valores de cambio de energía libre Gibbs y de calor normal estándar de la reacción de formación de cada compuesto presente en la columna Desisobutanizadora y que son requeridos por el programa EXQCOMP para la determinación de su exergia química estándar. Los valores de ΔG_f° y ΔH_f° a 25°C son los que indica Perry [7].

Posteriormente, se presentan los resultados que arroja el programa EXQCOMP de exergia química estándar de los elementos y de los compuestos presentes en el sistema bajo estudio, tomando en cuenta las condiciones ambientales de Minatitlán, Jericó, Cusco y Québec.

Tabla D.10.- Cambio de energía libre de Gibbs y calor normal estándar de formación de los compuestos presentes en la columna Desisobutanizadora.

机分割 医自肠肠囊腺 医毛黄油硷

Nombre del compues	sto Fórmula química	Estado físico	∆G _f ° _{25°C} kJ/gmol	∆H _f ° _{25°C} kJ/gmol
Agua	H₂O	líquido	-237.186	-285.835
Metano	CH₄	gas	-50.793	-74.846
Etano	C ₂ H ₆	gas	-32.886	-84.666
Propano	C₃H ₈	gas	-23.489	-103.845
iso-Butano	i-C ₄ H ₁₀	gas	-17.974	
n-Butano	n-C₄H₁o	gas	-15.706	-124.731
neo-Pentano	neo-C ₅ H ₁₂	gas	-15.229	-165.976
iso-Pentano	i-C₅H ₁₂	gas	-14.644	-154.471
n-Pentano	n-C ₅ H ₁₂	líquido	-9.246	-173.047
Etileno	C₂H₄	gas	68.123	52.282
Propileno	C₃H ₆	gas	62.608	20.413
Ácido sulfhídrico	H₂S	gas	-32.844	-19.957
Monóxido de carbono	CO	gas	-137.266	-110.523
Dióxido de carbono	CO₂	gas	-394.377	-393.507
Dióxido de azufre	SO ₂	gas	-299.904	-296.808

Caso 1: Minatitlán

Las condiciones del medio especificadas son:

Temperatura: 25.0 °C
Presión: 1.0000 atm
Concentración de CO2: 355.0 ppmv
Humedad relativa: 0.750

Salinidad: 36.000 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

		Composición o	de la especie	Ex	q°
		(fracc	ión mol)	(kJ/	gmol)
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento
Ar(g)	Ar	0.9331E-02	0.9114E-02	11.645	11.645
C (g)	CO2	0.3550E-03	0.3468E-03	19.748	410.197
He (g)	He	0.5000E-05	0.4884E-05	30.315	30.315
Kr(g)	Kr	0.1000E-05	0.9768E-06	34.304	34.304
N2 (g)	N2	0.7804E+00	0.7622E+00	0.673	0.673
Ne (g)	Ne	0.1800E-04	0.1758E-04	27.140	27.140
02 (g)	02	0.2099E+00	0.2050E+00	3.928	3.928
Xe(g)	Xe	0.9001E-07	0.8791E-07	40.273	40.273
H2 (g)	H20	0.0000E+00	0.2327E-01	9.322	235.948
D2 (g)	D20	0.0000E+00	0.3616E-05	31.060	263.730

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN EL AGUA DE MAR.-

Elemento	<pre>Exq* (kJ/gmol)</pre>	Elemento	Exq°	(kJ/gmol)
As(s)	492.729	B(s)		628.264
Br2(1)	100.973	Cl2(g)	4.4	123.649
Cs(s)	404.503	I2(s)		163.940
K(s)	366.567	Li(s)		392.618
Mo(s)	731.408	Na(s)		336.567
P(s)	861.418	Rb(s)		388.597
S(s)	609.393	Se(s)		347.602
W(s)	828.536			

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN LA CORTEZA TERRESTRE.-

Elemento	Exq° (kJ/gmol)	Elemento	Exq° (kJ/gmol)
Ag(s)	99.338	Al(s)	795.745
Au(s)	50.616	Ba(s)	775.340
Be(s)	604.278	Bi(s)	271.192
Ca(s)	729.208	Cd(s)	298.481
Ce(s)	1054.739	Co(s)	313.417
Cr(s)	584.455	Cu(s)	132.660
Dy(s)	976.220	Er(s)	973.062
Eu(s)	1004.061	F2 (g)	504.128
Fe(s)	374.344	Ga(s)	514.977
Gd(s)	969.244	Ge(s)	557.657
Hf(s)	1063.076	Hg(l)	107.938
Ho(s)	978.991	In(s)	436.849
Ir(s)	246.996	La(s)	994.915
Lu(s)	946.045	Mg(s)	626.982
Mn(s)	487.742	Nb(s)	899.736
Nd(s)	970.378	Ni(s)	242.589
Os(s)	368.420	Pb(s)	249.260
Pd(s)	138.731	Pr(s)	964.120
Pt(s)	141.153	Pu(s)	1100.050
Ra(s)	824.152	Re(s)	559.565
Rh(s)	179.726	Ru(s)	318.630
Sb(s)	438.179	Sc(s)	925.251
Si(s)	855.003	Sm(s)	993.941
Sn(s)	551.839	Sr(s)	749.899
Ta(s)	974.085	Tb(s)	998.722
Te(s)	329.288	Th(s)	1202.655
Ti(s)	907.198	T1(s)	194.912
Tm(s)	952.032	U(s)	1196.769
V(s)	721.265	Y(s)	965.826
Yb(s)	944.562	Zn(s)	344.778
Zr(s)	1082.969		

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS.-

Compuesto	Exq° (kJ/gmol)
H2O	0.726
CH4	831.300
C2H6	1495.351
C3H8	2150.893
IC4H10	2802.553
NC4H10	2804.821
NEOC5H12	3451.443
IC5H12	3452.028
NC5H12	3457.426
C2H4	1360.413
C3H6	2001.043
H2S	812.496
co	274.895
SO2	313.417

Caso 2: Jericó

Las condiciones del medio especificadas son:

Temperatura: 33.0 °C
Presión: 1.0289 atm
Concentración de CO2: 355.0 ppmv
Humedad relativa: 0.700

Salinidad: 41.000 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

		Composición o	de la especie	Ex	q°
		(fracc	ión mol)	(kJ/	gmol)
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento
Ar(g)	Ar	0.9331E-02	0.9017E-02	11.985	11.985
C (g)	CO2	0.3550E-03	0.3431E-03	20.305	410.645
He(g)	He	0.5000E-05	0.4832E-05	31.155	31.155
Kr(g)	Kr	0.1000E-05	0.9665E-06	35.252	35.252
N2 (g)	N2	0.7804E+00	0.7541E+00	0.718	0.718
Ne(g)	Ne	0.1800E-04	0.1740E-04	27.895	27.895
02 (g)	02	0.2099E+00	0.2029E+00	4.060	4.060
Xe(g)	Хe	0.9001E-07	0.8698E-07	41.381	41.381
H2 (g)	H20	0.0000E+00	0.3363E-01	8.635	234.839
D2 (g)	D20	0.0000E+00	0.5227E-05	30.955	263.168

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN EL AGUA DE MAR.-

Elemento	Exq° (kJ/gmol)	Elemento E	xq° (kJ/gmol)
As (s)	491.080	B(s)	627.013
Br2(1)	102.368	C12(g)	123.230
Cs(s)	405.462	I2(s)	161.690
K(s)	366.402	Li(s)	392.366
Mo(s)	730.109	Na(s)	335.882
P(s)	859.349	Rb(s)	389.117
S(s)	607.055	Se(s)	346.704
W(s)	826.689	,	- •

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN LA CORTEZA TERRESTRE.-

Elemento	Exq° (kJ/gmol)	Elemento	Exq° (kJ/gmol)
Ag(s)	100.463	Al(s)	794.582
Au(s)	51.974	Ba(s)	775.223
Be(s)	603.855	Bi(s)	270.749
Ca(s)	726.902	Cd(s)	296.867
Ce(s)	1054.006	Co(s)	313.345
Cr(s)	582.428	Cu(s)	130.748

Dy(s)	975.504	•	Er(s)	972.350
Eu(s)	1003.400		F2(g)	518.294
Fe(s)	373.311	1	Ga(s)	514.157
Gd(s)	968.485		Ge(s)	557.040
Hf(s)	1062.402		Hg(1)	108.551
Ho(s)	978.336		In(s)	436.212
Ir(s)	247.217		La(s)	994.896
Lu(s)	945.451		Mg (s)	625.892
Mn(s)	486.851		Nb(s)	898.374
Nd(s)	969.506		Ni(s)	242.654
0s(s)	367.685		Pb(s)	247.705
Pd(s)	139.413		Pr(s)	963.326
Pt(s)	141.245		Pu(s)	1101.423
Ra(s)	825.329		Re(s)	557.777
Rh(s)	179.406		Ru(s)	318.908
Sb(s)	436.875	* .	Sc(s)	924.527
Si(s)	853.471	2	Sm(s)	993.172
Sn(s)	551.038		Sr(s)	747.800
Ta(s)	972.733	1 1	Tb(s)	998.076
Te(s)	329.440		Th(s)	1201.982
Ti(s)	906.164		Tl(s)	193.379
Tm(s)	951.440		U(s)	1195.079
V(s)	719.781		Y(s)	964.920
Yb(s)	943.850		Zn(s)	342.736
Zr(s)	1081.876	1.5		

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS.-

Compuesto	Exq° (kJ/gmol)
H2O	0.988
CH4	830.175
C2H6	1494.310
С3Н8	2149.957
IC4H10	2801.848
NC4H10	2803.993
NEOC5H12	3451.073
IC5H12	3451.365
NC5H12	3457.407
C2H4	1359.516
C3H6	2000.191
H2S	808.704
CO	274.692
502	311.129

Caso 3: Cusco

Las condiciones del medio especificadas son:

Temperatura: 21.0 °C
Presión: 0.6710 atm
Concentración de CO2: 355.0 ppmv
Humedad relativa: 0.300
Salinidad: 35.000 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

		Composición de la especie (fracción mol)		Exq° (kJ/amol)	
Elemento	Especie	Aire seco	Aire húmedo	Especie	Elemento
Ar(g)	Ar	0.9331E-02	0.9229E-02	11.458	11.458
C (g)	CO2	0.3550E-03	0.3512E-03	19.453	409.973
He(g)	He	0.5000E-05	0.4946E-05	29.877	29.877
Kr(g)	Kr	0.1000E-05	0.9892E-06	33.813	33.813

19193

3.57.65

12141 一个更多的A

27.52

N2 (g)	N2	0.7804E+00	0.7719E+00	0.633	0.633
Ne (g)	Ne	0.1800E-04	0.1781E-04	26.745	26.745
02 (g)	02	0.2099E+00	0.2076E+00	3.844	3.844
Xe (q)	Хe	0.9001E-07	0.8903E-07	39.702	39.702
H2 (q)	H20	0.0000E+00	0.1086E-01	11.060	237.904
p2 (g)	D20	0.0000E+00	0.1689E-05	32.505	265.414

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN EL AGUA DE MAR.-

Elemento	Exq° (kJ/gmol)		Elemento	Exq° (kJ/gmol)).
As(s)	491.352		B(s)	626.727	
Br2(1)	98.570		C12(g)	122.160	
Cs(s)	404.690		I2(s)	163.518	
K(s)	367.312		Li(s)	393.389	
Mo(s)	730.593		Na(s)	337.566	
P(s)	860.262		Rb(s)	389.000	7.4
S(s)	609.054	1.1	Se(s)	346.586	4
W(s)	827.994	***	A STATE OF THE STA		

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN LA CORTEZA TERRESTRE.-

EXERGIA ÖOTI	MICA ESTANDAR DE LO	DS ELEMENTOS CONT	ENIDOS EN LA CORTEZ	man the second of the second o
Elemento	Exq° (kJ/gmol)	Elemento	Exq° (kJ/gmol)	1 to 6 kg (1 to 1 t
Ag(s)	99.625	Al(s)	796.340	The state of the s
Au(s)	49.937	Ba(s)	776.941	international control of the control
Be(s)	604.497	Bi(s)	271.426	
Ca(s)	, 730.386	Cd(s)	299.313	Frei Chae
Ce(s)	1055.123	Co(s)	313.462	ing the second of the second o
Cr(s)	584.837	Cu(s)	133.641	The second of th
Dy(s)	974.501	Er(s)	971.340	and the second s
Eu(s)	1002.315	F2(g)	510.133	The state of the s
Fe(s)	374.874	Ga(s)	515.400	e auto Novembro
Gd(s)	967.545	Ge(s)	557.983	\$ 1 W 1
Hf(s)	1063.430	Hg(l)	109.331	• • • • • • • • • • • • • • • • • • •
Ho(s)	977.242	In(s)	437.181	ere e en
Ir(s)	246.902	La(s)	992.847	
Lu(s)	944.265	Mg(s)	627.072	s santa s
Mn(s)	488.205	Nb(s)	900.430	
Nd(s)	968.737	Ni(s)	242.565	5.046
Os(s)	368.822	Pb(s)	250.063	
Pd(s)	138.399	Pr(s)	962.439	
Pt(s)	141.125	Pu(s)	1099.381	eri
Ra(s)	825.105	Re(s)	560.489	e series de la companya del companya del companya de la companya d
Rh(s)	179.899	Ru(s)	318.508	
Sb(s)	438.852	Sc(s)	925.625	• • • • • • • • • • • • • • • • • • • •
Si(s)	855.787	Sm(s)	992.248	
Sn(s)	552.257	Sr(s)	750.974	สารสมาโรกจับกรรมไร
Ta(s)	974.783	Tb(s)	996.968	
Te(s)	329.229	Th(s)	1203.008	the Superson Brasins Consult
Ti(s)	907.732	Tl(s)	195.696	
Tm(s)	950.251	U(s)	1196.246	
V(s)	722.028	Y(s)	964.202	tud we have
Yb(s)	942.840	Zn(s)	345.825	and the second second second
Zr(s)	1083.533			and the second s

Maria dina makan Bari Maria da Bat Maria da B EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS.-

Compuesto	Exq° (kJ/gmol)
H20	1.988
CH4	834.666
C2H6	1500.079
C3H8	2156.970
1C4H10	2809.916
NC4H10	2812.246

naro é Menor

1.5713. 3 J 36 277 $\mathcal{AM}(\mathcal{D})$

> 00

 $\mathbb{I}_{\mathbb{R}^{d}(\mathbb{R}^{d})} = \mathbb{I}_{\mathbb{R}^{d}(\mathbb{R}^{d})}$

NEOC5H12	3460.041
IC5H12	3460.772
NC5H12	3465.849
C2H4	1363.666
C3H6	2005.675
H2S	814.287
CO	274.988
SO2	313.036

Caso 4: Québec

Las condiciones del medio especificadas son:

-16.0 °C Temperatura: 1.0000 atm Presión: Concentración de CO2: 355.0 ppmv Humedad relativa: 0.500

Salinidad: 32.000 por mil

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS PRESENTES EN LA ATMOSFERA.-

		Composición o	de la especie	Exq°
		(fracc:	ión mol)	(kJ/gmol)
Elemento	Especie	Aire seco	Aire húmedo	Especie Elemento
Ar(g)	Ar	0.9331E-02	0.9323E-02	9.995 9.995
C (g)	CO2	0.3550E-03	0.3547E-03	16.984 407.902
He(g)	He	0.5000E-05	0.4996E-05	26.097 26.097
Kr(g)	Kr	0.1000E-05	0.9993E-06	29.538 29.538
N2 (g)	N2	0.7804E+00	0.7797E+00	0.532 0.532
Ne(g)	Ne	0.1800E-04	0.1799E-04	23.359 23.359
02 (g)	02	0.2099E+00	0.2097E+00	3.339 3.339
Xe(g)	Xe	0.9001E-07	0.8993E-07	34.686 34.686
H2 (g)	H20	0.0000E+00	0.8181E-03	15.198 243.937
D2 (g)	D20	0.0000E+00	0.1272E-06	33.946 268.919

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN EL AGUA DE MAR.-

Elemento	Exq° (kJ/gmol)		<pre>Exq° (kJ/gmol)</pre>	
As(s)	. 495.979	B(s)	1. 4. 629.760g tu ji tiyaa, a gara ta ay ay	15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Br2(1)	87.433	C12(g)	629.760 119.517	
Cs(s)	400.016	I2(s)	169.340	
K(s)	367.769	Li(s)	394.015	
Mo(s)	734.551	Na (s)	340.348	12 Sec. 16
P(s)	866.992	Rb(s)	386.305	
S(s)	617.233	Se(s)	348.687 July No. 10 July State of the State	4.5
W(s)	834.484		rando de la companya	1 Y.

EXERGIA QUIMICA ESTANDAR DE LOS ELEMENTOS CONTENIDOS EN LA CORTEZA TERRESTRE.-

Elemento	Exq° (kJ/gmol)	Elemento	Exq° (kJ/gmol)	s de Torresson y Assert
Ag(s)	96.716	7.1 (~ \	901 620	e in lead on the section of
Au(s)	43.656	Ba(s)	779.900	in the second set is \$100 to 1 deciding the second set in the second second second second second second second
Be(s)	606.396	Bi(s)	273.394	and the second s
Ca(s)	740.886	Cd(s)	306.614	
Ce(s)	1058.407	Co(s)	313.742	
Cr(s)	594.337	Cu(s)	313.742 142.319	
Dy(s)	976.294	Er(s)	973.117	
Eu(s)	1003.855	F2 (g)	461.956	
Fe(s)	379.573	Ga(s)	519.112	
Gd(s)	969.535	Ge(s)	560.727	
Hf(s)	1066.439	Hg(1)	111.082	
Ho(s)	978.753	In(s)	440.046	
Ir(s)	245.773	La(s)	991.415	

Lu(s)	945.498	Mg(s)	631.743
Mn(s)	492.220	Nb(s)	906.650
Nd(s)	971.256	Ni(s)	242.212
0s(s)	372.007	Pb(s)	257.089
Pd(s)	135.191	Pr(s)	964.593
Pt(s)	140.592	Pu(s)	1092.923
Ra(s)	822.075	Re(s)	568.568
Rh(s)	181.296	Ru(s)	317.112
Sb(s)	444.748	Sc(s)	928.891
Si(s)	862.765	Sm(s)	994.287
Sn(s)	555.857	Sr(s)	760.518
Ta(s)	980.904	Tb(s)	998.439
Te(s)	328.417	Th(s)	1206.010
Ti(s)	912.404	Tl(s)	202.678
Tm(s)	951.473	U(s)	1202.942
V(s)	728.756	Y(s)	966.876
Yb(s)	944.617	Zn(s)	355.106
Zr(s)	1088.483		

EXERGIA QUIMICA ESTANDAR DE LOS COMPUESTOS QUIMICOS ESPECIFICADOS.-

Compuesto H2O	Exq° (kJ/gmol) 1.731 841.675
CH4	
C2H6	1507.609
C3H8	2164.915
IC4H10	2817.695
NC4H10	2820.595
NEOC5H12	3467.174
IC5H12	3469.260
NC5H12	3471.361
C2H4	1369.623
C3H6	2012.323
H2S	830.098
CO	275.983
so2	321.094

D.4.- Resultados del análisis de exergia de la columna Desisobutanizadora.

A continuación se presentan los valores de los parámetros exérgicos de cada uno de los equipos involucrados en la Columna Desisobutanizadora (Tablas D.11, D.12, D.13 y D.14); del condensador de la columna si éste fuera un aereoenfriador en Minatitlán, Jericó y Cusco (Tabla D.15) y; del sistema completo cuando se considera que el condensador de la columna utiliza agua como medio de enfriamiento (Tabla D.16) y cuando la condensación se realiza en un aereoenfriador (Tabla D.17), al considerar las condiciones ambientales de las cuatro ciudades seleccionadas.

Tabla D.11.- Parámetros exérgicos por equipo de la Columna Desisobutanizadora (condiciones ambientales de Minatitlán: $T_o = 25^{\circ}$ C, $P_o = 1$ atm, $\phi = 0.75$, S = 36%).

Equipo	Ex _{tte} , kJ/h	Ex _{tts} , kJ/h	Irr, kJ/h	Ex _{nts} , kJ/h	Ex _{ntp} , kJ/h	Efl, kJ/h
Bombas						4 * 7
GA-1	14,607,998,676	14,607,922,875	75,801	415,166	339,366	0
GA-2	36,857,221,332	36,857,088,871	132,461	1,392,193	1,259,732	. 0
 Válvulas 		•				
V-1	2,027,469,775	2,027,168,311	301,464	301,464	0	- 0
V-2	1,864,411,139	1,864,389,408	21,731	21,731	. 0	. 0
V-4	36,849,310,105	36,848,769,494	540,612	540,612	0	· · · · · · · · · · · · · · · · · · ·
• Enfriamiento c	on agua	44	•	•	2.5.61	eta ji eta ili ≨
EA-2	14,704,542,932	14,699,483,890	5,059,042	7,621,996	2,562,954	2,562,954
 Aereoenfriador 	•		•			
EC-1	1,864,398,034	1,863,221,340	1,176,693	1,600,146	423,452	423,452
 Calentamiento 	con vapor		•	to the same		1 1 × 15
EA-1	2,028,282,033	2,027,705,619	576,414	1,174,809	598,395	- O
Horno						+ , +
H-1	36,951,218,307	36,892,037,709	59,180,599	81,160,148	21,979,549	21,288,666
 Reactor 						
Combustión	139,652,706	102,448,813	37,203,893	129,530,633	92,326,740	19 4 5 5 C
• Transferencia	de masa				ing the second	Seller Land
DA-1	53,348,278,816	53,335,445,780	12,833,036	14,229,493	1,396,457	O
	C. The	SUMA =	117,101,745		SUMA =	24,275,072

Tabla D.11.- Parámetros exérgicos por equipo de la Columna Desisobutanizadora (condiciones ambientales de Minatitlán: T_o = 25°C, P_o = 1 atm, ϕ =0.75, S = 36‰) (continuación).

Equipo		Pex, kJ/h	Ex _{uts} , kJ/h	η	ε	ξ	Pot, kJ/h
Bombas							1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
; GA-1		75,801	14,607,922,875	1.0000	0.8174	1.0000	13,840
GA-2		132,461	36,857,088,871	1.0000	0.9049	1.0000	12,603
 Válvulas 	•				*		7
V-1	100	301,464	2,027,168,311	0.9999	0.0000	0.9999	301,464
V-2		21,731	1,864,389,408	1.0000	0.0000	1.0000	21,731
V-4		540,612	36,848,769,494	1.0000	0.0000	1.0000	540,612
 Enfriamien 	ito con ag	ua				La Properties	·
EA-2	•	7,621,996	14,607,583,505	0.9997	0.3363	0.9934	5,920,855
 Aereoenfri 	ador		•			e de la companya de	at a strong
EC-1		1,600,146	1,862,797,888	0.9994	0.2646	0.9991	1,288,753
 Calentamie 	ento con v	/apor			. *		Company of
EA-1	e*	576,414	2,027,705,619	0.9997	0.5094	0.9997	282,814
 Horno 							
H-1		80,469,264	36,870,749,043	0.9984	0.2708	0.9978	64,442,151
 Reactor 							
Combustió	in ·	37,203,893	102,448,813	0.7336	0.7128	1.4030	10,685,732
 Transferen 	icia de ma	ısa					
DA-1		12,833,036	53,335,445,780	0.9998	0.0981	0.9998	11,573,625
S	UMA =	141,376,817				SUMA =	95,084,180

Tabla D.12.- Parámetros exérgicos por equipo de la Columna Desisobutanizadora (condiciones ambientales de Jericó: $T_c = 33^{\circ}$ C. $P_c = 1.03$ atm. $\phi = 0.7$. S = 44%).

Equipo	Ex _{tte} , kJ/h	Ex _{tts} , kJ/h	Irr, kJ/h	Ex_{nts} , kJ/h	Ex_{ntp} , kJ/h	Efl, kJ/h
Bombas						1.1.1.2
GA-1	14,606,769,367	14,606,691,481	77,886	415,166	337,280	. 0
GA-2	36,849,446,650	36,849,310,774	135,876	1,392,193	1,256,317	. 0
 Válvulas 						Property of
√ V-1	2,027,074,538	2,026,764,985	309,553	309,553	a a fa	0
V-2	1,863,840,491	1,863,818,177	22,314	22,314	0	. 0
V-4	36,841,533,919	36,840,978,802	555,117	555,117	· 0	0
• Enfriamiento d	con agua				and the second	1000
EA-2	14,732,718,526	14,728,142,869	4,575,657	5,165,768	590,110	590,110
 Aereoenfriado 	r				. +1	Total Sales (See
EC-1	1,863,826,797	1,862,943,050	883,747	1,296,514	412,767	412,767
 Calentamiento 	con vapor				in saadikees	and Market Services
EA-1	2,027,908,234	2,027,316,270	591,965	1,098,089	506,124	0
Horno						e grande de la companya de la compa
∞ H-1	36,942,361,198	36,881,468,406	60,892,792	80,671,731	19,778,940	20,710,664
 Reactor 						The space
Combustión	139,525,607	101,382,396	38,143,211	129,523,208	91,379,997	u - 41 , 25 () 0
 Transferencia 	de masa			• • •	agud of Art	$\varphi(\gamma) = \varphi(\gamma) + \varphi(\gamma) = \varphi(\gamma)$
DA-1	53,336,599,347	53,323,414,913	13,184,434	14,622,664	1,438,229	: . 0
		SUMA =	119,372,552		SUMA =	21,713,542

Tabla D.12.- Parámetros exérgicos por equipo de la Columna Desisobutanizadora (condiciones ambientales de Jericó: $T_o = 33^{\circ}\text{C}$, $P_o = 1.03$ atm, $\phi = 0.7$, S = 41%) (continuación).

Equipo	Pex, kJ/h	Ex _{uts} , kJ/h	η_{-}	ε	ξ	Pot, kJ/h			
Bombas						e e e e e			
GA-1	77,886	14,606,691,481	0.99999	0.81240	0.99999	14,612			
GA-2	135,876	36,849,310,774	1.00000	0.90240	1.00000	13,261			
 Válvulas 	•					and the second			
V-1	309,553	2,026,764,985	0.99985	0.00000	0.99985	309,553			
V-2	22,314	1,863,818,177	0.99999	0.00000	0.99999	22,314			
V-4	555,117	36,840,978,802	0.99998	0.00000	0.99998	555,117			
• Enfriamiento con a	gua	•			200	egyer gering			
EA-2	5,165,768	14,606,354,197	0.99969	0.11423	0.99142	4,643,068			
 Aereoenfriador 					1.5	e de la filosofia			
EC-1	1,296,514	1,862,530,283	0.99953	0.31837	0.99930	1,015,159			
 Calentamiento con 	vapor			· .	1 - 4 - 1 - 84 - 93				
EA-1	591,965	2,027,316,270	0.99971	0.46091	0.99971	319,120			
• Horno	•								
- H-1,	81,603,456	36,860,757,742	0.99835	0.24518	0.99779	66,673,879			
 Reactor 									
Combustión	38,143,211	101,382,396	0.72662	0.70551	1.41741	11,232,771			
• Transferencia de n	and the second second					. W			
DA-1	13,184,434	53,323,414,913	0.99975	0.09836	0.99975	11,887,664			
SUMA =	141,086,093		the second secon		SUMA =	96,686,517			

Tabla D.13.- Parámetros exérgicos por equipo de la Columna Desisobutanizadora (condiciones ambientales de Cusco: $T_o = 21$ °C, $P_o = 0.67$ atm, $\phi = 0.3$, S = 35%).

Equipo	Ex _{tte} , kJ/h	Ex _{tts} , kJ/h	Irr, kJ∕h	Ex _{nts} , kJ/h	Ex_{ntp} , kJ/h	Efl, kJ/h
Bombas						**
GA-1	14,649,882,931	14,649,808,173	74,758	415,166	340,409	0
GA-2	36,949,870,692	36,949,739,937	130,754	1,392,193	1,261,439	0
 Válvulas 						•
V-1	2,033,392,056	2,033,094,637	297,419	297,419	0	. 0
V-2	1,869,944,858	1,869,923,419	21,439	21,439	. 0	0
V-4	36,941,941,556	36,941,408,197	533,359	533,359	. 0	. 0
• Enfriamiento con	n agua					
EA-2	14,903,884,935	14,893,728,950	10,155,984	8,850,111	1,305,874	1,305,874
 Aereoenfriador 				1		
EC-1	1,869,932,039	1,868,609,225	1,322,814	1,751,952	429,139	429,139
 Calentamiento c 	on vapor				•	
. EA-1	2,034,340,627	2,033,771,989	568,638	1,213,169	644,531	0
• Horno			•			
H-1	37,046,259,993	36,987,950,655	58,309,338	81,408,028	23,098,690	23,443,769
Reactor				Section 1		
Combustión	141,909,069	104,851,796	37,057,273	129,553,348	92,496,075	0
• Transferencia de	e masa					William Control
DA-1	53,489,428,607	53,476,741,227	12,687,379	14,062,575	1,375,196	0
			121,159,155		SUMA =	25,178,781

Tabla D.13.- Parámetros exérgicos por equipo de la Columna Desisobutanizadora (condiciones ambientales de Cusco: T_o = 21°C, P_o = 0.67 atm, ϕ =0.3, S = 35‰) (continuación).

Equipo	Pex, kJ/h	Ex _{uts} , kJ/h	η	ε	ξ	Pot, kJ/h
Bombas						
GA-1	74,758	14,649,808,173	0.99999	0.81993	0.99999	13,461
GA-2	130,754	36,949,739,937	1.00000	0.90608	1.00000	12,280
 Válvulas 						
V-1	297,419	2,033,094,637	0.99985	0.00000	0.99985	297,419
V-2	21,439	1,869,923,419	0.99999	0.00000	0.99999	21,439
V-4	533,359	36,941,408,197	0.99999	0.00000	0.99999	533,359
• Enfriamiento con ag	jua		•			
EA-2	11,461,858	14,649,467,760	0.99932	0.14755	0.98293	9,963,297
 Aereoenfriador 						
EC-1	1,751,952	1,868,180,086	0.99929	0.24495	0.99906	1,427,931
• Calentamiento con	vapor					
EA-1	568,638	2,033,771,989	0.99972	0.53128	0.99972	266,533
• Horno						
H-1	81,753,107	36,964,506,887	0.99843	0.28374	0.99779	65,208,433
Reactor						
Combustión	37,057,273	104,851,796	0.73887	0.71396	1.40064	10,599,814
• Transferencia de m	asa	. ,		14 Aug.	14.55.	,
DA-1	12,687,379	53,476,741,227	0.99976	0.09779	0.99976	11,446,666
SUMA =	146,337,936				SUMA =	99.790.632

Tabla D.14.- Parámetros exérgicos por equipo de la Columna Desisobutanizadora (condiciones ambientales de Québec: $T_o = -16^{\circ}\text{C}$, $P_o = 1$ atm, $\phi = 0.5$, S = 32%).

	(00.10.0		,, ,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 4 - 1 - 0	,		
Eguipo	To the second	Ex _{tte} , kJ/h	Ex _{tts} , kJ/h	Irr, kJ/h	Ex _{nts} , kJ/h	Ex _{ntp} , kJ/h	Efl, kJ/h
• Bombas					- 1,-		
GA-1		14,676,389,597	14,676,324,484	65,113	415,166	350,054	0
GA-2	i de la company	37,049,632,685	37,049,517,720	114,964	1,392,193	., 1,277,229	0
 Válvulas 	;				•		a serve like at the
V-1		2,038,680,257	2,038,420,249	260,008	260,008	. 0	0
V-2	*	1,876,011,677	1,875,992,935	18,742	18,742	. 0	, h. + 0
V-4		37,041,696,623	37,041,230,353	466,270	466,270	18th 0	0
 Aereoen 	friadores					er Vina un estra il alb	a desperation #4
EC-1		1,876,001,339	1,873,333,048	2,668,291	3,156,003	487,712	487,712
EA-2	Television T	14,696,251,570	14,679,569,679	16,681,891	20,277,143	3,595,253	3,595,253
 Calentar 	niento coi	n vapor	No.				1.7571
EA-1		2,039,708,612	2,039,211,899	496,713	1,568,000	1,071,287	0 و سار پرورون در در
Horno	1					and the second of the second s	
H-1		37,149,534,572	37,099,081,532	50,453,040	83,738,138	33,285,098	24,566,081
• Reactor	and the second			vicinity of the second		3 5	100 A
Combus	tión	140,469,146	108,304,219	32,164,927	129,549,206	97,384,279	0, ,,,,,,,
• Transfer	encia de r	masa			74. Y 14. Y	-6,7	e es esta a serie
DA-1		53,631,518,585	53,620,436,763	11,081,822	12,263,578	1,181,757	0. 7
	4,5			114,471,781	e sye for the Sala		28,649,045

Tabla D.14.- Parámetros exérgicos por equipo de la Columna Desisobutanizadora (condiciones ambientales de Québec: $T_o = -16^{\circ}\text{C}$, $P_o = 1$ atm, $\phi = 0.5$, S = 32%) (continuación).

Equipo	Pex, kJ/ h	Ex _{uts} , kJ/h	η	ε	ξ	Pot, kJ/h
Bombas			4		adverse es, e	างสมบัติ
GA-1	65,113	14,676,324,484	1.00000	0.84316	1.00000	10,212
GA-2	114,964	37,049,517,720	1.00000	0.91742	1.00000	9,493
 Válvulas 						V 4 3 3 3
V-1	260,008	2,038,420,249	0.99987	0.00000	0.99987	260,008
V-2	18,742	1,875,992,935	0.99999	0.00000	0.99999	18,742
V-4	466,270	37,041,230,353	0.99999	0.00000	0.99999	466,270
 Aereoenfriadores 	(A. C.)					
EC-1	3,156,003	1,872,845,336	0.99858	0.15453	0.99832	2,743,660
EA-2	20,277,143	14,675,974,427	0.99886	0,17731	0.99862	17,319,349
• Calentamiento con	vapor			+ 1/		
EA-1	496,713	2,039,211,899	0.99976	0.68322	0.99976	157,350
• Horno				· · · · · · · · · · · · · · · · · · ·		and the second
H-1	75,019,121	37,074,515,451	0.99864	0.39749	0.99798	54,964,526
Reactor		* * * * * * * * * * * * * * * * * * *	fact to off particles			
Combustión	32,164,927	108,304,219	0.77102	0.75172	1.33029	7,986,020
Transferencia de ma				=		1230,020
DA-1	11,081,822	53,620,436,763	0.99979	0.09636	0.99979	10,013,943
SUMA =	143,120,826				SUMA =	93,949,573

Tabla D.15.- Parámetros exérgicos del condensador de la columna cuando éste es un aereoenfriador.

Lugar	Ex _{tte} , kJ/h	Ex _{tts} , kJ/h	Irr, kJ∕h	Ex _{nts} , kJ/h	Ex _{ntp} , kJ/h	Efl, kJ/h
Minatitlán	14,615,274,259	14,610,704,422	4,569,837	7,690,754	3,120,916	3,120,916
Jericó	14,611,588,673	14,609,396,322	2,192,351	5,234,476	3,042,125	3,042,125
Cusco	14,658 <u>,38</u> 4,846	14,652,628,858	5,755,988	8,917,086	3,161,097	3,161,097

Tabla D.15.- Parámetros exérgicos del condensador de la columna cuando éste es un aereoenfriador (continuación).

Equipo	Pex, kJ/h	Ex _{uts} , kJ/h	η	ε	Ĕ	Pot, kJ/h
Minatitlán	7,690,754	14,607,583,505	0.9997	0.4058	0.9995	5,836,309
Jericó	5,234,476	14,606,354,197	· 0.9998	0.5812	0.9996	3,960,345
Cusco	8,917,086	14,649,467,760	0.9996	0.3545	0.9994	6,876,594

Tabla D.16.- Parámetros exérgicos de todo el sistema ^(a)
Condensación del producto de domo con agua de enfriamiento.

Lugar	Ex _{tte} , kJ/h	Ex _{tts} , kJ/h	Irr, kJ/h	Ex_{nts} , kJ/h	Ex_{ntp} , kJ/h	Efl, kJ/h
Minatitlán	3,273,768,237	3,155,706,940	118,061,296	120,038,135	1,976,838	23,851,620
Jericó	3,304,970,166	3,184,352,171	120,617,994	122,372,853	1,754,858	21,300,775
Cusco	3,441,283,387	3,319,275,217	122,008,171	124,082,952	2,074,781	22,137,895

(a) No se incluye la válvula V-2 y el aerecenfriador EC-1

Tabla D.16.- Parámetros exérgicos de todo el sistema ^(a)
Condensación del producto de domo con agua de enfriamiento (continuación).

Equipo	Pex, kJ/h	Ex _{uts} , kJ/h	η	ε	ξ	Pot, kJ/h
Minatitlán	141,912,916	3,042,517,890	0.9639	0.0165	0.9294	139,968,633
Jericó	141,918,769	3,041,852,835	0.9635	0.0143	0.9204	140,189,076
Cusco	144,146,066	3,051,570,258	0.9645	0.0167	0.8868	142,105,977

(a) No se incluye la válvula V-2 y el aereoenfriador EC-1

Tabla D.17.- Parámetros exérgicos de todo el sistema ^(a)
Condensación del producto de domo en un aereoenfriador.

Lugar	Ex _{tte} , kJ/h	Ex _{tts} , kJ/h	Irr, kJ∕h	Ex _{nts} , kJ/h	Ex _{ntp} , kJ/h	Efl, kJ/h
Minatitlán	3,431,958,212	3,066,927,472	365,030,741	367,007,579	1,976,838	24,409,582
Jericó	3,431,121,943	3,065,605,624	365,516,319	367,271,178	1,754,858	23,752,789
Cusco	3,436,827,503	3,078,175,124	358,652,379	360,727,160	2,074,781	26,604,866
Québec	3,442,965,504	3,088,095,127	354,870,377	357,959,282	3,088,905	28,161,333

(a) No se incluye la válvula V-2 y el aereoenfriador EC-1

Tabla D.17.- Parámetros exérgicos de todo el sistema ^(a)
Condensación del producto de domo en un aereoenfriador (continuación).

Equipo	Pex, k J/h	Ex _{uts} , kJ/h	η	ε	ξ	Pot, kJ/h
Minatitlán	389,440,323	3,042,517,890	0.89364	0.00539	0.88653	387,474,133
Jericó	389,269,109	3,041,852,835	0.89347	0.00478	0.88655	387,522,635
Cusco	385,25 7,245	3,051,570,258	0.89564	0.00575	0.88790	383,194,397
Québec	383,031,711	3,059,933,793	0.89693	0.00863	0.88875	379,969,461

(a) No se incluye la válvula V-2 y el aereoenfriador EC-1

and the second of the second o and a set and comment of the comment

(*) Province the content of the parameter of the part of the policy of the part of the

REFERENCIAS

- 1. Rivero, R.; Anaya A., "Exergy Analysis of Industrial Processes: Energy-Economy-Ecology", *Latin American Applied Research*, ISSN: 0327-0793, vol. 27, no. 4, 1997, pp. 191-205.
- 2. Szargut, J., "Chemical Exergies of the Elements", *Applied Energy*, vol. 32, 1989, p.p. 269-286.
- 3. Muñoz, J.R.; Michaelides E.E., "The Impact of the Model of the Environment in Exergy Analyses", *Journal of Energy Resources Technology*, vol. 121, Dec. 1999, pp. 268-276.
- 4. Szargut, J.; Morris, D.R.; Steward, F.R., "Exergy Analysis of Thermal, Chemical, and Metallurgical Processes", *Hemisphere*, New York, 1988.
- 5. Kameyama, H., Yoshida, K., Yamauchi, S., Fueki, K., "Evaluation of Reference Exergies for the Elements", *Applied Energy*, vol. 11, 1982, pp. 69-83.
- Rivero, R.; Anaya A., "Exergy Analysis of a Distillation Tower for Crude Oil Fractionation", AES, ISBN: 07918-0582-4, vol. 21, G. Tsatsaronis, R.G. Bajura, W.F. Kenney and G.M. Reistad, editors, American Society of Mechanical Engineers, New York, 1990, pp. 55-62.
- 7. Perry, R.H.; Chilton, C.H., "Manual del Ingeniero Químico", 2ª Ed., McGraw-Hill de México, México, 1982.
- 8. Reid, R.C.; Prausnitz, J.M.; Sherwood, T.K., "The Properties of Gases and Liquids", 3^{th.} Ed., *McGraw-Hill Book Company*, 1977.
- 9. CESPEDES, "Cambio Climático Global: El Reto del Sector Privado en América Latina", Centro de Estudios del Sector Privado para el Desarrollo Sustentable, Fuente original: Instituto Nacional de Ecología, México, 1998.
- 10 Duxbury-Duxbury, "An Introduction to the World's Oceans", 3th Ed., Dubuque, 1991.
- 11. Whitfield, M.; Turner, D. R., Sea Water as an Electrochemical Medium, in: "Marine Electrochemistry: A practical introduction", Whitfield, M. and Jagner, D., *John Wiley y Sons Ltd.*, 1981.
- 12. Riley, J.P., "Introduction to Marine Chemistry", Academic Press, London, 1971.

- 13. Wilson, T.R.S., Salinity and the Major Elements of Sea Water, in: "Chemical Oceanography", Riley and Skirrow, vol.1, 2^{d.} Ed., *Academic Press, Inc.*, New York, 1975.
- 14. Swenson, H., "Why is the Ocean Salty?", 2000, http://oceanography.palomar.edu/salty_ocean.htm.
- 15. Brewer, P.G., Minor Elements in Sea Water, in: "Chemical Oceanography", Riley and Skirrow, vol.1, 2d. Ed., *Academic Press, Inc.*, New York, 1975.
- 16. Dietrich, G.; Kalle K., "General Oceanography", 2^{d.} Ed., Wiley Interscience, 1980.
- 17 Groves, D., "The Oceans", John Wiley, New York, 1989.
- 18. Circultaror Boot Corporation, "Relative composition of Sea Soaks, Sea Water and Tissue Culture Media", 2000, http://www.circulatorboot.com/introduction/seasoaks.html.
- 19 Dyrssen, D.; Wedborg, M., Equilibrium calculations of the speciation of elements in seawater, In: "The Sea", E.D. Golderberg, editor, *Wiley Interscience*, vol. 5, 1974, p. 181-195.
- 20. Skoog, D. A.; West, D. M., "Química Analítica", 4ª Ed., McGraw-Hill, España, 1990.
- 21. Wagman, D.D.; William, H.E.; Parker V.B.; Schumm R.H.; Halow, I.; Bailey, S.M.; Churney, K.L.; Nuttall, R.L., "The nbs tables of chemical thermodynamic properties: Selected values for inorganic and C1 and C2 organic subtances in SI units", American Chemical Society and the American Institute of Physics for the National Bureau of Standards, New York, 1982.
- 22. Latimer, W. M., "The oxidation states of the elements and their potentials in aqueous solutions", *Prentice-Hall*, New York, 1952.
- 23. The Open University Course Team, "Seawater: It's composition properties and behaviour", *Pergamon Press*, 1989.
- 24 Gieskes, J. M., The Alkalinity-Total Carbon Dioxide System in Seawater, In: "The Sea", E.D. Golderberg, editor, *Wiley Interscience*, vol. 5, 1974, p. 123-149.
- 25 Culberson, C.H., Direct Potentiometry, in: "Marine Electrochemistry: A practical introduction", Whitfield, M. and Jagner, D., John Wiley y Sons Ltd., 1981.
- 26 Hansson, I., "A new set of acidity constants for carbonic acid and boric acid in sea water", *Deep-Sea Research*, vol. 20, 1973, p.p. 461-478.
- 27. Hansson, I., "A new set of pH-scales and standard buffers for sea water", *Deep-Sea Research*, vol. 20, 1973, p.p. 479-491.

- 28 Almgren, T.; Dyrssen, D.; Strandberg; M., "Determination of pH on the moles per Kg seawater scale (M_w)", *Deep-Sea Research*, vol. 22, 1975, p.p. 635-646.
- 29 Khoo, K.H.; Ramette, R.W.; Culberson, C.H.; Bates, R.G., "Determination of hydrogen ion concentrations in seawater from 5 to 40°C: Standard potentials at salinities from 20 to 45‰", *Anal. Chem.*, vol. 49, 1977, p.p. 29-34.
- 30. Pitzer, K.S.; Kim, J.J., "Thermodynamics of Electrolytes IV. Activity and Osmotic Coefficients for Mixed Electrolytes", *Journal of the American Chemical Society*, vol. 96, 1974, p.p. 5701-5707.
- 31 Pitzer, K.S.; Mayorga, G., "Thermodynamics of Electrolytes II. Activity and Osmotic Coefficients for Strong Electrolytes with One or Both Ions Univalent", *The Journal of Physical Chemistry*, vol. 77, No. 19, 1973, p.p. 2300-2308.
- 32 Pitzer, K.S.; Mayorga, G., "Thermodynamics of Electrolytes III. Activity and Osmotic Coefficients for 2-2 Electrolytes", *Journal of Solution Chemistry*, vol. 3, No. 7, 1974, p.p. 539-546.
- 33. Pitzer, K.S.; Peiper, J.C., "Activity Coefficients of Aqueous NaHCO₃", *The Journal of Physical Chemistry*, vol. 84, No. 19, 1980, p.p. 2396-2398.
- 34 Millero, F.J.; Thurmond, V., "The Ionization of Carbonic Acid in Na-Mg-Cl Solutions at 25°C", *Journal of Solution Chemistry*, vol. 12, No. 6, 1983, p.p. 401-412.
- 35 Hershey, J.P.; Fernández, M.; Milne, P.J.; Millero, F.J., "The Ionization of boric acid in NaCl, Na-Ca-Cl and Na-Mg-Cl solutions at 25°C", Geochimica et Cosmochimica Acta, vol. 50, 1986, p.p. 143-148.
- 36. Balarew, C.; Rabadjieva, D.; Tepavitcharova, S.; Christov, C.; Angelova, O., "Thermodynamic Study of the Aqueous Rubidium and Manganese Bromide System", *Journal of Solution Chemistry*, vol. 28, No. 7, 1999, p.p. 949-958.
- 37. Millero, F.J.; Byrne, R.H., "Use of Pitzer's equations to determine the media effect on the formation of lead chloro complexes", *Geochimica et Cosmochimica Acta*, vol. 48, 1984, p.p. 1145-1150.
- 38. Whitfield, M., "The extension of chemical models for sea water to include trace components at 25°C and 1 atm pressure", *Geochimica et Cosmochimica Acta*, vol. 39, 1975, p.p. 1545-1557.
- 39. Millero, F.J.; Schreiber, D.R., "Use of the ion pairing model to estimate activity coeficients of the ionic components of natural waters", *American Journal of Science*, vol. 282, 1982, p.p. 1508-1540.

- 40. "The Encyclopedia of Geochemistry and Environmental Sciences", R.W. Fairbridge, editor, *Van Nostrand Reinhold Company*, New York, 1972.
- 41. "WebElements, The periodic table on the www", 2000 http://webelements.com/webelements/scholar/properties/definitions
- 42. Turner, D.R.; Dickson, A.G.; Whitfield, M., "Water-Rock partition coefficients and the composition of natural waters A reassessment", *Marine Chemistry*, vol. 9, 1980, p.p. 211-218.
- 43. Barin, I.; "Thermochemical Data of Pure Subtances", VCH Verlagsgesellschaft mbH, Weinheim, Federal Republic of Germany, 1993.
- 44. "CRC Handbook of Chemistry and Physics". Robert C. Weast, editor, 55th. Ed., CRC Press, 1975.
- 45. Grant Gross, M., "Oceanography: A View of the Earth", 3th Ed., *Prentice-Hall, Inc., Englewood Cliffs*, N.J., 1982.
- 46. "Encarta 98 Encyclopedia", Microsoft Corporation, 1998 Edition.
- 47. Walas, S.M., "Phase Equilibria in Chemical Engineering", Butterworth Publishers, USA, 1985.
- 48 Smith, J.M.; Van Ness, H.C., "Introduction to Chemical Engineering Thermodynamics", 4ª Ed., McGraw-Hill, Inc., USA, 1987.
- 49 Barner, H.E.; Scheuerman, R.V., "Handbook of Thermochemical Data for Compounds and Aqueous Species", *John Wiley*, N. Y., 1978.
- 50 Silvester, L. F.; Pitzer, K.S., "Thermodynamics of Electrolytes. X. Enthalpy and the Effect of Temperature on the Activity Coefficients", *Journal of Solution Chemistry*, vol. 7, No. 5, 1978, p.p. 327-337.
- 51. Pitzer, K.S., Theory: Ion Interaction Approach, In: "Activity Coefficients in Electrolyte Solutions", R.M. Pytkowicz, editor, *CRC Press*, vol. 1, 1979.
- 52. Millero, F.J.; Sohn M. L., "Chemical Oceanography", CRC Press, 1992.
- 53 Rivero, R.; Montero, G.; Garfias, M., "Efecto de la temperatura ambiental en la determinación de la exergia química de parafinas", Revista del Instituto Mexicano de Ingenieros Químicos, A.C., vol. 9-12, Año XLII, 2001, p.p. 197-205.
- 54. Perry, J.H., "Chemical Engineers' Handbook", 3th. Ed., McGraw-Hill, USA, 1949.
- 55. Manual del Simulador de Procesos Aspen Plus.