

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

3572

FACULTAD DE QUÍMICA

Estrategia para la Síntesis de redes de Complejos de Coordinación Enlazados por Puentes de Hidrógeno

T E S I S

QUE PARA OBTENER EL GRADO DE MAESTRO EN CIENCIAS QUÍMICAS (QUÍMICA INORGÁNICA) P R E S E N T A

Q. Domingo Salazar Mendoza

México D. F,

Junio 2002

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO

PRESIDENTE	Dr. Antonio Campero Celis
PRIMER VOCAL	Dra. Ma. De Jesús Rosales Hoz
SECRETARIO	Dr. Rafael Moreno Esparza
PRIMER SUPLENTE	Dr. Juan Manuel Fernández González
SEGUNDO SUPLENTE	Dra. Erika Mártin Arrieta

Sitio donde se desarrollo el tema:

El presente trabajo se realizó en el departamento de Química Inorgánica del Instituto de Química de la Universidad Nacional Autónoma de México.

SUSTENTANTE Q. DOMINGO SALAZAR MENDOZA

ASESOR

Dr. JESÚS VALDÉS MARTÍNEZ

A Toyka, Emiliano y Maximina I.

Agradecimientos

Dr. Sylvain Bernès

Dr. Juan Manuel Fernández González

Dr. David Morales Morales

Q. Juan Ramón Ramírez Ramos

Dr. Jesús Valdés Martínez

A la Universidad de la Nación, mí alma mater.

Resumen

Existen diversas razones por las cuales resulta interesante incorporar iones metálicos en una red cristalina. Entre ellas, el hecho de que a través de los iones metálicos es posible incorporar propiedades físicas poco comunes en los sólidos orgánicos, tales como, características magnéticas, conductividad y actividad catalítica. Una de las formas en las que se han construido materiales híbridos inorgánicos / orgánicos ha sido a través del encadenamiento, por medio de enlaces de coordinación, de complejos metálicos para obtener polímeros de coordinación. Otra estrategia empleada ha sido la de utilizar fuerzas intermoleculares débiles (principalmente enlaces de hidrógeno) para unir los complejos metálicos en una amplia variedad de redes.

La estrategia utilizada en este trabajo para la obtención de los polímeros supramoleculares se denomina *enlace direccional*. Esta estrategia consiste en la utilización de 1) un *centro metálico*, 2) un *ligante bloqueador*, que deje disponibles únicamente ciertos sitios de coordinación del metal central, y 3) un *ligante puente*, que permita unir las unidades metal-ligante bloqueador en una determinada configuración.

Con el propósito de obtener los polímeros supramoleculares, en este trabajo se emplearon como *centro metálico* el ion Cu(II), como *ligante bloqueador* a la 2,2,':6',2"-terpiridina, terpy, y como *ligante puente* a los ácidos dicarboxílicos 4,5-dicloroftálico, 2,3-naftalendicarboxílico y 2,6-naftalendicarboxílico.

La estrategia de síntesis permitió obtener los siguientes compuestos:

- 1) [Cu(4,5-dicloroftalato)(H₂O)(terpy)]•3H₂O
- 2) [Cu(2,3-naftalendicarboxilato)(H₂O)(terpy)]•3H₂O•CH₃OH
- 3) [{Cu(H₂O)(terpy)}₂(μ -2,6-naftalendicarboxilato)](ClO₄)₂•2H₂O

El estudio de difracción de Rayos X en mono-cristal permitió establecer que todos los compuestos presentan una geometría de pirámide de base cuadrada alrededor del ion Cu(II), con la terpy coordinada como ligante bloqueador ocupando tres posiciones ecuatoriales y un oxígeno del carboxilato correspondiente ocupando la otra posición ecuatorial, en la posición apical se encuentra coordinada una molécula de agua. Las moléculas se encuentran formando enlaces de hidrógeno entre el agua de coordinación y el oxígeno no coordinado del carboxilato, formando cadenas poliméricas 1D.

Al comparar las estructuras con las descritas en la literatura para compuestos similares de Cu(II) en los que el ligante bloqueador es la dietilentriamina, dien, o la pentametilentriamina, pmdien, se observa lo siguiente:

La estructura molecular alrededor del Cu(II) de todos los compuestos, es de pirámide cuadrada, las posiciones ecuatoriales están ocupadas por la amina tridentada y el oxígeno de un carboxilato. La posición apical esta ocupada ya sea por una molécula de agua, en tery y pmdien, o por el oxígeno del carboxilato, en dien. La estructura supramolecular para el caso de la pmdien esta formada por moléculas, en el caso de la terpy es su mayoría por cadenas enlazadas por puentes de hidrógeno y en el caso de la dien por cadenas poliméricas.

De lo anterior se puede concluir que, utilizando como ligante bloqueador una amina tridentada y como ligante puente un ácido carboxílico, es posible;

A **nivel molecular**: controlar la geometría del centro metálico.

A **nivel supramolecular:** controlar el ensamble molecular y obtener, de acuerdo con la amina tridentada utilizada. Monómeros, polímeros de coordinación o polímeros unidos por enlaces de hidrógeno.

Introducción	1		
Estrategia	2		
Referencias	6		
Antecedentes	7		
Referencias	14		
Parte Experimental	15		
Síntesis	15		
Referencias	20		
Resultados	21		
Compuesto 1	21		
Compuesto 2	31		
Compuesto 3	39		
Referencias	46		
Discusión	47		
Referencias	59		
Conclusiones	61		
Apéndice	63		

Existen diversas razones por las cuales resulta interesante incorporar iones metálicos en una red cristalina. Entre ellas se encuentra el hecho de que a través de los iones metálicos es posible introducir propiedades físicas y químicas que son poco comunes en los sólidos orgánicos, tales como, características magnéticas, conductividad y actividad catalítica. Por otro lado, los iones metálicos presentan geometrías, de coordinación, que van más allá de las que se pueden lograr con los compuestos orgánicos, con lo que se incrementa la posibilidad de construir materiales con nuevas dimensiones y topologías.¹

Unas de las formas en las que se han construido materiales híbridos inorgánicos / orgánicos ha sido a través del encadenamiento, por medio de enlaces de coordinación, de complejos metálicos para obtener polímeros de coordinación. Otra estrategia empleada ha sido la de utilizar fuerzas intermoleculares (principalmente enlaces de hidrógeno) para unir los complejos metálicos en una amplia variedad de redes.¹

Este trabajo forma parte de un proyecto en el que se propone desarrollar una estrategia para sintetizar, polímeros supramoleculares.

Estrategia

La estrategia que se propone utilizar para la obtención de los polímeros supramoleculares se denomina: *enlace direccional*¹.

Esta estrategia consiste en la utilización de: 1) un *centro metálico* de transición, 2) un *ligante bloqueador* que deje disponibles únicamente ciertos sitios de coordinación del centro metálico y 3) un *ligante puente* que permita unir las unidades centro metálico-ligante bloqueador o bloque constructor en una determinada configuración.

Ion metálico

Ligante bloqueador

Ligante puente

Figura 1.1. La cadena que se desea sintetizar.

Para sintetizar los polímeros inorgánicos, cada uno de los componentes del modelo de *enlace direccional*, requiere de ciertas características. A continuación se presentan los componentes del modelo y enseguida las características de cada uno.

Centro Metálico

Se eligió al ion Cu(II), que tiene un electrón desapareado,² la principal desventaja para poder realizar la síntesis de polímeros inorgánicos con este ion es su versatilidad estructural,^{3,4} de acuerdo con A. F. Wells: La química estructural de los compuestos cúpricos es de un interés completamente notable, pero con este estado de oxidación, el cobre muestra la mayor diversidad en su comportamiento esteroquímico más que ningún otro elemento. Por tanto esta característica del Cu(II) representa una oportunidad, ya que poder controlar su geometría a través del ligante bloqueador resulta muy importante para este trabajo.

Ligante Bloqueador

Se desea que el ligante bloqueador tenga las características siguientes:

- Que pueda bloquear los sitios de coordinación del centro metálico dejando sólo dos posiciones vacantes con un ángulo entre ellas de aproximadamente 90°.
- 2) Que pueda controlar la geometría del centro metálico.

 Que sea inerte por ejemplo: no presentado reacciones de sustitución u oxidación.

Resultados obtenidos en nuestro laboratorio,^{11,15} así como un análisis de la base de datos cristalográfica "Cambridge Structural Data" (CSD) sugieren que las aminas tridentadas son ligantes adecuados, ya que cumplen con las condiciones deseadas, pues con Cu(II) forman compuestos pentacoordinados con geometría de pirámide cuadrada, ver tabla **1.1**.

Ligantes Bloqueador	NH2 - NH NH2	CHJ2N NCH3 NICH32	
Ligantes Puente	H−C 0 5	CH3 CH4 6CIO4	H-C, 07 _{CIO4}
	сн₃-с∽н 8,СЮ4.	Hoperford Shing ClO4	сн <u>з</u> -с [∞] он 10СЮ4
		C→-c [∞] _{DR 12CIO4}	но-с-с-н 13 _{ClO4}
	">	, t	

Tabla **1.1** Resultados de una búsqueda en la base de datos CSD y los obtenidos en el laboratorio.

Para este trabajo se empleará como ligante bloqueador la amina tridentada 2,2, :6 2 -terpiridina (terpy). Se pretende que deje dos sitios de coordinación que estarán inicialmente ocupados por moléculas de agua, pero que al ser éstas ligantes lábiles serán sustituidas por el ligante puente.

Ligante Puente

Se desea que el ligante puente tenga las características siguientes:

- 1. Que pueda construir cadenas inorgánicas.^{16,17,18}
- 2. Los ácidos dicarboxílicos a diferencia de los ácidos monocarboxílicos, no requieren de la presencia de aniones para balancear la carga del Cu(II), por tanto, tampoco se genera competencia entre ellos y que eventualmente los aniones se coordinen al centro metálico¹⁶.

Con el propósito de obtener los polímeros supramoleculares, se empleará como *centro metálico* el ion Cu(II), como *ligante bloqueador* a la 2,2,':6',2"-terpiridina y como *ligante puent*e a los ácidos dicarboxílicos 4,5dicloroftálico, 2,3-naftalendicarboxílico y 2,6-naftalendicarboxílico.

Los resultados que se obtengan, se compararán con los logrados en nuestro laboratorio de investigación con otras aminas tridentadas y ácidos dicarboxílicos y con los descritos en la literatura.

Referencias

- 1 Brabley J. H. and Mirkin, C. A. Angew. Chem. Int. Ed., 2001, 40, 2022-2043.
- 2 Kahn, O. Molecular Magnetism, VCH, Weinheim, 1993.
- 3 Hathaway B. J., "Comprehensive Coordination Chemistry" Ed. Wilkinson Geoffrey,
- Gillad Robert D., McCleverty John A., Pergamon, Oxford, 1987, Vol. 5, p.53 .
- 4 Wells A. F., Structural Inorganic Chemistry, 5th Ed., Clarendon Press Oxford, 1984.
- 5 Davey G. and Stephens F. S., J. Chem. Soc. A, 1971, 103.
- 6 Scott M.J., Goddard C.A., Holm R.H., Inorg. Chem., 1996, 35, 2558.
- 7 Folgado J.V., Escriva E., Beltran-Porter A., Beltran-Porter D., Fuertes A., Miravitlles C., *Polyhedron*, 1987, 6, 1533.
- 8 Ye Bao-Hui, Ji Liang-Nian, Xue Feng, Mak T. C. W., Polyhedron, 1998, 17, 2687.
- 9 Verdaguer M., Gouteron J., Jeannin S., Jeannin Y., Kahn O., *Inorg. Chem.*, 1984, 23, 4291.
- 10 Munoz M.C., Ruiz R., Julve M., Lloret F., Solans X., Acta Crystallogr., Sect. C (Cr.Str.Comm.), 1993, 49, 674
- 11 Salazar-Mendoza D., Tesis de Licenciatura, UNAM, 1996.
- 12 Burger K.-S., Chaudhuri P., Wieghardt K., Nuber B., Chemistry-A European Journal, 1995,1, 583
- 13 Cano J., De Munno G., Sanz J.L., R Ruiz., Faus J., Lloret F., Julve M., Caneschi A., J. Chem. Soc. Dalton Trans., 1997, 1915
- 14 Jian-Zhong Zou, Qi Liu, Zheng Xu, Xiao-Zeng You, Xiao-Ying Huang *Polyhedron*, 1998, 17, 1863
- 15 Valdes-Martinez J., Lee-Cervantes F. and ter Haar L., J. Appl. Phys., 74, No. 3, 1993.
- 16 Shakhatreh S. K., Bakalbassis E. G., Brüdgam I., Hartl H., Mrozinski J., and Tsipis, C. A., *Inorg. Chem.*, 1991, 30, 2801
- 17 Bakalbassis E.G. and Paschalidis D. G., Inorg. Chem., 1998, 37, 4735.
- 18 Zhang H. X., Kang B. S., Xu A. W., Chen Z. N., Zhou Z. Y., Chan A. S. C., Yu K. B., Ren C., *J. Chem. Soc. Dalton Trans.*, 2001, 37, 2559 y las referencias que ahí se encuentran.

En los últimos veinte años la química supramolecular se ha desarrollado enormemente. Esta expansión se ha dirigido hacia la obtención de un mayor conocimiento en los métodos de síntesis y caracterización de estructuras complejas. ^{1,2,3,4,5}

Lehn ha definido la química supramolecular como la "la química más allá de la molécula". Haciendo una comparación entre la química molecular y la química supramolecular, este autor propone que las moléculas y las interacciones intermoleculares son en la química supramolecular, lo que los átomos y los enlaces son en la química molecular.⁶ En este mismo contexto Dunitz considera un cristal como la supramolécula por excelencia.⁷ La pregunta que surge primero es ¿cómo se construye un cristal?. La ingeniería de cristales, una sub-disciplina de la química supramolecular, surgió con la intención de buscar respuesta a esta pregunta. En la actualidad se ha alcanzado un nivel tal en el desarrollo de la química que es posible planear la síntesis y predecir la estructura aun de moléculas muy complejas, no así para las interacciones intermoleculares ya que no es posible predecir el acomodo de las especies químicas en una estructura cristalina a partir del conocimiento de la estructura molecular de los constituyentes.⁸ Desiraju define la ingeniería de cristales como; "el entendimiento de las interacciones intermoleculares en el contexto del empaquetamiento cristalino y en la utilización de tal entendimiento en el diseño de sólidos con propiedades físicas y químicas deseadas".⁹

El mismo autor considera que "la ingeniería de cristales ha sido creada por los químicos estructurales y los cristalógrafos para un mejor entendimiento de las interacciones no covalentes, para el diseño de nuevos materiales, consiste de dos componentes principales, *análisis* y *síntesis*; los conceptos y principios del reconocimiento y la naturaleza de las interacciones que median la construcción supramolecular en el estado sólido constituyen el componente *analítico* mientras que el componente *sintético* consiste en las estrategias empleadas en el diseño de sólidos con topología y propiedades funcionales".¹⁰

La química "más allá de la molécula" es tan vieja como la vida misma. Está presente en la naturaleza a través de los enlaces de hidrógeno en la estructura del ADN, en la elegante habilidad de los sitios receptores de la enzima para actuar en una molécula con absoluta selectividad y en el control exhibido por las metaloproteínas, como la hemoglobina, sobre el ambiente del metal de coordinación.

¿Cómo obtener polímeros lineales de complejos metálicos? El presente trabajo trata de responder a esta pregunta. Y para ello es necesario desarrollar una *estrategia de síntesis* que permita obtener polímeros

inorgánicos. Ya que los resultados de la obtención de polímeros e inclusive moléculas, tienen bajo rendimiento. Una de las desventajas para la síntesis de polímeros supramoleculares de compuestos de coordinación es la debilidad de las interacciones metal-ligante encontradas en los complejos de coordinación en comparación con los enlaces covalentes fuertes de los compuestos orgánicos. El enlace débil frecuentemente se traduce en varias rutas de reacción que no son sustancialmente diferentes desde el punto de vista energético, y por tanto los resultados son pobres en selectividad. Esta necesidad ha generado en años recientes el interés de los químicos de coordinación quienes se han dedicado a diseñar rutas sencillas para obtener estructuras supramoleculares por medio de reacciones con alto rendimiento. A través del enlace direccional proporcionado por los centros metálicos y algunas otras estrategias que ayudan a tomar ventaja de los enlaces débiles metal-ligante encontrados en la química de coordinación se pueden obtener las estructuras deseadas. Para lo cual se han propuesto tres estrategias sintéticas; que emplean centros metálicos como blogues de construcción para ensamblar racionalmente componentes moleculares y crear sistemas supramoleculares, a saber a) interacción simétrica, b) enlace direccional y c) enlace débil.11

A continuación se describirán brevemente las estrategias; interacción sintética y enlace débil, la estrategia enlace direccional se abordara con más detalle por ser la empleada en este trabajo.

Estrategia de la Interacción Simétrica¹¹

La estrategia de interacción simétrica ha sido desarrollada empleando metales de transición, esta estrategia da buenos rendimientos para el diseño de cúmulos de coordinación de alta simetría. En esta estrategia los ligantes quelato multidentados son empleados en conjunción con metales; de transición o representativos, los cuales se encuentran libres de ligantes coordinantivamente fuertes. Con esta combinación de materiales de partida, la formación de una estructura supramolecular dada es dirigida por la simetría de los sitios de coordinación vacantes en el centro metálico. Así mismo se debe tener presente las siguientes consideraciones, favorecer el ambiente de coordinación del centro metálico y la forma de enlace del ligante quelato, otra consideración importante es la orientación de los sitios de la quelación múltiple de un ligante con respecto a otro, ya que al cambiarlos se debe asegurar la formación de un cúmulo discreto, en lugar de la formación de oligomeros y polímeros.

Estrategia del Enlace Débil¹¹

La estrategia sintética de la interacción débil pretende obtener estructuras en dos y tres dimensiones, empleando como materiales de partida; a ligantes flexibles y metales de transición libres de ligantes directores para obtener estructuras con sitios de coordinación que están

disponibles. En esta estrategia, los ligantes hemilábiles son empleados para enlazar centros metálicos de transición en forma bidentada de tal manera, que uno de las unidades metal-ligante es más fuerte que la otra, favoreciendo la formación de complejos dinucleares más que mononucleares.

Estrategia del enlace direccional¹¹

La estrategia del *enlace direccional*, también llamada modelo o "biblioteca molecular" como Stang y colaboradores¹² lo definen, consiste en el ensamble de estructuras con metales, donde los centros metálicos actúan como esquineros o unidades laterales induciendo formas geométricas o poliedros. Típicamente los metales son introducidos en esas estructuras mediante *ligantes directores* o *bloqueadores* cuya función es preparar los sitios de coordinación del centro metálico, una vez logrado esto, corresponde a los *ligantes puente* ocupar estos sitios para que finalmente se obtenga el material deseado. (ver figura **2.1**).

Ventajas y limitaciones de la propuesta de enlace direccional.

La propuesta de enlace direccional para la síntesis de complejos supramoleculares de coordinación es en general, una estrategia sintética de gran rendimiento que permite tener estructuras en un amplio intervalo de tamaño y formas características, que pueden ser controladas por medio de cambios en los metales y ligantes empleados.

Esta propuesta tiene las siguientes limitaciones:

 Los ligantes empleados son grupos de eslabones rígidos lo cual excluye los arreglos supramoleculares flexibles; la rigidez limita la formación de switches moleculares u otras aplicaciones que requieren cambios conformacionales.

- 2º. Los *centros metálicos* en las estructuras finales son coordinativamente inertes.
- 3º. Las propiedades físicas de ambos; el metal y el ligante es decir, los bloques de construcción, son modificadas como resultado de la coordinación directa.¹¹

El poder desarrollar una estrategia de síntesis que permita obtener polímeros supramoleculares, aportará un mayor conocimiento sobre la contribución de cada una de las especies a la formación del polímero ¿de qué manera se ensamblan tales especies? ¿Cuáles son las interacciones que intervienen en la formación del polímero?.

Referencias

- 1 Lehn J.-M., Supramolecular Chemistry, VCH, New York, 1995.
- 2 Vögtle F. Supramolecular Chemistry, Wiley, Chichester, 1991.

3 Inclusion Phenomena and Molecular Recognition (Ed.: Atwood, J. L.), Plenum, New York, 1990.

4 Schneider H.-J., Dürr, H. Frontiers in Supramolecular Organic Chemistry and Photochemistry, VCH, New York, 1991

5 Comprehensive Supramolecular Chemistry (Ed.: J.-M. Lehn), Pergamon, New York, 1996.

6 Lehn J-M., Angew. Chem. Int. Ed., 1988, 27, 89-112.

7 Dunitz Jack D., Pure Appl.Chem. 1991, 63, 177-185.

- 8 Angelo Gavezzotti, Acc. Chem. Res., 1994, 27, 309-314.
- 9 Desiraju Gautam. R, *Crystal Enginering:the Desing of Organic Solids*, Elsevier Amsterdam 1989.
- 10 Nangia A. and Desiraju G. R., Acta Cryst., 1998, A54, 934-944
- 11 Holliday B. J. and Mirkin C. A., Angew. Chem. Int. Ed., 2001, 40, 2022-2043
- 12 Leininger S., Olenyuk B., Stang P. J., Chem. Rev. 2000, 100, 853-908

Reactivos

Los siguientes reactivos de Aldrich Chemical Co. Inc. se utilizaron directamente del frasco: Perclorato de cobre hexahidratado, 2,2:6,2terpiridina, ácido 4,5-dicloroftálico, ácido 2,3-naftalendicarboxílico y ácido 2,6-naftalendicarboxílico.

Disolventes: Agua destilada, Acetonitrilo, metanol.

Síntesis

Método general para la síntesis de los compuestos 1-3.¹

Se disuelve 1.85 mmol de perclorato de cobre (II) hexahidratado en 100 mL de agua destilada, y se adiciona 0.925 mmol de 2,2 :6 ,2 terpiridina¹ a la disolución obtenida se le agregan disueltos en agua destilada 0.925 mmol del ácido dicarboxílico correspondiente se deja la disolución en reposo hasta la formación de cristales (ver figura **3.1**).

¹ la razón por la cual se empleo siempre la mitad de la cantidad de terpy con respecto al ion Cu(II), es por que se formaba el compuesto; Bis(2,2':6',2''terpiridina)cobre(II) diperclorato hemihidratado, cada vez que se agregaba en igual proporción.

Figura 3.1 Ecuaciones químicas de los compuestos 1, 2 y 3.

Síntesis de los complejos

(4,5,-dicloroftalato)(aquo)(2,2':6',2''-terpiridina)cobre(II)

trihidratado Complejo 1

$[Cu(4,5-dicloroftalato)(H_2O)(terpy)] \cdot 3H_2O$

Se utilizan 1.85mmol de $Cu(ClO_4)_2 \cdot 6H_2O$ en 25 mL de agua destilada, 0.925 mmol de 2,2 :6 ,2 -terpiridina en CH_3CN , y 0.925 mmol de ácido 4,5-dicloroftálico en agua destilada, al que previamente se le habían agregado 1.85 mmol de NaOH disuelto en agua destilada.

(2,3-naftalendicarboxilato)(aquo)(2,2':6',2''-

terpiridina)cobre(II) trihidratado metanol Complejo 2 [Cu(2,3-naftalendicarboxilato)(H₂O)(terpy)]•3H₂O•CH₃OH

El complejo **2** se sintetizó con 1.85 mmol de Cu(ClO₄)₂•6H₂O en agua destilada, 0.925 mmol de 2,2, :6,2 -terpiridina en CH₃CN y 0.925 mmol del ácido 2,3-naftalendicarboxílico en agua destilada, al que le habían agregado 1.85 mmol de NaOH disuelto en agua destilada. Los cristales enviados a rayos X se obtuvieron recristalizando de metanol.

μ-2,6-naftalendicarboxilato-bis{(aquo)(2,2´:6´,2´´terpiridina)(cobre(II)}dipercloratodihidratado Complejo 3 [{Cu(H₂O)(terpy)}₂(μ-2,6-naftalendicarboxilato)](ClO₄)₂•2H₂O

Se obtuvo de 1.85mmol de Cu(ClO₄)₂•6H₂O en 50 mL de agua destilada y 0.925 mmol de 2,2, :6,2 -terpiridina en CH₃CN, y 0.925mmol del 2,6-naftalendicarboxalato de dipotasio en 50 mL de agua destilada.

Determinación de la Estructura Cristalina

Los cristales **1** y **2** fueron montados con una orientación aleatoria en una fibra de vidrio. Los datos del cristal fueron colectados usando un difractómetro Siemens P4/PC de cuatro círculos con un monocromador de grafito MoK α (λ = 0.71073 Å). Se aplicaron correcciones por Lorentzmétodos directos, y los átomos diferentes al hidrógeno se encontraron por refinamiento sucesivo de matrices completas de mínimos cuadrados en F^2 y se refinaron con parámetros térmicos anisotrópicos. Las posiciones de los átomos de hidrógeno se localizaron por mapas de Fourier y refinadas con un factor de temperatura isotrópico, U = 0.06Å².

El cristal **3** se coloco en aceite inerte, se monto en un capilar de vidrio, y fue transferido a la corriente de nitrógeno frío del difractómetro. Los datos cristalográficos fueron colectados e integrados usando un sistema Bruker SMART 1000 con un monocromador de grafito MoK α (λ = 0.71073 Å) a 173 K. La estructura fue resuelta por métodos directos y refinada usando SHELXL-97. Los átomos diferentes al hidrógeno se encontraron por refinamiento sucesivo de matrices completas de mínimos cuadrados en F^2 y se refinaron utilizando parámetros térmicos anisotrópicos. Las posiciones de los átomos de hidrógeno fueron localizadas de los mapas de Fourier diferencia, y se refinaron mediante un modelo tipo "riding" con parámetros térmicos fijos ($u_{ij} = 1.2[Uij(eq)$ para el átomo al cual esta enlazado).

Los programas utilizados para determinar los ángulos y las distancias de enlace de los enlaces de hidrógeno fue el PLATON98.^{2,3} y el SHELXTL NT Ver. 5.10

J.			
	1	2	3
Fórmula empírica	$C_{23}H_{21}CI_2CuN_3O_8$	$C_{27\ 60}H_{26.40}CuN_3O_{8.10}$	$C_{42}H_{26}Cl_2Cu_2N_6O_{15}$
Peso fórmula	601.87	593.26	1052.67
Grupo espacial	Pĩ	Pī	P21/c
Sistema	Triclínico	Triclípico	Monoclínico
cristalino	menneo		
a (Å)	7.359(1)	7.032(1)	15.938(4)
b (Å)	12.348(1)	12.785(2)	16.640(4)
c (Å)	13.870(2)	14.381(2)	16.051(3)
α(°)	87.08(1)	86.59(1)	90
β(°)	81.66(1)	85.08(2)	93.088(4)
γ(°)	78.55(1)	84.95(1)	90
Ζ	2	2	4
Coeficiente de			
absorción	1.167	0.911	1.206
(µ/mm ⁻¹)			
Volumen (Å ³)	1221.9(3)	1281.4(3)	4250.5(16)
Densidad			
calculada	1 636	1.538	1.645
(g/cm ³)			
Temperatura (K)	293(2)	293(2)	293(2)
Indice R1	0.0405	0.0567	0.0497
Indice R _w	0.0578	0.0758	0.0957

 Tabla 3.1 Datos cristalográficos y de refinamiento de los compuestos 1

 3.

Referencias

1 Valdés-Martínez j., Toscano R. A. and Salazar-Mendoza D., Acta Cryst. (2001) **E57**, m331-m332.

2 Spek, A. L. Acta Cryst. (1990) A46, C-34, y las referencias que ahí se encuentran.

3 a) Steiner, Th. *Cryst. Rev.*, (1996), 6, 1-57. b) Jeffrey G. A., Maluszzynska & Mitra J., *Int. J. Biol. Macromol.*, (1985), 7, 336-348. c) Jeffrey G. A., & Saenger W., Hydrogen Bonding in Biological Structures Springer-Verlag, Berlin, 1991, pp. 20.

[Cu(4,5-dicloroftalato) (H₂O)(terpy)]•3H₂O, 1.

La síntesis del complejo **1** se efectuó con $Cu(ClO_4)_2 \cdot 6H_2O$, 2,2, :6,2 -terpiridina y el dianión 4,5-dicloroftalato en una mezcla; agua destilada / CH_3CN .

En la figura **4.1** se presenta la unidad asimétrica y la numeración de los átomos. En la Tabla **4.1** se presentan los datos selectos de distancias y ángulos de enlace y la Tabla **4.2** presenta los datos de los enlaces de hidrógeno.

La unidad asimétrica de **1** esta constituida por un ion Cu(II), un ligante tridentado terpy, un dianión 4,5-dicloftalato, una molécula de agua coordinada al ion metálico y tres moléculas de agua de cristalización.

Figura **4.1**. Diagrama mostrando las elipsoides térmicas (30%) de la unidad asimétrica complejo $\boldsymbol{1}$ y la numeración de los átomos.

Tabla 4.1 Distancias ((Å)	y ángulos de enlac	e (°) seleccionados,	. 1.
			•	,	

Cu-N1	2.028(4)	N1'-Cu-N1	79.84(15)
Cu—N1'	1.948(3)	N1'CuN1"	79.62(14)
Cu	2 039(4)	02-Cu-N1'	168.55(14)
Cu—02	1.930(3)	01—Cu—N1'	108.69(13)
Cu01	2.216(3)	O2—Cu—O1	82.09(13)
<u> </u>			

Al ion Cu(II) se encuentran coordinados la terpiridina, actuando como ligante tridentado a través de los átomos de nitrógeno, uno de los oxígenos del ácido y una molécula de agua. La geometría del Cu(II) corresponde a una pirámide de base cuadrada distorsionada, cuya base esta formada por los nitrógenos N1, N1' y N1" de la terpy y el oxígeno O2 del dianión 4,5-dicloroftalato. El oxígeno O1 de la molécula de agua ocupa la posición apical, el ángulo formado entre la perpendicular al plano de la base de la pirámide y el vector Cu–O1 es de 14.0(1)°. El Cu(II) se encuentra 0.14(4) Å por encima de la base de la pirámide.

Se puede determinar desde el punto de vista cuantitativo la geometría del Cu(II). De acuerdo con el autor J. Reedijk v colaboradores, en sistemas pentacoordinados como el que se presenta en la figura 4.2 y en la estructura de 1, la geometría pirámide de base cuadrada ideal, esta asociada con $\alpha = \beta = 180^{\circ}$, para **A** como el ligante axial (β es el ángulo mas grande de los ángulos basales, **BMC**). Para la geometría de bipirámide trigonal ideal, $\alpha = 120^{\circ}$ y el eje principal **BMC**. En la mayoría de los sistemas reales de pirámides de base cuadrada M esta desplazada fuera del plano BCDE hacia A¹, de esta manera las geometrías C_{4v} generalmente tienen $\alpha = \beta < 180^{\circ}$, y pueden ser caracterizadas por el valor ($\beta - \alpha$), el cual es 0° para una C_{4v} y 60° para un poliedro D_{3h} . Así mismo se puede definir el parámetro geométrico τ = $(\beta - \alpha)/60$ que es un índice del grado de trigonalidad el cual se aplica a las estructuras pentacoordinadas. La geometría de pirámide de base cuadrada en $\mathbf{1}_{t}$ queda confirmada por el valor del parámetro $\tau = 0.17$. Cuyo valor varía de $\tau = 0$ para una geometría de pirámide de base cuadrada ideal, hasta un valor de $\tau = 1$ para una bipirámide trigonal ideal.2

Figura **4.2** Sistema pentacoordinado.

Los ángulos de torsión N1—C2—C2'—N1' de 1.6(6)° y N1"—C2"— C6'—N1' de 2.8(5)° indican que la terpy esta ligeramente desviada de constitución de un plano ideal. El oxígeno O3 del carboxilato coordinado al Cu(II) se encuentra en dirección opuesta a la molécula de agua coordinada. El anillo central de la terpy y el anillo del dianión 4,5dicloroftalato son prácticamente paralelos; el ángulo entre ellos es de 1.6(2)° y la distancia perpendicular entre ambos anillos es de 1.36 Å. El carboxilato no coordinado se encuentra fuera del plano del anillo del 4,5-dicloroftalato como lo indica el ángulo de torsión C7—C8—C14—O4 de 44.2(6)°.

El oxígeno O1 de la molécula de agua coordinada forma un enlace de hidrógeno con el O3 del dianión 4,5dicloftaláto en posición: -1+x, y, z. Este enlace de hidrógeno genera un polímero supramolecular lineal que corre a lo largo del eje **a** como se muestra en la figura **4.3**.

Figura 4.3. Polímero lineal por enlaces de hidrógeno.

Las moléculas de las aguas de cristalización forman diversos enlaces de hidrógeno como se ilustra en la Figura **4.4** (la numeración corresponde a los átomos de oxígeno). A través de estos enlaces de hidrógeno se enlazan dos de las cadenas antes mencionadas que corren antiparalelas a lo largo del eje **a**, como se muestra en la Figura **4.5**

Figura **4.4** Enlaces de hidrógeno de las moléculas de agua de cristalización y coordinación con los oxígenos del carboxilato del 4,5-dicloroftalato.

Figura **4.5** Estructura 1D construida a través de los enlaces de hidrógeno de las aguas de cristalización y coordinación con los oxígenos del carboxilato del 4,5-dicloroftalato.

Además de estas interacciones intermoleculares fuertes están presentes en la estructura otras de tipo no clásico, como enlaces de hidrógeno C-H···O e interacciones π - π . Tales interacciones son del tipo dipolo inducido/dipolo inducido (Fuerzas de London) una molécula no polar podría inducir un pequeño dipolo instantáneo fluctuante en otra molécula no polar cercana por ejemplo; en la molécula de benceno, naftaleno, fenantreno etc.³ Los parámetros son: distancia centroidecentroide < 6.0 Å y el ángulo β < 60.0(°).⁵ Las cuales se describen a continuación.

Los átomos de hidrógeno enlazados a los átomos de carbono C3" y C5' del ligante terpy forman enlaces de hidrógeno con el oxígeno O3 del dianión 4,5-dicloroftalato en 1-x, 1-y, -z, como se muestra en las figuras **4.6** y **4.7**, de esta manera se forman cadenas (ver figura **4.7**). La distancia perpendicular entre el anillo [C2'C3'C4'C5'C6'N1'] de una terpy y el anillo [C2"C3"C4"C5"C6"N1"] de otra terpy, en x, y, z, es de 3.36 Å, la distancia centroide-centroide entre ellos es de 3.694(3) Å y el ángulo entre los anillos es de 1.85° por lo que se puede sugerir que existe una interacción de tipo π - π ⁴ entre ellos, ver figura **4.6**.

Figura **4.6**. Enlaces de hidrógeno C-H \sim O e interacción π - π .

Criterios para determinar los enlaces de hidrógeno d(D...A) < R(D)+R(A) + 0.50 Å, d(H...A) < R(H) + R(A) - 0.12 Å, ángulo: D-H...A > 100.0 (°).⁵

Tabla **4.2** Distancias de enlace (Å), ángulos de enlace (°) y posición de los átomos que forman los enlaces de hidrógeno, **1**

D-H···A	DH	Н∙∙∙А	D···A	<d-h···a< th=""><th>Posición</th></d-h···a<>	Posición
O(1)-H(1A)-O(3)	0.829(19)	1 94(2)	2.768(4)	172(5)	1+x,y,z
O(1)–H(1B) - O(6)	0.845(19)	1.96(2)	2.804(6)	176(6)	1-x,1-y,1-z
O(6)–H(6A) O(5)	0.84(2)	2.21(3)	2.978(6)	151(6)	-x,1-y,1-z
O(6)–H(6B) O(4)	0.85(2)	2.16(3)	2.991(6)	165(6)	1-x,1-y,1-z
O(7)–H(7A) O(4)	0.85(2)	1.88(2)	2.726(6)	175(7)	x,-1+y,z
O(7)–H(7B) - O(8)	0.85(2)	1.98(3)	2.784(7)	157(7)	x,y,-1+z
O(8)–H(8A) O(5)	0.85(2)	2.00(3)	2.814(6)	160(8)	-x,1-y,1-z
O(8)–H(8B) - O(7)	0.86(2)	2.10(6)	2.820(8)	141(8)	1-x,-y,1-z
C(3)–H(3) O(5)	0.9709	2.3947	3.3388	164.02	1+x,-1+y,z
C(3")-H(3")O(3)	0.9490	2.4799	3.3129	146.50	1-x,1-y,-z
C(5')-H(5') O(3)	0.9335	2.3471	3.2166	154.85	1-x,1-y,-z

а

Figura **4.7**. Cadenas formadas a través de los enlaces de hidrogeno del agua de coordinación y los enlaces C-H---O3.

El conjunto de interacciones intermoleculares mencionado genera la estructura supramolecular 3D mostrada en la Figura **4.8**.

Figura 4.8. Estructura 3D debida a las interacciones intermoleculares.

[Cu(2,3-naftalendicarboxilato)(H₂O) (terpy)]•3H₂O•CH₃OH, 2.

La síntesis del complejo **2** se efectuó con $Cu(ClO_4)_2 \cdot 6H_2O$, 2,2, :6,2 -terpiridina y el dianión 2,3-naftalendicarboxilato en una mezcla de agua destilada / CH₃CN. Se obtuvieron cristales adecuados para difracción de rayos X en monocristal por recristalización de metanol.

En la Figura **4.9** se presenta la unidad asimétrica y la numeración de los átomos. Algunas distancias y ángulos de enlace se muestran en la Tabla **4.3** y la Tabla **4.4** presenta los datos de los enlaces de hidrógeno. La unidad asimétrica esta constituida por el ion Cu(II), el ligante tridentado terpy, el dianión 2,3-naftalendicarboxilato, una molécula de agua coordinada al ion metálico, tres moléculas de agua y una de metanol estas cuatro de cristalización.

Tabla **4.3**. Distancias (Å) y ángulos de enlace (°) seleccionados, **2**.

Cu-N1	2.043(4)	N1'-Cu-N1	79.6(2)
Cu—N1'	1.951(4)	N1'-Cu-N1"	79.6(2)
Cu-N1"	2.045(4)	O2-Cu-N1'	173 6(2)
Cu02	1.924(3)	01-Cu-N1'	963(2)
Cu-01	2.262(3)	02—Cu—01	89.5(2)

Figura **4.9.** Diagrama mostrando las elipsoides térmicas (30%) de la unidad asimétrica complejo **2** y la numeración de los átomos.

La geometría de coordinación del Cu(II) es de pirámide cuadrada distorsionada como lo indica el valor de $\tau = 0.22$. La base de la pirámide cuadrada esta formada por los nitrógenos N1, N1' y N1" de la terpy y el oxígeno O2 del dianión 2,3-naftalendicarboxilato; el átomo oxígeno O1 de la molécula de agua coordinada se encuentra en la posición apical el ángulo formado entre la perpendicular al plano de la base de la pirámide y el vector Cu–O1 es de 5.52(3). El Cu(II) se encuentra 0.178 Å por encima de la base de la pirámide.

Los valores de los ángulos de torsión N1—C2—C2'—N1' y N1"— C2"—C6'—N1', 2.1(7) y 0.4(6)°, respectivamente, indican que la terpy se encuentra ligeramente desviada de la constitución de un plano ideal. La distancia perpendicular el anillo central de la terpy y el anillo [C11C12C13C14C15C16] del dianión 2,3-naftalendicarbixilato es de 3.273 Å y el ángulo entre ellos es de 45.39°. El oxígeno O3 del carboxilato coordinado al Cu(II) se encuentra en dirección opuesta a la molécula de agua coordinada. El carboxilato no coordinado se encuentra fuera del plano del naftaleno como lo indica el ángulo de torsión C8— C9—C18—O5 de 47.6(7)°.

El oxígeno O1 de la molécula de agua coordinada forma un enlace de hidrógeno con oxígeno O3 de otra molécula en -1+x, y, z, generando un polímero supramolecular lineal a lo largo del eje **a** como se muestra en la figura **4.10**.

Figura 4.10. Polímero lineal por enlaces de hidrógeno

Las moléculas de agua de cristalización y la molécula de metanol forman múltiples enlaces de hidrógeno como se ilustra en la figura **4.11**.

Tabla **4.4**. Distancias de enlace (Å), ángulos de enlace (°) y posición de los átomos que forman los enlaces de hidrógeno.

D-H···A	D—H	H···A	D···A	<d-h···a< th=""><th>Posición</th></d-h···a<>	Posición
O(1)-H(1A)···O(3)	0.83(5)	2.10(7)	2.793(6)	140(8)	-1+x,y,z
O(1)–H(1B)O(6)	0.84(5)	1.86(5)	2.692(7)	170(9)	1-x,1-y,-z
O(6)–H(6A)O(7)	0.87(5)	2.11(6)	2.881(9)	147(9)	x,-1+y,z
O(6)-H(6B)···O(5)	0.85(5)	1.97(6)	2.743(7)	151(9)	-1+x,y,z
O(7)–H(7A)O(4)	0.90(5)	1.87(6)	2.699(8)	154(9)	x,-1+y,z
O(7)–H(7B)O(9)	0:86(5)	2.11(8)	2.76(2)	132(8)	1-x,1-y,-z
O(8)-H(8A)O(7)	0.90(5)	2.3(1)	3.03(1)	134(15)	x,-1+y,z
O(8)–H(8B)•••O(5)	0.92(6)	2.0(1)	2.790(1)	138(16)	-1+x,y,z
O(8)–H(8B)O(6)	0.9248	2.5984	3.3980	145.05	1-x,1-y,-z
C(3)–H(3)•••O(6)	0.9600	2.5288	3.4885	178.43	1-x,1-y,-z
C(5)–H(5)+++O(9)	0.9600	2.3096	3.1101	140.40	1-x,1-y,-z
C(5')–H(5')···O(4)	0.9600	2,4144	3.3201	157.17	x,-1+y,z
C(5')–H(5')O(5)	0.9600	2.4347	3.3376	156.61	-1+x,y,z
C(7)–H(7)•••O(3)	0.9599	2.4662	3.3511	153,19	2-x,1-y,1-z
C(19)-H(19B)···O(7)	0.9601	2.1622	2.8365	126.14	x,-1+y,z

Figura **4.11**. Enlaces de hidrógenos de las moléculas de agua y metanol de cristalización y agua de coordinación. La numeración corresponde a los átomos de oxígeno.

A través de estas interacciones, dos cadenas antiparalelas formadas por los complejos a través del enlace de hidrógeno entre O1 -O3, se unen entre sí dando una estructura 1D que corre a lo largo del eje a, como se muestra en la figura **4.12**.

TESIS CON FALLA DE ORIGEN

Figura **4.12**. Estructura 1D construida a través de los enlaces de hidrógeno de las aguas de coordinación.

Además de estas interacciones intermoleculares existen otras de tipo no clásico como enlaces de hidrógeno C-H = O e interacciones π - π a través de las cuales se constituye la estructura tridimensional del cristal. Estas se describen a continuación.

El átomo de carbono C7 forma un enlace de hidrógeno con el átomo O3 del dianión 2,3-naftalendicarboxilato en 2-x, 1-y, 1-z. A través de estos enlaces de hidrógeno se unen dos cadenas antiparaleas unidas por los puentes de hidrógeno O1 – O3 como se muestra en la

FALLA DE ORIGEN

figura **4.13**. Por otro lado se forma un enlace de hidrógeno entre el C5' de la terpy y el O4 del 2,3-naftalendicarboxilato, ver tabla **4.4**.

Figura **4.13**. Cadenas formadas a través de los enlaces de hidrógeno del agua de coordinación y los enlaces CH---O3

La distancia perpendicular entre el anillo de terpy formado por los átomos [N1"C2"C3"C4"C5"C6"] de una unidad del complejo y el anillo del dianión 2,3-naftalendicarboxilato formado por los átomos [C7C8C9C10C1615] en 1-x, 1-y, 1-z, es de 3.266 Å, la distancia centroide-centroide entre los mismos anillos es de 3.672(3) Å y el ángulo entre ambos es de 27.19°, por lo que se puede proponer que existe una interacción π - π , entre ellos, ver figura **4.14**.

Figura **4.14**. Interacción π - π , **2**

Debido a todas estas interacciones se construye la red tridimensional mostrada en la figura **4.15**.

Figura **4.15**. Estructura 3D debida a las interacciones intermoleculares

$[{Cu(H_2O)(terpy)}_2(\mu-2,6-naftalendicarboxilato)]-2ClO_4-2H_2O, 3$

El complejo **3** se sintetizó a partir de Cu(ClO₄)₂•6H₂O, 2,2, :6² - terpiridina y 2,6-naftalendicarboxilato de dipotasio en una mezcla de agua destilada / CH₃CN.

En la figura **4.16** se presenta la unidad asimétrica de **3**, mostrando el desorden térmico que presentan los átomos del anillo del naftaleno y uno de los iones perclorato. La numeración de los átomos y la unidad asimétrica se muestra en la figura **4.17** omitiendo los átomos que presentan desorden. Algunas distancias y ángulos enlace seleccionados se muestran en la Tabla **4.5** y la Tabla **4.6** presenta los datos de los enlaces de hidrógeno.

La unidad asimétrica del compuesto **3**, figura **4.16**, esta formada por dos iones cobre(II), un dianión 2,6-naftalendicarboxilato, dos moléculas de terpy, dos iones perclorato y cuatro moléculas de agua. Los átomos de carbono del anillo naftaleno presentan desorden teniendo una ocupación parcial de 59-41 %. Uno de los percloratos también presenta desorden en los átomos de oxígeno [O11-O14], en este caso la ocupación parcial también es de 59-41 %.

Figura **4.16**. Diagrama mostrando las elipsoides térmicas 30% de la unidad asimétrica del complejo **3** y el desorden en el anillo naftaleno y uno de los iones perclorato.

Tabla 4.5. Distancias (A	Å), y ángulos	de enlace (°)) seleccionados, 3.

	A dama da		
Cu1-N1	2,028(4)	N(1) - Cu(1) - N(18)	157.23(13)
Cu(1)—N(12)	1.948(3)	N(1) - Cu(1) - N(12)	79.90(14)
Cu(1) - N(18)	2.039(4)	O(1) - Cu(1) - N(12)	170.25(14)
Cu(1) - O(1)	1.930(3)	O(1) - Cu(1) - O(1W)	96.46(12)
Cu(1) - O(1W)	2.216(3)	O(1W) - Cu(1) - N(1)	103.16(15)
Cu(2)-N(30)	1.939(3)	N(19)-Cu(2)-N(36)	156 60(16)
Cu(2)—N(19)	2.033(3)	N(30)—Cu(2)—N(36)	79.60(18)
Cu(2)—N(36)	2.045(4)	O(3)-Cu(2)-N(30)	171.24(17)
Cu(2) - O(3)	1.911(3)	O(3) - Cu(2) - O(2W)	98.58(12)
Cu(2)-O(2W)	2.238(3)	N(30)-Cu(2)-O(2W)	93.03(16)

Figura **4.17**. Diagrama mostrando las elipsoides térmicas (30%) de la unidad asimétrica y la numeración de los átomos del complejo **3**. Los átomos que presentan desorden fueron omitidos para mejor claridad.

En cada ion Cu(II) se encuentra coordinada una molécula de terpy, actuando como ligante tridentado, uno de los oxígenos del carboxilato y una molécula de agua, produciendo un compuesto dinuclear centrosimétrico.

La geometría alrededor de ambos iones Cu(II) corresponde a una pirámide cuadrada distorsionada cuya base esta formada por los nitrógenos del ligante terpy y el oxígeno del carboxilato; el oxígeno de la molécula de agua ocupa la posición apical, el ángulo entre la perpendicular al plano de la base de la pirámide y el vector Cu-O del agua es de 7.77(3)° y 1.70(6)° para Cu1 y Cu2, respectivamente. La geometría de pirámide cuadrada alrededor de los iones Cu(II) queda confirmada por los valores del parámetro $\tau_{Cu1} = 0.22$ y $\tau_{Cu2} = 0.24$. El

Cu1 se encuentra 0.179 (1) Å y el Cu2 esta 0.17(7) Å por arriba de la base de la pirámide.

Los ángulos de torsión N1–C6–C7–N12 [3.2(6)°], N18–C13– C11–N12 [-5.8(6)°] y N19–C24–C25–N30 [-0.5(7)°], N36–C31– C29–N30 [4.8(6)°] muestran que la terpy se encuentra ligeramente desviada de la constitución de un plano ideal. Las moléculas de agua coordinadas, O1w y O2w, y los oxígenos no coordinados de los carboxilatos, O2 y O4, se encuentran del mismo lado de la molécula y presentan un enlace de hidrógeno intramolecular, O1w-O2 [2.704(4) Å] y O2w-O4 [2.675(4) Å] entre ellas. Los carboxilatos se encuentran ligeramente fuera del plano de los anillos del naftaleno, como lo indican los valores de los ángulos de torsión C50–C49–C52–O4 de 8.2(9)° y C43–C42–C41–O2 de 16.7(9)°.

El ángulo entre el anillo central de las terpy y los anillos del 2,6naftalendicarboxilato son de 31.13° y 29.28° para Cu1 y Cu2, respectivamente.

Las moléculas de agua coordinadas y de cristalización forman enlaces de hidrógeno intermoleculares entre ellas y con los iones perclorato, como se ilustra en la figura **4.18** además de estas interacciones intermoleculares están presentes otras de tipo no clásico, C-H···O, e interacciones π - π , ver Tabla **4.6** algunas de las cuales se describen a continuación.

Figura **4.18**. Enlaces de hidrógeno O-H O formado por las moléculas de agua y los iones perclorato. Algunos átomos desordenados se borraron por claridad.

En La figura 4.19 se puede observar como se apilan los anillos; terpy-naftalénico-terpy distancia manera de "sandwich" La а perpendicular entre el anillo de terpy formado por los átomos [N1C2C3C4C5C6] de una unidad del complejo y el anillo naftalénico formado por los átomos [C42C43C44C45C46C47] de otra unidad del complejo es de 3.518 Å, la distancia centroide-centroide entre los mismos anillos es de 3.949(4) Å y el ángulo entre los anillos es 27.05° La distancia perpendicular entre el anillo naftalénico formado por los átomos [C42C43C44C45C46C47] de una unidad del complejo y el anillo de terpy formado por los átomos [N1C2C3C4C5C6] de otra unidad del complejo es de 3.460 Å, la distancia centroide-centroide entre los

mismos anillos es de 4.371(4) Å y el ángulo entre los anillos es 37.67° corresponden a una interacción tipo π - π .

Figura **4.19** Interacción π - π .

Tabla **4.6** Distancias de enlace (Å), ángulos de enlace (°) y posición de los átomos que forman los enlaces de hidrógeno

ios acomos que ion	11011103	maces ac	manogeno		
D-H···A	D—H	H A	D···A	<dh< td=""><td>A Posición</td></dh<>	A Posición
O(1W)-H(1W)O(2)	0.8230	2 1226	2 890(5)	155.04	-x,1-y,-z
O(2W)-H(4W)-O(3W) 0.8996	1 9295	2 748(9)	150 53	1-x,1/2+y,1/2-z
C(4) - H(4) - O(2)	0 9725	2.5203	3 270(6)	133.81	-x,-1/2+y,-1/2-z
C(8)—H(8)O(24)	1.0543	2 5694	3.342(7)	129.64	-x,-1/2+y,-1/2-z
C(9)—H(9)O(23)	0.9060	2.5858	3 452(7)	160.27	-x, -1/2+y, -1/2-z
C(15)-H(15)O(21)	1.1143	2.5575	3 542(8)	146 70	x, 1+y, -1+z
C(20)-H(20)-O(13)	1 1049	2.5035	3 377(19)	135.06	1-x,1/2+y,1/2-z
C(23)-H(23)-O(12)	1 2096	2 5450	3.419(15)	127 54	x, 3/2-y, 1/2+z
C(26)—H(26)····O(22)	0 9371	2 4493	3.170(8)	133.66	1-x, 1-y, 1-z
C(32)-H(32)-O(2W)	0.9938	2 3357	3.282(6)	158 79	1-x, 1-y, 1-z
C(34)-H(34)-O(23)	1.0399	2 2907	3 233(8)	150 01	

El conjunto de las interacciones intermoleculares mencionado genera la estructura supramolecular 3D muy compleja mostrada en la figura **4.20**.

Figura **4.20**. Estructura 3D debida a las interacciones intermoleculares.

Referencias

1 Hoskins B. F. and Whillans Coord. Chem. Rev., 1972, 9, 365

2 Reedijk J, Addison A. W., Rao T. N., van Rijn J., Verschoor G. C., J. Chem. Soc. Dalton Trans., 1349-1356, 1984.

3 Huheey J. E., Keiter E. A. and Keiter R. L., *Inorganic Chemistry: principios de estructura y reactividad*, 4th, 1993, Ed. Harper Collins College Publishers.

4 Hunter C. A. and Sanders J. K. M., *J. Am. Chem. Soc.*, 5525-5534, Vol. 112. No. 14, 1990.

5 Spek, A. L. Acta Cryst. (1990) A46, C-34, y las referencias que ahí se encuentran.

Las estructuras obtenidas se pueden dividir en dos tipos, aquellas en las que los carboxilatos se encuentran en posición *orto* uno respecto al otro, $1 \ y \ 2$, y aquella en la que los carboxilatos se encuentran en posición opuesta, 3, ver figura 5.1. La primera diferencia importante entre estos compuestos es que en los dos primeros únicamente uno de los carboxilatos se coordina y el otro no, mientras que en 3 ambos carboxilatos se coordinan a un ion Cu(II) diferente, esto hace que la relación ión metálico ácido orgánico en $1 \ y \ 2$ sea de 1:1, y por ello no es necesaria la presencia de un contra ión para neutralizar la carga del ion. Mientras que en 3 existen dos percloratos en la unidad asimétrica. Como veremos más adelante esto puede tener consecuencias importantes en la estructura supramolecular de los compuestos.

Carboxilatos en Orto

Carboxilato Opuesto

Figura 5.1. Formulas desarrolladas de los ácidos carboxílicos desprotonados.

Los resultados obtenidos, se compararán con las tres estructuras descritas (ver figura **5.2**) en la base de datos CSD (versión 5.22, octubre 2001).

 $[{Cu(H_2O)(terpy)}_2(\mu-tereftalato)](ClO_4)_2$

Compuesto a

[Cu(H₂O)(terpy)(formiato)]ClO₄

Compuesto **b**

[Cu(terpy)(acetato)(perclorato)]

Compuesto \boldsymbol{c}

Estructura molecular

Desde el punto de vista molecular las tres estructuras sintetizadas; 1, 2, y 3, presentan claras similitudes.

1) Sistema *ion-metálico/ligante bloqueador*. El ligante terpy es inerte y bloquea tres sitios de coordinación dejando dos libres, con un ángulo de aproximadamente 90°, con lo cual se logra tener el sistema ion-metálico/ligante bloqueador deseado.

En los compuestos **a**, **b** y **c** las posiciones libres están ocupadas por el oxígeno de un carboxilato, en posición ecuatorial, y una molécula de agua en posición axial para **a** y **b** mientras que **c** tiene coordinada una molécula de perclorato (ver figura **5.2**).

Geometría metálico. 2) del ión Los compuestos son pentacoordinados una geometría de pirámide cuadrada con distorsionada. Esto es muy importante, por que apresar de tener el Cu(II) la mayor diversidad estructural que ningún otro ion según A. F. Wells, se pudo controlar la geometría de la esfera de coordinación, una consecuencia importante del control de la geometría del Cu(II), es que también se controla el orbital en donde se localiza el electrón desapareado es decir, el "orbital magnético".

3) En todos los compuestos el ligante terpy es prácticamente plano y presenta interacciones no covalentes como la formación de enlaces de hidrógeno y el apilamiento $\pi - \pi$.

Estructura supramolecular

Desde el punto de vista supramolecular existe una diferencia muy importante entre las estructuras obtenidas, ya que mientras que los compuestos **1** y **2** forman cadenas a través de un enlace de hidrógeno entre la molécula de agua coordinada y el carboxilato de otra molécula, figuras **5.3 a** y **b**, en el compuesto **3** los iones perclorato al formar enlaces de hidrógeno con las moléculas de agua coordinada impiden la formación de las cadenas, figura **5.3 c**.

Figura 5.3-a. Compuesto 1

Figura 5.3-b. Compuesto 2

Figura **5.3-c**. Compuesto **3**

En la base de datos CSD se encontraron tres estructuras con el ion Cu(II) coordinado a la terpy y un ácido dicarboxílico. Los ácidos utilizados son: tereftálico, a, fórmico, b, y acético, c. Dos de estos compuestos, a y b, presentan la misma estructura y geometría molecular y supramolecular que los aquí descritos. Sin embargo, aunque el compuesto c también tiene una geometría de pirámide de base cuadrada, la posición axial se encuentra ocupada por una molécula perclorato y no se forman el polímero 1D (ver figura **5.2**).

Otros sistemas Cu(II) / amina tridentada /ácido carboxílico

(N,N,N',N',N"-pentametildietilentriamina), pmdien.

En nuestro laboratorio se ha determinado la estructura molecular y cristalina de cuatro compuestos en los que se ha utilizado pmdien como *ligante bloqueador*. En ellos se utilizaron diversos ácidos benzóicos monocarboxílicos, ya que tienen diferentes sustituyentes en el anillo bencénico, 2,3-dimetilbenzoico *d*, 2,4-difluorobenzoico *e*, 2-Fluorobenzoico *f* y 2-Clorobenzoico, *g*. En todas ellas el contra anión es un **perclorato**. La estructura molecular de los compuestos se muestra en las Figuras **5.4 d-g**. Además de estos compuestos se ha descrito la estructura de algunos otros, ver Tabla **5.1**.

Se puede observar que de manera similar a lo que sucede con el ligante terpy, los compuestos son pentacoordinados con geometría de

pirámide cuadrada. El ligante pmdien es inerte y bloquea tres sitios de coordinación del centro metálico dejando dos libres a los que se coordina el oxígeno del carboxilato en posición ecuatorial, y una molécula de agua en posición axial. Sin embargo, desde el punto de vista supramolecular existe una diferencia importante con los obtenidos con terpy, ya que todos ellos son **monoméricos**. Es probable que se deba a un efecto estérico por parte de los metilos presentes en la amina tridentada.

[Cu(H₂O)(pmdien)(2,3-dimetilbenzoato]ClO₄

Compuesto d

[Cu(H₂O)(pmdien)(2,4-difluorobenzoato]ClO₄

Compuesto e

[Cu(H₂O)(pmdien)(2-fluorobenzoato]ClO₄

Compuesto f

 $[Cu(H_2O)(pmdien)(2-clorobenzoato]ClO_4$ Compuesto **g**

Figura 5.4. Estructura molecular de los compuestos d, e, f, y g.

Como parte del proyecto general del cual forma parte esta tesis, en el laboratorio se han sintetizado compuestos de Cu(II) utilizando dien como ligante bloqueador y diferentes ácidos dicarboxílicos; además de las que existen descritos en la CSD, ver Tabla **5.1**.

El ligante dien se comporta de manera similar a la terpy y pmdien, formando compuestos pentacoordinados con estructura de pirámide de base cuadrada. En todo ellos la posición ecuatorial esta ocupada por el oxígeno de un carboxilato. Sin embargo, desde el punto de vista supramolecular los compuestos con el ligante dien son muy diferentes, ya que la posición apical es ocupada por el otro oxígeno del mismo carboxilato con lo que las unidades Cu(II)-dien se unen entre sí a través de los átomos de oxígeno de un mismo carboxilato, para formar cadenas de coordinación, como se ilustra en la Figura **5.5**.

TESIS CON FALLA DE ORIGEN

Compuesto **h**

 $[Cu_2(dien)_2(Phth)(HPhth)PF_6 2H_2O]$

Compuesto *i*

 $[Cu(1)(dien)(ClO_4)(\mu-Phth)(Cu(2)(dien)]ClO_4$

Compuesto **j**

Figura **5.5**. Cadenas de coordinación de los compuestos **h**, **i** y **j**.

Los resultados aquí mostrados evidencian desde el punto de vista **molecular** que con los tres ligantes bloqueadores terpy, pmdien y dien, se pueden obtener compuestos pentacoordinados con geometría de pirámide cuadrada.

Desde el punto de vista **supramolecular**, las estructuras obtenidas son muy diferentes y dependen fundamentalmente del ligante bloqueador. Los compuestos con pmdien son monoméricos, los de terpy pueden formar cadenas unidas por enlaces de hidrógeno, y con dien forman cadenas de coordinación.

Posiblemente la razón por la cual los compuestos con terpy no forman cadenas de coordinación sea la rigidez de los anillos aromáticos que les resta flexibilidad comparados con la dien.

En la tabla **5.1** se muestran los resultados de la búsqueda en la CSD y los obtenidos en nuestro laboratorio de investigación, en ella el primer renglón corresponde a las tres aminas tridentadas empleadas; dien pmdien y terpy, y en los siguientes renglones se presentan los ácidos carboxílicos con los que obtuvieron compuestos del sistema Cu(II)/aminas tridentadas/ácidos carboxílicos, todos los sombreados se han obtenido en nuestro laboratorio de investigación, la conclusión fundamental de la tabla es que cada vez que se utiliza la **dien** como ligante bloqueador se obtienen cadenas de coordinación con buen rendimiento, cuando se utiliza **pmdien** como ligante bloqueador se

obtienen monómeros con buen rendimiento y cuando se emplea **terpy** como ligante bloqueador se obtienen cadenas de hidrógeno de forma predominante. Tabla **5.1**. Resultados de una búsqueda en la base de datos CSD, así como de compuestos no publicados y los obtenidos en este trabajo.

Ligantes Bloqueador	NH2 NH NH2	ICHJ2N NCH3 NICH32	
Ligantes Puente		CH ₃ c llO₄.	H−C ^O 3 _{CIO4}
	сн3-с~он 4′СЮ4-	Hospital CIO4	CH3 CH 6 CIO4
			Hope CIO4
	***************************************	"\$\$ "\$ "\$ "\$	
	[₩]	СН3 Он 14	2
	20 15	CH3 CH3	но-СО-Сон 3
	S 5 17	Б-Сон 18	
		F	
		С С С .20	
· · ·		TESIS CON FALLA DE ORI	J 58 GEN

Referencias

1 Davey G. and Stephens F. S., J. Chem. Soc. A, 1971, 103.

2 Scott M.J., Goddard C.A., Holm R.H., Inorg. Chem., 1996, 35, 2558.

3 Folgado J.V., Escriva E., Beltran-Porter A., Beltran-Porter D., Fuertes A., Miravitlles C., *Polyhedron*, 1987, 6, 1533.

4 Ye Bao-Hui, Ji Liang-Nian, Xue Feng, Mak T. C. W., Polyhedron, 1998, 17, 2687.

5 Verdaguer M., Gouteron J., Jeannin S., Jeannin Y., Kahn O., *Inorg. Chem.*, 1984, 23, 4291.

6 Munoz M.C., Ruiz R., Julve M., Lloret F., Solans X., Acta Crystallogr., Sect. C (Cr. Str. Comm.), 1993, 49, 674

7 Salazar-Mendoza D., Tesis de Licenciatura, UNAM, 1996.

8 Burger K.-S., Chaudhuri P., Wieghardt K., Nuber B., *Chemistry-A European* Journal, 1995,1, 583

9 Cano J., De Munno G., Sanz J.L., R Ruiz., Faus J., Lloret F., Julve M., Caneschi A., J. Chem. Soc. Dalton Trans., 1997, 1915

10 Jian-Zhong Zou, Qi Liu, Zheng Xu, Xiao-Zeng You, Xiao-Ying Huang *Polyhedron*, 1998, 17, 1863.

11 Valdés-Martínez J., Del Río-Ramírez M. y Aakeröy C.B., *resultados sin publicar*.

12 Valdés-Martínez J., Del Río-Ramírez M. y Aakeröy C.B., resultados sin publicar.

13 Valdes-Martinez J., Lee-Cervantes F. and ter Haar L., J. Appl. Phys., 74, No. 3, 1993.

14 Valdés-Martínez J., Del Río-Ramírez M. y Aakeröy C.B., resultados sin publicar.

15 Valdés-Martínez J. y Toscano R.A., resultados sin publicar.

16 Valdés-Martínez J., Del Río-Ramírez M. y Aakeröy C.B., resultados sin publicar.

17 Valdés-Martínez J. y Toscano R.A., resultados sin publicar.

CETA TEERS NO SALX DE LA BIBLIOTECA

18 Valdés-Martínez J., Del Río-Ramírez M. y Aakeröy C.B., resultados sin publicar.

19 Valdés-Martínez J., Del Río-Ramírez M. y Aakeröy C.B., resultados sin publicar.

20 Valdés-Martínez J., Del Río-Ramírez M. y Aakeröy C.B., resultados sin publicar.

La estrategia de síntesis permite obtener compuestos del sistema ternario **Cu(II) / aminas tridentadas / ácidos mono y dicarboxílicos**.

A **nivel molecular** se pudo controlar la geometría del centro metálico, ya que el *ligante bloqueador* terpy obstaculizó los sitios de coordinación dejando únicamente dos sitios libres, para que fueran ocupados por el *ligante puente* obteniendo una geometría de pirámide cuadrada. El ligante bloqueador resulto ser inerte, (ver figura **6.1**).

Figura 6.1 Control de la geometría del centro metálico.

A **nivel supramolecular** los ligantes bloqueadores controlan el ensamble molecular, ya que el ligante bloqueador **dien** forma *cadenas de coordinación* de manera predominante, el ligante bloqueador **pmdien**

forma *monómeros* y el ligante bloqueador **terpy** forma *cadenas de enlace de hidrógeno* de manera predominante, (ver figura **6.2**)

Figura 6.2 Control del ensamble supramolecular

Tablas de datos cristalográficos y de refinamiento para los compuestos 1, 2 y 3.

Tabla 1. Datos del cristal y detalles de la determinación estructural.

Tabla 2. Coordenadas atómicas y equivalente isotrópico.

Tabla 3. Longitudes y ángulos de enlace.

Tabla 4. Coeficientes de desplazamiento anisotrópico.

Tabla **5**. Coordenadas de los átomos de hidrógeno y coeficientes de desplazamiento isotrópico.

Tabla 6. Enlaces de hidrógeno.

Crystal data and structure refinement for Aquo(4,5,-dicloroftalato)(2,2::6:2:-terpiridina-Empirical formula $C_{23}H_{21}C_{12}CuN_3O_8$ Formula weight 601.87 temperature 293(2) K 0.71073 Å wavelength Crystal system Triclinic Space group Ρī Unit cell dimensions volume 7. 2 Density (calculated) 1 636 Mg/m³ Absorption coefficient 1.167 mm⁻¹ F(000) 614 Crystal size 0.60 x 0.48 x 0 16 mm green-prism &Gq range for data collection 1.50 to 25.00° Index ranges $0 \le h \le 8$. $-14 \le k \le 14$, $-16 \le \ell \le 16$ Reflections collected 4349 Independent reflections 4020 (R_{int}= 0.0644) Absorption correction Psi-scans Max. and min. transmission 0.860 and 0.586 Refinement method Full-matrix least-squares on F² Data / restraints / parameters 4020 / 12 / 398 Goodness-of-fit on F2 1.096 R1 = 0.0405 wR2 = 0.0915 Final R indices $[I > 2\sigma(I)]$ R indices (all data) Extinction coefficient R1 = 0.0578. wR2 = 0.11650 0172(17)

Table 2. Atomic coordinates [$\times 10^4$] and equivalent isotropic displacement parameters [$\Lambda^2 \times 10^3$] for Aquo(4.5.-dicloroftalato)(2.2.:6.,2.-terpiridina-N.N.N.)cobre(II) trihidratado U(eq) is defined as one third of the trace of the orthogonalized U_{11} tensor

0 413 and -0 527 eÅ"

	×	У	z	U(eq)
Cu	4302(1)	4884(1)	7705(1)	27(1)
Cl(1)	12370(2)	1064(1)	3531(1)	59(1)
C1(2)	10859(2)	3668(1)	3347(1)	45(1)
0(1)	2435 (5)	3944(3)	7132(3)	46(1)
0(2)	6194(4)	3917(3)	6869(2)	34(1)
0(3)	8666 (4)	3910(3)	7632(2)	37(1)
0(4)	8011(5)	1389(3)	7660(3)	50(1)
0(5)	11081(5)	607(3)	7456(3)	48(1)
0(6)	4312(6)	1741(4)	6921(4)	61(1)
0(7)	6864 (8)	-208(4)	8895(3)	76(1)
0(8)	12919(8)	199(5)	9119(4)	84(2)
N(1)	4158(5)	6186(3)	6748(3)	30(1)
C(2)	3130(6)	7146(4)	7108(3)	31(1)
C(3)	2937 (7)	8117(4)	6544(4)	40(1)
C(4)	3793 (8)	8089(5)	5586(4)	47(1)
C(5)	4828 (7)	7092(5)	5218(4)	43(1)
C(6)	4956(6)	6169(4)	5812(3)	36(1)
N(1')	2770(4)	6043 (3)	8535(2)	26(1)
C(2)	2297(6)	7059(4)	8146(3)	31(1)
C(3)	1143(6)	7915(4)	8704(4)	38(1)
C(4)	591(7)	7666(5)	9670(4)	45(1)
C(5)	1160(7)	6622(4)	10085(4)	39(1)
C(6)	2252 (5)	5805(4)	9476(3)	29(1)
N(1')	4141(5)	4057(3)	9016(3)	30(1)
C(2')	3004(6)	4646(4)	9752(3)	28(1)
C(3)	2670(7)	4187(4)	10675(3)	38(1)
C(4')	3445(7)	3085(5)	10836(4)	41(1)
C(5')	4571(7)	2479(4)	10090(4)	43(1)
C(6')	4882(6)	2999(4)	9188(3)	34(1)
C(7)	9109(5)	2968(3)	6133 (3)	24(1)
C(8)	9915(5)	1852(4)	6243(3)	28(1)
C(9)	10939(6)	1291(4)	5426(3)	34(1)
C(10)	11185(6)	1819(4)	4526(3)	36(1)
C(11)	10483(6)	2940(4)	4441(3)	30(1)
C(12)	9400(6)	3510(4)	5229(3)	28(1)
C(13)	7924(5)	3643(3)	6964(3)	24(1)
C(14)	9650(6)	1231(4)	7205(3)	33(1)

Largest diff peak and hole

Table 3.	Bond lengths	[Å]	and angles	[^]	for	- Aquo(4,5,-dicloroftalato)(2,2°:6,.2°	-terpiridina-N N'N)cobre(II)
trihidrata	ado							

Cu-0(2)	1 930(3)	C(6)-N(1)-Cu	126 4(3)
Cu-N(1')	1.948(3)	C(2)-N(1)-Cu	115 0(3)
Cu-N(1)	2.028(4)	N(1)-C(2)-C(3)	121.5(4)
Cu-N(1')	2.039(4)	N(1)-C(2)-C(2')	113 7(4)
Cu-0(1)	2 216(3)	C(3)-C(2)-C(2)	124 7(4)
C1(1)-C(10)	1 730(4)	C(4)-C(3)-C(2)	119-1(5)
C1(2)-C(11)	1 739(4)	C(3)-C(4)-C(5)	119.0(5)
0(2)-C(13)	1 275(5)	C(6)-C(5)-C(4)	118.9(5)
O(3)-C(13)	1 230(5)	N(1)-C(6)-C(5)	122 8(5)
O(4)-C(14)	1.260(6)	C(6') - N(1) - C(2)	122.2(4)
O(5)-C(14)	1.257(5)	C(6)-N(1)-Cu	119.2(3)
N(1)-C(6)	1.345(6)	C(2)-N(1)-Cu	118.6(3)
N(1)-C(2)	1.350(6)	N(1)-C(2)-C(3)	120.9(4)
C(2)-C(3)	1 393(7)	N(1) - C(2) - C(2)	1128(4)
C(2)-C(2')	1 488(6)	C(3))-C(2))-C(2)	126.3(4)
C(3)-C(4)	1 383(7)	C(4)-C(3)-C(2)	116.8(5)
C(4)-C(5)	1.392(8)	C(3)-C(4)-C(5)	122 2(4)
C(S)-C(6)	1 368(7)	C(6)-C(5)-C(4)	117 7(5)
N(1')-C(6)	1.340(6)	N(1)-C(6)-C(5)	120 2(4)
N(1)-C(2)	1342(6)	N(1)-C(6)-C(2)	112 7(4)
C(2)-C(3)	1.405(6)	C(5)-C(6)-C(2)	127.1(4)
C(3)-C(4)	1 379(7)	C(6")-N(1')-C(2")	118 7(4)
C(4)-C(5)	1397(8)	C(6")-N(1')-Cu	126.8(3)
C(5)-C(6)	1 394(6)	C(2")→N(1')-Cu	114.2(3)
C(6)-C(2)	1 481(6)	N(1')-C(2')-C(3*)	121.5(4)
N(1')-C(6')	1 337(6)	N(1')-C(2")-C(6)	114.0(4)
N(1')-C(2')	1 363 (5)	C(3')-C(2*)-C(6)	124-4(4)
C(2')-C(3')	1 382(6)	C(2')~C(3')~C(4')	118.7(4)
C(3')-C(4')	1.388(7)	C(5')-C(4')-C(3")	120.0(5)
C(4')-C(5')	1.380(7)	C(4')~C(5')~C(6")	118.3(5)
C(5')-C(6')	1.386(7)	N(1')-C(6')-C(5")	122.8(4)
C(7)-C(8)	1398(6)	C(8)-C(7)-C(12)	119-9(4)
C(7)-C(12)	1.400(6)	C(8)-C(7)-C(13)	122.8(4)
C(7)-C(13)	1 518(5)	C(12)-C(7)-C(13)	117.3(4)
C(8)-C(9)	1.399(6)	C(7)-C(8)-C(9)	118.6(4)
C(8)-C(14)	1 513(6)	C(7)-C(8)-C(14)	122.0(4)
C(9)-C(10)	1.384(7)	C(9)-C(8)-C(14)	119.4(4)
C(10)-C(11)	1.384(7)	C(10)-C(9)-C(8)	121 5(4)
C(11)-C(12)	1.388(6)	C(9)-C(10)-C(11)	119 3(4)
O(2) - Cu - N(1)	168.55(14)	C(9)-C(10)-C1(1)	119.3(4)
O(2)-Cu-N(1)	9472(14)	C(11)-C(10)-C1(1)	121 4(4)
N(1')-Cu-N(1)	79.84(15)	C(10)-C(11)-C(12)	120.4(4)
O(2)-Cu-N(1")	104.28(14)	C(10)-C(11)-C1(2)	121-5(3)
N(1')-Cu-N(1")	79.62(14)	C(12)-C(11)-C1(2)	118.0(4)
N(1)-Cu-N(1*)	158 44(14)	C(11)-C(12)-C(7)	120.1(4)
O(2)-Cu-O(1)	82 09(13)	0(3)-C(13)-O(2)	126.0(4)
N(1')-Cu-O(1)	108.69(13)	Q(3)-C(13)-C(7)	120.0(3)
N(1)-Cu-O(1)	100 10(15)	0(2)-C(13)-C(7)	114.0(3)
N(1")-Cu-O(1)	92.61(15)	O(5)-C(14)-O(4)	127.4(4)
C(13)-O(2)-Cu	126.1(3)	O(5)-C(14)-C(8)	116.5(4)
C(6)-N(1)-C(2)	118.6(4)	O(4)-C(14)-C(8)	116 2(4)

Table 4. Anisotropic displacement parameters [$Å^2 \times 10^3$] for Aquo(4.5, -dicloroftalato)(2,2':6',2''-terpiridina-N,N'N') cobre(II) trihidratado. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [(ha*)²U11 + + 2hka*b*U₁₂]

	U 11	U22	U 33	U2 3	U13	U12
Cu	26(1)	25(1)	27(1)	-5(1)	1(1)	-1(1)
C1(1)	63(1)	60(1)	45(1)	-28(1)	15(1)	-2(1)
C1(2)	46(1)	60(1)	28(1)	5(1)	4(1)	-15(1)
0(1)	27(2)	43(2)	68(2)	-18(2)	-3(2)	-5(2)
0(2)	25(2)	37(2)	35(2)	-11(1)	2(1)	2(1)
0(3)	31(2)	49(2)	29(2)	-12(2)	-1(1)	-6(1)
0(4)	50(2)	41(2)	47(2)	12(2)	12(2)	-1(2)
0(5)	49(2)	45(2)	47(2)	7(2)	-13(2)	-2(2)
0(6)	61(3)	45(2)	75(3)	11(2)	-7(2)	-15(2)
0(7)	93 (4)	62(3)	64(3)	17(2)	17(3)	-19(3)
0(8)	91(4)	102(5)	64(3)	10(3)	-26(3)	-25(3)
N(1)	28(2)	31(2)	32(2)	-3(2)	-1(1)	-8(2)
C(2)	30(2)	28(2)	36(2)	-5(2)	-4(2)	-7(2)
C(3)	43 (3)	28(3)	46(3)	-1(2)	-7(2)	-1(2)
C(4)	57(3)	36(3)	45(3)	14(2)	-8(2)	-8(2)

63
C(5)	45(3)	47(3)	35(3)	7(2)	-4(2)	-12(2)
C(6)	33(2)	38(3)	35(2)	-5(2)	-5(2)	-4(2)
N(1')	23(2)	25(2)	29(2)	-6(2)	~3(1)	-3(1)
C(2)	26(2)	28(2)	37(2)	-5(2)	-7(2)	0(2)
C(3)	35(2)	29(3)	46(3)	-8(2)	-6(2)	6(2)
C(4)	42(3)	39(3)	46(3)	-19(2)	1(2)	5(2)
C(5)	40(3)	42(3)	33(2)	-14(2)	2(2)	-3(2)
C(6)	22(2)	33(2)	31(2)	-4(2)	-3(2)	0(2)
N(1 ⁺)	30(2)	28(2)	29(2)	-4(2)	0(1)	-4(2)
C(2*)	28(2)	31(2)	27(2)	-7(2)	-2(2)	-7(2)
C(3 ⁺)	45(3)	38(3)	30(2)	~6(2)	6(2)	-14(2)
C(4")	45(3)	44(3)	35(3)	2(2)	0(2)	-19(2)
C(5*)	49(3)	31(3)	45(3)	1(2)	-1(2)	-7(2)
C(6*)	35(2)	30(2)	37(2)	-5(2)	-7(2)	-3(2)
C(7)	19(2)	23(2)	28(2)	-4(2)	-1(2)	-1(2)
C(8)	24(2)	26(2)	32(2)	-3(2)	-4(2)	-2(2)
C(9)	31(2)	28(2)	39(2)	-3(2)	-4(2)	3(2)
C(10)	30(2)	40(3)	36(2)	-15(2)	4(2)	-6(2)
C(11)	30(2)	42(3)	21(2)	-3(2)	0(2)	-10(2)
C(12)	25(2)	29(2)	27(2)	0(2)	-1(2)	-2(2)
C(13)	24(2)	20(2)	25(2)	1(2)	5(2)	-4(2)
C(14)	38(2)	26(2)	35(2)	-3(2)	-5(2)	-4(2)

Table 5. Hydrogen coordinates ($x = 10^4$) and isotropic displacement parameters ($\dot{A}^2 = x = 10^3$) for Aquo(4.5.-dicloroftalato)(2.2.:6.2.-terpiridina-N.N.N.)cobre(II) trihidratado

	×	У	Z	Ű(eg)
H(1A)	1300(3)	3990(4)	7310(4)	55
н(1В)	3020(6)	3280(2)	7090(4)	55
H(6A)	3720(7)	1220(4)	7030(5)	73
H(6B)	5410(4)	1530(5)	7070(5)	73
H(7A)	7280(10)	280(5)	8520(4)	91
н(7в)	7210(10)	-140(6)	9440(3)	91
H(8A)	12530(9)	440(7)	8580(3)	101
H(8B)	14000(6)	-180(7)	8900(5)	101
H(3)	2160(7)	8800(5)	6790(4)	48
H(4)	3660(8)	8680(5)	5200(4)	56
H(5)	5310(7)	7090(5)	4530(4)	51
H(6)	5640(7)	5560(5)	5640(4)	43
н(3')	920(7)	8570(5)	8400(4)	46
H(4)	-140(8)	8240(5)	10070(4)	53
H(5)	800(7)	6510(5)	10750(4)	47
н(З')	1840(7)	4590(5)	11180(4)	45
H(4')	3230(7)	2680(5)	11480(4)	49
H(5')	5230(7)	1780(5)	10170(4)	51
н(б')	5570(7)	2640(5)	8700(4)	41
н(9)	11350(7)	520(5)	5500(4)	41
H(12)	8960(6)	4260(4)	5160(3)	34

Iable 6. Hydrogen-bonds for Aguo(4,5,-dicloroftalato)(2.2::6 2.2-terpiridina-N N°N°)cobre(II) trihidratado [Å and *].

D-H. A	d (D-H)	d(HA)	d(DA)	< (DHA)
O(1)-H(1A)O(3)#1	0.829(19)	1.94(2)	2.768(4)	172(5)
O(1)-H(1B)O(6)	0.845(19)	1.96(2)	2 804(6)	176(6)
O(6)-H(6A) O(5)#1	0 84 (2)	2.21(3)	2.978(6)	151(6)
O(6)-H(6B) O(4)	0.85(2)	2.16(3)	2 991(6)	165(6)
O(7)-H(7A)O(4)	0.85(2)	1 88(2)	2.726(6)	175(7)
O(7)-H(7B)O(8)#2	0 85(2)	1.98(3)	2 784(7)	157(7)
O(8)-H(8A)O(5)	0 85(2)	2.00(3)	2 814(6)	160(8)
O(8)-H(8B)O(7)#3	0.86(2)	2 10(6)	2.820(8)	141(8)

Symmetry transformations used to generate equivalent atoms: #1 x-1 y z #2 -x+2 -y -z+2 #3 x+1 y z

Table 1. Aquo(2,3-naftalendicarboxilato)-(2,2::6 2:-ter	piridina-N_N_N_)cobre(II) trihidratado metanol
Empirical formula	C27.60H26 40C12CUN3O8.10
Formula weight	593.26
temperature	293(2) К
wavelength	0 71073 Å
Crystal system	Triclinic
Space group	Ρι
Unit cell dimensions	$a = 7.032(1)$ (Å) $\alpha = 86.59(1)$ (°)
	$b = 12.785(1)$ (Å) $\beta = 85.08(2)$ (°)
	c = 14.381(2) (Å) $y = 84.95(1)$ (°)
volume	1281 4(3) Å ⁵
Z	2
Density (calculated)	1.538 Mg/m ³
Absorption coefficient	0.911 mm ⁻¹
F(000)	614
Crystal size	0 60 x 0 30 x 0 28 mm 'emerald green prism
&Gq range for data collection	1.50 to 25.00°
Index ranges	$0 \le h \le 8$, $-15 \le k \le 15$, $-17 \le l \le 17$
Reflections collected	4925
Independent reflections	$4521 (R_{int} = 0 \ 0315)$
Absorption correction	Psi-scans
Max. and min. transmission	0 512 and 0.483
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4521 / 9 / 383
Goodness-of-fit on F2	1.102
Final R indices $[I>2\sigma(I)]$	R1 = 0.0567, $wR2 = 0.1803$
R indices (all data)	R1 = 0.0758 wr2 = 0.2262
Extinction coefficient	0.019(5)
largest diff. peak and hole	0.740 and $-0.728 \text{ e}^{\text{A}^{-3}}$

Table 2 Atomic coordinates [x 10^4] and equivalent isotropic displacement parameters [Å² x 10^3] for Aquo(2,3-naftalendicarboxilato)-(2 2':6',2''-terpiridina-N,N'N'')cobre(II) trihidratado metanol U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor

	x	У	z	U(eq)
Cu	3226(1)	5257(1)	7361(1)	33(1)
0(1)	6380(6)	4771(3)	7446(3)	47(1)
0(2)	2945(5)	3963(3)	6788(3)	38(1)
0(3)	-1(6)	4564(3)	6479(3)	45(1)
0(4)	3521(8)	925(4)	7177(3)	65(1)
0(5)	994(7)	1947(4)	7730(3)	53(1)
0(6)	-2690(8)	2797(4)	8113(5)	75(2)
0(7)	5337(9)	973(5)	8751(4)	74(1)
N(1)	2682(6)	4738(4)	8721(3)	38(1)
C(2)	2690(7)	5491(4)	9346(3)	35(1)
C(3)	2490(8)	5257(5)	10306(4)	45(1)
C(4)	2246(10)	4215(6)	10624(4)	55(2)
C(5)	2246(10)	3457 (5)	9978(5)	55(2)
C(6)	2445(9)	3752(5)	9034(4)	47(1)
N(l')	3206(6)	6571(3)	7986(3)	35(1)
C(2)	2956(8)	6556(4)	8918(4)	40(1)
C(3)	2945(10)	7466(5)	9387(4)	52(1)
C(4)	3235(11)	8390(5)	8852(5)	62(2)
C(5)	3501(9)	8408(5)	7889(5)	51(1)
C(6)	3481(7)	7462(4)	7462(4)	40(1)
N(1")	3431(6)	6302(3)	6231(3)	39(1)
C(2*)	3603(7)	7305(4)	6452(4)	41(1)
C(3^)	3805(8)	8108(4)	5756(4)	46(1)
C(4)	3796 (9)	7875(5)	4843 (5)	53 (2)
C(5)	3592(8)	6864 (5)	4599(4)	51(1)
C(5)	3422 (8)	6094(5)	5326(4)	43(1)
C(7)	1180(7)	3271(4)	4848(3)	32(1)
C(8)	1386(6)	3003(4)	5778(3)	31(1)
C(9)	1753 (7)	1927(4)	6077(4)	35(1)
C(10)	1776(8)	1174(4)	5441(4)	43(1)
C(11)	1641(10)	635(5)	3806 (5)	54(1)
C(12)	1503(10)	915(5)	2877(5)	57(2)
C(13)	1289(9)	1986(5)	2573(4)	52(1)
C(14)	1139(7)	2751(4)	3211(4)	41(1)
C(15)	1278(7)	2493 (4)	4171(4)	33(1)
C(16)	1541(7)	1415(4)	4481(4)	40(1)
C(17)	1377(7)	3900(3)	6412(3)	31(1)
C(18)	2106(8)	1576(4)	7084(4)	42(1)
0(8)	-502(17)	622 (9)	9168(8)	70(3)
C(19)	-2560(17)	-745(9)	9635(8)	58(2)
0(9)	-1650(2)	-1147(11)	10413(10)	105(4)

TESIS CON FALLA DE ORIGEN

	· · · · · ·		
Cu-0(2)	1.924(3)	C(6)-N(1)-C(2)	119.1(5)
Cu-N(1')	1 951(4)	C(6)-N(1)-Cu	126 7(4)
Cu-N(1)	2 043(4)	C(2)-N(1)-Cu	114 1(3)
Cu-N(1")	2 045(4)	N(1)-C(2)-C(3)	121.8(5)
Cu-0(1)	2 262 (4)	N(1) - C(2) - C(2')	114.3(4)
0(2)-C(17)	1 279(6)	C(3)-C(2)-C(2)	123 9(5)
O(3)-C(17)	1 232(6)	C(2)-C(3)-C(4)	118 5(5)
O(4)-C(18)	1 250 (7)	C(5)-C(4)-C(3)	119 1(5)
O(5)-C(18)	1 249(7)	C(4)-C(5)-C(6)	119 1(6)
N(1)-C(6)	1.332(7)	N(1)-C(6)-C(5)	122 6(6)
N(1) - C(2)	1.357(7)	C(2')-N(1)-C(6')	122.2(5)
C(2)-C(3)	1 392(8)	C(2")-N(1)-Cu	119.1(4)
C(2)-C(2')	1 481 (8)	C(6')-N(1')-Cu	118 7(4)
C(3)-C(4)	1 402 (9)	$N(1^{\circ}) - C(2^{\circ}) - C(3^{\circ})$	120.9(5)
C(4)-C(5)	1,381(10)	N(1) - C(2) - C(2)	112.8(5)
C(5)-C(6)	1 386 (9)	C(3) - C(2) - C(2)	126.4(5)
N(1')-C(2)	1.336(7)	C(2')-C(3)-C(4')	117.3(6)
N(1')-C(6')	1.347(7)	C(5)-C(4)-C(3)	121 9(6)
C(2)-C(3)	1.379(8)	C(4)-C(5)-C(6)	117 6(6)
C(3)-C(4)	1.391(10)	N(1') - C(6) - C(5)	120 0(5)
C(4)-C(5)	1.381(10)	N(1)-C(6)-C(2")	112.8(5)
C(5')-C(6)	1 389(8)	C(5')-C(6)-C(2")	127 1(5)
C(6)-C(2)	1 473 (8)	$C(6^*) - N(1^*) - C(2^*)$	118 7(5)
N(1*)-C(6*)	1 344(7)	C(6')-N(1')-Cu	127 2(4)
N(1")-C(2")	1 357(7)	C(2*)-N(1*)-Cu	114 1(4)
C(2")-C(3")	1.399(8)	N(1")-C(2")-C(3")	121 1(5)
C(3*)-C(4)	1.365(10)	N(1')-C(2')-C(6')	114 5(5)
C(4')-C(5')	1.382(10)	C(3')-C(2')-C(6')	124 4(5)
C(5')-C(6")	1.398(8)	C(4*)-C(3*)-C(2*)	119 0(6)
C(7)-C(8)	1.377(7)	C(3*)-C(4')-C(5")	121 1(5)
C(7)-C(15)	1.425(7)	C(4')-C(5')-C(6")	117 1(6)
C(8)-C(9)	1.426(6)	N(1')-C(6')-C(5")	123 0(6)
C(8)-C(17)	1 507(6)	C(8) - C(7) - C(15)	121 6(4)
C(9)-C(10)	1 366(8)	C(7)-C(8)-C(9)	119.8(4)
C(9)-C(18)	1 525(7)	C(7)-C(8)-C(17)	116 5(4)
C(10)-C(16)	1 417 (8)	C(9) - C(8) - C(17)	123 5(4)
C(11)-C(12)	1 372(10)	C(10)-C(9)-C(8)	118 9(5)
		C(10)-C(9)-C(18)	118.3(5)
C(11)-C(16)	1.425(8)	C(8)-C(9)-C(18)	122.8(5)
C(12)-C(13)	1.411(10)	C(9)-C(10)-C(16)	122 9(5)
C(13)-C(14)	1.372(8)	C(12)-C(11)-C(15)	120 8(6)
C(14)-C(15)	1.410(7)	C(11)-C(12)-C(13)	120 2(6)
C(15)-C(16)	1.424(7)	C(14)-C(13)-C(12)	120 1(6)
C(19)-O(9)	1.387(18)	C(13)-C(14)-C(15)	121 2(5)
		C(14)-C(15)-C(16)	119 0(5)
O(2)-Cu-N(1)	173.59(16)	C(14)-C(15)-C(7)	122 5(4)
O(2)-Cu-N(1)	9786(17)	C(16)-C(15)-C(7)	118 4(5)
N(1')-Cu-N(1)	79.58(18)	C(10)-C(16)-C(15)	118 1(5)
O(2)-Cu-N(1")	102 19(17)	C(10)-C(16)-C(11)	123.2(5)
N(1')-Cu-N(1')	79.55(18)	C(15)-C(16)-C(11)	118 6(5)
N(1)-Cu-N(1")	158.11(19)	O(3) -C(17) -O(2)	124 0(4)
O(2) - Cu - O(1)	89 54(16)	O(3) -C(17) -C(8)	120 6(4)
N(1')-Cu-O(1)	96.32(17)	O(2) -C(17) -C(8)	115 1(4)
N(1) - Cu - O(1)	90.15(17)	O(5)-C(18)-O(4)	126.1(5)
N(1")-Cu-O(1)	98.64(17)	O(5) -C(18) -C(9)	118 8(5)
C(17)-O(2)-Cu	116.6(3)	O(4) -C(18) -C(9)	115.1(5)

 Iable 3. Bond lengths [Å] and angles [°] for Aquo(2.3-naftalendicarboxilato)-(2.2::6:2::-terpiridina-N.N'N')cobre(II) trihidratado metanol

	U 11	U 22	U33	U23	U1 3	U12	
Cu	37(1)	27(1)	33(1)	-3(1)	1(1)	1(1)	
0(1)	35(2)	49(2)	56(2)	-2(2)	1(2)	0(2)	
0(2)	41(2)	31(2)	43 (2)	-8(1)	-6(2)	3(1)	
0(3)	40(2)	38(2)	56(2)	-5(2)	4(2)	8(2)	
0(4)	76(3)	59(3)	54(2)	13(2)	-7(2)	21(2)	
0(5)	59(2)	52(2)	44(2)	12(2)	6(2)	1(2)	
0(6)	65(3)	54(3)	100(4)	1(3)	15(3)	7(2)	
0(7)	72(3)	82(4)	72(3)	0(3)	-20(3)	-11(3)	
N(1)	40(2)	38(2)	34(2)	-2(2)	3(2)	4(2)	
C(2)	30(2)	38(2)	37(2)	-3(2)	-3(2)	2(2)	
C(3)	44(3)	57 (3)	35(3)	-8(2)	-4(2)	-1(2)	
C(4)	62(4)	67(4)	35(3)	6(3)	1(2)	2(3)	
C(5)	63 (4)	49(3)	51(3)	9(3)	0(3)	-11(3)	

C(6)	54(3)	40(3)	44(3)	0(2)	2(2)	3(2)
N(1')	34(2)	28(2)	41(2)	-3(2)	-3(2)	2(2)
C(2)	39(3)	43 (3)	39(3)	-7(2)	-4(2)	3(2)
C(3)	67(4)	43 (3)	49(3)	~16(2)	-12(3)	-1(3)
C(4)	77(4)	38(3)	71(4)	-20(3)	-7(3)	3 (3)
C(5)	57(3)	34(3)	63(4)	-8(2)	-6(3)	1(2)
C(6)	32(2)	26(2)	59(3)	2(2)	-5(2)	5(2)
N(1")	37(2)	36(2)	39(2)	3(2)	6(2)	8(2)
C(2")	31(2)	35(3)	52(3)	5(2)	0(2)	6(2)
C(3*)	40(3)	35(3)	61(3)	5(2)	0(2)	4(2)
C(4)	43 (3)	52(3)	59(4)	19(3)	7(3)	3(2)
C(5)	42(3)	67 (4)	39(3)	8(3)	7(2)	12(3)
C(6)	38(3)	50(3)	38(3)	-1(2)	8(2)	1(2)
C(7)	30(2)	26(2)	39(2)	4(2)	-2(2)	0(2)
C(8)	26(2)	26(2)	38(2)	1(2)	1(2)	1(2)
C(9)	32(2)	30(2)	41(3)	5(2)	1(2)	2(2)
C(10)	45(3)	25(2)	59(3)	-1(2)	-6(2)	-1(2)
C(11)	60(4)	37(3)	64(4)	-12(3)	-5(3)	-2(3)
C(12)	62(4)	50(3)	62 (4)	-18(3)	-6(3)	0(3)
C(13)	51(3)	64(4)	40(3)	-9(3)	-1(2)	-1(3)
C(14)	35(2)	41(3)	44(3)	-2(2)	-1(2)	0(2)
C(15)	28(2)	29(2)	44(3)	-3(2)	-6(2)	-1(2)
C(16)	36(2)	28(2)	56(3)	-4(2)	-1(2)	-3(2)
C(17)	37(2)	24(2)	30(2)	2(2)	2(2)	-3(2)
C(18)	51(3)	30(2)	43 (3)	11(2)	-4(2)	2(2)

	x	У	Z	U(eq)
H(1A)	7110(11)	4870(7)	6970(4)	80
H(1B)	6620(13)	4180(5)	7720(6)	80
H(6A)	-3200(13)	2210(5)	8060(7)	80
н(бВ)	-1670(9)	2570(7)	7800(6)	80
H(7A)	4440(11)	900(7)	8360(6)	80
H(7B)	4650(12)	1050(8)	9270(5)	80
н(3)	2519	5797	10739	80
H(4)	2084	4030	11281	80
H(5)	2108	2737	10181	80
H(6)	2414	3225	8588	80
н(Зʻ)	2748	7463	10056	80
H(4·)	3249	9033	9162	80
н(5)	3692	9050	7526	80
н(3")	3950	8813	5919	80
H(4°)	3924	8424	4362	80
н(5')	3580	6696	3958	80
Н(б')	3283	5385	5175	80
н(7)	960	3999	4650	80
H(10)	1961	448	5652	80
н(11)	1814	-94	4007	80
H(12)	1553	381	2431	80
H(13)	1244	2179	1920	80
H(14)	934	3476	3002	80
H(8A)	-1470(17)	370(14)	8900(12)	80
н(8В)	-700(3)	1120(12)	8680(8)	80
H(19A)	-3636	-1139	9565	80
H(19B)	-2996	-19	9706	80
H(19C)	-1673	-806	9091	80
H(9)	-1000(2)	-880(12)	10880(8)	80

 Table 6. Hydrogen-bonds for Aquo(2 3-naftalendicarboxilato)-(2,2::6:2:-terpiridina-N N'N')cobre(II)

 trihidratado metanol [Å and *].

D-H. A	d (D-H)	d(HA)	d(DA)	< (DHA)
O(1)-H(1A) O(3)#1	0.83(5)	2.10(7)	2 793(6)	140(8)
O(1)-H(1B) O(6)#1	0 84(5)	1.86(5)	2 692(7)	170(9)
O(6)-H(6A) O(7)#2	0 87(5)	2.11(6)	2 881(9)	147 (9)
O(6)-H(6B) O(S)	0 85(5)	1.97(6)	2 743(7)	151(9)
O(7)-H(7A)O(4)	0.90(5)	1.87(6)	2 699(8)	154(9)
O(7)-H(7B)O(9)#3	0.86(5)	2.11(8)	2 760(16)	132(8)
O(8)-H(8A)O(7)#2	0.90(5)	2 33(14)	3 027(14)	134 (15)
O(8)-H(8B)O(5)	0.92(6)	2.03(11)	2 789(13)	138(16)
O(9)-H(9)O(8)#3	0.95(5)	1.11(12)	1 867(18)	130(15)
O(9)-H(9)O(5)#3	0.95(5)	2.36(15)	2 863(15)	113(11)

Symmetry transformations used to generate equivalent atoms: #1 x+1 y z #2 x-1, y z #3 -x -y, -z+2

Table1.diAquo- μ -2.6-naftalendicarboxilato-bis(2,2:62.1-terpiridina-N.N.N.) cobre(II)dipercloratodihidratado $[(Cu(H_2O) (Perpy))_2(\mu$ -2.6-naftalendicarboxilato))+2ClO_4-2H_2O

Table S1 - Crystal Data and Details of the Structure Determination for: jv100m

-	Cry	stal	Data	ι					
Empirical Formula	4 (C42	H26	Cu2 N	16 (56)	81C	1 0	4) 4(0), 410)
Formula Weight								4	210.75
Crystal System								Mona	clinic
Space group					P	21/c		()	10.14)
a, b, c [Angstrom]		15.9	3814)		15	640	(4)	16	051(3)
alpha, beta, gamma [deg]			90)	93	088	(4)		90
V (Ang**3)								4250	1.7(17)
Z									1
D(obs) D(calc) [g/cm**3	}							0.000	1.645
F(000)									2128
Mu(Moka) { /mm }									1.2
Crystal Size (mm)					(000	x	0.00 ×	000
D	ata Col	lect	ion						
Iemperature (K)									293
Radiation (Angstrom)						Mo	эка	6	71073
Theta Min-Max (Deg)								1.3,	24.7
Scan, (Type & Range) [Deg	1				0.0	00 +	0.2	35 Tani	Theta)
Hor, and vert. aperture	(mm)						0	00	000
Reference Reflection(s)									
Dataset			-	18:	17	;; ~:	19:	19 ; -	28: 18
Tot., Uniq. Data R(int)					2:	3488		7210	0.042
Observed data [I > 2 0 s	igma(I)	3							4122
	Refine	ment	:						
Nref, Npar								7210	635
R WR S					(0 04:	97,	0,1433	0.92
$w = 1/[\sqrt{2^{(0.0)}}] + (0.0)$	777P)^2	<u>}^</u>]		5	where	e P≈	(Fo	^2^+2F(:^2^}/3
Max. and Av. Shift/Error								0.0	6.0.00
Min and Max resd dens	le/Ar	1g^3)	I					-0.34	0.72
	- 3	} ~							

Table 2 Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters [Å² $\times 10^3$] for [(Cu(H₂O) (Terpy))₂(μ -2.6-naftalendicarboxilato))*2ClO₄*2H₂O U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

TESIS CON FALLA DE ORIGEN

70

	x	У	Z	U (eq)
Cul	0.09591(4)	0.83062(4)	0 63911(3)	0.0387(2)
Cu2	0 43756(4)	0 69091(4)	1 39036(3)	0.0373(2)
01	0.1494(2)	0 8148(2)	0 7475(2)	0.0480(21)
01W	-0.0203(2)	0 89823(19)	0.68339(18)	0 0400(11)
05	0.0808(2)	0 9027(2)	0 82185(19)	0.0593(15)
02W	0.5522(2)	0 6327(2)	1.34287(19)	0 0548(14)
03	0.3894(2)	0.71986(19)	1 28291(19)	0.0407(11)
04	0.4408(2)	0.6185(2)	1.21059(19)	0.0591(15)
N1	0.0542(3)	0.7158(2)	0.6256(2)	0 0401(16)
N12	0 0550(2)	0.8329(2)	0.5233(2)	0.0339(14)
N18	0 1424(2)	0.9391(2)	0.6034(2) 0.	0380(16)
N19	0 4911(3)	0.7986(3)	1.4207(3) 0.	0474(17)
N30	0 4732(3)	0.6718(3)	1.5062(2) 0.	0421(16)
N36	0 3777(3)	0 5846(2)	1.4108(2) 0.	0370(16)
C5	0 0687(4)	0.6553(3)	0.6807(3) 0.	0459(19)
C3	0.0379(4)	0.5795(3)	0.6640(3)	0.056(2)
C4	-0 0069(4)	0.5647(3)	0.5914(4)	0.063(2)
C5	-0 0228(4)	0.6260(3)	0 5340(3)	0.054(2)
C6	0.0107(3)	0 7015(3)	0.5520(3) 0.	0411(17)
C7	0 0093(3)	0.7703(3)	0.4940(3) 0.	0385(17)
C8	-0 0298(3)	0 7739(3)	0 4149(3) 0	0457(19)
C9	-0.0195(3)	0 8434(4)	0 3683(3)	0.048(2)
C10	0.0295(3)	0 9058(3)	0.3989(3) 0.	0419(19)
C11	0.0663(3)	0 8992(3)	0.4783(3) 0.	0371(16)
C13	0.1209(3)	0.9592(3)	0.5232(3) 0	0360(17)
C14	0.1471(3)	1.0299(3)	0 4883 (3)	0.045(2)
C15	0.1965(3)	1 0819(3)	0 5362(3)	0.050(2)
C16	0.2182(4)	1 0625(4)	0 6189(3)	0.055(2)
C17	0.1895(3)	0.9903(3)	0 6503(3)	0.047(2)
C20	0.4904(4)	0.8643(4)	1 3736(4)	0.057(2)
C21	0.5343(5)	0.9336(4)	1 3995(4)	0.075(3)
Ç22	0.5808(4)	0.9308(5)	1.4765(5)	0.081(3)
C23	0.5800(4)	0.8639(4)	1.5261(4)	0.056(3)
C24	0.5341(3)	0.7993(4)	1.4964(3) 0.	0482(19)
C25	0.5236(3)	0.7259(4)	1.5448(3) 0	0481 (19)
C26	0 5573(4)	0.7090(5)	1.6243(3)	0.064(3)
C27	0.5369(4)	0.6362(5)	1.6604(4)	0 072 (3)
C28	0.4836(4)	0.5837 (4)	1.6223(3)	0.058(2)
C29	0 4516(3)	0.6021(4)	1.5418(3) 0.	0474(19)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C31 C32 C33 C34 C35 C41 *C42 *C43 *C44 *C45 *C46 *C47 *C48 *C49 *C50 *C51 C52 *C47A *C48A *C49A *C50A *C51A *C43A *C49A *C50A *C51A *C43A *C45A *C45A *C45A *C45A *C45A *C45A *C45A *C45A *C45A *C45A *C45A *C45A *C45A *C45A *C45A *C45A *C45A *C41 *C42 *C43 *C41 *C42 *C41 *C42 *C41 *C42 *C41 *C42 *C41 *C42 *C41 *C42 *C45 *C46 *C47 *C48 *C49 *C50 *C51 C52 *C41A *C48A *C49A *C50A *C51A *C50A *C51A *C50A *C51A *C45A *C50A *C51A *C51A *C45A *C12 *C12 *C12 *C12 *C12 *C12 *C12 *C12	$\begin{array}{c} 0.3935(3)\\ 0.3577(4)\\ 0.3030(4)\\ 0.2869(4)\\ 0.3257(3)\\ 0.1318(3)\\ 0.1754(5)\\ 0.2174(5)\\ 0.2174(5)\\ 0.2608(6)\\ 0.2608(6)\\ 0.2614(5)\\ 0.2608(6)\\ 0.2614(5)\\ 0.3049(5)\\ 0.3049(5)\\ 0.3049(5)\\ 0.3052(5)\\ 0.3052(5)\\ 0.3052(5)\\ 0.3052(5)\\ 0.3052(5)\\ 0.3052(5)\\ 0.3052(5)\\ 0.3052(5)\\ 0.3052(5)\\ 0.3052(5)\\ 0.3052(5)\\ 0.3052(5)\\ 0.3052(5)\\ 0.3052(5)\\ 0.3052(5)\\ 0.3052(5)\\ 0.2689(8)\\ 0.2219(7)\\ 0.2689(8)\\ 0.2219(7)\\ 0.2689(8)\\ 0.2789(10)\\ 0.2412(10)\\ 0.1852(9)\\ 0.27497(15)\\ 0.2022(10)\\ 0.3360(11)\\ 0.3360(11)\\ 0.3327(10)\\ 0.3120(14)\\ 0.332(12)\\ 0.3006(14)\\ -0\\ 18879(11)\\ 0.208(5)\\ \end{array}$	$\begin{array}{c} 05533(3)\\ 04828(3)\\ 04424(4)\\ 04746(3)\\ 05448(3)\\ 05448(3)\\ 08489(3)\\ 0.8489(3)\\ 0.8489(3)\\ 0.8489(3)\\ 0.8489(3)\\ 0.8489(3)\\ 0.8489(3)\\ 0.8489(3)\\ 0.8489(3)\\ 0.8489(3)\\ 0.8489(3)\\ 0.8384(4)\\ 0.783(3)\\ 0.6696(5)\\ 0.6696(5)\\ 0.6696(5)\\ 0.6696(5)\\ 0.6696(5)\\ 0.6695(5)\\ 0.6695(5)\\ 0.6695(5)\\ 0.6783(3)\\ 0.8383(8)\\ 0.6843(8)\\ 0.6843(8)\\ 0.6843(8)\\ 0.6843(8)\\ 0.6843(8)\\ 0.7291(10)\\ 0.8051(7)\\ 0.8051(7)\\ 0.8051(7)\\ 0.8000(9)\\ 0.7204(7)\\ 0.6829(8)\\ 0.7215(10)\\ 0.50244(12)\\ 0.5624(2)\\ 0.5494(11)\\ 0.4762(8)\\ 0.511(2)\\ 0.4743(14)\\ 0.5231(13)\\ 0.5014(15)\\ 0.72944(10)\\ 0.7283(4)\\ 0.72944(10)\\ 0.7283(4)\\ 0.533(4)$	1.4883(3) 1.5127(3) 1.4570(4) 1.3780(4) 1.3582(3) 0.8155(3) 0.8988(5) 0.9689(4) 1.0423(4) 1.0515(6) 0.9842(5) 0.9040(4) 1.1301(4) 1.1356(5) 1.0658(4) 0.9920(4) 1.2168(3) 0.9565(8) 1.0784(8) 1.1514(8) 1.1514(8) 1.1514(8) 0.9565(7) 0.9326(7) 1.0096(10) 1.0272(9) 0.8834(8) 0.7957(12) 0.8093(9) 0.8198(7) 0.7521(12) 0.6998(9) 0.7954(13) 0.8314(18) 0.7047(10) 0.68899(9) 0.6899(9) 0.6309(9) 0.63	$\begin{array}{c} 0 & 0414(17) \\ 0 & 052(2) \\ 0 & 060(3) \\ 0 & 056(2) \\ 0 & 0448(19) \\ 0 & 0409(13) \\ 0 & 032(2) \\ 0 & 0303(18) \\ 0 & 0310(17) \\ 0 & 033(2) \\ 0 & 030(2) \\ 0 & 0290(17) \\ 0 & 0279(17) \\ 0 & 0279(17) \\ 0 & 0279(17) \\ 0 & 0279(17) \\ 0 & 0279(17) \\ 0 & 0235(18) \\ 0 & 0416(13) \\ 0 & 031(3) \\ 0 & 031(3) \\ 0 & 031(3) \\ 0 & 031(3) \\ 0 & 032(4) \\ 0 & 018(2) \\ 0 & 039(3) \\ 0 & 0036(4) \\ 0 & 030(4) \\ 0 & 027(3) \\ 0 & 030(4) \\ 0 & 027(3) \\ 0 & 036(4) \\ 0 & 030(4) \\ 0 & 027(3) \\ 0 & 018(2) \\ 0 & 039(3) \\ 0 & 024(3) \\ 0 & 036(4) \\ 0 & 030(4) \\ 0 & 027(3) \\ 0 & 0748(8) \\ 0 & 0.128(7) \\ 0 & 0.150(6) \\ 0 & 0.213(10) \\ 0 & 0.141(7) \\ 0 & 0.167(18) \\ 0 & 0.227(16) \\ 0 & 0.123(9) \\ 0 & 0641(6) \\ 0 & 0.160(16$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	022	~0 2672(3)	0.7167(3)	0.7267(4)	0.107(2)			
$\begin{array}{c} 3.34 \\ -503W \\ 0.7152(5) \\ 0.624(6) \\ 0.8286(8) \\ 0.6070(8) \\ 1.3774(7) \\ 0.084(4) \\ \hline \\ $	023	-0 1464(3)	0.6543(3)	0 6871(3)	0 0795(19)			
04W 0.8286(8) 0.6070(8) 1.3774(7) 0.084(4) Table 3. Bond lengths (Å) and angles () $((Cu(H_2O)(Terpy))_2(\mu-2 6-naftalendicarboxilato)) -2ClO_4-2H_2O$ Cu1-01 1.914(3) 02W-H4W 0.8996 C26-C27 1.389(11) C49-C50 1.460(11) Cu1-01 2.312(3) 02W-H4W 0.8833 C27-C28 1.343(10) C49-C52 1.510(9) Cu1-NI 2.0314(4) 012A-013A 1.05(3) C28-C29 1.397(7) C49A-C50A 1.40(2) Cu1-NI 2.0314(4) 012A-013A 1.05(3) C28-C29 1.397(7) C49A-C50A 1.40(2) Cu1-NI 2.0314(4) 012A-013A 1.05(3) C28-C29 1.397(7) C49A-C52 1.510(9) Cu1-NI 2.0314(4) 012A-013A 1.05(3) C28-C29 1.397(7) C49A-C52 1.510(9) Cu1-NI 2.0314(4) 012A-013A 1.05(3) C28-C29 1.397(7) C49A-C52 1.510(9) Cu1-NI 2.0314(4) 012A-013A 1.05(6) C34-C33 1.384(8) C50A-C51A 1.412(17) Cu2-O2W 2.238(3) N12-C7 1.342(6) C32-C33 1.388(8) C50A-C51A 1.413(17) Cu2-O3 1.911(3) N12-C11 1.336(6) C34-C34 1.388(9) C2-H2 1.0544 Cu2-N30 1.939(3) N18-C13 1.356(6) C34-C34 1.388(10) C3-H3 0.9665 Cu2-N30 1.939(3) N18-C17 1.340(6) C41-C42A 1.559(15) C4-H4 0.9725 Cu2-N36 2.045(4) N19-C24 1.363(7) C41-C42A 1.559(15) C5-H5 1.0516 C11-013A 1.50(2) N30-C25 1.337(7) C42-C47 1.409(12) C9-H9 0.9060 C11-011 1.446(15) N30-C25 1.337(7) C42-C47 1.409(12) C9-H9 0.9060 C11-012 1.453(12) N36-C31 1.360(6) C42-C43A 1.45(2) C10-H10 0.9976 C11-013 1.341(18) N36-C31 1.360(6) C42-C43A 1.45(2) C10-H10 0.9976 C11-013 1.341(18) N36-C31 1.360(6) C42-C43A 1.420(17) C15-H15 1.1143 C11-014 1.480(15) C2-C3 1.375(7) C43-C44A 1.420(17) C15-H15 1.1143 C11-014 1.280(17) C4-C5 1.384(8) C44A-C45A 1.39(2) C20-H20 1.1049 C12-024 1.436(5) C5-C6 1.389(7) C45-C46A 1.47(12) C23-H22 0.9520 C12-023 1.422(5) C7-C8 1.357(7) C45-C46A 1.47(2) C23-H23 1.2096 C12-021 1.33(5) C6-C7 1.475(7) C45-C46 1.404(12) C22-H21 0.9777 C12-021 1.33(5) C6-C7 1.475(7) C45-C46 1.404(12) C22-H21 0.9777 C12-021 1.33(5) C6-C7 1.475(7) C45-C46 1.404(12) C22-H23 1.2096 C12-022 1.433(5) C5-C6 1.385(7) C45-C46 1.404(12) C22-H23 1.2096 C12-021 1.327(6) C13-C14 1.377(7) C45-C46 1.40(12) C23-H33 1.0880 O1-C41 1.277(6) C10-C11 1.378(7) C24-H24 1.93918 C44-C45 1	*03W	0.7152(5)	0.7633(2)	1.3703(4)	0.118(4)			
Table 3. Bond lengths [Å] and angles [*] $[(Cu(H_2O)(Terpy))_2(\mu/2 6-naftalendicarboxilato)]-2ClO4-2H2O Cu1-Ol 1 914(3) O2W-H4W 0.8995 C26-C27 1.389(11) C49-C50 1.460(11) Cu1-OlW 2 312(3) O2W-H3W 0.8833 C27-C28 1.343(10) C49-C50 1.460(11) Cu1-N12 1 937(3) N1-C6 1.358(6) C29-C31 1.473(7) C49A-C50A 1.40(2) Cu1-N12 1 937(3) N1-C2 1.352(6) C31-C32 1.371(7) C49A-C50A 1.40(2) Cu1-N12 2 045(3) N1-C2 1.352(6) C31-C32 1.371(7) C49A-C50A 1.40(2) Cu2-O2W 2 238(3) N12-C7 1.342(6) C31-C32 1.371(7) C49A-C51A 1.413(17) Cu2-O3 1 911(3) N12-C7 1.342(6) C33-C34 1.388(8) C50A-C51A 1.413(17) Cu2-N19 2 033(5) N18-C13 1.356(6) C34-C35 1.367(7) C3-H3 0.9665 Cu2-N30 1 939(3) N18-C13 1.356(6) C44-C35 1.367(7) C3-H3 0.9665 Cu2-N30 1 939(3) N18-C17 1.340(6) C41-C42A 1.589(15) C4-H4 0.9725 Cu2-N30 1 939(3) N18-C17 1.340(6) C42-C43 1.438(11) C8-H8 1.0543 C11-O12A 1.17(3) N19-C20 1.329(8) C42-C43 1.438(11) C8-H8 1.0543 C11-012A 1.55(2) N30-C25 1.337(7) C42-C47 1.409(12) C9-H9 0.9060 C11-011 1.446(15) N30-C29 1.337(7) C42-C47 1.409(12) C3-H9 0.9060 C11-011 1.446(15) N30-C29 1.347(8) C42A-C47A 1.349(19) C10-H10 0.9976 C11-012 1.453(12) N36-C35 1.326(6) C42A-C47A 1.349(19) C10-H10 0.9976 C11-013 1.341(18) N36-C31 1.360(6) C42A-C47A 1.349(19) C10-H10 0.9976 C11-014 1.480(15) C2-C3 1.375(7) C43A-C44A 1.374(10) C15-H15 1.1143 C11-014 1.480(15) C5-C6 1.389(7) C45-C48 1.449(12) C22-H22 0.9570 C12-024 1.436(5) C5-C6 1.389(7) C45-C48 1.449(12) C22-H22 0.9777 C12-021 1.370(5) C6-C7 1.475(7) C45-C46 1.404(12) C22-H22 0.9777 C12-021 1.370(5) C6-C7 1.475(7) C45-C46 1.404(12) C22-H22 0.9570 C12-023 1.422(5) C7-C8 1.335(7) C42-C478 1.9938 O4-C52 1.277(6) C11-C13 1.376(8) C27-H27 1.0022 C34-H34 1.0399 O3-C52 1.277(6) C11-C13 1.376(7) O1-Cu1-N18 103 05(14) O1A-C11-O13A 129.9(14) OW-H2W 0 9685 C14-C15 1.376(7) O1-Cu1-N18 103 05(14) O1A-C11-O13A 129.9(14) OW-H2W 0 9685 C14-C15 1.376(7) O1-Cu1-N18 103 05(14) O1A-C11-O13A 129.9(14) OW-H2W 0 9685 C14-C15 1.376(7) O1-Cu1-N18 103 05(14) O1A-C11-O14A 123.1(40) OW-C14-N18 0305(14) O1$	*04W	0.,8286(8)	0.6070(8)	1.3774(7)	0084(4)			
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}cccccccccc$	Table 3	Bond length	s [Å] and ang]	les [°] [{Cu(H	I20) (Terpy))2 (µ-2	6-naftalendio	carboxilato)]•20	2104 - 2H20
$ \begin{array}{c} {\rm Cu1-Ol} & 1 & 914 (3) & {\rm O2N-H4W} & 0.8996 & {\rm C26-C27} & 1.389 (11) & {\rm C49-C50} & 1.460 (11) \\ {\rm Cu1-OlW} & 2 & 312 (3) & {\rm O2N-H4W} & 0.8833 & {\rm C27-C28} & 1.343 (10) & {\rm C49-C52} & 1.510 (9) \\ {\rm Cu1-N12} & 1 & 937 (3) & {\rm N1-C6} & 1 & 358 (6) & {\rm C29-C31} & 1.473 (7) & {\rm C49A-C52A} & 1.402 (2) \\ {\rm Cu1-N12} & 1 & 937 (3) & {\rm N1-C6} & 1 & 358 (6) & {\rm C29-C31} & 1.473 (7) & {\rm C49A-C52A} & 1.612 (16) \\ {\rm Cu1-N12} & 1 & 937 (3) & {\rm N1-C6} & 1 & 358 (6) & {\rm C23-C33} & 1.388 (8) & {\rm C50A-C51A} & 1.375 (10) \\ {\rm Cu2-OW} & 2 & 238 (3) & {\rm N12-C7} & 1 & 342 (6) & {\rm C32-C33} & 1.388 (8) & {\rm C50A-C51A} & 1.375 (10) \\ {\rm Cu2-O3} & 1 & 911 (3) & {\rm N12-C11} & 1.336 (6) & {\rm C33-C34} & 1.388 (8) & {\rm C50A-C51A} & 1.413 (17) \\ {\rm Cu2-N19} & 2 & 033 (5) & {\rm N18-C13} & 1.356 (6) & {\rm C34-C25} & 1.567 (7) & {\rm C3-H3} & 0.9665 \\ {\rm Cu2-N30} & 1 & 939 (3) & {\rm N18-C13} & 1.356 (6) & {\rm C34-C24A} & 1.589 (15) & {\rm C4-H4} & 0.9725 \\ {\rm Cu2-N36} & 2 & {\rm O45} (4) & {\rm N19-C24} & 1 & 363 (7) & {\rm C41-C422} & 1.507 (9) & {\rm C5-H5} & 1.0516 \\ {\rm C11-O12A} & 1 & 1.7(3) & {\rm N19-C20} & 1 & 329 (8) & {\rm C42-C47} & 1.349 (12) & {\rm C9-H9} & 0.9060 \\ {\rm C11-O13A} & 1 & 50 (2) & {\rm N30-C25} & 1 & 337 (7) & {\rm C42-C47} & 1.349 (12) & {\rm C1-H14} & 1.0033 \\ {\rm C11-O13} & 1 & 341 (18) & {\rm N36-C35} & 1 & 328 (6) & {\rm C42A-C43A} & 1.438 (11) & {\rm C15-H15} & 1.143 \\ {\rm C11-O14A} & 1 & 26 (2) & {\rm C3-C4} & 1 & 377 (7) & {\rm C43-C43A} & 1.438 (11) & {\rm C17-H17} & 1 & 1940 \\ {\rm C11-O14A} & 1 & 26 (2) & {\rm C3-C4} & 1 & 377 (7) & {\rm C43-C48} & 1.438 (11) & {\rm C17-H17} & 1 & 1940 \\ {\rm C12-O24} & 1 & 433 (5) & {\rm C8-C9} & 1.392 (8) & {\rm C24-H26} & 0.9371 & {\rm C33-H33} & 1.0880 \\ {\rm O1-C41} & 1 & 275 (6) & {\rm C9-C10} & 1 & 374 (8) & {\rm C27-H27} & 1 & 0022 & {\rm C34-H34} & 1 & 0.0399 \\ {\rm C12-O22} & 1 & 433 (5) & {\rm C8-C7} & 1 & 458 (7) & {\rm C32-H22} & 0.9938 \\ {\rm C14-C11} & 1 & 246 (17) & {\rm C16-C11} & 1 & 376 (7) & {\rm O1-Cu1-N1} & 95.44 (14) & {\rm O1A-C11-O13A} & 129.9 (14) \\ {\rm O1M-H1W} & 0 & 9685 & {\rm C14-C15} & 1 & 376$					C25-C26	1.386(7)	C48A-C49A	1 389(19)
$ \begin{array}{c} \mathrm{cul}-\mathrm{cul} & 2 & 312 (3) & 02\text{M}-\mathrm{H3W} & 0 & 8833 & C2^{7}-C28 & 1.343 (10) & C49-C52 & 1.510 (9) \\ \mathrm{cul}-\mathrm{N12} & 1 & 937 (3) & \mathrm{N1}-\mathrm{C6} & 1 & 358 (6) & C29-C31 & 1.473 (7) & C49\mathrm{A}-C50\mathrm{A} & 1.40 (2) \\ \mathrm{cul}-\mathrm{N12} & 1 & 937 (3) & \mathrm{N1}-\mathrm{C6} & 1 & 358 (6) & C29-C31 & 1.473 (7) & C49\mathrm{A}-C50 & 1.40 (2) \\ \mathrm{cul}-\mathrm{N18} & 2 & 045 (3) & \mathrm{N1}-\mathrm{C2} & 1.352 (6) & C31-C32 & 1.371 (7) & C50-C51 & 1.413 (17) \\ \mathrm{Cu2}-\mathrm{C02} & 2 & 238 (3) & \mathrm{N12}-\mathrm{C7} & 1 & 342 (6) & C33-C33 & 1.388 (8) & C50\mathrm{A}-C51\mathrm{A} & 1.433 (17) \\ \mathrm{Cu2}-\mathrm{C03} & 1 & 911 (3) & \mathrm{N12}-\mathrm{C1} & 1 & .336 (6) & C33-C33 & 1.386 (8) & C2-\mathrm{H2} & 1.0544 \\ \mathrm{Cu2}-\mathrm{N19} & 2 & 033 (5) & \mathrm{N18}-\mathrm{C17} & 1 & 340 (6) & C41-C42\mathrm{A} & 1.589 (15) & C4-\mathrm{H4} & 0.9665 \\ \mathrm{Cu2}-\mathrm{N30} & 1.939 (3) & \mathrm{N18}-\mathrm{C17} & 1 & 340 (6) & C41-C42\mathrm{A} & 1.589 (15) & C4-\mathrm{H4} & 0.9725 \\ \mathrm{Cu2}-\mathrm{N36} & 2 & 045 (4) & \mathrm{N19}-\mathrm{C24} & 1 & 363 (7) & C41-C42\mathrm{A} & 1.589 (15) & C4-\mathrm{H4} & 0.9725 \\ \mathrm{C11}-\mathrm{O12\mathrm{A}} & 1.57 (2) & \mathrm{N30}-\mathrm{C25} & 1.337 (7) & C42-C47 \mathrm{A} & 1.349 (19) & C10-\mathrm{H10} & 0 & 9976 \\ \mathrm{C11}-\mathrm{O13\mathrm{A}} & 1.50 (2) & \mathrm{N30}-\mathrm{C25} & 1 & 332 (6) & C43-C43\mathrm{A} & 1.374 (10) & C15-\mathrm{H15} & 1 & 1143 \\ \mathrm{C11}-\mathrm{O14\mathrm{A}} & 1.56 (2) & \mathrm{C3}-\mathrm{C4} & 1 & 372 (8) & C44-\mathrm{C43\mathrm{A}} & 1.374 (10) & C15-\mathrm{H16} & 1 & 1143 \\ \mathrm{C11}-\mathrm{O14\mathrm{A}} & 1.26 (2) & C3-\mathrm{C4} & 1 & 372 (8) & C44-\mathrm{C45\mathrm{A}} & 1.39 (2) & C20+\mathrm{H2} & 1 & 10049 \\ \mathrm{C12}-\mathrm{C24\mathrm{A}} & 1.436 (5) & \mathrm{C5}-\mathrm{C6} & 1 & 384 (8) & C44-\mathrm{C45\mathrm{A}} & 1.39 (2) & C20+\mathrm{H2} & 1 & 1049 \\ \mathrm{C12}-\mathrm{C24} & 1.436 (5) & \mathrm{C5}-\mathrm{C6} & 1 & 389 (7) & \mathrm{C45}-\mathrm{C46} & 1.404 (12) & C22-\mathrm{H22} & 0 & 9520 \\ \mathrm{C12}-\mathrm{C24} & 1.433 (5) & \mathrm{C6}-\mathrm{C7} & 1 & 475 (7) & \mathrm{C45}-\mathrm{C46} & 1.404 (12) & C22-\mathrm{H23} & 1 & 0.098 \\ \mathrm{C12}-\mathrm{C24} & 1.337 (10) & \mathrm{C1}-\mathrm{C11} & 1 & 374 (8) & C27+\mathrm{H27} & 1.0022 & C34+\mathrm{H34} & 1 & 0339 \\ \mathrm{O2}-\mathrm{C41} & 1.275 (6) & \mathrm{C1}-\mathrm{C13} & 1 & 485 (7) & \mathrm{C26}-\mathrm{H26} & 0.9371 & \mathrm{C33}-\mathrm{H33} & 1 & 0880 \\ \mathrm{O1}-\mathrm{C41} & 1.275 (6) & \mathrm{C1}-\mathrm{C13} & 1 & 485 (7) & \mathrm{C26}-\mathrm{H26} & 0.9371 & \mathrm{C33}-\mathrm{H33} & 1 $	Cu1-01	1 914(3)	O2W-H4W	0.8996	C26-C27	1.389(11)	C49-C50	1 460(11)
$\begin{array}{c} Cu1-N1 & 2.031(4) & 012A-013A & 1.05(3) & C28-C29 & 1.397(7) & C49A-C50A & 1.40(2) \\ Cu1-N18 & 2.045(3) & N1-C6 & 1.358(6) & C31-C32 & 1.311(7) & C49A-C52 & 1.612(16) \\ Cu1-N18 & 2.045(3) & N12-C7 & 1.342(6) & C32-C33 & 1.388(8) & C5A-C51A & 1.413(17) \\ Cu2-02W & 2.238(3) & N12-C7 & 1.342(6) & C32-C33 & 1.388(8) & C2-H2 & 1.0544 \\ Cu2-N19 & 2.033(5) & N18-C13 & 1.356(6) & C34-C35 & 1.367(7) & C3-H3 & 0.9665 \\ Cu2-N36 & 2.045(4) & N19-C24 & 1.363(7) & C41-C42A & 1.589(15) & C4-H4 & 0.9725 \\ Cu2-N36 & 2.045(4) & N19-C24 & 1.363(7) & C41-C42 & 1.507(9) & C5-H5 & 1.0516 \\ C11-012A & 1.17(3) & N19-C20 & 1.329(8) & C42-C47 & 1.349(19) & C10-H10 & 0.9976 \\ C11-012A & 1.50(2) & N30-C25 & 1.337(7) & C42A-C47A & 1.349(19) & C10-H10 & 0.9976 \\ C11-011 & 1.446(15) & N30-C29 & 1.347(8) & C42A-C47A & 1.349(19) & C10-H10 & 0.9976 \\ C11-012 & 1.453(12) & N36-C35 & 1.328(6) & C42A-C43A & 1.45(2) & C14-H14 & 1.0033 \\ C11-012 & 1.453(12) & N36-C35 & 1.328(6) & C42A-C47A & 1.349(19) & C10-H10 & 0.9976 \\ C11-011 & 1.446(15) & N30-C29 & 1.347(8) & C42A-C43A & 1.45(2) & C14-H14 & 1.0033 \\ C11-012 & 1.453(12) & N36-C35 & 1.328(6) & C42A-C43A & 1.49(12) & C2-H15 & 1.1143 \\ C11-014 & 1.290(17) & C4-C5 & 1.388(7) & C43A-C44A & 1.420(17) & C16-H16 & 1.1148 \\ C11-011A & 1.26(2) & C3-C4 & 1.372(8) & C44-C45A & 1.39(2) & C20-H20 & 1.1049 \\ C12-024 & 1.436(5) & C5-C6 & 1.388(7) & C45-C46 & 1.449(12) & C22-H22 & 0.9520 \\ C12-023 & 1.422(5) & C7-C8 & 1.385(7) & C45-C46 & 1.404(12) & C22-H23 & 1.2096 \\ C12-024 & 1.435(5) & C8-C9 & 1.392(8) & C26-H26 & 0.9371 & C33-H33 & 1.0880 \\ O1-C41 & 1.275(6) & C9-C10 & 1.374(8) & C27-H27 & 1.0022 & C34-H34 & 1.0399 \\ O2-C41 & 1.277(6) & C10-C11 & 1.378(7) & C28-H28 & 1.539 & C35-H35 & 1.0192 \\ O3-C52 & 1.277(6) & C10-C11 & 1.378(7) & C28-H28 & 1.539 & C35-H35 & 1.0192 \\ O3-C52 & 1.277(6) & C15-C16 & 1.392(7) & O1-Cu1-N18 & 7.99(14) & O1A-C11-01A & 123 1(14) \\ O1W-H2W & 0.9685 & C14-C15 & 1.376(7) & O1-Cu1-N18 & 7.99(12) & O22-C12-O24 & 108 5(3) \\ C22-C23 & 1.369(11) & C46A-C47A & 1.50(2) & O14-Cu1-N1$	Cul-O1W	2 312(3)	O2W-H3W	0.8833	C27-C28	1.343(10)	C49-C52	1 510(9)
$\begin{array}{c} Cu1-nu2 & 1 & 97(2) & N1-C2 & 1 & 353(6) & C29-C31 & 1 & 413(17) & C50-C51 & 1 & 375(10) \\ Cu2-nu2 & 2 & 238(3) & N12-C7 & 1 & 342(6) & C32-C33 & 1 & 338(8) & C50A-C51A & 1 & 413(17) \\ Cu2-02W & 2 & 238(3) & N12-C11 & 1 & 336(6) & C33-C34 & 1 & 388(9) & C2-H2 & 1 & 0544 \\ Cu2-N19 & 2 & 033(5) & N18-C13 & 1 & 356(6) & C34-C35 & 1 & 367(7) & C3-H3 & 0 & 9665 \\ Cu2-N30 & 1 & 939(3) & N18-C17 & 1 & 340(6) & C41-C42A & 1 & 589(15) & C4-H4 & 0 & 9725 \\ Cu2-N36 & 2 & 045(4) & N19-C24 & 1 & 363(7) & C41-C42A & 1 & 589(15) & C4-H4 & 0 & 9725 \\ Cu2-N36 & 2 & 045(4) & N19-C24 & 1 & 363(7) & C42-C43 & 1 & 438(11) & C8-H8 & 1 & 0543 \\ C11-012A & 1 & 177(3) & N19-C20 & 1 & 329(8) & C42-C43A & 1 & 438(11) & C8-H8 & 1 & 0543 \\ C11-013A & 1 & 50(2) & N30-C25 & 1 & 337(7) & C42-C47 & 1 & 409(12) & C9-H9 & 0 & 9060 \\ C11-011 & 1 & 446(15) & N30-C25 & 1 & 328(6) & C42A-C43A & 1 & 349(19) & C10-H10 & 0 & 9976 \\ C11-012 & 1 & 453(12) & N36-C35 & 1 & 328(6) & C42A-C43A & 1 & 45(12) & C14-H14 & 1 & 0033 \\ C11-013 & 1 & 341(18) & N36-C31 & 1 & .360(6) & C43-C44A & 1 & 420(17) & C16-H16 & 1 & 1148 \\ C11-011A & 1 & 26(2) & C3-C4 & 1 & .372(8) & C44-C45A & 1 & .39(10) & C15-H15 & 1 & 1143 \\ C11-011A & 1 & 26(12) & C3-C4 & 1 & .375(7) & C45-C48 & 1 & .49(12) & C21-H21 & 0 & 9777 \\ C12-021 & 1 & 370(5) & C6-C7 & 1 & 475(7) & C45-C48 & 1 & .49(12) & C22-H22 & 0 & 9520 \\ C12-023 & 1 & 422(5) & C7-C8 & 1 & .385(7) & C45-C48 & 1 & .49(12) & C22-H22 & 0 & 9520 \\ C12-023 & 1 & 422(5) & C7-C8 & 1 & .385(7) & C45-C48 & 1 & .49(12) & C22-H23 & 1 & .2096 \\ C12-024 & 1 & .375(6) & C9-C10 & 1 & .374(8) & C27-H27 & 1 & .0022 & C34-H34 & 1 & .0399 \\ O1-C41 & 1 & .275(6) & C9-C10 & 1 & .376(7) & O1-Cu1-N18 & 90(33-H13) & 1 & 0880 \\ O1-C41 & 1 & .275(6) & C9-C10 & 1 & .376(7) & O1-Cu1-N18 & 00 & .051(4) & 01A-C11-013A & 129 & 9(14) \\ C16-C17 & 1 & .390(8) & C45A-C48A & 1 & 46(2) & 01-Cu1-N18 & 103 & 05(14) & 012A-C11-013A & 42 & (15) \\ C20-C21 & 1 & 400(10) & C46-C51 & 1 & 431(12) & 01-Cu1-N18 & 79 & 9(14) & 012A-C11-013A & 42 & (15) \\ C22-C23 & 1 &$	Cu1-NI Cu1-N12	2.031(4)	012A-013A N1-C6	1 05(3)	C28-C29	1.397(7)	C49A-C50A	1.40(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu1-N12	2 045(3)	N1-C2	1.352(6)	C31-C32	1.371(7)	C50-C51	1,375(10)
$ \begin{array}{c} \mathrm{Cu2-03} & 1 & 911(3) & \mathrm{N12-C11} & 1.336(6) & \mathrm{C33-C34} & 1.388(9) & \mathrm{C2-H2} & 1.0544 \\ \mathrm{Cu2-N19} & 2 & 033(5) & \mathrm{N18-C13} & 1.356(6) & \mathrm{C34-C35} & 1.367(7) & \mathrm{C3-H3} & 0.9665 \\ \mathrm{Cu2-N36} & 2 & 045(4) & \mathrm{N19-C24} & 1.363(7) & \mathrm{C41-C42} & 1.589(15) & \mathrm{C4-H4} & 0.9725 \\ \mathrm{Cu2-N36} & 2 & 045(4) & \mathrm{N19-C24} & 1.363(7) & \mathrm{C41-C42} & 1.507(9) & \mathrm{C5-H5} & 1.0516 \\ \mathrm{C11-012A} & 1.17(3) & \mathrm{N19-C20} & 1.329(8) & \mathrm{C42-C43} & 1.438(11) & \mathrm{C8-H8} & 1.0543 \\ \mathrm{C11-012A} & 1.50(2) & \mathrm{N30-C25} & 1.337(7) & \mathrm{C42-C43} & 1.439(19) & \mathrm{C10-H10} & 0.9966 \\ \mathrm{C11-011} & 1.446(15) & \mathrm{N30-C29} & 1.347(8) & \mathrm{C42A-C47A} & 1.349(19) & \mathrm{C10-H10} & 0.9976 \\ \mathrm{C11-012} & 1 & 453(12) & \mathrm{N36-C35} & 1.328(6) & \mathrm{C42A-C47A} & 1.349(19) & \mathrm{C10-H10} & 0.9976 \\ \mathrm{C11-014} & 1 & 480(15) & \mathrm{C2-C3} & 1.375(7) & \mathrm{C43A-C44A} & 1.420(17) & \mathrm{C16-H16} & 1.1438 \\ \mathrm{C11-014} & 1 & 480(15) & \mathrm{C2-C3} & 1.375(7) & \mathrm{C43A-C44A} & 1.420(17) & \mathrm{C16-H16} & 1.1438 \\ \mathrm{C11-014} & 1 & 26(2) & \mathrm{C3-C4} & 1.372(8) & \mathrm{C44-C45} & 1.38(11) & \mathrm{C17-H17} & 1.9400 \\ \mathrm{C11-014} & 1.290(17) & \mathrm{C4-C5} & 1.384(8) & \mathrm{C44A-C45} & 1.39(2) & \mathrm{C20-H20} & 1.1049 \\ \mathrm{C12-024} & 1.436(5) & \mathrm{C5-C6} & 1.389(7) & \mathrm{C45-C48} & 1.449(12) & \mathrm{C21-H21} & 0.9777 \\ \mathrm{C12-021} & 1.370(5) & \mathrm{C6-C7} & 1.475(7) & \mathrm{C45-C46} & 1.404(12) & \mathrm{C22-H22} & 0.9520 \\ \mathrm{C12-022} & 1.423(5) & \mathrm{C7-C8} & 1.385(7) & \mathrm{C45A-C46A} & 1.47(2) & \mathrm{C23-H23} & 1.2096 \\ \mathrm{C12-022} & 1.423(5) & \mathrm{C8-C9} & 1.392(8) & \mathrm{C26-H26} & 0.9371 & \mathrm{C33-H33} & 1.0080 \\ \mathrm{O1-C41} & 1.275(6) & \mathrm{C9-C10} & 1.374(8) & \mathrm{C27-H27} & 1.0022 & \mathrm{C34-H34} & 1.0399 \\ \mathrm{O2-C41} & 1.217(6) & \mathrm{C10-C11} & 1.378(7) & \mathrm{C28-H28} & 1.1539 & \mathrm{C35-H35} & 1.0192 \\ \mathrm{O3-C52} & 1.277(6) & \mathrm{C11-C13} & 1.485(7) & \mathrm{C28-H28} & 1.1539 & \mathrm{C35-H35} & 1.0192 \\ \mathrm{O3-C52} & 1.226(6) & \mathrm{C13-C14} & 1.377(7) \\ \mathrm{O1W-H2W} & 0 & 9685 & \mathrm{C14-C15} & 1.376(7) & \mathrm{O1-Cu1-N1} & 95.44(14) & \mathrm{O11A-C11-O13A} & 129.9(14) \\ \mathrm{O1W-H1W} & 0 & 8230 & \mathrm{C15-C16} & 1.392(7) & \mathrm{O1-Cu1-N1} & 95.44(14) & \mathrm{O11A-C11-O13A} & 42.9(1$	Cu2-02W	2 238(3)	N12-C7	1 342(6)	C32-C33	1.388(8)	C50A-C51A	1 413 (17)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Cu2-03	1 911(3)	N12-C11	1.336(6)	C33-C34	1.388(9)	C2-H2	1 0544
$\begin{array}{c} Cu2-N30 & 1.959(3) & N18-C17 & 1.340(6) & C41-C42A & 1.559(15) & C4-H4 & 0.9725 \\ Cu2-N36 & 2.045(4) & N19-C24 & 1.363(7) & C41-C42A & 1.507(9) & C5-H5 & 1.0516 \\ C11-012A & 1.17(3) & N19-C20 & 1.329(8) & C42-C43 & 1.438(11) & C8-H8 & 1.0543 \\ C11-013A & 1.50(2) & N30-C25 & 1.337(7) & C42-C47 & 1.409(12) & C9-H9 & 0.9060 \\ C11-011 & 1.446(15) & N30-C29 & 1.347(8) & C42A-C47A & 1.349(19) & C10-H10 & 0.9976 \\ C11-012 & 1.453(12) & N36-C35 & 1.328(6) & C42A-C43A & 1.45(12) & C14-H14 & 1.0033 \\ C11-013 & 1.341(18) & N36-C31 & 1.360(6) & C43-C44 & 1.374(10) & C15-H15 & 1.1143 \\ C11-014 & 1.480(15) & C2-C3 & 1.375(7) & C4A-C45A & 1.438(11) & C17-H17 & 1.1940 \\ C11-014A & 1.290(17) & C4-C5 & 1.384(8) & C44A-C45A & 1.39(2) & C20-H20 & 1.1049 \\ C12-024 & 1.436(5) & C5-C6 & 1.389(7) & C45-C48 & 1.449(12) & C21-H21 & 0.9777 \\ C12-021 & 1.370(5) & C6-C7 & 1.475(7) & C45-C48 & 1.449(12) & C21-H21 & 0.9777 \\ C12-021 & 1.370(5) & C6-C7 & 1.475(7) & C45-C48 & 1.404(12) & C22-H22 & 0.9520 \\ C12-023 & 1.422(5) & C7-C8 & 1.385(7) & C45-C46 & 1.404(12) & C22-H23 & 1.2096 \\ C12-022 & 1.433(5) & C8-C9 & 1.392(8) & C26-H26 & 0.9371 & C33-H33 & 1.0880 \\ O1-C41 & 1.275(6) & C9-C10 & 1.374(8) & C27-H27 & 1.0022 & C34-H34 & 1.0399 \\ O2-C41 & 1.217(6) & C11-C13 & 1.485(7) & C32-H32 & 0.9938 \\ O4-C52 & 1.226(6) & C13-C14 & 1.377(7) \\ O1W-H2W & 0.9685 & C14-C15 & 1.376(7) & O1-Cu1-O1W 96.46(12) & O11A-C11-O13A 129.9(14) \\ O1W-H1W & 0.8230 & C15-C16 & 1.392(7) & O1-Cu1-N1 95.44(14) & O11A-C11-O13A 129.9(14) \\ O1W-H1W & 0.8230 & C15-C16 & 1.392(7) & O1-Cu1-N18 103 05(14) & O12A-C11-O13A 442(15) \\ C20-C21 & 1.400(10) & C46-C51 & 1.431(12) & O1-Cu1-N18 87 99(12) & O22-C12-O24 & 108 5(3) \\ C22-C23 & 1.369(11) & C46A-C47A & 1.50(2) & O1W-Cu1-N1 8 77 90(12) & O22-C12-O24 & 107 6(3) \\ C22-C24 & 1.371(9) & C46A-C51A & 1.372(19) & O1W-Cu1-N18 87 99(12) & O22-C12-O24 & 107 6(3) \\ C22-C24 & 1.371(9) & C46A-C51A & 1.372(19) & O1W-Cu1-N18 87 99(12) & O22-C12-O24 & 107 6(3) \\ C24-C25 & 1.465(29) & C48-C49 & 1.372(19) & O1W-Cu1-N18 87 99(12) & O22-C$	Cu2-N19	2 033(5)	N18-C13	1.356(6)	C34-C35	1.367(7)	С3-Н3	0 9665
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu2-N30	2 045(4)	N18-C17	1 340(6)	C41-C42A	1.589(15)	C4-H4 C5 H5	0.9725
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11-012A	1.17(3)	N19-C20	1 329(8)	C42-C43	1.438(11)	C8-H8	1 0543
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11-013A	1 50(2)	N30-C25	1 337(7)	C42-C47	1.409(12)	С9-Н9	0 9060
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11-011	1.446(15)	N30-C29	1 347(8)	C42A-C47A	1.349(19)	C10-H10	0.9976
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11-012	1 453(12)	N36-C35	1 328(6)	C42A-C43A	1.45(2)	C14-H14	1.0033
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11-013	1 341(18)	N30-C31	1.360(6)	C43-C44 C433-C443	1 420/17)	C15-H15 C16-H16	1 1143
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11-011A	1 26(2)	C3-C4	1.372(8)	C44-C45	1.438(11)	C17-H17	1 1940
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11-014A	1 290(17)	C4-C5	1 384(8)	C44A-C45A	1.39(2)	C20-H20	1.1049
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12-024	1.436(5)	C5-C6	1 389(7)	C45-C48	1.449(12)	C21-H21	0.9777
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12-021	1 370(5)	C6-C7	1 475(7)	C45-C46	1.404(12)	C22-H22	0.9520
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12-023	1 422(5)	C7-C8 C8-C9	1 305(7)	C45A-C46A C26_W26	1.4/(2)	C23-H23	1.2096
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01-C41	1.275(6)	C9-C10	1 374(8)	C27-H27	1.0022	C34-H34	1.0399
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02-C41	1 217(6)	C10-C11	1 378(7)	C28-H28	1.1539	С35-Н35	1.0192
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03-C52	1 277(6)	C11-C13	1 485(7)	С32-Н32	09938		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	04-052	1 226(6)	C13-C14	1.377(7)	A1 A.1 A	06 16 100	A11, A11	100 0111
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01W-H1W	0 8230	C15-C16	1 34273	01-Cu1-01W	95 40(12) 95 44/14)	011A-C11-013A	123 1/14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16-C17	1.390(8)	C45A-C48A	1 46(2)	01-Cu1-N12	170 25(14)	012A-C11-013A	44 2(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C20-C21	1 400(10)	C46-C51	1 431(12)	01-Cu1-N18	103 05(14)	012A-C11-014A	124 0(16)
C22-C23 1.369(11) C46A-C47A 1.50(2) O1W-Cu1-N12 92.96(12) O21-C12-O22 111.4(4) C23-C24 1.371(9) C46A-C51A 1.372(19) O1W-Cu1-N18 87.99(12) O22-C12-O24 107.6(3) C24-C25 1.462(9) C48-C49 1.378(12) N1-Cu1-N12 79.90(14) O22-C12-O23 107.8(3)	C21-C22	1 407 (10)	C46-C47	1 466(11)	O1W-Cu1-N1	103 16(15)	023-C12-024	108 5(3)
C24-C25 = 1 462(9) $C48-C49 = 1 378(12)$ $N1-Cu1-N12 = 79 90(14) 022-C12-024 = 107 6(3)$	C22-C23	1.369(11)	C46A-C47A	1 50(2)	OlW-Cul-N12	2 92 96(12)	021-C12-022	111 4(4)
	C24-C25	1 462(9)	C48-C49	1 378(12)	N1-Cu1-N12	79 90(14)	022-012-024	107 8(3)

TESIS CON FALLA DE ORIGEN

71 ...

N1-Cu1-N18 15	7.23(13) (021-C12-023	109.3(4)	C10-C11-C13	127.2(5)	C31-C32-C33	119.1(5)
N12-Cu1-N18 75	9.75(13) (021-C12-024	112.1(4)	N12-C11-C10	120.2(4)	C32-C33-C34	118.7(6)
02W-Cu2-03 95	5.58(12) (Cu1-01-C41	127.5(3)	N18-C13-C11	114 0(4)	C33-C34-C35	118.6(6)
02W-Cu2-N19 97	7 08(16) (Cu2-03-C52	124.3(3)	N18-C13-C14	122.0(4)	N36-C35-C34	123.6(5)
02W-Cu2-N30 93	3 03(16) (Cu1-01W-H2W	85 46	01-C41-02	125.3(4)	C42A-C47A-C46	A 117.2(13)
02W-Cu2-N36 94	40(15)	H1W-01W-H2W	113.58	02-C41-C42A	132 0(6)	C45-C48-C49	118.1(7)
03-Cu2-N19 97	7 87 (17) (Cu1-01W-H1W	111 27	01-C41-C42	123 6(5)	C45A-C48A-C49	A 115,8(13)
03-Cu2-N30 171	24(17)	Cu2-02W-H4W	121 28	02-C41-C42	111.1(5)	C48-C49-C52	117.6(6)
03-Cu2-N36 101	23(14)	H3W-02W-H4W	112.14	01-C41-C42A	102 5(6)	C50-C49-C52	120 6(7)
N19-Cu2-N30 79	5(2)	Cu2-02W-H3W	92.44	C41-C42-C47	116.1(6)	C48-C49-C50	121.8(7)
N19-Cu2-N36 19	56 60(16)	C11-012a-013a	85(2)	C43-C42-C47	121.5(7)	248A-C49A-C50A	128.2(13)
N30-Cu2-N36	19 61	1181 011	0332-0123	CA1-CA2-CA3	122.4175	50b-c49b-c52	124 6(10)
50 7/181			OIDH OILA	C41_C42*C43	123 0/101	CA82-CA92-C52	107.2(12)
0138-011-0148	103 0(14)	Cu1-N1-C6	114 0(3)	C43a-C42a-C45	12070(10)	CA9-C50-C51	119 5/71
012.011.014	06 9/7)	C2 N1 C6	120 0(4)	C41-C428-C478 1		C49a-C50a-C51a	115 7(11)
012-011-014	101 1(10)	Cu1 N1 C2	120.0(4)	C42-C43-C44	119.6(7)	C46-C51-C50	119 6 (7)
013-011-014	101 1(10)		120.0(3)	C42A-C43A-C44A	116 4(11)	C46A-C51A-C50A	120 4(12)
011A-C11-012A	109 / (10)	C/-N1Z-CII	122 0(4)	C43-C44-C45	120 9(7)	04-C52-C49	111.4(5)
	119.4(8)	CUI-NIZ-CII	110 0(2)	C43A-C44A-C45A	119.9(12)	03-C52-C49A	100 5(6)
	99 0(10)	Cu1-N12-C7	118.0(3)	C44-C45-C48	119.8(7)	03-C52-04	125 8(4)
	103 9(8)	CUI-N18-C13	114.0(3)	C44-C45-C46	120 1(8)	04-C52-C49A	133 7(6)
012-011-013	131.8(10)	C13-N18-C17	118-8(4)	C46-C45-C48	120.1(8)	03-C52-C49	122 8(5)
CUI-N18-C1/	127 2(3)	C11-C13-C14	124.0(4)	C44A-C45A-C48A	120.4(14)	N1-C2-H2	116 01
C20-N19-C24	119 3(5)	C13-C14-C15	119 1(4)	C44A-C45A-C46A	123.4(14)	C3=C2=H2	127 44
Cu2-N19-C24	113 9(4)	C14-C15-C16	119.5(5)	C45-C46-C51	120 8(7)	C4-C3-H3	112 32
Cu2-N19-C20	126 8(4)	C15-C16-C17	118.5(5)	C47-C46-C51	119 4(7)	C5-C4-H4	119 19
C25-N30-C29	122.9(4)	N18-C17-C16	122.1(4)	C45-C46-C47	119 8(7)	C3-C4-H4	120 87
Cu2-N30-C25	118 2(4)	N19-C20-C21	121 3(6)	C47A-C46A-C51A	120 1(13)	C6-C5-H5	112 06
Cu2-N30-C29	118.7(3)	C20-C21-C22	117 7(6)	C45A-C46A-C51A	123 6(14)	C4C5H5	129.02
Cu2-N36-C35	127.6(3)	C21-C22-C23	121 1(7)	C45A-C46A-C47A	116 1(12)	С7-С8-Н8	124.41
Cu2-N36-C31	114 4(3)	C22-C23-C24	117 2(6)	C42-C47-C46	117.9(7)	C9-C8-H8	117 20
C31-N36-C35	118.0(4)	C23-C24-C25	123 0(5)	C10-C9-X9	118 04	C23-C22-H22	117.91
N1-C2-C3	120 6(5)	N19-C24-C23	123 4(6)	C8-C9-H9	120.47	C22-C23-H23	109 47
C2-C3-C4	120 2(5)	N19-C24-C25	113 6(5)	C11-C10-H10	122 90	C27-C26-826	117.40
C3-C4-C5	119 6(5)	N30-C25-C24	113 5(4)	C15-C14-H14	118 62	C25-C26-H26	124.20
C4-C5-C6	118 8(5)	N30-C25-C26	119 0(6)	C13-C14-H14	121.75	C26-C27-H27	113.50
N1-C6-C5	120.8(4)	C24-C25-C26	127.5(6)	C16-C15-H15	122 33	C28-C27-R27	123 66
C5-C6-C7	125 3(4)	C25-C26-C27	118 2(6)	Cl4-Cl5-H15	117 92	C29-C28-H28	118 32
N1-C6-C7	113 7 (4)	C26-C27-C28	122 3 (6)	C17-C16-H16	125 69	C27-C28-H28	123.65
N12-C7-C8	119 8 (4)	C27_C28_C29	119 0(6)	C15-C16-H16	115 84	C31-C32-H32	12034
C6-C7-C8	127 1/51	N30-C29-C31	113 2 (4)	N18-C17-H17	120.81	C33-C32-R32	124 44
N12_C7_C6	112 1 (4)	N30-C29-C31	110 6/5)	N19-C20-H20	119 95	C34-C33-H33	115 85
07-09-00	117 0/51		107 0(0)	C21-C20-H20	118 71	C35-C34-H34	127.96
	101 1(4)		112 7/81	C22-C21-H21	127.66	С33-С34-Н34	112 47
	123 114)	M20-C31-C29	113-7147 104 2751	C20-C2-H21	11394	С34-С35-Н35	114 40
C9-C10-C11	118 4 (5)	C29-C31-C32	124-3(5)	C21-C22-H22	119.70	N36-C35-H35	121.94
N12-C11-C13	112 7(4)	N36-C31-C32	122 0(4)				

Table 4. Anisotropic displacement parameters $[A^2 \times 10^3]$ for $[Cu(II) [(Cu(H_2O)(Terpy))_2(\mu-2 6-naftalendicarboxilato)] \cdot 2ClO_4 \cdot 2H_2O$ The anisotropic displacement factor exponent takes the form: $-2\pi^2[(ha^*)^2Ul1 + \ldots + 2hka^*b^*U_{12}]$

····	U11	U22	U33	U23	U13	U12
Cul	0.0476(4)	0.0388(4)	0.0293(3)	0.0039(3)	-0.0003(3)	0.0062(3)
Cu2	0.0429(4)	0.0400(4)	0.0289(3)	0.0010(3)	-0.0001(3)	0.0007(3)
01	0 047(2)	0 054(2)	0.0420(19)	0.0119(17)	-0 0061(17)	0.014(2)
01W	0.041(2)	0 044(2)	0.0343(17)	0 0009(15)	-0 0041(15)	0 0018(17)
02	0.078(3)	0 064(3)	0.0336(19)	-0 0105(18)	-0 0170(19)	0.013(2)
02W	0.050(2)	0 079(3)	0.0351(19)	0.0044(19)	-0 0003(17)	0.017(2)
03	0.047(2)	0 035(2)	0 0397(18)	0.0067(16)	-0.0010(16)	0.0090(17)
04	0.074(3)	0 070(3)	0 0321(19)	-0 0093(19)	-0.0095(18)	0 020(2)
N1	0.049(3)	0.036(3)	0.036(2)	-0 0001(19)	0.008(2)	0.008(2)
N12	0.038(3)	0.036(2)	0 028(2)	0 0022(19)	0.0037(18)	0006(2)
N18	0.038(3)	0 044(3)	0 032(2)	0 001(2)	0.0020(19)	0003 (2)
N19	0.047(3)	0 050(3)	0 046(3)	-0.012(2)	0.010(2)	-0.006(2)
N30	0.040(3)	0 058(3)	0 028(2)	-0 005(2)	-0.001(2)	0 007(2)
N36	0.037(3)	0 040(3)	0.034(2)	0 009(2)	0 0025(19)	0.007(2)
C2	0 065(4)	0 036(3)	0 038(3)	0.004(2)	0 014(3)	0.010(3)
C3	0.085(5)	0 038(4)	0 047(3)	0.009(3)	0 023(3)	0008(3)
C4	0.096(5)	0 035(3)	0 060(4)	-0.002(3)	0.023(4)	-0 007(4)
C5	0 072(4)	0 042(4)	0 048(3)	-0.005(3)	0.008(3)	-0.001(3)
C6	0.047(3)	0 041(3)	0 036(3)	-0.001(2)	0.009(2)	0 005(3)
C7	0.042(3)	0 039(3)	0.035(3)	0.001(2)	0.008(2)	0006 (3)
C8	0 046(3)	0.052(4)	0.039(3)	0 000(3)	0.002(3)	-0 004(3)
C9	0.046(4)	0.071(4)	0.028(3)	-0.001(3)	0.000(2)	0.004(3)
C10	0 043(3)	0.053(4)	0.030(3)	0.008(2)	0.004(2)	-0 001(3)
C11	0 037(3)	0 045(3)	0.030(2)	0 007(2)	0.007(2)	0.008(3)
C13	0 031(3)	0.041(3)	0 036(3)	0.004(2)	0.003(2)	0.004(3)
C14	0 050(4)	0.051(4)	0.039(3)	0.013(3)	0.009(3)	0.007(3)
C15	0 051(4)	0.049(4)	0.050(3)	0.009(3)	0.007(3)	-0 007(3)
C16	0 050(4)	0 056(4)	0.060(4)	0.000(3)	0003(3)	-0 012(3)

71

C17	0.047(4)	0.050(4)	0 043(3)	-0.001(3)	-0.001(3)	-0 002(3)
C20	0 066(4)	0.049(4)	0 057(3)	-0.006(3)	0.017(3)	-0.013(3)
C21	0.094(5)	0.051(4)	0 082(5)	-0.011(4)	0.036(4)	-0.014(4)
C22	0.065(5)	0.090(6)	0.091(5)	-0.052(5)	0.020(4)	-0.023(4)
C23	0.061(4)	0.073(5)	0.066(4)	-0.022(4)	0 012(3)	-0.009(4)
C24	0 037(3)	0.062(4)	0 046(3)	-0.021(3)	0 005(3)	-0 007(3)
C25	0 033(3)	0 073(4)	0.038(3)	-0.018(3)	0.000(3)	0.008(3)
C26	0 036(4)	0 114(6)	0 042(3)	-0.022(4)	-0.006(3)	0.007(4)
C27	0 052(4)	0.131(7)	0 032(3)	0.001(4)	0.003(3)	0 019(5)
C28	0 045(4)	0.096(5)	0.034(3)	0.013(3)	0.008(3)	0.014(4)
C29	0 041(3)	0.068(4)	0.034(3)	0.010(3)	0.010(3)	0.018(3)
C31	0 040(3)	0.044(3)	0.041(3)	0.008(3)	0.009(3)	0.011(3)
C32	0.060(4)	0.048(4)	0.051(3)	0.026(3)	0.017(3)	0 020(3)
C33	0 070(5)	0.039(4)	0.073(4)	0.011(3)	0 014(4)	-0.001(3)
C34	0 071(4)	0.039(4)	0.059(4)	-0.003(3)	0.008(3)	-0.005(3)
C35	0.046(4)	0.040(3)	0.048(3)	0.002(3)	-0.001(3)	-0.003(3)
C11	0.0961(16)	0.0600(12)	0.0696(12)	0.0000(9)	0.0160(12)	-0.0143(12)
011	0.160(16)	0.147(11)	0 075(7)	-0 048(8)	-0.021(8)	0.096(11)
012	0.212(14)	0.082(8)	0.146(9)	0.074(7)	-0.081(9)	-0.060(9)
013	0 195(17)	0.27(2)	0.173(16)	0.015(14)	0 007(13)	-0 190(16)
014	0.183(14)	0.101(9)	0.136(11)	-0.002(8)	-0.023(12)	0 058(10)
011A	0.045(9)	0.42(5)	0.099(16)	0 03(2)	0 039(10)	-0.02(2)
012A	0.14(2)	0.107(18)	0 42(4)	0.19(2)	-0.12(2)	-0 036(14)
013A	0.111(15)	0 113(16)	0.22(2)	-0 045(16)	-0.105(15)	0 009(12)
Q14A	0.118(15)	0.20(2)	0.056(9)	0.029(11)	0 064(11)	0.049(16)
C12	0 0688(12)	0.0570(10)	0.0643(9)	-0.0061(8)	-0.0171(8)	0.0031(9)
021	0.307(9)	0 129(5)	0.064(3)	0.017(3)	-0 048(4)	0.063(6)
022	0.040(3)	0 102(4)	0.179(5)	-0.029(4)	-0 004(3)	0.000(3)
023	0.074(3)	0 060(3)	0 103(4)	-0.020(3)	-0.009(3)	0.014(3)
024	0.072(3)	0.060(3)	0.079(3)	-0.008(2)	-0.012(2)	-0.021(2)
03W	0 084(6)	0 209(10)	0 062(4)	0.026(5)	0.011(4)	-0 079(6)

The Iemperature Factor has the Form of Exp(-I) Where I = 8*(Pi**2)*U*(Sin(Theta)/Lambda)**2 for Isotropic Atoms I = 2*(Pi**2)*Sumij(h(i)*h(j)*U(i,j)*Astar(i)*Astar(j)), for Anisotropic Atoms. Astar(i) are Reciprocal Axial Lengths and h(i) are the Reflection Indices

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for [(Cu(H₂O)(lerpy))₂(μ -2.6-naftalendicarboxilato)]+2ClO₄+2H₂O

	x	У	z	U(eq)
н9	-0.04020	0.84630	0.31470	0.0580
н10	0.04140	0 95120	0.36070	0.0510
H4	-0.03780	0 51370	0.58250	0.0760
H4W	0.59970	0 66080	1.33680	0.0660
н5	-0.05940	0 62550	0.47750	0.0650
н8	-0.07300	0 73090	0.39040	0.0550
H21	0.52130	0.98080	1.36490	0.0900
H22	0.60370	0 97900	1.50020	0.0980
H23	0.60590	0 85070	1.59700	0.0800
н26	0.59630	0 74180	1.65390	0.0780
н27	0.55890	0.63070	1.71980	0.0860
н28	0.46060	0 52580	1.65340	0.0700
н32	0.37680	0 45690	1.56620	0 0630
н33	0.28040	0 38150	1 46610	0.0730
н34	0.25410	0 43510	1.33800	00680
н35	0.30900	0 56630	1.30020	0 0540
н14	0.13780	1 04120	0.42710	0.0560
H15	0.22260	1 13550	0 50500	00600
H16	0.25790	1.10740	0.65430	0.0670
H17	0.20760	0 97590	0.72190	0.0560
H20	0.45320	0 86550	1 31350	0.0680
HIW	-0 06110	0 86810	0 68530	0 0480
н2	0.10060	0 67110	0.73760	0.0550
H2W	0.01160	0 90340	0.73620	0 0480
н3	0.04270	0 53270	0.69960	0 0670
H3W	0.52620	0 62100	1.29440	0 0660

Table 6 Hydrogen-bonds for [A and *] [{Cu(H₂O)(Terpy)}₂(µ-2.6-naftalendicarboxilato)]*2ClO₄*2H₂O.... · . D-H A d(D-H) d (H A) d(D. A) < (DHA) 1.1 01W-H1W. 024 0.8230 2 1226 2.890(5) 155.04 yes · • 01W-H2W 02 0 9685 1.7156 2.675(4) 170.16 yes 02w-H3W 04 0 8833 2.704(4) 158.64 1.8619 yes 02W-H4W 03W 0 8996 1.9295 2.748(9) 150.53 yes C2-H2 01 1 0544 2 5169 3.114(6) 115-12 yes C4-H4 02 0.9725 3.270(6) 133.81 2_546 yes 2 5203 С8-н8 . 024 1 0543 2.5694 3 342(7) 129.64 4_564 yes

С9-Н9. 023	0.9060	2.5858	3 452 (7)	160.27	4_564 yes
C15-H15 .021	1.1143	2.5575	3.542(8)	146 70	3_576 yes
C20-H20 013	1.1049	2.5035	3.377(19)	135.06	4_565 yes
C23-H23012	1.2096	2.5450	3.419(15)	127.54	2_657 yes
C26-H26 .022	0.9371	2 4493	3.170(8)	133.66	1_656 yes
C32-H32 O2W	0.9938	2 3357	3.282(6)	158.79	3_668 yes
С34-Н34	1.0399	2 2907	3 233(8)	150.01	3_567 yes

Translation of Symmetry Code to Equiv. Pos

a	= [4564.00	1	≈ x 3/2-y -1/2+z
b] =	4565 00	1	$= x_3/2 - y_1/2 + z$
С	= [3576.00	1	$= -x 2 - y \cdot 1 - z$
d	= (2556.00]	= -x.1/2+y.3/2-z
е	= [3668 00]	= 1-x 1-y, 3-z
£	= {	2647.00	1	$= 1 - x - 1/2 + y \cdot 5/2 - z$
g	= [2546 00	1	= -x, -1/2 + y, 3/2 - z
h	≂[1454 00]	= -1 + x, y - 1 + z
í	≖[4564.00	1	= x 3/2 - y - 1/2 + z
k	₽[3677 00	1	= 1 - x 2 - y 2 - z
1	₽[4565 00)	= x 3/2 - y 1/2 + z
m	= {	3678 00]	= 1 - x 2 - y , 3 - z
n	= {	2657 00]	$= 1 - x \frac{1}{2} + y \frac{5}{2} - z$
0	= [1656 00	1	= 1+x y, 1+z
p	= (1556 00]	= x y 1 + z
đ	≖ [3567 00	3	= -x.1-y.2-z
r	= 1	3576 00	}	$= -x \cdot 2 - y \cdot 1 - z$
s	= {	2556 00	}	$= -x_{1/2+y_{3/2-z}}$
v	= {	3667 00]	= 1 - x 1 - y , 2 - z
W	= [1554.00	1	= x, y, -1+z
У	=[1454 00)	= ~1+x,y,-1+z
z	= [4464 00)	= -1+x 3/2-y -1/2+z
*	= (4464 00	3	= -1+x,3/2-y,-1/2+z
*	≍[4665.00	}	= 1+x 3/2-y 1/2+z
*	≂ {	3667 00)	= 1 - x 1 - y 2 - z

TESIS CON FALLA DE ORIGEN

7¥