

# UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

ESCUELA NACIONAL DE ESTUDIOS PROFESIONALES "CAMPUS ARAGÓN"

"DISEÑO Y DISTRIBUCIÓN DE UNA RED ELÉCTRICA PARA UNA ENFERMERÍA CONVENCIONAL"

T E S I S

QUE PARA OBTENER EL TITULO DE:
INGENIERO MECÁNICO ELÉCTRICO
AREA ELÉCTRICA - ELECTRÓNICA
P R E S E N T A :
PEÑA MENDOZA ALBERTO

ASESOR: ING. ADRIÁN PAREDES ROMERO

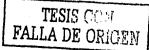
TESIS COM FALLA DE ORIGEN







UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso


# DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

# A MIS PADRES:

Por el gran apoyo moral y económico que me brindaron, y muy en especial a mi madre, por haber confiado siempre en mi, por darme su gran amor y sobre todo por estar a mi lado incondicionalmente siempre que la necesite. Muchas Gracias



# A MI ESPOSA

Por su ayuda, su comprensión, su confianza y sobre todo su gran amor, ya que es una fuente inagotable de motivación, perseverancia y amor. Gracias Amor.

TESIS CON FALLA DE ORIGEN

# A MIS HERMANOS

Por su apoyo, su ejemplo y sobre todo por ser mis grandes amigos, ya que confiaron y me supieron motivar para lograr todo lo que uno se propone.

Gracias.

# A MIS TIOS

Por su aliento, motivación y su gran amistad, y sobre todo su cariño. Gracias.

# JUSTIFICACIÓN

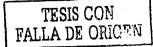
Se desarrollo el presente trabajo de investigación con la finalidad de ayudar a plantear un correcto desarrollo de un proyecto o diseño de una instalación de una red eléctrica, se dan las bases teoricas fundamentales y se ejemplifica un proyecto real para una enfermería convencional, ayudando con ello a tener una visión más práctica de los pasos a seguir para su desarrollo.

Durante la carrera se nos enseñan diferentes tipos de cálculos y teorias de electricidad pero en nuestro desarrollo profesional se requiere tener más conocimientos prácticos para llevar a cabo la planeación de un proyecto o diseño de una red eléctrica.

Esta investigación sirve como una guía para plantear o diseñar un proyecto eléctrico en cualquier área de la construcción en este caso para realizar el diseño y distribución de una red eléctrica para una enfermeria convencional.

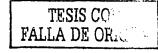
La investigación abarca los cálculos referentes a las líneas de distribución de la red eléctrica para una enfermería convencional; como el cálculo de calibre de conductores, el número y tipo de cada uno de ellos; la distribución y alumbrado tipo interior y exterior de las diferentes clases de luminarias que sean requeridas en la obra; así como sus sistemas de protección que abarcan desde alimentadores principales, distribución, alumbrado y contactos. Se muestra la teoría y los pasos a seguir para seleccionar el tipo de preparación de tierra física y su colocación según las características que presente nuestro terreno y las condiciones climáticas que intervengan. Se cita las clases de subestaciones eléctricas que existen para su uso apropiado dependiendo las necesidades que presenten. Se desarrolla una detallada descripción del proyecto de la red eléctrica para una enfermería convencional, mostrando los pasos requeridos para su ejecución, así como una evaluación económica de dicho proyecto enlistando los equipos y materiales eléctricos requeridos. Finalmente se anexan tablas, gráficas y planos que faciliten la compresión.




# **OBJETIVO**

Obtener una clara perspectiva del método a seguir en la realización del diseño de una red eléctrica para una enfermeria convensional.

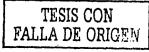
# **OBJETIVOS PARTICULARES**


Obtener las bases para plantear el proyecto, conocer y llevar a cabo los cálculos requeridos en él.

Recordar la teoria y observar el seguimiento que se requiere en la práctica de un proyecto real, apoyado en tablas, gráficas, planos y un listado de equipo y material requerido.



#### DIDICI


|    | INTRO | DDUCCIÓN                                                                 | 1   |
|----|-------|--------------------------------------------------------------------------|-----|
| -  | CAPIT | TULO PRIMERO GENERALIDADES                                               |     |
| 1  | .1    | REGULACIÓN DE LA INDUSTRIA DE ELECTRICIDAD                               | 7   |
| t  | .1.1  | PERMISOS DE ELECTRICIDAD                                                 | 7   |
| 1  | .1.2  | REGLAMENTO DE APORTACIONES                                               |     |
| ,  | .1.3  | METODOLOGÍA PARA EL CÁLCULO DE LOS CARGOS POR EL SERVICIO DE TRANSMISIÓN | 1   |
|    | .1.4  | RELACIÓN CONTRACTUAL ENTRE SUMINISTRADORES Y PERMISIONARIOS              |     |
| 1  | .2    | AREAS DE DISTRIBUCION                                                    |     |
| 1  | .2.1  | SISTEMAS DE DISTRIBUCION INDUSTRIALES                                    | t   |
| 1  | .2.2  | SISTEMAS DE DISTRIBUCIÓN COMERCIALES                                     | t   |
| ı  | .2.3  | PARQUES INDUSTRIALES                                                     | 1   |
| t  | .2.4  | DISTRIBUCIÓN URBANA Y RESIDENCIAL                                        | 1   |
| 1. | .2.5  | DISTRIBUCIÓN RURAL                                                       | 1   |
| 1. | .3    | ESTRUCTURAS FUNDAMENTALES                                                | 10  |
| 1. | 3.1   | ESTRUCTURAS DE MEDIANA TENSIÓN                                           | 1   |
| 1. | 3.1.1 | ESTRUCTURA RADIAL                                                        | 11  |
| 1. | 3.1.2 | ESTRUCTURA EN ANILLO                                                     | 1   |
| 1. | 3.1.3 | ESTRUCTURA EN MALLAS                                                     | 2   |
| 1. | 3.1.4 | ESTRUCTURA DE DOBLE DERIVACION                                           | 2   |
| 1. | 3.1.5 | ESTRUCTURA EN DERIVACIÓN MULTIPLE                                        | 2:  |
| 1. | 3.1.6 | ESTRUCTURA DE ALIMENTADORES SELECTIVOS                                   | 2   |
| 14 | 4     | ESTRUCTURAS DE BAJA TENSIÓN                                              | 2:  |
| 1. | 4.1   | RED RADIAL SIN AMARRES                                                   | 24  |
| 1  | 4.2   | RED RADIAL CON AMARRES                                                   | 25  |
| 1. | 4.3   | RED MALLADA O RED AUTOMATICA EN BAJA TENSION                             |     |
|    |       |                                                                          |     |
|    |       |                                                                          |     |
| c  | CAPÍT | ULO SEGUNDO CARACTERÍSTICAS DE CARGA                                     |     |
|    |       | ,                                                                        |     |
| 2  | .1    | CLASIFICACIÓN DE LAS CARGAS                                              | . 2 |
| 2  | .2    | FACTOR DE DEMANDA                                                        | 3   |
| 2  | .2.1  | FACTOR DE PERDIDAS                                                       |     |
| 2  | .3    | DETERMINACIÓN DE LA CARGA EN UNA INSTALACIÓN ELÉCTRICA                   |     |
| 2. | 4     | ESTIMACIÓN DE CARGA POR SIMILITUD                                        | 3   |
| 2  | 4.1   |                                                                          |     |
| 2. | 5     | CÁLCULO ANALÍTICO                                                        |     |
|    | 5.1   | DEMANDA MÁXIMA                                                           |     |
| -  | 5.2   |                                                                          | 3:  |
| 2  |       | CALCULO DE LOS CIRCUITOS DERIVADOS, ALIMENTADORES Y ACOMETIDAS           | 3   |
|    | 6.1   | CALCULO DE LOS CIRCUITOS DERIVADOS                                       |     |
|    | 6.2   | ALIMENTADORES Y ACOMETIDA                                                |     |
| 2. |       |                                                                          | 31  |
|    | 7.    |                                                                          | -   |



|            |                                                                        |     |           |      |          | 100   |
|------------|------------------------------------------------------------------------|-----|-----------|------|----------|-------|
| 2.8        | SUBESTACIONES                                                          |     |           |      |          |       |
| 281        | GUTA PARA SELECCIÓN APARTARRA YOS                                      |     |           |      |          | 퇜.    |
| 2.8.2      | INTERRUPTORES EN ALTA TENSIÓN                                          | 53  |           |      |          | r ji  |
| 2.8.3      | TRANSFORMADORES                                                        | 58  |           |      |          |       |
| 2.8.4      | TRANSFORMADORES DE DISTRIBUCIÓN                                        |     |           |      |          |       |
| 2.8.5      | TRANSFORMADORES DE POTENCIA                                            |     |           |      |          | Y     |
| 2.8.6      | TRANSFORMADORES DE CONTROL Y ALUMBRADO                                 |     | ٠.        |      |          | į.    |
| 2.8.7      | MANTENIMIENTO DE TRANSFORMADORES EN ACEITE                             |     |           |      |          |       |
| 288        | CÁLCULO DE TRANSFORMADORES                                             |     |           |      |          | -3    |
| 20.0       |                                                                        | -   |           |      |          |       |
| CADÍ       | TULO TERCERO ELEMENTOS DE UNA INSTALACIÓN ELECTRICA                    |     |           |      | - 24     | 4.    |
| CAPI       | OLO TERCERO ELEMENTOS DE ONA INSTALACION ELECTRICA                     |     |           |      |          |       |
|            |                                                                        |     |           |      | 9. Ç.    | -15   |
| 3.1        | ELEMENTOS DE UNA INSTALACIÓN ELÉCTRICA                                 |     |           |      |          |       |
| 3.2        | CONDUCTORES ELÉCTRICOS                                                 | 91  |           |      | 4,50     |       |
| 3.2.1      | CARACTERÍSTICAS PRINCIPALES DE LOS AISLAMIENTOS PARA CABLES ELÉCTRICOS | 92  |           | 40   | - ( )    |       |
| 3.3        | CONDUCTORES DESNUDOS                                                   |     |           |      |          |       |
| 3.3.1      | CONDUCTORES DESNUDOS DE COBRE                                          | 95  |           |      |          | 16    |
| 3.3.2      | CONDUCTORES DESNUDOS DE ALUMINIO Y SUS ALEACIONES                      | 96  |           |      |          |       |
| 3.3.3      | CONDUCTORES DESNUDOS DE COPPERWELD                                     | 97  |           |      | 100      |       |
| 3.4        | CONDUCTORES AISLADOS DE BAJA TENSIÓN                                   | 98  | 1.        |      | - 7      | 37    |
| 3.4.1      | DEFINICIÓN Y CLASIFICACION.                                            | 98  |           |      |          | . 3   |
| 3 4.2      | CABLES MULTICONDUCTORES                                                | 102 |           |      |          |       |
| 3.4.3      | CABLES PARA DISTRIBUCIÓN SUBTERRÁNEA (600 VOLTS) TIPO DRS              | 104 |           |      |          |       |
| 3.5        | CONDUCTORES AISLADOS DE ALTA TENSIÓN                                   | 105 |           |      |          |       |
| 3.6        | CALCULO DE ALUMBRADO                                                   | 106 |           |      | 1.42     | 13    |
| 3.6.1      | ALUMBRADO DE INTERIORES                                                | 106 |           |      | 100      | . 70  |
| 3.6.1.1    | METODO DE CAVIDAD ZONAL                                                | 106 |           |      | 1.54     | . N.  |
| 3.6.1.2    | MÉTODO PUNTO POR PUNTO                                                 | 118 |           | . 5  | 100      |       |
| 3.6.2      | ALUMBRADO EXTERIOR                                                     | 124 |           |      | 140      |       |
| 3.6.2.1    | ALUMBRADO PUBLICO                                                      | 124 |           | 20   |          | i s.) |
| 3.6.2.2    | DATOS Y CALCULOS DE ILUMINACION DE CALLES                              | 132 |           |      | 340      |       |
|            |                                                                        |     |           |      | 1.00     |       |
|            |                                                                        |     |           |      |          |       |
| CAPİT      | ULO CUARTO DESCRIPCIÓN DE LA INSTALACIÓN ACTUAL                        |     |           |      |          | 4     |
|            |                                                                        |     |           |      |          |       |
| 4.1        | DESARROLLO DEL ANTEPROYECTO                                            | 145 |           |      |          |       |
| 4.2        | REQUERIMIENTOS DEL PROYECTISTA AL INSTITUTO                            |     |           |      | A partie | 1     |
| 4.2.1      | REQUERIMIENTOS DEL INSTITUTO                                           |     |           |      |          | j.    |
| 4.2.2      | REQUERIMIENTOS DE LOS PLANOS PRESENTADOS                               | 146 |           |      |          |       |
| 4.2.3      | CONSIDERACIONES TÉCNICAS                                               |     |           |      |          |       |
| 4.2.4      | NIVELES DE ILUMINACIÓN                                                 |     |           |      |          |       |
| 4.2.5      | CONSIDERACIONES GENERALES                                              | 152 |           |      |          |       |
| 4.2.5      | PRECAPACIDADES Y LOCALES TIPO                                          |     |           |      | 1        | ÷     |
|            | NORMAS Y REGLAMENTOS                                                   |     | ti vitari | 1.77 |          |       |
| 4.3<br>4.4 | PRESUPUESTO Y MATERIALIZACIÓN                                          |     |           |      |          |       |
|            | PLANOS Y DIAGRAMAS DE INSTALACIÓN ELÉCTRICA                            |     |           |      |          |       |
| 4.5        | PLANUS 1 DIAGRAMAS DE INSTALACION ELECTRICA                            | 177 | 2 Table   |      |          |       |

# CAPITULO QUINTO MEMORIA DE CALCULO DE LA INSTALACION ELECTRICA

| 5.1  | SISTEMAS I | DE DISTRIBU | ZION  |         |                 |           |         |       |             | ·         | <b>.</b> |             | . 17  |
|------|------------|-------------|-------|---------|-----------------|-----------|---------|-------|-------------|-----------|----------|-------------|-------|
| 5.2  | BAJA TENSI | ÓN          |       |         |                 |           |         |       |             |           |          |             | . 17  |
| \$.3 | CALCULO D  | E LA CORRIE | NTE   |         |                 |           | <i></i> |       |             |           |          |             | . 17  |
| 5.4  | FACTOR DE  | DEMANDA.    |       |         |                 |           |         |       |             | • • • • • |          |             | . 179 |
| 5.5  | CANALIZAC  | IONES       |       |         |                 |           |         |       |             |           |          |             | . 18  |
| 5.6  | CALCULOD   | E LA CAPAC  | DAD D | DE LA S | UBESTA          | CIÓN      |         |       |             |           |          | • • • • • • | . 18  |
| 5.7  | PLANTA DE  | EMERGENC!   | Α     |         |                 |           |         |       |             | •••••     |          | •••••       | 183   |
|      |            |             |       |         |                 |           |         |       |             |           |          |             |       |
| ANE  | XO "A"     |             |       |         | · · · · · · · · |           |         | ••••• | · · · · · · | ••••      |          | •••••       | . 199 |
|      | ко "в"     |             |       |         |                 |           |         |       |             |           |          |             |       |
| ANE  | ко "в"     |             |       |         |                 |           |         | ••••• | •••••       | •••       |          | •••••       | . 238 |
|      |            |             |       |         |                 |           |         |       |             |           |          |             |       |
| CON  | CLUSIONES  |             |       |         |                 |           |         |       |             |           |          |             | 254   |
|      | ografia    |             |       |         |                 |           |         |       |             |           |          | •           |       |
| BBLI | OGRAFIA    |             |       |         |                 | <b></b> . |         |       |             |           |          |             | 255   |



# INTRODUCCIÓN

Dentro del diseño de una red eléctrica, existen varios tipos de sistemas de distribución, en donde cada una de ellas tiene características especificas, niveles de seguridad, diferentes tipos de arreglos y exigencia en la calidad de suministro, es por ello que conveniente conocer las características del tipo de sistemas que se va a implementar para conocer el tipo de equipo y material necesario para tener un optimo diseño de una red eléctrica y así tener un sistema eficiente en el suministro de energía.

En este trabajo se hace un estudio del diseño y planeación de una red eléctrica donde se hace una recopilación de información teórica y practica que nos llevara a entender como elaborar un proyecto real de una red eléctrica, en nuestro caso el diseño de una red eléctrica para una enfermeria convencional.

Esta integrado en dos partes, en el primero se establece la teoría que sustenta el desarrollo del trabajo; y en el segundo se presenta el caso práctico de que se llevo a cabo tomando la información necesaria para llevarlo a cabo.

La teoria que se proporciona es la base para realizar un diseño de una red eléctrica para cualquier sistema de distribución tomando en cuenta donde se aplicara el diseño, ya que los cálculos son los mismos para cada una de las áreas requeridas, ya que lo único que cambia son los equipos a instalar y los materiales requeridos para diferentes áreas de peligrosidad ya sea por gases, polvos, agua o sustancias corrosivas.

Se añade una evaluación económica del proyecto para tener una perspectiva del costo del proyecto y el equipo y material utilizado para su instalación para una enfermería convencional, esto ayuda a conocer y evaluar un proyecto eléctrico en donde se requiere el menor costo posible, pero con una eficiencia en la calidad de suministro de energía optima y su protección así como su expansión a futuro.

TESIS CON FALLA DE ORIGEN

# CAPITULO PRIMERO

# **GENERALIDADES**

| 1.1     | REGULACIÓN DE LA INDUSTRIA DE ELECTRICIDAD                               |
|---------|--------------------------------------------------------------------------|
| 1.1.1   | PERMISOS DE ELECTRICIDAD                                                 |
| 1.1.2   | REGLAMENTO DE APORTACIONES                                               |
| 1.1.3   | METODOLOGÍA PARA EL CÁLCULO DE LOS CARGOS POR EL SERVICIO DE TRANSMISIÓN |
| 1.1.4   | RELACIÓN CONTRACTUAL ENTRE SUMINISTRADORES Y PERMISIONARIOS              |
| 1.2     | AREAS DE DISTRIBUCIÓN                                                    |
| 1.2.1   | SISTEMAS DE DISTRIBUCIÓN INDUSTRIALES                                    |
| 1.2.2   | SISTEMAS DE DISTRIBUCIÓN COMERCIALES                                     |
| 1.2.3   | PARQUES INDUSTRIALES                                                     |
| 1.2.4   | DISTRIBUCIÓN URBANA Y RESIDENCIAL                                        |
| 1.2.5   | DISTRIBUCIÓN RURAL                                                       |
| 1.3     | ESTRUCTURAS FUNDAMENTALES                                                |
| 1.3.1   | ESTRUCTURAS DE MEDIANA TENSIÓN                                           |
| 1.3.1.1 | ESTRUCTURA RADIAL                                                        |
| 1.3.1.2 | ESTRUCTURA EN ANILLO                                                     |
| 1.3.1.3 | ESTRUCTURA EN MALLAS                                                     |
| 1.3.1.4 | ESTRUCTURA DE DOBLE DERIVACIÓN                                           |
| 1.3,1.5 | ESTRUCTURA EN DERIVACIÓN MÚLTIPLE                                        |
| 1.3.1.6 | ESTRUCTURA DE ALIMENTADORES SELECTIVOS                                   |
| 1.3.2   | ESTRUCTURAS DE BAJA TENSIÓN                                              |
| 1.3.2.1 | RED RADIAL SIN AMARRES                                                   |
| 1.3.2.2 | RED RADIAL CON AMARRES                                                   |
| 1.3.2.3 | RED MALLADA O RED AUTOMÁTICA EN BAJA TENSIÓN                             |

#### GENERALIDADES

Se le llama instalación eléctrica al conjunto de elementos que permiten transportar y distribuir la energía eléctrica desde el punto de suministro hasta los equipos que la utilizan. Entre estos elementos se incluyen: tableros, interruptores, transformadores, bancos de capacitores, dispositivos sensores, dispositivos de control local o remoto, cables, conexiones, contactos, canalizaciones y soportes.

Las instalaciones eléctricas pueden ser abiertas (conductores visibles), aparentes (en tubos o ductos), ocultas (dentro de paneles o falsos plafones), o ahogadas (en muros, techos o pisos).

Su objetivo de una instalación eléctrica debe de distribuir la energia eléctrica a los equipos conectados de una manera segura y eficiente. Además debe ser económica, flexible y fácil acceso.

Una instalación segura es aquélla que no representa riesgos para los usuarios ni para los equipos que alimentan o que están cerca.

La eficiencia en el diseño de una instalación debe hacerse cuidadosamente para evitar consumos innecesarios, ya sea por pérdidas en los elementos que la constituyen o por la imposibilidad para desconectar equipos o secciones de alumbrado mientras éstos no se estén utilizando.

El proyecto de ingeniería tiene que considerar las implicaciones económicas. Esto quiere decir que el ingeniero, frente a cualquier proyecto, debe pensar en su realización con la menor inversión posible.

Se entiende por instalación flexible aquélla que puede adaptarse a pequeños cambios.

Las instalaciones eléctricas se clasifican en diferentes formas: las relativas al nivel de voltaje y al ambiente del lugar de instalación, por su duración (temporales y definitivas), por su modo de operación (normal y de emergencia) o por su construcción (abierta, aparente y oculta).

De acuerdo con el nivel de voltaje se puede tener los siguientes tipos de instalación:

- a. Instalaciones no peligrosas. Cuando su voltaje es igual o menor que 12 volts.
- Instalaciones de baja tensión. Cuando el voltaje con respecto a la tierra no excede 750 volts.
- c. Instalación de mediana tensión. Aunque no existen límites precisos, podría considerarse un rango entre 1000 y 15000 volts; sin embargo algunos autores incluyen todos los equipos hasta de 34 KV. En media tensión es muy común encontrar instalaciones con motores de más de 200 HP que operan con un voltaje de 4160 V entre fases y 2400 V entre fase y neutro.
- d. Instalaciones de alta tensión. Cuando los voltajes son superiores a los mencionados anteriormente.

Las instalaciones eléctricas también pueden clasificarse en normal y especiales, según el lugar donde se ubiquen:

- a. Las instalaciones normales pueden ser interiores o exteriores. Las que están a la intemperie deben tener los accesorios necesarios (cubiertas, empaques y sellos) para evitar la penetración del agua de lluvia aún en condiciones de tormenta.
- Se consideran instalaciones especiales aquellas que se encuentran en áreas con ambiente peligroso, excesivamente húmedo o con grandes cantidades de polvo no combustible.

El diseño de instalaciones eléctricas debe hacerse dentro de un marco legal. Un buen proyecto de ingeniería es una respuesta técnica y económicamente adecuada, que respeta los requerimientos de las normas y códigos aplicables.

Estas normas son generales y no pueden cubrir todo. En ciertos tipos de instalaciones pueden establecerse especificaciones que aumenten la seguridad o la vida de equipos y que estén por arriba de las normas.

Existen normas para la fabricación de equipo eléctrico que también deben ser consideradas por el proyectista ya que proporcionan información relativa a las características del equipo, así como los requisitos para su instalación.

Se conoce como especificaciones al conjunto de dimensiones y características técnicas que definen completamente a una instalación y a todos los elementos que la componen. Las especificaciones deben cumplir con las normas respectivas y no deben dar lugar a confusiones o a interpretaciones múltiples.

En una instalación eléctrica, las especificaciones deben contemplar los objetivos para los que fueron propuesta. Debido a que las normas son de carácter general, las especificaciones pueden ser más exigentes, ya que se trata de un objetivo determinado.

Es făcil entender que la vida de una instalación es el tiempo que transcurre desde su construcción hasta que se vuelve inservible; conocer esta información resulta muy útil porque permite saber cuánto durará la inversión. Es complejo precisar la vida de una instalación ya que influyen muchos factores como es: el proyecto, la ejecución, las condiciones de uso, el mantenimiento y el medio ambiente.

Es indudable que la vida de una instalación se alarga cuando el proyecto contempla previsiones adecuadas para posibles ampliaciones e incluye un sistema confiable de protecciones.

Después de un buen proyecto se requiere de una construcción correcta, que impida que la instalación se vuelva inservible prematuramente. Una instalación oculta protege mejor los materiales y por tanto tiene mayor duración que una visible, pero esta última es más accesible cuando se presenta la necesidad de hacer modificaciones.

Toda instalación se ejecuta conforme a un proyecto y cualquier modificación debe estar asentada en los planos para mantenerlos vigentes; de lo contrario resultará cada vez más dificil localizar el origen de los problemas que se presenten.

Los elementos citados tienen impacto sobre la vida de la instalación, normalmente se entiende que la duración depende del envejecimiento de los materiales utilizados, principalmente de los materiales aislantes, como forros de conductores, cinta de aislar, soportes de varias clases y tipos, cubiertas protectoras y barnices.

Los materiales aislantes de clasifican en función del grado de estabilidad térmica. Para ello se define el término clase de aislamiento que se refiere a la temperatura máxima que puede soportar el material antes de que se presenten cambios irreversibles en su estructura molecular.

Se puede decir que la vida del aislamiento se reduce a la mitad por cada 7 o 8°C de temperatura por encima de su nivel de estabilidad térmica. Las sobrecargas eléctricas producen alzas de temperatura que de acuerdo a lo mencionado tiene un efecto directo en la vida de los materiales aislantes. Las sobrecargas pueden entenderse como demandas de energía mayores a las de diseño, o como cortocircuitos acumulados.

En las instalaciones donde se requiere mantenimiento consiste básicamente en limpieza, renovación de pintura, apriete de uniones, ajuste de contactos y revisión de los elementos de protección. En los transformadores es muy importante revisar periódicamente las características dieléctricas del aceite; en motores y generadores, mantener engrasados los rodamientos y cambiar carbones cuando sea necesario.

El medio ambiente donde se encuentra una instalación tiene una influencia importante en la vida de ésta. Las condiciones de humedad, salinidad y contaminación deben ser consideradas en el proyecto.

Una instalación eléctrica producto de un buen proyecto, de una buena construcción y con el mantenimiento adecuado, puede durar tanto como el inmueble donde preste servicio. Según W. B. Baasel la vida útil es de: 45 años para viviendas, 60 años para almacenes, 45 años para fabricas, 30 años para líneas de transmisión y distribución, y 12 años para equipos eléctricos.

### 1.1 REGULACIÓN DE LA INDUSTRIA DE ELECTRICIDAD

La Ley de la CRE establece diversas atribuciones en materia de regulación de la industria de energía eléctrica. 1997 fue un año importante en el desarrollo de esta regulación. La CRE continuó con las actividades de otorgamiento de permisos y se elaboraron diversos instrumentos que regulan la relación entre los suministradores (CFE y LFC ) y participantes privados en la industria de electricidad.

#### 1 1 1 Permisos de electricidad

Durante el periodo que se informa, la CRE otorgó 14 permisos, que amparan un total de 961 MW de capacidad de generación y una inversión de 487 millones de dólares. Estos permisos se otorgaron para las actividades siguientes:

- Doce de cogeneración y autoabastecimiento;
- Uno de producción independiente, y
- Uno de importación.

<sup>&</sup>lt;sup>1</sup> BRATU SERBÁN, Neagu. Instalaciones Electricas: Conceptos Básicos y Diseño

Los permisos de cogeneración y autoabastecimiento representan una capacidad de 429 MW y fueron otorgados, en su mayoría, a empresas dedicadas a la prestación del servicio de agua y drenaje y a la producción de petroquímicos. Diez de estos proyectos generarán energía eléctrica utilizando gas natural.

El permiso de producción independiente fue otorgado para una capacidad total de generación de 531 MW y utilizará como combustible principal el gas natural. Este permiso tiene una particular importancia, ya que es el primero para la producción independiente en México y se encuentra vinculado a un proyecto de transporte de gas natural que conducirá el combustible desde Ciudad Pemex, Tabasco a Valladolid en Yucatán

Energético primario de permisos de generación de electricidad otorgados en 1997



Capacidad de permisos de generación de electricidad otorgados en 1997



Producción independiente (531.50 MW) 55%

Autoabastecimiento (409.23 MW) 43%

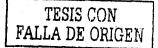
Cogeneración (19.90 MVV) 2%

TESIS CON FALLA DE ORIGEN El permiso de importación ampara la compra de energía eléctrica en Ciudad Acuña, Coahuila, por la empresa Minera Múzquiz, que recibirá la energía a 13.2 kV.

Como parte de la regularización de los permisos eléctricos, la CRE estableció un periodo en el cual los permisionarios tienen la posibilidad de actualizar las condiciones establecidas en sus títulos de permiso. Este periodo vencerá el 21 de abril de 1998.

A la fecha existen 67 permisionarios que cubren una capacidad total de 2,992 MW y una inversión de 1.9 mil millones de dólares en infraestructura eléctrica. Esta dinámica en el otorgamiento de permisos es una muestra de la capacidad del sector privado para llevar a cabo las inversiones requeridas en materia de generación

## 1.1.2 Reglamento de aportaciones


Este año, la CRE inició los trabajos relativos al proyecto de reglamento para normar la Ley del Servicio Público de Energía Eléctrica en materia de aportaciones. Las aportaciones son los pagos que deben efectuar los solicitantes del servicio de energía eléctrica a los suministradores para:

 La ejecución de obras específicas, o la ampliación o modificación de las instalaciones existentes que no se encuentren incluidas en el cálculo de las tarifas del servicio público.

El proyecto de reglamento detallará los casos en que los solicitantes deberán cubrir aportaciones, los lineamientos para su cálculo, los procedimientos para su pago y los casos en que los solicitantes serán sujetos de un reembolso.

El reglamento de aportaciones deberá lograr:

 La unificación de los términos, condiciones y criterios en que los suministradores deberán recibir aportaciones; la eliminación de la discrecionalidad de los



suministradores en el establecimiento de las aportaciones;

- La supresión de diferencias de interpretación y conflictos de interés entre solicitantes y suministradores causados por falta de regulación, y
- La participación de la CRE como árbitro para la resolución de controversias y quejas

# 1.1.3 Metodología para el cálculo de los cargos por el servicio de transmisión

Durante 1997 la CRE llevó a cabo los estudios y análisis para modificar la metodología a través de la cual los suministradores establecerán los cargos correspondientes para los servicios de transmisión. Esta metodología se aplicará a todos los servicios de transmisión solicitados y tiene los siguientes objetivos:

- Mejorar la eficiencia global de uso del sistema al permitir que los suministradores recuperen los costos del servicio de transmisión;
- Asegurar cargos justos y equitativos por parte de los permisionarios para usar la red
  de transmisión, y.
- Diseñar un régimen predecible, estable, y transparente que ofrezca flexibilidad y no imponga cargas innecesarias a las empresas

La nueva metodología para calcular los cargos de transmisión aumentará la viabilidad financiera de proyectos pequeños y medianos de generación, exportación e importación de energia eléctrica

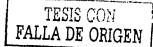
1.1.4 Relación contractual entre suministradores y permisionarios.

En este periodo, se llevaron a cabo las actividades para establecer los modelos de contratos y convenios que regulan la relación entre los suministradores y los participantes privados de la industria, incluyendo los siguientes aspectos:

• La prestación del servicio de respaldo de energía eléctrica a los permisionarios;

- La interconexión de los permisionarios con los sistemas de los suministradores;
- La compraventa de excedentes de energía eléctrica que los permisionarios pongan a disposición de la CFE, y
- El servicio de transmisión de energía eléctrica a través del sistema eléctrico nacional (porteo)

La estructura contractual instrumentada por la CRE permite que cada permisionario decida la combinación de servicios a contratar con el suministrador. En particular, las plantas de generación podrán solicitar el servicio normal, de respaldo y de transmisión de energía eléctrica que mejor convenga según el proyecto, por lo que lograrán una administración más eficiente de su suministro eléctrico.<sup>2</sup>


- " CRE (Comisión Reguladora de Energia)
- \*\* CFE (Comisión Federal de Electricidad)
- \*\*\* LFC (Luz y Fuerza del Centro)

# 1.2 ÁREAS DE DISTRIBUCIÓN.

Los sistemas de distribución se clasifican en 5 campos principales de desarrollo dependiendo de su operación, estructuras de redes y el equipo a utilizar.

#### 1.2.1 Sistemas de distribución industriales.

Estos sistemas representan grandes consumidores de energía eléctrica, estos sistemas, aunque son de distribución, deben ser alimentados a tensiones más elevadas que las usuales, es decir, 85 KV o mayores. Con frecuencia el consumo de energía de estas industrias equivale al de una pequeña ciudad, generando ellas mismas, en algunas ocasiones, parte de la energía que consumen por medio de sus procesos de vapor, gas o diesel; según el caso.



<sup>2</sup> http://www.cre.gob.mx

La red de alimentación y la estructura de misma deberá tomar en cuenta las posibilidades o no de su interconexión con la red o sistemas de potencia, ya que esto determinará la confiabilidad del consumidor, que esto es muy importante debido al alto costo que significa una interrupción de energía.

Dentro de las diferentes industrias existen una gran variedad de cargas y por tanto del grado de confiabilidad que cada una de ellas requiere; Así es muy importante el papel de la ingeniería de distribución en este caso, ya que solamente ésta podrá ayudar a definir el tipo de alimentación, su estructura, su tensión y, en consecuencia, el grado de confiabilidad.

#### 1.2.2 Sistemas de distribución comerciales.

Estos sistemas son los que se desarrollan para grandes complejos comerciales o municipales como rascacielos, bancos, supermercados, escuelas, aeropuertos, hospitales, puertos marítimos, etc. Posee sus propias características por el tipo de demanda de energía que tiene respecto a la seguridad tanto de las personas como de los inmuebles. En este caso se cuenta con generación local, en forma de plantas generadoras de emergencia, misma que es parte importante de en el diseño del sistema de alimentación en este tipo de servicios.

# 1.2.3 Parques industriales.

Esta área se refiere a la alimentación, en zonas definidas denominadas parques industriales, a pequeñas o medianas industrias localizadas por lo general en las afueras de las ciudades o centros urbanos. Las estructuras pueden ser similares a las anteriores; sin embargo, los requisitos de continuidad varían, siendo en algunos casos no muy estrictos. Por lo general la tensión de alimentación en estas zonas es mediana por lo que el desarrollo de las redes de baja tensión es mínimo. La planeación de estos sistemas se debe considerar con gran flexibilidad ya que la expansión en estas zonas industriales es grande, en especial

en zonas nuevas en países en desarrollo. En la mayoría de los casos estas estructuras son desarrolladas y operadas por las compañías de distribución estatales.

## 1.2.4 Distribución urbana y residencial.

Estos sistemas por general son también responsabilidad directa de las compañías suministradoras de energía eléctrica, y consisten en la mayoría de los casos en grandes redes de cables subterráneos o aéreos desarrollados en zonas densamente pobladas. En grandes centros urbanos las cargas con frecuencia son considerables, aunque nunca comparables con las cargas industriales. Por otra parte, en zonas residenciales las cargas son ligeras y sus curvas de carga muy diferentes a las de las zonas urbanas comerciales o mixtas; por tanto, las estructuras de alimentación para estas zonas son distintas y los criterios con los que se debe diseñar son exclusivos para este tipo de cargas.

#### 1.2.5 Distribución rural.

Esta área de distribución es la que tiene la densidad de carga más baja de la mencionadas y por ello requiere soluciones especiales que incluyan tanto las estructuras como los equipos. Las grandes distancias y las cargas tan pequeñas requieren un costo por EW-h muy elevado, por lo que muchas zonas es preferible generar la energía localmente cuando menos al inicio de las redes. Es conveniente subrayar que las dos primeras, los sistemas de distribución industriales y comerciales, por lo general las diseñan y operan las propias empresas a las que pertenecen, las últimas tres son responsabilidad de las empresas de distribución en la mayoría de los países.

El porcentaje de las inversiones que dentro de los sistemas de distribución tiene una compañía de energía eléctrica, en forma muy general, ya que esto puede cambiar según el país. Sin embargo, es importante señalar en todos los casos el renglón de baja tensión es el



que representa la inversión más fuerte. Es oportuno señalar que cualquier innovación o mejora a este nivel de tensión repercutirá en forma considerable en las inversiones de todo sistema.

En la tabla número 1 se observa el procedimientos para la planeación y diseño de los sistemas de distribución. Estos están divididos en tres grandes rubros: consideraciones generales, diseño del sistema y diseño del equipo. Tales conceptos consideran muchos aspectos no sólo de ingeniería eléctrica sino también mecánica y civil, lo que hace necesario el empleo cada vez más frecuente de métodos de ingeniería de sistemas y administración.

En cargas importantes como hospitales y aeropuertos, en ocasiones se prefiere generar en el propio lugar la energia de emergencia para tener un respaldo en caso de falla de la alimentación normal, tratando de elevar, con un mantenimiento estricto, la continuidad de las redes de distribución.

Un problema grave que influye muchas veces en la planeación de las redes de distribución en los países en vias de desarrollo es la falta de normas nacionales que impiden un desarrollo acorde con las normas internacionales, ya que la influencia de los fabricantes o normas extranjeras con frecuencia tiende a imponer criterios de operación o diseño que influyen de manera nociva en los sistemas de distribución del país.

Tabla 1. Planeación y diseño de sistemas de distribución.

| COSIDERACIONES<br>GENERALES                                                                                                                                                                                | DISEÑO DEL SISTEMA                                                                                                                                                                   | DISEÑO DEL EQUIPO                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Normas nacionales y/o internacionales.     Segurdad del personal y equipo.     Simplicidad.     Condiciones climáticas.     Mantentmiento-politica de piezas de repuesto.     Adiestramiento del personal. | Automatización del sistema.     Tasas de crecimiento y caracteristicas de la carga.     Selección de las estructuras de AT, MT y BT.     Localización óptima de las subestaciones de | Diseño de las subestaciones de distribución, incluyendo interruptores, transformadores y edificios. Selección y diseño de claves para lineas aéreas y sistemas subterráneos y optimización del calibre. |

personal

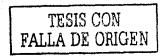
- Confiabilidad de los componentes.
- Facilidades de la alimentación desde el sistema de potencia.
- Optimización de costos.

distribución.

- Selección de la tensión de alimentación.
- Análisis de cortocircuito.
  Diseño de la protección.
- relevadores y fusibles.

   Protección contra
- sobrevoltajes.
- Diseño del sistema de tierras.
- Corrección al factor de potencia.

 Equipo para supervisión de la carga y automatización del sistema para la operación en condiciones normales y anormales.


Existen tres tipos de ingeniería en los que es posible dividir el diseño de los sistemas de distribución:

- Diseño Eléctrico
- Diseño Mecánico
- Diseño Económico

El diseño eléctrico tiene que ver principalmente con el comportamiento eléctrico satisfactorio del sistema y todos los aparatos que intervienen en el mismo. Un sistema de distribución que transmita la energía necesaria a un consumidor con una continuidad aceptable será un sistema satisfactorio, sin importar el costo.

El diseño mecánico forma parte del estudio de las obras civiles y elementos metálicos, de concreto, madera o material sintético en las que se instalan los sistemas, incluyendo la selección de materiales adecuados que reúnan los requisitos indispensables de resistencia mecánica, seguridad, apariencia, durabilidad y mantenimiento, por mencionar algunos factores.

El diseño económico debe comprender la investigación de los costos relativos, es decir, donde sea posible escoger más de un diseño que satisfaga el sistema desde el punto de vista eléctrico y mecánico; la decisión final debe basar siempre en un cuidadoso estudio económico que optimice el resultado final.



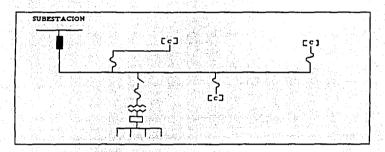
Se debe entender que no necesariamente la misma inversión inicial en un proyecto de distribución es la óptima debido a que el estudio económico debe intervenir en los costos de operación, que usualmente serán mayores que el costo inicial, ya que una red de distribución en promedio se debe diseñar para una vida útil de cuando menos 30 años.

# 1.3 ESTRUCTURAS FUNDAMENTALES

Los sistemas de distribución se pueden desarrollar en estructuras diversas. La estructura de la red de distribución que se adopte tanto en mediana como baja tensión depende de los parámetros que intervengan en la planeación de la red, tales como:

- a. Densidad
- b. Tipo de cargas:
  - Residencial.
  - Comercial.
  - Industrial.
  - Mixta.
- c. Localización geográfica de la carga.
- d. Área de expansión de la carga.
- e. Continuidad del servicio.

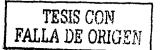
La topología del sistema tendrá una influencia decisiva en la continuidad del sistema y un impacto menor en la regulación de tensión.


En cuanto a su operación, hay sólo dos tipos fundamentales de redes de distribución:

- Radial.
- Paralelo.

Un sistema radial es aquel en que el flujo de energia tiene una sola trayectoria de la fuente a la carga, de tal manera que una falla en este produce interrupción en el servicio.

Este sistema de servicio de energia eléctrica es probablemente el más antiguo y comúnmente usado en la distribución de la energia eléctrica. Debido a su bajo costo y sencillez, las redes de operación se seguirán usando, pero tratando también de mejorar sus características de operación para hacerlas más confiables, como a continuación se muestra en la figura 1:


Red de operación radial sirviendo cargas en mediana y baja tensión



En un sistema de operación en paralelo el flujo de energía de divide entre varios elementos, teniendo más de una trayectoria. La operación en paralelo se utiliza sobre todo en redes de baja tensión. Con este tipo de redes se tiene una estructura sencilla en la red primaria, donde las subestaciones están conectadas en simple derivación radial.

#### 1.3.1 Estructuras de mediana tensión.

Es posible enumerar las diferentes estructuras de mediana tensión que más se emplean en la actualidad en los sistemas de distribución como sigue:



- · Estructura radial: Aérea, mixta y subterránea.
- · Estructura en anillos: Abierto cerrado.
- Estructura de doble derivación.
- Estructura de derivación múltiple.
- · Estructura de alimentadores selectivos.

#### 1.3.1.1 Estructura radial.

Es la que más se emplea, aunque su continuidad se encuentra limitada a una sola fuente; su sencillez de operación y bajo costo la hace muy útil en muchos casos.

Esta estructura se emplea en los tres tipos de construcción que existen: red aérea, red mixta y red subterránea.

## RED AÉREA

Este tipo de construcción se caracteriza por su sencillez y economía, razón por lo cual su empleo esta muy generalizado. Se adapta principalmente en:

- 1. Zonas urbanas con:
  - a. Carga residencial.
  - b. Carga comercial.
  - c. Carga industrial baja.
- 2. Zonas rurales con:
  - a. Carga doméstica.
  - b. Carga de pequeña industria.

Los elementos principales en esta red (transformadores, cuchillas, seccionadores, cables, etc.) se instalan en postes o estructuras de distintos materiales. La configuración más

sencilla que se emplea para los alimentadores primarios es del tipo arbolar, consiste en conductores de calibre grueso en la troncal y de menor calibre en las derivaciones o ramales.

#### RED MIXTA

Es muy parecida a la red aérea; difiere de ésta sólo en que sus alimentadores secundarios en vez de instalarse en la postería se instalan directamente enterrados.

Esta red tiene la ventaja de que elimina gran cantidad de conductores aéreos, favoreciendo con esto la estética del conjunto y disminuyendo notablemente el número de fallas en la red secundaria, con lo que aumenta por consecuencia la confiabilidad del sistema.

#### RED SUBTERRÁNEA

Esta estructura se constituye con cables troncales que salen en forma radiante de la S.E. y con cables transversales que ligan a las troncales La sección del cable que se utiliza debe ser uniforme, es decir, la misma para los troncales y para los ramales.

#### 1.3.1.2 Estructura en anillo

#### Estructuras en anillo abierto

Este tipo de esquema se constituye a base de bucles de igual sección, derivados de las subestaciones fuente. Las subestaciones de distribución quedan alimentadas en seccionamiento exclusivamente.

Las redes en anillo normalmente operan abiertas en un punto que por lo general es el punto medio, razón por la cual se les conoce como redes en anillo abierto. Al ocurrir una falla dentro de un anillo se secciona el tramo dafiado para proceder a la reparación, siguiendo

una serie de maniobras con los elementos de desconexión instalados a lo largo de la subtroncal.

Esta estructura es recomendable en zonas con densidades de carga entre 5 y 15 MVA/Km² y en donde el aumento de la carga es nulo o muy pequeño. La estructura fundamental se presenta en la figura 2.1 y 2b.

Figura 2a Red en anillo con una fuente de alimentación

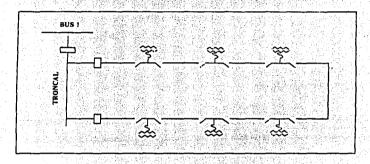
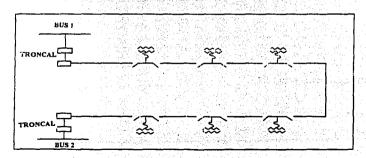
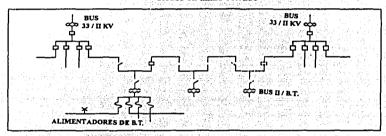
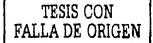




Figura 2b Red en anillo con dos fuentes de alimentación.






#### b. Estructuras en anillo cerrado


La estructura es semejante a la anterior, y varía únicamente en que no existe un punto normalmente abierto. Esta estructura tiene gran aplicación en zonas amplias; se desarrolla en cable subterráneo por la facilidad que se tiene de incrementar la capacidad instalada paulatinamente sin afectar la estructura fundamental de la red. En la figura 3 se presenta la evolución natural de una red de 33/11 kV con una estructura de anillo cerrado. Existen otras ventajas en la implementación de este tipo de estructuras, como un factor de utilización mayor del 60% y un mejor control del nivel de cortocircuito.

#### Redes en anillo cerrado



#### 1.3.1.3 Estructura en mallas

En esta estructura las subestaciones de distribución están conectadas en seccionamiento, y junto con el cable constituyen anillos de igual sección. Estos anillos operan de forma radial, para lo cual se opera normalmente abierto uno de los medios de seccionamiento, interruptor o cuchillas, en la subestación que queda aproximadamente a la mitad. Existen ligas entre los anillos para asegurar una alimentación de emergencia. Esta estructura es recomendable en zonas de crecimiento acelerado y de cargas no puntuales, debido a sus características de posibilidades de expansión y reparto de carga. Su aplicación se



recomienda en zonas comerciales importantes con densidades superiores a 20 MVA/km². Se muestra en la figura 4.

Esquema básico de una estructura en mallas de mediana tensión.



## 1.3.1.4 Estructura de doble derivación

La estructura se hace por pares, siendo las secciones uniformes para los cables troncales y menores para las derivaciones a la subestación y servicios, los cuales quedan alimentados en derivación.

La aplicación más específica puede ser en zonas industriales, comerciales o turísticas de configuración extendida, en las que se tiene la necesidad de doble alimentación para asegurar una elevada continuidad y que presenten características de carga y geometría concentradas.

TESIS COM FALLA DE ORIGEN

#### 1.3.1.5 Estructura en derivación múltiple

Esta red se constituye de un número determinado de alimentadores que contribuyen simultáneamente a la alimentación de la carga. En realidad estas redes son una variación de las redes en derivación doble, ya que siguen el mismo principio, sólo que este tipo de red permite alimentar un área más amplia debido al mayor número de alimentadores.

Estas redes tienen aplicación en zonas que presentan cargas concentradas muy fuertes, en las que es necesario proporcionar una alta continuidad a los servicios; además, tienen la ventaja de que permiten proporcionar servicio a consumidores tanto en mediana como en baja tensión.

#### 1.3.1.6 Estructura de alimentadores selectivos

Esta red se constituye por cables troncales que salen preferentemente de subestaciones diferentes y llegan hasta la zona por alimentar; de estas troncales se derivan cables ramales de menor sección que van de una troncal a otra enlazándolas, siguiendo el principio de la doble alimentación.

La protección de esta red consiste en interruptores que se instalan en la subestación de potencia a la salida de cada alimentador troncal y fusibles tipo limitador para proteger el transformador y dar mayor flexibilidad a la operación de la estructura.

# 1.4 Estructuras de baja Tensión

Las redes secundarias constituyen el último eslabón en la cadena entre la estación de generación y los consumidores. Al igual que los sistemas de distribución en mediana tensión, los sistemas de baja tensión tienen diversos arreglos en sus conexiones y por lo general se siguen manteniendo los mismos principios de operación que en aquellos. Sin

embargo, entre los circuitos primarios y los secundarios hay una importante diferencia que afecta su operación: en los circuitos de baja tensión es posible trabajar con línea viva sin tanto peligro y costo teniendo las debidas precauciones, lo que da mayor flexibilidad al sistema.

Este sistema, al igual que el sistema de distribución en mediana tensión, consiste en alimentadores secundarios que tienen su origen en la baja tensión de los transformadores, en cajas de distribución o en los buses de las subestaciones secundarias, llevando la energía hasta el lugar de consumo.

Hay tres estructuras de redes secundarias en el sistema de distribución:

- 1. Red radial sin amarres.
- Red subterránea.
- · Red aérea.

Red radial con amarres.

- 3 Red de mallada o red automática en baja tensión.
- .... kud radial sin amarres
  - Red subterránea

En este tipo de red, cables de sección apropiada de acuerdo con la carga que alimentarán, parten en diferentes direcciones, desde el lugar donde se encuentra instalado el transformador constituyendo los alimentadores secundarios. En esta red una falla en el transformador o en algunos de los cables dejará sin servicio a todos los consumidores que alimentan la instalación.

#### Red área

Los circuitos secundarios conectan el secundario de cada transformador de distribución a los servicios que alimentan ese transformador siguiendo también una disposición radial, aunque en algunos casos se interconecten los secundarios de transformadores advacentes.

#### 1 4.2 Red radial con amarres

En el sistema anterior una falla en el alimentador primario o en el transformador da por resultado una interrupción de toda área alimentada. Para facilitar la restauración del servicio cuando hay problemas en los cables secundarios, se instalan cajas de seccionamiento intercaladas en los cables que van de un transformador a otro. Un buen estudio respecto a la forma en que se repartirá determina la colocación de estos medios de amarre y seccionalización y dará mayor libertad en la reparación de fallas en alta tensión, puesto que la carga del transformador dañado se puede transferir por la baja tensión a los transformadores adyacentes.

Al efectuar la construcción de la baja tensión se debe tener cuidado de que la secuencia de fases en todos los transformadores sea la misma con el fin de que al hacer la transferencia de carga de uno a otro la secuencia no se invierta, lo perjudicaría a los consumidores. Los cables de baja tensión se protegen a la salida de los transformadores por medio de fusibles, instalándose directamente enterrados a lo largo de las calles y conectando directamente a los servicios.

Los transformadores se podrán instalar en locales de edificios designados para el equipo eléctrico, o bien en bóvedas construidas en la calle, dependiendo del tipo de local y el equipo que se instale, pudiendo ser del tipo interior para locales en edificios y del tipo sumergible para bóvedas.

# 1.4.3 Red mallada o red automática en baja tensión

Este sistema de distribución en baja tensión se utiliza en zonas importantes de ciudades donde existe gran concentración de cargas uniformemente repartidas a lo largo de las calles. Este servicio garantiza un servicio prácticamente continuo, ya que las fallas en alta tensión y en los secundarios no afectan a los usuarios.

Los componentes básicos en una red automática son: una fuente de potencia, normalmente una subestación de distribución, es el punto de origen de dos o más alimentadores radiales sin enlace entre ellos. Estos alimentadores van hasta los centros de carga en el área de la red, en donde son seccionados por medio de cajas de desconexión o interruptores para llevar los ramales que alimentan directamente a los transformadores de la red.<sup>3</sup>

<sup>&</sup>lt;sup>3</sup> ESPINOSA Y LARA, Roberto. Sistemas de Distribución

## CAPITULO SEGUNDO

## CARACTERÍSTICAS DE LA CARGA

| •  | •   | ٠. | O1 |     | 211 | 27.0 |   | ~   | 4 | N.T | DE  |         | $\sim$ |    | n . | _   |    | • |
|----|-----|----|----|-----|-----|------|---|-----|---|-----|-----|---------|--------|----|-----|-----|----|---|
| Z. | 1 . |    | LL | .А. | 211 | ч.   | А | ι., | u | IN  | DE. | <br>a.s |        | ~u | κ.  | LI. | Α. |   |

- 2.2 FACTOR DE DEMANDA
- 2.2.1 FACTOR DE PERDIDAS
- 2.3 DETERMINACIÓN DE LA CARGA EN UNA INSTALACIÓN ELÉCTRICA
- 2.4 ESTIMACIÓN DE CARGA POR SIMILITUD
- 2.4.1 CARGA DE LOS EQUIPOS RELACIONADOS CON EL TIPO DE USUARIOS
- 2.5 CÁLCULO ANALÍTICO
- 2.5.1 DEMANDA MÁXIMA
- 2.5.2 FACTOR DE CARGA
- 2.6 CÁLCULO DE LOS CIRCUITOS DERIVADOS, ALIMENTADORES Y ACOMETIDAS
- 2 6.1 CÁLCULO DE LOS CIRCUITOS DERIVADOS
- 2.6.2 ALIMENTADORES Y ACOMETIDA
- 2.7 SISTEMAS DE TIERRAS
- 2.7.1 CONEXIÓN Y RESISTENCIA A TIERRA
- 2.8 SUBESTACIONES
- 2.8.1 GUIA PARA SELECCIÓN APARTARRAYOS
- 2.8.2 INTERRUPTORES EN ALTA TENSIÓN
- 2.8.3 TRANSFORMADORES
- 2.8.4 TRANSFORMADORES DE DISTRIBUCIÓN
- 2.8.5 TRANSFORMADORES DE POTENCIA
- 2.8.6 TRANSFORMADORES DE CONTROL Y ALUMBRADO
- 2.8.7 MANTENIMIENTO DE TRANSFORMADORES EN ACEITE
- 2.8.8 CÁLCULO DE TRANSFORMADORES

## 2.1 CLASIFICACIÓN DE LAS CARGAS.

Existen diversos criterios para clasificar a las cargas, los más importantes son:

### A. Localización Geográfica.

Esta clasificación se debe más que nada a las diferentes densidades de las cargas en cada zona.

## B. Tipo de Utilización de la Energía

El tipo de utilización se refiere a la aplicación que le da el usuario a la energía, por ejemplo:

- Cargas Residenciales
- Cargas de Iluminación en predios comerciales
- Cargas de fuerza en predios comerciales
- Cargas Industriales
- Cargas de municipios o gubernamentales
- Cargas Hospitalarias

## C. Confiabilidad Requerida

En esta clasificación se consideran los daños que pueden causar las interrupciones de la energía. Sus divisiones son las siguientes:

- Sensibles. En éstas una interrupción, auque sea momentánea, causa grandes perjuicios.
- Semisensibles. Son aquellas en las que una interrupción de la energía durante un intervalo de tiempo no mayor de 10 minutos, no causa grandes problemas.



 Normales. En estas cargas una interrupción larga de entre 1 y 5 horas, no causa mayores perjuicios.

## D. Ciclos de Trabajo

## Las cargas se pueden clasificar en:

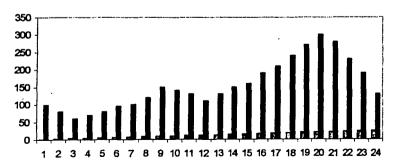
- Transitorias cíclicas. Son las que tienen un ciclo de trabajo periódico.
- Transitorias acíclicas. Su ciclo de trabajo no es periódico.
- Normales. Estas trabajan continuamente.

## E. Costos y Tarifas

Los usuarios de electricidad constituyen un grupo heterogéneo que normalmente se clasifica por la región en que se ubican, por el tipo de conexión al sistema y por su patrón de consumo. Esta diversidad de clientes requiere del establecimiento de diferentes tarifas que reflejan los costos del suministro a cada tipo de usuario. Por ejemplo es menos costoso satisfacer la demanda de un cliente que se conecta a la tensión de las líneas de la transmisión, que a otro que sólo puede conectarse en el nivel de tensión más bajo de la red.

La determinación de los costos de suministro se hace mediante la contabilización de los gastos directos e indirectos necesarios para el suministro o mediante la aplicación de los costos marginales.

Del análisis de los costos contables o marginales surgen las tarifas aplicables a los diferentes tipos de usuarios. Estas tarifas incluyen algunos de los siguientes elementos: nivel de voltaje de la conexión al sistema, ubicación geográfica, demanda requerida a lo largo de las 24 horas, demanda máxima, energía consumida, factor de potencia y actualmente a tener interrupciones del servicio.


En el diseño de la tarifa para usuarios residenciales se procura considerar elementos tales como: la región, el nivel de voltaje y las horas del día en que hace uso de la energía, que normalmente son las horas pico. Debido a que se requiere de una tarifa fácil de aplicar, el cargo se hace en función de la energía consumida en Kwh.

En el caso de los usuarios industriales o comerciales las tarifas son un poco más elaboradas. La medición se hace mediante equipos que permiten el registro de los parámetros necesarios para establecer cargos por variables tales como: consumo de energía (Kwh.) a diferentes horas del día, el factor de potencia, la demanda máxima de potencia activa (Kw.) registrada en el lapso de facturación y la demanda facturada o contratada.

#### 2.2 FACTOR DE DEMANDA

La curva se obtiene al graficar la demanda de potencia horario de un usuario define su perfil de carga a lo largo del día. En la figura siguiente se puede apreciar un ejemplo del perfil de carga. En las abscisas aparece el tiempo en horas y en las ordenadas la potencia correspondiente (por lo general en KW).

## Curva de demanda horaria para un día



Este mismo perfil de carga se puede establecer por día, semana, mes o por período de facturación. Si se integra el área bajo la curva que representa el perfil de la carga obtenemos la energía consumida en ese lapso. Considerando mediciones de potencia horarias se tiene:

$$W = P_{br} \times horas$$
 (KWh)

donde:

P by = Potencia Horaria

Para este ejemplo se utiliza la estructura tarifaria mexicana que incluye los elementos mencionados aunque se utilizaran precios aproximados.

Para el ejemplo de la figura anterior la energía total durante las 24 horas resulta: 3,710 KWh. Si esta energía total consumida se divide entre el número de horas se obtiene la demanda promedio:

$$P_{prom} = W / horas = 3,710/24 = 154.6$$
 (kW)

El factor de demanda es la relación de la demanda promedio entre la máxima potencia horaria (demanda pico) registrada en el período de tiempo analizado. También se puede obtener dividiendo la energía consumida entre la demanda pico multiplicada por el total de horas del lapso.

$$fd = (P_{prom} / d_{paco}) 100$$
 (%)

donde:

d pico = Potencia máxima registrada en una hora

para el ejemplo: fd = 52 %

Se entiende que un usuario puede consumir la misma energía con curvas de demanda diferentes.

## 2.2.1 FACTOR DE PÉRDIDAS

En una instalación eléctrica resulta práctico obtener el factor de pérdidas, que es igual al porcentaje de tiempo requerido por la demanda pico para producir las mismas pérdidas que tiene por la demanda real en un lapso definido. Suponiendo que se conserva el mismo arreglo de la red de una instalación eléctrica, el factor de pérdidas se puede obtener con el promedio de los cuadrados de las demandas horarias entre el cuadrado de la demanda pico. El factor de pérdidas siempre resulta igual o menor al factor de demanda.

Del ejemplo anterior se calcula el factor de pérdidas:

$$f_{pérd} = (\Sigma_0^{24} P_{br}^2) / (24 \times d_{pico}^2) 100 (\%)$$

 $f_{perd} = 31.7 \%$ 

# 2.3 DETERMINACIÓN DE LA CARGA DE UNA INSTALACIÓN ELÉCTRICA

El diseño de una instalación eléctrica requiere del conocimiento de la potencia o carga que se va a suministrar. Por carga se entiende la que será demandada a la instalación y no la suma de las capacidades de los equipos que serán instalados. Mientras mayor información se tenga al respecto del consumo y de las condiciones de operación de todos los elementos que estarán conectados a la instalación, mayores serán las posibilidades de un cálculo que cumpla con los requerimientos técnicos y que sea económico.

Es prácticamente imposible conocer con exactitud la carga de una instalación compleja. En el anteproyecto se empieza con una estimación que permite realizar una evaluación presupuestal aproximada. Sin embargo, se puede hacer un cálculo detallado con la información completa de todos los equipos que serán conectados y obtener un valor más preciso de la carga.

La determinación de la carga es un labor que requiere de técnica, pero también de criterio para definir los preparativos que deben dejarse para el futuro, así como la influencia de los posibles ciclos de operación. Por esta razón es recomendable estudiar varias opciones.

## 2.4 ESTIMACIÓN DE CARGA POR SIMILITUD.

## 2.4.1 CARGA DE LOS EQUIPOS RELACIONADOS CON EL TIPO DE USUARIOS.

Se requiere tener una estimación aproximada de las cargas, se pueden utilizar los valores de carga típicos, producto de la observación en empresas o procesos similares que se encuentran operando. Se debe estudiar cuidadosamente los factores que podrían incrementar o disminuir la carga como: procesos de producción específicos, maquinaría más moderna, grado de automatización, comodidad de los operarios, capacidad de producción, fuerza motriz para otros fines, etc.

Los equipos de ventilación y/o acondicionamiento de aire son responsables de una parte importante de la carga. Para la estimación de la carga de estos equipos debe consultarse a un especialista en el manejo de aire y utilizar los métodos por él o por ella propuestos.

## 2.5 CÁLCULO ANALÍTICO

La precisión que se obtiene con los métodos estimativos resulta insuficiente para obtener las capacidades de los elementos de una instalación eléctrica y las secciones de los conductores.

Un cálculo más preciso se inicia cuando se conocen los consumos de energía de cada uno de los equipos y servicios que serán alimentados por la instalación.

## 2.5.1 CARGA O POTENCIA INSTALADA

La carga o potencia instalada (Pinst.) es la sumatoria de los consumos nominales de cada elemento consumidor según sus datos de placa.

$$P_{inst.} = \sum P_{j}$$

donde:  $P_j = potencia de cada elemento, j = 1,2,...,n$ .

## 2.5.2 DEMANDA MAXIMA

La demanda máxima (Pmax) es la carga o potencia máxima que podría ocurrir en una instalación. En las tarifas, para fines de facturación, la demanda máxima es la carga máxima que subsiste durante 15 minutos en el lapso de un mes. Se le llama también demanda máxima medida.

## 2.5.3 FACTOR DE CARGA

El factor de carga (fc) es el cociente de la potencia o demanda máxima entre la potencia (carga) instalada, por lo tanto:

$$P_{max} = (fc) * P_{max}$$

En algunos procesos de fabricación el factor de carga se calcula eliminando las cargas que no son simultáneas, como son los equipos de respaldo o reserva (stand-by).

Sin embargo resulta muy dificil definir con precisión el factor de carga porque se desconoce la capacidad exacta que los equipos demandarán de los motores eléctricos que los mueven, ya que por lo general la capacidad de los motores es mayor que la necesaria para operar los equipos.<sup>4</sup>

## 2.6 CÁLCULO DE LOS CIRCUITOS DERIVADOS, ALIMENTADORES Y ACOMETIDAS.

#### 2.6.1 CÁLCULO DE LOS CIRCUITOS DERIVADOS

Las cargas de los circuitos derivados se deben calcular como se indican a continuación:

- a. Cargas continuas y no continuas. La capacidad nominal del circuito derivado no debe ser inferior a la carga no continua más de 125% de la carga continua. El tamaño nominal mínimo de los conductores del circuito derivado, debe permitir una capacidad de conducción de corriente igual o mayor que la de la carga no-continua, más 125% de la carga continua.
- b. Cargas de alumbrado por uso de edificios. La carga mínima de alumbrado por cada metro cuadrado de superficie de piso no debe ser inferior a la especificada en la

<sup>&</sup>lt;sup>4</sup> BRATU SERBÁN, Neagu. Instalaciones Eléctricas: Conceptos Básicos y Diseño

tabla 220-3 (b) de la NOM-001-SEDE-1999 para edificios indicados en la misma. La superficie del piso de cada planta se debe calcular a partir de las dimensiones exteriores del edificio, unidad de vivienda u otras zonas afectadas. Para las unidades de vivienda, la superficie calculada del piso no debe incluir los patios abiertos, las cocheras ni los espacios inutilizados o sin terminar, que no seán adaptables para su uso futuro.

Nota: Los valores unitarios de estos cálculos se basan en las condiciones de carga mínima y en un factor de potencia de 100% y puede ser que no ofrezcan capacidad suficiente para la instalación considerada. Estos valores corresponden al cálculo de los circuitos derivados y no se contraponen a los valores de densidad de potencia eléctrica por concepto de alumbrado (W/m²) establecidos en la NOM-007-ENER Eficiencia energética para sistemas de alumbrado en edificios no residenciales vigente.

Tabla 220-3 (b) Cargas de alumbrado general por uso de edificio

| Uso de edificio               |                         | Carga unitaria (VA/m²) |
|-------------------------------|-------------------------|------------------------|
| Almacenes                     |                         | 2.5                    |
| Bancos                        |                         | 35**                   |
| Casas de huéspedes            |                         | 15                     |
| Clubes                        |                         | 20                     |
| Colegios                      |                         | 30                     |
| Cuarteles y auditorios        |                         | 10                     |
| Edificios de oficinas         |                         | 35**                   |
| Edificios industriales y come | rciales                 | 20                     |
| Estacionamientos públicos     |                         | 5                      |
| Hospitales                    |                         | 20                     |
| Hoteles y moteles, incluidos  | apartamentos sin cocina | 20                     |
| Iglesias                      |                         | 10                     |
| Juzgados                      |                         | 20                     |
| Peluquerias y salones de Bell | eza                     | 30                     |
| Restaurantes                  |                         | 20                     |

| Tiendas                                                                                                    |          | 1. (18/44-14) | 30             |
|------------------------------------------------------------------------------------------------------------|----------|---------------|----------------|
| Unidades de vivienda*                                                                                      |          |               | 30             |
| En cualquiera de las construcciones viviendas unifamiliares y unidades incibifamiliares y multifamiliares: |          |               |                |
| Lugares de reunión y auditorios<br>Recibidores, pasillos, armarios, escaleras<br>Lugares de almacenaje     | <b>.</b> |               | 10<br>5<br>2.5 |

<sup>\*</sup> Todas las salidas para receptáculo de uso general de 20 A nominales o menos, en unidades de vivienda unifamiliares, bifamiliares y multifamiliares y en las habitaciones de los clientes de hoteles y moteles (excepto las conectadas a los circuitos de receptáculos de corriente eléctrica especificados en 220-4 (b) y (c), se deben considerar tomas para alumbrado general y en tales salidas no son necesarios cálculos para cargas adicionales.

- c. Otras cargas- todas las construcciones. En todas las construcciones, la carga mínima en cada salida de uso general receptáculos y salidas no utilizadas para alumbrado general no debe ser inferior a lo siguiente (las cargas utilizadas se basan en la tensión eléctrica nominal de los circuitos derivados):
  - Salida para un aparato especifico u otra carga, excepto para cargas de motores: corriente eléctrica nominal en A del aparato o carga conectada.
  - 2. Salida para motor
  - Una salida para elementos de alumbrado empotrados debe tener la máxima capacidad nominal en VA para la que esté calculado dicho elemento o elementos.
  - 4. Una salida para portalámparas de trabajo pesado 600 VA.
  - 5. Rieles de alumbrado
  - Alumbrado para anuncios y de realce 1200 VA para cada circuito derivado requerido, especificado en 600-5 (a)
  - 7. Otras salidas\* 180 VA por salida

Además se debe incluir una carga unitaria de 10.75 VA/m² para salidas receptáculos de uso general cuando no se sepa el número real de este tipo de tomas.

Para salidas en receptáculos, cada receptáculo sencillo o múltiple instalado en el mismo puente se debe considerar a no menos de 180 VA

\* Esta disposición no se debe aplicar a las salidas para receptáculos conectados a los circuitos especificados en 220-4 (b) y (c).

#### 2.6.2 ALIMENTADORES Y ACOMETIDA

#### Disposiciones generales:

- a. Capacidad de conducción de corriente y cálculo de cargas. Los conductores de los alimentadores deben tener una capacidad de conducción de corriente suficiente para suministrar energía a las cargas conectadas. En ningún caso la carga calculada para un alimentador debe ser inferior a la suma de las cargas de los circuitos derivados conectados, tal como se establece en la parte A del artículo 220-10 y después de aplicar cualquier factor de demanda permitido.
- b. Cargas continuas y no-continuas. Cuando un alimentador suministre energia a cargas continuas o a una combinación de cargas continuas y no-continuas, la capacidad nominal del dispositivo de protección contra sobrecorriente no debe ser inferior a la carga no-continua, más 125 % de la carga continua. El tamaño nominal mínimo de los conductores del alimentador, sin aplicar ningún factor de ajuste o corrección, debe permitir una capacidad de conducción de corriente igual o mayor que la de la carga no-continua más 125% de la carga continua.

#### 2.7 SISTEMAS DE TIERRAS

En una instalación eléctrica la conexión a tierra tiene una importancia primordial para la protección del personal y de los equipos. Una instalación eléctrica no puede considerarse adecuada si no tiene un sistema de tierra que cumpla con todos los requisitos para proporcionar esta protección.

Eléctricamente, el globo terráqueo es considerado con un potencial cero. No obstante el material que la compone puede tener una resistividad eléctrica muy alta. La resistencia a tierra es la que existe entre el electrodo de la toma de tierra que se desea considerar y otro electrodo lejano de resistencia cero. Por lejano se entiende que ésta a una distancia tal que la resistencia mutua de los electrodos considerados es esencialmente cero.

## 2.7.1 CONEXIÓN Y RESISTENCIA A TIERRA

#### a. Valores aceptables recomendados

El más elaborado sistema de tierras que sea diseñado, puede ser inadecuado, a menos, que la conexión del sistema a tierra sea adecuada y tenga una resistencia baja. Por consiguiente, la conexión a tierra es una de las partes más importantes de todo sistema de tierras. Esto es también la parte más dificil de diseñar y obtener. La perfecta conexión a tierra deberá tener una resistencia con valor cero, pero esto es imposible de obtener.

Para subestaciones grandes y estaciones de generación, el valor de la resistencia a tierra no deberá exceder de un ohm.

Para subestaciones pequeñas y plantas industriales, el valor de la resistencia a tierra no deberá exceder de 5 ohms. A continuación se muestran las tablas que facilitaran el diseño de un sistema a tierra. \*Basadas en Normas Oficiales Mexicanas NOM-001-SEDE-1999 Instalaciones Eléctricas.

Resistencia de diferentes terrenos

Efecto del contenido de agua o humedad en la resistividad del terreno

Efecto de la temperatura en la resistencia del terreno

Formulas Para el calculo de las resistencias a tierra

Métodos de sistemas de conexión a tierra (conexión a tierra del sistema neutro)

Calibre de conductores de conexión a tierra para sistemas de C:A \*

Calibre mínimo de conductores de aterrizaie para equipo eléctrico y charolas \*

## RESISTIVIDAD DE DIFERENTES TERRENOS

|          |                                                      |                                                                         | RESISTIVIDAD<br>IOHMS POR CM <sup>3</sup> I     |                                               |                                                                                                                                                                       |
|----------|------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROMEDIO | MIN.                                                 | MAX.                                                                    | PROMEDIO                                        | MIN.                                          | MAX.                                                                                                                                                                  |
| 14       | 35                                                   | 41                                                                      | 2,370                                           | 590                                           | 7,000                                                                                                                                                                 |
| 24       | 2                                                    | 98                                                                      | 4,060                                           | 340                                           | 16,300                                                                                                                                                                |
| 93       | 6                                                    | 800                                                                     | 15,800                                          | 1,020                                         | 135,000                                                                                                                                                               |
| 554      | 35                                                   | 2,700                                                                   | 9,400                                           | 59,000                                        | 458,000                                                                                                                                                               |
|          | VARILLAS I<br>X 5 PIES<br>PROMEDIO<br>14<br>24<br>93 | VARILLAS DE 5/8 P<br>X 5 PIES<br>PROMEDIO MIN.<br>14 35<br>24 2<br>93 6 | PROMEDIO MIN. MAX.  14 35 41  24 2 98  93 6 800 | VARILLAS DE 5/8 PULGS.   IOHMS POR   X 5 PIES | VARILLAS DE 5/8 PULGS.   IOHMS POR CM <sup>3</sup>     X 5 PIES   FROMEDIO   MIN.   MAX.   PROMEDIO   MIN.   14   35   41   2.370   590     24   2   98   4.060   340 |

#### EFECTO DEL CONTENIDO DE AGUA O HUMEDAD EN LA RESISTIVIDAD DEL TERRENO

| CONTENIDO DE AGUA | RESISTIVIDAD (OHMS/CM3) |                          |  |  |  |
|-------------------|-------------------------|--------------------------|--|--|--|
| (% DEL PESO)      | TERRENO SUPERIOR        | BARRO ARENOSO            |  |  |  |
| 0                 | >1000 × 10 <sup>6</sup> | > 1000 X 10 <sup>6</sup> |  |  |  |
| 2.5               | 250 000                 | 150 000                  |  |  |  |
| 5                 | 165 000                 | 43 000                   |  |  |  |
| 10                | 53 000                  | 18 500                   |  |  |  |
| 15                | 19 000                  | 10 500                   |  |  |  |
| 20                | 12 000                  | 6 300                    |  |  |  |
| 30                | 6 400                   | 4 200                    |  |  |  |

#### EFECTO DE LA TEMPERATURA EN LA RESISTENCIA DEL TERRENO

## (BARRO ARENOSO CON 15. 2% DE HUMEDAD)

| TEMPERATI | JRA : | RESISTIVIDAD                |
|-----------|-------|-----------------------------|
| °c        | °F    | (OHMS POR CM <sup>3</sup> ) |
| 20        | 68    | 7 200                       |
| 10        | 50    | 9 900                       |
| O (agua)  | 32    | 13 800                      |
| O (hielo) | 32.   | 30 000                      |
| - 5       | 23    | 79 000                      |
| -15       | 14    | 330 000                     |

## FORMULAS PARA EL CALCULO DE LAS RESISTENCIAS A TIERRA

(Fórmulas aproximadas incluyendo los efectos de imágenes. Las dimensiones deberán estar en centímetros para obtener la risistencia en ohms). ρ = resistencia específica de la tierra en ohms por cm³

= radio.

L = longitud.

s = espaciamiento.

|                     | SIMBOLO  | DESCRIPCION                                                                                                                                                                                                                                                                                                               | FORMULA                                                                                                                                                                               |
|---------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | W        | Hemiesfera, Radio a                                                                                                                                                                                                                                                                                                       | f = 0<br>2ma                                                                                                                                                                          |
|                     | •        | Una varilla à tierra<br>Longitud L, radio a                                                                                                                                                                                                                                                                               | $R = \frac{\rho}{2\pi L} \cdot (\log_2 \frac{M_1}{a} - 1)$                                                                                                                            |
|                     |          | 2 varillas a tierra<br>s > espaciamiento s                                                                                                                                                                                                                                                                                | $R = \frac{\rho}{4\pi L} \{ \log_{\theta} \frac{4L}{a} - 1 \} + \frac{\rho}{4\pi_{\theta}} \{ 1 - \frac{L^2}{36^4} + \frac{2L^4}{56^4} \dots \}$                                      |
|                     | • •      | 2 varillàs a tierra<br>s < L, espaciamiento s                                                                                                                                                                                                                                                                             | $R = \frac{\rho}{4 \pi L} (\log_{\theta} \frac{4L}{a} + \log_{\theta} \frac{4L}{s} - 2 + \frac{s}{2L} - \frac{s^3}{16L^3} + \frac{s^4}{512L^4})$                                      |
|                     |          | Alambre enterrado horizon-<br>talmente longitud 2L<br>profundidad s/2                                                                                                                                                                                                                                                     | $R = \frac{\rho}{4\pi L} \{ \log_e \frac{4L}{a} + \log_e \frac{4L}{s} - 2 + \frac{s}{2L} - \frac{s^2}{16L^2} + \frac{s^4}{512L^4} \dots \}$                                           |
|                     |          | Curva en ángulo recto de<br>alambre longitud de un lado L,<br>prol s/2.                                                                                                                                                                                                                                                   | $R = \frac{\rho}{4\pi L} \left(\log_{\theta} \frac{2L}{a} + \log_{\theta} \frac{2L}{s} - 0.2373 + 0.2146 \frac{s}{L} + 0.1035 \frac{s^2}{L^2} - 0.0424 \frac{s^4}{L^4} \dots \right)$ |
| <i>i</i><br>2       | 人        | Estrella de 3 puntas Longitud<br>de un lado L.<br>prof. s/2                                                                                                                                                                                                                                                               | $R = \frac{\rho}{6\pi L} \left( \log_e \frac{2L}{a} + \log_e \frac{2L}{s} + 1.071 - 0.209 \frac{s}{L} + 0.238 \frac{s^2}{L^2} - 0.054 \frac{s^2}{L^4} \dots \right)$                  |
|                     | +        | Estrella de 4 puntas.<br>Longitud de un lado L,<br>prof. s/2                                                                                                                                                                                                                                                              | $R = \frac{\rho}{8\pi L} \left( \log_e \frac{2L}{a} + \log_e \frac{2L}{s} + 2.912 - 1.071 \frac{s}{L} + 0.645 \frac{s^2}{L^2} - 0.145 \frac{s^4}{L^4} \dots \right)$                  |
| CON                 | $\times$ | Estrella de 6 puntas,<br>Longitud de un lado L,<br>prof. s/2                                                                                                                                                                                                                                                              | $R = \frac{\rho}{12\pi L} \left(\log_e \frac{2L}{a} + \log_e \frac{2L}{s} + 6.851 - 3.128 \frac{s}{L} + 1.758 \frac{s^2}{L^2} - 0.490 \frac{s^4}{L^4} \dots \right)$                  |
| 98                  | *        | Estrella de 8 puntas. '<br>Longicud de un lado L,<br>prof. s. 2                                                                                                                                                                                                                                                           | $R = \frac{\rho}{16\pi L} \left(\log_e \frac{2L}{s} + \log_e \frac{2L}{s} + 10.98 - 5.51 \frac{s}{L} + 3.26 \frac{s^2}{L^2} - 1.17 \frac{s^4}{L^4} \right)$                           |
| TESIS (<br>FALLA DE | 0        | Andlo is alambre. Deam fer anillo, D. Diam er alambre di, prof. \$/2                                                                                                                                                                                                                                                      | $R = \frac{\rho}{2\pi^2 D} \{ \log_e \frac{8D}{d} + \log_e \frac{4D}{s} \}$                                                                                                           |
| TA.                 | _        | Placa e trrada horizontalmente<br>Longit : 2 L, sección a por b,<br>prof. s o <a 8.<="" a="" td=""><td><math display="block">R = \frac{\rho}{4\pi L} \{ \log_e \frac{4L}{a} + \frac{a^2 - \pi a b}{2(a + b)^2} + \log_e \frac{4L}{s} - 1 + \frac{s}{2L} - \frac{s^2}{16L^2} + \frac{s^4}{512L^4} \dots \}</math></td></a> | $R = \frac{\rho}{4\pi L} \{ \log_e \frac{4L}{a} + \frac{a^2 - \pi a b}{2(a + b)^2} + \log_e \frac{4L}{s} - 1 + \frac{s}{2L} - \frac{s^2}{16L^2} + \frac{s^4}{512L^4} \dots \}$        |
|                     |          | Plata reconda enterrada<br>hor contrimente.<br>Radio a, prot, s/2                                                                                                                                                                                                                                                         | $R = \frac{\rho}{8a} + \frac{\rho}{4\pi\epsilon} \left(1 - \frac{7a^2}{12a^4} + \frac{33a^6}{40a^6} \dots \right)$                                                                    |
|                     | 1        | Pisca i vionda enterrada<br>verticamente.<br>Radio a, prof. s/2                                                                                                                                                                                                                                                           | $R = \frac{\rho}{8a} + \frac{\rho}{4\pi s} \left(1 + \frac{7s^{1}}{24s^{2}} + \frac{99s^{4}}{320s^{4}} - J\right)$                                                                    |

Residue on "Calcillation of Resistance to Ground" on H.B. Quicks Steers and Section For the Contraction and SS 0. 1319

#### METODOS DE SISTEMAS DE CONEXION A TIERRA (CONEXION A TIERRA DEL SISTEMA NEUTRO)

| DESCRIPCION                                | сіясиіто                              | DIAGRAMA EQUIVALENTE          |
|--------------------------------------------|---------------------------------------|-------------------------------|
| 1.— No conectado a tierra                  | 0                                     | × <sub>G</sub> -18850 - J     |
| Sólidamente conectado     a tierra         | <b>9</b>                              | × c - 00000                   |
| 3.— Resistencia conectada<br>a tierra.     |                                       | X <sub>G</sub> R <sub>N</sub> |
| 4.— Reactancia conectada a tierra,         | <u>(† 1980</u>                        | ×g ×n 70000 5000 3            |
| 5.— : Neutralizador de fallas<br>a tierra. | ————————————————————————————————————— | =                             |

X<sub>G</sub> Reactancia del generador o transformador usada para conexión a tierra.

 $\mathbf{x}_{\mathbf{N}}$  Reactancia del reactor para conexión a tierra.

R<sub>N</sub> Resistencia del resistor para conexión a tierra.

## CALIBRE DE CONDUCTORES DE CONEXION A TIERRA PARA SISTEMAS DE C.A.

| CALIBRE DEL CO<br>ACOMETIDA MAS<br>EQUIVALENTE EI<br>PARALELOS | GRANDE, O SU      | CALIBRE DEL<br>CONDUCTOR DE<br>CONEXION A TIERRA |           |  |  |
|----------------------------------------------------------------|-------------------|--------------------------------------------------|-----------|--|--|
| COBRE                                                          | ALUMINIO          | COBRE                                            | ALUMINIO  |  |  |
| AWG o KCM                                                      | AWG a KCM         | AWG o KCM                                        | AWG o KCM |  |  |
| 2 6 menor                                                      | 1/0 o menor       | 8                                                | 6         |  |  |
| 1 o 1/0                                                        | 2/0 o 3/0         | 6                                                | 4         |  |  |
| 2/0 6 3/0                                                      | 4/0 o 250         | 4                                                | 2         |  |  |
| De 3/0 hasta 350                                               | De 250 hasta 500  | 2                                                | 1/0       |  |  |
| De 350 hasta 600                                               | De 500 hasta 900  | 1/0                                              | 3/0       |  |  |
| De 600 hasta 1100                                              | De 900 hasta 1750 | 2/0                                              | 4/0       |  |  |
| Mayor de 1100                                                  | Mayor de 1750     | 3/0                                              | 250       |  |  |

Donde no hay conductores de acometida, el calibre del conductor de contexión al electrodo aterrizado debera determinarse por el calibre equivalente del conductor de acometida mayor requerido para la carga a ser-

#### CALIBRE MINIMO DE CONDUCTORES DE ATERRIZAJE PARA EQUIPO ELECTRICO Y CHAROLAS

|                     | E DISPARO DEL<br>O DE SOBRECARGAS | CALIBRE         |                       |
|---------------------|-----------------------------------|-----------------|-----------------------|
| FRENTE DE           | CO COLOCADO AL                    | CONDUCTO        | R CONDUCTOR DE        |
|                     | LL EQUIPO ELECTRICO,              | DE COBRE        | ALUMINIO              |
|                     | TC. NO EXCEDIENDO DE:             | CAL. No.        | CAL. No.              |
| 15                  |                                   | 14              | 12                    |
| 20                  |                                   | 12              | 10                    |
| 30                  |                                   | 10              | 8                     |
| 40                  |                                   | 10              | 8                     |
| 60                  |                                   | 10              | 8                     |
| 100                 |                                   | 8               | 6                     |
| 200                 |                                   | 6               | 4                     |
| 400                 |                                   | 3               | 1                     |
| 600                 |                                   | 1               | 2/0                   |
| 800<br>1000<br>1200 | 46<br>140 14                      | 0<br>2/0<br>3/0 | 3/0<br>4/0<br>250 KCM |
| 1600                |                                   | 4/0             | 350 **                |
| 2000                |                                   | 250 KCM         | 400 **                |
| 2500                |                                   | 350 ***         | 600 **                |
| 3000                |                                   | 400 "           | 600 "                 |
| 4000                |                                   | 500 "           | 800 "                 |
| 5000                |                                   | 700 "           | 1200 "                |
| 6000                |                                   | 800 "           | 1200 "                |

TESTS CUS FALLA DE CHUBA

## 2.8 SUBESTACIONES

La distribución industrial hace llegar la energía de un alimentador o generador a un voltaje igual o menor de 15 KV, hasta los puntos donde se utiliza, y a las tensiones adecuadas para fuerza y alumbrado. Cuando la potencia se recibe de un alimentador de subtransmisión a 69, 34.5 ó 23 KV, existe una subestación intemperie unitaria o convencional entre la línea y el sistema de distribución industrial.

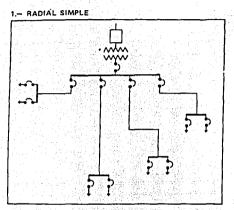
El costo de los conductores de distribución a voltajes entre 2.4 y 13.2 KV para plantas con densidades de carga hasta 300 volt-amperes/m², es generalmente un 15% del que requiere la distribución a 480 volts. El equipo interruptor de alta corriente es también más costoso que el de un voltaje mayor pero de menor corriente y capacidad interruptiva. La distribución con centros de potencia tiene corrientes de corto circuito bastantes manejables debido a la mayor reactancia en serie.

Cuando hay poco equipo de fuerza o alumbrado fluorescente a 200 volts, el transformador de alumbrado es trifásico de 480 a 240 volts y se puede tener circuitos monofásicos y trifásicos a partir del centro de distribución.

El costo de centros de potencia con secundario en delta, suele ser de 1.5 a 6% menor que cuando se usa conexión Y. Esta última es ventajosa porque permite conexión del neutro a tierra, pero hay que considerar que con esta característica, puede necesitarse algunos dispositivos de control con protección de sobrecorriente en las 3 fases, lo cual no es usual.

Desde el punto de vista de conexión a tierra, se recomienda los siguiente:

 Si hay subestación, el secundario de ésta debe ser "Y" con neutro a tierra, para proporcionar protección a tierra en el sistema de distribución del lado de bajo tensión, y el primario "Delta". Los primarios de los centros de potencia serían entonces "delta".


- Cuando hay generador, éste suele ser "Y" y se debe conectar el neutro de una de las máquinas a tierra. La conexión directa puede originar en fallos a tierra una corriente de cortocircuito mayor que la que el generador resiste mecánicamente, por lo cual se recomienda conectar el neutro a tierra a través de una resistencia adecuada que limite la corriente al valor permisible.
- En sistemas con alimentadores largos a 480 volts, el secundario que los alimenta es más conveniente en Y con neutro a tierra.
- Cuando se lleva el voltaje de distribución hasta los centros de carga, como es la práctica más económica, ahí se efectúa la transformación mediante un centro de potencia de los cuales parten alimentadores cortos a 480 volts. El secundario es delta es económico en dichos centros.

#### El neutro a tierra en los sistemas es conveniente por las razones siguientes:

- Las fallas a tierra provocan interrupción inmediata, y, con un arreglo selectivo, el ramal afectado es el único que se desconecta y la zona de daño se define.
- Cuando no se tiene neutro a tierra, al ocurrir una falla a tierra no hay operación ninguna. Una de las esquinas de la delta queda a tierra con lo cual el aislamiento a tierra del sistema soporta un sobrevoltaje de 73%, el cual es probable que no tarde en originar un segundo fallo. La corriente a tierra tiene la impedancia de dos fallos en serie y aunque el voltaje es 73% mayor, puede resultar con una intensidad no suficiente para provocar operación hasta causar mayor destrucción. Al ocurrir la falla se puede tener dos circuitos afectados que atender.
- Un sistema no conectado a tierra, una falla puede sostenerse sin interrupción hasta investigarla en los días no laborables, su localización y reparación puede tardar bastante.

A continuación se muestran los "Principales Sistemas de Distribución".

## principales sistemas de distribución



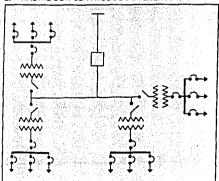
#### CARACTERISTICAS:

Simplicidad, adecuado para cargas hasta 1000 KVA.

 Capacidad reducida al aprovechar la diversidad de las cargas de la planta.

Altas corrientes de corto circuito,

Interruptores de altas capacidades nominal e interruptiva.


Alimentadores largos y costosos.

Mala regulación debida a la caída de voltaje.

Baja eficiencia debida a las pérdidas en los alimentadores,

Costo: 140% del sistema No. 2.

#### 2.- RADIAL CON CENTROS DE POTENCIA



#### CARACTERISTICAS:

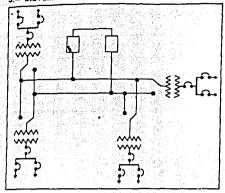
Es el sistema más económico arriba de 1000 KVA.

Los alimentadores son cortos, debido a la colocación de cada centro de potencia inmediata al centro de la carja en coasiones se ponen estos sobre plataformas arriba del nivel pentro de la fábrica.

Baias corrientes de corto circuito.

Equipo interruptor de baja interrupción y baja corriente normal.

Buena regulación de voltaje.


Pérdidas moderadas.

Mala continuidad: Un fallo en el alimentador principal significa interrupción total.

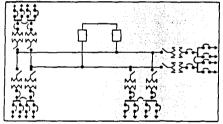
Tardanza en restaurar el servicio en caso de falla en una estación.

Poca flexibilidad.

## 3.- SISTEMA RADIAL SELECTIVO EN PRIMARIO



#### CARACTERISTICAS:


Continuidad aceptable. Al fallar un alimentador se puede cambiar la carga rápidamente al otro. Cada uno de sus circuitos primarios debe tener capacidad para el total de la carga.

En caso de falla en un transformador, la unidad se desconecta ràpidamente  $\gamma$  se restaura el servicio dejando fuera una zona de la fábrica.

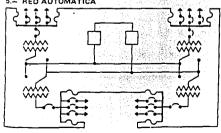
Todas las ventajas del sistema No. 2, están presentes en este

Su costo es 10% mayor que el esquema No 2, pero su flexibilidad es mayor.

#### 4.- RADIAL SELECTIVO EN SECUNDARIO



#### CARACTERISTICAS:


Permite pronta restauración del servicio por defectos en el alimentador primario o en el transformador.

Mejor continuidad que el No. 2 o el No. 3.

La falla en un transformador no interrumpe por largo (1971) iniguna alimentación, ya que la carga pasa al otro mediante el enterruptor de amarre. Cada transformador debe poder llevar (3) aviga de la estación.

Esto hace este arregio 55% más costoso que el No 3

## 5.- RED AUTOMATICA



#### CARACTERISTICAS:

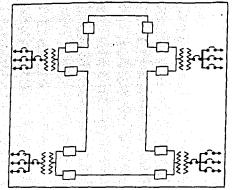
Alimentación no interrumpida a la carga,

Alta eficiencia y regulación.

Operación automática en caso de fallas de transformador o alimentador primario: la carga se transfiere a los otros transformadores u otro alimentador a través del anillo secundario.

No requiere exceso de capacidad transformadora.

Maneja el arranque de motores grandes con menos variación de voltaje,


Parpadeo del alumbrado múnimo.

Bajas pérdidas.

No se adapta a sistemas superficialmente extensos por el costo del anillo secundario (55% más costoso que el No. 2).

- 47 -

## 6.- ANILLO DE ALTA TENSION



#### CARACTERISTICAS:

Este sistema tiene la ventaja sobre el radial simple de que puede asilarse una sección de cable defectuosa y restaurar el servicio en el resto del sistema, mientras se lleva a cabo la reparación. Es posible, sin embargo, que la falla no se localice pronto y entonces la interrupción general es larga.

Para evitar esta contingencia, puede dotarse a los interruptores con protección direccional de tal manera que la seccionalización del tramo defectuoso sea automática.

Esto eleva el costo del sistema desproporcionadamente con relacion a la ventaja ganada. Por otro lado, sin los interruptores y protección seccionalizante, el sistema solo es mas peligraso y con mayor corriente de corto circuito que el No. 2.

### 2.8.1 GUIA PARA SELECCIÓN APARTARRAYOS

#### 1. Apartarrayos para circuitos con neutro no aterrizado

Los apartarrayos para servicio en circuitos con neutro no aterrizado, son normalmente cuando el neutro está aislado o está aterrizado a través de un neutralizador de falla a tierra o a través de resistencia o reactancia de alto valor. Estos apartarrayos se conocen también como apartarrayos "100%" pues ellos deben soportar el voltaje nominal de línea a línea cuando hay una falla a tierra o en una fase.

#### 2. Apartarrayos para circuito con neutro aterrizados

Se dice que un circuito tiene su neutro sólidamente aterrizado a través de una impedancia, cuando se tienen las siguientes relaciones.

 $\frac{X_0}{X_1}$  varia de 0 a 3

 $\frac{R_0}{N}$  varia de 0 a 1

• Anexo C

X<sub>0</sub> = reactancia de secuencia cero

X<sub>1</sub> = reactancia de secuencia positiva

Ro = resistencia de secuencia cero

En estos circuitos y bajo cualquier condición de operación, el apartarrayos siempre estará permanentemente y sólidamente aterrizado.

## GUIA PARA SELECCION DE APARTARRAYOS

## APARTARRAYOS PARA OPERAR EN ALTITUDES HASTA

|                                    | VOLTAJE DE CIRCUITO (KV)                        |                                      |             |          |  |
|------------------------------------|-------------------------------------------------|--------------------------------------|-------------|----------|--|
| VOLTAJE NOMINAL<br>DE APARTARRAYOS | CIRCUITO CON NEU<br>NO ATERRIZADO               | CIRCUITO CON<br>NEUTRO<br>ATERRIZADO |             |          |  |
|                                    | 2.40                                            |                                      | 4.16        |          |  |
| 6                                  | 4.80                                            |                                      | 7.20        |          |  |
| ů .                                | 7.20                                            |                                      | 12.47       |          |  |
| 12                                 | 11.20                                           |                                      | 13.20       |          |  |
| 15                                 | 13 20                                           |                                      | 1800        |          |  |
| 20                                 | 18.00                                           |                                      | 23.00       |          |  |
| 25                                 | 23.00                                           |                                      | 27.60       |          |  |
| 30                                 | 27 60                                           |                                      | 34.50       | ·        |  |
| 37                                 | 34.50                                           |                                      | i i - 1996. |          |  |
| 40                                 | 1 -                                             |                                      | 46.00       |          |  |
| 50                                 | 46.00                                           |                                      | 57.50       | 19.451.5 |  |
| 60                                 | 57.50                                           |                                      | 69 00       | 3        |  |
| 73                                 | 69.00                                           |                                      |             | S 21 18  |  |
| 79<br>79                           |                                                 |                                      | 92.00       |          |  |
| 97                                 | 92.00                                           |                                      | 115.00      | Q45      |  |
| 109                                | [1] = 0. (**) ********************************* |                                      | 138 00      |          |  |
| 121                                | 115.00                                          | +5                                   | 138.00      |          |  |

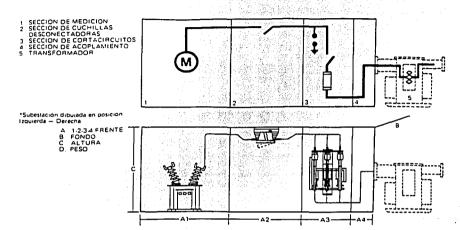
## PRUEBAS DE AISLAMIENTO PARA APARTARRAYOS

| IVOLTA                           | JES SOPO                     | RODATE                                          | EN LA PR | UEBAJ                                                         |                                                                            |                   |                      |         |
|----------------------------------|------------------------------|-------------------------------------------------|----------|---------------------------------------------------------------|----------------------------------------------------------------------------|-------------------|----------------------|---------|
| CACION<br>DE<br>AISLA.<br>MIENTO | AANGO<br>DE<br>VOLTAJE<br>KV | YOS T                                           | LOS RANG | TIPO ESTACION<br>OS APARTARRA-<br>A Y DISTRI-<br>LTAJES DE 20 | LINEA Y DISTRIBUCIÓN APAR-<br>TARRAYOS, PARA VOLTAJES<br>MENORES DE 20 KV. |                   |                      | -<br>:2 |
| ~                                |                              | 60 CICLOS<br>VOLTAJE DE<br>PRUEBA<br>RMS KV (2) |          | PRUEBA DE<br>IMPULSO<br>15 × 40 LS<br>CRESTA DE<br>LA ONDA    | 60 CICLOS PRUEBA DE IMPULSO PRUEBA 15 x 40 LS CRESTA DE LA ONDA            |                   |                      |         |
|                                  | }                            | 1 MIN<br>SECO                                   | 10 SEG   | PLENA EN                                                      | 1 MIN                                                                      | 10 SEG.<br>HUMEDO | PLENA EN<br>KV 12,31 |         |
| 2 5                              | 3                            | 21                                              | 20       | 60                                                            | 15                                                                         | 13                | 45                   |         |
| •                                | 1 5                          | 27                                              | 24       | 75                                                            | 21                                                                         | 20                | 60                   |         |
| 3 7                              | a a                          | 35                                              | 20       | 95                                                            | 27                                                                         | 24                | 75<br>95             |         |
| 15                               | 15                           | 50                                              | 45       | 110                                                           | 35                                                                         | 30                | 93                   |         |
| 23                               | 25                           | 70                                              | 60       | 150                                                           | - 1                                                                        | -                 | _                    |         |
| 345                              | 27                           | 95                                              | 80       | 700                                                           | -                                                                          | i -               | -                    |         |
| 46                               | 50                           | 120                                             | 100      | 250                                                           | - 1                                                                        | - 1               | -                    |         |
| 59                               | 72                           | 175                                             | 145      | 350                                                           | - }                                                                        | - 1               | -                    |         |
| 92                               | 3)                           | 225                                             | 190      | 450                                                           | · .                                                                        | . 1               |                      |         |
| 115                              | 121                          | 790                                             | 230      | 550                                                           | - 1                                                                        | - }               | -                    | ٠.      |
| 38                               | 145                          | 335                                             | 275      | 850                                                           | - {                                                                        | - 1               |                      |         |
| 51 {                             | 169                          | 385                                             | 315      | 750                                                           | - (                                                                        | - 1               | -                    |         |
| ?ĕ [                             | 194                          | 465                                             | 385      | 900 .                                                         | - [                                                                        | - (               | -                    |         |
| 30                               | 242 1                        | 545                                             | 445      | 1050                                                          | - 1                                                                        | - 1               | <del>-</del> ,       |         |

- 50 -

#### CARACTERISTICAS DE FUNCIONAMIENTO EN APARTARRAYOS TIPO AUTOVAL-VIII ARES

| TIPO DE<br>APARTARRAYOS<br>Y RANGO DE | FRENTE DEL FL       | AMEO DE    | LA OND     | A DE       |            |                                       |            | RÎA-KV   |            | 20 M       | ICROSEG    | SOONU      |      |  |
|---------------------------------------|---------------------|------------|------------|------------|------------|---------------------------------------|------------|----------|------------|------------|------------|------------|------|--|
| VOLTAJE-KV                            | RANGO DE<br>AUMENTO | kv         |            |            | 5000 A     | 0000 AMPERES 10000 AMPERES 20000 AMPE |            |          |            |            |            | AMPERE     | ERES |  |
|                                       | KV POR # SEG.       | PROM.      | MAX.       | +          | PROM.      | MAX.                                  | T+         | PROM.    | MAX.       | +          | PROM.      | MAX.       | +    |  |
| DISTRIBUCION                          |                     | T          |            |            |            |                                       | Т          |          |            | $\Box$     |            | T          |      |  |
| 3                                     | 25                  | 18         | 23         | 23         | 14         | 17                                    | 17         | 16       | 20         | 20         | 18         | 23         | 23   |  |
| . 6                                   | 50                  | 34         | 45         | 45         | 26         | 34                                    | 34         | 30       | 38         | 38         | 34         | 44         | 44   |  |
| 9                                     | 75                  | 48         | 62         | 62         | 39         | 51                                    | 51         | 44       | 57         | 57         | 51         | 66         | 66   |  |
| . 12                                  | 100                 | 61         | 77         | 77         | 49         | 62                                    | 62         | 55       | 69         | 69         | 62         | 78         | 78   |  |
| 15                                    | 125                 | 73         | 91         | 91         | 61         | 77                                    |            | 69       | 87         | 87         | 79         | 99         | 99   |  |
| LINEA                                 | !                   | i          | 1          | l          | i          | ĺ                                     |            | 1        |            | 1          | l          | ļ          | j .  |  |
| 20                                    | 167                 | 75         | 90         | 85         | 83         | 96                                    | 91         | 92       | 106        | 102        | 101        | 116        | 100  |  |
| 25                                    | 208                 | 93         | 111        | 105        | 101        | 116                                   | 111        | 711      | 129        | 122        | 121        | 139        | 133  |  |
| 30                                    | 250                 | 110        | 132        | 125        | 121        | 139                                   | 133        | 135      | 155        | 149        | 149        | 172        | 154  |  |
| 37                                    | 308                 | 135        | 163        | 154        | 149        | 172                                   | 164        | 164      | 189        | 181        | 181        | 208        | 139  |  |
| 40                                    | 333                 | 147        | 176        | 167        | 161        | 185                                   | 177        | 177      | 204        | 195        | 196        | 225        | 216  |  |
| 50<br>60                              | 417<br>500          | 183<br>220 | 220        | 208        | 202        | 232                                   | 225        | 222      | 255        | 245        | 243        | 280        | 258  |  |
| 73                                    | 608                 | 267        | 264<br>320 | 250<br>302 | 242<br>297 | 278<br>342                            | 267<br>328 | 328      | 312<br>378 | 300<br>361 | 298<br>360 | 344<br>414 | 379  |  |
|                                       | 008                 | 267        | 320        | 302        | 297        | 342                                   | 326        | 320      | 3/8        | 361        | 360        | 414        | 3)6  |  |
| ESTACION                              |                     | Į          | Į .        |            |            |                                       |            | į.       |            |            | 1          | }          | 1    |  |
| 3                                     | 25                  | 13         | 15         | 15         | 10         | 11                                    | 11         | 11       | 13         | 12         | 12         | 14         | 13   |  |
| 6                                     | 50                  | 23         | 26         | 26         | 20         | 22                                    | 22         | 22       | 25         | 23         | 24         | 27         | 25   |  |
| 9                                     | 75                  | 35         | 39         | 39         | 30         | 33                                    | 32         | 33       | 27         | 35         | 35         | 39         | 38   |  |
| 12<br>15                              | 100                 | 43         | 50<br>61   | 48         | 40         | 44                                    | 43<br>54   | 44       | 48<br>60   | 47<br>58   | 47         | 52         | 51   |  |
| 20                                    | 125<br>167          | 53<br>72   | 83         | 59<br>80   | 50<br>67   | 55<br>74                              | 72         | 54<br>72 | 80         | 77         | 59<br>78   | 65<br>86   | 63   |  |
| 25                                    | 208                 | 89         | 102        | 98         | 83         | 92                                    | 89         | 90       | 99         | 96         | 100        | 110        | 107  |  |
| 30                                    | 250                 | 106        | 122        | 117        | 100        | 110                                   | 107        | 108      | 119        | 115        | 118        | 130        | 126  |  |
| 37                                    | 308                 | 131        | 151        | 144        | 124        | 137                                   | 133        | 132      | 146        | 141        | 145        | 160        | 11.5 |  |
| 40                                    | 333                 | 136        | 157        | 150        | 134        | 148                                   | 143        | 144      | 159        | 154        | 153        | 169        | 163  |  |
| 50                                    | 417                 | 178        | 205        | 196        | 167        | 184                                   | 179        | 179      | 197        | 191        | 191        | 211        | 205  |  |
| 60                                    | 500                 | 214        | 246        | 236        | 200        | 220                                   | 214        | 217      | 239        | 231        | 234        | 258        | 250  |  |
| 73                                    | 608                 | 261        | 300        | 288        | 245        | 270                                   | 262        | 262      | 288        | 279        | 283        | 313        | 203  |  |
| 97                                    | 808                 | 345        | 397        | 380        | 323        | 356                                   | 345        | 349      | 384        | 372        | 377        | 415        | -03  |  |
| 109                                   | 908                 | 388        | 446        | 427        | 363        | 400                                   | 388        | 394      | 434        | 420        | 424        | 467        | 453  |  |
| 121                                   | 1008                | 430        | 495        | 474        | 403        | 344                                   | 430        | 438      | 482        | 467        | 470        | 517        | 502  |  |
| 145                                   | 1208                | 515        | 592        | 566        | 487        | 536                                   | 520        | 523      | 575        | 558        | 564        | 622        | 602  |  |
| 169                                   | 1408                | 602        | 693        | 663        | 566        | 624                                   | 605 į      | 610      | 672        | 650        | 658        | 725        | 702  |  |
| 196                                   | 1633                | 691        | 796        | 760        | 647        | 713                                   | 691        | 698      | 768        | 744        | 755        | 832        | 803  |  |
| 242                                   | 2017                | 860        | 988        | 945        | 806        | 887 I                                 | 860        | 872      | 960        | 931 Í      | 940        | 1035       | 1004 |  |


 <sup>100</sup> Kv por microsegundo por 12 Kv de el rango del apartarrayos

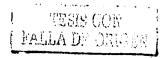


<sup>\*\*</sup> Impulso de la polaridad dando el flameo de voltaje más alto.

<sup>+</sup> El 95 % de los apartarrayos fabricados tendran características que no excedan el valor de esta columna. Para apartarrayos de distribución use los valores máximos.

#### SUBESTACION CON CUCHILLAS DE PASO, 2½ SECCIONES Y ACOPLAMIENTO A TRANSFORMADOR




#### b.- DIMENSIONES SUBESTACION INTERIOR

| TENSION | MEDIC | CION | (m,m | .)  | CUCH | ILLAS P | AUEBA | (.m.m) | CORT | ACIRCU | ITOS ( | m.m.) | ACO | PLAMIE | NTO ( | lm.m. |
|---------|-------|------|------|-----|------|---------|-------|--------|------|--------|--------|-------|-----|--------|-------|-------|
| κv      | A1    | В    | С    | D   | A2   | В       | С     | ٥      | АЗ   | В      | С      | D     | A4  | В      | С     | D     |
| 7 5     | 1000  | 1200 | 2100 | 250 | 700  | 1200    | 2100  | 180    | 1000 | 1200   | 2100   | 325   | 300 | 1200   | 2100  | 150   |
| 15      | 1000  | 1200 | 2100 | 250 | 700  | 1200    | 2100  | 180    | 1000 | 1200   | 2100   | 325   | 450 | 1200   | 2100  | 175   |
| 25      | 2000  | 2000 | 2600 | 325 | 700  | 2000    | 2600  | 230    | 1200 | 2000   | 2600   | 425   | 550 | 2000   | 2600  | 200   |
| 34 5    | 1800  | 2000 | 3000 | 425 | 1000 | 2000    | 3000  | 490    | 1650 | 2000   | 3000   | 550   | 800 | 2000   | 3000  | 260   |

#### c .- DIMENSIONES SUBESTACION INTEMPERIE

| TENSION | MEDI | ION  | (m.m | .1  | CUCH | ILLAS P | RUEBA | m.m.) | CORT | ACIRCL | ITOS ( | n.m.) | ACO | PLAMIE | NTO ( | <b>(.</b> |
|---------|------|------|------|-----|------|---------|-------|-------|------|--------|--------|-------|-----|--------|-------|-----------|
| κv      | A1   | 8    | С    | D   | A2   | В       | С     | D     | АЗ   | В      | С      | D     | A4  | В      | С     | D         |
| 7.5     | 1000 | 1300 | 2200 | 275 | 700  | 1300    | 2200  | 190   | 1000 | 1300   | 2200   | 350   | 300 | 1300   | 2200  | 160       |
| 15      | 1000 | 1300 | 2200 | 275 | 700  | 1300    | 2200  | 190   | 1000 | 1300   | 2200   | 350   | 450 | 1300   | 2200  | 180       |
| 23      | 2000 | 2000 | 2730 | 360 | 700  | 2000    | 2730  | 210   | 1200 | 2000   | 2730   | 460   | 550 | 2000   | 2730  | 225       |
| 34.5    | 1800 | 2000 | 3130 | 460 | 1000 | 2000    | 3130  | 300   | 1650 | 2000   | 3130   | 590   | 800 | 2000   | 3130  | 280       |

<sup>&</sup>lt;sup>9</sup> Para las subestaciones de tipo intemperie considerar que de las dimensiones mostradas en la tabla el techo sobre sale 130 mm al frente, 80 mm en la parte posterior y 50 mm a los costados.



En las tablas y figura anteriores nos da en forma directa la forma de definir el apartarrayo por aplicar, dependiendo del voltaje de operación de nuestro circuito y de que éste sea con neutro con o sin aterrizar como a continuación se muestra:

Pruebas de Aislamiento para Apartarrayos

Características del Funcionamiento en Apartarrayos Tipo Autovalvulares

Arreglo Básico en Subestaciones Compactas

#### 2.8.2 INTERRUPTORES EN ALTA TENSIÓN

#### a. Interruptores en aire o en aceite

Los interruptores de circuitos eléctricos pueden afectar la separación de sus contactos en aire o en aceite para cualquier voltaje o capacidad interruptiva, siendo la selección en general dictada por la economía de manufactura en el país de que trate.

En circuitos de 600 volts o menos, el uso del interruptor en aire es general existiendo unidades hasta de más de 150,000 amperes de capacidad interruptiva. Esto debe a que en aire los contactos tienen mayor vida que en aceite y siendo los voltajes bajos, resulta compacto y resistente el interruptor en aire, ya que las separaciones dieléctricas no son grandes.

Para voltajes de 2.4 KV y mayores, el aceite reduce considerablemente las distancias aisladas y permite menores dimensiones. Otra ventaja del interruptor en aceite sobre el de aire, es la operación con menos sobre-voltajes, los cuales son inherentes a la interrupción en aire, debido a la rapidez con que ésta se efectúa.

El interruptor de aire para voltajes superiores a 15 KV emplea sistemas de aire comprimido, cuyo mantenimiento es superior al de un interruptor en aceite, sin tener la seguridad de éste, debido a la dependencia de un medio exterior para extinguir el arco. El aceite es un medio natural para supresión de arcos y garantiza una operación no afectada por la clase de

atmósfera. Las atmósferas polvosas, húmedas, corrosivas y explosivas, impiden el uso de interruptores en aire. La influencia de la altura de la ciudad de México, por ejemplo, produce los siguientes efectos en interruptores en aire que usan soplo magnético exclusivamente (que son los de 15 KV y menos).

- Disminuye el valor del aislamiento a un 87% del nominal
- Disminuye su capacidad interruptiva
- Como inconveniente adicional, existe la dificultad de usar equipo en aire uniformemente a esa altura, ya que los transformadores en aire no se construyen más que hasta 8.7 KV para ella, y esté resulta un voltaje muy bajo para distribuir cantidades medianas de potencia económicamente.
  - b. Cortacircuitos de Tipo XS con Aislador Simple

#### Características

La cuchilla XS esta expresamente diseñada para los sistemas modernos de distribución porque ofrece:

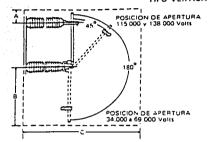
- 1. Alta capacidad interruptiva
- 2. Minimo peligro para el operador y el equipo
- 3. Máxima flexibilidad de aplicación
- Alta Capacidad Interruptiva. Es obtenida en las cuchillas XS conservando las ventajas inherentes de ventilación simple. La cuchilla XS ha sido diseñada y probada para interrumpir altas fallas y para cerrar con tales fallas. Ver tabla no.
- Peligro Mínimo al operador. Es suministrado por la cuchilla XS porque todos los gases de escape son dirigidos hacia abajo, y hacia afuera. La energia del arco se divide en dos por un dispositivo único acortador de arco. La construcción integral de alineamiento

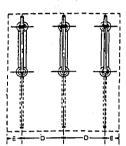
positivo garantiza que el tubo portafusible cerrará en su posición debida sin que el operador necesite poner mucho cuidado.

Flexibilidad Máxima. Es ofrecida en una serie de 5 diferentes tubos portafusible y
cuchillas desconectadoras, todas las cuales son intercambiables en un solo montaje.

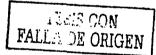
|                                              | RANGO                                          |                            | 1                                 |                                 |                                           |                               |                                             |  |
|----------------------------------------------|------------------------------------------------|----------------------------|-----------------------------------|---------------------------------|-------------------------------------------|-------------------------------|---------------------------------------------|--|
| ESTILO                                       | κv                                             |                            |                                   | AMPERES                         |                                           | DISTANCIA                     | CATALOGO                                    |  |
|                                              | NOMINALES                                      | MAX. DIS.                  | NIVEL BASICO<br>DE<br>AISLAMIENTO | CONTINUOS                       | CAPACIDAD<br>INTERRUPTIVA                 | DE FUGA                       | NUMERO                                      |  |
| Heavy Duty<br>Single-Shot<br>Birdproof       | 7 2<br>14 4<br>14 4                            | 7 8<br>15<br>15            | 95<br>125<br>125                  | 200<br>200<br>200               | 12000<br>10000<br>10000                   | 8-1/2<br>11<br>17             | 89071<br>89072<br>89092                     |  |
| Extra Heavy Duty<br>Single Shot<br>Birdproof | 7 2/14 4<br>14 4<br>14 4<br>25                 | 15<br>15<br>15<br>27       | 95<br>125<br>150<br>150           | 100<br>100<br>100<br>100        | 10000<br>8000<br>8000<br>5000             | 8-1/2<br>11<br>17<br>17       | 89021<br>89022<br>89042<br>89023            |  |
| Ultra Heavy Duty<br>Single Shot<br>Birdproof | 7 2/14 4<br>14 4/25<br>14 4/25<br>34 5<br>34 5 | 15<br>27<br>27<br>38<br>38 | 95<br>125<br>150<br>150<br>200    | 100<br>100<br>100<br>100<br>100 | 12000 '<br>10000<br>10000<br>2000<br>2000 | 8-1/2<br>11<br>17<br>17<br>28 | 89031<br>89032<br>89052<br>89124 M<br>89124 |  |
| Desconectadora<br>Birdoroof                  | 7.2/14 4<br>14 4<br>14 4/25                    | 15<br>15<br>27             | 95<br>125<br>150                  | 300<br>300<br>300               |                                           | 8-1/2<br>11<br>17             | 89221<br>89222<br>89242                     |  |

<sup>\*</sup> Doble aislado con base de canal.


#### c. Cortacircuitos fusible de potencia tipo SMD-20


Los fusibles de potencia SMD-20 se ha introducido en el mercado a fin de satisfacer la demanda de equipos protectores que cubran fallas más extensas, voltajes más altos y cargas mayores que en la actualidad son comunes en las redes de distribución a la intemperie. Estos fusibles se ofrecen en dos estilos – para su uso en postes que soportan las líneas aéreas en los sistemas de alimentación para distribución – y en instalaciones en subestaciones de distribución a la intemperie.




## DISTANCIAS MINIMAS PARA MONTAJE DE INTERRUPTORES FUSIBLES Y PRINCIPALES CARACTERÍSTICAS ELECTRICAS DE LOS CORTOCIRCUITOS DE POTENCIA TIPO SMD-20

#### TIPO VERTICAL



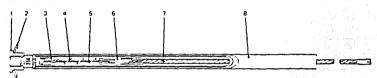


| A TIE | ARA                               |                                                                 |                                                                                   | ENTRE FASES                                                                                                         |                                                                                                                   |                                                                                                                                      |                                                                                                                                                                |                                                                                                                                                                           |  |  |
|-------|-----------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Δ     | 8                                 | С                                                               | E                                                                                 | A                                                                                                                   | 8                                                                                                                 | С                                                                                                                                    | D                                                                                                                                                              | E                                                                                                                                                                         |  |  |
| 0 61  | 1 32                              | 2 00                                                            | 0 46                                                                              | 1 02                                                                                                                | 1 73                                                                                                              | 2 41                                                                                                                                 | 0 91                                                                                                                                                           | 3 60                                                                                                                                                                      |  |  |
| 0 69  | 1 50                              | 2 24                                                            | 0 53                                                                              | 1 32                                                                                                                | 213                                                                                                               | 2 87                                                                                                                                 | 1 22                                                                                                                                                           | 1 17                                                                                                                                                                      |  |  |
| 97 ت  | 1 68                              | 2 97                                                            | 0.81                                                                              | 1 63                                                                                                                | 264                                                                                                               | 3 63                                                                                                                                 | 1 52                                                                                                                                                           | 1 47                                                                                                                                                                      |  |  |
| 1 50  | 198                               | 4 32                                                            | 1 24                                                                              | 2 26                                                                                                                | 2 64                                                                                                              | 5 08                                                                                                                                 | 2 13                                                                                                                                                           | 2 01                                                                                                                                                                      |  |  |
| 1 95  | 2 24                              | 5 18                                                            | 1 68                                                                              | 2 57                                                                                                                | 2 95                                                                                                              | 5 89                                                                                                                                 | 2 44                                                                                                                                                           | 2 39                                                                                                                                                                      |  |  |
|       | A<br>0 61<br>0 69<br>0 97<br>1 50 | A 8<br>0 61   1 32<br>0 69   1 50<br>0 97   1 68<br>1 50   1 98 | A 8 C 0.51   1.32   2.50 0.69   1.50   2.24 0.97   1.88   2.97 1.50   1.98   4.32 | A 8 C E  D 61   1 32   2 60   0 46  D 69   1 50   2 24   0 53  D 97   1 68   2 97   0 81  1 50   1 98   4 32   1 24 | A 8 C E A  0.61 1.32 2.00 0.46 1.02  0.69 1.50 2.24 0.53 1.32  0.97 1.88 2.97 0.81 1.63  1.50 1.98 4.32 1.24 2.25 | A 8 C E A B  0.61 132 2.60 0.46 1.02 1.73  0.69 150 2.24 0.53 1.32 2.13  0.97 188 2.97 0.81 1.63 2.64  1.50 1.98 4.32 1.24 2.25 2.64 | A 8 C E A B C  0.061 1.32 2.00 0.46 1.02 1.73 2.41  0.69 1.50 2.24 0.53 1.32 2.13 2.97  0.97 1.88 2.97 0.81 1.63 2.64 3.63  1.50 1.98 4.32 1.24 2.25 2.64 5.08 | A 8 C E A 8 C D  0.061 132 2 CO 0.46 102 173 2 41 0 91  0.69 150 2 24 0 53 132 2 13 2 87 122  0.97 188 2 97 0.81 163 2 64 3 63 152  150 198 4 32 124 2 25 2 64 5 0.8 2 13 |  |  |



Las distancias se consideran suponiendo que el soporte de la canilla esta energizado:

| TIPO                     | CATALOGO | ΚV   |               | AMP.         |                              | NIVEL<br>DE<br>IMPULSO KV |  |
|--------------------------|----------|------|---------------|--------------|------------------------------|---------------------------|--|
|                          |          | NOM. | MAX.<br>DESC. | NOM.<br>MAX. | INTERRUPTIVOS<br>ASIMETRICOS |                           |  |
| Un sólo aistador         | 92121    | 72   | 8 25          | 200E         | 20000                        | 95                        |  |
| Un solo aislador         | 92122    | 144  | 17            | 200E         | 20000                        | 125                       |  |
| Un solo aistador         | 92123    | 25   | 27            | 200E         | 20000                        | 150                       |  |
| Un solo aislador         | 92124    | 34 5 | 38            | 200E         | 13000                        | 150                       |  |
| Doble aistador P/cruceta | 192232   | 144  | 15.5          | 200E         | 20000                        | 110                       |  |
| Doble aislador P/cruceta | 192233   | 25   | 27            | 200E         | 20000                        | 150                       |  |
| Doble aislador P/cruceta | 192234   | 34 5 | 38            | 200E         | 13000                        | 200                       |  |
| Doble aislador Cibase    | 92222    | 144  | 155           | 200E         | 20000                        | 110                       |  |
| Doble aislador C/base    | 92223    | 25   | 27            | 200E         | 20000                        | 150                       |  |
| Doble aislador C/base    | 92504    | 34.5 | 38            | 200E         | 13000                        | 200                       |  |
|                          | ł        |      |               | l            | ,                            |                           |  |


## FUSIBLES PARA ALTA TENSIÓN



FUSIBLE DE LAMINA CON CAPACIDAD DE 6 AMPERES O MENOS

- 1 Cabezal del Boton de Contecto con Rosca
- Arandele Terminal Superior
- Elemento Fusible
  Pantalla Protectora contra Corona
- Terminal Inferior Muelle de Tension
- 9 Coraza Protectora (también sirve como
- soporte al muelle de tension)

#### FUSIRI ES DE LAMINILLA CON CAPACIDAD DE 8 AMPERES O MAS



"Larga duración sin mantenimimiento" es la característica fundamental de los Fusibles de Laminilla "Positrol" de la S&C para sistemas de distribución.

- El elemento fusible de plata no es corrosible, no es quebradizo, ni permite la reducción del diámetro como resultado de cambios repentinos de corriente que se acerquen al punto de fusión.
- Una precisión en las curvas de característica-de-tiempo. vs corriente-de-fusión mínima de menos 0% y más 10% (en terminos de corriente), simplifica grandemente la coordinación. Esta precisión es de caracter permanente debido a que el elemento fusible es plata.
- Los elementos fusibles son acoplados mecánicamente a les terminales de arqueo. Por lo tanto, como las uniones no se sueldan, se logra no solo que operen de una manera precisa sino que no se afecten a causa de vibraciones ni por razón del tiempo transcurrido desde su instalación.
- Los terminales de arqueo, arandela y cabezal del botón de contacto con rosca son enchapados en plata para darles una resistencia a la corrosion y lograr una mejor transferencia de corriente.
- Una pantalla protectora construida interiormente protege al elemento fusible del deterioro producido por el efecto corona

- 1 Cabezal del Botón de Contacto con Rosca
- Arandela Terminal Superior
- Elemento Fusible
  Alembre de Tensión
- Terminal Interior
- Cable

 Los Fusibles de Laminilla "Positrol", para uso en cortacircuitos "de carda" en sistemas de distribución, se ofrecen en velocidad EEI-NEMA "K" y en las velocidades de la S&C a) Normal, b) Capacitor, c) Coordinación, Se fabrican con capacidades nominales desde 1 hasta 200 amperes.

## 2.8.3 TRANSFORMADORES

#### Información General

## a. Descripción

El transformador acopla magnéticamente circuitos eléctricos distintos permitiendo intercambio de energia a diferentes niveles de voltaje o entre formas distintas de conexión. Dentro de esta función caben numerosas aplicaciones, como la de dar a la tensión de transmisión el valor adecuado definido por la distancia y la potencia.

Los voltajes de generación están entre 480 y 15,000 volts generalmente y son, por lo tanto, muy pocas las instalaciones que no requieren transformación: casi todo circuito industrial incluye transformadores y sufre los efectos de la intercalación de inductancias no lineales.

#### Los transformadores se clasifican en:

- Potencia: los de más de 500 KVA o más de 69 KV
- Distribución: los que no pasan de 500 KVA y de 69 KV

Dentro de la última clasificación, conviene distinguir un tercer grupo:

Utilización: los de 200 KVA o menos y 15 KV o menos

La especificación de un transformador consiste de los siguientes datos fundamentales:

- 1. Número de fases
- Capacidad en KVA
- 3. Frecuencia
- 4. Voltaje v nivel de aislamiento de cada circuito
- 5. Conexión interna o extrema de cada devanado

- 6. Derivaciones (taps)
- 7. Elevación de temperatura
- 8. Altura de operación
- 9. Medio Aislante
- 10. Método de refrigeración
- 11. Características eléctricas
- 12. Características mecánicas
- 13. Dimensiones y peso limites
- 14. Equipo complementario

La selección de un transformador es la determinación de las características enumeradas arriba

#### b. Conexiones internas y externas

Son recomendables algunas conexiones en ciertos casos, como los siguientes:

- Bancos o transformadores trifásicos para subtransmisión o distribución primaria con devanados de 34.5 KV o más. La alta tensión suele conectarse en estrella por las siguientes razones:
- Reducción gradual del aislamiento entre la terminal de línea y el neutro y por consiguiente en el tamaño del transformador, economía que es apreciable para tensiones superiores a 69 KV
- Economia de un aislador de alta tensión cuando se trata de transformadores monofásicos. El aislador en el neutro suele ser de la clase de 15 KV.
- Neutro disponible para conectarlo a tierra y poder obtener protección y control de fallas
  a tierra. La instalación de reactores en el neutro, limita la corriente en las fallas a tierra
  hasta anularla si se desea, aunque generalmente se reduce a valores suficientes para
  obtener una operación sensible de los relevadores a tierra.

Teniendo un lado en estrella, es recomendable conectar el otro en delta para eliminar armónicas en los voltajes y corrientes de linea y evitar los calentamientos adicionales que producen en los equipos y los efectos que causa en los circuitos de comunicación; y también para equilibrar las tensiones en el lado de la estrella.

- Bancos o transformadores para subestaciones alimentadora de un servicio industrial. La conexión delta-delta presenta agul las siguientes ventajas:
- En el lado de alta, impide que el banco actúe como banco de tierra para el sistema que lo alimenta, en cuyo caso está expuesto a corrientes no controlables por el usuario y que pueden ser peligrosas para los transformadores.
- En el lado de baja, reduce considerablemente las corrientes. Cuando la tensión secundaria es de 480 volts y la potencia 1000 KVA o más, esto produce una economía en el costo del transformador y otras más apreciables aún en conductores para distribución y equipo asociado a ellos, como interruptores y transformadores de corriente.
- En caso de banco de transformadores, permite operar dos unidades en delta abierta con 58% de la capacidad total en caso de defecto en la tercera unidad.

Un defecto de esta conexión es no dar paso a las corrientes de secuencia cero, que se originan en fallas desequilibradas.

- Transformadores de Utilización. En estos la conexión indicadas en delta del lado de alta tensión y estrella en el de baja, por las razones siguientes:
- La delta del lado de alta estabiliza el neutro del lado de baja e impide efectos
  perjudiciales en los circuitos de comunicación paralelos a los de fuerza, debido a
  terceras armónicas.
- La estrella en baja tensión permite cargas monofásicas de alumbrado.

## c. Nivel básico de aislamiento de transformadores

Los niveles de la columna 2 son los que deben usarse, a menos que estudios especiales demuestren qué niveles de aislamiento menores pueden ser protegidos adecuadamente contra voltajes de impulso.

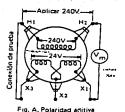
En puntos del sistema en donde pararrayos de 80% pueden ser aplicados próximos al transformador, pueden obtenerse considerables economías reduciendo el nivel básico de aislamiento de los transformadores en una clase de acuerdo con la columna 3 de la tabla.

|                             | (BIL) DEL T          | RANSFORMADOR (KV)                       |
|-----------------------------|----------------------|-----------------------------------------|
| TENSIÓN DEL<br>SISTEMA (KV) | AISLAMIENTO<br>PLENO | AISLAMIENTO<br>REDUCIDO EN UNA<br>CLASE |
| 115                         | 550                  | 450                                     |
| 138                         | 650                  | 550                                     |
| 161                         | 750                  | 650                                     |
| 230                         | 1050                 | . 900                                   |
| 287                         | 1300                 | 1050                                    |
| 345                         | 1550                 | 1300                                    |

## Impedancia Nominal de Transformadores

|                                                                                                                | CLASE DE VOLTAJE KV | IMPEDANCIA % |
|----------------------------------------------------------------------------------------------------------------|---------------------|--------------|
|                                                                                                                | 15                  | 4.5 – 7      |
|                                                                                                                | 25                  | 5.5 – 8      |
| er de la companya de | 34.5                | 6 - 8        |
|                                                                                                                | 46                  | 6.9 – 9      |
|                                                                                                                | 69                  | 7 - 10       |
|                                                                                                                | 92                  | 7.5 – 10.5   |
| mente con                                                                                                      | 115                 | 8 - 12       |
| TESIS CON                                                                                                      | 138                 | 8.5 – 13     |
| FALLA DE ORIGEI                                                                                                | 161                 | 9 - 14       |
|                                                                                                                | 196                 | 10-15        |
| •                                                                                                              | 220                 | 11 – 16      |
|                                                                                                                |                     |              |

#### d. Polaridad de los transformadores


La polaridad de los transformadores indica el sentido relativo instantáneo del flujo de corriente en las terminales de alta tensión con respecto a la dirección del flujo de corriente en las terminales de baja tensión.

La polaridad de un transformador de distribución monofásico puede ser aditiva o substractiva. Una simple prueba para determinar la polaridad de un transformador es conectar dos bordes adyacentes de los devanados de alta y baja tensión y aplicar un voltaje reducido a cualquiera de los devanados.

La polaridad es aditiva si el voltaje medio entre los otros dos bordes de los devanados es mayor que el voltaje en el devanado de alta tensión. Figura A

La polaridad es substractiva si el voltaje medido entre los dos bordes de los devanados es menor que el voltaje del devanado de alta tensión. Figura B

De acuerdo con las normas industriales, todos los transformadores de distribución monofásicos de hasta 200 KVA con voltajes en el lado de alta de hasta 8,660 volts (voltaje del devanado) tiene polaridad aditiva. Todos los demás transformadores monofásicos tienen polaridad substractiva.



rig. A. Polaridad aditiv

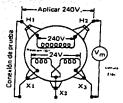
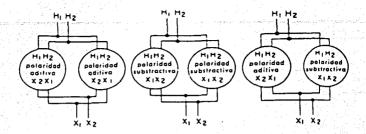



Fig. B. Polaridad substractive

# e. Designación de las terminales de transformadores trifásicos y monofásicos,

La terminal de alta tensión marcada H1, es el de la derecha, visto el transformador desde el lado de alta tensión y las demás terminales "H" siguen un orden numérico de derecha a izquierda. La terminal Ho de los transformadores trifásicos, si existe, está situada a la derecha del H1, visto el transformador desde el lado de alta tensión.


En los transformadores monofásicos la terminal de baja tensión X1, está situado a la derecha, visto el transformador desde el lado de baja tensión, si el transformador es de polaridad aditiva (X1 queda diagonalmente opuesto a H1), o a la izquierda, si el transformador es de polaridad substractiva (H1 y X1 son adyacentes).

En los transformadores trifásicos, la terminal X1 queda a la izquierda, visto el transformador desde el lado de baja tensión. Las terminales X1 y X3 están situados para que las tres terminales queden en orden numérico de izquierda a derecha. La terminal X0, si existe, está situado a la izquierda de la terminal X1.

# f. Conexiones en paralelo de transformadores monofásicos

Si se necesita mayor capacidad, pueden conectarse en paralelo dos transformadores de igual o distinta potencia nominal. Los transformadores monofásicos de polaridad aditiva o substractiva pueden conectarse en paralelo satisfactoriamente si se conectan como se indica a continuación y se cumplen las condiciones siguientes:

- 1. Voltajes nominales idénticos
- 2. Derivaciones idénticas
- El porcentaje de impedancia de uno de los transformadores debe estar comprendido entre el 92.5% y el 107.5% del otro.
- 4. Las características de frecuencia deben ser idénticas.



# g. Bancos Delta-Delta

Para poder tener cargas equilibradas en los transformadores, todas las unidades deben:

- 1. Estar conectadas en la misma posición de las derivaciones
- 2. Tener la misma relación de tensión
- 3. Tener la misma impedancia

Un banco de tres transformadores pueden hacerse funcionar a potencia reducida con una pequeña carga desequilibrada si dos de las unidades tienen la misma impedancia y la tercera unidad tiene una impedancia comprendida entre ± 25% de las unidades iguales. En la tabla siguiente se indica la distribución de la carga según la relación de desequilibrio (Z1 = impedancia de la unidad distinta, y Z2 = impedancia de las unidades iguales).

|                 | PORCENTAJE DE CAI | RGA * EN         |
|-----------------|-------------------|------------------|
| RELACIÓN Z1, Z2 | UNIDAD DISTINTA   | UNIDADES IGUALES |
| 0.75            | 109.0             | 96.0             |
| 0.80            | 107.0             | 96.5             |
| 0.85            | 105.2             | 97.3             |
| 0.90            | 103.3             | 98.3             |
| 1.10            | 96.7              | 102.0            |
| 1.15            | 95.2              | 102.2            |
| 1.20            | 93.8              | 103.1            |
| 1.25            | 92.3              | 103.9            |

<sup>\*</sup> Con cargas desequilibradas, debe comprobarse que ningún transformador quede sobrecargado



#### h. Bancos Estrella-Delta

Si el neutro del lado de alta tensión del banco de transformadores se conecta al neutro del sistema, el banco puede quemarse por las siguientes razones:

- Se producirán corrientes en la Delta que traten de equilibrar cualquier carga desequilibrada conectada a la línea de primario.
- Actuará como un banco de puesta a tierra y suministrará corriente de cortocircuito a cualquier cortocircuito al sistema al cual está conectado.
- El devanado en Delta forma un circuito cerrado por el que circularán las corrientes de la tercera armónica.
- Puede sobrecargarse si se quema un fusible en caso de cortocircuito a tierra, dejando el banco con la capacidad de un banco conectado en estrella abierta-Delta abierta.

El resultado de todos estos efectos es que el banco se ve forzado a conducir corrientes adicionales a su corriente normal de carga. La suma de las corrientes es, en muchas ocasiones, suficiente para quemar el banco.

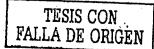
A continuación se muestran algunas tablas que nos ayudaran a seleccionar adecuadamente un transformador según nuestras necesidades;

Características Nominales para Transformadores Monofásicos

Características Nominales para Transformadores Trifásicos

Valores de Corriente y Capacidad Interruptiva en Transformadores a Plena Carga

Capacidad de los Amperes de los Fusibles Comúnmente Usados para Protección de Transformadores Monofásicos


Capacidad de los Amperes de los Fusibles Comúnmente Usados para Protección de Transformadores Trifásicos

# características nominales para transformadores monofásicos

|                      | -                |                |                       |                      |                                              |                            |                             |                     |                |
|----------------------|------------------|----------------|-----------------------|----------------------|----------------------------------------------|----------------------------|-----------------------------|---------------------|----------------|
| TENSION              | ALTA TENSION DEL | TRANSFORMADOR  |                       |                      | (1) CAPACI                                   | IMON CAD                   | HAL PARA B                  | AJA TENSIO          | N DE:          |
| PREFERIDA            | TENSION NOMINAL  | NIVEL BASICO   | DERIVAC               | IONES                | 127/254                                      | 240/480                    | 2400<br>4160                | 6600                | 7620           |
| DEL SISTEMA<br>VOLTS | VOLTS            | DE IMPULSO, KV | ARRIBA                | ABAJO -              | (2) VOLTS                                    | (2)<br>VOLTS               | VOLTS                       | VOLTS               | VOLTS          |
| 2400<br>2400/4160Y   | 2400/4160Y       | 60             | Ninguna<br>2 - 21/2 % | Ninguna<br>2 – 2½%   | 5 - 50<br>75 - 167<br>250 - 500              | 10 - 167<br>250 - 500      |                             |                     | -              |
| 4160<br>4160/7200Y   | 4160/7200Y       | 75             | Ninguna<br>2 – 2½%    | Ninguna<br>2 – 2½%   | 5 - 167<br>-<br>250 - 500                    | -<br>10 - 167<br>250 - 500 | =                           | =                   | -              |
| 7620/13200Y          | 7620/13200Y      | 95             | Ninguna<br>2 – 2½ %   | Ninguna<br>2 – 2½%   | 5 - 50<br>75 - 167<br>250 - 500              | 10 — 167<br>250 — 500      | -                           | -                   | =3:<br>3: =3:0 |
| 7620/13200           | 13200/7620 (3)   | 95             | Ninguna<br>2 – 2½%    | Ninguna<br>2 – 2½%   | 5 - 25<br>5 - 50<br>5 - 25<br>5 - 50         | 1 1 1                      | -<br>-<br>-                 | -                   |                |
| 13200                | 13200            | 95             | Ninguna<br>1 = 2½ %   | Ninguna<br>3 – 214%  | 5 - 167<br>250 - 500<br>5 - 167<br>250 - 500 | -<br>10 - 167<br>250 - 500 | -<br>-<br>-<br>-<br>250 500 | -                   | -              |
| 13200                | 13200/22860 (4)  | 125            | 1 – 2½ %<br>Ninguna   | 3 - 272 %<br>Ninguna | 5 167<br>5 167<br>250 500                    | 10 — 167<br>—              | =                           | =                   | <u>-</u>       |
| 23000                | 23000            | 150            |                       |                      | 10 – 167<br>–<br>–                           | 10 = 167<br>250 = 500<br>= | 100 167<br><br>250 500      | -<br>-<br>250 - 500 | -<br>250 - 500 |
| 34500                | 34500            | 200            | 2 - 24%               | 2 - 212%             | 250 – 500<br>                                | 250 <b>–</b> 500<br>–      | -<br>250 - 500              | -<br>250 – 500      | 250 - 500      |
| 46000                | 44000            | 250            | 2 - 21/2 %            | 2 - 21/2 %           |                                              | 250 – 500<br>–             | -<br>250 - 500              | 250 <b>–</b> 500    | 250 - 500      |
| 69000                | 65000 .          | 350            | 2 - 24 %              | 2 - 21/2%            | <del>-</del>                                 | 250 500<br>                | 250 <b>–</b> 500            | 250 - 500           | 250 - 500      |

<sup>(1)</sup> Las capacidades en KVA separadas por un guión índican que todas las capacidades nominales intermedias están incluidas

Basado en Norma Olicial DGN-J-116-1967



<sup>(2)</sup> La bala tension nominal de 120/240, 127/254 ó 240/480 es apropiada para servicio serie, multiple o de 3 hili

<sup>(3)</sup> Una sola poquilla de alta tension

<sup>(4)</sup> Apropiados unicamente cuando las condiciones de tierra del sistema permiten el uso de apartarrayos de 18 KV.

<sup>(5)</sup> Estos valores se usan en sistemas con tension nominal diferente de la preferida

# características nominales para transformadores trifásicos

| TENSION              | ALTA TEN   | SION DEL TRANS | FORMADO                         | R                             | (1) (2) CAPA                                        | CIDAD NOMI                         | NAL PARA BA                           | UA TENSION               | DE:                           |               |
|----------------------|------------|----------------|---------------------------------|-------------------------------|-----------------------------------------------------|------------------------------------|---------------------------------------|--------------------------|-------------------------------|---------------|
| PREFERIDA            | TENSION    | NIVEL BASICO   | DERIVA                          | CIONES                        | 220Y/127                                            | 220<br>440                         | 220Y/127                              | 440Y/254                 | 2400<br>4160                  | 13200Y/       |
| DEL SISTEMA<br>VOLTS | (21 VOLTS  |                | ARIBA                           | ABAJO                         | VOLTS                                               | VOLTS                              | 440Y/254<br>VOLTS                     | VOLTS                    | VOLTS                         | 7620<br>VOLTS |
| 2400                 | 2400       | 45             | Ninguna<br>1 - 2½%<br>2 - 2½%   | ١.                            | 15 - 75<br>112½ - 150<br>225 - 500<br>-             | 15 - 45<br>-<br>-<br>-<br>-        | 75<br>-<br>-<br>112½ 150<br>225 - 500 | -<br>-<br>-<br>225 - 500 | -                             | =             |
|                      | 4150Y/2400 | 60             | Ninguna<br>1 – 2½ %<br>2 – 2½ % | 1                             | 15 - 75<br>112½ - 150<br>225 - 500                  |                                    | =                                     | -<br>-<br>-<br>225 – 500 | =                             |               |
| 2400/4160Y           | 4150Y      | 60             | Ninglina<br>Z = 2½%             | Ninguna<br>2 - 212%           | =                                                   | 15 - 75<br>112½ - 150<br>225 - 500 | 75<br>                                | =                        | =                             |               |
|                      | 4160       | 60             | 1 - 21/2 %<br>2 - 21/2 %        |                               | 15 + 150<br>225 - 500<br>-                          | -                                  | -                                     | -<br>225 - 500           | - 43<br>(4) <del>- (4)</del>  |               |
| 7620/13200Y          | 13200Y     | 95             | 1 - 24%<br>2 - 24%              | 3 - 215%<br>2 - 215%          | -<br>-<br>-                                         | 15 - 75<br>112%-150<br>225 - 250   | -                                     | - 1 1<br>- <b>-</b> 1    |                               |               |
| 13200                | 13200      | 95             | Ninguna<br>1 – 2½%<br>2 – 2½%   | Ninguna<br>3 – 2½%<br>2 – 2½% | 15 - 150<br>225 - 500<br>15 - 150<br>225 - 500<br>- |                                    | 112½- 150<br>225 - 500                | 225 - 500                | 150<br>225 – 500              |               |
| 23000                | 23000      | 150            | Ninguna<br>2 = 2½%              | Ninguna<br>2 – 215%           | 15 – 150<br>225 – 500<br>–<br>–                     | 11111                              | 15 - 150<br>225 - 500                 | -<br>-<br>225 - 500      | -<br>-<br>-<br>-<br>225 - 500 | ::• ••        |
| 34500                | 33000      | 200            | 2 – 21/1 %                      | 2 – 214%                      | 15 150<br>225 500<br>                               | -                                  | 225 - 500<br>-                        | 1 -                      | -<br>225 - 500                | 225 - 1/0     |
| 16000                | 44000      | 250            | 2 - 214%                        | 2 - 214%                      | -                                                   | -                                  | 225 500<br>                           | =                        | 225 – 500                     | 225 - 140     |
| 59000                | 66000      | 350            | 2 - 24%                         | 2 - 2!4%                      | -                                                   | -                                  | 500                                   | -                        | 500                           | •×x           |

<sup>(1)</sup> Las capacidades en KVA separadas por quión ( -- ) indican que todas las capacidades intermedias estan incluida

Basado en Norma Oficial DGN-J-116-1967



<sup>12)</sup> Todos los transformadores son conexion Deita a menos que se especifique lo contrario

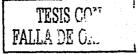
# valores de corriente y capacidad interruptiva en transformadores a plena carga

| CAPACE<br>DAB DEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 000 WOLF                  | •                                                                          |                               |                                                                                                  | j +44 +01.1           |                                                                              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 244 404 1                    |                                                                                      |                              |                                                               | 1 100 VOLT             |                                                                                      |          |                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------|----------|-----------------------------------------------|
| 18 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 44<br>04 COM 10<br>COM 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00<br>881 847 8<br>COm 11 | -                                                                          | TOTAL ST                      |                                                                                                  | CO-11                 | Caracida0<br>CORR.(41)                                                       | 1014, 19<br>12               | ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO-11                          | CAPACIDAD<br>C 44:1111<br>AMPIRES PR                                                 |                              | •                                                             | 00-11-000<br>00-11-000 | CAPACIDAD<br>COAR-INT                                                                | ·0' · 1- |                                               |
| 10 AC 01<br>10 | DISPOSE ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5000AL                    | ***********<br>*********<br>*********                                      | 100.1<br>PULCUELI<br>LYBC* OF | 1004<br>1004                                                                                     | CAAGA<br>MCMWAL<br>AM | #L<br>18441F08<br>84008<br>10L0                                              | tanga pe<br>motomés<br>testa | (Comp.<br>NADO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CAAGA<br>MORMAN<br>AM<br>PEREE | TRANSPOR<br>MADOR<br>MOLO<br>MOLO                                                    | SANGA DE<br>MOTORES<br>10076 | CDMMI<br>N AODS                                               |                        | PRANCE COL.                                                                          | -25      | 44,30                                         |
| X20<br>1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1600<br>P600<br>6000<br>6000<br>6000<br>6000<br>6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .es                       | 910<br>910<br>910<br>910<br>910                                            | ****                          | 683<br>635<br>635<br>635<br>635<br>635<br>635<br>635<br>635<br>635<br>63                         | <b>-</b>              | 7 1000<br>8 1000<br>8 1000<br>11 100<br>84000<br>84000<br>84000<br>84000     | +800                         | 11/00<br>96/00<br>10,000<br>104/00<br>104/00<br>104/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 773                            | 1 7900<br>1 9600<br>16100<br>1 7000<br>1 7000<br>1 7600<br>1 7600<br>1 7600          | _                            | 1000<br>1000<br>1000<br>7000<br>7100<br>7100<br>7100<br>7100  | 654                    | 10 FEED<br>10 FEED<br>10 EED<br>10 EED<br>20 EED<br>20 EED<br>20 EED                 | ?·m      | 100                                           |
| 1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7400<br>4133<br>1300<br>14770<br>7470<br>7470<br>54400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | em.                       | *900<br>#000<br>10700<br>10800<br>10800<br>10800                           | 160                           | 10 100<br>11 700<br>12 100<br>12 100<br>17 100<br>17 100<br>17 100<br>17 100<br>17 100<br>17 100 | <b>.</b> ,            | 9903<br>1743<br>1743<br>1743<br>1743<br>1743<br>1743                         | 1700                         | 17600<br>1770<br>11400<br>11400<br>11400<br>11400<br>11400<br>11400<br>11400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                | 1900<br>2700<br>2700<br>7400<br>7400<br>7400<br>3100<br>2700                         | 1400                         | 75.300<br>76.300<br>10700<br>10800<br>21400<br>31400<br>37400 | 1750                   | 77900<br>76100<br>76400<br>76400<br>81400<br>81400                                   | 31000    | *135<br>*1409<br>*740<br>*740<br>*740<br>*740 |
| 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PARTO<br>SALES<br>SECTION<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALES<br>SALE | 491                       | 96.30<br>10333<br>11533<br>11533<br>11633<br>11633<br>11633                | 1400                          | 100                                                                                              | <b>6</b> 00           | 10000<br>17400<br>14100<br>14100<br>14100                                    | Trap                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | i xoo                          | 21100<br>71100<br>21200<br>78700<br>78700<br>78700<br>78700                          | -                            | 37100<br>31100<br>31300<br>3400<br>3400<br>3400<br>3400       | · <b>-</b>             | 14 (EE)<br>17 (EE)<br>17 (EE)<br>17 (EE)<br>17 (EE)<br>18 (EE)<br>18 (EE)<br>18 (EE) | nos .    | 1000000                                       |
| 600<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MODE<br>MITE<br>MITE<br>MITE<br>MITE<br>MITE<br>MITE<br>MITE<br>MIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 576                       | 1100<br>11430<br>1780<br>1330<br>1800<br>1400                              | recon                         | 1400<br>1400<br>1400<br>1400<br>1400<br>1400                                                     | ""                    | 1 100<br>1 400<br>1 100<br>1 100<br>1 100<br>1 100                           | RoD .                        | 14833<br>19735<br>19735<br>70835<br>71730<br>71730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ٠                              | PACE<br>MOUD<br>17:00<br>17:00<br>14:00<br>PACE<br>PACE                              | ricas                        | 11600<br>14700<br>16700<br>11600<br>17700                     | 1000                   | 78.700<br>23400<br>31100<br>38100<br>78.700<br>40800<br>41.700                       |          |                                               |
| 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 74230<br>53330<br>10200<br>14300<br>74200<br>45300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 122                       | 1 (MAID<br>1 2000<br>1 4400<br>1 4400<br>1 4600<br>1 4600                  | 2000                          | 14,000<br>14100<br>14100<br>14100<br>14100<br>14100<br>14100                                     | ш,                    | 1100<br>18100<br>18000<br>18000<br>18000<br>2000<br>2000                     | **00                         | 7000<br>77100<br>77100<br>71330<br>7400<br>7400<br>7400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ****                           | 76803<br>1,7 330<br>36 100<br>3 7600<br>7600<br>96000<br>61000                       | ***                          | 31400<br>4120<br>4100<br>4100<br>4400<br>4000<br>4000         | 10-83                  | 70400<br>37100<br>41000<br>41000<br>41000<br>41000                                   | 1200     | 7:37:3                                        |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 190E<br>SUID<br>SUID<br>SUID<br>SUID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | w.,                       | 1 3 feet<br>16100<br>18100<br>18100<br>20100<br>21100<br>21100             | •===                          | 7100<br>7100<br>7100<br>7100<br>7100<br>7100<br>7100                                             | 1,000                 | 70400<br>70700<br>12700<br>12400<br>13400<br>3360<br>3460<br>17600           | •                            | /1 830<br>76 700<br>76 700<br>20420<br>31 400<br>17 400<br>33 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7400                           | 11708<br>40308<br>40309<br>40309<br>11009<br>12009<br>12009                          | 17000                        | 41709<br>17709<br>16300<br>60000<br>63000<br>64000<br>64000   | 21 <b>500</b>          | 20100<br>4120<br>11600<br>4120<br>4120<br>4120<br>61620<br>61620                     |          | 100                                           |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (*000<br>(*000<br>(*1000<br>(*1000<br>(*1000<br>(*1000<br>(*1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | 11 700<br>21 800<br>2400<br>21 800<br>21 800<br>31 800<br>31 800<br>31 800 | ,,,,,,                        | 7 1 20<br>70 10<br>70 10<br>70 10<br>70 10<br>8400<br>40 00                                      |                       | 7 MCDS<br>766000<br>177900<br>246000<br>246000<br>246000<br>368000<br>611000 | -                            | 74620<br>74620<br>61 120<br>61 120<br>61 120<br>46 7620<br>47 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1800                           | 20 XXX<br>5.27/30<br>64/5/20<br>64/5/20<br>74/20<br>74/20<br>74/20<br>8,000<br>8,000 |                              | 1/300<br>7/300<br>8/100<br>8/100<br>1/000<br>9/400            |                        |                                                                                      |          |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COLOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | j                         | 75.00<br>75.00<br>76.00<br>76.00<br>76.00<br>76.00<br>76.00<br>76.00       |                               | 1, pa<br>6-100<br>6-100<br>7-100<br>7-100<br>7-100                                               | 7400                  | 72100<br>31100<br>31100<br>36400<br>64400<br>44600<br>50100<br>54100         | · Xxxx                       | 20 CO 14 CO |                                |                                                                                      |                              |                                                               |                        |                                                                                      |          |                                               |

-----

Lis coming regions or 2 " The common of the

The region of the first state of the state o


#D+44D+140



# capacidades en amperes de los fusibles comúnmente usados para protección de transformadores monofásicos

| POTENCIA          | 2400 VO        | TS      | 4160 VOL       | TS        | 6000 VQ1       | .TS     | 6600 VOL       | TS         | 13200 VO       | LTS                                              | 22000 VQ       | LTS      | 339e0 VO          | LTS     |
|-------------------|----------------|---------|----------------|-----------|----------------|---------|----------------|------------|----------------|--------------------------------------------------|----------------|----------|-------------------|---------|
| KVA<br>DEL TRANS- | AMPERE         | S       | AMPERES        | •         | AMPERE         | 5       | AMPERES        |            | AMPERE         | 5                                                | AMPERE:        | 5        | AMPERE            |         |
| FORMADOR          | CARGA<br>PLENA | FUSIBLE | CARGA<br>PLENA | FUSIBLE   | CARGA<br>PLENA | FUSIBLE | CARGA<br>PLENA | FUSIBLE    | CARGA<br>PLENA | FUSIBLE                                          | CARGA<br>PLENA | FUSIBLE  | CARGA<br>PLENA    | FUSIBLE |
| 1.5_              | 0 625          | 3       | 0.360          | 2         | 0 250          | 1       | 0 277          | 1          | 0.113          | <del>                                     </del> |                |          | 122.17            |         |
| 3                 | 1.250          | 5       | 0.721          | 3         | 0 500          | 2       | 0 454          | 2          | 0 227          | l ;                                              |                |          |                   |         |
| 5                 | 2 083          | 5       | 1.202          | 5         | 0.833          | 3       | 0 757          | 3          | 0 378          | 1 2                                              | 0 23           |          |                   | •       |
| 7.5               | 3 125          | 7       | 1.803          | 5         | 1,250          | 5       | 1.136          | 5          | 0 568          | 3                                                | 0.34           |          |                   |         |
| 10                | 4.166          | 10      | 2.403          | 5         | 1.666          | 5       | 1.515          | 5          | 0.757          | 3                                                | 0.46           | 11/2     | 0.30              | 1       |
| 15                | 6.250          | 15      | 3 606          | 7         | 2.500          | 5       | 2 273          | 5          | 1.136          | ۱.                                               |                |          |                   |         |
| 25                | 10 417         | 25      | 6 010          | 15        | 4.166          | 10      | 3.788          | 7          | 1.894          | 5                                                | 0.68           | 2        | 0 45              | 11/2    |
| 37.5              | 15 625         | 40      | 9 014          | 20        | 6 250          | 15      | 5 682          | 15         | 2 841          | ] ]                                              | 1.14           | 3        | 0.76              | 2       |
| 50                | 20 633         | 50      | 12 019         | 25        | 8 333          | 20      | 7 576          | 20         | 3.788          | 10                                               | 227            | 5        | 1 14              | 3       |
| 75                | 31.250         | 65      | 18 029         | 40        | 12.500         | 25      | 11.364         | 25         | 5 682          | 15                                               | 341            | 7        | 1 52<br>2 27      | 5       |
| 100               | 41 666         | 85      | 24 038         |           |                |         |                |            |                |                                                  |                |          | 771               | 7 :     |
| 150               | 62,500         | 100     | 36.058         | 50        | 16 666         | 40      | 15.152         | 30         | 7 576          | 20                                               | 4.55           | 10       | 3 03              | 7 .     |
| 167               | 59 583         | 100     | 40.144         | 85        | 25,000         | 50      | 22.727         | 50         | 11 364         | 25                                               | 6.82           | 15       | 4 55              | 10      |
| 200               | 83 333         |         | 48.077         | 85<br>100 | 27.833         | 65      | 25 303         | 50         | 12 651         | 30                                               |                |          | -1-11             |         |
| 250               | 104.166        |         | 60.096         | 100       | 33.333         | 85      | 30.303         | 65         | 15.151         | 30                                               | 9.10           | 15       | 6 06              | 15      |
|                   | 104.100        |         | 00.030         | 100       | 41.666         | 85      | 37,879         | 85         | 18 939         | 40                                               | 11.4           | 20       | 7.58              | 15      |
| 333               | 138.750        |         | 80 048         |           | 55 600         | 100     | 50 454         |            |                | !                                                |                | 19 gA    | 4.0.971           |         |
| 400               | 166 666        |         | 96.154         |           | 66 666         |         | 60.606         | 100<br>100 | 25,227         | 50                                               | 15.2           | 25       | 10.1              | 20 -    |
| 500               | 208.333        |         | 120.192        |           | 83.333         |         | 75.758         |            | 30 303         | 65                                               | ] == "         |          |                   |         |
| 667               |                |         |                |           | 111,166        |         | 101 060        |            | 37.879         | 85                                               | 230            | 40       | 15,1              | 25      |
| . 833             |                |         |                |           | 138.833        |         | 126 212        |            | 50.530         | 100                                              | 34-34-3        | 1. Miles | \$ 13 to 1        |         |
| 1000              |                |         | 1              |           | 166,666        |         | 151.515        |            | 63,106         | 100                                              |                |          | S                 | 41      |
|                   |                |         |                |           | .55.000        |         | 131.515        |            | 75.757         |                                                  |                |          | 1 - 1 - 5 - 5 - 1 | 12.20   |

NOTA: El uso de los fusibles de la capacidad mínima indicada esegura la protección máxima del transformador contra fallas en el secundario próximas a él,

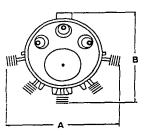


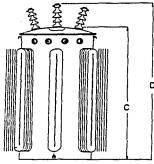
# capacidad en amperes de los fusibles comúnmente usados para protección de transformadores trifásicos

|           |          |             | ***       |          | 884 +    |                                              | 3 400    |          | 1 4 160        |                  | 8 000          |               | 8 800          |         | 13 200         |           | 27 000         |          | 33 000         |          | 44 000         |            |
|-----------|----------|-------------|-----------|----------|----------|----------------------------------------------|----------|----------|----------------|------------------|----------------|---------------|----------------|---------|----------------|-----------|----------------|----------|----------------|----------|----------------|------------|
|           | -mfati   |             | AMPL Ht 1 |          | AMPERE   | <u>.                                    </u> | AMPERE   |          | AMPERE         | 3                | AMPERE         |               | AWINE          |         | AMPERE         |           | AMPERE         |          | AMPERE         |          | AMPERE         |            |
| TORMADOR  | FLENA    | fusione     | PLENA     | FUSIELE  | PLEMA    | FUSIBLE                                      | PLENA    | FUSIBLE  | CARGA<br>PLEMA | FUSIBLE          | CARGA<br>PLENA | FUSIBLE       | CARGA<br>PLEMA | fusionE | CARGA<br>PLENA | FUSIBLE   | CARGA<br>PLENA | PUSIBLE  |                | FLAIBLE  | CARGA<br>PLENA | Fusinus    |
| 3         | 13110    |             | 6 560     |          | 2 250    |                                              | 1 203    | ,        | 0 894          | <del>  , -</del> | 2451           | <del>  </del> | -              |         | <u> </u>       |           |                | <u> </u> |                | <u> </u> | 72844          | <u> </u>   |
| 15        | 18 700   |             | 9 850     |          | 7 880    | ł                                            | 1 810    | 1        | 1040           | '                | 0.481          | ,             | 0437           | 3       | 0 218          | '         |                |          |                |          |                |            |
| •         |          |             |           |          |          |                                              | 2 105    |          | 1248           | 5                | 0 940          | _             |                |         | 0 330          |           |                |          |                | <b> </b> |                |            |
| 10        | 26.270   |             | 13 130    |          | 10 500   |                                              | 2 405    | ,        | 1 104          |                  | CHAI           | 1:            | 0 797          | ,       | 0 363          | ١ '       | 0.340          | 1        | 8 160          | •        |                | l          |
| 15        | JU 410   |             | 19 700    |          | 15 750   |                                              | 3 804    | 10       | 2 0m2          | 1                | 144)           | ;             | 1212           | ,       | 0 437          | 1         | 0.380          | ٠.       | 8 170          | •        | _              |            |
| 22.5      | i        |             |           |          |          |                                              | 5413     | 1.5      | 3123           | ,                | 2105           | ,             | 1900           | •       | 0 656          | 3         | 0 300          | ''       | 0.260          | ١.       | _              | J          |
| 25        | 85 6m2   |             | 32 440    |          | 20 270   |                                              | 6014     | 16       | 3 470          | ,                | 1405           | ,             | 2182           |         | 1063           | 1         | 0 540          | ''       | 0.300          | 15       |                |            |
| 30        |          |             |           | <u> </u> |          |                                              | 7 217    | 13       | 4 164          | 10               | 2 887          | ļ ,           | 2 624          | ,       |                | •         | 0 660          | 1        | 8 440          | 15       |                |            |
| 27 5      | 94 530   |             | 49 760    |          | 35 400   |                                              | 9 021    | 20       | 6 704          | 15               | 104            | ,             | 2 280          | ,       | 1 312          | •         | 0.180          | 1        | 0.70           | 15       |                |            |
| 45        |          |             |           |          |          |                                              | 10 825   | 25       | 0 245          | 15               | 4 3,00         | 10            | 3124           |         | 1 900          |           | 0 993          | '        | 0 000          | 2        |                |            |
| <b>50</b> | 131 370  |             | 45 6W     |          | 67 550   |                                              | 12 029   | xo oc    | 8 840          | 15               | 4811           | 10            | 4 374          | 10      | 2 100          |           | 1 310          | ,        | 0 786          | 3        | 0 540          | **         |
| 75        | 197 083  |             | 90 S.E    |          | 78 6 20  |                                              | 18 043   | 40       | 10 409         | 25               | ,,,,           | 15            | 9 500          | 15      | 3 780          | ;         | 1970           | 1:       | 0630           | 1        | 0.660          | '          |
| 100       | 393 740  |             | 131 370   |          | 105 100  | _                                            | 24 057   | 50       | 13 879         | l ao             | 9 623          | xa a          | 8744           | 20      | 4374           | 1,0       | 7 836          | :        | 1 310          |          | 0 990          | ١,         |
| 1125      |          |             |           |          |          |                                              | 27 084   | *5       | 15 814         | 40               | 10 825         | 25            | 8341           | 25      | 4 9 21         | 10        | 2000           | ;        |                | •        | 1 310          | ١,         |
| 150       | J94 110  |             | 197 000   |          | 157 850  |                                              | 36 085   | 85       | 20 014         | 50               | 14 4 34        | ın.           | 13 122         | 20      | 0.560          |           | 3940           |          | 1 870          | •        | 1 480          | ١.         |
| 3420      | 525 440  |             | 282 740   |          | 210 190  |                                              | 48 114   | 100      | 27.754         | 85               | 16 248         |               | 17 494         | -       | 0.744          | 15.       | 6 750          | ,        | 3 630          | •        | 1 810          | ١,         |
| 225       | <u> </u> |             |           |          |          |                                              | 54 126   | 100      | 31 228         | <br>es           | 21 813         | - u           | 19 863         | 40      | 9 941          | 25        | 1900           | ".       | 3 940          | ,        | 16.0           | *          |
| 300       | 786 230  |             | Je4 110   |          | 315 210  |                                              | 12 1/1   |          | 41 627         | 80               | 20 864         |               | 26.244         | 40      | 12 122         | 20        | 7800           |          | 3 840<br>8 250 | 10       | 3 960          | ١,         |
| ≪0        |          |             | 525 440   |          | 420 360  |                                              | 94 240   |          | 55 580         |                  |                |               |                |         | 17 520         | -         |                |          | 1.20           | 10       | 3840           | **         |
| 450       |          | —           |           |          | i        |                                              | 108 256  |          | 62 456         | 100              | 42 302         | es            | 35 204         | 86      | 10 002         |           | 11 BOD         | 20       | 7 870          |          |                |            |
| 100       |          |             | 854 840   |          | 525 490  |                                              | 120 285  |          | 60 3vs         | l                | 49 114         | 100           | 43 740         | 85      | 21 670         | <b>40</b> | 13 100         | 20       | 8740           |          | 6 970          | 19         |
| 800       |          | -           |           | <u> </u> |          |                                              | <b> </b> |          |                | l                | 57 477         | 100           | 17 444         | 100     | 20 244         | 96        |                |          |                | "        | 8 600          | <b>"</b> . |
| 750       |          | <del></del> | 905 210   |          | 784 730  | <u> </u>                                     | l—       |          | I              | <b> </b>         | 22 171         | l             | 65 610         | 100     | 32 805         |           | 18 700         | 20       | 13 100         |          | * ***          | <u></u>    |
| 100       |          |             | 1313 730  |          | 1050 870 | <b> </b> —                                   | l —      | <b> </b> |                | 1                | 96 229         | l             | 67 440         |         | 43 740         | 100       | 26.300         | -<br>-   | 17 500         | 20       | 13 100         | I -        |
| 200       |          |             |           | <b> </b> | l—       |                                              | l        |          |                | l                | 116 473        | l             | 104 676        |         | \$2.400        | 100       |                |          |                |          | 12 /00         | על         |

<sup>\*</sup> Protegicos per tira fundres
\*\* Se tem transfermationes manafánces, wantes las EVA sespidel bones.

Ort borns.
Plate La coble interce of fundes que delle usure des cuesquer y profer.
Place de l'uniquer terrade della sel pur querpio, pare un banca
de tella transferantian mindfacers de E. E. Vic. cela.


unto temphin amine tran form do 4 100 volts, to convente do to timo or do 2 00 proprio o y ou recommendo um hundro do 5 proprio os La comento do creas pará lo struma, yo ose que se para do como desta o constituir.


TESIS CON FALLA DE ORIGEN

# 2.8.4 TRANSFORMADORES DE DISTRIBUCIÓN

# a. Tipo Poste

Los transformadores Tipo Poste, están diseñados específicamente para aplicaciones donde la distribución de energia eléctrica sea aérea. La aplicación convencional de este tipo de transformadores es en la distribución eléctrica citadina, rural de están desde 10 KVA hasta 167 KVA, en unidades monofásicas, hasta KVA y en trifásicas desde 30 hasta 150 KVA, hasta clase 34.5 KV.



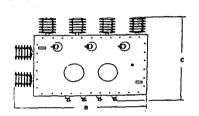


# 3 (TRES) FASES, 60 HZ, 15 KV-65°C

| KVA   | A    | 8    | С    | 0    | PESO TOTAL<br>KGS. | ACEITE<br>LTS. |
|-------|------|------|------|------|--------------------|----------------|
| 15    | 457  | 457  | 838  | 1041 | 240                | 97             |
| 30    | 579  | 678  | 946  | 1149 | 333                | 148            |
| 45    | 681  | 729  | 1073 | 1276 | 360                | 160            |
| 75    | 1068 | 930  | 984  | 1187 | 517                | 185            |
| 112.5 | 1350 | 908  | 1184 | 1387 | 655                | 205            |
| 150   | 1422 | 1067 | 1168 | 1372 | 998                | 297            |

#### 3 (TRES) FASES, 60 HZ, 25 KV-65°C

| 45    |     | Referi | se a Fábri |      |      |     |
|-------|-----|--------|------------|------|------|-----|
| 75    | 813 | 711    | 1499       | 1880 | 857  | 326 |
| 112.5 | 889 | 787    | 1397       | 1803 | 784  | 265 |
| 150   | 965 | 813    | 1499       | 1880 | 1161 | 395 |


Acotaciones en mm

Las dimensiones, pesos y votúmenes son aproximados y sujetos a cambio sin previo aviso.

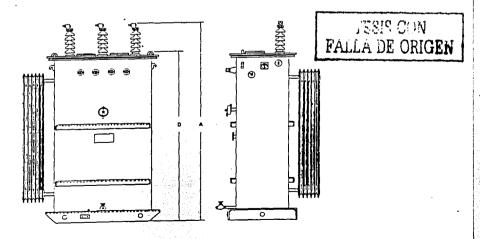
TESIS CON FALLA DE ORIGEN

# b. Tipo Estacion

Este tipo de unidades halla su aplicación principal en edificios comerciales, hoteles, hospitales, industrias, y aquellos lugares donde la instalación del transformador sea en una subestación interior o intemperie sobre piso. Estos transformadores se fabrican desde 225 KVA hasta 500 KVA, hasta clase 34.5 KV.



#### 2/THES EASES BO HZ 15 KV-65°C

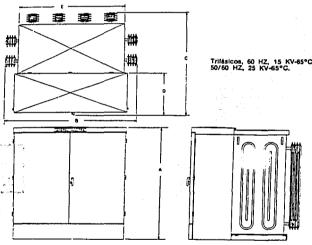

| KVA | Α    | В    | C    |      | PESO TOTAL  | ACEITE<br>LTS. |
|-----|------|------|------|------|-------------|----------------|
| 225 | 1276 | 1283 | 1054 | 1080 | 923<br>1250 | 215<br>273     |
| 500 | 1505 | 1502 |      | 1346 | 1660        | 393            |

#### 3 (TRES) FASES 50/60 HZ, 25 KV-65°C

| KVA | A    | В    | С    | D    | PESO TOTAL<br>KGS. | ACEITE<br>LTS, |
|-----|------|------|------|------|--------------------|----------------|
| 300 | 1626 | 1467 | 1207 | 1270 | 1440               | 400            |
| 500 | 1753 | 1595 | 1300 |      | 1950               | 434            |

Acotaciones en mm.

Las dimensiones, pesos y volúmenes son aproximados y sujetos a cambio sin previo aviso.




- 72

44.4

# c. Tipo Pedestal

Los transformadores Tipo Pedestal son unidades diseñadas para la distribución subterránea comercial o residencial de energia eléctrica que por su aspecto armonizan plenamente con la arquitectura moderna en fraccionamientos residenciales, centros comerciales, condominios industrias, etc. Se fabrican en unidades monofásicas desde 15 hasta 100 KVA en clases 15 y 25 KV y en unidades trifásicas desde 45 hasta 750 KVA en clases 15 y 25 KV.

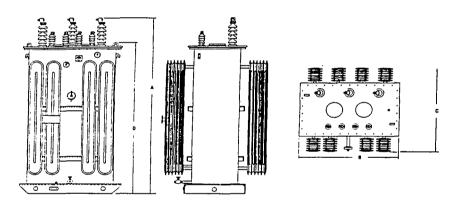


#### CON FUSIBLES TIPO BAYONETA

| KVA   | A    | В    | С    | ٥  | E    | PESO TOTAL<br>KGS. | ACEITE |
|-------|------|------|------|----|------|--------------------|--------|
| 45    | 1320 | 1150 | 1100 | 50 | 1150 | 990                | 400    |
| 75    | 1320 | 1150 | 1130 | 50 | 1130 | 1020               | 435    |
| 112!4 | 1320 | 1150 | 1130 | 50 | 1130 | 1100               | 445    |
| 150   | 1320 | 1150 | 1240 | 50 | 1250 | 1270               | 520    |
| 225   | 1320 | 1150 | 1340 | 50 | 1250 | 1560               | 510    |
| 300   | 1320 | 1150 | 1390 | 50 | 1450 | 1650               | 500    |
| 500   | 1420 | 1250 | 1540 | 50 | 1640 | 2340               | 900    |

#### CON FUSIBLES LIMITADORES DE CORRIENTE INO SE MUESTRA FIGURAL

|              | _            |
|--------------|--------------|
| 1100<br>3100 | 1500<br>1500 |
|              |              |


Las dimensiones, pesos y volúmenes son aproximados y sujetos a camb



# 2.8.5 TRANSFORMADORES DE POTENCIA

# a. Tipo Estación

Los transformadores de potencia tipo estación están diseñados para llevar los requerimientos de energía eléctrica para la alimentación de edificios comerciales, hoteles, hospitales, plantas industriales, etc., donde la instalación de la subestación sea interior o intemperie y sobre piso. Se fabrican desde 500 KVA hasta 5000 KVA hasta clase 34.5 KV.



#### 3 (TRES) FASES, 60 HZ, 15 KV-65°C

| KVA  | Α    | В    | С    | D    | PESO TOTAL<br>KGS | ACEITE<br>LTS. |
|------|------|------|------|------|-------------------|----------------|
| 1000 | 1981 | 1918 | 1684 | 1651 | 3222              | 860            |
| 1500 | 2261 | 1918 | 1857 | 1930 | 4830              | 1060           |
| 2000 | 2286 | 2073 | 1832 | 1956 | 6060              | 1595           |
| 2500 | 2750 | 2734 | 1883 | 2356 | 8470              | 1930           |

#### 3 (TRES) FASES, 60 HZ, 25 KV-65°C

|      |      | ,    |      |      |      |      |
|------|------|------|------|------|------|------|
| 750  | 2532 |      | 1721 | 2032 | 3980 | 1800 |
| 1000 | 2515 | 1984 | 1451 | 1930 | 3900 | 1420 |
| 1500 | 2515 | 2683 | 2137 | 1930 | 5440 | 1425 |
|      | 2516 | 1991 | 1682 | 2248 | 6180 | 1950 |
| 2500 | 3047 | 2006 | 2032 | 2997 | 8820 | 2500 |
|      | l    | l    | į    | 1    |      | ľ    |

FALLA DE ORIGEN

Acotaciones en mm.

Las dimensiones, pesos y volúmenes son aproximados y sujetos a cambio sin previo aviso.

### 2.8.6 TRANSFORMADORES DE CONTROL Y ALUMBRADO

#### a. Tipo Seco

Los transformadores para control y alumbrado Tipo Seco, hallan su aplicación en cualquier estación de alumbrado o circuitos de control. Se fabrican en unidades monofásicas hasta 50 KVA, clase 1.2 KV y trifásicas hasta 150 KVA, clase 1.2 KV.

#### 2.8.7 MANTENIMIENTO DE TRANSFORMADORES EN ACEITE

#### a. Introducción

El transformador es el equipo eléctrico con el cual el usuario comete mayores abusos, lo trabajan a sobrecargas continuas, se le protege inadecuadamente y si se le dedica un período de mantenimiento, este por lo general es pobre.

Sin embargo, tales abusos se reflejan en una disminución considerable de la vida útil del aparto. Se mostrarán los tipos de fallas más comunes, su manifestación general, y la secuela de operaciones que permiten al hombre de mantenimiento el evitar o detectar las fallas.

#### Tipos de Falla

Las fallas en el transformador, pueden ser clasificadas como:

- 1. Fallas en el aceite aislante y equipo auxiliar
- 2. Fallas en el devanado

Fallas en el aceite: El aceite aislante se deteriora por la acción de la humedad, del oxígeno, por la presencia de catalizadores (cobre) y por temperatura. La combinación de éstos, da como resultado la generación de ácidos que atacan intensamente a los aislamientos y a las partes mecánicas del transformador. De esta acción química resultan los lodos que se

precipitan en el transformador y que impiden la correcta disipación del calor, acelerando por lo tanto el envejecimiento de los aislamientos y su distribución.

El contenido de agua en el aceite, se define en partes por millón, 1000 partes por millón (ppm) = 1% humedad.

Se dice que un aceite esta en equilibrio, cuando su contenido de humedad es igual a 40 ppm (0.04 % de humedad).

Al romperse la condición de equilibrio, es decir, aumentarse el valor de contenido de humedad en el aceite, se obtiene los siguientes resultados:

- El aceite sede su humedad a los aislamientos, con lo cual se incrementa su
  valor de factor de potencia y sus pérdidas, lo que se traduce en
  envejecimiento y destrucción.
- El incremento de humedad del aceite, disminuye su valor de voltaje de ruptura o rigidez dieléctrica. Con valores de 60 ppm, la regidez se disminuye en un 13%.

El aceite se satura, cuando su contenido de humedad es de 100 ppm (0.1%), Bajo esta condición, cualquier adición en humedad será absorbida por los materiales fibrosos del transformador, como son: cartones, papeles aislantes y maderas.

Se concluye que la inspección de un aceite, debe abarcar al menos:

Contenido de humedad, Acidez, Rigidez Dieléctrica, Presencia de Iodos.

Fallas en el equipo auxiliar:

Se debe tener la certeza que el equipo auxiliar de protección y medición funcione correctamente. Debe repararse la tornillería.

El tanque debe estar limpio, sus juntas no deben presentar signo de envejecimiento y se debe corregir de inmediato cualquier fuga.

Se debe revisar que no existan rastros de carbón en el interior del tanque y que no presente señales de abombamiento, debemos desconectar el transformador y tratar de determinar las causas que lo hayan generado.

Fallas en los devanados: Este tipo de fallas pueden ser ocasionadas por:

- Falsos Contactos
- Corto Circuito Externo
- Corto Circuito entre espiras
- Sobretensiones por descargas atmosféricas
- Sobre tensiones por transitorios
- Sobrecarga
- Falsos Contactos. D e no detectarse a tiempo, este tipo de falla deteriora el aislamiento y contamina el aceite produciendo gasificación, carbono y "abombamiento" del transformador. Como los falsos contactos se originan por terminales sueltas, es recomendable apretar periódicamente las terminales externas e internas del transformador.
- Corto Circuito Externo. Esta falla, como su nombre lo indica, es producida por un corto externo al transformador. El daño que produzca el transformador dependerá de su intensidad y del tiempo de duración.

La corriente que circula durante el corto, se traduce a esfuerzos mecánicos que distorsionan los devanados y hasta los ponen fuera de su lugar. Si el corto es intenso y prolongado, su efecto se reflejará en una degradación del aceite, sobrepresión, arqueos y "abombamiento" del tanque.

- Corto Circuito entre Espiras. Este tipo de fallas, son el resultado de aislamientos
  que pierden sus características por exceso de humedad, por sobrecalentamientos
  continuaos, por exceso de voltaje, etc.
- 4. Sobretensiones por Descargas Atmosféricas. Para prevenir, en lo que cabe, este tipo de falla, se recomienda el uso de apartarrayos lo más cercano al transformador. La manifestación de este tipo de fallas, son bobinas deterioradas en la parte más cercana al transformador, o sea, a los herrajes.
- 5. Sobretensiones por Transitorios. Son producidas por falsas operaciones de switcheo, por puesta de servicio y desconexión de bancos capacitores, etc. Los sobrevoltajes que se producen son del orden de hasta dos veces el voltaje de operación, su resultado de daño es a largo plazo y se define en algunas ocasiones como un corto circuito entre espiras.
- 6. Sobrecargas. Si las sobrecargas a que se sujeta el transformador no ha sido tomadas en cuenta durante el diseño del aparato, éste se sujetará a un envejecimiento acelerado que destruirá sus aislamientos y su falla se definirá por un corto circuito entre espiras.

#### b. Resultados

Del análisis de falla en transformadores, podemos determinar que salvo en el caso de sobretensiones ocasionadas por los rayos, todas las demás fallas se pueden prever con un buen mantenimiento de nuestro transformador y si la falla esta en proceso, un buen registro de mantenimiento y estudio del mismo podrá detectarla a tiempo.

En nuestra operación de mantenimiento, debemos verificar lo siguiente:

- 1. Relación de transformación
- 2. Resistencia de aislamiento

- 3. Factor de potencia de aislamiento
- 4. Rigidez dieléctrica del aceite
- 5. Revisar termómetro
- 6. Verificar nivel de aceite
- 7. Limpiar tanque y bushings
- 8. Verificar que no hay fugas
- 9. Resistencia óhmica de los devanados
- 10. Verificar que las juntas sellen bien y estén en buen estado.
- 11. Apriete general de tornilleria y conexiones.
- Verificar que sigue bien ventilado el cuarto en el que se aloja el transformador.
- 13. Verificar que no hay trazos de carbón, ni desprendimiento de gases o humos.
- 14. Tomar una muestra adecuada de aceite para verificar sus características.

Nuestro labor de mantenimiento preventivo, basado en una periodicidad adecuada y del análisis de sus resultados, contribuirá a lograr que nuestro transformador obtenga su vida útil, y a prevenir fallas en éste.

# c. Recomendaciones para la Inspección y Mantenimiento de Transformadores

En vista que los transformadores son los eslabones vitales para la operación de las grandes empresas industriales y comerciales, es necesario que para su funcionamiento continuo y confiable deba proporcionárseles una atención adecuada. Esto se logra solamente a través de un programa regular de inspecciones, pruebas y mantenimiento de rutina. A continuación se menciona una serie de recomendaciones hechas para un transformador crítico en su operación y que una falla de él ocasionará problemas de alto costo a la empresa.

# ESTA TESIS NO SALE DE LA BIBLIOTECA

### PROGRAMA DE INSPECCION RECOMENDADO EN TRAISFORMADORES QUE MUESTRAN PROBLEMAS EN SU FUNCIONAMIENTO

| No. | RENGLONES A INSPECCIONAR                                                                                                                                                                        | PROGRAMA RECOMENDADO                                                                                |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 1:  | Corriente de carga (amperes)                                                                                                                                                                    | Cada hora o usar amperimetro registrador.                                                           |
| 2.  | Voltaje                                                                                                                                                                                         | Cada hora.                                                                                          |
| 3.  | Temperatura ambiente                                                                                                                                                                            | Cada hora.                                                                                          |
| 4.  | Temperatura de los devanados                                                                                                                                                                    | Cada hora.                                                                                          |
| 5.  | Temperatura del I/quido                                                                                                                                                                         | Cada hora.                                                                                          |
| 6.  | Presión del gas (tanque)                                                                                                                                                                        | Cada hora.                                                                                          |
| 7,  | Nivel del I/quido                                                                                                                                                                               | Diario.                                                                                             |
| 8.  | Equipo de sellado automático de gas a. Indicador de presión de gas del transformador-b. Contenido de gas del cilindro c. Circuito de alarma de baja presión d. Equipo externo de gas y nerrajes | Diario<br>Diario<br>Trimestral<br>Semestral                                                         |
| 9.  | Equipo de enfriamiento por agua a. Temperatura del agua dentro y fuera b. Velocidad del gasto de agua c. Bombas de água d. Bombas de circulación de aceite                                      | Semanal.<br>Semestral<br>Mensual.<br>Mensual.                                                       |
| 10  | Equipo de enfriamiento FOA o FA a. Ventiladores-aspas y motores por acumulación de suciedad b. Cojinetes de ventiladores Lubricación c. Intercambiador de cajor (núcleo del radiador)           | Mensual<br>Cada dos años o después de 6,000 horas de<br>operación, lo primero que ocurra.<br>Anual. |
| 11. | Transformation de calor (nucled del radiador) Transformadores tipo seco (enfriados con aire forzado) Temperatura del aire dentro y fuera                                                        | Cada hora.                                                                                          |

PROGRAMA DE INSPECCION RECOMENDADO PARA LOS ACCESORIOS AUXILIARES QUE REQUIEREN QUE EL TRANSFORMADOR SEA DESCONECTADO

PROGRAMA RECOMENDADO

No. | RENGLONES A INSPECCIONAR

| 1.  | Tanque, accesorios y empaques por fugas, herrumbre, etc.                       | Semestral             |
|-----|--------------------------------------------------------------------------------|-----------------------|
| 2.  | Dispositivos de liberación de presión                                          | Trimestral            |
| 3.  | Boquillas                                                                      | Semestral :           |
| 4   | Acartarrayos                                                                   | Semestral             |
| 5.  | Cambiadores de derivación                                                      | Semestral             |
| 6.  | Equipo de Control, Relevadores y Circuitos                                     | Mensual               |
| 7.  | Conexiones de tierra                                                           | Semestral             |
| 8.  | Alarmas de protección                                                          | Mensual Programme     |
| 9.  | Análisis de gas                                                                | Mensual Land COM      |
| 10, | Prueba de presión de bobinas de enfriamiento o intercambiador de calor externo | Anual FALLA DE ORIGEN |

# PROGRAMA RECOMENDADO DE PRUEBAS DE MANTENIMIENTO

| No. | PRUEBA DE MANTENIMIENTO                                                                   | PROGRAMA                |
|-----|-------------------------------------------------------------------------------------------|-------------------------|
| 1,  | Líquido aislante<br>a. Resistencia dieléctrica<br>b. Número de neutralización<br>c. Color | Anual<br>Anual<br>Anual |
| 2.  | Resistencia de aislamiento                                                                | Anual                   |
| 3.  | Indice de polarización                                                                    | Anual                   |
| 4.  | Factor de Potencia                                                                        | Anual                   |
| 5.  | Alto potencial de CA (Hi-Pot)                                                             | Cada 5 años             |
| 6.  | Prueba de voltaje inducido                                                                | Cada 5 años             |
| i   |                                                                                           |                         |

# VALORES LIMITE DE PRUEBA PARA ACEITE TIPO MINERAL

|   | PRUEBA                               | SATISFACTORIO | DEBE SER DESCARTESE Y FILTRADO REEMPLACESE |
|---|--------------------------------------|---------------|--------------------------------------------|
|   | Resistencia dieléctrica (ASTM D-899) | 23 KV         | Menos de 22 KV                             |
|   | Número de neutralización             | 0.4 Máx.      | 0.4 a 1.0 Mayor de 1 0                     |
| • | Color                                | 3½ Máx.       | Arriba de 3¼ –                             |
|   | المراجع أرواز والمواصيف الأساس       |               |                                            |

# VALORES LIMITE DE PRUEBA PARA LIQUIDOS TIPO ASKAREL

| PRUEBA                                                           | SATISFACTORIO | DEBE SER<br>FILTRADO            | DESCARTESE Y |
|------------------------------------------------------------------|---------------|---------------------------------|--------------|
| Resistencia dieléctrica (ASTM D-899)<br>Número de neutralización | 26 KV<br>0.05 | Menos de 25 KV<br>Mayor de 0.05 |              |
| • Cotor                                                          | 2.0           | Arriba de 2,0                   |              |

TESIS CON FALLA DE ORIGEN

# 2.8.8 CÁLCULO DE TRANSFORMADORES

# a. Consideraciones

Para que un transformador este bien definido, es necesario dar a conocer, al menos, los siguientes datos:

- Capacidad en KVA
- Número de fases
- Frecuencia de operación en Hz o c.p.s.
- Tensión primaria y conexión
- Tensión secundaria y conexión
- Número de derivaciones y porciento de cada una
- Sobreelevación de temperatura en operación continua
- Altura sobre el nivel del mar a la cual operarà el transformador
- Neutro accesible fuera del tanque para su conexión a tierra

Y dependiendo del tipo de instalación, equipo ya existente, etc., será necesario dar a conocer el valor de impedancia para el transformador y los accesorios fuera de norma que se desean.

# b. Capacidad del transformador

La capacidad nominal de un transformador se define como los KVA que su devanado secundario es capaz de operar por un tiempo específico, bajo condiciones de tensión y frecuencia de diseño, sin que la temperatura de un devanado exceda 65°C., sobre una temperatura promedio de 30°C., y máxima de 40°C. Es muy importante que el responsable de la instalación calcule en forma correcta los KVA de transformación que necesita, pues en caso contrario se llegará a la situación de tener capacidad ociosa, lo que representa valores altos de corriente de excitación y una capacidad no amortizable. Ambas cosas son pesos que representan pérdidas para el usuario.

A continuación damos la forma de calcular los KVA, de transformación y un ejemplo para su mayor entendimiento.

KVAT = carga instalada x <u>Factor de demanda</u> Factor de diversidad

Factor de demanda = <u>Demanda máxima</u> Carga instalada

Factor de diversidad = Suma de las demandas máxima

Demanda máxima resultante

El factor de demanda es igual o menor que la unidad El factor de diversidad es igual o mayor que la unidad

Ejemplo ilustrativo:

Se tiene un poblado de 5,000 habitantes y se desea definir la capacidad en KVA del transformador, que se instalará en la Subestación receptora.

El estudio de las cargas instaladas, nos dan los siguientes resultados:

Cargas instaladas en casa habitación = 552.86 KVA Carga instalada en fuerza motriz = 234.00 KVA

Carga instalada en alumbrado público = 33,60 KVA

Total de carga instalada = 820.46 KVA

Para cada una de estas cargas, definimos los siguientes factores de corrección:

Para cargas de casas-habitación:

Factor de demanda = 0.65

Factor de diversidad = 1.25

Para carga de fuerza motriz:

Para carga de alumbrado público:

De lo anterior obtenemos que:

KVAT 1 = KVA de transformación necesarios por concepto de cargas de casas-habitación

KVAT 2 = KVA de transformación necesarios por concepto de fuerza motriz

KVAT 3 = KVA de transformación necesarios por concepto de alumbrado público

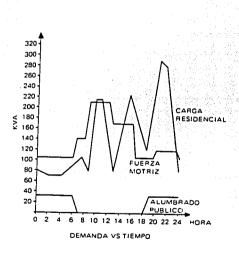
KVAT 3 = 33.60 X 
$$\frac{1.0}{1.0}$$
 = 33.60

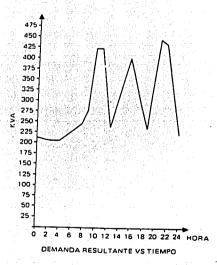
La demanda máxima, más no resultante, es igual a la suma de los valores KVAT1, KVAT2 y KVAT3.

Demanda máxima no resultante = 513.05 KVA

El siguiente paso es obtener el factor de diversidad resultante para lo cual se debe proceder a graficar la demanda y el tiempo para cada carga obteniendo por lo tanto la resultante.




# De nuestra grafica obtenemos:


Demanda máxima resultante = 432 KVA Suma de las demandas máximas = 513.05 Y factor de diversidad resultante = 513.05 = 1.18 432.00

Por lo tanto, la capacidad en KVA del transformador a instalar en la subestación receptora debe ser:

KVAT = 513.05 X 1/1.18 = 432 KVA

Por razones de flexibilidad y por consiguiente, seguridad de suministro a la carga, recomendariamos la instalación la instalación de dos transformadores de 225 KVA





TESIS CON FALLA DE ORIGEN

# CAPITULO TERCERO

# ELEMENTOS DE UNA INSTALACIÓN ELÉCTRICA

| 3.1     | ELEMENTOS DE UNA INSTALACIÓN ELÉCTRICA                |
|---------|-------------------------------------------------------|
| 3.2     | CONDUCTORES ELÉCTRICOS                                |
| 3.2.1   | CARACTERÍSTICAS PRINCIPALES DE LOS AISLAMIENTOS PARA  |
| 3.4.1   | CABLES ELÉCTRICOS                                     |
| 3.3     | CONDUCTORES DESNUDOS                                  |
| 3.3.1   | CONDUCTORES DESNUDOS DE COBRE                         |
| 3.3.2   | CONDUCTORES DESNUDOS DE ALUMINIO Y SUS ALEACIONES     |
| 3.3.3   | CONDUCTORES DESNUDOS DE COPPERWELD                    |
| 3.4     | CONDUCTORES AISLADOS DE BAJA TENSIÓN                  |
| 3.4.1   | DEFINICIÓN Y CLASIFICACIÓN                            |
| 3.4.2   | CABLES MULTICONDUCTORES                               |
| 3.4.3   | CABLES PARA DISTRIBUCIÓN SUBTERRÁNEA (600 VOLTS) TIPO |
| 3.4.3   | DRS                                                   |
| 3.5     | CONDUCTORES AISLADOS DE ALTA TENSIÓN                  |
| 3.6     | CALCULO DE ALUMBRADO                                  |
| 3.6.1   | ALUMBRADO DE INTERIORES                               |
| 3.6.1.1 | MÉTODO DE CAVIDAD ZONAL                               |
| 3.6.1.2 | MÉTODO PUNTO POR PUNTO                                |
| 3.6.2   | ALUMBRADO EXTERIOR                                    |
| 3.6.2.1 | ALUMBRADO PÚBLICO                                     |
| 3622    | DATOS Y CALCULOS DE ILUMINACIÓN DE CALLES             |

# 3.1 ELEMENTOS DE UNA INSTALACIÓN ELÉCTRICA

El objetivo primordial de una instalación eléctrica es cumplir con los servicios que fueron requeridos durante la etapa del proyecto, es decir, proporcionar servicio con el fin de que la energía satisfaga los requerimientos de los distintos elementos receptores que la transformarán según sean las necesidades. Se puede catalogar a todo tipo de instalaciones, desde la generación hasta la utilización de la energía eléctrica, pasando por las etapas de: transformación, transmisión y distribución. Se clasifican en instalaciones eléctricas de:

- Alta tensión (85, 115, 230, 400 kV)
- Extra alta tensión (más de 400 kV)
- Mediana tensión (69 kV)
- Distribución y baja tensión (23, 20, 13.8, 4.16, 0.440, 0.220, 0.127 kV)

Esta clasificación esta de acuerdo con las tensiones empleadas en los sistemas eléctricos, ya que las normas técnicas para instalaciones eléctricas establecen otros rangos para un tipo especifico de instalación.

En la selección de materiales y equipos usados en las instalaciones eléctricas, respetando las características generales establecidas por los aspectos de normalización, se tiene también una gran diversidad de fabricantes, lo que hace difficil hablar de un material o equipo específico, por lo que en lo posible se tratará de dar la generalidad necesaria en lo referente a calculos y proyectos. 5

#### A. Acometida

Se entiende como el punto donde se hace la conexión entre la red, propiedad de la compañía suministradora, y el alimentador que abastece al usuario, también puede entenderse como la línea área o subterránea.

<sup>&</sup>lt;sup>5</sup> ENRIQUEZ HARPER, Gilberto. Manual de Instalaciones Eléctricas Residenciales e Industriales.

# B. Equipo de Medición

Es propiedad de la compañía suministradora, que se coloca en la acometida de cualquier usuario con el propósito de cuantificar el consumo de energía eléctrica de acuerdo con el contrato de compra venta.

### C. Interruptores

Es un dispositivo que ésta diseñado para abrir o cerrar un circuito eléctrico por el cual está circulando una corriente. Puede utilizarse como medio de desconexión o conexión y, si está provisto de los dispositivos necesarios, también puede cubrir la función de protección contra sobrecargas y/o cortocircuitos.

# D. Interruptor General

Se le denomina interruptor general o principal al que va colocado entre la acometida (después del equipo de medición) y el resto de la alimentación, y que se utiliza como medio de desconexión y protección del sistema o red suministradora.

# E. Interruptor Derivado

Son aquellos que están colocados para proteger y desconectar alimentadores de circuitos que distribuyen la energía eléctrica a otras secciones de la instalación o que energizan a otros tableros.

# F. Interruptor Termomagnético

Es el más utilizado y que sirve para desconectar y proteger contra sobre cargas y contocircuitos. Se fabrica en gran variedad de tamaños, por lo que su aplicación puede ser como interruptor general o derivado. Tiene un elemento electrodinámico con el que puede

responder rapidamente ante la presencia de un cortocircuito Para la protección contra sobrecarga se vale de un elemento bimetálico.

# G. Arrancador

Se conoce como arrancador al arreglo compuesto por un interruptor, ya sea termomagnético o de navajas con fusibles, un contactor electromagnético y un relevador bimetálico.

# H. Transformador

El transformador eléctrico es un equipo que se utiliza para cambiar el voltaje del suministro al voltaje requerido. En instalaciones grandes pueden utilizarse varios niveles de voltajes, lo que se logra instalando varios transformadores (normalmente agrupados en subestaciones).

#### L Tableros

Se entiende por tablero un gabinete metálico donde se colocan instrumentos, interruptores, arrancadores y/o dispositivos de control. Hay tableros generales que se coloca inmediatamente después del transformador y que contiene un interruptor general.

# J. Centros de Control de Motores

En aquellas donde se utilizan varios motores, los arrancadores se agrupan en tableros compactos conocidos como centros de control de motores.

# K. Tableros de Distribución o Derivados

Estos tableros pueden tener un interruptor general dependiendo de la distancia al tablero de donde se alimenta y del número de circuitos que alimente. Contienen una barra de cobre para el neutro y 1, 2 ó 3 barras conectadas a las fases respectivas.

# L. Salidas para Alumbrado y Contactos

Las unidades de alumbrado, al igual que los motores, están al final de la instalación y son consumidores que transforman la energía eléctrica en energía luminosa y generalmente también en calor.

Los contactos sirven para alimentar diferentes equipos portátiles y van alojados en una caja donde termina la instalación fija

El proyectista debe asegurarse que la instalación eléctrica tenga la especificación necesaria para que la caída de voltaje esté por debajo de la permitida, que el alimentador quede protegido contra fallas y sobrecargas y que el usuario este protegido contra electrocutación.

# M. Plantas de Emergencia

Se requiere de una fuente de energía eléctrica que funcione mientras la red suministradora tenga caídas de voltaje importantes, fallas en alguna fase o interrupciones del servicio.

Las plantas de emergencia constan de un motor de combustión interna acoplado a un generador de corriente alterna. El cálculo de la capacidad de una planta eléctrica se hace en función de las cargas que deben operar permanentemente.

La conexión y desconexión del sistema de emergencia se hace por medio de interruptores de doble tiro (manuales o automáticos) que transfieren la carga del suministro normal a la

planta de emergencia. Las plantas automáticas tienen sensores de voltaje que detectan la ausencia de voltaje (o caídas más debajo de cierto límites) y envían una señal para que arranque el motor de combustión interna, cuyo sistema de enfriamiento tiene intercalada una resistencia eléctrica que lo mantiene caliente mientras no está funcionando.

# 3.2 CONDUCTORES ELECTRICOS

Se puede definir como un conductor eléctrica aquel material o sustancia capaz de permitir el paso continuo de una corriente eléctrica cuando es sometido a una diferencia de potencial entre dos puntos.

Las sustancias en estado sólido o líquido poseen en algún grado propiedades de conductividad de energía eléctrica, pero ciertas sustancias son relativamente buenas conductoras y otras están casi totalmente desprovistas de esta propiedad.

Para establecer el camino o paso de una corriente eléctrica entre dos puntos con diferente potencial eléctrico se emplea el conductor. Cuando se presenta este paso de corriente eléctrica se dice que se ha establecido un circuito; el que posee cuatro propiedades eléctricas fundamentales: Resistencia, Inductancia, Capacitancia y Resistencia de Aislamiento.

Para nuestros fines, un conductor eléctrico se compone de un filamento o alambre o de una serie de alambres cableados de material conductor que se utiliza desnudo, o bien cubierto de material aislante. En aplicaciones donde se requiere de grandes tensiones mecánicas se utilizan bronces, aceros y aleaciones especiales. En aplicaciones electrónicas ultrafinas y en pequeñas cantidades se utiliza el oro, la plata y el platino como conductores.

Las materias primas más comunes utilizadas en la fabricación de conductores eléctricos son:

- Materiales: Cobre, Aluminio, Plomo y Acero.



- Aislamientos: Hules, Plásticos, Resinas y Papel.

# 3.2.1 Características Principales de los Aislamientos para Cables Eléctricos.

Un material aislante es toda sustancia de tan baja conductividad que el paso de la corriente eléctrica a través de ella es prácticamente despreciable.

Se tiene en cada aislamiento eléctrico una cierta cantidad de características o parámetros que permiten estudiar, evaluar y comparar estos materiales.

# a. Rigidez Dieléctrica

La rigidez dieléctrica o gradiente eléctrico de un aislamiento representa el mimero de volts requerido para perforarlo. En un aislamiento cuya sección no cambie a través de su espesor, está dada por la relación de voltaje entre espesor (Kv/mm).

En un aislamiento cuya sección transversal cambia a través de su espesor, como en el caso de un cable que tiene un radio mínimo en la vecindad del conductor y máximo en la superficie exterior, el gradiente dieléctrico es variable.

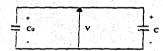
#### b. Constante Dieléctrica

La constante dieléctrica o capacidad inductiva específica (SIC) de un aislamiento es la relación entre la capacidad de un condensador cuyo dieléctrico sea el aislamiento en cuestión y la capacidad del mismo condensador con aire como dieléctrico.

La constante dieléctrica de un aislamiento en un cable determina la corriente de carga capacitiva que se produce en el cable y que traduce en pérdidas dieléctricas, conviene que tenga un valor lo más bajo posible

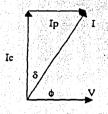
$$Cn = \frac{0.02413}{\text{Log}_{10} \text{ R/r} \, \mu \, \text{F} \, \text{x Km}^{-1} \, \text{de cable}}$$

donde: Cn = Capacidad al neutro del cable


R = Radio exterior del aislamiento

r = Radio exterior del conductor

SIC = C/Co (sin unidades)


donde: C = Capacitancia del material aislante


Co = Capacitancia en aire



# c. Factor de Potencia (F.P.)

También conocido como factor de pérdidas de aislamiento, representa la relación entre potencia activa disipada en el dieléctrico (Wa) y la potencia reactiva (Wr). Es mayor mientras más imperfecto sea el dieléctrico; es decir, mayor será la corriente de pérdidas (Ip) que se presenta cuando el desfasamiento entre voltaje aplicado y la corriente capacitiva (Ic) inducida es menor de 90°.





El factor de potencia en un aislamiento aumenta con la presencia de humedad y con la elevación de temperatura. La medición del factor de potencia es uno de los medios más efectivos para detectar humedad o deterioro de un aislamiento.

$$\delta + \phi = 90^{\circ}$$
,  $\delta = angulo' de pérdidas$   
 $Wr = I_c V$ ,  $Wa = I_c V \cot \phi$   
Factor de potencia =  $Wa / Wr = Cos \phi$ 

El factor de potencia, junto con la constante dieléctrica del aislamiento, determina las pérdidas dieléctricas de un cable. Por lo tanto conviene que el factor de potencia sea lo más bajo posible.

# d. Resistencia de aislamiento (Ra)

La resistencia de aislamiento mínima especificada de un cable es la resistencia media entre el conductor y un electrodo que se encuentra envolviendo la superficie exterior del aislamiento. En base a las dimensiones del cable se puede determinar lo que se llama la constante de resistencia de aislamiento (K) que es independiente de las dimensiones.

La resistencia de aislamiento mínima especificada se calcula con la fórmula:

$$Ra = K Log_{10} (D/d) F_t F_L$$

en donde:

Ra = Resistencia de aislamiento en Megohms/Km

K = Constante de resistencia de aislamiento (depende del material empleado)

D = Diámetro sobre el aislamiento en mm.

d = Diámetro sobre el conductor en mm.

F<sub>t</sub> = Factor de corrección por temperatura (unitaria a 15.6°C ó 60°F)

F<sub>L</sub> = Factor de corrección por longitud = 1000 / long. Real del cable

| PVC              | 150    |
|------------------|--------|
| POLIETILENO      | 15,250 |
| XLP              | 6,100  |
| EPR              | 6,100  |
| PAPEL IMPREGNADO | 3,000  |

Valores tipicos de K a 15 6 °C (megohms Km)

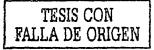
e. Propiedades Comparativas de Aislamiento \*

# 3.3 CONDUCTORES DESNUDOS

# 3.3.1 Conductores desnudos de cobre

a. Especificaciones para alambre desnudo duro, semi-duro y suave.

Estos conductores son utilizados en instalaciones aéreas de distribución de energía en alta y baja tensión, en buses de subestaciones y sistemas de tierra.


Carga de ruptura. La carga de ruptura esta basada en el diámetro nominal de los alambres, variando ésta de acuerdo a la tolerancia de los calibres.

Usando valores mínimos para alambre duro, mínimo y máximos para alambre semi-duro; y máximo para alambres suaves o recocidos.

Nota. Para alambres semi-duros, calibre No. 19 y menores, no hay especificaciones.

- Construcciones preferentes y diámetros exteriores nominales de los cables de cobre con cableado concéntrico.\*
- c. Factores de corrección de resistencia por temperatura. Para conductores de cobre o alumínio.\*

\* Алехо А



Los factores de corrección dados para el cobre están basados en la conductividad de 100% y están derivados de la fórmula:

$$R_2 = R_1 \frac{234.5 + 20}{234.5 + T}$$

donde:

R<sub>2</sub> = Resistencia a 20°C

R<sub>I</sub> = Resistencia medida a la temperatura de prueba

T = Temperatura de prueba

Los factores de corrección dados para el aluminio están basados en la conductividad de 61% y están derivados de la fórmula:

$$R_2 = R_1 \frac{228 + 20}{228 + T}$$

donde:

R<sub>2</sub> = Resistencia a 20°C

R<sub>1</sub> = Resistencia medida a la temperatura de prueba

T = Temperatura de prueba

- d. Capacidad de conducción de corriente para conductores desnudos de cobre duro (97.5% conductividad I.A.C.S.) a diferentes incrementos de temperatura.\*
- e. Barras rectangulares de cobre; corrientes admisibles.\*
- f. Alambre de cobre suave estañado.\*

# 3.3.2 Conductores Desnudos de Aluminio y sus Aleaciones

Los conductores de puro, son utilizados en líneas de distribución a baja tensión, con distancias interpostales cortas, las aleaciones de aluminio, se utilizan en instalaciones con distancias interpostales más largas, aprovechando el incremento de resistencia mecánica que le proporciona la aleación.

\* Алехо А

- a. Constantes Físicas.\*
- Construcciones preferentes y diámetros exteriores nominales de los cables de aluminio con cableado concéntrico.\*
- c. Características físicas y eléctricas de los cables de aluminio puro (AAC).\*
- d. Ampacidades para conductores de aluminio puro (AAC)."
- e. Características físicas eléctricas del cable de aleación de aluminio 5005 (AAAC).\*
- £ Ampacidad para conductores cableado de aleación de aluminio 5005 (AAAC).\*
- g. Resistencia nominal a la corriente directa de conductores de aluminio y cobre desnudo, con cableado compacto concéntrico.\*
- h. Resistencia nominal a la corriente directa, de conductores de cobre, con cableado compacto clase B.\*
- i. Características físicas y eléctricas de los cables de aluminio reforzado en acero (ACSR).\*
- j. Ampacidad de los cables de aluminio reforzado en acero (ACRS)."

# 3.3.3 Conductores Desnudos de Copperweld

Los alambres y cables copperwedi, hacen que las construcciones de líneas aéreas con ciaros interpostales largos, sean seguras y económicas, ya que se complementan la alta resistencia mecánica del acero y la conductividad del cobre en una sola unidad. Las diferentes construcciones de cables formados con conductores de cobre y Copperwedi.

- a. Formación Geométrica de cables copperweld.\*
- b. Características físicas y eléctricas del alambre y cable desnudo copperweld.\*
- c. Tablas de conductores copperwed! y cobre con cableado desnudo, para transmisión y distribución.\*\*

<sup>\*</sup> Алехо А

# 3.4 CONDUCTORES AISLADOS DE BAJA TENSIÓN

# 3.4.1 Definición y Clasificación

Se puede considerar como un conductor para baja tensión a todo aquel que tenga un aislamiento que le permita operar en voltajes de hasta 1000 volts en condiciones apropiadas de seguridad.

Los conductores forrados se clasifican según las propiedades del aislamiento, de acuerdo con las tablas localizadas en el anexo, las cuales son:

- a. Clasificación de conductores y características de los aislamientos.\*
- b. Capacidad de conducción de corriente permisible en conductores de cobre aislados.\*
- c. Factores de corrección por Temperatura.\*
- d. Dimensiones en los conductores con aislamientos de hules o termoplásticos.\*
- e. Número máximo de conductores en medidas comerciales de tubería conduit.\*
- f. Características de cordones y cables flexibles de cobre.\*
- g. Capacidad de conducción de corriente en cordones y cables flexibles de cobre \*

# Calculo de conductores aislados por caída de Tensión

- h. Distancia en metros para una caída de tensión máxima de 3% circuitos trifásicos equilibrados en 220 volts.\*
- i. Calculo de resistencia y calda de tensión en un conductor.

La resistencia de un conductor comercial de cobre (un alambre de 1 m. De longitud y una sección transversal de 1 mm²), es usualmente de 0.017 a 0.018 ohms a una temperatura de 24°C.

<sup>\*</sup> Anexo A

Para nuestros cálculos se tomará un valor promedio de 0.0175 ohms por mm²/m.

La resistencia eléctrica de cualquier conductor será:

$$R = \rho L$$

$$R = 0.0175 \ \underline{L}$$

donde:

R = resistencia eléctrica en ohms

 $\rho$  = resistividad del cobre a 24 y a 20°C = 0.17241

 $\rho = 0.0175 \text{ ohms } mm^2/m$ 

S = sección de conductor en mm²

De la ley de ohm

I = E/R

y la caída de tensión (e) en un conductor es:

e = IR

Sustituyendo R en la ecuación anterior

$$e = \underline{0.0175 \, \text{L} \, \text{x} \, \text{I} \, \text{x} \, 2}$$
 ... (A)

también:

$$I = \frac{eS}{0.0175 I - 2}$$
 ... (B)

y:

$$S = 0.0175 L \times 2I$$
 ... (C)

donde:

L = longitud de circuito en metros (se multiplica por dos para incluir la longitud total del alambre).

La fórmula (A) da la caída de tensión para un calibre determinado y circulando una corriente específica.

La fórmula (B) indica la corriente que produce una caída de tensión en un alambre de calibre dado.

La fórmula (C) indica el calibre correcto para una cierta caída de tensión y una corriente específica.

#### Calculo de conductores

La corriente alterna de línea en un conductor para los diferentes sistemas de distribución, se puede determinar partiendo de las siguientes fórmulas:

Una fase (2 hilos) 
$$I = \frac{W}{2 E_n \cos \phi}$$
Dos fase (3 hilos) 
$$I = \frac{W}{2 E_n \cos \phi}$$
 (hilo exterior) 
$$\frac{W}{2 E_n \cos \phi}$$
Dos fase (3 hilos) 
$$I = \frac{W}{\sqrt{3} E_f \cos \phi}$$
 (hilo exterior) 
$$\frac{W}{\sqrt{3} E_f \cos \phi}$$
Tres fase (3 hilos) 
$$I = \frac{W}{\sqrt{3} E_f \cos \phi}$$

Para Corriente Directa

$$I = W$$

Tres hilos

$$I = W$$

donde:

I = corriente en el conductor

W = potencia en watts

cos φ = factor de potencia

E<sub>f</sub> = tensión entre fases

E<sub>n</sub> = tensión entre fase y neutro

Cálculo de sección transversal de un conductor para los diferentes sistemas de distribución en corriente alterna partiendo de las siguientes fórmulas:

$$S = \underbrace{4 L I}_{E_n e \%}$$

$$S = \underbrace{2 L I}_{E_0 e \%}$$

$$S = 2\sqrt{3} LI = 2LI$$
Es e % Es e %

donde:

I = corriente en el conductor

Ef = tensión entre fases

E<sub>n</sub> = tension entre fases y neutro

e % = caída de tensión expresada en porciento

S = sección del conductor en (mm²)

j. Graficas de caída de tensión en conductores de cobre aislados tipos RHW, THW y THWN \*

## 3.4.2 Cables Multiconductores

### a. Definición

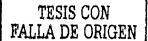
Los cables multiconductores, están formados por 2 ó más conductores aislados reunidos bajo una cubierta resistente a la humedad y retardadora de la flama.

Los cables multiconductores se pueden clasificar como Cables Control y Cables Potencia. Estos son utilizados en instalaciones aéreas, charolas, tubo conduit o en ductos subterráneos y en el control remoto y alimentación de equipos industriales.

Los conductores son aislados individualmente, y se identifican mediante un código de colores o números progresivos marcados en su superficie:

|    | contract and the second of the second |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Negro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2  | Blanco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3  | Rojo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4  | Verde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5  | Naranja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6  | Azul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | 살로 사용하다 그 글이 되었다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7  | Blanco-Negro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8  | Rojo-Negro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9  | Verde-Negro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10 | Naranja-Negro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11 | Azul-Negro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12 | Negro-Blanco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 13 | Rojo-Blanco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14 | Verde-Blanco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 15 | Azul-Blanco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 16 | Negro-Rojo         |
|----|--------------------|
| 17 | Blanco-Rojo        |
| 18 | Naranja-Rojo       |
| 19 | Azul-Rojo          |
| 20 | Rojo-Verde         |
| 21 | Naranja-Verde      |
| 22 | Negro-Blanco- Rojo |
| 23 | Blanco-Negro-Rojo  |
| 24 | Rojo-Negro-Blanco  |


- b. Cable control para 600 volts. Aislamiento y cubierta exterior de PVC.
- c. Cable control para 1000 volts. Aislamiento de polietileno natural y cubierta exterior de PVC.\*
- d. Cable control para 600 volts. Aislamiento de polietileno natural y cubierta exterior de PVC.\*
- e. Cables de control y potencia fabricados bajo normas V.D.E. (Verband Deutscher Elektrotechniker).\*

Debido a los diferentes aislamientos que se usan en Europa, con relación a los empleados en América, hubo necesidad de hacer algunos cambios con respecto a las normas VDE obteniéndose un cable mejorado.

Los principales cambios fueron los siguientes:

BAJA TENSIÓN. La norma VDE señala como aislamiento el protodur, que es recomendable para una temperatura de 60°C, y un voltaje máximo de operación de 1000 volts. Fue sustituido por cloruro de polivinilo para 90°C, y un voltaje máximo de operación de 1000 volts (PVC).

\* Anexo A



ALTA TENSIÓN. La norma VDE señala como aislamiento el protodur, que es recomendable para una temperatura de 60°C, y un voltaje máximo de operación de 20,000 volts.

Fue substituido por un polietileno de cadena cruzada (XLP). Es recomendable para temperaturas de 90°C, y voltaje de operación de hasta 115,000 volts.

### f. Cable control NYCY (modificado).\*

## 3.4.3 Cable para Distribución Subterránea (600 volts) tipo DRS

Son cables de energía con aislamiento de polietileno de cadena cruzada (XLP) para 600 volts, para instalación aérea, en ducto o directamente enterrados.

El conductor es de aluminio cableado de grado EC y calse B.

El aislamiento es un compuesto de polietileno de cadena cruzada pigmentado con negro de humo, puede operar satisfactoriamente en lugares húmedos o secos a una temperatura máxima continua de 90°C; 130°C en condiciones de emergencia y 250°C en condiciones de corto circuito.

Los cables que se utilizan como fases son de color negro y el cable neutro de sección reducida de acuerdo a la tabla, es de color blanco.

| Calibre del conductor | Espesor del a | islamiento |
|-----------------------|---------------|------------|
| AWG KCM               | MM            | PULG.      |
| 4 2 2                 | 1.58          | 0.062      |
| 1/0 4/0               | 1.98          | 0.078      |
| 250 500               | 2.39          | 0.094      |
| 550 1000              | 2.77          | 0.109      |

<sup>\*</sup> Anexo A

- a. Dimensiones de cables para 600 Volts.\*
- b. Propiedades eléctricas.\*
- c. Curvas de caída de tensión para cables triplex tipo DRS, 600 volts aluminio.\*
- d. Curvas de caída de tensión para cables triplex tipo DRS, 600 volts cobre.\*

# 3.5 CONDUCTORES AISLADOS DE ALTA TENSIÓN

a. Definición:

Se considera como un conductor para alta tensión a todo aquél que tenga un aislamiento que le permita operar en condiciones apropiadas de seguridad en voltajes superiores a 1000 volta.

# b. Clasificación:

Los conductores para instalaciones en alta tensión se clasifican según su aplicación en :

- Conductores para Distribución Comercial e Industrial
- · Conductores para Distribución Residencial
- Conductores para Subtransmisión
- Conductores para Transmisión



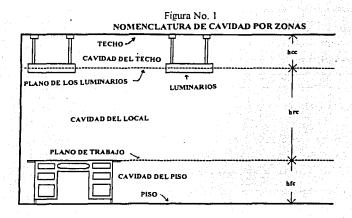
# 3.6 CALCULO DE ALUMBRADO

### 3.6.1 Alumbrado de interiores

#### Métodos

Desde principios de 1960, el método para calcular el nivel de iluminación promedio en un espacio ha sido el método IES de cavidad zonal. Este método supone que cada local está constituido por tres diferentes zonas o cavidades. Cada una de ellas será tratada en conjunto, ya que tiene un efecto en cada una de las otras cavidades para producir iluminación uniforme. Este método calcula niveles de iluminación promedio horizontales a través de un espacio.

Cuando se necesita un nivel de iluminación en un punto específico, se debe usar el método de "punto por punto". El método de "punto por punto" utiliza la curva fotométrica que nos muestra la distribución de candelas-potencia, producida la la lámpara o luminaria y por medio de trigonometría básica, el diseñador puede conocer los niveles de iluminación en superficies tanto horizontales como verticales.


### 3.6.1.1M étodo de cavidad zonal

## a Descripción

Este sistema, también llamado "método de lúmen", divide el local en tres cavidades separadas. Estas son:

- 1. Cavidad del techo
- 2. Cavidad del local
- 3. Cavidad del piso
- Cavidad de techo. Es el área medida desde el plano de la luminaria al techo. Para luminarias colgantes existirá una cavidad de techo, para luminarias colocados directamente en el techo o empotrados en el mismo no existirá cavidad de techo.

- 2. Cavidad del local. Es el espacio entre el plano de trabajo donde se desarrolla la tarea y la parte interior de la luminaria; el plano de trabajo se encuentra localizado normalmente arriba del nivel de piso. En algunos casos, donde el plano de trabajo es considerado a nivel de piso, el espacio desde la luminaria al piso se considera como cavidad del local. En el lenguaje de iluminación la distancia desde le plano de trabajo a la parte interior de la luminaria es llamada "altura de montaje de la luminaria".
- 3. Cavidad de piso. Se considera desde el piso a la parte superior del plano de trabajo, o bien, el nivel donde se realiza la tarea específica. Para áreas de oficina esta distancia es aproximadamente de 76 cms. (2.5 pies). Para bancos de trabajo en industrias deberá considerarse 92 cms. (3 pies) aproximadamente. Si el trabajo o tarea se desarrolla en el piso, no existe cavidad de piso. En la figura No. 1 se muestra el espaciamiento relativo de las cavidades del local, techo y piso, así como la "altura de montaje" de las lumínarias.





### b. Teoría del Método de Cavidad Zonal

La teoría básica considerada en este método de cálculo de iluminación es que la luz producida por una lámpara o luminaria es reflejada por todas las superficies del área. Las reflexiones múltiples de la luz desde la luminaria y desde las superficies del local actuan para producir la luz en el plano de trabajo. Debido a este hecho es muy importante determinar:

- 1. Las dimensiones del local
- 2. las reflectancias del local referente a:
- 2.1 Techo
- 2.2 Paredes
- 2.3 piso
- 3. Características de la lámpara
- 4 Características de la luminaria
- 5. Efectos ambientales
- 5.1 Polvo y suciedad
- 5.2 Temperatura
- 6. Mantenimiento planeado del sistema de iluminación

Con el objeto de producir un lux en el plano de trabajo, el sistema de iluminación debe producir un lúmen sobre cada metro cuadrado. De hecho, la definición de lux es:

Un lúmen por metro cuadrado, o bien, establecido en forma matemática.

Número de luxes = <u>Lúmenes incidentes sobre una superficie</u> área en metros cuadrados Por lo tanto, un nivel de iluminación promedio de 1,000 luxes sobre un área de 10 m<sup>2</sup> requerirá de 10,000 lúmenes (desde el sistema de iluminación) que sean dirigidos al plano de trabajo.

Conforme la fuente de luz se encuentra más distante del plano de trabajo, el nivel de iluminación se reducirá en proporción al cuadrado de la distancia. Por ejemplo, si un sistema de iluminación produce 1,000 luxes a una distancia de 10 metros, entonces a 20 metros el mismo sistema no producirá la mitad sino una cuarta parte del nivel de iluminación, o sea 250 luxes\*, o sea:

$$1 = 1/d^2 = 1/(2)^2 = \frac{1}{4}$$
 = Una cuarta parte del nivel original

donde:

I = nivel de iluminación

d = distancia de la luminaria al plano de trabajo

Cuatro veces la distancia no producirá ¼ parte sino 1/(4)<sup>2</sup> o un 1/16 del nivel original.

\* Nota: Generalmente para fuentes puntuales cercanas, puede variar ligeramente ciando utilizan fuentes difusas.

Terminado del Local

Es muy importante recordar que los colores de las superficies del local tienen un gran efecto en el nivel de iluminación producido por un sistema. Usar colores claros en las paredes, techos y pisos, dará como resultado un nivel de iluminación mayor de iluminación que si se usan colores obscuros. Lo anterior se aplica a muebles dentro del local, materiales colgantes y alfombras.

### c. Formulas Basicas - Método de Cavidad Zonal

La fórmula básica para determinar los lúmenes necesarios para producir un nivel de iluminación deseado para un espacio conocido es como sigue:

Luxes = No, de luminarias x lámparas por luminarias x lúmenes por lámparas x C.U. x m.f. Área por luminaria

donde: C.U. = coeficiente de utilización

m.f. = factor de conservación

= L.L.D.  $\times$  L.D.D.

L.L.D. = depreciación de lúmenes de la lámpara

L.D.D. = depreciación del luminaria

Factores de Depreciación

Obsérvese que la formula requiere del conocimiento de las lámparas, luminaria y factores de mantenimiento.

Trataremos ahora cómo determinar los factores y dónde encontrarlos.

- Factores de lampara
- 1. Valor de lúmenes iniciales
- Lúmenes mantenidos o lúmenes medios (promedio) producidos por la lámpara a través de sus horas de vida (L.L.D. = depreciación de lúmenes de la lámpara).
- Factores de luminaria
- Factor de depreciación de luminaria (DL. = factor de depreciación de luminaria debido al polvo.
- 2. Coeficiente de utilización (c.u)

- A. Los fabricantes de lámparas publican datos en los cuales se indica el valor inicial de producción lumínica y el valor medio (promedio), o la depreciación de lúmenes de la lámpara a través de las horas de vida (L.L.D.).
- B. Los fabricantes de luminarias datos sobre los mismos, los cuales incluyen la pérdida de la luz debido al polvo y la suciedad en la superficie de las luminarias y controles. También normalmente proporcionan el coeficiente de utilización para diferentes tamaños de local, usando diferentes reflectancias de las superficies. El coeficiente de utilización es un parámetro que nos indica que tan eficiente es la luminaria en convertir los lúmenes producidos por la lámpara en el nivel de iluminación útil.

Se ha establecido el método de cavidad zonal provee un nivel de iluminación promedio uniforme en un local. Sin embargo, es válido siempre y cuando la luminaria se encuentre localizado correctamente y tenga una distribución adecuada en relación a la altura de montaje y espaciamiento entre luminarias conforme a los valores recomendados.

d. Pasos a Seguir para Calcular un Sistema de Iluminación

Con el objeto de simplificar el procedimiento de cálculo para determinar el número de luminarias así como la localización de éstos en el área, se debe seguir los siguientes pasos:

- Determinar el tipo de trabajo que se desarrollará en el local. Esto servirá para determinar la calidad y cantidad de luz que se necesita.
- 2. Determinar que fuente luminosa deberá usarse.
- Determinar qué condiciones ambientales prevalecerán en el área. Esto nos ayudará a
  determinar los efectos de polvo, suciedad y las condiciones ambientales que deberán
  tomar en cuenta.

- 4. Determinar las condiciones físicas y operaciones del área y cómo se usará. Esto incluye dimensiones del local, valores de reflectancia, localización del plano de trabajo y características operacionales, tales como: Horas diarias de trabajo y periodo de tiempo en años del sistema durante el cual será usado.
- Seleccionar la luminaria que se usará. Algunos de los factores que ayudan a determinar la luminaria que deberá usarse son:
  - a. Altura de montaje
  - b. Tipo de lámpara seleccionada
  - c. Características de depreciación de la luminaria
  - d. Restricciones físicas del montaje (colgante, empotrado, abierto, cerrado, etc.)
  - e. Mantenimiento requerido (limpieza del reflector y el reemplazo de las lámparas)
  - f. Costo, tamaño y peso
  - g. Aspecto estético
- 6. Determinar los factores de depreciación de luz para el área. Los factores de pérdida de luz se puede dividir en dos categorías:
  - a. No recuperables
  - b. Recuperables

Los factores no recuperables se consideran como:

La temperatura ambiental, la cual puede afectar el comportamiento de la luminaria, voltaje de alimentación a la luminaria; voltaje de alimentación a la luminaria, características del balastro y características de las superficies de la luminaria.

Los factores recuperables son:

La depreciación de la producción lumínica de la lámpara; las lámparas fuera de operación, depreciación de la luminaria debido al polvo, depreciación de la superficie del local debido al polvo.

Multiplicando todos los factores de pérdida se obtiene un factor de pérdida neta.

Con el fin de simplificar los cálculos, usaremos en el siguiente ejemplo únicamente los dos factores que afectan en mayor proporción la pérdida de luz, a saber:

L.L.D. = Depreciación de lúmenes de lámpara

L.D.D. = Depreciación de la luminaria debido al polvo

Multiplicando estos dos factores obtenemos el factor de mantenimiento (m.f.)

- 7. Cálculo de las relaciones de cavidad
  - a. Cavidad de local
  - b. Cavidad de techo
  - c. Cavidad de piso

La fórmula para el cálculo de la relación de cavidad es:

Relación de Cavidad = <u>5 x altura x (largo + ancho)</u> largo x ancho

Donde:

Altura = Altura de cavidad de local, piso o techo según sea el caso

8. Determinar las reflectantes efectivas correspondientes a las cavidades de techo y piso. Este procedimiento contempla el efecto de interreflexión de la luz considerando las diferentes superficies del local. Como se indica en la tabla localizada en el anexo.

Si todas las superficies son altamente reflectivas, o si las luminarias se encuentran localizados directamente en el techo, no será necesario efectuar este cálculo. En este caso se puede usar el valor actual de las reflectancias de las superficies (estimadas o medidas) para determinar el coeficiente de utilización.

9. Determinar el coeficiente de utilización (c.u)

El coeficiente de utilización se encuentra en los datos técnicos proporcionados por el fabricante, para la luminaria que se usará. (Ver tablas en anexo)

Se notará que con el objeto de seleccionar el valor apropiado del c.u. de esas tablas, se deberá conocer primeramente las reflectancias efectivas de techo, pared y piso. La mayoría de las tablas muestran solamente un valor como reflectancia de piso. Este valor es 20% y es considerado como un valor normal. En caso que el valor de reflectancia sea mayor o menor del 20% se debe corregir de acuerdo con los datos disponibles en las tablas.

10. Cálculo del número de luminarias requeridos:

Con los datos anteriores se debe aplicar la fórmula siguiente:

No. de luminarias = Nivel luminoso en luxes v área No. de lámparas / luminaria x lúmenes/ lámpara x coeficiente de utilización x factor de mantenimiento

Ejemplo:

Dimensiones del local

Longitud 150 metros

Ancho 30 metros

Altura

8.5 metros

TESIS CON FALLA DE ORIGEN

- b. Altura del plano de trabajo 1.0 metros
- c. Altura de montaje de la luminaria 6.0 metros (refiérase a la figura No. 1)
- d. Las reflectancias del local son:

Paredes 30%

Techo 80%

Piso 20%

e. La lámpara será:

Lumalux LU-400

Lúmenes iniciales por lámpara 50,000

L.L.D. = 0.90

- f. La luminaria escogida requiere una l\u00e1mpara por luminaria (luminaria tipo 16)
- g. La depreciación de la luminaria debido al polvo, el factor es 0.85 u 85%
- h. El nivel de iluminación requerido, es de 1,000 luxes

En las tablas de relación de cavidad encontramos que las relaciones son:

Cavidad de local = 1.2

Cavidad del techo = 0.3

Cavidad del piso = 0.2

Estos factores también pueden ser calculados como sigue:

- Cavidad del techo = 
$$5 \times 1.5 (30 + 150) = 0.3$$
  
30 x 150

Relación de cavidad del local = 
$$\frac{5 \times 6(30 + 150)}{4,500} = 1.2$$

Relación de cavidad del piso = 
$$\frac{5 \times 1(30 + 150)}{4,500}$$
 = 0.2

Tomando en cuenta las relaciones de cavidad, podemos determinar las reflexiones efectivas y de esta manera determinar el valor neto efectivo de reflectancia para techo y piso, las cuales son:

En la tabla de coeficientes de utilización de luminarias podemos encontrar que el coeficiente de utilización para esta luminaria en particular es aproximadamente de 0.7941 ≈ 0.795.

Tomando 0.795 como coeficiente de utilización, se puede calcular en número de luminarias como sigue:

No. de luminarias = 
$$\frac{4,500 \times 1,000}{1 \times 50,000 \times 0.795 \times 0.765} = 147.98 \approx 148$$

Por lo tanto, el número de luminarias será de 148

Calculemos el área promedio de luminaria como sigue:

$$\frac{\text{área total}}{\text{No. de luminarias}} = \frac{4,500}{148} = 30.40 \text{ m}^2$$

El espaciamiento entre luminarias se determinará obteniendo la raíz cuadrada del área promedio por luminaria:

El número aproximado de luminarias en cada hilera se puede encontrar dividiendo primero la longitud del local por el espaciamiento promedio, posteriormente dividiendo el ancho del local por el espaciamiento promedio.

a lo largo 150 / 5.51 = 27.22 luminarias a lo largo 30 / 5.51 = 5.44 luminarias

El número instalado en cada hilera podría ser 29 x 5 = 145 ó 28 x 6 = 168

La localización se determinará de acuerdo con las limitaciones físicas del espacio en el local.

Deberemos también asegurarnos de que la relación de espaciamiento a altura de montaje no exceda lo especificado por el fabricante de luminarias.

La máxima relación S/M.H. para esta luminaria en particular es de 1.5 o sea que el espaciamiento no debe ser mayor que 1.5 veces la altura de montaje. En nuestros ejemplos, la altura de montaje es de seis metros; podremos sin embargo, utilizar hasta nueve metros entre luminarias y aún así mantener uniforme nuestro nivel de iluminación.

En nuestro ejemplo, el espaciamiento es de 5 a 5.5 metros, por lo tanto, la distribución es la adecuada

- e. Tabla de Relaciones de Cavidad.\*\*
- f Porcentaje de las Reflectancias Efectivas de Techo o Piso para Varias Combinaciones de Reflectancias.\*\*

\*\* Anexo B

TESIS CON FALLA DE ORIGEN

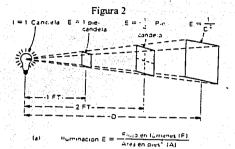
- g. Coeficiente de utilización.
- h. Categorias de Mantenimiento. \*\*
- i. Factores Utilizados para Reflectancias Efectivas de Piso Diferentes al 20%.\*\*
- j. Hoja de Calculo de Nivel de Iluminación Promedio.

# 3.6.1.2 MÉTODO DE PUNTO POR PUNTO

a. Descripción

El cálculo de iluminación en un punto, ya sea en un plano horizontal, vertical o inclinado consiste en dos partes: Una componente directa y una reflejada. El total de esas dos componentes es la iluminación del punto en cuestión.

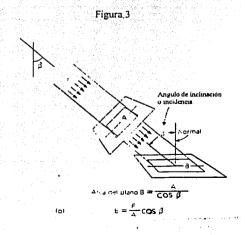
Ley de la Inversa de los Cuadrados


Cuando la distancia de la fuente es al menos cinco veces la máxima dimensión de la fuente, para calcular la iluminación se utiliza la ley de la inversa de los cuadrados. En tal caso, la iluminación es proporcional a las candelas de la fuente en dirección dada e inversamente proporcional al cuadrado de la distancia de la fuente al punto (Figura 2) de donde:

$$E = I/D^2$$

donde:

\*\* Anexo B


- E = Iluminación en el plano normal al rayo de luz
- I = Candelas de la fuente en la dirección del rayo de luz
- D = Distancia de la fuente al plano



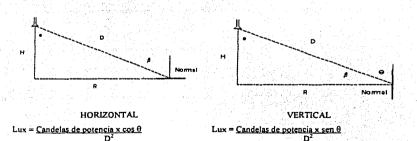
Si la superficie en la cual se requiere determinar la iluminación está inclinada, en lugar de normal a los rayos de luz, la relación anterior se afecta por el coseno del ángulo de incidencia o inclinación, por lo tanto:

$$E = I/D^2 \cos \beta$$

donde β es el ángulo entre el rayo de luz y la normal al plano (ver figura 3)



Para los casos particulares en donde el plano de trabajo sobre el cual se desea determinar el nivel de iluminación en el plano vertical u horizontal se requiere aplicar las siguientes Fórmulas:


Iluminación en el Plano Horizontal

$$Eh = \underbrace{1 \times Cos \phi}_{D^2} = \underbrace{1 \times Cos \beta}_{D^2}$$
$$= \underbrace{1 \times H}_{D^3} = \underbrace{1 \times Cos^3 \phi}_{H^2}.$$

Iluminación en el Plano Vertical

$$Ev = \underbrace{I \times Sen \phi}_{D^2} = \underbrace{I \times Cos \beta}_{D^2}.$$

$$= \underbrace{I \times R}_{D^3} = \underbrace{I \times Cos^2 \phi \cdot Sen \phi}_{H^2}.$$



Actividades fundamentales para cálculos de puntos donde es aplicable la ley inversa de los cuadrados.

Figura 4. Relaciones fundamentales para el cálculo de iluminación al método Punto por Punto

TESIS CON FALLA DE ORIGEN

- 120 -

c. Pasos a Seguir para Calcular un Sistema de Iluminación

Para facilitar el cálculo del nivel luminoso en luxes en el plano horizontal se anexa la tabla siguiente. Esta se usa siguiendo los siguientes tres pasos:

- 1. Determine el ángulo en grados en la parte superior del cuadro.
- De la curva de distribución de la fuente luminosa determine la intensidad luminosa de la fuente en esa dirección particular.
- Multiplique la intensidad luminosa (candelas) por el factor multiplicador, el cual se encuentra en la parte interior del cuadro y luego divida el resultado por la intensidad luminosa (100 6 100,000). La respuesta así obtenida es la iluminación en luxes en ese punto.
- b. Tabla de cálculo de niveles luminosos por el sistema "punto por punto". \*\*
- d. Curvas de distribución Luminosa. \*\*
- e. Tablas de funciones trigonométricas aplicables al método.\*\*
- f. Nivel luminoso producido por una luminaria fluorescente desnuda.\*\*
- g. Fuentes de iluminación que se deben considerar para el cálculo de punto por punto.
  - Fuente lineal de longitud infinita

Deberá considerar la expresión:

\*\* Anexo B

$$Ep = L \times W$$

$$2D$$

donde:

Ep = iluminación en el punto P en pies-bujías

L = iluminancia de la fuente en pies-Lamberts .

W = ancho de la fuente en país

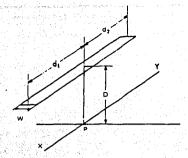



Figura 5. Símbolos usados en el cálculo de la iluminación en puntos específicos con fuentes

La expresión anterior es exacta solamente en el caso de una fuente lineal de longitud infinita, pero su exactitud será dentro del 10% si ambas distancias d<sub>i</sub> y d<sub>2</sub> son mayores que 1.5.D. La exactitud será dentro del 5% si d<sub>1</sub> y d<sub>2</sub> son mayores que 2D. Se debe notar que la iluminación producida por una fuente lineal de longitud infinita varia inversamente a la distancia de la fuente y no inversamente al cuadrado de la distancia como en el caso de fuentes puntuales.

## Fuentes superficiales de área infinita

Una fuente superficial de área infinita colocada en un plano paralelo al plano de trabajo produce iluminación de acuerdo a la siguiente relación.

pies-bujias en el plano de trabajo = Luminancia en pies-lamberts de una fuente infinita

Este tipo de relación es aplicable cuando se tiene plafones luminosos. La iluminación es teóricamente independiente de la distancia.

TESIS CON FALLA DE ORIGEN

## Componente reflejada para superficies horizontales

La componente de iluminación reflejada en un plano horizontal se calcula exactamente de la misma manera como la iluminación promedio usando el método de lúmenes, excepto que el coeficiente de reflexión se sustituye por el coeficiente de utilización de acuerdo a la siguiente fórmula:

donde:

 $RRC = LC_w + RPM (LC_{cc} - LC_w)$ 

LCw = Coeficiente de luminancia de la pared

LCcc = Coeficiente de luminancia de la cavidad de techo

RPM = Factor multiplicador de la posición de local

Componente reflejada para superficies verticales

Para determinar la iluminación reflejada en las superficies verticales se usa la fórmula anterior pero sustituyendo el coeficiente de reflexión de la pared por el coeficiente de utilización quedando la fórmula siguiente:

Donde:

WRRC = LC - WDRC

ρw = Reflectancia promedio de la pared

WDRC = Coeficiente de radiación directa de la pared

# 3.6.2 ALUMBRADO EXTERIOR

#### 3.6.2.1Alumbrado Público

a. Lámparas Incandescentes, Fluorescentes o Vapor de Mercurio

Para llevar a cabo una verdadera y buena iluminación de alumbrado público, es esencial que la instalación este bien proyectada. El diseño debe seguir las normas prácticas americanas para el alumbrado de calles y carreteras, teniendo en consideración los siguientes puntos:

- a.1 La clasificación de la zona y de la carretera
- a 2 El nivel adecuado de iluminación para la clasificación de la carretera
- a.3 La selección de luminarias en relación con la distribución de luz requerida
- a.4 Los emplazamientos adecuados de las luminarias (altura de montaje, distancia de separación entre unas y otras, longitud del brazo) para proporcionar la cantidad y calidad de iluminación requerida.

## a.1 Clasificación de la Zona y de la Carretera

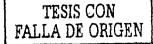
Se deberá hacer una clasificación en función del tráfico aplicable a todas las carreteras para que el diseño del sistema de alumbrado esté en relación con las necesidades particulares de cada una. La tabla nos muestra la clasificación según el volumen de tráfico de vehículos, recomendada por el "Street Lighting Committee" del "Institute of Trafic Engineers". Se recomienda que todas las carreteras se clasifiquen además según el tráfico de peatones durante las horas nocturnas de mayor actividad:

| CLASIFICACION DEL TRAFICO | VEHICULOS POR HORA* |  |  |
|---------------------------|---------------------|--|--|
| Tráfico muy ligero        | Menos de 150        |  |  |
| Trafico ligero            | 150 a 500           |  |  |
| Tráfico medio             | 500 a 1200          |  |  |
| Tráfico pesado            | 1200 a 2400         |  |  |
| Tráfico muy pesado        | 2400 a 4000         |  |  |
| Tráfico máximo            | Más de 4000         |  |  |

<sup>\*</sup> Durante la noche, a la hora de maximo trafico en ambas direcciones.

Tráfico ligero o sin peatones. El que puede haber en las carreteras de barrios residenciales o zonas de almacenes, autopistas, calles elevadas o subterráneas y carreteras en campo.

Tráfico de peatones inedio. El que puede haber en calles de barrios comerciales de segundo orden y en calles de algunas zonas industriales.


Tráfico de peatones pesado. El que puede haber en las calles de los barrios comerciales.

#### a.2 Nivel de Iluminación

El nivel adecuado de iluminación para cada clasificación de las calles puede determinarse en la tabla siguiente. Los valores de la lista son los niveles mínimo de servicio requeridos para proporcionar un buen alumbrado público normal.

En algunas instalaciones pueden ser requeridos niveles más altos por razones distintas de la seguridad del tráfico. El nivel luminoso más bajo en cualquier punto del pavimento no debe ser nunca menos de ¼ del citado en la tabla.

Esto se aplicará en todas las carreteras excepto a las que tienen un tráfico muy ligero de vehículos en donde el mínimo admisible puede llegar a ser 1/10 de la iluminación usual.



# Nivel Luminoso Recomendado en Lux (lúmenes por m²) para calles.\*

|                        | CLASIFICACION DEL TRAFICO DE VEHICULOS |                       |                     |                                 |
|------------------------|----------------------------------------|-----------------------|---------------------|---------------------------------|
| TRÁFICO DE<br>PEATONES | MUY LIGERO<br>MENOS DE 150             | LIGERO (150 A<br>500) | MEDIO 500 A<br>1200 | PESADO O<br>MÁS (MÁS<br>DE 1200 |
| PESADO                 | 9                                      | 12                    | 15                  | 19                              |
| MEDIO                  | 6                                      | 9                     | 12                  | 15                              |
| LIGERO O<br>NULO       | 3                                      | 6                     | 9                   | 12                              |

Para calzadas obscuras, con una reflactancia aproximada del 3%. Con calzadas mas claras, niveles
luminosos más bajos, proporcionaran la misma efectividad.

#### a.3 Selección de Unidades de Alumbrado

Las fuentes luminosas usadas en el alumbrado público son las incandescentes, las de vapor de mercurio y las fluorescentes, y cada una de ellas proporcionará resultados excelentes cuando se utilicen adecuadamente. La consideración fundamental al seleccionar la unidad de alumbrado y la combinación de lámparas es su distribución fotométrica que procurará la cantidad y la uniformidad de iluminación deseada, además de crear unas buenas condiciones visuales en los alrededores. La elección entre sistemas que cumplan estos requisitos se hace generalmente teniendo en cuenta su aspecto y el costo relativo.

Las unidades de alumbrado público se clasifican generalmente con relación a la forma de distribución lateral en cinco tipos generales que a continuación se detallan. La "anchura" se define el ángulo que forma la línea de referencia paralela al bordillo y la línea radial que pasa por el punto de máxima emisión luminosa de la linterna en bujías.

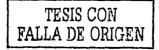
# • Unidad de Alumbrado de Tipo I

Las lámparas de Tipo I tienen distribución lateral en dos sentidos, con una anchura de 15° a cada lado de la línea de referencia y una variación aceptable de 10° a menos de 20°. Las dos concentraciones principales de luz están en direcciones opuestas a lo largo de la calle. El plano vertical de máxima iluminación es paralela a la línea de la acera. La

distribución de luz es similar en ambos lados de este plano vertical. Este tipo de distribución es aplicable, en general, cuando la unidad de alumbrado se coloca próxima al eje de la calle.



### Unidad de Alumbrado Tipo I de Cuatro Direcciones


Las lámparas de tipo I cuatro direcciones, tienen una distribución con cuatro concentraciones principales de luz, formando entre ellos ángulos de aproximadamente 90°, con una variación de anchura total de 20° a menos de 40° como las del tipo I.

Este tipo de distribución es aplicable generalmente a unidades de alumbrado situadas sobre o cerca del centro de una intersección de calles de ángulo recto.



# Unidades de Alumbrado Tipo II

Las unidades de alumbrado con distribución de luz tipo II tiene una anchura lateral de 25°, con una variación aceptable de 20° hasta menos de 30°. Esta distribución es aceptable, en general, a unidades de alumbrado situadas en o cerca de las aceras de calles relativamente estrechas, cuya anchura no exceda de 1.6 veces la altura de montaje.





## Unidades de Alumbrado Tipo II de Cuatro Direcciones

Las unidades de alumbrado con distribución de luz tipo II de cuatro direcciones tienen cuatro concentraciones principales de luz, cada una con una anchura de 20° a menos de 30° como las del tipo II. Este tipo de distribución es aplicable, en general, a unidades de alumbrado situadas cerca de una esquina de una intersección de calles de ángulos recto.



# • Unidades de Alumbrado Tipo III

Las unidades de alumbrado de distribución de luz de tipo III tienen una anchura lateral de 40° con una variación aceptable de 30° a menos de 50°. Este tipo de distribución se proyecta para montaje de unidades de alumbrado en o cerca de un costado de una cale de mediana anchura, cuya anchura no exceda de 2.7 veces la altura de montaje.



TESIS CON FALLA DE ORIGEN

## Unidades de Alumbrado Tipo IV

Las unidades de alumbrado de distribución de luz de tipo IV tiene una anchura lateral de 60° con una variación aceptable de 50° a más. Este tipo de distribución se proyecta para montaje al costado de la calle, y se emplea generalmente en calles anchas, cuya anchura no excede de 3.7 veces la altura de montaje.



## Unidades de Alumbrado Tipo V

Las unidades de alumbrado de tipo V tienen distribución de luz, circular, es decir la misma emisión en todos los ángulos laterales. Esta distribución se proyecta para unidades de alumbrado montadas, en o cerca del centro de la calle, en las islas centrales de avenidas y en cruces.



## a.4 Emplazamiento de las Unidades de Alumbrado

Dos consideraciones son de una importancia fundamental en la determinación de la altura de montaje óptima la conveniencia de reducir al mínimo el deslumbramiento directo y la necesidad de una distribución razonablemente uniforme de iluminación sobre la superficie de la carretera. Cuanto más alta esté montada la unidad de alumbrado, más



distanciado estará por encima de là liñea normal de visión, y menor será su deslumbramiento.

Por otra parte, para alcanzar la iluminación uniforme, se requiere una cierta relación entre la altura de montaje, la distancia entre unidades de alumbrado y el angulo vertical de máxima emisión luminosa para la unidad de alumbrado en cuestión (generalmente entre 70° y 80°).

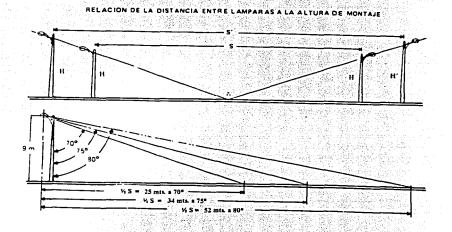



Figura 6 Relación de la distancia entre lámparas a la altura de montaje

Para la unidad de alumbrado dada, la relación de la distancia entre postes, a la altura de montaje deberá ser lo suficientemente baja para que el rayo de luz de máxima emisión luminosa pueda incidir en la calzada por lo menos a la mitad de la distancia al poste contiguo. Para proporcionar una mayor uniformidad sobre las carreteras de gran tráfico, la distancia entre postes se reduce a veces a un 50%, lo que proporciona un 100% de solape de los haces verticales.



Las alturas de montaje recomendadas por la "American Standard Practice" para el alumbrado de calles y carreteras con el mínimo deslumbramiento y la máxima uniformidad, vienen dadas en las tablas siguientes. A veces puede desearse mayores alturas de montaje, pero variar las alturas que a continuación se dan tanto en más como en menos, no puede considerarse una buena práctica.

### b. Altura de Montaje de Lámparas

| Emisión<br>de la<br>(lúmenes) | •   | Tipo I m. | Tipo II m: | Tipo III m. | Tipo IV y V m. |
|-------------------------------|-----|-----------|------------|-------------|----------------|
| 25                            | 00  | 7.60      | 6.00       | 6.00        | 6.00           |
| 40                            | 00  | 7.60      | 7.60       | 7.60        | 7.60           |
| 60                            | 00  | 7.60      | 7.60       | 7.60        | 7.60           |
| 100                           | 000 | -         | *7.60 a 9  | *7.60 a 9   | 7.60           |
| 150                           | 000 | -         | 9          | *7.60 a 9   | *7.60 a 9      |
| 200                           | 00  | -         | 9          | 9           | *7.60 a 9      |
| 500                           | 00  |           |            |             | *7.60 a 9      |

- Estudios Característicos de Alumbrado de Calles Basados en un Pavimento con Factor de Reflexión del 10% (1)\*
- Para pavimentos con reflectancia menor (del orden del 3 por 100), el nivel luminoso deberá ser aumentado en un 50%.
- 2. Baso en la emisión luminosa inicial y un factor de mantenimiento de 0,80
- Para lámparas fluorescentes y de vapor de mercurio; para lámparas de incandescencia,
   72 m a un solo lado.
- 4. A 13°C de temperatura ambiente.
- 5. Lámparas trabajando a tensión nominal en posición horizontal.

# 3.6.2.2 Datos y Cálculos de Iluminación de Calles

#### a. Introducción

Los cálculos de iluminación de calles en candelas-pié horizontales se agrupan en dos tipos generales:

- 1. Determinación de la iluminación promedio en el pavimento de la calle.
- 2. Determinación de la iluminación en puntos específicos de la carretera.

#### b. Determinación del Promedio de Iluminación

La iluminación promedio sobre un área grande de pavimento en término de pié-candelas horizontales puede calcularse por medio de una "curva de utilización" del tipo mostrado en la figura siguiente:

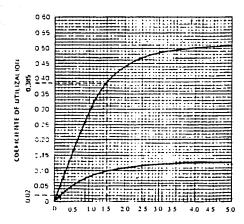



Figura 8. Ejemplo de curvas para coeficientes de utilización para provisión de luminarias

Tipo III-M en distribución



El coeficiente de utilización, como se muestra en la figura es el porcentaje de los lúmenes de lámpara que caerán en cualquiera de las dos áreas de longitud mínima una extendida al frente de la luminaria (lado de la calle) y la otra detrás del luminaria (lado de la casa), cuando la luminaria es nivelada y orientado sobre la calle en una manera equivalente a aquella en la cual éste fue probado. Ya que el ancho de la calle está expresado en término de una razón de la altura de montaje de la luminaria al ancho de la calle, el término no tiene dimensiones.

### Factores de Depreciación

Las diferentes causas de pérdida de luz en las luminarias de alumbrado de calles se ilustran en la figura. Estas condiciones de deterioración existen siempre, variando el grado. De esta forma cada circunstancia deberá ser considerada separadamente para aplicar valores de depreciación razonables para ello.



Figura 9. Causas de perdida de luz mostrados\* para un sistema típico de alumbrado de calles (mercurial 400 wans)

- A. Variación temperatura y/o voltaje
- B. Deterioración de superficies de luminaria o refractor
- C. Depreciación de los lúmenes de la lámpara
- D. Depreciación por suciedad de la luminaria

Los valores que se muestran son ilustrativos de las perdidas. Diferiran cantidades relativas para cada instalación específica. Si las bases de las lamparas no son remplazadas, los valores finales mostrados seran aun mas reducidos.



### c. Formulas para Cálculos

La formula básica para la determinación del promedio de pie-candelas horizontales es la siguiente:

Donde:

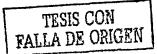
C.U. = Coeficiente de utilización

Esta fórmula es aplicada generalmente como sigue:

Pie-candelas<sub>prom.</sub> (Lumenes por pie<sup>2</sup>) = (<u>lumenes de lámpara</u>) x (coeficiente de utilización) (espacio entre luminarias en pies) x (ancho de calles en pies)

Esta es la distancia longitudinal entre luminarias si son espaciados en arreglos
escalonados (tresbolillo) o de un solo lado. Esta distancia es la mitad de la distancia
longitudinal entre luminarias están arreglados en lados opuestos.

Puede verse con esta expresión de la fórmula, es posible encontrar el promedio de los piecandelas horizontales, o espacimientos, o lúmenes de lámparas, según se desee. Una modificación de esta fórmula es necesaria para determinar la iluminación promedio en la calle cuando la fuente de iluminación está en su condición de mayor suciedad. Para tal cálculo, las fórmulas se expresa como sigue:


$$P.p. = L \times C.U. \times F.P.$$

$$D \times A$$

Donde:

P.p. = pie-candelas prom. (lúmenes por pié cuadrado)

L = lúmenes de lámpara



C.U. = coeficiente de utilización

F.P.\* = factor de perdida de luz

D = distancia entre luminarias en pies

A = ancho de la calle en pies

• Este valor puede ser determinado experimentalmente o estimado si es desconocido.

## d. · leulos Típicos

Para ilustrar el uso de una curva de utilización, Fig. 10, un cálculo tipico se muestra a continuación:

Datos. Calle con arreglo de luminarias como se muestra en la figura (c)

- Espaciamiento de luminarias escalonados (colocadas a tres bolillo) de 120 pies.
- Ancho de la calle entre banquetas (pavimento) de 50 pies.
- Altura de montaje de la luminaria, 30 pies.
- Distancia de banqueta a la luminaria, 5 pies.
- Factor de pérdida de luz (0.6).
- Lampara de vapor de mercurio con 20,000 lúmenes iniciales.

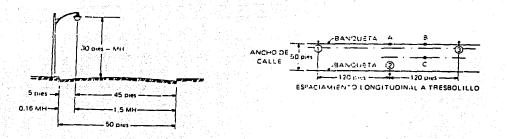
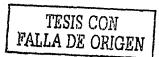




Figura 10. Arreglo de luminarias y calle supuestos para un cálculo tínico



Se requiere: Calcular el promedio minimo de lúmenes por pie cuadrado (promedio de piécandelas) para la calle.

Solución: Para iluminación promedio:

 Determine el coeficiente de utilización (C.U.) para el "lado de la calle" de luminaria:

Usese la distancia de borde de la banqueta al punto directamente debajo de la luminaria

El coeficiente de utilización (C.U.) de la figura 10 para la relación de 1.50 es 0.385

2. Determine el coeficiente de utilización (C.U.) del "lado de la casa".

El coeficiente de utilización (C.U.) de la figura 10 para la relación 0.16 es de 0.02

- 3. El coeficiente total para "lado de la calle" más "lado de la casa" es de 0.405
- Para determinar la iluminación promedio en la calle, úsese la fórmula dada anteriormente:

Pie-candela<sub>prom.</sub> = 
$$\frac{20,000 \times 0.405 \times 0.6}{120 \times 50}$$
 = 0.8

= 0.8 pie-candelas

### e. Determinación de la Iluminación en un Punto Especifico

La determinación de la iluminación horizontal en pie-candelas en un punto específico puede determinarse de una curva "isopié-candelas", figura 11, o por medio del método clásico de cálculos de puntos.

Diagramas de Isopies-candelas. Un diagrama de isopiés-candelas es una representación gráfica de puntos de igual iluminación unidos por una linea continua. Estas líneas pueden mostrar valores de pie-candelas en un plano horizontal de una sola unidad teniendo una altura de montaje definida, o bien, ellas pueden mostrar una figura compuesta de la iluminación de varias fuentes arregladas en cualquier forma o a cualquier altura de montaje. Estas se usan en el estudio de uniformidad de la iluminación y en la determinación del nivel de iluminación a cualquier punto específico. A fin de hacer estas curvas aplicables a todas las condiciones están calculadas para una altura de montaje dada, pero las distancias horizontales están expresadas en razones de la distancia actual a la altura de montaje. Factores de corrección para otras alturas de montaje están dados generalmente en la tabulación a lo largo de las curvas de isopiés-candelas.

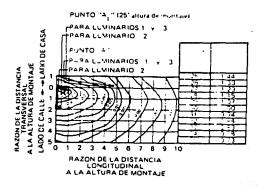



Figura 11. Ejemplo de un diagrama de isopiés-candelas de pie-candelas horizontales en la superficie del pavimento para una luminana con distribución de luz Tipo III-M para 1000 lúmenes de salida de lámpara en 10 veces.



Cálculos Típicos. Para ilustrar el uso del diagrama de isopiés-candelas, un cálculo típico se muestra a continuación.

Datos. Calle con arreglo de luminarias como se muestra en la figura 10

- Espaciamiento de luminarias escalonados (colocados a tresbolillo) de 120 pies.
- Ancho de la calle entre banquetas (pavimento) de 50 pies.
- Altura de montaje de luminaria, 30 pies.
- Distancia de banqueta a la luminaria, 5 pies
- Factor de pérdida de luz, (0.6)
- Lámpara de vapor de mercurio con 20,000 lúmenes iniciales.

Se requiere.

Determinar el nivel de pie-candelas en el punto "A" de la figura 10, en el cual tiene el total de contribuciones de las luminarias 1, 2 y 3.

Solución.

- La localización del punto "A" con respecto a un punto en el pavimento directamente bajo la luminaria está dimensionada en múltiplos transversales y longitudinales de la altura de montaje. Se supone que la distribución de la luminaria provee líneas de isopiescandelas (pié-candelas horizontales) como se muestra en la figura 11. El punto "A" es así localizado en este diagrama de isopiéscandelas para su posición con respecto a cada luminaria.
- 2. Para determinar la contribución de cada luminaria al punto "A"
- a. Luminarias números 1 y 3. Localice el punto "A"
- Transversal 5 pies a "lado de la casa":

4/30 = 0.16 veces la altura de montaje

- Longitudinal 120 pies a lo largo del pavimento:

120 / 30 = 4.0 veces la altura de montaje

En el punto "A" para estas luminarias el valor estimado en pie-candelas de la figura 11 del diagrama de isopiés-candelas es de 0.04 pie-candelas. Esta contribución es de cada luminaria 1 y 3. Ambos luminarias juntas proveen 0.08 pies-candelas.

- b. Luminaria número 2: Localice el punto "A":
- Transversal 45 pies a "lado de la calle":

45/30 = 1.5 veces la altura de montaje.

- La localización longitudinal es cero, ya que se localiza directamente enfrente del luminaria. En el punto "A" para esta luminaria el valor estimado en pies-candelas de acuerdo a la figura 11 es de 0.3 pie-candelas.
  - 3. El total en el punto "A" de las 3 luminarias es 0.08 + 0.3 = 0.38 pies-candelas. El valor de 0.38 pies-candelas está basado en 1000 lúmenes de lámpara en 10 veces y luminarias limpias con una lámpara produciendo los lúmenes nominales. El nivel inicial de pies-candelas es, de esta manera: 0.38 x 2 = 0.72 pies-candelas. Si se desea expresar el nivel de pies-candelas en los términos cuando la fuente de iluminación se encuentra en su salida más baja y cuando la luminaria se encuentra en condiciones de la mayor suciedad, se puede expresar utilizando el procedimiento que sigue:

 $0.76 \times 0.6 = 0.46$  pies-candelas

- 4. Para usar los datos de la otra altura de montaje que la indicada en las curvas de isopiés-candelas graficados, es necesario encontrar la nueva localización en el diagrama, así como aplicar un factor de corrección al valor de pies-candelas de esta nueva localización. Deberá seguirse el siguiente procedimiento:
- a. Calcule las nuevas distancias transversales y longitudinales a la altura de montaje y localice los puntos en el diagrama de acuerdo a los siguientes cálculos;

Ejemplo para altura de montaje de 25 pies:

- Luminaria 1 y 3 Punto "A";
- Transversal 5 pies en "lado de la casa":

5/25 = 0.2 veces la altura de montaje (M.H.)

- Longitudinal 120 pies a lo largo del pavimento

120/25 = 4.8 M.H.

El punto "A," es localizado en el diagrama de isopiés-candelas figura 11 con sus nuevas dimensiones.

 b. Obtenga los valores estimados en pies-candelas en las nuevas locaciones y multiplique esos valores por el factor de corrección para la nueva altura de montaje.

El valor estimado de los pies-candelas en el punto " $A_1$ " figura 11 es de 0.015 pies-candelas. Este valor es multiplicado por el factor de corrección para 25 pies, el cual es de 1.44. 0.015 x 1.44 = 0.0216 pies-candelas desde cada luminaria 1 y 3. Ambos luminarias proveen 0.043 pies-candelas.

Luminaria No. 2 Punto "A1"

- Transversal 45 pies en el "lado de la calle":

$$45/25 = 1.8 MH$$

 La localización longitudinal permanece en cero, directamente enfrente del luminaria. Los pies-candelas estimados en la figura 11 son 0.2 pies-candelas. Este valor es multiplicado por el factor de corrección 1.44.

$$0.2 \times 1.44 = 0.288 \text{ pies-candelas}$$

El total en el punto "A1" es :

$$0.043 + 0.288 = 0331$$
 pies-candelas

Como antes, este valor deberá ser multiplicado por el coeficiente de los lúmenes actuales de la lámpara a los lúmenes de la lámpara del diagrama de isopies-candelas (20,000 / 10,000) = 2 para el nivel inicial de pies-candelas.

#### Coeficientes de Uniformidad

Los requerimientos de uniformidad en la iluminación deberán ser determinados por el coeficiente de la razón:

Pies-candelas mínimos horizontales Pies-candelas promedio horizontales

Esto también puede ser expresado como la razón:

Pies-candelas promedio horizontales
Pies-candelas mínimos horizontales

Un suficiente número de puntos especificados sobre la calle deberá ser checados para verificar la calidad y eficiencia de una instalación de alumbrado, antes de ser aceptada y puesta en servicio; para este objeto se recomienda la prueba conocida como método de los 21 puntos.

f. Instructivo para Realizar Mediciones de Niveles de Iluminación, Aplicando el Método de los 21 Puntos Adaptándose a la Geometría de la Instalación.

Se expone el método para realizar mediciones de niveles de iluminación por el método conocido como de los 21 puntos:

## Datos requeridos:

- Altura de montaje
- Distancia interpostal
- Ancho de camellón (para calles de doble circulación, avenidas, etc.)
- Ancho de vía lateral

Los resultados mínimos que se requieren para verificar una calidad y eficiencia que se consideren buenos en los arreglos y los equipos por probar y considerando las condiciones antes citadas serían a partir de los coeficientes de uniformidad.

De esta manera se tiene que:

E promedio = 
$$E_1 + E_2 + E_3 + \dots + E_{21} = luxes$$

De lo anterior se puede apreciar que se harán mediciones en 21 puntos previamente establecidos Figura (e).

Los valores mínimos aceptables para los coeficientes de uniformidad serán los siguientes (de acuerdo a la Comisión Internacional de Iluminación, LLC.)

Coeficiente de uniformidad general = <u>E min.</u> = 0.55 E prom.

Coeficiente de uniformidad longitudinal = <u>E min.</u> = 0.50 (en los ejes, I, II y III) <u>E prom.</u>

Coeficiente de uniformidad transversal = <u>E min.</u> = 0.40 (en los 3 ejes, A, B y C) E prom.

• Forma para Comprobar los Niveles de Iluminación en Campo

De acuerdo con en la figura 12, las mediciones en el campo que deberán efectuarse serán:

E prom. = 
$$\frac{\sum a^u}{21}$$
 6

E prom. = 
$$\frac{a+b+c+...+u}{21}$$

y los coeficientes de uniformidad que deberán calcularse serán los siguientes:

Coeficiente de uniformidad general = E min.
E prom.

Coeficiente de uniformidad longitudinal (eje l) = E min. E max.

Coeficiente de uniformidad longitudinal (eje II) = E min. E max

Coeficiente de uniformidad longitudinal (eje III) = E\_min\_ E\_max.

Coeficiente de uniformidad transversal (eje A) = E min, E max.

Coeficiente de uniformidad transversal (eje B) = E min. E max.

Coeficiente de uniformidad transversal (eje C) =  $\underline{E}$  min.  $\underline{E}$  max

Al obtener los valores para los coeficientes de uniformidad deberán compararse con los valores considerados como mínimos aceptables de acuerdo a lo indicado anteriormente, esto con el fin de verificar el nivel de calidad de la instalación en prueba.

Panorama de los niveles de iluminación horizontales en el suelo Método de los 21 Puntos

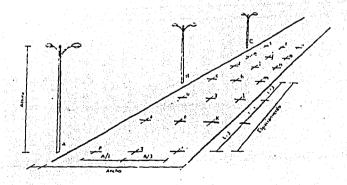



Figura 12. Arreglo de los 21 puntos donde deberán realizarse las mediciones de iluminación en luxes.



# CAPITULO CUARTO

## DESCRIPCIÓN DE LA INSTALACIÓN ACTUAL

- 4.1 DESARROLLO DEL ANTEPROYECTO
- 4.2 REOUERIMIENTOS DEL PROYECTISTA AL INSTITUTO
- 4.2.1 REQUERIMIENTOS DEL INSTITUTO
- 4.2.2 REQUERIMIENTOS DE LOS PLANOS PRESENTADOS
- 4.2.3 CONSIDERACIONES TÉCNICAS
- 4.2.4 NIVELES DE ILUMINACIÓN
- 4.2.5 CONSIDERACIONES GENERALES
- 4.2.6 PRECAPACIDADES Y LOCALES TIPO
- 4.3 NORMAS Y REGLAMENTOS
- 4.4 PRESUPUESTO Y MATERIALIZACIÓN
- 4.5 PLANOS Y DIAGRAMAS DE INSTALACIÓN ELÉCTRICA

En el presente Capítulo se mencionan algunos puntos exigidos por las Normas de Proyecto de Ingenieria, Tomo II Instalaciones Eléctricas del IMSS, las cuales deben tomarse en cuenta si se pretende hacer un proyecto eléctrico para una Unidad Médica, ya que dichas Normas son para brindar una eficiente y seguro servicio en la atención a los usuarios.

## 4.1 DESARROLLO DEL ANTEPROYECTO

Al inicio del desarrollo de nuestro proyecto, se beben tomar los criterios sobre los cuales se ejecutara nuestro proyecto eléctrico, considérando las instalaciones de acondicionamiento de aire, hidráulica y sanitaria, telecomunicaciones, así como tecnología de punta para su mejor eficiencia, para tener más seguridad y comodidad.

Se debe establecer los criterios generales y técnicos y de seguridad en el diseño de instalaciones eléctricas, que se debe cumplir en la elaboración del proyecto.

Estas normas debe aplicarse en todos los desarrollos del proyecto de ingeniería de instalaciones eléctricas, en todas las unidades que construye, remodela, y amplía el Instituto.

## 4.2 REQUERIMIENTOS DEL PROYECTISTA AL INSTITUTO

El Instituto le proporcionará al proyectista externo de las instalaciones eléctricas, una fotocopia de la cédula de servicio, así como los juegos necesarios de copias en maduro reproducible escala 1:100, del anteproyecto arquitectónico de todas las áreas y todos los niveles; un juego de copias heliográficas escala 1:100 de cortes generales y fachadas de la unidad en proyecto; copias en maduro reproducible de las guías mecánicas de alta especialidad como son Radiología, Tomografia, etc. para desarrollar el anteproyecto en su totalidad, en cuanto a magnitud de cargas y coordinación con las otras especialidades de ingenieria.

## 4.2.1 REQUERIMIENTOS DEL INSTITUTO

El proyectista debe tener coordinación con las especialidades de Hidráulica y Sanitaria, Acondicionamiento de aire y Telecomunicaciones, para obtener la información de los equipos eléctricos en cuanto potencia, ubicación, tensión de operación, número de fases, secuencia de control, así como trayectorias de tuberías, ductos y canalizaciones, etc., con el objeto de predimencionar los equipos eléctricos necesarias y evitar interferencias en la trayectoria de canalizaciones y tuberías de vapor, agua helada y de servicio.

## 4.2.2 REOUERIMIENTOS DE LOS PLANOS PRESENTADOS

Se deben presentar planos de alumbrado y contactos escala 1:100, dibujados a lápiz sobre maduros reproducibles; los arreglos preliminares de subestación, diagrama unifilar de distribución, ubicación de los tableros generales, subgenerales y de distribución; una propuesta de alumbrado exterior; con el fin de que el instituto apruebe los criterios de diseño y pueda coordinarse con las diferentes especialidades de ingeniería.

#### Plano de Alumbrado

Debe contener la localización y selección de luminarios de servicio normal, servicio de emergencia y seguridad, así como la ubicación de los tableros de distribución, utilizando los simbolos establecidos en las normas.

## Planos de Contactos

Estos planos deben contener la localización, capacidad, número de fases, indicando los contactos de servicio normal, servicio de emergencia y seguridad, ubicación de los tableros y la utilización correcta de la simbología.

#### Subestación Eléctrica

Se debe presentar un arreglo preliminar de la subestación con la ubicación de todos los equipos que contienen a escala, indicando sus capacidades, la ubicación de la acometida, del equipo de medición, la posición de la planta generadora de energia eléctrica así como los tableros generales en B.T. de servicio normal, emergencia y seguridad.

## Diagrama Unifilar

Este plano preliminar debe indicar el criterio general de distribución, marcando la capacidad del transformador, la tensión de la acometida, las tensiones de distribución, potencias aproximadas de las cargas por alimentar, características preliminares y la distribución de los circuitos.

## Alimentadores generales en alta tensión

Indicar en un plano de conjunto la posición de la acometida, la trayectoria de los alimentadores, dimensión de los registros, calibre de los conductores, diámetro y número de canalizaciones, así como la ubicación de las subestaciones principal y derivadas; este plano, después de ser aprobado por el Instituto, formará parte del proyecto definitivo, complementando con la información técnica requerida por las Normas Oficiales Mexicanas.

## • Alimentadores generales en baja tensión

Se debe indicar en planos la posición de los tableros generales, subgenerales y de distribución, la trayectoria de las canalizaciones, diámetros y calibre de conductores.

#### Alumbrado Exterior

En un plano de conjunto se debe presentar una propuesta de la distribución de alumbrado exterior, indicando tipo, potencia, tensión y número de fases de luminaria, el tipo y altura de poste, la trayectoria de alimentación, control de encendido y apagado y el tablero que alimenta el sistema.

## 4.2.3 CONSIDERACIONES TÉCNICAS

#### a. Distribución

Se recomienda que la distribución de energía eléctrica sea del tipo radial, sencilla en alta y baja tensión.

#### b. Acometida.

Verificar los datos de tensión de alimentación en alta y baja tensión, así como la capacidad interruptiva del sistema, en el punto de suministro.

La acometida debe ser en baja tensión cuando la carga estimada sea igual o menor a 75 KVA y debe ser en alta tensión cuando la carga estimada sea mayor; esta última se recomienda que la acometida sea subterránea de la calle a la obra, lo cual se debe prever para recibir en la obra.

Para centros médicos se requiere dos acometidas en alta tensión de diferentes sistemas de distribución, subterráneas y enlazadas para su operación a través de una transferencia automática proporcionada por la companía suministradora. En las terminales de entrada de la acometida normalmente se colocan apartarrayos para proteger la instalación y el equipo contra ondas de alto voltaje.

c. Equipo de Medición.

Es propiedad de la compañía suministradora que se coloca en la acometida de cualquier usuario con el propósito de cuantificar el consumo de energía eléctrica

Para subestaciones la medición de energía eléctrica será en baja tensión, hasta una capacidad menor o igual a 225 KVA o mayor en coordinación con la compañía suministradora.

- d. Subestación Eléctrica.
- Para zona urbana
  - Compacta tipo interior autosoportada
  - Compacta tipo intemperie autosoportada
  - Tipo pedestal autosoportada, previa autorización de aprobación del Instituto
- Para zona rural
  - Tipo pedestal autosoportada, previa autorización de aprobación del Instituto
  - Tipo rural (en poste).
- e. Distribución en alta tensión
- Caseta de acometida y/o medición
- Subestación transformadora
- f. Elementos que constituyen los sistemas de alta y baja tensión.
- a. Gabinete de recepción de acometida
- b. Gabinete para medición en alta tensión
- c. Gabinete con cuchillas seccionadoras sin carga
- d. Gabinete con interruptor de potencia en aire

- e. Gabinete de acoplamiento a transformador
- f. Gabinete de transición
- g. Transformador

Es un equipo que se utiliza para cambiar el voltaje de suministro al voltaje requerido.

h. Tableros de baja tensión

Es aquél que se coloca inmediatamente después del transformador y que contiene un interruptor general. El transformador se conecta a la entrada del interruptor y a la salida de éste se conectan barras que distribuyen la energía eléctrica a diferentes circuitos a través de interruptores derivados.

- Interruptor de transferencia automática
- j. Planta generadora de energía

Protege de posibles fallas en el suministro de energía eléctrica, lo cual es requerido mientras la red suministradora tenga caídas de voltaje importantes, fallas en alguna fase o interrupciones en el servicio.

- k. Determinación del sistema de distribución de energía eléctrica en baja tensión
- Ubicar la localización preliminar de centros de carga
- Determinar las trayectorias de alimentaciones generales
- Determinar las tensiones de operación
- Distribución de contactos
- Conocer el proyecto médico arquitectónico
- · Conocer mobiliario y equipamiento

- Hacer sembrado de contactos bajo los siguientes criterios:
  - De acuerdo a las necesidades planteadas en guías mecánicas y locales tipo
  - En áreas de servicio cada 20 metros
  - En donde se requiera según necesidades de otras instalaciones
  - Integrados al mueble o mampara en donde exista concentración de escritorios.

#### m. Sistema de iluminación artificial

- Crear un ambiente cómodo, ocupándonos no sólo de la economía, sino también del arte y la tecnología.
- Debe satisfacer tanto las necesidades ambientales como las funcionales.
- Debe evitarse el aburrimiento y el agotamiento visual, la inatención y la ineficacia por la presencia de un ambiente estático y/o escaso de iluminación.
- Se debe verificar que el inmueble a construir cuente con el porciento de luz natural que marca el Nuevo Reglamento de Construcciones, para el D.F. con aplicación para toda la República.
- El diseño de las luminarias a utilizar debe ser con las nuevas tecnologias eficaces la momento y aprobadas por el instituto.

#### n. Método de calculo de iluminación.

- Para áreas interiores se recomienda el método de Cavidad Zonal
- Utilizar Coeficientes de Utilización del anexo C
- Aplicar valores de reflectancias según colores de la tabla No. 1
- Consultar catálogos de lámparas y tablas de relaciones de cavidad de reconocimiento

TABLA No. 1

| IADLA                       | 10 1           |
|-----------------------------|----------------|
| COLOR                       | REFLEXION EN % |
| BLANCO DE CAL               | 80             |
| AMARILLO LIMON              | 70             |
| MARFIL                      | 70             |
| AMARILLO ORO                | 60             |
| AMARILLO PAJA               | 60             |
| OCRE CLARO                  | 60             |
| VERDE CLARO PASTEL          | 50             |
| MADERA DE PINO              | 50             |
| AZUL CLARO                  | 45             |
| ROSA SALMON                 | 40             |
| GRIS CEMENTO                | 32             |
| ANARANJADO                  | 27             |
| BEIGE                       | 26             |
| VERDE HIERBA                | 20             |
| ASFALTO SECO                | 20             |
| ROJO LADRILLO               | 16             |
| ROBLE OSCURO                | 16             |
| NOGAL                       | 16             |
| ROJO ESCARLATA              | 16             |
| AZUL TURQUESA               | 15             |
| VIOLETA                     | 6              |
| ASFALTO                     | 6              |
| ESTAS REFLECTANCIAS SON     |                |
| VARIAN SEGÚN EL TONO DEL CO | LOR.           |

#### 4 2.4 NIVELES DE ILUMINACIÓN

Los niveles de iluminación indicados en las siguientes tablas, deben ser servir de base para el diseño de la iluminación de los inmuebles que construye el Instituto, los cuales estan basados en el IES, la SMII, el Reglamento de Construcciones, la OMS y la experiencia Institucional.

## 4.2.5 CONSIDERACIONES GENERALES

- Cuando se indique el 100% de iluminación en servicio de seguridad o circuitos de emergencia se entiende 100% respecto a la zona de trabajo, no al resto.
- Las tolerancias para los valores indicados en las tablas anteriores debe ser ± 7.5%
- Se debe recomendar que los colores del mobiliario, sean claros, ya que la
  reflectancia de los mismos incide en la iluminación de los locales donde están
  instalados a su vez, se sugiere el uso de plafones de iluminación natural en los
  lugares donde el clima asi lo permita, ya que el cristal y otros materiales
  transparentes cuentan con una alta conductividad térmica.

## 4.2.6 PRECAPACIDADES Y LOCALES TIPO

• Precapacidades de equipos eléctricos según clima y tipo de unidad.

| Tabla I. Prec                         | Clima                           | npos por clima y tipo<br>ropical      | oe unudad                     |                                                             |  |  |
|---------------------------------------|---------------------------------|---------------------------------------|-------------------------------|-------------------------------------------------------------|--|--|
| Tipo de Unidad                        | Capacidad<br>subestación<br>KVA | Capacidad<br>plantas<br>emergencia KW | Cantidad<br>tableros 3<br>KVA | Cantidad tableros<br>aíslamiento 15 KVA<br>para RX portátil |  |  |
| HGZ (220 camas)                       | 2 TR 750                        | 500                                   | •6                            | 1                                                           |  |  |
| HGZ (120 camas)                       | 2 TR 600                        | 400                                   | *4                            | i                                                           |  |  |
| HGZ (220 camas)                       | 2 TR 300                        | 250                                   | •2                            |                                                             |  |  |
| HGZ (220 camas)                       | I TR 750                        | 150                                   | •1                            |                                                             |  |  |
| HGZ subzona (12 camas, 3 consultonos) | 1 TR 300                        | 125                                   | •1                            | -                                                           |  |  |
| Hospital de gineco - obstetricia      | 2 TR 600                        | 450                                   | •3                            | T 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                     |  |  |
| Hospital de especialidades            | 2 TR 600                        | 450                                   | •3                            | 1 J. ASS.                                                   |  |  |
| UMF hospitalización                   | 1 TR 225                        | 75                                    |                               |                                                             |  |  |
| UMF / 10,15.20 (consultorios)         | 1 TR 300                        | 50                                    | -                             | 1                                                           |  |  |
| UMF / 2+1, 3+1, 5                     |                                 | 15                                    |                               |                                                             |  |  |

NOTA: TR = Transformador

la capacidad máxima permisible con plantas electricas de emergencia debera hasta 500 KW continuos.

| Tipo de Unidad                         | Capacidad<br>subestación<br>KVA | Capacidad<br>plantas<br>emergencia KW | Cantidad<br>tableros 3<br>KVA | Cantidad tableros<br>aislamiento 15 KVA<br>para RX portátil |
|----------------------------------------|---------------------------------|---------------------------------------|-------------------------------|-------------------------------------------------------------|
| HGZ (220 camas)                        | 2 TR 750<br>1-750 1-500         | 400                                   | 6*                            | 1                                                           |
| HGZ (120 camas)                        | 2 TR 600<br>1-500 1-400         | 350                                   | 4•                            | 1                                                           |
| HGZ (72 camas)                         | 1 TR 400                        | 150                                   | 2•                            |                                                             |
| HGZ (34 camas)                         | 1 TR 300                        | 100                                   | - 1*                          |                                                             |
| HGZ subzona (12 camas, 3 consultorios) | 1 TR 225                        | 100                                   | 1*                            |                                                             |
| Hospital de gineco - obstetricia       | 2 TR 500                        | 400                                   | 3*                            | 1.0                                                         |
| Hospital de especialidades             | 2 TR 500                        | 400                                   | 3*                            | 1.1                                                         |
| JMF hospitalización                    | 1 TR 150                        | 50                                    | 1.                            |                                                             |
| UMF / 10,15,20 (consultorios)          | 1 TR 225                        | 50                                    |                               |                                                             |
| UMF / 2+1, 3+1, 5                      |                                 | 7.50                                  |                               | and the second second                                       |

NOTA: TR = Transformador

la capacidad máxima permisible con plantas electricas de emergencia deberá hasta 500 KW continuos.



<sup>\*</sup> Un tablero de aislamiento por cada dos modulos de contactos o un quirófano

Un tablero de aislamiento por cada dos módulos de contactos o un quirófano

| Tabla I. Prec                         | apacidades de equ<br>Clima T    | upos por clima y tipo<br>ropical      | de unidad                     | 40 A.                                                       |
|---------------------------------------|---------------------------------|---------------------------------------|-------------------------------|-------------------------------------------------------------|
| Tipo de Unidad                        | Capacidad<br>subestacion<br>KVA | Capacidad<br>plantas<br>emergencia KW | Cantidad<br>tableros 3<br>KVA | Cantidad tableros<br>aislamiento 15 KVA<br>para RX portátil |
| HGZ (220 cames)                       | 2 TR 750                        | 450                                   | 6*                            | 1                                                           |
| HGZ (120 camas)                       | 2 TR 600                        | 400                                   | 5.                            | i                                                           |
| HGZ (72 camas)                        | 2 TR 300                        | 250                                   | 2.                            | 2.141                                                       |
| HGZ (34 camas)                        | I TR 400                        | 150                                   | 1*                            | 1 1 1 1 1 1                                                 |
| HGZ subzona (12 camas, 3 consultonos) | 1 TR 300                        | 125                                   | 1.                            | 14.1 SAM DATE:                                              |
| Hospital de gineco - obstetricia      | 2 TR 600                        | 450                                   | 3•                            | ja Pyjadli arajoji                                          |
| Hospital de especialidades            | 2 TR 600                        | 450                                   | 3•                            | as Santa Brian St                                           |
| UMF hospitalización                   | 1 TR 225                        | 75                                    | - 1                           | planta (A.G. G. William) (A. C. G. C. William)              |
| UMF / 10,15,20 (consultorios)         | 1 TR 300                        | 50                                    |                               | Michelle State (A. T.)                                      |
| UMF / 2+1, 3+1, 5                     |                                 | 15                                    | 1.00                          | 04.44.1458.868.641                                          |

NOTA: TR = Transformador

#### 4.3 NORMAS Y REGLAMENTOS

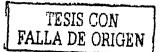
- Reglamento para Construcciones del Distrito Federal.
- Normas Técnicas de Instalaciones Eléctricas, Normas Mexicanas Oficiales
- I.E.S. Lighting Handbook. Sección México
- Sociedad Mexicana de Ingeniería en Iluminación A.C.
- Normas de Diseño de Ingeniería Edición 1976. IMSS.
- Reglamento de Instalaciones Eléctricas. (RIE)
- Ley del Servicio Público de Energía Eléctrica
- Normas de medición y Servicios de C.F.E.
- Normas de Montaje de Luz y Fuerza del Centro
- Lev Federal sobre Metrologia y Alarmatización SECOFI
- Disposiciones para los energéticos de S.E.M.I.P.
- Legislación sobre Contaminación Ambiental de la SEDESOL.
- Comité Consultivo Nacional de Normalización de la Industrial Eléctrica

Este proyecto fue elaborado por personal de la Dirección General de Fabricas de la Defensa Nacional, donde laboro actualmente. Dentro de ella, la Unidad de Ingeniería y Mantenimiento Eléctrico es la encargada de realizar los diseños, proyectos, presupuestos e instalaciones eléctricas en obra, así como su mantenimiento.

A continuación expongo tanto el presupuesto, material, equipos, así como los planos y diagramas que se utilizaron en dicho proyecto para la realización fisica de nuestra enfermería convencional.

<sup>\*</sup> Un tablero de aislamiento por cada dos modulos de contactos o un quirófano

#### 4 4 PROYECTO Y PRESUPUESTO DE LA INSTALACION ELECTRICA GENERAL DE UNA ENFERMERÍA CONVENCIONAL.


ESTE PRESUPUESTO FUE REALIZADO FOR LA DIG FIDIN LAS CANTIDADES Y PRECIOS UNITARIOS SON UN ESTIMADO DE UN CUSTO REAL, YA QUE FUE COTIZADO FOR VARIAS EMPRESAS Y DISTRIBUIDORAS. ESTOS COSTOS NO DEBEN TOMARSE DE BASE YA QUE LOS PRECIOS VARIAN CON EL TIEMPO.

#### 01 ALUMBRADO Y CONTACTOS

| PART | CONCEPTO                                                                                         | CANTIDAD | UNIDAD | P UNIT. | T | IUIAL      |
|------|--------------------------------------------------------------------------------------------------|----------|--------|---------|---|------------|
|      | SUMINISTRO E INSTALACION DE SALIDA ELECTRICA PARA<br>ALUMHRADO                                   | 575 00   | SAL    | 312.86  | s | 179,895 97 |
|      | SUMINISTRO E INSTALACION DE SALIDA ELECTRICA PRA<br>CONTACTOS EN MURO, PISO O MUEBLES ESPECIALES | 251 00   | SAL    | 269 76  | s | 67,709.76  |
|      |                                                                                                  |          |        | TOTAL   | S | 247.605.73 |

#### 02 ALIMENTADORES ELECTRICOS

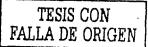
| PAR1 | CONCEPTO                                                 | CANITDAD | UNIDAD | P UNIT  |      | TOTAL     |
|------|----------------------------------------------------------|----------|--------|---------|------|-----------|
| 1    | SUMINISTRO E INSTALACION DE TUBO CONDUIT P G G. DE 19mm  | 676 12   | ML.    | 32.29   | s    | 21,833 27 |
| 2    | SUMINISTRO E INSTALACION DE TUBO CONDUIT P.G.G. DE 25mm. | 333 96   | ML.    | 40.30   | 5    | 13,457 25 |
| 3    | SUMINISTRO E INSTALACION DE TUBO CONDUIT P G G DE 32mm   | 230 00   | ML.    | 53.63   | s    | 12,335.43 |
| 4    | SUMINISTRO E INSTALACION DE TUBO CONDUIT P G G DE 38mm   | 70 00    | ML.    | 59.88   | s    | 4,191.67  |
| 5    | SUMINISTRO E INSTALACION DE TUBO CONDUIT P G G DE 51mm   | 280 00   | ML     | 79.66   | s    | 22,306.10 |
| 6    | SUMINISTRO E INSTALACION DE TUBO CONDUIT P G G DE 75mm.  | 227.00   | ML.    | 191.22  | s    | 43,407.81 |
| 7    | SUMINISTRO E INSTALACION DE TUBO CONDUIT P.G.G DE 100mm  | 110 00   | ML.    | 288 41  | \$ , | 31,724.99 |
| 8    | SUMINISTRO E INSTALACION DE COIXO CONDUIT P G G 25mm.    | 12 00    | PZAS.  | 58.93   | S    | 707.18    |
| 0    | SUMINISTRO E INSTALACION DE COIXO CONDUIT P.G.G. 32mm.   | 32.00    | PZAS.  | R6.64   | \$   | 2,772.54  |
| 10   | SUMINISTRO E INSTALACION DE CODO CONDUIT P.G. G.38mm.    | 6.00     | PZAS.  | 111.05  | \$   | 666.31    |
| 11   | SUMINISTRO E INSTALACION DE CODO CONDUIT P G G 51mm.     | 24.00    | PZAS   | 135.70  | 5    | 3,256.89  |
| 12   | SUMINISTRO E INSTALACION DE CODO CONDUIT P G G 75mm.     | 8.00     | PZAS.  | 305.09  | \$   | 2,440.72  |
| 13   | SUMINISTRO E INSTALACION DE CODO CONDUIT P G G. 100mm.   | 4.00     | PZAS.  | 547.65  | S    | 2,190.60  |
| 11   | SUMINISTRU E INSTALACION DE CONTRA Y MONITOR DE 25mm.    | 16.00    | PZAS.  | . 15.06 | \$   | 240.94    |



| PART | CONCEPTO                                                          | CANTIDAD | UNIDAD | PUNIT  |          | TOTAL      |
|------|-------------------------------------------------------------------|----------|--------|--------|----------|------------|
| 14   | SUMINISTRO E INSTALACION DE CONTRA Y MONITOR DE 25mm.             | 16 00    | PZAS   | 15 06  | s        | 240 94     |
| 15   | SUMINISTRO E INSTALACION DE CONTRA Y MONITOR. DE 32mm             | 28 (4)   | PZA    | 17 30  | s        | 484 39     |
| 16   | SUMINISTRO E INSTALACION DE CONTRA Y MONTOR. DE 38mm              | R no     | MTS    | 30 54  | 5        | 244 29     |
| 17   | SUMINISTRO E INSTALACION DE CONTRA Y MONTIOR. DE 51mm             | 36 00    | MTS    | 33.08  | 5        | 1,190,73   |
| 18   | SUMINISTRO E INSTALACION DE CONTRA Y MONITOR DE 75mm              | 16 (10   | MTS    | 61 19  | s        | 979 12     |
| 19   | SUMINISTRO E INSTALACION DE CONTRA Y MONITOR. DE 10/mm            | 8 00     | PZAS   | 97.41  | \$ .     | 779 25     |
| 20   | SUMINISTRO E INSTALACION DE CABLE TIPO THW CAL. 10 AWG            | 430.00   | ML.    | 9 30   | 5        | 3,997 14   |
| 21   | SUMINISTRO E INSTALACION DE CABLE TIPO THW CAL 8 AWG              | 600 00   | ML     | 7.58   | s        | 4,54× 00   |
| 22   | SUMINISTRO E INSTALACION DE CABLE TIPO THW CAL. 6 AWG             | 1.550 00 | ML.    | 10 03  | s        | 15,546.50  |
| 23   | SUMINISTRO E INSTALACION DE CABLE TIPO THW CAL. 4 AWG             | 250 OU   | ML     | 21 12  | s        | 5,280 00   |
| 24   | SUMINISTRO E INSTALACION DE CABLE THO THW CAL. 2 AWG              | 800 00   | ML.    | 27.84  | s        | 22,272 00  |
| 25   | SUMINISTRO E INSTALACION DE CABLE TIPO THW CAL. TØ AWG            | 750.00   | MIL.   | 42.94  | s        | 32,205 00  |
| 26   | SUMINISTROE INSTALACION DE CABLE TIPO THW CAL. 20 AWG             | 600 00   | ML.    | 54.72  | s        | 32,832 (%) |
| 27   | SUMINISTRO E INSTALACION DE CABLE TIPO THW CAL. 370 AWG           | 600.00   | ML.    | 75 16  | s        | 45,096.00  |
| 28   | SUMINISTRO E INSTALACION DE CABLE TIPO THW CAL. 350 MCM           | 1,100 00 | ML.    | 104.64 | s        | 115,104.00 |
|      | SUMINISTRO E INSTALACION DE CABLE DE CABLE DESNUDO<br>CAL 14 AWG  | 900.00   | ML.    | 2.26   | s        | 2,034 00   |
|      | SUMINISTRO E INSTALACION DE CABLE DE CABLE DESNUDO<br>CAL 12 AWG  | 250 00   | ML.    | 2.35   | s        | 587.50     |
|      | SUMINISTRO E INSTALACION DE CABLE DE CABLE DESNUDO<br>CAL 10 AWG  | 600 00   | ML     | 5.56   | S        | 3,336.00   |
|      | SUMINISTRO E INSTALACION DE CABLE DE CABLE DESNUIXO<br>CAL 8 AWG  | 700 00   | ML.    | 7.37   | s        | 5,159.00   |
|      | SUMINISTRO È INSTALACION DE CABLE DE CABLE DESNUDO<br>CAL 6 AWG   | 200 00   | ML.    | 9.17   | s        | 1,834.00   |
|      | SUMINISTRO E INSTALACION DE CABLE DE CABLE DESNUIX :<br>CAL 4 AWG | 250 00   | MI.    | 14.08  | \$       | 3,520.00   |
|      | SUMINISTRO E INSTALACION DE CABLE DE CABLE DESNUIXO<br>CAL 2 AWG  | 150 00   | ML.    | 20.16  | s        | 3,024 00   |
|      | RUMINISTRO E INSTALACION DE CABLE DE CABLE DESNUIXO<br>CAL 10 AWG | 200 00   | ML.    | 37.02  | s .      | 7,403 42   |
|      | SUMINISTRO E INSTALACION DE CABLE DE CABLE DESNUIX)<br>(AL 40 AWG | 250.00   | ML.    | 56.64  | \$       | 14,160.00  |
| 38 1 | UMINISTRO E INSTALACION DE REGISTRO METALICO DE 40X40<br>M        | 8.00     | PZA.   | 637.03 | \$       | 5,096.24   |
| 19 1 | IUMINISTRO E INSTALACION DE REGISTRO METALICO DE 60X60            | 6 00     | PZA.   | 671.11 | \$ - 5.0 | 4,026 66   |

| PART  | CONCEPTO                                                                                               | CANTIDAD | UNIDAD | PUNII  | Τ   | TOTAL      |
|-------|--------------------------------------------------------------------------------------------------------|----------|--------|--------|-----|------------|
| 40    | SUMINISTRO E INSTALACION DE REGISTRO METALICO DE 100X100 CM                                            | 3 00     | P7.A   | 795 17 | s   | 2,385.50   |
| 41    | SEMINISTRO Y COLOCACION DE CHAROLA DE ALUMINIO 1R-41.<br>DE 40 cm ESPACIAMIENTO ENTRE TRAVASAÑOS152 mm | 15.00    | TMO    | 938 76 | s   | 14,081 46  |
| 42    | SUMINISTRO Y COLOCACION DE CURVA HORIZONTAL PARA<br>CHAROLA DE 40 cm , A 90°, R#610 mm                 | 7 00     | P7.A   | 586-95 | s   | 4,108 65   |
| 43    | SUMINISTRO Y COLOCACION DE CURVA VERTICAL EXTERIOR<br>MODELO CVF - 441                                 | 8 00     | PZA    | 578 36 | 5   | 4 626 91   |
| 44    | SUMINISTRO Y COLOCACION DE CONFETOR CHAROLA A TABLERO MODELO CECI                                      | 700      | PZA    | 752.99 | 5   | 5,270 96   |
| 45    | SUMINISTRO Y COLOCACION DE DERIVACION °T° HIAL A 90° MOD T-94                                          | 1.00     | PZA.   | 709 28 | s   | 709.28     |
| 46    | SUMINISTRO Y COLOCACION DE TUBO FLEXIBLE LICUATITE DE<br>13 mm                                         | 38 OO    | ML     | 51.30  | 5   | 1,949 51   |
| 47    | SUMINISTRO Y COLOCACION DE 1UBO FLEXIBLE LICUATITÉ DE 19 mm                                            | 22.00    | ML.    | 58 29  | s   | 1,282 41   |
| 48    | SUMINISTRO Y COLOCACION DE TUBO FLEXCIBLE LIQUATITE DE<br>25 mm                                        | 13.00    | MI.    | 85 79  | s   | 1,115 29   |
| 49    | SUMINISTRO Y COLOCACION DE TUBO FLEXCIBLE LICUATITE DE<br>32 mm                                        | 8 00     | ML.    | 114 98 | 5   | 919 85     |
| 50    | SUMINISTRO Y COLCUACION DE TUBO FLEXCIBLE LICUATITE DE 38 mm                                           | 2.60     | NL.    | 117.91 | s   | 235.81     |
|       | SUMINISTRO Y COLOCACION DE TUBO FLEXCIBLE LICUATITE DE 51 mm                                           | 6.00     | ML.    | 163.69 | s   | 982.14     |
| 52    | SUMINISTRO Y COLOCACION DE TUBO FLEXCIBLE LICUATITE DE 25 mm                                           | 8 00     | ML.    | 350 11 | s   | 2,800.89   |
|       | SUMINISTRO Y COLOCACION DE TUBO FLEXCIBLE LICUATITE DE<br>100 mm                                       | 4 00     | ML.    | 426.98 | s   | 1,707.93   |
|       | SUMINISTRO E INSTALACION DE CONECTOR RECTO PARA<br>LICUATITE DE 13mm                                   | 42.00    | PZA.   | 25.59  | s   | 1,074 81   |
|       | SUMINISTRO E INSTALACION DE CONECTOR RECTO PARA<br>LICUATITE DE 19mm                                   | 36.00    | PZA.   | 32.33  | s   | 1,163.70   |
|       | SUMINISTRO E INSTALACION DE CONECTOR RECTO PARA<br>LICUATITE DE 25mm                                   | 20 00    | PZA    | 44.24  | \$  | 884.75     |
|       | SUMINISTRO E INSTALACION DE CONECTOR RECTO PARA<br>LICUATITE DE 32mm                                   | 8 00     | PZA.   | 73.50  | s . | 588.03     |
| 5 H J | SUMINISTRO E INSTALACION DE CONECTOR RECTO PARA<br>LICUATITE DE 38mm                                   | 2.00     | PZA.   | 99.92  | s   | 199.85     |
|       | SUMINISTRO E INSTALACION DE CONECTOR RECTO PARA<br>LICUATITE DE 51mm                                   | 6.00     | PZA    | 126,35 | \$  | 758.12     |
|       | SUMINISTRO E INSTALACION DE CONECTOR RECTO PARA<br>LICUATITE DE 75mm                                   | 8.00     | PZA.   | 559 26 | s   | 4,474.11   |
|       | SUMINISTRO E INSTALACION DE CONECTOR RECTO PARA                                                        | 4 00     | PZA.   | 736 81 | s   | 2,947.24   |
|       |                                                                                                        |          |        | TOTAL  | \$  | 546,779 09 |

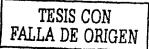
TESIS CON FALLA DE ORIGEN


## 03 TABLEROS

| PART | CONCEPTO                                                                                                                                                                                         | CANTIDAD | UNIDAD | P.UNIT    | TOTAL        |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-----------|--------------|
| 1    | SUMINISTRO E INSTALACION DE TABLERO DE DISTRIBUCION "A"<br>TIPO NQOD224AB22 CON INTERRUPTOR PRINCIPAL 3P-225A MCA<br>SQUAREA DE CON 13 INTERRUPTORES TERMOMAGNETICOS QO120 Y<br>16 TIPO QO130    | 1.00     | PZA.   | 25,820,10 | \$ 25,820 10 |
| 2    | SUMINISTRO E INSTALACION DE TABLERO DE DISTRIBUCIÓN "B"<br>TIPO NQOD24-4ABL2 CON INTERRUPTOR PRINCIPAL 3P-109A MCA<br>SQUARE-D CON 4 INTERRUPTORES TERMOMAGNETICOS QOL20 Y<br>9 TIPO QOL30       | 1.00     | PZA.   | 12,615.60 | s 12,615.60  |
| 3    | SUMINISTRO E INSTALACION DE TABLERO DE DISTRIBUCION "C"<br>TIPO NQOD-24-AB12F CON INTERRIPTOR PRINCIPAL 3P-100A<br>MCA. SQUARE-D CON 8 INTERRUPTORES DERIVADOS QO120 Y 9<br>QO130                |          | PZA.   | 12,838,11 | \$ 12,83811  |
| 4    | SUMINISTRO E INSTALACION DE TABLERO DE DISTRIBUCION 'D'<br>TIPO NOODEZ-4ABEZ CON INTERRUPTOR PRINCIPAL 37-225A MCA<br>SQUARE-D CON 7 INTERRUPTORES TERMOMAGNETICOS QO120 Y<br>IS TIPO QO130      | 1.00     | PZA.   | 25,653.22 | \$ 25,653.22 |
| 5    | SUMINISTRO E INSTALACION DE TABLERO DE DISTRIBUCION "E-<br>TIPO NQODIZ-4ABEZE CON INTERRUPTOR PRINCIPAL 3P-100A<br>MCA. SQUARE-D CON 4 INTERRUPTORESDERIVAOS QOIZO Y 3<br>TIPO QOI30             | 1.00     | PZA.   | 10,687,84 | \$ 10,687.84 |
| 6    | SUMINISTRO E INSTALACION DE TABLERO DE DISTRIBUCION "F<br>TIPO NOODIZ-4AB22 CON INTERRUPTOR PRINCIPAL 3P-100A MCA<br>SQUARE-D CON 3 INTERRUPTORES DERIVADOS (20120 Y 2 TIPO<br>QO130             | 1.00     | PZA.   | 10,576.57 | \$ 10,576.57 |
| 7    | SUMINISTRO E INSTALACION DE INTERRUPTOR<br>TERMOMAGNETICO EN CAJA MOLDEADA, MCA. SQUARE-D CAT<br>FAL36070 EN GABINETE NAMA I DE EMPOTRAR                                                         | 1.00     | PZA.   | 4,431.78  | \$ 4,431.78  |
| 8    | SUMINISTRO E INSTALACION DE INTERRUPTOR<br>TERMOMAGNETICO EN CAJA MOLDEADA, MCA. SQUARE-D CAT<br>FALJ6040 EN GABINETE NAMA I DE EMPOTRAR                                                         | 1.00     | PZA.   | 4,005.85  | \$           |
| 9    | SUMINISTRO E INSTALACION DE INTERRUPTOR<br>TERMOMAGNETICO EN CAJA MOLDEADA, MCA. SQUARE-D CAT<br>KALJ6150 EN GABINETE NAMA I DE EMINJTRAR                                                        | 1.00     | PZA.   | 8,176.99  | \$ 8,176.99  |
|      | SUMINISTRO E INSTALACION DE INTERRUPTOR<br>TERMOMAGNETICO EN CAJA MOLDEADA, MCA. SQUARE-D CAT<br>KALJ6200 EN GABINETE NAMA I DE EMPOTRAR                                                         | 1.00     | PZA.   | 8,176.99  | \$ 8,176.99  |
| ti   | SUMINISTRO E INSTALACION DE TABLERO DE DISTRIBUCION "IT<br>TIPO NOOD12-AB12 CON INTERRUPTOR PRINCIPAL 3P-100A MCA<br>SQUARE-D CON 2 INTERRUPTORES DERIVAOS QO130 Y 2 TIPO<br>QO120               | 1.00     | PZA.   | 10,520.94 | \$ 10,520.94 |
| 12   | SUMDNISTRO E INSTALACION DE TABLERO DE DISTRIBUCION "P<br>TIPO NQOD24-ABI2 CON INTERRUPTOR PRINCIPAL IP-100A MCA<br>SQUARE-D CON 2 INTERRUPTORES DERIVAOS QO130 Y 2 TIPO<br>QO130 Y 2 TIPO QO220 | 1.00     | PZA.   | 13,443.66 | \$ 13,443.66 |

| PART | CONCEPTO                                                                                                                                                                                                                                                                                | CANTIDAD | UNIDAD    | PUNIT        | TOTAL             |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|--------------|-------------------|
| 13   | SUMINISTRO E INSTALACION DE TABLERO DE DISTRIBUCION 'K-<br>TIPO NQOD24-4AB12 CON INTERRUPTOR PRINCIPAL JP-100A MCA<br>SQUARE-D CON 8 INTERRUPTORES DERIVAOS QO130 Y 7 TIPO<br>CO120                                                                                                     | 1.00     | PZA.      | 12,726 86    | \$ 12,726.86      |
| 14   | SUMINISTRO E INSTALACION DE TABLERO DE DISTRIBUCION "L"<br>TIPO NOODIZ-4AB12 CON INTERRUPTOR PRINCIPAL 37-100A MCA<br>SQUARE-D CON 8 INTERRUPTORES DERIVAOS QO120 Y 4 TIPO<br>QO130                                                                                                     | 1.00     | PZA.      | 10,964.78    | \$ 10,964.78      |
| 15   | SUMINISTRO E INSTALACION DE TABILERO DE DISTRIBUCION "M-<br>TIPO NOOD24-AB12 CON INTERRUPTOR PRINCIPAL 39-100A MCA<br>SQUARE-D CON 3 INTERRUPTORES DERIVAOS CO330 Y 2 TIPO<br>CO220                                                                                                     | 1.00     | PZA.      | 16,670.30    | \$ 16,670.30      |
|      | SUMINISTRO E INSTALACION DE TABLERO DE DISTRIBUCION "LI"<br>TIPO QO8 MCA SQUARE-D CON LOS SIGUIENTES INTERRUPTORES<br>DERIVAOS 2 TIPO QO130 Y 2 TIPO QO120                                                                                                                              | 1.00     | PZA.      | 1,201,20     | \$ 1,201.20       |
| 17   | SUMINISTRO Y COLOCACION DE INTERRUPTOR CCM-I MARCA<br>SQUARE-D TIPO MAL36500. ALOJADO EN GABINETE DE<br>EMPOTRAR TIPO NEMA-I                                                                                                                                                            | 1.00     | PZA.      | 22,347.59    | \$ 22,347.59      |
| 18   | SUMINISTRO Y COLOCACION DE INTERRUPTOR CCM-2 MARCA<br>SQUARE-D TINO KAL36125 ALOJADO EN GABINETE DE<br>EMINOTRAR TINONEMA-1                                                                                                                                                             | 1.00     | PZA.      | 8,176.99     | \$ 8,176.99       |
| 19   | SUMINISTRO E INSTALACION DE TABLERO SUBGENERAL DE<br>DISTRIBUCION SC-I., TIPO I-LINE, CATALOGO LA400M182MA<br>TAMAÑO 2, CON MEDICION E INTERRUPTOR PRINCIPAL DE 3P-<br>350A, MCA. SQUARE-D CON LOS SIGUIENTES INTERRUPTORES<br>DERIVADOS 2 TIPO FA36040, 4 TIPO FA 36070 2 TIPO FA36100 | 1.00     | PZA.      | 72,113.68    | \$ 72,113.68      |
| 20   | SUMINISTRO E INSTALACION DE TABLERO SUBGENERAL DE<br>DISTRIBUCION SG2. TIPO I-LINE, CATALOGO KA223M122MA<br>TAMAÑO 2, CON MEDICION E INTERRUPTOR PRINCIPAL DE 3P-<br>150A, MCA. SQUARE-D CON LOS SIGUIENTES INTERRUPTORES<br>DERIVADOS: 2 TIPO FA36040, I TIPO FA36100                  | 1.00     | PZA.      | 43,096.52    | \$ 43,096.52      |
|      | ······································                                                                                                                                                                                                                                                  |          | U. 94. 24 | ETTOTAL MACE | \$ ::- 334,245.54 |

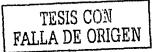
#### 04 RED DE ALUMBRADO INTERIOR


| PART | CONCEPTO                                                                                                                                                                                                                                             | CANTIDAD | UNIDAD | P.UNIT.  | WARN TOTAL    |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|----------|---------------|
| 1    | SUMINISTRO E INSTALACION DE LUMINARIO TIPO ARBOTANTE<br>PARA MURO, BASE DE ALUMINIO FUNDIDO Y VASO DE CRISTAL<br>OPALINO (TIPO B.U.V.) PARA FOCO INCANDESCENTE HASTA DE<br>100 W.                                                                    | 18.00    | PZA.   | 480.00   | \$ 8,640.00   |
| 2    | SUMINISTRO Y COLOCACION DE LUMINARIO FLUORECENTE COMPACTO DE DE 2X13W. TIPO EMPOTRAR CON REFLECTOR DE POLICARBONATO DE PROVECCION INTENSIVA, RECUBIERTO DE ALUMINIO VAPORIZADO FIJACION MEDIANTE PUENTE GRADUADO Y SOLERAS DE BLOQUEO. MARCA STARCO. | 246.00   | PZA.   | 1,708.80 | \$ 420,364.80 |



| PARI | CONCEPTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CANTIDAD | UNIDAD | PUNIT    | IOIAI         |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|----------|---------------|
| 3    | SUMINISTRO E INSTALACION DE LUNINARIO SLIMI-LINI CON<br>ACRILICO DIFUSOR K-5 DE 2X20W DE FMIOTRAR, MARCA<br>MULTIDUC                                                                                                                                                                                                                                                                                                                                                                                       |          | PZA    | 421 60   | \$ 6,354.07   |
| 4    | SUMINISTRO Y COLOCACION DE LUMINARIO FLUORICENTE DE DE 2X32. TIPO EMPOTRAR DE 30X122 em L'ABRICALO EN L'AMINA GALVANIZADA CAL. 24 BONDERIZADO YESMALITADO AL HORNO CON PINTURA EN POLVO BLANCO ALLA REFLECTANCIA, APLICADO FOR SISTEMA ELECTROSTATICO CON REFLECTOR DE ALIMINIO ESPECITAR DE 60X122em REJULLA TIPO L'OUVER PARABOLICO DE 12 CELDAS EUMBRICAS 2 TIPOS TA DE 400° K MARCA OSRAM O PHILLIPS E BALASTRO ELECTRONICO MCA MOTOROLA 2X32W 120 VOTS Y DOS JUEGOS DE BASES LEVITON, MARCA MULTIDICO | 11 (8)   | PZA .  | 1,654.62 | \$ \$4,068.40 |
| 5    | SUMINISTRO Y COLOCACION DE LUMINARIO FLUORECENTE DE DE 2X32, DE SORREPONTR O COLGAR DE BOX122 em FABRICADO E LA BONDERIZADA CAL 24 BONDERIZADA Y ESMALTADO AL HORNO CON PINTURA EN POLYO BLANCO ALTA REFLECTANCIA. APLICADO POR SISTEMA ELECTROSTATICO INCLUYE I BALASTRO ELECTROSTO MCA MOTOROLA 2X32W 120 VOTS. 2 LAMPARAS FLUORESENTES 1-8 DE 32W DE 4100 % MARCA OSRAM O PHILLIPS Y DOS JUEGOS DE BASES PARA LAMPARA DE ARRANQUE RAPIDO MCA LEVITON, MARCA MULTIDUC                                    | 24 00    | PZA.   | 936.00   | \$ 22.4G-00   |
| 6    | SUMINISTRO E INSTALACION DE LUMINARIO CUADRADO PARA<br>EMPOTRAR EN PLAFON, DE 30X30X12 em CON DIFUSOR<br>ACRILICO PARA FOCO INCANDESCENTE HASTA DE 100s, MARCA<br>MULTIPUC                                                                                                                                                                                                                                                                                                                                 | 57.00    | PZA.   | 396.44   | \$ 22,5% #2   |
| 7    | SUMINISTRO E INSTALACION DE LUMINARIO CUADRADO PARA<br>EMPOTRAR EN PLAFON, DE 30X300XI2 em. CON DIFUSOR<br>ACRILICO: PARA FOCO INCANDESCENTE HASTA DE 1000<br>INCLUYE UNFOCO LUZ ROJA Y UNO LUZ NATURAL (CUARTO<br>OSCURO), MARCA MULTIDI'C                                                                                                                                                                                                                                                                | 2 00     | PZA.   | 36960    | \$ 739.20     |
| 8    | SUMINISTRO Y COLOCACION DE LUMINARIO FLUORECENTE DE<br>DE 2X32, TIPO EMPOTRAR DE 61X615 FABRICATA) EN LAMINA<br>JALVANIZADA CAL 23 BONDFRIZATA) Y ESMALTADO AL HORNO<br>CON PINTURA EN POLVO BLANCO ALLA REFLECTANCIA,<br>APLICATA) POR SISTEMA ELECTROSTATICOCON REFLECTOR<br>ACRILICO K-5 61X61 cm INCLUYE I BALASTRO ELECTRONICO<br>MCA MOTOROLA 4X32W 120 VOTS, 2 TIPOS DE 33W TIPO<br>CURVALUM Y CUATRO JUEGOS DE BASES MCA LEVITON O<br>MULTIDUC                                                     | 57.GN    | PZA.   | 1,389.11 | 79,179.16     |
| 9 E  | SUMINISTRO E INSTALACION DE LUMINARIO CUADRADO PARA<br>MPUTRAR EN MURO, DE 20X20X8 em. CON CONTROLENTE PARA<br>OCCO INCANDESCENTE HASTA DE 60 W                                                                                                                                                                                                                                                                                                                                                            | 13.00    | PZA.   |          | \$ 6,725.20   |




| PART   | CONCEPTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CANTIDAD | UNIDAD | P UNIT   | TOTAL         |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|----------|---------------|
| 10     | SUMINISTRO Y COLOCACION DE LUMINARIO FLUORECENTE DE 0E 4X12, TIPO EMPOTRAR DE 61X122cm. FABRICADO EN LAMINA GALVANIZADA CAL. 24 BONDERIZADO Y ESMALTADO AL HORNO CON PINTURA EN POLVO BLANCO ALTA REFLECTANCIA, APLICADO POR SISTEMA ELECTROSTATICIO CON REFLECTOR DE ALUMINIO ESPECTACULAR DE 60X122cm. REJILLA TIPO LOUVERE DE POLICARBNTO DE 32 CELDAS LUNINICAS INCLUYE 1 BALLASTRO ELECTRONICO MCA. MOTOROLA 4X12W. 120 VOTS, 4 TUBOS T8 DE 32W 4100 °K. MCA. OSRAM O PILLLIPS, CUATRO JUEGOS DE BASES MCA. LE VITON O MULTIDUC |          | PZA.   | 2.001.25 | \$ 190,119.12 |
| 11     | SUMINISTRO Y COLOCACION DE LUMINARIO FLUORECENTE DE 2X20 W, TIPO ENCAMADO FABRICADO EN LAMINA GALVANIZADA CAL 24 BONDERIZADO Y ESMALTADO AL HORNO CON PINTURA EN POLVO BLANCO ALTA REFLECTANCIA. APLICADO POR SISTEMA ELECTROSTATICO CON REFLECTOR ACRILICO K.5, 2 TUBOS DE 20W. TIPO SLIME-LINE I BALASTRO ELECTRONICO MCA MOTOROLA 2X20W 120V. 2 JUEGOS DE BASES MCA. LEVITON O MULTIDUC                                                                                                                                           | 30.00    | PZA.   | 677.97   | \$ 20,338.99  |
| 12     | SUMINISTRO E INSTALACION DE TUBO CONDUIT P.G.G. DE 51 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.00     | PZA    | 79.66    | S 477.99      |
| 13     | SUMBNISTRO E INSTALACION DE TUBO CONDUTT P.G.G. DE 13 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.00     | PZA.   | 26.89    | \$ 215.15     |
| 14     | SUMINISTRO E INSTALACION DE COPLE CONDUIT P.G.G. DE 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.00     | PZA    | 42.53    | S 170.10      |
| 15     | SUMINISTRO E INSTALACION DE COPLE CONDUIT P.G.G. DE 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.00     | PZA.   | 19.21    | \$ 76.84      |
| 16     | SUMINISTRO E INSTALACION DE CODO CONDUIT P.G.G. DE 51 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.00     | PZA.   | 135.70   | \$ 271.41     |
| 17     | SUMINISTRO E INSTALACION DE COPLE CONDUIT P.G.G. DE 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.00     | PZA.   | 41.82    | \$ 83.64      |
| 18     | SUMINISTRO E INSTALACION DE CONTRA Y MONITOR DE 51 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.00     | PZA.   | 33.08    | \$ 66.15      |
| 19     | SUMINISTRO E INSTALACION DE CONTRA Y MONTTOR . DE 13 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.00     | PZA.   | 12.78    | \$ 25.57      |
|        | SUMINISTRO E INSTALACION DE TUBO CONDUTT PVC PESADO DE 50 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 358.00   | MIL.   | 45.02    | S 16,117.56   |
| 71 4   | SUMINISTRO E INSTALACION DE TUBO CONDUTT PVC PESADO DE 25 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36.00    | ML.    | 20.80    | \$ 748.78     |
| 22     | SUMINISTRO E INSTALACION DE COPLE CUNDUTT PVC DE 50 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36.00    | PZA.   | 28.03    | \$ 1,009.10   |
| 23     | SUMINISTRO E INSTALACION DE COPLE CUNDUIT PVC DE 25 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20 00    | PZA    | 18.30    | \$ 366.09     |
| 24 I   | SUMINISTRO E INSTALACION DE CODO CUNDUIT PVC DE 90X25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.00    | PZA.   | 27.37    | \$ 547.36     |
| 75     | SUMINISTRO E INSTALACION DE CABLE XLP DE COBRE CAL. 6<br>AWG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 782.00   | ML.    | 23.15    | \$ 18,103.99  |
| $\neg$ | SUMINISTRO E INSTALACION DE CABLE THW CAL. 10 AWG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 242.00   | ML.    | 9.30     | \$ 2,249.55   |



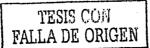
| PART | CONCEPTO                                                         | CANTIDAD | UNIDAD | P.UNTT. |   | TOTAL      |
|------|------------------------------------------------------------------|----------|--------|---------|---|------------|
| 27   | SUMINISTRO E INSTALACION DE CABLE THW CAL. 12 AWG.               | 31.00    | ML.    | 3.37    | s | 104.47     |
|      | SUMINISTRO E INSTALACION DE CABLE DE COBRE DESNUDO<br>CAL. 8 AWG | 400.00   | MIL.   | 7.58    | s | 3,032.00   |
|      |                                                                  |          |        | TOTAL   | S | 875,855.51 |

#### 05 RED DE ALUMBRADO EXTERIOR

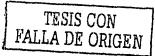
| PART | CONCEPTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CANTIDAD | UNIDAD   | P.UNIT.  | TOTAL         |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|---------------|
| 1    | COMBINAL IND DE ALUMBRADO PUBLICO, CATALOGO C35 DW3B, MCA. CUTLER-HAMMER FORMADO POR CONTACTOR MAGNETICO TRPOLAR DE 30 A. E INTERRUPTOR TERMOMAGNETICO DE 3P-40A. EN CAJA 3R                                                                                                                                                                                                                                                                                                                                                   | 100      | PZA.     | 2,356.80 | \$ 2,356.80   |
| 2    | SUMINISTRO E INSTALACION DE LUMINARIO TIPO<br>PRISMASPHERE DE 150 W V S.A.P. MARCA HALOPHANE,<br>AUTOBALASTRADA MONTADA EN POSTE RECTO METALICO DE 5<br>M. DE ALTURA INCLUYE JUEGO DE ANCLAS DE 19X600 mm.                                                                                                                                                                                                                                                                                                                     | 12.00    | PZA.     | 4,902.97 | \$ 58,835.69  |
| 3    | EXCAVACION A MANO EN CEPA, INCLUYE AFINE DE TALUDES Y<br>FONDO, MATERIAL TIPO I ZONA A, PROFUNDIDAD DE 0.00 A 0.60<br>m                                                                                                                                                                                                                                                                                                                                                                                                        | 63.04    | М3       | 37.44    | \$ 2,360.22   |
| 4    | SUMINISTRO Y COLOCACION DE CONCRETO ECHO EN OBRA<br>RESISTENCIA NORMAL, VACIADO CON CARRETILLA Y BOTES<br>PC=100Kg/ CM2, REVENIMIENTO DE 10cm. AGREGADO MAXIMO<br>3/4' PARA ENCOFRAR TUBERIA DE PVC.                                                                                                                                                                                                                                                                                                                           | 29.63    | М3       | 1,021.18 | \$ 30,257.50  |
|      | RELLENO COMPACTADO CON COMPACTADOR VIBRATORIO DE COMBUSTION INTERNA (BALLARINA), EN CAPAS DE 20 cm. EN UNA PROFUNDIDAD DE CEPA DE 0.00 A0.50M.CON MATERIAL PRODUCTO DE EXCAVACION.                                                                                                                                                                                                                                                                                                                                             | 33.41    | M3       | 27.84    | \$ 930.13     |
| 6    | FABRICACION DE BASE PIRAMIDAL DE 60X60 cm (BASE), 40X40 cm (CORONA) Y 60 cm DE ALTURA. A BASE DE CONCRETO HIDRAULICO ARMAIX) ECHO EN OBRA CON UNA RESISTENCIA FOR 200 Kg/cm; ACERO DE REFUERZO DEL No 3, RESISTENCIA NORMAL Fy ~4200 Kg/cm; INCLUYE COLOCACION DE 4 ANCLAS DE ACARO CON JUEGO DE TUERCA Y ROLDANA PARA FIJACION DE POSTE METALICO DE 5m. DE ALTURA, EXCAVACIONAFINE Y COMPACTADO DE TERRENO PARA DESPLANTE DE BASE, CIMBRA, RELLENO Y COMPACTADO EN EL CONTORNO DEL MISMO, CON MATERIAL PRODUCTO DE EXCAVACION | 12.00    | PZA.     | 624.00   | \$ 7,488.00   |
| 7    | FABRICACION DE REGISTRO DE 40X40X40 cm DE ALTURA<br>MEDIDAS INTERIORES DE TABIQUE ROJO RECOCIDO EN 13 cm.<br>JUNTEADO CON MORTERO CEMENTO ARENA 1-4 ACABADO<br>PULIDO CON PLANTILLA DE CONCRETO PC-150 Kg/cm2.                                                                                                                                                                                                                                                                                                                 | 20.00    | PZA.     | 460.08   | \$ 9,201.60   |
| 8    | LIMPIEZA DE TERRENO DE MATERIAL SOBRANTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 236.40   | M2.      | 6.34     | \$ 1,498.06   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 134    | Per 4 14 | TOTAL    | \$ 112,928 00 |



#### ON SISTEMA DE TIERAS


| PART | CONCEPTO                                                                                                                                                                                                                                                                                                                                             | CANTIDAD | UNIDAD   | PUNIT     | TOTAL              |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-----------|--------------------|
|      | SUMINISTRO E INSTALACION DE SISTEMA DE TIERRAS PARA<br>EQUINOS DE RAYOS "X" Y REVELADOR AUTOMATICO. CON<br>MEJORAMIENTO DE TERRENO A BASE DE GEM. VARILLAS DE<br>TIERRA COOPERWELD, SOLDADURA CADWEL, CABLE DE COBRE<br>DESNUIXI CAL 2U                                                                                                              | 1 00     | PZA.     | 18,440 46 | \$ 18,440.46       |
| 2    | SUMINISTRO E INSTALACION DE SISTEMA DE TIERRAS PARA<br>EQUIPOS DE CONMUTADOR, CON MEJORAMIENTO DE TERRENO A<br>BASE DE GEM, VARILLAS DE TIERRA COOPERWELD, SOLDADURA<br>CADWEL, CABLE DE COBRE DESNUTO CAL 1/0                                                                                                                                       | 1.00     | PZA.     | 18,440,46 | \$ 18,440.46       |
|      | SUMINISTRO E INSTALACION DE SISTEMA DE TIERRAS PARA<br>EQUIPO DE SUNIXO Y VIOCEO, CON MEJORAMIENTO DE TERRINO<br>A BASE DE GEM, VARILLAS DE TIERRA COOPERWELD,<br>SOLDADURA CADWEL, CABLE DE COBRE DESNUDO CAL IA.                                                                                                                                   | 1.00     | PZA.     | 18,440,46 | \$ 18,440 46       |
| 4    | SUMINISTRO E INSTALACION DE SISTEMA DE TIERRAS PARA<br>FQUINO DE SUBESTACION, FORMADO POR SUBESTACION<br>COMPACTA. TRNSFORMAIXOR, TABLERO GENERAL DE<br>DISTRIBUCION EN BAJA TENCION Y PLANTA DE EMERGANCIA,<br>CON MIJORAMIENTO DE TERRENO A BASE DE GEM, VARILLAS<br>DE TIERRA COLDIFIRWELLD, SOLDADURA CADWEL, CABLE DE<br>COBRE DESNITA) CAL 4/0 | 1.00     | PZA      | 18,440,46 | \$ 15,440.46       |
|      | <u> </u>                                                                                                                                                                                                                                                                                                                                             |          | The Agen | TOTAL     | \$ 455 - 73,761.84 |

#### 07 SOPURTERIA INSTALACION ELECTRICA GENERAL


| PART | CONCEPTO                                                                                                                                                     | CANTIDAD | UNIDAD | P.UNIT. | TOTAL         |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|---------|---------------|
| ı    | SUMINISTRO E INSTALACION DE SOPORTE PARA SALIDA DE<br>ALUMBRAIX) A BASE DE PERNO T-32, COPLE ROSCADO, VARILLA<br>ROSCADA, TUERCAS Y ARANDELAS                |          | PZA.   | 81.92   | S - 54,147.00 |
| 2    | SUMINISTRO E INSTALACION DE SOPORTE PARA TUBERIA DE 13,<br>19, 25 A BASE DE PERNO T-32, COPLE ROSCADO, VARILLA<br>ROSCADA TUERCAS Y ARANDELAS                |          | PZA.   | 72.79   | \$ 49,494.97  |
| 3    | SUMINISTRO E INSTALACION DE SOPORTE PARA LUMINARIA<br>FLUORECENTE DE 2X32W A BASE DE PERNO T-32, COPLE<br>ROSCAIX), VARILLA ROSCADA, TUERCAS Y ARANDELAS     |          | PZA.   | 161.64  | \$ 14,547.30  |
|      | SUMINISTRO E INSTALACION DE SOPORTE PARA LUMINARIA<br>FLUORECENTI: DE 4X32W A BASE DE PERNO T-32, COPLE<br>ROSCAIXO, VARILLA ROSCADA, TUERCAS Y ARANDELAS    |          | PZA.   | 347.63  | s 33,024.61   |
|      | SUMINISTRO E INSTALACION DE SOPORTE PARA LUMINARIA<br>FLUORECENTE DE 2X13W A BASE DE PERNO T-32, COPLE<br>ROSCADO, VARILLA ROSCADA, TUERCAS Y ARANDELAS      |          | PZA.   | _129.51 | \$ 31,859 52  |
| 6    | SUMINISTRO E INSTALACION DE SOPORTE PARA LUMINARIA<br>INCANDESCENTE DE DE 30X30 A BASE DE PERNO T-32, COPLE<br>ROSCADO, VARILLA ROSCADA, TUERCAS Y ARANDELAS |          | PZA.   | 129.51  | s 7,641.10    |

TESIS CON FALLA DE ORIGEN

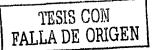
| PART | CONCEPTO                                                                                                                                                                                                                        | CANTIDAD | UNIDAD | PUNIT  | TOTAL             |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|--------|-------------------|
| 7    | SUMINISTRO E INSTALACION DE SOPORTE PARA LUMINARIA<br>FLUORECENTE DE 2X32W TIPO INDUSTRIAL A BASE DE PERNO T-<br>12, COPLE ROSCADO, VARILLA ROSCADA, CADENA VICTOR Y<br>TORNILLOS.                                              | 24.00    | PZA.   | 288.50 | <b>6</b> ,923 93  |
| 8    | SUMINISTRO E INSTALACION DE SOPORTE PARA REGISTRO<br>METALICO DE 40X40 cm. A BASE DE PERNO T-32, COPLE ROSCADO,<br>VARILLA ROSCADA, TUERCAS Y ARANDELAS                                                                         | 4.00     | PZA.   | 159.63 | \$ 638.51         |
| 9    | SUMINISTRO E INSTALACION DE SOPORTE PARA REGISTRO<br>METALICO DE 60X60 cm. A BASE DE PERNO T-32. COPLE ROSCADO,<br>VARILLA ROSCADA, TUERCAS Y ARANDELAS.                                                                        | 4 00     | PZA.   | 254 80 | \$ 1,019.21       |
| 10   | SUMINISTRO E INSTALACION DE SOPORTE PARA REGISTRO<br>METALICO DE 100X1000 cm. A BASE DE PERNO T-32, COPLE<br>ROSCADO, VARILLA ROSCADA, TUERCAS Y ARANDELAS                                                                      | 4 00     | PZA.   | 297.66 | <b>S</b> 1,190.64 |
| 11   | SUMINISTRO E INSTALACION DE SOPORTE TIPO CMA PARA 2<br>TUBOS P.G.G. DE 25 mm A BASE DE UNICANAL, ABRAZADERA<br>PUNICANAL, TAQUETE DE EXPANCION DE 1/4, VARILLA<br>ROSCADA, DE 1/4, TUERCAS Y ARANDELAS GAL DE 1/4.              | 2.00     | PZA.   | 269,59 | \$ 539.17         |
| 12   | SUMINISTRO E INSTALACION DE SOPORTE TIPO CMA PARA 2<br>TUBOS P.G.G. DE 12 mm. A BASE DE UNICANAL, ABRAZADERA<br>PUNICANAL, TAQUETE DE EXPANCION DE 14, VARILLA<br>ROSCADA, DE 14, TUERCAS Y ARANDELAS GAL DE 14.                | 3.00     | PZA.   | 279.57 | \$ 838.70         |
|      | SUMINISTRO E INSTALACION DE SOPORTE TIPO CMA PARA2<br>TUBOS P.G.G. (11-25, 1T-38), A BASE DE UNICANAL. ABRAZADERA<br>PUNICANAL, TAQUETE DE EXPANCION DE 1/4, VARILLA<br>ROSCADA. DE 1/4, TUERCAS Y ARANDELAS GAL. DE 1/4.       | 2.00     | PZA    | 279.57 | \$ 559.13         |
| 14   | SUMINISTRO E INSTALACION DE SOPORTE TIPO CMA PARA 3<br>TUBOS P.G. (27-25, 17-38), A BASE DE UNICANAL, ABRAZADERA<br>PUNICANAL, TAQUETE DE EXPANCION DE 1/4, VARILLA<br>ROSCADA, DE 1/4, TUERCAS Y ARANDELAS GAL. DE 1/4         | 5.00     | PZA.   | 294.54 | \$ 1,472.68       |
| 15   | SUMINISTRO E INSTALACION DE SOPORTE TIPO CMA PARA 3<br>TUBOS P.G.O. DE 32 mm A BASE DE UNICANAL, ABRAZADERA<br>PUNICANAL, TAQUETE DE EXPANCION DE 1/4, VARILLA<br>ROSCADA, DE 1/4, TUERCAS Y ARANDELAS GAL DE 1/4               | 3.00     | PZA.   | 299.53 | \$ 898.58         |
| 16   | SUMINISTRO E INSTALACION DE SOPORTE TIPO CMA PARA 3<br>TUBOS PGG ( 27-75, 1T 100), A BASE DE UNICANAL,<br>ABRAZADERA PUNICANAL, TAQUETE DE EXPANCION DE 1/4,<br>VARILLA ROSCADA, DE 1/4,TUERCAS Y ARANDELAS GAL. DE 1/4         | 12.00    | PZA    | 382,70 | <b>5</b> 4,592.42 |
| 17   | SUMINISTRO E INSTALACION DE SOPORTE TIPO CMA PARA 4<br>TUBOS P.G. (27-25, 17-32, 17-35), A BASE DE UNICANAL,<br>ABRAZADERA PUNICANAL, TAQUETE DE EXPANCION DE 1/4,<br>VARILLA ROSCADA, DE 1/4, TUERCAS Y ARANDELAS GAL. DE 1/4. | 3.00     | PZA.   | 443.81 | \$ 1,331.42       |



| PAR | CONCEPTO                                                                                                                                                                                                                                 | CANTIDAD | UNIDAD | P UNIT. | TOTAL         |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|---------|---------------|
| 18  | SUMINISTRO E INSTALACION DE SOPORTE TIPO CMA PARA 4 TUBOS P.G.G. (1T-51, 2T-75, 1T-100), A BASE DE UNICANAL, ABRAZADERA PUNICANAL, TAQUETE DE EXPANCION DE 1/4. VARILLA ROSCADA, DE 1/4.TUERCAS Y ARANDELAS GAL DE 1/4.                  | 3.00     | PZA.   | 503.69  | \$ 1,511.07   |
| 19  | SUMINISTRO E INSTALACION DE SOPORTE TIPO CMA PARA 5<br>TUBOS P.G.G. (17-32, 17-51, 17-75, 17-100.), A BASE DE UNICANAL,<br>ABRAZADERA PAUNICANAL, TAQUETE DE EXPANCION DE 1/4.<br>VARILLA ROSCADA, DE 1/4.TUERCAS Y ARANDELAS GAL DE 1/4 | 10.00    | PZA.   | 566.51  | \$ 5,665.07   |
| 20  | SUMINISTRO E INSTALACION DE SOPORTE TIPO CMA PARA 6<br>TUBOS P G G ( 21-25, 11-32, 21-51, 11-75 ), A BASE DE UNICANAL<br>ABRAZADERA PUNICANAL, TAQUETE DE EXPANCION DE 1/4,<br>VARILLA ROSCADA, DE 1/4, TUERCAS Y ARANDELAS GAL DE 1/4   | 1.00     | PZA    | 546.35  | \$ 546.55     |
| 21  | SUMINISTRO E INSTALACION DE SOPORTE TIPO CMA PARA 1<br>TUBOS PGG DE 100 mm. A BASE DE UNICANAL, ABRAZADERA<br>PUNICANAL, TAQUETE DE EXPANCION DE 38, VARILLA<br>ROSCADA, DE 38,TUERCAS Y ARANDELAS GAL DE 38                             | 2.00     | PZA.   | 306.86  | \$ 613.71     |
| 22  | SUMINISTRO E INSTALACION DE SOPORTE TIPO CMA PARA I<br>TUROS P.G.O. DE 75 mm A BASE DE UNICANAL, ABRAZADERA<br>PUNICANAL, TAQUETE DE EXPANCION DE 3/8, VARILLA<br>ROSCADA, DE 3/8, TUERCAS Y ARANDELAS GAL. DE 3/8.                      | 4.00     | PZA.   | 300.21  | \$ 1,200.84   |
| 23  | SUMINISTRO E INSTALACION DE SOPORTE TIPO CMA PARA I<br>TURIOS P.G.G. DE 51 mm. A BASE DE UNICANAL, ABRAZADERA<br>PUNICANAL, TAQUETE DE EXPANCION DE J.R., VARILLA<br>ROSCADA, DE J.R. TUERCAS Y ARANDELAS GAL. DE J.R.                   | 20,00    | PZA,   | 293.55  | \$ 5,871.07   |
| 24  | SUMINISTRO E INSTALACION DE SOPORTE TIPO CMA PARA I<br>TUBOS P.G.G. DE 38 mm. A BASE DE UNICANAL, ABRAZADERA<br>PUNICANAL, TAQUETE DE EXPANCION DE 3/6, VARILLA<br>ROSCADA, DE 3/8, TUERCAS Y ARANDELAS GAL DE 3/8                       | 1.00     | PZA.   | 251.08  | \$ 251.08     |
|     | SUMINISTRO E INSTALACION DE SOPURTE TIPO CMA PARA I<br>TUROS P.G.G. DE 33 mm A BASE DE UNICANAL, ABRAZADERA<br>PUNICANAL, TAQUETE DE EXPANCION DE 3M, VARILLA<br>ROSCADA, DE 3M.TUERCAS Y ARANDELAS GAL DE 3M                            | 8 00     | PZA    | 246.09  | 5 1,968.74    |
| 26  | SUMINISTRO E INSTALACION DE SOPURTE TIPO CMA PARA I<br>TUBOS POG DE 25 mm A BASE DE UNICANAL, ABRAZADERA<br>PUNICANAL, TAQUETE DE EXPANCION DE 3/8, VARILLA<br>ROSCADA, DE 3/8, TUERCAS Y ARANDELAS GAL DE 3/8                           | 700      | PZA.   | 241.10  | s   1.687,72  |
| 27  | SUMINISTRO E INSTALACION DE SOPORTE TIPO CAMA PARA<br>ESCALERILLA ( CHAROLA ) TR-11, A BASE DE UNICANAL,<br>ABRAZADERA PUNICANAL, TAQUETE DE EXPANCION DE 3M.<br>VARILLA ROSCADA, DE 3M.TUERCAS Y ARANDELAS GAL DE 3M                    | 75.00    | PZA.   | 286.05  | \$ 21,453.48  |
|     |                                                                                                                                                                                                                                          |          |        | TOTAL   | \$ 251,488.24 |



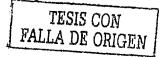
| RESUMEN                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |              |  |  |  |  |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|--|--|--|--|
| PARTIDA                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IMP | ORTE         |  |  |  |  |
| 01 ALUMBRADO Y CONTACTOS                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S   | 247,605 73   |  |  |  |  |
| 02 ALIMENTADORES ELECTRICOS              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5   | 546,779 09   |  |  |  |  |
| 0) TABLEROS                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S   | 334,245.54   |  |  |  |  |
| 04 RED DE ALUMBRAIXO INTERIOR            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$  | 875,855.51   |  |  |  |  |
| 05 ALUMBRADO EXTERIOR                    | The second secon | \$  | 112,928.00   |  |  |  |  |
| 06 SISTEMA DE TIERRAS                    | 12 2 3 4 4 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5   | 73,761.84    |  |  |  |  |
| 07 SOPORTERIA DE INST. ELECTRICA GENERAL | and a substitution of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S   | 251,488 24   |  |  |  |  |
|                                          | TOTAL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$  | 2,442,663.95 |  |  |  |  |


## PROYECTO Y PRESUPUESTO DE LA INSTALACION ELECTRICA GENERAL DE UNA ENFERMERÍA CONVENCIONAL

#### ACOMETIDA ALTA TENSION

| PART | CONCEPTO                                                                                                                                                                                                                                                 | CANTIDAD | UNIDAD | P.UNIT.    | TOTAL.        |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|------------|---------------|
|      | SUMINISTRO E INSTALACION DE ACOMETIDA SUBTERRANEA A<br>SUBESTACION DESDE LA LINEA EXISTENTE, FORMADA POR<br>TRANCICION, TUBO PVC DE 100 mm., CABLE XLP 15 KV.,<br>EXCAVACION ENCOFRADO RELLENO, FABRICACION DE<br>REGISTROS DE CONCRETO Y TAPA P-84 B329 |          | LTE.   | 118,406.38 | \$ 118,406.38 |
|      |                                                                                                                                                                                                                                                          |          |        | TOTAL      | \$ 118,406.38 |

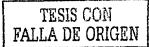
#### INST. ESPECIALES DE QUIROFANOS


| PART | CONCEPTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CANTIDAD | UNIDAD | P.UNIT.    | TOTAL      |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|------------|------------|
| ı    | SUMINISTRO, COLOCACION, CONEXION, PRUEBA DE PROTECCION DE CORRIENTE DE FUGA Y DISEÑO DE SISTEMAS DE DISTRIBUCION AISLADO PARA CONTACTOS EN QUIROFANO Y SALA DE EXPLAISION DE ACUERDO CON EL ARTICULO 317 DEL CODIGO NACIONAL ELECTRICO Y A LA NORMA OFICIAL MEGCANA NOMOS ISEMP-199 MICA SQUAREA-D. MERIN GERIN O SIMILAR FORMADO COMO SIEME. TABILERO DE AISLAMIENTO PARA QUIROFANO MODI. DIPS-31-181. CIU. EN ABILERO DE AISLAMIENTO PARA SYVA. 2207137, UN INTERRUPTOR TERMOMAGNETICO PARA PRIMARIO DEL TRANSFORMADOR DE INTERRUPTORES TERMOMAGNETICOS DERIVADIXO DE 22-20A. UN INDICADOR DINAMICO DE PELIGRO. I BARRA DE TIERRA EQUIPOTENCIAL) 2 MODULOS DE CONTACTOS PARA QUIROFANO MODELO DE PELIGRO. I BARRA DE TIERRA EQUIPOTENCIAL) 2 MODULOS DE CONTACTOS DE TIERRA. 1 INDICADOR DE PELIGRO REMOTO.  DICLUYE RED DE TUTBERIA CONDUIT PESADA PVC EN LOS DIAMETROS Y RECORRIDOS MAXIMOS PERMITIDOS DE ACUERDO A NORMAS IMS S. CONDUCTORES TIPO RHIPV CAL. 1,1,0,0,6, ASI COMO LOS ACCESORIOS DE AISLAMIENTO, ASI COMO SOPONTERIA PARA LAS CAMAS DE TUBOS Y TODO LO NECESARIOS PARA LA INTERCONEZION ENTRE MODULOS DE CONTACTOS. NECATOSCOPIOS, LAMIPARAS PARA MESA DE OPERACIONES Y TABLEROS DE AISLAMIENTO, ASI COMO SOPONTERIAL PARA LAS CAMAS DE TUBOS Y TODO LO NECESARIO PARA SU INSTALACION. | 2:00     | EQPO.  | 129,426,71 | 258,853,42 |



| PART | CONCEPTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CANTIDAD | UNIDAD | P UNIT     | TOTAL                              |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|------------|------------------------------------|
| 2    | SUMINISTRO Y COLOCACION DE CONEXION A PRUEBA DE PROTECCION DE CORRIENTE DE FUCIA Y DISENO DE SISTEMAS DE DISTRIBUCION AISLADO DE RESEPTACULOS PARA RAYOS Xº EN QURROFANO, DE ACURDO CON EL ARTICULO SI POEL CODIGIO NACIONAL LECETRICO Y A LA NORMA OFICIAL MEXICANA NOM-001 SEMP-19º4 MCA. SQUARE-D, MERIN GERIN O SIMILAR, FORMADO COMO SIGUE TABLERO DE AISLAMIENTO PARA RAYOS Xº MOD XTL-1-3-3-3-8-N EN GABINETE DE LAMINA GALVANIZADA Y REINTE DE ACERO NOXIDABLE, FORMADO FOR: 1 TRANSFORMADO DE 1 SIXVA 240V. UN INTERRIPTOR TERMOMAGNETICOS DE INVAVA 240V. UN INDICADOR DINAMICO DE PELIGIRO, UNA BARRA DE TIERRA EQUINOTENCIALD DOS MODULOS RECEPTACULO PARA RAYOS Xº MOD CXORA EN GAVINETE DE LAMINA GALV. Y FRENTE DE ACERO INOXIDADELE FORMADO TONA: I RECEPTACULO ESPECIAL RX DE 60 AMPS. UN INDICADOR PELIGRO REMOTO  INCLUYE RED DE TUBERIA CONDUIT PESADO PVC EN LOS DIAMETROS Y RECORRIDAS MACIMOS PERMITIDOS DEACUERDO A NORMAS I M.S.S. CONDUCTORES TIPO RHIPW CAL 14.10.18,6. ASI COMO LOS ACCESORIOS DEAC LA MODULOS DE RECEPTACULOS PARA RAYOS Xº EN QUIROFANOS Y TABIEROS DE RECEPTACULOS PARA RAYOS Xº EN QUIROFANOS Y TABIEROS DE RELEGIALO. ASI COMO SOPICITERIA PARA LAS CAMAS DE TUBERIA Y TOUO LO NECESARIO PARA SU INSTALACION. |          | EQPO.  | 206,5[1,9] | \$ : 206,511.91<br>\$ : 465,365,33 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |        |            | TOTAL                              |

#### SUBESTACION Y PLANTA DE EMERGENCIA


| PART | CONCEPTO                                                                                                                                                                                                                                                                                                                           | CANTIDAD | UNIDAD | P.UNIT.    | TOTAL         |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|------------|---------------|
| l    | SUMINISTRO Y COLOCACION DE PLANTA DE EMERGENCIA 250 kw. 60 kz. 1800 RPM, JF-4H, M.C.I. A DIESEL, TSBLERO DE TRANSFERENCIA AUTOMATICA. INCLUYE TANQUE DE COMBUSTIBLE, SILENCIADOR TIPO HOSPITAL, TUBO FLEXIBLE PARA ESCAPELETC.                                                                                                     | 1.00     | PZA.   | 372,000.00 | \$ 372,000.00 |
| 2    | SUMINISTRO Y COLOCACION DE SUBESTACION COMPACTA TIPO NEMA I, USO INTERIOR VOLTAJE DE OPERACION 13 KV, 300 KVA. IZQ-DER. COMPUESTA POR LOS CUATRO MOD'JLOS SIGUIENTES *SECCION DE MEDICION *SECCION DE CUCHILLAS DE SERVICIO *SECCION DE INTERRUPTOR PRINCIPAL EN AIRE *SECCION DE ACOPLAMIENTO A TRANSFORMADOR.                    | 1.00     | PZA.   | 47,040.00  | \$ 47,040,00  |
|      | SUMDISTRO E INSTALACION DE TRANSFORMADOR DE DISTRIBUCION TIPO ESTACION, 300 KVA. RELACION 13200/220-127 V, 60 bz., CON CAMBIADOR DE DERIVACIONES DE 4 POSICIONES DE 25 ° c/U, TIPO IZQUIERDA-DERECHA. DOS ARRIBA Y DOS ABAJO DEL VOLTAJE NOMINAL DE OPERACION, GARGANTAS EN EL PRIMARIO Y SECUNDARIO, PARA OPERAR A NIVEL DEL MAR. | 1.00     | PZA.   | 59,904.00  | \$ 59,904,00  |



| PART | CONCEPTO                                                                                                                                                                                                                                                                                                                                                                             | CANTIDAD | UNIDAD | P.UNIT    | TOTAL         |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-----------|---------------|
| 4    | SUMINISTRO Y COLOCACION DE GABINETE DE ACOPLAMIENTO A<br>SECUNDARIO DE TRANSFORMADOR TIPO ESTACION, CON<br>ENTRADA PARA ACOMETIDA SUPERIOR, PINTURA COLO GRIS<br>ANSI-61, INCLUYE INTERRUPTOTOR TERMOMAGNETICO TIPO<br>MILJ6800 COMO MEDIO DE DESCONEXION Y PROTECCION DEL<br>TRANSFORMADOR.                                                                                         | 1.00     | PZA    | 47,589.02 | \$ 47,589,02  |
| 5    | SUMINISTRO E INSTALACION DE TABLERO GENERAL DE DISTRIBUCION, TIKV-ILINE, CATALICKO PATROMAGACOM, TAMAÑO 4C CON MEDICION E INTERRUPTOR PRINCIPAL DE 3P-800A. MARCA SQUARED, CON LOS SIGUIENTES INTERRUPTORES DERIVADOS 4 TIKO FAJ6070, I TIPO KAJ6150, I TIPO KAJ6155, 2 TIPO KAJ6150, I TIPO MAJ6500 | 2.00     | PZAS.  | 49,920.00 | \$ 99,840,00  |
| 6    | SUMINISTRO E INSTALACION DE INTERRUPTORE<br>TERMOMAGNETICO PRINCIPAL DE 3X100 AMPERES ALTA<br>CAPACIDAD INTERRUPTIVA EN GABIENIETE NEMA I                                                                                                                                                                                                                                            | 1.00     | EQUIPO | 26,054,40 | \$ 26,054.40  |
|      |                                                                                                                                                                                                                                                                                                                                                                                      |          |        | TOTAL     | \$ 652,427.42 |

#### INTERCONEXION DE EQUIPOS EN BAJA TENSION EQUIPOS Y SUBESTACIONES

| PART | CONCEPTO                                                                                                        | CANTIDAD | UNIDAD | P.UNIT.   | TOTAL.       |
|------|-----------------------------------------------------------------------------------------------------------------|----------|--------|-----------|--------------|
| 1    | CABLE THW VINANEL 900 CALIBRE 300 M.C.M., MARCA CONDUMEX O SIMILAR                                              | 480.00   | MTS.   | 69.37     | 5 33,297.60  |
| 2    | ESCALERILLA DE 30 CMS DE ALUMINIO CON ESPACIOS DE 15<br>CMS CH-12-6                                             | 6.00     | PZAS   | 420.72    | S 2,524.32   |
| 3    | CURVA VERTICAL EXTERIOR DE 90 GRADOS PARA ESCALERILLA<br>DE 30 CMS DE ALUMINIO CON RADIO DE 20 CMS VUE-12 R890. | 2.00     | PZAS.  | 96.65     | \$ 193.30    |
| 4    | CURVA VERTICAL INTERIOR DE 90 GRADOS PARA ESCALERILLA<br>DE 30 CMS DE ALUMINIO CON RADIO DE 20 CMS. VUI-12 R890 | 2.00     | PZAS.  | 96.71     | \$ 193.42    |
| 5    | CURVA HORIZONTAL DE 90 GRADOS PARA ESCALERILLA DE 30<br>CMS DE ALUMINIO CON RADIO DE 20 CMS UTI-12 R8           | 1 00     | PZAS.  | 100.17    | S 100.17     |
| 6    | TEE HORIZONTAL PARA ESCALERILLA DE 30 CMS. DE ALUMINIO<br>CON RADIO DE 20 CMS. TH-12-R8                         | 2.00     | PZAS   | 170.34    | S 340.6R     |
|      | SOPORTE A BASE DE UNICANAL PARA ESCALERILLA INCLUYE<br>PIJA, ANCLA, TUERCA Y CARGA CPPU-12                      | 20.00    | PZAS.  | 27.54     | \$ 550 NO    |
| 8    | ZAPATAS MECANICAS DE COBRE PARA 2 CABLES DE 300 M.C.M.<br>MARCA BURNDY                                          | 8 00     | PZAS.  | 268 80    | \$ 2,150.40  |
| · ·  | ACCESORIOS INTERCONEXION COMBUSTIBLE A PLANTA DE EMERGENCIA                                                     | 1.00     | LOTE   | 7,200.00  | \$ 7,200.00  |
| 10   | SISTEMA DE TIERRAS PARA SUBESTACION Y PLANTA                                                                    | 1.00     | LOTE   | 12,288.00 | \$ 12,288.00 |
|      | CONSTRUCCION HASE PARA PLANTA DE EMERGENCIA Y<br>SUBESTACION                                                    | 1.00     | LOTE   | 15,264.00 | \$ 15,264.00 |
|      |                                                                                                                 |          |        | TOTAL     | \$ 74,102.69 |



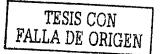
#### 01 INSTALACIONES ESPECIALES RAYOS "X"

| PART | CONCEPTO                                                                                                                                                                                             | CANTIDAD | UNIDAD    | PUNIT     | TOTAL        |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-----------|--------------|
| 1    | INSTALACIONES ESPECIALES PARA FOUIPO DE RAYOS "X" TALES<br>COMO DUCTOS, TUBERIAS, INTERRUPTORES Y SEÑALAMIENTO<br>PARA UNIR MESA DE RAYOS "X" CON LA FUENTE DE PODER Y<br>CON LA CONSOLA DE CONTROL. |          | PZA       | 20,654.99 | \$ 20,654 99 |
|      |                                                                                                                                                                                                      |          | , all the | TOTAL     | \$ 20,654 94 |

#### 02 LABORATORIO

| PART | CONCEPTO                                                                                                            | CANTIDAD | UNIDAD | P.UNIT.   | TOTAL        |
|------|---------------------------------------------------------------------------------------------------------------------|----------|--------|-----------|--------------|
| ] 2  | INSTALACIONES ESPECIALES PARA EQUIPO Y MOBILIARIO DE<br>LABORATORIO, MESAS DE TRABAJO Y CONSERVACION DE<br>MUESTRAS |          | PZA.   | 21,168.93 | \$ 21,168.93 |
|      |                                                                                                                     |          | TT4    | TOTAL     | \$ 21,168.93 |

#### 03 C.E.Y E.


| PART | CONCEPTO                                                                                                                                                                              | CANTIDAD | UNIDAD | P UNIT.   | TOTAL        |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-----------|--------------|
| 3    | INSTALACIONES ESPECIALES Y CONTROLES PARA EQUIPO DE<br>CENTRAL DE ESTERILIZACION: TALES COMO AUTOCLAVES,<br>LAVADORAS DE GUANTES, LAVADORAS ULTRASONICAS Y<br>ENTALCADORAS DE GUANTES |          | PZA.   | 30,487.39 | \$ 30,487,39 |
| -    |                                                                                                                                                                                       |          |        | TOTAL     | \$ 30,487.39 |

#### 04 CUARTO OSCURO-REVELADOR.

| PART | CUNCEPTO                                                                            | CANTIDAD | UNIDAD | P.UNIT.   | TOTAL        |
|------|-------------------------------------------------------------------------------------|----------|--------|-----------|--------------|
|      | INSTALACION ELECTRICA Y CONTROLES PARA EQUIPO DE<br>REVELADO AUTOMATICO DE PROCESO. | 1.00     | PZA.   | 11,504.07 | S 11,504.07  |
|      |                                                                                     |          |        | TOTAL.    | \$ 11,504.07 |

#### 05 COCINA.

| PART | CONCEPTO                                                                                                                                                                                                                 | CANTIDAD | UNIDAD | P.UNIT.   | STATE TOTAL SALES |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-----------|-------------------|
| 5    | INSTALACION ELECTRICA Y CONTROLES PARA EQUIPO DE COCINA Y PREPARACION; TALES COMO EXTRACTOR DE CAMPANA, CAMPANA DE EXTRACCION, LAVADORA DE LOSA, TRITURADOR DE DESPERDICIOS, CAMARA DE CONGELACION, MESAS DE PREPARACION |          | PZA.   | 21,323.98 | \$ 21,323.98      |
|      |                                                                                                                                                                                                                          |          |        | TOTAL     | \$ 21,323.98      |



#### 06 LAVANDERIA

| - [ | PART | CONCEPTO                                                                                                                                       | CANTIDAD | UNIDAD         | P UNIT.   | TOTAL        |
|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|-----------|--------------|
|     | 6    | INSTALACIONES ESPECIALES Y CONTROLES PARA EQUIPO DE<br>LAVANDERIA, TALES COMO LAVADORA DE ROPA, MANGLE,<br>EXTRACTORES DE MANGLE, PLANCHADORAS |          | PZA            | 26,685.03 | \$ 26,685.03 |
| •   |      |                                                                                                                                                | 100      | to the require | TOTAL     | \$ 26,685 03 |

#### 07 CASA DE MAQUINAS

| PART | CONCEPTO                                                                                                                                             | CANTIDAD | UNIDAD | P.UNIT.   | TOTAL        |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-----------|--------------|
| 7    | INSTALACION ELECTRICA PARA EQUIPO HIDRONEUMATICO,<br>BOMBAS, COMPRESOR Y TANQUES, EQUIPO DE CALENTAMIENTO,<br>BOMBAS, CALEITALXXRES Y RECIRCULADORES |          | PZA.   | 34,798.24 | \$ 34,798 24 |
|      |                                                                                                                                                      |          | 1000   | TOTAL See | \$ 34,798.24 |

#### 08 MANIFOLD, OX. VACIO Y OX. NIT.

| PART | CONCEPTO                                                                                                            | CANTIDAD | UNIDAD     | P.UNIT.   | TO | TAL       |
|------|---------------------------------------------------------------------------------------------------------------------|----------|------------|-----------|----|-----------|
| ] B  | INSTALACIONES ESPECIALES Y CONTROLES PARA COMPRESORES<br>DE AIRE, CONTROLES DE PRESION, ALARMAS Y<br>SEÑALAMIENTOS. | 1.00     | PZA.       | 10,820.74 | \$ | 10,820.74 |
|      |                                                                                                                     |          | 2012/06/55 | TOTAL     | 5  | 10,820.74 |

#### 09 CENTRO DE CONTROL DE MOTCRES.

| PART | CONCEPTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CANTIDAD | UNIDAD  | P.UNTT.    | TOTAL         |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|------------|---------------|
| 9    | SUMINISTRO E INSTALACION DE CENTRO DE CONTROL DE MOTORES CCM-2 COMBINACIONES SEGUN GUIA MECANICA DE CASA DE MAQUINAS. CON LAS SIGUIENTES CARACTERISTICAS-CLASE 8998, MODELO 6, MECANISMO DE INSERCION-EXTRACCION EN TODAS LAS UNIDADES ENCHUFABLES, 600 VOLTS, 60 Hz. CONTROL 120 VOLTS, SISTEMA 3F-4H ARRANCADORES CLASE 8536, RELEVADOR DE SOBRECARGA CON ELEMENTOS DE ALEACION FUSIBLE O BIMETALICOS ALAMBRADO CLASE NEMA-1. CIRCUITOS DE CONTROL SEGUN GUIA MECANICA DE CASA DE MAQUINAS. | 1.00     | PZA     | 105,479.82 | \$ 105,479.82 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 1.114.5 | TOTAL      | \$ 105,479.82 |



| F                                           | USUMEN |           |    |              |
|---------------------------------------------|--------|-----------|----|--------------|
| PARTIDA                                     |        |           | T  | IMPORTE      |
| INST. ESPECIALES DE QUIROFANOS              |        |           | 5  | 465,365 33   |
| SUBESTACION Y PLANTA DE EMERGENCIA.         |        |           | 5  | 652,427 42   |
| INTERCONEXION EQUIPOS EN B.T. Y SUBESTACION | √ES    |           | S  | 74,102 69    |
| 01 INSTALACIONES ESPECIALES RAYOS *X*.      |        |           | S  | 20.654 99    |
| 02 LABORATORIO                              | 5      | 21,168 93 |    |              |
| 03 C E.Y E.                                 |        |           | s  | 30,487.39    |
| 04 CUARTO OSCURO-REVELADOR.                 |        |           | s  | 11,504 07    |
| 05 COCINA                                   |        |           | \$ | 21,323.98    |
| 06 LAVANDERIA                               |        |           | s  | 26,685.03    |
| 07 CASA DE MAQUINAS                         |        | F 125     | 5  | 34,798 24    |
| 08 MANIFOLD, OX VACIO Y OX. NIT.            |        |           | 3  | 10,820.74    |
| 09 CENTRO DE CONTROL DE MOTORES             |        |           | 15 | 105,479 82   |
|                                             |        | TOTAL     | S  | 1,474,818 63 |

RESUMEN: PROYECTO Y PRESUPUESTO DE LA INSTALACION ELECTRICA GENERAL DE UNA ENFERMERÍA CONVENCIONAL

| RES                                           | JMEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |              |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------|
| PARTIDA                                       | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IMPORTE |              |
| 01 ALUMBRADO Y CONTACTOS                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S       | 247,605.73   |
| 02 ALIMENTALXORES ELECTRICOS                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$      | 546,538.15   |
| 03 TABLEROS                                   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5       | 334,245.54   |
| 04 RED DE ALUMBRADO INTERIOR                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5       | 875,855.51   |
| 05 ALUMBRADO EXTERIOR                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S       | 112,928.00   |
| 06 SISTEMA DE TIERRAS                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$      | 73,761.84    |
| 07 SOPORTERIA DE INST. ELECTRICA GENERAL      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5       | 251,488.24   |
| ACOMETIDA EN ALTA TENSION                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5       | 118,406.35   |
| INST: ESPECIALES DE QUIROFANOS                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5       | 465,365.33   |
| SUBESTACION Y PLANTA DE EMERGENCIA.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5       | 652,427.42   |
| INTERCONEXION EQUIPOS EN H.T. Y SUBESTACIONES |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5       | 74,102.69    |
| DI INSTALACIONES ESPECIALES RAYOS "X"         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S       | 20,654 99    |
| 02 LABORATORIO                                | 1947, 621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S       | 21,168 93    |
| OF CEYE.                                      | est Miller and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$      | 30,487.39    |
| 14 CUARTO OSCURO-REVELADOR                    | 1.454445.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S       | 11,504.07    |
| DS COCINA .                                   | a sample Spirite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S       | 21,323.98    |
| > LAVANDERIA                                  | m magangangan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S       | 26,685 03    |
| 7 CASA DE MAQUINAS                            | and the section of th | \$      | 34,798.24    |
| 8 MANIFOLD, OX. VACIO Y OX. NIT.              | All the Same Harrison was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S       | 10,820.74    |
| CENTRO DE CONTROL DE MOTORES.                 | Section No. 10 444 (1985) 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5       | 105,479 82   |
| ·                                             | TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S       | 4,035,647.99 |



### PRESUPUESTO DE SUMINISTRO E INSTALACION DE SUBESTACION ELECTRICA, PLANTA DE EMERGENCIA, TABLEROS GENERALES Y TRANSFERENCIA AUTOMATICA PARA LA ENFERMERIA CONVENCIONAL.

#### EOUIPAMIENTO

| PART | CONCEPTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CANTIDAD | UNIDAD | I P.UNIT.  | P. TOTAL   |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|------------|------------|
| 1    | SUBESTACION ELECTRICA COMPACTA SERVICIO INTERIOR PARA 13.2 KV, 300 KVA, 220-127 VOLTS, PARA ACOPLARSE A TRANSFORMADOR DE 300 KVA. CONTENIENDO SECCION DE MEDICION SECCION DE CUCHILLAS. SECCION DE APARTARRAYOS. SECCION DE INTERRUPTOR. SECCION DE ACOPLAMIENTO.                                                                                                                                                                                                                                                           |          | EQUIPO | 49,000.00  | 49,000.00  |
| 2    | TRANSFORMADOR DE DISTRIBUCION DE 300 KVA,<br>13200/220-127 VOLTS ENFRIAMIENTO OA CON 2 TAPS<br>DERIVADORES + 2.5% ARRIBA Y ABAJO DEL VOLTAJE<br>NOMINAL CON GARGANTAS DE ACOPLAMIENTO.                                                                                                                                                                                                                                                                                                                                      | 1.00     | EQUIPO | 67,400.00  | 67,400.00  |
| 3    | SUMINISTRO E INSTALACION DE INTERRUPTORE<br>TERMOMAGNETICO PRINCIPAL DE 3X100 AMPERES<br>ALTA CAPACIDAD INTERRUPTIVA EN GABIENETE NEMA<br>I                                                                                                                                                                                                                                                                                                                                                                                 | 1.00     | EQUIPO | 27,140.00  | 27,140.00  |
| 4    | PLANTA ELECTRICA DE EMERGENCIA DE 250 KW, SERVICIO CONTINUO 220 VOLTS CON SILENCIADOR TIPO HOSPITAL, TANQUE DE COMBUSTIBLE, AMORTIGUADORES. TABLERO DE TRANSFERENCIA AUTOMATICO CONTACTO CON INTERRUPTORES TERMOMAGNETICOS DE 3X600 AMPERES, 200, 127 VOLTS CON TODOS LOS DISPOSITIVOS DE CONTROL CONEXION MEDICION Y MANDO QUE DEBE CONTENER EL TABLERO PARA UNA CORRECTA OPERACION                                                                                                                                        | 1.00     | EQUIPO | 387,300.00 | 387,500.00 |
| 5    | TABLERO DE DISTRIBUCION SERVICIO NORMAL CON LOS INTERRUPTORES SIGUIENTES:  UN INTERRUPTOR TERMOMAGNETICO GENERAL DE 3X300 AMPERES.  UN INTERRUPTOR TERMOMAGNETICO DERIVADO DE 3X100 AMPERES.  UN INTERRUPTOR TERMOMAGNETICO DERIVADOS DE 3X40 AMPERES.  INTERRUPTORES TERMOMAGNETICO DERIVADOS DE 3X40 AMPERES.  TRES INTERRUPTORES TERMOMAGNETICOS DERIVADOS DE 3X30 AMPERES.                                                                                                                                              | 1.00     | EQUIPO | 49,000.00  | 49,000.00  |
|      | TABLERO DE DISTRIBUCION SERVICIO EMERGENCIA CON LOS INTERRUPTORES SIGUIENTES: UN INTERRUPTOR TERMOMAGNETICO GENERAL DE 3X600 AMPERES. UN INTERRUPTOR TERMOMAGNETICO DERIVADO DE 3X300 AMPERES. UN INTERRUPTOR TERMOMAGNETICO DERIVADO DE 3X100 AMPERES. DOS INTERRUPTORES TERMOMAGNETICOS DE 3X40 AMPERES. DOS INTERRUPTORES TERMOMAGNETICOS DE 3X30 AMPERES. DOS INTERRUPTORES TERMOMAGNETICOS DE 3X30 AMPERES. DOS INTERRUPTORES TERMOMAGNETICOS DE 2X30 AMPERES. UN INTERRUPTOR TERMOMAGNETICO DERIVADO DE 2X20 AMPERES. | 1.00     | EQUIPO | 55,900.00  | 55,900.00  |

| PART | CONCEPTO                                               | CANTIDAD | UNIDAD | P UNIT | P TOTAL    |
|------|--------------------------------------------------------|----------|--------|--------|------------|
|      | UN INTERRUPTOR TERMOMAGNETICO DERIVADO DE 2X15 AMPERES |          |        |        |            |
|      |                                                        |          |        | TOTAL  | 635 940 00 |

#### INTERCONEXION DE EOUIPOS EN BAJA TENSION

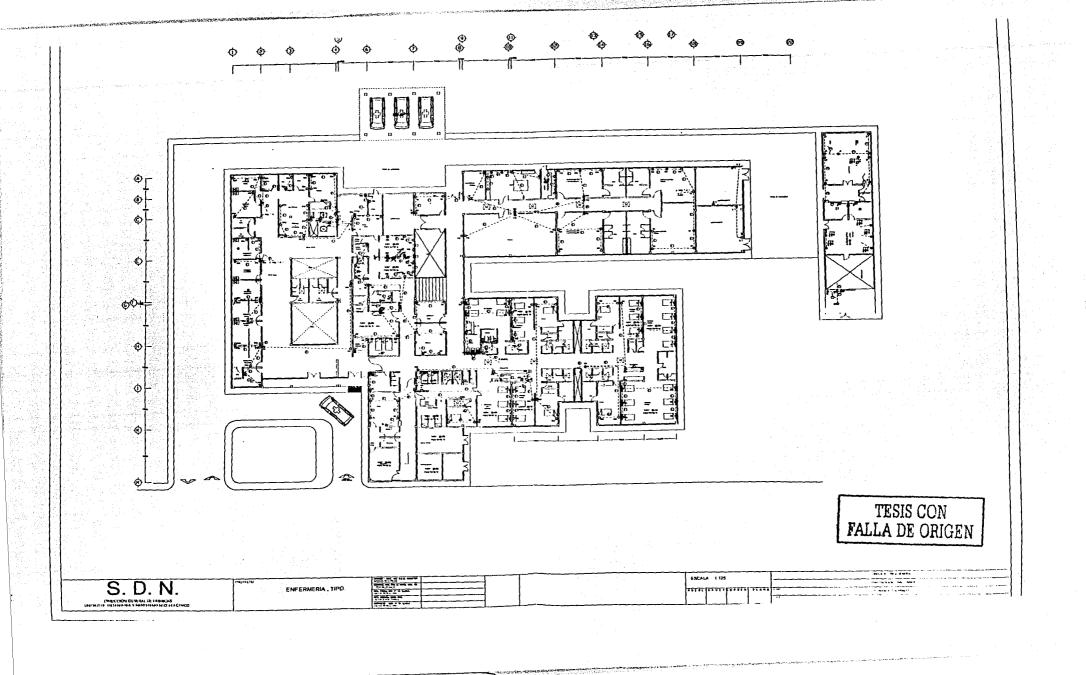
| PART. | CONCEPTO                                                                                                           | CANTIDAD | UNIDAD | P UNIT    | P. TOTAL  |
|-------|--------------------------------------------------------------------------------------------------------------------|----------|--------|-----------|-----------|
| 1     | CABLE THW VINANEL 900 CALIBRE 300 M.C.M., MARCA CONDUMEX O SIMILAR.                                                | 480 00   | MTS.   | 72.27     | 34,689 60 |
| 2     | ESCALERILLA DE 30 CMS. DE ALUMINIO CON ESPACIOS<br>DE 15 CMS. CH-12-6.                                             | 6.00     | PZAS.  | 438.26    | 2,629.56  |
| 3     | CURVA VERTICAL EXTERIOR DE 90 GRADOS PARA<br>ESCALERILLA DE 30 CMS. DE ALUMINIO CON RADIO DE<br>20 CMS VUE-12 R890 |          | PZAS.  | 100.68    | 201 36    |
| 4     | CURVA VERTICAL INTERIOR DE 90 GRADOS PARA<br>ESCALERILLA DE 30 CMS DE ALUMINIO CON RADIO DE<br>20 CMS VUI-12 R890  |          | PZAS.  | 100.74    | 201.48    |
| 5     | CURVA HORIZONTAL DE 90 GRADOS PARA ESCALERILLA<br>DE 30 CMS. DE ALUMINIO CON RADIO DE 20 CMS. UH-12<br>R8          | 3        | PZAS.  | 114,77    | 114.77    |
| 6     | TEE HORIZONTAL PARA ESCALERILLA DE 30 CMS. DE<br>ALUMINIO CON RADIO DE 20 CMS. TH-12-R8                            | 2.00     | PZAS.  | 177.44    | 354.88    |
| 7     | SOPORTE A BASE DE UNICANAL PARA ESCALERILLA<br>INCLUYE PIJA, ANCLA. TUERCA Y CARGA CPPU-12                         | 20.00    | PZAS.  | 28.69     | 573.80    |
| 8     | ZAPATAS MECANICAS DE COBRE PARA 2 CABLES DE 300<br>M C M MARCA BURNDY                                              | 8.00     | PZAS.  | 280.00    | 2,240.00  |
| 9     | ACCESORIOS INTERCONEXION COMBUSTIBLE A PLANTA<br>DE EMERGENCIA                                                     | 1.00     | LOTE   | 7,500.00  | 7,500.00  |
| 10    | SISTEMA DE TIERRAS PARA SUBESTACION Y PLANTA.                                                                      | 1.00     | LOTE   | 12,800 00 | 12,800.00 |
| 11    | CONSTRUCCION BASE PARA PLANTA DE EMERGENCIA Y SUBESTACION                                                          | 1.00     | LOTE   | 15,900.00 | 15,900.00 |
|       |                                                                                                                    |          |        | TOTAL     | 77,205.45 |

#### **ACOMETIDA**

| PART | CONCEPTO                                                                                                            | CANTIDAD | UNIDAD | P.UNIT.  | P TOTAL   |
|------|---------------------------------------------------------------------------------------------------------------------|----------|--------|----------|-----------|
| 1    | JUEGO DE 3 CORTACIRCUITOS PARA 15 KV                                                                                |          | PZAS.  | 3,800.00 | 3,800.00  |
| 2    | JUEGO DE 3 APARTARRAYOS DE OXIDO DE ZING PARA<br>23 KV                                                              | 1.00     | PZAS.  | 3,900.00 | 3,900.00  |
| 3    | ESTRUCTURA R PARA SOPORTAR CORTACIRCUITOS Y APARTARRAYOS                                                            | 1.00     | PZAS.  | 650.00   | 650.00    |
| 4    | CONECTORES PERICO PARA CONECTAR LA LINEA DE<br>13 2 KV. A LOS PARATARRAYOS PORMEDIO DE CABLE<br>DE ALUMINIO DESNUDO |          | PZAS.  | 80.00    | 240.00    |
| 5    | CABLE XLP PARA 15 KV. CALIBRE 1/0, MARCA CONDUCTORES MONTERREY                                                      | 300.00   | MTS.   | 80.00    | 24,000.00 |
| 6    | CONOS DE ALIVIO TIPO EXTERIOR PARA 15 KV PARA<br>CABLE XLP CALIBRE 1/0, MARCA 3M O ELASTIMOLD                       | 3,00     | PZAS.  | 1,316.66 | 3,949.98  |
| 7    | CONOS DE ALIVIO TIPO INTERIOR PARA 15 KV PARA<br>CABLE XLP CALIBRE 1/0, MARCA 3M O ELASTIMOLD                       | 3.00     | PZAS.  | 1,200.00 | 3,600.00  |
| 8    | CINTA DE AISLAR SCOTCH 3M PARA 23 KV.                                                                               | 10.00    | PZAS.  | 120.00   | 1,200.00  |
| 9    | TUBERIA CONDUIT DE P.V.C. TIPO PESADO DE 3".                                                                        | 400.00   | MTS.   | 35.00    | 14,000.00 |

TESIS CON FALLA DE ORIGEN

| PART. | CONCEPTO                                                                | CANTIDAD | UNIDAD | PUNIT     | P TOTAL    |
|-------|-------------------------------------------------------------------------|----------|--------|-----------|------------|
| 10    | CONSTRUCCION DE REGISTROS DE ALTA TENSION,<br>INCLUYE MARCO Y TAPA P-84 | 4.00     | PZAS.  | 3,500 00  | 14,000 00  |
| 11    | PEGAMENTO PARA PVC                                                      | 5 00     | BOTE   | 60 00     | 300 00     |
| 17    | OBRA CIVIL PARA ACOMETIDA CONSIDERANDO 100 MTS LINEALES                 | 1.00     | LOTE   | 47,000 00 | 47,000 00  |
| 13    | CONTRATO DE ENERGIA CON C.F.E.                                          | 1 00     | PAGO   | 6,700 00  | 6,700 00   |
|       |                                                                         |          |        | TOTAL     | 123,339 98 |


| EQUIPAMIENTO                        |         | 635,940 00 |
|-------------------------------------|---------|------------|
| ACOMETIDA                           |         | 123.339 98 |
| INTERCONECIÓN DE<br>EN BAJA TENSION | EQUIPOS | 77,205.45  |
|                                     | TOTAL   | 836,485 43 |

#### SISTEMAS DE TIERRAS FISICAS Y AISLADAS PARA LA ENFERMERIA CONVENCIONAL.

| PAR    | r CONCEPTO                                                                                                    | CANTIDAD | UNIDAD | P.U.   | TOTAL     |
|--------|---------------------------------------------------------------------------------------------------------------|----------|--------|--------|-----------|
| 1      | ABRAZADERA PARA UNICANAL DE 25 MM                                                                             | 18.00    | PZAS.  | 10.50  | 189 00    |
| 2      |                                                                                                               |          | PZAS.  | 89.60  | 537.60    |
| 3      | CABLE DE Cu 1/o AWG AISLAMIENTO TW.                                                                           |          | MTS.   | 36 00  | 4,680.00  |
| 4      | CABLE DE Cu 3/o AWG AISLAMIENTO TW                                                                            | 120.00   | MTS.   | 42 00  | 5,040.00  |
| 5      | CABLE DE Cu DESNUDO SEMIDURO CAL. 4/0.                                                                        | 100 00   | MTS    | 48 00  | 4,800 00  |
| 6      | CAJA DE REGISTROS GALVANIZADA DE 0.40X0.20X0.20<br>MTS                                                        | 2.00     | PZAS   | 341.70 | 683.40    |
| 7      | CAJA DE REGISTROS GALVANIZADA DE 0 80X0 40X0.20<br>MTS                                                        | 3.00     | PZAS.  | 951.30 | 2,853.90  |
| 8      | CODO CONDUIT P G G DE 25 MM.                                                                                  | 2.00     | PZAS.  | 29.50  | 59.00     |
| 9      | CONEXION SOLDABLE "T" CADWELL CON MOLDE. CAT. TAL-2020 CON CARTUCHO DE 251.                                   | 20.00    | PZAS.  | 184.46 | 3,689,20  |
| 10     | CONEXION SOLDABLE "X" CADWELL CON MOLDE. CAT. XBM-2020 CON CARTUCHO DE 250.                                   | 20.00    | PZAS.  | 210.00 | 4,200.00  |
| 11     | CONEXION ZAPATA CABLE CADWELL PARA CABLE CAL.<br>4/0. CON MOLDE CAT. GLC-DE20 Y ZAPATA B-121-DE.              | 1.00     | JGO.   | 299.92 | 299.92    |
| 12     | SOLERA DE COBRE DE 4"X1/4" DE GROSOR POR 12"<br>LARGO                                                         | 2.00     | PZAS.  | 513.50 | 1,027.00  |
| 13     | SOLERA DE COBRE DE 4"X1/4" DE GROSOR X 24" LARGO.                                                             | 1.00     | PZAS.  | 978.75 | 978.75    |
| 14     | TAQUETE EXPANSIVO DE 3/8° CON TORNILLO DE 3/8°X2<br>1/2°                                                      | 6.00     | PZAS.  | 18.90  | 113.40    |
| 15     | TORNILO DE BRONCE DE 3/8" X 2" DE LARGO                                                                       | 20.00    | PZAS.  | 15.00  | 300.00    |
| 16     | TUBO CONDUIT P.G G. DE 25 MM.                                                                                 | 6.00     | MTS.   | 49.32  | 295.92    |
| 17     | UNICANAL DE 4X4 U-10                                                                                          | 50.00    | MTS.   | 170.70 | 8,535.00  |
| 18     | ZAPATA TERMINAL DE COBRE ELECTROLITICA DE<br>CAÑON LARGO. CAT. YS25 CON DOS BARRENOS BURNDY<br>1/0            | 25.00    | PZAS.  | 135.00 | 3,375.00  |
| 19     | ZAPATA TERMINAL DE COBRE ELECTROLITICA DE<br>CAÑON LARGO. CAT. YS28 PARA CAL. 4/0 BURNDY CON<br>DOS BARRENOS. | 3.00     | PZAS.  | 265.64 | 796.92    |
| 20     | CABLE DE COBRE THW VINANEL 900. CAL. 4/0 COLOR<br>VERDE EN CARRETE DE PUNTA A PUNTA.                          | 200.00   | мтѕ.   | 49.00  | 9,800.00  |
| 21     | CINTILLA DE COBRE CAL. 36 DE 2 CM. DE ANCHO.                                                                  | 30.00    | MTS.   | 46.70  | 1,401.00  |
| - 77 i | COMPUESTO PARA SELLAR CHICO A CATALOGO CHICO AS                                                               | 1.00     | PZAS.  | 113.34 | 113.34    |
| 23     | COMPUESTO QUIMICO PARA MEJORAR LA TIERRA.                                                                     | 57.00    | KGS.   | 230.00 | 13,110.00 |
| 74 1   | CONEXIÓN SOLDABLE CADWELD DE COBRE A VARILLA<br>COOPERWEEL DE 5/8".                                           | 4.00     | PZAS.  | 184.40 | 737.60    |

TESIS CON FALLA DE ORIGEN

| PART | CONCEPTO                                                                                    | CANTIDAD | UNIDAD | P.U.   | TOTAL     |
|------|---------------------------------------------------------------------------------------------|----------|--------|--------|-----------|
| 25   | CONEXION SOLDABLE CADWELD DE COBRE ZAPATA<br>PARA CABLE CAL 4/0                             | 2.00     | PZAS.  | 184.40 | 368.80    |
| 26   | CONEXIÓN SOLDABLE CADWELD DE COBRE ZAPATA<br>PARA CABLE CAL 4/0                             | 2.00     | PZAS.  | 195,19 | 390.38    |
| 27   | CONEXION ZAPATA CABLE CADWELD PARA CABLE CAL<br>4/0 CON MOLDE CAT GICDE20 Y ZAPATA B-121 DE | 1.00     | JGO.   | 194.19 | 194.19    |
| 28   | EXCAVACION DE 1 M3 PARA MEJORAR TERRENO Y UBICACIÓN ELECTRODO DE TIERRA.                    | 19.00    | МЗ     | 39.00  | 741.00    |
| 29   | REHILETE PARA TIERRAS DE 5/16" X 30 5 CMS                                                   | 19.00    | PZAS.  | 190 00 | 3,610.00  |
| 30   | RESISTENCIA LIMITADORA DE CARBON SOQUET.                                                    | 2.00     | PZAS.  | 181.50 | 363.00    |
| 31   | TUBO DE ALBAÑAL DE 6" DE DIAMETRO X 125 MTS.                                                | 10.00    | PZAS.  | 67.30  | 673.00    |
| 32   | TUBO PERMATEX                                                                               | 2.00     | PZAS.  | 299.50 | 599.00    |
| 33   | VARILLA COOPERWELL DE 5/8" X 10.                                                            | 19.00    | PZAS.  | 120.00 | 2,280.00  |
|      |                                                                                             |          |        | TOTAL  | 76,835.32 |



|                 |          | _ ISTA DE MATERIAL POR TABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RO                 | · · · · · · · · · · · · · · · · · · · |                   | A LOC TOEMS                                                 |                     |
|-----------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------|-------------------|-------------------------------------------------------------|---------------------|
|                 | T        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | VALORE 5                              | NUMERO DE         | + CINETION A FIERRA                                         | P APARTAPRAYO       |
| JENT IF FCACTOR | CANTIDAD | DESCRIPCION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | NOMINALES                             | PAPTE             | SECOTONADOR EN ATRE<br>COFERNICION CON CARGA<br>COSTO CARGA | +                   |
| 24              | ,        | INTERRUPTOR EN AIRE, OPERACION EN GRUPO CON CARGA TRIPOLAR, MANUALMENTE DERADO, BASE PORTAFUSIBLE, DISPOSITIVO CE DISPARO AUTOMATICO Y CIERRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LOTPIS/042CLN      | 400 A                                 | LDIPIS'<br>D42CLN | INTERRUPTOR EN SES                                          | <b>§</b>            |
| 34              |          | RUPIDO, SERVICIO INTERIOR, TENSTON MAXIMA DE OPERACION 17.5 KV.,<br>MARCA DRIESCHER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L01915/064CLN      | 630 A                                 | LD1915'           |                                                             | RESISTENCIA FIJA    |
| 7A              | 1        | CUCHILLA EN AIRE, OPERACION EN GRUPO SIN CARGA, TRIPOLAR, RAMALMENTE OPERADO,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DIP15/040AJN       | 400 A                                 | D1F15/<br>0404 JN | D tours                                                     | A COMECTOR MECANICO |
| 3A              |          | States price of transfer or a control of the state of the | DTP15/04CAJN       | 630 A                                 | D1P15/<br>0604JN  | T TASLILLA TERMINAL                                         | DE COMPRESION       |
| 38              | 3        | FUSIBLE DE POTENCIA LIMITADOR DE CORRIENTE,<br>TENSTON MAXIMA 17.5 KY., MARCA DRIESCHER,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1000 PVA           | 32 A                                  | DRS13/<br>032-47  | DISPOSITIVO DE CONTROL                                      | CRUCE CON CONEXION  |
|                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MVA                |                                       |                   | DE TENFERATURA<br>(TERMOSTATO)                              | TRANSFORMADOR DE    |
| 29              | 3        | APARTARRATO TIPO DISTRIBUCION DE OXIDO NETALICO PARA SISTEMA CON NEUTRO SOLIDAMENTE<br>CAPACIDAD DE DESCARGA 10 KA., CATALOGO AR-12, MARCA CELECO O SIMILAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | COMECTADO A TIERRA | 124                                   | AR-17             | CONECTOR FLEXIBLE                                           | CORRIENTE           |
|                 | 5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | BANG-BOOKEN                           | 40251 '62 50      |                                                             | 6 TERHOMAGNETICO    |
|                 |          | CONECTOR MECANICO, MARCA SQUARE D'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | 3/04MG-750KCH                         | 25065-05 15       | (M) EDITED DE HEDICION                                      | ESTACION DE         |
| £1,52           | 1        | JUEGO DE DOS CHAPAS Y UNA LLAYE PARA BLOQUEO DE SECCIONADOR FUSIBLE CON CUCHILLA DE<br>MARCA MERRANIENTAS Y TROQUELES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PASO, TIPO KLA,    |                                       | 73392-252 50      | LAPPIRA<br>PILOTO                                           | SEMALIZACION        |

#### (3) PLACA LETENDA UBICADA EN SECCION 2

ESTA CUCHILLA ES DE OPERACION SIN CARGA

- 1- SU OPERACION SE ENCUENTRA BLOQUEADA EN POSICION "CERRADO" MEDIANTE CHAPA (K1) Y LLAVE (I)
- 2- PARA DESBLOQUEARLA, ABRIR PRIMERO EL INTERRUPTOR PRINCIPAL EXTRAER LA LLAVE (1) DE SU CHAPA.
- 3- INSERTAR LA LLAYE (1) Y ACCIONAR SU CHAPA (K1), LA CUCHILLA PUEDE SER OPERADA A LA POSICION "ABIERIO".
- 4- LA LLAVE QUEDA PRISIONERA CON LA CUCHILLA EN POSICION "ABIERTO".

#### B PLACA LEYENDA UBICADA EN SECCION 3

ESTE INTERRUPTOR PUEDE SER OPERADO CON CARGA

- 1- PARA OPERARLO INSERTAR PALANCA EN DISCO DE ACCIONAMIENTO
- 2- SU OPERACION PUEDE SER BLOQUEADA EN POSICION "ABIERTO" HEDIANTE CHAPA (K2) Y LLAVE (I).
  - A- PARA BLOQUEAR, ABRIA EL INTERRUPTOR.
  - 8- CARGAR RESORTES DE SU ACCIONAMIENTO.
  - C. OPERAR CHAPA (KZ) HEDIANTE LLAVE (1)
- D- LA LLAVE (I) PLEDE SER EXTRAIDA.
- 3- EL INTERRUPTOR DISPARA AUTOMATICAMENTE AL ABRIR LA PLERTA DE SU COMPARTIMIENTO.
- 4- CON EL INTERRUPTOR EN POSICION "CERRADO" LA LLAVE (1)

13.8 KV., 400 A., 3F., 3H.

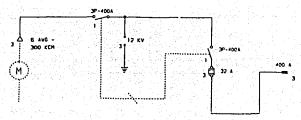
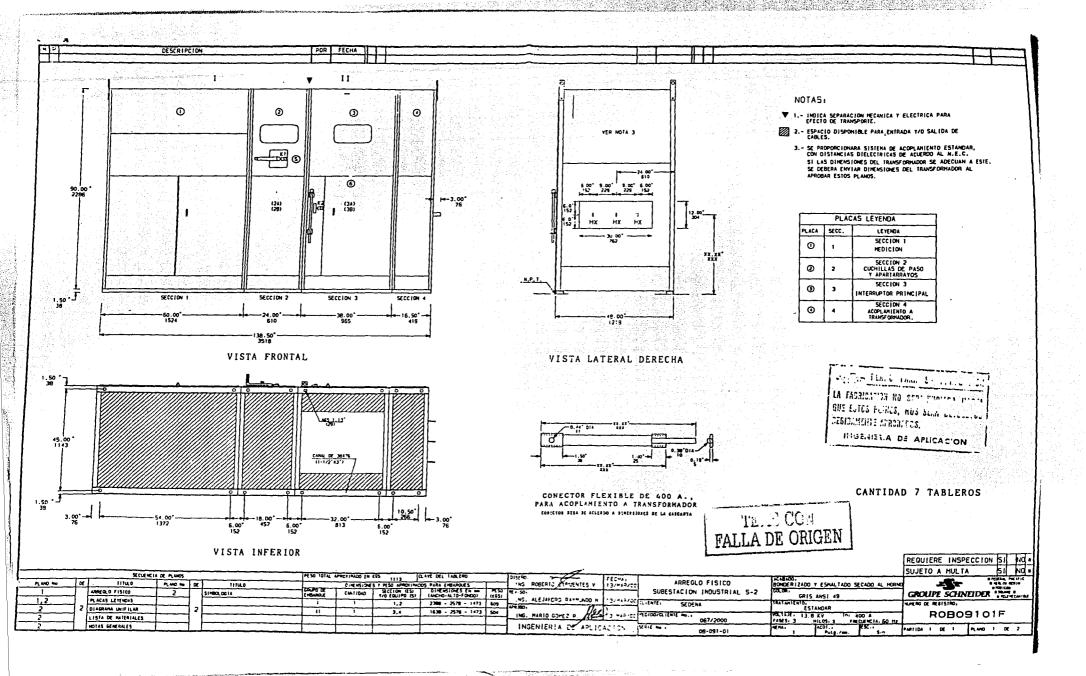
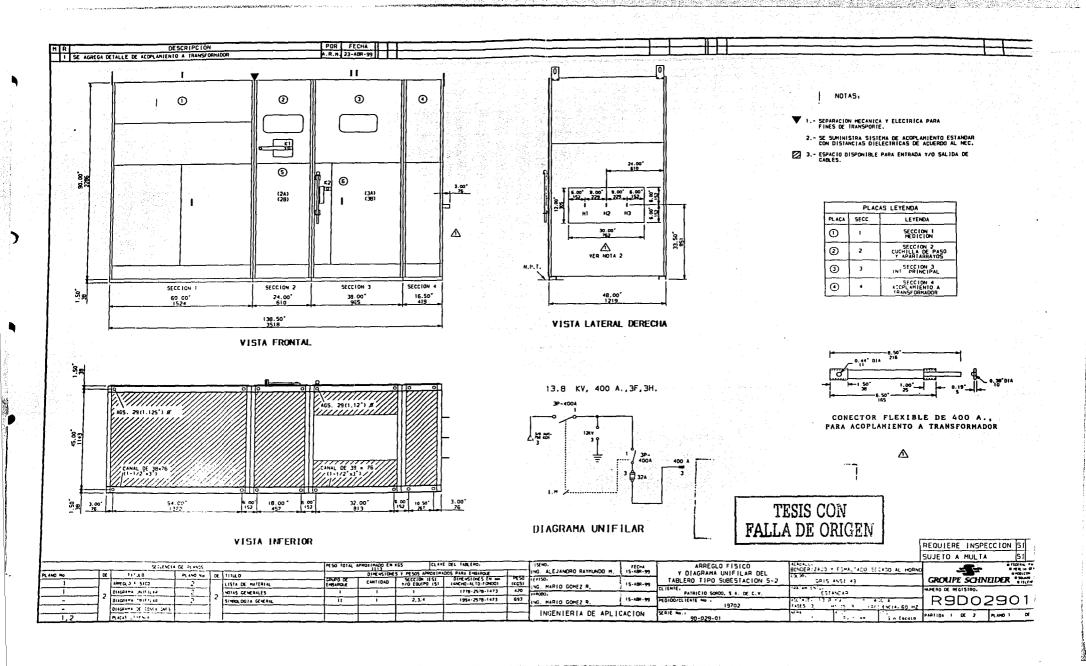
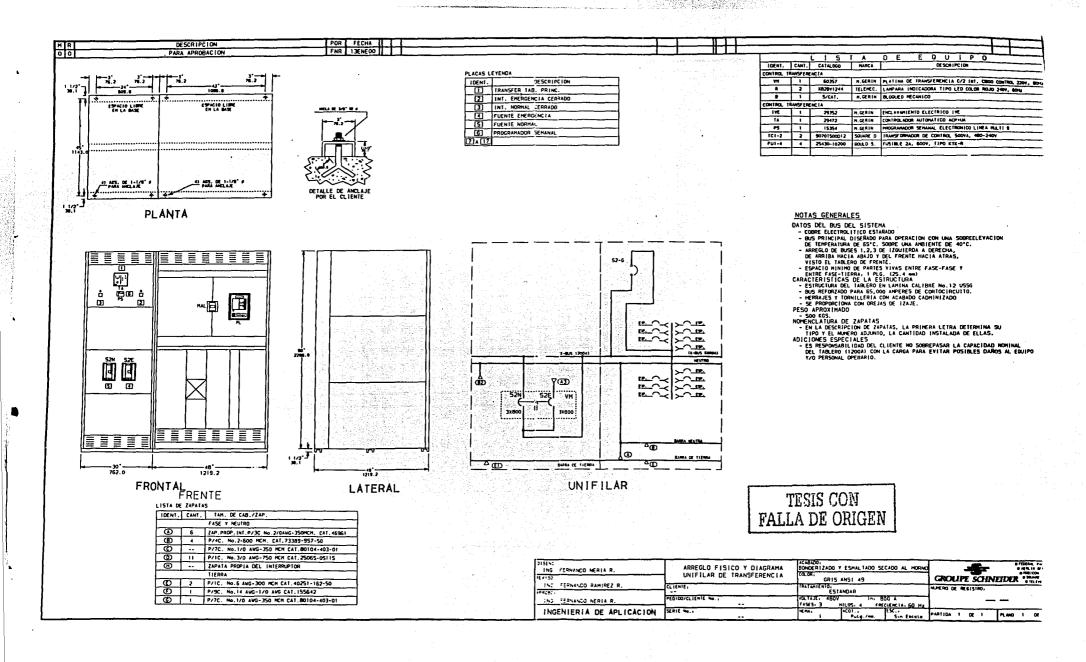
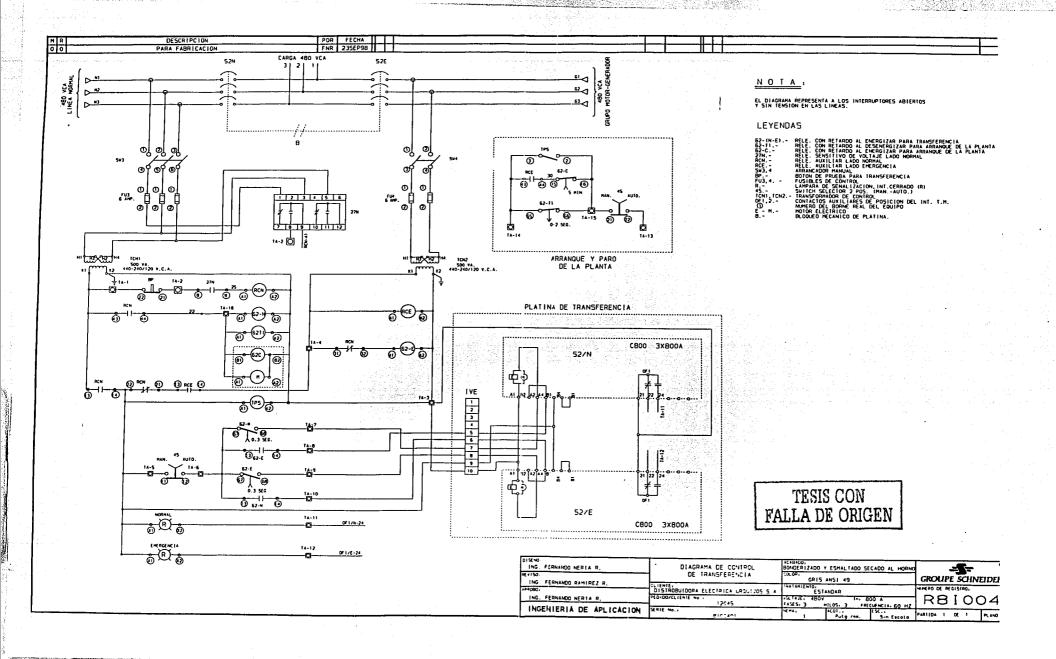


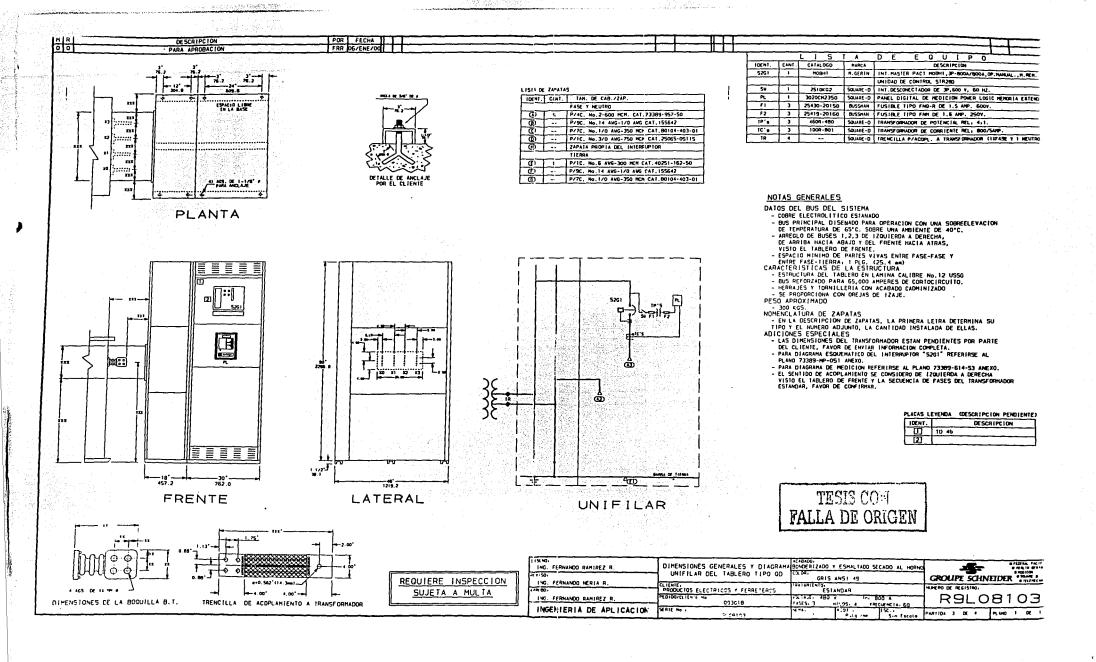

DIAGRAMA UNIFILAR

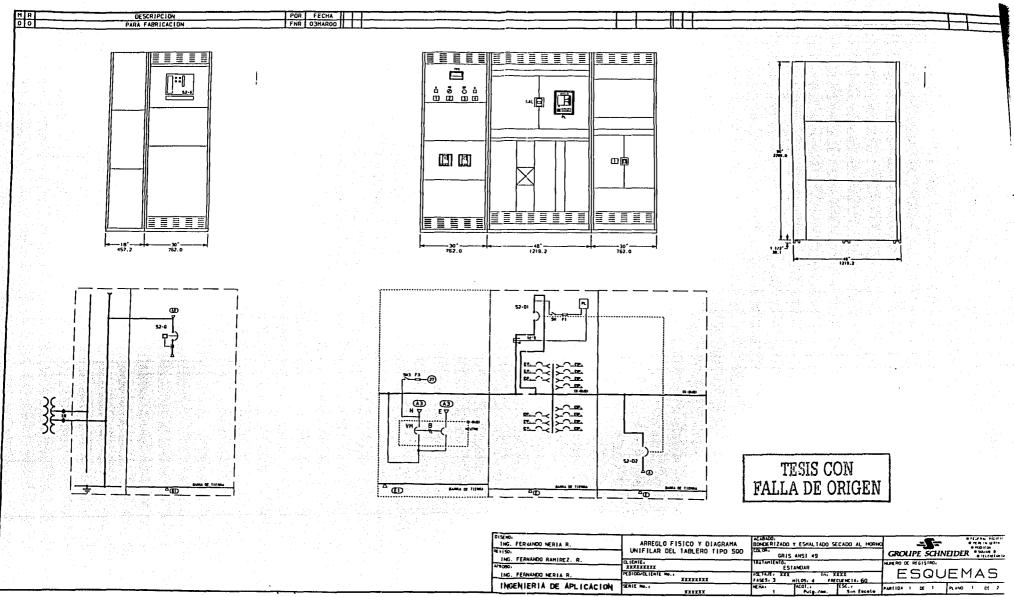

#### NCTAS GENERALES

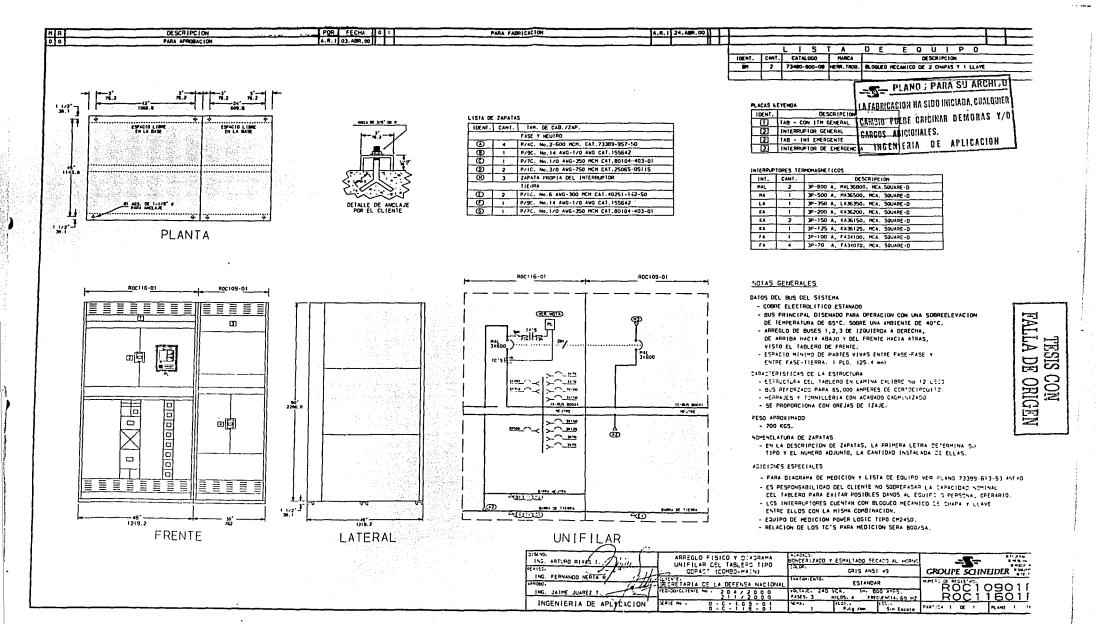

- 1 EL TABLERO ESTA CONSTRUIDO EN TAL FORMA QUE PUEDA ACOPLARSE EN SUS EXTREMOS LIBRES CON OTRAS SECCIONES DEL MISMO TIPO Y MARCA.
- X 2 LA ESTRUCTURA DEL TABLERO ESTA FABRICADA CON PERFILES DE LAMINA DE ACERO ROLADA EN FRIO, DISEÑADA PARA LOGRAR UNA ALTA RESISTENCIA HE CANICA.
- I 3 SE PROPORCIONA LIMITE DE GIRO A CADA PUERTA.
- X 4 TODAS LAS PARTES MECANICAS NO PORTADORAS DE CORRIENTE TIENEN CONTINUIDAD ELECTRICA A TIERRA.
- X 5 LAS PLACAS DE LEYENDA SON DE ALUMINIO ANODIZADO, FONDO NEGRO CON LETRAS BLANCAS.
- X 6 LAS BARRAS SE PROPORCIONAN PARA CONDUCIR EN FORMA CONTINUA LA CORRIENTE INDICADA, CON UNA ELEVACION DE JEMPERATURA MAXIMA DE 65 GRADOS C. SOBRE UNA TEMPERATURA AMBIENTE DE 40 GRADOS C.
- 7 LAS BARRAS PRINCIPALES SON DE CORRE DE 1/4" x 1 1/2" (6 X 38 mm) TIFF., PARA XXX A., DE CANTOS REDONDOS. LAS CONEXIONES, UNIDRES DE BARRAS PRINCIPALES Y DERIYADAS SE PROPORCIONAN PLATEADAS, FIJADAS CON TORNILLOS.
- X 8 LAS BARRAS PRINCIPALES SON DE ALUMINIO DE 1/4" x 2.00" (6 X 51 mm) 1/F., PARA 400 A., DE CANTOS REDONDOS, LAS CONEXIONES, UNIONES DE BARRAS PRINCIPALES Y DERIVADAS SE PROPORCIONAN ESTARADAS, FIJADAS CON TURNILLOS.
- X 9.- LA SECUENCIA DE FASES ES. 1,2,3 DESDE EL FRENTE HACIA LA PARTE POSTERIOR. DE ARRIBA MACIA ABAJO, DE IZQUIERDA A DERECHA, VIENDO EL TABLERO DESDE
  - EN LA SECCION DE ACOPLAMIENTO, EL ARREGLO DEPENDE DE LA SECUENCIA DE FASES DEL TRANSFORMADOR.
- 10 SE PROPORCIONARA UMA BARRA DE TIERRA DE COERE
  DE 1/4 = 1 ' (6 = 25 == ) PARA 200 A., COLOZIÓN EN LA PARIE
  POSIENTE I MERITOR A TODA LA LONGITUD DEL TARLERO CON UMA COMECTOR DE ALLMINIO PARA CABLE CALIBRE 300 KCM, MAXIMO EN CADA EXTREMO.
- XII 1000 EL EQUIPO INDICADO EN EL ARREGLO FISICO, LLEVA SU LEYENDA DE ACUERDO A LA CLASIFICACION A.N.S.I. Y LA INDICADA ( SI ES REQUERIDA ) EN LA LISTA DE PLACAS DE LEYENDA.
- X 12 EL ACABADO DE TODAS LAS ESTRUCTURAS Y COMPONENTES DEL GABINETE RECIBEN EL SIGUIENTE TRATAMIENTO DE PREPARACION ANTES DE PINTARSE, DESENGRASE ALCALINO, ENJUAGE, FOSFATADO DE ZINC, ENJUAGE Y SELLADO ORGANICO POSTERIORMENTE SE APLICA UN RECUERIMIENTO EN POLVO CON PINTURA EPOXI-POLIESTER DEL COLOR REQUERIDO.

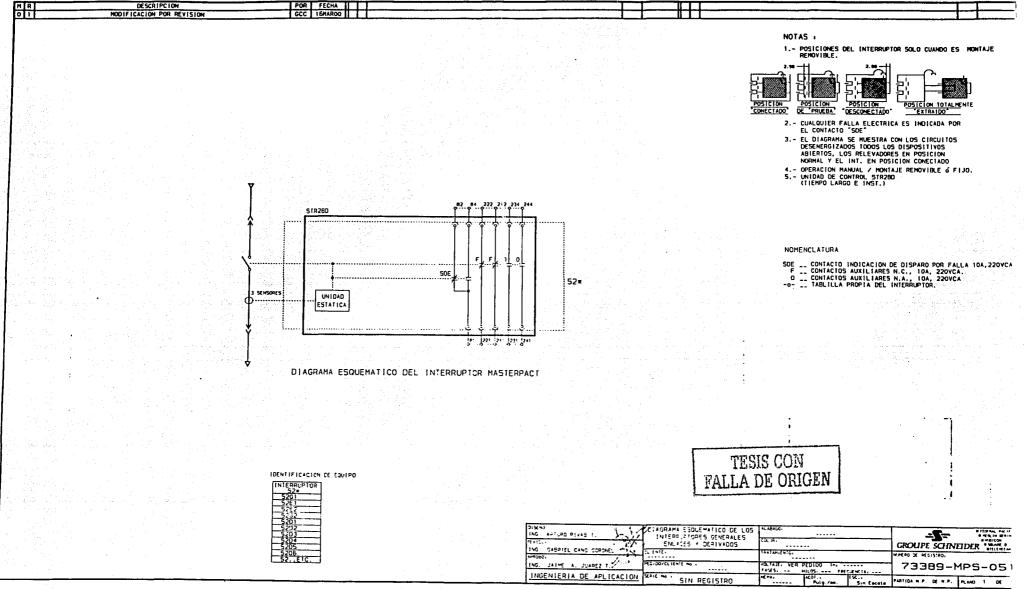

Section in the Physics . TV LYBRICACION NO SEE, Empleon ministra GHE ESTOS PLANCS, NOS SELA, LILLE . . . DEBIDAMENTE ATROPADOS. INSECTION OF APPLICATION

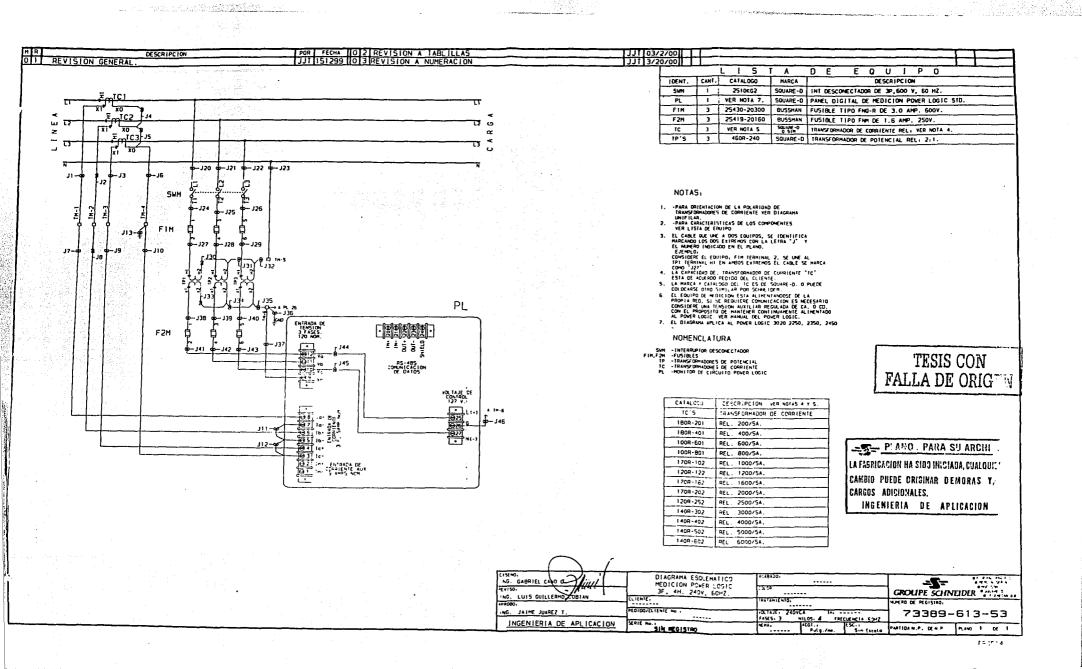

TESIS CON FALLA DE ORIGEN


|   |                                    | 1 HOIRS GENERALES I STUDGEOUTA | 25 M                                | 4 400 (CD)                  |
|---|------------------------------------|--------------------------------|-------------------------------------|-----------------------------|
|   | THE ALEXANDER SAMPLED P. 3 MAR 30  | SUBESTACION INDUSTRIAL 5-2     | GRIS ANSI 49                        | GROUPE SCHNEIDER STARTED BA |
|   | INC. HERIC STHES B. AND THE SE SE. | 067/2000                       | FASES: 3 HILDS: 3 FRECUENCIA: 60 Hz | R0B09101L                   |
| _ | 1172412                            | 08-091-01                      | Sin Sin                             | PARTIDA_1 DE 1 PEUN 2 DE 3  |














## CAPITULO QUINTO

### MEMORIA DE CÁLCULO DE LA INSTALACIÓN ELÉCTRICA

- 5.1 SISTEMAS DE DISTRIBUCIÓN
- 5.2 BAJA TENSIÓN
- 5.3 CALCULO DE LA CORRIENTE
- 5.4 FACTOR DE DEMANDA
- 5.5 CANALIZACIONES
- 5.6 CÁLCULO DE LA CAPACIDAD DE LA SUBESTACIÓN
- 5.7 PLANTA DE EMERGENCIA

La elaboración de los cálculos son resultado de la teoría expuesta en los capítulos anteriores así como de las tablas incluidas en los anexos A y B.

#### 5.1 Sistemas de distribución

La estructura en mediana tensión que se considera más apropiada para el sistema de distribución para nuestra Enfermería Convencional "Estructura en doble derivación", la cual consiste en dos alimentadores, uno preferente y otro emergente, por medio de un tablero de transferencia se hará el cambio de la carga.

La instalación de una acometida con dos alimentadores debe solicitarse a la compañía suministradora que nos corresponde en zona donde se realiza la instalación eléctrica.

#### 5.2 Baja tensión

Se eligió el sistema de distribución en baja tensión trifásico a 4 hilos porque brinda la flexibilidad de poder operar con cargas trifásicas y monofásicas. Este sistema es el más usado, debido a que ofrece una economía importante en la cantidad del material conductor que se necesita para conducir una magnitud determinada de energía, respecto a otros sistemas de distribución.

#### Características y magnitudes de las cargas

En el anexo "C" se concentran los datos de magnitudes y tipos de cargas de la enfermería convencional, las fuentes de los datos fueron:

- a. Plano de ubicación
- b. Diagramas de los proveedores
- visitas continuas a la instalación para corroborar los datos contenidos en las fuentes anteriores.



#### 5.3 Calculo de la Corriente

La corriente total que circula por los tableros y por los conductores que conectan esos tableros con un tablero subgeneral o con el tablero general en la subestación está dada por: Tratándose de un sistema trifásico a 4 hilos (3 fases – 4 hilos) que se considera 100% balanceado, en el neutro se tendrá una corriente I = 0, la corriente en cada una de las fases será:

$$I = \frac{W}{3 \text{ En } \cos \theta}$$

donde:

En: es el voltaje de fase a neutro

ó bien

$$I = \frac{W}{\sqrt{3} \text{ Ef } \cos \theta}$$

donde:

Ef: es el voltaje entre fases

W: es la potencia en watts

Como se tiene cargas de alumbrado y contactos, motores y contactos trifásicos en los mismos circuitos; se debe intervenir el factor de eficiencia N, que para estos cálculos se puede considerar una eficiencia promedio N= 0.85. Entonces la corriente nos queda:

$$I = \frac{W}{\sqrt{3} \text{ Ef } \cos \theta \text{ N}}$$

#### 5.4 Factor de Demanda

El valor de la corriente obtenida deberia corregirse aplicando el factor de demanda dado por:

Si no es posible obtener el factor de demanda por medio de la formula anterior, se pueden usar los factores de demanda recomendados por las normas técnicas para instalaciones eléctricas. Pero también las mismas normas recomiendan no aplicar factores de demanda en áreas de hospitales donde sea probable que todo el alumbrado esté encendido al mismo tiempo.

Con base en la recomendación de las normas y con el objeto de dejar sobrados de capacidad a los tableros y conductores de los circuitos derivados, previniendo futuros crecimientos, se determinó no afectar el valor de la corriente por el factor de demanda.

Del artículo 300 de la NOM-001-SEDE-1999 se mencionan métodos para conductores y tablas para la correcta selección de nuestro conductor. Por ejemplo se elige un conductor THW que tiene un aislamiento termoplástico resistente a la humedad y al calor, además de que es retardador de la flama, para una corriente de 35 amperios se elige un calibre 10 AWG.

El calibre del conductor "neutro" se elige igual al de las fases para que pueda cubrir el deseguilibrio máximo posible de carga en el circuito.

Para aprovechar al máximo la capacidad de los conductores, se escoge en un catálogo de tableros de distribución (de la marca que sea, si es posible lo más actual), un tablero con una capacidad igual o mayor a la de los conductores.

Del ejemplo anterior los conductores de calibre 10 AWG según tablas puede conducir una corriente de 40 amperios.

En el catalogo se busca uno que tenga un rango de capacidad en el interruptor principal de entre el valor nominal de capacidad de corriente de los conductores y 1.25 de esa corriente o bien que sea de mayor capacidad, pero que cuente sólo con zapatas principales para poderle conectarle un interruptor termomagnético.

Para este ejemplo el tablero que nos es útil es uno para 3 fases 4 hilos, con zapatas principales únicamente, con un marco de 100 amperios y espacio para colocar 12 interruptores termomagnéticos.

#### 5.5 Canalizaciones

Por último seleccionamos la canalización que nos servirá para alojar a los conductores.

#### 5.6 Cálculo de la capacidad de la subestación

Los datos con que contamos para hacer el calculo de la capacidad de la subestación son:

Se tiene una carga total a 220/127 voltios 372,501 watts que son de alumbrado y contactos y de 127,000 watts que son de fuerza motriz.

Como se menciono en el capitulo 2 para que un transformador este bien definido se mencionaron varios puntos para tomar en cuenta y basándonos con ellos obtenemos:

Con factor de potrencia en general para toda la instalación se considera 0.90

La potencia aparente en KVA es:

Para alumbrado y contactos es: 335.25 KVA
Para fuerza motriz es: 114.30 KVA
Carga instalada total: 449.55 KVA

Factores de corrección

Para alumbrado y contactos:

Factor de demanda de 0.65 a 0.75 (se selecciona el más grande)
Factor de diversidad de 1.25
KVAT1 = 335.25 x (0.75/1.25) = 201.2 KVA

Para fuerza motriz:

Factor de demanda de 0,90 Factor de diversidad de 1.1 KVAT2 = 114.3 x (0.9/1.1) = 93.6 KVA

Demanda máxima no resultante = 294.8 KVA

Si usamos el factor de diversidad resultante de 1.18 obtenemos:

Demanda máxima resultante de 241.8

Por lo que recomienda un transformador con las siguientes características:

- a. Capacidad de 300 KVA
- b. Tensión en alta de 13200 voltios
- c. Tensión en baja de 220/127 voltios
- d. Conexión delta / estrella
- e. Una impedancia del 5%
- f. Frecuencia de operación de 60 Hz
- g. Tipo de enfriamiento OA
- h. Elevación de temperatura 65°C

#### 5.7 Planta de emergencia

Debido a la gran importancia de la mayoría de las áreas de la Enfermería Convencional, se requiere de un sistema de planta de emergencia que respalde al 100% de carga existente. Además se requiere de circuitos especiales para las cargas más críticas, las cuales deben estar conectados a un sistema ininterrumpible de energía.

Se selecciono una planta de emergencia con las siguientes características:

- a. Capacidad de 250 KW
- b. Amperios 656
- c. Frecuencia de 60 Hz
- d. Velocidad 1800 RPM
- e. Voltaje 220

La hoja de memoria de cálculo general es el resultado de las cargas promedio que requiere nuestra enfermería convencional; así como nuestra hoja de iluminación es una muestra de los cálculos realizados para todas las áreas.

Estas hojas fueron elaboradas en EXCEL en las cuales se anexaron las formulas para la realización de los cálculos directos.

También se incluyen algunos diagramas y datos del equipo requeridos para nuestro diseño.

#### HOMA DE MEMORIA DE CALCTELO GENERAL

|     |              | CARGA          | FATTABLE | CAPDA       |       |         |                   |             |          |          |                      |               | CAIDA DE  |                  |       |             |         |          |                                                  |                | 3 1 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----|--------------|----------------|----------|-------------|-------|---------|-------------------|-------------|----------|----------|----------------------|---------------|-----------|------------------|-------|-------------|---------|----------|--------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |              | INSTALADA      | DEMANDA  | DEMANDADA   | FAMES | TENSKIN | CLAUGENTE         | CALCULADA   | E LA CUI | RIENTE I | NEL COMPACTOR        | L/Mamil       | TENSION   | SECUTION         |       | CALIFIE     | ŧξ      |          | CABLEAR                                          | Determin       | CARIA IN TENSE IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | ALIM         | w ;            | •        | *4          | l     |         | In (AMP)          |             |          | ARES DE  | COMMISSION           |               | 12.4.2.54 |                  |       | AWJak       |         |          | l                                                | 1              | FDIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |              |                |          |             |       |         |                   | KTI(AMP)    | TEMP     | AGRLT    | CLAREGIDA<br>ICLAMPO | _             |           | 8,440)           | ├     |             |         |          | 1                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1   |              |                |          |             |       |         | in = W415.4F1=033 |             | l        | l        | 1                    |               |           | s=(ZxinsL)+Eme*) | 40.48 | XCTAR       | A CVIDA | B151     | 1                                                | ļ              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - } |              | WATTS          |          | WATTS       | ø     | Votrs   | 1 1               | &t= mai 25  | п        | FA       | K2 - MFTsFA)         | MTS           | ••        |                  | let : | C) OFFICEDA | 3       | ]        | l                                                | DEPA MAG       | ~-(≥lmLnfm3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1   |              | <u> </u>       |          |             | ᆫ     | Ь       | FP+09             |             | Ц.       | <u> </u> | L                    | L             |           | En = 127 V       |       | k2          |         | ŀ        | l                                                |                | Fe - 127 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | -            |                |          |             |       |         |                   |             |          |          |                      |               |           |                  |       | ==          | =       |          | <del>                                     </del> |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| i   | CHARLED .    | 49884 (X)      | 100 00   | 49984 00    | ,     | 22n     | 10.44             | 101 23      | 100      | 0.80     | 18; 23               | éu to         | ,         | 66.72            | ,,    | 100         | ١.,     | ۱.,      | l                                                | ,,,,           | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1   | MECTILIANA ' | <b>~442 00</b> | 100 ms   | 0442.00     | ,     | 220     | 1037              | 24 21       | ı∞       | 0.90     | 24 21                | 71 00         | 2         | 11.44            |       |             |         |          |                                                  | 38.10          | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | IEFATURA     | H4) 00         | tua co   | 843 AQ      | ,     | 220     | 2 46              | 307         | 100      | 0 201    | 107                  | 50 00         | 2         | 697              | 12    | 12          | 12      | 1,2      |                                                  | 1313           | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1   | FRWAS        | 9400 QC        | 10000    | 9400 00     | ,     | 230     | 2741              | 34 26       | 100      | 0.81     | 34 26                | 57 ag         | 2         | 12 30            | ,     | ,           | ,       | ,        | i                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | TANSIA TURIO | ALLD W         | 100 00   | 4/000 00    | 3     | 220     | 11464             | 245 pm      | 100      | 2 #0     | 145 80               | <b>70 00</b>  | ,         | 64 29            | ١.    |             |         | 1:       | 1                                                |                | 200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1   | PROMINEN     | 2172400        | 100 cc   | 2122400     | ,     | 220     | 81.89             | 7736        | 100      | 0.00     | 77 %                 | 37 co         |           | 1704             | 10    | ١,,         | 10      | ١.,      | ì                                                | 1 .            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| i   | CEYE         | 1) We# 00      | 100.00   | 13969 00    | 3     | 230     | 4073              | 50 92       | 100      | 0 80     | 10 92                | 39 us         | 2         | 18 60            | ٠,    | ,           | ,       | ;        |                                                  | :              | 745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | VESTILE WES  | 21391 00       | 100 40   | 23 961 CO   | ,     | 220     | 66 22             | 81 27       | 100      | 0 80     | 85.27                | 3000          | ,         | 16 11            | ا ، ا |             |         | Ι:       | 190                                              |                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | WATER        | 1475 00        | tun an   | 1473 00     | 3     | 220     | 410               | 3 34        | 100      | 0 800    | 5.38                 | 4100          | ,         | 1 12             | 12    | 12          | l u     | ] ,      | 44,000                                           | 40.00          | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | TATWA GRAL   | 13292 00       | 190 00   | 13292 00    | ,     | 230     | 38.76             | <b>44</b> 1 | 100      | 0 80     | 441                  | 4500          | 2         | 1379             |       |             | ١:      | ١:       |                                                  | •              | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1   | UMPREBURA    | tumm co        | 100 00   | 1000m ag    | ١,    | 220     | 874               | 109 35      | 100      | 0.00     | 109.31               | >0∞           | ,         | 314              |       |             |         | 1 .      | 99.78                                            | 300            | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1   | ADONTOLOGIA  | 31540 00       | 100:00   | 3514000     | ,     | 270     | 103 a3            | 129 54      | 100      | 0.80     | 159                  | 70 GU         | ,         | 17 12            |       | 6 6         | 100     | 1.       | 14.7                                             |                | 2∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1   | AVANDERIA    | 1897 DO        | HOD WG   | 589700      | ,     | 220     | 17 20             | 21 00       | 110      | 080      | 21 49                | 25 90         | ,         | 134              |       | 1           |         |          | 14834                                            | 18-62          | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1   | YE9 /3       | 812 œ          | 100 00   | \$12 00     | 3     | 220     | 2 37              | 2 %         | 100      | 0 80     | 2 96                 | 4100          | ,         | 4.80             | 12    | 12          | 12      |          |                                                  | 10 M           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1   | LAD WATURDS  | 40746.00       | 100 00   | 40746 Ou    | ,     | 220     | 111.12            | 146 12      | 100      |          | 14112                | ****          | ,         | 2742             |       |             | 100     | 100      | Osya-                                            | 4 4            | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| i   | 41 MACENES   | 19612.00       | HOD GO   | 19112 (W    | ١, ا  | 220     | 3373              | ***         | 100      | 0 200    | # 56                 | he on         | ;         | 1100             |       |             |         |          | 1986                                             |                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1   | TAYUS TO     | 44910 00       | 100 00   | 44910:00    | ,     | 230     | 131 07            | 163 34      | 100      |          | 101 54               | 200           |           | 4129             | l :   |             | 1:      |          | l siés                                           |                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ı   | CLINE RC19   | 15120 00       | 200 DD   | 15120 Au    | 3     | 120     | 44.67             | 55 BH       | 1100     | 9.80     | 37 B4                | 47 00         | ,         | 1613             | ;     |             |         |          | 12.5                                             |                | 3 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Į   | "ASA DE NAQ  | 127000 00      | 100 00   | 127400 00   | ,     | 226     | 370 13            | 467 91      | 100      | 0 80     | 442 91               | 43.00         |           | 123 39           |       |             | } ::    | ١:       | 20 a 5 A                                         | 100 To         | 200<br>  100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100 |
| 1   |              |                |          |             |       |         |                   |             | İ        |          |                      | "             |           | ,,,,,            | ľ     |             | ľ       | •        |                                                  |                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |              |                |          |             | _     |         |                   |             | _        | _        |                      |               |           | L                | Ц     |             | ٠       | <u> </u> |                                                  | Table of Alleh | and the state of the state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | TUTAL        | 4-M*U1 00      |          | 679 (u) (m) | -     | 220     | 1636 34           | 1820 M      | ΙQŲ      | 0.00     | 1920 AN              | $\overline{}$ | 2         |                  |       | ·           |         | 10.0     | 1                                                | 200            | Page 11 a 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

TESIS CON FALLA DE ORIGEN

#### CALCULO DE ILUMINACION

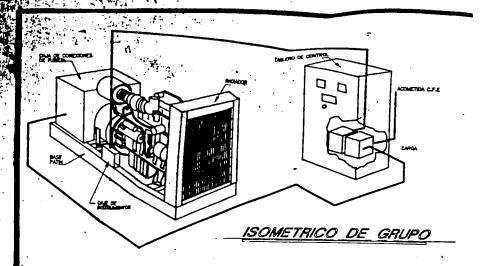
#### METODO DE LUMENES O CAVIDAD

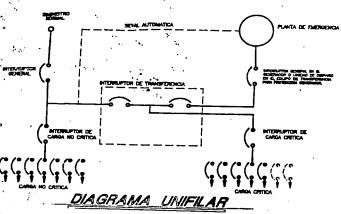
NOMBRE DEL PROYECTO:

ENFERMERIA CONVENCIONAL

NOMBRE DEL AREA A ALUMBRAR:

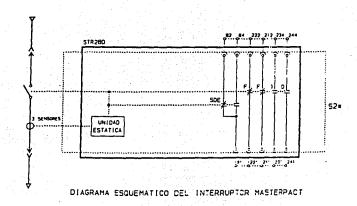
PASILLO


PROPIETARIO:


SECRETARIA DE LA DEFENSA NACIONAL

ALBERTO PEÑA M.

| PREPARADO:<br>PRESENTADO: |                                                             |           | ALBERTO PENA M.       |                                                                                 |  |  |  |  |  |
|---------------------------|-------------------------------------------------------------|-----------|-----------------------|---------------------------------------------------------------------------------|--|--|--|--|--|
| CURVAS                    | I X I3 WATTS CAMPANA                                        |           | 2 XI3 WATTS CAMPANA   | FLU-2 X 34-60 X 60                                                              |  |  |  |  |  |
| NUMERO                    | EN PLANO                                                    | 14        | 1                     | <ul> <li>त्र त्र व्यक्तकार्थः इन्द्र व प्रश्नवस्त्रात्वात् प्रत्यः ।</li> </ul> |  |  |  |  |  |
|                           | ON DEL EQUIPO DE ILUMINACIO<br>TIPO EMPOTRAR MODELO CAMPANA |           | MPARAS PL DE 13 WATTS |                                                                                 |  |  |  |  |  |
| CURVA FO                  | TOMETRICA                                                   | 2.        | 13 WATTS CAMPANA      |                                                                                 |  |  |  |  |  |
|                           |                                                             |           |                       | a status surveyan, come a composition                                           |  |  |  |  |  |
| FACTOR PC                 | OR SUCIEDAD                                                 |           | 0.95                  |                                                                                 |  |  |  |  |  |
| FACTOR DI                 | I. GABINETE                                                 |           | 0.91                  | earth at the construction of a                                                  |  |  |  |  |  |
| No DE LAN                 | PARAS POR GABINETE                                          |           | 2.00                  | A SAN AND SAN ASSESSMENT OF A                                                   |  |  |  |  |  |
| LUMENES                   | OR LUMINARIA                                                |           | 1720.00               |                                                                                 |  |  |  |  |  |
| F DE DEPR                 | ECIACION DE LA LAMP                                         |           | 0.91                  | (AL 40% DE SU VIDA MEDIA)                                                       |  |  |  |  |  |
| NIVEL DE II               | UMINACIÓN DESEADO                                           |           | 150 00                |                                                                                 |  |  |  |  |  |
| DESCRIPC                  | ON DE LA BALASTRA                                           |           |                       |                                                                                 |  |  |  |  |  |
| FACTOR DE                 | BALASTRO                                                    |           | 0.90                  |                                                                                 |  |  |  |  |  |
| WATTS POR                 | GABINETE                                                    |           | 26.00                 |                                                                                 |  |  |  |  |  |
|                           | DATOS DEL AREA                                              | A FN METR | os                    | REFLECTANCIA                                                                    |  |  |  |  |  |
| ALTURA TO                 | TAL                                                         |           | 3.00                  | REFLECTANCIA DE TECHOS 80%                                                      |  |  |  |  |  |
| ANCHO                     |                                                             |           | 2.80                  | REFLECTANCIA DE PAREDES 50%                                                     |  |  |  |  |  |
| LARGO                     |                                                             |           | 14.20                 | REFLECTANCIA DE PISOS 20%                                                       |  |  |  |  |  |
| ALTURA DE                 |                                                             |           | 3.00                  |                                                                                 |  |  |  |  |  |
| ALTURA DE                 |                                                             |           | 0.80                  | C. DE UTILIZACIÓN 0,888%                                                        |  |  |  |  |  |
|                           | TA DE MONTADO                                               |           | 2.20                  | <del></del> -                                                                   |  |  |  |  |  |
| NDICE DE C                | CUARTO                                                      |           | 1.06                  |                                                                                 |  |  |  |  |  |
|                           |                                                             |           |                       | FACTOR DE ESPACIAMIENTO                                                         |  |  |  |  |  |
| LUMINARIAS NECESARIAS     |                                                             |           | 5.0                   | HILERAS DE LUMINARIAS                                                           |  |  |  |  |  |
| LUMINARIAS A INSTALAR     |                                                             |           | 5.0                   | No. DE LUMINARIAS POR HILERA                                                    |  |  |  |  |  |
|                           | DEL AREA EN WATTS                                           |           | 130.00                | ESPACIAMIENTO FABRICANTE MTS.                                                   |  |  |  |  |  |
| WATTSA/ETRO CUADRADO      |                                                             |           | 3.27                  | ESPACIAMIENTO EN MTS.                                                           |  |  |  |  |  |
| VALUA NIET                | KO CONDINADO                                                |           | 3.27                  | AN ACCOMENTO DITITIO.                                                           |  |  |  |  |  |

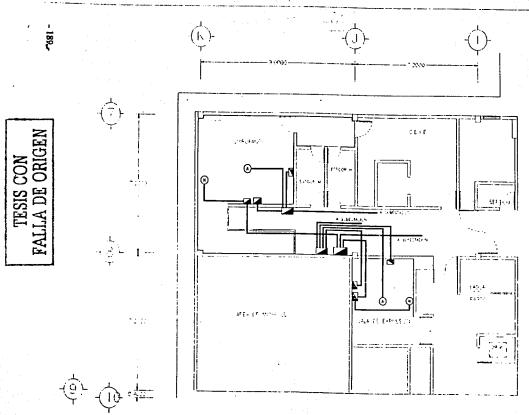

QUIA MECATIKA, PROPOSICION DE APREGLO PARA SUBESTACION ELECTRICA Y PLANTA DE EMERGENCIA ENFERMERIAS, TIPO SISTEMA DE TIERRAS (6 :/41 ) SIMBOLOGIA + 000 SUBTSTACION ELECTRICA CLAUE 25 4-- U 20 THANSFORMATION 100 644 CLASE 25 44-220-1274 J 210 .. EDINO DE TRANSFERIERA 7 20 Francia DE EMPROENCIA 250 + A 222 127+ 1.22 7-5-xerry CH-Sicu. THAT HE I WHITE HE SUBBITACION ELECTRICA 3 ?5 7-529404 (H-3004 Z 2000 43. 0 -: CASEAUA UNFIGAD CENERAL 0.0 = 2 60 <u>5</u>) TESIS CON FALLA DE ORIGEN 186





TESIS CON FALLA DE ORIGEN

| SCRIPCION POR FECHA !!        | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | 7 |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2011111111                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| ON POR REVISION GCC   15MAROO | The first of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the cont |   |




TESIS CON FALLA DE ORIGEN

#### IDENTIFICACION DE EQUIPO



| 3:840.        |            | <del>-, ,</del> | . 1c:      |
|---------------|------------|-----------------|------------|
| ING 447,40 2  | ***        |                 | <u>.</u>   |
| 2E+132+       |            | - 62            | <b>~</b> } |
| ING CASPIEL C | CANC CERCA | <u> </u>        |            |
| 4.000 ·       |            | 14. 4           | ``         |
| 140 JA145 A   |            | 7_              | PESTO      |
| INGENIERIA    |            | 10.010          |            |



INSTALACION ELECTRICA DE TABLEROS DE AISCHMENTO EMFERMERIA, TIRO.

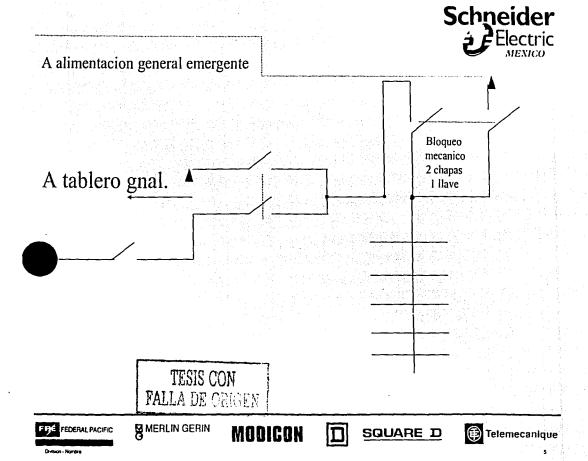
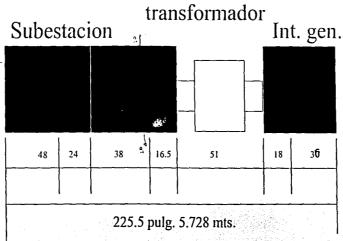


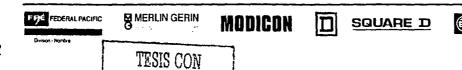



Diagrama unifilar de la subestacion transformador y tablero general.

Alimentacion normal emergente


Alimentacion normal



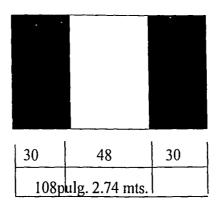





Telemecanique



Dimenciones aproximadas de la subestacion con seccion de medicion , transformador I.G.S.A y tablero con int. general.




FALLA DE ORIGEN

TESIS CON FALLA DE ORIGEN



Dimenciones aproximadas de la transferencia, tablero de distribucion y tablero con int. emergente.















# UNIDAD DE VERIFICACION DE INSTALACIONES ELECTRICAS No. 09014008-A APROBACION Y ACREDITACION DE

SECRETARIA DE ENERGIA Y SECOFI

ING. SAUL E. TREVIÑO GARCIA CED PROF 260292

#### SOLICITUD PARA VERIFICACION DE INSTALACIONES ELECTRICAS

Favor de elaborar el oficio o escrito como se describe a continuación, proporcionando todos los datos según sea el caso; así como, elaborarlo en papel membretado de la empresa o de la persona física, firmándolo el dueño, el Administrado Unico o su Representante Legal, de no ser estos, podrá firmarlo el Representante con Poder Notarial o el Representante con Poder anexando copia del escrito mediante el cual se le otorga el Poder firmado por dos testigos, por el que otorga el Poder y por quién acepta dicho Poder para efectuar la contratación de la Unidad Venficadora de Instalaciones Electricas.

Borrador del escrito dirigido a:

"Ing. Saúl Eduardo Treviño García Unidad de Verificación de Instalaciones Eléctricas y de Sistemas de Alumbrado No. 09014008A, Patriotismo 682-704, Col. San Juan, C. P. 03730, Benito Juárez, México, D. F.

En cumplimiento al artículo 28 de la Ley del Servicio Público de Energía Eléctrica y de su Reglamento en vigor, le solicita a usted lleve a cabo la verificación de la instalación eléctrica localizada como se menciona a continuación:

| 1. Nombre de la persona moral, física o     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| asociación solicitante.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2. Giro y Registro Federal de               | (1984년 <sup>6</sup> 1984년 1882년 - 1984년 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Contribuyentes.                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3. Domicilio (Calle, número exterior e      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| interior y entre que calles).               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4. Colonia, Barrio, Zona o                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fraccionamiento.                            | 하는 아이 아름다 하는 물 수 보면 자동을 가는 것 같아.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5. Municipio, Delegación Política o Sector. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6. No. de Código Postal.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7. Ciudad o Población.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8. Estado.                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9. Anexar Croquis de la localización.       | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |

PATRIOTISMO 682-764 / COL. SAN JUAN / CODIGO POSTAL 03730 / DELEG. B. JUAREZ / TEL FAX S611-3774 / MEXICO. D. F. RADIO LOCALIZADOR: SKY 91 800 72345 D.F. 5227 7979 GUAD. 669 0579 MTY 319 0779 PIN 5488554

#### UNIDAD DE VERIFICACION DE INSTALACIONES ELECTRICAS No. 09014008-A APROBACION Y ACREDITACION DE SECRETARIA DE ENERGIA Y SECOFI

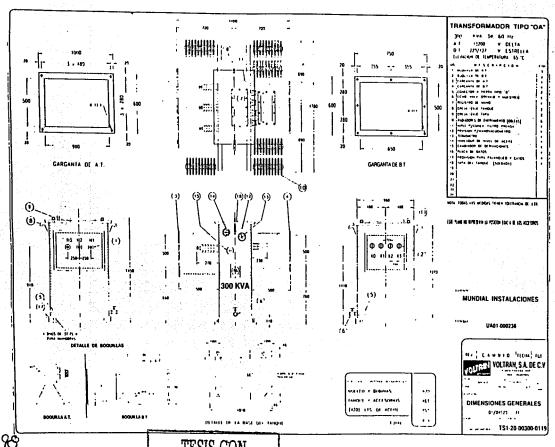
ING. SAUL E. TREVIÑO GARCIA CED: PROF. 260292

| ~ | 17 |
|---|----|
| , | ,, |
|   |    |

| 10. Nombre, dirección y teléfonos del                                                                                                                                                                                                                                      |                                                                                                     |                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| contratista que ejecutó la obra<br>eléctrica y costo de la misma                                                                                                                                                                                                           |                                                                                                     | * * * * * * * * * * * * * * * * * * * *                                     |
| 11. Nombre, domicilio y teléfonos del                                                                                                                                                                                                                                      |                                                                                                     |                                                                             |
| proyectista que hizo el proyecto eléctrico y las memorias descriptivas                                                                                                                                                                                                     |                                                                                                     |                                                                             |
| técnicas y de cálculos de las                                                                                                                                                                                                                                              | · · · · · · · · · · · · · · · · · · ·                                                               |                                                                             |
| instalaciones eléctricas.                                                                                                                                                                                                                                                  |                                                                                                     |                                                                             |
| fases, Volts., 60 ciclos a través dabierta compacta o pede subterránea interior intemp transformador(es) que suman K.V.                                                                                                                                                    | estal ubicada<br>erie de nuestra                                                                    | en azotea                                                                   |
| Anexo al presente planos en alta t<br>como las memorias descriptivas y técnicas<br>las que se aplicaron los requerimientos señ<br>Oficiales vigentes sobre instalaciones eléc<br>respuesta proporcionada por la Cía. Sumir<br>y F.) sobre la acometida y la carga a contra | de cálculo de las inst<br>alados en las disposic<br>tricas, le adjunto tam<br>iistradora de Energía | alaciones eléctricas en<br>iones y en las Normas<br>ibién la Solicitud y la |
| También le comunico que fue aceptado s  S (importe en letra), por lo el resto con la terminación de la verificac  Cumplimiento de Instalación Eléctrica y verificación de ser aprobada.                                                                                    | o que se le liquidará e<br>ción y la presentación                                                   | l 50% de inmediato y<br>de la Constancia de                                 |
| Atentamente.                                                                                                                                                                                                                                                               |                                                                                                     |                                                                             |

(Nombre completo y firma del dueño, Apoderado Legal, Administrador Unico o que tenga el poder notarial de la empresa)".

PATRIOTISMO 682-764 / COL. SAN JUAN / CODIGO POSTAL 03730 / DELEG. B. JUAREZ /TEL-FAX 5611-3774 /MEXICO, D. F. RADIO LOCALIZADOR: SKY 91 800 72345 D.F. 5227 7979 GUAD. 669 0579 MTY 319 0779 PIN 5488554


# TESIS CON ALLA DE ORIGEN

# (Till Julia Arth 1054, 5.11. Of C.V.

GAC-PL-F020

|                               |                               |                             | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |
|-------------------------------|-------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LIENTE: Porting of Josephines | €5 0.T.No:14 <u>0513 Cl</u> T | IPO: FOL BORE VOLTAIE: 27   | d FECHA:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| NP: 250 KW. AMPS: USG         | FREC: (C) Hz. VELOCIDAD       | HECO RPH REGULADOR D        | E VOLTAJE MARCA: VA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TOR MARCA: COMMENT            | HODELO: L17,- (0/4)           | No DE SERIE: Nacs           | ETSE RADIADOR: ( A )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ENERADOR HARCA: WILG          | МОDELO: <u>75€ и 1 - 7</u>    | No DE SERIE:                | मन्द्र 👚 📧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ABLERO: Augmentic             | GERCON: 1                     | CAPACIDAD:                  | No DE SERIE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                               |                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               |                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ERIFICACIONES PRELIMINARES.   | -ACOPLAMIENTO HOTOR GENERADO  | OR: ICVVICE PADIADOR        | SOPORTES: Bird                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BSERVACIONES:                 | AFULLYNON: 457 Chia uvun      | CS: 13(5) GUARDA: Parts     | SOLOKIES: Bita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                               | RY TO AND ALL PANEL INSTRU    | MENTOS AMPERMETRO . DIAL MA | NOMETRO PRESION DE ACEITE: P.E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TERMOSTATO D                  | E PRECALENTATION: A GO IN     | DICADOR DE TEMPERATURA: P   | PRESEOSTATO: (CP)(CO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MANGUERAS: P.                 | ALTERNATIOR: 2-10(1)          | OTROS ADITAMENTOS:          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DBSERVACIONES:                |                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ALAHBRADO MAQUINAAPARIENCI    | A: Buth INSTALACION: CC       | CONEXIONES: Page            | SOLENOIDE: 7-turn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MARCILA: 2                    | AUCD SWITCH DE ARRAN          | QUE: IND. TEMPERAT          | URA: Valas PRESEOSTATO: PALES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                               |                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TABLERO: APARIENCIA: Poton    | CONEXIONES: Pay TIER          | RAS: Rus) BUSI              | ES DE CARGA:  5: V. Aprilia Der A. Aprilia Der Der Hoddlo De Relevadures: 14 oct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| INSTRUMENTOS: VOLTE           | IETRO: C CO AMPERMETRO:       | C - ICO CONMUTADORES        | St V. A. concept A. ch. con ibet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| HORON                         | IETRO: FOI (ITALIEN GENCON:   | T GENCON RSP: -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FUSIBLES: ZIA 750V            | TRANSFUPMADOR:                | TPANSFORMADOR T.A: P.       | MODULO DE RELEVADORES: 14 ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CARGADOR DE BATERIA           | 5: 24 WID TIPO: 7064          | BASE Y RELEVADOR:           | RELOJ PROGRAMADOR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TRANSFERENCIA: ILT            | TERMONIANCE FITTOL            | CAPACIDAD: FOO:             | AMPS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| OTROS ADITAMENTOS:            | Senice of portine 34          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OBSERVACIONES:                |                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               |                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               |                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CHEQUEO PRELIMINAR APARIEN    | CIA: PACHIE NIVEL DE ACE      | ITE: Pages NIVEL DE AGUA:   | CAS DIESEL: OVERTIGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BATERIA                       | S: 7-(U(I) CX'S GENERAL       | OR: 44 INTERRUPTOR EN       | GENERADOR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                               | DE VELOCIDAD: COMUNA          | TUBOS DE ESCAPE: Port       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OBSERVACIONES:                |                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WKWWDOR: Cattifue             | AJUSTES: VELOCIDAD: 1400      | RPM. FRECUENCIA: (4)        | Hz. FUCAS: AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ORERNIA CROWDS.               | REMANENCIA DEL GI             | ENERADOR: LOUIA GENE        | RACION: 7/Gutrl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OBSERVACIONES:                |                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               | NEXIONES: Bico PROGRAMA       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FU                            | NCIONAMIENTO DE: V: BICH      | A: PHE COMULADORES: V: I    | Sign A: Price                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 0                           | NTROL DE VELOCIDAD: BIO       | GOBERNATION TIPO: NOT       | NATUCE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TR                            | ANSFERENCIA: BIE              |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OBSERVACIONES:                |                               |                             | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                               |                               |                             | Real 9 TIVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                               |                               |                             | U 9 1 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                               | O Y                           | 11/1                        | it de en l'illantine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ADOLTO SINKEZ G.              | SERGIO STHANEK M.             | ING. SALVADOR LOPEZ G.      | LIBOOK STOR THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               |                               |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Marita.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |         | •                                             |        |         |          |            |             |              |                |               |                 |               | · · · <u>· · ·</u> |                |                 |          |                     |                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|-----------------------------------------------|--------|---------|----------|------------|-------------|--------------|----------------|---------------|-----------------|---------------|--------------------|----------------|-----------------|----------|---------------------|----------------------------------------------|
| PRUEBAS D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E BLOQUE        | O ARR   | ANQUE EN                                      | AUTOH  | ATICO   | HAST     | A TOH      | R LA        | CARGA        | A LO           | S: 1G         |                 | SECUN         | pos,               | DESPU          | ES DE           | TAL      | LA C.               | .J.E.                                        |
| in GRAD in the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the s |                 | FUN     | CIONAMIE<br>RANSFERE                          | NTO DE | T EON   | iro:_    | (0)        | 173311      | <del>.</del> | н              | NULTOS        | TMANUC<br>DESEC | E:            | 2.45               |                | Ā               |          | MIN                 | uros.                                        |
| Att Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |         |                                               |        |         |          |            |             |              |                |               |                 |               | -                  | 11.7           | 5 1 W.          | 电影(2)    |                     |                                              |
| BI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oqueo ro        | OR: BA  | IA PRESIC<br>TA TEMPER<br>BRE VELOC           | N DE / | CEITE   | :_0      | COLEC!     | C           | CALIB        | RADO A         |               | 77              | LBS           | 5/IN.              | OPERA          | CION            | ELE      | TRIC                | A: <u>S,</u>                                 |
| 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | AL.     | TA TIMPER                                     | ATURA  | 1922    | FCIC     | CALI       | BRADO       | ^            | ₹ <b>7</b> C∵- | °Ę.           | OPER            | VCION         | ELEC               | TRICA          | ·:              | 3 1 Q 2  | 8.0873\c            |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 1 4     | BCO TIFMI                                     | יח ווד | AHPAND  | 111F + 4 | PA         | T \$ 22 / P | IAI          | NUE            | 15.80 02      | . INTE          | NIUS:         | - 1                | 30             |                 |          | J                   |                                              |
| . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | TI      | EMPO DE I                                     | ENGRAN | AJE:    | r., _    |            | 1           | THE          | DE E           | SPERA E       | NTRE            | INTEN         | TOS:               | <u>_5</u>      |                 | SEC.     |                     |                                              |
| ١                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | BA      | JA VELOC                                      | IDAD:  | BIEN_   |          | <u>'</u> . | ., =_:      |              | A LO           | <u>در::ک</u>  |                 | HE.           | 16                 | 250            | — <sup>KP</sup> | н.       |                     |                                              |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | PO      | EMPO DE I<br>JA VELOC<br>BRE CORR<br>IR FALLA | EN EL  | VOLTA   | JE DE    | L GENI     | RADO        | R: FUI       | CIONA          | CLLE          | 10              | NO            | TUNC               | IONA_          |                 |          | 大學                  |                                              |
| OBSERVAÇ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LONES:          |         |                                               |        |         |          |            |             |              |                |               |                 | =             |                    |                | _               |          |                     | ==                                           |
| PRUEBAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DE CARGA        |         | ASHU_                                         | 7.     | ნდე.    |          |            |             |              | 4 DE PE        | DIDA PO       | ALTUR           | ٠             |                    |                |                 | 11.00    | 4.47.31             |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •               | PRESION | 1f MP                                         | co     | RRIENTE |          | v          | OLTAJE      |              |                |               | $\neg \neg$     | $\neg \neg$   | T                  | 1              |                 |          |                     |                                              |
| TIEMPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CARGA           | ACEITE  | AGUA                                          | AI     | A2      | A)       | V1-2       | V2 3        | V3 1         | Hz             | KW            |                 |               | 1                  | 1              | 1               | 1        | 0851                | ERVACION                                     |
| 14.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -               | 5 B     | 150°F                                         | -      |         |          | 221        | 221         | 221          | 10.2           |               | -               |               |                    | $\neg$         |                 | Ţ.       | 177                 | া নির                                        |
| 15:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | 56      | 160 F                                         |        | 147     |          |            |             |              |                |               | 0               |               | $\neg \neg$        |                | 1               | $\top$   |                     | <u>.                                    </u> |
| 15:02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | 48      | 165 F                                         |        |         |          |            |             |              |                |               |                 | -  -          | _                  | -1-            | -               | 1        | -   - ;             |                                              |
| 15.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1               | 45      | 1997                                          |        |         |          |            |             |              |                |               |                 | -             | -  -               | _ _            |                 | -        | -                   |                                              |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b></b>         | 1       | 2004                                          |        | 614     |          |            |             |              |                |               | -7              |               |                    | - -            |                 | - -      | -                   |                                              |
| 15.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,               | 40      | 192 F                                         |        |         |          |            |             |              |                |               |                 |               |                    |                |                 | +        |                     |                                              |
| 15:75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | 40      | 192 F                                         |        |         |          |            |             |              |                |               |                 |               |                    |                | - -             | - -      |                     |                                              |
| 12./3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | 76      | 1967                                          | -163.  | 1000    | 104      | -15/4.     | 5/2/0       | 1-10-        | Y 00 .         | ELTE          | -1              |               | <del></del> }-     |                |                 | - -      |                     | Barra S<br>Rojek Sasa                        |
| · \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del>- </del> - | -}      |                                               |        |         | ·\       | -}         | -\          |              |                |               |                 |               | }-                 |                |                 |          |                     | 345 N 35<br>W                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |         | -\                                            |        | -\      |          |            | -}          | -\-          | \              | \             |                 | <del>  </del> | }                  | <del> </del> - |                 | $\dashv$ |                     |                                              |
| <b> </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |         |                                               | _\     | -\      |          | _}         | -\          | _\           | _ }            | -\            |                 | 1             |                    |                |                 |          |                     |                                              |
| \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |         | _                                             | _      |         |          |            |             | _\_          | _\_            | _\_/_         |                 |               |                    |                |                 | \        |                     | 1 1                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |         |                                               |        |         |          |            | _ــــ       |              | دلد            | _1/_          | 1               | 1             |                    |                |                 |          |                     | 10                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |         |                                               |        |         |          |            | Π.          |              | 1              | $\mathcal{M}$ | /               | 1             |                    |                | . 1             | 1        | 1/1                 | à.                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1               |         |                                               |        | 10      |          |            | $\neg$      |              | 11.            | XXX           |                 | -             |                    | 17             |                 |          | 14                  | - 1                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |         |                                               | 1      | -1-4    | #        | _ _        | _           | - -          | 717            | //\X\         | ĺ               | -1            | 1                  | te             | 17:             | 39       | 7                   |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40040           | HUAREZ  | <u> </u>                                      |        | ERCID   | V/HA     | IEK H      |             |              | DIC K          | (L.VADOF      | LOPE            | 7 C           |                    | , , , ,        |                 | -        | المسلمان<br>المارية | <del>,,,,,</del> ,,                          |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | الما يا بولده   | 100000  |                                               |        |         | e cove   | 11,1, 11,  |             |              |                | 1 (1.()       | 1.04 (          | . 19.         | •                  | . '            | <b>'</b> ;      |          |                     |                                              |



# ANEXO "A"

# PROPIEDADES COMPARATIVAS DE AISLAMIENTO

| CARACTTRISTICAS                                      | IN LE BY TILO | FOLIETRENO<br>CLAMBITEMADO<br>(IN PALIM) | ETH END<br>PROPILEYO (E.P.) | PULICIARIPHENO<br>(NEOPRENC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | POLICIMETRO DE<br>VENILO (P.V.C.)             | POLICTILENO (P.E.) | KLF) POLITICSO POLITICSO |
|------------------------------------------------------|---------------|------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------|--------------------------|
| Rountwelad Ohms cm<br>Reguler delectrics KV/mm (c.a. | 1 066.+14     | 1.QUE+15                                 | 10e15 - 10e17               | 1.00E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |                    | 10e15 - 10e17            |
| Fire Rapide)<br>Regidez dichectrica KV tunto         | 16.00         | (                                        | 18 00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.00                                         | 20.00              | 20.00                    |
| (grapulers)                                          | 47.00         | [                                        | 54 00                       | 48 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 47.00                                         | 60 00              | 60.00                    |
| Constante deléctrica (S.I.C.) #<br>60 Hz. y 75° C    | 3 90          | 2.00                                     | 2.70                        | 9 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 50                                          | 2.50               | 2.50                     |
| Facator de presencia % a 60 Hz y                     | 1 50          | 3 00                                     | 0.05                        | 3 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 00                                          | 0 05               | 0.03                     |
| Resessorum a la tracción Kg/cm2                      | 123-2(1       | 175.00                                   | 35.00                       | 211-263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.00                                        | 120-170            |                          |
| Economica S                                          | 4CU-800       | 200.00                                   | 200-400                     | 800-900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 500.00                                        | 375-300            | 400-400                  |
| Demented                                             | 0.91          | 1.12-1.20                                | 120                         | 1.23-1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 21                                          | 0 93-0 95          | 492                      |
| Temperatura de Braphdad °C                           | -60 DD        | e0.00                                    | -70 00                      | -55 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -55.00                                        | -€0.00             | -90.00                   |
| Atazana temperatura de servicas                      | 105 00        | 150.00                                   | 90.00                       | 90 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60-75-90-105                                  | 90.00              | 90.00                    |
| Romatonicas A.                                       | . 1           | 1                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | 1                  | \$1200 M                 |
| 1                                                    | 9 · E         | E                                        | в.                          | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               | E                  | B                        |
| Ozono<br>Drogama                                     | E             | E                                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | E i                | •                        |
|                                                      |               | B                                        | 1 Televisia (1844)          | ル 音切り 2 年頃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BM<br>E                                       | B                  |                          |
|                                                      |               | E - B                                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.4 Year (1)                                  |                    | P-R                      |
|                                                      |               |                                          | CANTON AM                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>- 14 14 14 14 14 14 14 14 14 14 14 14 14 | 海狸等                | R Saleston               |
| Azadon concentrados                                  | E             | ма ј                                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P                                             |                    | <b>K</b> 40 30           |
| hairocartherus alclinans                             | P             | B [1                                     | •                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | R                  |                          |
| helrovarburus aromáticos                             | P             | R ≱ [I                                   |                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                             | • 4846             |                          |
| hydrocarturench washed                               | P             |                                          | A Zantine Line              | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.5                                           | .                  | B                        |
|                                                      | <u> </u>      | B 1                                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                    | B SECULIAR SECULIAR      |
| F                                                    |               | 160                                      | 2. 上海水。(2)                  | · 14 30 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               | W. S. W. W. L. T.  |                          |
| 1                                                    |               |                                          | 11.4                        | 1 Mark 51 1871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                               | - Carlotte (1997)  |                          |
| Earweyecameuroso por:                                |               | + 33/4 Car 5/6/2                         | 364845430                   | 8.1589/4#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GREEN SAL                                     | d1.048363+         | Walandayiyan i           |
| Temperatura (100° C)                                 |               |                                          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                    |                          |
| Flores I                                             | •             | , j                                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -       |                    |                          |
| Alexan I                                             | 4 1           | of the second                            | an 1                        | A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA | A RESERVE                                     | 3                  |                          |

E. Escelonia, MR. May Buons, B. Bunns, R. Remilie, P. Polys, M. Malo



# ESPECIFICACIONES PARA ALAMBRE DESNUDO DURO, SEMI-DURO Y SUAVE

|                  | DIAME     |          | SECCION   | BSAL      | 1       | DURO                                              |                                                       | SEMI - DUR                                            | 0                                                      | SUAVE                                            |                                                        |
|------------------|-----------|----------|-----------|-----------|---------|---------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|
| CALIBRE<br>A W G | NOMIN     | Dul 98   | mm1       | CIRCULAR. | PESO EN | RESISTENCIA<br>EN OHMS<br>POR KM A<br>20°C Y C C. | CARGADE<br>RUPTURA A<br>LA TENSION<br>EN KG<br>MINIMA | RESISTENCIA<br>MAXIMA<br>DHMS POR<br>KM. 20°C<br>Y CC | CARGA DE<br>RUPTURA A<br>LA TENSION<br>EN KG<br>MINIMA | RESISTENCIA<br>EN OHMS<br>POR KM A<br>20°C Y CC. | CARGA DE<br>RUPTURA A<br>LA TENSION<br>EN KG<br>MINIMA |
|                  |           |          |           |           | 953.0   | 0.16657                                           | 3693 665                                              | 0.16467                                               | 3166 128                                               | 0 16080                                          | 2713 688                                               |
| 4/0              | 11 684    | 4600     | 101.50    | 211 600   | 756.0   | 0 20670                                           | 3049 099                                              | 0.20765                                               | 2570 551                                               | D 20276                                          | 2152 237                                               |
| 1/0              | 10 404    | 4096     | 85 03     | 167 83C   | 599.0   | 0 26317                                           | 2503 418                                              | 0.36182                                               | 2088 108                                               | 0 25568                                          | 1706 897                                               |
| 3/0              | 9 266     | 3648     | 6743      | 1137 100  | 475.0   | 0 33171                                           | 2048 911                                              | 0.33006                                               | 1691 928                                               | 0 32242                                          | 1353 542                                               |
| 1.0              | 8 251     | 3249     | 53 48     | 105 53G   | 177.0   | 0 42292                                           | 1672 876                                              | 0 42062                                               | 1371 686                                               | 0 40551                                          | 1103 155                                               |
| 1                | ? 348     | 2893     | 4241      | 83 6 ÷C   | 377 0   | 0.42292                                           | 1872 878                                              |                                                       |                                                        |                                                  | 874 994                                                |
|                  | 1         |          | 13 63     | 66 370    | 299.0   | 0 5 3 3 1 6                                       | 1352 160                                              | 0 53053                                               | 1111 320                                               | 0.51282                                          | 694 006                                                |
| 2                | 6 544     | 2576     | 27 67     | 52 545    | 237 1   | 0.67227                                           | 1106 330                                              | 0 66866                                               | 899 942                                                | 0 6463%                                          |                                                        |
| 3                | 5 827     | 2294     |           | 41 740    | 38.0    | 0.64781                                           | 893 597                                               | 0.84321                                               | 718 502                                                | 081532                                           | 550 216                                                |
| 4                | 5 189     | 2043     | 21.15     | 33 100    | 1190    | 1 0689                                            | 721 677                                               | 1 0633                                                | 573 350                                                | 1 0279                                           | 436 317                                                |
| 5                | 4 621     | 1819     | 16 ? ?    |           | 118.0   | 1 34 18                                           | 580 608                                               | 1 3409                                                | 458 136                                                | 1 2963                                           | 346 051                                                |
| 6                | 4 115     | 1620     | 1330      | 26 250    | 1 0     | 1                                                 | 1                                                     | 1                                                     |                                                        | 1 5345                                           | 274 428                                                |
| ,                | 3 565     | 1443     | 1055      | 20 920    | 93 8    | 1 6998                                            | 457 706                                               | 1 59 10                                               | 365 873                                                | 20611                                            | 217 637                                                |
| •                | 3 264     | 1295     | 8 366     | 16 5 7    | 76.4    | 2 14 34                                           | 374 673                                               | 2 1323                                                | 292 073                                                |                                                  | 172 595                                                |
|                  |           | 1 22     | 6634      | 13.090    | 500     | 2 7028                                            | 799 920                                               | 2 6887                                                | 233 241                                                | 2 5988                                           | 139 430                                                |
| 9                | 2 906     |          | 5 261     | 10 380    | 46.8    | 3 4089                                            | 240 045                                               | 3 3892                                                | 186 157                                                | 3 2773                                           |                                                        |
| 10               | 2 588     | 1019     |           | 8 2 3 4   | 37.1    | 4 2981                                            | 191 827                                               | 4 2751                                                | 148 599                                                | 4 1340                                           | 112 496                                                |
| 11               | 2 305     | 09074    | 4 172     | 0 22-     | ] ""    |                                                   |                                                       |                                                       |                                                        | 5 2102                                           | 89 586                                                 |
| 12               | 2 053     | 0.08081  | 1 309     | 6 5 30    | 29 4    | 5 4202                                            | 152 863                                               | 5 3906                                                | 118 661                                                | 6 5718                                           | 71 033                                                 |
| 13               | 1 828     | 07196    | 2 624     | 5178      | 23.3    | 6 8343                                            | 121 565                                               | 6 7982                                                | 94 711                                                 | B 2845                                           | 56 337                                                 |
|                  | 1 628     | 06408    | 2081      | 4 107     | 18.5    | 8 6159                                            | 96 844                                                | 8 5732                                                | 75 569                                                 | 10 4467                                          | 44 670                                                 |
| 14               | 1 450     | 05707    | 1 650     | 3 257     | 14.7    | 10 8666                                           | 11021                                                 | 8018 01                                               | 60 328                                                 | 13 1764                                          | 35 428                                                 |
| 15               |           |          | 1309      | 2 583     | 116     | 13 7014                                           | 61 261                                                | 13 6292                                               | 48 172                                                 | 131/64                                           | 33740                                                  |
| 16               | 1 291     | 05082    | , ,,,,,,, | . ~       |         | ļ.                                                |                                                       | 17 1891                                               | 38 424                                                 | 16 6149                                          | 28 091                                                 |
| 17               | 1 150     | 04526    | 1038      | 2 04E     | 9 23    | 17 2777                                           | 48 762                                                |                                                       | 30 667                                                 | 20 9491                                          | 22 780                                                 |
| 18               | 1 024     | 04030    | 0.8231    | 1674      | 7 32    | 21 7858                                           | 38 769                                                | 21 6742                                               | 24 253                                                 | 26 4153                                          | 17 667                                                 |
| 19               | 09116     | 03589    | 0 6527    | 1 286     | 5 80    | 27 4718                                           | 30 840                                                | 27.3307                                               | 19 271                                                 | 33 3021                                          | 14 011                                                 |
| 20               | 08118     | 03196    | 05176     | 1022      | 4 60    | 34 6473                                           | 24 530                                                | 34 4505                                               |                                                        | 41 9968                                          | 11 1132                                                |
| 21               | 0 7 2 2 9 | 02846    | 0.4105    | 8101      | 3.65    | 43 6701                                           | 19 4365                                               | 47 4404                                               | 15 2748                                                | 41 9900                                          |                                                        |
| 41               | 0,20      | 1 5.00   |           | 1         | 1       |                                                   | 15 5403                                               | 54 7926                                               | 12 1769                                                | 52 9553                                          | 8 8134                                                 |
| 22               | 0 6438    | 02535    | 0 3255    | 6424      | 2,89    | 55 0879<br>69 4587                                | 12 3401                                               | 89 0978                                               | 9 865                                                  | 66 8011                                          | 6 9699                                                 |
| 23               | 0 5733    | 02257    | 0.2582    | 509 5     | 2.30    |                                                   | 9 8795                                                | 87 1433                                               | 1 7928                                                 | 84 2232                                          | 5 7561                                                 |
| 24               | 0 5106    | 02010    | 0.2047    | 404.0     | 1 82    | 87 5698                                           | 7 8291                                                | 109 8806                                              | 6 1984                                                 | 106 2059                                         | 4 5677                                                 |
| 25               | 0.4547    | 01790    | 01624     | 3204      | 1,44    | 110 4384                                          | 62279                                                 | 136 5238                                              | 4 9244                                                 | 133 8956                                         | 3 6210                                                 |
| 26               | 0.4049    | 01594    | 01288     | 714.1     | 114     | 139 2456                                          | 0 22.79                                               | 130 3636                                              |                                                        |                                                  |                                                        |
|                  |           | 1        | 1         | 1015      | 0.906   | 175 5091                                          | 4 9533                                                | 174 6804                                              | 3 9125                                                 | 168 8730                                         | 2 8718                                                 |
| 27               | 0 3606    | 01420    | 0 1021    |           | 0 720   | 221 4347                                          | 3 9454                                                | 220 2863                                              | 3 1115 .                                               | 212 9369                                         | 2 2775                                                 |
| 28               | 0 2711    | 01264    | 0.08098   | 159 8     | 0 571   | 279 2131                                          | 3 1380                                                | 277 7894                                              | 2 4718                                                 | 268 5170                                         | 1 8057                                                 |
| 29               | 0 2259    | 01125    | 0.06422   | 1.4.7     | 0 453   | 352 0513                                          | 2.4957                                                | 350 4108                                              | 1 9639                                                 | 338 5997                                         | 1 4320                                                 |
| 20               | 0.2546    | 01024    | 0.05093   | 100 5     |         | 443 9193                                          | 1949                                                  | 441 6226                                              | 1 5804                                                 | 426 8581                                         | 11358                                                  |
| 31               | 0 2268    | 0089.7H  | 0.04039   | 75.70     | 0.359   | 1 5 193                                           |                                                       | 1                                                     | 1                                                      | 538 4121                                         | 0.9009                                                 |
|                  |           | (M1791K) | 0.03203   | 62.21     | 0 235   | 1/59 / 3/16                                       | 15:07                                                 | 557 1138                                              | 1 2407                                                 | 6/8 8389                                         | 0 71442                                                |
| 32               | 0 2019    |          | 00.540    | 16 13     | 02:6    | /06 0/17                                          | 1.5737                                                | 102 4621                                              | 0.88,74                                                |                                                  | 0 56654                                                |
| 33               | 0 1798    | 007060   |           | F 15      | 01/1    | H20 1.15.1                                        | 0.5413                                                | KH5 5418                                              | 0.78311                                                | 10/9 4490                                        |                                                        |
| 34               | 0 1601    | 006,005  | 00.2014   | و. جر     | 1 3     | 1                                                 | (                                                     | 1                                                     | ì                                                      | •                                                |                                                        |



# CONSTRUCCIONES PREFERENTES Y DIAMETROS EXTERIORES NOMINALES DE LOS CABLES DE COBRE CON CABLEADO CONCENTRICO

| H   | ''ğ        | į į''       | ı.   | · E ' | 6     | á   | ''1 | E8 . | ĭ'         | ii  | . <b>§</b> ,                                 | ž 1  | iii | · 3 |     | *** | • • 1 | 668 |                | y .          |     | 73       | •••        | ::       | :   |            | :     | '. <b>:</b> '' | ;· =·    | · • [ • |              |
|-----|------------|-------------|------|-------|-------|-----|-----|------|------------|-----|----------------------------------------------|------|-----|-----|-----|-----|-------|-----|----------------|--------------|-----|----------|------------|----------|-----|------------|-------|----------------|----------|---------|--------------|
| ١٠٠ | 11.        | ' 'Ja       | . Ę  | ã ê   | . 81  | . 5 | äŝ  |      | . 6        | ••  | 1.1                                          | . 1. | ••• | \$' | · x |     | * =   |     |                | •            |     |          |            | . :      | •   | -          | ٤٠.   |                |          | •       | ē.           |
| İİ  | 110        | 111         | : !  | EEE   | 82    | ij  | 2.0 | 12.3 | į          | ij. | 110                                          | 1    | 11  | ir  | : : | ::: | 1 5   | 111 | : :::          | ī ij         |     | ::       | ;; ;       | 71       |     |            | :::   | i II j         | i        | ij      | TABLE VENTER |
| • • | • • • •    |             | • •  | 4     | . 41  | . = | 45. |      | • =        | ••• | E' E                                         | . 2. |     | •   | •   | ••  |       | ٠.  | w <sup>1</sup> | •            | -'  | • • •    |            |          |     |            |       | • • • •        |          | 1       | 1            |
| ņ   |            | ***         | •    | •••   | . 22  | ž   | *2  | ÷    | ĕ          | • • | · i                                          | · ¥. | *** | ā'' | š   | ••; | ¥ #.  | • • | \$11           | . <u>.</u> . | £.  | • • •    |            |          | • • |            | • • • | ***            | 1        | ;       | 1            |
| • • |            |             |      | 3     | . 22  | . 3 | 11  | . 8  | , <u>*</u> | :   | : :                                          | ¥,   | ••• | į'' | į,  | •   | :     | ••  | Ι,,            | 3            | €,  |          |            |          | •   |            |       | ***            |          |         |              |
| • • | ē:''       | , 22        |      |       |       | •   | ==  | = =  | = =        | •   | 44                                           | 4    |     | •   |     | ٠.  |       | •   | •              | -            |     | •        |            |          | • • |            | • •   | 111            | • • • •  | 1       |              |
| _   | ¥\$**      | 35          | ii   |       | . 25  | ž   | 35. | ă 3: | •          | - 3 |                                              | *    | Ĭ   | •   | žĭ  |     | i E'  | ä.  | 3              |              | •   |          |            |          | • • |            |       |                |          | 1       | C.           |
| •   | 28<br>88., | 13          | 35   |       | 7 2 2 | 3   | 38  | 2 22 | 1 2.       |     | 83                                           | į.,  |     |     | 31  | ''' |       | •   | 101            | •            | •   |          | i          |          |     |            | •     | ***            |          |         | 1            |
|     |            | 444         |      |       |       |     |     |      |            |     |                                              |      |     |     |     |     |       |     |                | i .          |     | -        | • •        |          | •   |            | •••   |                |          |         | ľ            |
| •   | ii i       | ¥211        | i ii | i . ž | 797   | ï   | 322 | 3    | Ť          | -   | . 23                                         | ã'   | * 1 | i   | *   | 7 3 |       | i   | ' <b>i</b> ' i |              |     | 1        | <b>i</b> ; | 2 3      | #   | ii         | ij    | 1111           | iii      | i       |              |
| •   | 25. E      | 112         | 1    | . 3   | ***   | 37  | ïïï | 31   | :          |     | . 11                                         | Į.   | # 1 | i   | į   | : : | 3     | · = | 3 1            | ľ            | •   | 3        | 15         | íi       | ·   | i          | įį    | ****           | :::      |         | 1            |
|     |            | ii          |      |       |       |     |     | _    |            |     |                                              |      |     |     |     | *   |       |     |                |              |     |          |            |          |     |            |       |                | ' ##     |         | 1            |
|     |            | . 15        |      |       |       | _   |     | _    |            |     | _                                            |      |     |     |     |     |       | í   |                |              | _   |          |            |          |     | _          | _     |                |          | ŀ       |              |
|     |            | . 53        | -    |       | _     |     |     |      |            |     |                                              |      | i   | į   | •   | #   | ==    |     | ;;             | ř            | ;   | <b>.</b> | ; ;;       | 1        | : ; | ' <u>=</u> |       | •              | :::      | 1       |              |
| 1   |            | .11.        |      |       |       |     |     |      |            |     |                                              |      |     |     | _   |     |       |     | •              |              | _   |          |            |          |     |            |       |                | ***      | L       | ["           |
|     |            | . 111.      | _    |       |       |     |     |      |            |     |                                              |      |     |     |     | _   |       |     | •              |              |     | i        |            |          | _   | _          | _     |                | 1111     | Ш       |              |
| _   |            | , 12.       |      |       |       |     |     |      |            |     |                                              |      |     |     |     |     |       |     |                |              |     |          |            |          |     |            |       |                |          | 1 .     |              |
|     | :::        | 1111        | 17   | ' į į |       | * 3 | 35  | 69   | : 1        | į.  | ::                                           | į    | į   | 2   | ž į |     | ŧ, ,  | 3   | 8.6            | i            | Ξ.  | : :      | 1          | <b>;</b> | řě  | 223        | Ŧ i   | 1121           | 5285     |         |              |
|     | 111        |             | **   | i     | ij;   | Ĺ   | ,,, | ::   | 844        | -   | ii                                           | ij   |     |     | 723 | ij  | ::3   | ;   | iefe           | ij           | ; ; | ;;;      | 1          | jį       | 17  | 11:        | 7     | :::            | 1212     | [ ]     | !!           |
| 1   | Ш          | Ш           | -    | 11 3  | 111   | •   | i i |      |            |     |                                              |      |     |     |     |     |       |     | 2555           |              |     |          |            |          |     |            |       |                |          |         |              |
|     | 111        | <b>!!!!</b> | 55   | i     | iii   | i   | Sii | î    | iii        | 7.  | <u>.                                    </u> |      |     |     | 177 | žë  | 573   | į:  | 1267           |              | ž 5 | ii:      | k)         | E        | -   | 325        | :     | iii            | <u> </u> | -       | - "          |
|     | !!!        |             | 3    |       |       |     |     |      |            |     |                                              |      |     |     |     |     |       |     | !!::           |              |     |          |            |          |     |            |       |                |          | 5       | 1            |

ALLA DE ORIGEN

202

## FACTORES DE CORRECCION DE RESISTENCIA POR TEMPERATURA, PARA CONDUCTORES DE COBRE O ALUMINIO .

0.15775 **10**\* 0 017241

100 00

| Temp<br>9G | Factor<br>correct. | Tomp<br>PC | Correc. | Tomp   | Factor correct. | E C C   | Pactor<br>correct | Temp.          | fector<br>curve. |
|------------|--------------------|------------|---------|--------|-----------------|---------|-------------------|----------------|------------------|
|            | 1.020              | 18.0       | 1.000   | 21.0   | 0.996           | 24.0    | 0.984             | 27.0           | 0.973            |
|            | 1.020              | 10.1       | 1.008   | 21.1   | 0.996           | 24.4    |                   | '17.1<br>'17.1 |                  |
|            | 1.019              | 16.2       | 1.007   | 21.2   | U. 995          | (47)    |                   | 17.3           | 0.972            |
| 13.4       | 1.019              | 19.3       | 1.007   | 21.3   | 0.981           | l • • 1 | 0.983             | 27.4           | 0.972            |
|            | 1.010              | 10.4       |         | 21.4   | 0 995           | 11 .    | 0.983             | 37.4           | 0.872            |
| 15.4       | 11.010             |            | 1       | i      | ł               |         |                   |                |                  |
|            | 1.018              | 18.5       | 1.006   | 21.5   | 0.994           | 24      | 3.982             | 27.8           | 0.971            |
| 13.3       | 1.010              | 10.6       | 1.006   | 21.6   | 0.594           | 24 :    | 3.992             | 27.6           | 0.971            |
| 13.0       | 1.017              | 10.7       | 1.005   | 21.7   | 0.793           | 24.:    | : 182             | 27.7           | 0.971            |
| 15.7       | 1.017              | 10.4       | 1.005   | 21.8   | 0.993           | 24.6    |                   | 27.8           | 8.970            |
| 13.0       | 11.017             | 14.5       | 1.004   | 1 21.9 | 0.393           | 24.9    | 2.981             | 27.1           | 0.979            |
| 15.9       | 1.016              | ••••       | 1       |        | ı               | 1 1     |                   |                |                  |
|            | l                  | 19.0       | 1.004   | 22.0   | 0.912           | 25.0    | 0.961             | 28.0           | 0.970            |
|            | 1.016              | 111.1      | 1,004   | 22.1   | 0 992           | 23.1    | 0.980             | 28.1           | 0.969            |
| 16 1       | 1.016              | 113.3      |         | 22.2   | 0 991           | 25.2    | 0.980             | 26.2           | 0.963            |
| 16.2       | 1.015              | 19.5       |         | 22.3   | 0.991           | 25.3    | 0.980             | 28.3           | 0.948            |
|            | :.015              | 13.4       | 1.002   | 22.4   | 0.991           | 25.4    | 8.979             | 28.4           | 0.966            |
| 16.4       | 1.014              | 17.7       | 1       |        |                 | 1 1     |                   | 1              |                  |
|            | I                  | 19.5       | 1.002   | 22.5   | 0.990           | 25.5    | 0.279             | 28.5           | 0.964            |
| 16.5       | 1.014              | 15.6       | 1.002   | 22.6   | 0.990           | 25.6    | 0.978             | 28.6           | 0.367            |
| 16.6       | 1.014              |            | 1.001   | 22.7   |                 | 25.7    | 0.978             | 28.7           | 0.367            |
| 16.7       | 1.013              | 19.7       |         | 22.0   | 0.343           | 25.0    | 0.978             | 28 8           | 0.947            |
|            | 1.013              | 19.0       | 1.000   | 22.5   | 0.983           | 25.9    | 0.977             | 28.9           | 0.044            |
| 16.9       | 1.012              | 19.9       | 1.000   | ****   |                 | ) *** ] |                   | ł              | 1 1              |
|            | i                  |            | 1.000   | 23.0   | 0.368           | 126.0   | 0.977             | 29.0           |                  |
|            | 1.012              | 20.0       | 1.000   | 23.1   | 0.748           | 26.1    | 0.977             | 29.1           | 0.948            |
|            | 1, 12              | 20.1       |         | 23.2   | 0.968           | 26 2    | 0.976             | 29.3           | 0.963            |
|            | 1.011              | 30.3       | 0.999   | 23.3   | 0.987           | 26.3    | 0.976             | 29.3           | 0.363            |
|            | 110.1              | 20.3       | 0.999   | 23.4   | 0.317           | 26.4    | 0.975             | 29.2           | 0,944            |
| 17.4       | 1.010              | 20.4       | 0.998   |        |                 | ١٠٠٠٠ ا |                   | 1              |                  |
|            | 1                  | 1          | l       | í      | 0.986           | 26.5    | 0.975             | 29.5           | 0.964            |
| 17.5       | 1.010              | 20.5       | 0.990   | 23.5   | 0.986           | 26.6    | 0.975             | 29.6           | 0.964            |
| 17.6       | 1.010              | 20.6       | 0.758   | 23.6   |                 | 26.7    | 0.974             | 29.7           | 0.963            |
| 17.7       | 1,009              | 20.7       | 0.997   | 23.7   |                 | 25.0    | 0.274             | 29.4           | 0.963            |
|            | 1.005              | 20.8       | 0.337   | 23.8   |                 | 25.9    | 0.374             | 29.9           | 0.943            |
|            | 1 008              | 20.9       | 0.997   | 23.9   | 0.985           | 20.3    | 0.3/4             | 1              |                  |

ALUMINIC EC (200C)

0.004-0 0.027808

Companyord 9/0 (IACS) 20°C

62.0

Tomp Fact. de Fact, de Temp | Fact, re Temp Fact . de °C 27.0 0.371 27.1 0.972 27.2 0.972 27.3 0.971 27.4 0.971 21.0 0.996 74.0 D.984 24.1 D.984 24.2 D.983 24.3 D.983 24.4 P.983 18.0 1.001 15.0 1.021 21.2 0.995 18.1 | 1.006 18.2 | 1.007 18.3 | 1.007 15.1 1.020 15.2 1.020 21.3 |0.995 15.3 1 019 18.4 1.006 21.5 0.994 71.6 0.994 71.7 0.993 21.8 0.993 21 9 0.997 24.5 D.982 24.6 D.982 24.7 D.981 24.8 D.981 24.9 D.981 27.5 0.971 17.6 0.970 27.7 0.970 18.5 1.006 18.6 1.006 18.7 1.005 18.8 1.005 18.9 1.004 15.5 1.018 15.6 1.018 15.7 1.018 27.8 0.970 27.9 J.969 15.8 1.017 28.0 0.969 28.1 0.968 28.2 0.968 28.3 0.968 28.4 0.967 25.0 0.960 25.1 0.980 75.2 0.979 75.3 0.979 25.4 0.973 22.0 0.992 22.1 0.992 22.2 0.991 16.0 1.016 19.0 19.1 | 1.004 9.2 | 1.003 19.1 | 1.003 19.4 | 1.302 16.1 | 1.316 22.3 (0.991 22.4 (0.990 16.2 | 1.015 78.5 0.967 28.6 0.967 28.7 0.966 28.8 0.966 28.3 0.965 25.5 0.978 75.4.0.978 25.7 0.978 25.6 0.977 25.9 0.977 27.5 0.990 22.4 0.990 22.7 0.989 22.8 0.989 22.9 0.988 16.5 | 1.014 | 16.6 | 1.014 | 16.7 | 1.013 | 14.8 | 1.013 19.5 2.002 19.6 | 1.001 19.7 | 1.001 19.8 | 1.001 13.9 ]1.010 29.0 0.965 29.1 0.965 29.2 0.964 29.3 0.964 11.0 0.988 23.1 0.988 21.2 0.987 22.3 0.987 23.4 0.986 26.0 0.976 26.1 0.976 26.2 0.976 26.3 0.975 26.4 0.975 12.3 1 012 20.0 1.000 17.3 | 1 012 17. | 1. | 12 17.2 | 1.0:3 17.3 | 1.0:1 17.4 | 1.0:1 20.1 1.000 20.2 0.999 20.2 0.999 20.4 0.998 29,3 0,944 29,4 0,944 29.5 0.963 0.974 0.974 0.974 0.973 0.973 26.5 26.6 26.7 26.8 20.1 0.998 20.4 0.998 20.7 0.997 20.4 0.997 20.9 0.496 73.5 0.986 13.6 0.986 13.7 0.985 73.8 0.985 13.9 0.985 17.5 11.010 17.6 1.010 17.7 1.009 24.9 1.009



#### CONSTANTES FISICAS

| PROPIEDADES                                                                                                                                                                                                                                                                                                      | ALUMINIO<br>PURO | ALEACION<br>5005 | ALEACION<br>6201 | DURO       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------|
| Conductividad minima % (1.3 C.S.). Máxima resistencia por 1000 pies. Coefficiente de resistencia poi Temperatura por °C. Densidad gr/cm² Doefficiente lunisi °P. Coefficiente vicinalistanto por °C. Micijilo de elastricidad l'osypulg² Micijulo de elastricidad l'osypulg² Micijulo de elastricidad l'osypulg² | 61.0             | 53 5             | 52.5             | 97         |
|                                                                                                                                                                                                                                                                                                                  | 17 002           | 19 385           | 19 754           | 10 692     |
|                                                                                                                                                                                                                                                                                                                  | 0 00403          | 0.00353          | 0 00347          | 0.00383    |
|                                                                                                                                                                                                                                                                                                                  | 2.703            | 2.703            | 2.703            | 8.89       |
|                                                                                                                                                                                                                                                                                                                  | 0 0000131        | 0.0000131        | 0.0000131        | 0.000094   |
|                                                                                                                                                                                                                                                                                                                  | 0.0000000        | 0.0000729        | 0.0000729        | 0.0000545  |
|                                                                                                                                                                                                                                                                                                                  | 10,000,000       | 10.000,000       | 10,000,000       | 17,000,000 |
|                                                                                                                                                                                                                                                                                                                  | 702,000          | 702,000          | 702,000          | 1,200,000  |

# BARRAS RECTANGULARES DE COBRE; CORRIENTES ADMISIBLES

| DIMENSI             | ONES               | SEC        | CION           | PESO           |                | CORR           | ENTE AD        | MISIBLE        | EN AMP         |
|---------------------|--------------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| m.m.<br>APROX       | Pulg.              | m.m        | Pulg.          | Kg/m.          | LBS.<br>PIE    | 10             | 100            | 1000           | 0000.          |
| 51 . 3              | 2 × 1/8            | 162        | 0 250          | 1 431          | 0 962          | 447            | 705            | 894            | 1.024          |
| 76 x 3              | 3 = 1/8            | 242        | 0 375          | 2 149          | 1 444          | 696            | 1 100          | 1 392          | 1 600          |
| 102 x 3<br>51 a 6   | 4 = 1/8            | 323<br>323 | 0 500<br>0 500 | 2 864<br>2 864 | 1 925<br>1 925 | 900<br>647     | 1 420<br>1 020 | 1.800<br>1.294 | 2.070<br>1 488 |
| 76 x 6              | 3 . %              | 485        | 0 750          | 4 300          | 2 89           | 973            | 1 540          | 1 945          | 2 238          |
| 102 × 6<br>51 × 10  | 4 = ½<br>2 = 3/8   | 645<br>485 | 1 000<br>0.750 | 5.729<br>4 300 | 3 85<br>2 89   | 1.220<br>865   | 1 925<br>1 365 | 2.440<br>1.730 | 2,800<br>1,990 |
| 76 x 10<br>102 x 10 | 3 × 3/8<br>4 = 3/8 | 725<br>967 | 1 125<br>1 500 | 6 443<br>8 586 | 4 33<br>5.77   | 1 130<br>1.440 | 1.860<br>2.280 | 2 360<br>2.880 | 2 714<br>3.312 |

Capacidad basada en 40  $^{\circ}$ C ambiente, 30 $^{\circ}$ C sobre elevación de temperatura 98% conductividad 6.3 mm. de separación entre Barras.

SEPARACION ENTRE BARRAS PARA DIFERENTES VOLTAJES

| VOLTAJE |     | A ENTRE | MINI |       | VOLTAJE |      | A ENTRE | MINI | ANCIA<br>MA<br>ERRA |
|---------|-----|---------|------|-------|---------|------|---------|------|---------------------|
|         | m.m | Pulg.   | m.m. | Pulg. |         | m.m. | Pulg.   | m.m. | Pulg                |
| 250     | 51  | 2       | 38   | 11/2  | 13 200  | 127  | 5       | 108  | 41/4                |
| 600     | 64  | 21/2    | 51   | 2     | 15 000  | 140  | 51/4    | 114  | 41/2                |
| 1 100   | 89  | 31/2    | 64   | 21/2  | 16 500  | 153  | 6       | 127  | 5                   |
| 2 300   | 102 | 4       | 70   | 21/4  | ·18 000 | 178  | ,       | 152  | 6                   |
| 4 000   | 114 | 41/2    | 70   | 3     | 22 000  | 229  | 9       | 178  | 7                   |
| 6 600   | 114 | 41/2 .  | 76   | 3     | 26 000  | 305  | 12      | 229  | 9                   |
| 7 500   | 114 | 4½      | 83   | 31/4  | 35 000  | 381  | 15      | 305  | 12                  |
| 9 000   | 114 | 412     | 89   | 3K    | 45 000  | 457  | 18      | 381  | 15                  |
| 11000   | 121 | 4-14    | 95   | 3-14  | 56 000  | 483  | 19      | 445  | 171/2               |

# ALAMBRE DE COBRE SUAVE ES: ANADO

|    | CALIBRE  | DIAME | TRO      |          | TRANS  | N<br>VERSAL        | PESO   |                      |       |                   | ENCIA A<br>IVe-Pág   |       |
|----|----------|-------|----------|----------|--------|--------------------|--------|----------------------|-------|-------------------|----------------------|-------|
|    | UNIDADES | METRI | CAS E IN | GLESAS   |        |                    |        |                      |       | 1.7               |                      |       |
|    | DVIA     | m.m.  | Pulg.    | CIRCULAR | m m.²  | Pulg. <sup>2</sup> | Kg/Km  | LBS.<br>1000<br>PIES | LBS.  | OHMS<br>POR<br>Km | OHMS<br>1000<br>PIES | MILLA |
|    | 30       | 9,254 | 0.0100   | 100      | 0.0506 | C 0000785          | C 451  | 0 333                | 1 60  | 365.0             | 1/13                 | 588.0 |
|    | 29       | 0.287 | 0.0113   | 128      | 0 0647 | 0 000100           | 0 575  | 0 387                | 2 04  | 283.0             | 86 3                 | 455.0 |
|    | 26       | 0.320 | 0.0126   | 159      | 0 0804 | 0 000125           | 0.716  | 0.481                | 2 54  | 2280              | 69 4                 | 366.0 |
|    | 27       | 0.351 | 0.0142   | 202      | 0 1021 | 0 000158           | 0.907  | 0.610                | 3 22  | j 1790            | 546                  | 288.0 |
| Ž. | 23       | 0.404 | 0.0159   | 253      | 0 1280 | 0 000199           | 1.139  | 0.765                | 4 04  | 1430              | 436                  | 230.0 |
|    | 25       | 0.455 | 0.0179   | 320      | 0 1618 | 0 000252           | 1 443  | 0.970                | 5.12  | 1130              | 34.4                 | 1820  |
|    | 24       | 0.511 | 0.0201   | 404      | 0 2046 | 0 000317           | 1821   | 1.22                 | 6 4 5 | 876               | 26 7                 | 1410  |
|    | 23       | 0.574 | 0 0226   | 511      | 0 2587 | 0 000401           | 2.300  | 1 55                 | 816   | 69 2              | 21.1                 | 1110  |
|    | 22       | 0 643 | 0.0253   | 640      | 0 3242 | 0 000503           | 2.875  | 194                  | 102   | 55.4              | 169                  | 89 0  |
|    | 21       | 0.724 | 0.0285   | 812      | 0 4114 | 0 000638           | 3 665  | 2 46                 | 130   | 43.6              | 1337                 | 70 1  |
|    | 20       | 0813  | 0 0320   | 1020     | 0.5186 | 0.000404           | 4 673  | 3 10                 | 1G 4  | 34 4              | 105                  | bb 6  |
|    | 19       | 0917  | 0 0359   | 1290     | 0 6527 | 0 00101            | 5 BO 7 | 3 90                 | 20.6  | 27 %              | 6.37                 | 44 2  |
|    | 18       | 1 024 | 0.0403   | 1620     | 0 8225 | 0 00128            | 7 329  | 4 92                 | 260   | 21 H              | 6.64                 | 35-1  |

# CAPACIDAD DE CONDUCCION DE CORRIENTE PARA CONDUCTORES DESNUDOS DE COBRE DURO (97.5% CONDUCTIVIDAD I.A.C.S.) A DIFERENTES INCREMENTOS DE TEMPERATURA

INCREMENTO DE TEMPERATURA EN "C SOBRE 25°C DE TEMP AMRIENTE

| CALIBHE                                   | INCHL                            | MENIO DE                             | TEMPEHA                              | UHAEN                                | C SOURE 2                            | S C DE II                            | EMP. AMBIENTE                        |
|-------------------------------------------|----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| AWG a KCM                                 | 25                               | 35                                   | 45                                   | 50 *                                 | 55                                   | 65                                   | 75                                   |
| SOL:DO                                    | CAPAC                            | DAD DE C                             | STMBIRPE                             | EN AMPE                              | PES                                  |                                      |                                      |
| 10<br>8<br>6<br>4<br>2                    | 50<br>68<br>91<br>120<br>165     | 59<br>79<br>105<br>140<br>190        | 56<br>88<br>120<br>160<br>215        | 68<br>92<br>125<br>165<br>225        | 7 t<br>96<br>130<br>175<br>235       | 105<br>140<br>185<br>250             | 80<br>110<br>145<br>195<br>265       |
| 1<br>1/0<br>2/0<br>3/0<br>4/0<br>CABLEADO | 190<br>220<br>255<br>295<br>345  | 220<br>260<br>300<br>345<br>400      | 250<br>290<br>335<br>390<br>460      | 260<br>300<br>350<br>405<br>470      | 270<br>315<br>365<br>425<br>490      | 290<br>335<br>390<br>455<br>530      | 310<br>360<br>415<br>480<br>560      |
| 4 4 2                                     | 125<br>130<br>170                | 145<br>150<br>195                    | 155<br>170<br>220                    | 170<br>175<br>230                    | 180<br>185<br>240                    | 195<br>255                           | 200<br>210<br>270                    |
| 2                                         | 175<br>195                       | 200<br>230                           | 275<br>235                           | ?40<br>265                           | 245<br>290                           | 265<br>300                           | 280<br>315                           |
| 1<br>1.0<br>2/0<br>3/0<br>4/0             | 200<br>225<br>260<br>310<br>355  | 235<br>255<br>305<br>356<br>410      | 205<br>205<br>345<br>400<br>460      | 275<br>310<br>360<br>415<br>485      | 295<br>320<br>375<br>435<br>505      | 310<br>345<br>400<br>465<br>540      | 325<br>365<br>425<br>495<br>575      |
| 250<br>250<br>300<br>300<br>350           | 395<br>400<br>445<br>450<br>490  | 460<br>465<br>515<br>525<br>570      | 515<br>525<br>580<br>590<br>640      | 540<br>550<br>605<br>615<br>670      | 565<br>570<br>635<br>640<br>700      | 605<br>615<br>680<br>690<br>750      | 645<br>650<br>725<br>735<br>800      |
| 350<br>400<br>450<br>500<br>550           | 495<br>530<br>575<br>615<br>610  | 580<br>620<br>670<br>715<br>760      | 650<br>700<br>750<br>805<br>855      | 680<br>730<br>785<br>840<br>895      | 710<br>760<br>820<br>880<br>935      | 760<br>820<br>880<br>945<br>1005     | 310<br>870<br>940<br>1005<br>1070    |
| 600<br>650<br>700<br>750<br>800           | 6,90<br>129<br>110<br>110<br>121 | 805<br>845<br>835<br>925<br>950      | 900<br>955<br>995<br>1040<br>1080    | 945<br>995<br>1640<br>1090<br>1136   | 985<br>1040<br>1085<br>1135<br>1150  | 1050<br>1115<br>1170<br>1220<br>1275 | 1130<br>1190<br>1245<br>1330<br>1355 |
| 950<br>900<br>1000<br>1210<br>1500        | 940<br>940<br>1075<br>1180       | 1500<br>1525<br>1130<br>1255<br>1385 | 1120<br>1163<br>1235<br>1410<br>1560 | 1175<br>1220<br>1295<br>1475<br>1635 | 1225<br>1270<br>1365<br>1540<br>1715 | 1220<br>1265<br>1466<br>1670<br>1845 | 1405<br>1455<br>1555<br>1780<br>1975 |
| 750<br>2000                               | 1293<br>1385                     | 1505<br>1620                         | 1695<br>1820                         | 19:0<br>19:0                         | 1060<br>2000                         | 7015<br>2160                         | 2150<br>2310                         |

FALLA DE ORIGEN

† Las capacidadus de corriente están calculadas para cuerpos negros (denomínanse así a cuerpos con super tice no reflejante) temperatura ambiente de 25°C, 0,6 m por sigundo como velocidad de viento, conductividad 97,5% 1,1CC y frecuencia de 60 ciclos por segundos.

Según última revisión de las Normas. DGN J-12 v ASTM B-8,

 La columna de 50°C de sobre-elevación de temperatura 175°C temperatura del conductor/ representa las condiciones máximas a que se recomienda trabajar el copre de calidad comercial normal. El coeficiente linail de expansión por temperatura es de 0.00001692 por °C.

El módulo final de elasticidad es de 1,195 100 kilogramos por centímetro cuadrado.

Estos datos son aproximados y están sujetos a tolerancias normales de manufactura.

# CONSTRUCCIONES PREFERENTES Y DIAMETROS EXTERIORES NOMINALES DE LOS CABLES DE ALUMINIO CON CABLEADO CONCENTRICO

| <u>.</u>       | 38  | -   | ,,  | 28           | -   | 30    |     | **  |       |     |              | _   | 3 .          |           |     | ٠,       | . 4. |     |        |      |     |      |     |         |            | -     | $\overline{}$ | -     | <u>-</u> | _        | 3    | +-                |
|----------------|-----|-----|-----|--------------|-----|-------|-----|-----|-------|-----|--------------|-----|--------------|-----------|-----|----------|------|-----|--------|------|-----|------|-----|---------|------------|-------|---------------|-------|----------|----------|------|-------------------|
|                |     |     |     |              |     |       |     | -   |       |     |              |     |              | ٠.        |     |          |      |     |        |      |     |      |     |         |            | _     | _             | _     | _        |          |      | 1                 |
|                | •   | 41  | 13  | 31           | !!  | ::    | = = | 4   | ä     | ĒĒ  | Š            | ==  | *5           | <b>!!</b> | •   | :::      | : :: | ::: | 53     | **   | ::: | ::   |     | 31      | . 3<br>. 8 | 88    | ;             | ***   | : :      | ĩį       | :::  | •                 |
| <del>.</del> . | ¥.  | ų.  | 72  |              | •   | **    | •   |     | •,•   |     |              | •   | •            |           | -   |          |      |     | •      | ••   | -   | • *  |     | • •     | •          |       |               |       |          |          |      | - 1               |
| . 1            | •   | 2,  | ĕā  | žž.          | •   | ;:    | B   | •   |       | •   | •            | ż   | į.           |           | 1   | . 5      |      | ٠.  | Ξ'     |      | ï   | Ξ,   | •   | • • • • | •          | • • • | •             |       | •        | •••      |      | 'n                |
|                | į.  | ř   | **  | 25,          | •   | 28.   |     | ā   |       | •   | •••          | ŝ   | į.           | •         | ž   | *        | •    |     | : '    | ;    |     | ;    | ٠.  | • • • • |            | ,     | ,             | • •   |          |          | •    | 195               |
|                | •   | 2.1 | **  | ##·          | *   | 44;   | : = | • 3 | •••   |     | -= '         | =   | <b>3</b> * 8 | •         | -   | ٠.       | ٠,   | ٠.  |        |      |     | •,   |     |         |            | -' '  | •             | • •   | • •      |          |      | 1                 |
| 1              |     | 8   | ä   | £2.          | ž   | 531   | ŧ   | *   |       | ï   | äž.          | 701 | ğ.,          | ,         | ž,  | Ë        | 8    | 8   | ¥' 8   | ' :  | •   | ž,   | • • | į       | •          | š     |               | •••   | •        |          |      | 123               |
|                | !   | # 1 | 12  | 22.          | ä   | ***   | 9   | 8   | , , 2 | 8   | 83           | 3   |              | ,         | ž.  |          | 8    |     |        |      | •   | Ξ.   | •   | i       | •          | ì     |               | • • • | •        |          |      | Total and         |
| = -            | :   | 7   | •   | . : :        | •   | . # . | 41  | ¥ · | . 44  | •   |              | •   |              | *         | ¥,  |          | • =  | •   | • ' '  |      | •   |      | -   |         | -          |       |               |       |          |          |      | 2.0               |
| ı,             | ž   | 3   | ä   | žž           |     | ž'    | ž   | ř   | 8     | •   | **           | •   | ğ''          | ĕ         | ř   | ĕĕ       | ٠:   | Ē   | ī''    | ii   | š   | žž   | ž   | žż      | ä          | 3 3   | <u>.</u>      | 133   | 3        | 2        | 110  | 1 2 2             |
| 18             | ä   | 31  | ï   | . 22         | •   | *     | 8   |     | 88    | •   | É            | ١,  | ''           | į         | ŭ'. | ::<br>:: | * *  | Í   | · ·    | : :  | š   | :8   | 3   | £5      | :          | ; ' ; |               | ïïï   | 23       | ž.       | **** | 1014              |
| • • •          | •   |     | ::  | . •          | •   | 1 21  | • • | •   | ** =  | •   | = -          | • • | ::           | ٠         | 44. |          |      | 22  | 14,    | ٠ =  | z · | 55:  | ,   |         | ٠,         | 22,   | . '           | 4' 4  | 1.5      | 1 8      |      | 1                 |
| ٠.             | ¥   | ••; | ä   | ' <u>ĕ</u> ' | •   | 8     | ';  | ž'  | i' š  | •   | ' <u>;</u> ' | ٠ ; | ĒĒ,          | •         | 28  | ;        | •••  | ř   | ,<br>, | · ‡  | Ē,  | 8 51 |     | ###     | • ;        | 32    | ,             | ŧ ä   |          | à        |      | 1,000             |
| •              | ä   | 113 | 2   | 2            | •   | ' #'  | 'n  | '   | į į   |     | B'           | ٠,  |              | •         | :8  | •        | '';  |     | ;      | :    | ;   | šäi  | ;   | 255     | •          | 33    | ,             | ž š   |          | •        |      | TO ALL            |
|                |     |     |     |              |     |       |     |     |       |     |              |     |              |           |     |          |      |     |        |      |     |      |     |         |            |       |               |       |          |          | .,   | 100               |
|                |     |     |     |              |     |       |     |     |       |     |              |     |              |           |     |          |      |     |        |      |     |      |     |         |            |       |               |       |          |          |      | accept<br>and the |
|                |     |     |     |              |     |       |     |     |       |     |              |     |              |           |     |          |      |     |        |      |     |      |     | 11.     |            |       |               |       |          |          |      | 100               |
| ž.             | 3   | 63  | 3   | 25           |     | 8     | 25  | '   | 15    | , , | ==           | •   |              | 2         | 3 3 |          | `Ē'  | 1   | •      | :    | ž   | ii'  | ž   | 36      | :          | · Fi  | ë             | 112   | 33       | 76       | :::: |                   |
|                | 0 1 |     | :   |              | i   |       |     | Ē   |       | i   | i            | 1   |              | i         | 121 |          |      | 1   |        |      | i   | 283  | š   |         |            | 251   | Ē             | 173   | ==       | ##<br>## | 325E | 3.0 v m 3.00      |
| F F            |     | iii | 3 1 |              | 1 3 | 111   | Ħ   | ž 1 | 111   | i   | 283          | : X | 23           | . 1       | 132 | Ŧ i      | iźź  |     | 55:    | : :: |     | •    |     | ***     |            | 2 2 2 | -             |       |          |          |      | ¥2.00             |

FALLA DE ORICEN

# CARACTERISTICAS FISICAS Y ELECTRICAS DE LOS CABLES DE ALUMINIO PURO (AAC)

| _                                                                   | I CALIBRE                                                                               | Barrier                                                                     |                                                                              | / CABL                              | t A D U                                                                          |                                                                    |                                             |                                                                           |                                                      |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------|
| CODIGO                                                              | AWG CM                                                                                  | mm <sup>1</sup>                                                             | EQUIV.<br>EN<br>COBRE                                                        | TIPO                                | NUMERO DI<br>ALAMBRES<br>Y<br>DIAMETRO                                           | DIAMETRO<br>TOTAL<br>MM.                                           | TENSION<br>DE<br>RUPTURA<br>Ke              | RESISTENCIA A<br>75°C y C G.<br>Ohmulem                                   | PESO<br>KeyKm                                        |
| Prachbell<br>Rose<br>Int<br>Pansy                                   |                                                                                         | 13 287<br>21 156<br>33 604<br>42 376                                        | 8<br>6<br>4<br>3                                                             | AA.A                                | 7+1 554<br>7+1 960<br>7+2 473<br>7+2 776                                         | 4 673<br>5 892<br>7 416<br>8 331                                   | 252<br>397<br>606<br>737                    | 2 2211<br>1 3949<br>0 87823<br>0 69653                                    | 36 4<br>58 0<br>92 2<br>116 2                        |
| Pappy<br>Agler<br>Phick<br>Oylip                                    | 1/0<br>2/0<br>3/0<br>4/0                                                                | 53.470<br>67.402<br>65.011<br>107.199                                       | 2<br>1<br>1/0<br>2/0                                                         | AA, A<br>AA, A<br>AA, A             | 7±3 119<br>7±3 502<br>7±3.391<br>7±4 417                                         | 9 347<br>10 515<br>11 785<br>13 258                                | 894<br>1125<br>1363<br>1719                 | 0 55193<br>0 43786<br>0 34716<br>0 27532                                  | 146 6<br>184 8<br>233 1<br>293 9                     |
| Sneezewort<br>Velerian<br>Daisy<br>Laurel                           | 250 000<br>250 000<br>266 900<br>266 900                                                | 126 678<br>126 678<br>135.127<br>135 127                                    | 157 200<br>157 200<br>3/0<br>3/0                                             | A                                   | 7+4 800<br>19+2 913<br>7+4 960<br>19+3.009                                       | 14 401<br>14 579<br>14 884<br>15 062                               | 2032<br>2045<br>2165<br>2177                | 0.23298<br>0.23298<br>0.21841<br>0.21841                                  | 347 3<br>347 3<br>370 5<br>370 5                     |
| Peony<br>Tulib<br>Daffodil<br>Cann                                  | 300,000<br>336,000<br>350,000<br>397,500                                                | 151 962<br>170 409<br>177.310<br>201 369                                    | 188 700<br>4/0<br>220 000<br>250 000                                         | A<br>A<br>AA. A                     | 19.3 192<br>19.3 380<br>19.3 446<br>19.3 675                                     | 15 976<br>16 916<br>17 245<br>18 389                               | 2402<br>2694<br>2803<br>3120                | 0 19420<br>0 17319<br>0 16644<br>0 14656                                  | 416 7<br>467 3<br>486 3<br>551 3                     |
| Goldentuft<br>Cosmos<br>Sytinga<br>Zinnia                           | 450 000<br>477 000<br>477 000<br>500 000                                                | 227 943<br>241 617<br>241 617<br>253.291                                    | 283 000<br>300 000<br>300 000<br>314 000                                     | AA<br>AA                            | 19:3 909<br>19:4 023<br>37:2 882<br>19:4 119                                     | 19 558<br>20 142<br>20 193<br>20 599                               | 3450<br>3669<br>3900<br>3846                | 0 12947<br>0 12214<br>0 12214<br>0 11651                                  | 625.1<br>662.7<br>662.7<br>694.7                     |
| hyscinth<br>Dahlis<br>Mistletos<br>Mesdowswest                      | 500,000<br>556,500<br>556,500<br>600,000                                                | 253.291<br>281.929<br>281.929<br>303.924                                    | 314 000<br>350 000<br>350 000<br>377 000                                     | A . A                               | 37=2 951<br>19=4 345<br>37=3:114<br>37=3:233                                     | 20 650<br>21 742<br>21 793<br>22 631                               | 4086<br>4282<br>4458<br>4808                | 0 11651<br>0.10468<br>0.10468<br>0.09710                                  | 894 7<br>773 1<br>773 1<br>833 5                     |
| Orchid<br>Heuchera<br>Verbena<br>Flag                               | 636 000<br>650 000<br>700 000<br>700 000                                                | 322.177<br>329 272<br>354 621<br>354 621                                    | 400 000<br>409 000<br>440 000<br>440 000                                     | AA, A<br>AA<br>A                    | 37±3 329<br>37±3,365<br>37±3 493<br>61±2,720                                     | 23 317<br>23 571<br>24 460<br>24 485                               | 5098<br>5211<br>5611<br>5833                | 0 09160<br>0 08962<br>0 08322<br>0 08322                                  | 883 5<br>903 0<br>972 5<br>972 5                     |
| Violet<br>Nasturtium<br>Petunia<br>Cartail                          | 715 500<br>715 500<br>750 000<br>750 000                                                | 362,490<br>362 + 90<br>379 905<br>379 905                                   | 450 000<br>450,000<br>472,000<br>472,000                                     | AA<br>AA                            | 37±3 533<br>61±2,750<br>37±3 616<br>61±2,816                                     | 24 739<br>24 765<br>25 323<br>25 349                               | 5733<br>5964<br>5892<br>6126                | 0 08141<br>0 08141<br>0 07768<br>0 07768                                  | 994<br>994<br>1042<br>1042                           |
| Arbutus<br>Lilac<br>Cockscomb<br>Snapdragon                         | 795.000<br>795.000<br>900.000<br>900.000                                                | 402 738<br>402 738<br>455 950<br>455 950                                    | 500 000<br>500 000<br>564 000<br>566 000                                     | <b>A</b> A                          | 37x3 723<br>61x2,900<br>37x3,962<br>61x3,086                                     | 26 060<br>25 111<br>27.736<br>27.787                               | 6245<br>6500<br>6926<br>7212                | 0 07328<br>0 07328<br>0 06472<br>0 06472                                  | 1104<br>1104<br>1250<br>1250                         |
| Magnotus<br>Goldenrod<br>Hawkweed<br>Camellus                       | 954 000<br>954 000<br>1'000 000<br>1'000 000                                            | 483 298<br>483 298<br>506 586<br>506 586                                    | 600 000<br>600 000<br>629 000<br>629 000                                     | AA<br>AA<br>A                       | 37×4 079<br>61×3 177<br>37×4 175<br>61×3,251                                     | 28 549<br>28 600<br>29 235<br>29 260                               | 7339<br>7647<br>7613<br>BC                  | 0 06106<br>0 06106<br>0 05825<br>0 05825                                  | 1325<br>1325<br>1389<br>1389                         |
| Bluebell<br>Larkspur<br>Marigold<br>Hawthorn                        | 1'033 500<br>1'233 500<br>1'113 000<br>1'192 500                                        | 523,546<br>523,546<br>563,794<br>604,107                                    | 650 000<br>650 000<br>700 000<br>750 000                                     | AA, A<br>AA, A                      | 37#4.246<br>61#3.307<br>61#3.431<br>61#3.550                                     | 29.718<br>29.768<br>30.886<br>31.953                               | 79 <sup>1</sup> 1<br>828 ?<br>891 7<br>9525 | 0.05637<br>0.05637<br>0.05234<br>0.04865                                  | 1435<br>1435<br>1546<br>1656                         |
| Narcissus Columbina Cernation Gladiolus Coreopeis Jessemina Cowstip | 1'272.000<br>1'351.500<br>1'431.000<br>1'510.500<br>1'590.000<br>1'750.000<br>2'000.000 | 644 355<br>684 990<br>724 980<br>764 970<br>805 605<br>886 230<br>1'012 650 | 800.000<br>850.000<br>900.000<br>950.000<br>1100.000<br>1101.000<br>1260.000 | 34.4<br>44.4<br>44.4<br>44.4<br>4.4 | 61x3,667<br>51x3,762<br>61x3,891<br>61x3,997<br>61x4,102<br>61x4,302<br>91x3,764 | 33.020<br>34.036<br>35.026<br>35.991<br>36.931<br>36.735<br>41.402 |                                             | 0.04580<br>0.04308<br>0.04070<br>0.03857<br>0.03683<br>0.03330<br>0.02914 | 1765<br>1878<br>1987<br>2098<br>2209<br>2431<br>2776 |
| Septonum  Lupine Bitterrapt Trillium Blusbonnet                     | 2'500 000<br>2'750.000<br>3'000 000                                                     | 1'139.070<br>1'265.490<br>1'391.910<br>1'515.750<br>1'773.105               | 1'415.000<br>1'570.000<br>1'730.000<br>1'890.000<br>2'200.000                | Â                                   | 91x3,992<br>91x4,208<br>91x4,414<br>127x3,903<br>127x4,216                       | 48.304<br>48.564<br>50.698<br>54.813                               | 23042                                       | 0.02332<br>0.02120<br>0.01947<br>0.01664                                  | 3504<br>3858<br>4198<br>4958                         |

TESIS CON FALLA DE ORIGEN

NOTA. Class de cabreado. La clase de cabreado deberá mencionaries en cada orden, la clase AA se utiliza generalmente en conductores desnudos bara linesa seriesa, la clase A se utiliza generalmente en conductores que van a ser lorrados con assamiento o desnudos en lugares donde se nacesita mayor fizaciónicad que la os la clase AA.

# AMPACIDADES PARA CONDUCTORES DE ALUMINIO PURO (AAC)

|     | 00160            | AWG - CM                     | AMPACIDAD        | ı•                  | , ,             | l                | RESISTEN   | CIA EN OHM |                  | ESPACIAD                   | CIA A 60 Hz<br>OS 305 mm.              |
|-----|------------------|------------------------------|------------------|---------------------|-----------------|------------------|------------|------------|------------------|----------------------------|----------------------------------------|
|     | MUNDIAL ,        | Y CANTIDAD<br>DE<br>ALAMBRES | SOL<br>NO VIENTO | NO SOL<br>NO VIENTO | SOL Y<br>VIENTO | VIENTO<br>NO SOL | 20°C. G.D. | 25°C C.A.  | 75°C C.A.        | TIVA<br>OHMS/<br>1000 Mrs. | CAPACI-<br>TIVA<br>MEGOHNS<br>1000 MTs |
| _   |                  | 6.7                          | 60               | 65                  | 105             | 110              | 2.1693     | 2 2113     | 2 6476           | 0 3901                     | 2 5033                                 |
|     | Peachbell        | 4.7                          | 80               | 90                  | 135             | 145              | 1 3632     | 1 3911     | 1 6667           | 0 3576                     | 2 2671                                 |
|     | Pow              | 27                           | 110              | 125                 | 185             | 195              | 0 8573     | 0.8760     | 1 0466<br>0 8301 | 0 3476                     | 2 2080                                 |
|     | ris<br>Pansy     | 1.7                          | 130              | 150                 | 215             | 1225             | 0 6798     | 0 6923     |                  |                            |                                        |
| -   |                  |                              |                  | 175                 | 245             | 260              | 0.5387     | 0 5512     | 0 6594           | 0 3379                     | 2 1489                                 |
|     | - 9000           | 1/07                         | 155              | 205                 | 285             | 305              | 0.4275     | 0 4364     | 0 5217           | 0 3314                     | 2 0866                                 |
|     | Aster            | 2/0 /                        | 210              | 245                 | 330             | 350              | 0 3389     | 0 3478     | 0 4134           | 0 3215                     | 2 0776<br>1 9688                       |
|     | mio.             | 3/0-7<br>4/0 7               | 250              | 290                 | 380             | 410              | 0 2689     | 0 2746     | 0 3281           | 0.3130                     | 1 9000                                 |
|     | 0.110            | 4/0 /                        |                  |                     |                 |                  | 0 2276     | C 2326     | 0 2785           | 0 3025                     | 1 9259                                 |
| - 3 | ineezewort       | 250,000 7                    | 280              | 325                 | 425             | 455<br>455       | 0 2276     | 0 2326     | 0.2785           | 0 3025                     | 19193                                  |
|     | /alerian         | 250,000 19                   | . 580            | 325                 | 425             |                  | 0.2133     | 0 2182     | 0.2608           | 0.3041                     | 19094                                  |
|     | Daisy            | 266,800.7                    | 290              | 340                 | 440             | 475<br>475       | 0.2133     | 0 2182     | 0 2608           | 0 2999                     | 1 9029                                 |
|     | Laurel           | 265,800 19                   | 295              | 340                 | 445             | 510              | 0 1897     | 0 1942     | 0 2323           | 0 2956                     | 1 8734                                 |
| •   | Peany            | 300,000 19                   | 326              | 370                 | 475<br>510      | 550              | 0 1782     | 0 1732     | 0.2073           | 0.2913                     | 0.1691                                 |
| •   | קיוט             | 336 400 19                   | 345              | 400                 | 525             | 565              | 0 1626     | 0 1667     | 0 1991           | 0 2297                     | 1 8340                                 |
| -   | Dattodil         | 350,000 19                   | 355              | 410                 | 525<br>570      | 615              | 0 1431     | 0 1470     | 0 1755           | 0 2851                     | 1 8012                                 |
|     | Canne            | 397,500 19                   | 390              | 450                 | 620             | 670              | 0 1764     | 0 1299     | 0 1552           | 0.2832                     | 1 7684                                 |
| (   | Solaeniuti       | 450 000 19                   | 420              | 490                 | 640             | 690              | 0 1193     | 0 1227     | 0 1467           | 0 2787                     | 1 7520                                 |
| •   | Cosmos           | 477,000 19                   | 440              | 510<br>510          | 640             | 690              | 0 1193     | D 1227     | 0 1467           | 0 2769                     | 1 7520                                 |
|     | Syringa          | 477,000 37                   | 440              | 530                 | 660             | 710              | 0 1138     | 0 1171     | 0 1398           | 02762                      | 1 7421                                 |
|     | Zinnia           | 500,000 19                   | 450              | 530                 | 660             | 710              | 0 1138     | 0 1171     | 0 1398           | 0 2749                     | 1 7388                                 |
| :   | tyacinth         | 500 000 37                   | 450              | 530                 |                 |                  |            |            | 0.1360           | 0 2723                     | 1 7126                                 |
| 7   | Dahlia           | 556 500 19                   | 490              | 570                 | 700             | 760              | 0 1022     | 0 1053     | 0 1260           | 0 2710                     | 1 7126                                 |
|     | Asticioe         | 556,500 37                   | 490              | 570                 | 700             | 760              | 0 1022     | 0 1053     | 0 1260           | 0 2680                     | 1 6929                                 |
|     | leadonsweet      | £90 000 37                   | 510              | 600                 | 740             | 800              | 0 0948     | 0.0981     | 0 1168           | 0.2661                     | 1 6765                                 |
|     | 215.13           | €35 000 37                   | 530              | 630                 | 760             | 830              | 0.0895     | 0 0925     | 0 1079           | 0 2651                     | 1 6732                                 |
|     | -euchera         | 650 000 37                   | 540              | 640                 | 770             | 840              | 0.0875     | 0.0843     | 0 1004           | 0 2625                     | 1 6535                                 |
|     | zerriena (       | 1 700 000 37                 | 570              | 670                 | 810             | 830              |            | 0 0843     | 0 1004           | 0.7518                     | 1 6535                                 |
|     | 146              | 700 000 61                   | 570              | €70                 | 810             | 900              | 0 0213     | 0 0827     | 0 0984           | 0.2615                     | 1 6470                                 |
|     | V151#1           | #15 500 37                   | 580              | 680                 | 820             | 900              | 0 5795     | 0 0827     | 0.0994           | 0 2617                     | 1 6470                                 |
| ٦,  | *********        | 715,500.61                   | 590              | ಟಾ                  | 820             | 920              | 0.0758     | 0 0787     | 0.0938           | C 2598                     | 1 6339                                 |
| í   | returna l        | 750 900 37                   | €30              | 700                 | 850             | 920              | 0 0758     | 0 0727     | 0 0938           | 0 2592                     | 1 6339                                 |
| k   | atta.            | 750 000 61                   | 600              | 700                 | 850<br>880      | 960              | 0 6716     | 0 0745     | 0 0889           | D 2575                     | 1 6207                                 |
| 1   | Arbutus          | 795 000 37                   | 673              | 730                 | 880             | 960              | 0.0716     | 0 0745     | 0 0989           | 0 2572                     | 1 6207                                 |
| ŀ   | .dac             | 795 000 61                   | 620              | 735<br>800          | 950             | 1040             | 0.0632     | 0.0653     | 0 0 78 7         | 0 2530                     | 1 5879                                 |
| ł   | ack scamb        | 900 006 37                   | 680              | 900                 | 950             | 1040             | 0 0637     | 0 0663     | 0 0 78 7         | 0 2526                     | 1.5879                                 |
|     | naptitaan        | 900 000 61                   | 680<br>700       | 830                 | 980             | 1080             | 0 0596     | 0 0627     | 0 0745           | 0 2507                     | 1 5748                                 |
|     | Magnolia         | 954 000 37                   | 700              | E30                 | 980             | 1080             | 0.01.96    | 0.0627     | 0 0745           | 0 2503                     | 1 5748                                 |
|     | Solatarod        | 954 000 61                   | 700              | 860                 | 1010            | 1110             | 0.0,469    | 0.0600     | 0 0 7 1 2        | 0 2490                     | 1 5617                                 |
|     | 1244 446         | 1000 000 37                  | 730              | 038                 | 1010            | 1110             | 0.0569     | 0 0600     | 0 0712           | C 2483                     | 1.5617                                 |
| ŀ   | ame na           | 1,000,000,61                 |                  |                     |                 |                  | 0.04.1     | 0.0581     | 0.0689           | 0 7477                     | 1 5118                                 |
| - 1 | divenell         | 1 033,500 37                 | 740              | 630                 | 1030            | 1130             | 0.0551     | 0.0581     | 0 0689           | 0 2470                     | 1 5118                                 |
|     | ark spur         | 1 033,500 61                 | 740              | 850                 | 1030            | 1130             | 0 0551     | 0 0545     | 0 0643           | 0 2444                     | 1.5322                                 |
| 1   | סוסבייני         | 1,113,000.61                 | 780              | 930                 | 1080            | 1190             | 0 0477     | 0 0509     | 0.0604           | 0 2418                     | 1 5157                                 |
|     | aminorn          | 1,192,500 61                 | 820              | 970                 | 1120            |                  | 0 0447     | 0.0309     | 0.0568           | 0 2395                     | 1 4993                                 |
| ı   | varcissus        | 1,272 000 61                 | 850              | 1010                | 1170            | 1290             | 0.0421     | 0 0456     | 0 0538           | 0 2372                     | 1 4829                                 |
| į   | olumbine         | 1,351,500 61                 | 890              | 1050                | 1210            | 1340             | 0 0398     | 0.0433     | 0 0509           | 0 2349                     | 1 4534                                 |
|     | arnation         | 1,431,000 61                 | 930              | 1110                | 1260            | 1430             | 0 0377     | 0 0413     | 0 0486           | 0 2329                     | 1 4534                                 |
|     | Stadiolus        | 1510,500,61                  | 950              | 1140                | 1330            | 1480             | 0 0358     | 0 0 3 3 7  | 0 0463           | 0 2310                     | 1 4403                                 |
|     | oreopsis         | 1 590 000 61                 | 990              | 1176                | 1410            | 1560             | 0 0325     | 0 0364     | 0 0427           | 0 2274                     | 1 4 173                                |
|     | Jessaining       | 1 250 000 61                 | 1050             | 1250                | 1570            | 1690             | 0 0284     | 0 0327     | 0 0381           | 0 2221                     | 1 3812                                 |
|     | :nws)เก          | 2 000 000 91                 | 1140             | 1360                | 1610            | 1800             | 0 0755     | 0 0300     | 0 0346           | 0 2176                     | 1 3517                                 |
|     | marger (De u.S.h | 2 250,000 91                 | 1220             | 1460                | 1700            | 1910             | 0 0230     | 0 0278     | 0 0319           | 0 2136                     | 1 3255                                 |
|     | - cquire         | 2 500,000 91                 | 1300             | 1560                | 1790            | 2010             | 0 0209     | 0 0259     | 0 0296           | 0 2100                     | 1 2992                                 |
| _   | \$11 ft+1/001    | 2 250,000 91                 | 13'0             | 1650                | 1870            | 7110             | 0 0191     | 0 0244     | 0 0217           | 0 2066                     | 1 2795                                 |
|     | ritham           | 3 000 000 127                | 1440             | 1730                | 2010            | 2270             | 0 0166     | 0 0222     | 0.0250           | 0 1975                     | 1 2369                                 |
|     | Markennet (      | - 00 000 127                 | 1540             | 1896                |                 |                  |            |            |                  |                            |                                        |

\*Bassda en una temperatura maxima en al conductor da 75°C y una temperatura artificinte de 25°C

# CARACTERISTICAS FISICAS Y ELECTRICAS DEL CABLE DE ALEACION DE ALUMINIO 5005 (AAAC)

|                                         | CALIB | RE      | HIL | os    | J                     | 1                       | l             | l .            | RESISTE | NCIA OHM | S - KM. |         |
|-----------------------------------------|-------|---------|-----|-------|-----------------------|-------------------------|---------------|----------------|---------|----------|---------|---------|
| CUDIGO<br>MUNDIAL                       | AWG   | KCM     | No. | DIAM. | DIAM.<br>TOTAL<br>mm. | SECCION<br>TOTAL<br>mm² | PESO<br>KG/KM | ESFUERZO<br>KG | CC 20°C | CA 25°C  | CA 50°C | CA 75°C |
|                                         | 6     | 26,24   | ,   | 1 55  | 4 60                  | 13 29                   | 37            | 359            | 2 4742  | 2.5152   | 2 7374  | 2.9515  |
| R.(/00                                  | 1.5   | 30 58   | 1 7 | 1 68  | 5 02                  | 15 50                   | 43            | 418            | 2.1215  | 2.1591   | 2 3462  | 2.5339  |
| - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | 4     | 4174    | 7   | 196   | 5.90                  | 21 26                   | 58            | 562            | 1.5546  | 1.5817   | 1.7191  | 1.8564  |
| KARI                                    |       | 48 68   | 7   | 2 12  | 6 35                  | 24 67                   | 68            | 648            | 1.5949  | 1.3555   | 1 4736  | 1 5910  |
| _ <u>=</u>                              | 2     | 66 38   | 7   | 247   | 7 41                  | 33 61                   | 93            | 875            | 0.9770  | 0.9950   | 1.0814  | 1.1878  |
| Kench                                   |       | 77.47   | 7   | 2.67  | 8 02                  | 39 25                   | 108           | 1006           | 0.8373  | 0.8527   | 0.9267  | 1.0000  |
| -                                       | 1/0   | 105.60  | ,   | 3.11  | 9 34                  | 53 48                   | 147           | 1334           | 0.6145  | 0.6259   | 0 6805  | 0.7346  |
| Kibe                                    |       | 123.30  | 7   | 3 37  | 10 10                 | 62.46                   | 172           | 1560           | 0.5263  | 0.5337   | 0.5823  | 0 6283  |
| -                                       | 2/0   | 133.10  | 7   | 3 50  | 10.51                 | 67.42                   | 186           | 1683           | 0 48 72 | 0 4966   | 0.5395  | 0.5823  |
| Kayak                                   |       | 155.40  | 7   | 3 78  | 11 35                 | 78 77                   | 217           | 1918           | 0 41 73 | 0 4251   | 0.4618  | 0 4991  |
| _                                       | 3/0   | 167 80  | 7   | 3 93  | 11 78                 | 85 03                   | 234           | 2064           | 0.3868  | 0.3940   | 0 4275  | 0.4618  |
| K opeck                                 | 1 1   | 195.70  | 7   | 4 24  | 12.75                 | 99.16                   | 273           | 2277           | 0.3314  | 0 3375   | 0 3667  | 0.3959  |
| -                                       | 4/0   | 21160   | 7   | 441   | 13.25                 | 107.23                  | 296           | 2463           | 0 3065  | 0 3126   | 0.3393  | 0.3661  |
| Kittle                                  |       | 246 90  | 7   | 4.77  | 14 30                 | 125 10                  | 345           | 2871           | 0.2628  | 0 2679   | 0.2909  | 0.3139  |
| · <del>-</del>                          |       | 250 00  | 19  | 291   | 14.57                 | 126.71                  | 349           | 3107           | O 2595  | 0 2648   | 0.2871  | 0 3101  |
| Ratch                                   |       | 281.40  | 19  | 3 09  | 15 46                 | 142.58                  | 393           | 3451           | 0.2306  | 0 2349   | 0.2554  | 0.2759  |
| - 1                                     |       | 300.00  | 19  | 3 19  | 15.97                 | 152.00                  | 419           | 3679           | 0 2163  | 0 2206   | 0 2393  | 0.2585  |
| Ramie                                   | !!!   | 312 80  | 19  | 3 25  | 16 30                 | 158 45                  | 437           | 3832           | 0.2074  | 0 2119   | 0 2300  | 0 2480  |
| -                                       | ĺ     | 350 00  | 19  | 3 4 4 | 17.24                 | 177.35                  | 483           | 4291           | 0.1854  | 0 1896   | 0.2057  | 0.2219  |
| Padai                                   |       | 355.10  | 19  | 3 47  | 17 37                 | 179 94                  | 496           | 4354           | 0.1828  | 0 1865   | 0 2026  | 0.2188  |
| Radian                                  |       | 394.50  | 19  | 3.66  | 18 31                 | 199 94                  | 551           | 4762           | 0.1644  | 0.1678   | 0.1827  | 0.1970  |
| - 1                                     |       | 400 00  | 19  | 3.68  | 18 44                 | 202.71                  | 559           | 4854           | 0.1621  | 0 1659   | 0 1796  | 0.1945  |
| Rede                                    | 1     | 419 60  | 19  | 3.77  | 18.87                 | 212,58                  | 586.          | 5080           | 0.1545  | 0 1579   | 0.1715  | 0.1852  |
| -                                       |       | 450.00  | 19  | 3.91  | 19.55                 | 228.00                  | 629           | 5352           | 0.1440  | 0.1479   | 0.1603  | 0.1728  |
| Pagout                                  |       | 465.50  | 19  | 3.97  | 19 88                 | 235.81                  | 650           | 5533           | 0.1394  | 0.1429   | 0.1548  | 0.1672  |
| -                                       |       | 500.00  | 19  | 4 12  | 20.59                 | 253.35                  | 699           | 5625           | 0.1299  | 0.1330   | 0.1442  | 0.1554  |
| Rex                                     |       | 503.60  | 19  | 4.13  | 20.67                 | 255.16                  | 703           | 5670           | 0.1289  | 0.1318   | 0.1429  | 0.1548  |
| -                                       | 1     | 550.00  | 37  | 3.96  | 21.66                 | 278 71                  | 768           | 6577           | 0.1178  | 0 1212   | 0.1311  | 0.1417  |
| Remex                                   |       | 559 50  | 19  | 4.36  | 21.79                 | 283.48                  | 782           | 6305           | 0.1158  | 0.1193   | 0.1293  | 0.1392  |
| Ruble                                   | 1     | 587 20  | 19  | 4 46  | 22.32                 | 297.54                  | 820           | 6622           | 0.1105  | 0.1137   | 0.1231  | 0.1324  |
| -                                       |       | 600 00  | 37  | 3.23  | 22.63                 | 304,00                  | 838           | 7112           | 0.1082  | 0.1112   | 0.1206  | 0.1299  |
| -                                       | ĺ     | 650.00  | 37  | 3.36  | 23.45                 | 329,35                  | 908           | 7802           | 0.0998  | 0.1022   | 0.1197  | 0.1197  |
| Rune                                    | ;     | 652 40  | 19  | 4.70  | 23.54                 | 330.52                  | 911           | 7348           | 0 0995  | 0.1025   | 0.1112  | 0.1199  |
| -                                       | - (   | 700 00  | 37  | 3,49  | 24.46                 | 354.71                  | 978           | 8392           | 0.0928  | 0 0957   | 0.1032  | 0.1112  |
| Spar                                    |       | 740 83  | 37  | 3.59  | 25.17                 | 375.35                  | 1035          | 8753           | 0.0876  | 0.0907   | 0.0976  | 0.1057  |
| - [                                     | ĺ     | 750.00  | 37  | 3.61  | 25 32                 | 380.00                  | 1048          | 8891           | 0.0867  | 0.0895   | 0.0970  | 0.1044  |
| - 1                                     | }     | 500 00  | 37  | 3,73  | 26.13                 | 405.35                  | 1118          | 9480           | 0.0811  | 0.0839   | 0.0907  | 0.0976  |
| - 1                                     | - 1   | 900.00  | 37  | 3.96  | 27.73                 | 456.06                  | 1257          | 10524          | 0.0722  | 0.0746   | 0.0808  | 0.0870  |
| Solat                                   | - 1   | 927.20  | 37  | 4.02  | 28,14                 | 469.81                  | 1295          | 10841          | 0.0699  | 0.0727   | 0.0789  | 0.0845  |
|                                         | ι     | 1000.00 | 37  | 4,17  | 29.23                 | 506,71                  | 1427          | 11022          | 0.0650  | 0.0677   | 0.0733  | 0.0789  |



# AMPACIDADES PARA CONDUCTORES CABLEADOS DE ALEACION DE ALUMINIO 5005 (AAAC)

| •                                | AMPACIO:        |           |     |                  | RESISTI<br>OHMS/N |        |          | REACTANCE<br>305 mm DE<br>ESPACIAMIE |                       |
|----------------------------------|-----------------|-----------|-----|------------------|-------------------|--------|----------|--------------------------------------|-----------------------|
| DESCRIPCION                      | SOL<br>NO VIENT | NO VIENTO | SOL | VIENTO<br>NO SOL |                   | AC 25° | AC 75° C | INDUCTIVA<br>OHMS/<br>1000 MTS.      | MEGOHMS-<br>1000 MTS. |
| 30.58 KCM<br>7 Strand<br>Kazoo   | 60              | 70        | 105 | 110              | 2.1214            | 2.1588 | 2.5361   | 0.3871                               | 2 4639                |
| 48 69 KCM<br>7 Strand<br>Kaki    | 85              | 95        | 145 | 150              | 1.3323            | 1.3583 | 1.5912   | 0.3675                               | 2.3458                |
| 77.47 KCM<br>7 Strand<br>Kench   | 120             | 135       | 190 | 205              | 0.8373            | 0.8530 | 1.0007   | 0.3510                               | 2.2244                |
| 123.3 KCM<br>7 Strand<br>Kibe    | 165             | 185       | 255 | 275              | 0.5262            | 0.5348 | 0.6299   | 0.3346                               | 2.1063                |
| 155.4 KCM<br>7 Strand<br>Kayak   | 190             | 220       | 300 | 315              | 0.4173            | 0.4275 | 0 4987   | 0.3245                               | 2.0472                |
| 195.7 KCM<br>7 Strand<br>Kopeck  | 225             | 260       | 345 | 3/0              | 0.3314            | 0,3379 | 0.3970   | 0.3159                               | 1.9882                |
| 246 9 KCM<br>7 Strand<br>Kittle  | 265             | 305       | 400 | 425              | 0.2627            | 0.2680 | 0.3143   | 0.3071                               | 1.9291                |
| 281 4 KCM<br>19 Strand<br>Ratch  | 290             | 335       | 435 | 465              | 0.2306            | 0.2352 | 0.2759   | 0.2979                               | 1.6898                |
| 312 8 KCM<br>19 Strand<br>Ramie  | 310 .           | 360       | 465 | 500              | 0.2074            | 0,2116 | 0.2454   | 0.2940                               | 1.8602                |
| 355.1 KCM<br>19 Strand<br>Radar  | 343             | 395       | 500 | 540              | 0.1827            | 0.1867 | 0.2188   | 0.2894                               | 1,8274                |
| 394 5 KCM<br>19 Strand<br>Radian | 365             | 425       | 535 | 580              | 0.1644            | 0.1680 | 0,1972   | C 2854                               | 1 8012                |
| 419 6 KCM<br>19 Strand<br>Rede   | 380             | 440       | 560 | 600              | 0,1546            | 0,1581 | 0,1854   | 0.2828                               | 1,7848                |
| 465 4 KCM<br>19 Strand<br>Ragout | 410             | 480       | 600 | 640              | 0.1394            | 0 1427 | 0 1673   | 0.2792                               | 1 7585                |
| 503 6 KCM<br>19 Strand<br>Rex    | 430             | 500       | 630 | 680              | 0 1288            | 0 1319 | 0 1549   | 0.2759                               | 1,7388                |
| 559 5 KCM<br>19 Strand<br>Rames  | 460             | 540       | 670 | 730              | 0.1159            | 0.1191 | 0.1394   | 0.2720                               | 4,7126                |
| 587 2 KCM<br>19 Strand<br>Ruble  | 480 .           | 560       | 690 | 750              | 0.1105            | 0.1135 | 0.1329   | 0.2703                               | 1.6995                |
| 652.4 KCM<br>19 Strand<br>Rune   | 520             | 610       | 740 | 800              | 0.0994            | 0.1024 | 0.1198   | 0.2664                               | 1.6732                |
| 740 8 KCM<br>37 Strand<br>Spar   | 560             | 660       | 800 | 870              | 0.0876            | 0.0906 | 0.1056   | 0,2602                               | 1.6371                |
| 927 2 KCM<br>37 Strand<br>Solar  | 650             | 770       | 910 | 1000             | 0.0699            | 0.0728 | 0.0850   | 0.2520                               | 1,5814                |

1

# RESISTENCIA NOMINAL A LA CORRIENTE DIRECTA DE CONDUCTORES DE ALUMINIO Y COBRE DESNUDO, CON CABLEADO COMPACTO CONCENTRICO.

Aluminio y Cobre desnudo, Cableado, Clases B, C y D.

| Catibre              | Λlum                          |                               | o <sup>®</sup> C Col:         | ire .                         | Alum                          | nio 25                        | °C Cobr                          |                               |
|----------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|----------------------------------|-------------------------------|
| en<br>AWG o          | otens por                     | otions<br>por km              | unns por<br>1000 pa           | ohms<br>por km,               | ohins por<br>1000 pic         | par km.                       | ohnis por<br>1000 jug            | por km.                       |
| 22<br>31<br>19       | 10.471                        |                               | 10.3                          | 33.9°°                        | :::                           |                               | 10.3                             | 34.6                          |
| 18<br>17<br>16       | :::                           |                               | 6.51<br>4. io                 | 21.4<br>13.4                  |                               |                               | 6.64<br>4.18                     | 21.8<br>13.7                  |
| 15<br>14<br>13       | :::                           |                               | 2.57<br>2.04                  | 3.45<br>6.69                  |                               |                               | 2.63<br>2.08                     | 8,61<br>6.83<br>5,42          |
| 12<br>11<br>10       | 2.66<br>2.11<br>1.670         | 8.71<br>6.92<br>5.479         | 1.62<br>1.29<br>1.019         | 5.32<br>4.22<br>3.342         | 2.71<br>2.15<br>1.704         | 8.89<br>7.06<br>5.590         | 1.65                             | 4,30<br>3,408                 |
| 9                    | 1.325                         | 4.347                         | 0.8083                        | 2.652                         | 1.352                         | 4,435                         | 0.8242                           | 2.704                         |
| 8                    | 1.050                         | 3.446                         | 0.6407                        | 2.102                         | 1.071                         | 3,515                         | 0.6532                           | 2.143                         |
| 7                    | 0.8328                        | 2.732                         | 0.5080                        | 1.667                         | 0.8496                        | 2,788                         | 0.5180                           | 1.700                         |
| 6<br>5<br>4          | 0.5241<br>0.4155              | 2.168<br>1.720<br>1.363       | 0.4031<br>0.3197<br>0.2534    | 1.322<br>1.049<br>0.8315      | 0.6741<br>0.5347<br>0.4239    | 2.212<br>1.754<br>1.391       | 0.4110<br>0.3260<br>0.2584       | 1.348<br>1.070<br>0.8479      |
| 3                    | 0 3293                        | 1.051                         | 0.2010                        | 0.6395                        | 0.3362                        | 1.103                         | 0.2050                           | 0.6725                        |
| 2                    | 0.2613                        | 0.8574                        | 0.1594                        | 0.5230                        | 0.2666                        | 0.8747                        | 0.1626                           | 0.5333                        |
| 1                    | 0.2072                        | 0.6798                        | 0.1264                        | 0.4147                        | 0.2114                        | 0.6935                        | 0.1289                           | 0.4228                        |
| 1/0                  | 0.1643                        | 0.5390                        | 0.1002                        | 0.3288                        | 0.1676                        | 0,5499                        | 0.1022                           | 0.3352                        |
| - 2/0                | 0.1303                        | 0.4275                        | 0.07949                       | 0.2608                        | 0.1329                        | 0,4362                        | 0.08105                          | 0.2659                        |
| 3/0                  | 0.1034                        | 0.3391                        | 0.06305                       | 0.2069                        | 0.1034                        | 0,3460                        | 0.06429                          | 0.2109                        |
| 4/0                  | 0.08196                       | 0.2689                        | 0.04999                       | 0.1640                        | 0.08361                       | 0,2743                        | 0.05098                          | 0.1672                        |
| 250                  | 0 06917                       | 0.2276                        | 0.04231                       | 0.1388                        | 0.07077                       | 0.2322                        | 0.04315                          | 0.1416                        |
| 300                  | 0.65781                       | 0.1497                        | 0.03526                       | 0.1157                        | 0.05897                       | 0.1935                        | 0.03595                          | 0.1180                        |
| 350                  | 0.04953                       | 0.1426                        | 0.03022                       | 0.09916                       | 0.05055                       | 0.1658                        | 0.03082                          | 0.1011                        |
| 400<br>450           | 0.04336                       | 0.1422<br>0.1264              | 0.02645                       | 0.08677<br>0.07713            | 0.04423<br>0.03931            | 0.1451<br>0.1290              | 0.02697<br>0.02397               | 0.08847<br>0.07864            |
| 5150<br>600          | 0.03368<br>0.03353<br>0.02890 | 0.1138<br>0.1034<br>0.2453    | 0.02116<br>0.01923<br>0.01763 | 0.06941<br>0.06310<br>0.05784 | 0.03538<br>0.03217<br>0.02949 | 0.1161<br>0.1055<br>0.09674   | 0.02157<br>0.01961<br>0.01798    | 0.0707#<br>0.06434<br>0.05898 |
| 650                  | 0.02668                       | 0.08753                       | 0.01627                       | 0.05340                       | 0.02722                       | 0.08930                       | 0.01659                          | 0.05444                       |
| 7W                   | 0.02477                       | 0.08128                       | 0.01511                       | 0.04958                       | 0.02527                       | 0.08292                       | 0.01541                          | 0.05056                       |
| 750                  | 0.02312                       | 0.07586                       | 0.01410                       | 0.04628                       | 0.02359                       | 0.07739                       | 0.01438                          | 0.04718                       |
| 008                  | 0.02168                       | 0.07112                       | 0.01322                       | 0.04338                       | 0.02211                       | 0.07255                       | 0.01348                          | 0.04424                       |
| 800                  | 0.01927                       | 0.06122                       | 0.01175                       | 0.03856                       | 0.01966                       | 0.06449                       | 0.01198                          | 0.03932                       |
| 800                  | 0.01734                       | 0.05690                       | 0.01058                       | 0.03471                       | 0.01769                       | 0.05804                       | 0.01079                          | 0.03539                       |
| 1100<br>1203<br>1250 | 0.01577<br>0.01445<br>0.01387 | 0 05172<br>0 04741<br>0 04552 | 0.009617<br>0.008463          | 0.03155<br>0.02892<br>0.02777 | 0.01608<br>0.01474<br>0.01415 | 0.05277<br>0.04837<br>0.04643 | 0.009806<br>0.008989<br>0.008629 | 0.03217<br>0.02949<br>0.02831 |
| 1300                 | 0.01334                       | 0.04377                       | 0.005137                      | 0.02670                       | 0.01361                       | 0.04465                       | 0.008297                         | 0.02722                       |
| 1400                 | 0.01239                       | 0.04064                       | 0.007556                      | 0.02479                       | 0.01264                       | 0.04146                       | 0.007705                         | 0.02528                       |
| 1300                 | 0.01156                       | 0.03793                       | 0.007052                      | 0.02314                       | 0.01179                       | 0.03870                       | 0.007191                         | 0.02359                       |
| 1700                 | 0.01084                       | 0.03556                       | 0.036612                      | 0.02169                       | 0.01106                       | 0.03628                       | 0.006742                         | 0.02212                       |
| 1700                 | 0.01020                       | 0.03347                       | 0.006223                      | 0.02042                       | 0.01041                       | 0.03414                       | 0.006345                         | 0.02082                       |
| 1730                 | 0.009910                      | 0.03251                       | 0.006045                      | 0.01983                       | 0.01011                       | 0.03317                       | 0.006164                         | 0.02022                       |
| 1800                 | 0 009534                      | 0.03161                       | 0.005877                      | 0.01928                       | 0.009829                      | 0.03225                       | 0.005992                         | 0.01966                       |
| 1900                 | 0.009127                      | 0.02995                       | 0.005568                      | 0.01827                       | 0.009311                      | 0.03055                       | 0.005677                         | 0.01863                       |
| 2000                 | 0.003571                      | 0.02945                       | 0.005289                      | 0.01735                       | 0.008846                      | 0.02902                       | 0.005393                         | 0.01769                       |
| 2500                 | 0.007005                      | 0.02293                       | 0.004273                      | 0.01402                       | 0.007146                      | 0.02344                       | 0.004357                         | 0.01429                       |
| 3000                 | 0.005837                      | 0.01913                       | 0.003561                      | 0.01168                       | 0.005955                      | 0.01954                       | 0.003631                         | 0.01191                       |
| 3500                 | 0.005052                      | 0.01657                       | 0.003052                      | 0.01011                       | 0.005154                      | 0.01691                       | 0.003142                         | 0.01031                       |
| 4000                 | 0.00421                       | 0.01450                       | 0.002697                      | 0.008847                      | 0.004510                      | 0.014R0                       | 0.002749                         | 0.009021                      |
| 4300                 | 0.013967                      | 0.01302                       | 0.672420                      | 0.007939                      | 0.004047                      | 0.01328                       | 0.002467                         | 0.008095                      |
| 3000                 | 0.003570                      | 0.01171                       | 0.602178                      | 0.007146                      | 0.003642                      | 0.01193                       | 0.002221                         | 0.007286                      |

FALLA DE ORIGEN

|                                         | 20                   | •                  | 25                   | •                    |
|-----------------------------------------|----------------------|--------------------|----------------------|----------------------|
| Calibre<br>en<br>AWG 6 KMC              | ohms por<br>1000 ft. | ohms<br>por km     | ohms por<br>1000 pie | ohms<br>porkm.       |
| 22                                      | 11.0                 | 36.0               | 11.2                 | 36.7                 |
| 19<br>18                                | 6.92                 | 22.7               | 7,03                 | 23. j                |
| i7<br>16                                | 4.35                 | 14.3               | 4.44                 | 14.6                 |
| iš<br>14                                | 2.68                 | 8.78               | 2.73                 | 8.96                 |
| 13<br>12                                | 2.12<br>1.69         | 6.96<br>5.53       | 2.16<br>1.72         | 7,10<br>5,64<br>4,47 |
| 11                                      | 1.34                 | 4.39               | 1.36                 | 3,544                |
| 10<br>9                                 | 1.059<br>0.8406      | 3.476<br>2.758     | 0.8571<br>0.6793     | 2.812<br>2.229       |
| *************************************** | 0.6662<br>0.5283     | 2.186<br>1.733     | 0.5387               | 1.767<br>1.402       |
| 6<br>5<br>4                             | 0.4192<br>0.3325     | 1.375              | 0.4274<br>0.3390     | 1.112                |
| 4 3                                     | 0.2636<br>0.2090     | 0.8647<br>0.6859   | 0.2688<br>0.2132     | 0.8817<br>0.6993     |
| 3<br>2<br>1                             | 0.1658<br>0.1314     | 0.5439<br>0.4312   | 0.1690<br>0.1340     | 0.5546<br>0.4397     |
| 1/0                                     | 0.1042               | 0.3419<br>0.2712   | 0.1063<br>0.08429    | 0.3486<br>0.2765     |
| 2/0<br>3/0                              | 0.08267<br>0.06557   | 0.2151             | 0.06686<br>0.05247   | 0.2194<br>0.1721     |
| 4/0<br>250                              | 0.05145<br>0.04400   | 0.1688<br>0.1444   | 0.04487              | 0.1472<br>0.1227     |
| 300<br>350                              | 0.03667<br>0.03143   | 0.1203<br>0.1031   | 0.03739<br>0.03205   | 0.1051               |
| 400<br>450                              | 0.02722<br>0.02419   | 0.08930<br>0.07938 | 0.02775<br>0.02467   | 0.09106<br>0.05094   |
| 500<br>550                              | 0.02178<br>0.02000   | 0.07144<br>0.06562 | 0.02220<br>0.02039   | 0.07285<br>0.06691   |
| 600<br>650                              | 0.01334<br>0.01675   | 0.06015            | 0.01870<br>0.01703   | 0.06134<br>0.05603   |
| 700                                     | 0.01555              | 0.05103            | 0.01586<br>0.01480   | 0.05203<br>0.04856   |
| 750<br>800                              | 0.01452<br>0.01361   | 0.04465            | 0.01388              | 0.04553<br>0.04047   |
| 900<br>1000                             | 0.01210<br>0.01089   | 0.03969<br>0.03572 | 0.01234<br>0.01110   | 0.03642              |
| 1100<br>1200                            | 0.009898             | 0.03247<br>0.02977 | 0.01009<br>0.009251  | 0.03311<br>0.03035   |
| 1250                                    | 0.008710             | 0.02858            | 0.008881<br>0.008540 | 0.02914<br>0.02802   |
| 1300<br>1400                            | 0.008375<br>0.007777 | 0.02551            | 0.007930             | 0.02602              |
| 1500<br>1600                            | 0.007258<br>0.006805 | 0.02381<br>0.02233 | 0.007401<br>0.006939 | 0.02428<br>0.02276   |
| 1700<br>1750                            | 0.006405<br>0.006222 | 0.02101<br>0.02041 | 0.006530<br>0.006344 | 0.02143<br>0.02081   |
| 1800                                    | 0.006049             | 0.01934            | 0,006168             | 0.02023              |
| 1900<br>2000                            | 0.005730<br>0.005444 | 0.01860<br>0.01786 | 0.005843<br>0.005551 | 0.01917<br>0.01821   |
| · 2500<br>3000                          | 0.004398<br>0.003665 | 0.01443<br>0.01202 | 0.004484<br>0.003737 | 0.01471<br>0.01226   |
| 3500                                    | 0.003172             | 0.01041            | 0.003234<br>0.002830 | 0.01061              |
| 4500<br>5000                            | 0.002491<br>0.002242 | 0.003171           | 0.002540<br>0.002286 | 0.008332<br>0.007499 |
| ~~~                                     | 0.002242             | 0.00.354           |                      |                      |

# - CARACTERISTICAS FISICAS Y ELECTRICAS DE LOS CABLES DE ALUMINIO REFORZADO EN ACERO (ACSR)

| CODIGO                                              | AREA                                       | NOMINAL                                                  | EQUIV                                     | ALENTE                              | NUMERO Y                                            | DIAMETRO                                                  | DIAMETRO                                  | RESISTENCIA                                    | PESO                                                |
|-----------------------------------------------------|--------------------------------------------|----------------------------------------------------------|-------------------------------------------|-------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|------------------------------------------------|-----------------------------------------------------|
| MUNDIAL                                             | ALUM                                       | INIO                                                     | COBRE                                     | DURO                                | ALUMINIO                                            | ACERO                                                     | TOTAL<br>APROX                            | CC 20°C                                        | NOMINAL                                             |
|                                                     | mm <sup>3</sup>                            | AWG & KCM                                                | mm 1                                      | AWG & KCM                           | mm                                                  | mm                                                        | mm                                        | OHM/KM                                         | KG/KM                                               |
| Turkay                                              | 10 58<br>10 58<br>13 28<br>16 78           | 7                                                        | 5 26<br>6 36<br>8 38<br>10 58             | 10<br>9<br>8<br>7                   | 6x 1 33<br>6x 1 49<br>6x 1 68<br>6x 1 89            | 1±1 33<br>1±1 33<br>1±1 68<br>1±1 89                      | 4 01<br>4 49<br>5 03<br>5 66              | 3 42<br>2.71<br>2.15<br>1.71                   | 33.78<br>42.00<br>53.42<br>67.62                    |
| Swanate                                             | 21 15                                      | -4                                                       | 13 28                                     | 6                                   | 6x112                                               | 1x2.12                                                    | 6 35                                      | 1.36                                           | 84.95                                               |
| Sparrow<br>Sparate<br>Robin                         | 26 69<br>33 65<br>33 65<br>42 48           | 3<br>2<br>2<br>1                                         | 16.78<br>21.15<br>21.15<br>26.69          | 5<br>4<br>4<br>3                    | 6x2.38<br>6x2.67<br>7x2.47<br>6x3.00                | 1×2.38<br>1×2.67<br>1×3.30<br>1×3.00                      | 7 14<br>8 03<br>8 25<br>9 02              | 1.36<br>1.08<br>0.853<br>0.853<br>0.677        | 99.16<br>108.00<br>135.12<br>157.91<br>170.49       |
| Raven<br>Quail<br>Pigeon<br>Penguin<br>Owl          | 53.54<br>67.50<br>84.99<br>107.20<br>135.2 | 1/0<br>2/0<br>3/0<br>4/0<br>266 B                        | 33.65<br>42.48<br>54.54<br>67.50<br>84.99 | 2<br>1<br>1/0<br>2/0<br>3/0         | 6×3.37<br>6×3.78<br>6×4.25<br>6×4.77<br>6×5.35      | 1×3 37<br>1×3.78<br>1×4 25<br>1×4.77<br>7×1.78            | 10.11<br>11.35<br>12.75<br>14.30<br>16.08 | 0.536<br>0.426<br>0.337<br>0.268<br>0.214      | 214.89<br>270.98<br>341.72<br>430.2<br>509.8        |
| Partridge<br>Ostrich<br>Linnet<br>Oriole            | 135.2<br>152.0<br>152.0<br>170.6           | 266 8<br>300 0<br>300 0<br>336.4<br>336.4                | 84 99<br>95.6<br>95.6<br>107 2<br>107.2   | 3/0<br>188 7<br>188 7<br>4/0<br>4/0 | 26×2.57<br>26×2.12<br>30×2.54<br>26×2.89<br>30×2.69 | 7×2.00<br>7×2.12<br>7×2.54<br>7×2.25<br>7×2.69            | 16.31<br>17 27<br>17.78<br>18.31<br>18.82 | 0.214<br>0.191<br>0.191<br>0.170<br>0.170      | 543.60<br>610.79<br>698.4<br>685.24<br>780.10       |
| lbis<br>Lark<br>Hawk<br>Hen                         | 201 3<br>201 3<br>241 9<br>241 9<br>253 1  | 397 5<br>397 5<br>477 0<br>477.0<br>500.0                | 126.8<br>126.8<br>152.0<br>152.0<br>159.7 | 250<br>250<br>300<br>300<br>315     | 26x3.14<br>30x2.92<br>26x3.44<br>30x3.20<br>30x3.28 | 7×2.44<br>7×2.92<br>7×2.68<br>7×3.20<br>7×3.28            | 19 89<br>20 47<br>21 79<br>22 43<br>22 96 | 0.144<br>0.144<br>0.120<br>0.120<br>0.114      | 809.41<br>921.74<br>972.36<br>1103.56<br>1162.2     |
| Dove<br>Eagle<br>Duck<br>Grosbeak<br>Egret          | 282 0<br>282 0<br>306.5<br>322 3<br>372 3  | 556 5<br>556 5<br>605 0<br>636 0<br>636 0                | 177 6<br>177 6<br>192.5<br>202.6<br>202.6 | 350<br>350<br>380<br>400<br>400     | 26x3.72<br>30x3.46<br>54x2.69<br>26x3.97<br>30x3.70 | 7×2.89<br>7×3.46<br>7×2.69<br>7×3.09<br>19×2.22           | 23.54<br>24.20<br>24.20<br>25.14<br>25.88 | 0.103<br>0.103<br>0.0945<br>0.0899<br>0.0901   | 1133.68<br>1290.56<br>1159.3<br>1295.00<br>1462.24  |
| Flamingo<br>Starling<br>Redwing                     | 322.3<br>337.7<br>337.7<br>362.6<br>362.6  | 636.0<br>666.6<br>666.6<br>715.5<br>715.5                | 202.6<br>212.8<br>212.8<br>228.0<br>228.0 | 400<br>420<br>420<br>450<br>450     | 54x2.75<br>24x4.23<br>54x2.82<br>26x4.21<br>30x3.92 | 7 x 2.75<br>7 x 2.82<br>7 x 2.82<br>7 x 3.27<br>19 x 2.36 | 24,81<br>25,40<br>25,40<br>26,29<br>27,46 | 0.0901<br>0.0856<br>0.0856<br>0.0797<br>0.0797 | 1217<br>1291,32<br>1276<br>1457,80<br>1644,28       |
| Crow<br>Drake<br>Mailard<br>Tern<br>Condor          | 362.6<br>403.0<br>403.0<br>403.0<br>403.0  | 715.5<br>795.0<br>795.0<br>795.0<br>795.0                | 228 0<br>253.1<br>253.1<br>253.1<br>253.1 | 450<br>500<br>500<br>500<br>500     | 54x2.92<br>26x4 44<br>30x4.13<br>45x3.37<br>54x3.08 | 7×2.92<br>7×3 47<br>19×2.48<br>7×2.25<br>7×3.08           | 26.31<br>28.14<br>28.95<br>27.00<br>27.76 | 0.0797<br>0.0718<br>0.0718<br>0.0718<br>0.0718 | 1372<br>1619.1<br>1827<br>1326.00<br>1515.52        |
| Crane<br>Canary<br>Rail<br>Cardinal<br>Ortolan      | 4435<br>455.2<br>483.3<br>483.3<br>524 1   | 874.5<br>900.0<br>954.0<br>954.0<br>1033.5               | 279.3<br>286.3<br>303.7<br>303.7<br>328.8 | 550<br>565<br>600<br>600<br>650     | 54x3,23<br>54x3,28<br>45x3,70<br>54x3,37<br>45x3,85 | 7×3.23<br>7×3.28<br>7×2.46<br>7×3.37<br>7×2.57            | 29,11<br>29,51<br>29,59<br>30,37<br>30,81 | 0.0653<br>0.0633<br>0.0597<br>0.0597<br>0.0561 | 1677<br>1719.32<br>1591.00<br>1818.92<br>1724.20    |
| Curlew<br>Bluejay<br>Finch<br>Bunting<br>Grackle    | 564 2<br>605 2                             | 1033.5<br>1113.0<br>1113.0<br>1192.5<br>1192.5           | 328.8<br>354.2<br>354.2<br>379.3<br>379.3 | 650<br>700<br>700<br>750<br>750     | 54x3,51<br>45x3,99<br>54x3,65<br>45x4,13<br>54x3,77 | 7x3.51<br>7x2.66<br>19x2.19<br>7x2.75<br>19x2.26          | 31.65<br>31.98<br>32.84<br>33.07<br>33.86 | 0.0551<br>0.0511<br>0.0511<br>0.0479<br>0.0479 | 1969.88<br>1857.40<br>2117.88<br>1989.12<br>2268.84 |
| Bittern<br>Pheasant<br>Dipper<br>Martem<br>Boboline | 644.7<br>684.8<br>684.8                    | 1271.0<br>1271.0<br>1351.5<br>1431.0<br>1431.0           | 404 6<br>404.6<br>431.2<br>455.2<br>455.2 | 800<br>800<br>851<br>900<br>900     | 45x4.27<br>54x3.90<br>45x4.40<br>45x4.53<br>45x4.53 | 7×2.84<br>19×2.34<br>7×2.92<br>7×3.02<br>7×3.02           | 34.16<br>35.10<br>35.20<br>36.24<br>36.24 | 0.0449<br>0.0449<br>0.0423<br>0.0400<br>0.0400 | 2122,32<br>2419.80<br>2252.56<br>2570.76<br>2387.24 |
|                                                     | 765 8<br>765 8<br>805.7                    | 1431.0<br>1510.5<br>1510.5<br>1510.5<br>1590.0<br>1590.0 | 455.2<br>481.3<br>481.3<br>505.8<br>505.8 | 900<br>950<br>950<br>1000<br>1000   | 54×4.13<br>45×4.65<br>54×4.25<br>45×4.77<br>54×4.36 | 19x2.48<br>7x3.10<br>19x2.55<br>7x3.18<br>19x2.61         | 37.21<br>37.24<br>38.25<br>38.15<br>39.24 | 0.0400<br>0.0377<br>0.0377<br>0.0357<br>0.0357 | 2723,20<br>2518,96<br>2874,16<br>2652,16<br>3025,12 |

# AMPACIDADES DE LOS CABLES DE ALUMINIO REFORZADO EN ACERO (ACSR)

|               | DIGO                                                    | CALIBRE                                                | CABLEADO<br>AL/ACERO                                               | AMPACIDAL                                                       | D.*                                                       |                                                             |                                                                    | RESISTE                                                                                          | NCIA                                                                                            |                                                                                                  |         | EACTANCIA<br>15 mm, DE ES  | A 80 Hz<br>PACIAMIENTO                                                                           |
|---------------|---------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------|----------------------------|--------------------------------------------------------------------------------------------------|
|               |                                                         |                                                        | . XX                                                               | SOL<br>NO VIENTO                                                | NO VIENTO                                                 | SOL                                                         | NO SOL                                                             | DC 20°C                                                                                          | AC 25°C                                                                                         | AC 75°C                                                                                          | õ       | DUCTIVA<br>MS/KM           | CAPACITIVA<br>MEGOHME<br>POR KM                                                                  |
| <u> </u>      |                                                         | 2250000                                                | <b></b>                                                            | <b> </b>                                                        | <del></del>                                               |                                                             | ·                                                                  | 1                                                                                                |                                                                                                 |                                                                                                  | -       | °C 75°C                    | <u> </u>                                                                                         |
| <b>5ρ</b> ε   | en<br>enete<br>errow<br>erate<br>bin<br>en<br>en<br>eil | 8<br>4<br>4<br>2<br>2<br>1<br>1/0<br>2/0<br>3/0<br>4/0 | 6/1<br>6/1<br>7/1<br>6/1<br>7/1<br>6/1<br>6/1<br>6/1<br>6/1<br>6/1 | 60<br>85<br>85<br>115<br>115<br>130<br>150<br>175<br>215<br>215 | 70<br>95<br>130<br>130<br>150<br>175<br>206<br>242<br>217 | 105<br>140<br>140<br>185<br>185<br>210<br>240<br>275<br>3'5 | 110<br>145<br>145<br>195<br>195<br>220<br>255<br>295<br>340<br>390 | 2.1135<br>1.3278<br>1.3136<br>0.8343<br>0.8251<br>0.6621<br>0.5243<br>0.4160<br>0.3304<br>0.2618 | 2.1489<br>1.3550<br>1.3386<br>0.8530<br>0.8432<br>0.6753<br>0.538<br>0.4265<br>0.3379<br>0.2687 | 2.6837<br>1.7159<br>1.7388<br>1.1089<br>1.1188<br>0.8891<br>0.7152<br>0.5807<br>0.4692<br>0.3839 | 0000000 | 3937                       | 25 2.3458<br>2 3.327<br>57 2.2244<br>12 2.2113<br>13 2.1654<br>11 2.1063 1<br>10 2.0472<br>19882 |
|               |                                                         | 1                                                      | 1                                                                  | AN IDAC                                                         |                                                           |                                                             |                                                                    | G-NSISTER<br>G-NSIKN                                                                             | A                                                                                               |                                                                                                  | _       | 305 mm. DI                 |                                                                                                  |
|               | DIGO<br>NDIAL                                           | CALIBRE                                                | CABLEADO<br>AL/ACERO                                               | SO. 'u                                                          | NO VIENTO                                                 | SOL<br>VIENTO                                               | NO SOL                                                             | zehi e D                                                                                         | 25°C C.A                                                                                        | 75° (                                                                                            | •       | INDUCTIV<br>CHMS 12R       | CAPACITIVA                                                                                       |
| Wez           | ridge                                                   | 266,800<br>266,800                                     | 18/1                                                               | 300<br>305                                                      | 145<br>355                                                | 41                                                          | 450<br>490                                                         | G 2 19<br>G 2098                                                                                 | () 2169<br>() 214F                                                                              | 0.25                                                                                             |         | 0 2559<br>0.2890           | 1 8898<br>1 8602                                                                                 |
| Os1           | ich .                                                   | 100 000<br>336 400                                     | 26/7                                                               | 330<br>350                                                      | 390<br>435                                                | 4                                                           | 530                                                                | 0 1917                                                                                           | 6 1966<br>6 17 G                                                                                | 0.2287                                                                                           |         | 0 2844                     | 1 9307<br>1 8274                                                                                 |
| Lien          | <b>W</b> 1                                              | 336 400                                                | 26:7                                                               | 360                                                             | 420                                                       | 530                                                         | 570                                                                | 0 1644                                                                                           | 0.16.5                                                                                          | 0.204                                                                                            | ĺ       | 0.2871                     | 1 8012                                                                                           |
| Orio          | sie<br>Sacies                                           | 336,400<br>397,500                                     | 30/7                                                               | 200                                                             | 425                                                       | 530<br>575                                                  | 623                                                                | 3.1                                                                                              | 0 10                                                                                            | 0 2021                                                                                           |         | 0 2765<br>0 2808           | 1 7881                                                                                           |
| Ibis          |                                                         | 397,500                                                | 26/7                                                               | 435                                                             | 470                                                       | 590                                                         | 640                                                                | 0 1271                                                                                           | 0 1444                                                                                          | 01/25                                                                                            |         | 0 2739                     | 1 7585                                                                                           |
| Lark<br>Pelic | an i                                                    | 397,560<br>477,000                                     | 18/1                                                               | 440                                                             | 475<br>570                                                | 590<br>640                                                  | 700                                                                | 0 1.33                                                                                           | 0 1212                                                                                          | 01716                                                                                            |         | 0.2700<br>0.2739           | 1.7454                                                                                           |
| Fish          | k er                                                    | 477,000<br>477,000                                     | 24/7                                                               | 450<br>460                                                      | 530<br>540                                                | 670<br>660                                                  | 710                                                                | 0 113                                                                                            | 0 1207                                                                                          | 0 1444                                                                                           |         | 0 2684<br>3 2871           | 1.7192                                                                                           |
| Hen           |                                                         | 477 000                                                | 30/7                                                               | 460                                                             | 540                                                       | 660                                                         | 720                                                                | 0 1166                                                                                           | 2 1191                                                                                          | 01421                                                                                            |         | 0 2634                     | 1.6952                                                                                           |
| Paral         | ev.                                                     | 556 500<br>556 500                                     | 18/1                                                               | 490<br>500                                                      | 580<br>590                                                | 710                                                         | 770<br>790                                                         | 0 1015                                                                                           | 0 1023                                                                                          | 0 1247                                                                                           |         | 0 2684<br>C 2628           | 1 6995                                                                                           |
| Dave          | ·                                                       | 556.500                                                | 26/7                                                               | 510                                                             | 600                                                       | 730                                                         | 790                                                                | 0 1006                                                                                           | 0 1033                                                                                          | 0 1237                                                                                           | 1       | 0.26(9                     | 1 6732                                                                                           |
| Eagk<br>Peau  | ock                                                     | 556,500<br>605,000                                     | 3017                                                               | 510<br>530                                                      | 600<br>630                                                | 730<br>760                                                  | 800                                                                | 0 0999                                                                                           | 0 1027<br>0 0955                                                                                | 0 1227                                                                                           |         | 0 2579<br>0 2598           | 1 6568                                                                                           |
| Suna          | ю [                                                     | 505 000<br>605 000                                     | 26/7<br>30/19                                                      | 540<br>540                                                      | 630<br>640                                                | 760<br>770                                                  | 830<br>840                                                         | 0 0926                                                                                           | 0 951                                                                                           | 01135                                                                                            | Į       | 0.2579                     | 1 6503                                                                                           |
| Teal<br>Rool  | t j                                                     | 636,000                                                | 24/7                                                               | 550                                                             | 650                                                       | 780                                                         | 860                                                                | 0 0884                                                                                           | 0 09/06                                                                                         | 0 1083                                                                                           | - 1     | U 2579                     | 1 6470                                                                                           |
| Gros          |                                                         | 636,000<br>636,000                                     | 26'7<br>30'19                                                      | 560<br>560                                                      | 660<br>660                                                | 790<br>790                                                  | 860<br>870                                                         | 0 0880                                                                                           | 0 09U2<br>0 0H99                                                                                | 01079                                                                                            | j       | 0 2559<br>0 2523           | 1 6371                                                                                           |
| Flare         | ninga                                                   | 666 500                                                | 2417                                                               | 570                                                             | 670                                                       | 610                                                         | B80                                                                | 0 0843                                                                                           | 0 086 :                                                                                         | 0 1037                                                                                           | - {     | 0 2559                     | 1 6339                                                                                           |
| Start         |                                                         | 715 500                                                | 25/7                                                               | 600<br>610                                                      | 700<br>710                                                | 840<br>850                                                  | 920<br>930                                                         | 0 0786                                                                                           | 0.0810                                                                                          | 0.0968                                                                                           | - (     | 0 2529<br>0 2516           | 1 6142                                                                                           |
| Redv          | wing ]                                                  | 715 500                                                | 30/19                                                              | 610                                                             | 720                                                       | 860                                                         | 940                                                                | 0 0 2 78                                                                                         | 0.080:                                                                                          | 0.0955                                                                                           | - 1     | 0.2480                     | 1 5945                                                                                           |
| Conc          |                                                         | 795.000<br>795.000                                     | 45/7<br>54/7                                                       | 630<br>640                                                      | 750<br>760                                                | 990<br>900                                                  | 970                                                                | 0 0713                                                                                           | 0.0728                                                                                          | 0 0879                                                                                           | 1       | 0 2523<br>0.2487           | 1 6010<br>1 5879                                                                                 |
| Drak          |                                                         | 795 000<br>795 000                                     | 26/7<br>30/19                                                      | 650<br>660                                                      | 770                                                       | 910<br>510                                                  | 1000                                                               | 0.0704                                                                                           | 0 0729                                                                                          | 0 08/39                                                                                          | - 1     | 0.24B0<br>0.2441           | 1 5814                                                                                           |
| Cran          |                                                         | E14 500                                                | 14/7                                                               | 690                                                             | 810                                                       | 960                                                         | 1050                                                               | 0.0642                                                                                           | J 2656                                                                                          | D C 794                                                                                          | - 1     | 0 2454                     | 15617                                                                                            |
| Cana<br>Pan   | ** }                                                    | 950 000<br>954 000                                     | 54/7<br>45/7                                                       | 700                                                             | 830                                                       | 950<br>970                                                  | 1050                                                               | 0.0625                                                                                           | 0.0646                                                                                          | 0 0771<br>0 073H                                                                                 | - 1     | 0 2441<br>0 2454           | 1 5551                                                                                           |
| Card          |                                                         | 974 000                                                | 54/7                                                               | 130                                                             | 370                                                       | 990                                                         | 1090                                                               | 0.0589                                                                                           | 0.0614                                                                                          | 0 0732                                                                                           | - 1     | 0.2425                     | 1 5420                                                                                           |
| Curi          | 100                                                     | 1 023 500                                              | 45/7<br>54/7                                                       | 760                                                             | 900<br>910                                                | 1020                                                        | 1150                                                               | 0.0549                                                                                           | 0.0574                                                                                          | 0.0676                                                                                           | - 1     | 0.2425<br>0.2392           | 115322                                                                                           |
| Blues         | 101                                                     | 11.000                                                 | 45.7                                                               | 79°. i                                                          | 940                                                       | 1070                                                        | 1170                                                               | 0.6559                                                                                           | 0.0516                                                                                          | 0.0636                                                                                           | 1       | C 2398                     | 1 5125                                                                                           |
| Finct         |                                                         | 1 1 2 500                                              | 54/19<br>45/7                                                      | 8                                                               | 990                                                       | 1090                                                        | 1240                                                               | C 0475                                                                                           | 0.0507                                                                                          | 0 0594                                                                                           | - {     | 0 2362<br>0 2372           | 1 4961                                                                                           |
| Groci         | s le                                                    | 1 1 12 500                                             | 54/19                                                              | 8-0<br>870                                                      | 1010                                                      | 1130                                                        | 1260                                                               | C 1,474<br>0 0446                                                                                | 0.0495                                                                                          | 3 0561                                                                                           | ŧ       | 0 2372<br>C.2336<br>O 2349 | 1.4829                                                                                           |
| Phoe          | ion:                                                    | 12/2000                                                | 43.7<br>54/19                                                      | H90                                                             | 1050                                                      | 1180                                                        | 1320                                                               | 0:444                                                                                            | 0 0466                                                                                          | 0.0554                                                                                           | - [     | 0 2313                     | 1 4955                                                                                           |
| D po          |                                                         | 1.351 500                                              | 45/7<br>54/19                                                      | 900<br>970                                                      | 1000                                                      | 1210                                                        | 1340                                                               | 0 0418                                                                                           | 0.0449                                                                                          | 0.0528                                                                                           | - 1     | 0.2323                     | 1 4565                                                                                           |
| Bobo          | hnk }                                                   | 1 4 31 000                                             | 45.7                                                               | 940 [                                                           | 1120                                                      | 1250                                                        | 1290 [                                                             | 0 0396                                                                                           | 0.04.7                                                                                          | 0.0502                                                                                           | - }     | 0.2305                     | 114501                                                                                           |
| Nuth          |                                                         | 1,510,500                                              | 54/19<br>45:7                                                      | 95C<br>970                                                      | 1140                                                      | 1270                                                        | 1420                                                               | 0 0 395                                                                                          | 0 0417                                                                                          | 0.0495                                                                                           | - 1     | 0 2267<br>0 2280           | 1.4337                                                                                           |
| Parto         | . [                                                     | 1,510 500                                              | 9/12                                                               | 1990 I                                                          | 1180 Î                                                    | 1320                                                        | 1470                                                               | 0 6374                                                                                           | 0 040C                                                                                          | 3 0472                                                                                           | - [     | 0 2251<br>0 2260           | 1 4206                                                                                           |
| Lapw<br>Falco | m I                                                     | 1,590,000                                              | 4477<br>5415                                                       | 1010                                                            | 1200<br>1230                                              | 1340                                                        | 1490                                                               | 0 0.156                                                                                          | 0 0387<br>C 0381                                                                                | 0.0458                                                                                           | - 1     | 0 2224                     | 1 4108                                                                                           |
| Chuk          | ar ]                                                    | 1,750,000                                              | E4/19<br>E4/19                                                     | 1090                                                            | 1300                                                      | 1440                                                        | 13CC<br>1810                                                       | 0 0319                                                                                           | 0.0348                                                                                          | 0 0410                                                                                           | 1       | 0 2205                     | 1 3911                                                                                           |
| Kiwi          |                                                         | 2.167 000                                              | 72/7                                                               |                                                                 | 1160                                                      | 1600                                                        | 1790                                                               | 0 0 2 6 3                                                                                        | 0 0299                                                                                          | 0.0348                                                                                           | - 1     | 0.2162                     | 1.3550                                                                                           |

\*Basada en una temperatura máxima en el conductor de 75°C y una temperatura ambiente de 25°C

# FORMACION GEOMETRICA DE CABLES COPPERWELD



Tipo "EK"

4 alambres copperweid
15 alambres de cobre



Tipo "E" 7 alambres copperweld 12 alambres de cobre



Cableado cooperweld 19 alambres



Tipo "F" 1 alambre copperweld 6 alambres de cobre



Tipo "G" 2 alambres copperweld 5 alambres de cobre



TIPO "J"

3 alambres de copperweld

4 alambres de cobre



Tipo "K"
4 alambres copperweld
3 alambres de cobre



Tipo "N" 5 alambres copperweld 2 alambres de cobre



Tipo "P" 6 alambres copperweld 1 alambre de cobre



Cabinedo copperweld



Tipo "A" 1 alambre co:werweld 2 alambres de cobre



Tipo "O"
2 alambres copperweld
1 alambre de cobre



Cableado copperweld 3 alambres



# CARACTERISTICAS FISICAS Y ELECTRICAS DEL ALAMBRE Y CABLE DESNUDOS COPPERWELD

| DIAMETRO NOMINAL                                                           |                              | TRO DEL                          | CARGA                             | DE RUPT                           | URA KG                             | PESO                            | RESIST                               |                                      | SECCION                          |  |
|----------------------------------------------------------------------------|------------------------------|----------------------------------|-----------------------------------|-----------------------------------|------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|----------------------------------|--|
| (PULGADA)<br>CALIBRE                                                       | CONDL                        | ICTOR                            | ALTA F                            | OTENCIA                           | EXTRA ALTA<br>POTENCIA             | ]                               | C.C. A 2                             | or KM.<br>oc.                        | mm²                              |  |
| AWG                                                                        | mm.                          | PULG.                            | 40%<br>COND.                      | 30%<br>COND.                      | 30%<br>COND.                       | Kg/Km                           | 40%<br>COND.                         | 30%<br>COND.                         | ]-                               |  |
| ALAMBRE:                                                                   |                              |                                  |                                   |                                   |                                    |                                 |                                      |                                      |                                  |  |
| No. 4                                                                      | 5.189<br>4.620               | 0.2043                           | 1,606                             | 1,784                             | 2,119<br>1,775                     | 172.3<br>136.7                  | 2,079<br>2.621                       | 2.771<br>3.494                       | 21.15<br>16.77                   |  |
| (0.165)<br>6<br>7                                                          | 4.191<br>4.115<br>3.665      | 0.1650<br>0.1620<br>0.1443       | 1,144<br>1,104<br>.912            | 1,261<br>1,216<br>1,001           | 1,528<br>1,473<br>1,216            | 112.4<br>108.4<br>85.97         | 3.187<br>3.307<br>4.167              | 4,249<br>4 406<br>5.558              | 13,79<br>13.30<br>10.55          |  |
| 8<br>(0.128)<br>9                                                          | 3.264<br>3.251<br>2.906      | 0 1285<br>0 1280<br>0 1144       | 753<br>747<br>621                 | 823<br>817<br>676                 | 1,000<br>992<br>-                  | 68.17<br>67.67<br>54.66         | 5.256<br>5.295<br>6.627              | 7 008<br>7.060<br>8 835              | 8.368<br>8.303<br>6.632          |  |
| (0.104)<br>10<br>12                                                        | 2.642<br>2.588<br>2.053      | 0.1040<br>0.1019<br>0.08081      | 534<br>513<br>356                 | 582<br>558<br>-                   | -                                  | 44 66<br>42.87<br>26.97         | 8.022<br>8.356<br>13.29              | 10.70<br>11.14                       | 5 481<br>5.261<br>3.309          |  |
| (0 080)                                                                    | 2.032                        | 0.0800                           | 349                               |                                   | -                                  | 26.43                           | 13.56                                |                                      | 3.243                            |  |
| CABLE:                                                                     |                              |                                  |                                   |                                   |                                    |                                 |                                      |                                      |                                  |  |
| 7/8 {19, No. 5}<br>13/16 (19, No. 6)<br>23/32 (19, No. ?)                  | 23 1<br>20.6<br>18.3         | 0.910<br>0.810<br>0.721          | 22,790<br>18,870<br>15,600        | 25,210<br>20,790<br>17,120        | 30,350<br>25,190<br>20,800         | 2634<br>2088<br>1656            | 0.1399<br>0.1764<br>0.2224           | 0.1865<br>0.2352<br>0.2966           | 318.7<br>252.7<br>200.5          |  |
| 21/32 (19, No. 8)<br>9/16 (19, No. 9)                                      | 16.3<br>14.5                 | 0 642<br>0.572                   | 12,870<br>10,610                  | 14,080<br>11,570                  | 17,100<br>13,880                   | 1314<br>1042                    | 0.2805<br>0.3537                     | 0,3740<br>0.4715                     | 159.0<br>126.1                   |  |
| 5/8 ( 7, No. 4)<br>9/16 ( 7, No. 5)<br>1/2 ( 7, No. 6)<br>7/16 ( 7, No. 7) | 15 6<br>13.9<br>12.3<br>11.0 | 0.613<br>0.546<br>0.486<br>0.433 | 10.120<br>8,396<br>6,954<br>5,747 | 11,240<br>9,285<br>7,661<br>6,309 | 13,350<br>11,180<br>9,280<br>7,661 | 1219<br>966.4<br>766.4<br>607.8 | 0.3000<br>0.3783<br>0.4770<br>0.6014 | 0.3999<br>0.5043<br>0.6358<br>0.8018 | 148.1<br>117.4<br>93.10<br>73.87 |  |
| 3/8 ( 7, No. 8)<br>11/32 ( 7, No. 9)<br>5/16 ( 7, No. 10)                  | 9.78<br>8.71<br>7.77         | 0.385<br>0.343<br>0.306          | 4,745<br>3,908<br>3,230           | 5,189<br>4 261<br>3,519           | 6,300<br>5,117<br>4,171            | 482.0<br>382.3<br>303.1         | 0.7585<br>0.9564<br>1.206            | 1.011<br>1,275<br>1,608              | 58.56<br>46.44<br>36.83          |  |
| 3, No. 5<br>3, No. 6<br>3, No. 7                                           | 9.96<br>8.86<br>7.90         | 0.392<br>0.349<br>0.311          | 3,798<br>3,145<br>2,600           | 4 201<br>3,465<br>2,854           | 5,380<br>4,424<br>3,593            | 413.4<br>327.8<br>260.0         | 0.8809<br>1,111<br>.401              | 1,174<br>1,481<br>1,867              | 50,32<br>39,90<br>31,65          |  |
| 3. No. 8<br>3. No. 9<br>3. No. 10                                          | 7.04<br>6.27<br>5.59         | 0.277<br>0.247<br>0.220          | 2,145<br>1,768<br>1,461           | 2,347<br>1,928<br>1,592           | 2,849<br>2,236<br>1,887            | 206.1<br>163.5<br>129.7         | 1,766<br>1,227<br>2,808              | 2,354<br>2,969<br>3,743              | 25.10<br>19.90<br>15.78          |  |
| 3. No 12                                                                   | 4.42                         | 0174                             | 1,014                             | -                                 | _                                  | 81.55                           | 4.465                                | _                                    | 9.929                            |  |

Módulo de Elasi⊂idad alambre sólido 16.90 Kg/mm², cable 16.200 Kg/mm² Coeficiente de Ezpansion .000,013 por grado centigrado. Coeficiente de Resistencia .0038 Ohms por grado centigrado.

## TABLAS DE CONDUCTORES COPPERWELD Y COBRE CON CABLEADO DESNUDO, PARA TRANSMISION Y DISTRIBUCION

| TIPO DE CONDUCTOR CONDUCTOR |                                  |                                  | DISENO DEL CONDUCTO                                                                  | A                                                                        | 1                                | 1                                | i                                |
|-----------------------------|----------------------------------|----------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|
| CONDUCTOR                   | mm.                              | PULGADA                          | NUMERO Y DIAMETRO<br>DE ALAMBRES DE<br>COPPERWELD<br>CONDUCTIVIDAD 30%<br>E.H.S m.m. | NUMERO Y DIAMETRO<br>DE ALAMBRES DE<br>COBRE TEMPLE DURO<br>DURO<br>m.m. | CARGA DE<br>RUPTURA KG           | PESO KG.<br>POR KM.              | SECCION<br>mm <sup>3</sup>       |
| 350 000 CIRCL               | JLAR M                           | IILS EQUIVA                      | LENTE EN COBRE 177 3 mm                                                              | 2                                                                        | 0 1031 Ohms/Kr                   | n en 20°C                        |                                  |
| E EK                        | 20 02<br>18 68                   | 0.788<br>0.735                   | 7×4 003<br>4×3 734                                                                   | 12x4 003<br>15x3 734                                                     | 14,710<br>10 820                 | 2.088+<br>1.842                  | 239 0<br>208 0                   |
| 300.000 CIRCL               | LARM                             | ILS EQUIVA                       | LENTE EN COBRE 1520 mm                                                               | 1                                                                        | 0 1203 Ohms/Kn                   | en 20°C.                         |                                  |
| E E K                       | 18.52<br>17.27                   | 0 729<br>0 680                   | 7x3.706<br>4x3 457                                                                   | 12±3 706<br>15±3 457                                                     | 12.600<br>9,507                  | 1,790<br>1,579                   | 204 8<br>178 3                   |
| 250 000 CIRCU               | LARM                             | ILS EQUIVA                       | LENTE EN COBRE 126 7 mm                                                              | 1                                                                        | 0.144# Onms/Km                   | en 20°C                          |                                  |
| E E K                       | 16 92<br>15 77                   | 0 666<br>0 621                   | 7x3 383<br>4x3.155                                                                   | 12×3,383<br>15×3 155                                                     | 10,850<br>8.092                  | 1,491<br>1,316                   | 170 7<br>148 6                   |
| 4/0 AWG. EQU                | IVALEN                           | TE EN COBR                       | E (211 600 Circ. Mils) 107.2 m                                                       | m³                                                                       | 0.1706 Ohms/Km                   | en 20°C.                         |                                  |
| E<br>EK<br>F                | 15.57<br>14.50<br>13.97          | 0 613<br>0.571<br>0 550          | 7x3.112<br>4x2.903<br>1x4.656                                                        | 12x3 112<br>15x2.933<br>6x4 656                                          | 9,403<br>6,972<br>5,575          | 1,262<br>1,114<br>1,057          | 144.5<br>125.7<br>119 2          |
| 3/0 AWG, EQUI               | VALEN                            | TE EN COBR                       | E (167,800 Cir. Mils) 85 03 mm                                                       | n <sup>2</sup>                                                           | 0.2151 Ohms/Km                   | en 20°C.                         | ·                                |
| E<br>J<br>EK<br>F           | 13.84<br>14.10<br>12.93<br>12.45 | 0.545<br>0.555<br>0.509<br>0.490 | 7×2.771<br>3×4.702<br>4×2.586<br>1×4.156                                             | 12 42,771<br>4x4,702<br>15x2,586<br>6x4,145                              | 7,620<br>7,335<br>5,611<br>4,527 | 1,001<br>1,052<br>883.2<br>838.1 | 114.6<br>121.5<br>99.74<br>94.45 |
| 2/0 AWG. EQU                | VALEN                            | TE EN COBR                       | E 1133,100 Cir. Milsi 67 44 mm                                                       | n²                                                                       | 0 2712 Ohms/Km                   | en 20°C.                         | <del></del>                      |
| K<br>J<br>F                 | 13.56<br>12.55<br>11.07          | 0.534<br>0.494<br>0.436          | 4x4.521<br>3x4.186<br>1x3 693                                                        | 3s.4.521<br>4x4.186<br>6x3.693                                           | 7.983<br>6.092<br>3,671          | 961.2<br>834.3<br>664.9          | 112.4<br>96.32<br>74.97          |
| 1/0 AWG EQUI                |                                  | 1                                | E (105,500 Cir. Mils) 53,46 mn                                                       |                                                                          | 0.3422 Ohms/Km                   |                                  |                                  |
| F F                         | 12.07<br>11.18<br>9.86           | 0 475<br>0 440<br>0 388          | 4x4.026<br>3x3.726<br>1x3.287                                                        | 3x 4 026<br>4x 3,726<br>6x 3.287                                         | 6,573<br>4,976<br>2,965          | 761.9<br>661.2<br>527.0          | 89.10<br>76.39<br>59.40          |
| 1 AWG. EQUIV                | ALENT                            | E EN COBRE                       | 183,690 Cir. Mils) 42.40 mm <sup>2</sup>                                             |                                                                          | 0.4314 Ohms/Km                   | en 20°C.                         |                                  |
| K<br>J<br>F                 | 10.74<br>9.95<br>8.79            | 0.423<br>0.392<br>0.346          | 4x3.586<br>3x3.320<br>1x2.929                                                        | 3x3.586<br>4x3.320<br>6x2.929                                            | 5,398<br>4,082<br>2,389          | 604.5<br>524.5<br>418.0          | 70.71<br>60.58<br>47.12          |
| 2 AWG, EQUIVA               | LENTE                            | EN COBRE (                       | 66,370 Cir. Mils) 33,63 mm²                                                          |                                                                          | 0.5440 Ohms/Km                   | en 20°C.                         |                                  |
| K<br>J<br>A<br>F            | 9.58<br>8.86<br>9.30<br>7.82     | 0.377<br>0.349<br>0.366<br>0.308 | 4x3.193<br>3x2.957<br>1x4.315<br>1x2.606                                             | 3x3.193<br>4x2.957<br>2x4.315<br>6x2.606                                 | 4,413<br>3,321<br>2,665<br>1,920 | 479,4<br>416.0<br>382.2<br>331,5 | 56.05<br>48.05<br>43.86<br>37.37 |



| TIPO DE<br>CONDUCTOR |        | ETRO DEL    | DISENO DEL CONDUCTO                                                       | A                                                                | 1                       |                     |               |
|----------------------|--------|-------------|---------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------|---------------------|---------------|
|                      | mm.    | PULGADA     | NUMERO Y DIAMETRO DE ALAMBRES DE COPPERWELD CONDUCTIVIDAD 30% E.H.S. m.m. | NUMERO Y DIAMETRO<br>DE ALAMBRES DE<br>COBRE TEMPLE DURO<br>m.m. | CARGA DE<br>RUPTURA KG. | PESO KG.<br>POR KM. | SECCIO<br>mm³ |
| AWG EQUIV            | ALENT  | E EN COBRE  | (52,630 Cir. Mils) 26 67 mm <sup>2</sup>                                  |                                                                  | 0 6857 Ohms/Km          | en 20°C.            |               |
| K                    | 8 53   | 0.336       | 412845                                                                    | 3×2.845                                                          | 3,588                   | 380 2               | 44.46         |
| J                    | 7 90   | 0.311       | 3.2631                                                                    | 4x2 631                                                          | 2.701                   | 330.0               | 38.10         |
| ٩                    | 8.28   | 0 326       | 1=3843                                                                    | 2×3 84J                                                          | 2,182                   | 303 0               | 34.79         |
| AWG EQUIV            | ALENT  | E EN COBRE  | 141,740 Cir. Milsi 21 15 mm²                                              |                                                                  | 0.8648 Ohms/Km          | en 20°C.            |               |
| 0                    | 8.84   | 0 348       | 2+4 102                                                                   | 1=4 102                                                          | 3,329                   | 335 7               | 39 66         |
| Ā                    | 7 37   | 0.290       | 1x3 421                                                                   | 2×3 421                                                          | 1,786                   | 240.3               | 27.59         |
| AWG. EQUIV           | ALENT  | E EN COBRE  | 100 Cir. 51/31 16.77 mm <sup>2</sup>                                      |                                                                  | 1.080 Ohms/Km e         | n 20°C.             |               |
| )                    | 7.87   | 0.310       | 553                                                                       | 1#3 653                                                          | 2,737                   | 266 2               | 31.45         |
| 4                    | 6 55   | 0 258       | ¹ ?45                                                                     | 2x3 04d                                                          | 1,445                   | 190.€               | 21 88         |
| AWG EQUIV            | ALENT  | E EN CC BRE | 20 . 50 for Miles 13 30 migs 2                                            |                                                                  | 1361 - 191              | 41 2" 3C.           |               |
| o .                  | 7 01   | 0 276       | 2+3 254                                                                   | 1+3 254                                                          | 2.242                   | 211,1               | 24.94         |
| ١.                   | 5.84   | 0 230       | 1+2713                                                                    | 2.2713                                                           | 1173                    | 151.2               | 17.35         |
|                      | 5.72   | 0 225       | 1 * 2 657 *                                                               | Zx 2 65 7                                                        | 972                     | 144.9               | 16.62         |
| AWG. EQUIV           | ALENTI | E EN COBRE  | 20.820 Cir. Mils) 10.55 mm <sup>2</sup>                                   |                                                                  | 1 717 Ohms/Km e         | n 20°C.             |               |
|                      | 6.25   | 0 2 4 6     | 2×2 898                                                                   | 1x2.899                                                          | 1,824                   | 167.4               | 10 78         |
| ٠.                   | 5.66   | 0 223       | 1×3 216                                                                   | 2.x2.273                                                         | 1,249                   | 139,4               | 16.23         |
| AWG. EQUIV           | ALENTE | EN COBRE    | 16 510 Cir Mils) 8 366 mm²                                                |                                                                  | 2.165 Ohms/Km e         | n 20°C.             |               |
|                      | 5 56   | 0 2 1 9     | 2x 2 581                                                                  | 1=2 581                                                          | 1,477                   | 132.8               | 15.68         |
|                      | 5.05   | 0 199       | 1=2863 . (                                                                | 2×2.024                                                          | 1,013                   | 110.5               | 12.87         |
| ·l                   | 4 55   | 0.179       | 1+2 053*                                                                  | 2×2.117                                                          | 618                     | 90.29               | 10.35         |
| M AWG EQUI           | VALEN  | TE EN COBRE | (11,750 Cir. Mils) 5 954 mm²                                              |                                                                  | 3,009 Ohms/Km e         | n 20°C.             |               |
| )                    | 4 42   | 0 174       | 2+2 053*                                                                  | 1x2.053                                                          | 791                     | 84.02               | 9.929         |

| TIPO DEL<br>CONDUCTOR | MODULO DE<br>ELASTICIDAD<br>KG/mm² | COEFICIENTE<br>DE EXPANSION<br>POR GRADO C. | TIPO DEL<br>CONDUCTOR | MODULO DE<br>ELASTICIDAD<br>KG/mm² | COEFICIENTE<br>DE EXPANSION<br>POR GRADO C. |  |
|-----------------------|------------------------------------|---------------------------------------------|-----------------------|------------------------------------|---------------------------------------------|--|
| ε                     | 13,700                             | 0 000 015                                   | ZA-6A Inclusive       | 13,400                             | 0 000 015 3                                 |  |
| EK                    | 13,000                             | 00000158                                    | 7A y 8A               | 14 900                             | 0 000 014 6                                 |  |
| F                     | 12,700                             | 0 000 016 7                                 | lc I                  | 13.400                             | 0 000 015 3                                 |  |
| 3                     | 14,100                             | 0.000.014.9                                 | le 1                  | 15 500                             | 0.000.014.0                                 |  |
| K                     | 14.800                             | 0 000 014 4                                 | 1 - (                 |                                    |                                             |  |

<sup>\*</sup>Copperweld, de alta resistencia 40% conductividad



# CLASIFICACION DE CONDUCTORES Y CARACTERISTICAS DE LOS AISLAMIENTOS

|                                                                                               | Į.                                                                                    | 125                   | Hule Silicón                                                                  | de vidrio                                                      | Aplicaciones Especiales                                                                                                                       |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Conductor monofasico<br>para servicios de<br>icomefida subterranea<br>Silicon y asbesto       | USE                                                                                   | 75<br>90              | Resistence al cator<br>y la humedad                                           | No metalica, resistante a la humedad                           | Acometridas subterrâneas,<br>como alimentador o<br>circuitos derivados<br>subterraneos<br>Locales secos                                       |
| Conductor monofásico<br>para alimentador o<br>circuito derivado en<br>instalación subterranea | UF                                                                                    | 75                    | Resistente a la humedad Resistente al Calor y la humedad                      | integral al<br>aistamiento                                     | Para uso subterraneo,<br>directamente enterrado,<br>como alimentador o<br>circuitos derivados con<br>protección de sobrecorriente<br>adecuado |
| (cubierta metálica)                                                                           | 115                                                                                   | 250                   | Wantana a la bana a                                                           | Cobre                                                          | Aplicaciones Especiales                                                                                                                       |
| Assiamiento mineral                                                                           | мі                                                                                    | 85                    | Oxido de Magnesio                                                             | Coive                                                          | Locales humedos y secos                                                                                                                       |
| Sintetico resistante al<br>calor                                                              | SIS                                                                                   | 90                    | Hule resistence at calor                                                      | Nirguna                                                        | Atambrado de sableros solamente                                                                                                               |
| Termoplastico y<br>malla exterior fibrosa                                                     | 185                                                                                   | 90                    | Termsip astico                                                                | No metálica,<br>retardadora de<br>la l'ama                     | Alambrado de labieros<br>solumente                                                                                                            |
| Termopiastico y asbesto                                                                       | TA                                                                                    | 90                    | Termininasticoly<br>asbestic                                                  | No merèlica y<br>retardador de la<br>flama                     | Alanibrado de lableros<br>solumente                                                                                                           |
| A si scaric                                                                                   |                                                                                       | 90                    | de la frama                                                                   |                                                                | Alambrado de Máquinas<br>herramientas en locales<br>secos                                                                                     |
| Termostimico, esistente a la humilidad al calor y al aceste                                   | MTW                                                                                   | 60                    | Termopiastico, resistente<br>a la humedad, al calor<br>y al ageste retardador | *lingun:<br>a Nylö                                             | Alambrado de Máquinas<br>herramientas en locilles<br>humedos                                                                                  |
| resistente a la humedad                                                                       |                                                                                       | 90                    | retardador de la flama                                                        |                                                                | Locales secos                                                                                                                                 |
| el celor y la humedad  Polietileno vulcanizado                                                | хним                                                                                  | 75                    | al calor y la humedad,<br>retardador de la flama<br>Polietileno vulcanizado,  | Ninguna                                                        | Locales húmedos                                                                                                                               |
| Termoplástico, resistente                                                                     | THWN                                                                                  | 75                    | Termoplástico, resistente                                                     | Nylon o equivalente                                            | alumbrado de destello.<br>Limita a 1000 V o menos<br>en circuito abesto<br>Locales húmedos y secos                                            |
| al calor y la humedad                                                                         |                                                                                       | 90                    | al calor, y a la humedad,<br>retardador de la flama                           | Ninguna                                                        | Aplicaciones especiales<br>dentro de equipos de                                                                                               |
| al calor  Termoplastico resistente                                                            | Ļ                                                                                     | 75                    | al calor, retardador<br>de la flama<br>Termoplastico, resistente              |                                                                | Locales secos y húmedos                                                                                                                       |
| a la humedad  Termoplastico resistente                                                        |                                                                                       |                       | a la humedad,<br>retardador de la flama<br>Termoplástico, resistente          |                                                                | Locales secos                                                                                                                                 |
| Termoplástico resistente                                                                      |                                                                                       | 60                    | plástico, retardador<br>de la flama<br>Termoplástico resistente               |                                                                | Locates húmedos y secos                                                                                                                       |
| a la humedad Termoplástico                                                                    | <del> </del>                                                                          | 60                    | molido, sin grano                                                             | humedad, retardadora<br>de la flama, no<br>metálica<br>Ninguna | Locales secos                                                                                                                                 |
| Hule lätex, resistente                                                                        | de la liama, no metàlica metalica (e.g., registente RUW 50 90% nuie no Reustente a la |                       | Locales cumados y                                                             |                                                                |                                                                                                                                               |
| Hule látex, resistente<br>al calor                                                            | metalica  A, resistente RUH 75 90% hule no Resistente a la humedad, retardadora       |                       | Resistence a la humedad, retardadora                                          | Locales secos                                                  |                                                                                                                                               |
| Hule resistente al<br>calor y a la humedad                                                    | ЯНW                                                                                   | 75                    | Hule registente al<br>calor y a la humedad                                    | Resistente a la<br>humedad, retardadora<br>de la flama, no     | Locales húmedos y<br>secos                                                                                                                    |
| Hule resistence at                                                                            | Янн                                                                                   | 90                    | Hule resistente al calor                                                      | de la flama,<br>no metalica.                                   | Locales Secos                                                                                                                                 |
| Hule resistente al                                                                            | RH                                                                                    | 75                    | Hule resistente al<br>Cator                                                   | Resistente a la humedad, retardadora                           | Locales Secos                                                                                                                                 |
| NOMBRE COMERCIA                                                                               | L TIPO                                                                                | TEMP<br>MAX.<br>EN °C |                                                                               | CUBIERTA EXTERIOR                                              | UTILIZACION                                                                                                                                   |

| NOMBRE COMERCIAL               | TIPO | TEMP.<br>MAX.<br>EN°C | MATERIAL AISLANTE                               | CUBIERTA EXTERIOR                                                   | UTILIZACION                                                                                                                  |
|--------------------------------|------|-----------------------|-------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Etijeno Propileno              | FEP  | 90                    | Etileno Propileno                               | Ninguna                                                             | Locales secos                                                                                                                |
| Fluorinado                     | FEPB | 200                   | Fluorinado                                      | Malla de Fibra de<br>Vidrio o de Asbesto                            | Locales secos Aplicaciones<br>Especiales                                                                                     |
| ambray Barnizado V             |      | 85                    | Cambray Barnizado                               | No metalica o<br>de Plomo                                           | Locales secos                                                                                                                |
| Cambray Barnizado<br>y Asbesto | AVA  | 110                   | Cambray Barnizado<br>y Asbestos                 | Malla de Asbesto<br>o fibra de Vidrio                               | Locales secos solamente                                                                                                      |
|                                | AVL  | 110                   | Impregnados                                     | Cubierta de Plomo                                                   | Locales humedos y secos                                                                                                      |
|                                | AVB  | 90                    | Cambray Barnizado<br>y Asbestos Impreg<br>nados | Malla de Algodón<br>retardadora de flama<br>falambrado de tablerosi | Locales secos unicamente                                                                                                     |
| Asbestos                       | A    | 200                   | Asbesto                                         | Sin malla de Asbesto                                                | Locales secos Solamente                                                                                                      |
|                                | ДД   | 200                   | Asbesto                                         | Con malia de Asbesto o fibra de vidrio                              | para guías dentro de<br>aparatos o en tubertas de<br>alimentación conectadas a                                               |
|                                | Ā    | 125                   | Asbesto Impregnado                              | Sin malla de asbesto                                                | estos aparatos. Limitados<br>a 300 Volts                                                                                     |
|                                | AIA  | 125                   | Asbesto Impregnado                              | Con malla de Asbesto<br>o de fibra de vidrio                        | Locales secos. Solamente<br>pera guras dentro de<br>aparatos, en tuberías<br>conectadas a aparatos, en<br>alembrado abierto. |
| Papel                          |      | 85                    | Papel                                           | Cubierte de Plomo                                                   | Para conductores da<br>servicio subterraneo y<br>distribución                                                                |

Basedos en Art. 310, tabla 310-13 del NEC-1987



# CAPACIDAD DE CONDUCCION DE CORRIENTE PERMISIBLE EN CONDUCTORES DE COBRE AISLACOS

## VALORES EN AMPERES

| SECCION<br>NOMINAL<br>EN MM <sup>3</sup>  | CALIBRE<br>AWG<br>KCM           | 60°C<br>TIPOS<br>RUW, T<br>TW, UF                      |                                 | 75°C<br>TIPOS<br>FEPW, RH, RHW<br>RUH, THW, THW<br>XHHW, USE, ZW | rN,                             | 85°C<br>TIPOS<br>V, MI                                 |                                 | 90°C<br>TIPOS<br>TA, TBS, SA, AV<br>SIS, FEP, FEPB,<br>RHH, THHN, XH | -                               | 110°C<br>TIPOS<br>AVA, AVL                           |                                 | 125°C<br>TIPOS<br>AI, AIA                              |                                 | 700°C<br>TIPOS<br>A, AA, FEP,<br>FEPB, PFA            |                                 |
|-------------------------------------------|---------------------------------|--------------------------------------------------------|---------------------------------|------------------------------------------------------------------|---------------------------------|--------------------------------------------------------|---------------------------------|----------------------------------------------------------------------|---------------------------------|------------------------------------------------------|---------------------------------|--------------------------------------------------------|---------------------------------|-------------------------------------------------------|---------------------------------|
|                                           |                                 | EN CONDUIT,<br>CABLE O DI-<br>RECTAMENTE<br>ENTERRADOS | AI<br>AIRE                      | EN CONDUIT,<br>CABLE O DI-<br>RECTAMENTE<br>ENTERRADOS           | A!<br>AIRE                      | EN COUNDUIT,<br>CABLE O DI<br>RECTAMENTE<br>ENTERRADOS | AIRE                            | EN CONDUIT,<br>CABLE O DI-<br>RECTAMENTE<br>ENTERRADOS               | AI                              | ENCONDUIT.<br>CABLE O DI<br>RECTAMENTE<br>ENTERRADOS | AI                              | EN CONDUIT,<br>CABLE O DI-<br>RECTAMENTE<br>ENTERRADOS | AI                              | EN CONDUIT,<br>CABLE O DI<br>RECTAMENTE<br>ENTERNADOS | AI                              |
| 2 08<br>3 31<br>5 26<br>8 37              | 14<br>12<br>10<br>8             | 15<br>20<br>30<br>40                                   | 20<br>25<br>40<br>55            | 15<br>20<br>30<br>45                                             | 20<br>25<br>40<br>65            | 25<br>30<br>40<br>50                                   | 30<br>40<br>55<br>70            | 25<br>30<br>40<br>50                                                 | 30<br>40<br>55<br>70            | 30<br>35<br>45<br>60                                 | 40<br>50<br>65<br>85            | 30<br>40<br>50<br>65                                   | 40<br>50<br>70<br>90            | 30<br>40<br>55<br>70                                  | 45<br>55<br>75                  |
| 13 30<br>21 15<br>26 67<br>33 62<br>42,41 | 6<br>4<br>3<br>2<br>1           | 55<br>70<br>80<br>95<br>110                            | 80<br>105<br>120<br>140<br>165  | 65<br>85<br>100<br>115<br>130                                    | 95<br>125<br>145<br>170<br>195  | 70<br>90<br>105<br>120<br>140                          | 100<br>135<br>155<br>180<br>210 | 70<br>90<br>105<br>120<br>140                                        | 100<br>135<br>155<br>180<br>210 | 80<br>105<br>120<br>135<br>160                       | 120<br>160<br>180<br>210<br>245 | 85<br>115<br>130<br>145                                | 125<br>170<br>195<br>225<br>265 | 95<br>120<br>145<br>165                               | 135<br>180<br>210<br>240<br>280 |
| 53 49<br>67 43<br>85 01<br>107.20         | 0<br>00<br>000<br>0000          | 125<br>145<br>165<br>195                               | 195<br>225<br>260<br>300        | 150<br>175<br>200<br>230                                         | 230<br>265<br>310<br>360        | 155<br>185<br>210<br>235                               | 245<br>265<br>330<br>385        | 155<br>185<br>210<br>235                                             | 245<br>285<br>330<br>385        | 190<br>215<br>245<br>275                             | 285<br>330<br>385<br>445        | 700<br>230<br>265<br>310                               | 305<br>355<br>410<br>475        | 225<br>250<br>285<br>340                              | 125<br>370<br>430<br>510        |
| 127<br>152<br>177<br>203<br>253           | 250<br>300<br>350<br>400<br>500 | 215<br>240<br>260<br>260<br>320                        | 340<br>375<br>420<br>455<br>515 | 255<br>285<br>310<br>335<br>380                                  | 405<br>445<br>505<br>545<br>620 | 270<br>300<br>325<br>360<br>405                        | 425<br>480<br>530<br>575<br>660 | 270<br>300<br>325<br>360<br>405                                      | 425<br>480<br>530<br>575<br>660 | 315<br>345<br>390<br>420<br>470                      | 495<br>555<br>810<br>665<br>765 | 335<br>380<br>420<br>450<br>500                        | 530<br>590<br>855<br>710<br>815 | -                                                     | -                               |
| 304<br>359<br>380<br>405<br>458           | 600<br>700<br>750<br>800<br>900 | 355<br>365<br>400<br>410<br>435                        | 575<br>630<br>655<br>680<br>730 | 420<br>480<br>475<br>490<br>520                                  | 890<br>755<br>785<br>815<br>870 | 455<br>490<br>500<br>515<br>555                        | 740<br>815<br>845<br>880<br>940 | 455<br>490<br>500<br>515<br>555                                      | 740<br>815<br>845<br>880<br>940 | 525<br>580<br>580<br>600                             | 855<br>940<br>980<br>1020       | 545<br>800<br>620<br>840                               | 910<br>1005<br>1045<br>1065     |                                                       |                                 |
| 507                                       | 1000                            | 455                                                    | 780                             | 545                                                              | 935                             | 585                                                    | 1000                            | 585                                                                  | 1000                            | 680                                                  | 1165                            | 730                                                    | 1240                            | -                                                     | -                               |

lasado en NEC-1978, Art. 310 tablas 316, 317, 318, 319



# FACTORES DE CORRECCION POR

| TEMPERATURA<br>AMBIENTE<br>EN °C                                                                | FACTO                        | CIDADE<br>OR APR                             | S MOST                                                       | PARA                                                         | EN LA TA                                                             | A 30°C, M<br>ABLA AN<br>NAFI EL I                                    | TERIOR                               |                                              |
|-------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------|----------------------------------------------|
|                                                                                                 | 60°C                         | 75°C                                         | 85°C                                                         | 90°C                                                         | 110°C                                                                | 125°C                                                                | 300°C                                | 250°C                                        |
| 31 a 40<br>41 a 45<br>46 a 50<br>51 a 55<br>56 a 63<br>71 a 76<br>71 a 76<br>76 a 46<br>81 a 90 | 0 82<br>0 71<br>0 54<br>0 41 | 0 88<br>0 87<br>0 75<br>0 58<br>0 58<br>0 35 | 0 90<br>0 85<br>0 80<br>0 74<br>0 67<br>0 57<br>0 43<br>0 30 | 0 91<br>0 85<br>0 82<br>0 75<br>0 71<br>0 58<br>0 52<br>0 41 | 0.94<br>0.90<br>0.87<br>0.83<br>0.79<br>0.71<br>0.45<br>0.41<br>0.50 | 0.95<br>0.92<br>0.89<br>0.86<br>0.83<br>0.76<br>0.72<br>0.66<br>0.61 | 0 91<br>0 87<br>0 86<br>0 84<br>0 60 | 0.95<br>0.95<br>0.91<br>0.89<br>0.47<br>0.47 |
| 91 a 100<br>101 a 120<br>121 a 140<br>141 a 160<br>161 a 1-0<br>181 a 260                       | :<br>-                       | -                                            |                                                              | -                                                            |                                                                      | 251                                                                  | 0 7/<br>369<br>0 59                  | 0 50<br>0 44                                 |
| 201 a 225                                                                                       | - [                          | - (                                          | -                                                            | - 1                                                          | - 1                                                                  | - 1                                                                  |                                      | C 30                                         |

# DIMENSIONES EN LOS CONDUCTORES CON AISLAMIENTOS DE HULES O TERMOPLASTICOS

|                                     | TIPOS<br>RFH 7 RH RHH<br>RHW*** SF 7      | •••.                                           | AUH. AUM                                  | TE T THWE TW.                                  |                                           | TIPOS THUM, THUM                               |                                              |                                  | * TFE PI                                       |                                      | TIPOS<br>EHIM<br>ZW 11                    | ZW T T                                         |  |
|-------------------------------------|-------------------------------------------|------------------------------------------------|-------------------------------------------|------------------------------------------------|-------------------------------------------|------------------------------------------------|----------------------------------------------|----------------------------------|------------------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------------------|--|
| CALIBRE<br>ANG D                    | DIAMETRO<br>APROX PULG                    | APEA<br>APROX<br>PULG                          | DIAMETRO<br>APROX<br>PULG                 | APROX<br>PULG                                  | DIAMETRO<br>APROX<br>PULG                 | APROX<br>PULG                                  | DIAME<br>APROX<br>PULG                       |                                  | APROX<br>PULG                                  | •                                    | DIAMETRO<br>APROX<br>PULG                 | APROX<br>PULG                                  |  |
| 18                                  | 0 146<br>0 158                            | 00167                                          | 0 106<br>0 118                            | 0.0088                                         | 0 049                                     | 0 0064<br>0 0079                               | 00                                           |                                  |                                                | XXXX<br>XXXX                         | = ====                                    | Ξ                                              |  |
| 14                                  | 2/64 in 0 171<br>3/64 in 0 2041           | 0 0230                                         | 0 131<br>0 1621                           | 0 0135<br>0 0206 f                             | 0 105                                     | 0 0087                                         | 0 105                                        | 0 105                            | 0 0087                                         | 0 0007                               | -<br>0 129                                | - 0 0131                                       |  |
| 12<br>12<br>12                      | 2/64 in 0 188<br>3/64 in 0 221*           | 0 0778                                         | 0 148<br>-<br>0 179 T                     | 0 0172<br>0 0251 f                             | 0 122                                     | 00117                                          | G 121<br>-                                   | 0 121                            | 00:15                                          | 00115                                | -<br>0146                                 | 00167                                          |  |
| 10<br>10<br>8                       | - 0 242<br>- 0 378                        | 0 0460<br><br>0 0654<br>                       | 0 168<br>0 199 †<br>0 245<br>0 276 †      | 0 0224<br>0 0311 †<br>0 0471<br>0 0598 †       | 0 153<br>                                 | 0.0184                                         | 0 142<br>                                    | 0 142<br>0 186                   | 0 0159                                         | 0 0159                               | 0 166<br>0 241                            | 0 0216<br>0.0456                               |  |
| 6 4 3 2 1                           | 0 397<br>0 452<br>0 481<br>0 513<br>0 588 | 0 1238<br>0 1605<br>0 1817<br>0 2067<br>0 2715 | 0 323<br>0 372<br>0 401<br>0 433<br>0 508 | 0 0819<br>0 1087<br>0 1263<br>0 1473<br>0 2027 | 0 257<br>0 328<br>0 356<br>0 388<br>0 450 | 0 0519<br>0 0845<br>0 0995<br>0 1182<br>0 1590 | 0 244<br>0 292<br>0 320<br>0 352<br>0 420    | 0 302<br>0 350<br>0 378<br>0 410 | 0 0467<br>0 0669<br>0 0803<br>0 0973<br>0 1385 | 0 0718<br>0 0962<br>0 1122<br>0 1316 | 0 282<br>0 328<br>0 356<br>0 368<br>0 450 | 0.0825<br>0.0845<br>0.0995<br>0.1182<br>0.1590 |  |
| 000<br>000                          | 0 629<br>0 675<br>0 727<br>0 785          | 0.3107<br>0.3578<br>0.4151<br>0.4840           | 0 549<br>0 595<br>0 647<br>0 705          | 0 2367<br>0 2781<br>0 3288<br>0 3904           | 0 491<br>0 537<br>0 588<br>0 646          | 0 1893<br>0 2265<br>0 2715<br>0 3278           | 0 457<br>0 498<br>0 560<br>0 618             |                                  | 0 1676<br>0 1974<br>0 2463<br>0 2999           | -                                    | 0 491<br>0 537<br>0 588<br>0 646          | 0 1893<br>0 2265<br>0.2715<br>0.3278           |  |
| 250<br>300<br>350<br>400<br>500     | 0 868<br>0 933<br>0 985<br>1 032<br>1 119 | 0 5917<br>0 5837<br>0 7620<br>0 8365<br>0 9834 | 0 788<br>0 483<br>0 895<br>0 942<br>1 029 | 0 4877<br>0 5581<br>0 6291<br>0 6969<br>0 8316 | 0 716<br>0 771<br>0 822<br>0 869<br>0 955 | 0 4026<br>0 4669<br>0.5307<br>0.5931<br>0 7163 |                                              |                                  | -                                              | 11111                                | 0 716<br>0 771<br>0 822<br>0 869<br>0 955 | 0 4026<br>0 4669<br>0 5307<br>0 5931<br>0 7163 |  |
| 600<br>700<br>750<br>800<br>900     | 1 233<br>1 304<br>1 339<br>1 372<br>1 435 | 1 1940<br>1 3355<br>1 4082<br>1 4734<br>1 6173 | 1 143<br>1 214<br>1 249<br>1 282<br>1 345 | 1 0261<br>1 1575<br>1 2252<br>1 2908<br>1 4208 | 1 058<br>1 129<br>1 163<br>1,196<br>1 258 | 0.8792<br>1.0011<br>1.0623<br>1.1234<br>1.2449 |                                              | = 1<br>= 1<br>= 1                | <u>-</u><br>                                   | -                                    | 1 073<br>1 145<br>1 180<br>1 210<br>1 270 | 0 9043<br>1 0297<br>1 0936<br>1 1499<br>1 2668 |  |
| 1000<br>1250<br>1530<br>1730<br>NUO | 1 494<br>1 676<br>1 801<br>1 916<br>2 071 | 1.7531<br>2.2062<br>2.5475<br>2.3895<br>3.2079 | 1 404<br>1 577<br>1 702<br>1 617<br>1 972 | 1 5482<br>1 9532<br>2 2748<br>2 5930<br>2 9013 | 1.317                                     | 1,3623                                         | - 73 / 1<br>- 73 / 1<br>- 73 / 1<br>- 73 / 1 | -<br>-<br>-<br>-                 | -<br>-<br>-                                    |                                      | 1 330<br>1 500<br>1 620<br>1 740<br>1 840 | 1.3893<br>1.7672<br>2.0612<br>2.3779<br>2.8590 |  |

#### Au ... .. NEC 1078 Can 9 Table 5

- \* O ...... Ower Parks for Lines AHM w RHV
- \*\* Cr. No. 14 at No. 2.

  † Dimensiones, set spo. THW an calibres del 14 at 8. El tipo THW del No. 6 y mayores tenen las mismas dimensiones que el tipo T.

  \*\* La rigne reporte del tipo RHM en calibres del 14 at 8. El tipo THW del No. 6 y mayores tenen las mismas dimensiones que la del tipo THW; del No. 18 at No. 6 sólidos, y del No. 8
- nn adelante, cableados.
  \*\*\*\* Los valores mostrados para calibras del 1 al 0000 son para tipos TFE y Z solamente. Los valores a mano derecha en les mismes columnes.
- to pers FEPB, Z, ZF y a



# NUMERO MAXIMO DE CONDUCTORES EN MEDIDAS COMERCIALES DE TUBERIA CONDUIT

| DIAMETRO DE LA TUB                                            | ERIA                            | и    | <b>. 4</b>     | <b>!</b> !          | 14                   | 1 1 19               | 2                      | 714                    | 13                         | 319                        | 1                          | 144                  | 1.                   | Ŀ                            |
|---------------------------------------------------------------|---------------------------------|------|----------------|---------------------|----------------------|----------------------|------------------------|------------------------|----------------------------|----------------------------|----------------------------|----------------------|----------------------|------------------------------|
| TIPO DE COMOUCTOR                                             | CALIBRE<br>CONDUCTOR<br>AWG KCM | 13   | 19<br>rhom     | 25<br>              | 32<br>~~             | 30                   | 51                     | 2                      | 76<br>                     | 99                         | 102                        | 114                  | 127                  | 12                           |
| TW T. HUH.<br>RUW.<br>XHHW (14 hous 8)                        | 12                              | 5 2  | 15 12 9        | 25<br>19<br>15<br>7 | 44<br>35<br>26<br>17 | 50<br>47<br>36<br>17 | 99<br>76<br>60<br>78   | 142<br>111<br>85<br>40 | 171<br>131<br>62           | 176<br>84                  | ion                        | _                    | _                    | _                            |
| Rinw and Rink<br>(un cuburts<br>es lar stri                   | 14<br>12<br>10                  | 94   | 10<br>6<br>3   | 16<br>13            | 29<br>24<br>19<br>10 | 49<br>77<br>76       | 53<br>43<br>22         | 93<br>76<br>61<br>32   | 143<br>117<br>95<br>49     | 192<br>157<br>127<br>66    | 163                        | 106                  | 133                  | _                            |
| TW.<br>Tirw.<br>Run (6 a 2)                                   | . 6<br>4<br>3                   | :    | 2              | 3 2 2               | 1                    | 10<br>7<br>6<br>3    | 16<br>17<br>10<br>9    | 22<br>17<br>15         | 36<br>27<br>23<br>20       | 48<br>36<br>31<br>27<br>19 | 31 43 X                    | 56<br>50<br>43<br>31 | 97<br>23<br>34<br>38 | 141<br>108<br>91<br>78<br>57 |
| FEPS 16 a 21<br>FEPS 16 a 21<br>First<br>First (one cultural) | 00<br>00<br>000                 |      | i              |                     | 2                    | 3 7                  | 5 4 3                  | ,<br>,<br>,            | 10 9                       | 16<br>14<br>17<br>10       | 21<br>18<br>15<br>13       | 27<br>23<br>19       | 33<br>79<br>74<br>70 | 9 = AR                       |
| Takin Takin                                                   | 750<br>300<br>350<br>400<br>500 | _    |                | 1                   |                      |                      | 7,                     | 3 3                    | 6 5 4 4 3                  | 6 5                        | 10                         | 11 10 9              | 16<br>14<br>:2<br>!1 | 23<br>20<br>18<br>16<br>14   |
|                                                               | 500<br>700<br>750               |      |                |                     | 广                    | 1                    | 1                      | 1                      | 3                          | 3                          | 1                          | 6<br>5<br>5          | 7                    | 10                           |
| THYMN,                                                        | 14<br>12<br>10                  | 12   | 74<br>18<br>11 | 39<br>79<br>18<br>9 | 69<br>51<br>32<br>16 | %<br>44<br>27        | 154<br>114<br>73<br>36 | 164<br>104<br>51       | 180                        | 106                        | 136                        |                      |                      |                              |
| THIN,<br>FEP (14 a 21<br>FEPS (14 a 33<br>PFA (14 a 443       | 6 4 3                           | -    | 1              | 3 3                 | 11,                  | 15                   | 26<br>16<br>13         | 37<br>22<br>19<br>16   | 57<br>35<br>35<br>35<br>35 | 76<br>47<br>39<br>33<br>75 | 98<br>80<br>51<br>43<br>37 | EC119                | 33859                | 137<br>116<br>67<br>72       |
| PFAH   14 a 4/01<br>Z   14 a 4/01<br>XHHW   14 a 500 KCM      | 000<br>000<br>0000              |      | 1              | 1                   | 3                    | 3 3                  | 6 5                    | 10                     | 15<br>13<br>11<br>9        | 21<br>17<br>14<br>12       | 27<br>22<br>18<br>15       | 23<br>23<br>19       | 47<br>35<br>29<br>24 | 61<br>51<br>42<br>35         |
|                                                               | 750<br>300<br>350<br>400        | -    |                | 1                   | 1                    |                      | 3 2 1                  | 3 3                    | ,<br>6<br>5                | 10<br>8<br>7<br>6          | 12                         | 16<br>13<br>17<br>10 | 70<br>17<br>15<br>13 | 24<br>21<br>19               |
|                                                               | 500<br>600<br>700<br>750        |      |                |                     | 1                    |                      |                        | 1                      | 3 3 7                      | 3                          | 3                          | 9<br>7<br>6          | 100                  | 13                           |
| x                                                             | 600<br>700<br>750               | 1    | 3              | 5                   | 9                    | 13                   | 2                      | 3¢                     | 47<br>3<br>3<br>2          | 63<br>4<br>3               | 8 3                        | 163<br>6             | 128                  | 185                          |
| Ran                                                           | 12                              | 2014 | 5              | <br>                | 15                   | 24<br>21<br>16       | 1479.5                 | 1                      | 27.34                      | 171<br>123<br>86           | 151<br>132<br>110<br>40    | · 38                 | 3.                   | ,,,                          |
| Ritera legan cucturate<br>en terreral                         | 8                               | 1    |                |                     | 3                    |                      | 11                     | 100                    | 74<br>16<br>16<br>16       | 22<br>24<br>15<br>16       | 21<br>28<br>24<br>18       | 333                  | 13482                | 93<br>12<br>63<br>56<br>42   |
|                                                               | 00<br>000<br>0000               |      | 1              |                     |                      | ?                    | 3 3 7                  | 5                      | 9<br>8<br>7<br>6           | 11 9 9                     | 19                         | 70<br>16<br>15       | 25<br>22<br>19<br>15 | 37<br>32<br>28<br>24         |
|                                                               | 250<br>300<br>350<br>400        |      |                |                     |                      |                      | 1                      | 3<br>3<br>2<br>1       | 3                          | 695                        | ¥7.                        | •                    | 1 17                 | 25.22                        |
|                                                               | 500<br>600<br>700<br>750        |      |                |                     |                      | T                    |                        |                        | 1 2                        | 1000                       | 3                          |                      | ,                    |                              |

|                                              |            |                    |                          |                                                           | 1                                   |                                                                                          |                                                |                    |                             |
|----------------------------------------------|------------|--------------------|--------------------------|-----------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------|--------------------|-----------------------------|
| NUMBRE<br>COMERCIAL                          | TIFO       | CALIBRE<br>AWG     | NUMERO DE<br>CONDUCTORES | MATERIAL<br>AISLANTE                                      | CUBIERTA<br>SOBRE CADA<br>CONDUCTOR | CUBIERTA EXTERIOR                                                                        | UTILIZACION                                    |                    |                             |
| Curton                                       | PO -1      | 18                 | 2                        | J fizika                                                  | Malle                               | Algodôn o reyôn                                                                          | Aperatos domésticos fijos                      | Lugares            | Uso                         |
| peralelo<br>con mella                        | PQ-2<br>PO | 18 - 16<br>18 - 10 |                          |                                                           | de<br>algodón                       |                                                                                          | Colgente o portății                            | Mecos              | na<br>rudo                  |
| Cordôn<br>Pernielo todo                      | SP-1       | 18 - 16            | 263                      | Hule                                                      | Ninguna                             | Hule                                                                                     | Colgente o portátil                            | Lugares<br>humedos | Uso<br>no rudo              |
| de hule                                      | SP - 3     | 18-12              | 134                      |                                                           |                                     |                                                                                          | Refrigeradores o acondicione miento de sire    | 1                  |                             |
| Cordón                                       | SPT - 1    | 18                 | 2                        | Termoplástico                                             | Ningune                             | Ninguna                                                                                  | Colganie o portátil                            | Lugares            | Uso no                      |
| Daraleig<br>tie                              | SPT-2      | 18 - 15            | 263                      |                                                           |                                     |                                                                                          |                                                | humedos            | rudo                        |
| D1321KO                                      | SP1 - 3    | 18 10              |                          |                                                           |                                     |                                                                                          | Refrigeradores o acondiciona<br>miento de aire | 1                  |                             |
| Cordôn<br>uso                                | 510        | 18~16              | 2,364                    | Hule                                                      | Ninguna                             | Compuesto resistente al aceite                                                           | Colgania o portátil                            | Lugares            | Uso<br>rudo                 |
| tudo                                         | TUZ        |                    |                          | Termopléstico<br>o hule                                   |                                     | Termoplástico                                                                            |                                                |                    |                             |
|                                              | 5          | 18 - 2             | 2 6 más                  | Hule                                                      | 1                                   | Hule                                                                                     | 1                                              | The ext            | Uto                         |
|                                              | SO         | 1                  |                          | Termoplástico<br>o hule                                   | 1                                   | Compuesto resistente al                                                                  |                                                |                    | entra rudo                  |
|                                              | STO        | 1                  |                          | í                                                         | 1                                   | Termoplástico                                                                            |                                                |                    |                             |
|                                              |            | 1000               | ļ                        |                                                           |                                     | Termoplástico resistente al<br>aceite                                                    |                                                |                    |                             |
| Cordon pera<br>resistencias                  | HPO        | 18-12              | 2,364                    | Hule y sibesto<br>termopléstico<br>y esbesto.<br>Neopreno | Ninguna                             | Algodón a reyán                                                                          | Portétil                                       | Lugares<br>Secos   | Pesistencias<br>portátifas  |
| Cordón pera<br>resistencias<br>forro de hule | HS         | 14-12              | 2,364                    | Hule y esbesto<br>Neopreno                                | Ninguna                             | Algodôn y Hule<br>a<br>Neopreno                                                          | Portiti                                        | Lugares<br>húmedos | Resistancias<br>portárilas  |
| Cordôn<br>paralelo para<br>rasistencias      | HPN        | 18-16              | 263                      | Hule                                                      | Ningune                             | Ninguna                                                                                  | Portétil                                       | Lugares<br>humedos | Uso<br>no rudo              |
| Cable para ascensores                        | E          | 18 - 14            | 2 ô mês                  | Hule                                                      | Malia<br>de<br>sloodón              | Tres melles de elgodón, le<br>exterior retardedora de flama<br>y resistente a la humedad | Alumbrado y control de ascensores              |                    | Lugares<br>no<br>peligrosos |
|                                              | EO         | 1                  |                          |                                                           |                                     | Una de algodôn y ptra de<br>Neoprano                                                     | 1                                              |                    | Lugares<br>pergrosos        |
|                                              | EN         |                    |                          | Hule                                                      | Nyton<br>fle-ible                   | Tres mallas de elgodón, le<br>exterior retardadora de flams<br>y resistante a la humadad | 1                                              |                    | Lugares no<br>peligrosos    |
|                                              |            |                    |                          | 1                                                         |                                     | Una de algodón y otra de<br>neopreno o termoplástico                                     | 7                                              |                    | Lugarer<br>peligrosos       |
|                                              | ET         | 7                  |                          | Termoplástico                                             | Matte de<br>reyón                   | Tres de algodón la exterior<br>retardadora de flame y resis-                             | 7                                              |                    | Lugares                     |
|                                              | ETLB       | 3.5                |                          | 1                                                         | Ninguna                             | tente a la humaded                                                                       | ا                                              |                    | petigrosos                  |
|                                              | ETP        |                    |                          | 1                                                         | Maila de<br>rayôn                   | Termoplástico                                                                            | _]                                             |                    | Lugares<br>pel·grosos       |
|                                              | ĒŦŦ        | 1                  |                          |                                                           | Ninguna                             | Una de algodón y otra de<br>termoplástico                                                | 1                                              |                    | }                           |

## CAPACIDAD DE CONDUCCIÓN DE CORRIENTE EN CORDONES Y CABLES FLEXIBLES DE COBRE

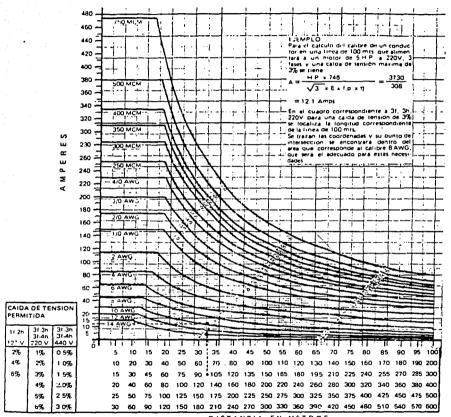
| - 1 |           |               |                            |             |
|-----|-----------|---------------|----------------------------|-------------|
|     |           | TIPO DE F     | IULE: C, PD,               | TIPOS: AFS, |
|     |           | E, ED, EN,    | S, SO. SRD,                | AFSJ. HPD.  |
|     |           | SJ, SJO, S    | Arsa, nrb,                 |             |
| C/  | LIBRE AWG | TIP           | HSJ,                       |             |
|     |           |               | LASTICO:                   |             |
|     |           |               | ETLB, ETP,  <br>SRDT, SJT, | HSJO.HS,    |
|     |           |               | VT. SVTO                   | HSO,HPN     |
| _   |           | Α*            | В•                         |             |
|     | 18        | 7             | 10                         | 10          |
|     | 17        |               | 12                         |             |
|     | 16        | 10            | 13                         | 15          |
|     | 15        |               | (                          | 17          |
|     | 14        | 15            | 18                         | 20          |
|     | 12        | 20            | 25                         | 30          |
|     | 10        | 25            | 30                         | 35          |
|     | 14 4 2    |               | 10.00                      |             |
|     | 8         | 35            | 40                         |             |
|     | 6         | 45<br>60      | 55<br>70                   |             |
|     | 2         | 80            | 95                         | 하시는 것은      |
|     |           | ar Kevini isl | disease they are           |             |

Las capacidades de corriente en amperes indicadas en la columna A se aplican a condones de tres conductores o multiconductores, conectados a apratos con solamente tres conductores que transporten corriente. Las capacidades de corriente en amperes indicadas en la columna B se aplican a cordones flexibles de dos conductores y tambien e los multiconductores conectados aparatos con solamente dos conductores que transporten corriente.



#### DISTANCIAº EN METROS PARA UNA CAÍDA DE TENSION MAXIMA DE 3% CIRCUITOS TRIFASICOS EQUILIBRADOS EN 220 VOLTS

| CALIBRE<br>AWG<br>6 KCM                                                   | AMP                                                                                                     | 8<br>AMP                                                                                        | 15<br>AMP                                                                              | 20<br>AMP                                                                     | 25<br>AMP                                                            | J5<br>AMP                                                   | 50<br>AMP                                          | 70<br>AMP                                 | 80<br>AMP                        | 90<br>AMP               | 100<br>AMP               | 125<br>AMP              |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------|-------------------------|--------------------------|-------------------------|
| 14<br>12<br>10                                                            | 147.2<br>232.3<br>370.3                                                                                 | 73.6<br>117.3<br>186.3                                                                          | 29 9<br>46 0<br>73 6                                                                   | 34 5<br>55 2                                                                  | 43 7                                                                 |                                                             |                                                    |                                           |                                  |                         |                          |                         |
| 8<br>6<br>4                                                               | 588.8<br>936.1<br>1488.1                                                                                | 294 4<br>469 2<br>745 2                                                                         | 117.3<br>198.6<br>29€.7                                                                | 87 4<br>140 3<br>22. 1                                                        | 69 0<br>112 7<br>179 4                                               | 50 6<br>80 5<br>126 5                                       | 62.1<br>69.7                                       | 64 4                                      |                                  |                         |                          |                         |
| 2<br>0<br>00                                                              | 2359 0<br>3760.5<br>4749 5                                                                              | 1184 5<br>1866 9<br>2375 3                                                                      | 1 T   1   1   1   1   1   1   1   1                                                    | J 6 5<br>5 7 8<br>71 2 0                                                      | 265 2<br>450 8<br>570 4                                              | 202 4<br>322 0<br>407 1                                     | 147.6<br>. 25.4<br>. 85.                           | 101 2<br>161 G<br>202 4                   | 140 3<br>77 1                    | 126 5<br>158 7          | 1127                     | 89 7<br>112 7           |
| 000<br>0000<br>250                                                        |                                                                                                         | 2990 O<br>3772 O                                                                                | 12°1<br>150≿<br>1787                                                                   | 897 0<br>1131 6<br>1346 9                                                     | 717 6<br>906 2<br>10 71 9                                            | 5129<br>6463<br>765                                         | 369 9<br>453 1<br>533 6                            | 257 6<br>322 0<br>331 3                   | 225.4<br>282.7<br>333.5          | 2001                    | 119 4<br>227 7<br>266 9  | 142.6<br>181.7<br>213.9 |
| 300<br>350<br>400                                                         |                                                                                                         |                                                                                                 | 2143 6                                                                                 | 16'00<br>18'68<br>21436                                                       | 1283 4<br>1501 9<br>1115 -                                           | 9177<br>10695<br>1225 9                                     | 541 7<br>752 1<br>855 6                            | 460 ()<br>533 6<br>611 H                  | 400 2<br>466 9<br>532 6          | 4.30                    | 322 .1<br>374 9<br>427 8 | 257 6<br>299 0<br>342 7 |
| 500<br>600<br>700                                                         |                                                                                                         |                                                                                                 |                                                                                        |                                                                               | 21410                                                                | 1527.2<br>1935.4<br>2143.6                                  | 1283 4<br>1283 9                                   | 165.9<br>17.7<br>17.3                     | 35.5<br>2.7<br>3.6.1             | 593 4<br>713 0<br>634 9 | 533.6<br>641.7<br>752.1  | 4278<br>5129<br>6003    |
| CALIBRE<br>AWG<br>6 KCM                                                   | 150<br>AMP                                                                                              | 175<br>AMP                                                                                      | 225<br>AMP                                                                             | 250<br>AMP                                                                    | 275<br>AMP                                                           | 300<br>AMP                                                  | 325<br>AMP                                         | 400<br>AMP                                | 450<br>450                       | 500<br>AMP              | 525<br>AMP               |                         |
| 00<br>000<br>0000<br>250<br>300<br>350<br>400<br>500<br>600<br>700<br>800 | 94.3<br>119.6<br>151.8<br>179.4<br>213.9<br>248.4<br>285.2<br>356.5<br>427.8<br>499.1<br>570.4<br>713.0 | 103.5<br>128.8<br>151.8<br>154.0<br>213.9<br>243.8<br>305.9<br>365.7<br>427.8<br>489.9<br>611.8 | 101.2<br>119.6<br>142.6<br>165.6<br>190.9<br>236.9<br>285.2<br>333.5<br>381.8<br>476.1 | 105 B<br>128 B<br>149.5<br>170.2<br>213.9<br>257.6<br>299.0<br>342.7<br>427.8 | 117.3<br>135.7<br>154.1<br>195.5<br>234.6<br>273.7<br>310.5<br>388.7 | 124 2<br>142.6<br>179 4<br>213.9<br>248.4<br>285.6<br>356.5 | 131.1<br>165.6<br>197.8<br>230.0<br>262.2<br>331.2 | 133.4<br>161.0<br>188.6<br>213 9<br>266 8 | 142 6<br>165 6<br>190.9<br>239 2 | 149.5<br>172.5<br>213.9 | 163 3<br>202.7           |                         |


<sup>\*</sup>Distancia medida deade el punto de conexión del alimentador hasta el punto de conexión de la carga,

La tabla se calculó considerando solo la caida de tensión por resistencia en conductores de cobre, aislados tipis RHW, THW ó THWN para 603 Volts y 30°C de temperatura ambiente

Para ot las condiciones aplicar los siguentes factores a la tabla.

| EN CIRCUITOS TRIFASICOS      | EQUILIBRADOS     | PARA OTRAS CAIDAS DE TENSION |                 |  |  |  |
|------------------------------|------------------|------------------------------|-----------------|--|--|--|
| TENSION                      | MULTIPLIQUE POR. | CAIDA DE TENSION             | MULTIPLIQUE POR |  |  |  |
| 440 V                        | 26               | 1 %                          | 0 33            |  |  |  |
| 2 300 V                      | 10 435           | 2%                           | 0.66            |  |  |  |
| 4 160 V                      | 19,130           | 3 %                          | 1 00            |  |  |  |
| Circuitos manofásicos 120 V. | 05               | 4 %                          | 1.23            |  |  |  |
| 1                            | Į                | 5 %                          | 1.66            |  |  |  |

#### GRAFICAS DE CAIDA DE TENSION EN CONDUCTORES DE COBRE AISLADOS. TIPOS RHW, THW Y THWN



DISTANCIA EΝ METROS

#### NOTAS:

NOLI AS:

- El factor de potencia considerado en el calculo de la gráfica es de 0.8.

2.- Los valores de ampacidad estan tomados de la tabla 310-12 del N.E.C. para conductores aislados de cobre tipo RHW, THW y THWN a una temperatura ambiento de 30°C.

3.- Los valores de resistencia lestan tomados a 75°C) y resectancia fueron tomados de la tabla No. 1.20, página No. 98 del Beeman para 600 volts o menos y tres conductores en tubo conduit magnético.

- 229 -TESIS CON LAA DE ORIGEN

#### CABLE CONTROL PARA 600 VOLTS AISLAMIENTO Y CUBIERTA EXTERIOR DE PVC

|                   | CAL IGAWO | (5 J mm²)  |       | CAL 12 AWG | 5 13 31 mm²1 |           | CAL. 14 AWG (2 08 mm²) |             |      |  |
|-------------------|-----------|------------|-------|------------|--------------|-----------|------------------------|-------------|------|--|
| No DE CONDUCTORES | DIAMETRO  | PESO APROX | TOTAL | DIAMETRO   | PESO APROX   | AREA:     | DIAMETRO               | PE SO APROX | TOTA |  |
|                   | mm        | KG/100 m1  | (m)   | mm .       | KG/100 mt    | EW.       | mm .                   | KG/100 mt   | cm1  |  |
| 7                 | 15 7      | 29 25      | 193   | 12 7       | 17.70        | 1 26      | 119                    | 15 00       | 1.11 |  |
| 3                 | 165       | 3705       | 213   | 135        | בי2 22       | 143       | 12.4                   | 18 45       | 1 20 |  |
| 4                 | 180       | 4680       | 254   | 15 7       | 31 20        | 193       | 13 7                   | 22 35       | 1 47 |  |
| 5                 | 195       | 54 00      | 798   | 170        | 34 65        | 2 29      | 15.7                   | 28 05       | 193  |  |
| 6                 | 21 3      | 64 65      | 363   | 185        | 41.25        | 2 68      | 17.0                   | 33 30       | 2 27 |  |
| ,                 | 22 0      | 71.10      | 380   | 18 6       | 44 85        | 271       | 17 1                   | 35 85       | 2 30 |  |
| 8                 | 24.1      | 8700       | 4 56  | 198        | 51 75        | 30a .     | 18 5                   | 41 40       | 2.69 |  |
| 9                 | 25 6      | 98 25      | 514   | 213        | 58 95        | 3.56      | 19 8                   | 46 95       | 308  |  |
| 10                | 28 2      | 109 50     | 6 24  | 24 1       | 70 65        | 4 58      | 21.3                   | 52 20       | 3 56 |  |
| 11                | 28 5      | 114 00     | 6.37  | 24 2       | 72 60        | 4.50      | 21.4                   | 53 70       | 3.60 |  |
| 12                | 28 9      | 12300      | 6 55  | 24.9       | 78.00        | 4 86      | 22.1                   | 57.90       | 3 83 |  |
| 13 أ              | 29 5      | 135 75     | 6 83  | 25.1       | 86.25        | 4.94      | 23 4                   | 68 85       | 4.30 |  |
| 14                | 305 (     | 141 00     | 730   | 26.2       | 89 25        | 5.39      | 24 1                   | 70 95       | 4.56 |  |
| 15                | 31 2      | 155 00     | 7 64  | 26 7       | 98.25        | 5 60      | 24 6                   | 78 00       | 4,75 |  |
| 16                | 32 0      | 160 50     | 8 04  | 27,7       | 100 50       | 6.62      | 25.4                   | 80.25       | 5.06 |  |
| 17                | 338       | 173 25     | 897   | 28 9       | 108.95       | 6 5 5     | 26.7                   | 8700        | 5.60 |  |
| 18                | 33 9      | 179 25     | 9.02  | 29 0       | 112 50       | 6.06      | 26.8                   | 89.25       | 5.64 |  |
| 19                | 34.0      | 185 00     | 907   | 29.1       | 116 25       | 6.65      | 26.9                   | 92.25       | 5.68 |  |
| 20                | 35 5      | 199 50     | 989   | 30 5       | 124 50       | 7.30      | 28.2                   | 99.00       | 6.25 |  |
| 21                | 35.5      | 206 25     | 9 89  | 30 5       | 128 25       | 7.30      | 28.2                   | 101.25      | 6.25 |  |
| 22                | 37 1      | 219 75     | 1081  | 32 0       | 137.25       | 8 04      | 29.5                   | 108 00      | 6.83 |  |
| 23                | 371       | 225 75     | 1081  | 320        | 140.25       | 8.04      | 29.5                   | 111.00      | 6.83 |  |
| 24                | 394       | 240.75     | 12.19 | 33 8       | 150 00       | 8 97. 🐇 📗 | 31.2                   | 119.25      | 7.64 |  |
| 25                | 394       | 247.50     | 12.19 | 33.8       | 153.75       | 8.97      | 31.2                   | 125.50      | 7.64 |  |

Nota: Estos datos son aproximados, y están sujetos e las tolerancias de Manufactura,

Area total del cable.

# ESPESORES DE AISLAMIENTO Y CUBIERTA EXTERIOR

| N   | o. DE CON  | OUCT | DRES  | ESPESOR IM  | vm) 36 ( 36 )        |
|-----|------------|------|-------|-------------|----------------------|
|     |            | •    | 15.35 | AISLAMIENTO | CUBIERTA<br>EXTERIOR |
| 2   | <b>a</b> 7 |      |       | 1.14        | 1.52                 |
| . 8 | a 25       |      |       | 1.14        | 2.03                 |



# CABLE CONTROL PARA 1000 VOLTS. AISLAMIENTO DE POLIETILENC NATURAL Y CUBIERTA EXTERIOR DE PVC

| No. DE<br>CONDUCTORES | CAL. 10 AWG (5.3 mm²) |             |                | CAL. 12 AWG (3.31 mm <sup>3</sup> ) |             |                | CAL. 14 AWG (2.08 mm²)  |             |                |
|-----------------------|-----------------------|-------------|----------------|-------------------------------------|-------------|----------------|-------------------------|-------------|----------------|
|                       | DIAMETRO<br>TOTAL     | PESO APROX. | AREA*<br>TOTAL | DIAMETRO<br>TOTAL                   | FESO APROX. | AREA*<br>TOTAL | DIAMETRO<br>TOTAL<br>mm | PESO APROX. | AREA*<br>TOTAL |
|                       |                       |             |                |                                     |             |                |                         |             |                |
| 3                     | 13.7                  | 28 05       | : 47           | 11.7                                | 16.65       | 1 37           | 10.6                    | 13 05       | 0.88           |
| 4                     | 15.8                  | 31 70       | 196            | 12.7                                | 21 45       | 2 26           | 11 4                    | 16.80       | 1.02           |
| 5                     | 17.3                  | 41.75       | 2.35           | 13.7                                | 24 60       | 1 47           | 12.4                    | 18 60       | 1.20           |
| 6                     | 18.5                  | 53          | 2.69           | 15.7                                | 31 65       | 1 93           | 13.4                    | 22.05       | 1.41           |
| 7                     | 18.6                  | 58          | 2.71           | 15.8                                | 34.20       | 1.56           | :35                     | 24 OU       | 1.43           |
| 8                     | 20.0                  | 67.0:       | 3,14           | 170                                 | 39.30       | 2.21           | 15 5                    | 30 15       | 1.88           |
| 9                     | 21.6                  | 75.25       | 3 66           | 18.3                                | 44 70       | 2.63           |                         | 34.05       | 2.13           |
| 0                     | 24.3                  | 90.00       | 4 00           | 195                                 | 49 65       | 2.39           | 513                     | 27.95       | 2.54           |
| 1                     | 24.4                  | 93 75       | 4 67           | 19.6                                | 51.45       | 301            | 85                      | 38.85       | 2.57           |
| 2                     | 25.1                  | 101 25      | 4.94           | .3.3                                | 55.50       | 3 23           | 18 5                    | 41.85       | 2.69           |
| 3                     | 25.6                  | 11100       | 5.14           | 20.5                                | 61 20       | 330            | 188                     | 46 20       | 2.78           |
| 4                     | 26.4                  | 115.50      | 5 47           | 21 3                                | <b>6345</b> | 356            | 193                     | 47 70       | 2.92           |
| 5                     | 27.2                  | 126 75      | 5 81           | 21.8                                | 69 60       | 373            | 19.8                    | 52 50       | 3 08           |
| 6                     | 27.9                  | 131,25      | 6.11           | 23 5                                | 76 50       | 4 26           | 20.3                    | 53 85       | 3.24           |
| 7                     | 29.4                  | 141.75      | 6.79           | 24.4                                | 82.50       | 4 67           | 21.3                    | 58.05       | 3.56           |
|                       | 29.5                  | 147.00      | 6.83           | 24.4                                | 85 50       | 467            | 21.3                    | 60.00       | 3.56           |
| 9                     | 29.5                  | 152.25      | 6.83           | 24.5                                | 87.75       | 4.71           | 21.4                    | 62,10       | 3.59           |
| 0                     | 30.9                  | 162 75      | 7,50           | 25.6                                | 94 50       | 5,14           | 23 3                    | 71 40 _75   | 4.26           |
| 10.00                 | 31.0                  | 168 00      | 7.54           | 25.7                                | 96.75       | 5.18           | 23.4                    | 73.35       | 4.30           |
| 2                     | 32.3                  | 179.20      | 8.14           | 27.2                                | 103.50      | 5.81           | 24.4                    | 78.00       | 4.67           |
| 3                     | 32.3                  | 184.50      | 8.14           | 27.2                                | 106.50      | 5.81           | 24.4                    | BO 25       | 4.67           |
| 4                     | 34.3                  | 196.50      | 9.24           | 28,4                                | 113.25      | 6 33           | 25.6                    | 85 50       | 5.14           |
| 5                     | 34,3                  | 201.00      | 9.24           | 28.4                                | 116.25      | 6 33           | 25.6                    | 87.75       | 5.14           |

Nota: Estos datos son aproximados, y están sujetos a las tolerancias de manufactura.

\* Ana total del cable.

# ESPESORES DE AISLAMIENTO Y CUBIERTA

| No. DE CONDUCTORES |       | ESPESOR (mm) |          |  |  |
|--------------------|-------|--------------|----------|--|--|
|                    | 1,411 | AISLAMIENTO  | CUBIERTA |  |  |
| 2 + 3              |       | 0.76         | 1.14     |  |  |
| 4 = 6              |       | 0.76         | 1 52     |  |  |
| 7 a 25             |       | 0.76         | 2.03     |  |  |



## CABLE CONTROL PARA 600 VOLTS, AISLAMIENTO DE POLIETILENO NATURAL Y CUBIERTA EXTERIOR DE PVC

|                            | CAL TO AWG                           | (\$ 3 mm <sup>3</sup> )                        |                                          | CAL 12 AWG                           | (3.31 mm <sup>1</sup> )                        |                                      | CAL 14 AWG                           | 12.08 mm <sup>3</sup> )                     |                                      |
|----------------------------|--------------------------------------|------------------------------------------------|------------------------------------------|--------------------------------------|------------------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------------|--------------------------------------|
| NO DE                      | DIAMETRO                             | PESO APROX                                     | TOTAL                                    | TOTAL                                | PESO APROX.                                    | TOTAL                                | DIAMETRO                             | PESO APROX.                                 | AREA"                                |
|                            | mm                                   | KG/100 MI                                      | cm <sup>2</sup>                          | mm                                   | KG/100 Mt.                                     | cm <sup>2</sup>                      | mm                                   | KG/100 Mt.                                  | cm <sup>2</sup>                      |
| 2<br>3                     | 15 4<br>16 2<br>17 7<br>19 3         | 27 00<br>34 05<br>42 60<br>48 90               | 1 86<br>2 06<br>2 46<br>2 93             | 12 4<br>13 7<br>15 5<br>16 7         | 16 05<br>19 95<br>27 75<br>30 60               | 1 20<br>1 36<br>1 89<br>2.20         | 11 2<br>12 2<br>13 4<br>15 5         | 12 90<br>16.20<br>19 35<br>24 45            | 0 98<br>1 17<br>1 41<br>1 89         |
| 6<br>7<br>8<br>9           | 20 8<br>20 8<br>23 6<br>25 4<br>27 6 | 58 50<br>63 90<br>78 75<br>89 25<br>99 00      | 3 40<br>3 40<br>4 37<br>5 07<br>5 99     | 16 0<br>18 8<br>19 3<br>20.8<br>23 6 | 36.30<br>39.15<br>45.30<br>51.60<br>62.12      | 2 54<br>2 78<br>2.92<br>3 40<br>4 37 | 16 7<br>16 8<br>18 0<br>19 3<br>21 0 | 29 40<br>30.75<br>35 70<br>40 50<br>45.00   | 2 19<br>2 22<br>2 54<br>2 92<br>3 46 |
| 11<br>12<br>13<br>14       | 28.1<br>28.7<br>28.9<br>29.9<br>30.7 | 111 00<br>117,75<br>122.25<br>126.75<br>139 50 | 6 20<br>6.46<br>6 56<br>7 02<br>7 40     | 23.7<br>24.3<br>24.9<br>25.6<br>26.1 | 63 60<br>68 25<br>75 75<br>78 00<br>85 50      | 4 41<br>4.63<br>4 87<br>5.15<br>5 35 | 21.1<br>21.6<br>21.8<br>23.7<br>24.4 | 45 75<br>49 20<br>54 75<br>60 75<br>67 20   | 3.49<br>3.66<br>3.73<br>4.41<br>4.67 |
| 16<br>17<br>18<br>19       | 31.5<br>33.2<br>33.3<br>33.5<br>35.0 | 144.00<br>156.00<br>161.00<br>166.50<br>179.25 | 7.80<br>8.66<br>8.71<br>9.60<br>9.62     | 27.2<br>28 4<br>28 5<br>28.6<br>29.9 | 87.75<br>95.25<br>97.50<br>100.50<br>108.00    | 5.81<br>6.33<br>6.38<br>6.42<br>7.02 | 24.9<br>26.1<br>26.2<br>26.3<br>27.6 | 68.55<br>74.70<br>78.50<br>78.00<br>84.00   | 4 87<br>5 35<br>5 39<br>5 43<br>5 96 |
| 21<br>22<br>23<br>24<br>24 | 35.0<br>36.5<br>36.5<br>38.8<br>38.8 | 184.5<br>196.5<br>201.7<br>216.0<br>222.0      | 9 62<br>10 46<br>10 46<br>11 82<br>11.62 | 29.9<br>31.2<br>31.2<br>33.0<br>33.0 | 111 00<br>119.25<br>122.25<br>130.50<br>133.50 | 7.02<br>7.64<br>7.64<br>8.55<br>8.55 | 27 6<br>28,9<br>28,9<br>30.5<br>30.5 | 86.25<br>92.25<br>94.50<br>102.00<br>103.50 | 5.96<br>6.55<br>6.55<br>7.30<br>7.30 |

Nota: Estos datos son aproximados, y están sujetos a las tolerancias de manufactura 

Area total del cable.

## ESPESORES DE AISLAMIENTO Y CUBIERTA EXTERIOR

| No. DE CONDUCTORES | ESPESOR (mn |                      |
|--------------------|-------------|----------------------|
|                    | AISLAMIENTO | CUBIERTA<br>EXTERIOR |
| 2.7                | 1.14        | 1.52                 |
| 8 - 25             | 1.14        | 2.03                 |

## CABLES DE CONTROL Y POTENCIA FABRICADOS BAJO NORMAS V.D.E. (VERBAND DEUTSCHER ELEKTROTECHNIKER)

## 

| NUMERO D                                     | EC    | ONDUCTOR                                                               | £S      | PESO                                   | DIAM.                            | ESPESOR                         |                                        |          |                                                    | 00    | E CONDUCTO                                          | 23 NC         | PESO                                   | DIAM.                          | ESPESOR                         |                                 |
|----------------------------------------------|-------|------------------------------------------------------------------------|---------|----------------------------------------|----------------------------------|---------------------------------|----------------------------------------|----------|----------------------------------------------------|-------|-----------------------------------------------------|---------------|----------------------------------------|--------------------------------|---------------------------------|---------------------------------|
| EN mm <sup>3</sup>                           |       | EN AWG 6                                                               | ксм     | APROX<br>KG.                           | APROX.                           | AISLAMIENTO                     | CHA-<br>QUETA<br>PVC mm                |          | EN mm                                              | _     | EN AWG & K                                          | CM            | APROX.                                 | APROX<br>EN mm.                | AISLAMIENTO<br>CONDUCTOR        | CHA<br>QUETA<br>PVC m           |
| 1 = 4<br>1 = 6<br>1 = 10<br>1 = 16<br>1 = 25 | 4446  | 1 • 11<br>1 • 9<br>1 • 7<br>1 • 5<br>1 • 3                             | 4       | 120<br>145<br>195<br>280<br>380        | 9<br>95<br>10<br>11              | 15<br>15<br>15<br>15            | 1.8<br>1.8<br>1.6<br>1.6<br>1.8        |          | 4 - 15                                             |       | 4 + 15<br>4 + 13<br>4 + 11<br>4 + 9<br>4 + 7        | 4             | 270<br>300<br>400<br>505<br>705        | 125<br>14<br>155<br>165<br>185 | 0 s<br>0 9<br>1 0<br>1 0<br>1 0 | 1 8<br>1 8<br>1 8<br>1 8        |
| 1 a 70<br>1 a 95                             | 00000 | 1 • 2<br>1 • 1/0<br>1 • 2/0<br>1 • 3/0<br>1 • 250                      | טטטטט   | 490<br>855<br>870<br>1150<br>1400      | 14<br>16<br>17 5<br>20<br>21 5   | 15<br>15<br>15<br>16<br>16      | 1 6<br>1 8<br>1 8<br>2 0<br>2 0        |          | 4 = 16<br>4 = 25<br>4 = 35<br>4 = 50<br>4 = 70     | 40000 | 4 • 5<br>4 • 3<br>4 • 2<br>4 • 1/0<br>4 • 2/0       | <b>A</b> 0000 | 1050<br>1850<br>2160<br>3070<br>4080   | 22<br>27 5<br>31<br>36<br>41   | 1 0<br>1 2<br>1 2<br>1 4<br>1 4 | 20<br>20<br>22<br>22<br>24      |
| 1 x 185<br>1 x 240<br>1 x 300                | 00004 | 1 : 300<br>1 : 350<br>1 : 500<br>1 : 600<br>2 : 15                     | 00004   | 1720<br>2110<br>2680<br>3330<br>170    | 23.5<br>25.5<br>28.5<br>32<br>11 | 18<br>20<br>72<br>24<br>08      | 20<br>20<br>20<br>22<br>18             | l        | 4 + 95<br>4 + 120<br>4 + 150<br>4 + 165<br>4 + 240 | č     | 4 • 3/0<br>4 • 250<br>4 • 300<br>4 • 350<br>4 • 500 | 00000         | 5450<br>6610<br>6170<br>10100<br>13000 | 47<br>51<br>57<br>63<br>71     | 1 6<br>1 6<br>1 8<br>2 0<br>2 2 | 26<br>28<br>30<br>37<br>34      |
| 2 = 4<br>2 = 6<br>2 = 10                     | 444   | 2 : 13<br>2 : 11<br>2 : 9<br>2 : 7<br>2 : 5                            | ***     | 220<br>285<br>350<br>475<br>645        | 125<br>135<br>145<br>165         | 09<br>10<br>10<br>10            | 1 8<br>1 8<br>1 8<br>1 8<br>1 8<br>2 0 | ١        | 5 = 1 5<br>5 = 2 5<br>5 = 4<br>5 = 6<br>5 = 10     | 44444 | 5 = 15<br>5 = 13<br>5 = 11<br>5 = 9<br>5 = 7        | 4             | 300<br>400<br>500<br>- 650<br>950      | 14<br>18<br>18<br>19<br>22     | 0 a<br>0 9<br>1 0<br>1 0        | 18<br>18<br>18<br>18            |
| 1 1 5                                        | 0444  | 2.3<br>3.15<br>3.13<br>3.11<br>3.9                                     | U 4 4 4 | 1080<br>190<br>255<br>335<br>420       | 24<br>115<br>13<br>145<br>155    | 12<br>08<br>09<br>10            | 20<br>18<br>18<br>18<br>18             | 1        | 7 . 15<br>8 . 15<br>0 . 15<br>2 . 15               | 44444 | 7 = 15<br>8 = 15<br>10 = 15<br>12 = 15<br>14 = 15   | ****          | 350<br>380<br>500<br>550<br>600        | 15<br>16<br>18<br>19           | 08<br>08<br>08<br>08            | 18<br>18<br>18<br>16            |
| 1 16<br>25<br>1 35                           | 44000 | 3 . 7<br>3 . 5<br>3 . 3<br>3 . 2<br>3 . 1/0                            | 44000   | 575<br>825<br>1330<br>1710<br>2470     | 17<br>19 5<br>25 5<br>28<br>33   | 1.0<br>1.0<br>1.2<br>1.7        | 1 8<br>2 0<br>2 0<br>2 0<br>2 0<br>2 2 | 2 2      | 8 - 15<br>9 - 15<br>1 - 15<br>4 - 15<br>0 - 15     | 4444  | 16 + 15<br>19 + 15<br>21 + 15<br>24 + 15<br>30 + 15 | ****          | 640<br>750<br>850<br>950<br>1100       | 20<br>22<br>24<br>28<br>27     | 0 8<br>0 8<br>0 8               | 20<br>20<br>20<br>20<br>20      |
| 1 s 95<br>1 s 120<br>1 s 150                 | 00000 | 3 : 2/0<br>3 : 3/0<br>3 : 250<br>3 : 300<br>3 : 350                    | 00000   | 3230<br>4270<br>5270<br>6430<br>7940   | 37<br>40<br>40<br>51<br>57       | 1 4<br>1 6<br>1 6<br>1 8<br>2 0 | 22<br>24<br>26<br>28<br>30             | 1        | 7 · 2 5<br>B · 2 5<br>D · 2 5<br>Z · 2 5           | 4444  | 7 • 13<br>6 • 13<br>10 • 13<br>12 • 13<br>14 • 13   | ****          | 500<br>520<br>650<br>750<br>850        | 17<br>18<br>21<br>22<br>24     | 09<br>09<br>09<br>09            | 18<br>18<br>20<br>20            |
| 22/16<br>1: 35/16<br>1: 50/25                | 00000 | 3 · 500<br>3 · 3/5<br>3 · 2/5<br>3 · 1/0/3<br>3 · 2/0/2                | 00000   | 10200<br>15 20<br>1890<br>2760<br>3610 | 64<br>28 !<br>78 !<br>35<br>38   |                                 | 32<br>2.0<br>20<br>22<br>22            | 21<br>24 | 5 · 25<br>9 · 25<br>1 · 25<br>4 · 25               | 4444  | 16 • 13<br>19 • 13<br>21 • 13<br>24 • 13<br>30 • 13 | 4444          | 950<br>1050<br>1150<br>1300<br>1150    | 15<br>26<br>27<br>30<br>32     | 0.9                             | 20<br>20<br>20<br>20<br>27      |
| 11:0/70                                      | 0000  | 3 • 3/0/1/0<br>3 • 350/2/0<br>3 • 350/3/0<br>3 • 350/3/0<br>3 • 500/25 | 0 0     | 4890<br>5060<br>,210<br>9050<br>1400   | 44<br>49<br>53<br>59<br>66       | 1 6/1 4<br>1 8/1 4<br>2 0/1 6   | 2 4<br>2 6<br>2 8<br>3 0<br>3 2        | 12       | 2.4                                                | 4444  |                                                     | ****          | 800<br>850<br>950<br>1100<br>1350      | 19<br>25<br>27<br>27<br>20     | 18                              | 1 8<br>2 0<br>2 0<br>2 0<br>2 0 |
|                                              | 1     |                                                                        | 1       | 1                                      | ,                                | 1                               |                                        | 74       |                                                    | 44    | 24 - 11                                             | 2             | 1550<br>1750<br>2100                   | 31<br>35<br>37                 | 10                              | 7 7<br>2 7<br>2 7               |



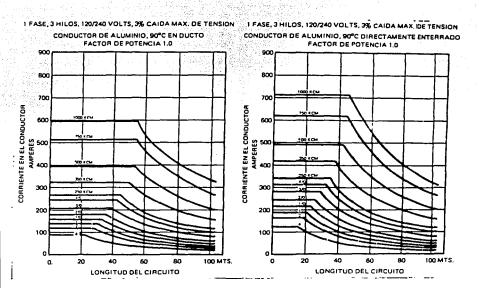
#### CARLE CONTROL NYCY (MODIFICADO

| NUMERO DE                                                     |                         | DRES Y                                    |                                           | PESO NETO                             | DIAMETRO                           | ESPESOR                                     | D€                                     |
|---------------------------------------------------------------|-------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------|------------------------------------|---------------------------------------------|----------------------------------------|
| EN mm <sup>3</sup>                                            |                         | N AWG 6                                   | KCM                                       | APROXIMADO<br>KG/1000 Mts.            | EN mm Ø                            | AISLAMIENTO<br>DEL .<br>CONDUCTOR<br>EN mm. | CHAQUETA<br>PVC<br>EN mm,              |
| 3 = 2.5 A<br>3 = 4 A<br>3 = 6 A                               | /25 3<br>/4 3<br>/6 3   | * 15<br>* 13<br>* 11<br>* 1               | A/15<br>A/13<br>A/11<br>A/9<br>A'7        | 225<br>300<br>395<br>505<br>705       | 12.5<br>14<br>14 5<br>16 5<br>18 5 | 08<br>09<br>1.0<br>1.0                      | 1.8<br>1.8<br>1.8<br>1.8               |
| 3 = 25 C/<br>3 = 35 C/<br>3 = 50 C/                           | /1d 3<br>/16 3<br>/25 3 | 15<br>23<br>22<br>1/0<br>2/0              | A/5<br>C/5<br>C/5<br>C/3<br>C'2           | 1020<br>1540<br>1920<br>2770<br>3640  | 21<br>27<br>29 5<br>25<br>39       | 1.0<br>1.2<br>: 2<br>·                      | 2.0<br>2.0<br>2.2<br>2.2<br>2.2        |
| 3 x 120 C/<br>3 x 150 C/<br>3 x 185 C/                        | 70 3<br>70 3<br>95 3    | = 3/0<br>= 250<br>= 300<br>= 350<br>= 500 | C/2:0<br>C/2:0<br>C/2/0<br>C/3/0<br>C/250 | 4530<br>6040<br>7250<br>9030<br>11500 | 44<br>49<br>53<br>59<br>66         | 1 6<br>1 5<br>1 8<br>2 0<br>2 2             | 2.4<br>7.6<br>2.8<br>3.0<br>3.2        |
| 3 × 25 C/<br>3 × 35 C/<br>3 × 50 C/<br>3 × 70 C/<br>3 × 95 C/ | 35 3<br>50 3<br>70 3    | × 5<br>× 2<br>× 1/0<br>× 2/0<br>× 3/0     | C/5<br>C/2<br>C/1/0<br>C/2/0<br>C/3/0     | 1670<br>2130<br>3070<br>3990<br>5270  | 27<br>30<br>35<br>39               | 1,2<br>1,2<br>1,4<br>1,4<br>1,6             | 2.0<br>2.2<br>2.2<br>2.2<br>2.2<br>2.4 |
| 3 x 150 C/<br>4 x 1.5 A/                                      | 150 3<br>1.5 4<br>2.5 4 | x 250<br>x 300<br>x 15<br>x 13<br>x 11    | C/250<br>C/300<br>A/15<br>A/13<br>A/11    | 6540<br>8040<br>255<br>345<br>460     | 49<br>54<br>13.5<br>15             | 1.6<br>1.8<br>0.8<br>0.9                    | 2.6<br>2.8<br>1.8<br>1.8<br>1.8        |
| 4 x 6 A/<br>4 x 10 A/<br>4 x 16 A/<br>4 x 25 C/<br>4 x 35 C/  | 10 4:<br>16 4:<br>16 4: | 9<br>17<br>15<br>13                       | A/9<br>A/7<br>A/5<br>C/5<br>C/5           | 595<br>855<br>1250<br>1850<br>2370    | 17.5<br>20<br>23.5<br>29<br>32     | 1.0                                         | 1.8<br>2.0<br>2.0<br>2.0<br>2.0<br>2.2 |
| 1 x 50 C/5<br>1 x 70 C/5<br>1 x 95 C/5                        | ir. 4 i                 | 1/0<br>2/0<br>3/0                         | C/3<br>C/2<br>C1/0                        | 3370<br>4490<br>6020                  | 38<br>43<br>49                     | 1.4<br>1.4<br>1.6                           | 2.2<br>2.4<br>2.6                      |

A = Alambre C = Cable

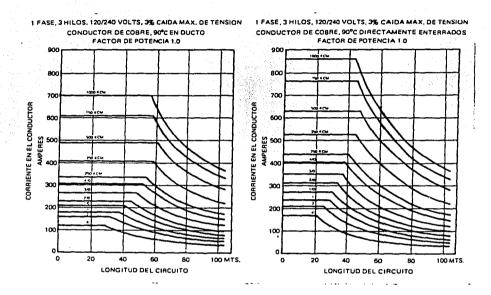
## DIMENSIONES DE CABLES PARA 600 VOLTS

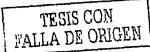
| CALIBRE                                            |                                    |                                        | NUMERO<br>DE                     |                                              | ETAO DEL                                           |                                                    | ETRO SOBRE                                         |                                                    | E TRIPLEX                                    |                                                    | E CUADRUPLEX<br>ETRO TOTAL                   | CALIBRE                         |
|----------------------------------------------------|------------------------------------|----------------------------------------|----------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------|---------------------------------|
| KCM                                                | AWG                                | m m 2                                  | ALAMBRES                         | m m                                          | PULG                                               | mm.                                                | PULG.                                              | mm                                                 | PULG.                                        | m.m                                                | PULG.                                        | AWGOKE                          |
| 41 74<br>66 36<br>105 6<br>133 1<br>167 8<br>211 6 | 4<br>2<br>1/0<br>2/0<br>3/0<br>4/0 | 21 2<br>33 6<br>53 5<br>67 4<br>85 0   | 7<br>7<br>19<br>19<br>19         | 5 88<br>7 42<br>9 46<br>10 6<br>11 9<br>13 4 | 0 232<br>0 292<br>0 373<br>0 418<br>0 470<br>0 528 | 9 04<br>10 57<br>13 44<br>14 58<br>15 90<br>17 37  | 0 356<br>0 416<br>0 529<br>0 574<br>0 626<br>0 684 | 19 81<br>22 10<br>28 20<br>31 50<br>33 53<br>36 58 | 0 78<br>0 87<br>1 11<br>1 24<br>1 32<br>1 44 | 22 10<br>24 89<br>32 00<br>35 81<br>38 10<br>41 91 | 0 87<br>0 98<br>1 26<br>1 41<br>1 50<br>1 65 | 4<br>4<br>2<br>2<br>1/0<br>2/0  |
| 250<br>300<br>350<br>400<br>450<br>500             | -                                  | 127<br>152<br>177<br>203<br>228<br>253 | 37<br>37<br>37<br>37<br>37<br>37 | 14 6<br>16 0<br>17 3<br>18 5<br>19 6<br>20 7 | 0 575<br>0 630<br>0 681<br>0 728<br>0 772<br>0 813 | 19 38<br>20 78<br>22 08<br>23 27<br>24 38<br>25 43 | 0 763<br>0 818<br>0 869<br>0 916<br>0 960<br>1 001 | 40 13<br>43 18<br>45 21<br>48 51<br>-<br>53 59     | 158<br>170<br>179<br>191<br>                 | 45 47<br>48 77<br>51 31<br>54 86<br>60 71          | 1 79<br>1 92<br>2 02<br>2.16<br>-<br>2 39    | 3/0<br>4/0<br>4/0<br>250<br>300 |
| 500<br>700<br>830<br>900<br>1000                   |                                    | 304<br>355<br>405<br>456<br>507        | 61<br>61<br>51<br>61<br>61       | 22 7<br>24 5<br>26 2<br>27 8<br>29 3         | 0 893<br>0 964<br>1 031<br>1 094<br>1 152          | 28 22<br>30 02<br>31 72<br>33 37<br>34 80          | 1 111<br>1 182<br>1 249<br>1 312<br>1 370          |                                                    | 11:11                                        | -                                                  |                                              |                                 |


#### PROPIEDADES ELECTRICAS

| CALIBRE                                            | 100                                | 19-1-                                  | RESISTENCIA                                        | REACTANCIA                                               | AMPACIDAD*                             |
|----------------------------------------------------|------------------------------------|----------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------|
| KCM                                                | AWG                                | m.m.³                                  | A 90°C C.A.<br>OHMS/KM                             | INDUCTIVA<br>CUADRUPLEX O<br>TRIPLEXI<br>OHMS/KM         |                                        |
| 41 74<br>66 36<br>105 6<br>133 1<br>167 8<br>211 6 | 4<br>2<br>1/0<br>2/0<br>3/0<br>4/0 | 21 2<br>33 6<br>53 5<br>67 4<br>85 0   | 1,747<br>1 100<br>0 891<br>0.548<br>0 435<br>0.345 | 0.1087<br>0.1029<br>0.0995<br>0.0970<br>0.0949<br>0.0926 | 119<br>153<br>198<br>226<br>257<br>291 |
| 250<br>300<br>350<br>400<br>450<br>500             | 11111                              | 127<br>152<br>177<br>203<br>228<br>253 | 0.292<br>0.244<br>0.209<br>0.183<br>0.163<br>0.147 | 0 0934<br>0.0917<br>0.0904<br>0.0893<br>0 0885<br>0.0880 | 319<br>358<br>385<br>415<br>435<br>467 |
| 600<br>700<br>800<br>900                           | 111                                | 304<br>355<br>405<br>456<br>507        | 0.123<br>0.106<br>0.094<br>0.084<br>0.076          | 0.0876<br>0.0870<br>0.0861<br>0.0853<br>0.0848           | 510<br>545<br>595<br>630<br>670        |

Las capacidades de corriente (Ampacidadus) están basadas en conductores triplex a una temperatura de 90°C y directamente enterrados, temperatura del inedio ambiente de 20°C y 100% factor de parale.





## CURVAS DE CAIDA DE TENSION PARA CABLES TRIPLEX TIPO DRS, 600 VOLTS ALUMINIO





## CURVAS DE CAIDA DE TENSION PARA CABLES TRIPLEX TIPO DRS, 600 VOLTS COBRE





# ANEXO "B"

## . TABLA DE RELACIONES DE CAVIDAD

| ANCHO | LARGO                               | 1 1                      | 011    | 6 1                      | 101         | 2.5               | 301                      | 3.5                                    | 40                                       | 150                              | 118                        | 017               | 010                              | 10                                            | 1 10                            | 111                                | 1 12                             | 1 14                                   | 1 16                              | 1 29                                   | 13                                      | 1 3                                     |
|-------|-------------------------------------|--------------------------|--------|--------------------------|-------------|-------------------|--------------------------|----------------------------------------|------------------------------------------|----------------------------------|----------------------------|-------------------|----------------------------------|-----------------------------------------------|---------------------------------|------------------------------------|----------------------------------|----------------------------------------|-----------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|
| 8     | 8<br>10<br>14<br>20<br>30<br>40     | 1-1000                   | 2 1    | 5 3                      | _           | 2 5               |                          | 3 4<br>3 9<br>3 4<br>3 1<br>2 8<br>2 6 | 3 0<br>4 5<br>3 8<br>3 5<br>3 7          |                                  |                            | 3 8 7             |                                  | 10                                            | 12                              | 124                                | 101                              | -                                      | =                                 | E                                      | =                                       | ======================================= |
| 10    | 10<br>14<br>20<br>30<br>40<br>60    | -dadoo                   | 97780  |                          | 0 7 5 3 2 2 | 5                 | 0                        | 330                                    | 4 D<br>3 4<br>3 0<br>2 7<br>2 5<br>2 3   | 50<br>43<br>37<br>33<br>31<br>29 | 40                         | 8                 | 6 9                              | 9 0<br>9 0<br>9 0<br>9 0<br>9 0<br>9 0<br>9 0 | 10 C<br>8 6<br>7 5<br>6 2       | 95<br>83<br>73<br>69               | 104                              | 100                                    | 120                               | 125                                    | =                                       | =                                       |
| 12    | 12<br>18<br>24<br>36<br>50<br>70    | 0.000                    | 0000   | 4 H                      | ,           | 6 4 3             | 3                        | 7 9 8                                  | 13<br>29<br>25<br>22<br>21<br>21         | 4:<br>31<br>28<br>26<br>24       | 3 3 3 3 7 9                | 34                | 87<br>58<br>50<br>44<br>41       | 100                                           | 8 4<br>7 2<br>5 2<br>5 4        | 89<br>69<br>60                     | 0 3<br>8 7<br>6 6<br>5 8         | 13 2                                   | 11 6<br>10 0<br>8 8<br>8 7<br>7 6 | 125<br>110<br>1107<br>97               | -                                       | =                                       |
| 14    | 14<br>20<br>30<br>42<br>60<br>90    | 00000                    |        | 3                        | 0 1         | 412               | 8                        | 8,                                     | 29 24 21 19 18                           | 36                               | 9                          | 3                 | 1                                | 6 4 7 4 3 9 3 7                               | 61                              | 7 B<br>11 3 B<br>5 2<br>4 B<br>4 S | 57                               | 86<br>73<br>67<br>63                   | 1 B 4<br>7 6                      | 7                                      |                                         | -                                       |
| 17    | 17<br>25<br>35<br>50<br>80<br>120   | 0000                     | 00000  | 5000                     | 8770        | 5 1               | 3 1 1 1 1 1 1            | 4 2                                    | 23                                       | 25<br>22<br>20<br>18<br>17       | 264                        | 141               | 1                                | 113                                           | 30                              | 6 5 4 6 4 3 4 0 3 7                | 000<br>000<br>450<br>450         | 9 2 1 5 4 1 5 1 4 7                    | 94<br>80<br>77<br>62<br>58        | 100                                    | 12 5<br>10 8<br>9 7<br>9 0<br>8 4       | 111100                                  |
| 00    | 20<br>30<br>45<br>80<br>90          | 04                       | 20000  | 7 1<br>6 0<br>5 0<br>5 0 | 110000      | 2 1 1 9 1 1 8 0 0 | 2                        | 3710                                   | 4                                        | 25<br>21<br>18<br>17<br>15       | 30<br>25<br>22<br>20<br>18 | 2522              | 40<br>33<br>29<br>27<br>24<br>23 | 33<br>33<br>33<br>27<br>26                    | 36<br>36<br>34<br>30<br>29      | 45                                 | 60<br>49<br>43<br>43<br>36       | 47                                     | 66<br>58<br>54<br>48              | 82<br>72<br>67<br>60<br>57             | 175<br>103<br>91<br>84<br>75            | 10 10                                   |
| 4     | 24<br>32<br>50<br>70<br>100         | 0 4<br>0 3<br>0 3<br>0 3 | 00000  | 0000                     | -00000      | 8 0<br>6 0        |                          | 000                                    | 2100                                     | 18                               | 25<br>22<br>18<br>47<br>16 | 2622018           | 33<br>29<br>25<br>22<br>21       | 37<br>33<br>28<br>25<br>24<br>21              | 3 1<br>3 1<br>2 8<br>2 6<br>2 4 | 45<br>40<br>34<br>40<br>29<br>26   | 50<br>43<br>37<br>33<br>31<br>28 | 5 8<br>5 1<br>4 4<br>3 8<br>3 7<br>3 7 | 57<br>50<br>44<br>42<br>38        | # 2<br>7 2<br>8 2<br>5 5<br>5 7<br>4 7 | 10 3<br>9 0<br>7 8<br>6 9<br>3 5<br>5 9 | 17                                      |
| 0     | 30<br>45<br>60<br>90<br>150<br>200  | 03<br>03<br>02<br>02     | 000000 | 0000                     | 000000      | 0000              | 0 1<br>8 1<br>7 0<br>8 0 | ,   0                                  | 8                                        | 12                               | 17                         | 19                | 27<br>20<br>18                   | 30<br>25<br>27<br>20<br>18                    | 33,77,70                        | 37                                 | 45<br>33<br>30<br>77<br>24<br>22 | 4 7<br>3 8<br>3 5<br>3 1<br>2 8<br>2 6 | 54<br>44<br>40<br>36<br>37<br>30  | 67<br>55<br>50<br>45<br>40             | 8 4<br>6 9<br>6 2<br>5 6<br>5 0<br>4 7  | 8                                       |
| 6     | 36<br>50<br>75<br>100<br>150<br>200 | 0.5                      | 00000  | 00000                    | 00000       | 00000             | 00000                    | 6 1 0                                  | -0887,                                   | 14                               | 147                        | 19                | 27<br>19<br>16<br>15             | 18                                            | 25                              | 26                                 | 29                               | 39<br>33<br>29<br>26<br>24             | 38<br>33<br>30<br>25              | 35<br>48<br>41<br>38<br>35<br>33       | 59<br>51<br>47<br>43                    | 6 5 2 4 9                               |
| *     | 42<br>60<br>90<br>140<br>200<br>300 | 02                       | 000000 | 00.00                    | 0000        | 0                 | 0                        | 5.00                                   | 0 0                                      |                                  | 09                         | 10                | 119                              | 2 1<br>1 B<br>1 6<br>1 4<br>1 3               | 127                             | 26<br>22<br>19<br>17<br>16         |                                  | 2 H                                    | 112                               | 47<br>40<br>35<br>31<br>29<br>28       | 5 9<br>5 0<br>4 4<br>3 9<br>3 6<br>3 5  | 7 . 60<br>52<br>45<br>43                |
| •     | 5C<br>70<br>100<br>150<br>300       | 0 2<br>0 2<br>0 1<br>0 1 | 02     | 0000                     |             | 0                 |                          | 0000                                   | 9 10 10 10 10 10 10 10 10 10 10 10 10 10 | 0 7                              | 201                        | 14                | 12                               |                                               | 20<br>  17<br>  13              | 100                                | 10                               | 28                                     | 32                                | 10                                     | 50<br>47<br>37<br>33                    | 5 0<br>4 5<br>4 5                       |
| •     | 60<br>100<br>150<br>300             | 01                       | 07     | 2000                     | 0000        | 0                 | 0000                     |                                        |                                          |                                  | 0 8                        | 1209              | 13                               | 12                                            | 13                              | 15                                 | 20                               | ; ]<br>16<br>16                        | 2;<br>19<br>18                    | 33<br>27<br>23<br>20                   | 42<br>33<br>29<br>25                    | 30                                      |
| ì     | 75<br>120<br>200<br>300             | 0 1<br>0 1<br>0 1        | 02     | 0 2                      | 1           |                   |                          |                                        | 3 0                                      | 35                               | 8 0 5 0 5 0 5              | 0 B<br>0 B<br>0 B | 0,                               | 12                                            | 13<br>09<br>08                  | 17                                 | 13                               | 19                                     | 2 !<br>1 ?<br>1 3                 | 2;<br>2;<br>1;                         | 33<br>27<br>23<br>21                    | 40<br>33<br>27<br>25                    |
| , ]   | 100<br>200<br>300                   | 01<br>01                 | 0 !    | 07                       | 02          | 07                | 0 7                      | 000                                    | 3 6                                      | 3                                | :                          | 02                | 08                               | 09                                            | 0,                              | 0,0                                | 12<br>09<br>08                   | 14                                     | 18                                | 10                                     | 25<br>18<br>17                          | 30<br>22<br>20                          |
|       | 150<br>300                          | 0,                       | 81     | 8;                       | 0 7         | 83                | 83                       | -                                      |                                          | 3                                | 3                          | 83                | 05                               | 0.5                                           | 83                              | 00                                 | 0.6                              | 39                                     | 11                                | 13                                     | 1;                                      | 20                                      |
|       | 200<br>200                          |                          | 81     | 8;                       | 81          | 81                | 83                       | 0                                      | 2 8                                      | 3                                | 3                          | 33                | 04                               | 05                                            | 07                              | 0.5                                | 08                               | 0 ?<br>0 8                             | 0.4<br>0.7                        | :0                                     | 181                                     | 13                                      |
|       | .000                                | · i                      |        | 01                       | 01          | 01                | ۰ 0                      | 0                                      | I                                        | vic                              | 2 0                        | 3.2               | 0.3                              | רס                                            | 0.1                             | 04                                 | 04                               | 0,1                                    | 05                                | 06                                     | 07                                      | 0.                                      |

TESIS CON FALLA DE ORIGEN

- 239 -

## PORCENTAJE DE LAS REFLECTANCIAS EFECTIVAS DE TECHO O PISO PARA VARIAS COMBINACIONES DE REFLECTANCIAS

| Γ        |                        |                                                                                                | T                                                                    |                                                          |                                                                | 9                                                                                                              | 0                                                              |                                                                      | _                                                                    | Τ                                                  |                                         |                                                                                          | -                                                                                                              | ю                                                        | _                                                                          |                                                                      | I                                                                    |                                          |                   |                                                                                      | 70                                       |     | _                                                                                                            | $\Gamma$                                                                                                                                                                                           | _                                                                         |                                                                | •                                                        | ,                                                                               |                                                                    |                                                          | Т                                                                                            | _                                       | _                                                              | 50                                                                                                                                           | ,                                                                          | _                                                         | _                                                        |
|----------|------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------|-------------------|--------------------------------------------------------------------------------------|------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|
|          | 0 0 flor               |                                                                                                | 90                                                                   | 80                                                       | 70                                                             | 50                                                                                                             | ) (                                                            | 11                                                                   | 30                                                                   | Ľ                                                  | 0.8                                     | 0 2                                                                                      | 0 5                                                                                                            | 0 2                                                      | 0 1                                                                        | 00                                                                   | Ţ                                                                    | ю                                        | 80                | 70 5                                                                                 | ø:                                       | 100 | 00                                                                                                           | 94                                                                                                                                                                                                 | 80                                                                        | 70                                                             | 50                                                       | 30                                                                              | 10                                                                 | 0                                                        | 90                                                                                           | 80                                      | 7                                                              | 50                                                                                                                                           | 30                                                                         | 10                                                        | 0                                                        |
|          | RELACION DE CAVIDAD    | 0.4<br>0.4<br>0.8<br>1,0<br>2.0<br>2.1<br>2.0<br>3.5<br>4.0<br>6.0<br>0.0                      | 00<br>07<br>00<br>77<br>71<br>71<br>64                               | 87<br>88<br>80<br>80<br>77<br>77<br>77<br>80<br>81<br>81 | 74 77 44 41 42 47 47 47                                        | **** ***** ****                                                                                                | 41<br>77<br>72<br>40<br>41<br>47<br>47<br>47<br>20<br>20<br>20 | 71<br>01<br>04<br>04                                                 | S HINNE TELE                                                         | 70 70 70 64 64 64 64                               | 71<br>74<br>74<br>74<br>84<br>84<br>84  | 7 7:<br>7:<br>8:<br>8:<br>8:<br>8:<br>8:<br>8:<br>8:<br>8:<br>8:<br>8:<br>8:<br>8:<br>8: | 71<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01                               | 11<br>01<br>01<br>04<br>41<br>37<br>31<br>32<br>32<br>31 | 70<br>61<br>57<br>20<br>20<br>20<br>10                                     | 97<br>97<br>98<br>46<br>22<br>27<br>28<br>20<br>14                   |                                                                      |                                          | 17.65 19.65 19.66 |                                                                                      |                                          |     | 1 44<br>1 18<br>7 14<br>3 16<br>6 47<br>2 40<br>6 13<br>1 20<br>7 24<br>3 11<br>6 17<br>6 18<br>9 60<br>8 63 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1                                                                                                                    | 110<br>117<br>117<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118 | 11 11 11 11 11 11 11 11                                        | 17 14 14 14 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>17<br>10                              | 90<br>40<br>43<br>37                                               | 03<br>01<br>10<br>20<br>23<br>20<br>17<br>10<br>11<br>07 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                         | 444444444444444444444444444444444444444 | 41                                                             | 47<br>42<br>43<br>44<br>43<br>27<br>27<br>28<br>28<br>28<br>27<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28<br>28 | 40<br>40<br>34<br>34<br>34<br>37<br>32<br>33<br>31<br>31<br>31<br>31<br>31 | 441 14 14 14 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | 42<br>18<br>26<br>24<br>26<br>24<br>21<br>17<br>15<br>17 |
| $\vdash$ | Authorian<br>(de tour  |                                                                                                |                                                                      |                                                          | _                                                              | 40                                                                                                             | _                                                              |                                                                      | _                                                                    | 1                                                  |                                         | _                                                                                        | 30                                                                                                             |                                                          | _                                                                          |                                                                      | 1                                                                    |                                          |                   | X                                                                                    | ,                                        |     | _                                                                                                            | Γ                                                                                                                                                                                                  |                                                                           | _                                                              | 10                                                       |                                                                                 |                                                                    | _                                                        |                                                                                              | _                                       | -                                                              | 0                                                                                                                                            | _                                                                          | -                                                         |                                                          |
|          | Helinette<br>'et perse | neu eg                                                                                         | 90                                                                   | 80                                                       | 70                                                             | 50                                                                                                             | 30                                                             | 10                                                                   | 0                                                                    | 90                                                 | 80                                      | 70                                                                                       | 50                                                                                                             | 30                                                       | 10                                                                         | 0                                                                    |                                                                      |                                          | 0 7               | 0 9                                                                                  | ) )(                                     | 10  | 0                                                                                                            | 90                                                                                                                                                                                                 | 80                                                                        | 70                                                             | 50                                                       | 30                                                                              | 10                                                                 | 0                                                        | 90                                                                                           | 80                                      | 70                                                             | 50                                                                                                                                           | 30                                                                         | 10                                                        | <u> </u>                                                 |
|          | RELACION DE CAVIDAD    | 0.2<br>0.4<br>0.6<br>0.6<br>1.9<br>1.9<br>2.0<br>2.0<br>2.0<br>2.0<br>3.5<br>4.8<br>5.0<br>6.0 | 40<br>41<br>41<br>42<br>42<br>43<br>44<br>44<br>44<br>44<br>44<br>44 | 40<br>40<br>40<br>30<br>39<br>39<br>39<br>38<br>31<br>37 | 30<br>30<br>34<br>34<br>37<br>34<br>33<br>31<br>31<br>30<br>76 | 34<br>37<br>36<br>31<br>31<br>31<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32 | 34<br>24<br>23<br>28<br>28<br>29<br>20<br>10<br>11             | 31<br>31<br>32<br>34<br>21<br>18<br>18<br>14<br>17<br>10<br>04<br>04 | 34<br>31<br>29<br>47<br>27<br>10<br>12<br>13<br>12<br>10<br>67<br>67 | 11 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15 | 111111111111111111111111111111111111111 | M 10 10 10 10 10 10 10 10 10 10 10 10 10                                                 | 20<br>20<br>27<br>29<br>24<br>24<br>22<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21 | 20<br>20<br>20<br>10<br>17<br>15<br>14<br>13<br>10       | 78<br>78<br>73<br>73<br>18<br>14<br>14<br>12<br>10<br>00<br>04<br>04<br>04 | 25<br>22<br>22<br>20<br>17<br>14<br>12<br>10<br>05<br>06<br>04<br>02 | 21<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>25<br>26<br>27 | 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2 |                   | 1 11<br>1 12<br>1 14<br>1 16<br>1 16<br>1 17<br>1 16<br>1 16<br>1 16<br>1 16<br>1 16 | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 111 | 64<br>64<br>82                                                                                               | 13<br>13<br>15<br>16<br>20<br>24<br>24<br>26<br>27<br>20<br>21<br>20<br>21<br>20<br>21<br>20<br>21<br>20<br>21<br>20<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21 | 111111111111111111111111111111111111111                                   | 11 12 13 14 17 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17 | 111111111111111111111111111111111111111                  | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | 010<br>010<br>010<br>010<br>010<br>010<br>010<br>010<br>010<br>010 | 00<br>04<br>07<br>07<br>04<br>05<br>04<br>03<br>01<br>01 | 82<br>94<br>95<br>97<br>96<br>11<br>14<br>16<br>19<br>20<br>27<br>27<br>27<br>27<br>27<br>27 | 030007<br>071447<br>12177               | 93<br>94<br>95<br>96<br>10<br>13<br>13<br>13<br>13<br>17<br>18 | 33 55 54 55 55 10 10 11 12 17                                                                                                                | ***************************************                                    |                                                           |                                                          |

TESIS CON FALLA DE ORIGEN REFLECTANCIAS EFECTIVAS DE CAVIDAD

| TESIS CON | ALLA DE ORIGEN |  |
|-----------|----------------|--|
|           | M              |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                        |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                 | · |                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------|---|----------------------------|
| 00 2 +02'd<br>00 2 +02'd<br>01 2   00 2<br>01 3   00 2<br>01 4   00 2<br>01 5   00 2<br>01 6   00 2<br>01 7   00 2<br>01 8   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9   00 2<br>01 9 | 90'2 95'C                                                                              | 212 0212<br>2108 219<br>2100 210<br>2140 212<br>2140 213<br>2140 214<br>2150 214             | 00.4 00.5<br>00.4 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5<br>00.5 00.5                                                                                                                                                                                                                 | 02.5 02.5<br>02.0 00.0<br>02.0 00.0<br>02.0 00.0<br>02.0 00.0<br>02.0 00.0<br>00.0 00.0<br>00.0 00.0<br>00.0 00.0<br>00.0 00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | o ELPA<br>on Eluma<br>animo     |   |                            |
| 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 86.8 01.8 0<br>90.8 01.8 0<br>90.8 00.8 0<br>91.8 00.8 0<br>91.8 00.8 0<br>91.8 00.8 0 | 7'F 02'E<br>0'C 01'9<br>0'C 01'9<br>0'C 00'S<br>1'S 00'S<br>1'S 00'B<br>1'S 00'B<br>1'B 05'0 | 00.6 00.8<br>00.8 00.8<br>00.8 00.8<br>00.8 00.6<br>00.8 00.6<br>00.6 00.6<br>00.6 00.6<br>00.6 00.6 | 01'0 01'0<br>00'0 01'0<br>00'0 01'0<br>2'0 01'0<br>01'0 01'0<br>01'0 01'0<br>01'0 01'0<br>01'0 01'0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 01<br>6<br>9<br>4<br>9<br>5<br>6        | o E.J<br>on position<br>depleam |   |                            |
| OFF (OFF) OFF) OFF) OFF) OFF) OFF) OFF) OFF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00'1 0E'1 0<br>00'1 0E'5 0<br>00'5 00'5 0<br>00'5 00'5 0<br>00'5 00'5 0                | 0'9 00'9 0'9 02'9 1'9 101'6 1'6 09'6 1'8 00'9 1'9 00'1 1'4 02'4                              | 010 010<br>010 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9136 918<br>9100 918<br>9100 918<br>910 919<br>910 910 919<br>910 910 919<br>910 910 919<br>910 910 910<br>910  01<br>4<br>9<br>4<br>9<br>5<br>1        | DE PARLEY<br>DE PARLEY          |   | and a rose was approved to |
| 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                | 17 00'S<br>16 00'S<br>17 00'S<br>17 00'S<br>17 00'S<br>17 00'S                               | 0014<br>0014<br>0016<br>0016<br>0016<br>0016<br>0016<br>0016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2150 2150<br>2160 2100<br>2100 2100<br>2130 0130<br>2130 0130<br>2130 0130<br>2130 0130<br>2130 0130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B1<br>4<br>6<br>6<br>6<br>8             | e 6.1<br>es grund.<br>essinor   |   |                            |

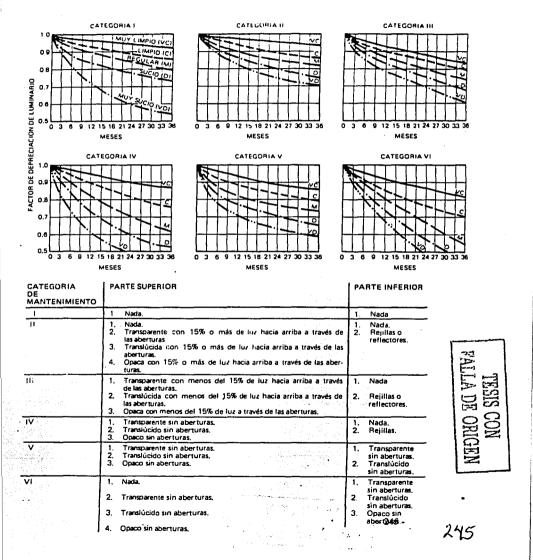
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 141211133                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | upinemas                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 201 201 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 DS                                                                                                            | 5 OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$440 Fig.                              | NO NUMBER OF                     | 015TRIBUCION     | AIRANIMUJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1111 30 E344                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 726                                     |                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 00 2 100 1<br>00 2 100 2<br>00 2 101 2<br>00 2 101 2<br>00 2 101 2<br>00 2 101 2<br>00 3 100 2<br>00 3 100 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01.7 02.1 0<br>01.9 02.0 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 03.2 0<br>00.0 | 012 012 017<br>012 0012 017<br>12 017 017<br>12 017 017<br>13 010 019<br>15 010 017<br>15 016 017<br>16 017 017 | 001 02'2 06'2<br>  002 06'2 06'2<br>  002 06'2 06'2<br>  002 06'2 06'2<br>  002 06'2 06'2<br>  002 06'3 06'3<br>  002 06'3 06'3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 d 0 d 0 d 0 d 0 d 0 d 0 d 0 d 0 d 0 d | a C.1<br>an suphh<br>nustram     | <del>3-1-0</del> | (1) a) hepoto.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| or s   01 0<br>on s   01 0<br>on s   104 1<br>co o   104 0<br>on s   104 0<br>on s   104 0<br>on s   100 0<br>on s   100 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00 E 00 F 10<br>00 E 05 S 10<br>00 E 05 S 10<br>00 E 05 S 10<br>00 E 05 S 10<br>00 E 05 S 10<br>00 E 00 S 10<br>00 E 00 S 10<br>00 E 00 S 10<br>00 E 00 S 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | 20 C 0 C 20 C 0 0 C 0 C 0 C 0 C 0 C 0 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | al symbol<br>as 6 m/10g<br>a 6°1 | 001              | Ethings and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the secon |
| 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0.00 ( 0. | 84 9 61 8 Di<br>94 9 61 8 Di<br>95 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO                                                                                                              | #00.00 0 0.01 00.1<br>#00.00 0 0.0 00.0<br>#00.00 0 0.0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.00 0 0.0<br>#00.0 | 4                                       | dispublic<br>no single<br>s'E    | 000              | TE-INDEAD AND AND AND AND AND AND AND AND AND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| er er er er er er er er er er er er er e                                                                                                                                                                                      | COEFICIENT   | ES DE UTILI                   | ZACION      |                                                                      |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------|-------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                               |              |                               |             | Aafle                                                                | ciancias,                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                               | DISTRIBUCION | Separación<br>no superior     | Covided 001 | 80 %                                                                 | 50 %                                                                                                                                         | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LUMINARIA                                                                                                                                                                                                                     | BIST AVECTOR | NO SUDEFIGE                   | *****       | 30 \$ 10% 10%                                                        | 103 205 10%                                                                                                                                  | 2 of Fot Pot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| I                                                                                                                                                                                                                             |              | •                             | HCL         | COEFIC                                                               | IENTES DE UTIL                                                                                                                               | £ ACION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Categoria III                                                                                                                                                                                                                 | , (25)       |                               | ;           | 7.10 6.60 6.60<br>8.10 7.60 7.10<br>7.10 6.90 6.50                   | 1,70 2 30 7 10                                                                                                                               | 7.50 7.40 7.30 7<br>7.00 6.70 6.60 6<br>6.40 6.101 3.60 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                               |              | 1.0 s<br>Attura de<br>montare |             |                                                                      | 6.30 3,80 5.58<br>5,70 1.28 4.80<br>1,20 4.70 4.30                                                                                           | 5,80 5,30 5,20 5,<br>1,30 4,50 4,60 4,<br>4,80 4,40 4,10 3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ventilode de auminio 613 mm standes pi-<br>turas, tras media, Lampara de rador ravos-<br>tidas se fortario. 1.000 m                                                                                                           | "            |                               | ;           | 1 00 4.30 3.40<br>4.10 3.95 3.40<br>4.10 3.40 3.00<br>3.70 3.10 2.70 |                                                                                                                                              | 4.36 3.00 3.80 3.<br>3.90 9.30 1.20 3.<br>3.00 3.20 2.60 2.<br>3.30 2.60 2.50 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Vanitude de aumino 475 m riande de la composito de la composito de la composito de la composito de la composito de la composito de la composito de la composito de la composito de la composito de la composito de la composi | 12 1         | I.J e<br>Affure de<br>mentare |             | 7,70                                                                 | 7,80 7,36 7,18<br>7,00 6,70 6,44<br>6,60 6,20 5,90<br>6,10 5,78 5,36<br>5,60 5,20 4,80<br>5,20 4,70 4,40<br>6,80 4,30 4,00<br>4,40 4,00 3,70 | 7,18 7,00 2,00 6, 6, 6 6, 6 6, 6 6, 6 6, 6 6,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Calagoria III  Lumgaria T-7 - Cuseuler carea. Para Jimpura Y-10 - Cit., a 1,02,                                                                                                                                               | 10 !         | L.3 a<br>Alfurs de<br>montale | 7           | 4,70 3,90 3,40<br>4,20 3,40 7,90<br>3,73 3,00 7,50                   | 7.00 6.50 8.20<br>6.10 9.60 9.20<br>3.40 4.90 4.40<br>4.80 6.20 3.70<br>4.10 3.70 3.70<br>3.10 3.20 2.40<br>3.10 2.50 2.10                   | 4 10 6.80 8.80 8.4<br>6 .3 5.90 8.60 8.4<br>5 40 5.10 4.60 4.6<br>4.30 8.80 8.50 8.3<br>4.30 8.80 8.50 8.3<br>8.40 8.40 8.30 8.3<br>8.40 8.40 8.30 8.4<br>8.40 8.40 8.30 8.3<br>8.40 8.30 8.30 8.3<br>8.40 8.30 8.30 8.3<br>8.40 8.30 8.30 8.3<br>8.40 8.30 8.30 8.3<br>8.40 8.30 8.30 8.3<br>8.40 8.30 8.30 8.3<br>8.40 8.30 8.30 8.3<br>8.40 8.30 8.30 8.3<br>8.40 8.30 8.30 8.3<br>8.40 8.30 8.30 8.3<br>8.40 8.30 8.30 8.3<br>8.40 8.30 8.30 8.3<br>8.40 8.30 8.30 8.3<br>8.40 8.30 8.30 8.3<br>8.40 8.30 8.30 8.3<br>8.40 8.30 8.30 8.3<br>8.40 8.30 8.30 8.3<br>8.40 8.30 8.30 8.3<br>8.40 8.30 8.30 8.3<br>8.40 8.30 8.30 8.3<br>8.40 8.30 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.30 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8.40 8.3<br>8 |

| Categoria II  3 limmares *133 — Cualquier Large — Pin- 2s ismanares *10 C.U. *1.02                      | 7     | 2,3 s<br>Alturê de<br>mantals   | 1 1.6.0 6.3d 6.101/70 7.10 7.30 7.30 7.30 7.30 7.30 7.30 7.30 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------|-------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 Lymphorina 7-137 — Guer Jares Maria Talas Calus                                                       | 18 1  | 1,3 a<br>Altur i de<br>martiris | 1   6   6   6   7   20   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.00   7.0 |
| Categoria 1:<br>2:01 Particular All Categoria Augusta 1:12 - 430 a 603 mg, Bug (Amparta 7:10, CU:1:1:02 | : ( ) | ,,3 d<br>A tura de<br>Assinare  | 1.1   1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3 Limparts 7:17 - 410 4 400 mA. Nrs.<br>Imparts 7:10, C.U. 4:102.                                       | 15    | 3,3 a<br>Atture de<br>mentau    | 1.00 320 790,740 730 710 440 4,00 1,20 5,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

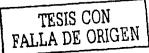
- 242 -

|                                                                                                                       | COEFICIEN    | TES DE UTILI                  | ZACION                                             |                                                                                                                                                                                  |                                                                                                                                             |                                                                                                                           |                                              |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|--|--|
|                                                                                                                       | T .          | 1                             | Reflectancies                                      |                                                                                                                                                                                  |                                                                                                                                             |                                                                                                                           |                                              |  |  |  |
| LUMINARIA                                                                                                             | DISTRIBUCION | Separación<br>no superior     |                                                    | 80 4                                                                                                                                                                             | 50 %                                                                                                                                        | 10 %                                                                                                                      | 0%                                           |  |  |  |
| Comment                                                                                                               | 1            | •                             | ~                                                  | 10 % 30% 10%                                                                                                                                                                     | 10% 30% 10%                                                                                                                                 | 104 104 104                                                                                                               |                                              |  |  |  |
|                                                                                                                       |              |                               |                                                    | co                                                                                                                                                                               | PICIENTES DE V                                                                                                                              | TILIZACION                                                                                                                | •                                            |  |  |  |
| Camparia V                                                                                                            | "            | ~ 1,5 e                       |                                                    | 7 00 0.00 6,30<br>6.00 5,40 5,00<br>5.20 0.00 0,10<br>4.40 3,90 2,40<br>4.00 3,30 2,44                                                                                           | 1,30 4.90 4.00<br>4.00 4.10 1.00<br>4.10 1.00 2.00<br>1.00 2.00                                                                             | 1,10 1,00 1,10<br>1,10 1,10 1,10                                                                                          | 72.85                                        |  |  |  |
| 2 Limours T-12 430 ma, Purs 800 ma,<br>C.U. 4 0,94.                                                                   |              | wanting                       | 1                                                  | 1.60 2.90 2,46<br>3.20 2.30 2,10<br>2.90 2.20 1,50<br>2.00 1.90 1,50<br>2.30 1.70 1.30                                                                                           | 2,00 2,00 2,20<br>2,00 2,00 1,70<br>2,50 2,00 1,70<br>2,10 1,00 1,40<br>2,10 1,00 1,20                                                      | 2.20 1.80 1.10<br>2.00 1.90 1.30                                                                                          |                                              |  |  |  |
| E Limeate T-13 A30 md, Limit on onna-<br>or 30 mm mms. They dimens T-18. Cut. a<br>1.30 mms. They dimens T-18. Cut. a | - 1 - 2      | 1,2 c<br>Artura da<br>Manta E | 3 4 5 7 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10 | 6.36 6.36 5.96<br>6.76 5.46 5.10<br>5.10 6.96 6.46<br>6.86 6.26 5.96<br>6.26 5.76 5.46<br>1.36 5.46 5.96<br>2.36 5.06 2.70<br>5.16 5.76 2.46<br>7.66 5.46 2.36<br>2.46 5.30 1.46 | 5,60 6.10 6.00<br>6.50 6.06 6.10<br>6.40 6.10 120<br>6.40 8.60 8.40<br>8.70 8.30 8.00<br>8.70 8.70 8.70<br>8.70 8.00 8.70<br>8.70 8.00 8.30 | 100 4.00 4.70<br>4.60 4.00 4.70<br>4.70 5.00 5.70<br>5.60 5.30 5.30<br>5.30 5.00 7.40<br>7.50 7.50 7.50<br>7.50 7.50 7.50 | 1.10<br>1.00<br>1.70<br>1.30<br>1.30<br>1.70 |  |  |  |
| Stemanto V  S Lancaryo T.12, 430 mA, Larte primidia g 18 m senha, five dimeana T.18, C.U.s. 1.0b.                     | : - :        | Lal e<br>Advec do<br>America  | 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4            | 1.00 1.00 1.00<br>1.00 1.40 1.00                                                                                                                                                 | 6_10 1,76 1.46<br>1.66 1.30 1.56<br>1.66 1.68 1.46<br>1.18 1.46 1.16                                                                        | 1,00 1,10 1,00<br>1,50 1,50 1,60<br>1,50 1,30 1,10                                                                        | 100000000000000000000000000000000000000      |  |  |  |


| E-impairs T-12, 420 mA, Lance primalities 40 m emph, five almostra T-10. C. U + 1.02.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | :- | E.J. v<br>Altura do<br>manetos | 1<br>3<br>4<br>1<br>1 | 6.50 6.50<br>6.50 1.50<br>1.60 1.50<br>4.50 4.60<br>4.50 3.50<br>6.00 3.50<br>2.50 3.50<br>2.50 2.60<br>2.70 2.60<br>2.70 2.50 | 6.70 0.00<br>6.30 0.00<br>6.40 4.30<br>3.30 4.30<br>3.10 3.50<br>2.40 3.50<br>2.40 3.50<br>2.10 2.50<br>1.10 2.50 | 1.00 1.21<br>4.00 4.31<br>4.30 4.00<br>3.00 3.11<br>3.00 2.70<br>2.70 2.41<br>2.40 2.10                | 4.96 4.0<br>4.46 4.1<br>4.88 3.1<br>3.46 3.1<br>3.30 3.1                                     | 10 4,00 4,00<br>10 4,44 4,00<br>10 1,00 1,00<br>10 1,10 1,00<br>10 1,10 1,00<br>10 2,10 1,00<br>10 2,00 1,00<br>10 2,00 1,00<br>10 2,00 1,00 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| S Limparts T : 4 30 mA, Lamp prisma-<br>ina 60 mmm, Per idmanes T i & C.<br>L : 1 05.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | Eul a<br>Artura no<br>montase  |                       | 6.00 9.80<br>9.40 9.10<br>6.90 4.50<br>6.80 9.50<br>1.80 3.50<br>1.30 2.80<br>2.80 2.50<br>2.70 2.80<br>2.40 2.80              | 5.60 5.60<br>4.80 5.10<br>6.20 6.60<br>3.70 6.20<br>5.30 5.60<br>5.30 3.70<br>5.20 5.60<br>1.50 7.60<br>1.70 7.60 | 4.00 4.71<br>4.30 4.11<br>1.00 2.00<br>2.30 3.21<br>2.10 2.20<br>2.20 2.21<br>2.20 1.00                | 5.29 5.1<br>6.60 6.6<br>4.60 5.7<br>1.50 3.7<br>1.50 2.7<br>2.70 2.4<br>2.50 2.1<br>2.50 2.1 | 0 436 4.00<br>0 400 3.00<br>0 3.50 1.00<br>10 3.50 2.00<br>10 3.60 2.70<br>10 2.50 2.40<br>10 2.50 3.10<br>10 1.00 1.00<br>10 1.70 1.00      |
| Submout 112, 430 ma, Limits aritma<br>into 130 of 130 m, Para dimensis 7 10.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 13 s<br>Affura de<br>mantique  |                       | 1,90 1,70<br>5,20 1,00<br>6,60 4,40<br>4,34 1,90<br>1,90 2,30<br>2,90 2,30<br>2,90 2,30<br>2,00 2,30<br>2,00 2,30<br>2,00 2,00 | 130 130<br>470 1.00<br>4.10 4.00<br>3.00 4.10<br>2.00 2.00<br>2.00 2.00<br>2.00 2.00<br>1.00 2.30<br>1.70 2.30    | \$.40 \$.21<br>4.00 4.00<br>2.00 3.30<br>3.00 3.30<br>3.00 5.00<br>2.70 2.30<br>2.10 1.90<br>1.90 1.70 | 4.36 4.0<br>3.90 3.4<br>3.50 3.2<br>3.20 2.1<br>2.90 2.4<br>2.70 3.4<br>2.40 2.1             | 0 4,00 4,00 7<br>10 3,00 3,00 7<br>10 3,00 3,00 7<br>10 3,00 2,00 7<br>10 2,10 2,00 7<br>10 2,10 2,00 7<br>10 1,10 1,00 7                    |
| Gategorie V  4 Limone at 7-12, 4-36 ma, Large procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 ma, barre procedules for 4-30 |    | 1.2 s<br>Arung St<br>Member    | ,                     | 1,66 1,40<br>1,00 4,70<br>4,30 4,10<br>4,10 3,0<br>3,70 2,30<br>3,00 2,50<br>1,70 2,30<br>1,70 2,30<br>2,30 2,00<br>2,30 2,00  | 1.70 1,30<br>4.50 4,70<br>3.80 4,50<br>3.80 3,60<br>2,30 3,60<br>230 3,10<br>230 2,80<br>1,60 2,30<br>1,60 2,30   | 2,00 2,00<br>2,00 1,00<br>2,00 1,20                                                                    | 8.36 6,1<br>8,90 3,7<br>2.36 3,3<br>2,20 3,1<br>2,70 2,4<br>2,70 2,4<br>2,26 1,0             | 0 4,00 3,50<br>0 3,10 5,00<br>0 2,70 2,00<br>0 2,70 2,00<br>0 2,70 2,00<br>0 3,70 2,00<br>0 1,70 1,00                                        |

## ATTY DE CYCEN LESIS CON

| 97'0 e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 98 9 80'1 96'0<br>96'0 01'1 90'1<br>90'1 96'1 66'1<br>16'1 00'1 90'1<br>96'1 06'1 90'1<br>16'1 06'1 06'1<br>16'1 06'1 06'2<br>16'8 86'8 04'2                                     | 04,5 04,6 0<br>08,5 06,6 0<br>08,5 06,6 0<br>08,1 06,5 0<br>08,1 06,1 0<br>08,1 06,1 0<br>08,1 06,1 0 | 04'0 08'1 05'1   0 00'1 08'1 08'1   0 00'1 08'1 08'1   0 00'1 08'1 08'1   0 00'1 08'1 08'1   0 00'1 08'1 08'2   0 00'1 08'2 08'2   0 00'1 08'2 08'2   0 00'1 08'2 08'2   0 00'1 08'2 08'2   0 00'1 08'2 08'2   0 00'1 08'2 08'2   0 00'1 08'2 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08'2   0 00'1 08 |                                                        | mano mag Jing 80 66 60 Walionini<br>Nat manament 192, mtsel 100 m<br>Albert Incomment of me melis | Andrew to the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170<br>0 170 | 01.6 01.6 02.6<br>01.6 00.6 07.5<br>00.6 00.1 07.5<br>00.5 00.1 00.5<br>00.5 00.1 00.5<br>00.5 00.1 00.5<br>00.5 00.1 00.5<br>00.5 00.1 00.5<br>00.5 00.1 00.5<br>00.5 00.1 00.5 | 01'F C*F.                                                                                             | and monatorial and another and another and another and another and another and another another and another and another and another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another another ano | a 3,5 a 6,1<br>The event states<br>and to event states | <u>:</u>                                                                                          | (V a) tagget (A) and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second a |
| 90'E 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PET 021 021<br>101 021 021<br>141 001 041<br>151 051 051<br>151 051 051                                                                                                          | 971 972 0<br>972 973 0<br>973 977 0<br>973 977 0<br>974 979 0<br>975 979 979 0<br>975 979 979 0       | DFT   OFT   OFT   OFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | erruew<br>ep erny<br>gri                               |                                                                                                   | Conception of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of  |
| 90.5 9<br>90.5 9<br>90.5 9<br>90.5 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 275 275 275 275 275 275 275 275 275 275                                                                                                                                          | 0012 0212 0<br>0010 010 0<br>0010 010 0<br>0010 010 0<br>0010 010                                     | #### 075 092 01<br>#### 075 092 6<br>#### 075 075 6<br>### 075 075 075 4<br>### 075 075 075 4<br>### 075 075 075 5<br>### 075 075 075 5<br>### 075 075 075 5<br>### 075 075 075 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | es suns<br>es suns<br>essuem                           | ÷ :                                                                                               | I'll gold witch a to the super-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |


|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1412041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | selle R                                                                                                                                                    |                                             | /ZITILA 30 S3                 | 11437714300   | $\perp$  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------|---------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| \$01 \$ 00 \$01<br>\$ 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | # 04<br># 01 #41 # 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | % 0 8 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                  |                                             | un entrescon<br>Sebesecon     | NOISTRIBUCION |          | . AIRANINU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| M013W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SIJITU BO RETUBIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                            | 720                                         |                               |               | $\dashv$ | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |
| 08,0 00,0 01,0<br>08,0 08,0 08,0<br>01,0 08,0 00,0<br>08,0 01,0 01,0<br>08,1 08,0 00,0<br>08,1 08,0 00,0<br>08,1 08,0 08,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01.0 01.0 02.0 02.0 02.0 02.0 02.0 02.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01'2 00'2 06'2<br>00'2 01'2 02'2<br>01'2 01'2 00'2<br>00'3 01'2 00'3<br>00'3 01'0 01'0<br>00'9 01'0 00'3<br>00'5 01'2 00'3<br>00'5 01'2 00'3               | 1                                           | againem                       |               | 1        | A diversity of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the |
| outs onts outs outs outs outs outs outs outs outs outs outs outs outs outs outs outs outs outs outs outs outs outs outs outs outs outs outs outs outs outs outs outs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 08.1 81.5 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08.5   08.0 1.2 08   | 90'E 99'E 9E'<br>9C'E 9E'E 9E'<br>9C'E 9C'E 9E'<br>9C'E 9C'E 9E'<br>9C'E 9E'E 9E'E<br>9C'E 9E'E 9E'E<br>9C'E 9E'E 9E'E<br>9C'E 9E'E 9E'E<br>9C'E 9E'E 9E'E | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6       | n £.1<br>en gwnA<br>etaznem   |               | 1        | Categoria V  Limparia Til. Lib noc Encerquis generalita de 80 cm de accep-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 67,8 00,7 05,<br>00,8 00,8 02,<br>00,8 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 00,8 02,<br>01,5 0 | 0.17 00.17 00.17 00.17 00.17 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 00.19 0 | 00,5 00,7 00,<br>00,6 02,8 01,<br>00,6 02,8 02,<br>01,6 01,6 02,<br>01,5 00,6 04,<br>02,5 02,5 02,<br>01,5 00,5 04,<br>01,5 06,5 05,                       | T 6 T 7 T 8 T 8 T 8 T 8 T 8 T 8 T 8 T 8 T 8 | a 6.1<br>ab osubla<br>atsinam |               | 1/2      | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |

## CATEGORIAS DE MANTENIMIENTO



## FACTORES UTILIZADOS PARA REFLECTANCIAS EFECTIVAS DE PISO DIFERENTES AL 20%

| S DE REFLECTANCIA<br>EFECTIVA DE CAVIDAD |              |              |              |            |            |             |              |       |            |            |       |            |       |            |            |            |             |
|------------------------------------------|--------------|--------------|--------------|------------|------------|-------------|--------------|-------|------------|------------|-------|------------|-------|------------|------------|------------|-------------|
| DE TECHO. poc                            | 80           |              |              | <u> </u>   | 70         |             |              |       | 50         |            |       | 30         |       |            | 10         |            |             |
| S DE REFLECTANCIA<br>DE PAREDES, pw      | 70           | 50           | 30           | 10         | 70         | 50          | 30           | 10    | 50         | 30         | 10    | 50         | 30    | 10         | 50         | 30         | 10          |
|                                          | Para 3       | 10% de 1     | effecter     | cia efe    | ctive de   | cavidad     | de pise      | (20%  | = 1.00     | 1          |       |            |       |            |            |            |             |
| RELACION DE<br>CAVIDAD<br>DE LOCAL       |              |              |              |            |            |             |              |       |            |            |       |            |       |            |            |            |             |
| 1                                        |              | 1.082        |              |            |            |             |              |       |            |            |       |            |       |            |            |            |             |
| 2                                        |              | 1.066        | 1.055        |            |            |             | 1 048        |       |            | 1 033      |       |            |       |            | 1          | 1 010      |             |
| 3                                        |              | 1.054        | 1 033        | 1 033      | 1 055      |             | 1.029        |       | 1 034      |            |       | 1 022      |       |            |            | 1,009      |             |
|                                          |              |              |              | 1018       |            |             |              |       | 1 027      |            |       |            |       |            | 1014       |            | 1004        |
| 6                                        |              |              | 1 021        |            | 1 047      |             | 1 020        |       | 1 024      |            |       |            |       | 1 606      | 1 -        | 1 008      |             |
| 7                                        |              | 1.029        |              |            | 1 043      |             |              |       |            |            |       |            |       |            | 1014       |            | 1 003       |
| 8                                        | 1 044        | 1 026        | 1 015        |            |            |             |              |       | 1 020      |            |       |            | 1 009 | 1 004      | 1013       | 1 007      | 1 003       |
| 9                                        | 1.040        |              |              |            | 1 037      |             |              |       |            |            |       |            |       |            |            | 1 007      |             |
| 10                                       | 1 037        | 1 022        | 1.012        | 1.006      | 1 034      | 1 020       | 1 012        | 1 005 | 1017       | 1 010      | 1 004 | 1 015      | 1 009 | 1 003      | 1 013      | 1 007      | 1 002       |
| 7,80,74                                  | Para 1       | O% der       | effecten     | cia elec   | tiva de    | cavidad     | de pred      | (20%  | = 1.00)    |            |       |            |       |            |            |            |             |
| RELACION DE<br>CAVIDAD                   |              |              |              |            |            |             |              | ĺ     |            |            |       |            |       |            |            |            |             |
| DE LOCAL                                 | .923         | 929          | 935          | 940        | 933        | 939         | 943          | 948   | 956        | 960        | 963   | 973        | 976   | 979        | 969        | 991        | 993         |
| 2                                        | 931          | 942          | 950          | 958        | 940        | 949         | 957          | 963   | 962        | 968        | 974   | 976        | 980   | 985        | 988        | 991        | 995         |
| 3                                        | .939         | 951          | 961          | 969        | 945        | 957         | 966          | 973   | 967        | 975        | 981   | 978        | 983   | 988        | 988        | 992        | 996         |
|                                          | .944         | 958          | 969          | 978        | 950        | 963         | 973          | .980  | 972        | 980        | 986   | 980        | 986   | 991        | 967        | 992        | .996        |
| 5                                        | 949          | .964         | 976          | 983        | .954       | 968         | 978          | 985   | 975        | 983        | 989   | 381        | 98E   | 993        | 987        | 992        | 997         |
| 6                                        | .953         | .969         | .980         | .986       | .958       | 972         | 982          | .989  | 977<br>979 | 985<br>987 | 992   | 982        | 980   | 995<br>996 | 987<br>987 | 993<br>993 | 997<br>998  |
| 7                                        | .957         | 973<br>976   | .983<br>.986 | 991<br>993 | 961<br>963 | 975<br>977  | .985<br>987  | 993   | 981        | 989        | 994   | 984        | 991   | 997        | 987        | 994        | .998        |
| 9                                        | .963         | 978          | 987          | 994        | 965        | 979         | 989          | 994   | 983        | 990        | 996   | 985        | 992   | 998        | 988        | 994        | 999         |
| 10                                       | .965         | 980          | 989          | 995        | 967        | 981         | 990          | 995   | 984        | 991        | 997   | 986        | 93    | 398        | 988        | 994        | 995         |
| e, krály skyly s Prost Bal               | Para 10      | % de re      | flectan      | cia efec   | live de    | behives     | de piso      | (20%  | 1.00)      |            |       |            |       |            |            |            |             |
| RELACION DE<br>CAVIDAD<br>DE LOCAL       |              |              |              | - 1        |            |             |              | }     |            |            |       |            |       | - 1        |            |            |             |
| DE LOUAL                                 | 850          | .870         | .879         | 886        | 873        | ∌84         | 993          | 901   | 916        | 423        | 329   | 248        | 954   | 960        | 979        | 983        | 95.1        |
| 2                                        | .871         | .867         | 903          | .919       | 884        | <b>J</b> 02 | 916          | 928   | €26        | 938        | 949   | 954        | 963   | 971        | 978        | 963        | .991        |
| 3                                        | .862         | 904          | .915         | 942        | .098       | 918         | 934          | 947   | 9.36       | 950        | 954   | 96€        | 969   | 979        | 975        | 984        | .993        |
| <b>1</b>                                 | 893          | .919         | 941          | .958       | .906       | 930         | 348          | 961   | 945        | 961        | 974   | 961        | 974   | 984        | 975        | 985        | 994         |
| 5                                        | .903         | .931         | . 753        | 969        | 914        | 939         | 338          | 977   | 951<br>955 | 967<br>972 | 980   | 964<br>986 | 977   | 368<br>991 | 975<br>975 | 985<br>936 | .995<br>996 |
|                                          | .911         | 940          | .961<br>967  | 976<br>981 | 920        | 945<br>950  | .365<br>\$70 | 982   | 959        | 972        | 988   | 968        | 981   | 393        | 975        | 987        | .997        |
|                                          | .917<br>.922 | ,947<br>.953 | 967          | 985        | 929        | 955         | 975          | 986   | 963        | 978        | 991   | 270        | 961   | 995        | 975        | 988        | 993         |
|                                          | 922          | .V53<br>.958 | 975          | 988        | 933        | 950         | 980          | 989   | 966        | 980        | 593   | 671        | 985   | 996        | 976        | 986        | 998         |
| 10                                       | .933         | .962         | 979          | 901        | 937        | 963         | 983          | 992   | 969        | 982        | 995   | 973        | 987   | 397        | 917        | 989        | 990         |
| ,,                                       |              | 04           |              |            | ••         |             |              |       | 54         | - 5-       | - 1   | . •        |       |            | -          |            |             |



## HOJA DE CALCULO DEL NIVEL DE

|                                                                              | L                                     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------|---------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IDENTIFICACION                                                               |                                       |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| NIVEL DE ILUMINACION PROMEDIO                                                | LUXES                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DAT                                                                          | OS DEL LUMINARIO                      |                               | DATOS DE LAMPARAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| FABRICANTE                                                                   |                                       | TIPO Y COLOA                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| NUMERO DE CATALOGO                                                           |                                       | NUMERO DEL<br>LUMINARIO       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| · · · · · · · · · · · · · · · · · · ·                                        |                                       | LUMENES TOTALES POR LUMINARIO |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CCION DEL COFFICI  Establezca las dime  Determine las relac  RELACION RECA = |                                       |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DAD DEL TECHO<br>CCR =                                                       |                                       | ρ=%                           | hrc =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RELACION<br>AVIDAD DE PISO<br>FRC =                                          |                                       | PLANO DE                      | TRABAJO W =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| : Obtenga la reflectan                                                       | ncia efectiva de cavidad de techo (pc |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                              | cia efectiva de cavidad de piso (pFC  | ρFC                           | <ul> <li>Total Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Con</li></ul> |
| : Obtenga la reflectan                                                       |                                       |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



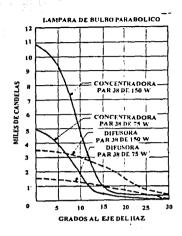
#### SELECCIONES DE PERDIDA DE LUZ

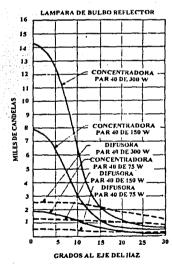
| NO<br>RECOBRABLES                                   |                                                      | SI<br>RECOBRABLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |
|-----------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| TEMPERATURA<br>AMBIENTAL DEL<br>LUMINARIO           |                                                      | DEPRECIACIÓN DE LAS<br>SUPERFICIES DEL LOCAL<br>R.S.D.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |
| VOLTAJE DEL BALASTRO                                |                                                      | DEPRECIACION DE<br>LUMENES DE LA<br>LAMPARA L.L.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |
| FACTOR DEL BALASTRO                                 |                                                      | FACTOR DE LAMPARAS<br>FUERA DE OPERACIÓN<br>L.B.O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |
| DEPRECIACIÓN DE LAS<br>SUPERFICIES DEL<br>LUMINARIO |                                                      | DEPRECIACIÓN DEL<br>LUMINARIO L D.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |
|                                                     | DE PERDIDA DE LUZ L.L.F.<br>S FACTORES INDIVIDUALES) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| CALCULOS                                            |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
|                                                     | Número de fuminarios -                               | A CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH | metros cuadrados<br>nans X (c.u.) X [[.F] |



## TABLA DE CALCULO DE NIVELES LUMINOSOS POR EL SISTEMA "PUNTO POR PUNTO"

Numeros superiores. Angulo entre la dirección de la luz y el eja exitical.
Numeros inferiores. L'UX sobre el plano horugonisal para la intentidad luminosa de la fuente en esa dirección.
Ostrancia. Nonizonista L. E. E. D. C. L. A. L'EST D. C. L. A. L'EST D. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L. A. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E. L'EST E


| 1/2 1/11             | DIST   | ANCIA             | HORIZON        | TAL AL E      | IE DE L       | A FUENT   | ELUMIN    | 35A (m.)         |                 |              |             |                    |            |                    |                      |
|----------------------|--------|-------------------|----------------|---------------|---------------|-----------|-----------|------------------|-----------------|--------------|-------------|--------------------|------------|--------------------|----------------------|
|                      | Ι      | 3 95              | 4 75           | 4 55          | 4 85          | 5 50      | 6 10      | 6 /0             | 1.30            | 7,90         | 8,55        | 9 15               | 10 65      | 12.20              | 16.7                 |
|                      | LUX    | POR C             |                | CANDEL        | _             |           |           |                  |                 |              |             |                    |            |                    | ,                    |
| ALTURAL              | 0.60   | 61                | H.**           | 87*           | 8.7           | 84°       | 84*       | 81.0             | 85*             | 60           | 86*         | 86.                | 87         | 5000               | 87                   |
| DE LA<br>FUENTE      | 0.90   | - 무%              | ο 10<br>7 H    | 9,54          | - 2.4H        | 0 10      | + 813     | 8.70             |                 |              | - 0.08<br>- | - 유양'-             | -854       | 65                 | .0.00                |
| AZONIMUL<br>AJ SRBOZ | 1.20   | 1770-             | 1,00           | 95.           | 9.0           | -   0 : O | 9,16      | -95'             | 931             | 976          | 1822        |                    | 84'        | 9.01               | 0.02                 |
| SUPERFICIE.          |        |                   | 1 10           | 107           | 10.00         |           |           | - 977            | <u> </u>        | 9,72         | 0.18        | 0 15               | 0.09       | 0.08               | 1 0 03               |
| EN METROS            | 1 50   | 690               | 70,            | 1 20          | 100           | 7,,,      | 26,57     |                  |                 | 0.27         | 0.22        | 81                 | 0.10       | 0.00               | 84                   |
|                      | 180    | 66                | 67             | 1.28<br>6d    | 100           | 719       | 7,30      | 75               | 76              | 777          | 9.22        | 794                | 80         | 81.                | 0.04                 |
|                      | 2.10   | 3,02              | 1:30           | 65,02         | 66'0          | 2,80      | 9,66      | 331              | 9,40            | 9.32         | 9,26        | 193                | 993        | <del>  8</del> 39_ | -8,02                |
|                      | . 10   | 2:18              | - 1 B 3        | 626           | 63            | 1097      | 68        | 9.57             | - 945 -         | 936_         | 9.29        | 754                | 9,16       | 100                | 8.00                 |
|                      | · ~    | 2.25              | 1 9 1          | 1.63          | 140           | 105       | 230       | 0.63             | 0.50            | 0.40         | 25.0        | 926                | 0.18       | 0.12               | 0.07                 |
|                      | 1.70   | 2 29              | 1,36           | 50            |               | 63"       | 66°       | 0.67             | 051             | 0.41         | 1 /4-       | 0.79               | 76         | T,,,,,             | 0.01                 |
|                      | 3 00   | 527               | 5.186          | 56,           | 58            | -10-      | - C 93    | 66               | 6,51            | 69           | 7075        | 729                | 919        | 76,13              | 79"                  |
|                      | 3 30   | 150               | 528            | 54            | 569           | 50.5      | 2,89      | 63               | 0.57            | 0.46         | 698         | 19.32              | 1931       | 75                 | 700                  |
|                      |        | حنبيا             | 195            | 1-372         | 5380          | 525       | 5.92      | 619              | 2,50            | 0.49         | 0.40<br>67  | 68                 | 923        | 9.15               | 0.09                 |
| - 1                  | 3 60   | 2 17              |                | 162           | 5150          | 1.19      | 1 594     | 0.76             | 0.55            | 051          | 65          | 6785               | 100        | 017                | 0.09                 |
| ì                    | 3.30   | 41,               | 470            |               | 51            | 54%       | 224       | 59°<br>0.78      |                 |              | 0.44        | 678                |            | 0.12               | 0.10                 |
| - 1                  | 3 C    | 133               | 456            | 1.66          | 490           | 5.30      | 396       | 58               | 60              | 623          | 7 63        | 65                 | 625        | 777                | 1,50                 |
| ł                    | 3 50   | 777               | 132            | 1.52          | 475           | 500       | 530       | Se <sup>79</sup> | C.65            | 60           | 62.46       | 1632               | 6,75       | 699                | 731                  |
|                      | - 80   | - <del>1582</del> | 174            | 157           | 458           | 480       | 0.96      | 179-             | 9.56            | 1 2 25       | 607         | 67                 | 927        | 6839               | 921                  |
| Į.                   |        | 13,92             | 7              | 132           | 439           | 1300      | 0.95      | 2.30             | <u>   2,87 </u> | 350          | 2948        | 60                 | 20         | 0,20               | 9,12                 |
| Ţ                    | 5 13   | 374               | 396            | 1 46          |               | 1112      | 0.34      | 0.79             |                 | 0.57         |             | 0.42               | 64         | 67                 | 310                  |
| t                    | 5 40   | 360               | 16.0           | 1400          | 4 2 34        | 450       | 1 48"     | 1.214            | 53              | 7 550        | 5,48        | 498                | 6.39       | 1-66-              | 70                   |
| ŀ                    | 5 70   | 345               | 3652           | 180           | 40            | 439       | 0.92      | 202              | 2.67            | 2.57         | 569         | 0 42<br>56         | 620        | 851                | 8912                 |
| - 1                  |        | 56                | 1345           | 134           | 394           | 106       | 0.30      | 2                | 50              | 357          | 0.49        | 0.47               | 60°        | 0.22               | 6873                 |
| 1                    | 6 30 " | 1.47              | 1 37           | 128           | 1339          | 1.03      | 0.88      | 0.76             | 0.50            | 52           | 049         | 36°<br>0.43<br>55° | 550        | 622                | 833                  |
|                      | £ 30   | 320               | 34*            | 128<br>369    | 370           | 41"       | 1 44      | 46°<br>0.75      | 49              | 1 510        | 5J*         | 55                 | 59         | 67                 | 670                  |
| i                    | 6 50   | 310               | 11330          | 34            | 36"           | 29°99     | 0.96      | 4.0              | 0.65            | 0.56<br>50   | 132         | 549                | 58         |                    | 66"                  |
| ļ                    | 6 90   | 132               | 1 24           | 33"           | 3509          | 0.96      | 0.84      | 0:3              | 0.54            | 0.56         | 0.49        | 533                | 92"        | 6023               | 856                  |
|                      |        | 200               | 30'8           | 1.11          | 1 1 25        | 0.92      | 0.81      | -6.71            | 0.63            |              | <u> </u>    | 0.43               | 0.31       | 223                | 014                  |
| i                    | 7 20   | 1 1 18            | 1112           | 32°           | 100           | 100       | 0.79      | 70               | 0.61            | 1 254        |             | 510                | 56         |                    | 640                  |
| - (                  | 7 50   | 1 12              | 390            | 1.06<br>310   | 133           | 0.86      | 39°       |                  | 44              | 0.54<br>46   | 48          | 0.42<br>50<br>0.42 | 55         | 0.24<br>58         | 63                   |
| t                    | E 10   | 250               | 1,06           | 29"           | 0.96          | 349       | 737       | 1,69             | 0.60            | 0.53         | 0 47        | 48"                | 521        | 0.24<br>56         | 62"                  |
|                      | 9 00   | 1 CO<br>C M6      | 19.36          | 992           | ₹ <u>8</u> 27 | 0.79      | 320       | 3 64<br>36       | 957             | 0.51         | 0.46        | 941                | 0.31       | 224                | 59                   |
| L                    |        | C.16              | 0.80           | 0.80          | 10.77         | 0.0       | 3164      | ) 1 · A          | 053<br>36       | 0.48         | 0.43        | 0.39               | 0.31       | 024                | 0.15                 |
| 1                    | 9 35   | 0.74              | 230            | 0.59          | 26°<br>0.67   | 9.52      |           | 535              | 35"             |              | 0,61        |                    | 0.30       | 50"                | 570                  |
| 1                    | 1C 80  | 200               | 5.77           | 0.69          | 24            |           | 29        | 253              | 0.9             | 36           | 38"         | 40                 | 0.30       | 0.24               | 545                  |
| - t                  | 12 00  | 180               | ±1,62          | 9,81          | 2.59          | 3.55      | 2,52      | 2948             | 310             | 931-         | 9:35        | 3,35               | 9.29       | 923                | 9.15                 |
| <b>-</b>             |        | 0.54              | 0.53           | 1851          | 200           | 9.47      | 0.45      | 26               | 0.39<br>26      | 30"          | 324         | 0.32               | 027        | 0.22               | 0.15                 |
| L                    | 13 50  | 150               | 0.43           | 0.42          | 1041          | 0 40      | ó30<br>22 | 0.36             | 034             | 0.32         | 3,30        | O 28               | 0°25       | 021                | 0 13                 |
| - [                  | 15 00  | 0.36              | 0.36           | 0.35          | 18"           | 207       |           |                  | 26              | 0.28         |             |                    | 35         |                    | 0.13                 |
| - 1                  | 16.50  | 0.31              | 0.30           | 155           | 0.35          | 022       | 2072      | 22               | 0.29            |              | 27          | 295                | 0.72<br>33 | 919                | 9.13                 |
| 1-                   | 15 20  |                   | 117            | 9.30          | 0.29          | 0.28      | 189       | 200              | 22              | 0 24<br>23   | 0.21.<br>25 | 270                | 30         | 348                | Q13<br>40            |
|                      | _      | 0.26<br>11        | 0.26           | 0.25          | 0.25          | 0.24      | 0.24      | 0.23             | 927             | 201          | 9.21        | 3,30               | 3,38       | 210                | 36                   |
| 1                    | 21.50. | 0 19              | 0 19           | 0.19          | 0.5           | 0 19      | 0.18      | 0.18             | (637 )          | 0.17         | อ้าธ        | 0.16               | อ้าร       | i 6.13             | 0.11                 |
|                      |        | LUX PE            | DR CADA        | 100 CA        | POELAS        |           |           |                  |                 |              |             |                    |            |                    |                      |
|                      | .4 30  | 9*                | 100            | 11*           | 115           | 13°       | 140       | 15*              | 17"             | 18*          | 19*         | 21*                | 240        | 270                | 3 <b>2°</b>          |
| }-                   | 3: 20  | 150 40            | 149.30         | 148,70        | 97.50         | 144.90    | 147.70    | 140,30           | 137.10          | 134,40       | 131,60      | 127.90             | 120.20     | 111.40             | 27 21                |
| L                    | 1      | 57.6              | 92.12          | 96.60         | 95.30         | 95.39     | 24.39     | 93.30            | 91,75           | 90,48        | 8914        | 88,19              | 84,40      | 79.93              | 71.40                |
|                      | 37 50  | 529-              | 62.86          | 62,62         | 62 50         | 62.09     | 61 63     | 61.13            | 60.50           | 60,01        | 59.38       | 58,72              | _57.08     | 45 21              | 51,20                |
| 1                    | 45 00  | 4354              | 5°20,          | 5 43<br>43,79 | 43,70         | 43.49     | 43.24     | 43.09            | 47.80           | 10°<br>47.49 | 42.16       | 41.95              | 11.02      | 40.00              | 30.17                |
| T.                   | :: 50  | 37 15 T           | 4° 34<br>32 34 | 37 30         | 5 13<br>32 25 | 32,13     | 31.99     | 3191             | 31,74           | 31.54        | 31,45       | 31,24              | 30 76      | 30.24              | 38 17<br>16<br>28 99 |
| r:                   | 9. 30  | 24.5              | 4-2            | 4017          | 4774          | 5.0       | 243       | -6-              | 7               | 70           | 5           | 20                 | 10         | 110                | 14-                  |
|                      |        |                   | 24 82          | 24.79         | 24.16         | 2470      | 24,63     | 24.57            | 24.46           | 24.40        | 24.28       | 24,15              | 23.90      | 23,60              | 22,82                |


El nivel luminitàti. SCATE la LAPPECIA ser l'Alle Avec La l'os fuera del pland retical que comprende la fuente luminosa en univosa ser determinado usando el factor de multipi Licion encontrado af utilidar la tabla al reves. La altura de la fuente luminosa se feera sobre la escala de distancias horizontales, etc.

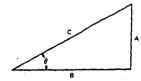


## **CURVAS DE DISTRIBUCIÓN LUMINOSA**

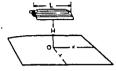
| LUX          | Index 6500 | IA DESDE I | es el a la         | 17117 1147  | /mi  |
|--------------|------------|------------|--------------------|-------------|------|
| ALTURA DE    | l.         |            |                    | 1           | ı    |
| MONTALE (m)  | 0          | 0.10       | 0.60               | 1 20        | 1.80 |
|              | ł .        |            | de 75 w. Co        |             | ٠. ا |
| 1 50         | 1940       | 540        | 90                 | 20          | 10   |
| 1.30         | 860        | 480        | 130                | 10          | 10   |
| 3 05         | 490        | 370        | 1                  | 20          | 10   |
| 4.60         | 220        | 190        | 120<br>38 de 75 w. |             | 1 "  |
|              | 600        | 460        | 170                | 26          | 10   |
| 1.50<br>2.30 | 270        | 220        | 160                | 20          | 10   |
| 3.05         | 150        | 130        | 120                | 40          | 10   |
| 4 60         | 70         | 60         | 160                | 40          | 20   |
|              | 1 "        |            | l<br>la 150 w. Cr  | 4           |      |
| 1.50         | 4200       | 1450       | 1 130              | 70          | 26   |
| 2.10         | 1900       | 1180       | 170                | 40          | 30   |
| 3.05         | 1050       | 870        | 340                | 30          | 20   |
| 4 60         | 470        | 430        | 290                | 40          | 10   |
|              |            | PAR - 3    | 8 de 150 w.        | Dufusora    | •    |
| 1.50         | 1380       | 1070       | 370                | 40          | 10   |
| 2.10         | 610        | 550        | 370                | 60          | 20   |
| 3.05         | 350        | 320        | 270                | 90          | 20   |
| 4.60         | 150        | 150        | 140                | 90          | 40   |
|              |            | PAR - 30   | de 75 w. Co        | ncentradora | •    |
| 1.50         | 760        | 420        | 90                 | 30          | 10   |
| 2 30         | 340        | 250        | 90                 | 20          | 10   |
| 3.03         | 190        | 170        | 80                 | 20          | 10   |
| 4.60         | 80         | 80         | 50                 | 20          | 10   |
|              |            | PAR -      | 30 de 75 w         | Difusors    |      |
| 1.50         | 160        | 150        | 110                | 20          | 10   |
| 2 30         | 70         | 70         | 60                 | 30          | 10 . |
| 3.05         | 40         | 40         | 40                 | 30          | 10   |
| 4.60         | 20         | 20         | 20                 | 20          | 10   |
|              | 1          | PAR - 40 d | le 150 w. Ca       | n æstradora |      |
| 1.50         | 3000       | 960        | 190                | 60          | 30   |
| 2.30         | 1300       | 730        | 230                | 60          | 30   |
| 3.05         | 750        | 560        | 250                | 50          | 20 . |
| 4.60         | 330        | 307        | 170                | 50          | 20   |
|              |            |            | 0 de 150 w.        |             |      |
| 1.50         | sio        | 440        | 300                | 80 .        | 20   |
| 2.30         | 230        | 210        | 180                | 90          | 40   |
| 3 05         | 130        | 120        | 110                | 80          | 40   |
| 4 60         | 60         | 60         | 50                 | 40          | 30   |
|              | 1          |            | le 300 w. Ca<br>f  |             | 1    |
| 1.50         | 5600       | 1960       | 350                | 130         | 40   |
| 2.30         | 2500       | 1650       | 350                | 90          | 60   |
| 3.05         | 1400       | 1160       | 490                | 90          | 50   |
| 4.60         | 600        | 590        | 410                | 90          | 40   |
|              |            |            | 0 de 300 w.        | •           | 50   |
| 1 50         | 1000       | 890        | 540                | 160         | 1    |
| 2.30         | 450        | 400        | 320                | 170         | 70   |
| 3 05         | 250        | 2.10       | 210                | 140         | 80   |
| 4 60         | 110        | 110        | 100                | 80          | 60   |



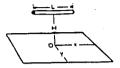



- 250 -

## TABLA DE LAS FUNCIONES TRIGONOMETRICAS APLICABLES AL METODO


| <i>θ</i> •                 | sen θ                                                    | cos 0                                              | 1 19 0                                                   | cos 20                                             | cos'0                                              | 1 0°                             | sen 0                                              | 1 000                                              | 1g 0                                               | cos 20                                             | <u> </u>                     |    |
|----------------------------|----------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------|----|
| 0 1 2 3 4 5                | 0,0000<br>0,0175<br>0,0349<br>0,0523<br>0,0698<br>0,0872 | 1,000<br>1,000<br>0,999<br>0,999<br>0,998<br>0,996 | 0.0000<br>0.0175<br>0.0349<br>0.0524<br>0.0699<br>0.0875 | 1,000<br>1,000<br>0,999<br>0,997<br>0,995<br>0,992 | 1,000<br>1,000<br>0,998<br>0,996<br>0,993<br>0,989 | 40<br>47<br>48<br>49<br>50<br>51 | 0,719<br>0,731<br>0,743<br>0,755<br>0,766<br>0,777 | 0,695<br>0,682<br>0,669<br>0,656<br>0,643<br>0,629 | 1,035<br>1,072<br>1,111<br>1,150<br>1,192<br>1,235 | 0,483<br>0,465<br>0,448<br>0,430<br>0,413<br>0,396 | . !                          |    |
| 6<br>7<br>8<br>9           | 0,105<br>0,122<br>0,139<br>0,156<br>0,174                | 0.995<br>0.993<br>0.990<br>0.988<br>0.985          | 0.1051<br>0.1228<br>0.1405<br>0.1589<br>0.1763           | 0.989<br>0.985<br>0.981<br>0.976<br>0.970          | 0,984<br>0,978<br>0,971<br>0,964<br>0,955          | 52<br>53<br>54<br>55<br>56       | 0,788<br>0,799<br>0,509<br>0,819<br>0,829          | 0.616<br>0.602<br>0.588<br>0.574<br>0.559          | 1.280<br>1.327<br>1.376<br>1.428<br>1.483          | 0,379<br>0,362<br>0,345<br>0,329<br>0,313          |                              |    |
| 11<br>12<br>13<br>14<br>15 | 0,191<br>0,208<br>0,225<br>0,242<br>0,259                | 0,982<br>0,978<br>0,974<br>0,970<br>0,966          | 0.1944<br>0.2126<br>0.2309<br>0.2493<br>0.2679           | 0.964<br>0.957<br>0.949<br>0.941<br>0.933          | 0.946<br>0.936<br>0.925<br>0.913<br>0.901          | 57<br>58<br>59<br>60<br>61       | 0.839<br>0.848<br>0.857<br>0.866<br>0.875          | 0,545<br>0,530<br>0,515<br>0,500<br>0,485          | 1,540<br>1,600<br>1,664<br>1,732<br>1,804          | 0.297<br>0.281<br>0.265<br>0.250<br>0.235          |                              |    |
| 16<br>17<br>18<br>19<br>20 | 0,276<br>0,292<br>0,309<br>0,326<br>0,342                | 0,961<br>0,956<br>0,951<br>0,946<br>0,940          | 0.2867<br>0.3057<br>0.3249<br>0.3443<br>0.3640           | 0.924<br>0.915<br>0.905<br>0.894<br>0.883          | 0,888<br>0,875<br>0,860<br>0,845<br>0,830          | 62<br>63<br>64<br>65<br>66       | 0.883<br>0.891<br>0.899<br>0.905<br>0.914          | 0.470<br>0.454<br>0.438<br>0.423<br>0.427          | 1 981<br>1 963<br>2 050<br>2 144<br>2 246          | 0.220<br>0.206<br>0.192<br>0.179<br>0.165          |                              |    |
| 21<br>22<br>23<br>24<br>25 | 0,358<br>0,375<br>0,391<br>0,407<br>0,423                | 0,934<br>0,927<br>0,921<br>0,914<br>0,906          | 0.3829<br>0.4040<br>0.4245<br>0.4452<br>0.4663           | 0.812<br>0.560<br>0.647<br>0.535<br>0.521          | 0.814<br>0.797<br>0.780<br>0.762<br>0.744          | 67<br>68<br>69<br>70<br>71       | 0,921<br>0,927<br>0,934<br>0,940<br>0,946          | 0,391<br>0,375<br>0,358<br>0,342<br>0,325          | 2,356<br>2,475<br>2,605<br>2,747<br>2,904          | 0.153<br>0.140<br>0.128<br>0.117<br>0.106          |                              |    |
| 26<br>27<br>28<br>29<br>30 | 0,438<br>0,454<br>0,470<br>0,485<br>0,500                | 0.899<br>0.891<br>0.883<br>0.875<br>0.866          | 0,4877<br>0,5095<br>0,5317<br>0,5543<br>0,5773           | 0.208<br>0.794<br>0.780<br>0.765<br>0.750          | 0.726<br>0.707<br>0.688<br>0.669<br>0.650          | 72<br>73<br>74<br>75<br>76       | 0,951<br>0,956<br>0,961<br>0,966<br>0,970          | 0.309<br>0.292<br>0.276<br>0.259<br>0.242          | 3,078<br>3,271<br>3,487<br>3,732<br>4,011          | 0,0955<br>0,0855<br>0,0762<br>0,0670<br>0,0585     |                              |    |
| 31<br>32<br>33<br>34<br>35 | 0.515<br>0.530<br>0.545<br>0.559<br>0.574                | 0.857<br>0.848<br>0.839<br>0.829<br>0.819          | 0.6009<br>0.6249<br>0.6494<br>0.6745<br>0.7002           | 0.735<br>0.719<br>0.703<br>0.687<br>0.671          | 0.630<br>0.610<br>0.590<br>0.570<br>0,550          | 77<br>78<br>79<br>80<br>81       | 0.974<br>0.978<br>0.982<br>0.985<br>0.988          | 0,225<br>0,208<br>0,191<br>0,174<br>0,156          | 4,331<br>4,705<br>5,145<br>5,571<br>6,314          | 0,0506<br>0,0432<br>0,0364<br>0,0302<br>0,0245     |                              |    |
| 36<br>37<br>38<br>39<br>40 | 0.588<br>0.602<br>0.616<br>0.629<br>0.643                | 0.809<br>0.799<br>0.788<br>0.777<br>0.766          | 0.7265<br>0.7535<br>0.7813<br>0.8098<br>0.8391           | 0.655<br>0.638<br>0.621<br>0.604<br>0,587          | 0.530<br>0.509<br>0.489<br>0.469<br>0.450          | 82<br>83<br>84<br>85<br>86       | 0.990<br>0.993<br>0.995<br>0.996<br>0.9976         | 0.139<br>0.122<br>0.105<br>0.0872<br>0.0698        | 7,115<br>8,144<br>9,514<br>11,430<br>14,300        | 0,0194<br>0,0149<br>0,0109<br>0,0076<br>0,0048     |                              |    |
| 41<br>42<br>43<br>44<br>45 | 0,656<br>0,669<br>0,682<br>0,695<br>0,707                | 0.755<br>0.743<br>0.731<br>0,719<br>0,707          | 0,8693<br>0,8004<br>0,9325<br>0,9656<br>1,0000           | 0.570<br>0.552<br>0.535<br>0.517<br>0.500          | 0,430<br>0,410<br>0,391<br>0,372<br>0,354          | 87<br>38<br>89<br>90             | 0,9986<br>0,9994<br>0,9998<br>1,0000               | 0.0523<br>0.0349<br>0.0175<br>0.0000               | 19,081<br>28,636<br>57,290<br>infinito             | 0,0027<br>0,0012<br>0,0003<br>0,0000               | TESIS CON<br>FALLA DE ORIGEN | 7. |

FORMULAS TRIGONOMETRICAS


Seno  $\theta = \frac{A}{C}$  Coseno  $\theta = \frac{B}{C}$ Fangente  $\theta = \frac{A}{B}$  Cotangente  $\theta = \frac{B}{A}$ 



## NIVEL LUMINOSO PRODUCIDO POR UNA LUMINARIA INDUSTRIAL Y UNA LAMPARA FLUORESCENTE DESNUDA



Luminaria de 1.20 m, 4200 lumenes Luminaria de 1.80 m, 6200 lumenes Luminaria de 2.40 m, 8400 lumenes



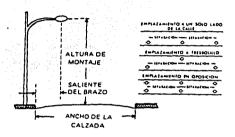
Lampara de 1 20 m. 2800 lumenes Lampara de 1 80 m. 4100 lumenes Lampara de 2 40 m. 5600 lumenes

#### NIVEL LUMINOSO BAJO LA LUMINARIA

| ۱ (m) | H(m)  | DISTA | NCIA EI | V DIREC | CIONE | S 'Y' |
|-------|-------|-------|---------|---------|-------|-------|
|       |       | 0.00  | 0.60    | 1.20    | 1.80  | 2.40  |
| 1.20  | 0 (40 | 2120  | 630     | 100     | 30    | 10    |
| 1 1   | 1.20  | 730   | 460     | 190     | 80    | 30    |
|       | 1.80  | 330   | 280     | 170     | 110   | 40    |
| 1.80  | 0.60  | 2350  | 760     | 150     | 140   | 20    |
|       | 1 20  | 910   | 610     | 280     | 110   | 50    |
| 1 1   | 1.80  | 500   | 390     | 260     | 130   | 70    |
| 2 40  | 0.60  | 2540  | 860     | 200     | 70    | 20    |
| 1 1   | 1 20  | 1060  | 730     | 310     | 130   | 70    |
| l _!  | 1.80  | 570   | 460     | 290     | 170   | 100   |

#### NIVEL LUMINOSO BAJO LA LÁMPARA DESNUDA

| Limi | H(m) | DISTANCIA EN DIRECCIONES "Y" (M) |     |     |    |   |  |
|------|------|----------------------------------|-----|-----|----|---|--|
|      |      |                                  |     |     |    |   |  |
| 1.20 | 0.60 | 550                              | 230 | 71+ | 20 | - |  |
| 1    | 1 20 | 190                              | 130 | 70  | 30 |   |  |
|      | 1.80 | 90                               | 80. | 50  | 30 |   |  |
| 1 80 | 0.60 | 630                              | 280 | 90  | 30 |   |  |
|      | 1.20 | 250                              | 180 | 100 | 60 |   |  |
|      | 1.80 | 120                              | 110 | 80  | 50 |   |  |
| 2 40 | U 60 | 630                              | 300 | 110 | 40 |   |  |
|      | 1.20 | 270                              | 210 | 120 | 60 |   |  |
|      | 1 80 | 150                              | 130 | 90  | 50 |   |  |


| L (m) | H(m) | DISTANCIA EN DIRECCIONES "X" |              |      |      |      |  |
|-------|------|------------------------------|--------------|------|------|------|--|
|       |      | 0.00                         | 9.60         | 1.20 | 1.80 | 2 40 |  |
| 1 20  | 0.60 | 2120                         | 1270         | 220  | 40   | 20   |  |
|       | 1 20 | 730                          | 530          | 230  | 110  | 30   |  |
| l     | 1.80 | 330                          | 290          | 190  | 110  | 40   |  |
| 1.80  | 0 60 | 2350                         | 1840         | 760  | 140  | 20   |  |
| 1     | 1 20 | 910                          | 790          | 400  | 170  | 50   |  |
|       | 1.80 | 500                          | 410          | 260  | 150  | 70   |  |
| 2.40  | 0.60 | 2540                         | 2340         | 1290 | 540  | 20   |  |
| l 1   | 1.20 | 1060                         | 1060         | 640  | 290  | 70   |  |
|       | 1.80 | 570                          | <b>57</b> 0- | 410  | 240  | 100  |  |

|       | H(m)  | DISTANCIA EN DIRECCIONES "X" |      |      |      |      |  |
|-------|-------|------------------------------|------|------|------|------|--|
| L (m) |       |                              |      |      |      |      |  |
|       |       | (0.54)                       | 0.60 | 1.29 | 1.80 | 2.40 |  |
| 1.20  | 0.60  | 550                          | 320  | 50   | 10   |      |  |
| 1     | 1.20  | 190                          | 130  | 70   | 20   | 20   |  |
|       | 1 80  | 949                          | 80   | 40   | 20   | 20-  |  |
| 180   | . 060 | 630                          | 520  | 150  | 20   | 10   |  |
| 1 1   | 1.20  | 250                          | 200  | 110  | 50   | 20   |  |
|       | 1.80  | 120                          | 110  | 80   | 60   | 20   |  |
| 2 40  | 0 60  | 630                          | 590  | 320  | 50   | 10   |  |
| 1 1   | 1.20  | 270                          | 240  | 160  | 80   | 30   |  |
|       | 1 80  | 150                          | 130  | 100  | 60   | 30   |  |

Una simple proporcion puede usarse para determinar los ruveles del nivel luminoso (lux) para otras luminarias o lámparas de distinta emision luminosa.

- 252 -

# ESTUDIOS CARACTERISTICOS DE ALUMBRADO DE CALLES BASADOS EN UN PAVIMENTO CON FACTOR DE REFLEXION



111 Para pevimentos con reflectancia menor (cel orden del 3 por 100), el nivel luminos deberá ser alimentado en un 50 por 100. (2) Basado en la emision luminosa inicial y un factor de mantenimiento de 0 80 (3) Para lamparas fluorescentes y de vapor de mercurio, para lámparas de incandescencia 72 m a un solo lado (4) A 1376 de temperatura ambiento (5) Lamparas trabajando a tenuón nominat en posición horizontal

| D 4 1 0 5                                                       | LAMPARA<br>T TIPO DE<br>LINTERNA | LUMENES<br>PON<br>LUMINARIA | MEDIO IZI |
|-----------------------------------------------------------------|----------------------------------|-----------------------------|-----------|
| Trafico Milis ripino<br>Trafico de sestones Ligero              | Elignania<br>Turi                | 6000                        | 2 20      |
| Ancho de la calle 9 el<br>Seperacion: 36 el en in solu tado (31 | Frequency                        | 1500                        | 2.30 (4)  |
| Attura de montaix 7,50 m<br>Sanemie der brezo: 2 m              | mercura Torri                    | 1350                        | 700       |
| Tratico Ligino Tratico de Deatones, Ligero o medio              | Filanimia<br>Tipo III            | 64,000                      | 4 10      |
| Ancho de la calle 12 m<br>Separación 36 m a composito           | Flugrasching<br>Time Franchis    | 12 min SHO1                 | 1 90 (4)  |
| Attura de monteje: 7 60 n 9 n+<br>Saliente del trazo: 1 50 in   | Fruci ne van<br>execute Esporty  | 1 250<br>1 37 54 C C        | 6 50      |
| Traisco Medio                                                   | Erope PRES                       | 15000                       | 10.00     |
| Ancho de la carle 15 m<br>Seperacion 36 m a trimbolillo         | Type I taleful                   | 121200                      | 6.41.4.   |
| Altura de municam 7 60 a 9 ni<br>Sariente dei braza 1 50 ini    | Company Valve 188                | 14-13 - 1 (1) 1<br>2-200    | 1330151   |
| Trains Pmado                                                    | Friguesia<br>Friguesia           | 15000                       | 9 10      |
| Ancho de la cade 18 m<br>Serve a lon 38 m a transpositio        | Final Parities                   | 14 1 mm S 11031             | 1100147   |
| Activity of montain 9 m.<br>Superincetor brack 150 m.           | Clause Van<br>Omstaten Take (10) | 21700<br>11133 12701        | Trun IST  |
| Frate order (material)                                          | Landy                            | 1.410                       | 10, (9)   |
| And to a decide a deline 21 mg                                  | Transport                        | 10.00                       | ार्ग कासः |
| Arthur a characteristic fluid                                   | Trans Va.                        | 215-20                      | 71 00 151 |

## CONCLUSIONES

En el presente trabajo de tesis se incluyó información teórica y practica, la cual es necesaria para la correcta aplicación de la ingeniería eléctrica, ya que entre mejor este fundamentado un diseño, mejores serán los resultados y las fallas serán mínimas.

Día a día surge más tecnología, que nos facilita el diseño, el cálculo y el planteamiento del problema, ya que solo hay que introducir datos a nuestros programas o adquirir equipos modernos para la corrección de fallas, pero siempre es bueno tener los conocimiento y las herramientas necesarias para llevarlo a cabo aun sin ellas.

Un problema al que me enfrente durante el desarrollo del presente trabajo fue la adquisición de información sobre la planeación del diseño de la enfermeria convencional, ya que se trato de un proyecto militar en el cual participe, pero los planos del lugar, por cuestiones de seguridad, son de dificil acceso. Sin embargo, nunca desisti en mi afán de plasmar en la presente tesis un proyecto que fuera lo más completo posible, para con ello ofrecer una clara muestra de lo minuciosamente estructurado, planeado y desarrollado de un diseño destinado a la construcción de una eficiente instalación eléctrica en una enfermeria militar.

## BIBLIOGRAFÍA

- BRATU SERBÁN, NEAGU INSTALACIONES ELECTRICAS: CONCEPTOS BÁSICOS Y DISEÑO EDIT. ALFAOMEGA, 1992
- LAWRENCE, MIKE
   INSTALACIONES ELÉCTRICAS E ILUMINACIÓN
   EDIT. GILL S.A. DE C.V. 1995
- ENRIQUEZ HARPER, GILBERTO <u>NOM-EM-001-SEMP-1993</u> EDIT. LIMUSA, 1994
- ENRIQUEZ HARPER, GILBERTO <u>NORMA OFICIAL MEXICANA</u> EDIT. IPN, MEXICO, 1995
- TOLEDANO GASCA, JOSE CARLOS
   INSTALACIONES ELÉCTRICAS DE ENLACE Y CENTROS DE TRANSFORMACION
   EDIT. PARANINFA, 1998.
- JUÁREZ CERVANTES, JOSE SISTEMAS DE DISTRIBUCIÓN DE ENERGÍA ELÉCTRICA EDIT. UAM, MEXICO, 1995.
- ESPINOSA Y LARA, ROBERTO <u>SISTEMAS DE DISTRIBUCIÓN</u> EDIT. LIMUSA, MEXICO, 1990.

- MANUAL DE CONELEC DE INSTALACIONES ELECTRICAS EDITADO POR INDUSTRIAS CONELEC, MÉXICO, 1998.
- NORMA OFICIAL MEXICANA NOM-001-SEDE-1999 INSTALACIONES ELECTRICAS (UTILIZACIÓN EDIT. IPN, MÉXICO, 2001.
- CONELEC CONDUCTORES ELÉCTRICOS EDITADO POR INDUSTRIAS CONELEC, MÉXICO, 1999
- CUTLER-HAMMER CATALOGO GENERAL EDIT. EATON, 1997.
- NORMA DE PROYECTO DE INGENIERIA TOMO III INSTALACIONES ELECTRICAS.
  EDIT. IMSS, MÉXICO, MÉXICO, 1993.

