

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

INSTITUTO DE BIOTECNOLOGIA

"ANALISIS DE LA DISTRIBUCION DE LOS SITIOS DE METILACION DAM Y DCM EN EL GENOMA COMPLETO DE ESCHERICHIA COLI Y SU POSIBLE IMPLICACION BIOLOGICA"

Т		Е		S		Ι		S	
QUE	PA	RA	OBT	ENER	EL	GR/	ADO	DE	
LICE	NCL	ADO	ļ	EN	INV	'EST	IGAC	ION	
		BI	OME	DICA	BAS	SICA		<i>'</i> .	
Р	R	Е	S	E	N	T	Α	:	
СF	1	ΑB	RΕ	U	GΟ	0	DG	ΕR	

CUERNAVACA, MORELOS

JUNIO DEL 2001

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

AGRADECIMIENTOS

Quiero agradecer a mis papás, Alberto y Jane que si no fuera por ellos esta tesis definitivamente no existiría. Mis hermanitos, Olivia y Gavin – aunque no tan culpables – no tienen excusa alguna para no aparecer justo aquí.

Carmen, Gabriel, Guillermo y Laura tuvieron la pesadísima labor de revisar esta tesis. No sólo sobrevivieron, sino que me ayudaron enormemente en el proceso. Muchísimas gracias.

He logrado (¡por fin!) llegar a este punto gracias al apoyo de todos mis amigos. De alguna manera han aprendido a aguantarme, cada quien muy a su particular manera:

Alejandro (la ex-Cosa), Amaranta (la dulce Ami), Carlitos (el Flaco), Chocobo (aka Iván), Cleila (Cle), Greeny (Darth Greeny to you!), Ileana (Liconita), Johnny (y sus derivados), Lenin (Lorena opinaba que estaba "suculento", pero nunca se le quedó), Luis (demasiados apodos para escoger uno sólo), Oscar (Puckman), Paula (la Media-Hora, Pelúcida, *pequeña*), Sole (la devoradora de alfajores), Fito (Frito Pie), Paola (mejor lo dejo así), Pilar (Pilibili), Alina (una escuincla preciosa), Ruy (arigato!), Silvia (Silvilinda, Silviux)... gracias a todos.

Hablando de amigos y de aguantarme; la persona que más paciencia me ha tenido, que más tiempo me ha dedicado, que me ha enseñado tantas cosas en este último año y medio: Enrique. Gracias, mil gracias.

Más vale tarde que nunca. Prosigamos...

ÍNDICE

Sección	Página
Índice General	i
Índice de Tablas y Figuras	iii
Introducción	1
Variabilidad en el DNA	1
Metilación del DNA	2
Sistemas de Restricción y Metilación	3
Metilación en <i>E. coli</i>	5
Funciones de Dam	6
Funciones de Dcm	8
Antecedentes	9
Objetivos	12
Material y Métodos	13
Materiales	13
Metodología general	13
Metodología específica – ventanas	14
Metodología específica – genoma continuo	15
Metodología específica – enfoque funcional	16

INDICE.

I	Resumen1
П	Introducción3
	II.1 El proceso de fagocitosis
	II.2 Fagocitos del sistema de defensa del organismo6
	II.3 Receptores para Fagocitosis7
	II.4 Receptores Fcy10
	II.5 Transducción de señales por receptores Fcy15
	II.6 Transducción de señales durante la fagocitosis mediada por FcyRs17
ш	Objetivos
IV	Materiales y métodos
	IV.1 Apéndice: ¿Qué es la Citometría de Flujo33
v	Resultados41
	V.1 Reclutamiento de PI 3-K y ERK para fagocitosis
	por FcyRs durante la diferenciación de monocitos41
	V.1.1 Las enzimas PI 3-K y ERK participan en el proceso
	de fagocitosis mediado por FcyRs en neutrófilos41
	V.12 El proceso de fagocitosis mediado por FcyRs en monocitos
	es independiente de PI 3-K43
	V.1.3 Las enzimas PI 3-K y ERK son reclutadas para la fagocitosis por FcyRs
	durante la diferenciación de monocitos47
	V.1.4 Los neutrófilos y los macrófagos derivados de monocitos, al ser

estimulados presentan niveles de fagocitosis mayores que los monocitos	52
V.2 Medición de fagocitosis por citometría de flujo y aplicación	
de esta técnica a estudios de señalización intracelular	58
V.2.1 Marcado de eritrocitos de carnero con dextrán fluoresceinado	58
V.2.2 Detección de fagocitosis por citometría de flujo	
en neutrófilos y monocitos	58
V.2.3 Evaluación por citometría de flujo de cambios en los niveles	
de fagocitosis, en presencia de inhibidores farmacológicos	68
VI. Conclusiones y discusión	72
VI.1 Reclutamiento de PI 3-K y ERK para fagocitosis por FcyRs durante la	
diferenciación de monocitos	72
VI.2 Medición de fagocitosis por citometría de flujo y aplicación	
de esta técnica a estudios de señalización intracelular	81
II.Bibliografía	84

	and the second se
Resultados y Discusión	18
Frecuencia de los sitios de metilación	18
Análisis por ventanas	21
Análisis del genoma continuo	47
Análisis funcional	52
Conclusiones	59
Perspectivas	61
Bibliografía	63
Genes en regiones seleccionadas	G1
Genes en vacíos de GATC	G1
Genes en vacíos de CCWGG	G4

٠

Sección

Genes en agrupamientos de GATC	. G9
Genes en agrupamientos de CCWGG	G12

amasP1

.

TABLAS Y FIGURAS

۰.

Descripción breve	Página
Tabla 1. Frecuencias de sitios de metilación	19
Tabla 2. Tasa de frecuencia esperada / observada	20
Figura 1. Distribución normal y área de 3 σ	22
Figura 2. Histograma de frecuencia 2.5 kpb	23
Figura 3. Histograma de frecuencia 5 kpb	24
Figura 4. Histograma de frecuencia 10 kpb	25
Figura 5. Histograma de frecuencia 20 kpb	26
Figura 6. Histograma de frecuencia 40 kpb	27
Figura 7. Diagrama genómico GATC 2.5 kpb	30
Figura 8. Diagrama genómico GATC 5 kpb	31
Figura 9. Diagrama genómico GATC 10 kpb	32
Figura 10. Diagrama genómico GATC 20 kpb	33
Figura 11. Diagrama genómico GATC 40 kpb	34
Figura 12. Diagrama genómico CCWGG 2.5 kpb	
Figura 13. Diagrama genómico CCWGG 5 kpb	36
Figura 14. Diagrama genómico CCWGG 10 kpb	
Figura 15. Diagrama genómico CCWGG 20 kpb	38
Figura 16. Diagrama genómico CCWGG 40 kpb	39
Figura 17. Diagrama genómico combinado 2.5 kpb	42

÷

.

Figura 18. Diagrama genómico combinado 2.5 kpb43
Figura 19. Diagrama genómico combinado 2.5 kpb 44
Figura 20. Diagrama genómico combinado 2.5 kpb
Figura 21. Diagrama genómico combinado 2.5 kpb 46
Tabla 3. Vacíos mayores de sitios de metilación 48
Tabla 4. Agrupamientos mayores de sitios de metilación 49
Figura 22. Diagrama de vacíos y agrupamientos51
Figura 23. Frecuencia en regiones funcionales53
Tabla 5. Porcentaje de G-C en regiones funcionales
Figura 24. Posiciones metilables en codones55
Tabla 6. Porcentaje de G-C en codones 56
Figura 25. Dispersión de genes por sus sitios de metilación

INTRODUCCIÓN

Variabilidad en el DNA

A mediados del siglo pasado Watson y Crick publicaron su modelo de la estructura del DNA (Watson y Crick, 1953a). Este primer modelo consideraba a la molécula de DNA como una doble hélice, antiparalela, con un ancho constante determinado por apareamientos específicos entre una base púrica y una pirimídica. La importancia del modelo radicó en que además de encajar perfectamente con todos los hechos que se conocían hasta el momento, como la regla de Chargaff (A=T y C=G) y los datos cristalográficos de Rosalind Franklin (Franklin y Gosling, 1953), sugirió inmediatamente el mecanismo general de la replicación de esta molécula (Watson y Crick, 1953b). Sin embargo, el DNA de los organismos puede diferir bastante del modelo original (ahora conocido como DNA-B). Por un lado, condiciones como el pH, concentración de sales y temperatura, originan en algunos casos distintos tipos de hélices: más anchos (DNA-A), girando en sentido opuesto (DNA-Z), o inclusive triples hélices (DNA-H) (Wells, 1988). Por otra parte, pequeñas variaciones en las fuerzas electrostáticas entre las bases, dependiendo de cada secuencia, pueden modificar los parámetros geométricos de las bases causando variantes de los cuatro modelos de DNA antes mencionados. Así, una secuencia puede inherentemente ser más curva o simplemente ser más flexible (Trifonov y Sussman, 1980; Crothers, et al. 1990). Otras fuentes de variación muy importantes en los ácidos nucleicos de los seres vivos son las modificaciones de sus bases nitrogenadas. Estas alteraciones ocurren después de que el polinucleótido ha sido ensamblado. Basta analizar algunas de las bases que forman los tRNAs para darse cuenta de la increíble variabilidad que puede existir (Bjork, et al. 1987). Algunos de los cambios que ocurren son: metilación, saturación de dobles ligaduras, cambio de un carbono por un nitrógeno o de un oxígeno por un átomo de azufre, adición de un grupo carbonilo o grupos orgánicos mucho más complejos. Como es de esperarse, las bases modificadas tienden a comportarse diferentemente e inclusive favorecen apareamientos no canónicos (distintos de A con T/U o C con G), de hecho, en algunos casos las bases normales pueden presentar también este tipo de comportamiento. No todas las modificaciones de bases son causadas por mecanismos celulares. Muchos son daños causados por agentes externos como

radicales libres o luz ultravioleta, o inclusive pueden ocurrir por la acción directa de moléculas de agua (Weibauer, et al. 1993). Algunos efectos que esto ocasiona son: desaminación de bases que puede convertir una base en otra (por ejemplo C en U), depurinación o depirimidinación (la pérdida de la base nitrogenada) o la formación de dímeros de timina (dos timinas contiguas unidas covalentemente). Todos estos daños tienen que ser corregidos o pueden causar mutaciones y existe una serie de mecanismos de reparación que se encargan precisamente de esto, generalmente involucrando la excisión de la parte del DNA afectado y posteriormente, la síntesis de la parte faltante (Sancar y Sancar, 1988). El tipo de modificación del DNA sobre el cual este trabajo se enfoca es la metilación: la adición de un grupo –CH₃ a una molécula de DNA ya sintetizada.

Metilación del DNA

Curiosamente el descubrimiento de la primera base metilada, 5-metilcitosina, ocurrió cuando la estructura y función de los ácidos nucleicos seguían siendo un misterio. En 1948, Rollin Hotchkiss la identificó cuando buscaba aminoácidos en sus preparaciones de DNA (Hotchkiss, 1948), ya que en esa época se apostaba a que las nucleoproteínas y no el DNA eran las portadoras del material genético. Los métodos de cromatografía en papel que desarrolló, aunque fallaron en su propósito original (no encontró aminoácidos en sus muestras) sirvieron como una técnica rápida para la separación de purinas y pirimidinas además de descubrir la 5-metilcitosina (m5C). Otras bases metiladas se identificaron posteriormente, incluyendo la N⁴-metilcitosina (m4C) y la N⁶-metiladenina (m6A), cuyos grupos-metilo se-encuentran-unidos-a-un nitrógeno exocíclico (Weissbach, 1993).- Estas bases modificadas pueden tener consecuencias estructurales sobre el DNA que las contiene. La m5C causa una mayor estabilidad de la doble hélice, mientras que la m6A reduce esta estabilidad (Murchie y Lilley, 1989). Por lo tanto, la presencia de m6A facilita la apertura de la doble hélice, por lo que ha sido seleccionado en orígenes de replicación (discutido más adelante). La curvatura intrínseca del DNA se ve incrementada o disminuida dependiendo de las posiciones de m5C en un fragmento de DNA (Hagerman, 1990). Esta base modificada podría favorecer la formación de regiones de triples hélices (DNA-H) y estabilizar hélices invertidas (DNA-Z) en condiciones fisiológicas (Zacharias, 1993). Muchas bacterias termofílicas contienen m4C, posiblemente para evitar utilizar m5C que es propenso a desaminarse espontáneamente con mayor facilidad a temperaturas elevadas (Ehrlich, et al.

1985).

Sistemas de Restricción y Metilación

B El descubrimiento de la primera función biológica de bases metiladas ocurrió a principios de los años cincuenta, cuando se observó que ciertas cepas de bacterias inhibían el crecimiento de fagos previamente crecidos en cepas diferentes (Luria y Human, 1952; Bertani y Weigle, 1953). Esto ocurre debido a la presencia de sistemas que reconocen DNA modificado, que actúan como sistemas "inmunes" muy primitivos. Solamente han sido descritos sistemas de este tipo en organismos unicelulares (principalmente bacterias) y sus viruses (Roberts y Macelis, 1994). Su función principal aparentemente consiste en proteger al organismo de DNA extraño: si éste se encuentra, es degradado (Noyer-Weidner y Trautner, 1993). Para evitar que el DNA propio se degrade, necesita haber una manera de distinguirlo del ajeno. De hecho existen dos maneras de lograr esta distinción, y ambas ocurren. Una manera consiste en identificar bases modificadas y degradar el DNA que los contiene. Los sistemas McrA, McrBC ("methyl citosine restricting") y Mrr ("modified adenine recognition and restriction") cumplen precisamente esta función en E. coli (Nover-Weidner y Trautner, 1993; Redaschi y Bickle, 1996). McrA y McrBC anteriormente habían sido descritos como RgIA y RglB ("restricts glucoseless DNA") ya que degradan el DNA de fagos mutantes que contienen 5-hidroximetilcitosina (hm5C) en lugar de la versión glucosilada que presentan los fagos silvestres (Revel y Luria, 1970). Ahora se sabe que además de cortar DNA con hm5C, también cortan ciertas secuencias que contienen m4C y m5C. Mrr corta secuencias de DNA con m6A, aunque puede actuar sobre m5C (Waite-Rees, et al. 1991). La especificidad de secuencia de este sistema tampoco está claramente descrita. La otra manera de distinguir entre el DNA propio y el ajeno es modificar el primero y tener una actividad que degrade todo lo que no se encuentra modificado. Los sistemas que cumplen esta función son los llamados de restricción y modificación o R-M (Nover-Weidner y Trautner, 1993; Redaschi y Bickle, 1996). La modificación es llevada a cabo por enzimas (metilasas o metiltransferasas) que reconocen secuencias definidas de DNA y, utilizando S-adenosil metionina (SAM) como donador, transfieren un grupo metilo a una citosina o adenina específica dentro de esta secuencia. La actividad de restricción ocurre cuando la contraparte del sistema reconoce el mismo sitio y, si éste no se encuentra metilado, corta el DNA (estas enzimas se conocen como endonucleasas de restricción). Estos sistemas se pueden catalogar de acuerdo a sus

subunidades, los cofactores que requieren y la posición en que cortan el DNA en tres tipos: I, Il y III.

Los sistemas R–M de tipo I están formados por tres subunidades, cada una especializada para cumplir una tarea dentro de un mismo complejo enzimático. Una subunidad se encarga de metilar adeninas (M), otra de cortar (R) y una tercera se encarga del reconocimiento del sitio específico (S) (Yuan y Hamilton, 1984). Los sitios reconocidos por estas enzimas son asimétricos, formados por 3 pb específicas seguidos por un espaciador variable de 6–8 pb y luego otras 4–5 pb específicas. El sitio de corte puede encontrarse lejos del sitio de reconocimiento, raramente a menos de 400 pb, pero inclusive hasta 7,000 pb de distancia. La enzima requiere SAM para unirse al DNA, y por lo tanto éste funciona como activador alostérico además de ser el donador de metilos. La endonucleasa también requiere ATP y Mg²⁺ para actuar. La naturaleza modular de estos sistemas les permite evolucionar vía recombinación y probar nuevas especificidades modificando solamente la subunidad S, que se encarga de la especificidad de ambas reacciones, metilación y restricción. En el genoma de *E. coli* K–12, los genes que codifican para este sistema (*hsdR*, *M* y *S*; "<u>h</u>ost <u>s</u>pecificity for <u>D</u>NA") se encuentran agrupados con *mrr* y *mcrBC*, por lo cual se le ha nombrado "región de control inmigratorio" a esta zona (Redaschi y Bickle, 1996).

Los sistemas R–M de tipo II constan de dos enzimas independientes, una encargada de la metilación y otra de la restricción (Noyer–Weidner y Trautner, 1993). Estas últimas son las famosas enzimas de restricción utilizadas en aplicaciones de biología molecular. Estas enzimas dependen de Mg²⁺ y sus correspondientes metilasas de SAM. Las bases metiladas que producen estos sistemas son m4C, m5C y m6A. La mayoría de los sitios que reconocen son simétricos (palíndromes) de 4–8 pb y en algunos casos se encuentran interrumpidos por espaciadores. Tanto el corte como la metilación ocurren simétricamente sobre el sitio de reconocimiento. Sin embargo, mientras que la endonucleasa generalmente requiere ser un homodímero para cortar conjuntamente ambas cadenas del DNA, la metilación ocurre en una cadena a la vez, actuando la metilasa como monómero. Esto sugiere una manera en que se facilitaría la entrada de este tipo de sistema a un nuevo organismo. La metilasa puede empezar a actuar inmediatamente sobre el DNA, protegiéndolo, mientras que la restricción requiere de una mayor concentración de enzima para lograr formar dímeros, y por lo tanto de más tiempo (Redaschi y Bickle, 1996). Existe además una subclase llamada IIS ("shifted cleavage") cuyo sitio de reconocimiento es asimétrico y el corte ocurre afuera de éste, pero

4

que se parece en los otros aspectos a los sistemas de tipo II (Szybalski, et al. 1991).

Los sistemas R–M de tipo III se asemejan a los del tipo I en que forman una sola enzima multifuncional (Redaschi y Bickle, 1996). Sin embargo, tienen sólo dos subunidades, Mod y Res que se encargan de la modificación y restricción respectivamente. La metilación requiere de SAM y la restricción requiere Mg²⁺ y ATP, pero estos factores además estimulan su contraparte, causando que en presencia de los tres y DNA no modificado, ambas reacciones compitan (Haberman, 1974). Los sitios que reconocen son asimétricos de 5–6 pb y el corte ocurre a unos 25 nucleótidos hacia su lado 3'. Res requiere de Mod para funcionar ya que Mod es el que le confiere la especificidad por el sitio de DNA. Mod puede actuar solo, al igual que un complejo de M y S en los sistemas de tipo I. Aunque pareciera que este tipo de sistema solamente metila la adenina de una cadena, aparentemente se requieren dos secuencias de reconocimiento, una en cada cadena y en sentido inverso. En conjunto, estos dos actúan como un sitio simétrico interrumpido, evitando así que surja DNA sin metilar (sustrato de la restricción) al pasar la horquilla de replicación (Meisel, et al. 1992).

Hay algunos sistemas, especialmente dentro de los ahora designados como del tipo IIS, que presentan muchas irregularidades por lo que posiblemente se vaya a requerir modificar el presente sistema de clasificación (Janulaitis, et al. 1992).

Metilación en E. coli

--

El DNA en *E. coli* K–12 contiene dos bases metiladas: m5C y m6A. Aproximadamente el 1.5% de las adeninas y el 0.75% de las citosinas se encuentran modificadas de esta manera (Marinus, 1996). Además de la metilación de adeninas por HsdM (el sistema R–M de tipo I que metila la segunda adenina de la secuencia AAC(6N)GTGC, representando el 0.02% de las adeninas totales), existen dos metilasas más: Dam ("DNA <u>a</u>denine <u>m</u>ethylase") que metila las adeninas en GATC y Dcm ("DNA <u>cytosine m</u>ethylase") que metila la segunda citosina de CC[A/T]GG (Marinus, 1987). Estas secuencias metiladas se encuentran en la mayoría de las enterobacterias, pero cabe mencionar que Dcm no es tan común como Dam ya que inclusive en *E. coli* B, ésta no se encuentra presente. El hecho de que se hayan aislado triples mutantes *hsd dam dcm* implica que estas funciones no son indispensables para la viabilidad de la bacteria. No se ha detectado ningún tipo de metilación en estas mutantes, lo cual indica que son las únicas enzimas encargadas de esta función (Marinus, 1996). Lo curioso de Dam y Dcm es que, siendo enzimas de metilación, no existen enzimas

5

de restricción correspondientes (para completar el sistema R-M de tipo II). Por lo tanto, no parece que su importancia actual radique en la protección del cromosoma bacteriano. De hecho, *Eco*RII corta en el sitio de *dcm*, pero los plásmidos que lo producen tienen su propia metilasa (70% de secuencia de aminoácidos idéntica a Dcm) la cual se expresa antes que la endonucleasa así obviando una posible necesidad de Dcm (Marinus, 1996). Si la utilidad de estas dos enzimas no consiste en proteger al genoma de actividades de restricción, ¿cuál es entonces la presión evolutiva que las ha mantenido?

Funciones de Dam

Las mutantes en *dam* que se han aislado, aunque viables, presentan una serie de fenotipos entre las que destacan: elevación en la tasa de mutagénesis (Marinus y Morris, 1974), incremento de la transposición de algunos transposones (Lundblad y Kleckner, 1984), iniciación asíncrona de la replicación (Boye, et al. 1992) y alteración de la expresión de algunos genes (Barras y Marinus, 1989). Todos estos fenómenos, y otros, han sido explicados gracias a la dilucidación del papel que juega Dam en la fisiología de la bacteria.

Dam actúa justo detrás de la horquilla de replicación, metilando las cadenas recién sintetizadas. Sin embargo, esto no ocurre inmediatamente; hay una ventana temporal en que el DNA se encuentra hemimetilado, es decir, la cadena original se encuentra metilada, pero la nueva no. Así, cuando el aparato de replicación deja errores, existe una manera de distinguir precisamente la cadena que los contiene, de no ser así se repararían indistintamente ambas cadenas, dejando el error en la mitad de los casos (Wagner y Messelson, 1976). Estos apareamientos erróneos de bases son reconocidos y eliminados por un mecanismo que involucra a MutS, MutL y MutH, y que depende de la metilación por Dam (Modrich, 1991). MutS reconoce el sitio en que existe el error, que puede ser una base equivocada, o una insersión o deleción de hasta 4 nucleótidos (Parker y Marinus, 1992). Luego se une MutL y sirve para activar de alguna manera a MutH que es capaz de hacer cortes de cadena sencilla al lado 5' de una secuencia GATC sin metilar (Welsh, et al. 1987). De este mode. MutH reconoce el sitio de Dam más cercano y, si éste se encuentra hemimetilado, corta la cadena no modificada. El DNA entre el sitio de corte y el apareamiento erróneo es degradado y resintetizado. Este mecanismo depende de un par de cosas que vale la pena mencionar. En primer lugar, Dam tiene que estar cuidadosamente regulado. Una sobreexpresión ocasiona que se metilen muy rápido los sitios, antes de que pueda ocurrir la reparación. Con un nivel

muy bajo de Dam, puede iniciarse un nuevo ciclo de replicación antes de que se hayan terminado de metilar todos los GATC, dando lugar a sitios sin metilar. En ambos casos desaparece el modo de distinguir la cadena recién sintetizada (Marinus, et al. 1984). El >> Segundo punto, es la necesidad de que existan sitios GATC en todo el genoma para que pueda ocurrir este tipo de reparación. De hecho, se ha visto que a distancias mayores de dos kilobases entre dos secuencias GATC, el mecanismo ya no es eficiente (Modrich, 1991). Por lo tanto, si en una región determinada de DNA existen muchos sitios GATC, esta región podrá ser reparada eficazmente, mientras que entre menos haya, es más probable que un error pueda no ser corregido.

Una parte del cromosoma que contiene muchos sitios GATC (más de diez veces mayor al esperado) es el origen de replicación (Oka, et al. 1980). Su importancia aquí no radica en asegurar una buena reparación de la zona, mas bien tiene que ver con la sincronización del inicio de replicación en un proceso que depende de DnaA. También se asume que favorece la apertura de las hebras dada la menor estabilidad de apareamiento de la m6A (Yamaki, et al. 1988). En el primer paso del inicio de replicación se requiere que DnaA se peque a varios sitios en el origen de replicación, oriC (Bramhill y Kornberg, 1988). Una vez que las horquillas se alejan, la región cercana a oriC, incluyendo el gen dnaA, quedan hemimetiladas, y en esta condición son atrapadas por un componente proteico de la membrana externa (Ogden, et al. 1988). Durante este estado de secuestro (30 al 40% del ciclo celular), el orígen y dnaA permanecen inactivos y por lo tanto no pueden iniciarse nuevos ciclos de replicación. Dam tiene que competir por el acceso al origen, y cuando logra metilarlo completamente, éste se desprende de la membrana y puede volver a activarse en cuanto haya suficiente DnaA (Campbell y Kleckner, 1990). Originalmente se creyó que la interacción con la membrana podía facilitar la segregación de los nuevos cromosomas, al ir creciendo la membrana podría ir arrastrando y separando ambos orígenes (Ogden, et al. 1988). Sin embargo, el hecho de que mutantes dam segreguen normalmente sus cromosomas, invalida esta suposición (Vinella, et al. 1992).

El hecho de que ciertas proteínas membranales tengan afinidad por el origen solamente en estado hemimetilado, nos habla de que existen componentes celulares que pueden interactuar con sitios GATC, específicamente dependiendo de su estado de metilación. Algunos de estos componentes podrían ser factores transcripcionales y por lo tanto la expresión de genes cuyos promotores contienen la secuencia GATC puede verse

7

acoplada al ciclo de replicación o afectada por el nivel de Dam. Algunos casos descritos de procesos dependientes de Dam son, la transposición de Tn10 (Roberts, et al. 1985), la expresión del operón *pap* (Van der Woude, et al. 1993) y el empaquetamiento del fago P1 (Sternberg y Coulby, 1990).

Funciones de Dcm

Después de ver todos los procesos en los que se ve involucrado Dam, uno pensaría que Dcm podría participar de igual manera en la fisiología de *E. coli*. Sin embargo, no se ha detectado ningún fenotipo relacionado a la sub o sobreexpresión de Dcm (Marinus, 1996). No obstante, hay una propiedad curiosa de las citosinas metiladas que es necesario tomar en cuenta.

Las citosinas pueden sufrir desaminación espontáneamente, dejando la base uracilo en su lugar. La reparación de este daño depende de la enzima uracil-N-glucosilasa que reconoce uracilo en DNA y lo guita (Lindahl, 1982). El problema es gue cuando una citosina metilada (producido por Dcm) se desamina, queda timina, una base normal del DNA. Para contrarrestar el efecto aparentemente mutagénico de dcm, existe un gen a su inmediato 3' (de hecho sobrelapado por 6 codones) llamado vsr ("Very Short Patch repair" o VSP) cuyo producto reconoce y remueve una timina cuando ésta se encuentra en el contexto del sitio de reconocimiento de Dcm y está mal apareada con guanina (indicando que era originalmente una citosina) (Hennecke, et al. 1991). El único problema con este sistema es que si la secuencia original realmente contenía T-A y una mutación azarosa cambió la adenina por quanina, el sistema VSP no va a corregir la situación. De hecho, el sistema se encargará precisamente de quitar la T (base correcta) y poner en su lugar una C (base incorrecta) logrando así la fijación de la mutación. Además, el sistema va a estar en algunos casos en competencia con la reparación dirigida por GATC que repararía el error ciegamente, de acuerdo a la cadena recién sintetizada (Welbauer, et al. 1993). El resultado final es que en secuencias que contienen CC[A/T]GG, la segunda citosina es altamente susceptible de ser mutagenizada ("hotspot" mutagénico, Duncan y Miller, 1980).

8

ANTECEDENTES

Varios trabajos se han enfocado a estudiar la distribución de los sitios de metilación Dam y Dcm en el genoma de *E. coli* (Barras y Marinus, 1988; Bhagwat y McClelland, 1992; Merkl, et al. 1992; Gómez-Eichelmann y Ramírez-Santos, 1993). La importancia de este tipo de análisis radica en la dilucidación de las funciones biológicas que desempeñan estas secuencias modificadas. Por ejemplo, la hipótesis de que los sitios GATC tienen que ver con la regulación del inicio de replicación en *E. coli*, viene en parte de la observación de que existen 11 de estos sitios en el origen mínimo *oriC* (Zyskind y Smith, 1986). Esto representa una frecuencia más de diez veces mayor a la esperada dado el tamaño de esta secuencia (232 pb).

Barras y Marinus buscaron regiones con una alta frecuencia de sitios GATC y regiones en las que esta secuencia no estuviera presente (Barras y Marinus, 1988). A este tipo de distribución le llamaron de "clusters" (agrupamientos) y "voids" (vacíos) y los definieron arbitrariamente de la siguiente forma: un vacío es una región de al menos 600 nucleótidos que no presenta la secuencia GATC y un agrupamiento ocurre cuando al menos 3 GATC se encuentran separados por menos de 30 nucleótidos o al menos 4 GATC separados por menos de 45 nucleótidos. Pudieron observar que E. coli presenta diversos agrupamientos y vacíos a lo largo de su genoma. El agrupamiento mayor que encontraron fue de 9 GATC y presentó una frecuencia de 1 sitio cada 25 nucleótidos. El vacío más grande fue de 1618 nucleótidos, por lo que concluyeron que el genoma de E. coli se encuentra totalmente protegido por el sistema de reparación dependiente de Dam (ver Introducción; Modrich, 1991). La frecuencia total de los sitios Dam en las regiones que analizaron resultó ser de 1 cada 222 nucleótidos. Sin embargo, al tomar en cuenta por separado las regiones transcritas v traducidas (*codificante*), transcritas pero no traducidas (*sólo transcritas*: tRNA, rRNA, etc) v las que no son transcritas ni traducidas (intergénicas), encontraron que las regiones con la mayor densidad de sitios GATC eran las traducidas y que aquellas regiones transcritas pero no traducidas (rRNA, tRNA) presentaban la menor densidad. Para explicar estos hallazoos propusieron que dada la interacción de la secuencia GATC con ciertas proteínas (como ocurre en el inicio de replicación), se vería desfavorecida su selección en la mayoría de las secuencias reguladoras. Además, dado que GATC es un palíndrome, podría formar una estructura secundaria no deseada para aquellos RNA donde precisamente esta estructura tiene que estar finamente controlada. Sin embargo, las secuencias que utilizaron sumaban solamente 79,333 nucleótidos (1.7% del cromosoma) por lo que no podemos considerar sus conclusiones como definitivas para el genoma completo de *E. coli*.

Como se describe más a fondo en la Introducción de esta tesis, Dam está relacionado con un mecanismo de reparación y por tanto puede reducir la tasa de mutaciones espontáneas de secuencias que lo contienen. Por otro lado, la citosina metilada formada por Dcm es propensa a desaminarse para dar lugar a timina, aumentando la tasa de mutaciones espontáneas del DNA que la contiene. Gómez-Eichelmann y Ramírez-Santos analizaron la distribución de CCWGG en E. coli y trabajaron con la hipótesis que la frecuencia de ambos tipos de metilación, Dam y Dcm, podría definir dos grupos de genes con diferentes tasas de cambio (Gómez-Eichelmann y Ramírez-Santos, 1993). Aquellos genes con una alta frecuencia de CCWGG pero baja frecuencia de GATC podrían cambiar a una velocidad mayor que genes con frecuencias cercanas al promedio. Así mismo, genes con altas frecuencias de GATC pero bajas de CCWGG podrían cambiar con una tasa mutagénica menor. Para este trabajo utilizaron los 207,530 nucleótidos (4.5% del cromosoma) que sumaban los fragmentos continuos más grandes secuenciados hasta ese momento. De su análisis estadístico encontraron que la frecuencia de los sitios de metilación era de 1 sitio Dcm cada 351 nucleótidos y 1 sitio Dam cada 214 (muy cercano al resultado de Barras y Marinus, 1988). El vacío mayor de CCWGG fue de 1,869 nucleótidos y el agrupamiento mayor (definido en este caso como 200 o menos nucleótidos con al menos 3 sitios Dcm)-fue de 3 CCWGG en 33 nucleótidos. Además, en un análisis de 55 genes, observaron que la citosina metilada caía más frecuentemente en la primera posición de codones (64%) que en segunda (17%) o tercera (19%) posición. Para atacar la hipótesis de las diferentes tasas de mutación, buscaron genes con aumentos o decrementos de dos veces la frecuencia de los sitios de metilación. Solamente un gene pasó su criterio (uncF), con una frecuencia baja de Dam y alta de Dcm. De las otras combinaciones de frecuencias no encontraron un sólo caso. Dados estos resultados, concluyeron que la tasa de mutagénesis de pocos genes podría ser modificada por la relación de las frecuencias de sus sitios de metilación.

Aunque las secuencias con las que trabajaron Gómez-Eichelmann y Ramírez-Santos cubrían más del doble que las de Barras y Marinus, hay que recalcar que sólo representan

una fracción muy pequeña (4.5%) del cromosoma de *E. coli*. Algunas de las conclusiones a las que llegaron estos y otros autores forzosamente deben ser consideradas como tentativas, hasta que los análisis puedan extenderse a la mayor parte del genoma. En la actualidad se cuenta con la secuencia completa del genoma de *E. coli* K–12 (Blattner, et al. 1997) lo que nos permite retomar estos problemas con una perspectiva mucho más amplia, además de poder abordar cuestiones que anteriormente, simplemente no eran posibles.

- -

OBJETIVOS

- Calcular la frecuencia y distribución de los sitios Dam (GATC) y Dcm (CCWGG) en el genoma de *E. coli*. Comparar estos resultados con la frecuencia esperada al azar y por un análisis markoviano, buscando evidencia de una presión selectiva sobre este tipo de secuencias.
- Buscar patrones en la cantidad de sitios de ambas metilaciones en ventanas discretas alrededor del cromosoma de *E. coli*.
- Encontrar los "vacíos" más grandes de sitios Dam y Dcm, el primero para ver si realmente todo el genoma está protegido y el segundo para buscar regiones que no tengan una carga mutagénica importante por la citosina metilada.
- Buscar agrupaciones estadísticamente significativas de ambas secuencias de metilación para localizar regiones de posible importancia biológica.
- Obtener y comparar la frecuencia de los sitios de metilación en distintas regiones del genoma: secuencia transcrita y traducida (*codificante*), aquella que solamente se transcribe (*sólo transcrita*) y secuencia que no se transcribe (*intergénica*).
- Calcular la frecuencia promedio de aparición de las bases metilables en cada posición de todos los codones del genoma.
- Organizar todos los genes de *E. coli* de acuerdo a su contenido de sitios de metilación. Averiguar si genes de distintas categorías, como esenciales y no esenciales, presentan proporciones distintivas de estos sitios.

MATERIAL Y MÉTODOS

Materiales

En el presente trabajo se utilizó la secuencia completa de Escherichia coli K-12 en formato GenBank que se encuentra disponible en internet (Benson, et al. 2000). Para facilitar el acceso a la secuencia, este archivo fue procesado para dejar un archivo únicamente con la secuencia nucleotídica lineal (Programa 01, ver Programas). También se utilizó el genoma completo codificado en formato Sensa (Ciria y Merino, 2001). Sensa es un programa que toma la anotación de un genoma en formato GenBank y crea un archivo de una sola línea donde cada caracter representa una sola base, pero ahora incluye la información proveniente de la anotación, en efecto comprimiéndola y facilitando muchísimo su manejo. La información que contiene cada nueva base incluye el tipo de gen al que pertenece, la cadena en la que se transcribe ese gen, si tiene o no otro gen sobrelapado, en que posición de codón se encuentra y obviamente, el tipo de nucleótido. La lista depurada de los genes traducidos utilizada para algunos de los análisis fue proporcionada amablemente por el Dr. Gabriel Moreno del CIFN, UNAM. Las listas de genes esenciales y no esenciales para E. coli fueron tomadas de una base de datos japonesa, SHIGEN ("Shared Information of Genetic http://www.shigen.nig.ac.jp/ecoli/pec/Analyses.jsp). resources". Todos los programas utilizados fueron escritos específicamente para contestar las preguntas planteadas y se encuentran en la sección de Programas. Se utilizó Perl 5 (http://www.perl.com/pub) como lenguaje de programación, teniendo por computadora una PC con Mandrake Linux como sistema operativo (http://www.linux-mandrake.com/en/). Para los diagramas circulares se una librería gráfica para Perl llamada GD (http://stein.cshl.org/WWW/ aprovechó software/GD/GD.html). Todo el texto, la organización de las gráficas, la creación de las tablas detalles cosméticos fueron realizados en StarOffice (http://www.sun.com/ v otros products/staroffice/get.html).

Metodología general

Los objetivos planteados se cubrieron a tres niveles. En el primero se dividió al genoma completo de *E. coli* en ventanas discretas de distintos tamaños. Para el segundo

Metodología específica - enfoque funcional

Los últimos tres objetivos (ver Objetivos) se cubrieron dentro de esta metodología. Dos objetivos fueron de un carácter más general. Primero, se consideraron tres grandes regiones funcionales del genoma de E. coli: regiones codificantes, sólo transcritas e intergénicas. Con el Programa 13 se separaron estas regiones y se obtuvo la frecuencia correspondiente de cada sitio de metilación. El programa Sensa (Ciria y Merino, 2001) fue sumamente útil para extraer la información necesaria de las anotaciones del GenBank y dejarlo en un formato utilizado por el Programa 13. Para tomar en cuenta el posible efecto del porcentaje de G-C sobre estas frecuencias fue también necesario obtener el uso de nucleótidos para cada una de estas regiones (Programa 14). En segundo lugar se calculó la frecuencia de aparición de las bases metilables en cada posición de los codones, de nuevo usando un genoma codificado en formato Sensa. Aprovechando el genoma lineal de ceros y unos para las posiciones de los sitios de metilación (generado con el Programa 10), se buscó cada posición en la base de datos de Sensa para averiguar si se trataba de primera, segunda o tercera base de un codón (Programa 15). Cuando dos genes sobrelapaban y la base metilable representaba dos posiciones de dos codones diferentes, se contó como una ocurrencia independiente de cada caso. Además, dada la naturaleza palindrómica de los sitios de metilación, se procuró contar las dos bases metilables de cada secuencia. Se contó también la cantidad de bases metilables que corresponden a posiciones intergénicas así como las que corresponden a genes no traducidos. En este caso no fue necesario obtener el porcentaje de G-C para las tres posiciones de cada codón ya que Ricardo Ciria (autor de Sensa) ya los había obtenido y amablemente nos las proporcionó.

Para cumplir con el último objetivo, se utilizó la base de datos de genes depurados y se tomó cada gene por separado. En este caso, el tipo de análisis realizado para los dos tipos de metilación fue diferente. Para Dcm simplemente se contaron los sitios presentes en la región codificante, ya que el efecto de este tipo de metilación es solamente local (Programa 16). Sin embargo, el mecanismo de reparación asociada a Dam actúa lejos del sitio (ver Introducción) por lo que cada sitio repercute sobre un entorno de 1,000 bases en ambas direcciones (Modrich, 1991). Por ello se tomó cada una de las bases individuales de cada gene y se analizaron 1,000 bases hacia arriba y 1,000 bases hacia abajo, para ver cuantos sitios Dam podían tener efecto sobre esa base (Programa 16). Ambos resultados fueron reunidos para cada uno de los genes y posteriormente graficados. Este mismo análisis se

realizó para dos grupos de genes tomados de SHIGEN ("Shared Information of Genetic resources", http://www.shigen.nig.ac.jp/ecoli/pec/Analyses.jsp) (Programas 17). El primer grupo consistía en 201 genes esenciales y el segundo consistía en 297 genes cuya función no era esencial. Se realizaron las gráficas para compararlas entre sí y contra el de los genes totales.

RESULTADOS Y DISCUSIÓN

Frecuencia de los sitios de metilación

Como se comentó en los Antecedentes del presente trabajo, uno de los primeros datos que se suele obtener de las secuencias Dam y Dcm es su frecuencia. Estas frecuencias se expresan generalmente como la cantidad promedio de nucleótidos que presenta un sitio, con este tipo de modificación, en un intervalo de secuencia determinada. Los resultados de los diferentes trabajos han concordado en este respecto, a pesar de variar la cantidad de secuencia analizada (Barras y Marinus, 1988 con 1.7% del cromosoma y Gómez-Eichelmann y Ramírez-Santos, 1993 con 4.5% del cromosoma). El primer paso fue entonces averiguar si este panorama se mantiene con el genoma completo. Las frecuencias de estas secuencias las calculamos simplemente contando la cantidad de sitios, tomando como ventana la totalidad del genoma (Programa 02). El programa puede utilizarse para contar la cantidad de sitios de cualquier secuencia presente en un genoma, dividido en ventanas de un tamaño especificado. Para interpretar estos números, es necesario compararlos con los datos generados por un método estadístico, precisamente para averiguar si son significativos. El método más sencillo consiste en utilizar las frecuencias o probabilidades de los elementos unitarios de la secuencia a buscar. Esto es, la probabilidad de encontrar la secuencia GATC es simplemente el producto de las probabilidades de sus elementos G, A, T y C; expresado como:

$$p(GATC \mid G,A,T,C) = p(G) \cdot p(A) \cdot p(T) \cdot p(C)$$

Para cualquier secuencia compuesta por proporciones iguales de cada base (como es prácticamente el caso del genoma de *E. coli*), cualquier tetranucleótido tendría así una frecuencia esperada de $(\frac{1}{4})^4$, o 1 en 256. Sin embargo, este cálculo como método predictivo es pésimo, ya que existen en el genoma de *E. coli* secuencias como CTGG que están representadas 1 en 137 y otras como CTAG que tan sólo son encontradas cada 5230 pb. Este y otros métodos para predecir la frecuencia de oligonucleótidos en secuencias del genoma de *E. coli* ya han sido evaluados y la cadena de Markov resultó ser el mejor (Phillips, et al. 1987). Una cadena de Markov toma en cuenta la frecuencia de los oligos que componen

la secuencia de búsqueda, esto es, para GATC se toma en cuenta la frecuencia observada de GAT, de ATC y de la secuencia que los une, AT. Expresado matemáticamente:

$$p(GATC|GAT, ATC) = \frac{p(GAT) \cdot p(ATC)}{p(AT)}$$

y para un pentanucléotido, en este caso CCWGG:

$$p(CCWGG|CCWG, CWGG) = \frac{p(CCWG) \cdot p(CWGG)}{p(CWG)}$$

donde p(X) representa la frecuencia observada de la secuencia X, y p(XIY) la frecuencia esperada de X corrigiendo para la frecuencia observada de Y.

En la Tabla 1 se muestran las frecuencias observadas de ambas secuencias de metilación y los datos esperados generados por el método de la cadena de Markov así como la tasa o relación entre los observados y esperados.

	Tabla 1. Frecuencias de sitios de metilación en E. coli		
Secuencia	Datos observados	Datos esperados	Tasa Obs/Esp
GATC	1 en 243	1 en 192	0.79
CC[A/T]GG	1 en 385	1 en 279	0.73

Este tipo de comparación nos permite concluir que las secuencias GATC y CCWGG se encuentran subrepresentadas en el genoma de *E. coli*. Además, como la manera de calcular los datos esperados incluye la frecuencia observada de los componentes, el posible fenómeno biológico causa de esta reducción de frecuencia tiene que estar actuando a nivel de la secuencia completa. Esto nos sirve para descartar el efecto del uso de codones ya que actúa a nivel de trinucleótidos. Algo que debemos notar de ambas secuencias es que son palíndromes, esto es se "leen" igual en ambos sentidos. Esto podría representar una explicación de la reducción observada de frecuencias, ya que dos secuencias palindrómicas cercanas son capaces de formar estructuras secundarias de forma de asa, por lo que su presencia inapropiadamente regulada en secuencias que se transcriben a RNA de cadena sencilla (90% del genoma de *E. coli*) puede resultar perjudicial. Para probar esta hipótesis

calculamos las tasas de frecuencia observada/esperada para los 256 tetranucleótidos de igual manera que se hizo para GATC. Luego, las separamos en dos grupos, aquellos que son palíndromes y aquellos que no y se les calculó la media y la desviación estándar para las tasas de cada grupo. Los resultados pueden verse en la Tabla 2.

Tabla 2. Tasas de frecuencia esperada / observada de tetranucleótidos			
Tipo de tetranucleótido	Tasa media	Desviación estándar	
No palíndrome	0.99	0.15	
Palindrome	0.84	0.20	

Como es de esperarse, el grupo que incluye a prácticamente todos los tetranucleótidos es muy bien predicho por la cadena de Markov (tasa de 0.99, muy cercana a 1), sin embargo el grupo de los palíndromes se encuentra subrepresentado en el genoma, lo que implica que existe una presión de selección negativa para este tipo de secuencia.

La secuencia CCWGG se encuentra aún menos representada que GATC, y esto podría parecer algo contradictorio ya que el mecanismo de reparación por *vsr* (VSP repair, ver Introducción) se encuentra constantemente generando los tetranucleótidos CCWG y CWGG que deberían aumentar la frecuencia de CCWGG. El hecho de que esto realmente ocurra lo podemos observar comparando la frecuencia observada de CCWGG con la esperada por sus componentes unitarios y al calcularlo, la tasa es de 1.33. Sin embargo la cadena de Markov toma en cuenta los componentes, en este caso CCWG y CWGG, así que la tasa menor a uno de la Tabla 1 implica que existe algo más que está reduciendo la frecuencia específicamente actuando-sobre CCWGG: Un mecanismo que explica en parte-este fenómeno es precisamente la metilación por Dcm. En vista que la citosina metilada se desamina dando lugar a timina, la secuencia CCWGG irá desapareciendo para formar CTWGG si no es reparada. La metilación por Dam no afecta a la secuencia GATC ya que la modificación de la adenina no la hace más inestable.

En general, los datos observados con la secuencia completa del genoma se encuentran muy cercanos a los reportados anteriormente: un sitio Dam en 214 y un sitio Dcm cada 351 nucleótidos (Gómez–Eichelmann y Ramírez–Santos, 1993). Pero como se muestra en la Tabla 1, ambas secuencias se encuentran un poco menos representadas de lo que se creía.

Análisis por ventanas

Para empezar a estudiar los sitios de metilación en el genoma completo de *E. coli* decidimos analizar la secuencia en fracciones iguales, o ventanas. La ventaja de trabajar así es que no se imparten sesgos más allá de la selección del tamaño de ventana. Para disminuir lo más posible este sesgo escogimos 5 tamaños de ventana, 2.5, 5, 10, 20 y 40 mil pb explorando así un amplio rango de tamaños, desde uno que podría contener un sólo gen, hasta el de 40 mil pb, que es prácticamente un minuto del cromosoma. Con estas ventanas, evitamos el tener que fijar *a priori* un criterio de selección, como la búsqueda de una densidad determinada de sitios o la localización con respecto a genes o con respecto al inicio de replicación. Además, el escoger ventanas de un mismo tamaño nos permite visualizar fácilmente su distribución a lo largo del cromosoma y buscar regiones (cuyo tamaño o densidad no necesitamos saber de antemano) con datos sobresalientes.

Cuando se desea trabajar estadísticamente con una serie de datos es conveniente saber a que tipo de distribución se ajustan. Se sabe que muchos datos biológicos, especialmente cuando se tiene una gran cantidad de ellos, se ajustan bastante bien a una *distribución normal*, por lo que éste es el primer tipo de distribución que debemos tomar en cuenta. La fórmula matemática que representa a este tipo de distribución es la siguiente:

$$f_i = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(X_i - \mu)^2}{2\sigma^2}}$$

Donde f_i es la frecuencia de aparición del dato X_i , cuando los datos se distribuyen con una media igual a μ y una desviación estándar igual a σ . En la Figura 1 se muestra la gráfica de una distribución normal además del acercamiento a su cola positiva, donde se ve el área que representan aquellos datos mayores a tres desviaciones estándar. Estos datos sólo representan el 0.135% de la población y dado que la distribución es simétrica, lo mismo ocurre con los datos menores a tres desviaciones estándar.

Para ver si nuestros datos se ajustaban a este tipo de distribución, elaboramos histogramas para cada tipo de metilación y para cada tamaño de ventana. En cada gráfica también trazamos la curva teórica de una distribución normal, por lo que fue necesario calcular la media y desviación estándar para cada caso. Normalizamos las curvas teóricas

Figura 1. Porción de una distribución normal por arriba de 3 o

multiplicando sus valores de frecuencia por una constante de ajuste. Este valor se obtuvo para cada caso y simplemente ajusta la frecuencia teórica de la media para que tome el mismo valor que la frecuencia observada de la media. En algunos casos fue necesario agrupar dos o tres valores observados en cada columna del histograma. Esto fue necesario -ya.que al.tener.diversos tamaños de ventana, por ende se tiene para cada caso una cantidad de datos diferente. Para que los histogramas fueran más comparables entre si, y con la distribución teórica, convenía que la cantidad de columnas de cada histograma fuera lo más semejante posible. En aquellos casos donde resultaban más del doble de columnas que las primeras gráficas, se agruparon de dos en dos; para más del triple de columnas se agruparon de tres en tres. A continuación se muestran los histogramas para los cinco tamaños de ventana y en cada caso para ambos tipos de secuencia de metilación (Figuras 2–6):

Figura 2. Histograma de frecuencias acumuladas utilizando ventanas de 2,500 pb

Figura 3. Histograma de frecuencias acumuladas utilizando ventanas de 5,000 pb

Figura 4. Histograma de frecuencias acumuladas utilizando ventanas de 10,000 pb

Figura 5. Histograma de frecuencias acumuladas utilizando ventanas de 20,000 pb

Figura 6. Histograma de frecuencias acumuladas utilizando ventanas de 40,000 pb

Como podemos ver, especialmente en las gráficas con mayor número de ventanas (Figuras 2 y 3), los datos experimentales se ajustan muy bien a una distribución normal. Sin embargo, vale la pena mencionar algunos detalles. En las primeras tres figuras de la distribución de las ventanas de GATC existen ventanas con valores que claramente se salen de la distribución. En la Figura 2 se puede ver claramente que las ventanas con 32 y 39 sitios GATC, caen más allá inclusive del rango de la media más tres desviaciones estándar (µ + 3σ), que se suele escoger para encontrar datos significativos. Como recordamos del recuadro de la Figura 1, este rango equivale tan sólo al 0.135% de la distribución. De la misma manera, existen al menos tres ventanas de 5 mil pb y otras tres de 10 mil que podrían ser interesantes (Figuras 3 v 4). Esto no lo podemos observar en la cola izquierda de la distribución de sitios GATC, ni en alguna de las dos colas de la distribución de CCWGG. El caso de las colas izquierdas se debe a dos razones. Primero, cuando el tamaño de ventana es muy pequeño (2,500 pb), existen ventanas con cero sitios. Estas ventanas caen perfectamente dentro del rango μ – 3 σ y dado que una ventana no puede presentar una cantidad negativa de sitios, es imposible que existan valores "significativos" en la cola izquierda. Aún en las ventanas de 5 mil pb la distribución es tal que solamente datos negativos se saldrían del rango mencionado. La segunda razón, evidente en las ventanas de 10 mil pb, es debido a que para ser significativas las ventanas tendrían que tener valores muy cercanos a cero. Esto representaría un vacío cercano a 10 mil pb, y esto, como veremos más adelante, no se observó. En las figuras de los dos tamaños mayores de ventana (Figuras 5 y 6), los datos experimentales ya no se ajustan tan bien a la distribución teórica. Esto se debe a que al aumentar el tamaño de ventana, disminuye la cantidad de datos y en estos dos casos los datos simplemente son insuficientes para ajustarse a una distribución teórica.

Los histogramas nos permiten concluir que efectivamente nuestros datos se distribuyen de una manera normal, siempre y cuando se cuente con una cantidad suficiente de ellos. Además nos hacen ver que no nos conviene tanto utilizar un criterio usual de selección de datos estadísticamente significativos (aquellos que caen fuera de $\mu \pm 3\sigma$) ya que tan sólo encontraríamos algunas ventanas de tamaño pequeño para el caso de GATC, y para CCWGG ni siquiera eso. Siguiendo con la idea propuesta inicialmente en la Metodología, de tratar de imponer la menor cantidad de sesgos posibles, decidimos considerar todas las ventanas y representarlas de una manera visual. Para ello creamos lo que llamamos un

28

diagrama genómico, que es un histograma circular cerrado representando el genoma de E. coli. El origen y término de replicación se encuentran indicados, así como el origen de secuenciación. Las flechas circulares externas representan la dirección de las horquillas de replicación y el círculo de mayor diámetro, es una representación de todos los genes, aquellos transcritos a favor de la horquilla son las barras externas, aquellos en contra de la horquilla, las barras internas. La escala utilizada se encuentra indicada en cada gráfica. Cada ventana es representada por una barra de histograma surgiendo de un círculo central. Aquellas barras que salen del círculo central hacia fuera representan ventanas con valores mayores al promedio, las barras que salen hacia el centro son menores al promedio. El valor numérico graficado, de acuerdo a la escala, fue calculado mediante una integración definida de la curva teórica de la distribución normal (utilizando los parámetros observados- media y desviación estándar) entre el valor de la ventana y el final de la cola de distribución. De esta manera, los valores representan la probabilidad de encontrar una ventana con al menos (para casos por arriba de la media), o a lo mucho (para casos por debajo de la media), la cantidad de sitios observados. Por lo tanto, la probabilidad de encontrar una ventana con al menos una cantidad de sitios igual a la media es de 0.5 o 50%. Para que se pudiera visualizar de mejor manera la mayor cantidad de ventanas, permitimos que valores muy altos (representando probabilidades muy pequeñas) se salieran de la escala, marcándolas con línea punteada e indicando su valor real. A continuación se presentan los diagramas genómicos de GATC y CCWGG para cada tamaño de ventana (Figuras 7–16). Además, se incluye una gráfica para cada tamaño de ventana donde el histograma representa los cuatro casos posibles de la combinación de los tipos de metilación, ambos tipos por arriba de la media, ambos por abajo, y los dos casos donde uno se encuentra por arriba y el otro por debajo de la media (Figuras 17-21). En estas últimas gráficas, la idea fue escoger las combinaciones de sitios de metilación tal que las barras que se encuentran hacia afuera del círculo podrían representar regiones estables, protegidas o poco mutagénicas; mientras que las barras "negativas" representan regiones con una posible tasa instrínseca de cambio mayor al promedio.

Como era de esperarse, las características que observamos en los histogramas se ven reflejados en los diagramas genómicos. Los diagramas para tamaños pequeños de ventana con GATC presentan unas pocas ventanas que claramente se salen de la distribución. Pero ahora podemos ver en que posición del genoma se encuentran localizadas este y cualquier otro detalle.

Figura 7. Diagrama genómico de las ventanas de 2.5 kpb con GATC

Figura 8.

Diagrama genómico de las ventanas de 5 kpb con GATC

Figura 9. Diagrama genómico de las ventanas de 10 kpb con GATC

Figura 10. Diagrama genómico de las ventanas de 20 kpb con GATC

Figura 11. Diagrama genómico de las ventanas de 40 kpb con GATC

Figura 12. Diagrama genómico de las ventanas de 2.5 kpb con CCWGG

Figura 13. Diagrama genómico de las ventanas de 5 kpb con CCWGG

Figura 14. Diagrama genómico de las ventanas de 10 kpb con CCWGG

Figura 15. Diagrama genómico de las ventanas de 20 kpb con CCWGG

Figura 16. Diagrama genómico de las ventanas de 40 kpb con CCWGG

En su mayor parte, las distintas ventanas parecen ser distribuidas al azar alrededor del cromosoma. Los diagramas para CCWGG ejemplifican esto. Sin embargo, los diagramas genómicos de GATC presentan un detalle inesperado. Las ventanas más significativas tienden a caer en la mitad del cromosoma centrado sobre el origen de replicación y de una manera casi simétrica (Figuras 7 y 8). La más importante es siempre, como era sabido, la ventana que contiene al origen mismo. Como se ha discutido antes, este detalle estructural es bien conocido y se sabe que funciona para mediar la sincronización del inicio de la replicación. Esto ocurre debido a que el DNA hemimetilado generado detrás de las horquillas de replicación de esta región es secuestrado por una fracción de la membrana (Ogden, et al. 1988). Las regiones así capturadas se vuelven inactivas tanto transcripcionalmente como para efectos del inicio de replicación. Así, Dam tiene que competir con la fracción proteica de la membrana por las secuencias presentes alrededor de oriC y cuando logra metilarlos completamente, el DNA se desprende y puede volver a activarse. Adicionalmente, la interacción de los orígenes con la membrana había sido interpretado como un mecanismo posible para la segregación de los cromosomas, al ir creciendo la membrana podía ir separando los cromosomas (Ogden, et al. 1988). Sin embargo, al encontrarse que mutantes dam al dividirse no producen minicélulas (sin cromosoma) con una mayor frecuencia que las silvestres, se ha terminado por aceptar que la segregación cromosomal ocurre sin problemas en ausencia de Dam (Vinella, et al. 1992). Aunque no tenemos los suficientes datos para invalidar la idea aceptada, la simetría de las ventanas con cantidades significativas de GATC alrededor del origen parecería apoyar la idea de la segregación dependiente de Dam. Si el fenómeno de anclaje a membrana depende meramente de la concentración de sitios GATC, podrían existir otras regiones que se comporten de la misma manera que el origen. Lo que los diagramas genómicos nos muestran son los posibles candidatos a ser regiones anclables a membrana durante la replicación. En base a los resultados obtenidos en esta tesis, propongo que estas interacciones DNA-membrana podrían favorecer o ayudar a que la segregación cromosomal se realice de una manera apropiada. Si éste es el caso, los resultados sugieren que la región cercana a oriC no es la única involucrada. Otras regiones ricas en GATC pueden irse anclando a la membrana y contribuyendo a la separación y/o organización de los cromosomas. En cualquier caso, las regiones con frecuencias significativas de sitios Dam pueden verse acopladas al ciclo celular. De la misma manera que ocurre para oriC y dnaA, cualquier región que se secuestre en membrana quedaría

transcripcionalmente inactiva por un periodo definido del ciclo de la duplicación del DNA.

Los diagramas genómicos de metilaciones combinadas (Figuras 17-21) fueron realizados con la idea de buscar regiones que tuvieran concentraciones significativas (positivas o negativas) de ambos tipos de metilación. Esto para apoyar la hipótesis de que existen regiones cuya tasa de mutagénesis se encuentra determinada principalmente por su patrón de metilación. De esta manera, regiones con un alto contenido de GATC (bien protegidos por el mecanismo de reparación) y bajo contenido de CCWGG (pocas mutaciones por desaminación de citosina metilada) tendrían una tasa baja de mutación. El otro caso bien definido sería el que tiene baja frecuencia de GATC y muchos sitios CCWGG, determinando así una tasa de cambio relativamente alta. Las otras dos posibles combinaciones son menos claras. En el caso de encontrar regiones con frecuencias bajas para ambos tipos de metilación, decidimos clasificarlas como poco mutagénicas. Esta elección se debió a que probablemente tengan la cantidad mínima de GATC para que el mecanismo de corrección funcione (1 sitio cada 2,000 pb) y tienen pocos sitios CCWGG mutagénicos. El último caso es el de ventanas que presentan frecuencias por arriba de la media de ambos sitios. Éstas las consideramos del lado de las mutagénicas ("negativas" en las Figuras 17-21) y requiere de una explicación. Si ocurre una desaminación de citosina metilada (produciendo timina) y la horquilla de replicación se encuentra cercana, los sistemas de reparación (VSR y el dependiente de Dam) competirían por corregir el error. Si la reparación se lleva a cabo dirigida por un sitio GATC hemimetilado, la mutación guedará fijada en el 50% de los casos. Entonces, una región con un contenido alto de CCWGG tiene una mayor probabilidad de contener sitios desaminados al momento de replicarse. Si a esto se le agrega un alto contenido de sitios Dam, la competencia entre los dos mecanismos de reparación podrá ser ganada más fácilmente por el que depende de los sitios GATC, resultando en una tasa de cambio mayor. Debido a que las probabilidades combinadas fueron calculadas meramente como el producto de las probabilidades para cada tipo de metilación por separado, un valor muy significativo para un tipo de metilación puede arrastrar el valor conjunto sin que la cantidad del segundo tipo de metilación sea realmente significativa. Por esta y otras consideraciones que discutiremos en la última parte de los resultados, sólo podemos afirmar que aunque si existen regiones con concentraciones alternadas o equiparables de ambos tipos de metilación, los resultados hasta ahora no son concluventes.

41

Figura 17. Diagrama genómico de las ventanas de 2.5 kpb con GATC y CCWGG

Figura 18. Diagrama genómico de las ventanas de 5 kpb con GATC y CCWGG

Figura 19. - Diagrama genómico de las ventanas de 10 kpb con GATC y CCWGG

Figura 20. Diagrama genómico de las ventanas de 20 kpb con GATC y CCWGG

Figura 21. Diagrama genómico de las ventanas de 40 kpb con GATC y CCWGG

Análisis del genoma continuo

Los resultados anteriores nos dan un panorama general de los sitios de metilación en el cromosoma de *E. coli.* Sin embargo, para ciertas cuestiones, un análisis estadístico puede no ser el más conveniente. Por ejemplo, si queremos buscar regiones que no se vean afectadas por la mutagénesis de Dcm, es más significativo buscar las regiones más grandes posibles que no contengan estos sitios de metilación, sin importar si son de un mismo tamaño (como se hace en el análisis por ventanas). Así mismo, regiones que pudieran tener una importancia estructural dada su densidad de sitios de metilación, pudieran ser mucho más pequeñas que aún el tamaño de ventana más pequeño elegido (por ejemplo, la región correspondiente al origen de replicación mide 232 pb). Por este tipo de consideraciones, decidimos contestar ciertas preguntas al nivel del genoma completo, sin división previa alguna. Los datos a obtener, para cada tipo de metilación, fueron los siguientes: i) las regiones más grandes posibles que no tuvieran un sólo sito de metilación (vacíos) y ii) los agrupamientos mayores pero en fragmentos mucho más pequeños que las del análisis por ventanas.

La búsqueda de vacíos produjo resultados inesperados. Hasta ahora, en todos los trabajos enfocados al estudio de los sitios GATC, no se había encontrado una sola región de más de 2,000 pb sin al menos un sitio (Marinus, 1996). Esto parecía perfectamente aceptable, ya que es el tamaño máximo sobre el que puede actuar el sistema de reparación dependiente de Dam (Modrich, 1991). La conclusión era que todo el genoma de *E. coli* se encontraba protegido por este sistema. A lo largo del presente trabajo, diseñamos programas *de novo* para contestar explícitamente cada pregunta (ver Metodología y Programas). Esto nos permitió ser mucho más rigurosos y flexibles que si dependieramos solamente de programas y datos ya disponibles. Con el Programa 14, encontramos no sólo uno, si no veintiún vacíos mayores a 2 kb, el más grande de 4,839 pb (Tabla 3). Las mutaciones en estas regiones tienen una probabilidad baja de ser corregidas por el sistema dependiente de Dam. Aunque estos vacíos sólo constituyan el 1.3% del cromosoma, son muy buenos candidatos para analizar más a fondo su contenido.

Tabla 3. Los mayores 25 vacíos de sitios de metilación				
Vacios de GATC		Vacios de CCWGG		
Tamaño	Posición	Tamaño	Posición	
4839	521307	4140	2753826	
4081	3759387	3819	2532885	
3937	728527	3779	3794081	
3835	3616646	3192	1473177	
3510	2466591	3191	2764516	
3369	2069370	3128	2453296	
3268	2766105	3091	4465982	
2781	1065698	3017	2065021	
2762	2778338	2967	2278764	
2705	2188008	2912	1389749	
2580	2650900	2852	779561	
2490	1801510	2815	2420316	
2368	2074302	2808	3893174	
2311	236753	2780	1103218	
2310	285763	2764	2780830	
2299	3706928	2641	2525224	
2292	864899	2585	2989047	
2119	262405	2570	3801091	
2105	2970708	2564	3125944	
2059	2078166	2562	1579707	
2019	1426786	2559	1814739	
1928	1415457	2512	728864	
1924	3259626	2508	3687815	
1912	32115	2506	471550	
1893	3381767	2486	4446162	

Curiosamente, aunque el promedio o valor esperado de sitios CCWGG es menor que para GATC, los vacios de este tipo de sitio que encontramos nunca fueron tan grandes (Tabla 3). El vacío mayor de sitios Dcm fue de 4,140 pb, cuando no hubiera sido sorprendente, estadísticamente, encontrar alguno que duplicara el tamaño de los de Dam. Aunque no encontramos regiones de tamaño extremo, existen muchos más vacíos de tamaño intermedio

.

para Dcm que para Dam. Los vacíos mayores de CCWGG encontrados también son buenos candidatos para un estudio más profundo.

Para estudiar los agrupamientos más significativos, decidimos tomar un tamaño mucho más cercano al del origen de replicación (232 pb). Esto debido a que es el ejemplo más claro documentado de una función biológica dependiente de la densidad de los sitios. El tamaño que terminamos escogiendo fue aquél tal que se esperaba encontrar al azar y en promedio un sólo sitio de metilación. Este tamaño fue tomado de las frecuencias observadas en el genoma completo (Tabla 1). Para GATC equivale a una región de 242 pb y para CCWGG, 385 pb. Este tamaño nos permitió resaltar perfectamente al fragmento que contiene el origen de replicación, con 12 sitios GATC (12 veces por encima de lo esperado). Con el Programa 15 obtuvimos para ambos tipos de metilación los 100 agrupamientos más significativos. La misma tendencia de que la presencia de sitios Dam sea más extrema fue observada. Existen 9 agrupamientos de GATC que se encuentran 9 veces, y 23 que están 8 veces, por arriba de lo esperado, aparte del que contiene el origen. Los agrupamientos de CCWGG más grandes están solamente 7 veces por encima de lo esperado, existiendo 4 de éstos, seguidos por 33 agrupamientos 6 veces por encima de lo esperado. Estos datos se muestran en la Tabla 4.

Tabla 4. Los mayores agrupamientos de sitios de metilación					
Agrupamientos de GATC		Agrupamientos de CCWGG			
Cantidad	Posición	Cantidad	Posición		
12	3923350	7	112100		
9	201458	7	777804		
9	337248	7	2926999		
9	2565355	7	3007583		
9	2574771	6	224392		
9	2639203	6	456040		
9	2953020	6 .	708427		
9	3062135	6	746577		
9	3342899	6	1374623		
9	3387759	6	1716265		
8	60891	6 :	1863732		
8	211243	6	2030689		
8	353579	6	2237011		

Tabla 4	Tabla 4. Los mayores agrupamientos de sitios de metilación			
8	693311	6	2332572	
8	2162338	6	2368275	
8	2610366	6	2391198	
8	2644184	6	2539173	
8	2720219	6	2603943	
8	3059996	6	2728189	
8	3114954	6	3009440	
8	3204970	6	3074078	
8	3328425	6	3075902	
8	3406058	6	3223082	
8	3755681	6	3227555	
8	3880442	6	3260346	
8	3881487	6	3425411	
8	4132494	6	3475827	
8	4157616	6	3696089	
8	4300321	6	3844577	
8	4312352	6	3913335	
8	4451257	6	3940052	
8	4463190	6	4033741	
8	4597854	6	4164859	
		6	4206346	
		6	4335781	
		6	4445272	
		6	4572415	

Los resultados de los vacíos y agrupamientos más significativos presentes en el genoma de *E. coli* se encuentran visualmente en la Figura 22. Como se puede ver, la mayor parte de los agrupamientos de GATC se encuentran en la mitad del cromosoma que contiene al origen. Esto también apoya la idea de que intervienen en la segregación del cromosoma. También significa que los genes que posiblemente se acoplen transcripcionalmente al ciclo celular, debdio a su contenido de sitios Dam, predominan en esta mitad; a diferencia de la que contiene el término de la replicación. Los vacíos, sin embargo, se encuentran distribuídos de una manera bastante homogénea por todo el cromosoma.

Figura 22. Dingrama genómico con los vacíos y agrupamientos más significativos a... cada tipo de metilación

Análisis funcional

Reconsiderando la parte de "posible implicación biológica" del título de esta tesis, debemos tomar en cuenta que la unidad funcional para la mayoría de los fenómenos biológicos es el gen, y no una región abstracta del genoma. Tenemos que observar donde caen los sitios de metilación en este contexto, no solamente la cantidad de ellos. Además, una hipótesis que realmente se esperaba poder confirmar o rechazar era la de la mutagénesis dependiente de los sitios de metilación. El trabajo de Gómez-Eichelmann y Ramírez-Santos intentó contestar esta cuestión, pero al no contar con la suficiente cantidad de información (en este caso secuencia), sólo pudieron encontrar un gen que podría presentar una mayor tasa de mutagénesis por su contenido de sitios de metilación (Gómez-Eichelmann y Ramírez-Santos, 1993).

Dos cuestiones generales se contestaron primero. Por un lado necesitábamos saber la frecuencia en que los dos tipos de metilación caían en tres regiones funcionales del genoma; esto es DNA codificante, sólo transcrito, e intergénico (ver Objetivos). Por otro lado, no todas las bases de las regiones codificantes son equivalentes. La segunda base de un codón se encuentra mucho más comprometida con la identidad del aminoácido correspondiente que la primera o tercera base, aunque la tercera base es la menos comprometida de las tres. Así, también debemos de tomar en cuenta en qué posición del codón caen las bases metilables, especialmente las citosinas metilables por Dcm, ya que dependiendo de esto pueden ser más o menos mutagénicas.

De los tres tipos de regiones funcionales del genoma, se espera que la más conservada o estable sea la codificante. De esta manera, se espera que si realmente lossitios GATC logran una protección deberán encontrarse con una mayor frecuencia en esta región que en aquellas intergénicas o solamente transcritas, donde pudieran no ser tan importantes. De igual manera, los sitios CCWGG, si es necesario evitar las mutaciones que provocan, deberían encontrarse disminuidos especialmente en la región codificante. Como se puede ver en la Figura 23, éste es precisamente el caso.

52

Figura 23. Frecuencia de bases metilables en distintas regiones del genoma

En la región codificante se observa una mayor frecuencia de adeninas metilables que de citosinas metilables. Lo curioso, es que en la región del genoma que solamente se transcribe, ocurre justo lo contrario, existen más citosinas que adeninas modificables. Esta región está formada por genes de los tRNAs y RNAs ribosomales. Una cosa que tenemos que tomar en cuenta es que mientras que GATC contiene una fracción equitativa de A–T y G–C, CCWGG contiene cuatro veces r G–C que A–T. Por ésto, si dos regiones tienen contenidos de G–C diferentes, al azar espera que tengan distinto contenido de CCWGG. La Tabla 5 muestra los porcentajes de G–C para cada uno de los tipos de región aquí mencionados.

Tabla 5. Porcentaje de G–C en los tres tipos de región				
Región	Porcentaje de G-C			
Intergénico	42.32%			
Codificante	51.85%			
Sólo transcrito	54.87%			

Esta desviación en el porcentaje de G–C que se observa impartiría una tendencia en la cantidad de CCWGG en las distintas regiones. De hecho, es exactamente la misma tendencia que se observa en la Figura 23 (se ve más claramente en la gráfica inferior de la figura) con la mayor representación en la región transcrita, intermedia en la codificante y la menor de las tres en la región intergénica. En vista que GATC contiene la misma cantidad de A–T que de C–G esta tendencia no puede actuar sobre la frecuencia de estos sitios.

Si⁻realmente ha existido una presión por eliminar a las citosinas metilables de las posiciones mutagénicas, esto debe de poder ser fácilmente observable en las regiones codificantes. En vista a que la posición más comprometida de un codón es la segunda, ésta debe tener la menor frecuencia de citosinas modificadas, y la tercera, al ser la posición más laxa podrá tener la mayor concentración. En la Figura 24 se ve precisamente este comportamiento para CCWGG y lo contrario para GATC. En este caso también debemos tomar en cuenta la desviación que puede existir para el porcentaje de G–C en cada posición de los codones. En la Tabla 6 se muestran estos porcentajes para cada posición.

Figura 24. Posición de bases metilables en codones

taje de G−C
58.87%
10.72%
5.89%
en 2 2

Considerando que para la secuencia GATC la posición metilable es una adenina y que para CCWGG es una citosina, estos porcentajes se asemejan bastante a la forma de las gráficas de la Figura 24. Aunque el contenido de G–C podría parecer una causa de los resultados presentes en esta figura, realmente se trata de un problema circular. No podemos descartar la posibilidad de que la desviación del porcentaje de G–C observado en cada posición de los codones fue en parte impuesto por una selección actuando al nivel de la citosina metilada.

Una última manera de corroborar la hipótesis fue seleccionar dos grupos de genes. El primer grupo, de genes esenciales, debería ser un compartimiento muy estable, con poca necesidad de cambiar y por lo tanto debería tener una tasa intrínseca de mutación relativamente baja. El segundo grupo es mucho más laxo, y está compuesto por genes que se sabe que no son esenciales. Se espera que estos no tengan tanto compromiso de estabilidad y que puedan tener una tasa intrínseca de mutación por lo menos mayor al primer grupo. En la Figura 25 se puede ver, en primer lugar, la dispersión de todos los genes traducidos de E. coli, y en segundo lugar, la dispersión específicamente de los genes esenciales y no esenciales. Aquí se esperaba que los genes esenciales se distinguieran de los que no lo fueran, quedando en la región inferior y derecha-(la menos-mutagénica, de acuerdo a nuestras consideraciones). Contrario a nuestra espectativa, no existe tal distinción. Esto podría parecer una indicación de que la hipótesis debe ser rechazada. Sin embargo, cabe considerar dos cuestiones antes de hacerlo. Por un lado, quizá el grupo elegido no fue el más apropiado. La hipótesis dicta que debería existir un grupo de genes que dado su contenido de sitios de metilación sea menos variable que el resto. Por ello escogimos un grupo de genes para los que existe evidencia experimental que son esenciales, pero esto no significa necesariamente que son mutagénicamente estables.

Figura 25. Dispersión de genes dado su contenido de sitios de metilación

Lo que convendría encontrar, es un grupo de genes que se sepa que han cambiado muy poco a través del tiempo, por lo menos en los clados que presentan actualmente los sistemas de metilación Dam y Dcm. El mismo estudio podría hacerse con este grupo de genes y los resultados tendrían mayor repercusión sobre la hipótesis. La otra cuestión es que quizá estemos considerando mal la utilidad biológica de los sitios Dcm. Podría ser que los efectos más importantes ocurren en regiones reguladoras y no en regiones codificantes, actuando como un modulador de la expresión. Entonces convendría hacer un estudio donde se consideren los promotores de los genes, comparándolos con las regiones aquí estudiadas. Consideramos estas y otras cuestiones en la sección de Perspectivas.

CONCLUSIONES

- En Escherichia coli K-12, las frecuencias de los sitios de metilación, GATC y CCWGG, se encuentran por debajo de lo esperado estadísticamente. La comparación con el análisis markoviano indica que existe una selección negativa para la presencia de ambos sitios. La presión en contra de la secuencia CCWGG es la mayor.
- La cantidad de sitios de metilación por ventana se encuentra distribuido de acuerdo a una función normal.
- Las ventanas y los agrupamientos más sobresalientes por su contenido de GATC se encuentran distribuidas principalmente alrededor del origen de replicación. Esto apoya la idea de una segregación cromosomal ayudada por estas regiones.
- La ventana más significativa por su contenido de GATC es la que incluye al origen de replicación. Esto coincide con los resultados publicados por otros grupos.
- A diferencia de lo que se creía, el cromosoma de *E. coli* no puede ser protegido eficientemente en su totalidad por el mecanismo dependiente de Dam. Existen 21 regiones de más de 2000 pb sin un sólo sitio GATC.
- Las regiones, de mayor a menor frecuencia de sitios GATC, son: i) codificante,
 ii) intergénico, iii) sólo transcrito. La región más protegida por GATC, es por lo tanto la codificante.
- Las regiones, de mayor a menor frecuencia de sitios CCWGG, son: i) sólo transcrito, ii) codificante, iii) intergénico.

- Las posiciones en los codones con adenina metilable, de mayor a menor frecuencia, son: 2da > 3ra > 1ra.
- Las posiciones en los codones con citosina metilable, de mayor a menor frecuencia, son: 3ra > 1ra > 2da. Esto puede ayudar a que la desaminación de la citosina metilada no ocasione un cambio de aminoácido.
- Un grupo de genes, para los que existe evidencia experimental de que son esenciales, no pudo ser distinguido por su contenido de sitios Dam y Dcm.

PERSPECTIVAS

Aún falta mucho trabajo por realizar para concluir realmente la discusión sobre los sistemas Dam y Dcm en E. coli, especialmente en cuanto a las funciones de Dcm y la relación de ambos con la tasa intrínseca de mutación. Hace falta realizar el análisis de los genes contenidos en ciertas regiones señaladas en este trabajo. Los genes presentes en ventanas significativas o más importantemente en agrupamientos de GATC deberían estar transcripcionalmente acoplados a la replicación del cromosoma. Dentro de este tema, la relación de los agrupamientos de sitios Dam con los procesos involucrados en la división celular y la segregación cromosomal, aún no ha sido descrita completamente. Va a hacer falta mucho trabajo experimental si se desea esclarecer. Los genes contenidos en los vacíos de GATC también deberán ser estudiados experimentalmente, para ver si realmente su tasa de cambio es mayor al promedio. También se necesitaría estudiar así las regiones significativas por su contenido de CCWGG, cuando se tenga un mayor conocimiento de la función de Dcm en la fisiología de E. coli, estos genes pueden resultar interesantes. Como una exploración inicial he decidido incluir un apéndice (ver Genes en Regiones Seleccionadas) con los genes que se encuentran dentro de algunas de las regiones que esta tesis ha resaltado: los vacíos y los agrupamientos de sitios de metilación. Estas tablas facilitarán el trabajo posterior que se realice en esta área. El análisis a fondo de estos datos es material para un trabajo futuro, pero por ahora basta mencionar que contienen detalles de interés. Es sugestivo que los cuatro vacíos más importantes de GATC se encuentran ocupados por cuatro de los cinco elementos *rhs* (Recombination Hot Spot). No pareciera que esto fuera fortuito, requiere de una explicación. Curiosamente, la región donde se lleva a cabo el inicio de la replicación no se encuentra adentro del agrupamiento mayor, si no a 290 pb de distancia y no contiene gen alguno. Esto parece razonable si consideramos que una región con tal contenido de sitios GATC difícilmente puede tener la flexibilidad necesaria para contener mucha más información. Todos estos datos deberán ser analizados con detenimiento para poder ser explicados.

El estudio de las frecuencias y posiciones de sitios Dcm puede realizarse de una manera más completa. Debido a que los sistemas Dcm y VSP actúan en sentidos contrarios,

intercambiando CCWGG y sus derivados desaminados, los sitios sobre los que VSP actúa directamente deberían entrar en un futuro estudio. Además, por simplicidad aquí solamente consideramos la posición del codón en que caían las citosinas metilables. Lo estrictamente correcto sería considerar cada caso y contar como mutagénicas aquellas que realmente cambian el aminoácido, sin importar si están en primera, segunda o tercera posición del codón. Esto podría realizarse en un trabajo posterior, aunque no se espera realmente que cambie mucho los resultados (ya que la generalidad es que la segunda posición es la más comprometida, y la tercera la menos, con la identidad del aminoácido).

La hipótesis de que existan regiones cuya tasa de mutación depende principalmente de los sitios de metilación sigue siendo factible. Para redondear este trabajo, y tomar una decisión conclusiva sobre esta hipótesis, requerimos de más datos. En lo que concierne a la Figura 25, se podrían escoger mejores grupos para el análisis, como se mencionó al final de la sección de Resultados y Discusión. Un grupo de genes para el que exista evidencia evolutiva que haya cambiado poco, sería el candidato ideal a comparar contra un grupo que se sepa que haya cambiado mucho. Otra manera de atacar el problema sería tomar distintas regiones de la gráfica superior de la Figura 25 y buscar características que tuvieran en común los genes así agrupados.

Una excelente manera de validar todas las propuestas planteadas en esta tesis y en cualquier trabajo posterior sería realizar los mismos experimentos pero con otras bacterias que no tengan uno u otro sistema de metilación. Esto sería de vital importancia especialmente para las conclusiones acerca de Dcm. Por ejemplo, pudimos haber descartado datos que no parecían significativos (especialmente junto a los datos de Dam), pero por poco importantes que parecían en este estudio, si no aparecieran en una cepa naturalmente Dcm⁻, implicaría que sí es importante para la bacteria que cuenta con este sistema. Existe justo esta cepa, *E. coli* B no tiene el sistema Dcm, sin embargo su secuencia aún no ha sido publicada. Aunque ésta sería el candidato ideal para el estudio comparativo, de las secuencias de genomas completos con los que contamos en la actualidad, podríamos utilizar el de *Haemophilus influenzae* o el de *Vibrio cholerae* ya que son filogenéticamente cercanos a *E. coli* (gama proteobacterias) y al parecer tienen Dam, pero no Dcm.

Aunque esta tesis no haya sido del todo conclusiva, es un ejemplo del tipo de cuestiones que se pueden retomar, o las nuevas ideas con las que se puede trabajar en esta nueva y fascinante era de la genómica.

BIBLIOGRAFÍA

Barras F, Marinus MG. **1988**. Arrangement of Dam methylation sites (GATC) in the *Escherichia coli* chromosome. Nucleic Acids Research. 16:9821–9838.

Barras F, Marinus MG. 1989. The Great GATC: DNA methylation in E. coli. TIG. 5:139-143.

Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler DL. **2000**. GenBank. Nucleic Acids Research. 28:15–18.

Bertani G, Weigle JJ. 1953. Host controlled variation in bacterial viruses. J. Bacteriol. 65:113– 121.

Bjork GR, Ericson JU, Gustafsson CE, Hagerwall TG, Jonsson YH, Wikstrom PM. **1987**. Transfer RNA modification. Ann. Rev. Biochem. 56:263–287.

Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado–Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y. **1997**. The Complete Genome Sequence of *Escherichia coli* K–12. Science. 277:1453–1462.

Boye E, Marinus MG, Loner–Olesen A. **1992**. Quantitation of Dam methyltransferase in *Escherichia coli*. J. Bacteriol. 174:1682–1685.

Bramhill D, Kornberg A. **1988**. A model for initiation at origins of DNA replication. Cell. 54:915–918.

Campbell JL, Kleckner N. **1990** *E. coli oriC* and the *dnaA* gene promotor are sequestered from *dam* methyltransferase following passage of the chromosomal replication fork. Cell. 62:967–979.

Ciria R, Merino E. 2001. Comunicación personal. Instituto de Biotecnología, UNAM.

Crothers DM, Haran TE, Nadeau JG. 1990. Intrinsically bent DNA. J. Biol. Chem. 265:7093– 7099.

Duncan BK, Miller JH. **1980**. Mutagenic deamination of cytosine residues in DNA. Nature. 287:560–563.

Ehrlich M, Gama–Sosa MA, Carreira LH, Ljungdahl LG, Kuo KC, Gehrke CW. **1985**. DNA methylation in thermophilic bacteria: N⁴–methylcytosine, 5–methylcytosine, and N⁶– methyladenine. Nucleic Acids Research. 13:1399–1412.

Franklin RE, Gosling RG. 1953. Molecular structure of nucleic acids. Nature. 171:740.

Gómez–Eichelmann MC, Ramírez–Santos J. **1993**. Methylated Cytosine at Dcm (CCA/TGG) Sites in *Escherichia coli*: Possible Function and Evolutionary Implications. Journal of Molecular Evolution. 37:11–24.

Haberman A. 1974. The bacteriophage P1 restriction endonuclease. J. Mol. Biol. 89:545-563.

Hagerman PJ. **1990**. Pyrimidine 5–methyl groups influence the magnitude of DNA curvature. Biochemistry. 29:1980–1983.

Hotchkiss RD. **1948**. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J. Biol. Chem. 168:315–332.

Janulaitis A, Petrusyte M, Maneliene Z, Klimasauskas S, Butkus V. 1992. Purification and properties of the *Eco*57I restriction endonuclease and methylase prototypes of a new class (type IV). Nucleic Acids Res. 20:6043–6049.

Lundblad V, Kleckner N. **1984**. Mismatch repair mutations of *Escherichia coli* K–12 enhance transposition excision. Genetics. 109:3–19.

Luria SE, Human ML. 1952. A nonhereditary, host-induced variation of bacterial viruses. J. Bacteriol. 64:557–569.

Marinus MG. 1987. DNA methylation in Escherichia coli. Annu. Rev. Genet. 21:113-131.

Marinus MG. 1996. Chapter 53: Methylation of DNA. *Escherichia coli* and *Salmonella* Cellular and Molecular Biology. Eds. Neidhardt FC, et al. ASM Press. 2nd Edition. 782–791.

Marinus MG, Morris NR. 1974. Biological function for 6-methyladenine residues in the DNA of *Escherichia coli* K-12. J. Mol. Biol. 85:309-322.

Marinus MG, Poteete A, Arraj JA. **1984**. Correlation of DNA adenine methylase activity with spontaneous mutability in *Escherichia coli* K–12. Gene. 28:123–125.

Meisel A, Bickle TA, Krüger DH, Schroeder C. **1992**. Type III restriction enzymes need two inversely oriented recognition sites for DNA cleavage. Nature. 355:467–469.

Modrich P. **1991**. Mechanisms and biological effects of mismatch repair. Annu. Rev. Genet. 25:229–253.

Murchie AIH, Lilley DMJ. **1989**. Base methylation and local DNA helix stability: effect on the kinetics of cruciform extrusion. J. Mol. Biol. 205:593–602.

Noyer-Weidner M, Trautner TA. 1993. Methylation of DNA in Prokaryotes. EXS. 64:39-108.

Ogden GB, Pratt MJ, Schaechter M. **1988**. The replicative origin of the *E. coli* chromosome binds to cell membranes only when hemimethylated. Cell. 54:127–135.

Oka A, Sugimoto K, Takanami M, Hirota Y. **1980**. Replication origin of the *Escherichia coli* K– 12 chromosome: the size and structure of the minimum DNA segment carrying the information for autonomous replication. Mol. Gen. Genet. 178:9–20.

Parker B, Marinus MG. **1992**. Repair of DNA heteroduplexes containing small heterologous sequences in *Escherichia coli*. Proc. Natl. Acad. Sci. USA. 89:1730–1734.

Phillips GJ, Arnold J & Ivarie R. **1987**. Mono- through hexanucleotide composition of the *Escherichia coli* genome: a Markov chain analysis. Nucleic Acids Research. 15:2611–2626.

Redaschi N, Bickle TA. **1996**. Chapter 52: DNA Restriction and Modification Systems. *Escherichia coli* and *Salmonella* Cellular and Molecular Biology. Eds. Neidhardt FC, et al. ASM Press. 2nd Edition. 773–778.
Revel HR, Luria SE. **1970**. DNA-glucosylation in T-even phage: genetic determination and role in phage-host interaction. Annu. Rev. Genet. 4:177–192.

Roberts D, Hoopes BC, McClure W, Kleckner N. **1985**. IS *10* transposition is regulated by DNA adenine methylation. Cell. 43:117–130.

Roberts RJ, Macelis D. **1994**. REBASE– restriction enzymes and methylases. Nucleic Acids Res. 22:3628–3639.

Sancar A, Sancar GB. 1988. DNA repair enzymes. Annu. Rev. Biochem. 57:29-67.

Sternberg N, Coulby J. **1990**. Cleavage of the bacteriophage P1 packaging site (pac) is regulated by adenine methylation. Proc. Natl. Acad. Sci. USA. 87:8070–8074.

Szybalski W, Kim SC, Hasan N, Podhajska AJ. **1991**. Class–IIS restriction enzymes – a review. Gene. 100:13–26.

Trifonov EN, Sussman JL. 1980. The pitch of chromatin DNA is reflected in its nucleotide sequence. Proc. Natl. Acad. Sci. USA. 77:3816–3820.

Van der Woude MW, Braaten BA, Low DA. **1993**. Evidence for global regulatory control of pilus expression in *Escherichia coli* by Lrp and DNA methylation: model building based on analysis of *pap*. Mol. Microbiol. 6:2429–2435.

Vinella D, Jaffe A, D'Ari R, Kohiyama M, Hughes P. **1992**. Chromosome partitioning in *Escherichia coli* in the absence of Dam–directed methylation. J. Bacteriol. 174:2388–2390.

Wagner R, Messelson M. **1976**. Repair tracts in mismatched DNA heteroduplexes. Proc. Natl. Acad. Sci. USA. 73:4135–4139.

Waite–Rees PA, Keating CJ, Moran LS, Slatko BE, Hornstra LJ, Benner JS. **1991** Characterization and expression of the *Escherichia coli* Mrr restriction system. J. Bacteriol. 173:5207–5219.

Watson JD, Crick FH. 1953. Molecular structure of nucleic acids: a structure for deoxyribose

nucleic acid. Nature. 171:737.

Watson JD, Crick FH. 1953. Genetical implications of the structure of deoxyribonucleic acid. Nature. 171:964.

Weibauer K, Neddermann P, Hughes Melya, Jiricny J. **1993**. The repair of 5-methylcytosine deamination damage. EXS. 64:510-522.

Weissbach A. 1993. A Chronicle of DNA methylation (1948–1975). EXS 64:1-10.

Wells RD. 1988. Unusual DNA structures. J. Biol. Chem. 263:1095-1098.

Weish KM, Lu AL, Clark S, Modrich P. 1987. Isolation and characterization of the *Escherichia coli mutH* gene product. J. Biol. Chem. 262:625–629.

Yamaki H, Ohtsubo E, Nagai K, Maeda Y. **1988**. The *oriC* unwinding by *dam* methylation in *Escherichia coli*. Nucl. Acids Res. 16:5067–5073.

Yuan R, Hamilton DL. 1984. Type I and type III restriction-modification enzymes in: DNA methylation. Eds. Razin A, Cedar H, Riggs AD. Springer-Verlag, New York. 11-37.

Zacharias W. 1993. Methylation of cytosine influences the DNA structure. EXS. 64:27-38.

Zyskind JW, Smith DW. 1986. The bacterial origin of replication, oriC. Cell. 46:489-490.

GENES EN REGIONES SELECCIONADAS

Genes en vacíos de GATC

ד	amaño y contenido del vacío de GATC	Rango
Vacío de	e tamaño: 4839 pb	521307526147
ybbP	putative oxidoreductase	519640522054
rhsD	rhsD protein in rhs element	522485526765
Vacío de	e tamaño: 4081 pb	37593873763469
yibF	putative S-transferase	37589743759582
rhsA	rhsA protein in rhs element	37598103763943
Vacío de	e tamaño: 3937 pb	728527732465
ybfA	orf, hypothetical protein	728357728563
rhsC	rhsC protein in rhs element	728806732999
Vacío de	e tamaño: 3835 pb	36166463620482
rhsB	rhsB protein in rhs element	36168233621058
Vacío de	e tamaño: 3510 pb	24665912470102
b2351	putative glycan biosynthesis enzyme	24662342467154
b2352	putative ligase	24671512468482
b2353	orf, hypothetical protein	24687812469125
b2354	orf, hypothetical protein	24690972469537
yfdL	putative RNA polymerase beta	24695642470082
Vacío d	e tamaño: 3369 pb	20693702072740
flu	outer membrane fluffing protein, similar to adhesin	20694052072680

Rango

a – Anna ann an Stairte air an Air an

Vacío de	e tamaño: 3268 pb	27661052769374
yfjP	putative GTP-binding protein	27657252766594
yfjQ	orf, hypothetical protein	27666862767507
yfjR	orf, hypothetical protein	27677242768425
b2635	orf, hypothetical protein	27683102768702
b2636	orf, hypothetical protein	27684532769145
yfjT	orf, hypothetical protein	27691692769636
Vacío de	a tamaño: 2781 pb	10656981068480
agp	periplasmic glucose-1-phosphatase	10648081066049
уссЈ	orf, hypothetical protein	10660871066314
wrbA	trp repressor binding protein	10663351066931
ycdF	orf, hypothetical protein	10671411067371
ycdG	putative transport protein	10677341069128
Vacío de	tamaño: 2762 pb	27783382781101
урјА	putative ATP-binding component of a transport system	27761672780876
b2648	orf, hypothetical protein	27810852781228
Vacío de	tamaño: 2705 pb	21880082190714
yehB 📒	putative outer membrane protein	21864502188930-
yehC	putative chaperone	21889462189665
yehD	putative fimbrial-like protein	21897002190242
yehE	orf, hypothetical protein	21905352190816
Vacío de	tamaño: 2580 pb	26509002653481
sseA	putative thiosulfate sulfurtransferase	26503552651359
sseB	enhanced serine sensitivity	26521772652962
рерВ	putative peptidase	26530952654465

.

. .

Rango

A STREET, STRE

_ - _

Vacío de	tamaño: 2490 pb	18015101804001
b1720	orf, hypothetical protein	18011181801591
b1721	orf, hypothetical protein	18016021803017
b1722	orf, hypothetical protein	18033491804107
Vacío de	tamaño: 2368 pb	20743022076671
b2001	orf, hypothetical protein	20727952074333
veeS	putative DNA repair protein, RADC family	20743302074776
veeT	orf, hypothetical protein	20748392075060
veeU	putative structural protein	20751342075502
veeV	orf, hypothetical protein	20755912075965
yeeW	orf, hypothetical protein	20759622076156
Vacío de	tamaño: 2311 pb	236753239065
dnaQ	DNA polymerase III. epsilon subunit	236067236798
aspV	tRNA-OTHER	236931237007
vafT ~	outative aminopeptidase	237335238120
yafU	orf, hypothetical protein	238746239084
Vacío de	tamaño: 2310 pb	285763288074
vanG	putative permease	284619286001
yaoH	putative beta-xylosidase (EC 3.2.1.37)	286013287623
yagl	putative regulator	287628288386
Vacío de	tamaño: 2299 pb	37069283709228
vhiW	orf, hypothetical protein	37064133708137
yhjX	putative resistance protein	37084283709636
Vacío de	tamaño: 2292 pb	864899867192
moeA	molybdopterin biosynthesis	864352865587
vbiK	putative asparaginase	865791866756
b0829	putative ATP-binding component of a transport system	866776868614

Vacío d	e tamaño: 2119 pb	262405264525
b0245	orf, hypothetical protein	262552262893
yafW	orf, hypothetical protein	262914263231
ykfG	putative DNA repair protein	263480263956
yafX	orf, hypothetical protein	263972264430
Vacío de	e tamaño: 2105 pb	29707082972814
ygeD	putative resistance proteins	29706912971884
aas	acyl-acyl-carrier protein synthetase	29718772974036
Vacío de	e tamaño: 2059 pb	20781662080226
yeeA	orf, hypothetical protein	20775552078613
sbmC	SbmC protein	20788112079284
dacD	penicillin binding protein 6b	20794032080575
Vacío de	e tamaño: 2019 pb	14267861428806
b1371	orf, hypothetical protein	14265471427008
b1372	putative membrane protein	14270671430435

Genes en vacíos de CCWGG

Та	maño y contenido del vacío de CCWGG	Rango
Vacío de I	tamaño: 4140 pb	27538262757967
ssrA	tmRNA; tags incomplete translation products for degradation	27535092753974
intA	prophage CP4-57 integrase	27541802755421
yfjH	putative histone	27556652756621
alpA	prophage CP4–57 regulatory protein alpA	27566652756877
yfjl	orf, hypothetical protein	27570062758415

Rango

an and a supervision of the second second

Rango

Vacío de	tamaño: 3819 pb	25328852536705
ptsl	PEP-protein phosphotransferase system enzyme I	25320862533813
crr	PTS system, glucose-specific IIA component	25338542534363
pdxK	pyridoxal/pyridoxine/pyridoxamine kinase	25344062535257
yfeK	orf, hypothetical protein	25353622535736
b2420	orf, hypothetical protein	25357692536503
cysM	cysteine synthase B, O-acetylserine sulfhydrolase B	25366922537603
Vacío de	tamaño: 3779 pb	37940813797861
rfaC	heptosyl transferase I; lipopolysaccharide core biosynthesis	37936063794565
rfaL	O-antigen ligase; lipopolysaccharide core biosynthesis	37945753795834
rfaK	lipopolysaccharide core biosynthesis	37958663796939
rfaZ	lipopolysaccharide core biosynthesis	37969723797823
Vacío de	tamaño: 3192 pb	14731771476370
ydbD	orf, hypothetical protein	14731621475474
b1408	probable enzyme	14756391476250
b1409	putative phosphatidate cytidiltransferase	14762501477146
Vacío de	tamaño: 3191 pb	27645162767708
yfjN	putative cell division protein	27639392765012
yfjO	orf, hypothetical protein	27650562765376
yfjP	putative GTP-binding protein	27657252766594
yfjQ	orf, hypothetical protein	27666862767507
Vacío de	e tamaño: 3128 pb	24532962456425
b2339	putative fimbrial-like protein	24531032453666
b2340	orf, hypothetical protein	24543472454832
b2341	putative enzyme	24550352457179

- --

Rango

= .

Vacío de	tamaño: 3091 pb	44659824469074
mgtA	Mg2+ transport ATPase, Ptype 1	44651994467895
yjgF	orf, hypothetical protein	44681014468526
pyrl	aspartate carbamoyltransferase, regulatory subunit	44685604469021
pyrB	aspartate carbamoyltransferase, catalytic subunit	44690344469969
Vacío de	tamaño: 3017 pb	20650212068039
trs5_6	IS5 transposase	20643272065343
b1995	orf, hypothetical protein	20666302067049
yi22_3	IS2 hypothetical protein	20669742067879
yi21_3	IS2 hypothetical protein	20678372068247
Vacío de	tamaño: 2967 pb	22787642281732
yejH	putative ATP-dependent helicase	22786522280412
rplY	50S ribosomal subunit protein L25	22805372280821
yejK	orf, hypothetical protein	22809602281967
Vacío de	tamaño: 2912 pb	13897491392662
b1327	orf, hypothetical protein	13889571389889
ycjZ	putative transcriptional regulator LYSR-type	13900151390914
b1329	putative transport periplasmic protein	13912301392864
Vacío de	tamaño: 2852 pb	779561782414
ybgF	orf, hypothetical protein	778821779612
lysT	tRNA–Lys	779777779852
valT	tRNA-Val	779988780063
lysW	tRNA-Lys	780066780141
valZ	tRNA-Val	780291780366
lysY	tRNA–Lys	780370780445
lysZ	tRNA-Lys	780592780667
lysQ	tRNA–Lys	780800780875
nadA	quinolinate synthetase, A protein	781308782351
G6		

Rango

Vacío de	tamaño: 2815 pb	24203162423132
b2304	putative sugar nucleotide epimerase	24197282420621
yfcl	orf, hypothetical protein	24206692421559
hisP	ATP-binding component of histidine transport	24217562422529
hisM	histidine transport, membrane protein M	24225372423253
		0000174 0005082
Vacío de	tamaño: 2808 pb	38931743895963
yieG	putative membrane / transport protein	38929013894238
yieH	putative phosphatase	38944033895068
yiel	orf, hypothetical protein	38951353895602
yieJ	orf, hypothetical protein	38956513896238
Vacío de	tamaño: 2780 nh	11032181105999
vacio de	minor curlin subunit precursor, similar to CsgA	11031741103629
csgD	curlin major subunit, coiled surface structures; cryptic	11036701104125
csaC	putative curli production protein	11041841104516
b1044	orf, hypothetical protein	11046371104948
b1045	putative polyprotein	11050431105576
ymdC	putative synthase	11055181106999
		2780820 2783505
Vacío de	e tamaño: 2764 pb	27808302780938
урјА	putative ATP-binding component of a transport system	27701072700070
b2648	orf, hypothetical protein	27810852781228
b2649	orf, hypothetical protein	27816582782449
b2650	orf, hypothetical protein	27825492783031
b2651	orf, hypothetical protein	27832412783372
Vacío de	e tamaño: 2641 pb	25252242527866
vfeH	putative cytochrome oxidase	25249662525964
lia	DNA ligase	25261812528196
·· 3	-	

Rango

ł,

Vacío de tamaño: 2585 pb		29890472991633
ygeG	orf, hypothetical protein	29892902989781
ygeH	putative invasion protein	29901162991492
., , ,		0004004 0000000
vacio de	tamano: 2570 pb	38010913803662
rfaB	UDP-gal(glucosyl)lipopolysacch galactosyltransferase	38006853801794
rfaS	lipopolysaccharide core biosynthesis	38018083802743
rfaP	lipopolysaccharide core biosynthesis	38027803803577
rfaG	glucosyltransferase I; lipopolysaccharide core biosynthesis	38035703804694
		0105044 0100500
vacio de i	amano: 2564 pb	31259443128509
glcD	glycolate oxidase subunit D	31245373126036
glcC	transcriptional activator for glc operon	31262873127051
b2981	orf, hypothetical protein	31270583128230
trs5_9	IS5 transposase	31281933129209
Vacío de I	amaño: 2562 nh	1579707 1582270
h1/00		1570066 1500501
D1490		15766001560561
b1499	putative ARAC-type regulatory protein	15809501581711
b1500	orf, hypothetical protein	15817861581983
b1501	putative oxidoreductase, major subunit	15822311584510
Vacío de t	amaño: 2559 pb	18147391817299
vdiC	orf. hypothetical protein	18144101815159
celF	phospho-beta-alucosidase: cryptic	18151721816524
celD	negative transcriptional regulator of cel operop	1816629 1817471
		10100201017471
Vacío de t	amaño: 2512 pb	728864731377
rhsC	rhsC protein in rhs element	728806732999

.

Rango

Vacío de t	amaño: 2508 pb	36878153690324
yhjM	putative endoglucanase	36867843687890
yhjN	orf, hypothetical protein	36878973690236
yhjO	putative cellulose synthase	36902473692913
Vacío de t	amaño: 2506 pb	471550474057
mdiB	putative ATP-binding component of a transport system	469860471641
glnK	nitrogen regulatory protein P-II 2	471822472160
amtB	probable ammonium transporter	472190473476
tesB	acyl-CoA thioesterase II	473525474385
Vacío de t	amaño: 2486 pb	44461624448649
chpS	suppressor of inhibitory function of ChpB, autoregulated	44460184446275
chpB	probable growth inhibitor, PemK-like, autoregulated	44462694446619
рра	inorganic pyrophosphatase	44466994447229
ytfQ	putative LACI-type transcriptional regulator	44475394448495
ytfR	putative ATP-binding component of a transport system	44486334449886

Genes en agrupamientos de GATC

e reconnected the second

-

1	Tamaño y contenido del agrupamiento de GATC	Rango
Agrupar	niento de tamaño: 12 sitios	39233503923593
Agrupar	niento de tamaño: 9 sitios	201458201701
lpxD	third step of endotoxin (lipidA) synthesis	200971201996
Agrupar	niento de tamaño: 9 sitios	337248337491
yahF	putative oxidoreductase subunit	336002337549

Tamaño y contenido del agrupamiento de GATC

Rango

.

Agrupami	ento de tamaño: 9 sitios		25653552565598
eutH	ethanolamine utilization	£1:	25649012566127
	· · · · ·		
Agrupami	ento de tamaño: 9 sitios		25747712575014
b2463	putative multimodular enzyme		25741182576397
. .			0000000 0000440
Agrupami	ento de tamano: 9 sitios		26392032639446
gcpE	orf, hypothetical protein		26387062639824
Agrupami	ento de tamaño: 9 sitios		2953020 2953263
		DNIA Jak Jakar	
recB	DNA nelicase, exonuclease v subunit, s	sDNA endonuclease	29504832954025
Agrupami	ento de tamaño: 9 sitios		30621353062378
vofG	putativo onzumo		2061071 2062709
yyıa	putative enzyme		30019713002798
Agrupami	ento de tamaño: 9 sitios		33428993343142
rpoN	RNA polymerase, sigma(54 or 60) factor		33423583343791
			,
Agrupami	ento de tamaño: 9 sitios		33877593388002
yhcS	putative transcriptional regulator LYSR-	type	33871553388084
	anto de terre ãos O elvie e		00004 04404
	ento de tamano: 8 sitios		6089161134
hepA	probable ATP-dependent RNA helicase		6035863264
Agrupami	anto do tamaño: 8 sition		011040 011406
Ayrupann			211243211400
ldcC	lysine decarboxylase 2, constitutive		209679211820
Agrupami	ento de tamaño: 8 sitios		353579353822
nrnE	putative propional CoA synthetics		251020 252016
P, hr	putative propionyi-COA synthetase		221220222010
Agrupami	ento de tamaño: 8 sitios		693311693554
yleA	orf, hypothetical protein		692754694178
-			

Tamaño y contenido del agrupamiento de GATC

Rango

Agrupamiento de tamaño: 8 sitios	21623382162581
baeR transcriptional response regulatory protein (sensor BaeS)	21622982163020
Agrupamiento de tamaño: 8 sitios	26103662610609
hyfR putative 2-component regulator, interaction with sigma 54	26099412611932
Agrupamiento de tamaño: 8 sitios	26441842644427
pbpC putative peptidoglycan enzyme	26430332645345
Agrupamiento de tamaño: 8 sitios	27202192720462
yfiQ orf, hypothetical protein	27179732720633
Agrupamiento de tamaño: 8 sitios	30599963060239
sbm methylmalonyl–CoA mutase (MCM)	30588703061014
Agrupamiento de tamaño: 8 sitios	31149543115197
b2973 orf, hypothetical protein	31125673115113
b2974 putative endoglucanase	31151013117128
Agrupamiento de tamaño: 8 sitios	32049703205213
ttdA L-tartrate dehydratase, subunit A	32041043205015
ttdB L-tartrate dehydratase, subunit B	32050123205617
Agrupamiento de tamaño: 8 sitios	33284253328668
yhbZ putative GTP-binding factor	33282233329395
Agrupamiento de tamaño: 8 sitios	34060583406301
panF sodium/pantothenate symporter	34052383406695
Agrupamiento de tamaño: 8 sitios	37556813755924
selB selenocysteinyl-tRNA-specific translation factor	37556443757488

.

.

Tamaño y contenido del agrupamiento de GATC

Rango

Agrupamiento de tamaño: 8 sitios		38804423880685
dnaA	DNA biosynthesis; initiation of replication regulator	38799543881357 >
Agrupamie	ento de tamaño: 8 sitios	38814873881730
Agrupamie	ento de tamaño: 8 sitios	41324944132737
katG	catalase; hydroperoxidase HPI(I)	41314154133595
Agrupamie	ento de tamaño: 8 sitios	41576164157859
udhA	putative oxidoreductase	41569694158303
Agrupamiento de tamaño: 8 sitios		43003214300564
yjcQ	putative enzyme	42986064300516
Agrupamiento de tamaño: 8 sitios		43123524312595
phnP	phosphonate metabolism	43119224312680
Agrupamie	ento de tamaño: 8 sitios	44512574451500
yjfF .	putative transport system permease protein	44511814452152
Agrupamie	ento de tamaño: 8 sitios	44631904463433
treB .	PTS system enzyme II, trehalose specific	44623334463754
Agrupamie	ento de tamaño: 8-sitios	45978544598097
dnaC	chromosome replication; initiation and chain elongation	45978074598544

Genes en agrupamientos de CCWGG

Tamaño y contenido del agrupamiento de CCWGG	Rango	
Agrupamiento de tamaño: 7 sitios	112100112486	
yacF orf, hypothetical protein	111856112599	

Agrupami	iento de tamaño: 7 sitios	777804//8190
tolB	periplasmic protein involved in the uptake of group A colicins	776963778255
Agrupami	iento de tamaño: 7 sitios	29269992927385
sdaC	probable serine transporter	29262512927540
Agrupami	iento de tamaño: 7 sitios	30075833007969
ygeY	putative deacetylase	30067853007996
Agrupami	iento de tamaño: 6 sitios	224392224778
rrsH	16S ribosomal RNA	223771225312
Agrupami	iento de tamaño: 6 sitios	456040456426
clpP	proteolytic subunit of serine protease, heat shock protein F21.	5 455901456524
Agrupami	iento de tamaño: 6 sitios	708427708813
ybfM	orf, hypothetical protein	707557708963
Agrupami	iento de tamaño: 6 sitios	746577746963
abrB	putative transport protein	745946747037
Agrupam	iento de tamaño: 6 sitios	13746231375009
b1314	putative transient receptor potential locus	13740491374846
ycjS	putative dehydrogenase	13748561375911
Agrupam	iento de tamaño: 6 sitios	17162651716651
vdhA	orf, hypothetical protein	17160901716338
b1640	orf, hypothetical protein	17165171717626
Agrupam	iento de tamaño: 6 sitios	18637321864118
yeaF	orf, hypothetical protein	18637501864496

Tamaño y contenido del agrupamiento de CCWGG

Rango

7	ramaño y contenido del agrupamiento de CCWGG	Rango	
Agrupan	niento de tamaño: 6 sitios	20306892031075	
yedJ	orf, hypothetical protein	20304062031101	
Agrupan	niento de tamaño: 6 sitios	22370112237397	
mglA	ATP-binding component of methyl-galactoside transport	22357892237309	
mglB	galactose-binding transport protein; receptor for galactose t	axis 22373702238368	
Agrupan	niento de tamaño: 6 sitios	23325722332958	
b2229	orf, hypothetical protein	23323562333006	
Agrupan	niento de tamaño: 6 sitios	23682752368661	
b2256	orf, hypothetical protein	23680382368928	
Agrupan	niento de tamaño: 6 sitios	23911982391584	
nuoL	NADH dehydrogenase I chain L	23912252393066	
Agrupan	niento de tamaño: 6 sitios	25391732539559	
cysW	sulfate transport system permease W protein	25388242539273	
Agrupan	niento de tamaño: 6 sitios	26039432604329	
hyfD	hydrogenase 4 membrane subunit	26028312604270	
hyfE	hydrogenase 4-membrane subunit	26042822604932	
Agrupan	niento de tamaño: 6 sitios	27281892728575	
rrsG	16S ribosomal RNA	27276362729178	
Agrupan	niento de tamaño: 6 sitios	30094403009826	
yqeA	putative kinase	30094823010414	
Agrupan	niento de tamaño: 6 sitios	30740783074464	
yggF	orf, hypothetical protein	30732373074202	
b2931	putative oxidoreductase	30741993075188	

ï

Tamaño y contenido	o del agrupamiento de CCWGG
--------------------	-----------------------------

Rango

Agrupami	30759023076288	
cmtA	PTS system, mannitol-specific enzyme II component, cryptic	30754903076878
Agrupami	ento de tamaño: 6 sitios	32230823223468
ebgA	evolved beta-D-galactosidase, alpha subunit; cryptic gene	32202383223366
ebgC	evolved beta-D-galactosidase, beta subunit; cryptic gene	32233633223812
Agrupami	ento de tamaño: 6 sitios	32275553227941
ygjK	putative isomerase	32265293228880
Agrupami	ento de tamaño: 6 sitios	32603463260732
tdcD	putative kinase	32600933261313
Agrupami	ento de tamaño: 6 sitios	34254113425797
rrsD	16S ribosomal RNA	34248583426399
Agrupami	ento de tamaño: 6 sitios	34758273476213
slyD	FKBP-type peptidyl-prolyl cis-trans isomerase (rotamase)	34755443476134
Agrupami	ento de tamaño: 6 sitios	36960893696475
yhjU	orf, hypothetical protein	36958433697522
Agrupami	ento de tamaño: 6 sitios	38445773844963
uhpT	hexose phosphate transport protein	38434033844794
uhpC	regulator of uhpT	38449323846254
Agrupami	ento de tamaño: 6 sitios	39133353913721
atpC	membrane-bound ATP synthase, F1 sector, epsilon-subunit	39131813913600
atpD	membrane-bound ATP synthase, F1 sector, beta-subunit	39136213915003
Agrupami	ento de tamaño: 6 sitios	39400523940438
rrsC	16S ribosomal RNA	39394313940971

Tamaño y contenido del agrupamiento de CCWGG

Rango

_ <u>_ _</u> . _

		-
Agrupa	amiento de tamaño: 6 sitios	40337414034127
rrsA	16S ribosomal RNA	40331204034661
Agrupa	amiento de tamaño: 6 sitios	41648594165245
rrsB	16S ribosomal RNA	41642384165779
Agrupa	imiento de tamaño: 6 sitios	42063464206732
rrsE	16S ribosomal RNA	42057254207266
Agrupa	miento de tamaño: 6 sitios	43357814336167
adiA	biodegradative arginine decarboxylase	43358324338102
Agrupa	miento de tamaño: 6 sitios	44452724445658
ytfN	orf, hypothetical protein	44416894445468
ytfP	orf, hypothetical protein	44454714445812
yjfA	orf, hypothetical protein	44455534445822
Agrupa	miento de tamaño: 6 sitios	45724154572801
yjiU	orf, hypothetical protein	45717044573245

PROGRAMAS

# Prog	Página	Propósito
01	P4	A partir del archivo del genoma de <i>E. coli</i> en formato GenBank, genera un archivo únicamente con la secuencia lineal de DNA.
02	P5	Dado un archivo de secuencia lineal de DNA, busca las secuencias de metilación GATC y CCWGG dentro de ventanas del tamaño deseado.
03	P7	Calcula la distribución de los sitios de metilación observadas en las ventanas (esto es, media y desviación estándar). Además calcula la media de las medias, de la desviación y de los mínimos y máximos obtenidos de los genomas markovianos.
04	P9	Reporta la tabla del uso de mono, di, tri, tetra y pentanucleótidos en <i>E. coli</i> .
05	P11	Tomando en cuenta la cantidad de una serie de datos y su dispersión, calcula el tamaño de celda óptimo para realizar un histograma y los agrupa de esta manera.
06	P12	Ordena todos los datos de metilación por ventana en dos grupos, aquellos que quedan por arriba de la media y aquellos que quedan por abajo.
07	P13	Toma las ventanas de mayor a menor valor y busca si no hay una ventana con mejor valor, recorriendo la ventana completa desde media ventana hacia la izquierda hasta media ventana a la derecha.

.

P1

#Prog Página Propósito

- 08 P15 Para cada ventana, calcula el valor de probabilidad encontrada por la integración de una curva de distribución normal desde el valor que tiene dicha ventana hasta terminar la cola de distribución, ya sea positiva o negativa, de acuerdo a si está por arriba o por abajo de la media de los datos observados.
- 09 P17 Grafica una representación circular del genoma de *E. coli*, mostrando todas las ventanas con el logaritmo del inverso de su probabilidad. Esta conversión es necesaria para que los picos con probabilidad más pequeña (es decir, más significativa) resalten.
- 10P24Obtiene una lista de las posiciones donde existen sitios de metilación
de ambos tipos.
- 11P25Calcula el espacio que existe entre cada sitio de metilación y ordena
dichos espacios (vacíos) de mayor a menor.
- 12 P26 Con un tamaño igual a la frecuencia observada de cada tipo de sitio de metilación, busca en el genoma los 100 fragmentos con mayor número de sitios (agrupamientos).
- 13P28Calcula la frecuencia de ambos tipos de metilación en tres regiones
del genoma: traducido, solamente transcrito e intergénico.
- 14P29Obtiene el porcentaje de G–C en cada una de las tres regiones
mencionadas en el programa anterior.
- 15P30Toma todas las posiciones metilables, es decir, dos por sitio y cuenta
cuantas veces corresponden a la 1ra, 2da o 3ra base del codón, así
como en regiones no traducidas y regiones no transcritas.

#Prog Página Propósito

- 16 P33 Considera todos los genes de *E. coli* y para cada uno de ellos, cuenta los sitios de metilación Dcm que contiene. Adicionalmente calcula el promedio por base de los sitios Dam que pueden actuar sobre el gen o la cantidad de bases que simplemente no puedan ser protegidas por Dam, en caso de que haya.
- P34 A partir de una lista de genes esenciales o no esenciales, extrae sus "b-numbers" y con estos extrae su información completa del archivo de información sobre la metilación de cada gen generada con el programa 17.
- **18** P35 Toma las listas de vacíos y agrupamientos, escogidos como candidatos a ser analizados, y encuentra todos los genes que coincidan aunque sea parcialmente con la región en cuestión.

Programa 01 (lab/pela)

#!/usr/bin/perl

Opening files and coments on usage

```
open(IN,"@ARGV[0]") || die "usage: pela INPUT OUTPUT (INPUT must exist)\n";
if (-e @ARGV[1]) {
    print "\"@ARGV[1]\" already exists, are you sure? "; chomp($choice=<STDIN>);
    exit(0) unless $choice =~ /^y/i;
}
open(OUT,">@ARGV[1]") || die "usage: pela INPUT OUTPUT (coudn't create \"@ARGV[1]\")\n";
```

```
open(OUT_LINE,">@ARGV[1]_line") II die "coudn't create \"@ARGV[1]_line\".\n";
```

Get only lines from ORIGIN on, and send with or without stuff to files

```
$first_line = <IN>;
foreach (<IN>) {
    if ($found ==1) {
        print OUT;
        s/[\s+\d+V]//g;
        print OUT_LINE;
        $length += length;
    }
    $found = 1 if /^ORIGIN/;
}
```

```
*# Check and compare lengths
```

(\$length_db,\$check) = (split(/\s+/,\$first_line))[2,3]; die "An ugly death. Length doesn't match!\n" if (\$check ne "bp"); print "The original DB had \$length_db \$check, your line has \$length.\n";

close(IN); ____close(OUT);______close(OUT_LINE);

```
Programa 02 (lab/x)
```

#!/usr/bin/perl

Start all over again, needs to be in window size, careful for (aa's in aaaa) ## Forgets extra bases, but tells you how many.

die "usage: x FILE\n" unless -e (\$file = @ARGV[0]);

```
open(OUT,">>ecoli.log") || die "coudn't create log file!\n";
$db = <>:
# IUPAC formats, in a hash.
%iupac =("n","[atgc]","b","[cgt]","d","[agt]","h","[act]","v","[acg]",
         "k", "[gt]", "y", "[ct]", "s", "[cg]", "w", "[at]", "r", "[ag]", "m", "[ac]");
print "What string do you want to search for? "; chomp($string = <STDIN>);
die "You have to give me a string!\n" if $string eq "";
# Just a check in case things like aa are asked.
$one = $two = $string;
$one =~ s/^.//;
$two =~ s/.$//:
$check = $one . $two;
if (scheck = ~/string/) {
        print "Cound would be lost on string intersect, do you want to continue? ";
        chomp($answer = <STDIN>);
        die "\n" if answer = ~ /^n/i;
        }
# Process string
     $string2 = $string;
        string2 = s^{(.+?)}/x/g; len_str = length
        string =  tr/A - Z/a - z/;
     $string =~ s/$_/$iupac{$_}/g foreach (keys%iupac);
# Process db
        len_db = length$db;
        $db .= substr($db,0,$len_str -1);
print "What window size do you want? "; chomp($win_size = <STDIN>);
        $win_size = $len_db if $win_size == "";
     $win_size = $len_db if $win_size > $len_db;
     $real_size = $win_size + $len_str -1;
# Check for extra bases
        &ventana:
        $extra = $len_db % $win_size;
        $win_amount = int($len_db / $win_size);
$old = select(OUT);
= = $win_amount + 8;
select($old);
$sd_sum = $total = $highest = $cycles = 0;
$lowest = $win_size;
```

for (\$start = 0; length(\$window = substr(\$db,\$start,\$real_size)) == \$real_size; \$start += \$win_size) { \$string3 = \$string; \$count = 0; \$total += \$count = \$window =~ s/\$string//g; \$highest = \$count if \$count > \$highest; \$lowest = \$count if \$count < \$lowest;</pre> \$sum[\$cycles] = \$count; \$cycles++; write OUT: } \$mean = \$total / \$cycles; (\$sd_sum += (\$_ - \$mean) ** 2) foreach @sum; \$stdev = (\$sd_sum / \$cycles) ** 0.5; print "You lost \$extra bases. The mean was \$mean and the SD \$stdev. The total hits were \$total.\n"; print "The lowest was \$lowest, and the highest \$highest.\n"; format OUT = @##### @######### @####### - @######## \$cycles, \$count, \$start + 1, \$start + \$win_size format OUT_TOP = You searched for: ^<<<<<<<<< \$string3 ^<<<<<<<<<<<<< ~~ \$string3 Window size: @####### Total bases: @###### \$win_size,\$len_db Window Amount found Window position sub ventana { # Calculate safe window size $n = len_db;$ \$size = \$win_size; \$extra = \$n % \$size; \$allow = \$size / 10; if (\$extra > \$allow) { \$Msize = \$Lsize = \$size; while (1 == 1) { \$Msize++; \$Lsize--; \$extraM = \$n % \$Msize; \$extraL = \$n % \$Lsize; if (\$extraM < \$allow) {\$ok1 = \$Msize;\$Msize--} if (\$extraL < \$allow) {\$ok2 = \$Lsize;\$Lsize++} last if (\$ok1 and \$ok2); } die "Ouch! With \$size you lose \$extra, but don't fear! with \$ok1 you lose \$extraM and with \$ok2 you lose \$extraL.\n"; }}

```
Programa 03 (lab/get_distribution)
```

#!/usr/bin/perl

Need to compare values from each window in each case and assign a value.

```
@number = ("02509","04999","09998","19996","39993");
```

```
foreach $number (@number) {
```

```
# Name of results file
$a_results = "TRI_RESULTS_$number";
                                               # Name of results file
$c_results = "TETRA_RESULTS_$number";
                                               # Set path to find files
$path = "Results/$number/";
$output = "distrib_markovian_$number";
                                               # Name of output file
                                               # Name of output file
$output2 = "distrib_real_$number";
$a_ecoli = "A_ecoli_$number";
$c_ecoli = "C_ecoli_$number";
open(AR,"<$path$a_results") II die "Coudn't open file!\n";
open(CR,"<$path$c_results") II die "Coudn't open file!\n";
meanA = sdA = meanC = sdC = cA = cC = 0;
while (<AR>) {
        @data = split;
       if (/^gatc/) {$meanA += $data[1]; $sdA += $data[2]; $cA++}
while (<CR>) {
        @data = split;
    if (/^cc/) {$meanC += $data[1]; $sdC += $data[2]; $cC++}
       ŀ
$meanA /= $cA;
$meanC /= $cC;
$sdA /= $cA;
$sdC /= $cC;
open(OUT,">$path$output") II die "Coudn't create file!\n";
printf OUT " String\t Mean\t SD
cc[at]gg\t%3.3f\t %2.3f
gatc \t%3.3f\t %2.3f
",$meanC,$sdC,$meanA,$sdA;
open(EAR,"<$path$a_ecoli") || die "Coudn't open file!\n";
open(ECR,"<$path$c_ecoli") II die "Coudn't open file!\n";
$sd_sum = $count = $total = 0; undef @sum; undef @data;
while (<EAR>) {
        @data = split;
        next unless $data[0] =~ \/d+/;
        $total += $sum[$count] = $data[1];
        $count++;
        }
$meanA = $total / $count;
```

```
($sd_sum += ($meanA - $_) ** 2) foreach @sum;
$sdA = sqrt($sd_sum / $count);
$sd_sum = $count = $total = 0; undef @sum; undef @data;
while (<ECR>) {
        @data = split;
        next unless data[0] = - /d +/;
        $total += $sum[$count] = $data[1];
        $count++;
        }
$meanC = $total / $count;
($sd_sum += ($meanC - $_) ** 2) foreach @sum;
$sdC = sqrt($sd_sum / $count);
open(OUT,">$path$output2") II die "Coudn't create file!\n";
printf OUT " String\t Mean\t SD
cc[at]gg\t%3.3f\t %2.3f
gatc \t%3.3f\t %2.3f
",$meanC,$sdC,$meanA,$sdA;
}
```

```
Programa 04 (lab/pentanuc)
```

#!/usr/bin/perl

Generates table of penta, tetra, tri, di and nucleotide usage for a given genome.

```
$ARGV[0] = "DB/ecoli_line";
                                        # Remove later
die "usage: dinuc FILE\n" unless -e ($file = @ARGV[0]);
$db = <>;
snuc1 = substr(sdb,0,1);
snuc2 = substr(sdb, 1, 1);
snuc3 = substr(sdb,2,1);
snuc4 = substr(sdb,3,1);
dinuc1 = substr(db, 0, 2);
dinuc2 = substr(db, 1, 2);
dinuc3 = substr(db.2.2);
tri1 = substr(db,0,3);
tri2 = substr(db, 1, 3);
tetra1 = substr($db,0,4);
$db .= $tetra1;
@base = ("a","c","g","t");
foreach $first (@base) {
        $nuc{$first} = &find($first);
        foreach $second (@base) {
                $dinuc = $first . $second;
                $dinuc{$dinuc} = &find($dinuc);
                foreach $third (@base) {
                        $tri = $dinuc . $third;
                        $tri{$tri} = &find($tri);
                        foreach $fourth (@base) {
                                $tetra = $tri . $fourth;
                                $tetra{$tetra} = &find($tetra);
                                foreach $fifth (@base) {
                                         penta = tetra . fifth;
                                         $penta{$penta} = &find($penta);
                                }
                        }
                }
        }
}
# Remove counts for nucleotides added to dbase
$nuc{$nuc1}--;$nuc{$nuc2}--;$nuc{$nuc3}--;$nuc{$nuc4}--;
$dinuc{$dinuc1}--;$dinuc{$dinuc2}--;$dinuc{$dinuc3}--;
$tri{$tri1}--;$tri{$tri2}--;
$tetra{$tetra1}---;
                                         Il die "coudn't create!\n";
open(NUC, ">nuc-coli")
                                         II die "coudn't create!\n";
open(DINUC, ">dinuc-coli")
                                         II die "coudn't create!\n":
open(TRI, ">trinuc-coli")
open(TETRA, ">tetranuc-coli")
                                         Il die "coudn't create!\n";
                                         || die "coudn't create!\n";
open(PENTA, ">pentanuc-coli")
# Prints pentanucleotide usage
foreach (sort keys %penta) {
```

```
printf PENTA "$_\t%7d\n",$penta{$_};
     }
# Prints tetranucleotide usage
foreach (sort keys %tetra) {
        printf TETRA "$_\t%7d\n",$tetra{$_};
     }
# Prints trinucleotide usage
foreach (sort keys %tri) {
        printf TRI "$_\t%7d\n",$tri{$_};
     }
# Prints dinucleotide usage
foreach (sort keys %dinuc) {
        printf DINUC "$_\t%7d\n",$dinuc{$_};
     }
# Prints nucleotide usage
foreach (sort keys %nuc) {
       printf NÚC "$_\t%7d\n",$nuc{$_};
     }
close(NUC);
close(DINUC);
close(TRI);
close(TETRA);
close(PENTA);
sub find {
        local(scount, where) = 0;
        $count++ while ($where = (index($db,$_[0],$where))+1);
        return $count;
        }
```

Programa 05 (lab/histo)

#!/usr/bin/perl

Get 2nd column and make a histogram out of frequencies.

```
$file = $ARGV[0];
while (<>) {
            next unless /^\s+\d+/;
            @ data = split;
            $data{$data[1]}++;
}
@ keys = sort {$a <=> $b} keys %data;
$last = pop@keys;
$first = shift@keys;
print "$file\n\n";
for ($_ = $first; $_ <= $last; $_++) {
            write;
}</pre>
```

format STDOUT = @#### @#### \$_,\$data{\$_}

...

.

```
Programa 06 (lab/oder_lines)
```

```
#!/usr/bin/perl
 ## Have to sort out the lines from *_ecoli_# to *_ecoli_sorted
 @sizes = ("02509","04999","09998","19996","39993");
foreach $letter ("A", "C") {
foreach $size (@sizes) {
# Get means
        open(DISTRIB,"<Results/$size/distrib_real_$size") || die "No distrib file!\n";
                while (<DISTRIB>) {
                         (C = (split)[1]) if (/^cc/);
                         ($A = (split)[1]) if (/^gatc/);
                }
open(IN,"<Results/$size/$letter\_ecoli_$size") || die "Can't open file!\n";
open(OUT, ">Results/$size/$letter\_ecoli_sorted") || die "Can't create file!\n";
undef @data; undef @info;
while (<IN>) {
        unless ((split)[0] = \sim / d + / {print OUT; next}
        @data = split;
        push(@info,"$data[1]\t$data[0]\t$data[1]\t$data[2] $data[3] $data[4]\n");
}
undef @data;
foreach (sort wierd @info) {
        @data = split;
        print OUT * $data[1]\t\t$data[2]\t\t$data[3] $data[4] $data[5]\n";
}
}}
sub wierd {
       _if ($a_< ${$letter}_&& $b_< ${$letter}) {
                $a <=> $b:
        } else {
                $b <=> $a;
        }
}
```

```
Programa 07 (lab/afinar_all)
```

```
#!/usr/bin/perl
## Use DB/positions and ALL windows to get highest count
@sizes = ("02509","04999","09998","19996","39993");
foreach $letter ("A", "C") {
foreach $size (@sizes) {
# Get means
        open(DISTRIB,"<Results/$size/distrib_real_$size") || die "No distrib file!\n";
                while (<DISTRIB>) {
                        (C = (split)[1]) if (/^cc/);
                        ($A = (split)[1]) if (/^gatc/);
                }
# Open the files
        open(COLI_IN,"<Results/$size/$letter\_ecoli_sorted") || die "No original file!\n";
        open(COLI_OUT,">Results/$size/2$letter\_ecoli_$size") II die "Can't create file!\n";
# Get 0s&1s vector for methylation positions, reget because I over-right
        undef @positions; $positions[4639220] = 0;
        open(POS, "<DB/positions_$letter") II die "No positions file!\n";
        while (<POS>) {$positions[$_] = 1}
        @end = @positions[-20000..-1];
        @positions = (@positions,@positions[0..19999],@end);
# Cycle for highests
        while (<COLI_IN>) {
                undef @data:
                @data = split;
                unless ($data[0] =~ /^\d+/) {print COLI_OUT $_; next} # Leave the header alone
                if ($data[1] > ${$letter}) {
                        $new = &hits_high;
                        print COLI_OUT " $data[0]\t\t$new\t\t$data[2] $data[3] $data[4]\t\t$pos\n";
                } else {last}
        }
# Reopen the input file
        open(COLI_IN,"<Results/$size/$letter\_ecoli_sorted") || die "No original file!\n";
# Get 0s&1s vector for methylation positions, reget because I over-right
        undef @positions; $positions[4639220] = 0;
        open(POS,"<DB/positions_$letter") || die "No positions file!\n";
        while (<POS>) {$positions[$_] = 1}
        @end = @positions[-20000..-1];
        @positions = (@positions,@positions[0..19999],@end);
# Cycle for lowests
        while (<COLI_IN>) {
                undef @data;
                 @data = split;
                next unless ($data[0] =~ /^\d+/); # Header is already written
                if ($data[1] <= ${$letter}) {
```

```
$new = &hits_low;
                        print COLI_OUT * $data[0]\t\t$new\t\t$data[2] $data[3] $data[4]\t\t$pos\n*;
                }
        }
}}
sub hits_high {
        undef @window; undef @rest;
        $start = int($data[2]-$size/2);
        $end = $start+2*$size-1;
        @window = @positions[$start..$start+$size-1];
        @rest = @positions[$start+$size..$end];
        shits = sc = 0;
        $highest = $data[1]; # or change to $hits after 1st foreach cycle
        $pos = $data[2]-1;
        foreach (@window) {$hits += $_}
        foreach (0..$size-1) {
                $hits += $rest[$_];
                $hits -= $window[$_]; $c++;
                if ($hits > $highest) {$highest = $hits; $pos = $start + $c}
        }
                foreach($pos..$pos+$size-1) {
                        positions[\$_] = 0;
                }
        return $highest;
}
sub hits_low {
        undef @window; undef @rest;
        start = int(data[2]-size/2);
        $end = $start+2*$size-1;
        @window = @positions[$start..$start+$size-1];
        @rest = @positions[$start+$size..$end];
        shits = sc = 0;
        $lowest = $data[1]; # or change to $hits after 1st foreach cycle
        pos = data[2]-1;
        foreach (@window) {$hits += $_}
        foreach (0..$size-1) {
                hits += fest[];
                $hits -= $window[$_]; $c++;
               if ($hits < $lowest) {$lowest = $hits; $pos_= $start + $c}
        }
                foreach($pos..$pos+$size-1) {
                        positions[\_] = 1;
                }
        return $lowest;
}
```

```
P14
```

Programa 08 (lab/get_prob_afinado)

#!/usr/bin/perl

Need to compare values from each window in each case and assign a value.

```
$pi = atan2(1,1) *4;
$step = 0.01;
@number = ("02509","04999","09998","19996","39993");
```

```
foreach $number (@number) {
```

```
meanA = sdA = meanC = sdC = 0;
```

```
open(DATA, "<$path$dis_mark") II die "Coudn't open file!\n";
open(DATA2, "<$path$dis_ecoli") II die "Coudn't open file!\n";
```

```
undef@data;
while (<DATA>) {
        @data = split;
        if (/^cc/) {$meanC = $data[1]; $sdC = $data[2]}
        if (/^gatc/) {$meanA = $data[1]; $sdA = $data[2]}
}
undef@data;
while (<DATA2>) {
        @data = split;
        if (/^cc/) {$meanC2 = $data[1]; $sdC2 = $data[2]}
        if (/^gatc/) {$meanA2 = $data[1]; $sdA2 = $data[2]}
}
# Now I need to get the ecoli files and start making the integrations
open(AIN,"<$path$a_ecoli") II die "Coudn't open file!\n";
open(CIN,"<$path$c_ecoli") II die "Coudn't open file!\n";
open(AOUT,">$path$a_out") II die "Coudn't create file!\n";
open(COUT,">$path$c_out") II die "Coudn't create file!\n";
undef@data;
print AOUT
Window Amount found Markov distrib E.coli distrib
                                                                      -----\n":
print COUT
Window Amount found
                                 Markov distrib E.coli distrib
                                                                      ____\n";

        $media = $meanA;
        $media2 = $meanA2;

        $stdev = $sdA;
        $stdev2 = $sdA2;
```

\$end = \$media + (15 * \$stdev); \$end2 = \$media2 + (15 *\$stdev2);

```
while (<AIN>) {
        @data = split;
        next unless (data[0] = - \Lambda d + /;
        $start = $start2 = $data[1];
        if ($start <= $media) {$start = 2 * $media - $start}
        $prob = &method_a;
        if ($start2 <= $media2) {$start2 = 2 * $media2 - $start2}
        $prob2 = &method_a2;
        printf AOUT " %4d\t\t %4d\t\t%1.20f\t%1.20f\n",$data[0],$data[1],$prob,$prob2;
}
                                $media2 = $meanC2;
media = meanC;
$stdev = $sdC;
                                stdev2 = sdC2;
$end = $media + (15 * $stdev); $end2 = $media2 + (15 *$stdev2);
while (<CIN>) {
        @data = split:
        next unless (data[0] = - \Lambda d_+);
        $start = $start2 = $data[1];
        if ($start <= $media) {$start = 2 * $media - $start}
        $prob = &method_a;
        if ($start2 <= $media2) {$start2 = 2 * $media2 - $start2}
        prob2 =  amethod_a2;
        printf COUT " %4d\t\t %4d\t\t%1.20f\t%1.20f\n",$data[0],$data[1],$prob,$prob2;
}
}
sub function {$p = 1/ (sqrt(2*$pi) * $stdev * exp(0.5 * ((($_[0] - $media) / $stdev) ** 2)))}
sub function2 {$p = 1/ (sqrt(2*$pi) * $stdev2 * exp(0.5 * ((($_[0] - $media2) / $stdev2) ** 2)))}
sub method_a {
                        # trapezoidal para cola derecha
  cycles = sum = 0;
  for ($s = $start + $step; $s <= ($end - $step); $s += $step) {
        sum += \&function(s);
        $cycles++;
 sint = ((send - start) * (&function(start) + &function(send) + (2 * sum))) / ((scycles + 1) * 2);
}
sub method_a2 { # trapezoidal para cola derecha
  cycles = sum = 0;
  for ($s = $start2 + $step; $s <= ($end2 - $step); $s += $step) {
        sum += \&function2($s);
        $cvcles++:
  $int = (($end2 - $start2) * (&function2($start2) + &function2($end2) + (2 * $sum))) / (($cycles + 1) * 2);
}
```

```
Programa 09 (lab/2circle)
#!/usr/bin/perl
## Put sorted data into log scale circle charts... (Scales OK)
## ** FIXED COMBINED CIRCLES **
# GD library
use GD;
# Define circle and conversion of data into radians, and constants
        $pi = atan2(1,1) *4;
                                                                        # Image size
        simag_size = 1200;
                                                                        # Radius
       r = 260:
                                                                        # Radius of data
        max = 245;
                                                                        # x and y offset
        h = k = \min_{x \in x} 2;
                                                                        # Last base
        $max = 4639221:
       $factor = $pi * 2/$max;
        $origin = (3923372 + 3923603) /2 * $factor;
        soffset = sorigin - 3/2 * spi;
# Set up cycles, for each size and each methylated nuc.
@sizes = ("02509","04999","09998","19996","39993");
foreach $size (reverse@sizes) {
       open(A,"<Results/$size/2A_prob_$size") il die "Coudn't open file!\n";
        open(C,"<Results/$size/2C_prob_$size") || die "Coudn't open file!\n";
        open(DIST,"<Results/$size/distrib_real_$size") II die "Coudn't open file!\n";
        while (<DIST>) {
                if (/^cc/) {($mean_C) = (split)[1]};
                if (/^ga/) {($mean_A) = (split)[1]};
        ł
       foreach $key ("A", "C", "both") { # Start second cycle, for each case
                undef%extras; undef%original_extras;
                unless ($key eq "both") {
                 open(OUT,">Results/$key\_$size\_all.png") II die "Can't open... arghh!\n";
                } else {
                  open(OUT2,">Results/combined_$size\_all.png") || die "Can't open... arghh!\n";
        }
# Create image and define colors
        $image = new GD::Image($imag_size,$imag_size+100);
        &define_colors;
                                                        # Slightly larger brush, for labels
        $brush3 = new GD::Image(2,2);
                                                        # of extras
        $brush3 -> colorAllocate(255,0,0);
        $image -> setBrush($brush3);
# Give max value for each window
if ($key eq "C") {
        $base = 27;
```

```
if ($size eq "02509") {$value_times = $base}
elsif ($size eq "04999") {$value_times = $rmax/(log(1/2) + $rmax/$base)}
elsif ($size eq "09998") {$value_times = $rmax/(log(1/4) + $rmax/$base)}
elsif ($size eq "19996") {$value_times = $rmax/(log(1/8) + $rmax/$base)}
elsif ($size eq "39993") {$value_times = $rmax/(log(1/16) + $rmax/$base)}
```

 $x_1 = 20$; $y_1 = 1200$; # get upper left corner # box size $x^2 = v^2 = 20;$ \$image -> dashedLine(\$x1,\$y1+\$y2/2,\$x1+\$x2,\$y1+\$y2/2,gdBrushed); \$image -> string(gdGiantFont,\$x1+30,\$y1+2,"Out of scale values",\$black); \$v1 +=30; \$image -> filledRectangle(\$x1,\$y1,\$x1+\$x2,\$y1+\$y2,\$green); . • \$image -> string(gdGiantFont,\$x1+30,\$y1+2,"Above average cvtosine methylation",\$black); \$y1 +=30; \$image -> filledRectangle(\$x1,\$y1,\$x1+\$x2,\$y1+\$y2,\$cyan); \$image -> string(gdGiantFont,\$x1+30,\$y1+2,"Below average cytosine methylation",\$black); \$v1 +=30; } elsif (\$key eq "A") { \$base = 22; if (\$size eq "02509") {\$value_times = \$base} elsif (\$size eq "04999") {\$value times = \$rmax/(log(1/2) + \$rmax/\$base)} elsif (\$size eq "09998") {\$value_times = \$rmax/(log(1/4) + \$rmax/\$base)} elsif (\$size eq "19996") {\$value_times = \$rmax/(log(1/8) + \$rmax/\$base)} elsif (\$size eq "39993") {\$value_times = \$rmax/(log(1/16) + \$rmax/\$base)} $x_1 = 20; y_1 = 1200;$ # get upper left corner # box size $x^2 = y^2 = 20;$ \$image -> dashedLine(\$x1,\$y1+\$y2/2,\$x1+\$x2,\$y1+\$y2/2,gdBrushed); \$image -> string(gdGiantFont,\$x1+30,\$v1+2,"Out of scale values",\$black); \$v1 +=30; \$image -> filledRectangle(\$x1,\$y1,\$x1+\$x2,\$y1+\$y2,\$green); \$image -> string(gdGiantFont,\$x1+30,\$y1+2,"Above average adenine methylation",\$black); \$v1 +=30; $simage \rightarrow filledRectangle($x1,$y1,$x1+$x2,$y1+$y2,$cyan);$ \$image --> string(gdGiantFont,\$x1+30,\$y1+2,"Below average adenine methylation", \$black); \$y1 +=30; } elsif (\$key eq "both") { \$base = 17; if (\$size eq "02509") {\$value_times = \$base} elsif (\$size eq "04999") {\$value_times = \$rmax/(log(1/2) + \$rmax/\$base)} elsif (\$size eq "09998") {\$value times = \$rmax/(log(1/4) + \$rmax/\$base)} -elsif (\$size eq "19996") {\$value_times = \$rmax/(log(1/8) + \$rmax/\$base)} elsif (\$size eg "39993") {\$value times = \$rmax/(log(1/16) + \$rmax/\$base)} # How about labels? x1 = 20; y1 = 1130;# get upper left corner $x^2 = v^2 = 20$: # box size \$image -> dashedLine(\$x1,\$y1+\$y2/2,\$x1+\$x2,\$y1+\$y2/2,gdBrushed); \$image -> string(gdGiantFont,\$x1+30,\$y1+2,"Out of scale values",\$black); \$y1 +=30; \$image -> filledRectangle(\$x1,\$y1,\$x1+\$x2,\$y1+\$y2,\$darkgreen); \$image -> string(gdGiantFont,\$x1+30,\$y1+2,"Below average A, above average C",\$black); \$y1 +=30; \$image -> filledRectangle(\$x1,\$y1,\$x1+\$x2,\$y1+\$y2,\$green); \$image -> string(gdGiantFont,\$x1+30,\$y1+2,"Below average C, above average A",\$black); \$y1 +=30; \$image -> filledRectangle(\$x1,\$y1,\$x1+\$x2,\$y1+\$y2,\$blue); \$image -> string(gdGiantFont,\$x1+30,\$y1+2,"Both methylation types below average",\$black); \$y1 +=30:
```
$image --> filledRectangle($x1,$y1,$x1+$x2,$y1+$y2,$cyan);
$image -> string(gdGiantFont,$x1+30,$y1+2,"Both methylation types above
```

```
+=30:
```

```
۰.
# Use this cycle to graph combined data, FIXED FOR COMBINED
       foreach (sort {$a <=> $b} keys %A) {
               $value = log(1/($A{$_} * $C{$_})) * $value_times;
               pos = ; pos2 = ;
               if (($A_sign{$_} eq "N") and ($C_sign{$_} eq "N")) {
                       $color = $blue;
               } elsif (($A_sign{$_} eq "P") and ($C_sign{$_} eq "P")) {
                       $color = $cyan;
               } elsif (($A_sign{$_} eq "N") and ($C_sign{$_} eq "P")) {
                       $value *= -1; $color = $darkgreen;
               } elsif (($A_sign{$_} eq "P") and ($C_sign{$_} eq "N")) {
                       $value *= -1; $color = $green;
               } else {die "a wierd death!\n"}
               if (abs($value) > $rmax) {
                       $original_extras{$pos} = abs($value);
                       $value = $value/abs($value) * $rmax;
                       $extras{$pos} = $value;
                       }
               undef @data; c = 0;
               for ($s = $pos; $s < $pos2; $s += 0.01) {
                       $data[$c] = $s;
                       $c++:
               }
               $data[$c] = $pos2;
               $image -> filledPolygon(&make_poly(@data),$color);
        }
}
# Get data to print
$count = 0; undef %{$key}; undef %pos; undef %{$key.'_sign'}; # FIXED FOR COMBINED
        while (<$key>) {
                @ columns = split;
                next unless $columns[0] =~ \d+/;
                ($pos,$value) = (($columns[0]-1) * $size, log(1/($columns[3] * 2)));
                $pos = $pos * $factor - $offset;
                $pos2 = $pos + $size * $factor;
                                                               # For combined data
                        ${$key}{$pos} = ($columns[3] *2);
                                                               # FIXED FOR COMBINED
                        pos{pos} = pos2;
                $value *= $value_times;
                if ($columns[1] < ${'mean_'.$key}) {
                        $value *= -1;
```

```
${$key.'_sign'}{$pos} = "N";
                                                                # FIXED FOR COMBINED
                        $color = $cyan;
                        } else {
                        $color = $green;
                                                                # FIXED FOR COMBINED
                        ${$key.'_sign'}{$pos} = "P";
                if (abs($value) > $rmax) {
                        $original_extras{$pos} = abs($value);
                        $value = $value/abs($value) * $rmax;
                        $extras{$pos} = $value;
                }
                undef @data; c = 0;
                for (\$s = \$pos; \$s < \$pos2; \$s += 0.01) {
                        $data[$c] = $s;
                        $c++;
                $data[$c] = $pos2;
                $image -> filledPolygon(&make_poly(@data),$color);
       }
# Need to draw genes in outer circle
        open(GENES, "<DB/all-genes-ecoli") II die "No gene DB!\n";
        r^2 = 530:
        $value = 10;
        while (<GENES>) {
                (\text{split}) = (\text{split})[4,5];
                (pos,pos2) = split(\Lambda,\lambda,srange);
                $pos = $pos * $factor - $offset;
                $pos2 = $pos + $size * $factor;
                pos = (pos + pos2)/2;
                if ($dir eq "F") {
                        &pos_by_angle($pos,$r2); $x1 = $x; $y1 = $y;
                ...
                        &pos_by_angle($pos,$r2 + $value); $x2 = $x; $y2 = $y;
                        $image -> line($x1,$y1,$x2,$y2,$orange);
                } else {
                        &pos_by_angle($pos,$r2); $x1 = $x; $y1 = $y;
                        &pos_by_angle($pos,$r2 - $value); $x2 = $x; $y2 = $y;
                        $image -> line($x1,$y1,$x2,$y2,$yellow);
                }
# Set brush
        $brush = new GD::Image(3,3);
        $brush -> colorAllocate(130,130,130);
        $bgray = $brush -> colorAllocate(170,170,190);
        $image -> setBrush($brush);
        r3 = r2 + 35:
# Draw half-circle arrows
        $ang = 4; $ang_rad = $ang * 2 * $pi / 360;
        $arrow = 12 * $pi /360;
        $image -> arc($h,$k,2 * $r3,2 * $r3,270+$ang,90-$ang,gdBrushed);
        $image -> arc($h,$k,2 * $r3,2 * $r3,90+$ang,270-$ang,gdBrushed);
# Draw arrow heads:
        &pos_by_angle(1/2*$pi - $ang_rad,$r3); $xpr = $x; $ypr = $y;
```

```
&pos_by_angle(1/2*$pi + $ang_rad,$r3); $xpi = $x; $ypi = $y;
       &pos_by_angle(1/2*$pi - $arrow,$r3+5); $x1r = $x; $y1r = $v;
       &pos by angle(1/2*$pi + $arrow,$r3+5); $x1l = $x; $y1l = $y;
       &pos_by_angle(1/2*$pi - $arrow,$r3-5); $x2r = $x; $y2r = $y;
       &pos_by_angle(1/2*$pi + $arrow,$r3-5); $x2l = $x; $y2l = $y;
       $image -> line($xpl,$ypl,$x1l,$y1l,gdBrushed);
       $image -> line($xpl,$ypl,$x2l,$y2l,gdBrushed);
       $image -> line($xpr,$ypr,$x1r,$y1r,gdBrushed);
       $image -> line($xpr,$ypr,$x2r,$y2r,gdBrushed);
# Draw circle with defined data, quadrants, and origin/end of rep
       $image -> arc($h,$k,2 * $r,2 * $r,0,360,$line_color);
       $image -> arc($h,$k,2 * $r2,2 * $r2,0,360,$line_color);
       $image -> line($h,$k - $r2,$h,$k + $r2,$line_color);
       $image -> line($h - $r2,$k,$h + $r2,$k,$line_color);
# Draw and annotate info (TEXT)
               &pos_by_angle(0-$offset,$r2); # Get coor's for sequenced 0
               x_1 = x; y_1 = y;
               $image -> line($h,$k,$x,$y,$line_color);
               &pos by_angle(0-$offset-0.07,$r2+50);
               x^2 = x; y^2 = y;
               $image -> dashedLine($x1,$y1,$x2,$y2,$black);
               $image -> string(gdGiantFont,$x2-5,$y2-20,"Sequenced Origin",$black);
               &pos_by_angle(3/2*$pi,$r2); $x1 = $x; $y1 = $y; # For replication 0
               &pos_by_angle(3/2*$pi-0.13,$r2+50); $x2 = $x; $y2 = $y;
               $image -> dashedLine($x1,$y1,$x2,$y2,$black);
               $image -> string(gdGiantFont,$x2-173,$y2-10,"Replication Origin",$black);
               &pos_by_angle(1/2*$pi,$r2); $x1 = $x; $y1 = $y; # For replication end
               &pos_by_angle(1/2*$pi+0.06,$r2+60); $x2 = $x; $v2 = $v;
               $image -> dashedLine($x1,$y1,$x2,$y2,$black);
               $image -> string(gdGiantFont,$x2-145,$y2-10,"Replication End",$black);
# Draw concentric circles as log scale, and scale bar (TEXT)
lines = 0;
foreach (0..5) {
       \log_{+}=\exp(1);
       $concentric[$_] = log($log_lines)/log(6*exp(1)) * $rmax;
}
       x = h+r; y = k + r3 + 30;
                                                               # Scale bar
       $length = $concentric[$#concentric];
       $image -> line($x-$length,$y,$x+$length,$y,$black);
       $image -> line($x,$y-3,$x,$y+3,$black);
       $image -> stringUp(gdLargeFont,$x-8,$y+65," 50 \%",$black);
                                                               # log lines for scale
        $image -> dashedLine($x,$y-8,$x,$k,$line_color);
       $image -> string(gdGiantFont,$x-95,$y+75,"Probability Scale in \%",$black);
foreach (@concentric) {
        $image -> arc($h,$k,($r + $_) * 2,($r + $_) * 2,0,360,$gray20);
        simage -> arc(h,k,(r - ) * 2,(r - ) * 2,0,360,gray20);
        $image -> line($x+$_,$y-3,$x+$_,$y+3,$black);
                                                                       # log lines for scale
                                                                       # log lines for scale
        simage -> line(x-, y-3, x-, y+3, black);
        $image -> dashedLine($x+$_,$y-8,$x+$_,$k,$line_color);
                                                                       # log lines for scale
```

```
$image -> dashedLine($x-$_,$y-8,$x-$_,$k,$line_color);
                                                                        # log lines for scale
        &p_value($_,$value_times,"1.5f");
                                                                # again, calculates original in %
        $image -> stringUp(gdLargeFont,$x+$_-8,$y+65,$p_value,$black);
        $image -> stringUp(gdLargeFont,$x-$_-8,$y+65,$p_value,$black);
}
# Draw lines for extras, and original values, and send out to file
        open (EXTRAS,">Results/$size/extras_$key\-afinados") || die "Coudn't create file!\n";
        $image -> setBrush($brush3);
        foreach (sort {$a <=> $b} keys %extras) {
          &pos_by_angle($_,$r); $x1 = $x; $y1 = $y;
          pos_by_angle(\$_,\$r + \$extras(\$_)); \$x2 = $x; \$y2 = $y;
          $image -> dashedLine($x1,$y1,$x2,$y2,gdBrushed);
          &p value($original_extras{$_},$value_times,"1.2e"); #calculate original value in %
          x3 = (x1+x2)/2; y3 = (y1+y2)/2 - 8;
          if ($last ne "" && abs($_ - $last) < 0.05) {
                                                        # move overlapped labels
                if ($_ < 1/2*$pi || $_ > 3/2*$pi) {
                        $v3 += 35;
                } else {
                        $y3 -= 35;
                }
          $last = $_;
          $image --> filledRectangle($x3-32,$y3,$x3+35,$y3+15,$white);
          $image -> string(gdLargeFont,$x3-30,$y3,$p_value,$black);
          printf EXTRAS "%5d\t\t$p_value\n",(((($_ + $offset) / $factor)/$size +1.5) *
          $extras{$_}/abs($extras{$_}));
        }
# Send to output
if ($key eq "both") {
        print OUT2 $image->png;
} else {print OUT $image->png}
}}
# Subroutines
sub pos_by_coor {
       x = _{[0]};
       y_1 = sqrt(r * 2 - (x - h) * 2) + k;
        y_2 = -sqrt(r * 2 - (x - h) * 2) + k;
}
sub pos_by_angle {
                        # Careful, needs radians
       angle = [0];
        $radius = $_[1];
       y =  stadius * sin(sangle) + sk;
        x =  adius * \cos(\text{sangle}) + ;
}
sub make_poly {
 P22
```

```
local $poly = new GD::Polygon;
       foreach (@_) {
               &pos_by_angle($_,$r);
               poly -> addPt($x,$y);
       foreach (reverse @_) {
               &pos_by_angle($_,$r + $value);
               $poly -> addPt($x,$y);
       }
        return $poly:
}
sub define_colors {
$b[0] = $white = $image -> colorAllocate(255,255,255);
$b[10] = $black = $image -> colorAllocate(0,0,0);
$b[1] = $gray10 = $image -> colorAllocate(230,230,230);
$b[2] = $gray20 = $image -> colorAllocate(205,205,205);
$b[3] = $gray30 = $image -> colorAllocate(180,180,180);
$b[4] = $gray40 = $image -> colorAllocate(155,155,155);
$b[5] = $gray50 = $image -> colorAllocate(130,130,130);
$b[6] = $gray60 = $image -> colorAllocate(105,105,105);
$b[7] = $gray70 = $image -> colorAllocate(80,80,80);
$b[8] = $gray80 = $image -> colorAllocate(55,55,55);
$b[9] = $gray90 = $image -> colorAllocate(30,30,30);
$c[0] = $red = $image -> colorAllocate(255,0,0);
c[1] =  sorange =  =  colorAllocate(255, 170, 0);
$c[2] = $yellow = $image -> colorAllocate(255,255,20);
c[3] =  spreen =  =  image  ->  colorAllocate(0,255,0); 
$c[4] = $darkgreen = $image -> colorAllocate(34,139,34);
$c[5] = $cyan = $image -> colorAllocate(0,255,255);
c[6] =  where c[6] = 
c[7] =  magenta =  image -> colorAllocate(255,0,255); 
$c[8] = $purple = $image -> colorAllocate(160,32,240);
$c[9] = $brown = $image -> colorAllocate(130,85,25);
sline color = gray30;
$line_color = $gray50;
ł
sub draw all mets {
# Draws all hits of methylation with a line from center.
        open(MET,"<DB/positions_c") II die "No methylation DB!\n";
        $value = 100;
        while (<MET>) {
               $pos = $_ * $factor - $offset;
                &pos_by_angle($pos,$value);
                $image -> line($x,$y,$h,$k,$yellow);
        }
}
sub p_value {
        # Calculates back original value, NOTE: in % !!
        p_value = 50 / (exp(1)^{**}([0] /[1]));
        $p value = sprintf("%$_[2]",$p_value);
}
```

```
Programa 10 (lab/get_positions)
```

```
#!/usr/bin/perl
## Gets positions of a given string from db. 0 exists as 1st position
@strings = ("gatc","cctgg","ccagg");
                                                 # Can't use regexes
@ARGV[0] = "DB/ecoli_line";
die "usage: xtract FILE\n" unless -e ($file = @ARGV[0]);
$db = <>:
open(OUTa, ">DB/positions_A") II die "coudn't create log filel\n";
open(OUTc,">DB/positions_C") II die "coudn't create log filel\n";
foreach $string (@strings) {
        while ($where = (index($db,$string,$where))+1) {
                if (\$string = ~ /^cc/) {
                        push(@c,($where -1));
                } else {
                         push(@a,($where -1));
                }
        }
        @c = sort {$a <=> $b} @c;
}
foreach (@a) {print OUTa "$_\n"}
foreach (@c) {print OUTc "$_\n"}
```

Programa 11 (lab/voids)

#!/usr/bin/perl

Get largest voids from positions files...

```
# Open up those files!
open (A, "<DB/positions_A") II die "Can't open the A!\n";
open (C, "<DB/positions_C") II die "Can't open the C!\n";
open (A_OUT, ">Results/voids_A") II die "Can't create voids_A!\n";
open (C_OUT, ">Results/voids_C") II die "Can't create voids_C!\n";
print A_OUT "____\t____\t___\nSize\tPosition\tEnd\n___\t____\t___\n";
print C_OUT "____\t____\t___\nSize\tPosition\tEnd\n____\t____\t___\n";
# Read files and calculate voids
s_{ast} = 0;
while (<A>) {
         chomp;
          $line = $_ - $last -1 . "\t$last\t\t$_\n";
         push(@voids,$line);
          $last = $_;
         }
foreach (sort {$b <=> $a} @voids) {
         print A_OUT;
}
undef @voids;
slast = 0
while (<C>) {
          chomp;
          $line = $_ - $last -1 . "\t$last\t\t$_\n";
          push(@voids,$line);
          siast = _;
          }
foreach (sort {$b <=> $a} @voids) {
          print C_OUT;
}
undef @voids;
```

```
Programa 12 (lab/clusters)
```

#!/usr/bin/perl

Get largest clusters from positions files... time optimized! ## String instead of vector, and jump by positions files data

```
# Choose cluster size ...
sizeA = 242;
$sizeC = 385:
# Open up those files!
open (A, "<DB/positions_A") II die "Can't open the A!\n";
open (C, "<DB/positions_C") II die "Can't open the C!\n";
open (A_OUT, ">Results/clusters2_A") II die "Can't create clusters_A!\n";
open (C_OUT, ">Results/clusters2_C") || die "Can't create clusters_C!\n";
print C_OUT "_____\t____
Amount\tPosition\tWin size\n____\t____\t____\r";
# Should really make the 0&1s now a string!
$blank = "0" x $sizeA;
while (<A>) {
  chomp;
  push(@gatc,$_);
}
$qatc = "0" x 4639221;
substr($gatc,$_,1)="1" foreach (@gatc);
# Now start cycling through only known positions
foreach (1..100) { # Amount of highest returned
$window = $count = $max = $pos_max = 0;
$window = substr($gatc,$_,$sizeA);
  scount = swindow = - s/1/1/g;
  if ($count > $max) {
   $max = $count;
   $pos_max = $_;
 }
}
substr($gatc,$pos_max,$sizeA)=$blank;
print A_OUT "$max\t$pos_max\t\t$sizeA\n";
undef @gatc; undef $gatc;
# Should really make the 0&1s now a string!
$blank = "0" x $sizeC;
while (\langle C \rangle) {
 chomp;
 push(@ccwgg,$_);
 P26
```

```
}
$ccwgg = "0" x 4639221;
substr($ccwgg,$_,1)="1" foreach (@ccwgg);
```

Now start cycling through only known positions foreach (1..100) { # Amount of highest returned

```
$window = $count = $max = $pos_max = 0;
foreach (@ccwgg) {
    $window = substr($ccwgg,$_,$sizeC);
    $count = $window =~ s/1/1/g;
    if ($count > $max) {
        $max = $count;
        $pos_max = $_;
    }
}
substr($ccwgg,$pos_max,$sizeC)=$blank;
print C_OUT "$max\t$pos_max\t\t$sizeC\n";
}
```

- •

```
Programa 13 (lab/3regions)
```

#!/usr/bin/perl

Obtains distribution of methylation positions from 3regions db...

```
$file = "DB/ecoli-3regions";
 open (FILE, "<$file") || die "No file!\n";
 $db = <FILE>;
open (POSA, "<DB/positions_A") II die "No positions!\n";
open (POSC,"<DB/positions_C") II die "No positions!\n";
foreach $letter ("A", "C",) {
         $name = 'POS'.$letter;
        while (<$name>) {
                 ${$letter} .= substr($db,$_+1,"1");
                 ${$letter} .= substr($db,$_+2,"1") if $letter eq "A";
                 ${$letter} .= substr($db,$_+3,"1") if $letter eq "C";
        }
}
foreach $type ("c","t","i","b") {
        ${"countA$type"} = $A =~ s/$type/$type/g;
        ${"countC$type"} = $C =~ s/$type/$type/g;
}
#$countAc += $countAb;
#$countAt += $countAb;
#$countCc += $countCb;
#$countCt += $countCb;
foreach $letter ("A", "C",) {
        print "For $letter sites:\n";
        foreach $type ("c","t","i","b") {
                print "$type = ",${"count$letter$type"},"\n";
        }
}
```

```
Programa 14 (lab/3regions_bias)
#!/usr/bin/perl
## Calculate the GC content bias for the 3 regions...
# Define filenames
$regions = "DB/ecoli-3regions";
$line = "DB/ecoli_line";
# Open files and set to variables
open (REG,"<$regions") II die "No file!\n";
ecoli_sa = <REG>;
open (LINE,"<$line") || die "No file!\n";
$ecoli_line = <LINE>;
# Actually extract the data
foreach (0..length($ecoli_line)-1) {
                                                                                                                                                                                                                 # Not needed, just to check
                          $total{substr($ecoli_sa,$_,1)}++;
                          ${substr($ecoli_sa,$_,1)}{substr($ecoli_line,$_,1)}++;
}
# Add up the b's (to c and t)
foreach (keys %b) {
                          $c{$_} += $b{$_};
                          t{=} += b{:};
}
undef %b; undef $total{b}; # Not needed, especially if check removed
# Now the A/T and C/G
foreach ("i","c","t") {
                           {= }{a} + {{},t} = 
                           {= }{ = }{c} + {{},}{g};
                           $AT = sprintf("%2.2f",${$_}{"A/T"} * 100 / (${$_}{"C/G"} + ${$_}{"A/T"}));
                          print "In category $_ there is $AT % A/T\n";
}
```

ESTA TESIS NO SALE DE LA BIBLIOTECA

```
Programa 15 (lab/total_methylations)
```

```
#!/usr/bin/perl
## Get type of methylated bases in genome
# Retrieve all info from DB's
        # Get coded info from ecoli.sa
        open (CODED,"<DB/ecoli.s2") II die "No encoded file!\n";
        coded = <CODED>;
        open (DB, "<DB/ecoli_line") || die "No line!\n";
        $db = <DB>;
foreach $letter ("A", "C") {
        # Get 0s&Symbol vector for methylation positions
        undef @{posi.$letter}; ${posi.$letter}[4639220] = 0;
        open(POS,"<DB/positions_$letter") || die "No positions file!\n";
        while (<POS>) {
               if ($letter eq "A") {
                                               # Getting positions from GATC
                        ${posi.$letter}[$_+1] = ord(substr($coded,$_+1,1)); # Get the A pos
                        ${posi.$letter}[$_+2] = ord(substr($coded,$_+2,1)); # Get the T pos
                } elsif ($letter eq "C") {
                                               # Getting positions from CCWGG
                        ${posi.$letter}[$_+1] = ord(substr($coded,$_+1,1)); # Get the C pos
                        {posi.}= ord(substr($coded,$_+3,1)); # Get the G pos
               }
       }
}
open(OUT_A, ">Results/gatc_methylations") || die "Can't create file!\n";
open(OUT C, ">Results/ccwgg methylations") II die "Can't create file!\n";
undef %counterA;
foreach (@posiA) {
 = = \text{$counterA} \{ \frac{1}{2} + 1 \text{ unless} \} = 0;
}
undef @posiA; # Free some memory
undef %counterC;
foreach (@posiC) {
        $counterC{$_}++ unless $_ == 0;
}
undef @posiC; # Free some memory
# Now, turn Sensa numbers into something usable ...
open (SENSA, "<DB/sensa2/sensa-ttable") || die "No sensa table!\n";
while (<SENSA>) {
        next if ($_ =~ /^#/ || $_ eq "\n");
        @data = split;
        foreach (4..7) {$data[$_] =~ s/^0//}
        $sensa{$data[4]} = "$data[0]\t$data[2]\t$data[1]\t$data[3]";
```

P30

```
$sensa{$data[5]} = "$data[0]\t$data[2]\t$data[1]\t$data[3]";
       $sensa{$data[6]} = "$data[0]\t$data[2]\t$data[1]\t$data[3]";
       $sensa{$data[7]} = "$data[0]\t$data[2]\t$data[1]\t$data[3]";
}
foreach (sort {$a <=> $b} keys %counterA) {
       (\text{sone}, \text{two}, \text{son}, \text{tw}) = \text{split}(\Lambda t/, \text{sensa});
                                                           %1s\n",$_,$counterA{$_},$one,$on,$two,$tw;
       printf OUT_A "%4d\t%4d\t %1s\t %1s\t %1s\t
       if ($one eq "-") {
               # do absolutely nothing!
       } elsif ($one == 0) {
               $inters += $counterA{$_}; next; # only works, cause I never have (0 #)
       elsif (sone == 1) {
               $firsts += $counterA{$_};
       } elsif ($one == 2) {
               $seconds += $counterA{$_};
       } elsif ($one == 3) {
               $thirds += $counterA{$_};
       } else {
               $others += $counterA{$_};
        if ($two eq "--") {
               # do absolutely nothing!
       } elsif ($two == 1) {
               $firsts += $counterA{$_};
        } elsif ($two == 2) {
               $seconds += $counterA{$_};
        } elsif ($two == 3) {
               $thirds += $counterA{$_};
        } else {
               $others += $counterA{$_};
        }
}
# Convert to frequency, per total ccwgg
$int = $inters / 19123;
$fir = $firsts / 19123;
$sec = $seconds / 19123;
$thi = $thirds / 19123;
$oth = $others / 19123;
printf OUT_A "
Intergenics = %5d\tor\t%1.6f
First bases = %5d\tor\t%1.6f
Second bases = %5d\tor\t%1.6f
Third bases = %5d\tor\t%1.6f
rRNA / tRNA = %5d\tor\t%1.6f
",$inters,$int,$firsts,$fir,$seconds,$sec,$thirds,$thi,$others,$oth;
foreach (sort {$a <=> $b} keys %counterC) {
        (\text{one}, \text{two}, \text{on}, \text{tw}) = \text{split}(\Lambda t/, \text{sensa});
        printf OUT_C "%4d\t%4d\t %1s\t %1s\t %1s\t
                                                             %1s\n",$_,$counterC{$_},$one,$on,$*** * *tw;
        if ($one eq "-") {
```

```
# do absolutely nothing!
        } elsif ($one == 0) {
                $inters += $counterC{$_}; next; # only works, cause I never have (0 #)
        elsif (sone == 1) 
                $firsts += $counterC{$_};
        } elsif ($one == 2) {
                $seconds += $counterC{$_};
        } elsif ($one == 3) {
                $thirds += $counterC{$_};
        } else {
                $others += $counterC{$_};
        }
        if ($two eq "-") {
                # do absolutely nothing!
        } elsif ($two == 1) {
                $firsts += $counterC{$_};
        } elsif ($two == 2) {
                $seconds += $counterC{$_};
        } elsif ($two == 3) {
                $thirds += $counterC{$_};
        } else {
                $others += $counterC{$_};
        }
}
# Convert to frequency, per total ccwgg
$int = $inters / 12042;
$fir = $firsts / 12042;
$sec = $seconds / 12042;
$thi = $thirds / 12042;
$oth = $others / 12042;
printf OUT_C "
Intergenics = %5d\tor\t%1.6f
First bases = %5d\tor\t%1.6f
Second bases = %5d\tor\t%1.6f
Third bases = %5d\tor\t%1.6f
rRNA / tRNA = \%5d tor 1.6f
",$inters,$int,$firsts,$fir,$seconds,$sec,$thirds,$thi,$others,$oth;
```

Programa 16 (lab/new_methylations)

#!/usr/bin/perl

Calculates all methylations per gen and orders them by gatcs per base

```
# Open up those files!
open (A, "<DB/positions_A") II die "Can't open the A!\n";
open (C, "<DB/positions_C") II die "Can't open the C!\n";
open (GENES, "<DB/all-genes-ecoli") II die "Can't open genes!\n";
open (OUT, ">Results/methylations_table") II die "Can't create!\n";
print OUT "Mean/None\tCCWGGs\tSize\tStart\tB-number\tName
          \t \t__\t__\t___\t___\t___\t___\n";
# Should really make the 0&1s now a string!
while (<A>) {
 chomp:
 push(@gatc,$_);
}
$gatc = "0" x 4639221;
substr($gatc,$_+1,1)="1" foreach (@gatc);
while (\langle C \rangle) {
 chomp;
 push(@ccwgg,$_);
$ccwgg = "0" x 4639221;
substr($ccwgg,$_+1,1)="1" foreach (@ccwgg);
# Read up the GENES file!
v/hile (<GENES>) {
        chomp:
        ($start,$end,$bnumber,$name) = (split(/[\t+\.+]/,$_))[4,6,2,8];
        $start--; $end--; $c_amount = 0;
        $size = $end - $start + 1;
        $c_amount = substr($ccwgg,$start,$size) =~ s/1/1/g;
        $c_amount = "0" unless $c_amount;
        without = a_sum = 0;
        foreach ($start..$end) {
               $without++ unless ($a_sum += substr($gatc,$_-1000,2001) =~ s/1/1/g);
        }
        $without *=-1;
        $a mean = sprintf "%2.4f",$a_sum / $size;
        if ($without) {
                push(@data,"$without\t$c_amount\t$size\t$start\t$bnumber\t$name");
        } else {
                push(@data,"$a_mean\t$c_amount\t$size\t$start\t$bnumber\t$name");
        }
ł
foreach (sort {$a <=> $b} @data) {
        print OUT "$_\n";
}
```

```
Programa 17 (lab/get_bnumbers)
```

#!/usr/bin/perl

Need b numbers to correlate essential genes in methylation file!

```
# open up those files!
open (B, "<DB/essential_ecoli") II die "Not essentially sol\n";
open (M. "<Results/methylations_table") II die "No methylations!\n";
open (OUT,">Results/essentials_table") II die "can't create!\n";
# Put bnumbers into array
while (<B>) {
        /(b\d{4})/;
        push(@b_numbers,$1);
}
while (<M>) {
        b_hash{1} = \ if \ (b\d{4})\t/;
}
foreach (@b_numbers) {
        unless ($b_hash{$_} eq "") {
                push(@essential,$b_hash{$_});
        }
}
foreach (sort ($a <=> $b) @essential) {
        print OUT;
}
```

```
Programa 18 (lab/genes_jn_cluster-voids)
```

```
#!/usr/bin/perl
```

Need to get genes that are included in range specified by files

```
# Filed needed
$lista = "/home/cei/DB/gabriel/lista-E_coli_K12";
$voidsA = "/home/cei/lab/Results/clusters_voids/voidsA_selected";
$voidsC = "/home/cei/lab/Results/clusters_voids/voidsC_selected";
$clustersA = "/home/cei/lab/Results/clusters_voids/clustersA_selected";
$clustersC = "/home/cei/lab/Results/clusters_voids/clustersC_selected";
# Some kind of double loop?
open (GENES,"<$lista") || die "No genes!\n";
while (<GENES>) {
        push (@genes,[(split /tl\.{2}\\n/)[4,5,1,7]]); # Start, end, name, description
}
close GENES:
foreach $void ($voidsA, $voidsC) {
        open (IN, "<$void") II die "No $void!\n";
        open (OUT, ">$void-genes") || die "Can't make genes!\n";
        while (<IN>) {
                $flag = "";
                next unless /^\d+/;
                ($size,$vstart,$vend) = (split)[0,1,2];
                print OUT "\n$size\t(VOID)\t$vstart..$vend\n";
                foreach (0..$#genes) {
                         next if ($vstart > $genes[$_][1]);
                         if ($vend < $genes[$_][0]) {
                                 $flag++:
                                 next:
                         3
                         last if $flag > 10;
                         print OUT "$genes[$_][2]\t$genes[$_][3]\t$genes[$_][0]..$genes[$_][1]\n";
}}}
foreach $cluster ($clustersA, $clustersC) {
        open (IN, "<$cluster") II die "No $cluster!\n";
        open (OUT, ">$cluster-genes") II die "Can't make genes!\n";
        while (<IN>) {
                $flag = "":
                next unless /^\d+/;
                ($size,$vstart,$vend) = (split)[0,1,2]; $vend += $vstart +1;
                print OUT "\n$size\t(CLUSTER)\t$vstart..$vend\n";
                foreach (0..$#genes) {
                         next if ($vstart > $genes[$_][1]);
                         if ($vend < $genes[$_][0]) {
                                 $flag++;
                                 next:
                         last if f \approx 10;
                         print OUT "$genes[$_][2]\t$genes[$_][3]\t$genes[$_][0]..$genes[$_][1]\n";
```