

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE CIENCIAS

DIMENSION DE HAUSDORFF Y COORDENADAS DE FATOU: EL TEOREMA DE SHISHIKURA

TESIS
QUE PARA OBTENER EL TITULO DE
MATEMATICO
PRESENTA

SANTIAGO MORENO BROMBERG

DIRECTOR DE TESIS:
DR. SANTIAGO LOPEZ DE MEDRANO SANCHEZ

FACULTAD DE CIENCIAS UNAM

MEXICO. D. F.

297455

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

MAT. MARGARITA ELVIRA CHÁVEZ CANO Jefa de la División de Estudios Profesionales de la Facultad de Ciencias Presente

Comunicamos a usted que hemos revisado el trabajo de Tesis:

Dimensión de Hausdorff y Coordenadas de Fatou: El Teorema de Shishikura.

realizado por Santiago Moreno Bromberg

con número de cuenta 9477052-4 . pasante de la cartera de Matemáticas

Dicho trabajo cuenta con nuestro voto aprobatorio

Atentamente

Director de Tesis Propietario

Dr. Santiago López de Medrano Sánchez

Propietatio Dr. Guillermo Sienze Loera

Propietario Dr. Alberto Verjovsky Solá

Suplente Dra. Patricia Soto Domínguez

Suplente Dr. Piotr Makienko

Consejo Departamental de Matemáticas Mat. César Guevara

A USTEDES TRES,

JUNIOS

Y

POR

SEPARADO.

AGRADECIMIENTOS

- Al Tocayo por sus atinados consejos,
- A Guillermo Sienra, Patricia Soto, Piotr Makienko y muy especialmente a Alberto Verjovsky por su apoyo para la realización de mi examen,
- A Shirley y Lucho por su apoyo incondicional, su confianza en mí y todo el amor que me han dado,
- A Tato por un futuro lleno de ilusiones y un presente repleto de alegría,
- A Isaac por enseñarme a no rendirme,
- A mis amigos de toda la vida: Luis, Andrés, Carlos, Güero, Laura, Tacher, Kalinka, Leticia, Anabeli, Leo, porque no sería quien soy sin ellos,
- A todos aquellos en la Facultad de Ciencias que lo hicieron tan divertido (demasiados para mencionarlos a todos),
- A mí porque más vale tarde que nunca.

CONTENIDO

Introducción	i
Capítulo 1: Resultados Preliminares	1
Sección 1: Subconjuntos de $\overline{\mathbb{C}}$ determinados por la dinámica	1
Sección 2: Clasificación de las componentes de $F(f)$	3
Sección 3: El Conjunto de Mandelbrot	6
Sección 4: Dimensión de Hausdorff	9
Capítulo 2: Las Aplicaciones en F_0	13
Sección 1: Coordenadas de Fatou	13
Sección 2: Estimación de las Coordenadas de Fatou	15
Sección 3: Extensión de las Coordenadas de Fatou	22
Sección 4: Cilindros de Ecalle y la aplicación de transición	23
Sección 5: Extensión de $\tilde{\epsilon}_{f_0}$	26
Capítulo 3: Perturbación de f_0	28
Sección 1: Coordenadas de Fatou para f_{ϵ}	29
Sección 2: Convergencia de ϕ_{ϵ}^{\pm} a ϕ_{0}^{\pm}	32
Sección 3: La Fase	33
Sección 4: Aplicaciones de Lavaurs	35
Sección 5: Implosión Parabólica	37
Capítulo 4: Demostración del Teorema de Shishikura	39
Sección 1: Dimensión y Subconjuntos Hiperbólicos	38
Sección 2: Movimientos Holomorfos	41
Sección 3: De $\operatorname{Dim}_{\mathbb{H}}(J_c)$ a $\operatorname{Dim}_{\mathbb{H}}(\partial M)$	51
Sección 4: Conclusión de la Demostración	60
Bibliografía	61

INTRODUCCIÓN

El objeto de esta tesis es calcular la Dimensión de Hausdorff de la frontera del Conjunto de Mandelbrot, el cual se denotará en lo que sigue por \mathcal{M} . En 1996 el matemático japonés Matsushira Shishikura demostró:

Teorema A. (Shishikura) La dimensión de Hausdorff de la frontera del conjunto de Mandelbrot es 2, i.e.,

$$Dim_H(\partial\mathcal{M})=2.$$

El trabajo de Shishikura, junto con el de Adrien Douady respecto a la continuidad de la asignación

$$f \mapsto J(f)$$
,

donde J(f) denota al conjunto de Julia de una aplicación analítica f, forman parte del desarrollo de herramientas y conocimiento encaminados a demostrar la interrogante central de la teoría sobre \mathcal{M} :

Conjetura. M es localmente conexo.

En esta tesis se utiliza un método muy interesante para buscar resultados sobre \mathcal{M} . Trabajar en el espacio de parámetros es complicado. Sus estructuras no están definidas por un sistema dinámico, así que no contamos con aplicaciones y teoría sobre ellas para poder movernos. Utilizando como base la teoría de Mañé-Saad-Sullivan y la caracterización de Sullivan de las componentes de Fatou de una aplicación holomorfa, comparamos la dimensión de Hausdorff de $\partial \mathcal{M}$ con la del conjunto de Julia de f_c , para ciertos $c \in \mathcal{M}$.

Teorema B. Sea $\{f_c := z^2 + c \mid c \in \mathbb{C}\}$. Si f_{c_0} es J-inestable, i.e. $c_0 \in \partial \mathcal{M}$, entonces

$$\operatorname{Dim}_{\mathsf{H}}(\{c \in \mathbb{C} \mid f_c \in D\}) \geq \operatorname{Dim}_{\mathsf{hip}}(f_{c_0}),$$

donde $f \in D$ si f tiene un subconjunto hiperbólico que contiene la órbita para adelante de un punto crítico.

Observemos que $\{c \in \mathbb{C} \mid f_c \in D\} \subset \partial \mathcal{M}$, puesto que si la órbita del cero (único punto crítico de f_c) está contenida en un subconjunto hiperbólico de

 f_c , entonces $J(f_c)$ es o bien un disco de Siegel o bien una dendrita. Una vez hecha esta aclaración, podemos afirmar que

$$\operatorname{Dim}_{\mathsf{H}}(\partial \mathcal{M}) \geq \operatorname{Dim}_{\mathsf{hip}}(f_{c_0}).$$

Por otro lado, $\operatorname{Dim}_{\operatorname{hip}}(f_{c_0})$ y $\operatorname{Dim}_{\operatorname{H}}(J(f_c))$ están estrechamente relacionadas (de hecho coinciden en el caso parabólico). Veremos más adelante que es conveniente mantener $\operatorname{Dim}_{\operatorname{hip}}(f_{c_0})$ y $\operatorname{Dim}_{\operatorname{H}}(J(f_{c_0}))$ aun cuando c_0 sea parabólico. La demostración de este teorema en este trabajo sigue aquella elaborada por M. Shishikura ([Sh]).

Nuestro problema se transforma entonces en buscar cotas inferiores para $\operatorname{Dim}_{\operatorname{hip}}(f_c)$. El primer paso es construir un subconjunto hiperbólico de f_c al que sepamos calcularle la dimensión de Hausdorff. Las herramientas necesarias para ello se desarrollan en los capítulos 2 y 3. Pretender encontrar S subconjunto hiperbólico de f_c tal que $\operatorname{Dim}_H(S)=2$ sería demasiado ambicioso. El camino a seguir es mostrar que podemos perturbar c de tal forma que $\operatorname{Dim}_{\operatorname{hip}}(f_{c_c})$ sea mayor o igual que $2-\epsilon$, lo cual se consigue con el siguiente

Teorema C. Sean $c \in M$ tal que f_c tiene un punto periódico parabólico con q pétalos (el multiplicador del punto periódico parabólico es igual a $e^{i\theta}$ $y \theta = p/q)$ $y \{\epsilon_n\}$ una sucesión que tiende a 0 y que satisface

$$-\frac{\pi}{q\epsilon_n}+N_n\to\sigma\in\mathbb{C}\qquad n\to\infty,$$

para alguna sucesión de enteros $\{N_n\}$. Si $c_{\epsilon_n} = c \pm i\epsilon_n e^{i\theta} (1 - e^{i\theta})$, entonces

$$\liminf_{n\to\infty} \mathrm{Dim}_{\mathrm{H}}(J(f_{c_{\epsilon_n}})) > \frac{2q}{q+1}.$$

Notemos que al hacer tender c_{ϵ_n} a c como en el Teorema, se está acercando por la tangente exterior al cardioide principal. Dado q un número de pétalos arbitrario siempre existe c tal que f_c tiene un punto periódico parabólico con q pétalos.

Es claro que los Teoremas B y C implican el Teorema de Shishikura. En los capítulos dos y tres desarrollaremos la teoría detrás de la demostración de Zeinsmeister y el capítulo cuatro comprende las herramientas necesarias para la demostración de Shishikura, así como las demostración de ambos teoremas y las conclusiones.

Capítulo 1

Resultados Preliminares

En este capítulo daremos algunas definiciones y resultados básicos para la comprensión de este trabajo, aunque no nos centraremos en sus demostraciones. Esto haría que la tesis se extendiera demasiado; sin embargo, citamos los libros o artículos de procedencia en caso que el lector se interese.

1. Subconjuntos de $\overline{\mathbb{C}}$ determinados por la dinámica

Sea f una aplicación racional definida en la Esfera de Riemann. Entonces f determina un sistema dinámico en la esfera vía sus iterados, es decir, la familia $\{f^n : n \in \mathbb{Z}\}$. Al estudiar este sistema buscamos entender el comportamiento de $\{f^n(z); n\}$ (la órbita de z) para $z \in \overline{\mathbb{C}}$. Este estudio nos permite clasificar ciertas regiones de $\overline{\mathbb{C}}$ las cuales mencionamos a continuación:

A. CONJUNTO DE JULIA. Decimos que un punto z es normal con respecto a f si existe una vecindad U de z tal que la familia $\{f^n: n>0\}$ es equicontinua en U. Definimos el conjunto de Julia de f, J(f), de la siguiente manera:

$$J(f) := \{ z \in \bar{\mathbb{C}} \mid z \text{ no es normal con respecto a } f \}.$$

B. CONJUNTO DE FATOU. Este conjunto es $F(f) := \bar{\mathbb{C}} \setminus J(f)$. Cuando f es un polinomio, definimos el conjunto de Julia relleno por

$$K(f) := \{ z \in \bar{\mathbb{C}} \mid \{ f^n(z); n \in \mathbb{N} \} \text{ está acotada} \}.$$

C. PUNTOS CRÍ TICOS. Si z es tal que f no es inyectiva en una vecindad de z, z se denomina crítico. Sea z tal que $f(z) \neq \infty$, entonces z es un punto crítico de f si y sólo si f'(z) = 0. En ese caso, el número de soluciones de f'(z) = 0 se llama la multiplicidad de z como punto crítico.

D. PUNTOS PERIÓDICOS. Decimos que z es un punto periódico de f (de período n) si n es el menor natural que satisface $f^n(z) = z$. En caso que n = 1 entonces z es un punto fijo de f. A una órbita periódica $\{z_0, z_1, ..., z_n = z_0\}$ le asociamos un número (el multiplicador) calculando la derivada del n-ésimo iterado de f en z_n

$$\lambda = (f^n)'(z_n).$$

Decimos que una órbita periódica es atractora, repulsora o indiferente si $|\lambda| < 1, |\lambda| > 1$ o $|\lambda| = 1$ respectivamente (en el caso $\lambda = 0$ la órbita se dice superatractora). En el caso indiferente, i.e. cuando $\lambda = e^{2\pi i\theta}$, si $\theta \in \mathbb{Q}$ decimos que la órbita es indiferente racional o parabólica.

E. PUNTOS EXCEPCIONALES. Un punto z se dice excepcional si

$$f^{-2}(z) = z.$$

A continuación enunciaremos algunos resultados clásicos para los conjuntos de Fatou y Julia. De ahora en adelante siempre consideraremos f de grado $d \ge 2$ (ver [F], [Mi], [Sh]).

- A. J(f) es un conjunto cerrado, no vacío y totalmente invariante bajo f, es decir $f^{-1}(J(f)) = J(f) = f(J(f))$.
- B. Para todo n > 0, $J(f^n) = J(f)$.
- C. Si $\{z_i\}_0^n$ es una órbita periódica atractora entonces $\{z_i\}_0^n \subset F(f)$. Si la órbita es indiferente racional o repulsora entonces $\{z_i\}_0^n \subset J(f)$.
- D. J(f) coincide con la cerradura del conjunto de puntos periódicos repulsores de f.
- E. Si z_0 es un punto periódico atractor, entonces su cuenca atractora

$$A(z_0) = \{ z \in \mathbb{C} \mid f^n(z) \to z_0 (n \to \infty) \}$$

está contenida en F(f).

- F. J(f) es un conjunto perfecto.
- G. En caso que f sea un polinomio tenemos

$$J(f) = \partial K(f) = \partial A(\infty)$$

- H. Si J(f) tiene algún punto interior entonces $J(f) = \overline{\mathbb{C}}$
 - I. Si J(f) no es conexo, entonces tiene una cantidad no numerable de componentes conexas (de éstas, todas salvo una cantidad numerable son puntos). Más adelante trabajaremos con los polinomios $f_c(z) = z^2 + c$. En este caso $J(f_c)$ es conexo o es un conjunto de Cantor.

2. Clasificación de las componentes de F(f)

A continuación enunciaremos dos teoremas de Dennis Sullivan que clasifican las componentes de F(f).

Teorema 1 (ver [D1]) Toda componente de F(f) es preperiódica. Es decir, no existe $D \subset F(f)$ (D componente de F(f)) de tal forma que todos los elementos de $\{f^n(D); n \geq 0\}$ sean ajenos.

Teorema 2 Toda componente periódica D de F(f) es de uno de los siguientes cuatro tipos:

1. Cuenca Atractora. D contiene un punto periódico z_0 de período p. La sucesión $\{f^{np}; n \in \mathbb{N}\}$ converge a z_0 localmente uniformemente en D. El disco unitario es un ejemplo de una cuenca atractora para $f(z) = z^2$, de hecho superatractora. El círculo unitario es el conjunto de Julia correspondiente.

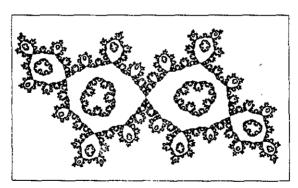


Figura 1: Anillo de Herman

2. Anillo de Hermann. (D, f^p) es conjugado a una rotación irracional de un anillo de la forma $\{z \in \mathbb{C} \mid r < |z| < 1 \ 0 < r < 1\}$ vía una

- aplicación conforme. Este tipo de componente no ocurre cuando f es un polinomio. [MSS]
- 3. Disco de Siegel. (D, f^p) es conjugado a una rotación irracional del disco unitario $\Delta = \{z \in \mathbb{C} \mid |z| < 1\}$ vía una aplicación conforme. Como un ejemplo de una aplicación en que se presenta un disco de Siegel tenemos $f(z) = z^2 + e^{2\pi i(\sqrt{5}-1)/2}$:

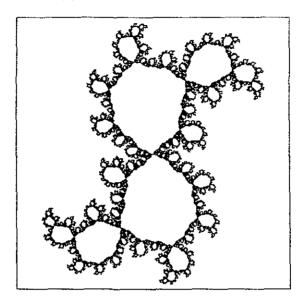


Figura 2: Disco de Siegel

4. Cuenca Parabólica. En cada punto de un ciclo parabólico $\{z_i; i \in I\}$ están basados q pétalos atractores. El interior de estos pétalos forma la cuenca parabólica de dicho ciclo. Todo punto en la cuenca parabólica tiene una vecindad V tal que $\{f^{qn}(z); n\}$ converge localmente uniformemente a z_i para toda $z \in V$ y alguna $i \in I$.

Como en este trabajo es central la teoría referente a las cuencas parabólicas, abundaremos en el tema. Nos centraremos en el caso que tenemos un punto fijo parabólico.

Comenzaremos suponiendo que f(0) = 0 y f'(0) = 1. Podemos entonces escribir

$$f(z) = z + az^{n+1} + O(n+2) \quad (a \neq 0)$$

 $n+1 \ge 2$ es la multiplicidad del punto fijo. Escogeremos V vecindad del origen de tal forma que $f|_V$ sea un difeomorfismo sobre V'.

Definición 1 Un abierto conexo U, con cerradura compacta $\bar{U} \subset V \cap V'$ se dice un pétalo atractor de f en el origen si

$$f(\bar{U})\subset U\cup\{0\} \quad ext{y además} \quad \bigcap_{k\geq 0}f^k(\bar{U})=\{0\}.$$

Si $U' \subset V \cap V'$ es un pétalo atractor de f^{-1} entonces decimos que U' es un pétalo repulsor de f.

Teorema 3 (Flor de Leau-Fatou [Mi], [Be]) Si el origen es un punto fijo parabólico de multiplicidad n+1 entonces existen n pétalos atractores U_i y n pétalos repulsores U'_i que satisfacen:

1. El conjunto

$$\bigcup_{0 \le i \le n} U_i \ \cup \ \bigcup_{0 \le i \le n} U_i' \cup \{0\}$$

es una vecindad del origen (los n-ésimos pétalos se identifican con U_0 y U'_0).

- 2. U_i intersecta únicamente a U'_i y U'_{i-1} .
- 3. $f^n \to 0 \ (n \to \infty)$ uniformemente en $\{U_i\}$.

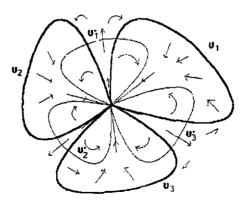


Figura 3: La dinámica en los pétalos

Es importante que mencionemos que en cada pétalo atractor podemos hablar de una dirección (o eje) atractora y similarmente en el caso repulsor. Las direcciones son rayos que parten del origen y están separados todos por la misma magnitud angular. Las direcciones atractoras están divididas por las repulsoras y viceversa. La convergencia al punto fijo de los puntos en los pétalos atractores sucede de manera asintótica a los ejes atractores.

Lema 1 ([Mi]) Si $\lambda = e^{2\pi p/q}$ es el multiplicador en el punto fijo z_0 entonces el número de pétalos atractores (repulsores) de f en z_0 es un múltiplo de q.

Definición 2 La CUENCA PARABÓLICA de z_0 está formada por todos los puntos z tales que $f^n(z) \to z_0$ $(n \to \infty)$.

A continuación mostramos la cuenca parabólica de la función $f(z)=z^2+e^{2\pi i(3/7)}z$. Observemos que en el punto periódico parabólico se presentan siete pétalos.

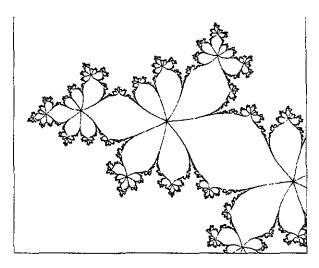


Figura 4: Cuenca parabólica

3. El Conjunto de Mandelbrot

Nosotros estamos interesados en trabajar con los polinomios

$$f_c(z) = z^2 + c \ (c \in \mathbb{C}).$$

En este caso no sól tenemos el espacio dinámico (o de fases) donde estudiamos los iterados de f_c , sino además tenemos el espacio de parámetros donde varía c. En el espacio de parámetros tenemos un subconjunto muy especial:

Definición 3 El Conjunto de Mandelbrot para los polinomios f_c es el conjunto

 $\mathcal{M} := \{c \in \mathbb{C} \mid J(f_c) \text{ es conexo}\}$

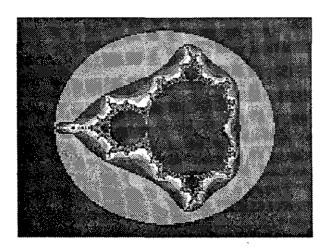


Figura 5: El conjunto de Mandelbrot

La figura 5 ilustra \mathcal{M} , así como los conjuntos de Julia de las aplicaciones correspondientes a algunos de los parámetros.

Para ser rigurosos, deberíamos decir que \mathcal{M} es el conjunto de Mandelbrot para los polinomios f_c , puesto que podemos definir el conjunto de Mandelbrot en el conjunto de parámetros de otras aplicaciones. Como un ejemplo sencillo definimos

$$\mathcal{M}_n = \{c \in \mathbb{C} \mid J(f_{n,c}) \text{ es conexo}\}$$

donde $f_{n,c}(z) = z^n + c$, $n \in \mathbb{N}$. Todos los \mathcal{M}_n son conjuntos de Mandelbrot. Sin embargo, en lo que sigue el *conjunto de Mandelbrot* será el conjunto \mathcal{M} definido anteriormente.

Los valores de c para los cuales f_c tiene un ciclo atractor pertenecen al interior de \mathcal{M} ; aquellos que corresponden a f_c con ciclos parabólicos o discos

de Siegel se encuentran en $\partial \mathcal{M}$; ningún f_c presenta anillos de Hermann. La afirmación: "para todo punto en el interior de \mathcal{M} , f_c tiene un ciclo atractor" es todavía una pregunta abierta.

Los siguientes son algunos teoremas relacionados con el estudio de \mathcal{M} ([F], [D2]).

Teorema 4 $J(f_c)$ es conexo si y sólo si $|f_c^n(0)| \neq \infty$ cuando $n \to \infty$.

Este teorema nos proporciona otra manera de caracterizar a \mathcal{M} .

Teorema 5 M es conexo.

Aunque la conexidad de \mathcal{M} es conocida, todavía se desconoce si \mathcal{M} es localmente conexo. La evidencia numérica apunta hacia una respuesta afirmativa, pero todavía está pendiente una demostración formal. La conexidad local de \mathcal{M} implicaría, entre otras cosas (ver [Ma]), que

$$\stackrel{\circ}{\mathcal{M}} = \{c \in \mathbb{C} \mid f_c \text{ tiene un ciclo atractor}\}.$$

Llamamos ϵ -nube de un conjunto A a

$$N(\epsilon,A) = \bigcup_{a \in A} B_{\epsilon}(a)$$

donde $B_{\epsilon}(a)$ es la bola de radio ϵ centrada en a.

Definición 4 La distancia de Hausdorff entre dos conjuntos compactos A y B es

$$D_H(A, B) := \inf\{\epsilon \geq 0 \mid A \subset N(\epsilon, B), B \subset N(\epsilon, A)\}.$$

Definición 5 Dos aplicaciones f, g son J-equivalentes si existe un homeomorfismo $h: J(f) \to J(g)$ que las conjugue.

Dada una familia analítica

$$f: W \times \bar{\mathbb{C}} \to \bar{\mathbb{C}}$$

decimos que $w_0 \in W$ es J-estable si tiene una vecindad W_0 de tal forma que f_{w_0} es J-equivalente a f_w para toda $w \in W_0$ y $J(f_w)$ depende continuamente de w en el sentido de la distancia de Hausdorff. De no satisfacerse estas condiciones decimos que w_0 es J-inestable. En caso de no existir confusión también podemos decir que f_{w_0} es J-estable (inestable) en la familia $\{f\}$.

Teorema 6 (MSS) Los valores J-inestables de la familia $\{f_c\}$ coinciden con $\partial \mathcal{M}$.

4. Dimensión de Hausdorff

Los sistemas dinámicos complejos generan, usualmente, fractales. Los conjuntos de Julia suelen serlo y la frontera de $\mathcal M$ no es una excepción. Tanto $J(f_c)$ como $\partial \mathcal{M}$ tienen dimensión topológica cero o uno; sin embargo, suelen ser más complicados que otros objetos con estas dimensiones (la dimensión topológica de un conjunto es siempre un entero; es cero si el conjunto es totalmente disconexo, uno si cada punto tiene vecindades arbitrariamente pequeñas con frontera de dimensión cero y así sucesivamente). ¿A qué nos referimos al decir más complicados? Pensemos en un subconjunto de \mathbb{R}^n con dimensión topológica igual a cero (escribiremos dim(X) = 0). X puede constar de un punto, de un número finito o de una infinidad. Un conjunto infinito de puntos aislado es, esencialmente, igual a un conjunto finito. Sin embargo, si el conjunto contiene puntos de acumulación la situación se torna distinta. Como ejemplos podemos mencionar una sucesión con un punto de acumulación, conjuntos con una cantidad infinita de puntos de acumulación (\mathbb{Q}, \mathbb{R}) y como un caso muy especial el conjunto ternario de Cantor $(C_{1/3})$. Este conjunto tiene propiedades que lo distinguen de otros conjuntos formados por puntos. Es autosimilar, i.e. $C_{1/3} \cap [0, 1/3]$ es igual a $C_{1/3}$ cambiando la escala por un factor de 1/3. Es no numerable pero a la vez muy magro (en el sentido que cualquier manera razonable de medir longitud nos dirá que tiene longitud cero). Estudiarlo desde el punto de vista geométrico con herramientas usuales resulta complicado, puesto que cerca de cada punto hay una infinidad de puntos separados por intervalos de longitudes muy variables.

Podemos dar ejemplos similares para objetos 1-dimensionales, como $\partial \mathcal{M}$. Aunque $\dim(\partial \mathcal{M})=1$, este objeto es "más complicado" que un objeto 1-dimensional usual, comenzando porque no existe la tangente a $\partial \mathcal{M}$ en ningún punto. Esto nos sugiere que es una curva (con una noción amplia de curva) muy intrincada. Es aquí donde surge la necesidad de tener una escala que mida cuán intrincada. La dimensión de Hausdorff arroja cierta luz a este respecto. En cierta forma esta dimensión mide cuanto espacio "llena" un conjunto y cuantifica sus irregularidades a muy pequeña escala. Pasemos a las definiciones formales.

Sea $U \subset \mathbb{R}^n$ no vacío, denotamos por

$$|U| := \sup\{|x - y| \mid x, y \in U\}.$$

Decimos que $\mathcal{U} = \{U_i\}$ $(i \in I)$ es una δ -cubierta de $S \subset \mathbb{R}^n$ si:

1. U es una cubierta de S,

- 2. $\{U_i\}$ es una colección numerable de subconjuntos de \mathbb{R}^n ,
- 3. $0 < |U_i| \le \delta$ para toda $i \in I$.

Sea F un subconjunto no vacío de \mathbb{R}^n , definimos

$$H^s_\delta(F) = \inf \left\{ \sum_{i=1}^\infty |U_i|^s \mid \{U_i\} ext{es una } \delta - ext{cubierta de } F
ight\}.$$

Definición 6 (Medida s-dimensional de Hausdorff) Sea F un subconjunto de \mathbb{R}^n , la medida s-dimensional de Hausdorff de F es

$$H^{s}(F) = \lim_{\delta \to 0} H^{s}_{\delta}(F)$$

Notemos que si $\delta_1 \geq \delta_2$ entonces

$$\{\delta_1 - \text{cubiertas de } F\} \subset \{\delta_2 - \text{cubiertas de } F\}.$$

Por consiguiente, $H_{\delta_1}^s(F) \leq H_{\delta_2}^s(F)$ y por lo tanto $H^s(F)$ está bien definida (usualmente es $0 \circ \infty$).

La medida s-dimensional de Hausdorff es una medida en el sentido usual. De hecho, si F es un Boreliano en \mathbb{R}^n la medida n-dimensional de Hausdorff de F y su medida de Lebesgue usual difieren por una constante (el "volumen" de la bola n-dimensional de radio 1).

Cuando ampliamos por un factor λ , la longitud de una curva se multiplica por λ , el área de una región plana se multiplica por λ^2 y así sucesivamente. En el caso de la medida s-dimensional de Hausdorff multiplicamos por λ^s . Esta propiedad la utilizaremos más adelante para hacer algunos cálculos referentes a Dimensión de Hausdorff.

Ya estamos en condiciones de definir la Dimensión de Hausdorff.

Cuando $\delta < 1, t > s$ y $\{U_i\}$ es una δ -cubierta de F entonces

$$\sum_{i} |U_i|^t \le \delta^{t-s} \sum_{i} |U_i|^s,$$

de donde $H^t_{\delta}(F) \leq \delta^{t-s} H^s_{\delta}(F)$. Por lo tanto $H^t(F) = 0$ si $H^s(F) < \infty$.

Lema 2 Dado $F \subset \mathbb{R}^n$ no vacío, existe s_0 que satisface:

- 1. Si $s > s_0$ entonces $H^s(F) = 0$.
- 2. Si $s < s_0$ entonces $H^s(F) = \infty$.

Demostración. Definimos $s_0 = \inf\{s \mid H^s(F) = \infty\}$, la observación anterior nos garantiza que s_0 tiene las propiedades requeridas.

El lema anterior nos permite dar la siguiente

Definición 7 La Dimensión de Hausdorff de F es so y escribimos

$$Dim_{H}(F) = s_{0}.$$

A continuación daremos un ejemplo.

Proposición 1 $Dim_H(C_{1/3}) = log2/log3$

Demostración. Podemos separar $C_{1/3}$ en $R_I = C_{1/3} \cap [0,1/3]$ y $R_D = C_{1/3} \cap [1/3,1]$. Claramente $R_I \cap R_D = \emptyset$ y $R_I \cup R_D = C_{1/3}$ y tanto R_I como R_D son iguales a $C_{1/3}$ ampliando por un factor de 1/3. Por lo tanto, para toda s se satisface

$$H^{s}(C_{1/3}) = H^{s}(R_{I}) + H^{s}(R_{D}) = 1/3^{s}H^{s}(C_{1/3}) + 1/3^{s}H^{s}(C_{1/3}).$$

Supongamos para $s_0 := \text{Dim}_H(C_{1/3}), 0 < H^{s_0}(C_{1/3}) < \infty$. Entonces podríamos dividir entre $H^{s_0}(C_{1/3})$ en la expresión

$$H^{s_0}(C_{1/3}) = 2(1/3)^{s_0}H^{s_0}(C_{1/3})$$

y obtendríamos $s_0 = \log 2/\log 3$.

Resta entonces demostrar que $0 < H^{s_0}(C_{1/3}) < \infty$.

Llamaremos básicos a los intervalos de longitud 3^{-k} $(k \in \mathbb{N})$ que forman los conjuntos E_k . La cubierta $\{U_i\}$ formada por los 2^k básicos de longitud 3^{-k} que forman E_k nos lleva a la siguente designaldad:

$$H_{3-k}^s(C_{1/3}) \le \sum |U_i|^s = 2^k 3^{-ks} = 1 \text{ si } s = \log 2/\log 3.$$

Mostraremos ahora que $H^s(C_{1/3}) \ge 1/2$, con lo que finaliza la demostración. Esto es equivalente a probar que

$$\sum |U_i|^s \ge 1/2 = 3^{-s}$$

para toda cubierta $\{U_i\}$ de $C_{1/3}$. Es suficiente considerar el caso en el que los conjuntos U_i son intervalos y, de hecho, podemos agrandarlos ligeramente y utilizar la compacidad de $C_{1/3}$ y entonces restringirnos al caso en que $\{U_i\}$ es una colección finita de subintervalos cerrados de [0,1].

Para cada U_i , sea $k \in \mathbb{N}$ tal que

$$3^{-(k+1)} \le |U_i| < 3^k.$$

Como la separación entre básicos de E_k es por lo menos 3^{-k} , U_i intersecta como máximo a uno. Si tomamos $j \geq k$ entonces U_i intersecta a lo más $2^{j-k} = 2^j 3^{-sk} \leq 2^j 3^s |U_i|^s$ intervalos básicos de E_j (Puesto que 2^{j-k} es el número de básicos de E_j contenidos en cada básico de E_k). Si ahora escogemos j suficientemente grande para que se satisfaga $3^{-(j+1)} \leq |U_i|$ para toda U_i , entonces, como $\{U_i\}$ intersecta a los 2^j básicos de E_j si sumamos los intervalos tenemos

$$2^j \le \sum_i 2^j 3^s |U_i|^s,\tag{1}$$

ya la desigualdad $2^{j-k} \leq 2^j 3^s |U_i|^s$ se satisface para toda U_i y $\{U_i\}$ tiene por lo menos 2^k elementos. La desigualdad (1) nos da el resultado que buscábamos.

En [F] y [Ba] hay otros ejemplos del cálculo Dim_H de algunos conjuntos.

A continuación enunciaremos algunas propiedades importantes de la Dimensión de Hausdorff (ver [F]). Sea F un subconjunto no vacío de \mathbb{R}^n .

A. Sea $f:F\to {\rm I\!R}^m$ una aplicación $\alpha ext{-H\"older}$ continua, es decir, existe $c\in \mathbb{Z}^+$ tal que

$$|f(x) - f(y)| \le c|x - y|^{\alpha} \ (x, y \in F).$$

Entonces $\operatorname{Dim}_{\mathsf{H}}(f(F)) \leq (1/\alpha)\operatorname{Dim}_{\mathsf{H}}(F)$.

- B. Como corolario de la propiedad anterior tenemos que si $f: F \to \mathbb{R}^m$ es Lipschitz entonces $\operatorname{Dim}_{H}(f(F)) \leq \operatorname{Dim}_{H}(F)$.
- C. Si $f: F \to \mathbb{R}^m$ es bi-Lipschitz, es decir, existen $c_1, c_2 \in \mathbb{Z}^+$ tales que

$$|c_1|x-y| \le |f(x)-f(y)| \le |c_2|x-y| \ (x,y \in F)$$

entonces $Dim_{H}(f(F)) = Dim_{H}(F)$.

D. Si $Dim_H(f) < 1$ entonces F es totalmente disconexo.

Capítulo 2

Las Aplicaciones en F_0

1. Coordenadas de Fatou

Los resultados de esta sección se desarrollarán para la familia de funciones F_0 cuyos elementos tienen un punto fijo parabólico de multiplicador 1 en el origen. Vamos también a pedir que si $f_0 \in F_0$ entonces f''(0) = 1. De esta manera

$$f_0(z)=z+\frac{1}{2}z^2+\cdots$$

Posteriormente se trabajará con puntos fijos parabólicos de multiplicador distinto de 1. Sin embargo, siempre podremos utilizar los resultados obtenidos en esta sección al trabajar con f^q donde q es el número de pétalos alrededor del punto fijo.

Las coordenadas de Fatou son aplicaciones que conjugan, parcialmente, la dinámica en una vecindad de un punto fijo parabólico con la translación T(z) = z + 1. Son la herramienta fundamental para obtener los resultados de este trabajo.

Sean:

$$\Omega^{+} = \{z \in \mathbb{C} \mid \operatorname{Re} z > b - |\operatorname{Im} z|\}$$

$$\Omega^{-} = \{z \in \mathbb{C} \mid \operatorname{Re} z < -b + |\operatorname{Im} z|\}$$

para b > 0 grande, como se ilustra en la figura 6.

Sean I(z)=1/z, $\Omega_{+}=I(\Omega^{+})$, $\Omega_{-}=I(\Omega^{-})$ y $f_{0}\in F_{0}$, tenemos entonces lo siguiente:

- 1. f_0 es inyectiva en Ω_+ y en Ω_- .
- 2. $f_0(\Omega_+) \subset \Omega_+ \ y \ f_0(\Omega_-) \supset \Omega_-$

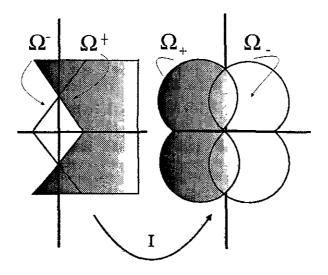


Figura 6: Coordenadas de Fatou

Las afirmaciones anteriores son claras si cambiamos la variable a w = -1/z y trabajamos en Ω^- y Ω^+ , en cuyo caso tenemos que:

$$f_0^*(w) = I \circ f_0 \circ I^{-1}(w) = w + 1 + \frac{a}{w} + O(\frac{1}{w^2})$$

Decimos que R es una región derecha (resp. izquierda) si contiene un semiplano derecho (resp. izquierdo).

Teorema 7 Existen aplicaciones inyectivas y holomorfas $\phi_{0,+}: \Omega_+ \to \mathbb{C}$ y $\phi_{0,-}: \Omega_- \to \mathbb{C}$ con las siguientes propiedades:

- 1. $\phi_{0,+}(\Omega_+)$ es una región derecha y $\phi_{0,-}(\Omega_-)$ es una región izquierda.
- 2. $\phi_{0,+}(f_0(z)) = \phi_{0,+}(z) + 1$ si $z \in \Omega_+$ $y \phi_{0,-}(f_0(z)) = \phi_{0,-}(z) + 1$ si $z, f_0(z) \in \Omega_-$.

Las aplicaciones anteriores se llaman coordenadas de Fatou. Diremos que $\phi_{0,+}$ es la coordenada de entrada y $\phi_{0,-}$ la de salida.

A continuación se da un bosquejo de la prueba [D1]:

Sea $X^- = \Omega^-/f_0^*$ el cociente de Ω^- obtenido al identificar ω y $f_0^*(\omega)$ si ambos pertenecen a Ω^- . Tenemos entonces que, topológicamente, X^- es un cilindro (ver la sección referente a regiones fundamentales en este capítulo). El Teorema de Uniformización de Riemann [L], [Co] nos indica que X^- es

isomorfo (\mathbb{C} -analíticamente) al cociente B_h/\mathbb{Z} o al cociente H/\mathbb{Z} . Donde B_h es una franja horizontal de \mathbb{C} de ancho h (el módulo) abierta y H es el semiplano superior. En nuestro caso tenemos un cilindro de módulo infinito hacia ambos extremos ($h = \infty$), es decir $X^- \approx \mathbb{C}/\mathbb{Z}$.

Sea $\Psi: X^- \to \mathbb{C}/\mathbb{Z}$ un isomorfismo y denotemos por $\chi_{f_0^*}$ a la aplicación cociente que manda Ω^- en X^- . Dado que Ω^- es simplemente conexa, podemos levantar la aplicación $\Psi \circ \chi_{f_0^*}$ a una aplicación $\phi_{\Omega^-}^-: \Omega^- \to \mathbb{C}$. Si componemos esta última con I obtenemos una aplicación $\phi^-: \Omega_- \to \mathbb{C}$. El siguiente diagrama conmutativo nos muestra que esta ϕ^- es precisamente la coordenada de Fatou requerida.

$$\begin{array}{ccccc} \Omega_{-} & \stackrel{f}{\longrightarrow} & \Omega^{-} & \stackrel{\phi_{\Omega^{-}}^{-}}{\longrightarrow} & \mathbb{C} \\ \downarrow \chi_{f_{0}} & & \downarrow \chi_{f_{0}^{*}} & & \downarrow \chi_{z} \\ \Omega_{-}/f_{0} & \stackrel{\cong}{\longrightarrow} & X^{-} & \stackrel{\Psi}{\longrightarrow} & \mathbb{C}/\mathbb{Z} \end{array}$$

Dos puntos que difieren por f_0^* en Ω^- difieren por un entero bajo $\phi_{\Omega^-}^-$. Se puede ver que tal entero es 1 si Ψ respeta la orientación de los cilindros.

La coordenada de Fatou de entrada se construye de una manera similar. Cabe mencionar que las coordenadas de Fatou son únicas salvo por una constante aditiva. Esta última depende de Ψ y del levantamiento de $\phi_{\Omega^-}^-$.

constante aditiva. Esta última depende de Ψ y del levantamiento de $\phi_{\Omega^-}^-$. Si trabajamos en Ω^+ y Ω^- entonces $\phi_0^+ = \phi_{0,+} \circ I$, $\phi_0^- = \phi_{0,-} \circ I$. En estas coordenadas podemos escribir ϕ_0^\pm de la siguiente manera:

$$\phi_0^{\pm}(w) = w - a \log w + c_{\pm,0} + o(1)$$

cuando $w \to \infty$ dentro de los sectores $\{z \in \mathbb{C} \mid \operatorname{Re} z > b - k | \operatorname{Im} z | \}$ y $\{z \in \mathbb{C} \mid \operatorname{Re} z < -b + k | \operatorname{Im} z | \}$ claramente contenidos en Ω^{\pm} (0 < k < 1, $c_{\pm,0}$ constantes).

2. Estimación de las Coordenadas de Fatou

Para poder dar un estimado de las Coordenadas de Fatou es necesario utilizar la siguiente

Proposición 2 1. Existen constantes $R_1, C_1, C_2 > 0$ tales que si $U = \{z \mid |z-z_0| < R\}$ para $R \ge R_1$, Φ y v son aplicaciones holomorfas en U y satisfacen:

i) Φ es univalente en U

ii)
$$|v(z) - 1| < \frac{1}{4} \text{ si } z \in U$$

iii)
$$\Phi(z + v(z)) = \Phi(z) + 1$$
 si $z, z + v(z) \in U$

Entonces:

$$\left|\Phi'(z_0) - \frac{1}{v(z_0)}\right| \le C_1(\frac{1}{R^2} + |v'(z_0)|) \le \frac{C_2}{R}.$$

2. Supongamos que $U = \{z \in \mathbb{C}^* \mid \theta_1 < \arg z < \theta_2\} \ (\theta_2 < \theta_1 + \pi/2)$ $y \mid v'(z) \mid \leq C/|z|^{1+\nu} \ (z \in U)$ para algunos $C, \nu > 0$. Entonces para $z_0 \in U$ $y \theta_1', \theta_2'$ que satisfacen $\theta_1 \leq \theta_1' \leq \theta_2' \leq \theta_2$ existen $R_2, C_3 > 0$ $y \in \mathbb{C}$ tales que:

$$\left|\Phi(z) - \int_{z_0}^z \frac{d\xi}{v(\xi)} - \chi\right| \le C_3 \left(\frac{1}{|z|} + \frac{C}{|z|^{\nu}}\right)$$

si z satisface $\theta_1' < \arg z < \theta_2'$, $\operatorname{dist}(z, \mathbb{C} \setminus U) > R_1$ (C_3 depende únicamente de θ_i , θ_i' .)

Demostración.

1. Podemos suponer, sin pérdida de generalidad, que $z_0 = 0$. Sea R >> 1. Utilizaremos el siguiente

Teorema 8 (Distorsión de Koebe, [CG]) Si f es una aplicación univalente en $\triangle = \{z \mid |z| < 1\}$ con f(0) = 0 y f'(0) = 1 entonces:

$$\frac{|z|}{(1+|z|)^2} \le |f(z)| \le \frac{|z|}{(1-|z|)^2}.$$

Definimos

$$F(\eta) = \frac{\Phi(z+2\eta) - \Phi(z)}{2\Phi'(z)} \ (\eta \in \Delta).$$

Entonces si |z| < R - 2, el Teorema 8 implica

$$\frac{|\eta|}{(1+|\eta|)^2} \le |F(\eta)| \le \frac{|\eta|}{(1-|\eta|)^2}$$

dado que Φ es univalente en $W = \{\xi \mid |\xi - z| < 2\}$ y F satisface las hipótesis. Es decir, si $\eta \in \Delta$ y $z \in W$ entonces F está definida en Δ , es univalente, F(0) = 0 y F'(0) = 1.

Ahora bien, $v(z)/2 \in \Delta$ ($v(z) \in \Delta(0, 5/4)$), así que podemos sustituir v(z)/2 por η y las desigualdades se conservan:

$$\frac{|v(z)|}{(1+|v(z)|/2)^2} \le \left|\frac{\Phi(z+v(z))-\Phi(z)}{\Phi'(z)}\right| \le \frac{|v(z)|}{(1-|v(z)|/2)^2}$$

De modo que

$$C' < |\Phi'(z)| < C \tag{2}$$

si |z| < R - 2. Las constantes C, C' acotan a los inversos de las expresiones:

 $\frac{|v(z)|}{(1+|v(z)|/2)^2} \ \ \mathbf{y} \ \ \frac{|v(z)|}{(1-|v(z)|/2)^2}.$

Recordemos que $|v(z)-1|<\frac{1}{4}$ y las expresiones arriba mencionadas sólo dependen de v(z).

Utilizando la fórmula integral de Cauchy tenemos:

$$\Phi''(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{\Phi'(\xi)}{(\xi - z)^2} d\xi$$

donde $\gamma = \{\xi \mid |\xi - z| = R/3\}$ y |z| < R/2. Para cualquier z que tomemos, $\gamma \subset \{z \mid |z| < R-2\}$ (si R es suficientemente grande R/3 < R-2), así que $|\Phi'(z)| < C$ (ver la ecuación (2)). Entonces:

$$|\Phi''(z)| \le \frac{1}{2\pi} \frac{C}{(R/3)^2} \int_{\gamma} |d\xi| = \frac{3C}{R}$$
 (3)

De ahora en adelante en las expresiones en que sólo aparecen múltiplos de C escribiremos C para facilitar la lectura.

Utilizando la fórmula de Taylor podemos expresar $\Phi(z + v(z))$ de la siguiente manera:

$$\Phi(z+v(z)) =$$

$$\Phi(z) + v(z)\Phi'(z) + (v(z))^2 \int_0^1 (1-t)\Phi''(z+tv(z))dt$$
 (4)

Si |z|, |z+v(z)| < R/2 entonces $\Phi(z+v(z)) = \Phi(z) + 1$ y la ecuación (3) se transforma en

$$1 = v(z)\Phi'(z) + (v(z))^2 \int_0^1 (1-t)\Phi''(z+tv(z))dt$$

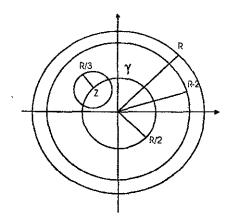


Figura 7

y obtenemos

$$|1 - v(z)\Phi'(z)| \le |v(z)|^2 \int_0^1 |\Phi''(z + tv(z))| dt \tag{5}$$

y por lo tanto $|1-v(z)\Phi'(z)| \leq C/R$ (Consecuencia de (3), C absorbe la cota sobre |v(z)|).

Utilizando nuevamente la fórmula integral de Cauchy tenemos que:

$$(1 - \Phi'(z)v(z))' = \frac{1}{2\pi i} \int_{\gamma} \frac{1 - \Phi'(\xi)v(\xi)}{(\xi - z)^2} d\xi$$

y además

$$|\Phi''(z)v(z) + \Phi'(z)v'(z)| = |(1 - \Phi'(z)v(z))'|,$$

de donde,

$$|\Phi''(z)v(z) + \Phi'(z)v'(z)| \le \frac{1}{2\pi} \int_{\gamma} \left| \frac{1 - \Phi'(\xi)v(\xi)}{(\xi - z)^2} \right| d\xi$$

como, (ver (5)),

$$\frac{1}{2\pi} \int_{\gamma} \left| \frac{1 - \Phi'(\xi)v(\xi)}{(\xi - z)^2} \right| d\xi \le \frac{1}{2\pi} C/R \int_{\gamma} \left| \frac{d\xi}{(\xi - z)^2} \right|$$

entonces

$$|\Phi''(z)v(z) + \Phi'(z)v'(z)| \le C/R^2$$
 (6)

si |z| < R/4.

Como $|v(z)| \leq C$, obtenemos de la fórmula integral de Cauchy que $|v'(z)| \leq C/R$ y $|v''(z)| \leq C/R^2$ si |z| < R/2 (Estos estimados se deducen de la misma forma en que se hizo para Φ (1)). Expandiendo v'(z) en serie de Taylor obtenemos:

$$|v'(z)| \le |v'(0)| + \left|z \int_0^1 (1-t)v''(zt)dt\right| \le |v'(0)| + C/R^2$$
 (7)

si |z| < 5/4. Lo anterior implica

$$|\Phi''(z)v(z)| = |\Phi''(z)v(z) + \Phi'(z)v'(z) - \Phi'(z)v'(z)| \le \le |\Phi''(z)v(z) + \Phi'(z)v'(z)| + |\Phi'(z)v'(z)|$$

Por (6) y (7)

$$|\Phi''(z)v(z)| \le C/R^2 + C|v'(z)| \le C/R^2 + C|v'(0)| + C/R^2 =$$

$$= 2C/R^2 + C|v'(0)|.$$

Existe C'>0 tal que $C'\leq |v(z)|,$ así que podemos dividir entre C' y, renombrando C, obtenemos

$$|\Phi''(z)| \le C(1/R^2 + |v'(0)|)$$

si |z| < 5/4. Sustituyendo estos resultados en el desarrollo en serie de Taylor para $\Phi(z + v(z))$ y después aplicando a z = 0 obtenemos:

$$|1 - \Phi'(0)v(0)| \le C(1/R^2 + |v'(0)|) \le C/R.$$

Si dividimos la expresión entre |v'(0)| obtenemos la desigualdad que buscábamos.

2. Para demostrar la segunda parte del lema utilizaremos la primera. Sea $z \in W = \{w \mid \theta_1' < \arg w < \theta_2'\}$. Existe C_4 tal que dist $(z, \mathbb{C} - U) > C_4|z|$. Una explicación geométrica aclará esta afirmación:

Consideremos qué sucede dentro del círculo unitario (la C_4 que se obtendrá será válida para el caso general). Sea $z \in W$, entonces

$$\frac{\operatorname{dist}(z,\mathbb{C}-U)}{|z|}=\operatorname{sen}(\arg z-\theta_1)$$

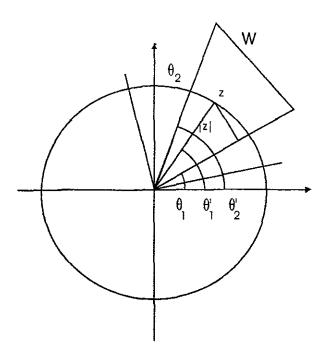


Figura 8

y por lo tanto

$$\operatorname{dist}(z, \mathbb{C} - U) = |z|\operatorname{sen}(\arg z - \theta_1) \ge |z|\operatorname{sen}(\theta_1' - \theta_1)$$

ya que arg $z > \theta_1'$ y las magnitudes angulares son todas menores que $\pi/2$. Sea $C_4 = \text{sen}(\theta_1' - \theta_1)$.

Aplicamos el primer resultado a la región $H = \{w \mid |w-z| < C_4|z|\}$ y obtenemos:

$$\left| \Phi'(z) - \frac{1}{v(z)} \right| \le C_1 \left(\frac{1}{(C_4|z|)^2} + |v'(z)| \right) \le C_1' \left(\frac{1}{|z|^2} + \frac{C}{|z|^{1+\nu}} \right)$$
(8)

Si integramos a lo largo de γ un camino en el sector $\{w \mid \theta_1' < \arg w < \theta_2'\}$ obtenemos:

$$\left| \int_{z_0}^z \Phi'(\xi) - \frac{1}{v(\xi)} d\xi \right| \le \int_{z_0}^z \left| \Phi'(\xi) - \frac{1}{v(\xi)} \right| |d\xi|$$

y utilizando (8)

$$\left| \int_{z_0}^z \left| \Phi'(\xi) - \frac{1}{v(\xi)} \right| |d\xi| \le C_1' \left(\frac{1}{|z|^2} + \frac{C}{|z|^{1+\nu}} \right) |z| \le C_1' \left(\frac{1}{|z|} + \frac{C}{|z|^{\nu}} \right)$$

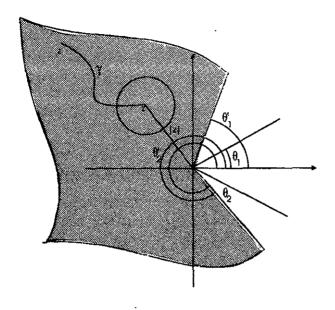


Figura 9

lo cual implica

$$\left|\Phi(z) - \Phi(z_0) + \int_{z_0}^z \frac{d\xi}{v(\xi)}\right| \le C_3 \left(\frac{1}{|z|} + \frac{C}{|z|^{\nu}}\right)$$

Con la desigualdad anterior podemos dar un estimado para las Coordenadas de Fatou.

Sea $v(z)=f_0^*(z)-z=1+a/z+O(1/z^2), \Phi=\Phi_0^\pm, U=\{z\in\mathbb{C}^*\mid \pi/4<\arg z<3\pi/4.$ Dado que $|v'(z)|=|-a/z^2+O(1/z^3)|\leq C/|z|^2$ para z fuera de una vecindad del origen (recordemos que este estimado contempla que $z\to\infty$ bajo ciertas condiciones), podemos aplicar los resultados de la proposición 2 y obtener, en un sector más pequeño que U:

$$\left|\Phi_0^{\pm}(z) - \int_{z_0}^z \frac{d\xi}{v(\xi)} - \chi\right| \le \frac{C_3'}{|z|}.$$

Como $1/v(z) = 1 - a/z + O(1/z^2)$, la expresión anterior se transforma en

$$\left| \Phi_0^{\pm}(z) - \int_{z_0}^z (1 - a/\xi + O(1/\xi^2)) d\xi \right| \le \frac{C_3'}{|z|}$$

Y por lo tanto $\Phi_0^{\pm}(z) = z - a \log z + \text{cte.} + O(1/z)$ cuando $|z| \to \infty$ por sectores dentro de U.

3. Extensión de las Coordenadas de Fatou

Las aplicaciones $\phi_{0,+}$ y $\phi_{0,-}$ sólo están definidas en los pétalos atractor y repulsor respectivamente. Sin embargo, para que nos sean útiles en este trabajo es necesario extender su dominio de definición.

Denotemos por B la cuenca parabólica del punto fijo.

Proposición 3 Si Ω_+ es un pétalo atractor, entonces la coordenada de Fatou

$$\phi_{0,+}:\Omega_+\to\mathbb{C}$$

se extiende de manera única a una aplicación holomorfa en B que también satisface la ecuación funcional $\phi_{0,+}(f_0(z)) = \phi_{0,+}(z) + 1$

Demostración. Dado que $f_0^n(z) \to 0$ uniformemente para $z \in B$ entonces $f_0^k(z) \in \Omega_+$ para alguna $k < \infty$. Definimos $\Phi_{0,+}$, la extensión de $\phi_{0,+}$, de la siguiente manera:

$$\Phi_{0,+}(z) = \begin{cases} \phi_{0,+}(z) & \text{si } z \in \Omega_+ \\ \phi_{0,+}(f_0^n(z)) - n & \text{si } z \in B \text{ y } f_0^n(z) \in \Omega_+ \end{cases}$$

Esta aplicación está bien definida. Si $f_0^{n_1}(z), f_0^{n_2}(z) \in \Omega_+$ (supongamos que $n_1 \le n_2$) entonces

$$\phi_{0,+}(f_0^{n_2}(z)) - n_2 = \phi_{0,+}(f_0^{n_1+(n_2-n_1)}(z)) - (n_1+n_2-n_1)$$

$$= \phi_{0,+}(f_0^{n_1}(z)) - (n_1+n_2-n_1) + n_2-n_1$$

$$= \phi_{0,+}(f_0^{n_1}(z)) - n_1$$

por la ecuación funcional que $\phi_{0,+}$ satisface en Ω_{+} .

En el caso de $\phi_{0,-}$ utilizaremos un procedimiento similar; sin embargo, extenderemos $\varphi_0 = \phi_{0,-}^{-1}$. Extender la inversa resulta más natural y se mostrará más útil a lo largo del trabajo.

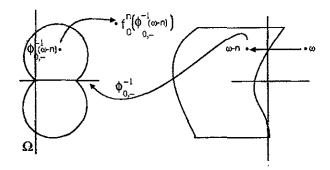


Figura 10

Proposición 4 Si Ω_ es un pétalo repulsor, entonces la aplicación inversa

$$\phi_{0,-}^{-1}:\phi_{0,-}(\Omega_{-})\to\Omega_{-}$$

se extiende de manera única a una aplicación holomorfa $\varphi_0: \mathbb{C} \to \mathbb{C}$ que satisface la siguiente ecuación:

$$f_0(\varphi_0(\omega)) = \varphi_0(\omega+1).$$

Demostración.

Recordemos que $Q_0 = \phi_{0,-}(\Omega_-)$ es una región izquierda (de hecho se puede probar que existe un pétalo particular cuya imagen bajo la coordenada de Fatou es precisamente un semiplano izquierdo). Por lo tanto, dado $\omega \in \mathbb{C}$ existe $n \in \mathbb{N}$ tal que $\omega - n \in Q_0$. Definimos φ_0 de la siguiente manera:

$$\varphi_0(\omega) = \begin{cases} \phi_{0,-}^{-1}(\omega) & \text{si } \omega \in \mathcal{Q}_0 \\ f_0^n(\phi_{0,-}^{-1}(\omega - n)) & \text{si } \omega \in \mathbb{C} \text{ y } \omega - n \in \mathcal{Q}_0 \end{cases}$$

De manera análoga al caso $\Phi_{0,+}$, φ_0 está bien definida. Cabe mencionar que $\varphi_0(\mathbb{C}) = \mathbb{C}$ cuando f_0 es un polinomio y es igual a la esfera de Riemann cuando f_0 no es conjugada a ningún polinomio ([Mi]).

4. Cilindros de Ecalle y la aplicación de transición

Llamaremos una región fundamental para f_0 a una subregión de Ω_+ (respectivamente de Ω_-) delimitada por dos curvas ℓ y ℓ' que se encuentran en

el origen y satisfacen $f_0(\ell) = \ell'$. Recordemos que el origen no forma parte de la región fundamental (no forma parte de Ω_{\pm}).

La órbita de un punto bajo f_0 sólo puede pasar dos veces por una región fundamental si pasa por su frontera. Vistas en coordenadas de f_0^* las regiones fundamentales son franjas verticales. Podemos pedir que ℓ o ℓ' sea una recta vertical. Denotaremos S_+, S_- a las regiones fundamentales en Ω_+ y Ω_- .

Las condiciones anteriores nos permiten construir el cociente de S_+ y S_- identificando $z \in \Omega_+$ y $f_0(z)$ (de igual forma para Ω_- si $f_0(z) \in \Omega_-$). Es decir,

$$C_{+} = \Omega_{+}/f_{0}$$
 y $C_{-} = \Omega_{-}/f_{0}$.

Llamaremos a C_+ y C_- los cilindros de Ecalle de entrada y salida respectivamente.

Ya tenemos suficientes herramientas para definir la aplicación de transición, que puede interpretarse como una transición de C_{-} en C_{+} definida en los extremos del cilindro de salida. Por esta razón esta aplicación también es conocida como la aplicación de cuernos (dada la forma que tienen las regiones fundamentales).

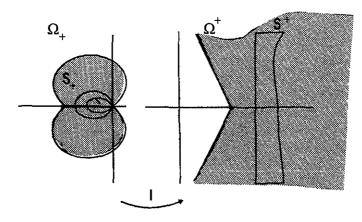


Figura 11

Trabajaremos primero en $\Omega_+ \cap \Omega_-$ y llamaremos

$$\tilde{\epsilon}_{f_0} = \phi_{0,+} \circ (\phi_{0,-})^{-1} : \phi_{0,-}(\Omega_+ \cap \Omega_-) \to \mathbb{C}$$

Nótese que $\phi_{0,+} \circ (\phi_{0,-})^{-1} = \phi_0^+ \circ I \circ I^{-1} \circ (\phi_0^-)^{-1} = \phi_0^+ \circ (\phi_0^-)^{-1}$. Además $\tilde{\epsilon}_{f_0}$ puede definirse en una región $R_b = \{z \mid |\operatorname{Im} z| > b + 2|\operatorname{Re} z|\}$ para b grande. Esto último debido a que la imagen de $\Omega^+ \cap \Omega^-$ bajo ϕ_0^- contiene a R_b (recuérdese la estimación de ϕ_0^-).

Dada la definición, se satisface:

$$\tilde{\epsilon}_{fa}(w+1) = \tilde{\epsilon}_{fa}(w) + 1$$

siempre y cuando ambos lados estén definidos. La relación anterior nos permite extender $\tilde{\epsilon}_{f_0}$ a una región $\{w \mid \text{Im } w \mid > \eta_0\}$ para algún $\eta_0 > 0$. Si queremos aplicar $\tilde{\epsilon}_{f_0}$ a un punto w_0 en esta franja, le sumamos $n \in \mathbb{Z}$ tal que $w_0 + n \in R_b$ y utilizamos la relación funcional.

Sea $\Pi(z) = e^{2\pi i z}$, definimos la siguiente aplicación:

$$\epsilon_{f_0} = \Pi \circ \tilde{\epsilon}_{f_0} \circ \Pi^{-1} : \{0 < |z| < e^{-2\pi\eta_0}\} \cup \{e^{2\pi\eta_0} < |z| < \infty\} \to \mathbb{C}^* \approx \mathbb{C}/\mathbb{Z}$$

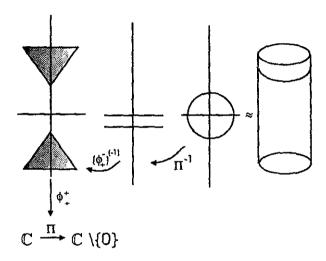


Figura 12

Esta aplicación está bien definida. Sea $z_0 \in D(\epsilon_{f_0}$. Entonces $\Pi^{-1}(z_0)$ consiste de una familia de puntos que difieren entre sí por enteros. Sus imágenes bajo $\tilde{\epsilon}_{f_0}$ también diferirán por enteros y al aplicarles Π quedarán identificadas.

Sabemos (ver sección 2 de este capítulo) que $\phi_0^{\pm}(z)$ se acerca asintóticamente a z cuando $|z| \to \infty$. Así que $\tilde{\epsilon}_{f_0}(z) = \phi_0^{\pm}(\zeta)$, donde $\operatorname{Im}(\zeta = (\phi_0^-)^{-1}(z))$, también tiende a $\pm \infty$ cuando $\operatorname{Im} z$ lo hace. De lo anterior deducimos que $\tilde{\epsilon}_{f_0}(z) - z$ tiene límite cuando $\operatorname{Im} z \to \pm \infty$. Nótese que si $\operatorname{Im} z \to \pm \infty$ entonces $\Pi(z) \to 0, \infty$. Por lo tanto podemos extender analíticamente ϵ_{f_0} a $0 \in \infty$. Estos puntos son puntos fijos, el origen es además

parabólico. Resumiendo,

$$\lim_{z\to 0} \epsilon_{f_0}(z) = \lim_{\mathrm{Im}\, z\to -\infty} \Pi(\tilde{\epsilon}_{f_0}(z)) = \lim_{\mathrm{Im}\, z\to -\infty} \Pi(z) = 0$$

$$\lim_{z \to \infty} \epsilon_{f_0}(z) = \lim_{\operatorname{Im} z \to \infty} \Pi(\tilde{\epsilon}_{f_0}(z)) = \lim_{\operatorname{Im} z \to \infty} \Pi(z) = \infty$$

porque $\operatorname{Im}(\tilde{\epsilon}_{f_0}(z)) \to \pm \infty$ cuando $\operatorname{Im} z \to \pm \infty$. Además:

$$\epsilon_{f_0}'(0) = \lim_{h \to 0} \frac{\epsilon_{f_0}(h) - \epsilon_{f_0}(0)}{h} = \lim_{h \to 0} \frac{\epsilon_{f_0}(h)}{h} = 1$$

La aplicación ϵ_{f_0} se llama *Aplicación de transición*. Su extensión (utilizando $\Phi_{0,+}$ y φ_0) será de suma importancia en el desarrollo de este trabajo.

5. Extensión de $\tilde{\epsilon}_{f_0}$

Sea $\tilde{B} = \varphi_0^{-1}(B)$. Entonces $T(\tilde{B}) = \tilde{B}$ donde T(z) := z+1, ya que $f_0(B) = B$ y además $\tilde{B} \supset \{w \mid |\text{Im } w| > \eta_0\}, (\eta_0 > 0)$ (ver la definición de $\tilde{\epsilon}_{f_0}$).

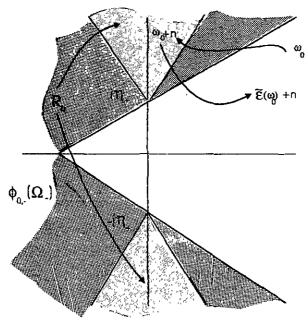


Figura 13

Definimos $\tilde{\epsilon}_{f_0}: \tilde{B} \to \mathbb{C}$ por

$$\tilde{\epsilon}_{f_0} = \Phi_0 \circ \varphi_0.$$

Esta definición coincide con la original, satisface la misma ecuación funcional si $w\in \tilde{B}$ y $\tilde{\epsilon}_{f_0}(w)=w+o(1)$ cuando ${\rm Im}\, w\to \infty$

De manera natural queda definida la aplicación

$$\epsilon_{f_0} = \Pi \circ \tilde{\epsilon}_{f_0} \circ \Pi^{-1} : \Pi(\tilde{B}) \to \mathbb{C}^*$$

la cual está bien definida y puede ser extendida analíticamente a $0, \infty$. Estos últimos son puntos fijos de ϵ_{f_0} de multiplicador distinto de 0 (estos cálculos son los mismos que se hicieron antes de extender $\tilde{\epsilon}_{f_0}$).

Capítulo 3

Perturbación de f_0

En el capítulo anterior estudiamos el comportamiento de la dinámica cerca de un punto fijo parabólico de multiplicador 1. Ahora nos interesa "traducir" los resultados ya obtenidos a aplicaciones que se encuentren en cierta vecindad de una aplicación que pertenece a la familia F_0 . Aunque los resultados de esta sección pueden obtenerse para cualquier aplicación que pertenezca a F_0 , nos vamos a centrar en $f_0(z)=z+z^2$, puesto que este trabajo gira alrededor del conjunto de parámetros para los polinomios de la forma $f_c(z)=z^2+c$ y $f_0(z)=z+z^2$ es conjugada a $f_{1/4}(z)=z^2+1/4$. Como $f_{1/4}$ tiene un punto fijo parabólico de multiplicador 1, podemos asociarle las construcciones del capítulo anterior. De hecho es el único polinomio de la familia cuyo punto fijo parabólico tiene multiplicador 1; esto podría hacernos pensar que los resultados obtenidos no serán de gran utilidad, afortunadamente este no es el caso. Veremos posteriormente que podremos estudiar todos los casos en que se presenten puntos fijos parabólicos apoyándonos en los resultados que obtengamos para $f_{1/4}$.

Como el origen es un punto fijo de multiplicidad 2 de f_0 (es una raíz de orden dos de $f_0(z)-z$), al perturbar f_0 obtendremos una aplicación con dos puntos fijos (cercanos al origen) cuyos multiplicadores estarán cerca de 1 (este fenómeno se llama bifurcación parabólica). Dentro de los diferentes escenarios que pueden darse a raíz de la perturbación nos interesa el siguiente:

Al bifurcarse el punto fijo se forma una "apertura" entre los nuevos puntos fijos. Las órbitas de puntos que se encuentren cerca del origen y a la izquierda de éste pasan a través de la "apertura". Además, hay órbitas que tras pasar por la "apertura" abandonan una vecindad del origen. En este caso la bifurcación tiene un efecto sobre la dinámica global (implosión parabólica). Este fenómeno se explicará más adelante en este capítulo. El otro caso que

podría presentarse es que alguno de los puntos que se bifurcaron actuara como un punto fijo atractor.

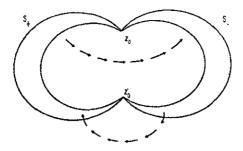


Figura 14

Perturbaremos f_0 sumándole $\epsilon \in \mathbb{R}^+$ pequeño. Esta perturbación, que llamaremos f_{ϵ} , es conjugada a la aplicación $z \mapsto z + 1/4 + \epsilon$. El parámetro correspondiente se encuentra en la recta tangente al cardiode principal del conjunto de Mandelbrot que pasa por 1/4. En general, cuando perturbemos otros polinomios lo haremos de tal manera que los parámetros correspondientes a sus perturbaciones se encuentren en curvas tangentes al cardiode principal que pasen por el parámetro original.

Dado que en este nuevo caso no hay puntos fijos parabólicos, no podremos construir todas las estructuras que se trabajaron anteriormente. En particular, no tendremos pétalos atractor y repulsor; sin embargo, sí podremos hablar de regiones fundamentales (y en consecuencia de Cilindros de Ecalle).

1. Coordenadas de Fatou para f_{ϵ}

Vamos a trabajar en dos regiones cuya unión forma una vecindad del origen, delimitadas por el círculo que pasa por $\alpha=i\sqrt{\epsilon}$, por $\tilde{\alpha}=-i\sqrt{\epsilon}$ y por -1/4 (esta región se llama V_{ϵ}^+) y el círculo que pasa por α , $\tilde{\alpha}$ y por 1/4 (esta región se llama V_{ϵ}^-). Aunque se antojaría que V_{ϵ}^+ y V_{ϵ}^- jugaran el papel de pétalos para f_{ϵ} esto no es posible. No se puede esperar encontrar una aplicación ϕ_{ϵ}^+ que conjugue f_{ϵ} con T y que mande V_{ϵ}^+ en una región derecha, puesto que la órbita de un punto en V_{ϵ}^+ abandona la vecindad en un número finito

de iteraciones. Sin embargo sí es posible obtener aplicaciones con relaciones funcionales como las que satisface f_0 .

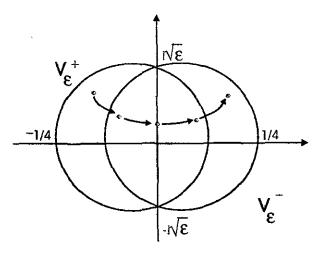


Figura 15

Teorema 9 Existen aplicaciones holomorfas $\phi_{\epsilon}^+: V_{\epsilon}^+ \to \mathbb{C}$ y $\phi_{\epsilon}^-: V_{\epsilon}^- \to \mathbb{C}$ tales que:

- 1. $\phi_{\epsilon}^+(V_{\epsilon}^+)$ es una región de la forma $\{\zeta = \xi + i\eta \mid h_1^+(\eta) < \xi < h^+(\eta)\}$ donde $h_1^+, h^+ : \mathbb{R} \to \mathbb{R}$ continuas y $h^+ h_1^+ > 1$. Análogamente para ϕ_{ϵ}^- .
- 2. $\phi_{\epsilon}^{+}(f_{\epsilon}(z)) = \phi_{\epsilon}^{+}(z)+1$ siempre que z y $f_{\epsilon}(z)$ pertenezcan a V_{ϵ}^{+} . Análogamente para ϕ_{ϵ}^{-} .

Estas aplicaciones también se llaman coordenadas de Fatou y son únicas salvo constantes.

Demostración. La demostración es similar a aquella que se desarrolló para f_0 , sólo que no utilizaremos I(z) = -1/z como cambio de variable, sino la siguiente aplicación:

$$R_{\epsilon}(z) = Z = \frac{1}{2\alpha} \text{Log} \frac{z - \alpha}{z - \tilde{\alpha}}$$

Se utilizarán ramas distintas de logaritmo en V_{ϵ}^+ y V_{ϵ}^- . En ambos casos excluíremos al eje real positivo, en el primero pediremos que $0 < \arg Z < 2\pi$

y en el segundo que $-2\pi < \arg Z < 0$. Con esta elección R_{ϵ} está bien definida para toda $\epsilon > 0$.

Las regiones $V_{\epsilon}^+, V_{\epsilon}^-$ se transforman, bajo R_{ϵ} , en franjas verticales que llamaremos $U_{\epsilon}^+, U_{\epsilon}^-$.

Recordemos que una transformación de Moebius $(M(z) = (z-\alpha)/(z-\tilde{\alpha}))$ manda círculos en círculos, así que conocer la imagen de tres puntos que pertenecen a un círculo es conocer su imagen.

$$M(\alpha) = 0, M(\tilde{\alpha}) = \infty, M(-1/4) = \frac{1 - 16\epsilon}{1 + 16\epsilon} - i\frac{8\sqrt{\epsilon}}{1 + 16\epsilon} = \beta$$

De lo anterior tenemos que la frontera de V_ϵ^+ se transforma en la recta que pasa por el origen y β . Como el origen, que pertenece a V_ϵ^+ , es enviado a la izquierda de esta recta entonces V_ϵ^+ se transforma en el semiplano izquierdo delimitado por dicha recta. La aplicación Log transforma esta región en una franja horizontal cuya parte imaginaria está determinada por el argumento de la anterior. Finalmente, al multiplicar por $1/2\alpha$ obtenemos una franja vertical. Análogamente para V_ϵ^- . Obtenemos franjas ajenas debido a la elección de las ramas de Log.

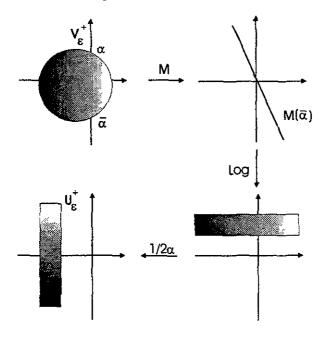


Figura 16

La aplicación f_ϵ se transforma en $F_\epsilon:Z\mapsto Z+rac{1}{\sqrt{\epsilon}}\arctanrac{\sqrt{\epsilon}}{1+z}$

La aplicación $z\mapsto \sqrt{\epsilon}/(1+z)$ transforma el círculo $|z|\le 1/4$ en un círculo que pasa por $4\sqrt{\epsilon}/5, 4\sqrt{\epsilon}/3$ y con centro sobre el eje real. El radio de este círculo es menor que uno. Tenemos que

$$\arctan(z) = \frac{1}{2} \left[\arg\left(i-z\right) - \arg\left(i+z\right) \right] + \frac{i}{2} \left[\log\left|i+z\right| - \log\left|i-z\right| \right]$$

y que $\pi/2 < \arg(i-z) < \pi$ y $0 < \arg(i+z) < \pi/2$, de donde

$$Re\left(\frac{1}{\sqrt{\epsilon}}\arctan\frac{\sqrt{\epsilon}}{1+z}\right) > 0.$$

De lo anterior se sigue que los cocientes $U_\epsilon^\pm/F_\epsilon$ son cilindros de módulo infinito hacia ambos lados. La demostración se sigue como en el caso original.

2. Convergencia de ϕ_{ϵ}^{\pm} a ϕ_{0}^{\pm}

Nos interesa ahora estudiar qué sucede a las aplicaciones ϕ_{ϵ}^{\pm} cuando $\epsilon \to 0$. Es claro que $f_{\epsilon} \to f_0$ y, con las ramas que tomamos para Log, tenemos la siguiente

Proposición 5 La aplicación $R_{\epsilon}(z) \rightarrow I(z)$ cuando $\epsilon \rightarrow 0$.

Demostración. Dadas las ramas que se tomaron para Log, tenemos que

$$\text{Log}\frac{z-\alpha}{z+\alpha}\to 0\ (\sqrt{\epsilon}\to 0)$$

y $1/2\alpha \to \infty$ ($\sqrt{\epsilon} \to 0$), así que, aplicando la regla de L'Hospital, hay que calcular el límite cuando $\sqrt{\epsilon} \to 0$ de

$$R'_{\epsilon}(z) = \frac{-i}{2} \left(\frac{i}{z + i\sqrt{\epsilon}} + \frac{i}{z - i\sqrt{\epsilon}} \right)$$

este límite claramente es I(z).

El resultado anterior nos sugiere la convergencia de las coordenadas de Fatou de la aplicación perturbada a las coordenadas de Fatou de la aplicación original. Dado que las coordenadas son únicas salvo constantes, es importante normalizarlas si queremos aspirar a tener convergencia. Sean $a\in V_\epsilon^+$ y $b\in V_\epsilon^-$ independientemente de ϵ , pediremos entonces que

$$\phi_{\epsilon}^{+}(a) = \phi_{\epsilon}^{-}(b) = 0$$

y normalizaremos las coordenadas de Fatou de f_0 de la misma manera.

El diagrama de cómo se construye ϕ_{ϵ}^{\pm} es el siguiente:

$$\begin{array}{cccc} V_{\epsilon}^{+} & \xrightarrow{R_{\epsilon}} & U_{\epsilon}^{+} & \xrightarrow{\phi_{\epsilon}^{+}} & \mathbb{C} \\ \downarrow \chi_{f_{\epsilon}} & & \downarrow \chi_{F_{\epsilon}} & & \downarrow \chi_{z} \\ V_{\epsilon}^{+}/f_{\epsilon} & \xrightarrow{\approx} & X_{\epsilon}^{+} & \xrightarrow{\Psi_{\epsilon}} & \mathbb{C}/\mathbb{Z} \end{array}$$

Las convergencias que se mencionarán en este párrafo son todas cuando $\epsilon \to 0$. Hacemos notar que tenemos convergencia (respecto a la métrica de Hausdorff) de $U_\epsilon^\pm \to U_0^\pm$ en el sentido que son abiertos simplemente conexos cuyas cerraduras tienen esa propiedad. Dada la convergencia de $R_\epsilon \to I$, tenemos también que $V_\epsilon^\pm \to \Omega^\pm$. Como estas convergencias son uniformes en compactos, tenemos también que $X_\epsilon^+ \to X^+$ y por lo tanto $\Psi_\epsilon \to \Psi$. De lo anterior se sigue que

 $\phi_{\epsilon}^{\pm} \rightarrow \phi_{0}^{\pm} \ (\epsilon \rightarrow 0).$

3. La Fase

Ya construimos las coordenadas de Fatou para f_{ϵ} ($\epsilon > 0$), ambas definidas en $V_{\epsilon}^+ \cap V_{\epsilon}^-$ y normalizadas como en la sección anterior. En esta región las coordenadas difieren por una constante a la que llamaremos el levante de la fase:

$$\bar{\tau}(\epsilon) = \phi_{\epsilon}^{-}(z) - \phi_{\epsilon}^{+}(z) \ z \in V_{\epsilon}^{+} \cap V_{\epsilon}^{-}$$

Denotaremos por P_{ϵ} a la menor n tal que $f_{\epsilon}^{n}(a) \geq b$. Esta constante está relacionada con $\tilde{\tau}(\epsilon)$ de la siguiente manera:

Proposición 6 Sean $\tilde{\tau}(\epsilon)$ y P_{ϵ} como se definió anteriormente, entonces:

$$-P_{\epsilon} \le \tilde{\tau}(\epsilon) \le -P_{\epsilon} + 1$$

Demostración. Sean $a' = f_{\epsilon}^{P_{\epsilon}}(a)$ y $a'' = f_{\epsilon}^{m}(a)$, donde m es tal que $a'' \in V_{\epsilon}^{+} \cap V_{\epsilon}^{-}$. Entonces

$$\phi_{\epsilon}^{+}(a'') = \phi_{\epsilon}^{+}(f_{\epsilon}^{m-1}(a)) + 1 = \dots = m$$

$$\phi_{\epsilon}^{-}(a'') = \phi_{\epsilon}^{+}(a') - (P_{\epsilon} - m).$$

Esto último porque $a'=f_{\epsilon}^{P_{\epsilon}-m}\circ f_{\epsilon}^{m}(a)$, así que $f_{\epsilon}^{-P_{\epsilon}-m}(a')=a''$. De donde tenemos que:

$$\tilde{\tau}(\epsilon) = \phi_{\epsilon}^{+}(a'') - \phi_{\epsilon}^{-}(a'') = -P_{\epsilon} + \phi_{\epsilon}^{-}(a').$$

Como $a' \in [b, f_{\epsilon}(b))$ y ϕ_{ϵ}^- manda ese intervalo en el intervalo [0, 1) (recordemos que la normalización que habíamos hecho consistía en pedir $\phi_{\epsilon}^-(b) = 0$) entonces $0 \le \phi_{\epsilon}^-(a') < 1$.

Como corolario de la proposición anterior tenemos:

$$\tilde{\tau}(\epsilon) \to -\infty \ (\epsilon \to 0)$$

ya que $P_{\epsilon} \to \infty \ (\epsilon \to 0)$.

Definición 8 Llamaremos la fase (y escribiremos $\tau(\epsilon)$) a la clase de $\tilde{\tau}(\epsilon)$ en \mathbb{R}/\mathbb{Z} .

La fase nos indica cómo se comporta la órbita de a bajo f_{ϵ} a la izquierda de b; por ejemplo, si $\tau(\epsilon) = 0$ entonces b se encuentra en la órbita de a.

Utilizando lo anterior vamos a construir unas aplicaciones que nos ligarán iterados de las aplicaciones perturbadas con una familia que tiene suma importancia en la demostración de nuestro resultado: Las aplicaciones de Lavaurs. Sobre estas últimas ahondaremos en la siguiente sección.

Proposición 7 Sea $\epsilon > 0$ y $n \in \mathbb{N}$. Entonces la aplicación

$$(\phi_{\epsilon}^{-})^{-1} \circ T_{n+\tilde{\tau}(\epsilon)} \circ \phi_{\epsilon}^{+}$$

coincide con f_{ϵ}^n en donde esté definida (T_{ξ} es la translación $Z \mapsto Z + \xi$).

Demostración. Sea $w \in \Omega_{\epsilon}^+ = \phi_{\epsilon}^+(V_{\epsilon}^+)$ tal que $w + n + \tilde{\tau}(\epsilon) \in \Omega_{\epsilon}^-$. Sea m el mayor entero menor o igual que n tal que $w + m \in \Omega_{\epsilon}^+$. Tenemos:

- 1. $w+m+\tilde{\tau}(\epsilon)\in\Omega_{\epsilon}^{-}$ porque $w+m\in\Omega_{\epsilon}^{+}$ implica $f_{\epsilon}^{m}(z)\in V_{\epsilon}^{+}\cap V_{\epsilon}^{-}$ (donde z es tal que $\phi_{\epsilon}^{+}(z)=w$). Como $\tilde{\tau}(\epsilon)$ es precisamente la diferencia de las coordenadas de Fatou en $V_{\epsilon}^{+}\cap V_{\epsilon}^{-}$ tenemos la pertenencia que necesitamos.
- 2. $w + i \in \Omega_{\epsilon}^+$, $(0 \le i \le m)$
- 3. $w + j + \tilde{\tau}(\epsilon) \in \Omega_{\epsilon}^-, (m \le j \le n)$

De los puntos anteriores tenemos que

$$f_{\epsilon}^{m}(z) = (\phi_{\epsilon}^{+})^{-1}(w+m) = (\phi_{\epsilon}^{-})^{-1}(w+m+\tilde{\tau}(\epsilon))$$

y entonces

$$f_{\epsilon}^{n}(z) = f_{\epsilon}^{n} - m(f_{\epsilon}^{m}(z)) = (\phi_{\epsilon}^{-})^{-1}(w + n + \tilde{\tau}(\epsilon))$$

4. Aplicaciones de Lavaurs

Definición 9 Una aplicación de Lavaurs para f_0 es una aplicación de la siguiente forma

$$g_{\sigma} = \varphi_0 \circ T_{\sigma} \circ \Phi_0^+ : B \to \mathbb{C}$$

donde $\sigma \in \mathbb{R}$. En nuestro caso $B = \overset{\circ}{K}(f_0)$.

Las aplicaciones de Lavaurs nos interesan por varias razones, siendo la principal que coinciden con límites de iterados de las aplicaciones perturbadas (Se requiere un mayor número de iteraciones conforme $\epsilon \to 0$). Esta propiedad será de suma utilidad al calcular dimensiónes de Hausdorff, como se verá en el siguiente capítulo.

Una propiedad de las aplicaciones de Lavaurs es que conmutan con f_0 , es decir:

$$g_{\sigma} \circ f_0 = f_0 \circ g_{\sigma}$$
 y además $g_{\sigma} \circ f_0 = g_{\sigma+1}$

Ló anterior es claro si recordamos las relaciones funcionales que existen entre $\phi_{0,+}$, f_0 y φ_0 , por ejemplo:

$$g_{\sigma} \circ f_{0}(z) = \varphi_{0} \circ T_{\sigma} \circ \phi_{0,+}(f_{0}(z)) = \varphi_{0} \circ T_{\sigma}(\phi_{0,+}(z) + 1)$$

$$= \varphi_{0}(\sigma + (\phi_{0,+}(z) + 1))$$

$$= g_{\sigma+1}(z)$$

A continuación demostraremos una proposición que formaliza lo descrito en el primer párrafo de esta sección.

Proposición 8 Sea $\{\epsilon_{\nu}\}$ una sucesión de números positivos que tiende a cero y $\{n_{\nu}\}$ una sucesión de enteros que diverge $a + \infty$. Supóngase que $\{\tilde{\tau}(\epsilon_{\nu}) + n_{\nu}\}$ converge a un límite $\sigma \in \mathbb{R}$. Entonces $f_{\epsilon_{\nu}}^{n_{\nu}}$ converge a la aplicación de Lavaurs g_{σ} uniformemente en subconjuntos compactos de B.

Demostración. Supongamos primero que $z \in \Omega_+$ y que σ es tal que $\phi_{0,+}(z)+$ $\sigma \in \mathcal{Q}_0 = \phi_{0,-}(\Omega_-)$. Podemos entonces encontrar una vecindad V de z tal que

$$(\phi_{\epsilon_{\nu,-}})^{-1} \circ T_{\tilde{\tau}(\epsilon_{\nu})+n_{\nu}} \circ \phi_{\epsilon_{\nu,+}}$$

está definida en V para ν suficientemente grande (recordemos la convergencia de $\phi_{\epsilon_{\nu}+} \to \phi_{0,\pm}$ en V). En esta vecindad tenemos

$$(\phi_{\epsilon_{\nu,-}})^{-1} \circ T_{\tilde{\tau}(\epsilon_{\nu})+n_{\nu}} \circ \phi_{\epsilon_{\nu,+}}(z_{0}) = (\phi_{\epsilon_{\nu,-}})^{-1} (\phi_{\epsilon_{\nu,+}}(z_{0}) + \tilde{\tau}(\epsilon_{\nu}) + n_{\nu})$$

$$= (\phi_{\epsilon_{\nu,-}})^{-1} (\phi_{\epsilon_{\nu,+}}(f_{\epsilon_{\nu}}^{n_{\nu}}(z_{0})) + \tilde{\tau}(\epsilon_{\nu}))$$

$$= f_{\epsilon_{\nu}}^{n_{\nu}}(z_{0})$$

de donde

$$f_{\epsilon_{
u}}^{n_{
u}} o g_{\sigma}.$$

ya que $\tilde{\tau}(\epsilon_{\nu})$ es la constante por la cual difieren $\phi_{\epsilon_{\nu},-}$ y $\phi_{\epsilon_{\nu},+}$. La convergencia es uniforme.

Sean $z \in B$ y $\sigma \in \mathbb{R}$. Existe $m_1 \in \mathbb{N}$ tal que $z' = f_0^{m_1}(z) \in \Omega_+$ (estamos trabajando en la cuenca parabólica atractora, así que bajo un número finito de iteraciones de f_0 entramos en un pétalo atractor) y definimos $\sigma' = \sigma - m_1 - m_2$ con $m_2 \in \mathbb{N}$ tal que $\Phi_{0,+}(z') + \sigma' \in \mathcal{Q}_0$.

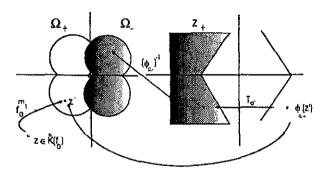


Figura 17

Tomando $n_{\nu}' = n_{\nu} - m_1 - m_2$ tenemos que

$$(\phi_{\epsilon_{\nu,-}})^{-1} \circ T_{\tilde{\tau}(\epsilon_{\nu}) + n'_{\nu}} \circ \phi_{\epsilon_{\nu,+}} = f_{\epsilon_{\nu}}^{n'_{\nu}} \to g_{\sigma'}$$

uniformemente en una vecindad de z'. Se sigue

$$f_{\epsilon_{\nu}}^{n_{\nu}} \rightarrow f_0^{m_2} \circ g_{\sigma'} \circ f_0^{m_1} = g_{\sigma}.$$

5. Implosión Parabólica

¿ A qué llamamos implosión parabólica? Es el fenómeno que aparece en los conjuntos de Julia de ciertas aplicaciones f_{ϵ} cercanas a $f_0 \in F_0$ cuando $\epsilon \to 0$. Decimos ciertas aplicaciones porque requerimos que la perturbación de f_0 que nos lleva a f_{ϵ} genere una bifurcación parabólica como se describió en el primer escenario. En esta situación, cuando ϵ esta cerca de 0, $J(f_{\epsilon})$ se encuentra sobre una curva cercana a $J(f_0)$; pero además aparecen "espirales" (totalmente diconexas) que contaminan el "interior". Sobre cada espiral encontramos espirales más pequeñas que se van moviendo sobre las más grandes cuando ϵ se acerca a 0. El diámetro de estos ciclos no disminuye con ϵ , de hecho cuando la fase da una vuelta (recordemos que $\tau(\epsilon) \in [0,1)$) el conjunto se repite.

Capítulo 4

Demostración del Teorema de Shishikura

Ya contamos con las herramientas necesarias para atacar el problema de calcular la dimensión de Hausdorff de la frontera del Conjunto de Mandelbrot. Será necesario demostrar dos teoremas que, combinados, nos darán el resultado. El primero liga la dimensión de un subconjunto del espacio de parámetros (la frontera del conjunto de Mandelbrot en nuestro caso) con la dimensión del conjunto de Julia de una aplicación correspondiente a tal subconjunto. El segundo, donde utilizaremos los resultados de los capítulos anteriores, relaciona la dimensión del conjunto de Julia parabólico de una aplicación cuadrática con su número de pétalos. Para demostrar este teorema, la teoría de coordenadas de Fatou se extenderá a aplicaciones cuyo punto fijo parabólico no tiene multiplicador 1.

1. Dimensión y Subconjuntos Hiperbólicos

Definición 10 Sea f una aplicación racional. Decimos que $X \subset \overline{\mathbb{C}}$, X cerrado, es un subconjunto hiperbólico de f si se satisface:

- 1. $f(X) \subset X$
- 2. Existen constantes positivas c y k > 1 tales que

$$||(f^n)'|| \ge ck^n \ en \ X \ para \ n \ge 0$$

Es decir, f es expansiva en X.

Entendemos por $\|\cdot\|$ la norma de la derivada respecto a la métrica esférica.

Definición 11 Definimos la dimensión hiperbólica de X como

 $\operatorname{Dim}_{\operatorname{hip}}(f) = \sup \{ \operatorname{Dim}_{\operatorname{H}}(X) \mid Xes \ un \ subconjunto \ hiperbólico \ de \ f \}.$

Proposición 9 Si X es un subconjunto hiperbólico de f, entonces $X \subset J(f)$ y por lo tanto $Dim_H(J(f)) \geq Dim_{hip}(f)$.

Demostración. La familia $\{f^n\}$ no es normal en ningún conjunto abierto que intersecte a X, puesto que sus derivadas crecen exponencialmente. Así que la familia no es equicontinua en X y por lo tanto $X \subset J(f)$.

A continuación construiremos un subconjunto hiperbólico para una aplicación arbitraria f.

Sea U un subconjunto abierto, simplemente conexo de \mathbb{C} y sean U_1, \ldots, U_N subconjuntos abiertos, dos a dos disjuntos de U tales que $\bar{U}_i \subset U$. Sean n_1, \ldots, n_N enteros positivos que satisfagan:

- $1. f^{n_i}(U_i) = U$
- 2. $f^{n_i}|_{U_i}$ es biyectiva

Llamaremos a la colección $\{U, U_i\}_i$ $(1 \le i \le N)$ repulsor conforme para f. Las aplicaciones $\tau_i := (f^{n_i}|_{U_i})^{-1}$ son contracciones con respecto a la métrica de Poincaré en U (consecuencia del lema de Schwarz), así que podemos construir un conjunto de Cantor X_0 generado por las $\tau_i's$. Es decir, el subconjunto no vacío mínimo, cerrado de U que cumpla:

$$X_0 = \tau_1(X_0) \cup \cdots \cup \tau_N(X_0)$$

Haremos la construcción para N=2 por conveniencia. La construcción para N arbitrario es análoga. Tenemos entonces las regiones U, U_1 y U_2 y las aplicaciones correspondientes. Consideraremos los siguientes conjuntos

- 1. $U_{1,1} = U = V_1$
- 2. $U_{2,1} = \tau_1(U_{1,1}), \ U_{2,2} = \tau_2(U_{1,1})$ $V_2 = U_{2,1} \cup U_{2,2}$
- 3. $U_{3,1} = \tau_1(U_{2,1}), \ U_{3,2} = \tau_1(U_{2,2}), \ U_{3,3} = \tau_2(U_{2,1}), \ U_{3,4} = \tau_2(U_{2,2})$ $V_3 = U_{3,1} \cup U_{3,2} \cup U_{3,3} \cup U_{3,4}$

Y así sucesivamente, es decir

$$U_{N,1} = \tau_1(U_{N-1,1}) \dots U_{N,2^N} = \tau_2(U_{N-1,2^{N-1}})$$

$$V_N = U_{N,1} \cup \dots \cup U_{N,2^{N-1}}.$$

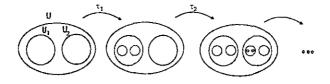


Figura 18

Al tomar

$$\bigcap_{n=1}^{\infty} V_n = X_0$$

obtenemos el conjunto que buscábamos.

Lema 3 El conjunto $X = X_0 \cup f(X_0) \cup ... \cup f^{\mu-1}(X_0)$, donde $\mu = \max(n_i)$, es un subconjunto hiperbólico de f.

Demostración. Dado que X_0 es cerrado, sus imágenes bajo iterados de f también lo son, así como la unión finita de éstas. Por lo tanto, X es cerrado. Tenemos que $f(X) \subset X$ porque $f(X) = f(X_0) \cup ... \cup f^{\mu}(X_0)$ y

$$f^{\mu}(X_0) = f^{\mu}(\tau_1(X_0) \cup ... \cup \tau_N(X_0)) = f^{\mu - n_1}(X_0) \cup ... \cup f^{\mu - n_N}(X_0) \subset X.$$

Nos resta mostrar que f es expansiva en X. Sea $z \in X$, podemos factorizar $f^n(z)$ como

$$f^{j_1} \circ (f^{n_{i_1}}|_{U_{i_1}}) \circ \cdots \circ (f^{n_{i_k}}|_{U_{i_k}}) \circ f^{j_2}(z)$$

donde $i_1, \ldots, i_k \in \{1, \ldots, N\}, 0 \leq j_1, j_2 < \mu, f^{j_2}(z) \in X_0, n = j_1 + n_{i_1} + \cdots + n_{i_k} + j_2 \text{ y } f^{j_2}(z) \in \tau_{i_k} \circ \cdots \circ \tau_{i_1}(X_0).$

Para encontrar j_2 fijémonos que $z \in f^s(X_0)$, $(0 \le s < \mu)$, es más, $z \in f^s(\tau_m(X_0), (1 \le m \le N)$, es decir $z \in f^{s-m}(X_0)$. Si $m \ge s$ entonces $j_2 = m - s$, en caso contrario repetimos el proceso. En algún momento nos encontraremos en el primer caso, puesto que cada vez disminuye más la n que satisface

$$z \in f^n(X_0)$$
.

Una vez que estamos en X_0 , nos fijamos en cuál U_{i_k} se encuentra $f^{j_2}(z)$, (recordemos que $X_0 \subset U_1 \cup \cdots \cup U_N$). Aplicamos entonces $f^{n_{i_k}}|_{U_{i_k}}$ y obtenemos un punto en X_0 . Repetimos el proceso anterior hasta que el aplicarlo una vez más implique $n_{i_1} + \cdots + n_{i_k} + j_2 > n$. Definimos $j_1 := (n_{i_1} + \cdots + n_{i_k} + j_2) - n$.

Necesitamos encontrar c>0 y K>1 tales que $|(f^n)'|\geq c\,K^n.$ Nótese que

$$|(f^n)'| = |(f^{j_1})'| |(f^{n_{i_1}}|_{U_{i_1}})'| \cdots |(f^{n_{i_k}}|_{U_{i_k}})'| |(f^{j_2})'|.$$

Para cada $f^{n_{i_j}}|_{U_{i_j}}$ existen K_{i_j} y c_{i_j} tales que

$$|((f^{n_{i_j}}|_{U_{i_k}})^n)'| \ge c_{i_j} \cdot K_{i_j}^n.$$

Por lo tanto

$$\begin{aligned} |(f^n)'| &\geq |(f^{j_1})'| K_{i_1} \cdots K_{i_k} |(f^{j_2})'| \geq \\ &\geq \min(K_{i_j})^{\left(\frac{n-j_1-j_2}{\mu}\right)} |(f^{j_1})'| |(f^{j_2})'|. \end{aligned}$$

Tomando

$$K = \min(K_{i_j})^{\frac{1}{\mu}}$$

y

$$c = |(f^{j_1})'| \, |(f^{j_2})'| \min(K_{i_j})^{-(j_i + j_2)}$$

obtenemos las constantes requeridas.

Lema 4 ([Sh]) Si X es un subconjunto hiperbólico de f, entonces existe una vecindad N de f en el espacio de las aplicaciones racionales del mismo grado, tal que si $g \in N$ entonces g tiene un subconjunto hiperbólico X_g g existe un homeomorfismo $h_g: X \to X_g$ que conjuga a f g.

2. Movimientos Holomorfos

Definición 12 Sea X un subconjunto de \mathbb{C} y M una variedad compleja en la cual escojemos λ_0 como punto base. Una familia de aplicaciones $i_{\lambda}: X \to \mathbb{C}$ $(\lambda \in M)$ se dice un movimiento holomorfo si:

- 1. Cada i_{λ} es inyectiva.
- 2. La aplicación $i_{\lambda_0} = Id_X$.
- 3. Para cada $z \in X$, $i_{\lambda}(z)$ es analítica en λ .

Decimos también que $X_{\lambda} := i_{\lambda}(X)$ es un movimiento holomorfo de X.

Enunciaremos dos resultados que requeriremos para demostrar los resultados de esta sección. Sus demostraciones no se darán aquí pero citaremos los artículos donde pueden encontrarse.

Teorema 10 (λ -Lema, [MSS]) Sea A un subconjunto de $\overline{\mathbb{C}}$, Δ el disco unitario (abierto) de $\overline{\mathbb{C}}$ y $i_{\lambda}: A \to \overline{\mathbb{C}}$ un movimiento holomorfo con $\lambda \in \Delta$. Entonces cada i_{λ} tiene una extensión cuasiconforme $\widetilde{i_{\lambda}}: \overline{A} \to \overline{\mathbb{C}}$ que es un encaje que depende analíticamente de $\lambda \in \Delta$, así que la aplicación $(\lambda, z) \to i_{\lambda}(z)$ es continua.

Teorema 11 (Mori, [A]) Sea Φ una aplicación K-cuasiconforme

$$\Phi:\Delta\to\Delta$$

que tiene a 0 como punto fijo, entonces

$$|\Phi(z_1) - \Phi(z_2)| < 16|z_1 - z_2|^{1/K}$$

y no podemos substituir 16 por una constante más pequeña.

Lema 5 Si $i_{\lambda}: X \to \bar{\mathbb{C}}$ ($|\lambda| < r$) es un movimiento holomorfo, entonces tanto i_{λ} como i_{λ}^{-1} son continuas en el sentido de Hölder con exponente $\alpha(|\lambda|/r)$. Donde $\alpha: (0,1) \to \mathbb{R}^+$ es una función que no depende del movimiento ($\alpha(t) \nearrow 1$ cuando $t \searrow 0$).

Demostración. Una versión mejorada del λ -lema debida a Sullivan y Thurston [ST] nos garantiza que i_{λ} puede extenderse a una aplicación $K(|\lambda|/R)$ -cuasiconforme ($K(t) \setminus 1$ cuando $t \setminus 0$). El teorema de Mori asegura que una aplicación K-cuasiconforme es continua en el sentido de Hölder con exponente 1/K, así que el lema es cierto tomando $\alpha(t) = 1/K(t)$.

Antes de proseguir con esta sección, demostraremos un resultado importante referente a dimensión hiperbólica utilizando los lemas 4 y 5.

Proposición 10 La asignación $f \mapsto \text{Dim}_{hip}(f)$ es inferiormente semicontinua.

Demostración. Sean $f, g \in \mathcal{N}, X_f$ y X_g como en el lema 4. Entonces existe un movimiento holomorfo i_{λ} y λ_0 tales que $i_{\lambda_0}(X_f) = X_g$. El lema 5 asegura que i_{λ} es α -bi-Hölder. Por lo tanto,

$$\alpha \operatorname{Dim}_{\mathsf{H}}(X_g) \leq \operatorname{Dim}_{\mathsf{H}}(X_f) \leq \alpha^{-1} \operatorname{Dim}_{\mathsf{H}}(X_g).$$

Como $\alpha \to 1$ cuando $g \to f$ hemos demostrado que la asignación $f \mapsto \operatorname{Dim}_{H}(X_{f})$ es continua en f. Esto implica que si $c > \operatorname{Dim}_{\operatorname{hip}}(f)$ entonces existe una vecindad V de f tal que si $g \in V$ entonces $c > \operatorname{Dim}_{\operatorname{hip}}(g)$. \square

Lema 6 Sea $i_{\lambda}: X \to \overline{\mathbb{C}}$ un movimiento holomorfo, donde $\lambda \in \Delta$. Sea $v: \Delta \to \overline{\mathbb{C}}$ una aplicación analítica que satisface:

1.
$$v(0) = z_0 \in X$$

2.
$$v(\lambda) \not\equiv i_{\lambda}(z_0)$$
.

Sea $D_r(z_0)$ el disco de radio r centrado en z_0 . Entonces

 $\operatorname{Dim}_{\mathrm{H}} \left\{ \lambda \in \Delta \mid v(\lambda) \in i_{\lambda}(X) \right\} \geq \lim_{r \to 0} \operatorname{Dim}_{\mathrm{H}} \left(X \cap D_r(z_0) \right).$

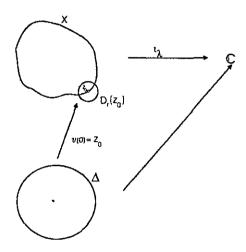


Figura 19

Demostración. Supongamos que $z_0=0$ e $i_\lambda(0)\equiv 0$. Ambas condiciones pueden obtenerse mediante un cambio de coordenadas vía aplicaciones de Möbius que dependan analíticamente de λ . La demostración se separará en dos casos.

CASO 1: $v'(0) \neq 0$.

Existe $\rho < 1$ tal que si $\lambda \in \Delta_{\rho} = \{z \mid |z| < \rho\}$ entonces $v(\lambda)$ es inyectiva. Esto nos permite trabajar con v^{-1} . Salvo un cambio escalar podemos suponer que

$$v^{-1}:\Delta \to \Delta$$

(ver figura 20).

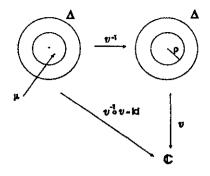


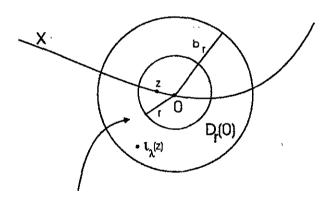
Figura 20

Podemos suponer, sin pérdida de generalidad, que v=id (y por lo tanto $\rho=1$). Redefinimos el movimiento holomorfo como

$$\tilde{i}_{\mu}(z)=i_{v^{-1}(\mu)}(z)$$

Sea

$$b_r = \sup\{|i_{\lambda}(z)| \mid z \in X \cap D_r(0), \lambda \in \Delta\}.$$



todos los $\iota_{\lambda}(z)$ caen dentro de esta región si $z \in D_{\mu}(0)$

Figura 21

Las hipótesis del lema permiten aplicar el λ -Lema, y por lo tanto $(\lambda, z) \mapsto i_{\lambda}(z)$ es continua. Como pedimos $i_{\lambda}(0) \equiv 0$ entonces $b_r \to 0$ cuando $r \to 0$. Se sigue entonces que existe $r_0 > 0$ tal que si $0 < r < r_0$ entonces $b_r < 1$.

A continuación al escribir $D_r(0)$ nos estaremos refiriendo a una r con tales características.

Consideremos la siguiente ecuación:

$$v(\lambda) - i_{\lambda\mu}(z) = 0 \tag{9}$$

donde $z \in X \cap D_r(0)$, $|\mu| < 1/b_r$ y $\lambda \mu \in \Delta_\mu \equiv \{\lambda/|\lambda| < \min\{1, 1/|\mu|\}\}$.

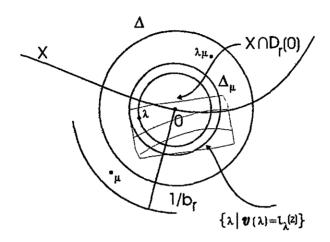


Figura 22

Vamos ahora a utilizar el Teorema de Rouché en Δ_{μ} con las aplicaciones v=id y $\lambda-i_{\lambda\mu}(z)$. Tanto id como $i_{\lambda\mu}(z)$ son analíticas en Δ_{μ} , en $\partial\Delta_{\mu}$ tenemos:

$$|\lambda - (\lambda - i_{\lambda\mu}(z))| = |i_{\lambda\mu}(z)| \le b_r$$

$$b_r < \min\{1, 1/|\mu|\} \le |\lambda|$$
(10)

Como $|\mu| < 1/b_r$ entonces $b_r \le 1/|\mu|$ y habíamos pedido $b_r \le 1$, lo que nos da la primera desigualdad en (10). La segunda desigualdad se debe a que $\min\{1,1/|\mu|\}$ es un valor dentro de Δ . El teorema de Rouché afirma que tanto $\lambda=0$ como la ecuación (9) tienen el mismo número de soluciones en Δ_{μ} . Como 0 es la única solución en Δ_{μ} de $\lambda=0$, entonces la ecuación (9) tiene una solución única en Δ_{μ} (que depende analíticamente de μ). Dado que las i_{λ} son inyectivas, al cambiar z obtendremos una solución distinta para la ecuación (9). Esta propiedad permite construir el siguiente movimiento holomorfo:

Sea

$$Y^r_{\mu} = \{\lambda \in \Delta_{\mu} \mid \lambda = i_{\lambda\mu}(z), \text{ para algún } z \in X \cap D_r(0)\}.$$

Tenemos que Y^r_{μ} ($|\mu| < 1/b_r$) es un movimiento holomorfo de $Y^r_0 = X \cap D_r(0)$ vía las aplicaciones inyectivas j^r_{μ} definidas de la siguiente manera:

Sea $\lambda_0 \in Y_0^r$. La imagen bajo j_μ^r de λ_0 es λ_1 , la única solución de la ecuación (9) para λ_0 , es decir:

$$\lambda_1 - i_{\lambda_1 \mu}(z_0) = 0.$$

Es claro que $Y_1^r \subset \{\lambda \in \Delta \mid \lambda \in i_\lambda(X)\}$. Además, como $Y_0^r = X \cap D_r(0)$ entonces $\operatorname{Dim}_{\mathrm{H}}(Y_0^r) = \operatorname{Dim}_{\mathrm{H}}(X \cap D_r(0))$ El lema 5 nos indica que j_μ^r y $(j_\mu^r)^{-1}$ son $\alpha(|\mu|b_r)$ -Hölder continuas, así que

$$\operatorname{Dim}_{\mathrm{H}}(\{\lambda \in \Delta \mid v(\lambda) \in i_{\lambda}(X)\}) \geq \operatorname{Dim}_{\mathrm{H}}(Y_{1}^{r}) \geq \alpha(b_{r}) \operatorname{Dim}_{\mathrm{H}}(Y_{0}^{r}).$$

Entonces

$$\operatorname{Dim}_{\mathrm{H}}(\{\lambda \in \Delta \mid \lambda \in i_{\lambda}(X)\}) \geq \alpha(b_r) \operatorname{Dim}_{\mathrm{H}}(X \cap D_{\tau}(0)).$$

Como $\lim_{r\to 0} \alpha(b_r) = 1$, dejando que $r\to 0$ obtenemos el resultado que buscábamos.

CASO 2: v'(0) = 0.

Tenemos que $v \not\equiv 0$ y podemos suponer, haciendo un cambio de coordenadas, que $\infty \in X$ e $i_{\lambda}(\infty) \equiv \infty$. Sea m el orden de v en el origen y $G(z) := z^m$. Definimos $\tilde{X}_{\lambda} = G^{-1}(X_{\lambda})$. G es un cubriente ramificado en 0 e ∞ , así que podemos levantar v, i_{λ} y obtenemos $\tilde{v} : \Delta \to \bar{\mathbb{C}}$ que satisface $v = G \circ \tilde{v}$. De hecho podemos escribir

$$v(z) = z^m U(z)$$
 donde $U'(0) \neq 0$.

Tomando una rama adecuada de la aplicación $z \to z^{1/m}$ podemos reescribir la ecuación anterior como $v(z) = (z \cdot U(z)^{1/m})^m$. De esta forma tenemos que $\tilde{v}(z) = z \cdot U(z)^{1/m}$ (satisface $v = G \circ \tilde{v}$) y por lo tanto $\tilde{v}'(0) \neq 0$. Tras el levante tambien obtenemos $\tilde{i}_{\lambda} : \tilde{X}_0 \to \tilde{X}_{\lambda}$ que satisface

$$i_{\lambda} \circ G = G \circ \tilde{i}_{\lambda}$$

Esto último es claro de la definición de \tilde{X}_{λ} . Nos hemos puesto en el Caso 1 para las aplicaciones \tilde{v} y \tilde{i}_{λ} , por lo tanto:

$$\operatorname{Dim}_{\mathrm{H}} \left\{ \lambda \in \Delta \mid \tilde{v}(\lambda) \in \tilde{i}_{\lambda}(\tilde{X}) \right\} \geq \lim_{r \to 0} \operatorname{Dim}_{\mathrm{H}} (\tilde{X} \cap D_{r}(0)).$$

Ahora bien, podemos pensar que $D_r(0) = G^{-1}(D_r(0))$ y como

$$G^{-1}(X \cap D_r(0)) \subset G^{-1}(X) \cap G^{-1}(D_r(0))$$

entonces

$$\operatorname{Dim}_{\mathsf{H}}(\tilde{X} \cap G^{-1}(D_r(0))) \ge \operatorname{Dim}_{\mathsf{H}} G^{-1}(X \cap D_r(0))$$

y además

$$Dim_H (G^{-1}(X \cap D_r(0))) = Dim_H (X \cap D_r(0))$$

puesto que G es localmente Lipschitz salvo en 0 y ∞ . Esto, aunado a que

$$\{\lambda/v(\lambda) \in X_{\lambda}\} = \{\lambda/\tilde{v}(\lambda) \in \tilde{X_{\lambda}}\}\$$

nos da el resultado para $v y i_{\lambda}$.

Utilizando los resultados anteriores podemos demostrar uno de los dos teoremas centrales de este trabajo.

Teorema 12 Sea $\{f_c \mid c \in \mathbb{C}\}\$ la familia de polinomios $f_c(z) = z^2 + c$. Supóngase que f_{c_0} $(c_0 \in \mathbb{C})$ no es J-estable en esta familia $(c_0 \in \partial M)$, entonces:

$$\operatorname{Dim}_{H} \{c \in \mathbb{C} \mid f_{c} \in D\} \geq \operatorname{Dim}_{hip}(f_{co}),$$

donde decimos que $f \in D$ si tiene un subconjunto hiperbólico que contiene la órbita hacia adelante de un punto crítico.

Es importante hacer notar que si $f_c \in D$ entonces $c \in \partial M$ porque si el punto crítico está en $J(f_c)$ entonces $K(f_c)$ es un Disco de Siegel o una dendrita.

Demostración. Dado $\epsilon > 0$ existe X subconjunto hiperbólico de f_{c_0} tal que

$$\operatorname{Dim}_{\mathrm{H}}(X) \geq \operatorname{Dim}_{\mathrm{hip}}(f_{c_0}) - \epsilon$$
,

ya que $\operatorname{Dim}_{\operatorname{hip}}(f_{c_0})$ es el supremo de las $\operatorname{Dim}_{\operatorname{H}}(X)$ con X un subconjunto hiperbólico de f_{c_0} .

Tenemos que el conjunto $\{\operatorname{Dim}_{\mathsf{H}}(X\cap D_r(z))\mid z\in X,\ r\in[0,R]\}$, donde R es tal que $X\subset D_r(z), z\in X$, es compacto. Así que existe z_0 que satisface

$$\lim_{r\to 0}\operatorname{Dim}_{\mathsf{H}}\left(X\cap D_{r}(z_{0})\right)=\operatorname{Dim}_{\mathsf{H}}\left(X\right)$$

El lema 4 asegura la existencia de una vecindad $W_0 \subset W$ de c_0 y un movimiento holomorfo $i_c: X \to X_c$ que conjuga f_c con f_{c_0} . X_c es un

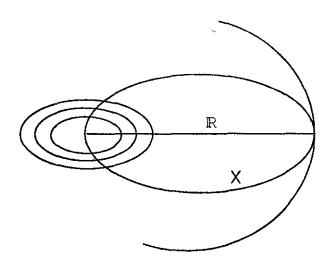


Figura 23

subconjunto hiperbólico de f_c y $i_{c_0}(X) = X$. Como $(z,c) \mapsto i_c(z)$ es continua en ambas coordenadas (de hecho es analítica en λ) tenemos que

$$\lim_{c\to c_0} \operatorname{Dim}_{\mathrm{H}}(i_c(X)\cap D_r(i_c(z_0)) = \operatorname{Dim}_{\mathrm{H}}(X\cap D_r(z_0)).$$

Así que si escogemos W_0 suficientemente chica tenemos

$$\lim_{r\to 0} \operatorname{Dim}_{\mathrm{H}}\left(i_{c}(X)\cap D_{r}(i_{c}(z_{0})) > \operatorname{Dim}_{\mathrm{H}}\left(X\right) - \epsilon\right)$$

para $c \in W_0$.

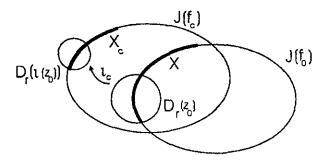


Figura 24

Usaremos a continuación el siguiente

Lema 7 ([MSS]) Sean $W_0 \subset W$ un abierto simplemente conexo $y \phi : W_0 \to \hat{\mathbb{C}}$ una aplicación analítica tal que:

- 1. Para toda $w \in W_0$ el punto $\phi(w)$ no pertenece a ninguna f_w -órbita hacia adelante de un punto crítico de f_w .
- 2. $\phi(w)$ no es f_w -periódico para toda $w \in W_0$.

entonces $W_0 \subset \{Valores \ J\text{-estables del espacio de parámetros}\} = H(f)$.

En nuesto caso $W_0 \not\subset H(f)$, lo cual implica la negación de alguno de los puntos enumerados del lema. Definamos

$$\phi(c) := i_c(z_0).$$

Nótese que si z_0 es f_{c_0} -periódico entonces para todo $c \in W_0$, $\phi(c)$ es f_{c_0} -periódico.

Necesitamos asegurar la existencia de $c_1 \in W_0 \setminus \{c_0\}, N \ge 0$ y q punto crítico de f_{c_1} tales que

 $f_{c_1}^N(q) = i_{c_1}(z_0).$

Es decir, la negación del primer punto del lema. Para poder hacer esto debemos excluir el caso en que z_0 sea f_{c_0} -periódico. Esto requiere mostrar que, de darse esta circunstancia, podemos escoger un z'_0 con las características de z_0 (respecto a $\operatorname{Dim}_H(D_r(z_0) \cap X)$), pero que no sea f_{c_0} -periódico.

Primero notemos que si ϵ es suficientemente pequeña, X es un conjunto que se encuentra (respecto a la métrica de Hausdorff) cerca de $J(f_{c_0})$. De modo que X contiene puntos que no son f_{c_0} -periódicos y por lo tanto es denso en $J(f_{c_0})$. Mostraremos que para todo r > 0 existe $z'_0 \neq z_0$ en $D_r(z_0) \cap X$ con las condiciones que queremos.

Sean

$$\begin{split} \delta &= \mathrm{Dim}_{\mathrm{H}}\left(X\right) \\ \mathrm{Dim}_{\kappa}(z) &:= \lim_{r \to 0} \mathrm{Dim}_{\mathrm{H}}\left(D_{r}(z) \cap X\right) \\ X_{\delta - \epsilon} &= \{z \in X \mid \mathrm{Dim}_{\kappa}(z) \geq \delta - \epsilon\}. \end{split}$$

Sea $\{V_z\}$ una cubierta (relativa a X) de $X \setminus X_{\delta-\epsilon}$. Podemos escribir

$$X = \{ \cup V_z \} \cup X_{\delta - \epsilon}.$$

Tomando la $(\delta-\epsilon)$ - Medida de Hausdorff y haciendo notar que $\{V_z\}$ y $X_{\delta-\epsilon}$ son ajenos tenemos

$$H^{\delta-\epsilon}(X) = H^{\delta-\epsilon}(\{\cup V_z\}) + H^{\delta-\epsilon}(X_{\delta-\epsilon})$$

Dado que

$$H^{\delta-\epsilon}(X)=\infty$$

у

$$H^{\delta-\epsilon}(\{\cup V_z\})=0$$

entonces $\#(X_{\delta-\epsilon}) \geq \mathbb{Q}$.

Mostramos entonces que si z_0 es un punto f_{c_0} -periódico, podemos encontrar z'_0 no f_{c_0} -periódico tal que $\operatorname{Dim}_{\kappa}(z'_0) \geq \operatorname{Dim}_{H}(X) - \epsilon$. Esta ϵ es absorbida por la ϵ de nuestros cálculos y no afecta ninguna de las desigualdades.

Podemos entonces suponer, sin pérdida de generalidad, que z_0 no es f_{c_0} -periódico y por lo tanto el lema nos garantiza la existencia, en cada X_c , de puntos que pertenecen a una f_c -órbita crítica.

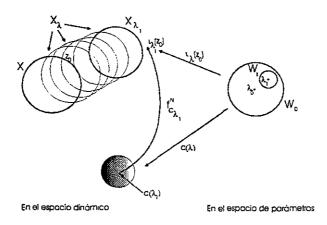


Figura 25

Tener un punto crítico es una condición estructuralmente estable. Sabemos entonces que existe una rama de punto críticos q_c para f_c ($c \in W_1$), donde $W_1 \subset W_0$ es una vecindad de c_1 .

Podemos aplicar el Lema 6 a $i_c(c \in W_1)$ y a $v(c) := f_c^N(q_c)$ de donde obtenemos:

$$\text{Dim}_{H} \{c \in W_{1} \mid f_{c}^{N}(q_{c}) \in X_{c}\} \geq \lim_{r \to 0} \text{Dim}_{H} (X_{c_{1}} \cap D_{r}(i_{c_{1}}(z_{0})))$$

у

$$\lim_{r\to 0} \operatorname{Dim}_{\mathsf{H}} \left(X_{c_1} \cap D_r(i_{c_1}(z_0)) \ge \operatorname{Dim}_{\mathsf{hip}} \left(f_{c_0} \right) - 2\epsilon.$$

Para estos últimos estimados es necesario hacer un cambio de coordenadas porque el lema se demostró con Δ como el conjunto de parámetros y con $z_0 = 0$. Como escogimos ϵ arbitrariamente tenemos el resultado.

Nota. Sabemos que $\{c \in W_1 \mid f_c^N(q_c) \in X_c\} \subset \partial M$ Podemos entonces enunciar el siguiente

Corolario 1 Sea $c_0 \in \partial M$, entonces

$$\operatorname{Dim}_{\mathsf{H}}(\partial M) \geq \operatorname{Dim}_{\mathsf{hip}}(f_{c_0})$$

Nos resta entonces demostrar que dado $\epsilon > 0$ existe $c_0 \in \partial M$ tal que $\operatorname{Dim}_{\operatorname{hip}}(f_{c_0}) \geq 2 - \epsilon$. Esto se demuestra en la siguiente seccion.

3. De $Dim_H(J_c)$ a $Dim_H(\partial M)$

En esta sección vamos a demostrar el segundo teorema central de nuestro trabajo. Utilizaremos lo construído en los primeros dos capítulos, pero abordaremos el caso en que el punto fijo parabólico tiene multiplicador distinto a 1. Como veremos a continuación, esto no nos producirá dificultades nuevas.

Si pedimos que $f_c(z)$ tenga un punto fijo parabólico entonces $c \in \partial M$. De hecho, c se encontrará en la frontera del cardiode principal de ∂M . Este cardioide, pensado como una curva en \mathbb{R}^2 , lo podemos parametrizar con la siguiente ecuación:

$$C(t) = \frac{1}{4}(2\cos(2\pi t) - \cos(4\pi t), 2\sin(2\pi t) - \sin(4\pi t))$$

lo que nos indica que

$$c = e^{2\pi i \theta}/2 - e^{4\pi i \theta}/4 \ (\theta = p/q, \ (p,q) = 1).$$

Por lo tanto $J(f_c)$ tiene q pétalos atractores que se encuentran en el punto fijo y son invariantes bajo f^q .

Podemos nuevamente hablar de Coordenas de Fatou tanto atractoras como repulsoras, pero ahora tendremos que diferenciar las coordenadas definidas en cada uno de los pétalos atractores (y respectivamente en los repulsores).

Al igual que en el caso abordado en los capítulos 1 y 2, las Coordenadas de Fatou atractoras $(\phi_j^+, j=1,2,...,q)$ las construimos inicialmente en regiones U_j^+ contenidas en los pétalos P_j (sectores atractores). De igual manera para las $(\phi_j^-, j=1,2,...,q)$ definidas en U_j^- . Consideraremos a U_j^-

como el pétalo repulsor al que llegamos girando en sentido contrario a las manecillas del reloj a partir de U_j^+ . La ecuación funcional que satisfacen estas aplicaciones es:

 $\phi_j^{\pm}(f^q(z)) = \phi_j^{\pm}(z) + 1.$

Nuevamente requerimos que z y $f^q(z)$ pertenezcan a U_j^- en el caso de ϕ_j^- . Es importante hacer notar que la aplicación $f^q:P_j\to P_j$ es de grado dos y es entonces conjugada a la aplicación $z\to z+z^2$ que estudiamos anteriormente. Tenemos entonces las mismas maneras de extender a ϕ_j^+ y ϕ_j^- :

1. ϕ_j^+ se extiende utizando la relación funcional a

$$\Phi_i^+: P_j \to \mathbb{C}$$

y satisface la relación en todo P_j .

2. Nuevamente no extendemos ϕ_i^- sino $(\phi_i^-)^{-1}$ obteniendo

$$\varphi_j:\mathbb{C}\to\mathbb{C}$$

que satisface la relación

$$\varphi_j(Z+1) = f^q(\varphi_j(Z))$$

A diferencia del caso que estudiamos en el Capítulo 1, el cambio de variable que se utiliza al comienzo de la costrucción no es Z=-1/z sino $Z=b/z^q$ para una b conveniente.

Dado que existen regiones fundamentales en cada pétalo para f_c^q , podemos manejar la noción de Cilindros de Ecalle. Esto nos permite construir las Aplicaciones de Cuernos y las Aplicaciones de Lavaurs, claro que en este caso dada una Coordenada de Fatou atractora podemos escoger entre dos coordenadas repulsoras.

Al definir $\epsilon_{f_c,j}$, es decir, la aplicación de cuernos para f_c en el j-ésimo pétalo nos encontramos con que podríamos hacerlo de dos formas:

1.
$$\tilde{\epsilon}_{f_c,j} = \phi_j^+ \circ \varphi_j$$

2.
$$\tilde{\epsilon}_{f_c,j} = \phi_j^+ \circ \varphi_{j-1}$$

y después componer con Π como lo hicimos para f_0 . Utilizaremos ambas definiciones, nombrando $\epsilon_{f_c,j}^+$ al primer caso y $\epsilon_{f_c,j}^-$ al segundo. Las aplicaciones están definidas en los extremos de los Cilindros de Ecalle (una en cada extremo) y toman valores en el cilndro.

$$\epsilon_{f_c,j}^+:\Pi\circ\phi_j^-(U_j^-\cap P_j)\to\mathbb{C}^*$$

y análogamente para $\epsilon_{f_c,j}^-$.

Para facilitar la escritura fijaremos una j (aquella que corresponde al pétalo P_j , que contiene al único punto crítico de f_c) y escribiremos h^{\pm} al referirnos a $\epsilon_{f_c,l}^{\pm}$. Dada β en el Cilindro, definiremos

$$h_{\beta}^{\pm} := T_{\beta} \circ h^{\pm}.$$

Podemos "descomponer" $\Pi(z)$ como $\Pi(z) = \Pi_2 \circ \Pi_1$ donde $\Pi_1(z) = z/\mathbb{Z}$ y $\Pi_2(z/\mathbb{Z}) = e^{2\pi i z}$. Esta manera de manejar Π nos permite trabajar en \mathbb{C}/\mathbb{Z} cuando nos referimos a los Cilindros de Ecalle.

A continuación demostraremos un lema que será central en la construcción de los subconjuntos hiperbólicos que se hizo en la sección anterior.

Lema 8 Para toda β la aplicación h_{β} es repulsora en alguno de los extremos del Cilindro. Donde $h_{\beta} = h_{\beta}^{\pm}$ dependiendo del extremo en el que estemos trabajando.

Demostración. Consideraremos $h_1 = \exp(2\pi i\beta)h^{\pm}$, $|\operatorname{Im}\beta| < b$ y $\hat{h} = \Pi_2^- 1 \circ h_1 \circ \Pi_2$. Además llamaremos B^+ y B^- a los extremos del cilindro (en \mathbb{C}^*).

Como B^+ y B^- son ajenos, podemos suponer que alguno de los dos, digamos B^+ , no contiene el único punto crítico de h_1 . Se puede entonces extender la inversa local de h_1 cerca de 0 a $B^+ \cup \{0\}$. Llamemos H a esta aplicación.

$$H: B^+ \cup \{0\} \to B^+ \cup \{0\}$$
 ya que $h_0: B^+ \to \mathbb{C}$ es sobre

Además, $h_1 \circ H = id, H(0) = 0$ y |H'(0)| < 1. El Lema de Schwarz garantiza $|H'(0)| \le 1$; pero $h_1 : B^+ \to \mathbb{C}^*$ es infinito a uno, así que H no aplica de manera suprayectiva en $B^+ \cup \{0\}$, entonces $H(B^+ \cup \{0\}) \subset B^+ \cup \{0\}$ propiamente y por lo tanto |H'(0)| < 1.

El lema de linealización de Köenings [Mi] garantiza la existencia de una coordenada linealizante L(z), conforme cerca de 0, L(0) = 0, L'(0) = 1 y $L \circ H(z) = H'(0)L(z)$ cerca de 0. Sea $\hat{H} = \pi_2^{-1} \circ H \circ \pi_2$, tenemos lo siguiente:

Existen constantes $y_0 \in \mathbb{R}, C_1'', C_2'' > 0$ y una aplicación analítica

$$\hat{L}: Y = \{ \xi \in \mathbb{C}/\mathbb{Z} \mid \text{Im}\xi > y_0 \} \to \mathbb{C}/\mathbb{Z}$$

tal que

1. \hat{H} está definida en Y

2.
$$0 < \operatorname{Im}(\hat{H}(\xi) - \xi < C_1'')$$

3.
$$\hat{L} \circ \hat{H} = \hat{L} + (1/2\pi i) \log H'(0)$$

4.
$$(C_2'')^{-1} < |\hat{L}'| < C_2''$$

Veamos el por qué de las afirmaciones anteriores:

- (i) \hat{H} está definida en Y siempre y cuando y_0 se tome suficiéntemente grande para que $\pi_2(Y) \subset B^u \cup \{0\}$
- (ii) $0 < \operatorname{Im}(\hat{H}(\xi) \xi) < C_1''(\xi \in Y)$ ya que |H(z)| < z cerca de cero, lo cual implica la primera parte de la desigualdad (que z_0 esté más cerca de cero que z_1 en $B^+ \cup \{0\}$ se traduce en \mathbb{C}/\mathbb{Z} como $\operatorname{Im} \hat{z}_1 < \operatorname{Im}(\hat{z}_0)$, donde $\hat{z}_i = \Pi_2^{-1}(z_i)$.) Además tenemos control sobre cómo se separan un punto y su imagen bajo \hat{H} , porque en $B^u \cup \{0\}$ la convergencia de las órbitas bajo H de puntos cercanos a 0 está regida por |H'(0)|.
- (iii) Definamos $\hat{L} = \Pi_2^{-1} \circ L \circ \Pi_2$ entonces

$$\hat{L} \circ \hat{H} = \Pi_2^{-1} \circ L \circ H \circ \Pi_2$$

y por lo tanto

$$\hat{L} \circ \hat{H}(\xi) = \Pi_2^{-1} \circ H'(0) L(\Pi_2(\xi)).$$

Luego

$$\Pi_{2}(\hat{L}(z) + (\frac{1}{2\pi i})\log H'(0)) = \exp(\frac{1}{2\pi i})(\hat{L}(z) + (\frac{1}{2\pi i})\log H'(0))$$

$$= \exp(\frac{1}{2\pi i})(\hat{L}(z)) * \exp(\log(H'(0))$$

$$= H'(0)L(z).$$

(iv) Tenemos que $|\hat{L}'|$ no se anula en Y, L'(0) = 1 y, por lo tanto, $|L'| < \infty$ en una vecindad de 0, así que $|\hat{L}'|$ está acotada superiormente. Es posible encontrar C_2'' suficientemente grande para que

$$(C_2'')^{-1} < |\hat{L}'| < C_2''.$$

Podemos escoger $\hat{\xi}_0$, distinto al único valor crítico de \hat{h} de tal forma que $\hat{\xi}_0 \in \partial B^+$ (en caso que escojamos un punto en ∂B^+ que sea el crítico podemos entonces trabajar en B^-). Tomemos $\hat{\xi}_1 \in \hat{h}^{-1}(\hat{\xi}_0) \cap B^+$ y definamos

$$\hat{\xi}_j = \hat{H}^{j-1}(\hat{\xi}_1)$$

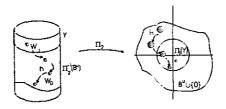


Figura 26

Existe $j_0 \geq 1$ tal que $\hat{\xi}_{j_0} \in Y$. Esto debido a que $H^n(z) \to 0 (n \to \infty)$ para todo $z \in B^+$ así que, en modo \mathbb{C}/\mathbb{Z} , $\hat{\operatorname{Im}}(H^n(\xi)) \to \infty (n \to \infty)$ para todo $\xi \in \Pi_2^{-1}(B^+)$. Además tenemos control sobre la rapidez con que los puntos se alejan, gracias a las cotas que tenemos para $|\hat{L}'|$.

Estamos en condiciones de demostrar el segundo de los teoremas centrales de este trabajo.

Teorema 13 Sean $c \in M$ tal que f_c tiene un punto periódico parabólico con q pétalos (el multiplicador del punto periódico parabólico es igual a $e^{i\theta}$ $y \theta = p/q$) $y \{\epsilon_n\}$ una sucesión que tiende a 0 y que satisface

$$-\frac{\pi}{q\epsilon_n}+N_n \to \sigma \in \mathbb{C} \qquad n \to \infty,$$

para alguna sucesión de enteros $\{N_n\}$. Si $c_{\epsilon_n}=c\pm\epsilon_n ie^{i\theta}(1-e^{i\theta})$, entonces

$$\liminf_{n\to\infty} \operatorname{Dim}_{\mathsf{H}}\left(J(f_{c_{\epsilon_n}})\right) > \frac{2q}{q+1}.$$

Aun cuando bajo ciertas restricciones podemos tomar $\{\epsilon_n\} \in \mathbb{C}$, vamos a pedir que la sucesión pertenezca a IR. En este caso c_{ϵ_n} pertenece a la tangente al cardioide principal en el punto c.

Demostración. Comenzamos por escoger $\alpha' \in \partial P_j$ tal que $f_c^q(\alpha') = \alpha$ (el punto fijo de f_c). Sea ξ el correspondiente a α' en ∂B^+ (o ∂B^- , dependiendo de en cual es h^\pm repulsora). El lema 8 nos garantiza la existencia de una sucesión $\{\xi_j\} \subset B^+$ $(j \in \mathbb{N})$ que satisface $h(\xi_j) = \xi_{j-1}$. Además podemos construir una sucesión de discos ajenos $\{V_j\}$ centrados en $\{\xi_j\}$ tal que $h(V_j) \to V_{j-1}$ sea una biyección. Sea V una vecindad de ξ en \mathbb{C}/\mathbb{Z} $(h(V_1) = V)$. La aplicación $f_c^q \circ \Psi_j \circ \Pi^{-1}$ transforma V en U, vecindad de α .

Sea g la aplicación de Lavaurs correspondiente a h, es decir $g = g_{\beta} = \varphi_{j} \circ T_{\beta} \circ \phi_{j}^{+}$ (como β está fija y ecogimos j de tal forma que estemos trabajando en el pétalo que contiene al único punto crítico de f_{c} sólo escribimos g).

Llamaremos $V_{i,k}$ a $f^k \circ \Psi_j \circ \Pi^{-1}(V_i)$. $V_{n,k+1} = f(V_{n,k})$ y $V_{n,q} = g(V_{n+1,q})$, es decir:

$$f^q \circ \Psi_j \circ \Pi^{-1}(h(V_{n+1})) = g \circ f^q \circ \Psi_j \circ \Pi^{-1}(V_{n+1}),$$

como lo mostramos a continuación:

$$g \circ f^q \circ \Psi_j \circ \Pi^{-1}(V_{n+1}) = \Psi_j \circ T_\sigma \circ \phi_j^+ \circ f^q \circ \Psi_j \circ \Pi^{-1}(V_{n+1}).$$

La relación funcional $\phi_i^+(f^q(z)) = \phi_i^+(z) + 1$ implica que

$$\Psi_j \circ T_\sigma \circ \phi_j^+ \circ f^q \circ \Psi_j \circ \Pi^{-1}(V_{n+1}) = \Psi_j(T_\sigma \circ \phi_j^+ \circ \Psi_j \circ \Pi^{-1}(V_{n+1}) + 1)$$

y además

$$\Psi_j(T_{\sigma} \circ \phi_j^+ \circ \Psi_j \circ \Pi^{-1}(V_n) + 1) = \Psi_j(\phi_j^+ \circ \Psi_j \circ \Pi^{-1}(V_n) + 1 + \sigma).$$

Notemos que

$$\Psi_{j}(\phi_{j}^{+} \circ \Psi_{j} \circ \Pi^{-1}(V_{n}) + 1 + \sigma) = \Psi_{j}(T_{\sigma}(\phi_{j}^{+} \circ \Psi_{j} \circ \Pi^{-1}(V_{n})) + 1)$$

$$y$$

$$\Psi_{j}(T_{\sigma}(\phi_{j}^{+} \circ \Psi_{j} \circ \Pi^{-1}(V_{n})) + 1) = \Psi_{j}(\Pi^{-1}(h(V_{n+1})) + 1).$$

Como $f^q(\Psi_j(z)) = \Psi_j(z+1)$ tenemos

$$\Psi_i(\Pi^{-1}(h(V_{n+1})) + 1) = f^q \circ \Psi_i \circ \Pi^{-1}(h(V_{n+1}))$$

Es claro que la cerradura todas las vecindades $V_{n,k}$ está contenida en U si $n > n_0$ para algún $n_0 \in \mathbb{N}$, puesto que los conjuntos V_n se alejan hacia un extremo de \mathbb{C}/\mathbb{Z} (y se acercan al punto fijo parabólico en las coordenadas originales).

Teniendo las relaciones entre f,g y las $V_{n,k}$ podemos entonces definir el repulsor conforme

$$\{U, V_{n,k}\}\ (N \ge n \ge n_0, |k| < \epsilon n)$$

donde $f_{n,k}(V_{n,k}) = U$ y ϵ es pequeño. Dada V_{n_0,k_0} , definimos f_{n_0,k_0} de la siguiente manera:

1. Si k_0 es tal que $f^{k_0} \circ \Psi_j \circ \Pi^{-1}(V) = U$ entonces aplicamos g^n y obtenemos $g(V_{1,k_0}) = U$.

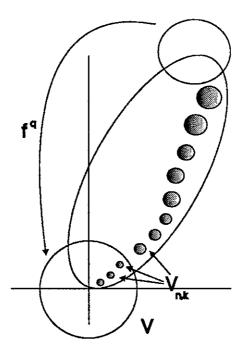


Figura 27

2. Si lo que tenemos es $V_{n,k+j}$ entonces aplicamos $(f^{-1}|_{V_{n,k+j}})^j$ y nos ponemos en el caso anterior.

En la construcción de los $V_{n,k}$, podemos pedir que el origen no esté incluido en K. Dado que $\overline{V_{n,k}} \subset U$ podemos afirmar que existe $K \subset U$ dominio de Jordan compacto que contiene a los $V_{n,k}$ y entonces definimos

$$K_{n,k} := f_{n,k}^{-1}(K)$$
 y $a_{n,k} := \sup\{|f'_{n,k}(z)|^{-1} \mid z \in K_{n,k}\}$

Vamos ahora a justificar la siguiente estimación

$$a_{n,k} \ge C \frac{1}{|n+ik|^{\frac{q+1}{q}}}$$

donde C es una constante que no depende de N.

Recordemos que en la construcción de las Coordenadas de Fatou para la aplicación con q pétalos transformamos cada pétalo atractor en una región derecha (y cada repulsor en una izquierda) utilizando la aplicación

$$w=\tau(z)=\frac{b}{z^q}$$

y que en estas regiones f^* y g_{σ}^* pueden considerarse translaciones si |w| no es pequeña (al menos si se trata de estimar cotas para las derivadas). Las siguientes igualdades son inmediatas de la anterior:

$$\tau^{-1}(w) = cw^{-\frac{1}{q}}$$

$$(\tau^{-1})'(w) = c'w^{-\frac{q+1}{q}},$$

de donde se sigue

$$((\tau^{-1})'(w_0))^{-1} \cdot (\tau^{-1})'(w_0 + n + ik) = \left(\frac{w_0}{w_0 + n + ik}\right)^{\frac{q+1}{q}}$$

donde $w_0 = \tau(z_0)$ y $z_0 \in \overline{V_{n,k}}$. Es claro que existe d tal que

$$|w_0 + n + ik| \le d$$

puesto que w_0 está contenido en un compacto y $n_0 \le n \le N$. Como

$$|w_0| - |n + ik| \le d$$

y tanto $|w_0|$ como |n+ik| están acotados entonces existe d' tal que

$$|w_0| \approx d' |n + ik|$$
.

Así que $|f'_{n,k}|$ estará acotada por

$$|f'_{n,k}| \le \left| \frac{d'(n+ik)}{d} \right|^{\frac{q+1}{q}},$$

finalmente,

$$|f'_{n,k}|^{-1} \ge \frac{C}{|n+ik|^{\frac{q+1}{q}}}$$

Con lo que obtenemos resultado para $a_{n,k}$.

Sea C_N el conjunto de Cantor generado por el repulsor conforme $(U, V_{n,k}, N \ge n \ge n_0, |k| < \epsilon n)$. Como una consecuencia de la fórmula de Bowen-Ruelle tenemos

$$\sum_{\substack{n_0 \le n \le N \\ |k| \le \epsilon n}} (a_{n,k})^{\operatorname{Dim}_{\mathbb{H}}(C_N)} \le C$$

Y de las dos desigualdades anteriores se sigue

$$C \sum_{\substack{n_0 \le n \le N \\ |k| \le \epsilon n}} \frac{1}{|n+ik|^{\frac{q+1}{q}}} \le C$$

y por lo tanto

$$(N-n_0)^2 \left(\frac{1}{|N(1-\epsilon)|^{\frac{q+1}{q}}}\right)^{\operatorname{Dim}_{\mathsf{H}}(C_N)} \le 1$$

Calculando log a ambos lados de la desigualdad y despejando $\operatorname{Dim}_{\mathrm{H}}(C_N)$ obtenemos

 $\operatorname{Dim}_{\mathrm{H}}(C_N) \geq \frac{2q}{q+1} \left[\frac{\log(N-n_0)}{\log(N(1-\epsilon))} \right]$

Como el término entre corchetes tiende a uno cuando $N \to \infty$, para N suficientemente grande se satisface

$$\operatorname{Dim}_{\mathrm{H}}(C_N) \geq \frac{2q}{q+1}.$$

El resultado anterior nos permite concluir la demostración del teorema. Antes de proseguir es importante que notemos que C_N no es un subconjunto hiperbólico de f_{c_0} , sino de (f_{c_0}, g_{σ}) . Se define ([D1])

$$J(f_{c_0}, g_{\sigma}) := \{ z \mid g_{\sigma}^n(z) \in J(f_{c_0}), \ n \in \mathbb{N} \}.$$

Recordemos que la aplicación $f \mapsto \operatorname{Dim}_{\operatorname{hip}}(f)$ es inferiormente semicontinua, así que si existe K tal que $K \geq \operatorname{Dim}_{\operatorname{hip}}(f_{c_0})$ entonces existe $V(c_0)$ vecindad de c_0 tal que si $c \in V(c_0)$ entonces $K \geq \operatorname{Dim}_{\operatorname{hip}}(f_c)$.

Otro punto importante es que si $c \in \mathbb{C} \setminus M$ entonces

$$\operatorname{Dim}_{\operatorname{hip}}(f_{c}) = \operatorname{Dim}_{\operatorname{H}}(J(f_{c}))$$

porque $J(f_c)$ es totalmente disconexo y es la cerradura de las órbitas periódicas repulsoras. Entonces todos los puntos en $J(f_c)$ pertenecen a una órbita repulsora y por lo tanto $J(f_c)$ es un subconjunto hiperbólico de f_c . Este argumento nos permite intercambiar Dim_H y $\operatorname{Dim}_{\operatorname{hip}}$ en lo siguiente, siempre que $c \notin M$. Nosotros queremos calcular $\liminf_{n\to\infty} \operatorname{Dim}_H(J(f_{c_{\epsilon_n}}))$ con ciertas condiciones sobre c_{ϵ_n} (ver sección 5 del Capítulo 3). Comenzamos por escoger una sucesión $\{c_{\epsilon_n}\}$ tal que

$$\lim_{n_j \to \infty} \operatorname{Dim}_{\mathsf{hip}}(f_{c_{in_j}})$$
 LS PA TESIS NO SALE

59 DE LA BIBLIOTECA

coincida con liminf. Dada la hipótesis sobre ϵ_{n_j} podemos asegurar la existencia de una sucesión de enteros $\{N_{\epsilon_{n_j}}\}$ tal que $f_{c_{\epsilon_{n_j}}}^{N_{\epsilon_{n_j}}} \to g_{\sigma}$ uniformemente en todo compacto contenido en K (f_{c_0}) . Para esta σ consideramos un repulsor conforme como hicimos anteriormente y si ϵ_{n_j} es suficientemente pequeño entonces tendremos que

$$2q/(q+1) \leq \operatorname{Dim}_{hip}(f_{c_{n_1}})$$

con lo que obtenemos el resultado, ya que

$$J(f_{\epsilon_{n_j}}) \to J(f_{c_0}, g_{\sigma}), \ (\epsilon_{n_j} \to 0)$$

4. Conclusión de la Demostración

Comenzamos por escoger una sucesión $\{c_j\}_{j=1}^{\infty} \in \partial M$ tal que f_{c_j} tenga un punto fijo parabólico con una cuenca inmediata compuesta por j pétalos atractores. Por el Teorema 12 tenemos que toda c_j satisface

$$2 \ge \operatorname{Dim}_{\mathsf{H}} \{c \in M \mid f_c \in D\} \ge \operatorname{Dim}_{\operatorname{hip}} (f_{c_i}).$$

Podemos perturbar cada c_j como hicimos en la demostración del Teorema 13 conservando la desigualdad anterior y obteniendo la siguiente

$$\lim_{i \to 0} (f_{c_{i,c}}) \ge 2j/(j+1).$$

Combinando ambas desigualdades tenemos

$$2 \ge \operatorname{Dim}_{\mathbf{H}} \{c \in M \mid f_c \in D\} \ge \operatorname{Dim}_{\operatorname{hip}} (f_{c_{j_c}}) \ge 2j/(j+1)$$

y haciendo tender $j \to \infty$

$$Dim_{\mathsf{H}} \{ c \in M \mid f_c \in D \} = 2.$$

Como $\{c \in M \mid f_c \in D\} \subset \partial M$ entonces obtuvimos el siguiente

Teorema 14 (Shishikura) $Dim_H(\partial M) = 2$.

Bibliografía

- [A] Ahlfors, L., Lectures on Quasiconformal Mappings, Van Nostrand, 1966.
- [Ba] Barnsley, M., Fractals Everywhere, Academic Press Professional, Cambridge, Ma., 1993.
- [Be] Beardon, A., Iteration or Rational Maps. GTM 132, Springer-Verlag, Nueva York, 1991.
- [CG] Carlesson, L., Gamelin, T., Complex Dynamics, Springer-Verlag, Nueva York, 1993.
- [Co] Conway, J., Functions of one Complex Variable, GTM 11, Springer-Verlag, Nueva York, 1973.
- [D1] Douady, A., Does a Julia Set Depend Countinously on the Polynomial?, Proceedings of Symposia in Applied Mathematics, 49 (1994) p.91-138.
- [D2] Douady, A., Julia Sets and Mandelbrot Sets, Apéndice en el libro: The Beauty of Fractals (pp.161-173), autores: Petigen, H. O., Richter, P. H., Springer-Verlag, Alemania, 1986.
- [F] Falconer, K., Fractal Geometry, Mathematical Foundations and Applications, John Wiley and Sons, Inglaterra, 1990.
- [L] Lang, S., Complex Analysis, Second Edition, GTM 103, Springer-Verlag, Nueva York, 1985.
- [Ma] McMullen, C., Frontiers in Complex Dynamics, Bulletin (New Series) of the American Mathematical Society, vol. 31 (2) 1994 p.155-172.
- [MH] Marsden, J., Hoffman, M. Análisis Básico de Variable Compleja, Trillas, México, 1996.
- [Mi] Milnor, J., Dynamics in One Complex Variable: Introdutory Lectures, Preprint SUNY Sony Brook, Institute for Mathematical Sciences, 1990.
- [MSS] Mañé, R., Sad, P., Sullivan, D., On the Dynamics of Rational Maps, Ann. Scient. Ec. Norm. Sup., (4) 16 (1983) p.193-217.

- [Sh] Shishikura, M., The Husdorff Dimension of the Boundary of the Mandelbrot Set and Julia Sets, Annals of Mathematics, 147 (1998) p.225-267.
- [ST] Sullivan, D., Thurston, W., Extending Holomorfic Motions, Acta Mathematica. 157 (1986) p.243-257.
- [Z] Zinsmeister, M., Fleur de Leau-Fatou et Dimension de Hausdorff, 1998.