

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

ESCUELA NACIONAL DE ESTUDIOS PROFESIONALES 'ACATLAN'

"CENTRO DEPORTIVO MEXICO NUEVO"

TESIS PROFESIONAL

PARA OBTENER EL TITULO DE :

ARQUITECTO

PRESENTA:

ZADWY MALDONADO DOMINGUEZ

ASESOR: ARQ. ERICK JAUREGUI RENAUD

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Gracias:

A Dios , por este y cada uno de los instantes de mi vida.

A mi madre, por la vida, por su amor, por la familia, por su valioso ejemplo, por su gran apoyo y estímulo para alcanzar cada uno de mis sueños.

A mi padre, por la vida, por su amor, por la familia, por su apoyo, por sus cuidados y por esa gran fe que tiene en mi.

A mi hermana, por esa maravillosa amistad que tenemos, por su ejemplo de esfuerzo y dedicación en el camino del éxito, por su apoyo incondicional y por su enorme colaboración en la culminación de este proyecto.

A mi hermano, por su gran cariño, por su apoyo, por ayudarme en la culminación de este proyecto y por estar conmigo ahora y siempre.

A mi familia, tíos, primos, cuñada, etc. por acompañarme y apoyarme con cariño en los peores y mejores momentos de mi vida.

A mis amigos, por su cariño, por su apoyo, por ese don maravilloso e invaluable de la amistad y por permitirme llegar a ser una mejor persona a través de ellos.

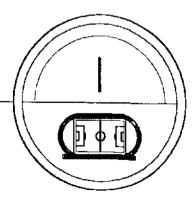
A mis profesores, por compartir sus conocimientos conmigo e iniciar el gusto por la Arquitectura.

A la Escuela Nacional de Estudios Profesionales Acatlán (UNAM) por permitirme cursar una carrera profesional que me llena de satisfacciones.

A todas aquellas personas que he conocido en el andar de esta profesión (desde profesionistos hasta peones), quienes me han enseñado mucho y me han inculcado el amor por la profesión de Arquitecto.

ESQUEMA

INTRODUCCION.


	I. Introducción. II. Objetivo general. III. Objetivo particular. IV. Objetivos específicos. V. Justificación	
1.	ESTUDIO REGIONAL DEL MUNICIPIO	1
	1.1. Ubicación del Municipio 1.1.1. Ubicación y extensión territorial 1.1.2. Antecedentes Históricos 1.1.3. Perfil poblacional	3 4
	1.2. Medio Físico Natural	6
	1,2,3. Clima	
	1.2.2. Geología	
	1.2.3. Fisiografía	6
	1.2.4. Edafología	6
	1,2.5. Vegetación	7
	1.2.6. Hidrología	
	1.2.7. Precipitación pluvial	7
		8
	1.2.9. Vientos dominantes	9
	1.2.10. Asoleamiento anual	10

2.	ANALISIS DE SITIO	1714
	2.1. Análisis Urbano	12
	2.1.1. Selección y ubicación del Predio	13
	2.1.2. Equipamiento Urbano	14
	2.2. Análisis del Predio	15
	2.2.1. Uso de Suelo, Densidad e Intensidad	15
	2.2.2. Equipamiento e Infraestructura	18
	2.2.3.Topografía del terreno	19
	2.2.4. Registro fotográfico	20
3.	NORMATIVIDAD	24
	3.1. Sistema Normativo de Equipamiento Urbano	25
	3.1.1. Normas de Dimensionamiento	25
	3.1.2. Requerimientos de Infraestructura y Servicios Públicos	26
	3.2. Reglamento de Construcciones del Distrito Federal	27
	3.2.1. Requerimientos de Diseño Arquitectónico	2 7
	3.2.2.Requerimientos de Instalaciones	29
4	DESARROLLO DEL PROYECTO	31
	4.1. Elementos Análogos	32
	4.2. Estudio General de áreas	36
	4.3. Programa arquitectónico	49
	4.4. Diagrama de funcionamiento	52
	4.5. Organigrama	53
	4.6. Zonificación	54

•

5. PROYECTO EJECUTIVO	55
 5.1. Memoria Descriptiva. 5.2. Planos Arquitectónicos (Plantas, cortes y fachadas). 5.3. Diseño Estructural y Memoria de Cálculo. 5.4. Instalación Hidráulica y Memoria de Cálculo. 5.5. Instalación Sanitaria. 5.6. Instalación Eléctrica. 5.7. Planos de Acabados. 5.8. Planos de Herrería y Carpintería. 	
6. COSTO Y FINANCIAMIENTO	., 151
6.1. Costo	
7. CONCLUSION	154
8. BIBLIOGRAFIA	156

INTRODUCCION

INTRODUCCION

I. INTRODUCCION

Una de las necesidades básicas del ser humano es la actividad física, la cual le ayuda a llevar una vida más sana y a desarrollarse mejor en cualquiera de sus actividades.

La actividad física ha sido transformada a través del tiempo en diversas disciplinas deportivas con características muy diversas, algunas de ellas se realizan en equipo y otras se realizan de manera individual, algunas requieren de un equipo especial y otras quizá no, pero en lo que sí coinciden todas las disciplinas deportivas es la necesidad de un "espacio", es decir, un área específica para poder desarrollarse.

En algunas ocasiones el espacio requerido para la práctica de algún deporte es proporcionado por la naturaleza, como por ejemplo: el esquí acuático y en nieve, el alpinismo, etc. Sinembargo, algunos otros deportes como: futbol, basquetbol, tenis, volibol, beisbol, etc., requieren de espacios diseñados y construídos de acuerdo a ciertas normas, para la práctica adecuada de dichos deportes. Es ahí en donde se requiere de la creatividad y conocimientos del arquitecto, cuyo objetivo es lograr los espacios adecuados para que toda persona sin importar edad, sexo o condición económica, pueda practicar algún deporte.

II. OBJETIVO GENERAL.

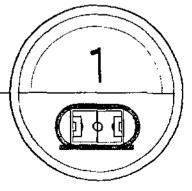
Diseñar y proponer a nivel de proyecto ejecutivo un Centro Deportivo en el Municipio de Atizapán de Zaragoza en el Estado de México.

Contando con la Memoria Descriptiva del Proyecto en general y la Memoria de Cálculo, propuesta de Instalaciones y Detalles constructivos del edificio que conforma el área de Albercas.

III. OBJETIVO PARTICULAR.

Por medio de la arquitectura, diseñar y proponer los espacios que resulten adecuados para e desarrollo de actividades deportivas, que permitan al ser humano desarrollarse física y mentalmente. Comprobando que con un correcto diseño arquitectónico se obtiene un mayor aprovechamiento de los espacios y los recursos naturales y económicos.

IV. OBJETIVOS ESPECIFICOS.

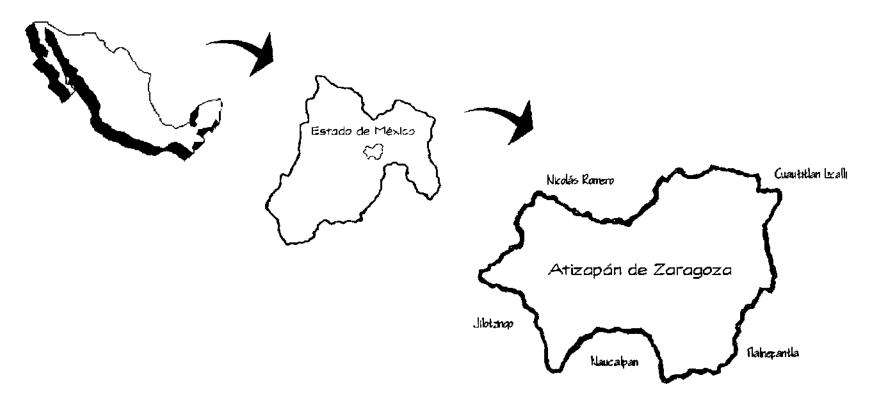

- Diseñar un Centro deportivo ubicado en la Colonia México Nuevo del Municipio de Atizapán, cuyas instalaciones proporcionen servicio a las comunidades del Municipio en el que se encuentra y Zonas aledañas.
- Diseñar instalaciones que afecten lo menos posible la naturaleza del lugar y conserven un entorno limpio.
- Proponer para la construcción del Centro Deportivo la utilización de materiales (de alta calidad) que no requieran de un mantenimiento recurrente.

V. JUSTIFICACION

En los planes de desarrollo urbano de los municipios y/o delagaciones de cada Estado del país, se determinan los distintos usos de suelo de los predios.

En el caso de este proyecto, su finalidad es dar solución arquitectónica a una zona deportiva en un predio que fue designado para actividades deportivas por el Municipio de Atizapán de Zaragoza.

ESTUDIO REGIONAL DEL MUNICIPIO

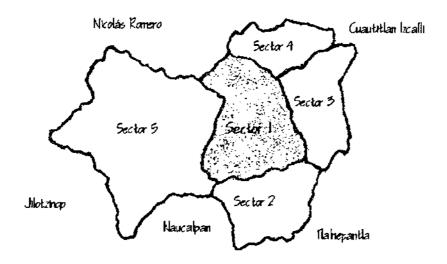


1 ESTUDIO REGIONAL DEL MUNICIPIO

Para diseñar arquitectónicamente es necesario tomar en cuenta diferentes elementos, dentro de los cuales se considera el estudio de la región a la cual pertenece nuestro proyecto. Dicho estudio nos proporciona información como por ejemplo: ubicación del predio, tipo de población a la que se le va a dar servicio, clima de la región, vegetación, el tipo de suelo, etc. elementos que nos permiten obtener un mejor resultado del proyecto.

1.1. UBICACION DEL MUNICIPIO.

Es importante para ubicarnos en el predio del proyecto en estudio, comenzar ubicándonos territorialmente dentro del país que es México, en el Estado de México dentro del cual se encuentra el municipio de Atizapán de Zaragoza. Este municipio, se encuentra en una zona muy cercana al D.F. y a pesar de no tener colindancia con él, algunas zonas de su territorio forman parte del área Metropolitana de la Ciudad de México.



1.1.1. Ubicación y extensión territorial.

El municipio de Atizapán de Zaragoza se encuentra ubicado en la porción Noreste del Estado de México, entre los paralelos 19°30′55" y 19°36′43" de latitud Norte y los meridianos 99°12′32" y 99°21′15" de longitud Oeste, encontrándose a una Altitud media de 2280 metros sobre el nivel del mar.

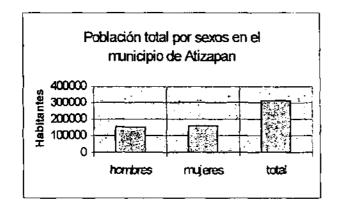
Ocupa una extensión territorial de 89.88 km² y colinda al norte y noreste con el municipio de Cuautitlán Izcalli, al este con el municipio de Naucalpan, al oeste con los municipios de Isidro Fabela y Jilotzingo, y al noreste con el municipio de Nicolás Romero.

El municipio está dividido en 5 sectores, siendo el primer sector donde se ubica nuestro predio en estudio.

Municipio de Atizapán de Zaragoza

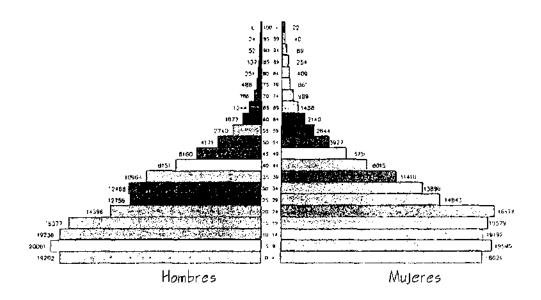
1.1.2. Antecedentes Históricos.

Anteriormente el territorio que conforma en la actualidad el Municipio de Atizapán de Zaragoza, fue un asentamiento Otomí aproximadamente en los siglos XVI y XVII. La doctrina de Ilalnepantla atendía a los mexicanos de Tenayucan y a los pueblos Otomíes de Teoltayocan, incluyendo a San Francisco Atizapán y a Santa María Calacoaya, estos datos son relatados por el cronista Francisco Betancour en su crónica.


Los pueblos que dieron origen a Atizapan de Zaragoza son : Tecoloapan, Calacoaya y Atizapán.

En el año de 1850 es cuando Atizapán comenzó a funcionar como Ayuntamiento y en el año de 1874 se eleva a categoría de municipio por decreto del Congreso del Estado de México.

1.1.3. Perfil Poblacional.


El municipio de Atizapán de Zaragoza ha tenido un crecimiento en los últimos años de los de mayor dinámica en los municipios que conforman el área metropolitana de la Cuidad de México.

Hasta el año de 1960 el municipio de Atizapán no había demostrado crecimiento significativo de población, pero en la década de 1960-1970 la población se incrementó de 8,069 a 44,322 habitantes, lo que representó una tasa anual de crecimiento de 34.70%; en la década 1970-1980, la población aumentó hasta 202,248 habitantes, lo que representó una tasa anual de crecimiento de 16.40% y en la década de 1980-1990 la población llegó hasta 315,192 habitantes con una tasa de crecimiento anual de 4.50%.

Para el estudio de nuestro proyecto el sexo de la población no es tan relevante, ya que si bien es cierto que algunos deportes son practicados por el género masculino con mayor número que el femenino como en el caso del futbol, la diversidad de actividades deportivas a realizar en el Deportivo México Nuevo, dará servicio a laud número de hombres que de mujeres además de que como se muestra en la gráfica, la diferencia en cantidad es casi nula.

Pirámide de Edades

Con la pirámide de edades podemos darnos cuenta de que el municipio de Atizapán cuenta con una población mayoritaria de niños y Jóvenes de ambos sexos, por lo que la propuesta del Centro Deportivo le será de gran utilidad.

En realidad el Certro Deportivo está planeado para que sea utilizado por gente de todas las edades y de ambos sexos, esto gracias a sus múltiples actividades deportivas. Por ejemplo, la pista destinada a corredores se planea que sea utilizada por personas de todas las edades, desde jóvenes hasta personas de la tercera edad y será utilizada principalmente por las mañanas durante casi toda la semana que se planea de servicio el deportivo y principalmente los fines de semana que es cuando muchas personas acostrumbran hacer un poco de ejercicio al aire libre.

El resto de las disciplinas deportivas y recreativas como: futbol, futbol rápido, basquetbol, volibol, atletismo, natación, karate, judo, aerobics, pesas, ecc. cambién tendrán asistencia de personas de todas las edades, planeando equipos y horarios para su funcionamiento.

1.2. MEDIO FISICO NATURAL DEL MUNICIPIO.

Los elementos que conforman el Medio Físico Natural del Municipio, son elementos que nos indican las características físicas generales de la zona, lo cual, nos ayuda a proponer en nuestro diseño arquitectónico una solución que forme parte de su entorno natural.

1.2.1. Clima.

Por su situación geográfica, el municipio es regido por un clima templado subhúmedo, registrándose una temperatura media de 15°C y una precipitación anual que fluctúa entre 700 y 800mm.

Teniendo un clima templado resulta adecuado para el Centro Deportivo, ya que en él se realizarán varias actividades al aire libre.

1.2.2. Geología.

Las formaciones geológicas de este municipio datan del cenozoico terciario, región caracterizada por el predominio de rocas igneas extrusivas, formandos sierras y coladas de lava.

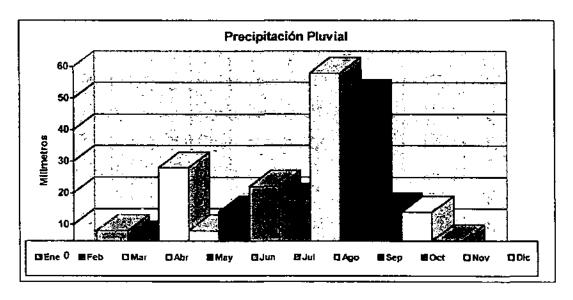
1.2.3. Fisiografía.

El municipio de Atizapán de Zaragoza se localiza en la subprovincia de lagos y volcanes del Anáhuac y específicamente en la región de lomeríos suaves, esta zona pertenece a la provincia del eje neovolcánico, la cual se caracteriza por ser una enorme masa de rocas volcánicas de todos los tiempos, acumulada enumerables y sucesivos episodios volcánicos: la integran grandes sierras volcánicas, enormes coladas lávicas y conos dispersos o en enjambre.

1.2.4. Edafología.

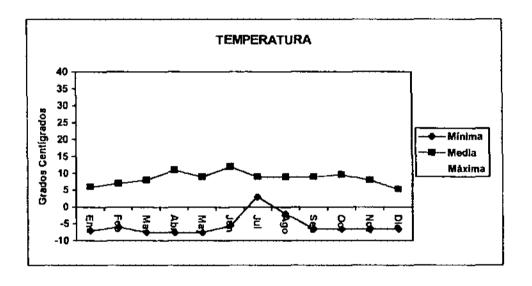
En la porción central del Municipio predominan los vertisoles, que por su alto contenido de arcilla presentan ciertas dificultades en su manejo, tanto para la actividad agrícola como para la construcción; al este prevalecen los suelos FEOZEM, que por su riqueza en materia orgánica nutriente, resultan aptos para la agricultura; al oeste se presentan los luvisoles, que dependiendo de su profundidad pueden destinarse a la actividad agrícola.

1.2.5 Vegetación.


Al este del municipio se encuentra una pequeña porción cubierta por bosque de encino; el centro y oeste presentan esparcidos pastizales inducidos, fuertemente afectados por la erosión.

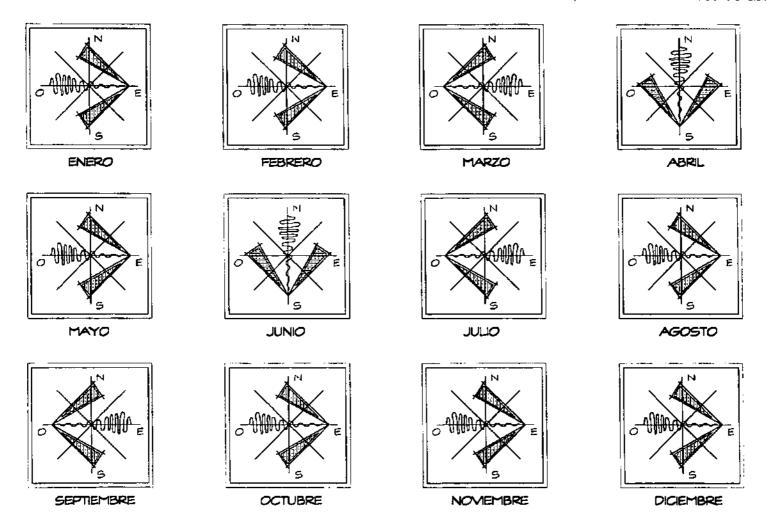
1.2.6. Hidrología.

El municipio está comprendido en la región hidrológica 26, cuenca de sus principales recursos hidrológicos que son: El Río Tlanepantla que lo cruza en su parte sur de suroeste a noroeste y la presa Madín que se localiza en los límites con Naucalpan.

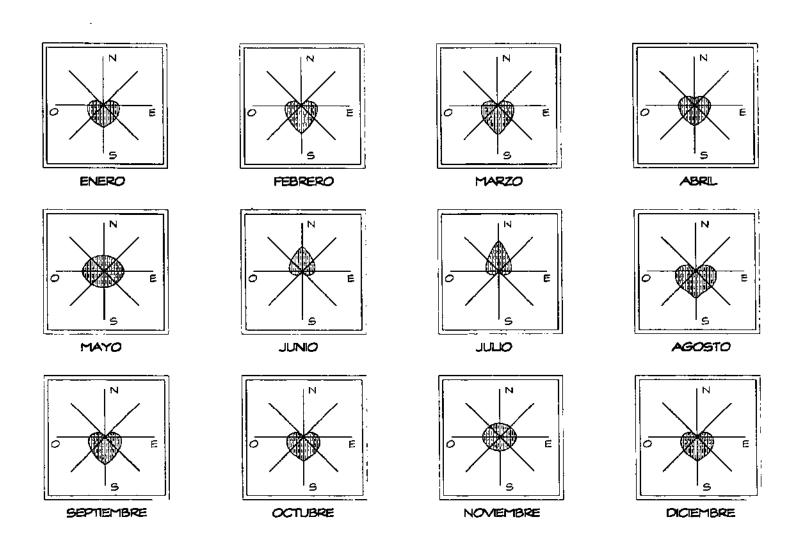

1.2.7. Precipitación Pluvial.

La precipitación pluvial es un elemento de gran importancia para tomarse en cuenta en el diseño arquitectónico. Como vemos en la gráfica de abajo, los meses del año en que hay mayor precipitación pluvial son Agosto y Septiembre, estos datos nos servirán para considerar por ejemplo el desalojo del aqua en las azoteas y en las canchas deportivas, evitando así problemas por inundaciones en nuestras instalaciones.

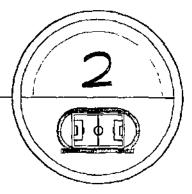
1.2.8.Temperatura.


La temperatura de la región varía según la época del año, pero como se muestra en la gráfica de abajo, tenemos una temperatura mínima de -6 °C y una temperatura máxima de 35 °C, pero mantiene una temperatura media a lo largo del año de 5°C a 12 °C.

1.2.9. Vientos Dominantes.


Se conocen como vientos dominantes a los vientos que se presentan con mayor incidencia en cierta dirección y sentido.

En la gráfica de abajo se indican los vientos dominantes del Municipio de Atizapán de cada mes del año. Predomina la dirección Deste-Este presente er los meses de enero, febrero, mayo, agosto, octubre, noviembre y diciembre; la dirección de los vientos Este-Deste se presenta en los meses de marzo y julio; y la dirección Norte-Sur se presenta en los meses de abril y junio.



1.2.10. Asoleamiento Anual.

En la gráfica mostrada abajo podemos ver el asoleamiento por mes que se presenta en el municipio de Atizapán. De esta gráfica obtenemos la información de que la fachada Sur es la que se mantiene con mayor asoleamiento en la mayoría de los meses del año,

ANALISIS DE SITIO

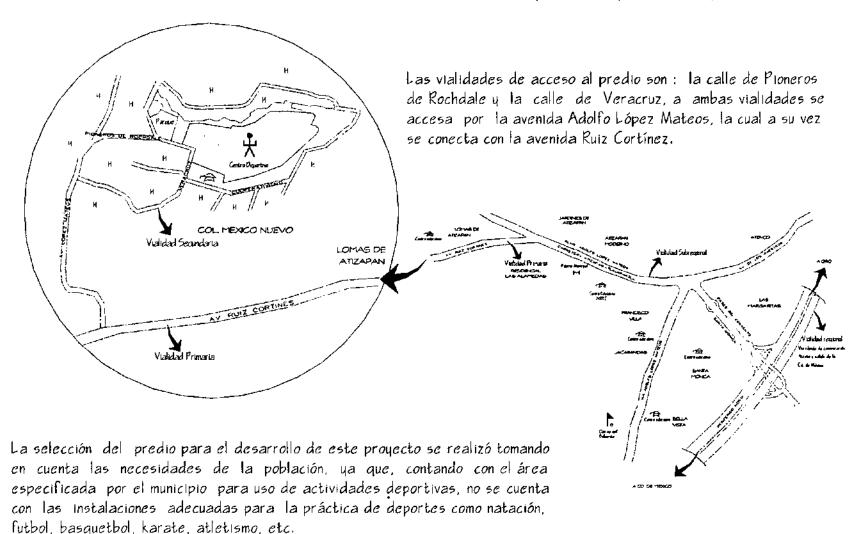
2 ANALISIS DE SITIO

El análisis de sitio está conformado por todos los elementos de carácter urbano del lugar es decir, el equipamiento e infraestructura con que cuenta el predio en estudio. Dichos elementos son: vialidades, servicio de drenaje y aqua potable, energía eléctrica, etc. y también se estudian las características particulares del terreno como su topografía. El análisis de sitio nos ayuda a desarrollar adecuadamente un proyecto.

2.1. ANALISIS URBANO.

Dentro del análisis urbano de la zona que rodea al predio analizamos distintos aspectos como: las vialidades que nos dan acceso al predio, la ubicación del predio y algunos elementos de equipamiento urbano de la zona como centros educativos, deportivos, centros recreativos y el Palacio Municipal del Atizapán de Zaragoza.

Vialidades



Andadores Peatonales

Centros Educativos

2.1.1. Selección y Ubicación del Predio.

El predio en estudio se encuentra ubicado en la colonia "México Nuevo" del municipio de Atizapán de Zaragoza.

2.1.2. Equipamiento Urbano.

El sector I del municipio de Atizapán es un área que ha tenido un crecimiento muy grande de su población y forma parte ya del área metropolitana anexada al D.F., por lo cual los servicios de equipamiento de la zona han tenido que ir creciendo de acuerdo a las demandas de la población. Algunos de estos servicios de equipamiento Urbano son de grandes dimensiones como los centros educativos nivel Universitario y dan servicio no sólo a su comunidad sino también a las comunidades cercanas incluso de algunos otros municipios.

La zona donde se ubica el predio es una zona primordialmente habitacional y como tal debe contar con el equipamiento urbano que le de servicio, dicho equipamiento consta de centros deportivos, áreas recreativas y de esparcimiento, centros educativos, áreas de comercio, servicos de salud, etc.

Precisamente el predio en estudio forma parte del equipamiento urbano de la zona, ya que deberá cumplir con la función de centro deportivo y/o recreativo para los habitantes de la comunidad y por sus dimensiones se considera podrá dar servicio a otras comunidades.

2.2. ANALISIS DEL PREDIO.

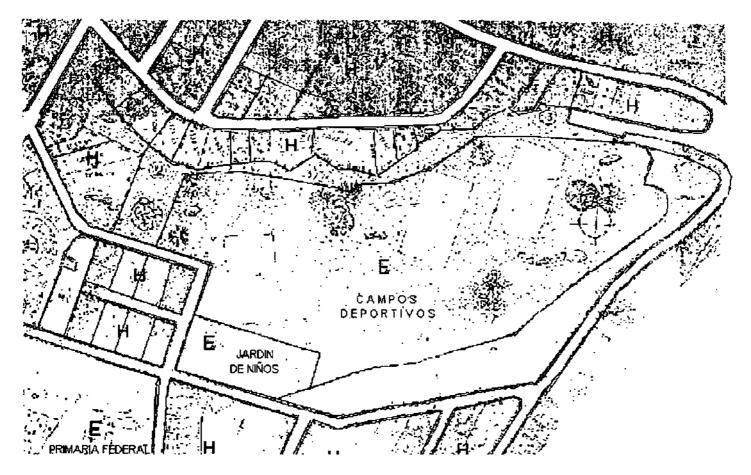
Una vez que se ha hecho el análisis urbano de la zona que rodea al predio, se procede a analizar el predio, estudiando las características físicas del mismo y todos los elementos que influyen directamente en él, los cuales son: Equipamiento e infraestructura, Uso de Suelo, Densidad, Intensidad y Topografía.

2.2.1. Uso de suelo, Densidad e Intensidad.

El Uso de Suelo, la Densidad e Intensidad son las condicionantes que se plantean en los programas de desarrollo urbano que son especificados por las delegaciones y/o municipios, dichos programas tienen la finalidad de llegar a un ordenamiento en la construcción de las ciudades.

El Uso de suelo es la actividad a la que podrán dedicarse los predios.

Para el predio en estudio el municipio de Atizapán de Zaragoza determinó en el Programa de Regularización de la Tierra, realizado en noviembre de 1989, que el uso de suelo de este terreno se destinaría al equipamiento urbano y está especificado con la letra "E" con la anotación adicional de "Campos Deportivos", con lo cual comprobamos que le estamos determinando el uso de suelo correcto.

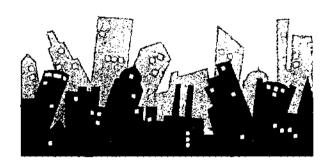


Un centro deportivo puede ubicarse dentro de un predio que tenqa especificado un uso de suelo para equipamiento "E", como se indica en este caso.

El Uso de Suelo se específica en el Plano I Promoción Sagitario, ilustrado en esta página.

Plano 1 Promoción Sagitario Col. México Nuevo

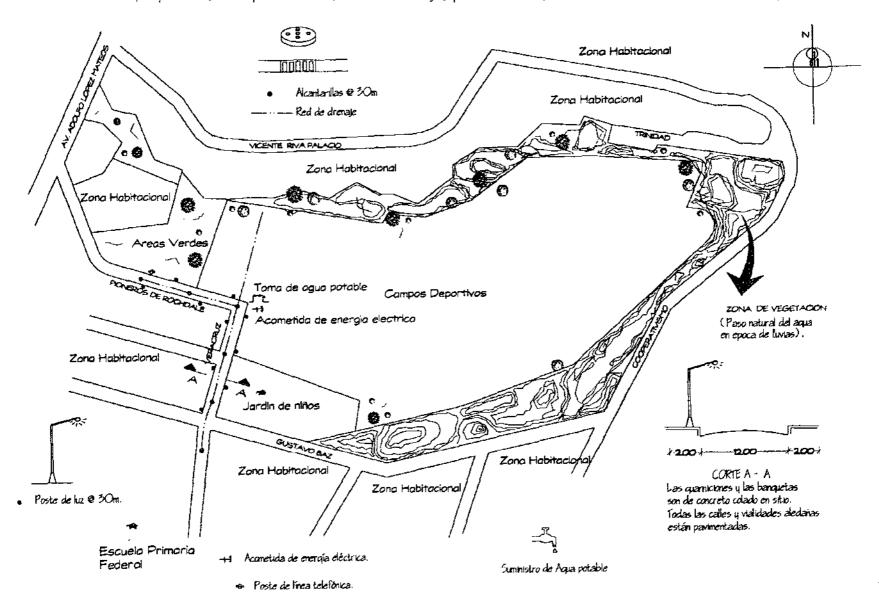
Este programa de regularización de la tenencia de la tierra se llevó a cabo por el Gobierno del Estado de México con fecha de noviembre de 1989, del cual obtenemos que: El uso de suelo del terreno está indicado como "E" Equipamiento, indica que es un área destinada para: Educación, Salud, Administración Pública, Culto, Recreación, Parques, Canchas deportivas y Areas verdes.


La densidad de población es el número de habitantes que se tiene en una superficie determinada de terreno, en este caso, una hectárea. Para el predio se especifica una densidad media de 300 hab/ha.

Densidad Media 300 hab/ha

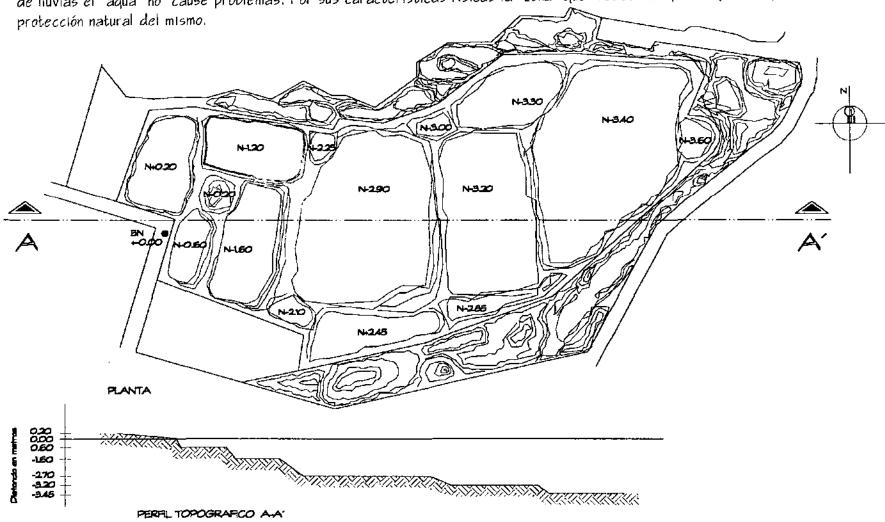
Este dato nos es útil para saber cuanto equipamiento se requiere en la zona de estudio, ya que a mayor cantidad de personas se requiere un mayor equipamiento.

La intensidad se refiere a la construcción, es el número de metros cuadrados de construcción que se permite por predio, dependiendo de su superficie. Para el predio en estudio se indica una intesidad media de 3.5.

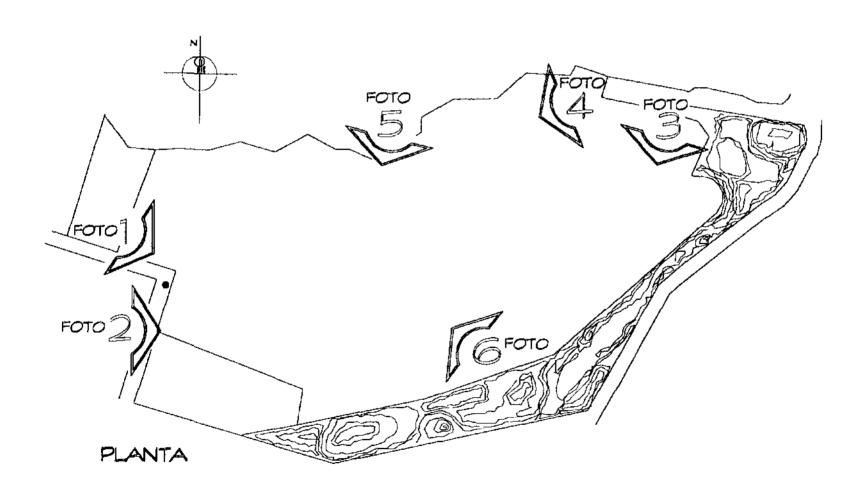

Intensidad Media 3.5

Este predio tiene una intensidad media de 3.5, lo cual nos indica que se puede construír en él hasta un máximo de 3.5 veces el área del terreno en m² de construcción.

El área del terreno es de 98,923 m2 aproximadamente, por intensidad se podrían construír 300,000 m². El proyecto cuenta con sólo 15,000 m² aproximadamente de construcción, sin contar las áreas verdes y las áreas de campos deportivos al aire libre.


2.2.2. Equipamiento e Infraestructura.

El predio cuenta con todos los servicios de equipamiento e infraestructura indispensables para funcionar adecuadamente, dichos servicios son: Aqua potable, energía eléctrica, red de drenaje, pavimentación, servicio de recolección de basura, etc.

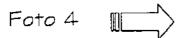

2.2.3. Topografía del Terreno.

El terreno está conformado topográficamente a base de varias plataformas planas de tierra apisonada. estas plataformas están dispuestas en el eje Este-Oeste con una pendiente aproximada del 3.5%. El terreno colinda en esu superficie Norte, Este y Sur, con un antiquo paso natural de un río, el cual fue entubado unas calles antes, esta zona del terreno tiene pendientes muy pronunciadas con una topografía muy accidentada, por lo que se recomeinda dejar la zona libre de construcción para que en época de lluvias el aqua no cause problemas. Por sus características físicas la zona que rodea al predio puede aprovecharse como

2.2.4. Registro fotográfico.

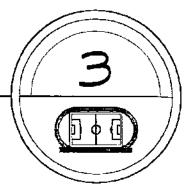
Para que podamos apreciar el estado actual del terreno, se realiza un estudio fotográfico comformado en este caso por seis fotografías tomadas desde distintos ángulos del predio, las cuales se indican en el siguiente croquis:

Esta toma es desde la calle de Veracruz, hacia la parte Este del predio. En ella se aprecia que el predio está rodeado de vegetación, pero en su interior es una superficie de plataformas planas de tierra compactada. Ilbre de árboles, vegetación y edificaciones.


Fotografía tomada desde la calle de Veracruz acceso principal del predio. Al fondo se aprecia la colindancia del predio con una escuela oficial Jardín de Niños.

Fotografía tomada desde la parte Oeste del predio. Al fondo se aprecia una zona de vegetación, detrás de la cual se encuentra una zona de barranco, después del barranco se aprecia una calle y luego la zona habitacional.

Fotografía tomada de la parte Norte del predio. En esta zona vemos que existe una diferencia de nivel, es una zona con una topografía un poco más irregular y con mayor vegetación que el resto del terreno.


Toma del predio donde se aprecian los campos de futbol sobre tierra compactada. Al fondo la vegetación que rodea al predio y a la derecha se observa la parte más alta del predio que es su zona de acceso principal.

Fotografía tomada de la parte central del predio. Podemos apreciar que el terreno en su mayor parte es una superficie de tierra compactada ocupada como campos de futbol.

NORMATIVIDAD

3. NORMATIVIDAD

Todo proyecto debe regirse bajo una normatividad que le permita tener un orden de diseño y sobre todo que le permita cumplir con los requerimientos mínimos indispensables para que el inmueble funcione adecuadamente y sea seguro para sus habitantes por lo que, en adelante enunciaré algunos de los reglamentos y/o normas que se tomaron en cuenta para el diseño del Centro Deportivo.

3.1. SISTEMA NORMATIVO DE EQUIPAMIENTO URBANO.

El sistema Normativo de Equipamiento Urbano nos señala algunas recomendaciones para que un proyecto funcione adecuadamente, se específica principalmente al equipamiento urbano e infraestructura de los inmuebles, nos indica si cierto equipamiento es indispensable, recomendable ó no necesario contar con el, o en su caso si es conveniente, aceptable o no conveniente.

3.1.1. Normas de Dimensionamiento.

Según la (SEDUE) SEDESOL el programa arquitectónico básico considerando un proyecto de Centro Deportivo de 25.000m² de cancha, deberá considerar las siguientes áreas como mínimas para los distintos elementos que lo conforman:

SEDESOL		CENTRO DEPORTIVO MEXICO NUEVO
Administración y control	IOOm ²	271.5m ²
Cancha a cubierto	700m²	2575.Om ²
Albercas y fosa de clavados	2500m²	4645.Om ²
Areas verdes, libres y plazas	16500m²	34079.0m ²
Estacionamiento	5000m²	10455.0m ²
Altura máxima de construcción	16m	12m
No. cajones estacionamiento uno/c 1251	n2 de cancha = 200cajones	250 cajones

Según la tabla anterior el proyecto cumple con la Normas de dimensionamiento de SEDESOL.

3.1.2. Requerimientos de Infraestructura y Servicios Públicos.

Los siguientes servicios son considerados por SEDESOL como indispensables para el funcionamiento del Centro Deportivo:

Agua Potable

Alcantarillado

Energía Eléctrica

Servicio de recolección de basura

Acceso al transporte por avenida secundaria o calle colectora

Son recomendables los siguientes servicios:

Teléfono

Transporte público

Viqilancia

El predio seleccionado cuenta con todos los servicios mencionados.

3.2. REGLAMENTO DE CONSTRUCCIONES PARA EL D.F.

El Reglamento de Construcciones del Departamento del Distrito Federal contiene todas las disposiciones legales y reglamentarias aplicables en materia de proyecto y construcción, para todas las edificaciones y el uso de las mismas, por lo que deberá tomarse en cuenta para el desarrollo adecuado de cualquier proyecto.

3.2.1. Requerimientos de Diseño Arquitectónico.

A continuación señalaré algunos de los principales reglamentos relativos al diseño arquitectónico, que influyen en el proyecto:

ART. 76 Intensidad de Uso de Suelo 3.7 (media), Densidad máxima permitida 400(hab/ha.), Superficie construída máxima 3.5 (respecto al área del terreno). Las áreas de estacionamiento no contarán como superficie construída.

✓ El proyecto cuenta con una superficie de construcción de 7.924 m², lo que equivale a una intensidad menor de 3.5, por lo que se estipula que cumple con el reglamento

ART. 77 Deberá dejarse sin construír un 30% de área libre por ser un terreno con un área mayor de 5,500 m2. Estas áreas podrán pavimentarse con materiales que permitan la filtración del aqua.

✓ El área total del terreno es de 98,923 m² de superficie total y un área de 54,100 m² aproximadamente de área sin construír, considerando áreas verdes, circulaciones, campos de futbol y pista de corredores; ésta última área es el equivalente al 55% de área total del terreno, por lo tanto, se cumple con el reglamento.

ART, 80 Los requisitos mínimos para estacionamiento en predios destinados para deportes y recreación: canchas deportivas, centros deportivos y estadios son:

I cajón por cada 75m² construídos. y/o I cajón por cada IOm² construídos para espectadores.

* Las medidas de cajones serán de 5.00 x 2.40m. y se podrá permitir hasta el 50% de coches chicos de 4.20 x 2.20m.

*Se deberá destinar por lo menos uno de cada 25 cajones o fracción a partir de doce , para uso exclusivo de personas impedidas, ubicado lo más cerca posible a la entrada de la edificación. En estos casos las medidas del cajón serán de 5.00 x 3.80m.

✓ El proyecto tiene un total de 250 cajones de estacionamiento, de los cuales 7 de ellos están destinados para personas minusválidas. Según el reglamento el proyecto debería contar con un mínimo de 106 cajos de estacionamiento incluyendo 4 para minusválidos; por lo tanto se cumple con el reglamento.

Los artículos que se mencionan a continuación son con referencia a dimensiones mínimas de los espacios y/o elementos delproyecto arquitectónico, con los cuales se cumple en el proyecto del Centro Deportivo México Nuevo y se comprueba en las indicaciones de los planos correspondientes, o están implícitos en sus dibujos.

Art. 81 Los locales de las edificaciones según su tipo deberán contar como mínimo con las dimensiones y características que se señalen.

Para oficinas de hasta 100m² se considerarán 5m²/persona y una altura mínima de 2.30m. En el caso de deportes y recreación, para graderías se considerará un peralte máximo de 0.45m para los asientos y una altura mínima de 3.00m.

ART.86 Deberán ubicarse uno o varios locales para almacenar depósitos o bolsas de basura, ventilados y a prueba de roedores.

ART.98 Las puertas de acceso, intercomunicación y salida deberán tener una altura mínima de 2.10m. y una anchura que cumpla con la medida de 0.60m por cada 100 usuarios o fracción.

ART. 101 Las rampas peatonales que se proyecten en cualquier edificación deberán tener una pendiente máxima del 10% con pavimentos antiderrapantes.

ART. 104 Las gradas en las edificaciones para deportes deberán cumplir con las siguientes especificaciones:

- 1. El peralte máximo será de 45cm y la profundidad mínima de 70cm.
- II. Deberá existir una escalera con anchura mínima de 90cm a cada 9m de desarrollo horizontal de graderío como máximo y,
- III.A cada IO filas habrá pasillos paralelos a las gradas con anchura mínima igual a la suma de las anchuras realamentarias de las escaleras que desemboguen a ellos entre dos puertas o salidas contiguas.

ART.108,109,110 Todo estacionamiento público deberá estar drenado adecuadamente y bardeado en sus colindancias con los predios vecinos. Tendrán carriles separados debidamente señalados, para la entrada y salida de los vehículos con una anchura mínima del arroyo de 2,50m cada uno. El piso terminado estará elevado quince centímetros sobre la superficie de rodamiento de los vehículos.

ART. 143 Las edificaciones deportivas deberán contar con un local de servicio médico consistente en un consultorio con mesas de exploración, botiquín de primeros auxilios y un sanitario con lavabo y excusado.

3.2.2. Requerimientos de Instalaciones.

Los artículos que se mencionan a continuación señalan algunos de los requerimientos mínimos de Instalaciones para las edificaciones de uso deportivo que deben tomarse en cuenta en el proyecto.

✓ El proyecto en estudio cumple con todos los requerimientos señalados en los articulos siguientes.

Requerimientos mínimos de muebles sanitarios

	Excusados	Lavabos	Regaderas
11.5 Deportes y Recreación.			
Canchas y centros deportivos:			
Hasta 100 personas	2	2	2
De IOI a 200 personas	4	4	4
Cada 200 personas adicionales o fracción	2	2	2
Estadios			
Hasta 100 personas	2	2	2
De IOI a 200 personas	4	4	
Cada 200 personas adicionales o fracción	2	2	

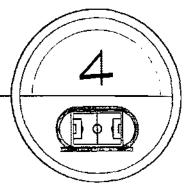
X. En los espacios para muebles sanitarios, se deberá destinar cuando menos un espacio para excusado de cada diez o fracción para uso exclusivo de personas impedidas. Las medidas serán de 1.70m x 1.70m y deberán colocarse pasamanos.

ART. 84 Las albercas Públicas contarán cuando menos con:

1. Equipos de recirculación, filtración y purificación del aqua:

II. Boquillas de invección para distribuír el aqua tratada, y de succión para los aparatos limpiadores de fondo y III. Rejillas de succión distribuídas en la parte honda de la alberca, en número y dimensiones necesarias para que la velocidad de salida del aqua sea la adecuada para evitar accidentes a los nadadores.

ART. 107 Los equipos de bombeo y las maquinarias instaladas que produzcan una intensidad sonora mayor de 65 decibeles deberán estar aisladas en locales acondicionados acústicamente, de manera que reduzcan la intensidad sonora por lo menos a dicho valor.


ART. 116,117,122 Las edificaciones deberán contar con las instalaciones y los equipos necesarios para prevenir y combatir incendios. las cuales deberán ser revisadas y probadas periódicamente. Las edificaciones de riesgo mayor deberán disponer de las siguientes instalaciones, equipos y medidas preventivas:

1. Redes hidratantes

a) Tanques o cisternas para almacenar aqua en proporción a 5 lts/m² construído, exclusiva para la red contra incendio.

b) Dos bombas automáticas autocebantes, una eléctrica y otra con motor de combustón interna.

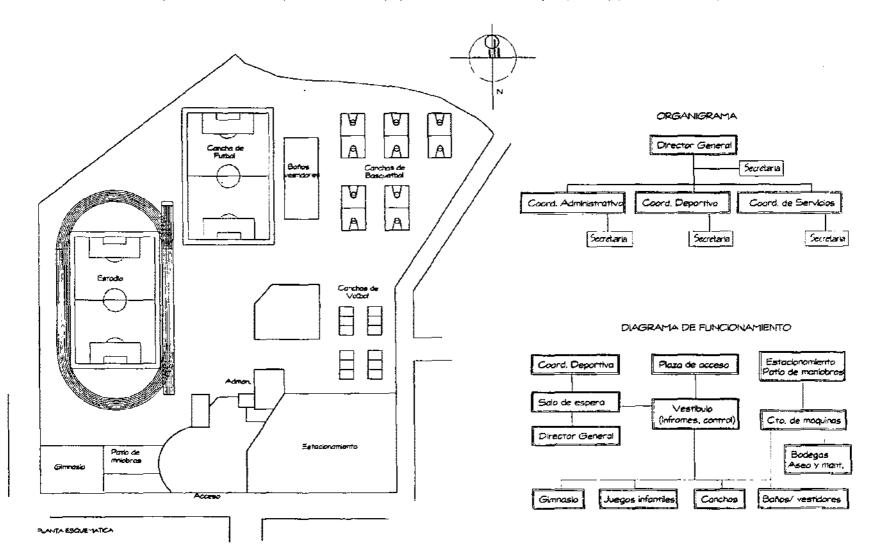
DESARROLLO DEL PROYECTO

4. DESARROLLO DEL PROYECTO

Para desarrollar un proyecto es necesario tomar en cuenta el análisis y/o estudio de algunos elementos como son:

- Elementos análogos al proyecto. Los elementos análogos son proyectos similares que tomamos como ejemplo.
- Estudio de áreas. Es el análisis de las áreas de los elementos que forman parte del proyecto.
- Programa Arquitectónico. Es el resultado del estudio de todos los elementos que conforman el proyecto.
- Diagrama de funcionamiento. Este diagrama nos muestra el funcionamiento del proyecto.
- Organigrama. Representa el orden gerencial de las actividades del Centro Deportivo.
- Zonificación. Es la porpuesta inicial del proyecto.

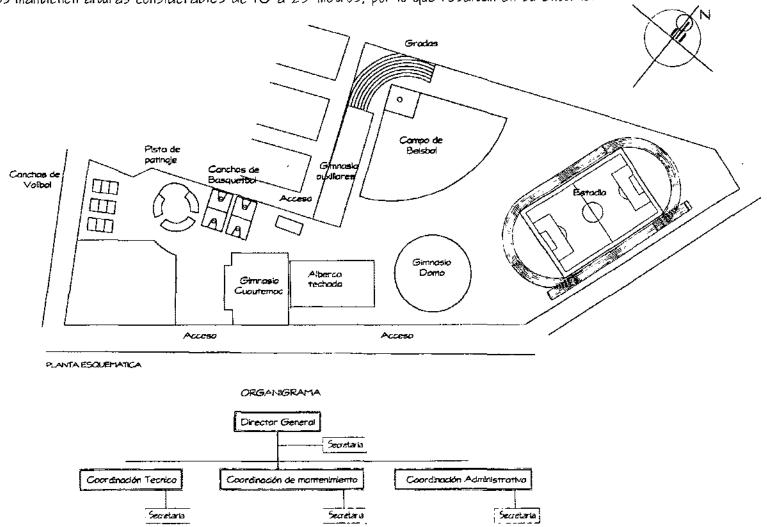
4.1. Elementos Análogos


Los elementos análogos son proyectos o edificaciones similares al proyecto en estudio, que nos pueden servir de base y/o ejemplo para el diseño de los espacios arquitectónicos, sus instalaciones, sistemas constructivos, acabados, etc.

Para este estudio analizamos los siguientes centros deportivos:

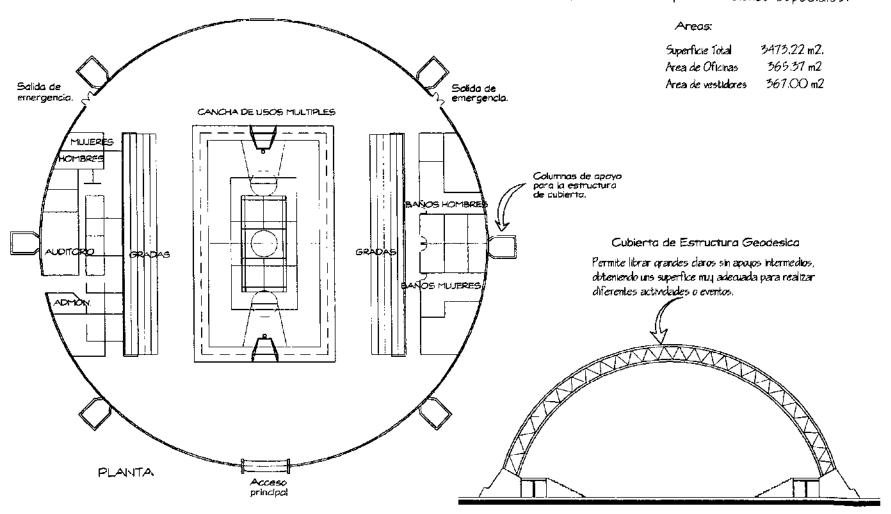
- Centro Deportivo Cuautitlán. Ubicado en el Municipio de Cuautitlán Izcalli, Estado de México.
- Centro Deportivo Plan Sexenal. Ubicado en la Delegación Miguel Hidalgo en el D.F.
- Gimnasio Domo del Deportivo Plan Sexenal.

4.1.1. Centro Deportivo Cuautitlán.


Observamos que la orientación de las canchas deportivas al aire libre es la Norte-Sur como se indica en la reglamentación. Se agrupan los espacios en tres zonas de acuerdo con sus actividades: Zona Deportiva pare norte, Zona de Servicios parte su y Zona Administrativa parte central del predio, este agrupamiento da orden al proyecto y por ende un major funcionamiento.

Same C

4.1.2. Centro Deportivo Plan Sexenal.


A pesar de lo irregular dei terreno observamos que la orientación de las canchas deportivas al aire libre se mantiene Norte-Sur según lo reglamenteado. En el caso de las canchas a cubierto su orientación puede no cumplir con esta regla, ya que la cubierta impide el asoleamiento de las canchas. En este deportivo cada uno de los edificios se relaciona entre sí por medio de explanadas y corredores que intercalan entre ellos algunas áreas verdes, las cuales son características de los centros deportivos. Los edificios mantienen alturas considerables de 10 a 25 metros, por lo que resaltan en su entorno.

4.1.3. Gimnasio Domo del Deportivo Plan Sexenal.

En este elemento análogo podemos observar varios aspectos importantes que por su buen funcionamiento pueden tomarse como ejemplo para el proyecto a realizar, los aspectos son los siguientes:

- El tipo de cubierta del domo permite un área bastante amplia y libre para la relización de eventos como torneos.
- El gimnasio cuenta con 28 gradas desplegables, lo que da mayor flexibilidad de uso a los espacios.
- La utililcación de la cancha de usos múltiples resulta muy adecuada para torneos o presentaciones especiales.

CORTE ESQUEMATICO

35

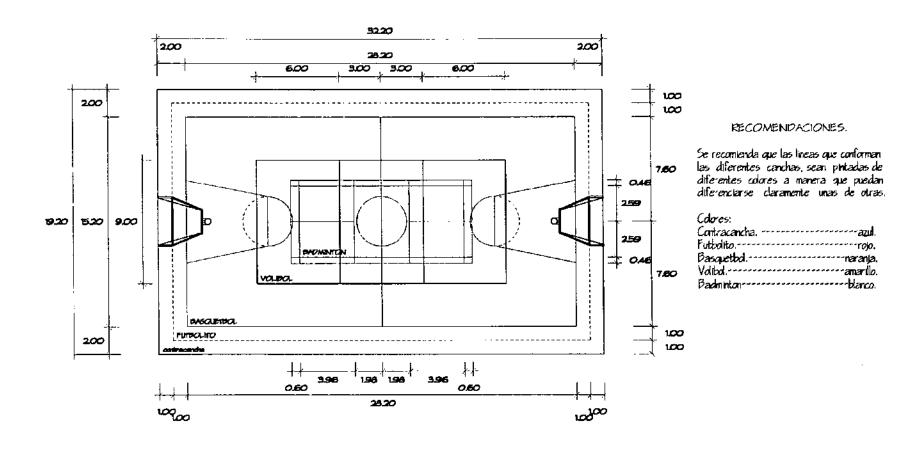
4.2. ESTUDIO GENERAL DE AREAS

El diseño arquitectónico de los espacios que conforman un proyecto requiere de un estudio de áreas, dicho estudio se lleva a cabo con la finalidad de conocer las dimensiones que deben tener los espacios para que cumplan adecuadamente con las funciones destinadas a cada uno de ellos. En este estudio se toman en cuenta reglamentaciones establecidas a través del tiempo según las actividades a realizar, el mobiliario a utilizar y por supuesto de manera primordial la antopometría, que es el estudio de las dimensiones humanas de acuerdo con su edad, género y/o actividad.

En este estudio se presentan las áreas y medidas oficiales de las canchas deportivas que se enlistan a continuación:

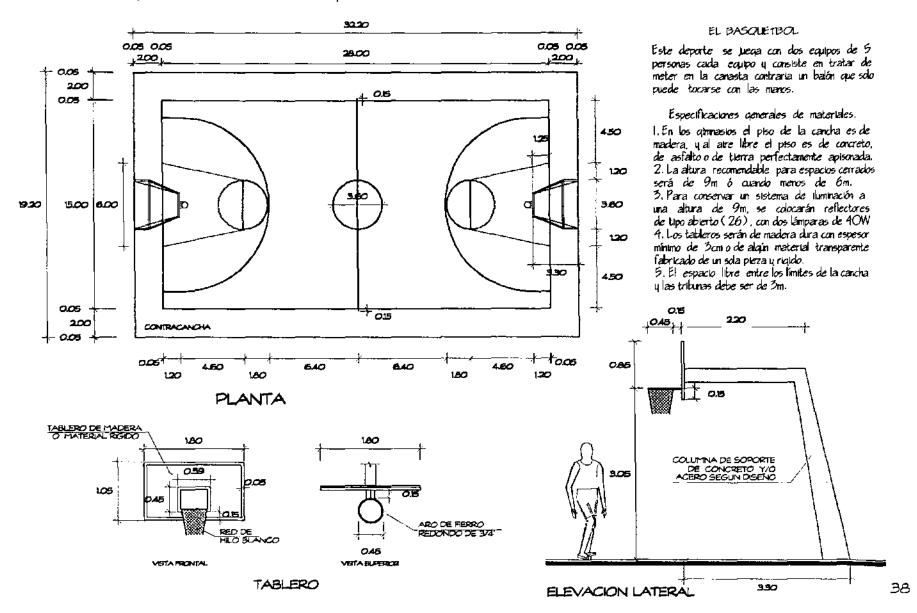
- 1. Cancha de Usos Múltiples.
- 2. Cancha de Basquetbol.
- 3. Cancha de Volibol.
- 4. Pista de Atletismo.
- 5. Cancha de Futbol.
- 6. Alberca Olímpica.
- 7. Fosa de Clavados.

Además de las dimensiones se indican algunas recomendaciones y consideraciones de proyecto, las dimensiones de los elementos que lo conforman como: las porterías, las redes, los trampolines, etc.

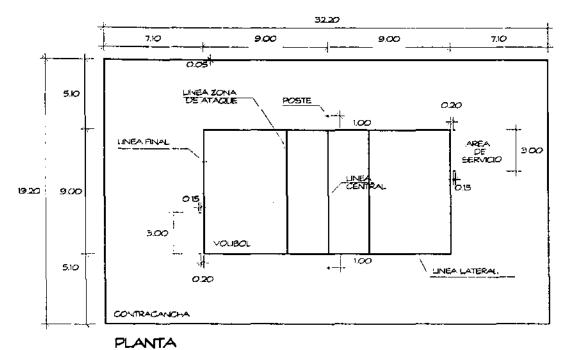

Se analizan también las áreas de Juegos Infantiles comunes como son el pasamanos, el sube y baja el tobogán, el carrousel, los columpios y la resbaladilla.

Se analizan las áreas de algunos deportes a cubierto como Karate, Tae kwon do, aerobics y Jazz, éstas áreas varían de acuerdo a los diferentes proyectos aunque se señalan las áreas recomendables.

En el caso del análisis de las áreas de administración y servicios se indican las recomendables y/o mínimas. las cuales se adecúan según el diseño arquitectónico.


4.2.1. Cancha de Usos Múltiples

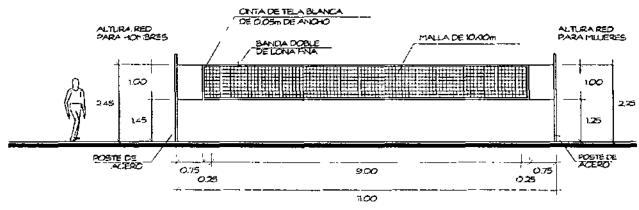
Esta cancha comprende cuatro diferentes deportes, lo cual representa una ventaja, principalmente en las ocasiones en las que hay torneos eventos especiales, ya que en el mismo espacio se pueden realizar actividades diferentes. Para su utilización adecuada se distribuyen las actividades deportivas en distintos horarios para aprovechar mejor los espacios.


4.2.2. Cancha de Basquetbol

El basquetbol es un deporte que se practica tanto al aire libre como en espacios a cubierto como son los gimnasios y es uno de los deportes más practicados en los centros deportivos.

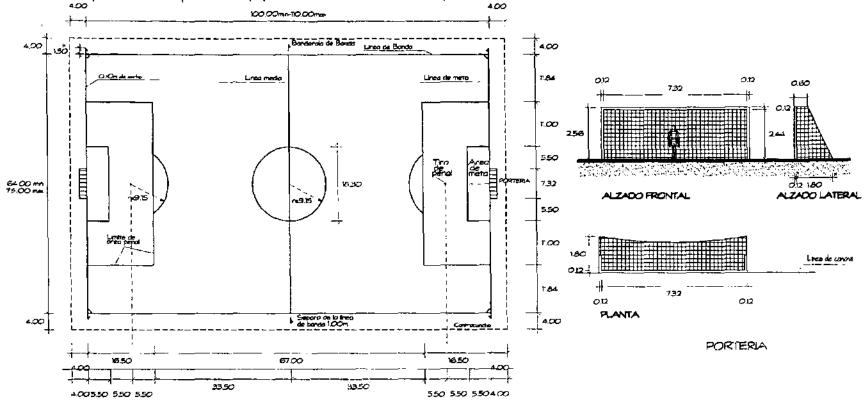
4.2.3. Cancha de Volibol

Al iqual que el basquetbol, el volibol es un deporte que se practica tanto al aire libre como en espacios cerrados, sus dimensiones reglamentarias son las siguientes:



EL VOLIBOL

Se juega con dos equipos de seis jugadores cada uno, y el juego consiste en pasar por arriba sin tocar la red suspendida en la parte central de cancha, un balón de piel sin dejar que calga al suelo.


Especificaciones generales:

- 1. La orientación de la cancha especialmente cuando se encuentre al aire libre será de Norte a Sur en el sentido lonalitudinal.
- 2. El campo de Juego será un rectángulo de 18 x 9m rodeado de una zona libre de 3m.
- 3. En la parte media del campo se colocará una red que mida 9.5m de targo por lm de ancho, dicha red se fijará a dos postes de 2.5m de altura colocados a un metro de distancia hacia afuera.
- 4. La altura de la red será de 2.45m para hombres y de 2.25m para mujeres.
- 5. La altura recomendable en espacios cerrados será de 9m y de 6m como mínimo.

4.2.4. Cancha de Futbol

La cancha de futbol en uno de los grandes atractivos de un centro deportivo, aunque no todos cuentan con una porque sus grandes olmensiones requieren de un predio muy grande. Las dimensiones reglamentarias son las siguientes:

ESPECIFICACIONES CANCHA DE FUTBOL

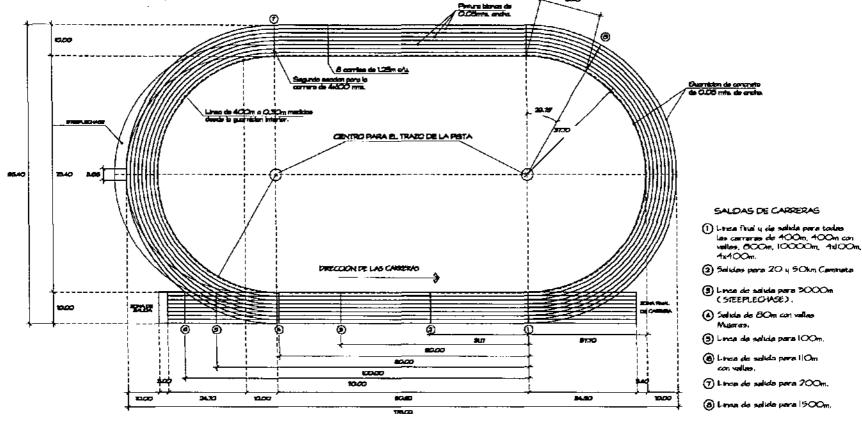
Su forma sera rectangular de una longitud máxima de 120 mts. y minima de 90mts. Para partidos Internacionales la longitud será de 110mts como máximo y 100 mts como mínimo y el ancho no sera mayor de 75 mts ni inferior de 64 mts.

En todos los casos debera de ser mayor la longitud que el ancho.

La orientación del campo más recomendable es que el eje longitudinal de la cancha este ubicado en dirección Norte-Sur, con variaciones no mayores de 45 grados tento al Este como al Oeste.

NOTA.

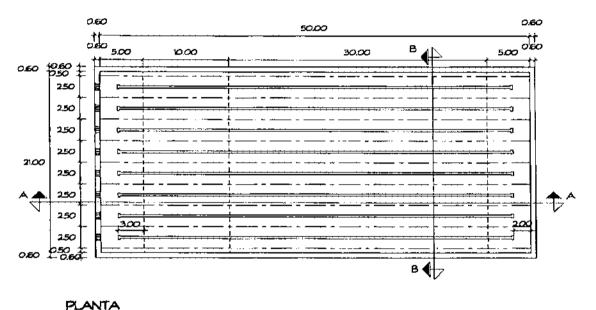
En caso de que la cancha de futbol se ubique dentro de una pista de atletismo. Las dimensiones serán las mínimas de 100m x 64m.


ESPECIFICACIONES DE LA PORTERIA

Los postes de meta y el larquero pueden ser de madera metal u otro material aprobado, deberan ser de sección cuadrada, rectangular, redonda, semiredonda o elíptica. Las redes deberán ser enganchadas a los postes, al larquero y al suelo por detrás de los marcos, debiendo estar sujetas en forma conveniente y colocadas de manera que no estorben al quardeta.

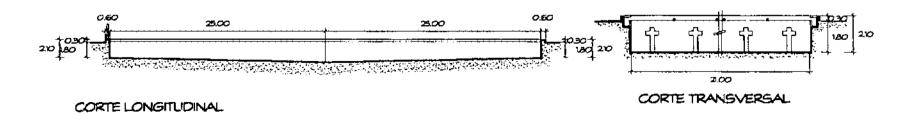
Los marcos deben ser de color blanco.

4.2.5. Pista de Atletismo


La pista de atletismo por sus dimensiones requiere de un gran espacio de terreno, pero tiene la ventaja de que en su interior se pueden practicar otros deportes.

ESPECIACACIONES	DISTANCIAS DE CARRERAS DE OBSTACULOS			
 ** La pista corota de dos trancos formados por semicinanferencias y dos tranos formados por líncias rectas. ** Peise tener 400 mts. de longitud total medidos sobre una linea trazada s 0.50m del borde colindante con la pista de la querrisción interior. ** Los 400mts. se miden como sique: dos circunferencias de 50m (37.7 + 0.50) den 258.7616mts., restando de 480mts. dotenemos la longitud de las dos rectas, si esta caso de 80.6192 mts. ** La Federeción Internacional de Atlotismo Amateur especifica que pera competencias dimpicas y regionales deben de usarse pistas de 8 carriles de 1.22 a 1.25m de ancho cada uno. 	VARONI. Dist. de la salida al primer obstâcilo. Dist. del primer al secundo obstâcilo. Dist. del secundo al tercer obstâcilo. Dist. del tercer al cuerto obstâcilo. Dist. del cuerto al cuerto obstâcilo. Dist. del cuerto al cuerto obstâcilo. Dist. del cuerto al estacolo a la salida. Largo de la pista. Número de vestes. Placorido. Dist. de la salida a la meta Placorido total.	74.69mto. 84.03mto. 84.03mto. 84.03mto. 84.03mto. 9.27mto. 9.27mto. 7vuoltas. 2944.20mto. 80.00mto.	FEMÉNI. -Dist. de le selide el primer obstitudoDist. del primer el secundo obstitudoDist. del secundo el uercer obstitudoDist. del tercer el cuerto obstitudoDist. del cuerto el equito obstitudoDist. del cuinto obstitudo e la selidaLergo de la pistaNúmero de vueltasRecorridoDist. de la selida e la metaRecorrido total.	90.00mts. 78.00mts. 78.00mts. 78.00mts. 58.00mts. 592.00mts. 7vudtes. 2744.00mts. 596.00mts.

4.2.6. Alberca Olímpica


Una alberca olímpica de cumplir con ciertos requisitos para que funcione adecuadamente y puedan levarse a capo competencias en ella.

CONSIDERACIONES IMPORTANTES:

Las albercas deberán contar con los siquientes elementos y medidas de protección:

- Andadores a las orillas de la alberca con una anchura mínima de 1.50m, con superficie áspera o de material antiderrapante construidos de tal manera que se eviten los encharcamientos.
- 2. Un escalón en el muro perimetral de la alberca en las zonas con profundidad mayor de 1.50m, de 10om de ancho a una profundidad de 1.20m con respecto a la superficie del aqua de la alberca.
- 3. En todas las albercas donde la profundidad sea mayor de 90cm, se pondrá una escalera por cada 25m lineales de perímetro. Cada alberca contará con un mínimo de 2 escaleras.
- 4. Deberán indicarse en lugar visible las profundidades mínimas y máximas, así como el punto en que la profundidad sea de 1.50m y en donde cambie la pendiente del piso del fondo.
- 9. La alberca deberá contar con carriles flotantes de corcho, plástico o madera, los cuales se colocarán para marcar las divisiones entre carriles.

4.2.7. Fosa de Clavados

La fosa de clavados puede encontrarse dentro de la misma alberca olímpica o ser independiente a ella, en cuyo caso deberá cumplir con las siguientes dimensiones: 0.60 21,00

> 0.60 275

050

050

2.0

2.00

230

200

150 I

210

275 060 1

050 1

шшш

шшш

0.60

± 0.60

2.00

В

Transpoln + 1.00

▼ Trangeln + 5.00

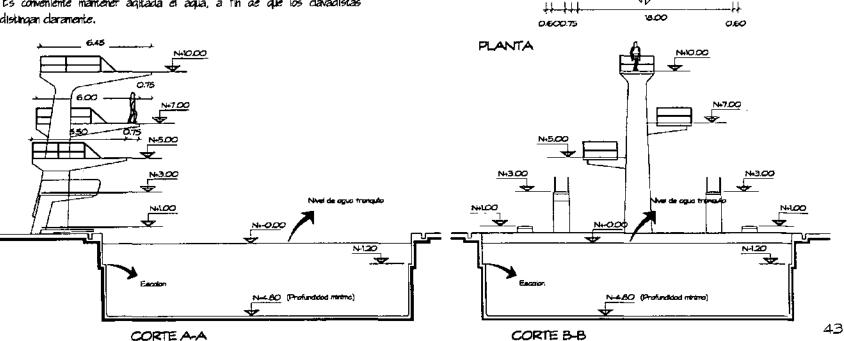
frampoln + 5.00

1ramodn + LOO

1500.75

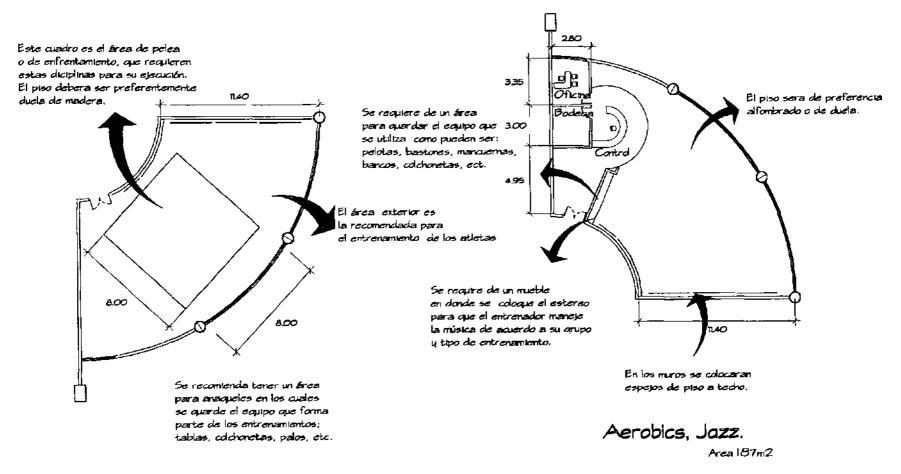
Transdin + 7,00

Tranpelin + 10,000


frampolin + 5,000

в ∰_

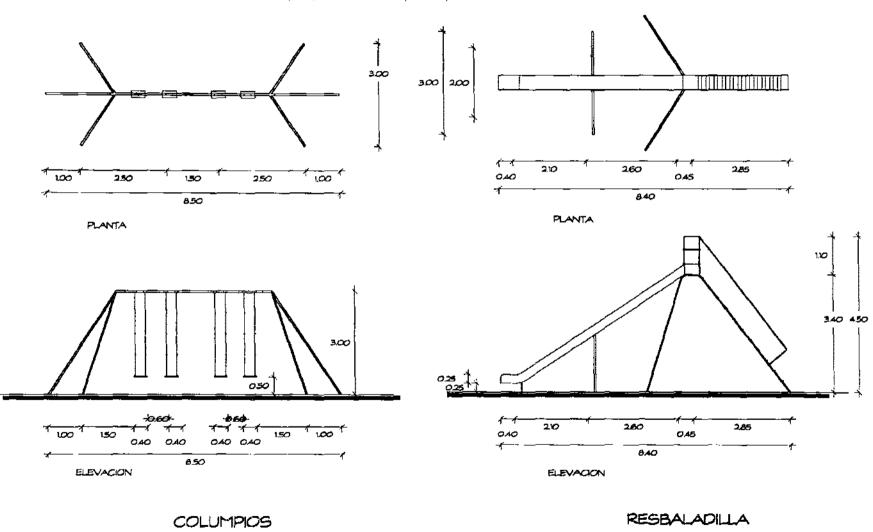
CONSIDERACIONES IMPORTANTES:


Las instalaciones de trampdines y plataformas reuniran las siguientes condiciones: 1. Las alturas máximas permitidas serán de 3.00m para los trampolhes y de 10.00m para las plataformas.

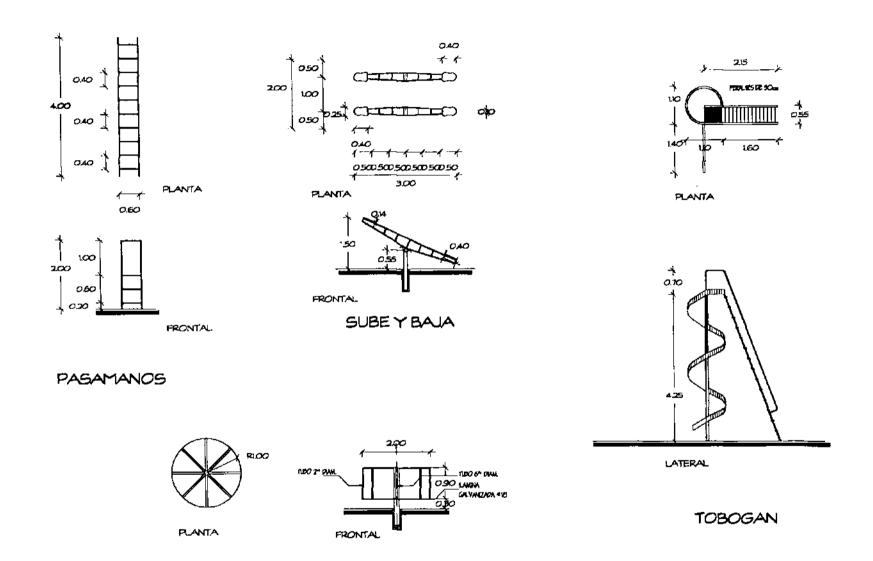
- 2. La anchura de los trampolines será de 0.50m y la mínima de la plataforma de 2.00m. La superficie de ambos sera necesariamente antiderrapante.
- 3. Las escaleras para trampolhes y plataformas deberán ser de tramos rectos, con escalones de material antiderrapante, con peraltes de 18 cm como máximo.
- 4. Se deberán colocar barandales en las escaleras y en las plataformas a una altura de 0.90m en ambos lados y en las plataformas también en la parte de atras.
- 5. Es conveniente mantener agitada el aqua, a fin de que los davadistas la distingan daramente.

4.2.8. Deportes a Cubierto

Los deportes a cubierto como el Karate. Tae kwon do, aerobics, pesas, etc, requieren de ciertas características de los espacios en que se practican, el este proyecto el resultado del análisis de áreas es el siguiente:

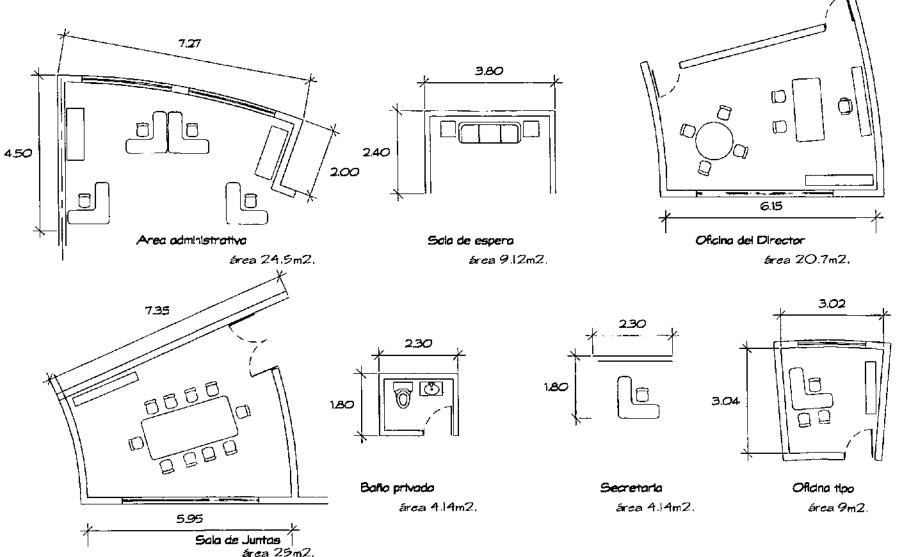


Karate, Judo, Tae kwan do.

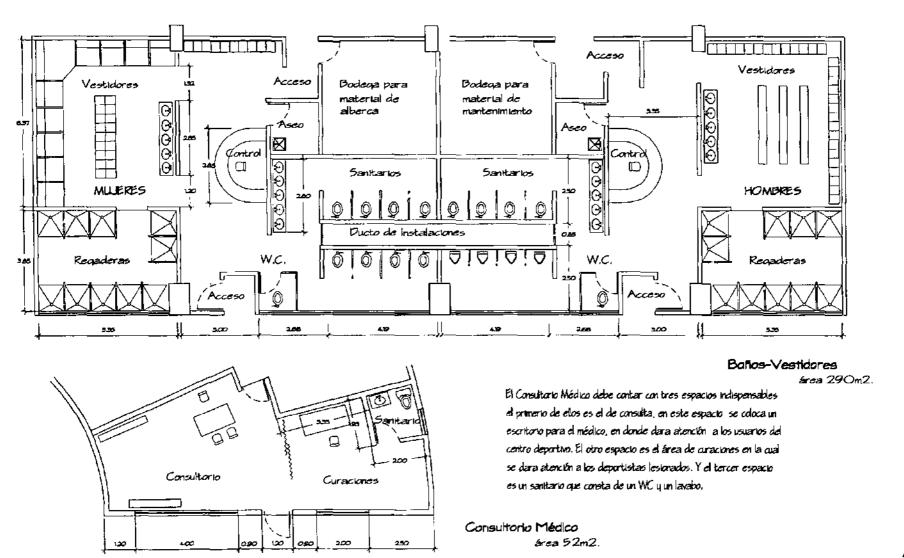

Area 187m2

4.2.9. Juegos Infantiles

Los juegos infantiles forman parte del equipamiento para el desarrollo de las actividades físicas de los niños, por lo que estan considerados para este proyecto. Cada juego ocupa un espacio y en este estudio analizamos las áreas de los más comunes: columpios, resbaladilla, pasamanos, sube y baja, carrousel y tobogán.


45

CARROUSEL


4.2.10. Administración

Para el diseño de la administración, analizamos las áreas de los espacios que la conforman, por lo que de este estudio obtuvimos el siguiente resultado:

4.2.11. Servicios

Los baños-vestidores de este proyecto, se encuentran agrupados en dos bloques simétricos, uno de ellos para mujeres y el otro para hombres, los cuales solo tienen algunas diferencias como el uso de mingitorios en el baño de hombres y un diseño ligeramente aistinto en los vestidores. Ambos cuentan con un WC para personas con necesidades especiales.

4.3. PROGRAMA ARQUITECTONICO

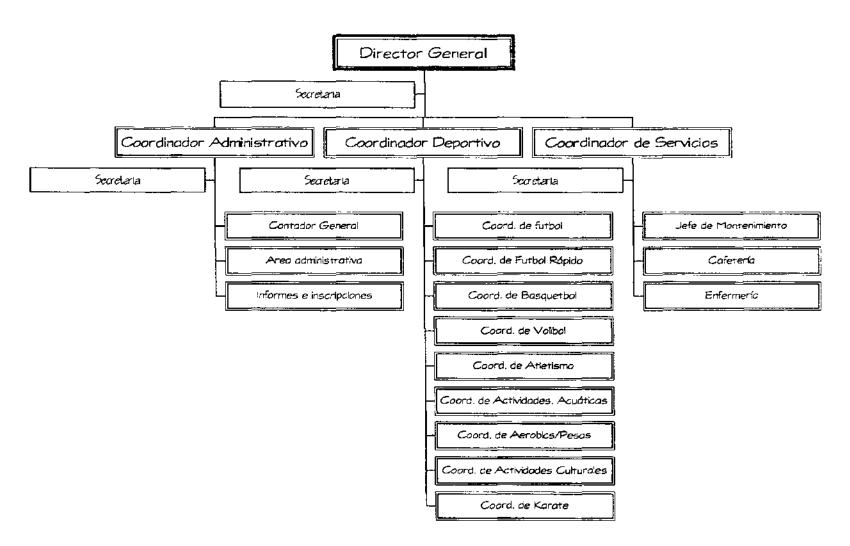
1	SERVICIOS GENERALES			49187 m2
1.1	Zonas Exteriores		42506 m2	
1.1.1	Plaza de acceso	3015 m2		
1,1.2	Caseta de control y vigillancia	5 m2		
1.1.3	Plazdetas y circulaciones	12385 m2		
1.3.4	Jardines y áreas verdes	271O1 m2		
1.2	Estacionamiento		6472 m2	
1,2.1	Caseta de vigilancia	5 m2		
1.2.2	Circulaciones	2590 m2		
1.2.3	Cajones de estacionamiento	3393 m2		
1,2,4	Patio de maniobras	419 m2		
1.3	Subestación Eléctrica	20 m2		
1.4	Cuarto de máquinas	25 m2	1	
1.5	Bodegas de mantenimiento	15 m2		
1.6	Almacenamiento de basura	5 m2	1	
1.7	Cafeteria		209 m2	
2	ADMINISTRACION			345 m2
2.1	Acceso y control		8 m2	
2.2	Vestíbulo / sala de espera		19 m2	
23_	Informes e inscripciones		18 m2	•
2.4	Oficina del Director (con baño)		28 т2	
25	Sala de juntas		25 m2	
2.6	Secretaria del Director		9 m2	
2.7	Sala de espera y café		11 m2	
2.8	Oficina Administrador		9 m2	
29	Oficina Contador		9 m2	
2.10.	Secretaria administrativo		5 m2	
2.11.	Area administrativa		37 m2	
2,12.	Oficina Futbol		9 m2	
2.13.	Oficina Futbal Rápido		9 m2	
2.14.	Oficina Atletismo		9 m2	
2.15.	Oficina Basquetbal		9 m2	
2.16.	Oficina Volibol		9 m2	
2.17.	Area secretorial		16 m2	
2.18.	Archivo		10 m2	

2.19.	Sanitarios Mujeres		12 m2	1
	Sanitarios Hombres		12 m2	
}	Enfermería		52 m2	İ
	Circulaciones		20 m2	
3	ZONAS DEPORTIVAS			50371 m2
3.1	Alberca a cubierto		4645 m2	
3.1,1	Acceso/ control / oficina	68 m2		
3,1,2	Alberca dimpica	1112 m2		
3.1.3	Fosa de davados	550 m2		
3.1.4	Chapoteadero	138 m2		
3.1.5	Aula I para atletas	20 m2		1
3.1.6	Aula 2 para atletas	20 m2		
3.1.7	Aula de Usos múltiples	82 m2]
3.1.8	Aparatos y pesas para atletas	280 m2		ļ
	Salón de juegos	172 m2		
3.1.10.	Gradas	877 m2		
3.1.11	Baños vestidores mujeres	144 m2		
3.1.12	Baños vestidores hombres	144 m2		
3.1.13	Bodega de equipo de alberca	21 m2	Ì	ļ
3.1.14	Bodega de equipo de mantenimiento	21 m2		
3.1.15	Cirallaciones	996 m2		
3.2	Gimnasio a cubierta		2575 m2	
3,2.1	Acceso/ control / oficina	68 m2		
3.2.2	Candha de usos múltiples	618 m2		ļ
3.2.3	Gradas	520 m2		
3.2.4	Aerobics	198 m2		
3.2.5	Pesas	198 m2		
3.2.6	Aula múltiple de actividades culturales	198 m2		1
3.2.7	Baños vestidores mujeres	198 m2		
3.2.8	Baños vestidores hombres	194 m2		
3.2.9	Ciraliaciones	383 m2		
3.3	Estadio de Futbol		20017 m2	
	Carcha de Futbol	7776 m2		
3.3.2	PIsta de Atletismo	5772 m2		
3.3.3	Gradas	3420 m2		
3.3.4	Circulaciones	3049 m2		

3.4	Cancha de Futbol	8241 m2
3.5	Cancha de Futbol Infantii	2755 m2
3.6	Cancha de Futbol Rápido	920 m2
3.7	Canchas de Basquetbol	3500 m2
3.8 3.9	Canchas de Valibal	1610 m2
	Pista de corredores	3426 m2
3.10.	Pisto de Patinaje	755 m2
3.11.	Juegos Infantiles	1927 m2

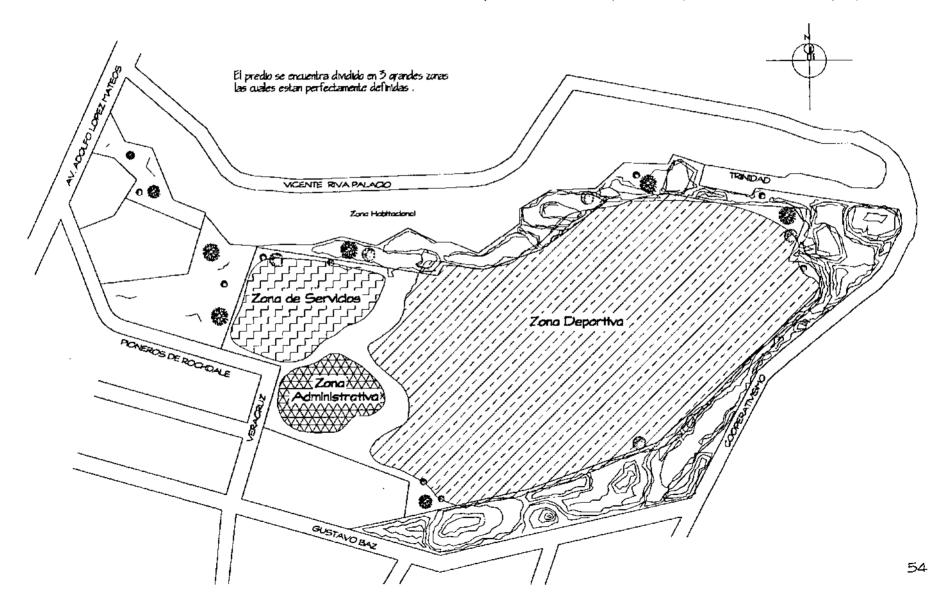
SUPERFICIE TOTAL DE CONSTRUCCION	99903 m2

NOTA. Incluye áreas verdes, plazaletas y jardines. La superficie total del predio es de 98,923.00 m2

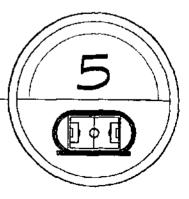

4.4 DIAGRAMA DE FUNCIONAMIENTO

En el Diagrama de Funcionamiento abservamos que por medio del vestíbulo central se distribuyen los espacios arquitectonicos par a llegara cada uno de los edificios y/o canchas que conforman el proyecto, por medio de este diagrama se aprecia que la distribución de los espacios sique un orden.

'CENTRO DEPORTIVO MEXICO NUEVO' Canchas de Estadio de Basquetbal Futbol Cancha de Futbol Infantil Alberca andadores Cancha de **Gimnasio** Futbal Vestibulo Cancha de Central Cafetería Futbol rápido Andador Principal Juegos Infantiles Administración andadores Pista de patinaje Estacionamiento Canchas de Valibal Plaza de acceso

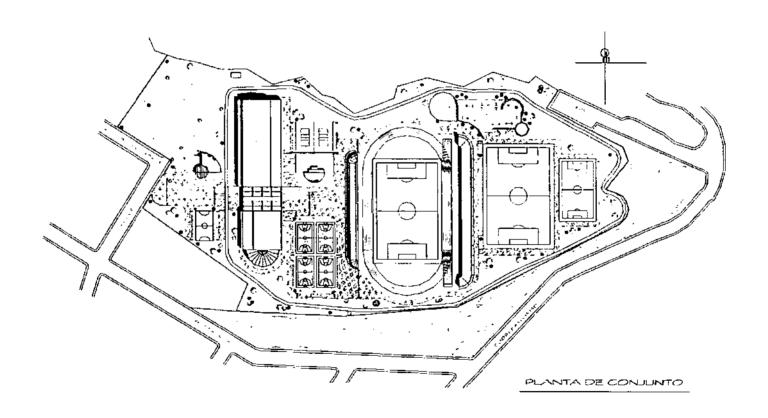

4.5. ORGANIGRAMA

En este Organiarama Gerencial se muestra el orden de todas la avtividades de Centro Deportivo México Nuevo, agrupándose las mismas en tres Coordinaciones: Administrativa, Deportiva y de Servicios, coordinadas a su vez por un Director General.

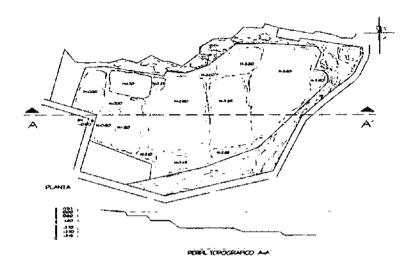


4.6. ZONIFICACION

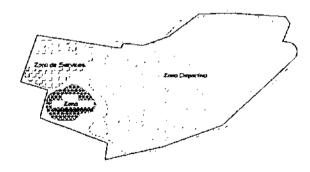
Todo proyecto debe considerar una zonificación de sus áreas de acuerdo con sus funciones. En el croquis vemos que este proye cto se encuentra dividido en tres grandes zonas: Zona Deportiva, Zona Administrativa y Zona de Servicios, en donde, las zonas A dministrativa y de Servicios se encuentran ubicadas lo más cerca posible del acceso para un majer funcionamiento del proyecto.



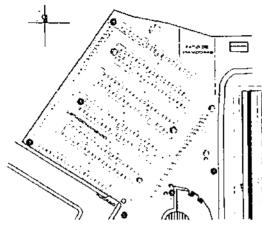
PROYECTO EJECUTIVO



5.1. MEMORIA DESCRIPTIVA

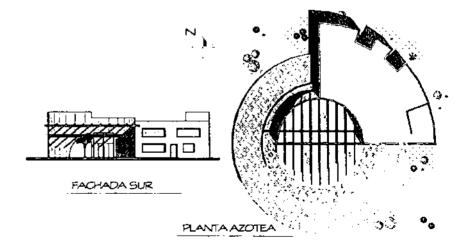

El Centro Deportivo México Nuevo, está ubicado en una superficie de terreno irregular que colinda al Norte con zona habitacional, al Sur - Este con una zona de vegetación en barrancol y al Oeste con dos calles por las cuales se de acceso al predio. El proyecto consta de Canchas deportivas al aire libre, Alberca a cubierto, Gimnasio. Estadio de Atletismo y Fu tbol, Juegos Infantiles, Cafetería, Administración y Estacionamiento.

La superficie de terreno es irregular, conformada por plataformas planas en diferentes niveles descendentes en el sentido Oeste-Este.

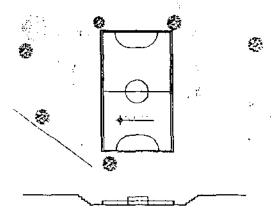


El proyecto por su funcionalidad se divide en tres distintas áreas: Area deportiva, área administrativa y área de servicios: dichas áreas se desarrollan en diferentes edificios y/o canchas deportivas al aire libre.

Para dar acceso al predio existe una plazoleta la cual se va extendiendo convirtiéndose en un plaza vestibular que distribuye a los diferentes espacios del proyecto que se describen más adelante.

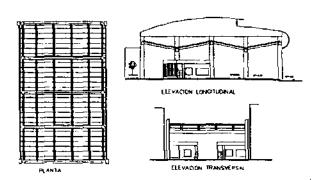

Estacionamiento.

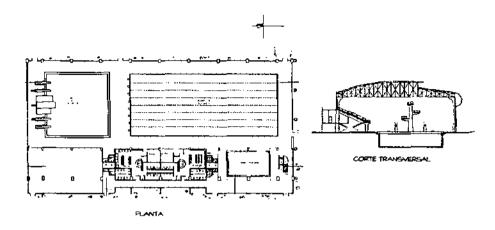
El estacionamiento está ubicado en el extremo Noreste del predio y tiene capacidad para 250 autos, considerando algunos cajones para minusválidos, los cuales están ubicados en la parte más cercana a la plaza de acceso. En la parte superior del estacionamiento está considerado un patio de maniobras que da acceso a los servicios como recolección de basura, suministro de combustible etc.


Administración.

El edificio de Administración es el primero del conjunto, se encuentra cerca de el acceso y se enfatiza por encontrarse en un nivel superior al edificio, para este cambio de nivel se proponen tres plataformas circulares, la última plataforma funciona como vestíbulo de acceso al edificio y se enmarca con un muro semicircular y una cubierta pergolada con perfiles tubulares.

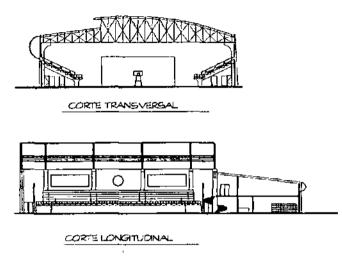
El edificio está propuesto en dos niveles con planta semicircular, en la planta baja, se ubica una zona de control, un área de espera, zona secretarial para atender a las cinco oficinas de los jefes de las diferentes disciplinas deportivas, un área para archivo, un área para informes e inscripciones la cual también puede ser atendida desde elexterior, en la planta baja se encuentran los sanitarios para hombres y mujeres y el consultorio médico con área de curaciones y 1/2 baño. El consultorio tiene un acceso al exterior para casos de emergencias. En la planta alta del edificio subiendo las escaleras se ubica el área administrativa y luego un pasillo que distribuye a una oficina para el contador, un área para secretaria, una oficina para el administrador, una sala de espera pequeña, un área para la secretaria del director, la oficina del director con baño y una sala de juntas.

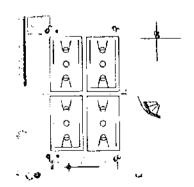

Cancha de Futbol Répido


Derivando de la plaza de acceso se ubica la cancha de futbol rápido, la cual se encuentra en un nivel de 1.50m, permitiendo que en la parte lateral se construyan gradas sobre el mismo terreno. Esta cancha de futbol rápido se ubicó cercana al acceso general del deportivo, debido a que en muchas ocasiones este deporte se practica por las noches, su orientación es Norte-Sur y en sus extremos se propone un área verde.

Vestíbulo a cubierto

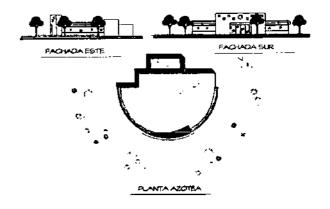
Caminando hacia el interior del terreno por la plaza de distribución llegamos a lo que sería el edificio más grandedel conjunto arquitectónico. Este edificio está dividido en tres zonas. En la parte central se encuentra el vestíbulo, el cual está cubierto por una estructura metálica tubular y cristal templado, ésta área es una suprficie abierta, no tiene muros y cuenta con áreas verdes en su interior. La superficie del vestíbulo tiene diferentes niveles y aquí es donde se encuentran las zonas de acceso para el edificio de alberca y el gimnasio respectivamente.

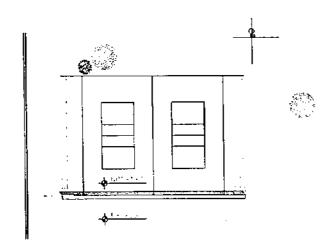

<u>Alberca</u>


El edificio de alberca tiene 90.00m de largo por 45.00 m de ancho con orientación Norte-Sur, está estructurado con columnas de concreto armado umuros de tabique, su cubierta es soportada con armaduras que libran un claro de 40.00m y tienen un diseño a dos aguas una de las cuales tiene curvarura, ambas están a diferentes alturas, lo que permite formar un ventanal a todo lo largo de la cubierta por donde se da ventilación natural al edificio por medio de persianas, la cubierta es de lámina pirtro a dos capas con material termoacústico al interior, la estructura de cubierta libra una altura interior de 12.00m. En la planta baja del edificio está la alberca olímpica de 21.00 x 50.00m y 2.00m de profundidad, también se encuentra la fosa de clavados de 21.00 x 21.00m y 4.80m de profundidad, ésta última ubicada en la parte norte del edificio cuenta con sus plataformas de clavados reglamentarias de 1.00m, 3.00m, 5.00m, 7.00m y 10.00m. Debajo de las gradas en la planta baja ubicamos el chapoteadero de 0.50m de profundidad, también se ubican los baños / vestidores para hombres y mujeres, los cuales tienen acceso desde el pasillo interior que da a la alberca y desde el pasillo exterior que da a las salidas de emergencia, en esta zona existen dos bodegas, una para materiales de la alberca y otra para materiales y equipo de mantenimiento. Al fondo del edificio de bajo de las gradas se propone la ubicación del cuarto de máquinas donde se ubicarán las calderas y el equipo hidroneumático para el agua de la alberca y los baños. En planta baja hay seis salidas de emergencia para desalojo del edificio, las cuales se ubican en lugares estratégicos en especial cerca de las escaleras. En la planta de primer nivel se propone un área de aparatos y pesas para nadadores, dos aulas para atletas y un salón de usos múltiples, Y finalmente viene el áreade gradas, las cuales van desde el nivel + 3.00m hasta el nivel + 7.65m y sirven a su vez de cubierta de las áreas del primer nivel, las gradas tienen capacidad para 1184 asientos.

almnasio

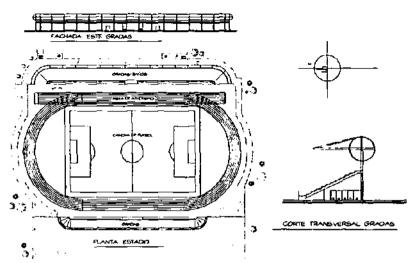
El gimnasio está formado por dos áreas; la primera es de 40.00 x 40.00m, estructurada igual al edificio de alberca, pero con una altura menor al centro se encuentra una cancha de usos múltiples y en las partes laterales están las gradas con una capacidad de 588 asientos debaio de las gradas están los baños-vestidores de hombres, un área de baños de cada lado del edificio así como las bodegas u una oficina para el lefe de mantenimiento. La segunda zona está conformada por un edificio de dos niveles de planta semicircular, adosado al primer edificio. en planta baja se encuentran de un lado los dos baños-vestidores de mujeres y del otro lado el área parapesas con una oficina y una pequeña bodega, así como su área de control. Para accesar al primer nivel existe una escalera de caracol ubicada al centro que desemboca en un vestíbulo circular que da acceso al aula múltiple de actividades culturales como danza, pintura, teatro. eto u la otra zona se propone para utilizar como el área de aerobics, con su oficina, su bodega y su área de control.


Canchas de Basquetbol


Pasando por el vestíbulo cubierto, llegamos a otra plaza de distribución de diferentes niveles, la cual nos lleva hacia canchas de basquetbol que están agrupadas en un conjunto de cuatro, ubicadas en un nivel inferior y enmarcadas por gradas adosadas al terreno en las partes laterales y en la parte superior e inferior enmarcadas por áreas verdes.

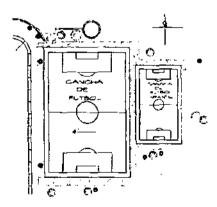
Cafetería

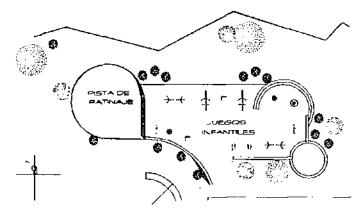
Hacia arriba tenemos el edificio de la cafetería, enmarcado por jardineras en forma semicircular a distintos niveles, este edificio tiene una forma semicircular en planta, cuenta con capacidad para 60 personas y/o comensales, y tiene un área para barra, una cocina, un área de despensa, baños y un patio de servicio.



Canchas de Volibol

Detrás de la cafetería separadas por un andador se encuentran las canchas de volibol, agrupadas en dos, orientadas en el sentido norte-sur y al igual que las canchas de basquetbol están enmarcadas por gradas y áreas verdes.


Estadio


Terminando la plaza de distribución llegamos al Estadio, el cual comienza por un primer edificio de gradas con capacidad para 1030 personas, posteriormente se encuentra la pista de atletismo y al centro de la misma se ubica la cancha profesiona de futbol orientada en el sentido nortersur. Terminando la pista se encuentra el seourdo edificio de gradas, el cual es un poco más grande que el primero, tiene capaidad para 2390 personas y tiene baños debajo de las gradas. Ambos edificios de gradas tienen una cubierta estructurada con elementos de acero tubulares y lámina pintro.

Cancha de Futbol

En la parte oeste, la más lejana del predio después de el estadio, se encuentra una cancha de futbol profesional y una cancha de futbol infantil, a las cuales se accesa por medio de andadores y se rodean de áreas verdes, ambas canchas cuentan con gradas en uno de sus lados en el sentido norte-sur, la misma orientación de las canchas.

Juegos Infantiles

Hacia la parte norte, entre el estadio y la cancha de futbol, se encuentra un área de juejos infantiles, la cual cuenta con un arenero y una pista de patinaje, así como la zona de columpios, resbaladillas, sube y baja, etc.

Pista_de Corredores

Como marco general del conjunto se propone una pista para corredores de 3.00m de ancho por 1000m de longitud aproximadamente, esta pista rodea todo el predio y pasa por las áreas verdes que enmarcan el conjunto.

Propuesta estructural

En cuanto a la solución estructural de los edificios se propone el uso del concreto armado para columnas con acabado aparente para mayor facilidad de mantenimiento y se propone la estructura metálica para la solución de las cubiertas. lo cual ofrece una mayor facilidad y rapidez en su construcción, así como el poder librar claros de mayores dimensiones.

Instalaciones

Las instalaciones están encaminadas al aprovechamiento de los recursos naturales, ya que se contempla el reciclaje del aqua pluvial para que sirva como aqua de riego, y se plantea el uso de energía solar para las luminarias de exterior estos aspectos son realmente importantes para la conservación saludable del medio ambiente.

Propuesta de Diseño

En realidad todo el proyecto se enfatiza en su diseño por el uso de elementos curvos y/o circulares, dados muchos de ellos con elementos estructurales de acero como los perfiles tubulares, aunque también en la planta arquitectónica, se delínean figuras curvas con las plazoletas y las áreas verdes.

En cuestión de diseño, existe una gran diversidad de ideas y/o propuestas, por lo que resulta complejo dar solución a un proyecto.

En Arquitectura existen los principios de ordenación, los cuales nos ayudan a simplificar lo complejo, dando orden a los espacios que conforman un edificio y asu entorno. De esta manera se evita el caos y se da una estética a un proyecto.

Los principios ordenadores que se tomaron en cuenta para la realización de este proyecto son los siquientes: Eje, simetría, jerarquía, ritmo y pauta. Y se explican en el proyecto de la siguiente forma:

JERARQUIA

La jerarquía es la relavancia de una forma o espacio en virtud de su dimensión, forma o situación relativa a otras formas y espacios

El Edificio de Administración se jerarquiza de los demás por su situación, ya que está ubicado en la parte mas alta del predio y cercana al acceso principal.

El eje es una línea definida en torro a la qual se disporen los espacios y las formas.

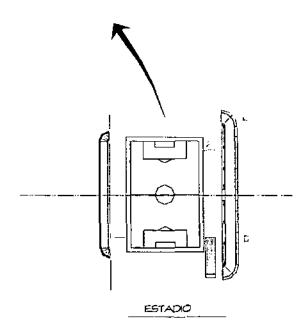
JERARQUIA

Este eje de composición del proyecto por su longitud nos indica una dirección y movimiento e induce a la aparición de diferentes perspectivas a lo larap del recordo.

El Edificio de Alberca -- Gimnælo esta jerarquizado por su forma única y sus dimensiones. Su gran longitud hace que resalte del resto de las edificaciones del proyecto, además su ubicación hace que destague en importancia.

PAUTA

La pauta es una línea, plano o volúmen que por su continuidad y requiaridad sirve para reunir acumular y organizar formas y espacios. Este eje de composición del proyecto también nos indica la pauta porque a través de él se organizan los elementos que comforman el proyecto, la pauta nos da una continuidad visual, la cual se corta y se desvía formando parte de la composición.


El Estadio presenta su jerarquia por su ubicación al centro del predio. también se jerarquiza por sus orandes dimensiones.

JERARQUA

SIMETRIA

La simetría es la distribución equilibrada de formas y espacios alrededor de un eje o un punto en común.

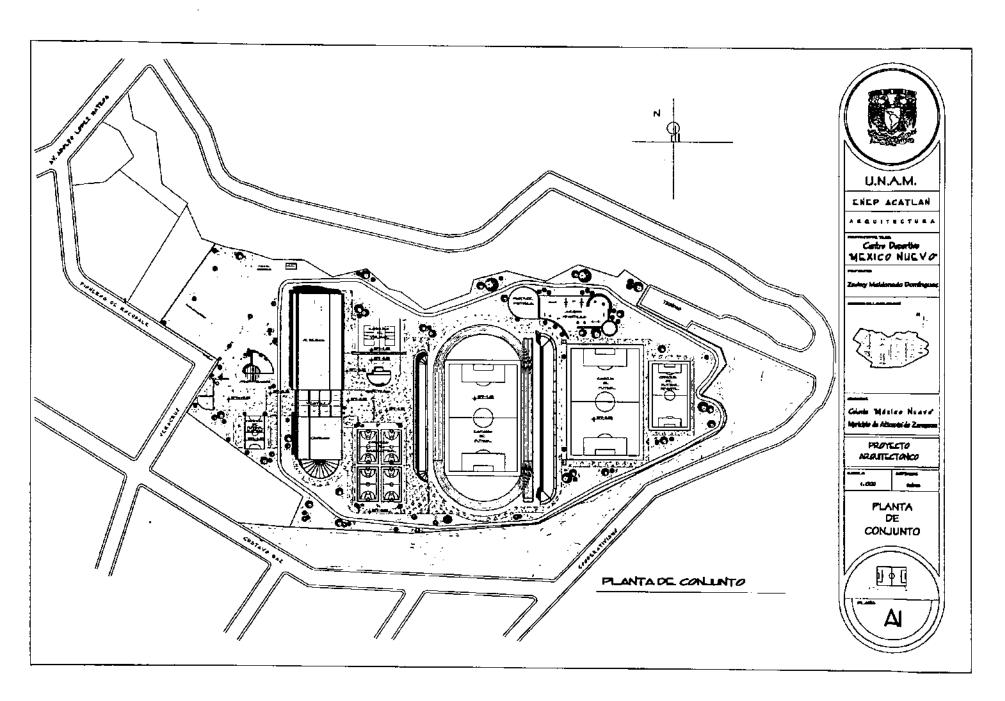
Algunos elementos del proyecto está diseñados con el principio de la simetria bilateral como es el caso del Estadio, el cual es simétrico su parte Norte de la parte Sur.

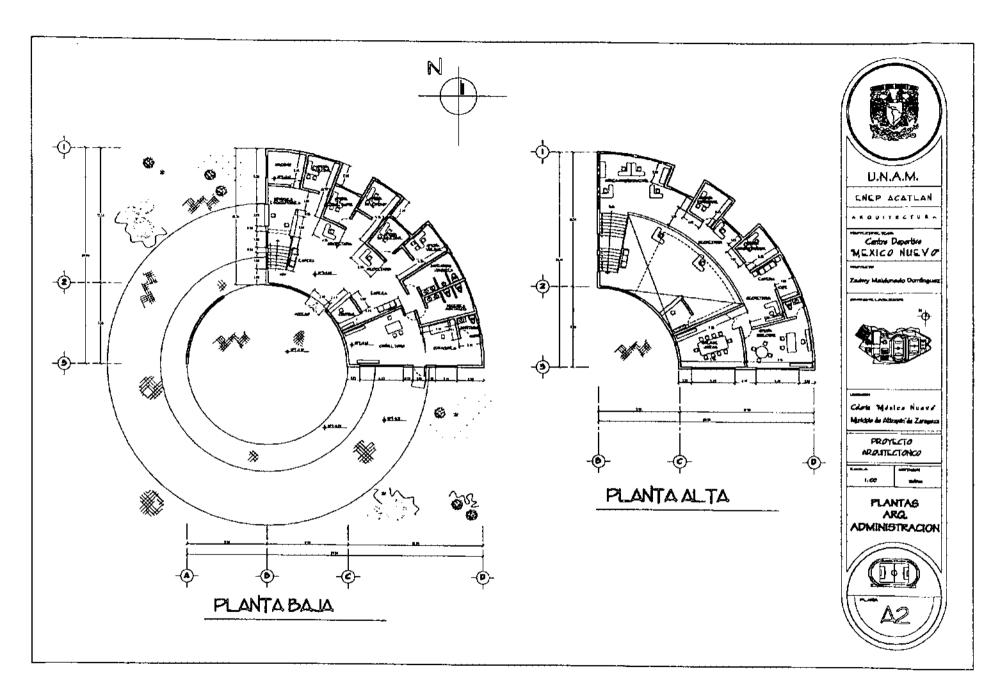
RITMO/ REPETICION

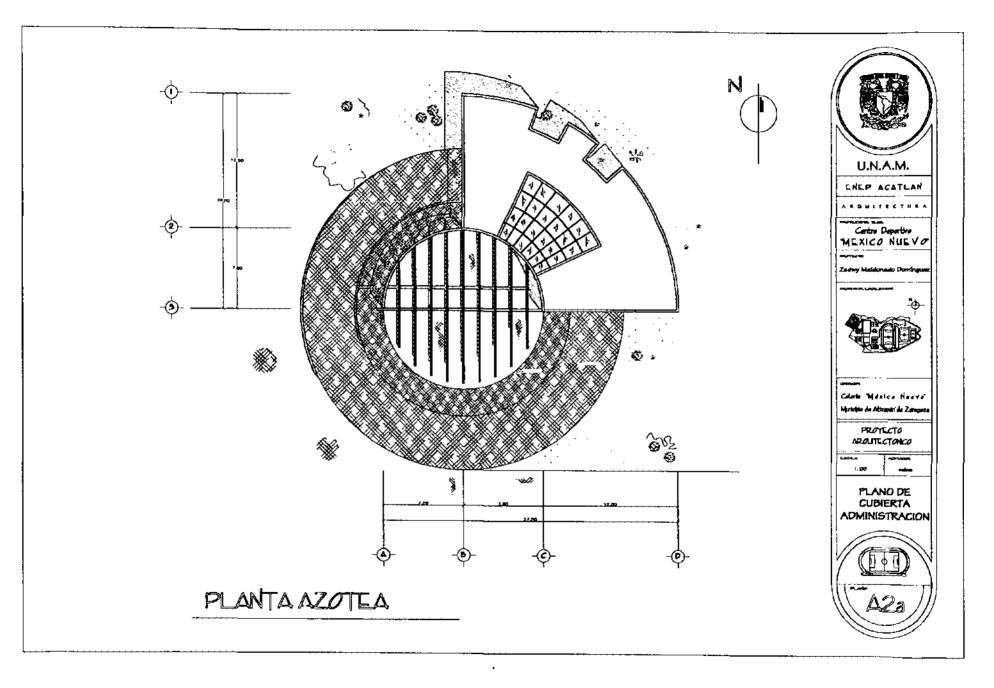
El ritmo es la repetición regular y armónica de algunos elementos arquitectónicos.

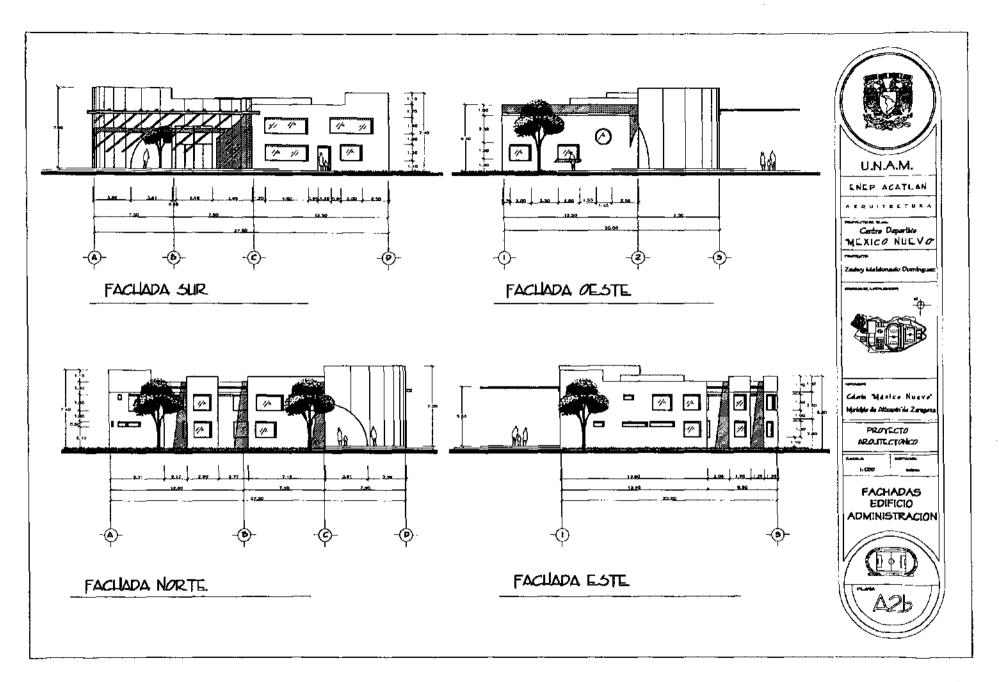
En la fachada del edificio Alberca-Gimnasio existe el principio del Ritmo porque tiene una repetición regular y armónica de algunos elementos como las columnas y ventanas.

FACHADA ESTE EDIFICIO DE ALBERCA - GIMNASIO

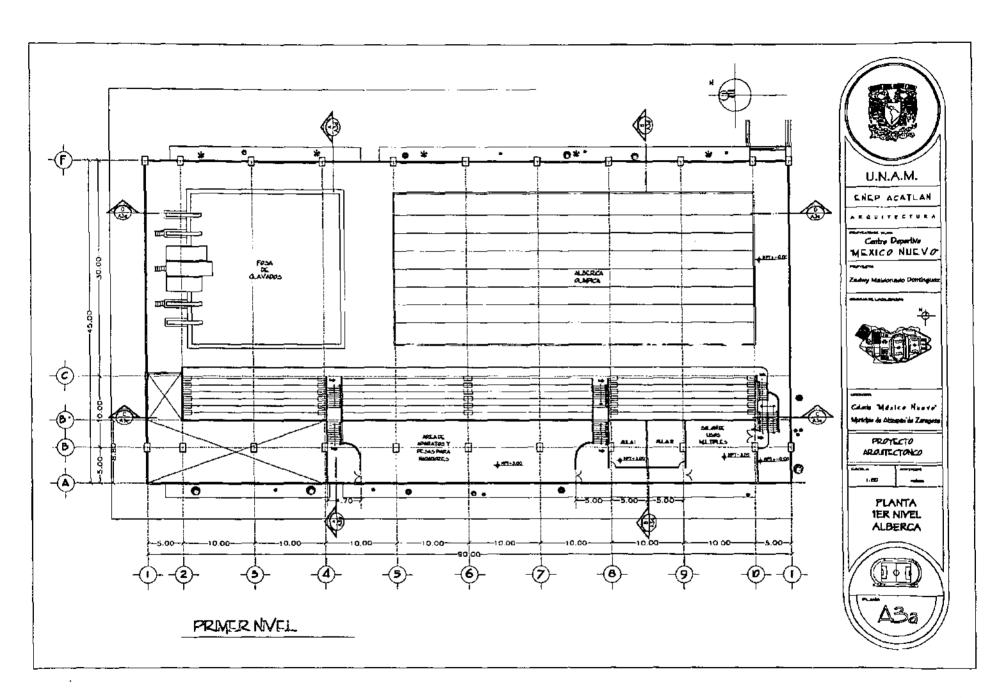

En las gradas del estadio se presenta la repetición o ritmo con una agrupación de elementos estructurales como columnas, las cuales tienen una proximidad equidistante, además de que su contorno es iqual.

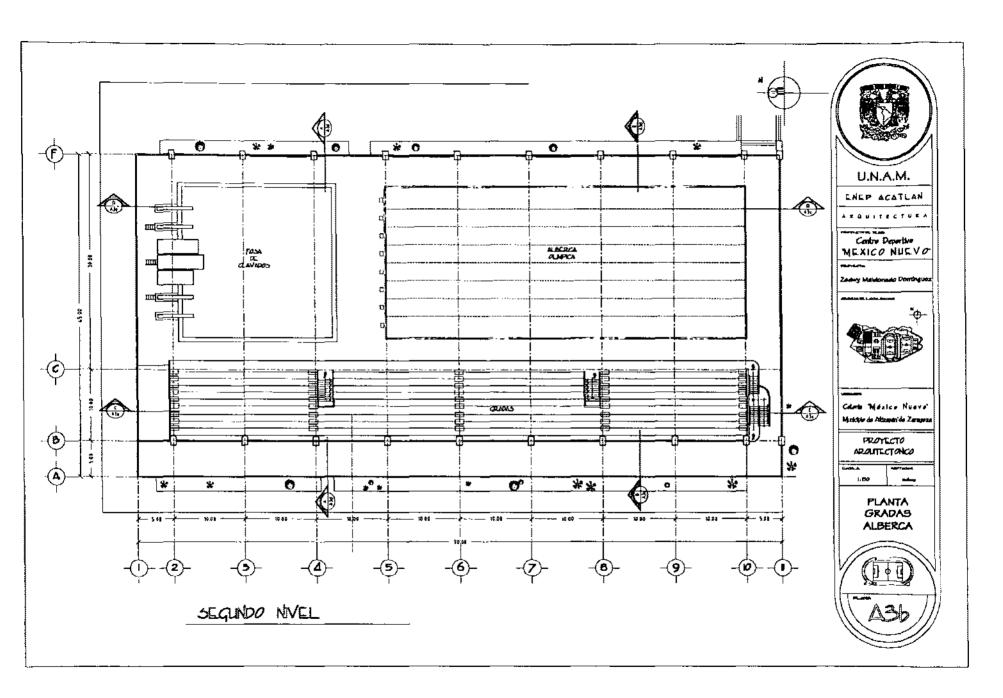


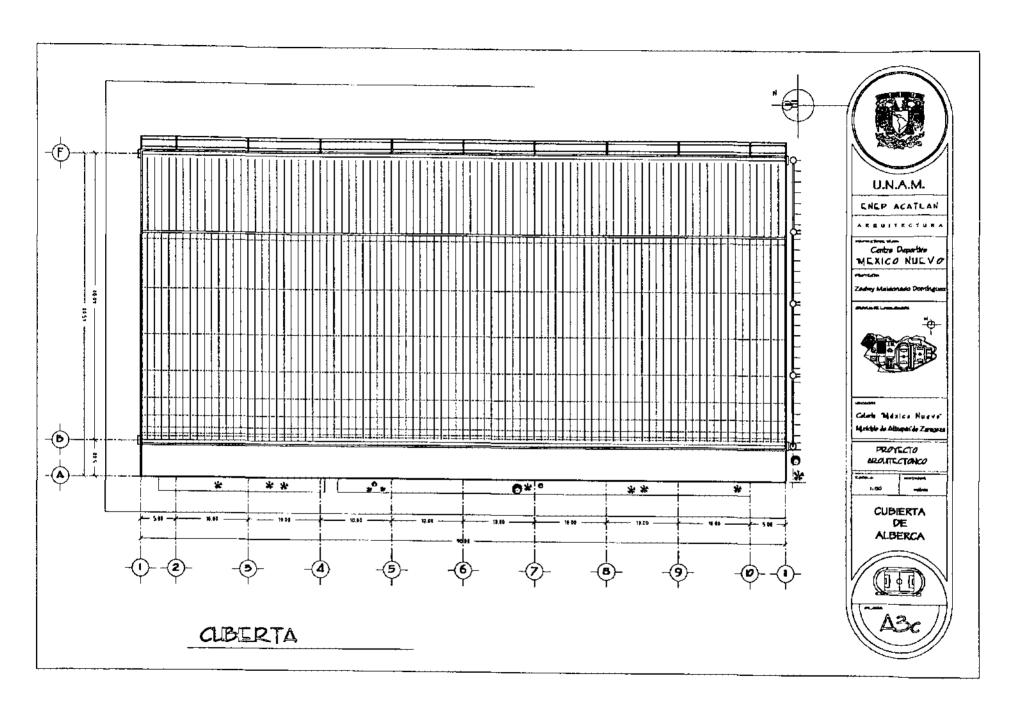

5.2. PLANOS ARQUITECTONICOS

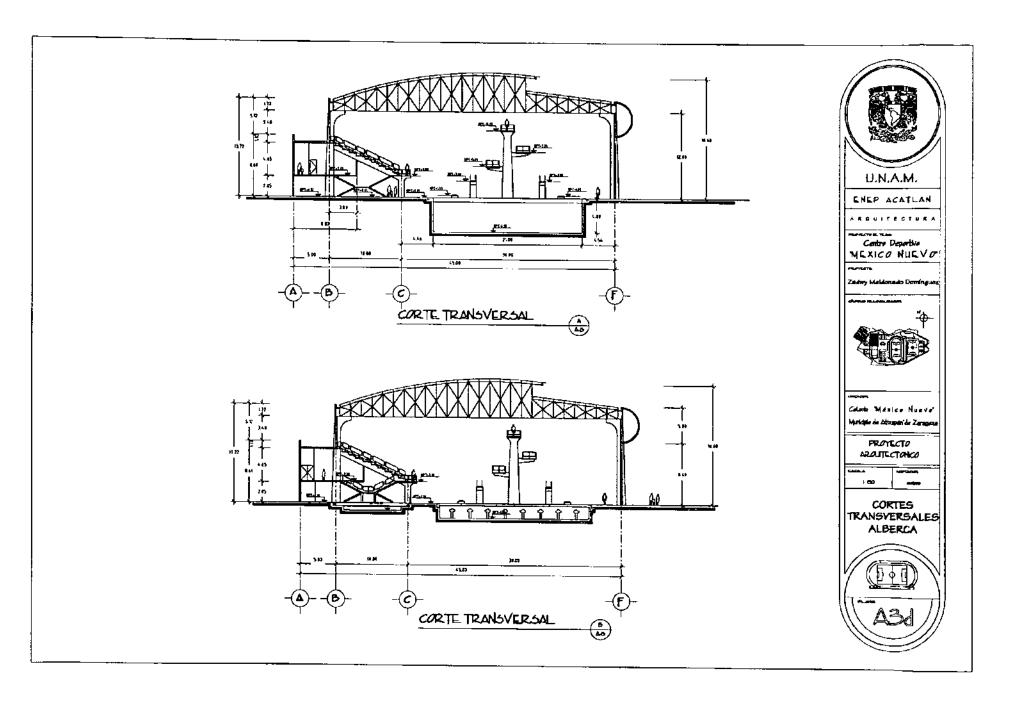

El proyecto ejecutivo del Centro Deportivo México Nuevo, se desarrolla en los siquientes planos arquitectónicos:

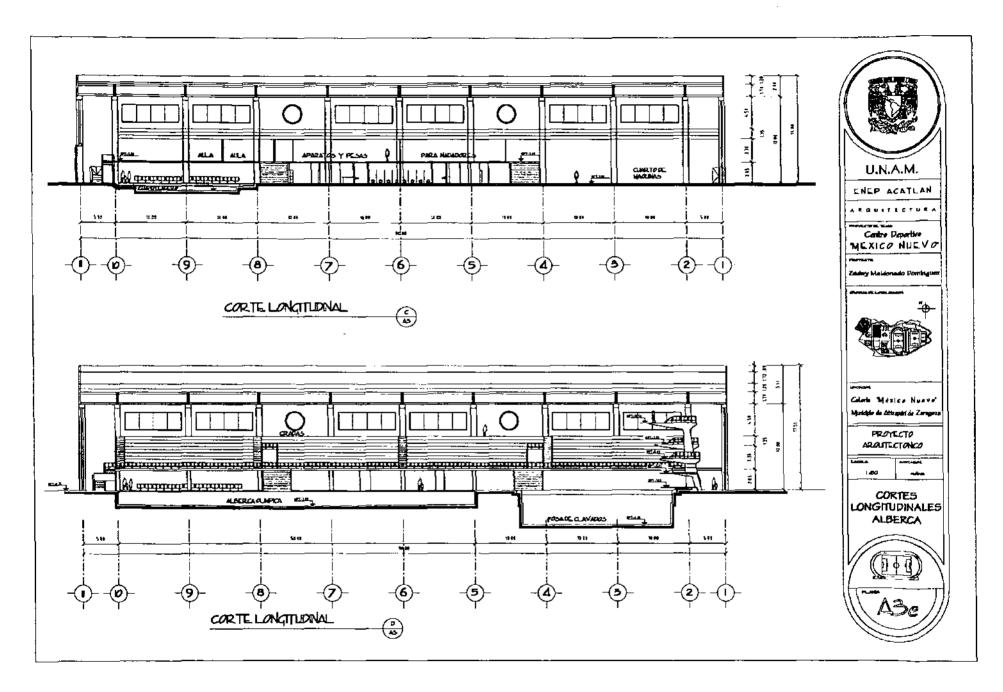
No. Plano	Descripción
Al	Planta de Conjunto
A2	Plantas Arquitectónicas Administración
A2a	Plano de Cubierta Administración
A2b	Fachadas Administración
A3	Planta Baja Alberca
A3a	Planta ler Nivel Alberca
A3b	Planta Gradas Alberca
A3c	Cubierta de Alberca
A3d	Cortes Transversales Alberca
A3e	Cortes Longitudinales Alberca
A4	Vestibulo
A5	Planta Baja Gimnasio
A5a	Planta ler Nivel Gimnasio
A5b	Cortes Gimnasio
А 5 с	Fachadas Alberca-Gimnasio
A6	Estadio
A6a	Arquitectónico Gradas Estadio
A6b	Arquitectónico Gradas Estadio
A7	Cafetería
A8	Estacionamiento

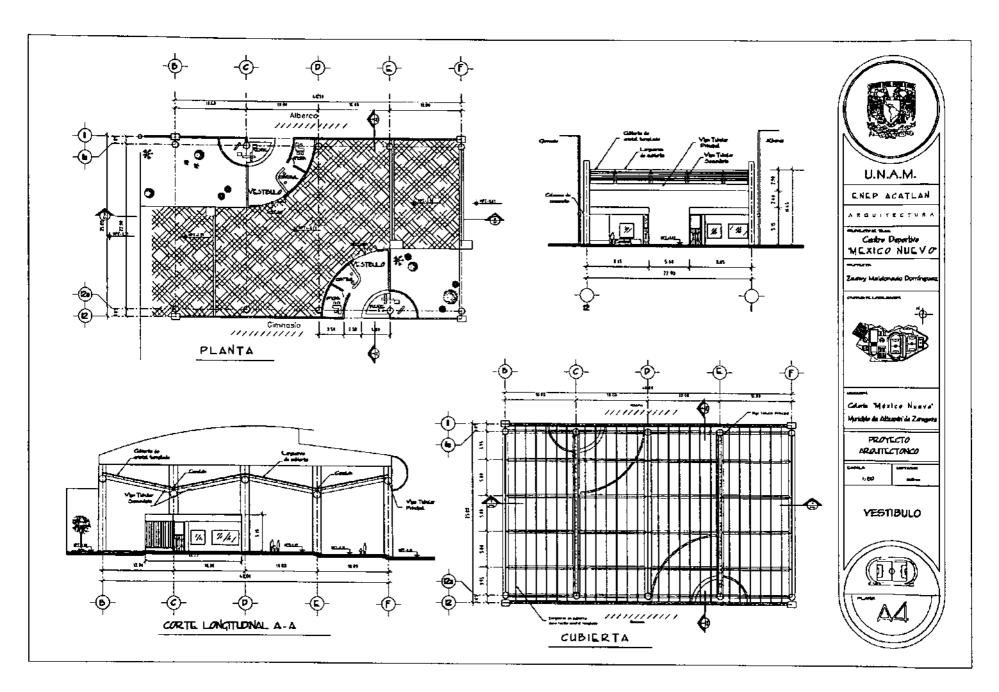


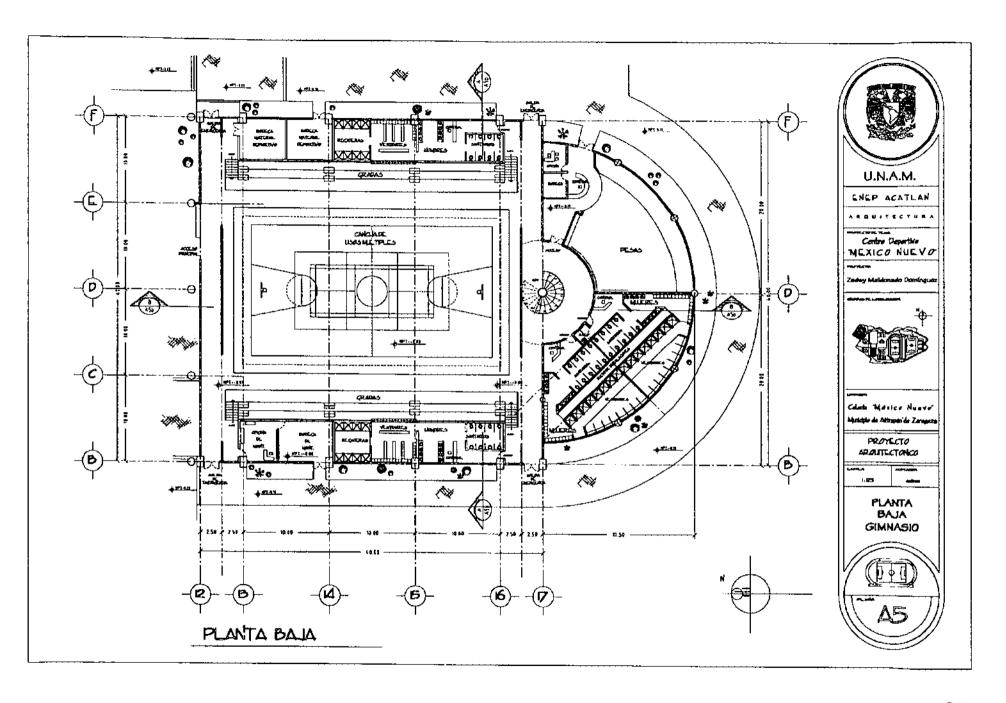


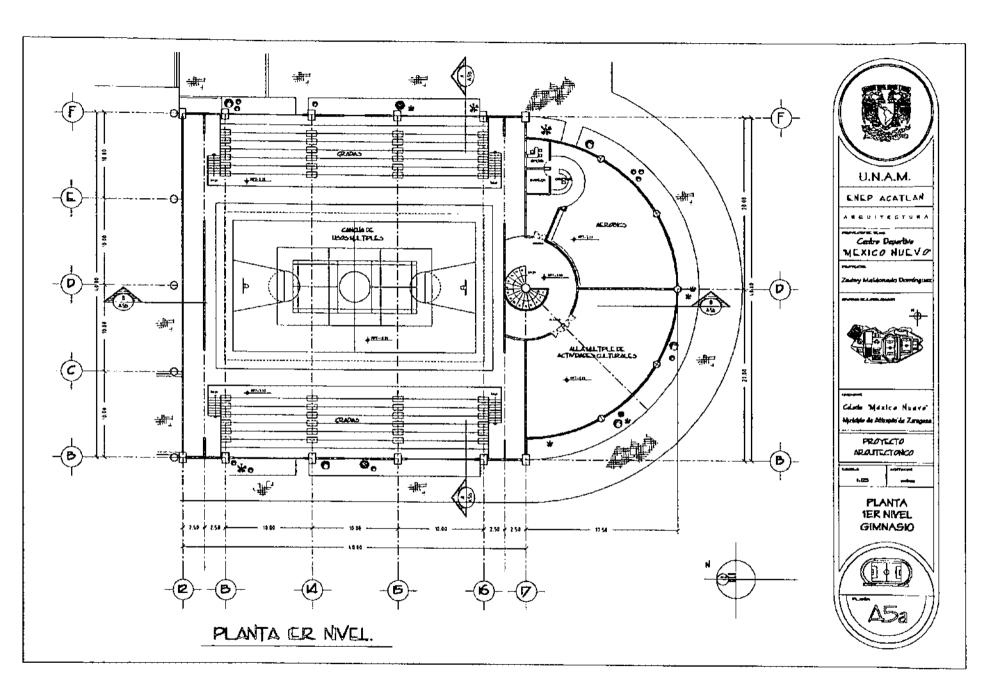


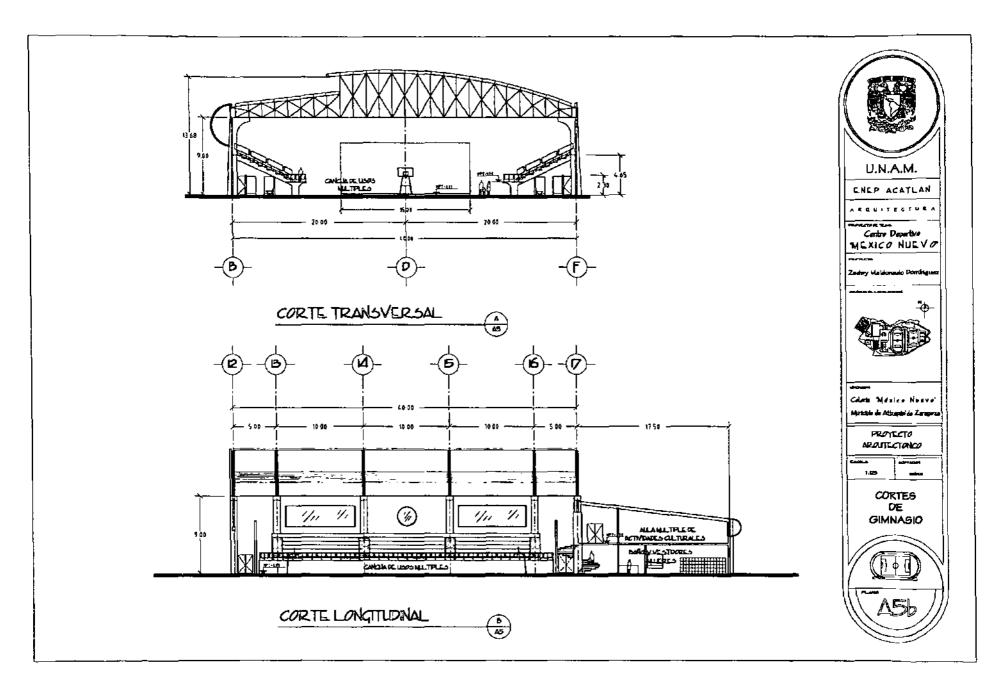


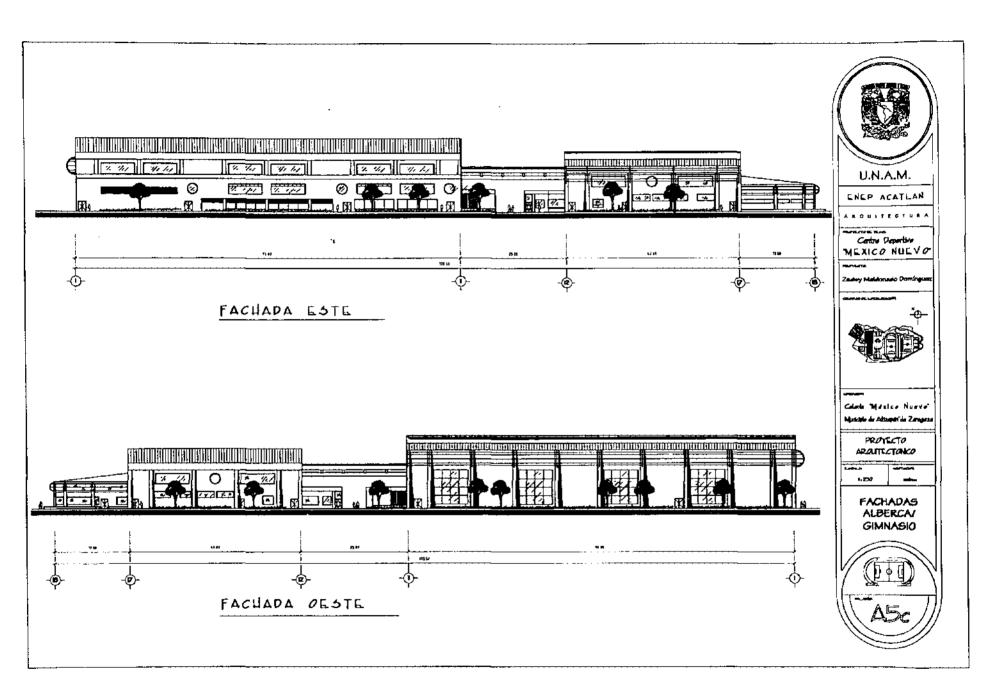


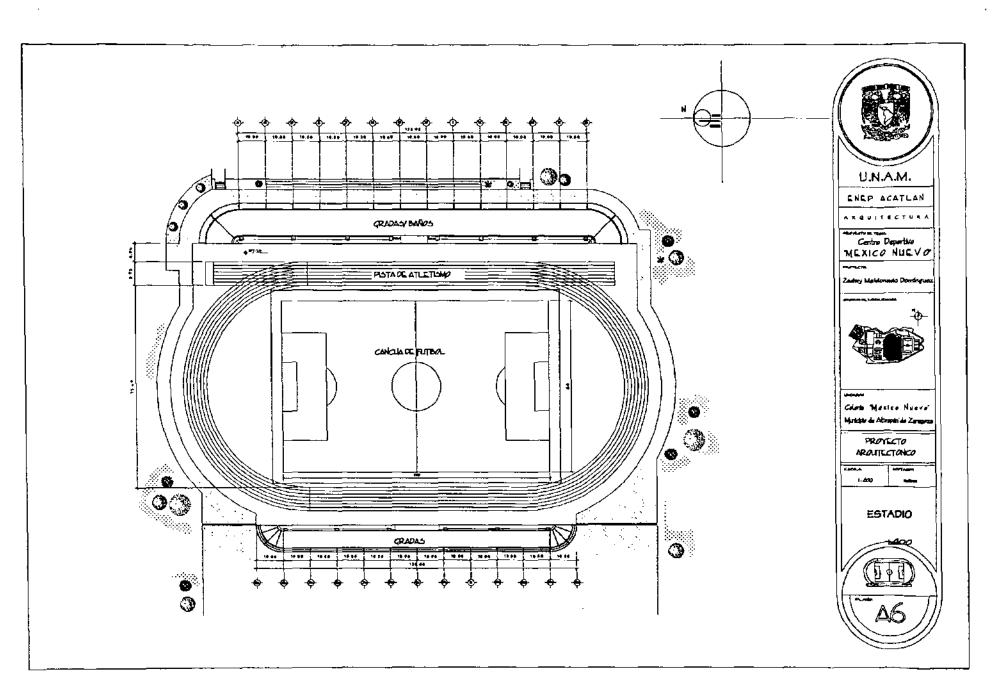


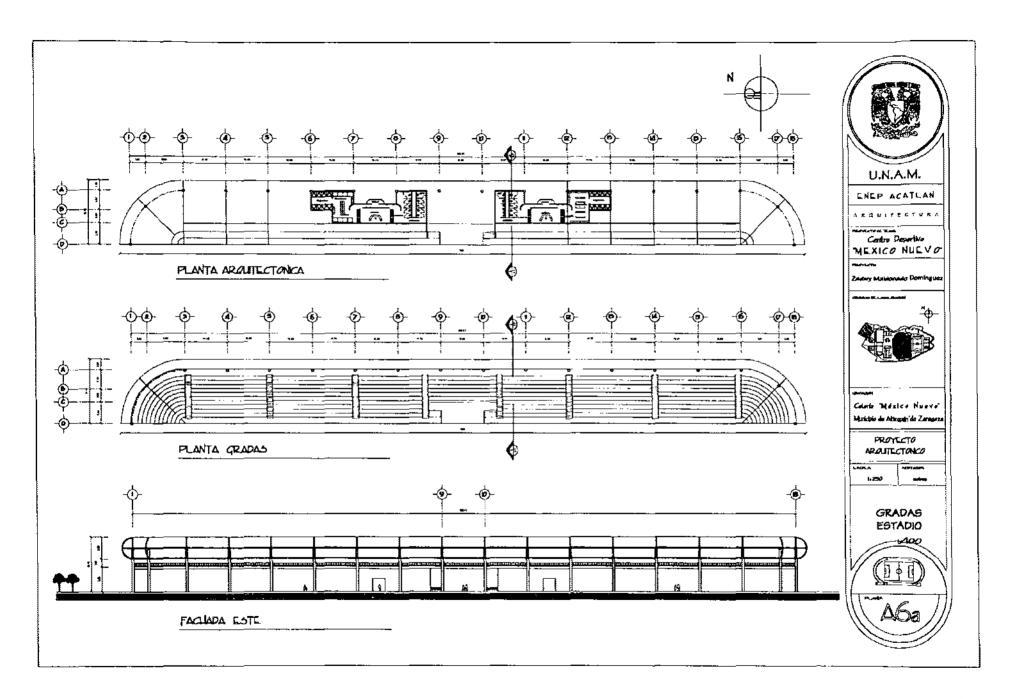


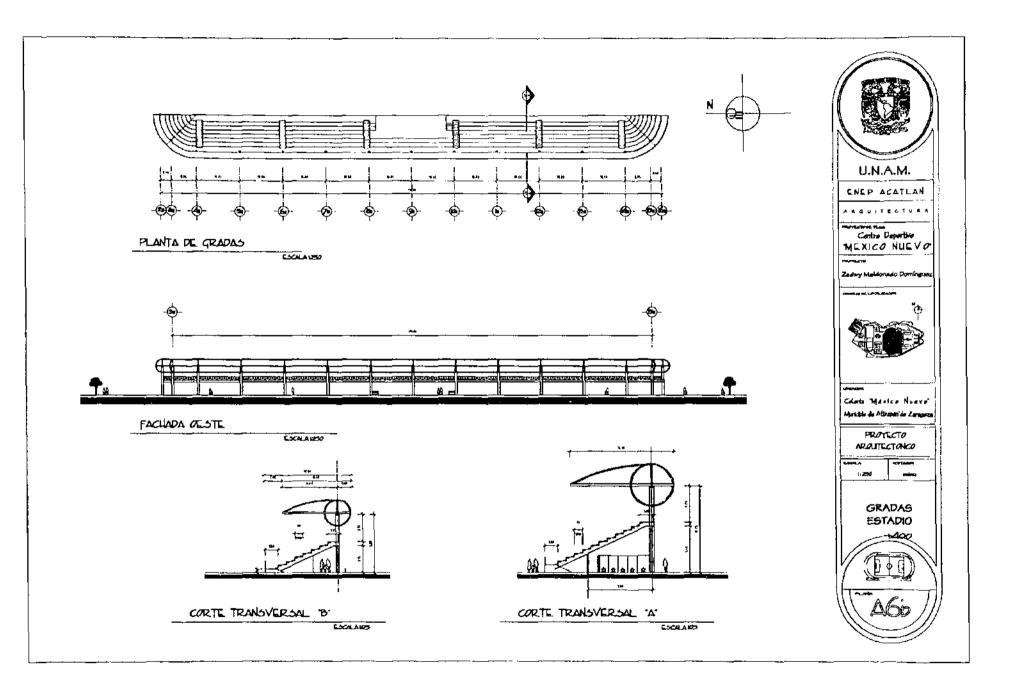


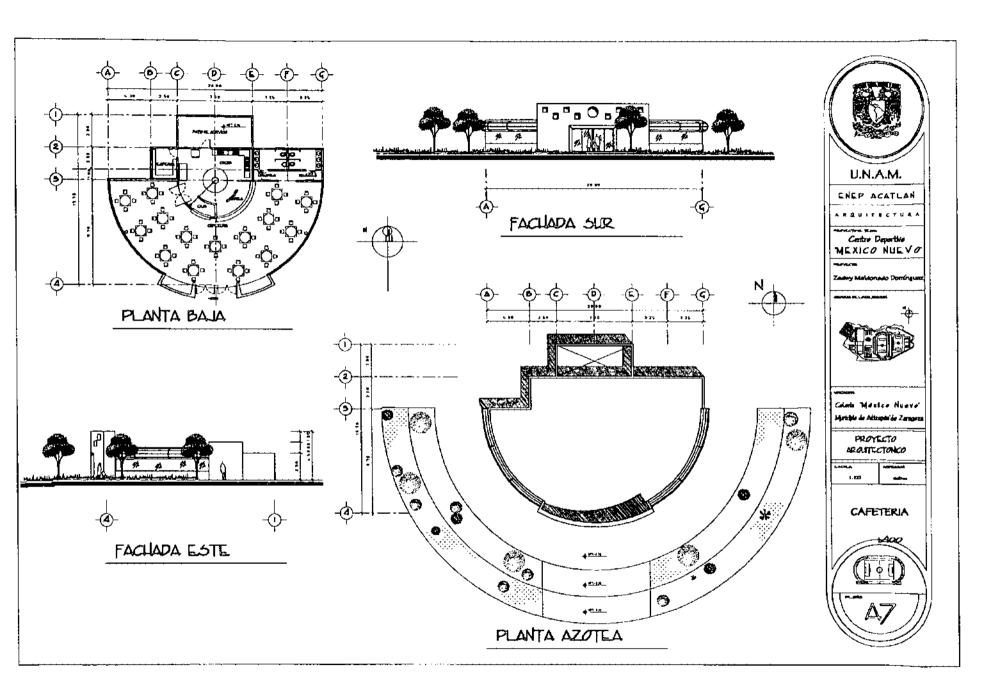


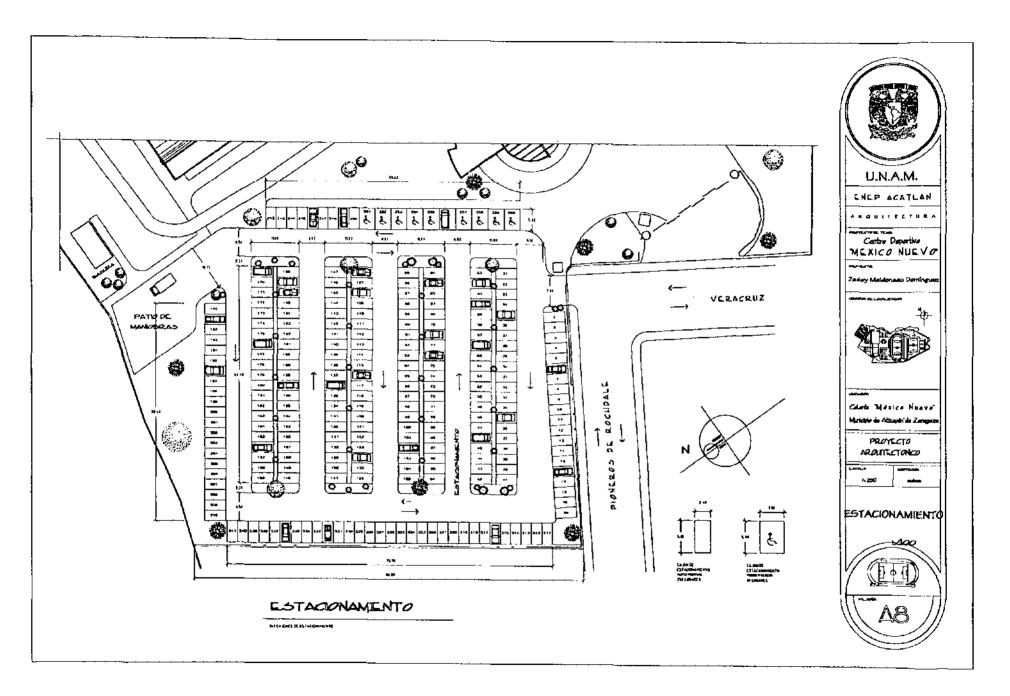



COTA L'ESIS NO SALIE DE LA BIBLIOTECA









5.3 PROYECTO ESTRUCTURAL

Para el proyecto estructural se desarrolló el cálculo estructural de la Estructura de Cubierta del edificio de la Alberca, dicha estructura estácompuesta por una armadura de 40m de claro fabricada en acero A-36, soportada por columnas de concreto armado. El cálculo abarca laestructura de cubierta, las columnas de concreto y la cimentación del edificio.

MEMORIA DE CALCULO

Análisis de Carga para Calculo de Estructura de cubierta de Alberca

Carga Muerta	<u> </u>	<u>Carga Viva</u>
Peso de Estructura	13 kg/m² 7 ka/m²	De acuerdo el Reglamento de Construcciones del D. F. para cubiertas
Peso de Contraventeos y Contrafiambeos	3kg/m^2	Carga Viva = 40 kg/ m²
Peso de Lámina	5 kg/m ²	
Carga Muerta =	38 kg/ m²	Carqa Viva $g = 20 \text{ kg/m}^2$

Análisis de Carga Muerta + Carga Viva

$$W_p = CM + CV = 38 + 40 = 78 \text{ kg/m}^2$$

Las Armaduras están colocadas a cada 10.00m y el daro que están salvando es de 40.00m por lo que su área tributaria por armadura será:

$$A_r = 40(10) = 400 \text{ m}^2$$

El peso que soportará cada Armadura es:

$$P_A = W_0 \times A_T$$

 $P_A = 78 \text{ kg/m}^2 (400 \text{ m}^2) = 31200 \text{ kg}$

Dividiendo este peso entre el número de nodos de la armadura : la fuerza por nodo será de:

$$F_n = \frac{P_A}{NaNadas} = \frac{31200}{26} = 1200 \text{ kg}.$$

Análisis de Carga para Calculo de Gradas de Alberca

Carga Viva

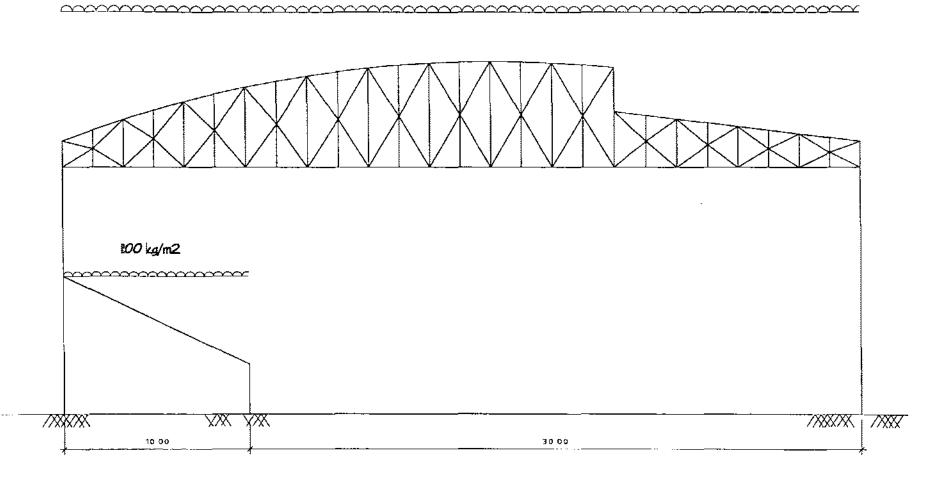
De acuerdo al Reglamento de Construcciones del D.F. para Gradas se considera: $Carga Viva = 350 kg/m^2$

Carga Muerta

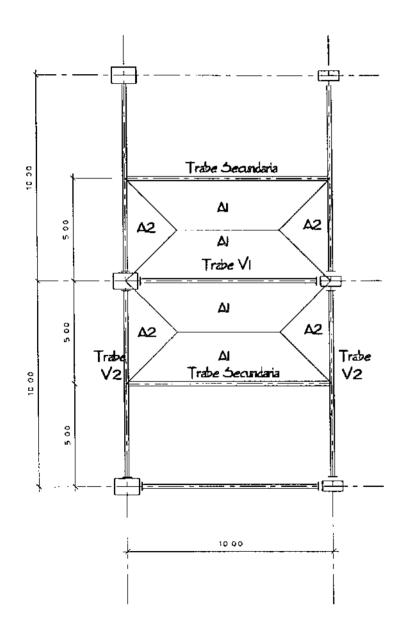
Peso de Losa de Concreto de 12cm de espesor..... = 288 kg/m^2 Peso de Trabes de Concreto.... = 115 kg/m^2 Peso de Columnas de Concreto... = 1071 kg/m^2

Trabes de 0.30m x0.40m x 2400kq/m³ (peso volumétrico del concreto) = 288kq/m W trabes = [288kq (10m) 4trabes]÷|00m² = |15kq/m²

Columnas de Concreto de $0.50m \times 1.00m \times 2400 \text{ kg/m}^3 = 1200 \text{ kg/m}$ Columnas de Concreto de $0.80m \times 1.20m \times 2400 \text{ kg/m}^3 = 2304 \text{ kg/m}$


W columnas =
$$\frac{|200(3.50)}{100} = \frac{230(2.00)}{100} = 3|8 \text{kg}/\text{m}^2$$

Peso de Gradas


W Total = CV + CM (Losa de concreto, Trabes de concreto, columnas de concreto)

$$W = 350 \text{ kg/m}^2 + 72 \text{ kg/m}^2 = 107 \text{ } \approx 1100 \text{ kg/m}^2$$

78 kg/m2

ARMADURA DE 20m DE CLARO

$$\Delta I = \left(\frac{10m + 5m}{2}\right) 2.50 = 18.75m2$$

$$\Delta 2 = \left(\frac{5m \times 2.5m}{2}\right) = 6.25m2$$

Carga de diseño = 800 kg/m2

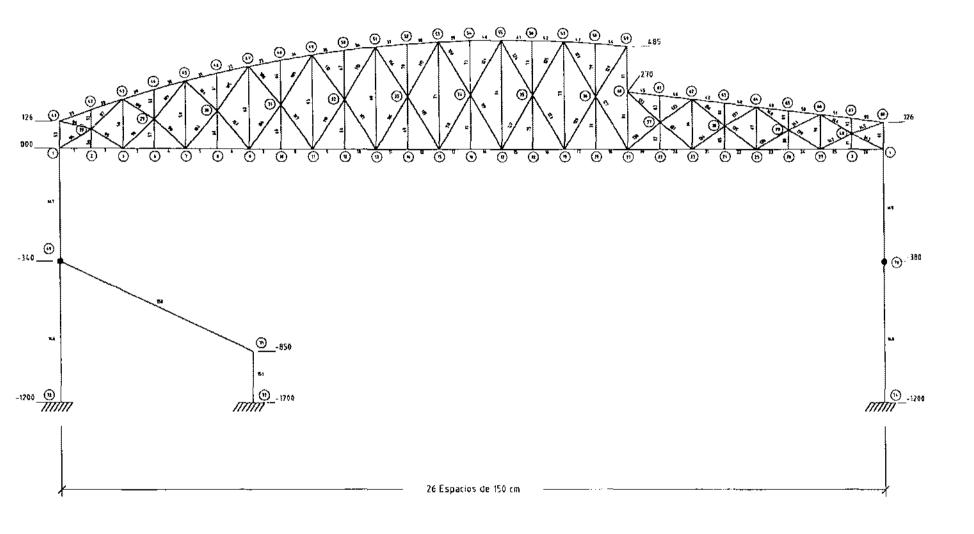
CARGA SOBRE TRABE VI

$$V = 100 \frac{(A \times 2)}{10m} = 100 \frac{(B.75 \times 2)}{10m} = 4125 \text{ kg/m}2$$

425 kg/m

$$M = \frac{|V|L}{12} \qquad M = \frac{\Delta l 25 (l0)^2}{12} = 3.4375 \text{ kg·m} = 3$$

CARGA SOBRE TRABS V2


$$P_1 = \frac{3750 (1000)}{2} = 20625 \log 100$$

$$V = \frac{6.25(100)}{5.0} = 13.75 \text{ kg/m}$$

$$p = \frac{1375(10)}{2} + \frac{20625}{2} = 17188 \text{ kg}$$

$$P_{T} = 17188(2) = 34375 \text{ kg}$$

MODELLO MATEMATICO

Nodo — Barra — -850 Coordenada en Y

CONDICION: CV+CM (Carga Viva + Carga Muerta)
PROGRAMA ANALISIS (Programa que resuelve Marcos Planos)

COORDENADAS DE LOS NODOS

	· ·	COORDENAL	AS DE LOS N	TUDOS					RDENADAS DE	LOS NUDOS			
	NUDO	COORD, X	COORD. Y	DIREC. X	DIREC. Y	DIREC.	2	NUDO				DIREC. Y	DIREC. Z
1	1	.000	.000	LIBRE	LIBRE	LIBRE		38	3150.000	108.000	LIBRE	LIBRE	LIBRE
i	2	150.000	.000	LIBRE	LIBRE	LIBRE		39	3450.000	90.000	LIBRE		LIBRE
	3	3750.000	.000	LIBRE	LIBRE	LIBRE	!	40	3750.000	72.000	LIBRE	LIBRE	LIBRÉ
	4	3900.000	.000	LIBRE	LIBRE	LIBRE	1	41	.000	126.000	LIBRE		LIERE
ŀ	5	300.000	.000	LIBRE	LIBRE	LIBRE	j	42	150.000	181.000	LIBRE		LIBRE
	6	450.000	.000	LIBRE	LIBRE	LIBRE		43	300.000	231.000	LIBRE		LIERE
	7	600.000	.000	LIBRE	LIBRE	LIBRE	ļ	44	450.000	277.000	LIBRE		LIBRE
	9	750.000	-000	LIBRE	LIBRE	LIBRE	1	45	600.000	318.000	LIBRE		LIBRE
ı	9	900.000	.000	LIBRE	LIBRE	LIBRE	1	46	750.000	356.000	LIBRE		LIBRE
1	10	1050.000	.000	LIBRE	LIBRÉ	LIBRE	i	47	900.000	389,000	LIBRE		LIBRE
1	11	1200.000	. 000	LIBRE	LIBRE	LIBRE		48	1050.000	417.000	LIBRE		I,IBRE
1	12	1350.000	.000	LIBRE	LIBRE	LIBRE		49	1200.000	443.000	LIBRE		LIBRE
	13	1500.000	.000	LIBRE	LIBRE	LIBRE		50	1350.000	465.000	LIBRE		LIBRE
	14	1650.000	.000	LIBRE	LIBRE	LIBRE		51	1500.000	482.000	LIBRE		LIBRE
!	15	1800.000	.000	LIBRE	LIÐRE	LIBRE		52	1650.000	495.000	LIBRE		LIBRE
1	16	1950.000	.000	Libre	LIBRE	LIBRE		53	1800.000	505.000	LIBRE		LIBRE
	17	2100.000	.000	LIBRE	LIBRE	LIBRE		54	1950.000	510.000	LIBRE		LIBRE
1	18	2250.000	-000	LIBRE	LIBRE	LIBRE	1	55	2100.000	514.000	LIBRE	LIBRE	LIBRE
1	19	2400.000	.000	LIBRE	LIBRE	LIBRE	1	56	2250.000	511.000	LIBRE		LIBRE
1	20	2550.000	.000	LIBRE	LIBRE	LIBRE		57	2400.000	507.000	LIBRE		LIBRE
	21	2700.000	.000	LIBRE	LIBRE	LIBRE	ļ	56	2550.000	497.000	LIBRE	LIBRE	LIBRE
	22	2850.000	.000	LIBRE	LIBRE	LIBRE		59	2700.000	485.000	LIBRE	LIBRE	LIBRE
i i	23	3000.000	.000	LIBRE	LIBRE	LIBRE		60	2700.000	270.000	LIBRE		LIBRS
	24	3150.000	.000	LIBRE	LIBRE	LIBRE		61	2850.000	252.000	LIBRE		LIARE
	25	3300.000	.000	LIBRE	LIBRE	LIBRE		62	3000.000				LIBRE
	26	3450.000	.000	LIBRE	LIBRE	LIBRE		63	3150.000	216.000		LIBRE	LIBRE
i i	27	3600.000	.000	LIBRE	LIBRE	LIBRE		64	3300.000	198.000			LIBRE
ļ	28	150.000	90.000	LIBRE	LIBRE	LIBRE		65	3450.000			LIBRE	LIBRE
]	29	450.000	138.000	LIBRE	LIBRE	LIBRE		66	3600.000			LIBRE	LIBRE
	30	750.000	178.000	LIBRE	LIBRE	LIBRE		67	3750.000	144.000	LIBRE	LIBRE	LIBRE
1	31	1050.000	209.000	LIBRE	3881J	LIBRE	j	63	3900.000			LIBRE	LIBRE
1	32	1350.000	232.000	LIBRE	LIBRE	LIBRE	1	69	1000.000	-850.000	LIBRE	LIBRE	LIBRE
1	33	1650.000	247.000	LIBRE	LIBRE	LIBRE		70	3900.000	-340.00	0 LIBRE	LIBRE	LIBRE
1	34	1950.000	255.000	LIBRE	LIBRE	LIBRE		71	.000	-340.00	0 LIBRE	LIBRE	LIBRE
1	35	2250.000	255.000	LIBRE	LIBRE	LIBRE		72	.000	-1200.00	O APOYO	APOYO	APOYO
1	36	2550.000	248.000	LIBRE	LIBRE	LIBRE		73	1000.000		O APOYO	APOYO	APOYO
	37	2850.000	126.000	LIBRE	LIBRE	LIBRE		74	3900.000	-1200.00	0 APOYO	APOYO	APOYÓ

GEOMETRÍA DE LAS BARRAS

		GEOMETRIA DE LAS BARRAS	i		GEQN	METRIA DE LAS BARRAS	i
BARI	ra area	MOM. INRCIA	MOD. ELAST.	BARRA	AREA	MOM. INRCIA	MOD. ELAST.
1	300.00000	150000.00000	2100.00000	11	25.04000	.00010	2100.00000
2	50.08000	.00010	2100.00000	12	25.04000	.00010	2100.00000
3	25.04000	.00010	2100.00000	13	25.04000	.00010	2100.00000
4	25.04000	.00010	2100.00000	14	25.04000	.00010	2100.00000
5	25.04000	.00010	2100.00000	15	25.04000	.00010	2100.00000
6	25.04000	.00010	2100.00000	16	25.04000	.00010	2100.00000
7	25.04000	.00010	2100.00000	17	25.04000	.00010	2100.00000
8	25.04000	.00010	2100.00000	18	25.04000	.00010	2100.00000
9	25.04000	.00010	2100.0000C	19	25.04000	.00010	2100.00000
10	25.04000	.00010	2100.00000	20	25.04000	.00010	2100.00000

	· 	GEOMETRIA DE LAS BARRAS						
BARR	A AREA	MOM. INRCIA	MOD. ELAST.	ŀ	DADDI		GEOMETRIA DE LAS BARRAS	
21	25.04000	.00010	2100.00000		BARRA		MOM. INRCIA	MOD. ELAST.
22	25.04000	-00010	2100.00000		86	9.76000	-00010	2100.00000
23	50.08000	.00010	2100.00000		87	9.76000	-00010	2100.00000
24	50.08000	.00010	2100.00000	•	89	9.76000	.00010	2100.00000
25	85.36000	.00010	2100.00000	ĺ	89	9.76000	.00010	2100.00000
	300.00000	150000.00000	2100.00000	L	90	9.76000	.00010	2100.00000
27	50.08000	.00010	2100.00000	į	91	70.64000	.00010	2100.00000
28	50.08000	.00010		1	92	70.64000	.00010	2100.00000
29	25.0400D	-00010	2100.00000	1	93	70.64000	.00010	2100.00000
30	25.04000	.00010	2100.00000	ſ	94	44.64000	.00010	2100.00000
31	25.04000		2100.00000	L	95	22.32000	.00010	2100.00000
32	25.04000	-00010	2100.00000	ĺ	96	44.64000	. 00010	2100.00000
33	25.04000	-00010	2100.00000		97	22.32000	-00010	2100.00000
34	25.04000	-00010	2100.00000	ł	98	9.76000	.00010	2100.00000
35	25.04000	.00010	2100.00000		99	9-76000	.00010	2100.00000
36	25.04000	.00010	2100.00000	ŀ	100	9.76000	.00010	2100.00000
37	25.04000	-00010	2100.00000		101	9.76000	.00010	2100.00000
38	25.04000	-00010	2190.00000	į	102	9.76000	.00010	2100,0000C
39		.00010	2100.00000	j	103	9.76000	.00010	2100.00000
	25.04000	.00010	2103,00000		104	9.76000	.00010	2100.00000
40	25.04000	.00010	2100.00000		105	9.76000	.00010	2100,00000
41	25.04000	-00010	2100.00000		106	9.76000	.00010	2100.00000
42	25.04000	.00010	2100.00000		107	9.76000	.00010	2100.00000
43	25.04000	.00010	2100,00000	1	108	9.76000	.00010	2100.00000
44	25.04000	.00010	2100,00000		109	9.76000	.00010	2100.00000
45	25.04000	-00010	2100.00000		110	9.76000	-00010	2100.00000
46	25.04000	.00010	2100.00000	l l	111	9.76000	.00010	2100.00000
47	25.04000	.00010	2100.00000		112	9.76000	.00010	2100.00000
48	25.04000	.00010	2100.00000	j	113	9.76000	.00010	2100.00000
49	50.08000	-00010	2100.00000	1	114	9.76000	.00010	2100.00000
50	50.08000	-00010	2100.00000		115	9.76000	.00010	2100.00000
51	50.08000	.00010	2100.00000	i	116	9.76000	,00010	2100.00000
52	50.08000	.00010	2100.00000		117	9.76000	.00010	2100.00000
53	70.6400C	.00010	2100.00000	}	118	9.76000	,00010	2100,00000
54	70.64000	-00010	2100.00000	1	119	9.76000	.00010	2100.00000
55	70.64000	-00010	2100.00000		120	9.76000	.00010	2100.00000
56	9.76000	.00010	2100.00000	Į.	121	9.76000	-00010	2100.00000
57	9.76000	.00010	2100.00000	i	122	9.76000	.00010	2100.00000
58	9.76000	-00010	2100.00000	1	123	9.76000	.00010	2100.00000
59	9.76000	.00010	2100.00000	1	124	9.76000	.00010	2100.00000
60	9.76000	-00010	2100,00000	1	125	9.76000	.00010	2100.00000
61	9.76000	.00010	2100.00000	}	126	9.76000	.00010	2100.00000
62	9.76000	.00010	2100.00000		127	9.76000	.00010	2100,00000
63	9.76000	00010	2100.00000	}	128	9.76000	.00010	2100.00000
64	9.76000	.00010	2100.00000	1	129	9.76000	,00010	2100.00000
65	9.76000	.00010	2100.00000	1	130	9.76000	.00010	
66	9.76000	.00013	2100.00000	ŀ	131	9.76000	-00010	2100.00000
67	9.76000	.00010	2100.00000	Ì	132	9.76000	.00010	2100,00000
69	9.76000	.00010	2100.00000	}	133	9.76000	.00010	2100.00000
69	9.76000	.00010	2100.00000	ļ	134	9.76000	.00010	2100.00000
70	9.76000	.00010	2100,00000		135	9.76000	.00010	2100.00000
71	9.76000	.00010	2100.00000	l	136	9.76000		2100,00000
72	9.76000	-00010	2100,00000	i	137	9.76000	-00010	2100.00000
73	9.76000	-00010	2100.00000	ľ	138	22.32000	.00010	2100.00000
74	9.76000	.00010	2100.00000	1	139	22.32000	.00010	2100.00000
75	9.76000	.00010	2100.00000	1	140	22.32000	.00010	2100.00000
76	9.76000	.00010	2100.00000		141	22.32000	.00010	2100.00000
77	9.76000	.00010	2100.00000	İ	142	70.64000	.00010	2100.00000
78	9.76000	.00010	2100.00000	1	143	70.64000	.00010	2100.00000
79	9.76000	.00010	2100.00000	1	144	70.64000	.00010	2100.00000
80	9.76000	.00010	2100.00000	1			.00010	2100.00000
81	9.76000	.00010	2100.00000		145 146	70.64000	.00010	2100.00000
82	9.76000	.00010	2100.00000	ļ		516.0000C 516.00000	619354.00000	2100.00000
83	9.76000	.00010	2100.00000			516.00000	619354.00000	2100.00000
84	9.76000	-00010	2100.00000	ł		516.00000	619354.00000	2100.00000
65	9.76000	.00010	2100,00000	ļ	150	65.00000	619354.00000	2100.00000
		- 240 22		1		269.00000	8602.00000	2100,00000
		· · · · · · · · · · · · · · · · · · ·			-31	200.0000	224014.00000	2100.00000

_	FUE	rzas [DE EMPOTR	AMIENTO E	N ORIGEN		FUERZA	S DE EMPC	TRAMIENTO	EN DESTINO	>
	BARRA	OR1GEN	FZA. AXIAL	FZA. CORTANTE	OT/AMOM	EAR	A DESTINO	FZA. AXIAL	FZA. CORTANTE	OTHEMOM	
	149	70	.00000	.00000	.00000	149	4	.00000	.00000	.00000	
ļ	150	71	.00000	20.62500	3437.50000	150	69	.00000	20.62500	-3437.50000	ì
Ļ	151	73	.00000	00000	.00000	151	69	.00000	.00000	.00000	

			CAR	S EN LOS NUDOS			
	CARGAS	EN LOS NUDOS			CARGAS	EN LOS NUDOS	
NUDO	CARGA EN X	CARGA EN Y	MOMENTO EN 2	Nabo	CARGA EN X	CARGA EN Y	HOMENTO EN 2
4	.000	-27.648	.000		5 .000	-1.200	.000
41	.000	600	.000		.000	-1.200	.000
42	-000	-1.200	.000]	.000	-1.200	.000
43	-000	-1.200	.000		.000	-1.200	.000
44	.000	-1.200	.000		.000	-1.200	.000
45	.000	-1.200	.000		.000	-1.200	.000
46	.000	-1.200	-000		.000	-1.200	.000
47	.000	-1.200	.000		.000	-1.200	-000
48	.000	-1.200	.000		.000	-1.200	.000
49	.000	-1.200	.000		.000	-1.200	.000
\ 50	.000	-1.200	.000	}	.000	-1.200	.000
51	.000	-1.200	.000		57 .000	-1.200	.000
52	.000	-1.200	.000		.000	600	.000
53	.000	-1.200	.000		000.	-48.775	.000
54	000	-1.200	.000		71000	-34,375	.000

					FUER	ZAS FINALES	EN EL O	RIGEN					
,	BARRA	ORIGEN	FZA.AXTAI.	F2A . CORTANTE	ОТИЗМОН			BARRA	ORIGEN	FZA.AXIAL	FZA.CORTANTE	MOMENTO	
	1	1	52.99754	57,49704	8624.55400			38	52	6.99315	.00000	.00000	
i	2	2	52.99762	.00000	.00002			39	53	6.53302	.00000	.00000	
1	3	5	25.60580	.00000	,00000			40	54	6.53155	.00000	.00000	
i	4	6	25.60580	.00000	.00000			41	55	4.92929	.00000	.00000	
i	5	7	15.00817	.00000	.00000			42	56	4.93005	.00000	.00000	
	6	8	15,00812	.00000	.00000	į.		43	57	1.68224	.00000	.00001	
]	7	9	9.09487	.00000	.00000			44	58	1.68404	.00000	00003	
	8	10	9.89496	.00000	.00000			45	60	-5.44365	.00000	00007	
	9	11	7.46888	.00000	.00000			46	61	-5.44434	.00000	.00001	
i	10	12	7.46888	.00000	.00000			47	62	-20.17706	.00000	00001	
1	11	13	6.65996	.00000	.00000			48	63	-20.17711	.00000	.00000	
	12	14	6,65998	.00000	.00000			49	54	-45.95125	.00000	.00000	
	13	15	7.11546	.00000	.00000			50	65	-45.95200	.00000	.00000	
	14	16	7.11556	.00000	.00000	}		51	66	-73.51705	.00000	.00000	
}	15	17	8.83460	.00000	.00000	1		52	67	-73.51674	.00000	.00002	
	16	18	8.83467	.00000	.00000			53	1	-20.18320	.00000	.00002	
	17	19	11.57906	.00000	00001			54	2	57.49693	.00000	.00001	
	18	20	11.57929	.00000	.00003			55	28	2,34204	.00000	.00000	
	19	21	18,49735	.00000	00005			56	5	2.38205	.00000	00001	
	20	22	18.49735	.00000	.00001			57	6	.00001	. 20000	.00000	
	21	23	33.29770	.00000	00001			58	29	1.57259	. 00000	.00000	
	22	24	33.29776	.00000	.00000			59	7	.54622	.00000	.00000	
1	23	25	56.90398	.00000	.00000			60	В	00001	.00000	.00000	
	24	26	56,90434	.00000	.00000			61	30	1.24153	.00000	.00000	
	25	27	113.33180	,00000	00001			62	9	01993	.00000	.00000	
	26	-3	113.33180	-99.25980	.00059			63	10	.00002	.00000	.00000	
	27	41	-36.48837	.00000	00001			64	31	1.15039	.00000	.00000	
	28	42	-36.11110	.00000	.00001	i		65	11	22314	.00000	.00000	
	29	43	-11.69151	.00000	.00000			66	12	00003	.00000	.00000	
	30	44	11.58775	.00000	,00000			67	32	. 99487	.00000	.00000	
	31	45	-1.29205	.00000	.00000			68	13	30134	.00000	.00000	
	32	46	-1,26231	.00000	.00000			69	14	00003	.00000	.00000	
	33	47	3.78490	.00000	.00000			70	33	1.06042	.00000	-00000	
	34	48	3.77590	.00000	- 00000			71	15	33746	.00000	.0000C	
	35	49	6.21127	.00000	.00000			72	16	.00001	.00000	.00000	
	36	50	6.18489	.00000	.00000			73	34	1.15678	.00000	.00000	
	37	51	7,00390	.00000	.00000			74	17	-,27054	,00000	.00000	

·	- , . <u></u> .,	FÚ	ERZAS FINALES	EN EL ORIGEN		·		₽U	erzas finales	EN EL ORIGEN		
	BARRA	ORIGEN	FZA.AXIAL	FZA . CORTANTE	моменто		BARRA	ORIGEN	FZA. AXIAL	FZA. CORTANTE	MOMENTO	
	75	18	00005	.00000	.00000		113	32	1.63130	.00000	.00000	
	76	35	1.1673B	.00000	.00000	į.	114	13	. 93667	.00000	.00000	
	77	19	51355	.00000	.00000	i i	115	15	.64019	.00000	.00000	
I	7B	20	.00000	.00000	00001	j.	116	33	.01269	.00000	.00000	
	79	36	1.17764	.00000	.00001		117	33	-31986	.00000	.00000	
	90	21	55176	.00000	00005		110	15	24310	.00000	.00000	
	91	60	3.98787	.00000	.00018		119	17	1.85223	.00000	.00000	
	82	22	.00006	.00000	.00001		120	34	1.18283	. 00000	.00000	
	83	37	1.20047	.00000	-00002		121	34	90554	.00000	.00000	
	84	23	14882	,00000	.00000		122	17	-1.53841	.00000	.00000	
i	85	24	.00000	.00000	.00001		123	19	2.97095	.00000	.00000	
i	86	38	1.19976	.00000	.00001	1	124	35	2.28981	.00000	.00000	
	87	25	56776	.00000	.00001		125	35	-2.22641	.00000	.00000	
	В8	26	.00002	.00000	.00000		126	19	-2.39259	.00000	.00000	
	89	39	1,20029	.00000	.00000	Į.	127	21	4.93130	.00000	.00005	
	90	27	6.03451	.00000	.00001	1	128	36	4.21305	.00000	,00000	
	91	3	99.25979	.00000	00001	1	129	36	-3.13911	.00000	00002	
	92	40	1.19983	.00000	.00000		130	21	-5.70105	.00000	00003	
	93	4	-34.43676	.00000	00003		131	23	9.04572	.00000	.00000	
	94	ì	-45.32585	.00000	.00001		132	37	7.49247	.00000	00003	
	95	5	-21.16199	,00000	.000001	ł	133	37	-7.2545B	.00000	.00000	
	96	23	35.23086	.00000	00000	1	133	23	-9.70278	.00000	.00000	
i	96 97	28	18.57985				135	25 25	13.75195	.00000	.00000	
	98	5	12.56287	, 00000 0000 0 .	.00000		136	38	11.41617	.00000	00001	
	99	7	-8.46395	.00000	.00000		137	38	-12.00340	,00000	.00000	
1											.00000	
	100	29	-11.22733	.00000	.00000		138	25 27	-14.51431	.00000 00000.	.00000	
	101	29	9.26634	.00000	.00000	1	139		22.73091	.00000	,00000	
	102	7	6.77972	.00000	.00000		140	39	18.85046			
	103	9	-4.27325	.00000	.00000		141	39	-18.45734	.00000	.00000	
	104	30	-5.46219	-00000	.00000		142	27	-40.97055	.00000	.00000	
	105	30	5.40094	.00000	-00000		143	4	-110.03810	,00000	00031	
	106	. 9	4.04676	.00000	.00000	İ	144	40	12.51047	.00000	00001	
į.	107	11	-2-05853	.00000	.00000	ļ	145	40	77.57980	.00000	.00001 -8502.70100	
1	108	31	-2.67987	.00000	.00000	1	146	72	69.72502	-18,50647		
	109	31	3.18014	.00000	- CD000	1	147	71	13.99386	-14.13117	3819.95800	
	110	11	2.25739	.00000	.00000		148	74	44.85399	14.13043	2067.49900	
	111	13	+.59441	.00000	.00000		149	70	44.85407		-10084.63000	
1	112	32	-1.22382	.00000	- 00000	ì	150	71	-5.80496	21.01254	3592.90800	
L							151	73	64.16589	-14.36564	-8185.04800	

FUERZAS DE EMPOTRAMIENTO EN EL DESTINO

	FUE	RZAS FINALES I	N EL DESTINO				FUE	RZAS FINALES E	N EL DESTINO	
BARRA	DESTINO	FZA. AXIAL	FZA. CORTANTE	MOMENTO		BARRA	DESTINO	FZA. AXIAL	FZA. CORTANTE	ноненто
1	2	-52.99754	-57.49704	.00215		15	18	-8.83460	.00000	.00000
2	5	-52.99762	.00000	.00001	i	16	19	-8.03467	.00000	.00000
3	6	-25.60580	.00000	.00000	ŀ	17	20	-11.57906	.00000	00002
4	7	-25.60580	-00000	.00000		18	21	-11.57929	.00000	.00008
5	8	-15.00817	.00000	.00000		19	22	-10.49735	.00000	00002
6	9	-15.00812	.00000	.00000		20	23	-18.49735	.00000	.00000
7	10	-9.89487	.00000	.00000		21	24	-33.29770	.00000	00001
8	11	-9.89496	.00000	.00000		22	2.5	-33.29776	.00000	.00000
9	12	-7.46888	. 00000	.00000	į	23	26	-56.90398	.00000	00001
10	13	-7.46BBB	.00000	.00000	i	24	27	-56.90434	.00000	.00000
11	14	-6.65996	.00000	.00000		25	3	-113.33180	.00000	00002
12	15	-6.65998	.00000	.00000		26	4	-113.33180	99.25980-1488	BB.96000
13	16	-7.11546	.00000	.00000		27	42	36.48837	.00000	00001
14	17	-7.11556	.00000	.0000		28	43	36,11110	.00000	.00000

		FUEF	RZAS FINALES É	N EL DESTINO		<u></u>			FUE	RZAS FINALES	EN EL DESTINO
	BARRA	DESTINO	FZA. AXIAL	FZA. CORTANTE	MOMENTO		A.	ARRA	DESTINO	FZA. AXIAL	FZA. CORTANTE MOMENTO
1	29	44	11.69151	.00000	.00000	ļ		80	60	.55176	.0000000005
	30 31	45	11.58775	- 00000	.00000			94	28	45.32585	.00000, 00000.
ļ	32	46	1.29205	.00000	.00000	1		95	28	21.16199	.00000 .00000
<u> </u>	33	47 48	1.28231	.00000	.00000			96	91	-35.23086	.0000000001
i	34		-3.78490	.00000	.00000	ŀ		97	43	-18.57985	.00000 .00000
	35	49 50	-3.77590	.00000	.00000			98	29	-12.56287	.00000 .00000
	36	51	-6.21127	.00000	.00000			99	29	8.46395	.00000 000000
	37	52	-6.18489 -7.00390	.00000	.00000			100	43	11.22733	.00000 .00000
}	38	53	-6.99315	.00000	.00000			101	45	-9.26634	.00000 .00000
	39	54	-6.53302	.00000	.00000			102	30	-6.77972	.00000 .00000
	40	55	-6.53155	.00000	.00000			103	30	4.27325	.00000 .00000.
1	41	56	-4.92929	.00000	.00000			104	45	5.46219	.00000 .00000
į	42	57	-4.93005	.00000	.00000			105	47	5.40094	.00000. 00000.
	43	5B	-1.68224	.00000	,00000 ,00002			106	31	-4.04676	ceaco. 000co.
i	44	59	-1.68404		.00032			107	31	2.05853	.00000 .00000
	45	61	5.44365		.00038			108	47	2.87987	00000 00000-
}	46	62	5.44434	.00200	.00000			109	49	-3.18014	.00000 .00000
	47	63	20.17706		00001			110	32	-2.25739	.00000 .00000
	48	64	20.17711	.00000	.00000			111	32 49	.59441	.00000 .00000
	49	€5	45.95175	.00000	.00001			112 113		1.22382	.00000, 000000.
	50 51	66	45.95200	.00000	.00000			114	51	-1.63130	.00000 .00000
	51	67	73.51705		.00001			115	33 33	93667 64019	.00000, 000000
	52	68	73.51674	.00000	.00001			116	51		C0000. 000CD.
	53	41	20.18320	.00000	.00001			117	53	01269 31986	60000 00000. 00000 00000
	54	28	-57.49693	.00000	.00000			118	31	.24310	
	55	42	-2.34204	.00000	.00000			119	34	-1.85223	00000 00000
1	56	43	-2.38205		.00001			120	53	-1.18283	00000, 00000. C0000, 00000.
	57	29	00001	.00000	.00000			121	55	. 90554	
	58	44	-1.57259	.00000	,00000			122	35	1,53841	coopg. 00000. coopg. 00000.
	59	45	54622	.00000	.00000			123	35	-2.97095	
	60	30	.00001	.00000	.00000			124	55	-2.28981	00000. 00000. 00000. 000000.
	61	46	-1.24153	.00000	.00000			125	57	2.22641	.00000 .00000
	62	47	.01993	.00000	.00000			126	36	2.39259	00000.
	63	31	00002	.00000	.00000			127	36	-4.93130	.00000 .00002
	64	48	-1.15039	.00000	.00000			128	57	-4.21305	00000.
	65	49	.22314	.00000	.00000			129	59	3.13911	.0000000005
	66	32	.00003	.00000	.00000			130	37	5.70185	.0000000002
	67	50	99467	.00000	.00000			131	37	- 9-04572	.0000 .00001
	€8	51	.33134	.00000	.00000			132	60	-7.49247	.00000 .00005
i	69	33	.00003	.00000	.00000			133	62	7.25458	.00000 .00000
1	70	52	-1.06042	.00000	.00000			134	38	9.70278	.0000000001
1	71 72	53 34	.33746	.00000	.00000			135	38	-13.75195	.00000. 00000.
	73	34 54	00001	.00000	.00000			136	65	-11.41617	.00000 .00000
1	74	55	-1.15678	.00000	.00000			137	64	12.00340	.00000. 00000.
	75	35	.27054 .00005	.00000	.00000			138	39	14.51431	.0000000001
	76	56	-1.16738	.00000	.00000			139	39	-22.73091	.00000. 000003.
	77	57	-1.16738	.00000 00000	.00000	1		140	64	-18.85046	.00000 .00000
	78	36	.00000	.00000	.00000			141	66	18.45734	.00000 .00000
1	79	58	-1.17764	.00000	.00000			142	40	40.97055	.00000 .00000
	81	59	-3.99787		.00001			143	40	110.03810	.00000. 00000.
	B2	37	00006	.00000 .00000	.00013			144	66	-12.51047	00000. 00000.
1	83	61	-1.20047	.00000	.00001			145	68	-77.57980	.0000 .00001
1	84	62	.14882	.00000	.00002	ļ		146	11	-69.72502	13.50647 -7412.86100
-	85	38	.00000	.00000	.00000]		147	1	-13.99386	14.13117 -8624.55600
	86	63	-1.19976	.00000	.00001			148	70	-44.35399	-14.13043 10084.67000
ŀ	87	64	.56776	.00000	.00001			149	4	-44.85407	-14.13048 14888.97000
)	89	39	00002	.00000	.00000			150	69	5.30496	20.23746 -3157.87400
	89	65	-1.20029	.00000	.00000			151	6 9	-64.16589	14.36564 3157,87400
	90	66	-6.03451	.00000	.00001						
	91	40	-99.25979	.00000	.00001						
	92	67	-1.19983	.00000	.00000]					
	93	68	34.43676	.00000	.00032						
						_					

DESPLAZAMIENTOS DE LOS NUDOS

		HENTOS EN LOS NUDO				RIENTOS EN LOS NUDO	
NUDO	DESPL. HORIZ.	DESPL. VERT.	ROTACION	NUDO	DESPL. HORIZ.	DESPL. VERT.	ROTACION
1	79070	05973	00127	41	26699	04259	+.00366
2.	80331	45501	00332	42	04341	49133	00442
3	-1.95739	-1.29137	.00946	43	.32065	-1.41162	00624
4	-1,93437	04967	.00591	44	.65082	-2.36948	00651
5	07890	-1.38497	00637	45	.97888	-3.43971	-,00696
6	95195	-2.35881	00650	46	1.24700	-4.48261	00689
7	-1.02499	-3.43124	00696	47	1.48500	-5.54698	00703
В	-1.06780	-4.47183	-,00692	48	1.67284	-6.61315	00697
9	-1.11061	-5.5473€	00703	49	1.84330	-7.66058	00697
10	-1.13684	-6.60148	00700	50	1.98084	-8.72173	00692
11	-1.16707	-7.66540	00699	51	2.01942	-9.74922	00689
12	-1.19837	-5.71042	00695	52	2.15010	-10.79707	00682
1.3	-1.20968	-9.15630	00690	53	2.19699	-11.80093	00679
14	-1.22867	-10.78424	00684	54	2.21266	-12.83092	00672
15	-1.24767	-11.80925	00679	55	2.22023	-13.01395	00670
16	-1.26797	-12.81653	00672	56	2.18597	-14.82353	00651
17	-1.28827	-13.92074	00667	57	2.14613	-15.79011	00715
18	-1.31347	-14.80895	00674	58	2.07491	-16.78598	00345
19	-1.33867	-15.B0282	00612	59	1.99111	-17.77309	02308
20	-1.37170	-16.77167	00958	60	5.92319	-17,73126	.00317
21	-1.40473	-17.73053	.00905	61	-5.59573	-15.13369	.01891
22	-1.4575C	-15.12631	.01799	62	-5.27454	-12,58835	.01662
23	-1.51026	-12.59004	.01674	63	-4.90819	-10.02199	.01614
24	-1.60525	-10.01567	.01608	64	-4.56362	-7.63716	.01542
25	-1.70023	-7.64264	.01536	65	-4.22369	-5.35844	.01394
26	-1.78139	-5.35317	.01415	1 66	-3.91238	-3.32232	.01345
27	-1.86255	-3.27463	.01363	67	-3.56865	-1.34013	.01123
28	43396	48990	00436	63	-3.30392	02042	.00966
29	15273	-2.35881	005B5	69	84758	03976	.00422
30	.09036	-4.47183	00647	70	56387	03560	.00265
31	.27102	-6.60148	~.00671	71	90912	05534	.00036
32	.39320	-8.71042	00680	72	.00000	.00000	.00000
33	. 45755	-10.78424	00692	73	.00000	.00000	.00000
34	.47162	-12.81653	G06B4	74	.00000	.00000	. 00000
35	.43549	-14.80895	00689	1			
36	. 32854	-16.77167	00690				
37	-3.52782	-15.12631	.01769	1			
36	-3.25599	-10.01567	.01554				
39	-3.01075	-5.35317	.01372	1			
40	-2.74042	-1.33955	.01136				

REACCIONES EN LOS APOYOS

NUCO	REACC, HORIZ.	REACC. VERT.	MOMENTO
72	18.50647	69.72502	-8502.70100
73	14.36564	64.16589	-8185.84800
74	-14.13043	44.85399	2067.49900

FIN DEL PROGRAMA

Análisis por Sismo

La estructura que vamos a calcular se considera por Reglamento como del tipo "A", es decir de Riesgo Mayor (Area de espectáculos) y esta ubicado en La Zona tipo il.

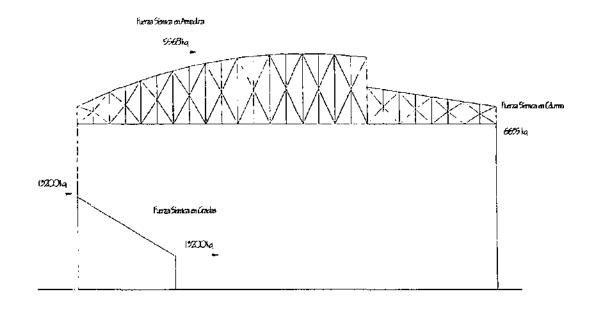
Su coeficiente Sísmico es Cs = 0.32 Factor de Comportamiento Sísmico Q = 2

Carga de Diseño: Wps = $CM + CV_R = 38 + 20 = 58 \text{ kg/m}^2$

Peso sobre la Armadura = PA = Wps (Ar)

$$P_A = 58(400) = 23200 \text{ kg}$$

Fuerza Sísmica sobre la Armadura:


$$F_5 = P_A \frac{C_5}{Q} = (1.5)$$

 $F_5 = 23200 \left(\frac{O32}{2}\right) .5 = 5568 \text{ kg}$

Peso sonbre las gradas

$$W = 1100 (10) = 11000 \text{ kg/m}$$

 $P_1 = 1100 (100) = 110000 \text{ kg}$

Fuerza Sismica sobre las Gradas.

$$F_5 = 110000 \frac{032}{2} | .5 = 26400 \text{ kg}$$

 $F_5 = 27648 \frac{032}{2} | .5 = 6635 \text{ kg}$

Corrida estructural de Marco Transversal, Claro de 40m

CONDICION: SISMO EN X (Sismo en X)

COORDENADAS EN LOS NUDOS

	COORD	ENADAS DE LA	OS NUDOS			· · · · · · · · · · · · · · · · · · ·	COO	RDENADAS DE	LOC MINOS	· · · · · · · · · · · · · · · · · · ·	·
ODUN	COORD. X	COORD, Y	DIREC. X	DIREC. Y	DIREC. Z	DOUN	COORD. X		DIREC. X	DIREC. Y	DIREC. Z
)	.000	.000	LIBRE	LIBRE	LIBRE	38	3150.000	108,000	LIBRE	LIBRE	LIBRE
2	150.000	.000	LIBRE	LIBRE	LIBRE	39	3450.000	96.000	I.IBRE	LIBRE	LIBRE
3	3750.000	. 000	LIBRE	· LIBRE	LIBAE	40	3750.000	72.000	LIBRE	LIBRE	LIERE
4	3900.000	.000	LIBRE	LIBRE	LIBRE	41	.003	126.000	LIBRE	LIBRE	LIBRE
5	300,000	.000	LIBRE	LIBRE	LIBRE	42	150.000	181.000	LIBRE	LIBRE	LIBRE
6	450.000	.000	LIBRE	LIERE	LIBRE	43	300.000	231.000	LIURE	LIBRE	LIERE
7	600.00C	.000	LIBRE	LIERE	LIBRE	44	450,000	277.000	LIBRE	LIBRE	LIBRE
8	750.00C	.000	LIBRE	LIBRE	LIBRE	45	600.000	318.000	LIBRE	LIBRE	LIERE
9	900.000	.000	LIBRE	LIBRE	LIBRÉ	46	750.000	356.000	LIBRE	LIBRE	LIBRE
10	1050.000	.000	LIBRE	LIERE	LIBRE	47	900.000	389.000	LIBRE	LIBRE	
11	1200.000	.000	LIBRE	LIBRE	LIBRE	48	1050,000	417.000	LIBRE		LIERE LIBRE
12	1350.000	.000	LIBRE	LIBRE	LIBRE	49	1200.000	443.000	LIBRE		
13	1500.000	.000	LIBRE	LIBRE	LIBRE	50	1350.000	465.000	LIBRE	LIBRE	LIERE
14	1650.000	.000	LIBRE	LIBRE	LIBRE	51	1500.000	482.000	LIBRE	LIBRE	LIBRE
15	1800.000	.000	LIBRE	LIBRE	LIBRÉ	52	1650.000	495.000	LIBRE		LIBRE
16	1950.000	.000	LIBRE	LIBRE	LIBRE	53	1800.000	505.000	I.T GRE		LIBRE
17	2100.000	.000	LIBRE	LIBRE	LIBRE	54	1950.000	510.000			LIBRE
18	2250.000	.000	LIBRE	LIBRE	LIBRE	55	2100.000	514.000	LIBRE		LIBRE
19	2400.000	.000	LIBRE	LIBRE	LIBRE	56	2250.000		LIBRE	LIBRE	LIBRE
20	2550.000	.000	LIBRE	LIBRE	LIBRE	57	2400.000	511.000 507.000	LIBRE		LIBRE
21	2700.000	-000	LIBRE	LIBRE	LIBRE	58	2550.000	497.000	LIBRE		LIERE
22	2850.000	.000	LIBRE	LIBRE	LIBRE	59	2700.000	485.000	LIBRE		LIBRE
23	3000.000	.000	LIBRE	LIBRE	LIBRE	60	2700.000	270.000	LIBRE		LIBRE
24	3150.000	.000	LIBRE	LIBRE	LIBRE	61	2850,000		LIBRE	LIBRE	LIBRE
25	3300.000	-000	LIBRE	LIBRE	LIBRE	62	3000.000	252.000	LIGRE	LIBRE	LIBRE
26	3450.000	.000	LIBRE	LIBRE	LIBRE	63	3150.000	234.000	LIBRE		LIBRE
27	3600.000	.000	LIBRE	LIBRE	LIBRE	64	3300.000	216,000	LIBRE		LIBRE
28	150,000	90.000	LIBRE	LIBRE	LIBRE	65	3450.000	198.000	LIBRE	-	LIERE
29	450.000	138.000	LIBRE	LIBRE	LIBRE	66		180.000	LIBRE		LIBRE
30	750.000	178.000	LIBRE	LIBRE	LIBRE		3600.000	162.000	LIBRE		LIBRE
31	1050.000	209.000	LIBRE	LIBRE	LIBRE	67	3750.000	144.000	LIBRE	LIBRE	LIBRE
32	1350.000	232,000	LIBRE	LIBRE	LIBRE	68	3900.000	126.000	LIBRE		LIBRE
33	1650.000	247.000	LIBRE	LIBRE	LIBRE	69	1000.000	850.000	LIBRE		LIBRE
34	1950.000	255-000	LIBRE	LIBRE	LIBRE	70	3900.000	-340.000	LIARE		LIERE
35	2250.000	255.000	LIBRE	LIBRE	LIBRE	71	.000	-340.000	LIBRE	LIBRE	LIBRE
36	2550.000	248.000	LIBRE	LIBRE	LIBRE	72	.000	-1200.000	APOYO		APOYO
37	2850.000	125.000	LIBRE	LIBRE		73	1000.000	-1200.000	APOY0		VSOAO
	2000.000	120.000	LIBRE	PIBKE	LIBRE	74	3900.000	-1200.000	APOY0	APOYO	APOYO

GEOMETRÍA DE LAS BARRAS

	SEOMETRIA DE LAS BARRAS		· ·	GEO	ETRIA DE LAS RARRAS	
BARRA AREA 1 300.00000	MOM, INRCIA	MOD. ELAST.	BAR	KA AREA	MOM. INRCIA	MOD. ELAST.
2 50.08000	150000.00000	2100.00000	13	25.04000	.00010	2100.00000
	.00010	2100.00000	14	25.04000	.00010	2100.00000
3 25.04000	.00010	2100.00000	15	25.04000	.00010	2100.00000
4 25.04000	.00010	2100.00000	16	25.04000	.00010	2100.00000
5 25.04000	.00010	2100.00000	17	25.04000	.00010	2100.00000
6 25.04000	-00010	2100.00000	18	25.04000	.00010	2100.00000
7 25.04000	.00010	2100.00000	19	25.04000	.00010	2100.00000
8 25.34003	.00010	2100.00000	20	25.04000	.00010	2100.00000
9 25-04000	.00010	2100.00000	21	25.04000	.00010	2100.00000
10 25.04000	.00010	2100.00000	22	25.04000	.00010	2100.00000
11 25.04000	.00010	2100.00000	23	50.08000	.00010	2100.00000
12 25.04000	.00010	2100.00000	24	50.08000	.00010	2100.00000

	GEOMETRIA DE LAS BARRAS				ECMETRIA DE LAS BARRAS	
BARRA AREA		MCD. ELAST	BAR	ra area	MOM. INRCIA	MOD. ELAST
25 85.3600	0 .00010	2100.00000	80	0.26000	200.0	
26 300,0000		2100.00000	90	9.76000 9.76000	.00010	2100.00000
27 50.0900	0 .00010	2100.00000	91	70.64000	.00010	2100.00000
28 50.0800	0.00010	2100.00000	92	70.64000	.00010	2100.00000
29 25.0400	0.00010	2100.00000	93	70.64000	.00010	2100.00000 2100.00000
30 25.0400	0.00010	2100.00000	94	44.64000	.00010	2100.00000
31 25.0400		2100.00000	95	22.32000	.00010	2100.00000
32 25.0400		2100.00000	96	44.64000	.00010	2100.00000
33 25.0400		2100.00000	97	22.32000	.00010	2100.00000
34 25.0400		2100.00000	98	9.76000	.00010	2100.00000
35 25.0400		2100.00000	99	9.76000	.00010	2100.00000
36 25,0400		2100.00000	100	9.76000	.00010	2100.00000
37 25.0400		2100.00000	101	9.76000	.00010	2100.00000
38 25.0400 39 25.0400		2100.00000	102	9.76000	.00010	2100.00000
		2100.00000	103	9.76000	.00010	2100.00000
40 25.0400 41 25.0400		2100.00000	104	9.76000	.00010	2100.00000
		2100.00000	105	9.76000	.00010	2100.00000
42 25.0400 43 25.0400		2100.00000	106	9.76000	.00010	2100.00000
44 25.0400		2100.00000	107	9.76000	.00010	2100.00000
45 25.0400		2100.00000	109	9.76000	.00010	2100.00000
46 25.0400		2100.00000	109	9.76000	.00010	2100.00000
47 25.0400		2100.00000 2100.00000	110	9.76000	.00010	2100.00000
48 25.0400		2100.00000	111	9.76000	.00010	2100.00000
49 50.0800		2100.00000	112	9.76000	.00010	2100.00000
50 50.0800		2100.00000	113	9.76000	.00010	2100.00000
51 50.0800		2100.00000	115	9.76000	-00010	2100.00000
52 50.0800		2100.00000	116	9.76000 9.76000	-00010	2100.00000
53 70.6400		2100.00000	117	9.76000	.00010	2100.00000
54 70.6400		2100.00000	118	9.76000	.00010	2100.00000
55 70.6400		2100.00000	1119	9.76000	.00010	2100.00000 2100.00000
56 9.7600		2100.00000	120	9.76000	.00010	2100.00000
57 9.7600		2100.00000	121	9.76000	- 30013	2100.00000
58 9.7600		2100.00000	122	9.76000	-00010	2100.00000
59 9.7600		2100.00000	123	9.76000	.00010	2100.00000
60 9.7600		2100.00000	124	9.76000	.00010	2100.00000
61 9.7600 62 9.7600		2100.00000	125	9.76000	.00010	2100.00000
62 9.7600 63 9.7600		2100.00000	126	9.76000	.00010	2100.00000
64 9.7600		2100.00000	127	9.76000	.00010	2100.00000
65 9.7600		2100.00000	128	9.76000	.00010	2100.00000
66 9.7600		2100.00000	129	9.76000	.00010	2100.00000
67 9.7600		2100.00000 2100.00000	130	9.76000	-00010	2100.00000
68 9.7600		2100.00000	131	9.76000	-00010	2100.00000
69 9.7600		2100.00000	132 133	9.76000	.00010	2100.00000
70 9.7600		2100.00000	133	9.76000 9.76000	.00010	2100.00000
71 9.7600		2100.00000	135	9.76000	.00010	2100.00000
72 9.7600		2100.00000	133	9.76000	.00010	2100.00000
73 9.7600		2100.00000	137	9.76000	-00010	2100.00000
74 9.7600		2100.00000	138	22.32000	.00010 .00010	2100.00000
75 9.7600		2100.00000	139	22.32000	.00010	2100.00000 2100.00000
76 9.7600	01000.	2100.00000	140	22.32000	.00010	2100.00000
77 9.7600		2100.00000	141	22.32000	.00010	2100.00000
78 9.7600		2100.00000	142	70.64000	.00010	2100.00000
79 9.7600		2100.00000	143	70.64000	.00010	2100.00300
81 9.7600		2100.00000	144	70.64000	.00010	2100.00000
87 9.7600		2100.00000	145	70.64000	.00010	2100.00000
83 9.7600		2100.00000	146	516.00000	619354.00000	2100.00000
84 9.7600		2100.00000	147	516.00000	619354.00000	2100.00000
65 9.7600		2100.00000	148	516.00000	619354.00000	2100.00000
86 9.7600		2100.00000	149	516.00000	619354.00000	2100.00000
87 9.7600 88 9.7600		2100.00000	150	65.00000	8602,00000	2100.00000
		2100.00000	151	269.00000	224014.00000	2100.00000
	0 .00010	2100.00000				•

CARGAS EN LOS NUDOS

	NUDO C 41 68	CARGAS ARGA EN X 5.568 6.635	EN LOS NUDOS CARGA EN Y .000 .000	MOMENTO EN 2 .000 .000	งบอง 69 71	CARGAS EN CARGA EN X 13.200 13.200	LOS NUDOS CARGA EN Y .000 .000	MOMENTO EN Z .COO .COO	
_									1

FUERZAS FINALES EN EL ORIGEN

	BARRA	OR1GE:	N FZA.AXIAL	FZA . CORTAN	ITE MOMENTO		(200	D. 07.10	ALL DON LOVE		
				Tan.comm.	TE HONENTO		BAJ	RA ORIG	EN FZA.AXIAL	FZA CORTANTE	MOMENTO
	1	1	-18.90941	-15.55247	-2332.86900		55	28	49054	.00000	.00000
	2	2	-18.90941	.00000	.00002		56	5	97589	.00000	.00000
	3	5	-11.23067	. 20000	.00000	ŀ	57	6	.00000	-00000	.00000
	4	6	-11.23075	-00000	.00000	i	58	29	29909	.00000	.00000
	5	7	-B.13971	.00000	.00000	i	59	'n	26320	.00000	.00000
	6	8	-0.13973	.00000	. 00000		60	8	.00000	.00000	.00000
	7	y	-6.38486	.00000	.00000	i	61	30	20384	.00000	.00000
	В	10	-6.38470	.00000	.00000	j	62	9	-,12598	.00000	
	9	11	-5.19110	.00000	.00000	1	63	10	.00000		.00000
	10	12	-5.19124	.00000	.00000		64	31	05936	.00000 .00000	.00000
	11	13	-4.30623	.00000	.00000		65	11	02598		.00000
	12	14	4.30606	.00000	. 00000	ł	66	12	.00000	.00000	.00000
	13	15	-3.57295	.00000	.00000	1	67	32	10922	.00000	.00000
	14	16	-3.57289	.00000	.00000	+	69			-00000	.00000
	15	17	-2.89928	.00000	.00000		69	13 14	.01831	.00000	.00000
	16	18	-2.89950	.00000	.00000				.00000	.00000	.00000
	17	19	-2.28088	.00000	.00000		70	33	04611	.00000	.00000
	18	20	2.28094	-00000	.00000		71	15	.03932	.00000	.00000
	19	21	-1.12565	.00000	.00000		72	16	.00000	.00000	.00000
	20	22	-1.12551	.00000			73	34	01117	.00000	.00000
	21	23	.58420		.00000		74	17	.06203	.00000	.00000
	22	24		.00000	-00000		75	18	.00000	.00000	.00000
	23	25	.58395	.00000	.00000	i	76	35	.00682	.00000	.00000
	24	26	2.85765	.00000	.00000		77	19	.04366	.00000	.00000
	25	27	2.85800	.00000	.00000		78	20	.00001	.00000	.00000
			7.77914	.00000	.00000		79	36	00454	.00000	.00000
	26	3	7.77910	-3.41596	00176	1	80	21	-12648	.00000	.00001
	27	41	15.67097	.00000	.00000	}	81	60	.56416	.00000	00002
	29	42	15.50877	.00000	.00000	1	82	22	.00000	.00000	.00000
	29	43	9.38465	.00000	.00000	1	93	37	00007	.00000	.00000
	30	11	9.30130	.00000	. 00000		84	23	.25789	.00000	.00000
	31	45	6.30895	.00000	.00000		28	24	.00000	.00000	.00000
	32	46	6.26192	.00000	.00000		86	38	.00009	.00000	.00000
	33	47	4.52900	.00000	. 30000	}	67	25	.20044	.00000	.00000
	34	4 B	4.51853	.00000	.00000		88	26	.00000	.00000	.00000
	35	49	3,31212	.00000	.00000		89	39	00012	.00000	.00000
	36	50	3.29802	.00000	-00000		90	27	.80414	.00000	.00000
	37	51	2.41312	.00000	.00000		91	3	3.41588	.00000	.00000
	38	52	2.40927	.00000	.00000		92	40	.00029	.00000	.00000
	39	53	1.67556	.00000	.00000	ļ	93	4	81075	.00000	.00000
	40	54	1.67530	.00000	.00000	ŀ	94	1	13.29283	.00000	.00000
	41	55	1.02244	.00000	.00000	į	95	5	6.16880	.00000	.00000
	42	56	1.02254	.00000	.00000	I	96	28	-9.40465	.00000	
	43	51	-34054	.00000	.00000	I	97	28	-4.16734		.00000
	44	58	.34083	.00000	.00000]	98	5	-3.24632	.00000	-00000
	45	60	52465	.00000	.00001	!	99	7	2.53566	.00000	.00000
	45	61	.52441	.00000	.00000	!	100		3.18333	.00000	.00000
	47	62	-2.17084	.00000	.00000	1	100			.00000	.00000
	48	63	-2.17092	.00000	.00000			29 7	-2.42051	.00000	.00000
	49	64	-4.59698	.00000	.00000	1	102		-1.90091	.00000	. 00000
	50	65	-4.59708	.00000	. 00000	1	103		1.54656	.00000	. 00000
	51	66	-6,71316	.00000			104	30	1.78752	.00000	.00000
	52	67	-6.71332		.00000		105		-1.5787B	.00000	.00000
	53	ì		.00000	.00000		106		-1.30066	.00000	.00000
	54	2	7.58949	.00000	00001		107	11	1.09198	.00000	.00000
L	J4		15.55244	.00000	.00000	<u>-</u>	108	31	1.16938	.00000	.00000

	FUE	RZAS FINALES	EN EL ORIGEN		FUERZAS FINALES EN EL ORIGEN					
BARRA 109	ORIGEN 31	FZA.AXIAL	FZA.CORTANTE	MCMENTO	BARRA	ORIGEN	FZA.AXIAL	FZA.CORTANTE	MOMENTO	
110		~1.19795	, 30000	.00000	i					
	11	-1.02549	.00000	.00000	131	23	.81457	.00000	.00000	
311	13	.83009	.00000	.00000	132	37	,72211	.00000	.00000	
112	32	. 91214	.00000	.00000	133	37	-1.13316	.00000	.00000	
113	32	93096	.00000	.00000	134	23	-1.33797	.00000	.00000	
114	13	83700	.00000	.00000	135	25	1.08274	.00000	.00000	
115	15	-69489	.00000	.00000	136	38	. 93354	.00000	.00000	
116	33	.73192	.00000	.00000	137	38	-1.45739	.00000	.00000	
117	33	79847	.00000	.00000	138	25	-1,62703	.00000	.00000	
118	15	73467	.00000	.00000	139	27	1.68239	.00000		
119	17	.62824	.00000	.00000	140	39	1.42820		.00000	
120	34	.63727	.00000	.00000.	141	39	-1.86224	.00000	.00000	
121	34	72461	.00000	.00000	142	27		.00000	.00000	
122	17	70019	.00000	.00000	143	4	-3.85858	.00000	.00000	
123	19	.57576	.00000	.00000	144	40	-3.42268	.00000	.00000	
124	35	.57770	. 00000	. 0000a	145	40	,49358	.00000	.00000	
125	35	69876	.00000	.00000	145	40	.03193	.00000	.00000	
126	19	63098	.00000	.00000	147	72	-9.12538	5.96701	5139.71100	
127	21	.65403	.00000	00001		71	-1.12386	7.51154	221.05920	
328	36	.64870	.00000	.00000	148	74	1.12418	4.69306	5119.31100	
129	36	63562	.00000	.00000	149	70	1.12408	4.69303	1083.25300	
130	21	-1-06672	.00000		150	71	16,77022	42925	-212.98200	
	 			.00000	151	73	8.00154	27.94448	9511,69800	

					FUERZ	AS FINALES	EN EL DESTIN	10			
\	BARRA	DESTINO	FZA. AXIAL	FZA. CORTA	NIE MOMENTO	<u> </u>	BARRA	DESTINO	FZA. AXIAL	FZA. CORTANTE	MOMENTO
1	1	2	18.90941	15.55247	00130		35	50	-3.31212	.00000	.00000
	3	5	18. 9 0975	.00000	.00001	1	36	51	-3.29802	,00000	.00000
	3	6	11.23067	.00000	.00000		37	52	-2.41312	.00000	.00000
	4	7	11,23075	.00000	.00000		38	53	-2.40927	.00000	.00000
	5	9	B.13971	.00000	.00000		39	54	-1.67556	.00000	.00000
!	6	9	0.13973	.00000	.00000		40	55	-1.67530	.00000	.00000
i	7	10	6.36486	. 00000	. 00000		41	56	-1.02244	.00000	.00000
	В	11	6.38470	.00000	.00000	1	42	57	1.02254	.00000	.00000
	9	12	5.19110	.00000	.00000	i	43	58	34054	,00000	.00000
	10	13	5.19124	.00000	.00000		44	59	34083	.00000	.00000
	11	14	4.30623	- 00000	.00000		45	61	.52465	.00000	.00000
	12	15	4.30506	.00000	.00000		46	5 2	.52441	.00000	.00000
)	13	16	3.57295	.00000	.00000		47	63	2.17084	.00000	
	14	17	3.57289	.00000	.00000	- 1	48	64	2.17092	.00000	.00000
	15	18	2.89928	.00000	.00000		49	65	4.59698		.00000
	16	19	2.89950	.00000	.00000		50	66	4.5970B	.00000	.00000
	17	20	2.28088	.00000	.00000		51	67	6.71316	.00000	.00000
	18	21	2.28094	.00000	00001		52	68	6.71332		.00000
	19	22	1.12565	.00000	.00000		53	41	-7.58949	.00000	.00000
t	20	23	1.12551	.00000	.00000	1	54 54	28		.00000	.00000
İ	23	24	58420	.00000	.00000	1	55	42	15.55244	,00000	.00000
	22	25	58395	.00000	.00000		56		.49054	.00000	.00000
	23	26	-2.85865	.00000	.00000	i	57	43	.97589	.00000	.00000
	24	27	-2.B5800	.00000	.00000	ļ	58	29	.00000	.00000	.00000
1	25	3	-7.77914	.00000	.00000	:	59	44	.29909	.00000	.00000
	26	4	-7.77910		-512.39420	}	59 60	45	.26320	.00000	.00000
1	2 7	42	-15.67097	.00000	.00000			30	.00000	,00000	. 90000
	28	43	-15.50877	.00000	.00000		61	46	.20384	.00000	.00000
i	29	14	-9.38465	100000	.00000	ļ	62	47	.12598	.00000	.00000
1	30	45	-9.30130	.00000	.00000		63	31	.00000	.00000	.00000
	31	46	-6.30895	.00000	.00000	į	64	4.8	.05936	.00000	.00000
1	32	47	-6.26192	.00000		!	65	49	.02598	.00000	.00000
	33	48	-4.52900	.00000	.00000		56	32	.00000	.00000	.00000
	34	49	-4.51853	00000.	.00000		67	50	.10922	.00000	.00000
L		7.7	-4.31033	.00000	.00000		68	51	01831	.00000	.00000

	FUE	RZAS FINALES E	N EL DESTINO			FUE	RZAS FINALES F	N EL DESTINO	*.,.,
BARRA	DESTINO	FZA. AXIAL	FZA. CORTANTE	MCMENTO	BARRA	DESTINO	FZA. AXIAL	FZA. CORTANT	E MOMENTO
69	33	.00000	.00000	.00000	111	32	83009	.00000	.00000
70	52	.04811	.00000	.00000	112	49	91214		
71	53	03932	.00000	.00000	113			.00000	.00000
72	34	.00000	.00000	.00000		51	. 93096	.00000	.00000
73	54	.01117	.00000	.00000	114	33	.83700	.00000	.00000
74	55	06203	.00000	.00000	115	33	69489	.00000	.00000
75	35	.00000	.00000	.00000	116	51	73192	.00000	.00000
76	56	.00682	.00000	.00000	117	53	.79847	.00000	.00000
77	57	04366	.00000	.00000	118	34	. 73467	.00000	.00000
78	36	00001	.00000		119	34	62824	.00000	.00000
79	58	.00454		.00000	120	53	63727	.00000	.00000
80	60		.00000	.00000	121	55	.72461	.00000	.00000
61	59	12648	.00000	.00001	122	35	.70019	.00000	.00000
82	37	56416		00001	123	35	57576	.00000	.00000
82 83	-	.00000	.00000	.00000	124	55	57770	.00000	.00000
	61	.00007	.00000	.00000	125	57	. 69876	.00000	.00000
84	62	25789	-00000	.00000	126	36	. 6309B	.00000	.00000
B5	38	.00000	.00000	.00000	127	36	65403	.00000	.00000
86	63	00009	.00000	.00000	1 128	57	64878	.00000	.00000
87	64	20440	.00000	.00000	129	59	.63562	.00000	.00001
89	39	.00000	.00000	.00000	130	37	1.06672	.00000	.00000
89	65	.00012	.00000	.00000	131	37	81457	.00000	.00000
90	66	80414	.00000	.00000	132	60	72211	.00000	
91	40	-3.41588	.00000	.00000	133	62	1.13316	.00000	.00001
92	67	00029	.00000	.00000	134	38	1.33797		.00000
93	68	.81075	.00000	.00000	135			.00000	.00000
94	28	-13.29283	.00000	.00000		38	-1.08274	.00000	.00000
95	28	-6.16880	.00000	.00000	135	62	93356	.00000	.00000
96	41	9.40465	.00000	.00000	137	64	1.45739	.00000	.00000
97	43	4.16734	.00000	.00000	138	39	1.62703	.00000	.00000
98	29	3.24632	.00000	.00000	139	39	-1.68239	.00000	.00000
99	29	-2.53566	.00000		140	64	-1.42820	.00000	.00000
100	43	-3.18333		.00000	141	66	1.86224	.00000	.00000
101	45	2.42051	.00000	.00000	142	40	3.85858	.00000	.00000
102	30	1.90091	.00000	.00000	143	40	3,42268	. 30000	.00000
103			.00000	.00000	144	66	49358	.00000	.00000
103	30	-1.54658	.00000	.00000	j 145	68	03193	.00000	.00001
	45	-1.78752	.00000	.00000	146	71	9.12538	-5.96701	-8.08325
105	47	1.57678	.00000	.00000	147	J	1.12386		32.86900
106	31	1.30066	.00000	.00000	148	70	-1.12418	-4.69306 -10	
107	31	-1.09198	.00000	.00000	149	4	-1.12408		12.36840
108	47	-1.16930	.00000	.00000	150	6 9	-16.77022		68.86870
109	49	1,19795	.00000	.00000	151	69	-8.00154		68.87040
110	32	1.02549	.00000	.00000	1	• -	0.00404	21.37774	

DESPLAZAMIENTOS DE LOS NUDOS

NUDA	TOTAL TOTAL	DESPL. VERT.	ROTACION	NUDO	DESPL. HORIZ.	DESPL. VERT.	ROTACION
1	1.52562	.00759	-,00143				110 1110 2017
2	1.53012	15074	00087	38	1.98825	1.29583	00160
3	1.79658	.30534	00200	39	1.96268	.82610	00172
4	1.79473	00124	00213	40	1.93683	.30368	00191
5	1.55709	14479	.00010	41	1.60403	.00115	00078
6	1.58913	12145	.00027	42	1.63107	14100	00045
7	1.62116	03891	.00051	43	1.60409	13379	.00007
В	1.64438	.03855	.00059	44	1.57040	11942	.00029
9	1.66760	-14987	.00071	45	1.51876	03482	.00053
10	1.68582	.25866	.00078	46	1.48057	.04032	.00061
11	1.70403	.39038	.00085	47	1.43721	.15226	.00072
12	1.71884	.51985	.00090	48	1.40387	.25927	.00078
13	1.73365	. 66534	.00094	49	1.36777	.39094	.00086
14	1,74593	.80981	.00099	50	1.33903	.52110	.00000
15	1.75821	. 96485	.00102	51	1.31320	. 66491	.00095
16	1.76840	1.11889	.00105	52	1.29374	.80939	.00099
17	1.77860	1.28314	.00107	53	1.27654	.96389	.00102
18	1.78687	1.44516	.00111	54	1.26659	1.11903	.00105
19	1.79514	1.61483	.00106	55	1.25747	1,28158	.00107
20	1.80164	1.78348	.00149	56	1.25782	1,44525	.00109
21	1.80815	1.96038	-,00058	57	1.25940	1.61375	.00117
22	1.81136	1.73644	~. 00164	58	1.26974	1.78353	.00076
23	1.81457	1.51640	00145	59	1.28230	1.95279	.00292
24	1.81291	1.29583	00155	60	2.23311	1.95871	.00003
25	1.81124	1.06669	00158	61	2.20795	1.73644	00174
26	1.80716	.82610	00168	62	2.18271	1.51346	00144
27	1.80309	. 57231	00173	63	2.16289	1.29583	00154
28	1.58603	14130	00051	64	2.14143	1.06472	00158
29	1.57949	12145	.00007	65	2.11944	.82610	00170
30	1.56276	.03855	.00044	66	2.09488	.56596	00174
31	1.54402	. 25866	.00066	67	2.07312	.30368	00174
32	1.52923	. 51985	.00080	1 68	2-04632	00056	00203
33	1.52014	. BOBB1	.00000	69	.81395	00496	00203
34	1.51727	1.11889	-00097	70	1.07302	00089	00205
35	1.52309	1.44516	.00102	71	.97493	.00724	00205
36	1.53355	1.78348	.00105	72	.00000	.00000	.00000
37	2.00957	1.73644	00170	73	.00000	.00000	
				74	.00000	.00000	.00000 .00000

REACCIONES EN LOS APOYOS

NUDO	REACC. HORIZ.	REACC. VERT.	MOMENTO
72	-5.96701	-9.12538	5139.71100
73	-27.94448	8.00154	9511.69800
74	-4.69306	1.12418	5119.31100

FIN DEL PROGRAMA

Corrida estructural de Marco Longitudinal

CONDICION: SISMO EN Y

COORDENADAS EN LOS NUDOS

NUDO	CÓORD. X	COORD. Y	DIREC.	K DIREC. Y	DIREC, 2	MODA	COORD.	COORD. Y	DIREC. X	DIREC. Y	DIREC. Z
1	.000	.000	APOYO	APOYO	APOYO	8	2000.00	750.000	LIBRE	LIBRE	LIBRE
2	000.000	.000	APOYO	APOYO	APOYO		3000.0	750.000	LIBRE	LIBRE	LIBRE
3	2000.000	.000	APOYO	APOYO	CYOSA	10	4000.0	00 750,000	LIBRE	LIBRE	LIBRE
4	3000.000	.000	APOYO	APOYO	APOYO	11	.00	0 1200.000	LIBRE	LIBRE	LIBRE
5	4000.000	.000	APOYO	APOYO	APOYO	12	1000.00	0 1200.000	LIBRE	Liere	LIBRE
6	.000	750.000	LIBRE	LIBRE	LIBRE	13	2000.00	0 1200.000	LIBRE	LIBRE	LIBRE
7	1000.000	750,000	LIBRE	:,IBRE	LIBRE	14	3000.00	0 1200.000	LIBRE	LIBRE	LIBRE
						15	4000.00	0 1200.000	LIBRE	LIBRE	LIBRE
						1					

GEOMETRÍA DE LAS BARRAS

BARRA	AREA	MOM. INERCIA	MOD. ELAST.		BARRA	AREA	MOM. INERCIA	MOD. ELAST.	
1	8000.00000	4266667.00000	126.49100						
2	8000.00000	4266667.00000	126.49100		10	8000.00000	4266667.00000	126,49100	
3	B000.00000	4266667.00000	126.49100	i	11	1200.00000	160000.00000	126,49100	
4	8000.00000	4266667.00000	126.49100		12	1200.00000	160000.00000	126.49100	
5	8000.00000	4266667.00000	126.49100		13	1200.00000	160000.00000	126,49100	
6	8000.00000	4266667.00800	126.49100		14	1200.00000	160000.00000	126.49100	
7	8000.00000	4266667.00000	126.49100		15	1200.00000	160000.00000	126.49100	
8	8000.00000	4266667.00000	126.49100		16	1200.00000	160000.00000	126.49100	
9	00000,0000	4266667.00000	126.49100		17	1200.00000	160000.00000	126,49100	
					16	1200.00000	160000.00000	126.49100	

CARGAS EN LOS NUDOS

NUDO	CARGA EN X	CARGA EN Y	MOMENTO EN Z		NUDO	CARGA EN X	CARGA EN Y	MOMENTO EN Z	
6	10.560	.000	.000		11	1.856	.000	.000	
7	10.560	.000	.000	ļ	12	1.856	.000	.000	
8	10.560	.000	.000	1	13	1.056	.000	.080	
9	10.560	.000	.000	[14	1.856	.000	.000	
10	10.560	.000	.000		15	1.856	.000	.000	

FUERZAS FINALES EN EL ORIGEN

BARRA	CRIGEN	FZA AXIAL	FZA. CORTANTE	MOMENTO		HARRA	ORIGEN	FZA. AXIAL	FZA. CORTANTE	MOMENTO	
1	1	-2.35112	12.12990	8196.49900		10	10	1.12809	.61904	-288.13490	
2	6	-1.12809	. 61901	-288.13830	<u> </u>	11	6	95090	-1.22303	-612.79320	
3	2	.02447	12.58970	8323.46900	i	12	7	27733	-1.21532	-607.73950	
4	7	.01676	2.70322	99.16899		13	В	.27734	-1.21532	-607.58330	
5	3	.00000	12.63997	8339.54300		14	9	.95087	-1.22303	-610.23660	
6	В	.00000	2.63463	74.73399		15	11	1.23697	-1.12809	-566.70030	
7	4	02447	12.58969	8323.46700		16	12	.38944	-1.11133	-555.89470	
В	9	01676	2.70322	99.17122	,	17	13	38957	-1.11133	-555.43440	
9	5	2.35112	12.12990	8196.49700	i	18	34	-1.23693	-1.12809	-561.38850	

FUERZAS FINALES EN EL DESTINO

	BARRA	DESTINO	FZA. AXIAL	FZA. CORTANTE	MOMENTO		BARRA	DESTINO	FZA. AXIAL F	ZA. CORTANTE	MOMENTO	
	1	6	2.35112	-12.12990	900.92830	1	10	15	-1.12809	61904	566.70280	
	2	11	1.12809	61901	566.69220		11	7	. 95090	1.22303	-610.23650	
	3	7	02447	-12.58970	1118.80306		12	В	. 27733	1.21532	-607.58330	
+	4	12	01676	-2.70322	1117.27600		13	9	27734	1.21532	-607.73960	
	5	9	.00000	-12.63997	1140.43300		14	10	95087	1.22303	-612.79330	
	6	13	.00000	-2.63463	1110.85700		15	12	-1.23697	1.12809	-561.38840	
	7	9	.02447	-12.58969	1118.79900	•	16	13	38944	1.11133	555.43430	
	8	14	.C1676	-2.70322	1117.27600		17	14	.38957	1.11133	-555.8 9 500	
<u> </u>	9	10	-2.35112	-12.12990	900.92430		18	15	1.23693	1.12809	-566.70030	

DESPLAZAMIENTO DE LOS NUDOS

OGUN	DESPL. HORIZ.	DESPL. VERT.	ROTACION		NUDO	DESPL. HORIZ.	DESPL. VERT.	ROTACION	
				1	В	2.69921	.00000	00500	
1	.00000	.00000	. 00000	1	9	2.69738	.00002	00501	
2	.00000	.00000	.00000	1	10	2.69112	00174	00507	
3	.00000	.00000	.00000		11	4.90079	.00224	00471	
4	.00000	.00000	.00000		12	4.89265	00003	00458	
) 5	.00000	.00000	.00000	ì	13	4.89008	.00000	00457	
6	2.69112	.00174	00507		14	4.89265	.00003	00458	
7	2.69738	00002	00501		15	4.90079	00224	00471	

REACCIONES EN LOS APOYOS

NUDO	REACC: HORIZ.	REACC. VERT.	MOMENTO
1	-12.12990	-2.3511 2	8196,49900
2	-12.58970	.02447	8323.46900
3	-12.63997	.00000	8339.54300
4	-12.58969	02447	8323.46700
5	-12.12990	2.35112	8196.49700

FIN DEL PROGRAMA

Análisis par Viento

La estructura que vamos a calcular se considera por Reglamento como del tipo "A"

Po= Presión Básica = 35 kg/m2 Zona Típica urbana y suburbana (B) en donde: K = 1.0 y a = 4.5Altura de la construcción = 16.68 m

$$C = \left(\frac{3}{10}\right)^{\frac{3}{4}} = \left(\frac{16.68}{10}\right)^{\frac{3}{45}} = 1.255$$

$$P = Cp \times C \times K \times Po$$

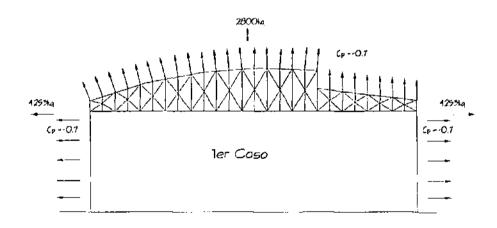
 $D = 1.255(1.0)(35) Cp = 43.93 Cp [kg/m2]$

ler Caso. Viento Paralelo a las generatrices de la Cubierta.

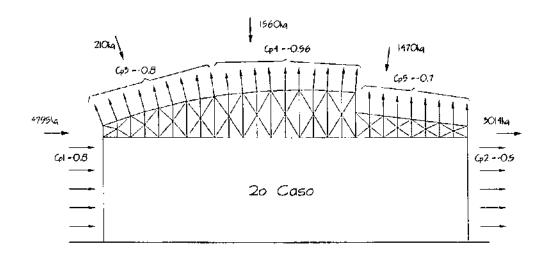
Cubierta Cp = -0.7 P = $43.93(-0.7) = 31 \text{ kg/m}^2$

Presión Lateral.

$$F = |3.72(10)3| = 4253 \text{ kg}$$
 $W_D = \frac{4253}{|3.72|} = 310 \text{ kg/m}$


<u>Presión en cubierta</u>

Se considera nula la carga viva para la acción de Viento.


 $C_M = 38 \text{ kg/m}^2$

 $C_{VENTO} = 3i \text{ kg/m}^2$: La carga de diseño= $C_D = 38 - 3i = 7 \text{ kg/m}^2$

Paredes Laterales Cp = -0.7P = $43.93(-0.7) = 31 \text{ kg/m}^2$

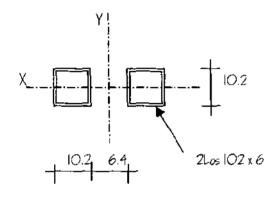
20 Caso. Viento Perpendicular a las heneratrices de la Cubierta.

$$\Upsilon = \frac{a}{b} = \frac{388}{2700} = 0.14 < 0.2$$

$$\therefore Cp3 = -0.8$$

$$Cp4 = -0.7 - 0.14 = -0.56$$

$$Cp5 = -0.7$$


Presición de Diseño = 31 (Cp)

$$PI = 43.93$$
 (0.8) = 35 kg/m²
 $P2 = 43.93$ (-0.5) = -22 kg/m²
 $P3 = 43.93$ (-0.8) = -35 kg/m²
 $P4 = 43.93$ (-0.56) = -25 kg/m²
 $P5 = 43.93$ (-0.8) = -31 kg/m²

DISEÑO DE ARMADURA

Diseño Cuerda Inferior y Superior 1-52

Resistencia usando 4 angulos 102×6 con e = 64(Compresión)

Area - A=
$$12.52(4) = 50.08 \text{ cm}^2$$

Inercla en X -
$$1x = (384)2 = 768 \text{ cm}^4$$

Inercia en Y =
$$1/2 = 10^{-4} (8.5)^2 - 4218 \text{cm}^4$$

$$\gamma = \left(\frac{768}{50}\right)^{\frac{1}{2}} = 3.92 \text{ cm}$$

$$r = \left(\frac{4218}{50}\right)^{1/2} = 9.18 \text{ cm}$$

$$\frac{\text{KI}}{\gamma_{\text{K}}} = \frac{1.0(150)}{3.92} = 38 \text{ ar}$$

$$\frac{\text{KI}}{\gamma_{\text{Y}}} = \frac{1.0(950)}{9.18} = 103cm$$

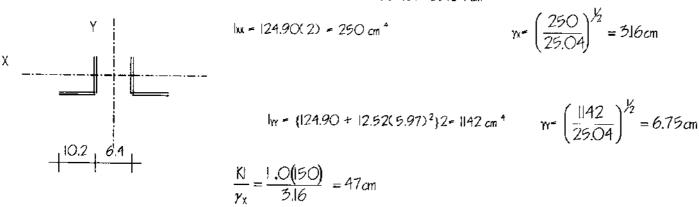
Revisión a Tensión

$$|xx = 609 \text{ cm}^{4}(2) = 1218 \text{ cm}^{4}$$

$$yx = \left(\frac{1218}{8540}\right)^{\frac{1}{2}} = 3.78 \text{ cm}$$

$$iy = \left(609 + 4270(8.3)^{2}\right)^{2} = 7101 \text{ cm}^{4}$$

$$yr = \left(\frac{7101}{8540}\right)^{\frac{1}{2}} = 9.12 \text{ cm}$$


$$\frac{KI}{\gamma_X} = \frac{1.0(150)}{3.78} = 40 \text{cr}$$

$$\frac{KI}{\gamma_Y} = \frac{1.0(750)}{9.12} = 82 \text{cm}$$

$$\Rightarrow 1066 \text{ kg/cm}^2$$

$$P_{RITE} = 1066(85.4) = 91036 \text{ kg}$$

Resistencia a compresión de $2 \text{ Los } |02 \times 6|$ con e = 64 A= $12.52(2) = 25.04 \text{ cm}^2$

$$\frac{\text{KI}}{\text{Vy}} = \frac{1.0(950)}{6.75} = |40\text{cm}| \qquad \qquad \Rightarrow \text{Fa} = 536 \text{ kg/cm}^2 \qquad \qquad \text{Prite} = 536(25.04) = |342| \text{ lkg}$$

Resistencia a tensión de 4Los 102 x6 con e = 64

Diseño Montantes Barras de 53-93

$$A = 5.81(2) = 11.62 \text{ cm}^2$$

$$\gamma_{X} = \left(\frac{70}{11.62}\right)^{\frac{1}{2}} = 2.45 \text{ cm}$$

$$\frac{K!}{\gamma_x} = \frac{1.0(5|4)}{2.45} = 2|O_{crr}|$$

$$\frac{K!}{\gamma_{x}} = \frac{1.0(5|4)}{2.45} = 2|O_{cm} \qquad \frac{K!}{\gamma_{x}} = \frac{1.0(23!)}{2.45} = 94cm \qquad \frac{K!}{2.45} = 932 \text{ kg/cm}^{2}$$

Usando 2 Los 64 x 4

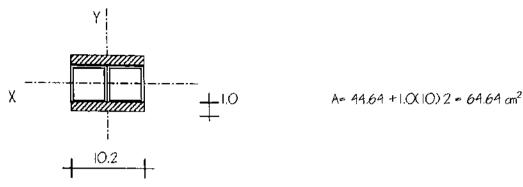
$$lx = \{19.44 + 4.88(1.47)^2\}2 = 60 \text{ cm}^2$$

A= 4.88(2) = 9.76 cm²
$$|xx = \{|9.44 + 4.88(|.47)^2\}| = 60 \text{ cm}^4$$
 $yx = \left(\frac{60}{9.76}\right)^{\frac{1}{2}} = 2.48 \text{ cm}$

$$\frac{KJ}{\gamma_X} = \frac{1.0(5|4)}{2.48} = 207 \text{ cm}$$

$$\frac{1.0(231)}{2.48} = 93 \text{ cm}$$

Resistencia a Tensión


Usando 4 Los 64 x 10

$$A = 11.16(4) = 44.64 \text{ cm}^2$$

$$x = {40.79 + 11.16 (1.27)^2}2 = 334cm^4$$

A= |1.16(4) = 44.64 cm²
$$lx = {40.79 + 11.16(1.27)^2}2 = 334 cm^4$$
 $rx = \left(\frac{334}{44.64}\right)^{\frac{1}{2}} = 2.74 cm$

$$\frac{\text{KI}}{\gamma_{mn}} = \frac{1.0(91)}{2.74} = 35 \text{cm}$$

$$|x - 334 + \frac{1}{2}|O(1.0)^3 + |O(1.0)(3.5)^2|_2 = 58|m^4 \qquad y_x - \left(\frac{58|}{64.64}\right)^{\frac{1}{2}} = 3.0cm$$

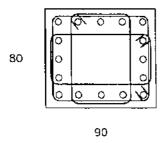
$$|x - 334 + \frac{1}{2}|O(1.0)^3 + |O(1.0)(3.5)^2|_2 = 58|m^4 \qquad y_x - \left(\frac{58|}{64.64}\right)^{\frac{1}{2}} = 3.0cm$$

$$\frac{KI}{\gamma_{min}} = \frac{1.0(91)}{3.0} = 30 \text{ cm}$$

PRME = 1405(64.64) = 90819 kg : Usar placas de 1/2" de espesor.

Diseño de Diagonales

Revisión a Tensión


$$\ln x - \left(40.79 + 11.16(1.27)^2\right) 2 = 117 \text{m}^{-2}$$
 $\ln \left(\frac{117}{22.32}\right)^{1/2} = 2.29 \text{cm}$

$$\frac{\text{KI}}{\gamma_{ma}} = \frac{1.0(175)}{2.29} = 76 \text{cm}$$
 Fa = 1113 kg/cm²

DISEÑO DE COLUMNAS

Revisión de Columna del Eje F del edificio de la Alberca

Sección más crítica

$$Ac = 7200 \text{ cm}^2$$

 $Asmin = \frac{720020}{4200} = 34.28 \text{ cm}^2$
 $usando Var #6 A = 2.87 \text{ cm}^2$
 $Asmáx = 0.06 (7200) = 432 \text{ cm}^2$
 $16 \text{ Vars } #8(5.07) = 81.12 \text{ cm}^2$

$$Mx = 14.888.970$$
 $My = 1.690.006$
 $P = 44.854$
 $f'c = 250 \text{ kg/cm}^2$
 $f''c = 0.8(0.85)f'c = 170 \text{ kig/cm}^2$

$$\frac{82}{90} = 09$$

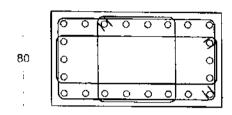
$$Rx = \frac{Mux}{F_b b^2 h f'' c}$$
; $Ry = \frac{Muy}{F_b b^2 h f'' c}$

$$R_{X} = \frac{M_{UX}}{F_{g}b^{2}hf''c} ; R_{y} = \frac{M_{UX}}{F_{g}b^{2}hf''c} ; R_{y} = \frac{14888970x14}{Q7(90)^{2}8Q(170)} = Q270 ; R_{y} = \frac{1690006x1 .4}{Q7(80)^{2}90(170)} = Q0345$$

$$\frac{R_4}{R_X} = \frac{QO345}{Q270} = Q128$$

$$K = \frac{P_u}{F_b h f'' c} = \frac{44854 \text{xl.4}}{Q7(80)90(170)} = Q075$$

Usando gráficas para el diseño de columnas


Para:
$$\frac{R_4}{R_X} = Q128$$
 $q = 0.73$ $q = 0.25$

Para:
$$\frac{R_{ij}}{R_{ik}} = 0.128$$
 y k = 0.73 \rightarrow q = 0.32

$$x = 0.01792$$
 \rightarrow $q = 0.25 + 0.01792 = 0.27$

As =
$$\frac{\text{qbhf "c}}{\text{fy}} = \frac{\Omega 27(80)9\Omega(170)}{4200} = 7868 \text{cm}^2$$
 usando var # 8

Factor de Reducción flexo-compresión = 0.7Factor de carga = 1.4 $f'c = 250 kg/cm^2$ $fy = 4200 kg/cm^2$ estribos # 3 Revisión de Columna del Eje B considerando gradas del edificio de la Alberca Sección más crítica

120

$$Mx = 8502701$$
 kg-cm $CM + CV$
 $Mxs = 103475$ Sismo X
 $Mys = 8196497$ kg-cm Sismo Y

$$P_{x} = 69725 \text{ kg}$$

$$P_{x} = 69725 \text{ kg}$$

$$Px = 69725 \text{ kg}$$
 $Mx = 8502701 \text{ kg-cm}$ $Mys = 8196497 \text{ kg-cm}$

$$Mys = 8196497 kg-cm$$

$$Rx = \frac{Mux}{F_Rb^2hf''c} ; Ry = \frac{Muy}{F_Rb^2hf''c}$$

$$\frac{Ry}{P_W} = \frac{OO685}{OO99} = O69$$

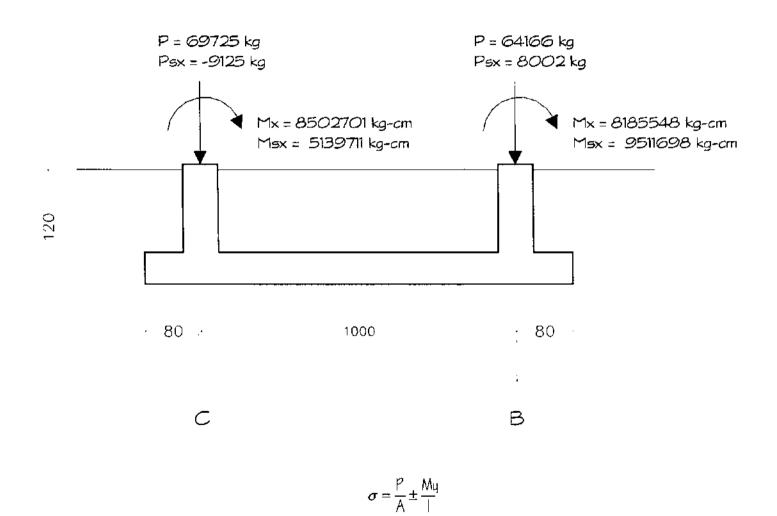
$$R_{X} = \frac{M_{UX}}{F_{g}b^{2}hf''c}; \quad R_{U} = \frac{M_{UY}}{F_{g}b^{2}hf''c}; \quad R_{U} = \frac{850270 |x| \cdot 1}{07(120)^{2}80(170)} = 006E; \quad R_{U} = \frac{8196497 x |\cdot \cdot \cdot \cdot|}{07(80)^{2}120(170)} = 0099$$

$$R_{X} = \frac{Q0683}{Q099} = 069 \qquad \qquad K = \frac{P_{U}}{F_{g}bhf''c} = \frac{(69725 + 2351) |\cdot \cdot \cdot|}{Q7(80)120(170)} = 0069$$

$$K = \frac{Pu}{F_{b}bhf''c} = \frac{(69725 + 2351)|.|}{Q7(80)|20(170)} = Q069$$

Usando gráficas para el diseño de columnas

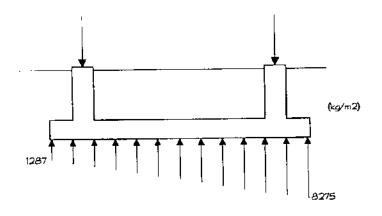
Para:
$$\frac{Ry}{Rx} = 1.0$$
 $q = 0.25$
Para: $\frac{Ry}{Rx} = 0.05$ $q = 0.32$

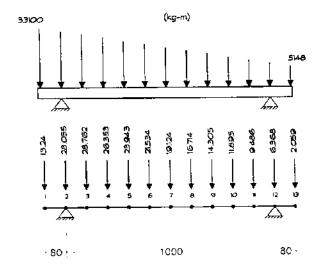

Para:
$$\frac{R_y}{R_x} = Q5$$
 $q = 0.32$

$$As = \frac{abhf"c}{fu} = \frac{Q2952(80)|20(170)}{4200} = 115cm^{-2}$$

Usando var #
$$8(5.07 \text{ cm}2) = 23 \text{ Vars } # 8$$

DISEÑO DE CIMENTACION


Diseño_De Cimentación


Revisión de Capacidad de Carga

Propongo zapata corrida de 4m de ancho

```
\begin{array}{ll} P = (69725 - 9|25 + 64|66 + 8002) = |32768 \text{ kg} \\ P \text{sudo} = |6000(4.00 \text{ x} | 1.60 \text{ x} | 1.20) = 89088 \text{ kg} \\ Mx = 850270| + 5|397|| + 8|85848 + 95||698 \\ Mx = 3|339958 \text{ kg-cm} = 3|3399.58 \text{ kg-m} \\ \sigma = \frac{132768 + 89088}{11.60(4.00)} \pm \frac{3|3399.58(5.80)}{\frac{1}{2}4.00(||.60)^3} = \\ \sigma = 478| \pm 3494 = \\ \sigma_{1} = 8275 \text{ kg/m}^{2} \qquad \sigma_{2} = |287 \text{ kg/m}^{2} \\ \sigma_{adm} = |00000 \text{ kg/m}2 > \sigma_{1} = 8275 \text{ kg/m}^{2} \qquad \therefore \text{ Bien }!! \end{array}
```


Diseño de Contratrabe

$$W_{D1} = 8275(4) = 35100 \text{ kg/m}$$

 $W_{D2} = 1287(4) = 5148 \text{ kg/m}$

Modelo Matemático

Corrida estructural de Zapata y Contratrabe de Cimentación

COORDENADAS DE LOS NUDOS

סִתטא	COORD. X	COORD. Y	DIREC. X	DIREC. Y	DIREC.		ИИОО	COORD. X	COORD, Y	DIREC. X	DIREC. Y	DIREC. Z
1	-80.000	.000	LIBRE	LIBRE	LIBRE		7	500.000	.000	LIBRE	LIBRE	LIBRE
2	.000	.000	APOYO	APOYO	LIBRE	Į	8	600.000	.000	LIBRE	LIBRE	LIBRE
3	100.000	.000	LIBRE	LIBRE	LIBRE	4	9	700,000	.000	LIBRE	LIBRE	LIBRE
4	200.000	.000	LIBRE	LIBRE	LIBRE		10	800.000	.000	LIBRE	LIBRE	LIBRE
5	300.000	.000	LIBRE	LIBRE	LIBRE	1	11	900.000	.000	LIBRE	LIBRE	LIBRE
6	400.000	.000	LIBRE	LIERE	LIBRE		12	1000.000	.000	APOYO	APOYO	LIBRE
							13	1080.000	.000	LIBRE	LIBRE	LIBRE
						1						

GEOMETRÍA DE LAS BARRAS

BARRA	AREA	MOM. INERCIA	MOD. ELAST.	BARRA	AREA	MOM. INERCIA	MOD. ELAST.
1	7200.00000	8640000.00000	126.49100	7	7200.00000	8640000.00000	126.49100
2	7200.00000	8640000.00000	126,49100	9	7200,00000	8640300.00000	126.49100
3	7200.00000	8640000.00000	126,49100	9	7200,00000	8640000.00000	126.49100
4	7200.00000	8640000.00000	126.49100	10	7200.00000	8640000,00000	126.49100
5	7200.00000	8640000.00000	126.49100	11	7200.00000	8640000.00000	126.49100
6	7200.00000	8640000.00000	126.49100	12	7205.00000	8640000.00000	126.49100

CARGAS EN LOS NUDOS

NUDO	CARGA EN X	CARGA EN Y	MOMENTO EN Z	NUDO	CARGA EN X	CARGA EN Y	MOMENTO EN Z
1	.000	-13.240	.000	7	. 000	-19.124	.000
2	.000	-28,055	.000	В	.000	-16.714	.000
3	.000	-28.762	.000	} 9	.000	-14.305	.000
4	.000	-26.353	.000	10	.000	-11.895	.000
5	.000	~23.943	.000	11	.000	-9.486	.000
6	.000	-21.534	.000	12	.000	-6.368	.000
				13	.000	-2.059	,000

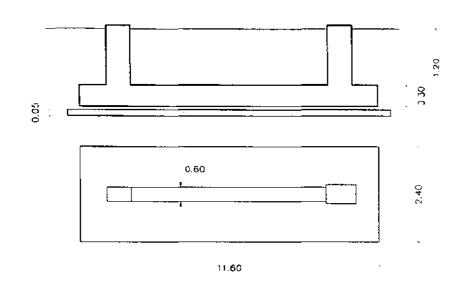
FUERZAS FINALES EN EL ORIGEN

 BARRA	ORIGEN	FZA. AXIAL	FZA. CORTANTE	MOMENTO	ВА	ARRA	ORIGEN	FZA. AXIAL	FZA. CORTANT	E MOMENTO
1	1	. 00000	-13.23972	03781	7	7	7	.00000	-18.30630	-23293.20000
2	2	.00000	101.41130	1059.27000	B	3	B	.00000	-35.02112	-21462.33000
3	3	.00000	72.64952	-9081.78800		9	9	.00000	-49.32243	-17960.35000
4	4	.00000	46.29686	-16346.59000	1	D	10	.00000	-13.22226	-13027.89000
5	5	.00000	22.35076	-20976.14000	1	1	11	.00000	-70.70754	-6905.84100
6	6	.00000	.81305	-23211.47000	1:	2	12	.00000	2.05943	164.83380

FUERZAS FINALES EN EL DESTINO

BARRA	DESTINO	FZA. AXIA	L FZA. CORTANT	E MOMENTO	BARRA	DESTINO	FZA. AXIAL	FZA. CORTANT	re momento	
1	2	.00000	13.23972	-1059.29400	7	8	.00000	18.30630	21462.42000	
2	3	.00000	-101.41130	9081.75800	l e	9	.00000	35.02112	17960.39000	
3	4	.00000	-72.64952	16346.69000	9	10	.00000	49.32243	13027.93000	
4	5	.00000	-46.29686	20976.23000	10	11	.00000	61.22226	6905.75400	
5	6	.00000	-22,35076	23211.44000	11	12	.00000	70.70754	-164.87040	
6	7	.00000	81835	23293.30000	12	13	.00000	-2.05943	.01140	

DESPLAZAMIENTO DE LOS NUDOS

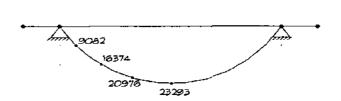

NUDO	DESPL. HORIZ.	DESPL. VERT.	ROTACION	NUDO	DESPL. HORIZ.	DESPL. VERT.	ROTACION
1	.00000	.57082	00712	В	.00000	-2.06388	.00227
2	.00000	.00000	00716	9	.00000	-1.74366	.00408
3	.00000	70549	00679	10	.00000	-1.26128	.00550
4	.00000	-1.33227	00563	11	.00000	-,66151	.00641
5	.00000	-1.81349	00392	12	.00000	.00000	.00672
6	.00000	-2,10643	00190	13	.00000	.53691	.00671
7	.00000	-2.19026	00023				
			-				

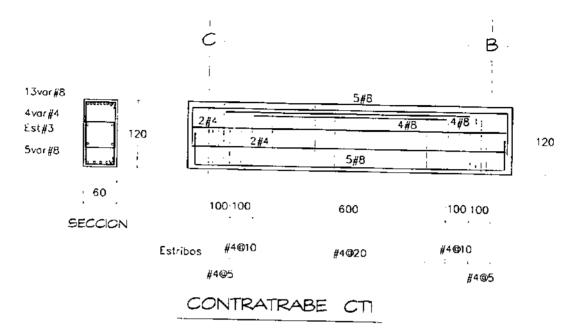
REACCIONES EN LOS APOYOS

ОСИИ	REACC. HORIZ.	REACC. VERT.	MOMENTO
2	.00000	142.70600	.00000
12	.00000	79.13495	.00000

FIN DEL PROGRAMA

Diseño de Zapata Corrida




Diagrama de Momentos Flexionantes

Diseño por flexión

Usando f'c = 250 kg/cm2 y fy = 4200 kg/cm2
$$\frac{Mu}{bd^2} = \frac{23293 \text{x} 1000 \text{d} \cdot 1}{60(115)^2} = 329 \rightarrow \lambda = 000975$$
As $nec = 0.009735(60) \text{l} 15 = 67 \text{cm}^2$ Usar $13 \text{ Vars} #8$

$$\frac{Mu}{bd^2} = \frac{16347 \text{x} 1000 \text{x} 1}{60(115)^2} = 22.66 \rightarrow \lambda = 0006574$$
As $nec = 0.006574(60) \text{l} 15 = 45 \text{cm}^2$ Usar $9 \text{ Vars} #8$

$$\frac{Mu}{bd^2} = \frac{9082 \text{x} 1000 \text{x} 1}{60(115)^2} = 12.59 \rightarrow \lambda = 0003508$$
As $nec = 0.003508(60) \text{l} 15 = 24 \text{cm}^2$ Usar $9 \text{ Vars} #8$

Diseño por Cortante Cortante Máximo = 101,411 kg $s = \frac{F_R A_v F_v d}{V_U - V_{CR}} \le \frac{F_R A_v F_v}{3.5b}$

$$\lambda \le QOI$$

$$\therefore V_{CR} = F_R bd(QQ + 3O\lambda) \sqrt{f'c}$$

$$Vu = |O|4||(1.1) = |1||552 > 16680 \quad \text{asi que} : \quad \text{Usando estribos del } \#4$$

$$S_1 = \frac{O8(1.27x2)420O(15)}{11|!552-16680} = |O34cm \quad \text{: usar estribos } \#4@|O|$$

$$S_2 = \frac{O8(1.27x2)420O}{3.5(60)} = 40cm \quad > 10 \quad \text{: Bien!!}$$

$$S_3 = \frac{O8(1.27x2)420O(115)}{72649(1.1)-16680} = |5.52cm \quad \text{: usar estribos } \#4@|S|$$

$$S_3 = \frac{O8(1.27x2)420O(115)}{72649(1.1)-16680} = |5.52cm \quad \text{: usar estribos } \#4@|S|$$

Diseño de Zapatas Aisladas

Edificio : Alberca		7	eata : Central Orilla				
X = 700.00 cm Y = 700.00 cm XX = 130.00 cm YY = 90.00 cm Df = 150.00 cm F'c = 250.10 kg/cm2 Fy = 4200.00 kg/cm2 Qa = 0.50 kg/cm2 Pv = 0.00160 kg/cm3 P = 69,725.00 kg	Datos:	Px = 1,124.00 kg Py = 2,351.00 kg Mx = 8,502,701.00 kg-cm My = 0.00 kg-cm Ax = 5,119,311.00 kg-cm Ay = 8,196,497.00 kg-cm Vx = 0.00 kg Vy = 0.00 kg Tx = 0.00 kg Ty = 0.00 kjg					
Revisión de presiones en el t Capacidad de carga admisible			X = 700,00 cm	Y = 700,00 cm	Df = 150.00 cm		
Candicián CM + CV CM + CV + 5X CM + CV + 5Y	QMAX 0.769 0.754 0.798		QMIN 0.353 0.136 0.096		% Tensián 0.000 0.000 0.000		
Capacidad de carga admisible	$= 0.50 \text{kg/cm}^2$		X = 800.00 cm	Y = 800,00 an	m Df = 150.00 cm		
Condición CM + CV CM + CV + SX CM + CV + SY		QMAX 0.653 0.614 0.643		QMIN 0.374 0.199 0.173	% Tensián 0.000 0.000 0.000		
Capacidad de carga admisible	= 0.50kg/cm²		X = 850.00 cm	Y = 850,00 cm	Df = 150.00 cm		
Candicián CM + CV CM + CV + SX CM + CV + SY		OMAX O.612 O.565 O.590		<i>QMIN</i> 0.380 0.220 0.198	% Tensión 0.000 0.000 0.000		

Para armado paralelo a X :

Peralte calculado por flexión = |4.6| cm Peralte efectivo a considerar (De) = 35.00 cm VU=40.488.790 kg < VR=93.925.780 kg Po=2.63523|E-03Es adecuado como via a ancha de 35.00cm

Para armado paralelo a Y:

Peralte calculado por flexión = 15.43 cm Peralte efectivo a considerar (De) = 35.00 cm VU= 42,980.410 kg < VR = 93,925.780 kg Po = 2.635231E-03 Es adecuado como viga ancha de 35.00cm

Revisión cortante por penetración (Esfuerzos en kg/cm²)

Condición	V. Ultimo	V. Resistente		
CM + CV	9.573	11.314		
CM + CV + 5X	11.018	9.899		
CM + CV + SY	11.964	9.899		

Se revisa por flexión nuevamente con el dato proporcionado

Para armado paralelo a X :

Peralte efectivo a considerar (De) = 40.00 cm VI= 39.865.890 kg < VR = 107.343.700 kg Po = 2.63523IE-03Es adecuado como viga ancha de 40.00cm

Para armado paralelo a Y :

Peralte efectivo a considerar (De) = 40.00 cm VU= 42.357.510 kg < VR = 107.343.700 kg Po = 2.635231E-03Es adecuado como viga ancha de 40.00cm

Revión Cortante por penetración (Esfuerzos en kg/ ${\rm cm}^2$)

Candición	V. Ultimo	V. Resistente
CM + CV	7.933	11.314
CM + CV + 5X	9.083	9.899
CM + CV + SY	9.856	9 <u>.899</u>

Resumen Diseño Final

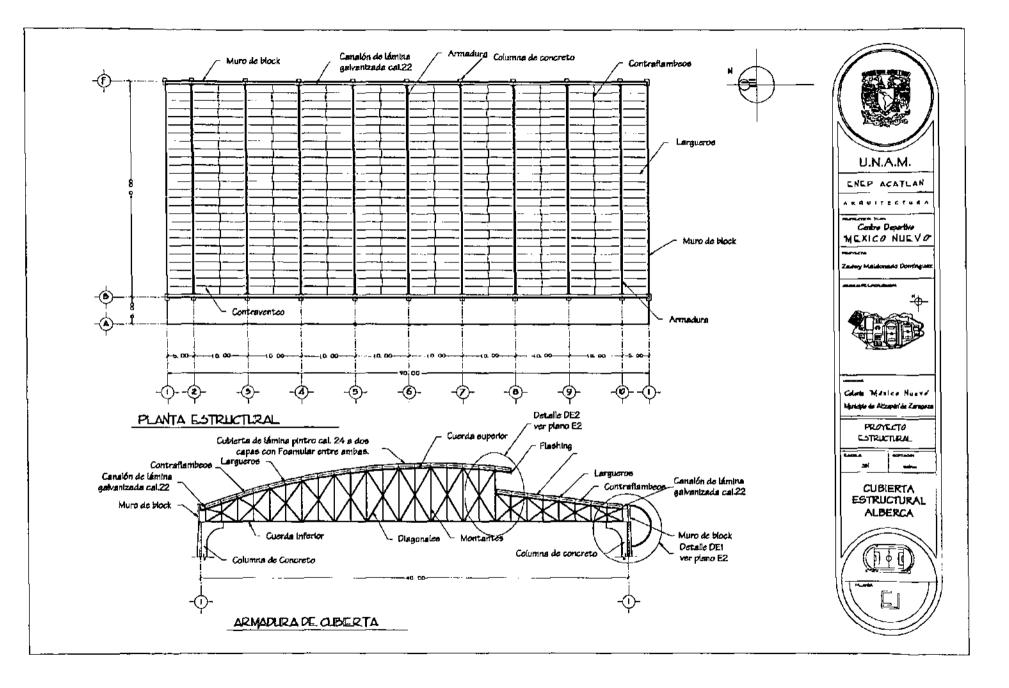
Dimensiones de la Zapata;

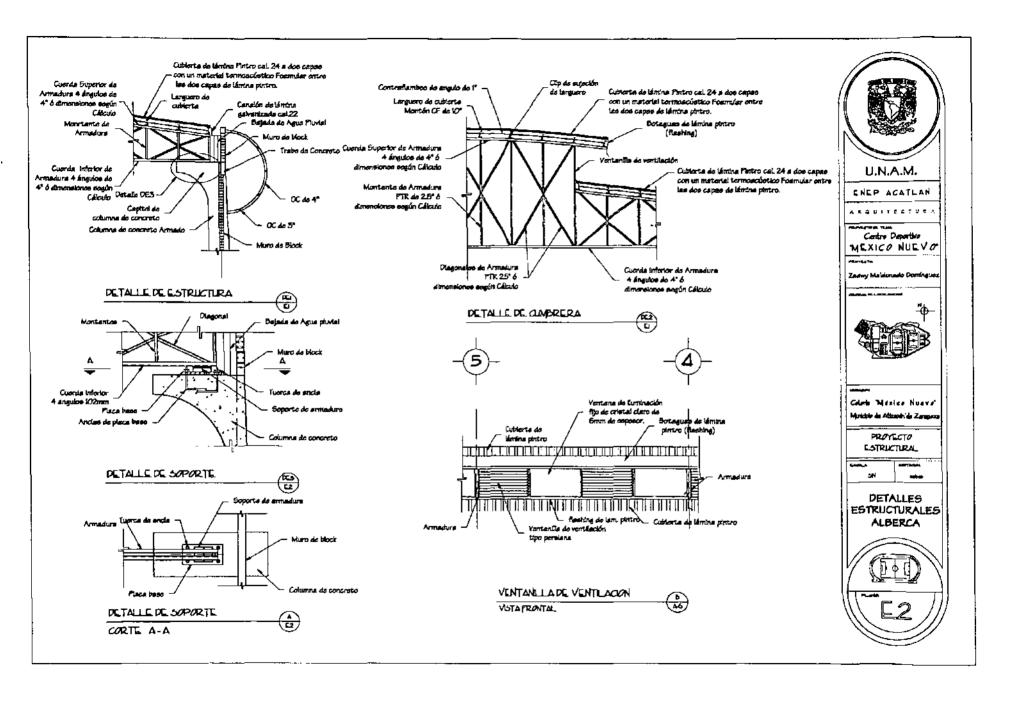
X = 850.00 am Y = 850.00 am

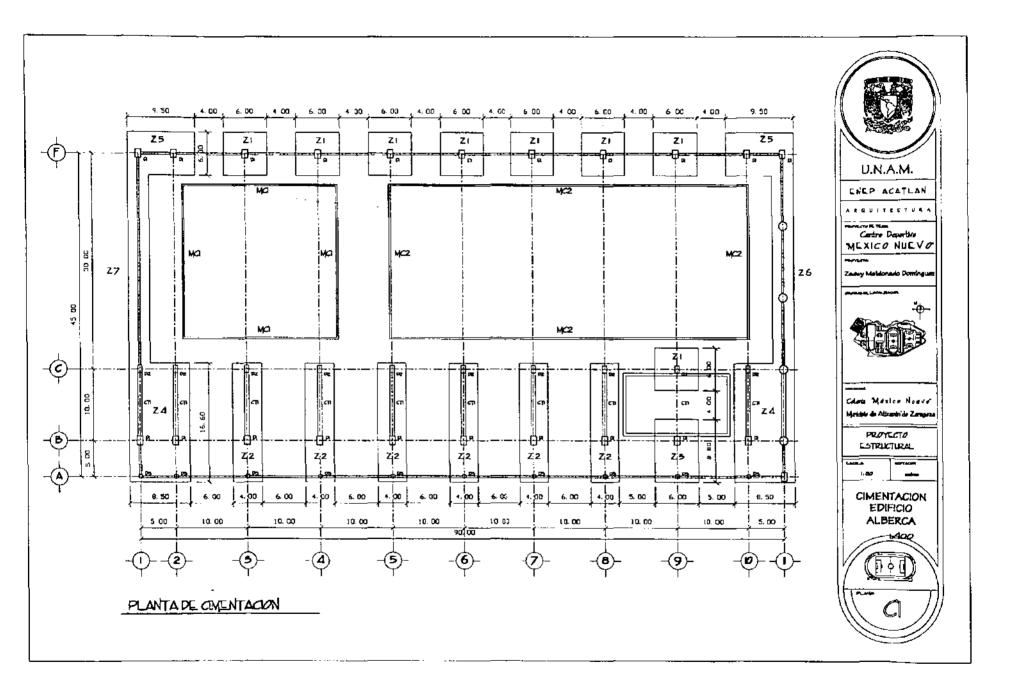
XX = 130.00 cm YY = 90.00 cm

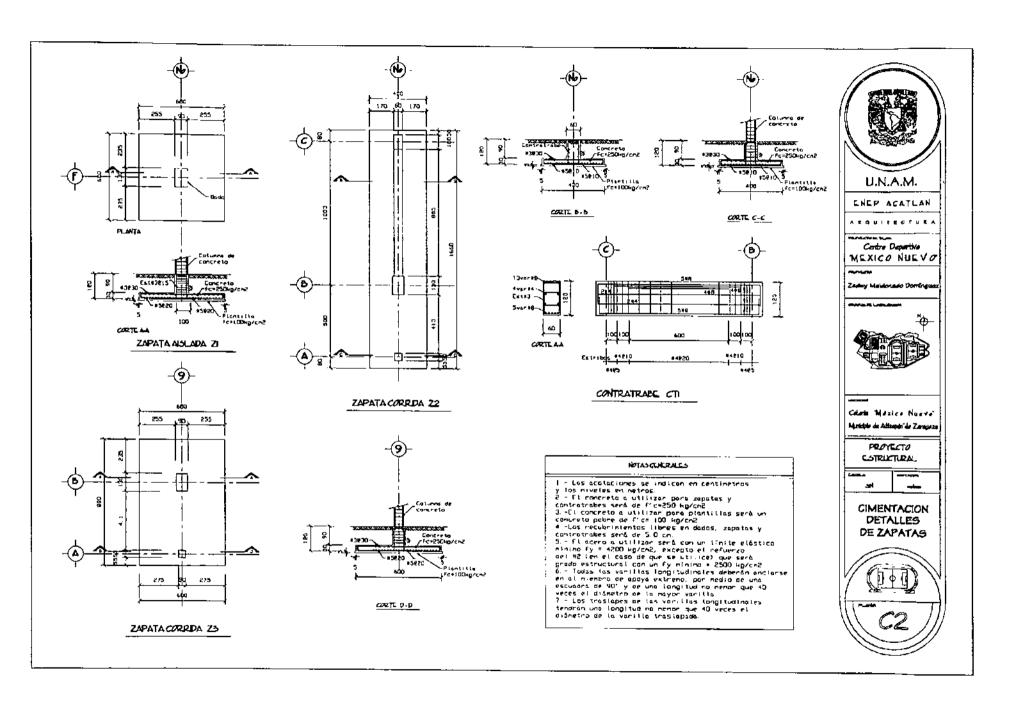
Peralte efectivo = 40.00 cm

Profundidad de desplante = 150.00 cm.


 $F'c = 250.00 \, \text{kg/cm}^2$ $Fy = 4200.00 \, \text{kg/cm}^2$


Areas de Acero requeridas:


Armado paralelo al eje X = 10.54 cm2/m


Armado paralelo al eje Y = 10.54 cm2/m

Acero por temperatura = 4.88 cm 2/ m

5.4. INSTALACION HIDRAULICA

5.4.1 Cálculo del Consumo de Agua Potable

Para calcular el consumo de Aqua Potable para el Centro Deportivo "México Nuevo" se tomaron en cuenta los siquientes elementos:

- a) Según el Regiamento de Construcciones del D.F. se requieren 150 lits de agua por cada usuario: 150 lts/asistente / día Tomando en cuenta un aproximado de 960 asistentes/día, tenemos que 960 x 150 = 144.000 lts.
- b) Seqún el Reglamento de Construcciones se requiere de 51ts de aqua por cada m^2 de Superficie de Riego . El Proyecto cuenta con 43156 m^2 de superficio de Riego, por lo que, 43156 x 5 = 215,780 lts.
- c) El Requerimiento de Aqua para Sistema Contraincendio según el Reglamento de Construcciones deberá ser de 51ts por cada m² de construcción.

 Considerando 12123.5 m², tenemos que, 12123.5 x 5 = 60,617.5 lts.
- d) En el caso de las Albercas se considerarrá un consumo del 5% del desperdicio de su capacidad por día. Alberca Olímpica $50m \times 2lm = 1050m^2 (1.80m) = 1890 m^3 (1000lts) = 1,890,000lts \times 5% = 94,500 lts.$ Fosa de Clavados $2lm \times 2lm = 44lm^2 (4.80m) = 2116.8m^3 (1000lts) = 2,116.800lts \times 5% = 105.840 lts.$ Chapoteadero $8m \times 14m = 112m^2 (0.50m) = 56m^3 (1000lts) = 56.000lts \times 5% = 2,800 lts.$ Consumo Diario de Albercas = 94,500 + 105,840 + 2,800 = 203,140 lts.

Cálculo de Cisterna.

Para el Cálculo de Cisterna utilizamos la siguiente fórmula:

Consumo de Usuarios + Consumo de Albercas = 347,140lts lo multiplicamos por 2 (según el reglamento de Construcciones) = 694,280 lts. Se le suma el requerimiento de Aqua del Sistema Contraincendio y el Requerimiento de Aqua para Riego.

694,280 + 60,617.5 + 215,780 = 970,677lts

Esta cantidad de litros pueden ser repartidas en dos o más cisternas de acuerdo a los requerimientos del Proyecto.

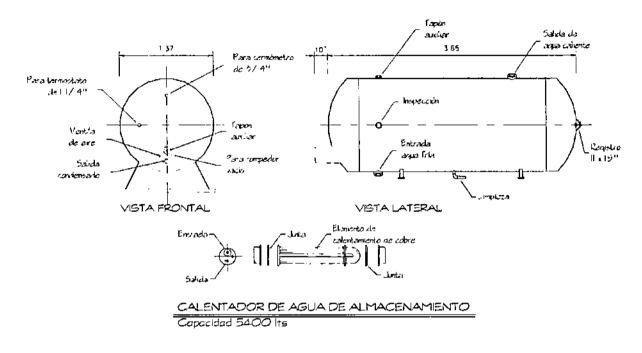
5.4.2. Cálculo del Consumo de Agua Caliente

Cáculo Necesario del Consumo de Aqua Caliente para Baños y Regaderas de el edificio de Alberca y Cimnasio.

Existen dos métodos usuales para estimar las recesidades de aqua caliente de un edificio.

- 1) Por el número de habitantes o usuario de la edificación.
- 2) Par el número de muebles sanitarios instalados.

Para nuestro caso utilizaremos del segundo caso, ya que es el más exacto ya que el número de usuarios es muy variable.


Demandas de Aqua Caliente en Its x hora, por mueble calculadas a un temperatura final de 60 °C para Clubs según la siquiente tabla.

	lts/hr	No. muebles	Total lts/hr
Lavabos Públicos	23	52	1,196
Regaderas	550	52	28,600

De lo qual obtenemos un Total de 29.796 lts/hr

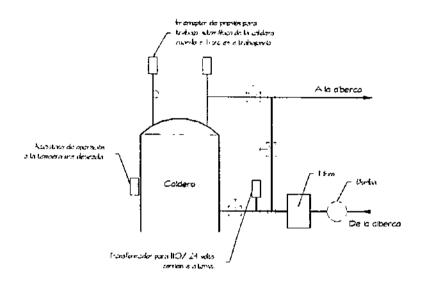
Factor de Demanda 0.30 Factor de Capacidad de Almacenamiento 0.90

29.796 | Its/hr x 0.30 = 8,938.8 | Its/hr 8,938.8 | Its/hr x 0.90 = 8,044.92: Its/hr Capacidad de Amacenamiento .. Se propone utilizar dos calentadores de aqua de almacenamierso de 5400 lts de capacidad, ya que se recomienda que los calentadores sean utilizados a un 60 ó 70% de su capacidad.

Cálculo Necesarlo de: Corsumo de Aqua Caliente para Albercas Olímpicas.

Temperatura a proporcionar 25.6°C (78°F) Para albercas dímpicas a más de 1000m de altura sobre el nivel del mar.

Capacidad de Caldera = m3 de la alberca x 529 kcal/hr = kcal/hr a la salida del aqua


Capacidad de Caldera - m3 de la alberca x 2100 BTJ/hr = BTU/hr a la salida del aqua

Capacidad en kcal/hr = $(890\text{m}^3 + 2116.8\text{ m}^3 + 56\text{ m}^3)(529\text{ kd/hr}) = (4062.8\text{m}^3)(529) = 2.149.221.2\text{ kcal/hr}$

Capacidad en BTU/hr = $(1590\text{m}^3 + 2116.8 \text{ m}^3 + 56 \text{ m}^3)(21003711/hr) = (4062.8\text{m}^3)(2100) = 9,664.200 BTUI/hr$

Según el Cálculo tenemos que:

Se proponen circo calderas selección "Hidrotherms" de Gas L.P. para abercas a 2000 m de altura sobre el Nivel del Mar. Modelo RP-3600 con un consumo de Gas de 77.20 ko/hr y una entrega de 548,000 kcal/hr con capacidad s/elevación de 996 m³ para 5 $^{\circ}$ para 41 $^{\circ}$ C / hr.

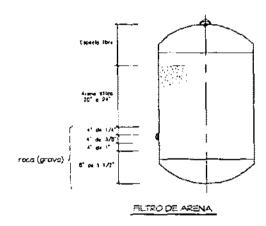
5.4.3. Cálculo de Filtros de Arena y Grava para Alberca

Para albercas públicas, la capacidad de los filtros debe ser suficiente para proveer una renovación del contenido del aqua en 6 ú 8 horas a una capacidad de filtrado de II I tros por minuto por pie cuadrado (i 20 L P.M. por metro cuadrado) de área de cama de filtrado total...

Area de filtro (
$$m^2$$
) = $\frac{\text{VolumenAlb. erca (lts.)}}{\text{horasx6Oxf. lujo. (lts. / min. / m^2)}}$ Capacidad de las albercas = $4062.8 \, \text{m}^3$

¹Consultar Manual de Instalaciones. Ing Sergio Zepeda Pag. 250

Ciclo de filtrado 12hrs Tiempo de recirculación en filtros para servicio de clubs Grado de Recirculación GPM/pie² 1 ó 2 GPM/pie² 40 ó 81 LPM/m² Para albercas Olímpicas.


Area de filtro =
$$\frac{4,062800 \text{lts}}{12 \text{hrsx} 60 \times 8 \text{ } \text{LPM} / \text{m}^2} = 69.66 \text{ m}2$$

Por lo tanto se propone Utilizar 4 filtros de 2.44 x 1.22 (Manual de Instalaciones) de la siguiente tabla:

No. Unidad	Tamaño	Area Total	Cap. de Re-	Cap. de Re-	Filtrado	Enjuaque	Motor	Tamaño	Tubería
	filtro	$cama (m^2)$	novación 6hrs	novación 8hrs	L.P.M.	L.P.M.	H.P.	Filtro	Frontal
4 Unidades	2.44 x 1.22	18.65	821.0	1095.0	2280	2285	15	6"	6"

El valor de filtrado es 122 L.P.M. por metro cuadrado de área total de cama.

El valor de enjuaque es de 487 L.P.M. por metro cuadrado de área de un tanque.

En filtros de arena de unidades múltiples. la filtración ocurre a travez de todos los tanques simultáneamente, pere cdada tanque es retrdavado o enjuaçado separadamente. Como el flujo del enjuaçue es aproximadamente cuatro veces mayor por tanque que el flujo de filtrado, un sistema de cuatro unidades esta per fectamente balanceado, es decir, la capacidad total de la bomba se utiliza tanto en filtración como en ejuaque. ²

² Consultar Manual de Instalaciones Hidráulicas, sanitarias, gas y vapor. Ing. Sergio Zepeda Pag. 232

Requerimientos de Sustancia s Químicas en las Albercas

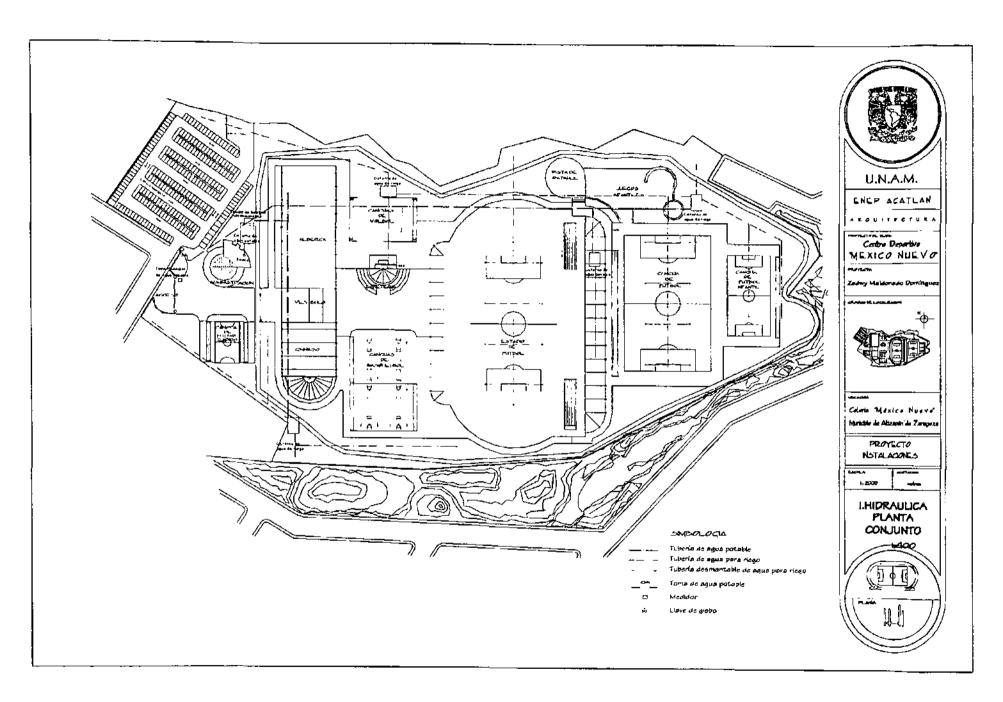
El ph del aqua debe estar entre 7.4 y 7.8 (el punto neutro es 7.0, cualquier punto mayor es acidez y cualquier punto meno es alcalinidad.

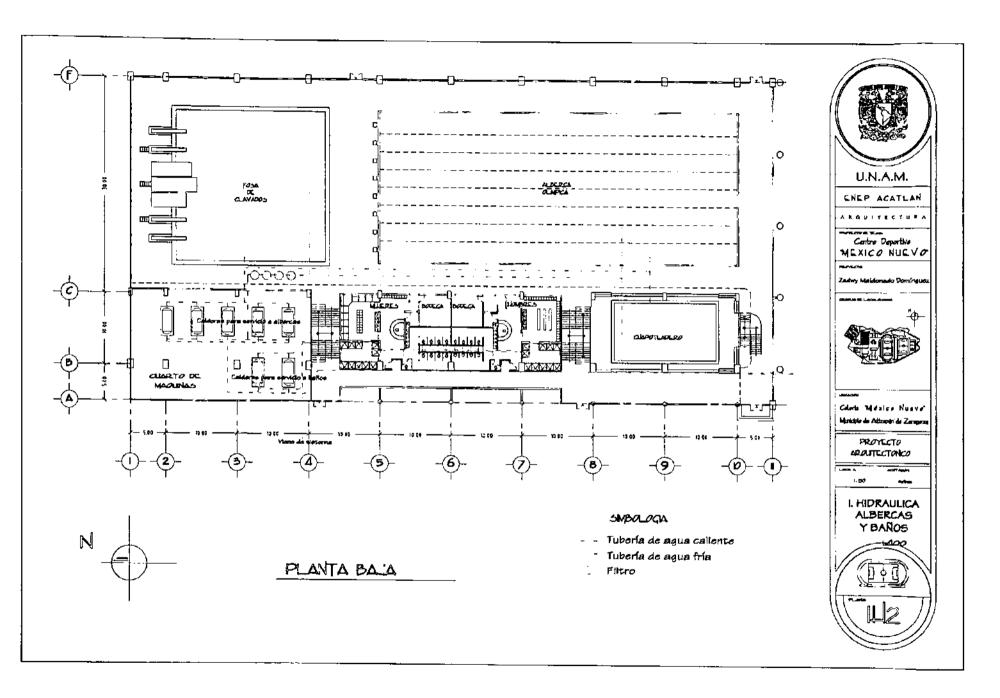
Claro.

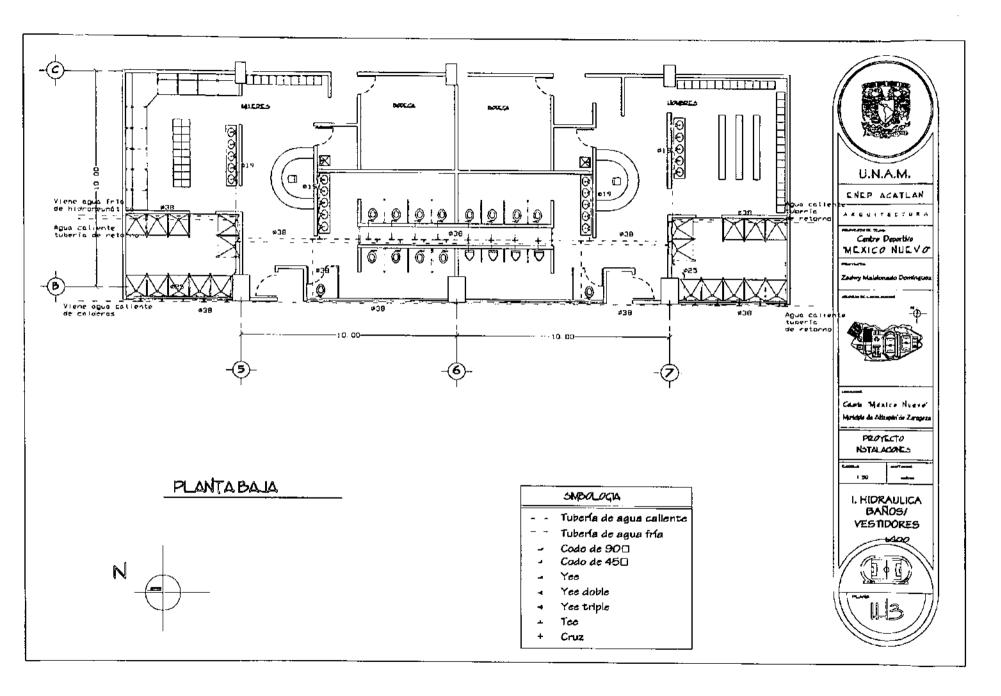
El cloro se utiliza para mantener el aqua químicamente pura, limpia y estable.

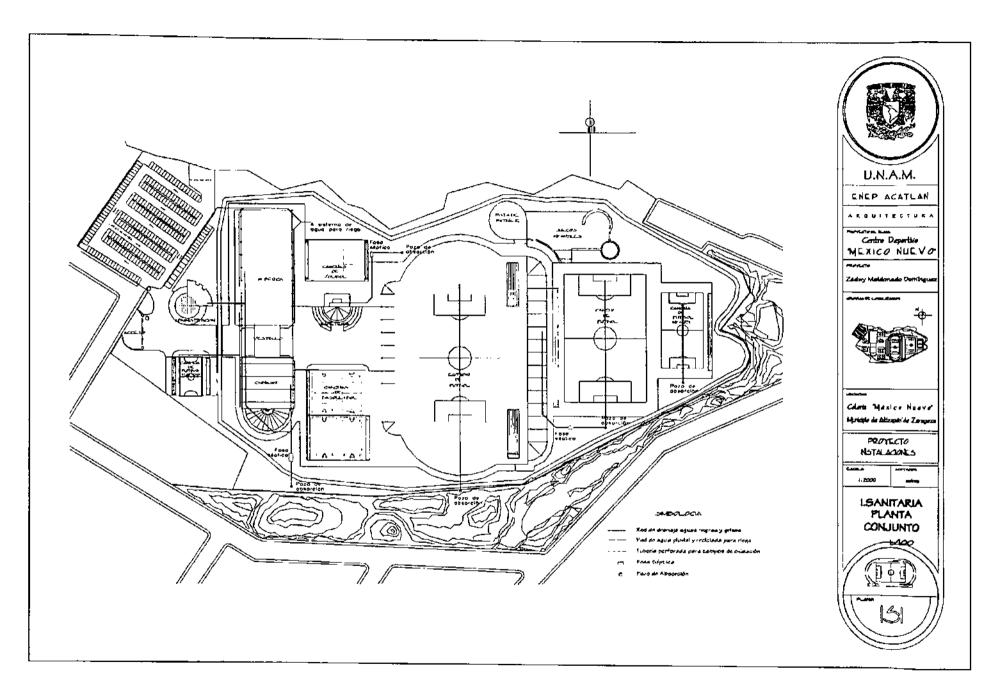
El doro se aplica de diversas formas pero se recomienda que para albercas públicas, su aplicación se haga en estado gaseoso.

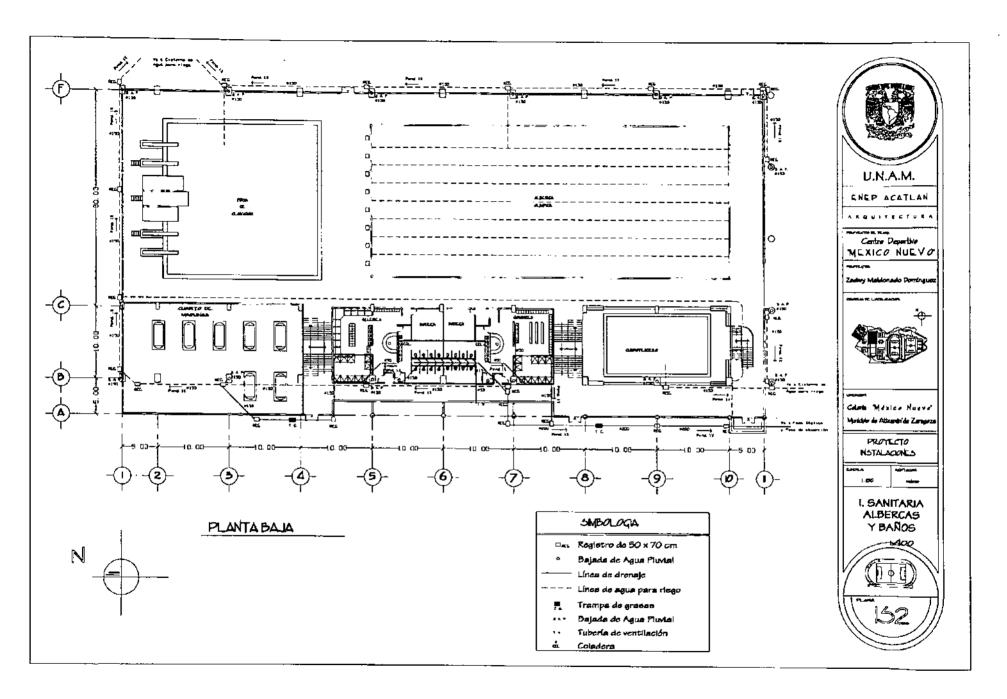
Se recomienda aplicar el cloro después de la puesta de sol, el filtro se pondrá a funcionar varias horas después de aplicarse el doro. La alberca deberá superclorarse de 3 a 5 veces la dosis normal cuando sea rueva ó cada 3 semanas.

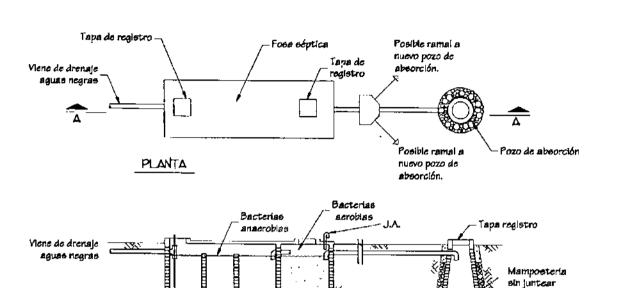

Sulfato de cobre.


Se utiliza para evitar el crecimiento de algas.

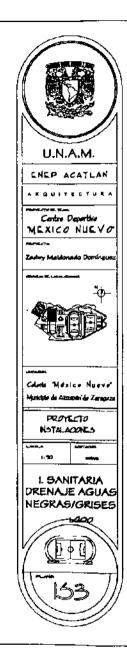

Dosis: 1/2 taza de cristales de sulfato de cobre a 5.75 lts de aqua. La solución se aplica por el lado somero y se deja en la alberca de tres a cuatro días , en ese tiempo el filtro no deberá trabajar. Se recomienda aplicarse una vez por semana junto con el cloro

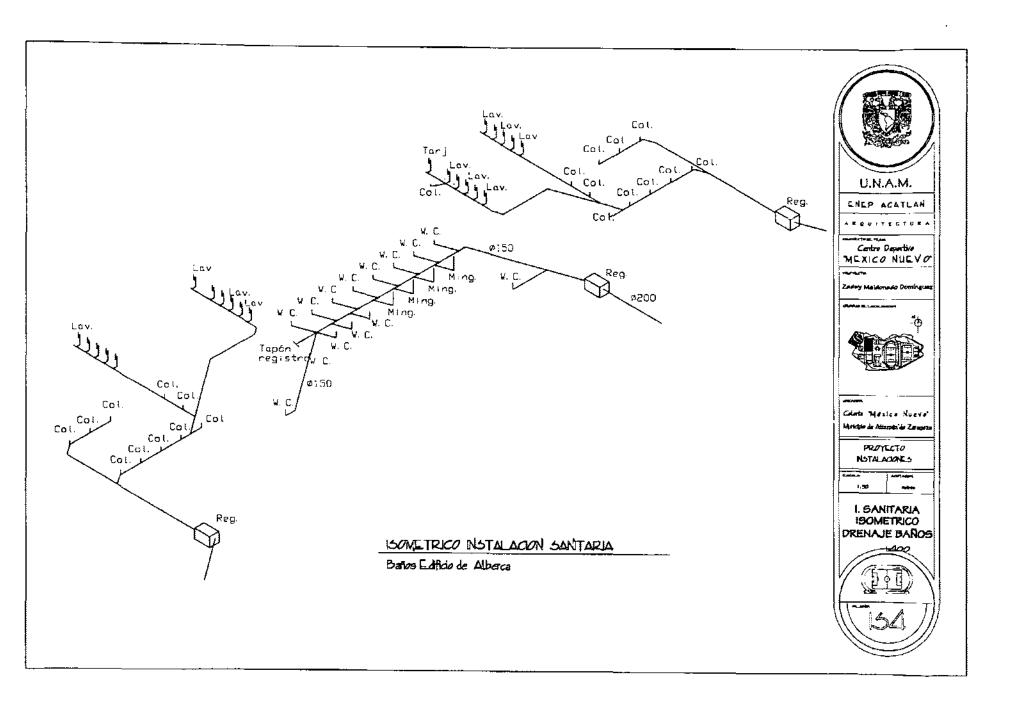

Alumbre de potasio o amonio.

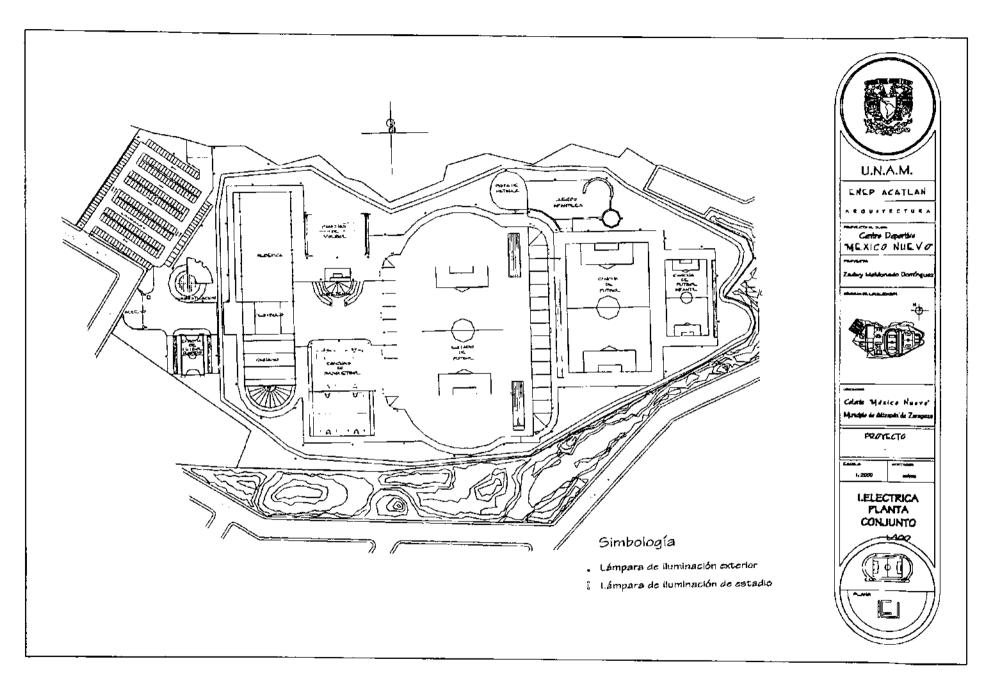

Se aplica en una dosis de 16qr/dm² de arena filtrante generalmente después del lavado del filtro. Se forma una sustancia gelatinosa sobre la cama de arena (alumbre fluculento) que retiene el polvo fino. Esta sustancia se utiliza para una limpeza mayor en la alberca.

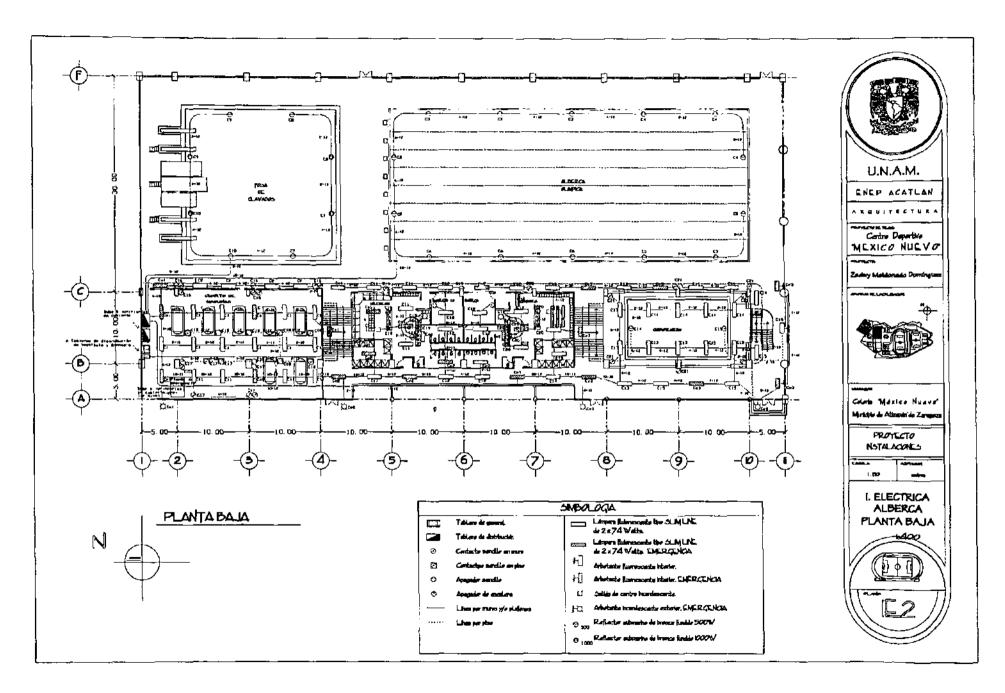


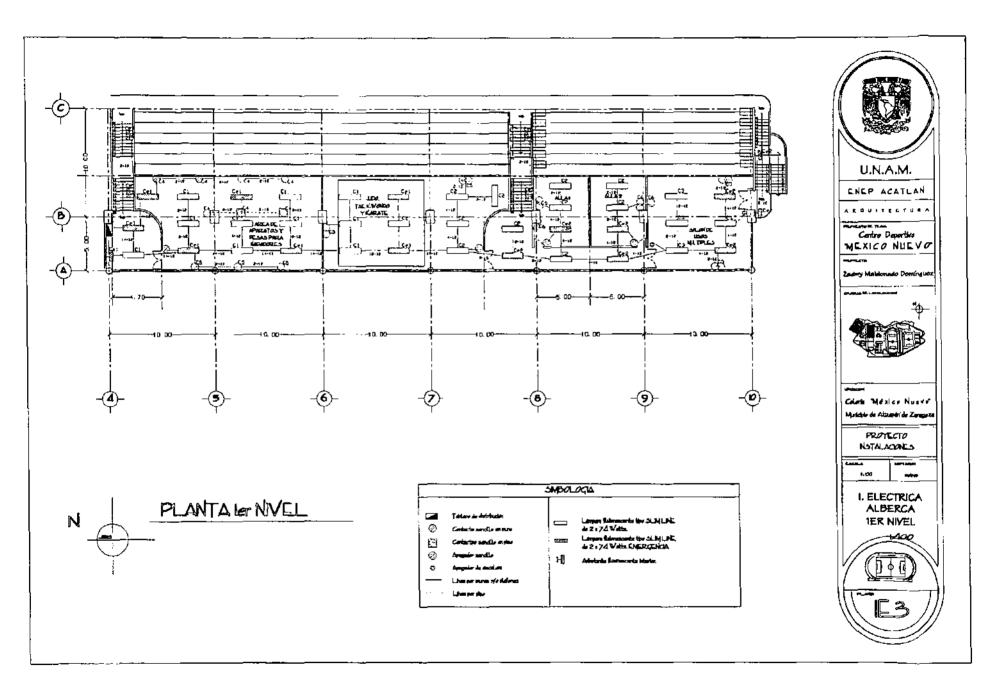
Cámara de oxidación

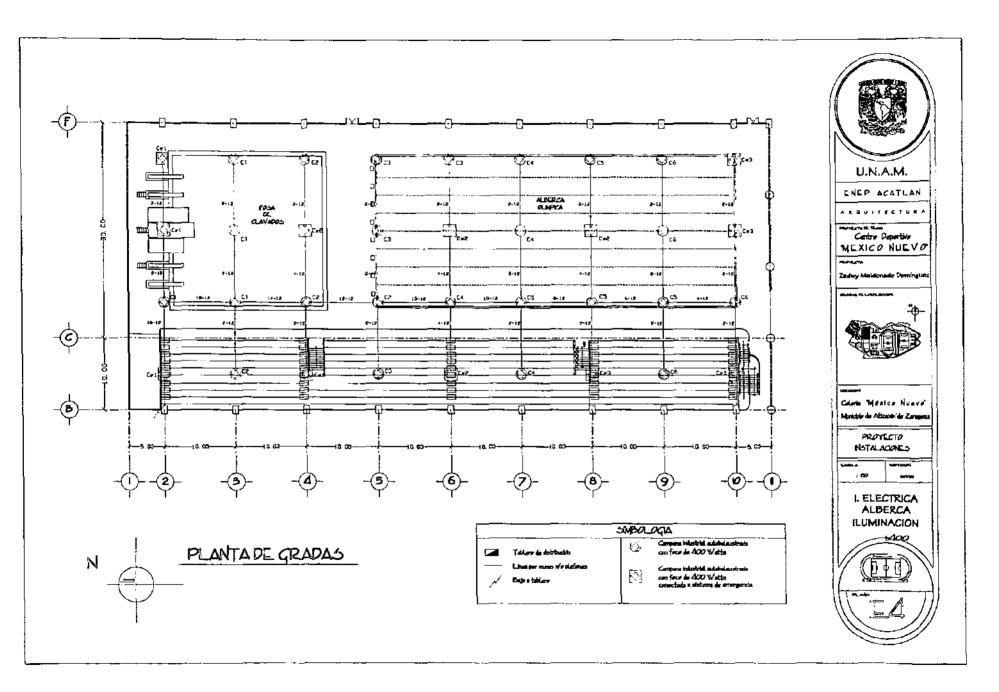

Pozo de absorción


FOSA SEPTCA Y POZO DE ABSORCION


Cámara de fermentación


Pichancha


CORTE AA



TABLERO PLANTA BAJA

	C	UAD	RO	D٤	CA	RGA	15				
		+[] —	81 -	°-	۰	٥	□	TOTAL WATES	MFASE	ZAFASS	34/4 <u>%</u>
CELENTO!	9							Page	600		
COLUMN 2	4					:		1600	16de		
CROTT# >				3	i		;	900	600	i "	
OPARO A				3			1	000	BOO		
(II/III/85				•			1	800	500		
авап в б				•			Τ	(423)	600		
авапия			_	,	1	i		500	907		
скопув		i	i	,	F	i	i	5100	600	:	1
@artes	i	<u></u>	I	-	1		\vdash	(Marie		Eco	ĺ
андлео .			1	1	1	1	1	600		600	
ORANTO!	10						T	600		gen.	
CRAITS &	ъ		· ·	T	1	1	T_	600		600	
СВОЛИФ							\top	- ext		900	
CRECTIFE A	7		i	- 1	1	1		6000		6007	
(POST # B		1	t ·			1	1 —	an an		650	
аколго 6	i	1	1	i –				1600		600	
акалга (7					1	- 4	ż	600		1	660
CRAITS 6		1	1		1	T-	7	600			1600
CHASTON	1	Ι	1	 	1	7	-	4420			1420
CRAIT# 20	1	t		1		7	1	1400			påden:
charpt a	!	1			 	a	1	600		1	600
CROTTP 22	7	- 2	1		1	1	T^{-}	1480			1200
ФДП (P 25	6	1	1	1.		1	T^-	HEDD			1400
CEOSTO 14	-	3	1 2	 	1	1	T^-	14/10		7 - '	1400
				_				10000	907	49.671	19000

 Perhance in fixes =
 12000 - 1800
 x100 - 4.8 < 5%</th>
 La corrector

CHADRO DE CARGAS PLANTABAJA

Fémale pers et catalle de desbalance de feses

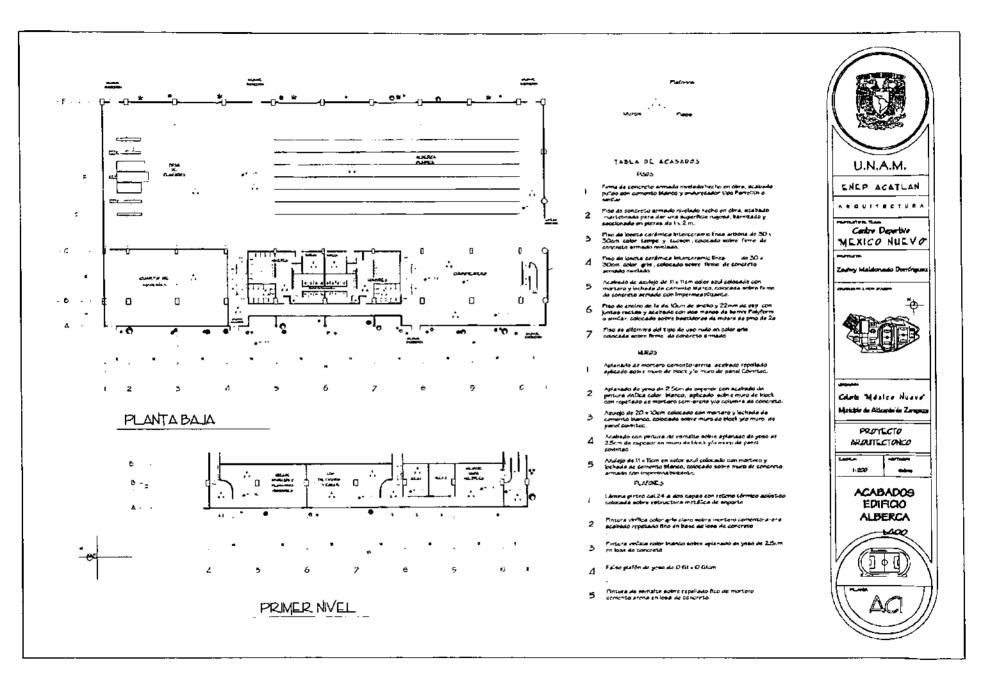
Dephalance de fines " Fase Mayor - Fase Mayor x 100 - 596

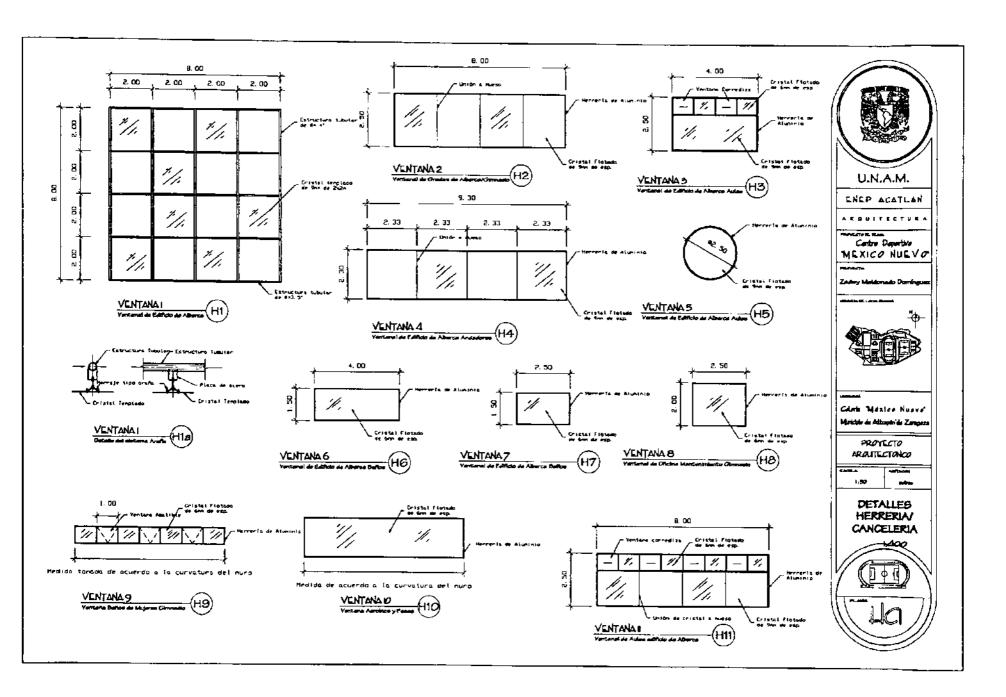
TABLEROPLANTA ER NIVEL

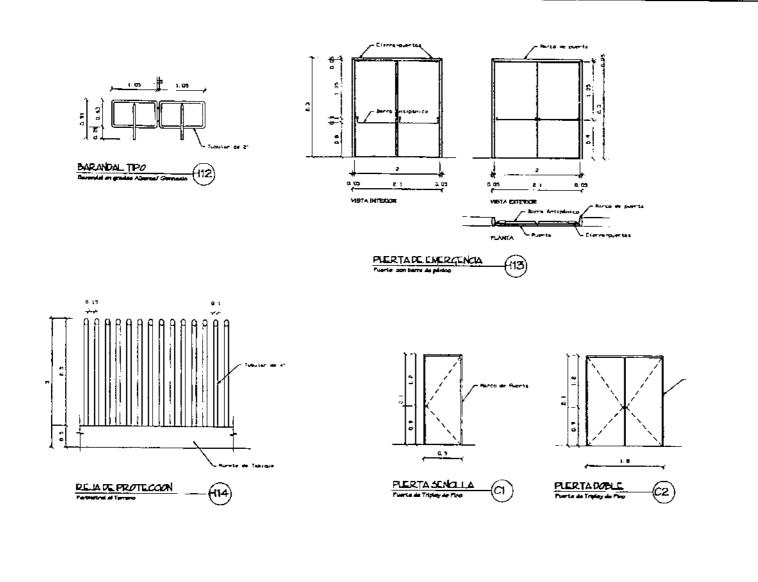
	-	3 m	20 m	TOTAL WATTS	M FASC	PAPA:C	5A7436
(8/2/T#)	0	1	1	200	500		
CHAIT #2	e	1	1 -	1500	pop to		
CPCST7 5		4		ADD	¥1007		
CRASTO 4	1	- 6	2	B07	1	£00	
OBALT#5	1	-		600		påra:	[
сРасити 6	1	7		1400		600	:
аналто 7	7	3		800		· · · · · · · · · · · · · · · · · · ·	نقج
(B)(LIT# to	6	4	1	1920	• • • • • • • • • • • • • • • • • • • •		500
аналго у		- 3	1	807			79477
-		•	•	4500	4400	4600	#50

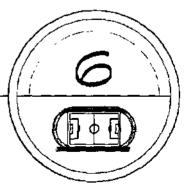
CHADRO DE CARGAS ER NVEL

TABLERO CLENERTADE ALBERCA


	Ç	TOTAL MATTS	M. PASE	24/44	DA PAGE
CRAST #1	1	600	600		
скапе г	4	600	600		
(ROIT#	4	620	620		
CRASTIF A	4	1500		500	
CEOUT & S	4	1600		600	
ORGANIPA	4	600		600	
GLAST#7	4	620	•		Eat)
амере в	4	1640			600
CRAIT#	4	600			600
		14400	4000	Anco	Abox


Postalance de fision ≈ 4800 x 100 = 0 ≤ 5% Es carrectal


CLADROSDE CARGAS CLISERTA



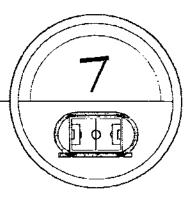
COSTO Y FINANCIAMIENTO

6.1. COSTO

PART.	CONCEPTO	UNIDAD	CANTIDAD	PRECIO UNITARIO	<u>L</u>	IMPORTE
1	SERVICIOS GENERALES					
			<u></u>			
.1.1	Plaza de acceso Zonas exteriores	m2	3015.00	\$ 115.00	5	346,725.00
.1.2,	Plazaletas y andadores Zonas exteriores	m2	12385.00	\$ 115.00	5	1,424,275.00
.1.3	Jardines y áreas verdes	m2	27/01.00	§ 35.00	- €	948,535.00
.2	Estacionamiento	m2	6472.00	\$ 80.00	#	517.760.00
3	Subestación Eléctrica	lote	1.00	\$ 30,000.00	5	30,000.00
.4	Cuarto de máquinas	m2	25.00	5 1,200.00	5	30,000.00
5	Bodegas de mantenimiento	m2	15.00	\$ 1,200.00	5	18,000.00
.6	Almacenamiento de basura	m2	5.00	\$ 500.00	5	2,500.00
.7	Cafetería	m2	209.00	\$ 2,500.00	5	522,500.00
						
	Edicficio de Administración ZONAS DEPORTIVAS	m2	345.00	\$ 2,800.00	<u>\$</u>	966,000.00
	ZONAS DEPORTIVAS					
3.1	ZONAS DEPORTIVAS Alberca a cubierto	m2	4645.00	\$ 3350.00	\$	15,560,750.00
3.1 3.2	ZONAS DEPORTIVAS Alberca a cubierto Gimnasio a cubierto	m2 m2	4645.00 2 5 75	\$ 3350.00 \$ 2800.00	\$	15,560,750.00 7,210,000.00
3.1 3.2 3.3.1	ZONAS DEPORTIVAS Alberca a cubierto Gimnasio a cubierto Cancha de futbol Estadio	m2 m2 m2	4645.00 2575 7776.00	\$ 3350.00 \$ 2800.00 \$ 75.00	\$ \$	15,560,750 <i>0</i> 0 7,210,000.00 583,200.00
3.1 3.2 3.3.1 3.3.2	ZONAS DEPORTIVAS Alberca a cubierto Gimnasio a cubierto Cancha de furbol Estadio Pista de Atletismo Estadio	m2 m2 m2 m2	4645.00 2575 7776.00 5772.00	\$ 3350.00 \$ 2,800.00 \$ 75.00 \$ 70.00	\$ \$ \$ \$	15,560,750,00 7,210,000,00 583,200,00 404,040,00
3.1 3.2 3.3.1 3.3.2 3.3.3	ZONAS DEPORTIVAS Alberca a cubierto Gimnasio a cubierto Cancha de furbol Estadio Pista de Atletismo Estadio Gradas Estadio	m2 m2 m2 m2 m2 m2	4645.00 2575 7776.00 5772.00 3420.00	\$ 3350.00 \$ 2,800.00 \$ 75.00 \$ 70.00 \$ 1,200.00	\$ \$ \$ \$	15,560,750,00 7,210,000,00 583,200,00 404,040,00 4,104,000,00
3.1 3.2 3.3.1 3.3.2 3.3.3	ZONAS DEPORTIVAS Alberca a cubierto Gimnasio a cubierto Cancha de futbol Estadio Pista de Atletismo Estadio Gradas Estadio Cancha de Futbol	m2 m2 m2 m2 m2 m2 m2	4645.00 2575 7776.00 5772.00 3420.00 7776.00	\$ 3,350,00 \$ 2,800,00 \$ 75,00 \$ 70,00 \$ 1,200,00 \$ 75,00	\$ \$ \$ \$ \$	15,560,750,00 7,210,000,00 583,200,00 404,040,00 4,104,000,00 583,200,00
3.1 3.2 3.3.1 3.3.2 3.3.3 3.4 3.5	ZONAS DEPORTIVAS Alberca a cubierto Gimnasio a cubierto Cancha de futbol Estadio Pista de Atletismo Estadio Gradas Estadio Cancha de Futbol Cancha de Futbol Cancha de Futbol infantii	m2 m2 m2 m2 m2 m2 m2 m2	4645.00 2575 7776.00 5772.00 3420.00 7776.00 2755.00	\$ 3,350,000 \$ 2,800,000 \$ 75,000 \$ 70,000 \$ 1,200,000 \$ 75,000 \$ 75,000	\$ \$ \$ \$ \$ \$ \$	966,000.00 15,560,750.00 7,210,000.00 583,200.00 4,104,000.00 583,200.00 206,625.00
3.1 3.2 3.3.2 3.3.2 3.3.3 3.4 3.5 3.6	ZONAS DEPORTIVAS Alberca a cubierto Gimnasio a cubierto Cancha de futbol Estadio Pista de Atletismo Estadio Gradas Estadio Cancha de Futbol Cancha de Futbol Infantii Cancha de Futbol Rápido	m2 m2 m2 m2 m2 m2 m2 m2 m2	4645.00 2575 7776.00 5772.00 3420.00 7776.00 2755.00 920.00	\$ 3350.00 \$ 2800.00 \$ 75.00 \$ 70.00 \$ 1,200.00 \$ 75.00 \$ 75.00 \$ 200.00	\$ \$ \$ \$ \$ \$ \$	15,560,750,00 7,210,000,00 583,200,00 4,04,040,00 583,200,00 206,625,00 184,000,00
3.1 3.2 3.3.1 3.3.2 3.3.3 3.4 3.5 3.6 3.7	ZONAS DEPORTIVAS Alberca a cubierto Glimnasio a cubierto Cancha de furbol Estadio Pista de Atletismo Estadio Gradas Estadio Cancha de Futbol Cancha de Futbol Infantil Cancha de Futbol Rápido Cancha de Basquetbol	m2 m2 m2 m2 m2 m2 m2 m2 m2 m2	4645.00 2575 7776.00 5772.00 3420.00 7776.00 2755.00 920.00 3500.00	\$ 3350.00 \$ 2,800.00 \$ 75.00 \$ 70.00 \$ 1,200.00 \$ 75.00 \$ 75.00 \$ 200.00 \$ 145.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	15,560,750,00 7,210,000,00 583,200,00 4,04,040,00 583,200,00 206,625,00 184,000,00 507,500,00
3.1 3.2 3.3.1 3.3.2 3.3.3 3.4 3.5 3.6 3.7 3.8	ZONAS DEPORTIVAS Alberca a cubierto Gimnasio a cubierto Cancha de furbol Estadio Pista de Atletismo Estadio Gradas Estadio Cancha de Futbol Cancha de Futbol Infantii Cancha de Futbol Rápido Canchas de Basquetbol Canchas de Volibol	m2 m2 m2 m2 m2 m2 m2 m2 m2 m2 m2	4645.00 2575 7776.00 5772.00 3420.00 7776.00 2755.00 920.00 3500.00	\$ 3350.00 \$ 2,800.00 \$ 75.00 \$ 70.00 \$ 1,200.00 \$ 75.00 \$ 75.00 \$ 200.00 \$ 145.00 \$ 145.00	5 5 5 5 5 5 5	15.560.750.00 7.210.000.00 583,200.00 404,040.00 4.104,000.00 583,200.00 206,625.00 184,000.00 507,500.00
3.1 3.2 3.3.2 3.3.3 3.4 3.5 3.6 3.7 3.8 3.9	ZONAS DEPORTIVAS Alberca a cubierto Gimnasio a cubierto Cancha de furbol Estadio Pista de Atletismo Estadio Gradas Estadio Cancha de Futbol Cancha de Futbol Infantii Cancha de Futbol Rápido Canchas de Basquetbol Canchas de Volibal Pista de corredores	m2 m2 m2 m2 m2 m2 m2 m2 m2 m2 m2	4645.00 2575 7776.00 5772.00 3420.00 7776.00 2755.00 920.00 3500.00 1610.00 3426.00	\$ 3350.00 \$ 2,800.00 \$ 75.00 \$ 70.00 \$ 1,200.00 \$ 75.00 \$ 75.00 \$ 200.00 \$ 145.00 \$ 145.00 \$ 65.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	15,560,750,00 7,210,000,00 583,200,00 4,104,000,00 583,200,00 206,625,00 184,000,00 507,500,00 233,450,00 222,690,00
3 3.1 3.2 3.3.2 3.3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10.	ZONAS DEPORTIVAS Alberca a cubierto Gimnasio a cubierto Cancha de furbol Estadio Pista de Atletismo Estadio Gradas Estadio Cancha de Futbol Cancha de Futbol infantil Cancha de Futbol Rápido Canchas de Basquetbol Canchas de Volibal Pista de corredores Pista de Patinaje	m2 m2 m2 m2 m2 m2 m2 m2 m2 m2 m2 m2 m2	4645.00 2575 7776.00 5772.00 3420.00 7776.00 2755.00 920.00 3500.00 1610.00 3426.00	\$ 3,350,000 \$ 2,800,000 \$ 75,000 \$ 70,000 \$ 75,000 \$ 75,000 \$ 75,000 \$ 145,000 \$ 145,000 \$ 65,000 \$ 160,000	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	15,560,750,00 7,210,000,00 583,200,00 4,104,000,00 583,200,00 206,625,00 184,000,00 507,500,00 233,450,00 222,690,00 120,800,00
3 3.2 3.3.2 3.3.2 3.3.3 3.4 3.5 3.6 3.7 3.8 3.8	ZONAS DEPORTIVAS Alberca a cubierto Gimnasio a cubierto Cancha de furbol Estadio Pista de Atletismo Estadio Gradas Estadio Cancha de Futbol Cancha de Futbol Infantii Cancha de Futbol Rápido Canchas de Basquetbol Canchas de Volibal Pista de corredores	m2 m2 m2 m2 m2 m2 m2 m2 m2 m2 m2	4645.00 2575 7776.00 5772.00 3420.00 7776.00 2755.00 920.00 3500.00 1610.00 3426.00	\$ 3,350,000 \$ 2,800,000 \$ 75,000 \$ 70,000 \$ 75,000 \$ 75,000 \$ 75,000 \$ 145,000 \$ 145,000 \$ 65,000 \$ 160,000	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	15,560,750,00 7,210,000,00 583,200,00 4,104,000,00 583,200,00 206,625,00 184,000,00 507,500,00 233,450,00 222,690,00
3.1 3.2 3.3.2 3.3.2 3.4 3.5 3.6 3.7 3.8 3.9 3.10.	ZONAS DEPORTIVAS Alberca a cubierto Gimnasio a cubierto Cancha de furbol Estadio Pista de Atletismo Estadio Gradas Estadio Cancha de Futbol Cancha de Futbol infantil Cancha de Futbol Rápido Canchas de Basquetbol Canchas de Volibal Pista de corredores Pista de Patinaje	m2 m2 m2 m2 m2 m2 m2 m2 m2 m2 m2 m2 m2	4645.00 2575 7776.00 5772.00 3420.00 7776.00 2755.00 920.00 3500.00 1610.00 3426.00	\$ 3,350,000 \$ 2,800,000 \$ 75,000 \$ 70,000 \$ 75,000 \$ 75,000 \$ 75,000 \$ 145,000 \$ 145,000 \$ 65,000 \$ 160,000	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	15,560,750,0 7,210,000,0 583,200,0 4,04,000,0 583,200,0 206,625,0 184,000,0 507,500,0 233,450,0 120,800,0

TOTAL 5

40,256,859.75


6.2. FINANCIAMIENTO.

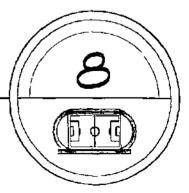
El financiamiento de esta obra se realizará mediante las siguientes aportaciones.

APORTACIONES	PORCENTAJE	COSTO EN PESOS
Municipio de Atizapán	40%	16,102,743.90
Coca Cola	30%	12,077,057.93
Sabritas	20%	8,051,371.95
Deportes Martí	10%	4,025,685.97
TOTAL	100%	40,256,859.75

En lo referente a las aportaciones proporcionadas por las empresas de iniciativa privada arriba mencionadas, serán en forma de inversión, a cambio de libre manejo de publicidad e imagen de las instalaciones, es decir, tendrán espacios exclusivos de punto de venta y marketing, así como eventos promocionados por dichos organismos.

CONCLUSION

CONCLUSION


Este documento representa la culminación de mi formación profesional a nivel Licenciatura e intenta reunir de manera global, los conocimientos necesarios para el desarrollo de la profesión de Arquitecto.

Un proyecto arquitectónico, cualesquiera que este sea, siempre será sujeto de perfectibilidad, sinembargo, para que un proyecto pueda funcionar adecuadamente debe cumplir con ciertos requerimientos, este proyecto "Centro Deportivo México Nuevo" cumple con los requerimientos de funcionalidad y estética señalados en los objetivos de esta Tesis, además de mostrar las capacidades y habilidades adquiridas durante esta etapa de mi formación profesional, todo ello gracias a la orientación y asesoría de los profesores de ésta emérita Institución educativa (UNAM).

La formación profesional y personal de una persona, no concluye sino hasta que ella lo decide así, pudiendo ser ese monento el último momento de nuestra existencia. Por tanto concluyo que siempre existirá algo más que aprender y por supuesto algo más que dar.

Gracias a mi Universidad, quedo en deuda con quienes aportaron algo de sí mismos para mi formación profesional y quedo con el firme propósito de ser mejor día con día, y de esta manera honrar a la Universidad Nacional Autónoma de México en conjunción con mi país México.

BIBLIOGRAFIA

BIBLIOGRAFIA

"Prayectos Prototipos de Instalaciones Deportivas" Comisión Nacional Del Deporte México, 1991

"Arquitectura Deportiva" Inq. Alfredo Plazola Anquiano Editorial Limusa

"Reglamento de Construcciones para el D.F." Edición actualizada 1994 Editorial Sista

"Manual de Construcción en Acero" Instituto Mexicano de la Construcción en Acero, A.C. Editorial Limusa

"Marual de Instalaciones Hidráulicas, Sanitarias, Aire, Gas y Vapor" Irq. Sergio Zepeda C. Editorial Limusa

"Instruictivo Sanitario" Comisión Constructora i Ingeniería Sanitaria de la Secretaría de Salubridad y Asistencia Pública. "instalaciones Eléctricas Prácticas" Inq. Diego Onésimo Becerril L. Il a. edición

"Arquitectura: forma, espacio y orden" F. Chinq Edit. GG/ México