

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE ODONTOLOGIA

VALORACION FISICA DE UN CEMENTO CON BASE EN UN POLVO DE CARBOXILATO DE ZINC EXPERIMENTAL Y LIQUIDOS EXPERIMENTALES

TESIS

QUE PARA OBTENER EL TITULO DE

CIRUJANA DENTISTA

PRESENTA:

KAREN MARIA ESTELA GARCIA BRISEÑO

DIRECTOR DE TESIS: DR. FEDERICO H. BARCELO SANTANA

ASESORES: C.D. P. FUMIKO MIYAKI ISHIHARA

C.D. DANTE S. DIAZ SUAREZ

MEXICO, D. F.

200

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Dedicado a...

Mis ángeles de la guarda:
Mamá Lochita, Abuelita Amalita,
Abuelito Gabriel y Papá Pepe,
aún cuando ya no estén físicamente,
siempre están en mi corazón.

Mis papás: Estela y Juan Manuel, Su gran amor y guía nos han traído hasta aquí, los amo.

> Mi hermana: Jackie, La vida no me pudo dar mejor compañera que tú, te amo.

Gracias...

Dios,

Por demostrarme día a día, segundo a segundo lo mucho que me amas, este logro no sería posible si no me hubieses dado oportunidades tan increíbles.

Por brindarme un hogar y una familia tan maravillosa.

Por colocar a todos mis amigos en el momento y lugar preciso para compartir sueños y desencantos, alegrías y tristezas, ilusiones y desengaños, angustias y esperanzas, etc.

Por colocar esa luz siempre, aún cuando parezca no estar.

Por hacer de mi un instrumento para ayudar a aliviar no solo el dolor físico, sino también el del alma. Porque sé que cuento con ustedes mi cariño por siempre... Lurim, Ale, Ivette, Imelda, Ana, Karina, Héctor, Jorge, Brenda, Mariana, Rene, Luis, Dr. Gabriel, Dr. Alejandro,

> Por todo su apoyo... Fam. García Morales, Fam. Briseño Rodríguez, Fam. Leyva Hernández, Fam. López Sánchez.

Por compartir conmigo esta alegría tan esperada...
Con mi más grande aprecio, gratitud y cariño a..

Fumiko, Dante, Dr. Barceló
Dra. Paulina, Dr. Jorge, Dr. Carlos y Dr. Haroldo,

Si a alguien he de agradecer el vivir esta experiencia es a usted, que me dio la pauta para buscar superarme en todos los sentidos. Gracias... Arg. Héctor Herrera.

Y super especialmente mil gracias por siempre estar juntos llueva, truene o relampaguee: Alejandro, Liz, Barbie, les quiero muchisisisimisimo.

Índice

Ín	dice		·i
1	Resume	en en	1
2	Introdu	cción	_ 3
3	Anteced	lentes	5
		entos de policarboxilato de zinc	8
		Composición	9
		Presentación	10
	3.1.3	Reacción química	10
		Propiedades físicas y químicas	11
		Respuesta biológica	14
	3.1.6	Indicaciones	14
	3.1.7	Manipulación	15
	3.1.8	Recomendaciones	17
	3.1.9	Ventajas	17
	3.1.10	Desventajas	18
4	Plantear	niento del problema	19
5	Justifica	ción	20
6	Hipótes	is	21
7	Objetivo		
	7.1 Gene	•	22
	7.2 Espec	efficos	23
8	Metodo.	logía	
		ción de estudio	24
	8.2 Mues	tra	24
	8.3 Criter	rios de inclusión	25
	8.4 Criter	rios de exclusión	25
	8.5 Tipo	de estudio	25
	8.6 Tipo	de variables	26
	8.7 Mater	riales	26
	8.8 Méto	dos	29
	8.9 Interp	oretación de resultados	39
9	Resultac	dos	
	9.1 Espes	sor de película	42
		po de endurecimiento	44
	9.3 Resist	tencia a la compresión	46
10) Discusió	ón	49

11 Conclusiones	54
12 Bibliografía	55
Anexo	**
Ilustraciones	
1. Líquidos experimentales	28
Manipulación del cemento	29
3. Material utilizado en prueba	
de espesor de película	31
4. Equipo para compresión	31
5. Cemento sometido a carga	32
6. Medición del espesor de película	32
7. Material utilizado para prueba	
de tiempo de endurecimiento	34
8. Aguja de Gillmore	34
9. Elaboración de muestra para	_
prueba de resistencia a la compresión	35
10.Aplicación de una capa de	
aceite de silicón	36
11.Material utilizado para prueba	
de resistencia a la compresión	37
12.Relación polvo-líquido obtenida	
por peso en balanza analítica	38
13. Muestra dentro de la cabina	38
Tablas	
 Requisiciones de los cementos dentales 	41
II. Resultados Espesor de película	43
III. Resultados Tiempo de endurecimiento	45
IV. Resultados Resistencia a la compresión	47
V. Resultados generales	48
Gráficas	
1. Resultados Espesor de película	43
2. Resultados Tiempo de endurecimiento	45
3. Resultados Resistencia a la compresión	47

**Anexo

Tablas de datos	por grupos
-----------------	------------

Espesor	de	pelic	ula.

Grupo A1	1 Anexo
Grupo A2	1 Anexo
Grupo B1	2 Anexo
Grupo B2	2 Anexo
Grupo C1	3 Anexo
Grupo C2	3 Anexo
Grupo D1	4 Anexo
Grupo D2	. 4 Anexo

Tiempo de endurecimiento.

Grupo Al	/ Anexo
Grupo A2	7 Anexo
Grupo B1	8 Anexo
Grupo B2	8 Anexo
Grupo C1	9 Anexo
Grupo C2	9 Anexo
Grupo D1	10Anexo
Grupo D2	10Anexo
-	

Resistencia a la compresión.

Grupo A1	13Anexo
Grupo A2	13Anexo
Grupo B1	14Anexo
Grupo B2	14Anexo
Grupo C1	15Anexo
Grupo C2	15Anexo
Grupo D1	16Anexo
Grupo D2	16Anexo

Gráficas de datos por grupos.

Espesor de película.

sor ac penedia.	
Grupo A1	1 Anexo
Grupo A2	1 Anexo
Grupo B1	2 Anexo
Grupo B2	2 Anexo
Grupo C1	3 Anexo
Grupo C2	3 Anexo
Grupo D1	4 Anexo
Grupo D2	4 Anexo

Tiempo de endurecimiento.	
Grupo A1	7 Anexo
Grupo A2	7 Anexo
Grupo B1	8 Anexo
Grupo B2	8 Anexo
Grupo C1	9 Anexo
Grupo C2	9 Anexo
Grupo D1	10Anexo
Grupo D2	10Anexo
Resistencia a la compresión.	
Grupo A1	13Anexo
Grupo A2	13Anexo
Grupo B1	14Anexo
Grupo B2	14Anexo
Grupo C1	15∧nexo
Grupo C2	15Anexo
Grupo D1	16Anexo
Grupo D2	16Anexo
Análisis estadístico.	
Espesor de película.	•
ANOVA, Tukey.	5 Anexo
Igualdad de varianzas.	6 Anexo
Valores estadísticos.	6 Anexo
Tiempo de endurecimiento.	
ANOVA, Tukey.	11 Anexo
Igualdad de varianzas.	12 Anexo
Valores estadísticos.	12 Anexo
Resistencia a la compresión.	,
ANOVA, Tukey.	17 Anexo
Igualdad de varianzas.	18 Anexo
Valores estadísticos.	18 Anexo

1. RESUMEN

Los cementos de policarboxilato de zinc surgieron en 1986 como un material que contaba con propiedades físicas aceptables, y sobre todo mayor biocompatibilidad con el órgano pulpar que los cementos existentes hasta ese momento. Dichas propiedades han quedado por debajo de las que presentan los cementos de mayor utilización hoy en día, por lo que los cementos de policarboxilato de zinc han caído en desuso, a pesar de ello, en México existen varias marcas de este material las cuales son de procedencia extranjera.

Se realizó la presente valoración física a un cemento de carboxilato de zinc (polvo) experimental, así como a 8 diferentes líquidos también experimentales los cuales fueron desarrollados en el Laboratorio de Investigación en Materiales Dentales.

El polvo fue formulado sinterizando 90% de óxido de zinc, óxido de magnesio, trióxido de bismuto y óxido de aluminio.

Los líquidos que se utilizaron fueron formulados en solución acuosa al 50% en peso: Copolímero acrílico-itacónico-maleico, Copolímero acrílico-itacónico-maleico con 5% de ácido tartárico,

Copolímero acrílico-itacónico, Copolímero acrílico-itacónico con 5% de ácido tartárico, Copolímero acrílico-maleico, Copolímero acrílico-maleico con 5% de ácido tartárico, Ácido poliacrílico y Ácido poliacrílico con 5% de ácido tartárico.

La valoración física realizada abarcó las pruebas de: espesor de película, tiempo de endurecimiento y resistencia a la compresión y se siguió la metodología de acuerdo con la norma No. 96 de la A.D.A. que desde 1995 rige a este tipo de cementos.

Los resultados indican que la presencia o ausencia del ácido tartárico dentro de la formulación no afecta los resultados, por lo que no existe diferencia estadísticamente significativa. A la vez se encontró que no cumplieron los requisitos mínimos aceptables que establece la norma en las pruebas de resistencia a la compresión y espesor de película.

Se habrá de determinar el por qué de los resultados obtenidos para así encontrar posible solución a ellos y poder entonces llevar a cabo una nueva valoración.

2. Introducción.

Los cementos de policarboxilato fueron creados por Smith en 1968, utilizándose desde entonces como bases y agentes cementantes, fueron el primer sistema de cementos que se adhirió a la estructura dentaria ya que presenta adhesión específica. (Guerrero-Barceló 1997)

Se considera como un cemento hidrofílico, debido a su afinidad con el agua. Es un sistema de polvo-líquido en el cual el líquido es una solución acuosa de ácido poliacrílico o un copolímero de ácido acrílico con otros ácidos carboxílicos insaturados; el polvo contiene básicamente óxido de zinc con pequeñas cantidades de óxido de magnesio pudiéndose añadir otros óxidos. (Guerrero-Barceló 1997; Basu 1989; Anisavice 1998; Padilla

y col. 1990; (Phillips 1993)

La reacción de fraguado del cemento implica la disolución de la superficie de la partícula por el ácido lo que libera al zinc, magnesio e iones de estaño, que se enlazan a una cadena de polímero por los grupos carboxilo, dichos iones reaccionan con los grupos carboxilos de las cadenas adyacentes para que se origine una sal transversa durante el fraguado. Entonces se forma una matriz de gel amorfa en la que se presentan partículas de zinc sin reaccionar.

La adhesión química a la estructura dentaria antes mencionada se debe a que: son consideradas entidades macromoleculares cuyos enlaces están formados por uniones iónicas y covalentes, de acuerdo con lo cual el polvo es el que aporta las uniones iónicas y el líquido, que es el polímero, las covalentes. Debido a la reacción compleja entre estas uniones es que se logra la unión específica ya que los grupos carboxílicos del ácido poliacrílico reaccionan con el calcio de la hidroxiapatita. (Williams-Cuningham 1992; Nicholson-Hawkins-Wasson 1993; Basu 1989; Padilla y col. 1990; Phillips 1993)

La norma de la Asociación Dental Americana que rige a este material es la No. 96, la cual los divide de acuerdo a su uso en cementos para bases y para cementación. (ANSI/ADA 1994)

3. ANTECEDENTES.

La experiencia que se tiene en el desarrollo y valoración de las bases poliméricas es extensa, ya que el Laboratorio de Investigación en Materiales Dentales (L.I.M.D.) de la División de Estudios de Posgrado e Investigación (D.E.P.e I.) de la Facultad de Odontología (F.O.) en conjunto con el Instituto de Física (I.F.), ambos de la Universidad Nacional Autónoma de México (U.N.A.M.), han publicado tópicos avanzados en la ciencia e ingeniería de materiales, éstos junto con las aplicaciones que se pudieran dar al tipo de bases poliméricas que se ocupan en la odontología actual hacen fundamentar el desarrollo de un material con las características idóneas para su utilización dentro de ella.

Las normas internacionales de los productos dentales en las que se indican los requisitos que éstos deberán cumplir para alcanzar un correcto comportamiento, han sido objeto de estudios realizados en el L.I.M.D., a continuación se mencionan algunos de ellos: En 1975 se inician las valoraciones sobre la base de éstas normas, "Estudio comparativo de 20 amalgamas nacionales y extranjeras" (Barcelo y col. 1988); de igual forma el laboratorio ha permitido desarrollar experiencia en el campo de la valoración de los materiales dentales lo cual se confirma con estudios publicados sobre dichos temas, "Evaluación física de un

cemento endodóntico experimental con fibras celulósicas." (Barceló-García 1994),
"Desarrollo de un aparato para pruebas de termociclado, valoración
piloto: silicato, resina compuesta, ionómero de vidrio" (Senties-Barceló 1994),
además: "Ionómero de vidrio: Valoración física de diferentes
presentaciones." (Barceló-Guerrero-Ramírez 1995)

En lo que se refiere al desarrollo de bases para la obtención de cementos polielectrolíticos y verificación de sus propiedades, en 1995 se publicó el artículo "Enginnering materials: The Case of Polyelectrolyte Cements" (Cantalo Artín 1993); también existen referencias acerca de un estudio de las estructuras de cementos dentales de policarboxilato de zinc, del campo de tecnología de materiales (Nicheleon Wassum 1993), los cuales dieron pie para los estudios realizados en la síntesis y caracterización del cemento de óxido de zinc y ácido poliacrílico con la futura adición de hidroxiapatita.

Por otra parte en 1997 se realizó un estudio comparativo entre un polvo experimental de cemento de carboxilato de zinc (en combinación con líquidos comerciales) y 5 cementos de policarboxilato de zinc comerciales, con base en la norma No. 61 ANSI/ADA la cual se ocupaba hasta 1995 de los cementos de policarboxilato de zinc. (Guerrero-

La experiencia en la fisicoquímica de polímeros, en donde se realizan estudios de correlación entre la estructura, las propiedades y el procedimiento para la obtención de materiales poliméricos, tienen aplicación en biomedicina por lo que su adecuación en los materiales dentales es susceptible de realizarse, muestra de ello es la síntesis y caracterización de polímeros que se ha realizado en conjunto con el Instituto de Física, lo cual se comprueba con la publicación del estudio: "Characterization of acrylic dental polymers" (Vera y col. 1986)

Así pues, por las experiencias previamente mencionadas es que el objetivo de esta investigación fue el de valorar las propiedades físicas de las formulaciones a partir del polvo de cemento de policarboxilato de zinc y los líquidos poliacrílicos, todos estos experimentales, obtenidos en el L.I.M.D. con el propósito de determinar cual de ellas es la que presenta los valores óptimos de acuerdo con la norma No. 96 y sobre esta valoración poder fundamentar una futura línea de investigación encaminada a la mejora continua del cemento de policarboxilato de zinc con la adición de nuevos componentes dentro de su formulación.

3.1.CEMENTOS DE POLICARBOXILATO DE ZINC.

Cementos de carboxilato de zinc, cementos de poliacrilato de zinc

Los cementos de policarboxilato de zinc fueron desarrollados a fines de 1960 e introducidos por Smith en el año de 1968, con la idea de combinar las propiedades de resistencia a la compresión presentada por los cementos de fosfato y la biocompatibilidad de los materiales a partir del óxido de zinc-eugenol. (Williams-Cuningham 1992; Nicholson 1995; Anisavice 1998; Phillips 1993) Están considerados dentro de los materiales cuya reacción es ácidobase.

La adhesión específica a la estructura dentaria es una característica notable en los cementos de policarboxilato de zinc, esta se realiza mediante los grupos laterales carboxilo presentes en el líquido. (Animarica 1998)

Un factor importante también es su excelente biocompatibilidad con el órgano pulpar, debido a que presenta una sensibilidad postoperatoria casi nula. (Antisavica 1998)

3.1.1. Composición química del polvo y líquido.

El polvo contiene óxido de zinc con un pequeño porcentaje de óxido de magnesio. Se añaden otros óxidos como los de bismuto y aluminio. También contiene pequeñas cantidades de fluoruro estannoso, el cual modifica el tiempo de endurecimiento y asegura las propiedades de manipulación, así mismo aumenta la resistencia a la compresión. (Guerrero-Barceló 1997; Anisavice 1998; Padilla y col. 1990)

El líquido es una solución acuosa al 45-50% del copolímero de ácido acrílico/ ácido itacónico (o bien, ácido maleico) y agua; el peso molecular de ácidos carboxílicos no saturados como el ác. itacónico deberá estar entre 30.000 y 50,000 unidades, es importante que la cantidad de monómero residual sea la mínima. El líquido es estabilizado con ácido tartárico al 5% ya que disminuye la viscosidad del líquido lo cual evita que se espese y gelifique durante el tiempo de almacenamiento y aumenta la resistencia. El ácido itacónico mejora el fraguado del cemento. (Basu 1989, Animovico 1998, Padilla y col. 1990; Smith 1980)

3.1.2. Presentación.

Los cementos de policarboxilato de zinc que se basan en la reacción entre el óxido de zinc y las soluciones acuosas de ácido poliacrílico, se presentan en 2 avíos, uno conteniendo el líquido y otro con el polvo, o bien, puede presentarse el polvo de óxido de zinc con el ácido policarboxílico liofilizado en el mismo avío, el cual se mezcla con agua. (Crisp-Wilson 1976; Guerrero-Barceló 1997; Anisavica 1998)

3.1.3. Reacción química.

El óxido de zinc reacciona con el ácido poliacrílico formando una estructura de cadenas cruzadas de poliacrilato de zinc o policarboxilato de zinc. En este cemento, el óxido de zinc proporciona las uniones iónicas mientras que el ácido carboxílico las covalentes, como ya se ha mencionado. (Guerrero-Barceló 1997; Nicholson 1995; Antisevince 1998; Padillo y col. 1990; Phillips 1993)

Al realizarse la mezcla, el ácido ataca la superficie de las partículas del polvo con la liberación de iones zinc, magnesio y estaño los cuales se unen a las cadenas de polímeros por medio de los grupos carboxilo, los ácidos carboxílicos al combinarse con óxidos metálicos

forman sales metálicas todas sólidas en general, por lo que en estos cementos al darse la reacción de endurecimiento entre cadenas adyacentes se forma una sal binaria de cadenas cruzadas (sal transversa), y, el cemento endurece, dando como resultado partículas de óxido de zinc unidas entre sí por una matriz amorfa geliforme sin estructura determinada, dentro de la cual habrá partículas de óxido de zinc dispersas sin reaccionar. (WIIIIama-Cumingham 1992; Guerrero-Barceló 1997; Nicholson 1995; Nicholson-Abiden

1998; Anisavice 1998; Padilla y col. 1990; Phillips 1993)

3.1.4. Propiedades físicas y autmicas.

La mezcla recién hecha de este cemento es pseudoplástica pero, bajo condiciones de manejo como la espatulación y la presión que se ejerce durante la colocación de la restauración provocan el efecto de tixotropismo, lo cual nos ayudará a conseguir una mayor fluidez que a su vez favorecerá un espesor de película más pequeño, sin olvidar que, el espesor de película principalmente estará determinado por el tamaño de la partícula del polvo. (Antisavice 1998)

La viscosidad de este cemento está dada principalmente por el peso molecular del líquido utilizado, así como por su concentración pudiendo variar de acuerdo a la relación polvo-líquido. (WIIIJame-Cumingham 1992;

El cemento de policarboxilato de zinc incrementa su resistencia rápidamente tras el endurecimiento inicial, aproximadamente una hora después de iniciada la mezcla la resistencia que posee es del 80%. (Bertenshaw-Combe 1972; Anisavince 1998; Plant-Wilbon 1970; Smith 1971)

Los cementos de policarboxilato de zinc tienen una resistencia a la compresión de aproximadamente 70 MPa, la cual es menor a la resistencia que presenta el fosfato de zinc, sin embargo, en cuanto a su tensión diametral el policarboxilato de zinc es levemente mayor a la presentada por el fosfato de zinc. (ones-Sutow, Pascocke 1979; Antisavice 1998)

El policarboxilato de zinc al no ser tan rígido y tener un módulo de elasticidad menor al del fosfato de zinc, no es tan frágil y además es menos quebradizo que el silicato, fosfato de zinc y el ionómero de vidrio, pero es más quebradizo que una resina, lo cual hace más difícil la remoción de excedentes tras el endurecimiento.

La sensibilidad postoperatoria es insignificante debido a que el tamaño de la molécula del ácido poliacrílico es mayor que el diámetro de los túbulos dentinarios, lo cual impide el movimiento de fluidos a través de ellos. (Aniantes 1988)

Los cementos de policarboxilato de zinc tienen baja conducción térmica por lo que ofrecen protección contra los estímulos térmicos.

(Williams-Cumingham 1976; Anisavince 1988) Además de que si se utiliza una relación apropiada de polvo-líquido se pueden aplicar como protector pulpar (Williams-Cuningham 1992; Guerrero-Barceló 1997; Anisavice 1998) aún cuando su acidez inicial pudiese hacer pensar que es agresivo al órgano pulpar, esto no tiene lugar puesto que alcanza rápidamente la neutralidad por la reacción del óxido de zinc. (Anisavice 1998)

Presenta una solubilidad mínima en agua, pero al ser expuesto a los ácidos orgánicos (pH = 4.5 o menos) ésta se incrementa de manera muy notoria. De igual forma la alteración en la relación polvo-líquido provoca mayor solubilidad y desintegración. (Anisavice 1998)

Además de las propiedades mencionadas posee excelente biocompatibilidad con la dentina la cual al contener iones calcio propicia la adhesión química con este cemento. (Anisavice 1998)

3.1.5. Respuesta biológica.

Es un material biocompatible, ya que no irrita al órgano pulpar, lo cual se relaciona con:

- La elevación rápida de su pH inicial (el pH del líquido es aproximadamente 1.7) hacia la neutralidad, puesto que al terminar la mezcla es de aproximadamente 3.0 a 4.0 y se neutralizará conforme la reacción de endurecimiento vaya progresando, al cabo de 24 horas será de 6.0
- El tamaño de la molécula del ácido poliacrílico provoca un mínimo movimiento del líquido en el interior de los túbulos dentinarios. Así mismo este ácido tiende a formar complejos con las proteínas lo cual contribuye a su lento progreso a través de la dentina.

3.1.6. Indicaciones.

Se utiliza como base o bien como obturación temporal, principalmente para cementación y en algunos casos como forro cavitario. (Anisavice 1998)

3.1.7. Manipulación.

La obtención de resultados satisfactorios obliga al operador a seguir con extremo cuidado las instrucciones del fabricante, así como a tomar cualquier precaución para evitar complicaciones indeseables.

La proporción polvo-líquido oscila entre 1 y 1.5 partes de polvo por una de líquido en peso.

El uso de una loseta fría así como el mantener el polvo a baja temperatura proporciona un mayor tiempo de trabajo, pero lo que nunca se deberá hacer es enfriar el líquido, pues estimularía la gelificación debido a las uniones hidrógeno.

La incorporación del polvo hacia el líquido deberá ser rápida en grandes cantidades, preferentemente de una sola intención y el tiempo de mezcla será aproximadamente de 30 segundos lo cual varía de acuerdo al fabricante.

La restauración deberá colocarse cuando la superficie del cemento esté brillante ya que si se ve opaca significa que la reacción progresó al punto de que contiene una cantidad insuficiente de grupos

carboxilo sin reaccionar para que se combinen con el calcio del órgano dentario, interfiriendo con la adhesión.

Al endurecer el cemento pasa a través de un estado pseudoplástico, el excedente que surge de los márgenes al asentar la restauración en la cavidad no se retira mientras se encuentra en este estado porque hay peligro de que se elimine no sólo el excedente sino también el cemento que se encuentra debajo de los márgenes dejando un espacio vacío.

El tiempo de trabajo es entonces entre 2:30 y 3:30 minutos a una temperatura de 22°C +/- 2°C y el tiempo de endurecimiento será entre 6 y 8 minutos a una temperatura de 37°C. En los cementos en que el líquido se liofiliza y se mezcla con agua, el tiempo de endurecimiento se prolonga un poco más.

Aún cuando los cementos de policarboxilato de zinc son hidrofílicos, la cavidad deberá estar limpia y seca para obtener una óptima adhesión, por ello se han utilizado soluciones de Brushita (fosfato ácido de calcio dihidratado) para tratar la dentina debido a que deja una delgada capa de un precipitado de hidroxiapatita de calcio con lo que se aumenta la resistencia y la adhesión. (Williams-Cuningham 1992; Guerrero-

3.1.8. Recomendaciones.

- Tomar en cuenta que su tiempo de trabajo es corto.
- Retirar impurezas de la cavidad preparada ya que éstas interfieren con la adhesión.
- Aislar la cavidad para evitar la contaminación con líquidos bucales.
- Secar bien la cavidad y la restauración justo antes de cementar.
- Utilizar el cemento antes de que pierda su brillo para una mejor adhesión, llevarlo a la cavidad y esperar a que endurezca.

3.1.9. Ventajas

- Solubilidad y espesor de película similares a las del fosfato de zinc.
- Reacción pulpar leve.
- Adherencia química a la estructura dental.
- Biocompatible.
- Unión química a restauraciones metálicas.

3.1.10. Desventajas

- Requiere una proporción precisa para obtener las mejores propiedades.
- Su resistencia es moderada en comparación con los cementos de fosfato de zinc o ionómero de vidrio.
- La cantidad de flúor utilizada dentro del fundente no es suficiente como para proporcionar propiedades anticariogénicas.
- No se adhiere a aleaciones de oro ni a la cerámica.

4. PLANTEAMIENTO DEL PROBLEMA

A pesar de que en un inicio los cementos de carboxilato de zinc tuvieron gran aceptación por parte del cirujano dentista, esta disminuyó en el momento en que sus propiedades físicas fueron superadas por las de otros cementos.

En nuestro país se suma a ello la falta de un producto nacional con la calidad y propiedades físicas conforme a los requisitos establecidos por la norma No. 96 de la A.D.A., para enfrentar en el mercado a los productos importados (los cuales generan un costo elevado debido a su procedencia), dentro de los cuales se encuentran productos que no logran cumplir con dichas especificaciones.

5. JUSTIFICACIÓN.

Las principales ventajas con las que cuenta el cemento de policarboxilato de zinc hacen creer que puede ser un cemento con mayor utilización como una opción a los cementos hoy en día más utilizados. De tal forma se hace necesaria la obtención de un cemento de policarboxilato de zinc con propiedades superiores a las presentadas por los ya existentes en el mercado. El L.I.M.D. ha considerado el desarrollo de un nuevo producto, de tal manera ha logrado la obtención del polvo de carboxilato de zinc y líquidos de ácido poliacrílico, todos ellos experimentales.

Para determinar si cumple los requisitos de la norma No. 96 es que se realizó un análisis de control de calidad con el cemento experimental desarrollado en el L.I.M.D. de la D.E.P.eI. de la Facultad de Odontología, U.N.A.M. lo cual permita saber si se está sobre la línea de investigación correcta para poder realizar la transferencia de tecnología a fabricantes nacionales con lo que lo cual se verá disminuido considerablemente su costo y, a su vez tener esta línea abierta a mejoras continuas.

6. HIPÓTESIS.

6.1. INVESTIGACIÓN.

La utilización de los líquidos experimentales en conjunto con el polvo experimental de carboxilato de zinc darán como resultado diferentes formulaciones de cementos de policarboxilato de zinc de acuerdo con la norma No. 96 de la A.D.A.

6.2. ALTERNAS

- La adición de ácido tartárico a cada una de las formulaciones básicas de los líquidos mejorará los valores conforme a la A.D.A.
- La utilización de copolímeros brindará mejores resultados.
- La relación polvo-líquido (1.5-1) será la adecuada para brindar la resistencia a la compresión requerida por la norma No. 96.

6.3. NULA.

La combinación de los diferentes líquidos experimentales por separado con el polvo de carboxilato de zinc experimental brindará valores por debajo de los establecidos por la A.D.A.

7. OBJETIVOS.

7.1. GENERAL.

Determinar las propiedades físicas del cemento de policarboxilato de zinc experimental desarrollado en el Laboratorio de Investigación en Materiales Dentales de la D.E.PeI. de la Facultad de Odontología, U.N.A.M. de acuerdo con la norma No. 96 de la A.D.A.

7.2. ESPECÍFICOS.

Determinar:

- La resistencia a la compresión del cemento experimental con cada uno de los diferentes líquidos experimentales.
- El espesor de película del cemento experimental con cada uno de los diferentes líquidos experimentales.
- El tiempo de endurecimiento del cemento experimental con cada uno de los diferentes líquidos experimentales.
- Cual de las combinaciones obtenidas es la que presenta los valores adecuados para en ella fundamentar una línea de investigación abierta para mejoras continuas.

8.9. Interpretación de resultados.

8.9.1.Espesor de película.

Por lo menos cuatro de cinco resultados debieron ser menores a 25 micras para que el material pasara el grosor requerido por la norma No. 96 de la A.D.A. tabla I (página 41). Si sólo 2 ó 1 muestras presentaron 25 micras de grosor el material habrá fallado en éste requerimiento. (ANSI/ADA)

8.9.2. Tiempo de endurecimiento.

Se registraron los resultados de las pruebas. Cada resultado pudo estar dentro del rango especificado en la tabla I (página 41) para que el material cumpliera con el requerimiento. (ANSI / ADA)

8.9.3. Resistencia a la compresión.

Si cuatro o cinco de los resultados obtenidos fueron menores a la resistencia mínima especificada en la tabla I (página 41), el material habrá fallado la prueba. Si por lo menos cuatro de cinco de los resultados estuvieron por encima de la fuerza mínima especificada en la tabla I (página 41), el material pasó la prueba. (ANSI/ADA)

8.10. Tipo de análisis estadístico.

Se realizó el análisis de varianza, y la prueba de Tukey.

INDICACIÓN	Espesor de película máximo (μm)	Tiempo de endurecimiento (minutos) min. max.	o de niento tos) max.	Resistencia a la compresión mínima (MPa)
Cementación	25	2.5	∞	70
Bases y forros	No aplica	2	9	20
Tabla I. Req	Tabla I. Requisiciones de los cementos dentales. ANSI / ADA No. 96	ntos dental	les. AN	SI / ADA No. 96

- A1) Copolímero acrílico-itacónico-maleico.
- A2) Copolímero acrílico-itacónico-maleico y 5% de ácido tartárico.
- B1) Copolímero acrílico-itacónico.
- B2) Copolímero acrílico-itacónico con 5% de ácido tartárico.
- C1) Copolímero acrílico-maleico.
- C2) Copolímero acrílico-maleico con 5% de ácido tartárico.
- D1) Ácido poliacrílico.
- D2) Ácido poliacrílico con 5% de ácido tartárico.

Máquina universal de pruebas INSTRON (con una carga de 50N/min.)

Hacedores para muestras de resistencia a la compresión de 6 mm de largo por 4 mm de diámetro.

Hacedores de muestras para tiempo de fraguado de acuerdo con la norma No. 96 de la A.D.A.

Aguja de Gillmore con punta de 1mm de diámetro y 400grms. de peso.

Láminas de vidrio circulares con superficie de 200 mm² para la prueba de espesor de película.

Balanza analítica OHAUS.

Ambientador a 37° C y con humedad del 30%.

Equipo para compresión con 150 Newtons de carga.

Losetas de vidrio.

Espátulas para cementos.

Prensas manuales.

Cronómetro.

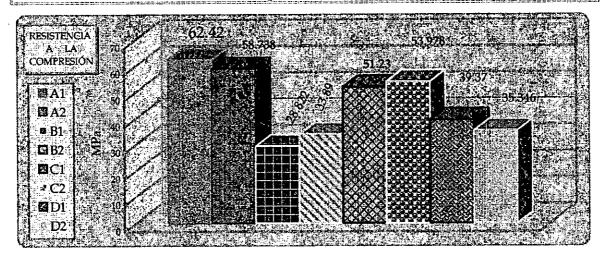
Estufa Hanau, temperada a 37º C y con humedad relativa mínima 90%. Frascos de vidrio de boca ancha y con tapa.

Discos de carburo de silicio de grano No. 400 humedecidos.

Aceite de silicón.

Tornillo micrométrico.




Ilustración 1. Líquidos experimentales.

9.3.RESISTENCIA A LA COMPRESIÓN.

En esta prueba los grupos también existieron diferencias estadísticamente significativas durante el análisis de varianza, obteniendo una F=49.925 y una p<0.001, después se aplicó la prueba de Tukey infiriendo que aquellos que crearon una diferencia con relación a los otros grupos fueron: A1 (copolímero acrílico-itacónico-maleico) con un promedio de 62.420 MPa y A2 (copolímero acrílico-itacónicomaleico con 5% de ác. tartárico) el cual obtuvo un promedio de 58.738 MPa, puesto que registraron los valores más altos seguidos por C2 (copolímero acrílico-maleico con 5% ác. tartárico) con un promedio de 53.97 MPa, con lo cual se explica el que entre ellos no se crease una diferencia estadísticamente significativa mientras que, al compararse con los demás grupos si se genero esta diferencia. Al comparar A2 (copolímero acrílico-itacónico-maleico con 5% de ác. tartárico) el cual obtuvo un promedio de 58.738 MPa y C1 (copolímero acrílico-maleico promedio de 51.232) tampoco se encontró diferencia estadísticamente significativa ya que también obtuvo valores por arriba de 50 MPa. Aquellos grupos que obtuvieron los menores valores fueron: B1(copolímero acrílico-itacónico-tartárico) con 28.822 MPa y B2 (copolímero acrílico-itacónico con 5% de ác. tartárico) cuyo promedio fue de 33.894 MPa.

B TEMPERAL MANNEY TO CAR AND A CHARLES AND A	Copolímero acrílico- itacónico- maleico	Copolímero acrílico- itacónico- maleico- 5% ác. tartárico	Copolímero acrílico-	Copolímero acrílico- itacónico- 5% ác. tartárico	Copolímero	Copolímero acrílico- maleico- 5% ác. tartárico	Ácido	Ácido poliacrílico- 5% tartárico
	A1	A2	B1	B2	C 1	C2	D1	D2
Promedio (MPa)	62.420	58.738	28.822	33.894	51.232	53.978	39.372	35.346
Desviación estándar	3.771	3.077	3.660	4.087	6.943	4.270	2.435	1.423
Confiabilidad	94.00%	94.80%	84.60%	87.90%	86.20%	92.10%	93.80%	96.00%

Tabla IV. Resultados de la prueba de resistencia a la compresión.

Gráfica 3. Resistencia a la compresión. (Promedios) Los valores obtenidos por los grupos quedan por debajo de lo establecido por la norma No. 96 de la A.D.A.

	Copolímero acrílico- itacónico- maleico	Copolímero acrílico- itacónico- maleico- 5% ác. tartárico	Copolímero acrílico- itacónico	Copolímero acrílico- itacónico- 5% ác. tartárico	Copolímero acrílico- maleico	Copolímero acrílico- maleico- 5% ác. tartárico	Ácido poliacrílico	Ácido poliacrílico- 5% tartárico
	A 1	A2	B 1	B2	C1	C2	D1	D2
Promedio (µm)	72.6	95.2	53.6	51.6	55.0	58.6	45.6	59.0
Desviación estándar	0.080	0.048	0.057	0.052	0.026	0.026	0.075	0.208
Confiabilidad	88.87%	61.56%	89.32%	89.80%	95.20%	76.19%	83.50%	64.80%
Promedio (min)	3.550	3.769	2.725	5.083	3.312	3.541	3.612	5.783
Desviación estándar	0.097	0.379	0.185	0.936	0.104	0.51 <i>7</i>	0.037	0.452
Confiabilidad	97.30%	89.90%	93.20%	81.60%	96.90%	85.40%	98.90%	92.20%
Promedio (MPa)	62.420	58.738	28.822	33.894	51.232	53.978	39.372	35.346
Desviación estándar	3.771	3.077	3.660	4.087	6.943	4.270	2.435	1.423
Confiabilidad	94.00%	94.80%	84.60%	87.90%	86.20%	92.10%	93.80%	96.00%

Tabla V. Resultados generales.	
Tuble V. Accountable Benefities .	

10.Discusión

Los resultados obtenidos en la prueba de espesor de película concuerdan con los obtenidos durante la valoración física realizada con anterioridad al mismo polvo experimental utilizando líquidos comerciales (en el rango de 47 a 75 μm) (Comerco-Barcoló 1997), en la cual se determinó que ninguna de las combinaciones de los líquidos comerciales con el polvo experimental lograron estar dentro de los valores requeridos por la norma, mientras que las formulaciones comerciales se encontraron en el rango entre 13 y 75μm. El presente estudio obtuvo solamente un valor que resultó ser demasiado elevado con respecto a los que estamos hablando, lo cual pudo deberse a la viscosidad del copolímero poliacrílico-itacónico-maleico (promedio 72μm) al igual que el copolímero con la adición del ácido tartárico (95μm), ya que fueron los que obtuvieron los espesores más altos.

En cuanto al tiempo de endurecimiento, se pudo observar que en relación con los tiempos obtenidos por Guerrero-Barceló se lograron bajar dichos valores con la utilización de los líquidos experimentales (entre 2.72 y 5.78 minutos) en comparación con los obtenidos con la utilización de los líquidos comerciales (entre 5.5 y 9.33 minutos) (Guerrero-Barceló 1997), dentro de ésta disminución se observó que

las formulaciones que contenían 5% de ácido tartárico lograron tiempos más prolongados (A2= 3.769 minutos, B2=5.083 minutos, C2=3.541 minutos y D2=5.783 minutos), los cuales no generaron diferencia estadísticamente significativa, dentro de esta prueba se puede hablar que en general no causan ningún problema los resultados, pues todos los valores se encuentran dentro del rango permitido por la norma No. 96 de la A.D.A., estas disminuciones en tiempo concuerdan con el estudio realizado por Nicholson, en el cual al haber adicionado ácido tartárico en diferentes proporciones 20%, 15%, 10% y 5%, se obtuvieron tiempos de endurecimiento más prolongados (entre 7.9 y 8.2 minutos), sin existir de igual manera diferencia estadísticamente significativa en los resultados entre los diferentes porcentajes que utilizó. (Nicholson 1995)

En otro estudio Nicholson y Abiden (1996) señalan que al adicionar otros componentes se alcanzaron tiempos de endurecimiento más prolongados que los de su estudio anterior, con NaCl (12.4 minutos), con KCl (15.6 minutos), con KBr(16.0 minutos), KI (16.0 minutos) los cuales se encuentran fuera de los valores que la norma No. 96 indica (aproximadamente 2 a 8 minutos tras el fin de la mezcla del cemento) en tanto que los obtenidos durante la valoración objeto de esta tesis, si se encuentran dentro de ese rango. Siguiendo con sus formulaciones Nicholson(1996) en otro artículo refiere que la adición de

cloruros a los cementos de policarboxilato de zinc disminuye el tiempo de endurecimiento, dichos cloruros y tiempos fueron: MgCl₂ (2.7 minutos), CaCl₂ (2.7 minutos), SrCl₂ (2.9 minutos) y ZnCl₂ (4.1 minutos), comparando dichos valores con los obtenidos durante la actual valoración que son aún más parecidos a los reportados en esta (entre 2.72 y 5.78 minutos).

La resistencia a la compresión obtenida en el estudio actual y la realizada por Guerrero-Barcelón resultaron ser muy similares, ya que los valores que ellos reportaron con líquidos comerciales fueron entre 34.45 y 58.18 MPa, y los obtenidos con las formulaciones de líquidos experimentales alcanzaron valores entre 28.82 y 62.42 MPa.

Retomando el trabajo realizado por Nicholson, en el cual las muestras de dos cementos de policarboxilato de zinc comerciales fueron guardadas bajo diferentes factores tales como humedad, temperatura y tiempo, consiguiéndose valores entre 73 y 93 MPa con utilización de agua bidestilada dentro de un ambientador a 37°C en un tiempo de 24 horas, dichas condiciones son iguales a las utilizadas durante la presente valoración y los resultados quedan nuevamente por debajo de los obtenidos por Nicholson (entre 28.82 MPa del copolímero acrílico-itacónico y 62.42 MPa del copolímero acrílico-itacónico y 62.42 MPa del copolímero acrílico-itacónico-maleico). (Nicholson-Hawkins-Wassun 1993)

El estudio realizado por Nicholson y Abiden(1995) reportó que en general los cementos de policarboxilato de zinc logran una resistencia a la compresión aproximada de 90 MPa deja ver que las formulaciones experimentales valoradas en esta ocasión quedan muy por debajo. 1995, se Dentro del mismo trabajo realizado en comparación entre los cementos de policarboxilato de zinc con la adición de ciertos electrolitos como: NaCl, NaF y NaNO3 y aquellos cementos comerciales que no los contienen (95.2 MPa), los valores obtenidos fueron NaCl 87.2 MPa, NaF 89.2 MPa y NaNO, 90.8 MPa por lo que no hubo diferencia sustancial entre la utilización o no de estos electrolitos, pero sí en aquellos que contenían sulfato de sodio acuoso ya que tuvieron diferencias sustanciales dentro de la microestructura del cemento tras el endurecimiento final reduciendo la resistencia a la compresión hasta 56.8 MPa (Nichotson-Abiden 1995), valor que concuerda con los que se obtuvieron en este estudio.

El estudio realizado en 1998 (Nichelem) en el cual se adicionan a las formulaciones NaCl, KCl, KBr, KI hace ver que lo único que se obtiene con dichas adiciones es disminuir la resistencia a la compresión de los cementos de policarboxilato de zinc ya que obtuvieron los valores siguientes: NaCl 82.9 MPa, KCl 77.2 MPa, KBr 85.3 MPa y KI 83.8 MPa. Así mismo durante otra fase del mismo estudio se adicionó MgCl, CaCl, SrCl y ZnCl y dio como resultados una disminución de

la resistencia a la compresión con valores de MgCl. 60.4 MPa, CaCl. 57.3 MPa, SrCl. 59.8 MPa y ZnCl. 64.2 MPa. (Nichelson 1990)

En un artículo publicado en 1999 (Diaz-Vargas-Haselton) se reportó que los cementos de policarboxilato de zinc tienen una resistencia a la compresión menor a la de los cementos de fosfato de zinc, tal y como ya se ha hecho mención, en ese estudio reportaron 55 y 85 MPa, comparándolo con las formulaciones utilizadas en esta investigación se encontró que los obtenidos caen dentro de ese rango (A1- copolímero acrílico-itacónico-maleico con 62.42 MPa y A2- copolímero acrílico-itacónico-maleico con 5% de ác. tartárico cuyo promedio fue 58.738 MPa).

Es importante resaltar que los factores que pudieron influir en los resultados son: 1) la viscosidad de los líquidos experimentales, ya que fueron muy diferentes entre sí, con lo que se obtuvieron diferentes consistencias con cada formulación, y, 2) el tamaño de la partícula del polvo de cemento de carboxilato de zinc experimental, ya que para llevar a cabo la mezcla en el proceso de elaboración de las muestras se utilizaron losetas nuevas las cuales al concluir el estudio se encontraron con defectos visibles de la abrasión a la que fueron expuestas.

11. CONCLUSIONES.

- En general el líquido que presentó las mejores propiedades físicas al combinarlo con el polvo experimental con base en carboxilato de zinc fue A1 (Copolímero acrílico-itacónico-maleico).
- En la prueba de espesor de película el líquido que dio resultados más homogéneos fue: C1 (Copolímero acrílico-maleico).
- En tiempo de endurecimiento podemos hablar que aún cuando todas las formulaciones estuvieron dentro de los rangos permitidos, la que nos brindó un tiempo de trabajo aceptable, es decir, no fue ni corto ni muy prolongado, así como homogeneidad en las muestras fue: D1 (Ácido poliacrílico).
- En la prueba de resistencia a la compresión la formulación que mejores resultados tuvo fue: A1 (Copolímero acrílico-itacónicomaleico).
- Se pudo observar que el agregar a las formulaciones de los líquidos un 5% de ácido tartárico en general no provoca diferencia estadísticamente significativa con respecto a las formulaciones que no contaron con él.

12. BIBLIOGRAFÍA.

- AMERICAN NATIONAL STANDARD / AMERICAN DENTAL ASSOCIATION. Specification No. 96 for Dental Water-Based Cements. August 23, 1995.
- ANISAVICE KENNETH J., Ciencia de los Materiales Dentales.
 Décima edición. 1998. Interamericana McGraw Hill.
- BARCELÓ S., GARCÍA A. "Evaluación física de un cemento endodóntico experimental con fibras celulósicas". Práctica Odontológica 15 (4) 1994 P. p. 43-47.
- BARCELÓ S., GUERRERO I., RAMÍREZ O. "Ionómero de vidrio: Valoración física de diferentes presentaciones ". Práctica Odontológica 16 (4) 1995 P.p.31-34.
- BARCELÓ S., REYES M., QUINTERO E., SAÉZ E. "Estudio comparativo de 20 amalgamas nacionales y extranjeras". Práctica Odontológica 9 (9) 1988, Pp.30-39.
- BASU K.,. Dental Materials Science, 1989. P.p. 122-123. 145-149.
- BERTENSHAW B., COMBE E. "Studies on polycarboxylates and related cements. 2. Analysis of cement powders". Journal Dentystry 1(2) -1972 P.p. 65-8

- Valoración física de un cemento con base en un polvo de carboxilato de zinc experimental y líquidos experimentales.
- CASTAÑO M., ARITA H., SANIGER J., HU H. "Enginnering materials: The Case of Polyelectrolyte Cements." Instituto de Física U.N.A.M. Edited by J.L Morán-López y J.M. sánchez. Plenum Press, New York, U.S.A. 1993. P.p. 103-116.
- CRISP S., PROSSER H., WILSON A. "Art infrared spectroscopic study of cement formation between metal oxides and aqueous solutions of poly (acrylic acid)". J Mat Sci 1976; 11.36. P.p.129.
- DÍAZ A., VARGAS M., HASELTON D. "Current status of luting agents for fixed prostodontics." Journal of prosthetic dentistry, 81:91: 1999 Pp. 135-141.
- ELORZA H. "Estadística para las ciencias sociales y del comportamiento". Segunda edición.1999. Oxford University Press.
- GUERRERO I., BARCELÓ S. "Valoración física basándose en la norma de cementos de carboxilato de Zinc, estudio comparativo con polvo experimental". Tesis de maestría. F.O., U.N.A.M., 1997.
- HIL L. "The influence of polyacrylic acid molecular weight on the fracture of zinc polycarboxylate cements". Journal of Materials science 26 (1991) P.p. 67-74.
- JONES D., SUTOW E., PEACOCKE L. "Direct tensile strength of glass ionomer, polycarboxylate and phosphate cements". Journal Dent Res 1979; 57: (Spec Iss A) Abst 1212.

- Valoración física de un cemento con base en un polvo de carboxilato de zinc experimental y líquidos experimentales.
- NICHOLSON J. "Studies in the setting of polyelectrolyte cements.
 Part VII The effect of divalent metal chlorides on the properties of zinc polycarbolylate and glass-ionomer dental cements". Journal of Materials Science: Materials in Medicine 9 (1998) P.p.273-277.
- NICHOLSON J. "Studies in the setting of polyelectrolyte materials.
 Part III The effect of sodium salts on the setting and compressive
 strength of glass-polyalkenoate and zinc polycarboxylate dental
 cements". Journal Materials Science: Materials in Medicine 6 (1995)
 P.p.404-408.
- NICHOLSON J., ABIDEN F. "Studies on the setting of polyelectrolyte cements. Part VI The effect of sodium salts on the mechanical properties and water balance of zinc polycarboxylate and glass-ionomer dental cements". Journal of Material Science: Materials in Medicine 9 (1998) P.p.269-272.
- NICHOLSON S., HAWKINS J., WASSON E. "A study of the structure of Zinc polycarboxylate dental cements". Journal of Material Science: Materials in Medicine 4 (1993) P.p.32-35.
- PADILLA A., VAZQUEZ P., ACOSTA, CASTAÑO M. Porosimetry studies on polyacrylic acid-ZnO cements. Journal of Material Science: Materials in Medicine 1 (1990) P.p.154-156.
- PHILLIPS RALPH W. La Ciencia de los Materiales Dentales.
 Novena edición. 1993. Interamericana McGraw-Hill. P.p.512-516.

- PLANT C., WILSON A. "Early strengths of linning materials." Br
 Dent J 1970; 129 P.p.269.
- SENTÍES H., BARCELÓ S. "Desarrollo de un aparato para pruebas de termociclado, valoración piloto: silicato, resina compuesta, ionómero de vidrio." Práctica Odontológica 15(8) 1994 P.p. 1321.
- SMITH D Glass Ionomer cements In. KAWAHARA H. Implantology and Biomaterials in Stomatology. Tokyo, Ishikayti Flublisher 1980.
- SMITH D. "A review of the zinc polycarboxylate cements" J Can Dent Assoc 1971; 37 P.p.22
- VERA G., MARTÍNEZ R., PALACIOS A., BARCELÓ S., CASTAÑO M. "Characterization of acrylic dental polymers". Polymer Symposia 148, P.p.463-481. (1999).
- WILLIAMS D., CUNINGHAM J. Materiales en la Odontología Clínica, 1992. P.p. 88-89, 99-103.

18
\triangleright
Z
耍
o.

Observations

T	Test for Equality of Variances between Series							
Sam	Sample: 1 5 Included observation							
	Category Statistics							
Variable	Count	Std. Dev.	Mean Diff.	Median Diff.				
A1	5	3.771	2.996	2.746				
A2	5	3.077	2.422	2.309				
B1	5	4.518	3.190	2.700				
B2	5	4.087	2.896	2.590				
C1	5	7.141	4.500	4.369				
CZ	5	4.270	2.740	2.528				
D1	5	2.435	2.004	1.748				
D2	5	1.423	1.061	0.983				
All	40	12.518	2.726	2.497				

Análisis	Análisis estadístico 3.2. Igualdad de varianzas. Resistencia a la compresión.								
			0						
	A1	A2	B1	B2	C1	CZ	D1	D2	
Mean	62.420	58.737	28.823	33.894	51.231	53.978	39.371	35.345	
Median	61.172	59.299	26.373	35.424	51.887	54.384	40.651	35.736	
Maximun	68.038	62.420	33.317	37.608	61.172	58.909	41.666	37.140	
Minimum	58.675	54.618	26.061	27.075	41.744	47.127	35.814	33.317	
Std. Dev.	3.771	3.077	3.659	4.087	6.943	4.270	2.435	1.423	
Probability	0.766	0.831	0.668	0.628	0.960	0.795	0.736	0.894	

5

5

Análisis estadístico 3.3. Valores. Resistencia a la compresión.

5

Muestra	Líquido A1	Kg	Newtons	MegaPascales
1	Copolímero acrílico-itacónico- maleico.	75.2	736.96	58.68
2	Copolímero acrílico-itacónico- maleico.	82.4	807.52	64.29
3	Copolímero acrílico-itacónico- maleico.	78.4	768.32	61.17
4	Copolímero acrílico-itacónico- maleico.	87.2	854.56	68.04
5	Copolímero acrílico-itacónico- maleico.	76.8	752.64	59.92
			Promedio:	62.420
			Desviación Estandár	• 3.771

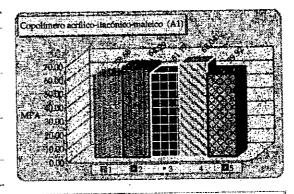


Tabla 3.1. y Gráfica 3.1. Resistencia a la compresión. Grupo A1.

/luestra	Líquido A2	Kg	Newtons	MegaPascales
1	Copolímero acrílico- itacónico- maleico- 5% ác. tartárico.	76.0	744.80	59.30
2	Copolímero acrílico- itacónico- maleico- 5% ác. tartárico.	70.0	686.00	54.62
3	Copolímero acrílico- itacónico- maleico- 5% ác. tartárico.	72.8	713.44	56.80
4	Copolímero acrílico- itacónico- maleico- 5% ác. tartárico.	80.0	784.00	62.42
5	Copolímero acrílico- itacónico- maleico- 5% ác. tartárico.	77.6	760.48	60.55
			Promedio:	58.738
			Desviación Estandár	. 3.077

Tabla 3.2. y Gráfica 3.2. Resistencia a la compresión. Grupo A2.

Muestra	Líquido B1	Kg.	Newtons	MegaPascales
1	Copolímero acrílico- itacónico.	41.4	405.72	32.303
2	Copolímero acrílico- itacónico.	33.8	331.24	26.373
3	Copolímero acrílico- itacónico.	33.4	327.32	26.061
4	Copolímero acrílico- itacónico.	33.4	327.32	26.061
5	Copolímero acrílico- itacónico.	42.7	418.46	33.317
			Promedio:	28.823
			Desviación Estandár	3.66

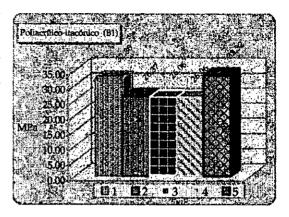


Tabla 3.3. y Gráfica 3.3. Resistencia a la compresión. Grupo B1.

Muestra	Líquido B2	Kg	Newtons	MegaPascales
1	Copolímero acrílico-itacónico-5% ác. tartárico.	45.4	444.92	35.42
2	Copolímero acrílico-itacónico- 5% ác. tartárico.	34.7	340.06	27.07
3 '	Copolímero acrílico-itacónico- 5% ác. tartárico.	42.9	420.42	33.47
4	Copolímero acrílico-itacónico- 5% ác. tartárico.	46.0	450.80	35.89
5	Copolímero acrílico-itacónico-5% ác. tartárico.	48.2	472.36	37.61
			Promedio:	33.894
		*********	Desviación Estandár	4.087

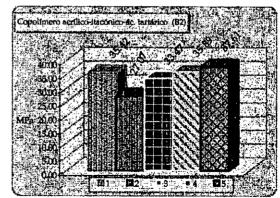


Tabla 3.4. y Gráfica 3.4. Resistencia a la compresión. Grupo B2.

Valores obtenidos por cada muestra al realizar la medición

Muestra	Líquido D1	Kg	Newtons	MegaPascales
1	Ácido poliacrílico.	45.9	449.82	35.81
2	Ácido poliacrílico.	53.4	523.32	41.67
3	Ácido poliacrílico.	48.6	476.28	37.92
4	Ácido poliacrílico.	52.3	512.54	40.81
5	Ácido poliacrílico.	52.1	510.58	40.65
			Promedio:	39.372
			Desviación Estándar	2.435

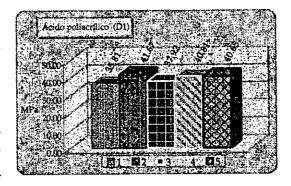
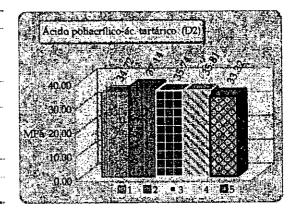



Tabla 3.7. y Gráfica 3.7. Resistencia a la compresión. Grupo D1.

Muestra	Líquido D2	Kg	Newtons	MegaPascales
1	Ácido poliaerflico- 5% ác. tartárico.	44.5	436.10	34.72
2	Ácido poliacrífico-5% ác. tartárico.	47.6	466.48	37.14
3	Ácido poliacrílico-5% ác. tartárico.	45.8	448.84	35.74
4	Ácido poliacrílico- 5% ác. tartárico.	45.9	449.82	35.81
5	Ácido poliacrílico-5% ác. tartárico.	42.7	418.46	33.32
			Promedio:	35.346
			Desviación Estándar	1.423

Valoración física de un cemento con base en un polvo de carboxilato de zinc

experimental y líquidos experimentales

Tabla 3.8. y Gráfica 3.8. Resistencia a la compresión. Grupo D2.

Muestra	Líquido C1	Kg	Newtons	MegaPascales
1	Copolimero acrilico-maleico.	63.4	621.32	49.47
2	Copolímero acrílico-maleico.	53.5	524.30	41.74
3	Copolímero acrílico-maleiço.	78.4	768.32	61.17
4	Copolímero acrílico-maleico.	66.5	651.70	51.89
5	Copolímero acrílico-maleico.	66.5	651.70	51.89
			Promedio:	51.232
here are consens			Desviación Estándar	6.943

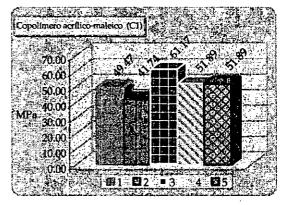
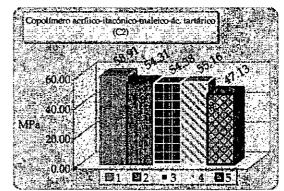



Tabla 3.5. y Gráfica 3.5. Resistencia a la compresión. Grupo C1.

************			14T+2+F-9#L		**************************************
Muestra	Líquido C2		Kg	Newtons	MegaPascales
1	Copolímero acrílico-maleico- ác. tartárico.	5%	75.5	739,90	58.91
2	Copolímero acrílico-maleico- ác, tartárico.	5%	69.6	682.08	54.31
3	Copolímero acrílico-maleico- ác, tartárico.	5%	69.7	683.06	54.38
4	Copolímero acrílico-maleico- ác. tartárico.	5%	70.7	692.86	55.16
5	Copolímero acrílico-maleico- ác. tartárico.	5%	60.4	591.92	47.13
				Promedio:	53.98
				Desviación Estándar	4.27

Valoración física de un cemento con base en un polvo de carboxilato de zinc

experimental y líquidos experimentales

Tabla 3.6. y Gráfica 3.6. Resistencia a la compresión. Grupo C2.

Valores obtenidos por cada muestra al realizar la medición

Muestra	Líquido Al	Espesor de Película(mm)
1	Copolímero acrílico-itacónico-maleico.	83
2	Copolímero acrílico-itacónico-maleico.	68
3	Copolímero acrílico-itacónico-maleico.	73
4	Copolímero acrílico-itacónico-maleico.	77
5	Copolímero acrílico-itacónico-maleico.	62
	Promedio	72.60
	Desviación Estándar	8.08

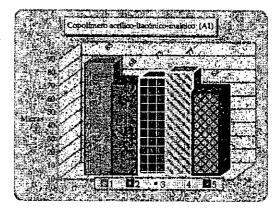


Tabla 1.1. y Gráfica 1.1. Espesor de película. Grupo A1.

Muestra	Líquido A2	Espesor de Película(mm)
1	Copolímero acrílico- itacónico- maleico- 5% ác. tartárico.	100
2	Copolímero acrílico- itacónico- maleico- 5% ác. tartárico.	96
3	Copolímero acrílico- itacónico- maleico- 5% ác. tartárico.	88
4	Copolímero acrílico- itacónico- maleico- 5% ác. tartárico.	93
5	Copolímero acrílico- itacónico- maleico- 5% ác. tartárico.	99
-	Promedio	95.20
	Desviación Estándar	4.87

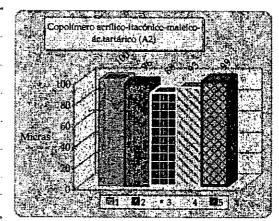


Tabla 1.2. y Gráfica 1.2. Espesor de película. Grupo A2.

Valores obtenidos por cada una de las muestras al realizar la medición.

Muestra	Líquido B1	Espesor de Película(mm)
1	Copolímero acrílico- itacónico.	54
2	Copolímero acrílico- itacónico.	61
3	Copolímero acrílico- itacónico. 49	
4	Copolímero acrílico- itacónico.	57
5	Copolímero acrílico- itacónico.	47
	Promedio	53.60
	Desviación Estándar •	5.73

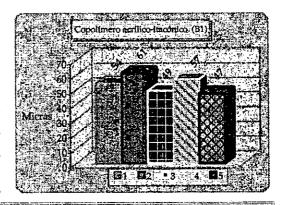


Tabla 1.3. y Gráfica 1.3. Espesor de película. Grupo B1.

Muestra	Líquido B2	Espesor de Película(mm)	
1	Copolímero acrílico-itacónico- 5% ác. tartárico.	49	
2	Copolímero acrílico-itacónico- 5% ác. tartárico.	45	
3	Copolímero acrílico-itacónico- 5% ác. tartárico.	57	
4	Copolímero acrílico-itacónico- 5% ác. tartárico.	50	
. 5	Copolímero acrílico-itacónico- 5% ác. tartárico.	57	
	Promedio	51 .60	
	Desviación Estándar	5.27	

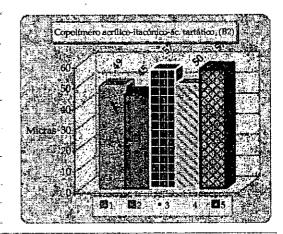


Tabla 1.4. y Gráfica 1.4. Espesor de película. Grupo B2.

Valores obtenidos por cada una de las muestras al realizar la medición.

Muestra	Líquido C1	Espesor de Película(mm)	
1	Copolímero acrílico-maleico.	58	
2	Copolímero acrílico-maleico.	54	
3	Copolímero acrílico-maleico.	51	
4	Copolímero acrílico-maleico.	56	
5	Copolímero acrílico-maleico.	56	
	Promedio	55.00	
	Desviación Estándar	2.65	

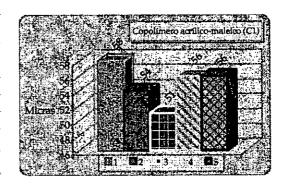


Tabla 1.5. y Gráfica 1.5. Espesor de película. Grupo C1

Muestra	Líquido C2	Espesor de Película(mm)
1	Copolímero acrílico-maleico- 5% ác. tartárico.	54
2	Copolímero acrílico-maleico- 5% ác. tartárico.	83
3	Copolímero acrílico-maleico- 5% ác. tartárico.	48
4	Copolímero acrílico-maleico- 5% ác. tartárico.	52
5	Copolímero acrílico-maleico- 5% ác. tartárico.	56
anny deal of Mindel, a Res and a Min Private of F	Promedio	58.60
	Desviación Estándar	13.96

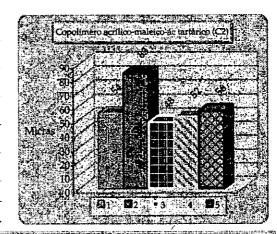


Tabla 1.6. y Gráfica 1.6. Espesor de película. Grupo C2.

Valores obtenidos por cada una de las muestras al realizar la medición.

Muestra Líquido D1		Espesor de Película(mm)
1	Ácido poliacrílico.	55
.2	Ácido poliacrílico.	49
3	Ácido poliacrílico.	42
4	Ácido poliacrílico.	47
5	Ácido poliacrílico.	35
, 144 mars 100 mars 1	Promedio	45.60
	Desviación Estándar	7.54

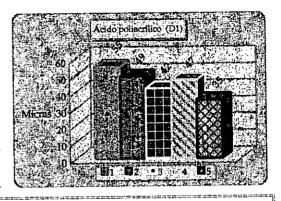


Tabla 1.7. y Gráfica 1.7. Espesor de película. Grupo D1.

Muestra Líquido D2		Espesor de Película(mm)
1	Ácido poliacrílico- 5% ác. tartárico.	49
2	Ácido poliacrílico- 5% ác. tartárico.	48
3	Ácido poliacrílico- 5% ác. tartárico.	96
4	Ácido poliacrílico- 5% ác. tartárico.	53
5	Ácido poliacrílico- 5% ác. tartárico.	49
	Promedio	59.00
	Desviación Estándar	20.77

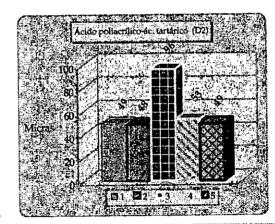


Tabla 1.8. y Gráfica 1.8. Espesor de película. Grupo D2.

One Way Analysis of Variance				
Norma	ality Test:	Failed	(P = 0.004)	
Equal Va	riance Test:	Passed	(P = 0.663)	
G	roup	N	Missing	
	Å1	5	0	
4	A2	5	0	
	B1	5	0	
	B2	5	0	
	C1	5	0	
	C2	5	0	
	D1	5	0	
	D2	5	0	
Group	Mean	Std Dev	SEM	
A1	0.726	0.0808	0.0361	
A2	0.952	0.0487	0.0218	
B1	0.536	0.0573 0.0527	0.0256	
B2	B2 0.516		0.0236	
C1 0.55		0.0265 0.14	0.0118	
C2	C2 0.586		0.0624	
D1	D1 0.456		0.0337	
D2	0,59	0.208	0.0929	

Power of performed test with alpha = 0.050: 1.000

Source of Variation	DF	SS	MS	F	P	
Between Treatments	7	0.864	0.123	11.766	<0.001	
Residual	32	0.336	0.0105			
Total	39	1.2				

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

All Pairwise Multiple Comparison Procedures (Tukey Test):

Comparisons for factor:

Comparison	Diff of Means	P	(P<0.05
A2 vs. D1	0.496	8	10.4	826 Yes
A2 vs. B2	0.436	8	9.5	16 Yes
A2 vs. B1	0.416	8	9.0	79 Yes
A2 vs. C1	0.402	8	8.7	74 Yes
A2 vs. C2	0.366	8	7.9	88 Yes
A2 vs. D2	0.362	8	7.9	01 Yes
A2 vs. A1	0.226	8	4.9	33 Yes
A1 vs. D1	0.27	8	5.8	93 Yes
A1 vs. B2	0.21	8	4.5	83 Yes
A1 vs. B1	0.19	8	4.1	47 No
A1 vs. C1	0.176	8	3.8	
A1 vs. C2	0.14	8	3.0	056 No
A1 vs. D2	0.136	8		168 No
D2 vs. D1	0.134	. 8	2.9	25 No
D2 vs. B2	0.074	8	1.6	315 No

Análisis estadístico 1.1 ANOVA y prueba de Tukey. Espesor de película.

,	One Way Analysis of Variance					
•	No	rmality Test:		led	(P = <0.001)	
•		Variance Test:	Pas	sed	(P = 0.514)	
•		Group	eristen (etablisase) [7	Missing	
•		A1		i	0	
•		A2		Į.	0	
•		B1		1	0	
		B2		1	0	
		C1			0	
`		C2		1	0	
•		D1		1	0	
		D2			0	
Group		Mean	ł	Std Dev		SEM
A1		3,55		0.0976		0.0488
A2		3.769		0.379		0.19
B1 i		2.725	ĺ	0.185		0.0924
B2		5.083		0.936		0.468
Cl		3.312		0.104		0.0518
C2		3.541	Í	0.517		0.259
D1		3.612		0.0372		0.0186
D2		5.783		0.452		0.226
		Power of perform	ned test w	ith alpha =	0.050: 1.000	
Source of Variation	DF	SS	MS		F	P
Between Treatments	7	28.075	4.011		20.743	<0.001
Residual	24	4.64	0.193			

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

32.715

All Pairwise Multiple Comparison Procedures (Tukey Test):

Total

Comparison	Diff of Means	р.	q	P<0.05
D2 vs. B1	3.058	8	13.909	Yes
. D2 vs. C1	2.471	8	11.238	Yes
D2 vs. C2	2.242	8	10.197	Yes
D2 vs. A1	2.233	8	10.157	Yes
D2 vs. D1	2.171	8	9.873	Yes
D2 vs. A2	2.014	8	9.16	Yes
D2 vs. B2	0.7	8	3.184	No
B2 vs. B1	2.358	8	10.725	Yes
B2 vs. C1	1.771	8	8.054	Yes
B2 vs. C2	1.542	8	7.014	Yes
B2 vs. A1	1.533	8	6.973	Yes
B2 vs. D1	1.471	8	6.69	Yes
B2 vs. A2	1.314	8	5.977	Yes
A2 vs. B1	1.044	8	4,749	Yes
A2 vs. C1	0.457	8	2.077	No

2.1. Análisis ANOVA y prueba de Tukey. Tiempo de endurecimiento.

una mandir anticossosia hilipanishii	Normality Test:	***************************************	Passed	(P = 0.526)	
	ual Variance Te		Passed	(P = 0.500)	
	Group	N	Missing		
gan e, de di deg displaye marine re c	A1	5	0		
· · · · · · · · · · · · · · · · · · ·	A2	5	0	Destro Habitanto de Proposito de Carto	
Tere talker breast, per regite	B1	5	0		
	B2	5	0	no a province about the reaction of a state	
	C1	. 5	0		
	C2	5	0		
	D1	5	<u> </u>	and the second s	
ACAMERICAN PROPERTY AND ACAMERICAN COMPANY	D2	5	0		
	Mean	030030004000.20000	Std Dev		SEM
	62.42		3.771		1.686
a and per an implement and income.	58.738	ggerigge, g. gang (and nejmin. j.) 1) in the error (3.077		1.376
	28.822		3.66		1.637
	33.894	The state of the s	4.087		1.828
	51.232	******	6.943		3.105
	53.978		4.27	and the same of th	1.91
na v napadnogov Newsdad	39.372		2.435		1.089
	35.346		1.423		0.636

Group
A1
A2
B1
B2
C1
C2
D1
D2

The differences in the mean values among the treatment groups are greater than would be expected
All Pairwise Multiple Comparison Procedures (Tukey Test):

Com	parisons for factor:	 	no ambiento com moral alectrotra assert (decor et como	en enconomica enconomica de la constante de la
Comparison	Diff of Means	Р	q	P<0.05
A1 vs. B1	33.598	8	18.77	Yes
A1 vs. B2	28.526	. 8	15.936	Yes
A1 vs. D2	27.075	8	15.936	Yes
A1 vs. D1	23.049	8	12.876	Yes
A1 vs. C1	11.189	8	6.251	Yes
A1 vs. C2	8.443	8	4.716	Yes
A1 vs. A2	3.683	8	2.057	No
A2 vs. B1	29.915	8	16.712	Yes
A2 vs. B2	24.843	8	13.376	Yes
A2 vs. D2	23.392	8	13.068	Yes
A2 vs. D1	19.366	8	10.819	Yes
A2 vs. C1	7.506	8	4.193	No
A2 vs. C2	4.76	8	2.659	No
C2 vs. B1	25.156	8	14.053	Yes
C2 vs. B2	20.083	8	11.22	Yes

Análisis estadístico 3.1. ANOVA y prueba de Tukey. Resistencia a la compresión.

T	est for Equal	ity of Variand	es between Se	eries			
Sam	ple: 1 5	Inclu	Included observations: 5				
	Category Stat	istics					
Variable	Count	Std. Dev.	Mean Diff.	Median Diff.			
A1	5	3.771	2.996	2.746			
A2	5	3.077	2.422	2.309			
B1	5	4.518	3.190	2.700			
B2	5	4.087	2.896	2.590			
C1	5	7.141	4.500	4.369			
C2	5	4.270	2.740	2.528			
D1	5	2.435	2.004	1.748			
D2	5	1.423	1.061	0.983			
All	40	12.518	2.726	2.497			

Análisis estadístico 3.2. Igualdad de varianzas. Resistencia a la compresión.									
A1 A2 B1 B2 C1 C2 D1 D2									
Mean	62,420	A2 58.737	28.823	33,894	51.231	53.978	39.371	35.345	
Median	61.172	59.299	26.373	35.424	51.887	54.384	40.651	35.736	
Maximun	68.038	62.420	33.317	37.608	61.172	58.909	41.666	37.140	
Minimum	58.675	54.618	26.061	27.075	41.744	47.127	35.814	33.317	
Std. Dev.	3.771	3.077	3.659	4.087	6.943	4.270	2.435	1.423	
Probability	0.766	0.831	0.668	0.628	0.960	0.795	0.736	0.894	
Observations	5	5	5	5	5	5	5	5	

Análisis estadístico 3.3. Valores. Resistencia a la compresión.