ノレンナー

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE QUIMICA

ESTABILIZACIÓN DE CRUDO EN LA TERMINAL MARITIMA DE DOS BOCAS, TABASCO.

T E S I S

QUE PARA OBTENER EL GRADO DE

MAESTRO EN INGENIERÍA QUÍMICA

(PROCESOS)

PRESENTA:
IQ. NICOLAS RUIZ FUENTES

2000.

México, D.F.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Agradecimientos

A la humanidad entera, por el legado de sus conocimientos.
Al pueblo de México, por brindarme la oportunidad.
A Ana Karen, por su inocencia y gracia.
A mis familiares y amigos por su paciencia y buenos consejos.
A todas las personas que contribuyeron en la realización de este trabajo.

INDICE

Agradecimier	ntos	iii
Indice		iv
Capítulo 1.	Introducción	6
Capítulo 2.	Generalidades	9
Capítulo 3.	Análisis de la Situación Actual	29
Capítulo 4.	Análisis del Caso Base	39
Capítulo 5.	Estabilización con Calentamiento y Vacío	47
Capítulo 6.	Estabilización con Calentamiento	59
Capítulo 7.	Evaluación Económica	66
Capítulo 8.	Conclusiones y Recomendaciones	86
Apendice 1.	Resultados de Simulación de la Situación Actual	89
Apendice 2.	Resultados de Simulación del Caso Base	93
Apendice 3.	Resultados de Simulación de la Alternativa 1	97
Apendice 4.	Resultados de Simulación de la Alternativa 2	103
Diblicarofic		100

Jurado asignado.

Presidente:	Dr. Carlos Escobar Toledo	
Vocal:	Dr. Mario Bravo Medina	
Secretario:	Dr. M. Javier Cruz Gómez	
1er. suplente:	Dr. Julio Langrave Romero	
2do. suplente:	MI. Fernándo Barragan Arroche	
Sitio donde so	e desarrolló el tema.	
Instituto Mexi	cano del Petróleo	
Terminal Mari	tima de Dos Bocas, Tabasco.	
Asesoi	9	Sustentante:
Dr. Sergio	Trejo Martínez	IQ. Nicolás Ruiz Fuentes

Resumen

El objetivo del presente trabajo es proponer una modificación al proceso actual de estabilizado de petróleo crudo en la Terminal Marítima de Dos Bocas, Tabasco, de tal forma que el producto obtenido cumpla con las condiciones impuestas por las normas internacionales respecto al contenido de ácido sulfhídrico, sales, agua, gas ocluido y por supuesto sin descuidar la seguridad y facilidad operativa, así como la protección al medio ambiente.

En este trabajo se presentan los resultados obtenidos del análisis del proceso de estabilización de petróleo en la Terminal Marítima de Dos Bocas, Tabasco. Se describen los procesos existentes para la estabilización de petróleo y con base en las características técnicas de éstos, así como a la calidad de los productos que se obtienen se seleccionan a priori dos de ellos, como alternativas al proceso existente, con el objeto de mejorar la calidad del producto.

Se lleva a cabo la caracterización de las corrientes de alimentación al proceso y se estudia la Situación Actual mediante el uso del simulador de procesos Aspen Plus para determinar el grado de exactitud con la que el modelo obtenido representa la operación real de la planta. Se plantea el Caso Base y se analiza a través de un horizonte de 13 años, los resultados obtenidos sirven para determinar los costos de operación y mantenimiento, así como los ingresos de cada una de las alternativas planteadas.

Se analizan las Alternativas propuestas en todo el horizonte del proyecto y se comparan los resultados obtenidos con los del Caso Base, de forma tal que se pueda evaluar cual de los procesos propuestos es mejor técnicamente. Con los resultados, se determinan los costos de operación y mantenimiento.

Finalmente se presenta el estudio de factibilidad técnico económica en el que se comparan los rendimientos de las Alternativas y del Caso Base, para lo cual fue necesario determinar la inversión requerida, los ingresos, así como los costos de operación y mantenimiento de cada una de las Alternativas analizadas y del Caso Base. Los resultados obtenidos se utilizaron para realizar un análisis de rentabilidad con el cual se determinó cual es el proceso más rentable desde el punto de vista técnico y económico.

1 Introducción

El proceso de estabilización del petróleo crudo, merece un cuidadoso estudio debido a las implicaciones que este proceso representa, como primer eslabón en la cadena productiva de los hidrocarburos. La inversión, los costos de operación y mantenimiento, así como la cantidad de condensados recuperados son algunos de los criterios considerados para la selección de un proceso en particular; la seguridad y el impacto ambiental son aspectos que también deben incluirse en la toma de decisiones, para lograrlo es necesario un estudio de optimización que nos conduzca a la selección del proceso más rentable tanto en su aspecto técnico como en el económico.

El proceso de estabilización del petróleo crudo separa los componentes más volátiles del aceite, manteniéndolo en condiciones apropiadas para su almacenamiento y transporte. La presencia de ácido sulfhídrico (H₂S), complica el proceso; puesto que para eliminarlo se requieren condiciones más severas de operación, incrementando los costos tanto de operación como de mantenimiento.

Las restricciones más comunes en los procesos de estabilización son las siguientes:

- Máxima recuperación de aceite estabilizado.
- Máxima recuperación de condensados.
- Mínima presión de vapor del aceite estabilizado.
- Mínimo contenido de H₂S en el aceite estabilizado.
- Mínima condensación en el transporte del gas.

La presión de vapor del aceite estabilizado es un parámetro importante, debido a que una presión de vapor elevada implica un alto contenido de hidrocarburos ligeros en el aceite, es decir, que durante su transporte o almacenamiento dichos hidrocarburos serán liberados provocando condiciones inseguras, perdida de productos valiosos y por consiguiente, deterioro del medio ambiente; por otra parte, la presencia de H₂S en el aceite estabilizado motiva el uso de agentes secuestrantes, cuyo costo es elevado, para mantener el crudo dentro de especificaciones.

Experimentalmente se ha encontrado que un aceite con una presión de vapor menor o igual a 11 psia, se considera estable, tanto para su transporte como para su almacenamiento a condiciones ambientales, mientras que una presión de vapor mayor a la indicada se le considera como inestable, por lo tanto, para prevenir la liberación de gases al medio ambiente y evitar condiciones inseguras, debemos operar procesos que cumplan con esta restricción.

El objetivo del presente trabajo es proponer una modificación al proceso actual de estabilizado de petróleo crudo en la Terminal Marítima de Dos Bocas, Tabasco, de tal forma que el producto obtenido cumpla con las condiciones impuestas por las normas internacionales respecto al contenido de ácido sulfhídrico, sales, agua y por supuesto sin liberar gases durante su transporte o almacenamiento; sin descuidar la seguridad y facilidad operativa, así como la protección al medio ambiente.

En el capítulo dos, se presenta la descripción general de los procesos existentes para la estabilización del petróleo crudo, se indican sus características sobresalientes y sus limitaciones, con el objeto de seleccionar, a priori, aquellos procesos que pudiesen cumplir con las exigencias impuestas.

En el capítulo tres se describe el problema objeto del presente trabajo, se analiza la situación operativa actual del proceso y se define el modelo matemático y termodinámico que mejor lo representa, haciendo uso de un Sistema de Simulación de Proceso.

En el capítulo cuatro, se plantea el Caso Base y se determinan sus costos de operación y mantenimiento así como la inversión requerida, en función de los resultados obtenidos con el Simulador de Procesos. Cabe mencionar que este Caso Base, sirve de modelo comparativo para la factibilidad técnica y económica de las alternativas propuestas, al comparar los resultados entre sí.

En el capítulo cinco, se analiza la Alternativa 1, Estabilización con Calentamiento y Vacío; se presenta el análisis de sensibilidad realizado para la determinación de las condiciones óptimas de operación, así como los costos de inversión requeridos. Con los resultados obtenidos de la simulación, se obtienen los costos de operación y mantenimiento.

En el capítulo seis se analiza la Alternativa 2, Estabilización con Temperatura; se presenta también el estudio de sensibilidad realizado para determinar las condiciones de operación necesarias para obtener un producto con las especificaciones requeridas. Los resultados obtenidos se utilizaron para calcular los costos de operación y mantenimiento, se determinó también la inversión requerida para su puesta en operación.

El capítulo siete contiene el análisis de rentabilidad de las Alternativas con respecto al Caso Base y en función de los parámetros económicos se determina cual de las alternativas es la mejor. Desde el punto de vista técnico, se analiza la factibilidad operativa del proceso, los riesgos inherentes por su operación misma, el cuidado al medio ambiente y la seguridad del personal; desde el punto de vista económico, se analizan las variables económicas generadas por el estudio de factibilidad. Finalmente, se presentan las conclusiones y recomendaciones

El proceso de remoción de hidrocarburos con alta presión de vapor (componentes ligeros) de la corriente de crudo se conoce como estabilización, esto garantiza tener un crudo con las propiedades adecuadas para su transporte y almacenamiento, evitando con ello riesgos e inseguridad, pérdida de productos valiosos y potencialmente nocivos así como, contaminación al medio ambiente. Si un aceite "estabilizado" libera gases durante su almacenamiento en condiciones ambientales de temperatura y presión se dice que es *inestable* y que su proceso de estabilizado no es el adecuado.

Para determinar si un crudo es o no estable se le practica una prueba conocida como PVR (Presión de Vapor Reid), ésta es la presión que ejerce el vapor en una celda especial a 100°F (ASTM D-323). La PVR de un aceite crudo es un indicador de la tendencia del crudo para desprenderse de hidrocarburos gaseosos, las unidades para indicar la PVR son psia.

Una PVR de 6.5 psia corresponde a un crudo estable y no representa riesgo para la seguridad, no obstante, un crudo con una PVR de 10 a 12 psia, también se considera estable, sin embargo; es el máximo permisible de seguridad para el almacenamiento en tanques a presión atmosférica. La prueba de la PVR da una aproximación de la presión de vapor de un líquido del petróleo a una temperatura de 38°C (100°F). La idea básica de realizar la prueba a 38°C se debe al hecho de esperar dicha temperatura en los tanques de almacenamiento durante los meses de verano.

Otra forma de evaluar el grado de estabilización del petróleo crudo es la presión de vapor verdadera (PVV), esta es la presión a la cual la fase vapor de una sustancia se encuentra en equilibrio con la fase líquida de la misma, a una temperatura dada. Refiriéndose a la sustancia en fase líquida, la presión de vapor es aquella a la que se inicia su vaporización. La presión de vapor verdadera, es una propiedad termodinámica como la densidad y la viscosidad, y, como muchas otras propiedades termodinámicas cambia con la temperatura. Para la medición de la presión de vapor de una sustancia pura, los valores determinados son iguales a los reales ya que para esta sustancia, no existe un cambio de composición por pérdidas de vapores; sin embargo, en una mezcla de dos o más componentes, las pérdidas por vaporización de los componentes más ligeros modifican la composición del líquido, por lo que los valores experimentales son menores a los reales.

Cuando se trata de definir el grado de estabilización de un aceite, puede hacerse referencia tanto a su PVV como a su PVR de forma indiferente, puesto que ambos términos cuantifican la tendencia que tiene un aceite a emanar productos gaseosos a condiciones ambientales de presión y temperatura, de hecho, es común el uso de nomogramas en el que se correlacionan ambos términos, como el de la Figura 2.1.

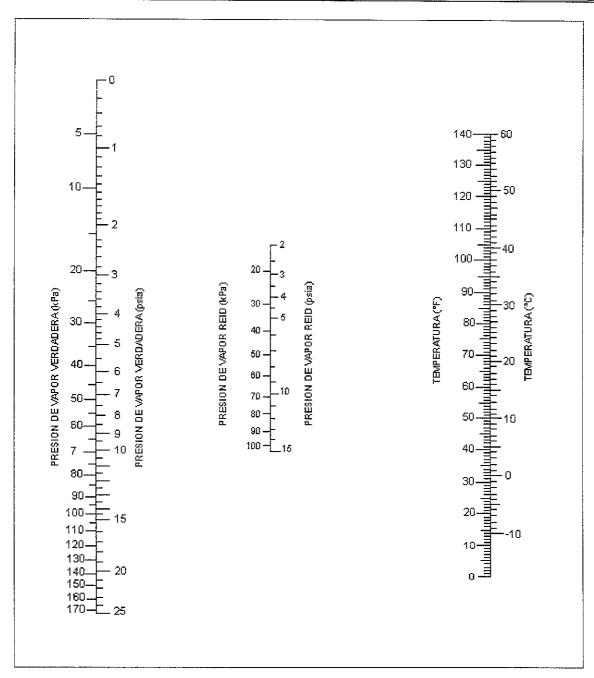


Figura 2.1

Procesos de Estabilización de Petróleo Crudo

Independientemente de la tecnología utilizada, la estabilización de los hidrocarburos líquidos es necesaria a fin de que no experimenten pérdidas sustanciales por vaporización al transportarlos o almacenarlos a condiciones superficiales. Por lo tanto, la estabilización se realiza considerando el concepto de presión de vapor, y no es más que un ajuste de ésta, de tal manera que sea menor que la atmosférica a la temperatura máxima esperada.

Las tecnologías para la estabilización del petróleo se clasifican de la siguiente manera:

- Estabilización por Separación Multietapa
 - Reducción gradual de la presión
 - Calentamiento
 - □ Vacío
 - Calentamiento y Vacío
- Estabilización en unidades tipo torre de destilación
 - Agotamiento en frío
 - Agotamiento en caliente
 - Rectificación en dos etapas

Estabilización por Separación Multietapas

La estabilización por separación multietapas, consiste básicamente en someter el aceite a una serie de separaciones sucesivas a diferentes condiciones de temperatura y presión con el objeto de obtener un crudo lo más estabilizado posible, estos métodos son fáciles de operar y requieren de muy pocos servicios, se obtienen aceites con diferentes características, que dependen de la severidad del proceso, sin embargo, en general entregan el producto con altos contenidos de ácido sulfhídrico.

Separación Multietapas Simple

Principios de Operación. Este proceso emplea como principio la reducción sucesiva de la presión aumentando la tendencia de los componentes a pasar a la fase vapor. La Fracción del componente que "flashea" o se vaporiza durante alguna etapa, esta en función de la

temperatura, presión y composición del fluido en cada etapa. La última etapa de la separación se lleva a cabo a una presión cercana a la atmosférica. Las especificaciones para la presión de vapor y H₂S se determinan sobre el producto de la última etapa de separación. Un esquema representativo de este tipo de proceso se muestra en la Figura 2.2.

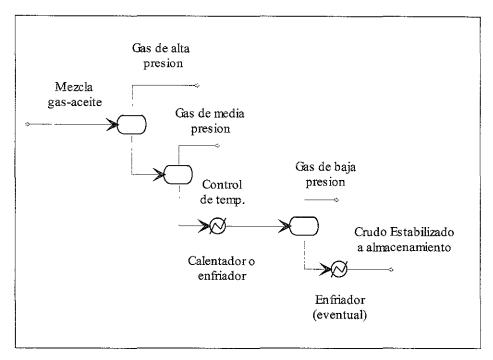


Figura 2.2

Características de la alimentación. Limitada. Si el contenido de H₂S en la alimentación es del orden de 1000 ppm, se requiere una temperatura muy alta en la última etapa de separación para cumplir con niveles bajos en el producto. La temperatura de la última etapa de separación, controla el contenido de H₂S en el aceite tratado, y en consecuencia, determina también la recuperación del mismo.

Características del producto. Su recuperación es baja con respecto a la mayoría de los otros procesos, sobre todo si la temperatura requerida en la última etapa es elevada para cumplir con la presión de vapor y el contenido de ácido sulfhídrico.

Ventajas.

- ✓ Simplicidad de operación
- ✓ Es factible manejar variaciones de la relación gas aceite (RGA)
- ✓ Adaptable a diversas condiciones ambientales
- ✓ Bajo costo de inversión y consumo de servicios.

Desventajas.

- ✓ No es adecuado para obtener un producto con bajo contenido de H₂S, ya que para ello se requiere de altas temperaturas en la última etapa de separación.
- ✓ Baja recuperación de crudo respecto a otros métodos.

Separación Multietapas con Recuperación de Condensados

Principios de operación. Este método es una mejora a la separación multietapa simple. El condensado asociado que se recupera del gas natural a través de su compresión y enfriamiento se reinyecta al crudo, previa estabilización. Un esquema representativo de este tipo de proceso se muestra en la Figura 2.3.

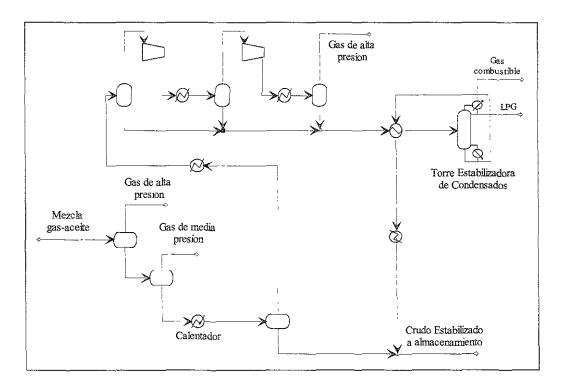


Figura 2.3

El proceso se diseña para remover la mayor parte de los componentes ligeros en las etapas de separación y de esta forma obtener un crudo de baja presión de vapor en la última etapa. La PVR se ajusta al valor especificado por medio de una inyección controlada de los líquidos (C₃, C₄, y C₅), que provienen de la torre fraccionadora. El gas de la última etapa de separación se comprime (a una presión del orden de 300 psi) y se enfría; los condensados pesados resultantes se fraccionan en una columna de destilación. Los fondos de la torre se ajustan para que después de mezclarlos con el aceite proveniente de la última etapa de separación, se obtenga un crudo con la PVR especificada. El gas de la primera y segunda etapa de separación contiene menores cantidades de fracciones pesadas por lo que usualmente no se procesa para propósitos de estabilización.

La torre recuperadora de condensados de éste método es importante, ya que permitirá la selectividad de los componentes. La recuperación de condensados sin estabilizar por recirculación, es menor que la que se puede alcanzar con el empleo de la torre para procesarlos y adicionarlos al crudo. La presión del gas después de su compresión y la temperatura de postenfriamiento, determinan las pérdidas de fracciones pesadas en el gas.

Características de la alimentación. Su conveniencia económica es limitada en cuanto a la remoción de ácido sulfhídrico. Si la alimentación contiene más de 2000 ppm de ácido sulfhídrico, la temperatura de la última etapa tiene que ser muy alta para cumplir con las especificaciones de ácido sulfhídrico en el producto.

Para una presión de vapor dada, la recuperación se incrementa elevando la temperatura de la última etapa de separación y disminuyendo correlativamente la temperatura del acumulador de reflujo; de otra manera la recuperación disminuye, es decir; tanto la presión como la temperatura de operación son función de la composición de la corriente de entrada a la torre así como de las especificaciones de los productos.

Características del Producto. Mejora la recuperación del producto con respecto al proceso Multietapa simple. La recuperación del producto y el contenido de ácido sulfhídrico, son función de la temperatura en la última etapa de separación.

Ventajas.

- ✓ Cumple con las especificaciones en los productos cuando se tiene bajo contenido de H₂S en la corriente de alimentación.
- ✓ Puede operar de forma independiente al sistema de recuperación de condensados.
- ✓ Ofrece la posibilidad de obtener gas licuado de petróleo (LPG).
- ✓ Favorece la recuperación de crudo y asegura su calidad por la reinyección de fracciones más ligeras obtenidas en forma selectiva.

Desventajas.

✓ Su operación no es tan simple como el proceso multietapas sin recuperación de condensados, ya que requiere de otros sistemas lo cual lo torna complejo (compresión, fraccionamiento, etc.).

Separación multietapas con vacío

Principios de operación. Otra forma de estabilizar el crudo es someterlo a una etapa de separación a vacío (presión reducida), antes de enviarlo a almacenamiento, este método es también una mejora a la separación multietapa simple.

El método es ideal para remover la mayor parte de ligeros presentes en el crudo, incluyendo el ácido sulfhídrico. La última etapa de separación opera a condiciones de presión vacuométrica y es quien determina el grado de estabilización requerido, aunque generalmente este no suele ser tan pronunciado, si este es el caso, es factible precalentar el crudo antes de entrar a la última etapa de separación a vacío. Un esquema representativo de este tipo de proceso se muestra en la Figura 2.4.

Características de la alimentación. Este tipo de proceso es conveniente cuando el crudo proveniente de las etapas de separación previas, contiene menos de 2000 ppm y se encuentra muy cercano a la condición de estabilización ya que de otra manera se requeriría equipo de vacío de alta capacidad, además de reducir la recuperación de crudo. La etapa de vacío es equivalente a la última etapa de separación con calentamiento, y la selección entre una y otra será función de las características de la corriente y de los servicios auxiliares disponibles.

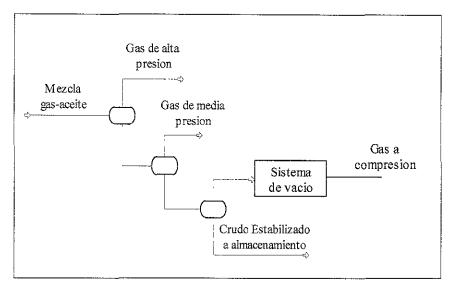


Figura 2.4

Características del producto. Mejora la recuperación del producto con respecto a la separación multietapa simple y la separación multietapa con calentamiento. La recuperación del producto y su contenido de ácido sulfhídrico son función de la presión vacuométrica y del precalentamiento en su caso, en la última etapa de separación.

Ventajas.

- ✓ Cumple con las especificaciones en cuanto al contenido de H₂S cuando se tienen bajos contenidos de ácido sulfhídrico en la alimentación.
- ✓ Su operación es sencilla.
- ✓ Muy bajos costos de operación, mantenimiento y servicios.
- ✓ Recuperación relativamente alta del producto.

Desventajas.

- ✓ Se requiere un sistema de control para evitar el colapso de los estabilizadores.
- ✓ Aplicación limitada para obtener productos con especificación estricta en el contenido de ácido sulfhídrico (< 10 ppm). Si la alimentación contiene más de 2000 ppm de ácido sulfhídrico, se requiere operar a una presión vacuométrica moderada (menos de 4 psia).

Estabilización por Fraccionamiento

Estos procesos, utilizan una columna de destilación (estabilizador) aplicando el calor necesario para separar los componentes ligeros del crudo. Este esquema supera a los procesos de separación multietapas ya que retienen gran parte de las fracciones de componentes pesados en el aceite permitiendo aumentar el volumen de crudo estabilizado producido, sin embargo, comparado con los métodos de separación en etapas son complejos de operar y requieren mucho servicio y mantenimiento.

Las torres estabilizadoras tienen típicamente 30 platos por debajo de la alimentación. La carga térmica requerida por el sistema puede proporcionarse mediante el rehervidor de fondos y un calentador para la corriente de un plato intermedio.

Existen varios tipos de procesos que utilizan el mismo principio de fraccionamiento pero presentan variaciones en las condiciones de operación y en los equipos requeridos. Estos esquemas se describen a continuación.

Agotamiento en frío

Principios de operación. Este método implica una columna con un gas de agotamiento para ajustar las especificaciones de H_2S , además del número de etapas de separación requeridas, que pueden reducirse, ya que la torre efectúa la función de la de baja presión. Se utiliza solamente el gas de la primera etapa para llevar a cabo el agotamiento porque tiene menor contenido de H_2S . Un esquema representativo de este tipo de proceso se muestra en la Figura 2.5.

La columna llega a requerir de 15 a 20 platos. El contenido de H₂S en el gas de agotamiento esta limitado en términos del contenido requerido de H₂S para el procesamiento del crudo. El flujo de gas de agotamiento es muy importante ya que fuera del agotamiento óptimo, el nivel de H₂S del aceite procesado tiende a incrementarse y la recuperación tiende a disminuir.

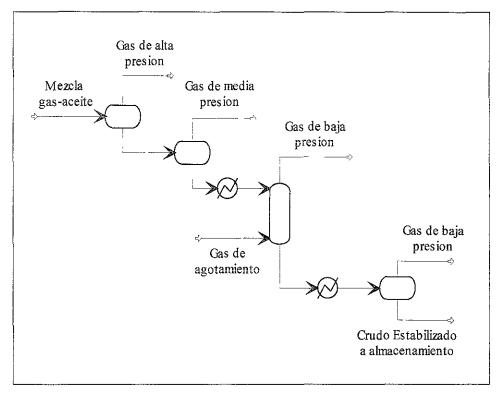


Figura 2.5

Características de la alimentación. El rendimiento de una agotador en frío en general, es pobre. La recuperación es aproximadamente la misma que con separación multietapas. La capacidad de remoción de H₂S limita la alimentación a 2000 ppm o menos para dar un crudo estabilizado con 60 ppm de H₂S. Si se dispone de un gas dulce de una fuente externa, el límite de 2000 ppm puede incrementarse.

La temperatura del crudo a la entrada del agotador deberá ser tan baja como sea posible. Esto esta limitado por la viscosidad máxima que permita una operación satisfactoria en los platos de destilación.

Características de los productos. La recuperación de líquidos es pobre y se reduce de manera significativa conforme la especificación de H₂S es más rigurosa, o según se incrementa el ácido sulfhídrico en la alimentación. Una presión de operación alta en el agotador favorece la recuperación.

La Presión de Vapor Reid es independiente de la concentración de H₂S en la alimentación, ya que la PVR se controla por la etapa de separación posterior al agotador.

Ventajas.

- ✓ El proceso es muy simple.
- ✓ Bajo consumo de servicios.
- ✓ Cumple con las especificaciones en el contenido de H₂S.

Desventajas.

- ✓ Capacidad limitada en cuanto a las variaciones de la relación gas-aceite.
- ✓ Esta limitado al contenido de H₂S en la alimentación y por las especificaciones de ácido sulfhídrico en el crudo estabilizado.

Agotamiento en caliente

Principios de operación. Este método involucra un proceso de agotamiento empleando una columna con rehervidor. La columna agotadora permite llegar a las especificaciones de H₂S y de presión de vapor por medio del control de temperatura del rehervidor. Es recomendable el control de temperatura del aceite a la entrada del agotador para optimizar la recuperación. Un esquema representativo de este tipo de proceso se muestra en la Figura 2.6.

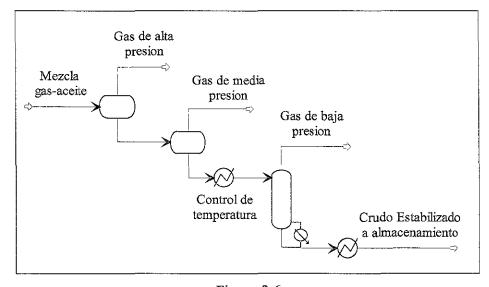


Figura 2.6

El diseño de este proceso involucra varios parámetros:

- Número de etapas de separación.
- Número de platos de agotamiento, usualmente 5 a 6 etapas teóricas (cerca de 25 platos reales).
- Temperatura de alimentación al agotador. Una temperatura menor favorece la recuperación, pero resulta en una disminución de la viscosidad, lo cual es un factor limitante.
- Presión en el agotador. Una presión de operación alta en la torre favorece el incremento en la recuperación del líquido, sin embargo, estará limitada por la temperatura máxima permisible en el rehervidor. La presión puede estar en un rango de 15 a 30 psi.
- La temperatura del rehervidor. La calidad de la alimentación (por el contenido de sal principalmente), puede limitar la temperatura de fondos; para evitar problemas de ensuciamiento. Para el rango de 15 a 30 psig de presión, las temperaturas podrían estar en el rango de 250 a 270°C.

Características de la Alimentación. Este método puede tratar cualquier aceite y permite alcanzar las especificaciones de H₂S. La recuperación depende de la severidad del agotamiento. Disminuyendo la especificación de H₂S de 60 a 10 ppm costaría 0.5% menos en la recuperación del producto. Se deberá evitar la entrada de agua al agotador, por medio de la deshidratación previa del aceite crudo.

Características del Producto. Alcanza una buena recuperación de líquidos (87.5%) pero ésta puede disminuir si las especificaciones de H₂S son más rigurosas y la concentración en la alimentación aumenta. Presenta buena recuperación para amplios rangos de especificaciones de H₂S y concentraciones del mismo. Es un buen método para alcanzar especificaciones menores de ácido sulfhídrico (10 ppm), si la concentración en la alimentación no es demasiado alta (máximo 1000 ppm).

Ventajas.

- ✓ Puede manejar variaciones en la concentración de ácido sulfhídrico en la alimentación.
- ✓ La presión de vapor del crudo estabilizado puede modificarse según los requerimientos, basándose en el control de temperatura en el rehervidor.

Desventajas.

✓ Este método no es recomendable para especificaciones rigurosas de ácido sulfhídrico en el crudo.

- ✓ El método es complejo de operar.
- ✓ Debe mantenerse lo más bajo posible la temperatura en el rehervidor para prevenir el ensuciamiento si existe alta concentración de sales.

Rectificación en dos etapas

Principios de operación. Este método es un mejoramiento del agotamiento en caliente. Los vapores del domo se comprimen hasta alrededor de 300 psi y se enfrían. Los líquidos obtenidos por efecto del enfriamiento son enviados a una segunda columna. Los fondos de esta segunda columna conteniendo los condensados pesados, son reinyectados al crudo. Esto proporciona mayor selectividad de las fracciones en el crudo. Un esquema representativo de este tipo de proceso se muestra en la Figura 2.7.

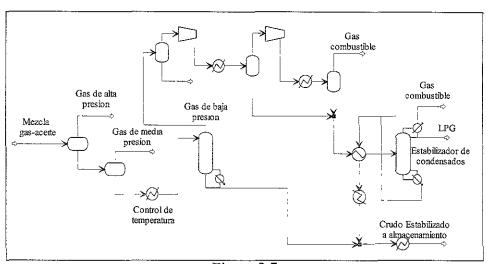


Figura 2.7

Características de la Alimentación. Este método puede procesar cualquier tipo de aceite y da mayor recuperación que el agotamiento en caliente. No existe limite para la concentración de H₂S en la alimentación ya que la recuperación y PVR del crudo producto disminuyen solo un poco cuando la concentración de H₂S se incrementa.

Características del Producto. Este método presenta una recuperación muy alta del líquido, cerca del 88%, la cual puede disminuir de manera poco significativa si se vuelven más rigurosas las especificaciones de H₂S y se incrementa la concentración de H₂S en la alimentación. Con una baja presión en la torre agotadora y una baja temperatura en el

condensador se obtiene una alta recuperación de producto. Puede llegarse a especificaciones de hasta 10 ppm de ácido sulfhídrico a altas concentraciones del mismo en la alimentación manteniendo una alta recuperación del producto.

Ventajas.

- ✓ Alta recuperación del producto.
- ✓ Método muy bueno para manejar variaciones en la relación gas-aceite.
- ✓ Puede manejarse grandes variaciones de concentración de ácido sulfhídrico en la alimentación.
- ✓ Se puede obtener LPG.
- ✓ Podría operar sin el fraccionador como agotador en caliente.
- ✓ Gran flexibilidad de operación.

Desventajas.

- ✓ El método es complejo debido al uso de dos columnas de fraccionamiento con sus respectivos rehervidores, sistema de reflujo en la columna de condensados, sistemas de compresión y enfriamiento del gas (lo más factible es que sea con un refrigerante).
- ✓ Muy alto consumo de servicios auxiliares.
- ✓ No es adecuado para crudos pesados ya que se tendrían muy altas temperaturas en el rehervidor, lo que haría necesario el desalado del crudo antes de su alimentación a la torre estabilizadora.

Estabilización con reflujo

Principios de operación. Este método usa una columna con reflujo para la estabilización. Después de las etapas de separación sucesivas, el líquido de la última etapa se alimenta a una columna con reflujo para producir LPG, gas asociado y crudo estabilizado.

La alimentación se precalienta con los fondos de la torre y entra a la torre por debajo del plato superior, donde la temperatura en el plato es igual a la temperatura de alimentación, esto minimiza la cantidad de vapores. Conforme el líquido desciende a través de los internos de la torre, se enriquece en componentes pesados y disminuyen sus componentes ligeros. El líquido estabilizado se enfría intercambiando calor con la corriente de alimentación. Un esquema representativo de este tipo de proceso se muestra en la Figura 2.8.

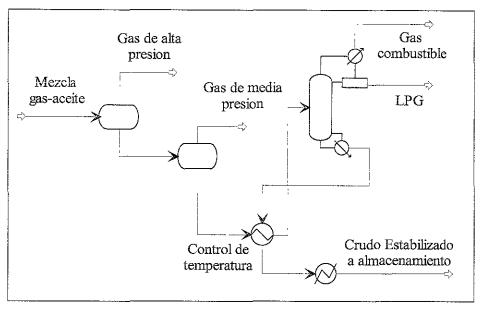


Figura 2.8

En el domo de la torre cualquier componente intermedio que salga con el gas, se condensa y retorna a la torre. El proceso se controla por medio de la temperatura del rehervidor, del condensador y la presión de operación de la torre.

Características de la Alimentación. Este método puede procesar crudos de alto contenido de H₂S y alcanzar todas las especificaciones. Para producir un reflujo líquido en el domo se requiere alta presión de operación (si se dispone de enfriamiento ordinario como aire o agua). Este proceso requiere alta temperatura en fondos, especialmente con crudos pesados. Los crudos ligeros operan a condiciones menos severas.

Características del Producto. Se pueden obtener recuperaciones altas de líquido, y hasta de 10 ppm de contenido de ácido sulfhídrico en el crudo estabilizado.

Ventajas.

- ✓ Alta recuperación de producto.
- ✓ Flexibilidad de operación.
- ✓ Manejo de crudos con alto contenido de H₂S.
- ✓ Se obtienen buenos resultados manejando crudos ligeros.
- ✓ Para crudos pesados se requiere un desalado "in situ" debido a las altas temperaturas que se requieren en el rehervidor.

✓ Un estabilizador con reflujo puede recuperar más componentes intermedios del gas que un agotador en caliente, sin embargo, se requiere más equipo.

Desventajas.

- ✓ Este método no es recomendable para crudos pesados.
- ✓ Involucra temperaturas más altas en el rehervidor que el agotamiento en caliente.

Fraccionamiento con recirculación interna de calor.

Principios de operación. El proceso consiste en una etapa de separación (o las que se requieran de acuerdo a las características y condiciones de presión y temperatura de la alimentación a la planta), de donde la fase líquida se envía a una torre de fraccionamiento a una presión menor o igual que la del separador.

La torre de fraccionamiento cuenta con una zona interna de intercambio de calor y un rehervidor. Con esto se obtiene una fracción gaseosa y una fracción líquida; ésta última se hace pasar por la zona interna de intercambio de calor. El gas proveniente de la torre estabilizadora se comprime y se enfría, a fin de recuperar condensados y recircularlos al primer separador. Un esquema representativo de este tipo de proceso se muestra en la Figura 2.9.

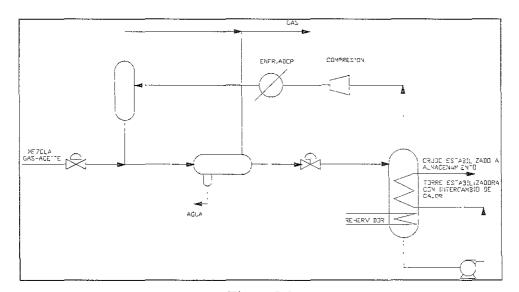


Figura 2.9

El rehervidor de la torre consiste en un tanque que puede utilizar energía eléctrica o un fluido como medio de calentamiento. El intercambiador de calor que se encuentra sobre el rehervidor (lo que corresponde prácticamente a la torre), esta formado por dos espacios para circulación, donde el aceite fluye por efecto de la gravedad, por un lado, eliminando el gas contenido en el mismo; y por el otro lado el líquido calentado en el rehervidor fluye del fondo al domo de la torre por medio de una bomba.

Características de la Alimentación. El proceso corresponde al tratamiento de una corriente de pozo con hidrocarburos ligeros asociados. La temperatura base de destilación esta entre 100 y 250°C, la presión en la zona de destilación es entre 23 y 150 psi.

Características del Producto. Con este tipo de proceso se obtiene un alto rendimiento de líquido estabilizado y con un contenido de H₂S dentro de especificación (60 ppm)

Ventajas.

✓ Al utilizar un intercambiador de calor dentro de la torre de destilación se obtienen ahorros sustanciales de energía al recuperar el calor emitido por el rehervidor, logrando así que el aceite sea estabilizado con un contenido de H₂S dentro de especificaciones.

Desventajas.

✓ Para lograr una buena eficiencia de separación se debe asegurar una adecuada transferencia de calor dentro de la torre para obtener un crudo estabilizado y con un contenido de H₂S mínimo.

La selección de un proceso de estabilización para un sistema específico requiere de un estudio cuidadoso que deberá considerar varios factores, entre los que se encuentran las propiedades del crudo (densidad, viscosidad, contenido de fracciones ligeras, etc.), las especificaciones para su venta (presión de vapor, concentración de ácido sulfhídrico, contenido de sales, agua, etc.), la infraestructura existente, la disponibilidad de servicios auxiliares y desde luego el presupuesto disponible.

Los precios de los crudos han sido también un factor determinante. Las unidades de estabilización de crudo fueron tradicionalmente simples, cuando los precios de los crudos fueron bajos. Con precios de crudo más elevados se justificarán procesos más complejos y selectivos. Se deberán considerar también, las políticas de comercialización vigentes y la filosofía de manejo y distribución del crudo. Así mismo, sobre las opciones que apliquen técnicamente, se deberá evaluar su rentabilidad basándose en la inversión inicial y los costos de operación y mantenimiento, para determinar finalmente cual es el proceso óptimo tanto en el aspecto técnico como en el económico.

Para realizar lo anterior, es necesario determinar el tipo y número de equipos requeridos, sus condiciones de operación, el consumo de servicios auxiliares, etc. Esto se obtiene a partir de la Simulación de cada opción de Proceso, con los resultados obtenidos se podrán determinar las condiciones de operación óptimas para obtener la mayor recuperación de producto así como la cantidad de servicios requeridos; también las características deseadas en el mismo (contenido de agua, ácido sulfhídrico, sales, etc.).

Algunos procesos, se descartaran debido a sus necesidades energéticas o de espacio, para nuestro estudio por ejemplo, no es factible la utilización de sistemas de estabilizado con torres de fraccionamiento, debido principalmente a la falta de servicios y a que se necesitaría modificar totalmente el esquema actual de producción. En la selección de alternativas, la Tabla 2.1 podría ser de gran utilidad.

Tecnología	Aplicación			
Separación multietapas:	Principalmente para el tratamiento de crudos pesados			
Simple	y de alta viscosidad, muy recomendable para			
Con calentamiento	instalaciones costa-fuera, instalaciones aisladas o			
Con vacío	cuando el presupuesto disponible es bajo o limitado,			
Mixta	también, cuando las especificaciones del producto no			
	sean muy rigurosas. Este tipo de procesos no son			
	recomendables cuando se requiere bajo contenido de			
	H ₂ S en el producto, pues el caso de calentamiento la			
	cantidad de energía es prohibitiva; si la tecnología a			
	emplear es vacío, se requiere un proceso con			
	severidad moderada.			

Tecnología			Aplicación
Estabilización fraccionadora	con	torre	Se recomienda para el tratamiento de crudos ligeros y con alta disponibilidad de presupuestos, lineamientos específicos para obtener la máxima recuperación y calidad del crudo, así como especificación estricta en el contenido máximo permisible de H ₂ S. Estos procesos son altamente consumidores de servicios y su empleo se limita a tratar cantidades menores de producción y cuando se requiere cuando menos de un producto terminado.

Tabla 2.1

Análisis de la Situación Actual

La Terminal Marítima de Dos Bocas, tiene capacidad de recibir la producción de aceite crudo ligero (*Istmo*) y crudo pesado (*Maya*), proveniente de las plataformas marinas (Abkatún-A, Abkatún-D, Pol-A, Chuc, Akal-C1, Akal-C2, Akal-C3, Akal-J y Nohoch-A), así como las producciones de crudo ligero enviadas desde los campos Cunduacán, El Golpe (Castarrical) y Puerto Ceiba.

Las actividades principales que se realizan en la Terminal Marítima de Dos Bocas (TMDB), son la estabilización del aceite crudo, compresión del gas separado, recuperación de condensados para su posterior integración al aceite ligero, bombeos internos y externos del crudo, medición de los flujos de entrada y salida del aceite, deshidratación del crudo ligero, preparación de crudo "Olmeca" como producto de mezclas entre crudo pesado y ligero, tratamiento de efluentes (agua obtenida durante el proceso de deshidratación y durante el drenado de los tanques de almacenamiento, etc.), almacenamiento de crudo "Istmo", "Maya" y "Olmeca" y el bombeo de aceite hacia "Boyas" para su carga a buquetanques y distribución.

Actualmente a la Terminal confluye la producción de aceite crudo bombeado desde plataformas por medio de cuatro oleoductos, la *Línea 1* maneja crudo pesado tipo *Maya*, proveniente de las plataformas Akal-C2 y Akal-C3, la *Línea 2* es utilizada para el transporte de la producción de crudo *Maya* aportada por las plataformas Akal-J y Nohoch-A, las *Líneas-3 y 4* son usadas para el envío del aceite crudo ligero tipo *Istmo*, aportada por las plataformas Abkatun-A, Abkatun-D, Pol-A, Akal-C1 (Campo Ek-Balam) y Chuc. También se reciben los flujos de aceite provenientes de los campos Cunduacán, Puerto Ceiba, Pijije y El Golpe. Los planes a futuro contemplan la producción que aportará el área correspondiente al "*Litoral de Tabasco*".

Los flujos y presiones instantáneas medidas en el área de "trampa de diablos" para cada una de las líneas de llegada a la Terminal Marítima de Dos Bocas, son respectivamente:

Flujo de aceite (BPD)	Presión de llegada (kg/cm²)	Procedencia
650,000	2.4	Línea l
227,000	4.0	Línea 2
683,000	3.0	Línea 3 y 4
110,000	4.4	Cunduacán
7,000	4.0	Castarrical
2,000	4.3	Puerto Ceiba

La distribución promedio de crudo "estabilizado" se efectúa de la siguiente forma:

Distribución del Crudo					
Destino	Crudo Ligero (BPD)	Crudo Pesado (BPD)	Crudo Olmeca (BPD)		
Nuevo Teapa	247229	395884			
Almacenamiento	241404	300480	125386		
Total	788633	696364	125386		

La capacidad promedio de recibo así como la de bombeo para cada tipo de crudo es el siguiente:

	Recibo	Bombeo (BLS.)
Tipo de Aceite	(BLS.)	
Ligero	908.180	660 820
Pesado	1 363 188	1 026 812
Olmeca	265 959	908 041

La calidad del aceite crudo para cada corriente que confluye a la Terminal Marítima de Dos Bocas, es el siguiente:

Línea	°API	H ₂ O (%)	SED. (%)
L-1 (Crudo Pesado)	21.2	0.210	0
L-2 (Crudo Pesado)	21.9	0.041	0
L-3 (Crudo Ligero)	34.8	2.4	0
L-4 (Crudo Ligero)	34.7	2.66	0
Cunduacán (C. Ligero)	33.9	0.025	0
Castarrical (C. Ligero)	32	0.10	0
Puerto Ceiba (C. Ligero)	34.7	0	2.8

Los análisis de calidad del aceite crudo ligero, tanto a la entrada como a la salida de cada tanque deshidratador, son:

	ENTRADA			SALIDA		
Tanque Deshidratador	°API	H ₂ O (%)	SED. (%)	°API	H ₂ O (%)	SED. (%)
TV-2002	34.5	2.6	0	35.4	0.050	0
TV-2004	0	0	0	0	0	0
TV-2005	35.3	2.8	0	35.3	0.080	0
TV-2006	34.8	2.6	0	35.3	0.083	0

La Terminal Marítima de Dos Bocas cuenta con 14 tanques de almacenamiento de 500,000 bbl de capacidad nominal cada uno, de los cuales 4 son para crudo ligero, 6 para crudo pesado y 3 para el crudo maya. También cuenta con ocho vasijas de estabilizado con capacidad para manejar una carga máxima de 250 MBPD cada uno, cada vasija cuenta con piernas de nivel, cristales o mirillas visuales, así como controladores y actuadores para el control de nivel. Cuatro de las vasijas se utilizan para estabilizar el crudo ligero y los restantes para el crudo pesado. Por lo tanto, las capacidades máximas de almacenamiento se presentan en la siguiente tabla.

Tipo de Crudo	Cupo Máximo (MBLS.)	No. TV's
Ligero	1 840	4
Pesado	2 760	6
Olmeca	1 380	3

La Terminal, cuenta con cuatro tanques deshidratadores con capacidad de tratar 200 MBPD cada uno, el objeto de estos equipos es reducir el contenido de agua y sales del aceite estabilizado, tal que cumplan con las especificaciones para su exportación y distribución a las refinerías.

En la Terminal Marítima de Dos Bocas, se emplean varios conjuntos de bombas con objeto de enviar el aceite producido costa afuera hacia Boyas para exportación, o a distribución a los complejos petroquímicos, refinación, etc. Estas bombas están agrupadas en Casas de Bombas, cada Casa de Bombas es operativamente flexible en capacidad de manejo de producción, factor que depende de la variación de los programas de producción.

La planta de compresión cuenta con 5 compresores eléctricos marca "Chicago Pneumatic" que operan en baja presión y 11 compresores a combustión interna "Cooper Bessemer" que operan con gas dulce y seco en baja y alta presión. En total la planta de compresión de gas en La Terminal Marítima de Dos Bocas actualmente cuenta con 16 motocompresores (5 Chicago y 11 Cooper), los cuales presentan una capacidad nominal de 60 MMPCD, siendo la potencia y capacidad de cada compresor la siguiente:

Cantidad	Marca	Potencia (HP)	Capacidad (MMPCD)	Etapa
5	Chicago	1250	6	Primera 2/50 psia
7	Cooper	1100	5	Primera 2/50 psia
4	Cooper	1100	15	Segunda 50/140 psia

Planteamiento del problema

La Terminal Marítima de Dos Bocas, actualmente procesa 996 MBPD de crudo ligero y 683 MBPD de crudo pesado, proveniente de la sonda de Campeche, tras su proceso de estabilizado, el aceite obtenido contiene cantidades significantes de compuestos ligeros (ácido sulfhídrico, metano, etano y propano principalmente) por lo que se presenta el problema de emanación de vapores durante su almacenamiento y transporte, provocando pérdida de productos, contaminación al medio ambiente y condiciones inseguras en la Terminal. Los

gases, por su parte, arrastran cantidades apreciables de condensados mismos que no son recuperados generando condensación en las líneas durante su transporte. En tales circunstancias, así como a la inminente entrada en vigor de las nuevas disposiciones en materia de regulación ambiental, riesgos a la salud y al medio ambiente, es imperativo mejorar los esquemas actuales de producción, a fin de cumplir con las normas más exigentes en cuanto al contenido de sustancias indeseables en el crudo estabilizado, así como reducir al mínimo la condensación en las líneas de transporte de gas.

El objetivo del presente trabajo, es proponer una mejora al proceso actual de Estabilización, considerando lo siguiente:

- Mantener la infraestructura actual de producción.
- Disminuir la concentración de H₂S en el crudo estabilizado a 70 ppm.
- Dobtener la máxima recuperación de producto (aceite estabilizado).
- Disminuir o mantener los actuales niveles de agua en el producto (< 0.5%)
- > Evitar la pérdida de productos valiosos durante el almacenamiento y transporte del crudo estabilizado.
- Disminuir los problemas de condensación en el transporte del gas a Cunduacán.
- Disminuir el contenido de sales en el aceite estabilizado.

Para iniciar el estudio, fue necesario representar la operación actual de la planta (Situación Actual), para ello se utilizan modelos matemáticos, basados en los fenómenos fundamentales, que describen los procesos de transporte y de reacción química, éstos modelos están contenidos en los sistemas conocidos como Simuladores de Procesos. Usualmente, la entrada de un sistema de simulación de procesos es la información contenida en el diagrama de flujo de proceso, mientras que la salida son todas las características de las corrientes del proceso, de esta forma, el sistema de simulación nos ayuda a tomar decisiones concernientes al desarrollo, diseño y operación de procesos químicos. Para el desarrollo del trabajo, es necesario contar con la siguiente información:

- ➤ Diagrama de flujo de proceso, necesario para especificar la conectividad de los diferentes equipos y corrientes de proceso.
- Características de la corriente de alimentación, tales como temperatura, presión, flujo y composición, respecto a éste último, se realizaron muestreos en el crudo que llega a la Terminal Marítima; dichas muestras fueron analizadas en la Subdirección de

Transformación Industrial (Gerencia de Desarrollo Tecnológico de Procesos) así como en la Subdirección de Explotación y Producción (Gerencia de Ingeniería de Yacimientos), ambos laboratorios pertenecientes al Instituto Mexicano del Petróleo.

Especificaciones de las características de los equipos tales como: temperatura, presión, potencia, etc.

Descripción del Proceso

El crudo marino proveniente de la estación de rebombeo que llega a la terminal (líneas 3 y 4), antes de entrar a los estabilizadores elevados de baja presión (SEBP), se mezclan con la corriente de condensados recuperados en los rectificadores de las unidades de compresión para continuar hacia los estabilizadores donde los componentes más ligeros se separan del aceite, la fase gaseosa se conduce a través de un cabezal (común para los crudos ligero y pesado), hacia el tanque de rectificación (TR), cuyo objetivo es evitar que llegue aceite a las unidades de compresión por fallas en la operación de los separadores (inundación). La fase líquida (aceite estabilizado) se envía a los tanques deshidratadores por gravedad (TD), donde se le elimina el contenido de agua previa adición de agentes desemulsificantes; después de la etapa de deshidratación, el aceite se envía a los tanques de almacenamiento (TA) o hacia distribución dependiendo de la demanda (exportación y refinación). El crudo pesado también proveniente de la estación de rebombeo (líneas 1 y 2), pasa directamente a los tanques de separación donde los componentes más volátiles son separados y conducidos por el cabezal hacia el tanque rectificador. El aceite mientras tanto, pasa directamente a almacenamiento o a distribución (debido a que el crudo pesado actualmente no contiene agua), en función de la demanda. Los gases provenientes del tanque rectificador (TR) pasan a la sección de compresión, en esta sección el gas pasa a través de tres etapas de compresión y rectificación sucesivamente (RVAP, C-1 y C-2, R-1, R-2, R-3), antes de enviarse hacia Cunduacán. Los condensados recuperados en las etapas de rectificación se mezclan con la corriente de crudo proveniente de la estación de rebombeo (líneas 3 y 4) como se mencionó antes. El diagrama de flujo de la situación actual se muestra en la Figura 3.1.

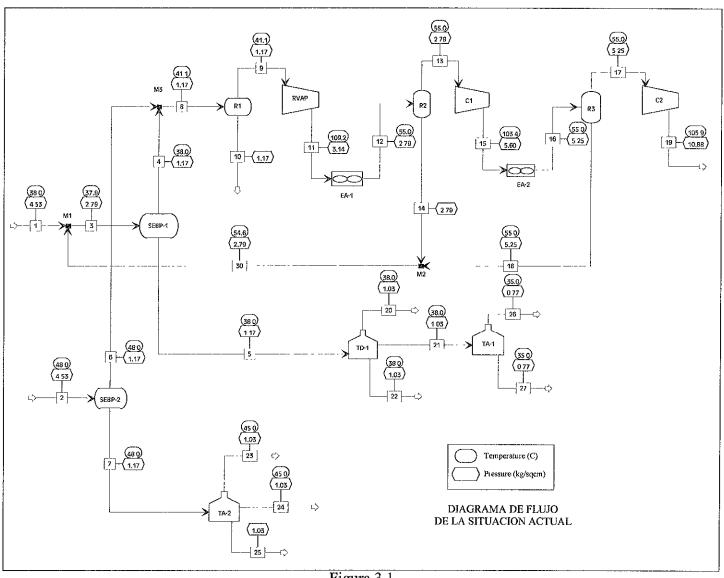


Figura 3.1

Simulación del proceso

Para nuestro estudio se consideraron los siguientes módulos:

BLOQUE	MODELO	NOMBRE	COND. DE OP.
SEBP-1	FLASH2	Separador elevado	$P=1.17 \text{ kg/cm}^2$
		de baja presión	$T=38^{\circ}C$
SEBP-2	FLASH2	Separador elevado	$P=1.17 \text{ kg/cm}^2$
		de baja presión	T= 48°C
R1	FLASH2	Rectificador de	$P = 1.17 \text{ kg/cm}^2$
		primera etapa	$T=41^{\circ}C$
R2	FLASH2	Rectificador de	$P = 2.79 \text{ kg/cm}^2$
		segunda etapa	T= 55°C
R3	FLASH2	Rectificador de	$P = 5.25 \text{ kg/cm}^2$
		tercera etapa	T= 55°C
EA-1	HEATER	Enfriador de primera	$\Delta P = 0.35 \text{ kg/cm}^2$
		etapa	T= 55°C
EA-2	HEATER	Enfriador de	$\Delta P = 0.35 \text{ kg/cm}^2$
		segunda etapa	$T=55^{\circ}C$
RVAP	COMP	Compresor de	$P = 3.15 \text{ kg/cm}^2$
		primera etapa	_
C-1	COMP	Compresor de	$P=5.60 \text{ kg/cm}^2$
		segunda etapa	_
C-2	COMP	Compresor de	$P = 10.88 \text{ kg/cm}^2$
		tercera etapa	
TD-1	FLASH3	Tanque	P=1 atm
		deshidratador	$T=38^{\circ}C$
TA-1	FLASH2	Almacenamiento	P=1 atm
		crudo ligero	$T = 38^{\circ}C$
TA-2	FLASH2	Almacenamiento	
		Crudo Pesado	
Ml	MIXER	Mezclador	$\Delta P = 0$
		carga/reflujo	
M2	MIXER	Mezclador de	$\Delta P = 0$
		condensados	
M3	MIXER	Mezclador de gases	$\Delta P = 0$

La simulación de la Situación Actual es necesaria para asegurarse que el modelo matemático y termodinámico seleccionado representa adecuadamente la operación normal de la planta. Seleccionar el modelo termodinámico que mejor representa la operación de la planta es una tarea dificil, para lograrlo nos basamos en la bibliografía existente y encontramos que debido a la amplia variedad de componentes presentes en la corriente de alimentación, así como a la presencia de componentes altamente polares es recomendable el uso de ecuaciones basadas en modelos de coeficientes de actividad, en vez de ecuaciones de estado del tipo Peng-Robinson

o Soave-Relich-Kwong, ya que éstos modelos no representan adecuadamente el comportamiento de este tipo de mezclas debido principalmente al amplio espectro de pesos moleculares presentes, así como a la presencia de componentes altamente polares como es el caso del H₂S, sin embargo, también encontramos que las ecuaciones de estado como las mencionadas anteriormente, han hecho grandes avances en lo concerniente al manejo de mezclas complejas, agregando a sus modelos nuevas ecuaciones para el cálculo de los parámetros de interacción binarios, de tal forma que se tienen modelos hídridos capaces de modelar adecuadamente este tipo de mezclas, por ejemplo, las ecuaciones de Boston-Mathías integradas a los modelos antes señaladas, permiten calcular con mayor precisión el comportamiento de mezclas complejas. Por lo tanto, para definir que modelo emplear, se realizó un análisis de sensibilidad para determinar el que mejor representa el comportamiento del proceso, los resultados de dicho análisis son los siguientes:

Es conveniente el uso de modelos basados en coeficientes de actividad únicamente para la sección de estabilizado, deshidratación y almacenamiento debido a que estos modelos son capaces de representar adecuadamente el comportamiento de mezclas con amplio espectro de pesos moleculares conteniendo cantidades apreciables de gas ocluido, mientras que para la fase vapor, se recomienda el uso de ecuaciones de estado como las mencionadas anteriormente. En nuestro estudio se utilizó el modelo de Grayson-Street para simular la sección de estabilización, deshidratación y almacenamiento en tanto que para la sección de compresión y recuperación de condensados el modelo de Peng-Robinson con las modificaciones de Boston-Mathías.

La Tabla 3.1 muestra los resultados obtenidos por simulación de la Situación Actual contra los datos proporcionados por operación, para los flujos actuales. En el anexo 1 se presentan los resultados completos obtenidos por simulación de la Situación Actual.

Análisis de la Situación Actual*											
Parámetro	Unidad	Valor Reportado	Valor Calculado	% Error							
Crudo Ligero	MBPD	750	745	0.93							
Crudo Pesado	MBPD	690	693	1.16							
Flujo de Gas	MMPCD	24.5	26.4	7.2							
H2S en Ligero	Ppm	180	175	12.5							
H2S en Pesado	Ppm	340	360	2.85							
PM Ligero		340	327	3.80							
PM Pesado		400	393	1.75							
PM Gas		39.01	39.31	0.77							

^{*}Los resultados que se presentan, corresponden a los productos obtenidos

Tabla 3.1

Análisis del Caso Base

Los aspectos planteados en el Caso Base consideran todas aquellas acciones o eventos que tendrían lugar sin tomar en cuenta las alternativas de proceso definidas para el presente trabajo y que de una u otra forma son comparables técnica y económicamente con las propuestas de solución. Por ejemplo, una propuesta para solucionar la problemática actual de altos contenidos de H₂S en el aceite crudo después del sistema de estabilizado, consiste en operar los separadores horizontales elevados a presiones vacuométricas (de vacío), sin embargo; si no se contempla tal acción correctiva, el recurso más comúnmente empleado para la "remoción" de ácido sulfhídrico es la inyección de agentes secuentrantes a la corriente bajo estudio, lo cual es muy fácil de realizar aunque el precio del químico es elevado, lo que resulta en unos costos de operación excesivamente altos, como se analizará posteriormente en la evaluación económica. Por lo tanto, es necesario analizar y comparar, bajo las mismas bases, tanto la Situación Actual como el Caso Base el cual nos proporcionará la pauta para definir la viabilidad técnica y económica de las Alternativas.

Descripción del Proceso

El diagrama de flujo de proceso para el Caso Base se presenta en la Figura 4.1. En este diagrama podemos observar que las unidades de compresión cambiaron de tres a dos, esto obedece a lo siguiente: dado que el Caso Base debe ser comparable con las Alternativas para efecto de su análisis económico, es necesario incluir estas unidades en la simulación, equipos ya fueron serán instalados principalmente porque los adquiridos V independientemente de que se realice alguna modificación adicional al proceso actual; la justificación de cambiar las unidades actuales de compresión, se debe a que se espera un incremento de la producción en los próximos años y a que los nuevos equipos cuentan con accionadores eléctricos, reemplazando a los anteriores de combustión interna, así como a la escasez de servicios (agua, gas de combustión, diesel) en la Terminal, y a los altos costos de operación y mantenimiento de éstas unidades.

Los flujos con los que se realizaron las simulaciones corresponden a los pronósticos de producción esperados a partir del año 2000, año en el cual se tiene contemplado inicie la operación en la Terminal del nuevo esquema de proceso para la estabilización del crudo, los pronósticos de producción para todo el horizonte del proyecto se presenta en la Tabla 4.1.

	Crudo I	igero	Crudo P	'esado
	Flujo	Temp.	Flujo	Temp.
Año	(BPD)	(°C)	(BPD)	(°C)
Sit. Actual	757000	38	700000	48
2000	587296	37	777100	48
2001	504180	33	1127400	48
2002	423101	30.5	1136400	48
2003	370231	28	1148200	48
2004	315652	26	1145200	48
2005	275112	24.5	1140700	48
2006	257791	24	1135800	48
2007	238848	23	1130900	48
2008	205880	22	1125000	48
2009	177143	21	1120000	48
2010	132894	20	1115000	48
2011	74731	19	1110000	48
2012	62139	19.5	1105000	48

Tabla 4.1



Figura 4.1 41

La Tabla 4.2, contiene un resumen de las principales variables monitoreadas durante las simulaciones realizadas, en esta tabla, es importante observar la cantidad de gas liberado a la atmósfera, tanto de crudo ligero como del pesado; respecto al contenido de ácido sulfhídrico en la corriente de crudo estabilizado, este se encuentra muy por arriba del máximo permitido (70 ppm), lo mismo podemos decir en cuanto a la presión de vapor verdadera que se encuentra cunado menos cinco unidades por arriba de la máxima permitida (11 psia). Ante esta situación, es necesario proponer alternativas viables al proceso de estabilizado para evitar la perdida de productos valiosos, la contaminación del medio ambiente y evitar riesgos en el manejo del crudo.

	Recepción de Crudo (MBPD)		Aceite Esi (MB	* **** ** ** *** *** *** ** * * * * *	Condesados Recuperados (BPD)	Gas Producido en Separación (MMPCSD)		
Año	Ligero	Pesado	Ligero	Pesado		Ligero	Pesado	
2000	587.30	777.10	577.07	767.91	94.27	12.27	14.25	
2001	504.18	1127.40	495.40	1114.07	110.93	10.53	20.67	
2002	423.10	1136.40	415.73	1122.96	105.50	8.84	20.84	
2003	370.23	1148.20	363.78	1134.62	102.34	7.73	21.06	
2004	315.65	1145.60	310.16	1132.05	98.12	6.59	21.01	
2005	275.11	1140.70	270.32	1127.21	94.79	5.75	20.92	
2006	257.79	1135.80	253.30	1122.37	93.18	5.39	20.83	
2007	238.85	1130.90	234.69	1117.53	91.45	4.99	20.74	
2008	205.88	1125.00	202.30	1111.70	88.62	4.30	20.63	
2009	177.14	1120.00	174.06	1106.75	86.16	3.70	20.54	
2010	132.89	1115.00	130.58	1101.81	82.55	2.78	20.45	
2011	74.73	1110.00	73.43	1096.87	77.90	1.56	20.35	
2012	62.14	1105.00	61.06	1091.93	76.64	1.30	20.26	

Апо	Gas a Compresores (MMPCSD)	Gas a Cunduacan (MMPCSD)			Gas Liberado a (MMP)	
areingus Jugus a	Charles Co. Charles	Spring Principle of Lab	Ligero	Pesado -	Ligero	Pesado
2000	26.52	23.64	161.37	294.19	2.58	1.74
2001	31.21	27.82	190.15	294.19	2.21	2.52
2002	29.68	26.46	210.16	294.19	1.86	2.54
2003	28.79	25.66	230.12	294.19	1.63	2.57
2004	27.60	24.60	245.52	294.19	1.39	2.57
2005	26.67	23.77	258.25	294.19	1.21	2.55
2006	26.21	23.37	265.25	294.19	1.13	2.54
2007	25.73	22.93	270.23	294.19	1.05	2.53
2008	24.93	22.22	274.86	294.19	0.90	2.52
2009	24.24	21.61	273.42	294.19	0.78	2.51
2010	23.22	20.70	273.85	294.19	0.58	2.50
2011	21.92	19.54	274.91	294.19	0.33	2.49
2012	21.56	19.22	275.15	294.19	0.27	2.47

Tabla 4.2

Los resultados completos obtenidos por simulación del Caso Base para el año 2000 se presentan en el apéndice 2.

Análisis Económico del Caso Base

Para obtener el comportamiento económico del Caso Base, es indispensable llevar a cabo un análisis de costos, tanto de inversión como los correspondientes a la operación y mantenimiento de las instalaciones. Los costos de operación y mantenimiento se obtuvieron en función de los pronósticos de producción, y con la información obtenida de las secciones operativas de la Terminal Marítima de Dos Bocas.

Para obtener los costos de operación y mantenimiento por la deshidratación del crudo ligero, se efectuó un análisis del tiempo de residencia y de los requerimientos del producto desemulsificante, en función del número de tanques deshidratadores disponibles, de las condiciones de temperatura de llegada, de la temporada invernal, etc. Así mismo, en este rubro se consideró una sanción por exceso del contenido de sal en el petróleo crudo. También fue considerado el costo de mantenimiento de los tanques de almacenamiento.

Por otra parte, también se determinaron los costos de operación y mantenimiento del sistema de compresión, obteniéndose estos en función del gasto de gas manejado obtenido por simulación. Se consideró también los costos de corridas de diablos y lo correspondiente al gas quemado durante las mismas, considerándose cuatro corridas por año.

Finalmente, se consideraron los costos de operación correspondientes a la dosificación de secuestrante de H2S en el crudo ligero y pesado, para reducir su concentración de 230 ppm para el ligero y de 300 ppm para el pesado a 70 ppm. Lo anterior es debido a que en un futuro a mediano plazo (año 2001), se considera la aplicación de esta nueva especificación en la comercialización del crudo de exportación (21% del crudo tratado).

Ingresos del Caso Base

Para la determinación de los ingresos del Caso Base, se consideró la producción obtenida por simulación del aceite ligero, pesado así como la cantidad de gas enviada hacia Cunduacán. Además, para este proyecto se definieron por parte de la coordinación del proyecto, las condiciones de presión de vapor verdadera de 11 lb/pg²abs @ 38°C, como condiciones para crudo estabilizado.

En la Tabla 4.3, se muestran los flujos de gas amargo y de crudo "estabilizado", así como los ingresos por comercialización, cabe mencionar que en este análisis únicamente se considera el aceite exportado; que para ambos tipos de crudo se ha considerado el 21% del total aún cuando en el caso del crudo pesado la cantidad exportada tiende a ser mayor. El precio del gas amargo comercializado es de 2,016.00 USD/MMPCS en tanto que para el aceite ligero es de 11.87 USD/BBL y para el crudo pesado de 8.56 USD/BBL.

	,	INGR	ESOS DEL	CASO BAS	SE	·				
Año	Flujo de Gas (MMPCD)	Aceite Estabiliz	zado (MBPD)) Ingresos (MMUSD/Añ						
i de la	Cunduacan	Ligero	Pesado	Gas	Ligero*	Pesado*	Total			
2000	23.64	577070	767912	17.40	525.038772	503.845493	1046.28			
2001	24.97	495534	1114071	18.37	450.854425	730.968721	1200.20			
2002	26.70	415975	1122964	19.65	378.468822	736.803632	1134.92			
2003	23.89	364037	1134625	17.58	331.213786	744.454694	1093.25			
2004	22.73	310388	1131660	16.73	282.402021	742.509286	1041.64			
2005	21.88	270531	1127213	16.10	246.138708	739.591502	1001.83			
2006	21.50	253500	1122371	15.82	230.643299	736.41455	982.88			
2007	21.05	234873	1117529	15.49	213.695793	733.237598	962.42			
2008	20.41	202454	1111699	15.02	184.199836	729.412395	928.63			
2009	19.87	174195	1106758	14.62	158.488795	726.170486	899.28			
2010	19.14	130682	1101817	14.08	118.899123	722.928577	855.91			
2011	18.26	73489	1096876	13.44	66.8629011	719.686669	799.99			
2012	18.03	61108	1091935	13.27	55.5982277	716.44476	785.31			

Pgas = 2016 \$UDS/MMPCS Plig = 11.87 \$UDS/BBL

Ppes = 8.56 \$UDS/BBL

Tabla 4.3

Inversión en el Caso Base

En el Caso Base se ha considerado la inversión requerida para el manejo integral del crudo ligero y pesado en la TMDB para el horizonte del proyecto, contemplando la adquisición de

^{*} Se considera únicamente el aceite de exportación (21%).

equipo de compresión en sustitución de los existentes, equipo de deshidratación electrostática para el crudo pesado y el sistema de refrigeración de gas para reducir su condensación en el ducto de transporte. En la Tabla 4.4, se muestran los tres conceptos principales de dicha inversión, con un desglose en lo referente al equipo de compresión de gas, su costo unitario, el costo total y el monto de la inversión del Caso Base, que asciende a 25.06 millones de dólares.

INVERSIÓN REQUERIDA

CASO BASE

CANTIDAD	COSTO UNITARIO (MM USD*)	COSTO TOTAL (MM USD*)
3	1.7011	5.1033
3	0.1	0.3000
3	0.001	0.0030
3	1.246	3.7366
3	0.1	0.3000
1	1.24	1.24
7	2.055	14.3836
	3 3	3 1.7011 3 0.1 3 0.001 3 1.246 3 0.1 1 1.24

* Pandad del dólar (Mavo/98) 1USD = \$8 59

Tabla 4.4

Costos de Operación y Mantenimiento del Caso Base

Para efectuar un análisis económico, es necesario determinar los costos de operación y mantenimiento por el manejo y transporte del crudo ligero y pesado en la TMDB, los cuales se obtuvieron para las áreas de: trampas y ductos, estabilizado, casas de bombas, deshidratación de crudo ligero, deshidratación de crudo pesado, compresión de gas, gasoducto y en la reducción de la concentración de H₂S, lo cual se considera para el estudio que afectará solamente en la producción de exportación, estimada en un 21% en ambos tipos de crudo, a partir del año 2001, como se mencionó anteriormente. En la Tabla 4.5 se presenta el comportamiento de los costos de operación y mantenimiento del Caso Base, para cada año en el horizonte del proyecto.

Los ingresos y costos antes presentados, servirán como una referencia comparativa de los que serán obtenidos en las alternativas, para su análisis económico de tipo incremental.

COSTOS DE OPERACIÓN Y MANTENIMIENTO

CONCEPTO CONCEPTO	2000	2001	2002	∄ 2003⊶	2004	2005	2006	2007	2008	2009	2010	2011	2012
ÁREA DE TRAMPAS	0.000	0.000	0.630	0.000	0.000	0.000	0.630	0.000	0.000	0.000	0.630	0.000	0.000
ESTABILIZADO	0.208	0.208	1.417	0.208	0.208	0.208	1.417	0.208	0.208	0.208	1.417	0.208	0.208
CASA DE BOMBAS 5T	2.850	3.966	3.966	3.966	3.966	3.508	3.508	3.508	3.508	3.508	3.508	3.508	3.508
CASA DE BOMBAS 1	1.070	1.344	1.236	1.236	1.236	1.236	1.236	1.173	1.173	1.173	1.173	1.173	1.173
CASA DE BOMBAS 2	4.837	6.176	5.594	5.594	5.594	5.594	5.594	5.145	5.145	5.145	5.145	5.145	5.145
CASA DE BOMBAS 4T	7.444	9.267	8.659	8.659	8.051	8.051	8.051	7.444	7.444	7.444	7.444	6.836	6.836
DESHIDRATACIÓN CRUDO LIGERO	2.190	2.341	1.860	1.690	1.557	1.414	1.353	1.361	1.178	1.067	0.939	0.697	0.645
DESHIDRATACIÓN CRUDO PESADO	1.166	1.552	1.531	1.524	3.547	3.533	3.520	3.507	3.491	3.478	3.464	3.451	3.437
COMPRESION	0.685	1.305	1.305	1.305	1.305	1.305	1.305	1.305	1.305	1.305	1.305	1.305	1.305
GASODUCTO	0.115	0.167	0.168	0.170	0.169	0.169	0.168	0.167	0.166	0.166	0.165	0.164	0.163
REDUCCIÓN DE H2S CRUDO LIGERO	0.000	16.982	14.251	12.470	10.632	9.266	8.683	8.045	6.934	5.966	4.476	2.517	2.093
REDUCCIÓN DE H2S CRUDO PESADO	0.000	59.560	56.929	55.430	53.342	51.684	50.872	50.002	48.583	47.352	45.554	43.248	42.606
COSTO TOTAL (MMSUD)	20:564	102.867	97.546	92.251	89.608		86.338	81.864	79.135	76.811	75.219	68.251	67.118

^{**} Se considera el 21% del flujo total para exportación Sanción por exceso de sal 0 05471 USD = \$ 0 47/Lb

Tabla 4.5

Estabilización con Calentamiento y Vacío (Alternativa 1)

En el capítulo dos se dio una descripción general de los diferentes procesos existentes para estabilizar una corriente de crudo, nuestro estudio toma como base el proceso de separación multietapas con recuperación de condensados, sin embargo, debido a las limitaciones propias al método se le adicionaron algunas variantes en su operación, éstas consisten básicamente en someter la corriente de crudo a un calentamiento y posterior separación con presión reducida, de esta forma logramos mejorar sensiblemente el método en cuanto a la calidad del producto obtenido, también se logra incrementar ligeramente la cantidad del mismo al tratar los condensados recuperados y reintegrarlos a la corriente de crudo estabilizado. Adicionalmente, con estas modificaciones el proceso no sufre mayor transformación operativa y sin embargo, se logra estabilizar el crudo y dejarlo dentro de especificaciones respecto al contenido de ácido sulfhídrico.

Descripción del proceso

El crudo proveniente de las diferentes zonas productoras que se recibe en la Terminal Marítima de Dos Bocas, como se dijo anteriormente (Capítulo 3), es del llamado crudo ligero o pesado, ambos crudos se procesan de manera independiente debido a diferencias en sus propiedades termofísicas, lo cual provoca procesos con diferentes grados de severidad. Sin embargo, los gases obtenidos de ambos procesos se colectan a través de un cabezal común.

El crudo ligero, se precalienta en las unidades de intercambio de calor EA-3, incrementando su temperatura hasta 53-55°C, posteriormente continúa su viaje hacia las vasijas de estabilizado (SEBP-LIG) que operan a presión vacuométrica, esta presión de vacío es generada con ayuda de las bombas de vacío de anillo líquido (BV-1), el aceite estabilizado obtenido en esta separación es bombeado (MB-1), hacia los tanques deshidratadores (DES-ATM), donde se les elimina el contenido de agua por sedimentación gravitacional, el agua aceitosa obtenida es enviada a los estanques clarificadores en tanto que el aceite se envía a almacenamiento y a boyas para su exportación. El gas obtenido incrementa su presión con la ayuda de las bombas de vacío e ingresa a un circuito de enfriamiento (EA-5) para unirse posteriormente al cabezal de recolección.

El crudo pesado recibido se precalienta en las unidades de intercambio de calor EA-1, posteriormente, intercambia calor con un aceite térmico en las EA-2, al salir de éstas unidades, el crudo tiene una ganancia de 82-85°C, el aceite estabilizado se envía a las unidades de deshidratación electrostática (D_ELECT) y de ahí se bombea hacia la sección de almacenamiento y a boyas para su exortación. El gas obtenido, se enfría (EA-4) y se une con el gas ligero, ambos pasan por el rectificador (R-1) antes de ingresar al compresor RVAP, después de la primera etapa de compresión, nuevamente se enfría (EA-6), se rectifica (R-2) y se comprime (C-1), después de la segunda etapa de compresión, el gas se enfría (EA-7) y entra a un circuito de refrigeración (EA-8), para pasar luego al separador de condensados (R-COND), cuyo objetivo es recuperar la mayor cantidad posible de agua y condensados, el gas obtenido, finalmente es enviado hacia Cunduacan. Los condensados obtenidos en los rectificadores (R-1, R-2 y R-COND), se envían al separador trifásico (SEP-COND), para eliminar el agua de los

condensados, estos pasa a la torres estabilizadora de condensados (EST-COND) y los gases obtenidos se reintegran a la etapa previa al compresor C1. Los condensados obtenidos en la torre estabilizadora se integran al crudo ligero estabilidado, en tanto que los gases amargos se integran a la línea de gases hacia Cunduacan. En la figura 5.1 se presenta el diagrama de la alternativa propuesta.

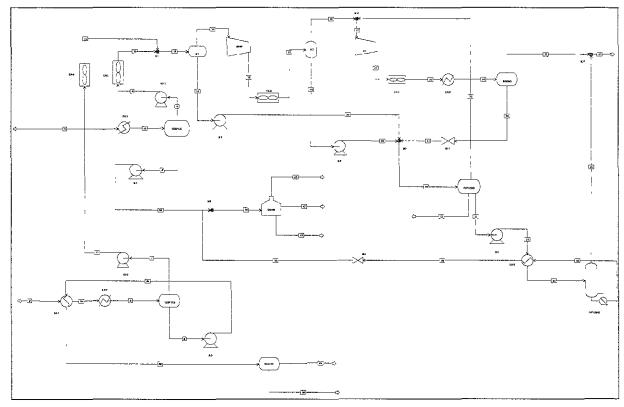


Figura 5.1

Simulación del proceso

Especificar las condiciones de operación de un proceso, generalmente requiere de vasta experiencia en el área, así como un exhaustivo estudio sobre los efectos de las variables de operación en los rendimientos deseados de los productos. En este sentido, nuestra propuesta integró un extenso análisis para determinar las condiciones óptimas de operación de la planta; para definir el grado de vacío y calentamiento requerido se simularon todas las posibles condiciones de operación, verificando que se cumpliesen las condiciones especificadas en el estudio, es decir, que el crudo quedara estabilizado y libre de contaminantes (ligeros y H₂S,

principalmente). En las Figuras 5.2 y 5.3 podemos ver el análisis de sensibilidad realizado al proceso de estabilización de crudo ligero, para determinar las condiciones de operación necesarias para garantizar un crudo estabilizado y dentro de especificaciones en cuanto al contenido de ácido sulfhídrico. La figura 5.2 presenta el comportamiento de la presión de vapor verdadera ante diferentes condiciones de operación del proceso, se observa que existe un rango muy amplio de operación con los cuales es posible obtener un crudo estabilizado (PVV < 11 psia), sin embargo, con algunas de estas condiciones de operación en la gráfica 5.3, vemos que el crudo contiene cantidades de ácido sulfhídrico superiores al máximo permitido (70 ppm), por lo tanto, debemos hallar condiciones de operación en las que se cumplan ambos objetivos, estabilizar el crudo y dejarlo dentro de especificaciones de ácido sulfhídrico. En la figura 5.3, se señala el punto ideal de operación, éstas condiciones se establecieron en función de un balance mecánico realizado a las vasijas de estabilizado, en donde se determinaron las condiciones de temperatura y presión mínima y máxima que éstos equipos pueden soportar sin sufrir daños irreversibles en su estructura mecánica y de matariales.

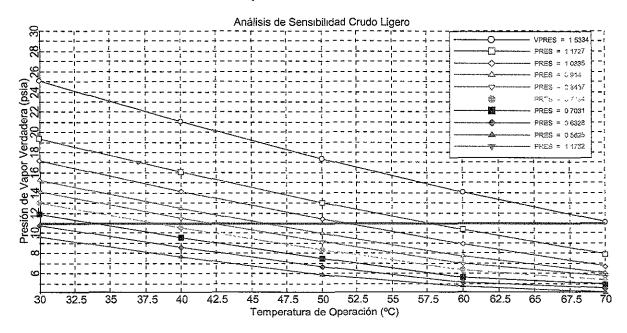


Figura 5.2

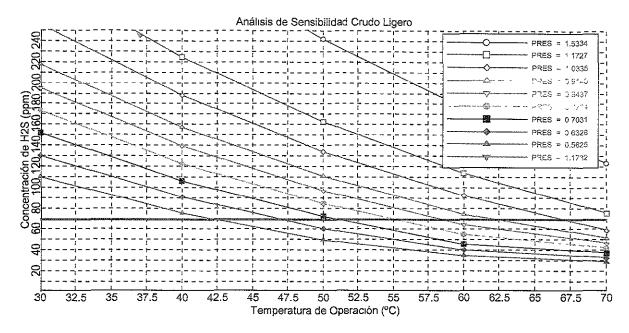


Figura 5.3

En cuanto al crudo pesado, se realizó un análisis similar al delineado con anterioridad, los resultados obtenidos se presentan en las Figuras 5.4 y 5.5. En ambos casos, el factor determinante en la selección del punto óptimo de operación fueron los resultados obtenidos del análisis mecánico y térmico realizado a las vasijas de estabilizado, en donde se encuentra que la presión de colapso de éstas unidades esta entre 4 y 5 psia de presión. La Figura 5.4, muestra los resultados del análisis de sensibilidad practicado al crudo pesado, se observa que conforme incrementamos la temperatura y disminuimos la presión de operación, se obtienen mejores resultados, también se observa que manteniendo constante la presión e incrementando la temperatura se obtienen buenos resultados, este mismo efecto se observa si se mantienen constante la temperatura y se disminuye la presión de operación, Figura 5.5.

Figura 5.4

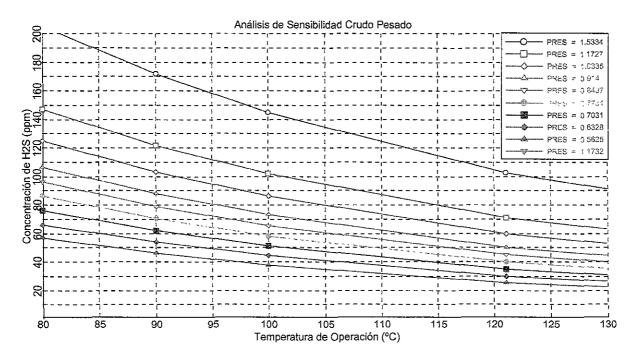


Figura 5.5

En el análisis numérico de esta alternativa se utilizó el modelo termodinámico de Grayson-Street para el cálculo de las propiedades termodinámicas en la sección de estabilización y

deshidratación, mientras que en la sección de compresión y recuperación de condensados se empleó la Ecuación de Estado de Peng Robinson con las modificaciones de Boston Mathías. Los resultados obtenidos por simulación de la Alternativa 1 para los flujos estimados en el año 2000 se muestran en el anexo 3, mientras que el diagrama de flujo de proceso utilizado para simular dicha alternativa se presenta en la Figura 5.6. Finalmente en la Tabla 5.1 se presentan los resultados de las variables más representativas para todo el horizonte del proyecto.

	Recepción de C	Prudo (MBPD)	Aceite Es	tabilizado	Condesados Recuperados (MBPD)	Gas a Bom (MM	bas de Vacio PCSD)
Año	Ligero	Pesado	Ligero	Pesado		Ligero	Pesado
2000	587.30	777.10	589.87	751.80	20.46	28.97	37.55
2001	504.18	1127.40	506.39	1090.70	24.41	24.87	54.48
2002	423.10	1136.40	424.96	1099.40	23.31	20.87	54.91
2003	370.23	1148.20	371.85	1110.82	22.68	18.26	55.48
2004	315.65	1145.60	317.04	1108.30	21.82	15.57	55.36
2005	275.11	1140.70	276.32	1103.56	21.13	13.57	55.12
2006	257.79	1135.80	258.92	1098.82	20.79	12.72	54.88
2007	238.85	1130.90	239.89	1094.08	20.43	11.78	54.65
2008	205.88	1125.00	206.78	1088.37	19.84	10.16	54.36
2009	177.14	1120.00	177.92	1083.54	19.33	8.74	54.12
2010	132.89	1115.00	133.48	1078.70	18.59	6.56	53.88
2011	74.73	1110.00	75.06	1073.86	17.63	3.69	53.64
2012	62.14	1105.00	62.41	1069.02	17.37	3.07	53.39

Ano se desses	(MMPCSD)	Gas a Cunduacan (MMPCSD)		lizado (ppm)	Energia requ Calentamiento	Energía Rehervidor (MMBTU/HR)	
			Ligero	Pesado	Ligero	Pesado	
2000	58.14	33.76	63.32	66.8	95.41	158.12	16.32
2001	69.35	40.27	63.32	66.8	81.91	229.40	19.47
2002	66.24	38.46	63.32	66.8	68.74	231.23	18.59
2003	64.45	37.43	63.32	66.8	60.15	233.63	18.09
2004	61.99	36.00	63.32	66.8	51.28	233.10	17.40
2005	60.04	34.86	63.32	66.8	44.69	232,10	16.85
2006	59.08	34.31	63.32	66.8	41.88	231.11	16.58
2007	58.06	33.71	63.32	66.8	38.80	230.11	16.30
2008	56.39	32.74	63.32	66.8	33.45	228.91	15.83
2009	54.94	31.90	63.32	66.8	28.78	227.89	15.42
2010	52.82	30.67	63.32	66.8	21.59	226.87	14.83
2011	50.10	29.09	63.32	66.8	12.14	225.86	14.06
2012	49.35	28.65	63.32	66.8	10.09	224.84	13.85

Tabla 5.1

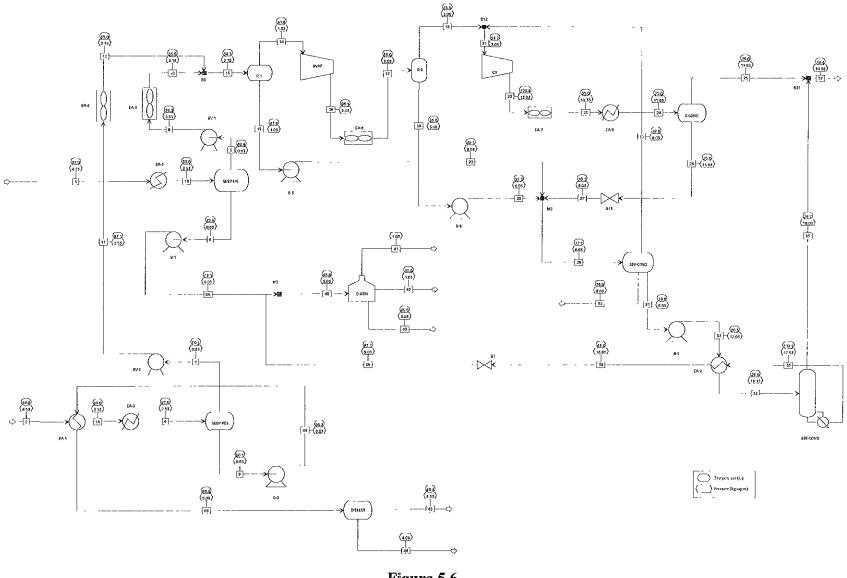


Figura 5.6

Análisis Económico

Para la realizar el análisis económico de la Alternativa 1, fue necesario efectuar el análisis técnico presentado anteriormente, para que a partir de éste se determinaran los ingresos, así como la inversión requerida por la infraestructura necesaria para la operación del proceso planteado, los costos de operación y mantenimiento.

Costos de Inversión

Los costos de inversión se determinaron considerando los requerimientos de equipo propuestos en el análisis técnico para las condiciones de diseño. El equipo requerido es el siguiente:

- 8 paquetes de calentamiento de 35 MMBTU cada uno
- 30 cambiadores de calor rehabilitados (podrán ser trasladados de Tula, Hgo.)
- 4 bombas de vacío de anillo líquido con sus servicios auxiliares, con capacidad total para manejar 70 MMPCD @ c.s., un sistema de reflujo de gas y cuatro enfriadores del gas de descarga de las bombas de vacío.
- 3 paquetes de compresión (dos en operación y otro más disponible), para la sección de compresión.
- 2 paquete de refrigeración con capacidad de -26 MMBtu/hr.
- 7 tratadores electrostáticos para la deshidratación del crudo pesado de 200 MBPD cada uno.

También son considerados en la inversión un separador elevado de tres fases (SHC3F) para los condensados, 3 motobombas en su descarga, 2 motobombas de condensados en la descarga de los rectificadores del gas del 1^{er} paso. Además, se ha considerado la rehabilitación de un cambiador de calor (también de Tula) para el precalentamiento de condensados que van a la torre de estabilización de condensados, la torre misma, un rehervidor, 3 motobombas de condensados de la torre y un separador bifásico para el gas frío proveniente del paquete de refrigeración.

En la Tabla 5.2, se presenta la lista de los requerimientos de equipo y sus costos de inversión para la implantación de la Alternativa 1.

DESCRIPCIÓN	CANTIDAD CL	AVE UBICACION C	OSTO UNITARIO	COSTO TOTAL	OBSERVACIONES Y COMENTARIOS
SECCION DE TRAT. DE CRUDO	1,15	* * * * * * * * * * * * * * * * * * * *	faint Gon 1	C. Gamarana	* * * * * * * * * * * * * * * * * * *
PAQUETE DE CALENTAMIENTO C.LIG	3 E	A-1 Atras de Batería de Sep	0 575	1 725	35 MMBTU c/uno (incluye homo, bombas, tuberia,
C PES	5 E	N-3 Atras de Batería de Sep	0 575	2 875	tanque de balance, accesonos, etc.)
CAMB DE CALOR REHABILITADO C LIG		4-2 Atras de Bateria de Sep	0 070	0 700	Transf Calor entre Aceste Térmico - C Ligero
C PES		1-4 Atras de Batería de Sep	0 070	1 400	en paralelo, Recup Tula o Huimanguillo
BOMBA DE VAC DE ANILLO LÍQ	4 B	/-1 Area de estabilizado	1 000	4 000	Capacidad para manejar 52 5 MMPCD en operación 17 5 MMPCD de relevo y generar un vacío de 9 psia
REFLUJO DE GAS EN BOMBA VAC	2 F	V Area de estabilizado	0 070	0 140	Reflujo para el control de la succión en bombas de yacio, a vel. Cte. De las mismas
ENFRIADOR DE GAS	4 E	N-5 Separador de cond	0 138	0.552	
IDESHIDRATADOR ELECTROSTATI C PES	7 TI	DE Atras de Bateria de Sep.	2 055	14 384	Tratador de 200 MBPD c/u
SUBTOTAL SECCIÓN DE COMPRESION				25.776	
MOTOCOMPRESORES CENTRIF DE MOTOR ELÉCTRICO 1er PASO	3 CN	IC-1 Cerca de área de esta- bilizado y CB-5E	1 945	5 835	2 Op y 1 rel Psucción = 31 0 psia Pdesc. = 82 psia Cap = 27 5 MMPCD c/uno 1600 BHP, Incluye soloaire y rectificador
MOTOBOMBA DE CONDENSADO 1er PASO	3 M	3-3 Descarga de líquido de rectificador R1	0 032	0 095	Capacidad para 25 GPM d'una 25BHP
MOTOCOMPRESORES CENTRIF	3 CM	C-2 Cerca de área de esta-	1 194	3 581	2 Op y 1 rei Psucción = 76.0 psia, Pdesc = 190 psia
DE MOTOR ELÉCTRICO 2do. PASO		bilizado y CB-5E			Cap = 27 5 MMPCD c/uno, 1500 BHP
SEPARADOR DE COND. DE 3 FASES	1 SH	C3F Area de compresores	0 250	0 250	Honzontal 84" x 30"
MOTOBOMBA DE CONDENSADO	3 M	3-4 Area de compresores	0 042	0 126	Capacidad para 150 GPM c/una 30 BHP
SUBTOTAL SECCION DE ENFRIAMTO. DE GAS	retrêtê ku sîrkî Kelefê Yeşîrikê	anarar yerendekana (j. 1992) 14. januar yerendekana	e da carreada Gregoriado (fil	9.887	
SMA, DE REFRIGERACIÓN		1-6 Area de compresores	3 200	6400	con capacidad para -12 MMBTU/HR
SEPARADOR DE DOS FASES	1 SH	C2F Area de compresores	0 130	0 130	Horizontal 72" x 20 Qg = 58 MMPCD y Qo= 50 MBPD
SUBTOTAL SECCIÓN DE ESTABIL. DE COND.				6.530 Hadrie Hallande	
CAMB DE CALOR REHABILITADO	1 E	A-7 Area de compresores	0 070	0 070	35 MMBTU, Recuperado de Tula o Huimanguillo carga de torre estabilizadora de condensado
TORRE ESTABILIZ DE COND	1 T	DE Area de compresores	0 450	0 450	incluye bombas de reflujo, 16 platos
REHERVIDOR DE TORRE	1 E.	N-8 Area de compresores	0 040	0 040	15 MMBTU/Hr
MOTOROMRA DE CONDENSADO	2 M	3-8 Area de compresores	0.043	0.126	Fondos calientes de torre
MOTOBOMBA DE CONDENSADO	IVI G	3-8 Area de compresores	0 042	0.126	Capacidad para 350 GPM c/una 30 BHP
TO THE SUBTOTAL STATE OF THE ST					
TO PAESE OF TO PAESE OF THE PROPERTY OF THE PASE OF TH				42.879	

Tabla 5.2

Costos de Operación y Mantenimiento

En los costos de operación y mantenimiento para esta alternativa se consideraron los mismos rubros que en el Caso Base, viéndose modificados por los flujos manejados y por las condiciones de operación propuestas. En esta alternativa se incorporan los costos correspondientes a los intercambiadores de calor y al sistema de calentamiento de crudo, la bomba de vacío, los de estabilización de condensados que comprenden la Torre, las bombas y al separador de tres fases. En el rubro de reducción de la concentración de H₂S en el crudo a 70 ppm, se puede apreciar el mayor de los beneficios económicos de esta alternativa ya que la implantación del proceso propuesto eliminará la dosificación de secuestrante de H₂S en el crudo. En la Tabla 5.3, se muestran los costos de operación y mantenimiento para la Alternativa 1, para el horizonte del proyecto.

COSTOS DE OPERACIÓN Y MANTENIMIENTO

Lat. William CONCEPTO: CONTROL TO	2000	2001	2002	2003;	2004	2005	2006	2007	2008	2009	2010	2011	2012
AREA DE TRAMPAS	6 827	8 292	8 424	8.973	7.609	7.417	7.740	8 342	7.051	6 906	7.118	7.558	6 355
ESTABILIZADO	1.285	1 522	2 042	1.522	1.722	1 263	1 758	1 263	1 263	1 047	1 362	0 893	0.893
CASA DE BOMBAS 51	2.850	\$ 508	3.508	3 508	3 508	3 050	3 050	3.050	3 050	3.050	3 050	3.050	3 050
CASA DE BOMBAS 1	1.070	1 344	1.236	1 236	1 236	1 236	1 236	1 173	1 173	1.173	1 173	1 173	1 173
CASA DE BOMBAS 2	4.837	6 176	5.594	5 594	5 594	5 594	5.594	5.145	5 145	5 145	5 145	5.145	5.145
CASA DE BOMBAS 4T	7 444	9.267	8.659	8 659	8 051	8 051	8.051	7.444	7 444	7,444	7.444	6.836	6.836
DESHIDRATACIÓN CRUDO LIGERO	2.190	2 140	1.691	1.542	1 431	1.304	1.250	1 265	1 095	0.996	0.886	0.667	0.620
DESHIDRATACIÓN CRUDO PESADO	1.166	1.552	1.531	1.524	3.547	3.533	3.520	3 507	3 491	3 478	3.464	3.451	3.437
COMPRESION	3.045	3.842	3 803	3.124	3.093	3.068	3 056	3 044	3.023	3 005	2.978	2.944	2.935
GASODUCTO	0.068	0.081	0.078	0.075	0.073	0.070	0 069	0 068	0.066	0.064	0.062	0.059	0 058
ESTABILIZACION DE CONDENSADOS	0.761	0.809	0.759	0 833	0.663	0.635	0 622	0 713	0.584	0.550	0.520	0 586	0.472
COSTO TOTAL (MMUSD)	31.542	38.532	37,326	36.590	36.527	35.223	35.947	35.013	33.384	32.858	33 201	32.361	30.972
"Paridad del dolar considerada a Mayo/98. \$8 59/1 USD)	Costo del Kw	/hr CFE (Ta	rifa horana si	reste) \$0.04	528 USD = \$	0 389	Costo actual	por barrii de d	crudo desh	0 002643 U	SD = \$ 0 022	70

[&]quot;" Se considera el 21% del flujo total para exportación

Tabla 5.3

Ingresos

Los ingresos de esta alternativa fueron obtenidos a partir del gasto de gas y de aceite estabilizado que sería comercializado (salida de TMDB), mismos que fueron obtenidos por simulación composicional para cada año del proyecto.

En la Tabla 5.4, se presentan los ingresos anuales obtenidos por concepto de comercialización de la producción.

	INGRESOS DE LA ALTERNATIVA 1									
Äño	Flujo de Gas (MMPCD)	Aceite Estabiliz	ado (MBPD)	Ingresos			IMUSD/Año)			
Bosco viec	Cunduaçan	Ligero	Pesado	Gas	Ligero*	Pesado*	Iotal			
2000	33.76	589870	751800	24.84	536.684666	493.274023	1054.80			
2001	40.27	506390	1090695	29.63	460.731343	715.631365	1206.00			
2002	38.46	424955	1099402	28.30	386.639478	721.344228	1136.29			
2003	37.43	371854	1110818	27.54	338.32565	728.834427	1094.70			
2004	36.00	317035	1108303	26.49	288.450097	727.184044	1042.12			
2005	34.86	276318	1103562	25.65	251.403708	724.073708	1001.13			
2006	34.31	258921	1098822	25.25	235.575377	720.963371	981.78			
2007	33.71	239895	1094081	24.81	218.264826	717.853034	960.93			
2008	32.74	206782	1088373	24.09	188.137905	714.107935	926.34			
2009	31.90	177919	1083536	23.47	161.87737	710.934122	896.29			
2010	30.67	133476	1078699	22.57	121.44161	707.760309	851.77			
2011	29.09	75059	1073862	21.41	68.290916	704.586496	794.29			
2012	28.65	62411	1069025	21.09	56.7840552	701.412683	779.28			

Pgas = 2016 \$UDS/MMPCS Plig = 11.87 \$UDS/BBL

Tabla 5.4

En la Tabla 5.5 se muestra el diferencial de ingresos de la Alternativa 1 respecto al Caso Base.

Precio del gas húmedo amargo \$17 318/MMPC = 2016 USD/MMPCS

Costo del secuestrante de H2S 12 7 USD/gal

Ppes = 8.56 \$UDS/BBL

^{*} Se considera únicamente el aceite de exportación (21%).

DIFERENCIAL DE INGRESOS

	Ingreso (MMUS	Diferencial de Ingresos		
Año	Caso Base	Alternativa 1	(MMUSD(Año)	
2000	1046.28	1054.80	8.52	
2001	1200.20	1206.00	5.80	
2002	1134.92	1136.29	1.37	
2003	1093.25	1094.70	1.45	
2004	1041.64	1042.12	0.49	
2005	1001.83	1001.13	-0.70	
2006	982.88	981.78	-1.09	
2007	962.42	960.93	-1.50	
2008	928.63	926.34	-2.29	
2009	899.28	896.29	-2.99	
2010	855.91	851.77	-4.14	
2011	799.99	794.29	-5.70	
2012	785.31	779.28	-6.03	

^{*} Se considera únicamente el aceite de exportación (21%).

Tabla 5.5

Estabilización con Calentamiento (Alternativa 2)

El calentamiento es una de las operaciones más antiguas y mejor conocidas en toda la industria, es el medio por excelencia utilizado con diferentes fines, separación de componentes, purificación de mezclas, evaporación, etc., a pesar de ser un método muy conocido y empleado, su uso requiere de extensos análisis para justificarlo.

Descripción del proceso

El proceso propuesto para la alternativa 2, no difiere en gran medida respecto a la alternativa 1, los flujos de aceite, tanto ligero como pesado pasan a la sección de precalentamiento de manera independiente (EA-1, precalentador crudo pesado y EA-3, precalentador crudo ligero), posteriormente pasan a los cambiadores de calor EA-2 y EA-4 donde intercambian energía con un aceite térmico proveniente de los calentadores. Ambos aceites, ingresan a sus respectivas vasijas de estabilizado (SEBP-LIG y SEBP-PES), el aceite obtenido se envía a la sección de deshidratación (D-ATM y D-ELECT), posteriormente son enviados a

almacenamiento o a boyas para su exportación. El gas obtenido, sigue la misma trayectoria, explicada en el Capítulo 5, de la Alternativa 1. El diagrama de flujo de este proceso se muestra en la Figura 6.1.

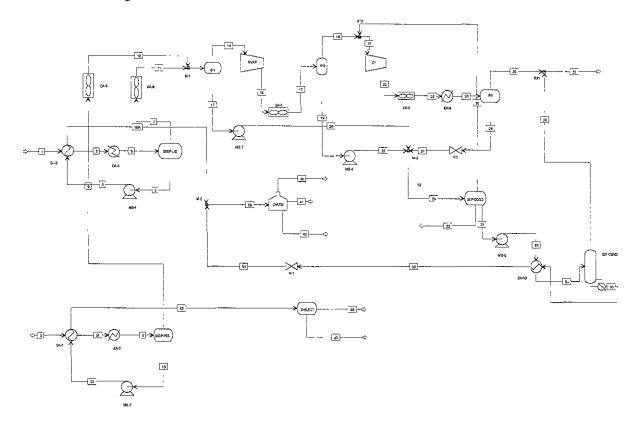


Figura 6.1

Simulación del proceso

Especificar las condiciones de operación de un proceso, generalmente requiere de vasta experiencia en el área, así como un exhaustivo estudio sobre los efectos de las variables de operación en los rendimientos deseados de los productos. En este sentido, nuestra propuesta integró un extenso análisis para determinar las condiciones óptimas de operación de la planta; para determinar el grado de vacío y calentamiento requerido se simularon todas las posibles condiciones de operación, verificando que se cumpliesen las condiciones especificadas en el estudio, es decir, que el crudo quedara estabilizado y libre de contaminantes (ligeros y H₂S, principalmente).

En esta Alternativa se utilizó el modelo de Grayson-Street para el cálculo de las propiedades termodinámicas en la sección de estabilización y deshidratación, mientras que en la sección de compresión y recuperación de condensados se utilizó el modelo de Peng Robinson con las modificaciones de Boston Mathías. Los resultados obtenidos por simulación de la Alternativa 2 para los flujos estimados en el año 2000 se muestran en el anexo 3, mientras que el diagrama de flujo de proceso utilizado para simular dicha alternativa se presenta en la Figura 6.1. Finalmente en la Tabla 6.1 se presentan los resultados de las variables más representativas para todo el horizonte del proyecto.

	Recepción de C	The second of th	Aceite Estabil	CO. C.	Condesados Recuperados (MBPD)		fucido en (MMPCSD)
Або	Ligero	Pesado	Ligero	Pesado	G Selly Stop SEIG	Ligero	Pesado
2000	587.30	777.10	595.38	743.77	28.55	36.94	43.58
2001	504.18	1127.40	511.12	1079.05	33.67	31.71	63.22
2002	423.10	1136.40	428.92	1087.66	32.04	26.61	63.73
2003	370.23	1148.20	375.33	1098.95	31.09	23.29	64.39
2004	315.65	1145.60	320.00	1096.46	29.82	19.85	64.25
2005	275.11	1140.70	278.90	1091.78	28.82	17.30	63.97
2006	257.79	1135.80	261.34	1087.09	28.34	16.21	63.70
2007	238.85	1130.90	242.14	1082.40	27.82	15.02	63.42
2008	205.88	1125.00	208.71	1076.75	26.97	12.95	63.09
2009	177.14	1120.00	179.58	1071.96	26.22	11.14	62.81
2010	132.89	1115.00	134.72	1067.18	25.14	8.36	62.53
2011	74.73	1110.00	75.76	1062.39	23.74	4.70	62.25
2012	62.14	1105.00	62.99	1057.61	23.36	3.91	61.97

Ano value	(MMPESD)	Gas a Cunduacan (MMPCSD)	Crudo Estab	lizado (ppm)	Energia reqi Calentamiento	uerida para (MMBTU/HR)	Energia Rehervidor (MMBTU/HR)
			Ligero	Pesado	Ligero	Pesado	
2000	70.78		61.40	69.80	105.9	147.79	21.48
2001	83.45	43.46	66.89	66.2	90.91	214.41	25.33
2002	79.41	41.36	66.89	66.2	76.29	216.12	24.10
2003	77.07	40.14	66.89	66.2	66.76	218.37	23.39
2004	73.93	38.50	66.89	66.2	56.92	217.87	22.43
2005	71.44	37.21	66.89	66.2	49.61	216.94	21.68
2006	70.24	36.58	66.89	66.2	46.48	216.01	21.32
2007	68.96	35.91	66.89	66.2	43.07	215.08	20.93
2008	66.84	34.81	66.89	66.2	37.12	213.95	20.28
2009	65.01	33.85	66.89	66.2	31.94	213.00	19.73
2010	62.31	32.45	66.89	66.2	23.96	212.05	18.91
2011	58.85	30.65	66.89	66.2	13.48	211.10	17.86
2012	57.91	30.16	66.89	66.2	11.20	210.15	17.57

Tabla 6.1

Análisis Económico de la Alternativa 2

Como se presentó anteriormente en el análisis técnico de esta alternativa, este método de estabilización que consiste del calentamiento de crudo para vaporizar los componentes ligeros que provocan alta presión de vapor y concentración de H₂S, requiere de la adquisición de algunos equipos para tal fin, la rehabilitación de cambiadores de calor y de la implantación del proceso de estabilización de condensados por columna de destilación, la cual también sería adquirida.

Costos de Inversión

Los costos de inversión de la presente alternativa se determinaron considerando los requerimientos de equipo propuestos en el análisis técnico para las condiciones de diseño. Para estas condiciones, se requiere lo siguiente:

- 7 paquetes de calentamiento de 35 MMBTU/Hr cada uno.
- 35 cambiadores de calor rehabilitados (podrán ser trasladados de Tula, Hgo.).
- 4 paquetes de compresión (tres en operación y otro más disponible para las condiciones de máxima producción manejada).
- 2 paquetes de refrigeración para el enfriamiento del gas de -14 MMBTU/hr cada uno.
- 7 tratadores electrostáticos para la deshidratación del crudo pesado de 200 MBPD cada uno.

También son considerados en la inversión un separador elevado de tres fases (SHC3F) para los condensados, 3 motobombas en su descarga, 2 motobombas de condensados en la descarga de los rectificadores del gas del 1^{er} paso. Además, se ha considerado la rehabilitación de un cambiador de calor (también de Tula) para el precalentamiento de condensados que van a la torre de estabilización de condensados, la torre misma, un rehervidor, 3 motobombas de condensados de la torre y un separador bifásico para el gas frío proveniente del paquete de refrigeración.

En la Tabla 6.2, se presenta la lista de los requerimientos de equipo y sus costos de inversión para la implantación de la Alternativa 2

INVERSIÓN REQUERIDA PARA LA ALTERNATIVA 2

SECCIÓN DE TRAT. DE CRUDO		ANTIDAD	COSTO UNITARIO	COSTO TOTAL	III. TOBSERVACIONES Y COMENTARIOS
PAQUETE DE CALENTAMIENTO	CLIG	4	0 575	2 300	S5 MMBTU c/uno (Incluye homo, bombas, tubena,
	C PES	9	0 575	5 175	tanque de balance, accesonos, etc.)
CAMB DE CALOR PRECALENTADOR	C.LIG	15	0 070	1 050	Transf Calor entre Aceite Térmico - C Ligero
REHABILITADOS	C PES	30	0 070	2 100	en paralelo, Recup Tula o Humanguillo
CAMB DE CALOR CALENTADOR	CLIG	10	0 070	0 700	Transf Calor entre Aceite Termico - C Ligero
REHABILITADOS	C PES	25	0 070	1 750	en paralelo, Recup. Tula o Huimanguillo
ENFRIADOR DE GAS		5	0 138	0 690	
DESHIDRATADOR ELECTROSTATICO	C PES	7	2 055	14.384	Tratador de 200 MBPD du
SECCION DE COMPRESIÓN		i kilitini Sakilitini			
SEPARADOR DE GAS A COMPRESIÓN		4	0 080	0 320	6" X 12" Lss
ENFRIADOR DE GAS		4	0 120	0 480	11.8 MMBTU/HR
COMPRESOR CENT ELECT, 1a.		4	1 701	6 804	1210 BHP c/u, incluye soloaire Psuc = 0 15 Kg/cm2
RECTIFICADOR DE GAS 1a		4	0 080	0 320	12 To Dill Cot, Incidye Soldalie FSEC = 0 To Agreniz
BOMBA DE CONDENSADOS		4	0 027	0 108	1.5 BHP
COMPRESOR CENT ELECT 2a		4	1 245	4 980	800 BHP c/u, incluye soloaire Psuc=2,25 Kg/cm2
RECTIFICADOR DE GAS 2a		4	0 080	0 320	500 Bit 50, madyc soldsile i and-2.25 hgranz
BOMBA DE CONDENSADOS		4	0 027	0 108	10 BHP
	Communication of the communica		TETEL Later of the	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100
SUSTOTAL SECCIÓN DE ENFRIAMTO, DE GAS		. jiinaa			
SMA. DE REFRIGERACIÓN		4	3 730	3 730	Con capacidad para -14 MMBTU/HR cada uno
SEPARADOR DE DOS FASES		4	0 130	0 130	Honzontal 72" x 20"
SUBTOTAL	T S.C.L. C	ali "tësras end	eaventrative of the contrative	0 130 18 94. 25 2 5 7 8 3.860 13 3 3 3 3 3 3 3 3 3	Holizoftal 72 x 20
Property of the Control of the Contr					
SECCIÓN DE ESTABIL. DE COND.					
CAMB DE CALOR REHABILITADO.		1	0 070	0 070	35 MMBTU, Recuperado de Tula o Huimanguillo
TORRE ESTABILIZ DE COND		4	0 450	0.450	carga de torre estabilizadora de condensado
REHERVIDOR DE TORRE		1	0.040		Incluye bombas de reflujo, 16 platos 15 MMBTU/Hr
REHERVIDOR DE TORRE		1	0.040	0 040	Fondos calientes de torre
MOTOBOMBA DE CONDENSADO		2	0.042	0 126	
SUBTOTAL AND THE	THE REPORT OF VIOLENCE	9.9.000 alocal	U U4Z	0 126	Capacidad para 350 GPM c/una 30 BHP
This mitter of the opposition by the second	an a libertary	2017-1972 PM	_12442127750000000000000000000000000000000000		

- The state of TOTAL Control of the state of

Tabla 6.2

Costos de Operación y Mantenimiento

De forma similar a la manera como fueron determinados los costos de operación y mantenimiento en el Caso Base, para esta alternativa fueron considerados los mismos rubros, viéndose modificados por los flujos manejados y por las condiciones de operación propuestas. En esta alternativa se incorporan los costos correspondientes a los intercambiadores de calor y al sistema de calentamiento de crudo, los de estabilización de condensados que comprenden la Torre, las bombas y al separador de tres fases. Similarmente a la Alternativa 1, en el rubro de reducción de la concentración de H₂S en el crudo a 70 ppm, se puede apreciar el mayor de los beneficios económicos de esta alternativa ya que la implantación del proceso propuesto

eliminará la dosificación de secuestrante de H₂S en el crudo. En la Tabla 6.3, se muestran los costos de operación y mantenimiento, para el horizonte del proyecto.

COSTOS DE OPERACIÓN Y MANTENIMIENTO

CONCERTO	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	201/1	2012
AREA DE TRAMPAS	9 064	10 802	10.788	12.372	9 774	9 497	9.781	11.464	8.976	8.770	8.889	10 334	7.976
ESTABILIZADO	0 160	0 160	0.679	0 160	0 160	0 160	0.655	0.160	0 160	0.160	0.629	0.160	0.160
CASA DE BOMBAS 5T	2 850	3.508	3.508	3 508	3 508	3 050	3.050	3 050	3 050	3.050	3.050	3 050	3.050
CASA DE BOMBAS 1	1 070	1.344	1 236	1 236	1 236	1.236	1.236	1.173	1.173	1.173	1.173	1 173	1.173
CASA DE BOMBAS 2	4 837	6,176	5 594	5 594	5.594	5 594	5.594	5.145	5.145	5 145	5 145	5,145	5.145
CASA DE BOMBAS 4T	7 444	9 267	8.659	8 659	8.051	8 051	8.051	7.444	7.444	7 444	7 444	6 836	6 836
DESHIDRATACIÓN CRUDO LIGERO	2 190	2.140	1.691	1 542	1 431	1 304	1.250	1.265	1.095	0 996	0.886	0 667	0.620
DESHIDRATACIÓN CRUDO PESADO	1 166	1,552	1.531	1 524	3.547	3 533	3.520	3.507	3.491	3 478	3 464	3 451	3 437
COMPRESION	4 426	5.225	5.180	5 154	4.461	4.433	4.420	4.405	4.382	4 361	4.331	3 635	3 624
GASODUCTO	0 074	0.088	0 063	0 081	0.078	0.075	0.074	0 072	0.070	0 068	0 065	0 062	0.061
ESTABILIZACION DE CONDENSADOS	0.625	0.645	0 604	0.682	0.518	0.494	0.484	0 576	0.451	0.421	0 395	0 467	0 355
COSTO TOTAL (MMUSD)	33,905	40.906	39.553	40.512	38.358	37.428	38.114	38.261	35.436	35,065	35.470	34.979	32,436

^{*}Pandad del dólar considerada a Mayo/98 \$8 59/1 USD ** Se considera el 21% del flujo total para exportación

Tabla 6.3

Ingresos

Los ingresos de esta alternativa al igual que para la anterior, fueron obtenidos a partir del gasto de gas y aceite que sería comercializado (salida de TMDB), mismos que fueron obtenidos por simulación composicional para cada año del proyecto. En la Tabla 6.4, se presentan los ingresos por comercialización de productos.

	INGRESOS DE LA ALTERNATIVA 2									
Año	Flujo de Gas (MMPCD)	Aceite Estabilizado (MBPD)		Ingresos (MMUSD/Año						
	Cunduacan	Ligero	Pesado	⊬∹⊬Gas∺ં⊹ા	Ligero*	Pesado*	Total			
2000	36.86	595380	743770	27.12	541.70	488.01	1056.83			
2001	43.46	511120	1079046	31.98	465.04	707.99	1205.00			
2002	41.36	428925	1087660	30.43	390.25	713.64	1134.32			
2003	40.14	375327	1098953	29.54	341.49	721.05	1092.07			
2004	38.50	319997	1096465	28.33	291.14	719.42	1038.89			
2005	37.21	278899	1091775	27.38	253.75	716.34	997.47			
2006	36.58	261339	1087085	26.92	237.78	713.26	977.96			
2007	35.91	242136	1082395	26.42	220.30	710.19	956.91			
2008	34.81	208714	1076748	25.61	189.90	706.48	921.99			
2009	33.85	179581	1071963	24.91	163.39	703.34	891.64			
2010	32.45	134723	1067177	23.88	122.58	700.20	846.66			
2011	30.65	75760	1062392	22.55	68.93	697.06	788.54			
2012	30.16	62994	1057606	22.19	57.31	693.92	773.43			

Pgas = 2016 \$UDS/MMPC Plig = 11.87 \$UDS/BBL Pg

Tabla 6.4

Costo del Kw/hr CFE (Tanfa horana sureste) \$0 04528 USD = \$ 0 389 Precio del gas humedo amargo \$17 318/MMPC = 2016 USD/MMPCS

Costo actual por bamil de crudo desh \$ 0 002643 USD = \$ 0 02270

Costo del secuestrante de H2S 12 7 USD/gal

Ppes = 8.56 \$UDS/BBL

^{*} Se considera únicamente el aceite de exportación (21%).

En la Tabla 6.5 se presenta el diferencial de ingreso de la Alternativa 2 respecto al Caso Base.

DIFERENCIAL DE INGRESOS

., ',	Ingreso	Diferencial de	
^ , , 0 , ,	: (MMUS	Ingresos	
Año	Caso Base	Alternativa 2	(MMUSD(Año)
2000	1046.28	1056.83	10.55
2001	1200.20	1205.00	4.81
2002	1134.92	1134.32	-0.60
2003	1093.25	1092.07	-1.18
2004	1041.64	1038.89	-2.75
2005	1001.83	997.47	-4.36
2006	982.88	977.96	-4.92
2007	962.42	956.91	-5.51
2008	928.63	921.99	- 6.64
2009	899.28	891.64	-7.64
2010	855.91	846.66	-9.26
2011	799.99	788.54	-11.44
2012	785.31	773.43	-11.88

^{*} Se considera únicamente el aceite de exportación (21%).

Tabla 6.5

Evaluación Económica

Un aspecto que tradicionalmente se ha considerado como el más importante en la evaluación de proyectos es la evaluación económico-financiera, por lo que es conveniente definir los conceptos que giran alrededor de ésta, así como los criterios de rentabilidad financiera que normalmente son utilizados para la definición de la viabilidad de un proyecto y la toma de decisiones. Existe una gran variedad de fuentes de información en esta área; sin embargo, éstas no presentan una distinción clara entre los criterios o conceptos económicos o financieros. Por tal motivo, en este trabajo se presentan los conceptos sin hacer énfasis si éstos son económicos o financieros.

En su concepción básica, la evaluación económico-financiera mide la rentabilidad de un determinado proyecto, para así tomar la decisión sobre la conveniencia de ejecutarlo. Normalmente el proyecto no se evalúa en forma aislada, ya que su análisis tiene que basarse en una comparación con respecto a la utilidad que el capital podría generar al ser invertido en

un uso alternativo. Entre los criterios más utilizados en este tipo de evaluación se tienen: flujo de efectivo descontado, valor actual neto, tasa interna de retorno, etc.

Otra aplicación de la evaluación económico-financiera es la de comparar u ordenar diferentes proyectos de inversión en función de su rentabilidad. Se puede tener por ejemplo un grupo de proyectos los cuales han mostrado ser rentables, en estas situaciones, la evaluación económico-financiera nos ayuda a seleccionar aquellos proyectos que se pueden ejecutar dentro de los límites de capital que está disponible¹.

Como es de suponerse, la evaluación económico-financiera es uno de los principales aspectos que deben ser considerados en la evaluación de alternativas tecnológicas en proyectos de inversión de plantas de proceso. Es por este motivo que a continuación se describen los conceptos más importantes, así como los criterios de rentabilidad comúnmente utilizados.

Valor del dinero a través del tiempo

Las técnicas principales para evaluar el valor del dinero a través del tiempo utilizan conceptos tales como *interés compuesto*, *interés simple, flujo de efectivo o de fondos*, etc. La palabra interés significa la renta que se paga por utilizar dinero ajeno o bien, la renta que se gana por invertir dinero.

La diferencia fundamental entre el interés simple y el interés compuesto estriba en el hecho que cuando se utiliza compuesto, los intereses a su vez generan intereses, mientras que cuando se usa interés simple, los intereses son función únicamente del capital original, el número de periodos y la tasa de interés (en la práctica, el interés compuesto es el más utilizado en las evaluaciones financieras²). Las ecuaciones para determinar el interés simple y compuesto se presentan a continuación:

Interés simple	Interés compuesto
VF = P(1 + nk)	$\overline{VF} = P(1+k)^n$

Donde P es el valor presente del dinero, k es la tasa de interés del dinero, n el número de años y VF es el valor futuro del dinero.

Flujo de efectivo

El flujo de efectivo se define como la diferencia algebraica de las entradas netas y desembolsos netos que resultan de las entradas y los desembolsos ocurridos en un mismo periodo de interés³. El flujo de cualquier proyecto comprende:

- La salida de efectivo inicial (incluyendo el capital de trabajo)
- Las entradas o salidas netas (ganancia o pérdida neta más intereses, así como los gastos que no se hacen en efectivo, como es la depreciación)
- El momento en que ocurren los flujos netos subsecuentes
- El valor de rescate del proyecto después del pago de impuestos (incluyendo la liberación del capital de trabajo)
- La fecha de terminación

Hay que distinguir entre los diversos flujos de efectivo asociados con el desembolso original, con las entradas y salidas subsecuentes y con el valor de rescate, porque cada uno se calcula de forma ligeramente distinta. El desembolso original es la salida típicamente más importante. Refleja el dinero que se gasta normalmente para adquirir el activo o iniciar el proceso de inversión.

El valor de rescate representa la entrada de efectivo, después del pago de impuestos, que refleja el dinero que genera la venta del activo. Si la venta genera efectivo en varios periodos, el ingreso se debe reflejar en aquellos en que se reciba realmente.

El flujo neto subsecuente de un proyecto de inversión de capital es el ingreso que genera (entrada bruta) menos todos los gastos en efectivo, excluyendo el interés que se paga por el

capital que se obtiene para financiar el proyecto y las deducciones aplicables, ya que el interés es un gasto deducible de impuestos.

Un flujo neto subsecuente típico serían las ventas netas atribuibles al proyecto, menos todos los gastos en efectivo que no vengan de las operaciones (excluyendo el interés y las deducciones del impuesto que sean aplicables) y menos los gastos en efectivo de operación, como son el costo de artículos que se vendan, los gastos de venta y administrativos y los impuestos que se paguen (excluyendo la depreciación que no es un gasto en efectivo).

Es muy importante notar que en cada año, desde la iniciación del proyecto hasta su terminación, habrá un flujo neto que quizá varíe de un año a otro y podrá ser positivo (entrada neta) o negativo (salida neta). En todos los proyectos ordinarios habrá una salida neta de efectivo relacionada con la compra inicial e instalación del equipo, y con la puesta en marcha del proyecto.

Criterios para la evaluación económico-financiera

Existen reportadas en la literatura varias técnicas para realizar la evaluación económicofinanciera, las cuales comparten el concepto del valor del dinero a través del tiempo. Esto es debido a la naturaleza de la situación que se evalua, lo que implica acciones que se desarrollan en diferentes momentos del futuro. Se parte desde las inversiones iniciales, las entradas y salidas derivadas del desempeño durante la vida del proyecto, y se consideran los valores de rescate. Todo esto origina el término *flujo de efectivo*, que conforma la materia en que se basan las técnicas de evaluación, cuyos parámetros de comparación se clasifican de la siguiente manera:

(a) Técnicas de valor actual:

- Flujo de efectivo descontado (FED)
- Valor presente neto (VPN)
- Relación beneficio/costo (B/C)
- Valor terminal (VT)

(b) Técnicas de tasa de rendimiento

- Tasa interna de retorno (TIR)

- Tasa de rendimiento promedio (TRP)

Existe también el criterio denominado periodo de retorno de la inversión (PRI), el cual no pertenece a ninguna de las dos categorías y tiene una aplicación más limitada.

A partir del flujo de efectivo se hacen los cálculos correspondientes de los parámetros de comparación para contrastarlos con los diferentes criterios predefinidos, los cuales pueden ser considerados como reglas o normas que ayudan a juzgar la conveniencia de un proyecto. Si éste no está a la altura de la norma, se rechaza. Los criterios de decisión son pautas que se expresan en función de la rentabilidad de la empresa, o de otra medida de valor con la cual se compara la rentabilidad o algún otro aspecto potencial de los proyectos.

Los criterios de decisión que se deben elegir dependen de las circunstancias específicas que rodean al proceso de evaluación del proyecto de inversión. Una explicación de estos criterios de evaluación se presenta a continuación:

Flujo de efectivo descontado (FED)

El criterio de decisión denominado flujo de efectivo descontado (FED), que se llama también método de valor actual (VA), incorpora todos los elementos que componen los criterios del presupuesto de capital en una sola guía consistente, el cual indica si el proyecto propuesto se debe aceptar o rechazar. Se evalúa de acuerdo con la siguiente fórmula:

$$VA = \sum_{i=1}^{n} \frac{F\$_{i}}{(i+k)^{i}} + \frac{S_{n}}{(i+k)^{n}}$$

En donde VA es el valor actual del proyecto, F\$i es el flujo de efectivo anual, S es el valor de rescate, K es el costo de los recursos, i es el periodo evaluado y n es el número de periodos.

El procedimiento general en el que descansa el FED consiste en comparar el Valor Actual (VA) con el desembolso inicial (DI); si el VA es mayor o igual al DI entonces el proyecto

propuesto se acepta; en caso contrario se rechaza. Es decir:

Si $VA \ge DI$ Aceptar

Si VA < DI Rechazar

Valor presente neto (VPN)

El valor presente neto es una variable del FED. La diferencia radica en que en el VPN se resta el desembolso original del valor actual de las entradas de efectivo futuras, cosa que no ocurre

con el FED. Así, VPN = VA - DI. Para calcular el VPN de un proyecto se calcula

simplemente el valor actual de las entradas futuras al costo apropiado de capital (de la misma

forma como fue explicado anteriormente), y al resultado se resta el desembolso original.

El criterio para aceptar o rechazar un proyecto de acuerdo con el VPN es el siguiente.

Acéptese si el VPN del proyecto que se propone es positivo y rechácese si es negativo.

Expresado por medio de símbolos es como sigue:

Si $VPN \ge 0$ Aceptar

Si VPN < 0 Rechazar

Tasa interna de rendimiento (TIR)

La tasa interna de retorno o tasa de rendimiento, es la tasa de descuento capaz de igualar la serie de ingresos futuros con el desembolso original. Dicho de otro modo, es aquella tasa de

serie de ingresos ruturos con el desembolso original. Dicho de otro modo, es aquella tasa de

descuento que da al proyecto un VPN de cero. La TIR vendría a ser r en el denominador de la

siguiente ecuación:

71

$$DI = \frac{F\$_1}{(1+r)^1} + \frac{F\$_2}{(1+r)^2} + \frac{F\$_3}{(1+r)^3} + \dots + \frac{F\$_n}{(1+r)^n} + \frac{S}{(1+r)^n}$$

Escrito de forma condensada se tiene:

$$0 = DI - \sum_{i=1}^{n} \frac{F\$_{i}}{(1+r)^{i}} + \frac{S_{n}}{(1+r)^{n}}$$

La tasa interna de retorno es *interna* con respecto al proyecto (no se fija externamente), a diferencia de la naturaleza externa del costo del capital, k se usa en el análisis del FED. Esto establece la regla de decisión: Acéptese el proyecto propuesto si su TIR es mayor o igual que el costo externo del capital determinado en los mercados financieros. Rechácese si su TIR es menor que el costo externo del capital. Así pues:

Si $TIR(r) \ge k$ Aceptar

Si TIR(r) < k Rechaza

La TIR es un criterio atractivo para muchas empresas, porque se expresa como porcentaje y se puede comparar fácilmente con el costo del capital en el mercado financiero k, el cual también se expresa así. Además, la separación entre el cálculo de la TIR y el costo del capital ofrece una posición ventajosa desde la cual se puede juzgar el proyecto propuesto a la luz de sus propios méritos, "independientemente" del costo del capital que, puede fluctuar ampliamente, con frecuencia y más allá del control de los inversionistas. Igual que el FED y el VPN, la TIR considera todos los elementos que entran en la evaluación de proyectos de inversión.

Beneficio/costo (B/C)

La regla del beneficio/costo, llamada a menudo índice del valor actual, compara a base de razones el valor actual de las entradas de efectivo futuras con el valor actual del desembolso original, dividiendo el primero por el segundo. Su presentación es algo distinta a la de los

métodos FED y VPN, pero se basa en los mismos conceptos. La relación queda de la siguiente manera:

$$B/C = \frac{VA}{DI}$$

La regla de decisión es: Si la razón del beneficio/costo es mayor que 1.0 acéptese el proyecto. Si la razón B/C es menor a1.0, rechácese. Expresándola por medio de símbolo queda:

Si B/C≥1.0 Aceptar

Si B/C < 1.0 Rechazar

Igual que el VPN y la TIR, el análisis de B/C se reduce a una sola cifra fácil de comunicar, en la cual se basa la decisión. Además, toma en cuenta todos los elementos de la evaluación de proyectos de inversión y facilita el manejo de las salidas de efectivo que puede ocurrir entra la futura serie de ingresos.

Si hay otros costos aparte del desembolso original, se deben considerar. La razón B/C toma en cuenta específicamente esos gastos comparando el valor actual de las entradas con el valor actual de todas las salidas, independientemente del periodo en que ocurran de manera que:

$$B/C = \frac{VA \text{ de las entradas de efectivo}}{VA \text{ de las salidas de efectivo}}$$

El método B/C separa las salidas de efectivo de las entradas, mientras que con los métodos FED, VPN y TIR los gastos futuros se engloban con los ingresos del mismo periodo y sólo se incorpora al análisis el resultado neto. El tratamiento por separado permite a veces enfocar mejor la distribución y la naturaleza de los gastos; pero en la mayoría de los casos no se altera la decisión de aceptar o rechazar.

Valor terminal (VT)

El método del valor terminal separa con más claridad aún la ocurrencia de las entradas y

salidas de efectivo. El método VT se basa en la suposición de que cada ingreso se reinvierte

en un nuevo activo, desde el momento en que se recibe hasta la terminación del proyecto, a la

tasa de rendimiento que prevalezca. Esto indica a donde van los flujos después de recibirse. La

suma total de estos ingresos compuestos se descuenta con la tasa k y se compara con el valor

actual de las salidas, que en este caso es el costo original.

Si el valor actual de la suma de los flujos reinvertidos (VAST) es mayor que el valor actual de

las salidas (VAOO), el proyecto se debe aceptar. Expresado en símbolos queda:

Si VAST ≥ VAOO Aceptar

Si VAST < VAOO Rechazar

La ventaja del método VT es que incorpora explicitamente la suposición acerca de cómo se

van a reinvertir los flujos una vez que se reciban y elude cualquier influencia del costo del

capital en la serie de flujos. La dificultad radica en definir cuales serán las tasas de

rendimiento en el futuro.

Tasa de rendimiento promedio (TRP)

La tasa de rendimiento promedio es la medida aritmética del desembolso original y el valor de

rescate, lo cual da aproximadamente el promedio de la inversión. El valor de rescate (S) sirve

para representar el valor del proyecto al término de su duración. Por lo tanto, la inversión

promedio es el valor inicial del proyecto (DI) más el valor de rescate (S) entre 2.

La regla de decisión es: Acéptese el proyecto si la TRP es mayor que el costo del capital k y

rechácese si es menor. Expresado en símbolos queda:

74

Si TRP $\geq k$ Aceptar

Si TRP < k Rechazar

Aunque la TRP pueda ser relativamente fácil de calcular y de comparar con el costo de capital, presenta varios inconvenientes cuando se usa como regla de decisión en la evaluación de proyectos de inversión. En primer lugar, ignora el valor del dinero en el tiempo puesto que no descuenta las entradas y salidas de efectivo futuras. En segundo, no toma en cuenta la componente tiempo de los ingresos, lo cual puede ser muy engañoso. En tercer lugar, se pasa por alto la duración del proyecto. Uno de larga vida no puede tener la misma TRP que otro de corta duración. Por último, la TRP no considera la depreciación (reembolso del capital) como parte de las entradas. Esta distorsiona el monto real de los ingresos y da lugar a confusión en el análisis.

Periodo de retorno de la inversión (PRI)

El periodo de retorno de la inversión o periodo de recuperación de capital es una medida de la rapidez con el que el proyecto reembolsará el desembolso original de capital. Este periodo es el número de años (o meses o semanas) que la empresa tarda en recuperar el desembolso original mediante las entradas de efectivo, sin *actualizar*, que produce el proyecto, y puede expresarse de la siguiente manera:

$$DI = \sum_{i=1}^{n} F\$_i$$

De acuerdo a este criterio se aceptan los proyectos que ofrecen un periodo de recuperación inferior a un cierto número de años (N) determinado por la empresa, y se rechazan los que ofrezcan un plazo mayor a este valor. Expresado en símbolos queda:

Si $PR \le N$ Aceptar

Si P"R > N Rechaza

El método presenta varios inconvenientes. Primero, ignora por completo muchos componentes de las entradas de efectivo. Todas las entradas que exceden el periodo de recuperación se pasan por alto, lo cual es muy engañoso.

El periodo de recuperación no toma en cuenta el valor del dinero en el tiempo, puesto que no descuenta los ingresos futuros, e ignoran así mismo todo lo relativo al costo de capital. A menos que el número de años aceptable esté relacionado directamente con el costo de capital, lo cual no ocurre en la mayoría de los casos, la empresa aceptará proyectos en los que pagará, por el costo de capital, más lo que son capaces de redituar, sin advertirlo siquiera. El método ignora también el valor de rescate y la duración del proyecto. El proyecto que ofrezca flujos apreciables en la última parte de su vida útil podrá ser rechazado a favor de otro menos rentable que produzca la mayor parte de los flujos en la primera parte.

El método puede ser también de alguna utilidad como criterio de decisión cuando la empresa insiste en preferir la utilidad a corto plazo y no los procedimientos "confiables" de planeación a largo plazo. Las ganancias rápidas e inesperadas pueden ser el objetivo de la administración, y los periodos de recuperación cortos tienen a propiciarlas. Por otra parte, los accionistas rara vez tienen absoluta confianza en una empresa cuyas ganancias sean obtenidas en un periodo demasiado corto, ya que éstas son consideradas obviamente como temporales.

El criterio apropiado de decisión

Existiendo todos estos criterios de decisión es necesario establecer guías para definir cuál debe adoptarse en un proyecto específico. La elección apropiada depende de las circunstancias en que se tome la decisión y de las prácticas que siga la empresa. Todos los criterios deben formar parte del repertorio de la alta dirección. Las diversas empresas tienen distintas normas de aceptación. Por supuesto se debe estar preparado para aplicar cualquier criterio o todos ellos; pero también se debe ser consistente en el empleo de aquél que se haya seleccionado. Como las circunstancias que rodean cada caso pueden variar mucho, es preciso limitar el estudio a términos generales que puedan ser adecuados a los casos específicos que se puedan presentar.

El criterio de flujo de efectivo descontado (FED) por lo regular, funciona mejor cuando la empresa tiene por objetivo la maximización del patrimonio del accionista y reconoce que el valor actual de la empresa se acrecentará mediante los proyectos cuyo FED exceda a su costo. Este criterio encuentra su mayor aplicación cuando la empresa busca el valor actual absoluto que cada proyecto puede producir. Si se desea que el importe absoluto del proyecto aparezca directamente en el criterio de decisión, se deberá emplear el FED. Este se adapta directamente a aquellas situaciones en que la ordenación de los proyectos según su atractivo no es motivo de preocupación y no es necesario considerar específicamente los desembolsos que siguen a la inversión inicial.

El criterio del valor presente neto (VPN) es el más apropiado cuando el objetivo de la empresa es maximizar el patrimonio del accionista, porque, al igual que el FED, da a conocer al monto del valor actual que cada proyecto proporciona. Sin embargo, a diferencia del FED, el VPN se adapta mejor a las empresas que buscan el importe absoluto del valor actual adicional. Este concepto resulta particularmente apropiado para las empresas que desean ordenar sus proyectos de acuerdo con lo que pueden agregar a su valor actual. Ofrece una indicación más clara del valor adicional del proyecto y es la forma más directa de comunicarlo a los demás. Su mejor aplicación es en aquellos casos en que no interesa considerar el neto de entradas y salidas en un periodo y no se requiere una indicación absoluta del costo de cada proyecto.

El criterio de la tasa interna de retorno (TIR) relaciona directamente a las empresas con los objetivos de maximización de utilidades, porque compara también directamente el costo con el rendimiento. Es adecuado en particular para las administraciones que aplican el criterio rendimiento-aceptación y es fácilmente comparable con el costo de los recursos que se acostumbra expresarlo en términos de porcentaje. Se puede comparar con facilidad con el costo de recursos derivados externamente y expresados en porcentajes, como las tasas de interés que se pagan por los bonos de la empresa. A veces facilita la comunicación con quienes toman las decisiones. Encuentra su mejor aplicación cuando no hay que preocuparse específicamente por el tamaño absoluto del proyecto ni por los desembolsos que siguen a la inversión original.

El criterio de la relación beneficio a costo (B/C) es dificil de relacionar directamente con la maximización de utilidades, porque no expresa en forma directa la relación costo/rendimiento ni el valor actual. Este criterio es más adecuado cuando las empresas buscan una indicación relativa del monto de los beneficios que se reciben por cada unidad monetaria de costo. Es asimismo muy adecuado cuando se requiere evaluar el efecto de las salidas de efectivo que siguen al desembolso original y cuando la administración desea ordenar los proyectos según su rango relativo. Usando independientemente, este criterio es muy difícil de relacionar con el costo absoluto de cada proyecto o con el valor actual adicional que proporciona a la empresa.

El criterio del valor terminal (VT) funciona mejor cuando la empresa busca la maximización del patrimonio del accionista. Resulta muy apropiado cuando existe la sospecha de que la tasa de interés a la cual se pueden reinvertir los ingresos que se espera recibir o a la cual tendrán que financiar futuros desembolsos va a ser diferente del costo actual de los recursos. La flexibilidad del criterio basado en el VT la hace relativamente fácil de ajustar a estos cambios previstos y permite comunicarlos a la administración. Sin embargo, no es adecuado cuando se tiene gran interés en ordenar los proyectos de acuerdo a su rango, porque sólo da el valor actual absoluto de cada proyecto y no el adicional que se obtendrá mediante el VAN.

El criterio del periodo de recuperación es difícil de relacionar con algún objetivo particular de la empresa; pero es apropiado cuando la empresa da importancia primordial a su liquidez y a la aceleración a corto plazo de sus ingresos. Como este criterio pasa por alto el valor del dinero en el tiempo, la ocurrencia de los flujos de efectivo, la duración del proyecto y el valor de los ingresos que se reciben después del periodo de recuperación, no es recomendable en muchos casos.

La tasa de rendimiento promedio (TRP) tiene su mejor aplicación cuando la empresa tiene como objetivo la maximización de utilidades; pero no es un criterio muy efectivo. Igual que el periodo de recuperación, ignora la duración del proyecto, el efectivo que genera la depreciación, el valor del dinero en el tiempo y la ocurrencia de los flujos. Sólo es conveniente emplear este criterio en aquellas circunstancias especiales en que la empresa busca una utilidad que se aproxime a cierto promedio anual.

Como se puede ver, ninguno de los criterios se puede aplicar todo el tiempo y a todas las situaciones. De hecho, es probable que se tenga que aplicar más de uno para evaluar un conjunto cualquiera de proyectos. Por ejemplo, tal vez se desee ordenarlos de acuerdo con el valor actual neto adicional que cada uno puede producir; pero, al mismo tiempo, comunicar el costo en relación con el rendimiento, siendo necesario considerar los cambios probables en la tasa a la cual se reinvertirán los ingresos o se financiarán los desembolsos futuros. En tal caso, se emplearía probablemente una combinación de los criterios VAN, TIR y VT.

En forma general se puede establecer de acuerdo a la experiencia general que la TIR, el VPN y el PRI son los criterios que más se utilizan en la evaluación de proyectos de plantas industriales.

Análisis de Rentabilidad de la Alternativa 1

Para efectuar el análisis económico de la Alternativa 1, se utilizó el programa ECONOPET (elaborado en el IMP), obteniendo los resultados que se presentan en la Tabla 7.1. La tabla 7.2 presenta los principales parámetros de evaluación, en ésta tabla, resalta la alta tasa interna de retorno (TIR) o tasa de rendimiento, que resultó de 179.40 % y el valor presente neto (VPN) de 299 millones de dólares, para una inversión efectiva de 17.8 millones de dólares.

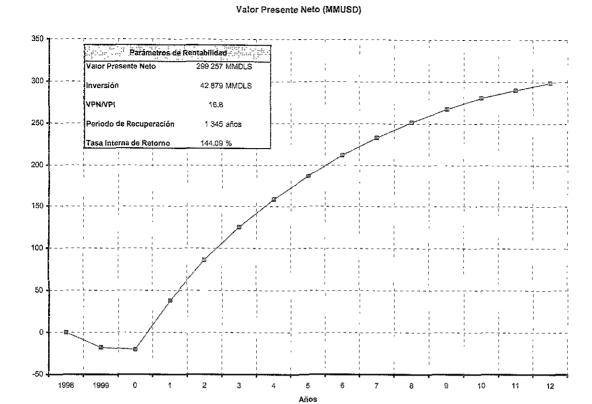

			ANALISI	S ECONOMICO	DE LA ALTERI	NATIVA 1			
PH B - "RESPECTE FRANCE"	Altern	ativa 1	Caso	Base	i valgu	* 00°C/767 (65.1.2)	Part 12 September 1985 Avenue		
ANO	INGRESOS (MMUSD)	EGRESOS (MMUSD)	INGRESOS (MMUSD)	EGRESOS (MMUSD)	DIF, ING: MMUSD	DIF EGR. MMUSD	FLUJO EFECT. (\$)	FJO EFECT: ACUM (\$)	VPN (\$)
1998		5 1145754	mature dell'est		Tarbain edl		er ey grunda	yaryayiib siya	irizinto Mistor
1999									-17.812
0	1054 80	31.54	1046.28	20 56	8.520	10.978	-2.458	-2.235	-20.047
1	1206 00	38 53	1133 65	102 87	5.800	- 64.335	70.135	55.728	37.916
2	1136.29	37 33	1201.47	97.55	4.370	-60.221	64.591	104.257	86.444
3	1094.70	36.59	1093.25	92.25	1.450	-55.661	57.111	143.264	125.452
4	1042.12	36 53	1041.64	89.61	0.480	-53.081	53.561	176.521	158.709
5	1001.13	35 22	1001.83	85.97	-0.700	-50.746	50.046	204.771	186.958
6	981 78	35.95	982.88	86 34	-1.100	-50.391	49.291	230.065	212.252
7	960 93	35 01	962.42	81,86	-1.490	-46.851	45.361	251.226	233.414
8	926 34	33 38	928 63	79.14	-2.290	-45 751	43.461	269.658	251.845
9	896 29	32.86	899 28	76 81	-2.990	-43 953	40.963	285.451	267.638
10	851 77	33.20	855 91	75 22	-4.140	-42.018	37.878	298.727	280.914
11	794 29	32.36	799.99	68 25	-5.700	-35.890	30.190	308.346	290.534
12	779 28	30 97	785.31	67 12	-6.030	-36.146	30.116	317.070	299.257

Tabla 7.1

EL VAL. PRES. DE LA INV. DE LA ALT. ES:	VPIALT =	42.879	(MMUSD)
EL VAL. PRES. DE LA INV. EN EL CASO BASE ES:	VPICB =	25.066	(MMUSD)
LA DIFERENCIAL DE INVERSION ES:	VPIALT - VPICB =	17.812	(MMUSD)
EL VALOR PRESENTE NETO ES:	VPN =	299.257	(MMUSD)
EL TIEMPO DE RECUPERACION DE LA INVERSION ES: (AÑOS)	Tri =	1.3458	` ,
LA TASA INTERNA DE RETORNO O DE RENDIMIENTO ES:	TIR =	144.10%	
EL INDICE DE UTILIDAD DE LA INVERSION ES:	VPN/ VPI =	16.8	
LA TASA DE DESCUENTO ES:	i =	10%	

Tabla 7.2

En la Figura 7.1, se presentan los parámetros indicativos de la rentabilidad de la alternativa y el comportamiento de las utilidades netas (VPN) con respecto al tiempo.

Figura 7.1

Análisis de Rentabilidad de la Alternativa 2

Para efectuar el análisis económico de la Alternativa 2, se utilizó el programa ECONOPET (elaborado en el IMP), obteniendo los resultados que se presentan en la Tabla 7.3. En la tabla 7.4 se puede apreciar que la tasa interna de retorno (TIR) o tasa de rendimiento fue de 134.10% y el valor presente neto (VPN) de 257 millones de dólares, para una inversión efectiva de 21.068 millones de dólares y una inversión total de 46.13 millones de dólares.

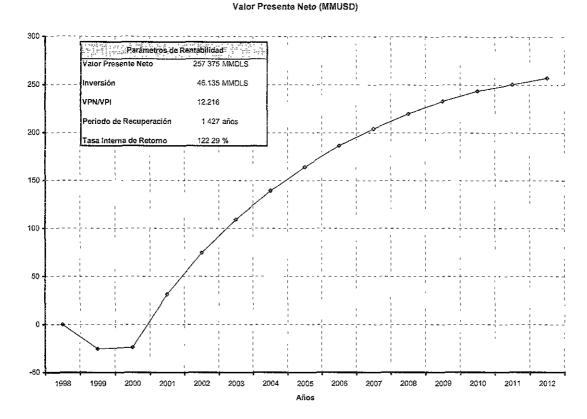

			ANALISI	S ECONOMICO	DE LA ALTER	NATIVA 2			
eng difference de	Alten	nativa	Caso	Base		ji Qerjitara	(11) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		Year to the second
AÑO	INGRESOS (\$USD)	EGRESOS (\$USD)	INGRESOS (\$USD)	EGRESOS (\$USD)	DIF, ING.	DIF EGR.	FLUJO EFECT. (\$)	FJO EFECT: ACUM: (\$)	VPN(\$)
1998	aldiki.		Mintelland	elija programa	, , , , , , , , , , , , , , , , , , , ,		,		18 1-19 10 Tree 5
				Per in				m francië, thiu pita w	-25,066
2000	1056 83	33.91	1046.28	20 56	10.550	13.341	-2.791	-2.537	-23.606
2001	1205 00	40.91	1133 65	102 87	4.800	-61.955	66.755	52.632	31.564
2002	1134.32	39 55	1201 47	97 55	-0.600	-57 992	57.392	95 752	74.683
2003	1092.07	40.51	1093 25	92 25	-1.180	-51.739	50.559	130.284	109.216
2004	1038 89	38 36	1041.64	89.61	-2.750	-51.250	48.500	160,399	139 330
2005	997 47	37.43	1001.83	85.97	-4.360	-48.541	44.181	185.338	164.269
2006	977.96	38.11	982 88	86.34	-4.920	-48 224	43.304	207 559	186.491
2007	956.91	38 26	962.42	81.86	-5 510	-43.603	38.093	225.330	204.262
2008	921 99	35 44	928.63	79.14	-6 640	-43.699	37.059	241.047	219.978
2009	891 64	35 07	899.28	76.81	-7.640	-41.746	34.106	254.196	233.128
2010	846.66	35.47	855 91	75 22	-9.250	-39.749	30.499	264.886	243.817
2011	788.54	34.98	799 99	68.25	-11.450	-33 272	21.822	271.839	250.770
2012	773 43	32.44	785.31	67 12	-11.880	-34.682	22.802	278.444	257 375

Tabla 7.3

EL VAL. PRES. DE LA INV. DE LA ALT. ES:	VPIALT = \$ 46.135	(MMUSD)
EL VAL. PRES. DE LA INV. EN EL CASO BASE ES:	VPICB = \$ 25.066	(MMUSD)
LA DIFERENCIAL DE INVERSION ES:	VPIALT - VPICB = \$ 21.068	(MMUSD)
· · · · · · · · · · · · · · · · · · ·		
EL VALOR PRESENTE NETO ES:	VPN = \$ 257.375	(MMUSD)
EL TIEMPO DE RECUPERACION DE LA INVERSION ES: (AÑOS	S) Tri = \$ 1.427	
LA TASA INTERNA DE RETORNO O DE RENDIMIENTO ES:	TIR = \$ 122.29%	
EL INDICE DE UTILIDAD DE LA INVERSION ES:	VPN/ VPI = \$ 12.216	
LA TASA DE DESCUENTO ES:	i = 10%	22.0

Tabla 7.4

En la Figura 7.2, se presentan los parámetros indicativos de la rentabilidad de la alternativa 2 y el comportamiento de las utilidades netas (VPN) con respecto al tiempo.

Figura 7.2

Evaluación Técnico Económica de las Alternativas

Después de haber efectuado el análisis técnico y económico de las alternativas presentadas, y compararlas respecto al Caso Base planteado en el presente capítulo, se efectuó un análisis comparativo de los parámetros de rentabilidad obtenidos con cada una de ellas, determinándose que ambas son ampliamente rentables, sin embargo la que presenta mejores condiciones económicas es la Alternativa 1, como se podrá apreciar a continuación.

En la Tabla 7.5, se presentan los parámetros de rentabilidad de las alternativas, en ésta se puede apreciar que la alternativa que involucra al vacío cuenta con los mejores resultados.

Concep		Alternativa 1	Alternativa 2
VPI ALT	(MMDLS)	42.88	46.14
VPI _{CB}		25.07	25.07
VPI _{ALT} - VPI _{CB}		17.81	21.07
VPN	(MMDLS)	299.26	257.38
TRI	Años	1.35	1.43
VPN/VPI		6.98	5.58
TIR	%	144.09	122.29
CT ALT	(MMDLS)	492.35	526.56
CT _{CB}	(MMDLS)	1048.61	1048.60
DCT = CT _{ALT} - CT _{CB}	(MMDLS)	-556.25	-522.04

Tabla 7.5

La Alternativa 1 se encuentra más atractiva que la Alternativa 2, debido a que en todos los parámetros de rentabilidad y costo cuenta con ventaja, como es el índice de utilidad de la inversión (VPN/VPI), de 6.98 para la alternativa 1 contra 5.58 de la Alternativa 2 y en la Reducción del Costo Total en el manejo y tratamiento de la producción en la Terminal Marítima de Dos Bocas, el cual fue de 556 millones de dólares para la primera y de 522 millones de dólares para la segunda.

En la Figura 7.3, se muestra comparativamente el comportamiento del VPN respecto al tiempo de las dos alternativas analizadas. En ella se puede apreciar con claridad la conveniencia económica que presenta la Alternativas 1, sobre la Alternativa 2.

250 200 150 0

1998

1999

Figura 7.3

3 4 5 6 7

Años

--- Alternativa 1 --- Alternativa 2

Editores, México).

Tarquin, A. Y Leland, B., (1978), "Ingeniería económica", McGraw Hill Book Co., México.

¹ Navarro B., P., (1993), "Evaluación de proyectos de inversión", Notas del Seminario, Sociedad Mexicana de Ingeniería Económica, Financiera y de Costos, A.C., Septiembre, México.

² Coss B., R., (1992), "Análisis y evaluación de proyectos de inversión", 2ª. Edición, Limusa, Grupo Noriega

Conclusiones y Recomendaciones

Modificar el proceso de estabilización de crudo en la Terminal Marítima de Dos Bocas (TMDB), Tabasco, es una acción necesaria y urgente debido a las implicaciones económicas, ambientales, de seguridad operativa, de transporte y almacenamiento que esta representa. En el aspecto económico se prevé un ahorro superior a los 550 millones de dólares por reducción de los costos de operación (tratamiento, manejo, transporte, almacenamiento, etc.) y mantenimiento de la producción en la TMDB; respecto a la seguridad ambiental y operativa, se contempla la eliminación de vapores durante la deshidratación y almacenamiento del producto y en consecuencia durante su transporte.

Las alternativas para estabilizar el crudo presentadas en el presente trabajo, son técnicamente factibles de aplicar pues con ellas es posible mejorar sustancialmente el esquema actual de producción sin modificar en mayor medida la estructura actual del proceso, ambas alternativas cumplen de manera efectiva con las especificaciones de ácido sulfhídrico requeridas en el producto así como con la presión de vapor verdadera.

La alternativa 1, Estabilización por Calentamiento y Vacío, es novedosa en cuanto a su implementación en este tipo de procesos (producción de hidrocarburos), sin embargo, cuenta con la experiencia necesaria de un proceso maduro y desarrollado. Respecto al análisis económico, la alternativa 1 cuenta con los mejores resultados perfilándose como la más atractiva debido a que en todos los parámetros económicos resulta favorable, sin embargo, cabe mencionar que una objeción al método es la falta de aplicaciones en el área.

Otra de las características de gran importancia respecto al método de estabilización con calentamiento y vacío, es que, durante las pruebas experimentales realizadas, se concluyó que las condiciones operativas reales son menores a las reportadas por los simuladores de procesos, esto se debe a la falta de modelos termodinámicos capaces de manejar mezclas complejas de hidrocarburos. Por otra parte, también es necesario indicar que pese a las limitaciones de los modelos termodinámicos existentes, la falta de datos experimentales de la mezcla en cuestión, es el mayor problema.

Respecto a la Alternativa 2, Estabilización con Calentamiento debo mencionar que es el método de mayor uso en la industria. En nuestro análisis resultó favorable desde el punto de vista técnico, sin embargo, durante el análisis económico ésta alternativa resulto ligeramente menos atractiva que la alternativa 1, esto no significa que no sea rentable y que en un momento dado no se pueda aplicar, simplemente nos indica que la alternativa 1 en más rentable, desde el punto de vista técnico y económico. En este tipo de situaciones, el factor experiencia determina cual es la mejor elección; y desde este punto de vista, la Alternativa 2 goza de enorme experiencia en toda la industria.

En ambas alternativas los condensados recuperados juegan un papel primordial, pues si estos participaran directamente en la evaluación económica, es probable que la alternativa 2 resultase favorecida, debido a la enorme cantidad de condensados reintegrados a la corriente de crudo estabilizado. Sin embargo, en este trabajo no se contempla esta alternativa por lo siguiente:

En primer lugar, el considerar los condensados como un producto independiente, implicaría la búsqueda de mercados para su comercialización, lo cual esta fuera del alcance de las actividades realizadas en la TMDB.

Considerando que se tuviera el mercado, existe un segundo problema, actualmente la diferencia existente entre la petroquímica básica y la secundaria es precisamente que la petroquímica básica comercializa gasolina de alto octanaje, esto implica, desde el punto de vista político, continuar con el dominio de la petroquímica básica que de otra forma pasaría a ser parte de la petroquímica secundaria.

Finalmente, mi recomendación es implementar el proceso de Estabilización con Temperatura y Vacío, debido a que las pruebas experimentales realizadas indican que las condiciones de operación son menores a las obtenidas a través de la simulación de procesos. Además, este método es flexible y puede implementarse de manera modular si se cuenta con presupuesto limitado. Las etapas necesarias para la implementación del proceso son las siguientes:

- Calentamiento de Crudo Ligero y Enfriamiento de la corriente de gas, con el fin de incrementar la recuperación de condensados, además de lograr la deshidratación adecuada del crudo ligero, así como la reducción de la corrosión en el gasoducto.
- 2. Implementación del Sistema de Vacío y Estabilización de Condensados, con esta modificación, se logrará estabilizar adecuadamente el crudo ligero así como la reducción en el contenido de ácido sulfhídrico.
- 3. Calentamiento de Crudo Pesado e Implementación Total del sistema de vacío, en esta etapa se lograría mantener el crudo ligero y pesado dentro de las especificaciones internacionales, en cuanto al contenido de agua y H2S.
- 4. Deshidratación electrostática del crudo pesado, con ésta última implementación, se tendría el crudo deshidratado, estabilizado y cumpliendo con las especificaciones de presión de vapor verdadera.

Apendice 1 Resultados de Simulación de la Situación Actual

Temperature C 38	Corriente	1	2	3	4	5		. 7	8	9	10	11
Frac Vapor	Temperatura C			37 92		38	48	48	42 01	42 01		97 72
Figur Micro (ADM) A 28E+00	Presion KG/SQCM	4 53	4.53		1.17	1.17	1 17	1 17	1 17	1.17	1 17	3.14
Figure Note 14009 402	Frac Vapor	0	0	0 01	1	0			1	1		1
Fixed Volum.CUM/HR							21298.784	4.28E+06	52284.476	52284 476	0	52284 476
Fraccion Mol	Flujo Molar KMOL/HR	14059 492	11445.577	14066.76	810 831	13255 929	515,498	10930.079	1326.329	1326.329	0	1326 329
H2Q	Fluvo Volum, CUM/HR	5097 277	4737.664	6454 798	18029.841	5033.228	11833.766	4694 303	29875.869	29875 869	0	13026 543
H2Q												
CO2	Fraccion Mol											
H2S		0.0201421								0 0356206	0	0 0356206
N2	CO2	0.0020548	0 0015219	0.002054	0 0293936	0 0003817	0 0276367	0.0002902	0.0287108	0.0287108	Ö	0 0287 108
C1	H2S	0 0067798		0 0067787		0 0026571	0.1551739	0 0053109	0.1056478	0.1056478	0	0 1056478
C2	N2	0 0000696	0.0000421	0.0000696	0.0011637	0.0000026	0 0008963	0 0000018	0.0010598	0 0010598	0	0 0010598
C3	C1	0.0109806	0 006635	0.0109757	0 168109	0.0013643	0.1278814	0 0009167	0 1524739	0.1524739	0	0 1524739
Cd	C2	0 0206219	0 0150694	0.0206159	0 2284581	0.0079028	0.2062542	0.0060525	0 2198282	0.2198282	0	0.2198282
C4	C3	0 042192	0.0345434	0.0421857	0.2665014	0.0284649	0 2751904	0.0231937	0 2698785	0.2698785	0	0.2698785
CS	IC4	0 0109922	0.0083834		0.0367468	0 0094157	0.0357778	0.0070914	0.0363702	0.0363702	Ö	0.0363702
CS	C4	0 0355278	0.0328754	0.035526	0.093349	0.0319891	0.1060644	0.0294235	0.098291	0 098291	0	
CS	IC5	0.0119033	0 0134174	0.0119034	0 0143813	0 0117518	0.0204922	0.0130837	0.0167564		ol	
C6	C5	0.0130771	0.0163547	0.0130775	0 0131399	0.0130737	0.0200798	0.016179	0.0158372	0 0158372	0	0 0158372
PC220F 0.0690372 0 0.0890112 0.0095735 0.0938702 0 0 0.0058526 0.0056526 0 0.005636 PC270F 0.0739125 0 0.073868 0.0026872 0.075244 0 0 0 0.0016428 0.0016428 0.0016428 PC320F 0.0798986 0 0.0798699 0.010437 0.0846915 0 0 0 0.000638 0.000538 0.000638 PC400F 0.1653946 0 1563265 0.0004127 0.1653644 0 0 0.000638 0.000538 0.000638 PC400F 0.1653946 0 1563265 0.0004127 0.16556344 0 0 0.0002623 0.00025	C6	0.0065892	0.0140615	0 0065904	0 002577	0.0068359	0.0066244	0 0144123	0.0041501	0 0041501	0	
PC2276F	PC220F	0.0890372	0	0 0890112	0 0095735	0 0938702	0	0	0 0058526	0.0058526	Ó	
PC326F 0 0798986 0 0.0798699 0 0101437 0.0846915 0 0 0 0.000638 0 000638 0 000638 PC400F 0.1663946 0 0 1683265 0 0004127 0.1658634 0 0 0 0002523 0.00002523 0.00002523 0.00002523 0.00002523 0.00002523 0.00002523 PC500F 0 1138107 0 0.1137536 0.0000307 0.1207986 0 0 0.0000187 0 0 0000187 0 0 0000187 PC508F 0.08937 0 0.089324 0.000002 0.0947876 0 0 0.0000120 0.0000012 0.0000012 0.0000012 PC699F 0.0638147 0 0.0637817 0.0000141 0.0000014 0.0000014 PC799F 0.0476729 0 0 0476482 0 0.056628 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PC276F	0.0739125	0	0.0738888	0.0026872	0.078244	0	0				
PC400F	PC326F	0 0798986	0	0.0798699	0 0010437	0.0846915	0	Ö	0.000638		0	
PC500F			0	0 1563265	0 0004127		0	0			0	
PC598F			0	0.1137535	0.0000307	0.1207096	Ö	0				
PC699F		0.08937	0	0.089324	0.000002	0.0947876	0	0	0.0000012	0 0000012	0	
PC799F 0.0363779 0 0.0476729 0 0.0374682 0 0 0.0050628 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0638147	0	0.0637817	0.0000001	0 0676831	0	0				
PC697F 0.0353174 0 0.0352992 0 0.0374583 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PC799F	0 0476729	0	0 0476482	0	0 0505628	0	Ö	0			
PC221F		0.0353174	0	0 0352992	0	0 0374583	0	0	0		0	
PC221F	PC1199F		0	0.0698052	0	0 074075	Ö	0		0		
PC275F	PC221F	0	0 0804508	0.0000166	0.0000019	0.0000175	0 0123387	0 0836632	0.0047968	0.0047968		0.0047968
PC325F		Ö	0 0655894	0 0000121	0 0000005	0.0000128	0.003623	0 0685119				
PC400F2	PC325F	0	0 0640157	0 0000098	0.0000001	0.0000104	0 0013359	0.0669719	0 0005193			
PC500F2		0	0 127967	0.0000109	0	0.0000116						
PC601F		0	0.0968173	0.0000016	0	0.0000017						
PC699F2												
PC798F												
PC899F												
Volumen Estandar @60 Volumen Estandar @60 Volumen Estandar @60 Volumen Estandar @60 Vapor MRCUFT/DAY 757000 700000 75524 26 747553.03 693663 53 26.63 </td <td></td>												
Volumen Estandar @60 Liquido BBL/DAY 757000 700000 75524 26 747553.03 693663 53 26.63 26.63 26.63 Vapor MMCUFT/DAY 2.96 16 28 10.35 26.63 26.63 26 63 Otras propiedades PM promedio 303.2823 375 9103 303.1557 38 2147573 319 3614 41.3168879 391 6908 39 4204485 39.4204485 39.4204485 Densidad GM/CC 0.8365241 0 9081501 0.6606586 0 0017186 0 8410969 0.0017998 0.9120013 0 0017501 0.0040137												
Liquido BBL/DAY 757000 700000 75524 26 747553.03 693663 53 26.63											<u></u>	
Liquido BBL/DAY 757000 700000 75524 26 747553.03 693663 53 26.63	Volumen Estandar @60											
Vapor MMCUFT/DAY 2.96 16 28 10.35 26.63 26 63 26 63 Otras propiedades PM promedio 303.2823 375 9103 303.1557 38 2147573 319 3614 41.3168879 391 6908 39 4204485 39.4204485 39.4204485 Densidad GM/CC 0.8365241 0 9081501 0.6606586 0 0017186 0 8410969 0.0017998 0.9120013 0 0017501 0.0017501 0.0040137 Grados API 34.8457324 21.0141373 34 8473448 182 7102 33.7650947 187 4191 20.1862819 184,6284 184 6284 184,6284 Flujo H2O BBL/DAY 771 6133 784 6798 128 7297 655,9501 128,7297 128 7297 128 7297 PVV @ 38C PSI 50.6057361 38 4842555 50.6065818 939 0878 16 6872179 736,4576 14 0425645 854,322 854 3212 854 3213 Conc H2S MG/L 637,341 993,0373 503,4784 113,6674 238,5042 230,3809 421,4477 159,8507 </td <td></td> <td>757000</td> <td>700000</td> <td>755524 26</td> <td></td> <td>747553.03</td> <td></td> <td>693663 53</td> <td></td> <td><u> </u></td> <td></td> <td></td>		757000	700000	755524 26		747553.03		693663 53		<u> </u>		
Otras propiedades PM promedio 303.2823 375 9103 303.1557 38 2147573 319 3614 41.3168879 391 6908 39 4204485 39.4204485 39.4204485 Densidad GM/CC 0.8365241 0 9081501 0.6606586 0 0017186 0 8410969 0.0017998 0.9120013 0 0017501 0.0017501 0.0040137 Grados API 34.8457324 21.0141373 34 8473448 182 7102 33.7650947 187 4191 20.1862819 184.6284 184 6284 184.6284 Flujo H2O BBL/DAY 771 6133 784 6798 122 7297 655.9501 128.7297 128 7297 128 7297 PVV @ 38C PSI 50.6057361 38 4842555 50.6065818 939 0878 16 6872179 736.4576 14 0425645 854.322 854 3222 854 3213 Conc H2S MG/L 637.341 993.0373 503.4784 113.6674 238.5042 230 3809 421.4477 159 8507 159.8507 366.6114					16 28		10.35	22222	26.63	26.63		26.63
PM promedio 303.2823 375 9103 303.1557 38 2147573 319 3614 41.3168879 391 6908 39 4204485 39.4204485 39.4204485 Densidad GM/CC 0.8365241 0 9081501 0.6606586 0 0017186 0 8410969 0.0017998 0.9120013 0 0017501 0.0017501 0.0040137 Grados API 34.8457324 21.0141373 34 8473448 182 7102 33.7650947 187 4191 20.1862819 184.6284 184 6284 184.6284 Flujo H2O BBL/DAY 771 6133 784 6798 128 7297 655.9501 128.7297 128 7297 128 7297 PVV @ 38C PSI 50.6057361 38 4842555 50.6065818 939 0878 16 6872179 736.4576 14 0425645 854.322 854 322 854 3213 Conc H2S MG/L 637.341 993.0373 503.4784 113.6674 238.5042 230 3809 421.4477 159 8507 159.8507 366.6114	Training the state of the state		·	=:001					20.00			
PM promedio 303.2823 375 9103 303.1557 38 2147573 319 3614 41.3168879 391 6908 39 4204485 39.4204485 39.4204485 Densidad GM/CC 0.8365241 0 9081501 0.6606586 0 0017186 0 8410969 0.0017998 0.9120013 0 0017501 0.0017501 0.0040137 Grados API 34.8457324 21.0141373 34 8473448 182 7102 33.7650947 187 4191 20.1862819 184.6284 184 6284 184.6284 Flujo H2O BBL/DAY 771 6133 784 6798 128 7297 655.9501 128.7297 128 7297 128 7297 PVV @ 38C PSI 50.6057361 38 4842555 50.6065818 939 0878 16 6872179 736.4576 14 0425645 854.322 854 322 854 3213 Conc H2S MG/L 637.341 993.0373 503.4784 113.6674 238.5042 230 3809 421.4477 159 8507 159.8507 366.6114	Otras propiedades											
Densidad GM/CC 0.8365241 0.9081501 0.6606586 0.0017186 0.8410969 0.0017998 0.9120013 0.0017501 0.0017501 0.0040137 Grados API 34.8457324 21.0141373 34.8473448 182.7102 33.7650947 187.4191 20.1862819 184.6284 184.6284 184.6284 Flujo H2O BBL/DAY 771.6133 784.6798 128.7297 655.9501 128.7297 128.7297 128.7297 PVV @ 38C PSI 50.6057361 38.4842555 50.6065818 939.0878 16.6872179 736.4576 14.0425645 854.322 854.322 854.3213 Conc H2S MG/L 637.341 993.0373 503.4784 113.6674 238.5042 230.3809 421.4477 159.8507 159.8507 366.6114		303,2823	375 9103	303.1557	38 2147573	319 3614	41.3168879	391 6908	39 4204485	39,4204485		39,4204485
Grados API 34.8457324 21.0141373 34.8473448 182.7102 33.7650947 187.4191 20.1862819 184.6284 184.6284 184.6284 Flujo H2O BBL/DAY 771 6133 784 6798 128.7297 655.9501 128.7297 128.729											-	
Flujo H2O BBL/DAY 771 6133 784 6798 128 7297 655.9501 128.7297 128 7297 128 7297 PVV @ 38C PSI 50.6057361 38 4842555 50.6065818 939 0878 16 6872179 736.4576 14 0425645 854.322 854 322 854 3213 Conc H2S MG/L 637.341 993.0373 503.4784 113.6674 238.5042 230 3809 421.4477 159 8507 159.8507 366.6114												
PVV @ 38C PSI 50.6057361 38 4842555 50.6065818 939 0878 16 6872179 736.4576 14 0425645 854.322 854 322 854 3213 Conc H2S MG/L 637.341 993.0373 503.4784 113.6674 238.5042 230 3809 421.4477 159 8507 159.8507 366.6114												
Conc H2S MG/L 637.341 993.0373 503.4784 113.6674 238.5042 230 3809 421.4477 159 8507 159.8507 366.6114			38 4842555				736.4576	14 0425645				

Corriente	12	13	14	15	16	17	18	19	20	21	22
Temperatura C	55	55	55	94 86	55	55	55	97 56	38	38	38
Presion KG/SQCM	2 79	2.79	2.79	5.6	5.25	5.25	5 25	10 88	1,03	1 03	1.03
Frac Vapor	1	1	0	1	0.995	1	0	1	1	0	0
Flujo MasicoKG/HR	52284 476	52284.471	0.005	52284.471	52284.471	51861.76	422 71	51861 76	2732.612	4 23E+06	4226,956
Flujo Molar KMOL/HR	1326.329	1326.329	0	1326 329	1326 329	1319.061	7.267	1319 061	68.851	12952.448	234 63
Fluvo Volum,CUM/HR	12911.507	12911.507	0	7134.963	6677 355	6676.788	0.567	3563.177	1738.269	5023.479	4.309
		<u> </u>				'			•	L	
Fraccion Mol											
H2O	0.0356206	0.0356206	0 0000003	0 0356206	0.0356206	0 0321813	0.6598653	0.0321813	0 0888035	0 0000002	0.999992
CO2	0.0287108	0.0287108	0.0006894	0 0287108	0 0287108	0 0288665	0.0004478	0.0288665	0 0230226	0 0002683	0
H2S	0.1056478	0.1056478	0 007277	0 1056478	0 1056478	0 1062043	0.0046355	0.1062043	0 0725426	0.0023336	0 000008
N2	0.0010598	0.0010598	0 0000057	0 0010598	0 0010598	0 0010656	0.0000037	0.0010656	0 0003674	0.0000007	0
C1	0 1524739	0.1524739	0.0025946	0.1524739	0.1524739	0.1533048	0.0016681	0 1533048	0 1107875	0.0008074	0
C2	0 2198282	0.2198282	0 014496	0 2198282	0.2198282	0 220989	0.0091403	0 220989	0.2221943	0.0069068	o
C3	0 2698785	0.2698785	0.0484519	0.2698785	0.2698785	0.2711998	0.0300608	0.2711998	0 2874243	0.027604	0
IC4	0 0363702	0.0363702	0.0146601	0.0363702	0 0363702	0 0365212		0.0365212	0.040861	0.0094191	0
C4	0 098291	0 098291	0 052859	0.098291	0 098291	0.0986552	0 03219	0 0986552	0.1043854	0 0321838	0
IC5	0 0167564	0.0167564	0.0201157	0.0167564	0.0167564	0.0167822	0.0120695	0.0167822	0.0162335	0.0119409	0
C5	0 0158372	0.0158372	0.0231396	0.0158372	0 0158372	0.0158483		0.0158483		0 013301	0
C6	0 0041501	0.0041501	0.0153545	0.0041501	0.0041501	0.0041235		0 0041235	0 0029215	0 0069805	0
PC220F	0 0058526	0.0058526	0.0685721	0.0058526	0.0058526	0 0056716	0.0387108	0.0056716	0 0108658	0.0960119	0
PC276F	0.0016428	0.0016428	0.0534515	0 0016428	0.0016428	0.0014979		0 0014979	0.0030493	0.080061	0
PC326F	0.000638	0 000638	0.0542847	0.000638	0 000638	0 0005073	0.0243661	0.0005073	0 0011838	0.0866695	
PC400F	0.0002523	0.0002523	0 0961335	0 0002523	0.0002523	0 0001175	0.0247081	0 0001175	0.0004677	0.169747	0
PC500F	0.0000187	0 0000187	0 0604614	0.0000187	0.0000187	0.0000018		0 0000018	0 0000347	0.1235376	0
PC598F	0.0000012	0 0000012	0.0404038	0.0000012	0.0000012	0	0.0002228	0	0.0000023	0.0970084	
PC699F	0.0000001	0.0000001	0.0239108	0.0000001	0 0000001	0		0	0.0000001	0 0692689	0
PC799F	Ö	0	0 0123017	0	0	0		0	0	0 0517474	0
PC897F	0	0	0 0020919	0	0	0	0	0	0	0 038336	0
PC1199F	0	0	0	0	0	0	0	0	0	0 0758106	- 6
PC221F	0.0047968	0.0047968	0 0569206	0.0047968	0 0047968	0.0046463	0 0321145	0 0046463	0.0000021	0 0000179	
PC275F	0 0014084	0 0014084	0.0445615	0.0014084	0.0014084	0.0012875	0.0233508	0 0012875	0 0000005	0.0000131	
PC325F	0.0005193	0.0005193	0 04187	0.0005193	0 0005193	0 0004174	0 0190046	0.0004174	0.0000002	0.0000107	
PC400F2	0.0002242	0.0002242	0 0791411	0 0002242	0 0002242	0 0001087	0.0211749	0.0001087	0	0 0000119	0
PC500F2	0 0000194	0 0000194	0.0558056	0.0000194	0.0000194	0.0000021	0.0031737	0 0000021	0	0.0000018	ō
PC601F	0.0000016	0.0000016	0.0460076	0 0000016	0.0000016	0	0.0002803	0	Ö	0 0000002	0
PC699F2	0 0000001	0.0000001	0 0361032	0 0000001	0.0000001	0	0 0000186	0	0	Ö	0
PC798F	0	0	0.0237415	0	0	0	0 0000008	0	0	0	
PC899F	0	0	0.0045936	0		0	0	0	Ö	0	0
PC1381F	o	0	0	0	0	0	0	ō	0	0	0
Volumen Estandar @60	· · · · · · · · ·								. !		
Liquido BBL/DAY	ol		0	 -	82 18		82 18			746097.03	639 32
Vapor MMCUFT/DAY	26,63	26.63	- 4	26 63	26 48	26.48	02 10	26,48	1.38	140091.03	039 32
Vapor MMCOFT/DAT	20.03	20.03	!	20 03	20 40	20.40	<u> </u>	20.40	1.30]		
Otras propiedades											
PM promedio	39 4204485	39.4204452	215.451	39.4204452	39.4204452	39.3171694	58.1653344	39 3171694	39.6887078	326.3067	18.015409
Densidad GM/CC	0 0040494	0.0040494	0.7783018	0.0073279	0.0078301	0.0077675	0.7451728	0.0145549	0 001572	0.8413433	0 9808908
Grados API	184.6284	184.6284	43 7450463	184.6284	184.6284	185.7167	51 1111759	185.7167	170.9025	33.7001912	10 0050108
Flujo H2O BBL/DAY	128.7297	128.7297	0	128 7297	128.7297	115.6632	13 066516	115.6632	16.6597063	0 0063136	639.302
PVV @ 38C PSI	854 3213	854.3213	30 0493258	854.3213	854.3213	857 1104	55 6649275	857 1104	690.1235	14.6999689	3 2600156
Conc H2S MG/L	369 8777	369,8777	895 9303	669.3348	715 2052	715 094	2024.002	1339.964	97 9289111	205 068	14 8819303
					= 30=					200 0001	

Corriente	23	24	25	26	27	28	29	30
Temperatura C	45	45		35	35	35	35	51 48
Presion KG/SQCM	1 03	1.03	1.03	0 77	0 77	0 77	0 77	2.79
Frac Vapor	1	0		1	0	1	0	0.03
Flujo MasicoKG/HR	1010.911	4.28E+06	0	2443.476	4.22E+06	1386 828	4.28E+06	422 72
Flujo Molar KMOL/HR	24.055	10906.024	0	56 262	12896 186	32.791	10873,233	7 267
Fluvo Volum,CUM/HR	621.416	4681.754	0-	1883 507	5005.815	1098 281	4644.779	2 634
					•	L	لسخفنند	
Fraccion Mol								
H2O	0	0	0	0 0000412	0	0	0	0 6598592
CO2	0.0245562	0.0002367	0	0 0199569	0.0001824	0 0208611	0.0001745	0 0004478
H2S	0.156916	0 0049765	Ó	0 0786314	0.0020007	0.1588817	0 0045124	0.0046355
N2	0 0004578	0 0000008	0	0.0001279	0.0000002	0 0001887	0.0000002	0 0000037
C1	0 1062996	0 0006842	0	0.0816198	0.0004548	0 084099	0.0004327	0 0016681
C2	0 2090651	0.0056047	0	0.2425028	0.005879	0 2181745	0.0049637	0 0091404
C3	0.2874762	0.0226108	0	0 3418351	0 0262331	0.3026598	0 0217662	0.0300612
IC4	0.0374843	0.0070244	0		0 0092443	0.0387192	0.0069288	0 0089634
C4	0 1108265	0.029244	0	0 1264596	0.0317725	0.1127282	0.0289922	0 0321905
IC5	0.0212787	0.0130656	0	0.0196274	0 0119073	0.021008	0.0130417	0 0120697
C5	0.0207755	0.0161689	0	0.0179031	0 013281	0 020232	0.0161566	0 0138249
C6	0.0067758	0.0144291	0	0.0034861	0.0069957	0.0063279	0 0144536	0.0089671
PC220F	0	0	0	0.0128279	0 0963748	0	0	0.0387113
PC276F	ō	0	0	0.0035527	0 0803948	0		0 027934
PC326F	0	0	0	0.0013624	0.0870416	0	0	0.0243665
PC400F	ŏ	0	0	0 0005282	0 1704853	0	0	0.0247085
PC500F	0	0	0	0.0000382	0 1240764	0	Ö	0 0030946
PC598F	Ö	0	0	0.0000024	0.0974316	ō	0	0 0002229
PC699F	Ö	0	0	0.0000001	0.0695711	0	0	0 0000101
PC799F	0	0	- 0	0	0.0519732	0	0	0.0000003
PC897F	0	0	0	0	0.0385032	0	0	0
PC1199F	Ö	0	0	0	0 0761413	0	0	0
PC221F	0.0125159	0.0838201	0	0.0000025	0.000018	0.011351	0.0840386	0.0321151
PC275F	0 0036329	0 068655	0	0.0000006	0 0000131	0.0031685	0.0688525	0 0233512
PC325F	0 0013252	0.0671167	0	0.0000002	0.0000107	0 0011147	0.0673157	0.019005
PC400F2	0 0005627	0.1342694	0	0	0.0000119	0 0004479	0.134673	0.0211752
PC500F2	0.0000477	0 1016047	0	0	0 0000018	0.0000352	0 101911	0.0031739
PC601F	0 0000037	0.0897318	0	0	0.0000002	0 0000025	0.0900024	0.0002804
PC699F2	0.0000002	0.0755763	0	0	0	0 0000002	0.0758042	0.0000187
PC798F	0	0.0581074	ol	0	0	0	0.0582826	0.0000000
PC899F	ō	0 0432695	0	0	0	0	0 0434	
PC1381F	0.	0 1638033	0	0	0	0	0 1642973	0
Volumen Estandar @60								
Liquido BBL/DAY		693364.48			745362 51		692953 99	79.35
Vapor MMCUFT/DAY	0 48	7777		1.13		0.66	002000	0
	I							
Otras propiedades								
PM promedio	42.0247731	392,462]	43 4300712	327.5408	42.2931063	393 5181	58.1662736
Densidad GM/CC	0.0016268	0.9142301		0.0012973	0 843824	0.0012627	0 9212092	0.1604926
Grados API	184.4808	20 1474783		170 8667	33.6208444	183.5872	20 094505	51.1110833
Flujo H2O BBL/DAY				0.0063114	0.0000022			13 0665706
PVV @ 38C PSI	652 1893	12.9702046		543.3344	11.6558048	580.5442	11.6480843	55.6646667
Conc H2S MG/L	207 0216	395.0991		80.0515386	175.6711	161 6728	360.0159	435 919
		=======					333.5.00	

Apendice 2 Resultados de Simulación del Caso Base

Corriente	1	2	3	4	5	6	7	8	9	10	11	
Temperatura C	37	48	35 93	37	37	48	48	42 99	42.99		104.74	
Presion KG/SQCM	4.53	4.53	1.17	1.17	1.17	1.17	1.17	1 17	1.17	1 17	3.43	
Frac Vapor	0	0	0.053	1	0	1	0	1	1		1	
Flujo MasicoKG/HR	3309007.68	4776755.54	3309630 27	23225 69	3286404 61	28312.81	4748442.75	51538 5	51538 5	0	51538 5	
Flujo Molar KMOL/HR	11232.75	12973 52	11267 15	611.03	10656 12	709 96	12263.56	1320 99	1320.99	ō	1320 99	
Fluvo VolumeCUM/HR	3950.99	5259.42	17011.79	13543 91	3903.17	16288.76	5203.5	29840 65	29840.65	ő	12083 86	
11070 1010110001111111	0000.00	011001111			3000111		01.00.0	2001000	20010.00	Ü	12000 00	
Fraccion Mol												
H2O	0 0500142	0.0215636	0.0529126	0.0551989	0 0527815	0 0979728	0.0171402	0.0781875	0 0781875	0	0.0781875	
CO2	0.0019922	0 0014891	0 0019861	0.0299721	0 0003814	0 023093	0 0002384	0.026275	0 026275	0	0.026275	
H2\$	0.0065731	0 0118005	0 0065531	0.0748799	0 0026352	0 1363798	0 0045884	0.1079327	0.1079327	0	0.1079327	
N2	0.0000674	0 0000412	0.0000672	0.0011936	0.0000026	0.0007279	0 0000014	0 0009433	0 0009433	0	0 0009433	
C1	0 0106458	0 006492	0.0106133	0.1720515	0.0013563	0.1057591	0.0007452	0.136423	0 136423	0	0 136423	
C2	0 0199932	0 0147445	0.0199322	0.2312363	0.0078159	0.179837	0.005187	0.2036119	0 2036119	0	0.2036119	
C3	0.0409057	0 0337985	0 0407809	0 2653644	0.0279031	0.2540862	0.0210457	0 259303	0 259303	0	0 259303	
IC4	0 0106571	0 0082027	0.0106246	0.0361625	0.0091602	0.0343443	0.0066893	0.0351853	0.0351853	0	0.0351853	
C4	0 0344446	0.0321665	0 0343396	0 0915197	0.0310608	0 1029608	0.028068	0.0976687	0.0976687	0	0.0976687	
IC5	0 0115404	0 013128	0.0115052	0.0139901	0.0113627	0.0202673	0.0127147	0 0173637	0 0173637	0	0 0173637	
C5	0 0126784	0.0160021	0.0126398	0 0127578	0.012633	0.0199251	0.0157749	0 0166098	0 0166098	0	0.0166098	
C6	0.0063883	0.0137583	0.0063688	0 0024864	0 0065914	0 0066294	0 014171	0.004713	0.004713	0	0.004713	
PC220F	0.0863229	0	0.0860594	0 0091987	0 0904667	0	0	0 0042549	0.0042549	0	0.0042549	
PC276F	0.0716592	0	0.0714406	0.0025712	0.0753896	0	0	0 0011893	0 0011893	0	0 0011893	
PC326F	0.0774628	0	0.0772264	0 000995	0 0815975	0	0	0 0004602	0.0004602	0	0.0004602	
PC400F	0.1516267	0	0.151164	0.0003913	0.1598094	0	0	0 000181	0.000181	0	0.000181	
PC500F	0.110341	0	0.1100042	0.0000288	0.1163103	0	0	0 0000133	0 0000133	0	0.0000133	
PC598F	0.0866455	0	0.086381	0.0000019	0.0913341	0	0	0 0000009	0 0000009	0	0.0000009	
PC699F	0.0618692	0	0 0616803	0.0000001	0 0652171	0	0	0	0	0	0	
PC799F	0.0462195	0	0.0460784	0	0.0487206	0	0	0	0	0	0	
PC897F	0.0342407	0	0 0341362	0	0.0360936	0	0	0	0	0	0	
PC1199F	0.0677121	0	0.0675054	0	0.0713762	0	0	0	0	0	0	
PC221F	0	0 078716	0.0000001	0	0.0000001	0.0123943	0.0825555	0 0066613	0 0066613	0	0 0066613	
PC275F	0	0.064175	0 0000001	0	0.0000001	0 0036437	0 0676793	0.0019583	0 0019583	0	0.0019583	
PC325F	0	0 0626353	0.0000001	0	0.0000001	0.0013442	0 0661835	0 0007224	0 0007224	0	0 0007224	
PC400F2	0	0 1252075	0.0000002	0	0.0000002	0.0005805	0.1324224	0 000312	0 000312	0	0 000312	
PC500F2	0	0.0947296	0 0000001	0	0 0000001	0 0000504	0 1002107	0.0000271	0.0000271	0	0.0000271	
PC601F	0	0.0836583	0.0000001	0	0.0000001	0.000004	0.0885012	0 0000022	0.0000022	0	0 0000022	
PC699F2	0	0.0704607	0	0	0	0 0000003	0.0745398	0 0000001	0.0000001	0	0.0000001	
PC798F	0	0.0541742	0	0	0	0	0 0573105	0	0	0	0	
PC899F	0	0.0403407	0	0	0	0	0.0426761	0	0	0	0	
PC1381F	0	0 1527158	0	0	0	0	0.1615568	0	0	0	0	
Valuman Faterales 600												
Volumen Estandar @60	587296	777100	580435.12		580218.93		768934.38					
Liquido BBL/DAY	587296	777100		40.07	000210.93	44.05	700934.36	00.50	00.50		60.50	
Vapor MMCUFT/DAY			11.92	12,27		14.25		26.52	26 52		26 52	
Otra propiedades												
PM promedio	294 5856	368.1928	293.7416	38.0107518	308 4054	39.8795051	387.1994	39.0151043	39 0151043		39.0151043	
Densidad GM/CC	0 8375145	0.9082287	0.1945491	0.0017148	0 8419844	0 0017382	0.912548	0.0017271	0.0017271		0.0042651	
Grados API	34 7994082	21 0025167	33.7620723		33.7376774		20.0851063					
Flujo H2O BBL/DAY	1530 753	762 2637	1540.225		1532.523		572 7396					
PVV @ 38C PSI	50 6051309	39,4955562	17.3663687		17.0133347		13.5861042					
Conc H2S MG/L	636.9058	992 0753	252,9664		245.1946		368 5586					
00.001100 111010	555.5500		202,000		2.10.10.10							

Corriente	12	13	1.4	15	16	17	18	19	20	21	22	
Temperatura C	55	55	55	140.15	55	37 17	37.17	37.17	47 92	47.92	38	
Presion KG/SQCM	3 08	3.08	3 08	13 03	12.68	1 03	1 03	1.03	1.03	1.03	0.77	
Frac Vapor	0.974	1	0	1	0.915	1	0	0	1	0	1	
Flujo MasicoKG/HR	51538 5	50915.9	622.59	50915 9	50915 9	2140 74	3274214.94	10049.38	2385.69	4746057.06	3325 5	
Flujo Molar KMOL/HR	1320.99	1286.59	34.4	1286.59	1286.59	54.14	10044.16	557 82	57 67	12205.89	74.44	
Fluvo VolumeCUM/HR	11305.94	11299.21	0.63	3258 75	2311 29	1363.23	3889 31	10.24	1502.75	5198 58	2515.68	
Fraccion Mol												
	.0781875	0.0535578	0 9994783	0.0535578	0 0535578	0.0854561	0 0000002	0.9999919	0 110627	0.0166985	0.0000231	
	0.026275	0.0369774	0 0000004	0.0269774	0.0269774	0.0235318	0 0000002	0.5555515	0.0173199	0.0001577	0.0000231	
	.1079327	0.1108181	0.0000045	0.1108181	0.1108181	0.0233316	0 0002377	0.0000081	0.0170199	0.0001377	0.0765783	
	.0009433	0.0009685	0.0000043	0.0009685	0.0009685	0.0003723	0.0000008	0.0000001	0 0002245	0.0000004	0.0763763	
	0 136423	0.0009003	0.0000014	0 1400701	0 1400701	0.0003723	0.0000000	0	0.068441	0.0000004	0.064631	
	2036119	0 2090551	0.0000079	0 2090551	0 2090551	0.2252932	0.00002.92	0	0.000441	0.004234	0.004631	
	0 259303	0.2662345	0.0000272	0,2662345	0.2662345	0.2872515	0.0280549	0	0 2712297	0.0198636	0.3548878	
	.0351853	0.2002343	0.0000272	0.2002043	0.2002043	0.0403875	0.0200049	0	0 0379512	0.0065416	0.0529006	
	0976687	0 1002789	0.000031	0.1002789	0 1002789	0.0903013	0.0323991	0	0.1146153	0.0003410	0.1362734	
	0173637	0.0178276	0.000031	0.1002709	0.0178276	0.0158746	0.0323991	0	0.1140103	0 0276591	0.1362734	
	.0166098	0.0170210	0.0000123	0.0170535	0.0170270	0.0144967	0 0133245	0	0 02244	0 0157434	0.021465	
	0.004713	0.0048387	0.0000144	0.0048387	0.0048387	0.0144507	0 0069777	0	0 0074905	0 0142026	0.0038817	
	.0042549	0.00403679	0.0000704	0.0043679	0.0043679	0 0105106	0.0959219	0	0 0014303	0 0 142020	0.0036617	
	.0042348	0.0043075	0.0000233	0.0043075	0.0043075	0.0029392	0.0333213	0	0	0	0.0144539	
	0004602	0.0012203	0.0000226	0.0004719	0.0004719	0.0023332	0.0865629	0	0	0	0.001571	
	0.0004802	0.0004719	0.0000220	0.0004718	0.0004713	0.0004474	0.1695437	0	0	0	0.0006194	
	0.000181	0.0001848	0 0000384	0.0000131	0 0000131	0.0004474	0.1093437	0	0	0	0.0000194	
	0000009	0 0000006	0.0000233	0.00000131	0.0000000	0 0000033	0.0968988	0	0	0		
	0	0 0000000	0.00000108	0.00000000	0.0000000	0.0000022	0.0500500	0	0	0	0 000003 0 0000001	
PC699F	0	0	0.0000013	0	0	0.0000001	0.051689	0	0	0	0 0000001	
PC799F PC897F	0	0	0	0	0	0	0.031009	0	0	0	0	
	0	0	0	0	0	0	0.0302927	0	0	0	0	
PC1199F	0066613	0.0068381	0.0000463	0.0068381	0 0068381	0	0 0000002	0	0.0140195	0 0828793	0	
	0000013	0.0020097	0.0000363	0.0008381	0.0020097	0	0 0000002	0	0.0140193	0.0679796	0	
,	.0007224	0.0020097	0.0000383	0.0020097	0.0020037	0	0 0000001	0	0 0041197	0.066489	0	
	0.0007224	0.0007408	0.0000643	0.0007400	0 0003186	0	0 0000001	0	0 000655	0.133045	0	
	0.000312	0.0003186	0.0000043	0.0003100	0 0000100	0	0.0000002	0	0.0000568	0.1006839	0	
	.0000271	0.0000200	0.0000438	0.0000200	0.0000200	0	0.0000001	0	0.00000308	0.0889193	0	
	00000022	0.0000013	0.0000236	0.0000010	0.0000013	0	0 0000001	0	0 0000043	0.0009193	0	
PC699F2 0 PC798F	0	0	0.0000003	0	0	0	0	0	0 0000000	0 074692	0	
	0	0	0 0000000	0	0	0	0	0	0	0.0428777	0	
PC899F	0	0	0	0	0	0	0	0	0	0.1623201	0	
PC1381F	U	U	U	U	U	U	U	U	U	0.1023201	U	
Volumen Estandar @60												
Liquido BBL/DAY	94 2		94.3		1225 67		578057.38	1519,94		768259.55		
Vapor MMCUFT/DAY	25 83	25.83		25.83	23.64	1 09			1.16		1 49	
Otra propiedades												
	.0151043	39.5742229	18.1008798	39.5742229	39.5742229	39.5411708	325.982	18.0154106	41.3681253	388 8333	44.6744199	
	.0045585	0.0045061	0.9842183	0.0156243	0.0220292	0.0015703	0.8418498	0.9817029	0.0015875	0.9129533	0 0013219	
	2015965	0.0040001	10.2036349	V.U 1JUZ93	78.0083934	0.00 10703	33 7199177	10.0050737	0.0010070	20 0117911	0.0013219	
	5748422		93.6704409		141.3155		0.0046964	1519,908		555 3562		
	.3148873		32 3313352		134.1359		14.9015574	3.267229		11.8437819		
-	.3146673		8 2731876		8297.646							
Conc H2S MG/L 8	. 100 1 100		0 2/3 10/0		0207.040		£11.1000	15 0815895		318 279		

Corriente	23	24	25	26
Temperatura C	38	38	38	55 02
Presion KG/SQCM	0 77	0.77	0.77	1 17
Frac Vapor	0	1	0	0
Flujo MasicoKG/HR	3270889 44	1215 97	4744841.09	622.59
Fłujo Molar KMOL/HR	9969 72	29 06	12176.83	34.4
Fiuvo VolumeCUM/HR	3885 48	982 23	5158.42	0 68
Fraccion Mol				
H2O	0	0 0879637	0.0165284	0 9994783
CO2	0.0001507	0 0154324	0.0001212	0.0000004
H2S	0.0018453	0.1383681	0.0036567	0.0000045
N2	0.0000001	0.0001079	0.0000001	0
C1	0.0003528	0 0580426	0 0002879	0.0000014
C2	0.0054015	0 1841755	0 0039671	0.0000079
C3	0.0256146	0 2888135	0 0192219	0.0000272
IC4	0.0091766	0.0395288	0.0064629	0 0000083
C4	0 0316235	0.1175107	0.0274447	0 000031
IC5	0.0118986	0 0226714	0.0126433	0 0000123
C5	0 0132772	0.0220218	0.0157285	0 0000144
C6	0.0070008	0.0070524	0 0142197	0.0000104
PC220F	0 0965302	0	0	0.0000288
PC276F	0 0805338	0	Ō	0 0000223
PC326F	0 0871975	0	0	0 0000226
PC400F	0.170805	0	ō	0.0000394
PC500F	0.1243176	0	ō	0 0000235
PC598F	0 0976223	0	0	0 0000109
PC699F	0 0697072	0	0	0.0000013
PC799F	0 0520749	0	0	0
PC897F	0.0385786	0	0	0
PC1199F	0 0762903	0	0	0
PC221F	0 0000002	0 0128225	0.0830464	0 0000463
PC275F	0.0000001	0.0036261	0 0681331	0.0000363
PC325F	0.0000001	0 00129	0.0666446	0.0000342
PC400F2	0 0000002	0 000527	0.1333612	0.0000643
PC500F2	0.0000002	0 0000424	0 1009241	0.0000436
PC601F	0 0000001	0.0000031	0 0891314	0.0000258
PC699F2	0	0.0000002	0.0750707	0 0000046
PC798F	0	0	0.0577186	0 0000003
PC899F	0	0	0.04298	0
PC1381F	0	0	0 1627074	0
Volumen Estandar @60				
Liquido BBL/DAY	577070 1		767912.53	94 27
Vapor MMCUFT/DAY		0.58		0
Otra propiedades				
PM promedio	328.0824	41 8494248	389.6613	18.1008796
Densidad GM/CC	0 8418229	0.001238	0.9198244	0.9160433
Grados API	33.5858261		19 9738136	10.184932
Flujo H2O BBL/DAY	0.000001		548 3921	93 6696799
PVV @ 38C PSI	10.9999998		11 0000002	11.0323354
Conc H2S MG/L	161.3751		294.1937	1.5875829

Apendice 3 Resultados de Simulación de la Alternativa 1

Corriente	1	1A	1B	2	4	5	6	6A	68	7	8
Temperatura C	37	65	53	48	82	48.91	48.91	49.14	63 39	80 11	80 11
Presion KG/SQCM	4 53	3 53	3 53	4 53	2 53	0 63	0.63	6.03	5.03	0 63	0 63
Frac Vapor	0	0 007	0 01	0	0 061	1	0.00	0.55	0.00	1	0
Flujo MasicoKG/HR	3 31E+06	4.78E+06	3.31E+06	4.78E+06	4.78E+06	62882 73	3.25E+06	3.25E+06	4 68E+06	101251 055	4 68E+06
Flujo Molar KMOL/HR	11232.753	12973.518	11232 753	12973.518	12973 518	1443.008	9789.744	9789 744	11103 451	1870.067	11103 451
Fluvo Volum,CUM/HR	3950.986	6090.435	4875.054	5259.419	14607 773	61801.65	3873.917	3873 241	5141 244	87838.421	5208 293
riavo voidin, Goivariix	3330,330	0000.400	4010.00-7	0200.410	14001 110	01001.00	3573.517	3073 241	0141 244	01000.42.1	0200 293
Fraccion Mol											
H2O	0 0500142	0 0215636	0 0500142	0 0215636	0.0215636	0.1889499	0 029535	0 029535	0 0000006	0.1495934	0.00000006
CO2	0 0019922	0 0014891	0 0019922	0 0014891	0.0014891	0.0149104	880000 0	880000.0	0.00004	0 0100928	0 00004
H2S	0 0065731	0 0118005	0.0065731	0.0118005	0.0118005	0.0461812	0.0007349	0 0007349	0 0009077	0.0764763	0 0009077
N2	0 0000674	0 0000412	0.0000674	0.0000412	0.0000412	0.0005203	0.0000006	0.0000006	0 0000003	0.0002838	0.0000003
C1	0 0106458	0.006492	0.0106458	0.006492	0 006492	0 0806627	0.0003253	0.0003253	0 000143	0.0441886	0 000143
C2	0 0199932	0.0147445	0.0199932	0.0147445	0 0147445	0 140189	0 0022763	0.0022763	0 0010982	0 0957688	0.0010982
C3	0.0409057	0 0337985	0 0409057	0.0337985	0 0337985	0.2419757	0.011268	0 011268	0 0055507	0.201519	0 0055507
IC4	0.0106571	0 0082027	0 0106571	0 0082027	0 0082027	0 0480458	0 005146	0 005146	0.0024277	0.042491	0.0024277
C4	0.0344446	0 0321664	0.0344446	0.0321664	0.0321664	0.1372796	0.0192868	0 0192868	0.0024277	0.1541977	0.0024277
IC5	0.0115404	0.013128	0 0115404	0 013128	0 013128	0 0281323	0 0090948	0.0090948	0.007379	0.047263	0.007379
C5	0.0126784	0.0160021	0 0126784	0 0160021	0.0160021	0.027155	0 0105446	0.0050546	0.007373	0 0523099	0.007373
C6	0.0063883	0.0100021	0 0063883	0 0137583	0.0100021	0.0064269	0 0063826	0.0103446	0.003667	0 0323099	0.009667
PC220F	0.0863229	0 0137303	0 0863229	0 0 137303	0 0 137 303	0.0064209	0 0003020	0 0003020	00117013	0 0239704	00117013
PC276F	0.0003229	0	0.0716592	0	0	0.0200303	0.0810414	0.0810414	0	0	0
		0	0.0774628	0	0	0.0032477	0.0810414	0.0810414	0	0	0
PC326F PC400F	0.0774628 0.1516267	0	0.0774626	0	0	0.0032477	0.1737761	0.0664021	0	0	0
		_		0	0		0.1737761		0		
PC500F	0.110341	0	0 110341	•	-	0.0001088		0 1265892	ū	0	0
PC598F	0 0866455	0	0.0866455	0	0	0 0000077	0.0994159	0.0994159	0	0	0
PC699F	0 0618692	0	0 0618692	0	0	0.0000004	0.0709887	0.0709887	•	0	0
PC799F	0.0462195	0	0 0462195	_	_	0	0.0530323	0.0530323	0	0	0
PC897F	0 0342407	•	0 0342407	0	0	0	0 0392878	0.0392878		0	0
PC1199F	0 0677121	0.070746	0.0677121	-	0 070746	0	0 0776929	0.0776929	0 0040074	0	0
PC221F	0	0 078716	0	0.078716	0.078716	0	0	0	0 0813271	0.0632127	0 0813271
PC275F	0	0.064175	0	0.064175	0 064175	0	0	0	0 0712598	0.0221092	0.0712598
PC325F	0	0 0626353	0	0.0626353	0 0626353	0	0	0	0.0716262	0.0092523	0 0716262
PC400F2	0	0 1252075	0	0.1252075	0.1252075	0	0	0	0 1455015	0.0047128	0.1455015
PC500F2	0	0.0947296	0	0.0947296	0 0947296	0	0	0	0 1105993	0.0005037	0.1105993
PC601F	0	0.0836583	0	0 0836583	0.0836583	0	0	0	0 0977397	0 0000501	0.0977397
PC699F2	0	0 0704607	0	0.0704607	0.0704607	0	0	0	0 0823272	0 0000042	0.0823272
PC798F	0	0.0541742	0	0 0541742	0.0541742	0	0	0	0 0632983	0 0000002	0.0632983
PC899F	0	0 0403407	0	0.0403407	0.0403407	0	0	0	0 047135	0	0 047135
PC1381F	0	0 1527158	0	0.1527158	0.1527158	0	0	0	0.1784365	0	0 1784365
Volumen Estandar @60											
Liquido BBL/DAY	587296	776078.39	586080 09	777100	768528 11		570193.57	570193 57	751801 4		751801 4
	301290	1.94	2 29	777100	15 98	28.97	510185.31	31010001	75 100 1 4	37 55	1010014
Vapor MMCUFT/DAY		1.84	2 28		10 90	20.97				31 25	
Otra propiedades											
PM promedio	294 5856	368 1928	294.5856	368.1928	368.1928	43.5775281	331 5842	331.5842	421 0857	54 14301	421 0857
Densidad GM/CC	0 8375144	0.7843044	0.6787633	0.9082286	0 3270009	0.0010175	0.8379438	0.83809	0 909411	0 0011527	0.8977037
Grados API	34.7994077	20 871603	34 5951541	21 0025166	20.1179842		32.8333874	32.8333874	18.9329137		18.9329137
Flujo H2O BBL/DAY	1530.753	762 2636	1530 753	762 2636	762 2597	742 919	787 8341	787.8341	0.0167499	762 2469	0 0167499
PVV @ 38C PSI	50.6051245	33.3525758	40 5184792	39 4955542	15 431069		6 8670778	6.8670778	4.383891	•	4.383891
Conc H2S MG/L	636.9057	856.7105	516 18	992 0753	357 1876	36 7500116		63.3046168	66 81099	55 491074	65.9509002
CONSTITUTION DE	000.0001						33,2000,00	33.00.10100	00 0 1000	50 1019	00.0000002

Corriente	9	10	11	12	13	14	15	16	17	18	19	
Temperatura C	74.21	55	87.1	55	54 3	41 85	41.85	96 1	55	55	55	
Presion KG/SQCM	2.53	2 18	2.53	2.18	2.18	1 03	1.03	3 43	3.08	3 08	3.08	
Frac Vapor	0 957	0.869	0 988	0.82	0.844	1	0	1	0.929	1	0	
Flujo MasicoKG/HR	62882.73	62882.73	101251.055	101251.055	164133.785	143790 64	20343 144	143790.64	143790 64	128861.776	14928 828	
Flujo Molar KMOL/HR	1443.008	1443.008	1870.067	1870.067	3313.075	2895.602	417.473	2895 602	2895,602	2691 105	204.498	
Fluvo Volum, CUM/HR	15654.383	15594.121	21639.989	19017.598	34658.085	73735.046	25 671	25561.963	23396.232	23361 136	21 127	
Fraccion Mol												
H2O	0.1889499	0 1889499	0.1495934	0 1495934	0.1667351	0.0809968	0.7614187	0 0809968	0.0809968	0 0535063	0.4427596	
CO2	0.0149104	0.0149104	0.0100928	0.0100928	0 0121911	0.0139438	0.0000345	0.0139438	0.0139438	0 0149868	0.0002184	
H2\$	0 0461812	0 0461812	0 0764763	0 0764763	0 0632813	0 0723237	0.0005631	0.0723237	0 0723237	0.0775629	0 0033783	
N2	0 0005203	0 0005203	0.0002838	0.0002838	0.0003868	0.0004425	0 0000002	0.0004425	0.0004425	0 000476	0.0000015	
C1	0.0806627	0.0806627	0.0441886	0.0441886	0.0600749	0.0687202	0 0001106	0 0687202	0.0687202	0 0738841	0.0007656	
C2	0.140189	0.140189	0.0957688	0 0957688	0.115116	0.1315841	0.0008932	0 1315841	0.1315841	0.1411539	0.0056488	
СЗ	0.2419757	0.2419757	0.201519	0.201519	0.2191399	0 2500004	0.0050903	0 2500004	0 2500004	0.2668028	0 0288894	
IC4	0.0480458	0.0480458	0.042491	0.042491	0.0449104	0 0510258	0.0024936	0 0510258	0.0510258	0.0539075	0 0131041	
C4	0 1372796	0 1372796	0 1541977	0.1541977	0.146829	0 1663668	0 0113147	0.1663668	0.1663668	0 1746443	0 0574379	
IC5	0 0281323	0 0281323	0 047263	0.047263	0.0389306	0.043539	0.0069662	0.043539	0.043539	0 0443835	0.0324268	
C5	0.027155	0.027155	0 0523099	0.0523099	0 0413537	0 0459837	0.0092394	0.0459837	0 0459837	0.0463156	0 0416172	
C6	0 0064269	0 0064269	0 0259704	0.0259704	0.0174582	0.0185108	0.0101579	0.0185108	0 0185108	0.0169637	0.0388689	
PC220F	0.0268385	0 0268385	0	0	0.0116895	0 0107005	0 0185493	0.0107005	0 0107005	0 0075575	0.0520605	
PC276F	0.0080083	0.0080083	ő	ō	0 003488	0.0022954	0.0117598	0.0022954	0 0022954	0 0010085	0.0192308	
PC326F	0.0032477	0 0032477	ő	ő	0 0014145	0.0005321	0.007535	0 0005321	0 0005321	0.00012	0.0152557	
PC400F	0 0013598	0 0013598	ő	ō	0.0005922	0.0000621	0 0042697	0 0000621	0.0000621	0 0000038	0.0008291	
PC500F	0.0001088	0.0001088	ő	ő	0 0000474	0.0000006	0.0003722	0 0000006	0.00000021	0	0.0000251	
PC598F	0 0000077	0.0000077	ő	0	0 0000034	0	0 0000267	0	0	ő	0.0000001	
PC699F	0.0000004	0.0000004	ő	0	0.0000002	0	0 0000013	0	ő	ő	0.0000000	
PC799F	U	0	Ö	0	0	ō	0	Ö	ő	ő	ŏ	
PC897F	0	0	0	0	0	0	0	0	0	Ô	0	
PC1199F	0	0	0	0	0	0	0	Õ	0	ő	ŏ	
PC221F	0	0	0 0632127	0.0632127	0.0356804	0.0324345	0.0581944	0.0324345	0 0324345	0 0226207	0.1615793	
PC275F	0	0	0.0221092	0.0221092	0 0124796	0 0082354	0.0419174	0 0082354	0 0082354	0.0036223	0 0689412	
PC325F	0	0	0.0092523	0.0092523	0.0052225	0.0020061	0 0275311	0.0020061	0.0020061	0 0004613	0.0223351	
PC400F2	0	0	0.0047128	0.0047128	0 0026601	0.0002919	0 0190862	0.0002919	0 0002919	0.0000184	0 0038905	
PC500F2	0	0	0.0005037	0 0005037	0 0002843	0.0000038	0 0022305	0.0000038	0.0000038	0	0 0000527	
PC601F	0	0	0.0000501	0.0000501	0.0000283	0	0 0002244	0	0	ō	0.0000005	
PC699F2	0	0	0.0000042	0.0000042	0.0000023	0	0 0000186	o o	0	ŏ	0	
PC798F	0	0	0.0000002	0 0000002	0.0000001	0	0.0000011	0	0	Ô	ō	
PC899F	0	0	0	0	0	0	0	0	ō	ō	ŏ	
PC1381F	0	0	O	0	0	o	0	0	ō	ō	Ŏ	
									· ·	_	•	
Volumen Estandar @60												
Liquido BBL/DAY	170 32	826.12	694 59	4909.02	5462.81		3785.8		3038 99		3042.37	
Vapor MMCUFT/DAY	27 72	25.17	37 09	30.78	56 17	58 14		58.14	54 04	54.03	00.2.0.	
								••••	5.0.	0 1100		
Otra propiedades												
PM promedio	43.5775281	43.5775281	54.14301	54,14301	49.5412198	49.6582813	48 7292779	49.6582813	49.6582813	47 8843407	73.002424	
Densidad GM/CC	0.0040169	0.0040325	0.0046789	0.0053241	0.0047358	0.0019501	0.7924652	0.0056252	0.0061459	0.0055161	0.7066185	
Grados API	10.1024955	26.7089433	51.0920171	53.9075304	48.4677524		42.6844788		59.5270629	2.0042.01	59.5351304	
Flujo H2O BBL/DAY	742 919	742.919	762.2469	762.2469	1505.166	639.0468	866.1191	639 0468	639.0469	392 3394	246.7075	
PVV @ 38C PSI	17.3490352	21.7865266	13.2854882	21.1446604	21 7301362	223.0.00	13.3987936	222 0 700	30.5650138	55 <u>2</u> 0004	30.5807554	
Conc H2S MG/L	145.0847	145.6454	225.2426	256 302		96.7985886	312 0767	279.2215	305 0683	304.5187	1114 483	
	. 10.0047	110.0104	LLO,L 120	200 002	200.1101		012 0.01	2,0.22(0	300 0000	004.0107	1114 403	

Corriente	20	21	22	23	24	25	26	27	28	29	30	
Temperatura C	42.15	51.71	123.45	55	25	25	25	10 24	55.25	17 11	19,6	
Presion KG/SQCM	6 0 3	3 08	13 03	12.33	11 63	11 98	11.98	6 03	6 03	6.03	6.03	
Frac Vapor	0	0 998	1	0.709	0 349	1	0	0 133	0	0.125	1	
Flujo MasicoKG/HR	20343 144	144776 126	144776 126	144776.126	144776 126	36272.742	108503.384	108503.673	14928 828	143775,646	15914.35	
Flujo Molar KMOL/HR	417 473	3092 898	3092 898	3092 898	3092.898	1033 223	2059.675	2059 68	204.498	2681 651	401 793	
Fluvo Volum,CUM/HR	25 67	26544.874	7243.629	4424.562	2275.186	1934 8	189.262	1173 977	21.131	1467 915	1528.859	
Fraccion Mol												
H2O	0.7614187	0 0474206	0.0474206	0.0474206	0.0474206	0 0031771	0.0696151	0.069615	0.4427596	0 2057686	0 0066601	
CO2	0 0000345	0 0156848	0 0156848	0 0156848	0.0156848	0.0359856	0 005501	0.005501	0.0002184	0.0042472	0.0203599	
H2S	0 0005631	0 0857896	0 0857896	0.0857896	0.0857896	0.1364304	0 060386	0.0603863	0 0033783	0 0467259	0 14089	
N2	0.0000002	0.0004307	0.0004307	0 0004307	0 0004307	0.0012379	0 0000258	0.0000258	0 0000015	0.00002	0.0001275	
C1	0.0001106	0 0728947	0.0728947	0.0728947	0 0728947	0.1874361	0.0154358	0 0154353	0 0007656	0 0119309	0.0662678	
C2	0 0008932	0 1561812	0 1561812	0.1561812	0.1561812	0 2757742	0.0961882	0 0961883	0 0056488	0 0744486	0.2568299	
C3	0 0050903	0.2784343	0 2784343	0 2784343	0.2784343	0.261775	0 2867913	0.2867916	0 0288894	0.2232699	0.356339	
IC4	0.0024936	0 0518367	0.0518367	0 0518367	0.0518367	0.0249826	0 0653078	0.0653081	0.0131041	0 0515483	0.0379668	
C4	0 0113147	0 1639257	0 1639257	0.1639257	0.1639257	0 0596718	0 2162241	0.2162247	0 0574379	0.1722161	0 0921355	
IC5	0 0069662	0.040013	0.040013	0.040013	0 040013	0 0066854	0.0567316	0 0567308	0.0324268	0 0471302	0.0107408	
C5	0 0092394	0.0414768	0.0414768	0.0414768	0 0414768	0 0056248	0.0594618	0 0594614	0.0416172	0.0502822	0 0090684	
C6	0.0101579	0 0149394	0.0149394	0.0149394	0.0149394	0 0007818	0 0220414	0.0220414	0 0388689	0 0214746	0.0013808	
PC220F	0 0185493	0 006611	0 006611	0.006611	0.006611	0.0001038	0.0098753	0.0098753	0 0520605	0.0144426	0 0002714	
PC276F	0.0117598	0.0008809	0.0008809	0.0008809	0.0008809	0 0000048	0.0013204	0 0013204	0.0192308	0 0043114	0.0000263	
PC326F	0.007535	0 0001049	0 0001049	0 0001049	0.0001049	0.0000002	0.0001574	0 0001574	0 0059557	0.0017481	0 0000037	
PC400F	0 0042697	0 0000033	0.0000033	68000003	0 0000033	0	0.000005	0.000005	0.0008291	0 0007317	0 0000003	
PC500F	0.0003722	0	0	0	0	0	0	0	0 0000081	0 0000586	0	
PC598F	0.0000267	0	0	0	0	0	0	0	0 0000001	0.0000042	0	
PC699F	0 0000013	0	0	0	0	0	0	0	0	0.0000002	0	
PC799F	0	0	0	0	0	0	0	0	0	0	0	
PC897F	0	0	ŋ	0	0	0	0	0	0	0	0	
PC1199F	0	0	0	0	0	0	0	0	0	0	0	
PC221F	0 0581944	0 0197884	0 0197884	0 0197884	0 0197884	0.0003099	0 0295597	0.0295597	0 1615793	0 044085	0 0008185	
PC275F	0 0419174	0.0031644	0 0031644	0 0031644	0 0031644	0.000018	0 0047428	0.004743	0 0689412	0 0154259	0.0000973	
PC325F	0.0275311	0.0004033	0.0004033	0.0004033	0.0004033	0.0000009	0.0006051	0 0006051	0.0223351	0 006454	0.0000146	
PC400F2	0.0190862	0 0000162	0.0000162	0.0000162	0.0000162	0	0.0000244	0 0000244	0.0038905	0 0032867	0.0000015	
PC500F2	0 0022305	0	0	0	0	0	0	0	0 0000527	0.0003513	0	
PC601F	0 0002244	0	0	0	0	0	0	0	0.0000005	0 000035	0	
PC699F2	0.0000186	0	0	0	0	0	0	0	0	0.0000029	0	
PC798F	0 0000011	0	0	0	0	0	0	0	0	0.0000002	0	
PC899F	0	0	0	0	0	0	0	0	0	0	0	
PC1381F	0	0	0	0	0	0	0	0	0	0	0	
Volumen Estandar @60	0705.0	45.05		10010 54	00000000		00070 45	05000.40	0040.07	01417.40		
Liquido BBL/DAY	3785 8	15 35	20.4	13319 51	28086.93	an 76	28673.45	25383.18	3042.37	31447 49		
Vapor MMCUFT/DAY		61.99	62 1	44.01	21 7	20 75		5 51		6 71	8 07	
Otra propiedades												
PM promedio	48 7292779	46.8092142	46 8092142	46 8092142	46.8092142	35 1064167	52 6798451	52.6798626	73 002424	53.6146062	39 6083025	
Densidad GM/CC	0.7924803	0.005454	0.0199867	0 032721	0.0636327	0.0187475	0 5732978	0.092424	0 7065019	0.0979455	0 0104093	
Grados API	42.6844788	10		102.2493	125 5292		126 622	118 2674	59 5351304	98 7314296		
Fluio H2O BBL/DAY	866 1191	399.6307	399.6307	399 6308	399 6307	8 9443282	390 6864	390 6873	246.7075	1503 513	7.2913767	
PVV @ 38C PSI	13.3987936	0.9607045		126.8296	212.4051		218.6065	158.3016	30,5807554	134,7725		
Conc H2S MG/L	312.0827	340.6772	1248.44	2043.871	3974 723	2483.09	22397 29	3610.772	1114,299	2909 257	1261.94	

Corriente Temperatura C	31 19 6	32 19.6	33 20.31	34 75	35 76 72	36 118.19	37 46,36	38 41 39	39 41.72	40 48 59	41
Presion KG/SQCM	6.03	6.03	17 03	16 33	16.03	17.53	11.98	16 83	5 03	5.03	1.03
Frac Vapor	0.03	0.09	., 00	0 056	10.03	0	1	0	0	0.03	1,03
Fluio MasicoKG/HR	117967.654	9894 122	117967.654	117967.654	29941 315	88026 257	66214.057	88026.257	88026 257	3 33E+06	0
Flujo Molar KMOL/HR	1730 694	549.163	1730.694	1730.694	648.887	1081.805	1682 11	1081 805	1081 805	10871 55	0
•	191.144	9.907	191.362	353.159	991.302	169 978	3358.562	140.795			
Fluvo Volum,CUM/HR	191.144	9.907	191.302	333.139	991.302	109 970	3330.302	140.793	140 928	4014 45	0
raccion Mol											
H2O	0.0000001	0 99991	0.0000001	0 0000001	0.0000003	0	0 0019516	0	0	0 0265961	0
CO2	0 0018542	0	0.0018542	0.0018542	0.0049454	0	0 0240116	0	0	0.0000793	0
H2S	0 0396631	0.00009	0 0396631	0.0396631	0.105427	0.0002168	0 1244706	0.0002168	0 0002168	0 0006833	0
N2	0.0000014	0	0.0000014	0.0000014	0.0000037	0	0 0007618	0	0	0 0000006	0
C1	0 003102	0	0.003102	0.003102	0.0082736	0	0 1183227	O	0	0 0002929	0
C2	0 0557309	0	0.0557309	0.0557309	0.1481818	0.0002772	0.2265544	0 0002772	0.0002772	0 0020774	0
C3	0.2632237	0	0.2632237	0 2632237	0.44107	0 1565478	0.3309394	0 1565478	0.1565478	0 0257245	0
IC4	0.0710584	0	0.0710584	0.0710584	0.0622462	0.0763441	0.0393574	0.0763441	0.0763441	0 0122307	0
C4	0.2454542	0	0.2454542	0.2454542	0 1701683	0 2906121	0.1022967	0 2906121	0 2906121	0.0462858	0
IC5	0 0705335	0	0 0705335	0 0705335	0 0256377	0.0974629	0 0139964	0 0974629	0.0974629	0 0178881	Ö
C5	0.0758056	o o	0 0758056	0 0758056	0.0235872	0.1071272	0 0125539	0 1071272	0,1071272	0 0201553	Ö
C6	0.0729538	0	0.0329538	0.0329538	0.0048189	0 0498296	0.0023391	0.0498296	0.0498296	0.0107059	0
PC220F	0.0223154	0	0.0223154	0.0223154	0.0012072	0 0349766	0.0005294	0.0349766	0 0349766	0.089109	0
PC276F	0.0220104	o o	0.0066743	0.0066743	0 0001547	0.0105849	0.0000284	0 0105849	0 0105849	0.0740304	0
PC326F	0 0027077	ő	0.0027077	0 0027077	0.0000282	0 004315	0 000011	0.004315	0.004315	0.0800347	0
PC400F	0 0011337	ő	0.0011337	0.0011337	0.0000034	0 0018118	0.0000013	0 0018118	0 0018118	0.1566642	Ô
PC500F	0.0000907	ő	0 0000907	0.0000907	0.0000004	0.0001451	0.00000.0	0 0001451	0.0001451	0.1000042	Ö
PC598F	0 0000065	ő	0.0000065	0.0000065	ő	0.0000103	ő	0 0000103	0.0001431	0.0895243	0
PC699F	0.0000003	ő	0.0000003	0 0000003	n	0.0000105	0	0.0000005	0 0000005	0.0639248	n
PC799F	0.0000000	0	0	0	ő	0 0000000	ő	0.0000000	0 0000000	0 0477551	ů
PC897F	0	0	0	0	0	0	0	0	0	0 0353784	0
PC1199F	0	0	0	0	0	0	0	0	-	0 0333764	0
	-	0	0.0681186	0 0681186	0.0035699	0 1068361	0.0015675	0.1068361	0 4000004		0
PC221F	0.0681186	0	0.0061100	0 0001100	0.0035699	0.0378703	0.0013673	0.0378703	0 1068361	0.010631	0
PC275F	0.0238794	_		0.0099969					0.0378703	0 0037684	•
PC325F	0 0099969	0	0.0099969		0.0001064	0.0159295	0 0000416	0.0159295	0.0159295	0 0015851	0
PC400F2	0 0050923	0	0.0050923	0.0050923	0.0000157	0.0081373	0.0000061	0.0081373	0.0081373	0 0008097	0
PC500F2	0.0005443	0	0.0005443	0.0005443	0.0000003	0.0008706	0 0000001	0 0008706	0.0008706	0 0000866	0
PC601F	0 0000542	0	0.0000542	0.0000542	0	0.0000867	0	0.0000867	0 0000867	9800000 0	0
PC699F2	0 0000045	0	0 0000045	0 0000045	0	0 0000072	0	0 0000072	0 0000072	0 0000007	0
PC798F	0.0000003	0	0.0000003	0 0000003	0	0 0000004	0	0.0000004	0.0000004	0	0
PC899F	0	0	0	0	0	0	0	0	0	0	0
PC1381F	0	0	0	0	0	0	0	0	0	0	0
olumen Estandar @60											
Liquido BBL/DAY	29096 06	1496.59	29096.06	27820.69		20462.15	13.82	20462 15	20462.15	590655 71	
Vapor MMCUFT/DAY				1.95	13.03		33.76				
tra propiedades											
PM promedio	68 162041	18.0167265	68.162041	68.162041	46.1425498	81.3697661	39.3636932	81 3697661	81.3697661	306.6859	
Densidad GM/CC	0 6171664	0.9987028	0.6164643	0 3340353	0 030204	0.5178681	0.019715	0.6252082	0 6246188	0.8305374	
Grados API	104.3743	10 0561997	104 3743	102.0183	0 000204	85.8614912	104 648	85 8614912			
	0 0005608	1496 195	0.0005608	0.0005608	0.0005608	00,00 I48 IZ	8.944889	00 00 I40 IZ	03,00 I48 IZ		
Flujo H2O BBL/DAY					0.0000000	E0 5531046		E0 EE21246	E0 5534040	787.8341	
PVV @ 38C PSI Conc H2S MG/L	126.9687 12239 68	19.8361504	126.9685	115.4163	0250 007	50.5531216	146 0541				
	12239 68	170 0405	12225 76	6624.609	2352.007	47.0208561	2124 668	56 7669963	56,7134839	63 0688028	

Corriente	42	43	44	45	46
Temperatura C	45	45	80 32	63.42	
Presion KG/SQCM	1.03	1.03	6.03	4.03	4.03
Frac Vapor	0	0	0	0	
Flujo MasicoKG/HR	3 33E+06	5208.911	4.68E+06	4.68E+06	0
Fluio Molar KMOL/HR	10582.412	289 138	11103.451	11103.451	0
Fluvo Volum,CUM/HR	3997 534	5 348	5207.241	5141 672	0
Fraccion Mol					
H2O	0.0000003	0.9999973	0.0000006	0.0000006	0
CO2	0.0000814	0	0 00004	0 00004	0
H2S	0.0007019	0.0000027	0 0009077	0 0009077	0
N2	0 0000006	0	0.0000003	0 0000003	0
C1	0.0003009	0	0.000143	0.000143	0
C2	0 0021342	0	0 0010982	0.0010982	0
C3	0.0264273	0	0.0055507	0 0055507	0
IC4	0.0125649	0	0 0024277	0.0024277	0
C4	0.0475504	0	0 0116137	0.0116137	Q
IC5	0 0183768	0	0.007379	0 007379	0
C5	0.020706	0	0.009887	0 009887	0
C6	0 0109984	0	0.0117015	0.0117015	0
PC220F	0 0915437	0	0	0	0
PC276F	0.0760531	0	0	0	0
PC326F	0.0822215	0	0	0	0
PC400F	0.1609447	0	0	O	0
PC500F	0.117122	0	0	0	0
PC598F	0 0919703	0	0	0	0
PC699F	0 0656714	0	0	0	0
PC799F	0 0490599	0	0	0	0
PC897F	0 036345	0	0	0	0
PC1199F	0.0718733	0	0	0	0
PC221F	0 0109215	0	0.0813271	0.0813271	0
PC275F	0 0038714	0	0.0712598	0.0712598	0
PC325F	0 0016284	0	0 0716262	0 0716262	0
PC400F2	0 0008319	0	0.1455015	0 1455015	0
PC500F2	0 000089	0	0 1105993	0.1105993	0
PC601F	0.0000089	0	0 0977397	0.0977397	0
PC699F2	0.0000007	0	0 0823272	0 0823272	0
PC798F	0	0	0 0632983	0 0632983	0
PC899F	0	0	0 047135	0.047135	0
PC1381F	0	0	0 1784365	0.1784365	0
Volumen Estandar @60					
Liquido BBL/DAY	589867,92	787.83	751801 4	751801.4	
Vapor MMCUFT/DAY					
Otra propiedades					
PM promedio	314 5731	18 0153238	421.0857	421 0857	
Densidad GM/CC	0 832749	0.9740178	0.8978851	0.9093353	
Grados API	34.2713198	10 0017035	18 9329137	18.9329137	
Fłujo H2O BBL/DAY	0 0074301	787.8248	0.0167499	0.0167499	
PVV @ 38C PSI	11.4348727	1.9725621	4.383891	4.7476292	
Conc H2S MG/L	63.3289742	5 0230876	65 9642299	66.8054309	

Apendice 4 Resultados de Simulación de la Alternativa 2

Temperatural C	Corriente	1	2	3	4	5	6	7	8	9	10	10A
President Collegical Coll												
Final Massion/Horist Final Page Final												
Filipi Mellar MKOLI/HR												
Filip Mollar MMOL/Hig	•				•			•				
Filtron VolumeCUM/Hirk	•											
Praceion Mol H2O	•											
H2O C.05001142 C.05050142 C.05050142 C.0000608 C.0505142 C.00000068 C.05050142 C.000006764 C.000006764 C.000067654 C.	Fluvo volumecow/HR	3830 88	3239 42	00.00	3342,82	14403.31	20001.00	45080 2	3943 00	01492 90	5555.52	3046 02
CO2	Fraccion Mol											
H2S	H2O	0.0500142	0.0215636	0 0500142		0.0500142	0 0215636			0.1288824	0 0000009	80000008
No.	CO2	0 0019922	0.0014891	0 0019922		0 0019922	0.0014891			0.0086585	0.0000486	0.0000963
C1	H2S	0.0065731	0.0118005	0 0065731	0 0007562	0 0065731	0 0118005	0.0362723	0 0007562	0.0656374	0 0009835	0.0007562
C2	N2	0 0000674	0 0000412	0.0000674	0.0000011	0.0000674	0.0000412	0.0004061	0 0000011	0 000243	0.0000007	0.0000011
C3	C1	0 0106458	0 006492	0.0106458	0.0004129	0.0106458	0.006492	0.0628918	0.0004129	0 0378673	0 000188	0.0004129
C4	C2	0 0199932	0 0147445	0.0199932	0.0025328	0 0199932	0.0147445	0.1091411	0.0025328	0 0819114	0 0012492	0.0025328
Cd	C3	0 0409057	0.0337985	0.0409057	0 0109796	0 0409057	0 0337985	0.1936997	0 0109796	0.1746175	0 0055048	0.0109796
CS	IC4	0.0106571	0 0082027	0.0106571	0.0047598	0.0106571	0.0082027	0 0407669	0.0047598	0.0383696	0 0021415	0.0047598
CS	C4	0.0344446	0.0321665	0 0344446	0.017597	0 0344446	0 0321665	0 1204634	0.017597	0.1435781	0 0097814	0 017597
CS 0 0128794 0 1 0160021 0.0162784 0 0097777 0 0126784 0 0160027 0 00739389 0.0093777 0 008328 0.0037839 0.0097777 0 0084189 0.0097777 0 0084189 0.0097777 0 0084189 0.0097777 0 008328 0.0036328 0.00883283 0.0083218 0 0174628 0 0 0076692 0 0076692 0 0 00362485 0.0961304 0.0083108 0 00975692 0 0 00362485 0.0961304 0 0 0 00975692 0 0 00363485 0.0961304 0 0 0 00975692 0 0 00363485 0.0961304 0 0 0 0033108 0 0 00975692 0 0 00363485 0.0961304 0 0 0 0033108 0 0 0033108<	IC5	0 0115404	0 013128	0.0115404	0.0084151	0.0115404	0.013128	0.0274973	0.0084151	0 0486966	0 0059815	0.0084151
CG			0 0160021	0.0126784	0 0097777	0 0126784	0 0160021	0 0274886	0.0097777			
PC220F												
PC276F												
PC326F												
PC400F												
PC500F			_									
PC598F											_	
PC699F			-								-	
PC799F			_									
PC89/F											_	
PC1199F							_				-	
PC221F												
PC275F			_				_	_		-	_	
PC325F		-			_							
PC400F2					-			-	_			
PC500F2												
PC601F												
PC699F2		-							-			
PC798F					_							
PC899F 0 0.0403407 0 0 0 0403407 0 0 0 0400001 0 048446 0 PC1381F 0 0 1527158 0 0 0 0 0.1527158 0 0 0 0 0483498 0 0 0 0 0 0.1527158 0 0 0 0 0483498 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					-							
Volumen Estandar @60 Liquido BBL/DAY 587296 777100 584583 81 4 97 566828 91 17 87 577348.05 30 21 757684 23 30 21 566828 91 36 94 743774.4 566828 91 43.58 Otra propiedades PM promedio 294.5856 368.1927 368.1927 294.5856 294.5856 368.1927 343.7734 294.5856 294.5856 368.1927 343.7734 0.8189564 294.5856 0.2284672 368.1927 0.1884219 43.4469815 0.017416 343.7734 0.8188026 429.1269 0.02915 343.7734 0.868869 343.7734 0.8395898 Grados API Flujo H2O BBL/DAY PVV @ 38C PSI 34.794269 1530.754 762.2634 762.2634 1480.165 1480.165 0.0198825 0.0198825 10.026308 10.0198825 10.0696385 0.0198825 0.0198825 10.0696385 0.0198825 0.0198825 0.0198825 0.0198825 0.0250381 0.0198825 0.0198825 0.0198825 0.0250381 0.0198825 0.0198825 0.0250381 0.0198825 0.0198825												
Volumen Estandar @60 Liquido BBL/DAY 587296 777100 584583 81 4 97 566828 91 17 87 577348.05 30 21 757684 23 36 94 566828 91 43.58 743774.4 566828 91 566828 91 Otra propiedades PM promedio Densidad GM/CC 294.5856 368.1927 368.1927 294 5856 294 5856 0.549773 343.7734 0.8189564 294.5856 0.2284672 368 1927 0.1884219 43.4469815 0.0017416 343 7734 0.8188026 64 9203197 0.8189589 429.1269 0.8395898 343 7734 0.8395898 6881927 0.1884219 43.4469815 0.0017416 343 7734 0.8188026 60 0022915 0.8688969 0.8395898 0.8395898 63.533167 0.0198825 19.3915823 0.00198825 32.7263523 0.0198825 18 6016865 0.0198825 32.7263523 0.0198825 0.0198825 0.0250381 0.0198825 0.0198825 0.0198825 0.0250381 0.0198825 0.0198825 0.0198825 0.0250381 0.0198825 0.0198825 0.0198825 0.0250381 0.0198825 0.0198825									_			
Liquido Vapor BBL/DAY MMCUFT/DAY 587296 777100 584583 81 4 97 566828 91 577348.05 757684 23 30 21 566828 91 36 94 743774.4 566828 91 Otra propiedades PM promedio 294.5856 368.1927 294 5856 343.7734 294.5856 368 1927 43.4469815 343 7734 64 9203197 429.1269 343 7734 Densidad GM/CC 0 8375144 0 9082286 0.549773 0.8189564 0.2284672 0.1884219 0.0017416 0.8188026 0 0022915 0.8688969 0.8395898 Grados API 34 7994092 21.0025202 34.3742742 32.7263523 33.5533167 19.3915823 32.7263523 18 6016865 32.7263523 Flujo H2O BBL/DAY 1530 754 762 2634 1480.165 0 0198825 1056.309 0.0806385 0.0198825 0 0250381 0.0198825 PVV @ 38C PSI 50 6051681 39.4956963 32 9838772 6 841962 16.0700007 8 9302879 6.841962 4 4133001 6 841962	PC1381F	0	0 1527158	0	0	0	0.1527158	0	Ü	0	0 1833998	0
Liquido Vapor BBL/DAY MMCUFT/DAY 587296 777100 584583 81 4 97 566828 91 577348.05 757684 23 30 21 566828 91 36 94 743774.4 566828 91 Otra propiedades PM promedio 294.5856 368.1927 294 5856 343.7734 294.5856 368 1927 43.4469815 343 7734 64 9203197 429.1269 343 7734 Densidad GM/CC 0 8375144 0 9082286 0.549773 0.8189564 0.2284672 0.1884219 0.0017416 0.8188026 0 0022915 0.8688969 0.8395898 Grados API 34 7994092 21.0025202 34.3742742 32.7263523 33.5533167 19.3915823 32.7263523 18 6016865 32.7263523 Flujo H2O BBL/DAY 1530 754 762 2634 1480.165 0 0198825 1056.309 0.0806385 0.0198825 0 0250381 0.0198825 PVV @ 38C PSI 50 6051681 39.4956963 32 9838772 6 841962 16.0700007 8 9302879 6.841962 4 4133001 6 841962	Volumen Estandar @60											
Vapor MMCUFT/DAY 4 97 17 87 30 21 36 94 43.58 Otra propiedades PM promedio 294.5856 368.1927 294 5856 343.7734 294.5856 368 1927 43.4469815 343 7734 64 9203197 429.1269 343 7734 Densidad GM/CC 0 8375144 0 9082286 0.549773 0.8189564 0.2284672 0.1884219 0.0017416 0.8188026 0 0022915 0.8688969 0.8395898 Grados API 34 7994092 21.0025202 34.3742742 32.7263523 33.5533167 19.3915823 32.7263523 18 6016865 32.7263523 Flujo H2O BBL/DAY 1530 754 762 2634 1480.165 0 0198825 1056.309 0.0806385 0.0198825 0 0250381 0.0198825 PVV @ 38C PSI 50 6051681 39.4956963 32 9838772 6 841962 16.0700007 8 9302879 6 841962 4 4133001 6 841962		587296	77 7 100	584583 81	566828 91	577348.05	757684 23		566828 91		743774.4	566828 91
PM promedio 294.5856 368.1927 294.5856 343.7734 294.5856 343.7734 294.5856 368.1927 43.4469815 343.7734 64.9203197 429.1269 343.7734 Densidad GM/CC 0 8375144 0 908.2286 0.549773 0.8189564 0.2284672 0.1884219 0.0017416 0.8188026 0 0.022915 0.8688969 0.8395898 Grados API 34.7994092 21.0025202 34.3742742 32.7263523 33.5533167 19.3915823 32.7263523 18.6016865 32.7263523 Flujo H2O BBL/DAY 1530.754 762.2634 1480.165 0 0198825 1056.309 0.0806385 0.0198825 0.0	• • • • • • • • • • • • • • • • • • • •		- , ,					36 94		43.58		
PM promedio 294.5856 368.1927 294.5856 343.7734 294.5856 368.1927 43.4469815 343.7734 64.9203197 429.1269 343.7734 Densidad GM/CC 0 8375144 0 908.2286 0.549773 0.8189564 0.2284672 0.1884219 0.0017416 0.8188026 0 0.022915 0.8688969 0.8395898 Grados API 34.7994092 21.0025202 34.3742742 32.7263523 33.5533167 19.3915823 32.7263523 18.6016865 32.7263523 Flujo H2O BBL/DAY 1530.754 762.2634 1480.165 0 0198825 1056.309 0.0806385 0.0198825 0	Oten war aladadan											
Densidad GM/CC 0 8375144 0 982286 0.549773 0.8189564 0.2284672 0.1884219 0.0017416 0.8188026 0 0022915 0.8688969 0.8395898 Grados API 34 7994092 21.0025202 34.3742742 32.7263523 33.5533167 19.3915823 32.7263523 18 6016865 32.7263523 Flujo H2O BBL/DAY 1530 754 762 2634 1480.165 0 0198825 1056.309 0.0806385 0.0198825 0 0250381 0.0198825 PVV @ 38C PSI 50 6051681 39.4956963 32 9838772 6 841962 16.0700007 8 9302879 6.841962 4 4133001 6 841962		004 E050	200 4007	204 8056	2/9 770/	204 5950	200 1027	13 1160815	242 7724	64 0002107	420 4200	242 7724
Grados API 34 7994092 21.0025202 34.3742742 32.7263523 33.5533167 19.3915823 32.7263523 18.6016865 32.7263523 Flujo H2O BBL/DAY 1530 754 762 2634 1480.165 0 0198825 1056.309 0.0806385 0.0198825 0 0250381 0.0198825 PVV @ 38C PSI 50 6051681 39.4956963 32 9838772 6 841962 16.0700007 8 9302879 6.841962 4 4133001 6 841962	•											
Flujo H2O BBL/DAY 1530 754 762 2634 1480.165 0 0198825 1056.309 0.0806385 0.0198825 0 0250381 0.0198825 PVV @ 38C PSI 50 6051681 39.4956963 32 9838772 6 841962 16.0700007 8 9302879 6.841962 4 4133001 6 841962								0.0017416		0.0022815		
PVV @ 38C PSI 50 6051681 39.4956963 32 9838772 6 841962 16.0700007 8 9302879 6.841962 4 4133001 6 841962												
	•											
Conc H2S MG/L 636,9048 992 0737 467.6204 61 4010387 200.5243 185.6305 61 3895067 67.8674222 62 9480186	_											
	Conc H2S MG/L	636.9048	992 0737	467.6204	61 4010387	200.5243	185.6305		ชา 3895067		67.8674222	62 9480186

	44		45	14	45	40	45	40	40	***		
Corriente	11	12 55	13 51.9	58 68	1 5 58.68	16 105 79	17 55	18 55	19 55	20	21	
Temperatura C	55 0.82	0.82	0.82	118	1.18	3 43	3 08	3 08	3 08	58.98	51.54	
Presion KG/SQCM	0.862	0.909	0.82	1 1	0	343	0.773	3 Vo 1	0	6 03 0	3.08 0.999	
Frac Vapor	79930	140913.29	220843.29	181954.73	38888 56	181954.73	181954.73	131470 55	50484.18	38888.56	152743.03	
Flujo MasicoKG/HR	1839 71	2170 56	4010.27	3525.23	485.04	3525 23	3525 23	2724,75	800.48	485 04	3246 23	
Flujo Molar KMOL/HR	53173 77	65976.17	119112.65	82697.38	51.53	31912,42	23723.39	23637.82	70.64	51 53	27845 08	
Fluvo VolumeCUM/HR	5517577	03970.11	119112.00	02097.00	01.00	01912,42	20120.00	23037.02	70.04	0100	21040 00	
Fraccion Mol												
H2O	0.3053681	0.1288824	0.2098453	0 162932	0 5508066	0.162932	0 162932	0.0535008	0.5354236	0 5508066	0 0465972	
CO2	0.011672	0.0086585	0.0100409	0.0114158	0 0000485	0 0114158	0.0114158	0 0147172	0.0001785	0.0000485	0.0152844	
H2S	0.0362723	0.0656374	0.0521661	0.0592391	0.0007603	0.0592391	0 0592391	0.0758311	0 0027619	0 0007603	0.0852743	
N2	0 0004061	0 000243	0.0003178	0.0003615	0.0000004	0 0003615	0.0003615	0 0004674	0 0000013	0.0000004	0.0004095	
C1	0 0628918	0 0378673	0 0493473	0.0561131	0 0001746	0.0561131	0 0561131	0.0724146	0.0006244	0 0001746	0 0698977	
C2	0 1091411	0 0819114	0 094403	0.1072149	0.0012874	0 1072149	0.1072149	0 1373685	0 0045754	0.0012874	0 1531092	
C3	0.1936997	0 1746175	0 1833714	0 2076815	0 0066885	0 2076815	0.2076815	0 2617658	0.0235844	0.0066885	0 2781078	
IC4	0 0407669	0 0383696	0 0394694	0 0444587	0.0032077	0.0444587	0.0444587	0 0542925	0.0109854	0.0032077	0.0523595	
C4	0.1204634	0 1435781	0 1329742	0 1492694	0.0145425	0.1492694	0 1492694	0 1787235	0.0490109	0 0145425	0 1671796	
IC5	0.0274973	0.0486966	0.0389714	0 0430532	0.0093057	0.0430532	0 0430532	0.0472474	0 0287764	0 0093057	0 0419332	
C5	0.0274886	0 056133	0.0429924	0.0471828	0 012537	0 0471828	0 0471828	0.0500219	0 0375187	0.012537	0.0439972	
C6	0 0075442	0.0338634	0.0217895	0.0226727	0 01537	0.0226727	0.0226727	0 0187725	0 0359487	0.01537	0 0161358	
PC220F	0 0362485	0	0 016629	0.0148027	0.0299027	0.0148027	0.0148027	0 0071421	0.0408785	0.0299027	0 0060836	
PC276F	0.0121697	0	0.0055828	0.0035876	0 0200843	0 0035876	0.0035876	0.0008208	0.0130054	0.0200843	0.0006989	
PC326F	0.0054536	0	0.0025019	0.0009462	0.0138079	0 0009462	0.0009462	0 0000933	0 0038495	0.0138079	0 0000799	
PC400F	0 0026371	0	0.0012098	0 0001386	0.0089947	0.0001386	0 0001386	0 0000033	0.0005993	0 0089947	0 0000029	
PC500F	0 000256	0	0.0001174	0.0000018	0 000958	0 0000018	0.0000018	0	0.0000078	0 000958	0	
PC598F	0.0000223	0	0 0000102	0	0.0000844	0	0	0	0 0000001	0 0000844	0	
PC699F	0.0000014	0	0.0000006	0	0 0000051	0	0	0	0	0.0000051	0	
PC799F	0 0000001	0	0	0	0 0000002	0	0	0	0	0 0000002	0	
PC897F	0	0	0	0	0	0	0	0	0	0	0	
PC1199F	0	0	0	0	0	0	0.0407000	0 0000050	0	0	0	
PC221F	0	0 1020125	0 0552142	0.0487228	0 1023934	0.0487228	0 0487228	0.0229356	0 1364993	0 1023934	0.0195396	
PC275F	0	0.0430699	0.0233116	0.0149667	0.0839612	0 0149667	0.0149667	0.003421	0 0542671	0.0839612	0.0029141	
PC325F	0	0.021067	0.0114025	0 0043715	0.0625034	0 0043715	0.0043715 0.0008512	0 0004399	0.0177544	0 0625034	0 0003769	
PC400F2	0	0.0132718	0.0071834	0.0008512	0.0532051	0.0008512		0 0000209	0.0036773	0 0532051	0 0000186	
PC500F2	0	0.0018495	0.0010011	0 0000162	0 0081592	0.0000162	0.0000162	0.0000001	0 000071	0 0081592	0.0000001	
PC601F	0	0.0002422	0.0001311	0.0000002	0 0010824	0.0000002	0.0000002	0	0 0000009	0 0010824	0	
PC699F2	0	0.0000266	0.0000144	0	0 0001189	0	0	0	0	0 0001189	0	
PC798F	0	0 0000021	0 0000012		0 0000096	_	-	0	_	0.0000096	0	
PC899F	0	0 0000001	0.0000001	0	0.0000005	0	0	0	0	0 0000005	0	
PC1381F	0	0	0	U	0	0	0	0	0	0	0	
Volumen Estandar @60												
Liquido BBL/DAY	787.9	5992.22	6401 1		7439 63		10178 8		10183.73	7439.63	11 87	
Vapor MMCUFT/DAY	31.85	39 61	72.14	70.78		70.78	54 72	54.71			65.09	
Otra propiedades												
PM promedio	43.4469815	64.9203197	55 0694166	51 6149915	80.1758497	51.6149915	51.6149915	48.2505197	63 0672776	80 1758497	47,052376	
Densidad GM/CC	0 0015032	0.0021358	0.0018541	0.0022002	0.7546812	0 0057017	0.0076698	0 0055619	0 7146306	0.7547055	0.0054855	
Grados API	14.3300202	51.6331773	46.458678		47 537327		57.5674493		57.575539	47 537327	10	
Flujo H2O BBL/DAY	682.7705	0.0003456	639.6184		727 953		1167 579		1167 817	727.953	11 8719302	
PVV @ 38C PSI	7 6689725	7 8085959	8.1406828		10.0849423		30.4759698		30 491773	10.0849423	0.9607045	
Conc H2S MG/L	14 1621821	251 0493	181.5096		243 8973		1065.835		1066,623	243 9051	0	
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					···				

Corriente	22	23	24	25	26	27	28	29	30	31	32	
Temperatura C	123.2	55	25	25	25	10 23	55.17	25.98	28.84	28 84	28 84	
Presion KG/SQCM	13.03	12.33	11 63	11 98	11.98	6.03	6 03	6.03	6.03			
			0 332	11 96	0	0 133	0 03			6.03	6 03	
Frac Vapor	1	0.695			_		-	0.124	1	0	0	
Flujo MasicoKG/HR	152743.03	152743.03	152743 03	36098 56	116644.47	116644.12	50484 18	206016 85	21272,47	169639 5	15104.28	
Flujo Molar KMOL/HR	3246.23	3246 23	3246 23	1028 19	2218.05	2218 04	800 48	3503.56	521.49	2143.72	838 35	
Fluvo VolumeCUM/HR	7585.92	4558.89	2283 97	1925 47	203.77	1264 44	70 65	1987	2052	266 15	15.26	
Fraccion Mol												
H2O	0.0465972	0 0465972	0.0465972	0.003177	0.0667249	0 0667251	0 5354236	0.2408291	0.0105261	0 0000002	0.9999143	
CO2	0 0152844	0.0152844	0 0152844	0 0362695	0 0055566	0.0055567	0 0001785	0.0035653	0 0182479	0.0013879	0	
H2S	0 0852743	0.0852743	0 0852743	0 1374359	0.0610945	0.0610939	0.0027619	0 0394137	0.1346147	0.0316349	0 0000857	
N2	0.0004095	0.0004095	0 0004095	0.0012373	0.0000258	0.0000258	0.0000013	0 0000167	0 0001074	0 0000012	0	
C1	0 0698977	0 0698977	0.0698977	0 1873286	0 015462	0 0154622	0 0006244	0.0099557	0.056747	0 0024665	0	
C2	0 1531092	0.1531092	0.1531092	0.275552	0 0963502	0.0963495	0 0045754	0 0622206	0.2353539	0.0444366	0	
C3	0.2781078	0.2781078	0 2781078	0.2606013	0.286223	0 2862226	0.0235844	0.1875166	0 3634942	0 2180396	0	
IC4	0.0523595	0 0523595	0.0523595	0 02484	0.0651163	0 0651165	0.0109854	0.044178	0 0422598	0 0619211	0	
C4	0 1671796	0 1671796	0.1671796	0 05968	0 2170117	0 2170121	0 0490109	0.1505974	0 1068631	0.2201298	0	
IC5	0 0419332	0.0419332	0 0419332	0.0068347	0.0582034	0.0582035	0.0287764	0.0447106	0 0141668	0 0696255	0	
C5	0 0439972	0.0439972	0 0439972	0.0058126	0.0616979	0 0616981	0.0375187	0.0493677	0.0125183	0 0776377	0	
C6	0.0161358	0 0161358	0.0161358	0 0008203	0.0232353	0 0232354	0 0359487	0.0250512	0.002359	0.040368	0	
PC220F	0.0060836	0 0060836	0.0060836	0 0000929	0 0088606	0.0088606	0 0408785	0.0190891	0.0005529	0.0310632	0	
PC276F	0.0006989	0.0006989	0 0006989	0.0000037	0.0010212	0.0010212	0.0130054	0.0063985	0.0000623	0 010442	0	
PC326F	0 0000799	0.0000799	0.0000799	0.0000002	0.0001169	0.0001169	0.0038495	0.0028651	0 00001	0 0046801	0	
PC400F	0.0000029	0.0000029	0.0000029	0	0.0000043	0 0000043	0 0005993	0.0013849	0 000001	0.0022631	0	
PC500F	0	0	0	0	0	0	0 0000078	0 0001344	0	0.0002197	0	
PC598F	0	0	0	0	0	0	0.0000001	0 0000117	0	0.0000191	0	
PC699F	0	0	0	0	0	0	0	0.0000007	0	0.0000012	0	
PC799F	0	0	0	0	0	0	0	0	0	0	0	
PC897F	0	0	0	0	0	0	0	0	0	0	0	
PC1199F	0	O	0	0	0	0	0	0	0	0	0	
PC221F	0.0195396	0.0195396	0.0195396	0.0002973	0.0284595	0 0284596	0 1364993	0.0633797	0.0017953	0.1031463	0	
PC275F	0.0029141	0 0029141	0.0029141	0 0000161	0 0042575	0 0042575	0.0542671	0 0267179	0.0002658	0 0436011	0	
PC325F	0 0003769	0.0003769	0 0003769	80000008	0.0005513	0.0005513	0.0177544	0.0130586	0.000048	0 0213303	0	
PC400F2	0.0000186	0.0000186	0 0000186	0	0.0000271	0 0000271	0.0036773	0.0082232	0.0000063	0.0134379	0	
PC500F2	0.0000001	0 0000001	0.0000001	0	0.0000001	0.0000001	0.000071	0.0011458	0.0000001	0 0018727	0	
PC601F	0	0	0	0	0	0	0.0000009	0 0001501	0	0 0002453	0	
PC699F2	0	0	0	0	0	0	0	0.0000165	0	0.0000269	0	
PC798F	0	0	0	0	0	0	0	0.0000013	0	0.0000022	0	
PC899F	0	0	0	0	0	0	0	0.0000001	0	0 0000001	0	
PC1381F	0	0	0	0	0	0	0	0	0	0	0	
Volumen Estandar @60												
Liquido BBL/DAY		14609.42	30265,22		30876 61	27334 43	10183 73	43145.15		39761.86	2284 68	
Vapor MMCUFT/DAY	65 18	45,33	21 64	20.64	3007001	5.94	1010313	8.75	10.47	39701.00	2204 00	
Otra propiedades												
PM promedio	47.052376	47.052376	47.052376	35.1089306	52 5888228	52 5888645	63.0672776	58.80214	40.7920997	79.1330784	18 0166567	
Densidad GM/CC	0.0201351	0 0335044	0,066876	0 0187479	0 5724355	0 0922499	0.7145937	0.1036822	0 0103667	0.6373787	0 989797	
Grados API	5.024 (00 f	103.4003	126 113		127.1836	118.8468	57.575539	86.1908897	0.00007	91.2717435	10.053487	
Flujo H2O BBL/DAY		320.8921	402 593		403.2593	401.3955	1167 817	2291 731		0.001249	2284.098	
PVV @ 38C PSI		126,6593	212 4142		218.6075	158.3484	30.491773	110 4817		103,5462	21.5866037	
Conc H2S MG/L		9480.256	21958,17		22665 16	17732,61	1066 568	9167,474		8684 184	160,3832	
CONG 1120 IVIO/L		3400.230	21000,11	17 (8 × × 1 × 1 × 1	22000 10	11.102.01	1000 000	ייין די, נטוט		0004 104	100,3032	

Corriente	33	34	35	36	37	38	39	40	41	42	43
Temperatura C	29 51	95	95.61	141.16	61.14	46 34	47.37		47.49	47 49	59.58
Presion KG/SQCM	17.03	16 33	16.03	17 53	11 98	16.83	5	1.03	1 03	1 03	5
Frac Vapor	0	0.122	1	0	0 998	0	0		0	0	0
Flujo MasicoKG/HR	169639 5	169639 5	40022 37	129616 12	76120.93		3358693.79	0	3358693.72	0.07	4635842 17
Flujo Molar KMOL/HR	2143 72	2143.72	810.45	1333.26	1838.63	1333 26	10726 3	0	10726 3	0	10802 96
Fluvo VolumeCUM/HR	266 38	697 16	1317.55	247 7	3858 06	197.28	4042.35	0	4043 84	0	5070.72
Fraccion Mol											
H2O	0.0000002	0 0000002	0.0000006	0	0 0017769	0	0 0000007	0	0 0000003	0,9999972	0.0000009
CO2	0.0013879	0 0013879	0 0036711	0	0 0219005	0	0 0000844	0	0.0000844	0	0.0000486
H2S	0.0316349	0.0316349	0 0834536	0 0001363	0 1136412	0 0001363	0 0006792	0	0 0006792	0.0000028	0.0009835
N2	0 0000012	0 0000012	0.0000031	0	0.0006933	0	0.0000009	0	0.00000009	0	0.0000007
C1	0 0024665	0 0024665	0.0065243	0	0.1076323	0	0.0003616	0	0.0003616	0	0.000188
C2	0 0444366	0 0444366	0.1172138	0.0001982	0.2057585	0.0001982	0.0022426	0	0.0022426	0	0 0012492
C3	0.2180396	0.2180396	0 4129024	0 0995914	0.3277337	0 0995914	0.0219939	0	0 0219939	0	0 0055048
1C4	0.0619211	0 0619211	0.0703297	0 0568101	0 0448913	0 0568101	0 0112296	0	0.0112296	0	0.0021415
C4	0.2201298	0 2201298	0 2065923	0.2283571	0 1244371	0 2283571	0 0437942	0	0.0437942	0	0.0097814
IC5	0 0696255	0 0696255	0.0375379	0.0891289	0.0203683	0.0891289	0.0184477	0	0 0184477	0	0.0059815
C5	0.0776377	0.0776377	0.0366177	0.1025708	0.0193911	0.1025708	0.0213117	0	0.0213117	0	0 0079389
C6	0.040368	0 040368	0 0096757	0.0590245	0 0047237	0.0590245	0 0127327	0	0.0127327	0	0.0097187
PC220F	0.0310632	0 0310632	0 0029894	0.0481285	0.0013696	0.0481285	0 090 1638	0	0 0901639	0	0
PC276F	0 010442	0.010442	0.000456	0 0165123	0 0002031	0 0165123	0.0750079	0	0.0750079	0	0
PC326F	0.0046801	0.0046801	0.0000965	0.0074664	0.0000426	0.0074664	0.0811129	0	0 0811129	0	0
PC400F	0 0022631	0.0022631	0.0000143	0.00363	0 0000063	0.00363	0 1587848	0	0 1587848	0	0
PC500F	0.0002197	0 0002197	0.0000003	0.0003531	0.0000001	0.0003531	0.1155508	0	0 1155509	0	o
PC598F	0.0000191	0 0000191	0	0.0000307	0	0.0000307	0.0907365	0	0.0907366	0	Ø
PC699F	0.0000012	0.0000012	0	0.0000019	0	0 0000019	0 0647904	0	0.0647904	0	0
PC799F	0	0	0	0.0000001	0	0.0000001	0.0484018	0	0.0484018	0	0
PC897F	Ō	0	0	0	0	0	0.0358574	0	0.0358575	Ō	Ö
PC1199F	0	0	0	0	0	0	0.0709092	0	0 0709092	ō	0
PC221F	0 1031463	0.1031463	0.0095125	0.1600637	0 0043592	0 1600637	0.0198957	0	0 0198957	0	0 0740352
PC275F	0.0436011	0 0436011	0 0018785	0 0689633	0 000837	0 0689633	0 008572	0	0 008572	ō	0.0684155
PC325F	0.0213303	0.0213303	0 0004416	0 0340281	0.0001951	0.0340281	0 0042296	0	0.0042296	ō	0.0709873
PC400F2	0.0134379	0.0134379	0.0000866	0.0215538	0 0000382	0.0215538	0 0026791	0	0 0026791	D	0 1476979
PC500F2	0 0018727	0 0018727	0.0000023	0.0030096	0 000001	0.0030096	0.0003741	0	0.0003741	ō	0.1133913
PC601F	0 0002453	0 0002453	0	0,0003943	0	0.0003943	0 000049	0	0.000049	Ô	0.1004184
PC699F2	0 0000269	0.0000269	0	0.0000433	0	0.0000433	0,0000054	0	0 0000054	Ô	0 0846125
PC798F	0.0000022	0.0000022	ō	0.0000035	0	0 0000035	0.0000004	0	0 0000004	ő	0.0650586
PC899F	0.0000001	0 0000001	0	0 0000002	0	0.0000002	0	0	0	o o	0.048446
PC1381F	0	0	Ō	0	Ō	0	0	0	ō	0	0 1833998
Volumen Entender GCA											
Volumen Estandar @60 Liquido BBL/DAY	39761 86	36178 1		28554,15	86.34	28554.15	595383 06		595383.05	0.01	743774.4
Vapor MMCUFT/DAY	3970100	5.25	16.27	20004, 10	36.83	20004.10	550000 00		393300.03	0.01	743774,4
Otra propiedades											
PM promedio	79.1330784	79 1330784	49 3830969	97.2171709	41 4008036	97.2171709	313,1269		313.127	18 0153242	429 1269
Densidad GM/CC	0.6368222	0.2433304	0.0303764	0.5232764	0 0197304	0 6570309	0 8308762		0 8305713	0.9715592	0.9142368
Grados API	91 2717435	86.5497671	2.0000,07		89.7759049	74.5139605	34.3389874		34.338988	10 0017188	18.6016865
Flujo H2O BBL/DAY	0.001249	0.0000005			0.0000009	. 7.0100000	0.0198825		0.0085732	0 0113092	0.0250381
PVV @ 38C PSI	103.5462	83.0542281		35.7289072	113.5777	35.7289072	10.3546882		10.6926876	2 8850893	4.4133001
Conc H2S MG/L	8676.603	5294 185		25.0000169		31.3902354	61 4226065		61.4000675		71.4088135
GOING TIZO SPIONE	0070.003	3284 (DD	 	20.0000109	1100 413	01.030AV09	V (**CEU0U0		V1.4000013	0,0000444	11.4000100

Corriente	44	45	51	S1	S2
Temperatura C	59.58	40	46 65	110	124.14
Presion KG/SQCM	4	4	603	35	
Frac Vapor	0	4	0		
Flujo MasicoKG/HR	4635842 17	0	129616.12		
Flujo Molar KMOL/HR	10802.96	0	1333,26	12973.52	10802.96
Fluvo VolumeCUM/HR	5071.03	0	197,47	15049.21	5334.05
Fluvo volumecow/AR	307 1.03	U	191,41	10049.21	5554.05
Fraccion Mol					
H2O	0.0000009	0	0	0 0215636	0 0000009
CO2	0 0000486	0	0		0 0000486
H2S	0 0009835	Ü	0.0001363	0.0118005	0 0009835
N2	0.0000007	0	0	0.0000412	0.0000007
C1	0.000188	0	0	0.006492	0.000188
C2	0.0012492	0	0.0001982		
C3	0.0055048	0	0 0995914	0 0337985	0.0055048
IC4	0.0021415	ō	0.0568101	0 0082027	0 0021415
C4	0.0097814	ō	0 2283571	0.0321665	0 0097814
IC5	0.0059815	Ö	0 0891289	0.013128	0 0059815
C5	0.0079389	ő	0 1025708	0.0160021	0 0079389
C6	0.0097187	ő	0.0590245	0.0137583	0.0097187
PC220F	0 0007 (01	0	0.0481285	0.0107000	0.0007 107
PC276F	0	ŏ	0.046123	ő	0
PC326F	0	0	0.0074664	ő	0
PC400F	0	ő	0.00363	ő	ő
PC500F	0	0	0.003531	Ö	0
PC598F	0	ő	0 0000307	Ö	0
PC699F	0	0	0 0000019	0	0
PC799F	ő	ő	0.0000001	ő	ŏ
PC897F	0	ő	0.0000001	0	ŏ
PC1199F	Ö	Ö	ő	ő	ő
PC221F	0.0740352	Ö	0 1600637	0 078716	0.0740352
PC275F	0.0684155	0	0.0689633	0.064175	0 0684155
PC325F	0.0709873	ő	0.0340281	0.0626353	0.0709873
PC400F2	0 1476979	0	0.0215538	0.1252075	0 1476979
PC500F2	0.1133913	0	0.0030096	0.0947296	0.1133913
PC601F	0.1004184	0	0.0003943	0.0836583	0.1103313
PC699F2	0.0846125	0	0.0000343	0.0030503	0.0846125
PC798F	0.0650586	0	0 0000035	0 0541742	0.0650586
PC899F	0.048446	0	0.0000003	0 0403407	0.0030330
PC1381F	0 1833998	0	0.00000002	0.1527158	0 1833998
FC 136 IF	0 1000999	U	U	0.1527100	0 1000950
Volumen Estandar @60					
Liquido BBL/DAY	743774 4		28554.15	765557.23	743774 4
Vapor MMCUFT/DAY				21.32	
Otra propiedades					
PM promedio	429 1269		97.2171709	368 1927	429.1269
Densidad GM/CC	0 9141821		0.6563805	0.3174091	0 869104
Grados API	18 6016865		74 5139605	19 9360098	18.6016865
Flujo H2O BBL/DAY	0.0250381			0.1663025	0 0250381
PVV @ 38C PSI	5.4899839		35.7289072	13.9843319	4.4133001
Conc H2S MG/L	71.4045346		31.3591591	340 0445	67.8835949

Bibliografía

- 1. Campbell J. M. "Gas Conditioning and Procesing Product Specifications", Campbell Petroleums Series, Norman, 1984.
- 2. Moins G. "Optimización de las Unidades de Estabilización de Petróleo Crudo", Technip-Geoproduction, Noviembre 1979.
- 3. Arnols K, and Stewart M. "Surface Production Operations", Vol. 1, Design of oil Handling Systems and Facilities", Gulf Publishing Company, Houston, Texas, 1986.
- 4. Nolasco M. J. Y Garaicochea P. F. "Criterios para Seleccionar las Condiciones de Separación de Aceite y Gas", Cuadernos de la Facultad de Ingeniería, Agosto 1978.
- 5. David J.R., Jose Alberto U. H., "Cálculo del Equilibrio Físico de Fluidos de Yacimientos Petroliferos", Revista del Instituto Mexicano del Petroleo, Vol. XII, No. 4, Octubre 1980.
- 6. Peng D. Y. And Robinson D. B. "A New Two Constant Equation of State", Ind. Eng. Chem. Fund., Vol. 15, No. 1, 1976.
- 7. Peng D. Y. And Robinson D. M. "Two and Thre Phase Equilibrium Calculations for Systems Containing Water", Can. Jor. Eng., Vol. 54, Dec. 1976.

- 8. Donald B. Robinson, Ding-Yu Peng "Capability of the Peng-Robinson programs", Part 1 -VLE and critical properties calculations. Hidrocarbon Processing, Apr. 1978.
- 9. Patrick G. Conrad, J.F. Gravier "Peng-Robinson Equation of State Checks validity of PVT Experiments", Oil & Gas Journal, Apr. 21, 1980.
- 10. Campbell J. M. "Gas Conditioning and Processing-Separation Equipment", Campbell Petroleum Series, Norman, 1984.
- 11. Arnol K. "Designing Oil and Gas Production Systems", word Oil, Nov. 1984.
- 12. Thuesen H. G. And Fabrycky W.J. "Economía del Proyecto en Ingeniería", Ed. Prentice Hall Inc., 1981.
- 13. Georges Möins "Stabilization Process Comparison Help Selection", Oil and Gas Journal, Jan. 28, 1980.
- 14. G. D. Uldrich "Diseño y Economía de los Procesos de Ingeniería Química", Ed. Interamericana, México, 1988.
- 15. Ernest J. Henley and J. D. Seader, "Operaciones de Separación por Etapas de Equilibrio en Ingeniería Química", Ediciones Repla, S.A. de C.v., México 1990.
- 16. Martha García Espitia, "Modelamiento de la Planta MTBE y TAME de la Refinería de Salina Cruz, Oax.", Tesis UNAM, Fac. de Quim. 1998.
- 17. John M. Campbell "Gas Conditioning and Processing", Vol. 1 The Basic Principles, Ed. Campbell Petroleum Series, 1992.
- 18. Ward Rosen, "Training for Professional Performance in the Petroleum Industry, Hidrocarbons", Petroleum Learning Programs Ltd, Houston, Texas.
- Ward Rosen, "Training for Professional Performance in the Petroleum Industry, Stabilizing Crude Oil and Condensate", Petroleum Learning Programs Ltd, Houston, Texas.
- William D. McCain, Jr. "The Properties of Petroleum Fluids", PenWell Books, Tulsa Oklahoma, 1990.
- 21. Navarro B., P., (1993), "Evaluación de proyectos de inversión", Notas del Seminario, Sociedad Mexicana de Ingeniería Económica, Financiera y de Costos, A.C., Septiembre, México.
- 22. Coss B., R., (1992), "Análisis y evaluación de proyectos de inversión", 2ª. Edición, Limusa, Grupo Noriega Editores, México).

23. Tarquin, A. Y Leland, B., (1978), "Ingeniería económica", McGraw Hill Book Co., México.