01163 25.

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

DIVISIÓN DE ESTUDIOS DE POSGRADO

FACULTAD DE INGENIERÍA

INTERACCIÓN SUELO-ESTRUCTURA DE CIMENTACIÓN EN CONDICIÓN ESTÁTICA Y CONSIDERANDO LA SISMO-GEODINÁMICA, EN SUELOS GRANULARES FINOS

> T E S I S PARA OBTENER EL GRADO DE: MAESTRO EN INGENIERÍA (MECÁNICA DE SUELOS)

P R E S E N T A ERNESTO FUERTE DOMÍNGUEZ

A S E S O R A D O P O R DR. LEONARDO ZEEVAERT W.

12485

Ciudad Universitaria, 1999

TESIS CON FALLA DE ORIGEN

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO DIVISIÓN DE ESTUDIOS DE POSGRADO, FACULTAD DE INGENIERÍA

Resumen de tesis para obtener el grado de Maestro en Ingeniería (Mecánica de Suelos)

Tilulada: Interacción suclo-estructura de cimentación en condición estática y considerando la sismogeodinámica, en suclos granulares línos

Presenta por: Ernesto Fuerte Dominguez

Asesorada por: Dr. Leonardo Zecvaert W.

Este trabajo desarrolla un procedimiento de interacción suelo-estructura de cimentación para suelos granulares finos, haciendo uso de sus leyes fenomenológicas de comportamiento del suelo, para condición estática y considerando la sismo-geodinámica, consíste básicamente en lo siguiente:

El suelo bajo la estructura se encuentra dividido en estratos de material granular fino, cuya compresibilidad se reduce y la rigidez dinámica aumenta con la presión de confinamiento, es decir son función de la presión de confinamiento, razón por la que conviene dividir en subestratos de menor espesor; por otra parte, la losa del cajón de cimentación se encuentra apoyada de forma continua en el suelo, al que transmite las cargas de la superestructura así como su propio peso, pero como las reacciones no son uniformes, es necesario suponer que la losa de cimentación de ancho 2B y largo L se encuentra dividida en "n" franjas de igual ancho λ , en donde $(2B^*\lambda)$ representan áreas tributarias iguales en cuvo centro se aplican las reacciones medias del suelo. La idea fisica consiste en aplicar una carga unitaria en el centro de cada una de las áreas tributarias de tiempo en tiempo hasta obtener una matriz de flexibilidad que nos represente el desplazamiento vertical unitario del suelo, haciendo uso del álgebra matricial y conociendo la carga uniformemente repartida real que actúa en cada franja, se determinan los desplazamientos si la estructura fuese totalmente flexible, pero por tratarse de una cimentación rígida, la flexión de la losa es despreciable en comparación a los desplazamientos verticales producidos por la deformación del suelo, por tanto la losa de cimentación rígida origina un desplazamiento vertical uniforme, el cual se obtiene de la media de los asentamientos calculados para cuando la reacción de la losa sea constante, ya conocido el desplazamiento y la matriz de flexibilidad del suelo, es posible determinar los esfuerzos de contacto para la cimentación rígida con ayuda del álgebra matricial. Para la condición sísmica y de viento se aplica una técnica semejante pero a partir del modulo dinámico de rigidez y con la avuda de una herramienta como es la sismo-geodinámica, obteniendose los esfuerzos de contactos originados por el balanceo de la cimentación. Las reacciones provocadas por el sismo o bien por una fuerte ráfaga de viento se suman a las estáticas para examinar la reacciones en las orillas de la cimentación y de esta forma diseñar de una forma segura,

A Dios:

Por darme la vida, gracias señor por permitirme existir

A mis padres: Sr. Elias Fuerte López Sra. Josefina Domínguez Solorzano Que materializarón mi existencia y con su amor, apoyo y dedicación brindaron a mi vivir el deseo de superación.

A mis hermanos: Martha Elva, Elias, Ramiro y Laura A quienes quiero con todo mi corazón, por el estimulo y apoyo gue me brindaron en el momento en que los necesite.

A la compañera y amiga del resto de mi vida: María Rocha Jiménez

Por la parte de mí ser que sacas a flote, por ignorar mis defectos y debilidades, pero más aun por mirar tan dentro de mi alma como nadie lo había hecho.

A Luisa:

Una gran amiga con la que siempre he contado desde el día que la conocí, por su amistad incondicional, por su confianza, por su forma tan sencilla de ser.

A mis profesores:

Por compartir sus conocimientos y dejar en mí la necesidad de progresar e imitar su ejemplo.

A mis compañeros:

Por ese ambiente de trabajo tan sano y de superación que se genero entre nosotros.

A mi Universidad:

Por acogerme en su seno y forjarme como profesionista.

Un agradecimientos muy especial y sincero al profesor Dr. Leonardo Zeevaert Wiechers, por el tiempo y atención que tubo para conmigo en la elaboración del presente trabajo, así como por sus valiosos comentarios, enseñanzas, experiencia y apoyo incondicional que ha brindado al desarrollo personal y profesional de mí persona.

En agradecimiento a todo lo que me ha dado como profesor y como persona, le dedico las siguientes palabras con mucho respeto y admiración:

Después, como tú, seguiré el sendero llevándote conmigo todo entero, como tú, maestro, seguiré la marcha ya en poco trecho cargando a cuestas con mi vieja cruz. Llevando en la cabeza más escarcha, pero acá en el pecho aquí en el alma, ¡CUÁNTA LUZ!

(Ramirez de Alba)

INTERACCIÓN SUELO-ESTRUCTURA DE CIMENTACIÓN EN CONDICIÓN ESTÁTICA Y CONSIDERANDO LA SISMO-GEODINÁMICA, EN SUELOS GRANULARES FINOS

DIRIGIDA POR EL DR. LEONARDO ZEEVAERT W.

ÍNDICE DE CONTENIDOS

Capítulo	Tema	Página
	Índice de contenidos	i
	Lista de símbolos	iii
	Índice de tablas	iv
	Índice de figuras	vi
I	Introducción	1
I.1	Antecedentes	1
I.2	Información sobre el proyecto	2
I.2.1	De la estructura del proyecto	2
I.2.2	Del subsuelo donde se apoyará la cimentación	2
I.3	Estado del arte de ISE	4
I.4	Objetivo	6
I.5	Contenido	6
п	Planteamiento teórico del problema	8
II. 1	Descripción del problema	8
II.2	Análisis estático de ISE en suelos granulares finos.	n
П.3	Análisis del balanceo de la cimentación, anlicando la sismo-geodinámica a	••
	ISE en suelos granulares finos	16
ш	Sismo-geodinámica del subsuelo	25
III .1	Importancia del fenómeno sísmico en la ingeniería de cimentaciones.	25
ПІ.2	Análisis sismo-geodinámico del subsuelo	26
лт <u>2</u> 1	Estimación del neriodo fundamental de vibración del subsuelo nor el	20
	mátodo de las celeridades	30
111 2 2	Ajuste del neriodo fundamental por el mátodo de los distorciones	21
III.2.4 III 2 2	A nélicia de la orde de superfício en la mase estrutificada de suelo	20
III.2.J	Analisis de la onda de superincie en la masa estramicada de suelo	32
111.2.4	Presión sismica del agua de poro y determinación del angulo aparente	24
	de fricción interna sistifico	34
IV	Análisis de ISE en condiciones estáticas y considerando la sismo-	• -
	geodinámica para el edificio de cinco pisos	36
IV.1	Esfuerzos en la masa de suelo granular	37
IV.1.1	Esfuerzos de alivio inducidos por la excavación	37
IV.1.2	Esfuerzos de recarga inducidos por el edificio	38
IV.2	Matriz de módulos de deformación unitaria	38
-ر IV.3	ISE en condiciones estáticas	38
IV.4	Matriz de módulos dinámicos de rigidez al cortante	39
IV.5	ISE considerando el balanceo por viento	39
IV.6	ISE considerando el balanceo por sismo y aplicando la sismo-geodinámica	40
IV.7	Capacidad de carga local y factor de seguridad	40
IV.8	Análisis de la posibilidad de incrementar pisos al edificio	43

.

l

V	Ana	álisis de ISE en condiciones estáticas y considerando la sismo-	4.4					
	geo	dinamica para el edifició de diecisiete pisos	44					
V.1	Est	uerzos en la masa de suelo granular	44					
V.2	Matriz de módulos de deformación unitaria							
V.3	ISE en condiciones estáticas							
V.4	Mat	triz de módulos dinámicos de rigidez al cortante	46					
V.5	ISE	considerando el balanceo por viento	46					
V.6	ISE	considerando el balanceo por sismo y aplicando la sismo-geodinámica.	46					
V.7	Can	acidad de carga local y factor de seguridad.	47					
V.8	Imp	ortancia de la presión sísmica de poro y su influencia en las presiones de						
	con	tacto	48					
VI	Cor	clusiones y Recomendaciones	50					
	Ref	erencias	53					
Apéndice	A	Cálculo de ISE en condiciones estáticas y considerando la sismo- geodinámica para el edificio de cinco pisos, aplicando el procedimiento propuesto	55					
Apéndice	B	Cálculo de ISE en condiciones estáticas y considerando la sismo- geodinámica para el edificio de diecisiete pisos, aplicando el procedimiento propuesto	71					
Apéndice	С	Cálculo de la Sismo-geodinámica del subsuelo para condiciones de campo	93					
Apéndice	D	Determinación en el laboratorio del módulo de deformación unitario y el módulo dinámico de rigidez en arenas para condiciones de campo	9 9					
Apéndice	E	Importancia de la presión sísmica de poro y su influencia en las presiones de contacto	103					

ţ

LISTA DE SÍMBOLOS

- Simbolo Descripción
 - Aceleración a la profundidad z Az
 - $A_{bc} \\$ Aceleración en la base de cimentación
 - A_{cm} Aceleración al centro de masas
 - A_o Aceleración orbital
 - Parámetro de la teoría de onda $a_{(v)}$

Parámetros necesarios para satisfacer las ecuaciones del método de las distorsiones A_i, B_i, C_i, N_i

- C_z Celeridad de onda superficial
- Cohesión del suelo С
- DAES Espectro Envolvente para Diseño Sísmico
- Espesor de estrato i di
- F.S. Factor de seguridad
- Aceleración de la gravedad g
- h_c Altura al centro de masas
- K_θ Constante de resorte por giro
- Mz Módulo de deformación unitario
- Masa (peso del edificio/aceleración de la gravedad) Μ
- N_c, N_q, N_y Factores de capacidad de carga
 - Momento de volteo del edificio O_t
 - Ps Frecuencia circular
 - Coeficiente de atenuación de la onda sísmica de superficie rz
 - V_o Velocidad orbital
 - Profundidad a la base del estrato i Zi
 - Profundidad a la parte media del estrato i Zmi
 - x, y, z Coordenadas

Letras griegas

Símbolo **Descripción**

- Compresibilidad volumétrica del estrato α
- β Factor de respuesta Me/Mc
- Peso unitario del suelo, distorsión angular por cortante γ
- δ Desplazamiento
- Δσ Incremento de esfuerzos efectivos
- Incremento sísmico de la presión del agua de poro Δω
- Deformación unitaria ε
- θ Amplitud del ángulo del movimiento de rotación
- Rigidez dinámica del suelo μ
- Relación de Poisson ν
- ζ Fracción de amortiguamiento crítico
- Ángulo de fricción interna nominal ф_п
- Ángulo sísmico de fricción interna φsis
- Masa unitaria ρ
- Esfuerzo efectivo de sobrecarga σ٥
- σ_{edi} Esfuerzo efectivo de recarga por edificio
- Esfuerzo efectivo de alivio por excavación σ_{exc}
- Esfuerzo efectivo octaédrico σ_{oc}
- Esfuerzo cortante en el plano yx τ_{yz}
- Esfuerzo cortante en el plano yz τ_{yz}
- Presión del agua de poro ω
- Factor de distribución de esfuerzos (Flohlich) χ

ÍNDICE DE TABLAS

· · · · · ·

Tabla

Descripción

Página

1.1	Características del proyecto	2
1.2	Resumen de parámetros del suelo	4
111,1	Coeficiente α y factor de atenuación de la onda de superficie "R", deducidos en	
	el apéndice I de Zeevaert 1988	29
III.2	Presión del agua de poro inducida por ondas sísmicas en suelo saturado	35
A.1	Características del edificio de 5 pisos	57
A .2	Cálculo de matriz de esfuerzos de alivio por excavación, en el sentido	
	longitudinal	58
A.3	Cálculo de matriz de esfuerzos de alivio por excavación, en el sentido transversal	59
A.4	Cálculo de matriz de módulos de deformación en sentido longitudinal	60
A.5	Cálculo de matriz de módulos de deformación en sentido transversal	61
A.6	Interacción suelo estructura sentido longitudinal	62
A. 7	Interacción suelo estructura sentido transversal	63
A.8	Cálculo de matriz de módulos dinámicos de rigidez en sentido transversal	65
A.9	Interacción Suelo-Estructura en sentido transversal (balanceo por viento)	66
A.10	Interacción Suelo-Estructura en sentido transversal (balanceo por sismo)	67
A .11	Planta de cargas en un medio de la losa de cimentación	69
A.12	Análisis de capacidad estática y sísmica, además de factores de seguridad	70
B .1	Características de carga y altura para el edificio de 17 pisos	73
B.2	Cálculo de matriz de módulos de deformación en el sentido longitudinal (1a.	
	iteración)	74
B .3	Cálculo de matriz de módulos de deformación en sentido transversal (1a.	
	iteración)	75
B. 4	Interacción suelo estructura sentido longitudinal (1a. iteración)	76
B .5	Interacción suelo estructura en el sentido transversal (1a. iteración)	77
B.6	Cálculo de matriz de módulos de deformación en el sentido longitudinal (2a.	
	iteración)	78
B .7	Cálculo de matriz de módulos de deformación en sentido transversal (2a.	
	iteración)	78
B.8	Interacción suelo estructura sentido longitudinal (2a. iteración)	80
B.9	Interacción suelo estructura en el sentido transversal (2a. iteración)	81
B.10	Cálculo de matriz de módulos de deformación en el sentido longitudinal (3a.	
	iteración)	82
B .11	Cálculo de matriz de módulos de deformación en sentido transversal (3a.	
	iteración)	83
B .12	Interacción suelo estructura sentido longitudinal (3a. iteración)	84
B .13	Interacción suelo estructura en el sentido transversal (3a. iteración)	8 5
B ,14	Cálculo de matriz de módulos dinámicos de rigidez en sentido transversal	87
B .15	Interacción Suelo-Estructura en sentido transversal (balanceo por viento)	88
B.16	Interacción Suelo-Estructura en sentido transversal (balanceo por sismo)	89
B.17	Planta de cargas en un medio de la losa de cimentación	91
B.18	Análisis de capacidad estática y sísmica, además de factores de seguridad	92

iv

٧

C.1	Cálculo del módulo dinámico de rigidez al cortante a partir de su ley	
	fenomenológica	94
C.2	Estimación del periodo de fundamental de vibración del suelo por el método de	
	las celeridades	95
C.3	Ajuste del periodo del suelo por el método de las distorsiones, analizando la onda	
	de cortante en la masa de suelo granular estratificado	96
C.4	Análisis de la componente horizontal de la onda superficial en la masa de suelo	
	granular estratificado	97
C.5	Determinación del ángulo aparente de fricción interna sísmico	98
E.1	Cálculo de matriz de módulos dinámicos de rigidez en sentido transversal	
	considerando la presión sísmica del agua de poro	104
E.2	Interacción Suelo-Estructura en sentido transversal (balanceo por sismo)	
	considerando la presión sísmica del agua de poro	105

'

Figuras

Página

•••

ÍNDICE DE FIGURAS

<u>.</u>

Figura Descripción

5

I.1	Diagramas de estructura.	3
II.1	Diagramas de esfuerzos "in situ"	9
H.2	Elementos finitos rectangulares formados por los subestratos del subsuelo y por	
	las franjas de la cimentación	10
II.3	Incremento medio de esfuerzos en el estrato N, bajo el punto j inducido por la	
	carga unitaria q _i aplicada en i	14
11.4	Factores de Influencia para carga unitaria	15
11.5	Espectro envolvente para diseño sísmico (DAES)	19
II.6	Distribución de las presiones en edificios altos (Fleming 1930)	20
II.7	Incremento de reacciones durante la rotación.	21
II.8	Rotación de cimentación rígida en presencia de algún fenómeno dinámico	23
III .1	Balanceo de la cimentación ocasionado por las fuerzas de inercia inducidas por	
	el sismo	26
III.2	Estado de esfuerzos de un punto	30
III.3	Columna de suelo sujeta a movimiento sísmico	31
IV.1	Esfuerzos de contacto en la franja de la orilla y en el sentido transversal para el	
	edificio de cinco pisos	40'
IV.2	Factores de capacidad de carga para cimentaciones superficiales, según	
	Terzaghi	42
V.1	Esfuerzos de contacto en la franja de la orilla y en el sentido transversal para el	
	edificio de diecisiete pisos	46'
C.1	Valores sísmicos en el perfil del suelo para la onda cortante	96
C.2	Valores sísmicos en el perfil de subsuelo para la onda de superficie	97
D ,1	Módulo de deformación unitaria para el campo (interpolación)	100
D.2	Módulo de deformación unitaria en función del esfuerzo confinante para el	
	campo (ley fenomenológica)	101
D.3	Módulo dinámico de rigidez al cortante para el campo (interpolación)	102
D.4	Módulo dinámico en función del esfuerzo de confinante para el campo (ley	
	fenomenológica)	102
	- · ·	

INTERACCIÓN SUELO-ESTRUCTURA DE CIMENTACIÓN EN CONDICIÓN ESTÁTICA Y CONSIDERANDO LA SISMO-GEODINÁMICA, EN SUELOS GRANULARES FINOS

DIRIGIDA POR EL DR. LEONARDO ZEEVAERT W.

CAPÍTULO I INTRODUCCIÓN

I.1 ANTECEDENTES

En la ingeniería de cimentaciones, se le asigna el término de cimentación a la parte baja de una estructura que está en contacto con el suelo y que su objetivo fundamental es distribuir las cargas de la estructura sobre el suelo; para lograr un diseño correcto de ésta, se tienen que tomar en cuenta dos aspectos básicos:

- ⇒ La capacidad de carga del suelo, es decir, que las cargas de la estructura deben transmitirse a los estratos del suelo capaces de soportar sin fallar, tomando en cuenta factores de seguridad adecuados con respecto al estado límite de falla.
- ⇒ Las deformaciones de los estratos del terreno subyacentes a los cimientos deben ser compatibles con las deformaciones del propio cimiento, la superestructura y sus instalaciones, además se deben de evitar daños en las estructuras adyacentes (estado límite de servicio).

Para satisfacer estas necesidades existen varios tipos de cimentaciones, cuyo uso es función de las propiedades mecánicas del subsuelo, características de carga y desplazamientos verticales admisibles de la estructura de cimentación y por supuesto de su economía.

En múltiples lugares de la corteza terrestre existen depósitos de arena y limos que son característicos de suelos aluviales, eólicos finos y residuales; generalmente son depósitos que poseen una baja compresibilidad y una alta capacidad de carga, sin embargo, en la interfaz de los cimientos y el suelo se originan desplazamientos verticales totales y diferenciales creados por el incremento de cargas que transmite la cimentación, en donde, los desplazamientos de la estructura deben ser iguales a los originados en la superficie de apoyo de la cimentación, para ello, se tiene que encontrar un sistema de reacciones que aplicadas simultáneamente a la estructura de cimentación y la masa de suelo produzcan la misma configuración de desplazamientos, es decir, la distribución resultante debe equilibrar la acción aplicada por la cimentación al suelo (compatibilidad de deformaciones).

Así también, es de interés conocer la distribución de las presiones para estimar las fuerzas reales que actúan en la base de la estructura de cimentación para el cálculo de los momentos flexionantes, cortantes y torsiones, permitiendo de esta forma, el uso de concreto y colocar el acero de refuerzo en su posición correcta y evitar así daños de la estructura de cimentación. De igual manera es indispensable analizar el momento de volteo que puede ser resultado del efecto de balanceo del edificio debido a una fuerte ráfaga de viento o bien al fenómeno sísmico, dado que al nivel de desplante de la cimentación no se debe rebasar la capacidad de carga local del suelo, ya que esto traería como consecuencia que se produjeran deformaciones plásticas importantes ocasionando un desplome de la estructura durante el fenómeno sísmico o ráfaga de viento.

La metodología que se usa para establecer las expresiones de compatibilidad para el cálculo de esfuerzos de contacto es conocida en la actualidad como "Interacción Suelo-Estructura" y a partir de este momento se denominará como ISE (Zeevaert 1983).

ł

I.2 INFORMACIÓN SOBRE EL PROYECTO

La información que a continuación se desarrolla fue proporcionada por el Dr. Zeevaert, asesor del presente trabajo. El proyecto consiste en realizar la ISE en condiciones estáticas y considerando la sismo-geodinámica para un suelo granular fino.

I.2.1 DE LA ESTRUCTURA DEL PROYECTO

Se trata de un edificio de 12.00 x 24.00 m en planta, el cual cuenta con cimentación, sótano, planta baja y cuatro pisos superiores que tienen las características de carga y altura siguientes (tabla I.1).

DESCRIPCIÓN	CARGA t/m ²	ALTURA m
Sótano y cimentación	3.0	6.0
Planta baja	1.5	3.5
Pisos superiores (4)	4.4	12.8
Azotea	1.1	-
TOTALES	10.0	22.3

Tabla I.1 Características del proyecto

Cada piso superior pesa 1.1 t/m² y tiene una altura de 3.2 m, la altura total es de 22.30 m, el centro de masas se localiza a 10.10 m a partir del nivel de cimentación y la carga repartida total del edificio en el nivel de desplante es de 1.00 kg/cm² (figura I.1a).

La estructura de cimentación se diseñará como un cajón rígido, celular, monolítico e impermeable, las cargas de la estructura son repartidas sobre ésta, a través de un sistema de columnas que se localizan en el sentido longitudinal de la estructura a cada 3.00 m y en el sentido transversal en las orillas, la rigidización de la cimentación se logra a través de un sistema de diafragmas que puentean las cargas que bajan por las columnas, distribuyéndolas sobre la losa inferior de la cimentación (figura II.1b).

Se estudiará la posibilidad de aumentar pisos en el edificio, para de esta forma, aprovechar al máximo la capacidad del suelo, limitando los factores de seguridad, incluyendo el sismo a no menores de 2.

1.2.2 DEL SUBSUELO DONDE SE APOYARÁ LA CIMENTACIÓN

El edificio se apoyará sobre un depósito de arena eólica de duna, atrás del escarpio de la playa, en la zona sur del Golfo de México (Coatzacoalcos), este depósito se compone de una masa de suelo granular fino estratificada, cuyos estratos son paralelos a la superficie del terreno y la profundidad esta limitada por un estrato de arenisca, todos y cada uno de los estratos poseen parámetros dinámicos y esfuerzo-deformación-tiempo diferentes, tal v como se describe a continuación.

Estrato 1 A partir de la superficie del terreno y hasta aproximadamente 2.00 m de profundidad, existe un depósito de arena fina eólica suelta meteorizada de color café claro que posee las siguientes características: peso volumétrico y=1.65 t/m³, ángulo de fricción interna $\phi=32^\circ$, densidad relativa Dr=0.50 y los parámetros estáticos y de fluidez de la ley fenomenológica del módulo de deformación unitaria son C_s=0.0082, n_s=0.65 y κ_v=0.80, y los parámetros de la ley fenomenológica del módulo dinámico de rigidez son C_d=204. $n_{\rm d}=0.70$

- Estrato 2 A partir de los 2.00 m y hasta los 10.00 m de profundidad, existe un depósito de arena fina eólica semicompacta, algo meteorizada de color café claro que posee las siguientes características: γ=1.75 t/m³, φ=36°, Dr=0.60 y los parámetros estáticos y de fluídez de la ley fenomenológica del módulo de deformación unitaria son C_s=0.0063, n_s=0.55, y k_v=0.65, y los parámetros de la ley fenomenológica del módulo dinámico de rigidez son C_d=285, n_d=0.76
- Estrato 3 A partir de los 10.00 m y hasta los 16.00 m de profundidad, existe un depósito de arena fina eólica semicompacta, algo meteorizada de color café claro que posee las siguientes características: γ=1.80 t/m³, φ=38°, Dr=0.80 y los parámetros estáticos y de fluidez de la ley fenomenológica del módulo de deformación unitaria son C_s=0.0052, n_s=0.52, y k_v=0.40, y los parámetros de la ley fenomenológica del módulo dinámico de rigidez son C_d=350, n_d=0.52
- Estrato 4 A partir de los 16.00 m de profundidad existe una arenisca con propiedades de deformación muy pequeñas en comparación con los estratos superiores, razón por la que se limita el análisis hasta esta profundidad.

	ļ		1			Mz (cm²/kg)			μ (kg/cm²)	
Suelo	z m	d m	ф •	Dr	γ t/m³	Cs	n _s	(1+κ _v) flujo	Ca	Nd
Arena 1	2	2	32	0.5	1.65	0.0082	0.65	1.80	204	0.70
Arena 2	10	8	36	0.6	1.75	0.0063	0.55	1.65	285	0.76
Arena 3	16	6	38	0.8	1.8	0.0052	0.52	1.40	350	0.52

En la tabla I.2 se puede observar un resumen de lo expuesto anteriormente

Tabla I.2 Resumen de parámetros del suelo

Bajo el área de cimentación, las propiedades mecánicas de resistencia y deformación, así como las dinámicas de cada uno de los estratos, obtenidas en función del esfuerzo medio, representan el comportamiento mecánico y dinámico de los mismos en todo su espesor y en el sentido vertical. Por otro lado, el nivel de aguas superficiales (NAS) se localiza a 2.00 m de profundidad, su distribución es hidrostática con respecto a la profundidad, lo cual fue determinado por medio de piezómetros a diferentes profundidades.

Para el análisis sismo-geodinámico se usará una aceleración máxima en la superficie del suelo de 100 gal, y en el caso del balanceo por viento se considerará una velocidad de diseño máxima de 250 km/h.

I.3 ESTADO DEL ARTE DE ISE

S. 6. 1

En la bibliografía especializada se encuentran disponibles una gran variedad de métodos para resolver el problema en cuestión, de los cuales se realiza una breve remembranza de los que consideró más sobresalientes.

Uno de los primeros métodos usado para este fin, fue propuesto por Zimmermann (1888) y es conocido como el método del coeficiente de balasto, la hipótesis básica del método, es suponer que en cualquier punto de la cimentación el desplazamiento vertical es proporcional a la presión que en él se desarrolla $(p=k*\delta)$, donde k es el coeficiente de balasto, para ello se supone que el suelo está representado por

una serie de resortes que actúan uno independiente de los otros, es decir, resortes tipo Winkler (1867). Extensos trabajos se han desarrollado basándose en esta teoría, tal es el caso de Hetenyi (1964), Chamecky (1956), Heil (1969), entre otros.

De forma alterna y con ayuda de una herramienta como es la teoría de la elasticidad, se desarrollaron técnicas como la de Boussinesq para cimentaciones rígidas, Borowicka (1936) para cimentaciones parcialmente rígidas; con sistemas de carga muy particulares, que supone al suelo como un medio elástico, isótropo, homogéneo y de profundidad infinita. Aunado a lo anterior se presentaron modificaciones a estas, dado que, estas soluciones presentaban en el borde de la cimentación una magnitud de presiones infinita, tal es el caso de Schultze (1961) que indica que lo máximo que se puede alcanzar es el esfuerzo límite dado por el estado plástico.

Otras investigaciones de interés fueron realizadas por De Beer (1957), que propone un método para determinar la distribución de presiones longitudinal y transversal de una cimentación rígida que descansa sobre un terreno que esta caracterizado por un módulo de elasticidad constante o que se incrementa línealmente con la profundidad, el método consiste en dividir la losa en cuadros del mismo tamaño, las reacciones desconocidas bajo cada uno de estos cuadros es remplazada por una fuerza aislada que actúa en el centro de los cuadros, el desplazamiento vertical en el centro de cada cuadrado es la suma de los desplazamientos causados por cada una de las fuerzas aisladas, después se supone que el cuadrado es reemplazado por un círculo equivalente y se determina un coeficiente de influencia de asentamientos con respecto a una carga unitaria, de cada uno de los cuadros se derivan una ecuación de equilibrio para obtener las presiones de contacto.

Por otra parte Grasshoff (1957), examinó la influencia de superestructuras absolutamente rígidas y absolutamente flexibles apoyadas en una cimentación por medio de columnas rígidas empotradas y con articulación de donde concluyó que es grande la influencia del grado de empotramiento en la cimentación de las columnas para la distribución de las presiones de contacto, más sin embargo la influencia de la rigidez de la superestructura no es muy importante si se trata de un suelo homogéneo.

10

Barden (1962), presenta un método aproximado para obtener las presiones de contacto, el cual es aplicable a diferentes tipos de suelo, incluyendo homogéneos-anisótropo e isótropo, compresibilidad decreciente con la profundidad y ciertos casos de estratificación tales como laminaciones. La solución es presentada en forma de un juego de coeficientes de influencia, gobernado por un parámetro adimensional Φ , que es una característica del sistema cimentación-suelo.

Sommer (1965), divide en dovelas iguales a la cimentación, a la mitad de cada dovela supone un soporte imaginario al cual se le induce un desplazamiento vertical unitario en cada una de las dovelas de turno en turno, de aquí se deriva una ecuación de equilibrio de cada uno de los puntos de la cimentación para obtener las presiones de contacto; en este método se supone al suelo como un medio elástico, isótropo, homogéneo y de profundidad infinita.

Todos los métodos indicados anteriormente, únicamente consideran condiciones estáticas, sin hacer siguiera referencia a aspectos sismo-geodinámicos.

El método más usado en las investigaciones realizadas en los últimos años, es el método del elemento finito (Zienkiewicz 1994); por medio de esta técnica refinada se realiza una simulación numérica directa, por la que se pueden obtener simultáneamente la distribución de esfuerzos y desplazamientos y además es posible realizar un análisis sismo-geodinámico, sin embargo, esta técnica es puramente matemática y debido a ello, físicamente se complica porque en la práctica profesional no se pueden conocer en tres o aun en dos dimensiones y en cualquier punto de la masa del suelo las propiedades esfuerzo - deformación - tiempo y dinámicas, por tal motivo, esta metodología debe aplicarse cuidadosamente, por que en general, está limitada a la habilidad de obtener los parámetros correctos que deban usarse en el modelo matemático y a la experiencia e ingenio que se tenga para tomar en cuenta la heterogeneidad, anisotropía y las condiciones frontera que satisfagan en la práctica de campo. Es importante hacer notar, que esta técnica matemática es muy útil dentro de la mecánica de suelos pero no es confiable si no se cuenta con la experiencia real de campo, por consiguiente pueden conducir a pronósticos falsos.

De las metodologías expuestas para obtener la distribución de las presiones y los desplazamientos en la interfaz de la estructura de cimentación y terreno, se puede concluir que tanto las fuerzas que actúan a través de la cimentación, las acciones recíprocas del terreno y la cimentación, conducen a una distribución de las presiones en la cara de contacto que debe cumplir la condición de compatibilidad de deformaciones entre uno y otro elemento, y que depende, por lo tanto, de las características de deformabilidad del suelo y la estructura; debido a esto el método que yo necesito para resolver el problema que se analizará, debe considerar la estratigrafía, es decir, las propiedades esfuerzo-deformación-tiempo y dinámicas de cada estrato. Las propiedades esfuerzo-deformación-tiempo se definen a través del módulo de deformación unitaria (M_z) y las propiedades dinámicas con el módulo dinámico de rigidez, también llamado módulo dinámico al cortante (μ). El módulo de deformación unitaria se estudia por medio de sus dos componentes: La deformación inmediata de carácter elastoplástico y la deformación unitaria secular por flujo viscoso que es función del tiempo. Es importante hacer notar que el valor de M_z y μ dependen del nivel de esfuerzos octaédricos a que se encuentran en campo, razón por la cual no existe un procedimiento generalizado y lo suficientemente práctico y preciso de ISE para este tipo de suelos.

I.4 OBJETIVO

Atendiendo a esta importante necesidad de la ingeniería de cimentaciones práctica y considerando la motivación que adquirí al conocer la conferencia titulada "Módulos de deformación unitaria en arenas y limo" impartida por el Dr. Leonardo Zeevaert en abril de 1996 en la Universidad Veracruzana" se presenta éste trabajo de investigación, en donde el objetivo fundamental es "desarrollar un procedimiento de interacción suelo-estructura de cimentación para suelos granulares finos, haciendo uso de su leyes físicas fenomenológicas de comportamiento del suelo", es decir, se busca establecer una metodología a través de las leyes físicas fenomenológicas de comportamiento de suelo", es decir, se busca establecer una metodología a través de las leyes físicas fenomenológicas de comportamiento de asimo-geodinámica, y de esta forma solo realizar la ISE en condiciones estática y considerando la sismo-geodinámica, y poder encontrar el valor del módulo de deformación unitario (M_z) y el módulo dinámico de rigidez al cortante (μ), para cualquier nivel de esfuerzos, dentro de los límites de la ingeniería de cimentaciones práctica.

I.5 CONTENIDO

Esta tesis contiene las siguientes partes: en el capítulo II se hace el planteamiento teórico del problema, indicando las leyes físicas del comportamiento de los suelos granulares, así como la teoría básica y el procedimiento físico racional propuesto para resolver la ISE en condiciones estáticas y considerando el balanceo de la cimentación ocasionado por una ráfaga de viento o bien por el fenómeno sísmico; en el capítulo III, se presenta los aspectos teóricos de la sismo-geodinámica; en el capítulo IV se presenta el análisis para el edificio de cinco pisos y el pronóstico del número de pisos que es posible construir, si se aprovecha eficientemente la capacidad del suelo; en el capítulo V se presenta el análisis completo, considerando el número de pisos que según el diagnóstico es posible construir con el suficiente rango de seguridad, se da solución a la ISE desde el punto de vista estático y considerando el balanceo de la cimentación ocasionado por una ráfaga de viento, se continúa con la solución de ISE, pero desde el punto de vista sismo-geodinámico, el análisis se realizará con una determinada aceleración asignada a la superficie del suelo para la localidad; finalmente se presentan las conclusiones del trabajo y se dan recomendaciones en el capítulo VI. Además se presenta una serie de apéndices, los cuales contienen lo siguiente: apéndice A, Cálculo para el edificio de cinco pisos; apéndice B; Cálculo para el edificio, haciendo uso eficiente de la capacidad del suelo; apéndice C, Cálculo de los parámetros sismo-geodinámicos y finalmente Apéndice D, que contiene la metodología para determinar en el laboratorio el módulo de deformación unitario y el módulo dinámico de rigidez en arenas para condiciones de campo.

CAPÍTULO II PLANTEAMIENTO TEÓRICO DEL PROBLEMA

II.1 DESCRIPCIÓN DEL PROBLEMA

La estructura proyectada se desplantará en una masa de suelo granular fino estratificado dando origen a deformaciones debido al incremento de esfuerzos a que está sometida; pero partiendo del conocimiento de las cargas que actúan sobre la cimentación, su geometría, dimensión, el sótano que se requiere y además de los esfuerzos "in situ" de la masa del suelo que se presentan en la figura II.1, se utilizará una cimentación compensada, para de esta forma reducir los incrementos de esfuerzos y simultáneamente los desplazamientos verticales futuros de la estructura.

Una cimentación compensada es aquella en donde el peso total del edificio y su cimentación se equilibra perfectamente con la suma de los esfuerzos efectivos existentes al nivel de desplante (fase sólida) y la subpresión del agua superficial (fase líquida) que actúa en toda la superficie de la cimentación, es importante hacer notar que la distribución de presiones sobre la losa de cimentación provocadas por la fase líquida (presión del agua) pueden considerarse uniformes, sin embargo, los esfuerzos de contacto de la fase sólida no son uniformes, dando como resultado un problema de compatibilidad de deformaciones entre las losa de cimentación y la fase sólida del suelo, es decir, tenemos que investigar las reacciones que den las mismas deformaciones en ambos elementos.

La compatibilidad de deformaciones es investigada a largo plazo, considerando la deformación inmediata de características elásto-plásticas y el fenómeno de deformación secular o flujo viscoso que es función del tiempo. Se entiende como largo plazo, al momento a partir del cual ya se construyó el edificio y se estabilizaron las cargas de éste (1 a 2 años después de la construcción).

Como ya se dijo en su momento, se investigará la posibilidad de incrementar pisos al edificio original, si esto es posible, la cimentación ya no será compensada, sino parcialmente compensada.

El suelo bajo la estructura se encuentra dividido en estratos de material granular fino, cuya compresibilidad se reduce y la rigidez dinámica aumenta con la presión de confinamiento, es decir, son función de la presión de confinamiento, por lo tanto, para tomar en cuenta la característica señalada de este tipo de materiales conviene dividir los estratos en subestratos de menor espesor, que para el caso que nos ocupa es de 2.00 m el espesor de cada subestrato. Por otra parte, la losa del cajón de cimentación se encuentra apoyada en forma contínua en el suelo, al que transmite las cargas de la superestructura así como su propio peso, pero como ya se ha dicho las reacciones no son uniformes, por ello es necesario suponer que la losa de cimentación de ancho 2B y largo L se encuentra dividida en "n" franjas de igual ancho λ , en donde (2B* λ) representan áreas tributarias iguales \hat{a} en cuyo centro se aplican las reacciones medias del suelo, para nuestro caso, en el sentido longitudinal λ =3.00 m y en el sentido transversal λ =2.00 m. De lo anterior, resulta que el suelo bajo la cimentación es dividido en elementos rectangulares finitos que se forman por los subestratos y las franjas de la losa (ver figura II.2).

El análisis del cambio de esfuerzos efectivos inducido por el incremento de la carga se realiza para el centro de cada uno de los elementos rectangulares finitos, a través de soluciones aproximadas de la teoría de elasticidad que presento Flöhlich, considerando el factor de concentración, según el tipo de depósito que se trate, para nuestro caso por tratarse de un suelo granular fino, estratificado y cuya compresibilidad se reduce con la profundidad es adecuado usar un valor de χ =4 (Zeevaert 1983).

Figura II.1 Diagrama de esfuerzos "in situ"

÷.

Figura II.2 División de franjas y subestratos para el análisis (elementos finitos rectangulares)

El análisis estático que a continuación se describe, se realiza en las dos direcciones ortogonales de la cimentación y se superponen los efectos para representar el fenómeno tridimensional, en el caso del análisis que se planteará para analizar el momento que induce una ráfaga de viento o la acción sísmica, se realizará el análisis únicamente para un metro de ancho de cimentación y en el sentido transversal, por ser el más crítico.

El efecto resultante del balanceo del edificio se suma al efecto estático para verificar la estabilidad de la estructura en presencia de la acción sísmica o bien de una fuerte ráfaga de viento.

Para poder valorizar en ingeniería de cimentaciones los problemas de desplazamientos verticales en cimentaciones cuando la masa de suelo es sometida a incremento de esfuerzos, es indispensable conocer el módulo de deformación unitaria, en el caso de los problemas relativos al comportamiento del subsuelo durante sismos requiere el conocimiento de las propiedades elásticas del subsuelo, es decir, el módulo dinámico de rigidez al cortante.

La determinación de estas propiedades mecánicas se efectúa en el laboratorio en probetas de material representativas del subsuelo, las probetas tienen que ser de material inalterado cuando el suelo tiene algo de cohesión o algún cementante como carbonato de calcio, cuando el material no tiene cohesión, que es nuestro caso, la determinación de estas propiedades mecánicas de deformación unitaría y de respuesta elástica ante vibraciones se complica, ya que es necesario determinarla para varios estados de compactación y valuar de estos resultados el módulo de deformación unitaria y el módulo de rigidez al cortante que corresponde al estado de compactación para el cual se encuentra el material en el campo, una explicación más amplia se encuentra en el apéndice D de este trabajo.

Es importante hacer notar que tanto el fenómeno sísmico como la acción del viento, son efectos dinámicos y eventuales de corta duración que pueden producir un momento de volteo al edificio, razón por la que se tienen que usar parámetros dinámicos, es decir, el módulo dinámico de rigidez, más sin embargo, son eventos diferentes dado que la fuerza de inercia es producida de diferente forma, el sismo transmite el movimiento del suelo al edificio a través de su cimentación dando origen a la fuerza de inercia sísmica, mientras que el viento produce la fuerza de inercia al chocar contra el edificio transmite movimiento al edificio y este a su cimentación, produciendo un giro del edificio e incrementado las reacciones sobre la losa de cimentación.

II.2 ANÁLISIS ESTÁTICO DE ISE EN SUELOS GRANULARES FINOS

El procedimiento que a continuación se propone, es desarrollado a partir de la técnica propuesta por Zeevaert (1983, 1991) y puede considerarse como una ampliación a ésta. Este método es iterativo, esto se debe básicamente a que el módulo de deformación unitaria así como el módulo de rigidez al contante de los suelos granulares finos es función del esfuerzo octaédrico. Primeramente se estima el nivel de esfuerzos considerando los esfuerzos "in situ" menos los esfuerzos originados por la excavación, más los esfuerzos inducidos por la recarga del edificio y con ayuda de la ley fenomenológica se obtiene la matriz de módulos que le corresponden, ya efectuado el primer ciclo de cálculo se corrigen los módulos creando una segunda matriz corregida con ayuda de las ley fenomenológica que representa la compresibilidad en cada elemento finito rectangular, para poder representar de manera más fiel la variación de los módulos con el esfuerzo de confinamiento, ésta corrección se realiza tantas veces como sea necesario, hasta que la precisión sea satisfactoria.

La ley fenomenológica para arenas que se uso para el caso del módulo elásto-plástico de deformación unitario fue propuesta por primera vez por Schultze y Moussa (1961) en Alemania y posteriormente Zeevaert (1983) la verificó y la modificó para considerar el efecto de flujo viscoso en estos suelos, resultando:

$$Mz = C_0 \cdot \sigma_c^{-n_r} \cdot (1 + \kappa_v)$$
 II.1

Donde: Mz Módulo de deformación unitaria

 σ_c Esfuerzo octaédrico de confinamiento

 C_0 y n_s Parámetros de la ley fenomenológica para cada tipo de suelo

 κ_v Flujo o efecto secular que es función del tiempo

Esta expresión del tipo potencial, indica que a medida que el esfuerzo de confinamiento crece, el valor del módulo decrece y cuando el esfuerzo de confinamiento tiende a cero, el valor del módulo tiende a infinito, esto implica el caso de materiales granulares sin cohesión como arena y limo no cohesivos.

Los parámetros C_0 y n_s son diferentes para cada tipo de suelo, dado que son función de diferentes factores, tales como la forma, dimensión y resistencia de los granos, el tipo de estructura interna de la masa de suelo y el estado de compactación con que se encuentra en el campo. Por otro lado sabemos que el esfuerzo octaédrico se relaciona directamente con el esfuerzo vertical (Zeevaert 1983) de la siguiente forma:

$$\sigma_c = \frac{\sigma_z}{3} \cdot \frac{(1+\nu)}{(1-\nu)}$$
 II.2

Donde:

 σ_c Es el esfuerzo octaédrico de confinamiento en la profundidad z σ_z Es el esfuerzo vertical a la profundidad z

v Es la relación de Poisson, que por tratarse de arena se considera v = 0.25

Por lo tanto, la expresión II.1 (Zeevaert 1983) se puede escribir en función del esfuerzo vertical (σ_z) quedando:

$$Mz = C_d \cdot \sigma_z^{-n_d} \cdot (1 + \kappa_y)$$
 II.3

En donde los parámetros C_d y n_d, ahora también quedan en función de la relación de Poisson.

Para comenzar con el análisis es necesario estimar el nivel de esfuerzos, para que de esta forma se obtengan los módulos de deformación unitaria necesarios, dado que como ya se ha dicho, el módulo de deformación unitaria es función del esfuerzo vertical efectivo, por tal razón, es necesario estimar el cambio de esfuerzos que se inducen en la masa del suelo que se localiza abajo de la cimentación, para ello se hace uso de la solución aproximada de la teoría de elasticidad presentada por Flöhlich, considerando un factor de concentración de χ =4. En el cambio de esfuerzos se tiene que hacer las siguiente consideración; Antes que se incrementen los esfuerzos en la masa del suelo por la edificación, existen esfuerzos de sobrecarga (σ_{oz}), los cuales se ven modificados por los esfuerzos de alivio debidos a excavación (σ_{exc}) que es necesaria para alojar el sótano y la cimentación y posteriormente por los esfuerzos inducidos por el edificio (σ_{edif}), es decir, a largo plazo tenemos que tomar en cuenta esto, para determinar los esfuerzos en la masa del suelo, resultando que el estado de esfuerzos final esta dado por la expresión II.4, la cual debe ser calculada para la parte central de cada elemento finito rectangular definido en la figura II.2 en ambos sentidos.

II.4

$$\sigma_{final} = \sigma_{oz} - \sigma_{exc} + \sigma_{edif}$$

De la expresión II.4 se determina la matriz de esfuerzos que obran en la masa del suelo, bajo la cimentación. Ahora es necesario encontrar el módulo de deformación unitaria para la parte media de cada uno de los elementos finitos rectangulares, lo cual se logra atendiendo a la ley fenomenológica que se discutió anteriormente (expresión II.3), resultando una matriz de módulo de deformación unitaria, que bien se puede representar como Mz_j^N , es decir, el módulo de deformación unitario en el subestrato N de la franja j.

Ahora bien, ya conocida la matriz de módulos de deformación unitaria se procede a determinar el incremento de desplazamiento vertical en el elemento finito rectangular j del estrato N, que tiene un espesor d inducido por una carga aplicada en i, que esta dado por

$$\Delta \delta_{ji}^{N} = \left(M z_{j} \cdot d \cdot \Delta \sigma_{ji} \right)^{N}$$
 II.5

Donde: N

 $\begin{array}{ll} Mz_{j}^{N} & \text{M}\acute{o}dulo \ de \ deformación unitaria en el subestrato N \ de la \ franja j \\ \Delta \sigma_{ji}^{N} & \text{Incremento medio \ de \ esfuerzos en el punto j \ del \ estrato N \ inducido \ por \ la \\ carga \ aplicada \ en \ i. \end{array}$

De lo anterior, llamando deformación volumétrica del estrato N del elemento rectangular finito j a $Mz_{j}^{N} * d^{N} = \alpha_{j}^{N}$, y por lo tanto, dado que la carga en i actúa sobre toda la masa de suelo de j, se produce la suma de deformaciones de todos los estratos para determinar el desplazamiento vertical de la superficie en el punto j, resultando

$$\delta_{ji} = \sum_{A}^{N} \alpha_{j}^{N} \cdot \Delta \sigma_{ji}^{N}$$
 II.6

El valor de $\Delta \sigma_{ji}^{N}$ en cualquier punto de la masa de suelo se representa en función de una carga unitaria q_i que actúan en el área tributaria \hat{a}_i de la franja i, ver figura II.3.

El punto i se entiende que se encuentra localizado al centro del área tributaria \hat{a}_i donde se aplica la carga unitaria q_i , y j el punto donde se calcula los efectos resultantes, es decir, al centro de cada elemento rectangular finito, resultando.

N

Se considera que la banda "i", que tiene una área tributaria \hat{a}_i está cargada uniformemente con una carga unitaria en la superficie (q_i =+1). Donde la influencia de desplazamientos verticales en el punto j debido a la aplicación de la carga unitaria en la banda i es

$$\delta_{ji} = \sum \alpha_j^{N} \cdot l_{ji}^{N}$$
 II.9

La influencia de asentamientos unitarios bajo todas las bandas consideradas se puede calcular de la siguiente manera, en forma matricial se tiene

$$\begin{bmatrix} \overline{\delta}_{ji} \end{bmatrix} = \begin{bmatrix} I_{ji}^N \end{bmatrix}^T \cdot \begin{bmatrix} \alpha_j^N \end{bmatrix}$$
 II.10

Donde:

 $\left[\bar{\delta}_{ji}\right]$ Es la matriz de desplazamientos verticales general

 $[I_{ji}^{N}]^{T}$ Es la matriz transpuesta de los coeficientes de influencia debido a la carga unitaria $q_i = +1$ en el área tributaria i, y

 $[\alpha_j^N]$ Es la matriz de deformación volumétrica unitaria del estrato A hasta el N de la faja j

Es decir (ver figura II.4)

$$\begin{bmatrix} \overline{\delta}_{ji} \end{bmatrix} = \begin{bmatrix} I_{11}^{A} & I_{11}^{B} & \dots & I_{11}^{N} \\ I_{21}^{A} & B & \dots & I_{21}^{N} \\ I_{31}^{A} & I_{31}^{B} & \dots & I_{31}^{N} \\ \dots & \dots & \dots & \dots \\ I_{j1}^{A} & I_{j1}^{B} & \dots & I_{j1}^{N} \end{bmatrix} \begin{bmatrix} \alpha_{1}^{A} & \alpha_{2}^{A} & \alpha_{3}^{A} & \dots & \alpha_{j}^{A} \\ \alpha_{1}^{B} & \alpha_{2}^{B} & \alpha_{3}^{B} & \dots & \alpha_{j}^{B} \\ \dots & \dots & \dots & \dots & \dots \\ \alpha_{1}^{C} & \alpha_{2}^{C} & \alpha_{3}^{C} & \dots & \alpha_{j}^{C} \end{bmatrix}$$
 II.11

Figura II.3 Incremento medio de esfuerzos en el estrato N, bajo el punto j inducido por la carga unitaria q_i aplicada en i.

	+1 ////////////////////////////////////	2	3	4	i	
A	In ^A	I ₂₁ ^A	I ₃₁ ^A	I41 ^A	I _{i1} ^A	α_j^A
В	I _{II} B	I ₂₁ ^B	I ₃₁ ^B	I ₄₁ ^B	I _{i1} ^B	α_j^B
С	I _{II} ^C	I ₂₁ ^C	I ₃₁ ^C	I ₄₁ ^C	I _{i1} ^C	αj ^C

Figura II.4 Factores de Influencia para carga unitaria.

Lo más importante de este método es que, de la matriz $\overline{\delta}_{ji}$ que resulta sólo nos interesan los valores de la diagonal principal, ya que son estos los que representan el desplazamiento vertical en el punto j debido a la carga unitaria en la banda i, por lo tanto la matriz $\overline{\delta}_{ji}$ es convertida en un vector columna $\overline{\delta}_{ji}$, tal y como se muestra en la expresión II.12.

$$\begin{bmatrix} \overline{\delta}_{ji} \end{bmatrix} = \begin{bmatrix} \overline{\delta}_{11} & \overline{\delta}_{21} & \dots & \overline{\delta}_{j1} \\ \overline{\delta}_{12} & \overline{\delta}_{22} & \dots & \overline{\delta}_{j2} \\ \dots & \dots & \dots & \dots \\ \overline{\delta}_{1i} & \overline{\delta}_{2i} & \dots & \overline{\delta}_{ji} \end{bmatrix}$$
se convierte a $\overline{\delta}_{ji} = \begin{bmatrix} \overline{\delta}_{11} \\ \overline{\delta}_{22} \\ \dots \\ \overline{\delta}_{ji} \end{bmatrix}$ II.12

Haciendo ahora que las bandas 1, 2, 3, 4 hasta i sean cargadas de vez en vez con q_1 , q_2 , q_3 , q_4 , hasta q_i y usando la expresión II.10 y II.12, se tiene la matriz general para todos los puntos en cuestión, la cual se forma de la siguiente forma: Si la carga unitaria ($q_i = +1$) se localiza en la banda 1, el vector columna de la expresión II.12 se coloca en la primer columna de la matriz de flexibilidad del suelo, si la carga unitaria se localiza en la banda 2, el vector columna se coloca en la columna dos de la matriz general y así sucesivamente hasta la banda "i", resultando:

$$\begin{bmatrix} \overline{\delta}_{ji} \end{bmatrix} = \begin{bmatrix} \overline{\delta}_{11} & \overline{\delta}_{21} & \dots & \overline{\delta}_{j1} \\ \overline{\delta}_{12} & \overline{\delta}_{22} & \dots & \overline{\delta}_{j2} \\ \dots & \dots & \dots & \dots \\ \delta_{1i} & \overline{\delta}_{2i} & \dots & \overline{\delta}_{ji} \end{bmatrix}$$
II.13

La matriz anterior (expresión II.13) transpuesta y multiplicándola por el vector columna de las cargas unitarias aplicadas en el área tributaria a proporciona la matriz de los desplazamientos verticales de la superficie al centro de las bandas, tal que

$$[\boldsymbol{\delta}_{i}] = [\boldsymbol{\tilde{\delta}}_{ji}]^{T} \cdot [\boldsymbol{q}_{i}]$$
 II.14

Donde

$$\begin{vmatrix} \delta_1 \\ \delta_2 \\ \dots \\ \delta_i \end{vmatrix} = \begin{bmatrix} \overline{\delta}_{11} & \overline{\delta}_{22} & \dots & \overline{\delta}_{1i} \\ \overline{\delta}_{21} & \overline{\delta}_{22} & \dots & \overline{\delta}_{2i} \\ \dots & \dots & \dots \\ \overline{\delta}_{j1} & \overline{\delta}_{j2} & \dots & \overline{\delta}_{ji} \end{bmatrix} \begin{vmatrix} q_1 \\ q_2 \\ \dots \\ q_i \end{vmatrix}$$
II.15

Dado que la estructura de cimentación es infinitamente rígida en comparación con la rigidez del suelo, la expresión anterior puede resolverse como un sistema de ecuaciones simultaneas considerando un desplazamiento uniforme: $\delta_i = \delta_1 = \delta_2 = \delta_3 = \delta_4 = \delta$ = constante. El valor aproximado de δ se obtiene si solucionamos el sistema de ecuaciones para δ_i , asumiendo que q_i es constante, es decir:

$$\delta' = \frac{1}{n} \sum_{i=1}^{n} \delta_i$$
 II.16

Para la solución de los esfuerzos de contacto q_i, se resuelve nuevamente el sistema II.14 en la forma siguiente

$$\left| \boldsymbol{q}_{i} \right| = \left[\boldsymbol{\tilde{\delta}}_{ij} \right]^{-1} \cdot \left| \boldsymbol{\delta}^{'} \right|$$
 II.17

Las reacciones resultantes q_i ' se corrigen ajustándolas proporcionalmente al esfuerzo efectivo medio al nivel de desplante de la estructura de cimentación y usando la expresión II.14 contra los valores reales de q_i y δ puede verificarse la compatibilidad.

El procedimiento se repite tantas veces como se juzgue necesario para obtener una distribución de esfuerzos que satisfaga la compatibilidad de deformaciones suelo-estructura de cimentación.

II.3 ANÁLISIS DEL BALANCEO DE LA CIMENTACIÓN APLICANDO LA SISMO-GEODINÁMICA A ISE

La estabilidad de la cimentación del edificio se verifica para la acción sísmica más intensa posible, que pueda presentarse en el futuro de la vida de la edificación, el análisis que se realiza toma en cuenta únicamente los efectos máximos desde un punto de vista de la ingeniería práctica, es decir, no se consideran los efectos secundarios que puedan en parte aumentar o disminuir algo los resultados cuantitativos primarios. La aceleración máxima asignada a la superficie produce efectos dinámicos variables en la masa del suelo, que dependen de la estratigrafía y de las características geodinámicas de cada uno de los estratos que configuran al subsuelo hasta la profundidad del suelo firme. Para conocer como varían los efectos dinámicos con respecto a la profundidad es necesario conocer el módulo dinámico de rigidez al cortante (μ) que caracteriza a cada estrato. De forma análoga al caso estático, Zeevaert (1993), propone una ley física fenomenológica para determinar el módulo dinámico de rigidez al cortante finos, la cual es muy semejante a la encontrada para el módulo de deformación unitario y como es de esperarse, también es función del esfuerzo octaédrico y puede escribirse en función del esfuerzo vertical (σ_z) quedando:

$$\mu_z = C_d \sigma_z^{n_d} \qquad \qquad \text{II.18}$$

Es importante resaltar que los parámetros de esta ley (C_d y n_d), al igual que para el módulo de deformación unitario son diferentes para cada tipo de suelo y para cada lugar en el subsuelo, estos

dependen de características propias del material y de la relación de Poisson, como ya fue mencionado; se hace notar que ninguna de éstas leyes puede quedar en función de la relación de vacíos (e) dado que materiales que posean la misma relación de vacíos (por ejemplo una arena de cuarzo y una arena de pómez) poseen módulos de deformación unitaria y módulo de rigidez al cortante que dista mucho de ser iguales.

Para realizar el análisis de balanceo sísmico aplicando la sismo-geodinámica, hay la necesidad de determinar los parámetros que intervienen en la metodología que será presentada y que están en función del módulo dinámico de rigidez al cortante (μ), los parámetros son:

- ⇒ Celeridades de onda equivolumétrica, irrotacional y superficial
- ⇒ Periodo fundamental de vibración del suelo
- ⇒ Perfil de los elementos sísmicos inducidos por la onda: presiones en el suelo, esfuerzos efectivos, presión sísmica en el agua de poro, deformaciones unitarias y aceleraciones con respecto a la asignada a la superficie del suelo, para todos los estratos que configuran el subsuelo y que caracterizan la investigación.
- ⇒ Ángulo de fricción interna durante la acción sísmica

El análisis de los parámetros señalados se desarrolla tomando en cuenta los efectos máximos desde un punto de vista de la ingeniería práctica, por esta razón debe aplicarse un factor de seguridad adecuado para cubrir las deficiencias de las teorías empleadas y principalmente de la asignación de parámetros que operan en ellas. La teoría y metodología para analizar estos parámetros se desarrolla en el capítulo III.

Una vez que ya se hayan determinado estos parámetros se procede a calcular el periodo por rotación de la cimentación con la expresión II.19 (Zeevaert 1991).

$$T_c = 2\pi * h_c * \sqrt{M_{K_{\theta}}}$$
 II.19

Donde:

T.

ζc

- he Altura al centro de masas del edificio
- M Masa por metro lineal (M=W/g)
- K_{θ} Parámetro de la deformación angular del suelo

Periodo por rotación de la cimentación

y el amortiguamiento crítico del suelo (Zeevaert 1987) con la expresión II.20.

$$\zeta_c = 1 - \beta \qquad \qquad \text{II.20}$$

Donde:

Amortiguamiento crítico del suelo

β Factor dado por la relación Mez/Mcx que define la anisotropía del subsuelo, Mez que es el módulo de deformación unitaria de respuesta en sentido vertical por la compresión en sentido horizontal y Mcx que es el módulo de deformación unitaria de compresión por la acción de la onda en sentido horizontal, estos módulos se obtienen de ensayes realizados en la cámara holandesa modificada por Zeevaert (1987)

Datos de la estructura que son necesarios conocer y que deben ser proporcionados por el ingeniero estructurista son el periodo del edificio (T_e) y amortiguamiento crítico del edificio (ζ_e), con los cuales

ം. പെ

. . ..

II.24

de puede determinar el periodo acoplado (T_o) y el amortiguamiento crítico equivalente (ζ_o) con las expresiones II.21 y II.22 respectivamente (Zeevaert 1987).

$$T_{0} = \sqrt{T_{c}^{2} + T_{e}^{2}}$$
II.21
$$\zeta_{0}^{2} = (\zeta_{c}^{2}T_{c}^{2} + \zeta_{e}^{2}T_{e}^{2})/(T_{c}^{2} + T_{c}^{2})$$
II.22

Donde:

T. Periodo por rotación de la cimentación

T. Periodo del edificio

To Periodo acoplado

ζ₀ ζ₀ Amortiguamiento crítico equivalente

Amortiguamiento crítico del suelo

Amortiguamiento crítico del edificio

Con la relación de periodos T₀/T_s y amortiguamiento crítico equivalente (ζ_0) se entra al "DAES", que no es otra cosa que el espectro envolvente de diseño sísmico, es decir, el espectro envolvente de respuesta sísmica de un elemento de un grado de libertad con respecto a la relación de periodos T_0/T_s . De él se obtiene la respuesta de aceleración con respecto a la historia de aceleración del sismo, en el centro de masa con respecto a la relación de periodos T_o/T_s . En otras palabras el factor de amplificación de la aceleración al centro de masas (fa), de donde la fuerza sísmica de inercia (Zeevaert 1987) es:

$$F_{cm} = fa^* A_{bc}^* M \qquad II.23$$

Donde: F_{cm} Fuerza sísmica de inercia al centro de masa

fa Factor de amplificación de la aceleración al centro de masas

Abe Aceleración en la base de la cimentación

Μ Masa por metro lineal (M=W/g)

La aceleración en el nivel de desplante de la cimentación es algo menor que la que se asigna a la superficie del suelo (Ao) con relación a la acción máxima de una onda en el tren de ondas sísmicas, ésta aceleración se determina del análisis de la onda que sea más importante, la metodología se presenta en el capítulo III.

Ya con estos dados se calcula el momento total de volteo de la estructura inducido por el sismo resultando

$$O_T = F_{cm} * h_c$$

Donde:

O_T Momento total de volteo sísmico

F_{cm} Fuerza sísmica de inercia al centro de masa

Altura al centro de masas del edificio hc

En la figura II.5 se presenta el DAES deducido por Zeevaert (1983), en él se observa que cuando la relación $T_o/T_s = 1$ los movimientos de la estructura son amplificados en forma importante por la vibración de la estructura, de manera que las aceleraciones que se presentan en ella, llegan a ser varias veces superiores a las de la base de la estructura, Cuando $T_o/T_s > 1$ la amplificación de los movimientos se va reduciendo hasta llegar un momento en que esta relación es tan grande que el movimiento de la estructura es menor que el del suelo, en el caso que To/Ts <1 la amplificación prácticamente se conserva entre el rango de 0.3 < T_o/T_s <1 para posteriormente disminuir tendiendo a que el movimiento de la estructura sea igual al del suelo. El grado de amplificación depende del amortiguamiento propio de la edificación y de la relación entre periodo acoplado de la estructura y el periodo dominante del suelo (T_o/T_s) . De esta manera, cuando los movimientos del suelo son bruscos con predominio de ondas de periodo corto, resultan más afectadas las construcciones rígidas y pequeñas. Cuando el movimiento del suelo es lento, con periodos dominantes largos, es en las estructuras altas donde se amplifican las vibraciones y se generan aceleraciones más elevadas y por ende fuerzas de inercía mayores.

En el caso de la acción del viento, según Fleming (1930), considera que la distribución de las presiones sobre edificios altos coincide toscamente con una distribución de forma parabólica, en donde en la parte que está a nivel del terreno tiene un valor mínimo de 0 (cero) y en la parte más alta del edificio la distribución es máxima con un valor que se determina con la expresión empírica II.25, ver figura II.6.

$$P_{max} = 5.18 \times 10^{-6} \times V^2$$
 II.25

Donde: Pmáx Presión máxima en la parte superior de la parábola en t/m² V Velocidad máxima de diseño en km/h

Figura II.6 Distribución de las presiones en edificios altos (Fleming 1930).

Ya conocida la distribución aproximada de presiones se estima el momento que produce ésta con la expresión II.26.

$$O_{TV} = \left(\frac{2}{3} \cdot P_{max} \cdot H\right) \cdot \left(\frac{3}{5} \cdot H + h_{emp}\right)$$
 II.26

Donde: Pmáx Presión máxima en la parte superior de la parábola en t/m²

hemp Altura de empotramiento del edificio en el suelo (altura de cimentación + sótano)

H Altura libre del edificio

Ya conocido el momento de volteo total O_T inducido por la fuerza de sísmica o bien por una fuerte ráfaga de viento se puede dividir en dos: el momento que toman los muros de retención O_{TW} y la fracción del momento de volteo que toma la base de la cimentación O_{TB} de tal manera que

$$O_{\rm T} = O_{\rm TW} + O_{\rm TB}$$
 II.27

Así también por definición

$$O_T = \Theta K_{\Theta}, \quad O_{TW} = \Theta K_{\Theta W} \quad y \quad O_{TB} = \Theta K_{\Theta B}$$
 II.28

En donde θ es la amplitud máxima por balanceo o rotación de la caja rígida de la cimentación, por lo tanto:

$$K_{\theta} = K_{\theta W} + K_{\theta B}$$
 II.29

El problema consiste en valuar los parámetros de deformación angular del suelo $K_{\theta W}$ y $K_{\theta B}$. Para calcular el valor de K₈.

En el caso del parámetro de deformación angular del suelo adyacente al muro se puede considerar en forma aproximada que la reacción sobre el muro se distribuye uniformemente cuando el muro giró en un plano comprimiendo al suelo en sentido horizontal, figura II.7 (Zeevaert 1991), por lo tanto

$$R_{\mu} = \Delta p \cdot d \tag{II.30}$$

Se encuentra además, que el desplazamiento horizontal del muro desde el desplante de la cimentación puede expresarse por

$$\frac{\partial_y}{y} = M_e \cdot \Delta p \tag{II.31}$$

Donde:

Me Módulo elástico de deformación unitaria en sentido horizontal del suelo en contacto con el muro

Δp Incremento de presión unitaria máxima ejercida sobre el suelo por el muro durante el fenómeno de rotación

$$M_{e} \cdot \Delta p = \theta$$
II.32
$$M_{e} \cdot \Delta p = \theta$$
II.32
$$\delta_{v} = M_{eh} * p * y$$
reacciones
$$\delta_{y} = M_{eh} * p * y$$
reacciones

Figura II.7 Incremento de reacciones durante la rotación

resultando

En términos del módulo dinámico de cortante µ se tiene

$$M_e = \frac{1}{2(1+\nu)\mu}$$
 II.33

Por lo tanto

sustituyendo la expresión II.28 se obtiene el parámetro de deformación angular del suelo adyacente al muro $K_{\theta W}$ por unidad de longitud.

$$K_{\theta\nu} = (1+\nu) \cdot \mu \cdot d^2 \qquad \text{II.35}$$

Donde:

v Relación de Poisson, v = 0.25 por ser arena

- d Altura de empotramiento (altura de cimentación + altura de sótano)
- μ Promedio pesado del módulo de rigidez al esfuerzo cortante que existe en los estratos de suelo contiguos al muro

Para el cálculo del parámetro de deformación angular del suelo adyacente a la base $K_{\theta B}$ se procede de forma análoga al caso estático, pero con diferente modalidad por lo que respecta al módulo dinámico de rigidez al cortante del suelo (μ) para cada uno de los estratos considerados. Los parámetros de la ley fenomenológica del módulo de rigidez al cortante de cada estrato se obtienen de pruebas en el péndulo de torsión de vibración libre de Zeevaert (PTVL), en probetas de suelo inalterado (en caso que el suelo no cuente con cohesión, ver apéndice D). Con el valor de μ que resulte de la ley fenomenológica, para el nivel de esfuerzos en cuestión se calcula para cada estrato del subsuelo el módulo dinámico de deformación unitaria (Zeevaert 1991), esto es:

$$M_{d} = \frac{1}{2(1+\nu)\mu}$$
 II.33

De forma análoga a la expresión II.14, resulta para el caso geodinámico

$$\left|\delta_{i}\right| = \left[\overline{\delta}_{ji}\right]_{\mu}^{T} \cdot \left|\Delta q_{i}\right|$$
 II.36

Donde:

Vector columna de desplazamientos verticales geodinámicos

 $\left[\overline{\delta}_{ji}
ight]_{\mu}^{T}$

 $|\mathcal{S}|$

Matriz de desplazamientos verticales geodinámicos unitarios, determinada con los parámetros dinámicos del subsuelo (μ)

 $|\Delta q_i|$ Vector columna de incrementos de esfuerzos inducidos por el balanceo de la cimentación en presencia de algún fenómeno dinámico.

Los momentos de volteo inducidos por las condiciones de carga son asimétricos, tal y como se puede ver en la figura II.7, tal que:

$$\Delta q_1 = -\Delta q_n, \quad \Delta q_2 = -\Delta q_{n-1}, \quad \Delta q_i = -\Delta q_j, \quad \text{II.37}$$

у

Figura II.8 Rotación de cimentación rígida en presencia de algún fenómeno dinámico

Debido a la antisimetría de rotación el valor de la matriz $\begin{bmatrix} \overline{\delta}_{ji} \end{bmatrix}_{\mu}^{T} = \begin{bmatrix} \overline{\delta}_{ij} \end{bmatrix}$ puede reducirse a la mitad. Por lo tanto el cálculo se reduce considerablemente.

Sustituyendo II.37 y II.38 En II.36 se tiene:

$$\left| \theta x_{i} \right| = \left[\overline{\delta}_{ji} \right]_{\mu}^{T} \cdot \left| \Delta q_{i} \right|$$
II.39

o bien

$$\left|\mathbf{x}_{i}\right| = \left[\overline{\boldsymbol{\delta}}_{ji}\right]_{\mu}^{T} \cdot \left|\left(\frac{\Delta q_{i}}{\boldsymbol{\theta}}\right)\right|$$
 II.40

De la expresión anterior se obtienen los valores desconocidos $\left(\frac{\Delta q_i}{\theta}\right)$ con la siguiente expresión.

$$\left|\frac{\Delta q_i}{\theta}\right| = \left[\overline{\delta}_{ij}\right]_{ASIM}^{-1} \cdot |x_i| \qquad \text{II.41}$$
Y de ésta el momento de volteo

$$O_T = \overline{a} \sum_{i}^{n} \left(\frac{\Delta q_i}{\theta} \right) \theta \cdot x_i$$
 II.42

Usando la expresión II.28 se obtiene el parámetro de la deformación angular del suelo subyacente a la base de la cimentación, tal que:

$$K_{\theta \theta} = \overline{a} \cdot \sum_{i}^{n} \left(\frac{\Delta q_{i}}{\theta} \right) \cdot x_{i}$$
 II.43

El incremento de reacciones por la acción sísmica en la interface de la estructura de la cimentación con el suelo se calcula con

$$\left|\Delta q_{i}\right| = \left|\frac{\Delta q_{i}}{\theta}\right| \cdot \theta \qquad \qquad \text{II.44}$$

Las reacciones provocadas por el sismo o bien por una ráfaga de viento se suman a las estáticas antes determinadas, para examinar las reacciones máximas en las orillas de la cimentación y que éstas no sobrepasen las resistencias admisibles del suelo, de lo contrario será necesario reducir la masa del edificio, ampliar la base de la cimentación, o llevar a cabo un ajuste en ambos para lograr la estabilidad de la cimentación.

al same as . . .

CAPÍTULO III SISMO-GEODINÁMICA

III.1 IMPORTANCIA DEL FENÓMENO SÍSMICO EN LA INGENIERÍA DE CIMENTACIONES

Los más importantes sismos desde el punto de vista de la ingeniería, son ocasionados principalmente por el desplazamiento relativo y repentino entre dos zonas de la corteza terrestre y en aquellos lugares donde se encuentran fallas importantes o bien desplazamientos entre placas tectónicas, aunque también pueden ser provocados por actividad volcánica, deslizamientos, derrumbe de cavernas subterráneas, explosiones, etc. En el caso de los sismos de origen tectónico, primeramente se origina una distorsión con la consiguiente acumulación de energía potencial, al vencerse la resistencia, la energía potencial se convierte en energía cinética, a la liberación de esta energía se produce el disparo sísmico y las rocas quedan liberadas momentáneamente de altos esfuerzos.

A partir del foco donde se verifica el sismo producido por la liberación de energía acumulada se producen vibraciones que se transmiten radialmente. La energía potencial se disipa en la corteza terrestre con la distancia, registrándose zonas de diferentes intensidades sísmicas que están relacionadas con la cantidad de energía liberada en la zona donde se produce el disparo sísmico, esta relación se mide por la aceleración producida en cada lugar en específico y puede correlacionarse con la intensidad, según Cancani-Sieberg y Richter (Zeevaert 1983). Para fines de ingeniería, lo que más nos interesa es conocer la aceleración que tiene la masa del suelo durante el sismo a medida que se aleja del foco, esta aceleración se mide como una porción de la aceleración de la gravedad o bien en cm/s², en donde 1 gal = 1 cm/s². Conociendo la aceleración máxima posible en la superficie del suelo se puede calcular la respuesta de la cimentación, sin embargo, conocer la aceleración no es suficiente información para el diseño sismico, dado que durante un sismo se generan diferentes tipos de ondas (de cuerpo - irrotacionales, equivolumétricas - y de superficie), estas ondas sísmicas ocasionan en el suelo fuerzas dinámicas que producen mal comportamiento de las obras civiles que se apoyan sobre o dentro del suelo.

- Onda irrotacional (P). Viajan por el cuerpo de la corteza terrestre y con ello las partículas de ésta, experimentan una oscilación en la dirección en que se propaga la excitación, produciendo esfuerzos normales de compresión y dilatación.
- Onda equivolumétrica (S). Viajan por el cuerpo de la corteza terrestre y con ello las partículas experimentan una oscilación perpendicular a la dirección en que se propaga la excitación, produciendo esfuerzos cortantes.
- Ondas de superficie. Se originan por reflexiones y refracciones de las ondas de cuerpo cuando estas llegan a la superficie o a una interface entre estratos, viajan por la superficie produciendo esfuerzos de dilatación y compresión (onda Rayleigh "R").

El movimiento del suelo consta de vibraciones horizontales y verticales producidas por las ondas ya mencionadas, la onda de cortante induce un movimiento del suelo oscilatorio mientras que la onda "P" produce un movimiento vertical o trepidatorio. La acción de las diferentes ondas se puede analizar separadamente en forma simple para conocer el orden de magnitud de su respuesta, para este fin se considera la acción independiente de cada onda simple. El resultado obtenido del comportamiento dinámico para cada onda sísmica se usa como criterio, desde el punto de vista de la ingeniería práctica, para pronosticar el comportamiento probable del subsuelo y su acción sobre la cimentación del

edificio. Las ondas más importantes que producen daños en la estructura y la superficie del suelo, es la componente horizontal de la onda de superficie y la onda de cortante, más sin embargo, en este planteamiento solamente se considerará la componente horizontal de la onda de superficie, dado que por la distancia que existe a las zonas de generación de sismos fuertes, es ésta la que más influye. No hay que perder de vista que para cualquier otro problema se tiene que investigar, cual es la onda más importante, ya que por ejemplo en la ciudad de San Salvador las ondas más importantes son: la onda de cortante y la irrotacional, dado que la zona en donde se originan éstas se localiza cerca de la ciudad, en la orilla del lago llopango.

El movimiento del suelo provocado por el sismo es transmitido al edificio que se apoya sobre éste, la base del edificio tiende a seguir el movimiento del suelo, es decir, el suelo arrastra el edificio, mientras que por inercia, la masa del edificio se opone a ser desplazada dinámicamente y a seguir el movimiento de su base, generándose entonces fuerzas de inercia que producen un momento de volteo sísmico. Una apreciación aproximada de la respuesta sísmica de una estructura se tiene al estudiar un modelo simple con un grado de libertad, constituido por una masa concentrada y un elemento resistente con cierta rigidez lateral y cierto amortiguamiento, tal y como se puede ver en la figura III.1.

Donde:

V_B es la fuerza cortante en la base

- F_{cm} es la fuerza de inercia inducida por el sismo
- θ es el ángulo de giro de la cimentación
- h_c es el brazo de palanca
- O_T es el momento de volteo F_{cm}*h_c
- δ_{θ} es la deformación ocasionada por el giro de la cimentación
- δ_n es la deformación ocasionada en el péndulo por la fuerza sísmica

Figura III.1 Balanceo de la cimentación ocasionado por las fuerzas de inercia inducidas por el sismo.

La flexibilidad de la estructura ante el efecto de las fuerzas de inercia hace que éste vibre de forma distinta a la del suelo mismo. Las fuerzas que inducen en la estructura no son función solamente de la intensidad del movimiento del suelo, sino dependen en forma preponderante de las propiedades dinámicas de la estructura misma.

III.2 ANÁLISIS SISMO-GEODINÁMICO DEL SUBSUELO

Se entiende por sismo-geodinámica a la disciplina que investiga los efectos físicos que se inducen en la masa del suelo por las ondas sísmicas, lo cual se estima por medio de la aplicación de los parámetros dinámicos, como el módulo dinámico de rigidez, la masa unitaria y los módulos dinámicos de compresión y respuesta del suelo. En el caso de movimientos sismo-geodinámico, las ondas pueden transmitirse en la masa del suelo únicamente por la respuesta elástica que el material sea capaz de proporcionar, ya que si el material es idealmente plástico no podrá transmitir ondas de vibración; así pues, la parte correspondiente a los elementos plásticos producirán una disipación de energía cinética por el efecto de la deformación plástica no recuperable, es decir, la vibración de los elementos elásticos será amortiguada por los elementos plasto-viscosos. Por esta razón, para el estudio de problemas relativos al comportamiento del subsuelo durante sismos requiere del conocimiento de las propiedades elásticas de respuesta del subsuelo.

Para comprender la forma en que las propiedades elásticas del material del subsuelo están relacionadas con estos problemas, examinemos las ecuaciones del movimiento de un elemento diferencial en la masa. Supongamos un elemento como el de la figura III.2 que está sujeto a esfuerzos normales $\sigma_x, \sigma_y, \sigma_z$ esfuerzos cortantes τ_{xy} , τ_{xz} , τ_{yz} y correspondientes deformaciones unitarias normales ε_x , ε_y , ε_z y distorsiones por esfuerzo cortante γ_{xy} , γ_{xz} , γ_{yz} . la masa unitaria es ρ y los desplazamientos a lo largo de los tres ejes coordenas x, y, z son respectivamente u, v y w; bajo estas condiciones, las ecuaciones de movimiento de la teoría de Elasticidad (Zeevaert 1988) son:

$$(\lambda + \mu)\frac{\partial \theta}{\partial x} + \mu \nabla^2 u = \rho \frac{\partial^2 u}{\partial t^2}$$

$$(\lambda + \mu)\frac{\partial \theta}{\partial y} + \mu \nabla^2 v = \rho \frac{\partial^2 v}{\partial t^2}$$

$$(\lambda + \mu)\frac{\partial \theta}{\partial z} + \mu \nabla^2 w = \rho \frac{\partial^2 w}{\partial t^2}$$

III.1

en estas ecuaciones el símbolo ∇^2 representa la operación

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
 III.2

У

$$\theta = \varepsilon_x + \varepsilon_y + \varepsilon_z = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$$
 III.3

Los parámetros elásticos son:

Parámetro de Lame
$$\lambda = \frac{v}{(1+v)(1-2v)}E$$
 III.4

Módulo de elasticidad
$$E = \frac{\Delta \sigma}{\Delta \epsilon}$$
 III.5

Módulo dinámico al esfuerzo cortante
$$\mu = \frac{\Delta \tau}{\Delta \gamma}$$
 III.6

Relación de Poisson v

De las ecuaciones arriba citadas pueden reconocerse dos tipos importantes de movimiento de la masa del suelo; el primero, es producido por las ondas de compresión y dilatación en cuyo caso no se origina esfuerzos cortantes; el segundo, es cuando las ondas son exclusivamente de esfuerzo cortante y

no actúan esfuerzos normales, por lo tanto, únicamente se obtendrán distorsiones por esfuerzo cortante.

El primer caso (ondas irrotacionales) las rotaciones son nulas y queda representado por la siguiente expresión

$$\frac{\partial \Theta}{\partial x} = \nabla^2 u, \quad \frac{\partial \Theta}{\partial y} = \nabla^2 v, \quad \frac{\partial \Theta}{\partial z} = \nabla^2 w, \qquad \text{III.7}$$

y por lo tanto, las ecuaciones de movimiento (expresiones III.1) quedan de la siguiente forma

Las ondas representadas por las expresiones anteriores se conocen como ondas irrotacionales, éstas requieren que el material sea compresible, por lo tanto, también son conocidas como ondas de dilatación y compresión, la celeridad de estas ondas es:

$$C_{p} = \sqrt{\frac{\lambda + 2\mu}{\rho}}$$
 III.9

El segundo caso, cuando solamente se presentan ondas de esfuerzo cortante (ondas equivolumétricas), requiere, como su nombre lo indica, que no haya cambio de volumen, es decir:

$$\frac{\partial \Theta}{\partial x} = \frac{\partial \Theta}{\partial y} = \frac{\partial \Theta}{\partial z} = 0$$
 III.10

Esto es, que durante el movimiento vibratorio el suelo no cambia de volumen, el material sufre solamente distorsiones debido a los esfuerzos cortantes. Las ecuaciones que gobiernan este movimiento son:

$$\mu \nabla^{2} \mathbf{u} = \rho \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}$$

$$\mu \nabla^{2} \mathbf{v} = \rho \frac{\partial^{2} \mathbf{v}}{\partial t^{2}}$$
III.11
$$\mu \nabla^{2} \mathbf{w} = \rho \frac{\partial^{2} \mathbf{w}}{\partial t^{2}}$$

Estas ondas se conocen como ondas de esfuerzo cortante o equivolumétricas y viajan con la siguiente celeridad:

. . .

12

÷.

$$C_s = \sqrt{\frac{\mu}{\rho}}$$
 III.

En los registros en la superficie del suelo, los registros muestran más importante acción de las ondas de cortante, viajando directamente de suelo firme a la superficie. Cuando estas ondas se reflejan o refractan en la interface de estratos o bien en núcleos duros como promontorios de roca se generan ondas superficiales de compresión y dilatación, estas viajan a lo largo de la superficie del suelo atenuándose con la profundidad. Este tipo de ondas puede reconocerse como ondas tipo Rayleigh (R) que se propagan con una celeridad en la superficie del suelo muy cercana a la celeridad de la onda de cortante, es decir:

$$C_r = \alpha \cdot C_s \qquad \qquad \text{III.13}$$

en donde los valores del coeficiente α y el factor de atenuación $a(\nu)$, son función de la relación de Poisson, la relación que existe entre estos parámetros se presenta en la tabla III. l

	_α	a(v)
0.25	0.919	0.847
0.30	0.927	0.869
0.35	0.934	0.894
0.40	0.941	0.923
0.45	0.948	0.958
0.50	0.955	1.000

Tabla III.1 Coeficiente α y factor de atenuación de la onda de superficie "R", deducidos en el apéndice I de Zeevaert 1988

De la breve explicación que arriba se cita, se puede reconocer que para resolver el problema relacionado con movimientos del suelo es necesario conocer los valores de las celeridades. La celeridad de la onda equivolumétrica es difícil de determinar en el laboratorio, ya que está en función de E y v, la determinación de E se difículta por los cambios de volumen en la probeta que requiere una determinación precisa de la presión de poro y además la relación de Poisson puede influir de forma importante. Por otro lado puede notarse que la determinación del valor de la celeridad de las ondas de esfuerzo cortante como función del módulo de rigidez al esfuerzo cortante y como no implica cambio de volumen, no está ligada con la relación de Poisson, por lo tanto, esta cantidad puede determinarse en laboratorio, con ayuda del péndulo de torsión de vibración libre (PTVL) según se indica en el apéndice D.

El conocimiento del comportamiento geodinámico es muy importante en zonas que están expuestas a fenómenos sísmicos, para poder realizar un análisis se tiene que tener conocimiento del periodo fundamental de vibración del depósito de suelo, la amplitud de los desplazamientos sísmicos en la masa del suelo, amplitud de esfuerzos inducidos en los sedimentos del suelo, la aceleración máxima de la superficie del suelo y el espectro de diseño sísmico.

Los primeros tres conceptos se pueden encontrar a partir del módulo dinámico de rigidez al cortante, los dos conceptos siguientes se pueden conocer por medio de registros de sismos ocurridos en la zona en estudio o pueden estimarse aproximadamente a partir de la experiencia adquirida del comportamiento de estructuras durante temblores fuertes en la región por medio de instrumentación. El periodo fundamental de vibración del depósito de suelo, se puede estimar aproximadamente por el método de las celeridades, y después ajustarse para encontrar el periodo que se adapta de mejor forma a las condiciones de frontera que reinan en la masa de suelo en estudio, a través del método de las distorsiones. La amplitud de los desplazamientos y esfuerzos que induce la onda son función del tipo de onda que se analice, para este caso se considera que la onda de superficie es la más importante por la distancia que existe a las zonas de generación de sismos fuertes y por lo tanto es la que se analiza en este trabajo. La aceleración máxima en la superficie para el proyecto en cuestión fue asignada por el asesor de este trabajo y tiene un valor de 100 gals.

Figura III.2 Estado de esfuerzos de un punto

III.2.1 ESTIMACIÓN DEL PERIODO FUNDAMENTAL DE VIBRACIÓN DEL SUBSUELO POR EL MÉTODO DE LAS CELERIDADES (Zeevaert 1983)

El periodo fundamental de vibración del suelo, puede estimarse aproximadamente por medio del método de las celeridades, basado en las celeridades de la onda de cortante de cuerpo para cada estrato C_{si} de espesor d_i esto es

$$T_s = 4\sum_{1}^{n} \frac{d_i}{C_{si}}$$
 III.14

En donde, d_i/C_{si} representa el tiempo que toma la onda de cortante para atravesar el estrato i, por consiguiente la suma de los tiempos para n estratos, desde la superficie del suelo hasta la base firme será ¹/₄ del periodo dominante del depósito de suelo. El valor de la celeridad de la onda de cortante de cada estrato del subsuelo se determina a través del módulo dinámico de rigidez (μ) y la masa unitaria del suelo, tal que $C_s = \sqrt{\mu/\rho}$.

Este método es aproximado, dado que no tiene ninguna restricción dada por las fronteras de la masa estratificada, más sin embargo, nos da una idea muy clara del periodo del suelo, que posteriormente es ajustado por el método de las distorsiones.

Se hace notar que generalmente el periodo estimado por este método es ligeramente mayor que el ajustado por el método de las distorsiones, esto se debe fundamentalmente a que el método de las distorsiones desprecia todo lo que se localiza por abajo del estrato resistente.

III.2.2 AJUSTE DEL PERIODO FUNDAMENTAL POR EL MÉTODO DE LAS DISTORSIONES (Zeevaert 1983)

Este método considera que el desplazamiento del estrato resistente es prácticamente nulo en comparación con el desplazamiento de los estratos granulares en estado semicompacto, es por ello que se tienen las siguientes restricciones en las fronteras de la masa estratificada que deben ser verificadas para validar el método.

- El desplazamiento en la superficie es $\delta_s = A_o/P_s^2$ y $\tau = 0$
- El desplazamiento en la frontera con el estrato resistente es cero y τ es máximo

Para calcular las distorsiones relativas y esfuerzos cortantes en el subsuelo producidos por cierta aceleración sísmica en la superficie se utiliza el método de las distorsiones, el cual establece las expresiones paramétricas del movimiento sísmico para el caso de ondas de esfuerzo cortante que viajan desde el estrato firme hacia la superficie.

Figura III.3 Columna de suelo sujeta a movimiento sísmico

En la figura III.3 se establece el equilibrio de un elemento de suelo a la profundidad z_i como sigue.

1. Equilibrio dinámico del elemento (Newton, fuerza de inercia F=m*a)

$$(\tau_{i+1} - \tau_i) = (\rho d_i) \frac{1}{2} (\delta_i + \delta_{i+1}) p_s^2$$
 III.15

2. Distorsión del elemento (Hooke $\tau = \gamma \mu$)

$$\frac{\delta_i - \delta_{i+1}}{d_i} = \frac{\tau_i + \tau_{i+1}}{2\mu}$$
 III.16

De las expresiones anteriores se encuentra el algoritmo para el cálculo de $\delta_1 \tau$ y P_s a saber

$$\delta_{i+1} = A_i \delta_i - B_i \tau_i \qquad \text{y} \quad \tau_{i+1} = C_i \left(\delta_i + \delta_{i+1}\right) + \tau_i \qquad \text{III.17}$$

En donde los coeficientes A_i , B_i y C_i tienen los siguientes valores:

$$N_{i} = \frac{\rho_{i}d_{i}}{4\mu_{i}}P_{s}^{2}, \qquad A_{i} = \frac{1-N_{i}}{1+N_{i}}, \qquad B_{i} = \frac{1}{1+N_{i}}\left(\frac{d_{i}}{\mu_{i}}\right) \quad y \quad C_{i} = \frac{1}{2}\rho_{i}d_{i}P_{s}^{2} \qquad \text{III.18}$$

En donde:

P_s Frecuencia circular

- μ_i Rigidez dinámica al esfuerzo cortante del estrato i
- ρ_i Masa unitaria del estrato i
- d_i Espesor del estrato i

Conociendo la aceleración máxima (A_o) asignada a la superficie del suelo se calcula la amplitud del desplazamiento horizontal correspondiente: $\delta_0 = A_0 / p_s^2$, en donde p_s es la frecuencia circular de la masa del subsuelo desde la superficie hasta la base firme. En la superficie del suelo el esfuerzo cortante $\tau_i=0$, con el valor de p_s obtenido por el método de las celeridades se determina A_i, B_i y C_i y se calcula el valor siguiente del desplazamiento horizontal δ_{i+1} y luego el valor de τ_{i+1} . Con estos valores se entra nuevamente a las expresiones III.17 y se calcula el próximo valor de δ_{i+2} y τ_{i+2} . En esta forma, paso a paso, se integran las expresiones III.17 hasta llegar a la base firme donde $\delta_{sb}=0$ y τ_{sb} es máximo. Si $\delta_{sb}=0$ no se cumple al llegar a la base firme se rectifica el valor de p_s y se repite el cálculo hasta satisfacer la frontera.

Para complementar el cálculo se determinan los desplazamientos relativos (δ_{yz}), esfuerzos cortantes en el plano vertical normal a la dirección de propagación de la onda de cortante (τ_{yz}) y los esfuerzos cortantes en el plano horizontal paralelo a la dirección de propagación de la onda (τ_{yx}) $\tau_{yx} = \rho_i C_i A_i / p_s$. Con la frecuencia circular ajustada se determina el periodo de la masa del suelo $T_s=2\pi/p_s$.

III.2.3 ANÁLISIS DE LA ONDA DE SUPERFICIE EN LA MASA ESTRATIFICADA DE SUELO (Zeevaert 1996)

En el caso de la onda plana superficial de compresión y dilatación, las presiones se originan en un plano vertical normal al sentido de propagación de la onda. La teoría indica que la velocidad orbital se atenúa con la profundidad según la siguiente relación.

$$V_z = \pm V_0 e^{-rz} \qquad \qquad \text{III.19}$$

Donde : V₀ Velocidad orbital en la superficie del suelo

- V_z Velocidad orbital en la profundidad z
- r Parámetro de atenuación función de la frecuencia circular de la onda (p_s) y de la celeridad (C_s) de ésta en cada estrato.

El parámetro de atenuación se determina con la siguiente expresión.

$$r_z = \frac{p_s \cdot a(v)}{C_s}$$
 III.20

Aquí a(v) es función de la relación de Poisson, su valor varía de 0.85 para v=0.25 y tiene a 1.0 cuando v tiende a 0.5; para nuestro caso por tratarse de una arena fina se tomará un valor de v=0.25 y por lo tanto a(v)=0.85 (ver tabla III.1).

El módulo de deformación dinámico es función de la celeridad de la onda

$$M_{xz} = \frac{(1-\nu)}{2\rho C_{xz}^2}$$
 III.21

Donde :

- M_{xz} Módulo dinámico de deformación unitaria o Masa unitaria
- v Relación de Poisson
- C_{sz} Celeridad de onda de cada estrato

Deformación unitaria máxima en la interface de dos estratos

$$\Delta \varepsilon_{xn} = \left(\frac{V_0}{C_0}\right) e^{-\sum_{i=1}^{n} r_i d_i}$$
 III.22

Donde : V₀ velocidad orbital

C₀ celeridad de la onda en la superficie

n número de estratos de espesor d_i

La distribución de la presión con la profundidad se obtiene al multiplicar el valor de la deformación unitaria por el recíproco del módulo dinámico de deformación

$$\left(\Delta p_{x}\right)_{n} = \pm \frac{2\rho C_{sn}^{2}}{(1-\nu)} \cdot \left(\frac{V_{0}}{C_{0}}\right) e^{-\sum_{i}^{n} r_{i} d_{i}} = \frac{\Delta \varepsilon_{xn}}{M_{xz}} \qquad \text{III.23}$$

y la aceleración

$$(A_X)_n = A_{x0} \cdot e^{-\sum_{i=1}^{n} r_i d_i}$$
 III.24

Donde : A_{x0} Aceleración en la superficie - $(A_x)_n$ Aceleración en el estrato n d_i Espesor del estrato i

Los esfuerzos efectivos pueden ser calculados, conociendo la presión sísmica de poro ($\Delta\omega$) generada por la componente horizontal de la onda de superficie en cada estrato de suelo, por lo tanto se tiene:

$$\sigma_{xn} = \Delta p_{xn} - \Delta \omega_z = \Delta p_{xn} - \frac{1}{1 + \beta_{cx}} \Delta p_{xn} = \Delta p_{xn} \left(\frac{\beta_{cx}}{1 + \beta_{cx}} \right)$$
 III.25

Donde β_x , es la relación que define la anisotropía por medio de los módulos de deformación unitarios del suelo M_{ez}/M_{cx} (Zeevaert 1987). El de respuesta en sentido vertical M_{ez} por la compresión en sentido horizontal y el de compresión M_{cx} por la acción de la onda en sentido horizontal

III.2.4 PRESIÓN SÍSMICA DEL AGUA DE PORO Y DETERMINACIÓN DEL ÁNGULO APARENTE DE FRICCIÓN INTERNA SÍSMICO (Zeevaert 1998)

El ángulo aparente de fricción interna sísmico puede estudiarse racionalmente por medio de la ley de resistencia de "Coulomb".

$$s = c + \sigma_{oci} tan \phi_n$$
 III.26

En donde:

c Adherencia de la arcilla (cohesión) σ_{oct} Esfuerzo octaédrico al que se encuentra sujeto el suelo ϕ_n Ángulo de fricción interna nominal

El primer término (cohesión) no se ve afectado por la generación de "presión sísmica en el agua de poro" debido a la acción del sismo, sin embargo, el segundo término dado por la fricción, se ve afectado, ya que al aumentar la presión en el agua de poro del suelo ($\Delta \omega$), se disminuye este término quedando.

$$s = c + (\sigma_{oct} - \Delta\omega) tan\phi_n = c + \sigma_{oct} \left(1 - \frac{\Delta\omega}{\sigma_{oct}}\right) tan\phi_n \qquad \text{III.27}$$

Si

$$tan\phi_{sis} = \left(1 - \frac{\Delta\omega}{\sigma_{oct}}\right) tan\phi_n, \qquad \text{III.28}$$

Se tiene que

$$\phi_{sis} = Angtan \left\{ tan \phi_n \left(1 - \frac{\Delta \omega}{\sigma_{oct}} \right) \right\}$$
 III.29

El valor de ϕ_{sis} depende de la intensidad con que se presente el aumento en la presión en el agua de poro del suelo. El límite se alcanza cuando $\Delta\omega/\sigma_{oct}=1$, perdiendo el término de la fricción mecánica, aunque no el de cohesión.

El fenómeno que se presenta en el agua de poro por vibraciones sísmicas, ocasiona básicamente la reducción de los esfuerzos volumétricos a los que se encuentra confinado el suelo, hasta poder llegar a ocurrir la pérdida total de la resistencia mecánica del suelo cuando $\Delta\omega/\sigma_{oct}=1$ (en el caso de arenas o limos sin cohesión), esto es, el ángulo aparente de fricción interna sísmico se reduce a cero y se pierde el término de resistencia friccionante, esta situación origina la falla del suelo, entrando en un estado de

flujo plástico e inclusive fluido, conocido como licuación. Sin embargo, la estratigrafía y anisotropía del suelo es muy importante, ya que no todas las ondas actúan en igual forma, a saber, las ondas en suelos saturados generan las presiones en el agua de poro que aparecen en la tabla III.2.

En esta tabla, β_x , es la relación que define la anisotropía por medio de los módulos de deformación unitarios del suelo M_{ez}/M_{cx} (Zeevaert 1987). El de respuesta en sentido vertical M_{ez} por la compresión en sentido horizontal y el de compresión M_{cx} por la acción de la onda en sentido horizontal. Es importante recordar de expresión II.2, como se relaciona el esfuerzo vertical con el esfuerzo octaédrico.

$\sigma_{\rm oc} = \frac{\sigma_z}{3} \left(\frac{1+v}{1-v} \right)$	II.2

CAPÍTULO IV ANÁLISIS DE ISE EN CONDICIONES ESTÁTICAS Y CONSIDERANDO LA SISMO-GEODINÁMICA PARA EL EDIFICIO DE CINCO PISOS

El objetivo fundamental del presente trabajo, es como ya se mencionó en el capítulo I, desarrollar un procedimiento de ISE para suelos granulares finos, el cual ya fue planteado en el capítulo II, más sin embargo se juzga necesario hacer aplicación de éste al problema planteado por el asesor de este trabajo para demostrar su fácil aplicación y presentar así la secuela de cálculo para llevar a buen término tal procedimiento.

El problema planteado por el asesor no solo consiste en aplicar exclusivamente el método, sino en realizar un diagnóstico del mayor y mejor uso de la capacidad del suelo, sin perder de vista la seguridad y estabilidad de la cimentación, es decir, primeramente se aplicará la metodología señalada en el capítulo II Y III para obtener la solución del nivel de esfuerzos producidos por la estructura original (edificio de cinco pisos) en condiciones estáticas y adicionando la acción del sismo o bien de una fuerte ráfaga de viento, este primer cálculo del nivel de esfuerzos es algo grueso pero lo suficiente para poder estimar si hay la posibilidad de incrementar pisos al edificio y en caso de ser posible, estimar el número de pisos que se pueden incrementar, dado que precisamente la configuración de cargas estáticas sobre la losa va creciendo de forma proporcional según los esfuerzos por el balanceo sísmico de la cimentación crece de manera proporcional a la masa unitaria del edificio y a la relación de periodos To/Ts.

El límite de pisos que es posible incrementar al edificio esta dado por el número de pisos que produzcan un esfuerzo tal en la esquina de la cimentación que sea aproximadamente 1/2 de la capacidad de carga sísmica del suelo contra la falla local de la cimentación, es decir, el límite de pisos se alcanza cuando el factor de seguridad contra la falla local en presencia de sismo es de aproximadamente 2, para que de esta forma se cubran de forma segura las posibles deficiencias de la teoría empleada y principalmente la precisión de los parámetros que operan en ella.

De lo anterior se resume que en éste capítulo se busca diagnosticar la posibilidad de incrementar pisos al proyecto original, en caso de ser posible, estimar aproximadamente el número, para de esta forma aprovechar al máximo la capacidad del suelo, sin perder de vista la seguridad de la edificación; para ello se procede a realizar un primer cálculo del nivel de esfuerzos en la interface suelo-estructura de cimentación que produce la edificación. La secuencia de cálculo aproximada es la siguiente:

- Estimación de los esfuerzos de alivio originados por la excavación, que es necesaria para que aloje la estructura de cimentación y el sótano.
- Estimación de los esfuerzos por recarga inducidos por el edificio.
- Cálculo del módulo de deformación unitaria a partir de la ley fenomenológica de comportamiento, considerando los esfuerzos verticales en la masa estratificada de suelo granular.
- Cálculo del nivel de esfuerzos para condiciones estáticas, haciendo uso del procedimiento de ISE.
- Cálculo del módulo dinámico de rigidez al cortante a partir de la ley fenomenológica de comportamiento, según el esfuerzo vertical en condiciones estático que obra en la masa de suelo a largo plazo

- Estimación de los esfuerzos producidos por el balanceo de la cimentación, producto de la acción de una ráfaga de viento de 250 km/h, haciendo uso del procedimiento de ISE.
- Estimación de los esfuerzos producidos por el balanceo de la cimentación, producto de la acción de un sismo que pueda producir una aceleración máxima en la superficie de 100 gals, haciendo uso del procedimiento de ISE y de la sismo-geodinámica.
- Estimación de la capacidad de carga local en condiciones estáticas y en presencia de sismo, así como la determinación de sus respectivos factores de seguridad.
- Análisis de la posibilidad de incrementar pisos al proyecto original

Se hace notar que para realizar adecuadamente la consideración del sismo en la cimentación se tiene que realizar un análisis previo de la sismo-geodinámica del subsuelo en campo libre, el cual incluye: Estimación del módulo dinámico de rigidez al cortante para condiciones de campo, estimación del periodo fundamental de vibración del subsuelo por el método de las celeridades, ajuste del periodo fundamental por el método de las distorsiones, análisis de la onda de superficie en la masa estratificada de suelo, determinación del ángulo aparente de fricción interna sísmico; la metodología para hacer esto ya se desarrolló en el capítulo III.

La memoria de cálculo completa para dar solución al problema del edificio de cinco pisos se presenta en el anexo A y el análisis previo de la sismo geodinámica del subsuelo en campo libre se presenta en el apéndice C.

IV.1 ESFUERZOS EN LA MASA DE SUELO GRANULAR

El análisis del cambio de esfuerzos efectivos inducido en la masa de suelo granular debido al alivio de esfuerzos por excavación y a la recarga debida al edificio se realiza para el centro de cada uno de los elementos rectangulares finitos, a través de soluciones aproximadas de la teoría de elasticidad que presento Flöhlich, considerando el factor de concentración, según el tipo de depósito que se trate, para nuestro caso por tratarse de un suelo granular fino, estratificado y cuya compresibilidad se reduce con la profundidad es adecuado usar un valor de $\chi=4$ (Zeevaert 1983).

IV.1.1 ESFUERZOS DE ALIVIO INDUCIDOS POR LA EXCAVACIÓN

Para realizar ésta estimación, se toma la distribución de franjas y subestratos que se indican en la figura II.2, para ello, se considera que es retirado un esfuerzo efectivo uniforme de 0.68 kg/cm², dado que es el esfuerzo efectivo que existe a 4.0 metros de profundidad, después de abatir el nivel de aguas superficiales para realizar la excavación¹.

Para determinar los esfuerzos de alivio que se originan en la masa del suelo por la excavación, se procede a determinar el alivio de esfuerzos verticales en el elemento finito rectangular j del estrato N, que tiene un espesor d inducido por un alivio de carga en la franja i, dado que la descarga en i actúa

¹ Se considera a 4.0 metros dado que es necesario realizar la excavación en dos etapas, la primera etapa de excavación se realizará hasta ésta profundidad, retirando el material de manera alternada, mientras que la segunda etapa que es a partir de los 4.0 metros hasta los 6.0 metros se realizará por sustitución, es decir, se van excavando las zanjas que alojarán los diafragmas de la cimentación, el peso del suelo excavado es progresivamente reemplazado por el peso del propio diafragma, una vez que se hayan construido los diafragmas se procede a excavar los bloques de suelo que hay entre los diafragmas con un programa alternado, cuyo peso de los bloques es sustituido por el peso de la losa inferior de la cimentación y por lastre si es necesario para equilibrar el peso. Se recomienda este procedimiento básicamente para evitar cambios bruscos en los esfuerzos efectivos.

sobre toda la masa de suelo, se producen esfuerzos de alivio en todos los estratos, para determinar el alivio total en cada elemento rectangular se va variando de vez en vez la franja que se va descargando determinado su influencia en cada uno de los elementos finitos rectangulares para después sumar éstas influencias y determinar así el alivio total en cada elemento finito. Los resultados objeto de ésta estimación se presentan en la tabla A.2.b para el sentido longitudinal y en tabla A.3.b para el sentido transversal.

IV.1.2 ESFUERZOS DE RECARGA INDUCIDOS POR EL EDIFICIO

El análisis del cambio de esfuerzos efectivos por el incremento de carga, al igual que en el inciso anterior, se realizan para el centro de cada elemento finito rectangular que forman los subestratos con las franjas de la losa (figura II.2), la estimación se realiza de forma análoga al alivio de esfuerzos, pero ahora se va variando de vez en vez la franja que se va cargando ($q_i = +1$) determinado su influencia en cada uno de los elementos finitos rectangulares para después sumar éstas influencias y determinar así el incremento de esfuerzo total en cada elemento finito. Los resultados objeto de ésta estimación se presentan en la tabla A.4.b para el sentido longitudinal y en tabla A.5.b para el sentido transversal.

IV.2 MATRIZ DE MÓDULOS DE DEFORMACIÓN UNITARIA

De las pruebas hechas en el laboratorio, el asesor del presente trabajo, proporcionó los valores de los parámetros que intervienen en la ley fenomenológica (ver expresión II.1), para determinar el módulo de deformación unitaria para cada elemento rectangular finito. El nivel de esfuerzos para el cual se realiza la estimación de los módulos es el que corresponde a los esfuerzos que obran en la masa estratificada de suelo, es decir, se considera el esfuerzo efectivo de campo inicial modificado por el alivio de esfuerzos debidos a la excavación y por el incremento de esfuerzos por la recarga del edificio.

Los módulos son determinados para esfuerzos medios en cada subestrato, es decir, para el esfuerzo que existe a la profundidad media de cada subestrato se presentan en la tabla A.4.d para el sentido longitudinal y en la tabla A.5.d para el sentido transversal.

Con el valor del módulo de deformación unitaria M_z , se calcula la compresibilidad volumétrica de cada subestrato que no es otra cosa que el producto del espesor del subestrato y el módulo de deformación unitaria. Estos valores serán necesarios para realizar la ISE.

IV.3 ISE EN CONDICIONES ESTÁTICAS

Una vez ya estimada la compresibilidad volumétrica de cada subestrato (α^N), se procede a establecer la compatibilidad de deformaciones entre suelo y cimentación a través de la ISE, cuya idea física consiste básicamente en aplicar una carga unitaria en el centro de cada una de las áreas tributarias de tiempo en tiempo hasta obtener la matriz de flexibilidad que está definida por la expresión II.10 (tabla A.6.b) y que nos representa el desplazamiento vertical unitario del suelo, haciendo uso del álgebra matricial y conociendo el nivel de esfuerzos efectivos que actúa en la masa estratificada de subsuelo, se determinan los desplazamientos verticales si la estructura de cimentación fuese totalmente flexible con la expresión II.14 (tabla A.6.c), pero por tratarse de una cimentación rígida, la flexión de la losa de cimentación es despreciable en comparación a los desplazamientos verticales producidos por la

deformación del suelo, por lo tanto, la losa de cimentación rígida origina un asentamiento uniforme, el cual se obtiene de la media de los desplazamientos verticales calculados para cuando la reacción de la losa es constante, ya conocido el desplazamiento y la matriz de flexibilidad del suelo, es posible determinar los esfuerzos de contacto para la cimentación rígida con ayuda del álgebra matricial y cuyos resultados aparecen a continuación (de tabla A.7.e).

ESFUERZOS EN EL SUELO EN 1/4 DE LA LOSA DE CIMENTACIÓN								
		qm	Factor qm/qa	F1 0.725	F2 0.561	F3 0.558	F 4 0.556	Sentido largi kg/cm²
-	F1	0.168	1.269	0.921	0.713	0.708	0.705	0.762
Sentido corto	F2	0.116	0.875	0.635	0.491	0.488	0.486	0.525
	F3	0.113	0.856	0.621	0.480	0.477	0.475	0.513
-	qa	0.132				media	0.600	kg/cm²

Los resultados presentados son únicamente para una cuarta parte de la cimentación, en donde el 0.921 corresponde al esfuerzo medio de interacción que se presentan en la esquina, pero dado la simetría que existe en ambos sentidos, estos valores son validos para el resto de la cimentación.

IV.4 MATRIZ DE MÓDULOS DINÁMICOS DE RIGIDEZ AL CORTANTE

De las pruebas hechas en el laboratorio, el asesor del presente trabajo, proporcionó los valores de los parámetros que intervienen en la ley fenomenológica (ver expresión II.18), para determinar el módulo de rigidez al cortante para cada estrato. El nivel de esfuerzos para el cual se realiza la estimación de los módulos es el que corresponde a los esfuerzos que obran en la masa estratificada de suelo, al considerar los esfuerzos de interacción resultantes de la ISE en condiciones estáticas.

Al igual que para el módulo de deformación unitaria, este módulo dinámico es determinado para esfuerzos medios en cada subestrato y además únicamente se determina para cuando el movimiento se produce en el sentido transversal de la cimentación, por ser el más crítico. Los resultados de esta estimación se presentan en la tabla A.8.d

Con el valor del módulo dinámico de rigidez al cortante (μ) obtenido, se calcula para cada subestrato del subsuelo el módulo dinámico de deformación unitaria $M_d=1/\{2(1+\nu)\mu\}$, y la compresibilidad volumétrica de cada subestrato que no es otra cosa que el producto del espesor del subestrato y el módulo de deformación unitaria dinámico. Estos valores serán necesarios para realizar la ISE cuando se presenta balanceo de la cimentación por alguna condición dinámica.

IV.5 ISE CONSIDERANDO EL BALANCEO POR VIENTO

Una vez ya determinado el nivel de esfuerzos producidos por el edificio de cinco pisos en condiciones estáticas, es necesario conocer cual puede ser el incremento de esfuerzos inducidos por una fuerte ráfaga de viento, para de esta forma estimar los esfuerzos totales que se pueden generar en la interface suelo-éstructura de cimentación y verificar la estabilidad de todo el edificio. Del análisis de ISE considerando el balanceo por viento hecho en el apéndice A (tabla A.9.e) se concluye que los esfuerzos medios inducidos por un viento de 250 km/h en cada franja longitudinal del edificio son los siguientes:

Xi	(m)	5.00	3.00	1.00	-1.00	-3.00	-5.00
∆q	(kg/om²)	0.182	0.053	0.017	-0.017	-0.053	-0.182

IV.6 ISE CONSIDERANDO EL BALANCEO POR SISMO Y APLICANDO LA SISMO-GEODINÁMICA

Una vez ya determinado el nivel de esfuerzos producidos por el edificio de cinco pisos en condiciones estáticas y haber estimado el incremento de esfuerzos por el balanceo provocado por una fuerte ráfaga de viento, también es necesario conocer cual puede ser el incremento de esfuerzos inducidos por el fenómeno sísmico, para de esta forma estimar los esfuerzos totales que se pueden generar en la interface suelo-estructura de cimentación y verificar la estabilidad de todo el edificio. Del análisis de ISE considerando el balanceo por sismo y haciendo uso de la sismo-geodinámica (tabla A.10.e) se concluye que los esfuerzos medios inducidos por un sismo que induce una aceleración en la superficie de 100 gals, son en cada franja longitudinal del edificio, los siguientes:

XI	(m)	5.00	3.00	1.00	-1.00	-3.00	-5.00
Δq	(kg/cm²)	0.331	0.097	0.032	-0.032	-0.097	-0.331

A simple vista se observa que los esfuerzos inducidos por el sismo son más importantes que los que origina el viento, aproximadamente un 80%; el sismo incrementa los esfuerzos medios en la interface suelo-estructura de cimentación en aproximadamente un 43% de donde se ve la importancia que toman estos conceptos en la ingeniería de cimentaciones y de los riesgos que se toman cuando no se consideran.

IV.7 CAPACIDAD DE CARGA LOCAL EN CONDICIONES ESTÁTICAS, EN PRESENCIA DE SISMO Y FACTOR DE SEGURIDAD

Primeramente se determinan las reacciones unitarias que actúan en la interface suelo-estructura de cimentación considerando primeramente el afecto estático de donde resulta.

(de tabla A.11.a)

0.921	0.713	0.708	0.705
0.635	0.491	0.488	0.486
0.621	0.480	0.477	0.475
0.621	0.480	0.477	0.475
0.635	0.491	0.488	0.486
0.921	0.713	0.708	0.705

Los resultados presentados son únicamente para la mitad de la cimentación, en donde el 0.921 corresponde al esfuerzo medio de interacción que se presentan en la esquina, pero dado la simetría que existe, estos valores son validos para la otra mitad de la cimentación.

Es importante señalar que cuando se realiza la ISE para considerar el balanceo de la estructura de cimentación por sismo o bien por viento, el análisis se realiza en el sentido transversal de la cimentación por ser el más crítico y por metro de ancho, resultando valores medios para cada franja en cuestión, sin embargo es necesario estimar el efecto que da la cimentación rígida en estas reacciones, para ello es necesario encontrar los factores longitudinales de distribución de las reacciones producidas por el balanceo de la cimentación, para lo cual se procede de la siguiente forma: se determina la reacción media de la primera banda longitudinal de la cimentación del caso estático, posteriormente se determina este factor al dividir la reacción en cada dovela de la franja uno entre la reacción media y finalmente al multiplicar las reacciones medias del balanceo por estos factores se determina la planta de reacciones en la losa de cimentación. Una vez echo esto se adicionan las reacciones que son provocadas por el balanceo de la cimentación ocasionado por una fuerte ráfaga de viento de 250 km/h, resultando los siguientes valores.

Figura N°. IV.1 Esfuerzos de contacto en la franja de la orilla y en el sentido transversal para el edificio de cinco pisos

CONDICION ESTATICA		0.635	0.621	0.621	0.635	
	0.921	: :		• •		0.921
BALANCEO POR VIENTO	0.182	0.053	0.017	-0.017	-0.053	-0.182
BALANCEO POR SISMO	0.331	0.097	0.032	-0.032	-0.097	-0.331
CONDICION ESTATICA MAS VIENTO	1.140	0.699	0.642	0.600	0.570	0.701
CONDICION ESTATICA MAS SISMO	1.321	0.752	0.659 .	0.582	0.517	0.521

(de tabla A.11.c)

(de tabla A.11.e).

SUMA	DE CARG	kg/cm*				
Banda	a	1	2	3	4	
1		1.140	0.883	0.877	0.874	C.L.
2		0.699	0.541	0.537	0.535	
3	<u>C.L</u>	0.642	0.497	0.493	0.492	
4		0.600	0.464	0.461	0.459	7
5		0.570	0.441	0.438	0.437	
6		0.701	0.543	0.539	0.537	

Posteriormente, de forma análoga, se considera el efecto estático adicionado por las reacciones que son provocadas por el balanceo sísmico de la estructura de cimentación para una aceleración máxima en la superficie de 100 gals, resultando los valores siguientes.

SUMA	DE CAR	GA ESTÁTICA	kg/cm²			
Band	a	1	2	3	4	
1		1.321	1.023	1.015	1.012	C.L.
2		0.752	0.582	0.578	0.576	ł
3	<u>C.L</u> .	0.659	<u>0</u> .510	0.507	0.505	
4		0.582	0.451	0.446	0.446	1
5		0.517	0.400	0.398	0.396	
6		0.521	0.403	0.400	0.399	1

Ahora bien, ya conociendo la reacciones unitarias en cada caso, se procede a estima el factor de seguridad contra la falla local de la cimentación, en la esquina y en la orilla.

El factor de seguridad esta dado por la relación que existe entre la resistencia máxima posible que puede soportar el suelo y las cargas unitarias que actúan sobre éste, su magnitud depende básicamente de la confianza que se tenga en los parámetros usados en la teoría empleada y en su interpretación, como en este caso los valores de los parámetros empleados fueron determinados con mucho cuidado en el laboratorio, se consideran lo suficientemente precisos como para considerar un factor de seguridad de 2, contra la falla local de la cimentación.

La resistencia máxima que puede soportar el suelo, es decir, la resistencia necesaria para que se produzca el deslizamiento a través de la superficie potencial de deslizamiento esta dada por Terzaghi (Zeevaert 1983), expresión IV.1, en donde los coeficientes alpha (α) son factores de forma, los cuales fueron investigados por el profesor Brinch Hansen (Zeevaert 1983) y pueden tomar diferentes valores, porque dependen de la forma del cimiento, por ejemplo si se trata de un cimiento continuo, como en nuestro caso, estos factores tienen un valor igual a la unidad, pero cuando se trata de un cimiento cuadrado α_1 puede llegar hasta 1.3, α_1 ' hasta 1.2 y α_2 hasta 0.6, esto se debe a que la superficie potencial de deslizamiento no se puede considerar como de deformación plana, sino que se expande lateralmente, volviéndose más complicada la superficie de falla. Los coeficientes N_c, N_q y N_y son factores de capacidad de carga que están en función del ángulo de fricción interna y se pueden determinar de la figura IV.1 dada por Terzaghi.

$$\mathbf{q}_{\mathbf{d}} = \alpha_1 \mathbf{c} \mathbf{N}_{\mathbf{c}} + \alpha_1 \sigma_z \mathbf{N}_{\mathbf{q}} + \alpha_2 \gamma \mathbf{B} \mathbf{N}_{\mathbf{v}}$$
 IV.1

Ésta expresión, sin embargo esta basada en la hipótesis que tiene que movilizarse totalmente la resistencia al esfuerzo cortante a lo largo de la superficie potencial de deslizamiento, para que esto

suceda el material tiene que ser incompresible, sin embargo es compresible, y para tomar esto en cuenta, multiplicamos la expresión por (Dr+0.1) según Zeevaert (1983), en donde Dr representa la densidad relativa del material.

Figura IV.2 Factores de capacidad de carga para cimentaciones superficiales según Terzaghi (tomada de Zeevaert 1983).

Ahora bien, lo que nos interesa es que la estructura de cimentación no presente una falla total de la cimentación y además que no haya desplome de la estructura por falla local en la orilla o esquina, es por ello que el caso más crítico es la falla local, para lo cual únicamente se considera el segundo término, resultando expresión IV.2 para determinar la capacidad de carga local, dado que el primer término se nulifica por no contar con cohesión el material y el tercer término únicamente se considera en casos en donde se desea estimar la capacidad de carga contra la falla general, resultando:

$$q_d = \sigma_z \cdot N_d \cdot (Dr + 0.1)$$
 IV.2

42

Por otro lado, la superficie potencial de deslizamiento que se debe producir para que se genere la falla local, corta el estrato de arena denominado 2c y por lo tanto se considera precisamente al ángulo de fricción interna que caracterice a este estrato para determinar el factor de capacidad de carga N_q, aunque, es importante señalar que la capacidad de carga en condiciones sísmicas se ve reducida por el efecto de la "presión sísmica en el agua de poro" que se genera por las ondas sísmicas, esta presión de poro reduce la presión entre grano y grano del material reduciendo el ángulo de fricción interna, tal y como se explica anteriormente en el subcapítulo III.2.4, es por ello que se tienen que determinar los factores de capacidad de carga para ambas condiciones, estática y sísmica, los cuales se obtienen de la figura IV.1

Una vez ya estimada la capacidad de carga en condiciones estáticas y sísmicas se pueden evaluar los factores de seguridad según lo escrito anteriormente y cuyos resultados se presentan a continuación.

		((de tabla B.18)
FACTORES DE SEGURIDAD CONTRA FALLA	ALOCAL		
Factor de seguridad en condiciones estáticas			
	Orilla	45.5	
	Esquina	35.2	
Factor de seguridad en condiciones estáticas más viento	·		
- , ,	Orilla	36.8	
	Esquina	28.4	
Factor de seguridad en condiciones estáticas más sismo			
Considerando una aceleración máxima en la superficie de 100 gais	Orilla	10.6	
	Esquina	8.2	

IV.8 ANÁLISIS DE LA POSIBILIDAD DE INCREMENTAR PISOS AL EDIFICIO

Los factores de seguridad estimados son muy altos para el caso de un edificio de cinco pisos, aún en caso de sismo, por lo tanto se ve la posibilidad de incrementar algunos pisos al edificio y de esta forma hacer un mayor y mejor uso de la capacidad del suelo, sin perder de vista la seguridad de la estructura, para ello se realizó un análisis tomando de forma proporcional los esfuerzos aplicados en el edificio de cinco pisos para encontrar un estimado del número de pisos, de lo cual se concluye que aproximadamente se le pueden agregar 12 pisos al edificio, lo anterior será confirmado al analizar completamente esta posibilidad en el capítulo V.

En el análisis realizado se tomó en cuenta lo siguiente: a). La capacidad de carga sísmica que es de 108.15 t/m²; b). El factor de seguridad permisible que es de 2; c). Si se aumentan pisos a la estructura traerá como consecuencia que los primeros pisos sean más pesados por requerir estructuras más robustas para soportar las cargas; aquí es importante señalar que el periodo fundamental del suelo sigue teniendo el mismo valor mientras que el periodo fundamental de la estructura crece dando una relación de periodos (To/Ts) mayor a 2 y el amortiguamiento crítico equivalente es aproximadamente de un 10% según datos proporcionados por el estructurista, por lo tanto el factor de amplificación en el centro de masas que se obtiene del DAES resulta menor a uno, pero visto desde el punto de vista práctico y de la seguridad se tomará uno (representa la mitad del factor de amplificación considerado para el edificio de cinco pisos).

CAPÍTULO V

ANÁLISIS DE ISE EN CONDICIONES ESTÁTICAS Y CONSIDERANDO LA SISMO-GEODINÁMICA PARA EL EDIFICIO DE DIECISIETE PISOS

Del análisis realizado en el subcapítulo IV.8 se determinó que se pueden incrementar aproximadamente 12 piso más al proyecto original, a continuación se procederá a realizar el análisis del edificio considerando ya los 17 pisos totales, para ello nos auxiliaremos de los esfuerzos de interacción determinados para el edificio de cinco pisos, es decir, se determina de forma proporcional los esfuerzos en condiciones estáticas que le corresponden al edificio de diecisiete pisos, la metodología que se seguirá es la presentada en el subcapítulo II.2 y II.3, con ello se obtendrán los esfuerzos de contacto que verifican la compatibilidad de deformaciones y se confirmará si el factor de seguridad es el adecuado. La secuencia de cálculo aproximada es la siguiente:

- Determinación de la matriz de esfuerzos por recarga inducidos por el edificio de diecisiete pisos
- Cálculo de la matriz de módulos de deformación unitaria a partir de la ley fenomenológica de comportamiento, considerando los esfuerzos verticales efectivos en la masa estratificada de suelo granular.
- Cálculo del nivel de esfuerzos para condiciones estáticas, haciendo uso del procedimiento de ISE, este cálculo es iterativo, por lo tanto se tiene que repetir tantas veces como sea necesario para establecer la compatibilidad de deformaciones.
- Cálculo del módulo dinámico de rigidez al cortante a partir de la ley fenomenológica de comportamiento, según el esfuerzo vertical en condiciones estáticas que obra en la masa de suelo a largo plazo.
- Estimación de los esfuerzos producidos por el balanceo de la cimentación, producto de la acción de una ráfaga de viento de 250 km/h, haciendo uso del procedimiento de ISE.
- Estimación de los esfuerzos producidos por el balanceo de la cimentación, producto de la acción de un sismo que pueda producir una aceleración máxima en la superficie de 100 gals, haciendo uso del procedimiento de ISE y de la sismo-geodinámica.
- Determinación de factores de seguridad

Los análisis de sismo-geodinámica que se obtuvieron en el apéndice C también serán usados en éste capítulo. El cálculo completo para el edificio de diecisiete pisos se presenta en el apéndice B.

V.1 ESFUERZOS EN LA MASA DE SUELO GRANULAR

De manera análoga al edificio de cinco pisos, se sabe que antes que se incrementen los esfuerzos en la masa del suelo por la edificación, existen esfuerzos de sobrecarga, los cuales se ven modificados por la excavación que es necesaria para alojar el sótano y la cimentación y posteriormente por la carga del edificio, es decir, a largo plazo tenemos que tomar en cuenta esto, para determinar los esfuerzos en la masa del suelo, resultando que el estado de esfuerzos final esta dado por la expresión II.4, la cual debe ser calculada para la parte central de cada elemento finito rectangular definido en la figura II.2, formando así la matriz de esfuerzos bajo la cimentación. Los resultados de este cálculo se presentan en la tabla B.2.c para el sentido longitudinal y en tabla B.3.c para el sentido transversal.

V.2 MATRIZ DE MÓDULOS DE DEFORMACIÓN UNITARIA

Una vez hecho esto y ya contando con las matrices de esfuerzos de la masa de suelo se procede a estimar los módulos de deformación unitaria con ayuda de la ley fenomenológica II.1, con los valores del módulo de deformación unitaria resultantes, se calcula la compresibilidad volumétrica de cada subestrato que no es otra cosa que el producto del espesor del subestrato y el módulo de deformación unitaria. Con los valores resultantes se procede a realizar la ISE en condiciones estáticas de donde se obtiene un nuevo nivel de esfuerzos para la masa del suelo, esto produce que la matriz de módulos de deformación cambie, y por lo tanto se debe de repetir la ISE hasta lograr que se verifique la compatibilidad de deformaciones y que el módulo de deformación unitario corresponde con el nivel de esfuerzos inducidos, después de tres iteraciones se observa que prácticamente converge el método y se obtienen los resultados que se muestran en la tabla B.10 para el sentido longitudinal y tabla B.11 para el sentido transversal. Los cuales son considerados como definitivos, desde el punto de vista de la ingeniería de cimentaciones práctica.

V.3 ISE EN CONDICIONES ESTÁTICAS

Una vez ya estimada la compresibilidad volumétrica de cada elemento rectangular (α^N_j), se procede a realizar la compatibilidad de deformaciones entre suelo y cimentación a través de la ISE, y cuyo procedimiento ya se explicó en el subcapítulo II.2. Como ya se dijo es un procedimiento iterativo, razón por la cual es necesario hacer un primer cálculo con la primera matriz de compresibilidades volumétricas y con el nivel de esfuerzos que se obtiene proporcionalmente del edificio de cinco pisos, al terminarse éste primer análisis se ve modificado el nivel de esfuerzos y automáticamente cambia la matriz de compresibilidad volumétrica, teniendo que estimarla nuevamente y volver a repetir el procedimiento de ISE, así se continúa hasta que se verifique la compatibilidad de deformaciones y la compresibilidad volumétrica sea coherente con el nivel de esfuerzos en la masa de suelo. Al ir realizando más iteraciones se mejoran aun más los resultados, aunque sin embargo, después de la tercera aproximación los cambios ya no son muy significativos.

La precisión de los desplazamientos verticales y los esfuerzos de interacción entre suelo y estructura son función de la precisión que tenga el módulo de deformación unitaria, que a su vez, los valores dependen de los estados de esfuerzos originados en la interface suelo estructura, esto se puede observar claramente en el cálculo ya que a medida que se avanza en la precisión de los esfuerzos de contacto, en cada una de las iteraciones, disminuye la diferencia que existe entre los desplazamientos verticales resultantes al considerar una cimentación completamente flexible, es decir, poco a poco va convergiendo el método. Desde el punto de vista práctico, como ya se había mencionado, no son necesarias más de tres iteraciones. Después de tres iteraciones nos resultan los siguientes esfuerzos de contacto para condiciones estáticas.

	(de	tabla	B.13.e)
ka/cm²			

		Qm	Factor gm/ga	F1 2.771	F2 1.824	F a 1.858	F4 1.848	Sentido largo kg/cm²
-	F1	0.325	1.409	3,904	2.569	2.617	2.603	2.923
Sentido corto	F2	0.183	0.794	2.201	1,448	1.475	1.468	1.648
	F3	0.184	0.797	2.208	1.453	1.480	1.473	1.654
-	qa	0.231				media	2.075	kg/cm³

ESFUERZOS EN EL SUELO EN 1/4 DE LA LOSA DE CIMENTACIÓN

45

V.4 MATRIZ DE MÓDULOS DINÁMICOS DE RIGIDEZ AL CORTANTE

Los valores de los parámetros que intervienen en la ley fenomenológica que sirve para determinar el módulo de rigidez al cortante de cada estrato ya fueron proporcionados por el asesor de este trabajo, la única incógnita que existe es el nivel de esfuerzos efectivos. El nivel de esfuerzos para el cual se realiza la estimación de los módulos es el que corresponde a los esfuerzos que obran en la masa estratificada de suelo, al considerar los esfuerzos resultantes de la ISE en condiciones estáticas de la última iteración.

Al igual que para el módulo de deformación unitaria, este módulo dinámico es determinado para esfuerzos medios en cada subestrato y además únicamente se determina para cuando el movimiento se produce en el sentido transversal de la cimentación, por ser el más crítico. Los valores determinados a considerar del módulo dinámico de rigidez al cortante se presentan en la tabla B.14,d.

Con el valor del módulo dinámico de rigidez al cortante (μ) obtenido, se calcula para cada subestrato del subsuelo el módulo dinámico de deformación unitaria $M_d=1/\{2(1+\nu)\mu\}$, y la compresibilidad volumétrica dinámica de cada subestrato y el módulo de deformación unitaria dinámico. Estos valores serán necesarios para realizar la ISE en condiciones dinámicas.

V.5 ISE CONSIDERANDO EL BALANCEO POR VIENTO

Después de determinar los esfuerzos que se generan en la interface suelo-estructura de cimentación por el propio peso de ésta, es necesario conocer los esfuerzos producidos por el balanceo de la cimentación en presencia de una fuerte ráfaga de viento que alcanza velocidades de 250 km/h, la metodología seguida es la que aparece en el subcapítulo II.3 y los resultados se muestran a continuación (de tabla B.15.e).

XI	(m)	5.00	3.00	1.00	-1.00	-3.00	-5.00
Δq	(kg/cm ^z)	1.781	0.403	0.142	-0.142	-0,403	-1.781

V.6 ISE CONSIDERANDO EL BALANCEO POR SISMO Y APLICANDO LA SISMO-GEODINÁMICA

Una vez ya determinado el nivel de esfuerzos producidos por el edificio de diecisiete pisos en condiciones estáticas y haber estimado el incremento de esfuerzos por el balanceo provocado por una fuerte ráfaga de viento, también es necesario conocer cual puede ser el incremento de esfuerzos inducidos por el fenómeno sísmico, para de esta forma estimar los esfuerzos totales que se pueden generar en la interface suelo-estructura de cimentación y verificar la estabilidad de todo el edificio. Del análisis de ISE considerando el balanceo por sismo y haciendo uso de la sismo-geodinámica (tabla B.16.e) se concluye que los esfuerzos medios inducidos por un sismo que induce una aceleración en la superficie de 100 gals, son en cada franja longitudinal del edificio, los siguientes:

		(m)	5.00	3.00	1.00	-1.00	-3.00	-5.00
a.	Δq	(kg/cm*)	1.369	0.310	0.109	-0.109	-0.310	-1.369

A simple vista se observa que los esfuerzos inducidos por el sismo son menores que los que origina el viento, aproximadamente un 25%; aunque el sismo es más importante, dado que la capacidad de carga estática, que es con la que se determina el factor de seguridad al considerar el viento, es casi 3 veces mayor que la capacidad de carga sísmica. Es importante hacer notar que el sismo incrementa los esfuerzos medios en la interface suelo-estructura de cimentatación en aproximadamente un 45% de

Figura N°. V.1 Esfuerzos de contacto en la franja de la orilla y en el sentido transversal para el edificio de diecisiete pisos

		т	· · · · · · · · · · · · · · · · · · ·	Y		······································
CONDICION ESTATICA	3 904	2.201	2.208	2.208	2.201	3 904
	0.004	ļ				3.704
	, ,		1 7	•		, ,
BALANCED		۹ 	• •	• •	·	-1.781
PUR VIENTU	1.781	0.403	0.142	-0.142	-0.403	1 I I I I I I I I I I I I I I I I I I I
	1		ŧ		1	
BALANCED	, }	s 1	1 1		·	-1.369
POR SISMO	1.369	0.310	0.109	-0.109	-0.310	; ; ;
	۱ ۶	· · ·	· ·	-		i i
CONDICION ESTATICA MAS	6.282	2.739	2,398	2.019	1.663	1.526
VIENTO			J			1
		ł	د •		£ 	, 1
			•	:		•
[5.732	2.615	2.354	2.063	1.787	2.076
CONDICION ESTATICA MAS		ł			,	
SISMO	•	, ,		:		
,			•		· ·	

•

donde se ve la importancia que toma este concepto en la ingeniería de cimentaciones y de los riesgos que se toman cuando no es considerado.

IV.7 CAPACIDAD DE CARGA LOCAL Y FACTOR DE SEGURIDAD

Primeramente se determinan las reacciones unitarias que actúan en la interface suelo-estructura de cimentación considerando primeramente el afecto estático de donde resulta.

(de tabla B.17.a)

3.904	2.569	2.617	2.603
2.201	1.448	1.475	1.468
2.208	1.453	1.480	1.473
2.208	1.453	1.480	1.473
2.201	1.448	1.475	1.468
3.904	2.569	2.617	2.603

Una vez hecho esto se adicionan las reacciones que son provocadas por el balanceo de la cimentación ocasionado por una fuerte ráfaga de viento de 250 km/h, resultando los siguientes valores.

SUMA DE CARGA ESTÁTICA MAS VIENTO kg/cm² Banda 2 3 1 6.282 4.134 4.211 4.190 C.L. 2 2.739 1.802 1.836 1.827 3456 <u>C.</u> 2.398 1.578 1.607 1,599 2.019 1.328 1.353 1.346 1.663 1.094 1.115 1.109 1.526 1.004 1.023 1.017

Posteriormente, de forma análoga, se considera el efecto estático adicionado por las reacciones que son provocadas por el balanceo sísmico de la estructura de cimentación para una aceleración máxima en la superficie de 100 gals, resultando los valores siguientes.

SUM/	DE CAR	kg/cm²				
Band	2	1	2	3	4	
1		5,732	3.772	3.842	3.823	CL.
2		2.615	1.721	1.753	1.744	
3	<u>C.L.</u>	2.354	1.549	1.578	_ 1.57 <u>0</u>	
4		2.063	1.357	1.383	1.376	7
5		1.787	1.176	1.198	1.192	
6		2.076	1.366	1.391	1.384	f

Ahora bien, ya conociendo las reacciones unitarias en cada caso, se procede a estimar el factor de seguridad contra la falla local de la cimentación, en la esquina y en la orilla.

Una vez ya estimada la capacidad de carga en condiciones estáticas y sísmicas se pueden evaluar los factores de seguridad según lo escrito anteriormente y cuyos resultados se presentan a continuación.

(de tabla B.17.c)

(de tabla B.17.e).

	1
Oritta	12.63
Esquina	8.31
•	er er
Orilla	7.85
Esquina	5.16
-	ļ (
Orilla	3.06
Esquina	2.01
	A LOCAL Orilla Esquina Orilla Esquina Orilla Esquina

(de tabla B.18)

Del análisis realizado se determina que es posible construir un edificio hasta de 17 pisos, bajo condiciones permisibles de seguridad.

Del análisis hecho se determina que la relación que se guarda entre el periodo equivalente de la estructura (To) y el periodo dominante del suelo (Ts), es menor en el edificio de cinco pisos (To/Ts=1.41) que con el edificio de diecisiete pisos (To/Ts=4.13), esto trae como consecuencia que el efecto dinámico del sismo sea más desfavorable en el edificio de cinco pisos, ya que éste tiene un factor de amplificación sísmico de 2, mientras que para el edificio de diecisiete pisos es obtiene un factor de amplificación sísmico de 1, es decir, la fuerza sísmica del edificio de diecisiete pisos es proporcionalmente a su carga, un medio del de cinco pisos, por lo tanto el sismo lo afecta menos, en otras palabras puede decirse que el momento de volteo total es menos importante que para el edificio de cinco pisos. Resumiendo, mientras que To/Ts se aproxime más a la unidad, mayor es la amplificación de la respuesta, es por ello que en este tipo de suelos los edificios más altos y más flexibles son más resistentes desde el punto de vista sísmico

IV.3 IMPORTANCIA DE LA PRESIÓN SÍSMICA DE PORO Y SU INFLUENCIA EN LAS PRESIONES DE CONTACTO

La determinación de los módulos dinámicos de rigidez al cortante, son función del nivel de esfuerzos efectivos a que esta sometida la masa de suelo, cuando se presenta el fenómeno sísmico se observa que inmediatamente se genera una presión sísmica en el agua de poro que disminuye el esfuerzo efectivo $(\sigma_{sis} = \sigma_{est} - \omega_{sis})$ y en consecuencia también disminuyen los módulos dinámicos de rigidez al cortante, quedando la expresión II.18 de la siguiente forma:

$$\mu_z = C_d \cdot \left(\sigma_z - \omega_{sis}\right)^{n_d}$$
 IV.3

Esta expresión es valida siempre y cuando el tiempo que requiera el subsuelo para aliviar esta presión en exceso sea mayor que la duración del sismo, en el material granular que se está estudiando se consideró que el alivio de esta presión es inmediato y por lo tanto no es aplicable esta expresión, más sin embrago, en el caso que fuera aplicable resulta que seria favorable, debido a que disminuyen ligeramente los esfuerzos de contacto en la orilla de cimentación y se incrementa ligeramente en el centro de ésta, trayendo como consecuencia que el factor de seguridad que se obtenga sea ligeramente mayor.

Para demostrar lo anterior se presenta a continuación la matriz de módulo dinámicos de rigidez al cortante en donde se demuestra que estos disminuyeron importantemente con respecto a los

•

considerados en el subcapítulo V.4, al considerar la presión de poro sísmica. Los resultados de la estimación de los módulos dinámicos de rigidez para el sentido transversal se muestran en la tabla E.1.d. Y los esfuerzos de contacto originados por el balanceo sísmico son los siguientes (de tabla B.20.e).

Aq (kg/cm ⁻) 1.293 0.196 0.071 0.071 -0.196 -1.293	Xi	(m)	5.00	3.00	1.00	-1.00	-3.00	-5.00
	Δq	(kg/cm ¹)	1.293	0.196	0.071	-0.071	-0.196	1.293

Después de este breve análisis se puede concluir que aún tratándose de suelo granular cuya granulometría no permita que la disipación de la presión sísmica del agua de poro sea inmediata, lo más razonable es siempre considerar la expresión II.18 y no la IV.3, dado que esta condición es más crítica, aunque desde el punto de vista práctico no vale la pena realizar este refinamiento dado que los niveles de esfuerzos prácticamente se conservan iguales, su diferencia no es mayor de un 5 a 6% en términos generales.

r.

CAPÍTULO VI CONCLUSIÓNES Y RECOMENDACIONES

Una vez ya presentado el método de análisis de ISE para suelos granulares finos considerando condiciones estáticas y la aplicación de la sismo-geodinámica para analizar el balanceo de la cimentación por sismo o una fuerte ráfaga de viento, se hizo aplicación de éste para demostrar su sencillez en la práctica profesional, de donde se llega a las siguientes conclusiones y recomendaciones.

- El comportamiento físico del subsuelo en campo libre cuando se propagan ondas sísmicas es estudiado por la sismo-geodinámica, para ello contamos con las propiedades dinámicas del subsuelo, las cuales tienen que ser adaptadas al sismo para poder interpretar satisfactoriamente sus consecuencias. Primeramente se estima el periodo fundamental del suelo por medio del método de las celeridades, pero debido a que no tiene ninguna restricción tiene que ajustarse por el método de las distorsiones que establece condiciones de frontera que deben cumplirse para satisfacer el procedimiento, posteriormente se continúa con el análisis de la onda que interese (la onda de cortante, la componente horizontal de la onda de superficie o la onda irrotacional), según el problema que se tenga, de donde se determina la amplitud de desplazamientos sísmicos en la masa de suelo, la presión sísmica en el agua de poro y finalmente la aceleración del subsuelo con respecto a la profundidad. Véase la importancia de esto, por lo cual se recomienda obtener los parámetros dinámicos de cada estrato del suelo, de probetas inalteradas, además de que se realice bajo las condiciones que predominan en el campo de esfuerzo octahédrico y contenido de humedad..
- La presión sísmica del agua de poro que se induce, reduce la presión de contacto entre grano y grano del material granular, ocasionando que disminuya el ángulo aparente de fricción interna, lo cual trae como consecuencia que disminuya la capacidad de carga del suelo dado que los factores de capacidad de carga se encuentran en función del ángulo de fricción interna, para estimar el ángulo de fricción interna sísmico se requiere conocer la presión sísmica del agua de poro que se genera y que se puede determinar con el análisis de la sismo-geodinámica del subsuelo; es ésta una razón más para considerar indispensable el análisis de la sismogeodinámica, dado que de esta forma se puede llevar a cabo el cálculo de capacidad de carga sísmica y del factor de seguridad en presencia de sismo.
- Al realizar el cálculo de la primera iteración para el edificio de cinco pisos se observa que no se
 considera necesario continuar con el cálculo por el alto margen de seguridad que existe, el factor de
 seguridad que resulta para la condición más crítica es de 8.7 que corresponde a cuando existe la
 presencia de sismo, dado lo anterior, yo recomendaría que se incrementen algunos pisos para de esta
 forma aprovechar de mejor y mayor forma las capacidad del suelo y además que el edificio sea más
 redituable económicamente y disminuya el costo de la cimentación con respeto al costo total de la
 obra, dado que prácticamente la cimentación no cambia sustancialmente para los dos edificios.
- El proyecto inicial consistía en un edificio de cinco pisos, más sin embargo se determinó, que se le pueden agregar 12 pisos más, es decir, que el edificio en cuestión puede tener hasta 17 pisos, considerando un factor de seguridad de 2 en condiciones sísmicas, para una aceleración máxima en la superficie de 100 gals.
- El módulo de deformación unitaria (Mz) que representa los parámetros estáticos de deformación se va aumentando ligeramente en cada iteración que se realiza provocando que se disminuya la compresibilidad del material, lo cual es benéfico para la ISE, dado que se observa que la tendencia de distribución de esfuerzos en la cimentación, tiene una mayor concentración en la orilla de la

cimentación que en el centro, esto implica que se pueden determinar las flexiones reales y cortantes en la estructura de cimentación, para de esta forma colocar el acero de refuerzo en la posición correcta.

- El módulo dinámico de rigidez (μ), que representa el parámetro dinámico de deformación, va aumentando en cada iteración que se realiza, lo cual indica deformaciones menores a medida que aumenta la distribución de esfuerzos, es decir, el subsuelo se encuentra más confinado, esto provoca que exista una mayor concentración de esfuerzos en las franjas de la orilla de la cimentación y principalmente en las esquinas.
- La situación de iterar es muy convergente, se concluye que con tres iteraciones se satisface la compatibilidad de deformaciones desde el punto de vista de la ingeniería práctica, aclarando que para cada iteración se deben determinar los parámetros de deformación (módulo de deformación unitario) correspondientes al nivel de esfuerzos a que está sometida la masa de suelo granular, es decir, calcular la matriz de flexibilidad para los nuevos niveles de esfuerzos que resultan de la iteración anterior, esto es realmente rápido si se hace uso de la computadora.
- Del análisis hecho se determina que la relación que se guarda entre el periodo equivalente de la estructura (To) y el periodo dominante del suelo (Ts), es menor en el edificio de cinco pisos (To/Ts=1.41) que con el edificio de diecisiete pisos (To/Ts=4.13), esto trae como consecuencia que la respuesta de aceleración con respecto a la aceleración máxima del suelo sea más desfavorable en el edificio de diecisiete pisos se obtiene un factor de amplificación sísmico de 2, mientras que para el edificio de diecisiete pisos se obtiene un factor de amplificación sísmico de 1, es decir, la fuerza sísmica del edificio de diecisiete pisos es proporcionalmente a su carga, un medio del de cinco pisos, por lo tanto el sismo lo afecta menos, en otras palabras puede decirse que el momento de volteo total es menos importante que para el edificio de la respuesta, es por ello que en este tipo de suelos los edificios más altos y con flexibilidad controlada son más resistentes desde el punto de vista sísmico
- Los depósitos granulares finos son más favorables para la cimentación de edificios, sin embargo, se ve claramente que los mayores problemas en estos suelos son de carácter sismo-geodinámico, es decir, están relacionados con la reducción de la capacidad de carga debido a la presión sismica en el agua de poro (fenómeno de licuación) y no con problemas de asentamientos y capacidad de carga ante solicitaciones estáticas, esto queda demostrado por los factores de seguridad tan altos que se obtuvieron tanto para el edificio de cinco pisos como para el de diecisiete en condiciones estáticas.

Además de lo anterior se juzga necesario hacer las siguientes recomendaciones para facilitar la aplicación del método.

• Entre mayor sea el número de franjas supuestas "n" en que es dividida la estructura de cimentación y menor sea el espesor de los subestratos analizados que forman cada elemento finito se obtiene mayor precisión en los resultados, sin embargo, se considera que es suficiente desde el punto de vista de la ingeniería práctica que: a) "n" sea un número par y no menor de 8 en el sentido largo y 6 en el sentido corto; b) cuando menos considerar cada estrato de la estratigrafía y en caso de que alguno de estos sea mayor de 4 metros de espesor, dividirlo en subestratos, ajustando los parámetros a las condiciones de campo; c) el ancho de cada franja "n" debe ser igual, d) el análisis se realice hasta un estrato resistente; las indicaciones anteriores nos ayudan a aprovechar la simetría de la cimentación y facilitar el cálculo.

- Para verificar la bondad de la teoría propuesta, se juzga necesario realizar una instrumentación permanente del comportamiento de la estructura como de la masa de suelo granular, haciendo uso de piezómetros electrónicos, celdas de presión, acelerómetros en cada estrato sincronizados con un acelerógrafo en la superficie y nivelaciones de la cimentación y estructura, durante la construcción, después de ésta y cuando se presenten fenómenos sísmicos importantes, para saber como varía la aceleración y la velocidad orbital a través de los diferentes estratos del subsuelo, así también es necesario en edificaciones ya construidas para llevar el registro de desplazamientos verficales y si acaso horizontales a lo largo de la vida del edificio y poder conocer los desplazamientos originados por el sismo.
- La problemática fundamental del ingeniero para aplicar estas técnicas, es la de poder asignar los parámetros más adecuados o bien los más cercanos a la realidad y poder visualízar las incertidumbres que en estos existen para asignar factores de seguridad razonables. Es importante resaltar que en zonas en donde hay la posibilidad de que se presenten sismos destructores existe la necesidad de investigar profundamente los parámetros dinámicos del subsuelo, así como su aplicación técnica y práctica al diseño de cimentaciones y de esta forma realizar edificaciones más seguras y económicas, tal y como se ha procurado hacer en este trabajo de investigación.

REFERENCIAS

Barden, L. (1962). Distribution of Contact Pressure Under Foundations. Geotechnique. Vol. XII. p. 181.

- Borowicka, H. (1936). Influence of Rigidity of a Circular Foundation Slan on the Distribution of Pressures over the Contact Surface. Proc. I ICOSOMEF. Vol. II, pp. 144-149. Cambridge, Mass.
- Chamecki, S. (1956). Structural Rygidity in Calculating Settlements. Journal Soils Mechanics an Foundation División, Proceedings ASCE Vol. 82, N°. SM1, Paper 865.
- De Beer, E. E. (1957). The influence of the Width of a Foundation Raft on the Longitudinal Distribution of the Soil Reactions. Proc. IV ICOSOMEF, Vol. I, p. 269, London.

Fleming, R. (1930). Wind Stresses in Buildings. John Wiley and Sons, Nueva York.

- Grasshoff, H. (1957). Influence of Flexural Rigidity of Superstructure on the Distribution of Contact Pressure and Bending Moments of an Elastic Combined Footing. Proc. IV ICOSOMEF, Vol. I, pp. 300-306, London.
- Heil, H. (1969). Studies on the Structural Rigidity of Reinforced Concrete Building Frames on Clay, Proc. VII ICOSOMEF, Vol. II, pp. 115, México.

Hetenyi, M. (1964). Beams on Elastic Foundations. University of Michigan Press, 7^a. Reimpresión.

- Schultze, E. and Kotzias, P. (1961-1). Geotechnical Properties of Lower Thine Silt. Proc. V ICOSOMEF, pp 329-333, Paris, Francia
- Schultze, E. and Moussa, A. (1961-2). Factors Affecting the Compressibility of Sand. Proc. V ICOSOMEF, pp 335-340, Paris, Francia
- Schultze, E. (1961-3). Distribution of Stress Beneath a Rigid Foundation. Proc. V ICOSOMEF, pp 807-813, París, Francia
- Sommer, H. (1965). A Method for the Calculation of Settlements, Contact Pressures and Bending Moments in a Foundation Including the Influence of the Flexural Rigidity of the Superstructure. Proc. VI ICOSOMEF, Vol. II, pp. 197-201, Canadá.

Winkler, E. (1967). Die Lehre von der Elastizität und Festigkeit, p 182, Prague Verlag.

- Withiam, J. L. and Christiano P. P. (1982). Predicting Settlements of Mat Foundations on Sandy Soils. Proc. X ICOSOMEF, pp 273-276.
- Zeevaert, L. (1982). Soil-Structure Interaction of a Rigid Foundation Subject to a Dynamic Overturning Moment. Volume honoring Professor E. E. De Beer, Edited by Jules Ducolot S.A. á Gembloux, pp. 297-301, Belgium.
- Zeevaert, L. (1983). Foundation Engineering for Difficult Subsoil Conditions, 2^a. Edition, Van Nostrand Reinhold Co., Nueva York.

- Zeevaert, L. (1987). Seismo-Soil Dinamics Response of the Ground Surface and Building Foundations in México City Earthquake, September 19, 1985. THE TWENTY-THIRD TERZAGHI LECTURE, October 27, 1987. (Publ.) American Society of Civil Engineers, Geotechnical Engineering Division, Vol. 117, N°. 3, Mar. 1991.
- Zeevaert, L. (1988). Sismo-Geodinámica de la Superficie del Suelo, Impresora Internacional, México D.F.
- Zeevaert, L. (1990). Conceptos básicos en el Diseño de Cimentaciones Compensadas sin y con Pilotes, SMMS, DEPFI, UNAM, México D.F.
- Zeevaert, L. (1991). Interacción Suelo-Estructura de Cimentación, 2ª. Edición . Limusa, México D.F.
- Zeevaert, L. (1993). Teoría y Practica del Péndulo de Torsión (FTP), 2^e. Reimpresión, DEPFI, UNAM, México D.F.
- Zeevaert, L. (1996). The Seismic-Geodynamics in the Design of Foundation in Difficult Subsoil Conditions. 3rd International Symposium on Environmental Geotechnology, Vol. I, Edited by Hsai-Yang Fang and Hilary I. Inyang, San Diego, U.S.A.
- Zeevaert, L. (1998). Análisis Físico sobre Licuación en Mecánica y Dinámica de suelos, DEPFI, UNAM, México D.F.
- Zienkiewicz, O.C. y Taylor, R.L. (1995). El Método de los Elementos Finitos, Vol. I y II, Mc Graw Hill, 4^a. Edición, Barcelona España.

APÉNDICE A CÁLCULO PARA EL EDIFICIO DE CINCO PISOS

A lo largo de este apéndice se presenta el cálculo del edificio de cinco pisos, considerando la parte estática y el balanceo por una fuerte ráfaga de viento o bien por la acción sísmica. El apéndice está dividido en tablas, de las cuales cada una de ellas está dedicada a un cálculo específico, a continuación se indica que tipo de cálculo se realiza en cada una de ellas.

CONDICIONES ESTÁTICAS

 Tabla A.1, Resumen de las características de carga y altura del proyecto original (edificio de cinco pisos)

Tabla A.2, Cálculo de matriz de esfuerzos de alivio por excavación, en el sentido longitudinal

Tabla A.3, Cálculo de matriz de esfuerzos de alivio por excavación, en el sentido transversal

Tabla A.4, Cálculo de matriz de módulos de deformación en sentido longitudinal

Tabla A.5, Cálculo de matriz de módulos de deformación en sentido transversal

Tabla A.6, Interacción suelo estructura sentido longitudinal, condiciones estáticas

Tabla A.7, Interacción suelo estructura sentido transversal, condiciones estáticas

CONDICIONES DINÁMICAS

Tabla A.8, Cálculo de matriz de módulos dinámicos de rigidez en sentido transversal Tabla A.9, Interacción Suelo-Estructura en sentido transversal (balanceo por viento) Tabla A.10, Interacción Suelo-Estructura en sentido transversal (balanceo por sismo)

CONCLUSIONES DEL CÁLCULO DEL EDIFICIO DE 5 PISOS

1. A. 1.

Tabla A.11, Planta de cargas en un medio de la losa de cimentación

Tabla A.12, Análisis de capacidad estática y sísmica, además de factores de seguridad

CONDICIONES ESTÁTICAS

.

Tabla A.1	Características	del edificio	de 5	písos
-----------	-----------------	--------------	------	-------

Cimentación de edificio	ancho	12.00	m			
	largo	24.00	m			
Peso del edificio			•.			
Peso de la cimentación y muros					3.0,	t/m²
Peso planta baja					1.5	t/m²
Peso de pisos superiores	4	pisos	1.1	t/m² c/u	4.4	t/m²
Peso de azotea					1.1	t/m²
					10.0	t/m²
Altura del edificio						
Altura de pisos superiores y azotea	3.2	m	4	tramos	12.8	m
Altura planta baja					3.5	m
Altura de sótano y cimentación					6.0	m
				Total	22.3	m
	,				٦	1
· · · · · · · · · · · · · · · · · · ·		T	m	t-m	Į.	
Centro de masas (analísis por m ²)		Peso	Altura	Momento	4	
Sótano y cimentación		3.0	1.5	4.50		Ì
Planta baja	ſ	1.5	6.0	9.00	<u> </u>	
Pisos superiores	1ro	1.1	9.5	10.45	2	
	2do	1.1	12.7	13.97	ß	-
	3ro 🛛	1.1	15.9	17.49	8	
	4ro	1.1	19.1	21.01	0	
Azotea	5to	1.1	22.3	24.53))	
	Total	10.0		100.95		
	-				-	
	Altura	centro d	10.095	metros		
	Masa	por met	tro lineal	12.232	t*s²/m	
	Altura	libre par	ra viento	16.300	[m	

العكام الجار التراجي
Tabla A.2 Cálculo de matriz de esfuerzos de alivio por excavación, en el sentido longitudinal

-
G EXC

		G EXC								
	Desplante ci Esfuerzo efe	mentación ctivo por alivio	de excava	ación	600 -0.68	cm ka/cm²	•			
	NOT						da maafi	بمحاج المحاجات	مريقة ماء لـم	: •I
	NOTA	A: Este estuerz	o efectivo	es el que	correspond	1e a 4.0 m	de protun	aldad desi	oues de ba	ijar ei
	NAS,	no considero i	a excavac	ion de 4.0	a 6.0 m di	e prorunaio	iad, dado (que estos	2.0 m taita	ntes se
	excav	aran por susti	ución.							
	Datos de la b	anda	1	cm						
				В=	600	cm				
				λ=	= 300	cm				
	ESFUERZOS	S EN FAJA	1 Y 8							
	1	2	3	4	5	6	7	8	-	
	Prof.	Distancia	Argum	entos ang	gulares pa	ra <u>γ</u> ≈ 4	qi	Δσεχς	•	
	media	dı	ar0	ψι	ψ2	(l)i	carga	esfuerzo	1	
	cm	cm	1	1	1	kg/cm ²	kg/cm ²	kg/cm ²		
_		<u> </u>]]			l		_	
	100	0.00	1.406	0.983	-0.983	0.960	-0.680	-0.653	•	
	100	300.00	1.086	1.352	0.983	0.019	-0.680	-0.013		
a)	100	600.00	0.779	1.438	1.352	0.000	-0.680	0.000		
	100	900.00	0.585	1.476	1.438	0.000	-0.680	0.000		
	100	1200.00	0.462	1.497	1.476	0.000	-0.680	0.000		
	100.	1500,00	0.380	1.510	1.497	0.000	-0.680	0.000		
	100	1800,00	0.321	1.520	1.510	0.000	-0.680	0.000		
-	100	2100.00	0.278	1.526	1.520	0.000	-0.680	0.000	-	
	-	x.					Geze -	-0.666	{	
	términon «		an araum	antas and	ularea na	ooorioo n	ara octim		l do lo influ	onaia (I):
LUS	terminus d	ο, ψ1 y ψ2 St οποτοίο του οπ	n argun		julaies ne	cesanos p	ala esuma			iencia (i)i
para		acioi de conce	nuacion ()	()de Fronii	ich liene ui	i valor de (Aundrident	4, que es i tal as al si		orrespond	
יוטוי הכל	de reference	ionde la comp		se reduce	e con la pro	o colouica,	tal es el ci	aso de las	arenas, ve	er pagina
220	bio de setue	na Zeevaert (991). Se	nace nota o do ouolo	i que er lo	s calculos	siguientes	s, que se	requiera e	stimar ei
Cam En li	ndio de esíde	an indiana los		a ue sueit	, se usara Lolivio do	esta mism	a metodoi a nival da	uyia Ia basa da	In aimont	
		ae muican ios	yı, yue rep	acsenta el	anno de	COLUCIZOS	a mvel üe	ia Dase De	ia cimenta	
					· · · · · ·	. <u> </u>				
			•							
Ā	MATRIZ DE E	SFUERZOS D	E ALIVIO	POR EXC	AVACIÓN			Texc		
	Estrato	Prof.	Faja	Faja	Faja	Faja	Faja	Faja	Faja	Faja
		modia	4	2	2		<u>a</u>	3	7	0

	£.		٩.
. 1		,	

		media	1 :	2	3	4	5	6	7	8
		<u></u>	kg/cm²	kg/cm²	kg/cm ²	kg/cm²	kg/cm ²	kg/cm²	kg/cm²	kg/cm ²
-										
	Arena 2c	100	-0.666	-0.679	-0.680	-0.680	-0.680	-0.680	-0.679	-0.666
)	Arena 2d	300	-0.545	-0.656	-0.666	-0.667	-0.667	-0.666	-0.656	-0.545
-	Arena 3a	500	-0.450	-0.588	-0.618	-0.624	-0.624	-0.618	-0.588	-0.450
	Arena 3b	700	-0.378	-0.501	-0.546	-0.558	-0.558	-0.546	-0.501	-0.378
_	Arena 3c	900_	-0.319	-0.420	-0.469	-0.487	-0.487	-0.469	-0.420	-0.319
_	Arena 3b Arena 3c	700 900	-0.378 -0.319	-0.501 -0.420	-0.546 -0.469	-0.558 -0.487	-0.558 -0.487	-0.546 -0.469	-0.501 -0.420	((

Simbología usada para denotar los cambios de esfuerzo vertical

Esfuerzo de alivio debido a la excavación **T**exc

Esfuerzo de sobrecarga de campo ("in situ") σoz

Esfuerza por recarga debido al edificio σ

.

Tabla A.3 Cálculo de matriz de esfuerzos de alivio por excavación, en el sentido transversal

٢

	Desplante cir Esfuerzo efe	mentación ctivo por alivio	de excav	ación	600 -0.68	cm kg/cm²		~				
	NOT/ 4.0 m 4.0 a	A: Este esfuerz de profundida 6.0 m de profu	o efectivo d después indidad, da	de alivio p s de bajar e ado que es	oor excava el NAS, no tos 2.0 m	ción es el considero se excava	que corres la excava rán por su	ponde a ción de stitución.				
	Datos de la b	panda	I	largo 2B ≈ B ≈ λ ≃	2400 1200 200	cm cm cm						
{	ESFUERZOS EN FAJA 1Y6											
	Prof.	Distancia	Argum	entos ang	julares pa	$ra \chi = 4$, qi	Δσεχς				
	media	1	010	Ψ1	ψ2	(İ)i	carga	esfuerzo				
	cm	cm	}		1	kg/cm²	kg/cm²	kg/cm²				
	100	0.00	1.488	0.785	-0.785	0.884	-0.680	-0.601				
a)	100	200.00	1.387	1.249	0.785	0.056	-0.680	-0.038				
	100	400.00	1.240	1.373	1.249	0.002	-0.680	-0.001				
	100	600.00	1.102	1.429	1.373	0.000	-0.680	0.000				
	100	800.00	0.979	1.460	1.429	0.000	-0.680	0.000				
	100	1000.00	0.874	1.480	1.460	0.000	-0.680	0.000				
							Gerc =	-0.641				
Las	consideracion	es hechas en l	la tabla A.:	2 son válio	ias para es	ste caso ta	mbién.					
	MATRIZ DE L	ESFUERZOS (DE ALIVIO	POR EX	CAVACIÓ	N		σexc				
	Estrato	Prof.	Faja	Faja	Faja	Faja	Faja	Faja				
		media	1	2	3	4	5	6				
		cm	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²				
b)							0.070					
	Arena 20	100	-0.641	-0.679	-0.680	-0.680	-0.679	-0.641				
	Arena 20	300	-0.495	-0.639	-0.000	-0.000	-0.039	-0.495				
	Arena 3a	700	-0.432	-0.500	-0.021	-0.021	000.0-	-0.432				
	Arena 30	000	-0.352	-0.301	-0.054	-0.004	-0.301	-0.382				
- <u></u> -	Alena Su		-0.350	-0.438	-0.403	-0,400	-0.439	-0.000				

Sec. Oak

States and

Tabla A.4	Cálculo de matriz de módulos de deformación en sentido longitudinal
Para edific	io de 5 pisos

	Desplante	cimenta	ción		600	cm					······	
ł	Datos de	la banda	ia	argo 2B •	1200	cm						
ł				B	= 600	cm						
1				λ-	= 300	cm						
}	ESFUER2	OS EN F	AJA	1 Y 8								
ł	Prof.	Distancia	Argum	entos an	gulares p	ara χ = 4	qi	σ	~			
<u>{</u>	media	1	αο	Ψt	Ψ2	(1)] carga	esfuerz	0			
1	cm) cm				kg/cm ²	kg/cm ²	kg/cm²				
1		1	}	{	1]		Ľ	_			
l	100	0.00	1.406	0.983	-0.983	0.960	0.600	0.576	-			
ł	100	300.00	1.086	1.352	0.983	0.019	0.600	0.012				
a)	100	600.00	0.779	1.438	1.352	0.000	0.600	0.000				
5	100	900.00	0.585	1.476	1.438	0.000	0.600	j 0.000				
	100	1200.00	0.462	1.497	1.476	0.000	0.600	0.000				
Ł	100	1500.00	0.380	1.510	1.497	0.000	0.600	0.000				
1	100]1800.00	0.321	1.520	1.510	0.000	0.600	0.000				
1	100	2100.00	0.278	1.526	1.520	0.000	0.600	0.000	-			
ł								0.588	}			
┣												
1												
1	MATRIZ L	E ESFUE	RZOS P	OR EDIF			σ				_ Esfi	uerzos de
	Estrato	Prof.	Faja	Faja	Faja	Faja	Faja	Faja	Faja	[Faja	sc	obrecarga
ł		media	1	2	3	4	5	6	7	8		Coz
1	·	<u> </u>	kg/cm²	kg/cm [*]	kg/cm ²) kg/cm ²	kg/cm ^z	kg/cm ²	kg/cm²	kg/cm²	-	kg/cm²
ł					1			0.000	0.000			
D)	Arena 2c	100	0.588	0.600	0.600	0.600	0.600	0.600	0.600	0.588		0.705
	Arena 2d	300	0.481	0.579	0.588	0.589	0.589	0.588	0.579	0.481		0.855
	Arena Ja	300	0.397	0.518	0.540	0.551	0.551	0.540	0.510	0.397		1.010
j	Arena 30	000	0.333	0.442	0.462	0.493	0.493	0.462	0.442	0.333		1,170
ł	Arena 30	900	0.202	0.3/1	0.414	0.429	0.429	0.414	0.371	0.202	•	1.000
┢──										·		
1			8706		(
	MATRIZO	E ESFUE	R205		(002708)						وتعراه الدامتين	
[LSTrato	PTOT.	Faja	Faja	Faja	Faja	i raja	Faja	Faja	⊦aja	Ley renom	enologica
	,	media		2	3	4	5	6	1	8	$Cs^{(1+Kv)}$	ាទ
Į		<u> </u>	Kg/cm²	Kg/cm-	Kg/cm-	Kg/cm²	Kg/cm*	kg/cm-	Kg/cm*	Kg/cm*	 	┝
	A	100	0 607	0.656	0.005	0.005	0.005	DEDE	0.005	0.007	0.0104	0.55
C)	Arena 20	200	0.027	0.025	0.020	0.020	0.025	0.020	0.020	0.021	0.0104	0.55
	Arena 20	500	0.791	0.776	0.777	0.110	0.770	0.027	0.110	0.791	0.0104	0.55
	Arena Sa	700	0.907	0.941	0.937	1 104	0.937	1 100	0.947	1 176	0.0073	0.52
	Arena 30	700	1.120	1.111	1.075	1.104	1,104	1.100	1.111	1.120	0.0073	0.02
	Alena Sc	900	1.292	1.201	1.275	1.275	1.275	1.275	1.201	1.292	0.0073	0,52
1	MATPIT D							cm²/ka		$M_{z} = 0$	$C_s \cdot \sigma_z^{-n_s} (1 \cdot$	$+\kappa_v$)
	Estrato	Brof	Faia	Fala	Faia	Faia	Faia	Faia	Faia	Faia	,	
		media	1	· ••jen 2	3	4	5	6	. aja 7	8		
		meana	Mz	Mz	Mz	Mz	Mz	Mz	Mz	Mz		
											Ĩ	
d)	Arena 2c	100	0.01344	0.01346	0.01346	0.01346	0.01346	0.01346	0.01346	0.01344		
-1	Arena 2d	300	0.01183	0.01194	0.01195	0.01195	0.01195	0.01195	0.01194	0.01183		l l
	Arena 3a	500	0.00745	0.00751	0.00753	0.00753	0.00753	0.00753	0.00751	0.00745		
	Arena 3b	700	0.00685	0.00689	0.00691	0.00691	0.00691	0.00691	0.00689	0.00685		
	Arena 3c	900	0.00637	0.00640	0.00642	0.00642	0.00642	0.00642	0.00640	0.00637		

•

	Para edific	io de 5 pisos	5							
	Desplante d	imentación			600				······	
	Datos de la	banda		largo 2B =	= 2400	cm	•			
				B	= 1200	cm				
				λ=	= 200	cm			للحرك	
	ESFUERZO	DS EN FAJA	_	1 Y 6					_	
	Prof.	Distancia	Argun	nentos an	gulares pa	ara $\chi = 4$	qi	σ	-	
	media	1	α0	ψ1	ψ2	(l)i	carga	esfuerzo	•	
	cm	l cm	}			kg/cm ²	kg/cm ²	kg/cm ²		
		+	+	+	+				-	
-1	100	0.00	1.488	0.785	-0.785	0.884	0.600	0,530		
a)	100	200.00	1.307	1.249	1 240	0.000	0.000	0.034		
	100	400.00	1.240	1.373	1 272	0.002	0.000	0.001		
	100	800.00	0.070	1.425	1.373	0.000	0.000	0.000		
	100	1000.00	0.979	1.400	1.425	0.000	0.000	0.000		
		1 1000.00	1 0.014	1.400	1.400	0.000	1 0.000	0.000	1	
] 	
	MATRIZ DE	ESFUERZO	S POR E	<u>NFICIO</u>		σ			- Es	fuerzos de
	Estrato	Prof.	Faja	Faja	Faja	Faja	Faja	Faja	S	obrecarga
		media	1	2	3	4	5	6		σ ο2
		<u> </u>	kg/cm²	kg/cm ^z	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm²	-	kg/cm ²
ь\	Arona Da	100	0.565	0.500	0.600	0.600	0.500	0.555		0 705
D)	Arena 2d	200	0.303	0.599	0.000	0.000	0.599	0.000		0.705
	Arena 2a	500	0.437	0.004	0.560	0.500	0.504	0.437		1 010
	Arena 3h	700	0.30	0.302	0.340	0.340	0.302	0.301		1 170
	Arena 3c	900	0.314	0.387	0.426	0.426	0.387	0.314		1 330
	740112 00				0.420	0.440	0.001		•	
	MATRIZ DE	ESFUERZO	S	(G02+Gexc	+ σ)					
	Estrato	Prof.	Faja	Faja	Faja	Faja	Faja	Faja	Ley fenom	enológica
		media	1	2	3	4	5	6	Сs * (1+кv)	ns 🗌
		<u> </u>	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm²	kg/cm ²		
								_		
C)	Arena 2c	100	0.630	0.625	0.625	0.625	0.625	0.630	0.0104	0.55
	Arena 2d	300	0.797	0.780	0.777	0.777	0.780	0.797	0.0104	0.55
	Arena 3a	500	0.959	0.943	0.937	0.937	0.943	0.959	0.0073	0.52
	Arena 30	700	1.124	1.111	1.105	1.105	1.111	1.124	0.0073	0.52
	Arena 3c	900	1.200	1.270	1.213	1.213	1.270	1.200	0.0073	0.52
								<u> </u>	7 1/1	
	MATRIZ DE	MÓDULOS (DE DEFOR	RMACIÓN	UNITARIA	۱ <u> </u>	cm²/kg	$M_{f} = C$	$s \cdot o_Z \cdot (1)$	^{+ K} , J
•	Estrato	Prof.	Faja	Faja	Faja	Faja	Faja	Faja		
		media	1	2	3	4	5	6		1
			Mz	Mz	Mz	<u> </u>	Mz	Mz		
d) [-								ĺ
	Arena 2c	100	0.01341	0.01346	0.01346	0.01346	0.01346	0.01341		ł
	Arena 2d	300	0.01178	0.01192	0.01195	0.01195	0.01192	0.01178		
	Arena 3a	500	0.0044	0.00/51	0.00/53	0.00/53	0,00751	0,00/44		}
	Arena 30	900	0.00000	0.00003	0.00091	0.00642	0.00003	0.00000		}
	racing DU		0.00000	0.00071	0.000TL	0.00072	2.00041	0.00000		

Tabla A.5 Cálculo de matriz de módulos de deformación en sentido transversal Para edificio de 5 pisos

61 61

1 A.

Tabla A.6 Interacción suelo estructura sentido longitudinal Para edificio de 5 pisos

	Desplant	e cimenta	nción		600.00	cm				·
1	Despiana Datas da	la handa	loion Iai	ao 28 =	1200.00	cm				
1	Datos de		141	B =	• 600.00	cm				
1				2-	. 300.00	cm				
1		IA	1 V 2	λ-	. 300.00	CIII				
{	Coorden	ada al co	ntro dov	ola (v) o	nom		٥			
ſ	Estrato	Drof			mentos ar	nulares n	ara = 4	Mz	(Alpha)	Decola
ſ	23040	media	} "			w2		1 111	(Cipita)	unitario
ł		cm	cm	{		r -	kalcm ²	cm²/ka	cm ³ /kg	corregido
ł				L			Rgrotti			contegido
1	Arena 2c	100	200	1.406	0.983	-0.983	0.960	0.0134	2.688	2.581
a)	Arena 2d	300	200	1.107	0.464	-0.464	0.622	0.0118	2.365	1.471
ł	Arena 3a	500	200	0.876	0.291	-0.291	0.401	0.0074	1.490	0.597
ł	Arena 3b	700	200	0.709	0.211	-0.211	0.275	0.0068	1.369	0.376
ł	Arena 3c	900	200	0.588	0.165	-0.165	0.196	0.0064	1.274	0.250
1			1000	OK	J]	5.276
		<u> </u>								
	MATRIZ	DE FLEXI	BILIDAD	TRANS	PUESTA I	DEL SUEL	.0		[δij]	cm³/Kg
			0	300	600	900	1200	15 00	1800	2100
			Faja	Faja	Faja	Faja	Faja	Faja	Faja	Faja
			1	2	3	4	5	6	7	8
	•	F1	5.276	1.187	0.292	0.087	0.029	0.011	0.005	0.002
		F2	1.178	5.302	1.189	0.292	0.087	0.029	0.011	0.005
b)		Fa	0.289	1.187	5.306	1.189	0.292	0.087	0.029	0.011
		F4	0.086	0.291	1,189	5.307	1.189	0.292	0.087	0.029
		Fs	0.029	0.087	0.292	1.189	5.307	1.189	0.291	0.086
		F۵	0.011	0.029	0.087	0.292	1.189	5.306	1.187	0.289
-		F 7	0.005	0.011	0.029	0.087	0.292	1.189	5.302	1.178
		F8	0.002	0.005	0.011	0.029	0.087	0.292	1.187	5.276
				·						
	MATRIZ R	EDUCID	A POR SI	METRIA	l I		qi	DES	PLAZAMIEN	OTI
				[δŋ]	cm³/kg				VERTICAL	
-		<u>C1</u>	<u>C2</u>	C3	<u>C4</u>		kg/cm ²		cm	
	F1	5.278	1.192	0.303	0.117		0.600		4.134	
C)	F2	1.183	5.313	1.218	0.379	•	0.600	3	4.856	
	F3	0.300	1.216	5.393	1.482		0.600		5.035	
	F4	0.116	0.378	1,481	6.496		0.600		5.083	1
					val	or medio	0.600		4.///	
				18::14-1	ka/cm ³			CIMENTA	CIÓN RIGID	۸
				Toull - I	Ngrom	-		ďí	corrección	ai
	1	C1	C2	Сз	C4		cm	kg/cm ²	q'i /q'i medio	ka/cm ²
-		0.200	-0.044	-0.001	-0.001	-	4,777	0.732	1,209	0.725
d)	F2	-0.044	0.208	-0.044	-0,001		4.777	0.567	0.936	0.561
-,	F3	-0.001	-0.044	0.208	-0.045		4.777	0.563	0.929	0.558
	F4	-0.001	-0.001	-0.045	0.164		4.777	0.561	0.926	0,556
	-					Valore	s medios	0.606	1.000	0.600
							L			

.

 Tabla A.7 Interacción suelo estructura sentido transversal

 Para edificio de 5 pisos

1	Desplante	e cimenta	ición		600.00	cm					•
	Datos de	la banda	a	rgo 2B =	2400.00	cm			-		
1				8=	1200.00	cm					
1				λ=	= 200.00	cm					
1	PARA FA	JA	1 Y 6								
	Coorden	ada al ce	intro do	vela (x) e	en cm		0			- <u>.</u>	
1	Estrato	Prof.	H	Argu	mentos angulares para $\chi = 4$ Mz				(Alpha)	(Despla.	
1		media		Cto	ψ1	ψ2	(1)	}	α	Junitario	
1		cm	cm)	j	kg/cm²	cm²/kg	cm*/kg	corregido	
1 21	Arena 2c	100	200	1 488	0.785	-0 785	0.884	0.0124	2.681	2 370	•
•	Arena 2d	200	200	1 326	0.700	0 222	0.004	0.0119	2.001	1 090	
ł	Arena 20	500	200	1 176	0.022	0.022	0.400	0.0118	2.000	0.421	
1	Arena 34	700	200	1.170	0.197	-0.197	0.290	0.0074	4.270	0.431	
		700	200	1 1.043	0.142	-0.142	0.200	0.0069	1,370	0.200	
]	Arena Sci	900	200	0.927	0.111	-0.111	0.160	0.0064	1.270	0.204	
			1000	UK	ſ				ļ	4.370	
┣			- <u></u>	<u> </u>	<u>.</u>					<u></u>	
1							10		[c2]	omtika	
Į	MAIRIZ			200	ANN	600	800	1000	Toul	CITARS	
I			Eaia	Eaia	Faia	Enio	Eaia	Faia			
}		i	· -j-	1 aja 2	1 aja 2	i aja A	i aja E	i aja e			
ļ		E.	4 270	4 206	0.510	0 229	0.109	0.052			
		F1	4.3/0	1.380	0.010	0.220	0,100	0.053			
{ a		F2	1.3/4	4.398	1.389	0.518	0.228	0.107			
1		F3	0.513	1.385	4.404	1.389	0.517	0.226			
		F 4	0.226	0.517	1.389	4.404	1.386	0.513			
		F5	0.107	0.228	0.518	1.389	4.398	1.374			
		F 4	0.053	0.108	0.228	0.518	1.386	4.370			
ļ											
	MATRIZE	EDUCID	A PUR :	SIMETRI	A	[Oi]]	cm*/kg				
	1	C 4	C 1	C +							
_1		4 400	4 402	0.740	,						
C)	(יב	4,423	1.493	0.740							
	F2	1.481	4.626	1.907							
	FJ	0.739	1.902	5.793							
				10.34.4							
	MATRIZII	IVERSA		[04][~-1	Kg/cm*		0=+1	CONFIGU	RACION I	RANSVERSAL	rolaoián
	1	C 4	C •	<u>^.</u>			o m		kalam ²		amiaa
-n		0.264	0.070	0.007			4 000		NYICIII 0.160	am	1 260
u)		0.204	-0.075	-0.007			1.000	_	0.108	qiii	0.975
	F2]	-0.079	0.215	-0.000		•	1.000	-	0.110		0.070
	Lai	-0.007	-0.000	0.200	г		1.000		0.113		1 000
					Ł		valores p	romealos	0.132	rolació	1.000
·			·″				·			Teldolo	
	ESELIED7		SUFL) FN 1/4	DELAIA			IÓN		ka/cm²	1
										Kärann	
					Factor	F1	F2	Fa	F4	Sentido largo	
				am	gm/ga	0.725	0.561	0.558	0.556	kg/cm²	ł
e)		-	F1	0.168	1 269	0.921	0.713	0.708	0,705	0.762	
-,	Senti	do corto	F2	0.116	0.875	0.635	0.491	0.488	0.486	0.525	
			F3	0.113	0.856	0.621	0.480	0.477	0.475	0.513	
		-		0.132	0.000			media	0.00	ka/cm ²	
			Чª	0.102	1			moula	0.000		

.

CONDICIONES DINÁMICAS

•

	Desplante cimentación Datos de la banda			largo 2B = B =	600 2400 1200	cm cm cm				
1	ESFUERZO	S EN FAJA		1Y6		CIII				
	Prof.	Distancia	Argun	nentos an	gulares pa	ara $\chi = 4$	qi	σ		
1	cm	cm	au	Ψ	Ψ ²	(1)i kg/cm²	carga kg/cm²	kg/cm ²		
a)	100	0.00 200.00 400.00	1.488 1.387	0.785	-0.785	0.884	0.762	0.673	-	
ĺ	100 100	600.00 800.00	1.102 0.979	1.429	1.373	0.000	0.513	0.000		
	100	1000.00	0.874	1.480	1.460	0.000	0.762	0.000]	
\vdash							·····) 	fuerzos de
	Estrato	Prof.			Faia	Faia	Faia	Faia	. CS	obrecarda
		media	1	2	3	4	5	6		CT OZ
		<u> </u>	<u>kg/cm-</u>	Kg/cm-	Kg/cm ²	Kg/cm-		Kg/cm*		
0)	Arena 2¢ Arena 2d	300	0.704	0.537	0.514	0.514	0.537	0.490		0,705
	Arena 3a	500	0.402	0.487	0.502	0.502	0.487	0.402		1.010
	Arena 3b	700	0.353	0.430	0.461	0.461	0.430	0.353		1.170
	Arena 30	900	0.316	0.378	0.409	0.409	0.378	0.316	,	1.330
	MATRIZ DE									
	Estrato	Prof. media	Faja 1	Faja 2	Faja 3	Faja 4	Faja 5	Faja 6	Ley tenome Cd	enologica I nd
		CM	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm²		
c)	Arena 2c	100	0.768	0.563	0.540	0.540	0.563	0.768	285	0.76
	Arena 2d	300	0.850	0.757	0.708	0.708	0.757	0.850	285	0.76
	Arena 3a Arena 3b	500 700	0,980	0.929	0.892	0.892	0.929	0.980	350	0.52
	Arena 3c	900	1.290	1.269	1.255	1.255	1.269	1.290	350	0.52
<u> </u>				S DE RIG	DEZ		ka/cm²			
İ	Estrato	Prof.	Faja	Faja	Faja	Faja	Faja	Faja	$\mu = C$.	$\cdot \sigma_{*}^{n_{*}}$
		media	μz	μ ₂	μz	4 µ2	э µz	 	<i>r~z~~a</i>	- 2
d)	Arena 2c	100	233.23	184.14	178.33	178.33	184.14	233.23		
	Arena 2d	300	251.95	230.74	219.19	219.19	230,74	251.95		
	Arena 3b	700	373.14	367.70	363.69	363.69	367.70	373.14		
	Arena 3c	900	399.48	396.21	393.95	393.95	396,21	399.48		
							·	om2/ka	Md = 1/l	2(1+,1),1
	Estrato	Prof.		Faia	Faia	Faia	Faia	Faia (Faja	<u>ε(1, γ)</u> μι
	ĺ	media (ĺ	1	2	3	4	5	6	
				Md	Md	Md	Md	Md		
e)	Arena 2c	100	0.25	0.0017	0.0022	0.0022	0.0022	0.0022	0.0017	
	Arena 3a	500	0.25	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	
	Arena 3b	700	0.25	0.0011	0.0011	0.0011	0.0011	0.0011	0 0011	
	Arena 3c	900	0.25	0.0010	0.0010	U.0010	<u>0.0010</u>	<u>0.0010</u>	0.0010	

 Tabla A.9
 Interacción Suelo-Estructura en sentido transversal (balanceo por viento)

 Para edificio de 5 pisos

												
	Desplante	cimentad	ción		600.00	cm						
	Datos de l	la banda	lar	ao 28 =	2400.00) cm						
				8= B=	1200.00) cm		•				
•				2 -	200.00	cm						
ł	PARA FA	.IA	1Y6	~-	200.00	0117						
	Coordena	ida al ce	ntro dove	ela (x) er	n cm		0					
	Estrato	Prof.	H	Argun	nentos ar	ngulares	$ara \chi = 4$	Ma	(Alpha)	Despla.	-	
		media		α.0	Ψ1	ψ2	() i	7	a	unitario		
		cm	cm				kg/cm ²	cm²/kg	cm³/kg	corregido	•	
				ļ								
a)	Arena 2c	100	200	1.488	0.785	-0.785	0.884	0.0017	0.343	0.303		
	Arena 2d	300	200	1.326	0.322	-0.322	0.458	0.0016	0.318	0.146		
	Arena 3a	500	200	1.176	0.197	-0.197	0.290	0.0012	0.231	0.067		
	Arena 3b	700	200	1.043	0.142	-0.142	0.208	0.0011	0.214	0.045		
	Arena 3c	900	200	0.927	0.111	0.111	0.160	0.0010	0.200	0.032		
			1000	OK		1		OK		0.593		
									3			
										·		
i i	MATRIZ D	DE FLEXI	BILIDAD	TRANSI	PUESTA		cm³/Kg		MATRI	Z ANTI-SIN	IÉTRICA R	EDUCIDA
			cm³/Kg									
b)		Faia	Faia	Fala	Faia	Faja	Faja	1		Ci	C2	C3
	ļ	1	2	3	4	5	6			0.584	0.196	0.046
	F 1	0.593	0.213	0.082	0.036	0.017	0.008	1	F2	0.183	0.654	0.137
	F2	0 200	0.689	0.219	0.082	0.036	0.017	1	Fa	0.043	0 133	0 493
	F	0.078	0.213	0 712	0.219	0.080	0.035			1 0.0.0		
	E.	0.070	0.210	0.210	0.210	0.000	0.000	ſ				
İ 👘		0.000	0.000	0.219	0.712	0.210	0.070					
	E .	0.017	0.000	0.002	0.213	0.003	0.200					
	r• L	0.000	0.017	0.030	0.002	0.215	0.000	J				
											· · · · · · · · · · · · · · · · · · ·	
1	MATRIZ INVERSA Ka/cm³ CONFIGURACIÓN TRANSVERSAL											
Į						Xi	Δαί/θ	Λαιίθ	Xi	Көр		
	ł	C 4	Co	<u></u>		cm	ka(em2.rd	t/m².rd		t/m_rd		
		1 890	0.562	0.019		500	773.66	7 736 61	5.00	38 683		
-	En 1	0.524	4 770	0.010		200	226.67	2 266 72	2.00	6 800		
6)	F2	-0.324	1.770	-0.44/		100	220.01	2,200.72	5.00	0,000		
	F3	-0.023	-0.430	2.151		100	74.40	743.90	1.00	- 144		
	-								404.000	40,227		
	Pa	rametro	de defori	nación a	angular j	por giro	en la base	KD =	184,909	V	12+(1)	•
	Pa	arámetro	de defo	rmación	angular	. bor dito	o del muro	Kw =	57,504	KW =	:a-+(1+v)	×μ
F	PARÁMETR	o de de	FORMAG	CIÓN AN	GULAR	POR GIF	RO TOTAL	Kb + Kw =	242,413			
				Vak	vr modio	on 6 0 n	n de muro		1277.9	t/m ²		ר
				vak	n meaio	en 0.0 1		μ- 4-	E 00			
		A	. <i>0</i> 1	t = (Kb + .)	Kw)*0				1.00			
	Momento	de volte			,.				1.00	m Bata di Carat		1
a)	• •							v =	0.25	Relacion d	e Poisson	
	Altura (de edificio	o a partir d	del nivel (del suelo	H≖	16.30	m	μ =(577.9	+1433.9+18	21.8)/3	t/m²
			Supe	erficie de	fachada	S =	16.30	m²/m	Presión d	el viento	P = 5.18	*10 ⁻⁴ *V ²
			P	resión d	el viento	P =	0.324	t/m²	V = veloci	dad del vien	to en km/h	
				M	omento	Ovt =	56,95	lt-m		V =	250	km/h
					Giro	θ =	0.0002	rad		P =	0.324	t/m²
					·	0	Dov	∆q/θ	Δq	∆q	Ovb	-
						t-m/m	m	t/m²-rd	t/m²	ka/cm²	t-m/m	
	-		oca cime	ntoción	Out	43.44	5.00	7 736 6	1.82	0.182	18 18	-
~ }		سا محمد الفر	, de elimit	niciuli) niciuli		42.44	2 00	2 266 7	0.02	0.062	2 20	
e)		MUR	o de cilhe		<u> </u>	13.31	3.00	2,200,7	0,00	0.000	J.20	
				Suma	Ovt	56.95	1.00	/44.0	0.17	0.017	0.35	-
	E	sfuerzo u	niforme e	n muro			-1.00	-744.0	-0.17	-0.017	43.44	
		P =	0.75	1/m²			-3.00	-2,266.7	-0.53	-0.053	OK	
							-5,00	-7,736.6	-1.82	-0.182		

 Tabla A.10
 Interacción Suelo-Estructura en sentido transversal (balanceo por sismo)

 Para edificio de 5 pisos

_												
	Deceleri				600.00							
	Despiante	e cimentad	JION		000.00	CM						,
	Datos de	la banda	lar	go 2B ≖	2400.00	cm						
ł				Č 0-	1200.00	c 100						
				6-	1200.00	CIII						
1				λ=	200.00	cm						
	PARA FA	JA	1 Y 6									
	Coorden	ada al ce	ntro dov	ala (y) a	n cm		0			•		
ł	Editate				montos ar				T(Almho)	Decela	-	
	Estrato	Prot.	п	<u> </u>	nentos ar	iguiares p	<u>παιά χ = 4</u>	ma	(Alpna)	Despia.		
		media		ao	ψ1	įψ2	(I)i		α	unitario		
1		C m	cm			1	kg/cm ²	cm²/kg	cm ³ /kg	corregid	0	
1				1		ł	l T		-	1 -		
1 .	Arona 2a	100	200	1.400	0.795	0 795	0.004	0.0047	62/2	0.202	-	
	Alenia 20		200	1.400	0.705	-0.765	0.004	0.0017	0.343	0.505		
	Arena 20	300	200	1.320	0.322	-0.322	0.458	0.0016	0.318	0.146		
	Arena 3a	500	200	1.176	0.197	-0.197	0.290	0.0012	0.231	0.067		
1	Arana 3h	700	200	1 042	0142	0142	0.000	0.0011	0.214	0.045		
		100	200	1.040		-0.142	0.200	0.0011	0.214	0.040		
F	Arena 30	900	200	0.927	0.111	0.111	0.160	0.0010	0.200	0.032	_	
			1000	OK				I OK		0,593	1	
		· · · · · · · · · · · · · · · · · · ·			·							
1												
1	MATRIZ	DE FLEX	IBILIDAD	TRANS	IPUESTA		cm³/Kg		MATRIZ	ANTI-SIN	IETRICA RI	EDUCIDA
		0	200	400	600	800	1000				cm³/Ka	
Ь	1	Fais	Faia	Faia	Faia	Faia	Faia	1		1 61	C.	Ca
1		- aja	, aja	1 4 1 4	i aya	, aja	, aja			0.504	0.400	- 0.040
		1		<u> </u>	<u> </u>		0		P 1	0,504	0.190	0.046
	F1	0.593	0.213	0.082	0.036	0.017	0.008		F2	0.183	0.654	0.137
	F2	0.200	0.689	0.219	0.082	0.036	0.017		Fa	0.043	0.133	0.493
		0.079	0.042	0.740	0.040	0.000	0.025	1		1 414 14		0.100
1	F 3	0.076	0.213	0.712	0.219	0.080	0.055					
	F4	0.035	0.080	0.219	0.712	0.213	0.078					
	Fs	0.017	0.036	0.082	0.219	683 0	0.200					
		0.017	0.000	0.002	0.210	0,000	0.200					
1	FØ j	0.008	0.017	0.030	0.082	0.213	0.593	J				
·					<u> </u>							
	MATOIT			Kalemi			CONFIGU		DANEVE	DCAL		
	MAIRIZI	ITAEKON		Ky/ciii ⁻			CONFIGU		KANSVE	N9AL		
						Xi	∆qi/θ	∆qi/0	Xi	Кер		
	1	C1	C2	C3		cm	ka/cm²-rd	t/m²_rd	m	t/m_rd		
		4 000	0 FER	0.040	•	500	770.00	7 700 04		20 602	•	
ł –	P1	1.669	-0.303	-0.010		500	113.00	1,130.01	5.00	30,003		
C}	F2	-0.524	1.778	-0.447		300	226.67	2,266.72	3.00	6,800		
	E .	0 000		_				<u> </u>		<u> </u>		
1				2 151		100	7 <i>4 4</i> 0	743 98	1.00	744		
	-3 1	-0.025	-0.430	2.151	-	100	74.40	743.98	1.00	744	-	
	F3	-0.023	-0.430	2.151	•	100	74.40	743.98	1.00	46,227	-	
	rs (P:	-0.023 arámetro	-0.430 de defor	2.151 mación	angular :	100 por giro	74.40 en la base	743.98 Kb =	1.00			
	F3 Pi	-0.023 arámetro	-0.430 de defor	2.151 mación	a ngular :	100 por giro	74.40 en la base	743.98 Kb =	1.00	744 46,227	-) *
	Pa Pa	-0.023 arámetro Parámetro	-0.430 de defor o de defo	2.151 mación prmaciói	a ngular n angular	100 por giro r por giro	74.40 en la base del muro	743.98 Kb = Kw =	1.00 184,909 57,504	744 46,227 K	$fw = d^2 * (1 +$	v)*µ
P	F3 Pi ARÁMETR	-0.023 arámetro Parámetro O DE DE	-0.430 de defor o de def o FORMAC	2.151 mación ormación CIÓN AN	angular ; n angular IGULAR ;	100 por giro r por giro POR GIR	74.40 en la base del muro O TOTAL	743.98 Kb = Kw = Kb + Kw =	1.00 184,909 57,504 242,413	744 46,227 <i>K</i>	$Tw = d^2 * (1 + $	v)* µ
P	P3 P3 I ARÁMETR	-0.023 arámetro Parámetra :0 DE DE	-0.430 de defor o de defo FORMAC	2.151 mación ormaciói CIÓN AN	angular n angular IGULAR I	100 por giro r por giro POR GIR	74.40 en la base del muro O TOTAL	743.98 Kb = Kw = Kb + Kw =	1.00 184,909 57,504 242,413	744 46,227 K	$Tw = d^2 * (1 + $	v)* µ
P	P3 Pa ARÁMETR	-0.023 arámetro Parámetro :0 DE DE	-0.430 de defor o de defo FORMAC	2.151 mación ormaciói CIÓN AN	angular n angular IGULAR	100 por giro r por giro POR GIR	74.40 en la base del muro O TOTAL	743.98 Kb = Kw = Kb + Kw =	1.00 184,909 57,504 242,413	744 46,227 K	- <i>w</i> = d ² *(1+	v)*µ
P	P3 Pa I ARÁMETR	-0.023 arámetro Parámetro O DE DE	-0.430 de defor o de defo FORMAC	2.151 mación ormación CIÓN AN Val	angular n angular IGULAR lor medic	100 por giro r por giro POR GIR por 6.0 r	74.40 en la base del muro O TOTAL	743.98 Kb = Kw = Kb + Kw =	1.00 184,909 57,504 242,413	744 46,227 <i>K</i>	$w = d^2 * (1 + $	v)*µ
P	F3 Pi ARÁMETR	-0.023 arámetro Parámetro O DE DE	-0.430 de defor o de defo FORMAC	2.151 mación ormación CIÓN AN Val	angular n angular IGULAR lor medic	100 por giro r por giro POR GIR o en 6.0 r	74.40 en la base del muro O TOTAL n de muro	743.98 Kb = Kw = Kb + Kw =	1.00 184,909 57,504 242,413 1277.87 6.00	744 46,227 <i>K</i>	$fw = d^2 * (1 + $	v)*µ
P	F3 Pi ARÁMETR	-0.023 arámetro Parámetro 10 DE DE	-0.430 de defor o de defo FORMAC	2.151 mación prmación CIÓN AN Val Dut = (Kb	angular n angular IGULAR I Ior medic + Kw)*θ	100 por giro r por giro POR GIR o en 6.0 r	74.40 en la base del muro O TOTAL n de muro	743.98 Kb = Kw = Kb + Kw = μ = d =	1.00 184,909 57,504 242,413 1277.87 6.00	744 46,227 <i>K</i> t/m ² m	$Tw = d^2 * (1 + $	v)* µ
P	F3 Pi ARÁMETR Momento	-0.023 arámetro Parámetro O DE DE DE DE de Volte	-0.430 de defor o de defo FORMAC	2.151 mación prmaciói CIÓN AN Uai Dvt = (Kb	angular n angular IGULAR Ior medic + Kw)*θ	100 por giro por giro POR GIR o en 6.0 r	74.40 en la base del muro O TOTAL n de muro	743.98 Kb = Kw = Kb + Kw = d = L =	1.00 184,909 57,504 242,413 1277.87 6.00 1.00	744 46,227 <i>K</i> t/m ² m	$fw = d^2 * (1 + $	v)*µ
P	Pi Pi ARÁMETR Momento	-0.023 arámetro Parámetro O DE DE de Volte	-0.430 de defor o de defo FORMAC	2.151 mación prmaciói CIÓN AN Val Dvt = (Kb- e masa	angular n angular IGULAR lor medic + Kw)*θ hc	100 por giro r por giro POR GIR o en 6.0 n 10.10	74.40 en la base del muro O TOTAL n de muro m	743.98 Kb = Kw = Kb + Kw = d = L = y =	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25	744 46,227 <i>K</i> t/m ² m Relación c	- <i>w</i> = d ² * (1 + 	v)*µ
P	F3 P; I ARÁMETR Momento	-0.023 arámetro Parámetro O DE DE de Volte	-0.430 de defor o de defo FORMAC	2.151 mación prmación CIÓN AN Val Dvt = (Kb- e masa	angular n angular IGULAR Ior medic + Kw)*θ hc	100 por giro por giro POR GIR o en 6.0 r 10.10	74.40 en la base del muro O TOTAL n de muro m tteog2/m	743.98 Kb = Kw = Kb + Kw = d = L = v = v =	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25	744 46,227 <i>K</i> t/m ² m Relación c	$fw = d^2 * (1 + \frac{1}{2})$	v)* µ
P	F3 Pi ARÁMETR Momento	-0.023 arámetro Parámetro O DE DE DE DE de Volte Masa	-0.430 de defor o de defor FORMAC FORMAC Centro de a por metr	2.151 mación prmación CIÓN AN Ual Dvt = (Kb e masa ro lineal	angular n angular IGULAR Ior medic + Kw)*θ hc M	100 por giro r por giro POR GIR o en 6.0 r 10.10 12.23	74.40 en la base o del muro O TOTAL n de muro m t*seg²/m	743.98 Kb = Kw = Kb + Kw = d = L = y = μ =(577.9+	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+1	744 46,227 <i>K</i> t/m ² m <u>Relación c</u> 821.8)/3	- <i>w</i> = <i>d</i> ² * (1 + 	v)* µ
P	Pi Pi ARÁMETR Momento Period	-0.023 arámetro Parámetro O DE DE DE DE de Volte Masa o por rota	-0.430 de defor o de defo FORMAC FORMAC Contro da a por metrición cime	2.151 mación prmación CJÓN AN Val Dvt = (Kb e masa ro lineal ntación	angular n angular IGULAR Ior medic + Kw)*θ hc M Tc	100 por giro por giro POR GJR o en 6.0 n 10.10 12.23 0.451	74.40 en la base o del muro O TOTAL n de muro m t*seg²/m seg	743.98 Kb = Kb = Kb + Kw = d = L = v = μ = (577.9+	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+1	744 46,227 <i>K</i> t/m ² m Relación c 821.8)/3	$fw = d^2 * (1 + \frac{1}{2})$	v)*µ
P	Pi ARÁMETR Momento Period	-0.023 arámetro Parámetri O DE DE de Volte Masz o por rota Pe	-0.430 de defor o de defor FORMAC 	2.151 mación prmación CIÓN AN Val Dvt = (Kb- e masa ro lineal ntación edificio	angular n angular IGULAR IGULAR Ior medic hor medic hc hc M Tc Te	100 por giro por giro POR GIR e en 6.0 m 10.10 12.23 0.451 0.540	74.40 en la base o del muro O TOTAL n de muro m t*seg²/m seg seg	743.98 Kb = Kw = Kb + Kw = d = L = y = μ =(577.9+ ANÁLISIS	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+1 DINÁMIC	744 46,227 <i>K</i> t/m ² m Relación c 821.8)/3 O DEL SU	$f_{W} = d^{2} * (1 + \frac{1}{2})$	v)*µ
P	P3 Pi ARÁMETR Momento Period	-0.023 arámetro Parámetro O DE DE de Volte Masa o por rota Pa	-0.430 de defor o de defor FORMAC FORMAC Centro da a por metri ción cime priodo del Zeriodo ac	2.151 mación prmación CIÓN AN Val Dvt = (Kb e masa ro lineal ntación edificio contado	angular n angular IGULAR IGULAR Ior medic + Kw)* θ hc hc M Tc Te To To	100 por giro por giro POR G/R o en 6.0 r 10.10 12.23 0.451 0.540 0.540	74.40 en la base o del muro O TOTAL n de muro m t*seg²/m seg seg	743.98 Kb = Kw = Kb + Kw = d = L = v = μ =(577.9+ ANÁLISIS Fracuencia	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+11 DINÁMIC circular	744 46,227 K t/m ² m Relación c 821.8)/3 O DEL SU 12.566	te Poisson	v)* µ
P	Pi Pi ARÁMETR Momento Period	-0.023 arámetro Parámetro O DE DE de Volte Mase o por rota Pe	-0.430 de defor o de defor FORMAC FORMAC Centro da por metr ción cime priodo del Periodo ac	2.151 mación prmación CIÓN AN Val Dvt = (Kb- e masa ro lineal ntación edificio coplado	angular n angular IGULAR IGULAR Hor medic + Kw)*θ hc M Tc Tc Te To To	100 por giro por giro POR GJR o en 6.0 m 10.10 12.23 0.451 0.540 0.703	74.40 en la base del muro O TOTAL n de muro m t*seg²/m seg seg seg	743.98 Kb = Kw = Kb + Kw = d = L = v = μ = (577.9+ <u>ANÁLISIS</u> Frecuencia	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+1 DINÁMIC circular	744 46,227 <i>k</i> t/m ² m Relación c 821.8)/3 O DEL SU 12.566	- <i>w</i> = <i>d</i> ² *(1 + <u>te Poisson</u> <i>t/m</i> ² ELO	v)*µ
P	Pi ARÁMETR Momento Period	-0.023 arámetro Parámetro O DE DE de Volte Masa o por rota Pe F Rela	-0.430 de defor o de defor FORMAC Contro da por metr ción cime eriodo del Periodo ac ción de por	2.151 mación ormación CIÓN AN Val Dvt = (Kb e masa ro lineal ntación edificio coptado eriodos	angular n angular IGULAR Ior medic hc Kw)*θ hc M Tc Te To To To/Ts	100 por giro por giro POR GIR 0 en 6.0 n 10.10 12.23 0.451 0.540 0.703 1.407	74.40 en la base o del muro O TOTAL n de muro m t*seg²/m seg seg seg	743.98 Kb = Kw = Kb + Kw = d = L = ψ = μ =(577.9+ ANÁLISIS Frecuencia Periodo Ts	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+1 DINÁMIC circular en seg	744 46,227 <i>k</i> t/m ² m Relación c 821.8/3 O DEL SU 12.566 0.500	$fw = d^2 * (1 + \frac{1}{2})$	v)*µ
P	Pi Pi ARÁMETR Momento Period	-0.023 arámetro Parámetri O DE DE de Volte Masz o por rota Pe Rela miebto cri	-0.430 de defor o de defor FORMAC FORMAC Contro de Centro de a por metr ción cime erriodo del Periodo ac ción de por	2.151 mación prmación CIÓN AN Val Dvt = (Kb e masa ro lineal ntación edificio coplado eriodos ptación	angular n angular IGULAR IGULAR Ior medic + Kw)*θ hc hc M Tc Te To To To/Ts	100 por giro por giro POR GIR o en 6.0 m 10.10 12.23 0.451 0.540 0.540 1.407 0.120	74.40 en la base o del muro O TOTAL n de muro t*seg²/m seg seg seg	743.98 Kb = Kw = Kb + Kw = d = L = ψ = μ =(577.9+ ANÁLISIS Frecuencia Periodo Ts	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+1 DINÁMIC circular en seg	744 46,227 <i>K</i> t/m ² m Relación c 821.8)/3 O DEL SU 12.566 0.500	w = d ² * (1 +	v)* µ
P.	Pi Pi ARÁMETR Momento Period Amortigua	-0.023 arámetro Parámetro O DE DE de Volte Masz o por rota Pe Rela miento cri	-0.430 de defor o de defor FORMAC FORMAC Centro da a por metri ción cime eriodo del Periodo ac ción de periodo ac	2.151 mación prmación CIÓN AN Val Dvt = (Kb e masa ro lineal ntación edificio copiado eriodos ntación	angular n angular IGULAR IGULAR Ior medic + Kw)* θ hc hc M Tc Te To To/Ts C C	100 por giro por giro POR GJR o en 6.0 m 10.10 12.23 0.451 0.540 0.540 0.540 0.540 0.540	74.40 en la base del muro O TOTAL n de muro m t*seg²/m seg seg seg	743.98 Kb = Kw = Kb + Kw = d = L = v = $\mu = (577.9+$ ANÁLISIS Frecuencia Periodo Ts	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+11 DINÁMIC circular en seg	744 46,227 K t/m ² m Relación c 821.8)/3 O DEL SU 12.566 0.500	- <i>w</i> = <i>d</i> ² * (1 + <u>te Poisson</u> t/m ² ELQ	v)*µ
P.	Pi Pi ARÁMETR Momento Period Amortigua Amortigua	-0.023 arámetro Parámetro O DE DE de Volte Mase o por rota Pe Rela miento cri tiguamien	-0.430 de defor o de defor FORMAC Centro da por metr ción cime eriodo del Periodo ac ción de por tico cimento crítico	2.151 mación prmación CIÓN AN Val Dvt = (Kb- e masa ro lineal ntación edificio coptado eriodos ntación edificio	angular n angular IGULAR lor medic $+Kw)*\theta$ hc M Tc Te To To/Ts ζ c ζ e	100 por giro por giro POR GIR 0 en 6.0 r 10.10 12.23 0.451 0.540 0.703 1.407 0.120 0.050	74.40 en la base o del muro O TOTAL n de muro m t*seg²/m seg seg seg	743.98 Kb = Kw = Kb + Kw = d = L = ψ = μ =(577.9+ ANÁLISIS Frecuencia Periodo Ts	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+11 DINÁMIC circular en seg	744 46,227 <i>k</i> t/m ² m Relación c 821.8/3 O DEL SU 12.566 0.500	$fw = d^2 * (1 + \frac{1}{2})$	v)*µ
d)	Pi Pi ARÁMETR Momento Period Amortigua Amortigua	-0.023 arámetro Parámetri O DE DE de Volte Masz o por rota per Fa Rela miento cri tiguamien amiento c	-0.430 de defor o de defor FORMAC FORMAC Contro de contro de eriodo del Periodo ac ción de per tico cimento to crítico unesti	2.151 mación prmación CIÓN AN Val Dvt = (Kb- e masa to lineal ntación edificio coplado eriodos ntación edificio valente	angular n angular IGULAR IGULAR Ior medic + Kw)*θ hc hc M Tc Tc To To To ζc ζc ζc ζc	100 por giro por giro POR GIR e en 6.0 m 10.10 12.23 0.451 0.451 0.451 0.451 0.451 0.451 0.451 0.451 0.540 0.703 1.407 0.120 0.050	74.40 en la base del muro O TOTAL n de muro m t*seg²/m seg seg seg	743.98 Kb = Kw = Kb + Kw = d = L = ψ = μ =(577.9+ <u>ANÁLISIS</u> Frecuencia Periodo Ts	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+1 DINÁMIC circular en seg	744 46,227 <i>K</i> t/m ² m Relación c 821.8)/3 O DEL SU 12.566 0.500	tw = d ¹² * (1 +	v)*µ
d)	Pi Pi ARÁMETR Momento Period Amortigua Amortigua	-0.023 arámetro Parámetro O DE DE de Volte Masz o por rota Pe Rela miento cri tiguamien amiento co	-0.430 de defor o de defor o de defor FORMAC FORMAC Centro da a por metri ción cime reriodo del Periodo ac ción de periodo ac ción de periodo ac ción de periodo ac ción de periodo ac	2.151 mación prmación CIÓN AN Val Dvt= (Kb e masa ro lineal ntación edificio copiado eriodos ntación edificio valente	angular n angular IGULAR IGULAR Ior medic + Kw)* θ hc M Tc Te To To To C C C C C C C C C C C C C	100 por giro por giro POR GIR o en 6.0 m 10.10 12.23 0.451 0.540 0.540 0.703 1.407 0.120 0.050 0.086	74.40 en la base o del muro O TOTAL n de muro m t*seg²/m seg seg seg	743.98 Kb = Kw = Kb + Kw = d = L = y = $\mu = (577.9+$ ANÁLISIS Frecuencia Periodo Ts	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+11 circular en seg	744 46,227 K t/m ² m Relación c 821.8)/3 O DEL SU 12.566 0.500	- w = d ² * (1 + <u>te Poisson</u> t/m ² ELO	v)*µ
d)	Pi Pi ARÁMETR Momento Period Amortigua Amortigua actor de aco	-0.023 arámetro Parámetro O DE DE de Volte Mase o por rota per rota Per Rela miento cri tiguamien amiento ci eleración	-0.430 de defor o de defor FORMAC FORMAC Contro da por metrición cimen riodo del Periodo aci ción de periodo	2.151 mación prmación CJÓN AN Val Dvt = (Kb- e masa ro lineal ntación edificio coptado eriodos ntación edificio valente masas	angular n angular IGULAR IGULAR Ior medic + Kw)*θ hc M Tc Tc To To To To To ζc ζe ζe ζo [Fo	100 por giro por giro POR GIR e en 6.0 r 10.10 12.23 0.451 0.540 0.703 1.407 0.120 0.050 0.086 2.000	74.40 en la base o del muro O TOTAL n de muro m t*seg²/m seg seg seg seg	743.98 Kb = Kb = Kb + Kw = d = L = v = μ = (577.9+ ANÁLISIS Frecuencia Periodo Ts te "DAES"	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+11 DINÁMIC circular en seg	744 46,227 <i>k</i> t/m ² m Relación c 821.8)/3 O DEL SU 12.566 0.500	tw = d ² * (1 +	v)*µ
d)	Pi Pi ARÁMETR Momento Period Amortigua Amortigua actor de acc Aceleració	-0.023 arámetro Parámetro O DE DE de Volte Masa o por rota por rota Rela miento cri tiguamien amiento ci eleración o in asignad	-0.430 de defor o de defor FORMAC FORMAC Centro da por metr ción cime riodo del Periodo ac ción de por tico cime to crítico equi centro de da a la suj	2.151 mación prmación CIÓN AN Val Dvt = (Kb- e masa ro lineal ntación edificio coplado eriodos ntación edificio valente masas perficie	angular n angular IGULAR IGULAR Ior medic tor medic hc M Tc Tc To To/Ts ζc ζc ζe ζo Fo As	100 por giro por giro POR GIR e en 6.0 m 10.10 12.23 0.451 0.540 0.703 1.407 0.120 0.050 0.086 2.000 1.000	74.40 en la base o del muro O TOTAL n de muro m t*seg²/m seg seg seg seg seg	743.98 Kb = Kw = Kb + Kw = d = L = ψ = μ =(577.9+ ANÁLISIS Frecuencia Periodo Ts e "DAES"	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+1 DINÁMIC circular en seg	744 46,227 <i>k</i> t/m ² m <u>Relación c</u> 821.8/3 O DEL SU 12.566 0.500	$fw = d^2 * (1 + \frac{1}{2} + \frac{1}{2})$	v)*µ
d) Fi	ARÁMETR ARÁMETR Momento Period Amortigua Amortigua actor de aci Aceleració Aceleració	-0.023 arámetro Parámetri O DE DE de Volte Masz o por rota per s Rela miento cri tiguamien amiento cu eleración di fin a signad ón a 6 0 m	-0.430 de defor o de defor FORMAC FORMAC Contro de Centro de Periodo del Periodo del Periodo del Periodo del Periodo del Periodo del Periodo ac ción de peritico critico fítico equi centro de la a la suj de profu	2.151 mación prmación CIÓN AN Val Dvt = (Kb- e masa ro lineal ntación edificio coplado eriodos ntación edificio valente masas perficie perficie	angular n angular IGULAR IGULAR Ior medic + Kw)*θ hc M Tc Te To To To To ζc ζc ζc ζc ζc ζc ζc ζc ζc	100 por giro por giro POR GIR 0 en 6.0 m 10.10 12.23 0.451 0.540 0.540 0.703 1.407 0.120 0.050 0.086 2.000 1.000	74.40 en la base o del muro O TOTAL n de muro t*seg²/m seg seg seg Seg Obtenido c m/seg²	743.98 Kb = Kw = Kb + Kw = d = L = ψ = μ =(577.9+ ANÁLISIS Frecuencia Periodo Ts te "DAES"	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+1 DINÁMIC circular en seg	744 46,227 <i>K</i> 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	w = d ² * (1 +	v)*µ
d)	ARÁMETR ARÁMETR Momento Period Amortigua Amortigua actor de acc Aceleració Aceleració	-0.023 arámetro Parámetro O DE DE de Volte Masz o por rota per Rela miento cri tiguamien amiento cri tiguamien amiento cri tiguamien amiento cri tiguamien amiento cri	-0.430 de defor o de defor o de defor FORMAC FORMAC Contro de a por metrición cimer riodo del Periodo aci ción de por titico cimer to crítico e rítico equi centro de da a la suj n de profu	2.151 mación prmación CJÓN AN Val Dvt = (Kb e masa ro lineal ntación edificio coplado eriodos ntación edificio valente masas perficie indidad	angular n angular IGULAR IGULAR Ior medic $+ Kw)*\theta$ hc M Tc To To To To To C C C C C C C C C C C C C	100 por giro por giro POR GIR 0 en 6.0 m 10.10 12.23 0.451 0.540 0.703 1.407 0.120 0.050 0.086 2.000 1.000 0.420	74.40 en la base o del muro O TOTAL n de muro m t*seg²/m seg seg seg seg seg seg seg seg seg	743.98 Kb = Kb	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+11 DINÁMIC circular en seg	744 46,227 <i>k</i> t/m ² m Relación c 821.8)/3 O DEL SU 12.566 0.500	- <i>w</i> = <i>d</i> ² * (1 + <u>te Poisson</u> <i>t/m</i> ² ELO	v)*µ
d)	ARÁMETR ARÁMETR Momento Period Amortigua Amortigua actor de acc Aceleració Aceleració Aceleració	-0.023 arámetro Parámetro O DE DE de Volte Mase o por rota por rota Pe Rela miento cri tiguamien amiento ci eleración o in asignad ón a 6.0 m ición en el	-0.430 de defor o de defor FORMAC FORMAC Centro da a por metr ción cime riodo del Periodo ac ción de periodo ac centro de da a la suj	2.151 mación prmación CIÓN AN Val Dvt = (Kb- e masa ro lineal ntación edificio coptado eriodos ntación edificio valente masas perficie indidad e masa	angular n angular IGULAR IGULAR Ior medic Hor medic Fo M Tc To/Ts To/Ts ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc	100 por giro por giro POR GIR 0 en 6.0 n 10.10 12.23 0.451 0.540 0.703 1.407 0.120 0.050 0.086 2.000 1.000 0.420 0.840	74.40 en la base o del muro O TOTAL n de muro m t*seg²/m seg seg seg seg seg seg seg seg seg seg	743.98 Kb = Kw = Kb + Kw = d = L = ψ = μ =(577.9+ ANÁLISIS Frecuencia Periodo Ts le "DAES"	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+1 DINÁMIC circular en seg	744 46,227 <i>k</i> t/m ² m Relación c 821.8/3 O DEL SU 12.566 0.500	$w = d^2 * (1 + \frac{1}{2} + \frac{1}{2})$	v)*µ
d)	ARÁMETR ARÁMETR Momento Period Amortigua Amortigua actor de acc Aceleració Aceleració Aceleració	-0.023 arámetro Parámetro Parámetro O DE DE Masa o por rota o por rota Pe Rela miento cri tiguamien amiento cri tigua amien amiento cri tigua amien amiento cri tigua amien amiento cri tigua amien amiento cri tigua amiento cri tigua amiento cri tigua amien amiento cri tigua amiento cri tigua	-0.430 de defor o de defor FORMAC FORMAC Contro de Centro de Periodo ación de pr fitico cimento de fitico cimento de da a la suj n de profuti centro de	2.151 mación prmación CIÓN AN Val Dvt = (Kb- e masa ro lineal ntación edificio coplado eriodos ntación redificio valente masas perficie indidad e masa	angular n angular IGULAR IGULAR Ior medic + Kw)*θ hc M Tc To To To To ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc	100 por giro por giro POR GIR 0 en 6.0 m 10.10 12.23 0.451 0.451 0.451 0.451 0.451 0.540 0.703 1.407 0.120 0.050 0.086 2.000 1.000 0.420 0.840 Acm*hc	74.40 en la base o del muro O TOTAL n de muro t*seg²/m seg seg seg seg Seg Obtenido o m/seg² m/seg²	743.98 Kb = Kw = Kb + Kw = d = L = ψ = μ =(577.9+ ANÁLISIS Frecuencia Periodo Ts de "DAES" Momento	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+11 DINÁMIC circular en seg	744 46,227 <i>K</i> 7 7 7 8 7 8 21.8)/3 0 DEL SU 12.566 0.500	te Poisson t/m ² ELO	v)*µ
d)	ARÁMETR ARÁMETR Momento Period Amortigua Amortigua actor de acc Aceleració Aceleració Aceleració	-0.023 arámetro Parámetro O DE DE de Volte Masz o por rota per Rela miento cri tiguamien amiento cri tigua amiento cri tigua a	-0.430 de defor o de defor o de defor FORMAC FORMAC Contro de a por metrición cimer riodo del Periodo aci ción de periodo aci	2.151 mación prmación CJÓN AN Val Dvt = (Kb e masa ro lineal ntación edificio coplado eriodos ntación edificio valente masas perficie indidad e masa e volteo (angular n angular IGULAR IGULAR Ior medic + Kw)*θ hc M Tc To To To To To ζe ζe ζo L Fo As Abc Acm Dost = M*/	100 por giro por giro POR GIR 0 en 6.0 m 10.10 12.23 0.451 0.540 0.703 1.407 0.120 0.050 0.086 2.000 1.000 0.420 0.420 0.840 Acm*hc	74.40 en la base o del muro O TOTAL n de muro t*seg²/m seg seg seg seg Obtenido c m/seg² m/seg² m/seg²	743.98 Kb = Kw = Kb + Kw = d = L = ψ = ψ = μ =(577.9+ ANÁLISIS Frecuencia Periodo Ts de "DAES" Momento	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+11 DINÁMIC circular en seg	744 46,227 <i>k</i> t/m ² m Relación c 821.8)/3 O DEL SU 12.566 0.500	t-m	v)*µ
d) Fi	ARÁMETR Momento Period Amortigua Amortigua actor de aco Aceleració Aceleració Aceleració	-0.023 arámetro Parámetro O DE DE de Volte Mase o por rota per Rela miento cri tiguamien amiento cri tiguamiento cri tiguamiento cri tiguamiento cri tigua acti tigua	-0.430 de defor o de defor FORMAC FORMAC Contro da por metrición cimen riodo del Periodo ad ción de periodo	2.151 mación prmación CJÓN AN Val Dvt = (Kb- e masa ro lineal ntación edificio coptado eriodos ntación edificio valente masas perficie indidad e masa e volteo (angular n angular IGULAR IGULAR Ior medic tor medic tor medic M Tc To To To To To To To To To To To To To	100 por giro por giro POR GIR e en 6.0 r 10.10 12.23 0.451 0.540 0.703 1.407 0.120 0.050 0.086 2.000 1.000 0.420 0.840 Acm*hc	74.40 en la base o del muro O TOTAL n de muro m t*seg²/m seg seg seg seg seg seg seg seg seg seg	743.98 Kb = Kw = Kb + Kw = d = L = ψ = μ =(577.9+ ANÁLISIS Frecuencia Periodo Ts te "DAES" Momento Giro	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+11 DINÁMIC circular en seg 0 =	744 46,227 <i>k</i> t/m ² m Relación c 821.8//3 O DEL SU 12.566 0.500	t-m rad	v)*µ
d)	ARÁMETR ARÁMETR Momento Period Amortigua Amortigua actor de acc Aceleració Aceleració Aceleració	-0.023 arámetro Parámetro Parámetro O DE DE Mase o por rota per Rela miento cri tiguamien amiento cri	-0.430 de defor o de defor FORMAC FORMAC Centro da a por metr ción cime riodo del Periodo ac ción de periodo ac centro de centro de centro de centro de	2.151 mación prmación CIÓN AN Val Dvt = (Kb e masa ro lineal ntación edificio coplado eriodos ntación edificio valente masas perficie endidad e masa e volteo (angular n angular IGULAR IGULAR Ior medic tor medic M Tc Tc To/Ts ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc	100 por giro por giro POR GIR o en 6.0 m 10.10 12.23 0.451 0.540 0.703 1.407 0.120 0.050 0.086 2.000 1.000 0.420 0.840 Acm*hc	74.40 en la base o del muro O TOTAL n de muro m t*seg²/m seg seg seg seg seg seg seg seg seg seg	743.98 Kb = Kw = Kb + Kw = μ = μ = μ = (577.9+ ANÁLISIS Frecuencia Periodo Ts le "DAES" Momento Giro	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+1 DINÁMIC circular en seg Ost = θ =	744 46,227 <i>k</i> t/m ² m Relación c 821.8)/3 O DEL SU 12.566 0.500	t-m rad	v)*µ
d) Fi	ARÁMETR ARÁMETR Momento Period Amortigua actor de aci Aceleració Aceleració Aceleració	-0.023 arámetro Parámetro O DE DE de Volte Masz o por rota pe Rela miento cri tiguamient amiento cri tiguamiento cin asignad ón a 6.0 m ición en el Mo	-0.430 de defor o de defor FORMAC FORMAC Contro de Periodo del Periodo del Periodo del Periodo del Periodo del Periodo del Per	2.151 mación prmación CIÓN AN Val Dvt = (Kb- e masa to lineal ntación edificio coplado eriodos ntación edificio valente masas perficie indidad e masa e volteo (angular n angular IGULAR IGULAR Ior medic + Kw)*θ hc M Tc To/Ts ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc	100 por giro por giro POR GIR 0 en 6.0 m 10.10 12.23 0.451 0.451 0.451 0.451 0.451 0.540 0.703 1.407 0.120 0.050 0.086 2.000 1.000 0.420 0.840 Acm*hc	74.40 en la base o del muro O TOTAL n de muro m t*seg²/m seg seg seg seg Seg Obtenido o m/seg² m/seg² m/seg²	743.98 Kb = Kw = Kb + Kw = μ = d = L = ψ = μ =(577.9+ ANÁLISIS Frecuencia Periodo Ts de "DAES" Momento Giro Ag/0	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+1 DINÁMIC circular en seg 0 = 0 =	744 46,227 <i>K</i> m m Relación c 821.8)/3 O DEL SU 12.566 0.500	t-m rad	v)*µ
d)	ARÁMETR ARÁMETR Momento Period Amortigua Amortigua actor de acc Aceleració Aceleració Aceleració	-0.023 arámetro Parámetro O DE DE de Volte Masz o por rota per Rela miento cri tiguamien amiento cri tiguamienta amiento cri tiguamien amiento cri tiguamien amiento cri tiguamiento cri tiguamiento cri tigua amiento cri	-0.430 de defor o de defor FORMAC FORMAC Contro de a por metrición cimer rriodo del Periodo aci ción de por fitico cimer to crítico rítico equi centro de a a la suy n de profuti centro de comento de	2.151 mación prmación CJÓN AN Val Dvt = (Kb e masa ro lineal ntación edificio coplado eriodos ntación edificio valente masas perficie indidad e masa e volteo (angular n angular IGULAR IGULAR Ior medic + Kw)*θ hc M Tc Te To To/Ts ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc δ So Loc As Abc Acm Dot = M*/	100 por giro por giro POR GIR 0 en 6.0 m 10.10 12.23 0.451 0.540 0.540 0.703 1.407 0.120 0.050 0.086 2.000 1.000 0.420 0.840 Acm*hc	74.40 en la base o del muro O TOTAL n de muro m t*seg²/m seg seg seg seg obtenido c m/seg² m/seg² m/seg²	743.98 $Kb =$ $Kw =$ $Kb + Kw =$ $d =$ $L =$ $v =$ $\mu = (577.9 +$ $ANÁLISIS$ Frecuencia Periodo Ts $Frecuencia$ Periodo Ts $de "DAES"$ Momento Giro Aq/θ $t/m^2 + d$	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+1 DINÁMIC circular en seg 0 = Δq t/m²	744 46,227 <i>k</i> t/m ² m Relación c 821.8)/3 O DEL SU 12.566 0.500 12.566 0.500	t-m rad	v)*µ
d) Fi	ARÁMETR Momento Period Amortigua Amortigua actor de aca Aceleració Aceleració Aceleració	-0.023 arámetro Parámetro O DE DE de Volte Mase o por rota per Rela miento cri tiguamien amiento cri tiguamien amiento cri tiguamien amiento cri tiguamien amiento cri bleración de sin asignad ón a 6.0 m ición en el Mo	-0.430 de defor o de defor FORMAC FORMAC Contro da Periodo del Periodo del Periodo del Per	2.151 mación prmación CIÓN AN Val Dvt = (Kb- e masa ro lineal ntación edificio coptado eriodos ntación edificio valente masas perficie indidad e masa e volteo (angular n angular IGULAR IGULAR Ior medic + Kw)*θ hc M Tc To/Ts C ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc	100 por giro por giro POR GIR e en 6.0 r 10.10 12.23 0.451 0.540 0.703 1.407 0.120 0.050 0.086 2.000 1.000 0.420 0.840 Acm*hc 0 t-m/m	74.40 en la base o del muro O TOTAL n de muro m t*seg²/m seg seg seg seg seg seg seg seg seg seg	743.98 Kb = Kw = Kb + Kw = μ = μ = μ = μ = μ = μ = (577.9 + μ = μ = (577.9 + μ = μ = (577.9 + μ = π = μ = π = μ = π = μ = (577.9 + μ = π = μ = (577.9 + μ = π = π = μ = (577.9 + μ = π	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+11 DINÁMIC circular en seg 0 = Δq Δq Δq 2.24	744 46,227 <i>k</i> <i>t</i> /m ² m Relación c 821.8)/3 O DEL SU 12.566 0.500 12.566 0.500	$w = d^2 * (1 + \frac{1}{2} + \frac{1}{2})$	v)* µ
d)	ARÁMETR ARÁMETR Momento Period Amortigua Amortigua Aceleració Aceleració Aceleració Aceleració	-0.023 arámetro Parámetro Parámetro O DE DE Masz o por rota per Rela miento cri tiguamien amiento cri tiguamien ato cri tigua	-0.430 de defor o de defor FORMAC FORMAC Centro da Periodo del Periodo del Periodo del Periodo del Periodo del Ción de protu- tico crítico rítico equi- tico crítico da a la suj n de profu- centro de comento de	2.151 mación prmación CIÓN AN Val Dvt = (Kb e masa ro lineal ntación edificio coptado eriodos ntación edificio valente masas perficie endidad e masa e volteo (angular n angular IGULAR IGULAR Ior medic + Kw)*θ hc M Tc To/Ts Co ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc	100 por giro por giro POR GIR o en 6.0 m 10.10 12.23 0.451 0.540 0.703 1.407 0.120 0.050 0.086 2.000 1.000 0.420 0.840 Acm*hc 79.12	74.40 en la base o del muro O TOTAL n de muro m t*seg²/m seg seg seg seg seg seg seg seg seg seg	743.98 Kb = Kw = Kb + Kw = μ = μ = μ = (577.9+ μ =(577.9+ μ =(577.9+ μ =(577.9+ μ = (577.9+ μ = (577.9+)(577.9+)(μ = (577.9+)(577.9+	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+1 DINÁMIC circular en seg 0 = Δq t/m² 3.31	744 46,227 <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i>	$w = d^2 * (1 + \frac{1}{2} + \frac{1}{2})$ $\frac{1}{2}$	v)*µ
d) Fi	ARÁMETR ARÁMETR Momento Period Amortigua Amortigua actor de act Aceleració Aceleració Aceleració Aceleració	-0.023 arámetro Parámetro O DE DE de Volte Masz o por rota per Rela miento cri tiguamien amiento cri tiguamiento tiguamien	-0.430 de defor o de defor FORMAC FORMAC Contro de Periodo del Periodo del Periodo del Periodo del Periodo del Periodo ac ción de profutico crítico fítico equi- fítico equi- tico crítico da a la suj n de profuti- centro de comento de pomento de comento de	2.151 mación prmación CIÓN AN Val Dvt = (Kb- e masa to lineal ntación edificio coplado eriodos ntación redificio valente masas perficie indidad e masa e volteo C	angular n angular IGULAR IGULAR Ior medic + Kw)*θ hc M Tc To To To To ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc	100 por giro por giro POR GIR 0 en 6.0 m 10.10 12.23 0.451 0.451 0.451 0.451 0.451 0.451 0.451 0.540 0.050 0.086 2.000 1.000 0.420 0.840 Acm*hc 79.12 24.61	74.40 en la base o del muro O TOTAL n de muro m t*seg²/m seg seg seg seg seg seg seg seg seg seg	743.98 Kb = Kw = Kb + Kw = μ = d = L = ψ = μ =(577.9+ ANÁLISIS Frecuencia Periodo Ts de "DAES" Momento Giro Aqí0 t/m²-rd 7,736.6 2,266.7	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+1 DINÁMIC circular en seg 0 = Δq t/m² 3.31 0.97	744 46,227 <i>K</i> m m <u>Relación c</u> 821.8)/3 O DEL SU 12.566 0.500 12.566 0.500	$f_{W} = d^{2} * (1 + \frac{1}{2} + \frac{1}{2})$ $f_{W} = d^{2} * (1$	v)*µ
d) Fa	ARÁMETR Momento Period Amortigua Amortigua actor de act Aceleració Aceleració Aceleració	-0.023 arámetro Parámetro O DE DE de Volte Masz o por rota per Rela miento cri tiguamien amiento cri tiguamien action en el More L	-0.430 de defor o de defor o de defor FORMAC FORMAC Contro de a por metrición cimer riodo del Periodo aci ción de por titico cimer to crítico equí centro de da a la suj n de profu centro de da a la suj n de profu centro de	2.151 mación prmación CJÓN AN Val Dvt = (Kb e masa ro lineal ntación edificio coplado eriodos ntación edificio valente masas perficie indidad e masa e volteo (angular n angular IGULAR IGULAR Ior medic + Kw)*θ hc M Tc To/Ts C ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc	100 por giro por giro POR GIR 0 en 6.0 r 10.10 12.23 0.451 0.540 0.703 1.407 0.120 0.050 0.086 2.000 1.000 0.4200 0.420 0.4200 0.4200 0.4200 0.4200 0.4200 0.4200 0.4200 0.4200 0.420000000000	74.40 en la base o del muro O TOTAL n de muro m t*seg²/m seg seg seg seg obtenido c m/seg² m/seg² m/seg² m/seg² m/seg²	743.98 Kb = Kw = Kb + Kw = d = L = v = μ =(577.9+ ANÁLISIS Frecuencia Periodo Ts de "DAES" Momento Giro $\Delta q/0$ 2,266.7 7,736.6 2,266.7 7,736.6	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+11 DINÁMIC circular en seg 0 = Δq t/m² 3.31 0.97 0.32	744 46,227 <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>b</i> <i>k</i> <i>b</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i>	$w = d^2 * (1 + \frac{1}{2} + \frac{1}{2})$ $t = \frac{1}{2}$ $t = $	v)* µ
d) Fa	ARÁMETR Momento Period Amortigua Amortigua Aceleració Aceleració Aceleració	-0.023 arámetro Parámetro Parámetro O DE DE de Volte Mase o por rota per sela miento cri tiguamien amiento cri tiguamien ato cri tigua	-0.430 de defor o de defor FORMAC FORMAC Centro da Periodo del Periodo del Periodo del Periodo del Periodo del Citico cimento to crítico fítico equi centro de da a la sup n de profu i centro de comento del comento del	2.151 mación prmación CIÓN AN Val Dvt = (Kb e masa ro lineal ntación edificio coplado eriodos ntación edificio valente masas perficie indidad e masa e volteo C	angular n angular IGULAR IGULAR Ior medic + <i>Kw</i>)*θ hc M Tc To/Ts ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc	100 por giro por giro POR GIR 0 en 6.0 r 10.10 12.23 0.451 0.540 0.703 1.407 0.120 0.050 0.086 2.000 1.000 0.420 0.840 Acm*hc 79.12 24.61 103.73	74.40 en la base o del muro O TOTAL n de muro m t*seg²/m seg seg seg seg seg seg seg seg seg seg	743.98 Kb = Kw = Kb + Kw = μ = μ = μ = (577.9+ μ = (577.9+) μ = (577.9+ μ = (577.9+) μ = (577.9+)	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+1 DINÁMIC circular en seg 0 = Δq t/m² 3.31 0.97 0.32	744 46,227 <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i>	t-mrad $\frac{V}{T} = d^2 * (1 + t)^2 + t^2	v)*µ
d) Fi	ARÁMETR Momento Period Amortigua Aceleració Aceleració Aceleració Aceleració	-0.023 arámetro Parámetro O DE DE de Volte Masz o por rota per Rela miento cri tiguamient amiento cri tigua tigu	-0.430 de defor o de defor FORMAC FORMAC Centro da por metr ción cime riodo del Periodo ac ción de pr fitico cimer to crítico fítico equi centro de da a la sup n de profu centro de comento de	2.151 mación prmación CIÓN AN Val Dvt = (Kb- e masa ro lineal ntación edificio coplado eriodos ntación redificio valente masas perficie indidad e masa e volteo C	angular n angular IGULAR IGULAR Ior medic + Kw)*θ hc M Tc To/Ts ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc ζc	100 por giro por giro POR GIR 0 en 6.0 m 10.10 12.23 0.451 0.540 0.703 1.407 0.120 0.050 0.086 2.000 1.000 0.420 0.840 Acm*hc 79.12 24.61 103.73	74.40 en la base o del muro O TOTAL n de muro m t*seg²/m seg seg seg seg seg seg seg seg seg seg	743.98 Kb = Kw = Kb + Kw = L = μ =(577.9+ ANÁLISIS Frecuencia Periodo Ts e "DAES" Momento Giro Aqíê t/m²-rd 7,736.6 2,266.7 744.0 -744.0 -744.0	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+1 DINÁMIC circular en seg 0 = Δq t/m² 3.31 0.97 0.32 -0.32	744 46,227 <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>g</i> <i>k</i> <i>g</i> <i>k</i> <i>g</i> <i>k</i> <i>g</i> <i>k</i> <i>g</i> <i>k</i> <i>g</i> <i>k</i> <i>g</i> <i>k</i> <i>g</i> <i>k</i> <i>g</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i> <i>k</i>	$t = d^2 * (1 + t)$ t = Poisson t/m^2 ELO ELO I I I I I I I I	v)*µ
d) Fi	ARÁMETR Mormento Period Amortigua Amortigua Amortigua Aceleració Aceleració Aceleració Aceleració	-0.023 arámetro Parámetro Parámetro O DE DE de Volte Masz o por rota per Rela miento cri tiguamien amiento cri tiguamiento cri tiguamien amiento cri tiguamien amiento cri tiguamien amiento cri tiguamien amiento cri tiguamien amiento cri tiguamien amiento cri tiguamien amiento cri tiguamien amiento cri tiguamien amiento cri tiguamien asignación a 6.0 m cri tiguamien ación en el Murco sfuerzo uz P =	-0.430 de defor o de defor o de defor FORMAC FORMAC Contro de a por metrición cimeni- ción cimeni- triodo del Periodo acion de profusi- to crítico equi- contro de de profusi- centro de de de de de de de de de de de de de	2.151 mación prmación CJÓN AN Val Dvt = (Kb e masa ro lineal ntación edificio coplado eriodos ntación edificio valente masas perficie indidad e masa e volteo (ntación suma[n muro /m ²	angular n angular IGULAR IGULAR Ior medic + Kw)*θ hc M Tc To To To To To To To To To To To To To	100 por giro por giro POR GIR 0 en 6.0 m 10.10 12.23 0.451 0.540 0.540 0.703 1.407 0.120 0.050 0.086 2.000 1.000 0.420 0.840 Acm*hc 79.12 24.61 103.73	74.40 en la base o del muro O TOTAL n de muro m t*seg²/m seg seg seg seg seg seg seg seg seg seg	743.98 Kb = Kw = Kb + Kw = d = L = y = μ =(577.9+ ANÁLISIS Frecuencia Periodo Ts Periodo Ts de "DAES" Momento Giro Aq/0 t/m ² -rd 7,736.6 2,266.7 7,44.0 -7,44.0 -2,266 7	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+11 DINÁMIC circular en seg 0 = 0 = Δq t/m² 3.31 0.97 0.32 -0.32 -0.97	744 46,227 k t/m ² m m <u>Relación c</u> 821.8)/3 O DEL SU 12.566 0.500 12.566 0.500 12.566 0.500	$w = d^2 * (1 + \frac{1}{2} + \frac{1}{2})$ t-m t/m ² ELO ELO S.82 0.64 79.12 OK	v)* µ
d) Fa	ARÁMETR Mornento Period Amortigua Amortigua Aceleració Aceleració Aceleració Aceleració Es	-0.023 arámetro Parámetro Parámetro Parámetro O DE DE de Volte Masz o por rota o por rota per Rela miento cri tiguamient amiento cri tiguamient afon a 6.0 m clón en el Murco sfuerzo uz P =	-0.430 de defor o de defor FORMAC FORMAC Contro de Periodo del Periodo del Contro de da a la suju n de profu i centro de comento del posa cimer o de cimer niforme er 1.37 tr	2.151 mación prmación CIÓN AN Val Dvt = (Kb- e masa ro lineal ntación edificio coplado eriodos ntación edificio valente masas perficie indidad e masa e volteo C	angular n angular IGULAR IGULAR Ior medic + Kw)*θ hc M Tc To/Ts C C C C C C C C C C C C C C C C C C C	100 por giro por giro POR GIR e en 6.0 r 10.10 12.23 0.451 0.540 0.703 1.407 0.120 0.050 0.086 2.000 1.000 0.420 0.840 Acm*hc 79.12 24.61 103.73	74.40 en la base o del muro O TOTAL n de muro m t*seg²/m seg seg seg seg seg seg seg seg seg seg	743.98 Kb = Kw = Kb + Kw = μ = μ = μ = μ = (577.9+ μ = (577.9+) μ = (577.9+)	1.00 184,909 57,504 242,413 1277.87 6.00 1.00 0.25 1433.9+11 DINÁMIC circular en seg 0 = Δq t/m² 3.31 0.97 0.32 -0.32 -0.97 2.24	744 46,227 <i>k</i> <i>t</i> /m ² m Relación c 821.8)/3 O DEL SU 12.566 0.500 12.566 0.500 12.566 0.500 12.566 0.500 12.566 0.500 12.331 0.0004 <i>kg/cm²</i> 0.331 0.097 0.032 -0.032 -0.032	$t = d^2 * (1 + t)$ t = Poisson t/m^2 ELO ELO ELO I I I I I I I I	v)*µ

CONCLUSIONES DEL CÁLCULO DEL EDIFICIO DE 5 PISOS

	Tabia A Para er	A.11 Planta dificio de 5	i de cargas (bisos	en 1/2 de la	a losa de cir	nentación	
CONCLUSIONES	DE ESF	UERZOS DF	E INTERACI	ÓN <u>EN CO</u> I	NDICIONES	ESTÁTICA	S CON VIENTO Y SISMO
	De tabl	la A.7.e					
	EST	ATICAS	CARGAS	UNITARIAS I	MEDIAS EN TO	NELADAS	carga media
1	Bandas	Relación	0.725	0.561	0.558	0.556	por banda
	1 1	1.269	0.921	0.713	0.708	0.705	0.762
a)	2	0.875	0.635	0.491	0.488	0.486	0.525
	3	0.856	0.621	0.480	0.477	0.475	0.513
	4	0.850	0.621	0.480	0.4//	0.4/5	0.513
	ן פ <u>ו</u>	0,870	0.055	0.491 0.712	0.480 0.709	0.400	0.525
		1.209	0.9∠1	0.715	U. / Uo	0.700	U.702
					meaia	0.000	Kg/cm-
	De tabl	a a.9.e					
	VIEN	NTO	ŗ	Relacić	n		1
	Bandas	Cargas	1.209	0.936	0.929	0.926	ļ
		0.182	0.220	0.170	0.169	0.168	Í
	2	0.053	0.064	0.050	0.049	0.049	·
b)	3 /	0.017	0.021	0.016	0.016	0.016	1
•	4 /	-0.017	-0.021	-0.016	-0.016	-0.016	ł
	5	-0.053	-0.064	-0.050	-0.049	-0.049	4
	6	-0.182	-0.220	-0.170	-0. 169	-0.168	1
		<u></u>	ويعادها الالتجهزي		media	0.000	kg/cm²
							_
	SUMA L)E CARGA	ESTATICA N	AAS VIENT	0	kg/cm²	
	Banda	,	1	2	3	4	
	1		1.140	0.883	0.877	0.874	C.L.
	2		0.699	0.541	0.537	0.535	
C)	3	<u>C.L.</u>	0.642	0.497	0.493	0.492	
	4		0.600	0.464	0.461	0.459	l l
	5		0.570	0.441	0.438	0.437	Å
	6		0.701	0.545	0.539	0,537	1
	De t <u>abi</u> :	a a.10.e					
	SIS	MO		Relación	n	~	1
	Bandas	Cargas	1.209	0.936	0.929	0.926	l I
		0.331	0.400	0.310	0.308	0.307	1
	2	0.097	0.117	0.091	0.090	0.090	l I
d)	3	0.032	0.038	0.030	0.030	0.029	i l
	4	-0.032	-0.038	-0.030	-0.030	-0.029	i I
	5	-0,097	-0.117	-0.091	-0.090	-0.090	I
	6	-0.331	-0.400	-0.310	-0.308	-0.307	· · · •
		TON		l	media	0.000	kg/cm²
	SUMA D	E CARGA F	ESTÁTICA N	IAS SISMC)	kg/cm²	
	Randa		1	2	3	A	ł
	1	Г	1 321	1 023	1 015	- 1 ∩12 ║	
	?	L	0 752	0.582	0 578	0.576	U. E.
e)	3 (сL.	0.659	0.510	0.507	0.505	
•	4 =		0.582	0.451	0.448	0.446	1
			0.517	0.400	0.308	0.306	
	Ð		0.517	0.400	0.550	0.090	· · · · · · · · · · · · · · · · · · ·
	5 6		0.521	0.400	0.400	0.399	

Tabla A.12 Análisis de capacidad de carga estática y sísmica, además factores de seguridad para el edificio de cinco pisos

FACTORES DE CAPACIDAD DE CAR	GA		
La superficie potencial de deslizamiento corta el estratos de arena 2 posee un ángulo de fricción de 36°, razón por la que se considera el sig factor de capacidad de carga, para condiciones estáticas y adicionando el	c, que juiente viento	-هن	
(de figura IV.1):	Nq = 4	15	
Sin embargo, el ángulo de fricción interna de 36° se ve reducido por la pr sísmica del agua de poro, obteniendo el ángulo de fricción interna sísmi 27.1°, razón por la que se considera el siguiente factores de capacida carga para condiciones sísmicas (de figura IV.1):	resión co de ad de Nqsis = 1	6	
Además de lo anterior se requieren los siguientes datos, para determinat casos:	r la capacidad de ca	arga en al	mbos
Presión total de sobrecarga a 6.0 m de profundidad10.30 t/Densidad relativa del suelo del estrato 2c0.6	′m² ′		
CAPACIDAD DE CARGA			
Capacidad de carga en condiciones estáticas $q_d = \sigma_z \cdot N_q \cdot (Dr + 0)$	() qa=	324.45	t/m²
Capacidad de carga en condiciones sísmicas $q_{d-sis} = \sigma_z \cdot N_{q-sis} \cdot (Dr + 0)$	0.1) q d(sis) =	115.36	t/m²
CONDICIONES ESTÁTICAS			!
Esfuerzo en orilla de cimentación		7.13	t∕m²
Esfuerz o en esquina		9.21	t/m²
CONDICIONES ESTÁTICAS MAS VIENTO			
Esfuerzo en orilla de cimentación		8,83	t/m²
Esfuerzo en esquina		11.40	ť/m²
CONDICIONES ESTATICAS MAS SISMO			
Estuerzo en orilla de cimentación		10.23	Vm²
Estuerzo en esquina		13,21	vm²
FACTORES DE SEGURIDAD CONTRA FALLA LO	CAL		
Factor de seguridad en condiciones estáticas			
0	rilla	45,5	
E	squina	35.2	
Factor de seguridad en condiciones estáticas mas viento			
0	rilla	36.8	
	squina	28.4	
ractor de seguridad en condiciones estáticas mas sismo	rilla	44.9	
Considerando una aceleración maxima en la superiícle de 100 gais	nna Souina	11,3 87	
	งนุมแล	U. 7	

APÉNDICE B

CÁLCULO COMPLETO PARA EL EDIFICIO DE DIECISIETE PISOS

A lo largo de este apéndice se presenta el cálculo del edificio de diecisiete pisos, considerando la parte estática y el balanceo por una fuerte ráfaga de viento o bien por la acción sísmica. El apéndice está dividido en tablas, de las cuales cada una de ellas está dedicada a un cálculo específico, a continuación se indica que tipo de cálculo se realiza en cada una de ellas.

CONDICIONES ESTÁTICAS

Tabla B.1, Características de carga y altura para el edificio de 17 pisos
Tabla B.2, Cálculo de matriz de módulos de deformación en el sentido longitudinal (1a. iteración)
Tabla B.3, Cálculo de matriz de módulos de deformación en sentido transversal (1a. iteración)
Tabla B.4, Interacción suelo estructura sentido longitudinal (1a. iteración)
Tabla B.5, Interacción suelo estructura en el sentido transversal (1a. iteración)
Tabla B.6, Cálculo de matriz de módulos de deformación en el sentido longitudinal (2a. iteración)
Tabla B.7, Cálculo de matriz de módulos de deformación en el sentido longitudinal (2a. iteración)
Tabla B.7, Cálculo de matriz de módulos de deformación en sentido transversal (2a. iteración)
Tabla B.8, Interacción suelo estructura sentido longitudinal (2a. iteración)
Tabla B.9, Interacción suelo estructura en el sentido transversal (2a. iteración)
Tabla B.9, Interacción suelo estructura en el sentido transversal (2a. iteración)
Tabla B.10, Cálculo de matriz de módulos de deformación en el sentido longitudinal (3a. iteración)
Tabla B.11, Cálculo de matriz de módulos de deformación en sentido transversal (3a. iteración)
Tabla B.12, Interacción suelo estructura sentido longitudinal (3a. iteración)
Tabla B.13, Interacción suelo estructura en el sentido longitudinal (3a. iteración)

CONDICIONES DINÁMICAS

Tabla B.14, Cálculo de matriz de módulos dinámicos de rigidez en sentido transversalTabla B.15, Interacción Suelo-Estructura en sentido transversal (balanceo por viento)Tabla B.16, Interacción Suelo-Estructura en sentido transversal (balanceo por sismo)

CONCLUSIONES DEL EDIFICIO DE 17 PISOS

Tabla B.17, Planta de cargas en un medio de la losa de cimentación

Tabla B.18, Análisis de capacidad estática y sísmica, además de factores de seguridad

CONDICIONES ESTÁTICAS

japia pri Adiaetensnuas de calga y altara para el culticio de 11 biso

Cimentación de edificio	ancho largo	24.00	m m		
Peso del edificio Peso de la cimentación y muros Peso planta baia					[∞] t/m² 3.00 1.50
Peso de pisos superiores	3.0 7.0 5.0 2.0	losas losas losas losas	1.30 1.20 1.15 1 <i>.</i> 10	t/m² c/u t/m² c/u t/m² c/u t/m² c/u	3.90 8.40 5.75 2.20 24.75
Altura del edificio Altura de pisos superiores y azotea Altura planta baja Altura de sótano y cimentación	3.2	m	16	tramos Total	m 51.20 3.50 6.00 60.70
Centro de masas (análisis por m²)		t Peso	m Altura	t-m Momento	
Sótano y cimentación Planta baja Pisos superiores '	10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 Total	3.00 1.50 1.30 1.30 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.2	1.5 6.0 9.5 12.7 15.9 19.1 22.3 25.5 28.7 31.9 35.1 38.3 41.5 44.7 47.9 51.1 54.3 57.5 60.7	4.50 9.00 12.35 16.51 20.67 22.92 26.76 30.60 34.44 38.28 42.12 45.96 47.73 51.41 55.09 58.77 62.45 63.25 66.77 709.56	
		Aitura centi Masa por Altura libre	ro de masas metro lineal para viento	28.67 30.28 54.70	metros t*s²/m m

Section 200

Tabla B.2 Cálculo de matriz de módulos de deformación en el sentido longitudinal

Para edificio de 17 pisos

1a. iteración

<u> </u>	Desplante d	cimentación			600	cm						
ł	Datos de la	banda		argo 28 =	1200	cm						
}				8=	• 600	cm						
{				λ=	= 300	cm			•			
ł	ESFUERZO	DS EN FAJA		1Y8								
1	Prof.	Distancia	Argun	nentos an	gulares pa	$ra \gamma = 4$	qi	σ	-			
	media	1	ao	J 11	W2	T (I)	carga	esfuerzo	2			
}	cm	(cm	1		{ T	ka/cm ²	ka/cm²	ka/cm ²				
1		}		1	1							
ł	100	0.00	1 406	0.983	0.993	0.960	2508	2 408	-			
{	100	300.00	1.096	1 352	0.000	0.000	1 942	0.038				
1	100	600.00	0.779	1 439	1 352	0.010	1 028	0.001				
] "'	100	800.00	0.110	1 470	4 4 20	0.000	1.020	0.000				
	100	4200.00	0.000	1.407	4 470	0.000	4 001	0.000				
1	100	1200.00	0.402	1 (.43/	1,470	0.000	1.921	0.000				
ł	100	1500,00	0.380	1.510	1.497	0.000	1.920	0.000				
1	100	1800.00	0.321	1.520	1.510	0.000	1.942	0.000				
1	100	2100.00	0.278	1.526	1.520	0.000	2.508	0.000	٦.			
1								2.447	1			
<u> </u>												
1		- Cocurb7/		DIEIOIO		~					E-f	
l	MAIRLE DE	ESFUERZO	JS PUR E			0				7	_ ESI	uerzos de
1	ESTRATO	Prot.	Faja	raja	Faja	raja	raja	raja	i raja	i raja	Ş	oprecarga
[media		2	3	4	3	5	}	8		0.02
[cm	Kg/cm ³	kg/cm*	Kg/cm*	Kg/cm*	Kg/cm*	kg/cm*	Kg/cm*	Kg/cm*	-	kg/cm*
			}			} - .	1	}				
0)	Arena 2c	100	2.447	1.951	1.928	1.921	1.921	1.928	1.951	2.447		0,705
ł.	Arena 2d	300	1.910	1.963	1.898	1.889	1.889	1.898	1.963	1.910		0.855
}	Arena 3a	500	1.512	1.789	1,781	1.774	1.774	1.781	1.789	1.512		1.010
ł	Arena 36	700	1.232	1.530	1.590	1.598	1.598	1.590] 1.530	1.232		1.170
	Arena 3c	900	1.022	1.282	1.378	1.403	1.403	1.378	1.282	1.022	_	1.330
	MATRIZ DE	ESFUERZO)S	(Cet+Cet	¢+0)							
	Estrato	Prof.	Fala	Fala	Faia	Faia	Fala	Faia	Faja	Faja	Lev fenome	nológica
	}	media	1	2	3	4	5	6	7	8	$C_{s} * (1+\kappa v)$	กร
	ł	cm	ka/cm ²	ka/cm ²	ka/cm ²	ka/cm ²	ka/cm*	kg/cm ²	kg/cm²	kg/cm ²		
i `						1-*					}	
c)	Arena 2c	100	2.485	1.976	1.953	1.946	1.946	1.953	1.976	2.485	0.0104	0.5500
	Arena 2d	300	2.219	2.162	2.087	2.076	2.076	2.087	2.162	2.219	0.0104	0.5500
	Arena 3a	500	2.072	2.211	2.173	2,160	2.160	2.173	2.211	2.072	0.0073	0.5200
	Arena 3b	700	2.025	2,199	2 2 1 4	2 209	2.209	2.214	2,199	2.025	0.0073	0 5200
	Arena 3c	900	2 033	2,192	2 238	2 246	2 246	2.238	2 192	2.033	0.0073	0.5200
-												
											<u>``</u>	
		MÓDULOS		RMACIÓ		Δi	cm²/ka	M_{z}	$=C, \sigma_{j}$	z"'(l+x,	}	
-	Fetrato	Prof	Fala	Faia	Fala	Faia	Faia	Faia	Faia	Fala	•]
	Ladeto	media	1 aja 1	2	3	A	5	6	7	8		
	[1112/018	£4.+	Ni-	M7	8.87	M ₇	M7	M7	M ₂		
-			1774		1714. 			1736.				
an.	Arens 70	100	0 00000	0.00716	0.00710	0.00721	0.00721	0.00719	0.00715	0 00630		
47	Areno 24	202	0.00074	0.00710	0.000.00	0.00121	n nnege	0.00604	0.00680	0.00071		{
	Arran 20	500	0.00071	0.00000	0.00034	0.00000	0.00000	0.0000	0.00000	0.0000		
	Arena Sa	700	0.00498	0.00462	0.00485	0.00488	0.00460	0.00460	0.00402	0.00490		1

Tabla B.3 Cálculo de matriz de módulos de deformación en sentido transversal Para edificio de 17 pisos

1a. íteración

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	}	Barra Januara a				600					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	}	Desplante c	mentacion			000	cm				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ł	Datos de la	banda		largo 2B	= 2400	cm				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	{				B :	= 1200	cm			**	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	}				λ:	≈ 200	cm				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	}	ESFUERZO	DS EN FAJA		1 Y 6					_	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	Prot.	Distancia	Argun	<u>nentos an</u>	gulares p	ага <u>х</u> ≈ 4	ip	σ		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	{	media	f	α0	ψ1	ψ2	(l)i	carga	esfuerz	•	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	{	cm	l cm	ţ	1	1	kg/cm ^z	{ kg/cm ²	{ kg/cm ²		
a) 100 000 1.465 0.765 -0.765 0.854 2.535 2.433 0.705 2.534 2.535 2.433 0.705 2.535	1	400	1	1 400	1 0 705		+	1 0 004	+	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		100		1 207	0.700	0.705	0.004	2.034	2.325		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	{ a)	100	200.00	1 240	1 272	1 1 240	0.000	1.010	0.102		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		100	400.00	1 102	1 420	1 272	0.002	1 776	0.003		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	{	100	800.00	0.070	1 460	1 420	0.000	1.770	0.000		
$ \frac{1}{2} \frac{1}{1000} \frac{1}{1} \frac{1}{1000} \frac{1}{1} \frac{1}{1000} \frac{1}{1} \frac{1}{1000} \frac{1}{1} \frac{1}{1000} \frac{1}{1} \frac{1}{2000} \frac{1}{1} \frac{1}{1000} \frac{1}{1} \frac{1}{1000$	1	100	1000.00	0.874	1 480	1 460	0.000	2634	0.000		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1		1 1000.00	0.0/4	1.400	1 1.400	1 0.000	2.034	2 4 2 2	٦	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					- 	- <u></u>			4.400	.) 	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	{	MATRIZ DE	ESFUERZO	s por Ei	DIFICIO		σ			Est	uerzos de
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	}	Estrato	Prof.	Faia	Faia	Faia	Faia	Faia	Faia	~ S	obrecarda
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	[media	1 1	2	3	4	5	6		Coz
b) Arena 2c 100 2.433 1.855 1.779 1.779 1.855 2.433 0.705 Arena 2d 300 1.695 1.871 1.796 1.779 1.855 2.433 0.705 Arena 3a 500 1.390 1.685 1.737 1.796 1.871 1.695 0.855 Arena 3b 700 1.221 1.488 1.593 1.593 1.488 1.221 1.170 Arena 3c 900 1.991 1.307 1.414 1.414 1.307 1.091 1.330 MATRIZ DE ESFUERZOS (Gee+Gee+Ge) Estrato Prof. Faja Faja Faja Faja Faja Faja Faja 5 kg/cm² kg/c	{		cm	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²		kg/cm ²
b) Arena 2c 100 2.433 1.855 1.779 1.779 1.855 2.433 0.705 Arena 2d 300 1.695 1.871 1.796 1.766 1.871 1.695 0.855 Arena 3a 500 1.390 1.685 1.737 1.737 1.737 1.685 1.390 1.010 Arena 3b 700 1.221 1.488 1.593 1.488 1.221 1.170 Arena 3c 900 1.091 1.307 1.414 1.414 1.307 1.091 1.330 MATRIZ DE ESFUERZOS (Cree+Gesc +G) Estrato Prof. Faja Faja Faja Faja Faja Faja Ces [*] (1+ κ_v ne (c) Arena 2c 100 2.498 1.882 1.804 1.804 1.882 2.498 0.0104 0.55 Arena 3b 700 1.999 2.157 2.209 2.209 2.157 1.999 0.0073 0.52 Arena 3b 700 1.999 2.157 2.209 2.209 2.157 1.999 0.0073 0.52 Arena 3c 900 2.065 2.199 2.260 2.260 2.199 2.065 0.0073 0.52 Arena 3c 900 2.065 2.199 2.260 2.260 2.199 2.065 0.0073 0.52 Arena 3c 900 2.065 2.199 2.260 2.209 2.157 1.999 0.0073 0.52 Arena 3c 900 2.065 2.199 2.260 2.209 2.157 1.999 0.0073 0.52 Arena 3c 900 2.065 2.199 2.260 2.209 2.157 1.999 0.0073 0.52 Arena 3c 900 2.065 2.199 2.260 2.209 2.157 1.999 0.0073 0.52 Arena 3c 900 2.065 2.199 2.260 2.209 2.157 1.999 0.0073 0.52 Arena 3c 900 2.065 2.199 2.260 2.209 2.157 1.999 0.0073 0.52 Arena 3c 900 2.065 2.199 2.260 2.209 2.055 0.0104 0.55 Arena 3c 900 2.065 2.199 2.260 2.209 2.055 0.0073 0.52 Arena 3c 900 2.065 0.0073 0.0073 0.52 Arena 3c 900 2.065 0.0073 0.0073 0.52 Arena 3c 900 0.00598 0.0073 0.0073 0.0073 0.52 Arena 3c 900 0.00598 0.0073 0.0073 0.0073 0.52 Arena 3c 900 0.00598 0.0073 0.0073 0.0073 0.0073 0.52 Arena 3c 900 0.00598 0.0073 0.0073 0.0073 0.0073 0.52 Arena 3c 900 0.00598 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 0.52 Arena 3c 900 0.00598 0.0073 0.0	ł		1		1	1	1	1	1	-	•
Arena 2d 300 1.695 1.871 1.796 1.871 1.695 0.855 Arena 3a 500 1.390 1.685 1.737 1.737 1.685 1.390 1.010 Arena 3b 700 1.221 1.488 1.593 1.593 1.485 1.221 1.170 Arena 3c 900 1.091 1.307 1.414 1.414 1.307 1.091 1.330 MATRIZ DE ESFUERZOS (Gree+Gexc+G) Faja	b	Arena 2c	100	2.433	1.855	1.779	1.779	1.855	2.433		0.705
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	} _	Arena 2d	300	1.695	1.871	1.796	1.796	1.871	1.695		0.855
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ì	Arena 3a	500	1.390	1.685	1.737	1.737	1.685	1.390		1.010
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	[Arena 3b	700	1.221	1.488	1.593	1.593	1.488	1.221		1.170
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	Arena 3c	900	1.091	1.307	1.414	1.414	1.307	1.091	_	1,330
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	L										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		MATRIZ DE	ESFUERZO	S	(Cas+Cexe	:+ ഗ					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Estrato	Prof.	Faja	Faja	Faja	Faja	Faja	Faja	Ley fenom	enológica
c) Arena 2c 100 2.498 1.882 1.804 1.804 1.804 1.882 2.498 0.0104 0.55 Arena 2d 300 2.055 2.087 1.984 1.984 2.087 2.055 0.0104 0.55 Arena 3a 500 1.968 2.126 2.127 2.127 2.126 1.968 0.0073 0.52 Arena 3b 700 1.999 2.157 2.209 2.209 2.157 1.999 0.0073 0.52 Arena 3c 900 2.065 2.199 2.260 2.260 2.199 2.065 0.0073 0.52 Arena 3c 900 2.065 2.199 2.260 2.200 2.199 2.065 0.0073 0.52 Arena 3c 900 2.065 2.199 2.260 2.200 2.199 2.065 0.0073 0.52 Arena 3c 900 2.065 2.199 2.260 2.260 2.199 2.065 0.0073 0.52 Arena 3c 900 2.065 0.0073 0.52 Arena 3c 900 2.065 0.0073 0.52 Arena 3c 900 2.065 0.0073 0.52 Arena 3c 900 2.065 0.0073 0.52 Arena 3c 900 2.065 0.0073 0.052 Arena 3c 900 0.00699 0.00693 0.00751 0.00751 0.00734 0.00628 Arena 3c 300 0.00699 0.00693 0.00713 0.00713 0.00693 0.00699 Arena 3a 500 0.00512 0.00482 0.00482 0.00482 0.00488 0.00508 Arena 3b 700 0.00508 0.00488 0.00482 0.00482 0.00488 0.00508			i media] 1	2	3	{ 4 .	5	6	Cs * (1+kv)	∩s
c) Arena 2c 100 2.498 1.882 1.804 1.804 1.804 1.882 2.498 0.0104 0.55 Arena 2d 300 2.055 2.087 1.984 1.984 2.087 2.055 0.0104 0.55 Arena 3a 500 1.968 2.126 2.127 2.127 2.126 1.968 0.0073 0.52 Arena 3b 700 1.999 2.157 2.209 2.209 2.157 1.999 0.0073 0.52 Arena 3c 900 2.065 2.199 2.260 2.260 2.199 2.065 0.0073 0.52 d) Arena 2c 900 2.065 2.199 2.260 2.260 2.199 2.065 0.0073 0.52 MATRIZ DE MÓDULOS DE DEFORMACIÓN UNITARIA $M_z = C_z \cdot \sigma_z^{-n_z} (1 + \kappa_v)$ MATRIZ DE MÓDULOS DE DEFORMACIÓN UNITARIA $M_z = M_z$ $M_z = M_z$ d) Arena 2c 100 0.00628 0.00734 0.00751 0.00751 0.00734 0.00628 Arena 3a 500 0.00699 0.00693 0.00713 0.00713 0.00693 0.00699 Arena 3a 500 0.00512 0.00492 0.00492 0.00492 0.00492 0.00512 Arena 3b 700 0.00508 0.00488 0.00482 0.00488 0.00508 Arena 3b 700 0.00508 0.00488 0.00482 0.00483 0.00508	l		cm	kg/cm ²	kg/cm ²	kg/cm²	kg/cm ²	kg/cm ²	kg/cm ²		
c) Arena 2c 100 2.498 1.882 1.804 1.804 1.804 2.498 0.0104 0.55 Arena 2d 300 2.055 2.087 1.984 1.984 2.087 2.055 0.0104 0.55 Arena 3a 500 1.968 2.126 2.127 2.127 2.126 1.968 0.0073 0.52 Arena 3b 700 1.999 2.157 2.209 2.209 2.157 1.999 0.0073 0.52 Arena 3c 900 2.065 2.199 2.260 2.260 2.199 2.065 0.0073 0.52 MATRIZ DE MÓDULOS DE DEFORMACIÓN UNITARIA cm^2/kg $M_z = C_z \cdot \sigma_z^{-n_z} (1 + \kappa_v)$ MATRIZ DE MÓDULOS DE DEFORMACIÓN UNITARIA cm^2/kg $M_z = C_z \cdot \sigma_z^{-n_z} (1 + \kappa_v)$ Arena 2c 100 0.00628 0.00734 0.00751 0.00751 0.00734 0.00628 Arena 3a 500 0.00512 0.00492 0.00492 0.00492 0.00512 Arena 3b 700 0.00508 0.00488 0.00482 0.00482 0.00488 0.00508 Arena 3b 700 0.00508 0.00488 0.00482 0.00482 0.00488 0.00508					{		}			8 {	
Arena 2d 300 2.055 2.087 1.984 1.984 2.087 2.055 0.0104 0.55 Arena 3a 500 1.968 2.126 2.127 2.127 2.126 1.968 0.0073 0.52 Arena 3b 700 1.999 2.157 2.209 2.209 2.157 1.999 0.0073 0.52 Arena 3c 900 2.065 2.199 2.260 2.260 2.199 2.065 0.0073 0.52 Matriz DE MÓDULOS DE DEFORMACIÓN UNITARIA cm²/kg $M_z = C_z \cdot \sigma_z^{-n_z} (1 + \kappa_v)$ Matriz DE MÓDULOS DE DEFORMACIÓN UNITARIA cm²/kg $M_z = C_z \cdot \sigma_z^{-n_z} (1 + \kappa_v)$ Matrix DE MÓDULOS DE DEFORMACIÓN UNITARIA cm²/kg $M_z = C_z \cdot \sigma_z^{-n_z} (1 + \kappa_v)$ Matrix DE MÓDULOS DE DEFORMACIÓN UNITARIA cm²/kg $M_z = C_z \cdot \sigma_z^{-n_z} (1 + \kappa_v)$ Matrix DE MÓDULOS DE DEFORMACIÓN UNITARIA cm²/kg $M_z = C_z \cdot \sigma_z^{-n_z} (1 + \kappa_v)$ Arena 2c 100 0.00628 0.00734 0.00751 0.00734 0.00628 Arena 2d 300 0.00628 0.00734 0.00751 0.00734 0.00693 0.00492	C)	Arena 2c	100	2.498	1.882	1.804	1.804	1.882	2.498	0.0104	0.55
Arena 3a 500 1.968 2.126 2.127 2.127 2.126 1.968 0.0073 0.52 Arena 3b 700 1.999 2.157 2.209 2.209 2.157 1.999 0.0073 0.52 Arena 3c 900 2.065 2.199 2.260 2.209 2.157 1.999 0.0073 0.52 MATRIZ DE MÓDULOS DE DEFORMACIÓN UNITARIA Cm^2/kg $M_z = C_z \cdot \sigma_z^{-n_z} (1 + \kappa_v)$ Estrato Prof. Faja		Arena 2d	300	2.055	2.087	1.984	1.984	2.087	2.055	0.0104	0.55
Arena 3b 700 1.999 2.157 2.209 2.209 2.157 1.999 0.0073 0.52 Arena 3c 900 2.065 2.199 2.260 2.260 2.199 2.065 0.0073 0.52 MATRIZ DE MÓDULOS DE DEFORMACIÓN UNITARIA $Cm²/kg M_z = C_s \cdot \sigma_z^{-n_z} (1 + \kappa_v) Estrato Prof. Faja <$		Arena 3a	500	1.968	2.126	2,127	2.127	2,126	1.968	0.0073	0.52
Arena 3c 900 2.065 2.199 2.260 2.260 2.199 2.065 0.0073 0.52 MATRIZ DE MÓDULOS DE DEFORMACIÓN UNITARIA Cm²/kg Estrato Prof. Faja Go Mz Mz Mz Mz Mz Mz Mz Mz <th></th> <td>Arena 3b</td> <td>700</td> <td>1.999</td> <td>2.157</td> <td>2.209</td> <td>2.209</td> <td>2.157</td> <td>1.999</td> <td>0.0073</td> <td>0.52</td>		Arena 3b	700	1.999	2.157	2.209	2.209	2.157	1.999	0.0073	0.52
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Arena 3c	900	2.065	2.199	2.260	2.260	2.199	2.065	0.0073	0,52
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								A 4	M,=	$=C_{s}\cdot\sigma_{z}^{-n_{s}}($	$1+\kappa_{v}$
Estrato Prot. raja		MATRIZ DE	MODULOS	DE DEFOI	RMACION	UNITARIA		cm²/kg		• • • •	
media 1 2 3 4 5 6 Mz Mz Mz Mz Mz Mz Mz d) Arena 2c 100 0.00628 0.00734 0.00751 0.00751 0.00734 0.00693 Arena 2d 300 0.00699 0.00693 0.00713 0.00713 0.00693 0.00693 Arena 3a 500 0.00512 0.00492 0.00492 0.00492 0.00492 0.00512 Arena 3b 700 0.00508 0.00488 0.00482 0.00482 0.00483 0.00483		Estrato	Prot.	raja	Faja	Faja	raja	Faja	Faja		1
MZ MZ<			media	1	2	3	4	5	6		
d) Arena 2c 100 0.00628 0.00734 0.00751 0.00734 0.00628 Arena 2d 300 0.00699 0.00693 0.00713 0.00713 0.00693 0.00699 Arena 3a 500 0.00512 0.00492 0.00492 0.00492 0.00492 0.00512 Arena 3b 700 0.00508 0.00483 0.00482 0.00483<				MZ	MZ	WIZ	MZ	MZ	MZ	-	
Arena 2d 300 0.00599 0.00693 0.00713 0.00713 0.00693 0.00699 Arena 3a 500 0.00512 0.00492 0.00492 0.00492 0.00492 0.00512 Arena 3b 700 0.00508 0.00483 0.00482 0.00482 0.00483 0.00508	o)	Aron- 2-	100	0.00626	0.00734	0.00754	0 00754	0.00724	0.00626		
Arena 3a 500 0.00559 0.00492 0.00492 0.00492 0.00492 0.00492 Arena 3a 500 0.00512 0.00492 0.00492 0.00492 0.00492 0.00512 Arena 3b 700 0.00508 0.00488 0.00482 0.00488 0.00508 Arena 3c 900 0.00499 0.00483 0.00476 0.00483 0.00499		Arena 20	200	0.00020	0.00/34	0.00713	0.00710	0.00/34	0.00020		}
Arena 3b 700 0.00508 0.00482 0.00482 0.00482 0.00488 0.00508 Arena 3c 900 0.00499 0.00483 0.00482 0.00483 0.00489 0.00499			000	0.00099	0.00093	0.00713	0.00/13	0.00033	0.00643		
Arena 30 900 0.00409 0.00400 0.00402 0.00402 0.00400 0.00500		Arena 3h	700	0.00012	0.00492	0.00492	0.00492	0.00432	0.00012		
		Arena 3c	900	0.00499	0.00483	0.00476	0.00476	0.00483	0.00000		

. . .

Tabla B.4Interacción suelo estructura sentido longitudinalPara edificio de 17 pisos

1a. iteración

[Desplant	e cimenta	ición		600.00	cm							
ł	Datos de	la banda	lar	go 2B =	: 1200.00	cm							
}				B ≈	600.00	cm							
ł				λ=	300.00	cm							
{	PARA FA	JA	1 Y 8										
	Coorden	ada al ce	ntro dov	ela (x) e	en cm		00						
{	Estrato	Prof.	н	Argu	mentos ar	ngulares p	ara <u>χ</u> = 4	Mz	(Alpha)	Despla.			
		media	ł	aa	ψ1	Ψ2	(1)i		α	unitario			
{		cm	cm	}	1	}	kg/cm²	cm²/kg	cm³/kg	corregido			
}	Arena 2c	100	200	1 406	0.083	-0.983	0.960	0.0063	1 260	1 210			
[=]	Arena 2d	300	200	1 107	0.300	-0.000	0.600	0.0000	1 341	0.834			
} ~ /	Arena 3a	500	200	0.876	0.701	-0.704	0.401	0.0050	0.997	0.004			
}	Arena 3h	700	200	0.070	0.201	-0.231	0.401	0.0050	1 009	0.400			
}	Arena 3c	ana	200	0.103	0.165	-0.277	0.210	0.0050	1.003	0.277			
}	Alena oc	300	1000	0.000	0.100	-0.100	0.130		1.00/	2 0190			
}			1000		1			<u>OR</u>	J	<u>2.910</u>			
┝													
MATRIZ DE FLEXIBILIDAD TRANSPUESTA DEL SUELO													
$\begin{array}{c} mairie De Flexibilidad (RANSPUES (A DEL SUELO [8]) \\ 0 300 600 900 1200 1500 1800 \end{array}$													
		1	Enia	Ecip	Ecio	500 Enio	Eain	Faia	Foio	Enio			
ł			гаја	raja	гаја	гаја	raja	гаја	гаја	гаја			
	•		1	<u> </u>	3	4		<u> </u>					
		F1	2,918	0.705	0.201	0.001	0.021	0.008	0.003	0.002			
		F2 5	0.770	3.060	0.759	0.201	0.001	0.021	0.008	0.004			
oj		F 3	0.200	0.700	3.086	0.770	0.201	0.001	0.021	800.0			
		F4	0.064	0.201	0.769	3.093	0.770	0.201	0.062	0.022			
		P5	0.022	0.062	0.201	0.770	3.093	0.769	0.201	0.064			
		F6	0.008	0.021	0.061	0.201	0.770	3.086	0.765	0.208			
		F7	0.004	0.008	0.021	0.061	0.201	0.769	3.060	0.778			
		F8 j	0.002	0.003	0.008	0.021	0.061	0.201	0.765	2.918			
			<u></u>					·····					
				WETDI				050	02 A7 ALUE				
		COUCID	a pur ji				q	DES		vio j			
	1	.	0-	foil	cm ² /Kg		kalam2		VERTICAL	1			
•	<u>e</u> ł		0.700	0.009	0.000		n Ene		CM	[
• 1	5	2.920	0.700	0.200	0.002		2.000	_	9.370				
C)	F2	0.702	3.000	0.790	0.202	•	1.342	-	9.943	}			
	F3	0.210	0.700	3.140	0.971		1.920		10.002	}			
	F4]	0.000	0.202	0.909	3.003		- 1.921	1	10.015	, ł			
				Į	Varc	or mealo	2.015	1	9,635				
	4ATDI7 18			15::14 4	kalom ³			CINECNITA					
I	MPA 1 1812. 111	IVERDA		loùlt	kg/cm	-				A			
	۶ ۲	C1	C2	C3	C.		cm 1	ka/cm ²	CONCOUNT	41 ka/cm ²			
-		0.267	0.000	0.001		-		7 607	1 200	Ryretti-			
.n		0.30/	~0.082	-0.001	-0.001		9.030	1 070	1.290	4.0/0			
a)	F2	-0.093	0.312	-0,00/			9.030	1 904	0.033	1,000			
	Г3 Е,	-0.002 -0.001	-0.000	0.300	-U.UOD 0 091		9.030	1,031	0.900	1.003			
	F 4j	-0.001	-0.002	-0.080	0.201	Valora	S.035	200.1	1.000	1.0/0 2.07E			
						vajore		2.004	1.000	4.0/3			

76

Tabla B.5	Interacción sue	elo estructura el	n el sen tido	transversal
Para edifició	o de 17 pisos			

1a. iteración

_											
1	Desplante	e cimenta	ción		600.00	cm					
}	Datos de	la banda	3	rgo 2B =	1200.00	cm					
}				B =	600.00	cm		•			
-				λ=	= 200.00	cm					
1	PARA FA	.14	1 Y 6		_					•	
}	Coorden	ada al ce	entro dou	ala (vì a			a				
ł	- Setrato	Drof			montoe a	aulares n		1 845	(Alpha)	Donnia	
[Estrato			- nigu	mentos ar	iguiares p			(Alpha)	Uespia.	
<u>ا</u>		media	Į	(Cto	γ Ψ ¹	ψz	l O	{) a	unitario	
1		cm	cm			ł	kg/cm²	cm²/kg	cm³/kg	(corregido	
1 21	Arena 2c	100	200	1 406	0 785	0 785	0.884	0.0063	1 757	+ 4 4 4 4 4	
1 "	Arena 2d	200	200	1 107	0.700	0 200	0.004	0.0000	1,207	0.627	
{	Arena 2a	500	200	0.070	0.022	-0.022	0,450	0.0070	1,395	0.037	
\$	Arena sa	300	200	0.010	0.197	-0,197	0.278	0.0051	1.024	0.204	
ł	Arena 3D	700	200	0.709	0.142	-0,142	0.187	0.0051	1.016	0.190	
ł	Arena 30	900	200	0.588	0.111	-0,111	0.133	0.0050	0.999	0.132	
{			1000]			<u></u>		2.354	
L											
ł											
1	MATRIZ	DE FLEX	BILIDAE) TRANS	PUESTA	DEL SUE	LO		[δ ŋ]	cm*/Kg	
I			0	200	400	600	800	1000			
1			Faja	Faja	Faja	Faja	Faja	Faja			
			Ť	2	3	4	5	6			
{	•	F1	2.354	0.827	0.307	0 130	0.059	0.029	1		
E M		6.	0.836	2 543	0.834	0 307	0 131	0.061			
· · ·		E.	0.247	D 977	2 552	0.001	0.208	0.125			
		ra E.	0.317	0.027	2.000	0.004	0.300	0.155			
ļ		F4 .	0.135	0.308	0.004	2.330	0.827	0.317			
•		F6	0.061	0.131	0.307	0.834	2.513	0.836			
1		F6[0.029	0.059	0.130	0.307	0.827	2.354			
L								<u></u>			
{	MATRIZ F	REDUCID	A POR S	IMETRI	A	[õŋ]	cm*/kg				
1	[C1	C2	C3							
c)	F1	2.383	0.886	0.437							
	F2	0.897	2.644	1.141							
	Fal	0.452	1.135	3.392							
	MATRIZ II	VFRSA		15.14-1	ka/cm*		δ'=+1	CONFIGU	RACIÓN T	RANSVERSAL	
				fert -1			• • •				relación
	ł	Ca	C:	Ca			cm		kalom²		amina
a) '	Ea	0.480	-0.157	-0.000			1 000		0.314	am	1 350
47		0.400	0.107	0,000			1.000	-	0.014		0.000
	F 21	-0.100	0.434	0.245		•	1.000	-	0.190		0.021
	Гэј	-0.011	-0,144	0,340	ſ		1.000		0.189	·	0.019
					Ł		valores p	romedios	0.231	qa	1,000
										relacio	
	ESFUERZ	os en e	L SUELC) EN 1/4	DELAL	DSA DE C	IMENTAC	ION		kg/cm²	
					Factor	F1	F2	F3	F4	Sentido largo	
				mp	qm/qa	2.676	1.865	1.883	1,876	_kg/cm²	
		_				0.007	0.005	0.500	2 554		1
e)		-	F1	0.314	1.359 [3.031	∠.533	2.500	2,001	2.821	1
e)	Sentia	- do corto	F1 F2	0.314 0.190	1.359 0.821	2.198	2.535 1.532	2.560	1.541	1.705	
e)	Sentio	- do corto	F1 F2 F3	0.314 0.190 0.189	1.359 0.821 0.819	3.637 2.198 2.192	2.535 1.532 1.527	2.500 1.547 1.543	1.541 1.537	1.705	
e)	Sentio	- do corto -	F1 F2 F3	0.314 0.190 0.189 0.231	1.359 0.821 0.819	2.198 2.192	2.535 1.532 1.527	2.500 1.547 1.543	1.541 1.537 2.075	2.821 1.705 1.700	

and the second second second second

Tabla B.6 Cálculo de matriz de módulos de deformación en sentido longitudinal Para edificio de 17 pisos

2a. iteración

	Desplante Datos de l	cimentación a banda	f	argo 2B *	600 = 1200	cm cm						
1				. В ч	600	cm			-			
{				λ-	= 300	cm						
ł	ESFUERZ	OS EN FAJ	<u>A</u>	<u>1Y8</u>					-			
ł	Prof.	Distancia	Argun	ientos an	gulares pa	$ara \chi = 4$	d di	σ				
	media	{	a0	Ψ1	ψ2	(1)	carga	estuerz	3			
ł	cm	i cu	1	}	{	Kg/cm-	r xg/cm-	Kðicu-				
ļ	400	0.00	1 400	0.093	0.093	0.060	7.676	2 560	-			
1 -1	100	300.00	1.400	1 352	0.903	0.900	1 865	0.036				
} • •	100	600.00	0.770	1 / 1 / 2 9	1 352	0.013	1 993	0.001				
ļ	100	000.00	0.595	1.450	1 438	0.000	1.876	0.007				
	100	1200.00	0.000	1 4/0	1 476	0.000	1.070	0.000				
ł	100	1500.00	0.402	1 510	1 407	0.000	1 883	0.000				
1	100	1800.00	0.300	1.510	1.937	0.000	1 865	0.000				
1	100	2100.00	0.021	1.520	1.510	0.000	2.676	0.000				
ł		1 2100.00	0.2/0	1.520	1,520	1 0.000	1 2.010	2 605	ר			
L								2.000	J 			
1												
{	MATRIZ D	E ESFUERZ	OS POR	EDIFICIO)	σ					Es	fuerzos de
1	Estrato	Prof.	Fala	Fala	Faia	Fala	Fala	Faja	Fala	Faia	~	obrecarga
{		media	1	2	3	4	5	6	1 7	8		(70Z
1		cm	ka/cm*	kg/cm ²	kg/cm [#]	kg/cm ²	kg/cm ²	kg/cm [±]	ka/cm ²	kg/cm ²		kg/cm ²
{						1	1		1	-	~	-
Ы	Arena 2c	100	2.606	1.879	1.882	1.876	1.876	1.882	1.879	2.606		0.705
	Arena 2d	300	2.000	1.934	1.852	1.844	1.844	1.852	1.934	2.000		0.855
	Arena 3a	500	1.561	1.780	1.743	1.734	1.734	1.743	1.780	1.561		1.010
	Arena 3b	700	1.260	1.527	1.562	1.564	1.564	1.562	1.527	1.260		1,170
ł	Arena 3c	900	1.038	1.280	1.358	1.376	1.376	1.358	1.280	1.038		1.330
ł		*			<u> </u>				······	·	-	
	MATRIZ D	E ESFUERZ	os	(042+043	ie +07)							
	Estrato	Prof.	Fala	Faja	Ley fenom	enológica						
		media	1	2	3	4	5	6	7	8	Cs * (1+KV)	ns.
		cm	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm²	8	
C)	······			[}							
	Arena 2c	100	2.644	1.905	1.907	1.901	1.901	1.907	1.905	2.644	0.0104	0.55
	Arena 2d	300	2.310	2.133	2.041	2.032	2.032	2.041	2.133	2.310	0.0104	0.55
	Arena 3a	500	2.121	2.202	2.135	2.120	2.120	2.135	2,202	2.121	0.0073	0.52
	Arena 3b	700	2.052	2.196	2.186	2.175	2.175	2.186	2.196	2.052	0.0073	0.52
	Arena 3c	900	2.049	2,190	2.219	2.220	2.220	2.219	2,190	2.049	0.0073	0.52
		,										
								М	$=C \cdot \sigma$	$\frac{n}{2}(1+x)$)	
	MATRIZ DI	E MÓDULOS	S DE DEF	ORMACI	<u>ÓN UNIT</u>	ARIA	cm²/kg			2 (- / -	~ · ·	
	Estrato	Prof.	Faja									
	1	media	1	2	3	4	5	6	7	8		
			Mz	•								
								0.00000				
d)	Arena 2c	100	0.00609	0.00729	0.00729	0.00730	0.00730	0.00729	0.00729	0.00609		
	Arena 2d	300	0.00656	0.00685	0.00702	0.00/04	0.00/04	0.00702	0.00685	0.00656		}
	Arena 3a	500	0.00492	0.00483	0.00491	0.00493	0.00493	0.00491	0.00483	0.00492		}
	Arena 3b	700	0.00501	0.00484	0.00485	0.00486	0.00486	0.00485	0.00484	0.00501		
	Arena 3c 1	900 í	-u uussen i	0.00484	D UU481	LU.UU481i	0.004871	U UU481	IU.UU484	LU CICACIT.		

Tabla B.7 Cálculo de matriz de módulos de deformación en sentido transversal Para edificio de 17 pisos

2a. iteración

.

	Desplante Datos de la ESFUERZO	cimentación banda DS EN FAJA		iargo 2B = B = λ = 1 Υ 6	600 2400 1200 200	cm cm cm cm		EST/ SALIR	TESIS De la	M7 NEL
	Prof.	Distancia	Argun	nentos ang	julares pa	ra <u>γ</u> ≈4	q)	a		1
	media	1	000	ψ1	₩ 2	()i	carga	esfuerzo		1
	cm	Cm	}	1	{	Kg/cm*	kg/cm²	kg/cm ³		{
	100	0.00	1,488	0.785	-0.785	0.884	2 821	2,493	-	
a)	100	200.00	1.387	1.249	0.785	0.056	1 705	0.096		}
] -/	100	400.00	1.240	1.373	1.249	0.002	1 700	0.003		}
	100	600.00	1 102	1 4 2 9	1 373	0.000	1 700	0.000		
	100	800.00	0.979	1 460	1 4 2 9	0.000	1 700	0.000)
	100	1000.00	0.874	1 480	1 460	0.000	1 700	0.000		1
		1.000.00		1		1_0.000_		2.592	1	{
								h		{
	MATRIZ DE	ESFUERZ	os por e	DIFICIO		σ			Esf	uerzos de
	Estrato	Prof.	Fala	Faia	Faia	Faia	Faia	Faia	 Si	brecarda
i.		media	1	2	3	4	5	6		CTOS
		cm	kg/cm*	kg/cm ²	kg/cm ²	kg/cm ²	ka/cm ²	kg/cm ^z		kg/cm ²
				1		1	1	-	•	
b)	Arena 2c	100	2.592	1.764	1.701	1.701	1.764	2.592		0.705
-	Arena 2d	300	1.752	1.837	1.715	1.715	1.837	1.752		0.855
	Агепа За	500 4	1.406	1.653	1.653	1.653	1.653	1.406		1.010
	Arena 3b	700	1.214	1.445	1.503	1.503	1.445	1.214		1.170
	Arena 3c	900	1.070	1.256	1.323	1.323	1.256	1,070		1.330
	MATRIZ DE	ESFUERZO		(Goz+Gerc	+05)	<u></u>				
	Estrato	Prof.	Faja	Faja	Faja	Faja	Faja	Faja	Ley fenome	nológica
		media		2	3	4	5	6	Cs * (1+KV)	ns
		<u> </u>	kavem ²	Kg/cm*	kg/cm ²	Kg/cm ²	kg/cm ²	kg/cm*		
~ \	Arona 7-	400	2657	1 700	1 706	1 775	1 700	2657	0.0404	0.55
C}	Arena 20	700	2.007	1.790	1.720	1.720	1.790	2.00/	0.0104	0.55
	Arena 20	500	4 092	2.003	2.904	1.904	2.003	1 092	0.0104	0.55
	Arena 3h	700	1 007	2.030	2.042	2.042	2,035	1000	0.0073	0.52
	Arena 3o	000 000	2 044	2.110	2 170	2.113	2.110	2.044	0.0073	0.52
	/dena 00	000			2					
										$+\kappa_{v}$
	MAIKIZ DE	MUDULUS	DE DEPO	Enin	UNITARI/	A Eni-	Cm ⁺ /Kg	Fair	- 1	ł
	E2M 910	F(Q).	raja 4	гаја 9	rdja 2	гаја	raja R	raja e		1
		macka	Mz	4 Mz	Mz	Mz	Mz	Mz		
•										}
	Arena 2c	100	0.00607	0.00755	0.00770	0.00770	0.00755	0.00607		
	Arena 2d	300	0.00689	0.00700	0.00729	0.00729	0.00700	0.00689		1
	Arena 3a	500 {	0.00510	0.00496	0.00502	0.00502	0.00496	0.00510		1
	Arena 3b	700	0.00509	0.00493	0.00493	0.00493	0.00493	0.00509		{
	Arena 3c	900	0.00502	0.00489	0.00487	0.00487	0.00489	0.00502		

÷

Caracter of the Constant

Tabla B.8 Interacción suelo estructura sentido longitudinal

Para edificio de 17 pisos

2a. iteración

\square	Desplante	e cimenta	ción		600,00	cm				
{	Datos de	la banda	lar	go 2B =	= 1200.00	cm				
{				B=	= 600.00	cm				
				λ=	= 300.00	cm				
}	PARA FA	JA	1 Y 8							
Ì	Coorden	ada al ce	ntro dove	ela (x) e	en cm		0			
Ì	Estrato	Prof.	н	Argu	mentos ar	igulares p	ara χ = 4	Mz	(Alpha)	Despla.
1		media	{	ασ	ψ1	ψ2	())	{	α	unitario
}		cm	c m				kg/cm²	cm²/kg	cm³/kg	corregido
a)	Arena 2c	100	200	1.406	0.983	-0.983	0.960	0.0061	1.218	1,169
1	Arena 2d	300	200	1.107	0.464	-0,464	0.622	0.0066	1.312	0.816
1	Arena 3a	500	200	0.876	0.291	-0.291	0.401	0.0049	0.985	0.395
{	Arena 3b	700	200	0.709	0.211	-0.211	0.275	0.0050	1.002	0.275
ł	Arena 3c	900	200	0.588	0.165	-0.165	0.196	0.0050	1.003	0.197
			1000	OK	1			OK	1	2.852
[-					
							~			
	MAIRIZL)E FLEXI	BILIDAD	IKANS	PUESIA	JEL SUEL	.0	4500	[õij]	cm³/Kg
		1	U L Proto	300	500	900 E-in	1200	1500	1800	2100
			raja	raja	raja	raja	гаја	raja	raja	raja
			1	2	3	4	<u> </u>	6	7	8
		F1	2.852	0.767	0.202	0.062	0.021	0.008	0.003	0.002
L \		F 2	0.769	3.096	0.776	0.202	0.062	0.021	800.0	0.004
0)		F3	0.205	0.767	3,121	0.///	0.202	0.052	0.021	800.0
		F4 F-	0.003	0.201	U.//D	3.128	0.///	0.202	0.062	0.022
		P5	0.022	0.062	0.202	0.777	3.728	0.776	0.201	0.063
		F 6	0.008	0.021	0.062	0.202	0.777	3.121	0.767	0.206
		F7 5	0.004	0.008	0.021	0.062	0.202	0.770	3.096	0.769
		r 8 {	0.002	0.003	0.008	0.021	0.062	0,202	0.767	2.852
				<u>_</u>						
	MATRIZ R	EDUCID	A POR SI	METRÍ/	4		qi media	DES	PLAZAMIEN	ито
				[δı]]	cm³/kg		·		VERTICAL	4
		C1	C2	C3	C4		kg/cm²		cm	}
	F1	2.853	0.771	0.210	0.083		2.676		9.624	
C)	F2	0.772	3.104	0.797	0.264	•	1.865	2	9.849	
	Fa	0.214	0.78 9	3.183	0.980		1.883		9.876	}
	F4}	0.085	0.263	0.977	3.905		1.876		9.887	, f
				!	Vale	or medio	2.075		9.809	[]
				FS34 4						
	MAIKIZ IN	IVERSA		[oil]~-1	kg/cm [*]	-		CIMENTA	CIUN RIGID	A
	ł	Ct	C2	C3	C4		cm	kg/cm ²	q'i /q'i medio	ka/cm²
-	F1	0.376	-0.093	-0.001	-0.001	-	9,809	2.749	1.322	2.744
d)	F2	-0.093	0.367	-0.085	-0.001		9.809	1.839	0.884	1.835
•	F3	-0.002	-0.084	0.361	-0.085		9.809	1.869	0.899	1.865
	F4	-0.001	-0.002	-0.085	0.277		9.809	1.860	0.895	1.857
						Valore	s medios	2.079	1.000	2.075

, انہو

Tabla B.9Interacción suelo estructura sentido transversalPara edificio de 17 pisos

2a. iteración

	Desplante	cimenta	ción		600.00	cm					
ł	Datos de l	la banda	ta	rgo 28 •	1200.00	cm			•		
				В×	600.00	cm					
Į				λ=	200.00	cm					
1	PARA FA	JA	1Y6								1
	Coordena	ida al ce	<u>ntro dov</u>	ela (x) e	n cm		0				-
1	Estrato	Prof.	<u>H</u>	Argu	mentos a	ngulares p	era $\chi = 4$	Mz	(Alpha)	Despla.	_
		media	}	α0	W1	ψ2	(1)]	α	unitario	
ł		cm	cm	{	{	}	kg/cm ²	cm²/kg	cm³/kg	corregido	
ł	Arena 2c	100	200	1.406	0.785	-0 785	0 884	0.0061	1 215	1 074	-
aì	Arena 2d	300	200	1.107	0 322	-0.322	0.456	0.0069	1 378	0.628	1
[~	Arena 3a	500	200	0.876	0.197	-0.197	0.278	0.0051	1 020	0 283	
ł	Arena 3b	700	200	0.709	0.142	-0.142	0.187	0.0051	1.018	0.190	
}	Arena 3c	900	200	0.588	0.111	-0.111	0.133	0.0050	1.004	0,133	
}			1000	T OK				OK		2.308	ר ו
				J				•••	,	L	- 1
F											
ļ	MATRIZ I	DE FLEXI	BILIDAD	TRANS	PUESTA	DEL SUE	LO		[δ ij]	cm³/Kg	1
ł			Ø	200	400	600	800	1000	• •	-	
}		į	Faja	Faja	Faja	Faja	Faja	Faja			
			1	2	3	4	5	6			
ł	-	F1	2.308	0.837	0.314	0.133	0.060	0.029	•		
ь		F2	0.829	2.561	0.853	0.314	0.132	0.061			{
{ `		F3	0.317	0.837	2.617	0.853	0.311	0.135			{
ł		F 4	0.135	0.311	0.853	2.617	0.837	0.317			1
		F5	0.061	0.132	0.314	0.853	2.561	0.829			}
		Fi	0.029	0.060	0,133	0.314	0.837	2.308			}
											
	MATRIZ R	EDUCID	A POR S	IMETRI	A	[δij]	cm³/Kg				
		_	_	_							}
		<u>C1</u>	C2	C3							Ì
C)	F1	2.337	0.896	0.446							1
	F2	0.890	2.693	1,166							ł
	Fa	0.452	1.147	3.470]
	MATRIZIN	IVERSA		[δij^-1	kg/cm*		δ´=+1	CONFIGU	RACION T	RANSVERSA	L)
	1	A .	•	A .					f		relacion
. دب		0.400	0.450	0.040			cm		kg/cm*		dm/da (
qj	5	0.490	-0.139	-0.010			1.000	-	0.322	qm	1.395
		-0,107	0.404	0.327		•	1.000	-	0.100		0,002
	L 3	-0.012	-0.138	0.337			Veleren n	أحمتهم مسمع	0.100	7 ~~	
							valuies p	Iomedioa	0.231	J 9ª relación	L
						·				relacion	{
	ESFUFR74	DS EN FI		EN 1/4	DFIAIO			ÓN		ka/cm²	1
								-17		9	
					Factor j	F١	F2	Fa	F₄	Sentido laro	。 】
				am	am/aa	2 744	1.835	1.865	1.857	ka/cm²	- {
e)		-	F1	0.322	1.395	3,828	2,560	2.602	2,590	2,895	}
-,	Sentic	lo corto	F2	0.185	0.802	2.199	1.471	1.495	1.488	1.663	
			F3	0.185	0.803	2.204	1.474	1.498	1.491	1.667	
		-	qa	0.231				media	2.075	kg/cm ²	1
			-		•			-			ļ

and a c

Tabla B.10 Cálculo de matriz de módulos de deformación en sentido longitudinal Para edificio de 17 pisos

3a. iteración

1	Desplante	cimentación			600	cm						
1	Datos de l	la banda	ł	argo 2B •	1200	сm						
1				Bª	* 600	cm			-			
]	tetutos			<u>λ</u> = 1 \ (0	= 300	cm						
	Brot	Distancia			autores n	ara v = đ			~			
	media	Distancia		wr	yuiai es pa	$\frac{1}{1} \frac{1}{1} \frac{1}{1}$	L 4"	estuerzo	, ,			
{	Cin	cm	-		} **	ka/cm ²	ka/cm ²	ka/cm ²	-			
1		1	{	1	Į							
	100	0.00	1.406	0.983	-0.983	0.960	2.744	2.634	-			
(a)	100	300.00	1.086	1.352	0.983	0.019	1.835	0.036				
	100	600.00	0.779	1.438	1.352	0.000	1.865	0.001				
1	100	900.00	0.585	1.476	1,438	0.000	1.857	0.000				
1	100	1200.00	0.462	1.497	1.476	0.000	1.857	0.000				
{	100	1500.00	0.380	1.510	1.497	0.000	1.865	0.000				
	100	1800.00	0.321	1.520	1.510	0.000	1.835	0.000				
1	100	2100.00	0.278	1.526	1.520	0.000	2.744	0.000	7			
{								2.670	3			
{	MATRIZ D	E ESFUERZ	OS POR	EDIFICIO)	σ					Es	fuerzos de
}	Estrato	Prot.	Fala	Fala	Fala	Faja	Fala	Faia	Fala	Faia		sobrecarda
}		media	1	2	3	4	5	6	7	8		Coz
		<u> </u>	kg/cm*	kg/cm ^s	ka/cm²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²		kg/cm²
ļ		1			1		Γ				-	
b)	Arena 2c	{ 100	2.670	1.852	1.864	1.856	1.856	1.864	1.852	2.670		0,705
	Arena 2d	300	2.038	1.924	1.833	1.825	1.825	1.833	1.924	2.038		0,855
}	Arena 3a	500	1.581	1.777	1.728	1.717	1.717	1.728	1.777	1.581		1.010
	Arena 3b	700	1.271	1.526	1.551	1.549	1.549	1.551	1.526	1.271		1.170
)	Arena 3c	1	1.045	1.280	1 1.350	1.305	1.300	1.350	[1.280	1.045	-	1,330
┣												
			20	(5								
	Estrate	Beat	E Sala	Eala	T Enin		Fala	Fain	Eala	E SIG		ا مراجع کار مراجع
	ESUAU	Proj.	raja 4	raja 0	г аја 2	raja	raja E	Гаја	гаја 7	гаја	Ce * (14 m)	enologica
			kalom ²	kalemt	kalem?	kalom ²	kalom ²	kaloma	kalom?			110
c)			(AND AND AND AND AND AND AND AND AND AND	isgioili	Kyrein	l ngioin		- ngratit	nyvvili	Ngronn	{	
-/	Arena 2c	100	2.709	1:877	1.889	1.881	1.881	1.889	1.877	2,709	0.0104	0.55
	Arena 2d	300	2.347	2.123	2.022	2.013	2.013	2.022	2.123	2.347	0.0104	0.55
	Arena 3a	500	2.141	2.199	2.120	2.102	2.102	2.120	2.199	2.141	0.0073	0.52
	Arena 3b	700	2.064	2.195	2.175	2.161	2.161	2.175	2.195	2.064	0.0073	0.52
	Arena 3c	900	2.055	2.189	2.211	2.209	2.209	2.211	2.189	2,055	0.0073	0.52
					•	_					$M_{-}=C_{-}$	$\sigma_{\tau}^{m}(1+\kappa)$
	MATRIZ D	E MODULOS	DE DEF	ORMACI	ON UNIT	ARIA	cm²/kg				, - <i>z</i> - <i>z</i>	2 (****
	Estrato	Prof.	Faja	Faja	Faja	Faja	raja	raja	Faja	Faja		[
		media	7	4	3	4	5	6 - 44	7	8		{
•			MZ	MZ	MZ	MZ		MZ	MZ	IVIZ		
ሰኑ	Arena 2r	100	0.00601	0 00735	0 00733	0 00734	0 00734	0.00733	0 00735	0.00601		Į
~)	Arena 2d	300	0.00650	0.00687	0.00706	0.00707	0.00707	0.00706	0.00687	0.00650		[
	Arena 3a	500	0.00490	0.00483	0.00493	0.00495	0.00495	0.00493	0.00483	0.00490		
	Arena 3b	700	0.00499	0.00484	0.00486	0.00488	0.00488	0.00486	0.00484	0.00499		ļ
	Arena 3c	900	0.00501	0.00484	0.00482	0.00482	0.00482	0.00482	0.00484	0.00501		1

Tabla B. 11 Cálculo de matriz de módulos de deformación en sentido transversal Para edifício de 17 pisos

3a. iteración

	Desplante d Datos de la	cimentación banda	 }	largo 2B = B =	600 2400 1200	cm cm cm		,		
1	ECCUE070			λ=	= 200	cm				
}	ESPUERZC	Distancia			ulares na	<u>zo ~ = 4</u>			-	
	media		rigun	w1				esfuerzo		
	CM	cm		ψ,	¥*	ka/cm ²	ka/cm ²	ka/cm ²		
1	on			{	{	1.grow				
	100	0.00	1.488	0.785	-0.785	0.884	2.895	2,559	-	
a	100	200.00	1.387	1.249	0.785	0.056	1.663	0.093		
'	100	400.00	1.240	1.373	1.249	0.002	1.667	0.003		
Į	100	600.00	1.102	1.429	1.373	0.000	1.667	0.000		
Į –	100	800.00	0.979	1.460	1.429	0.000	1.667	0.000		
}	100	1000.00	0.874	1.480	1.460	0.000	1.667	0.000	_	
								2.656]	
ł	MATRIZ DE	ESFUERZ	DS POR E	DIFICIO		σ			Esf	uerzos de
{	Estrato	Prof.	Faja	Faja	Faja	Faja	Faia	Faja	- S	obrecarga
}		media	1	2	3	4	5	6		COT
ł			kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	_	kg/cm ²
{		[1	[1	1	1	1	-	
b	Arena 2c	100	2.656	1.729	1,668	1.668	1.729	2.656		0,705
1	Arena 2d	300	1.775	1.825	1,686	1.686	1.825	1.775		0.855
ł	Arena 3a	500	1.414	1.645	1.630	1.630	1.645	1.414		1.010
	Arena 35	700	1.216	1.438	1.486	1.486	1,438	1.216		1.170
1	Arena 3c	900	1.069	1.249	1.309	1.309	1.249	1.069	-	1.330
	MATRIZ DE	ESFUERZO	os	(Oot+Gerc	+07)					
	Estrato	Prof.	Faja	Faja	Faja	Faja	Faja	Faja	Ley fenome	nológica
		media	1	2	3	4	5	6	Cs*(1+Kv)	ns
		cm	kg/cm ²	kg/cm ²	kg/cm²	kg/cm ²	kg/cm ²	kg/cm ²		
					}		{		[]	
C)	Arena 2c	100	2.720	1.756	1.693	1.693	1.756	2.720	0.0104	0.55
	Arena 2d	300	2.135	2.041	1.874	1.874	2.041	2.135	0.0104	0.55
	Arena 3a	500	1.992	2.087	2.020	2.020	2.087	1.992	0.0073	0.52
	Areha 3b	700	1.994	2.107	2.102	2.102	2.107	1,994	0.0073	0.52
	Arena 3c	900	2.043	2.140	2.100	2.156	2.140	2.043	0.0073	0.52
							~~~~~			
	MATRIZ DE	MÓDULOS	DE DEFO	RMACIÓN	UNITARI	4	cm²/kg	$M_{z} =$	$C_s \cdot \sigma_{Z''}$ (1	$+\kappa_{v}$ )
	Estrato	Prof.	Faja	Faja	Faja	Faja	Faja	Faja	•	1
		media	1	2	3	4	5	6		{
			Mz	Mz	Mz	Mz	Mz	Mz		{
					0.00775	0.000	0.00705			Ì
	Arena 2c	100	0.00600	0.00763	0.00778	0.00778	0.00763	0.00600		1
	Arena 2d	500	0.00685	0.00/02	0.00/36	0.00/36		0.00685		{
	Arona 2h	700	0.00009	0.00497	0.00000	0.00000	0.00497	0.00008		}
	Arena 3c	900	0.00502	0.00490	0.00488	0.00488	0.00490	0.00502		

÷ e

ensels in the second

.....

#### Tabla B.12 Interacción suelo estructura sentido longitudinal

#### Para edificio de 17 pisos

3a. iteración

	Desplante	e cimenta	ción		600.00	cm				
{	Datos de	la banda	laı	go 2B =	= 1200.00	cm				
}				B =	600.00	cm				
}				λ=	= 300.00	cm				
1	PARA FA	JA	1 Y 8							
{	Coorden	ada al ce	ntro dov	ela (x) e	n cm		0			
	Estrato	Prof.	H	Argu	mentos ar	ngulares p	ara $\chi = 4$	Mz	(Alpha)	Despla.
{		media	{	010	ψ1	ψ2	( <b>I</b> )i	]	a	unitario
}		cm	cm	1		}	kg/cm²	cm²/kg	cm³/kg	corregido
1 -1	Arona 2c	100	200	1 106	1 0 082	0.083	0.960	0.0060	1 202	1 154
{ a;	Arona 2d	300	200	1 107	0.303	-0.000	0.622	0.0000	1 300	0.809
Į	Arona 2a	500	200	0.876	0.707	-0.704	0.401	0.0000	1.500	0.303
{	Arona 3h	700	200	0.010	0.231	-0.231	0.275	0.0040		0.000
ł	Arena 3c	900	200	0.588	0.165	-0.165	0.196	0.0050	1 001	0.197
}	Micha 00		1000	OK	1 0.100	-0.100	0.100	OK	1.001	2 826
l I			1000		L				1	L
┝							. <u> </u>			{
Į	MATRIZ (	E FLEX	BILIDAD	TRANS	PUESTA I	DEL SUEL	0		[ <b>δ</b> 1]	cm³/Kg
{			Ō	300	600	900	1200	1500	1800	2100
Į		!	Faja	Faja	Faja	Faja	Faja	Faja	Faja	Faja
{			1	2	3	4	5	6	7	8
		Ft	2.826	0.769	0.203	0.062	0.021	0.008	0.003	0.002
		F2	0.765	3.110	0.778	0.203	0.062	0.021	0.008	0.003
b)		F٦	0.205	0.769	3.136	0.781	0.203	0.062	0.021	0.008
		<b>F</b> 4	0.063	0.201	0.778	3.144	0.781	0.203	0.062	0.022
		F5	0.022	0.062	0.203	0.781	3.144	0.778	0.201	0.063
		Fs	0.008	0.021	0.062	0.203	0.781	3.136	0.769	0,205
		F7	0.003	0.008	0.021	0.062	0.203	0.778	3.110	0,765
		F8	0.002	0.003	0.008	0.021	0.062	0.203	0.769	2,826
	MATRIZR	EDUCID	a por si	METRIA			qi media	DES	PLAZAMIER	10
	1	•	•	. [õij]	cm ⁴ Kg		hered a served		VERTICAL	}
		<u> </u>	0.770	<u>C3</u>			Kg/cm ⁻		cm	1
-1	F1	2.020	0.772	0.211	0.083		4 925	_	9.122	1
cj	F2	0.700	3.110	0./99	0.200	•	1,033	-	9.011	ļ
	<b>F</b> 3	0.213	0.790	3.190	0.904		1.000		9.924	}
	F4[	0.005	0.203	0.901	<u>3.924</u>	or modio	2.075		9.030	, J
					van	or meuto	2,015	}	5,131	
				1 11:21	kalomi			CIMENITA		^
		IVERSA		foilt i	KG/cm	•	<u> </u>		corrección	<u>a</u>
	1	C1	C2	C3	C4		cm	ka/cm²	q'i/q'imedio	ko/cm²
•	F1	0.379	-0.093	-0.001	-0.001	-	9.797	2.773	1.335	2.771
d)	F2	-0.093	0,365	-0.085	-0.001		9.797	1.825	0.879	1.824
,	F3	-0.002	-0.083	0.360	-0.084		9.797	1.859	0.895	1.858
	F4	-0.002	-0.002	-0.084	0.276		9.797	1.850	0.891	1.848
	I	-		-		Valore	s medios	2.077	1.000	2.075

and the second second second second

r Hand a King and

## Tabla B.13Interacción suelo estructura sentido transversalPara edificio de 17 pisos

3a. iteración

.

Γ	Desplante	cimenta	ción		600.00	cm					
t	Datos de	la banda	la	rgo 28 =	1200.00	cm		۲			
\$				8 =	600.00	cm					
ţ				λ =	200.00	cm					
ł	PARA FA	JA	1Y6								
<b>{</b>	Coordena	ada al ce	<u>ntro dov</u>	ela (x) e	n cm		0				•
1	Estrato	Prof.	(н	Argu	mentos a	ngulares p	<u>ara χ = 4</u>	Mz	(Alpha)	Despla.	
Ì		media	1	CX Ø	Ψ1	ψ2	(1)	}	α	Junitario	
{		cm	cm	{	}	1	kg/cm ²	cm²/kg	cm*/kg	corregido	
Į	Arena 2c	100	200	1 406	0.785	-0.785	0.884	0.0060	1 100	1.060	-
1 .	Arena 2d	300	200	1 107	0.700	_0.322	0.456	0.0008	1 370	0.624	
· · ·	Arena 3a	500	200	0.876	0.197	-0 197	0.278	0.0051	1 018	0.283	
1	Arena 3h	700	200	0.010	0.142	-0.142	0 187	0.0051	1 017	0 190	
{	Arena 30	900	200	0.588	0.142	-0.111	0.133	0.0050	1 004	0.133	
]			1000	1 OK	1			<u>0.0000</u>	<u> </u>	2 289	1
{				1 01				UN		2.200	נ
┠								·	· · · · · · · · · · · · · · · · · · ·		
ł				TDANS		NEI SUE	n n		18:0	cm³/Ka	
{				200	400	600	800	1000	Loui	çın ny	
}			Faia	Faia	Faia	Faia	Faia	Faia			
1				· ••/= 2	3	. aju A	5	6			
2	•	E.	2 280	0 930	0.315	0 122	0.000	0.020	•		
5		En .	0.826	2 579	0.010	0.135	0.000	0.029			
10}		F2 E3	0,020	A 930	2 844	0.315	0.132	0,001			
		F3 64	0.010	0.039	0.959	2644	0.311	0.100			
		54	0,100	0.377	0.000	A 950	0.039	0.010			
		F0 E+	0.000	0,102	0.333	0.000	2.370	2.020			
		1.0	0.029	0,000	0,155	0.315	0.039	2.209			
<b></b> -	MATDIT C			METDI	·	Tu21	omilia				
					•	1001	cin ny				
	1	C1	C2	C3							
61	<u>F</u> t]	2.318	0.899	0 449							
~,	5.2	0 887	2 711	1 174							
	Ea	0.007 0.451	1 151	3 490							
	F3}	0.401	1.101	0,433							
	MATRIZ II	VERSA		[SulA_1	ko/cm²		δ'=+1	CONFIGHT	RACIÓN T	RANSVERSA	
				[-4] -1	ng vin		•••	00111100			relación
		Ct	C2	C3			cm		ka/cm²		om/ga
d) .	F1	0.494	-0.160	-0.010			1.000		0.325	am	1,409
-,	F2	-0.156	0.481	-0.141			1.000	=	0 183	4.55	0.794
	F3	-0.012	-0.138	0.333		·	1,000		0.184		0,797
	(	•					Valores p	romedios	0.231	da	1.000
							· •			relació	
			·····								
	ESFUERZ	OS EN E	L SUELC	EN 1/4	DE LA LO	<b>DSA DE C</b>	IMENTACI	ÓN		kg/cm²	
		. –								-	{
					Factor	F١	F2	F٥	F4	Sentido large	5
				qm	qm/qa	2.771	1.824	1.858	1.848	kg/cm²	
e)		-	F1	0.325	1.409	3.904	2.569	2.617	2.603	2.923	[
	Sentid	do corto	F2	0.183	0.794	2.201	1,448	1.475	1.468	1.648	{
		_	F3	0.184	0.797	2.208	1.453	1.480	1.473	1.654	{
		-	qa	0.231				media	2.075	]kg/cm²	

### **CONDICIONES DINÁMICAS**

C Car

Sec. 2 Sec.

	Desplante c Datos de la	imentación banda		largo 2B =	600 2400	cm cm			_	•
ł				B =	= 1200	cm	-			
1	ESCUED70			λ= 1 V 6	= 200	cm				
ł	Prof	Distancia	Argun	ientos an	oulates pa	$ara \gamma = 4$	) dì	τ	-	
{	media		αο	ψ1	ψ2		carga	esfuerzo	•	
}	cm	cm	}			kg/cm ²	kg/cm ²	kg/cm ²		
1	100	0.00	1.488	0.785	-0.785	0.884	2.923	2.584	-	
a)	100	200.00	1.387	1.249	0.785	0.056	1.648	0.092		
1	100	400.00	1.240	1.373	1.249	0.002	1.654	0.003		
1	100	600.00	1.102	1.429	1.373	0.000	1.654	0.000		
1	100	1000.00	0.979	1.400	1.429		1.040	0.000		
1		1 1000.00	1 0,014	1.400	1.400	1 0,000	2.923	2.679	1	
<u>}</u>									J	
ł	MATRIZ DE	ESFUERZO	S POR EL		1-622-	$\sigma$	T		Es	lueizos de
1	Estrato	Prol.	raja 1	raja	raja	raja	raja 5	raja	8	oprecarga
		cm	ka/cm ²	ka/cm ²	ka/cm ²	ka/cm ²	ka/cm ²	kg/cm ²		ka/cm²
1 m	Arena 7c	100	2 679	1 717	1.655	1 655	1 717	2679	•	0 705
1	Arena 2d	300	1.785	1.824	1.687	1.687	1 824	1.785		0.855
]	Arena 3a	500	1.424	1.658	1.663	1.663	1.658	1.424		1.010
ł.	Arena 3b	700	1.232	1.467	1.546	1.546	1,467	1.232		1.170
1	Arena 3c	900	1.094	1.292	1.384	1.384	1.292	1.094		1.330
<u>├</u> ──		ESEUER70	·	Gest Gesc						
	Estrato	Prof.	Faia	Faia	Faia	Faia	Faia	Faia	Lev fenome	nológica
1		media	1	Ź	3	4	5	6	Cd	nd
ł		cm '	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²		
(c)	Arena 2c	100	2.744	1.743	1.681	1.681	1.743	2.744	285	0.76
] [	Arena 2d	300	2.145	2.040	1.875	1.875	2.040	2.145	285	0.76
}	Arena 3a	500	2.002	2.099	2.053	2.053	2.099	2.002	350	0.52
}	Arena 3b	700	2.010	2.137	2.162	2.162	2.137	2.010	350	0.52
<u>}</u>	Alena 30	900	2.000	2.103	2.230	2.230	2.103	2.000	300	0.52
[	MATRIZ DE	MÓDULOS (	DINÁMICO	S DE RIG	IDEZ		ka/cm²			
]	Estrato	Prof.	Faja	Faja	Faja	Faja	Faja	Faja	u = C	me ne
{		media	1	2	3	4	5	6	$\mu_{z} = C_{d}$	υz
			μz	<u> </u>	μ2	μ2	μ2	μz		
d)	Arena 2c	100	613.74	434.75	422.87	422.87	434.75	613.74		
	Arena 2d	300	509.09	490.01	459.59	459.59	490.01	509.09		
	Arena 3a	300	502.09	514.70	508.70	508,70	514.70	502.09		
	Arena 30	900	510.63	525.29	531.17	531.17	525.29	510.63		
	MATRIZ DE	MÓDULOS E	INÁMICO	S DE DEF	ORMACIÓ	йN		cm²/kɑ	Md = 1/{:	$2(1+y)\mu^{1}$
·	Estrato	Prof.	v	Faja	Faja	Faja	Faja	Faja	Faja	
		media		1	2	3	4	5	6	
,				Ma	Ma	Md	Md	Ma	Ma	
e)	Arena 2c	100	0.25	0.00065	0.00092	0.00095	0.00095	0.00092	0.00065	
Ŧ	Arena 2d	300	0.25	0.00079	0.00082	0.00087	0.00087	0.00082	0.00079	
	Arena 3a	500	0.25	0.00080	0.00078	0.00079	0.00079	0.00078	0.00080	
•	Arena 3D		0.25	0.00079	0.00077	0.00077	0.00077	0.00077	0.00079	
		1 000	0.20		0.000701	ະນ.ນບບກວ່າ	10.0073	0.000701	0.00076	

ć a se

 Tabla B.15
 Interacción Suelo-Estructura en sentido transversal (balanceo por viento)

 Para edificio de 17 pisos

ſ												
	Desplante	cimenta	ción		600.00	cm						
ſ	Datos de	la banda	lar	go 2B =	2400.00	) cm						
1				 B =	1200.00	) cm						
1				λ=	200.00	cm						
1	PARA FA	JA	1Y6			••••						
{	Coordena	ida al ce	ntro dov	ela (x) er	n_cm		0				_	
	Estrato	Prof.	-н-	Argun	ientos ar	igulares j	oara <u>χ</u> = 4	Ma	(Alpha)	Despla.	-	
ł		media		ασ	Ψ¹	<b>₩</b> 2	( )i	amille	α am ¹ /km	unitario	_	
		cm	Cm			1	/ vg/cm-	Cm ⁻ /kg	cnerkg	corregiad	2	
a)	Arena 2c	100	200	1.488	0.785	-0 785	0.884	0.00065	0.130	0.115	-	
~	Arena 2d	300	200	1.326	0.322	-0.322	0.458	0.00079	0,157	0.072		
1	Arena 3a	500	200	1.176	0.197	-0.197	0.290	0.00080	0.159	0.046		
	Arena 3b	700	200	1.043	0.142	-0.142	0.208	0.00079	0.159	0.033		
	Arena 3c	900	200	0.927	0.111	<u>  -0,111</u>	0.160	0.00078	0.157	0.025	4	
]			1000						l	0.292	1	
[	MATRIZ	DE FLEXI	BILIDAD	TRANS	PUESTA		cm³/Kg		MATRI	Z ANTI-SI	VIÉTRICA R	EDUCIDA
		_0	200	400	600	800	1000	1			cm ³ /Kg	•
ייין		faja	Faja	Faja	Faja	Faja	Faja			C1	<u>C2</u>	<u> </u>
Į		1 252	6 125	0 052	0.025	0.012	0 006	4	En En	0.202	0.113	0.029
1	E2	0.202	0.339	0.000	0.020	0.012	0.012	1	Fa	0.020	0.072	0.074
í I	Fa	0.054	0.125	0.348	0.128	0.053	0.025	{		1 0.020	0,012	Wilham I
}	F4	0.025	0.053	0.128	0.348	0.125	0.054	1				
1	Fs	0.012	0.025	0.053	0.128	0.339	0.123					l
ł	Fs	0.006	0.012	0.025	0.053	0.125	0.292	{				
ł		NEDEA		Mariamat			CONFICI		DANOVER			•
1	ann i ruz ii	VEROM		rg/cm [.]		¥.		Amila	KANSVET Vi	KONL KON		
1	1	<b>C</b> 4	<b>C</b> -	~			Duputo helenatical	tim2 rd	 	1\0/1 t/m.rd		1
Ì		4 075	1 460	0.027		<u></u>	1505.09	15 050 81	<u> </u>	70 700	•	
	E	4.0/0	2 050	1 150		300	361 13	3 611 10	2.00	10 934		
9	F2	-1.423	3,303	-1.100		400	107 54	1075 29	4.00	10,034		
{	ra j	~0.005	-1.100	4.911		100	127.04	1,270.30	1.00	91 908		
Į	Pa	rámetro (	de defori	maclón a	ingular i	or airo	en la base	Kb≈	367,632	]		
i i	P	arámetro	de defo	rmación	angular	por aire	o del muro	Kw≖	57,504	V	a ² * (1)*	
a	PARAMETR		FORMA		GUIARI		O TOTAL	Kb + Kw =	425 136	Aw ≃ (	u ((+v)).	μ
l										1		
				Vele					1077.0	\$/m 7		1
}				VAR	n medio		a de muro	<u>н</u>	6 00	V101-		] {
	Homonto	do Volte		vi=(Kb+1	Sw]*0				1.00	m		1 [
di	momento	de voirei							0.00	Relación d	a Baiscon	
u)	Altura	da adificir	- nartic /	م لمريقة إما	مامات اما	LI =	54.70		. =/577 0	+1/23 0+10	224 81/2	
	Autora	ue equinor	e parur v Suna	utione de	fachada	 **	54.70	m ² /m	μ-(J/7.5 Droción d	- 1433.3+ 10 ol viento	521.0µ5	0-6 + 12
			Supe	ración de	lacinaua.	0- D=	0 324	1/m2		dad del vien	P = 5.18 * 1 to en km/h	0 - • / -
			F	neaiun Qe M	omento	0.4=1	A7A 46	lt-m			250	km/h
				191	Giro		0.0011	rad		V	0 324	tim ²
							0.0011			• -		
	-							An/A	Δ		Ovh	•
						t-m/m	m	t/m²-rd	t/m²	ka/cm²	t-m/m	{
	-	<u> </u>	osa cime	ntación	Ovh	410.3	5.00	15,959.8	17.81	1 781	178.11	·
e)		Mura	o de cime	ntación	Ovw	64.2	3.00	3.611.2	4,03	0,403	24.18	
-1				Suma	Ovt	474.5	1.00	1.275.4	1.42	0.142	2,85	
	E	sfuerzo u	niforme e	n muro			-1.00	-1,275.4	-1.42	-0,142	410.28	
	-	P≈	3.57	/m²		ł	-3.00	-3,611.2	-4.03	-0,403	ОК	•
							-5.00	-15,959,8	-17.81	-1.781	_ • •	

S. states 1

 Tabla B.16
 Interacción Suelo-Estructura en sentido transversal (balanceo por sismo)

 Para edificio de 17 pisos

r												
ł	Desplante	. cimenta	ción		600.003	cm						
{	Dates de l	la handa	(an	40 78 <del>-</del>	2400.00							•
(	Datos de l		(a)	- 02 U 20 - 0	4200.00	) om						
ļ					1200.00				•			
Į		.10	116	×=	200.00	CIII						
ł	Coorden	ada al ce	ntro dov	ela (x) e	n cm		0				•	
ł	Estrato	Prof.	н	Argur	nentos a	ngulares	para <u>γ</u> ≈ 4	Md	(Alpha)	Despla.	~	
(		media	ł	<u>a</u>	<u>¥</u> 1	¥2	1.0	7	a	Junitario		
ſ	1	cm	cm	{ }		1	kg/cm²		cm ⁷ /kg	corregio	10	
1 31	A1002 70	- 100	- 700 -	1 7 280	7785	1 30 785	1 0 884		- n 120	+ 0 115		
<i>a j</i>	Arena 2d	300	200	1.326	0.322	-0.322	0.458	0.00079	D 157	0.072		
]	Arena 3a	500	200	1.176	0.197	-0.197	0.290	0.00080	0 159	0.046		
(	Arena 3b	700	200	1.043	0.142	-0.142	0.208	0.00079	0.159	0.033		
[	Arena 3c	900	200	0.927	0.111	-0.111	0,160	0.00078	0.157	0.025	-	
]		I	1000	LOK					1	0.292	1	
┝						<u>-</u>					-	
ł	MATRIZ	DE FLEX	BILIDAD	TRANS	PUESTA		cm³/Ka		MATR	Z ANTI-SI	MÉTRICA RI	
(			200	400	600	. 800	1000				cm ² /Ka	
ы		Faia	Faía	Faia	Faia	Faia	Faia	1		1 C1	C2	C3
[ _	ſ	1	2	3	4	5	6	[	F1	0.285	0.113	0.029
	Fi	0.292	0.125	0.053	0,025	0.012	0.006	1	F2	0.111	0.314	0.074
ł	F2	0.123	0.339	0.128	0.053	0.025	0.012	{	F3	0.029	0.072	0.221
{	F3	0.054	0.125	0.348	0.128	0.053	0.025	{		•		
ļ	F4	0.025	0.053	0.128	0,348	0.125	0.054	1				
ļ	Es (	0.012	0.025	0.053	0,128	0.339	0.123	{				
	F* [	0.005	0.012	0.025	0.053	0.125	0.292					
<u> </u>						<u> </u>	<u> </u>					
				Kalent			CONFICI		DAMEN/P	BC A1		
		HAEVOW		Ngiciii		ν.			KANSYE			
	1	•	•	•		Ai	Σdva	Zdva	Xł	Ked		
		<u>C1</u>	GZ	<u>C3</u>		<u>cm</u>	Koloma-rd	Vm ² -ra	<u> </u>	<u></u>	-	
	<b>F1</b>	4.075	-1.460	-0.037		500	1595.98	15,959.8	5.00	79,799		
C}	F2	-1.423	3,959	-1.150		300	361.12	3,611.2	3,00	10,834		i
	- <b>F</b> 3	-0.063	-1.106	4.911			127.54	1,275.4	1.00	1,275	-	
										91,908		
	Pa	rámetro	de defori	mación a	angular	por giro	en la base	Kb=	367,632			
	P	arámetro	o de defa	maciór	n angula	r por girc	o del mura	Kw=	57,504	$\int K_{W} =$	$d^2 * (1 + v) *$	u I
F	PARÁMETR	O DE DE	FORMA	CIÓN AN	<b>GULAR</b>	POR GIR	O TOTAL	. Kb + Kw =	425,136		- () /	
				Val	or medic	n en 60 r	n de muro		1277 87	\$/m2		1
				••••		9 611 9.9 I	N 46 MM10		6.00			(
	Momente	مامانه	- (	Ovt={Kb·	+Kw)#0				4.00	111	1	( (
	MOUMUIC	Ge Anite	O			00.07	<b>4</b>	L=	1.00	m	. <b>D</b> .'	1 1
			Centro a	e masa	h¢	28.67	m	L	0.25	Relacion	le Poisson	) {
	<b>-</b>	Masa	por metr	o imeai	м	30.28	t"seg²/m	μ ≭(577.9 <del>1</del>	1433.9+1	(821.8)/3	t/m²	Į
	Periodo	por rota	ción cime	ntación	Tc	1.520	seg		•			
		Pe	riodo del	edificio	Te	1.400	seg	ANALISIS	DINAMIC	Q DEL SU	ELO	ł
		f	Periodo ad	oplado	To	2.067	seg	Frecuencia	i circular	12.566		
		Reia	ción de p	eriodos	Ta/Ts	4.133		Periodo Ts	en seg	0.500		
d)	Amortiguan	niento crt	tico cime	ntación	۲c د	0.120			-			
.,	Amort	iousmien	to critico	adificio	Če	0.050						
	Amortiqua	miento cr	ífico equi	valente	້້ຄໍ້	0.095						
C.	stor de sos	Jereción /	tentro de		، ^{مر}	1 000	Obtenide /					{
				Ili <b>dine</b>	F0 A-	1.000	Cotenido i	DAES				(
	Accientació	n angrau 		ver traje	AS	1.000	nuseg-					)
	Aceleracio	n a o,u n	are protu	naicea	ADC	0.420	m/seg-					}
	Acelerac	son en el	centro de		Acm	0.420	m/seg-				ι.	
		Mo	imento de	e volteo (	Ost = M"/	Acm*hc		Momento	Ost≈	364.61	t-m	1
								Giro	θ=	0.0009	rad	Í
												]
_												
						- 0-1	Dov	Δq/θ	Δq	Δq	Ovb	ł
						Õ t-m/m	Dov m	∆q/0 t/m²-rd	Δq t/m²	∆q kg/cm"	Ovb t-m/m	{
<u> </u>	 _ _		osa cimer	Itación	Ovb	0 t-m/m 315.3	Dov m 5.00	Δq/0 t/m²-rd 15,959.8	Δq t/m² 13.69	Δq kg/cm" 1,369	Ovb t-m/m 136.88	ł
e)		Lo	osa cimer de cimer	ntación ntación	Ovb [ Ovw	0 t-m/m 315.3 49.3	Dov m 5.00 3.00	∆q/9 t/m²-rd 15,959.8 3,611.2	Δq t/m ² 13.69 3.10	Δq kg/cm [*] 1,369 0,310	Ovb t-m/m 136.88 18.58	
e)	 	Le Muro	osa cimer de cimer	ntación htación Sumal	Ovb [ Ovw Ovt	0 t-m/m 315.3 49.3 364.6	Dov m 5.00 3.00 1.00	Δq/θ t/m ² -rd 15,959.8 3,611.2 1,275.4	Δq t/m ² 13.69 3.10 1.09	Δq kg/cm [*] 1,369 0,310 0,109	Ovb t-m/m 136.88 18.58 2.19	
e)		Lo Muro	osa cimer de cimer	ntación ntación Suma	Ovb Ovw Ovt	O t-m/m 315.3 49.3 364.6	Dov m 5.00 3.00 1.00 -1.00	Δq/θ t/m ² -rd 15,959.8 3,611.2 1,275.4 -1.275.4	Δq t/m ² 13.69 3.10 1.09	Δq kg/cm ¹ 1.369 0.310 0.109 -0.109	Ovb t-m/m 136.88 18.58 2.19 315.30	
e)	  Est	La Muro fuerzo un	osa cimer de cimer iforme en	ntación Itación Suma In muro	Ovb Ovw Ovt	0 t-m/m 315.3 49.3 364.6	Dov m 5.00 3.00 1.00 -1.00	Δq/θ t/m ² -rd 15,959.8 3,611.2 1,275.4 -1,275.4 3,611.2	Δq <u>t/m</u> ² 13.69 3.10 1.09 -1.09 -2.10	Δq kg/cm ¹ 1,369 0,310 0,109 -0,109	Ovb t-m/m 136.88 18.58 2.19 315.30	
e)		La Muro fuerzo un P =	osa cimer de cimer iforme en 2.74 ti	ntación ntación Suma nuro /m²	Ovb Ovw Ovt	0 t-m/m 315.3 49.3 364.6	Dov m 5.00 3.00 1.00 -1.00 -3.00	Δq/θ t/m ² -rd 15,959.8 3,611.2 1,275.4 -1,275.4 -3,611.2 15,950 °	Δq <i>Um</i> ² 13.69 3.10 1.09 -1.09 -3.10 -3.10	Aq kg/cm ¹ 1,369 0,310 0,109 -0,109 -0,310	Ovb t-m/m 136.88 18.58 2.19 315.30 OK	

Gale Contraction

### CONCLUSIONES DEL CÁLCULO DEL EDIFICIO DE 17 PISOS

٠

kg/cm²

kg/cm²

# Tabla B.17 Planta de cargas en 1/2 de la losa de cimentación Para edificio de 17 pisos CONCLUSIONES DE ESFUERZOS DE INTERACIÓN EN CONDICIONES ESTÁTICAS CON VIENTO Y SISMO

	De tabla	ìВ, .e				_ <u>.</u>	_
	EST/	TICAS	CARGAS	UNITARIAS N	EDIAS EN TO	NELADAS	carga media
	Bandas	Relación	2.771	1.824	1.858	1.848	por banda 🛹
		1.409	3,904	2.569	2.617	2.603	2.923
a)	2	0.794	2.201	1.448	1.475	1.468	1.648
	3	0.797	2.208	1.453	1.480	1.473	1.654
	4	0.797	2.208	1.453	1.480	1.473	1.654
	5	0.794	2.201	1.448	1.475	1.468	1.648
	6	1.409	3,904	2.569	2.617	2,603	2.923
					media	2.075	kg/cm²

De tabla	а Ве				
VIEN	TO		Relació	n	
Bandas	Cargas	1.335	0.879	0.895	0.891
1	1.781	2.378	1.565	1.594	1.586
2	0.403	0.538	0.354	0.361	0.359
<b>Б)</b> 3	0.142	0,190	0.125	0.127	0.126
4	-0.142	-0.190	-0.125	-0.127	-0.126
5	-0.403	-0.538	-0.354	-0.361	-0.359
6	-1.781	-2.378	-1.565	-1.594	-1.586
				media	0.000

#### SUMA DE CARGA ESTÁTICA MAS VIENTO

Banda 1 2 3 4 1, 6,282 4.134 4.211 4.190 C.L. 2 2.739 1,802 1.836 1.827 C.L. 2.398 1.578 1.599 3 1.607 C) 4 2.019 1.328 1.353 1.346 5 1.663 1.094 1.115 1.109 1.526 1.023 6 1.004 1.017

	SISI	10		Relació	n		
	Bandas	Cargas	1.335	0.879	0.895	0.891	
		1.369	1.828	1.203	1.226	1.219	
	2	0.310	0.414	0.272	0.278	0.276	
d)	3	0.10 <del>9</del>	0.146	0.096	0.098	0.097	
·	4	-0.109	-0.146	-0.096	-0.098	-0.097	
	5	-0.310	-0.414	-0.272	-0.278	-0.276	
	6	-1.369	-1.828	-1.203	-1.226	-1.219	1
		TON			media	0.000	kg/cm ³
	SUMA D	E CARGA	ESTÁTICA	MAS SISMO	)	kg/cm²	
			-	•	-		

	Banda		11	2	3	4	
	1		5.732	3.772	3.842	3.823	[C.L.
	2		2.615	1,721	1.753	1.744	ł
e)	3	C.L.	2.354	1.549	<u>1.578</u>	1,570	
	4		2.063	1,357	1.383	1.376	ק
	5		1.787	1.176	1.198	1.192	N.
	6		2.076	1.366	1.391	1.384	N.

An

### Tabla B.18 Análisis de capacidad de carga estática y sísmica, además factores de seguridad para el edificio de diecisiete pisos

FACTORES DE CAPACIDAD DE CARGA			
La superficie potencial de deslizamiento corta el estratos de arena 2c, que posee un ángulo de fricción de 36°, razón por la que se considera el siguiente factor de capacidad de carga, para condiciones estáticas y adicionando el viento (de figura IV.1):	Nq =	45	
Sin embargo, el ángulo de fricción interna de 36° se ve reducido por la presión sísmica del agua de poro, obteniendo el ángulo de fricción interna sísmico de 27.1°, razón por la que se considera el siguiente factores de capacidad de carga para condiciones sísmicas (de figura IV.1):	Ngsis =	16	
Además de lo anterior se requieren los siguientes datos, para determinar la cap casos:	vacidad de o	arga en a	ambos
Presión total de sobrecarga a 6.0 m de profundidad10.30 t/m²Densidad relativa del suelo del estrato 2c0.6			
CAPACIDAD DE CARGA			
<b>Capacidad de carga en condiciones estáticas</b> $q_d = \sigma_z \cdot N_q \cdot (Dr + 0.1)$	<b>q</b> d =	324.45	t/m²
<b>Capacidad de carga en condiciones sísmicas</b> $q_{d-sis} = \sigma_s \cdot N_{q-sis} \cdot (Dr + 0.1)$	qd(sis) ≠	115.36	t∕m²
CONDICIÓN DE ESFUERZOS			
CONDICIONES ESTATICAS			±1 7
		29.63	VM*
CONDICIONES ESTÁTICAS MAS VIENTO		33.04	vin-
Estuerro en arilla de cimentación		A1 3A	t/m2
Estuerzo en escuina		62 82	t/m ²
CONDICIONES ESTÁTICAS MAS SISMO		42.02	0,,,,
Esfuerzo en orilla de cimentación		37.72	t/m²
Esfuerzo en esquina		57.32	ť/m²
FACTORES DE SEGURIDAD CONTRA FALLA LOCAL			
Factor de seguridad en condiciones estáticas			
Orilla		12.63	
Esquina		8.31	
Factor de seguridad en condiciones estáticas mas viento			
Orilla		7.85	
Esquina		5.16	
Factor de seguridad en condiciones estáticas mas sismo			
Factor de seguridad en condiciones estáticas mas sismo         Considerando una aceleración máxima en la superficie de 100 gals       Orilla		3.06	

### **APÉNDICE C**

#### CÁLCULO DE LOS PARÁMETROS DE LA SISMO-GEODINÁMICA PARA CONDICIONES DE CAMPO LIBRE

A lo largo de este apéndice se presenta el cálculo de los parámetros sismo-geodinámicos necesarios para realizar la ISE considerando el balanceo de la cimentación por el efecto de el fenómeno sísmico. El apéndice está dividido en tablas, de las cuales cada una de ellas está dedicada a un cálculo específico, a continuación se indica que tipo de cálculo se realiza en cada una de ellas.

- Tabla C.1, Cálculo del módulo dinámico de rigidez al cortante a partir de su ley fenomenológica
- Tabla C.2, Estimación del periodo de fundamental de vibración del suelo por el método de las celeridades
- Tabla C.3, Ajuste del periodo del suelo por el método de las distorsiones, analizando la onda de cortante en la masa de suelo granular estratificado
- Tabla C.4, Análisis de la componente horizontal de la onda superficial en la masa de suelo granular estratificado
- Tabla C.5, Determinación del ángulo aparente de fricción interna sísmico

್ಷ ಕೇವಿ
Cálculo del módulo dinámico de rigidez al cortante a partir de su ley fenomenológica para análisis sismo-geodinámico (condiciones de campo)

		1	2	3	4	5	6	7	8	
ł		Estrato	z	Zm	d	σzo	Parám	etros	μīz	
						en campo	del	ey		
<u>}</u>			сm	сm	cm	kg/cm ²	Cd	nd	kg/cm²	
Ì	NAS	Arena 1	200	100	200	0.165	204	0.7	57.79	
Į		Arena 2a	400	300	200	0.405	285	0.76	143.39	
ļ		Arena 2b	600	500	200	0.555	285	0.76	182.18	
		Arena 2c	800	700	200	0.705	285	0.76	218.51	
Į		Arena 2d	1000	900	200	0.855	285	0.76	253.01	
		Arena 3a	1200	1100	200	1.010	350	0.52	351.82	
		Arena 3b	1400	1300	200	1.170	350	0.52	379.77	
		Arena 3c	1600	1500	200	1.330	350	0.52	405.95	
				OK	1600	ESTRATO	E AREN	ISCA (ES	RATO FIR	ME)
Promedio	pesado	de µ de lo	s estrat	tos adya	acentes a	l muro de ci	mentació	ón y sótai	10	127.79 kg/cm²
SIMBOLC	GİA									
z	profun	didades a l	a base	de cad	a estrato					
Zm	profun	didades m	edia al	centro d	de cada e	strato				
d	espeso	ores de cac	la estra	to						
010	esfuer	zos efectivo	os "in si	tu" para	a la profui	ndidad medi	ia (ver dia	agrama d	e esfuerzo	os in situ en figura II.1)
Cd, Ad	parám	etros de la	ley fen	omenol	ógica, par	ra determina	ir el mód	lulo dinán	nico de rig	idez
μz	módul	o dinámico	de rigio	dez cald	ulado co	n la ley	$\mu_{\star} = C$	$\cdot \sigma_2^n$	-	
NAS	nivel d	e aguas su	perficia	les, se	localiza a	2.0 m	-	u 2		

#### Tabla C.2

Estimación del periodo de fundamental de vibración del suelo por el método de las celeridades

	2	3	4	5	6	7	8	9	10	11	12	13
Estra	Z	d	<b>Geo</b>	Ø	μ	γ	ρ	v	Cz	di/Ci		
		_	4/		AU9	6/ 9	masa			∆t/4	∆t	Σ∆t
	<u> </u>	<u> </u>	UM-	70	<u>vm-</u>	UM-	t*s²/m^4		m/s	5	5	
Arena 1	0.0	0.0	0.00	0.00	577.9	1.65	0.168	0.25	58.62	0.000	0.000	0.000
Arena 1	2.0	2.0	3.30	25.00	577.9	1.65	0.168	0.25	58.62	0.034	0.136	0.136
Arena 2a	4.0	2.0	4.80	40.00	1433.9	1.75	0.178	0.25	89.65	0.022	0.089	0.226
Arena 2b	6.0	2.0	6.30	40.00	1821.8	1.75	0.178	0.25	101.06	0.020	0.079	0.305
Arena 2c	8.0	2.0	7.80	40.00	2185.1	1.75	0.178	0.25	110.68	0.018	0.072	0.377
Arena 2d	10.0	2.0	9,30	40.00	2530.1	1.75	0.178	0.25	119.09	0.017	0.067	0.444
Arena 3a	12.0	2.0	10.90	40.00	3518.2	1.80	0.183	0.25	138.47	0.014	0.058	0.502
Arena 3b	14.0	2.0	12.50	40.00	3797.7	1.80	0.183	0.25	143.87	0.014	0.056	0.558
Arena 3c	16.0	2.0	<u>14.10</u>	40.00	4059.5	1.80	0.183	0.25	148.74	0.013	0.054	0.611
		Σd	ESTRA	TO DE	ARENISC	A (ESTRATC	FIRME)			Σdi/Ci	Σ∆t	
		16.00								0.153	0.611	
VALORES	ENL	A SUPER	FICIE									
Periodo de	l suelo			Ts =	0.611	s						
Frecuencia	i circula	ar		Ds =	10.275	rad						
Velocidad	orbital			Vo≖	0.097	m/seg						
Aceleració	n orbita	1		ðo =	1.000	m/seg ²	(Asignad	la a la su	perficie)			
Celeridad				Co =	58.617	m/seg ²			•			
Deformació	on unite	iria		<b>8 =</b>	0.0017	-						
SIMBOLO	GÍA											
z	Profun	didad			Cz	Celeridad e	en el cent	ro del est	trato			
d	Espese	or del estra	ito		ao	Aceleració	n orbital					1
ш	Rigidez	dinámica	del sue	ło	V٥	Velocidad of	orbital					}
0	Masa u	nitaria			σz	Esfuerzo e	fectivo pr	omedio				
r V	Relació	n de Pois	son		Ds	Frecuencia	circular					

 Tabla C.2
 Estimación del periodo de fundamental de vibración del suelo por el método de las celeridades

1	2	3	4	5	6	7	8	9	10	11	12	13
Estra	Z	d	0.00	0	μ	γ	ρ	ν	Cz	di/Ci		
1	}	}			}		masa			∆t/4	∆t	ΣΔt
	m	m	t/m²	%	t/m²	t/m³	t*s²/m^4		m/s	S	5	<u> </u>
Arena 1	0.0	0.0	0.00	0.00	577.9	1.65	0.168	0.25	58.62	0.000	0:000	0.000
Arena 1	2.0	2.0	3.30	25.00	577.9	1.65	0.168	0.25	58.62	0.034	0.136	0.136
Arena 2a	4.0	2.0	4.80	40.00	1433.9	1.75	0.178	0.25	89.65	0.022	0.089	0.226
Arena 2b	6.0	2.0	6.30	40.00	1821.8	1.75	0.178	0.25	101.06	0.020	0.079	0.305
Arena 2c	8.0	2.0	7.80	40.00	2185.1	1.75	0.178	0.25	110.68	0.018	0.072	0.377
Arena 2d	10.0	2.0	9.30	40.00	2530.1	1.75	0.178	0.25	119.09	0.017	0.067	0.444
Arena 3a	12.0	2.0	10.90	40.00	3518.2	1.80	0.183	0.25	138.47	0.014	0.058	0.502
Arena 3b	14.0	2.0	12.50	40.00	3797.7	1.80	0.183	0.25	143.87	0.014	0.056	0.558
Arena 3c	16.0	2.0	14.10	40.00	4059.5	1.80	0.183	0.25	148.74	0.013	0.054	0.611
		Σd	ESTRA	TO DE	ARENISC/	A (ESTRATO	FIRME)		-	Σdi/Ci	ΣΔt	
		16.00								0.153	0.611	
VALOPES												•
Periodo de	i suelo	JOPENI		Te -	0.611	~						
Frequencia	n oireul	or.		13 -	40.075	s						
Velesided	arbital	<b>2</b> 1		14 - 14 -	0.007							
		.1		Vo -	0.097	m/seg	(A-:					
	n ordita	ŧ!		ao =	1.000	m/seg-	(Asignau	a a la si	ipenicie)			
Celeridad	e	* _		C0 =	38.017	m/seg-						
	on unita	aria		8 =	0.0017							
SIMBOLO	GÍA											
z	Profun	didad			Cz	Celeridad	en el cent	ro del es	strato			
Ā	Espes	or del estra	ato		20	Aceleració	n orbital					
]	Rigide:	z dinámica	del su	elo	V.	Velocidad	orbital					
	Masa	Initaria			07	Esfuerzo e	efectivo pr	omedio				
	Relació	ón de Poie	50n		De	Erecuence	a circular					}
ľ			97H		he	recueitor						

### FORMULAS

$$T_{s} = 4 \sum_{1}^{n} \frac{d_{i}}{C_{si}} \qquad C_{s} = \sqrt{\frac{\mu}{\rho}} \qquad \rho = \frac{\gamma(t/m^{3})}{g(m/s^{2})} = \frac{t^{*}s^{2}}{m^{4}}$$

$$F_{c} = \frac{2\pi}{T_{s}} \qquad V_{o} = \frac{A_{o}}{F_{c}} \qquad \varepsilon = \frac{V_{0}}{C_{0}} \qquad \text{para } \delta = 1$$

 $\gamma_{ij}^{(1)} =$ 

A salar in the second

د مند مر معدور م

Ajuste del periodo del suelo por el método de las distorsiones, analizando la onda de cortante en la masa de suelo granular estratificado

VALORES	© ORBIT ao ■ Co =	ALES 1.00 58.62	EN LA S m/seg² m/seg²	UPERF	ICIE ps= Vo≈	12.570 0.080	rad m/seg		δ = Ts =	0.006 <b>0.500</b>	m seg	<u>,</u>		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Estra	z m	d M	μ t/m²	ρ t*s²/m^4	Cz m/s	Ni	Ai	Bí	Ci	δ m	τyz t/m²	az m/s* *0.1	τyx t/m²	δ <b>cm</b> *0.1
Arena 1 Arena 1	0.00	0.00	577.9 577.9	0.168 0.168	58.62 58.62	0.046	0.912	0.003	26.576	0.006	0.000	10.00 9.12	0.784	6.33 5.77
Arena 2a Arena 2b Arena 2c	4.00 6.00 8.00	2.00 2.00 2.00	1433.9 1821.8 2185.1	0.178 0.178 0.178	89.65 101.06 110.68	0.020 0.015 0.013	0.961 0.970 0.975	0.001 0.001 0.001	28.186 28.186 28.186	0.005 0.004 0.003	0.628 0.893 1.108	8.07 6.75 5.31	1.027 0.969 0.834	5.11 4.27 3.36
Arena 2d Arena 3a Arena 3b Arena 3c	10.00 12.00 14.00 16.00	2.00 2.00 2.00 2.00	2530.1 3518.2 3797.7 4059.5	0.178 0.183 0.183 0.183	119.09 138.47 143.87 148.74	0.011 0.008 0.008 0.007	0.978 0.984 0.985 0.986	0.001 0.001 0.001 0.000	28.186 28.992 28.992 28.992	0.002 0.002 0.001 0.000	1.271 1.389 1.464 1.496	3.82 2.63 1.44 0.29	0.646 0.531 0.302 0.063	2.42 1.66 0.91 0.18
Arena 3c	16.00	2.00	4059.5 E	0.183 STRATC	148.74 DE ARE	0.007 NISCA	0.986 ESTRA	0.000 TO FIR	28.992 ME)	0.000	1.496	0.29	0.063	0.18

ESTRATO DE ARENISCA (ESTRATO FIRME)

### SISMOLOGÍA

- Espesor del estrato d
- Profundidad al centro del estrato z
- Rigidez dinámica del suelo (tabla C.1) μ
- Masa unitaria ρ
- δ Desplazamiento en yz

- Aceleración orbital ao
- Celeridad en el centro del estrato Cz
- Esfuerzo cortante en yx Tyz
- Esfuerzo cortante en yz Тух
- Frecuencia circular Þ۶
- Velocidad orbital V٥



Análisis de la componente horizontal de la onda superficial en la masa de suelo granular estratificado

VALORE	s orb	TALE Co =	S EN L 53,93	A SUP m/seg	'ERFICIE 2		<i>a</i> o = Ts =	1.00 0.50	m/sej s	g²	ρ:= ε=	12.570 0.0015	rad	Vo = a =	0.080 0.92		m/seg (arena	v = 0.2	:5)
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Estra	2	đ	<b>134</b> 0	μ	P	٣	C ₂	a(v)	всх	1/M	12	r*d	Σr*d	£	Pz	∆o SPWP	đĩ.	axn *0.1	<b>ð</b> •0.1
<u> </u>	m	m	10m²	t/m³	1*s2/m^4		m/s	<u> </u>	Ļ	t/m²	1/m				t/m*	t/m*	t/m²	m/s*	cm
Arena 1	0.0	0.0	0.0	578	0.168	0.25	53.9	0.85	0.90	1304	0.000	0.000	0.000	0.0015	1.92	0.00	1.92	10.00	6.33
Arena 1	2,0	2.0	3.3	578	0.168	0.25	53.9	0.85	0.90	1304	0.198	0.396	0.396	0.0010	1.29	0.00	1.29	6.73	4.26
Arena 2a	4.0	2.0	4.8	1434	0.178	0.25	82.5	0.65	0.90	3236	0.130	0.259	0.655	0.0008	2.48	1.30	1.17	5.19	3.29
Arena 20	6.0	2.0	6.3	1822	D.178	0.25	93.0	0.85	0.90	4112	0.115	0.230	0.885	0.0006	2.50	1.32	1.19	4.13	2.61
Arena 20	8.0	2.0	7.8	2185	0.178	0.25	101.8	0.85	0.90	4932	0.105	0.210	1.095	0.0005	2.43	1.28	1.15	3.35	2.12
Arena 20	10.0	2.0	9.3	2530	0.178	0.25	109.6	0,85	0.90	5711	0.098	0.195	1.290	0.0004	2.32	1.22	1.10	2.75	1.74
Arena 3a	12.0	2.0	10.9	3518	0.183	0.25	127.4	0.85	0.90	7941	0.084	0.168	1.458	0.0003	2.73	1.43	1.29	2.33	1.47
Arena 3D	14.0	2.0	12.5	3798	0.183	0.25	132.4	0.85	0.90	8572	0.081	0.161	1.619	0.0003	2.50	1.32	1.19	1,98	1.25
Arena 30	16 0	2.0	14.1	4059	0.183	0.25	136.8	0.85	0.90	9163	0.078	0.156	1.775	0.0002	2.29	<u>1.21</u>	1.08	1.69	1.07
SISMOLO	GÍA			ESIRA		RENIS		IRAIO	- IKME	,					•				
α	Coef. (	je cele	ridad e	n onda	de supe	ficie	Mxz	Móduk	o de de	formac	ión uni	taria		8	Deform	ación a	ia prof	undidad	12
d	Espes	or del :	estrato				Me	Móduk	de ex	pansió	n			Pz	Presió	n prome	dio		
4	Rigide	z diné:	mica de	el suelo	<b>(tabla</b> C.	.1)	Mc	Móduk	de co	mpresi	ón			Q5	Esfuer	to prom	edio		
ρ	Masa	Initeria	h				ß	Factor	de res	puesta	Me/Mc	:		<b>a</b> o	Acelen	ación or	bital		
V	Relaci	ón de l	Poissor	า			٢z	Coefici	ente d	e atenu	lación			P*	Frecue	ncia ciro	cular		
Cz	Celeric	led en	el cent	ro del e	<b>strato</b>		Σr*d	Sumat	oria de	r*d				Vo	Velocio	lad orbit	al		
<b>=(</b> V)	Parám	etro a	profunc	jided z			Z	Profun	didad					δ	desplaz	tamient	0		
a(v) y α (	ie pag	115 de	Zeeva	ert (194	<b>58</b> )	βax de	pag. 1	00 de 2	Zeevae	ert (198	8)								



Determinación del ángulo aparente de fricción interna sísmico

1	2	3	4	5	6	7	8	9	10	11	12	13
Estra	z	d	Gav	v	Goc	•	TAN 🔶	ßex	Pz	Oth	TAN 🕬 is	<b>ģaia</b>
L	m	m	t/m²		l			L	t/m²			
Arena 1	2.00	2.00	3.30	0.25	1.83	32.0	0.625	0.90	1.295	0.000	0.625	32.0
Arena 2a	4.00	2.00	4.80	0,25	2.67	36.0	0.727	0.90	2.479	1.305	0.371	20.4
Arena 2b	6.00	2.00	6.30	0.25	3.50	36,0	0.727	0.90	2.503	1.317	0.453	24.4
Arena 2c	8.00	2.00	7.80	0.25	4,33	36.0	0.727	0.90	2.434	1.281	0.512	27.1
Arena 2d	10.00	2.00	9.30	0.25	5.17	36.0	0.727	0.90	2.319	1.220	0.555	29.0
Arena 3a	12.00	2.00	10.90	0.25	6.06	38.0	0.781	0.90	2.726	1.435	0,596	30.8
Arena 3b	14.00	2.00	12.50	0.25	6.94	38.0	0.781	0.90	2.504	1.318	0.633	32.3
Arena 3c	16.00	2.00	14.10	0.25	7.83	38.0	0.781	0.90	2.290	1.205	0.661	33.5
Suelo satura	do a partir	de 2 m de	profundida	d								
Suelo satura	do a partir	de 2 m de	profundida	d								

### **CONCLUSIÓN:**

El periodo fundamental de vibración de la masa de suelo granular en estudio es de 0.500 segundos, la aceleración en la base de la cimentación es de 0.42 m/s² y dado que la superficie potencial de deslizamiento se localiza en el estrato de arena 2C, se considera un ángulo aparente de fricción interna sísmico de 27.1° para estimar la capacidad de carga sísmica.

## APÉNDICE D DETERMINACIÓN EN EL LABORATORIO DEL MÓDULO DE DEFORMACIÓN UNITARIO Y EL MÓDULO DINÁMICO DE RÍGIDEZ EN ARENAS PARA LAS CONDICIONES DE CAMPO

En caso de que el suelo no presente consistencia que permita labrar probetas para ser usadas en la cámara triaxial o bien en el péndulo de torsión de vibración libre, como es el caso de los suelos arenosos sin cohesión, se pueden determinar estos módulos por un método directo que se explica a continuación.

De una muestra de tubo muestreador o cúbica que represente las características del estrato, se determina la relación de vacíos (e) y la gravedad específica (Gs) correspondiente al campo, las pruebas se efectúan en el laboratorio en muestras de suelo inalterado para determinar los módulos, sin embargo, el suelo granular fino pierde al ser extraido del tubo muestreador su estructura original que le proporciona la naturaleza durante su formación, por lo anterior, al perderse la estructura original, no hay manera de recuperarla en el laboratorio; afortunadamente los suelos granulares tienen una sensibilidad muy baja, por lo que es posible efectuar interpolaciones para obtener resultados aproximados satisfactorios para las aplicaciones en la ingeniería práctica, las pruebas se efectúan como sigue:

**Primero.** Se efectúa una prueba (A) en estado suelo de la arena y se aplica en ella el esfuerzo confinante equivalente al esfuerzo octaédrico de campo de la profundidad de donde se extrajo la muestra, en estas condiciones se realiza la prueba y se determina el módulo en estado suelto y su respectiva oquedad.

Segundo. Se efectúa una prueba más (B) en el estado más denso posible de la arena, pero sin dañar la granulometría, se le aplica el mismo esfuerzo confinante que a la probeta de suelo en estado suelto, bajo estas condiciones se determina el módulo en estado compacto y su respectiva oquedad.

#### MÓDULO DE DEFORMACIÓN UNITARIA

De la prueba (A) en estado suelto efectuada en la cámara triaxial se obtiene: el módulo de deformación unitario  $Mz_t y$  la oquedad  $e_s$ , de la prueba (B) en estado denso se obtiene el módulo de deformación unitario  $Mz_d y$  la oquedad  $e_d$ ; estos valores se grafican como muestra la figura D-1, de donde se puede establecer la relación de los módulos de deformación unitaria con las oquedades del suelo, esto es:

$$\frac{(Mz_{\star} - Mz_{d})}{(e_{\star} - e_{d})} \approx \frac{(Mz_{\star} - Mz_{c})}{(e_{\star} - e_{c})}$$
D-1

de donde se obtienen

$$Mz_{c} = Mz_{s} + \frac{(Mz_{s} - Mz_{d})(e_{s} - e_{c})}{(e_{s} - e_{d})}$$
 D.2

en donde llamamos densidad relativa (Dr) de la arena

$$D_r = \frac{(e_s - e_c)}{(e_s - e_d)}$$
D.3



#### Prueba en la cámara triaxial

- 1. En estado suelto se determina con confinamiento de campo e_s y Mz_s
- 2. En estado denso se determina con confinamiento de campo e_d y Mz_d
- 3. En campo se determina la relación de vacios

Figura D-1. Módulo de deformación unitaria para el campo (interpolación)

De las fórmulas anteriores se obtiene el módulo de deformación unitaria correspondiente a las condiciones de campo en función a la densidad relativa de la arena y de los módulos de deformación unitaria de la arena suelta y densa, respectivamente.

$$Mz_{c} = Mz_{s} - D_{r}(Mz_{s} - Mz_{d}) \qquad D.4$$

El valor obtenido en la expresión D.4 para el confinamiento y la oquedad de campo en el estrato considerado, puede usarse para el cálculo de los desplazamientos provocados por la carga de la cimentación sobre el suelo arenoso en el rango de los esfuerzos reales aplicados.

Para encontrar los parámetros de la ley fenomenológica del módulo de deformación unitaria ( $Mz = Co_{cc}^{-ns}$ ), es necesario realizar las prueba (A) y (B) al menos para otros dos esfuerzos de confinamientos mayores, para que de esta forma sea posible obtener la ley fenomenológica, en el eje de las ordenadas en escala logarítmica el módulo de deformación unitaria y en el eje de las abscisas en escala logarítmica el esfuerzo de confinamiento (ver figura D.2), la ley es una línea recta, cuya pendiente representa el exponente "ns", es decir:

$$n_{s} = \frac{\log \frac{Mz_{1}}{Mz_{3}}}{\log \frac{\sigma_{c3}}{\sigma_{c1}}}$$
D.5

y valor de "C" esta dado por

$$C = \frac{Mz_1}{\sigma_{et}} \qquad D.6$$

Ya obtenidos los parámetros, se verifica el valor del módulo para cada esfuerzo de confinamiento.



Figura D.2. Módulo de deformación unitaria en función del esfuerzo confinante para el campo (ley fenomenológica)

### MÓDULO DINÁMICO DE RIGIDEZ AL CORTANTE

De la prueba (A) en estado suelto efectuada en el péndulo de torsión de vibración libre (PTVL) se obtiene: el módulo dinámico de rigidez al cortante  $\mu_s$  y la oquedad e_s para una distorsión angular tal en donde el módulo dinámico es prácticamente constante. y de la prueba (B) en estado denso se obtiene el módulo dinámico de rigidez al cortante  $\mu_d$  y la oquedad e_d para la misma distorsión angular, estos valores se gráfican como muestra la figura D.3, de donde se puede establecer la relación de los módulos de deformación unitaria con las oquedades del suelo, esto es.

$$\frac{\log(\mu_d/\mu_s)}{\log(e_s/e_d)} = \frac{\log(\mu_d/\mu_c)}{\log(e_c/e_d)}$$
D.7

De donde se obtienen

$$\mu_{c} = \frac{\mu_{d}}{(\mu_{d} / \mu_{a})^{\log(e_{c} / e_{d}) / \log(e_{a} / e_{d})}}$$
D.8

En donde llamamos densidad relativa (Dr) de la arena

$$D_r = \log(e_c / e_d) / \log(e_s / e_d)$$
 D.9

De las fórmulas anteriores se obtiene el módulo de deformación unitaria correspondiente a las condiciones de campo en función a la densidad relativa de la arena y de los módulos dinámico al cortante de la arena suelta y densa, respectivamente.

$$\mu_{c} = \frac{\mu_{d}}{(\mu_{d}/\mu_{s})^{\text{Dr}}} \qquad D.10$$

El valor obtenido en la expresión D.10 para el confinamiento y la oquedad de campo en el estrato considerado, puede usarse para el cálculo de la constante de resorte por giro, en el rango de la distorsión angular producida por un sismo.



Prueba en el péndulo de torsión de vibración libre

- 1. En estado suelto se determina con confinamiento de campo  $e_s$  y  $\mu_s$
- 2. En estado denso se determina con confinamiento de campo  $e_d$  y  $\mu_d$
- 3. En campo se determina la relación de vacíos

Figura D.3. Módulo dinámico de rigidez al cortante para el campo (interpolación)

Para encontrar los parámetros de la ley fenomenológica del módulo de rigidez al esfuerzo cortante ( $\mu = C_d \sigma_{oc}^{nd}$ ), es necesario realizar las prueba (A) y (B) al menos para otros dos esfuerzos de confinamientos mayores, para que de esta forma sea posible obtener la ley fenomenológica, en el eje de las ordenadas en escala logarítmica el módulo dinámico de rigidez al cortante y en el eje de las abscisas en escala logarítmica el esfuerzo de confinamiento (ver figura D.4), la ley es una línea recta, cuya pendiente representa el exponente "n_d", es decir:

$$n_{d} = \frac{\log \frac{\mu_{3}}{\mu_{1}}}{\log \frac{\sigma_{c3}}{\sigma_{c1}}}$$
  
ta dado por
  
D.11

y valor de "C" esta dado por

$$C = \frac{\mu_3}{\sigma_{c3}^{n_d}}$$
D.12

Ya obtenidos los parámetros, se verifica el valor del módulo dinámico para cada esfuerzo de confinamiento.





# **APÉNDICE E**

## IMPORTANCIA DE LA PRESIÓN SÍSMICA DE PORO Y SU INFLUENCIA EN LAS PRESIONES DE CONTACTO

La determinación de los módulos dinámicos de rigidez al cortante, son función del nivel de esfuerzos efectivos a que esta sometida la masa de suelo, cuando se presenta el fenómeno sísmico se observa que inmediatamente se genera una presión sísmica en el agua de poro que disminuye el esfuerzo efectivo  $(\sigma_{sis} = \sigma_{est} - \omega_{sis})$  y en consecuencia también disminuyen los módulos dinámicos de rigidez al cortante, quedando lo siguiente:

- Tabla E.1, Cálculo de matriz de módulos dinámicos de rigidez en sentido transversal considerando la presión sísmica del agua de poro
- Tabla E.2, Interacción Suelo-Estructura en sentido transversal (balanceo por sismo) considerando la presión sísmica del agua de poro

المستحدينية والمعادي

Tabla E.1	Cálculo de matriz de módulos dinámicos de rigidez en	sentido transversal
Considera	ndo la presión sísmica del agua de poro, para el edificio	) de 17 pisos

	Desplante c Datos de la	imentación banda		largo 2B =	600 = 2400	cm cm				
				B	= 1200	cm				
	FSELIER70	S EN EA IA		λ= 1 V 6	= 200	cm				
	Prof.	Distancia	Argur	nentos an	gulares pa	x = 4	qi	σ	<u> </u>	
1	media		α0	ψ1	ψ2	T ()	carga	esfuerzo		
{	cm	cm				kg/cm ²	kg/cm²	kg/cm²	_	
	100	0.00	1.488	0.785	-0.785	0.884	2.923	2.584	-	
a)	100	200.00	1.387	1.249	0.785	0.000	1.648	0.092		
1	100	600.00	1.102	1.429	1.373	0.000	1.654	0.000		
ļ	100	800.00	0.979	1.460	1.429	0.000	1.648	0.000		
1	100	1000.00	0.874	1.480	1.460	0.000	2.923	0.000	,	
		<b>_</b>					~	2.0/9	J 	
1	MATRIZ DE	ESFUERZO	S POR ED	IFICIO		σ			Estuerzos	Presion
{	Estrato	Prof.	<b>Faja</b>	Faja	Faja	Faja	Faja	) Faja	sobrecarga	poro
[		cm	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²
ы	Arena 2c	100	2.679	1.717	1.655	1.655	1.717	2.679	0.705	1,299
<b>``</b>	Arena 2d	300	1.785	1.824	1.687	1.687	1.824	1.785	0.855	1.251
Į –	Arena 3a	500	1.424	1.658	1.663	1.663	1,658	1.424	1.010	1.328
[	Arena 3b Arena 3c	900	1.232	1.467	1.546	1.546	1.467	1.232	1.170	1.376
			1.034	1.2.32	1.004	1.004	1.232	1.034	1.000	1.202
	MATRIZ DE	ESFUERZOS	\$	(Ooz+Oexa	-+ <b>σ</b> -Δ@sis	)				
ſ	Estrato	Prof.	<b>Faja</b>	<b>Faja</b>	Faja	Faja	<b>Faja</b>	Faja 6	Ley fenome	nológica
1	İ	cm	kg/cm²	kg/cm [*]	kg/cm ²	kg/cm ²	kg/cm²	kg/cm ²		113
( c)	Arena 2c	100	1.445	0.444	0.381	0.381	0.444	1.445	285	0.76
, ,	Arena 2d	300	0.895	0.790	0.625	0.625	0.790	0.895	285	0.76
ſ	Arena 3a	500	0.674	0.772	0.725	0.725	0.772	0.674	350	0.52
	Arena 3b Arena 3c	700 900	0.634	0.760	0.786	0.786	0.760	0.634	350	0.52
ļ				0.022						
	MATRIZ DE	MÓDULOS D	<u>INÁMICO</u>	S DE RIGI	DEZ		kg/cm ²			
	Estrato	Prof.	Faja 1	<b>Faja</b>	Faja	Faja	Faja	Faja	$\mu_{a} = C_{d} \cdot$	$\sigma_z^{n_i}$
		illeuld	μz.	μīz	μz_	μz	_μz	μz		-
d)	Arena 2c	100	376.91	153.72	137.01	137.01	153.72	376.91		
	Arena 2d	300	261.90	238.15	199.28	199,28	238.15	261.90		
	Arena 3a	500	285.06	305.87	296.08	296.08	305.87	285.06		
	Arena 30	700	276.08	303.50	308.76	308.76	303.50	275.08		
			012.00			044,20		012.00		
	MATRIZ DE MÓ	DULOS DINAMI	COS DE DE					cm²/ka	Md = 1/{	2(1+v)u
ł .	Estrato	Prof.	V	Faja	Faja	Faja	Faja	Faja	Faja	-()
		media		1	2	3	4	5	6	Į
		<u> </u>		Md	Md	Md	Md	Md	Md	
e)	Arena 2c	100	0.25	0.00106	0.00260	0.00292	0.00292	0.00260	0.00106	
	Arena 20 Arena 3a	500	0.25	0.00153	0.00168	0.00201	0.00201	0.00168	0.00753	
	Arena 3b	700	0.25	0.00145	0.00132	0.00130	0.00130	0.00132	0.00145	
_	Arena 3c	900	0.25	0.00128	0.00119	0.00116	0.00116	0.00119	0.00128	

ļ

 Tabla E.2
 Interacción Suelo-Estructura en sentido transversal (balanceo por sismo)

 Considerando la presión sismica del agua de poro, para el edificio de 17 pisos

						00 cm		· · · ·				•••
	Desolari	te cimenta	ICIÓN .		600.0							
ł	Datos de	ia banda	la	rgo 28	<b>2400</b> .	00 cm						
1				. В	1200.	00 cm						
{				1	- 200.0	00 cm			•			
[	PARA F	AJA	1Y6									-
Į į	Coorder	nada al ci	intro do	<u>vela (x)</u>	en cm		0			······		
Į	Estrato	Prot.	1 "		THERIOS	angulares	$\frac{p_{\text{ava}}}{7} = 4$	- Ma	(Alpha	) Despla.		
}		cm	cm	1 -	1 .	<b>↓ ▼</b> *	ka/cm	2 cm ³ /kg	cm ³ /kg	Corregido		
					1 .							
a)	Arena 20	100	200	1.466	0.78	5 -0.78	5 0.884	0.00105	0.212	0.188		
	Arena 20	300	200	1.320	0.32	2 -0.32	2 0.458	0.00153	0.305	0.140		
(	Arena 3	1 200	200	1.1/0	0.15	2 -0 14	2 0.290	0.00140	0.287	0.081		
	Arena 30	900	200	0.927	0.11	1 -0.11	1 0.160	0.00128	0.256	0.041		
			1000	CK	1			OK	1	0.510		
l					-				-			
						-						
	MATRIZ	DE FLEX	100	J 110006	163U76	900	GITT/ING 1000		MATN	UZ ANTI-SIMI	EIRICA R	EDUCIDA
ы.		l Enia	Faia	Faia	Faia	Faia	Faia	1		1 0	Cirr/Kg Ca	Cı
U)		4	2	3	1	5	6	1		0.500	0214	0.052
	Fr	0.510	0.234	0.003	0.041	0.020	0.011	4	F2	0.200	0.742	0.158
	F2	0.221	0.783	0.251	0.093	0.041	0.021	1	Fa	0.051	0.143	0.618
	Fs	0.095	0.234	0.669	0.251	0.091	0.044	{		•		
	<b>F</b> 4	0.044	0.091	0.251	0.869	0.234	0.095	1				
	Fs	0.021	0.041	0.093	0.251	0.783	0.221	ł				
	F# (	0.011	0.020	0.041	0.093	0.234	0.510	J				
												······
	14AT917 1			Kalemi			CONFIGI		DANCVE			
						Yı	Acr/9		V-I C L L C	Kan		
		_		-		~	Turdin A.			tion ad		
		- <b>C</b> .	<u></u>	<b>C</b> +		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	the Constraint of the					
-		<u>Ci</u>	C2	<u>C3</u>		<u>CM</u>	kgicm ² -rd	024952	<u></u>	46 742		
-	F1	<u> </u>	C2 -0.649	-0.024		<u> </u>	934.85	9,348.53	<u></u> 5.00	46,743		
- c)	F1 F2	C1 2.264 -0.599	C2 -0.649 1.590	C3 -0.024 -0.356		<u> </u>	ligicini-rd 934.85 141.82	9,348.53 1,418.25	5.00 3.00	46,743 4,255		
- c)	Fi F2 F3 Pa	<u>C1</u> 2.264 -0.599 -0.049	C2 -0.649 1.590 -0.314	<u>-0.024</u> -0.356 1.702	angular		kg/cm²-rd 934,85 141,82 51,61 en la base	9,348.53 1,418.25 516.05 Kb =	m 5.00 3.00 1.00 206.054	46,743 4,255 516 51,513		
c)	F1 F2 F3 Pa ARÁMETR	C: 2.264 -0.599 -0.049 rámetro c arámetro O DE DE	C2 -0.649 1.590 -0.314 ie defor de defo FORMA(	C3 -0.024 -0.356 1.702 mación rmación CIÓN AM	ngular angula IGULAR	cm 500 300 100 r por giro at por giro R POR GIF	kgicm ² -rd 934.85 141.82 51.61 en la base o del muro RO TOTAL	9,348.53 1,418.25 516.05 Kb = Kw = Kb + Kw =	m 5.00 3.00 1.00 206.054 57,504 263,558	$\frac{\frac{1}{46,743}}{\frac{4,255}{516}}$ 51,513 $Kw = d^{2}$	*(1+v)*#	,
- c) P/	F1 F2 F3 Pa PARÁMETR	C: 2.264 -0.599 -0.049 rámetro c arámetro O DE DE	C2 -0.649 1.590 -0.314 ie defon de defo FORMAC	C3 -0.024 -0.356 1.702 mación rmación ción Ak Ción Ak	angular angula IGULAR or medi	<u>cm</u> 500 300 100 r por giro ar por giro ar por giro ar por giro ar por giro	kgicm ² rd 934.85 141.82 51.61 en la base o del muro RO TOTAL n de muro	Um-ro 9,348.53 1,418.25 516.05 Kb = Kb = Kb + Kw =	m 5.00 3.00 1.00 206.054 57,504 263.558 1277.87	$\frac{vm-ra}{46,743} \\ 4,255 \\ 516 \\ 51,513 \\ Kw = d^2 \\ vm^2$	*(l+v)*, 	
- c) P/	Fi F2 F3 Pa ARÁMETR	<u>C1</u> 2.264 -0.599 -0.049 rámetro c arámetro O DE DE	C2 -0.649 1.590 -0.314 ie defon de defo FORMAC	C3 -0.024 -0.356 1.702 mación ción Al Val	angular angula IGULAR 	500 300 100 r por giro ar por giro R POR Gif io en 6.0 r	kgicm ² rd 934,85 141,82 51,61 en la base o del muro RO TOTAL n de muro	Um-ro 9,348.53 1,418.25 516.05 Kb = Kb = Kb + Kw = μ= d =	m 5.00 3.00 1.00 206.054 57,504 263.558 1277.87 6.00	$\frac{vm-ra}{46,743} \\ 4,255 \\ 516 \\ 51,513 \\ Kw = d^2 \\ vm^2 \\ m$	*(l+v)*,	
- c) 	F1 F2 F3 Pa ARÁMETR	C1 2.264 -0.599 -0.049 rámetro c arámetro O DE DE	C2 -0.649 1.590 -0.314 ie defon de defo	C3 -0.024 -0.356 1.702 mación rmación CIÓN AN Val	angular angula GULAR or medi + Kw)*0	cm 500 300 100 r por giro ar por giro R POR Gif to en 6.0 r	kgicm ² rd 934,85 141,82 51,61 en la base o del muro RO TOTAL n de muro	Um-ro 9,348.53 1,418.25 516.05 Kb = Kb = Kb + Kw = d = L =	m 5.00 3.00 1.00 206.054 57.504 263.558 1277.87 6.00 1.00	$\frac{vm-ra}{46,743}$ $\frac{46,743}{4,255}$ $\frac{516}{51,513}$ $Kw = d^{2}$ $\frac{vm^{2}}{m}$	*(l+v)*, 	
- c) P/	Fi F2 F3 Pa ARÁMETR Aomento	C1 2.264 -0.599 -0.049 rámetro c arámetro O DE DE de Voltec	C2 -0.649 1.590 -0.314 de defon de defo FORMAC	C3 -0.024 -0.356 1.702 mación rmación CIÓN AN Val Ovr=(K6 e masa	angular angula IGULAR or medi + Kw)*0 hc	<u>cm</u> 500 300 100 r por giro ar por giro R POR Gif io en 6.0 r 28.67	kgicm ² rd 934,85 141,82 51,61 en la base o del muro RO TOTAL n de muro m	Um-r0 9,348.53 1,418.25 516.05 Kb = Kw = Kb + Kw = d = L = v =	m 5.00 3.00 1.00 206.054 57.504 263.558 1277.87 6.00 1.00 0.25	Um-rg           46,743           4,255           516           51,513           Kw = d ² Um-rg           m           m           Relación de l	*(l+v)*/	,
c) P/	F1 F2 F3 Pa ARÁMETR Aomento	Ci 2.264 -0.599 -0.049 rámetro c arámetro O DE DE de Voltec Masa	C2 -0.649 1.590 -0.314 de defor FORMAC FORMAC	C3 -0.024 -0.356 1.702 mación rmación clión Ak Val Ovr = (K6 e masa s lines)	angular a angula KGULAR or medi + Kw)*0 hc M	<u>cm</u> 500 300 100 r por giro ar por giro R POR Gif io en 6.0 r 28.67 30.28	kgicm ² rd 934,85 141,82 51,61 en la base o del muro RO TOTAL m de muro m t'seg ² /m	Um-ro 9,348.53 1,418.25 516.05 Kb = Kb = Kb + Kw = d = L = v = μ = (577.9+	m 5.00 3.00 1.00 206.054 57.504 263.558 1277.87 6.00 1.00 0.25 1433.9+1	$\frac{vm-ra}{46,743}$ $\frac{46,743}{4,255}$ $516$ $51,513$ $Kw = d^{2}$ $\frac{vm^{2}}{m}$ $m$ $Relación de l 821.8)/3 vm$	*(l+ν)*,  Poisson n ²	,
c) P/	F1 F2 F3 Pa ARÁMETR Aomento Periodo	C1 2.264 -0.599 -0.049 rámetro c arámetro c arámetro O DE DE O DE DE de Voltec Masa por rotaci	C2 -0,649 1.590 -0.314 ie defon de defo FORMAC Contro de por metro ón cimer	C3 -0.024 -0.356 1.702 mación crión Ak Val Ovr=(K6 e masa s lineal stación	angular n angula IGULAR or medi + <i>Kw</i> )* <i>0</i> hc M Tc	<u>cm</u> 500 300 100 r por giro ar por giro ar por giro R POR Gif 28.67 30.28 1.931	kgicm ² rd 934,85 141,82 51,61 en la base o del muro RO TOTAL n de muro m t*seg ² /m seg	Um-ro 9,348.53 1,418.25 516.05 Kb = Kw = Kb + Kw = d = L = v = μ = (577.9+	m 5,00 3,00 1,00 206,054 57,504 263,558 1277,87 6,00 1,00 0,25 1433,9+1	$\frac{vm-ra}{46,743}$ $\frac{46,743}{4,255}$ $516$ $51,513$ $Kw = d^{2}$ $\frac{vm^{2}}{m}$ $m$ $Relación de l 821.8)/3 vm$	*(1+v)*/ Poisson n ²	,
c) P/	F1 F2 F3 Pa ARÁMETR Aomento Periodo	C1 2.264 -0.599 -0.049 rámetro c arámetro c arámetro O DE DE O DE DE de Voltec Masa por rotaci Per	C2 -0,649 1.590 -0.314 ie defon de defo FORMAC Cantro de por metro ón cimer iodo del e	C3 -0.024 -0.356 1.702 mación rmación clón Ak Val Dv/= (K6 e masa s lineal stación edificio	angular n angula IGULAR or medi + <i>Kw</i> )* <i>0</i> hc M Tc Tc	<u>cm</u> 500 300 100 r por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar	kgicm ² rd 934,85 141,82 51,61 en la base o del muro RO TOTAL n de muro m t*seg²/m seg seg	Um-ro 9,348.53 1,418.25 516.05 Kb = Kb = Kb + Kw = d = L = v = μ = (577.9+	m 5,00 3,00 1,00 206,054 57,504 263,558 1277,87 6,00 1,00 0,25 1433,9+1 DNAMIC	46,743 4,255 516 51,513 <i>Kw</i> = d ² <i>Vm</i> ² m m Relación de l 821.8)/3 <i>Vm</i>	*(l+ν)*,  Poisson n ² Ω	,
c) P/	F1 F2 F3 Pa ARÁMETR Aomento Periodo	C1 2.264 -0.599 -0.049 rámetro c arámetro c arámetro O DE DE de Voltec Masa por rotaci Per Per	C2 -0,649 1.590 -0.314 ie defor de defo FORMAC Centro de por metro órs cimer iodo del e	C3 -0.024 -0.356 1.702 mación rmación clóN AN Val Dv/= (K5 s masa c lineal stación edificio oplado	angular angula GULAR or medi + Xw)*0 hc M Tc Tc Te To	cm 500 300 100 r por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar p	kgicm ² rd 934,85 141,82 51,61 en la base o del muro (O TOTAL n de muro m t*seg ² /m seg seg seg	Um-ro 9,348.53 1,418.25 516.05 Kb = Kb = Kb + Kw = μ = d = L = v = μ =(577.9+ ANÁLISIS I Frecuencia	m 5,00 3,00 1,00 206,054 57,504 263,558 1277,87 6,00 1,00 0,25 1433,9+1 XNAMICC circular	$\frac{vm^2rd}{46,743} \\ 4,255 \\ 516 \\ 51,513 \\ Kw = d^2 \\ vm^2 \\ m \\ m \\ Relación de l \\ 821.8)/3 \ vm \\ 0 \ DEL \ SUEL (12,566) \\ 12,566 \\ 0 \ m^2 \\ 12,566 \\ 0 \ m^2 \\ 12,566 \\ 0 \ m^2 \\ 12,566 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0 \ m^2 \\ 0$	*(l+ν)*, Poisson n ² Ω	,
c) P/	F1 F2 F3 Pa ARÁMETR Aomento Periodo	C1 2.264 -0.599 -0.049 rámetro c arámetro c arámetro O DE DE O DE DE Masa por rotaci Per Per Relac	C2 -0.649 1.590 -0.314 ie defor de defo FORMAC Cantro de por metro órs cimer iodo del a irriodo acia	C3 -0.024 -0.356 1.702 mación rmación CIÓN AN Val Dv/= (K6 a masa s linual stación adificio optado wiodos	angular angula KGULAR or medi + Xw)*0 hc M Tc Te To To/Ts	cm 500 300 100 r por giro ar por giro ar por giro R POR Gif 28.67 30.28 1.931 1.400 2.385 4.770	kgicmi-rd 934,85 141,82 51,61 en la base o del muro RO TOTAL n de muro m tisegi/m seg seg seg	Um-ro           9,348.53           1,418.25           516.05           Kb =           Kw =           μ=           d=           L=           v=           μ=(577.9+)           ANÁLISIS I           Frequencia           Periodo Ts	m 5,00 3,00 1,00 206,054 57,504 263,558 1277,87 6,00 1,00 0,25 1433,9+1 0NAMIC circular m seg	Um-rg           46,743           4,255           516           51,513           Kw = d²           Vm²           m           Relación de l           821.8)/3         Vm           0 DEL SUELS           12.566           0.500	$\frac{Poisson}{n^2}$	,
c) P/	Fi F2 F3 Pa ARÁMETR Aomento Periodo	C1 2.264 -0.599 -0.049 rámetro c arámetro c arámetro O DE DE O DE DE C Masa por rotaci Par Par Relac iento críti	C2 -0.649 1.590 -0.314 ie defor de defo FORMAC FORMAC Centro de por metro órs cimer iodo del e infodo aci	C3 -0.024 -0.356 1.702 mación rmación clón AN Val Dv/= (K5 s masa c lineal ntación edificio oplado priodos stación	angular angula IgULAR or medi + Xw)*0 hc M Tc Te To To To To To To Cc	cm 500 300 100 r por giro ar por giro ar por giro ar por giro POR Gif 28.67 30.28 1.931 1.400 2.385 4.770 0.120	kgicm ² rd 934,85 141,82 51,61 en la base o del muro CO TOTAL n de muro m t*seg ² /m seg seg	Um-ro           9,348.53           1,418.25           516.05           Kb =           Kw =           Kb + Kw =           μ =           d =           L =           v =           μ = (577.9+)           ANÁLISIS I           Frecuencia           Periodo Ts of	m 5,00 3,00 1,00 206,054 57,504 263,558 1277,87 6,00 1,00 0,25 1433,9+1 DNAMIC circular m seg	$\frac{vm^2rd}{46,743} \\ 4,255 \\ 516 \\ 51,513 \\ Kw = d^2 \\ vm^2 \\ m \\ m \\ Relación de l \\ 821.8)/3 \ vm \\ 0 \ DEL \ SUEL ( 12.566 \\ 0.500 \\ 12.566 \\ 0.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12.500 \\ 12$	*(l+ν)*, 	,
c) P/	Fr Fz F3 Pa ARÁMETR Aomento Periodo mortiguen Amorti	C1 2.264 -0.599 -0.049 rámetro c arámetro c o DE DE de Voltec Masa por rotaci por rotaci Per Per Relac tiento crítio	C2 -0,649 1.590 -0.314 ie defor de defo FORMAC FORMAC Cantro de por metro órs cimen iodo del e miodo seción de pe so cimen o citizo e	C3 -0.024 -0.356 1.702 mación rmación clóN AN Val Dv/= (K6 s masa c lineal stación edificio optado priodos stación edificio	angular angula IgULAR or medi + Xw)*0 hc M Tc Tc To To To To To C G	cm 500 300 100 r por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro	kgicm ² rd 934,85 141,82 51,61 en la base o del muro 20 TOTAL n de muro m t*aeg ² /m seg seg seg	Um-rg           9,348.53           1,418.25           516.05           Kb =           Kw =           μ=           d=           L=           v=           μ=(577.9+)           ANÁLISIS I           Frequencia           Periodo Ts of	m 5,00 3,00 1,00 206,054 57,504 263,558 1277,87 6,00 1,00 0,25 1433,9+1 0)NAMICC circular en seg	$\frac{vm^2rd}{46,743} \\ 4,255 \\ 516 \\ 51,513 \\ Kw = d^2 \\ vm^2 \\ m \\ m \\ Relación de l \\ 821.8)/3 \ vm \\ 0 \ DEL \ SUEL (12,566) \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,566 \\ 0.500 \\ 12,560 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0.500 \\ 0$	*(l+ν)*, Poisson n ² Ω	,
	Fr Fz F3 Pa ARÁMETR Aomento Periodo mortiguan Amorti	C1 2.264 -0.599 -0.049 rámetro c arámetro c o DE DE de Voltec ( Masa por rotaci por rotaci Per Per Relac iento criti guarnienko riento criti	C2 -0,649 1.590 -0.314 ie defor de defo FORMAC FORMAC Centro de por metro órs cimen iodo del e virioto acci órs de pe co cimen o crítico e ico entitivo	C3 -0.024 -0.356 1.702 mación rmación clón Ak Val Ovr=(K6 s masa o tineal stación pdificio optado priodos stación pdificio palente	angular angula IGULAR or medi hc M Tc Te To To/Ts Çc Çc Çc Çc	cm 500 300 100 r por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro	kgicm ² rd 934,85 141,82 51,61 en la base o del muro RO TOTAL n de muro m l'aeg ² /m seg seg	Um-ro 9,348.53 1,418.25 516.05 Kb = Kw = Kb + Kw = d = L = v = μ = (577.9+ ANÁLISIS I Frecuencia Periodo Ts o	m 5,00 3,00 1,00 206,054 57,504 263,558 1277,87 6,00 1,00 0,25 1433,9+1 0,04 1433,9+1 0,04 0,25 1433,9+1 0,04 0,25	$\frac{vm^2rd}{46,743} \\ 4,255 \\ 516 \\ 51,513 \\ Kw = d^2 \\ \frac{vm^2}{m} \\ m \\ \frac{Relación de l}{821.8/3} \\ vm \\ 0 \\ DEL SUEL \\ 12.566 \\ 0.500 \\ 12.566 \\ 0.500 \\ 12.566 \\ 0.500 \\ 12.566 \\ 0.500 \\ 12.566 \\ 0.500 \\ 0.500 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 10$	*(l+ν)*, Poisson n ² Ω	,
c) P/ M	Fr Fz F3 Pa ARÁMETR Aomento Periodo mortiguan Amorti mortiguan	C1 2.264 -0.599 -0.049 rámetro c arámetro c 0 DE DE O DE DE C Masa por rotaci por rotaci por rotaci por rotaci por rotaci por rotaci puertion criti puertion criti	C2 -0.649 1.590 -0.314 ie defor de defo FORMAC FORMAC Centro de por metro óris cimen iodo del a ióris de pa ióris de pa co cimen o crítico e ioris enter	C3 -0.024 -0.356 1.702 mación rmación rmación CIÓN AN Val Ovr = (K6 e masa o tineal stación edificio opiado stación edificio manane	angular angula IGULAR or medi hc M Tc Te To To C C C C C C C C C C C C C C C C C	cm 500 300 100 por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro 28.67 30.28 1.931 1.400 2.385 4.770 0.120 0.050 0.101 1.000	kgicm ² rd 934,85 141,82 51,61 en la base o del muro RO TOTAL n de muro m l'seg ² /m seg seg seg	Um-ro 9,348.53 1,418.25 516.05 Kb = Kw = Kb + Kw = μ = d = L = v = μ = (577.9+ ANÁLISIS I Frecuencia Periodo Ts o	m 5,00 3,00 1,00 206,054 57,504 263,558 1277,87 6,00 1,00 0,25 1433,9+1 0,025 1433,9+1 0,025 1433,9+1 0,025 1433,9+1 0,025	$\frac{vm^2rd}{46,743}$ $\frac{46,743}{4,255}$ $516$ $51,513$ $Kw = d^2$ $\frac{vm^2}{m}$ $m$ $Relación de l 821.8)/3 vm$ $0 DEL SUEL( 12.566)$ $0.500$	+ (1+ν)+ μ Poisson n ² Q	,
	Fr Fz F3 Pa ARÁMETR Aomento Periodo mortiguan Amorti mortiguan or de acel	C1 2.264 -0.599 -0.049 rámetro c arámetro c o DE DE O DE DE de Voltec ( Masa por rotaci por rotaci por rotaci por rotaci por rotaci por rotaci por rotaci por rotaci puemiento criti puemiento criti	C2 -0.649 1.590 -0.314 ie defor de defo FORMAC FORMAC Centro de por metro dos cimen odo del a dós cimen o critico e ico equiv mitro de to	C3 -0.024 -0.356 1.702 mación rmación clón AN Val Ovr = (K6 e masa o lineal stación edificio raiodos stación adificio raiodos	angular angula IGULAR or medi hc M Tc Te To To To C C C C C C C C C C C C C C C	cm 500 300 100 por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar	kgicm ² rd 934,85 141,82 51,61 en la base o del muro RO TOTAL n de muro m l'aeg ² /m seg seg seg	Um-ro 9,348.53 1,418.25 516.05 Kb = Kw * Kb + Kw * L = v = μ = (577.9+ ANÁLISIS I Frecuencia Periodo Ts o	m 5,00 3,00 1,00 206,054 57,504 263,558 1277,87 6,00 1,00 0,25 1433,9+1 0,025 1433,9+1 0,025 1433,9+1 0,025 1433,9+1 0,025	$\frac{vm^2rd}{46,743}$ $\frac{46,743}{4,255}$ $516$ $51,513$ $Kw = d^2$ $\frac{vm^2}{m}$ $m$ $Relación de l 821.8)/3 vm$ $0 DEL SUEL( 12.566)$ $0.500$	+ (1+ν)+ μ Poisson n ² Q	
C) P/ M )) Al Fact	Fr Fz F3 Pa Pa ARÁMETR Aomento Periodo mortiguan Amorti umortiguan celeración celeración	Ci 2.264 -0.599 -0.049 rámetro ci arámetro ci 0 DE DE de Volteci (Masa por rotaci por rotaci por rotaci per per Relac siento criti guarniento asigneda	C2 -0,649 1.590 -0.314 ie defor de defo FORMAC FORMAC Cantro de FORMAC Cantro de for cimer lodo del a miodo acti ión de pe so cimer o critico a ico aquiv mtro de r a la sup	C3 -0.024 -0.356 1.702 mación rmación rmación CIÓN AN Val Ovr = (K6 e masa o invel rtación edificio relation alerte masas efficie	angular angula IgULAR or medi hc M Tc Tc Ta Ta Ta Ta ζc ζc ζc ζc δo As	cm 500 300 100 r por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro ar por giro 28.67 30.28 1.931 1.400 2.385 4.770 0.120 0.050 0.101 1.000 1.000 0.420	katemind 934,85 141,82 51.61 en la base o del muro RO TOTAL n de muro m trage?/m seg seg seg	y-rd         9,348.53         1,418.25         516.05         Kb =         Kw =         Kb + Kw =         μ =         d =         L =         v =         μ = (577.9+         ANÁLISIS I         Frecuencia         Periodo Ts o         * "DAES"	m 5.00 3.00 1.00 206.054 57.504 263.558 1277.87 6.00 1.00 0.25 1433.9+1 0.25 1433.9+1 0.25 circular en seg	$\frac{vm^{-1}d}{46,743}$ $\frac{46,743}{51,513}$ $51,513$ $Kw = d^{2}$ $\frac{vm^{2}}{m}$ $m$ $Relación de l 821.8)/3 vm$ $O DEL SUEL( 12.566$ $0.500$	Poisson n ² Ω	,
C) P/ N A Fact A A	Fr Fz F3 Pa PARÁMETR Aomento Periodo mortiguan or de scel celeración celeración	C1 2.264 -0.599 -0.049 rámetro c arámetro O DE DE de Voltec (Masa por rotaci por rotaci por rotaci niento criti puamiento niento criti aración or asigneda a 6.0 m c	C2 -0.649 1.590 -0.314 ie defor de defo FORMAC FORMAC Centro de por metro ón cimer iodo de la virión de pe co cimer o crítico a ico aquiv intro de r a la sup de profun	C3 -0.024 -0.356 1.702 mación rmación rmación CIÓN AR Val Cv1 = (K6 e masa o invel rtación odificio odificio ralente masas erficio ralente masas	angular a gula GULAR or medi + Kw)*0 hc M Tc Te To Ta To To To To Cc Cc Cc Cc Co Fo As Abc	cm 500 300 100 Por giro Por giro POR GIF 28.67 30.28 1.931 1.400 2.385 4.770 0.120 0.050 0.101 1.000 1.000 0.420 0.420 0.420	kajem ² -rd 934.85 141.82 51.61 en la base o del muro CO TOTAL n de muro m traeg ² /m seg seg seg seg seg	Um-rd         9,348.53         1,418.25         516.05         Kb =         Kw =         Kb + Kw =         μ =         d =         L =         v =         μ = (577.9+         ANÁL ISIS I         Frecuencia         Periodo Ts e         "DAES"	m 5.00 3.00 1.00 206.054 57.504 263.558 1277.87 6.00 1.00 0.25 1433.9+1 0INAMIC circular m seg	$\frac{vm-ra}{46,743}$ $\frac{46,743}{4,255}$ $516$ $51,513$ $Kw = d^{2}$ $\frac{vm^{2}}{m}$ $m$ $Relación de l 821.8)/3 vm$ $O DEL SUELO 12.566$ $0.500$	+ (1+ν)* μ Poisson n ² Ω	,
c) P/ M Fact A A	Fr F2 F3 Pa PARÁMETR Aomento Periodo mortiguan Amortiguan or de acei celeración celeración celeración	C1 2.264 -0.599 -0.049 rámetro c arámetro c O DE DE de Voltec ( Mass por rotaci por rotaci por rotaci por rotaci per Relac tiento críti puamiento niento críti puamiento asignada a 6.0 m ( óri en el c	C2 -0.649 1.590 -0.314 ie defor contro de por metro ón cimer iodo de la viriódo ac ión de pe co cimer o crítico a ico aquiv mitro de r a la sup de profur entro de	C3 -0.024 -0.356 1.702 mación rmación CIÓN AN Val Dvr = (K6 e masa o invel rtación edificio opiado rriodos riación edificio salerite masas erficie vdidad masas	angular angula IGULAR or medi + Kw)*0 hc M Tc Te To Ta To To Ta C C C C C C C C C C C C C C C C C C	cm 500 300 100 r por giro r por giro POR Gif POR Gif 28.67 30.28 1.931 1.400 2.385 4.770 0.120 0.050 0.101 1.000 1.000 0.420 0.420	katemind 934.85 141.82 51.61 en la base o del muro CO TOTAL n de muro m tisegi/m seg seg seg seg seg seg seg seg seg	Um-ro 9,348.53 1,418.25 516.05 Kb = Kw = Kb + Kw = d = L = v = μ = (577.9+ ANÁL ISIS I Frecuencia Periodo Ts o	m 5.00 3.00 1.00 206.054 57.504 263.558 1277.87 6.00 1.00 0.25 1433.9+1 01NAMIC circular en seg	$\frac{vm-rd}{46,743}$ $\frac{46,743}{4,255}$ $516$ $51,513$ $Kw = d^{2}$ $\frac{vm^{2}}{m}$ $m$ $Relación de l 821.8)/3 vm$ $O DEL SUELS$ $12.566$ $0.500$ $2564.64$	+ (1+ν)* μ Poisson n ² Ω	
- P/ Al Fact	Fi F2 F3 Pa PARÁMETR Aomento Periodo mortiguam Amortiguam Amortiguam celeración celeración Aceleració	C1 2.264 -0.599 -0.049 rámetro c arámetro c 0 DE DE O DE DE Masa por rotaci por rotaci por rotaci por rotaci parmiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti c	C2 -0.649 1.590 -0.314 ie defor de defo FORMAC FORMAC Cantro de por metro dor cimen iodo del a iriodo aci iór cimen iodo del a iriodo aci iór cimen o crítico a ico equiv mitro de t a la sup de profun antro de t	C3 -0.024 -0.356 1.702 mación rmación clón Ak Val Dv/= (K6 e masa c lineal ntación edificio optado wiodos stación adificio rabas edificio rabas edificio rabas edificio rabas edificio contación adificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edifi	angular angula KGULAR or medi + Xw)*0 hc M Tc Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta Ta	cm 500 300 100 r por giro ar por giro ar por giro ar por giro POR Gif 28.67 30.28 1.931 1.400 2.385 4.770 0.120 0.050 0.101 1.000 1.000 0.420 0.420 Acm*hc	kgicm ² rd 934,85 141,82 51,61 en la base o del muro CO TOTAL n de muro m t'seg ² /m seg seg seg seg seg seg seg seg seg	Um-ro           9,348.53           1,418.25           516.05           Kb =           Kw =           μ =           d =           L =           v =           μ = (577.9+)           ANÁLISIS I           Frequencia           Periodo Ts of           e "DAES"           Aomento           Giro	$\frac{m}{5,00}$ 3.00 1.00 206.054 57.504 263.558 1277.87 6.00 1.00 0.25 1433.9+1 01NAMICC circular in seg $\theta = \begin{bmatrix} \theta \\ \theta \end{bmatrix}$	$\frac{Vm^2rd}{46,743}$ 46,743 4,255 516 51,513 $Kw = d^2$ $\frac{Vm^2}{m}$ m Relación de l 821.8)/3 Vn 0 DEL SUEL( 12.566 0.500 $\frac{364.61}{12.566}$ 12.766	+ (1+ν)* μ Poisson n ² Q	
	Fr Fz F3 Pa Arámento Periodo mortiguam Amorti mortiguam celeración celeración Aceleración	Ci 2.264 -0.599 -0.049 rámetro c arámetro c o DE DE O DE DE de Voltec ( Masa por rotaci por rotaci por rotaci por rotaci parmiento criti puamiento criti puamiento criti puamiento criti asigneda a 6.0 m ( órr en el c	C2 -0.649 1.590 -0.314 ie defor de defo FORMAC FORMAC Centro de por metro dor cimen iodo del a miodo aci iór cimen iodo del a miodo aci iór cimen o crítico a ico aquiv mitro de r a la sup de profun entro de	C3 -0.024 -0.356 1.702 mación rmación rmación ClÓN AN Val Dv/ = (X8 e masa c lineal rtación edificio oplado stación edificio ralos stación edificio ralos stación edificio colado stación edificio colado stación edificio colado stación edificio colado stación edificio colado stación edificio colado stación edificio colado stación edificio colado stación edificio colado stación edificio colado stación edificio colado stación edificio colado stación edificio colado stación edificio colado stación edificio colado stación edificio colado stación edificio colado stación edificio colado stación edificio colado stación edificio colado stación edificio colado stación edificio colado stación edificio colado stación edificio colado stación edificio colado stación edificio colado stación edificio colado colado stación edificio colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado colado col	angular angula KGULAR or medi + Kw)*θ hc M Tc Te To Ta To Ta C c ζ c ζ c ζ c ζ c ζ c ζ c ζ c ζ c ζ c	cm 500 300 100 r por giro ar por giro ar por giro ar por giro POR Gif 28.67 30.28 1.931 1.400 2.385 4.770 0.120 0.050 0.101 1.000 1.000 0.420 0.420 Acm*hc	kgicm ² rd 934.85 141.82 51.61 en la base o del muro CO TOTAL n de muro CO TOTAL n de muro m t*seg ² /m seg seg seg seg seg seg seg seg seg seg	$Vm^{-1}G$ 9,348.53 1,418.25 516.05 Kb = Kw = Kb + Kw = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\pi$ = $\mu$ = $\mu$ = $\mu$ = $\pi$ = $\mu$ = $\pi$ = $\mu$ = $\pi$ = $\mu$ = $\pi$ = $\mu$ = $\pi$ = $\mu$ = $\pi$ = $\pi$ = $\pi$ = $\mu$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ =	$\frac{m}{5,00}$ 3.00 1.00 206,054 57,504 263,558 1277,87 6.00 1.00 0.25 1433.9+1 0.25 1433.9+1 0.100 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.	$\frac{Vm^2rd}{46,743}$ 46,743 4,255 516 51,513 $Kw = d^2$ $\frac{Vm^2}{m}$ m m Relación de l 821.8)/3 Vn 0 DEL SUEL( 12.566 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.	* (1 + v)* 4 Poisson n ² Q	
C) P/ A Fact A A	F1 F2 F3 Pa PARÁMETR Aomento Periodo mortiguan Amortiguan or de scel celeración celeración	Ci 2.264 -0.599 -0.049 rámetro c arámetro c O DE DE O DE DE de Voltec (Masa por rotaci por rotaci por rotaci por rotaci parmiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamie	C2 -0,649 1.590 -0.314 ie defor de defo FORMAC FORMAC Cantro de por metro dor cimer iodo del a iriodo aci iór cimer iodo del a iriodo aci iór cimer o cimer o cimer o cimer o co cimer o crítico a ico equiv intro de r a la sup de profun antro de r	C3 -0.024 -0.356 1.702 mación rmación clón Ak Val Dv/= (K6 e masa c lineal ntación edificio optado wiodos stación edificio rabas edificio rabas edificio rabas edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio contación edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edificio edi	angular angula KGULAR or medi + Kw)*0 hc M Tc Ta Ta Ta Ta Ta Ta Ta Ta C C C C C C C C	cm 500 300 100 r por giro ar por giro ar por giro ar por giro POR Gif 28.67 30.28 1.931 1.400 2.385 4.770 0.120 0.050 0.101 1.000 1.000 0.420 0.420 Acm*hc O t-m/m	kgicm ² rd 934,85 141,82 51,61 en la base o del muro CO TOTAL n de muro CO TOTAL n de muro m t*seg ² /m seg seg seg seg seg seg seg seg seg seg	Vm-rd           9,348.53           1,418.25           516.05           Kb =           Kw =           d =           L =           v =           μ = (577.9+           ANÁLISIS I           Frequencia           Periodo Ts de           *DAES*           Ang/θ           /m²-rd	$\frac{m}{5,00}$ 3.00 1.00 206.054 57.504 263.558 1277.87 6.00 1.00 0.25 1433.9+1 01NAMICC circular in seg $0 = 0$	$\frac{Vm^2rd}{46,743}$ $4,255$ $516$ $51,513$ $Kw = d^2$ $\frac{Vm^2}{m}$ $\frac{Relación de l}{821.8}/3 \ Vn$ $O DEL SUEL(12,566)$ $0.500$ $364.61 \ t-m$ $0.0014 \ rad$ $kg/cm^4$	* (1 + v)* A Poisson n ² Q	
c) P/ Al A A A A	Fr Fz F3 Pa ARÁMETR Aomento Periodo mortiguan Amortiguan celeración celeración Aceleració	C1 2.264 -0.599 -0.049 rámetro c arámetro c 0 DE DE de Voltac O DE DE Masa por rotaci por rotaci por rotaci por rotaci puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamien	C2 -0,649 1.590 -0.314 ie defor de defo FORMAC FORMAC Centro de por metro dor cimen iodo del a miodo aci iór cimen iodo del a miodo aci iór de po so cimen a critico e ico equiv intro de r a cimenti	C3 -0.024 -0.356 1.702 mación rmación clón Ak Val Dv/= (Kb e masa c lineal ntación edificio oplado wiodos klación edificio rabas stación edificio rabas volteo O 	angular angula IgULAR or medi + Xw)*0 hc M Tc To To To To To To Co So As Abc Acm st = M ²	cm 500 300 100 r por giro ar por giro ar por giro ar por giro POR Gif 28.67 30.28 1.931 1.400 2.385 4.770 0.120 0.050 0.101 1.000 1.000 0.420 0.420 Acm*hc 0 t-m/m 285.1	kgicm ² rd 934,85 141,82 51,61 en ia base o del muro CO TOTAL n de muro CO TOTAL n de muro m t*seg ² /m seg seg seg seg seg seg seg seg seg seg	$\frac{vm^{-}rd}{9,348.53}$ 1,418.25 516.05 Kb = Kw = Kb + Kw = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ =	$\frac{m}{5,00}$ 3.00 1.00 206.054 57.504 263.558 1277.87 6.00 1.00 0.25 1433.9+1 0NAMCC circular m seg $\theta = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\frac{vm-rd}{46,743}$ $\frac{46,743}{4,255}$ $516$ $51,513$ $Kw = d^{2}$ $\frac{vm^{2}}{m}$ $m$ $\frac{Relación de l}{821.8}/3$ $\frac{0 \text{ DEL SUEL}}{12.566}$ $0.500$ $\frac{364.61}{12.566}$ $12.566$ $0.500$ $\frac{364.61}{12.366}$ $\frac{364.61}{12.366}$	*(1+v)* 4 Poisson n ² Q	
C) P/ Al Fact A A	Fr Fz F3 Pa PARÁMETR Aomento Periodo mortiguam Amortiguam or de scel celeración celeración Aceleració	C1 2.264 -0.599 -0.049 rámetro c arámetro c o DE DE de Voltec Masa por rotaci por rotaci por rotaci por rotaci por rotaci por rotaci por rotaci por rotaci por rotaci conto críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento críti puamiento crí	C2 -0,649 1.590 -0.314 ie defor de defo FORMAC FORMAC Cantro de por metro dos cimen iodo del e miso e co cimen o critico e ico equiv intro de r a la sup de profun entro de r a la sup de profun entro de r a la sup de profun entro de r	C3 -0.024 -0.356 1.702 mación rmación clóN AN Val Dv/=(K5 e masa c lineal ntación edificio optado priodos riación adificio raberte masas volteo O 	anguiar anguia GULAR or medi br To To To To To To To To To To To To To	cm 500 300 100 Por giro Por giro POR GIF 28.67 30.28 1.931 1.400 2.385 4.770 0.120 0.050 0.101 1.000 1.000 0.420 0.420 C.420 Acm*hc 0 t-m/m 285.1 79.6	kgicm ² rd 934,85 141,82 51,61 en la base o del muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de muro (O TOTAL n de mur	$\frac{vm^{-}rd}{9,348.53}$ 1,418.25 516.05 Kb = Kw = Kw = Kb + Kw = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\pi$ (577.9+ ANÁLISIS I Frecuencia Periodo Ts of $\mu$ = $\Delta q/\theta$ $fm^{2}$ -rd 9,348.5 1,418.2	m       5.00       3.00       1.00       206.054       57,504       263.558       1277.87       6.00       1.00       0.25       1433.9+1       DNAMIC       circular       m seg       0 =       Δq       t/m²       12.93       1.96	$\frac{Vm^{-1}G}{46,743}$ $\frac{46,743}{5,55}$ $516$ $51,513$ $Kw = d^{2}$ $\frac{Vm^{2}}{m}$ $m$ $Relación de l 821.8)/3 Un 0 DEL SUEL 12.566 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.50000 0.50000 0.500000$	* (1+v)* 4 Poisson m ² Q Ovb t-m/m 129.33 11.77	
c) P/ Al Fact A A	Fr F2 F3 Pa PARÁMETR Aomento Periodo mortiguan or de scel celeración celeración celeración	C1 2.264 -0.599 -0.049 rámetro C arámetro C DE DE de Voltec O DE DE de Voltec (Mass por rotaci por rotaci por rotaci por rotaci niento críti puamiento niento br>niento críti puamiento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento niento	C2 -0,649 1.590 -0.314 ie defor de defo FORMAC FORMAC Centro de por metro dir cimer ioto del a miro de se ico equiv miro de se ico equi	C3 -0.024 -0.356 1.702 mación rmación CIÓN AN Val Dvr = (K6 e masa o invel rtación pdificio opiado riodos kación dificio salerite masas erficie vditeo O 	angular angula GULAF or medi + Kw)*0 hc M Tc Te To Ta To To To To To To To Ta t Co Sc Ge Ge As Abc As Abc As Co St M Covb L Covb L Covb Covb	cm 500 300 100 por giro por giro por giro POR Gif 28.67 30.28 1.931 1.400 2.385 4.770 0.120 0.050 0.101 1.000 1.000 0.420 0.420 C.420 Acm*hc 0 t-m/m 285.1 79.6 364.6	katemind 934.85 141.82 51.61 en la base o del muro CO TOTAL n de muro m titeg?/m seg seg seg seg seg seg seg seg	$\frac{vm^{-1}d}{9,348.53}$ 1,418.25 516.05 Kb = Kw = Kw = Kb + Kw = $\mu$ = d = L = v = $\mu$ = (577.9+ ANÁL ISIS I Frecuencia Periodo Ts d = "DAES" Aomento Giro $\Delta q/\theta$ $(m^{2}-rd)$ 9,348.5 1,418.2 516.1	m       5.00       3.00       1.00       206.054       57,504       263,558       1277.87       6.00       1.00       0.25       1433.9+1       DINAMIC       circular       m seg       0st =       θ =       Δq       t/m²       1.96       0.71	$\frac{Vm^2rd}{46,743}$ $\frac{46,743}{4,255}$ $51,513$ $51,513$ $Kw = d^2$ $\frac{Vm^2}{m}$ $\frac{m}{m}$ Relación de l 821.8)/3 Un 0 DEL SUELS 12.566 0.500 0.500 364.61 t-m 0.0014 rad $\frac{364.61}{1.293} = 1$ 0.196 0.071	*(1+v)* Poisson m ² Q Ovb 	
c) P/ A Fact A A	Fr Fz F3 Pa PARÁMETR Aomento Periodo mortiguan or de acei celeración celeración celeración celeración	C1 2.264 -0.599 -0.049 rámetro c arámetro c O DE DE de Voltec (Mass por rotaci por rotaci por rotaci por rotaci por rotaci por rotaci por rotaci por rotaci por rotaci (Mass por rotaci (Mass por rotaci (Mass por rotaci (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass (Mass)))))))))))))))))))))))))))))))))))	C2 -0.649 1.590 -0.314 ie defor de defo FORMAC FORMAC Centro de por metro ón cimer iodo del a miodo acu ión de pa co cimen o critico e co cimen o critico e co cimen o critico e co cimen a ta sup de profun antro de r a cimenta e cimenta some en ta	C3 -0.024 -0.356 1.702 mación rmación CIÓN AN Val Dvr = (Kb - masa o invel rtación edificio opiado riodos stación adificio stación adificio opiado riodos stación adificio opiado riodos stación adificio opiado riodos stación adificio opiado stación adificio opiado riodos stación adificio opiado riodos stación adificio opiado riodos stación adificio opiado riodos stación adificio opiado riodos stación adificio opiado riasa volteo O	angular angula GULAR or medi hc M Tc Te To To To To To To Co Sc Co Co As Abc Acm st = M7 Ovb Covb Covb	cm 500 300 100 Por giro Por giro POR Gif POR Gif 28.67 30.28 1.931 1.400 2.385 4.770 0.120 0.050 0.101 1.000 1.000 0.420 0.420 Acm*hc 0 C 4.770 0.120 0.420 Acm*hc	kgicm ² -rd 934.85 141.82 51.61 en la base o del muro CO TOTAL n de muro CO TOTAL n de muro m t*seg ² /m seg seg seg seg seg seg seg seg seg seg	$\frac{vm^{-}rd}{9,348.53}$ 1,418.25 516.05 Kb = Kw = Kw = Kw = Kw = Kw = Kw = Kw =	$\frac{m}{5,00}$ 3.00 1.00 206,054 57,504 263,558 1277,87 6.00 1.00 0.25 1433,9+1 Circular en seg $0 = \frac{1}{2}$ $\frac{\Delta q}{12.93}$ 1.96 0.71 1.96 0.71 -0.71	$\frac{Vm^2r}{46,743}$ $46,743$ $4,255$ $516$ $51,513$ $Kw = d^2$ $Vm^2$ m m Relación de l 821.8)/3 Vn 0 DEL SUELS 12.566 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0	* (1+v)* 4 Poisson m ² Q Ovb 	
c) P/ A	Fr Fz F3 Pa ARÁMETR Aomento Periodo mortiguan or de acel celeración celeración celeración celeración celeración	C1 2.264 -0.599 -0.049 rámetro co arámetro co DE DE de Volteco (Mass por rotaci por rotaci por rotaci por rotaci per Relaci sento críti puamiento áriento críti puamiento iento críti puamiento for en el c Morr - Los Muro de per zo unific	C2 -0.649 1.590 -0.314 ie defor de defo FORMAC FORMAC Centro de por metro ón cimer iodo del a miodo acti ón de pe co cimen o critico e ico equiv intro de r a la sup de profun entro de metro de serto de co ciment a cimenta e cimenta some en 1 2 to	C3 -0.024 -0.356 1.702 mación rmación clón AN Val Ovr = (Kb - masa o ineel rtación edificio opiado riodos rtación adificio rassa erficie erficie volteo O 	angular angula GULAF or medi hc M Tc Te To To To To To To Co Sc Co Co As Abc Acm st = M7/ Ovb Covb Covb	cm 500 300 100 Por giro Por giro POR Gif POR Gif 28.67 30.28 1.931 1.400 2.385 4.770 0.120 0.050 0.101 1.000 1.000 0.420 0.420 0.420 Acm*hc 0 285.1 79.6 364.6	kgicm ² -rd 934.85 141.82 51.61 en la base o del muro CO TOTAL n de muro m t*seg ² /m seg seg seg seg seg seg seg seg seg seg	$\frac{vm^{-}rd}{9,348.53}$ 1,418.25 516.05 Kb = Kw = Kw = Kb + Kw = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\pi$ = $\mu$ = $\pi$ = $\mu$ = $\mu$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$	$\frac{m}{5,00}$ 3.00 1.00 206,054 57,504 263,558 1277,87 6.00 1.00 0.25 1433,9+1 Circular en seg $0 = 1$ $\frac{\Delta q}{12.93}$ 1.293 1.96 0.71 -0.71 -1.96	$\frac{Vm^2r}{46,743}$ $46,743$ $4,255$ $516$ $51,513$ $Kw = d^2$ $Vm^2$ m m Relación de l 821.8)/3 Vn 0 DEL SUELS 12.566 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0	*(1+v)* 4 Poisson m ² Q Ovb *-m/m 129.33 11.77 1.43 185.06 QK	
c) P/ M Fact A A A	Fr Fz F3 Pa ARÁMETR Aomento Periodo mortiguan or de acel celeración celeración celeración celeració	Ci 2.264 -0.599 -0.049 rámetro c arámetro c arámetro c O DE DE de Voltac (Mass por rotaci por rotaci por rotaci per Relac iento críti puamienka niento críti puamienka i a 6.0 m ( óri en el c Morr - Los Muro d per 2 unifé P = 4	C2 -0.649 1.590 -0.314 ie defor de defo FORMAC FORMAC Centro de por metro ón cimer iodo del a miodo de	C3 -0.024 -0.356 1.702 mación rmación ción AN Val Ovr = (K6 o masa o ineel rtación edificio opiado riodos rtación edificio raises erficie volteo O ación ación ación ación ación muro m ²	angular angula GULAF or medi hc M Tc Te To To To To To To To To To To To To To	cm 500 300 100 Por giro Por giro POR Gif POR Gif 28.67 30.28 1.931 1.400 2.385 4.770 0.120 0.050 0.101 1.000 1.000 0.420 0.420 0.420 Acm*hc 0 t-m/m 285.1 79.6 364.6	kgicm ² -rd 934.85 141.82 51.61 en la base o del muro CO TOTAL n de muro CO TOTAL n de muro m t*seg ² /m seg seg seg seg seg seg seg m/seg ² m/seg ²	$\frac{vm^{-}rd}{9,348.53}$ 1,418.25 516.05 Kb = Kw = Kw = Kb + Kw = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\mu$ = $\pi$ = $\mu$ = $\mu$ = $\mu$ = $\pi$ = $\mu$ = $\pi$ = $\mu$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$ = $\pi$	$\frac{m}{5,00}$ 3.00 1.00 206,054 57,504 263,558 1277,87 6.00 1.00 0.25 1433,9+1 Circular en seg $0.25$ 0.01 0.02 0.25 1433,9+1 0.02 0.71 12.93 1.96 0.71 -1.96 12.93 1.96 0.71 -1.96 12.93 1.96 0.71 -1.96 12.93 1.96 0.71 -1.96 12.93 1.96 0.71 -1.96 12.93 1.96 0.71 -1.96 12.93 1.96 0.71 -1.96 12.93 1.96 0.71 -1.96 12.93 1.96 0.71 -1.96 12.93 1.96 0.71 -1.96 12.93 1.96 0.71 -1.96 12.93 1.96 0.71 -1.96 12.93 1.96 0.71 -1.96 12.93 1.96 0.71 -1.96 12.93 1.96 0.71 -1.96 12.93 1.96 0.71 -1.96 12.93 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0.71 -1.96 0	$\frac{Vm^2r}{46,743}$ $46,743$ $4,255$ $516$ $51,513$ $Kw = d^2$ $Vm^2$ m m Relación de l 821.8)/3 Vm 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0.500 0 DEL SUELO 12.566 0	*(1+v)* 4 Poisson m ² Q Ovb 	