

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

REMODELACION TECNICO-ECONOMICO
DEL ALUMBRADO EN LAS 4 TORRES
DEL ESTADIO OLIMPICO UNIVERSITARIO

T E S I S

QUE PARA OBTENER EL TITULO DE: INGENIERO MECÁNICO ELECTRICISTA (ÁREA INDUSTRIAL)

PRESENTA:

ALEJANDRA KARINA SANCHEZ RODRIGUEZ

DIRECTOR DE TESIS

M. en I. VICTOR J. GONZALEZ VILLELA

CD. UNIVERSITARIA

1998

TESIS CON FALLA DE ORIGEN

760

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

DEDICATORIAS Y AGRADECIMIENTOS

DEDICATORIAS

ESTE LIBRO DE TESIS SE LO DEDICO A DIOS POR PERMITIRME SENTIR LA FUERZA EN VARIOS ASPECTOS PARA TERMINAR EL TRABAJO Y SOBRE TODO POR DARME UNA FAMILIA TAN COMPRENSIVA.

LA TEISIS ES POSIBLE POR EL GRAN EQUIPO QUE HA ESTADO PRESENTE EN MI VIDA; MI FAMILIA, QUE ME HA LLENADO DE AMOR, TERNURA Y COMPRENSION, POR ELLOS HE CONCLUIDO LA LICENCIATURA Y AHORA MI TESIS: MI PADRE ALFREDO, MI MAMA BONITA PILAR, MI HERMANA MARIBEL Y MI HERMANO ALFREDITO.

AGRADECIMIENTOS

GRACIAS A LA UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO POR PERMITIRME OBTENER EL CONOCIMIENTO QUE YO ELEGI (LA INGENIERIA) Y APRENDER QUE EL ACTO DE COMPRENDER Y CONOCER SON LOS MAS GRATOS EN LA VIDA.

A LA DIRECCION GENERAL DE OBRAS DE LA UNAM, POR DARME LA OPORTUNIDAD DE PRACTICAR LOS CONOCIMIENTOS DE INGENIERIA Y SIMULTANEAMENTE CONCLUIR MIS ESTUDIOS Y SOBRETODO AL ING. LUIS JOSE PICAZO MORENO POR SU APOYO TECNICO Y SUS PORRAS.

GRACIAS A MI DIRECTOR DE TESIS, MI VICTOR JAVIER GONZALEZ VILLELA POR SU DIRECCION, TIEMPO Y ENTUSIASMO.

A MIS SINODALES: ING, LOURES ARELLANO BOLIO
ING. JESUS AVILA ESPINOZA
ING. HECTOR R. MEJIA RAMIREZ
M.I. RAFAEL SOUSA COMBE

POR SUS SABIOS COMETARIOS EN ESTA TESIS

A LOS PROFESORES Y ALUMNOS DE LA FACULTAD DE INGENIERIA QUE

ME BRINDARON SUS CONOCIMIENTOS, AMISTAD Y POR LOS BELLOS RECUERDOS QUE ME QUEDARON EN MI ALMA.

A LA GENTE QUE ESTUVO CERCA DE MI EN EL LAPSO EN QUE DURO MI TRABAJO, POR SU CARIÑO

QUIEN NO CONOCE NADA, NO AMA NADA.

QUIEN NO PUEDE HACER NADA, NO COMPRENDE

NADA. QUIEN NADA COMPRENDE, NADA VALE

PERO QUIEN COMPRENDE TAMBIEN AMA, OBSERVA Y VE.

CUANTO MAYOR ES EL CONOCIMIENTO INHERENTE A

UNA COSA MAS GRANDE ES EL AMOR. QUIEN

CREE QUE TODAS LAS FRUTAS MADURAN AL MISMO

TIEMPO QUE LAS FRUTILLAS NADA SABE ACERCA DE LAS UVAS

PARACELSO

INDICE

INTRODUCCION

CAPITULO I. EL ESTADIO OLIMPICO

CAPITULO II. PRINCIPIOS FUNDAMENTALES DE ALUMBRADO E INSTALACIONES ELECTRICAS

CAPITULO III. ELEMENTOS PARA LA INSTALACION DEL ALUMBRADO DEL ESTADIO OLIMPICO DE C.U.

CAPITULO IV. PLANTEAMIENTO

CAPITULO V. PROPUESTA Y EVALUACION TECNICA

CAPITULO VI. PROPUESTA Y EVALUACION ECONOMICA

SECCION A. CONCLUSIONES

SECCION B. TERMINOLOGIA

SECCION C. APENDICE DE TABLAS

SECCION D. PLANOS ELECTRICOS, ACTUALES Y MODIFICADOS

BIBLIOGRAFIA

CONTENIDO

		Pa _l	gınas
INTRODUCCIO	N	x	-UNAM
I EL ESTADIO C	LIMP	PICO	1
1.1.Historia			1
	1.1.2 E	reve historia de la Ciudad Universitaria stadio Olímpico en la Ciudad Universitaria volución del proyecto de conjunto	1 2 3
1.2. Entori	10		7
	1.2.2 lr 1.2.3. S	ocalización. Istalaciones Suministros de instalaciones Itilización	7 7 7 7
1.3. El alu	mbrado	o en las 4 Torres del Estadio Olimpico 68	8
	1.3.2. //	amparas actuales nstalación eléctrica Consumos actuales	8 8 9
II PRINCIPIO	-	FUNDAMENTALES DE ALUMBRADO ECTRICAS) E
2.1. Calidad	de ilun	ninación	10
	2.1.1 2.1.2 2.1.3 2.1.4	9 9 19 19 19 19 19 19 19 19 19 19 19 19	11 13 13 14
2.2. Control	de des	alumbramiento	14
	2.2.1 2.2.2 2.2.3	Abertura apropiada del haz luminoso Altura adecuada de montaje del luminario Localización adecuada de montaje del luminario	14 16 16
2.3. Nivel de	ilumin	ación	17
	2311	Informidad	17

2.4. Métodos pa	ra el calculo de iluminación	17
2.4	.1 Definiciones para el calculo de iluminación 1.2 Datos de Luminarios. 1.3 Método de Punto por Punto 1.4 Método de lumenes Promedio	17 18 18 19
III ELEMENTOS PA ESTADIO OLIMPIO	ARA LA INSTALACION DEL ALUMBRADO CO DE C.U.	DEL 22
3.1. Clasificació 3.2. Fuentes ar		22 22
3.2 3.2 3.2	2.1. Lampara incandescente 2.2. Lampara fluorescente 2.3. Lampara de vapor de mercurio 2.4. Lamparas de vapor de sodío 2.5 Lampara de Aditivos Metalícos	23 27 32 38 41
3.3. Luminario p	propuesto para el Estadio Olímpico 68	47
3.4. Principales	componentes eléctricos	51
3.4 3.4	1.1 Conductores eléctricos 1.2. Canalizaciones eléctricas 1.3 Dispositivos de protección 1.4 Simbolos eléctricos.	51 56 62 66
IV PLANTEAMIEN	то	76
4.1. Objetivo 4.2 Medidas pa 4.3. Instalación 4.4. Principal pi 4.5. Factores a 4.6 Solución co	roblemática los que afecta	76 76 77 77 78 78
V PROPUESTA Y	EVALUACION TECNICA	80
5.1. Propuesta	Técnica (concepto)	80
5.	1.1 Propuesta técnica conceptual	80
5.2. Requerimi	entos técnicos para una instalación	80
5.	2.1, Seguridad 2.2, Eficiencia 2.3 Economia	80 81 81

5.2.4. Simplicidad de operación5.2.5. Accesibilidad5.2.6. Flexibilidad	81 81 81
5.3. Criterio para el diseño de una instalación	82
5.3.1 Diseños amplios5.3.2 Centro de distribución5.3.3 Limitaciones de daños por fallas5.3.4 Planos previa elaboración	82 82 82 82
5.4. Calculo de Luminarias	83
5.4.1 Calculo por emisión o potencia luminica 5.4.2 Calculo por el método de lúmenes promedio 5.4.2.A. Sistema de alumbrado existente 5.4.2.B Alternativa I 5.4.2.C.Alternativa II 5.4.2.D Conclusiones	83 84 85 86 88
5.5. Nivel de iluminación con 85 reflectores	90
5.6. Calculo de protección general y Calculo de circuitos de protección	erīvados con 91
5.6.1 Calculo de protección 5.6.1 A .Protección General 5.6.1 B, Calculo de Circuitos 5.6.1 C Memoria de Calculo por Circuito	92 92 92 92
5.7. Calculo y arreglo comercial para Transformadores (por	r torre) 97
PROPUESTA Y EVALUACION ECONOMICA	99
6.1Propuesta financiera (Concepto)	99
6.2Estudio técnico - económico para el ahorro de consumo eléctrica en el Estadio Olímpico de la C.U.	de energía 99
6.2.1 Análisis de Costo de Consumo por mes en la Ta H.M . 6.2.1 A Costo de Luminarias del Estat Universitario.	99 dio Olimpico 99
6.2.2 B Costo de Alumbrado Modificado a de Adıtıvos Metalicos 6.2.3 C Resumen	a base de reflectores 101 102

VI

6.3.Evaluación Económica	102
6.3.1 Inversión Inicial6.3.2. Costos anuales de operación6.3.3 Costos anuales por mantenimiento6.3.4 Resumen	103 104 105 105
6.4Ahorros obtenidos con la Alternativa I y la Alternativa II.	106
6.5.Amortización de la Evaluación Financiera	106
6.5.1 Propuesta con Aditivos Metálicos de 1000 W6.5.2 Propuesta con Aditivos Metálicos de 1500 W	106 106
6.6 Conclusiones de la evaluación económica	107
SECCION A CONCLUSIONES	A.1
SECCION B TERMINOLOGIA	B.1
1Terminologia de alumbrado 2Terminologia de instalación eléctricas.	
SECCION C APENDICE DE TABLAS	
SECCION D PLANOS ELECTRICOS	D.1

INTRODUCCION

En el otoño de 1878 Thomas Alva Edison declaró en el periódico The New York Sun; "Acabo de resolver indefinidamente el problema de la subdivisión de la electricidad" Después de cinco mil experimentos fallidos, en la segunda noche continua de trabajo junto a mi ayudante Batchelor en el laboratorio de Menlo Park, el hilo de carbón estaba terminado y dentro de la lámpara. El bulbo estaba al vacío y bien sellado; conectamos la corriente y nuestros ojos encontraron lo que tanto tiempo habíamos deseado. La lámpara incandescente

Con este descubrimiento nos damos cuenta que fue el principio de un constante desarrollo tecnológico y debido a los constantes cambios políticos, económicos y culturales a los que se ha visto sujeto la humanidad, ha tendido que evolucionar la tecnología en forma proporcional a las necesidades y el desarrollo de cada país. La ingeniería ha venido a acelerar y favorecer estos cambios.

Actualmente se han desarrollado nuevas fuentes de energía para satisfacer nuestras necesidades energéticas, no obstante está energía generada hay que transportarla y distribuirla para ser utilizada con fines específicos por parte de los usuarios. La iluminación como fuente de energía es de suma importancia hoy en nuestros días ya que puede, satisfacer las necesidades más exigentes en diferentes medios y actividades como arquitectónicos, culturales, deportivos, medicinales, entre otros.

En lo particular me voy a referir al sistema de distribución de Alumbrado, alimentado por energía eléctrica, en el Estadio Olímpico Universitario donde tenemos como antecedentes:

El Estadio Olímpico Universitario, se encuentra ubicado en los terrenos de la Ciudad Universitaria al sur de la Ciudad de México, a un costado de la Av. Insurgentes sur el cual fue terminado de construir en 1952, teniendo por objetivo primordial el de prestar en un estadio abierto todo tipo de actividades y eventos.

El Estadio Olímpico, ha sido escenario de grandes eventos deportivos como lo fueron las olímpiadas de 1968, y el Campeonato Mundial de Fut.bol en México de 1970 y 1986, en el transcurso de este tiempo, las instalaciones han sufrido deterioros, mismos que no han sido objeto de corrección en algunos accesorios y componentes eléctricos, motivo por el cual se hace necesario el cambio del sistema de alumbrado, para el correcto funcionamiento del Estadio Olímpico.

La información que se presenta es el resultado de una minuciosa y detallada revisión generalizada de las instalaciones eléctricas y de sus consumos actuales valorándolos, para de esta manera crear un proyecto y evaluación técnico – económico, capaz de cubrir las necesidades del estado actual, y mejorando el nivel de ingeniería en que se encuentra

OBJETIVO

El Objetivo principal de este trabajo es la remodelación del Sistema de Alumbrado en las 4 Torres de lluminación y detectar las irregularidades, anomalías, consumos y desperdicios de energía actuales, para proporcionar los criterios y acciones correctivas de la instalación y consumo eléctrico, así como proponer la utilización de equipos más modernos con mejores características, y tomar decisiones importantes de acuerdo a la investigación económica, para la mejor amortización en tiempo.

Para lograr el objetivo primordial se tiene que mantener un Sistema de Alumbrado de vanguardia que brinde la mayor seguridad y servicio a la Universidad Nacional Autónoma de México, los beneficios son muchos y muy variados como la optimización del uso de energía eléctrica, lo que involucra costos bajos en los consumos de energía, para disminuir las perdidas económicas y generar de esta manera el funcionamiento de una nueva instalación.

CAPITULO I EL ESTADIO OLIMPICO EN LA CIUDAD UNIVERSITARIA

1.1.HISTORIA

1.1.1 Breve historia de Ciudad Universitaria

Desde 1948 se concibió la idea de crear un Campus Universitario que concentrara las instituciones de la UNAM, distribuidas originalmente en el centro de la ciudad. En 1950 empezaron las obras de C.U. y las primeras escuelas se mudaron en 1954, el cupo inicial fue calculado para 25,000 estudiantes y ilegaron la concentrarse hasta cerca de 100, 000 si bien las primeras instalaciones fueron ampliadas en forma importante.

El traslado a Ciudad Universitaria significa un importante cambio en la evolución de la Universidad Los investigadores que laboraron en institutos pudieron participar en la docencia, lo cual fue muy benéfico, pese a esto no se dio la interacción esperada entre las distintas dependencias académicas debido al tamaño ya considerable de muchas de ellas y su funcionamiento durante muchos años en forma aislada, de esta manera desarrolló el sentimiento de recinto cerrado y prosperó en el ánimo de muchos el concepto de extraterritorialidad, de todas formas, se dieron nuevas modalidades de convivencia

La Ciudad Universitaria dentro del Pedregal significó en su tiempo (concepto que permanece en la actualidad) la oferta de un nuevo orden visual para la arquitectura de México y la aportación también de un nuevo "Vocabulario" de elementos significativos de composición, no obstante la incorporación de algunos tomados del pasado que al combinarse en asociaciones diversas adquieren nueva vigencia

Los siguientes acontecimientos ameritan una mención especial: la participación que en el año de 1947 tuvieron los alumnos de la Escuela Nacional de Arquitectura en el concurso que mereció el dictamen favorable del jurado integrado para seleccionar el anteproyecto, y el cumplimiento integro por parte de la Institución, de los compromisos derivados del decreto de expropiación de los terrenos. Por otra parte, la interacción entre las distintas dependencias constituyó sin duda, una de las premisas basicas del programa arquitectonico general, ya en el año de 1948 el entonces rector de la Universidad Doctor Salvador Zubiran, señalaba con preocupación el distanciamiento entre los institutos de investigación y la docencia y reflejo entre las dependencias de enseñanza y sus nexos con la investigación.

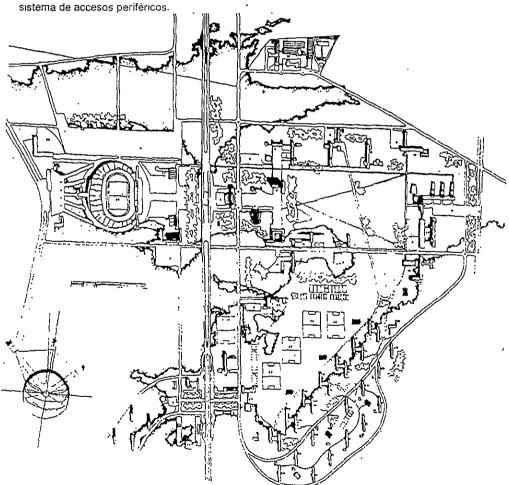
Confiamos en que la vida útil de la Ciudad Universitaria será muy larga y así habrá de permanecer al servicio de los fines de la Universidad; por ello, a partir de criterios flexibles pero firmes y precisos, se deben preservar sus valores arquitectónicos y de Ingeniería, asegurando un desarrollo armónico que garantice su integridad y coherencia

1.1.2 Historia Estadio Olímpico de Ciudad Universitaria

Las descripciones, afirmaciones y apreciaciones de lo referente al Estadio Olímpico se deben fundamentalmente a los Arq. Mario Paní y Enrique del Moral, quienes contribuyeron de manera importante al proyecto de C.U

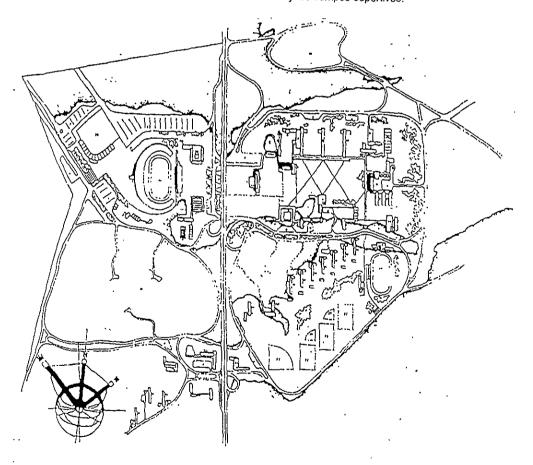
Los volúmenes de tierra generados al modelar el terreno en donde se construyó el Estadio Olímpico, sugirieron la solución constructiva adoptada, por medio de la nivelación de la superficie correspondiente a la cancha de fútbol y las pistas, el suministro de tierra con la que se formaron las tribunas, usando un procedimiento similar al que se emplea en la construcción de las presas de tierra.

El estadio, con capacidad de 80,000 espectadores, está situado sobre el principal eje de composición que corresponde a la Torre de Rectoría y de los accesos de la Avenida de los Insurgentes. Con sumo cuidado se planeó el sistema vial a fin de que una gran afluencia de vehículos pueda desalojarse con rapidez, el sistema consiste, fundamentalmente, en un gran circuito, con circulación en un solo sentido, al que se le insertan conexiones con las distintas vias de acceso, procurando no congestionar la Avenida de los Insurgentes. Se destinó una zona especial para llegada y estacionamiento de los autobuses (la cual actualmente es un estacionamiento publico y otra para los tranvías. El estadio está rodeado por una amplia zona de dispersión conexa a los estacionamientos.

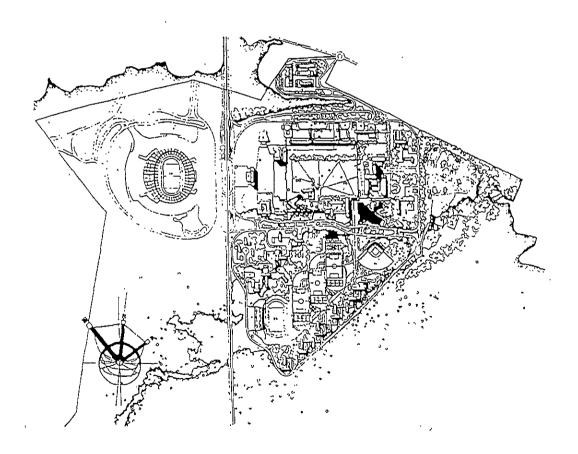

La plaza que da a la Avenida Insurgentes se comunica ampliamente por medio de un paso a desnivel con la plaza de la Rectoría, permitiendo el paso de peatones

1.1.3. Evolución del proyecto de conjunto

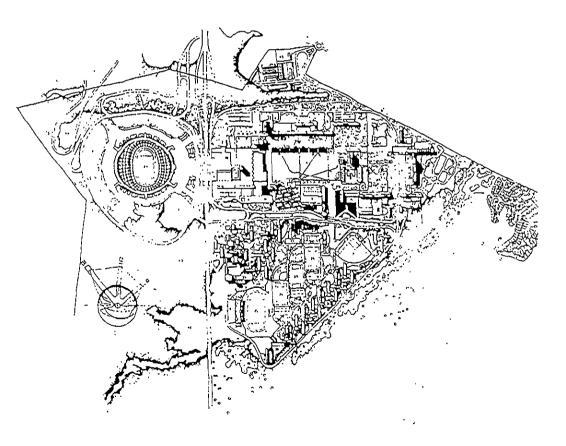
La evolución la muestran claramente los croquis.


1. MARZO DE 1947

Anteproyecto presentado por la Escuela Nacional de Arquitectura, para el Concurso organizado por la Universidad, en el que quedaron definidas las principales zonas del Conjunto y se propuso un


2.- MAYO DE 1949

Dos años después, al reiniciarse el estudio del proyecto, se reduce notablemente las dimensiones del "Campus" y de los espacios entre las diversas escuelas. Se modifica radicalmente el criterio para el sistema vial, adoptando el de circuitos cerrados con circulación en un solo sentido, de trazo libre, que eliminan los cruces e intersecciones en ángulo recto. Se hace el intento de colocar las habitaciones en la zona intermedia entre las escuelas y los campos deportivos.


2 JUNIO DE 1950

Se precisan las relaciones entre los diferentes edificios, cuyos proyectos particulares, en la mayoría de los casos, ya han sido definidos. Queda decidido el tratamiento en terrazas y expresado en el plano el proyecto de los campos deportivos, ya terminados(abril del mismo año) La zona de habitaciones se define y el sistema de carreteras, sobre todo en las zonas de escuelas y deportiva, se precisa, ya que la construcción de la mayor parte de ellas, en esas zonas, se termina en el curso del año.

3 JUNIO DE 1951

Al decidir la Universidad la construcción de los edificios escolares correspondientes al grupo de ciencias biológicas en terrenos de la Ciudad Universitaria, se incluye en el proyecto la posición de las Escuelas de Medicina, Odontología y Veterinaria. Al quedar precisada la totalidad de los proyectos particulares, sus relaciones quedan establecidas definitivamente. Se cambia el trazo fundamental de la zona de los servicios comunes y administrativos que comprenden rectoría, aula magna y museos. Se precisa más el estudio de plataformas y desniveles, así como el de los estacionamientos, pórticos y pasos a cubierto. En los campos deportivos se incluye los frontones y se proyectan combinándolos con los edificios de habitación.

1.2. ENTORNO

Estadio diseñado para que en él tenga lugar toda clase de actividades deportivas, recreativas y culturales, en los 40 años de construirlo ha funcionado satisfactoriamente, además que el entorno que tiene es meramente estudiantil por el hecho de que encuentra en La Ciudad Universitaria, baste recordar la perfección en que se desarrollaron las competencias de la Olimpiada de 1968.

1.2.1 Localización.

Está localizado en la sección de Ciudad Universitaria, situada al poniente de la Avenida Insurgentes y sobre el eje que genera toda composición, coincidiendo con la torre de la Rectoría y el Campus.

1.2.2 instalaciones

Las instalaciones existentes se pueden apreciar en la sección D de Planos Eléctricos, donde podemos observar las instalaciones actuales.

Plano-1 Ductos y Registros

Plano-2 Torres de Alumbrado

Plano-3 Localización de puntos en el enfocamiento

Plano-4 Diagrama Unifilar

1.2.3. Suministro y Acometida

El suministro eléctrico principal del Estadio Olímpico en C.U es de la Subestación No. 1, localizada en el lado oriente de la Ciudad Universitaria, frente a la Facultad de Psicología y la acometida principal de la Subestación No. 1 es por parte de Compañía de Luz y Fuerza del Centro.

1.2.4. Utilización

Los eventos que se llevan a cabo prácticamente son actividades deportivas, recreativas y culturales

Tiene una capacidad de 80, 000 espectadores sentados, que pueden incrementarse hasta 100,000, incluyendo un porcentaje de pie, lo cual es válido en este género de espectáculos.

7

Para conectar el estadio con la parte central de la Ciudad Universitaria se hicieron dos amplias circulaciones que corren por debajo de la Avenida Insurgentes, con el fin de provocar el interés de los estudiantes para que hagan uso de él con la mayor frecuencia.

Consta de 42 túneles de acceso para publico, que son al mismo tiempo salidas que permiten desalojarlo en 20 minutos.

La caseta de información y prensa está situada en la parte más alta de la ala mayor en el poniente, y sobre el eje de Ciudad Universitaria para dominar la vista panorámica de ella, con el fondo de los volcanes y un poco más abajo se encuentra el palco de honor. Estando ya en el interior, se puede observar que la primera visual de la que arranca la isoptíca, se colocó a poca altura sobre el campo de juego por dos razones

- 1.- Para evitar que la visual de la fila superior se elevara demasiado complicando las circulaciones y encareciendo la construcción con una superestructura excesiva.
- 2.- Porque las localidades de las primeras filas, que están en contacto con los deportistas, son las más apreciadas y de mayor valor.

El acceso del exterior se hace ascendiendo por medio de rampas las cuales permiten entrar a la mitad de las graderías, de tal manera que para ocupar las localidades se baja o se sube la mitad de la altura.

1.3. EL ALUMBRADO EN LAS 4 TORRES DEL ESTADIO OLIMPICO 68

1.3.1. Lamparas actuales

El sistema de alumbrado existente del Estadio Olímpico Universitario es a base de lámparas de Tungsteno halógeno de 2000 W (1664 piezas), que equivalen a 3328 K.W.

1.3.2 Instalación Eléctrica

Diagrama Unifilar, Instalación eléctrica, ver en la Sección D, plano -2 (Instalación eléctrica de alumbrado)

1.3.3 Consumos Actuales

Concepto	Unidad	Cantidad	Consumo	Acometida
Lámparas de				
tungsteno	PIEZAS	1, 664	3, 328 K W	LUZ Y FUERZA
halógeno de 2000				DEL CENTRO
w				

CAPITULO II

PRICIPIOS FUNDAMENTALES DE ALUMBRADO E INSTALACIONES ELECTRICAS

La iluminación artificial de áreas exteriores utilizadas para actividades, presenta problemas especíales que no se encuentran en otros campos de la luminotécnia. Entre ellos podemos citar, por ejemplo la selección de la localización de los reflectores, técnicas de su apuntado, altura de montaje, etc

En los grandes estadios deportivos profesionales, tales como de beisbol y los de futbol, el nivel de iluminación no es determinado solamente por el necesario para atletas, sino fundamentalmente para que el espectador aprecie los detalles de cada una de las jugadas. Este nivel suele ser varias veces mayor que el que necesita el jugador.

En los deportes llamados de "Juego Aereo", (beisbol, futbol americano, lanzamiento de bala, disco etc.) el nivel de iluminación sobre el plano vertical, adquiere una importancia fundamental. Sin embargo es costumbre dar el nivel de iluminación adecuado para un espectáculo deportivo en función de la componente horizontal por dos razones: 1.-Los valores de un nivel luminoso en el plano horizontal son más fácilmente encontrados; 2.-Una vez teniendo el valor en el plano horizontal, es más fácil encontrar la componente vertical. Requisito indispensable para obtener esta componente es haber seleccionado el tipo de luminario adecuado, así como la altura de montaje y localización de proyectores.

Las consideraciones que se deben tomar en cuenta al proyectar un alumbrado deportivo, desde el punto de vista del confort del espectador y del atleta, así como de las exigencias de la fotografía y televisión a color, las podemos englobar en dos conceptos siguientes: "Calidad de la iluminación" y "Cualidades que deben reunir un proyecto de iluminación".

2.1 CALIDAD DE ILUMINACIÓN

La calidad de luz de origen eléctrico está determinada por dos factores importantes, el color de la luz y la temperatura del color de la misma.

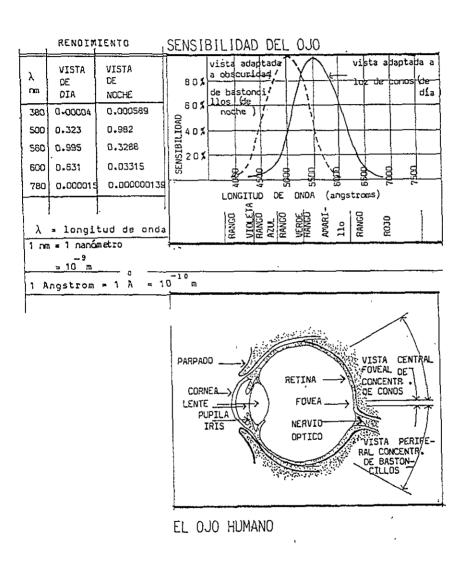
2.1.1 El color

Color es la característica de la luz, por la cual un observador puede distinguirse entre dos estructuras uniformes del mismo tamaño y forma, como se muestra en la sensibilidad del ojo.(fig 2.1.a)

El color de la luz viene determinado por su longitud de onda.

La energía en el extremo de las cortas longitudes de onda de espectro visible comprendida entre 3800 hasta aproximadamente 4500 Angstroms, produce la sensación de color violeta.

Las longitudes de onda mas largas del espectro visible es aproximadamente de unos 6300 hasta 766 Angstrom dando origen al color rojo.


Entre estas, se tienen las longitudes de onda que el ojo percibe, de color azul (5600 a 5900ª.) y naranja (5900 a 6300 a.), osea, los colores del arcoiris, la región del espectro inmediata al extremo de las largas longitudes de onda del espectro visible se llama infrarroja. (por debajo del rojo) junto al extremo de las cortas longitudes de onda, está la longitud ultravioleta (más allá del violeta).

El espectro de una fuente de luz puede ser continuo, incluyendo a todas las longitudes de onda visual, puede ser una línea o banda espectral conteniendo solo un o unos grupos de longitudes de onda; un filamento de tungsteno posee un espectro contínuo, en cambio un arco de mecurio tiene un espectro discontinuo. Un espectro de energía uniforme, esto es, poseyendo todas las longitudes de onda visual, en igual cantidad, produce la sensación de color blanco o de luz blanca. La luz solar del mediodía, se aproxima a un espectro de este tipo, (ver longitudes de onda visual de la figura 2 1.a, de la página 12).

El Color se evalúa en dos parámetros:

- 1 Temperatura de Color
- 2 Indice de Rendimiento de Color

DISENO AMBIENTAL CONTROL LUMINOSO

2.1.a

2.1.2. Temperatura de Color

La Temperatura de color correlacionada de una fuente lumínica expresada en grados Kelvin (°K), es un medio de describir la apariencia o cromacidad de la fuente. Describe la aparente blancura de la lámpara

La Temperatura de color correlacionada de la fuente lumínica contribuye a la apariencia visual del espacio iluminado.

Mucho se ha dicho de la importancia de la temperatura del color en la producción de exhibidores de televisión a colores. La referencia generalmente aceptada es 3100 grados K +/- 150 grados K Esta referencia es, con respecto a una fuente que tiene espectro continuo, en contraposición con otra que tenga un espectro de líneas.

Afín de evaluar correctamente las propiedades de la versión del color de las fuentes luminosas, con espectro lineal, es necesario considerar tanto el rango de temperatura del color y el índice de versión del mismo, (CRI). La temperatura del color es un término usado para describir una fuente de luz, mediante la comparación de esta con el color del cuerpo negro, osea del "radiante perfecto teorico". Como cualquier otro cuerpo incandescente, el cuerpo negro cambia de color a medida que aumenta su temperatura, adquiriendo al principio el tono de un rojo sin brillo para luego alcanzar el rojo claro, el naranja, el amarillo y finalmente el blanco, el blanco azulado y el azul. El color de una ilama devela es similar al de un cuerpo negro calentado a unos 1800 grados Kelvin y la llama se dice entonces que tiene una temperatura de color de 1800 grados K.

2.1.3. Indicie de Rendimiento de Color

Es una escala internacional (Sistema Numérico) de 0 a 100, el cual indica la calidad relativa de rendimiento de color de una fuente lumínica comparada a una fuente estándar de referencia de la misma cromaticidad (temperatura de color).

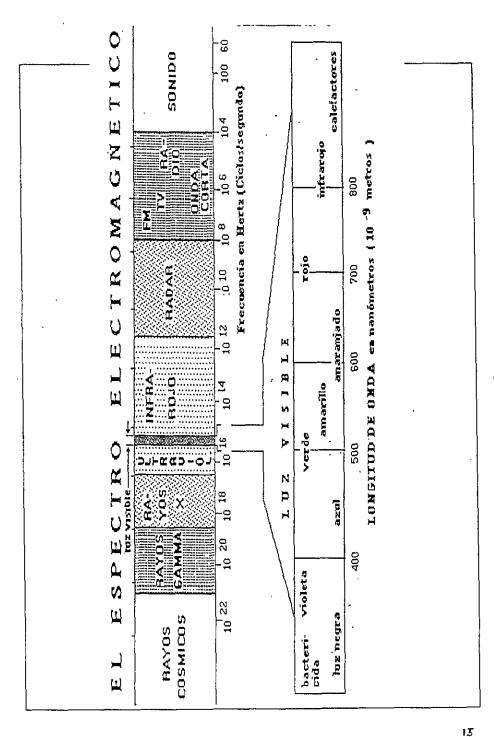
Expresada el grado en el cual los colores aparentan ser naturales sobre la fuente de luz seleccionada. En general mientras mayor sea el indice de rendimiento de color , mejor serán las propiedades de rendimiento de color de la fuente lumínica.

El índice de rendimiento de color de dos lámparas, deberán ser comparadas únicamente si estas fuentes de luz tienen la misma temperatura de color correlacionadas.

2.1.4 Espectro Electromagnético

La luz se define como la evaluación visible de la energía radiante.

La porción del espectro electromagnético conocido como espectro visible, está limitado dentro de las longitudes de onda desde los 300 a 700 nanómetros. Así el Espectro Electromagnético nos muestra las longitudes de onda de la gama de colores . (ver espectro electromagnético de la figura 2.1.b, página 16)


2.2 CONTROL DE DESLUMBRAMIENTO

Un proyector es una fuente de deslumbramiento, una de las primeras tareas para los proyectistas de iluminación, es reducir este efecto al mínimo. Este efecto básico en el cual el proyecto puede hacer lo siguiente para reducir:

- 2.2.1Abertura apropiada del haz luminoso.
- 2.2.2 Altura adecuada de montaje.
- 2.2.3 Localización adecuada de los fuminarios, así como su adecuado punto de enfocamiento.

2.2.1 - Abertura del haz

Cuando la distancia del proyector al área a ser iluminada se incrementa, la abertura del haz del proyecto usado deberá reducirse; el uso de proyectores con una gran abertura vertical del haz puede resultar para una aplicación particular en deslumbramiento y utilización no efectiva de la luz aprovechable.

1

2.2.2 .- Altura de montaje

Para las aplicaciones de iluminación por medio de proyectores, la siguiente regla básica puede ser utilizada para determinar la altura de montaje en la cual garantice un mínimo de deslumbramiento: "el ángulo entre el plano horizontal de la superficie de juego y una línea dibujada desde el proyector con montaje más bajo y un punto a un tercio de la distancia atraves del área de juego no deberá ser menor que un ángulo de 30 grados y como indicación auxiliar a lo establecido se deberá cumplir que la altura mínima de montaje no deberá ser menor de 6 mts. Para deportes terrestres y 9 mts. Para deportes áereos.

- 1 Abertura vertical del haz
- 2 Luz dispersa
- 3 Deslumbramiento

2.2.3.- Localización adecuada de luminarios

1). El efecto de deslumbramiento va disminuyendo conforme se van moviendo los luminarios de las líneas normales de vista de los jugadores y espectadores. El ángulo entre el luminario y una línea normal de la vista de ellos, dependen ámbas de la distancia comprendida desde el luminario y el observador. 2). La brillantez de un proyector particularmente la de tipo cerrado, es más baja cuando son vistos desde ángulos mayores al del haz. Por esta razón se debe enfatizar su localización a un punto afocado para sacar provecho a esta 3). Las recomendaciones principales para la localización del linuminario deberá ser tal que a juicio del proyectista el haz luminoso debera tener una dirección adecuada, al mismo tiempo la localización del luminario deberá esta fuera de la línea normal de visión de los espectadores y deportistas; donde la construcción y obstrucciones físicas requieran cambios de las localizaciones típicas, todas las líneas de espectadores y jugadores deberán ser cuidadosamente estudiadas para determinar la nueva localización de los luminarios.

2.3 NIVEL DE ILUMINACIÓN

Los técnicos de television de la ABC, piden un nivel de iluminación de 2500 a 3000 luxes, sin embargo se consideró este nivel como exagerado por lo que se solicitó pruebas de tomas de television a colores en diferentes niveles y diferentes fuentes luminosas, llegándose a la conclusión de que un nivel luminoso de 1500 luxes en toda la cancha del estadio son más

que suficientes para obtener una buena transmisión del evento , reproduciéndose con toda su fidelidad la gama de colores y solamente un aumento de I nivel luminoso de 2000 luxes en las plataformas de premiación, discursos, metas, etc., por lo que el proyecto se desarrollará tomando en cuenta estos niveles.

2.3.1 Uniformidad

Una razonable uniformidad de la iluminación sobre el área de juego es necesaria para la visión de atletas y espectadores. Cambios bruscos en los niveles de iluminación en el espacio arriba del área de juego a través del cual la pelota puede viajar, resultará en un movimiento aparente de aceleración al pasar por un área obscura. Esto ocurre cuando existe un incorrecto traslape de los haces luminosos de los proyectores dando por consiguiente una distorción de la trayectoria de la pelota y por lo tanto una respuesta incorrecta por parte del espectador y/o el atleta. Expresado en términos de iluminación horizontal, una uniformidad aceptable ocurre cuando la razón de los puntos máximos a mínimos, los niveles luminosos no exceden de 5 % en cada 3.00 m. Dentro de un área específica para aquellos deportes en que los atletas dependen de su habilidad para calcular la trayectoria de una pelota.

2.4 METODOS DE CÁLCULO PARA LA ILUMINACION

Existen dos métodos diferentes para calcular la iluminación en un campo deportivo, por medio de reflectores. El primero de éllos es conocido con el nombre de "Metodo de punto por punto" y es usado cuando se necesita conocer el nivel luminoso en un punto dado con bastante exactitud. El segundo es conocido como "Método de los lúmenes promedio" y que es utilizado más que el anterior.

2.4.1 Definiciones para el calculo de iluminación

Para la correcta interpretación de estos datos, conviene definirlos como sigue:

a). Candelas máximas.- Son las candelas máximas generadas por una fuente luminosa encontradas en la exploración del haz luminoso durante la prueba.

- b). Candelas máximas promedio.- Representan el promedio de los valores más altos encontrados en la exploración del haz luminoso durante la prueba
- c). Lúmenes del haz.- Son los lúmenes totales medidos al 10% de las candelas máximas promedio. (En los países europeos se acostumbra al 50% del valor).
- d). Diagrama Isocándela.- Básicamente la prueba es efectuada sobre la superficie de una esfera, el resultado es gráficado en una cuadrícula.
- e). Distribución de lúmenes.- Se muestra en las áreas comprendidas dentro del haz luminoso y adyacente a él lado derecho del diagrama isocandela.
- f). Abertura del haz.- Es la abertura del haz, definida como el ángulo en grados, comprendida entre los puntos en una curva de distribución de candelas al 10 % del valor promedio (50% en los países europeos).
 - g). Eficiencia del haz luminoso. Es definida deacuerdo con la siguiente razón

E = <u>lúmenes totales del haz</u>
h lúmenes generados por la lámpara

2.4.2 Datos de la lampara

Lúmenes	48,000	Candelas promedio máximas	238,000
Watts	2,000	Candelas máximas	306,000
Volts	225	Lúmenes del haz	22,302
		Eficiencia del haz	51.7%
		Abertura horizontal del haz	120 grados
		Abertura vertical del haz	81 grados

2.4.3 Método de punto por punto.- Se basa en la aplicación de las leyes:

- a). La iluminación es inversamente proporcional al cuadrado de la distancia existente entre la fuente de luz y la superficie iluminada. (Ley inversa de los cuadrados)
 - b) "La iluminación es proporcional al coseno del ángulo de incidencia (Ley del coseno)

Por lo tanto, el nivel luminoso del plano horizontal, punto A, es:

Nivel luminoso en el plano vertical, punto A:

$$E = I \frac{Cos \sqrt{h}}{H^2 + B^2} = \frac{Cos \sqrt{h}}{D^2}$$
 1.2

A = Punto en el cual el nivel de iluminación se desea conocer.

I = Intensidad luminosa en candelas del fuminario incidente sobre el

punto A.

Angulo entre una línea perpendicular al plano a ser iluminado y el

rayo incidente desde el proyector al punto A.

H = Altura de montaje.

B = Distancia horizontal de la base del poste al punto A.

D = Distancia en línea recta del proyector al punto A.

Si varios luminarios contribuyen a iluminar el punto, el nivel será la suma aritmética de todas las fuentes en el punto a considerar

La figura 6 representa una condición general para un punto "B" iluminado por un luminario con una altura de montaje "H" conocida y un punto de afocamiento "A", la distancia "B" y el ángulo "O" son encontrados con al ayuda de la geometría, mientras que la intensidad luminosa es fácilmente encontrada a partir de los datos fotométricos del luminario Estos datos son tomados considerando el observador parado atrás del luminario y mirando la superficie a iluminar.

2.2.4 Método de los lúmenes promedio.

Para calcular los niveles de iluminación por este método, el cual no difiere del usado para sistema de iluminación interior, más que en algunos factores, tales como la disposición en grupos de los luminarios, su altura de montaje, su distancia al área a iluminar y los puntos de afocamiento de los luminarios.

La ecuación básica es:

En donde:

E = Nivel luminoso (lux)

N = Número de proyectores.

CBU = Coeficiente de utilización del haz

Fm = Factor de mantenimiento
Fsv = Factor de sobre voltaje

Ft = Factor de temperatura (se usa únicamente cuando la temperatura altera la

emisión luminosa)

A = Area a ser iluminada (M2)
Lp = Lúmenes por proyector

Eh = Eficiencia del haz luminoso

Los anteriores factores se suelen calcular y englobar en uno solo, éste es el llamado factor de utilización del flujo emitido.

Sustituyendo a 4 en 3 y despejando N:

$$N = \underbrace{A \times E}_{\text{Lp x F.U.}}$$

El F.U. representa la eficiencia de la instalación y depende de la posición de montaje del reflector (altura, distancia horizontal y ángulo) así como de la distribución lumínica del reflector. Esta eficiencia es la que nos indica que cantidad de flujo lumínico realmente se aprovecha en iluminar la superficie deseada, para obtener el nivel de iluminación medio horizontal.

Coeficiente de utilización del haz.- Este factor conocido como CBU, siempre es menor que la unidad, es expresado por la siguiente relación

Para determinar el número de lúmenes que desde cada proyector llegan a una cierta área, es necesario primero localizar y determinar el punto de enfocamiento de cada proyector con respecto al área a iluminar. El área iluminada se superpone sobre la cuadrícula fotométrica (diagrama isocandela y distribución de lúmenes) y la relación de los lúmenes comprendidos en esta área a los lúmenes totales del haz, dan el valor del CBU. Todas las líneas rectas sobre el área, paralelas a una línea perpendicular al eje del haz aparecen como líneas horizontales rectas sobre la cuadrícula, si el proyector se dirige de tal manera que el eje de su haz sea perpendicular a una línea horizontal en el área a ser iluminada. Todas las líneas verticales excepto la que es cortada por el eje del haz aparece ligeramente curvada. Los valores normales para un CBU particular están comprendidos entre 0.60 y 0.90. Si el CBU es mayor al 0.90, el haz seleccionado es demasiado estrecho y la lluminación será muy concentrada.

Factor de mantenimiento.- La eficiencia de una instalación de alumbrado es perjudicada cuando se presentan acumulaciones de polvo sobre las superficies reflectoras y transmisoras del proyector. Al mismo tiempo, por el envejecimiento de la lámpara.

Para determinar el valor de este factor, es necesario tomar en cuenta lo siguiente:

- a) Factor de polvo que varía desde 0.65 hasta 0.85
- b) Pérdida de la misión luminosa de la lámpara con respecto a su vida, depende del tipo de lámpara

El factor mantenimiento será igual:

F.M = <u>lúmenes al final de la vida útil</u> x factor de polvo lúmenes iniciales de la lámpara

CAPITULO III ELEMENTOS EXISTENTES EN EL MERCADO.

3.1 CLASIFICACION

FUENTES LUMINOSAS: NATURALES SOL

ESTRELLAS

ETC

ARTIFICIALES LAMPARAS INCANDECENTES

LAMPARAS DE DESCARGA

FLUORECENTES

VAPOR DE MERCURIO
ADITIVOS METALICOS
VAPOR DE SODIO A.P.
VAPOR DE SODIO B.P.

3.2 FUENTES ARTIFICIALES.

Desde las primeras edades , el hombre utilizo numerosos tipos de combustibles para producir luz artificial.

Entre ellos los aceites, las grasas , las ceras , la leña, el petróleo y el gas, todos estos materiales contienen carbón y sus particulas candentes o incandescentes son las que producen la luz.

Edisón escogió el carbón para filamento de su primera lámpara incandescente práctica, en esta época de grandes adelantos técnicos, están logrando gran aceptación otros tipos de alumbrado

El éxito del alumbrado fluorescente ha sido espectacular desde su descubrimiento en 1938. Su característica principal consiste en no producir la luz desde un solo centro luminoso, si no por la radiación suave y difusa en toda la extensión de sus tubos, eliminando resplandores y sombras acentuadas, con lo que reduce el esfuerzo visual

El alumbrado fluorescente ha llegado a ser la fuente normal de iluminación en las nuevas construcciones i pudiendose decir que existen aplicaciones ideales para cada uno de ellos.

Desde su invención en 1901 la iluminación con lamparas de vapor de mercurio ha tenido un desarrollo dramático. Su mejoramiento técnico y sus nuevas aplicaciones han acelerado su uso durante los últimos veinte años. Las lamparas de mercurio ofrecen tres veces mayor cantidad de luz que las lámparas incandescentes de la misma potencia y su duración llega a ser hasta ocho veces mayor que la de las lámparas incandescentes para iluminación de calles.

1.- Lampara incandescente

Es un dispositivo para transformar energía eléctrica en energía luminosa. Esto se logra calentando un filamento hasta la incandescenci , mediante el paso de una corriente eléctrica a través de él.

No obstante su compleja naturaleza técnica se fabrica en cantidades inmensas lo que hace posible su muy bajo precio unitario.

Esta bombilla cristalina, con casquillo roscado y estructura interior de finos alambres da luz con un solo mover un interruptor.

Los electrodos conducen la corriente desde la fuente a través del filamento y otra vez hacia fuera. Con el paso de la corriente el filamento de tungsteno se calienta "al blanco", alcanzado una temperatura de 2482 °C, que equivalen al doble del punto de fusión del acero, el resplandor radiado por ese gran calor es la incandescencia, que la vista percibe como luz.

Vida de la Lampara

Tanto el flujo luminoso como la vida de la lámpara están determinados por la temperatura de trabajo de su filamento

El promedio de vida que el fabricante señala no significa una garantía del funcionamiento de una lámpara concreta, sino la duración media de grandes muestras de lámparas de ese mismo tipo.

Ventajas de la lampara incandescente

- Fuente de luz concentrada, la cual es fácil de dirigir hacia el lugar u objeto que se quiere iluminar.
- Trabaja eficientemente cualquiera que sea la temperatura de operación.
- Encendido instantáneo
- Adaptable a cualquier necesidad gracias a su gran variedad de modelos.
- Excelente definición de colores en la mayor parte de las aplicaciones ópticas
- Muy fácil reemplazo
- Se puede aumentar o reducir su intensidad luminosa por medio de reóstatos o varando la tensión.
- Trabaja indistintamente con corriente alterna o continua.
- · No requiere equipo extraordinario para su instalación.
- Bajo costo de lámpara y de instalación.

La Tabla No.3, nos muestra los datos de la lampara y en el Diagrama se observan las partes principales de la Lampara incandescente.

LAMPARAS INCANDESCENTES.

PARTES PRINCIPALES

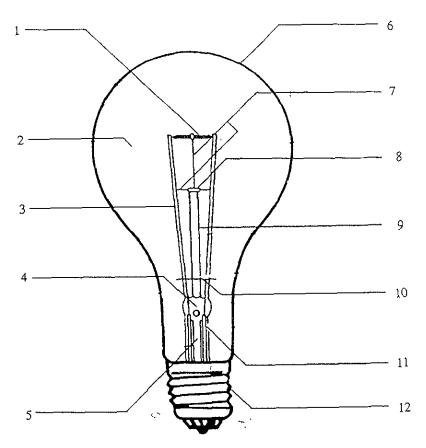


Figura (22).- Partes Principales de la Làmpara Incandescente.

ES
5
DESCE
Ŭ.
Ĉ
V
5

							T	A E	3 t	A	3									
	LONGITUD TOTAL EN	108	112	2	2		:	157	2	176	:	204	:	247	-	331			HOLOPHANE	
	ACABADO	PERLA	:	2		:		1	-	=	-	:	:	:	:	:			DEPTO DE PROVECTOS HO! OPHANE	
	BULBO	A-19	:	٤	:		:	A 23	:	PS 25	:	PS 30	ŧ	PS 40	:	PS 52	ИЕТВО МАХІМО) OTGSO	
	BASE	MEDIA	;	ŧ	*	:	2	:	2	2	2	:	:	MOGUL	2	2	LE SIGUE EL DIAN			
INCAMBESCENTES	FACTOR DE DEPRECIA CION L L.D	0.875	0.93	0.93	0,92	9060	0.90	0,895	087	0.85	060	0,825	0.89	0.83	087	0.82	LA LETRA INDICA LA FORMA DEL BULBO U BOMBILLO Y EL NUMERO QUE LE SIGUE EL DIAMETRO MAXIMO DEL MISMO EN OCTAVOS DE PULGADA			
INCAN	EFICACIA EN LUMENES/ WATT	12	15	8	15	16	13	15	14	18	. 15	19	16	20	18	20	BO U BOMBILLO Y			
	VIDA APROX EN HORAS	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	LA LETRA INDICA LA FORMA DEL BUU DEL MISMO EN DCTAVOS DE PULGADA		ELLO RECTO RO	
	LUMENES	465	870	480	1098	1565	1250	2300	2100	3500	3000	5750	4830	9825	8900	19500	ETRA INDICA LA MISMO EN DCTA	0	PSPERA CON CUELLO RECTO 40/8" DE DIAMETRO	
	VOLTS (TENSION DE	175	125	220	125	125	220	125	220	125	220	125	220	125	220	220	NOTA LAL	EJEMPLO. PS-40	PS:1	
	WATTS	40	09	3	75	31	100	150	150	200	200	300	300	500	905	0201		EJE		

3.2 2.-Lamparas Fluorescentes

El exito del alumbrado fluorescente ha sido espectacular, casi desde su descubrimiento en 1938 Este tipo de alumbrado no produce un solo centro o núcleo luminoso, sino que la radía suave y difusamente por toda la extensión de sus tubos sin producir resplandores no sobras acentuadas

La lampara fluorescente es una fuente que produce luz por medio de una descarga electrica en una atmósfera de vapor de mercurios a baja presión. La radiación de mercurio en estas condiciones no es visible, por lo que se utilizan polvos fluorescentes. Ios cuales tienen la propiedad de cambiar la longitud de onda ultravioleta del arco a longitudes de onda dentro del espectro visible (luz)

Cuando se aplica la tensión conveniente, se produce un flujo de electrones que se desplazan a gran velocidad entre los cátodos.

La colisión entre estos electrones y los átomos de mercurio que se encuentran en su camino producen un estado de excitación cuyo resultado es la emision de radiaciones, principalmente en la region ultravioleta del espectro, a 253.7 nanómetros. Los polvos fluorescentes transforman esta energía ultravioleta en energía visible (luz)

Como produce luz la lampara fluorescente

- 1.- Hay un catodo, consistente en un filamento de tungsteno revestido de óxidos en cada extremo de la lámpara. Al calentarse por el paso de corriente electrica, se produce una nube de electrones alrededor de cada cátodo.
- 2.- Segun va alternando la corriente, una onda de alta tensión establece una corriente de electrones entre los dos catodos en ambas direcciones
- 3.- Los electrones chocan con los átomos de argón y de mercurio produciéndose rayos ultravioleta invisibles
- 4 Al incidir los rayos ultravioleta sobre los polvos fluorescentes que cubren las paredes interiores de tubo se transforman en luz visible

Ventajas de la lampara fluorescente

- Tres veces más luz por watt de energía consumida conservado su brillo más tiempo
- Dura más de siete veces que una lámpara incandescente de igual potencia.
- Mayor cantidad de luz visible y menor calor radiante que la lámpara incandescente
- Luz cómoda y fresca
- Menos resplandor y sobras más suaves
- · No necesita Pantalla
- Mayor variedad de matices cromáticos para fines decorativos
- Mayor rendimiento, gran duración y perdurable potencia luminica comparada con una lámpara incandescente

La Tabla No 4 nos muestra los datos de la lampara fluorescente, y en el Diagrama se observan las partes principales de la lampara fluorescente.

4.- Al incidir los rayos ultravioleta sobre los polvos fluorescentes que cubren las paredes interiores del tubo se transforman en luz visible.

PARTES PRINCIPALES.

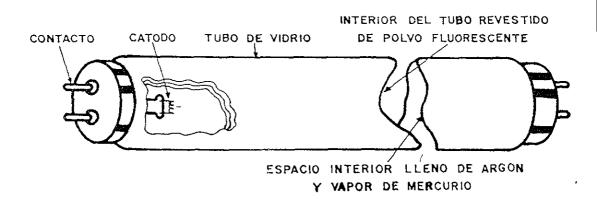
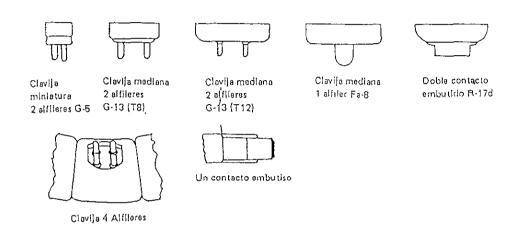
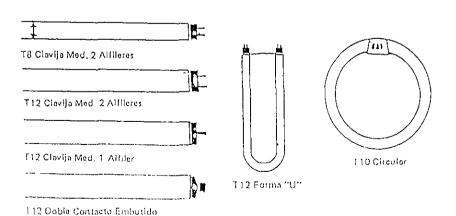




Figura (25).- Partes principales de una làmpara fluorescente.

FIGURA 27. BASES PARA LAMPARAS FLUORESCENTES

BULBOS PARA LAMPARAS FLUORESCENTES.

1 A B L A 4

CIRCULAR BLANCOFRIO 1350 12000 59 082 44FHLERES T-10 20-85-9				DAT	AJ BO SO.	DATOS DE LAMPARAS FLUORESCENTES	LUORESC	ENTES			
CIRCULAR BLANCOFRIO 1950 12000 59 072 ALFILERES T-9 20.050	WATIS		ACABADO	LUMENES	VIDA EN HORAS	EFICACIA LUMENES/ WATT	FACTOR DE DEPRECIA CIONL L D	BASE	BULBO	LONGITUD EN CEN TIMETROS	ENCENDIDO
CIRCULAR BLANCO FRIO 1200 35 072 4AFILERES T-10 30-489				650	9369		0.72	4 ALFILERES	6- T	20 96 🌣	RAPIDO
CIRCULAR LUZ DE DIA 1950 12000 59 0.82 4AFILERES T-10 30-48 \\ CIRCULAR BLANCO FRIO 1950 12000 65 0.85 AAFILERES T-10 30-48 \\ CIRCULAR BLANCO FRIO 1300 9000 54 0.85 AAFILERES T-10 30-48 \\ CIRCULAR BLANCO FRIO 1300 9000 54 0.85 AAFILERES T-10 30-48 \\ CIRCULAR BLANCO FRIO 1300 9000 77 0.85 AAFILERES T-10 0.096 \\ CIRCULAR BLANCO FRIO 1300 9000 77 0.85 AAFILERES T-10 0.096 \\ CIRCULAR BLANCO FRIO 1300 9000 77 0.85 AAFILERES T-10 0.096 \\ CIRCULAR BLANCO FRIO 1300 9000 77 0.85 AAFILERES T-10 0.906 \\ CIRCULAR BLANCO FRIO 1300 9000 77 0.85 AAFILERES T-10 0.906 \\ CIRCULAR BLANCO FRIO 1300 12000 63 AAFILERES T-10 121 92 \\ CIRCULAR BLANCO FRIO 1300 12000 73 0.89 AAFILERES T-10 121 92 \\ CIRCULAR BLANCO FRIO 4300 12000 73 0.89 AAFILERES T-10 121 92 \\ CIRCULAR BLANCO FRIO 4300 12000 73 0.89 AAFILERES T-10 121 92 \\ CIRCULAR BLANCO FRIO 4300 12000 73 0.89 AAFILERES T-12 132 88 \\ CIRCULAR BLANCO FRIO 4300 12000 73 0.89 AAFILERES T-12 132 88 \\ CIRCULAR BLANCO FRIO 4300 12000 73 0.89 AAFILERES T-12 132 88 \\ CIRCULAR BLANCO FRIO 4300 12000 57 AAFILERES T-12 132 88 \\ CIRCULAR BLANCO FRIO 4300 12000 57 AAFILERES T-12 132 88 \\ CIRCULAR BLANCO FRIO 4300 12000 57 AAFILERES T-12 132 88 \\ CIRCULAR BLANCO FRIO 14500 10000 57 AAFILERES T-12 124 84 \\ CIRCULAR BLANCO FRIO 14500 10000 57 AAFILERES T-12 124 84 \\ CIRCULAR BLANCO FRIO 14500 10000 57 AAFILERES T-12 124 84 \\ CIRCULAR BLANCO FRIO 14500 10000 57 AAFILERES T-12 124 84 \\ CIRCULAR BLANCO FRIO 14500 100	22	CIRCULAR	BLANCO FRIO	Post,	200	97	Γ	4 ALFILERES	61 1	20 96 ↔	RAP100
CIRCULAR BLANCO FRIO 1960 12000 65 077 4AFHERES T10 30489	33	CIRCULAR	LUZ DE DIA	850	1,000	3 3	Т	4 41 511 5 8 55	7.10	30 48 9	RAPIDO
CIRCULAR LUZ DE DIA 1500 12000 65 0.97 1ATRITRES T-10 4.0.64.9	32	CIRCULAR	BLANCO FRIO	1900	12000	2 2	2000	A ALFILERES	T 10	30 48 ₺	RAPIDO
CIRCULAR BLANCOFRIO 2600 12000 655 0.965 AFFILINES T-17 60.066 1200 1300 9600 654 0.955 AFFILINES T-17 60.066 140 0.055 0.055 AFFILINES T-17 60.066 140 0.055 0.055 0.055 AFFILINES T-17 60.066 140 0.055 0.05	8	CIRCULAR	LUZ DE DIA	1500	12000	;	200	S483 113 14	1.10	40 64 4	RAPIDO
BLANCO FRIO 1300 9000 655 ARUDIANS T-17 60 96	9	CIRCULAR	BLANCO FRIO	2600	12000	8		1			
BLANCO FRIO 1300 9000 54 0.65 ALMINEST 1-17 60.06	,					3	- i	HEDIANA Z	l	96 09	CON ARRANCADOR
LUZ DE DIA 1075 9000 37 087 34/1/1/1/1/1 1-12 60 96 170 087 34/1/1/1/1/1 1-12 12 92	20		BLANCO FRIO	86.	9000	3 3	ı	MEDIANA Z	1	90 09	CON ARRANCADOR
U.Z DE DIA 1050 7500 73 0 62 5 5 17 17 12 12 12 12 12 12	20		FIG 3G ZOT	1075	0005	, ,	1	STATINE DA		96 09	INSTANTANEO
BLANCO FRIO 3600 77 00-2 57/Militer 71-12 121-92	21		LU2 DE DIA	1030	7500	3 5	1	SCHALINEON		121 92	INSTANTANEO
U.Z DE DIA 2500 9000 51 1000 100	60		BLANCO FRIO	3000	9000	;	1	SCHALINEON	ļ	12192	INSTANTANEO
RIANCO FRIO 3150 12000 73 ACTIVITY 17 17 17 17 17 17 17 1	39		LUZ DE DIA	2500	8006	Z 2	1	MEDIANA 2	ľ	121.92	RAP100
TIPO U" BLANCO FRIO 1200 63 1200 73 0.89 METHERIS 7 - 12 57 15	Ç		BLANCO FRIO	3150	12000	P	200	- ALEUIANA Z	1-12	121 92	RAPID0
TIPO UT BLANCO FRIO 29CO 120CO 73 0 PT AFTILEM T-12 24384	30		LUZ DE DIA	2600	12000	g	3	MEDIANA ?	1-12	57 15	RAPIDO
BLANCOFRIO 6300 12000 84 0 695 61MINETUT T-17 2-4384 LUZ DE DIA 7300 12000 73 0,699 61MINETUT T-17 2-4384 LUZ DE DIA 7300 12000 78 0 72 61MINETUT T-17 121 92 88	9	n. odit	BLANCO FRIO	2900	12000	22	520	SCHILLINE UN	7-12	243.84	INSTANTANEO
LUZ DE DIA	ľ		3LANCO FRIO	6300	12000	-7. So	69.0	STATISTON		24384	INSTANTANEO
SILANCOFRIO 4300 12000 72 0.001 17-12 121.92 121.92 12000 72 0.001 17-12 121.92 120	52		LUZ DE DIA	5450	12000	2	٦,	ALFILER			
BLANCO FRIO					ALTAD	ESCARGAH	o l	TYPHRITAETOS		121.97	RAPIDO
BLANCO FRIO 6550 12000 78 0.72 \$\frac{700}{10000} \frac{78}{100} \frac{1}{100} \frac{1}{10} \frac{1}{100} \frac{1}{100} \frac{1}{10} \frac{1}{100} \frac{1}{10} \frac{1}{100} \frac{1}{10} \frac{1}{100} \frac{1}{10} \frac{1}{100} \frac{1}{10} \frac{1}{10} \frac{1}{100} \frac{1}{10} \fra];		SI ANCO FRIO	4300	12000	72	085	Wallung.		00 00	RAPIDO
BLANCO FRIO 9200 12000 71 0.82 700 M	3 8		BLANCO FRIO	8650	12000	78	072			24384	RAPIDO
LUZ DE DIA 1980 12000 71 0.82 \$\tilde{k}	3		BLANCO FRIO	9200	12000	84	0.85	FABY TOAS		24384	RAPIDO
BLANCO FRIO 6250 10000 57 0 100 MA 1-12 12192 12192 10000 57 0 100 MA 1-12 12192 12192 10000 57 0 1000 67 0 1000 67 0 1000 67 0 1000 67 0 1000 67 0 1000 67 0 1000 67 0 1000 67 0 1000 67 0 1000 67 0 1000 67 0 1000 67 0 1000 67 0 1000 67 0 1000 67 0 1000 67 0 1000 67 0 1000 1200 12000	2		LUZ DE DÍA	1	12000	17	_];	EMBUTIDA.	1		
BLANCO FRIO 6250 10000 57 0.69 7000 7.11 182.86				2	UY ALTA E	SESCARGA V	≖l	TOTANTACTOS	1	121 92	RAPIDO
BLANCO FRIO 98CO 10000 60 07.2 7 (MM) MMA 1-12 24384 1-12 10000	=		BLANCO FRIO	6250	10000	57	0 69	- ENWARPOS		182 88	HAPIDO
BLANCO FRIO 14500 10000 67 0.72 EMBUJIDA 121.92	18	 	BLANCO FRIO	0066	10000	3	7/0	- SURFERINAS	1	243 84	
BLANCOFRIO 7450 12000 68 0.69 7.00 70 70	215	-	BLANCO FRIO	14500	10000	67		EMBU TIDA	1		
BLANCOFRIO 7450 12000 68 0 8 158 158 150 150 150 150 150 170					POWE	R GROOVE		SOLDEL MODELLOS	ì	121 92	RAP100
BLANCO FRIO 11500 12000 74 0.69 120010A PG-17 24384	2		BLANCO FRIO	7450	12000	38 5	800	25.000.000		182 88	8 APIDO
8LANCO FRIO 16000 12000 /4 003 E480 1103	35		BLANCO FRIO	11500	12000	? ;	200	12 CONTACTOS	1	24384	RAPIDO
	1		BLANCO FRIO	16000	12000	74	600	EMBUTIDA	1		

3.2.3.- Lamparas de vapor de Mercurio

Las lámparas de vapor de mercurio pertenecen a la clasificación conocida con el nombre de lámpara de descarga de alta intensidad lumínica, identificadas en inglés con las letras H.I.D. (High Intensity Discharge) En las lámparas de este tipo, la luz se produce al paso de una corriente eléctrica a través de un vapor o gas bajo presión, en vez de hacerlo a través de un filamento de tungsteno como en lámpara incandescente

La primera lámpara de vapor de mercurio de uso practico fue construida por Peter Cooper Hewitt en el año de 1901. Producía una luz de un color característico verdeazulado de gran eficiencia, en comparación con lámparas incandescentes de aquellos dias. La primera lámpara de vapor de mercurio de alta presión , similar a las usadas en la actualidad , hizo su aparición en el año de 1934 en la potencia de 400 watts

La potencia de las lámparas actuales fluctúa entre 40 y 1500 watts

Se necesita un balastro de tamaño y tipo adecuado para que la lámpara de vapor de mercuno funcione en cualquier circuito eléctrico regular; para ajustar el voltaje de distribución del circuito de alumbrado al voltaje que se requiere para encender y controlar la corriente durante su funcionamiento. Una vez encendida, el arco se desboca tomando excesiva corriente la cual destruirá la lampara si no se controlara por medio de un balastro

Como se produce la luz la lampara de vapor de mercurio

Los iones y electrones que componen el fiujo de corriente (o descarga del arco) se ponen en movimiento a velocidades fantásticas a lo largo del trayecto existente entre los dos electrodos de operacion situados en los extremos opuestos del tubo de arco. El impacto producido por los electrones y los iones que viajan a enrome velocidad por el gas o vapor circundante , cambian ligeramente la estructura atómica de los gases. La luz se produce de la energía emitida por los átomos afectados , a medida que vuelven nuevamente a su estructura normal (ver figura de la página 33)

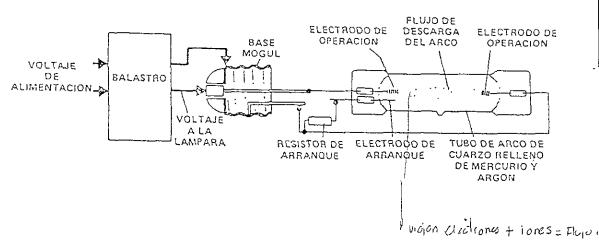


Figura (28).- Circuito elèctrico de una làmpara de vapor de mercurio.

Ventajas de la lampara de vapor de mercurio y sus recomendaciones

La lámpara de vapor de mercurio debe usarse solamente en luminarias con circuitos equipados apropiadamente.

La operación con equipo incompatible , puede causar la destrucción de la lámpara pudiendo producir daños físicos.

Se recomienda desconectar el circuito en caso de quitar o colocar una lámpara

El bulbo exterior se fabrica de vidrio resistente a la intemperie

La Tabla No 5 nos muestra los datos básicos de la lampara de vapor de mercurio y el Diagrama explica las partes de la lampara

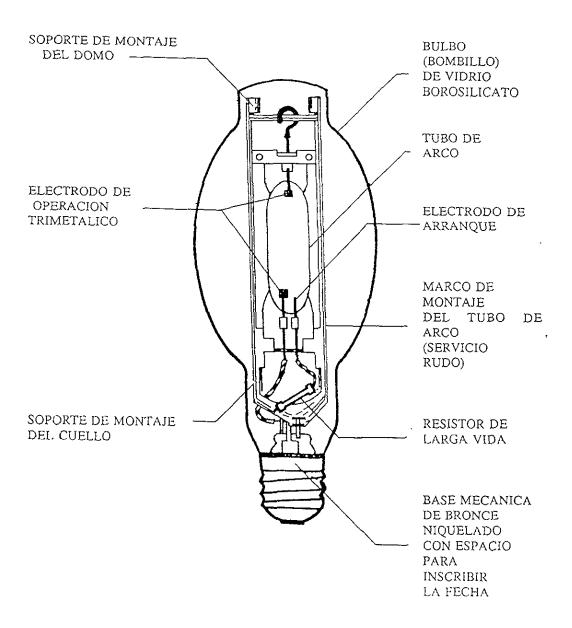
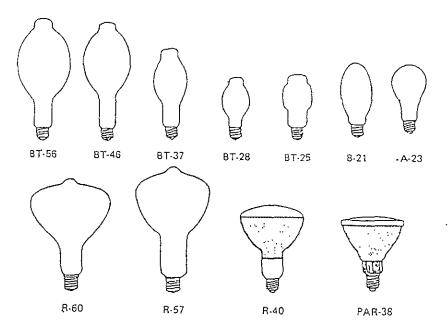



Figura (29). Partes básicas de la lámpara de Vapor de Mercurio.

FIGURA 30. TAMAÑOS Y FORMAS DE BULBOS DE LAMPARAS DE VAPOR DE MERCURIO

DATOS DE LAMPARAS DE VAPOR DE MERCURIO	EFICACIA EN FACTOR DE BASE BULBO LONG TOTAL LUMENES/WATTS DEPRECIACION BASE BULBO CMS EN CMS	42 0.82 BT .25 19 1	49 0.89 E · 28 21	E · 28	48 0 84 E · 28 21	MOGIII E 28 21	56 0.86 MCCC 8T 37 29.2	BT : 37 29 2	8T · 46 36.8	63 0.77 8T 56 39	(t) } (
DAT	LUMENES VIDA APROX. INICIALES EN HORAS	4200	8600		12100		22500			63000	
	ACABADO	BLANCO DE LUJO	BLANCO DE LUJO		BLANCO DE LUJO		BLANCO DE LUJO			BLANCO DE LUJO	
	WATTS	8	175		250		8			1000	

ι.

3.2.4.- Lamparas de vapor de sodio.

La lámpara de vapor de sodio es el tipo más eficaz de la familia de las lámparas de descarga de alta intensidad (H.I.D.)

La luz se produce por el paso de corriente eléctrica a través de vapor de sodio , con una presión determinada a alta temperatura.

El desarrollo práctico de una lámpara que tuviera características de larga vida para uso de iluminación general, requirió de descubrimientos sensacionales en el campo de la tecnología de materiales . El desarrollo de una nueva cerámica, el óxido de aluminio policristalino (polycrrrystaline aluminum oxide), fue la clave para poder fabricar lámparas de vapor de sodio a alta presión para sus prácticos, este material es extremadamente resistente al ataque del vapor de sodio y puede soportar las altas temperaturas de operación que requiere el logro de una gran eficiencia y adicionalmente, cuenta con características excelentes para la transmisión de luz visible

El principal elemento de radiación en el tubo de arco de la lámpara es el Sodio Sin embargo, contiene mercurio como gas corrector de color y adicionalmente, para controlar el voltaje

Como produce luz la lampara de vapor de sodio

La Función de arranque, se logra por medio de un circuito electrónico (ignitor), que trabaja en conjunto con los componentes magnéticos del balastro

El ingitor provee un corto pulso de alto voltaje en cada ciclo o mitad del ciclo del voltaje de alimentación

Cuando el voltaje de operación de la lámpara se incrementara a un nivel mas allá del voltaje que el balastro pueda sostener, cuando esto sucede, la lámpara arrancara calentándose hasta lograr su completa brillantez y luego se extingue.

Cuando la secuencia de operación se repite regularmente , se dice que esta cicleando. Las lamparas de vapor de sodio de alta presion presentan la característica de cicleo cuando su vida ha llegado al final. (ver la pagina 39)

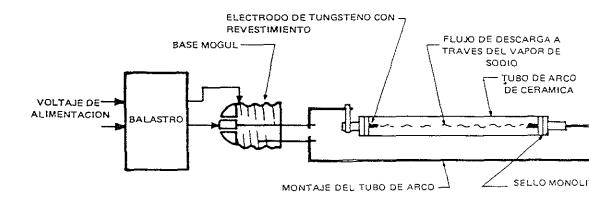


Figura (31).- Circuito elèctrico de la làmpara de vapor de sodio.

La lámpara de vapor de sodio requiere de un período de calentamiento de 3 a 4 minutos para lograr su completa brillantez, un poco menor que el período requerido por una lámpara de aditivos metálicos o de vapor de mercurio. Durante el período de calentamiento existen varios cambios en el color de la luz. Inicialmente existe un débil resplandor azul-blanco producido por la ionización de xenón, el cual es rápidamente reemplazado por un brillante color azul, típico de la luz de mercurio. Con un incremento en la brillantez, se efectua un cambio al amarillo monocromático, característico del sodio a baja presión. Así, cuando la presión en el tubo de arco se incrementa, la lámpara logra su completa brillantez poduciendo una luz blanca dorada. Si existe una interrupción momentánea de energía, el tiempo de re-encendido será de aproximadamente un minuto.

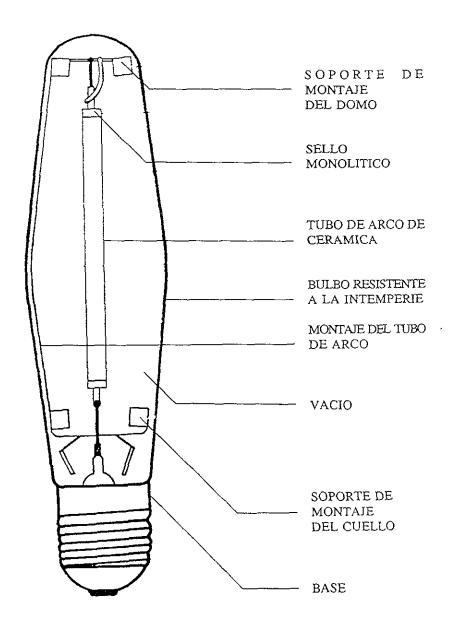


Figura (32) - Componentes básicos de la lámpara de vapor de sodio

Ventajas de la lampara de vapor de sodio y recomendaciones

Las lamparas de vapor de sodio de alta presión debe usarse solamente en luminarias con circuito apropiadamente equipado

La operación con equipo que no sea compatible, puede causar la destrucción de la lámpara.

Se recomienda desconectar el circuito al quitar o colocar una lámpara

El bulbo exterior permite que la lámpara sea para intemperie

3.2.5- LAMPARAS DE ADITIVOS METALICOS

La lámpara de aditivos metálicos corresponde a la familia de las lámparas de alta intensidad de descarga (HID) y es la fuente de luz blanca más eficiente disponíble hoy en dia Además, incorpora todas las características deseables de otras fuentes luminosas. Alta eficacia, vida razonablemente económica, excepcional rendimiento de color y buen mantenimiento de lúmenes.

Físicamente, la lampara de aditivos metálicos es de tamaño compacto. La construcción de una lámpara de aditivos metalicos se muestra en la figura No 1, en la actualidad estas lámparas se encuentran disponibles en potencias de 175 a 1500 watts, en paquetes desde 14,000 a 155,000 lúmenes.

CONSTRUCCION DE LA LAMPARA

La lampara de aditivos metalicos, tiene un tubo de descarga, de cuarzo. El tubo de arco contiene gas argón , mas yoduros de torio, sodío y escandio.

Estos tres materiales son los responsables del excelente comportamiento de esta extraordinaria fuente luminosa. Los extremos del tubo de descarga tienen una Pantalla térmica (revestimiento), cuya funcion es controlar la temperatura en estas áreas durante la operación. El control de la temperatura es esencial durante la operación de la lámpara de aditivos metálicos.

COMO PRODUCE LUZ LA LAMPARA DE ADITIVOS METALICOS

La descarga de la lampara de aditivos metalicos, tienen un punto de ebullición considerablemente más alto que la temperatura de las paredes del tubo de arco; por lo tanto, algunos de los materiales permanecea condensados en estado solido. Las cantidades de yoduros metalicos vaporizados se caren por la temperatura del punto más fino de la superficie interior del tubo de arco.

El tubo de arco en la làmpara de vapor de sodio es largo y esbelto, se fabrica con ceràmica de òxido de aluminio policristalino. La geometria del tubo esta determinada por los requerimientos de alta temperatura para vaporizar el sodio. Se requiere que la ceràmica resista esas temperaturas. El material del tubo de descarga es translúcido y adecuado para la transmisión y generación de luz en làmparas de alta intensidad de descarga, con una transmitancia de aproximadamente 95 por ciento en las longitudes de onda de luz visible. Debido a que el material no contiene impurezas ni pequeños poros, el material de fabricación del tubo de arco es altamente resistente al efecto corrosivo del sodio a alta temperatura. El sodio a altas temperaturas deteriora al cuarzo o cualquier otro material similar rapidamente.

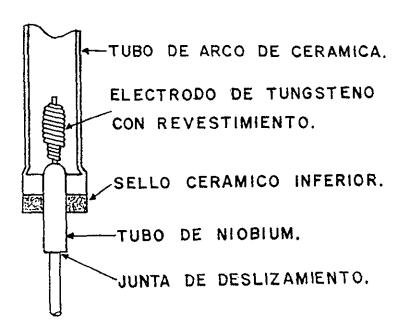


Figura (33).- Construcción monolítica.

El fenómeno antes descrito , ejerce gran influencia sobre algunas características de las lámparas de aditivos metálicos

Cuando el voltaje se aplica a la lámpara, se inicia la ionización en el espacio existente entre el electrodo de arranque y el electrodo de operación adyacente. Debido a la presencia de yoduros metálicos, en el tubo de arco, el voltaje requerido para la ionización es mucho más alto en la lámpara de aditivos metálicos. Cuando existe suficiente ionización se establece un flujo de electrones entre los electrodos principales.

Una vez establecido el arco la lámpara empieza a calentarse.

Conforme la temperatura se va incrementando, los aditivos metálicos van integrándose al flujo del arco, emitiendo su radiación característica. Debido a la naturaleza del sistema de yoduros de aditivos metálicos, las exigencias básicas del balastro son severas por el calentamiento de los yoduros.

VENTAJAS DE LA LUZ DE LA LAMPARA DE ADITIVOS METALICOS

- Cuando la lampara ha logrado su estabilización y los aditivos metálicos se encuentran en el arco en concentración apropiada , sus efectos se notan claramente. La emisión espectral de la lámpara tiene todas las longitudes de onda a las cuales responde el ojo humano y adicionalmente mucha de la energía radiada se desplaza a áreas del espectro., debido a que todas las longitudes de onda o colores están presentes en el balance aceptable, la apariencia del color de la lampara es blanco dando como resultado excelente rendimiento cromático.
- Tiene mayor eficacia, en general, sobre la base de lámparas de la misma potencia, la lampara de aditivos metalicos tiene una eficiencia superior entre 65% y 70%
- Con un recubrimiento de fósforo incrementa el porcentaje de rojos, naranja, así como las longitudes de ondo de los amarillos en el espectro, lo anterior para usos comerciales, supermercados bendas y otras
- La lampara de activos metáticos cuenta con características excelentes en lo referente al
 mantenimiento de lumenes. El decremento en producción lumínica se produce en forma muy
 gradual, a traves de las horas de vida de la lámpara. El mantenimiento de los lumenes
 es mejor cuando la lámpara se opera en largos periodos, por arranque; por lo
 tanto, el mejor mantenimiento de lumenes se obtiene cuando su operación es de
 ciclo continuo.

BULBO DE VIDRIO BOROSILICATO

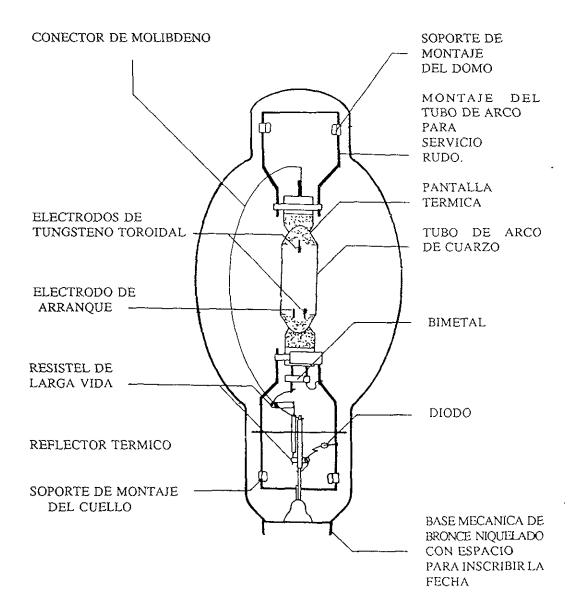
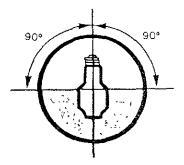


Figura (34).- Construcción de la lámpara de aditivos metálicos

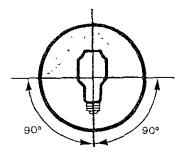
EFECTO DE LA POSICION DE OPERACIÓN.

Los datos característicos de las lámparas de aditivos metálicos se establecen con la lámpara operada en posición vertical y horizontal; cuando es operada en otra posición diferente a la vertical, los watts y la producción fumínica decrecen ligeramente, así como el mantenimiento de lúmenes y los lúmenes medios a través de las horas de vida. Las posiciones de operación que producen la menor emisión lumínica (y deberán por lo tanto evitarse) son aproximadamente entre 20 –30 grados de la horizontal (60-70 de la vertical). En posiciones de operación diferentes a la vertical, el arco tiende a colocarse en la parte superior, de tal modo que producirá una distribución de temperatura no uniforme en las paredes del tubo de arco dando como resultado una operación menos eficiente (ver posición de operación de las lamparas de aditivos metalicos)

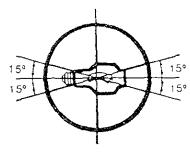

RECOMENDACIONES

La lámpara de aditivos metálicos debe usarse solamente en luminarias que se encuentren equipados apropiadamente. La operación con equipo inadecuado podría destruir la fámpara La lampara opera sobre presión y alta temperatura, pudiendo destruirse cuando se opera horizontalmente o dentro de 60 °C de la posición horizontal. La lampara de 250 y 1500 watts de usarse en luminarios cerrados para cualquier posición

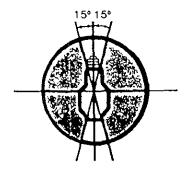
Se recomienda desconectar el circuito en caso de quitar o colocar una lámpara. Si el bulbo exterior se rompe, el circuito de la lámpara deberá desconectarse inmediatamente para prevenir la exposición a la energía ultravioleta.


Se requiere de una protección externa para la lámpara, con objeto de minimizar el riesgo de rotura y evitar el contacto con el agua durante la operación.

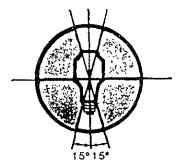
POSICION DE OPERACION DE LAS LAMPARAS DE ADITIVOS METALICOS.


BASE ARRIBA A HORIZONTAL (BU-HOR)

M400	BU-HOR
MM400	BU-HOR
M250	BU-HOR
M1000	BU-HOR
M1500	BU-HOR


BASE ABAJO (BD)

BD
BD
80
BD
80


HORIZONTAL (HOR)

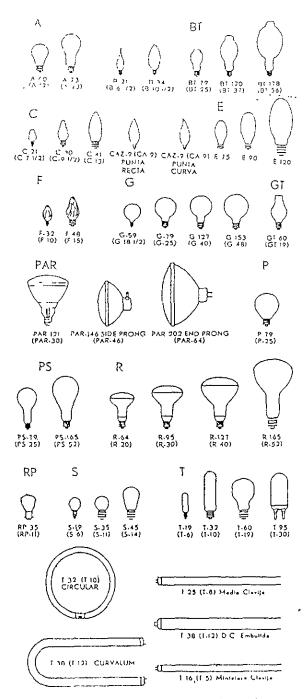
MS175 MS400

VERTICAL BASE ARRIBA ± 15°

MS1000 BU M175 BU

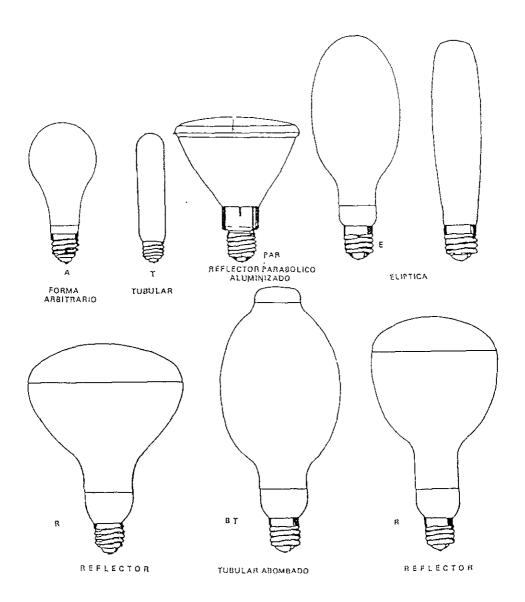
VERTICAL BASE ABAJO

M\$1000 BD M175 BD


3.3 LUMINARIO PROPUESTO PARA EL ESTADIO OLIMPICO 68

La luminaria que se propone es la del tipo de **Aditivos Metálicos** ya que es la que cumple las condiciones de iluminación para el alumbrado en campos deportivos además de contar con los siguientes factores

- a.- Cantidad de lúmenes adecuados.
- b.- Ahorradoras de energía
- c Larga vida de duración
- d -La Calidad en el alumbrado , esto es la luz disponible en el campo , es de tal manera que la gente puede hacer una identificación rápida , precisa y confortable
- e Cumple con las Normas I E.S de Alumbrados exteriores


1 7

ALGUNAS FORMAS DE BOMBILLOS.

Las letras indican la forma de la humbilla.

FORMAS DE BULBOS PARA LAMPARAS DE ALTA INTENSIDAD DE DESCARGA.

S S S

50

3.4.PRINCIPALES COMPONENTES ELECTRICOS

Como es conocido, toda instalación eléctrica cuenta con elementos principales para conducir,

controlar y proteger la propia energía eléctrica que tomamos del punto de suministro o acometida y

enunciamos los principales elementos que la forman como:

a.- Conductores eléctricos

b.- Canalizaciones y conectores

c - Accesorios adicionales

d - Dispositivos de protección

3.4.1.- Conductores eléctricos

Son aquellos materiales que ofrecen poca resistencia al paso de la corriente eléctrica a través de

ellos. Todos los metales son buenos conductores de electricidad, sin embargo, unos son mejores

que otros.

3.4.1 a .- Materiales Conductores

Plata Es el mejor conductor de electricidad, pero su alto costo hace reducir sus usos.

Usos Se usa principalmente para contactos.

Cobre. El cobre electroliticamente puro es el mejor conductor eléctrico, se le emplea en más del

90% de la fabricación de conductores eléctricos porque reúne las condiciones deseadas:

a) Buena conductividad

b) Buena resistencia mecanica

c) Flexibilidad

d) Bajo costo

Usos. En líneas aéreas

Oro El oro es buen conductor eléctrico, pero su extremado costo limita su empleo.

Usos En contactos de equipo especial.

Aluminio. Es otro buen conductor eléctrico pero por tener una conductividad electrica del 61%

respecto al cobre se encuentra en desventaja, ademas de ser quebradizo

s į

Usos. Reforzado en su parte central interior con guía de acero, es utilizado en grandes tramos para lineas de transmisión eléctrica, por su ligero peso se usa en el alambrado de aviones

Platino. El platino se utiliza en equipo eléctrico, por su baja conductividad eléctrica del 16%, con respecto al cobre se utiliza en menor grado

Usos. Es ampliamente usado en contactos Referirse a la tabla 11.8

3.4.1.b.- Apariencia Física.

Básicamente tenemos diferentes tipos de conductores por su forma transversal

Alambre. Conductor formado por un hilo sólido de sección circular.

Cobre. Conductor formado por varios hilos torcidos en formación geométrica.

Cordón. Conductor formado por varios hilos reunidos al azar

Solera Conductor formado por una barra sólida de seccion rectangular

Equivalencia en el Calibre AWG o MCM

Se dice que un conductor tiene un CM (Circular Mil) Cuando el área transversal tiene un diámetro de una milèsima de pulgada

1/1000 in

1CM= [Pt $D^2/4$]= [3 1416 (0 001) $^2/4$]= 785 E^{-9} in 2

 $1CM = 785 E^{-9} \text{ in}^2 = 5.064506 E^{-1} \text{ mm}^2$

donde:

1mm² = 10/ 5 0644444506= 1974 5 CM

Para el calculo de los conductores electricos se considera aproximadamente

 $1 \text{mm}^2 = 2000 \text{ CM}$

1mm² = 2 Mil Circular Mil

Características	Plata	Cobre	Oro	Aluminio Platino	Platino
Peso específico [gr/cm ³]	10.7	8.9	19.3	2.7	21.4
Conductividad eléctrica [%]	100	16	÷	62*	16*
Resistividad eléctrica @ 20 °C [Ohm-m/mm ²]		0.0172 0.0242		0.0283	:
Tensión de ruptura [Kg/cm ²]		31	•	91	:
Elongación		50	:	23	:
Dureza Brinell	59			30	97.
+ Carrier of the contract of t		1. A	TABIA 11.8	-	

Con respecto al cobre.

٠;

$1mm^2 = 2 MCM$

La Tabla 5, de la NOM-001 ubicada en la sección de tablas de esta obra, establecen el diámetro y área del conductor (cobre) según el calibre de los conductores ya sea en AWG o MCM, así como también el diámetro total con todo y aislamiento.

3.4.1 c .- Materiales Aislantes.

El aislamiento de los conductores sirve para confinar la corriente y el campo eléctrico en la masa del conductor: Referirse a la tabla 11.10

En la tabla 1 2 de la NOM-001, reproducida en la sección de tablas de este trabajo , se hace referencia a las dimensiones de los conductores, ya sean alambres o cables con o sin recubrimiento y al tipo de aislamiento de dicho conductor.

En la tabla 1 de la norma NOM J-10-1982 (ver sección de Tablas) se indica una clasificación de conductores de acuerdo a su tipo de aislamiento y su temperatura de operación.

En la tabla 2 de la norma NOM 3-10-1982 (ver sección de tablas), se indican las principales propiedades de los aislamientos según los diferentes tipos de aislamientos de los conductores

3.4.2 d .- Aplicaciones de los Conductores.

Todas las instalaciones eléctricas de la República Mexicana, deberán cumplir con los mínimos requisitos que establecen las "Normas Técnicas de instalaciones electricas " [NOM-001], editadas por la Secretaria de Comercio y Fomento Industrial [SECOFI] a traves de la Dirección General de Normas [DGN].

En la sección 310 de la NOM-001 se hace referencia a los conductores de uso general , esa sección trata de los conductores de mayor uso en instalación; sus requisitos se refieren principalmente a conductores aislados y establecen en general la forma en que estos se designen, su capacidad de corriente sus modos de uso, y la forma en que deben estar marcados

Los Factores de capacidad de corriente para conductores de cobre aisíados, son indicados en la tabla 3 10-16 y 17 de la NOM-001(reproducida en sección de tablas). Tales valores estan de acuerdo con el tipo de aislamiento y la forma de instalación, pero los valores de esa tabla deben corregirse en función del agrupamiento de conductores o por el aumento en la temperatura ambiente.

- a) Factores de correction por agrupamiento Mostrados en la tabla 310-21 de la NOM-001(ver sección de Tablas) y deberán aplicatse cuando el número de conductores o cables multiconductores sean alojados en una misma canalización sean 1,2,3 o más conductores
- b) Factores de correción por temperatura ambiente. Son mostrados en la tabla 310-16 y 17 de la NOM-001 (ver sección de tablas) y deberán aplicarse para condiciones de temperaturas.

Nombrejcomercial	A Descripción (1)	Tension de operación
Termoplásticos	PVC (Cloruro de polivinilo)	0.6 a 15 kV
Termofijos	XLP (Polietileno de Cadena cruzada)	0.6 a 69 kV
Elastómeros	EP (Etileno propileno)	0.6 a 46 kV
	Hules sintéticos (Policloropreno- Neopreno)	0.6 a 1 kV
Papel impregnado	En aceite, en cera	2 a 69 kV
Algodón y seda	Encerados o impregnados en barniz	Control

TABLA 11.10

ambiente de 31°C o mayor , ya dea del local o del lugar en que se encuentren los conductores.5 -

c) Selección de Conductores

La selección de Conductores es por

- a.-) Limite de la Tensión de aplicación. Que estará en función del voltaje calculado ya sea para la acometida o a circuitos derivados
- b -) Capacidad de Conducción de corriente (ampacidad). Es la máxima corriente que puede conducir un conductor para un calibre dado, está afectada por los siguientes factores. (ver tabla 310-16 y 17 de la NOM-001 (ver sección de tablas).
- c -) Máxima caida de tensión permisible. De acuerdo con la capacidad de corriente del conductor, se deberá respetar la máxima caida de tensión global permitida por la NOM-001 art 210-19 que será del 5% desde el medio de desconexión principal hasta cualquier salida de la instalación, ya sea de alumbrado, fuerza, calefacción, etc.

3.4.2.-CANALIZACIONES ELECTRICAS

La NOM-001 definen a las canalizaciones como "El medio o los medios que se usan para alojar a los conductores de una instalación eléctrica y que son diseñados, construidos y utilizados solamente para tal fin. Las canalizaciones pueden ser de metal o de cualquier otro material aprobado

Las canalizaciones más comunes son:

- 1) Tubo metálico rigido
- 2) Tubo metálico flexible
- 3) Tubo no metálico
- 4) Ductos
- 5) Charolas

3.4.2, a Tubo metálico rigido

El tubo Conduit es un tubo usado para conectar y proteger los conductores eléctricos usados en las instalaciones eléctricas.

Los tubos Conduit se clasifican de la siguiente forma:

- a) Tubo Conduit pared gruesa
- b) Tubo Conduit pared delgada

Usos. De la tuberia pared gruesa, se puede emplear en instalaciones visibles u ocultas, es decir, sobrepuestas o empotradas en piso o pared, bajo cualquier condición atmosferica

Los de tuberia pared delgada se puede empotrar en concreto, ladrillo o mamposteria. Se recomienda en lugares de ambiente seco y no deberán instalarse en lugares húmedos o mojados, en ambientes corrosivos.

3.4.2.b Cajas y accesorios para canalización con tubo

En toda instalación eléctrica las uniones o conexiones entre conductores se deben realizar en cajas de conducción aprobadas para tal fin y deberán instalarse en lugares de fácil acceso para realizar cambios en la instalación

Cajas de conexión tipo Condulet. Son cajas de conexión especial, para su cierre hermético de dispone de tapas y empaques para que no penetren al interior de las canalizaciones elementos extraños al ser expuestos al intemperie , humedad y en ambientes oxidantes , inflamables o explosivos Los Condulet se fabrican en tres tipos distintos:

- Ordinario
- A prueba de polvo y vapor
- A prueba de explosión.

Los Condulet son fabricados con rosca para sus con tubo conduit pared gruesa o bien sin rosca para uso con tubo conduit de pared delgada. Las tapas de los Condulet pueden ser

- De paso
- De cople exterior (tapa con niple macho)
- De contacto (tapa con contacto doble o sencillo)

3.4.2. TUBO METALICO FLEXIBLE

Es el tubo fabricado con cinta metálica engargolada y ensamblada en forma helicoidal. A este tipo de tubo se le conoce también con el nombre de tubo "Geenfiel" Para instalaciones eléctricas se recomienda con secciones circulares desde 13 mm (½") hasta 102 mm (4")

3.4.3.c Tubo no metálico

Los tubos no metálicos son fabricados en dos versiones

- a) Policloruro de vinilo (PVC)
- b) Polietileno

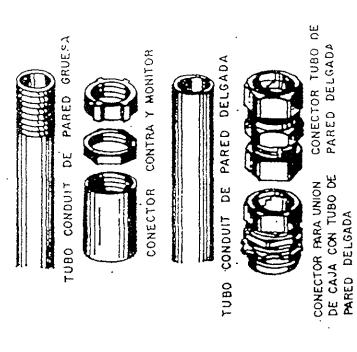


Fig. Tubo conduit pared gruesa y accesorios.

- Ordinario.
- A prueba de polvo y vapor.
- A prueba de explosión.

Los Condulets son fabricados con rosca para uso con tubo conduit de pared gruesa o bien sin rosca para uso con tubo conduit de pared delgada. Las tapas de los Condulets pueden ser:

- · De paso (tapa ciega).
- · De cople exterior (tapa con niple macho).
- · De contacto (tapa con contacto doble o sencilla).

CONDULETS LIBRES DE COBRE

Serie 9

TIPO ROSCADO PARA USO

FUNDICION A PRESION

CON TUBO CONDUIT TAMANO EN mm. ILUSTRACION ILUSTRAÇION IAMARO EN mm. CATA-LOGO 12.7 (1/2") E-19 12.7 (1/2") LR-19 19.0 (3/4") E-29 19.0 (3/4") LR-29 25.4 (1") E-39 **炒.4 (1") LR-39** 12.7 (1/2") C-19 T-29 c EMPAQUES DE NEOPRENO SERIE S 12.7 (1/2") LB-19 19.0 (3/4") LB-29 25.4 (1") L8-39 12.7 (1/2") GASK 1941 19.0 (3/4") GASK 1942 25.4 (1") GASK 1943 12.7 (1/2") LL-19 19.0 (3/4") LL-29 25.4 (1") LL-39 * Para obtener un empaque tipo abierto despeguese la parte central. LĻ

Fig. Condulets, tipos y tamaños.

TAPAS Y EMPAQUES PARA USO EN LOS CONDULETS SERIE "OVALADA"

TIPO	IAMAÑO	CATALOGO		٠	VELLUMO		COR	
	77	CAIALOGG		. (4)	ALOGO	PRECIO	CATALOG	0
	12.7mn(1/2")	GASK STI NA			K 771 M	\$ 3.25	GASK 671	м
		GASK 572 N			K 772 M	3.25	GASK 672	
Character dente.	25.4 (1") 31.8 (1-1/4")	GASK 573 NA			K 773 M	4.90	GASK 673	
		GASK 574 N			K 774 M	8 50	GASK 674	
A STATE OF THE PARTY.	50.8 (2")	GASK 575 PU GASK 578 NA			K 775 M	6.50		
		GASK 377 N			K 776 M	8,15	GASK 676 GASK 677	
	76.5 (3")	GASK 578 N			K 778 M	13.00		
	101.4 (4")	GASK 579 NJ			X 779 M	15,00	GASK 679	
		ļ	4	ļ				
-	12.7mm(1/2*)	GASK 471 N.		1			GASK 371	
	19.0 (3/4")	GASK 472 NJ	4				GASK 372	w
	EMPAQUES DE	NEÓPRENÓ	PARA CONT	ΰίετ	S LAD			
	TAMA	NO	CATALOG	0				
	31.8 (1-1/4-)		GA5X 603	$\overline{}$				
	38.1 (1/2-) Y	50.8 (2-)	GASK 684					
· C.	63.5 (2-1/2")		GASK 990	R.M.				
	101.6 (4")		GASK 989	RM	-			
EL EMPAGI EL EMPAGI	JE CEARADO SE U JE ANIERTO SE US	A EN TAPAS	QUE RECIBE	и co	UNDIDAS NIACIOS,	G (XOQ ADASA	UELADAS DORES, EIG.	
	,	T /	PAS	<u> </u>				
DIFO	ORAMI	CAIALOGG	기		AMAT	10 (ATALOGO	
TAPA CIEGA	12.7mm(1/2") 19.0 ' (3/4") 25.4 (1") 31.8 (1-1/4") 38.1 (1-1/2")						0"0 FM 670 FM 870 FM	
TIPO	No. de CATAL		٠,	117		140. 4	CATALOGO	7
1110	Y TAMARO		ļ	116		r	TAMARO	
Y	17.33 - 12.7mm 27.53 - 19.0	(1/2°) (2/4°)	A	NACES		178844	12.7mm(1/2*	
·	Esta tapa se uen serse ovaluda y un puente standi de cualquiera di stipa intercamble pagadores de 1 i vías, contactos,	se proporciona ard para monto a los accasosio ále Jales como a 7 potos, 3 á	can del			tan ng Proble Cropk i mantai	pa se via en la ogudares del ti . Se iurte con 171 M y con p el apugador q rior de la topa	ne sa mileja neute basa embadne u ba eutescou

Fig. Condulets, accesorios.

CONDULETS SERIE "OVALADA".

TIPO '	No. de CATALOGO y TAMAÑO	,	TIPO	No. de CATALOGO y TAMARO
	E17 M = 12.7mm {(/2") E27 M = 19.0 (3/4") E37 M = 25.4 = (1") E47 M = 31.8 (1-1/4") E57 M = 30.1 (1-1/2") E47 M = 30.8 (2")			L17 M = 12.7mm (1/2") L27 M = 19.0 (2/4") L37 M = 25.4 (1") L47 M = 31.8 (1-1/4") L57 M = 36.1 (1-1/2") L67 M = 30.8 (2")
	C17 M = 12.7== (1/2") C27 M = [9.0 (2/4") C37 M = 25.4 (1")		L.	Se surte can topa claga. El con dulat Littene 2 baces, por la que puede ser usado como LR 6 LL.
	C47 M - 31.8 (1-1/4") C37 M - 38.1 (1-1/2") C37 M - 30.2 (2") C77 M - 43.3 (2-1/2") C87 M - 76.2 (2")		ر <u>مسالمت</u> ور	117 M - 12.7mm (1/2") 127 M - 19.0 (3/4") 137 M - 25.4 (1") 147 M - 31.8 (1-1/4") 157 M - 34.1 (1-1/2") 167 M - 50.8 (2")
<u> </u>	1817 Mr = 12.7x (1/2") 1827 M = 17.0 (3/4")			177 M - 63.5 (2-1/2") 167 M - 76.2 (3")
LB	LB37 M = 25.4 (1") LB47 M = 31.8 (1-1/4") LB57 M + 35.1 (1-1/2") LB47 M + 60.8 (2") LB77 M = 61.5 (2") LB97 M = 76.2 (3")		TB	TB17 An - 12.7mm (1/2") TB27 At - 19.0 (2/4") TB37 An - 25.4 (1") TB47 At - 31.8 (1-1/4") TB57 K - 31.8 (1-1/4") TB47 M - 50.8 (2")
	LL 17 M - 12.7mm (1/2") LL 27 M - 19.0 (2/4") LL 37 M - 29.4 (1") LL 47 M - 31.8 (1-1/4") LL 57 M - 30.1 (1-1/2") LL 67 M - 50.8 (2") LL 777M - 69.3 (2-1/2") LL 87 M - 76 2 (3")		X	X17 M - 12.7mm (1/2") X27 M - 19.0 (3/4") X27 M - 25.4 (1") X47 M - 31.8 (1-1/4") X57 M - 30.1 (1-1/4") X67 M - 50.8 (2")
LL	LR17 M - 101.6 (4") LR17 M - 12.7 mm (1/2") LR27 M - 19.0 (3/4") LR37 M - 25.4 (1") LR47 M - 31.8 (1-1/4")		L8D	L8D4400 - 31.8mm (1-1/4") L8D5500 - 38.1 (1-1/2") L8D5600 - 50.8 (2") L8D5700 - 63.5 (2-1/2") L8D6900 - 76.2 (3") L8D6900 - 88 9 (3-1/2")
LR	LX57 M = 39.1 (1-1/2") LX67 M = 50 6 (2") LX77 M = 63.5 (2-1/2") LX77 M = 76.2 (3") LX87 M = 76.2 (3") 1,8107 M = 101 6 (4")			(8010900 - 101.6 (4") fare usone cuando sos necesarlo der una vuelto de 90° en al sis- tema Condult. La topa se en- cuentra coiocada as un ángulo -
LF	LF1 M = 12,7mm (1/2") LF2 M = 19,0 (3/4") LF3 M = 25,4 (1")			permitienes jolar lus alambies en forma rectu, se proporciona con una topo c'ega.

Fig. Condulets, tipos y tamaños.

11.16

3.4.3.- DISPOSITIVOS DE PROTECCION

En todas las instalaciones eléctricas al circular la cornente eléctrica a través de los conductores de la misma instalación, o bien del equipo que alimenta se produce en todos y en cada uno de ellos un calentamiento (en función al limite térmico natural de cada uno de los materiales) al transformarse parte de la energía eléctrica en energía térmica y se producen las llamadas pérdidas por efecto Joule (RI²).

Si el calentamiento producido es excesivo y por lapsos de tiempo considerables como resultado de una corriente excesiva, causa que el aislamiento del conductor de degrade rápidamente lo que conduce a una falla del aislamiento y al subsecuente circuito corto (corto circuito) de la linea atierra, también el calentamiento excesivo puede producir que se quemen los elementos , aparatos, motores, equipos, etc así como producir fuego e incendios cuando se encuentra cerca de material inflamable.

Por otra parte las corrientes de corto circuito pueden tener tal magnitud que producen explosiones en los tableros y ocasionan grandes daños al equipo, con riesgo frecuente Estos daños en el equipo y riesgo para el personal se pueden prevenír con una adecuada protección contra sobrecorrientes y corto circuito. Es por esta razón que las Normas Técnicas para Instalaciones Eléctricas [NOM-001] limitan la cantidad de corriente permisible en un conductor (ampacidad).

- 1) Fusibles Son dispositivos que se utilizan para proteger las instalaciones y equipos contra sobre corriente y contra corto circuito, constan de un alambre o cinta de una aleación de plomo y estaño con un bajo punto de fusión, la resistencia eléctrica del elemento es tan baja que simplemente actua como un conductor. Cuando ocurre una corriente que excede la corriente permisible en los conductores, el elemento se funde rapidamente y abre el circuito para proteger los conductores, otros componentes del circuito.
- 2) Interruptores termomagnéticos. Son interruptores ensamblados en una caja moldeada de material aislante como una unidad integral que los soporta y los protege, los interruptores son capaces de cerrar un circuito por medios no automáticos (manual) y abrir el circuito en forma automática a un valor predeterminado de sobre carga o de corto circuito, accionado por la combinación de un elemento térmico y un elemento magnético.
 - El elemento térmico consta esencialmente de la unión de dos elementos metalicos de diferente coeficiente de dilatación, el cual al paso de la corriente se calienta y por lo tanto se deforma, habiendo un cambio de posicion que es aprovechado para accionar el mecanismo el disparo del interruptor

El elemento magnético consta de una bovina cuyo núcleo es movible y que puede operar o dispara el mecanismo del interruptor, el circuito se abre en forma instanteanea cuando ocurre una sobrecorriente, operan con sobrecargas con elementos térmico y sobre corriente con el elemento magnerico por fallas

3.) Interruptores de Seguridad.Los interruptores de seguridad tipo navaja con fusibles se recomiendan como un dispositivo de protección y desconexión de circuitos eléctricos, son fabricados con navajas visibles para una indicación positiva de apertura, porta fusibles con resortes para reforzar las áreas de contacto, supresores de arco (arriba de 100 Á) para extinguen el arco producido al abrir las navajas con carga.

3.4.3 a.- Tipos de Gabinete

El gabinete es un recinto o recipiente, que rodea o aloja a un equipo eléctrico, con el fin de protegerlos contra las condiciones externas y con el objeto de prevenir a las personas de contacto de accidente con partes vivas

Los gabinetes podrán ser fabricados de montaje en piso (autosoportado) y de montaje en pared, deberán fabricarse en material resistente a la corrosión y no deben ser de materiales combustibles.

Por la diversidad de condiciones ambientales en los que se necesita instalar equipo eléctrico, es necesario clasificar y especificar los requerimientos básicos de construcciones para los diferentes tipos de gabinetes en los cuales se puede alojar equipo eléctrico. (designaciones según NEMA).

- **Tipo 1. Usos generales** Diseño para uso en interiores, en áreas donde no existen condiciones especiales de servicio y para proteger el contacto accidental de personas con el equipo protegido.
- **Tipo 2. A prueba de goteo.** Diseñado para uso en interiores, proteger el equipo contra goteo de líquidos no corrosivos y contra la salpicadura de lodos
- Tipo 3. Servicio interperie Diseñado para uso en exteriores y proteger el equipo que encierran contra tolvanares y aire húmedo. Gabinete metálico resistente a la corrosión
- Tipo 3R. A prueba de Iluvia. Diseño para uso en exteriores y proteger el equipo que encierran contra la Iluvia. Gabinete metálico resistente a la corrosión
- Tipo 4. Hermético al agua y al polvo. Diseñado para equipo expuesto directamente a severas condensaciones externas, salpicaduras de agua o chorro de manquera

Tipo 4X. Hermético al agua y polvo y resistente a la corrosión. Debe cumplir con los mismos requisitos que se indican para gabinetes tipo 4 y ademas resistenes a la corrosion.

Tipo 5. Hermético al polvo.Remplazado por el Tipo 12 (según NEMA)

Tipo 6.Sumergible, hermético al agua y al polvo. Diseñado para uso en interiores y exteriores , en caso de inmersión ocasional, caída de chorros directos de agua, polvos y pelusas.

Tipo 7. A prueba de gases explosivos (Equipo encerrado en aire). Diseñado para uso en atmosferas. Clase 1, Grupos B,C,o D y soportar una explosión interna sin causar peligros externos.

Tipo 8. A prueba de gases explosivos (Equipo encerrado en acerte). Diseñado para el mismo fin que el Tipo 7, pero su equipo trabaja en acerte y evita cualquier posibilidad de chispas que se produzcan arriba del acerte

Tipo 9. A prueba de polvos explosivos. (Equipo encerrado en aire) Diseñado para uso en atmósferas peligrosas Clase II. (ver sección 502-NOM-001) y evitar el ingreso de cantidades peligrosas de polvos explosivos.

Tipo 10. Para uso en minas. Cumple con los requisitos para atmósferas que contienen mezclas de metano y aire. Gabinetes a prueba de explosión con juntas y seguros adecuados.

Tipo 11. Resistente a la corrosión. (Equipo encerrado en aceite) Es utilizado para proteger al equipo contra condensaciones externas de líquidos corrosivos, humos y gases corrosivos Gabinetes resistente la corrosión

Tipo 12. Uso industrial, Hermético al polvo y al goteo. Para uso en interiores y proteger al equipo contra fibras, insectos, pelusas, polvos, salpicaduras ligeras, goteos y condensaciones externas de líquidos

Tipo 13.- Uso Industrial, Hermético al aceite y al polvo. Diseñado para uso en interiores y proteger al equipo contra aceites, liquidos refrigerantes y polvos

3.4.3.b.- Centro de cargas

Se entiende por centros de carga a un gabinete metálico donde se colocan interruptores para protección y distribución de la energía eléctrica recibida en el principal, hacia las cargas de los circuitos derivados a través de las barras conductoras alojadas en el interior del mismo.

3.4 3.c.- Centro de Control de motores (CCM)

En instalaciones industriales y en general en aquellos donde se utilizan varios motores, los arrancadores se agrupan en tableros compactos que son fácilmente armables y de construcción modular conocidos como CCM.

3.4.3 d.- Arrancadores

Se conoce como arrancador, al arreglo compuesto por un interruptor , ya sea termomagnético o de navajas (cuchilla) con fusibles, un contactor electromagnético y un relevador bimetalico.

3.4.3.e Conexión a tierra

La conexión a tierra de todas las partes metálicas que no deben estar energizadas es una medida elemental de protección para evitar accidentes. En caso de que el aislamiento de un conductor faile y se establezca una via de corriente con una parte metálica conectada a tierra , se reduce el voltaje entre el objeto y tierra y la corriente que fluye hacia tierra provoca la operación de la protección del circuito correspondiente

3.4.4.- SIBOLOS ELECTRICOS

e. Símbolos eléctricos.

Para la fácil interpretación de circuitos así como de proyectos, se emplean símbolos eléctricos en planos y diagramas unifilares de instalaciones eléctricas que facilitan la comunicación entre los instaladores y proyectistas. Por la gran diversidad de símbolos eléctricos, hace necesario que se indique delante de ellos en forma clara lo que significan. Entre los símbolos más usuales son los siguientes:

1) Alumbrado, contactos y accesorios.

Salida de alumbrado tipo incandescente	
	^ × ✓ F
	l, b \lambda_E
Salida de alumbrado tipo fluorescente	
A - Altura de montaje (sobre piso terminado)	A F
D - Apagador (si lleva)	, Carrier of the control of the cont
E - Tablero del circuito (identificación)	D E
F - Potencia en Watts	İ
Salida a spot	
	>
Salida incandescente de vigilancia	
Salida incandescente de pasillo	
sanda medidescente de pasmo	
Arbotante incandescente interior	1
	1 2 () ·
Arbotante incandescente intemperie	
•	1 2-0-
	/ Y
Arbotante fluorescente interior	
	1
Arbotante fluorescente intemperie	n.
	1 1 .
Sahda de centro incandescente con pantalla R.L.M.	
·	₹ RLM

\oplus
₽
(P)c
(Je
⊗
⊕
lacksquare
\sim
→
75
•
-

Campana	
Transformador de timbre	
Cuadro indicador	
Llamador de enfermos	} →
	3 —⊗
Llamador de enfermos con piloto	3-0
Ventilador	
Tablero de portero eléctrico	
	### O
Teléfono de portero eléctrico	
Salida especial para antena de radio	∞<
	R
Salida especial para antena de televisión	TV).
Salida especial para antena de frecuencia modulada	FM
Registro en muro o losa	
Teléfono directo	
Feléfono extensión	R

Teléfono de conmutador	K
Registro de teléfonos	
Alarma	b
Incendio	

2) Ductería y alimentadores.

Fubería conduit 13 mm (1/2") de diámetro por muros y	3 - 12
osas con 3 conductores calibre 12 AWG	3 - 12 13 mm Ø
Fubería conduit 19 mm (3/4") de diámetro por piso con 2 conductores calibre 10 AWG	2-10 19 mm ∅
Sube tubería (se indica No. de conductores, calibres y diámetro de tubería)	1
Baja tubería (se indica No. de conductores, calibres y diámetro de tubería)	N
Tubería para teléfonos	
Charola para cables	
Cajas de registro	
Ducto cuadrado embisagrado (se indica sección transversal del ducto)	(/////////////////////////////////////
Electroducto (se indican Volts, Amperes, No de fases e hilos y sección transversal si es conocida)	600 V, 2000 A, 3F-4H+G

3) Elementos de circuitos.

Resistencia fija	
Nosistencia rija	
Reactancia inductiva	
Reactancia capacitiva fija (condensador)	— [
Impedancia	
Pila	- +
Batería	
Generador de corriente alterna	G
Motor de corriente alterna	M
Motor síncrono	MS
Generador de corriente continua	G 1
Motor de corriente continua	

4) Subestaciones ,tierras y pararrayos.

Acometida de Compañía suministradora de energía	
Cuchilla de separación	/

Interruptor con fusibles o cortacircuito	
Interruptor en aceite, gas o vacío	
Transformador de potencia	www.
Transformador de corriente	
Conexión a tierra	
Varilla para conexión a tierra	\otimes
Apartarrayos	\ 9
Punta de pararrayos	

5) Operación, protección y control.

nterruptor con fusibles o cortacircuito	
Tablero o centro de control de motores	
Tablero general	amann
Tablero de distribución de fuerza	
Tableo de distribución de alumbrado	
Elemento electromagnético	

Into	
Interruptor termomagnético	
Plant 6 111	
Elemento fusible	
	<u> </u>
Elemento térmico bimetálico	
	— X—
	<u> </u>
Interruptor limitador:	
Normalmente abierto	
1401 Hattitente abierto	
	Y
Normalmente cerrado	
Interruptor de nivel:	
Normalmente abierto	
	N
	0,
Normalmente cerrado	
	<u>Q</u>
	O
Interruptor de presión:	
Normalmente abierto	
Normalmente adierto	————— I
	<u>ک</u>
Normalmente cerrado	
1 To mannone certado	
	2 0
Interruptor de flujo:	
· F 2 milot	
Normalmente abierto	
Normalmente cerrado	——————————————————————————————————————
	<u> </u>

Interruptor de temperatura (termostato):	
	·
Normalmente abierto	
Normalmente cerrado	
Interruptor de transferencia	
Contacto relevador de tiempo (de acción retardada):	
Normalmente abierto	
Normalmente cerrado	<u>o</u> <u>o</u> .
Contactos de elementos de operación, control y protección:	
Normalmente abierto	· ——
Normalmente cerrado	
Contacto manual instantáneo, tipo botón:	
Normalmente abierto [N.A.]	
Normalmente cerrado [N.C.]	<u> </u>
Doble [con uno N.A. y uno N.C.]	
Con enlace mecánico	

Estación de botones:	
Estacion de botones.	
Una unidad de control	•
Dos unidades de control	•
Arrancador manual	
Arrancador automático	
Bobina para elemento de operación o de control	
Elemento enchufable	
	~<- <u></u>
6) Instrumentos.	
Amperimetro	<u></u>
Medidor de demanda máxima	D
Frecuencimetro	Į.
Indicador de pérdidas a tierra	DI
Miliampérmetro	

Ohmetro	
	OHM
Fasómetro	NF
Medidor de factor de potencia	[FP]
Sincronoscopio	S
Varhorimetro	VARM .
Vóltmetro	v
Voltampérmetro	
Voltampérmetro reactivo	VAR
Wattmetro	W
Watthorfmetro	. WII
Dispositivo de medición de la compañía suministradora	M

Tabla comparativa de características de lámparas.

									<u> </u>
Vapor de sodio baja presión	18,000	15 minutos	70 % instantáneo	No enciende	. 40 Distorsiona el color	Excelente	130 а 183	Alto	Bajo
Vapor de sodio alta presión	24,000	3 a 5 minutos	1 minuto	Enciende y apaga intermitentemente	30 a 65	Bueno	58 a 180	De medio a alto	. Bajo
Aditivos metálicos	7,500 a,20,000	S a 10 minutos	15 minutos	No enciende	60 a 96	De pobre a regular	60 a 100	Medio	De bajo a regular
Vapor de mercurio	> 24,000	5 a 7 minutos	13 minutos	No enciende o muy tenue	15 a 50	De pobre a regular	22 a 63	Medio	Regular
Fluorescente	6,000 a 20,000	Muy rápido	lastantáneo o muy rápido	No enciende o parpadea	52 a 93	De regular a bueno	37 a 107	Medio	Regular
Incandescente	750 a 2,000	Instantáneo	Instantáneo	No enciende	72 a 99	De bueno	9 a 30	Bajo	Muy alto
Lámpara	Vida (horas)	Encendido	Reencendido	Falla (ípica	Rendimiento de color	Depreciación de lúmenes	Esseia (m/w)	Costo inicial promedio	Costo de operación promedio

CAPITULO IV PLANTEAMIENTO

4.1 OBJETIVO

- Se pretende que el Estadio Olímpico quede independiente físicamente de la Subestación
 No. 1, para el mejor funcionamiento del mismo y de está manera abatir la demanda de
 facturación más intensa de acuerdo a las características y condiciones de funcionamiento de las
 instalaciones alimentadas por la Subestación No.1
- Se requiere de la elaboración de un proyecto y presupuesto definitivo técnico—económico
 favorable para la UNAM, del cambio del sistema de alumbrado existente del Estadio Olímpico
 Universitario de lamparas Iodo Cuarzo de 2000 Watts (1664 pzas) equivalen a 3328 KW por
 lámparas de aditivos metálicos de 1000 Watts (560 pzas) que equivalen a 560Kw o lamparas de
 aditivos metálicos de 1500 Watts (340 pzas) que equivalen a 510 KW.

4.2 MEDIDAS PARA DISMINUIR LA FACTURACION

El alumbrado del estadio cuando es utilizado en días hábiles causa una sobrepico de 2000 KW aproximadamente

Evidentemente el evitar lo anterior, además de abatir significativamente la demanda de facturación, reducirá el consumo de energía eléctrica

Las alternativas consideradas como viables para tales fines son las siguientes:

- a) Si el estadio se utiliza en dias habiles, que se haga previendo que debe dejar de utilizarse antes de que se requiera la luz artificial. Digamos que los juegos inicien alrededor de las 15:00 hrs.
- b) Que se limite el uso del estadio, a sábados, domingos y días festivos.
- c) Que el uso del estadio sea después de las 20:00 hrs
- d) Existe la alternativa del cambio de luminarias de acuerdo al proyecto que se pretende realizar

4.3 INSTALADO ACTUALMENTE (Alumbrado)

En el alumbrado del estadio de la Universidad Nacional Autónoma de México, se tienen instalados 1,664 reflectores de tungsteno alógeno y están distribuidos proporcionalmente en cuatro tableros, los cuales están montados en cuatro torres dispuestas en forma rectangular con un área entre torres de 22,720 m2 (142 m x 160m), conteniendo en su interior la cancha de juego con una superfície de 8,236 m2 (71m x 116m)

Las características y dimensiones principales se dan a continuación:

- -Cada torre tiene montado un tablero de alumbrado de 16m x 10m, con 416 reflectores, a una altura de montaje de 48m.
- -Cada reflector tiene una capacidad de 2000 w, una potencia lumínica de 44,000 lumens, vida de 2000 horas y un factor de depreciación de .96
- -La distancia interpostal, transversal a la cancha de juego es de 160 m.
- -La distancia interpostal, longitudinal a la cancha de juego es de 142 m
- -La distancia colindante entre torres y esquemas de la cancha es de 46.84m.
- -La distancia diagonal entre torres es de 214 m
- -La distancia media de las torres al centro de la cancha de juego es de 107 m
- -El sistema de alumbrado con los datos y dimensiones antes descritas, proporciona un nivel de iluminación promedio "e" de 550 luxes.

4.4 PRINCIPAL PROBLEMATICA

El principal problema es el Consumo excesivo de energia eléctrica por el tipo de lamparas que tiene el estadio a base de 1664 reflectores de tungsteno halógeno (yodo cuarzo) de 2000 Watts. El ahorro de energia en esta instalación es nulo por el tipo de lámpara que utilizamos

Otro Problema es que el estadio Olímpico está conectado a la Subestación No. 1, - está es una Subestación sobresaturada, por diferentes dependencias de la UNAM, así como lo muestra el plano de instalaciones en la sección 1.2.2.

4.5 FACTORES A LOS QUE AFECTA

Durante los últimos 10 años han ocurrido cambios significativos en los factores que afectan el servicio de alumbrado tales como:

- -Elevación constante en los costos de energéticos.
- -Alto costo por servicio de mantenimiento.
- -Alto costo por reposición de accesorios.
- -Mejoras y nuevas fuentes luminosas.
- -Mayor conocimiento sobre la cantidad y la calidad de la luz.

Debido a estos cambios técnico-económicos, se realizo un estudio en las instalaciones del estadio olímpico , en el cual se encontró que el sistema de alumbrado esta constituido por 1,664 reflectores de tungsteno alógeno de 2000 w cada uno, para iluminar principalmente la cancha de juego. Se considera que es un magnifico sistema de alumbrado en cuanto a su capacidad de iluminación, sin embargo basados en las consideraciones señaladas en el párrafo anterior, se estima que se puede mejorar el sistema con luminarias de mayor eficiencia.

4.6 SOLUCION CONCEPTUAL

4 6 1 Solución Técnica-

Para este efecto se presenta la alternativa basada en los niveles de alumbrado existente y atendiendo las especificaciones técnicas, la geometría del local, la instalacion eléctrica existente, que se menciono anteriormente

Se presenta la alternativa que contempla la utilización del siguiente luminario.

ESTA TESIS NO DEBE SALIR DE LA BIBLIOTECA

1 - Reflector de Aditivos metálicos de 1500 Wats, emisión lumínica 150,000 lúmenes, vida de

duración 3,000 horas, factor de depreciación 0.91, curva 3x3, catalogo 1898 de marca, Holophane

2. - El No. Total de lámparas se tomo en consideración el flujo total luminoso emitido por el sistema de alumbrado existente es de 73,216,000 lúmenes, que corresponde al producto de los 1664

reflectores instalados por su potencia lumínica individual de 44,000 lúmenes.

Para producir los 73,216,000 lúmenes del sistema actual con fuentes luminosas de aditivos

metálicos de 1500 Watts se requiere de-

73,216,000 = lúmenes

155.000

lúmenes

Estos son los resultados preliminares conceptuales pero no definitivos, debido a que hay que tomar en cuenta las características específicas—y las curvas fotométricas de cada luminaria en particular, así para consultar y calcular en cada caso el numero de reflectores necesarios y distribución en los

4 Tableros, se realizo el Proyecto técnico del capitulo No. 5

4.6.2 Solución económica

Por medio del ahorro, por el costo de energía eléctrica pretendemos tener la solución económica, de manera que amortice el proyecto en el menor tiempo posible, esto se podra apreciar de mejor

manera en el capitulo V (proyecto financiero)

El Financiamiento pudiera considerarse de NACIONAL FINANCIERA, S.N.C que ha recibido del Banco interamericano de Desarrollo (en adelante denominado el "BID"), y del Fondo del Quinto Centenario del descubrimiento de América (FQO), un préstamo en diversas monedas y poder financiar parcialmente el costo en remodelaciones en diferentes obras y construcciones nuevas

de la UNAM

١)

CAPITULO V PROPUESTA Y EVALUACION TECNICA

5.1 PROPUESTA TECNICA CONCEPTUAL

OBJETIVO: Es la elaboración de proyecto técnico favorable para la U.N.A.M., según recomendaciones vigentes establecidas por las Normas Oficiales Mexicanas, por I.E.S. (Sociedad de Ingenieros en Illuminación) del cambio de instalación de alumbrado existente del Estadio Olímpico Universitario de lámparas lodo Cuarzo de 2000 Watts (1,664 pzas) que equivalen a 3,328 K.W. por lámparas de aditivos metálicos de 1500 Watts (340 pzas) equivalen a 510 KW. Además del proyecto y diseño que implica la instalación eléctrica, como calculo de alimentadores, circuitos, protecciones, transformadores para alimentar nuestro sistema funcionado al 100%

Que cumpla con el nivel de iluminación requerido de 403 luxes actuales suficientes para el Estadio según I.E.S.

5.2. REQUERIMIENTOS TÉCNICOS PARA UNA INSTALACION

Se deberá cumplir con los requerimientos de una instalación a considerar tales como,

- 1.- Seguridad
- 2.-Eficiencia
- 3.-Economia
- 4.-Simplicidad de operacion
- 5.-Accesibilidad
- 6 -Flexibilidad

5.2.1.- Seguridad

Una instalación segura es aquella que no representa riesgos para los usuarios ni para los equipos que alimenta o que están cerca.

Existen muchos elementos que pueden utilizarse para proteger a las personas que trabajan cerca de una instalación electrica, tales como la conexión a tierra de todas las partes metálicas, la inclusión de mecanismos que impiden que las puertas de los equipos puedan abrirse mientras estos se encuentren energizados, la colocación de tarimas de madera y hule en los lugares donde se operen interruptores y en general todos aquellos que impiden el paso de personas a lugares no autoricados, tales como letreros, candados, alambrados etc

En relación con la seguridad de los equipos, debe hacerse un análisis técnico - económico para determinar la inversión en protecciones para cada equipo. Por ejemplo, para un equipo que represente una parte importante de la instalación y que sea muy costoso, no deberá limitarse la inversión

5.2.2.- Eficiencia.

La eficiencia de una instalación eléctrica, está en relación directa con su construcción, acabado y funcionamiento. El diseño de una instalación debe hacerse cuidadosamente para evitar consumos innecesarios, ya sea por pérdidas en los elementos que los constituye o por la imposibilidad para desconectar equipos o secciones de alumbrado mientras estos no se estén utilizando.

5.2.3.- Economía

Los proyectos de ingeniería tienen que considerar las implicaciones económicas. Esto quiere decir que el ingeniero frente a cualquier proyecto no sólo debe tomar en cuenta la inversión inicial en materiales y equipos, sino hacer un estudio técnico económico de la inversión inicial, pagos por consumo de la energía eléctrica, gastos de operación y mantenimiento, así como la amortización de equipos y materiales.

5.2.4.- Simplicidad de operación.

El sistema debe satisfacer todos los requerimientos del proceso y una vez logrado lo anterior, el sistema debe ser tan simple como sea posible; además sus características deben ser congruentes con el equipo de fabricación nacional existente en el mercado

5.2.5.- Accesibilidad

Una instalación bien diseñada debe tener la previsiones necesarias para permitir el acceso a todas aquellas partes que pueden requerir mantenimiento. Por ejemplo, espacios para montar y desmontar equipos grandes, contar con pasillos en la parte posterior de los tableros, entre otros Deberá la instalación de contar con diagramas y planos necesarios capaces de guiar a el personal de mantenimiento

5.2.6.-Flexibilidad

Una instalación fiexpole es aquella que puede adaptarse fácilmente a pequeños cambios o expansiones de la propia empresa a futuro, dentro de lo econômicamente factible. Esto es importante para la selección de tensiones, capacidades de equipo, espacio para la propia instalación, lo cual debe estar especificado en el estudio econômico correspondiente. Para lograr esto, se denen conocer las condiciones físicas locales, tales como vibraciones, temperatura ambiente, conde ones, de salimidad o acidez, nivel de humedad y todas aquellas condiciones que

puedan ser causa de deterioros físicos o químicos en las ducterías, conductores, aislamiento, accesorios y equipos

Además de los requerimientos planteados, la NOM-001 en su sección 102 establece los requerimientos técnicos de carácter general aplicables a las instalaciones para el uso de energía eléctrica

5.3. CRITERIO PARA EL DISEÑO DE UNA INSTALACION

5.3.1.- Diseños amplios

Dentro de los posible no debe limitarse el diseño de la instalación a las condiciones iniciales de la carga, sino que debe dejarse un margen razonable de capacidad para tomar el aumento natural que tienen todos los servicios

5.3.2.- Centros de distribución

Deben localizarse los tableros o centros de distribución en lugares fácilmente accesibles, para comodidad y seguridad de funcionamiento.

5.3.3.- Limitaciones de daños por fallas

Se recomienda limitar el número de conductores y circuitos alojados en una canalización o cubierta, a fin de minimizar el daño que pueda ocasionar un corto circuito o falla a tierra producido en alguno de ellos

5.3.4 -Planos previa elaboración

Toda instalación electrica debe ejecutarse de acuerdo a un plano previamente elaborado; además de que cualquier modificación en la instalación debe anotarse en el mismo o en un nuevo plano. El plano actualizado de la instalación debe conservarse en poder del propietario del inmueble para fines de mantenimiento

5.4. CALCULO DE LUMINARIAS

Para calcular la cantidad de luminarias que cubran los requisitos de l E.S. se consideran 2 alternativas y dos métodos para calcular la cantidad de luminarios requeridos.

- 5 4.1 Calculo por emisión o potencia luminica
- 5.4.2 Calculo por el Método de haz luminoso

LUMINARIOS

1 -Reflector de Aditivos metálicos 1,000 W, emisión lumínica de 110,000 lúmenes, vida duración 12,000 horas, factor de depreciación a 0.64 curva 3 x 3, catalogo 1861 Holophane.

2.-Reflector de Aditivos metálicos 1,500 W, emisión lumínica 150,000 lúmenes, vida de duración 3,000 horas, factor de depreciación 0 91, curva 3 x 3, catalogo 1898 de Holophane.

Para encontrar él numero de lamparas que sustituirán a las existentes se calculo de la siguiente manera:

5.4.1 Calculo por emisión o potencia lumínica

El flujo total luminoso emitido por el sistema de alumbrado existente es de 73°216,000 lúmenes, que corresponden al producto de los 1664 reflectores instalados por su potencia lumínica individual de 44,000 lúmenes.

Para producir los 73°216,000 túmenes del sistema actual con fuentes luminosas de aditivos metálicos de 1,000 W, se requiere de:

73'216,000 lúmenes = 665 luminarios

Para producir los 73'216,000 lúmenes del sistema actual con fuentes luminosas de aditivos metálicos de 1,500 W se requiere de

73'216,000 lúmenes	
	= 472 luminarios
155.000 lúmenes	

Estos resultados preliminares no son resultados definitivos, debido a que hay que tomar en cuenta las características especificas y las curvas fotométricas de cada luminario en particular, para consultar y calcular en cada caso él numero de reflectores necesarios y su distribución en los 4 tableros, debido a esto se estableció el siguiente calculo

POTENCIA DEL	EMISION LUMINICA	No.LUMINARIOS.
REFLECTOR	[LUMENES]	Cantidad de luminarios para
[WATTS]		las
		4 Torres
1000	110,000	665 Luminarios
1500	150,000	472 Luminarios

5.4.2. Calculo por el método de lúmenes promedio

Para calcular los niveles de iluminación por este método, se requieren factores, tales como la disposición en grupos de luminanos, su altura de montaje, su distancia al área a iluminar y los puntos de enfocamiento de los luminarios. La ecuación básica es.

$$E = \frac{NRT \times Lp \times CBU \times Fm \times Eh}{\Delta}$$
1.1

en donde.

E= Nivel luminoso [lumenes/ m²] = [Luxes]

NRT= Número de proyectores

El F.U. representa la eficiencia de la instalación y depende de la posición de montaje del luminano (altura , posición horizontal y ángulo) así como de la distribución lumínica del reflector

Para que sirva de base a las alternativas 1 y 2, a continuación se calcula el nivel de iluminación "E" que proporciona el sistema de alumbrado existente instalado en el estadio

5.4.2. A.- SISTEMA DE ALUMBRADO EXISTENTE:

Eficiencia del reflector		E h= 0.64
Coeficiente de utilización del h	naz	CBU= 0 41
Factor de mantenimiento		Fm = 0.96
Factor utilización	FU = Eh x CBU x Fm	F.U. = 0.25
Cantidad de tableros montado	os en poste	N = 4

Altura de montaje de los tableros Hm = 48 m

Numero de reflectores por tablero NRT = 416

Lúmenes por proyector Lp= 44,000

11360 m²

De 1.3 despejamos E (Nivel luminoso) y tenemos:

$$E = \frac{NRT \times Lp \times F.U.}{A}$$

Nivel de iluminación
$$E = \frac{416 \times 44,000 \times 0.25}{11360} = 403 luxes$$

El alumbrado existente utiliza un Nivel de iluminación de 403 luxes, los cuales debemos cubrir con las alternativas 1 y 2, donde se considera sustituir los 1664 reflectores de (iodo cuarzo) de 2,000 W por reflectores de aditivos metálicos en capacidades de 1000 y 1,500 w, respectivamente, adecuando la instalación eléctrica actual

5.4.2 B ALTERNATIVA I

Area a ser iluminada

Consideremos cuantos reflectores necesitamos para obtener 403 luxes

Reflector de aditivos metálicos	de	1000 W
Eficiencia del reflector		Eh = 0 75
Coeficiente de utilización		CBU = 0.63
Factor de mantenimiento		Fm = 0.64
Factor utilización	F.U.= Eh x CBU x Fm	F.U = 0.30
E Nivel luminoso actual		E= 403 [Luxes]

Lumenes por proyector Lp=
$$110,000$$

Numero de reflectores por tablero NRT = 2000

Area a ser lluminada 11360 m^2

De la formula 1.3 sustituimos:

Los 140 reflectores se deben de distribuir de tal manera que cada fila tenga el mismo numero de reflectores para esto se le restaran o adicionaran como máximo 2 reflectores en cada tablero, para evitar grandes disminuciones o aumentos en el nivel de iluminación y por lo consiguiente en lo económico. En este caso se tiene un arreglo:

Arreglo: 140 reflectores distribuidos en 10 filas con 14 reflectores por fila, como se adiciono un reflector de los 139 calculados, se procede a calcular el nivel de iluminación con 140 reflectores por tablero.

Verifiquemos si cumple con los 403 LUXES requeridos por el estadio

Sustituimos en la formula 1.4:

Si cumple con 403 LUXES del Estadio Olimpico Mexico

Ų.

5.4.2.C ALTERNATIVA II

Reflector de aditivos metálicos de	1500 W

Factor común F.U. = Eh x C.B.U. x Fm F.U. =
$$0.36$$

De la formula 1.3 sustituimos.

1er. Arreglo: 85 reflectores distribuidos en 5 filas con 23 reflectores por fila.

2º. Arreglo: 84 reflectores distribuidos en 7 filas con 12 reflectores por fila.

Verifiquemos si cumple con los 403 LUXES requeridos por el estadio.

Sustituimos en la formula 1.4:

Como se elimino 1 luminario de los 116 calculados, se procede a calcular el nivel de iluminación E, con 84 luminarios por tablero

Si cumple con 403 LUXES del Estadio Olímpico de México

5.4.2 D CONCLUSIONES

Comparando los resultados totales obtenidos en la alternativas 1 y 2, con los resultados calculados por emision luminica en las consideraciones previas, observamos grandes diferencias, debido a la eficiencia que tienen los luminarios o reflectores de aditivos metálicos para controlar y dirigir el haz luminoso, por lo tento las cantidades que se deben de considerar son:

ALTERNATIVA I

Para proporciona el nivel promedio de iluminación para 403 luxes, se requiere de 560 reflectores de aditivos metalicos de 1000 W cada uno, los cuales serán distribuidos en 4 tableros, en cada tablero se instalcion 140 reflectores en 10 filas con 14 reflectores por fila

ALTERNATIVA II

Para proporcionar el nivel promedio de iluminación de 403 luxes, se requiere de 340 reflectores de aditivos metalicos de 1500 W c/u, los cuales estarán repartidos en 4 tableros, cada tablero con 85 reflectores distribuidos en 5 filas con 17 reflectores por fila

	NIVEL DE ILUMINACION [LUXES]	No. De Reflectores por TORRE.
ACTUAL	E= 403	NRT=416
CON 1000 WATTS	E= 407	NRT= 140
CON 1500 WATTS	E=400	NRT= 85

Concluimos que a partir de la matriz, la mejor opción son los luminarios de 1500 Watts, con un total de 85 reflectores por torre, porque el proyecto marca una cantidad menor de luminarias.

5.5 NIVEL DE ILUMINACION CON 85 REFLECTORES

E=No. de Luminarios x lumenes por luminario x F.U

Area

No de luminarios=85 luminarios por torre

lumenes por luminano=150,000 lumenes

Eh = Eficiencia del reflector

CU B = Coeficiente de iluminación

Fm = Factor de Mantenimiento

Area=11360 m²

Sustitución de datos:

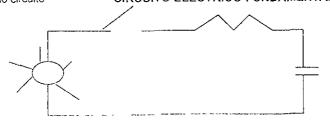
Total de Potencia Luminica

Total= Nivel de iluminación por torre x Total de torres

Total = 404 luxes x 4 Torres = 1616 luxes totales en el Estadio Olímpico

TABLA DE RESUMEN

	NIVEL DE ILUMINACION	TOTAL
	[LUXES]	REFLECTORES
ACTUAL	1612	1664
1000WATTS (PROYECTADOS)	1628	560
1500WATTS (PROYECTADOS)	1600	340


Con un porcentaje de error de e% en LUXES= <u>LUXES_ACTUALES-LUXES_PROYECTADOS</u>

LUXES_ACTUALES

Se concluye que la mejor alternativa en cuanto a la selección de luminarios es la Alternativa II con 85 reflectores de 1500 Watts cada uno, ya que nos dan 340 luminarios totales, considerando el ahorro de energia, es la propuesta más conveniente.

5.6 CALCULO DE PROTECCION GENERAL Y CALCULO DE CIRCUITOS DERIVADOS CON PROTECCION

La forma mas elemental para la utilización de la energia eléctrica es el llamado "Circuito Eléctrico" consiste de una fuente de voltaje y uno ó mas dispositivos de carga, los cuales usan la corriente suministrada por la fuente a traves de los conductores eléctricos que forman la trayectoria cerrada del propio circuito CIRCUITO ELECTRICO FUNDAMENTAL.

Circuito derivado: Es el conjunto de conductores y demás elementos de cada uno de los circuitos que se extienden desde los ultimos dispositovos de protección contra sobrecorriente en donde termina el circuito alimentado, hasta las salidas de las cargas.

En toda instalación eléctrica se debe recurrir al uso de los circuitos derivados para su adecuada elección del cable y proteger a los equipos que esten energizados, así como el correcto balance de cargas que nos garantice un eficiente funcionamiento de la instalación y uso de enrgía eléctrica.

Dispositivos de protección: Nos referimos a los dispositivos capaces de proteger la instalación contra sobrecorriente y contra corto circuito, existen diferentes tipos de dispositivos como vimos en la sección 3.4.3 del capitulo III.

5.6.1 Cálculo de Protecciones

a.- Protección General

No. luminarios= tenemos 85 luminarios de 1500 W

Fd= Factor de depreciación de 1 25

Total de Carga por Torre = No. luminarios x W x Fd

85 ×1500 x 1 25 = 159,375 W = 159 37 KW

Cálculo de Corriente 1 =
$$\frac{W}{3 \text{ Vf (f.p)}}$$
 = $\frac{159, 375}{1.73 \times 220 \times 9}$ = 464, 723 Amperes

Tenemos 464.723 Amperes por torre, por lo tanto elegimos la protección general termomagnetica de 3 x 500 Ampres, que es el más proxima comercial , quedará ubicada en nuestro tablero Subgeneral de la Mca, Square'D

b.- Cálculo de Circuitos

El arreglo será de 85 reflectores; en 8 circuitos de 10 luminarios cada uno y 5 luminarios en un circuito, así un total de 9 circuitos de 2 fases, 3 hilos, 220 V. Así como lo muestra el Cuadro de Cargas.

c.- Memoria de Cálculo por circuito

Ver memoria de Cálculo

CARGA DE CUADRO

TABLERO TORRE-1 DE DISTRIBUCION , SIMILAR AL SQUARE D TIPO NGOD - 60 - 4AB-12 , TRES FASES , CUATRO HILOS , 220 / 127 VOLTS , CON INTERRUPTOR PRINCIPAL DE 3 X 500 AMPS E INTERRUPTORES TERMOMAGNETICOS DERIVADOS TIPO QOB , DEL TIPO DE ATORNILLAR , PROVISTO DE FABRICA

===			CARGA INST	ALADA EN 1	CARGA INSTALADA EN TORRE TIPO	DEL ESTADIO OLIMPICO	O OLIMPICO		TOTALES	LES	CAL.	DIAM.	WATTS	TS POR FASE	SE
SiO.	PROTECC INTERR							:	WATTS	AMPS	DEL ALIMT. AWG	DE LA CANAL MM	A	ω	O
	IM. AMPS	WATTS	WATTS	WATTS	WATTS	WATTS	WATTS	WATTS							
	25.42		:		:	·			15000				2000	2000	5000
٠ 	37.70	· ·	:				:		15000			38	2000	2000	200
7 9-11	3X70	. 6	,			:	:	:	15000	43.73	<u>ب</u>	38		5000	5000
8-10-12	3X70	10	:			,			15000		<u>ر</u> ې	38		5000	200
13-15-17	3x70	9	•			;			15000	- 3	<u>ا</u>	38	:	5000	20.00
14 16-18	3X70	0		:	:	:			15000	- 5	<u>.</u>	88	i	50000	ਨੂੰ ਵਿੱ
19-21-23	3X70	0	:			:			15000	- :	10	38	į	5000	ე : ე : მ
24-26-28		10						:	15000	:	(C)	38	1	2000	2000
25.27.25		.5			:			:	7500		ထ	25		2500	2500
2000	V/GESEG!	;		:		:	,								
1 4						:	:				:			:	
31-53-55			,		:		•			:			:		
36-38-40	RESERVA				:		· :	1			***************************************			-	
37-39-41	RESERVA		:			:	:	-	-	:			:		:
42-44-45	RESERVA			•	1		:							-	:
13-45-47								:	***************************************					-	
				_					:				;		:
	:		:										:		
		:													
				:											
	,		:		:		:	:				:			
		1	,	:		,	:	:	÷==						
		,				:		:		: :	:	ï	- - - -	:	
			:		:	•	:	:				:		1	
			•		-			:	;		:		:		
	•	:	•	:			:	:			•		:	:	
		100							127500	3717			42500	42500	42500
	SUMAS	82							141				22	127500	
)) = BS DE SB = ((OR - FASE	MENOR)/	FASE MAYOR - PASE MENOR) / (FASE MAYOR)) *100 =	OR)) *100 :	,,	42500	- 42500=	0	%		= 1		
							•	42500							
		ELABORO									REVISO			<u> </u>	FECHA
															nov-98
	0			,											

MEMORIA DE CALCULO Y CALCULO DE ALIMENTADOR

ESTADIO OLIMPICO UNIVERSITARIO 68

De: TABLERO SUBGENERAL

A: ALIMETACION DE CIRCUITOS EN CADA UNA DE LAS

TORRES

Watts totales al 100 % (W) =	15,000	
Voltaje (V = Ef = En) =	220	
Numero de fases =	3	
Factor de Potencia(cos O = F.P.) =	0.9	-
Longitud del alimentador en mts. =	45.00	
Tipo de aislamiento =	THW ,600 Volts, 75 oC.	
Caida de tension estimada (E%) =	2	

Corriente en amperes al 100 % (I) =	
I=W/1.73*Ef*cos O	43.79T5.1***

Demanda maxima en watts y en amperes:

W d = 15,000.00

Id = 43.79

Calculo del alimentador:	
a Por corriente, para	43.79 Amps.
Equivale a conductor calibre No.	6 AWGT5.2**
	ксм
El cual corresponde a	13.30 mm2, de co T5.3*
	Cobre
b Por caida de voltaje:	
Smm2=(2 x 1.73 x L x I)/(Ef x E%) TABLA 5 .1	15.50
La cual equivale a conductor calibre No.	4 AWG
	KCM
	21.15 mm ² , de cobre

MEMORIA DE CALCULO Y

CALCULO DE ALIMENTADOR

ESTADIO OLIMPICO UNIVERSITARIO 68

De: TABLERO SUBGENERAL

A: ALIMETACION DE CIRCUITOS EN CADA UNA DE LAS

KCM

TORRES

Factores de correccion:		
Por agrupamiento:	1	
Por temperatura:	1	
Seccion de cobre equivalente corregida:		
Sec1 = Smm 2/ Fa x Ft	13.30 mm2	
Sec2= Smm 2/ Fa x Ft	21.15 mm2	
La cual equivale a conductor calibre No.	4 AWG	

Se seleccionan los siguientes conductores cal.	4 AWG
POR FASE	KCM
	21.15 mm2
PARA EL NEUTRO	4 AWG
	KCM
	21.15 mm2

Caida de voltaje obtenido (E %):

E %= (2 x 1.73 x L x I)/(Ef x Smm2)

1.47

Seleccion de la proteccion del alimentador:

Proteccion en Amps. = 1 x 1 25 54.74

Interruptor termomagnetico seleccionado:

a) termomagnetico: 3X70 Amps.
marco: FA

MEMORIA DE CALCULO Y CALCULO DE ALIMENTADOR

ESTADIO OLIMPICO UNIVERSITARIO 68

De: tablero subgeneral

A: ALIMETACION DE CIRCUITOS EN CADA UNA DE LAS

TORRES

Diametro de la canalización : ara 4 # 4 AWG y 1# 8 td AWG Se utilizará tubería conduit galv.pg.de : de 38 mm de diametro.......T5.4 ***

ELABORO · ALEJANORA K SANCHEZ RODRIGUEZ	REVISO M EN ING, VÍCTOR J, GONZÁLEZ VILLELA JEFE DE DEPARTAMENTO	FECHA ·
	DIRECCION DE CONSTRUCCION UNAM	

*** Compárese con las tablas que indica el cálculo, ver Sección C Apendice de Tablas

5.7 CALCULO Y ARREGLO COMERCIAL PARA TRANSFORMADORES POR TORRE

La potencia de un transformador es función de la carga total (Watts) conectada al sistema, considerando las corrientes por los factores de reserva y demanda.

a .- Transformador por Torre

Carga total demandada = 159,375 Watts

Considerando un factor de Potencia de 0.9

KVA = 159 37 / 0 9 = 177,083

Por lo tanto, escogimos dos transformadores comerciales de 225 KVA para que trabajen simultáneos, en caso de que uno de ellos falle entra el otro simultaneo, por protección y por torre

ARREGLO DE TRANSFORMADORES

K.VA Existente	K.V.A Proyectad	SERVICIO
600	225	TORRE 1
600	225	TORRE 1
600	225	TORRE 2
600	225	TORRE 2
600	225	TORRE 3
600	225	TORRE 3
600	225	TORRE 4
600	225	TORRE 4
500	500/ 23 KV	PRENSA
750	750 /23 KV	ANTORCHA
75	75 /23 KV	CUADRO MARCADOR
750	750/23 K V	PALOMAR

** Referirse a la Sección D. Planos Eléctricos: ACOMETIDA PROYECTADA GENERAL

DIAGRAMA UNIFILAR

ACOMETIDA ELECTRICA POR TORRE

CAPITULO VI PROPUESTA Y EVALUACION ECONOMICA

6.1.PROPUESTA FINANCIERA CONCEPTUAL (OBJETIVO)

El objetivo principal es que por medio del estudio financiero, tengamos la información necesaria para, tomar la decisión mas conveniente para la Universidad., así como conocer los costos por consumo de energía, y las amortizaciones que representan las inversiones iniciales.

6.2 ESTUDIOS TECNICO ECONOMICO PARA EL AHORRO DEL CONSUMO DE ENERGIA ELETRICA EN EL ESTADIO OLIMPICO UNIVERSITARIO.

Tomando en cuenta el cambio de tarifas de Cía, de Luz y Fuerza del Centro, a partir del 22 de Septiembre de 1998 y aplicados al mes de Octubre presente (último pago realizado) obtenemos:

6.2.1 Análisis de costo de consumo por mes en la tarifa H.M.1 para:

6.2.1. A.- Las Luminarias del las 4 torres del Estadio Olímpico Universitario

Datos obtenidos actualmente para el estudio de costo por consumo de mes en el Estadio

- 1.-Lectura de Consumo Anual 1072 KWH (lectura proporcionada por la Dirección de Conservación de la Dirección General de Obras de la UNAM).
- 2.- La lectura del punto anterior deberá multiplicarse por un factor K= 10 de correción del Wattorimetro quedando asi; 1072 x K=

1072 x 10= 10720 KWH/ año

Para sacar la lectura mensual dividimos entre 12 meses

10720/12 meses = 893.33 KWH/mes

3.-Se determino en la investigación que 893 33 KWH/mes son el consumo de una torre al 50% de su funcionamiento por lo que tenemos que multiplicarla por dos.

893.33 x 2 = 1786.66 KWH/mes

Asi 1786.66KWH/mes es la lectura real de consumo KWH/mes tomada del wattorimetro para la torre 1 que se considero como tipo para el estudio económico

- A Alumbrado original a base de reflectores de tungsteno alógeno
 - A 1) Carga en torres de alumbrado formado por 1664 reflectores de tungsteno alogeno de 2000 W. cada uno = 3,328 KW

¹ Tanfa H.M. Por la carga instalado actual nos riferimos a esta tanfa ya que es la que le corresponde conforme, al Diamo Obrial del Poder Ejecutivo de la Secretaria de Haciendo y Gredito Publico Nov. 1996 (se anexa tanfa al final del capitulo)

A.2) Requiero de mi Carga Instalada la cual utiliza el factor de demanda máxima 2*

Considerando que las torres tienen un factor de demanda máxima del 75% y por lo tanto su capacidad de caga instalada es de :

Carga instalada = Carga total x Factor de demanda máxima

Carga instalada: $3328 \times 75 = 2496 \text{ KW}$ Quiere decir que del 100% de la carga total , yo requiero el 75 % , ya que no tengo mi carga (iluminación) encendida siempre

A.3).- Con la carga instalada obtenemos , la **Demanda media** , utilizando un **factor de**

Demanda media = Carga instalada x factor de carga

 $Dm = 2496 \times 5 = 1248 \text{ KW}$

La Demanda media significa que de la carga instalada (que es la contratada), solo utilizo el 50% de la instalación de acuerdo a los reportes y la investigación llevada acabo, en la Dirección de Conservación de la UNAM, así encienden el alumbrado al 50% en promedio, alcanzando la eficiencia necesaria pero no las adecuada, limitando las posibilidades de una correcta lluminación

- A 4).- Aplicando la tarifa actual H .M encontramos
- T = D media x Cargo por KW demanda Facturable + Consumo mensual(Cargo KW Hora de energia de punta)......1.a

Donde:

T= Tarifa

D media = es la carga instalada por el factor de carga

Cargo por KW= Este valor lo obtenemos de las Tarifas para suministro y venta de energia 1997-1998 (tarifa HM), se anexa tabla al final del capitulo.

Donde; Dm(Cargo por KW)= COSTO POR DEMANDA

Este costo es el que contratamos a Compañía de Luz y Fuerza y se pagará se tenga o no consumo

Consumo mensual = El consumo mensual del wattorimetro, instalado en la subestación existente Cargo KW de energía de punta = Este valor lo obtenemos de las Tarifas para suministro y venta de energía 1997-1998 (tarifa HM) se anexa tabla al final del capitulo

Donde; CM(Cargo por KW en energía de punta) = COSTO POR CONSUMO

Este costo por consumo es lo que pagamos a Compañía de Luz y Fuerza por el consumo mensual o anual registrado en el wattorimetro

^{2*} factor de demanda máxima. Se conoce a este factor a la demanda mayor que se presenta en una instalación eléctrica por un periodo de trabajo de al menos 15 minutos o bien a la demanda en % que consume en la instalación eléctrica. 3 *Factor de carga: se define como el % que tomo del total de la carga instalada.

Sustituvendo valores en la Tarifa de la formula 1.a tenemos.

```
T= 1248 KW x 48.983 + 1786.66 KWH (.92518) =
T= 61130 + 1652.98 =62,782.98
I.V.A 15% = 9,417.44
TOTAL = $ 72, 200.42 / MES
```

Por lo anterior se propone modificar el tipo de alumbrado del Estado a base de reflectores de aditivos metálicos.

6.2.2 B.- Alumbrado modificado a base de reflectores de aditivos metálicos

Calculo por nivel de iluminación.

Con el sistema actual de tungsteno alógeno se tiene un nivel de iluminación promedio de 403 luxes, el cual , se obtiene con:

1.1 560 Lámparas de aditivos metálicos de 1000 W
1.2 340 Lamparas de aditivos metálicos de 1500 W
Los cuales fueron obtenidos del proyecto y evaluación técnica

Con lo anterior y haciendo las mismas consideraciones del cálculo de consumo de energía eléctrica y considerando 10 horas de consumo por mes en el estadio, tenemos

B.1) Lámpara de aditivos metálicos de 1000 W. DATOS .
carga instalada = 560 Lamparas x 1000 W = 560 KW Factor de demanda máxima = 0 75
Factor de carga =1

Aplicando la de formula de la Tanfa 1..a obtenemos:

B 2.) Lámpara de aditivos metálicos de 1500 W DATOS .
carga instalada = 340 Lamparas x 1500 W = 510 KW Factor de demanda máxima = 0,75 Factor de carga =1

DM = $510 \text{ KW} \times 75 \times 1$ = 382 5 K.W.

C = 382.5 KW X 10 Hrs = 3825 KWH/mes

T = 382.5 (48.983) + 3825(.92518) =

18,735.99 + 3538.88 = \$22,274.80 I.V.A. = \$3,341.22

Total = \$25,616.02

6.2.2 Resumen de costos de consumo de energía eléctrica mensuales y anuales
COSTO POR ACTUALMENTE ALTERNATIVA I ALTERNATIVA II

CONSUMO EN \$

POR MES \$ 72,200 42 \$ 28, 127.40 \$ 25, 616 02 POR AÑO \$ 866,405.12 \$ 337,528.82 \$ 307,392 24

Como se observa el ahorro MENSUAL que se obtiene al modificar el tipo de alumbrado del Estadio es de :

\$ 44, 073 02/mes (Aditivos metálicos 1000 W.)

\$ 46, 583.97/mes (Aditivos metálicos 1500 W.)

6.3 EVALUACIÓN ECONÓMICA:

Para seleccionar el luminario y tipo de fuente luminosa que sean lo mas eficientes para el sistema de alumbrado en cuestión, a continuación se desarrollan los cuadros que contienen

- Inversión micial
- Costos de operación anual
- Costos de mantenimiento

6.3.1 Inversión Inicial

Se consideran las dos alternativas, que se estudiarón en la evaluación técnica.

ALTERNATIVA I

DNCEPT	DESCRIPCIÓN	UNIDAD	CANTID	PRECIO U.	TOTAL
1	Reflector de aditivos metalicos de 1000 W	Pz.	560	\$3,242.00	\$1,815,520.00
2	Lampara de aditivos metálicos de 1000 W	Pz.	560	\$252.20	\$141,232 00
3	Instalación reflector de aditivos metálicos	Pz.	560	\$800.00	\$448,000 00
	Suministro, e Instalacion de Transformador 225 KVA, Incluye cable,mano de obraP.U.O	Pz	8	\$79,830.00	\$638,640.00
5	Sum, inst, de Tableros generales con sus derivados,incluye P.U O.T.	PZ	4	\$62,839.00	\$251,356 00
6	Manuales de operación,planos actualizados	lote	1	\$20,000.00	\$20,000 00
	Total				\$3,314,748 00

ALTERNATIVA II

ONCEPT	DESCRIPCIÓN	INIDAL	CANTID	PRECIO U.	TOTAL
1	Reflector de aditivos metalicos de 1500 W	Pz.	340	\$4,635.00	\$1,575,900.00
2	Lampara de aditivos metálicos de 1500 W	Þz.	340	\$274.05	\$93.177 00
3	Instalación reflector de aditivos metálicos	Pz.	340	\$800.00	\$272,000 00
4	Suministro, e Instalacion de Transformador 225 KVA, Incluy cable,mano de obraP.U.O.T	Pz	8	\$79,830.00	\$638,640 00
5	Sum, inst, de Tableros generales con sus derivados,incluye PU.O T	PZ	4	\$62,839 00	\$251,356 00
6	Manuales de operación,planos actualizados	lote	1	\$20,000.00	\$20,000.00
[
	Total				\$2,851,073 00

Comparación de la Inversión Inicial entre las Alternativas

	ALTERNATIVA I	ALTERNATIVA II
COSTO EN MONEDA NACIONAL	3,314,748.00	2,851,073.00

LA DIFERENCIA ENTRE LAS ALTERNATIVAS ES . 463,675.00

Cabe mencionar que los precios utilizados fueron obtenidos de la lista de precios vigentes en octubre de 1998, del fabricante de luminarios Holophane y que de niniguna manera se deben de considerar como presupuesto, en virtud de que el objetivo es realizar la comparación económica entre las alternativas.

6.3.2 Costos Anauales de Operación

Para calcular los costos anuales de operación se consideran, los consumos de energía eléctrica anual obtenidos en la sección 6.2.3 RESUMEN, y también el costo anual que involucra reponer las lamparas, sin instalación.

Cabe mencionar que el No. de lamparas a reponer es el 5% del total de las lamparas de acuerdo a un promedio, obtenido en la investigación , con personal de la Dirección de Conservación de la UNAM.

Νο	CONCEPTO	ALUMBRADO	ALTERNATIVA	ALTERNATIVA
<u></u>	* * * * * * * * * * * * * * * * * * * *	EXISTENTE	L 1	11
L	DATOS			
	KW POR LUMINARIO	2 00	1.00	1 50
	CANTIDAD DE LUMINARIOS	1664 pza	560 pza	340 pza
3	KW DEL SISTEMA, Obtenido en Secc B1 y B2	1,248 00	420 00	382 50
	. COSTOS POR CONSUMO+ DEMANDA			
1	COSTO POR CONSUMO ANUAL	\$19,835,76	\$46,629,00	\$42,465.72
	COSTO POR DEMANDA ANUAL	\$733,560,00	\$246,874,32	\$224,831 88
manama	SUBTOTAL ENERGÍA ELECTRICA	\$753,395.76	\$293,503 32	\$267,297.60
4	CON I V A 15%	\$113,009 36	\$44,025 50	\$40,09464
	COSTO TOTAL DE ENERGIA ELECTRICA	\$866,405.12	\$337,528.82	\$307,392 24
	COSTOS POR REPOSICION DE LAMPARAS			·
	COSTO/LAMPARAS EN M.N	\$29200	\$252 00	\$274,05
2	VIDA DE LA LAMPARA HRS	2,000 00	12,000 00	3,000 00
3	No DE LAMPARAS A REPONER 5% DEL TOT	210,00	28,00	17 00
4	COSTO TOTAL ANUAL DE LAMPARAS A REP	\$61,320.00	\$7,056.00	\$4,658 85
	COSTO ENERGÍA + LAMPARA	\$927,725.12	\$344,584.82	\$312,051.09

6.3.3 Costos anuales de mantenimiento

CONCEPTO	ALUMBRADO EXISTENTE	ALTERNATIVA I	ALTERNATIVA II
1 COSTO LIMPIEZA/LUMINARIO C/U 2 COSTO DE INSTALACION DE LA	\$280.00	\$280.00	\$280.00
LAMPARA REPUESTA C/U	\$520.33	\$782.10	\$782.10
COSTO TOTAL LIMPIEZA COSTO DE INSTALACION DE LA	\$232,960.00	\$156,800.00	\$95,200 00
LAMPARA REPUESTA	\$109,269.30	\$21,898.80	\$13,295 70
COSTO TOTAL DE MANTENIMIENTO	\$342,229.30	\$178,698.80	\$108,495.70

SUMA DE COSTOS DE MANTENIMIENTO Y OPERACIÓN

TOTAL DE COSTOS	\$1,269,948 10	\$523,289 22	\$420,546.79

Comparación económica de mantenimiento y operación de alternativas

	ALTERNATIVA I	ALTERNATIVA II
COSTO MONEDA NACIONAL	\$523,289.22	\$420,546 79

[&]quot;LA MEJOR ALTERNATIVA ES LA II"

6.3.4 RESUMEN DE LA EVALUACION ECONOMICA

CONCEPTO	ALUMBRADO	ALTERNATIVA	ALTERNATIVA		
	EXISTENTE	l l	II.		
INVERSION INICIAL COSTO DE OPERACION ANUAL COSTO DE MANTENIMIENTO	\$927,725.12 \$342,223.00	\$3,314,748.00 \$344,590.42 \$178,698.80	\$2,851,073.00 \$312,051.09 \$108,495.70		
TOTAL DE COSTOS INCLUYE IVA	\$1,269,948.12	\$3,838,037.22	\$3,271,619.79		

6.4 AHORRO OBTENDIO CON ALTERNATIVA I Y ALTERNATIVA II

AHORRO CON	ALTERNATIVA I	ALTERNAIVA II
COSTO DE OPERACIÓN ANUAL	\$ 583,134.70	\$ 615,674.04
COSTO DE MANTENIMIENTO ANUAL	\$ 163,524.20	\$ 233,727.30
TOTAL AHORRO EN COSTOS	\$ 746,658.90	\$ 849,401.33

Podemos notar que el ahorro es considerable en la Alternativa II

6.5. AMORTIZACIONES DE LA EVALUACION FINANCIERA

Se considera: Costo de la inversión inicial, Costo de operación anual y el Costo de mantenimiento para el cambio del tipo de alumbrado en el Estadio Olímpico Universitario.

6.5.1. Aditivos metálicos de 1000 W.

Reflector tipo magnolite autobalastrado De Lumisistemas de 1000 W. de aditivos Metálicos, con lampara e instalación:

\$ 3,314,748.00

Costo de operación anual

\$ 344,590.42

Costo de mantenimiento anual

\$ 178,698 80

Total inversion inicial

\$ 3.838.037.22

La inversion inicial se amortizaría en un período de :

3.838.037.22 = 5.140 años = 5 años 746.658.90

6.5.2 Aditivos metálicos de 1500 W.

Reflector tipo magnolite autobalastrado

De 1500 W. aditivos metálicos

\$ 2,851,073 00

Costo de operación anual

\$ 312,051.09

Costo de mantenimiento anual

\$ 108,495.70

Total inversión inicial

\$ 3,271,619 79

La inversion inicial se amortizaría en un período de:

3,271,619,79 = 3 8 años 849,401 33

Por lo antenor se propone cambiar el tipo de Alumbrado del Estadio Olímpico de Tungsteno alógeno por aditivos metálicos, y también se concluye que la mejor alternativa es la Il

6.6 CONCLUSIONES

La recuperación de la Alternativa II, es considerablemente corta 3 8 años, lo que indica que es factible cambiar los reflectores del alumbrado actual ya que estos demandan una cantidad de energía que se reflejada en los costos.

SECCION A

CONCLUSIONES

CONCLUSIONES

Considerando el Proyecto Técnico -Económico de la Renovación del Sistema de Alumbrado en el Estadio Olímpico Universitario, se concluye que se deberá independizar los consumos de la red de distribución de energía eléctrica de C.U. (Subestación No. 1) 6.3 KV actual, para obtener los consumos reales y costos por consumo exclusivamente del alumbrado del Estadio de referencia, para que de está manera se tenga un control real técnico - económico idependiente de la red a 23 KV propuesto y asi proporcione un beneficio a la UNAM.

Del Sistema Técnico - Económico se conclye que la Alternativa II es la mejor ya que:

Técnicamente:

- 1.- Cumple con el nivel de iluminación requerido de 405 Luxes por torre.
- 2.- El número de reflectores es menor que la Alternativa I
- 3.- Se tendrá un sistema de alumbrado que requiera menor trabajo de mantenimiento porque es menor el número de reflectores, cálculados en la propuesta técnica del capitulo V.
- 4.- La eficiencia de reflectores nuevos es totalmente aceptable, ya que cumple con las normas de iluminación y calidad
- 5.- La vida de duración es de 25 años ó más, de acuerdo a los datos obtendios en horas.

Económicamente:

- 1.- La inversión inicial de la Alternativa II es la más baja
- 2.-El ahorro obtenido por el costo de consumo de energia es alto en la Alternativa II
- 3.- La Amortización es de 3.8 años, lo que representa un tiempo considerablemente corto.

De acuerdo a las investigaciones llevadas a cabo en el Alumbrado del Estadio Olímpico Universitario, se detectó que la iluminación, la utilizan actualmente al 50%, para ahorrar los cosots por consumo de energía eléctrica, lo que trae como consecuencia la poca eficiencia en el sistema, por lo que recomiendo que el Sistema de Alumbrado sea cambiado de acuerdo a la Alternativa II, que considera las necesidades actuales del Estadio y además es tecnica y financieramente atractivo.

Además es importante considerar la cuestión acertada de Thomas Alva Edison, cuando se le preguntó que pretendia con sus experimentos, que derivaron en la aparición de la lámpara incandescente, contestó "Atrapar la luz de dia, para prolongarla por la noche", así ello implica atrapar una energía espectral que al irse perfeccionando, ha cambiado y cambiará la historia de la humanidad

"Quiero representar la luz artificial como espectro del espiritú humano"

SECCION B

TERMINOLOGIA

TERMINOLOGIA DE ALUMBRADO

ABSORCION.- Es la particularidad que tienen los materiales de transformar parcial o totalmente la energía luminosa que incide sobre ellos en otra forma de energía

ACOMODACION.- Proceso por el cual el ojo cambia de foco, al variar la distancia del objeto

ADAPTACION.- Proceso por el cual el sistema visual se acostumbra a una menor o mayor cantidad de luz o a luz de color diferente.

Ello resulta en un cambio de la sensibilidad de ojo a la luz

AMGSTRONG.- Unidad de longitud de onda = 10⁻¹⁰ m

BALASTRO.- Dispositivo electromagnético e electrónico usado para operar lámparas la cual es operada por un balastro convencional entre el flujo luminoso emitido por la misma lámpara cuando esta es operada por un balastro patrón.

BRILLANTEZ O LUMINANCIA - Es la relación entre la intensidad luminosa (I) en cierta dirección y la superficie, vista por un observador situada en la misma dirección.

CANDELA (cd).- Se define como la intensidad luminosa, en una dirección dada, de una fuente luminosa que emite radiación monocromática (540 x 10¹² Hz = 555 nanométros) y de la cual la intensidad radiante en esa dirección es de 1/683 watts/steradian. Hasta 1948 se le llamo bujía

COMPONENTE INDIRECTA.- Porción de flujo luminoso que llega al plano de trabajo después de ser reflejado por las superficies del cuarto

COEFICIENTE DE UTILIZACIÓN - Relación entre el flujo luminoso (lúmenes) de un luminario recibido sobre el plano de trabajo y el flujo luminoso emitido por la lámpara del luminario sola

CURVA DE DISTRIBUCION - Es la representación gráfica del comportamiento de la potencia luminosa emitida por una luminaria. Se representa en coordenadas polares y los valores estan dados en candelas

CURVAS ISOCANDELAS.- Es la mejor representación de las variaciones luminosas de un haz irregular. Las curvas representadas unen puntos de igual potencia luminosa y estos son el resultado de un gran número de lecturas de intensidad luminosa en diferentes puntos.

EFICACIA LUMINOSA DE UNA LAMPARA. - Relación de flujo luminoso total emitido en lúmenes por la lámpara entre la potencia eléctrica consumida por la misma, su unidad esta dada en lumenes / watt

EFICIENCIA DE UN LUMINARIO .- Relación del flujo luminoso emitido por un luminario con aquel que produce la lámpara desnuda usada en su interior.

EMERGENCIA, ILUMINACION DE .- Iluminación diseñada para proporcionar iluminación para seguridad y salvaguardar en caso de falla de suministro normal de energía

EXPLOSION, LUMINARIO A PRUEBA DE.- Luminario completamente cerrado y capaz de resistir una explosión de un gas específico o vapor dentro de él y prevenir la ignición de gases o vapores alrededor.

FACTOR DE DEPRECIACION DE LOS LUMENES DE LA LAMPARA (LLD).- Relación de los lúmenes emitidos por la lampara al 70% de su vida entre los lúmenes iniciales de esta misma.

FACTOR DE PERDIDA DE LUZ. (FACTOR DE MANTENIMIENTO).-Factor utilizado en el calculo de iluminacion después de un periodo dado de tiempo bajo condiciones dadas de tiempo. En el se toma en cuenta las variaciones de temperatura y tensión, acumulación de suciedad en las superficies del cuarto y del luminario, depreciación de la lámpara, procedimientos de mantenimiento y condiciones atmosféricas.

FLUJO LUMINOSO (LUMEN).- Cantidad de luz comprendida en un ángulo sólido, emitido por una fuente luminosa de una candela (Cd) colocada en el centro de una esfera unitaria.

FOOTCANDLE (Im/m²) (fc),- Unidad de nivel luminoso en el sistema ingles

FUENTE LUMINOSA.- Es toda materia, objeto o dispositivo en que parte de la energía radiante que emite cae dentro de los limitos visibles del espectro electromagnético.

ILUMINACION GENERAL - Iluminación diseñada para proporcionar un nivel de iluminación sustancialmente uniforme sobre una superficie

INTENSIDAD DE ILUMINACION.- (E).- Es la densidad de flujo luminoso sobre una superficie (E= F/S), y es directamente proporcional a la intensidad luminosa e inversamente proporcional al cuadro de la distancia. Su unidad es el lux (E= I/d), el cual tiene un valor correspondiente de distribuir el flujo de un lumen sobre una superficie de un metro cuadrado. En los países de habla inglesa se usa el pie candela como unidad de intensidad de iluminación siendo:

1 pie candela 10 76 luxes

LAMPARA.- Dispositivo que transforma la energía eléctrica en energía luminosa.

LENTE.- Elemento de vidrio o plástico usado en luminarios para cambiar la dirección y controlar la distribución de los rayos luminosos.

LUMEN .- (Im) - Unidad de flujo luminoso

LUMINARIO. Aparato eléctrico que se utiliza para controlar y dirigir el flujo luminoso generado por una o más lámparas

LUX .- (Lm/m²) Unidad de nivel luminoso (sistema métrico)

NANOMETRO.- Unidad de longitud de onda igual a 10⁻⁹ metros

NIT.- Unidad de brillantez (luminancia) igual a una candela sobre metro cuadrado, (sistema internacional)

NIVEL LUMINOSO O ILUMINACIA.- Se define como la densidad de flujo luminoso que incide sobre una superficie. Se mide en luxes o footcandles

REFLEXION - Es el fenomeno por el cual la luz al incidir sobre una superficie cambia de dirección de manera tal que el angulo de incidencia es igual al angulo de reflexión.

REFRACCION.- Es el cambio de dirección que sufren los rayos luminosos al pasar de un medio a otro con diferente densidad

TERMINOLOGIA DE INSTALACION ELECTRICA

A COMETIDA (aérea o subterránea). - Los conductores que ligan la red de distribución, del sistema de suministro, con el punto en que se conecta el servicio a la instalación de un usuario. Se le llama también línea de servicio

CABLE.- (aplicado a la forma de construcción de un conductor) Conductor formado por varios filamentos torcidos, con lo cual se obtiene un conductor más flexible que el alambre (conductor sólido) de sección equivalente.

CABLE AISLADO.- Conductor (generalmente formado por filamentos) o grupo de conductores, provisto cada uno de su propio aislamiento y envuelto el conjunto por una capa aislante y por una cubierta exterior protectora.

CALIBRE DE CONDUCTORES.- Los calibres de conductores se han designado usando et Sístema Americano de Calibres (AWG) y en cada caso, en el texto se indica entre paréntesis la equivalencia en milímetros cuadrados (mm²) Cuando en un artículo se hace referencia a un cierto calibre de conductores, sin mencionar material, se entiende que se trata de conductores de cobre.-

CANALIZACION.- El medio o los medios que se usan para alojar a los conductores de una instalación electrica y que son diseñados, construidos y utilizados solamente para tal fin. Las canalizaciones pueden ser de metal o de cualquier otro material aprobado

CARGA ELECTRICA.- Potencia que demanda en un momento dado, un aparato o máquina o un conjunto de aparatos de utilización conectados a un circuito eléctrico. (la carga puede variar en el tiempo, dependiendo del tipo de servicio)

CARGA CONECTADA - La suma de las potencias nominales de las máquinas y aparatos que consumen energia electrica, conectados a un circuito o a un sistema.

CARGA CONTINUA. - Carga cuya corriente máxima se espera que se conserve durante 3 horas

CIRCUITO DERIVADO.- En una instalación de utilización, es el conjunto de los conductores y demás elementos de cada uno de los circuitos que se extienden desde los últimos dispositivos de protección contra sobrecomiente en donde termina el circuito alimentador, hasta las salidas de las cargas

CONTACTO.- Dispositivo formado por un receptáculo, previsto como salida de una instalación eléctrica y que se usa para recibir las clavijas de cordones o cables flexibles de aparatos que están alimentados por este medio.

DUCTO.- Canalización sencilla, cerrada, de cualquier forma de sección. Este termino se aplica a algunos tipos especiales de canalización y tiene un uso particular en el caso de líneas subterráneas.

INSTALACION ELECTRICA. - Cualquier combinación de equipo eléctrico que se encuentra interconectado, incluyendo los conductores y demás elementos de interconexión y accesorios, dentro de un espacio o localización determinados.

INSTALACION OCULTA.- La que tiene canalización embutida en muros, techos, pisos, etc., o dentro de estos, en forma que no sea visible.

INSTALACION VISIBLE.- Instalación en línea abierta o en canalización colocada en forma que sea visible.

INTERRUPTOR.- Dispositivo que puede abrir un circuito eléctrico, cuando circula corriente, con un valor hasta el de la capacidad del mismo dispositivo, sin sufrir daño alguno

INTERRUPTOR AUTOMATICO.- Interruptor que abre automáticamente por una sobrecomente en el circuito, incluyendo condiciones de cortocircuito en el mismo, pudiendo ser también operado a voluntad.

LINEA AEREA.- Es aquella que está constituida por conductores desnudos o aislados, tendidos en el exterior de edificios o en espacios abiertos y que están soportados por estructuras o postes, con los accesorios necesarios para la fijación, separación y aislamiento de los mismos conductores -

LINEA SUBTERRANEA - Es aquella que esta constituida por uno o varios cables aislados que forman parte de un circuito electrico o de comunicación, colocados bajo el nível del suelo, ya sea directamente enternados, en ductos o con cualquier otro medio de protección mecánica

LUMINARIO - Es un aparato que distribuye, filtra o controla la luz emitida por una o varias lámparas, el cual incluye todos los accesorios necesarios para la fijación, protección y funcionamiento de dichas lamparas

SALIDA.- En una instalación de utilización, caja de conexiones de la cual se toma la alimentación para una o varias cargas eléctricas determinadas, tales como las de lumínarios, motores, contactos, etc.

SOBRECARGA.- Condición de operación de un equipo en la que se demanda una potencia en exceso de la nominal, o de un conductor por el cual circula una corriente en exceso de su valor permisible, cuando dicha condición persiste durante suficiente tiempo para causar daños o sobrecalentamientos perjudiciales. Una sobrecarga no incluye condiciones de cortocircuito o fallas a tierra.

SOBRECORRIENTE (aplicado a un equipo ó a un conductor) Cualquier valor de corriente que exceda a la corriente nominal de un equipo ó a la corriente permisible en un conductor, según el caso. Puede resultar de una sobrecarga, de un cortocircuito o de una falla a tierra.

SUBESTACION DE USUARIO.- La subestación que es propiedad de un usuario del servicio eléctrico y cuya función, en el caso general, es modificar la tensión de alimentación del servicio en la forma en que se requiere para la distribución interior ó para la utilización de la energía

TABLERO DE PARED. Un gabinete metálico que incluye principalmente barras, interruptores y otros dispositivos de protección contra sobrecorriente, empleado para la distribución de circuitos con cargas relativamente pequeñas.

RESISTENCIA DE AISLAMIENTO.- Toda instalación eléctrica debe ejecutarse de manera que, cuando esté terminada, quede libre de cortocircuitos, y de contactos con tierra Consecuentemente, la resistencia de aistamiento en la instalación debe conservarse dentro de los limites adecuados, de acuerdo con las características de los conductores y la forma en que están instalados

SECCION C

APENDICE DE TABLAS

e.- TABLA DE FORMULAS ELECTRICAS PARA CORRIENTE DIRECTA Y CORRIENTE ALTERNA

W = 2VIfp.

VA = 2VI

 $HP = \frac{2VI \eta F. P.}{746}$

 $FP = \frac{W}{2VI} = \frac{W}{VA}$

Ve %

Velocidad Sincrona

 $RPM = \frac{f \times 120}{5}$

f = frecuencia

P = número de potos.

donde.

3 fases, 4 hilos.

 $\sqrt{3}$ V_fl f.p.

 $VA = \sqrt{3} V_f I$

 $S = \frac{2\sqrt{3}LI}{V_fe\%}$

RPM = revoluciones por minuto.

TABLA T5 1

		ALIC	n wa			
PARA DETERMINAR	CORRIENTE DIRECTA	CORR	RIENTE ALTERNA:			
		MONOFASICA	BIFASICA	TRIFASICA		
Corriente (1) Conociendo HP	$I = \frac{HP \times 746}{V \eta}$	$I = \frac{HP \times 746}{V \eta \text{ f.P.}}$	$I = \frac{HP \times 746}{2 \text{ V } \eta \text{ F P.}}$	$I = \frac{HP \times 746}{\sqrt{3} V_f \eta \text{ F. P.}}$		
Corriente (I) Conociendo la Potencia activa (W)	C.D., 2 hilos· $I = \frac{W}{V_f}$	1 fase, 2 hilos $I = \frac{W}{V \text{ f.p}}$ 1 fase, 3 hilos (conductores de fase) $I = \frac{W}{2V \text{ f.p.}}$	$I = \frac{\dot{W}}{2\dot{V} \times F.P}$	3 fases, 3 hilos: 3 fases, 4 hilos: $I = \frac{W}{\sqrt{3} V_f F.P.}$		

1 fase, 3 hilos (Conductor W común)

 $I = \frac{v_{\tau}}{\sqrt{2}} V_{F} f \rho_{c}$

W = VI f.p.

VA = VI

 $HP = \frac{VI \eta F. P.}{746}$

 $f.P. = \frac{W}{VI} = \frac{W}{VA}$

HP≔ caballos de potencia.

W = potencia activa en watts

 $S = \frac{4 LI}{Ve \%}$

F P == factor de potencia (unitario)

VA = potencia aparente en volt ampere

SECCION C

C.D., 3 hilos:

Corriente (1) Conociendo la Potencia aparente (VA)

Pôtencia Activa (W)

Potencia Aparente (VA)

Potencia en la Flecha

Factor de Potencia

Sección de Conductor en mm²

L = longitud en metros.

1 = corriente por fase en amperes.

V = tensión al neutro en volts. •

V₁ = tensión entre fases en volts.

n. ___eficiencia expresada en %.

e % = caída de tensión en porciento. .

SIMBOLOGIA donde.

en HP

(F.P.)

54 concler

W = VI

UNITARIO

LEY DE OHM

CAPACIDAD DE CONDUCCION DE CORRIENTE EN AMPÉRES, DE ALAMBRES Y CABLES CON AISLAMBENTO TERMOPLASTICO

CALIBRE MCM AWG		TIPO DE (OPLAS NORMA TW (I CONDU- EN UBO CC	L 80°C) CTORES	۸ ا	No. I	 PO T. DE CX	HW (ONDU XN 80 CC	LASTIC 75°C) CTORE INDUT 6 7 a	es :	TT YINAI No. D	PO NEL & CC	ND. BO
500 400 350 300	515 455 420 375	5 28 7 26 5 24	0 22 0 20 0 19	6 183 2 168	5 5	20 45 05 45	380 335 310 285	22	8 23 8 21 8 19	7	800 525 485 435	37º 32º 29º 27	7
250 % %	300 260 221 190	0 18 0 16 5 14 5 12	ns 15 13 13 15 11 15 10	6 136 2 11: 6 10:	3 3 5 3 1 2 7 2	05 160 110 185 130	255 230 200 175 150 130	16	4 18 0 14 0 12 0 10	100	388 985 330 285 243 210	24 0°C 23 21 18 15	5 0 5
2 4 8 8	164 100 84 5	0 8	×5 7 70 5 35 4	6 6 4 3 2 2 4 2	6 1 8 8	70 125 95 65	115 85 65 45	9 6 5 3	2 8 9) 5 2 4 6 3	5 1 1	180 135 100 70 55	12 9 7 5	-
12 14 16 18 20	2 2	5 :	20 1	6 1	4 0	25 20	30 15		-	4 0	40 30 23 19	2	0 5 90 7
	TEMP FACTORES DE CORRECCION PARA TEMPERATURA AMBIENTE SUPERIOR À 30°C C ** Multipliquese la Capacidad de Cortenne por										ENTE		
40 45 50 55	104 113 123 131 140	0.82 71 56 41	0 83 .71 .58 .41	0.83 .71 .56 .41	0 82 .71 58 41	0	-	0.88 .82 .75 .67	0 88 .82 .75 .67 .58	0.8 .8 .7	8 0	.89 83 .77 70 45	0.90 85 80 .74 87

			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ONDOCTO	RES.DE CO	BRE		
CALIBRE	MCM No. DE		PESO APROX	RESISTENCIA A LA C.D. MAXIMA A 20°C				
AWG	HILOS	VERSAL mm2.	IMADO / Kg/Km.	DURO Ohms/Km	SEMIDURO Ohms/Km	SUAVE Ohms/Km		
1000	6137	506.58	4594 9	0 03609	0.03589	0.03471		
900	61–37	456.45	4135.2	0.04009	0.03990	0.03855		
800	61-37	405.37	3675 4	0 04511	0.04488	0 04337		
750	61-37	380 01	3446.2	0 04813	0.04787	0.04626		
700	61–37	354.72	3215.6	0 05158	0.05128	0.04958		
650	61-37	329 35	2986.4	0.05551	0.05525	0 05338		
600	61-37	303.99	2757 3	0.06017	0.05985	0 05784		
550	61-37	278.71	2526 6	0 06562	0.06529	0.06309		
500	37-19	253.35	2297 5	0.07218	0 07182	0 06943		
450	37–19	228.00	2066 8	0.08022	0 07979	0.07714		
400	37-19	202.71	1837 7	0.09023	0 08977	0 08678		
350	37-19-12	177.35	1608 5	0.1031	0.1026	0 09915		
300	37-19-12	152.00	1378.3	0.1203	0 1197	0 1157		
250	37-19-12	126.64	1148.6	0.1444	0.1436	0.1388		
%	19-12-7	107.20	972 11	0.1706	0.1697	0.1640		
*	19-12-7	85.01	770.93	0.2151	0.2140	0.2068		
¥	19-12-7	67.43	611.42	0.2131	0.2140	0.2608		
ý,	19-12-7	53.48	484.79	0 3419	0.3402	0.2008		
î	19-7	42.41	384.50	0.4311	9 4292	0.4147		
ī	3	42.41	380.78	0.4272	0.4249	0.4108		
2	7	33 63	304.89	0.5437	0.5410	0 5230		
2	l á	33 62		0.5437	0.5358	0.5177		
3	7	28.67	301.92 241.80	0.6857	0.5358	0.6595		
3	l á	26.67	239.42	0.6637	0.6621	0.6529		
4	7	21.15	191 80	0.8549	0.8603	0.0323		
4	3	21.15	189.87	0.8563	0 8517	0 8232		
5	7	16.76	152.07	1.090	1 085	1.049		
8	7	13.30	120.60	1.375	1.368	1.322		
7	7	10.55	95.65	1.734	1.725	1 667		
8	\ ;	8.387	75.84	2.188	2.175	2.102		
,	7	6.633	60.14	2.757	2.743	2.651		
10	7	5.260	47.71	3.478	3 458	3 343		
12	7	3.310	30.00	5.528	5.499	5.315		
1 14	7	2.082	18.87	8.790	8.744	8.459		
16	7	1.309	11.87	13.97	13 90	13.44		
10	7	0.8236	7.462	00.00	22.11	21.37		
18	1 4	0.8236	4 693	22.22 35.34	35.14	33 99		

CARACTERISTICAS DE ALAMBRES Y CABLES CON AISLAMIENTO DE CLORURO DE POLIVINILO TIPO TW											
CALIBRE	NO. DE CONDUCTORES QUE PUEDEN INSTALARSE EN TUBO CONDUIT DE										
MCM AWG	12 70209	19 mm	25 mm	32 10.00	34 11190	51 (C)	64 	76 	80 mm	103 1368	
ALAMBRE											
4 6 8 10 12	1 1 3 4	1 3 4 8 10	3 4 8 14 19	5 7 12 23	10 13	15 19	34				
14 16 18 20 22	6 9 12 14 17	14 21	25								
CABLE							1	[
500 400 350 300 250				1 1 1	1 1 1 1	1 1 1 2	1 2 3 3 4	3 4 4, 5 8	4 5 6 7 8	6 7 8 9 11	
		1 1	1 1 1 1	1 1 1 1	1 1 2 3 3 3	3 4 4 5 6	5 6 7 8 10	7 9 10 12 15	10 12 14 7 20	19 19 22	
2 4 6 5	1 1 1 3	1 1 3 7	1 2 4 6 12	3 4 6 10 19	5 7 9 15	9 12 16 27	14 19 26	20			
12 14 16 18	4 5 8 11 13	9 12 •9	16 21	26							
	No FA			UCTO!		% 30		3 M	AS D		

Tabla 250-95. Sección transversal mínima de los conductores de puesta atierra para canalizaciones y equipos

Capacidad o ajuste del dispositivo automático de sobrecorriente ubicado antes del equipo, tubería, etc.	Sección tra	nsversal	Sección ti	ransversal	
No mayor en (amperes)	Cob	re	Alun	ninio	
	mm²	AWG KMC	mm²	AWG KCM	
15	2.082	14	3.307	12	٦
20	3.307	12	5.260	10	
30	5.260	10	8.367	8	ı
40	5.260	10	8.367	8	- 1
60	5.260	10	8.367	8	-
100	8.367	8	13.30	6	
200	13.30	6	21.15	4	
300	21.15	4	33.62	2	
400	27.67	3	42.41	1	
500	33.62	2	53.48	1/0	1
600	42.41	1	67.43	2/0	
800	53.48	1/0	85.01	3/0	
1000	67.43	2/0	107.2	4/0	
1200	85.01	3/0	126.7	250	
1600	107.2	4/0	177.3	350	
2000	126.7	250	202.7	400	
2500	177.3	350	304.0	600	
3000	202.7	400	304.0	600	
4000	253.4	500	405.4	800	
5000	354.7	700	612.0	1200	
6000	405.4	800	612.0	1200	

Nota: Véanse las restricciones aplicables a las instalaciones, señaladas en Sección-250-92

Norma Oficial NOM-001-SEMP-1994

Tabla 250-94. Conductor para electrodo de puesta a tierra en sistemas de c.a.

Area de la sección tra conductor más grande equivalente para cond	e de acometida o su	Area de la sección transversal del conductor para electrodo de puesta a tierra				
Cobre mm²	Aluminio mm²	Cobre mm²	Aluminio mm²			
Hasta 33 62	Hasta 53,48	.367	13.30			
más de 33.62 hasta 53.48	más de 53.48 hasta 85 01	13.30	21.15			
más de 53.48 hasta 85.01	más de 85.01 hasta 126.7	21.15	33 62			
más de 85.01 hasta 177.3	más de 126.7 hasta 253.4	33.62	53 48			
más de 177.3 nasta 304.0	más de 253.4 hasta 456.0	53 48	85 01			
más de 304.0 hasta 557.4	más de 456 0 hasta 886.5	67 43	107 2			
más de 557.4	más de 886.5	85.01	126.7			

Nota: Donde se usan múltiples conductores de acometida como se específica en la Sección 230-40,

datos.

Tabla 430.148.-Corriente a plena carga en amperes, de motores monofásicos de corriente alterna

	0011101110	ancina	
W	C.P.	127 V.	220 V.
124.33	1/6	4.0	2.3
186.5	1/4	5.3	3.0
248.66	1/3	. 6.5	3.8
373	1/2	8.9	5.1
559.5	3/4	11.5	7.2
746	1	14.0	8.4
1119	1 1/2	18.0	10.0
1492	2	22.0	13.0
2238	3	31.0	18.0
3730	_ 5	51.0	29.0
5595	7 1/2	72.0	42 0
7460	10	91.0	52.0

Tabla 430.150.-Corriente a plena carga de motores trifásicos de corriente alterna

kW	(C.P.)	Motor d ardilla y	e inducció rotor deva (A)	n de jaula de anado	Motor s de pote	íncrono, co ncia unitar (A)	on factor io	
<u> </u>	•	220 V.	440 V.	2 400 V.	220 V.	440 V.	2 400 V.	
0 373 0.560 0.746 1.119 1.49	(1/2) (3/4) (1) (1 1/2) (2)	2.1 2.9 3.8 5.4 7.1	1.0 1.5 1.9 2.7 3.6	***************************************				
2.23 3.73 5.60 7.46 11 19	(3) (5) (7 1/2) (10) (15)	10.0 15.9 23.0 29.0 44.0	5.0 7.9 11.0 15.0 22.0				,	
14 92 18.65 22.38 29.84 37.3	(20) (25) (30) (40) (50)	56 0 71.0 84.0 109 0 136.0	28.0 36.0 42.0 54.0 68.0	,	54 65 86 108	27 33 43 54		
44 76 55.95 74.60 93.25 119 90	(60) (75) (100) (125) (150)	161.0 201.0 259 0 326 0 376 0	80.0 100.0 130.0 163.0 188.0	15 19 25 30 35	128 161 211 264	64 81 106 132 158	11 14 19 24 29	

Norma Oficial NOM-001-SEMP-1994

149 20	(200)	502.0	251 0	47	-	210	20	
Estos	Valoroc	da aami				210		

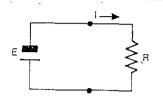
Estos valores de corriente a plena carga son para motores que funcionen a velocidades normales para transmisión por banda y con características de par también normales. Los motores de velocidad especialmente baja o de alto par motor pueden tener corrientes a plena carga mayores, y los de velocidades múltiples tendrán una corriente a plena carga que varia con la velocidad; en estos casos debe usarse la corriente a plena carga indicada en la placa de datos.

3.3.3 proceso de fabricación de conductores eléctricos

The state of the s

MEDICION Y EMPAGUE carrete tub, p v c tub. nylon tub, polretileno FORRADO FINAL APLICACION DE APLICACION DE SEPA RELLENO RADOR ARMADURA tubulado p v c **%** control potencia teletánico REUNIDO 0 emi conductora alambre ó Cinta de cobre APLICACIÓN DE PANTALLA tubulado canductora horizontal magneto vertical **ESVALTADO** forrado papel algodón tub, polietriena a Î tubulado p v c AISLAVIESTO xlp, epr, butilo neopreno, etc. vulcanizado flexible super flexible duro CA81 EADO ** PRODUCTOS TERMINADOS fino mediano grueso RESTRACO • laminado rasurado horne (800°c) opecesso 907% AT1

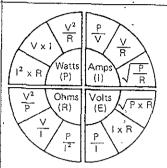
CABLES FLEXUBLES


(ABLES ESPECIALES

(APPRO)

(A CABLES ALTA
TEKSION
poliphel XLP
poliphel EPA
poliphel EPA
poliphel EPA
tologhel ALP infisica
poliphel PR unisica CABLES BAJA TENSION control telefoncos electrónicos trapoláres eyemplo minas submarinos armados CABLES DE CONTROL CARLES DE PO TERCIA WOLT! CONDUCTORES poliphi XLP poliphi XLP poliphi XP PORS CABLES TELE
FORICOS
EKC, EKI
cordón para ege III plo PANTALLA ELEC TROSYATICA PARA CABLES DE ALTA TENSION sofrese sofrese tormadus nylese thermities polythermatere bandare ALAWBRE MAGNETO ALAMBRIS Y
CLÉRES
FORRADOS
Uprapia
Prisasa DW
nombel TRW
prisasa DW
nombel TRW
inmen TWD
cable POT
cable POT
collecterized a
collecterized a
collecterized a CABLE
DESHUGG
tymple
tydesles
midite difference civing difference civing plut d'agles en alumbra empreto e fairmeranda cables ALAWBRE 0654000 \$31-50 (2) k 10430A12 61.1.1

EONE/EC, S. A.


180,0

$$R = \frac{V}{1}$$

R = resistencia en ohms. = corriente en amperes.

V = tensión en volts

Las expresiones que se encuentran en la parte exterior de cada cuadrante, son iguales a la cantidad mostrada para el cuadrante correspondiente.

d.- LEY DE KELVIN

e.- LEY DE JOULE

Para la selección más económica de un conductor de cobre

$$A = 59.3 \times 1 \sqrt{\frac{PH}{CN}}$$

donde.

A = calibre del conductor de cobre en circular mils.

l = corriente del circuito en amperes

C = costo del conductor en centavos/libra, H = horas por año de servicio.

= costo de la energía en centavos/KwH

para efectos caloríficos de la corriente,

 $Q = 0.00024 R I^2 t$ donde.

Q = cantidad de calor en kilocalorías.

R = resistencia en ohms

i = corriente en amperes. t = tiempo en segundos

(intereses + impuestos + depreciación) anual en el conductor costo del conductor

f.- LEY DE FARADAY

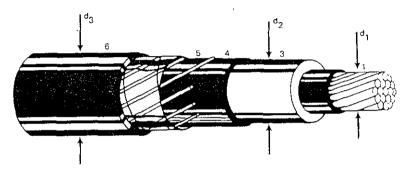
para la inducción electromagnética

$$e = -\frac{\partial \varphi}{\partial t} \times 10^{-8}$$

donde

e 😑 fuerza electromotriz en volts

 $\partial arphi = ext{variación del flujo magnético en maxwells}$

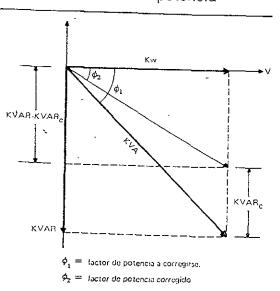

ði 🥆 variación del tiempo en segundos

and the second of the second second and the second
3.6.5 cables de alta tensión para distribución subterránea

a. DIMENSIONES NOMINALES DE CABLES TIPO DS

CONSTRUCCION SEGUN ESPECIFICACIONES CFF F-0000-16

Normas de referencia: NOM-J-36, NOM-J-62 y NOM-J-142 AEIC CS-5 y CS-6 ASTM B-400-72E ICEA S-61-402



- d₁ = diámetro del conductor
- d₂ = diámetro sobre aislamiento.
- $d_3 = diámetro total$
- El conductor debe ser de cobre suave o aluminio compacto de grado EC y clase B, según norma NOM J-62 y NOM J-59.
- 2 El conductor debe llevar una pantalla semiconductora con espesor promedio no menor de 0 4 mm
 3 El material de aislamiento debe ser de Etileno Propileno o polietileno vulcanizado de cadena cruzada y el diseño y construcción del cable debe ser tal que pueda operar satisfactoriamente en lugares húmedos o secos a una temperatura máxima continua en el conductor de 90°C para operacion normal, 130°C en condiciones de emergencia y 250°C en condiciones de corto circuito.
- 4 La pantalla sobre el aislamiento debe consistir en una capa de material semiconductor extruído y de color negro
 5 Debe llevar una pantalla metálica de alambres de cobre aplicados helicoidalmente y en contacto directo con la pantalla semiconductora sobre el aislamiento.
 - 6 La cublarta protectora debe ser de un compuesto extruído de Policloruro de Vinilo (PVC) de color rojo y debe cumplir_con la norma ICEA S-61402

ALAI		No DE		TRO DEL							DIATOT ORTSMAID							
		ALAMBRES	CONDL	7010н	15000 \	<u>/</u>	25 000	v	35000 \		15000 \	/	25000 \	7	35000	V		
ксм	AWG	mm²		mm	₽ŲLG.	mm	PULG,	mm	PULG	mm	PULG.	mm	PULG	unun	PULG.	mm .	צטנ	
bo 36	2	33 6	7	6.81	0.268	17 23	0 678	-	_	-	-	22,06	0.868	-		_) <u> </u>	
105 6	1/0	535	19	8 53	0 336	18 95	0 746	23,25	0.915	27 57	1 085	23 78	0 9 3 6	28 C8	1 105	32 40	1 27	
133 1	2/0	67.4	19	9.55	0 376	19 97	0.786	24,27	0,955	28 59	1 125	24 80	0.976	29 10	1 145	33 42	131	
1678	3/0	85	19	10.7	0 423	21 12	0.833	25 42	1 000	29 74	1 171	25 95	1 021	30.25	1 190	34 57	1 36	
2116	4/0	107	19	17.1	0 475	22 52	0.855	26 82	1.056	31,14	1 226	27 35	1 076	31 65	1 245	35 97	1 41	
250	İ	127	37	13.2	0 520	23 88	0.940	28 43	1 119	32 88	1 294	28 70	1 129	33 25	1 309	37,70	1 48	
300		152	3/	14.5	0.570	24 18	0 990	29.73	1.170	34 18	1 345	30 00	1 181	34 55	1 360	39 00	1 53	
350		177	37	75.6	0 816	26 28	1 036	30 83	1.213	35 28	1 388	31 10	1 224	35 65	1 403	40 10	1 1 57	
400	į į	203	37	167	0 659	27 38	1 079	31 93	1.257	36 38	1 432	32 20	1 267	36.75	1.447	42 72	1 68	
450	ĺ	258	37	17.9	0.700	28 49	1.120	33 03	1 300	37.48	1 475	33 30	1311	37.85	1 490	43 82	1 77	
500	i	253	37	18.7	0.736	29 38	1 156	33 93	1 335	38 38	1 510	34 20	1 346	38,75	1 5 2 5	44 72	1.76	
000		101	61	20.7	0.813	31 63	1 243	36 19	1 424	40 G3	t 599	36 46	1 435	42 53	1 674	46 98	18	
650	. 1	329	61	21.5	0.845	32.43	1 275	36 99	1.4%	41 43	1 631	37.26	1.466	43.33	1.705	47 78	1.81	
700		355	61	22.3	0.877	33 23	1.307	37 70	1.487	42 23	1 662	30 OP	1.498	44.13	1737	48 58	19	
250		कुर।	61	211	0 908	34.03	1 338	38 50	1.519	43.03	1 694	38.85	1529	44.93	1.768	49.38	19	
1100	1	40%	151	23.8	០១%	34 7.1	1.368	39 29	1.546	43 73	1.721	41 07	1.617	45 63	1 /96	50.08	19	
900		d'iti	61	21/2 1	0.000	36 J3	1 429	40.89	1.609	45.33	1 784	42.67	1 680	47.23	1 859	51,68	20	
1000		1407	61	26.9	1 000	37.83	1 490	42 30	1.668	46.83	1.843	04 17	1.739	48 73	1,918	53 18		

4·10·2 cálculo de factor de potencia

4-10-2-1 determinación de los KVAR para corregir un factor de potencia

a.- PROCEDIMIENTO

KW, = es la potencia efectiva en kilowatts

donde.

KVA. = es la potencia aparente en kilovoltamperes
 KVAR. - es la potencia inductiva en kilovoltamperes.

KVAR = es la potencia capacitiva en kilovoltamperes.

Es costumbre también llamarle a este valor potencia reactiva ya que está en fase con las reactancias y puede restarse aritméticamente, Se le designa también por CKVAR.

De la figura 1 se deducen las siguientes igualdades:

$$KW = KVA \cos \phi_1 \dots 1$$

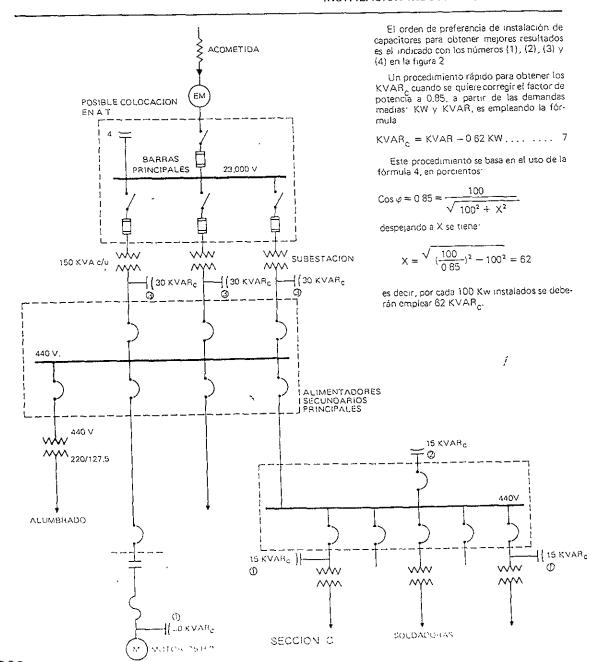
$$KVA = \sqrt{KW^2 + KVAR^2} \dots 2$$

$$KVAR_c = KW (tg \phi_1 - tg - \phi_2) \qquad 3$$

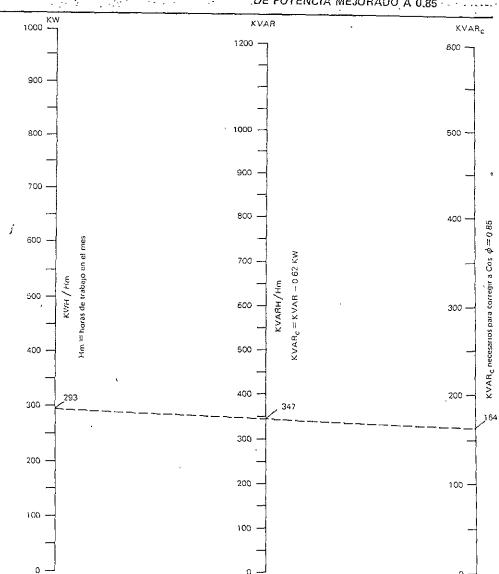
For med, ión podemos conocci con el amilio de un wátt setro los kw y con un ampérmetro y un vóltmetro los KVA, clecir

$$\cos \phi_1 = \frac{Kw}{KVA} = \frac{Kw}{\sqrt{Kw^2 + KVAB^2}} \dots 4$$

$$tg \phi_1 = \frac{\sqrt{1 - \cos^2 \phi_1}}{\cos \phi_1} \qquad ... \qquad 5$$


Por otro ludo, si quisiéramos mejorar el factor de potencia a un vator más alto (ángulo β_2 menor): Cos ϕ_2 , tendríamos tumbién para

y la corga capacitiva en condensadores, o capacitadores, es la calculada por la fórmula (3).


SECCION C

4-10-2-2 orden preferente de instalación de capacitores

a. — DIAGRAMA UNIFILAR TIPICO DE UNA INSTALACION INDUSTRIAL

b.— NOMOGRAMA PARA EL CALCULO DE LOS KVAR_C CON BASE A UN FACTOR DE POTENCIA MEJORADO A 0,85 · · · ·

a.-- Ejemplo de Aplicación

Partierido del diagrama unifilar que se muestra en la figura 2, tiene un consulto inensual de 46,880 KsvH y un carso de 55,520 KVAB, il planta trabaja un promisfio de 160 horas por mes.

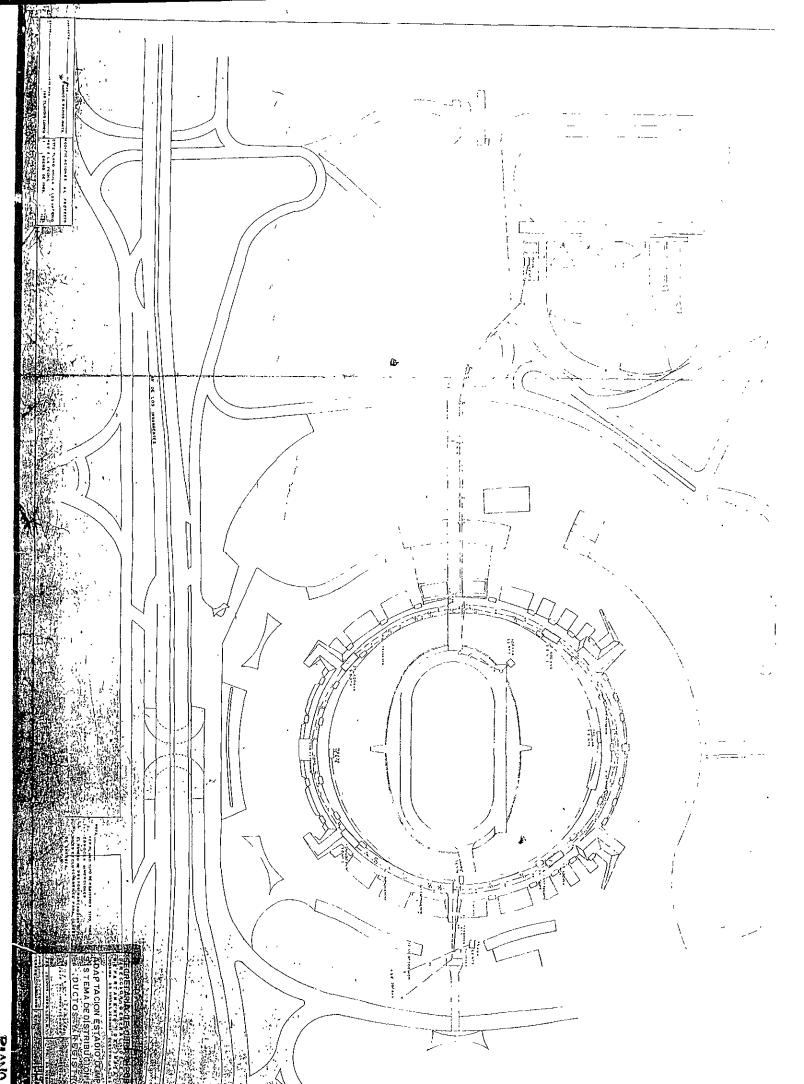
Trazandose una Tinea resta que una estos dos puntos ten decrios en la tercera los KVAB, recesarios para corregir el bajo factor de potencia hasta 0.85.

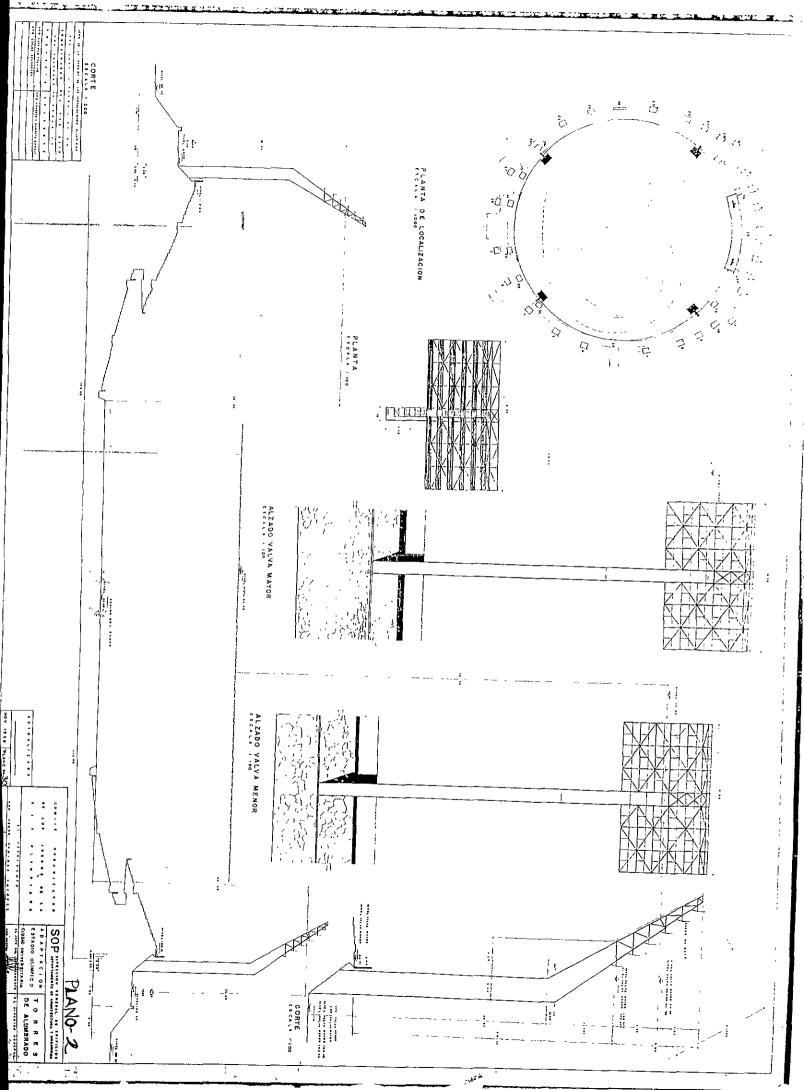
c.- TABLA PARA CORRECCION DEL FACTOR DE POTENCIA

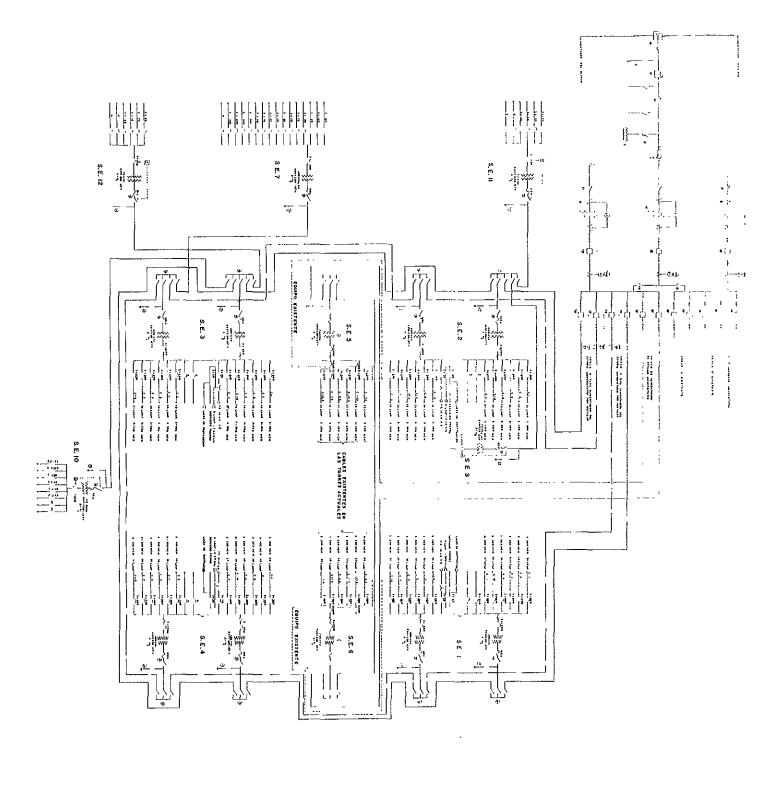
FACTOR DE	FACTOR	DE POTEN	ICIA DESEA	00	
POTENCIA ORIGINAL	100%	95%	90%	85%	80%
50% 51 52 53 54 55 56 57 58 59 61 62 63 64 65 66 67 77 79 80 81 82 84 85 86 87 88 90 91 92 94 95 97 99	1.732 1 687 1 643 1 600 1 559 1.518 1.479 1 442 1.405 1.368 1.298 1.298 1.298 1.201 1.138 1.109 1.138 1.109 1.138 1.109 1.020 0.992 0.996 0.992 0.996 0.992 0.996 0.750 0.802 0.776 0.750	1.403 1.358 1.314 1.271 1.230 1.189 1.150 1.1076 1.040 1.0970 0.937 0.904 0.872 0.810 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.591 0.693 0.693 0.693 0.593 0.593 0.593 0.593 0.317 0.293 0.317 0.295 0.321 0.321 0.321 0.325 0.331 0.33	1.248 1.202 1.158 1.116 1.074 1.034 0.995 0.957 0.920 0.8849 0.815 0.748 0.748 0.5536 0.507 0.4852 0.455 0.371 0.348 0.292 0.2404 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162	1.112 1.067 1.023 0.980 0.898 0.859 0.748 0.748 0.679 0.679 0.679 0.613 0.549 0.518 0.429 0.316 0.289 0.235 0.235 0.235 0.209 0.156 0.130 0.104 0.078 0.130 0.104 0.078	0.982 0.936 0.892 0.850 0.808 0.768 0.768 0.769 0.691 0.691 0.583 0.549 0.518 0.450 0.450 0.450 0.419 0.358 0.328 0.298 0.298 0.298 0.296 0.241 0.1186 0.158 0.158 0.158

Multiplique la cantidad de la columna y fila deseada, por los kilowatts de demanda y obtendra los KVAR del capacitor necesario para adelantar de un factor de potencia a otro.

NOTA: Debe tenerse cuidado de tomar los kilowatts de demanda media mensual cuando el factor de potencia medido sea el valor mensual.


SECCION D


PLANOS ELECTRICOS


- 1 ACTUALES
- 2 MODIFICADOS

SECCION D

PLANOS ACTUALES

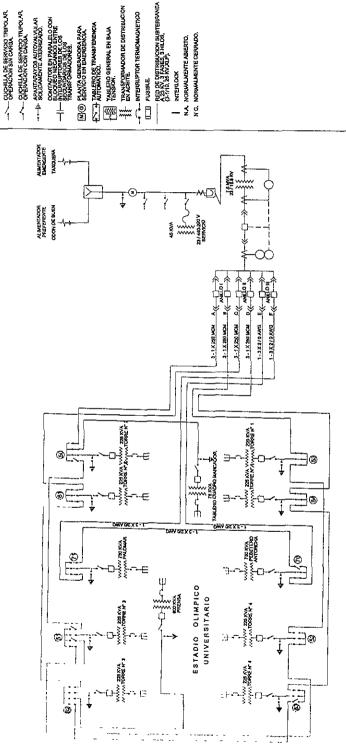
LISTA DE EQUIPO ELECTRICO

- decimated the District interval of rate also value in satisfact in \mathbb{R}^{n} , where \mathbb{R}^{n}
- course of selection of the city promotestication of Autima
- As at white to perfectly
- Company of its present to be a few terminal and its
- (1) will not necessor were absented the

- INTERNATION IN MATTE IF, ID IN, NOT her 1000 was
- Phosphosomon of reference parters trackly policy from intermeter 127 AZ Andreas Compress CAUTA EFFECTIVE
- PURSTAGOR RECTARGE FRENCH & 1972201-87 V "Transfer de Les y Phil Herry, bound goome Officiale Climic, Jest Missaffe de Confe Cities

compacts and considerations of the constant of

COUPO POR INSTALAR

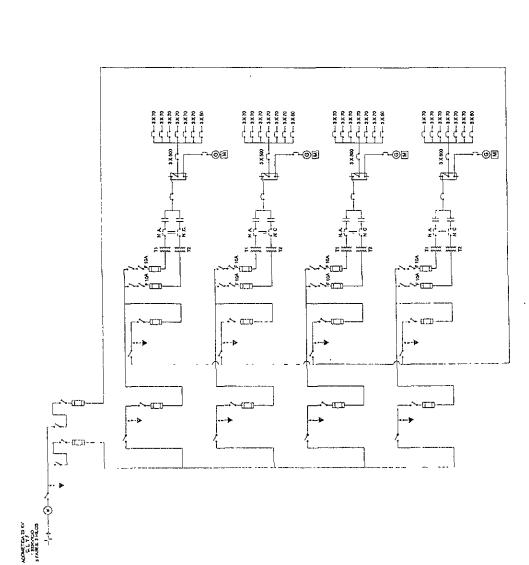

Primarymanson of retrieds abserve a rough as one may anyment as all ra-cural contrast outh attractal increases the equivalent from the significant

- Mark and the world and the ATTEMPTOR DE LACE DE PERSE TON LONG LACE OPPOSITION LIBERTAL STATE DE SELL.
 SAGONES MANA DESMOS METAFORMES FOR CONTO COLUMN A FORME MARVIE SE LACE DISSOCIATION A
- with the property of the state
- Presented the automorphism of Figure and the visco of determ in signification a figure DESCRIPTION OF LIMIT OF THAY AND LIMITATION OF BEHAVIOR WITH THE LIMIT WAS PRITTING. (If you are description has an a

SECRETARIA DE GRAS PUBLICAS
SENTANTOS DE MALACIONOS
SOCIAL MELACIONOS
SOCIAL
SOCIAL MELACIONOS
SOCIAL MELACIONOS
SOCIAL
SOCIAL MELACIONOS
SOCIAL
SOCIAL MELACIONOS
SOCIAL
SOCIAL MELACIONOS
SOCIAL
SOCIAL MELACIONOS
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SOCIAL
SO PLANO-4

SECCION D

PLANOS MODIFICADOS


ACOMETICA ELECTRICA COMPAÑA

A BUMINISTRADORA, 23 KVA, 3 FASES,
3 HILOS, 1 SERVICIO

SIMBOLOGIA

(R) EQUIPO DE MEDICION COMPAÑA SUMINISTRADORA

SIMBOLOGIA

- ACOMPATION ELECTRICA, COMPATION A SUMINISTRADORA, 23 KVA, 3 FASES, 3 HILOS, 1 SERVICIO
- CUCHILLA DE SERVICIO TRIPOLAR, OPERACION SIN CARGA. CUCHILLA DE SERVICIO TRIPOLAR, OPERACION CON CARGA. ⊕ EQUIPO DE MEDICION COMPAÑA SUMINISTRADORA. **** APARTARAYOS AUTOVALVULAR SOLIDAMENTE ATERRIZADO. CONTACTOR EN PARALEJO CON
 ELOCUEO MECANICO ENTRE

 HITERANDITORES DE LOS
 TRANSFORMADORES
 TRANSFORMADORES
- (H)(0) PLANTA GENERADORA PARA
- TRANSFORMADOR DE DISTRIBUCION EN ACEITE. (大) TABLERO GE TRANSFERENCIA AUTOMATICO. TABLERO GENERAL EN BAJA TENSION,
 - *** WTERBUPTOR TERMOMAGNETICO
- PED DE DISTRIBUCION SUBTERRANEA A ZO KY, 3 FASES, 3 HE OS. (3-1/10, ZO KY, 2L.P.).

N.C. NORMALMENTE CERRADO. NA NORMALMENTE ABIERTO.

ESTADIO OLIMPICO UNIVERSITARIO

BIBLIOGRAFIA

SECOFI-DGN (1994). NORMA OFICIAL MEXICANA NOM-001-SEMP-1994, "RELATIVA A LAS INSTALACIONES DESTINADAS AL SUMINISTRO Y USO DE LA ENERGIA ELECTRICA". Diario Oficial de la Federación. Oct. 10 de 1994

Tarkin Antony, "INGENIERIA ECONOMICA, Mc. Graw Hill (1983).

Arq. Reine Mehl de Weatherbee. "DISEÑO AMBIENTAL, CONTROL LUMINOSO" Facultad de Arquitectura UNAM. 1995.

Enrique Harper Gilberto. EL ABC DE LAS INSTALACIONES ELECTRICAS. Editorial Limunsa 6a. Edicion 1993

Mario Pani y Enrique del Moral. "PRIMERAS ACCIONES PARA LOGRAR LA CIUDAD UNIVERSITARIA UNAM 1era Edición

"LA CONSTRUCCION DE LA CIUDAD UNIVERSITARIA DEL PEDREGAL" De, UNAM.

"MEMORIA DESCRIPTIVA DE INSTALACIONES FÍSICAS EN CIUDAD UNIVERSITARIA .1986" UNAM.

Lawrence Mike, INSTALACIONES ELECTRICAS E ILUMINACION EN MEXCIO, Editorial G.Gili, 1995

Ing. Victor Sierra Madrigal, MANUAL TECNICO DE CABLES DE ENRGIA. Editorial McGraw Hill. Condumex

SOLAR MAXIMA CALIDAD Catalogo de productos en iluminación 1997.

Ing Becerril L Diego Onesimo INSTALACIONES ELECTRICAS PRACTIAS. 11 Edición.

Manual Electrico CONELEC, 4ta Edición

EQUIPOS DE DISTRIBUCION ELECTRICA Compendiado No 21 SQUARE'D GRUPO SCHNEIDER.

Catalogo de Tableros y Transformadores de SQUARE´D GRUPO SCHNEIDER.

INGENIEIRA APLICADA A LA LUZ. Holophane 1997

DIARIO OFICIAL DEL PODER EJECUTIVO DE LA SECRETARIA DE HACIENDA Y CREDITO PUBLICO NON1996.

Ing. Salvador Mosquiera R. FISICA ELEMENTAL. Editorial Patria S.A de c.v. 3era Edición

Información recopilada de Entrevistas al personal de la Dirección General de Obras de la UANAM .