

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

CAMPUS ARAGON

"PROYECTO DE UNA INSTALACION ELECTRICA PARA UN CENTRO COMERCIAL (AUTO-SERVICIO), Y SU APLICACION EN EL AREA DE REFRIGERACION E ILUMINACION."

TESIS QUE PARA OBTENER EL TITULO DE INGENIERO MECANICO ELECTRICISTA RESENTA ARTURO MEDINA HERNANDEZ

ASESOR: ING. DAVID MOISES TERAN PEREZ.

SAN JUAN DE ARAGON EDO. DE MEX. ENERO 1998.

258634

TESIS CON FALLA DE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

A MIS PADRES:

ANASTASIO MEDINA ESCALON

MA. ANTONIA HERNANDEZ BARRIOS

Por su amor, ejemplo, apoyo, paciencia presión y sobre todo, por haber sido para mi un apoyo incondicional.

A MI HIJO:

JOSE ARTURO MEDINA AGUILAR

Por el cariño y amor que inspiras en mi.

A TODAS AQUELLAS PERSONAS QUE HAN CONTRIBUIDO EN ESTE TRABAJO.

JUSTIFICACIÓN

A manera de justificación a este trabajo de tesis, se puede manejar lo siguiente:

Se pretende que los conceptos incluidos a lo largo de este trabajo, permitan clarificar y ayudar al potencial Ingeniero de Proyectos de Refrigeración e Iluminación; que lea este trabajo; de cuáles son los requerimientos que se necesitan para la Instalación Eléctrica de un Centro Comercial. Esto se desprende de la experiencia que el autor tiene en lo que se refiere a las instalaciones eléctricas de tipo industrial.

Básicamente, se puede establecer que al tener la información como se ha desarrollado a lo largo de este trabajo, se puedan establecer y conocer los criterios a seguir en una instalación eléctrica completa para un centro comercial ó una nave industrial. La mayoría de esta información, únicamente se tiene, en Catálogos de Fabricantes; y dificilmente puede ser consultada por el lector común, además de que se requiere conocer lo establecido por la Dirección General de Normas Eléctricas, la Secretaría de Fomento Industrial, la Norma Oficial Mexicana y las Normas Técnicas para Instalaciones Eléctricas. Amén, de que mucha otra información está en textos en lenguas extranjeras. De ahí lo valioso del presente desarrollo. Permite tener en un sólo volumen, lo indispensable y necesario para ejecutar un buen análisis de cualquier solicitud de Instalación Eléctrica de un Centro Comercial ó Nave Industrial.

OBJETIVO GENERAL

Establecer los criterios fundamentales que se deben seguir en el Proyecto para ejecutar una Instalación Eléctrica requerida para un Centro Comercial (Auto-Servicio).

OBJETIVOS PARTICULARES

- 1.- Establecer los conceptos básicos que se requiere conocer para realizar una Instalación Eléctrica de Calidad.
- 2.- Conocer los principios básicos de la Refrigeración y su aplicación en un Centro Comercial (Auto-Servicio).
- 3.- Conocer los principios básicos de la Iluminación en general y su aplicación en un Centro Comercial (Auto-Servicio).
- 4.- Ejecutar el Proyecto de Instalación Eléctrica a un Centro Comercial (Auto-Servicio).

CAPITULO I

INTRODUCCION

En México, los energéticos ocupan importantes capítulos en la vida de nuestro País. Explotación energética, desarrollo económico y una supuesta Soberanía Nacional, se encuentran plenamente identificados. La Nación asume la responsabilidad histórica de la explotación de los recursos energéticos para beneficio de los mexicanos; por lo que, la Toma de Decisiones no obedece, por ningún concepto, a criterios utilitaristas que con el objetivo de obtener ganancias en el corto plazo, propicie el agotamiento prematuro de las fuentes primarias de energía. Estos conceptos se analizan en este trabajo de tesis, ya que se trata de un trabajo orientado al Diseño de un Sistema de Iluminación y Refrigeración para un Centro Comercial. Entonces se debe tener en cuenta la importancia de cómo se obtiene la Energía Eléctrica que habrá de abastecer al Sistema de Iluminación y de Refrigeración de dicho Centro Comercial.

Conviene por lo tanto; a manera de reflexión, un repaso breve pero ilustrativo de lo que ha sido la Política energética de nuestro País. Así, en México, la Industria Petrolera se inició a fines del siglo pasado con la explotación de petróleo a cargo de Compañías extranjeras. Esta práctica logró que durante la segunda década del síglo, México llegara a ser el segundo exportador mundial de petróleo, produciendo en promedio 325 Millones de Barriles Diarios. Sin embargo; esta ventaja comparativa no se reflejó en nuestra economía, dado que las Empresas transnacionales canalizaban prácticamente la totalidad de la venta petrolera hacia las Metrópolis respectivas.

Con la expropiación y la nacionalización decretada por el Presidente Lázaro Cárdenas en 1938, que rescató para la Nación este importante recurso natural, la Industria Petrolera se reorientó hacia el abastecimiento del mercado interno, transformando y modernizando su estructura de producción. Esta estrategia fue acompañada de una Política de desarrollo tendiente a estimular la expansión de la industria, el Sistema de Transporte y el mercado interno de sus productos.

El crecimiento de la industria eléctrica también se inició en manos privadas, nacionales y extranjeras, propiciando la limitación de las zonas atendidas, la proliferación de sistemas eléctricos aislados y un servicio deficiente cuyo desenvolvimiento se rezagó con respecto a las necesidades del desarrollo general del País.

En 1937, se creó la Comisión Federal de Electricidad (C.F.E.), con el objetivo de atender la demanda no satisfecha, proporcionando el fluído a tarifas congruentes con las necesidades del desarrollo del País. En 1960 culminó el proceso de nacionalización de la industria eléctrica, cerrándose así un cíclo iniciado 25 años atrás.

Hasta finales de los setentas, el Sector Energético estuvo orientado hacia la satisfacción de la demanda interna de acuerdo con el objetivo de autosuficiencia energética. Sin embargo, a finales de dicha década, esta tendencia se comienza a perder, y para 1973 el País se había convertido ya en un importador neto de productos refinados y de petróleo crudo. Si bién un año antes ya se habían comenzado a descubrir vastas reservas petroleras cuya explotación se comenzó a hacer efectiva en 1976.

A partir de dicho año, se desarrolla aceleradamente la producción petrolera, y México se convierte en 1978 de nueva cuenta en un exportador importante. Esta estrategia de exportación petrolera, hizo que en los últimos años el Sector Energético adquiriese un papel decisivo en la orientación y la viabilidad del proceso de desarrollo del País.

Las divisas generadas por las exportaciones de hidrocarburos, junto con el acceso al financiamiento externo del que se dispuso; contribuyeron de manera decisiva a la instrumentación de programas de inversión tendientes a inducir un crecimiento económico acelerado. Sin embargo, los cambios de tendencia en el mercado petrolero internacional, iniciados a partir de 1981, vinieron a convertirse en uno de los principales obstáculos a las metas previstas.

La transformación alcanzada hasta el día de hoy por el Sector Energético, lo ha convertido en componente fundamental de la estructura y la dinámica de la economía mexicana. Para 1982, el Sector en su conjunto aportó aproximadamente el 5% del P.I.B. (Producto Interno Bruto) y alrededor de la mitad de los ingresos en cuenta corriente de la balanza de pagos, le corresponde una parte muy importante de las importaciones de bienes de capital e insumos, y se constituyó en los últimos años, en el principal agente financiero de la estrategia de desarrollo. Representó así mismo, cerca del 23% del gasto total del sector público y un poco menos del 50% de la inversión pública.

En la Industria Petrolera, se han alcanzado significativos avances en numerosos aspectos. Para 1982, las reservas probadas de hidrocarburos alcanzaron aproximadamente 72,000 Millones de Barriles; la producción de crudo alcanzó un volumen de 2 Millones 746 Mil Barriles Diarios; y la capacidad instalada de refinación llegó a ser de 1 Millón 620 Mil Barriles Diarios; habiéndose procesado diariamente 1 Millón 199 Mil Barriles Diarios. Además, se llegó a exportar 1 Millón 492 Mil Barriles Diarios de crudo en promedio. En este sentido, durante los últimos años, el País logró consolidar su posición como exportador de hidrocarburos, así como diversificar su mercado de destino. La extracción de gas fue de 4,250 Millones de Pies Cúbicos Diarios, de los cuales se procesaron 3,400 Millones y se exportaron cerca de 300 Millones de Pies Cúbicos Diarios.

En los últimos años el Sector Energético en su conjunto ha registrado saldos favorables crecientes en su balanza comercial, ha transferido cuantiosos recursos, a las finanzas públicas y ha efectuado considerables transferencias al resto de la economía, vía subsidios implícitos.

Como un estuerzo adicional, debe mencionarse el desarrollo de Institutos de Investigación en materia de energéticos, tales como el Instituto Mexicano del Petróleo (creado en 1965), el Instituto de Investigaciones Eléctricas (1975), y el Instituto Nacional de Investigaciones Nucleares (1979), mismos que han sido piezas fundamentales en el desenvolvimiento de las tareas del sector.

Paralelamente al desarrollo de la capacidad productiva y la investigación, en las Empresas del sector energético se han realizado esfuerzos importantes de programación en los últimos años, los cuales han sido acompañados de otros similares, a nivel de programación sectorial y de planeación global.

No obstante, los importantes avances logrados; el excesivo énfasis en el alcance de metas cuantitativas que caracterizó el crecimiento del sector durante los últimos años, se tradujo en insuficiente atención a los aspectos cualitativos y en cierta desvinculación con los objetivos más generales del desarrollo del País.

Paralelamente, persisten algunos desequilibrios estructurales en el sector, Destaca, la dependencia energética de los hidrocarburos, que representan poco más del 90% de la generación primaria de energía. Quedan aún márgenes para aprovechar mejor el gas asociado de que se dispone, principalmente en las zonas de explotación marina donde están ya en marcha las inversiones necesarias para reducir al mínimo técnico la proporción de gas asociado que se quema a la atmósfera.

Cabe señalar que los aumentos en la oferta interna de los energéticos, han obedecido, entre otros, al persistente abaratamiento en el precio de una parte importante de la producción destinada al mercado nacional, propiciando el desperdicio energético generalizado y el sobreconsumo de algunos productos, contribuyendo de este modo a agravar las distorsiones estructurales que actualmente caracterizan a la Planta Industrial y al Sistema de Transporte con que cuenta el País. Se hace necesario entonces, actuar a fondo en este sentido, para erradicar vicios estableciendo Políticas de ahorro energético.

En cuanto a la infraestructura que se requiere para hacer más eficiente al sector energético, se localizan todavía algunas deficiencias importantes en materia de almacenamiento de refinados y crudos, e instalaciones portuarias. En los últimos años, cuantiosas inversiones han permitido lograr importantes avances en la red de gasoductos y oleoductos; sin embargo, existen todavía limitaciones en lo que a poliductos se refiere.

El Sector Energético ha tenido innegables efectos positivos sobre el crecimiento de las regiones en las que se ha concentrado su actividad. No obstante, debe reconocerse que también, al desatar rápidos procesos de cambio económico y social, en ocasiones ha rebasado la capacidad de las regiones y de los agentes económicos, para responder a su dinámica y aprovechar sus encadenamientos potenciales.

La formación de recursos humanos, y la adaptación y desarrollo de tecnologías para el Sector, no obstante los avances logrados, siguen siendo un problema importante a resolver y constituye un reto para el futuro.

Actualmente, de acuerdo con informaciones publicadas por la Comisión Federal de Electricidad (C.F.E.), se tiene una capacidad instalada de 26,793 Mwatts. Energía que utilizamos cerca de 80 Millones de mexicanos. Petróleos Mexicanos (PEMEX) tiene en sus instalaciones en tierra 1,683 Mwatts, además de las Plantas Eléctricas que tienen otros sectores de la Industria como: La Azucarera, La Textil, La Metalúrgica, La Papelera, La Química, La Minera, La Cervecera, La Cementera, etcétera, que tienen más de 200 Plantas Eléctricas, y que pueden interconectarse con la C.F.E. para aumentar la oferta de Energía Eléctrica en un 10% de la capacidad instalada que se tiene en la actualidad.

La Generación de Electricidad en nuestro País, es a base de Hidrocarburos, de lo cual se puede destacar, en lo que corresponde a C.F.E. los siguientes datos:

60.7% de Hidrocarburos.

29.6% de Energía Hidráulica.

4.5% a base de Carbón.

2.7% de Energía Geotérmica.

2.5% de Energía Nuclear.

La Energía Eléctrica se utiliza para alimentar principalmente: Motores, luminarias, dispositivos calefactores y otras cargas de menor cuantía. En México, se tiene poca información sobre la distribución de cargas que más Energía Eléctrica consumen.

En algunos países industrializados, como los del Bloque Europeo, se han realizado estudios sobre el consumo de Energía Eléctrica y se tiene que por ejemplo, en Alemania el 64% del consumo de Energía Eléctrica se utiliza en motores eléctricos, mientras que en el Reino Unido de la Gran Bretaña es de 60%.

Si la utilización de la electricidad en el Sector Industrial de México, tiene condiciones similares a los países europeos anteriormente citados, los motores representan el mayor consumo de Energía Eléctrica. Así, la C.F.E. ha proporcionado datos en donde estima que entre el 60 y 70% de la energía generada es consumida por motores eléctricos; de esto se desprende la importancia que éstos representan en el consumo de energéticos, transformación de energía y la conservación del medio ambiente

Por otro lado, la situación que prevalece en nuestro País, respecto a la toma de consciencia en el ahorro de energía eléctrica, es incipiente debido fundamentalmente a varios aspectos como pueden ser:

- a).- Falta de consciencia popular en el buen uso de la electricidad.
- b).- La carencia de estudios, en los cuales se pueda observar el grado de ahorro de Energía Eléctrica.
- c).- Escaso abastecimiento de equipos considerados como de "alta eficiencia".
 - d).- Bajo precio de la Energía Eléctrica.

A lo anterior, se agrega, la problemática de la Calidad en el Servicio de Distribución de Energía Eléctrica debido, en primer lugar, a que la capacidad actual instalada es prácticamente igual a la demanda, quedando poca flexibilidad para cubrir algún imprevisto en demanda extraordinaria de Energía Eléctrica.

Por lo consiguiente; un ahorro de Energía Eléctrica en Motores Eléctricos y Sistemas Eléctricos de Alumbrado, traería beneficios significativos a la economía nacional y a los grupos industriales interesados en utilizarlos; este beneficio es directo al Sector Eléctrico y al usuario. Esto puede significar una reducción considerable en los costos de operación, y también se contribuiría con la armonía del medio ambiente.

CAPITULO II

REFRIGERACION

II.I. Generalidades.

Refrigeración es la rama de la Ciencia que trata del proceso de reducir y mantener más baja que su alrededor, la temperatura de un espacio dado ó de un producto. Ya que el calor absorbido se transfiere a otro cuerpo, es evidente que el proceso de refrigeración es opuesto al de calefacción.

Carga de calor es la cantidad de calor que debe retirarse del espacio por refrigerar, para reducir ó mantener la temperatura deseada. En la mayoría de los casos, la carga de calor es la suma del calor que se fuga al espacio refrigerado a través de paredes, rendijas, ranuras, etcétera; más el calor que produce algún producto por refrigerar ó motores eléctricos, alumbrado, personas, etcétera.

En cualquier proceso de refrigeración, el cuerpo empleado como absorbente de calor se llama Agente de Refrigeración ó Agente Refrigerante.

Los procesos de refrigeración se clasifican en sensibles y latentes. El proceso es sensible, cuando la temperatura del refrigerante varía al absorber calor. Es latente cuando la temperatura del refrigerante, al absorber calor, permanece constante y causa cambio de estado. En los dos procesos, la temperatura del agente de refrigeración es menor que la temperatura del espacio por refrigerar.

II.2.- Cíclo Mecánico de Compresión.

Supóngase un espacio bién aislado a 60° F (ver fig. II.1). Un refrigerante (R-12) se está evaporando dentro de él a 14.7 Lb / pulgada cuadrada. La temperatura de saturación a 14.7 Lb / pulgada cuadrada es de -21.6° F. El refrigerante, para evaporarse, absorbe el calor latente de evaporación a una temperatura constante de -21.6° F, que lo toma del espacio que rodea el vaporizador. El dispositivo que se utiliza para llevar a cabo la evaporación es el *evaporador*.

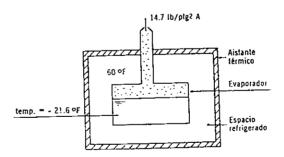
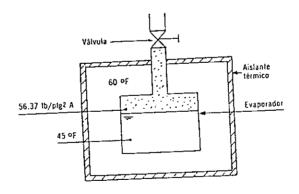
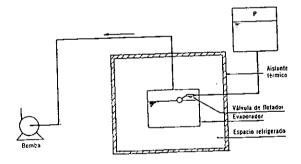


Fig. II.1.- Evaporación del Refrigerante.

A cada temperatura de evaporación de cierto refrigerante, le corresponde una presión. Por tanto, para conseguir una temperatura determinada es necesario controlar la presión y para hacerlo se necesita controlar con una *válvula* la cantidad de refrigerante que se evapora (ver fig. II.2).

Si la válvula se mantiene cerrada, la temperatura del líquido llegará a 60° F y su presión será la que corresponda a esa temperatura. Si se necesitaran temperaturas inferiores a -21.6° F; por ejemplo, se necesitaría abatir la presión, por medio de una *bomba* que succione el vapor y baje la presión a la que corresponda la temperatura deseada (ver fig. II.3).




Fig. 11.2.- Control de la Presión de un Refrigerante.

Para que el líquido del evaporador no se evapore por completo, es necesario suministrar continuamente refrigerante. Esto se puede lograr mediante una válvula de flotador que mantenga constante el nivel dentro del evaporador y un almacenamiento ó depósito de refrigerante, que contiene a éste a una presión "P", superior a la presión en el evaporador, como se aprecia en la fig. II.4. En este caso, la válvula del flotador controla la presión dentro del evaporador.

La válvula reguladora del refrigerante, parte esencial del sistema, es la que regula el flujo. La válvula de expansión termostática, es el tipo de válvula de control más usado. Controla el flujo a través de un serpentín que hace las veces de evaporador (ver fig. II.5).

Fig. II.3.- Succión del Refrigerante.

Fig, II.4.- Suministro del Refrigerante.

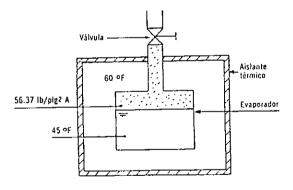


Fig. II.5.- Control de la Presión del Refrigerante Mediante una Válvula Automática.

Es indispensable recuperar el refrigerante por razones de economía y conveniencia. Por esto, el vapor que sale del evaporador se debe recolectar y condensar para usarlo nuevamente. En esta operación se usa el condensador (ver fig. 11.6).

Se ha dicho que el refrigerante absorbe el calor latente necesario para evaporarse en el evaporador del espacio por refrigerar, y que es necesario que otro cuerpo absorba este calor, para que el refrigerante se pueda condensar. Este cuerpo se llama agente ó medio del condensador, que por lo general es aire ó agua.

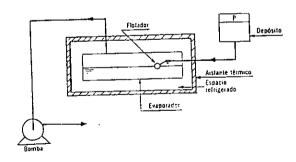


Fig. II.6.- Condensación del Refrigerante.

Para que el calor del refrigerante pueda fluir al medio del condensador, se requiere que el medio del condensador tenga menos temperatura que el refrigerante. Esto parece imposible, ya que el refrigerante tiene la temperatura del líquido evaporado, la cual es muy baja. Es necesario, por ello, incrementar la temperatura superior a la del medio del condensador.

Una vez comprimido el vapor a alta presión y a alta temperatura, se descarga al condensador, en donde la condensación se realiza a *presión y temperatura constante*. En esta forma se completa el ciclo de refrigeración (fig. 11.7).

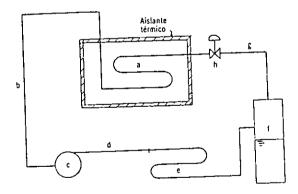


Fig. II.7.- Cíclo Completo de Refrigeración.

Las funciones de cada uno de los elementos que componen el sistema se pueden resumir como sigue:

- a). Evaporador.- Provee la superficie de calefacción necesaria para pasar al refrigerante el calor del espacio por refrigerar.
- b). Línea de succión.- Transporta el vapor de baja presión del evaporador al compresor.
 - c). Compresor. Tiene las siguientes funciones:
 - 1.- Remueve el vapor del evaporador.
 - 2.- Baja la presión del evaporador.
 - 3.- Sube la presión y la temperatura del vapor.
- d). Línea de descarga.- Transporta, del compresor al condensador, el vapor de alta presión.
- e). Condensador. Provee la superficie de calefacción necesaria para que el calor fluya del refrigerante al medio del condensador.
- f). Tanque recibidor.- Almacena refrigerante, a fin de que exista un contínuo suministro cuando se requiera.
- g). Línea liquida.- Transporta refrigerante líquido, del tanque recibidor a la válvula de control de flujo.
- h). Válvula de control de flujo.- Controla la cantidad necesaria de refrigerante al evaporador y reduce la presión del líquido que entra al evaporador, de modo que el líquido se evapore en el evaporador a la presión y temperatura deseadas.

II.3.- Carga de Refrigeración.

Para el estudio de este inciso, se dividirá en dos conceptos a saber:

- I.- Carga de refrigeración tratándose de aire acondicionado para comodidad.
 - II.- Carga de refrigeración tratándose de refrigeración industrial.

Se comenzará el análisis de primer punto.

- I.- Carga de refrigeración tratándose de aire acondicionado para comodidad.- En un espacio a refrigerar, la cantidad de calor que debe removerse con el equipo de refrigeración, se le llama carga de refrigeración, y se debe principalmente a las siguientes ganancias de calor:
- 1.- Ganancia de calor debida a la *transmisión a través de las barreras* que pueda haber; tales como paredes, ventanas, puertas, techos particiones y pisos, y que es ocasionada por la diferencia de temperatura entre los dos lados de la barrera.
 - 2.- Ganancia de calor debida al efecto solar:
- a). El calor transmitido por radiación a través de cristales y absorbido en el interior del espacio.
- b). El calor absorbido por las paredes ó techos expuestos a los rayos solares y posteriormente transferidos al interior.
 - 3.- Ganancia de calor debida al aire de infiltración.
 - 4.- Ganancia de calor debido a los ocupantes.
- 5.- Ganancia de calor debida a máquinas, alumbrado ó cualquier otro equipo que genere calor.

6.- Ganancia de calor debida al aire de ventilación.

A continuación se analizarán cada uno de los conceptos anteriores:

1.- Ganancia de calor debida a la transmisión a través de barras.

La transmisión de calor a través de barreras se calcula de la siguiente manera:

$$Q = UA(t - t)$$

$$e \quad i$$

Por lo general, la temperatura interior de diseño se considera entre 70°F y 80°F (en aire acondicionado), y la temperatura exterior de diseño se selecciona de tablas, según el lugar. La temperatura de bulbo seco exterior de diseño tiene, por lo general, su máximo a las 16h00.

La diferencia de temperaturas (t - t) se afecta en casiones, e i

debido al "efecto solar", pero esta consideración es un método para tomar en cuenta esta carga, que muchas veces no se utiliza. Las variables de la ecuación anterior se definen como:

Q = Carga de calor en BTU/Hora.

U = Coeficiente de transmisión de calor BTU/Hora-pie - ° F.

A = Área neta en pies .

t = Temperatura de diseño exterior en ° F.

. е

t = Temperatura de diseño interior en ° F.

i

- 2.- Ganancia de calor debida al efecto solar.
- a). Generalidades.- El calor de el Sol, que recibe la Tierra, varía desde un mínimo de cerca de 415 BTU/Hora-pie cuadrado a 445 BTU/Hora-pie cuadrado. La cantidad que llega a la superficie terrestre se reduce considerablemente por dispersión ó reflexión al espacio y por absorción de la atmósfera. El calor de el Sol que llega a la Tierra a través de la atmósfera se conoce como radiación directa, y el calor que se dispersa se llama radiación del cielo ó espacio.
- b). Calor ganado a través de los cristales.- El calor que se gana en un espacio a través de los cristales depende de lo siguiente:
 - Latitud del lugar.
 - Orientación de los cristales.
 - Claridad de la atmósfera.
 - Tipo de cristal usado.
 - Dispositivo para sombrear.

Un cristal ordinario absorbe alrededor del 6 % de la energía solar y refleja ó transmite el resto. La relación de la energía transmitida con la energía reflejada depende del ángulo de incidencia. Existen tablas experimentales que según la latitud, tiempo del año y orientación de la ventana proporcionan la energía solar que entra al espacio considerado. Se supone que la energía radiante transmitida por una ventana no afecta la diferencia de temperatura que hay a los lados de dicha ventana. Cuando los rayos solares chocan contra una ventana de cristal ordinario, se comportan de la siguiente manera: El calor que absorbe el cristal, es el 6 % del calor total incidente; de este 6 % se transmite al espacio 40 %; ó sea, 2.4 %. El 40% transmitido al espacio depende del coeficiente de la película exterior (2.8 BTU/Hora-pie cuadrado- ° F) y del coeficiente de la película interior (1.8 BTU/Hora-pie cuadrado- ° F).

Cuando los cristales no son ordinarios, éstos absorberán más calor si son de mayor espesor y visceversa. Además, existen otros cristales tratados especialmente para absorber una mayor cantidad de calor (ver la Tabla II.1).

La distribución del calor en un cristal que absorbe el 52 % se representa gráficamente en la fig. II.8. Como puede verse, este cristal especial que absorbe más calor, permite menos paso de calor que uno ordinario. Generalizando, la forma de encontrar el calor transmitido al espacio a través de los cristales por el fecto solar, es el siguiente:

- 1.- En la Tabla II.1, se encuentra de acuerdo con la latitud y orientación, la ganancia máxima de calor q en BTU / Hora-pie cuadrado.
- 2.- En los valores tabulados en la Tabla se considera toda el área de una ventana que tenga aproximadamente el 85 % de cristal; en casos donde la ventana sea el tipo estructural de lámina de hierro y el cristal ocupe más del 85 % de la superficie se acostumbra multiplicar la ganancia de calor por el factor 1.17.
- 3.- Cuando el cristal no es *estándar*, y la ventana no tiene algún dispositivo para sombrear, la ganancia de calor se multiplica por el factor f

dado en la Tabla II.1, columna 1.

4.- Cuando la ventana tiene algún dispositivo para tapar el sol, como persianas interiores ó exteriores, la ganancia de calor se multiplica por el factor f que se obtiene en la Tabla II.1, columna 2 a 6.

2

5.- La Tabla II.1 está basada en un ambiente exterior, cuya temperatura de rocío es de 66.8° F. Añádase 7 % a la ganancia por cada 10°F por abajo de 66.8°F y disminúyase 7 % por cada 10° F arriba de 66.8°F. Esta corrección sólo se hace cuando se requiere mucha precisión.

- 6.- Por cada 1 000 pies arriba del nivel del mar, debe incrementarse la ganancia de calor un 0.7 %.
- 7.- En lugares donde la atmósfera está muy contaminada de humos, polvos ó vapores puede reducirse el valor de la ganancia de calor hasta en un 10 ó 15 %.
- 8.- Debido a que la Tabla II.1 se estimó en el mes de Julio y como la Tierra está más cerca de el Sol en Enero que en Julio, en las latitudes Norte cerca de el Ecuador, la ganancia se suele incrementar 7 %. Lo mismo se hace en este mes en las latitudes Sur.
- 9.- Cuando por alguna circunstancia como el espesor de los muros ó bién construcciones adyacentes proporcionan sombra a los cristales, se suele hacer alguna disminución a la ganancia de calor.

0°					_	_							_		O* Letit	ud Sur
O" Letil	tud Norte_						r hori		ple c	adra		1	5			IEMPO SOLAR
	AR	4	3	•	*	10	"	117	<u> </u>			_		2.4		IEMPO LOCAL
EMPO LOC		Ť,	-		7			Ĺ.	_	\Box					Fachada del	Epoca del
Epoca del	Fachade del	—i		_			1		[i					1	edificio	año
• 60	editicle_			-	7,	78	10		40	75_	74	15	- 45	0	Sur	
ļ	Herte	<u>-9</u> .	119	13.	154	133	95	11	73	14	11	Πic	-	0	Suresta	ł
	Roreste Este	- 0	1116	147	135	93	15	1.	17	14	77		+	10	Margale	DIC. 22
	Sweetle	-3-	37	H	17			1~17	14	14	13			9	Heres	1 5.0
ול אטנ	Surarala	3			†÷i	14		116	14	15	177	끊	17	3	00111	1
	0++1+	0	-	111	III	14		1-65	13	133	1	+ ::		- 3	\$ wres = 14	1
	Maree 414	3	7.4		13	101		122	215	191	147	1 37	1 13	13	Tragelys plane	<u> </u>
	Tragalus glame	-	177	+ 33		2.5	- 65	35	06	65	61	34		1	Sur	4
	Agrants		113	1753	गड़ेब	124	. 15	13	16	14	H	10	-	÷÷	1300	3 ENE. 21
JUL. 23	Cult	<u>ام</u>	171	T-33	17.	1 96		1:	14		۱	4#	 -	. 5	Merasta]
JUC. 23	Suresie	F۴	[]	ŢŸ.	1 1	1 14		17	114	े स	17	111		1.3	Mercante	4
	Suratria	- 5	\vdash	177	; 13	Œ			- 13	1-66	139	152	120	15	0	NOV. 21
MAY. 21	0	_3_	- 6		- 13	17			-1 36	124	1.55	1155	111	13.	1	
	*******	-8-	1 %	+ 5	113				177	7115	131	131	1:0	7 9	Transies plans	
	Fragalus plans	1-3	١-,	+3	- 1		براء		134		131	1	177	13	3000	Ⅎ
	Norselle .	1-6-	1772	114	111						13	+-12			1.10	FEB. 20
#CO 34	<u> </u>	0	1 .,						114	1 14		10		- 5	herrite	4
	1 Suresta	<u> </u>	-	_		r; -	4 (-			-				1	∹
	*******	10					4:-1					10		13	0.014	OCT, 23
AUR. 20	9-374	0	7				41 1	- 1 2		110	1111				\$ 4000 0 100	Ⅎ
	Fregular plane	+-5-	- -	1 6		11		_		175				÷÷	Tingelur p'em	'
$\overline{}$	Norte	- 2.	+-7				4 1			7					5010010	コ
	Haresta	- 5					, ,			1	الما		1	· ·	Cyle	MAR. 22
SEPT. 22	- Section	+-3	177			1	8 1 3							·==.	Marte Marte	⊣
	100	1-5	\pm		: 11		41-1			i i					Normalia	
	******	9					1	करें प	77.0	7115	- 115	1 16			\$ 14	SCPT. 27
MAR. 22	Ovale hereale	┨╌╬	-+-		7.1.3		1			1 - 6						,
	Tragalus prama	1-5	-1	2 10			0 1			3 1 3 1	- 1 -				3	
	11 2001			•				3-1		a i T	a*†⊤	i-H	7:	6 0	2,00010	ㅋ
	hareste	-1-8	- 1	\$-\rightar		it.	7	617		1	<u> </u>			5 5	Kale Manuale	AB0. 20
DCT. 23	Cate	- 0	115	6 14						4 1 1	1 1	í Há	á-I-r		Parte	ゴ
	501								74 7	77.	2 1 17	TIT		:		
	Gente	-1 -2	+	•		3 6				s÷,			7			AGO. 2
FEB. 20	marerate					Π.				H				t- 	Congenie eta	-
	Trapalus diam			·· .1_										6		_
	harre	15				 -	18	14						6 1		→ MAY. 2
	Cale	17	, 1	nπtτ	77 1	17							n'i-	6 7		Ⅎ
NOV. 21	Servate	-13				7					55 7	21	54	7		=
	Suracele					πi	14	T6		35 I T				,=-		NL. 2
	D+11*		-			ᄪ						}; :	ijŦ.		\$	
ENE. 21	A		}- -			<u>, </u>		71-17				ត 🏲		9 . 1	Transfer mi	
	Torquius plan		-	;;;;-	77 T	゙゙゙゙゙゙゙゙゙゙゙゙゙ヿ゙゙゙゙゙゙゙゙	14	TI.					1111	5 1		\dashv
	Nervile		· -	ñt.	П.	77	15		11						D	
	Esta		<u> 1</u> 1			15			'i- -				TT:	5	J Harris	אטנ.
	Sureste			19 1		74	78	T	17.	£3	73-	74		15.	y Nema	→
pic. 22	50-		0 -	``	11,	111	#4	13.6	57	45	13 1			18	5 Peressia	_ !
	0+1+		•		<u>π;</u>	п	14	끈						17	3 5010011	\supset
	Tragaint pla		0	28		17	14			117		i) i) Tragatur pi	-ne [

Tabla II.1.- Ganancia de Calor Solar a Través de Cristales.

10° La	titud Norte				91	TV po	r her	a per	ple c	uedra	do				10° Letite	d Sur
TIEMPO SO	LAR	*	7	T	7	15	11	17	Ī	2	1	1	5	Ĭ	← TIE	MPO SOLAR
TIEMPO LO	CAL	***		\vdash		-	i –	-	-			-			₹ 718	MPO LOCAL
Epoce del	Fachade del edificio	Г		Г											Fachede del edificio	Epoca del año
	Herte	19	44	50	45	44		41	41	4	45	50	44	_	5	
	maresta		m	153	110	106		73	114		-;	- 11		1	Spragto Esta	
	Euro	31	17.	-33	41	133			1	14	11	11	1	2	Rerease	
JUN. 21	\$41	1-17	1	- 11	11	114	111		14			11	Τ.		Harts	DIC. 23
	Syranda	1.		4	1		14	11	11	75	133	155	111		Perestia Design	
	Paresela	1- 1-	-	+	117	14		} - } } -		106		153	iii 🗀	33	Buracela	
	fragalus plane	+		101	186	205	m	141	231	205	166	103	44	1	Tragalus ptano	
	H+71	1 5	177	133	15	n	100	10	11	- 11	- 33	31	I	1 5	Sur	
	Marasia	न	177	114	(11	157	36	77	114	14	H	111	17	Fi-	Boresto Esta	ENE. 21
JUL. 23	1400	35	135	122	147	71 4 32	11	; ;;	11	1	1 11	i ii -	 	} i	Herrala	ENE. 21
	Burasta	† ' ÷	17	177	177	177	14		114		i ii	11			Marto	
	Termote	1	17	†Tī	TÌ	14	गग		111	177	1 50	66	37	724	Deale .	
MAY, 21	0	1	17	14	77	113	11	111	131	174	1775	150	115	133	Surgesta	NOV. 31
	Tregulat plans	╁┼	1.5	10)	144	210		1247		210	166	101	42	13	Tragelus plans	
	HATE	ł÷	13	10	15	_	1 14	14	iii	15	15	115	73		Bur	
	Mereule	177	175	175	1111	1765	114	14	111	14	1)	11.	17	1	Swa-te	
AGO. 24	Lete	125	DI.	152		1,,,,,	1 13	14	11	14	13	11	1-4	╀	fate Martiale	FEB. 20
100.14	Surcele	175	77	74	15	1 60	77	1 14	114	1 11	1 1	10	├-	i i	Regarde.	ĺ
ABR. 20	-	·	+	Ηir		114	さつむ	114	127	100	÷ 15	94	24	111	Martesta	
	Costs	10	7	TT	[1]	, 14	1.11		7.5	135	114	161	in	175	Barnesit	OCT. 23
ABK. 20	Horosta	I	1.1	155	167	1 14	114		777	775	1167	105	" ii	+	Tropiles plans	ļ .
	Fragalist plans	H	118	1135	111	14	+-:	1-73	ان،	1	1	111		+÷	fur.	
	Marro Is	╁┼	100	1163	1 10	135	1 17	112	मि	111	111	; 11	 	1	S-++-10	1
SEPT. 22	1.14	╅┿	130	ाहर	151	100	177	174	Τľ	ा र	111	11	1.	1	faia	MAR. 22
SEP1, 21	Surgela		97	-144	1122	94	56	- 72	11	14	13	111		l-i -	Harte Harte	1
	Surgania	1 ;	- 6	+ ;;	+13	1 12	1 14	+-;;	1 35	110	1722	127	विशे	1 -	Hereaste	1
	00000	+	1	- 11	1 17	174	114	11	47	1109	131	164	130	\Box	O++l=	SEPT. 22
MAR. 32	Mercasto	1_	1	11	111	111	1235	747	775	707	133	[3] 97	11	Π	Tragetus pione	1
	Tragatus grand	II	777	197	113	207	1477	14	111	144	1.0	10	17	1 6	5	
	Mara II	-1-3	- 3	10	+ -44	17	114	13.	1	ो वि	113	10	-1-5-	1 5	Surceto	1
CCT, 23	Tele	-1-5	711	122	1145	100	40		114	14	111	10	1	В	E + 1+	ABR. 20
CC1, 23	100000	1 3	ारा	14,	1327	117	17	- 12	- 1r	165	1 22	170	17	0	Harrelle	4
	100	18	-118	40	33	1 17	Ηü	77	1	1723	11र्थ		101	10	Remeals	
	Syransia Costa	- 1 -8	1 5	10	ti ii	14	114	14	10	100	1145	155	111	1 0	Ovelo	AGO. 24
FEB. 20	Herevole	10	- 5	10	1.0	14	113	77	223	177	1130	15	177	0	Surgente Translus plans	1
	Tragatus plans	1 0	111	12	114	1177	1225	210	114	177	132		₩	+ +	Ser.	 -
	Rede		12:	1 37		113	-114	+ 17	Н.	1	172		1 7	10	Tweete	i
	N grosta Loto	- 8	- 77			+4	1 39	17	17	10	117	1.3	17	0	Este	MAY. 21
NOV. 21	2010010	ᅥᇴ	99	(5)	161	145	109	76	11	100	12		₩.	6	Hareste Herio	-
	207	- 3)5			20	134	106	18	1116	161	1153	100	- 6	Morpeste	₹
	Auracete	- *	- 1	7		10	1 14	-17	130	173	112	-trair	100	1.8	Ga +1a])UL 2:
ENE. 21	Neressia	-1-6	14			111	111		111	113	17	777	177	0	Sureenta	7
	Tragabus plene	10	11	+2		175		510	757	1175	111	152	117	0	Tregatur piene	+
	Rorte	0	- 4					14	14	113	112		+÷	₽÷	Burnota	┨
	Hereste	-1-3	- 15	- ,;					Hi	1 11	++;		1.4	0	Eate	1
	Lote Survein	ᆛ공	- 10						10	1 73	13			. 0	Horeste	JUN. 2
DIC. 22	307	- 0	730	17.	1 00	1101	$\neg a$		111	121	74		123	- 6	Horte	- ·······
	Eurossia	0	13					71	14	110	130		+	-+-6	One to	1
	Parabeta.		- 4		- 13				11		177		115	3	Surgesta	-
													ची पर	10		

Tabla II.1.- Ganancia de Calor Solar a Través de Cristales.

20° L	titud Norte				B	TU pe	r hor	в рег	ple c	uedra	de				20° Lat	itud Sur
TIEMPO SOI	LAR	á AM	7	•	9	+0	11	12	Т	2.	3	4	5	å M	- T:	EMPO SOLAR
TIEMPO LOG	CAL						1		-			-			Ti	EMPO LOCAL
Epocs det	Fachede del edificio		Г	_	_							\vdash	-		Fachada dal edificio	Epoce del
	Herts	21	10	71	25	19	17	15	17	19	25	"	10	21	To:	
	Neresta		154	144	155	63	31	15	14	14	14	17	9	3	Loresto	
	Eato Survata	20	111	1160	143	44	41	14	14	14	14	12	9	+	Eata Nacasta	
JUN. 21	3 w	+5		 	170	14	14	1	14	14	14	12	1	: :	Norte	DIC. 22
	Bures t to	1	<u> </u>	177	1	14	14	14	71	4	54	71	62	26	Marpesta	ĺ
	Geats Remarks	1	3	1 17	1	14	14	13	41		122	144	174	111	Surte	
	Tragelys plane	hŕ	10		176	216	71.			216		121	13	**	Francisc Stone	
	Perio	20	70	23	17	15	14	11	14	15		177	71	20	300	
	Meresse	71	132	178	111	73	31	14	14	14		77		3	Specia	
101- 23	E e le Suranta	75	70	15	75	37	46 29	12	14	14	-11	17-	 - -		Eate Noruelu	ENE. 21
	Sur	 'i	Hi	1 12	13	14	14	 	1	14	13	-17		-{-	Harte	
	Sureces.	i	Ť	177"	11	14	14	14	79	57	70	15	70	31	Harasto	
MAY. 21	Beele Marcolle	17	!	12	13	14	14	14	4		145	10)	132	71	Surges 19	NOV. 21
	Tragates place	1	33	1116	133	216	243	251	245	216	175	111	55	1	Trugolus plans	
	Herte	-	10	i n	13	84	14		77	14	11	71	10	4	Sw	
	Mercate	15	ļm;	TIE.	64	50	<u> </u>	177	16	14		111	7	7	Sarrato	1
AGO, 24	Bureste	53 29	117	111	149	98	35	70	1	14		П	7	2	Este	FEB. 20
	\$_/	 ~	٠.	!''	114	20	24	178	74	75			 - ∻-		Recta	
	Surbanha	7	┖.	: п		14	14	70	55	78		11.1	89	74	Margustu	
AOR. 20	Personal	13	-		-13	14		7	3	16a 36		#-		151	G = ++e	OCT, 23
	Tregrise plane	5		107			235	انتزا		210		10.	-	3	Surgeta Tragetus plane	
	Marte	0	١.		13	14	14	14	14	14 1		66	•	-	3-	
	Mercate	8	110	177	24	104	45	14	14	14 1				- 6	\$	
3EPT, 22	Total	 8 -		 ;;	140	170	100	11	15	14 1			٠.	8	£olp Marasia	MAR. 22
	Tur	0	T	17	76	52	61	13	73	25		72	-4-	-	Norte	
	Bureaste	0	- 6	7	1	14	1		15	104	143	116	110	-0	Parie	
MAR. 22	Npress(e	ř	H	 	1	16	14	14	11	22	59	187	130	٠	3=====================================	SEPT. 22
	Trophius plans	0	10		ष्य		225	777	775	152	151	77	70	ŏ	tragelul plone	
	Nameda	0	4	52	17	==		-	7	13	-	÷	-	٠	101	
OCT. 23	Late	1 -	99	1117	141	100	40	1	14	(1)	12	÷	÷	9	Sarvice Exte	ABR, 20
OC1. 23	Sureste	10	91	146	180	149	:19	74	27	1)	12	ŀ	4	ð	Perruta	ABR. 20
	Sur-	-	21	- 0	76	2.5	106		100	93	76	146	31	0	Herte	
FEB. 20	Overs	ō	1	9	72	13	14	ार ।	₹9	ω.	160	147	99		Danie	AGO. 24
	Horseste	0		1	17	13	14	1	14	13		57	74	. 0	5070-670	100. 24
	Tragates plans	0 0	10	11	117	171	194	204	194	176	127	-=	18	0	Tragelor pions	
	Moreste	÷-	24	126	14	17	+		11	13			-;-	6	Sureste	
NOV. 21	Zalo	0	71_		177	Ψį	43	11	13	11.	Ð			8	Eate	MAY. 21
	luresta lur	0	77	144	100	173	135	क्षा । सर्वा	44	16.1	100	4	3	0	horeste horis	1
	Eurossia	. 0	Ť			16	46	9.	U5.	156 1	1:4	14.	73	-6-	Mermanta	j
ENE. 21	Morseete	8	F;-	ļ.,.		0	ŢŢ.	11	13	91	127	171	31	0	Casis	IUL 23
	Tregalut plane	0.	1-5-	12	hái-	145	113			13 1		70		00	Suremale Tragoluz piana	ł
	April	0	2	,	11	12	117	11	13	12		~	-	-	Sur	-
	Merasia	0	14	111	15	12	1		13	12		7		0	E-reets	!
	Sureste	0	56	118	4	85 57	3	-83-1	13	70	#	+	-}-	0	Esta Norveis	1
DIC. 22	Sur	0	23	24	TIT !		146	145	46	122 +	111	74	25	-0-	Herte	JUN. 21
	Surgeste	õ	3	,-	1	20	60				187	119	ŞΨ	٥	Horneeln)
	Nerestia	0	2		4	12	13		-}4	12	7	!}} 	56	0	Sureculo	
	Trepalus giama	ŏ	4	16	92		161			135	62	- 11 		-8-	Trageler plane	1
										<u>-</u> -						·

Tabla II.1.- Ganancia de Calor Solar a Través de Cristales.

30° Lati	itud Norte					30 Lati	tud Sur									
IEMPO SOL	AR	AM	7		*	10	11	12	١	3	1	•	'	PM.	← 11	EMPO SOLAR
SEMPO LOC		~~	-	_					1						← Tì	EMPO LOCAL
Epoca del	Fachada del		\vdash	-			1-		Г		_				Fachada del edificio	Epoce del
ang.	editleio			_					⊢	-		-			Sur	
	Rente))	29	11	14		14	14	114	14	14	18	15	13	Seres)#	1
	marrate	105	156	115	7	- 25	124	174	; —	1	17	1 12	78	3	Eate	ĺ
	Euresie	47	75	60	127		44	1.17	14	14	11	172	10	3	Nervala	DIC. 27
JUN. 21	Sur	- 5	10	11	14		19	Σĩ.	19	15	90	90	75	- 2	Norta Nortalia	
	Surerate	- 5	10	12	14		14	17	44	- 1	77	112	h	108	Onnie	•
	Oquite	- 5	10	1-12	 		17	 ;; -	170	1 35	97	130	139	105	Succession	ì
	Transpire plane	13	51	137		1 212	245	750	17-0		185	131	101	10	Tragetus plans	
	harte	22	70	114	1 11		11	111	114	116	-13	1 14	20	722	1	!
	Marrete	100	137	133	100	1 15	14	14	174	114	111	- 12	1.6	F;	Spicalo	1
JUL 23	tala	103	135	1हर	1145	- 14	-44	77	11		13	1 12	1 8	+ ÷	Harrate	ENE. 31
NL 23	Surgete	42	~	100	100	1 11	3)	1 10	177	70	114	+;-	1	1-7-	herie.	1
Ŀ	tu-	1 4	1	-	11	: 18	111		131	ĹΪΪ	1130	1100	111.	47	Maracola]
_	Turpusta Goote	1 :	Ť	1-12	13	: 14	14	114	144	1.64	145	164	111	1.00	Deele	NOV. 31
MAY, 21	Bernania	1 7	1 9		1 13	1 14	14	1.4	116	1 6	10	1171	111	115	Tregatus plans	₹
	fragelies plans	13	86	12)	176	1 234			1111	214		1111	144	1 13	3-7	<u> </u>
	Rent			111	()		14		1 14	1 13	1-13	111	1 2	1 :	Burraia	-
	Mareste	55	104	100	1140		11	1-14	14	1 13		111	†	+ i	Live	FEB. 20
AGO. 24	Ente	66	147	165	+::	1 113	1 17		113	1 13	1-13	1 11	† i	7.7	Hareste	3
	Surville	1 12	77			;	- 51		131	1 47		: 13	11	7.	4000	4
	50700014	1 7	1			· 13	15			1111	123		11	32	Respects	
	Oorle	1 - 2	1	171			14	14	1.6		1146	160	137	55	Oneia Sweets	OCT. 23
ABR, 2D	Martela	17		1.11			114		1776	777	161	1107	177	1 7	Tragelys plane	┪
	Tragelus pinte		47			; 730	725		7775	11	12	10	1 3	0	Sur	i
•	Harte	10	74	100			119		113	1-11	112	1 10	1 3	· č	Suresiv	3
	Mgrasta Este	1.8	124			- 51			111	1.13	12	1.10	13	ō	Cita	MAR. 22
SEPT. 22	5-11-	1 ŏ	91			141	100		1 25		12	140	13	0	Heresta Herta	-
	Sur	- 8	1-4	111	-63		7,		1	- 17	157		+vi	+ 6	Herestie	1
	Surmerin	- 6					7.5		14	1183	144	1158	107	- 5	Deste	SEPT. 27
MAR. 22	Cools	0	-1-3				113		113	115	40	1 40	174	0	Surpesto	J
	Traggled plane	- 0	75				202	212	202	179	135		75	0	Tragatus plump	
	Herte				9 11	1 17	111	F 14	1 11	12	Ξ	1	1.	0	1	-{
	Harasia	1 5			T T	1 1				77				0	Surasta Fala	ABR. 20
OCT. 23	Eale	- Q	17						- [+;	- `	Mereste	
VO. 23	Sureste	. 0				3 15			100				- 11	10	Norts	_
	541	0		7					111		116		73	0	Moreavie	_
	Surgaste	-1-6		-		1 1			1.4					0	Surequie	AGO. 24
FEB. 20	Heresale	7.0							117				+"	1 8	Tragalye gines	┪
	Tragatus place	ľ		1	_+-				_				٠i	0	lw.	
	Nurte				-	ш.			1:				-1 -i	l õ	Limente	∃
	Recoyle	- 0		18					Ť				1	0	Kele	MAY. 21
NOV. 21	Ealq	-							- 0				ш	0	Hereste	
	Suresis	~ † ૅ		i 'i			115	र चित्रहर					10	- 6	Norte 14	–i
	Serentia	-17	7	ш	ii.	9 7							23	+*	- Resident	⊒ հու <u>Հ</u> ա
ENE. 21	0++1+					}							- 11	- 1 5	Surcesta	⊐ ~~ . ~
2110. 21	Noresta				, ,		<u> </u>							- 10	Tregalus piene	<u> </u>
	Tragalut plane		_					2 1				+				
	Horsele Horsele		₽		-	9 1		1 1		2 1	ī 🗆	1 4			Burpla	
	Moreste			-			8 3	1 17		1					Este Parente	-1
	Sureste		i 	9 111	4 13	7 10	114				•	1 1			Rent .	JUN. 21
DIC. 22	1		0		4 111											
	Surgeste			Y	-		+ 13								Deste	}
	Geela		₽+		1			117		1 1	ī I.	9 10	2) Q		⊣
	Trapows plan		-			0 1				-12	7 6	<u> </u>		7 70	Trapplus plan	• 1

Tabla II.1.- Ganancia de Calor Solar a Través de Cristales.

40° lat	titud Norte	Γ		_	8	TU po	r har	a por	ple c	andre	do				40° Latit	rd Sur
TIEMPO SOL	AR	الما	7	ı	•	10	<u> </u>	12	١	2)	1	-37	M.	← TIE	MPO SOLAR
TIEMPO LOC		^	├—	┝	-		\vdash	├-	1				_	-	← 71€1	MPO LOCAL
Epoce del	Fechada del				Г		Г								Fachada del edificio	Epote del
889	Gijilipe Bada	37	20	12	- 11	14	14	11	14	14	113	12	20	37	1-r	
	Restate	hiir	Ιñ	117	ii	16	ार ।	11.	TT	14	11	77	٦٥٦		\$44.414	
	E s be	176	161	100	1147	एड	11	14	11	गर	11		10	-	6++-	
	Sprayin	5	100	107	4	35	77	1 54	14	15		13	10	1	Harden .	DIC. 22
JUN. 21	3	1 6	10.	1/2	114	1-17	117	17.	177	12	 ```	109	10	31	Herecale	
	Deste	1 .	10	1-17	ŤΪ	14	14	111	144	र र	112	152	151	128	0411	
	Marasala	1.0	10	11	-17	14	14	11	14	30	1 11	1112	Ш		burecels ;	
	Tragelus plone	11	11	ाउर	179	310	1772	1111	212	212	174	114	1.2	131	Tregatur Blance	
	Nortu	74	14	17	111	14	114	114	114	14	111	12	14	بدا	3	
	Resista	106	177	105	1.		114	1 14	1:	1 14	113	172	10	<u> </u> }	Earesto Eare	ENE. 21
JUL 23	Jata Service	111	161	110	1177	110	1 17	1 42	113	1 13	1 17	115	10	1 3	Recuir	EHE. 21
	Sur	1 -	10	113	7.0	177	i li	1 4 5	161	144	1 75	13	10	1 5	Herte	
	Suressia	1.5	18	12	113	114	115	141	Ti.	110	1.25	119	95	34.	4010111	
MAY, 21	Dette	13	10	(2	13	14	14	1.14	41	98	164	181	161	T18	O++1e	NOV. 21
mai. 24	Reresta	13	10	17	0	14	. :4	111	111		96	105	122	124	Sursente Troppius plant	
	Tregetic gloss	24	7)	176	177	201	1225	733	215	701	1074	176	111	24		
	merte	1.	ıά	1-17	11	16	14	11:	114	114	뷰	11	₩	+ -	Sur Eurote	
	Reprote	1:1	147	162	1133		13	113	114	1 :-	1 13	1-77	 	Ηŕ	Late	FEB. 20
AGO. 24	Surrain	1 '`	105	177	122		tion	31	133	1	1 11	11	1	Ιí	Margely	FEB. 10
	100	15	1	14	51	1 69	13	107	97	1.0	31	14		1 1	MECIO]
	Burgesta	יכו	ľ	म	77	114	75	4.5	1107	119	14	1138	110	11	Reservice	Į.
ABR. 20	04419	1.3	Ţ	11	111	14	14	17	75	1131	45	167	F	11	Syresia	OCT. 23
	Tragetus piana	+ :	47	100	150		205	214	205	113	130	100	147	١.,	Treasur pro-a	i
	nere.	1 +	17	1 4	172	1 17	13	114	111	11	12		13	1 0	1 m	_
	Narrate .	18-	tsť	138	1.7	111	1-15	- 14	111	111	112	1 9	1-3-	10	200110	1
SCPT. 22	T.110	Ò	illà	124	1134	119	15	1 11	TIL	Tin.	1.17		7	0	Erla	MAR. 22
oc-1, 11	har solo	10	75	111			ारम	1.50	1 41	114	111	12	1 3	0	Recepto	ł
	600	10	172	-11		110	177	140	1177	1110	17	1127	95	- .	Norte Horosale	1
	Desir	1 %	- 3		117		11	14	145	100	1139	144	1110	1 8	Deale	SEPT. 22
MAR. 22	Meressla	1 6	- 1-3	- 	112	1 1	117	114	111	†ii	7.0	31	151	0	Surgette	3071. 7-
	Tragalus piana	1 6	21	67	1174	ांग	170	133	174	157	124	6.7	31	1 0	Tragalus plans	
	Harts	١,	1	1 6	10	1 11	12	112	111	11	10		12	0	341	1
	Nersta	2	15	33	17	111	1 12	111	17	111	10		1-3	1 8	Suresia	}
OCT. 23	Esta		85	===	177		114	1127	-	115	1 10	+	1 1	1 %	Este	ABR, 20
	Sur tate	+ %	21	132	1181	1167			lis:	1117	104	- 31	is i	1 8	Rerie	1
	Seresala	-†-ă	+**					107	1144	1167	101	133	111	10	Meravals	1
FEB. 20	Orely	1 õ	1	4-1	10	1 11	112		10	11	122		113	0	Deale	AGO. 24
764. 20	Nacosta	0	7				17		177	ŢĦ	777	171	125	- 8	Surgesta	-{
	Tragalus plane	0	•	34		1.4	123	123	1177	101	44	79	i i	1 0	Tragatus ptene	
	Reris	10	0	1		1:	12	- 11	110	┵		++	1 6	1 8	Swelle	4
	Name to	1.8	5	1 91	105	+/	111	111	113	++;	╅┯╅		1-5	1 0	No.	MAY. 21
NOV. 21	Personal	┪~	+ 5	109	1144			114	לור ו	127	7	1	10	1 0	har e s te] *****
	3wr	10	10	30	101		135	166	Ť158		1104		į Ū	. 0	heria	3
	Surgeals	0	0	\Box			73		114	1			10	10	Merante	-{
ENE. 21	Orste	1.0		17	1	1-8	-13	111	133	74	1103	72	1 %	9.0	Bureaste	100.23
	Tragalus plans	- 8	0	16			13	103	1 65	1 1	43		1-8	l ö	Tragalus plans	7
	Norte	1 0	+ *		1 7	_	_		110	+ ;		1 7	1 *	Ť	540	
	Hereste	1 8	1 8		+ 3		+ 13	13	110	- 6	- 6		1-8	10	Surrate	1
	(410	1 8	1 š	177	118	1	1 57	110	10	1.7	- 6		10	10	fate	3
	Survete	ŏ	ŏ	111			117	1115	171	35		7	1.0	0	Hereste	יוב אטנ ר
DIC. 22	3	0	9	3				- 25	133	111	134		10	0	norta haranata	1 "". "
	Bureeste	1 8	0	14	-1 '		72	115	142	141	1134		10	- 0	Ornia	4
	Neratite	18	-8	1 5			10		110	1	-	17	Τō	0	Suragely]
	Cragalus piens	-1-6	ŏ						7.	1 55	113	1	10	à	Tragalus plane	1
	1 dans biles	٠.,	I,	٠.	''۔	1 32	, ,,		٠			<u>-</u>			1	

Tabla II.1.- Ganancia de Calor Solar a Través de Cristales.

						11 00	e hor	e per	ole C	uadra	140				50	Latite	d Sur
	ud Norte		7 1		7	10	11	12		7	3	1	1	F	⊺	TIE	MPO SOLAR
EMPO SOLA	R	<u> </u>	_	_		Щ	<u> </u>		├-		 	-		1	-	TIE	MPO LOCAL
IEMPO LOCA			Н		┝	├─	 		╁	├-	t	-	1	1	1	ehada del adificio	Epoce del
Epoca del	Facheda del edificio				<u> </u>		<u> </u>	ļ.,	١	1	13	1 12	12	7,	1 :		
	Kerts	79	11	17	14	1 1;	14	14	┼⊹	1-11		17	10	3		ere ste	
Ţ	Naresia	132	125	102	130	100	41	14	14	14	11)	. 17	T.º	+÷		presta	
\ \	f att	1	107	126	Lis	111	91	1 61	Η,	14	1)	12	1 10	1 ;		erie	DIC. 22
108, 21 F	3	1	10	10	173	140	27	1-37	1~			1110	1.02	184			
1	Sereevia		18	12	111				11	104	1110	161	164	+		ween 10	
į.	Doels	 ∤;-	170	17.	1 13	13			1			13	123	44		regions pione	
}	fregaluz plane	14	1è	(1))	ונדוך				111	1.77		177	+;;	71		er	
	Marte	21	ш	17	10	115			1:3			172	1 10	-		urdain	
	Maraila	114	ш	1.5	101		1 47		110	14		117	10	٥		a le	ENE. 21
ועון, 25	(119	115	187	1177	177	111	104	1 10	120			137	10	+:	-	1944	Í
	Eurosta	1	110	121	34				10			104		1 45	713		1
	Lurpealt	13.	110	12	4.9				-17			101	165	()		Du +10	NOV. 21
MAY. 25	O-+14	1-:	10	13	7				#17	35	1	$\pm v$		100		Tregalve place	1
m=1. 27	Maracett	- 33	+75	1110	131		70	2 2	150.	_						ber	
	Tregatus plane	-	1	1 10				4 14							;+-	\$ == 0 A 0	1
	Recent	76	Œ					-								l t la	FEB. 20
AGO. 24	E +1-a	94	-1:-					1		• • •	3 ; 1			<u> </u>			₹
	20/10/4	37	77	+			1 11	i m						/ ,		Herea els	-{
	Surgerate .	-1	-	1	5 1	7		0		2 (5						0	DCT. 23
4BR, 20	Ouela							4 1			1	_ 7	0 9	•] ?		Surespite	4
#BR, 20	Hermania	1	-	Ŧ		•—		9 10		Ta	<u>6 13</u>	1				Tragelet plane	
	Tragalus plent	۱",						. 1			17 1		•		8-1	Swarin	-{
	Harte	-}-;				•		12] 1			3 -				. 	Late	MAR. 22
	Eate	+1	-10	117	1			216			7 1			₹	▥	Reserve	
SEPT. 22	Surethe	_1_7						45 (10 50 (13				<u>† † 5</u>			9	Morte	⊣
	100		7	ᆉ			'nΤ	50 1	5 11		6) [1			10	위	Deate	SEPT. 22
	Gania			11 -				<u> </u>			93 (1)	0 13		{ 	* 1	Bergeste	⊐ " """"
MAR. 32	Nergaste	73	57	4				40 14	•					3 1	৽ৗ	Tropping plane	1
	Tregatur plane				1.9	7 1	10 1			10	9	7	•	0	<u> </u>	3	-1
	Horts		<u>-</u>	0	70	÷ŀ		हिंदी ।	,	10	4	\overline{I}	<u> </u>	-	* 1	Earle .	−i ABR. 20
	Normata				99 [10 1	24	7	7	* t	* 1	Here 194	
OCT. 23	Buresta				* *				67 T	60 I				ťΤ	0	Hortu	
	1				27	ल	77			11	157				0	Meresta	AGO. 24
	1-101-17		}	8	: †		-9-7	10	11		79 11			"	뮈	Burnesta	⊣ *** **
FEB. 20	Desta Mararita		- 1	ŏ	4	7	T)		<u>. </u>	10	,, 		10 	~ 1	-	Troption plan	₹ 1
	Tragalus Biar		<u> </u>	2	19	क ।	71	14	*	!	"	"	; 	 	-	3.00	
	kortu		•	0	7		+1	-	*1	- 1		4-1		7	0	Surath	⊣
	Moreste	\Box	0	0	5	- 1	.; 1	71	4	77	. •	4	\Box	-	0	Esta .	MAY. 2
NOV. 21	Esta	}-	0	- 6 +-	67	75			57	1	31	76	34	٦	-6	Rereste	┪
	Burdete		-ŏ	0	उस	, , ,			95		175	45	62 	ŏ	-6-	Moreastu	コ
	Surasto		•	-6	平	Ţ.	2]	4)	~~	''' i	37	и	3	0	9	Serentia	1∩гз
ENE. 21	Ocate	_	-	D.	-H	÷	-	-	•		•	1	3	٥	1	Tennalus pie	≓
	Troppies ple	-+	0	8	4	15	30	47	2	7	30	11	크	•	0	Sur!	_+
	Norte		Ť	0	-0_	I	3	•	⊒.	9	5		8	÷	à	1-would	⁻⊐
	Herri	-+	0	ō.	-6	1	1 5	21	7	÷	ا-ئ-ا	-;-	*	-š-	10	Eate	=
	Este	⇉	٠.	0	-	#	147	116	ᅘ	12	25	Ĺ	P	0	0	Marte	.אטנ
· m.a	Surrete	_1	0	8	÷	 	64	134	[4]	131	99	H	<u> </u>	0	8	Respond	
DIC. 22	Burnesit		- ÷	1 6 1	-	Ť	25	67	100	114	10)	41	-8-	₩.	18	Ouels	
	O-ste	1	0_	0	9	17	3	6		123	+ -	+	10_	ō.	0	Lumpasin	
	Heressia		⊸	To	- 0	1 1	1 3	133	40	۱ň	1 19	3	0	-	. 0	Tengelus at	

Tabla II.1.- Ganancia de Calor Solar a Través de Cristales.

c). Calor ganado a través de muros y techos.- Calcular el calor solar ganado a través de muros y techos es más complejo, ya que cuando el Sol calienta la superficie se inicia un flujo de calor hacia el interior del espacio, hasta llegar a un máximo; después, el flujo disminuye poco a poco durante la noche y vuelve a aumentar cuando el Sol calienta de nuevo la pared.

Este cálculo se simplifica usando el concepto de "temperatura aire-sol", desarrollando por "Mackey y Wright". La temperatura aire-sol es una temperatura del aire tal, que en la ausencia de efectos de radiación da al espacio interior la misma cantidad de calor que la combinación de radiación incidente de el Sol, energía radiante del espacio y convección del aire exterior.

Para resolver este problema de encontrar el calor ganado por el Sol, se han preparado Tablas que indican la temperatura equivalente que se debe usar en paredes ó en techos. Las Tablas están basadas en 15°F diferenciales de temperatura de diseño; en caso de que la diferencia sea otra de 15°F debe corregirse agregando ó disminuyendo a la temperatura equivalente a la diferencia entre 15°F y la diferencias del lugar. Así mismo, si la diferencia de temperatura exterior durante el día es distinta de 20°F, debe añadirse 1°F a la temperatura equivalente por cada 2°F abajo de 20 y disminuirse 1°F por cada 2°F arriba de 20.

3.- Ganancia de calor debida a la infiltración de aire.

Para determinar el volumen de aire y las ganancias de calor latente y sensible, se siguen los mismos pasos que para el caso de calefacción, ó sea, se deben considerar las pérdidas por infiltración debidas a:

a). Las ranuras en puertas y ventanas que se pueden calcular por el método de las ranuras en lo referente al tema de la calefacción. Cuando los espacios por acondicionar no están en edificios de gran altura, se suele despreciar la ganancia de calor debida a las ranuras.

b). La abertura más ó menos constante de puertas. Por esto se supone que de acuerdo con el tipo de aplicación y la clase de puerta hay una cantidad de aire que penetra por cada persona que lo ocupa.

4.- Ganancia de calor debida a personas.

La ganancia de calor producida por los *ocupantes* del espacio a enfriar está tabulada, y depende de la propia actividad que las personas desarrollen dentro del espacio y de la temperatura de ese ambiente. La ganancia puede considerarse dividida en dos partes:

- a). Ganancia de calor sensible.
- b). Ganancia de calor latente.

También existen curvas y Tablas que proporcionan el calor generado por personas a partir de la temperatura de comodidad, ó bién, a partir de los pies-lb / hora que desarrolla un individuo. Así mismo, hay curvas que según la temperatura y actividad proporcionan la cantidad de evaporación de un individuo por hora.

5.- Ganancia de calor debida al equipo misceláneo.

Para obtener la ganancia de calor debida al equipo que se tenga instalado en el espacio por acondicionar, se recurre a Tablas experimentales. Siempre se debe considerar esta parte de la ganancia total que, en ocasiones, puede ser muy importante; a veces, se acostumbra a incrementar esta ganancia un 10 % por alguna contingencia imprevista que pudiera ocurrir.

6.- Ganancia de calor debida al aire para ventilación.

El aire que se requiere para ventilación se debe suministrar en cantidad suficiente para cumplir con ciertos códigos, reglamentos ó recomendaciones. Es evidente que para mantener un nivel bajo de olor se requiere cierta cantidad mínima de aire. Por lo general, se debe considerar un mínimo de 7.5 pies cúbicos / minuto por persona, cuando no se considere humo de cigarro; si se considera el humo de cigarro, se deben tomar de 25 a 40 pies cúbicos / minuto por persona que fuma.

El aire para ventilación se debe considerar independientemente de la propia carga de calor del espacio, ya que éste pasa antes por el acondicionador, en contraste con el aire debido a la infiltración que entra directamente al espacio por refrigerar.

La cantidad de aire debe ser adecuada para manejar la carga de refrigeración, calentando el aire desde la temperatura de entrada a la temperatura del espacio. Mientras la temperatura de entrada sea menor, menos cantidad de aire se requerirá, pero es lógico que esta temperatura no puede ser menor de ciertos límites. La temperatura del aire de entrada varía en general, de 5°F a 20°F por debajo de la temperatura deseada. La temperatura de entrada debe ser, por regla general, 2°F por debajo de la temperatura del cuarto por cada pie entre el piso y el techo.

II.- Carga de refrigeración tratándose de refrigeración industrial.

a). Generalidades.

El cálculo de la carga de refrigeración, para el caso presente, es similar que para el aire acondicionado, excepto dos ó tres partidas que se analizarán a continuación Las cargas más comúnes son:

- 1.- La transmisión de calor a través de barreras, ó sea, paredes, techos y pisos.
 - 2.- La ganancia de calor debida al efecto solar.
 - 3.- La ganancia de calor debida a la infiltración del aire.
 - 4.- La ganancia de calor debida a los ocupantes.
- 5.- La ganancia de calor debida a máquinas, alumbrado ó cualquier otro tipo de *equipo que genere calor*.
 - 6.- La ganancia de calor debida a los productos por refrigerar.
 - 7.- La ganancia de calor debida al aire por ventilación.
- 8.- La ganancia de calor debida a la respiración de algunos productos.
- 9.- La ganancia de calor debida al tiempo que no funcionan los acondicionadores, durante el proceso de descongelamiento del evaporador.
- 10.- La ganancia de calor debida a materiales de envoltura ó envases.

•			915	ENOK ENO	OCL C	UAR10		h-m	Ŀ	NF AI	AMIE	A I G	╛	Cel Iste		tsett be/S	_	40		: # P	hata s	F-17-G	
:RUTAS	TIPO DE .	lange	ater s	-	erate a		क्षित्रकात्त्वका विकास स्थाप स्थाप	to the			1=		gdar	pole l'e			Des por	. 1	rite Iran	# H	(4a	R MA P CAR P4 4 5	· le
	RAMIER 10	"[H- manes- (adm				7	(14) (14) (14)	-	1	fee	•		•	1 1 1	1	lich P Lin	2	1			24 1	**	_
danyana l	Corts	n	<u> </u>	_	,	15.96	24.0		Г	П	Т	T		١.	:	. 1,	٠.	١.	-11	н	7"	1 2	
	Laifo	30-	×		- L	KH	ro t	4 MES	۱ .	,,,	١,	ı.			**			١			Į	159	
١ ١	Inic, entr. Acab, entr.	4]				76 4		1 -	1.	1	1		L-	••		<u> </u>	1	111		1,,	19	_
itabacana	Corte	- is	15	-		80-85	PL 2		7	T	ī	Т		1	:: 1	6 17	١.	[۳	111	١"	1"	1 44	•
r.abacana	Largo	12	ի ու		K*	10 .85	31.0	7-14 fe	'\ "	ı l	ı,	۱.	8 43	ì	30 Dt		ļ	1		1	1	110	
	inic. enfr. Acab. enfr.	12	1				27 1	l	Ш.	┸	1	4	_	↓_	4.1		╁		t la	 	1272		_
guatate	Corto	401	140		m.	15.19	11.0	13 641		1	T	1			41	l ""	١.	"]		Ι"	1	1 10	
•	Large Inic. enir.	115	1"		6	61 M	11.0	\ ****	١,	٠١,	٠١;	ր Լ		1	32 81]	!	-1		i	1	352 70	
	Acab. entr.	, ii	1		m		21 1	<u> </u>	4.	Ļ	بلـ	Ļ.	N5.1		7.0	-,,	-	+	104	K	110.7	-	;
Platano	Meduración	ro.	147	-10	: 1	10 15	104.7	1		141		ii i	11	1	1. 2"	``		ļ		Į		15	94
	toic, enti.	78 14		- 1	# [19 64	١.	ì	ı	ŀ			10	Į.	ļ			1	ł	1 *	d
	Mant, verde			140	::	85	46.3 50.8	1	1	-	1	1		1	13	1	1.	_		1_	4-		7
	Mant, madure	",		-	-	III- 85	18.7	┪-	┪-	1	7	_		T	41		۱ (د	41	171	۱,	- {24 · 3		** **
fresas cereras,	Corto	12		1.02	456	##-#S	22.1	344		1			7	.	0 3 20 0f		İ		ĺ	1	1	1.	10
etc.	lac entr. Acab, entr.	11		- [6		11.4	1	-11	"	"]	"			0.1	Ц.	┸		<u> </u>	╀-	- -		***
Arkedies		-			**	85-90	21 4	+-	+	1	7	_	Г	Т	53		۰۱۰	42	(*31	"	n		*
AV S AG I PO	Corto	l M			-	85-13	24.4	111 ==	۳.		,,	ъ		,	11 27	1	-			ì			4
	Inic, enfr. Açab, enfr.	1 1			65 85	Į	26 7	1	Į	~[l		<u>L</u>		0.5	↓	4		<u> </u>		+		154
Dalises	Carta	٠,		K 40	781	15.75	70.0	┪	T	٦Ì	╗	_	Į	Ì	C 13	٠,	١٩		21	Ή.	' ⁻		,w
[Cursoes	Laves			24 27	784	85-75	15.4	31 00	4	-+	-1	_	 −		8.10	┪	ᆒ	0 13	1 4	7	-		110
fruiss secas	Certo Lorgo	1 :		15.40 12.14	PBc PBc	20.75	, ×	1,47		- 1	- 1		١_		0 01	_	1	_	<u> </u>	4.	4-		154
Hight 7	Carlo	-+		49.10	75	45.1			П	7	_		1		50	•	"		4 11	1	9 79	'	4
datiles (rescos)	Large			14-14	76	45.7		—	61	4		_	╄	+		٠.	ᆔ	0 6		٠,	77 29	•	-
Uves	Coste			5.40 10.11	13	In t		110		- 1	- !	i	l	-			1		ì	١		Ì	**
amental amentan	Largo 1 larc. enir.	1.	⇔İ.		85	[-	1 4	. *	۱ ۱	70	34	70	١.	es	16.0	' l	1		1	-	- 1	- 1_	-
	Acab. entr.	_1	17		15	1	22				-	-	┿	+	5.0	٠,	1 03	6.1		7	7	1.3	-:
ijeas (mailesa	Corto)1 30	33.40 30.1(es esh	45.1	o ≥	, [) 6·	M1673	_	١.,	۱.	١.		04	. [١		1	- {			15
Californi	inc. entr.		40		1	1	21.			78	14	"	1"	~]	94				1_	⅃	}-		_:
locatria	Acab, entr.	_	*	44 45	- ·	FS. 1	$\overline{}$	_	_	Г		Γ	Т	7	3.4		* * 1	0.4	a 13	۱ ۱	14 × 3	٠٠	;
10cen11	Largo		12,	13:34	151				met Mi	1	۱	١,	١,	[ور	0.3 IT D	· 1	Ì		1	ì	- 1	ļ	r
	lare, enfr. Acab, enfr.	1	12		85	1	1 17			Ľ.	Ĺ	Ĺ	1		0.1	-	_	_	-			 -	-
Lamin	Corte		55	11.4						Γ	Γ	ľ		ŀ) (0.71	۰	"l'	24	- 1	19.4 	
	Large	-1	55	55 66	15		10 10		48 823	×	57	7	٠ [٠	1.0	12	,			1	- 1	- }	- 1	5
	Inic. entr. Acab. entr.	.	"		15	1 _	<u> </u>	3	_	<u> </u>	┡	1-	4-	_{	4:			,		16	*	,,	_
Lima	Corto		45	45.4					Men-	ł	1		1	ļ	6.	7		٦	Τ.	-			,
	Largo inic entr.	-	45	43.4	1 65		`` e	a .	43	rs	4	7	9	0.70	14.			1	1			ļ	
	Azab, enfe.	.	45	<u>_</u> _	91	_1_		•		╀	╁	+-	+		-;	-	6 71	10	_	8		n •	_
Haranji	Corte Large	1	40	131					9 MM	1	ļ	l	ı			5 H		ľ	1		\	- 1	,
	taic entr	i	40	\	١.	s	1 3		ar t	1	۱ [ا	12	22 1	0.76	١٠,	P.			1			-	1
	Acab, ente	. I	12	ı		5]	1 3	2.3		1	ı	1	_1.				_	٠.	_	_			_

Tabla II.2.- Datos de Diseño para Almacenamiento de Frutas.

	·		0151.5	O DEL	12 DE C14103			١,	Da.	os c	10	(Jahr Heteste		CIFICO				
	1076 00	Irap	ratyra		MAN Ului	COMET PER	feres Cause]e				()Autoria de)	Bis I	۱.	Calor to terrife	pales.	Francis CONTIN	Mg-queral manage de sas e
1401YZ	MAMAGATS	*f it cates	Faigh pride 150 14	in ac	l paga parti- tibr Co	a la con éconi resonan- écia	R III NOTE SETT	25. 10.	بر احد	141	factur fo 10 politi	51/4 21 kr (m: 41- (i: "[)	Sim gi cie Titti	Priseri R (INC)	funct fa 8	C.	t eas	el courts Per pus
Durarno	Corto Largo Unic enfi Acab enfr,	15 12 40 13	31-00 F1-11	851 856 85 85	10-11 10-15	25.2 22.3 11.9 25.3	?iaea esta	ы	и	24	8 43	5.1 0.3 23.04 d 3	071	9.44	121	₩.	J9 2	19 29 24
Pera	Corto Largo Inic entr Acab entr.	15 311 40 12	15-40 29-21	105 105 15 65	15-10 15-10	76.4 22-5 11.8 22.3	12 mp4	70	×	14	1 10	6.8 6.3 17.61 6.3	9,10	9,41	172	-)7-2 9	100 100 100
Piña	Carto Largo maduro Veros Inic enfr Acab enfr.	40 50 45 31	49-45 48-45 18-40	55 506 55 55	85.90 21.90 85.90	31.8 31.8 44.0 32.5 21.6	21 set 31 set	в	••	,	1.47	9.9 6.4 9.1 31.0f	0.72	40	IN	"	79.9 29.6	154 159 159 250 750d
Ciruela cliescas	Cortq Largo Bec entr Acab, entr	25 22 40 32	K-40 11-33	12 p	60-65 40 15	25.2 22.3 27.1 29.1	31 aw.	•	34	×	• 12	4.8 0.1 20 of 0.1	""	0 10	***	-	**	10 10 25s 70d
Membrillo	Corto Largo Inic entr Acab entr.	35 32 40 11	35.43 31-12	15 b 15 b	NO 13 NO 45	75-2 12-3 31-2 21-3	†1 rest		12	26	9 67	6.1 21.01 9.1	0.92	ē.11	123	15	20.0	44 193 444

Tabla II.2.- Tabla de Diseño para Almacenamiento de Frutas.

		L	5:211 C0:		NES DE EUARTO		1	1	(xi	4105 11471	MID MID	Caler Literar	ESPE	OA CIFICO			1	l ⁻
VEGE.	30 OF1	lempe	19/61		ndetal risina	Comes per	FILES		9.	Г	1	- cjiazaše šel Bašasle sa	Bla	a, "f	Çalar in Isa'e se	[00]0A	Posts &	Man Les Binne
74LES	MAMPENIO	PÍ SE- CRIPASI- SARIS	toçı pra pan	10 M 10 10 10 10 10 10 10 10 10 10 10 10 10	teqs point tili,	B la CAC BC-SE INCRESS INCRESS INCRESS	ELTER MARTIN	61	iou	ies per i	per pres	\$14/\$ 74 M 144 M 147 M	tens te sae pris	Ort suct co congr	hista Ita/a	Ngu.	rca *f	ti get Nyse
Espanago	Corto Largo Insc entr, Acab, entr,	12 42 11	40-15 22-36	170	45 to	121 227 214 113	33 far		14	м	177	6 8 9 5 15 31	311	249	135	141	79.6	40 40 155 43 f
Egyte	Corto Largo Inic. enfr. Acab. enfr.	73 43 31	1149	19 19 16 18	85.99 85.99	3) II 3: II 3: II	N MI		к	,,	0,17	3.7 15.97 0.7	***	3 "	1:1	***	14 7	97 13 130 121
free	Carlo	11	40 45 32-40	10	85 M2	224	IS tus r care M tas 1 care					1 ¢	6 71	611	"	11 5	78 4	+9
Betaber Sin rama	Corra Largo	12	49-45 12-34	**	85 99 96 98	12 s 25 4	13 mesen	ļ	:	i	!	2.0	3 73	74	179	113 6	24 *	12
Belabel con iama	Costo Largo inic entr, Atab entr,	40 32 40 31	49 45 17-34	46 45 40	85 119 81 110	32 6 21 7 32 6 33 7	18-14 #46	,	14	24	c 17	1 ¢ 0 4 47 0*	31;	;	124	10 6	31 é	153 163 163
Broccah	Certs Largo Inic enfe, Acab, enfr.	40 32 40 11	#0 45 37-35	8 8 3 4	19 15 10.15	114 137 111 144) Wen	**	×	21	917	4.7 0.5 (4.0) 0.5	9.7;	1	115	*) #	2* ?	49 49 150 101
Col de Bruseias	Egeta Largo Izoc entr Acab entr,	40 11 40	17-B	75 170 170	10 15 10 15	34 % 76 B 37 B 24 6] 1 yes 185	13	,,	1.		50 85 115 05	£ 71	!""	114	ez i	P1 0	12 60 152 133
Berza	Corto Largo Inic. entr Acab entr.	33 37 66 32	35.49 11-36	15 151 10 10	1315	79 7 75 9 71 6 23 7	14 retes	73	¥	74	, 5 80	01 01 1/0'	271	1	102	11.3	11.1	150 150
Zanahoria Sin ramas	Corta Largo	32	49-45 32-35	**	85.12 15.12	121 76.9	45 MIST	Γ	Г		<u> </u>	2 d d 1	3.1	1 45	126	44 0	30 4	12
Zanahoria Con ramas	Corto Largo INC enfr Acab, entr	40 32 40 12	40-e5 32-14	78 100 10	23 99 25 99	11 7 11 7 12 t 11 7	15 14 641	79	м		e 17	40 05 (70°	\$ 11.	04	134	46	11 0	63 63 653
Col·litor	Corto Largo Insc enfr. Acab enfr	15 12 40 12	35.40 31.34	12 10 10	85-10 85-10	34.4 2)-7 32.6 71.7	7-1 224 87:	n	ы	114	,	4.6 0.1 17.0f	s +a	1	m	*2. 1	ю.	13 63 150 63d
Apio p	Corto Largo	35 32	15.45 16.12	10	10 15 10:15	26.E 33.7	(4 messs	Ī				10	E *1	. 0 44	134	44	24.7	43
Elate	Corto Largo Inic enfr Acab. enfr	15 12 49 12	35-44 31-12	15 15 15	85-79 25 99	25.4 23.7 81.8 27.3	i i te	ю	,,	24	. **	7 G 0.5 17 Of 0.5	941	: 14 	109	n s	11 T	43 150 103
Calabacita	Corto Largo toic entr. Acab. entr	53) 45 40 50	50-60 65-50	65 65 86 13	10 IS 10 IS	45-2 17,5 41,7 42-6	थ-१४ ह्या	10	53	24	1.9	10 02 130 02	0 *)		137	15.5	30 6	10 10 150 1505
Escardia p	Corto	35	25.43 37.34	10 70.	10 FS	24.6 24.6	(-3 situ- tis					10	0.10	9 44	134	2.73	13 1	70

Tabla II.2.- Datos de Diseño para Almacenamiento de Vegetales.

			OISE	1 <u>0 0(1</u>	CULRIO		trote	١,	D#	350		(ske	ESPE	FICO				
vici-	100 DE	fette	u statu		Terfall (ploop	Lives per Sera da sea	A1.00	14			ř-	n grande del producto un	the I), °F	Caler 6- tests &	in a	Parks in	-
14((5	MEMICALD	of 12- teart- teart	Janes profes 1784	hai na na na na na na na na na na na na na	14年 14年 19	t is cat- scale scales	BHICH CRAID- BHICH	Sec. Sec. Cul		lot pi m l	Factor On 19- puls?	\$16/8 24 to (rec pc- to *f)	Estat On con- tals:	de presidente de la constanta	licate Do / A	2.0 164	7	d care he/sa
enuga p	Corto (argo chelada)	15 M	N-43 17-14	** *1,	10 Hs 19-15	36.3 26.1	7-3 mme;					7.8 1.4	3 70	• 44	136	e† ¢	11 7	**
Mesones sandia etc.1	Corto	11	15-59	85 85 1	75 e5	24.1	}-(g41-					1.A 0.2	8 11	B 44	145	""	71	154
	Laign Inst enir, Acab enir	11 40 37	11 15	15 85 85	25.74	22.3 31.0 22.3	J-15 fea	w	34	14	p #0	6,2 °	1.91	4.47	124	۳.	n.	19 24 (50-)
Ceballa	Corto Large Inic. entr Acub. entr.	50 11 44 11	30 sd 32-34	н н н	70-75 76-75	40 C 11.8 27.5	(-I ME)	м	ja	24	. 10	2.8 U.2 10.0f 0.2	0,11	6.51	130	.,,	20 1	150 250 250
Chitista	Corto Largo Inic. enfr Acab. enfr,	75 12 48 17	35-44 32-36	**	99 H	26.7 35.0 37.6 21.7	? i mesen	70	14	×	0.80	4,6 8,5 (7,01 6.5	14	1.44	111	***	38.9	2 2 5 6
Chechare	Corto Largo Inc. enfr. Acab. enfr.	17 44 13	15-40 17-34	13 100 85 85	15 HO 65-HO	21.0 21.2 31.0 21.1	1 2 sraus		34	28	• .,	3 0 0.5 14 01 0 5	4 97	\$ 4S	167	ю.	14.1	100 100 100
Palata alimento: semilla:		127 14	\$0.70 14.50	K Ba	15 19	45.2 26.4						5.0 a 6	P. 04	\$ 47	**1	70.5	26.9	150
Savericant en huaça'esi	Corto Lergo	#1 70	45 50 30 12	63 101	15 H 25 D	15.1 (1.2	i mai					3 B 0.2	E. *?	0 52	+24	ar 6	24 B	154
Espinaca	Corte)\$]}	15-37	15	10 15	21.7	15-14 tas					7.0 0.5	• "	17.0	179	***	JO.1	F 3
Campte n	Corts	55 53	55.62 55.60	46 85.	n K	54 S	i i mezi					3.0	* 11.	142	102	79 1	24 S	150
Tomates (verdes)	Corto Largo Magurando Inic entr. Acab. entr.	35 35 15 79	55-13 55-43 45-70	95 85 86 85	25 40 25-40 25-70	\$4.5 \$4.5 78.7 11.1 45.2) i masses	84	12	H		3 P 9 4 1.0 14.04	9.91	1 *4	(17	**	10 4	12 50 140
urignic) i	Largo	+5	40 53	ıs.	15 10	17.5). 9 fz:				ļ	14			•	ļ	1	14
Mabo	Corta Largo Inic entr Acab, entr	11 40 11	15.40 17-16	75 150 15 15	15.14	29.7 25.0 34.5 25.0	C3 meses	72	*	74	.,,	4.0 8.5 17.04	.0 10	0 45	177	7 11	W.S	\$2 190
Legumbres (húmedas	Caria	43 35	15-40	15 b	15.90	11.2	24 meus		_			12	• **	e +5	130	70	ю•	77
mezciadas:	Inic, entr	50 35	"	£0 £0		49.0		80	н	44	0.75	21.01 1.2						154

Tabla II.2.- Datos de Diseño para Almacenamiento de Vegetales.

		CON	DIÇIQKE	2 012	(#O D((UARID		ľ		TOS D	5.	Cater	ESPEC			1		
	TIPO DE	1 Jage	referi	-	er del Valent	Ş. 100 pm	Pyrodo Barolina	10			-	tibande fei	110	_	Lee is		i 6	No reposed
CARNES	ALMACE. NAMIENTO	71.77	** 15	23 B B E	in the second	Hera de aus 1 la con- Escan Herandia Pala	494	34:1 201	i.	Jes H H	Packer de san paker	pedent to De/S It to (at to to '4)	Bales Be con gelo	in the	teren teren Su/A	42.4 42.4	.1 Let Males	el carre Per su
Tac-mo	Corlo Enggrecim. Cuar, reban.	54 261 50	10 48 74 10 50 15	65 75 40	55-45 70 82 35-46	41,7 16,4 21,3	15 fles					13	9 1/2	0 14	29	20	_	110
lles combination coltramiento p mantenimiento	Jack entr. Acab entr.	32 31		855		28.4	-	130	"	14	• 54	11.34	1.75		**	"	,,	750 10-
Atz secs	Leigo	ıs	54 43	65	65-70	417	6 mp1	t−	Н			01	2214	(7 ,24	t-R	\$ 15		150
Res fiesca	Corto Largo Inc. entr. Acab entr)()4 45	35 40 39 13	87L 67b 67	85 90 85 98	24 U 29 U 36 I) see			,	,	1 B 1 7 22 O'	6.75	013	"	12	31.3	43 49 750
Caree en Salmuera	Equio Lugo	40 31	40 45 J1 J3	IS IS	21 GE 21 DE	11.3	f meurs	-	1	-			C 7i	-			_	150
Core con	Corte	34	1+14	17,	11.10	ж	3 645	⊢	├	┝	 	11	0 /1	0 (1	**	15	 ,,	
Pescada congriada necado	Large Corta Large)4)4	(=5)=0 3+36 39 32	Ble Ble Bla	B) 85 82 85 83-85	4 55 24 1 70 4	i men S tes		Γ	<u> </u>		57	8.74	0 41	161	72	-	740 10
Jamones coriados frescos s anumados	Carlo Largo Corlo Insc. pair)4 78 55 60	34-34 33-35 56-63	45 156 14 30	85 87 15 17 55 45	24] 18 5 4) 7 55 7	3 100	105	5,			11	E 48 6 17	2 12	44.5	57 57	11:3	10
Ceran en	Acus entr	- 55		73		37.5		105	35	-	9 17	24.07	9.59	0)6			17	10
friamiento IS ni, 14 ni	Açab enir Inic enir Açab enir	30 14 21		95 10 10		20 4 IO 1 19,7		125	15	14	5 6.7	21 BF	"	"	4. 5	ы	"	150 150 150
Carnero	Corte Larga Insc entr. Acab entr.)1 21 45 30	34 38 20 38	16 10b 14 10	85 90	25.0 17.7 27.6 21.4	7 sets set			١,	a 15	110	9 67	1 30	4115	50	27	10 10
V-0CE1-01	inic enti Acab, enti,	49		15		H.0		*3	15	"	177	21 01	17	94	101	"		154
Dilmenes	Corts	15	35 40	70:	85 90	74.6		╢	L			''		0 44	116	100 1	-,	992: 80
en cancha	Largo Corto Largo	17 15 11	37-18 35-46 32-38	75 75	15-13 19-25 29-25	73 7 70 6 18 4	15 MI					23	0 17		125	.,	,,	130
Puetta Iresca	Corte	34	34.39	15	15 19	24.3	15 em	1		-	 	34	011	0)0	14.5	14	20	150
Pallo	Large	71	20-10	470	ES P0	170	IJ ses	✝	┢	\vdash	╁	1.1	6 /9	0 12	104	74	7,	<u></u>
iroaco congelado Jespiumado	Largo Inic entr Acab entr	45 17	(-5)-0	85 85 85	B1 10	4 55 17.5 22.3	I) Pela	05	4.5	,	1 ∞	07		"			"	2 9 6

Tabla II.2.- Datos de Diseño para Almacenamiento de Carnes.

		COND	HCIONE	S DIŞI	NO DE	CUARTO	•	Ι.	DAT	DS DI	E.	Cales Superstu	ESPECIFICO					Г
CARNES	TIPO DE ALMACE. NAMIENTO	lateratura			सर्वती विभिन्न	feitends ben	frada Ajiesa	ing.				estimade del producto es	Plant		Color in-		Posta fa conçala	Marketta Marketta
J		PF 14 (1994) S2011	targs penta- sske "T	経験に	豆虫乳	à le ten- ficial etamet- dici	E S- RACHA- E-EMB	LEE CM	faul	Fee.	factor de 14 pekt		deter de cue	Pespees de compre ter	3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	%	-18-	de sen en el conto Poymo
Salchiches (saladas)	Corto Largo	40 J1	40.45 31.32	欽	75-10 15-64	21 1	ž žījai					9.7	0.40					159
Ahemadas y "Franks"	Corro Inc. entr, Acab, entr,	15 42 32	35.40	85.2 E5.2	83-10	35.1 11.1	43 least	70	35	,	1 00	43	-1:16	0.54	-	20	ਸ	150
Fresca	Corta Inic. estr. Acab. entr.	15 42 17	35-40	is is	85-90	15.2 11.4 21.1	i dead	73	В	,	1.00	4.) † al	0.87	0.54	"	15	26	150
Sala de manul	T	35	51 40	40	35 43	1 31		$\overline{}$	_	-		- 60				_		6
Ahumados de verano	Secano Secano	43 53	35 40 41-54	70	45-40	31.6 37.7	(see					1) 5.0		0 54	84	4	75	4
Envoltura	Largo	- 17 45	33 JA 45:50	73 85	40 (1	17.5	i t muer	-		\vdash	\vdash	0.0		-		\vdash	\vdash	- 40
Terneja	Corto Cargo Inic enfr Acab, enfr.	JA 29 45	34-3(21-30 24-30	170	65 19 15 1)	2+ t 1+ 0 3+ t 21 t	15 F43	150	49		1.75	7.4 1.3 21.84 1.3	671	0.39	•	*,	r	43 M 77

Tabla II.2.- Datos de Diseño para Almacenamiento de Carnes.

Los vegetales y las frutas se encuentran aún vivas después de ser cortadas y continúan sufriendo cambios metabólicos en el lugar de almacenamiento. El cambio más importante, se debe a la respiración, proceso durante el cual el oxígeno del aire se combina con los carbohidratos resultando bióxido de carbono y calor. El calor que se obtiene se llama "calor de respiración" y debe considerarse para la carga total de refrigeración.

La temperatura del evaporador, a veces es más baja que la del punto de congelación de la humedad del aire, por lo que en los serpentines se forma una capa de hielo, que baja la transmisión de calor y, por lo tanto, la eficiencia. Es pues, indispensable eliminar esa capa de hielo, lo cual se lleva a cabo de varias maneras:

- a). Descongelamiento cuando se interrumpe el cíclo.- Este sistema consiste en dejar recircular el líquido antes de la expansión durante el tiempo necesario para que se realice el descongelamiento total. Este sistema consume bastante tiempo y por lo tanto, se requiere recuperar la carga perdida durante ese lapso.
- b). Descongelamiento con agua.- En este sistema, se interrumpe el cíclo y se hace pasar agua por el exterior del serpentín hasta que se descongela.
- c). Descongelamiento automático.- En este caso se calientan los tubos del evaporador, por medios ajenos al sistema, como calentadores eléctricos, de agua caliente ó gases calientes que salen del compresor.

III.- Refrigeración por absorción.

a). Generalidades.

Los sistemas de *absorción*, que en ciertos casos particulares son muy ventajosos, no son tan populares como el sistema convencional de comprensión. Sin embargo, en la actualidad se fabrican aparatos de absorción de grandes capacidades, que se usan generalmente en aire acondicionado. Así mismo, con el sistema de absorción se fabrican pequeños refrigeradores domésticos que trabajan con una simple flama como fuente calorífica.

El principio de la refrigeración por absorción consiste, por lo general, en aprovechar la propiedad que puede tener una sustancia para absorber otra; por ejemplo, el agua tiene gran afinidad con el amoniaco y al absorberlo lo evapora y ese calor latente necesario para la evaporación lo toma del calor sensible del espacio por refrigerar, con el consiguiente abatimiento de temperatura; de la misma manera, el *bromuro de litio* al absorber el agua produce el mismo efecto y reduce la temperatura. Los sistemas de absorción que se describen en esta sección son:

- 1.-Sistema de amoniaco y solución agua-amoniaco.
- 2.- Sistema bromo-litio.
- b) Descripción de los sistemas.
- 1.- Sistema de amoniaco y solución de agua-amoniaco.

El esquema de la figura II.9 muestra un equipo de refrigeración por absorción, que usa amoniaco y solución de agua-amoniaco. En el "absorbedor" se suministra una solución de amoniaco no saturada, que absorbe el amoniaco de evaporador hasta que la solución se satura. Este proceso se lleva a cabo a la presión del evaporador. Durante la absorción se genera calor, que a su vez se disipa en el agua de enfriamiento.

El agua saturada se bombea a travéz de un cambiador de calor al generador, que opera a la presión del condensador. Se suministra calor al generador y el amoniaco se evapora y se separa de la mezcla, hasta que el agua queda a la presión y temperatura de saturación.

El vapor de amoniaco pasa del generador al *condensador* donde se condensa, y ya en forma líquida pasa al evaporador a través de la *válvula* de expansión.

El agua del generador (agua caliente) pasa al cambiador de calor, donde se enfría, y al absorbedor para absorber de nuevo amoniaco del evaporador.

Comparación compresión-absorción

Sistema de compresión	Sistema de absorción
Condensador	. Condensador
Válvula de expansión	. Válvula de expansión
Evaporador	. Evaporador
Succión	Absorbedor
Compresión	Bomba de solución pesada
Suministro de amoniaco	Genarador

La energía suministrada consiste en la energía cedida por la pequeña bomba de solución pesada y en la energía calorifica necesaria para hacer hervir y avaporarse el amoniaco en el generador. En el sistema de absorción hay los siguientes sistemas:

- 1.- Amoniaco del generador hasta el absorbedor.
- Solución saturada (pesada) de agua-amoniaco del absorbedor al generador.
- 3.- Solución ligera (agua) del generador al absorbedor.
- 4.- Vapor condensado.
- 5.- Agua de enfriamiento.

El vapor que se desprende del generador (vapor amoniaco) va acompañado, por lo general, de vapor de agua, que al enfriarse un poco se condensa y se separa. El *analizador* tiene esta función, haciendo que el vapor esté en contacto con el agua fría y se condense.

Para evitar en lo posible el vapor de agua, se instalan dispositivos especiales como rectificadores.

En lugares donde se cuenta con energía calorifica, como por ejemplo donde se tiene generadores de vapor, este sistema para absorción puede tener grandes ventajas económicas.

Con el mismo principio que se ha expuesto para sistemas de agua, se usan tambien otros refrigerantes con otras sustancias absorbedoras.

Este sistema es similar al sistema por compresión. Los dos enfrían por evaporación del líquido refrigerante, sólo que en el sistema bromo-litio se usa agua como refrigerante; por lo cual, se utiliza cuando no se requieren temperaturas menores a 32°F.

Como absorbedor se usa el bromuro de litio. La presión de evaporación de una solución acuosa de bromuro de litio es muy baja y si el agua y dicha solución se colocan juntas en un sistema cerrado, lógicamente el agua se evapora.

El esquema de la fugura II.10 muestra los elementos de un sistema de absorción de bromuro de litio, desarrollado por la Carrier Corp.

- a).- Considérese dos recipientes cerrados, en uno hay un absorbente, como bromuro de litio, y en el otro, agua. Así como la sal absorbe la humedad del ambiente, el bromuro de litio tiene gran afinidad con el agua y la absorbe del evaporador, el calor latente de evaporación lo toma del calor sensible del agua que queda en el recipiente y la enfría, produciendose un efecto de refrigeración. Para utilizar este efecto, se usa un serpentín, con lo que se enfría el líquido que finalmente se requiere enfriar.
- b).- En un ciclo real, la substancia absorbente se va perdiendo su capacidad para absorber, conforme la solución se va debilitando. Para mantener la concentración de la solución en un punto adecuado se bombea a un *generador* en donde se evapora el exceso de humedad, y la solución absorbedora se retorna al propio absorbedor.
- c).- El vapor, una vez separado de la solución se condensa y se regresa al evaporador.

Se usa un *cambiador de calor* para precalentar la solución que sale del absorbedor El sistema de agua de enfriamiento es para condensar el vapor de agua y la solución de bromuro de litio en el absorbedor-

En la figura II.11 se puede apreciar un equipo de refrigeración por absorción de la marca Carrier Corp. Estas unidades aunque parecen muy complejas, son sencillas y fáciles de operar; su uso se ha extendido sobre todo en lugares donde se tiene disponible el vapor de agua, como en el caso de Hoteles, Hospitales, etcétera.

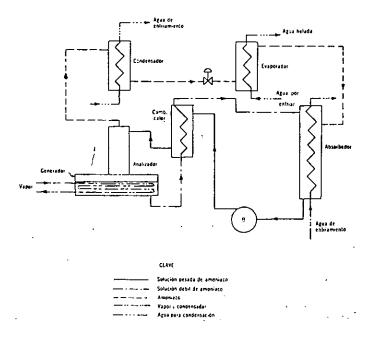


Fig. II.9.- Refrigeración por absorción. Sistema Amoníaco-Agua-Amoníaco.

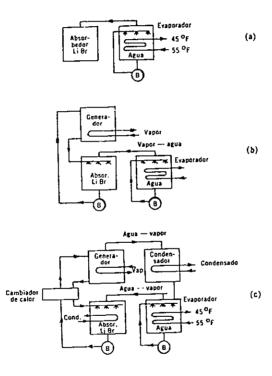


Fig. II.10.- Refrigeración por Absorción. Sistema Bromo-Litio,

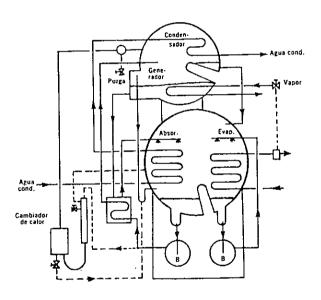


Fig. II.11.- Equipo de Refrigeración por Absorción Carrier Corp.

CAPITULO III

ILUMINACION

III. L.- Introducción.

La luz es una forma de energía radiante que se evalúa en cuanto a su capacidad para producir la sensación de la visión. Los científicos, hoy en día utilizan dos conceptos al explicar la Naturaleza de la luz. Estos son la Teoría de las Ondas Electromagnéticas y la Teoría del Quantum.

La Teoría Electromagnética, establece que los cuerpos luminosos emiten luz bajo la forma de energía radiante que se trasnsmite en forma de ondas electromagnéticas y que estas ondas actúan sobre nuestra visión, para producir la sensación de luz.

La Teoría del Quantum, establece que los cuerpos luminosos emiten energía radiante en forma de "grupos", los que son expulsados en línea recta y actúan sobre la visión para producir la sensación de luz.

El movimiento de la luz a través del espacio, puede realmente explicarse mejor por medio de la Teoría Electromagnética. El efecto de la luz sobre la materia, se explica más fácilmente por medio de la Teoría del Quantum.

III.2.- Definición de Instalación Eléctrica.

Se entiende por Instalación Eléctrica, al conjunto de tuberías "conduit" ó tuberías y canalizaciones de otro tipo y forma, cajas de conexión ó los registros, conductores eléctricos, accesorios de control y protección, etcétera; necesarios para conectar ó interconectar una ó varias fuentes ó tomas de energía eléctrica con los receptores. Los receptores de la energía eléctrica son de tan diversa índole, que tratando de englobarlos en forma rápida y sencilla, se puede decir que son los siguientes: Todo tipo de lámparas,, radios, televisores, refrigeradores, licuadoras, extractores, tostatdores, aspiradoras, planchas, etc. Es decir, todos los aparatos y equipos electrodomésticos, de oficina, de comercios, aparatos y equipos de calefacción, de intercomunicación, señales luminosas, señales audibles, elevadores, montacargas, motores y equipos eléctricos en general.

En relación a Tuberías y Canalizaciones; estos dos términos incluyen a todos los tipos de tuberías, ductos, charolas, trincheras, etcétera, que se utilizan para introducir, colocar ó simplemente apoyar, los conductores eléctricos para protegerlos contra esfuerzos mecánicos y medios ambientes desfavorables como son los húmedos, corrosivos, oxidantes, explosivos, etc. Dentro de las Tuberías de uso común destacan los siguientes:

- 1.- Tubo "conduit" flexible de PVC, conocido generalmente como Tubo Conduit Plástico no Rígido, ó también como manguera rosa.
 - 2.- Tubo Conduit Flexible de Acero.
 - Tubo Conduit de Acero Esmaltado.
 - a). Pared Delgada.
 - b). Pared Gruesa.

- 4.- Tubo Conduit de Acero Galvanizado.
 - a). Pared Delgada.
 - b). Pared Gruesa.
- 5.- Ducto Cuadrado.
- 6.- Tubo Conduit de Asbesto-Cemento.

Clase A-3 y Clase A-5.

7.- Tubos de Albañal.

A continuación, se analizan las características específicas de cada una de las Tuberías de uso común.

1.- Tubo Conduit Flexible de PVC.- Resistente a la corrosión, muy flexible, ligero, fácil de transportar, de cortar, precio bajo, mínima resistencia mecánica al aplastamiento y a la penetración. Se compra por metro.

Para cambios de dirección a 90 grados se dispone de codos, y para unir dos tramos de tubo se cuenta con coples, ambos del mismo material y de todas las medidas. Este tipo de tuberías, generalmente se sujeta a las cajas de conexión introduciendo los extremos en los orificios que quedan al botar los chiqueadores. Su uso se ha generalizado en instalaciones en las que de preferencia la tubería deba ir ahogada en pisos, muros, losas, castillos, columnas, trabes, etc.

- 2.- Tubo Conduit Flexible de Acero.- Fabricado a base de cintas de acero galvanizado y unidas entre sí a presión en forma helicoidal, este producto se compra por metro. Por su consistencia mecánica y notable flexibilidad, proporcionada por los anillos de acero rn forma helicoidal, se utiliza en la conexión de motores eléctricos, y en forma visible para amortiguar las vibraciones evitando se transmitan a las cajas de conexión y de éstas a las canalizaciones. Se sujetan sus extremos a las cajas de conexión y a las tapas de conexiones de los motores, por medio de juegos de conectores rectos y curvos según se requiera.
 - 3.- Tubo Conduit de Acero Esmaltado.
- a). Pared Delgada.- Tiene demasiado delgada su pared, lo que impide se le pueda hacer cuerda. La unión de tubo a tubo, se realiza por medio de coples sin cuerda interior que son sujetos solamente a presión, la unión de los tubos a las cajas de conexión se hace con juegos de conectores.
- b). Pared Gruesa.- Su pared es lo suficientemente gruesa, trae de fábrica cuerda en ambos extremos y puede hacérsele en obra cuando así se requiera. Como la unión de tubo a tubo es de coples de cuerda interior y la unión de los tubos a las cajas de conexión es con juegos de contras y monitores, la continuidad mecánica de las canalizaciones es 100% efectiva.

En ambas presentaciones de Pared Delgada y Pared Gruesa, se fabrica en tramos de 3.05 metros de longitud, para cambios de dirección a 90 grados se dispone de codos de todas las medidas. Su utilización básicamente es en lugares en los que no se expongan a altas temperaturas, humedad permanente, elementos oxidantes, corrosivos, etcétera.

- 4.- Tubo Conduit de Acero Galvanizado.
- a). Pared Delgada.
- b). Pared Gruesa.

En sus presentaciones de Pared Delgada y Pared Gruesa, reune las mismas características del Tubo Conduit de Acero Esmaltado en cuanto a espesor de paredes, longitud de los tramos, forma de unión y sujeción. El galvanizado es por inmersión, que le proporciona la protección necesaria para poder ser instalados en lugares ó locales expuestos a humedad permanente, en locales con ambientes oxidantes ó corrosivos, en contacto con aceites lubricantes, gasolinas, solventes, etc.

- 5.- Ducto Cuadrado.- Este se fabrica para armarse por piezas como tramos rectos, codos, tees, adaptadores, cruces reductores, colgadores, etc. Se utilizan como cabezales en grandes concentraciones de medidores e interruptores como en Instalaciones Eléctricas de departamentos, comercios, de oficinas, etcétera. También se utilizan con bastante frecuencia en Instalaciones Eléctricas Industriales, en las que el número y calibre de los conductores son de consideración.
- 6.- Tubo Conduit de Asbesto-Cemento Clase A-3 y Clase A-5.- Se fabrican en tramos de 3.95 metros, la unión entre tubos se realiza por medio de coples del mismo material con muescas interiores en donde se colocan los anillos de hule que sirven de empaques de sellamiento. Para el acoplamiento entre tubos y coples a través de los anillos de sellamiento, hay necesidad de valerse de un lubricante espcial.

El uso de este tipo de tubería se ha generalizado en redes subterráneas, en acometidas de las Compañías suministradoras del Servicio Eléctrico a las sub-estaciones eléctricas de las edificaciones. En cuanto a su clasificación; el A-3 y A-5, indica que soportan en condiciones normales de trabajo 3 y 5 Atmósferas estándar de presión, lo que explica la razón por la cual los clase A-7, se utilizan para redes de abastecimiento de agua potable.

7.- Tubería de Albañal.- El uso de este tipo de tuberías en las instalaciones eléctricas es mínimo, prácticamente sujeto a condiciones provisionales. Se le utiliza principalmente en obras en proceso de construcción, procurando dar protección a conductores eléctricos (alimentadores generales, extensiones, etc.), para dentro de lo posible, evitar que los aislamientos permanezcan en contacto directo la humedad, con los demás materiales de la obra negra que pueden ocasionarle daño como el cemento, cal, grava, arena, varillas, etc.

- 8.- Cajas de Conexión.- Esta designación incluye además de las cajas de conexión fabricadas exclusivamente para las Instalaciones Eléctricas, algunas para instalación de teléfonos y los conocidos registros construidos en el piso. Entre las cajas de conexión exclusivas para Instalaciones Eléctricas, se pueden mencionar las siguientes:
 - a).- Cajas de Conexión Negras ó de Acero Esmaltado.
 - b).- Cajas de Conexión Galvanizadas.
- c).- Cajas de Conexión de PVC, Conocidas Como Cajas de Conexión Plástica.

A continuación, se hará una sub-clasificación de las Cajas de Conexión, según su forma, dimensión y usos:

- 1.- Cajas de Conexión Tipo Chalupa.- Son cajas rectangulares de aproximadamente 6X10 cm. de base por 38 mm. de profundidad. Se utilizan para instalarse en ellas apagadores, contactos, botones de timbre, etcétera, cuando el número de estos dispositivos intercambiables ó una mezcla de ellos no exceda de tres; aunque se recomienda instalar sólo dos, para facilitar su conexión y reposición cuando se requiera. Estas cajas de conexión chalupa, sólo tienen perforaciones pata hacer llegar a ellas tuberías de 13 mm de diámetro, además de ser las únicas que no tienen tapa del mismo material.
- 2.- Cajas de Conexión Redondas.- Son en realidad cajas octogonales bastante reducidas de dimensiones, consecuentemente de área útil interior de aproximadamente 7.5 cm de diámetro y 38 mm de profundidad. Se fabrican con una perforación por cada dos lados, una en el fondo y una que trae la tapa, todas para recibir tuberías de 13 mm de diámetro. Por sus reducidas dimensiones, son utilizadas generalmente cuando el número de tuberías, de conductores y de empalmes son mínimos, como es el caso de arbotantes en baños, en patios de servicio, etc.

- 3.- Cajas de Conexión Cuadradas.- Se tienen de diferentes medidas y su clasificación es de acuerdo al mayor diámetro del ó los tubos que pueden ser sujetos a ellos, es así como se conocen como cajas de conexión cuadradas de 13, 19, 25, 32 y 38 mm. Dentro de esta categoría, se tienen las siguientes sub-clasificaciones:
- a).- Cajas de Conexión Cuadradas de 13 mm.- Cajas de 7.5 X 7.5 cm de la base por 38 mm de profundidad, con perforaciones tanto en los costados como en el fondo, para sujetar a ellas únicamente tubos conduit de 13 mm de diámetro.
- b).- Cajas de Conexión Cuadradas de 19 mm.- Tienen 10 X 10 cm de base por 38 mm de profundidad, con perforaciones alternadas para tuberías de 13 y 19 mm de diámetro.
- c).- Cajas de Conexión Cuadradas de 25 mm.- De 12 X 12 cm de base por 55 mm de profundidad, con perforaciones alternadas para tuberías de 13, 19 y 25 mm de diámetro. Para tuberías de diámetros mayores, se cuenta con cajas de conexión de 32, 38 y 51 mm ó bién cajas especiales dentro de las cuales se deben considerar los registros de distribución de teléfonos cuyas medidas comúnmente utilizadas son las de 20 X 20 cm de base por 13 cm de profundidad.

III.3.- Elementos de una Instalación Eléctrica.

Esta parte del análisis trata de los conductores eléctricos como aquellos elementos que sirven como unión entre las fuentes ó tomas de energía eléctrica, como transformadores, líneas de distribución, interruptores, tableros de distribución, contactos, accesorios de control y los de control y protección con los receptores.

Los accesorios de control pueden resumirse en forma sencilla en:

- 1.- Apagadores Sencillos.- Son apagadores de 3 vías ó de escalera, apagadores de 4 vías ó de paso, etc.
- 2.- Caso Secundario cuando por alguna circunstancia se tienen contactos controlados con apagador.
- 3.- En Oficinas, comercios e industrias, además de los controladores antes descritos, se dispone de los interruptores termomagnéticos (conocidos como pastillas), que se utilizan para controlar el aumbrado de medianas ó grandes áreas a partir de los tableros.
- 4.- Las Estaciones de Botones para el control manual de motores, equipos y unidades completas.
 - 5.- Interruptores de Presión de todo tipo.

Dentro de la amplia variedad de los accesorios de control yprotección, se pueden considerar los de uso más frecuente, como son:

- 1.- Interruptores (switches).- Que pueden ser abiertos ó cerrados a voluntad de los interesados, además de proporcionar protección por sí solos a través de los elementos fusibles cuando se presentan sobrecorrientes (sobrecargas) peligrosas.
- 2.- Los Interruptores Termomagnéticos.- Que además de que suelen ser operados manualmente, proporcionan protección por sobrecargas en forma automática.
- 3.- Arrancadores a Tensión Plena y Arrancadores a Tensión Reducida.- Para el control manual ó automático de motores, equipos y unidades complejas.

III.4.- Objetivos de una Instalación Eléctrica.

Los objetivos a considerar en una Instalación Eléctrica, están de acuerdo al criterio de todas y cada una de las personas que intervienen en el proyecto, cálculo y ejecución de la obra, y de acuerdo además con las necesidades a cubrir; sin embargo, con el fín de dar márgen a la iniciativa de todos y cada uno en particular, se enumeran sólo algunos tales como:

- 1.- Seguridad (contra accidentes e incendios).- La seguridad debe ser prevista desde todos los puntos de vista posibles, para operarios en industrias y para usuarios en casas-habitación, oficinas, escuelas, etcétera. Es decir, una Instalación Eléctrica bién planeada y mejor construida, con sus partes peligrosas protegidas aparte de colocadas en lugares adecuados, evita el máxico accidentes e incendios.
- 2.- Eficiencia.- La eficiencia de una Instalación Eléctrica, está en relación directa a su construcción y acabado. La eficiencia de las lámparas, aparatos, motores, en fín, de todos los receptores de Energía Eléctrica es máxima, si a los mismos se les respetan sus datos de placa tales como tensión, frecuencia, etcétera. Aparte de ser correctamente conectados.
- 3.- Economía.- El Ingeniero debe resolver este problema no sólo tomando en cuenta la inversión inicial en materiales y equipos, sino haciendo un estudio Técnico-Económico de la inversión inicial, pagos por consumo de Energía Eléctrica, gastos de operación y mantenimiento, así como la amortización de material y equipos. Lo anterior implica en forma general, que lo conveniente es contar con materiales, equipos y mano de obra de buena Calidad, salvo naturalmente los casos especiales de Instalaciones Eléctricas provisionales ó de Instalaciones Eléctricas temporales.

- 4.- Mantenimiento.- El mantenimiento de una Instalación Eléctrica, debe efectuarse periódica y sistemáticamente. En forma principal, realizar la limpieza y reposición de partes, renovación y cambio de equipos.
- 5.- Distribución de elementos, aparatos y equipos.- Tratándose de equipos de iluminación, una buena distribución de ellos, redunda tanto en un buen aspecto, como en un nivel lumínico uniforme, a no ser que se trate de iluminación localizada. Tratándose de motores y demás equipos, la distribución de los mismos deberá dejar espacio libre para operarios y circulación libre para el demás personal.
- 6.- Accesibilidad.- Aunque el control de equipos de iluminación y motores está sujeto a las condiciones de los locales, siempre deben escogerse lugares de fácil acceso, procurando colocarlos en forma tal, que al paso de personas no idóneas, sean operados involuntariamente.

III.5.- Tipos de Instalaciones Eléctricas.

Por razones que obedecen principalmente al tipo de construcciones en que se realizan, material utilizado en ellas, condiciones ambientales, trabajo a desarrollar en los locales de que se trate y acabado de las mismas; se tienen diferentes tipos de instalaciones eléctricas, a saber:

- 1.- Totalmente Visibles.- Como su nombre lo indica, todas sus partes componentes se encuentran a la vista y sin protección en contra de esfuerzos mecánicos, ni en contra del medio ambiente (seco, húmedo, corrosivo, etc.).
- 2.- Visibles Entubadas.- Son Instalaciones Eléctricas realizadas así, debido a que por las estructuras de las construcciones y el material de los muros, es imposible ahogarlas, no así protegerlas contra esfuerzos mecánicos y contra el medio ambiente, con tuberías, cajas de conexión y dispositivos de unión, control y protección recomendables de acuerdo a cada caso particular.
- 3.- Temporales.- Son Instalaciones Eléctricas que se construyen para el aprovechamiento de la Energía Eléctrica por temporadas ó períodos cortos de tiempo; tales son los casos de ferias, juegos mecánicos, exposiciones, servicios contratados para obras en proceso, etcétera.
- 4.- Provisionales.- Las Instalaciones Eléctricas provisionales, en realidad quedan incluidas en las temporales, salvo en los casos en que se realizan en instalaciones definitivas en operación, para hacer reparaciones ó eliminar fallas principalmente en aquellas, en las cuales no se puede prescindir del servicio aún en un sólo equipo, motor ó local. Ejemplos: Fábricas con Proceso Contínuo, Hospitales, Salas de Espectáculos, Hoteles, etcétera.

- 5.- Parcialmente Ocultas.- Se encuentran en accesorias grandes ó fábricas, en las que parte del entubado está por pisos y muros y la restante por armaduras; también es muy común observarlas en edificios comerciales y de oficinas que tienen plafón falso. La parte oculta está en muros y columnas generalmente, y la parte supuesta pero entubada en su totalidad, es la que va entre las losas y el plafón falso, para de ahí mediante cajas de conexión localizadas de antemano, se hagan las tomas necesarias.
- 6.- Ocultas.- Son las que se consideran de mejor acabado, pues en ellas se busca tanto la mejor solución técnica, así como el mejor aspecto estético posible, el que una vez terminada la Instalación Eléctrica, se complementa con la Calidad de los dispositivos de control y protección que quedan sólo con el frente al exterior de los muros.
- 7.- A prueba de Explosión.- Se construyen principalmente en fábricas y laboratorios en donde se tienen ambientes corrosivos, polvos ó gases explosivos, materias fácilmente flamables, etcétera. En las instalaciones, tanto las canalizaciones, como las partes de unión y las cajas de conexión quedan herméticamente cerradas para así, en caso de producirse un cortocircuito, la flama ó chispa no salga al exterior, lo que viene a dar la seguridad de que jamás llegará a producirse una explosión por fallas en las Instalaciones Eléctricas.

Una vez conociendo qué se entiende por Instalación Eléctrica, sus objetivos y tipos de Instalaciones eléctricas; es necesario saber que existen códigos, reglamentos y disposiciones complementarias, que establecen los requisitos técnicos y de seguridad, para lo referente al proyecto y construcción de las mismas.

III.6.- Códigos y Reglamentos.

En las Instalaciones Eléctricas de años atrás, cuando las canalizaciones no tenían la Calidad y acabado para cumplir eficazmente su cometido, los conductores eléctricos no tenían el aislamiento adecuado para las condiciones de trabajo y ambiente; los elementos, dispositivos y accesorios de control y protección no eran inclusive de cierta uniformidad, aparte de tener un burdo acabado, daban como resultado lógico, Instalaciones Eléctricas de poca Calidad, vida corta y fallas frecuentes; provocando así pérdidas materiales preferentemente por cortocircuitos ó en el peor de los casos por explosiones, al instalar materiales y equipos no adecuados para los diferentes medios y ambientes de trabajo, ya que, como es del dominio general, se pueden tener: Locales con ambiente húmedo, locales con ambiente seco, locales con polvos ó gases explosivos, locales en donde se trabajan materias corrosivas ó flamables, etcétera.

Todo lo anterior hizo ver la necesidad de reglamentar desde la fabricación de materiales, equpos, protecciones, controles, hasta dónde y cómo emplearlos en cada caso.

Para la elaboración de dicho reglamento, fue necesario contar con las observaciones y experiencias realizadas por todos los sectores ligados al ramo tales como: Ingenieros, Técnicos, Fabricantes y Distribuidores de Equipos y Materiales Eléctricos, Contratistas e Instaladores. La aceptación y correcta aplicación del reglamento en todos los casos, asegura salvaguardar los intereses de todos; pues se está evitando al máximo los riesgos que representa el uso de la electricidad bajo todas sus manifestaciones.

La aplicación, interpretación y vigilancia de El Reglamento de Obras e Instalaciones Eléctricas de México, es de la competencia de la Secretaria de Comercio y Fomento Industrial (SECOFI) a través de la Dirección General de Electricidad quien, además de hacer cumplir todo lo relacionado al mismo, está en absoluta libertad de agregar recomendaciones tales como: Dimensiones de planos, escalas, símbolos a emplear y notas aclaratorias.

El carácter y aplicación de dicho Reglamento es sólo para la República Mexicana y para los materiales, accesorios y equipos a instalar en el interior ó exterior de edificios públicos, privados, predios urbanos ó rústicos. Contiene requisitos mínimos de observancia obligatoria y recomendaciones de conveniencia práctica, los que tienen por objetivo prevenir riesgos y construcciones ú operaciones defectuosas.

No es aplicable este Reglamento a instalaciones ni aparatos especiales de Barcos, Locomotoras, Carros de Ferrocarril, Automóviles, Aviones y en general, a equipos de tracción y transporte. La aprobación técnica de materiales, aparatos, accesorios de control y protección, así como los proyectos, la hacer la SECOFI a través de la Dirección General de Electricidad, dando a los primeros las siglas S.C.- D.G.N. y su número de registro correspondiente; y a los proyectos su aprobación si cumplen con los requisitos técnicos y de seguridad.

III.7.- Sistemas y Equipos de Iluminación.

En el alumbrado de interiores existen básicamente dos clasificaciones relacionadas con la distribución de la luz necesaria sobre el área de trabajo a iluminar. Estas clasificaciones son: El Alumbrado General y el Alumbrado Localizado.

Se denomina Alumbrado General, al alumbrado que proporciona una distribucion uniforme de luz, en todos los lugares de un interior, produciendo idénticas condiciones de visión. El Alumbrado General presenta la ventaja de que la iluminación es independiente de los puestos de trabajo, por lo que éstos pueden ser dispuestos ó combinados en la forma que se desee. Tiene el inconveniente de que la iluminación media proporcionada debe corresponder a las zonas que por su trabajo requieren niveles más altos. El Alumbrado General es empleado en oficinas, aulas de escuelas, fábricas, etcétera. (Fig. III.1).

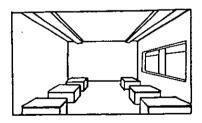


Fig. III.1.- Alumbrado General.

El Alumbrado General también se puede realizar por medio del *Alumbrado General Localizado*, que consiste en colocar luminarias de forma que además de proporcionar una iluminación general uniforme, permita aumentar el nivel de las zonas que lo requieran, según el trabajo en ellas a realizar. Presenta el inconveniente de que si se fectúa un cambio de dichas zonas hay que reformar la instalación de alumbrado. (Fig. III.2).

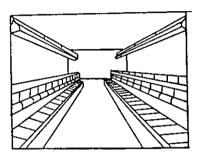


Fig. III.2.- Alumbrado General Localizado.

El Alumbrado Localizado, consiste en producir un nivel medio de iluminación general más ó menos moderado y colocar un alumbrado directo para disponer de elevados niveles medios de iluminación en puestos específicos de trabajo que así lo requieran. (Fig. III.3).

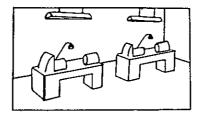


Fig. III.3.- Alumbrado Localizado.

Para eliminar en todo lo posible las molestias de contínuas y fuertes adaptaciones visuales que lleva consigo este Sistema de Alumbrado, debe procurarse que la relación de luminancias estre la zona de trabajo y el ambiente general, no exceda de diez a uno.

Los Alumbrados General Localizado y Localizado, van siendo un tanto desplazados, debido a la evolución de lámparas de descarga eléctrica, pues al ofrecer éstas un elevado rendimiento luminoso, los altos niveles requeridos en determinadas zonas de trabajo se alcanzan en forma económica con una iluminación general. Por ello los Alumbrados, General Localizado y Localizado, se utilizan en lugares donde el alumbrado general no es económicamente aconsejable, debido a que las zonas a iluminar se encuentran desfavorablemente situadas

Los Sistemas de Iluminación se clasifican según la distribución del flujo luminoso, por encima ó por debajo de la coordenada horizontal de la curva de distribución; ó sea, teniendo en cuenta la cantidad de flujo luminoso proyectada directamente a la superficie iluminada y la que llega a la superficie después de reflejarse por techo y paredes. A continuación se analizarán los diferentes Sistemas de Iluminación.

- a). Sistema de Iluminación Directa.- Caso todo el flujo luminoso se dirige directamente a la superficie que ha de iluminar (entre 90 y 100%). Un Sistema de Alumbrado Directo es un eficaz productor de luz en la zona usual de trabajo. Sin embargo, esta eficacia se consigue frecuentemente a expensas de factores de Calidad, tales como sombras y deslumbramientos directos y reflejados. Las sombras por ejemplo, pueden causar molestias a no ser que las luminarias sean de gran área ó estén muy cerca unas de otras. Para evitar el deslumbramiento, es necesario colocar en los aparatos de alumbrado: rejillas, difusores traslúcidos ó materiales refractores, para que corten ó difundan la porción del haz luminoso que pudiera llegar directamente a la vista del obsevador.
- b). Iluminación Semidirecta.- En este tipo de iluminación, la mayor parte del flujo luminoso se dirige directamente hacia la superficie que se trata de iluminar, una pequeña parte (de 10 a 40%) se distribuye arriba de la coordenada horizontal de la curva de distribución y llega a la superficie por iluminar previa reflexión en techo y paredes.

- c). Iluminación Directa-Indirecta.- Se llama también iluminación difusa. Aproximadamente la mitad del flujo luminoso se dirige hacia arriba de la horizontal de la curva de distribución y llega por tanto, a la superficie que ha de iluminar, después de reflejarse varias veces por techo y paredes. Con este Sistema de Iluminación se consigue por completo la eliminación de sombras y, al hacer más extensa la superficie luminosa, se reduce aún más el peligro de deslumbramiento. El efecto que se consigue es agradable, aunque un tanto monótono a la vista del observador, por estar todo el espacio iluminado y no existir zonas oscuras como en los dos anteriores casos. Sin embargo, este Sistema de Iluminación no resulta apropiado en algunos casos, ya que existe un inconveniente que puede ser decisivo: Al no existir sombras en los objetos, éstos aparecen planos y no dan sensación plástica de relieve.
- d). Iluminación Indirecta.- El 90% del flujo luminoso, se dirige hacia arriba de la coordenada horizontal de la curva de distribución; el manantial luminosos queda completamente oculto a los ojos del observador y éste no percibe ninguna zona luminosa, solamente aprecia zonas iluminadas. En este sistema, debido a que no hay flujo luminosos directo, las paredes y el techo del local que se va a iluminar, deben de estar pintadas de color blanco ó por lo menos de color muy claro, pues de lo contrario debido al poco rendimiento luminosos de estos sistemas, habría de instalarse demasiada potencia luminosa para conseguir niveles de iluminación mediananmente aceptables.

La iluminación indirecta, es económicamente hablando, la más cara de todas. Pero también el efecto luminoso conseguido es el mejor de todos pues la iluminación de los objetos es muy suave y sin contrastes de brillo, y carece absolutamente de deslumbramiento y excenta de sombras laterales. Constituye la forma más noble y más artística de iluminación artificial y es, al mismo tiempo, la más semejante a la luz natural.

e). Iluminación Semi-indirecta.- Del 60 al 90% del flujo luminosos, se dirige hacia arriba de la coordenada horizontal de la curva de distribución y el resto se dirige hacia abajo. El sistema semi-indirecto, tiene la mayoría de las ventajas del indirecto, pero es un pococ más eficiente y se prefiere a veces para lograr una mejor relación de brillo entre el techo y la luminaria en instalaciones de alto nivel luminoso. Se consigue una iluminación de buena Calidad, casi totalmente excenta de deslumbramiento y con sombras suaves, muy agradables a la vista del observador.

III.7.1.- Clasificación de Luminarias.

Un equipo de iluminación ó luminario, es un aparato de iluminación que está compuesto de un gabinete ó armadura, la cual está diseñada para que en su interior, aloje un reflector, lámparas y accesorios necesarios para fijar, proteger y conectar las lámparas al circuito de alimentación, así como un difusor, para que este conjunto pueda proporcionar la mejor distribución y filtración de una fuente de luz artificial. Un luminario debe poseer una serie de cualidades que los haga idóneos para la misión que tienen que cumplir, se pueden dividir estas cualidades en tres clases, bién diferenciadas y que se resumen a continuación:

Ópticas.

- Distribución luminosa adaptada a la función que debe realizar.
- Luminancias reducidas en determinadas direcciones.
- Buen rendimiento luminoso.

Mecánicas y Eléctricas.

- Solidez.
- Ejecución en un material adecuado a las condiciones de trabajo previstas.
- Construcción que permita funcionar a la lámpara en condiciones apropiadas de temperatura.
- Protección de las lámparas y equipo eléctrico contra la humedad y demás agentes atmosféricos.
 - Facilidad de montar, desmontar y limpiar.
 - Cómodo acceso a la lámpara y equipo eléctrico.

Estéticas.

- Los luminarios apagados durante el día ó encendidos durante la noche, no deben desentonar con el medio ambiente en el cual se incluyen.

Los luminarios en general se pueden clasificar de la siguiente manera:

- 1.- Por su uso.
- 2.- Por el tipo de lámpara que usan.
- 3.- Por la distribución del flujo luminoso que emiten.
- 1.- Clasificación de luminarios por su uso.- Los luminarios de acuerdo a su uso se pueden clasificar en la siguiente forma:
- Comerciales.- Debido a que normalmente los luminarios del tipo comercial, son instalados en interiores como: Aulas escolares, oficinas, tiendas, salas de exposición, etcétera. Estos luminarios deben de proporcionar las siguientes características:
 - a).- Buena difusión de luz.
 - b).- Baja brillantez.
 - c).- Alta eficiencia.
 - d).- Ocultamiento de las lámparas.
 - e).- Apariencia distinguida y moderna.
 - f). Facilidad de montaje y limpieza.
- Industriales. Este tipo de luminarios trabaja normalmente en naves industriales con alturas de montaje altas ó medias, por lo que se requiere que estos luminarios sean capaces de alojar lámparas de alta emisión luminosa y reflectores especiales. Algunos luminarios del tipo industrial trabajan en lugares donde se tienen atmósferas explosivas, vapores ó líquidos volátiles, por lo que su construcción debe ser hermética contra los elementos externos perjudiciales para que ofrezcan seguridad. En términos generales estos luminarios deben proporcionar las siguientes cualidades:
 - a).- Buena difusión de luz.
 - b).- Curva de distribución adecuada a la altura de montaje.
 - c) Alta eficiencia.
 - d).- Resistencia mecánica.
 - e).- Construcción de un material adecuada a su función.
 - f).- Facilidad de mantenimiento.

- Alumbrado público.- Estos luminarios están diseñados para difundir el flujo luminoso de la lámpara ó lámparas en una dirección específica deseada y se usan para iluminar avenidas, autopistas, cruces de vías de comunicación, etcétera. En áreas para peatones como: Estacionamientos, jardines, parques de diversión ó zonas residenciales se usan luminarios del tipo punta de poste, estos luminarios encuentran su aplicación a alturas de tres ó cuatro metros, en muchos casos están rematados con un casquete metálico para conseguir una iluminación difusa. Los luminarios para alumbrado público, deben de tener las siguientes características:
 - a).- Iluminación uniforme.
 - b).- Baja brillantez.
 - c).- Construcción sólida.
 - d).- Facilidad de instalación y mantenimiento.
 - e).- Diseñados para trabajar a la intemperie.
- Exteriores.- Existe un gran número de luminarios dentro de esta clasificación, algunos son: Los reflectores, los tipos arbotante, los tipo jardín, los de luz de obstrucción, etcétera. Se utilizan para iluminar fachadas, monumentos, campos deportivos, terrazas, estacionamientos, iluminación decorativa en jardines, para señalización, etcétera. Las lámparas utilizadas en estos luminarios pueden ser del tipo incandescente ó de descarga eléctrica en gas. Los luminarios de este tipo tienen las siguientes características:
 - a).- Iluminación uniforme.
 - b).- Alta eficiencia.
 - c).- Facilidad de montaje e inspección periódica.
 - d).- Diseñados para trabajar a la intemperie.
- Decorativos.- Este tipo de luminarios deben de ayudar a crear un ambiente agradable al integrarse al conjunto arquitectónico y decorativo del interior a iluminar, encendidos ó apagados, deben de crear la misma apariencia. Los luminarios para decoración, deben de tener las siguientes características:

- a).- Iluminación uniforme.
- b).- Apariencia agradable y moderna.
- c).- Construcción de acuerdo a las necesidades.
- d).- Fáciles de limpiar.
- 2.- Clasificación de luminarios por el tipo de lámpara que usan.- Es difícil establecer una clasificación de los luminarios con respecto al tipo de lámpara que usan, ya que, excepto en el caso de los luminarios para lámparas fluorescentes; por lo general, un mismo luminario sirve para distintos tipos de lámparas. No obstante, desde este punto de vista se pueden agrupar en:
 - Luminarios para lámparas incandescentes.
 - Luminarios para lámparas fluorescentes.
- Luminarios para lámparas de vapor de mercurio de luz mixta y aditivos metálicos.
 - Luminarios para lámparas de vapor de sodio.

Los luminarios como ya se dijo antes,, deben poseer las cualidades que se requieren, de acuerdo a su uso. Los luminarios para lámparas incandescentes deben de cumplir con la misión de hacer soporte y de conexión eléctrica para las lámparas en su interior. Los luminarios que utilizan lámparas de descarga eléctrica en gas, además de lo anterior deben de alojar en su interior (an algunos casos no lo hacen) el balastro que emplean este tipo de lámparas para su funcionamiento; pero los dos tipos de luminarios deben de tener una construcción que permita funcionar a la lámpara en condiciones apropiadas de temperatura.

- 3.- Clasificación de los luminarios por la distribución del flujo luminoso que emiten.- Basándose en la distribución del flujo luminoso emitido, los luminarios se pueden clasificar de la siguiente manera:
- Por simetría de distribución del flujo luminoso emitido e intensidades luminosas.
- De acuerdo con la radiación del flujo luminosos emitido, respecto al plano horizontal del luminario.
- 4.- Clasificación de los luminarios según la simetría de distribución del flujo luminosos emitido e intensidades luminosas.- Con respecto a la simetría del flujo luminoso emitido, los luminarios se pueden clasificar de dos formas: De distribución simétrica y de distribución asimétrica.
- a).- Luminarios de Distribución Simétrica.- En estos aparatos el flujo luminosos se reparte simétricamente respecto al eje de simetría y la distribución espacial en las intensidades luminosas pueden representarse con una sola curva fotométrica. Un aparato de este tipo resulta útil para iluminar lugares que permitan hacer una distribución simétrica de los luminarios, a fin de obtener una intensidad luminosa uniforme en todas direcciones.
- b).- Luminarios de Distribución Asimétrica.- En estos luminarios, el reparto del flujo luminoso no se hace en forma simétrica respecto a un eje, de manera que la distribución que la distribución espacial de las intensidades luminosas sólo puede expresarse mediante un sólido fotométrico, ó por una representación plana de dicho sólido ó bién parcialmente según diversas curvas de distribución, formadas en diferentes direcciones que pueden ser: La curva correspondiente a una sección por el eje longitudinal del luminario ó la curva correspondiente a una sección por el eje transversal del mismo, ó también por curvas de distribución correspondientes a secciones predeterminadas; por ejemplo, a cada diez grados.

- 5.- Clasificación de los luminarios según la radiación del flujo luminoso respecto al plano horizontal del luminario.- Teniendo en cuenta el porcentaje de flujo luminoso emitido por encima ó por debajo del plano horizontal del luminario, los luminarios se clasifican como los Sistemas de Iluminación, lo que quiere decir, que a cada sistema corresponde un tipo de luminario. Por lo tanto, los luminarios se clasifican en los diversos tipos que a continuación se indican:
 - Directo.
 - Sedidirecto.
 - Directo-Indirecto.
 - Indirecto.
 - Semi-indirecto.

Los luminarios de radiación directa y distribución simétrica pueden dividirse, a su vez, según el ángulo de abertura correspondiente a la mitad de flujo luminoso total.

III.7.2.- Reflectores.

Para conseguir en un aparato de alumbrado una distribución luminosa que cumpla con determinadas necesidades se debe recurrir a las diversas propiedades de la luz: Reflexión, difusión, refracción, etcétera. En general, en un aparato de alumbrado se aprovechan varias de estas propiedades y por esta razón se estudiarán los dispositivos de los aparatos de iluminación que hacen uso de estos fenómenos.

Los reflectores son dispositivos provistos de una superficie brillante de forma adecuada para que refleje la luz que incide sobre ella. La comparación entre las curvas de distribución luminosa correspondiente a una lámpara desnuda y a la misma lámpara provista de un reflector, permite darse cuenta del funcionamiento de un reflector.

III.7.3.- Difusores.

Los difusores actúan relativamente poco sobre la distribución luminosa de la lámpara; su misión es, sobre todo, difundir la luz para disminuir los efectos de deslumbramiento. Εi fenómeno deslumbramiento aumenta con la luminancia del manantial luminoso. El difusor sustituye el manantial luminoso primario, constituido por la lámpara que tiene poca superficie radiante; y por lo tanto, elevada luminancia por un manantial luminoso secundario, constituido por el mismo difusor, de gran superficie radiante, y por consiguiente, de mucha menor luminancia que la lámpara. Con el difusor se reduce considerablemente los efectos nocivos del deslumbramiento; y esta reducción de deslumbramiento está en función del tamaño de la superficie del difusor. Entre más grande sea el difusor, mayor será la reducción de deslumbramiento. Además de todo lo anterior, para que un difusor sea eficaz, es necesario que su superficie sea lo más uniforme posible en todos sus puntos.

III.7.4.- Pantallas.

Las pantallas son una parte de la luminaria, diseñadas para impedir que las lámparas sean directamente visibles en determinada gama de ángulos y así evitar deslumbramiento a los ojos. También sirven para dirigir la luz hacia donde se quiera. Para evitar la luminancia en los aparatos de alumbrado, es necesario ocultar las lámparas a la visión directa del observador. Generalmente, basta con un ángulo visual de 20 grados, aunque algunas veces este ángulo deberá acercarse a los 45 grados (por ejemplo, en la iluminación de aulas y salas de lectura).

El empleo de pantallas difusoras en los aparatos de alumbrado disminuye su rendimiento luminoso, por lo que hay que tenerlo en cuenta en los proyectos de alumbrado, ya que este rendimiento puede disminuir hasta un 50%.

Por lo tanto, si se emplean pantallas difusoras para obtener el mismo flujo luminoso en un determinado local, se tendrá que aumentar el número de puntos de luz; este inconveniente queda sobradamente compensado por la mejor Calidad de luz obtenida, de lo que resulta un aumento del campo visual.

III.7.5.- Refractores.

El refractor es un dispositivo en el cual el fenómeno de refracción es usado para cambiar la distribución espacial del flujo luminoso de una fuente de luz y está cosntituido esencialmente por un aparato de vidrio ó plástico acrílico.

En el control de los rayos de luz por medio de refractores se utilizan los fenómenos de refracción y reflexión, ya que por medio de éstos se puede cambiar la dirección de los rayos con un mínimo de pérdida de luz. Estos dos efectos han sido incorporados en las pantallas de los luminarios con la impresión de prismas en la superficie de sustancias transparentes, como vidrio y plástico acrílico. El diseño científico de estos prismas, permiten obtener distintas formas de distribución de la luz, adecuadas para diversas aplicaciones con resultados óptimos de eficiencia y reducción de deslumbramiento nocivo a los ojos, con lo cual se obtiene una mejor visión y en forma económica, ó sea, con el mínimo consumo de energía eléctrica.

A los aspectos mencionados con anterioridad; se puede concluir que:

- 1.- Es importante saber elegir el tipo de alumbrado más adecuado a cada local, para proporcionar la mejor distribución de luz sobre el área de trabajo y así aumentar el campo visual.
- 2.- Es conveniente utilizar al Sistema de Iluminación apropiado, ya que por medio del sistema escogido se puede obtener un buen efecto estético y aumentar la Calidad del alumbrado. Además, donde estos aspectos resulten secundarios, por medio del Sistema de Iluminación se puede obtener una iluminación económica y de gran rendimiento.

- 3.- En la práctica es importante saber aprovechar los diferentes tipos de luminarios que existen, ya que cada tipo tiene características diferentes en lo que se refiere a su distribución de luz, rendimiento luminoso, construcción, protección de lámpara y sus accesorios, así como facilidad para su mantenimiento. Utilizando el luminario adecuado en cada solución, se obtiene un aumento en cantidad y calidad de iluminación, así como de economía.
- 4.- El empleo de reflectores, difusores, pantallas y refractores en los luminarios, trae como consecuencia que, en la práctica, se cumpla satisfactoriamente con la calidad de iluminación, ya que estos accesorios y las técnicas de control de la luz ofrece una alta visibilidad y una reducción de deslumbramiento directo y reflejado.

III.8.- Métodos de Cálculo de Iluminación y Soluciones Básicas.

En la actualidad, existen varios métodos de cálculo de iluminación para conocer el número de luminarios que se requieren para un buen nivel de iluminación promedio en un espacio determinado, en este subtema, se estudiarán primero los métodos y después algunas soluciones básicas de diseño.

III.8.1.- Método del Flujo Luminoso.

También se le denomina "Método de Lumen". Por medio de éste se puede calcular el flujo total luminoso que se requiere en locales interiores para proporcionar un nivel de iluminación promedio. Considera la superficie del local, la altura de montaje de los luminarios, las reflectancias de paredes, techo y piso, un coeficiente de utilización del flujo luminoso aprovechable de la fuente luminosa sobre el área de trabajo y un factor de mantenimiento por depreciación de la lámpara y limpieza del local. Estos factores se toman en consideración en la fórmula del "Método de Lumen":

$$F = (E)(S) / (C.U.)(F.M.)$$
 III.1

en donde:

F = Flujo Total requerido para el nivel de iluminación promedio.

E = Intensidad de Iluminación promedio.

S = Superficie.

C.U. = Coeficiente de Utilización.

F.M. = Factor de Mantenimiento.

- a).- Intensidad de Iluminación.- La intensidad de iluminación viene dada en tablas que recomiendan los valores adecuados para las diversas labores. Estos valores han sido determinados por científicos dedicados a la iluminación, tomando en cuenta los diferentes esfuerzos a que está sometido el ojo humano durante su funcionamiento, el rendimiento visual, las asimilaciones por segundo y hasta las condiciones climatológicas, etcétera.
- b).- Superficie.- La superficie del local a iluminar se considera en metros cuadrados, si el nivel de iluminación se toman en "Luxes", ó en pies cuadrados si el nivel se toma en "Feet-Candels".
- c).- Factor de Mantenimiento.- Se considera en función de la depreciación que sufre la emisión lumínica del luminario debido a la acumulación de suciedad en el mismo y a la depreciación de las superficies reflectoras ó transmisoras de la luz. También por el envejecimiento sufrido a través del tiempo ó la depreciación que sufra la lámpara ó fuente luminosa a causa de las horas de uso.

El factor de mantenimiento se obtiene del producto de la depreciación de la lámpara (D) por la depreciación por suciedad del luminario (d). El factor de depreciación de la lámpara (D) es función de la depreciación sufrida por la lámpara a lo largo de su vida, y es obtenida en el laboratorio del fabricante ó en laboratorio de asociaciones autorizaciones y de prestigio reconocido que proporcionan la depreciación en forma de tablas en las cuales a cada lámpara corresponde un valor promedio. El factor de mantenimiento por suciedad del luminario (d) es obtenido por pruebas directas hechas al luminario en diferentes ambientes y clasificado en forma de tablas ó bién en forma de gráficas y es proporcionada por los fabricantes ó por laboratorios independientes.

CATEGORIA DE MANTENIMIENTO

CARACTERISTICAS

I	Las lámparas se muestran d	lesnudas y	no	utilizan
	reflector.			

- II Las lámparas se muestran desnudas y son del tipo fluorescente, utilizan reflector. A este tipo de luminario se le denomina industrial fluorescente.
- III Este tipo de luminarios utiliza un reflector que distribuye más del 70% del flujo luminoso hacia la superficie por iluminar; normalmente se utilizan a alturas de montaje altas y medias.
- IV Son luminarios que alojan en si interior lámparas fluorescentes; pueden ser del tipo de empotrar ó sobreponer; su característica principal es que utilizan rejillas para evitar que las lámparas sean vistas directamente, bajo un determinado ángulo.
 - V Estos luminarios son como los de la categoría IV, pero utilizan difusores en lugar de rejillas a fin de obtener un mejor control de la luz.
 - VI En esta categoría se encuentran el plafón luminoso y la iluminación por medio de cornisas. Su característica principal es que son elementos de iluminación que están interconstruidos, como parte de la estructira arquitectónica del local a iluminar.

El factor de mantenimiento por suciedad del luminario (d) también se puede aclcular en forma estimativa considerando los siguientes porcentajes:

- 1.- Para locales limpios: 10%.
- 2.- Para locales de regular limpieza: 10 a 15%.
- 3.- Para locales sucios: 25 a 35%.
- d).- Coeficiente de Utilización.- El coeficiente de utilización es la relación entre los "lúmenes" que alcanzan el plano de trabajo y los "lúmenes" totales generados por la lámpara. Es un factor que tiene en cuenta la eficacia y la distribución del luminario, su altura de montaje, las dimensiones del local y las reflectancias de las paredes, techo y piso. El coeficiente de utilización viene dado en tablas que relacionan cada uno de los aspectos antes mencionados. El método de flujo luminoso se puede aplicar en dos formas, dependiendo de cómo se calcula el coeficiente de utilización: Por índice de cuarto ó por cavidad zonal.

III.8.2.- Método de Flujo Luminoso por Índice de Cuarto.

Para determinar el flujo total luminoso que se requiere para obtener un nivel determinado de iluminación promedio en un determinado local es necesario conocer todos los parámetros que involucra la fórmula III.1, es decir: La intensidad de iluminación que se requiere, la superficie del local, el factor de mantenimiento y el coeficiente de utilización. El coeficiente de utilización se determina en tablas que resumen las dimensiones y altura del local en valores denominados "Indice de Cuarto". Los locales por iluminar se clasifican, de acuerdo con su forma en diez grupos, identificados por letras y por el valor del "Indice de Cuarto", y se calcula con la siguiente fórmula:

I.C. =
$$(A)(L) / (H)(A+L)$$
 III.2.

en donde:

A = Ancho del Local.

L = Largo del Local.

H = Altura de Montaje (distancia entre el plano de trabajo y el luminario).

Para determinar el "Coeficiente de Utilización" partiendo del "Indice de Cuarto", se entra a una arreglo similar al representado en la Tabla III.1. Este tipo de Tablas son proporcionadas por el fabricante de luminarios. Como se puede observar en la tabla siguiente, además del "Indice de Cuarto" que involucra las dimensiones del local, también intervienen en el cálculo del "Coeficiente de Utilización" las reflectancias de las paredes, el techo y el piso.

	Distribución Upica y % de			**	,	•	70			*			20		Γ	**		•	
. Tipo de luminaria	lémencs de la lémbere		34	×	14	**	×	*	90	*	ıø	**	30	10	*	*	10	•	wper-
	Cet de especia- Mane, miantos S/MH	K				5 4	Con	ficier clane	40 6	le util	i reci	iện ș L pis	nara (20 % =	3 0}	_			-
Reflector con ventilación para distribución intermedia con fameira clara de decicios de ella minapia-	111 1.9 n.1		N H 77 71 64 54 54 54 54 54 54 54 54 54 54 54 54 54	. IL . IL . IL . IL . IL . IL . IL . IL	日本名のおおおおお	神田 元 巻 公 祭 以 の ジ 口	*********	## 75 AN AN AN AN AN AN AN AN AN AN AN AN AN	****	M 77 70 44 46 43 45 45 45 45 45 45 45 45 45 45 45 45 45	HX 8 C 8 C C 8 X F	.11 .70 .44 .60 .61 .61 .41 .41	11 17 10 10 10 10 10 10 10 10 10 10 10 10 10	11 7 10 10 10 11 11 11 11 11 11 11 11 11 11	77 75 44 75 75 75 75 75 75 75 75 75 75 75 75 75	.77 .96 .61 .86 .81 .07 .03	71 55 56 56 56 56 56 56 56 56 56 56 56 56	200円の日本の 200円の 20	.16 .36 .38 .34 .34 .34 .34
Rehoctor can venitacion para distribución difusa con lampare ciar de descarga de la menoridad.	111 1.3 113 113 113 113 113 113 113 113	0 1 2 3 4 8 8 1 10	30 50 77 70 60 71 70 60 71 70 80 71 70 80 71 70 80 71 70 80 70 70 70 70 70 70 70 70 70 70 70 70 70	20 77 44 44 45 45 45 11 17 17 17 17 17 17 17 17 17 17 17 17	N REPERENCE	N 10 10 10 10 10 10 10 10 10 10 10 10 10	20 20 21 27 20 21 23 24 21 27	2 0 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	N MRCHOLSTAN	.E	20 M 10 M	N SERSSITTERS	22 75 M 61 64 64 74 75 77	27 14 44 45 46 45 27 20 27 20	.33 .79 .44 .43 .43 .43 .44 .43 .44 .44 .44 .44	70 72 86 84 84 84 85 85 85 85 85 85 85 85 85 85 85 85 85	79 11 64 54 54 55 55 55 55 55 55 55 55 55 55 55	77 77 78 28 48 44 48 28 28 28 28	.19 .19 .10 .10 .17 .14 .16 .18
Reflector con versitisción pera distribución intermedia con timpara logiferació de descarge de alta internadad.	## 1.0 ###		M M 17 72 74 88 86 27 48 48	第8年77年の長れでは6	KECCHEBRYFE	经 新	四 机 万 次 5 余 5 6 4 6 3	HEDS CRESSES	38X25013885	2014.00.00.00.00.00	************	12 77 28 14 28 14 12 15 14 10	17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22 74 65 65 65 65 65 65 65 65 65 65 65 65 65	77 14 20 60 60 64 60 64 61	77 78 60 88 46 64 55 60 77	77 77 61 78 61 18 18 18 18 18 18 18 18 18 18 18 18 18	75 70 12 13 15 15 15 15 15 15 15 15 15 15 15 15 15	.14 .13 .13 .13 .13 .13 .14 .14
Reliector con vantilectón para distribuctón dinnas con lampara lestrade de atta intensidad.		8 1 7 4 6 4 7 E 8 10	· · · · · · · · · · · · · · · · · · ·		# 11 11 10 10 10 10 11 11 11 11 11 11 11	非位尺数公司司司司司司	三 の 口 の お は 4 な 足 メ お	unteretaries:	事 打 れ	. B.	医医红红色 化二甲基二甲	77 22 22 23 44 40 25 25	771 Man 4 4 5 5 5 12 18	おいのでは、これのでは、	11年日 日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日	71 64 8 B G 4 2 2 1 2	71 44 40 40	***********	. 14 . 14 . 14 . 10 . 12 . 12 . 12 . 13
Reflector accidade, primura porcalentizada con tampara liberaccente, reflector 14° C.W.	1.3	0 1 3 4 5 7	# # # # # # # # # # # # # # # # # # #	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 EE EF EF EF EF EF EF EF EF EF EF EF EF	第 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# 11 12 12 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	BESSCOURSES	· · · · · · · · · · · · · · · · · · ·	20円 銀口 総口 路上 路上 日	1000 年 1000 1000 1000 1000 1000 1000 10	12 04 14 14 17 14 30 M	12 12 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	20 20 21 22 24 21 24 24 24 24 24 24 24 24 24 24 24 24 24	.U H B	. 按 .	不	17 0 0 4 11 11 11 12 11 11 11 11 11 11 11 11 11	.37 .30 .31 .30 .39 .17 .14

^{*} ρ_{KE} = % de reflectencia efectiva de cavidad de lecha.

Tabla III.1.- Tabla para Determinar el Coeficiente de Utilización, Partiendo del "Indice de Cuarto".

[»] p. – % de reflectancia de paredes.

^{*} Máximo especiamiento S/MH = Releción de especiamiento máximo del fuminario a altura de montajo.

Una vez que se ha calculado; por medio de la fórmula III.1., el flujo total luminoso que se requiere en el área por iluminar, se puede calcular el número de luminarios que se necesitan con la fórmula III.3.

Número de luminarios = Flujo total requerido / Lúmenes por luminario

sustituyendo la ec.III.1 en la III.3, se tiene

Número de luminarios = (E)(S) / (Lúmenes por luminario)(C.U.)(F.M.)

III.8.3.- Método de Flujo Luminoso por Cavidad Zonal

En el Método de Flujo Luminoso por Cavidad Zonal, el cálculo del coeficiente de utilización se hace empleando un procedimiento diferente al que se usa en el Método de Flujo Luminoso por Indice de Cuarto. Este método es más laborioso y exacto, ya que permite calcular el valor del coeficiente de utilización, por medio de Tablas que toman en consideración lo siguiente:

- 1.- Longitud ilimitada de los soportes de las lámparas colgantes.
- 2.- Alturas diferentes de los planos de trabajo.
- 3.- Reflejos diferentes por encima y por debajo de los luminarios.
- 4.- Obstrucción en la cavidad de techo y en el espacio por debajo de los luminarios.

El procedimiento para calcular el coeficiente de utilización por cavidad, se explica a continuación: El cambio básico implica la división del local en las tres cavidades siguientes:

- a).- Cavidad de techo.- Es el área medida desde el plano del luminario al techo. Para luminarios colgantes, existirá una cavidad de techo; para luminarios colocados directamente en el techo ó empotrados en el mismo, no existirá cavidad de techo.
- b).- Cavidad de cuarto.- Es el espacio entre el plano de trabajo donde se desarrolla la tarea y la parte inferior del luminario. El plano de trabajo se encuentra localizado normalmente arriba del nivel del piso. En algunos casos, donde el plano de trabajo es considerado a nivel depiso, el espacio desde el luminario al piso se considera como cavidad de cuarto.
- c).- Cavidad de piso.- Se considera desde el piso a la parte superior del plano de trabajo, ó bién, el nivel donde se realiza la tarea específica. Si el trabajo ó tarea se desarrolla en el piso, no existe cavidad de piso.

Pasos a seguir para calcular el coeficiente de utilización:

1.- Primero se han de calcular las relaciones de cavidad con las siguientes fórmulas:

Relación de Cavidad de Techo (RCT) =
$$(5hct)(L+A)/(L+A)$$

Relación de Cavidad de Piso (RCP) =
$$(5hcp)(L + A) / (L+A)$$

donde:

h = Altura de Cavidad de Techo, Cuarto ó Piso.

- 2.- A continuación se determinan las reflectancias estimadas ó medidas de techo, pared ó piso.
- 3.- El siguiente paso es determinar las reflectancias efectivas para las cavidades de techo y piso. Estas se obtienen en la Tabla II.2 con los valores obtenidos en los puntos 1 y 2. Si todas las superficies son altamente reflectivas, ó si los luminarios se encuentran localizados directamente en el techo, no será necesario efectuar el cálculo. En este caso se puede usar el valor de las reflectancias estimadas para determinar el coeficiente de utilización.

Pct = Reflectancia efectiva para cavidad de techo.

Pcp = Reflectancia efectiva para cavidad de piso.

Pp = Reflectancia de pared.

4.- Conociendo los valores de: Pct, Pcp y Pp y la Relación de Cavidad de Cuarto (RCC), se encuentra el Coeficiente de Utilización (C.U.) en los datos técnicos proporcionados por el fabricante para el luminario que se usará (ver Tabla III.3). La mayoría de las Tablas muestran solamente un valor típico para la reflectancia de piso. Este valor es 20% y es considerado generalmente como un valor normal. En caso de que el valor de reflectancia sea mayor ó menor de 20%, se debe corregir de acuerdo con los datos disponibles en la Tabla III.4.

La fórmula para determinar el número de luminarios necesarios para producir un nivel de iluminación deseado en un espacio determinado, usando el "Método de Flujo Luminoso por Cavidad Zonal", es la misma que para el "Método de Flujo Luminoso por Indice de Cuarto".

DEL TECHO O DIL PISO							•				70	,		50)			1	10				
PORCENTA E E DE LAS	E HITLE	CIANCIA	90	70	50	30	80	70	50	30	70	. Ec	30	70	50	30	45	E0	10	10	60	30	
	T		100	- 90	90	90	*0	80	80		70	70	70	50	60	50	70	30	30	30	10	10	-
	ı	0.1	70				77	79	78		47			59	49	48	30	10	29	29	10	10	
	- 1	1.0 1.0	81				77	78 77	77		1 4	47		49	48		10		29 28	26	10	10	
		0.4	88	84	83	81	73	74	74	72	67	45	43	48	44	45	30		27	27 26	11	10	
	-	0.5	"	85	11	78	"	75	71	70	*	*	&1	4	44	44	27	28	27	26	"	10	
	-	0.4	u		60	74	77	76	71	44	45	42	57	47	43	4)	29	20	24	25	п	10	
	- 1	0.7 0.8	84		71	74 73	74	74 73	70 69	45	45	41	58 54	47 47	44	42 41	27	78 27	26	24	#1	10	
		0.9	87		74	71	1 %	72	ü	43	15	57	65	44	43	40	127	17	25 25	23 22	12	10	
		1.0	84	89	74	44	74	71	**	41	43	54	63	44	47	39	2*	27	24	22	ii	÷	
		1.1	84	71	מ	67	74	71	45	40	42	57	62	44	41	31	21	24	24	31	"	,	_
	-	13	35	78 78	7 <u>1</u> 70	"	12	70 69	4	58 67	41	14	50	45	41	17	27	24	21	20	15	•	
		17	85	77	41	62	l "	4	11	63	61	16 54	47	45 45	40 40	16 16	29	76 78	23 22	10	12	;	
	_	1.3	Ħ	74	4	äï	72	4	41	ŭ	11	63	47	4	37	14	20	25	22	ï	iż	÷	
		14	85	76	44	61	71	47	40	5 3	69	L2	45	44	17	33	26	25	21	18	17	•	
		1.7	84	74 73	4E 64	53 64	7/	44 45	59 64	62 60	54	11	*	44	11	35	28	25	21	17	13	•	
	휘	1,9		'n	-	65	70	45	\$7	41	57 57	50 41	4] 42	4)	37))	28 28	25 25	21	17	12	;	
	影_	2.0	*3	n	47	IJ	49	u	54	48	54	49	41	41	17	30	26	24	20	14	12	ï	
	TCHO O DEL PISO	2.1 2.2	83 83	71	41	67 61	47 48	11	63 64	47	54	47	40	4)	34	27	28	24	20	14	13	,	
	윋	22	;;	49	67	60		2	5)	45 44	35 54	4	37	42 42	34 35	29 28	28 28	24 24	17	15	13	,	
	RELACION DE CAVIDAD DEL	2.4 2.5	82 82	4	68 57	44 47	47 47	61 61	£5	43 42	54 53	45 44	37	42 41	35 34	27	28 27	24 23	17	14	13	÷	
	<u>ā</u> -	2,8		67	54	44	-	40	50	41	53	4)	75	41	14	24	27	23	10		1)	•	
	9	2.7	0Ž	44	\$\$	45	4	40	47	40	52	43	й	41	11	26	27	23	ii	ii	ij	į	
	3	2.8 2.7	81	44	54 53	44	44	57	4	37	52	42	33	41	33	25	27	23	18	13	11	٠	
	ĝ	1.0	**	ü	\$2	42	45	H	48 47	38 18	£1	41 40	32	49	33 32	25 24	27 27	23 72	17 17	12	(3	•	
	ਭ −	3.1	80	4	61	41	44	57	44	37	60	40	31	40	12	24	27	22	17	12	13		
	1	12	10	63 42	60 49	#0 Pr	4	67 64	46 44	14	60	37	30	40	11	23	27	22	14	11	13	•	
	1	14		42	44	5	2	ü	44	35	47	31 36	30]†]†) I	23			16 16	# [13	:	1
	L	3.5	79	41	44	37	41	123	41	13	41	14	29		30	22				<i>ii</i>	13	ij	i
	1	3.4 3.7	71	40 40	47 46	34 36	4.2 6.2	64 64	42 42	33	41	37	26		30	21			!5	10	13	•	1
		iii	79	57	45	25	45		41	32	44 47	17 16	27	38 38	30 27	21 21				::	N 13	•	
		3.7	78 72	57 14	48 44	# i		53 52	40 40	30 30	47	34	26	38	27	20	26	21	15	10	13	ŧ	•
	\vdash				-			_	_	_		36	24	34	20	20	24	21	15	<u>'</u>	:3		•
		4.1	78 78		43 43	12			24 34	27	44)[]4	25			70			14 14	;	13 13		4
		4.3	78	54	42	31	40	51	38	20	45	34				ii]			14	•	13	ŧ	4
	1.	44	77 77		41 41	30 30			38 37	28 27		34 33				;;			14 14		13 - 14	•	4
•	Ī	4.4	77	65	40	27	59	50	37	26	44	33	24	36	27		26	20	!4	7	14	•	4
		4.7	77			27		47	16	26	44	33	21	34	26	ii [25	20	13	•	14		4
		4.5	74 74			28 28			34 35	25 26									() ()	;		:	4
	1	6.0	76			27			31	23						;;]			13 13	;		:	4

Tabla III.2.- Porcentajes de Reflectancia.

% de reflectancia efectiva de la cavidad del techo pct		80			70	·		50		10				
% de la reflectancia de las paredes	50	30	10	50	30	10	50	30	10	50	30	10		
Relación de Cavidad local														
1	1.08	1.08	1.07	1.07	1.06	1.06	1.05	1.04	1.04	1.01	1.01	1.01		
2	1.07	1.06	1.05	1.06	1.05	1.04	1.04	1.03	1.03	1.01	1.01	1.01		
3	1.05	1.04	1.03	1.05	1.04	1.03	1.03	1.03	1.02	1.01	1.01	1.01		
4	1.05	1.03	1.02	1.04	1.03	1.02	1.03	1.02	1.02	1.01	1.01	1.00		
5	1.04	1.03	1.02	1.03	1.02	1.02	1.02	1.02	1.01	1.01	1.01	1.00		
6	1.03	1.02	1.01	1.03	1.02	1.01	1.02	1.02	1.01	1.01	1.01	1.00		
7	1.03	1.02	1.01	1.03	1.02	1.01	1.02	1.01	1.01	1.01	1.01	1.00		
- 8	1.03	1,02	1.01	1.02	1.02	1.01	1.02	1.01	1.01	1.01	1.01	1.00		
9	1.02	1.01	1.01	1.02	1.01	1.01	1.02	1.01	1.01	1.01	1.01	1.00		
10	1.02	1.01	1.01	1.02	1.01	1.01	1.02	1.01	1.01	1.01	1.01	1.00		

Tabla III.3.- Coeficientes de Utilización.

	Distribución		_	**	- 1	Γ.	70			14	_		34			10		•	
	Ifpica y % de Numence de fa Iámpara		59	*	14	140	*	*	**	30	Iŧ	H	24	10	*	34	ч	•	MDEC.
Tipe de luminario	Cat, de aspecie- Mant, mientos S/MH	e¢+				4-	Cor	ie w	110 d	la util Inche	4 6	én s	4 (A	10%	20)			_	
u A	111 1.0	+	.91 .84 .77	.91 .81 .73	.10 .70	8 E 7 E	. (1) (1) (1)	77.70	M 70 17	.H.	.14 .16 .60	.11 .76 .70	14 2	73 44 40	7723	77 72 84 61	.71 .43 .89	12 23 23 24	.16 .16 .14
<u>(0)</u>		1	45 36	40 34 49	.34 .50 .63	4 M	.34 .54	. NO	. El . 11 . 12	.13 14	13 49	40 44 51 47	17 17 10	4 4 4 1	# M	61 (7 42	4		.14 .14 .14
Reflector con ventifación para distribución imperio- dia con lampara clara de descarga de alla intensi- rad	Y	10	.43 .43 .43	44 40 34 33	. 10 . 12 . 29	41.08	# #0 #4	12 23	11 00 11		10 11 12	.U. .W.	# 11	33	12 14 15	11 72	23 37 20	30	.13
# A	III 1.A	;	.92 .83 .77	D	.02 .00	10 10 14	, p0 \$1 .77	.79	10 10 17	.86 .76 .70	76	22 76 70	75	#1 74 64 58	79 74 62	77 85 86	્,⊌	.70 e1	.11 .15
\sim			10 10 11	. 16 61 43	41 42 41	42 45 45 46 47	, ET 11 12	53 47 41	8 14 40 14 15 18 18	,54 ,50 ,60	14 14 40	4	.15 .45 .43	62 66 60	17 12 17	.44	. 43 . 43	.49 .44 .14	.18 .17 .10
Rufiezter con ventifector pera distribución difuga con lampara clara de des- carga de alta intentidad.		10	. 41 .17 .33	10 11 77	31 37 24	4 11 17 13	36 36 31 37	.11 .17	4 80 M II	М . 27	11 17	11. 14.	34 30 37	13 17 12	13 39 34 31	13 10 20	. X	23 23	.16 .16 .14
" A	111 1.0 -	;	88			2 2 2	. ER	10 74	, n	.74	77	.71	76 ,71	.75	.70		. T	.10	.14
Reliector can ventilación	7,1		76 70 86 60		R	74 20 20 20 20	10 45 84 84 85	61 84 81	900	.61 ##		.M.	.61	. 52 53 69	.0		3, C	. 84 . 61 . 61	.13
pere distribución interme- dia con lampara featorada de descerga de ella inter- sidad.		10	4	. ن	4	51 17 44	4 0 9			44	, 42	4	41	.41	.0		.	H	.11
19	ttt 1.4	:	. H		.11	70	.73		7	71	-,≅	41	.7	. 4	9.		4 .6	9. S	.16
			21 80	. 44	, 66 , 10	. 84	.13	. 34		.45 .41		.83		41	. 84		3 .6 7 .4	9 .4 3 .4	.13
Retlector con ventilación pero distribución difuse con lampara fosferada de ata intensidad.	1	10	41		.40 .11	#	.E.		.4	.41 .27	3	. 46 26. 1	. 20) .51 .51	. # #.		1 .1 1 .3	1, t 1, t	1 .UI
н	f11 1.3	1:	1.0			1.84		.,7	.7	.77	.,	.77	.1	2 .7			7 ,4 1. 8	9. 4 .6	
		:	.01) .E	4 .41 14. 41		. ez 			43		. E		1 .6 1 .5	3 .6). I). A	2 .3 3 .3	
Reflector acabada, pintura percalanizada con lámpa- ra Buarascanta, zañector		;	.60		. 21 1 21 1 .22	H.	1 ,31 1 1 1 27	.3) .34 1 .30 25, 1	3	. A.	.2	2 .2 2 .3		1 .1	1 .1 7 .1 8 .3	7 .2 4 .3 0 .1	5 .17 2 .16 0 .16
14° C.W.		10			20	. *1		د. ا	2 . 2	. 2		٠.*	2		1.			-T:-	<u>''''</u>

Tabla III.4.- Factores para Reflectancia efectivas de la Cavidad del Piso Diferentes de 20%.

III.8.4.- Método de Punto por Punto en Superficies Horizontales y Verticales

Es un método que permite calcular con exactitud la intensidad de iluminación sobre puntos determinados, en lugares donde la altura de montaje es grande y son dudosos los resultados obtenidos con el Método de Lúmenes; como fábricas de altos techos, gimnasios y en lugares donde sea muy importante contar con la seguridad de tener precisamente el nivel de iluminación recomendado y no en promedio, como pizarrones, tableros, etc.

Con este método es posible calcular, la intensidad de iluminación producida en determinados puntos por fuentes luminosas distribuidas y localizadas de antemano, por lo que para aplicarlo se debe tener ya una distribución de luminarios que sirvan de base para el cálculo; esta base es posible determinarle estimativamente por medio del Método de Lúmenes. Obtenida esta base se aplica el "Método de Punto por Punto" y si este cálculo indica niveles de iluminación como los recomendados; la base tomada en cuenta será la definitiva; pero si el cálculo indica niveles de iluminación abajo ó arriba de los recomendados habrá necesidad de modificar proporcionalmente la cantidad de luminarios y volver a hacer otro cálculo de punto por punto, hasta que los resultados obtenidos sean los deseados.

El nivel de iluminación calculado por el "Método de Punto por Punto" se obtiene de la siguiente manera: Primero se escoge un número determinado de puntos sobre el plano de trabajo por iluminar, para calcular la intensidad de iluminación que proporcionan todos los luminarios en cada uno de ellos, después se suma la intensidad de iluminación de todos los puntos y el total se divide entre el número de puntos, obteniéndose así el promedio de intensidad de iluminación. Si no se obtiene el nivel promedio de iluminación deseado, se modifica el número de luminarios en el área por iluminar para obtener dicho promedio de iluminación.

III.8.5.- Metodo de Watts por Metro Cuadrado.

Es un método sencillo y estimativo que se usa cuando se requiere tener una idea rápida de la carga, número de lámparas y luminarios que pueden necesitarse en un proyecto ó anteproyecto determinado. Para esto se aplican factores que indican el consumo de Watts por metro cuadrado de superficie de suelo, que se necesitan para obtener un nivel de iluminación predeterminado. Estos factores de Watts/metro cuadrado se obtienen para cada tipo de lámpara y luminario con el promedio de valores determinados en varios cálculos, hecho con el Método de Lúmenes, donde se varía en cada uno de ellos las dimensiones del local y la potencia de las lámparas. A continuación se explican los pasos a seguir en este método:

- 1.- Se determinan las dimensiones del local, las características del luminario y el nivel de iluminación deseado.
 - 2.- Se calcula el Indice de Cuarto utilizando la fórmula respectiva.
- 3.- En tablas de Catálogos Comerciales se obtiene; el coeficiente de utilización C.U., el factor de depreciación de la lámpara y el factor de depreciación por suciedad del luminario para obtener el Factor de Mantenimiento (F.M.).
- 4.- Utilizando la Fórmula del "Método del Flujo Luminoso", se calcula el flujo total luminoso necesario en el local por iluminar.
- 5.- Se divide el flujo total luminoso entre los lúmenes emitidos por lámparas ó luminario, para obtener el número de lámparas necesarias.
- 6.- Para determinar el factor de Watts/metro cuadrado necesarios para obtener el nivel de iluminación deseado, se utiliza la siguiente fórmula:

Watts/metro cuadrado = (Número de lámparas necesarias)(Potencia de lámparas) / (Area por iluminar) III.4.

- 7.- Para obtener un factor de Watts/metro cuadrado aceptable se obtienen varios factores, variando en cada cálculo las dimensiones del local y la potencia de las lámparas, manteniéndose el nivel de iluminación y se obtiene un promedio de estos factores. El promedio así obtenido será el factor de Watt/metro cuadrado correspondiente a un tipo de lámpara y luminarios en especial.
- 8.- Para estimar el número de luminarios necesarios para iluminar un local teniendo el factor de Watt/metro cuadrado se emplean las siguientes fórmulas:

Watts

Totales = (Area por iluminar)(Factor Watt/metro cuadrado) III.5. Requeridos

Número de Lámparas = (Watts totales requeridos) / (Potencia de la lámpara a utilizar) III.6

III.8.6.- Método de Luminancia.

Es un método para cálculo de alumbrado público, utiliza la medición de las variaciones de brillo del pavimento visibles al conductor y al peatón. En este método es muy importante conocer los contrastes reflectivos de la carpeta asfáltica de la calle ó avenida junto con las guarniciones y banquetas, ya que como se sabe, la impresión luminosa que recibe el ojo proveniente de un objeto iluminado no es debido al nivel de iluminación de este objeto sino a su luminancia ó sea por la luz que dicho objeto refleja hacia el observador. En el alumbrado público el objeto es la carpeta de la calle; por lo tanto, cuanto más uniforme sea el brillo de la avenida, menor será la probabilidad de que no se distinga un objeto que podría estar en una zona de brillo reducido.

En Europa es muy utilizado este método, en México no lo es, debido a que alcanzar una buena uniformidad (1.5 Candelas/metro cuadrado) representan una mayor inversión, dado que ésta sólo puede lograrse mediante un menor espaciamiento de los arbotantes, un sistema más perfeccionado de los luminarios ó colocando más luminarios. Además, se tiene el problema de que no todas las calles tienen el mismo tipo de carpeta asfáltica, lo que representa muchos problemas para obtener la uniformidad de luminancia.

III.8.7.- Normas para el Cálculo.

Para realizar el cálculo de un proyecto de iluminación, los datos básicos son los planos del local, ya sea industrial, comercial, etcétera. En todos los casos, el orden que debe seguirse para realizar un proyecto de iluminación es el siguiente:

- 1.- Analizar las necesidades de iluminación.
- 2.- Determinar el nivel de iluminación más aconsejable.
- 3.- Decidir la fuente de iluminación.
- 4.- Seleccionar el color de la luz emitida por la lámpara.
- 5.- Seleccionar el luminario adecuado.
- 6.- Decidir la altura de montaje.
- 7.- Estimar las condiciones de mantenimiento.
- 8.- Medir ó estimar la reflexión.
- 9.- Determinar la relación de índice de cuarto.
- 10.- Determinar el factor de mantenimiento.
- 11.- Determinar el coeficiente de utilización.
- 12.- Calcular el número de luminarios requeridos.
- 13.- Determinar el espaciamiento máximo entre los luminarios.
- 14.- Hacer un plano de distribución de los luminarios.

Análisis de las necesidades de iluminación. Este análisis se debe hacer basándose en ¿ qué es lo que debe ser visto? En una tienda es la mercancía; en una fábrica es la tarea a realizar; en un hogar son muchas cosas, desde las hojas de un libro hasta las caras de los que ahí habitan. Subrayando estas consideraciones, se tiene iluminación de seguridad, iluminación para rendimiento visual e iluminación para placer estético. Exceptuando los aspectos de seguridad, lo demás puede variar. El factor importante dependerá de su aplicación. En una fábrica; por ejemplo, la tarea visual es de gran importancia, pero la ventaja de crear un ambiente placentero de trabajo, se hace cada día más indudable. En una zona de oficina, la iluminación de los corredores no debe ser tan baja que produzca un efecto deprimente a la persona que salga de ella.

Determinación del nivel de iluminación. Recomendaciones sobre niveles de iluminación adecuados, pueden ser obtenidas en las publicaciones de La Sociedad de Ingeniería de Iluminación (I.E.S.) y de La Sociedad Mexicana de Ingeniería e Iluminación A.C. ó Iluminating Engineering Society-México Chapter. Es conveniente aclarar que algunos de los altos niveles recomendados en las publicaciones mencionadas, no tienen que aplicarse sobre áreas completas. Estos niveles están diseñados para producir un rendimiento máximo visual cuando se aplican a la tarea propiamente dicha. Naturalmente, el nivel de iluminación general debe ser alto en un local donde se realizan tareas que requieren iluminación intensa, a fin de que la adaptación de los ojos del trabajador no tenga que cambiar mucho cuando dirige la mirada de su trabajo a los alrededores y nuevamente al trabajo que realiza.

Decisión sobre el tipo de fuente de luz. Para decidir el tipo de lámpara autilizar, se toma en consideración lo siguiente: Si el Sistema de Iluminación va a ser usado ocasionalmente y por lo tanto el costo inicial pasa a ser más importante que el costo de operación, el tipo de iluminación usualmente seleccionado es el incandescente. Si el sistema va a estar funcionando durante muchas horas, los tipos fluorescente, mercurio ó sodio de alta presión son los más indicados.

En la actualidad, en zonas de oficinas es muy común emplar lámparas fluorescentes de 38 Watts; en fábricas donde no es muy grande la altura de montaje y es importante el color de la luz, como fábricas textiles, se emplean lámparas fluorescentes de 74 Watts; en la iluminación de grandes naves industriales altas, se emplea vapor de mercurio, metalarc ó vapor de sodio a alta presión de 400 Watts, ó bién una combinación de lámparas de vapor de mercurio ó metalarc con lámparas de vapor de sodio a alta presión, a fín de mejorar el color monocromático de la lámpara de vapor de sodio y aprovechar su alto rendimiento luminoso. En locales comerciales también es aconsejable una combinación de iluminación incandescente y fluorescente porque logran una mejor pariencia del color rojo.

Selección del color de la lámpara. Con las lámparas incandescentes no se presenta el problema de selección de color, a excepción de las que son tipo PAR de color, de luz concentrada ó luz difusa, y las que tienen ligeros tonos cálidos ó frescos en las de tamaño casero. Para iluminación general, se usan con más frecuencia las lámparas fluorescentes blanco frío y blanco cálido, según se prefiera un tono de luz que se asemeje a la luz natural del día ó a la luz incandescente. Sin embargo, cuando se desea lograr mejor apariencia de color, particularmente con los tonos rojos, es necesario usar las lámparas blanco natural ó blanco cálido de lujo. Cuando se instalan lámparas del tipo de lujo, es necesario instalar un mayor número de ellas para compensar la baja emisión la baja emisión de lúmenes de estas lámparas.

En la iluminación con vapor de mercurio, es posible escoger entre los tipos claro, de color corregido y blancas. Como en las lámparas blancas se ha logrado un color corregido con una eficacia mayor en vez de menor, este es el tipo de lámpara más aconsejable para todas las aplicaciones, exceptuando los casos donde la altura de montaje es muy elevada y se requiere un mejor control del haz luminoso, lo cual se logra con lámparas claras.

Las metalarc asumen muchas de las aplicaciones de las de mercurio y además se usan en ciertas instalaciones cuyos requerimientos no pueden ser satisfechos por la de mercurio, debido a la diferencia de rendimiento de color que existe entre las lámparas.

En iluminación interior, solamente en algunos casos podrá utilizarse la lámpara de vapor de sodio a alta presión, por ejemplo en fundiciones, debido a su luz monocromática que deforma los colores de los objetos que ilumina. Sin embargo, se puede aprovechar su alto rendimiento luminoso y su gran duración, combinándolas con lámparas metalarc ya que se mejorará la apariencia de color en los objetos iluminados.

Se puede obtener desde el tipo sencillo individual incandescente ó fluorescente, hasta el techo luminoso completo de pared a pared. Algunos de los factores que contribuyen a tomar una decisión son: El tipo de distribución de luz, el ángulo de corte del luminario para iluminación directa y las condiciones de utilidad comparada con la apariencia estética del luminario. En esta parte del proyecto, también será más fácil la consulta de los Catálogos de los Fabricantes de aparatos de alumbrado, para determinar que tipo de luminario es el más apropiado, de acuerdo con sus características constructivas y con su curva de distribución luminosa.

Determinación de la altura de montaje. La altura de suspensión de los luminarios es una característica fundamental en todo proyecto de iluminación. En locales de altura normal, tales como oficinas, salas de clase, habitaciones, etcétera, la tendencia actual es situar los aparatos de alumbrado tan altos como sea posible; de esta manera se disminuye considerablemente el riesgo de deslumbramiento y se pueden separar más los luminarios y por consecuencia disminuye el número de éstos.

A veces, sobre todo en interiores industriales, los locales son de gran altura. Por ejemplo, en las naves en que deban instalarse grúas puente. También cuando las dimensiones verticales de los aparatos fabricados ó de las máquinas herramienta sean muy grandes. En estos locales los luminarios se sitúan a grandes alturas, por encima del plano de trabajo (7 metros y más). Es más aconsejable en estos casos adoptar la altura mínima compatible con las condiciones del local, sin tener en cuenta la altura del techo y las claraboyas existentes.

Estimación de las combinaciones de mantenimiento. El rendimiento de los aparatos de alumbrado se reduce, en el transcurso del tiempo, por los efectos del polvo y la suciedad. Según el lugar de colocación y las características constructivas de los aparatos de alumbrado, el flujo luminoso puede reducirse en un plazo de dos años, de 20 a 50% con respecto al valor inicial. Al proyectar la instalación, se debe considerar la reducción previsible del flujo luminoso como consecuencia del ensuciamiento, para obtener que la intensidad luminosa continúe después de largo tiempo de servicio. Los costos de instalación, como los de servicio, se pueden reducir planificando desde un principio limpieza regular, a intervalos prefijados, de los aparatos de alumbrado. Según el grado de ensuciamiento, conviene limpiar los luminarios una ó dos veces al año.

Medición ó estimación de la reflexión. En la mayoría de los casos es suficiente estimar la reflexión. Sin embargo, en un diseño que exija un alto grado de precisión, ésta debe ser medida, incluyendo los promedios compensados de paredes, ventanas y puertas. Si se desea, se puede incluir en los cálculos de reflexión del suelo alguna compensación por el mobiliario.

Determinación de la relación de índice de cuarto. La relación de índice de cuarto puede calcularse de acuerdo a la fórmula que relaciona las dimensiones del local.

I.C. =
$$(A)(L)/(H)(A+L)$$

Determinación del factor de mantenimiento. Para determinar este factor; es necesario, considerar el grado de limpieza ó suciedad del local que se va a iluminar, así como la depreciación que sufre la lámpara por sus horas de uso.

Determinar el coeficiente de utilización. Para determinar el coeficiente de utilización, se usa la información proporcionada por el fabricante en forma de tablas. Si se conoce la relación de índice de cuarto y la reflexión estimada de techo, piso y paredes, el coeficiente de utilización se puede obtener directamente ó por interpolación en dichas tablas.

Cálculo del número de luminarios requeridos. El número de luminarios puede calcularse aplicando la fórmula de los lúmenes.

Determinación del espaciamiento máximo. Para tener una iluminación uniforme sobre el plano de trabajo, el espaciamiento máximo entre los luminarios puede ser obtenido multiplicando la altura de montaje por el factor de espaciamiento que proporciona el fabricante del luminario utilizado. Es conveniente mencionar, que la distancia que generalmente se adopta entre luminarios y paredes ó muros, es la mitad del espaciamiento máximo entre luminarios.

Distribución de los luminarios. El plano definitivo de la distribución de un Sistema de Iluminación es determinado por el número de luminarios requeridos, la ubicación de las vigas, columnas, obstáculos y el espaciamiento máximo. Algunas veces es necesario aumentar el número de luminarios para lograr una distribución más atractiva.

CAPITULO IV

APLICACIÓN DEL PROYECTO DE INSTALACION ELECTRICA A UN CENTRO COMERCIAL.

A continuación se analizarán los pormenores sobre la Aplicación del Proyecto de Instalación Eléctrica a un Centro Comercial (Auto-Servicio).

El análisis está enfocado a los cálculos necesarios, el programa de aplicación y finalmente, los planos de ejecución.

CALCULO DE CIRCUITOS DERIVADOS

CIRCUITO 1 DEL TABLERO "A "

DATOS

Katts: 4,140 1 = 1,380 = 1,380 = 12.07Amps. $127 \times .90/-25.84^{\circ}$ Amps. 114.30 = 12.07Amps. Volts : 220 F.P.: 0.90 # Fases: 3 S= 2 x L x Ic =(2)(121)(12.07)= 7.66 # Hilos: 3 Vn x CZ (127)(3.0%) Circuito de ALUMBRADO SALA DE VENTAS

Localización : ENTRE EJES L.M y 2,8

Longitud : 121 ats.

CX = 3.0XFOR CORRIENTE: 1 12 AWG FOR CALDA: 18 AWG

IT = ic x 1.25 = (12.07)(1.25)= 15.09 Aggs.

Se necesita un interruptor : TERMOMASMETICO DE 3P-15 AMPERES

> CONDUCTOR: 1 CALIBRE 8 AMG MEUTRO : 1 CALIBRE 8 AKS TURERIA : 1 C152 m.

Comprobación Circuito = 2.75% + C%(Tab) + C%(Gral) = 4.64%

CIRCUITO 18 DEL TABLERO "AE"

DATOS

I= 900 = 900 = 7.87Aaps. #atts : 2,600 Volts : 220 F.P.: 0.90 ‡ Fases: 3 $S = 2 \times L \times Ic = (2)(118)(-7.87) = 4.97$ # Hilos: 4 Vn x CX (127)(3.0%) Circuito de ALUMBRADO SALA VENTAS Localización : SALA DE VENTAS EJES J,K y 1,8 Longitud: 118 ets. C7 = 3.07

POR CORRIENTE: 1 12 AMS POR CAIDA: I 10 AMS

I T = Ic x 1.25 = (7.87)(1.25)= 9.84 Amps.

Se necesita un interruptor : TERMONAGNETICO DE 37-15 AMPERES

> CONDUCTOR: 1 CALIBRE 10 AMS NEUTRO : 1 CALIBRE 10 ANS TUBERIA : 1 C152 as.

Comprobación Circuito = 2.78% + C%(Tab) + C%(Gral) = 4.96%

CALCULO DE CIRCUITOS DERIVADOS

CIRCUITO 1 DEL TABLERO "B "

DATOS

Hilos: 4 Vh x CX (127)(3.0%)
Circuito de ALUMBRADO SALA DE VENTAS

Localización : SALA DE VENTAS EJES K,L y 2,8

Longitud : 120 ats.

CX = 3.0% POR CORRIENTE: 1 12 AWG FOR CALDA: 1 8 AWG

IT = Ic x 1.25 = (12.07)(1.25)= 15.09 Augs.

Se necesita un interruptor : TERMOMAGNETICO DE 3P-15 AMPERES

> CONDUCTOR: 1 CALIBRE 8 AMS NEUTRO : 1 CALIBRE 8 AMS TUBERIA : 1 CIS2 max.

Comprobación Circuito = 2.73% + C%(Tab) + C%(Gral) = 4.52%

CIRCUITO 1 DEL TABLERO "C "

<u>DATOS</u>

Fases: 1 S= 4 x L x Ic = (4)(97)(8.74)= 9.09 # Hilos: 2 Vn x CZ (127)(3.02)

Circuito de CONTACIOS

Localización : SALA DE VENTAS EJES J,K y 1,4

Longitud: 99 ats.

CX = 3.0% FOR CORRIENTE: 1:12 ANG FCG CALDA: 1:6 ANG

I T = Ic x 1.25 =(8.74)(1.25)= 10.93 Amps.

Se necesita un interruptor : TERMOMAGNETICO DE IP-15 AMPERES

> CONDUCTOR: 1 CALIBRE 6 AMG NEUTRO : 1 CALIBRE 6 AMG TUBERIA : 1 C152 mm.

Comprobación Circuito = 2.05% + C%(Tab) + C%(Eral) = 3.97%

CALCULO DE CIRCUITOS DERIVADOS

CIRCUITO 7 DEL TABLERO "CE"

DATOS

Watts: 1,500 1,500 = 1,500 = 13.129aps. Volts: 127 127 x .90/-25.84 Amps. 114.30 F.P.: 0.90 Fases: 1 $S= \frac{4 \times 1 \times Ic}{4 \times 1c} = (4)(104)(13.12) = 14.32$ # Hilos: 2 Vn x CX (127) (3.0%)

Circuito de CONTACTOS ACCESO A TIENDA Localización : ACCESO ATTENDA EJES K,L y 4,5 Longitud : 104 ets.

CX = 3.0XPOR CORRIENTE: 1:12 AWG POR CAIDA: 1:4 AWG

I I = Ic x 1.25 =(13.12)(1.25)= 16.40 Amps.

Se necesita un interruptor : TERMONAGNETICO DE 17-15 AMPERES

> CONDUCTOR: L CALIBRE 4 AMB NEUTRO : 1 CALIBRE 4 AMG TUBERIA : 1 C152 em.

Comprobación Circuito = 2.03% + C%(Tab) + C%(Gral) = 4.09%

CIRCUITO 1 DEL TABLERO "D "

DATOS

Watts: 1,500 Volts: 127

F.P.: 0.90

Fases: 1 $S = 4 \times L \times Ic = (4)(108)(13.12) = 14.88$ ∯ Hilas: 4 Va x CZ (127) (3.0%)

Circuito de CONT. NUERLES SALA DE VENTAS Localización : SALA DE VENTAS EJES I,J y 1,3

Longitud : 108 mts.

CZ = 3.02POR CORRIENTE: 1:12 AMB POR CAIDA: 1:4 AMB

I T = Ic x 1.25 =(13.12)(1.25)= 16.40 Amps.

Se necesita un interruptor : TERNOMAGNETICO DE 19-20 AMPERES

> CONDUCTOR: 1 CALIBRE 4 AMS NEUTRO : 1 CALIBRE 4 ANS TUBERIA : 1 0152 na.

Comprobación Circuito = 2.11% + C%(Tab) + C%(Gral) = 4.06%

CALCULO DE CIRCUITOS DERIVADOS

CIRCUITO 6 DEL TABLERO "DE"

DATOS

Watts : 1,250 f=____1,250 ____= <u>1,250</u> = 10.93Aups. Volts : 127 127 x .90/-25.84° Apps. 114.30

F.P.: 0.90

Fases: 1 $S = \underbrace{4 \times 1 \times 1c}_{\text{Vin } \times \text{CX}} = \underbrace{(4)(130)(-10.93)}_{(127)(3.0X)} = 14.92$

Hilos: 4 Circuito de CONTACTOS CENTRO DE SERVICIO

Localización : ENTRE EJES J,K y 1',2

Longitud: 130 ats.

CI = 3.07

POR CORRIENTE: 1 12 AMB POR CAIDA: 1 4 AMB

I T = ic x 1.25 = (i0.93)(1.25)= 13.67 Amps.

Se necesita un interruptor :

TERMOMAGNETICO DE 1P-15 AMPERES

CONDUCTOR: 1 CALIBRE 4 AMS NEUTRO : 1 CALIBRE 4 AMB

TUSERIA : 1 C152 an.

Comprobación Circuito = 2.12% + C%(Tab) + C%(Gral) = 4.27%

CIRCUITO 6 DEL TABLERO "F "

DATOS

I= 1,500 = 1,500 = 13.12Aups. #atts : 1,500 Volts : 127

F.P.: 0.90

Fases: 1 S= 4 x L x Ic = (4)(44)(13.12)= 6.06 # Hilos: 2 Vn x CI (127)(3.02)

Circuito de CONTACTOS OFICINAS

Locatización : OFEMAS EJES 6,E y 7,8

Longituo: 44 mts.

0.7 = 3.07FOR CORRIENTE: 112 AMS POR CAIDA: 18 AMS

IT = Ic x 1.25 = (13.12)(1.25)= 15.40 Amps.

Se necesita un interruptor :

TEXMONAGNETICO DE 1P-20 AMPERES

CONDUCTOR: : CALIBRE 8 AMS NEUTRO : 1 CALIBRE 8 AMB

TUSERIA : 1 C152 ep.

Comprobación Circuito = 2.17% + C%(Tab) + C%(Gral) = 4.04%

CALCULO DE CIRCUITOS DERIVADOS

CIRCUITO 6 DEL TABLERO "FE"

DATOS

Circuito de CONT. EN SALON DE EMPLEADOS Localización : ENTRE EJES B,L y 7,8 Longitud : 25 ets.

CX = 3.0X

OX POR CORRIENTE: 1:12 AMG POR CAIDA: 1:10 AMG

I T = Ic x 1.25 =(13.12)(1.25)= 16.40 Amps.

Se necesita un interruptor : TERMOMAGNETICO DE 19-20 AMPERES

> CONDUCTOR: 1 CALIBRE 10 AMS MEUTRO : 1 CALIBRE 10 AMS TUBERIA : 1 C152 ams.

Comprobación Circuito = 2.04% + 6%(Tab) + C%(Bral) = 4.21%

CIRCUITO 2 DEL TABLERO "R "

DATOS

Watts: 500 I= 500 = 500 = 4.37Amps. Volts: 127 127 x .90/-25.84* Amps. 114.30

F.P.: 0.90

Fases: 1 S= 4 x L x Ic = (4)(103)(4.37)= 4.73 # Hilos: 2 Vn x C% (127)(3.0%)

Circuito de COMTACTOS REG. CAJAS GRALES. Localización : ENTRE EJES K,L y 4,5

Longitud : 103 ets.

EX = 3.6X POR CORRIENTE : 0 POR CAIDA : 0

iT = ic x 1.25 = (4.37)(1.25) = 5.46 Augs.

Se necesita un interruptor :

CONDUCTOR: 0 CALIBRE
NEUTRO: 0 CALIBRE
TUBERIA: 0 AM.

Comprobación Circuito = 0.00% + C%(Tab) + C%(Gral) = 0.00%

- 408 -

MEMORIA DE CALCULO DESCRIPTIVA

CALCULO DEL ALIMENTADOR, INTERRUPTOR Y CONSUMO EN K.V.A. DEL TABLERO : "A "

TIPO : PB-4L30S PLANO : IE-01.2

I. DATOS TECNICOS:

- 1. Servicio : NORMAL
- Watts totales: 14,559
 Tensión del sistema: 220 volts
- 4. Factor de potencia : 0.70/-25.849 Amps. 5. Factor de utilización: 100 %
- 6. Número de fases: 3
- 7. Número de hilos: 4
- 8. Frecuencia en Hz: 60 Hz
- 9. Tablero de : ALUMBRADO Y CONTACTOS SER.
- 10. Localización : CUARTO DE SUBESTACION
- 11. Tipo de conductor : COBRE
- 12. Tipo de aislamiento : T.H.W. 90 9C en Aire
- 13. Longitud total al Tablero General: 17 mts.
- 14. Caida de tensión : 2.0 %

II. DATOS DE CARGA :

. <u>DHIOJ</u>	DE CHRON :		
CANTIDA	D DESCRIPCION	W/U	W/T
2	LAMPARA SLIM LINE CON 1T-38W.	50	100
2	LAMPARA SLIM LINE CON 2T-38W.	100	200
19	LAMPARA SLIM LINE CON 1T-74W.	100	1,900
7	LAMPARA INCANDESCENTE	75	525
12	LAMPARA DE HALOGENO A 127V.	50	600
చ	LAMPARA DE ADITIVOS METALICOS A 220V.	312	1,872
2	CONTACTO DUPLEX POLARIZADO	500	1,000
1	CONTACTO FOLARIZADO	1,000	1,000
3	CONTACTO TWIST LOCK DE 2P-20A.	1,000	3,000
3	SALIDA PARA INSECTRONIC	500	1,500
3	MBTOR DE 1.0000 A 220 3 F	954	2,862
	WATTS TOTALES	:	14,559

It = 42.45 FASE A= 4878w FASE B= 4878w FASE C= 4803w

III. CORRIENTE TOTAL :

I Fase A=
$$\frac{4,878}{127 \times .907-25.849} = \frac{4.878}{114.30} = 42.67Amps.$$

I Fase
$$B = \frac{4.878}{127 \times .90/-25.849} = \frac{4.878}{114.30} = 42.67 Amps.$$

I de la fase más cargada = A = 42.67 Amps.

IV. CALCULO DEL ALIMENTADOR : a) CALCULO POR CORRIENTE:

HOJA # 2

Ic= 42.68 Amps.

Por corriente se necesita instalar, il conductor(es) por fase que conduzca(n) (42.68)Amps. y corresponde a un calibre (10)AWS

b) CALCULO POR CAIDA DE TENSION:

$$S = \underbrace{2 \times i \times Ic}_{Vn \times CX} = \underbrace{(2)(17)(42.68)}_{(127)(2.0\%)} = 5.71$$

Por caída de tensión se necesita -1 conductor(es) por fase calibre (8. JANG que tiene una sección en área de (-8.37) mm²

c) CALCULO POR TEMPERATURA :

Por temperatura se necesita instalar 1 conductor(es) por fase que conduzca(n)(46.90)Amps. y corresponde a un calibre No.(10)AWG

d) CALCULO POR RESISTENCIA OHMICA:

Se obtuvo = $3.1861 \Omega/1 Km$.

Por resistencia ómbica se necesita instalar i conductor(es) por fase que tenga(n) menos de (3.1861) obms. por kilómetro y corresponde(n) a un calibre (8...) AWG

Por Tablas un conductor del No.(8) tiene 2.10200 0/1 Km.

Por Tablas un conductor del No.(10) tiene 3.34200 Q/1 Km.

e) CALCULO DEL INTERRUPTOR PRINCIPAL:

I T = Ic
$$\times$$
 1.25 = (42.68)(1.25) = 53.35 Amps.

Se necesita un interruptor : TERMOMAGNETICO DE 3P-70 AMPERES

V. RESULTADO DE LOS CONDUCTORES:

Por corriente, por caida de tensión, por temperatura y por resistencia óhmica lo mas indicado es usar 1 conductor(es) por fase calibre No. (8)AWG , 1 conductor(es) calibre No. (8)AWG , para neutro y 1 del No. (8)AWG para tierra física en 1 charola(s) de (C152)mm..

VI. CONSUMO DE K.V.A. :

KVA =
$$\frac{1c \times V \times 13}{1000}$$
 = $\frac{(42.68)(220)(1.73)}{1000}$ = 16.26 K.V.A.

-_110 -

MEMORIA DE CALCULO DESCRIPTIVA

CALCULO DEL ALIMENTADOR, INTERRUPTOR Y CONSUMO EN K.V.A. DEL TABLERO : "C "

TIPO: P8-4L42S PLANO: IE-01

I. DATOS TECNICOS:

- 1. Servicio : NDRMAL
- Watts totales: 53,360
 Tensión del sistema: 220 volts
- 4. Factor de potencia: 0.90/-25.849 Amos.
- 5. Factor de utilización: 100 %
- 6. Número de fases: 3
- 7. Número de hilos: 4
- 8. Frecuencia en Hz: 60 Hz
- 9. Tablero de : ALUMBRADO SALA DE VENTAS
- 10. Localización : CUARTO DE SUBESTACION
- 11. Tipo de conductor : CDBRE
- 12. Tipo de aislamiento : T.H.W. 90 QC en Aire
- 13. Longitud total al Tablero General: 17 mts.
- 14. Caída de tensión : 2.0 %

II. DATOS DE CARGA :

CANTIDAD DESCRIPCION W/U W/T

116 LAMPARA DE ADITIVOS METALICOS A 220V. 460 53,360
WATTS TOTALES: 53,360

III. CORRIENTE TOTAL :

I Fase A= 17,710 = 17,710 = 154.94Amps. 127 x .90/-25.849 Amps. 114.30

I Fase B= $\frac{17,710}{127 \times .90/-25.849 \text{ Amps.}} = \frac{17,710}{114.30} = 154.94 \text{Amps.}$

I Fase C= <u>17,940</u> = <u>17,940</u> = 156.95Amps. 127 x .90/-25.849 Amps. 114.30

I de la fase más cargada = C = 156.95 Amps.

a) CALCULO POR CORRIENTE:

Ic= 156.96 Amps.

Por corriente se necesita instalar, 1 conductor(es) por fase que conduzca(n) (156.96)Amps. y corresponde a un calibre (2)AWG

b) CALCULO POR CAIDA DE TENSION:

$$S = \underbrace{2 \times L \times Ic}_{Vn \times CX} = \underbrace{(2)(17)(156.96)}_{(127)(2.07)} = \underbrace{21.01}_{(127)(2.07)}$$

Por caída de tensión se necesita 1 conductor(es) por fase calibre (4)AWG que tiene una sección en área de (21.15) mm²

c) CALCULO POR TEMPERATURA :

Por temperatura se necesita instalar 1 conductor(es) por fase que conducca(n)(172.48)Amps. y corresponde a un calibre No.(0)AWG

d) CALCULO POR RESISTENCIA OHMICA:

Se obtuvo = $0.8664 \Omega/1 Km$.

Por resistencia ómbica se necesita instalar 1 conductor(es) por fase que tenga(n) menos de (0.8664) obms. por kilómetro y corresponde(n) a un calibre (4) obms

Por Tablas un conductor del No.(4) tiene $0.83150~\Omega/1~{\rm Km}$.

Por Tablas un conductor del No.(6) tiene 1.32200 Ω/1 Km.

e) CALCULO DEL INTERRUPTOR PRINCIPAL:

```
I T = Ic \times 1.25 = (156.96)(1.25) = 196.20 Amps.
```

Se necesita un interruptor : TERMOMAGNETICO DE 3P-200 AMPERES

V. RESULTADO DE LOS CONDUCTORES:

Por corriente, por caída de tensión, por temperatura y por resistencia óhmica lo mas indicado es usar 1 conductor(es) por fase calibre No. (0)AWG, 1 conductor(es) calibre No. (0)AWG, para neutro y 1 del No. (6)AWG para tierra física en 1 charola(s) de (C152)mm..

VI. CONSUMO DE K.V.A. :

$$KVA = Ic \times V \times I3 = (156.96)(220)(1.73) = 59.81 \text{ K.V.A.}$$

$$CX = \frac{2 \times L \times I_C}{V_0 \times mm^2 \times CF} = \frac{(2)(17)(156.96)}{(127)(33.62)(1)} = 0.78 \% (2.0 \% ESPECIFICADO -111-$$

CALCULO DEL ALIMENTADOR, INTERRUPTOR Y CONSUMO EN K.V.A. DEL TABLERO : "F "

TIPO: P8-4L30S PLANO: IE-01.2

I. DATOS TECNICOS:

- 1. Servicio : NORMAL
- 2. Watts totales: 27,775
- 3. Tensión del sistema: 220 volts
- 4. Factor de potencia: 0.90/-25.849 Amos.
- 5. Factor de utilización: 100 %
- 6. Número de fases: 3
- 7. Número de hilos: 4
- 8. Frecuencia en Hz: 60 Hz
- 9. Tablero de : ALUMBRADO Y CONTACTOS EN CAJAS
- 10. Localización : PLANTA ALTA EJES L.7 y 8
 - 11. Tipo de conductor : COBRE
 - 12. Tipo de aislamiento : T.H.W. 90 90 en Aire
 - 13. Longitud total al Tablero General: 88 mts.
 - 14. Caida de tensión : 2.0 %

II. DATOS DE CARGA :

CANTIDAL	DESCRIPCION	W/U	W/T
8	LAMPARA SLIM LINE CON 1T-38W.	50	400
13	LAMPARA SLIM LINE CON 1T-74W.	100	1,300
17	LAMPARA DE HALOGENO A 127V.	50	850
19	CONTACTO DUPLEX POLARIZADO	500	9,500
2	CONTACTO POLARIZADO	750	1,500
10	CONTACTO POLARIZADO	1,000	10,000
4	CONTACTO TWIST LOCK DE 2P-20A.	1,000	4,000
3	LAMPARA INCANDESCENTE	75	225
	WATTS TOTALE	5 :	27,775

III. CORRIENTE TOTAL :

I Fase A=
$$\frac{9.275}{127 \times .90/-25.849} = \frac{9.275}{114.30} = \frac{91.144 \text{ mps}}{114.30}$$

I Fase B=
$$\frac{9.250}{127 \times .907-25.849} = \frac{9.250}{114.30} = 80.92 Amps$$

I de la fase más cargada = A = 81.14 Amps.

IV. CALCULO DEL ALIMENTADOR :

a) CALCULO POR CORRIENTE:

Ic= 81.15 Amps.

Por corriente se necesita instalar, i conductor(es) por fase que conduzca(n) (81.15)Amps. y corresponde a un calibre (6)AWG

60JA # 6

b) CALCULO POR CAIDA DE TENSION:

$$S = 2 \times L \times Ic = (2)(88)(81.15) = 56.22$$

 $V_0 \times CX$ (127)(2.0%)

Por caída de tensión se necesita - 1 conductor(es) por fase calibre (00 -)AWG que tiene una sección en área de (-67.43) mm²

c) CALCULO POR TEMPERATURA :

I Conductor Ic = 81.15 = 89.17 Amps.

For temperatura se necesita instalar 1 conductor(es) por fase que conduzca(n)(89.17)Amps. y corresponde a un calibre No.(6)AWG

d) CALCULO POR RESISTENCIA OHMICA:

Se obtuvo = $0.3237 \Omega/1 \text{Km}$.

Por resistencia ómbica se necesita instalar i conductor(es) por fase que tenga(n) menos de (0.3237) obms. por kilómetro y corresponde(n) a un calibre (00)AWG

For Tablas un conductor del No.(00) tiene 0.26080 $\Omega/1$ Km. Por Tablas un conductor del No.(0) tiene 0.32880 $\Omega/1$ Km.

e) CALCULO DEL INTERRUPTOR PRINCIPAL:

I T = Ic \times 1.25 = (81.15)(1.25) = 101.43 Amps.

Se necesita un interruptor : TERMOMAGNETICO DE 3P-100 AMPERES

V. RESULTADO DE LOS CONDUCTORES:

Por corriente, por caída de tensión, por temperatura y por resistencia óhmica lo mas indicado es usar 1 conductor(es) por fase calibre No. (00)AWG , 1 conductor(es) calibre No. (00)AWG , para neutro y 1 del No. (6)AWG para tierra física en 1 charola(s) de (C152)mm..

VI. CONSUMO DE K.V.A. :

$$KVA = Ic \times V \times I3 = (81.15)(220)(1.73) = 30.92 \text{ K.V.A.}$$

$$CX = 2 \times L \times Ic = (2)(88)(81.15) = 1.67 \% (2.0 \% ESPECIFICADO U13 - Vo × mm² xCF (127)(67.43)(1)$$

CALCULD DEL ALIMENTADOR, INTERRUPTOR Y CONSUMO EN K.V.A. DEL TABLERO : "K "

TIPO : PB-4L16S PLANO : IE-01.2

I. DATOS TECNICOS:

- 1. Servicio : NORMAL
- 2. Watts totales: 32.604
- 3. Tensión del sistema: 220 volts
- 4. Factor de potencia: 0.90/-25.849 Amps.
- 5. Factor de utilización: 100 %
- 6. Número de fases: 3
- 7. Número de hilos: 4
- B. Frecuencia en Hz: 60 Hz
- 9. Tablero de : ALUMBRADO Y CONTACTOS
- 10. Localización : PLANTA BAJA EJES D y 1
 - 11. Tipo de conductor : COBRE
 - 12. Tipo de aislamiento : T.H.W. 90 QC en Aire
 - 13. Longitud total al Tablero General: 64 mts.
 - 14. Caída de tensión : 2.0 %

II. DATOS DE CARGA :

CANTIDA	D DESCRIPCION	W/U	W/T
1	LAMPARA SLIM LINE CON 1T-74W.	100	100
14	LAMPARA INCANDESCENTE	75	1,050
2	CONTACTO DUPLEX POLARIZADO	250	500
1	CONTACTO DUPLEX POLARIZADO	500	500
1	CONTACTO POLARIZADO	1,000	1,000
5	CONTACTO TWIST LOCK DE 2P-20A.	1,000	6,000
1	ROSTICERO ELECTRICO	19,500	19,500
6	SALIDA PARA INSECTRONIC	500	3,000
1	MOTOR DE 1.0000 A 220 3 F	954	954
	WATTS TOTALES	:	32,604

III. CORRIENTE TOTAL :

I Fase B=
$$\frac{10.918}{127 \times .90/-25.849} = \frac{10.818}{114.30} = 74.64Amps.$$

I Fase C=
$$\frac{10.818}{127 \times .907-25.849} = \frac{10.818}{114.30} = 94.64Amps.$$

4Amps. - 114 -

I de la fase más cargada = A = 95.95 Amps.

IV. CALCULO DEL ALIMENTADOR : a) CALCULO POR CORRIENTE;

HOJA # 8

Ic= 95.96 Amps.

Por corriente se necesita instalar, 1 conductor(es) por fase que conduzca(n) (95.96)Amps. y corresponde a un calibre (6)AWG

b) CALCULO POR CAIDA DE TENSION:

$$S = \frac{2 \times 1 \times 1c}{Vn \times C\%} = \frac{(2)(64)(95.96)}{(127)(2.0\%)} = 48.35$$

Por caída de tensión se necesita 1 conductor(es) por fase calibre (0)AWG que tiene una sección en área de (53.49) mm²

c) CALCULO POR TEMPERATURA :

For temperatura se necesita instalar 1 conductor(es) por fase que conduzca(n)(105.45)Amps. y corresponde a un calibre No.(4)AWS

d) <u>CALCULO POR RESISTENCIA</u> OHMICA:

Se obtuvo = $0.3764 \Omega/1 Km$.

Por resistencia ómhica se necesita instalar 1 conductor(es) por fase que tenga(n) menos de (0.3764) ohms. por kilómetro y corresponde(n) a un calibre (0.3764) ohms.

Por Tablas un conductor del No.(0) tiene 0.32880 Ω/1 Km.

Por Tablas un conductor del No.(2) tiene 0.52300 Ω/1 Km.

e) CALCULO DEL INTERRUPTOR PRINCIPAL:

I T = Ic
$$\times$$
 1.25 = (95.96)(1.25) = 119.95 Amps.

Se necesita un interruptor : TERMOMAGNETICO DE 3P-125 AMPERES

V. RESULTADO DE LOS CONDUCTORES:

Por corriente, por caída de tensión, por temperatura y por resistencia óhmica lo mas indicado es usar 1 conductor(es) por fase calibre No. (0)AWG , 1 conductor(es) calibre No. (0)AWG , para neutro y 1 del No. (6)AWG para tierra física en 1 charola(s) de (C152)mm..

VI. CONSUMD DE K.V.A. :

$$\frac{\text{KVA} = \underline{\text{Ic} \times \text{V} \times \text{I3}} = (95.96)(220)(1.73)}{1000} = 36.57 \text{ K.V.A.}$$

OBRA : GIGANTE SUCURSAL SOLER TIJUANA

HOJA # 9

MEMORIA DE CALCULO DESCRIPTIVA

INTERRUPTOR : TABLERO "AA"

TIPO : HCBD FLANO : IE-06

I. DATOS TECNICOS:

- 1. Servicio : NORMAL
- Watts totales: 340,548
- 3. Tensión del sistema: 220 volts
- 4. Factor de potencia : 0.90/-25.849 Amps.
- 5. Factor de utilización: 100 %
- 6. Número de fases: 3
- 7. Número de hilos: 4
- 8. Frecuencia en Hz: 60 Hz
- 9. Tablero de : AIRE ACONDICIONADO
- 10. Localización : CUARTO DE SUBESTACION
- 11. Tipo de conductor : COBRE
- 12. Tipo de aislamiento : T.H.W. 90 ºC en Aire
 - 13. Longitud total al Tablero General : 5 mts.
 - 14. Caida de tensión : 0.5 %

II. DATOS DE CARGA SEGUN TABLAS DE C.F.E. Y TABLAS No.403.94 y 403.95 del NTIE-86

CANT.	DES	CRIPCION			W/U	W/T	AME/U	AMP/T
6	MOTOR DE 50	0.0000 A 220	3 F		40.758	244,548	136.00	816.00
2	MOTOR DE 60	0.0000 A 220	3 F		48,000	96,000	161.00	322.00
			7	TOTALE	S:	340.548		1138.00

III. CORRIENTE TOTAL :

I = In del motor mayor x 1.25 + In de los motores menores

 $I = (161.00 \times 1.25) + 977.00 \approx 1178.25 \text{ Amps.} \times (1.00 \text{ F.U.}) = 1178.25 \text{ Amps.}$

IV. CALCULO DEL INTERRUPTOR PRINCIPAL:

I T = Ic \times 1.20 =(1178.25)(1.20)=1413.90 Amps.

- 116 -

V. CALCULO DEL ALIMENTADOR:

a) CALCULO POR CORRIENTE:

Ic= 1178.25 Amps.

For corriente se necesita instalar, 2 conductor(es) por fase que conducca(n) (1178.25)Amps. y corresponde a un calibre (500)MCM

b) CALCULO POR CAIDA DE TENSION:

$$S = 2 \times L \times Ic = (2)(-5)(1178.25) = 185.55$$

 $Vn \times C\%$ (127)(0.5%)

For caida de tensión se necesita -1 conductor(es) por fase calibre (400)MCM que tiene una sección en área de (203.00) mm²

c) CALCULO POR FACTOR DE TEMPERATURA: SEGUN TABLA302.46 DE NTIE.

I Conductor
$$1c = \frac{1c}{FT*FA} = \frac{1178.25}{(0.91)} = 1294.78$$
 Amps.

Por temperatura se necesita instalar 2º conductor(es)por fase que conduzca(n)(1294.78)Amps. y corresponde a un calibre No.(500)MCM

d) CALCULO POR RESISTENCIA OHMICA:

Se obtuvo = $0.0981 \Omega/1 Km$.

For resistencia óhmica se necesita instalar 1 conductor(es) por fase que tenga menos de (0.0981) ohms. por kilómetro y corresponde a un calibre (400)MCM

For Tablas un conductor del No.(400) tiene 0.08677 0/1 Km. Por Tablas un conductor del No.(350) tiene 0.09916 0/1 Km.

VI. RESULTADO DE LOS CONDUCTORES:

For corriente,por caída de tensión,por temperatura y por resistencia óhmica lo mas indicado es usar 2 conductor(es) por fase calibre No. (500)MCM , 1 conductor(es) calibre No. (500)MCM , para neutro y 1 del No. (600)AWG para tierra física en 1 charola(s) de (6304) mm..

VII. CONSUMO DE K.V.A. :

$$KVA = Ic \times V \times I3 = (1178.25)(220)(1.73) = 448.97 \text{ K.v.A.}$$

 1000 1000

CALCULO DEL ALIMENTADOR, INTERRUPTOR Y CONSUMO EN K.V.A. DEL TABLERO : "AE"

I. DATOS TECNICOS:

- 1. Servicio : EMERGENCIA
- 2. Watts totales: 20,346
- 3. Tensión del sistema: 220 volts
- 4. Factor de potencia : 0.90/-25.849 Amps.
- 5. Factor de utilización: 100 %
- 6. Número de fases: 3
- 7. Número de hilos: 4
- 8. Frecuencia en Hz: 60 Hz
- 9. Tablero de : ALUMBRADO Y CONTACTOS SERV.
- 10. Localización : CUARTO DE SUBESTACION
- 11. Tipo de conductor : COBRE
- 12. Tipo de aislamiento : T.H.W. 90 90 en Aire
- 13. Longitud total al Tablero General : 17 mts.
- 14. Caida de tensión : 2.0 %

II. DATOS DE CARGA :

CANTIDA	DESCRIPCION	W/U	W/T
14	LAMPARA SLIM LINE CON 1T-38W.	50	700
2	LAMPARA SLIM LINE CBN 2T-38W.	100	200
12	LAMPARA SLIM LINE CON 1T-74W.	100	1,200
3	LAMPARA INCANDESCENTE	75	225
6	LAMPARA DE ADITIVOS METALICOS A 220V.	312	1,872
2	CONTACTO DUPLEX POLARIZADO	250	500
1	CONTACTO DUPLEX POLARIZADO	5 00	500
1	CONTACTO FOLARIZADO	750	750
4	ZUMBADOR	125	500
2	MOTOR DE 1.0000 A 220 3 F	954	1,908
1	MOTOR DE 5.0000 A 220 3 F	4,491	4,491
1	SALIDA ESPECIAL	7,500	7,500
	WATTS TOTALES		20,346

It = 59.32 FASE A= 6832w FASE B= 6782w FASE C= 6732w

III. CORRIENTE TOTAL :

I Fase A=
$$\frac{6.832}{127 \times .90/-25.849} = \frac{6.832}{114.30} = \frac{59.774 \text{mps}}{114.30}$$

I Fase B=
$$\frac{6.782}{127 \times .90/-25.849}$$
 Amps. $\frac{6.782}{114.30}$ = $\frac{59.33}{114.30}$

I de la fase más cargada = A = 59.77 Amps.

IV. CALCULO DEL ALIMENTADOR :

a) CALCULO POR CORRIENTE:

Ic= 59.77 Amps.

Por corriente se necesita instalar, 1 conductor(es) por fase que conduzca(n) (59.77)Amps. y corresponde a un calibre (8)AWG

HOJA # 12

- 110 -

b) CALCULO POR CAIDA DE TENSION:

$$S = \frac{2 \times 1 \times 1c}{Vn \times CZ} = \frac{(2)(17)(59.77)}{(127)(2.0\%)} = 8.00$$

Por caída de tensión se necesita 1 conductor(es) por fase calibre (6)AWG que tiene una sección en área de (13.30) mm²

c) CALCULO POR TEMPERATURA :

Por temperatura se necesita instalar 1 conductor(es) por fase que conduzca(n)(65.68)Amps. y corresponde a un calibre No.(8)AWG

d) <u>CALCULO POR RESISTENCIA OHMICA:</u>

Se obtuvo = 2.2751 $\Omega/1$ Km.

Por resistencia ómbica se necesita instalar $\,$ 1 $\,$ conductor(es) por fase que tenga(n) menos de (2.2751) obms. por kilómetro y corresponde(n) a un calibre (6 $\,$)AWG

For Tablas un conductor del No.(6) tiene 1.32200 $\Omega/1~{\rm Km}$.

Por Tablas un conductor del No.(10) tiene 3.34200 Ω/1 Km.

e) CALCULO DEL INTERRUPTOR PRINCIPAL:

$$I T = Ic \times 1.25 = (59.77)(1.25) = 74.71 Amos.$$

Se necesita un interruptor :

TERMOMAGNETICO DE 3P-100 AMPERES

V. RESULTADO DE LOS CONDUCTORES:

Por corriente, por caída de tensión, por temperatura y por resistencia óhmica lo mas indicado es usar 1 conductor(es) por fase calibre No. (6)AWG, 1 conductor(es) calibre No. (6)AWG, para neutro y 1 del No. (8)AWG para tierra física en 1 charola(s) de (C152)mm..

VI. CONSUMO DE K.V.A. :

$$\frac{\text{KVA} = \underline{\text{Ic} \times \text{V} \times \text{I3}} = (59.77)(220)(1.73)}{1000} = 22.78 \text{ K.V.A.}$$

$$C^{\times} = \frac{2 \times 1 \times 1c}{Vn \times mn^2 \times CF} = \frac{(2)(17)(-59.77)}{(127)(-8.37)(-1)} = 1.20 \% (2.0 \% ESPECIFICADO)$$

CALCULO DEL ALIMENTADOR, INTERRUPTOR Y CONSUMO EN K.V.A. DEL TABLERO : "BE"

TIPO: 28-4L18S PLAND: IE-01

I. DATOS TECNICOS:

- 1. Servicio : EMERGENCIA
- 2. Watts totales: 18,700
- 3. Tension del sistema: 220 volts
- 4. Factor de potencia : 0.90/-25.849 Amps.
- 5. Factor de utilización: 80 %
- 6. Número de fases: 3
- 7. Número de hilos: 4
- 8. Frecuencia en Hz: 60 Hz
- 9. Tablero de : ALUMBRADO SALA DE VENTAS
- 10. Localización : CUARTO DE SUBESTACION
 - 11. Tipo de conductor : COBRE 12. Tipo de aislamiento : T.H.W. 90 ºC en Aire
 - 13. Longitud total al Tablero General : 17 mts.
 - 14. Caída de tensión : 2.0 %

II. DATOS DE CARGA :

CANTIDA	Ð	DE	ESCRI	CIO	N			W/	U	W/T
3	LAMPARA	SLIM	LINE	CON	2T-38W.				100	300
92	LAMPARA	SLIM	LINE	CON	2T-74W.				200	18,400
						WATTS	TOTALES	:		18.700

III. CORRIENTE TOTAL :

I de la fase más cargada = A = 54.68 Amps.

IV. CALCULO DEL ALIMENTADOR : a) CALCULO POR CORRIENTE:

HDJA # 14

Ic= 54.68 Amps.

Por corriente se necesita instalar, i conductor(es) por fase que conduzca(n) (54.68)Amps. y corresponde a un calibre (10)AWG

b) CALCULO POR CAIDA DE TENSION:

$$S = \frac{2 \times L \times Ic}{Va \times CX} = \frac{(2)(17)(54.68)}{(127)(2.0X)} = 7.31$$

Por caída de tensión se necesita 1 conductor(es) por fase calibre (8)AWG que tiene una sección en área de (8.37) mm²

c) CALCULO POR TEMPERATURA :

Por temperatura se necesita instalar 1 conductor(es) por fase que conduzca(n)(60.08)Amps. y corresponde a un calibre No.(8)AWG

d) CALCULO POR RESISTENCIA OHMICA:

Se obtuvo = 2.4869 O/1Km.

Por resistencia ómbica se necesita instalar 1 conductor(es) por fase que tenga(n) menos de (2.4869) ohms. por kilómetro y corresponde(n) a un calibre

Por Tablas un conductor del No.(8) tiene 2.10200 Ω/1 Km.

Por Tablas un conductor del Mo.(10) tiene $3.34200~\Omega/1~\mathrm{Km}$.

e) CALCULO DEL INTERRUPTOR PRINCIPAL:

I T = Ic \times 1.25 = (54.68)(1.25) = 68.35 Amps.

Se necesita un interruptor : TERMOMAGNETICO DE 3P-70 AMPERES

V. RESULTADO DE LOS CONDUCTORES:

Por corriente, por caida de tensión, por temperatura y por resistencia óhmica lo mas indicado es usar 1 conductor(es) por fase calibre No. (8)AWG , 1 conductor(es) calibre No. (8)AWG , para neutro y 1 del No. (8)AWG para tierra física en 1 charola(s) de (C152)mm..

VI. CONSUMO DE K.V.A. :

$$KVA = \underline{Ic \times V \times I3} = (\underline{54.68})(\underline{220})(\underline{1.73}) = \underline{20.84} \text{ K.V.A.}$$

$$CX = \frac{2 \times L \times Ic}{Va \times mm^2 \times CF} = \frac{(2)(17)(-54.68)}{(127)(-8.37)(-1)} = 1.75 \% (2.0 \% ESPECIFICADO) - 121 -$$

CALCULO DEL ALIMENTADOR, INTERRUPTOR Y CONSUMO EN K.V.A. DEL TABLERO : "CE"

TIPO : P8-4L18S

PLAND : IE-02

- 122 -

I. DATOS TECNICOS:

- 1. Servicio : EMERGENCIA
- 2. Watts totales: 7,500
- 3. Tensión del sistema: 220 volts
- 4. Factor de potencia : 0.90/-25.849 Amps.
- 5. Factor de utilización: 100 %
- 6. Número de fases: 3
- 7. Número de hilos: 4
- 8. Frecuencia en Hz: 60 Hz
- 9. Tablero de : CONTACTOS DE CAJAS Y FAROLAS
- · 10. Localización : PLANTA BAJA EJES L.7 y 8
 - 11. Tipo de conductor : COBRE
 - 12. Tipo de aislamiento : T.H.W. 90 9C en Aire
 - 13. Longitud total al Tablero General: 90 mts.
 - 14. Caida de tensión : 2.0 %

II. DATOS DE CARGA :

CANTID	AD DESCRIPCION		WZH	W/T
13	CONTACTO DUPLEX POLARIZADO		250	3.250
2	CONTACTO DUPLEX POLARIZADO		500	1,000
13	SALIDA ESPECIAL		250	3.250
		WATTS TOTALES :	;	7,500

III. CORRIENTE TOTAL :

I Fase A=
$$\frac{2.500}{127 \times .907 - 25.849} = \frac{2.500}{114.30} = 21.87 Amps.$$

I Fase B=
$$\frac{2,500}{127 \times .90/-25.849} = \frac{2,500}{114.30} = 21.87Amps.$$

I Fase C=
$$\frac{2,500}{127 \times .907-25.849} = \frac{2,500}{114.30} = 21.87 Amps.$$

I de la fase más cargada = A = 21.87 Amps.

```
IV. CALCULO DEL ALIMENTADOR :
```

a) CALCULO POR CORRIENTE:

Ic= 21.87 Amps.

Por corriente se necesita instalar, 1 conductor(es) por fase que conduzca(n) (21.87)Amps. y corresponde a un calibre (14)AWG

HOJA # 16

b) CALCULO POR CAIDA DE TENSION:

$$S = 2 \times L \times Ic = (2)(90)(21.87) = 15.49$$

$$Vn \times CX \qquad (127)(2.0X)$$

Por caída de tensión se necesita 1 conductor(es) por fase calibre (4)AWG que tiene una sección en área de (21.15) nm²

c) <u>CALCULO POR TEMPERATURA</u> :

I Conductor <u>Ic</u> = <u>21.87</u>= 24.03 Amps. FT*FA (0.91)

Por temperatura se necesita instalar (1 conductor(es) por fase que conduzca(n)(24.03)Amps. y corresponde a un calibre No.(14)AWG

d) CALCULO POR RESISTENCIA OHMICA:

Se obtuve = $1.1745 \Omega/1Km$.

Por resistencia ómhica se necesita instalar -1 conductor(es) por fase que tenga(n) menos de (-1.1745) ohms. por kilómetro y corresponde(n) a un calibre (-4)AWG Por Tablas un conductor del No.(-4) tiene $-0.83150~\Omega/1~Km$.

For Tablas un conductor del No.(6) tiene 1.32200 $\Omega/1~{\rm Km}$.

e) CALCULO DEL INTERRUPTOR PRINCIPAL:

I T = Ic \times 1.25 = (21.87)(1.25) = 27.33 Amps.

Se necesita un interruptor : TERMOMAGNETICO DE 3P-30 AMPERES

V. RESULTADO DE LOS CONDUCTORES:

Por corriente, por caída de tensión, por temperatura y por resistencia óhmica lo mas indicado es usar - 1 conductor(es) por fase calibre No. (4)AWG , 1 conductor(es) calibre No. (4)AWG , para neutro y 1 del No. (12)AWG para tierra física en 1 charola(s) de (C152)mm..

VI. CONSUMO DE K.V.A. :

 $KVA = Ic \times V \times I3 = (21.87)(220)(1.73) = 8.33 \text{ K.V.A.}$

VII. COMPROBACION DE CAIDA DE TENSION, SOBRE EL CONDUCTOR NECESARIO :

 $\frac{\text{CX} = 2 \times \text{L} \times \text{Ic}}{\text{Vn} \times \text{mm}^2 \times \text{CF}} = \frac{(2)(90)(-21.87)}{(127)(-21.15)(-1)} = 1.47 \% (2.0 \% \text{ ESPECIFICADO}) = 1.22 = \frac{1.22}{1.47} = \frac{1.47}{1.47} \% (2.0 \% \text{ ESPECIFICADO}) = 1.22 = \frac{1.22}{1.47} = \frac{1.47}{1.47} \% (2.0 \% \text{ ESPECIFICADO}) = 1.22 = \frac{1.22}{1.47} = \frac{1.47}{1.47} \% (2.0 \% \text{ ESPECIFICADO}) = 1.22 = \frac{1.22}{1.47} = \frac{1.47}{1.47} \% (2.0 \% \text{ ESPECIFICADO}) = 1.22 = \frac{1.22}{1.47} = \frac{1.47}{1.47} \% (2.0 \% \text{ ESPECIFICADO}) = 1.22 = \frac{1.22}{1.47} = \frac{1.47}{1.47} \% (2.0 \% \text{ ESPECIFICADO}) = 1.22 = \frac{1.22}{1.47} = \frac{1.22}{1.47} \% (2.0 \% \text{ ESPECIFICADO}) = \frac{1.22}{1.47} = \frac{1.22}{1.47} \% (2.0 \% \text{ ESPECIFICADO}) = \frac{1.22}{1.47} = \frac{1.22}{1.47} \% (2.0 \% \text{ ESPECIFICADO}) = \frac{$

CALCULO DEL ALIMENTADOR, INTERRUPTOR Y CONSUMO EN K.V.A. DEL TABLERO : "DE"

TIPO : PB-4L18S PLAND : IE-02

I. DATOS TECNICOS:

- 1. Servicio : EMERGENCIA
- 2. Watts totales: 7,500
- 3. Tensión del sistema: 220 volts
- 4. Factor de potencia : 0.90/-25.849 Amps.
- 5. Factor de utilización: 100 %
- 6. Número de fases: 3
- 7. Número de hilos: 4
- 8. Frecuencia en Hz: 60 Hz
- 9. Tablero de : CONTACTOS REGULADOS EN CAJAS
- 10. Localización : PLANTA ALTA EJES L,7 y 8
- 11. Tipo de conductor : COBRE
- 12. Tipo de aislamiento : T.H.W. 90 9C en Aire
- 13. Longitud total al Tablero General: 90 mts.
- 14. Caída de tensión : 2.0 %

II. DATOS DE CARGA :

CANTIDAD DESCRIPCION 2 CONTACTO DUPLEX POLARIZADO 14 CONTACTO DUPLEX POLARIZADO

250 500 500 7,000 WATTS TOTALES :

W/U

W/T

2500w

III. CORRIENTE TOTAL :

I Fase A=
$$\frac{2.500}{127 \times .90/-25.849} = \frac{2.500}{114.30} = 21.87 Amps.$$

I Fase B=
$$\frac{2,500}{127 \times .90/-25.849} = \frac{2,500}{114.30} = 21.874 \text{mps}.$$

I Fase C=
$$\frac{2,500}{127 \times .907 - 25.849} = \frac{2,500}{114.30} = 21.87 \text{Amps}.$$
 - 124 -

I de la fase más cargada = A = 21.87 Amps.

a) CALCULO POR CORRIENTE:

Ic= 21.87 Amps.

Por corriente se necesita instalar, 1 conductor(es) por fase que conduzca(n) (21.87)Amps. y corresponde a un calibre (14)AWG

b) CALCULO FOR CAIDA DE TENSION:

$$\frac{S = 2 \times L \times Ic}{Vn \times C\%} = \frac{(2)(90)(21.87)}{(127)(2.0\%)} = 15.49$$

Por caída de tensión se necesita 1 conductor(es) por fase calibre (4)AWG que tiene una sección en área de (21.15) mm²

c) <u>CALCULO POR TEMPERATURA</u> :

I Conductor
$$\frac{Ic}{FT*FA} = \frac{21.87}{(0.91)} = 24.03 \text{ Amps.}$$

Por temperatura se necesita instalar 1 conductor(es) por fase que conduzca(n)(24.03)Amps. y corresponde a un calibre No.(14)AWG

d) CALCULO POR RESISTENCIA OHMICA:

Se obtuvo = 1.1745 Ω/1Km.

Por resistencia ómhica se necesita instalar 1 conductor(es) por fase que tenga(n) menos de (1.1745) ohms. por kilómetro y corresponde(n) a un calibre (4)AWG

Por Tablas un conductor del No.(4) tiene 0.83150 Ω/1 Km.

Por Tablas un conductor del No.(6) tiene 1.32200 9/1 Km.

e) CALCULO DEL_INTERRUPTOR PRINCIPAL:

```
I T = Ic \times 1.25 = ( 21.87)(1.25)= 27.33 Amps.
```

Se necesita un interruptor :

TERMOMAGNETICO DE 39-30 AMPERES

V. RESULTADO DE LOS CONDUCTORES:

Por corriente, por caída de tensión, por temperatura y por resistencia óhmica lo mas indicado es usar 1 conductor(es) por fase calibre No. (4)AWG, 1 conductor(es) calibre No. (4)AWG, para neutro y 1 del No. (12)AWG para tierra física en 1 charola(s) de (C152)mo..

VI. CONSUMD DE K.V.A. :

$$KVA = Ic \times V \times I3 = (-21.87)(220)(1.73) = 8.33 \text{ K.v.a.}$$

$$C\% = \frac{2 \times L \times Ic}{Vn \times mm^2 \times CF} = \frac{(2)(90)(21.87)}{(21.15)(1)} = 1.47 \% (2.0 \% ESPECIFICADO -1.25 -1.25 -1.25 -1.25 -1.47 \% (2.0 \% ESPECIFICADO -1.25$$

CALCULO DEL ALIMENTADOR, INTERRUPTOR Y CONSUMO EN K.V.A. DEL TABLERO : "FE"

TIPO: 98-4L30S PLAND: IE-01.2

I. DATOS TECNICOS:

- 1. Servicio : EMERGENCIA
- 2. Watts totales: 16,797
- 3. Tensión del sistema: 220 volts
- 4. Factor de potencia : 0.90/~25.849 Amps.
- 5. Factor de utilización: 100 %
- 6. Número de fases: 3
- 7. Número de hilos: 4
- B. Frecuencia en Hz: 60 Hz
- 9. Tablero de : ALUMBRADO Y CONTACTOS EN CAJAS
- 10. Localización : PLANTA ALTA EJES L,7 y 8
 - 11. Tipo de conductor : COBRE
 - 12. Tipo de aislamiento : T.H.W. 90 90 en Aire
 - 13. Longitud total al Tablero General : 88 mts.
 - 14. Caida de tensión : 2.0 %

II. DATOS DE CARGA :

CANTIDAD	DESCRIPCION	W/U	W/T
23	LAMPARA SLIM LINE CON 1T-38W.	50	1,150
5	LAMPARA SLIM LINE CON 1T-74W.	100	500
7	LAMPARA DE HALOGENO A 127V.	50	350
14	CONTACTO DUPLEX POLARIZADO	500	7,000
3	CONTACTO POLARIZADO	750	2,250
3	CONTACTO POLARIZADO	1,000	3,000
1	CONTACTO TWIST LOCK DE 28-20A.	1,000	1,000
1	ZUMBADOR	125	125
1	CHAPA ELECTRICA	250	250
4	MDTOR DE 0.2500 A 127 1 F	293	1,172
	WATTS TOTALES :		16,797

III. CORRIENTE TOTAL :

I Fase A=
$$\frac{5,672}{127 \times .90/-25.849 \text{ Amps.}} = \frac{5,672}{114.30} = 49.62 \text{Amps.}$$

I Fase C=
$$\frac{5.550}{127 \times .90/-25.849} = \frac{5.550}{114.30} = 48.55 Amps.$$

I de la fase más cargada = A = 49.62 Amps.

IV. CALCULO DEL ALIMENTADOR :

a) CALCULO POR CORRIENTE:

Ic= 49.62 Amps.

Por corriente se necesita instalar, 1 conductor(es) por fase que conduzca(n) (49.62)Amps. y corresponde a un calibre (10)AWG

HOJA # 20

b) CALCULO POR CAIDA DE TENSION:

$$S = 2 \times L \times Ic = (2)(88)(49.62) = 34.38$$

 $Vn \times CX$ (127)(2.0%)

Por caída de tensión se necesita 1 conductor(es) por fase calibre)AWG que tiene una sección en área de (53.49) mm²

c) CALCULO POR TEMPERATURA :

Por temperatura se necesita instalar 1 conductor(es) por fase que conduzca(n)(54.52)Amps. y corresponde a un calibre No.(10)AWS

d) CALCULO POR RESISTENCIA OHMICA:

Se obtuvo = $0.5294 \Omega/1Km$.

Por resistencia ómhica se necesita instalar - 1 conductor(es) por fase que tenga(n) menos de (0.5294) ohms. por kilómetro y corresponde(n) a un calibre

Por Tablas un conductor del No.(2) tiene 0.52300 Ω/1 Km.

For Tablas un conductor del No.(4) tiene 0.83150 Ω/1 Km.

e) CALCULO DEL INTERRUPTOR PRINCIPAL:

I T = Ic
$$\times$$
 1.25 = (49.62)(1.25) = 62.02 Amps.

Se necesita un interruptor : TERMOMAGNETICO DE 38-70 AMPERES

V. RESULTADO DE LOS CONDUCTORES:

Por corriente, por caída de tensión, por temperatura y por resistencia Ohmica lo mas indicado es usar 1 conductor(es) por fase calibre No. (0)AWG , 1 conductor(es) calibre No. (0)AWG , para neutro y 1 del No. (B.)AWG para tierra física en 1 charola(s) de (C152)mm..

VI. CONSUMO DE K.V.A. :

$$KVA = Ic \times V \times I3 = (49.62)(220)(1.73) = 16.91 \text{ K.V.A.}$$

$$\frac{1000}{1000} = 1000$$

$$C\% = \frac{2 \times L \times I_C}{Vn \times mn^2 \times CF} = \frac{(2)(88)(-49.62)}{(127)(-53.49)(-1)} = 1.29 \% < 2.0 \% ESPECIFICADO - 127 -$$

CALCULB DEL ALIMENTADOR, INTERRUPTOR Y CONSUMO EN K.V.A. DEL TABLERO : "KE"

TIPO : P8-4L30S

PLAND : IE-01,2

- 123 -

I. DATOS TECNICOS:

- 1. Servicio : EMERGENCIA
- 2. Watts totales: 28,394
- 3. Tensión del sistema: 220 volts
- 4. Factor de potencia: 0.90/-25.849 Amps.
- 5. Factor de utilización: 100 %
- 6. Número de fases: 3
- 7. Número de hilos: 4
- 8. Frecuencia en Hz: 60 Hz
- 9. Tablero de : ALUMBRADO Y CONTACTOS
- 10. Localización : PLANTA ALTA EJES D y 1
 - 11. Tipo de conductor : COBRE
 - 12. Tipo de aislamiento : T.H.W. 90 QC en Aire
 - 13. Longitud total al Tablero General : 64 mts.
 - 14. Caida de tensión : 2.0 %

II. <u>DATOS DE CARGA</u> :

CANTIDA	D DESCRIPCION				W/U	W/T
9	LAMPARA SLIM LINE CON 1T-38W.				50	
1	LAMPARA SLIM LINE CON 2T-38W.					450
1	LAMPARA SLIM LINE CON 1T-74W.				100	100
6	LAMPARA SLIM LINE CON 2T-74W.				100	100
4	LAMPARA INCANDESCENTE				200	1,200
6					75	300
_	CONTACTO DUPLEX POLARIZADO				500	3,000
1	CONTACTO POLARIZADO				75 0	750
	CONTACTO POLARIZADO				1,000	3,000
1	CONTACTO TWIST LOCK DE 2P-20A.				1,000	1,000
3	ZUMBADOR				125	375
1	SALIDA PARA PROBADOR DE FOCOS				125	125
3	MOTOR DE 0.5000 A 220 3 F					
3	MOTOR DE 5.0000 A 220 3 F				507	1,521
_	TABLERO "R"				4,491	
					3000.00_	3000.00
	WAT	ıs	TOTALES	:		28,394

It = 82.79 FASE A= 9448w FASE B= 9373w FASE C= 9573w

III. CORRIENTE TOTAL :

* --- - - - - - - - - - - - - -

I Fase A=
$$\frac{9.448}{127 \times .90/-25.849} = \frac{9.448}{400} = \frac{9.448}{114.30} = 82.65 Amps.$$

I Fase
$$B = \frac{9.373}{127 \times .90/-25.849} = \frac{9.373}{114.30} = 82.00 Amps.$$

I de la fase más cargada = C = 83.75 Amps.

a) CALCULO POR CORRIENTE:

Ic≃ 83.75 Amps.

Por corriente se necesita instalar, 1 conductor(es) por fase que conduzca(n) (83.75)Amps. y corresponde a un calibre (6)AWG

b) CALCULO POR CAIDA DE TENSION:

$$S = \underbrace{2 \times 1 \times Ic}_{Vn \times CX} = \underbrace{(2)(64)(83.75)}_{(127)(2.0X)} = 42.20$$

Por caída de tensión se necesita 1 conductor(es) por fase calibre (0)AWG que tiene una sección en área de (53.49) mm²

c) CALCULO POR TEMPERATURA :

Por temperatura se necesita instalar 1 conductor(es) por fase que conduzca(n)(92.03)Amps. y corresponde a un calibre No.(6)AWG

d) CALCULO POR RESISTENCIA OHMICA:

Se obtuvo = $0.4313 \Omega/1 \text{Km}$.

Por resistencia ómbica se necesita instalar 1 conductor(es) por fase que tenga(n) menos de (0.4313) obms. por kilómetro y corresponde(n) a un calibre (0.4313) a conductor (es) por fase que tenga(n) menos de (0.4313) obms.

Por Tablas un conductor del No.(0) tiene 0.32880 Ω/1 Km.

Por Tablas un conductor del No.(2) tiene 0.52300 Ω/1 Km.

e) CALCULO DEL INTERRUPTOR PRINCIPAL:

```
I T = Ic \times 1.25 = (83.75)(1.25) = 104.68 Amps.
```

Se necesita un interruptor : TERMOMAGNETICO DE 3P-125 AMPERES

V. RESULTADO DE LOS CONDUCTORES:

For corriente, por caída de tensión, por temperatura y por resistencia óhmica lo mas indicado es usar 1 conductor(es) por fase calibre No. (0)AWG, 1 conductor(es) calibre No. (0)AWG, para neutro y 1 del No. (6)AWG para tierra física en 1 charola(s) de (C152)mm..

VI. CONSUMO DE K.V.A. :

$$KVA = Ic \times V \times I3 = (83.75)(220)(1.73) = 31.91 \text{ K.V.A.}$$

 1000 1000

$$CX = \frac{2 \times L \times Ic}{Vn \times mm^2 \times CF} = \frac{(2)(64)(-83.75)}{(53.49)(-1)} = 1.58 \% (2.0 \% ESPECIFICADO - 126 - 126)$$

CALCULO DEL ALIMENTADOR, INTERRUPTOR Y CONSUMO EN K.V.A. DEL TABLERO : "R "

TIPD: P9-4L18S PLAND: IE-02

I. DATOS TECNICOS:

- 1. Servicio : EMERGENCIA
- 2. Watts totales: 3,000
- 3. Tensión del sistema: 220 volts
- 4. Factor de potencia: 0.90/-25.849 Amos.
- 5. Factor de utilización: 100 %
- 6. Número de fases: 3
- 7. Número de hilos: 4
- 8. Frecuencia en Hz: 60 Hz
- 9. Tablero de : CONTACTOS REGULADOS DE SERV.
- · 10. Localización : PLANTA ALTA EJES D y 1
 - 11. Tipo de conductor : COBRE
 - 12. Tipo de aislamiento : T.H.W. 90 98 en Aire
 - 13. Longitud total al Tablero General : 5 mts.
 - 14. Caída de tensión : 1.0 %

II. DATOS DE CARGA :

CANTIDAD DESCRIPCION
12 CONTACTO DUPLEX POLARIZADO

W/U W/T 250 3,000 3,000

WATTS TOTALES :

It = 8.74 FASE A= 1000w FASE B= 1000w FASE C= 1000w

III. CORRIENTE TOTAL :

I Fase A=
$$\frac{1,000}{127 \times .90/-25.849 \text{ Amps.}} = \frac{1,000}{114.30} = 8.74 \text{Amps.}$$

I Fase B=
$$\frac{1,000}{127 \times .90/-25.849 \text{ Amps.}} = \frac{1,000}{114.30} = 8.74 \text{Amps.}$$

I Fase C=
$$\frac{1,000}{127 \times .90/-25.849 \text{ Amps.}} = \frac{1,000}{114.30} = 8.74 \text{Amps.}$$
 - 130 -

I de la fase más cargada = A = 8.74 Amps.

IV. CALCULO DEL ALIMENTADOR : a) CALCULO POR CORRIENTE:

HOJA # 24

Ic= 8.75 Amps.

Por corriente se necesita instalar, 1 conductor(es) por fase que conduzca(n) (8.75)Amps. y corresponde a un calibre (14)AWS

b) CALCULO POR CAIDA DE TENSION:

$$S = \frac{2 \times L \times Ic}{V_0 \times CZ} = \frac{(2)(5)(8,75)}{(127)(1,0Z)} = 0.68$$

Por caída de tensión se necesita 1 conductor(es) por fase calibre (14)AWG que tiene una sección en área de (2.08) mm²

c) CALCULO POR TEMPERATURA :

For temperatura se necesita instalar 1 conductor(es) por fase que conduzca(n)(9.61)Amps. y corresponde a un calibre No.(14)AWG

d) CALCULO POR RESISTENCIA OHMICA:

Se obtuvo =26.4190 $\Omega/1$ Km.

Por resistencia ómhica se necesita instalar -1 conductor(es) por fase que tenga(n) menos de (26.4190) ohms. por kilómetro y corresponde(n) a un calibre (14)AWG Por Tablas un conductor del No.(14) tiene $-8.45000~\Omega/1~\mathrm{Km}$.

Por Tablas un conductor del No.(14) tiene 8.45000 Ω/1 Km.

e) CALCULO DEL INTERRUPTOR PRINCIPAL:

I T = Ic x 1.25 =
$$(8.75)(1.25)$$
 = 10.93 Amps.

Se necesita un interruptor : TERMOMAGNETICO DE 3P-15 AMPERES

V. RESULTADO DE LOS CONDUCTORES: Por guía mecáanica se instalará :

Por corriente, por caída da tensión, por temperatura y por resistencia óhmica lo mas indicado es usar 1 conductor(es) por fase calibre No. (12)AWG , 1 conductor(es) calibre No. (12)AWG , para neutro y 1 del No. (12)AWG para tierra física en 1 charola(s) de (C152)mm..

VI. CONSUMO DE K.V.A. :

$$KVA = Ic \times V \times I3 = (8.75)(220)(1.73) = 3.33 \text{ K.V.A.}$$

$$CX = \frac{2 \times 1 \times 1c}{Vn \times mn^2 \times CF} = \frac{(2)(5)(8.75)}{(2.08)(1)} = 0.33 \% (1.0 \% ESPECIFICADO - 131 -$$

INTERRUPTOR : TABLERO "I"

TIPO : INTERRUPTOR PLAND : IE-06

I. DATOS TECNICOS:

- 1. Servicio : EMERGENCIA
- 2. Watts totales: 8.962
- 3. Tensión del sistema: 220 volts
- 4. Factor de potencia : 0.90/-25.849 Amos.
- 5. Factor de utilización: 100 %
- 6. Número de fases: 3
- 7. Número de hilos: 4
- 8. Frecuencia en Hz: 60 Hz
- 9. Tablero de : EQUIPO DE HIDRONEUMATICO
- 10. Localización : PLANTA BAJA EJES E,F y 1,2
- 11. Tipo de conductor : COBRE
- · 12. Tipo de aislamiento : T.H.W. 90 ºC en Aire
 - 13. Longitud total al Tablero General : 50 mts.
 - 14. Caida de tensión : 2.0 %

II. DATOS DE CARGA SEGUN TABLAS DE C.F.E. Y TABLAS No.403.94 y 403.95 del NTIE-86

CANT.		DESCRIPCION			W/U	W/T	AMP/U	AMP/T
2	MOTOR DE	5.0000 A 220	3 F		4,491	8,982	15.90	31.80
				TOTALE	S:	8.982		31.80

III. CORRIENTE TOTAL :

I = In del motor mayor x 1.25 + In de los motores menores

 $I = (15.90 \times 1.25) + 15.90 = 35.77 \text{ Amps.x}(1.00 \text{ F.U.}) = 35.77 \text{ Amps.}$

IV. CALCULO DEL INTERRUPTOR PRINCIPAL:

I T = Ic x 1.20 = (35.77)(1.20) = 42.92 Amps.

- 132 -

V. CALCULO DEL ALIMENTADOR:

a) CALCULO POR CORRIENTE:

Ic= 35.77 Amps.

Por corriente se necesita instalar, 1 conductor(es) por fase que conduzca(n) (35.77)Amps. y corresponse a un calibre (12)AWS

b) CALCULO POR CAIDA DE TENSION:

$$S = 2 \times L \times Ic = (2)(50)(35.77) = 14.08$$

Vn × C% (127)(2.0%)

Por caída de tensión se necesita - 1 conductor(es) por fase calibre (4 -)AWG que tiene una sección en área de (-21.15) mm²

c) CALCULO POR FACTOR DE TEMPERATURA: SEGUN TABLAZO2.46 DE NTIE.

I Conductor
$$\underline{1c} = \underline{35.77} = 39.30 \text{ Amps.}$$

Por temperatura se necesita instalar 1 conductor(es)por fase que conduzca(n)(39.30)Amps. y corresponde a un calibre No.(12)AWG

d) <u>CALCULO POR RESISTENCIA OHMICA:</u>

Se obtuvo = $1.2924 \Omega/1 \text{Km}$.

Por resistencia óhmica se necesita instalar 1 conductor(es) por fase que tenga menos de (1.2924) ohms. por kilómetro y corresponde a un calibre (4)ANG

Por Tablas un conductor del No.(4) tiene 0.83150 $\Omega/1$ Km. For Tablas un conductor del No.(6) tiene 1.32200 $\Omega/1$ Km.

VI. RESULTADO DE LOS CONDUCTORES:

Por corriente,por caida de tensión,por temperatura y por resistencia óhmica lo mas indicado es usar 1 conductor(es) por fase calibre No. (4)AWG , 1 conductor(es) calibre No. (10)AWG , para neutro y 1 del No.(10)AWG para tierra física en 1 charola(s) de (C152) mm..

VII. C<u>ONSUMO DE K.V.A. :</u>

$$\frac{\text{KVA} = \underline{\text{Ic}} \times \text{V} \times \underline{\text{I3}} = (\underline{35.77})(220)(1.73)}{1000} = 13.63 \text{ K.V.A.}$$

$$CX = \frac{2 \times i. \times Ic}{Vn \times mn^2 \times CF} = \frac{(2)(50)(-35.77)}{(127)(-21.15)(-1)} = 1.33 \% (2.0 \% ESPECIFICADO)$$

INTERRUPTOR : TABLERO "IN" TIPO : INTERRUPTOR PLANO : IE-06

I. DATOS TECNICOS:

- 1. Servicio : EMERGENCIA
- Watts totales: 6,579
- 3. Tensión del sistema: 220 volts
- 4. Factor de potencia : 0.90/-25.849 Amps.
- 5. Factor de utilización: 100 %
- 6. Número de fases: 3
- 7. Número de hilos: 4
- 8. Frecuencia en Hz: 60 Hz
- 9. Tablero de : EDUIPO CONTRA INCENDIO
- 10. Localización : PLANTA BAJA EJES E,F y 1,2
- 11. Tipo de conductor : COBRE
- 12. Tipo de aislamiento : T.H.W. 90 QC en Aire
 - 13. Longitud total al Tablero General : 50 mts.
 - 14. Caída de tensión : 2.0 %

II. DATOS DE CARGA SEGUN TABLAS DE C.F.E. Y TABLAS No.403.94 y 403.95 del NTIE-86

CANT. 1	-	DESCRIPCION 7.5000 A 220		W/U 6,579	W/T 6,579	AMP/U 23.00	AMP/T 23.00
			TOTALES	5 :	6,579		23.00

III. CORRIENTE TOTAL :

I = In del motor mayor x 1.25 + In de los motores menores

I =(23.00 x 1.25) + 0.00 = 28.75 Amps.x(1.00 F.U.)= 28.75 Amps.

IV. CALCULO DEL INTERRUPTOR PRINCIPAL:

I T = Ic x 1.50 = (28.75)(1.50) = 43.12 Amps.

- 134 --

V. CALCULO DEL ALIMENTADOR:

a) CALCULO POR CORRIENTE:

Ic= 28.75 Amps.

Por corriente se necesita instalar, 1 conductor(es) por fase que conduzca(n) (28.75)Amps. y corresponde a un calibre (14)AWG

b) CALCULO POR CAIDA DE TENSION:

$$S = 2 \times L \times Ic = (2)(50)(23.00) = 9.05$$

 $Vn \times C\%$ (127)(2.0%)

Por caída de tensión se necesita 1 conductor(es) por fase calibre (6)AWG que tiene una sección en área de (13.30) mm²

c) CALCULO POR FACTOR DE TEMPERATURA: SEGUN TABLA302.46 DE NTIE.

Por temperatura se necesita instalar 1 conductor(es)por fase que conduzca(n)(31.59)Amps. y corresponde a un calibre No.(12)AWG

d) CALCULO POR RESISTENCIA OHMICA:

Se obtuvo = $2.0102 \Omega/1 \text{Km}$.

Por resistencia óhmica se necesita instalar 1 conductor(es) por fase que tenga menos de (2.0102) ohms. por kilómetro y corresponde a un calibre (A.)AMB

Por Tablas un conductor del No.(6) tiene 1.32200 $\Omega/1~Km$. Por Tablas un conductor del No.(8) tiene 2.10200 $\Omega/1~Km$.

VI. RESULTADO DE LOS CONDUCTORES:

Por corriente,por caída de tensión,por temperatura y por resistencia óhmica lo mas indicado es usar 1 conductor(es) por fase calibre No. (6)AWG , 1 conductor(es) calibre No. (10)AWG , para neutro y 1 del No.(10)AWG para tierra física en 1 charola(s) de (C152) mm..

VII. C<u>ONSUMO DE K.V.A. :</u>

$$\frac{\text{KVA} = \underline{\text{Ic} \times \text{V} \times \text{I3}} = \underline{\text{(28.75)(220)(1.73)}} = 10.96 \text{ K.V.A.}}{1000}$$

$$C\% = \frac{2 \times L \times Ic}{Vn \times mn^2 \times CF} = \frac{(2)(50)(-28.75)}{(127)(-13.30)(-1)} = 1.70 \% (2.0 \% ESPECIFICADD)$$

INTERRUPTOR : TABLERG "M" TIPO : INTERRUPTOR PLANO : IE-06

I. DATOS TECNICOS:

- 1. Servicio : EMERGENCIA
- 2. Watts totales: 32,610
- 3. Tensión del sistema: 220 volts
- 4. Factor de potencia : 0.90/-25.849 Amos.
- 5. Factor de utilización: 100 %
- 6. Número de fases: 3
- 7. Número de hilos: 4
- 8. Frecuencia en Hz: 60 Hz
- 9. Tablero de : MONTACARGAS
- 10. Localización : AZOTEA EJES C.D y 2.3
- 11. Tipo de conductor : COSRE
- 12. Tipo de aislamiento : T.H.W. 90 90 en Aire
 - 13. Longitud total al Tablero General : 48 mts.
 - 14. Caída de tensión : 3.0 %

II. DATOS DE CARGA SEGUN TABLAS DE C.F.E. Y TABLAS No.403.94 y 403.95 del NTIE-86

CANT.		DESCRIPCION	W/t	J W/T	AMPZU AMPZI	г
1	MOTOR DE	40.0000 A 220	3 F 32,8	32,610	109.00 109.0	•
			TOTALES:	32,610	109.0	_

III. CORRIENTE TOTAL :

 $I = In del motor mayor \times 1.25 + In de los motores menores$

I =(109.00 x 1.25) + 0.00 = 136.25 Amps.x(1.00 F.U.)= 136.25 Amps.

IV. CALCULO DEL INTERRUPTOR PRINCIPAL:

I T = Ic \times 1.50 =(136.25)(1.50)= 204.37 Amps.

- 135 -

Se instalará un interruptor : TERMOMAGNETICO DE 3P-150 AMPERES

V. CALCULO DEL ALIMENTADOR:

a) CALCULO POR CORRIENTE:

Ic= 136.25 Amps.

Por corriente se necesita instalar, 1 conductor(es) por fase que conduzca(n) (136.25)Amps. y corresponde a un calibre (2)AMG

b) CALCULO POR CAIDA DE TENSION:

$$S = \frac{2 \times 1 \times Ic}{Vn \times CX} = \frac{(2)(48)(109.00)}{(127)(3.0\%)} = 27.46$$

Por caída de tensión se necesita 1 conductor(es) por fase calibre (2)AWG que tiene una sección en área de (33.62) mm²

c) CALCULO POR FACTOR DE TEMPERATURA: SEGUN TABLA302.46 DE NTIE.

Por temperatura se necesita instalar 1 conductor(es)por fase que conduzca(n)(149.72)Amps. y corresponde a un calibre No.(2)AWG

d) <u>CALCULO POR RESISTENCIA OHMICA:</u>

Se obtuvo = $0.6628 \Omega/1 \text{Km}$.

Por resistencia óhmica se necesita instalar $\,$ 1 $\,$ conductor(es) por fase que tenga menos de (0.6628) ohms, por kilómetro y corresponde a un calibre (2 $\,$)AWG

Por Tablas un conductor del No.(2) tiene 0.52300 $\Omega/1~{\rm Km}$. Por Tablas un conductor del No.(4) tiene 0.83150 $\Omega/1~{\rm Km}$.

VI. RESULTADO DE LOS CONDUCTORES:

Por corriente,por caída de tensión,por temperatura y por resistencia óhmica lo mas indicado es usar 1 conductor(es) por fase calibre No. (0)AWG , 1 conductor(es) calibre No. (4)AWG , para neutro y 1 del No.(6)AWG para tierra física en 1 charola(s) de (C152) mm..

VII. CONSUMO DE K.V.A. :

KVA =
$$\frac{Ic \times V \times I3}{1000} = \frac{(136.25)(220)(1.73)}{1000} = 51.92 \text{ K.V.A.}$$

$$CX = \frac{2 \times L \times I_C}{V_D \times m_D^2 \times CF} = \frac{(2)(48)(136.25)}{(127)(33.62)(1)} = 1.93 \% (3.0 \% ESPECIFICADO$$

INTERRUPTOR : TABLERO "1H" TIPO : INTERRUPTOR FLAND : IE-04

I. DATOS TECNICOS:

- 1. Servicio : EMERGENCIA
- 2. Watts totales: 49,581
- 3. Tensión del sistema: 220 volts
- 4. Factor de potencia: 0.90/-25.849 Amps.
- 5. Factor de utilización: 100 %
- 6. Número de fases: 3
- 7. Número de hilos: 4
- B. Frecuencia en Hz: 60 Hz
- 9. Tablero de : REFRIGERCION
- 10. Localización : RACK DE REF. ENTRE EJES A,B y1,3
- 11. Tipo de conductor : COBRE
- · 12. Tipo de aislamiento : T.H.W. 90 9C en Aire
 - 13. Longitud total al Tablero General : 3 mts.
 - 14. Caída de tensión : 0.5 %

II. DATOS DE CARGA SEGUN TABLAS DE C.F.E. Y TABLAS No.403.94 y 403.95 del NTIE-86

CANT.		DESCRIPCION		W/U	W/T	AMP/U	AMP/T
6	MOTOR DE	3.0000 A 220	3 F	2,727	16,362	10.00	60.00
4	MOTOR DE	5.0000 A 220	3 F	4,491	17,964	15.90	63.60
1	MOTOR DE	7.5000 A 220	3 F	გ,579	6,579	23.00	23.00
1	MOTOR DE	10.0000 A 220	3 F	8,676	8,676	29.00	29.00
				TOTALES:	47.581		175.60

III. CORRIENTE TOTAL :

I = In del motor mayor x 1.25 + In de los motores mencres

 $I = (29.00 \times 1.25) + 146.60 = 182.85 \text{ Amps.} \times (1.00 \text{ F.U.}) = 182.85 \text{ Amps.}$

IV. CALCULO DEL INTERRUPTOR PRINCIPAL:

I T = Ic \times 1.20 =(182.85)(1.20)= 219.42 Amps.

- 130 -

Se instalará un interruptor : TERMOMAGNETICO DE 3P-200 AMPERES

V. CALCULO DEL ALIMENTADOR:

a) CALCULO POR CORRIENTE:

Ic= 182.85 Amps.

Por corriente se necesita instalar, 1 conductor(es) por fase que conduzca(n) (182.85)Amps. y corresponde a un calibre (0)AWG

b) CALCULO POR CAIDA DE TENSION:

$$S = \frac{2 \times L \times Ic}{Vn \times CX} = \frac{(2)(-3)(-182.85)}{(127)(0.5\%)} = 17.27$$

Por caída de tensión se necesita 1 conductor(es) por fase calibre (4)AWG que tiene una sección en área de (21.15) mm²

c) CALCULO POR FACTOR DE TEMPERATURA: SEGUN TABLA302.46 DE NTIE.

Por temperatura se necesita instalar 1 conductor(es)por fase que conduzca(n)(200.93)Amps. y corresponde a un calibre No.(0)AWS

d) CALCULO POR RESISTENCIA OHMICA:

Se obtuvo = 1.0536 0/1 Km.

Por resistencia óhmica se necesita instalar 1 conductor(es) por fase que tenga menos de (1.0536) ohms. por kilómetro y corresponde a un calibre (4)AMG

Por Tablas un conductor del No.(4) tiene 0.83150 $\Omega/1~{\rm Km}$. Por Tablas un conductor del No.(6) tiene 1.32200 $\Omega/1~{\rm Km}$.

VI. RESULTADO DE LOS CONDUCTORES:

Por corriente, por caída de tensión, por temperatura y por resistencia óhmica lo mas indicado es usar 1 — conductor(es) por fase calibre No. (0)AWG , 1 conductor(es) calibre No. (4)AWG , para neutro y 1 del No.(6)AWG para tierra física en 1 charola(s) de (C152) mm..

VII. CONSUMO DE K.V.A. :

$$KVA = \underbrace{Ic \times V \times J3}_{1000} = \underbrace{(182.85)(220)(1.73)}_{1000} = 69.68 \text{ K.v.A.}$$

$$\frac{CX}{V_D} = \frac{2 \times L \times I_C}{V_D \times mm^2 \times CF} = \frac{(2)(3)(182.85)}{(127)(53.49)(1)} = 0.16 \% \times 0.5 \%$$
 ESPECIFICADO

HOJA # 33

MEMORIA DE CALCULO DESCRIPTIVA

INTERRUPTOR : TABLERO "2H" TIPO : INETRRUPTOR PLANO : IE-04

I. DATOS TECNICOS:

- 1. Servicio : EMERGENCIA
- 2. Watts totales: 49,581
- 3. Tensión del sistema: 220 volts
- 4. Factor de potencia: 0.90/-25.849 Amps.
- 5. Factor de utilización: 100 %
- 6. Número de fases: 3
- 7. Número de hilos: 4
- 8. Frecuencia en Hz: 60 Hz
- 9. Tablero de : REFRIGERACION
- 10. Localización : RACK DE REF. ENTRE EJES A,B y 1,3
- 11. Tipo de conductor : COBRE
- 12. Tipo de aislamiento : T.H.W. 90 º€ en Aire
- 13. Longitud total al Tablero General : 3 mts.
- 14. Caida de tensión: 0.5 %

II. DATOS DE CARGA SEGUN TABLAS DE C.F.E. Y TABLAS No.403.94 y 403.95 del NTIE-86

CANT.		DESCRIPCION			W/U	W/T	AMP/U	AMP/T
6	MOTOR DE	3.0000 A 220	3 F		2,727	16,362	10.00	60.00
4	MOTOR DE	5.0000 A 220	3 F		4,491	17,964	15.90	63.60
1	MOTOR DE	7.5000 A 220	3 F		6,579	6,579	23.00	23.00
1	MOTOR DE	10.0000 A 220	3 F		8,676	8,676	29.00	29.00
				TOTAL	ES:	49,581		175.60

III. CORRIENTE TOTAL :

I = In del motor mayor x 1.25 + In de los motores menores

I =(29.00 x 1.25) + 146.60 = 182.85 Amps.x(1.00 F.U.)= 182.85 Amps.

IV. CALCULO DEL INTERRUPTOR PRINCIPAL:

I T = Ic \times 1.20 =(182.85)(1.20)= 219.42 Amps.

- 140 -

V. CALCULO DEL ALIMENTADOR:

a) CALCULO POR CORRIENTE:

Ic= 182.85 Amps.

Por corriente se necesita instalar, 1 conductor(es) por fase que conduzca(n) (182.85)Amps. y corresponde a un calibre (0)AWS

b) CALCULO POR CAIDA DE TENSION:

$$S = 2 \times L \times Ic = (2)(-3)(-182.85) = 17.27$$

 $Vn \times CX = (127)(0.5X)$

Por caída de tensión se necesita - 1 conductor(es) por fase calibre (4 -)AWG que tiene una sección en área de (-21.15) mm²

c) CALCULO POR FACTOR DE TEMPERATURA: SEGUN TABLA302.46 DE NTIE.

I Conductor
$$\underline{Ic} = \underline{182.85} = 200.93 \text{ Amps.}$$
FT*FA (0.91)

Por temperatura se necesita instalar 1 conductor(es)por fase que conducta(n)(200.93)Amps. y corresponde a un calibre No.(0)AWG

d) CALCULO POR RESISTENCIA OHMICA:

Se obtuvo = 1.0538 $\Omega/1$ Km.

Por resistencia óhmica se necesita instalar 1 conductor(es) por fase que tenga menos de (1.0536) ohms. por kilómetro y corresponde a un calibre (4)AWG

Por Tablas un conductor del No.(4) tiene 0.83150 $\Omega/1$ Km. Por Tablas un conductor del No.(6) tiene 1.32200 $\Omega/1$ Km.

VI. RESULTADO DE LOS CONDUCTORES:

Por corriente,por caída de tensión,por temperatura y por resistencia óhmica lo mas indicado es usar 1 conductor(es) por fase calibre No. (0)AWG , 1 conductor(es) calibre No. (4)AWG , para neutro y 1 del No.(6)AWG para tierra física en 1 charola(s) de (C152) mm..

VII. CONSUMO DE K.V.A. :

$$KVA = \frac{Ic \times V \times I3 = (182.85)(220)(1.73)}{1000} = 69.68 \text{ K.V.A.}$$

VIII. COMPROBACION DE CAIDA DE TENSION, SOBRE EL CONDUCTOR NECESARIO :

$$C\% = \frac{2 \times L \times Ic}{Vn \times mn^2 \times CF} = \frac{(2)(3)(132.85)}{(127)(53.49)(1)} = 0.16 \% \times 0.5 \% ESPECIFICADO$$

OBRA:

H0JA # 35

MEMORIA DE CALCULO DESCRIPTIVA

INTERRUPTOR : TABLERO "SGNo.1"

TIPO : INTERRUPTOR PLANO : IE-04

I. DATOS TECNICOS:

- 1. Servicio : EMERGENCIA
- 2. Watts totales: 99,162
- 3. Tensión del sistema: 220 volts
- 4. Factor de potencia: 0.90/-25.849 Amps.
- 5. Factor de utilización: 100 %
- 6. Número de fases: 3
- 7. Número de hilos: 4
- 8. Frecuencia en Hz: 60 Hz
- 9. Tablero de : REFRIGERACION
- 10. Localización : RACK DE REF. ENTRE EJES A.B y 1,3
- 11. Tipo de conductor : COBRE
- 12. Tipo de aislamiento : T.H.W. 90 9€ en Aire
- 13. Longitud total al Tablero General: 81 mts.
- 14. Caída de tensión : 3.0 %

II. DATOS DE CARGA SEGUN TABLAS DE C.F.E. Y TABLAS No.403.94 y 403.95 del NTIE-86

CANT.

DESCRIPCION

W/U TOTALES: W/T

AMP/U

AMP/T 0.00

III. CORRIENTE TOTAL :

I = In del motor mayor x 1.25 + In de los motores menores

 $I = (0.00 \times 1.25) + 0.00 = 395.10 \text{ Amps.} \times (1.00 \text{ F.U.}) = 395.10 \text{ Amps.}$

IV. CALCULO DEL INTERRUPTOR PRINCIPAL:

I Υ = Ic \times 1.20 =(395.10)(1.20)= 474.12 Amps.

- 142 -

V. CALCULO DEL ALIMENTADOR:

a) CALCULO POR CORRIENTE:

Ic= 395.10 Amps.

Por corriente se necesita instalar, 1 conductor(es) por fase que conduzca(n) (395.10)Amps. y corresponde a un calibre (250)MCM

b) CALCULO POR CAIDA DE TENSION:

$$S = \frac{2 \times 1 \times Ic}{Vn \times CX} = \frac{(2)(81)(395.10)}{(127)(3.0X)} = 167.99$$

Por caída de tensión se necesita 1 conductor(es) por fase calibre (350)MCM que tiene una sección en área de (177.00) mm²

c) <u>CALCULO POR FACTOR DE TEMPERATURA:</u> SEGUN TABLA302.46 DE NTIE.

I Conductor
$$Ic$$
 = $\frac{1c}{FT * FA}$ = $\frac{395.10}{(0.91)}$ 434.17 Amps.

Por temperatura se necesita instalar 1 conductor(es)por fase que conduzca(n)(434.17)Amps. y corresponde a un calibre No.(300)MCM

d) <u>CALCULO POR RESISTENCIA OHMICA:</u>

Se obtuvo = $0.1084 \Omega/1$ Km.

Por resistencia óhmica se necesita instalar 1 conductor(es) por fase que tenga menos de (0.1084) ohms. por kilómetro y corresponde a un calibre (350)MCM

Por Tablas un conductor del No.(350) tiene 0.09916 Ω/1 Km. Por Tablas un conductor del No.(300) tiene 0.11570 Ω/1 Km.

VI. RESULTADO DE LOS CONDUCTORES:

Por corriente, por caída de tensión, por temperatura y por resistencia óhmica lo mas indicado es usar 1 conductor(es) por fase calibre No. (350)MCM , 1 conductor(es) calibre No. (00)AWG , para neutro y 1 del No.(2)AWG para tierra física en 1 charola(s) de (C152) mm..

VII. CONSUMD DE K.V.A. :

$$KVA = Ic \times V \times I3 = (395.10)(220)(1.73) = 150.55 \text{ K.v.A.}$$

$$1000 \qquad 1000$$

VIII. COMPROBACION DE CAIDA DE TENSION, SOBRE EL CONDUCTOR NECESARIO :

$$CX = 2 \times L \times Ic = (2)(81)(395.10) = 2.85 \% (3.0 \% ESPECIFICADO Vn × mm2 × CF (127)(177.00)(1)$$

MEMORIA DE CALCULO DESCRIPTIVA

CALCULO DE LA PLANTA DE EMERGENCIA Y TABLERO

I. Se consideró en el cálculo la capacidad del Motor mayor conectado en el tablero general servicio emergencia ya que este es de 40.00 H.P. se calculó la corriente a plena carga de arranque que es de 136 Amps. y la suma de las demás cargas a continuación las describimos:

DESCRIPCION	K.W.	н.Р.	F.U.	AMPS.	K.V.A.
TABLERO "AE" TABLERO "BE" TABLERO "CE" TABLERO "DE" TABLERO "FE"	20.34 18.70 7.50 7.50 16.79		100% 80% 100% 100%	59.77 54.68 21.87 21.87 49.62	22.78 20.84 8.33 8.33 18.91
TBALERO "KE" TABLERO "I" TABLERO "IN" TABLERO "M"	28.39 0.00 0.00 0.00	10.00 7.50 40.00	100% 100% 100% 100%	83.75 31.80 23.00 136.20	31.91 12.11 8.76 51.89
TOTALES:	99.23	57. 50		482.56	183.88

Se selecciono una Planta de Emergencia de 187 K.V.A. continuos y 206 K.V.A. Emergencia marca SELMEC con motor CUMMINS CAT. SC6CTAB.3

Capacidad del interruptor para protección de la Planta de Emergencia.

IY \times 1.20 = 481.12 \times 1.20 = 577.34 Amps.

Se instalará un interruptor : TERMOMAGNETICO DE 3P-600 AMPERES

- 144 -

. II. Tipo de Tablero General Servicio Emergencia.

III. Cálculo del conductor del tablero general al tablero de emergencia

Consideraciones:

- a) Corrients total : 481.12 Amps.
- b) Tipo de conductor : COBRE
- c) Tipo de aislamiento : T.H.W. 90 9C.

IV. Cálculo por corriente :

It= 481.12 Amps.

Por corriente se necesita instalar, 1 conductor(es) por fase calibre No.(350)MCM que soporta(n) 530 Amps c/u a 909C de acuerdo con NTIE Tabla 302.4

530 x 1= 530 > 481.12 Amps.

V. Cálculo por factor de temperatura :

I Conductor $\frac{Ic}{F.T.} = \frac{481.12}{0.71} = 528.70 \text{ Amps.}$

For factor de temperatura que de acuerdo con la Tabla 302.4b Temperatura máxima permisible en el aislamiento 90 90, Temperatura ambiental 90= 31 - 40 90= 0.91%

Se necesita instalar 2 conductores por fase calibre No.(000)AWG que soporta 330 Amps.

 $330 \times 2 = 660 > 528.70 \text{ Amps.}$

VI. Resultado de los conductores por instalar.

POR FASE : 2 de 000 AWG
NEUTRO : 1 de 000 AWG
TIERRA : 1 de 2 AWG
CHAROLA : 1 C228 mm

MEMORIA DE CALCULO DESCRIPTIVA

CALCULO DE LA PLANTA DE EMERGENCIA Y TABLERO

I. Se consideró en el cálculo la capacidad del Motor mayor conectado en el tablero general servicio emergencia ya que este es de 10.00 H.P. se calculó la corriente a plena carga de arranque que es de 36 Amps. y la suma de las demás cargas a continuación las describimos:

DESCRIPCION	K.W.	H.F.	F.U.	AMPS.	K.V.A.
TABLERO "1H" TABLERO "2H"	0.00 0.00	55.50 55.50		182.80 175.60	69.65 66.91
TOTALES:	0.00	111.00		358.40	136.56

Se selecciono una Planta de Emergencia de 187 K.V.A. continuos y 206 K.V.A. Emergencia marca SELMEC con motor CUMMINS CAT. SC6CTA8.3

Capacidad del interruptor para protección de la Planta de Emergencia.

IT x 1.20 = $481.12 \times 1.20 = 577.34$ Amps.

Se instalará un interruptor : TERMOMAGNETICO DE 3P-600 AMPERES

- 145 -

II. Tipo de Tablero General Servicio Emergencia.

III. Cálculo del conductor del tablero general al tablero de emergencia

Consideraciones :

- a) Corriente total : 481.12 Amps.
- b) Tipo de conductor : COBRE
- c) Tipo de aislamiento : T.H.W. 90 QC.

IV. Cálculo por corriente :

It= 481.12 Amps.

Por corriente se necesita instalar, i conductor(es) por fase calibre No.(350)MCM que soporta(n) 530 Amps c/u a 9090 de acuerdo con NTIE Tabla 302.4

V. Cálculo por factor de temperatura :

I Conductor
$$\frac{I_C}{F.T.} = \frac{481.12}{0.91} = 529.70 \text{ Amps.}$$

Por factor de temperatura que de acuerdo con la Tabla 302.4b Temperatura máxima permisible en el aislamiento 90 9C, Temperatura ambiental 9C= 31 - 40 9C = 0.91%

Se necesita instalar $\, 2 \,$ conductores por fase calibre No.(000)AWG que soporta 330 Amps.

$$330 \times 2 = 660 > 528.70 \text{ Amps.}$$

VI. Resultado de los conductores por instalar.

POR FASE : 2 de 000 AWG
NEUTRO : 1 de 000 AWG
TIERRA : 1 de 2 AWG
CHAROLA : 1 C228 mm

MEMORIA DE CALCULO DESCRIPTIVA

CALCULO DEL TRANSFORMADOR

- I. La capacidad del transformador de distribución se seleccionó de las cargas del proyecto GIGANTE SUCURSAL SOLER TIJUANA, el transformador será del tipo ACEITE AIRE y conociendo los siguientes datos:
 - a) Número de fases = 3 fases.
 - b) Frecuencia de operación en Hz. = 60 Hz.
 - c) Tensión primaria y conexión = 13.2 K.V. Conexión Delta
 - d) Tensión secundaria y conexión = 220 volts. Conexión Estrella
 - e) Número de derivados y porcientos en cada uno = 4 derivados
 - 2.5 % arriba y 2.5 abajo f) Sobre elevación de temperatura en operación continua = $30 \, \underline{90}$ a 55 $\underline{90}$.
 - g) Altura sobre el nivel del mar en operación = 600 M.S.N.M.
 - h) Impedancia del transformador según fabricante = 5.50 %

DATOS DE CARGA A CONECTAR AL TRANSFORMADOR

DESCRIPCION	K.W.	H.P.	F.D.	AMPS.	K.V.A.
TABLERO "A"	14.55	0.00	100%	42.67	16.26
TABLERO "C"	53.36	0.00	100%	156.96	59.81
TABLERO "F"	27.77	0.00	100%	81.15	30.92
TABLERO "K"	32.60	0.00	100%	95.95	36.57
TABLERO "AA"	340.54	110.00	80%	1138.00	346.91
PLANTA DE EMERG. No.1	99.23	57.50	80%	482.61	147,12
PLANTA DE EMERG. No.2	0.00	111.00	80%	358.45	109.26
TOTALES:	568.08	278.50		1959.99	746.86

Se seleccionó un transformador de 750 K.V.A. a 60 Hz. relación 13.20 K.V. 220/127v el Xo se conectará fijamente al sistema de tierras, la capacidad de reserva esta puede aumentar a un 0.42% (750x 0.42%= 3.14 KVA) operando el transformador a 50 QC a este se especificará para 65 QC.

II. Cálculo del conductor que alimenta al tablero general desde el transformador

El conductor se calculó considerando la capacidad del transformador para obtener la corriente nominal se ejecutó la siguiente fórmula :

In=
$$\frac{\text{KVA} \times 1000}{\text{V} \times 43}$$
 KVA = Capacidad del transformador en KVA = 750 V = Voltaje en el secundario = 220

In =
$$750 \times 1000 = 1968.23$$
 Amps. 220×73

OBRA : GIGANTE SUCURSAL SOLER TIJUANA

IV. Cálculo por corriente :

It= 1968.24 Amps.

Por corriente se necesita instalar, 4 conductor(es) por fase calibre No.(350)MCM que soporta(n) 530 Amps c/u a 90<u>0</u>C de acuerdo con NTIE Tabla 302.4

530 x 4= 2120 > 1968.24 Amps.

V. Cálculo por factor de temperatura :

I Conductor
$$\underline{Ic}_{F.T.} = \frac{1958.24}{0.91} = 2162.90 \text{ Amps.}$$

Por factor de temperatura que de acuerdo con la Tabla 302.4b Temperatura máxima permisible en el aislamiento 90 9C, Temperatura ambiental 9C=31-40 9C=0.91%

Se necesita instalar 4 conductores por fase calibre No.(400)MCM que soporta 575 Amps.

575 x 4 = 2300 > 2162.90 Amps.

V. Cálculo del interruptor :

Se instalará un interruptor : ELECTROMAGNETICO DE 3P-2000 AMPERES

VI. Resultado de los conductores por instalar.

POR FASE : 4 de 400 MCM NEUTRO : 2 de 400 MCM TIERRA : 1 de 250 MCM

VII. Tipo de Tablero General

Se seleccionó un Tablero tipo LVME/HCBD con int. electromagnetico de 2000 AMPS. y barras de 2000 Amps. marca Federal Pacific

VIII. Cálculo del interruptor general en Alta Tensión

In =
$$\frac{750 \times 1000}{13 \times 43}$$
 = 32.80 Amps.

Con un factor del 200% de protección de socrecarga tendremos 32.80 x 2 = 65.61 Amps Se instalará un fusible de : 63 Amps para 750 MVA corr. interruptiva sim. marca ELMEX Cat. ELMEX.S.A.

CUADRO GENERAL DE CARGAS

OBRA:

GIGANTE SUCURSAL SOLER TIJUANA

UBICACIÓN: AV. HERNAN CORTES ESQ. ALTAMIRANO.

IAL	190	UBICACION	SERVICIO		A . 6	E .	WATTE	MAGE
	-			A		C	TOTALEA	TOTALE
, W,	PB-4L-308	CLIARTO DE BUBERTACION	ALUMBRADO Y CONTACTOS BERVICIOS	4,676	4,679	4,803	14,558	e.
Ţ	784.63	CLIARTO DE BUBESTACION	ALUMENACIO SALA DE VENTAS	17,710	17,710	17,940	53,260	155.5
#	764.TA	PLANTA ALTA ESSIL È _E SS	PLURISHADO Y CONTACTOS EN CAPIS	9,275	9,250	1,20	27,715	009
к	PR-4,-100	PLANTA BAJA ELER D y I	ALUMBRADO Y CONTACTOS	10,968	10,618	10,818	D _E M	95.0
'AK'	HCBD	CUARTO DE SUBESTACION	ARE ACCHOICIONADO	173,516	113,516	10,516	340,548	993.0
			ALIGITAL DEL TABLERIO MERACIO MORNAL	154,347	154,172	154,127	40,04	1,367,1
'AE'	PB-4-309	OLIANTO DE SUSESTACION	ALUMBRADO Y CONTACTOS SERVICIOS	6,832	6,762	6,732	20,340	91
*	P9-4, 109	CLIARTO DE SUBERITACION	PLUMBRADO BALA DE VENTAB	6,250	6,250	6,200	10,700	54.5
Œ	P9-4-190	PLANTA BALA ELES L.T.y 8	CONTACTOR DE CAIAS Y FAROLAS	2,500	2,500	2,500	7,500	25.80
700	P9-4-109	PLANTA ALTA EJES L.7 y 8	CONTACTOS RESULADOS EN CAJAS	2,500	2,500	2,500	7,500	21.69
Æ	P9-4330	PLANTA ALTA ELES L.7 y B	ALUMERADO Y CONTACTOR DE CAIAS	5,02	5,575	5,550	16,797	6.9
W.	P8-4:30s	PLANTIA ALTA EJESI D y 1	ALUNERACIO Y CONTACTOS	1,46	9,373	1,573	25,394	82,75
7	OCCUPANTOR	PLANTA BAJA EJEB EJF y 1,2	BOUPO DE HIDRONEUMÁTICO	2,594	2,994	2,594	1,502	26.15
7*	DITEMPLIFTOR	PLANTA BAJA ÉJEB EJF y 1,2	EQUIPO DE CONTRA INCENCIOS	2,150	2,193	2,153	6,579	19.18
'Yr	MTERRUPTOR	AZOTEA ELEO C.D.; 2.)	MONTACHROME	10,670	10,070	10,020	250	95.09
76	MERUPTOR	RACK DE REFRIOERACIÓN EJES AB y 1,3	REFRIGERACIÓN	16,527	16,527	16,527	6,581	144.57
79 F	MERILITOR	RACK DE REPROGRACIÓN EJES AJS y 1,3	NE PROGRACIÓN	8,27	16,527	15,527	6,31	141.57
			NUBTOTAL DEL TABLERO DE ENERGENCIA	E2,M3	Q,001	E2,166	24(570	Pic se
	-	T O T	A L E 6	239,668	224,263	239,463	718,416	2,000.00

DENBALANICEO - 0.16 %

TRANSFORMADOR DE - 750 K.V.A.
WAITH TOTALEN - 75.42 K.V.
F.D. - 60.00
F.P. - 50.00

WO-KW.sFD. - 75.0 x 050 x 625

KYA - KY - 2325 - 47634

CAPACIDAD DE RESERVA DEL TRAMSFORMADORI 750 36.41% - 27.05 K.V.A. CAPACIDAD DE RESERVA GESM. K.V.A. CAPACIDAD DE RESERVA TOTAL - 75.00 CAP. DEL TRAMSF. A RECESTAR

REPORTE RESUMEN DE CARGAS

obra : Gigante Sucursal Soler Tijuana Ubigaciga : Av. Hednan Cortez 1881. Altaniraho en Tijuana B.C.

			CANTIDAD	KATTS	TOTAL
	605	MOTOR DE 0.2500 A 127 1 F	ŧ,	293	1,172
	035	ABTER BE 0.5000 A 220 3 F	3	507	1,521
÷	037		6	554	5,724
	040		12	2727	32, 724
	041		14	4491	62,87
		NOTER DE 7.5000 A 220 3 F	3	6579	19,737
	(43		2	8576	17,352
		MOTOR GE 40.0000 A 220 J F	i	32410	32,510
	047		6	40758	244,548
	950		2	48000	95,000
	077		56	50	2,300
	099	LAMPARA SLIM LINE COM 21-38%.	3	160	800
	101		51	190	5,100
	102	LAMPARA SLIM LINE CON 27-74%.	98	200	17,600
	110	LAMPAPA INCANDESCENTE	3:	<i>T</i> 5	2,325
	120	LANPARA DE HALDGENO A 127V.	36	50	1,300
	140	LAYPARA DE ADITIVOS METALICOS A ZZOV.	12	312	3,744
	141	LAMPARA DE ADITIVOS METALICOS A 220V.	115	460	
		CONTACTO DUPLEX POLARIJADO	31	250	7,750
	171	CONTACTO CUPLEX POLARIZADO	59	500	27,500
	(97	CONTACTO POLARIZADO	7	750	5,250
	202	CONTACTO POLARIZADO	:8	1000	13,000
	244	CONTACTO THIST LOCK BE 29-20A.	15	1000	15,000
	381	TUMSADOR	5	125	1,000
	478	SALIDA ESPECIAL	13	250	3,250
	511	SALIDA ESPECIAL	1	7500	7,500
		ROSTICERO FLECTRICO	ì	19500	19,500
		SALIDA PARA INSECTRONIC	ç	500	4,500
		CHAPA ELECTRICA	1	250	250
	563	SALIDA PARA PROBADOR DE FOCOS	:	125	125

TOTALES->

625

715,416

=	ERVICI	□ 1	NOF	2M/	-¥1							CATCA	- 1	24254
												CARSA CONSCIADA	F.).	CARBA Debandada
FA	TERMONAGNETICO DE 32 -70 AMPERES	C152	2 8	AWS-F	1 3	ayg-n	1 3	AKS-T	:7	1.37	FB-4L30S	14359	1.00	11,559
HF!	TERMOMAGNETICO DE 3P -200 ANPERES	C152	3 0	AWG-F	1 0	A46-X	1 5	A¥3-1	17	0.75	TABLERO 'TC ' PB-4L42S	53360	1.00	53,360
FA	TERMOMAGNETICO DE 3P -100 AMPERES	C152	7 00	ANG-F	! 00	AWS-N	i 5	8#6-T	£ 3	1.67	TABLERO 'TF' P5-4130S	27775	1.00	27,775
HES	TERMOMAGNETICO DE 3P -125 AMPERES	C152	3 0	AMG-F	1 0	AVG-N	1 5	A#6-T	ģŧ	1.81	TABLESO TIX T P3-4LISS	32504	1.00	32,504
FA	TERMOMASNETICO DE 3P -1200 AMPERES	€20¢	6 50 0	NCS-F	: 500	nch-n	: 000) ANG-I	5	0.18	TABLERO TAAT HOBO	340548	0.80	272,438
_											TOTALES :	46584¢		400,736
Œ	ERVICI	ED 1	≅M€	ΞFC	9 E t	МСС	E 64				TUTHEES :	CARGA	F.D.	
												CARBA CONECTABA		CARGA DEMANDADA
	TERMONAGNETICO DE 39 -100 AMPERES		=M€	≅ (~ 0 A¥6-F	1 is	ANG-N	E ÆN	AWS-T	17	1.20	TABLERO 'TAE' PE-4L30S	CARGA	F.D. 1.00	CAR6A
FA	TERMOMAGNETICO DE 39	C152						AWS-T	17		TABLERO 'TAE'	CARBA CONECTABA		CARGA DEMANDADA
FA	TERMOMAGNETICO DE 39 TERMOMAGNETICO DE 39	C152	3 6	A¥G-F	1 <i>b</i>	awe-n	1 8			1.75	TABLERO 'TAE' PE-4L3OS TABLERO 'TBE'	CARBA CONECTABA 20345	1.00	CARGA DEMANDADA 20,345
FA NFS	TERMOMAGNETICO DE 39-100 AMPERES TERMOMAGNETICO DE 39-70 AMPERES TERMOMAENETICO DE 39-	C152	2 S	AWG-F	1 <i>b</i>	AME-M AMS-N	i a	AW8-T	17	1.75	TABLERO 'TAE' PE-4L3OS TABLERO 'TBE' PB-4L19S TABLERO 'TGE'	CARBA CONECTABA 20345 18700	1.00 0.E0	CARGA DEMANDADA 20,345
FA NFS FA	TERMOMAGNETICO DE 3P -100 AMPERES TERMOMAGNETICO DE 3P -70 AMPERES TERMOMAGNETICO DE 3P -30 AMPERES	C152 C152 C152 C152	3 6 3 8 3 4	AWG-F AWG-F	1 &	ang-n ang-n ang-n	i a	AW8-T AW8-T	17	1.75 1.47	TABLERO 'TAE' PE-4L30S TABLERO 'TAE' PB-4L18S TABLERO 'TAE' FB-4L18S TABLERO 'TAE'	CARGA CONECTAGA 20345 18700 7500	1.00 0.E0	CARGA DEMANDADA 20,345 14,950
FA NES FA FA	TERMOMAGNETICO DE 3P -100 AMPERES TERMOMAGNETICO DE 3P -30 AMPERES TERMOMAGNETICO DE 3P -30 AMPERES TERMOMAGNETICO DE 3P TERMOMAGNETICO DE 3P TERMOMAGNETICO DE 3P	C152 C152 C152 C152 C152	3 6 3 8 3 4 3 4	AVG-F	1 & 1 8 1 4	AME-M AMS-M AMS-M	1 3 1 8 1 12 1 12	ANG-T	17 90	1.75 1.47 1.47 1.29	TABLERO 'TAE' PE-4L30S TRBLERO 'TBE' PB-4L18S TABLERO 'TGE' FB-4L18S TABLERO 'TGE' PB-4L18S	28RBA CUNECTARA 20345 18700 7590	1.00 0.E0 1.00	CARGA DEMANDADA 20,345 14,760 7,500
FA NFS	TERMOMAGNETICO DE 3P -100 AMPERES TERMOMAGNETICO DE 3P -70 AMPERES TERMOMAGNETICO DE 3P -30 AMPERES TERMOMAGNETICO DE 3P -70 AMPERES TERMOMAGNETICO DE 3P -70 AMPERES	C152 C152 C152 C152 C152 C152	3 6 3 8 3 4 3 4	AWG-F AWG-F AWG-F AWG-F AWG-F	1 & 1 8 1 4 1 4 1 0 1 0	AMG-M AMG-M AMG-M AMG-M	1 3 1 8 1 12 1 12 1 9	AWS-T AWS-T AWS-T	17 90 90	1.75 1.47 1.47 1.29	TABLERO 'TAE' PE-4L3OS TABLERO 'TBE' PB-4L18S TABLERO 'TGE' F8-4L18S TABLERO 'TGE' P8-4L19S TABLERO 'TFE' P8-4L3OS TABLERO 'TFE' P8-4L3OS	2888A CONECTARA 20345 18700 7590 7590	1.00 0.E0 1.00 1.00	CARGA DEMANDADA 20,345 14,960 7,500 7,500

NEG	TERMOMABNETICO DE -50 AMPERES	. 3 2	C:23	3 6	A¥6-F	1 10	A\$6-¥	1 10	a¥6-t	50	1.70	TABLERO "TR" Enterruptor	6579	1.00	6,579
NFS	TERMOMAGNETICS DE -150 AMPERES	. 3P .	S152	3.0	¥¥6- F	1 4	ABO-N	1 5	A K 6-7	48	1.93	TABLERO ":"	32610	1.00	32,510
NFS	TERMOMAGNETICO DE -200 AMPERES	3 2	C152	3 0	AWS-F	: 4	A#G-#	1.5	A#6- ⁻	3	9.16	TABLERO "1H" INTERRUPTOR	49561	1.00	49,581
NFS	TERMOMASNETICO DE -200 AMPERES	3P	Ĉ152	3 0	4¥6-F	1 4	AX6-N	1 6	425-1	3	0.16	TABLERO "2H" INETRRUPTOR	1956;	1.00	49,58}
xns	TERMGMAENETICO DE -400 AMPERES	3 P	C152	3 350	MOR-F	1 00	6#8-Y	1 2	A¥8-T	21	2.85	TABLERO "SBNo.1" INTERRUPTOR	99162	1.00	59,16 <u>2</u>
												TOTALES :	348732		344,992

.

.

APÉNDICE

I.- Motores.

I.1.- Conductores para circuitos de motores.

- General.- Los requisitos de esta sub-sección se aplican a los conductores que alimenten motores, a fín de que sean capaces de conducir la corriente requerida, sin sobrecalentamiento, bajo las condiciones que se indican.
- Conductores que alimenten un sólo motor.- Los conductores de un circuito derivado que alimente un sólo motor deben tener una capacidad de conducción de corriente no menor que el 125 % de la corriente a plena carga del motor. En el caso de un motor de velocidades múltiples, la selección de los conductores ubicados en el lado de alimentación del controlador debe hacerse en base a la mayor de las corrientes a plena carga indicadas en la placa de datos del motor; la selección de los conductores que se encuentran entre el controlador y el motor debe hacerse en base a la corriente nominal que corresponda a la velocidad de que se trate en cada caso.

Excepción.- Los conductores para un motor que preste un servicio del tipo de corto tiempo, intermitente, periódico ó variable, deben calcularse en base a los porcentajes mínimos de corriente a plena carga establecidos en la Tabla Apéndice I.

	alibre G. MCM	RHW	W y THW2 y RHH ta exterior)	Tipos RHW (con cubiert		Tipos THWN y THHN		
	o, .nc.i	Diámetro rnm	Arca mm²	Diametro mm	Area mm²	Diametro mm	Area mm1	
C	ol. I	Col. 2	Col. 3	Col. 4	Col. 5	Col. 6	Col. 7	
A L A M B R E S	14 14 12 12 10 10	3.3 4.1 * 3.8 4.5 * 4.3 5.0 *	8.7 13.3 ° 11.1 16.2 ° 14.3 20.1 °	5.2 - 5.6 - 6.1	21.1 24.7 29.7	2.7 - 3.2 - 4.0	5.9 7.9 12.3	
С	14 14 12 12 10 10 8 8	3.6 4.3 * 4.0 4.8 * 4.6 5.4 * 6.2 7.0 *	9.9 14.8 * 12.8 18.4 * - 16.8, 23.0 * 30.4 38.6	5.4 - 5.9 - 6.5 - 8.3	23.0 27.3 33.3 54.5	3.0 3.4 4.3 5.6	6.9 9.3 14.7 25.0	
A B L	6 4 2 1/0 2/0 3/0 4/0	8.2 9.4 11.0 13.9 15.1 16.4 17.9	52.9 70.1 95.0 152.7 179.4 212.1 251.8	10.1 11.5 13.0 16.0 17.1 18.5	79.8 103.5 133.3 200.5 230.9 269.3 312.2	6.6 8.4 9.9 12.5 13.7 15.0 16.4	34.2 55.2 77.1 123.5 147.6 176.7 211.2	
S	250 300 350 400 500	20.0 21.4 22.7 23.9 26.1	314.6 360.1 405.9 449.6 536.5	22.0 23.7 25.0 26.2 28.4	381.8 441.1 491.6 539.6 634.4	18,2 19,6 - 22,1 24,3	261.3 - 302.6 - 384.3 - 463.0	
	600 750 1 000 1 250 1 500	29.0 31.7 35.7 40.1 43.2	662.0 790.4 998.8 1 260.1 1 467.8	31.3 34.0 37.9 42.6 45.7	770,3 908,4 1 130,9 1 423,3 1 643,5	- - - -	-	

Tabla Apéndice I.- Factores para Seleccionar los Conductores para Motores que no Sean de Servicio Contínuo.

- Secundario de motor con rotor devanado.
- a). En un motor de corriente alterna con rotor devanado que sea de servicio contínuo, los conductores que conecten al secundario del motor con su controlador deben tener una capacidad de conducción de corriente no menor que el 125 % de la corriente a plena carga del secundario del motor.
- b). Para un motor que no sea de servicio contínuo, dichos conductores deben tener una capacidad de conducción de corriente no menor que la indicada en la Tabla Apéndice I, en base a la corriente a plena carga del secundario del motor.
- Conductores que alimentan a varios motores.- Como mínimo, los conductores que alimentan a dos ó más motores deben tener una capacidad igual a la suma del valor nominal de la corriente a plena carga de todos los motores, más el 25 % de la corriente del motor más grande del grupo. Cuando uno ó más motores del grupos se utilicen con servicio de corto tiempo, intermitente, periódico ó variable, la capacidad de los conductores puede calcularse como sigue:
- a). Se determina la capacidad de conducción de corriente requerida para cada motor utilizado en un tipo de servicio no contínuo, de acuerdo con la Tabla Apéndice I.
- b). Se determina la capacidad de conducción de corriente requerida para cada motor de servicio contínuo, basándose en el 100 % del valor nominal de la corriente a plena carga del motor.
- c). Se multiplica por 1.25 el valor de la mayor capacidad de corriente determinado según los incisos a ó b. Al valor resultante se le suma el resto de los valores de capacidad de corriente obtenidos según los mismos incisos a y b, y se selecciona el conductor adecuado para esta capacidad de corriente total.

Excepción 1.- En arreglos donde exista un bloqueo que impida el arranque y marcha simultáneos de un segundo motor ó grupo de motores, el calibre del conductor queda determinado por el motor de mayor potencia ó grupo de motores de mayor potencia que debe trabajar en cierto momento.

Excepción 2.- Cuando el calentamiento en los conductores se vea reducido debido al tipo de servicio que prestan los motores ó debido a que no todos los motores operen al mismo tiempo, la Secretaría puede permitir la aplicación de un factor de demanda para seleccionar el calibre de los conductores alimentadores, en lugar de aplicar el procedimiento indicado en este Artículo, siempre que la capacidad de corriente de los mismos conductores sea suficiente para la demanda máxima que se tendrá de ellos.

- Conductores que alimenten cargas combinadas.- Los conductores que alimenten motores en combinación con cargas de alumbrado y aparatos deben tener una capacidad de corriente suficiente para la carga de los motores más la carga de alumbrado y aparatos.
- Derivaciones desde un alimentador.- Las derivaciones que se hagan desde un alimentador para abastecer motores deben tener una capacidad de corriente no menor que la requerida por la carga por afimentar, terminar en un sólo dispositivo de sobrecorriente y además cumplir alguno de los requisitos siguientes:
 - a). No ser mayor de 3 metros de longitud.
- b). Tener una capacidad de corriente de por lo menos un tercio de la capacidad de corriente del alimentador cuando sea mayor de 3 metros, pero no mayor de 10 metros de longitud.
- c). Tener la misma capacidad de corriente que el alimentador cuando sea mayor de 10 metros de longitud.

- Conductores para capacitores combinados con motores.- La capacidad de corriente de los conductores que conecten un capacitor a las terminales de un motor ó a los conductores del circuito derivado del motor, no debe ser menor que la tercera parte de la que tienen los conductores del mismo circuito derivado del motor y, en ningún caso, menor del 135 % por ciento de la corriente nominal del capacitor.

I.2.- Protección contra sobrecarga en el motor.

- General.- Los requisitos de esta sub-sección, se refieren a los dispositivos de sobrecorriente destinados a proteger a los motores, a los aparatos de control de los motores y a los conductores de los circuitos derivados que los abastezcan, contra el calentamiento excesivo debido a sobrecargas en los mismos motores ó fallas de arranque.

Una sobrecarga en un aparato eléctrico, es una sobrecorriente de operación que, cuando dura un tiempo suficientemente prolongado, puede dañar ó sobrecalentar peligrosamente el aparato. Esto no incluye cortocircuitos, ni fallas a tierra, para cuya protección se aplican los requisitos de la siguiente sub-sección.

Puede omitirse la protección contra sobrecarga en aquellos casos en que la instalación de la misma implique peligros mayores que el riesgo de daño al propio aparato, como es el caso de bombas contra incendio.

- Motores de servicio contínuo.
- a). De más de un caballo de potencia. Cada motor de servicio contínuo con capacidad mayor de un caballos de potencia debe protegerse contra sobrecarga por alguno de los medio siguientes:

- a.1). Un dispositivo de sobrecorriente separado que actúe por efecto de la corriente del motor. La capacidad ó el ajuste de este dispositivo no debe ser mayor del 125 % de la corriente a plena carga del motor. En caso de que el dispositivo de sobrecorriente, seleccionado de acuerdo con el criterio anterior, resulte insuficiente para el arranque del motor ó no corresponda a un tamaño normalizado, puede utilizarse el tamaño inmediato superior, siempre que no sea mayor del 140 % de la corriente a plena carga del motor. En el caso de un motor de varias velocidades. cada conexión del devanado debe considerarse separadamente.
- a.2.). Un protector térmico integrado al motor, aprobado para usarse como éste, que lo proteja contra sobrecalentamientos peligrosos ocasionados por sobrecargas.
- b). de un caballo de potencia ó menos arrancando manualmente. Cada motor de servicio contínuo de un caballo de potencia ó menos, que se arranque manualmente y esté a la vista desde el punto donde se efectúa su arranque, puede considerarse protegido contra sobrecarga por el dispositivo de protección contra cortocircuitos ó fallas a tierra del circuito derivado. Un motor que no esté a la vista desde el punto donde se efectúa su arranque, debe protegerse en la forma indicaca en el inciso a de este mismo artículo. En caso de que la impedancia de los devanados sea suficiente para prevenir un sobrecalentamiento de bido a fallas en el arranque, el motor puede considerarse protegido como se indica en el párrafo anterior.
- c). De un caballo de potencia ó menos, arrancando automáticamente. Cada motor de servicio contínuo de un caballo de potencia ó menos, que se arranque automáticamente, debe protegerse contra sobrecarga en la misma forma que los motores de más de un caballo de potencia a que se refiere el inciso b de este mismo artículo. En caso de que la impedancia de los devanados del motor sea suficiente para prevenir un sobrecalentamiento debido a fallas en el arranque, el motor puede considerarse protegido por el dispositivo de protección contra cortocircuitos ó fallas a tierra del circuito derivado, como se indica en el inciso b de este mismo artículo para un motor arrancado manualmente.

- d). Secundarios de motores con rotor devanado. Los circuitos secundarios de motores de corriente alterna con rotor devanado, incluyendo conductores, controladores, resistencias, etcétera; pueden considerarse protegidos por el dispositivo de sobrecarga del circuito primario del motor.
- Motores de servicio no contínuo.- Un motor que preste un tipo de servicio de corto tiempo, intermitente, periódico ó variable (véase la Tabla Apéndice I), puede considerarse protegido contra sobrecarga por el dispositivo de protección contra cortocircuitos ó fallas a tierra del circuito derivado, siempre que este dispositivo tenga una capacidad ó ajuste no mayor del especificado en el artículo que se refiere a la capacidad ó ajuste del dispositivo para un sólo motor. Cualquier aplicación de un motor se considera como de servicio contínuo, a menos que la naturaleza de la máquina ó aparato accionado sea tal que el motor no opere contínuamente con carga bajo cualquier condición de uso.
- Puesta en derivación de los dispositivos de sobrecarga durante el arranque.- En el caso de un motor arrancado manualmente (incluyendo el arranque mediante un arrancador magnético con botón pulsador), la protección contra sobrecarga del motor puede ponerse en derivación ó excluirse del circuito durante el período de arranque, siempre que el dispositivo que la ponga en derivación ó la excluya no pueda dejarse en la posición de arranque y, además, que los fusibles ó el interruptor automático de acción retardada del circuito derivado del motor tenga una capacidad ó ajuste que no exceda del 400 % de la corriente a plena carga del motor. La protección contra sobrecarga de un motor no debe ponerse en derivación ó excluirse durante el período de arranque si el motor es arrancado automáticamente.
- Fusibles. Conductores en los que se intercalan.- Cuando se unen fusibles para la protección contra sobrecarga de un motor, debe intercalarse un fusible en cada conductor activo.
- Dispositivos que no sean fusibles. Conductores en los que se intercalan.- Cuando se usen dispositivos que no sean fusibles para la protección contra sobrecarga de un motor, tales como bobinas de disparo, relevadores ó dispositivos de tipo térmico, el número mínimo de unidades y su colocación deben estar de acuerdo con la Tabla Apéndice II.

Clase de motor	Sistema de Alimentación	Número y ubicación de uni- dades de sobrecarga que no sean fusibles
C.A. monofásico o de C.D.	2 hilos no puestos a tierra, C.A. mono- fásica o C.D.	Una en cualquiera de los conductores.
C.A. monofásico o de C.D.	2 hilos, C.A. mono- fásica o C.D., uno de los hilos puesto a tierra.	Una en el conductor no puesto a tierra.
C.A. monofásico o de C.D.	3 hilos, C.A. mono- fásica o C.D., neu- tro a tierra.	Una en cada conductor no puesto a tierra.
C.A. trifásico	Cualquier trifáxico.	2, en dos conductores cua- les quiera, excepto el neu- tro.*

Tabla Apéndice II.- Unidades de Protección de Motores Contra Sobrecarga.

- Número de conductores desconectados por los dispositivos de sobrecarga.- Los dispositivos de sobrecarga de un motor, que no sean fusibles ó protectores térmicos, deben desconectar simultáneamente un número suficiente de conductores activos para interrumpir el flujo de corriente al motor.
- Relevadores y otros dispositivos de sobrecarga no adecuados para cortocircuitos.- Los relevadores de sobrecarga y otros dipositivos de tipo térmico, para la protección de motores contra sobrecarga que no son capaces de abrir corrientes de cortocircuito, deben protegerse por medio de fusibles ó interruptores automáticos cuya capacidad ó ajuste esté de acuerdo con el artículo denominado capacidad ó ajuste del dispositivo para un sólo motor; ó bién con la capacidad que corresponda si dichos dispositivos de sobrecarga están aprobados para operación en grupo y tienen indicada la capacidad máxima del fusible ó interruptor automático del tipo de tiempo inverso que debe protegerlos.
- -Motores conectados a circuitos derivados de uso general.- Para la protección contra sobrecarga de motores conectados a circuitos derivados de uso general (ó sea, que alimentan también lámparas y contactos), debe aplicarse lo siguiente:
- a). De un caballo de potencia ó menos. Pueden conectarse a circuitos derivados de uso general uno ó más motores sin protección individual contra sobrecarga.
- b). De más de un caballo de potencia. Los motores con capacidades nominales mayores que las especificadas en el artículo sobre varios motores y otras cargas en un circuito derivado, inciso a, pueden conectarse a circuitos derivados de uso general sólo cuando estén provistos de la protección individual contra sobrecarga que se especifica en el artículo denominado motores de servicio contínuo.
- c). Conexión a través de clavija y contacto. Cuando se requiera la protección contra sobrecarga individual, de acuerdo con el inciso b anterior, para un motor ó aparato accionado por motor que se alimente a través de clavija y contacto, dicha protección debe ser parte integral del motor ó aparato.

- d). Acción retardada.- El dispositivo de sobrecorriente que proteja a un circuito derivado, al cual se conecte un motor ó aparato accionado por motor, debe ser acción lo suficientemente retardada para permitir que el motor arranque y acelere con carga.
- 1.3.- Protección de circuitos derivados para motores, contra cortocircuitos ó fallas a tierra.
- General.- Los requisitos de esta sub-sección se aplican a los dispositivos de sobrecorriente destinados a proteger a los conductores de circuitos derivados para motores, a los aparatos de control de los motores y a los propios motores contra sobrecorrientes debidas a cortocircuitos ó a tierras
- Capacidad ó ajuste del dispositivo para un sólo motor.- El dispositivo de protección contra cortocircuitos ó fallas a tierra del circuito derivado para un sólo motor, debe ser capaz de soportar la corriente de arranque, pero su capacidad ó ajuste no debe exceder de los siguientes valores:
- a). En el caso de fusibles sin retardo de tiempo ó de interruptores automáticos del tipo de tiempo inverso, su capacidad ó ajuste no debe ser mayor del 400 % de la corriente a plena carga del motor.
- b). En el caso de fusibles con retardo de tiempo (de doble elemento), su capacidad no debe ser mayor del 225 % de la corriente a plena carga del motor.
- c). En el caso de interruptores automáticos del tipo de disparo instantáneo (sin retardo de tiempo), su ajuste no debe ser mayor del 1 300 % de la corriente aplena carga del motor.

Sólo puede usarse una unidad de disparo instantáneo cuando sea ajustable y cuando se use en una combinación aprobada de arrancador e interruptor que tenga protección contra sobrecarga y contra cortocircuito intercalada en cada conductor activo.

- d). Para un motor con corriente a plena carga de 6 ampères ó menos, el circuito derivado puede considerarse protegido por un dispositivo de sobrecorriente de 20 ampères ó menos.
- Varios motores y otras cargas en un circuito derivado.- Dos ó más motores y otras cargas pueden conectarse en el mismo circuito derivado y quedar protegidos contra cortocircuitos ó fallas a tierra por el mismo dispositivo de sobrecorriente, si se cumplen las condiciones de cualquiera de los incisos a, b ó c siguientes:
- a). Hasta un caballo de potencia. Dos ó más motores cuya potencia individual no exceda de un caballo de potencia pueden conectarse a un circuito derivado protegido a no más de 20 ampères, siempre que cumplan las condiciones indicadas a continuación:
- a.1.). Que el valor nominal de la corriente a plena carga de cada motor no exceda de 6 ampères, y
- a.2). Que la protección individual contra sobrecarga de los motores esté conforme a lo establecido en el artículo sobre motores de servicio contínuo.
- b). Protección del circuito basada en el motor de menor potencia. Si el dispositivo de protección del circuito derivado no es mayor de lo permitido en lo expuesto en el artículo sobre capacidad ó ajuste del dispositivo para un sólo motor, para el motor de menor potencia, pueden conectarse a dicho circuito derivado dos ó más motores, ó varios motores y otras cargas, siempre que cada motor tenga su propia protección contra sobrecarga y siempre que se determine que dicho dispositivo protector del circuito derivado no abrirá en las condiciones de trabajo normales más severas que puedan ocurrir.

- c). Otros casos de varios motores y cargas. Pueden conectarse a un circuito derivado dos ó más motores de cualquier potencia nominal ó motores y otras cargas, teniendo cada motor dispositivos individuales de protección contra sobrecarga, siempre que se cumplan todas las condiciones siguientes:
- c.1). El circuito derivado debe estar protegido por fusibles ó por un interruptor automático del tipo de tiempo inverso. La capacidad ó ajuste de estos dispositivos no debe exceder de lo especificado en el artículo denominado Capacidad ó ajuste del dispositivo para un sólo motor, para el motor más grande conectado al circuito derivado, más las corrientes a plena carga de los demás motores así como las corrientes de otras cargas, conectados al mismo circuito.
- c.2). El dispositivo de protección contra sobrecarga de cada motor debe estar aprobado para instalación en grupo con una capacidad máxima especificada de fusible ó interruptor automático.
- c.3). El controlador de cada motor debe estar aprobado para instalación en grupo con una capacidad máxima especificada de fusibles ó interruptor automático.
- d). Para los arreglos antes descritos, los conductores de cualquier derivación que abastezca a un sólo motor no necesitan tener protección individual, simpre que se cumpla con cualquiera de los requisitos siguientes:
- d.1)- Que la corriente permisible en los conductores de la derivación no sea menor que la de los conductores del circuito derivado, ó
- d.2)- Que la longitud de los conductores de la derivación no exceda de 10 metros y la corriente permisible en los mismos no sea menor que la requerida para el motor según el denominado artículo como Conductores que alimenten un sólo motor ,ni menor que un tercio de la corriente permisible en los conductores del circuito derivado.

- Protección contra cortocircuito y contra sobrecarga en un sólo dispositivo. La protección contra cortocircuito ó fallas a tierra del circuito derivado de un motor, y la protección contra sobrecarga del mismo motor, pueden combinarse en un sólo dispositivo de sobrecorriente, simpre que la capacidad ó ajuste de este dispositivo proporcione la protección contra sobrecarga especificada en el artículo denominado Motores de servicio contínuo.
- Dispositivos de protección contra cortocircuitos. Conductores en los que se intercalan.- Debe conectarse en serie un dispositivo de protección contra cortocircuito ó fallas a tierra en cada conductor activo, de acuerdo con el artículo denominado Conductores activos.
 - Tamaño de portafusible y capacidad de interruptores automáticos.
- a). Cuando se usen fusibles para la protección contra cortocircuitos ó fallas a tierra del circuito derivado de un motor, el portafusibles para cada uno de ellos, no debe ser de menor tamaño que el requerido para acomodar el fusible de que se trate, seleccionado de acuerdo con el artículo denominado Capacidad ó ajuste del dispositivo para un sólo motor.
- b).- Un interruptor automático usado para la protección contra cortocircuitos ó fallas a tierra del circuito derivado de un motor, debe tener una capacidad de corriente que esté de acuerdo con los artículos denominados Capacidad ó ajuste del dispositivo para un sólo motor y Capacidad de conducción de corriente.
- I.4.- Protección de circuitos alimentadores que abastecen motores, contra cortocircuitos ó fallas a tierra.
- General .- Los requisitos de esta sub-sección se aplican a los dispositivos de sobrecorriente destinados a proteger a los conductores de circuitos alimentadores que abastecen motores, contra sobrecorrientes debidas a cortocircuitos ó a tierras.

a).- El dispositivo de sobrecorriente de un circuito alimentador que abastezca a varios circuitos derivados, debe tener una capacidad ó ajuste, que no exceda de la capacidad ó ajuste del dispositivo de protección, contra cortocircuitos ó fallas a tierra del circuito derivado correspondiente a plena carga de los motores de los demás circuitos derivados.

Cuando en un grupo de motores, haya dos ó más de las misma potencia que sean los más grandes en el grupo, debe cosiderarse a uno sólo de ellos como el mayor para los cálculos anteriores.

Si la capacidad obtenida de acuerdo con los cálculos anteriores no corresponden a un dispositivo de sobrecorriente de capacidad normalizada, puede usarse el dispositivo de capacidad intermedia superior.

- b).- Cuando se instalen alimentadores que abastecen motores, previendo futuras adiciones de carga ó cambios, su protección contra sobrecorrientes puede estar basada en la capacidad de corriente de los conductores de dichos alimentadores, ajustándose al artículo denominado Protección de conductores contra sobrecorriente.
- Capacidad ó ajuste para cagas de motores, alumbrado y aparatos.-Si un alimentador abastece cargas de motores y además cargas de alumbrado y/o aparatos, el dispositivo de protección contra sobrecorriente del alimentador debe tener una capacidad ó ajuste que sea suficiente para suministrar la carga de alumbrado y/o aparatos, determina de acurdo con la sección Cálculo de la carga de los circuitos, más la capacidad que corresponda a los motores , de acuerdo con los artículos denominados Capacidad ó ajuste del dispositivo para un sólo motor y Capacidad ó ajuste para cargas de motores, según se trate de un sólo motor ó de varios motores.

I.5.- Sistema de Tierras.

- Generalidades. - Las sub-estaciones deben contar con un adecuado Sistema de Tierras, al cual se deben conectar todos los elementos de la instalación que requieran la conexión a tierra.

Las funciones principales del Sistema de Tierras son las siguientes:

- a).- Proporcionar un circuito de muy baja impedancia para la circulación de las corrientes de tierra ya sean debidas a una falla a tierra del sistema electrónico ó a la operación de un apartarayos.
- b).- Evitar que durante la circulación de estas corrientes de tierra, puedan producirse diferencias de potencial entre distintos puntos de la sub-estación (ya sea sobre el piso o con respecto a partes metálicas puestas a tierra) que pueden ser peligrosas para el personal.
- c).- Facilitar, mediante la operación de relevadores ú otros elementos adecuados, la eliminación de las fallas a tierra en los Sistemas Eléctricos.
 - d).- Dar mayor confiabilidad y continuidad al servicio eléctrico.

En el caso general, los elementos principales del sistema de tierras son: 1).- red ó malla de conductores enterrados, a una profundidad que usualmente varía entre 0.50 metros y 1.0 metros; 2).- electrodos de tierra, conectados a la red de conductores y enterrados a la profundidad necesaria para obtener el mínimo valor de resistencia a tierra, 3).- conductores de puesta a tierra a través de los cuales se hace la conexión a tierra de las partes de la instalación ó del equipo que requiera dicha conexión.

- Características del sistema de tierra.
- a).- Disposición física. Se recomienda que un cable contínuo forme el perímetro exterior de la malla que se menciona en el últmo párrafo del artículo anterior, de manera que encierre toda el área en que se encuentra el equipo de la sub-estación.

La malla puede estar constituida por cables colocados paralela y perpendicularmente, con un espaciamiento razonable (por ejemplo, formando rectángulos de 3 por 6 metros). En lo que sea posible, los cables que forman la malla deben colocarse a lo lago de las hileras de estructuras ó equipo, para facilitar la conexión a los mismos.

Se recomienda que los conductores de la malla sean de cobre, con calibre mínimo de 4/0 AWG (107.2 mm) y que los conductores de puesta de tierra del equipo no sean de un calibre menor al No. 2 AWG (33.6mm).

En cada cruce de conductores de la malla, éstos deben conectarse rígidamente entre sí y, en los puntos adecuados, conectarse a electrodos de tierra de 2.50 metros de longitud ó más, clavados verticalmente, donde sea posible, se recomienda construir registros en los mismos puntos.

- b).- Materiales.- Cada elemento del sistema de tierras(incluyendo la malla, conectores y electrodos) debe ser elegido de manera que cumpla con lo siguiente:
- b.1).- Tener un punto de fusión suficientemente alto para no sufrir deterioro bajo las más severas condiciones de las magnitudes de corriente de falla y duración de las mismas.
- b.2).- Tener resistencia mecánica suficiente y ser resistente a la corrosión.
- b.3).- Tener suficiente conectividad, de manera que dichos elementos no contribuyan sustancialmente a originar diferencias de potencial peligrosas.

El material más usado para los conductores es de cobre. Para los electrodos puede usarse alguno de los tipos mencionados en el artículo determinado como Electrodos artificiales.

c).- Resistencia a tierra de la malla. La resistencia total de la malla con respecto a la tierra se puede determinar, en forma simplificada, por la expresión:

$$R = \{ (p)/(4r) + (p)/(L) \}$$

donde:

r, es el radio en metros de una placa circular equivalente, cuya área es la misma que la ocupada por la malla real de la tierra.

L, es la longitud total de conductores enterrados, en metros.

p, es la resistividad eléctrica del terreno, en ohms-metro.

La resistencia eléctrica total del sistema de tierras debe conservarse en el valor más bajo posible. (los valores aceptables van desde 10 ohms hasta menos de 1 ohm, incluyendo todos los elementos que forman el sistema de tierras, esto es, la malla, los electrodos y los conductores de puesta a tierra): Para conducir la resistencia total del sistema se puede aumentar el área total de la malla, reduciendo los espaciamientos entre los conductores de ésta ó bién, usar un mayor número de electrodos.

Se recomienda hacer las pruebas necesarias para comprobar que los valores reales de la resistencia a tierra de la malla se ajustan a los valores que dá el diseño; por otra parte se recomienda repetir periódicamente esta prueba, para comprobar que se conservan las condiciones originales, en el curso del tiempo ó que se mantienen dentro de límites aceptables.

- Puesta a tierra de cercas metálicas.- Debido a que las cercas metálicas son usualmente accesibles al público y pueden ocupar una posición sobre la periferia de la malla de tierra donde los gradientes de potencial son más altos, se deben tomar las siguientes medidas:
- a). Si la cerca se coloca dentro de la zona correspondiente a la malla, se debe prolongar ésta a 1.50 metros fuera de la cerca, como mínimo.
- b). Si la cerca se encuentra fuera de la zona correspondiente a la malla debe colocarse por lo menos a dos metros del límite de la malla.
- c). No deben conectarse las cercas metálicas a la malla misma, sino a sus propios electrodos de tierra, excepto en aquellos casos en que la cerca se encuentra tan próxima a las partes de equipo puesto a tierra, que exista el riesgo de que una persona toque simultáneamente a la cerca y al equipo.
 - -Puesta a tierra de rieles y tuberias de agua.
- a). Rieles. Los rieles de escapes de ferrocarril que entran a una sub-estación no deben conectarse al sistema de tierras de la sub-estación, porque se transfiere un aumento de potencial a un punto lejano durante un cortocircuito; ó bién, si la puesta a tierra es en un punto lejano, se introduce el mismo peligro pero en el área de la sub-estación. Para evitar estos riesgos, deben aislarse uno ó más pares de juntas de los rieles donde éstos salen del área de la red de tierras.
- b). Tuberías de agua. Las tuberías metálicas de agua que estén enterradas dentro de la sub-estación deben ser conectadas al sistema de tierras de la misma sub-estación, preferiblemente en varios puntos. La misma regla debe seguirse con tuberías de gas y con las cubiertas metálicas de los cables que están en contacto con el terreno.

- Puesta a tierra de partes no conductoras de corriente.
- A). Las partes metálicas expuestas que no conducen corriente, del equipo eléctrico que opere a más de 150 Volts a tierra, ó a cualquier tensión si está instalado en locales húmedos ó lugares peligrosos, tales como armazones de generadores y motores, armazones de tableros, tanques de transformadores e interruptores, deben conectarse a tierra en una forma permanente.
- b). Con excepción de equipo instalado en lugares húmedos ó lugares peligrosos, las partes metálicas que no conducen corriente, de equipo que opere a más de 150 Volts a tierra, pueden no conectarse a tierra, siempre que sean normalmente inaccesibles ó que se protejan por medio de resguardos, ó bién por las distancias que se señalan para protección de partes vivas. Esta última protección debe impedir que se puedan tocar inadvertidamente las partes metálicas mencionadas y, simultáneamente, algún objeto conectado a tierra.
- c). Se recomienda que las partes metálicas expuestas que no conducen corriente, de equipo que opere a 150 Vots a tierra ó menos, se conecten a tierra de una manera permanente y que también se conecten a tierra las defensas metálicas del equipo eléctrico (incluyendo barandales, telas de alambre, etcétera).
- d). Las estructuras de acero de la sub-estación, en general, deben conectarse a tierra.
- Conexión a tierra durante reparaciones.- El equipo ó los conductores que operen a más de 600 Volts (entre conductores), y que se tengan que reparar cuando se desconecten de su fuente de abastecimiento, deben conectarse a tierra por algún medio apropiado, antes de y durante la reparación.
- Detectores de tierra Se recomienda que las sub-estaciones que alimentan circuitos que no estén permanentemente conectádos a tierra, tengan un detector de tierra seguro, que pueda usarse para determinar la existencia de tierras en cualquiera de los circuitos que salgan de ellas.

I.6.- Protección contra sobrecorriente.

- Generalidades y Aplicación.- En esta sección se establecen requisitos generales para la protección contra sobrecorriente de circuitos con tensiones nominales de operación hasta de 1 000 Volts. Los dispositivos usados comúnmente para esta protección son los fusibles, los interruptores automáticos y otros dispositivos diseñados para tal fín.
- Propósito de la protección contra sobrecorriente.- La protección contra sobrecorriente para conductores y equipos tiene por objetivo interrumpir el circuito cuando la corriente alcance un valor que pueda producir temperaturas excesivas ó peligrosas en los conductores ó el aislamiento de los mismos.
- -Protección de equipos contra sobrecorriente.- Los equipos deben protegerse contra sobrecorriente de acuerdo con las características propias del equipo de que se trate y de acuerdo con los requisitos que, en su caso, se establecen en otras secciones de estas Normas Técnicas.
- Potección de conductores contra sobrecorrientes.- La capacidad ó ajuste de los dispositivos que protejan conductores contra sobrecorriente debe estar de acuerdo con el valor de la corriente permisible en los mismos conductores. Si la corriente permisible en los conductores no corresponde a un fusible ú otro dispositivo no ajustable, de capacidad normal, puede usarse el fusible ó dispositivo de capacidad inmediata superior, siempre que ésta no exceda del 125% de dicha corriente permisible.

Excepción 1.- Conductores para luminarios. Los conductores por medio de los cuales se conectan los luminarios a las salidas de los circuitos derivados pueden considerarse protegidos por el dispositivo de sobrecorriente del circuito derivado respectivo si la capacidad de corriente de los mismos conductores corresponde a lo siguiente:

Conductor de:

Circuitos de 20 amperes.
Circuitos de 30 amperes.
Circuitos de 40 ó 50 amperes.
mayor.

Calibre No. 18 AWG ó mayor. Calibre No. 14 AWG ó mayor. Calibre No. 12 AWG ó

Excepción 2.- Cordones dexibles para aparatos. Los cordones flexibles para aparatos pueden considerarse protegidos por el dispositivo de sobrecorriente de los circuitos derivados, cuando su capacidad de corriente se ajuste a los valores mínimos siguientes:

Cordón flexible de:

Circuitos de 20 amperes. Circuitos de 30 amperes. Circuitos de 40 ó 50 amperes. Calibre No. 18 AWG ó mayor. 10 amperes de capacidad. 20 amperes de capacidad.

Excepción 3.- Circuitos de motores. Los conductores que abastezcan motores y sus dispositivos de control, ó que abastezcan aparatos accionados por motor, deben protegerse contra sobrecorrientes.

Excepción 4.- Circutios de control. Los conductores de circuitos de control remoto, que no sean circuitos de control de motores, pueden considerarse protegidos por dispositivos de protección contra sobrecorriente de capacidad ó ajuste que no exceda del 300% de la capacidad de conducción de corriente de dichos conductores.

Excepción 5.- Derivaciones de alimentadores. La protección contra sobrecorriente de los conductores de las derivaciones, debe estar de acuerdo con lo referente a lo expuesto en la sección de "Circuitos Alimentadores" en su sección Derivaciones.

- Instalación de fusibles de tapón con rosca.- No deben usarse fusibles de tapón con rosca en circuitos que tengan una tensión entre conductores mayor de 127 Volts; excepto en el caso en que dichos circuitos están alimentados por un sistema con neutro puesto a tierra y siempre que la tensión de cualquiera de los conductores con respecto a tierra no exceda de 150 Volts. Los fusibles de tapón con rosca deben instalarse en el lado de la carga del circuito.
- Dispositivos térmicos Para proteger a los conductores contra sobrecorrientes debidas a cortocircuitos ó fallas a tierra, no deben usarse relevadores térmicos ú otros dispositivos térmicos que no estén cosntruidos para interrumpir corrientes de cortocircuito. Cuando estos dispositivos se empleen para protección contra sobrecarga en conductores de circuitos derivados para motores, deben usarse de acuerdo a lo establecido en la referente a la sección de "Motores" y en especial a Relevadores y otros dispositivos de sobrecarga no adecuados para cortocircuito.

- Conductores activos.

- a). En cada conductor activo debe conectarse en serie un dispositivo de protección contra sobrecorriente (fusible ó unidad de disparo de sobrecorriente de un interruptor automático).
- b). Los interruptores automáticos deben desconectar a todos los conductores activos del circuito.

Excepción. Pueden usarse interruptores automáticos monopolares en cada uno de los conductores activos de un circuito bifilar (con dos conductores activos); en cada conductor activo de circuitos monofásicos de 3 hilos; ó en cada conductor activo de circuitos derivados para alumbrado ó aparatos, abastecidos por un sistema trifásico de 4 hilos con neutro puesto a tierra.

- Conductor puesto a tierra.- No debe colocarse ningún dispositivo de sobrecorriente en un conductor puesto a tierra permanentemente.
- Excepción 1.- Cuando el dispositivo de sobrecorriente está diseñado para interrumpir simultáneamente todos los conductores del circuito, incluyendo el conductor puesto a tierra.
- Excepción 2.- En lugares donde no se tenga seguridad de que la conexión a tierra es efectiva ó donde exista la posibilidad de una inversión de conexiones, la Secretaria de Fomento Industrial puede requerir que, en sistemas con un conductor puesto a tierra, los circuitos derivados bifilares tengan un dispositivo de sobrecorriente en cada conductor.
- Fusibles e interruptores automáticos en paralelo.- Los dispositivos de protección contra sobrecorriente, consistentes en fusibles ó interruptores automáticos, no deben instalarse ó disponerse para que operen en paralelo.

Excepción. Pueden usarse fusibles ó interruptores automáticos que hayan sido ensamblados en fábrica para operar en paralelo y estén aprobados para el propósito.

- Ubicación en los circuitos.- Los dispositivos de sobrecorriente deben colocarse en el punto de alimentación de los conductores que protejan, ó lo más cerca que se pueda de dicho punto.
- *Ubicación en los locales*.- Los dispositivos de sobrecalentamiento deben colocarse donde:
 - a). Sean fácilmente accesibles.
 - b). No estén expuestos a daño mecánico.
 - c). No estén en la vecindad de material fácilmente flamable.
 - Cubiertas. Cubiertas para dispositivos de sobrecorriente.
- a). General. Los dispositivos de sobrecorriente deben quedar encerrados en cajas ó gabinetes, a menos que formen parte de un conjunto aprobado especialmente y que ofrezca protección equivalente, ó a menos que estén colocados en tableros situados en lugares excentos de material fácilmente flamable, y de humedad. La palanca de accionamiento de un interruptor automático puede quedar fuera de la cubierta, para su operación.
- b). Los locales húmedos ó mojados. Las cajas que alojen dispositivos de sobrecorriente en locales húmedos ó mojados, deben ser de un tipo adecuado para tales locales y deben montarse de modo que quede un espacio libre de 1.5 centímetros; por lo menos, entre las cajas y la pared ú otra superficie sustentadora.
- c). Posición vertical. Las cajas ó cubiertas para dispositivos de sobrecorriente deben monatrse en posición vertical, a menos que, en casos específicos, esto sea impracticable.

- Desconexión y Resguardo. Medios de desconexión para fusibles.Deben proveerse medios de desconexión en el lado de abastecimiento de los fusibles en circuitos de más de 150 Volts a tierra (en caso de fusibles de cartucho, en circuitos de cualquier tensión), si son accesibles a personas no idóneas; de manera que cada circuito individual que contenga fusibles pueda desconectarse, en forma independiente de éstos, de la fuente de abastecimiento. Se exceptúan los casos en que se permite usar un sólo medio de desconexión, para controlar un grupo de circuitos de motores.
- Partes en que se formen arcos.- Los fusibles e interruptores automáticos deben localizarse ó resguardarse en forma tal que su operación no ocasione quemaduras ú otros daños a personas, debido a los arcos que se formen en algunas de sus partes.
- Partes con movimiento repentino. Las palancas de interruptores automáticos y partes semejantes que puedan moverse repentinamente, debn colocarse ó resguardarse de manera que no puedan dañar a las personas en su proximidad.
 - Construcción e Identificación. Fusibles de tapón con rosca.
- a). Tensión máxima. Los fusibles de tapón con rosca no deben usarse en circuitos con una tensión mayor de 127 Vots entre conductores.
- b). Partes vivas. Los fusibles de tapón con rosca deben construirse en tal forma que puedan colocarse y quitarse del portafusibles sin que se toquen partes vivas de éste.
- c). Identificación. Cada fusible debe llevar marcado el valor de su corriente nominal en amperes. Los valores nominales de corriente usuales son: 15, 20 y 30 amperes. Los portafusibles deben ser todos de una capacidad única de 30 amperes.

- Fusibles de cartucho y portafusibles.
- a). Clasificación. Los fusibles de cartucho y sus portafusibles, hasta de 600 Volts nominales, se clasifican de acuerdo con la Tabla III.1.
- b). Prevención de uso inadecuado. Los fusibles de cartucho y sus portafusibles, deben construirse de tal modo que sea prácticamente imposible colocar un fusible de una cierta clasificación en un portafusibles de clasificación distinta, tanto por lo que respecta a corriente, como a tensión.
- c). Identificación. Cada fusible de cartucho debe tener marcadas las características siguientes: Corriente nominal, tensión nominal, capacidad interruptiva cuando ésta sea mayor de 10 000 amperes, y la marca ó nombre del fabricante.

Tensión nominal (volts)	Capacidad nominal de porta(usibles (amperes)	Capacidad nominal del fusible (amperes)			
	30 60	0 - 30 31 - 60			
250	100 200 400 600	61 - 100 101 - 200 201 - 400 401 - 600			
	30 60	0 · 30 31 · 60			
600	100 200 400 600	61 - 100 101 - 200 201 - 400 401 - 600			

Tabla Apéndice III.- Clasificación de los Fusibles y Portafusibles de Cartucho.

- Interruptores automáticos.
- a). Método de operación. En general, los interruptores automáticos deben construirse de manera que puedan cerrarse y abrirse manualmente, aunque su accionamiento normal se fectúe por otros medios, ya sean eléctricos, neumáticos, etcétera.
- b). Daño al operador. Los interruptores automáticos deben montarse de modo que se evite; en todo lo posible, que su operación pueda dañar al operador.
- c). Indicación de posición. Los interruptores automáticos deben indicar si están en posición de abierto ó cerrado.
- d). Dificultad para alterar ajustes. Los interruptores automáticos deben ser de construcción tal que resulte dificil alterar sus ajustes de corriente y de tiempo de disparo.
- e). Identificación Cada interruptor automático debe tener marcadas las características siguientes: Corriente nominal, tensión nominal, capacidad interruptiva cuando ésta sea mayor a 5 000 amperes, y la marca ó nombre del fabricante. La indicación de corriente nominal en amperes en un interruptor automático debe quedar visible aún después de su instalación

Diámetro nominal		Diámetro Area interior total		Area disponible para conductores (mm²)	
mm	pulg.	(mm)	(mm²)	40 % (para 3 conductores o más)	30% (para 2 conductores)
13	1/2	15.81*	196	78	59
19	34	21.30*	356	142	107
25	1	26.50*	552	221	166
32	· 11/4	35.31*	979	392	294
38	11/2	41.16*	1 331	532	399
51	2	52.76*	2 186	874	656
63	$2\frac{1}{2}$	62.71**	3 088	1 235	926
76	3	77.93**	.4 769	1 908	1 431
89	31/2	90.12**	6 378	2 551	1 913
102	4	102.26**	8 213	3 285	2 464

Tabla Apéndice IV.- Dimensiones de Tubo Conduit y Área Disponible para los Conductores.

Califor AVG, MCM		Tipes I, I'm y TIPEs RIFF y RIFF (dis cobierts exterior)		Tipos BIIS' y RISIE (con rebierts externe)		Tipos THWN y THIIS	
		.Dijectre mm	Azre , mail	Désertre :	Arra mm3	Duimetre mm	Arra mm:
	el l	Cel. 2.	CoL J	Cul I	Cet 51	Cal. 6	Uol
ALAM BRES	14 14 12 12 10	33. 41° 38 45° 45 45	A7 13.3 * 12.1 16.2 * 14.3 20.1 *	\$.2 \$.6 6.1	21.1 21.7 29.7	2.7 3.2 4.0	12
c	14 14 12 10 10 10	3.6 4.0 4.0 4.6 3.4 6.2 7.0	9.9 11.8* 12.8 18.4* 16.8 23.0* 30.4 38.6	3.4 5.9 6.3	21.0 27.3 33.3 51.5	3.0 3.4 4.3 3.6	9 - 11 -
3 L E	6 4 2 1/0 2/0 3/0 4/0	8.2 - 9.4 11.0 13.9 13.1 16.1 17.9	34.9 70.1 95.0 152.7 179.1 214.1 251.8	10,1 11,3 13,0 16,0 47,1 10,3 19,9	79.8 103.3 133.3 200.5 200.9 167.3 312.2	6.6 8.4 9.9 12.5 17.7 15.0 16.4	21 23 77 127 147 147 217
	230 300 850 420 561	20.0 21.4 21.5 21.5 21.1	3) 1.6 3641] 403.9 119.6 336.3	22. 21.0 25.0 25.0 25.0	381.8 111.1 491.6 519.6 631.4	1A.2 19.6 22.1 24.3	351 301 381 46
	600 730 1 000 1 230 1 300	27.0 31.7 33.7 40.1 43.2	662.0 783.4 798.8 1 363.1 1 467.8	JI.3 31.0 47.9 42.6 15.7	771.3 904.1 1 130.9 1 427.3 (4) 1 643.3 (4)		

Tabla Apéndice V.- Dimensiones de Conductores con Aislamiento de Hule y Termoplástico.

CONCLUSIONES

Es importante contar con fuentes luminosas eficientes, ya que la radiación de energía visible, está comprendida en un campo muy pequeño dentro del espectro electromagnético. También se debe iluminar cada superficie con el color de luz apropiado, ya que trae como consecuencia una mejor visión, una eficiente iluminación y una apreciaicón adecuada de los colores de los objetos.

Es importante en la práctica, saber usar el término temperatura de color, ya que por medio de él, se puede diferenciar la Calidad de color que proporcionan las diferentes fuentes de luz artificial. De igual forma, es importante conocer el funcionamiento del ojo humano, para poder proporcionarle al hombre los niveles de iluminación con los cuales trabaja eficientemente y además pueda descansar la vista en cada una de sus actividades. Dentro de este mismo rubro, se debe conocer de forma adecuada, la curva de sensibilidad luminosa del ojo humano, ya que cambia de acuerdo a los niveles de iluminación y trae como consecuencia que se pierda ó se gane habilidad para valorizar los colores.

Otro concepto importante para manejar y conocer correctamente es el que se refiere a las Curvas de Distribución Luminosa, ya que por medio de éstas se puede calcular el nivel de intensidad de iluminación sobre las superficies. Se debe manejar correctamente la idea de Intensidad Luminosa Media esférica, ya que en una luminaria la distribución luminosa entre la semi-esfera superior y la inferior, sirve de base para clasificar la luminaria como directa, semi-indirecta, general difusa, etcétera.

También se deben conocer los tipos de lámparas existentes y saber sus características de funcionamiento, de construcción y de iluminación, para utilizar la lámpara adecuada en cada ocasión. Es de mucha utilidad saber cómo se verán los colores de los objetos iluminados con cada tipo de lámpara, para crear un ambiente adecuado a las necesidades del local a iluminar. Ya que se debe aprovechar el elevado rendimiento luminoso de algunas lámparas para utilizarlas en lugares donde la seguridad es más importante que el rendimiento de color. Adicional a lo anterior, se debe aprovechar la larga vida útil de algunas lámparas, haciéndolas funcionar en lugares poco accesibles para que al término de su vida, la reposición resulte económica, ya que se realiza por tiempos largos. De lo anterior se concluye, que es necesario contar con una lámpara que tenga buen aspecto de color, buena reproducción de color en los objetos, elevado rendimiento lumínico, larga vida útil y que además sea económica.

Finalmente, es muy importante saber aplicar el método de cálculo de iluminación adecuado porque cada caso varía de acuerdo a la importancia del local y a la dificultad que presenta para su alumbrado, ya que se tendrá que iluminar desde pequeñas oficinas ó talleres, hasta grandes almacenes comerciales ó teatros, los cuales requieren mayor planificación para desarrollar un proyecto satisfactorio. Pero no hay que olvidar, que por muy sencillo que parezca el problema, la iluminación de todo local requiere de una planificación adecuada, si se requiere proporcionar la buena Calidad de ésta. Por lo que, es conveniente tomar en consideración las Normas que se deben seguir en todo proyecto de iluminación, ya que de esto depende que pueda proporcionar seguridad y ambientes agradables, y que además permita al ojo humano trabajar eficazmente, descansando la vista en todas sus actividades.

BIBLIOGRAFÍA

"ELEMENTOS DE ALUMBRADO"

Juan Ignacio Lima Velasco. Edit. Instituto Politécnico Nacional.

"FUNDAMENTOS DE AIRE ACONDICIONADO Y REFRIGERACIÓN "

Eduardo Hernández Goríbar. Edit. LIMUSA.

"INSTALACIONES ELÉCTRICAS PRÁCTICAS"

Diego Onésimo Becerril. Edit. Instituto Politécnico

Nacional.

" PROTECCIÓN DE SISTEMAS DE POTENCIA E **INTERRUPTORES** "

Ravindranath Chander. Edit. LIMUSA.

<u>" SISTEMAS DE ILUMINACIÓN. PROYECTOS DE ILUMINACIÓN "</u>

José Ramírez Vazquez.

Edit. CEAC.

<u>ÍNDICE</u>

JUSTIFICACIÓN	1
OBJETIVO GENERAL	2
OBJETIVOS PARTICULARES	2
CAPÍTULO I INTRODUCCIÓN	3
CAPÍTULO II REFRIGERACIÓN	10
II.1 Generalidades II.2 Cíclo Mecánico de Compresión II.3 Carga de Refrigeración	11
CAPÍTULO III ILUMINACIÓN	47
III.1 Introducción	
III.2 Definición de Instalación Eléctrica	
IH.3 Elementos de una Instalación Eléctrica	
III.4 Objetivos de una Instalación Eléctrica	56
III.5 Tipos de Instalaciones Eléctricas	58
III.6 Códigos y Reglamentos	60
III.7 Sistemas y Equipos de Iluminación	62
III.7.1 Clasificación de Luminarias	68
III.7.2 Reflectores	74
· III.7.3 Difusores	75
III.7.4 Pantallas	76
III.7.5 Refractores	77

III.8 Metodos de Calculo de Huminación y Soluciones
Básicos79
III.8.1 Método del Flujo Luminoso79
III.8.2 Método de Flujo Luminoso por Índice de
Cuarto83
III.8.3 Método del Flujo Luminoso por Cavidad
Zonal86
III.8.4 Método de Punto por Punto en Superficies
Horizontales y Verticales92
III.8.5 Método de Watts por Metro Cuadrado93
III.8.6 Método de Luminancia95
III.8.7 Normas para el Cálculo96
·
CAPÍTULO IV APLICACIÓN DEL PROYECTO DE
INSTALACIÓN ELÉCTRICA A UN CENTRO
COMERCIAL 102
CONDICTIO
· · ·

<u>APÉNDICE</u>	154
CONCLUSIONES	184
BIBLIOGRAFÍA	186
ÍNDICE	188