

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

Facultad de Quie

EXAMENES PROFESIONALES FAC. DE QUIMIDA

TESIS

"Estrategia para aumento de capacidad y ahorro de energía en una columna despropilenizadora existente."

Que para obtener el Título de INGENIERO QUÍMICO presenta

RUBÉN ANDRÉS JACINTOS SILVA

México, D.F., Septiembre de 1997.

TESIS CON FALLA DE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO

PRESIDENTE

PROF, ALEJANDRO ANAYA DURAND

VOCAL

PROF. CLAUDIO ARMANDO AGUILAR MARTINEZ

SECRETARIO

PROF. JOSÉ AGUSTIN TEXTA MENA

PRIMER SUPLENTE

PROF. MANUEL JESÚS AGUILAR GÓMEZ

SEGUNDO SUPLENTE

PROF. MARIANO PÉREZ CAMACHO

SITIO DONDE SE REALIZO EL TEMA:

INSTITUTO MEXICANO DEL PETRÓLEO

NOMBRE COMPLETO Y FIRMA DEL ASESOR

ING. 108E AGUSTAY TEXTA MENA

NOMBRE COMPLETO Y FIRMA DEL ASESOR TÉCNICO

ING. JOSE ARMANDO PAEZ HERRERA

NOMBRE COMPLETO Y FIRMA DEL SUSTENTANTE

RUIN ANDRES ACINTOS SILVA

Agradezco profundamente la ayuda recibida para realizar este trabajo a mis compañeros y maestros del Instituto Mexicano del Petróleo.

"La gratitud es la memoria del corazón "

A mis padres Andrés Jacintos L. Euridmia Silva R.

> "La adversidad hace que algunos hombres se desesperen ... y otros se superen."

> > A mi esposa Evelia A. Duarte C.

INDICE

Inroducción		1
Capitulo I		
Conceptos Hidráulicos de una Torre Fraccionadora		4
Capitulo II		
Desarrollo del Esquema de la Torre Fraccionadora		33
Capitulo III		
Evaluación Económica	•	46
Capitulo IV		
Análisis de Resultados		52
Capítulo V		
Conclusiones		56
Bibliografia		59
Anexos		62

INTRODUCCIÓN

En los últimos años el problema de la contaminación ambiental en el Valle de México ha venido agravándose, lo cual ha motivado al gobierno del país a tomar nuevas medidas para el control de la situación.

La Refinería de Azcapotzalco por varios años vino operando para la obtención de diferentes productos derivados del fraccionamiento del crudo. Como consecuencia de los procesos efectuados, la refinería tenía emisiones que acentuaban el problema de la contaminación ambiental. Junto con ésto, la refinería representaba un constante riesgo de seguridad para la zona urbana que la rodea.

Considerando éstos aspectos, entre otros, PEMEX (Petróleos Mexicanos) decide cerrar la refinería el 18 de marzo de 1991.

Al momento del cierre la refinería fraccionaba una carga diaria de 170,000 barriles de crudo aproximadamente.

Para cubrir la demanda de petroliferos que se dejó de procesar al cerrar la refinería, PEMEX decidió trasladar algunas de las unidades que integraban la refinería hacia otros centros de trabajo, una de estas unidades fue la Unidad de Desintegración Catalítica Fluida (FCC) y como destino se escogió la Refinería "Hector Lara Sosa" de Cadereyta, Nuevo León.

Aprovechando la situación de que la planta sería trasladada, se decidió renovar su esquema de procesamiento, lo que permitió incrementar la conversión de gasóleo a gasolina 62.6 % vol., propanos-butanos a 30 % vol. y reducir la emisión de SOx a la atmósfera.

Como principales productos de la FCC tenemos : gasolina dulce de alto octanaje, propanos-propilenos, butanos-butilenos, gas seco, combustóleo y aceite cíclico ligero.

En la Refineria de Cadereyta se tiene una torre Fraccionadora de Propano-Propileno, cuya capacidad de diseño es de 4,000 BPD (Barriles por Día), provenientes del domo de la torre Despropanizadora de la unidad FCC No.1 existente. Bajo la mira de aprovechar al máximo las instalaciones existentes, PEMEX plantea utilizar la Fraccionadora de Propano-Propileno para procesar la corriente existente y la nueva corriente de 3,475 BPD de propano-propileno que se obtendrá como resultado del traslado de la Unidad Catalítica No.2.

Adicionalmente se tiene el plan de expansión de capacidad de la planta FCC No.1 de 40.000 a 60.000 BPD y de la FCC No.2 de 25.000 à 30.000 BPD lo que trae como consecuencia un aumento en el rendimiento de la mezela propano-propileno.

La FCC No.1 tenía una producción de propano-propileno de 4,000 BPD y con la expansión se estima será de 6,000 BPD. La FCC No.2 produce 3,475 BPD y con el acondicionamiento será de 4,170 BPD, con lo que la nueva carga a procesar en la planta fraccionadora de propano-propileno será de 10,170 BPD.

Esta nueva alimentación a la Planta Fraccionadora excede en más del doble la capacidad de la columna fraccionadora existente (Splitter). De no realizarse ningún cambio en la torre existente, ésta seguiría procesando 4,000 BPD y la carga restante sería vendida como propano-propileno, lo cual repercutiría en las utilidades. En el presente trabajo se hará una propuesta para el procesamiento del nuevo volumen de alimentación de la torre fraccionadora (con la misma composición que la de la corriente actual), cuidando todos los aspectos hidráulicos de una torre de destilación, y con un esquema de ahorro de energía que permita reducir los gastos de operación que se tendrían como consecuencia del aumento de capacidad.

En el primer capítulo se presentan conceptos relacionados con la hidráulica de una columna fraccionadora; el segundo capítulo mostrará el desarrollo de proceso de la torre fraccionadora seguido para el acondicionamiento de la planta fraccionadora; en el tercero se hará un breve análisis económico; el cuarto capítulo mostrará los resultados de la evaluación y por último obtendremos unas conclusiones del trabajo.

CAPÍTULO I

CONCEPTOS HIDRÁULICOS DE UNA TORRE FRACCIONADORA

En el presente capítulo se habla de los términos usados en este trabajo, relacionados con la columna de destilación de platos y la adición de una bomba de calor.

I.I.- TIPO DE PLATOS DE LA COLUMNA EXISTENTE

Existe un gran número de tipos de platos que por mucho tiempo se han venido usando (no mencionaremos los platos de alta tecnología que en los últimos años se han desarrollado), sin embargo, hay tres tipos de platos más ampliamente usados en la industria, éstos son: el plato de eachuchas de burbujéo, el plato perforado y el plato de válvulas; en forma resumida hablaremos de sus principales características:

Los platos de válvulas ofrecen un amplio rango de operación, una gran capacidad a un costo comparable al de los platos perforados, y una gran flexibilidad. Si la capacidad adicional de los platos de válvulas sobre los perforados se toma en consideración, los de válvulas son más económicos. En la mayoría de las aplicaciones la carga de vapor es el factor que controla la capacidad y los platos de válvulas tienen una capacidad 10% mayor que los platos perforados.

Para sistemas en los que se manejan muy pequeños flujos de líquido existen variedades de platos válvulados que minimizan el goteo, evitando así la necesidad de emplear platos de cachuchas, que son más costosos y que para este servicio se recomendaban con frecuencia.

Los platos perforados se emplean normalmente si no se requiere un amplio rango de flexibilidad y si se desea obtener un bajo costo en la fabricación del plato. Los platos perforados no deben emplearse para aplicaciones que manejen bajos flujos de vapor.

Los platos de cachucha de burbujéo se ven favorecidos para su empleo en servicios en los cuales las fugas de líquido deben reducirse a un mínimo. Su capacidad es menor que la de los platos perforados o de válvulas y son más costosos. El uso de los platos de éachuchas está restringido a aplicaciones especiales.

Los internos de la torre de destilación existente en larefinería de Cadereyta, son platos válvulados de dos pasos, a continuación se definen las áreas que componen a estos platos.

1.2.- PLATOS DE VÁLVULAS

Éstos son platos perforados con aberturas variables para el flujo del vapor. Las perforaciones están cubiertas con dispositivos móviles los cuales comúnmente son discos circulares, retenidos en su sitio por medio de guias colocadas sobre la superficie del plato ó en la misma válvula, los cuales se elevarán conforme el

flujo de vapor se incremente y cuando el flujo disminuya a un valor determinado de acuerdo al peso y características de la válvula, se asentarán sobre los orificios.

Los platos de válvulas operan con buena eficiencia en un amplio rango de operación ya que a bajas cargas regulan su área abierta en forma proporcional al flujo de vapor manteniendo suficiente caída de presión dinámica en el plato para prevenir el goteo excesivo y la resultante disminución de la eficiencia.

En ocasiones—se utilizan válvulas de dos pesos diferentes, colocados en filas alternadas en la dirección del flujo del fíquido. Esto es con el propósito de dar una mejor distribución al flujo de vapor que pasa por el plato y obtener una mayor flexibilidad.

También hay válvulas de otras formas, rectangulares, triangulares, cuadradas, dentadas, etc. retenidas sobre la perforación por diferentes medios como patas, ganchos ó arañas pero teniendo todas un comportamiento similar.

1.3.- AREAS DE UN PLATO

Área de la Torre. At. Es el área interna total de la sección transversal de la columna. Es igual a la suma de las áreas de burbujéo, superior de bajantes y de sello de bajantes.

Área activa o de burbujéo, Aa. Es el área encerrada por las paredes de la columna, el (los) derramadero (s) de salida y el (los) borde (s) a la entrada del

plato. Es igual al área de la torre menos la suma del área de bajantes y el área de sello de las mismas.

Área libre o neta, An. Es el área de la columna disponible para el flujo de vapor, o el área de la torre menos el área de bajantes.

Área de bajantes, AD. Es la superficie del plato ocupada por los conductos a través de los cuales el líquido desciende hacia el plato inferior. Es el área a la entrada (parte superior) de las bajantes.

Área Inferior o del Fondo de la Bajante, $A_{\rm DB}$. Es el área existente en el fondo de la bajante.

Área Bajo la Bajante, $\Lambda_{\rm tab}$. Es el área comprendida entre la superficiedel plato o el fondo de la charola de sello y el borde inferior del bafle o faldón de la bajante.

Área de Sello de la Bajante, A_{DS}. Es el área bajo el fondo de la bajante, se emplea para mantener un sello en ésta y para distribuir el líquido en el plato.

Área abierta o perforada, Ah. Es el área total abierta al flujo de vapor; es el área de todas las perforaciones sobre el plato. Para platos de válvulas aplica un concepto equivalente, el del área de ranura.

Área de Ranuras, As. Se define como el área total de la cortina vertical a través de la cual el vapor pasa, en dirección horizontal, por debajo de la válvula para entrar en contacto con el líquido fluyendo sobre el plato. En el caso de una válvula con el cuerpo circular, la cortina tendrá la superficie de un cilindro vertical con un diámetro igual al de la válvula y una altura como la distancia de la superficie del plato al borde inferior del disco de la válvula (disco) en su posición de operación. A la superficie del cilindro deberá restarse el área ocupada por las patas y dimples de la válvula.

1.4.- TERMINOS RELACIONADOS CON EL COMPORTAMIENTO HIDRÁULICO DE UNA COLUMNA DE DESTILACIÓN DE PLATOS.

Tipos de Flujo. Existen varias formas en las cuales el líquido puede fluir a través de un plato, a continuación se describen las principales:

Flujo Cruzado (Cross Flow). Se tiene cuando el líquido fluye a través del plato en forma tal que al finalizar su paso cae al plato inferior a través de un canal, la bajante. También se conocen como platos de un paso los que presentan este tipo de flujo. Su larga trayectoria de flujo contribuye a alcanzar una elevada eficiencia en el plato. Es el más empleado ya que su construcción es simple y económica.

Flujo Encontrado (Dual Flow). En este caso, el líquido y el vapor se ponen en contacto sobre la superficie del plato, éste no tiene bajantes y es generalmente perforado o ranurado.

Flujo Radial (Radial Flow). El líquido fluye radialmente de o a una entrada (o salida) localizada en el centro del plato, hacia o de bajantes (o entradas) en los platos adyacentes.

Flujo Inverso (Reverse Flow). En los platos de este tipo el líquido fluye desde la entrada en uno de los lados del plato alrededor de una mampara o bafle colocado en su centro e invierte su dirección en el otro extremo regresando hacia una bajante colocada en el mismo lado por el cual entra el fluido. Estos platos dan más área activa a expensas del área de bajantes, es útil solo para muy bajas relaciones líquido/vapor (L.V.). Se recomienda que la altura del bafle central sea al menos el doble de la máxima altura de líquido libre de vapor calculada, para prevenir que se mezclen los líquidos de ambos lados del bafle.

Flujo Dividido (Split Flow). En este caso el líquido que fluye a través del plato se divide en dos o más trayectorias de flujo.

Flujo en Dos Pasos (Double Pass). Este es un plato de flujo dividido con dos trayectorias de flujo en cada uno de los platos. Cada trayectoria o paso maneja la mitad del líquido total. El plato de dos pasos presenta una mayor capacidad de líquido y menor gradiente hidráulica que los platos de un solo paso. Consecuentemente el plato de dos pasos es ventajoso para elevadas relaciones líquido/vapor (L/V) o torres de gran diámetro. Sin embargo, debe señalarse que estos platos son de un 10 a 15% más costosos que los de un paso de iguales dimensiones; además como tiene menor longitud de trayectoria de flujo, la superficie y el tiempo de contacto, y por lo tanto la eficiencia serán menores en los platos de dos pasos que en los de flujo cruzado.

1.4.1.- ESPACIAMIENTO ENTRE LOS PLATOS, TS.

El espaciamiento entre los platos normalmente está determinado por laespuma que puede producir la mezcla a separar y por la necesidad de un fácil acceso para mantenimiento e inspección. Pero además, espaciamientos menores que el recomendable ocasionarán una disminución en la eficiencia, si la velocidad del vapor es mayor que la permisible, a causa del arrastre generado; o bien, la inundación de la columna si la altura del líquido retenido en la bajante es mayor que el espaciamiento.

Los espaciamientos estándar son 8, 10, 12, 14, 16, 18, 20, 22, 22, 24, 30, 36 y 40 pulgadas; siendo los más comunes los que están entre 18 y 36 pulgadas.

En la industria petrolera, los espaciamientos de 18 pulgadas se consideran los mínimos, con menores valores el arrastre y la tendencia al inundamiento se incrementan notoriamente. Por razones de accesibilidad los espaciamientos más comunes son los que se encuentran alrededor de las 24 pulgadas.

Para sistemas espumantes no se recomiendan espaciamientos menores a 18 pulgadas.

Se requerirá un espaciamiento adicional en cualquiera de las siguientes situaciones:

 a) Para los platos de transición, como cuando se tiene un cambio en el número de pasos o en el diámetro de la columna.

- b) Si la alimentación va a introducirse en esta zona y se encuentra vaporizada ya sea total o parcialmente.
- c) Para permitir la colocación de tubería de distribución para alimentaciones líquidas.

El espaciamiento es una de las dimensiones que se proponen al iniciar el diseño, posteriormente deberá checarse con el nivel del líquido retenido en la bajante y por arrastre.

1.4.2.- CAPACIDAD DE LOS PLATOS

Se entiende por capacidad los flujos de líquido y vapor que es capaz de manejar eficientemente un plato. La capacidad del líquido está determinada por el volumen de las bajantes, por esto es que la retención del líquido en las bajantes no debe exceder del 40-60% de la capacidad de éstas, de otra forma la columna se inundará antes de alcanzar el punto de inundamiento por arrastre.

La capacidad del vapor es función del espaciamiento entre los platos, y de las propiedades tanto del líquido como del vapor. La capacidad del vapor en el punto de inundamiento por arrastre puede determinarse a partir de la correlación de Souders-Brown mediante los parámetros de capacidad y flujos del sistema, para un espaciamiento determinado.

Se acostumbra diseñar las columnas de tal forma que la carga máxima de vapor no exceda del 80-85% de la correspondiente al punto de inundamiento por arrastre. Esto es, en otras palabras, la capacidad del vapor de diseño debe ser menor al 80-85% de la capacidad en el inundamiento.

1.4.3.- PARÁMETRO DE FLUJOS

Está definido por la expresión

 $L/V * (D_V/D_L)^{1/2}$

donde:

L= flujo de líquido, lb/h
V= flujo de vapor, lb/h
D_v= densidad del vapor, lb/pie¹
D_t= densidad del líquido, lb/pie¹

1.4.4.- PARÁMETRO DE CAPACIDAD, KSB.

Se define mediante la expresión:

$$K_{Sh} = U_{Vi} * (D_V/(D_V/D_L))^{1/2}$$

donde:

donde:

Uvi= velocidad del vapor basada en área i, pps.

cuando

i= A, área activa

i= N. área neta

sin subindice i, área de la columna.

I.4.5.- VELOCIDAD SUPERFICIAL DEL VAPOR MÁXIMA PERMISIBLE. \mathbf{U}_{VE}

También se le denomina velocidad del vapor en el punto de inundamiento. Esta es una velocidad limite sobre la cual la cantidad de líquido arrastrado hacia el plato superior es tal que la columna se inunda y resulta inoperable. Está basada en el área transversal de la columna.

L4.6.- ESPUMADO.

Las propiedades espumantes del sistema son importantes en la dinâmica del plato. La espumabilidad se refiere al grado de expansión del líquido cuando está aireado; la espuma así producida es una función principalmente de las propiedades físicas del sistema, aunque el método y grado de aireación también influyen. La estabilidad de la espuma se refiere al grado en que el espumado disminuye una vez que la aireación ha cesado.

La espumabilidad y estabilidad de la espuma no están necesariamente relacionadas; por ejemplo, un sistema que produce una gran cantidad de espuma pero ésta se descompone rápidamente, tendrá alta espumabilidad y mínima estabilidad de la espuma.

Un cierto grado de espumación es conveniente para tener una gran área interfacial la cual favorecerá el contacto entre las fases. Sin embargo, mucho espumado puede ocasionar arrastre excesivo e inundamiento.

La estabilidad de la espuma debe considerarse en el diseño de la bajante y preferentemente deberá ser baja.

Espumas estables que pasen a la bajante requerirán altos tiempos de residencia (grandes volúmenes de bajantes) para que el líquido y el vapor se separen.

La predicción de la espumabilidad y la estabilidad de la espuma es más dificil de lo que parece ya que simples pruebas de laboratorio no siempre concuerdan con las observaciones a nivel planta industrial.

Por ello es conveniente considerar sistemas espumantes y no espumantes en relación a la dinámica del plato. Dentro de la categoría de los espumantes tenemos a los sistemas con surfactantes, tales como las soluciones acuosas diluidas de alcoholes y cetonas. Sistemas no espumantes son, por ejemplo, los formados por hidrocarburos. El sistema aire-agua tancomúnmente empleado en los experimentos de dinámica de platos es aún menos espumantes que los sistemas de hidrocarburos.

I.4.7.- INUNDACIÓN POR LIMITACIONES DEL SISTEMA.

Existe una velocidad máxima (U_L) a la cual una gota de líquido de un diámetro determinado permanecerá suspendida sin fraccionarse en otras más pequeñas,

cuando el sistema tiene una elevada tensión superficial, tenderá a formar gotas grandes las cuales dificilmente serán arrastradas por el flujo de vapor; sin embargo, cuando la velocidad del vapor alcanza un valor determinado, la gota se romperá dando origen a pequeñas gotitas las cuales son fácilmente arrastradas por el vapor. O sea que cada sistema tendrá una capacidad límite que no puede ser excedida mediante el cambio de diseño del plato o del espaciamiento entre los platos, pues el fenómeno está asociado con la interacción entre el vapor y el rocio del líquido en el espacio existente entre los platos y no está relacionado con las características del plato.

Este tipo de inundamiento no es muy común pues únicamente se presentará con sistemas de elevada tensión superficial, pues generalmente antes de que el vapor alcance la velocidad correspondiente al punto de inundamiento por limitaciones del sistema, ocurrirá el inundamiento por arrastre.

I.4.8.- ARRASTRE.

Existen dos tipos de arrastre:

1) Arrastre de líquido por el vapor.

El arrastre de este tipo puede considerarse como el resultado de dos distintos efectos del vapor en su trayectoria ascendente, el acarreo de gotas de liquido por el vapor y el salto de partículas de líquido por la acción dinámica de los chorros de vapor. El primer efecto es función de la velocidad del vapor, de las densidades de los fluidos, del diámetro de la partícula que depende de la tensión superficial del líquido y de la aglomeración de pequeñas partículas

para formar otras de mayor tamaño. El arrastre producido por el salto de partículas de líquido es función de la energía cinética de los chorros de vapor, que depende de la densidad y velocidad del vapor y está relacionado con el espaciamiento entre los platos.

Cuando se presenta este tipo de arrastre, el líquido arrastrado hacia el plato superior reduce la concentración del líquido del plato (con respecto a los materiales más volátiles). El vapor, por su parte, tendrá una menor concentración, la cantidad neta de transferencia de masa es menor y, por lo tanto, la eficiencia disminuye.

Los efectos del arrastre se incrementan, al: a) Disminuir el espaciamiento entre los platos, b) Incrementarse la velocidad superficial del vapor, c) Incrementar la altura del derramadero, d) Incrementarse el flujo del líquido, e) Incrementarse la densidad del vapor, f) Disminuir la tensión superficial del líquido, g) Disminuir la trayectoria de flujo del líquido, h) Incrementar el diámetro de las perforaciones.

2) Arrastre de vapor en el líquido.

Este tipo de arrastre no es tan común como el citado anteriormente, consiste en la oclusión de vapor en el líquido y se presenta cuando la espuma es arrastrada por el líquido por que el vapor del líquido arreado no se separa de éste en la bajante y es arrastrado el plato inferior, o cuando el vapor arrastra la espuma hasta el plato superior.

El vapor conteniendo una mayor proporción de componentes volátiles que el líquido del plato, diluye al líquido con respecto a los componentes más pesados y reduce la eficiencia de la separación.

El arrastre se incrementa cuando aumentan las cargas de vapor o del líquido, cuando se incrementa la viscosidad del líquido, cuando se incrementa la altura del derramadero, cuando se manejan sistemas espumantes y al incrementarse la densidad del vapor.

Es posible reducir la cantidad de vapor arrastrado por el líquido al colocar la última fila de válvulas a una distancia tal del derramadero de salida quehaya una menor tendencia a que el vapor sea atrapado por el líquido. Además debe darse suficiente volumen a las bajantes para que el vapor tenga tiempo de separarse del líquido arreado.

I.4.9.- INUNDAMIENTO.

Una columna de destilación se empezará a inundar de líquido en cualquier punto donde los flujos del líquido y/o vapor resulten mayores que la capacidad del equipo. No puede decirse que una columna está inundada por exceso de líquido o por demasiado vapor pues el inundamiento es una combinación de los dos flujos en alguna relación crítica. El inundamiento puede ser causado por una de las siguientes razones:

Si se tiene una elevada caída de presión total de vapor a través del plato, la retención de líquido en la bajante puede resultar excesiva y provocar el inundamiento.

El arrastre excesivo puede causar inundamiento. El líquido arrastrado de cualquier plato a uno superior regresará a través de la bajante, recirculándose, con lo cual se incrementa la carga de líquido que maneja el plato y las bajantes, diseñadas para menores flujos, serán incapaces de manejar la nueva carga, por lo que la columna se inundará. El arrastre generalmente es por acarreo de gotas de líquido en el vapor, pero puede deberse a que el nivel de la espuma formada alcance al plato superior, condición conocidacomo "priming".

Un diseño inadecuado del sistema de distribución de la alimentación o del reflujo, obstrucciones al paso del líquido a través de las bajantes o al vapor a través de las válvulas, un mal diseño del sistema plato de fondos rehervidor, o un sistema de control ineficiente también pueden causar el inundamiento

Una columna se inunda principalmente cuando se exceden los vapores máximos permitidos de la retención del líquido en la bajante y del arrastre. Es por ello que se evalúan para checar el diseño hidráulica de la torre.

El inundamiento de una torre se caracteriza porque se presentará un súbito incremento en la caída de presión y una marcada disminución en la eficiencia.

I.4.10.- FACTOR DE INUNDAMIENTO.

Es el máximo porcentaje del inundamiento por arrastre permitido por el diseño.

Relaciona las cargas de diseño o de operación a las cargas en el punto de inundamiento. Para sistemas no espumantes, Glitsch recomienda emplear un 82% mientras que Koch sugiere el 85% para el diseño.

Para sistemas espumantes conviene emplear el 80% y con sistemas a vacío 77% de inundamiento

Las columnas con diámetros menores a 3 pies deben tener un factor de inundamiento 10% menor que los anteriormente mencionados.

Factores de inundamiento mayores que los señalados pueden provocar un excesivo arrastre y/o que la columna dimensionada resulte pequeña y no pueda operar eficientemente. Por lo contrario, con factores de inundamiento demasiado bajos se tendrá una columna sobrada.

Con los valores señalados se tendrá un arrastre máximo que se recomienda tener en una columna para que opere eficientemente.

1.4.11.- PORCENTAJE DE INUNDAMIENTO POR ARRASTRE

Es la carga de diseño expresada como un porcentaje de la carga de vapor en el punto de inundamiento.

La carga de diseño es el flujo de líquido o mezcla líquido-vapor alimentado, el cual puede ser equivalente al flujo normal o con un porcentaje adicional, referido al flujo normal (usualmente del 10-20%).

I.4.12.- PLATOS CRÍTICOS

Una vez que se han establecido las condiciones de operación de la columna y se cuenta con los flujos y propiedades del líquido y vapor que maneja cada uno de los platos, puede iniciarse el diseño de los internos de la columna. Para ello deberán considerarse los platos que manejen las cargas máxima y mínima dentro de cada una de las zonas de la columna, los platos que manejan estas cargas se conocen como platos críticos.

Se entiende por zona en una columna al grupo de platos o de etapas de equilibrio en la cual los flujos de líquido, de vapor así como las propiedades físicas son prácticamente constantes. Se fijan las zonas conteniendo platos de características similares, igual número de pasos, iguales áreas abierta, activa y de bajantes siendo estas dos últimas iguales a las mayores requeridas por los flujos de la zona.

Una columna sencilla con una sola alimentación generalmente tendrá dos zonas situadas sobre y bajo el plato de alimentación: los platos críticos comúnmente son el de domos, los situados sobre y bajo la alimentación y el plato de fondos.

Columnas con varias alimentaciones o extracciones tendrán varias zonas.

1.4.13.- DIÁMETRO DE LA COLUMNA.

El diámetro de la columna puede estimarse por medio del factor de capacidad de Souders Brown o su modificación presentada por Fair, dividiendo el flujo de vapor por la velocidad máxima permitida por el diseño (Uviinun* %F / 100), relacionándolo posteriormente al área por la cual fluye el vapor.

El diámetro obtenido se redondea al medio pie próximo superior. El diámetro de la columna disminuye al incrementarse el espaciamiento entre los platos. Como el costo de la columna es función del diámetro y del espaciamiento entre los platos, las dimensiones deberán ajustarse para obtener el costo mínimo.

1.4.14.- LONGITUD DE LA TRAYECTORIA DE FLUJO, FPL.

Es la trayectoria libre que recorre el líquido a través del plato desde que sale de la bajante hasta el derramadero de salida.

L4.15.- NÚMERO DE PASOS

Por número de pasos de un plato se entiende el número de trayectorias que seguirá el líquido al pasar por la superficie de éste.

Así tendremos que en un plato de dos pasos, el líquido fluirá en dos direcciones hacia la o las bajantes que le conducirán al plato inférior.

En general, al emplear platos multipasos se tendrán torres de menor diámetro, pero el área activa decrece conforme se incrementa el número de pasos y con ella la eficiencia al haber menor superficie para el contacto entre las fases, el número de válvulas que puede colocarse es menor y además los platos de muchos pasos requieren de más internos, tinas o charolas, etc., por lo cual tienen menor facilidad de mantenimiento. Sin embargo, para platos de gran diámetro un plato multipasos puede ser más eficiente que uno de un paso debido a que éste tenderá a formar canalizaciones del flujo de líquido dejando inactivas algunas zonas del plato; por lo tanto, para platos muy grandes se recomiendan multipasos, excepto para servicios a vacío pues pueden ocasionar una mayor caída de presión que los platos de un paso a causa de que tendrán menor área abierta y mayor caída de presión del plato seco.

En los platos multipasos el área activa de cada uno de los platos debe ser la misma para que fluya a través de ellos la misma cantidad de vapor. Además deberá ajustarse la longitud de los derramaderos de salida para que sobre ellos pase la misma cantidad de líquido.

Los platos más comúnmente empleados son los de uno y dos pasos. Los de un número mayor de trayectorias se emplean para manejar elevadas relaciones de reflujo L/V en torres de gran diámetro.

I.4.16.- PUNTO DE GOTEO (Weep Point)

Se define como la carga bajo la cual la eficiencia de la transferencia de masa empieza a disminuir notoriamente a causa del goteo del líquido a través del plato porque se impide un buen contacto entre las fases.

I.4.17.~ GOTEO (Weeping)

Ocurre cuando el flujo de vapor no es lo suficientemente grande para mantener al líquido sobre la superficie del plato, así que sí la parte del líquido fluye sobre el derrramadero de salida mientras el resto cae a través de los orificios del plato.

Se presenta cuando la carga hidrostática iguala a la fuerza que lo sostiene sobre el plato, en este punto el líquido empieza empieza a fluir a través de las perforaciones hacia el plato inferior.

El goteo ocurre bajo prácticamente todas las condiciones y para casi todos los tamaños de orificio excepto para aquellos muy pequeños y para líquidos con elevada tensión superficial.

El goteo puede presentarse casi uniformemente en todo el plato o puede estar localizada a la entrada del plato, donde se acumula la mayor cantidad de líquido.

I.4.18.- CAÍDA DE PRESIÓN

Las pérdidas de carga que sufren tanto el líquido como el vapor en una columna de platos, se deben principalmente a las siguientes causas:

El vapor sufre pérdidas por contracción al pasar a través de los orificios del plato y por expansión del vapor al pasar bajo el borde de las válvulas. Pérdidas por formación de remolinos y por fricción, causadas en el cambio de dirección del vapor bajo el disco de la válvula. Además pierde energía, al vencer el peso de la válvula y la carga de líquido sobre ésta, para poder elevar la válvula hasta su posición abierta. Pierde carga para poder fluir a través de la resistencia que le presenta el líquido que rodea a la válvula o si se tratara de un plato perforado para vencer la carga del líquido sobre los orificios. El vapor tiene perdidas por expansión para formar burbujas y elevarse a través del líquido. Finalmente pierde energía al vencer la resistencia que presentan la tensión superficial del líquido y la carga de la espuma sobre éste.

El líquido tiene pérdidas por fricción al pasar a través de la bajante y del claro bajo ésta cuando desciende al plato inferior, pérdidas inerciales por cambio de dirección en el plato y al salir de la bajante; pérdidas por formación de remolinos, alrededor de las válvulas o en el derramadero de salida al chocar el líquido contra ellos, además sufre pérdidas por contracción y expansión en las bajantes si éstas no tienen una sección transversal uniforme; pérdidas por fricción y remolinos en las paredes de la columna.

I.4.19.- ALTURA DEL DERRAMADERO.

La altura del derramadero es la distancia medida desde la superficie del plato a la parte superior del derramadero.

Al incrementar la altura del derramadero aumenta la profundidad del líquido y por consiguiente también la longitud de la trayectoria para que el vaporburbuje, la retención del líquido y el tiempo para el contacto entre lasfases.

Con lo anterior se incrementa la eficiencia pero ésto puede hacerse hasta un límite determinado: mientras mayor sea la altura del derramadero mayor es la caída de presión que sufrirá el vapor y se incrementará entonces la retención del líquido en la bajante, pudiendo ésto ocasionará inundamiento. Además, la altura sólo podrá incrementarse hasta cierto punto en el cual el espaciamiento efectivo se reduce a tal grado que se empieza a presentar arrastre y éste disminuye la eficiencia de la operación. Este punto está dado generalmente como el 15% del espaciamiento entre los platos.

L5.- PRESIÓN DE OPERACIÓN.

Las columnas de destilación trabajan en un rango muy amplio de presiones. En la industria petrolera, por ejemplo, las presiones varían en un rango de 1 a 400 psia.

Los principales factores que fijan la presión de operación son la volatilidad relativa de los componentes a separar y la temperatura de los medios de enfriamiento y calentamiento disponibles en la planta, generalmente agua y

vapor; otros factores importantes son laestabilidad térmica de los productos y sus temperaturas críticas. En general puede decirse que la presión de operación de la columna dependerá del medio de enfriamiento para la condensación. Se utilizan acercamientos, entre la temperatura de entrada del medio de enfriamiento y la temperatura de salida del condensador, del siguiente orden: 10 a 20°F con refrigerantes como propano ó propileno, 10 a 35°F cuando se emplea agua de enfriamiento y de 35 a 90°F cuando se utiliza aire.

Trabajar a presiones altas incrementa las temperaturas del domo y fondo, permitiendo condensadar materiales volátiles empleando únicamente agua como medio de enfriamiento. A bajas presiones la volatilidad relativa de las sustancias se incrementa haciendo más sencilla la destilación.

I.6.- AHORRO DE ENERGÍA MEDIANTE EL USO DE BOMBAS DE CALOR.

Los procesos de destilación son los mayores consumidores de energía en procesos petroquímicos y de refinación. Debido a su simplicidad, constituye la operación de separación más ampliamente usada. Los sistemas clásicos de destilación emplean fuentes independientes de calor tales como vapor o aceite de calentamiento para el rehervidor, agua de enfriamiento o refrigeración para los vapores del domo y corrientes de proceso. Los vastos incrementos en el costo de la energía durante los últimos años han ocasionado que se tienda hacia el uso de sistemas más eficientes en el uso de energía, los cuales,

aunque más complejos, minimizan la necesidad de fuentes externas de energía.

En muchos casos, el consumo energético, existente en plantas de procesamiento que involucran la destilación, puede ser reducido mediante :

- Mejoramiento de las condiciones de operación; por ejemplo, precalentando la alimentación con las corrientes de productos.
- Reduciendo el reflujo mediante el aumento del número deplatos, si ésto no implica mayores gastos de operación
- Disminuyendo las diferencias de temperaturas en los cambiadores de calor.
- Instalación de empaques de alta eficiencia.
- Integración calorífica.

Sin embargo, una mayor reducción energética puede ser lograda solo mediante la recuperación del calor extraído a los vapores del domo de la columna (ver fig. 1.1). A continuación se muestra como puede ser logrado ésto:

1.- Con columnas acopladas (ver fig. 1.2), el calor disponible en los domos de una de las torres es usada para calentar los fondos de la otra. La energia suministrada es inversamente proporcional al número de columnas acopladas. Este diseño es a menudo factible para la separación de hidrocarburos ligeros o compuestos de bajo punto de ebullición.

2.- Recompresión de vapor con un fluido de trabajo intermediario. La figura 1.3 muestra un esquema que incluye un ciclo cerrado en el cual un fluido se vaporiza por medio del intercambio de calor con los vapores del domo de la columna en el condensador. Después de la compresión, el calor del fluido de trabajo se intercambia en el rehervidor, este fluido puede subenfriarse con intercambio de calor adicional con la alimentación, lo que mejora la operación global del sistema. El fluido de trabajo se selecciona considerando la temperatura y presión de operación; en muchos casos el agua es el fluido empleado. Esta configuración es para cuando el producto de domos es corrosivo, o para aplicaciones donde la presión del domo de la torre es baja y al utilizar cualquier otro esquema se requerirían equipos muy grandes para realizar la compresión.

3.- Compresión de los productos de fondo. Los fondos líquidos se expanden a través de una válvula de estrangulación, dándose una evaporación parcial. Los vapores del domo de la columna se condensan en el cambiador de calor cediendo su calor latente para la evaporación de los productos del fondo (ver fig. I.4). Este ciclo de bomba de calor es apropiado donde el producto de los domos no esta disponible para la compresión, por ejemplo, cuando esta cerca de su punto crítico.

4.- En el caso de la bomba de calor con recompresión directa de vapor (VRC), el calor de los domos es transferido a los fondos por el vapor. El vapor es comprimido a alta temperatura, por lo que esta energía puede ser cedida en el rehervidor para la evaporación de los líquidos del fondo (ver fig. 1.5).

Dependiendo del proceso, las condiciones de operación y las consideraciones económicas, uno de los métodos anteriores ofrece mejores ventajas. La destilación con bombas de calor es más económica que la destilación convencional cuando los ahorros de energía generados compensan el incremento de costo de inversión del sistema con bomba de calor. Los mejores candidatos para ser separados por el método VRC son las mezelas con volatilidades relativas cercanas, que conducen a diferencias de temperatura pequeñas entre el domo y el fondo de la columna, que traerá como consecuencia un gran número de etapas de separación y altas relaciones de reflujo requeridas; otra ventaja es que la columna puede operar a temperaturas y presiones abajo de las normalmente establecidas por el agua de enfriamiento y el aire ambiente, mejorando así las volatilidades relativas de los componentes y haciendo la separación más fácil, por ejemplo, fraccionamientos de etileno-etano y propileno-propano.

Considerando que estamos manejando propano-propileno desarrollaremos un esquema VRC, como el de la figura 5, ya que cumple con las características para la aplicación de este esquema. En el que los vapores del domo primero se comprimen a una presión correspondiente a una temperatura de saturación más alta que la de los fondos de la torre.

Los vapores comprimidos son entonces condensados en el rehervidor. El condensado resultante se usa para reflujo y una parte sale como producto. La energia y los requerimientos de servicios auxiliares se reducen significativamente comparados con el sistema de destilación convencional que consume relativamente grandes cantidades de vapor y agua de enfriamiento.

En el sistema de la bomba de calor, el agua de enfriamiento se requiere en cantidades modestas, utilizándose energía externa (electricidad o vapor) para manejar el compresor. Los requerimientos de energía totales para la bomba de calor pueden ser menos de la mitad de los requeridos para un sistema de destilación convencional.

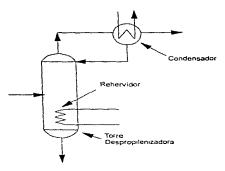


Fig. 1.1. Destilación Convencional,

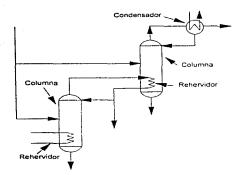


Fig. I 2. Columnas Acopladas.

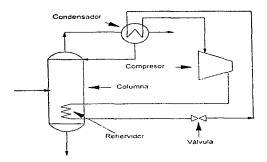


Fig. 1.3. Bomba de calor con circuito auxiliar.

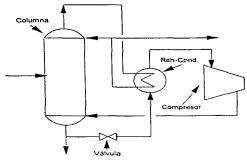


Fig. I.4. Bomba de calor con compresion de productos de fondos.

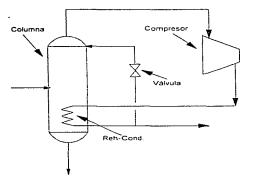


Fig. 1.5. Bomba de calor con compresión de vapores de domos.

CAPÍTULO II

DESARROLLO DEL ESQUEMA DE LA TORRE FRACCIONADORA

Como consecuencia de los aumentos de capacidad de procesamiento de la FCC No.1 y FCC No.2, la producción de propano-propileno se verá incrementada de 4.000 a 6.000 BPD y de 3.475 a 4.170 BPD, respectivamente. Se crea la necesidad de manejar una nueva carga de alimentación a la Torre Despropilenizadora (T-1) de 10.170 BPD.

De no llevarse a cabo ninguna medida para incrementar la capacidad de la torre existente seguirá procesando unicamente 4.000 BPD y los restantes 6,170 BPD se venderán como propano-propileno. En el trabajo que se presenta se propone procesar esta nueva alimentación en dos columnas fraccionadoras con la adición de sistemas de ahorro de energía, lo cual nos dejaría reducciones sustanciales en gastos de operación debido al ahorro en el consumo de servicios auxiliares, redundando a final de cuentas en un incremento considerable de las utilidades, en lo referente a la comercialización de este producto.

A continuación se presentan el esquema actual de procesamiento con 4.000 BPD y el esquema propuesto para el manejo del nuevo volumen de alimentación, 10,170 BPD. Posteriormente se efectuará un análisis económico comparativo entre las dos situaciones mencionadas.

II.1.- CONDICIONES ACTUALES DE LA TORRE FRACCIONADORA

II.I.I.- DESCRIPCIÓN DE PROCESO DE LA FRACCIONADORA EXISTENTE DE PROPANO-PROPILENO.

El objetivo de la torre fraccionadora, también conocida como torre despropilenizadora, es el de recuperar el propileno de una corriente de propano-propileno proveniente del domo de la columna despropanizadora que está ubicada en la Planta de Desintegración Catalítica Fluida (FCC).

El diagrama de flujo de la planta y el balance de mateeria y energia, se presentan en el DFP No. 1.

El flujo de alimentación de diseño es de 4000 BPD con una composición de propileno de 66 % mol, propano 32 % mol, y pesados 2 % mol.

La Torre Despropilenizadora (T-1) consta de 125 platos de válvula de dos pasos y la alimentación se efectúa normalmente en el plato 84, aunque existen facilidades para hacerlo en el 80 u 88.

La corriente de propano-propileno de almacenamiento y la proveniente del domo de la torre despropanizadora llegan al Tanque de Balance (D-1) a control de nivel, del cual se bombea la carga mediante la Bomba de Alimentación (P-1) a control de flujo, al plato número 84 de la Torre Fraccionadora (T-1) a 110°F y 319 Psig.

Por el fondo de la torre se obtiene una corriente de propano con una pureza de 90 % mol a 142ºF y 301 Psig, una parte de esta corriente se manda a limites de batería a control de nivel y la otra se envía al Rehervidor de Fondos (E-2AB) retornando una mezcla líquido-vapor a la torre con el fin de proporcionar la energía requerida para llevar a cabo la separación de los compuestos en la columna. La temperatura del fondo se controla mediante la admisión de vapor al Rehervidor (E-2AB).

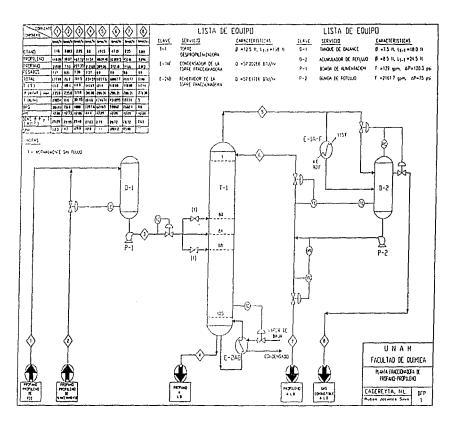
De el domo de la Torre Despropilenizadora (T-1) se obtiene una corriente de vapor la cual se lleva a el Condensador de la Torre Fraccionadora (E-1AF) y el efluente pasa al Acumulador de Reflujo (D-2).

El propileno líquido se envía por medio de la Bomba de Reflujo (P-2) hacia dos destinos:

El primero es el reflujo al plato 1 de la torre y éste se envía a control de flujo en cascada con el control de nivel del Acumulador de Reflujo (D-2).

El segundo es el almacenamiento de producto, enviándose a control de flujo en cascada con el control de presión diferencial. Esta corriente sale con un pureza de 96.1 % mol de propileno, a 1219F y 286 Psig.

El consumo de servicios auxiliares de este esquema se presenta en latabla II.1.


Tabla II.1 Servicios Auxiliares					
Condensador	Carga Térmica	Agua de Enfriamiento (2)			
(E-1AF)	57.2024 E6 BTU/hr	4,576 gpm			
Rehervidor	Carga Térmica	Vapor (1)			
(E-2AB)	57.617 E6 BTU/hr	63,108 lb/hr			
	Potencia	Energia Eléctrica			
Bomba de Alimentación (P-1)	12.4 HP	10.27 KWH			
Bomba de Retlujo (P-2)	150 HP	124.28 KWH			

(1) El vapor saturado utilizado tiene las siguientes características:

P = 50 Psig y T = 2980 F.

(2) El agua de enfriamiento esta disponible a las siguientes condiciones :

P = 64 Psig, $T_{ent} = 90^{\circ}\text{F} \text{ y } T_{sat} = 115^{\circ}\text{F}$.

II.2.- PROPUESTA DE LA COLUMNA FRACCIONADORA CON BOMBA DE CALOR.

And the second of the second o

Debido al aumento de carga a procesar en la planta de la Torre Fraccionadora y a la encomienda de ahorro de energéticos, hay varios aspectos que se deben considerar para el acondicionamiento de la planta.

Para lograr el ahorro de energéticos consumidos en planta se adicionará una Bomba de Calor que aligerará los gastos de operación por este concepto.

Al adicionar la Bomba de Calor por recompresión de vapores de domos, podemos manejar presiones de operación (Pop) diferentes a la usada normalmente, ya que la presión de operación de la torre no esta determinada por el medio de enfriamiento disponible para usarse en el condensador, de acuerdo a lo mencionado en el inciso I.5. Al bajar la presión, la separación de los compuestos en la columna se facilita debido a que la volatilidad relativa se incrementa, como consecuencia de ésto la relación de reflujo (RR) manejada en la torre se puede reducir por lo que la inundación (FF) de la fraccionadora disminuye y nos da la flexibilidad de aumentar el volumen de alimentación de la torre manteniendo constante la pureza requerida del producto principal (96.1 % mol Propileno), por lo tanto la carga puede incrementarse hasta llegar al límite máximo permisible de inundación para una torre con platos convencionales, la cual es de 82 %.

Como el incremento de carga sobrepasa por más del doble la capacidad de procesamiento actual de la columna existente, se sugiere la adición de otra torre con las mismas características que la existente. Debido a que las condiciones hidráulicas de la columna nos permiten manejar la mitad de la nueva carga de alimentación. Entonces cada torre manejará 5,085 BPD.

De acuerdo a la evaluación hidráulica realizada a la torre existente (mediante el simulador de procesos PRO II), con las condiciones actuales de proceso se obtiene una inundación de 75.3%, y manejando la mitad del nuevo flujo total, que es de 5,085 BPD, nos resulta una inundación de 74.5%, el cual se considera aceptable para operar la torre.

De esto último se infiere que adicionando una torre similar a la existente se maneja la nueva carga de procesamiento, respetando los requerimientos de la separación así como los criterios hidráulicos de diseño de una torre fraccionadora.

Al dejar las torres con estas características se verá que disponen de la flexibilidad para manejar un nuevo volúmen de alimentación que en un futuro pueda existir.

Para definir el arreglo de procesamiento, se realizará la simulación del proceso variando la presión de operación (Pop) y la relación de reflujo (RR), cuidando varios aspectos, que son : obtener el propileno, producto de interes, con la misma pureza hasta ahora obtenida de 96.1 % mol, verificando que la inundación de la torre no exceda los limites máximos permisibles.

El esquema de la Bomba de Calor que puede suministrar, tanto a la corriente de reflujo como a la de producto, las características y condiciones requeridas por el proceso, es (fig. II.1):

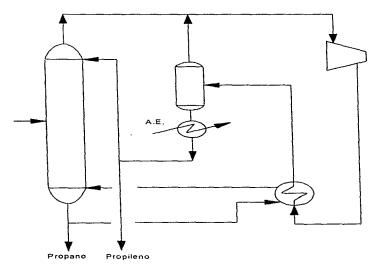


Fig. II.1 Bomba de Calor con Recompresión de Vapor

II.2.1.- ADICIÓN DE LA BOMBA DE CALOR A LA FRACCIONADORA.

Realizando la simulación del proceso con el simulador PRO II (Simulation Sciences Inc.), se tiene que definir la columna fraccionadora aislada de los demás equipos y a las condiciones de la torre existente. Tomar una pseudocorriente (TFLOW) del plato número dos de la columna y numerar esta corriente que es rica en propileno. Con ésto se inicia el análisis de los esquemas de la Bomba de Calor.

Para el análisis del arreglo, se muestra a continuación el algoritmo a seguir :

1 .- Simular la torre (T-1, T-11) a una Pop menor que la de diseño.

1.a.- Ajustar la relación de reflujo (RR) lo suficiente para mantener la pureza requerida de propileno (96.1 % mol).

1.b.- Verificar que el factor de inundación (FF) no sea mayor de 82
 %.

1.c.- Tomar la temperatura de reflujo (Trefl).

Repetir desde el punto 1 hasta que la Trefl. sea 110°F, ya que el enfriamiento final es con agua (fig. II.2).

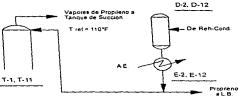


Fig. II. 2. Temperatura de Reflujo

2.- De los resultados obtener la temperatura de entrada y salida del rehervidor de la corriente de fondos (Tent.reh. y Tsal.reh.) y la carga térmica del rehervidor (Qreh.).Fig. II.3.

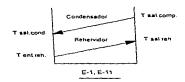
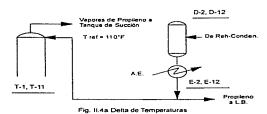



Fig. II.3 Tent. reh. y T sal. reh.

3 .- Adicionar la Bomba de Calor, es decir,

- 3.a.- En el compresor (C-1, C-11) asignar una presión de salida que nos de una temperatura de descarga tal que la corriente de vapores proporcione la carga térmica del rehervidor.
- 3.b.- La presión de salida del acumulador de reflujo (D-2, D-12) se determina en función de la presión requerida por el producto y el reflujo.
- 3.c.- Fijar en el enfriador de ajuste (E-2, E-12) la temperatura de salida del propileno, ésta debe ser de 110°F. Puesto que el enfriamiento final se efectuará con agua de enfriamiento disponible a 90°F, y el mínimo acercamiento de temperaturas es de 20°F. Ésto se ilustra en las figuras II.4a y II.4b:

AT = T sal propil - Tentagua = 20°F

Fig. II.4b Detta de Temperaturas en el Reh-Condensador

En nuestro caso, al simular la torre fraccionadora a diferentes presiones de operación variando la relación de reflujo para mantener la pureza especificada, se obtuvieron los resultados de la tabla II.2:

		Tabla II.2		
Pop	RR	Pureza	Inundación ·	Trefl.
(lb/in² abs.)		Propileno	(%)	(°F)
300.4	23	96.1	75.3	121.4
262.8	17.72	96.1	74.5	110.4
200.8	14.51	96.1	62.6	89.4

Aqui el punto crítico a cuidar es que el acercamiento de temperaturas en el enfriador (E-2, E-12) por el lado de fluidos fríos sea de 20°F, ya que el enfriamiento del propileno se efectuará con agua. Este gradiente de temperaturas se debe a las características de nuestro cambiador de calor.

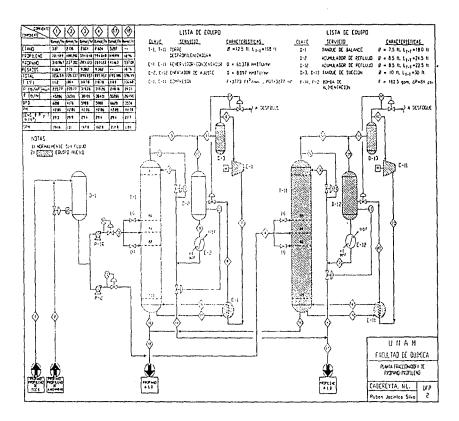
Así resulta que la Pop a la que se debe trabajar la torre es de 262.8 lb/in² con una RR de 17.72 para mantener una pureza de 96.1 % mol de propileno con una alimentación de 5,085 BPD.

El consumo de servicios auxiliares se muestra en la tabla II.3:

	Tabla II.3	
	Servicios Auxili	ares
	Carga Térmica MMBTU/hr	Agua de Enfriamiento (1) gpm
Enfriador de Ajuste (E-2. E-12)	16.194	1,627
	Potencia HP	Energía Eléctrica KWH
Bomba de Alimentación (P-1R, P-2)	22.1	18.3
Compresor (C-1, C-11)	6,554	5,431

(1) El agua de enfriamiento esta disponible a las siguientes condiciones : Pent = 64 Psig. Tent = 90°F y Tsal = 115°F.

Para nuestro caso de estudio, el esquema con la Bomba de Calor es como se ilustra en el diagrama de flujo de proceso número 2, con el balance de materia y energía, que se encuentra en el anexo A-1.


II.3.- CONSUMO DE ENERGÉTICOS.

Al observar los consumos de energéticos de los procesos descritos anteriormente, notamos una gran diferencia entre los requerimientos de agua

de enfriamiento, vapor de agua y energía eléctrica entre ellos, según latabla II.4:

	Tabla II.4				
Co	Consumo de Energéticos				
Servicio	Actual	Propuesta			
Energía eléctrica (Kw/año)	1 065,636	43'160,198			
Agua de enfriamiento (m³/año)	8'232,124	2'928,341			
Vapor de baja (Ton/año)	226,710				

Como se observa en la tabla anterior, las diferencias en los requerimientos energéticos son muy sustanciales, principalmente en los servicios de electricidad y de agua de enfriamiento. Estas diferencias repercutirán enormemente en los gastos de opreación (como se verá en el siguiente capítulo), puesto que son los servicios más caros que tenemos, principalmente el agua de enfriamiento.

CAPÍTULO III

EVALUACIÓN ECONÓMICA

La evaluación económica se efectuó comparando el caso actual de la columna fraccionadora contra el caso propuesto en este trabajo de la fraccionadora con bomba de calor por recompresión de vapor.

III.1.- BASES ECONÓMICAS

La propuesta para el incremento de capacidad y ahorro energético de la planta fraccionadora propano-propileno de la refineria "Hector Lara Sosa " de Cadereyta, N.L., descrita anteriormente, se analizó económicamente bajo los siguientes aspectos:

El análisis económico fue realizado con precios promedio de 1996, en dólares americanos para un horizonte de planeación de 20 años.

III.2.- INVERSIÓN

El estimado de inversión a límites de batería incluye los siguientes conceptos :

Equipo de proceso

- Materiales (tuberia, concreto, acero, instrumentos, aislamiento y pintura)
- Instalación y montaje
- Indirectos de construcción
- Administración.

A continuación se desglosa la inversión necesaria para el trabajo propuesta :

Clave	Descripción	Costo (USD)
T-11	Torre Fraccionadora	1.755,691
C-1	Compresor	960,237
C-11	Compresor	960,237
E-1	Cambiador Rehervidor-Condensad	lor 121,000
E-11	Cambiador Rehervidor-Condensad	lor 121,000
D-3	Tanque de Succión	130,446
D-13	Tanque de Succión	130,446
D-12	Tanque Acumulador de Reflujo	170,272
P-1	Bomba de Carga	6,663
P-1R	Bomba de Carga	6,663
P-2	Bomba de Carga	6,663
	Inversión Total (USD)	4'369,318

La evaluación de los costos de cada equipo realizada con el programa de cálculo Questmate, se encuentra en el anexo A-2. En esta evaluación se toman en cuenta todos los conceptos enumerados al inicio de este inciso.

III.3.- COSTOS ANUALES

Los costos anuales están integrados por los siguientes conceptos :

III.3.1.- Materia prima

Concepto	Consumo (Bls/año)	Precio (USD/Bls)	Costo Total (USD/año)
Propuesta Propano-Propileno	3'358,080	16.09	54'031,507
Actual Propano-Propileno	3'358,080	16.09	54'031,507

III.3.2.- Servicios Auxiliares

Concepto	Unidad	Consumo	Precio	Costo Total
			(USD/unidad)	(USD/año)
Propuesta				
Energia eléctrica	KW/año	43'160,198	0.03	1'294,806
Agua de enfriamiento	m³/año	2'928,341	0.55	1'610,587
TOTAL				2'905,393
Actual				
Energía eléctrica	KW/año	1'065,636	0.03	31,969
Agua de enfriamiento	m³/año	81232,124	0.55	4'527,668
Vapor de baja pres.	Ton/año	226,710	7.123	1.614,855
TOTAL				6'174,492

III.3.3.- Mano de obra

La mano de obra requerida para operar esta planta, de acuerdo con criterios de operación del Instituto Mexicano del Petróleo (IMP), es de dos ingenieros de operación, l ayudante y 4 de guardia.

III.3.4.- Mantenimiento

Fue estimado para los primeros cinco años como el 2.5 % anual respecto a la inversión, para los siguientes cinco años 3.75 % y para los años restantes el 5 %, de acuerdo a criterios del IMP.

III.3.5.- Indirectos de planta

Se consideró el 1.5 % de la inversión por año, tomando en cuenta los criterios del IMP.

III.4.- INGRESOS

Se consideraron los siguientes productos

Descripción	Producto (Bls/año)	Precio (USD/Bl)	Venta Total (USD/año)
Propuesta			
Propileno	2'184,985	23.605	51'576,571
Propano	1'173,095	18.009	21'126,268
TOTAL			72`702,839
Actual			
Propileno	858,825	23.605	20'272,564
Propano	461,175	18.009	8'305,301
Propano-Propileno	2'038.080	16.09	32'792,707
TOTAL			61'370,572

III.5.- TASA DE DESCUENTO

Tasa de descuento en términos reales 10%, de acuerdo a criterios del IMP.

III.6.- VALOR DE RESCATE

Valor de rescate igual a cero.

III.7.- COSTOS

Los costos utilizados en el presente trabajo se describen en la tabla siguiente :

Concepto	Unidad	Costo	Fuente
Propano-Propileno	USD/BI	16.09	Precio promedio 1996 interorganismos
Propileno	USD/BI	23.605	Precio promedio 1996 interorganismos
Propano	USD/BI	18.009	Precio promedio 1996 interorganismos
Energia eléctrica	USD/KW	0.03	Precio promedio 1996 interorganismos
Agua de enfriam.	USD/m ³	0.55	Precio promedio 1996 interorganismos
Vapor de baja pres.	USD/Γon	7.123	Precio promedio 1996 interorganismos

III.8.- RESULTADOS

Los resultados del análisis diferencial de la propuesta elaborada respecto al caso de operación actual son los siguientes :

	Inversión	T.I.R.	P.R.I.	V.P.N.
L	(MM USD)	(%)	(Años, Meses)	(MM USD)
Propuesta	4.369	189	0,6	68.773

Todos los conceptos anteriores se tomaron en cuenta para realizar el análisis diferencial de los dos casos de operación de la torre, estos datos y resultados se encuentran en el estado proforma reportado en el anexo A-3.

En el estado proforma se observan todos los puntos y criterios considerados para el análisis diferencial del presente trabajo.

CAPÍTULO IV

ANÁLISIS DE RESULTADOS

Debido a los aumentos de capacidad de las FCC's No. 1 y No.2 de la Refinería de Cadereyta N., L., la nueva alimentación que se tiene en la planta fraccionadora de propano-propileno es de 10,170 BPD.Lo cual representa un aumento del 254% de la capacidad de la torre existente, el cual no se puede procesar en esta torre ni aún con el cambio de internos por unos de alta capacidad, ya sean empaques o platos de alta capacidad, pues éstos permiten incrementar la capacidad de las columnas pero ninguno de ellos logra aumentarla a ese elevado porcentaje.

Por lo tanto se propuso adicionar una torre nueva con las mismas características de la torre existente (los resultados mostrados son por torre, y aplica para cada una de ellas), manejando la mitad de la alimentación por torre y para tener ahorros energéticos se propuso acoplar una bomba de calor a cada columna, con las condiciones de operación mostradas en la tabla IV.1:

Tabla IV.1	Columna T-1	Columna T-11
Carga (BPD)	5,088	5,088
Pop (lb/in²) man.	248-17	248.17
RR	17.72	17.72
Qreh (MM BTU/hr)	60.378	60.378

Estas condiciones de operación son menores a las usadas en la torre existente, como se puede ver en la tabla IV.2 :

Tabla IV.2	Columna Existente	Columna T-1 y T-11
Carga (BPD)	4,000	5.088
Pop (lb/in²) man.	286.31	248.17
RR	23.0	17.72
FF (%)	75.3	74.5
Qreh (MM BTU/hr)	57.617	60.378

Como consecuencia de esta disminución en las condiciones de operación, el consumo de servicios auxiliares se reduce, según la tabla IV.3:

Tabla IV.3 Servicios Auxiliares			
Servicio	Actual	Propuesta	
Energía eléctrica (KW/año)	1'065,636	43'160,198	
Agua de enfriamiento (m³/año)	8 232.124	21928,341	
Vapor de baja (Ton/año)	226,710		

La disminución en el consumo de energéticos, trae una reducción considerable en los costos de operación, que nos permite tener utilidades mayores. Al observar los costos de servicios auxiliares (Tabla IV.4) y de operación por barril procesado (Tabla IV.5):

Tabla IV.4		
Costo de servicios auxiliares	Actual	Propuesta
Dólares/Barril procesado anualmente	1.839	0.865

Tabla IV.5		
Costo total de operación	Actual	Propuesta
Dólares/Barril procesado anualmente	17.97	16.99

Como podemos observar, los costos tanto de operación como de servicios auxiliares por cada barril procesado, disminuyen con el esquema de procesamiento propuesto. Esta disminución de costos, implica mayores utilidades de ganancia, haciendolo muy atractivo para los inversionistas (para observar los cálculos realizados para estos costeos ver el Anexo 4).

Asi mismo, la disminución en el consumo de energéticos permite una reducción en el costo de servicios auxiliares del 53%, según la tabla IV.6:

Tabla IV.6 Consumo de energéticos				
	Actual		Propuesta	
Servicio	Cuntidad	Costo (USD/año)	Cantidad	Costo (USD/año)
Energia eléctrica (KW/año)	1 065,636	31,969	43'160,198	1'294,806
Agua de enfriam. (m³/año)	8'232,124	4.527,668	2`928,341	1`610,587
Vapor de baja p. (Ton/año)	226,710	1'614,855		
TOTAL		6,174,492		2'905,393
Reducción = (1 - (2'905,393/6'174,492) * 100) = 53%				

Y en los costos totales de operación permite una reducción del 5.4% por cada barril procesado anualmente, de acuerdo con la tabla IV.7:

Tabla IV.7 Costos de operación			
Concepto	Actual (USD/año)	Propuesta (USD/año)	
Materia prima	54'031,507	54'031.507	
Mano de obra	107,000	107,000	
Servicios auxiliares	6,174,492	2,905,393	
TOTAL	60'312,999	57.043.900	
Reducción = (1 - (57'043,900/60'312,999) * 100) = 5.4%			

CAPÍTULO V

CONCLUSIONES

En las refinerías, el proceso de separación más ampliamente usado es la destilación, por ser uno de los procesos de separación más sencillos. Sin embargo, es un proceso que tiene altos consumos de servicios auxiliares, haciéndolo muy costoso.

Para disminuir los costos por concepto de consumo de energéticos se puede implementar una bomba de calor con recompresión de vapor a la columna de destilación. la que permite tener ahorros significativos, ya que consiste en el uso del calor latente extraído a los vapores de los domos para ser cedido a los fondos de la columna, eliminándose de esta forma la necesidad de usar algún medio de calentamiento en el rehervidor y algún medio de enfriamiento en el condensador de la torre, que en este trabajo es el renglón de mayor monto en los costos de operación.

En nuestro trabajo, para que la planta fraccionadora pueda manejar la nueva carga de alimentación de propano-propileno de 10,170 BPD, se propuso adicionar una nueva torre fraccionadora con las mismas características de la columna existente en la planta, ésto a causa de que un cambio de internos de la columna, ya sea por platos o empaques de alta capacidad, no nos ayuda a poder manejar la nueva carga. Entonces cada torre maneja la mitad de la nueva alimentación.

En cada una de las columnas se adicionó una bomba de calor, lo cual permite manejar una relación de reflujo y presión de operación menores a las utilizadas en la torre existente. La reducción de la presión de operación esta en función del acercamiento en el enfriador de ajuste, ya que el enfriamiento final se realiza con agua. Ésto tiene como consecuencia requerimientos energéticos menores a los actualmente consumidos.

El esquema de ahorro de energía fue seleccionado en base a las recomendaciones de la literatura, en la cual se menciona que la destilación de propano-propileno es un ejemplo típico de la aplicación de la bomba de calor con recompresión directa de vapor.

El esquema propuesto para la bomba de calor en cada una de las torres consta básicamente de un compresor, un rehervidor, un tanque separador de productos y un enfriador, cada una de las torres trabaja a $P=248.17~lb/in^2$ man. y $T=110^6F$, la inversión requerida para el proyecto es de 4'369,318 dólares.

El análisis económico del proyecto reporta los siguientes resultados :

	Propuesta	Referencia para el ramo
TIR(%)	189	min. 35
PRI (Años, meses)	0,6	1,0

Se concluye que este proyecto permite tener grandes ahorros energéticos, manteniendo el producto final con las especificaciones requeridas, manejando

la nueva carga de alimentación y que es viable tanto técnica como económicamente. Permitiendo una reducción en los costos de servicios auxiliares de 53% y en los costos totales de operación de 5.4%.

El presente trabajo cumple con los objetivos definidos al inicio del proyecto, es decir, manejar el aumento de carga de alimentación y conservar la pureza del propileno teniendo ahorros energéticos, mediante la adición de la bomba de calor. Así mismo, este trabajo puede servir como base para un estudio más profundo del proceso de separación de propano-propileno, en el que se puede remplazar los internos de la torre por empaques o platos de alta capacidad que dan mayor área de contacto entre el líquido y vapor mejorando el proceso de separación e implementar tubos high flux en el rehervidor-condensador, que permiten manejar una delta de temperaturas de 5°F, con lo que se requiere un cambiador de menor área de intercambio de calor para satisfacer el intercambio térmico; la combinación de los anteriores podría aumentar la pureza del producto y representar mayor ahorro energético.

ESTA TESIS NO DEBE 'SALIR DE LA BIBLIOTECE

BIBLIOGRAFÍA

- Billet R., "Development and Progress in the Design and Performance of Valve Trays", British Chemical Engineering, April 1969, p. 191.
- Billet R., "Distillation Engineering", Chemical Publishing Co., New York, 1979.
- Cooper A., "Trends in Distillation Technology", Chemical & Process Engineering, June 1970, p. 115.
- Eternod Palacios M. Elena y Romero Eduardo, "Manual para la especificación de Recipientes de Proceso", Edit. Instituto Mexicano del Petróleo, México D.F., 1979, p. 24-29.
- Fair J.R., "Design of Equilibrium Stage Processes", Mc Graw Hill, New York, 1963.
- Fair J.R., "Modern Design of Distillation Columns", Chemical Engineering, April 22, 1968.
- Frank O., "Distillation Design", Chemical Engineering, March 14, 1977, p.110.

- Hengstebeck, "Distillation", Reinhold Publishing Corporation, New York, 1961.
- Holland, "Fundamentals of Multicomponent Distillation", Mc Graw Hill, New York, 1981.
- Jamison R.H., "Internal Design Techniques", Chemical Engineering Progress, March 1969, p.46.
- Ludwig E.E., "Applied Process Design for Chemical and Petrochemical Plants", Vol.2, Gulf Publishing, Houston, 1964.
- Mc Donald J.O.S., "Advances in Mass Transfer", British Chemical Engineering, November 1970, p.35.
- Mc Laren D.B., "Guide to Trouble Free Distillation", Chemical Engineering, June 1, 1970, p.139.
- Meili Albert and Stuecheli Alexander, "Distillation Columns with Direct Vapor Recompression", Chemical Engineering, February 1987, p. 133.
- Null H.R., "Heat Pumps in Distillation", Chemical Engineering Progress, July 1976, p. 58.
- O'Neill P.S., Wisz M.W., Ragi E.G., Page E.H. and Antonelli R., "Vapor Recompression Systems with High Efficiency Components", Chemical Engineering Progress, July 1985, p. 57.

- Perry R.H., Chilton C.H. Eds., "Chemical Engineer's Handbook", 5th ed., Mc Graw Hill, New York, 1973.
- Peters M.S., Timmerhaus K.D., "Plant Design and Economics for Chemical Engineers", 3rd de., Mc Graw Hill, Kogakusha, 1980.
- Quadri G. P., "Use Heat Pump for P-P Splitter", Hydrocarbon Processing, February 1981, p. 119.
- Sepúlveda José A. y Souders William E., "Ingeniería Económica", Edit. McGraw Hill, México D.F., 1985, p. 1-5, 68-77.
- Souders M., Brown G., "Design of Fractionating Columns", Industrial and Engineering Chemistry, January 1934, p.98.
- Treybal R.E., "Mass Transfer Operations", 2nd de., Mc Graw Hill, Kogakusha, 1968.
- Walas Stanley M., "Rules of Thumb", Chemical Engineering, March 1987,
 p. 75.

ANEXOS

ANEXO A-1

BALANCE DE MATERIA Y ENERGÍA PARA EL CASO DE LA FRACCIONADORA CON BOMBA DE CALOR (DFP No.2).

```
S Generated by PRO/II Keyword Generation System <version 2.71 - 02-14-95>
S Generated on: Thu May 15 21:02:19 1997
TITLE PROJECT-4000, PROBLEM-SPLITTER, USER-RAJS., DATE-16/abr/97
   DESCRIPTION BALANCE DE MATERIA Y ENERGIA DE LA SPLITTER
   DESCRIPTION PROPANO-PROPILENO.
   PRINT INPUT-ALL, STREAM-ALL, RATE-M, LV. PERCENT-M, TBP
  TOLERANCE TEMPERATURE -- 0.055556 MISCELLANEOUS-0.003
DIMENSION METRIC, TEMP=C, PRES-MCKM, WT-KG, TIME-HR, LICVOL-BBL, & VAPVOL-M3, MOENSITY-SPGR, EMERGY-KCAL, WORK-KW, CONDUCT-KCH, &
            VISCOSITY-CP, SURFACE-DYNE, PBASIS-0.9941
  OUTDIMENSION REPLACE, ENGLISH, TEMP-F, PRES-PSIG, WT-LB, TIME-HR, & LIQVOL-BBL, VAPVOL-FT3, XDENSITY-API, ENERGY-BTU, WORK-HP, &
            CONDUCT-BTU/H. VISCOSITY-CP. SURFACE-DYNE
  SEQUENCE SIMSCI
COMPONENT DATA
  LIBID 1. ETHANE/2. PROPYLEN/3. PROFANE/4. 18UTENE/5. IBUTANE/6. N-BUTANE
THERMODYNAMIC DATA
  METHOD KVAL(VLE) = SRK, VISCOSITY(L) = PETR, VISCOSITY(V) = PETR,
            CONDUCTIVITY(L) = PETR, CONDUCTIVITY(V) = PETR, SURFIENSIGN = PETR, & ENTHALPY(L) = SRK, ENTHALPY(V) = SRK, DENSITY(L) = API, &
            DENSITY(V) = SRK, ENTROPY(L) = SRK, ENTROPY(V) = SRK, SET = SET01. &
            DEFAULT
STREAM DATA
  PROPERTY STREAM=1, TEMPERATURE=44, PRESSURE=17.61, PHASE=L. 6
RATE(M)=239.63, COMPOSITION(M)=1.0.6965/2,159.09/3,77.3276/ 6
4.0.52165/5,1.3247/6.0.02312, NORMALIZE
  PROPERTY STREAM=2, TEMPERATURE=38, PRESSURE=17.61, PHASE=L, & RATE(M)=166.77, COMPOSITION(M)=1,0.48478/2,110.718/3,53.816/ &
  4,0.36304/5,1.3673/6,0.01093, NORMALIZE
PROPERTY STREAM=3, TEMPERATURE=43.77, PRESSURE=23.51, PHASE=L,
          RATE(M) +406.4, COMPOSITION(M) =1,1.1814/2,269.818/3,131.144/ &4.0.8847/5.3.33207/6.0.03922, NORMALIZE
UNIT OPERATIONS
  FLASH UID-D1, NAME-TAN.BAL.
        FEED 1,2
        PRODUCT Lalzee
        ADIABATIC DP-0.35
  PUMP UID=P1. NAME=BCM-ALIM.
        FEED 1200
        PRODUCT L=3
        OPERATION EFF#60, PRESSURE#23.51
  COLUMN UID=T1, NAME=DESPROPILENIZADORA
PARAMETER TRAY=90, IO-15
        FEED 3.59.SEPARATE
        PRODUCT
                   OVHD (M) +5.0.1. LORAW (M) +4.1.270.92. BTMS (M) +6.135.38
        CONDENSER TYPE-BURB
        DUTY 1,1/2,96
        PSPEC PTOP=18.481, DPCOLUMN=1.05
       PRIAL CROPARELEMPAR:
ESTIMATE MODEL-CONVENTIONAL, TTEMP#47.45, BTEMP#61.52
SPEC STREAM#6, RATE(KGM/H), VALUE=135.36
SPEC COLUMN=T1, RRATIO, VALUE=17.72
VARY DUTY=1.2
        TOLERANCE ENTHALPY=0.001
        TRATE SECTION(1)=2.69.V1. PASSES=2, DIAMETER(TRAY)=3810. 4
                       THICKNESS (VALVE, GAUGE) =14, NUMBER (VALVES) =918, 4
                       DIAMETER (VALVE, IN) =1.875, WEIR=52, DCC=38.1, DCW=515, &
                      520
```

```
TFLOW NET(V)-5.2. NET(L)=15.89
METHOD SET-SET01.90
FLASH UIDD-D3. NAME-TANG-SUCG
FEED 11
PRODUCT V-5. L-5C1
ADJABATIC DP-0.151
COMPRESSOR UID-C1. NAME-COMPRESCR
FEEDDOT M-7
PERDIOT M-7
POPERATION CALCULATION-OPSA. PRES-35.36, EFF-85
HX UID-E1. NAME-REN-COND
HOT FEED-7. L-8. DP-0.703, METH-SET01
CONFIGURE COUNTER
DEFINE BUTY-(KC/H) AS COLUMN-T1. DUTY(2,KC/H)
FLASH UID-M1. NAME-METCLADOPA
FEED 5.10
PRODUCT V-10. L-9
NAME FEED-5.10
PRODUCT V-11
HX UID-E2. NAME-ENFRI. AJUSTE
HOT FEED-5 L-10. TP-0.391, METH-SET01
CONFIGURE COUNTER
HX UID-E2. NAME-ENFRI. AJUSTE
HOT FEED-5 L-10. TP-0.391, METH-SET01
CONFIGURE COUNTER-32.73, TEMPERATURE-43.34
CONFIGURE COUNTER-32.73, TEMPERATURE-43.34
OPER HTEMP-43.34
```

END

VERSION 4.15 OUTPUT COLUMN SUMMARY

386/EM RAJS. 16/abr/97

HEATER DUTIES

-60.1754

MM BTU/HR

'T1', 'DESPROPILENI'

TOTAL NUMBER OF ITERATIONS

IN/OUT METHOD 3

COLUMN SUMMARY

TRAY	TEMP DEG F		FIGUID	- NET FLOW RATES VAPOR FEED LB-MOL/HR	
10	110.1	248.17	10587.0		597.2L
0 N945678901234567890123456789012345678901234567890123456789012345678901237356	110.1	1.14	10593.5 10593.4 106034.4 106034.4 106034.4 10603.4 10603.2 10613.2 10623.2 10623.1 10633.4 106	11184.5 11190.9 11190.1 11201.5 11205.7 1121.7 1121.7 11224.4 11224.3 11224.5 11235.5 11235.6 11239.4 11240.9 11240.9 11240.9 11240.7 11240.7 11240.7 11240.7	597.2L
37 38 39	114.3 114.4 114.5	254 11	10737.0 10741.4 10745.8	11334.5	

PRO/II VERSION 4.15 OUTPUT

386/EM RAJS. COLUMN SUMMARY 16/abr/97

> HEATER DUTIES MM BTU/HR

'T1', 'DESPROPILENI' (CONT)

----- NET FLOW RATES

TRAY	TEMP	PRESSURE	Liquid	VAPOR	FEED	PRODUCT
	DEG F	PSIG		LB-MCL		
40	114.7	254.61		11343.3		
41	114.8	254.78	10754.7	11347.7		
4.2	114.9	254.95	10754.7	11352.2		
4.3	115.1	255.12	10763.7	11356.5		
44	115.2	255.29	10769.1	11361.1		
4.5	115.4		10772.7			
46	115.5	255.63	10777.2	11370.1		
47	115.7	255.80	10761.8			
48	115.8	255.97	10766.3 10731.0 10735.6	11379.2		
49	110.0	256.14	10731.0	11383.8		
50	116.1					
51 52	116.3 116.4	256.48 256.65	10800.3	11393.1		
53	116.6	256.82	100000	21100		
54	116.8	256.82	10809.7 10814.4 10819.0	11407 1		
55	116.9	157.16	10819.0	1141		
56	117.1	257.33	10823.4	11416.4		
57	117.3	257.50	10927.3	11420.9		
58	117.5	257.67	10827.3	11424.8		
59	117.7	257.84	11773.0	11427.7	896.0L	
50	117.5	256.01	11779.1	11474.5		
61	118.1	258.18	11785.1	11480.6		
6.2	118.1	259.35	11791.3	11486.6		
63	118.7	258.52	11797.5	11492.8 11499.6		
64 65	119.2	258.59	11510.3	11505.3		
66	119.5	250.00	11816.5	11511.8		
67	119.9	259.20	11816.8	11518.3		
6.8	125.2	259.57	:1830.0			
69	120.6		11336.6	11531.5		
70	121.0	259.71	11843.3	11538.1		
71	121.4		11849.9	11544.3		
72	121.6	260.05	11856.4			
73	122.2		11852.9			
7.1	122.6	260.39	11869.3			
75	123.1	250.55	11675.7	11570.8		
76 77		5 260.72 260.89	11882.0 11888.1	11577.2		
75	124.	261.06	11394.2	11563.6		
79			11900.2	11595.7		
80	125.		11996.1			
81			11911.8			
82	176.	1 261.74	11917.3	11613.3		
83		5 261.91	11922.4	11618.8		
9.4	176		11926 8	11623.9		

PRO/II VERSION 4.15

386/EM RAJS.

CODUMN SOMMARY 16/ab

TRAY	TEMP DEG F	PRESSURE PSIG	ridain	VAPOR FEED LB-MOL/HR	PRODUCT	DUTIES MM BTU/HR
85	127.3	262.25	11929.8	11628.3		
86	127.7	262.42	11930.2	11631.3		
87	125.1	262.59	11925.4	11631.7		
2.5	128.7	262.76	11910.7	11626.9		
89	129.5	262.93	11377.3	11612.2		
90R	135.7	263.10		11578.8	298.5L	60.3786

R PRO/II VERSION 4.15 OUTPUT COLUMN SUMMARY

386/EM RAJS. 16/abr/97

TRAY RATING RESULTS

TRAY	VAPOR CFS	LIQUID HOTGPM	VLCAD CFS	DIAM	FF	PRES EROP PSI	GPM/IN	DOWNCOMER BACKUP, PCT TRAY SPACING
2	53.60	1885.	16.13	150.0	65.8	.076	7.5	46.52
3	53.68	1891.	16.13	150.0	65.9	.076	7.5	46.56
4	53.68		16.15	150.0	65.9	.076	7.5	46.56
5	53.65		16.15	150.0	65.9	.076		46.63
6	53.62	1596.	16.15	150.0	66.0	.576	7.5	46.63
7	53.60		16.16	150.0	66.0	.676	7.3	46.70
á	53.59	1399.	16.16	150.0	66.3	.076	7.6	46.73
9	53.56	1900.	16.17	150.0	66.1	.075	7.6	46.76
10	53.54	1902.	16.17	150.0	66.1	. 576	7.6	46.79
īi	53.51	1954.	16.17	150.0	66.1	076	7 4	46,82
12	53.49	1205.	16.10	150.0	66.1	.276	7.6	46.86
13	53,47	1907.	16.18	150.0	66.2	.576	7.6	46.89
14	53.45	1908.	16.19	150.0	66.2	.076	7.6	46.93
15	53.43	1910.	16.13	150.0	66.3	.076	7.6	46.96
16	53.41	1912.	16.20	150.0	56.3	.576	7.6	47.00
17	53.39	1913.	16.20	190.0	66.3	.576	7.6	47.03
18	53.36	1915.	16.20	150.0	56.4	.676	7.6	47.07
19	53.34	1917.	16.21	155.8	55.4	.076	7.6	47.10
20	53.32	1919.	16.21	150.0	66.4	. 376	7.€	47.14
21	53.30	1920.	16.22	150.0		.875	7.6	47.18
22	53.18	1922.	16.23	150.0	66.5	. 576	7.7	47.22
23	53.26	2524.	16.23	150.0	हर् । र	. 076	7.7	47.26
24	53.24	1926.	16.24	150.0	65.5	.076		47.30
25	53.22	1928.	16.24	150.0	66.6 66.7	. 576	7.7	47.34
26 27	53.20	1930.	16.25	150.0	66.7	.076	7.7	47.38
28	53.16 53.16	1934.	16.26	150.0	66.a	.076	7.7	47.42
29	53.16	1934.	16.27	150.0	66.8	.076	7.7	47.51
30	53.15	1939.	16.27	150.0	45.9	.076	7:4	47.55
31	53.13	1940.	16.28	150.0	66.9	.576	5.4	47.60
32	53.11	1943.	16.25	150.0	67.3	. 576	7.4	47.65
33	53.07	1944.	13.54	150.0	27.5	.076	7:5	47.69
34	53.65	1947	13.30	150.0	67.1	. 276	7.5	47.74
35	53.03	1949	19.31	150.0	i	.076		47.79
36	53.02	1951	16.32	110.0	67.2	.076		47.84
37	53.00	1954.	16.32	150.0	67.2	.076	7.8	47.39
3.8	52.98	1956.	26.33	150.0	67.3	. 074		
39	52.96	1950.		150.0	67.3	. 074		
40	52.94	1961.		150.0	67.4	.07		
41	52.53			150.0	67.4	.07	6 7.8	
4.2	52.91	1965.		150.0	67.5	. 07		
43	52.89			150.0		. 97		
4.4	52,88			150.0	67.6	. 07		48.25
45	52.85			150.0			6 7.9	48.31
46	52.94	1976.	16.40	150.0	67.7	. 07	6 7.9	48.36

R PRO/II VERSION 4.15 OUTPUT COLUMN SUMMARY

386/EM RAJS. 16/abr/97

UNIT 3, '16E', 'DESPROPILENI' (CONT)

TRAY	VAPOR CFS	LIQUID HOTGPM	VLOAD CFS	DIAM IN	FF	PRES DROP PSI	GPM/LWI GPM/IN	DOWNCOMER BACKUP, PCT TRAY SPACING
47 48	52.82 52.81	1978. 1981.	16.41 16.42	150.0	67.8 67.8	.076	7.9	48.42
49	52.79	1984.	16.43	150.0	67.9	.076	7.9	48.53
50	52.78	1966.	16.44	150.0	68.0	.076	7.9	48.59
51	52.76	1989.	16.45	150.0	68.0	.076	7.9	48.65
52	52.74	1992.	16.46	150.0	68.1	.076	7.9	48.7.
53	52.73	1994.	16.47	150.0	68.1	.076	7.9	48.77
54	52.71	1997.	16.48	150.0	68.2	.076	9.0	48.83
55	52.70	2000.	16.49	150.0	68.3	.075		48.89
56	52.68	2003.	16.50	150.0	68.3	.076		48.95
57	52.57	2006.	16.51	150.0	68.4	.075		49.01
5.8	52.65	2008.	16.52	150.0	68.5			49.07
59	52.93	2186.	16.59	150.0	70.5	.076 .077	8.7	52.32
60	92.82	2120.	16.61	150.0	70.6	.077	8.7	52.41
61	52.51	2194.	16.62	150.0	70.7	.077		52.51
62	52.61	2199.	16.64	150.0	70.8	.077		52.62
63	52.80	2204.	16.66	150.0	70.9	.077		52.73
64	52.79	2209.	16.68	150.0	71.0	.077		52.84
65	52.79	2214.	16.70	150.0	71.1	.077		52.96
66	52.76	2220.	16.73	150.0	71.3	.077		53.09
67	52.79	2226.	16.75	150.0	71.4	.077		53.23
68	52.73	2232.	16.78	150.0	71.6	.077		53.37
69	52,77	2238.	16.80	150.0	71.7	.077		53.52
70	52.77	2244.	16.53	150.0	71.9	.678		53.67
71	52.77	2251.	16.86	150.0	72.0	.078		53.82
72	52.77	2256.	16.89	150.0	72.2	.078		53.98
73	52.77	2265.	16.91	150.0	72.4	.078	9.0	54.15
74	52.76	2272.	16.94	150.0	72.5	.078	2.0	54.32
75	52.76	2279.	16.97	150.0	72.7	.578	9.1	54.48
75	52.76	2286.	17.00	150.0	72.9	.078	9.1	54.65
77	52.76	2293.	17.03	150.0	73.0	.078	9.1	54.82
78	52.76	2300.	17.06	150.0	73.2	.078	9.2	54.99
79	52.75	2307.	17.09	150.0	73.4	.078		55.15
EO	52.75	2314.	17.12	150.0	73.5	.078	9.2	55.31
61	52.75	2320.	17.14	150.0	73.7	.078	9.2	55.46
82	52.74	2327.	27.17	150.0	73.8	. 578	9.3	55.62
83	52.73	2333.	17.19	150.0	74.0	.078	9.3	55.76
84	52.73	2338.	17.21	150.0	74.1	.078	9.3	55.90
85	52.71	2344.	17.23	150.0	74.2	.078	9.3	
86	52.70	2348.	17.25	150.0	74.3	.078		56.14
87	52.67	2352.	17.26	150.0	74.4	.078		56.24
88	52.63	2356.	17.27	150.0	74.5	.078		56.32
89	\$2.56	2357.	17.27	150.0	74.5	.078		56.36

SIMULATION SCIENCES INC. PROJECT 4000 PROBLEM SPLITTER	PRO/II STREAM MOLA	VERSION 4.15 OUTPUT R COMPONENT RA	ATES	386/EM RAJS. 16/abr/97
STREAM ID NAME PHASE	ALIM.FCC 1 MIXED	ALIM.FCC 2 LIQUID	3 CARGA LIQUID	14 PROPILENO LIQUID
FLUID RATES, LB-MOL/HR 1 ETHANE 2 PROPYLEN 3 PROPANE 4 IBUTENE 5 IBUTANE 6 N-EUTANE	1.5356 350.7431 170.4829 1.1501 4.3315 .0510	1.0688 244.0986 118.6475 .8004 3.0145 .0355	2.6045 594.6482 289.1237 1.9504 7.3460 .0865	2.6036 574.1530 20.4847 2.6582E-14 3.1067E-14 2.9755E-14
TOTAL RATE, LB-MOL/HR	528.2941	367.6652	895.9594	597.2413
TEMPERATURE, P PRESSURE, PSIG ENTHALPY, MM BTU/HR MOLECULAR WEIGHT MOLE FRAC VAPOR MOLE FRAC LIQUID	111.2000 235.7770 3.0207 42.8603 .6478 .3522	109.4000 235.7770 .6769 42.8603 .0000	110.7860 319.6947 1.9355 42.8603 .0000	110.0707 248.1656 1.2394 42.0978 .0000 1.0000
STREAM ID NAME PHASE	PEOPANO LIQUID	VAP.PROPIL VAPCR	FONDOS LIQUID	
FLUID RATES, LB-MOL/HR ETHANE 2 PROPYLEN 3 PROPANE 4 IBUTENE 5 IBUTANE 6 N-BUTANE	3.5593E-12 20.4833 268.6314 1.9504 7.3460	48.7571 10752.1120 383.6155 4.9770E-13 5.8179E-13 5.8721E-13	3.1205E-10 942.2052 10736.3562 40.3864 156.7212 1.5871	
TOTAL RATE, LB-MOL/HR				
TEMPERATURE, F PRESSURE. PSIG ENTHALPY, MM BTU/HR MOLECULAR WEIGHT MOLE FRAC VAPOR MOLE FRAC LIQUID	130.6816 263.1001 .8849 44.3864 .0000	110.4460 248.1656 83.3772 42.0578 1.0000	129.4537 262.9304 34.7006 44.1649 .0000	

٠.

SIMULATION SCIENCES INC.

PRO/II VERSION 4.15

386/EM

.0000

PROJECT 4000 PROBLEM SPLITTER OUTPUT RAJS. STREAM MOLAR COMPONENT RATES 16/abr/97 16 6 7 8
VAP.PROPANO ENT.COMP SAL.COMP S.REH-CON
MIXED VAPOR VAPOR LIQUID NAME PHASE FLUID RATES. LB-MOL/HR 62.1791 ETHANE 3.1205E-10 62.1791 62.1791 942.2052 12274.5191 12274.5191 12274.5191 PROPYLES 7736.3562 434.1114 434.1114 40.3864 5.6839E-13 5.6839E-13 156.7212 6.6431E-13 6.6431E-13 1.5871 6.3625E-13 6.3625E-13 PROPANE 1BUTENE 10736.3562 434.1114 5.6839E-13 IBUTANE 6.6431E-13 6.3625E-13 N-BUTANE TOTAL RATE, LB-MOL/HR 11877.2560 12770.8096 12770.8096 12770.8096 TEMPERATURE, F 129.7227 109.7709 187.9134 149.3600 PRESSURE, PSIG 259.5435 95.0774 243,1732 488.2413 479.2521 ENTHALPY, MM BTU/HR MOLECULAR WEIGHT 95.3129 103.6526 42.9981 44.1649 42.0911 42.0911 42.0911 .9762 MOLE FRAC VAPOR MOLE FRAC LIQUID 1.0000 .0000 1.0000 .0000 .0000 .0238 1 0000 5 12 10 11 SAL.ACUM SAL.ENFRI VAP.ACUM ALIM.SUCC LIQUID LIQUID VAPOR VAPOR STREAM ID NAME PHASE FLUID RATES, LE-MOL/HR 48.6411 10748.9383 383.5250 4.9764E-13 1 ETHAME 48.6411 13.5380 62.1791 1525.5308 ī PROPYLEN 10748.9383 12274.5191 10748.9383 10748.9383 1525.5908 383.5250 383.5250 50.5864 4.9764E-13 4.9764E-13 7.0754E-14 5.8162E-13 5.8167E-13 8.2693E-14 5.5705E-13 5.5705E-13 7.9200E-14 PROPANE
LIBUTENE
LIBUTANE
N-BUTANE 434.1114 5.6839E-13 6.6431E-13 6.3625E-13 TOTAL RATE, LB-MOL/HR 11181,1044 11181,1044 1589.7052 12770.8096 TEMPERATURE, F 131.1533 323.1083 110.3900 131.1533 110.9133 PRESSURE, PSIG ENTHALPY, MM BTU/HR 318.1159 323.1083 248.1656 31.0373 23.0758 11.9608 95.3130 MOLECULAR WEIGHT 42.0979 42.0979 42.0429 42.0911 MOLE FRAC VAPOR MOLE FRAC LIQUID .0000 1.0000 .0000 1.0000 1.0000 .0000

1.0000

R PRO/II VERSION 4.15 OUTPUT STREAM SUMMARY

386/EM RAJS. 16/abr/97

STREAM ID NAME PHASE	1	2	3	14
NAME	ALIM.FCC 1	ALIM.FCC 2	CARGA	PROPILENO
NAME PHASE TOTAL STREAM RATE, LB-MOL/HR M LB/HR STD LIQ RATE, BBL/HR TEMPERATURE, F PRESSURE, BSIGHT MALEVALUE ENTIALEY, MM ETU/HR DIV/LB MOLE FRACTION LIQUID REDUCED TEMP (KAYS RULE) ACENTRIC FACTOR WATSON K (UOPK) STD LIQ DENSITY, LB/BBL SPECIFIC GRAVITY AFI SRAVITY VAPCE	MIXED	TIONID	FIGGID	ridnip
TOTAL STREAM	•			
RATE, LB-MOL/HR	528.294	367.665	895.959	597.241
M LB/HR	22.643	15.758	38.401	25.143
STD LIQ RATE, BBL/HR	125.005	86.997	212.001	137.891
TEMPERATURE, F	111.200	100.400	110.786	110.071
PRESSURE, PSIG	235.777	235.777	319.695	248.166
MOLECULAR WEIGHT	42.550	42.860	42.860	42.098
ENTHALPY, MM ETU/HR	3.021	.679	1,935	1.239
BTU/LB	133.406	43.079	50.401	49.296
MOLE FRACTION LIQUID	.3522	1.0000	1.6000	1.0000
REDUCED TEMP (KAYS RULE)	.8646	-8482	.8639	. 8575
PRES (KAYS RULE)	.3544	.3844	.5132	. 3332
ACENTRIC FACTOR	.1466	.1468	.1468	.1436
WATSON K (USPK)	14.359	14.359	14.359	11.210
STD LIQ DENSITY, LB/HBL	181.136	.81.135	181.136	192.336
SPECIFIC GRAVITY	-5173	5172	5173	.5237
AFI GRAVITY VAPOR RATE, LB-MOL/HR M LB/HR M FT3/HR STD VAP RATE(1), M FT3/HR SPECIFIC GRAVITY (AIR-1.0) MOLECULAN WEIGHT SUTHALPY, STU/LB	1,42,039	142.039	142.039	140.239
RATE, LB-MOD, HR	342.244	N/A	3/A	H/A
M LB/HK	14.642	874	3/A	N/A
M PISTOR	6.258	374	N/A N/A N/A N/A N/A	875
COECIDIC COLLEGY AND A CO	129.876	5/A	N/A	3/A
MOLECULAR MANAGEMENT	45.701	37,7	373	3/4
POTECOLAR WEIGHT	42.754	11/25	::/:	3/2
ENTRACET, SIGNOS	1/0.321	37.7	57/2	2/2
DELICIONA ID 'IL DOS	2220 811	14724	37.2	::/:
T (FROM DENOTED)	2337.011	11/1	11/2	:://
Z (FROM DENNIII)	. 74 76	11/1		::/^
MICCOCITY OF	.01331	11/A	::/:	11/2
RATE, LB-MOL/HR M LB/HR M LB/HR M F73/HR MOLECULAN MEIGHT MOLECULAN MEIGHT CP. BTU/LB-F CP. BTU/LB-F CP. BTU/LB-F TI GOND, BTU/HR-FT-F VISCOSITY, CP TI GOND, BTU/HR-FT-F VISCOSITY, CP TI GOND, BTU/HR-FT-F M LB/HR M	.01013	11/11	,	
BATE FRANCISHE	186 050	167 665	895 959	597 243
w 1.57/100	8 000	15 768	36 403	75 743
DB1./UV	18 677	97 616	737 608	151 356
CAL (MI)	34 070	66 631	162 826	106 397
enth tito barr por Aug	44 136	86 997	212 001	137 991
SPECIFIC GRAVITY (H20+1.0)	5177	5173	5173	. 5207
MOLECULAR WEIGHT	43.001	42.850	42.860	42.096
ENTHALPY, BTU/LB	51.200	43.079	50.401	49.296
CP. BTU/LB-F	.782	.742	.763	. 780
DENSITY, LB/BBL	164.375	168.329	165.089	165.416
Z (FROM DENSITY)	.0601	.0596	.0796	.0614
SURFACE TENSION, DYNE/CH	4.2569	4.8387	1.2418	4.1487
THERMAL COND. bTU/HR-FT-F	.06154	.06377	.06209	.06146
VISCOSITY, CP	.07865	.08413	.07903	.07800

⁽¹⁾ STANDARD VAPOR VOLUME IS 379.49 FT3/LB-MOLE (60 F AND 14.696 FSIA)

R PRO/II VERSION 4.15 OUTPUT STREAM SUMMARY

386/EM RAJS. 16/abr/97

STREAM ID NAME PHASE	• • •		2 "	
SIREAU ID	2202210	VII DOCDII	2011206	
DUA CIT	FROPANO	VAP. PROPIL	FONDOS	
PRASE	LIQUID	VAPUR	LIQUID	
TOTAL STREAM ATE, LD-MOL/HR M LB/HR STD LIQ RATE, BBL/HR TEMPERATURE, F PRESSURE, PSIG MOLECULAR WEIGHT ENTHALPY, KM BTU/HR BTU/LB MOLE FRACTION LIQUID REDUCED TEMP (KAYS RULE) ACENTRIC FACTOR WATSON K (UOPK) STD LIQ CENSITY, LB/BBL SPECIFIC GRAVITY API GRAVITY VAPOR				
DATE ID-MOLIUS	200 400	11194 495	11077 256	
M IR/UD	13 349	470 843	ED1 EE0	
STD LIO PATE BRL/HR	74 059	2562 281	2937 450	
TEMPERATURE E	130 682	110 446	129 454	
PRESSURE PSIG	263 700	248 166	262 930	
MOLECULAR WEIGHT	44 386	42 098	44 165	
ENTHALPY MM BTU/UB	885	83 377	34 701	
BTH/LB	66 792	177 081	66 152	
MOLE FRACTION LIQUID	1 0000	0000	1 0000	
REDUCED TEMP (KAYS RULE)	8846	8681	8843	
PRES (FAYS RULE)	4498	3932	4483	
ACENTRIC FACTOR	.1531	1436	1526	
WATSON K (UOPK)	14.626	14.218	14.641	
STD LIO DENSITY, LB/BBL	175.902	182.336	178.576	
SPECIFIC GRAVITY	.5109	. 5207	.5100	
API GRAVITY	145.455	140.239	145.961	
VAPOR				
RATE, LB-MOL/HR	N/A	11184.485	N/A	
M LB/HR	N/A	470.842	N/A	
M FT3/HR	N/A	193.308	N/A	
STD VAP RATE(1), M FT3/HR	A\N	4244.327	A/N	
SPECIFIC GRAVITY (AIR=1.0)	n/A	1.453	N/A	
MOLECULAR WEIGHT	N/A	42.098	N/A	
ENTHALPY, BTU/LB	N/A	177.681	N/A	
CP, BTU/LB-F	N/A	.490	N/A	
DENSITY, LB/M FT3	N/A	2435.763	N/A	
Z (FROM DENSITY)	N/A	.7426	N/A	
TH COND. BTU/HR-FT-F	N/A	.01355	N/A	
VISCOSITY, CP	N/A	.01031	N/A	
API GRAVITY APIC GRAVITY APIC GRAVITY APIC GRAVITY M LB/HR M LB/HR M FT3/HR STD VAP RATE(1), M FT3/HR SPECIFIC GRAVITY (AIK-1.0) MOLECULAR WEIGHT ENTHALPY, BTU/LB CP, BTU/LB-F DENSITY, LB/M FT3 Z (FROM DENSITY) TH COMD, BTU/HR-FT-F VISCOSITY, CP				
Liguid				
RATE, LB-MCL/HR	298.498	N/A	11877.256	
M LB/RR	13.249	N/A	524.558	
BBL/HR	85.077	N/A	3367.503	
GAL/MIN	59.553	N/A	2357.245	
SID DIQ KATE, BELYAR	74.059	N/A	2937.450	
SPECIFIC GRAVIII (H2OWI.0)	.5109	11/2	15100	
MODECULAR WEIGHT	44.380	11/2	66 153	
co prii/ib.p	00.792	11/6	00.452	
DERCITY IN/EDI	155 733	**/*	155 771	
7 (PPOM DENGITY)	0702	AVE	0639	
CUDEACE TENCTON DVMF/CM	3 4167	3/2	3 4233	
THERMAL COND BTH/HR-FT-F	05843	N/A	05858	
VISCOSITY, CP RATE, LB-MCL/HR M LB/HR BBL/HR BBL/HR STD LIGHATE, BBL/HR SPECIFIC GRAVITY (H20=1.0) MOLECULAR WEIGHT ENTHALPY, BTU/LB CP, BTU/LB-F DENSITY, LB/BBL Z (FROM DENSITY) SUFFACE TENSION, DYNE/CM THERMAL CORD, UTU/HR-FT-F VISCOSITY, CP	07062	ii/A	11077.256 524.558 3167.503 2357.245 2937.450 .44.165 66.152 .857 155.771 .0699 3.4233 .05856	

⁽¹⁾ STANDARD VAPOR VOLUME IS 379.49 FT3/LB-MOLE (60 F AND 14.696 PSIA)

R
PRO/II VERSION 4.15
OUTPUT 386/EM RAJS, 16/abr/97 STREAM SUMMARY

STREAM ID	16	6	7	8
STREAM ID NAME PHASE	VAP. PROPANO	ENT. COMP	SAL COMP	S.REH-CON
PHASE	MIXED	VAPOR	VAPOR	LICUID
				·
TOTAL STREAM RATE, LB-MOL/HR M LB/HR STD LIQ RATE, BBL/HR TEMPERATURE, F PRESSURE, PSIG MOLECULAR WEIGHT ENTHALPY, MM BTU/HR MOLE FRACTION LIQUID REDUCED TEMP (KAYS RULE) ACENTRIC FACTOR WETSON FACTOR				
raté, lb-mol/hr	11877.256	12770.810	12770.810	12770.810
M LB/HR	524.558	537.537	537.537	537.537
STD_LIQ_RATE, BBL/HR	2937.450	2948.533	2948.533	2948.533
TEMPERATURE, F	129.723	109.771	187.913	149.360
PRESSURE, PSIG	259.943	243.173	488.241	479.252
MODECULAR WEIGHT	44.165	42.091	42.091	42.091 42.998
ENIMALPI, PM BIU/RR	95.077	177.314	103.653 192.829	79.991
MOLE EDICTION LIGHTD	181.253	177.314	.0000	1.0000
BEDUCED TEMB (VAVE BUTE)	90:7	.0000 .8671	.9861	.9274
PRES (KAYS RILE)	4434	3857	.7523	.7389
ACENTRIC FACTOR	. 1526	.3857	. 1436	
WATSON K (UOPK)	14.641	14.220	14.220	14.220
STO LIO DENSITY, LB/BBL	178.576	182.307	.1436 14.220 152.307	182.307
ACENTRIC FACTOR WATSON K (UOPK) STD LIQ DENSITY, LB/BBL SPECIFIC GRAVITY API GRAVITY	.5100	.5206	.5206	.5206
API GRAVITY	145.961	140.283	140.283	140.283
VAPOR		-		
RATE, LB-MOL/HR M LB/HR M FT3/HR	11594.553	12770.610	12770.810	N/A
M LB/HR	512.009	537.537	537.537	N/A
M FT3/HR	192.012	226.384	113.729	N/A
M FT3/HR STD VAP RATE(1), M FT3/HR SDECIDLO GRAVITY (A)3-1 (A)	4399.941	4846.311	4845.311	N/A
SPECIFIC GRAVITY (AIR=1.0)	1.525	1.453	1.453 42.091 192.829	N/A
MOLECULAR WEIGHT	44.159	42.091 177.314	42.091	N/A N/A
ENTHALPY, BTG/LB	784.077	177.314	192.629	N/A
CP. BTU/LB+F	.558	.485 2374,434	.671 4726.426	N/A N/A
DENSIII, DEVM FIS	2000.529	23,4,434	4/20.426	N/A
Z (FROM DENSITI)	21275	01340	.6445 .01808	A\N
SIECTE CALLANTY AGENTARY NOLECULAR NATION ENTHALPY, BTU/LB F DENSITY, LB/M FT) 2 (FROM DENSITY) TH COND, BTU/HR-FT-F VISCOSITY, CP	01037	.01027	.01293	N/A
			.01233	
LIQUID RATE, LB-MOL/HR M LB/HR BBL/HR GBL/HR CGL/MIN				
RATE, LR-MOL/HR	282.703	N/A N/A	N/A	12770.810
M LB/HR	12.549	N/A	N/A	
BBL/HR	80.399	N/A	14//4	
GAL/MIN STD LIQ RATE, BBL/HR SPECIFIC GRAVITY (H20=1.0) MOLECULAR WEIGHT ENTHALPY, BTU/LB CP, BTU/LB-F	56.279	N/A	N/A	2487.297
STD LIQ RATE, BBL/HR	70.143	N/A	N/A	2948.533
SPECIFIC GRAVITY (H20=1.0)	.5109	n/A	N/A	.5206 42.091
MOLECULAR WEIGHT	44.389	N/A	H/A E/A	42.091
ENTHALPY, BTU/LB	66.003	N/A	12/A	13,334
CP. BTU/LB-F	.852	N/A	21/24	. 755
CP, BTU/LB-F DENSITY, LB/B5L Z (FROM DENSITY)	156.084	N/A		
Z (FROM DENSITY)	.0693	N/A	N/A	.1181
SURFACE TENSION, DYNE/CM THERMAL COND, BTU/HR-FT-F	3.4688	N/A		
VISCOSITY, CP	.05859	N/A N/A	N/A	.05596
VISCUSIII, CP	.07108	N/A	H/A	.05956

⁽¹⁾ STANDARD VAPOR VOLUME IS 379.49 FT3/LB-MOLE (60 F AND 14.696 PSIA)

R PRO/II VERSION 4.15 OUTPUT STREAM SUMMARY

386/EM RAJS. 16/abr/97

	SIREA	PI SUPPRINCE		10/401/9/
STREAM ID	9	12	10	1.1
STREAM ID NAME PHASE	SAL ACITM	SAT. PMERT	VAR ACIM	ALIM SUCC
DMAGE	LIOUID	LIOUID	VAROR	VAROR
Enman	LIQUID	DIQUID	VAPOR	VAPOR
TOTAL STREAM RATE, LB-MOL/HR M LB/HR STD LIQ RATE, BBL/HR STD LIQ RATE, BBL/HR TEMPERATURE, F PRESSURE, PSIG MOLECULAR WEIGHT ENTHALPY, MM BTU/HR MOLE FRACTION LIQUID REDUCED TEMP (KNYS RULE) PRES (KAYS RULE) ACENTRIC FACTOR WATSON K (UOPK) STD LIQ DENSITY, LB/BBL SPECIFIC GRAVITY API GRAVITY LIQUES				
RATE: LB-MOL/HR	11181 104	11181 104	1589 705	12220 810
M TR/UD	470 701	470 701	66 936	537 537
STD LIO PATE BDL/UD	7591 600	7581 500	367.033	20/0 633
TEMBERATURE F	131 153	110 300	171 161	110.033
DEFECTION DOLC	131.133	210.390	131.133	210.913
MOLECULAR WEIGHT	323.108	310.115	323.100	490.100
FUTURE DAY AND DELLAR	42.098	42.096	42.043	42.091
EN. HALFI, EM BIU/HR	31.037	23.076	11.951	95.313
BIO/LB	65.939	49.024	2.8.959	1//.315
MODE FRACTION LIQUID	1.0000	1.0000	.0005	. 0000
REDUCED LEMP (KAYS RULE)	. 8996	. 8650	.9003	. 8589
PRES (KAYS ROLE)	. 5053	.4979	.5051	.3932
ACENTRIC FACTOR	. 1436	.1436	.1434	.1436
WATSON K (UOPK)	14.218	14.218	14.232	14.220
STD LIQ DENSITY, LB/BBL	182.336	182.336	182.098	182.367
SPECIFIC GRAVITY	.5207	.5207	.5266	. 5206
API GRAVITY	140.238	140.230	140.508	140.283
VAPOR				
RATE, LB-MOL/HR	N/A	N/A	1589.705	12770.616
M LB/HR	N/A	N/A	1589.705 66.836	537.537
M FT3/HR	A\N	N/A	20.527 603.267	221.206
STD VAP RATE(1), M FT3/HR	N/A	H/A	603.267	4846.311
SPECIFIC GRAVITY (AIR-1.0)	N/A	N/A	1.452	1.453
MOLECULAR WEIGHT	N/A	N/A	1.452 42.043 178.959 .560	42.091
ENTHALPY, BTU/LR	N/A	N/A	178.950	177.315
CP. BTU/LB.F	N/A	71/15	560	490
DENSITY LR/M FT3	N/A	N/A	3255.940	2436.015
Z (FROM DENSITY)	3/2	9/5	6885	2436
TH COND BYLLING R	N/A	5/2	01446	01357
VICOCITY OF	3/3	87.75	.560 3055.940 .6880 .01495	.01031
API GRAVITY - VAPOR RATE, LB-MOL/HR M BAJAR M FTJ/HR STD VAP RATE(1), M FTJ/HR SPECIFIC GRAVITY (AIR-1.0) MOLECULAR WEIGHT ENTHALPY, BTU/LB CP, BTU/LB-F DELSTON DERBITY; TH COND, BTU/HR-FT-F VISCOSITY, CP		147.25	. 01100	.01031
LICUID				
PATE IB-MOL/HR	11181.104	11181 104	M/A	N/A
M + B / WP	470 701	470 701	71/2	N/A
BDI /UD	2600.003	2024 000	373	N/A
CAL/MIN	2002 066	1986 765	N/5	N/A
STO LIG DATE 1:51 /UD	2092.990	2503,793	11/5	N/A
CDECIES CRAVITY (USO. 3 A)	2361.300	2301.303	11/5	N/A
SPECIFIC GRAVITI (NEO-1.0)	.5207	.520.	::/:	::/A
LIQUID RATE, LB-MOL/HR M LB/HR BBL/HR GAL/MIN STD LIO RATE, LBL/HR SPECIFIC GRAVITY (HIO*1.0) MOLECULAR WEIGHT ENTHALPY, BTU/LB CP, BTU/LB-F DENSITY, LB/BL Z (FROM DENSITY)	42.098	42.096	87.0	12/A
ENITALPI, BIU/LU	65.939	49.024	::/^	6/4
CP. BIO/LB-F	.885	. 764	875	N/A
DENSITY, LB/BSL	157.425	165.924	875	N/A
Z (FROM DENSITY)	.0800	.0775	H/A	N/A
SURFACE TENSION, DYNE/CM	2.9708	4.1304	N/A	N/A
THERMAL COND, BTU/HR-FT-F	.05780	.06184	N/A	N/A
Z (FROM DENSITY) SURFACE TENSION, DYNE/CM THERMAL COND, BTU/HR-FT-F VISCOSITY, CP	.06760	.07823	N/A	N/A

⁽¹⁾ STANDARD VAPOR VOLUME IS 379.49 FT3/LB-MOLE (60 F AND 14.696 PSIA)

ANEXO A-2 EVALUACIÓN DE LOS EQUIPOS DE PROCESO

PROCESS EQUIPMENT AND INSTALLATION

PROCESS EQUIPMENT AND INSTALLATION

PROJECT: BACARIO DE PROCESO

DATE PREPARED: 28 MAY 1997 PREPARED BY: FVD PROJECT DATABASE: BECA

REFERENCE NO: 100 TORRE 16 E CATEGORY/TYPE: TW /TRAYED

USER EQUIPMENT TAG: 16 E ESTIMATED COST: DLS 1489600

----- ITEM DETAILS ------: SHELL MAT'L A 516 : NO. OF TRAYS 125 DESIGN TEMP. 12.50 FEET : HEIGHT 198.16 FEET 91.40 DEG F : DESIGN PRESS 204.77 PSIG : APPLICATION DISTIL : TRAY TYPE VALVE : TRAY SPACING 13.00 INCHES : TRAY MAT'L \$5410 1.12 INCHES : WIND/SEISHIC W+S * THICKNESS : TOTAL WEIGHT 586900 LBS ----- INSTALLATION SUMMARY : INSTALLATION : DIRECT MAT'L : DIRECT FIELD LABOR : TOTAL DIRECT : ACCOUNT : DLS : MAN-HOURS DLS : DLS : : EQUIPMENT : 1489600 : 2108 77981 : 1567581 0 0 0 : PIPING : 0 1 : CIVIL, SITEWORK 0 0 ٥ : STEELWORK . o 0 : : INSTRUMENTATION .: : ELECTRICAL : ō . O O : 0 : INSULATION : PAINTING 0 0 -------______ : TOTAL DIRECT COST: 1489600 : 2108 77981 : 1567581 :

										-
REFERENC	E NO: 106	MEZCLA	OOR			CATEGO	RY/TYPE	: MX /S	TATIC	
USER EQU	IPMENT TAG:	FB-01				ESTIMA	TED COS	T: DLS	430	00
						TAILS				
	MATERIAL	304P				FLOW RATE LENGTH	2	802.33		
	DIAMETER ELEMENTS		10.00	IN DIA	м :	LENGTH TOTAL WEIGHT			INCHES	•
	ELEMENTS		4		•	TOTAL WEIGHT		310	LBS	•
•				THETRE		ON SUMMARY -				•
	INSTRIBUTIO	N .				IRECT FIELD				
:	ACCOUNT		E	LS	: 1	AN-HOURS	DLS	1	DLS	:
	EQUIPMENT	:	-	1300			255		4555	
	PIPING	:		o o	:	0		:	0	:
-	CIATETOTIE	· AAV				0		:	0	1
	STEELWORK				2	0			0	:
	INSTRUMENTA ELECTRICAL			0	:	0	0	•	0	
	INSULATION			Ö		Ö	ö		0	1
	PAINTING			ŏ		0	0		0	
· -	PATHITING				·					- *
	TOTAL DIREC	T COST		4300		7	255		4555	
	CE NO: 107			TRIFUG	0	CATEG	ORY/TYF	E: GC /	CENTRIF	
						ESTIM 2 I	TEMS, E	ACH DLS	8378	
-				1т		2 I ETAILS	TEMS, E	ACH DLS	8378	
-	MATERIAL					2 I ETAILS CAPACITY	TEMS, E	ACH DLS	8378	
- :	MATERIAL					2 I ETAILS CAPACITY	TEMS, E	ACH DLS	8378	
	MATERIAL					2 I ETAILS CAPACITY	TEMS, E	ACH DLS	8378	
:	: MATERIAL : INLET PRES : DRIVER POW : INLET TEMP	CS S. ER	243.10 3277.56 109.70	PSIG	:	2 I ETAILS CAPACITY DISCH. PRES COMPR. SPEE NO. IMPELLE	TEMS, E	3773.10 488.20 12365.00	B378 CFM PSIG	
:	MATERIAL	CS S. ER	243.10 3277.56 109.70	PSIG	:	2 I ETAILS CAPACITY	TEMS, E	3773.10 488.20 12365.00	B378 CFM PSIG	
\$ 3 3	: MATERIAL : INLET PRES : DRIVER POW : INLET TEMP : DRIVER TYP :	CS S. ER	243.10 3277.56 109.70	PSIG HP DEG P	:	2 I ETAILS CAPACITY DISCH- PRES COMPR. SPEE NO. IMPELLE TOTAL WEICH	TEMS, E	3773.10 488.20 12365.00 1	B378 CFM PSIG RPM LBS	
3 3 3	: MATERIAL : INLET PRES : DRIVER POW : INLET TEMP : DRIVER TYP	CS S. ER E MOTO	243.10 3277.56 109.70	PSIG HP DEG P	LLAT	2 I ETAILS CAPACITY DISCH. PRES COMPR. SPEE NO. IMPELLE TOTAL WEIGH	S D	3773.10 488.20 12365.00 33400	GFM PSIG RPM LBS	:
:	: MATERIAL : INLET PRES : DRIVER POW : INLET TEMP : DRIVER TYP	CS S. ER E MOTO	243.10 3277.56 109.70 R	PSIG HP DEG P INSTA	LLAT	2 I ETAILS CAPACITY DISCH. PRES COMPR. SPEE NO. IMPELLE TOTAL WEICH TOTAL WEICH DIRECT FIELD	S S S S S S S S S S S S S S S S S S S	3773.10 488.20 12365.00 1 33400	CFM PSIG RPM LBS	300
: :	: MATERIAL : INLET PRES : DRIVER POW : INLET TEMP : DRIVER TYP : : INSTALLATI : ACCOUNT	CS S. ER E MOTO	243.10 3277.56 109.70 R	PSIG HP DEG P INSTA	LLAT	ETAILS CAPACITY DISCH. PRES COMPR. SPEE NO. IMPELLE TOTAL WEIGH TON SUMMARY DIRECT FIELD MAN-HOURS	S D S	3773.10 488.20 12365.00 1 33400	B378 CFM PSIG RPM LBS LBS	300 1
: :	: MATERIAL : INLET PRES : DRIVER POW : INLET TEMP : DRIVER TYP : INSTALLATI : ACCOUNT	CS S. ER E MOTO	243.10 3277.56 109.70 R	PSIG HP DEG F INSTA	LLAT	2 I ETAILS CAPACITY DISCH. PRES COMPR. SPEE NO. IMPELLE TOTAL WEICH TOTAL WEICH TOTAL WEICH ANN-HOURS	S D S S S S S S S S S S S S S S S S S S	3773.10 488.20 12365.00 1 33400	B378 CFM PSIG RPM LBS LBS LDIREC DLS	300 1 : : : : : : :
: :	HATERIAL HINET PRES DRIVER POW INLET TEMP DRIVER TYP INISTALLATI ACCOUNT EQUIPMENT PIPING	CS S. ER E MOTO	243.10 3277.56 109.70 R	PSIG HP DEG P INSTA MAT'L DLS	LLAT	2 I ETAILS CAPACITY DISCH. PRES COMPR. SPEE NO. IMPELLE TOTAL WEICH TOTAL WEICH TON SUMMARY DIRECT FIELD MAN-HOURS 1029 0	S S S S S S S S S S S S S S S S S S S	3773.10 488.20 12365.00 1 33400	8378 CFM PSIG RPM LBS LDIREC DLS 1713679	300
: : :	MATERIAL I INLET PRES DRIVER POW INLET TEMP DRIVER TYP INISTALLATI ACCOUNT EQUIPMENT PIPING CUIP, SITH	CS S. ER E MOTO	243.10 3277.56 109.70 R	PSIG HPDEGFINSTA	LLAT	2 I ETAILS CAPACITY DISCH. PRES COMPR. SPEE HO. IMPELLE TOTAL WEICH TOTAL WEICH ANN-HOURS 1029 0	S D S S D S S D S S D S S D S S D S S D S S D S S D S	3773.10 488.20 12365.00 1 33400	B378 CFM PSIG RPM LBS LBS LDIREC DLS 1713679	300
3 3 3 3 3	MATERIAL INLET PRES DRIVER POW INLET TEMP DRIVER TYP INISTALLATI ACCOUNT PUPING CIVIL,SITE STELLWORK	CS S. ER E MOTO	243.10 3277.56 109.70 R	PSIG HP DEG F INSTA T MAT'L DLS 75600	LLAT	2 I ETAILS CAPACITY DISCH. PRES COMPR. SPEE NO. IMPELLE TOTAL WEICH TION SUMMARY DIRECT FIELD MAN-HOURS 1029 0 0	S S S S S S S S S S S S S S S S S S S	3773.10 488.20 12365.00 1 33400	B378 CFM PSIG RPM LBS LBS LDIREC DLS 1713679	300 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
:	MATERIAL INLET PRES DRIVER POW INLET TEMP DRIVER TYP INITED TYP IN	CS S. ER - E MOTO ON	243.10 3277.56 109.70 R	PSIG HP DEG F INSTA MAT'L DLS 75600 0	LLAT	2 I ETAILS CAPACITY DISCH. PRES COMPR. SPEE HO. IMPELLE TOTAL WEICH TOTAL WEICH ANN-HOURS 1029 0 0 0	S D S S S D S S D S D S D D D D D D D D	3773.10 488.20 12365.00 1 33400	B378 CFM PSIG RPM LBS LBS LT13679	300 1
	MATERIAL I MATERIAL I NILET PRES DRIVER POP DRIVER TYP I HISTALLATI ACCOUNT EQUIPMENT PIPING CIVIL, SITE STELLWORK I ISTRUMENS I ELECTRICAN	CS S. ER E MOTO ON EWORK	243.10 3277.56 109.70 R	PSIG HP DEG F - INSTA F MAT'L DLS 0 0 0	LLAT	2 I ETAILS CAPACITY DISCH. PRES COMPR. SPEE HO. IMPELLE TOTAL WEICH TOTAL WEICH TOTAL WAN-HOURS 1029 0 0 0 0	S D S S D D S D D D D D D D D D D D D D	3773.10 488.20 12365.00 1 33400	GTM PSIG RPM LBS LBS LBS LT713679	7 : : : : : : : : : : : : : : : : : : :
	MATERIAL I MATERIAL I INLET PRES I DRIVER POW I INLET TEMP I DRIVER TYP I INSTALLATI I ACCOUNT I EQUIPMENT I PIPING I CIVIL, SITE I STEELWORK I INSTRUMENT I ELECTRICATE I INSTRUMENT I ISSTRUMENT I INSTRUMENT I INSTRUMENT	CS S. ER E MOTO ON EWORK	243.10 3277.56 109.70 R	PSIG HP DEG F - INSTA F MAT'L DLS 0 0 0	LLAT	2 I ETAILS CAPACITY DISCH. PRES COMPR. SPEE HO. IMPELLE TOTAL WEICH TOTAL WEICH TOTAL WAN-HOURS 1029 0 0 0 0	S S S S S S S S S S S S S S S S S S S	3773.10 488.20 12365.00 1 33400	GTM PSIG RPM LBS LBS LBS LT713679	300 1
	MATERIAL I MATERIAL I NILET PRES DRIVER POP DRIVER TYP I HISTALLATI ACCOUNT EQUIPMENT PIPING CIVIL, SITE STELLWORK I ISTRUMENS I ELECTRICAN	CS S. ER E MOTO ON EWORK	243.10 3277.56 109.70 R	PSIG HP DEG F - INSTA F MAT'L DLS 0 0 0	LLAT	2 I ETAILS CAPACITY DISCH. PRES COMPR. SPEE HO. IMPELLE TOTAL WEICH TOTAL WEICH TOTAL WAN-HOURS 1029 0 0 0 0	S D S S D D S D D D D D D D D D D D D D	3773.10 488.20 12365.00 1 33400	GTM PSIG RPM LBS LBS LBS LT713679	7 : : : : : : : : : : : : : : : : : : :
	MATERIAL I MATERIAL I NIVET PRES DRIVER POR I NIVET TEMP CRIVER TYP I HISTALLATI ACCOUNT EQUIPMENT PIPING CIVIL, SITE STEELMORK I HISTAUMEN I HISTAUMEN I ELECTRICAN I FAINTING TOTAL DIR	S. CS S. ER C. E MOTO ON EWORK FATION L	243.10 3277.56 109.70 R	PSIG (HP) DEG P INSTA C MAT'L DLS 75600 0 0 0 0 0 0 0 75600 0 75600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LLAT	2 I ETAILS CAPACITY DISCH. PRES COMPR. SPEE HO. IMPELLE TOTAL WEICH TOTAL WEICH TOTAL WAN-HOURS 1029 0 0 0 0	TEMS, F S D C R C T D LABOR DLS 38079 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ACH DLS 3773.10 488.20 2365.00 1 33400	B378 CFM PSIG RPM LBS LDIREC DLS 1713679	300 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SER EO			DOR-CONDENSA	DUK		,	-	I COM SI	• • •
	UIPMENT TAG: I	EA-01/0	2				ST: DLS		
							EACH DLS		00
	TUBE MAT'L				TRANSF. ARE				
	SHELL MAT'L				TEMA TYPE			21	
	SHELL PRESS.							DEC E	
	SHELL DIA.		56 00 THENE		SHELL LENGT	Let	34.00	FFFT	:
	TUBE PRESS.								
:	TUBE PARSON		1.00 INCHE	· 5	TUBE LENGTH		20.00	FFFT	:
:	TUBE DIA. TOTAL WEIGHT		44400 LBS	_	:		20.00		
			*****		•				
_			INSTA	LLA	TION SUMMARY				
	INSTALLATION		DIRECT MAT'L	. :	DIRECT FIELD	LABOR	: TOTA	L DIRECT	
	ACCOUNT		DLS	:	MAN-HOURS	DLS	:	DLS	
-	EQUIPMENT		212200		102	3771		215971	
			0		0	0		0	
	PIPING					_		o.	
:		RK :	0	2	0	0			
:	: PIPING : CIVIL,SITEWO : STEELWORK	RK :	0	:	0	. 0	:	ŏ	
:	CIVIL, SITEWO			:				0	
:	CIVIL, SITEWO STEELWORK		ō	:	ō				:
: : : : : : : : : : : : : : : : : : : :	CIVIL, SITEWO STEELWORK INSTRUMENTAT		a a	:	0	. 0	; ;	ō	:
: : : : : : : : : : : : : : : : : : : :	CIVIL, SITEWO STEELWORK INSTRUMENTAT ELECTRICAL		0	:	0	. 0	:	0	

REFERENCE NO: 109 ENFRIADOR DE AJUSTE CATEGORY/TYPE: HE /FLOAT-HEAD USER EQUIPMENT TAG: EA-03 ESTIMATED COST: DLS ----- ITEM DETAILS -----: TUBE MAT'L A 214 : SHELL MAT'L A285C : TRANSF. AREA 4475.00 SF : TEMA TYPE AES : SHELL PRESS. 150.00 PSIG : SHELL TEMP. 650.00 DEG F : SHELL DIA. 41.00 INCHES : SHELL LENGTH 23.00 FEET 150.00 PSIG : TUBE TEMP. : TUBE PRESS. 650.00 DEG F 1.00 INCHES : TUBE LENGTH : TUBE DIA. 20.00 FEET 26400 LBS : TOTAL WEIGHT ----- INSTALLATION SUMMARY -----: INSTALLATION : DIRECT MAT'L : DIRECT FIELD LABOR : TOTAL DIRECT : ACCOUNT : DLS : MAN-HOURS DLS : DLS : -------------

0

: TOTAL DIRECT COST: 66300 : 41 1499 :

: PAINTING

0 0

REFERENCE NO: 110 TANQUE DE SUCCION CATEGORY/TYPE: VT /CYLINDER USER EQUIPMENT TAG: FA-01 ESTIMATED COST: DLS 111000 ----- ITEM DETAILS -----17700.00 GALLONS : : SHELL MAT'L CS : CAPACITY 10.00 FEET : HEIGHT 30.00 FEET : : DIAMETER 111.00 DEG F : DESIGN PRESS 248.10 PSIG : DESIGN TEMP. : APPLICATION RECVR : THICKNESS 1.25 INCHES : 64600 LBS : TOTAL WEIGHT

Ξ.			INSTA	T 7.8	TION SUMMARY				
:	INSTALLATION ACCOUNT	: DI	RECT MAT'L		DIRECT FIELD MAN-HOURS	LABOR DLS	:TOTA	DIRECT DLS	:
-	EQUIPMENT		111000	- :	148	5470	:	116470	
:	PIPING	:	0	:	0	0	:	0	1
:	CIVIL, SITEWORK	*	0	:	0	0	1	0	
7	STEELWORK	2	0	:	0	0	:	0	÷
:	INSTRUMENTATION	: :	o	:	0	0	:	0	1
:	ELECTRICAL		0	:	0	0	:	0	:
:	INSULATION		0	:	0	. 0		0	1
•	PAINTING	:	0	ı	0	٥	1	٥	1
-	TOTAL DIRECT CO	57.	111000		14B	5420		116470	

REFERENCE NO: 111 TANQUE DE REFLUJO

CATEGORY/TYPE: VT /CYLINDER

USER EQUIPMENT TAG: FA-02

ESTIMATED COST: DLS 147800

_									
_			IT	EM D	ETAILS				_
:	SHELL MAT'L C	s		:	CAPACITY		9600.00	GALLONS	:
Ξ	DIAMETER		B.50 FEET	:	HEIGHT		22.50	FEET	ŧ
ŧ	DESIGN TEMP.	14	9.40 DEG F		DESIGN PRESS		479.00	PSIG	1
:	APPLICATION R	ECVR			THICKNESS		2.00	INCHES	1
:	TOTAL WEIGHT	6	8000 LBS	2					1
2									:
-			INSTA	LLAT	ION SUMMARY -				
:	: INSTALLATION	: DI	RECT HAT'L	. 1	DIRECT FIELD	LABOR	: TOTA	L DIRECT	:
;	: ACCOUNT	,	DLS	1	RAN-HOURS	DLS	:	DLS	=
•									
	: EQUIPMENT	:	147800	2	114	4229	:	152029	:
	: PIPING	1	a	:	٥	0	:	٥	I
	: CIVIL, SITEWORK	٠:	0	:	0	0	1	0	I
	: STEELWORK	1	٥	1	O	0		٥	:
	: INSTRUMENTATIO) :	0	;	0	0	:	0	:
	: ELECTRICAL	:	0	1	0	0	:	0	1
	: INSULATION	:	0	=	٥	0	:	0	:
	: PAINTING	:	0	:	0	0	1	0	:
	: TOTAL DIRECT !	COST:	147800	:	114	4229		152029	

REFERENCE NO: 112 BOMBA DE REFLUJO CATEGORY/TYPE: CP /CENTRIF													
USER EQUIPMENT TAG: GA-03		ESTIMATED CO	T: DLS 5200										
	ITEM	DETAILS											
: MATERIAL CS		: CAPACITY	162.50 GPM :										
: HEAD 194.04	FEET	: DESIGN TEMP.	109.67 DEG F :										
: DRIVER SPEED 3600.00	RPM	: DRIVER POWER	13.25 HP :										
: DESIGN PRESS 236.00	PSIG	: DRIVER TYPE MOTOR	:										
: SEAL TYPE SNGL		: TOTAL WEIGHT	570 LBS :										
:			ı										
	INSTALLA	TION SUMMARY											
: INSTALLATION : DIRECT	MAT'L :	DIRECT FIELD LABOR	:TOTAL DIRECT :										
: ACCOUNT : 1	DLS :	MAN-HOURS DLS	: DLS :										
: EQUIPMENT :	5200 :	20 749	: 5949 :										
: PIPING :	0 :	0 0	: 0 :										
: CIVIL, SITEWORK :	O :	0 0	: 0 :										
: STEELWORK :	0 :	o c	: 0 :										
: INSTRUMENTATION :	0 :	0 0	: 0:										
: ELECTRICAL :	0:	0 0	: 0 :										
: INSULATION :	0:	0 . 0	: 0:										
: PAINTING :	0 :	0 0	: 0:										

: TOTAL DIRECT COST:	5200 :	20 749	: 5949 :										

ANEXO A-3 ESTADO PROFORMA

(331 495 T (6\11 485

(o)(frip			National Print	19100	141	ele:		4601	46.1	sters	1411	ller	140+
· Mallata Mines													
et nao													el sit sek
HAPINOMERINA H D U	•	(M) (b)) *4- 	p.==+	Spengi graft	in the mil	termin pop	integen,	أرحو أجواءه	Section 2	tern ed.	५ ००म व्यक्त	14101 201
(A)P (M)PEOPLE NO	•	MIN)55-00	-	વલમ	444	мены	And es	444	464.65	4414	4494	444,98
*if#					•	•	•	•	••	•	. •	•	•
ल हमा ला १ (रो घर विशेषका)													
C OF IT CASH BY ONE IS A PERSON WA	100		****	17-	•	•	•	•	•	•	•	•	•
htt					•	. •	•	•	•	•	•	•	•
! NEW RISH SELECT													
fa figure													
S ICC CONTRIBUTION	W	114	25734	.,.	1+pr/mi	I a po lan	145.64	149-44	Fabritati	\$44-10	Pales et	1444	toler fee
HIROTOPE	**	114,746	4	0 mbe	13414	1,74 00	17400	Care	1,747	17414	13400	13494	17-10-
444													
to tea that to have to be	w	21340	6,292.134	e the	457 00	172	1477 448	6175.000	497.00	4.500	6177.00	(C)	6 1/1/m2
HATTER BOTH	14A 1.E	129	ja in jarihi	1127	141 PK	(1421)	i) we	11	14-00	1-13-44	\$4(44 ⁶⁴	i and and	144
441					l) just made	يسدهن ال	(()-ory	***************************************	-	t _f joe was	بسمحاز ال	1) Joseph	فسم منز را
1 (1985) a salience y line of (2012)					(September 1)	بمعرن	el Names	فسنسؤ وا		(I)-rang	 دن	prenetty	لسمسترية
· COMPANY MEMORY													
ny nimendra many (ive. ni ci) A-tang paganta ni kina di kanana nanana					H.SM	7130	14,544	14.54	,	-	->-	1134	***
Through great to the first of the	(4/16/0		(A) Carich	(ob iço									
or of standa	; 		(f====	lamo) a mag	Hea	34.00	19 ***	11 000	leav	1g was).ee	line
CHANGSOM MAZIN	144		(1 mare)		to our			\$4,000		-	-		***
edynamical inspir	(***		(1 mm)	1) ***	11,00	()-e	. 000	(1	11,000	1,	11,000	i),==	11,000
will be statistical search to excellent					Self-man	***	-1-	»'	*1***	-	941-04	prime.	p) me
HORESPRONGED A													
	14/10/0	(stices)	totales	(to give									
teralistrian in the garactit		***	******	•	•	•	. •	•.	•	•	•	•	•
INTESPRISING HEM L					•	•	•	•	•	٠.	•	•.	•
PARATBA	trang	(Newsys	(/min/m	1901/2019									
1()(40													
nds (w)		4431	711144	7144	44.00	41.5%.511	44.0	44.4	11136-27	40.00	415.41	4484	40.0
1941/ft		1***	Hiller		50534	215.4	110.00	2115.54	7105	315.94	319.34	71534	21176.54
*# W													
H. M. P.		744	4445	2000	520%	200	4994	200	3275	50054	2005	52254	50004
100 F 1/4)	,	174	er Ih	N ****	134 94	2 54 34	1999		4 LA 14	-	124	136534	144

	HELVIN	er i yo		-13	:***	-		E ed an	REM	10 mg to2	ENTH	Ti ani ang	RMM	17 747 848	1) 10) 340	REM
	· INTH							nagst.	RWIN	nui.es	14 177 14	0.0524	0.0034	910257	0.0050	0.105.62
											•					
			•													
								- 1.14								
							* .						•			
									* .		17.5					
	,															
				٠,									4.1			
												100				
				•												
		•														
		. •					Ġ.,									
							٠.									

1451 WOS 5 (845EMB)

				144							
(0)(1)10)	e late pa	dan	4010	dan	ain:	dest	ale m	sin1	2601	- 46074	A SEP 3
· Well delt MANA											
11 41 911											
A II of Land to Land Land	fetaci prol	interi equ	det by page	tabel mi	ging ping finally	أراحيا هيا	lateral seat	iantes	Section 2 and	MAIN	trait at
HP FILE HIM I'VI	+++12 441	4444	54 H 162	पदा 😡	No. 10	HHIM	HefA	4414	444.64	1400.41	481.43
······································	•	•	•	•	•	•	•	•	*:	•	•
4.08157 [4744 41991]											
Control of the state of the sta			•		•	•	•	•	•		•
70844		•	•	•	•	٠	•	•	•	•	•
CHARACTERIS											
14 8 90											
eren en famicalisto	1 419 lgg 1 (44 aug	Tate has	Line and	1,54,00	Libraria Libraria	1394.98	late/m http://	laje tet I jesao	1,5494	lands.	100130
								,	.,		
N II 4. N MAY IN PARTIES NO. TO	e titleag	4177.00	ec-	457-4	ere.	477.00	4777 avs.	45.00	417744	4157.000	417744
COLUMN TO STATE OF THE STATE OF	1414341	11014	teres.	Califoli	1409	1011301	114444	14(1)**	lesse*	141114	1916104
HILLOW BUD))	11 104	11	11	31	11	Ja wan	Her	31	71***	71,
inter	-	فحد ماز را	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	el personal	وسموار	P. Swins	-	430-4	ومعجزاة	45 June 1944	97000
- Control Supredict teller as entitle	-	يسمعيز زا	el (61.) m. 144	ومومار از	يسوهز او	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	بحديث زا		-	-
- Lestista seraian											
namentalization	e 50	27.344	10.70	24.54	ja)us	1174	11/10	-		pa (ma	25.70
HERITAN HOME AND THE											
weight date of the stan											
ATT OF PLANTS	-1-4	le man	400	1,00	Non	30	James .	34,044	u.	Li mar	Non
PZZ NEBOJE ILENO	****		-	-				10.00		4.44	
- ex a spirit guardia and a	D and	11.00	§1mm	į t was) faces	11-00	lac	1100	() week	11,000	1200
HALF ALCOHOL THEFT IS IN THE	14.7	-1-	p.)	p=1 mm	9n! was	****	pal our	pter.	p-1 mm	\$1 ³ may	M-
- in a close of the Art											
Complete from (ii) she but mout	•	٠	•	•	•	•	. •	٠	• 1	• .	•
eig un Kankiji G i										•	
· partecond											
H P MA											
reg (M)	1,1541)	4 12 19	41694	41518	ti ek sti	44619	44824	44.00	44.00.00	dered	9460
7-F140	31554	71175	21455 54	315.54	915 W	aiss	202	31574	3105.54	217.54	51534
484											
Helita	5.7554	>:"**	527.61	pe (1) % a	W17744	97794	9.77, 44	*******	34,117.54	30,77.44	MITTER
MANA	# PU 25	1949		144		-	124	1 10 14	120	13474	,04

wite no wood no	12 M2 M4	9,80%	REM	n m m	HHM	12 March	2 PC NO	driver.	12 Pg 84	9.5050	ÇKM
mrt.	0.00.54	11,0134	1138,34	H 172.54	0.0534	11.02.50	11.72.34	HJ1;34	0.0574	0.9250	11,333,343

COSTA TOTAL DE PRODECCION

4 8151248 1				N 149									
I westrate Heres			14113 für 11	Di Veria	1911	وجاه	4611	1601	(Gr)	4600	Nat .	ain.	1601
rt fram												٠	
PATRICULAR SAN	•	inter	11.7°4 may	-	Secure of	•	•	•	•	•	. •	•	•
Land for langed on		wip)) ** ****	A-m	4444	•		•		•		• "	• ;
MIN					•	•		•	٠.			•	•
ar rescues called another													
Littling to the population with	10%			e'en ee	•	•	•	•	•	•	•		•
sel st					•	•	•	•	•	•	•	٠	•
· NAMES OF SECURE													
H 30 MI													
11214 BR 1116 SP 514 11214 BR 814	L.	4 44. 44	1-3	***	(,ites	1,400	1 mm	Districts Districts	1,5100	17Mars	()mer	150) (44 Sec.
4114													
et ann ein Continue zum	41	34404	4,941,44	***	411194	2177.00	412744	11/1 ma	\$115.00	45744	i di m	***	4577,004
talianmaniafitations.	lin.	1231	(minks	101	(4) per	14111	11/221	1100	1544	141114	14114	Han	103744
11/11/14/2014		*1.*1	(•••								,	
HOT M					to product	** *******	ty 'en sed	,·	قصمر زا	فسمير ال	(1)	ومحمور او	لسدمنز وا
- Toward & estimate lostel to said.					1	11 Jums	10 0000	,:	,) ~~~	فيطهرانا	1170004	يستهزاه	is yes end
I (150m b) property													
i. showfly know. Will					10° 100	20.5m	je jes jed mit	,	je te	94 3a	. pojen	pajes.	
TOTAL BEAUTIFUL TO CONTRACT OF THE													
Estal arterna constituta natura					100	,,	14.4	1	1.	,	15.54		135300
Courtestan firther					,	•	•	•	•	•	•	•	•
red or transparence as a brat name					15.54	15.54	65.50	6.4	15.56	15.34	15.5m	15.54	15.74
ten tellyamenta					14 -	H-	111-00	ji (mag	1,144	(9)-44	l)/w	151 104	14
LOW COMPANY IMPROVED					*11#	307m	2134	(** / *	25.00	,107 Tes	N1:44	2974	pile
COPOLAR													
MANIS M R Wite Result (資本的 - Mexite					· MIN	Mai	P129	F*.**	pd (1)	142.74	40,53	MIN	P120
Prince (Battle)					544	Self	411	441	~ ut	~*15	440	541	± m3
10°-11'10 - \$6.79.91.3													
CONTROPPORTER PA					71.4	44.00	14,140		ad has		44	41,04	el las
total carbantan					3447	344,71	7047	Seeds	See 1	30007	300 4/3	34477	34437
· costo tota is figo 14 mon					4,14,14	amer	etura	613.65	270 PS	63315	grans	emm	675.08
, e en sai la é, en la et													
MERCHANNES PRINT]H 64	***)# * *	;n ==	>	;n	700 bas	;« 	2h #**
hold Culcinia Callin					;m	74.04	29.64] p= #44	780 Pm	200 000	;n ac	200 PM	70.00
· Industrial Conserves					g en eng	p* to: 444	لمدمم را	1***imq	1,	ار مدمم	Calmi	,	S. separat

faring that he concession

1411118											
I WARRING PRINTS	din	(in)	(4)	4 fairt	t (n) i	2644	t San pa	stee er	· tiens	464 10	tin s
fi fi mi Tare qua praemi un U li U Princi l'Al-Route pui			:			•	•	•			•
tulet									:		
GUNERAL CALAMANIANS											
Extraction and the legitimetry											
bild											
: Nava eq 11 / points											
IN THE O THE REAL AND PARTIES AND AND ADDRESS OF THE OWNER, THE OW	11044	(100 MI	East by	(100 MA) (2010 MA)	109/44	Injeres	(Mari	1 to) + (m */se) *** + m**	100°44 ()406	1.6.4
er til sig na står e der forfikassen også da å ståren begg frin karte	erene majer	1411144 141144	alifer later	2127aug 2447311	d C ⁴ ma Seldara	1477	6 777 mail 2 842 644	1177 ma Install	ations tolered	(177m) (417m)	elijiwa Incert
3-EILCLES Mont	-1	****	.,	1,44	4-	4	4		n	11	1100
intel	S. Johnson	(C) Section (is beaut	i) jes maj	() See and	پسمج ان	In particular	() See and	1,500	J 5	1)
* (m)in tabulation of non	.: >	t years	11 jungang	,,	41 See seen	يسدمور دا	11.50	فستردئ	بسعزا	بسعجزا	43
E FAR SE DE HALLE AL DA											
entarianistralia (encinta) entarializaten	P.36	14° 340	14 No.	P'es	10 Jun 207 ann	Prime Prime	91°40	# (m.	p)-a	bjes hjes	pa jun pa tun
INSTANCE INSTANCED IN THE	15.74	174.54	439.54	15-54	15.54	134.54	G-3m	1954	150	150.50	15050
Columnate of Sea	•	•	•	•	•	•	•	•	•	•	•
letel according to the first terms.	15.54	65.50	151,340	15.50	(5-5m	D-2-	15.54	1839	120.300	1505	13030
D-AVARIAMEND	lyt ner	14	111-	111-44	I ⁴ I+ 44	14	111-0-	Fq.+e=	(lipes	112-04	*11***
NIA (GISE MATERIA	,911 a	js1 s a	2114	212 Nam	, et 144	3413 3 4	251M	900	(1) lan	513=	550
CATHATINA											
PENER BEHAVE	m1 11s	917N	#1;h	H1219	#17N ·	F*?*1	P129	6379	P2.33	P1.74	HTC1
arrow parent arrano si Mari	Sin	411	4.0	4.10	4. +52	-117	****	~117	~ ≥17	Sel	44.
CONTRACTOR MAN PARK STA	****	9114	2413		****	212	** 150	414		4112	****
SOUND EASTON FRANK	364.01	(max)	300311	797479	brett	See	30007	Section	See All	34.43	34+31
· Itelianete fallro in seen	0.000.000	81205	62816	02005	0000	47770	67000	27505	61000	6200	emma
PERSONAL PROPERTY.											
INSTRUCTOR S S COM	716.64)H ba) pi am	710 844	710-24)11, 00)18 pm	29.64	.14 th) ps pas]# +-
HART E NAME OF B SPECIAL	;n 🏎	;n ==	79.04	710 800	;n	7H 4m	;u 🖦	;u ===	210 ma	**	239.84
I CINE CHILL IN PROPERTY	C sal med	5 m)	C. proj. stead	T _i ter many	To see the	5, 41, 114	ومعدامة زو	Sam	E, private	-	Serve

Cifital Dt 14484)0

	ı.	da:	4611	ilit alia	2(41)	250	161	, tare	4400		(inte
			100	****		****	,	,	1	1-11	
HEROLETUR	tort	647	5417	141	191	Jed.	991	140	set.	. 141	1-17
CONTRACTOR OF THE CONTRACTOR O	\$14.mm	?h.per	73.00	36.00	234,664	230,000	74.00	Theyest	; in see) la para	:M
Martine Marte											
OF PARTIES CALLES AND ADDRESS.						•					
resect 10 to 140 habit	in this	15 MH	(All n	Par 11 Hz	(*.151)	pla. Ipty	19,70	194 7714	29.700	pie frij	14.719
reintare face	•	•	•	•	•	•	•	•	•	•	
Contstat tareas	pa 34	10.54	IM.M	100 (54)	120 PM	# 34	pa 34	100,740	m 24	100.54	100 540
contrast the sympletistic	346,744	•			•	•				•	

Curital or 18 anala

	(MI)	1441	ria p	45015	464	اونهاه	1/m H		1915
alle Implication	147	647	EM7	£167	141	191	1,47	191	141
HISTORIANIA	(burn	79-995	79.00*	75.000	; hart	(base)	, b.me	50 mm	. Ihme
MESTARA									
WITHERE					•	•			
HEAD ATT HEIGHT					•				
PRINCE OF BRIDE HEET	196 7191	19.70	p= 700	P= 746	i- Hill	4-7170	(% hij	4% 700)	** **
HINKSON	•	•	•	•	•	•	•	•	•
- 1919 42 43 444 444	~~	~~ →	m ~	po ~		, ww.	m ~1	M.M	16.71
I MIN R BOWNSHAM				•	•	•			

137.250 PROFESHA BE ELSTITABEL

17.77-7701-146 # 1171111101

101(1416	7(1)	101	1(4)	460.	400	içar	1501	1610	410+	407	15011
LEAT of BRITAS	angsi	0.08520	B11234	41.01.70	11)(13)	11,912,54	02254	0.99290	0,9134	unest	11.00254
man (start (count s (s) s)	•	•	•	•	•	•	•	•	•	•	•
states to	107557	may M	need	инум	HITTH	0.0234	0.0250	umst	03050	1000 50	0.9254
times state and securities	emen	anne	emm	ames	4000	depen	enten	0.0000	42275	01203	emps
TOTAL FAMILY IN CAPITAL	(Île Per	£14 844	67 P. Proj	1,14 644	lin set	1770 800	1719 244	1211 200	Ca see	1218.044	Cap sed
i Tarpid MrTi	1 74 50) hij we	= =1 +++		174	1 144 444	1 *1-4	1,711	T just mit	174	8 Juli was
HIPE ESTAGES REPORTED L'ARCHIMINELE	•	•	•	•	•	•	•	•	•	•	•
(Incomit	-	-	عبد إما و	1 305 200	1,74,100	2 hay man	1 1-1	هي زيدا ع	1 341 344	-	g by pub

SECTION PROPERTY BE PERFETANCE

Mark 2

********	1(01)	£G157	don	460	(in a	45011	460 m	400	1603
usignitis	0.052	ilin es	prospi	0.050	0.0254	a 111.54	69752	0.0256	0.05%
MALININ MARK TATA	•	٠	•	•			•	•	•
ustants	n ar ju	pppN	104294	11 11 2 5 5	0.0053	H U; 53	0.0354	0.0250	0.0250
CONTRACTOR IN FINE OF PROPERTIES.	g12395	amen	grans	02205	quins	01203	* emms	eters	emp
SOLAL CONCARDS CARES	Co and	gu en	rin seq	i'r 🛶	£28 Per	c'm pag	1/10 Ped	etu 🗝	6299 8044
TEED 10 MH 14	1,741.00	£74(to 4	1 144 444		S beques		-	134	
PARTITOR'S REPORTED PROBABILITY				•					
i fantips(ti	. 44	1,3+(104	-	-	1 H		174	4,049,004	ميد پيد و

antenn pananama ust strin pr stifften

******	şiv.	į.	4607	A\$4+1	46.1	ela:	4614	,U, t	. (54)	1614	1 (4) pe	Hest	4501)
Missan	11 to 164											· .	
s while of largest	100 74												
(Maidwile		8 3×2 per	I wywe	1 PH w	. = -	-	a hel and	2 Jul 140	\$ Per sent	à les une	4 pel en	174	3 741 md
oriese sentiti er (4 telen de terese													
4 YOURS OF A PAIGNE		710 000	;u 🗪	/10 244	(Water	'M ***	790 000	79 00	760 p.e.	794 pag	. 200 pm	(H)	10 04
art page (11) dese	44444	Laborated.	1 440 (1)			14814	deposits.	2 m/m g 64	549-1-1	6-p-174	E-10174	Fem (7)	\$ spr 471
nithia niffiend at qu	49905	1+++1 *	19 194 (14	*****	is the Ter	4: ptp. / f	موسوا	-	****	P.M.35		400 65	P (*14)

INDINIBACIO PROPERINCA

Start Bullian INTERNATIONAL PROPERTY.

THE RESIDENCE

CHARGE PREMIUM NAME AND ADDRESS OF

CELTURA LEMINARAS MIS TARIBLE ESCRIP

*******	ددجاه	1411	1607	tion	44017	atem	****	ورماه
ncom								
E NICHOLOGO SECOLOGO E SECOLOGO SECOLOGO E PEROPERTO DE CENTRO E PEROPETE DE LEGION	مويه ر	1700	1	120	144	144	140	2 (4) (4) (44 (5)
HENDE SHEWR	; (6 Au 1 apr (1)	(6 to 1-1-414	20 m 1 min 20	() Fam.	710 mm. 0 1991 (56	716 64 81 84 81	74.00 148.14	76 Pe

CONTRACTOR STREET

KRAMERICKERA

twell mattainer.

.

ANEXO A-4 CÁLCULO DE COSTOS DE OPERACIÓN Y DE SERVICIOS AUXILIARES POR BARRIL PROCESADO.

Anexo A-4

Cálculo para obtener el costo de servicios auxiliares por barril procesado anualmente :

Caso Actual:

Csa = Dtsa / Bca; Csa = 6'174,492 / 3'356,100 = 1.839 USD/Barril

Caso Propuesta:

Csa = Dtsa / Bca; Csa = 2'905,393 / 3'356,100 = 0.865 USD/Barril

Csa = Costo de Servicios Auxiliares por Barril Procesado Anualmente (USD/Barril).

Dtsa = Dólares Totales de Servicios Auxiliares por Año (USD/ Año).

Bca = Barriles Consumidos por Año (Barriles/Año).

Cálculo para obtener el costo total de operación por barril procesado anualmente :

Cto = Dto / Bca

Cto = Costo Total de Operación por Barril Procesado Anualmente (USD/Barril)

Dto = Dólares Totales por Operación Anual (USD/Año)

Bca = Barriles Consumidos por Año (Barriles/Año).

Caso Actual:

Cto = 60'312,999 / 3'356,100 = 17.97 USD/Barril

Caso Propuesta:

Cto = 57'043,900 / 3'356,100 = 16.99 USD/Barril