

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE CIENCIAS

DISTRIBUCIONES EN ESTADISTICA CIRCULAR

T E S I S
QUE PARA OBTENER EL TITULO DE:
A C T U A R I O
P R E S E N T A :
MONICA ANGELES VELAZQUEZ

DIRECTOR DE TESIS MAT. MARGARITA E. CHAVEZ CANO

MEXICO, D. F.

TESIS CON FALLA DE ORIGEN EAR CHECKER CONTROL OF THE CONTROL O

1997

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

M. en C. Virginia Abrin Batule Jefe de la División de Estudios Profesionales de la Facultad de Ciencias Presente

Comunicamos a usted que hemos revisado el trabajo de Tesis:

"Distribuciones en Estadística Circular"

realizado por Angeles Velázquez Mónica con número de cuenta 8929703-4, pasante de la carrera de Actuaria. Dicho trabajo cuenta con nuestro voto aprobatorio.

Atentamente

Director de Tesis

Propietario

Mat. Margarita Elvira Chávez Cano

Propietario

M. en C. Beatriz Eugenia Rodríguez Fernández

Propietario

Dr. José Rodolfo Mendoza Blanco

Suplente

Mat. Vinicio Pérez Fonseca

Suplente

Act. José Manuel Morales Corres

Consejo Departemental de Matemáticas

Act. Agustin Roman Aguilar

The Part of Charles were and

~1 ***

AGRADEZCO A LA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO HABERME PERMITIDO SER ESTUDIANTE DE ESTA ALMA MATER Y POR HABERME ABIERTO LAS PUERTAS PARA LABORAR EN ELLA.

A LA FACULTAD DE CIENCIAS: EN ESPECIAL A LOS PROFESORES QUE ME TRANSMITIERON SUS CONOCIMIENTOS.

A LA MAT. MARGARITA E. CHÁVEZ CANO: ESTOY AGRADECIDA POR EL APOYO QUE ME DIO AL ESTAR REALIZANDO ESTÁ TESIS, POR SU PACIENCIA Y POR HABERME TRANSMITIDO SUS CONOCIMIENTOS.

> AL CENTRO DE COMPUTO, EN ESPECIAL A MI JEFE, EL ING. JORGE LEÓN QUE ME ESTUVO APOYANDO EN LA REALIZACIÓN DE ESTA TESIS.

A MIS ABUELOS:

BERNARDO ANGELES Y LEONILA DE ANGELES POR HABERME DADO FUERZAS PARA SEGUIR ADELANTE.

A MIS PADRES:
JUAN MANUEL ANGELES Y
AMALIA DE ANGELES POR
HABERME DADO UNA EDUCACIÓN
Y POR HABERME APOYADO EN MIS
DECISIONES.

A MIS HERMANAS: ERIKA Y NORMA POR ABSTENERSE DE ESTARME MOLESTANDO.

> A MIS AMIGOS: ANGELICA, ALVARO, ARACELI, ADRIANA, CHIVIS, EDITH, LUCERO, MARU, MARTHA; POR HABERME HECHADO PORRAS.

A MIS COMPAÑEROS DE TRABAJO: POR HABERME AUXILIADO EN LAS LABORES DEL TRABAJO.

> Y POR ULTIMO A UNA PERSONA MUY ESPECIAL QUE NO HACE FALTA MENCIONAR, CON TODO MI CORAZÓN.

NO DESISTAS

Cuando vayan mal las cosas como a veces suelen ir, cuando ofrezca tu camino solo cuestas que subir, cuando tengas poco a ver pero mucho que pagar, y precise sonreír aún teniendo que llorar, cuando ya el dolor te agobie y no puedas ya sufrir, descansar al caso debes pero nunca desistir.

Tras las sombras de la deuda, ya plateadas ya sombrías, puede bien surgir el triunfo, no hay fracaso que temías, y no es dable a tu ignorancia figurarse tan cercano, puede estar el bien que anhelas y que juzgas tan lejano, lucha, pues más que en la brega tengas que sufrir jcuando todo esté peor, más debemos insistir!

Rudyard Kipling.

INDICE

NTRODUCCIÓN	V
Capitulo 1:Conceptos Básicos	1
1. Estadistica Circular	1
1.1 Representación Gráfica	2
1.1.1 Representación Gráfica para datos sin agrupar	2
1.1.2 Representación Gráfica para datos agrupados	2
2. Radianes	4
3. Muestra aleatoria	5
4. Medidas Descriptivas	5
4.1. Vector Medio	6
4.2. Dirección Mediana	10
4.3. La Moda	11
4.4. Sesgo y kurtosis	11
5. Propiedades del Vector Medio	12
6. Medidas de concentración	14
7. Varianza Angular y Desviación Angular	15
8. Estadísticas.	17
CAPITULO II: FUNCIONES DE DISTRIBUCIÓN	
1. Función de Distribución	19
1.1. Conceptos Básicos de una distribución	22
2. Momentos Trigonométricos	25
3. Estimación de Parámetros	28
3.1. Estimación por el Método de Momentos	30
3.2. Estimación por el Método de Máxima -verosimilitud	30
4. Función Característica	31

5.	Distribuciones Punto3	2
6.	Distribuciones Lattice	4
	6.1. Función de Densidad3	5
	6.2. Función de Distribución	6
	6.3. Propiedades de la distribución3	7
7.	Distribución Uniforme circular, U(0,2\pi)3	7
	7.1. Estimando el parámetro a por el método de máxima-verosimilitud.3	8
	7.2. Función característica de la distribución Uniforme $U(0,2\pi)$ 4	1
8.	Distribución von Mises4	2
	8.1. Su relación con otras distribuciones.	8
	8.2. Estimación por el método máxima-verosimilitud	i 1
	8.3. Estimación de los parámetros por el método de Schou	54
	8.4. Función Característica de una von Mises M(k,0)	55
	8.5.Función de distribución	57
9	Distribuciones Envueltas	58
	9.1. Propiedades de las funciones de distribuciones envueltas	59
	9.2. Distribución Normal envuelta N _w (\(\mu_1, \rho_1\))	51
	9.2.1. Función de densidad de probabilidad	62
	9.2.2. Función de distribución.	62
	9.2.3. Función Característica de la distribución Normal envuelta	62
	9.2.4. Propiedad aditiva de la función característica	64
	9.2.5. Su relación con otras distribuciones.	65
	9.3. Distribución Poisson envuelta	66
	9.3.1. Función Característica	67
	10. Distribución Coseno o cardioide	67
	10.1. Su relación con otras distribuciones	70
	10.2. Función de Distribución	71

10.2. Momentos Trigonométricos	72
10.3. Función Característica	74
CAPITULO III: APLICACIONES DE LA FUNCIÓN VON MISES	79
1.Procedimiento	79
2.Problema de precipitación pluvial	88
3.Problema del número de ocurrencias de la precipitación de 1"	(una
pulgada) o más	94
4. Problema de los "runoff"	98
5. Problema de porcentajes de muertes	103
6. Problema de precipitación pluvial en milimetros	107
Conclusiones	111
Bibliografía	113
TABLA DE NOTACIONES	115
APÉNDICE I	I
APÉNDICE II	xıx

INTRODUCCIÓN

os modelos probabilísticos son un aspecto muy importante del análisis. Si se puede ajustar un modelo de probabilidades a nuestros datos, haciendo una estimación adecuada de los parámetros en el modelo, entonces los datos pueden ser resumidos eficientemente utilizando la forma particular del modelo de probabilidad especificado por los estimadores de los parámetros. Ha sido sorprendente para nosotros el encontrar que los modelos de probabilidad no han tenido mucha aplicación a datos circulares por diferentes motivos.

El interés de la Estadistica Circular nace con el libro "Circular Statistics in Biology", de Batschelet(1981), a partir de esta obra se publicaron muchos artículos y varios libros especializados en el tema.

Los puntos distribuídos sobre un círculo son analizados por la estadística circular. Este tipo de datos ocurren en muchas aplicaciones de biología, medicina, geología, geografía, meteorología y física. Las observaciones de direcciones sobre un plano y de fenómenos cíclicos pueden ser interpretados como observaciones circulares.

De allí un tema central del estudio que se presentará en un futuro inmediato, son las Distribuciones en *Estadística Circular*, cuyo objetivo es mostrar las principales distribuciones con sus principales características. En ese sentido para que el lector pueda irse introduciendo al tópico, es necesario comprender algunos conceptos básicos como la muestra aleatoria, el vector

medio, la dirección mediana, la moda, la varianza angular y la desviación angular estos conceptos están dados en el CAPITULO I. Ahora bien para obtener algunos conceptos básicos es necesario conocer determinadas herramientas matemáticas como por ejemplo las operaciones entre los vectores, el estudio de las funciones trigonométricas, el concepto de las funciones Bessel y series de Fourier, lo anterior se muestra en el APÉNDICE I. Por otro lado, en el CAPITULO II se muestran las distribuciones más importantes de la Estadística Circular, por ejemplo la distribución Uniforme circular que es semejante a la distribución Uniforme de Estadística lineal, la distribución normal circular que es semejante a la distribución Normal lineal; ésta última fue introducida por von Mises cuando supuso que los cuerpos atómicos son enteros y están sujetos a un error y éste puede ser representado por desviaciones angulares, con su características más importantes como la estimación de los parámetros de la distribución.

Cuando se tiene una distribución sobre la línea y se envuelve alrededor de la circunferencia del círculo unitario, se obtendrá una distribución envuelta, llamada una distribución circular envuelta. En este capitulo también se muestran las distribuciones envueltas más importantes.

En el CAPITULO III se aplican dos métodos a los problemas que tienen una distribución Normal circular donde uno de ellos nos lleva a una distribución observada y el otro nos lleva a una distribución teórica, lo cual es importante hacer una comparación de las dos distribuciones para ver qué criterios convencionales pueden ser usados.

Los métodos son aplicados a los problemas de la precipitación pluvial, al número de ocurrencias de la precipitación de 1 una o más pulgadas, de los runoff¹ y de los porcentajes de muertes.

En el APÉNDICE~II se muestran tablas de conversiones y de la distribución normal como por ejemplo la comparación entre ángulos medidos en grados 0° a 360° , las horas del día de 0:00 a 24:00 y radianes de 0 a 2π , la comparación de la longitud del vector medio (ρ o r) convertido a una desviación angular (σ o s).

¹ Es la cantidad de agua que queda en el suelo cuando llueve.

CAPITULO I

1. ESTADÍSTICA CIRCULAR

diferencia de la estadística lineal, en la estadística circular se tienen observaciones en medidas angulares ($0 < \phi^{\circ} \le 360^{\circ}$ ó $0 < \phi \le 2\pi$). Las observaciones angulares pueden surgir de experimentos como por ejemplo, las direcciones de las rutas migratorias de los pájaros, las series de tiempo en economía, el estudio de la ocurrencia de los temblores en una región, la dirección del viento en los fenómenos meteorológicos, hipótesis de que los pesos atómicos son enteros y están sujetos a un error y éste puede ser representado por desviaciones angulares (Prueba propuesta por von Mises 1918). También pueden surgir indirectamente de medidas de tiempo reducidas a algún periodo y convertirlas en ángulos. Por ejemplo se tiene un año, un año tiene doce meses y se supone que un mes tiene treinta días entonces un día puede ser representado por un grado.

Por lo anterior se puede decir que el análisis circular tiene muchas aplicaciones en las áreas como, biología, geología, paleontología, geografía, meteorología, astronomía, psicología, física, economía y medicina.

Las direcciones son medidas por ángulos que van de 0° a 360° o su equivalente en radianes, 0 a 2π . La suma o diferencia de ángulos puede exceder el intervalo de 0° a 360° , y de aquí tiene que ser reducido al modulo 360° (APÉNDICE I).

Las direcciones son cíclicas por lo tanto se llaman variables circulares. Cuando un evento ocurre repetidamente y en el mismo instante dentro de un periodo, se asigna a él un ángulo de fase.

1.1 REPRESENTACIÓN GRÁFICA

Las observaciones angulares pueden ser representadas de dos maneras, por un lado para datos sin agrupar y por el otro para datos agrupados.

1.1.1 Representación Gráfica para datos sin agrupar

Se representan las observaciones por puntos sobre la circunferencia de un círculo unitario (APÉNDICE I), la misma masa será asignada a cada observación, con centro O. Esta representación es llamada *Diagrama de puntos*. FIGURA 1.1.

1.1.2 Representación Gráfica para datos agrupados

Se tienen varios tipos de gráficas como por ejemplo:

Histograma circular. Cuando se tienen muchos datos puede llegar a ser necesario arreglar las direcciones observadas en grupos. FIGURA 1.2.

Polígono de frecuencias. Una vez que se tienen los intervalos se toman los puntos medios de cada uno de éstos y se unen los puntos medios para formar el polígono de frecuencias. Figura 1.3.

Histograma de línea. Consiste en extender el Histograma circular en un segmento; por ello, la longitud de éste es de 360°. FIGURA 1.3.

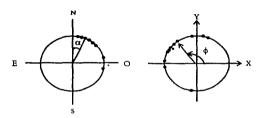


Figura 1.1. Las direcciones en un plano son indicadas por puntos sobre la circunferencia. (a) El ángulo α es medido desde el azimuth en dirección a las manecillas del reloj. (b) Es más usado el ángulo potar 4 medido desde el eje X en dirección contraria a las manecillas del reloj.

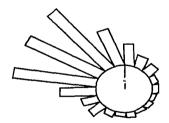


FIGURA 1.2. Histograma circular de la TABLA 1.1 (Mardia 1972).

Diagrama de Rosa. Se construye un sector con un punto en el origen, el radio es proporcional a la frecuencia y los arcos corresponden a los intervalos. FIGURA 1.4.

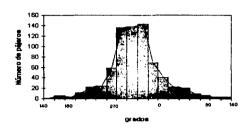


Figura 1.3. Histograma de linea de la TABLA 1.1(Mardia 1972). Se utiliza más este histograma porque es más fácil de interpretar.

2. RADIANES

Para la teoria como por ejemplo la obtención del ángulo medio $\overline{\phi}_1$ Secc. 4.1 es preferible que el ángulo ϕ^o en grados sea convertido en el ángulo ϕ en radianes (TABLA A. APÉNDICE II). Se tiene que

$$\phi^{\circ}=180\phi/\pi$$
, $\phi=\pi\phi^{\circ}/180^{\circ}$

donde el rango de ϕ es de $0 < \phi \le 2\pi$, que corresponde al rango $0^{\circ} < \phi^{\circ} \le 360^{\circ}$ de ϕ° . Además los datos angulares en el intervalo de $(0^{\circ},180^{\circ})$ pueden ser convertidos en el intervalo de $(0^{\circ},360^{\circ})$ por un proceso de multiplicar cada ángulo, y el rango 0° a 360° / /de ϕ° puede ser convertido en el intervalo de $(0,2\pi)$ por $\phi = /\pi\phi^{\circ}/180$ donde /es un número entero.

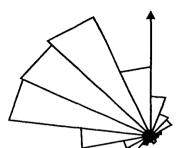


FIGURA 1.4. Diagrama de rosa de la TABLA 1.1(Mardia 1972).

3. MUESTRA ALEATORIA

Una muestra aleatoria (m.a) de una variable aleatoria poblacional ϕ , es un conjunto de variables aleatorias independientes e idénticamente distribuídas cada una con la distribución de ϕ , denotada por ϕ_1 , ϕ_2 ,..., ϕ_n .

Ej. Si φ se distribuye uniformemente, entonces φ, se distribuye uniformemente y con los mismos parámetros de la variable aleatoria poblacional.

4. MEDIDAS DESCRIPTIVAS

Para describir una distribución circular unimodal es necesario tener algunas medidas como la media, la varianza, etc. Estas medidas también serán usadas para hacer comparaciones entre distribuciones, para la construcción de la teoría y para la estimación de los parámetros.

Sea ϕ_1 , ϕ_2 ,..., ϕ_n una muestra aleatoria poblacional de tamaño n de una población circular con una función de distribución $F(\phi)$. Los ángulos son medidos con respecto al eje X en dirección contraria a las manecillas del reloj. Se puede pensar que el ángulo ϕ_i está representando al vector unitario $\overline{OP_i}$, donde P_i es el punto de ϕ_i sobre el círculo unitario \forall i=1,...,n (ver FIGURA 1.5). En el caso de datos agrupados, se tienen k intervalos de longitud h y se obtiene el punto medio a cada uno de éstos. Se denota el punto medio del i-ésimo intervalo de nuevo por ϕ_i ; asimismo, cada intervalo tiene observada una frecuencia f_i y la suma de las frecuencias es el número de observaciones n.

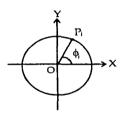


Figura 1.5. En la Figura se muestra el punto Pi y su ángulo di.

4.1. VECTOR MEDIO

Se tiene un círculo unitario, a cada punto se le asigna el mismo valor de masa M, y encontrando el centro de masa C (APÉNDICE I), si este centro es diferente del origen O, la línea OC define una dirección la cual se llamará dirección media de la muestra o vector medio (ver FIGURA 1.6).

FIGURA 1.6. La FIGURA muestra el vector medio.

Hay dos formas de calcular el vector que apunta al centro de masa:

• La primer forma es mediante el Álgebra de vectores.

Cada punto sobre el circulo unitario puede ser localizado por un vector unitario, entonces sean: $e_1,e_2,e_3,...,e_n$ vectores unitarios que representan las direcciones de la muestra.

Por definición,

|e_i|=1 para toda i=1,...,n.

Sea que $M_i \ \forall \ i=1,...,n$, la masa del i-ésimo vector e_i , donde es localizada en el punto final del vector i-ésimo.

Por definición

$$\mathbf{m} = \frac{\sum_{i=1}^{n} M_i e_i}{\sum_{i=1}^{n} M_i}$$

Si se supone que todas las masas son iguales; es decir, $M=M_1=M_2=M_3=...=M_n$

$$\Rightarrow$$
 $m = \sum_{i=1}^{n} \frac{e_i}{n}$.

Llamamos a 141 el vector medio de la muestra, que apunta al centro de masa

Sea R la longitud del vector suma y ${\bf r}$ es la longitud del vector medio, por consiguiente se tiene:

$$R = \left| \sum_{i=1}^{n} e_i \right|, \qquad r = |m| = \frac{R}{R}.$$

De lo anterior se tiene 0≤R≤n

y 0≤r≤1.

· La segunda forma es a través de las funciones trigonométricas

Usando coordenadas rectangulares con ejes X y Y, con origen O.

Si ϕ_i es el i-ésimo ángulo observado y e_i el vector unitario correspondiente a ϕ_i ; donde los componentes rectangulares de e_i , SON x_i Y y_i , entonces por definición de seno y coseno (APÉNDICE1).

$$x_i = \cos \phi_i$$
, $y = \sin \phi_i$ (1.1)

Sean \overline{X} y \overline{Y} las coordenadas rectangulares del centro de masa definidas por:

$$\overline{X} = \sum_{i=1}^{n} \frac{\cos \phi_i}{n}, \qquad \overline{Y} = \sum_{i=1}^{n} \frac{\sin \phi_i}{n}.$$

Si r es la longitud del vector medio con componentes \overrightarrow{X} y \overrightarrow{Y} . De la ecuación $r^2=\overline{X}^2$ + \overline{Y}^2 se despeja a r y se sustituyen las ecuaciones de 1.1 y se obtiene:

$$r = \frac{1}{n} \sqrt{\left[\left(\sum_{i=1}^{n} \cos \phi_{i}\right)^{2} \cdot \left(\sum_{i=1}^{n} \sin \phi_{i}\right)^{2}\right]}.$$

Análogamente, si R es la longitud del vector suma con componentes $\sum_{i=1}^{n} X_i$ y $\sum_{i=1}^{n} y_i$; entonces se tiene:

$$R = \sqrt{\left[\left(\sum_{i=1}^{n} \cos \phi_{i}\right)^{2} \cdot \left(\sum_{i=1}^{n} \sin \phi_{i}\right)^{2}\right]}.$$

Un caso especial ocurre cuando $\overline{X}y$ \overline{Y} son cero; esto implica que r=0, y por consiguiente, el vector medio es igual al vector cero. Ahora, si se omite este caso, el vector medio tiene un ángulo bien definido con respecto al eje X positivo denominado el ángulo medio denotado por $\overline{\phi}_1$.

$$\overline{\phi}_{1} = \begin{cases} \arctan(\overline{y}/\overline{x}), & \text{si } \overline{x} > 0 \\ 180^{\circ} + \arctan(\overline{y}/\overline{x}), & \text{si } \overline{x} < 0 \\ 90^{\circ} & \text{si } \overline{x} = 0, & \overline{y} > 0 \\ 270^{\circ} & \text{si } \overline{x} = 0, & \overline{y} < 0 \\ \infty & \text{si } \overline{x} = 0, & \overline{y} = 0. \end{cases}$$

$$(1.2)$$

Los valores de la muestra $\phi_1,\ \phi_2,...,\ \phi_n$ están sujetos a fluctuaciones aleatorias. Las estadísticas $m,\ r,\ R,\ \bar{\phi}_1$ se desvían de los parámetros correspondientes de la población subyacente.

4.2. DIRECCIÓN MEDIANA

Se divide la muestra circular por un diámetro de tal manera que la mitad de la muestra caiga en un lado y la otra mitad del otro lado. El diámetro está definido por dos puntos P y Q. Si la muestra es unimodal de tamaño n, y si el número n es impar el diámetro va a estar definido por un punto de la muestra; si no, el diámetro pasa en medio de dos puntos de ésta. (ver FIGURA 1.7)

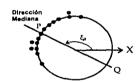


Figura 1.7. La rigura muestra la dirección mediana.

Intuitivamente, si la mayorla de las observaciones están cerca del punto P en vez de Q; \overline{OP} es liamado dirección mediana y se denotará por ξ_0 . Se dice que ξ_0 es una dirección mediana de la población si satisface la siquiente ecuación:

$$\int_{\xi_0}^{\xi_0+\pi} f(\varphi) d\varphi = \int_{\xi_0+\pi}^{\xi_0+2\pi} f(\varphi) d\varphi = \frac{1}{2}.$$

4.3. LA MODA

Al valor que ocurre con mayor frecuencia dentro de un conjunto de medidas se le llama la moda. De aquí, se selecciona el punto corte que es donde hay una máxima concentración y este punto será el centro de la distribución. La moda está definida (Mardia 1972, p. 30) para datos agrupados como:

Moda =
$$1 + \frac{f_0 - f_{-1}}{2f_0 - f_{-1} - f_{+1}} h$$

donde I es el límite inferior de la clase modal, f_0 es la frecuencia de la clase modal, f_{-1} es la frecuencia de la clase modal anterior, f_{-1} es la frecuencia de la clase modal posterior y h es la longitud del intervalo.

4.4. SESGO Y KURTOSIS

Se supone que una distribución bimodal tiene sus picos en $\bar{\phi}_1$ y $\bar{\phi}_1$ +180°. Por el duplicado de los ángulos (ver FIGURA 2.4) se obtiene $2\bar{\phi}_1$, y $2\bar{\phi}_1$ +180° respectivamente que son congruentes modulo 2π . Con esto las probabilidades de la distribución original estarán encima y sólo permanecerá un pico, con esto se puede pensar que si se duplican los ángulos, una distribución bimodal se puede convertir en una distribución unimodal.

Un análisis (Batschelet, p.43) muestra que el grado de sesgo depende de r_2 , $\overrightarrow{\phi_2}$ y $\overrightarrow{\phi}_1$, donde r_2 y $\overrightarrow{\phi_2}$ son obtenidos con los ángulos duplicados, y está dado por:

$$r_2$$
sen $(\overline{\phi_2} - 2\overline{\phi}_1)$.

Por la duplicación de ángulos se tiene $\phi_2^- = 2\bar{\phi}_1$, así que $r_2 sen(\bar{\phi}_2^- - 2\bar{\phi}_1^-)$ se hace cero en este caso.

Una distribución puede ser chata o picuda con respecto a la moda; a esta medida se le llama *Kurtosis* y está dada por:

$$r_2\cos(\overline{\phi_2} - 2\overline{\phi_1}).$$

Batschelet, p.43 define esta medida utilizando el término anterior.

5. PROPIEDADES DEL VECTOR MEDIO

El centro de masa es definido independientemente del sistema de coordenadas, el vector medio no depende de la dirección cero. Se supone que se rota la dirección cero por un ángulo ψ en el sentido a las manecillas del reloj. Entonces los valores de la muestra ϕ , están dados por:

$$\phi_i$$
 '= ϕ_i - ψ $\forall i=1,...,n$.

Análogamente, para obtener un nuevo ángulo se tiene:

$$\overline{\phi}' = \overline{\phi} - \psi$$
,

pero la longitud del vector medio r, permanece invariable.

Se tiene cuatro analogías de (1.2) con la estadística lineal:

- Una desviación (X_i-X̄) es análoga a sen(φ_i-φ̄₁)≈φ_i-φ̄₁
- Desarrollando sen(φ_i, φ̄₁)=senφ_icos φ̄₁ -cosφ_isen φ̄₁ y sumando sobre i

$$\begin{split} \sum_{i=1}^n sen\big(\phi_i - \overline{\phi}_1\big) &= \overline{x}n\overline{y}/r - \overline{y}n\overline{x}/r &= 0 \\ &\therefore \sum_{i=1}^n sen\big(\phi_i - \overline{\phi}_1\big) = 0 \; . \end{split}$$

Para una pequeña desviación ϕ_i - $\bar{\phi}_1$ de la ecuación $\sin \bar{\phi}_1 \approx \bar{\phi}_1$ entonces $\operatorname{sen}(\phi_i$ - $\bar{\phi}_1) \approx \phi_i$ - $\bar{\phi}_1$ esto es análogo a $\sum_{i=0}^n (x_i - \bar{x}) = 0$ en estadística líneal.

 Desarrollando cos(φ_i-φ̄₁)=cosφ_icos φ̄₁ +senφ_isen φ̄₁ y sumando sobre i

$$\sum_{i=1}^{n} \cos \left(\phi_{i} - \overline{\phi}_{1} \right) = \cos \overline{\phi}_{1} \sum_{i=1}^{n} \cos \phi_{i} + \sin \overline{\phi}_{1} \sum_{i=1}^{n} \operatorname{sen} \phi_{i}$$

$$\sum_{i=1}^{n} cos \Big(\phi_{i} - \overline{\phi}_{1} \Big) = \frac{(\overline{x}) n \overline{x}}{r} + \frac{(\overline{y}) n \overline{y}}{r} = \frac{n}{r} (\overline{x}^{2} + \overline{y}^{2})$$

$$\begin{split} &\sum_{i=1}^n \cos\bigl(\varphi_i - \overline{\varphi}_1\bigr) = r^2 n/r = rn \\ \Rightarrow &\sum_{i=1}^n \frac{2\bigl[1 - \cos\bigl(\varphi_i - \overline{\varphi}_1\bigr)\bigr]}{n} = 2(1-r) \\ \Rightarrow &\sum_{i=1}^n \frac{\bigl(\varphi_i - \overline{\varphi}_1\bigr)^2}{n} = 2(1-r). \end{split}$$

Esto es análogo a
$$\frac{1}{n}\sum_{i=0}^n \left(x_i-\overline{x}\right)^2=s^2$$
 en estadística lineal.

De lo anterior se deduce (x_i-x̄)² es análogo a 2[1-cos(φ_i-φ₁)].

6. MEDIDAS DE CONCENTRACIÓN

Se observa que cuando caen todos los puntos de la muestra en una misma dirección sobre el círculo, la longitud del vector medio r, es igual a 1 (ver Figura 1.8). Esto es un caso de máxima concentración. Cuando los puntos de la muestra están cercanos y forman un arco de no más de 20°, el centro de masa es cercano a la circunferencia del círculo unitario y r se aproxima a 1. Si hay menos concentración, r es pequeño. Si r=0 no hay concentración, es decir, las observaciones se distribuyen uniformemente. Para las muestras unimodales, la longitud del vector medio r, sirve como medida de concentración.

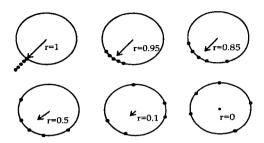


Figura 1.8. El rango de la longitud del vector medio es de 0 a 1. Decrece r cuando las observaciones se van distribuyendo uniformemente a lo largo del círculo.

La longitud del vector medio está sujeto a fluctuaciones aleatorias y puede diferir considerablemente del parámetro que corresponde a la población subyacente.

7. VARIANZA ANGULAR Y DESVIACIÓN ANGULAR

La longitud del vector medio ${\bf r}$ se puede considerar como una medida de concentración. Indirectamente es una medida de dispersión; si ${\bf r}$ disminuye de 1 a 0, la dispersión aumenta y es natural considerar 1- ${\bf r}$ como una medida de dispersión; sin embargo, una comparación de las igualdades :

$$1/n \sum (\phi_i - \overline{\phi}_i)^2 \approx 2(1-r)$$
 es análoga a $1/n \sum_{i=1}^n (x_i - \overline{x})^2 = s^2$

sugiere que se debe considerar mejor a 2(1-r) que a 1-r como una estadística, por lo tanto definimos la cantidad:

$$s^2 = 2(1-r)$$

como varianza angular, esta estadística es equivalente a la varianza en estadística lineal.

Si se obtiene la raíz cuadrada, S será una medida de dispersión llamada desviación media angular medida en radianes, la cual es equivalente a la desviación estándar en estadística lineal. En la FIGURA 1.9 se muestra la desviación media angular y la longitud del vector medio.

Si s^2 y s se multiplican por $180^\circ/\pi$, se obtendrá la varianza angular y la desviación media angular respectivamente en grados.

$$s^2 = [180^{\circ}/\pi] \cdot 2(1-r)$$

$$s=[180^{\circ}/\pi]\sqrt{2(1-r)}$$
.

A continuación se presenta una construcción geométrica de s dada r, ésta fue encontrada por Seyforth y Barth (1972). Ver FIGURA 1.10. La TABLA B (APÉNDICE II) permite convertir a r en s y la TABLA D permite convertir a s en r.

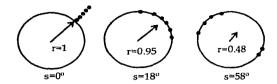


Figura 1.9. La desviación media angular s, decrece tanto como decrece la longitud media del vector r.

Figura 1.10. La construcción de la desviación media angular está dada por la longitud del vector medio r. La demostración está basada en el teorema de pitágoras aplicado a los triángulos BCO y ABC. s es conceptualmente la longitud del arco, y no de un segmento.

8. ESTADÍSTICAS

Una estadística es una función de las observaciones de la muestra que no depende de parámetros desconocidos, por ejemplo

$$T = \frac{1}{n} \sum_{i=0}^{n} \phi_i.$$

CAPITULO II

1. Función de Distribución

Una población representa el "estado de la naturaleza" o la forma de las cosas con respecto a un fenómeno aleatorio en particular, mismo que puede identificarse a través de una característica medible φ. La manera en que ocurren las cosas en relación con φ puede definirse por un modelo de probabilidad que recibe el nombre de distribución de probabilidad de la población. Ahora bien, si se supone que n eventos ocurren durante un periodo (éstos pueden ser tormentas, muertes o carambolas de automóviles) y cada uno de ellos ocurre en determinada fecha; pues bien, si ésta es determinada como una variable φ, la distribución de eventos en el periodo puede ser considerada como una distribución circular de un ángulo.

Se llaman distribuciones univariadas aquellas que se conocen en estadística lineal no direccional y que son trazadas en una línea. Se tienen ejemplos de distribuciones de familias como la binomial, la Poisson y la normal entre otras.

Por un lado; las distribuciones lineales pueden tener un rango finito como por ejemplo la binomial, o un rango infinito numerable +∞ como la distribución Poisson, o un rango (-∞,+∞) como la distribución normal; y a

diferencia de ellas las distribuciones circulares siempre tienen un rango finito, el rango es de 0° a 360° (ó de 0 a 2π).

Sea z una variable aleatoria la cual toma sus valores sobre la circunferencia de un circulo unitario $x^2+y^2=1$.

Se puede identificar los valores posibles de z mediante ángulos medidos con respecto a la parte positiva del eje X y en sentido contrario a las manecillas del reloj, así que el ángulo ϕ representa el punto $(\cos\phi, \sin\phi)$, $0<\phi\le 2\pi$.

Con esta representación se puede definir la función de distribución F de la variable z por la siguiente ecuación:

$$F(\phi)=P(0< z{\leq}\phi), \qquad 0<\phi{\leq}2\pi.$$

Sin embargo, una observación se repite ciclicamente, por lo tanto la función de distribución se puede ver la siguiente forma:

$$F(\phi+2\pi n)=F(\phi)$$
 $0<\phi<2\pi$ $n\in\mathbb{N}$.

Si se considera la probabilidad cuando ϕ toma un valor en un arco, se desarrollará lo siguiente: Sean α,β dos ángulos, tales que $0<\alpha,\beta<2\pi$. Se supone que A, B son dos puntos sobre el círculo unitario representados por α y β respectivamente. Se denota el arco formado por los puntos A y B en dirección contraria a las manecillas del reloj por $\operatorname{arc}(\alpha,\beta)$, con la convención de que el punto A es excluido. Se denota por x el punto sobre el círculo unitario que corresponde a la dirección cero, i.e. x es el punto positivo con respecto al eje X donde empieza el círculo.

Si $0 < \alpha < \beta < 2\pi$ entonces el arc (α,β) es el arc AB del círculo unitario el cual no contiene al punto x, sin embargo, el arc (β,α) es el arc $B \times A$ contiene a x. En el primer caso el punto A no fue considerado, mientras que en el segundo caso fue el punto B.

En estos casos, se puede denotar a los arcos por $\alpha {<} \phi {\leq} \beta$ y $\beta {<} \phi {\leq} \alpha$ respectivamente.

Para $0{<}\alpha{<}\beta{<}2\pi$ y $\beta{-}\alpha{<}2\pi,$ se puede demostrar que tiene la siguiente propiedad:

$$P\{\phi \in arc(\alpha,\beta)\} = F(\beta) - F(\alpha) = \int_{\alpha}^{\beta} dF(\phi)$$

donde la integral es una integral de Lebesgue-Stieltjes; también se tiene:

$$\lim_{\phi \to \infty} F(\phi) = 1, \qquad \lim_{\phi \to \infty} F(\phi) = 0.$$

Si se evalúa en cero y en uno se tiene:

$$F(0)=0$$
, $F(2\pi)=1$.

F depende de la elección de la dirección cero, se muestra que $F(\beta)$ - $F(\alpha)$ es independiente de dicha elección. Por lo tanto, si se cambia la dirección cero se le suma una constante a F.

Si la función de distribución es absolutamente continua, entonces tiene una función de densidad de probabilidad (f.d.p.) f tal que :

$$\int_{-\pi}^{\beta} f(\phi) d\phi = F(\beta) - F(\alpha), \qquad 0 < \alpha < \beta < 2\pi.$$

Una función f es una función de densidad de probabilidad de una distribución continua si y sólo si:

$$i)f(\phi) \ge 0$$
 $0 < \phi \le 2\pi$ (2.1)

$$ii) f(\phi + 2\pi) = f(\phi) \qquad 0 < \phi \le 2\pi$$
 (2.2)

$$iii)\int\limits_0^{2\pi} f(\varphi) d\varphi = 1. \hspace{1cm} 0 < \varphi \leq 2\pi \hspace{1cm} (2.3)$$

En este caso se describe a ϕ como una variable aleatoria circular continua.

1.1. CONCEPTOS BÁSICOS DE UNA DISTRIBUCIÓN

Una idea intuitiva de una distribución circular está dada por una gráfica circular: el círculo es de radio arbitrario, y la densidad $f(\phi)$ está trazada con respecto a una dirección radial; en la Figura 2.1 se muestra una gráfica de la función von Mises . Sin embargo, es más práctico utilizar una gráfica de línea donde $f(\phi)$ se representa mediante coordenadas rectangulares. Sólo existe una desventaja, ya que el punto inicial sobre la línea es arbitrario y este hecho puede causar fácilmente una confusión; ésta es mostrada en la gráfica de línea (Figura 2.1) de una distribución circular trazada con tres diferentes puntos iniciales.

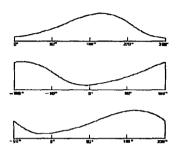


Figura 2.1. Tres diferentes gráficas de la misma distribución circular. La distribución es unimodal, y la moda es localizada en el ángulo 200°. Los puntos iniciales de las gráficas son 0° (amiba), -180° (en medio) y -90° (abajo).

En estadística circular existe un vector medio denotado por μ_I y la longitud de éste será denotado por ρ_I . Es decir,:

$$\rho_1 = |\mu_1|, \qquad 0 \le \rho_1 \le 1$$

y θ_1 es el ángulo polar de μ_1 , llamado ángulo medio de la distribución y existe éste si y sólo si $\rho_1 > 0$.

Los componentes rectangulares de μ_1 son a_1 medido con respecto al eje X y b_1 medido con respecto al eje Y (ver . FIGURA 2.2).

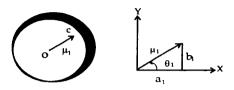


Figura 2.2. Se tiene un ejempio de una distribución continua (parte sombreada) donde la probabilidad total es uno sobre la circunferencia de círculo unitario; también se muestra el vector medio μ₁, con su centro de gravedad, y sus componentes rectangulares a₁ y b₁. De igual manera el ángulo medio θ₁.

En la siguiente sección se calcula el vector medio µ₁.

Se tiene $a_1=\rho_1\cos\theta_1$, $b_1=\rho_1\sin\theta_1$; ahora bien, la solución de estas ecuaciones con respecto a ρ_1 y θ_1 es:

$$\rho_{1} = \sqrt{a_{1}^{2} + b_{1}^{2}}$$

$$\theta_{1} = \begin{cases}
arc tan (b_{A_{1}}), & si a_{1} > 0 \\
180^{o} + arc tan (b_{A_{1}}), & si a_{1} < 0 \\
90^{o} & si a_{1} = 0, & b_{1} > 0 \\
270^{o} & si a_{1} = 0, & b_{1} < 0 \\
\infty & si a_{1} = 0, & b_{1} = 0
\end{cases}$$

La longitud del vector medio ρ₁, es un número entre 0 y 1. Si se aproxima esta longitud a 1, entonces la masa total está concentrada alrededor de la dirección media; si no la masa no está concentrada alrededor de ésta o la

distribución tiene más de una moda. Por consiguiente p₁ es una medida de concentración alrededor de la dirección media.

Frecuentemente es deseable obtener una medida de dispersión en vez de una medida de concentración; claramente las dos medidas están interrelacionadas ya que mientras una se incrementa la otra decrece. En Batschelet (1965) se propone la desviación angular definida por:

$$\sigma = \sqrt{2(1-\rho_1)}$$
 (radianes).

Para convertir a σ en grados se multiplica por 180°/ π =57.296°. La desviación angular puede determinarse en la TABLA B DEL APÉNDICE II.

Además, define la varianza angular (Mardia 1972 p.45) como:

 $v_0=1-\rho_1=1-E\{\cos(\phi-\mu_1)\}$, donde ρ_1 es la longitud del vector medio.

2. MOMENTOS TRIGONOMÉTRICOS

Para cada ángulo ϕ se le asigna un valor $f(\phi)$ que es la función de densidad de probabilidad de una distribución circular (ver FIGURA 2.3).

Figura 2.3. La f.d.p. f(φ) està asociada con el vector unitario (x, y) donde x≖cosφ, y≔senφ.

Para cada vector unitario con componentes:

se calculan los valores medios de x y y por las siguientes fórmulas:

$$\begin{split} a_1 &= \int\limits_0^{2\pi} x f(\varphi) d\varphi = \int\limits_0^{2\pi} \cos\varphi f(\varphi) d\varphi = E(\cos\varphi) \\ b_1 &= \int\limits_0^{2\pi} y f(\varphi) d\varphi = \int\limits_0^{2\pi} \operatorname{sen} \varphi f(\varphi) d\varphi = E(\operatorname{sen} \varphi). \end{split}$$

Las medias a_1 y b_1 son *componentes del vector medio*, donde éste es también denominado el primer momento trigonométrico de una distribución circular denotado por:

$$\mu_1 = \begin{bmatrix} a_1 \\ b_1 \end{bmatrix}$$

A diferencia del momento trigonométrico de las distribuciones lineales este momento es un vector; por ello, el vector medio μ_1 =(ρ_1 , θ_1) contiene más información que un momento ordinario.

Se sabe que ρ_1 es la longitud del vector medio y θ_1 es el ángulo medio; por consiguiente, μ_1 no sólo proporciona la dirección media sino una medida para la concentración de la distribución alrededor de la dirección media.

Para obtener el segundo momento trigonométrico, se realiza lo siguiente; para cada masa se duplica el ángulo; esto es, se localiza la masa en 2ϕ en lugar de ϕ ,donde 2ϕ es congruente modulo 2π . Para una distribución discreta el proceso de duplicar los ángulos es visto en la FIGURA 2.4.

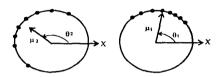


Figura 2.4. El duplicado de ángulos para una distribución circular discreta. μι es el primer momento trigonométrico v μι el segundo momento.

La nueva distribución tiene su propio vector medio y precisamente éste se llama el segundo momento trigonométrico, entonces sus componentes son:

$$a_2 = \int_0^{2\pi} \cos 2\phi \ f(\phi) d\phi = E(\cos 2\phi)$$

$$b_2 = \int_0^{2\pi} \sin 2\phi \ f(\phi) d\phi = E(\sin 2\phi).$$

Así que el segundo momento es el vector :

$$\mu_2 = \begin{bmatrix} a_2 \\ b_2 \end{bmatrix}$$

ν ρ₂ es la longitud de μ₂ definida por:

$$\rho_1 = \sqrt{a_1^2 + b_2^2}, \quad 0 \le \rho_2 \le 1.$$

Si ρ_2 >0 , existe un ángulo medio θ_2 , pero si ρ_2 =0 el ángulo no esta determinado y las coordenadas polares ρ_2 y θ_2 son calculadas de la misma forma que calculamos ρ_1 y θ_1 .

El momento trigonométrico de orden n está definido por:

$$\mu_n = \begin{bmatrix} a_n \\ b_n \end{bmatrix}$$

donde

Se tienen las siguientes propiedades para los componentes any bn:

$$a_n=a_n, b_n=b_n, |a_n| \le 1 \vee |b_n| \le 1$$
.

3. ESTIMACIÓN DE PARÁMETROS

Para analizar las muestras primero se definirán algunas estadísticas; así como las medidas locales y de dispersión. En un nivel más sofisticado se encontrará un modelo; esto es, una población subyacente de la cual la muestra fue obtenida. Por ejemplo, para muestras circulares unimodales y simétricas un modelo común es una distribución von Mises; donde esta distribución es

definida por dos parámetros, el ángulo medio θ_1 y el parámetro de concentración, k.

Para la población subvacente se asigna la siguiente notación:

	Estadística	Parámetro
	(muestra)	(población)
vector medio	m	μtι
longitud del vector medio	r	Р1
ángulo medio	фі	θ,

Es aceptable que los estimadores de los parámetros sean las estadísticas dadas; es decir, se denotarán los estimadores de μ_1 , ρ_1 , y θ_1 por μ̂1,ρ̂1 y θ̂ 1 Asl que tentativamente se sugiere:

$$\hat{\mu}_1 = m$$

$$\hat{\rho}_1 = r$$

$$\hat{\Theta}_1 = \phi_1$$

A la hora de estimar los parámetros es primordial encontrar la estadistica que pierda menos información de la muestra en el proceso de reducción de las variables.

El mérito de estos estimadores sólo puede ser discutido en conexión con una distribución particular, un caso importante es de la distribución von

Mises (Secc. 8), donde se encuentran los estimadores máximo-verosímiles de la longitud del vector medio ρ_1 , y del ángulo medio θ_1

Los estimadores máximo-verosímiles tienen algunas propiedades favorables; como ser consistentes, eficientes y suficientes.

3.1. ESTIMACIÓN POR EL MÉTODO DE MOMENTOS

Se supone que $f(\phi; \theta_1, \rho_1)$ es la f.d.p de una población la cual depende solamente de dos parámetros θ_1 y ρ_1 .

Sean

$$E(\cos\phi) = a_1(\theta_1, \rho_1) \tag{2.4}$$

$$E(\operatorname{sen}\phi)=b_1(\theta_1, \rho_1) \tag{2.5}$$

donde a_1 y b_1 no son idénticamente iguales a cero. Entonces los estimadores de θ_1 y ρ_1 por el método de momentos es la solución de las siguientes ecuaciones:

$$\overline{x} = a_1(\theta_1, \rho_1), \quad \overline{y} = b_1(\theta_1, \rho_1).$$

3.2. ESTIMACIÓN POR EL MÉTODO DE MÁXIMA -VEROSIMILITUD

Sea $\phi_1, \phi_2,..., \phi_n$ una m.a. de una población con f.d.p. $f(\phi,\alpha)$ que depende de un vector de parámetros $\alpha=(\alpha_1, \alpha_2,...,\alpha_k)$ y $L(\phi_1, \phi_2,..., \phi_n)=f(\phi_1,\alpha)$ $f(\phi_2,\alpha),...,f(\phi_n,\alpha)$ es la función de verosimilitud.

Para obtener el estimador máximo-verosímil se maximiza la función L como función de α y el punto en el cual se maximiza es el estimador $\hat{\alpha}$ de α .

4. FUNCIÓN CARACTERÍSTICA

DEFINICIÓN. Si z es una variable aleatoria con valores sobre el círculo unitario; se identifica con ésta una variable aleatoria continua ϕ ($0<\phi\leq 2\pi$), y z se define como :

$$z = e^{-i\phi}$$

En analogía con estadística lineal, se define la función :

$$\phi(t) = E(e^{i t \phi}) = \int_{0}^{2\pi} e^{i t \phi} f(\phi) d\phi$$

como la función característica de $f(\phi)$, donde $f(\phi)$ es la f.d.p. de ϕ . Ahora se sabe que $F(\phi+2\pi)-F(\phi)=1$ donde $0<\phi\le 2\pi$; por consiguiente es fácil ver que:

$$\int_{0}^{2\pi} e^{it(\phi+2\pi)} dF(\phi) = \int_{0}^{2\pi} e^{it(\phi)} dF(\phi).$$

La teoría de series de Fourier para funciones periódicas muestra que es suficiente tomar t como un entero (APÉNDICE I). Por lo tanto, la función característica está definida por:

$$\varphi_P \star E(e^{i\, p \, \varphi}) = \int\limits_{-\infty}^{2\pi} e^{i\, F \, \varphi} f(\varphi) d\varphi \; , \qquad \qquad p = 0, \pm 1, \pm 2, \ldots \label{eq:power_power$$

De lo anterior se tienen las siguientes propiedades:

1.
$$\phi_0=1$$

Demostración:

$$\varphi_0 = \int\limits_0^{2\pi} e^{i0\varphi} f(\varphi) d\varphi = \int\limits_0^{2\pi} f(\varphi) d\varphi = 1 \qquad \Rightarrow \quad \varphi_0 = 1 \,.$$

Demostración:

$$\left| {\stackrel{2\pi}{\underset{0}{\stackrel{\circ}{\longrightarrow}}}} f(\varphi) e^{ip\varphi} d\varphi \right| \leq {\stackrel{2\pi}{\underset{0}{\stackrel{\circ}{\longrightarrow}}}} \|f(\varphi)\| e^{ip\varphi} |d\varphi| = {\stackrel{2\pi}{\underset{0}{\stackrel{\circ}{\longrightarrow}}}} \|f(\varphi)| d\varphi = 1 \qquad \qquad \Rightarrow \left| {\varphi_{|p}} \right| \leq 1 \; .$$

$$4.\phi_p=a_p+ib_p$$

Demostración:

$$\varphi_p = \int\limits_0^{2\pi} e^{i r \varphi} f(\varphi) d\varphi = \int\limits_0^{2\pi} (\cos p \varphi + i \sin p \varphi) f(\varphi) d\varphi \\ = \int\limits_0^{2\pi} \cos p \varphi f(\varphi) d\varphi + i \int\limits_0^{2\pi} \sin p \varphi f(\varphi) d\varphi$$

$$\phi_p = E(\cos p\phi) + iE(\sin p\phi) = a_p + ib_p$$
.

Además se tiene que:

$$e^{2\pi i p} = \cos 2\pi(p) + i \sin 2\pi(p) = 1.$$

5. DISTRIBUCIONES PUNTO

Considere una distribución que se concentra en un solo punto $\phi = \theta_1,$ de tal forma que:

$$f(\theta_1) = P(\phi = \theta_1) = 1$$
 (2.6)

donde su función característica está dada por:

$$\phi_P = e^{i p \theta_1}$$

De la definición de v_0^2 puede verse que v_0^2 =0. A continuación se muestra que si v_0^2 =0 para una distribución, entonces ésta debe ser una distribución que tiene toda su masa en un punto.

Se tiene:

$$\int_{0}^{2\pi} \{1 - \cos(\phi - \theta_1)\} f(\phi) d\phi = 0.$$

Como la función $\{1-\cos(\phi-\theta_1)\}$ es continua y no-negativa, la distribución con función de distribución F debe estar concentrada en el punto ϕ para el cual $\cos(\phi-\theta_1)=1$. Por lo tanto se tiene de (2.6).

Para $\theta_1=0$,

$$\phi_{P} = e_{P} = 1, a_{P} = 1,$$
 $b_{P} = 0$

por lo tanto, la expansión de Fourier para esta distribución es simplemente:

$$f(\phi) = \frac{1}{2\pi} \{1 + 2\sum_{p=1}^{\infty} cosp\phi\}.$$

6. DISTRIBUCIONES LATTICE

Considere una distribución discreta definida por:

$$f_r(\phi=v+2\pi r/m)$$
, $r=0,1,...,m-1$,

У

$$f_r \ge 0$$
,
$$\sum_{r=1}^{m-1} f_r = 1$$
, $v = nueva$ dirección cero.

Los puntos v+2πr/m son equidistantes sobre el círculo unitario y la distribución puede ser imaginada como una concentración sobre los vértices de un polígono regular de m lados. En particular, si todas las longitudes son iguales; es decir, si f_r=1/m esto nos dará una distribución Uniforme circular discreta. Ahora, m=37 se tiene la distribución de una rueda de ruleta insesgada (honesta).

Si v=0, la función característica de la distribución está dada por:

$$\phi_P = \sum_{r=0}^{m-1} f_r e^{2\pi r p i/m}$$

 $\phi_p=1$

para p=0 (mod. m)

φ_n=(

en cualquier otro caso.

Si todas las direcciones en el círculo unitario se eligen con la misma probabilidad: es decir que, si no hay preferencia por algún sector o por alguna dirección, entonces la distribución es conocida con el nombre de "Distribución Uniforme circular" o "Distribución Isotrópica". Este hecho se muestra gráficamente en la Figura 2.5.

Ahora bien, se supone que 6 es una variable aleatoria angular continua que toma todos sus valores en el intervalo $[\alpha, \beta]$, en donde α y β son valores finitos, donde se supone la f.d.p de φ es una constante sobre la circunferencia del circulo unitario:

$$f(\phi)=k$$
 donde k=constante y $\alpha \le \phi \le \beta$.

6.1. FUNCIÓN DE DENSIDAD

Para que f(b) sea una función de densidad entonces tiene que satisfacer las condiciones (2.1), (2.2) y (2.3).

Se obtiene la integral para encontrar la constante k.

$$\int_{\alpha}^{\beta} f(\phi)d\phi = \int_{\alpha}^{\beta} kd\phi = k \int_{\alpha}^{\beta} d\phi = k \phi \int_{\alpha}^{\beta} = k(\beta - \alpha)$$

$$k(\beta - \alpha) = 1$$

$$\Rightarrow k = 1/(\beta - \alpha).$$

Por lo tanto, la función de densidad es:

$$f(\phi) = \frac{1}{\beta - \alpha} \qquad \qquad \alpha \le \phi$$

Se observa que la función de densidad no depende de ϕ directamente.

6.2. Función de Distribución

La función de distribución está definida como:

$$F(\phi) = \int_{0}^{\phi} f(u) du = \begin{cases} \int_{0}^{\phi} o du = 0 & \phi \leq \alpha \\ \int_{0}^{\phi} o du + \int_{\alpha}^{\phi} \frac{1}{\beta - \alpha} du = \frac{\phi - \alpha}{\beta - \alpha} & \alpha < \phi < \beta \\ \int_{0}^{\phi} o du + \int_{\alpha}^{\beta} \frac{1}{\beta - \alpha} du + \int_{\beta}^{2\alpha} 0 du = 1 & \phi \geq \beta \end{cases}$$

por lo tanto, F(\$) queda definida por:

$$F(\phi) = \begin{cases} 0 & \phi \leq \alpha \\ \frac{\phi - \alpha}{\beta - \alpha} & \alpha < \phi < \beta \\ 1 & \phi \geq \beta \end{cases}$$

Pólya usó una función uniforme n-dimensional (Mardia 1975) cuando estudiaba la lluvia de estrellas, ya que este fenómeno se distribuye aleatoriamente uniforme.

6.3. PROPIEDADES DE LA DISTRIBUCIÓN

Una variable aleatoria distribuida uniformemente representa la analogía continua a los resultados igualmente posibles en el sentido siguiente: para cualquier sub-intervalo $\{\delta,\gamma\}$, en donde $\alpha.\le \delta<\gamma\le \beta$, $P(\delta\le \phi\le \gamma)$ es la misma para todos los sub-intervalos que tienen la misma longitud. Esto es,

$$P(\delta \leq \varphi \leq \gamma) = \int\limits_{\gamma}^{\gamma} f(\varphi) d\varphi = \int\limits_{\beta - \alpha}^{\gamma} \frac{1}{\beta - \alpha} d\varphi = \frac{\gamma - \delta}{\beta - \alpha} \qquad \alpha \leq \delta < \gamma \leq \beta$$

y así sólo depende de la longitud del intervalo y no de la ubicación del mismo.

7. DISTRIBUCIÓN UNIFORME CIRCULAR, U(0.2π)

Sea ϕ una v.a. distribuida uniformemente en el intervalo $[0,2\pi]$.

Esta distribución es análoga a la distribución uniforme cero-uno (U(0,1))en estadística lineal.

Su función de densidad está dada por:

$$f(\phi) = \frac{1}{2\pi} \qquad 0 < \phi \le 2\pi$$

aquí los parámetros son conocidos (ver Figura 2.5), sin embargo, si se tiene una distribución Uniforme circular en el intervalo $[0,\alpha]$, su función de densidad es:

$$f(\phi) = \frac{1}{\alpha} \qquad 0 \le \phi \le \alpha$$

donde α se supone es un parámetro desconocido.

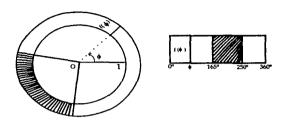


FIGURA 2.5. La distribución Uniforme circular. En la izquierda se muestra una gráfica circular y en la derecha se muestra una gráfica lineal. La probabilidad del sector de 165° a 250° se muestra sombreada.

7.1. ESTIMANDO EL PARÁMETRO O. POR EL MÉTODO DE MÁXIMA-VEROSIMILITUD

Sea ϕ_1 , ϕ_2 ,..., ϕ_n una muestra aleatoria de una distribución Uniforme circular, cuya función de densidad es:

$$f(\phi) = \frac{1}{\alpha} \qquad 0 \le \phi \le \alpha$$

Maximizando la función.

$$L(\phi_1, \phi_2, \phi_3, ..., \phi_n, \alpha) = \prod_{i=1}^n f(\phi_i, \alpha) \qquad \phi_i \in [0, \alpha], \quad i = 1, 2, ..., n$$

$$L = \prod_{i=1}^n \frac{1}{\alpha} \qquad \phi_i \in [0, \alpha], \quad i = 1, 2, ..., n$$

$$L = \frac{1}{\alpha} \qquad \phi_i \in [0, \alpha], \quad i = 1, 2, ..., n$$

Obteniendo In y derivando se tiene:

$$lnL=-nln\alpha$$
, $\frac{d ln L}{d\alpha} = -\frac{n}{\alpha} = 0$ \Rightarrow $n=0$

y esto es falso ya que $n \neq 0$.

El método falla, porque el máximo no se alcanza en el interior del espacio paramétrico sino en la frontera.

De otro modo:

$$L = \frac{1}{\alpha^{n}}, \quad \text{si } \phi_{i} < \alpha \quad i=1,2,...,n$$

La función $L(\phi,\alpha)$ alcanza su valor máximo si el denominador es pequeño y esto sucede si n es pequeño.

Se tiene que cada variable es mayor que cero i.e:

$$0 < \phi_1, 0 < \phi_2,..., 0 < \phi_n$$

ordenando las variables aleatorias :

$$0 < \varphi_{(1)}$$
, $0 < \varphi_{(2)},...,0 < \varphi_{(n)}$

donde

$$\phi_{(1)} = \min\{\phi_1, \phi_2, ..., \phi_n\}$$

φ₍₃₎= El siguiente de valor creciente

$$\phi_{\{n\}} = \text{máx.} \{\phi_1, \phi_2, ..., \phi_n\}$$

entonces 0<φ₍₁₎.

por otro lado:

$$\phi_1 < \alpha, \phi_2 < \alpha, ..., \phi_n < \alpha$$

ordenando las variables aleatorias:

$$0 < \phi_{(1)} < \phi_{(2)} < \dots, < \phi_{(n)} < \alpha$$

entonces se tiene lo siguiente:

$$0 < \phi_{\{1\}} < \phi_{(n)} < \alpha$$

por lo tanto el estimador de α es (ver Figura 2.6):

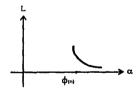


Figura 2.6. Se muestra la gráfica del estimador de α .

7.2. FUNCIÓN CARACTERÍSTICA DE LA DISTRIBUCIÓN UNIFORME $U(0,2\pi)$

A continuación se obtiene la función característica de la distribución Uniforme $U(0,2\pi)$.

$$\begin{split} \varphi_P &= \int\limits_0^{2\pi} e^{-i\,p\,\Phi} \,\, f(\varphi) d\varphi & p = 0,\pm 1,\pm 2,\pm 3,\dots \\ \varphi_P &= \int\limits_0^{2\pi} \frac{e^{-i\,p\,\Phi}}{2\pi} \, d\varphi & \\ \varphi_P &= \frac{1}{2\pi} \int\limits_0^{2\pi} e^{-i\,p\,\Phi} \,\, d\varphi & \\ \varphi_P &= \frac{1}{2\pi} \int\limits_{ip}^{ip\,\Phi} e^{-i\,p\,\Phi} \,\, J_0^{2\pi} & \text{si } p \neq 0 \\ \varphi_P &= \frac{e^{-i\,p\,2\pi} - 1}{2\,\pi \,\, ip} \,\, . \end{split}$$

En consecuencia se tiene:

Si se tiene una distribución circular de tamaño n≥2, y el ángulo medio y la longitud del vector medio son independientes entonces la población se distribuye uniformemente alrededor del círculo. El lector puede ver la demostración en Bingham (1978) y en Kent et. al (1979).

8. DISTRIBUCIÓN VON MISES

La distribución von Mises juega un papel prominente en la estadística inferencial sobre el círculo y su importancia es similar a la distribución normal en estadística lineal. Además esta distribución tiene propiedades importantes que comparte con la distribución lineal y tiene aplicaciones para fenómenos meteorológicos como la precipitación pluvial la cual es una variable angular o "circular".

Gauss mostró que la distribución normal puede ser derivada del principio de máxima-verosimilitud y una hipótesis es que la media es el valor más posible. En 1918 Richard von Mises aplicó el método de Gauss para una variable circular y derivó la distribución von Mises. Su procedimiento es esencialmente el siguiente: von Mises se preguntó para una distribución $f(\xi)$, donde ξ es un "error de observación" $\xi_i = \phi_i - \phi_i$, que el cociente de la probabilidad a posteriori y la probabilidad a priori (la función de verosimilitud) de un "valor verdadero" ϕ_i , teniendo n observaciones ϕ_1 , ϕ_2 ,..., ϕ_n , es para obtener un máximo para ϕ dado por :

$$\sum_{i=1}^{n} \operatorname{sen} \left(\phi_{i} - \theta_{i} \right) = 0. \tag{2.7}$$

La función de verosimilitud es:

$$\prod_{i=1}^n f(\xi_i).$$

El postulado significa que:

$$\sum_{i=1}^{n} \frac{f'(\phi_{i} - \Theta_{1})}{f(\phi_{i} - \Theta_{1})} = 0$$

esto debe ser cierto junto con (2.7). Puesto que estas dos sumas son iguales para valores arbitrarios de φ₁ ,la igualdad debe ser cierta término a término. Puede demostrarse en von Mises (1918) que esto conduce a la siguiente solución general:

$$f(\xi_i) = ce^{k\cos\xi_i}$$
 $i=1,2,...,n$

donde los dos parámetros c y k están condicionados por:

$$\int_{0}^{2\pi} f(\xi) d\xi = 1$$

en consecuencia:

$$c = \frac{1}{\int\limits_0^{2\pi} e^{k\cos\xi} d\xi}$$

$$\Rightarrow c = \frac{1}{2\pi I_0(k)}$$

donde Idk) es la función Bessel (Apéndice I) de primer tipo de argumento imaginario puro.

Por lo tanto, una variable aleatoria circular o se distribuye von Mises si tiene la siguiente función de densidad :

$$f(\phi) = \frac{1}{2\pi I_{0(k)}} \exp[k\cos(\phi - \theta_1)]$$

donde $0<\phi\le 2\pi$, $k\ge 0$, $0\le \theta_1< 2\pi$ y la función $I_0\{k\}$ es una función Bessel de primer tipo y de orden cero, además en la TABLA F del APÉNDICE II se tienen algunos valores para ésta.

Se denotará a la distribución von Mises con parámetros k y θ_1 por $M(k_j\theta_1).$

El centro de masa está dado por el vector medio μ_1 , su vector polar es θ_1 , y su longitud es: $|\mu_1|=p_1=A(k)$. donde A(k) (FIGURA 2.7) es una función que está definida por:

$$A(k) = \rho_1 = \frac{\ln(k)}{\ln(k)}, \qquad (2.8)$$

donde $k\ge 0$, $I_0(k)$, $I_1(k)$ son funciones Bessel. El parámetro k puede ser convertido a ρ_1 por la TABLA C (APÉNDICE II) y para el caso opuesto se usa la TABLA B (APÉNDICE II), es decir convertir a ρ_1 en k.

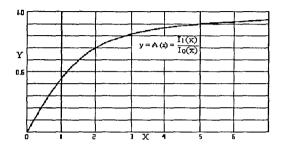


Figura 2.7. Se muestra la gráfica de la función $\Lambda(x)$. Si x es interpretado como parámetro de concentración k, entonces $\Lambda(k)$ es igual a la longitud del vector medio ρ_1 .

En la Figura 2.8 se muestra una gráfica de una distribución particular von Mises, donde se muestran el vector medio μ_1 y el centro de masa C. Además, el lector encontrará valores de la función de distribución acumulativa en la TABLA E (APÉNDICE II).

La función toma su valor máximo cuando $\phi=\theta_1$, por lo tanto θ_1 es la moda, y la antimoda (punto que tiene menor frecuencia) es $\phi=\theta_1+\pi$. (FIGURA 2.8). Además, la distribución es simétrica con respecto a la moda, en consecuencia θ_1 es también el ángulo medio.

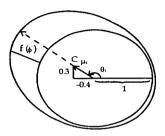


Figura 2.8. Gráfica circular de una distribución von Mises, donde se muestran la longitud del vector medio que es 0.5 el cual corresponde a k=1.16 y el ángulo medio 0₁.

Ahora, los puntos de inflexión para una función de densidad con θ_1 =O están dados por:

$$\pm \ arc \ cos \left\{ -\frac{1}{2k} + \left(1 + \frac{1}{4k^2}\right)^{\frac{1}{2}} \right\}.$$

Nota: $M(k, \theta_1+\pi)$ y $M(-k, \theta_1)$ son la misma distribución, para eliminar esta indeterminación de los parámetros se toma siempre k mayor que cero y $0<\theta_1\le 2\pi$.

En las Figuras 2.9 y 2.10 se muestran las gráficas de la función de densidad von Mises donde se varían los parámetros.

Para valores grandes de k los puntos de inflexión se reducen a $\pm\,k^{-\frac{1}{2}}$. los cuales son comparables con los puntos de inflexión $\pm\,\sigma$ de una distribución normal $N(0,\sigma^2)$. De aquí que, si k es grande la distribución se concentra alrededor de la dirección media, como se muestra en la Figura 2.8.

En la Figura 2.9 se muestra que entre más grande sea el parámetro de concentración k, la distribución se concentra alrededor de la dirección media.

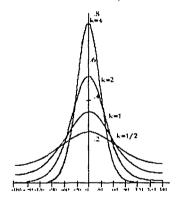


Figura 2.9. Gráfica de una distribución von Mises, donde 01 = 0° y k=1/2,1,2,4.

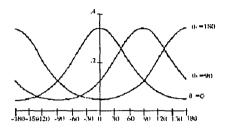


FIGURA 2.10. Gráfica de una distribución von Mises, donde $k = 1 y \theta_1 = 0^{\circ}$, 90° , 180° .

8.1. SU RELACIÓN CON OTRAS DISTRIBUCIONES.

Para k=0 la distribución von Mises genera la distribución uniforme.

$$f(\phi) = \frac{1}{2\pi\;I_{_0}(0)}\,e^{\theta_{\text{cas}(\phi-\theta_1)}} = \frac{1}{2\pi\;I_{_0}(0)} = \frac{1}{2\pi}\;\text{, donde}\quad I_{_0}\left(0\right) = 1$$

En la Figura 2.11 se muestra una comparación de cuatro distribuciones simétricas importantes y unimodales con el mismo valor de ρ_1 , resaltando que los puntos de inflexión de cada gráfica son diferentes.

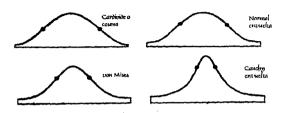


Figura 2.11 Gráficas de las distribuciones Cardioide o coseno. Normal envuelta, von Mises, v Cauchy envuelta,

Para valores pequeños de k, se encuentran términos negligibles de orden k²,k4.... esto se reduce a una distribución cardioide con f.d.p.

$$f(\phi) = \frac{1}{2\pi} \left\{ 1 + \frac{1}{2} \rho_1 \cos(\phi - \theta_1) \right\}, \qquad 0 < \phi \le 2\pi.$$

Haciendo $\phi - \theta_1 = \frac{\xi}{k^{\frac{1}{12}}}$, donde k es grande, entonces se tiene:

$$g\left(\xi\right) = \frac{1}{2\pi \; l_{_0}\left(k\right)} \, e^{^{k \; cost} \frac{\xi}{k^{\frac{1}{1/2}}})} \; y \quad \cos(\frac{\xi}{k^{\frac{1}{1/2}}}) \doteq 1 - {\left(\frac{\xi}{2}\right)}_{2k}^{2},$$

donde ξ se distribuye N(0,1). De lo anterior, para k grande la variable aleatoria ϕ se distribuye como una $N(0_1, \frac{1}{t \cdot \frac{1}{k}})$, entonces cuando $k \to \infty$; la distribución se llega a concentrar en el punto φ=θ₁.

Hay una relación peculiar entre la distribución von Mises y la distribución normal bivariada, la relación fue descubierta por Downs en 1976. Considerando el caso especial de la distribución normal bivariada con centro $\{m_j0\}$, desviaciones estándar $\sigma_1=\sigma_2=1$, y con un coeficiente de correlación $\rho_1=0$; las curvas de nivel de la densidad de probabilidad que se obtiene son círculos y se muestran en la Figura 2.12. Estas curvas de nivel se interceptan con el círculo unitario originando una distribución circular von Mises. Por lo tanto, si se tiene una distribución normal bivariada con estas características, su distribución condicional bajo la restricción $x^2+y^2=1$ es una distribución von Mises con parámetro de concentración k=m.

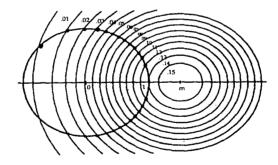


FIGURA 2.12 Una distribución von Mises puede ser derivada de una distribución normal bivariada con la condición de que los puntos de ésta caican sobre la circunferencia del círculo unitario.

8.2. ESTIMACIÓN POR EL MÉTODO MÁXIMA-VEROSIMILITUD.

Sea ϕ_1 , ϕ_2 ,..., ϕ_n una muestra aleatoria de ángulos donde ϕ_i se distribuye M(k, θ_1). Se obtendrá el estimador máximo-verosimil para el ángulo medio θ_1 si k es conocida.

La función de densidad de probabilidad es:

$$f(\phi) = c \exp \Bigl[k \cos \bigl(\phi - \theta \iota \bigr) \Bigr] \qquad \text{donde} \qquad \qquad c = \frac{1}{2 \pi Io(k)} \, .$$

La función de verosimilitud es:

$$\begin{split} L(\underline{\phi}, \theta_1) &= \prod_{i=1}^n f(\phi_i, \theta_1) \\ L(\underline{\phi}, \theta_1) &= \prod_{i=1}^n c \exp[k \cos(\phi_i - \theta_1)] \\ L(\underline{\phi}, \theta_1) &= (2\pi I_0(k))^{-n} \exp \sum_{i=1}^n k[\cos(\phi_i - \theta_1)]. \end{split}$$

Aplicando logaritmo natural:

$$\ln L(\underline{\phi}, \theta_1) = -n \ln[2\pi I_0(k)] + k \sum_{i=1}^{n} \cos(\phi_i - \theta_1)$$
 (2.9)

Derivando con respecto a 01.

$$\begin{split} \frac{\partial \ln L(\phi,\theta_1)}{\partial \theta_1} &= -\sum_{i=1}^n k \operatorname{sen}(\phi_i - \theta_1)(-1) = \sum_{i=1}^n k \operatorname{sen}(\phi_i - \theta_1) = 0 \\ &\Rightarrow \sum_{i=1}^n \operatorname{sen}(\phi_i - \theta_1) = 0 \ . \end{split}$$

De la ecuación $\sum_{i=1}^n \operatorname{sen} \left(\varphi_i - \overline{\varphi} \right) = 0$ (CAPITULO 1), se tiene que el estimador máximo-verosímil del parámetro θ_1 de una distribución von Mises es el ángulo medio de la muestra φ_1 .

$$\sum_{i=1}^{n} k \operatorname{sen}(\phi_{i} - \hat{\theta}_{i}) = 0 \operatorname{si} \hat{\theta}_{i} = \phi_{i}.$$

¿Se puede obtener el mismo resultado para otras distribuciones, como la Normal envuelta, la Cauchy envuelta, o la distribución coseno?. La respuesta es no ya que existe sólo una distribución circular para la cual el ángulo medio es el estimador máximo-verosímil de la población von Mises. La demostración está dada por Bingham and Mardia (1975).

Ahora se obtiene el estimador para el parámetro de concentración ${\bf k}_i$ si θ_1 es conocido.

De (2.9) se obtiene la siguiente derivada parcial:

$$\begin{split} \frac{\partial \ln L(\phi,\theta_1)}{\partial k} &= -n \, \frac{2\pi I^{1_0}(k)}{2\pi I_0(k)} + \sum_{i=1}^n \cos\left(\phi_i - \theta_1\right) = 0 \\ \Rightarrow & n \, \frac{I^{i_0}(k)}{I_0(k)} = \sum_{i=1}^n \cos\left(\phi_i - \theta_1\right) \\ \Rightarrow & \frac{I^{i_0}(k)}{I_0(k)} = \frac{1}{n} \sum_{i=1}^n \cos\left(\phi_i - \theta_1\right). \end{split}$$

Por una propiedad de las funciones Bessel se tiene:

$$I'_0(k) = I_1(k).$$

Por lo tanto,

$$\frac{I_1(k)}{I_0(k)} = \frac{1}{n} \sum_{i=1}^{n} cos(\phi_i - \theta_1).$$

Pero $\frac{1}{n}\sum_{i=1}^{n}\cos(\phi_{i}-\theta_{1})$ es la longitud del vector medio de la muestra

$$\Rightarrow A(\hat{k}) = \frac{I_1(\hat{k})}{I_0(\hat{k})} = r.$$

Se puede resolver esta ecuación numéricamente usando la TABLA B (APÉNDICE II) y también se puede escribir $\hat{\rho}_1=r$.

Así, el estimador máximo-verosímil de la longitud del vector medio teórico es igual a la longitud del vector medio de la muestra.

Para obtener los estimadores de ambos parámetros cuando éstos son desconocidos, se toma (2.9) y se obtienen las siguientes ecuaciones de verosimilitud:

$$\frac{\partial \ln L(\underline{\phi}, \theta_1)}{\partial \theta_1} = 0 \text{ y } \frac{\partial \ln L(\underline{\phi}, \theta_1)}{\partial k} = 0.$$

De las ecuaciones anteriores se obtiene un sistema de ecuaciones, la solución a este sistema proporciona los estimadores máximo-verosímiles de θ_1 y de k, que son los mismos que se obtuvieron anteriormente por separado.

8.3. ESTIMACIÓN DE LOS PARÁMETROS POR EL MÉTODO DE SCHOU

Obteniendo el promedio sobre muchas muestras, ${\bf r}$ es grande. Esto es especialmente cierto para muestras pequeñas de tamaño ${\bf n}$.

Si r_1 , r_2 ,..., r_m son estimaciones de r_1 (cada estimación basada en una muestra de tamaño n), entonces converge en forma casi segura a $E\{r\}$ donde r es una estimación de r_1 basada en n observaciones.

Lo anterior se puede escribir ρ_1 =E(r)-b donde b denota el sesgo.

Stephens (1969) descubrió una fórmula aproximada para el sesgo, que se satisface para k>.4 y n>5.

$$b \approx \frac{1}{2nk}$$
.

Para obtener un mejor estimador de ρ_1 e indirectamente de k, se requiere de un estimador que reduzca el sesgo a cero. Si $\widetilde{\rho}_1$ es este estimador entonces se tiene:

Sin embargo, esta ecuación no puede ser satisfecha por completo. Pero un procedimiento de estimación que reduce el sesgo; fue descubierto por Schou (1978). Con este procedimiento k es estimado e indirectamente ρ_1 . La regla es la siguiente:

a) Si
$$r \le n^{-k_2}$$
, entonces $\tilde{k} = 0$

b) Si $r > n^{-\nu_1}$, entonces \widetilde{k} es la solución distinta de cero de la ecuación $A(x) = \rho_1 A(n\rho_1 x)$ donde A(x) está definida por (2.8).

8.4. Función Característica de una von Mises M(K.0)

Se obtendrá la función característica de una distribución von Mises cuando θ_1 =0, por esto la distribución es simétrica con respecto a ϕ =0, y se tiene:

$$bp=E(senp\phi)=E(senp0)=E(sen0)=E(0)=0.$$

En consecuencia:

$$\phi_p = a_p = \frac{1}{2\pi I0(k)} \int_0^{2\pi} \cos p e^{k\cos\phi} d\phi$$

Expandiendo el término exponencial

$$\begin{split} &\varphi_p = \frac{1}{2\pi I_0(k)} \int\limits_0^{2\pi} cos \, p\varphi \sum_{i=0}^{\infty} \frac{k^i \cos^i \varphi}{i!} d\varphi \\ &\varphi_p = \frac{1}{2\pi I_0(k)} \sum_{i=0}^{\infty} \frac{k^i}{i!} \int\limits_0^{2\pi} cos \, p\varphi \cos^i \varphi d\varphi. \end{split}$$

$$Si \int_{0}^{2\pi} \cos p \cos^{i} \phi d\phi = T_{i,p}$$

$$\phi_{p} = \frac{1}{2\pi I_{0}(k)} \sum_{i=0}^{\infty} \frac{k^{i}}{i!} T_{i,p}.$$

integrando por partes T_{i,p} (cospφ y senpφ)

se obtiene

$$\begin{split} T_{r,p} &= \frac{r(r-1)}{r^2-p^2} T_{r^{-2},p} & \qquad r \neq p \end{split}$$

$$V & \qquad T_{p,p} &= \frac{1}{2} \, T_{p^{-1},p^{-1}} \, . \end{split}$$

En consecuencia:

$$\begin{split} T_{z,p} &= 0 & \text{si } r$$

Con lo anterior, se tiene que:

$$\label{eq:phip} \phi_{p} = a_{p} = \frac{I_{p}(k)}{I_{0}(k)} \qquad \text{donde}$$

$$I_{p}(k) = \sum_{r=0}^{n} \{\Gamma(p+r+1)\Gamma(r+1)\}^{r} \bigg(\frac{k}{2}\bigg)^{-2r+p} \quad .$$

La función $I_p(k)$ es la función Bessel modificada del primer tipo y del p-ésimo orden.

En particular, si se tiene $\mu_1\neq 0$, entonces $a_1=A(k)\cos\mu_1,\ b_1=A(k)\sin\mu_1,$ $p_1=A(k).$

$$\text{De } f(\phi) = \frac{1}{2\pi} \left[1 + 2 \sum_{p=1}^{\kappa} \left(a_p \mathrm{cosp} \phi + b_p \mathrm{senp} \phi \right) \right], \ a_p = \frac{I_p(k)}{I_0(k)}, \ b_p = 0 \ y \ \text{una}$$

distribución von Mises M(k,0) se tiene una expansión de Fourier para la función de densidad de probabilidad de M(k,0) como:

$$f(\phi; k,0) = \frac{1}{2\pi I_0(k)} \left[I_o(k) 1 + 2 \sum_{p=1}^{\infty} I_p(k) \cos p\phi \right]$$

En consecuencia le corresponde una función de distribución dada por:

$$F(\varphi;k,0) = \frac{1}{2\pi I_0(k)} \left[\varphi I_o(k) 1 + 2 \sum_{p=0}^{\infty} \{ I_p(k) senp \varphi \} \ / \ p \right] \quad . \label{eq:force_force}$$

La expresión ha sido usada por Gumbel, et al. 1953 para calcular la función de distribución.

La función de distribución puede ser expresada en términos de la función beta;

$$F(\phi;k,0) = \frac{1}{4\pi I_0(k)} \left[2 \sum_{p=0}^{\infty} \frac{k^p}{p!} \int_{0}^{sen} x^{-1/2} (1-x)^{1/2p-1/2} dx \right]$$

El resultado siguiente se usa en la definición de la función de distribución expandiendo el término exponencial e integrando término por término.

Gumbel et al. (1953) tiene tabulado $2F(\phi;k,o)$ para $\phi=0^{\circ},5^{\circ},180^{\circ}$, k=2,10. y para $F(\alpha;k,0)$ está tabulado en la TABLA I de este trabajo.

 $F(u;k,0)=f(-\pi<\alpha<-\pi+\phi),0\leq\alpha\leq\pi,\ k\leq10,\ el\ rango\ de\ \phi\ es\ (-\pi,\pi).$ Los valores de F para $\alpha\geq\pi$ pueden ser obtenidos de:

$$f(-\pi < \alpha < -\pi + \alpha) = 1 - F(2\pi - \alpha; k, 0).$$

De k≥10, la distribución puede ser aproximada satisfactoriamente por $(\mu_0,\{k-\frac12\}^{-1/2})\;.$

9. DISTRIBUCIONES ENVUELTAS

Se tiene una distribución sobre la línea y si ésta se envuelve alrededor de la circunferencia del círculo unitario, se obtendrá una distribución envuelta. Es decir, si X es una variable aleatoria sobre la línea con función de distribución F(x), entonces la variable X_w de la distribución envuelta está dada por:

$$X_w=X \pmod{2\pi}$$

y la función de distribución de Xw es:

$$F_w(\phi) = \sum_{k=-\infty}^{\infty} \{F(\phi + 2\pi k) - F(2\pi k)\}, \qquad 0 < \phi \le 2\pi.$$

¹ Se utiliza la notación X_w debido a que w denota a la palabra "wrapped" que significa envuelta.

O MA

En particular, si X tiene una distribución concentrada sobre los puntos, $x=\frac{k}{2\pi m}$, $k=0,\pm 1,\pm 2,...$ y m es un entero, se tiene:

$$fw(\phi = \frac{2\pi r}{m}) = \sum_{k = -\infty}^{\infty} f(\phi + 2\pi k), \qquad r = 0,1,...,m-1.$$

donde f y f_w son funciones de densidad de probabilidad de X y X_w respectivamente.

Similarmente, si X tiene una función de densidad de probabilidad f(x), entonces la f.d.p que le corresponde a X_w es:

$$f_w(\phi = \frac{2\pi r}{m}) = \sum_{k=-\infty}^{\infty} f(\phi + 2\pi k)$$
 (2.10)

9.1. Propiedades de las funciones de distribuciones envueltas

 Si φ_x(p) es la función característica de X, entonces la función característica de X_w es sencillamente φ_p, y definida por:

$$\begin{split} & \phi_p = \int_0^{2\pi} e^{ip\phi} dFw(\phi) \\ & \phi_p = \int_0^{2\pi} e^{ip\phi} \sum_{k=-\infty}^{\infty} f(\phi + 2\pi k) d\phi \\ & \phi_p = \int_0^{\infty} \sum_{k=-\infty}^{2\pi} \int_0^{2\pi} e^{ip\phi} f(\phi + 2\pi k) d\phi \end{split}$$

$$\begin{split} \varphi_p &= \sum_{k=-\infty}^{\infty} \sum_{2\pi k}^{2\pi k+2\pi k} f(\varphi) d\varphi \\ \varphi_p &= \sum_{k=-\infty}^{\infty} \sum_{2\pi (k+1)}^{2\pi (k+1)} dF(\varphi) \\ \varphi_p &= \sum_{m=-\infty}^{\infty} \int_{2\pi k}^{2\pi k} dF(x) = \varphi_x(p). \end{split}$$

II.Sı $\phi_*(p)$ es integrable entonces X tiene una función de densidad y la función de densidad de probabilidad de ϕ es:

$$fw(\phi) = \sum_{k=-\infty}^{\infty} f(\phi + 2\pi k) = \frac{1}{2\pi} [1 + 2\sum_{p=1}^{\infty} (a_p \cos p\phi + b_p \sin p\phi)]$$
 (2.11)

 $donde \phi_p = a_p + ib_p.$

Puesto que es integrable \(\phi_P \), se tiene:

$$\sum_{p\,=\,0}^{\infty} \left| \varphi_{\,\,p} \, \right|^{\,2} \,\, < \,\, \sum_{p\,=\,0}^{\infty} \left| \varphi_{\,\,p} \, \right| \,\,\, < \,\, \int\limits_{\,\infty}^{\,\infty} \left| \varphi_{\,\,t} \, \mathbf{k} \, \mathbf{t} \, \right. \, .$$

Por lo tanto la serie $\sum_{p=0}^{\infty} (a_p^2 + b_p^2)$ es convergente y la expresión (2.11) se sigue de las siguientes ecuaciones:

$$f(\phi) = \frac{1}{2\pi} [1 + 2\sum_{p=1}^{\infty} (a_p \cos p\phi + b_p \sin p\phi)]$$

$$Y f_w(\phi) = \sum_{k=-\infty}^{\infty} f(\phi + 2\pi k).$$

III.Si X es infinitamente divisible (B.V. Gnedenko, 1973) entonces X_{ω} es infinitamente divisible.

IV.La envoltura de la parte fraccionada de una variable aleatoria X puede ser obtenida por la transformación. $\phi = 2\pi(x-[x])$, donde [X] denota la parte entera de X.

V. El proceso de desenvoltura sobre el circulo no lleva a una distribución única sobre la línea, así que el proceso de envoltura no es reversible.

Sea $g(\phi)$ la función de densidad de probabilidad sobre el circulo, se puede construir la siguiente f.d.p. sobre la línea la cual cuando se envuelve lleva a $g(\phi)$.

$$f(x) = p_r g(x),$$
 $2\pi r < x \le 2\pi (r+1),$ $r = 0,\pm 1,\pm 2...$

donde p_r son cualesquiera números no negativos tales que: $\sum p_r = 1$.

9.2. DISTRIBUCION NORMAL ENVUELTA Nw(11, P1)

Imaginate una rueda dando vueltas aleatorias con respecto a una posición en equilibrio marcada por 0°. Las vueltas se realizan en sentido a las manecillas del reioj o en sentido contrario. Ahora, si se supone que las elongaciones (APÉNDICE I) están distribuídas normalmente y están restringidas al intervalo de -180° 180°, este procedimiento origina una distribución circular llamada *Normal envuelta*. Además, éste se puede ver como un procedimiento matemático, en donde se envuelve la distribución normal lineal alrededor del circulo y se suman las probabilidades que caen dentro del mismo sector del círculo. (Ver Figura 2.11). En la figura se observa que la distribución es unimodal y simétrica con respecto a μ_1 =0 y que tiene dos puntos de inflexión.

9.2.1. Función de densidad de probabilidad

Si X se distribuye normal $N(o_j\sigma^2)$. Se obtiene de la ecuación (2.10) la f.d.p. de la distribución Normal envuelta

$$\begin{split} f_w(\phi) &= \sum_{k=-\infty}^{\infty} f(\phi + 2\pi k), & 0 < \phi \le 2\pi \\ f_w(\phi) &= \sum_{k=-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(\phi + 2\pi k)^2}{2\sigma^2}\right], \\ f_w(\phi) &= \frac{1}{\sqrt{2\pi\sigma^2}} \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(\phi + 2\pi k)^2}{2\sigma^2}\right]. & 0 < \phi \le 2\pi \end{split} \tag{2.12}$$

9.2.2. Función de distribución.

La función de distribución puede ser obtenida si se integra la serie (2.12) término por término.

9.2.3. Función Característica de la distribución Normal envuelta.

En la sección 10.1 se mencionó que la función característica de una variable aleatoria circular es ϕ_P , que es la función característica de la variable aleatoria lineal.

A continuación se obtiene la función característica de X que se distribuye normal $N(\mu_0\sigma^2)$:

$$\begin{split} & \varphi(p) = E(e^{ipx})) \\ & \varphi(p) = \int\limits_{-\infty}^{\infty} e^{ipx} \frac{1}{\sqrt{2\pi\sigma^2}} exp \bigg[-\frac{1}{2\sigma^2} \big(x - \mu^2\big) \bigg] dx \\ & \varphi(p) = \int\limits_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} exp \bigg[-\frac{1}{2\sigma^2} \big(x^2 - 2x\mu + \mu^2 - ipx2\sigma^2\big) \bigg] dx \\ & \varphi(p) = exp \bigg[-\frac{1}{2\sigma^2} \mu^2 + \frac{\big(\mu + ip\sigma^2\big)^2}{2\sigma^2} \bigg] \int\limits_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} exp \bigg[-\frac{1}{2\sigma^2} \big(x^2 - 2x(\mu + ip\sigma^2) + \big(\mu + ip\sigma^2\big)^2 \big] dx \\ & \varphi(p) = exp \bigg[-\frac{1}{2\sigma^2} \mu^2 + \frac{\big(\mu + ip\sigma^2\big)^2}{2\sigma^2} \bigg] \int\limits_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} exp \bigg[-\frac{1}{2\sigma^2} \big(x^2 - 2x(\mu + ip\sigma^2) + \big(\mu + ip\sigma^2\big)^2 \bigg] \int\limits_{-\infty}^{\infty} f(x) dx \\ & \therefore \qquad \varphi_*(p) = exp \bigg[ip\mu - \frac{1}{2} p^2\sigma^2 \bigg]. \end{split}$$

Por lo tanto, la función característica para x que se distribuye Normal $N(o,\sigma^2)$ es $\phi_*(p) = \exp\left[-\frac{1}{2}p^2\sigma^2\right]$, y por consiguiente

$$\phi_{p} = a_{p} = \exp\left[-\frac{1}{2}p^{2}\sigma^{2}\right] \tag{2.13}$$

es la función característica de la distribución Normal envuelta, donde b₂=0.

Ahora, si se utiliza este resultado en (2.11), se obtiene una representación usual de la densidad:

$$f_{\nu}(\phi) = \frac{1}{2\pi} \left[1 + 2 \sum_{p=1}^{\infty} \rho_i^{p^i} \cos p\phi \right], \qquad 0 < \phi \le 2\pi, \quad 0 \le \rho_i \le 1,$$
 (2.14)

donde
$$\rho_1 = \exp\left[-\frac{1}{2}\sigma^2\right], \quad \sigma^2 = -2\log\rho_1$$
 (2.15)

9.2.4. Propiedad aditiva de la función característica.

Sea ϕ_1 , ϕ_2 ,..., ϕ_n una muestra aleatoria donde ϕ_i tiene una función de densidad de probabilidad cuya función característica es: $\phi_p = a_P = exp \bigg[-\frac{1}{2} \, p^2 \sigma^2 \bigg]$

Obteniendo la función característica de ϕ donde $\phi = \sum_{k=1}^{n} \phi_k$:

$$\begin{split} \phi_p &= E(e^{ip\phi}) \\ \phi_p &= E\left(exp\left[ip\sum_{k=1}^n \phi_k\right]\right) \\ \phi_p &= E\left(\prod_{k=1}^n exp\left[ip\phi_k\right]\right) \\ \phi_p &= \prod_{k=1}^n E\left(exp\left[ip\phi_k\right]\right) \\ \phi_p &= \prod_{k=1}^n exp\left[-\frac{1}{2}p^2\sigma^2\right]\right) \\ \phi_p &= \left[exp\left(-\frac{1}{2}np^2\sigma^2\right)\right]^n \\ \phi_p &= \rho_i^{np^2} \end{split}$$

dado que la función característica de 6 tiene la misma forma que (2.13). (remplazando σ² por nσ²), se sigue por el teorema de unicidad que φ tiene densidad dada (2.14) con $\rho_1 = \exp[\frac{1}{2}n\sigma^2]$.

La relación entre (2.12) y (2.15) es una famosa formula de transformación de la teoría de las funciones tetas2

Además, se tiene $\mu_1=0$, $a_1=p_1$, $b_2=0$, $a_2=p_1^4$.

$$v_0=1-\rho_1$$
, $\sigma=\{-2\log\{1-v_0\}\}^{1/2}$.

9.2.5. Su relación con otras distribuciones.

Si $\rho_1 \rightarrow 0$ en la ecuación (2.14), entonces se observa que la función tiende a ser una función de distribución de una variable aleatoria uniforme circular uniforme ø. Si p₁→1 entonces la función de distribución se concentra en un solo punto u1. Los valores numéricos de la f.d.p. (2.12) pueden obtenerse usando la siguiente relación:

 $f_{\infty}(\phi) = (2p)^{-1} \vartheta_3(\phi, \rho_1)$, donde ϑ_3 es una función zeta. Shuler y Gebelein (1955, TABLAS 3 y 4).

Las tablas tienen tabulada la siguiente función.

² Beliman, (1961), p.11

$$9.3(\frac{1}{2}\cos^{-1}x,\rho_1), \qquad -1 \le x \le 1, \quad 0 \le \rho_1 \le 0.5.$$

9.3. DISTRIBUCIÓN POISSON ENVUELTA

Si se considera la función de densidad de probabilidad de una distribución Poisson como sigue:

$$f(x;\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}, \qquad x = 0,1,...; \qquad \lambda > 0.$$

$$f_{w}(\phi) = \sum_{-\infty}^{\infty} f(\phi + 2\pi k)$$

$$f_{w}(\phi) = \sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^{\phi + 2\pi k}}{(\phi + 2\pi k)!}$$

Por lo que

$$f_w\big(\phi=\frac{2\pi r}{m}\big)=\sum_{k=0}^{\infty}\frac{e^{-k}\lambda^{\frac{2\pi r}{m}+2\pi k}}{(\frac{2\pi r}{m}+2\pi k)!}.$$

Desarrollando el exponente de λ y el factorial se tiene:

$$\frac{2\pi r}{m} + 2\pi k = \frac{2\pi r + 2\pi km}{m} = \frac{2\pi}{m}(r + km)$$

Por lo tanto

$$\begin{split} f_w(\phi) &= \sum_{k=0}^\infty \frac{e^{-\lambda} \lambda^{\frac{2\pi}{m}(r+km)}}{[\frac{2\pi}{m}(r+km)]!} & r = 0,1,\dots m-1 \\ \Rightarrow & f_w(\phi) &= \sum_{k=0}^\infty f\left[\frac{2\pi}{m}(r+km);\lambda\right], & r = 0,1,\dots m-1 \end{split}$$

donde m es un entero, y se puede ver que las probabilidades son funciones decrecientes de r.

9.3.1. Función Característica

Se supone que X tiene una distribución Poisson con parámetro λ.

Obteniendo su función característica.

$$\phi_{x}(p) = \sum_{k=0}^{\infty} e^{ipk} \frac{e^{-\lambda} \lambda^{k}}{k!}$$

$$\phi_{x}(p) = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(e^{ip} \lambda)^{k}}{k!}$$

$$\phi_{x}(p) = e^{-\lambda} e^{e^{i\lambda p}}$$

$$\phi_{x}(p) = e^{\lambda(e^{ip}-1)}$$

$$\therefore \qquad \phi_{p} = e^{\lambda(e^{ip}-1)}$$

10. DISTRIBUCIÓN COSENO O CARDIOIDE

La distribución Coseno o Cardioide fue introducida por Jeffreys (1961. Pp. 328-330) y es derivada de una curva coseno sobre el intervalo de -180° a

180°. La función de densidad de probabilidad de una distribución coseno con longitud de vector medio ρ_1 y ángulo medio θ_1 es:

$$f(\phi) = \frac{1}{2\pi} \left[1 + 2\rho_1 \cos(\phi - \theta_1) \right], 0 < \phi \le 2\pi, \qquad \left| \rho_1 \right| \le \frac{1}{2}$$

Para evitar valores negativos para $f(\phi)$ se tiene que tomar $|\rho_1| \leq \frac{1}{2}$. Por lo tanto la distribución coseno no puede ser ajustada a una muestra que tenga la longitud del vector medio $\rho_1 > \frac{1}{2}$.

Si se traza f(φ) en coordenadas polares, se obtendrá una curva llamada cardioide donde la figura representa un corazón. Por esta razón recibe el nombre de distribución cardioide. (Ver Figura 2.13).

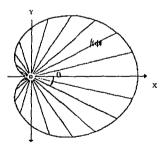


FIGURA 2.13. Función de distribución Cardioide.

Si es una función de densidad entonces satisface las ecuaciones (2.1), (2.2) y (2.3).

Demostración:

i) $f(\phi)$ es mayor o igual que cero, ya que se toma $\left|\rho_1\right| \leq \frac{1}{2}$.

ii)
$$f(\phi)=f(\phi+2\pi)$$
.

Demostración:

$$f(\phi) = \frac{1}{2\pi} \Big[1 + 2\rho_1 \cos \Big[(\phi + 2\pi) - \theta_1 \Big] \Big].$$

Desarrollando

$$\begin{split} \cos&\big[(\phi+2\pi)-\theta_1\big]=\cos(\phi+2\pi)\cos\theta_1+\sin(\phi+2\pi)\sin\theta_1\\ \cos&\big[(\phi+2\pi)-\theta_1\big]=\big[\cos\phi\cos2\pi-\sin\phi\sin2\pi\big]\cos\theta_1+\big[\sin\phi\cos2\pi+\cos\phi\sin2\pi\big]\sin\theta_1\\ \cos&\big[(\phi+2\pi)-\theta_1\big]=\cos\phi\cos\theta_1+\sin\phi\sin\theta_1\\ \cos&\big[(\phi+2\pi)-\theta_1\big]=\cos(\phi-\theta_1) \end{split}$$

Entonces

$$f(\phi + 2\pi) = \frac{1}{2\pi} [1 + 2\rho_1 \cos(\phi - \theta_1)]$$

y este resultado es igual a $f(\phi)$.

$$f(\phi)=f(\phi+2\pi)\;.$$

iii)
$$\int_0^2 f(\phi) d\phi = 1$$

Demostración:

$$\begin{split} &\sum_{0}^{2\pi} f(\varphi) d\varphi = \sum_{0}^{2\pi} \frac{1}{2\pi} \Big[1 + 2\rho_{1} \cos(\varphi - \theta_{1}) \Big] d\varphi \\ &\sum_{0}^{2\pi} f(\varphi) d\varphi = \int_{0}^{2\pi} \frac{1}{2\pi} d\varphi + \sum_{0}^{2\pi} 2\rho_{1} \cos(\varphi - \theta_{1}) d\varphi \\ &\sum_{0}^{2\pi} f(\varphi) d\varphi = \frac{1}{2\pi} \varphi \Big|_{0}^{2\pi} + 2\rho_{1} \int_{0}^{2\pi} \cos(\varphi - \theta_{1}) d\varphi \\ &\sum_{0}^{2\pi} f(\varphi) d\varphi = 1 + 2\rho_{1} \int_{0}^{2\pi} [\cos\varphi \cos\theta_{1} + \sin\varphi \sin\theta_{1}] d\varphi \\ &\sum_{0}^{2\pi} f(\varphi) d\varphi = 1 + 2\rho_{1} [\cos\theta_{1} \sin\varphi + \Big|_{0}^{2\pi} - \sin\theta_{1} \cos\varphi \Big|_{0}^{2\pi} \Big] \\ &\sum_{0}^{2\pi} f(\varphi) d\varphi = 1 + 2\rho_{1}(0) \\ &\therefore \int_{0}^{2\pi} f(\varphi) d\varphi = 1. \end{split}$$

De los tres puntos demostrados se puede concluir que $f(\phi)$ es una función de densidad de probabilidad.

10.1. SU RELACIÓN CON OTRAS DISTRIBUCIONES

Si $\rho_1 \to 0$, la función de densidad $f(\phi)$ converge a una función de densidad Uniforme circular.

Demostración:

$$f(\phi) = \frac{1}{2\pi} \left[1 + 2\rho_1 \cos(\phi - \theta_1) \right], \ 0 < \phi \le 2\pi, \qquad \left| \rho_1 \right| \le \frac{1}{2}$$

$$\begin{split} \lim & f(\phi) = \lim \frac{1}{2\pi} \Big[1 + 2\rho_1 \cos(\phi - \theta_1) \Big], 0 < \phi \le 2\pi, \qquad \Big| \rho_1 \Big| \le \frac{1}{2} \\ & \rho_1 \to 0 \quad \rho_1 \to 0 \\ & \Rightarrow \qquad \qquad f(\phi) = \frac{1}{2\pi} \,. \end{split}$$

10.2. FUNCIÓN DE DISTRIBUCIÓN

Obteniendo la función de distribución:

 $F(\phi) = \int f(u)du = \int \frac{1}{2\pi} \left[1 + 2\rho_1 \cos(u - \theta_1) \right] du$

10.3. MOMENTOS TRIGONOMÉTRICOS

Se obtiene el primer momento trigonométrico que es el vector medio μ_1 con coordenadas (a_1,b_1) .

$$\begin{split} a_1 &= \int\limits_0^{2\pi} \cos \phi f(\phi) d\phi = \int\limits_0^{2\pi} \frac{\cos \phi}{2\pi} \left[1 + 2\rho_1 \cos(\phi - \theta_1) \right] d\phi \\ a_1 &= \int\limits_0^{2\pi} \frac{\cos \phi}{2\pi} d\phi + \int\limits_0^{2\pi} \frac{2\rho_1 \cos(\phi - \theta_1) \cos \phi}{2\pi} d\phi \\ a_1 &= \frac{1}{2\pi} \sin \phi \quad \Big|_0^{2\pi} + \frac{\rho_1}{\pi} \int\limits_0^{2\pi} \left[\cos \phi \cos \theta_1 + \sin \phi \sin \theta_1 \right] \cos \phi d\phi \\ a_1 &= \frac{\rho_1}{\pi} \left[\int\limits_0^{2\pi} \cos^2 \phi \cos \theta_1 d\phi + \sin \theta_1 \right] \int\limits_0^{2\pi} \sin \phi \cos \phi d\phi \Big]. \end{split}$$

Resolviendo la primera integral

$$\begin{split} & \int\limits_0^{2\pi} \cos^2\varphi \cos\theta_1 d\varphi = \int\limits_0^{2\pi} \frac{\cos\theta_1 \left(1-\cos2\varphi\right)}{2} \, d\varphi \\ & \int\limits_0^{2\pi} \cos^2\varphi \cos\theta_1 d\varphi = \frac{\cos\theta_1}{2} \int\limits_0^{2\pi} \left[1-\cos2\varphi\right] d\varphi \\ & \int\limits_0^{2\pi} \cos^2\varphi \cos\theta_1 d\varphi = \frac{\cos\theta_1}{2} \left[2\pi - \int\limits_0^{2\pi} \cos2\varphi d\varphi\right]. \end{split}$$

Por el método de sustitución:

Se define a
$$u = 2\phi \implies du = 2d\phi$$

$$\int_{0}^{2\pi} \cos^2 \phi \cos \theta_1 d\phi = \frac{\cos \theta_1}{2} \left[2\pi - \frac{1}{2} \int_{0}^{2\pi} \cos u du \right]$$
$$\int_{0}^{2\pi} \cos^2 \phi \cos \theta_1 d\phi = \frac{\cos \theta_1}{2} \left[2\pi - \frac{1}{2} \sin 2\phi \right]_{0}^{2\pi}$$

$$\int_{0}^{2\pi} \cos^2 \phi \cos \theta_1 d\phi = \frac{\cos \theta_1}{2} [2\pi + \frac{1}{2} \sin 4\pi - \frac{1}{2} \sin 2(0)]$$

$$\int_{0}^{2\pi} \cos^2 \phi \cos \theta_1 d\phi = \pi \cos \theta_1.$$

Resolviendo la segunda integral.

Por el método de sustitución:

Se define a $u = sen \phi \implies du = cos \phi d\phi$

$$\int_{0}^{2\pi} \operatorname{sen} \phi \cos \phi d\phi = \int_{0}^{2\pi} u du = \frac{u^{2}}{2} \Big|_{0}^{2\pi} = \frac{\operatorname{sen}^{2}}{2} \phi \Big|_{0}^{2\pi} = 0$$

$$\therefore \quad a_{1} = \frac{\rho}{\pi} \pi \cos \theta_{1} = \rho \cos \theta_{1}.$$

Obteniendo la segunda coordenada del vector medio.

$$\begin{split} b_1 &= \int_0^{2\pi} \text{sen} \, \phi f(\phi) d\phi = \int_0^{2\pi} \frac{\text{sen} \, \phi}{2\pi} \big[1 + 2\rho_1 \cos(\phi - \theta_1) \big] d\phi \\ b_1 &= \int_0^{2\pi} \frac{\text{sen} \, \phi}{2\pi} \, d\phi + \int_0^{2\pi} \frac{2}{2\pi} \rho_1 \cos(\phi - \theta_1) \sin \phi d\phi \\ b_1 &= \frac{-\cos\phi}{2\pi} \, \Big|_0^{2\pi} + \frac{\rho_1}{\pi} \int_0^{2\pi} \big[\cos\phi \cos\theta_1 + \sin\phi \sin\theta_1 \big] \sin\phi \big] d\phi \\ b_1 &= \frac{-1}{2\pi} + \frac{1}{2\pi} + \frac{\rho_1}{\pi} \int_0^{2\pi} \big[\cos\phi \sin\phi \cos\theta_1 + \sin^2\phi \sin\theta_1 \big] d\phi \\ b_1 &= \frac{\rho_1}{\pi} \big[\cos\theta_1 \sin^2\phi \, \Big|_0^{2\pi} + \sin\theta_1 \int_0^{2\pi} \frac{1 - \cos2\phi}{2} \big] \\ b_1 &= \frac{\rho_1}{\pi} \big[\sin\theta_1 \big(\frac{1}{2} \phi \big|_0^{2\pi} \big) - \frac{\sin\theta_1}{2} \big]_0^{2\pi} \cos2\phi d\phi \big]. \end{split}$$

Por el método de sustitución:

Se define a $u = 2\phi \implies du = 2d\phi$

$$\begin{aligned} b_1 &= \frac{\rho_1}{\pi} [\pi \sec \theta_1 - \frac{\sec \theta_1}{2 \cdot 2} \int_0^{2\pi} \cos u du] \\ b_1 &= \frac{\rho_1}{\pi} [\pi \sec \theta_1 - \frac{\sec \theta_1}{4} \sec 2\phi]_0^{2\pi} \\ b_1 &= \rho_1 \sec \theta_1 \\ \therefore b_1 &= \rho_1 \sec \theta_1. \end{aligned}$$

$$\Rightarrow \qquad \mu_1 = \begin{bmatrix} \rho_1 \cos \theta_1 \\ \rho_1 \sin \theta_1 \end{bmatrix}.$$

10.4. FUNCIÓN CARACTERÍSTICA

$$\begin{split} &\varphi_p = E(e^{ip\phi}) = \int\limits_0^{2\pi} e^{ip\phi} f(\varphi) d\varphi = \int\limits_0^{2\pi} e^{ip\phi} \frac{1}{2\pi} [1 + 2\rho cos(\varphi - \theta_1)] d\varphi \\ &= \frac{1}{2\pi} \int\limits_0^{2\pi} e^{ip\phi} d\varphi + \int\limits_0^{2\pi} \frac{e^{ip\phi}}{2\pi} [2\rho cos(\varphi - \theta_1)] d\varphi \\ &= \frac{1}{2\pi} \int\limits_0^{2\pi} e^{ip\phi} d\varphi + \int\limits_0^{2\pi} \frac{e^{ip\phi}}{\pi} \rho cos(\varphi - \theta_1) d\varphi. \end{split}$$

Integrando la primera integral

$$\frac{1}{2\pi} \int\limits_0^{2\pi} e^{ip\varphi} d\varphi = \frac{1}{2\pi} \int\limits_0^{2\pi} e^{ip\varphi} d\varphi = \frac{1}{2\pi i p} e^{ip\varphi} \ \big|_0^{2\pi} = \frac{e^{ip2\pi}}{2\pi i p} - \frac{1}{2\pi i p} \qquad p \neq 0.$$

Integrando la segunda integral

$$\begin{split} & 2^{\frac{n}{\eta}} \frac{e^{ip\phi}}{\pi} \rho \cos(\phi - \theta_1) d\phi = \frac{\rho}{\pi} \int_0^{2\pi} e^{ip\phi} [\cos\phi \cos\theta_1 + \sin\phi \sin\theta_1] d\phi \\ & = \frac{\rho \cos\theta_1}{\pi} \int_0^{2\pi} e^{ip\phi} \cos\phi d\phi + \frac{\rho \sin\theta_1}{\pi} \int_0^{2\pi} e^{ip\phi} \sin\phi d\phi. \end{split}$$

Resolviendo la primera integral por partes:

$$\begin{split} u &= \cos \varphi & dv \!=\! e^{i p \varphi} d \varphi \\ u' &= - \operatorname{sen} \varphi \ d \varphi & v = \frac{1}{i p} e^{i p \varphi} \\ & \frac{\rho \cos \theta_1}{\pi} \int_0^2 \!\!\!\! e^{i p \varphi} \cos \varphi d \varphi = \frac{\cos \varphi e^{i p \varphi}}{i p} \int_0^{2\pi} \!\!\!\! + \frac{1}{i p} \int_0^{2\pi} \!\!\!\! e^{i p \varphi} \operatorname{sen} \varphi d \varphi \\ &= \frac{e^{i p 2 \pi}}{i p} - \frac{1}{i p} + \frac{1}{i p} \int_0^2 \!\!\!\! e^{i p \varphi} \operatorname{sen} \varphi d \varphi. \end{split}$$

Resolviendo la integral por partes:

u = sen d

$$\begin{split} u' &= \cos \phi \; d \phi \qquad \qquad v = \frac{1}{ip} e^{ip\phi} \\ &\frac{\rho \cos \theta_1}{\pi} \int_0^{2\pi} e^{ip\phi} \cos \phi d \phi = \frac{e^{ip2\pi}}{ip} - \frac{1}{ip} + \int_0^{\pi} \frac{1}{ip} e^{ip\phi} \sin \phi d \phi \\ &\frac{\rho \cos \theta_1}{\pi} \int_0^{2\pi} e^{ip\phi} \cos \phi d \phi = \frac{e^{ip2\pi}}{ip} - \frac{1}{ip} + \left[\frac{\sin \phi e^{ip\phi}}{\left(ip\right)^2} \right]_0^{2\pi} - \frac{1}{\left(ip\right)^2} \int_0^{2\pi} e^{ip\phi} \cos \phi d \phi \end{split}$$

$$\begin{split} &\frac{\rho\cos\theta_1}{\pi}\int_0^2 e^{ip\phi}\cos\phi d\phi = \frac{e^{ip2\pi}}{ip} - \frac{1}{ip} - \frac{1}{i^2p^2}\int_0^2 e^{ip\phi}\cos\phi d\phi \\ &\frac{\rho\cos\theta_1}{\pi}\int_0^{2\pi} e^{ip\phi}\cos\phi d\phi + \frac{1}{\left(ip\right)^2}\int_0^{2\pi} e^{ip\phi}\cos\phi d\phi = \frac{e^{ip2\pi}}{ip} - \frac{1}{ip} \\ &\int_0^{2\pi} e^{ip\phi}\cos\phi d\phi \Bigg[\frac{\rho\cos\theta_1}{\pi} + \frac{1}{\left(ip\right)^2}\Bigg] = \frac{e^{ip2\pi}}{ip} - \frac{1}{ip} = \frac{e^{ip2\pi} - 1}{ip}. \end{split}$$

Sintetizando

$$\begin{split} &\frac{\rho\cos\theta_1}{\pi} + \frac{1}{\left(\mathrm{ip}\right)^2} = \frac{\rho\cos\theta_1\left(\mathrm{ip}\right)^2 + \pi}{\pi(\mathrm{ip})^2} \\ & \therefore \int\limits_0^{2\pi} e^{\mathrm{i}p\varphi} \cos\varphi d\varphi = \frac{\frac{e^{\mathrm{i}p^2\pi} - 1}{\mathrm{ip}}}{\rho\cos\theta_1\left(\mathrm{ip}\right)^2 + \pi} = \frac{\left(e^{\mathrm{i}p^2\pi} - 1\right)\!\left(\pi\mathrm{i}^2p^2\right)}{\mathrm{ip}\!\left(\rho\cos\theta_1\mathrm{i}^2p^2 + \pi\right)} \\ & \Rightarrow \int\limits_0^{2\pi} e^{\mathrm{i}p\varphi} \cos\varphi d\varphi = \frac{\left(e^{\mathrm{i}p^2\pi} - 1\right)\pi\mathrm{i}p}{\mathrm{i}^2p^2\rho\cos\theta_1 + \pi}. \end{split}$$

Realizando la segunda integral

$$\frac{\rho \, sen \, \theta_1}{\pi} \int\limits_0^{2\pi} sen \, \varphi e^{ip\phi} d\phi.$$

Se integra por partes

$$u = \operatorname{sen} \phi$$
 $dv = e^{ip\phi} d\phi$
 $u' = \cos \phi d\phi$ $v = \frac{e^{ip\phi}}{ip}$

$$\frac{\rho sen\theta_1}{\pi} \int\limits_0^{2\pi} sen\varphi e^{ip\varphi} d\varphi = \frac{sen\varphi e^{ip\varphi}}{ip} \left| \int_0^{2\pi} -\frac{1}{\left(ip\right)} \int\limits_0^{2\pi} e^{ip\varphi} \cos\varphi d\varphi.$$

Integrando por partes

$$u = \cos \phi$$
 $dv = e^{ip\phi} div$
 $u' = -\sin \phi d\phi$ $v = \frac{e^{ip\phi}}{ip}$

$$\begin{split} &\frac{\rho sen\,\theta_1}{\pi}\int\limits_0^{2\pi}sen\,\varphi e^{ip\varphi}\,d\varphi = \frac{1}{ip}\Bigg[\frac{\cos\varphi e^{ip\varphi}}{ip}\Big|_0^{2\pi} + \int\limits_0^{\pi}\frac{e^{ip\varphi}}{ip}\,sen\,\varphi d\varphi\Bigg]\\ &\frac{\rho\,sen\,\theta_1}{\pi}\int\limits_0^{2\pi}sen\varphi e^{ip\varphi}\,d\varphi + \frac{1}{\left(ip\right)^2}\int\limits_0^{2\pi}sen\,\varphi e^{ip\varphi}\,d\varphi = \frac{-1}{ip}\Bigg[\frac{e^{ip2\pi}}{ip} - \frac{1}{ip}\Bigg] \end{split}$$

$$\int\limits_{0}^{2\pi}\!sen\,\varphi e^{ip\Phi}d\varphi = \left[\frac{\rho\,sen\,\theta_1}{\pi} + \frac{1}{\left(ip\right)^2}\right] = \frac{-1}{ip}\left[\frac{e^{ip^2\pi}-1}{ip}\right] = \frac{\left(1-e^{ip^2\pi}\right)}{\left(ip\right)^2}.$$

Sintetizando

$$\begin{split} &\frac{\rho \, \text{sen} \, \theta_1}{\pi} + \frac{1}{\left(ip\right)^2} = \frac{\rho \, \text{sen} \, \theta_1 \left(ip\right)^2 + \pi}{\pi \left(ip\right)^2} \\ &\frac{\left(1 - e^{ip2\pi}\right)}{\left(ip\right)^2} = \frac{\left(1 - e^{ip2\pi}\right) \pi \left(ip\right)^2}{\left(ip\right)^2 + \pi} \\ &\frac{\rho \, \text{sen} \, \theta_1 \left(ip\right)^2 + \pi}{\pi \left(ip\right)^2} = \frac{\left(1 - e^{ip2\pi}\right) \pi \left(ip\right)^2}{\left(ip\right)^2 \left[\rho \, \text{sen} \, \theta_1 \left(ip\right)^2 + \pi\right]} \end{split}$$

$$\begin{split} &\Rightarrow \int\limits_0^{2\pi} sen \, \varphi e^{i\rho \Phi} d\varphi = \frac{\left(1-e^{i\rho 2\pi}\right)\pi}{\rho sen \, \theta_1 \left(ip\right)^2 + \pi} \\ &\varphi_p = \frac{e^{i\rho 2\pi}}{2\pi ip} - \frac{1}{2\pi ip} + \frac{\rho \cos \theta_1}{\pi} \left[\frac{\left(e^{i\rho 2\pi} - 1\right)\pi ip}{\left(ip\right)^2 \rho \cos \theta_1 + \pi} \right] + \frac{\rho \cos \theta_1}{\pi} \left[\frac{\left(1-e^{i\rho 2\pi}\right)\pi}{\rho sen \, \theta_1 \left(ip\right)^2 + \pi} \right] \\ &\therefore \varphi_p = \frac{e^{i\rho 2\pi}}{2\pi ip} - \frac{1}{2\pi ip} + \rho \cos \theta_1 \left[\frac{\left(e^{i\rho 2\pi} - 1\right)ip}{\left(ip\right)^2 \rho \cos \theta_1 + \pi} \right] + \rho \cos \theta_1 \left[\frac{\left(1-e^{i\rho 2\pi}\right)\pi}{\rho sen \, \theta_1 \left(ip\right)^2 + \pi} \right] \end{split} \qquad p \neq 0$$

CAPITULO III

1.PROCEDIMIENTO

n los problemas las periodicidades, su amplitud y longitud son una de las principales faenas de la aplicación de estadística cuyo rango es muy extenso, y especialmente para los fenómenos económicos. Aunque numerosos teoremas han sido desarrollados, la cuestión de como reconocer un ciclo permanece abierta, puesto que los complicados métodos matemáticos usados en los análisis de periodograma y correlograma pueden generar ciclos reales o ficticios y pueden esconder los originales.

Las observaciones ϕ_i pueden estar dadas individualmente y/o en la mayoría de los casos en grupos, i.e. como frecuencias f_i que corresponden a ciertos intervalos, por ejemplo los meses de igual longitud. En el caso individual se calcula el seno y coseno de cada observación y se obtiene θ_1 .

El caso de las observaciones agrupadas permite una simplificación, ya que se supone que las frecuencias están dadas para los doce meses y cada uno de éstos tienen treinta días. Por lo tanto el año es considerado de 360 días, y por consiguiente a un día le corresponde un grado. Las frecuencias van a corresponder al punto medio de cada mes. Y un valor preliminar para θ_1 (moda de una distribución von Mises) es a la mitad de julio. Entonces las observaciones pueden ser arregladas como muestra el siguiente esquema:

		Norte		
		360°julio		
	330° junio		agosto 30°	
	300° mayo		septiembre 60°	
Oeste	270° abril		octubre 90°	Este
	240° marzo		noviembre 120°	
	210° febrero		diciembre 150°	
		enero 180°		
		Sur		

ESQUEMA 3.1. Se observa que en la TABLA se utiliza el ángulo α.(ver FIGURA 1.1).

La distribución circular, como se mencionó en el CAPITULO I puede ser representada por un histograma de línea; para la realización de este histograma se toman en cuenta diversos arreglos como por ejemplo:

- Listar los meses en su orden normal de enero por la izquierda y Diciembre por la derecha.
- 2.Poner el mes modal a la mitad de la gráfica.
- 3.Localizar la media calculada (o moda) a la mitad.

Además, una distribución circular puede ser trazada sobre papel polar. Un procedimiento usual es el trazo de frecuencias de varios meses como radio vectores en los ángulos apropiados; el resultado de esto es un diagrama polar ajustado correspondiente al histograma de línea. Sin embargo, por este procedimiento el área de cada ajuste varia como el cuadrado de la frecuencia, lo cual significa que si se tienen dos distribuciones diferentes de 100 observaciones y si son trazadas, entonces sus áreas serán diferentes. Para conservar las áreas, Leighly (1928) propone el trazo de raices cuadradas de las frecuencias y este procedimiento se llama aequiareal (Gumbel, E.J., Greenwood, J.A. and Dorand. P., 1953).

Se considera una distribución circular sobre el año. Las observaciones son agrupadas o pueden ser agrupadas dentro de periodos mensuales. Por lo tanto las series de tiempo son concentradas en doce frecuencias denotadas f_i , i=1,2,...,12. En la mayoría de los casos f_i representa la frecuencia media del i-ésimo mes. La media ha estado siendo tomada para todos los años observados. Puesto que los parámetros de la distribución normal son invariante bajo una multiplicación de todas las frecuencias, es irrelevante si es usada la frecuencia absoluta o relativa. Esta propiedad es muy importante ya que permite la aplicación de la distribución Normal circular a series de tiempo las cuales por ellas mismas no constituyen distribuciones en el sentido estadístico lineal. Sean f_i cualesquiera números no negativos arbitrarios o de dimensión correspondientes a los meses. Además la sucesión:

$$\frac{f_i}{\sum\limits_{i=1}^{12}f_i}~i=1,...,n$$

puede ser vista como una distribución dado que hace y puede ser analizada como una variable circular, donde $n=\sum_{i=1}^{12}f_i$.

Sin embargo, en nuestro sistema de calendario las longitudes de los meses varian de 28 a 31 días. Si la moda es en julio, el mes febrero muestra principalmente una mínima apariencia asimétrica. Reciprocamente, cuando la moda es en febrero su ausencia de dos días puede crear un hueco. Para eliminar estas influencias artificiales, a las frecuencias de enero, marzo, mayo, julio, agosto, octubre y diciembre hay que muitiplicarlas por: 30/31=.96774 y para febrero por 30/28=1.07143; Por lo tanto sean f² i las frecuencias ajustadas y el año es así reducido a 360 días.

Para conservar esta suma observada las frecuencias ajustadas son multiplicadas por el cociente .

$$Q = \frac{\displaystyle\sum_{i \in A} f_i}{\displaystyle\sum_{i \in A} f'_i}_{\mbox{donde } A = \{i=1,2,3,5,7,8,10,12\}.}$$

En este procedimiento las frecuencias observadas para abril, junio, septiembre y noviembre son preservadas, mientras las frecuencias para otros meses son doblemente ajustadas. Los ajustes deben ser usados si las frecuencias son pequeñas, digamos del orden del 10% puesto que ellas son fuertemente afectadas por las diferentes longitudes de los meses.

Los ajustes no son relevantes si las diferencias entre diferentes meses son grandes, digamos si la frecuencia mensual más grande es diez veces la más pequeña. El segundo ajuste es innecesario si el factor Q difiere de la unidad por menos del 1%.

Las frecuencias ajustadas son atribuídas al quinceavo día de cada mes y pueden ser trazadas como un histograma de línea o sobre papel polar consistiendo de circulos equidistantes concéntricos y un radio para cada grado. La frecuencia máxima es trazada al norte y los siguientes meses son trazados en sentido de las manecillas del reloj. Después de elegir una distancia unitaria la raíz cuadrada de las frecuencias dos veces ajustadas $\sqrt{f_i}$, son graficadas en lugar de las frecuencias $\sqrt{f_i}$. Este procedimiento iguala a las áreas de las distribuciones observadas y teóricas. Las distribuciones que difieren con respecto al tamaño de muestra n por lo tanto son trazadas en diferentes escalas. Sin embargo, se obtiene una escala uniforme si todas las frecuencias ajustadas \vec{f} son divididas por su media \vec{f} . Este método tiene la ventaja de que las distribuciones con diferentes valores de n pueden ser trazadas sobre la misma escala.

En el uso de la distribución Normal circular.

$$f(\phi) = \frac{1}{2\pi I_{MA}} \exp[k\cos(\phi - \theta_1)] \qquad 0 < \phi \le 2\pi.$$

La moda
$$\theta_1$$
 es estimada a partir de $tan\phi = \frac{\sum\limits_{i=1}^{12} sen\,\phi_i}{\sum\limits_{i=1}^{12} cos\,\phi_i}$ donde se tienen

las siguientes reglas trigonométricas.

CAPITULO III

$$\sum_{i=1}^{12} \cos \phi_i = \text{jul.-ene.} + 0.86603 (\text{ago.-feb.+jun.-dic.}) + 0.05 (\text{sep.-mar.+may.-nov.})$$
 (3.1)

$$\sum_{i=1}^{12} \text{sen } \phi_i = \text{oct.-abr..} + 0.86603 (\text{sep.-mar.+nov.-may.}) + 0.05 (\text{ago.-feb.+dic.-jun.})$$
(3.2)

donde los meses son escritos en lugar de sus frecuencias $f_i^{"}$. Esto determina a ϕ solo arriba de 180°. La ubicación exacta se encuentra del diagrama convencional por los signos de funciones trigonométricas. En la estimación de ϕ es suficiente calcular todos los grados del ángulo.

El parámetro k es estimado a partir de:

$$\rho_1 = \frac{1}{n} \sqrt{\left[\left(\sum \cos \phi_i\right)^2 + \left(\sum \sin \phi_i\right)^2\right]}$$

con la ayuda de la TABLA B (APÉNDICE II) lo cual da a k como una función de p1.

Los parámetros para los valores reducidos $\dfrac{f_i^*}{\widetilde{f}}$ son obtenidos de una manera análoga.

Los ajustes para los meses de igual longitud pueden ser introducidos dentro de (3.1) y (3.2). Esto lleva a:

$$\sum_{i=1}^{12} \cos \phi_i = 0.96677(jul.-ene.) + 0.86603jun. + 0.83726(ago.-dic.) + 0.5(sep.-nov.) + 0.48339(may.-mar.) - 0.92789feb.$$
 (3.3)

$$\sum_{i=1}^{12} sen \phi_{i} = 0.96677oct. + 0.86603(nov. + sep.)$$

$$+ 0.48339(ago. + dic.) - abr. - 0.83726(mar. + may.) - 0.53571 feb. - 0.5 jun.$$
(3.4)

Puesto que los parámetros ϕ y k son invariantes bajo la multiplicación de las frecuencias no ajustadas, es necesario conservar la suma de las observaciones. Sin embargo, para la comparación de la teoría, las observaciones deben ser ajustadas nuevamente para los meses de igual longitud y para conservación de la suma observada. Por lo tanto, este sistema no es usado en los ejemplos siguientes.

En otro procedimiento analítico un valor constante igual al mínimo valor mensual \widetilde{f} se supone cierto para todo el año. Este componente se trata como una distribución Uniforme circular. La otra componente consiste de las frecuencias observadas $f_v - \widetilde{f}$ es considerada como una distribución Normal circular con n'=n-12 \widetilde{f} . Sin embargo hasta ahora no ha ocurrido un caso en el cual este procedimiento de un mejor ajuste de la gráfica (Figura 3.1) que el anterior.

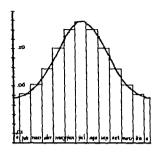


Figura 3.1. Distribución circular normal f(♦) y diferencias de probabilidades Δf(♦) para k=0.5

Los valores teóricos que corresponden a las observaciones $\sqrt{f_i}$ se obtienen después de multiplicar los valores dados de la TABLA G del APÉNDICE II por $0.28868\sqrt{n}$. Si k es cercano a uno de los valores dados en la TABLA B es suficiente usar una calculadora. Los valores teóricos que corresponden a las frecuencias reducidas f_i se toman de la TABLA G sin ninguna multiplicación.

Los valores teóricos se grafican sobre el diagrama polar. Se obtiene una curva simétrica continua uniendo los puntos a la izquierda y a la derecha de la moda. Si la dirección modal es prácticamente cero o un múltiplo de 30°, esto, si la moda observada es o conservado o recorrida por estas cantidades equivalencias se pueden usar diferencias de $\Delta f(\phi)$ probabilidades en lugar de las densidades $f(\phi)$.

Este procedimiento nos lleva a una comparación del diagrama observado con el teórico, y tiene la ventaja de que criterios convencionales pueden ser usados. Las diferencias de probabilidades de la TABLA H. del APÉNDICE II fueron obtenidas tomando la mitad de las diferencias sucesivas de la función de probabilidad calculada a nueve decimales y atribuyéndoles el punto medio de los intervalos.

Las FIGURAS 3.1 y 3.2 muestran un diagrama ajustado obtenido de la TABLA H. La distribución continua trazada sobre escalas lineales y polares (aequiaereal). Ya que las observaciones sólo pueden ser trazadas en forma ajustada, mientras que la distribución teórica puede ser trazada también como una curva continua es deseable comparar de una distribución de dos formas diferentes.

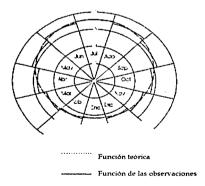


Figura 3.2. Distribución circular normal $f(\phi)$ y diferencias de probabilidades $\Delta f(\phi)$ para k=0.5 trazada sobre una escala polar.

Las Figuras también muestran el tipo de desviaciones que son inevitables si un diagrama ajustado observado es comparado a una distribución continua, con la excepción de los meses modal y antimodal, las curvas que representan a la distribución teórica interceptan al diagrama ajustado observado cerca de la mitad de cada mes y el diagrama ajustado queda cerca a la curva teórica al principio o al final de cada mes.

El trazo de $\Delta f(\phi)$ es una alternativa gráfica al trazo de la distribución $f(\phi)$. En general tiene las desventaja de que los "meses" considerados no coinciden con los meses en el calendario.

A continuación se aplica el procedimiento para algunos datos numéricos.

2.PROBLEMA DE PRECIPITACIÓN PLUVIAL

Los siguientes ejemplos muestran la cantidad de precipitación pluvial, los "runoff" y porcentajes de muertes, es decir, el cíclo hidrológico y temperaturas. Hay que determinar que la cantidad de precipitación pluvial por mes forma una distribución circular. Del depósito Esopus que es esencial para el abastecimiento del Agua en Nueva York fueron tomados los datos de la TABLA 3.1. Por lo que respecta a la moda (anti-moda) del mes está escrita en la primera línea.

		$\mathbf{f_i} \leftarrow \mathbf{f_i}$	f_i	$\sqrt{f_i}$
julio	4.69	4.539	4.64	2.15
junio	4.54		4.54	2.13
mayo	4.31	4.171	4.27	2.07

	4.00			200
abril	4.23		4.23	2.06
marzo	3.85	3.726	3.81	1.95
febrero	3.05	3.268	3.34	1.682
agosto	4.58	4.432	4.53	2.13
septiembre	4.5		4.5	2.12
octubre	4.03	3.9	3.99	1.99
noviembre	4.28		4.28	2.06
diciembre	3.45	3.339	3.42	1.85
enero	3.4	3.290	3.36	1.83
	$\sum f_i = 31.36"$	$\sum f'_{i} = 30.665^{\circ}$	$\sum_{i=1}^{12} f^{i+}_{i} = 48.91^{n}$	

TABLA 3.1. Muestra las medias mensuales de la precipitación en pulgadas.

La segunda columna contiene los números observados en pulgadas, la tercera columna contiene el primer ajuste para la longitud de los meses.

De lo anterior se puede observar que la suma de las frecuencias ajustadas es: $\sum f^i{}_1=30.665^n$ i=1,2,3,5,7,8,10,12, mientras que la suma observada de los mismos meses es: $\sum f_1=31.36^n$ i=1,2,3,5,7,8,10,12. Por lo tanto las frecuencias ajustadas son multiplicadas por $Q=\frac{31.36}{30.665}=1.02263$, lo que da como resultado la cuarta columna la cual conserva la precipitación pluvial media anual total observada $n=48.91^n$. Las raíces cuadradas de los

números de la quinta columna inician con el mes de julio y han sido trazadas en el diagrama ajustado, ver FIGURA 3.3.

Función teórica

- Función de las observaciones

FIGURA 3.3. Indica las gráficas de las medias mensuales de las precipitaciones con k=0.15.

Estos cálculos determinan que las variaciones indican una distribución circular sistemática empezando con la moda en julio y decreciendo con la antimoda en enero con la excepción de la precipitación en noviembre la cual excede esto en Octubre, ver FIGURA 3.4.

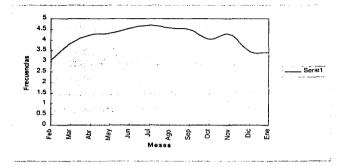


Figura 3.4. Histograma de las observaciones de la Tabla 3.1.

Con el fin de obtener la distribución teórica, primero hemos de calcular los parámetros siguientes.

De (3.1) se tiene:

$$\sum_{i=1}^{12} \cos \phi_i = 4.69 - 3.40 + 0.86603(4.58 - 3.05 + 4.54 - 3.45) + 0.5(4.50 - 3.85 + 4.31 - 4.28) = 3.62553$$

$$\sum_{i=1}^{12} sen \phi_i = 4.03 - 4.23 + 0.86603(4.50 - 3.85 + 4.28 - 4.31) + 0.5(4.58 - 3.05 + 3.45 - 4.54) = .40112.$$

Luego entonces la consecuencia es:

$$tan\phi = \sum_{i=1}^{12} \frac{\text{sen } \phi_i}{\cos \phi_i} = \frac{0.40112}{3.62553} = 0.11067,$$

$$\phi = 0.11022, \quad \phi^\circ = \frac{180(.11022)}{\pi} = 6.32 \quad \Rightarrow \quad \phi = 6^\circ.$$

Una vez que \$\phi\$ es estimado el 15 de julio, esto significa un cambio de la moda 21 de julio. Esto se explica por el hecho de que las frecuencias de la última parte del año muestra una ligera predominancia sobre la primera parte (20.72" contra 20.19").

Obteniendo la longitud del vector medio.

$$\begin{split} \rho_1 &= \frac{1}{n} \sqrt{\left[\left(\sum \cos \phi_1\right)^2 \cdot \left(\sum \sin \phi_1\right)^2\right]} \\ \rho_1 &= \frac{1}{48.92} \sqrt{\left[\left(0.40112\right)^2 \cdot \left(3.6253\right)^2\right]} = \frac{\sqrt{13.3053}}{48.91} \\ \rho_1 &= \frac{3.64766}{48.91} = 0.07458 \\ \Rightarrow \rho_1 &= 0.07458 \end{split}$$

De la TABLA B se tienen los valores siguientes:

Se Interpola para obtener el valor de k.

$$\frac{.1605 - .1403}{.08 - .07} = \frac{k - .1403}{.07458 - .07} \implies k = .1495.$$

Por lo tanto, se demuestra que es suficiente tomar k=0.15. Este valor pequeño del parámetro se debe a la circunstancia de que las diferencias entre las distintas frecuencias son completamente pequeñas.

De la Tabla G del Apéndice II se extraen los radio vectores $\psi(\phi)\sqrt{\frac{12}{n}}$ por una interpolación entre k=0.1 y k=0.2. Estos valores están dados en la Tabla 3.2 en la segunda columna, y si se multiplican éstos por $\sqrt{\frac{48.91}{12}}$ = 2.0189 se obtienen los radio vectores de la tercera columna de la Tabla 3.2. Los cuales son trazados en el papel polar donde se observa como resultado de izquierda a derecha que el valor modal es el 21 de julio.

Angulo	$\psi(\phi)\sqrt{\frac{12}{n}}$	ψ(φ)
0	1.075	2.170
20	1.070	2.160
40	1.051	2.122
60	1.035	2.090
80	1.012	2.043
100	.9840	1.987
120	.9603	1.939
140	.9414	1.901
160	.9293	1.876

4		والمارية والبكارك الأوالي البالية كالكوارك والبوادية والبوادية والموادية والموادية والموادية والبوادية	
	400	0252	
1	180	.9252	1.868
		S	l

TABLA 3.2. Muestra los radio vectores.

3. PROBLEMA DEL NÚMERO DE OCURRENCIAS DE LA PRECIPITACIÓN DE 1" (UNA PULGADA) O MÁS.

El número de ocurrencias de precipitación de 1" (una pulgada) o más por hora también forman una distribución circular. Los números considerados fueron tomados con base en Dick (1941) para 156 estaciones de los Estados Unidos de Norteamérica en el periodo comprendido de los años 1908 a 1937, y están dados en la TABLA 3.3.

		$-\frac{1}{2}$	$\overline{f_i^*}_i$	$\sqrt{f_i}$
enero	101	97.74	101	10.05
febrero	94	100.71	104	10.20
marzo	232	224.52	231	15.20
abril	406	*******	406	20.15
mayo	985	662.90	683	26.13
junio	1225	<u></u>	1225	35
julio	1478	1430.32	1475	38.41
agosto	1384	1339.35	1381	37.16
septiembre	907		907	30.12

	$\sum f_i = 4502$	$\sum f'_i = 4366.5$	$\sum_{i=1}^{12} f^{**}{}_i = 7235^{**}$	
diciembre	145	140.32	145	12.04
noviembre	195		195	13.96
octubre	383	370.64	382	19.54

TABLA 3.3. Muestra los datos del número de ocurrencias de la precipitación de 1" o más.

Para lograr obtener la cuarta columna se ha de multiplicar la tercera columna por el cociente $Q=\frac{4512}{4365}=1.03$, donde la suma total observada es de 7235".

Ahora bien, las frecuencias están ajustadas menos del 1% excepción hecha para Febrero en el cual el valor observado es disminuido por más del 10%. Se ve que la moda en julio es 14 veces más grande que la frecuencia de enero.

Considerando los parámetros:

De (3.1) se tiene:

$$\sum_{i=1}^{12} \cos \phi_i = 1475 - 101 + 0.86603(1381 - 104 + 1225 - 145) + 0.5(907 - 231 + 683 - 195) = 3997.23$$

$$\sum_{i=1}^{12} \operatorname{sen} \phi_i = 382 - 406 + 0.86603(907 - 231 + 195 - 683) + 0.5(1381 - 104 + 145 - 1225) = 237.31.$$

Lo que da como resultado:

$$tan\phi = \frac{\sum_{i=1}^{12} sen \, \phi_i}{\sum_{i=1}^{12} cos \, \phi_i} = \frac{237.31}{3997.93} = 0.0594$$

$$\phi = .05933, \ \phi^\circ = \frac{180(.05933)}{\pi} = 3.39 \ \Rightarrow \ \phi = 3^\circ.$$

Puesto que \(\phi \) es estimado el 15 de julio, esto nos indica una variaci\(\hat{o} \) de la moda al 18 de julio.

De lo explicado líneas atrás se ha obtenido la longitud del vector medio.

$$\rho_1 = \frac{1}{n} \sqrt{\left[\left(\sum \cos \phi_1\right)^2 + \left(\sum \sin \phi_1\right)^2\right]}$$

$$\rho_1 = \frac{1}{7235} \sqrt{\left[\left(237.31\right)^2 + \left(3997.23\right)^2\right]} = \frac{\sqrt{16034163.71}}{7235}$$

$$\rho_1 = \frac{4004.27}{7235} = 0.5535$$

$$\Rightarrow \rho_1 = 0.5535.$$

De la Tabla B se extraen los valores siguientes:

Se interpola para obtener el valor de k.

$$\frac{1.36156 - 1.32520}{.56 - .55} = \frac{k - 1.32520}{.5535 - .55}$$

$$\Rightarrow k = 1.338 \approx k = 1.34.$$

Por lo tanto es suficiente tomar k=1.34. Este valor del parámetro es debido al hecho de que las diferencias entre las frecuencias son más o menos grandes.

La Tabla G del Apèndice II arroja los radio vectores $\psi(\phi)\sqrt{\frac{12}{n}}$ por interpolación entre k=1.3 y k=1.4. Se debe precisar que estos valores están considerados en la Tabla 3.4 en la segunda columna, y ellos se multiplican por $\sqrt{\frac{7235}{12}} = 24.554$ para obtener los radio vectores de la tercera columna de la Tabla 3.4. Los cuales son trazados en el papel polar y se observa que el valor modal es el 18 de julio.

Angulo	$\psi(\phi)\sqrt{\frac{12}{n}}$	Ψ(φ)
0	1.584	1.5837
20	1.531	1.5322
40	1.363	1.3627
60	1.140	1.1393
80	.9168	.9159
100	.7266	.7268

120	.5836	.5844
140	.4882	.4886
160	.4352	.4346
180	.4178	.4174

TABLA 3.4, Radio-vectores del problema.

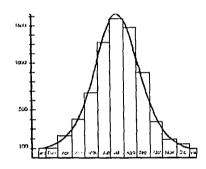


Figura 3.5. Gráfica de los datos del número de ocurrencias de la precipitación de 1" o más.

4. PROBLEMA DE LOS "RUNOFF"

Otro problema que se ha considerado, es el que se refiere a los "runoff" mensuales que están determinados en pulgadas y fueron obtenidos de los depósitos de Derwent River, Yorkshire, Derbyshire (Inglaterra) TABLA 3.5.

State of the state	E. J. S. & Charles and A. W. Sale	Language of the 1842 of the	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Mes	is fi	Salf Mag	f	$\sqrt{f_i}$
enero	210.29	4.733	4.81	2.19
febrero	171.87	4.282	4.35	2.08
marzo	147.85	3.327	3.38	1.84
abril	106.84	2.485	2.49	1.58
mayo	78.85	1.775	1.80	1.34
junio	67.27	1.564	1.56	1.25
julio	80.09	1.802	1.83	1.35
agosto	86.54	1.948	1.98	1.41
septiembre	91.57	2.130	2.13	1.46
octubre	142.28	3.202	3.26	1.81
noviembre	185.17	4.306	4.31	2.08
diciembre	191.47	4.309	4.38	2.09
	$\sum f_i = 1560.09$	$\sum f^{i}_{i} = 35.863$	$\sum_{i=1}^{12} f^{ii}_{i} = 36.28^{ii}$	

TABLA 3.5. Muestra los datos de los runoff.

- Marque con las tiras huellas que tracen líneas para lograr la composición.
- Deje que seque y sobre ella pinte, con engrudo colorado, algunos de los miembros de su familia.
- ◆ Explique su composición.

ACTIVIDAD 15: REPRESENTACION PLASTICA DE ALGUNA REUNION O ESCENA FAMILIAR.

Secuencia de Actividades:

- Mencione algunas y elija una de ellas.
- Maneje el material moldeable.
- Haga bolitas y viboritas.
- Adapte el material moldeado a las figuras necesarias para su composición.
- Las coloque sobre una superficie (cartoncillo, papel, etc.) formando la situación elegida.
- Explique su composición a sus compañeros.

ACTIVIDAD 16: DIBUJO DE SU CASA UTILIZANDO COLORES.

Secuencia de Actividades:

- Dibuje su casa.
- Rellene toda la superficie de la hoja.
- Siga la dirección de izquierda a derecha y de arriba hacia abajo, y a la inversa.

$$\begin{split} \rho_1 &= \frac{1}{n} \sqrt{\left[\left(\sum \cos \phi_i \right)^2 + \left(\sum \sin \phi_i \right)^2 \right]} \\ \rho_1 &= \frac{1}{36.28} \sqrt{\left[\left(-9.355 \right)^2 + \left(2.086 \right)^2 \right]} = \frac{\sqrt{91.867421}}{36.28} \\ \rho_1 &= \frac{9.5847}{36.28} = .264 \\ \Rightarrow \qquad \rho_1 = .264. \end{split}$$

De la TABLA B se tienen los valores siguientes:

Aplicando un proceso de interpolación se tiene la obtención del valor k.

$$\frac{.56097 - .53863}{.27 - .26} = \frac{k - .53863}{.264 - .26}$$

$$\Rightarrow k = .5475 \approx k = .548$$

Luego entonces, es más que suficiente tomar k=.548. Esta decisión nos revela que el valor del parámetro es debido a la existencia de diferencias que aparecen entre las frecuencias y son más o menos pequeñas.

Hay que explicar que la TABLA G del APÉNDICE II se determinan los radio vectores $\psi(\phi)\sqrt{\frac{12}{n}}$ por interpolación entre k=.5 y k=.6. Estos valores son dados en la TABLA 3.6 en la segunda columna, y además se multiplican estos valores por $\sqrt{\frac{36.28}{12}}$ = 1.739 con la finalidad de obtener los radio vectores de la

tercera columna de la TABLA 3.6. Los cuales son trazados en el papel polar y se observa que el valor modal es el 2 de enero.

Angulo	$\psi(\phi)\sqrt{\frac{12}{n}}$	ψ(φ)
0	.7290	1.2678
20	.7170	1.2469
40	.6753	1.1743
60	.6356	1.1053
80	.5812	1.0107
100	.5285	.9190
120	.4835	.8408
140	.4494	.7815
160	.4287	.7455
180	.4215	.7330

TABLA 3.6. Muestra los radio-vectores.

Figura 3.7. Gráfica de los radio-vectores

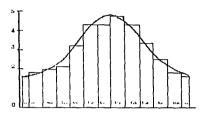


FIGURA 3.8. Histograma de los datos de runoff.

5. PROBLEMA DE PORCENTAJES DE MIJERTES

El porcentaje de personas que mueren cada mes se distribuye normal puesto que la población crece en muchos países, es vital en estadística presentar la tasa de muerte; es decir, el número de muertes dividido por el tiempo esperado de vida por la población respectiva. Estos porcentajes mensuales de muertes por 1000 tienen la dimensión reciproca del tiempo y puede ser comparada mes por mes, y año por año. Los porcentajes pueden ser tratados para nuestro propósito como si constituyeran una distribución, puesto que los porcentajes de muertes son proporcionales al número de muertes para una población estática.

La media mensual de lo observado y el porcentaje ajustado en los Estados Unidos, septiembre 1946 a agosto 1951 están dados en la TABLA 3.7.

Mes	t _i	e din a	$\int \int f$	Teoría
febrero	10.66	11.42	11.64	10.82

ACTIVIDAD 17: MODELADO CON PLASTILINA O BARRO DE ALGUNOS MUEBLES QUE HAY EN SU CASA.

Secuencia de Actividades:

- Mencione y elija los muebles que tiene en su casa y modele éstos sobre plastilina o barro.
- · Exponga su trabajo al grupo.

ACTIVIDAD 18: MEZCLA DE COLORES PRIMARIOS PARA OBTENER COLORES SECUNDARIOS.

Secuencia de Actividades:

- Organice el trabajo en equipos.
- Utilice 6 frascos transparentes con la misma cantidad de agua.
- En la misma proporción (tres gotas), ponga pintura roja en el primer frasco; amarilla en el segundo y azul en el tercero; los agite para observar cómo se tiñe el agua.
- ◆ Tome el cuarto recipiente y deje caer gotas de pintura roja e inmediatamente después gotas de pintura amarilla agitando el agua para observar cómo se forma el color naranja.
- Siga el procedimiento anterior y mezcle pintura amarilla y azul en el quinto frasco, azul y roja en el sexto, para obtener los colores verde y violeta respectivamente.
- Utilice sus dedos, a manera de pincel, para realizar con los colores obtenidos una composición relacionada con su casa y las actividades que realizan.

Obteniendo los parámetros:

De (3.1) se tiene:

$$\sum_{i=1}^{12} \cos \phi_i = 9.05 - 10.35 + .86603(8.83 - 11.64 + 9.4210.27) + 0.5(9.08 - 10.65 + 9.46 - 9.70) = -5.385$$

$$\sum_{i=1}^{12} \operatorname{sen} \phi_i = 9.29 - 10.24 + 0.86603(9.08 - 10.65 + 9.70 - 9.46) \} + 0.5(8.83 - 11.64 + 10.27 - 9.42) = -3.082.$$

En consecuencia:

$$\tan \phi = \frac{\sum_{i=1}^{12} \sec \phi_i}{\sum_{i=1}^{12} \cos \phi_i} = \frac{-3.082}{-5.385} = .5723,$$

$$\phi = 0.5195, \ \phi^\circ = \frac{180(0.5195)}{\pi} = 29.77 \ \phi^\circ = 30^\circ.$$

La moda estimada es la misma a la moda observada que es el 15 de febrero.

Obteniendo la longitud del vector medio.

$$\begin{split} \rho_1 &= \frac{1}{n} \sqrt{\left[\left(\sum \cos \phi_i\right)^2 + \left(\sum \sin \phi_i\right)^2\right]} \\ \rho_1 &= \frac{1}{117.98} \sqrt{\left[\left(-5.385\right)^2 + \left(-3.082\right)^2\right]} = \frac{\sqrt{38.496949}}{117.98} \\ \rho_1 &= \frac{6.2046}{117.98} = .0526 \\ &\Rightarrow \rho_1 = .0526. \end{split}$$

De la Tabla B se tienen los valores siguientes:

 $\rho_1 = 0.05$, k=.10013

P1=0.06, k=.12022

Se interpola para obtener el valor de k.

$$\frac{.12022 - .10013}{.06 - .05} = \frac{k - .10013}{.0526 - .056}$$

$$\Rightarrow k = .10535 \approx k = .105.$$

Por lo tanto es suficiente tomar k=.105. Este valor del parámetro es debido al hecho de que las diferencias entre las frecuencias son muy pequeñas.

Por lo tanto, se pueden usar las diferentes probabilidades $\Delta f(\phi)$ de la TABLA H. Para obtener los porcentajes teóricos, los valores $117.98\,\Delta f(\phi)$ están dados en la última columna de la TABLA 3.7.

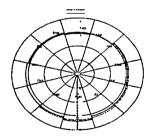


Figura 3.9. Gráfica del problema.

6. PROBLEMA DE PRECIPITACIÓN PLUVIAL MEDIDOS EN MILIMETROS

Los datos de la segunda columna se refieren a la precipitación medidos en mm. los cuales fueron obtenidos del servicio meteorológico de Tacubaya (estación Agua Azul, Chiapas).

Mes	$\mathbf{f_i}$	$\int_{\Gamma} \int_{\Gamma} \int_{\Gamma$	if, 🎏	Teoria
febrero	434.8	465.86	610.28	24.70
enero	717	693.87	908.97	30.15
diciembre	1255.1	1214.61	1591.14	39.89
noviembre	1600		1600	40
octubre	1698.5	1643.71	2153.26	46.40
septiembre	3168.5		3168.5	56.29
marzo	484.6	468.97	613.08	24.76
abril	319.5		319.5	17.87
mayo	1715.1	1659.77	2174.30	46.63
junio	2368.9		2368.9	48.67
julio	2368.2	2291.80	3102.34	59.55
agosto	2797.0	2706.77	3545.87	59.55

$$\sum f_i = 14638.8 \qquad \sum_i f'_i = 11145.36 \qquad \sum_{i=1}^{11} f''_i = 17099.07 \qquad 117.98$$

TABLA 3.8. Muestra las medias mensuales de la precipitación en milímetros.

La segunda columna contiene los números observados en milímetros, la tercera columna contiene el primer ajuste para la longitud de los meses. La suma de las frecuencias ajustadas , $\sum_i f^i = 11145.36$, i=1,2,3,5,7,8,10 y 12, y la suma de las frecuencias es $\sum_i f_i = 14638.8$, i=1,2,3,5,7,8,10 y 12. En consecuencia las frecuencias ajustadas son multiplicadas por $Q = \frac{14638.8}{1114.36} = 1.31$ esto da como resultado la cuarta columna la cual se tiene una precipitación pluvial media anual total observada de n=17099.07.

Obteniendo los parámetros:

De (3.1) se tiene:

$$\sum_{i=1}^{12} \cos \phi_i = 2368.9 - 717 + .86603(2797.0 - 434.8 + 2368.9 - 1255.1) + 0.5(3168.5 - 484.6 + 1715 - 1600) = 6061.72$$

$$\sum_{i=1}^{12} sen \ \varphi_i = 1698.5 - 3195 + 0.86603(3168.5 - 484.6 + 1600 - 1715) + 0.5(2797 - 434.8 + 1255.1 - 2368.9) = 1352.36.$$

En consecuencia:

$$\tan \phi = \frac{\sum_{i=1}^{12} \operatorname{sen} \phi_i}{\sum_{i=1}^{12} \cos \phi_i} = \frac{1352.36}{6061.72} = .219,$$

$$\phi = 0.5195, \ \phi^\circ = \frac{180(0.219)}{\pi} = 12.54 \ \phi^\circ = 13^\circ.$$

La moda estimada es la misma a la moda observada que es el 24 de febrero.

Obteniendo la longitud del vector medio.

$$\begin{split} \rho_1 &= \frac{1}{n} \sqrt{\left[\left(\sum \cos \phi_1\right)^2 \cdot \left(\sum \sin \phi_1\right)^2\right]} \\ \rho_1 &= \frac{1}{17099.07} \sqrt{\left[\left(6061.72\right)^2 \cdot \left(1352.36\right)^2\right]} = \frac{\sqrt{38572353.36}}{17099.07} \\ \rho_1 &= \frac{6210.66}{17099.07} = .3632 \\ \Rightarrow \quad \rho_1 = .3632. \end{split}$$

De la TABLA B se tienen los valores siguientes:

$$\rho_1 = 0.36, k = .77241$$

$$P_1 = 0.37, k = .79730$$

Se interpola para obtener el valor de k.

$$\frac{.79730 - .77241}{.37 - ..36} = \frac{k - .77241}{.3632 - .36}$$

$$\Rightarrow k = .78$$

Este valor del parámetro es debido al hecho de que las diferencias entre las frecuencias son más ó menos pequeñas. En la FIGURA 3.8 se observa

que el mes de abril tiene una frecuencia menor a marzo por lo que se forma un hueco en la gráfica, de igual manera la frecuencia de octubre con respecto a la de septiembre.

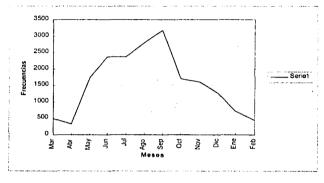


Figura 3.8. Histograma de los datos de precipitación medidos en milímetros.

CONCLUSIONES

Una vez cumplidos los objetivos de esta investigación debemos tomar en cuenta que la función de densidad von Mises aplicada en este caso a los fenómenos tales como la precipitación pluvial, el número de ocurrencias de la precipitación pluvial, el número de ocurrencias de precipitación de 1" ó más, los runoff, los porcentajes de muertes, etc., es importante por si misma como un recurso para la investigación en diversas áreas como por ejemplo: economía, geología, biología, en otras.

Es decir es trascendente para fenómenos naturales, financieros, económicos, como para problemas sociales como el de la salud.

De allí los capítulos desarrollados se refieren a las funciones de distribución más importantes de la Estadística Circular y se desarrollan dos procedimientos para la distribución von Mises con el objetivo de compararlos en cada problema. Por ejemplo en el problema aplicado de precipitación medidos en milímetros al realizar los ajustes la moda permanece en el mes observado que es el 15 de febrero y al obtener la estimación de la moda mediante la teoría se muestra que la moda cambia al 24 de febrero.

BIBLIOGRAFIA

- Alan, D. Solomon., (1989).
 "The essentials of Fourier Analysis".
 Research and Education Association.
- [2] Batschelet, E. (1965). Statistical Methods for the analysis of Problems in animal Orientation and Certain Biological Rhythms. Amer. Inst. Biol. Sci; Washington, D.C.
- [3] Batschelet, E., (1981)."Circular Statistics in Biology".Academic Press N.Y.
- [4] Bingham, C. and Mardia, K. V. (1975). Maximum likelihood characterization of the von Mises distribution. In "Statistical Distributions in Scientific Work". (C. P. Patil et al., eds), Vol. 3, pp. 387-398. Reidel, Dordrecht.
- [5] Bingham, M. S. (1978). A characterization of the uniform distribution on the circle in the analysis of directional data. J. Appl. Prob. 15, 852-857.
- Dick, H. D., y Mattice, W.A., (1941).
 "A study of excessive rainfalls,"
 Monthly Weather Review, 69, 293-302.
- [7] Fisher, N. I., (1992)."Statistical Analysis of Circular Data" Cambridge University Press.
- [8] Gnedenko, B.V., (1973). "The theory of probability". Tranlated from the russian by George Yankovsky. Mir Publishers Moscow.

- [9] Gumbel, E. J., (1954).
 Aplications of the Circular Normal Distribution.
 Columbia University.
- [10] Gumbel, E. J., Greenwood, J.A. and Dorand, D., (1953). "The Circular Normal Distribución": Theory and tables. J. Amer. Stat. Assoc. 8. 131-152.
- [11] Kent, J. T. & Tyler, D.E., (1988).
 Maximum Likelihood Estimation for the Wrapped Cauchy Distribution.
 Journal of applied Statistics, Vol. 15, No. 2, 1988.
- [12] Kent, J. T., Mardia, K. V. and Rao, J. S. (1979). A Characterization of the Uniform Distribution on the Circle. The Annals of Statistics. 7, 882-889.
- [13] Leighly, J. B., (1928). "Graphic studies in climatology: polar form of diagram in the plotting of the annual climatic cycle, "University of California Publications in Geography (Berkeley), 2, 387-407.
- [14] Mardia, K. V. (1975).Statistics of Directional Data.J. Roy. Stat. Soc., Ser. B37, 349-393.
- [15] Mardia, K.V., (1972).
 Statistics of Directional Data.
 Academic Press. London and New York.
- [16] Stephen, M. A. (1969). Test for the von Mises Distribution. Biometrika 56, 149-180.
- [17] Thompson, R. W. S., (1950).
 "The aplication of statistical methods in the determination of the yield of a catchment from run-off data," con una nota estadística de D. h. Thomson, Journal of the Institution of water Engineers, 4, 397.

TABLA DE NOTACIONES

Variable alcatoria

Masa

O Origen

Vector medio de la muestra m,µ1

R Longitud del vector suma

Longitud del vector medio r,01

Varianza Angular S^2,σ^2

S.σ Desviación media angular

Función de densidad f(φ)

F(\$) Función de Distribución

a₁=E(cos)) Componente del vector medio

 $b_1 = E(sen\phi)$ Componente del vector medio

 θ_1 Angulo Medio polar de µ1.

фP Variable aleatoria i-ésima

Parámetro de concentración de la k

distribución von Mises

Función característica

α Angulo medido desde al azimuth

Medida local sensible

A(x) Función Bessel

 $M(k,\theta_1)$ Distribución von Mises

U(0,2π) Distribución Uniforme en el

intervalo de cero a 2π .

Nw(μ,ρ) Distribución Normal envuelta

con parámetro μ y ρ.

C Centro de masa

1. HERRAMIENTAS MATEMÁTICAS

La posición de un punto P, en el plano puede ser unicamente determinado por dos coordenadas x y y (coordenadas rectangulares), o por un ángulo \(\phi \) y una distancia r (coordenadas polares). Ver Figura 1. Si P coincide con O (origen del plano), el ángulo \(\phi \) no está definido. Se dice que el eje X positivo se conoce con el nombre de "dirección cero", sin embargo, también es denominado comúnmente como "eje polar".

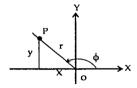


Figure 1. Coordenadas rectangulares (x, y) de un punto P, y coordenadas polares r y $\phi.$

Se asocia un ángulo con una dirección dada, y por ello se requiere una restricción en los ángulos, es decir, los ángulos se tienen que medir en el intervalo de 0° a 360°. Los ángulos 630°, -90° ó 270° representan la misma dirección, por lo tanto se dice que 630° ó -90° son congruentes a 270° modulo 360°.

Se escribe 630° = -90° = 270° (mod 360°) y en general θ = ϕ (mod 360°) significa que θ y ϕ differen de un múltiplo de 360° o sea:

 $\theta = \phi \pm k.360^{\circ}$ donde k es un entero.

En la FIGURA 2 se presenta un circulo unitario (la longitud de su radio es uno) para obtener una unidad, lo cual es más importante para la teoría de los ángulos medidos en grados. Este es el círculo de radio 1 y centro O. Después, se rota la línea media ℓ desde el eje positivo X hasta colocarla en el punto P, y posteriormente se denotan el origen y el final de los puntos de la intersección de ℓ con el círculo unitario por A y B, entonces se mide el ángulo ϕ por la longitud del arco A y B.

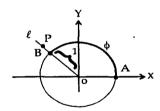


FIGURA 2. Círculo unitario.

Si se mide el ángulo ϕ en radianes, entonces la circunferencia de un circulo de radio r es $2\pi r$, el ángulo 2π radianes ϕ 6.28 radianes es equivalente a 360°. En la TABLA A (APÉNDICE II.) se puede ver como convertir los ángulos de grados a radianes. Un radian, corresponde a 57.3°.

2. VECTORES

Los vectores fueron usados por los físicos para el estudio de conceptos como la fuerza y la velocidad. Hoy en día sólo son usados para el álgebra y la geometría. Los puntos P y Q están dados, la línea con dirección de Q a P es llamada vector denotado por QPo por v; donde Q es llamado el punto inicial y P es el punto final del vector.

Dos vectores son iguales si tienen la misma dirección y la misma longitud. Figura 3.

Ejemplo QP=Q'P' o v=v'

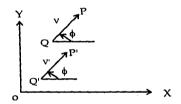


Figura 3. Los vectores V=V' son iguales en longitud y en dirección.

Se utilizan los vectores para localizar puntos en el plano (FIGURA 1), un vector es denominado como sigue:

$$OP=v=\begin{bmatrix} x \\ y \end{bmatrix}=\{r,\phi\}.$$

La longitud r es llamada valor absoluto de v y se denota por r=|v|. Un vector especial es el vector cero.

$$0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = (0, \dots, 0), \quad |0| = 0.$$

En el análisis de direcciones frecuentemente se utilizan vectores unitarios. Éstos son de longitud 1. Los vectores unitarios determinan puntos sobre la circunferencia del círculo unitario y viceversa; es decir, a cada punto del círculo unitario se le asocia un vector unitario.

Ejemplo de esto, son los vectores siguientes:

$$\mathbf{u}_1 = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{y}_1 \end{bmatrix}, \qquad \mathbf{u}_2 = \begin{bmatrix} \mathbf{x}_2 \\ \mathbf{y}_2 \end{bmatrix}.$$

3. OPERACIONES CON VECTORES

 La suma (FIGURA 4) de dos vectores está definida algebraicamente de la siguiente manera:

$$u_1 + u_2 = \begin{bmatrix} x_1 + x_2 \\ y_1 + y_2 \end{bmatrix} = u_3.$$

Geométricamente se suman los vectores v_1 y v_2 de la siguiente forma: se traza el paralelo de v_1 de tal forma que el inicio del vector de v_1 coincida con el punto final de v_2 , luego trazar un vector v_3 donde su punto inicial coincida con el punto inicial del vector v_2 y su punto final es el mismo que el punto final del vector paralelo v_1 . Por lo tanto, $v_3 = v_1 + v_2$ es el vector suma o el vector resultante.

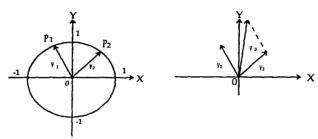


Figura 4. La Figura de la izquierda nos muestra los vectores v₁ y v₂ y la Figura de la derecha nos muestra la suma de los vectores v₁ y v₂.

3.1 Propiedad de la Commutatividad

Si v_1 , v_2 son dos vectores entonces $v_1+v_2=v_2+v_1$.

3.2 Propiedad de la asociatividad

Si v1, v2, v3, son vectores entonces

$$v_1+(v_2+v_3)=(v_1+v_2)+v_3.$$

3.3 Múltiplos de vectores

En la FIGURA 5 se muestran algunos múltiplos de vectores y se observa que si k>0 la dirección del vector permanece igual, y si k<0 la dirección del vector cambia.

$$\mathbf{k}\mathbf{v} = \mathbf{k} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{k}\mathbf{x} \\ \mathbf{k}\mathbf{y} \end{bmatrix}.$$

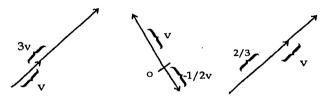


FIGURA 5. Múltiplos de un vector.

Un concepto es el centro de Masa.

Si los puntos de masa son M_1 y M_2 y están localizados en las puntas de los vectores unitarios v_1 y v_2 respectivamente. El centro de masa está dado por la siguiente formula:

$$v = \frac{1}{M_1 + M_2} (M_1 v_1 + M_2 v_2).$$

El nuevo vector \mathbf{v} es llamado vector medio (ver Figura 1.6) y puede ser interpretado como una media aritmética ponderada de los vectores \mathbf{v}_1 y \mathbf{v}_2 . Ahora para el vector medio de n puntos de masa. $M_1, M_2, ..., M_n$ asociados a los vectores unitarios $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ está dado por:

$$v = \frac{1}{\sum_{i=1}^{n} M_i} \sum_{i=1}^{n} M_i v_i.$$

4. FUNCIONES TRIGONOMÉTRICAS

DEFINICIÓN. Sea P un punto con coordenadas polares 1 y ϕ . Se denotarán sus coordenadas rectangulares por x y y; entonces el coseno y el seno de ϕ son definidos como :

x=cos6

v

y=senφ.

Por lo tanto, el sen ϕ y cos ϕ son funciones de ϕ , pero si el dominio de ϕ consiste en todos los números reales, x y y son funciones periódicas de ϕ , si se tiene una nueva rotación alrededor del círculo unitario se generan los mismos valores de x y y. El periodo es 360°, ver Figura 6.

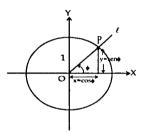


Figura 6. Definición de las funciones trigonométricas seno y coseno para ángulos arbitrarios de .

Una representación lineal de las funciones sen\(\psi \) cos\(\phi \) se muestra en la FIGURA 7.

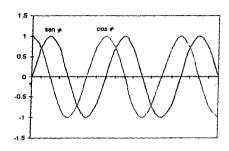


Figura 7. Gráficas de senó y cosó.

Las siguientes relaciones pueden derivarse de la FIGURA 7.

Sin previa demostración se tienen las siguientes fórmulas:

 $cos(\phi-\psi)=cos\phi cos\psi-sen\phi sen\psi$.

Así se define la tangente:

$$tan \phi = \frac{sen \phi}{cos \phi}$$
.

El periodo de senφ y cosφ es de 360°, la función tanφ tiene un periodo de 180°, entonces:

$$\tan (\phi + 180^{\circ}) = \frac{\sec (\phi + 180^{\circ})}{\cos(\phi + 180^{\circ})} = \frac{-\sec \phi}{-\cos \phi} = \tan \phi.$$

Por la ecuación $\cos\phi=x$, el ángulo ϕ no es único para determinar x ya que existe una infinidad de soluciones. Por ejemplo, si x=.5 algunas soluciones son $\phi_1=60^{\circ}$, $\phi_2=-60^{\circ}$, $\phi_3=420^{\circ}$, $\phi_4=-420^{\circ}$, etc. Por eso, cuando se define la función inversa se tiene que tomar nota del intervalo dentro del cual el ángulo cae.

Cos ϕ decrece de 1 a -1, si ϕ se incrementa de 0° a 180°, ϕ es únicamente determinado dentro de este intervalo. Así, se tiene un ángulo limitado por $0^{\circ} \le \phi \le 180^{\circ}$ es una función de x, llamada la función inversa de $x=\cos \phi$ esto implica que:

$$\phi = \arccos x$$
 $(-1 \le x \le 1, 0^{\circ} \le \phi \le 180^{\circ})$

equivalentemente denotado por: φ=cos-1x.

Análogamente, sen ϕ se incrementa de -1 a 1, si ϕ se incrementa de -90° a 90°.

De esto, la función inversa de y=seno es:

equivalente a denotarse por \$\phi=\sen^1y.

u=tanφ sólo tiene solución para φ, si está limitado en el intervalo de -90° a 90°. De aquí, la función inversa de u=tanφ es:

equivalente a denotarse por φ=tan-1u.

Se nota que u puede tomar algunos valores arbitrarios reales.

Se aplican funciones trigonométricas para la conversión de coordenadas polares a coordenadas rectangulares. Si r es la distancia polar, se tiene:

La conversión de coordenadas rectangulares a coordenadas polares es menos simple. De sen²+cos²+=1 se tiene lo sigulente:

$$x^2+y^2=r^2(\cos^2\phi+\sin^2\phi)=r^2$$
.

Entonces
$$\tan \phi = \frac{\sec \phi}{\cos \phi} = \frac{y}{x} \operatorname{para} x \neq 0.$$

Como se sabe, el $\arctan(y/x)$ toma sus valores entre -90° y 90°, que es su reproducción en ángulos polares sólo en el primero y cuarto cuadrante donde x>0. Para x<0 el punto (x,y) cae dentro del segundo y tercer cuadrante. Con esto, ϕ mide entre 90° y 270°. Como $\tan \phi$ tiene un periodo de 180°, se tiene

que sumar 180° al $\arctan(y/x)$. Por lo tanto, es necesario completar este resultado con los casos particulares que se presentan a continuación:

$$\phi = \begin{cases} 90^{0} & \text{si } x = 0, \ y > 0 \\ 270^{0} & \text{si } x = 0, \ y < 0 \\ \infty & \text{si } x = 0, \ y = 0. \end{cases}$$

Estudiando funciones periódicas como sen2φ, sen3φ etc., cos2φ, cos3φ etc. Si se incrementa φ de 0º a 180º, entonces 2φ se incrementa de 0º a 360º. Así, los valores de φ se incrementan de 0º a 120º, 3φ se incrementa de 0º a 360º. De aquí, sen3φ y cos3φ tienen un periodo de 120º.

De esta manera se puede estudiar las funciones $sen(n\phi)$ y $cos(n\phi)$ para algunos números naturales n. En la FIGURA 8 se muestran los diagramas de $sen\phi$ y $cos\phi$.

Se tiene algunas aproximaciones para valores de ψ cercanos a 0°:

senw≈w

cosw≈1-1/2 w2

2(1-cosw)≈w2

donde w es medido en radianes.

El ángulo entre dos direcciones tiene que ser determinado. Las direcciones pueden ser representadas por las líneas medias ℓ_1 , ℓ_2 , con un vértice común.

Las líneas medias dividen al círculo unitario en dos arcos. Uno de ellos es de longitud mayor o igual a 180°, y el otro de longitud menor o igual a 180°. Se selecciona el más corto de los dos arcos y se llamará distancia angular de las dos direcciones. Sean ϕ y ψ los ángulos polares de ℓ_1 y ℓ_2 con respecto a una dirección cero arbitraria. Aquí, se denotará la distancia angular por el símbolo $|\phi,\psi|$, donde se tiene la desigualdad dada por:

$$0^{\circ} \le |\phi, \psi| \le 180^{\circ}$$
.

El cálculo de la distancia angular no es trivial. Porque esta distancia no es igual para ϕ - ψ ; entonces, la diferencia puede tomar algunos valores entre -360° y 360°. En este caso se debe obtener el valor absoluto de 360°, y la solución correcta a nuestro problema es $|\phi$ - ψ |-min. de los ángulos $|\phi$ - ψ | y 360°- $|\phi$ - ψ |.

Por la ecuación $\cos(-\phi)=\cos(360^\circ-\phi)=\cos\phi$ se obtiene que $\cos(\psi-\phi)=\cos(\phi-\psi)$, esto elimina la asimetría entre ϕ y ψ . Además, la función arccos toma sólo valores de 0° a 180° . Esto nos lleva a un resultado práctico:

$$|\phi,\psi|=\arccos[\cos(\phi-\psi)].$$

Otra alternativa de poder medir la distancia entre dos direcciones con ángulos polares ϕ y ψ es la función:

$$d(\phi,\psi)=1-\cos(\phi-\psi)$$
.

Si $\phi=\psi$, entonces $d(\phi,\psi)=0$. Cuando la diferencia $\phi-\psi$ crece en el valor absoluto, $d(\phi,\psi)$ se incrementa monotonamente. El valor máximo es 2; si ϕ difiere de ψ por más de 180° .

5. ROTACIÓN DEL PLANO

Las coordenadas polares son herramientas que muestran como los puntos de un plano pueden ser rotados alrededor del origen (FIGURA 8). Si P es algún punto (x,y) con coordenadas polares, $r y \phi$. Si se rota el plano por un ángulo θ , entonces P se mueve al punto P' con coordenadas polares $r y \phi' = \phi + \theta$. Entonces se tiene:

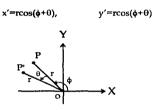


FIGURA 6. Se rotó el plano un ángulo 9.

6. FUNCIONES BESSEL

El astrónomo Friedrich W. Bessel (1784-1846) definió una familia de funciones $J_n(z)$ por:

$$Jn(z) = \frac{1}{2\pi} \int_{0}^{2\pi} \cos(n\phi - z \operatorname{sen} \phi) d\phi$$

para los ordenes $n=\pm 0,\pm 1,\pm 2,...$ La variable independiente Z puede ser un real o un complejo. Las gráficas de las funciones $J_0(z)$, $J_1(z)$ y $J_2(z)$ se muestran en la Figura 9. El lector encontrará una lista breve de los valores de las funciones Bessel en la TABLA F del APÉNDICE II.

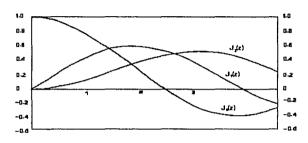


Figura 9. Gráficas de funciones Bessel J₀(z), J₁(z) J₂(z)..

Las funciones $J_n(z)$ tienen varias propiedades las cuales son usadas en estadística circular:

$$J_{n}(-z) = (-1)^{n} J_{n}(z)$$

particularmente

$$J_0(-z) = J_0(z),$$
 $J_1(-z) = -J_1(z)$
 $J_{n+1}(z) = \frac{2n}{r} J_n(z) - J_{n-1}(z)$ $(z \neq 0).$

Para n=1, se obtiene de la fórmula de recursión`

Varias integrales pueden ser expresadas por funciones Bessel, por ejemplo:

$$\int\limits_{0}^{2\pi} \cos(z\cos\varphi)\cos nd\varphi = 2\pi\cos\frac{n\pi}{2}J_{n}(z)$$

$$\int\limits_{0}^{2\pi} \sin(z\cos\varphi)\cos nd\varphi = 2\pi\sin\frac{n\pi}{2}J_{n}(z)$$

$$\int\limits_{0}^{2\pi} \sin(z\sin\varphi)\sin nd\varphi = \begin{cases} 0, & \sin=0,2,4,6,\dots \\ 2\pi J_{n}(z), & \sin=1,3,5,7,\dots \end{cases}$$

Existe una segunda familia de funciones Bessel que son de igual importancia para las distribuciones circulares, las funciones $I_n(z)$ de orden $n=\pm 0,\pm 1,\pm 2$, están definidas por:

$$I_n(z) = \frac{1}{2\pi} \int_{0}^{2\pi} \exp(z\cos\phi)\cos n\phi d\phi.$$

Están relacionadas con la familia anterior, In(z), por la ecuación:

$$I_n(z) = i^{-n} J_n(iz)$$

donde $i=\sqrt{-1}$ es la unidad imaginaria. Por esta razón $I_n(z)$, es también llamada una función Bessel pero sólo para argumentos imaginarios puros. Las gráficas de $I_0(z)$ y $I_1(z)$ y se muestran en la Figura 10. En la Tabla F se encuentran algunos valores de estás funciones (una lista más completa puede ser encontrada, por ejemplo en Abramowitz y Stegun 1965).

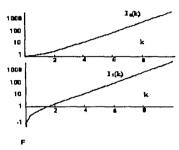


Figura 10. Gráficas de funciones Bessel Io y I1.

 $\mathbf{I_n(z)} \ \ \text{tiene dos propiedades similares a los de la familia anterior}$ $\mathbf{J_n(z)} :$

$$I_{n}(-z) = (-1)^{n} I_{n}(z)$$

$$I_{n+1}(z) = I_{n-1}(z) - \frac{2n}{z} In(z) \qquad (z \neq 0).$$

También se necesita de la siguiente propiedad:

$$dI_0(z) / dz = I_1(z).$$

7. SERIES DE FOURIER

En las distribuciones circulares continuas es conveniente contar con la propiedad expresar su función de densidad en momentos trigonométricos, y para ello se propone las series de Fourier que son funciones continuas definidas en el intervalo $(0, 2\pi)$:

$$f(\phi) = \frac{1}{2\pi} (1 + 2 \sum_{i=1}^{\infty} (a_i \cos_i \phi + b_i \operatorname{sen}_i \phi))$$

con coeficientes Fourier any bn.

Sea $f(\phi)$ la función de probabilidad de una distribución circular, y los coeficientes de Fourier a_n y b_n no son más que los componentes del n-ésimo momento trigonométrico (n=1,2,3,...) definido por la ecuación que a continuación se muestra:

$$\mu_n = \begin{bmatrix} a_n \\ b_n \end{bmatrix}, \qquad \rho_n = (a_n^2 + b_n^2)^{\frac{1}{2}}$$

Considerando la serie de Fourier para distribuciones unimodales y simétricas y bajo la suposición de que la moda es θ_1 =0, la expansión de Fourier se reduce en términos de coseno como sigue:

$$f(\phi) = \frac{1}{2\pi} (1 + 2 \sum_{i=1}^{\infty} (a_i \cos_i \phi)).$$

De aqui, se tiene:

$$\rho_1 = a_1, \quad \rho_2 = |a_2|, \quad \rho_3 = |a_3|, \dots$$

Elongación. Astronomía: diferencia de longitud entre un planeta y el sol. Distancia angular entre dos planetas. En los planetas interiores la máxima distancia angular se llama máxima elongación. Física: separación o distancia de un punto, o un cuerpo, oscilante o vibrante, de su posición normal de equilibrio. Puede ser lineal, como en una partida vibrante, o angular como en un péndulo. Medicina: Alargamiento accidental de un miembro o de un nervio.

TABLA A TRES MEDIDAS DIFERENTES PARA COMPARAR ÁNGULOS: GRADOS DE 0° A 360°, HORAS DEL DÍA DE 00:00 A 24:00, Y RADIANES DE 0 A 2π (EN PASOS DE 1 O 4 MINUTOS). TAMBIÉN SE PRESENTAN LOS VALORES DE SENO, COSENO Y TANGENTE.

GRADOS	HORA	RADIANES	SENO	COSENO	TANGENTE	GRADOS	HORA	RADIANES	SENO	COSENO	TANGENT
0	0:00	0	0	+1	0	30	2:00	.5236	+.5000	+.8660	+.577
i	0:04	.0175	+.0175	+ 9998	+.0175	31	2:04	.5411	+.5150	+.8572	+.60
2	0:08	.0349	+.0349	+.9994	+.0349	32	2:08	.5585	+.5299	+.8480	+.62
3	0:12	.0524	+.0523	+.9986	+.0524	33	2:12	.5760	+.5446	+.6387	+.64
í	0:16	.0698	+.0698	+.9976	+.0699	34	2:16	.5934	+.5592	+.8290	+.67
5	0:20	.0873	+.0872	+.9962	+.0875	35	2:20	6109	+.5736	+.8192	+.70
5	0:24	.1047	+.1045	+.9945	+.1051	36	2:24	.6283	+.5878	+.8090	+.72
ř	0:28	.1222	+.1219	+.9925	+.1228	37	2:28	.6458	+.6018	+.7986	+.75
8	0:32	.1396	+.1392	+.9903	+.1405	38	2:32	.6632	+.6157	+.7880	+.78
9	0:36	.1571	+.1584	+.9877	+.1584	39	2:36	.6807	+.6293	+.7771	+.80
10	0:40	.1745	+.1736	+.9848	+.1763	40	2:40	.6981	+.6428	+.7680	+.83
11	0:44	.1920	+.1908	+.9816	+.1944	41	2:44	.7156	+.6561	+.7547	+.86
12	0:48	.2094	+.2079	+.9781	+.2126	42	2:48	.7330	+.6691	+.7431	+.90
13	0:52	.2269	+.2250	+.9744	+.2309	43	2:52	.7505	+.6820	+.7314	+.93
14	0:56	.2443	+.2419	+.9703	+.2493	44	2:56	.7679	+.6947	+.7193	+.96
15	1:00	.2618	+.2588	+.9659	+.2679	45	3:00	.7854	+.7071	+.7071	+1.0
16	1:04	.2793	+.2756	+.9613	+.2867	46	3:04	8029	+.7193	+.6947	+1.0
17	1:08	.2967	+.2924	+.9563	+.3057	47	3:08	.8203	+.7314	+.6820	+1.0
18	1:12	.3142	+.3090	+.9511	+.3249	48	3:12	.8378	+.7431	+.6691	+1.1
19	1:16	.3316	+.3256	+.9455	+.3443	49	3:16	.8552	+.7547	+.6561	+1.1
20	1:20	.3491	+.3420	+.9397	+.3640	50	3:20	.8727	+.7660	+.6428	+1.1
21	1:24	.3665	+.3584	+.9336	+.3839	51	3:24	.8901	+.7771	+.6293	+1.2
22	1:28	.3840	+.3746	+.9272	+.4040	52	3:28	.9076	+.7880	+.6157	+1.2
23	1:32	.4014	+.3907	+.9205	+.4245	53	3:32	.9250	+.7988	+.6018	+1.3
24	1:38	.4189	+.4067	+.9135	+.4452	54	3:38	.9425	+.8090	+.5878	+1.3
25	1:40	.4363	+.4226	+.9063	+.4663	55	3:40	.9599	+.8192	+.5736	+1.4
26	1:44	.4538	+.4384	+.8988	+.4877	56	3:44	.9774	+.8290	+.5592	+1.4
27	1:48	.4712	+.4540	+.8910	+.5095	57	3:48	.9948	+.8387	+.5446	+1.5
28	1:52	.4887	+.4695	+.6829	+.5317	58	3:52	1.012	+.8480	+.5299	+1.6
29	1:56	.5061	+.4848	+.8746	+.5543	59	3:56	1.030	+.8572	+.5150	+1.6

GRADOS	HORA	RADIANES	SENO	COSENO	TANGENTÉ	GRADO	HORA	RADIANES	SENO	COSENO	TANGENTE
60	4:00	1.047	+.8660	+.5000	+1.732	90	6:00	1.571	+1.000	0	œ
61	4:04	1.065	+.8746	+.4848	+1,804	91	6:04	1.588	+.9998	0175	-57.29
62	4:08	1.082	+.8829	+.4695	+1.881	92	6.08	1.506	+.9994	0349	-28.64
63	4:12	1.100	+.8910	+.4540	+1.963	93	6.12	1.623	+.9986	0523	-19.08
64	4:16	1.117	+.8988	+.4384	+2.050	94	6:16	1.641	+.9976	0698	-14.30
о-	4.10	• • • • • • • • • • • • • • • • • • • •				} -					
65	4:20	1.134	+.9063	+.4226	+2.145	95	6:20	1.658	+.9962	0872	-11.43
66	4:24	1.152	+.9135	+.4067	+2,246	96	6:24	1.676	+.9945	1045	-9.514
67	4:28	1.169	+ 9205	+.3907	+2.356	97	6:28	1.693	+.9925	1219	-8.144
68	4:32	1.187	+.9272	+.3746	+2.475	98	6:32	1.710	+.9903	1392	-7.115
69	4:36	1.204	+.9336	+.3584	+2.605	99	6:36	1.728	+.9877	1564	-6.314
03	4.00					ļ					
70	4:40	1.222	+.9397	+.3420	+2,747	100	6:40	1.745	+.9848	1736	-5.671
71	4:44	1.239	+.9455	+ 3256	+2.904	101	6:44	1.763	+.9816	- 1908	-5.145
72	4:48	1.257	+.9511	+.3090	+3.078	102	6:48	1.780	+.9781	2079	-4.705
73	4:52	1.274	+.9563	+.2924	+3.271	103	6:52	1.798	+.9744	2250	-4.331
74	4:56	1.292	+.9613	+.2756	+3.487	104	6:56	1.815	+.9703	2419	-4.011
75	5:00	1,309	+.9659	+ 2588	+3.732	105	7:00	1.833	+.9659	2 58 8	-3.732
76	5:04	1.326	+.9703	+.2419	+4.011	106	7.04	1.850	+.9613	- 2756	-3.487
77	5:08	1.344	+.9744	+.2250	+4.331	107	7:08	1.868	+.9563	2924	-3.271
78	5:12	1.361	+.9781	+.2079	+4.705	108	7:12	1.885	+.9511	3090	-3.078
79	5:16	1.379	+.9816	+ 1908	+5.145	109	7:16	1.902	+.9455	3256	-2.904
	•					1					
80	5:20	1.396	+.9848	+.1736	+5.671	110	7:20	1.920	+.9397	3420	-2.747
81	5:24	1.414	+.9877	+.1564	+6.314	111	7:24	1.937	+.9336	3584	-2.605
82	5:28	1.431	+.9903	+.1392	+7.115	112	7:28	1.955	+.9272	3746	-2.475
83	5:32	1,449	+.9925	+.1219	+8.144	113	7:32	1.972	+.9205	3907	-2.356
84	5:36	1,466	+.9945	+.1045	+9.514	114	7:36	1.990	+.9135	4067	-2.246
-	0.00										
85	5:40	1,484	+.9962	+.0872	+11.43	115	7:40	2.007	+.9063	- 4226	-2.145
86	5:44	1.501	+.9976	+.0698	+14.30	116	7:44	2.025	+.8988	4384	-2.050
87	5:48	1.518	+.9986	+.0523	+19.08	117	7:48	2.042	+.8910	4540	-1.963
88	5:52	1.536	+.9994	+.0349	+28.64	118	7:52	2.059	+.8829	4695	-1.881
89	5:56	1.553	+.9998	+.0175	+57.29	119	7:56	2.077	+.8746	4848	-1.804
	J					i .					

GRADOS	HORA	RADIANES	SENO	COSENO	TANGENTE	GRADOS	HORA	RADIANES	SENO	COSENO	TANGENTE
120	8:00	2 094	+.8660	5000	-1.732	150	10.00	2.618	+.5000	- 8860	5774
121	8:04	2 112	+.8572	- 5150	-1.664	151	10:04	2.635	+.4848	8746	5543
122	8.08	2.129	+ 8480	5299	-1.600	152	10:08	2.653	+ 4695	- 8829	5317
123	B:12	2.147	+.8387	5446	-1.540	153	10:12	2.670	+.4540	8910	5095
124	B 16	2.164	+.8290	- 5592	-1.483	154	10 16	2.688	+.4384	8988	4877
125	8 20	2.182	+.8192	- 5736	-1.428	155	10:20	2.705	+.4226	9063	4663
126	8:24	2.199	+.8090	5878	-1.376	156	10 24	2.723	+.4067	9115	4452
127	8:28	2.217	+.7986	- 5018	-1.327	157	10:28	2.740	+.3907	9205	- 4245
128	8.32	2.234	+ 7880	- 6157	-1.280	158	10 32	2.758	+.3746	9272	- 4040
129	8:36	2.251	+.7771	- 6293	-1.235	159	10:36	2.775	+.3584	- 9336	3839
130	8.40	2 269	+.7660	- 6428	-1.192	160	10.40	2.793	+ 3420	9397	3640
131	8:44	2 288	+.7547	- 6561	-1.150	161	10 44	2 810	+.3256	9455	3443
132	8.48	2 304	+.7431	- 6691	-1.111	162	10 48	2.827	+ 3090	9511	3249
133	8:52	2.321	+.7314	- 6820	-1.072	163	10.52	2 845	+.2924	- 9563	3057
134	8:56	2.339	+.7193	6947	-1.036	164	10.56	2.862	+.2756	9613	2867
135	9.00	2.356	+.7071	7071	-1.000	165	11.00	2.880	+.2588	9659	2679
136	9.04	2.374	+.6947	7193	9657	166	11.04	2.897	+.2419	9703	2493
137	9 08	2.391	+ 5820	7314	- 9325	167	11.08	2.915	+.2250	9744	2309
138	9:12	2.409	+.6691	- 7431	- 9004	168	11.12	2.932	+.2079	9781	2126
139	9:16	2.426	+.6561	- 7547	8693	169	11 16	2.950	+.1908	9816	1944
140	9.20	2.443	+.6428	7660	8391	170	11.20	2.967	+.1736	9848	1763
141	9.24	2.461	+.6293	7771	8098	171	11 24	2.985	+ 1564	9877	1584
142	9.28	2,478	+.6157	7880	7813	172	11.28	3.002	+.1392	- 9903	1405
143	9:32	2.496	+.6018	- 7986	- 7536	173	11 32	3.019	+.1219	- 9925	1228
144	9.36	2.513	+ 5878	- 8090	7265	174	11.36	3 037	+.1045	- 9945	1051
145	9.40	2.531	+ 5736	- 8192	7002	175	11:40	3.054	+.0872	9962	0875
146	9:44	2.548	+.5592	- 8290	- 6745	176	11 44	3.072	+.0698	9976	0699
147	9.48	2.566	+.5446	- 8387	6494	177	11:48	3.089	+ 0523	9986	- 0524
148	9:52	2.583	+.5299	- 8480	- 6249	178	11.52	3.107	+.0349	9994	349
149	9:56	2.601	+.5150	8572	6009	179	11.56	3.124	+.0175	9998	0175

GRADOS	HORA	RADIANES	SENO	COSENO	TANGENTE	GRADO	HORA	RADIANES	SENO	COSENO	TANGENTE
		3.142	0	-1	0	210	14.00	3.665	- 5000	· 8660	+.5774
180	12:00	3.159	0175	9998	+.0175	211	14:04	3 683	- 5150	- B572	+.6009
181	12:04	3.176	- 0349	- 9994	+.0349	212	14.08	3.700	- 5299	- 8480	+.6249
182	12:08	3.176	.0523	-9966	+.0524	213	14:12	3.718	- 5446	- 8387	+ 6494
183	12:12	3.211	0698	9976	+.0699	214	14:16	3.735	- 5592	- 8290	+.6745
184	12:16	3.211	0090	-,5310		1					
		3.229	0872	- 9962	+ 0875	215	14:20	3.752	- 5736	8192	+.7002
185	12:20	3.229	-,1045	- 9945	+.1051	216	14.24	3.770	- 5878	B090	+.7265
186	12:24	3.264	-,1219	9925	+ 1228	217	14:28	3.787	- 6018	- 7986	+.7538
187	12:28		-,1392	-9903	+.1405	218	14:32	3.805	6157	7880	+.7813
188	12:32	3.281	-,1584	- 9877	+.1584	219	14:36	3.822	- 6293	-,7771	+.8098
189	12:36	3.299	-,1304	. 9077	7.1304	1					
			1736	.9848	+.1763	220	14:40	3.840	6428	- 7660	+.8391
190	12:40	3.316	1736	9816	+.1944	221	14:44	3.857	6561	7547	+.6693
191	12:44	3.334	1908	9781	+.2126	222	14:48	3 875	- 6691	7431	+.9004
192	12:48	3.351 3.368	. 2250	9744	+.2309	223	14:52	3.892	6820	7314	+.9325
193	12.52		- 2419	- 9703	+ 2493	224	14:58	3.910	6947	- 7193	+.9657
194	12:56	3.386	2419	1.9103		1					
			- 2588	- 9659	+.2679	225	15:00	3.927	7071	7071	+1.000
195	13.00	3.403		9613	+.2867	226	15:04	3 944	7193	6947	+1.036
196	13:04	3.421	2756	9563	+.3057	227	15.08	3.962	7314	- 6820	+1.072
197	13:08	3 435	2924	- 9503	+.3249	228	15.12	3 979	7431	6891	+1.111
198	13:12	3.456	3090	9455	+.3443	229	15.16	3.997	7547	6561	+1.150
199	13,16	3.473	3256	9433	7.5775	[223		•		-	
			3420	- 9397	+.3640	230	15.20	4.014	- 7660	6428	+1.192
200	13:20	3.491	3420	- 9336	+.3839	231	15:24	4 032	-,7771	6293	+1.235
201	13:24	3.508	3748	- 9272	+.4040	232	15:28	4.049	7880	6157	+1.280
202	13:28	3.526		-9205	+.4245	233	15:32	4.067	7986	6018	+1.327
203	13:32	3.543	3907	- 9135	+.4452	234	15:36	4.084	8090	587B	+1.376
204	13:38	3.560	4067	-,9063	+.4863	235	15:40	4.102	- 8192	- 5738	+1,428
205	13:40	3.578	4226 4384	8988	+.4877	236	15:44	4.119	8290	5592	+1.483
206	13:44	3.595		8910	+.5095	237	15:48	4.136	8387	5446	+1.540
207	13:48	3.613	-,4540		+.5317	238	15:52	4.154	8480	5299	+1.600
208	13:52	3.630	- 4695	8829		239	15:56	4.171	8572	5150	+1.664
209	13:56	3.648	-,4848	8746	+.5543	j 439	15:50	4.171	0072	.5150	

244 16,04 42,06 -6745 -4848 +18,04 271 18,04 4,730 .9998 +0175 -57 242 16,08 4,224 -8229 -4695 +1881 272 18,08 4,747 .9994 +0349 -28 243 16,12 4,241 -8910 -4540 +1963 273 18,12 4,765 -9966 +0523 19 244 16,16 4,229 -9888 -4334 +2,050 274 18,16 4,762 -9966 +0623 19 245 16,20 4,276 -9063 -4226 276 18,24 4,800 -9962 +0872 -11 246 16,24 4,294 -9135 -4067 +2,246 276 18,24 4,817 -9945 +1045 -9242 247 16,28 4,311 -9205 -3907 +2,246 276 18,24 4,817 -9948 +1,219 -8 248 16,32 4,324	GRADOS	HORA	RADIANES	SENO	COSENO	TANGENTE	GRADOS	HORA	RADIANES	SENO	COSENO	TANGENTE
242 16:08 4:224 -8829 -4805 +1881 272 18:08 4.747 -9994 +0.349 -28 243 16:12 4:241 -8910 -4540 +1.963 273 16:12 4.765 -9996 +0.523 -19 244 16:16 4:259 -6988 -4.334 +2.050 274 18:16 4.762 -9996 +0.523 -19 245 16:20 4:276 -9063 -4226 +2.145 275 18:20 4:800 -9962 +0.872 -11 246 16:24 4:294 -9135 -4.067 +2.246 276 18:24 4:817 -9945 +1.045 -9.1 247 16:28 4:311 -9205 -3907 +2.356 277 18:28 4:817 -9945 +1.045 -9.1 248 16:32 4:328 -9.272 -3746 +2.475 278 18:32 4:852 -9.903 +1.392 -7. 249 18:36 4:346 -9336 -3584 +2.605 279 18:36 4:852 -9.903 +1.392 -7. 249 18:36 4:346 -9336 -3584 +2.605 279 18:36 4:852 -9.903 +1.392 -7. 250 16:40 4:381 -9455 -3256 +2.904 281 18:44 4:904 -9816 +1.908 -51. 251 16:44 4:381 -9455 -3.256 +2.904 281 18:44 4:904 -9816 +1.908 -51. 252 16:48 4:398 -9511 -3.090 4:3074 281 18:44 4:904 -9816 +1.908 -51. 253 16:52 4:416 -9563 -2324 +3.271 283 18:52 4:939 -9744 +2.250 -4.3 254 18:56 4:433 -9613 -2756 +3.487 284 18:56 4:937 -9703 +2.419 -4. 255 17:00 4:451 -9658 -2598 +3.487 284 18:56 4:937 -9703 +2.419 -4. 255 17:00 4:455 -9744 -2.250 4:331 287 19.08 5:00 -9663 +2.204 -3.257 17.08 4:465 -9703 -2.249 4:101 266 19.04 4:992 -9613 +2.7256 -3.3 256 17:04 4:468 -9703 -2419 4:011 266 19.04 4:992 -9613 +2.7256 -3.3 257 17:08 4:465 -9744 -2.250 4:331 287 19.08 5:00 -9663 +2.204 -3.2 258 17:12 4:503 -9781 -2.079 4:7.15 289 19:16 5:044 -9.955 +2.968 -3.2 256 17:04 4:468 -9703 -2419 4:011 266 19.04 4:992 -9613 +2.7256 -3.3 257 17:08 4:465 -9744 -2.250 4:331 287 19.08 5:00 -9663 +2.204 -3.2 258 17:12 4:503 -9781 -2.079 4:7.15 289 19:16 5:044 -9.955 +2.296 -3.3 256 17:04 4:468 -9703 -2419 4:011 266 19.04 4:992 -9613 +2.7256 -3.3 257 17:08 4:465 -9744 -2.250 4:331 287 19.08 5:00 -9663 +2.204 -3.2 258 17:12 4:503 -9781 -2.079 4:7.15 289 19:16 5:044 -9.955 +2.296 -2.298 19:16 5:044 -9.955 +2.296 +2.296 -2.298 19:16 5:044 -9.955 +2.296 +2.296 -2.298 19:16 5:044 -9.955 +2.296 +2.296 -2.298 19:16 5:044 -9.955 +2.296 +2.296 -2.298 19:16 5:044 -9.955 +2.296 +2.296 +2.296 -2.298 19:16 5:044 -9.955 +2.296 +2.296 +2.296 +2.2					5000	+1.732	270	18:00	4.712	-1	0	æ
242 1608 4.224 -8829 -4695 +1881 272 18.08 4.747 -9994 +0349 -22 243 16:12 4.241 +8910 +550 +1953 273 18:12 4.765 -9976 +0582 -19 244 16:16 4.259 -8988 -4384 +2.050 274 18:16 4.762 -9976 +0688 -14 245 16:20 4.276 -9063 -4226 +2.145 275 18:20 4.800 -9962 +0872 -11 4.817 -9945 +1045 -81 4247 16:28 4.311 -9905 +3077 +2.356 277 18:28 4.837 -9925 +1219 4.81 -9903 +1392 +7.71 18:28 4.835 -9923 +1392 +7.71 18:28 4.852 -9903 +1392 +7.71 28:0 18:40 4.867 -9848 +1736 45:1 45:1 45:1 48:2 -9903 <td< td=""><td></td><td></td><td></td><td>8745</td><td>4848</td><td>+1.804</td><td>271</td><td>18:04</td><td>4,730</td><td>9998</td><td>+.0175</td><td>- 57.29</td></td<>				8745	4848	+1.804	271	18:04	4,730	9998	+.0175	- 57.29
243 16:12 4.241 8910 4540 +1.963 273 18:12 4.765					4695	+1.881	272	18.08	4.747			- 28.64
245 16.20 4.276 .9063 -4.226 +2.145 2.75 18.20 4.800 -9962 +0.872 -11 246 16.24 4.294 -9135 -4.067 +2.246 276 18.24 4.817 -9945 +1045 -981 247 16.28 4.311 -9205 -3907 +2.366 277 18.28 4.835 -9925 +1219 -8 248 16.32 4.326 -9326 -3544 +2.605 279 18.36 4.852 -9903 +1392 +7.7 249 18.36 4.364 -9336 -3584 +2.605 279 18.36 4.869 -9877 +1564 6.3 250 16.40 4.363 -9337 -3420 +2.747 280 18.40 4.867 -9848 +1736 -5.1 251 16.44 4.381 -9455 -3256 +2.904 281 18.44 4.904 -9816 +1908 5.1							273	18:12	4.765	9986	+.0523	-19.08
246 18:24 4294 -9135 -4067 +2:246 276 18:24 4.817 -9945 +10:45 49:247 18:28 4.311 -9:205 -3:907 +2:356 277 18:28 4.835 -9925 +1:219 48:249 18:36 4.346 -9:326 -3:594 +2:605 279 18:36 4.889 -9:617 +1:564 6:32 4.326 -9:326 -3:594 +2:605 279 18:36 4.889 -9:617 +1:564 6:32 4.326 -3:346 -3:354 +2:605 279 18:36 4.889 -9:617 +1:564 6:325 18:44 4.361 -9:455 -3:256 +2:904 281 18:40 4.887 -9:848 +1:736 -5:1251 18:44 4.904 -9:816 +1:908 -5:1251 18:44 4.904 -9:816 +1:908 -5:1251 18:44 4.904 -9:816 +1:908 -5:1252 18:48 4.992 -9:781 +2:279 4.3271 28:3 18:52 4.919 -9:744 +2:250 4.3251 18:52 4.919 -9:744 +2:250 4.3251 18:52 4.919 -9:744 +2:250 4.3251 18:52 4.919 -9:744 +2:250 4.3251 18:52 4.919 -9:744 +2:250 4.3251 18:52 4.919 -9:743	244	16:16	4.259	8988	4384	+2.050	274	18:16	4.782	9976	+.0698	-14.30
246 16:24 4:294 -9135 -4.067 *2:246 276 18:24 4.817 -9945 *1045 -9:222 -9:205 -3907 *2:356 277 18:26 4.815 -9925 +1219 -8:222 -3746 *2:475 278 18:32 4.852 -9903 *1392 -7:129 -8:324 18:36 4.346 -9336 -3584 *2:605 279 18:36 4.852 -9903 *1392 7:7:22 4.81 -9458 *1392 7:7:564 40:22 -9913 *1392 7:7:564 40:22 -9913 *1392 7:7:564 40:22 -9913 *1392 7:7:564 40:22 -9913 *1392 7:7:564 40:20 40:21 80:22 18:44 4904 *9848 *1736 -55 -525 15:40 43:44 4904 *9848 *1736 -55 -525 15:40 43:44 4904 *9848 *1736 -55 -525 18:44 4904 *9848 *1736 *5			4.276		4226	+2.145	275	18:20	4.800	9962	+.0872	-11,43
248 16.32 4.328 -9.272 -3746 +2.475 276 18.32 4.852 -9903 +1392 -7.1 249 18.36 4.346 -9336 -3584 +2.605 279 18.36 4.869 -9807 +1564 4.61 250 18.40 4.867 -9848 +1736 -55 -525 18.44 4.904 -9848 +1736 -55 251 16.44 4.381 -9455 -3226 +2.904 281 18.44 4.904 -9848 +1736 -55 252 16.43 4.398 -9511 -3090 +3.078 282 18.48 4.922 -9781 +2079 4.1 253 16.52 4.416 -9563 -2224 +3.271 283 18.52 4.939 -9744 +2250 4.3 254 16.56 4.433 -9613 -2758 +3.447 284 18.52 4.939 -9744 +2250 4.3						+2.246	276	18:24	4.817	9945	+.1045	-9.514
249 18.36 4.346 -9336 -3584 +2.605 279 18.36 4.669 -9877 +1564 4.35 250 16.40 4.363 -9337 -3420 +2.747 280 18.40 4.887 -9848 +1736 -5.67 251 16.44 4.381 -9455 -3256 +2.904 281 18.44 4.904 -9816 +1908 -5.1256 252 16.48 4.398 -9511 -3090 +3.078 282 18.48 4.922 -9781 +2079 +1.2250 4.2251 4.2250 4.2251 4.2250 4.2251 4.2250 4.2251 4.2250 4.2251<					3907	+2.356	277	18:28	4.835			-B.144
250 16.40 4.363 -9.397 -3.420 +2.747 280 18.40 4.887 -9.848 +1.736 5.56 251 16.44 4.381 -9.455 -3.256 +2.904 281 18.44 4.904 -9.816 +1.908 5.51 252 16.48 4.398 -9.511 -3.090 4.3078 282 18.48 4.922 -9.781 +2.079 4.1 253 16.52 4.416 -9.563 -2.324 +3.271 283 18.52 4.939 -9.744 +2.250 4.3 254 16.56 4.33 -9.613 -2.756 +3.487 284 18.56 4.937 -9.703 +2.419 4.0 255 17.00 4.451 -9.659 -2.598 +3.732 285 18.00 4.974 -9.659 +2.588 3.1 256 17.04 4.466 -9.703 -2.419 +4.011 266 19.04 4.992 -9.613 +2.7256 -3.4 257 17.08 4.465 -9.744 -2.250 +4.331 287 19.08 5.009 -9.663 +2.924 2.257 17.02 4.455 -9.744 -2.250 +4.331 287 19.08 5.009 -9.663 +2.924 2.258 17.12 4.503 -9.781 -2.079 4.705 288 19.12 5.027 -9.511 +3.090 3.3 258 17.12 4.503 -9.781 -2.079 +4.705 288 19.12 5.027 -9.511 +3.090 3.3 259 17.16 4.520 -9.816 -1.908 +5.145 289 19.16 5.044 -9.455 +3.256 2.256 2.256 17.24 4.555 -9.977 -1.564 +8.314 291 19.24 5.079 -9.336 +3.584 -2.1 261 17.24 4.555 -9.977 -1.564 +8.314 291 19.24 5.079 -9.336 +3.584 -2.1 262 17.28 4.573 -9.903 -1.392 +7.115 292 19.28 5.096 -9.77 4.320 -2.2 283 17.32 4.590 -9.925 -1.219 +8.144 293 19.32 5.114 -9.205 +3.397 -2.2 284 17.36 4.608 -9.945 -1.045 +9.514 294 19.36 5.131 -9.135 +4.067 -2.2 285 17.44 4.643 -9.976 -0.698 +14.30 296 19.44 5.166 -8.988 +4.384 -2.1 265 17.44 4.643 -9.976 -0.698 +14.30 296 19.45 5.161 -9.906 +4.450 -1.5 285 17.48 4.600 -9.966 -0.023 +11.43 295 19.46 5.164 -8.910 +4.540 -1.5 286 17.44 4.643 -9.976 -0.698 +14.30 296 19.45 5.161 -9.906 +4.450 -1.5 286 17.44 4.643 -9.976 -0.098 +14.30 296 19.45 5.161 -9.906 +4.450 -1.5 286 17.44 4.640 -9.966 -0.023 +11.43 295 19.46 5.166 -8.988 +4.384 -2.1 286 17.48 4.660 -9.966 -0.023 +11.43 295 19.46 5.164 -8.990 +4.450 -1.5 287 17.48 4.660 -9.966 -0.023 +19.08 297 19.48 5.164 -8.990 +4.450 -1.5 288 17.52 4.677 -9.994 -0.039 +28.644 2.98 19.55 5.201 -8.898 +4.4895 -1.15							278	18:32	4.852	9903	+.1392	-7.115
251 16.44 4.38194553256 +2.904 281 18.44 4.9049816 +1.908 4.51 252 16.48 4.39695113090 +3.078 282 18.48 4.9229781 +2.079 4.7 253 16.52 4.41695632324 +3.271 283 18.52 4.9399744 +2.250 4.3 254 18.56 4.43396132756 +3.487 284 18.55 4.9379703 +2.2419 4.0 255 17.00 4.45196592588 +3.487 284 18.55 4.9379703 +2.2419 4.0 255 17.00 4.45196592588 +3.732 285 18.00 4.9749659 +2.588 3.3 256 17.04 4.46697032419 +4.011 286 19.04 4.9929613 +2.756 -3.4 257 17.08 4.45597442250 +4.331 287 18.08 5.0099683 +2.254 2.257 17.08 4.45597442250 +4.331 287 18.08 5.0099683 +2.2924 3.2 258 17.12 4.50397812079 +4.705 288 19.12 5.0279511 +3.090 3.1 259 17.16 4.52088161908 +5.145 288 19.12 5.0279511 +3.090 3.1 259 17.16 4.52088161908 +5.145 289 19.16 5.0449455 +3.256 2.2 260 17.20 4.53898481736 +5.671 290 19.20 5.0619397 +3.420 2.2 261 17.24 4.55599771564 +8.314 291 19.24 5.0799336 +3.58421 262 17.28 4.57399031392 +7.115 292 19.28 5.096927237146 2.2 263 17.32 4.59099251219 +8.144 293 19.32 5.1149205 +3.39072. 265 17.44 4.64399760692 +.0872 +11.43 294 19.36 5.1319135 +4.06772. 265 17.44 4.64399760692 +.0872 +11.43 295 19.40 5.1648980 +4.3542.1 266 17.44 4.64399760692 +.12199661 19.44 5.1668988 +4.334 2.2.1 267 17.48 4.66099660623 +11.03 296 19.44 5.1668988 +4.334 2.2.1 268 17.44 4.64399760692 +.0872 +11.43 295 19.40 5.1648910 +4.540 -1.5 269 17.54 4.66099660623 +11.03 296 19.44 5.1668988 +4.334 2.2.1 269 17.44 4.64399760692 +.0872 +11.43 2.995 19.40 5.1648910 +4.540 -1.5 260 17.44 4.64399760692 +.0872 +11.43 2.995 19.40 5.1648910 +4.540 -1.5 265 17.44 4.66099660623 +11.040 2.996 19.44 5.1668988 +4.334 2.2.1 266 17.44 4.64399760692 +.0872 +11.43 2.995 19.40 5.1648910 +4.540 -1.5 267 17.48 4.66099660623 +11.040 2.996 19.44 5.1668988 +4.334 2.2.1 268 17.44 4.64399760349 +2.664 2.88 19.52	249	18:36	4.346	9336	3584	+2.605	279	18:36	4.869	9877	+.1564	-6.314
252 16.48 4.398 -9511 -3000 +3.078 282 18.48 4.922 -9781 +22079 4.7 253 16.52 4.416 -9563 -3224 -3271 283 18.52 4.939 -9744 +2250 4.3 254 18.56 4.433 -9613 -27256 +3.487 284 18.55 4.957 -9703 +2419 4.0 255 17.00 4.451 -9659 -2588 +3.732 285 19.00 4.974 -9659 +2588 3.3 256 17.04 4.660 -9703 -2419 +4.011 286 19.04 4.982 -9613 +27256 3.4 257 17.08 4.465 -9703 -2419 +4.011 286 19.04 4.992 -9613 +27256 3.4 257 17.08 4.465 -9744 -2250 +4.331 287 19.08 5.009 -9663 +2224 3.2 258 17.12 4.503 -9781 -2079 +4.705 288 19.12 5.027 -9511 +3090 3.1 259 17.16 4.520 -9816 -1908 +5.145 289 19.16 5.044 -9455 +3.256 2.5 260 17.20 4.538 -9848 -17.36 +5.671 290 19.20 5.061 -9397 +3.420 -2. 261 17.24 4.555 -9977 -1564 +6.314 291 19.24 5.079 -9.336 +3.584 -2.0 262 17.28 4.573 -9903 -1392 +7.115 292 19.28 5.096 -8.272 +3.746 2.2 263 17.32 4.590 -9925 -1219 -8.144 291 19.24 5.079 -9.336 +3.584 -2.0 263 17.32 4.590 -9925 -1219 -8.144 291 19.25 5.096 -8.272 +3.746 2.2 263 17.32 4.590 -9925 -1219 -8.144 291 19.25 5.096 -8.272 +3.746 2.2 263 17.44 4.643 -9.976 -0.638 +14.30 296 19.44 5.166 -8.988 +4.384 2.2 265 17.44 4.643 -9.976 -0.638 +14.30 296 19.44 5.166 -8.988 +4.384 2.2 266 17.44 4.643 -9.976 -0.638 +14.30 296 19.44 5.166 -8.988 +4.384 2.2 267 17.48 4.660 -9.966 -0.523 +19.00 297 19.48 5.164 -6.990 +4.540 -1.5 268 17.52 4.677 -9.994 -0.349 +28.644 286 19.52 5.201 -8.829 +4.969 -1.5					3420	+2.747	280	18:40	4.887	9848	+.1736	-5.671
252 16.48 4.398 - 9511 - 3090 + 3.078 202 18.48 4.922 - 9.781 + 2079 4.1 253 16.52 4.416 - 9.563 - 2.224 + 3.271 283 18.52 4.939 - 9.744 + 2.250 4.3 254 18.56 4.4338613 - 2.756 + 3.467 284 18.56 4.9379703 + 2.419 4.0 255 17.00 4.4519659 - 2.588 + 3.732 285 18.00 4.9749659 + 2.588 3.3 2.56 17.04 4.4669703 - 2.419 + 4.011 2.66 19.04 4.9929613 + 2.756 3.4 2.57 17.08 4.4659703 - 2.419 + 4.011 2.66 19.04 4.9929613 + 2.756 3.4 2.57 17.08 4.4659703 - 2.419 + 4.011 2.66 19.04 4.9929613 + 2.756 3.4 2.57 17.08 4.4659703 - 2.419 + 4.011 2.66 19.04 4.9929613 + 2.756 3.4 2.57 17.08 4.4559744 - 2.250 + 4.331 2.67 19.68 5.0099663 + 2.924 - 3.3 2.58 17.12 4.5039781 - 2.079 + 4.705 2.88 19.12 5.0279511 + 3.090 3.1 2.59 17.16 4.52098161908 + 5.145 2.89 19.16 5.0449455 + .3256 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5					3256	+2.904	281	15:44	4.904	9816	+.1908	-5.145
253 16.52 4.416 -9563 -2924 +3.271 283 18.52 4.939 -9744 +2250 4.2 254 18.56 4.837 -9613 -2758 +3.487 284 18.56 4.937 -9703 +2419 4.0 255 17.04 4.461 -9659 -2588 +3.732 285 19.04 4.974 -9659 +2588 -3.7 257 17.06 4.465 -9744 -2250 44.311 286 19.04 4.992 -9613 +2756 -3.1 258 17.12 4.503 -9781 -2209 44.705 288 19.12 5.027 -9613 +2726 -3.1 259 17.16 4.520 -9816 -1908 +5.145 289 19:16 5.044 -9455 -3256 22 250 17.20 4.538 -9848 -1736 +5.671 290 19:20 5.061 -9397 +3420 -2.1			4.398	- 9511	- 3090	+3.078	282	18:48	4.922	9781	+.2079	4.705
254 16:56 4.433 9613 2756 +3.487 264 16:56 4.957 9703 +.2419 -4.0 255 17:00 4.451 9659 2588 +3.732 285 19:00 4.974 9659 +.2588 -3.1 256 17:04 4.468 9703 2419 +4.011 286 19:04 4.992 9613 +2756 -3.4 257 17:06 4.485 9744 2250 +4.331 287 19:06 5.009 9653 +2224 -3.4 258 17:12 4.503 9781 2079 +4.705 288 19:12 5.027 9511 +3090 -3.1 259 17:16 4.520 9816 1908 +5.145 289 19:16 5.044 9455 +3.256 -2.5 260 17:20 4.538 9848 -1736 +5.671 290 19:20 5.061 9937 +3420 -2.2	253	16:52	4.416	- 9563	2924	+3.271	283	18:52	4.939			-4.331
256 17.04 4.668 -9703 -2419 +4.011 286 19.04 4.992 -9613 +2756 -2.1 257 17.08 4.485 -9744 -2250 +4.331 287 18.08 5.099 -9653 +2726 -2.1 258 17.12 4.503 -9781 -2079 +4.705 288 19.12 5.027 -9511 +3.090 3.1 259 17.16 4.500 -9816 -1908 +5.145 289 19.16 5.044 -94.55 +3.256 2.5 250 17.20 4.538 -9848 -17.36 +5.671 290 19.20 5.061 -9397 +3.420 2.1 261 17.20 4.538 -9848 -17.36 +5.671 290 19.20 5.061 -9397 +3.420 2.1 261 17.24 4.555 -9877 -1564 +8.314 291 19.24 5.079 -9336 +3.384 2.1 262 17.28 4.573 -9903 -1392 +7.115 292 19.28 5.096 -9327 +3.746 2.4 263 17.32 4.590 -9925 -1219 +8.144 293 19.32 5.114 -9205 +3.397 2.2 264 17.36 4.508 -9945 -1.045 99.514 294 19.36 5.131 -9135 +4.067 2.2 265 17.40 4.625 -9962 -0872 +11.43 295 19.40 5.149 -9.063 +4.226 2.2 265 17.44 4.643 -9.976 -0.088 +14.30 296 19.44 5.166 8.988 +4.384 2.2 266 17.44 4.643 -9.976 -0.088 +14.30 296 19.44 5.166 8.988 +4.384 2.2 267 17.48 4.660 -9.966 -0.523 +19.00 297 19.46 5.164 8.990 +4.540 -1.5 268 17.52 4.677 -9.994 -0.039 +28.64 286 19.52 5.201 8.829 +4.995 1.1	254	16:56	4.433	9613	- 2756	+3.487	284	18:56	4.957	9703		-4.011
257 17:08 4.485 -9744 -2250 +4.331 287 19:08 5.009 -9663 +2224 -3.2 258 17:12 4.503 -9781 -2079 +4.705 288 19:12 5.027 -9511 +3.090 -3.1 259 17:16 4.520 -9816 -1908 +5.145 289 19:16 5.044 -9455 +3.256 -2.5 260 17:20 4.538 -9848 -1736 +5.671 290 19:20 5.061 -9397 +3420 -2.7 261 17:24 4.535 -9977 -1564 +0.314 291 19:24 5.079 -9336 +3584 -2.1 262 17:28 4.573 -9903 -1392 +7.115 292 19:28 5.096 -8272 +3746 -2.2 283 17:32 4.590 -9925 -1219 +8.144 293 19:28 5.114 -9205 +3907 -2.2 <						+3.732	285	19:00	4.974	- 9659	+.2588	-3.732
257 17.08 4.485 9744 2250 +4.331 287 19.08 5.009 9633 +.2924 32 258 17.12 4.503 9781 2079 +4.705 288 19.12 5.027 9511 +3.090 -3.1 259 17.16 4.520 9816 1908 +5.145 289 19.16 5.044 9455 +3256 -2.1 250 17.20 4.538 9848 -1736 +5.671 290 19.20 5.061 9397 +3420 -2.7 261 17.24 4.535 9848 -1736 +5.671 290 19.20 5.061 9397 +3420 -2.7 262 17.24 4.535 9873 -1564 +8.314 291 19.24 5.079 -9336 +3584 -2.1 263 17.23 4.590 9925 1219 +8.144 293 19.32 5.144 9205 +3397 -2.2 <td></td> <td></td> <td></td> <td></td> <td></td> <td>+4.011</td> <td>286</td> <td>19:04</td> <td>4.992</td> <td>9613</td> <td>+.2756</td> <td>-3.487</td>						+4.011	286	19:04	4.992	9613	+.2756	-3.487
258 17.12 4503 -9781 -2079 +4.705 288 19.12 5.027 -9511 +3090 -3.1 259 17.16 4.520 -9816 -1908 +5.145 289 19.16 5.044 -9.455 +3.256 -2.5 250 17.20 4.538 -9848 -1736 +5.671 290 19.20 5.061 -9936 +3.420 -2.1 261 17.24 4.555 -9877 -1564 +6.314 291 19.24 5.079 -9336 +3.594 -2.1 262 17.28 4.573 -9903 -1392 +7.115 292 19.28 5.096 -9272 +3.746 -2.4 263 17.32 4.590 -9925 -1219 +8.144 293 19.32 5.114 -9.205 +3.907 -2.1 264 17.36 4.608 -9945 -1.045 +9.514 294 19.36 5.131 -9.135 +4.067 -2.2 265 17.44 4.643 -9.962 -0.872 +11.43 295 19.40 5.149 -9.063 +4.226 -2.1 266 17.44 4.643 -9.976 -0.058 +14.30 296 19.44 5.166 8.988 +4.384 -2.4 267 17.48 4.660 -9.986 -0.0523 +19.08 297 19.48 5.184 8.910 +4.540 -1.5 288 17.52 4.677 -9.994 -0.039 +28.64 288 19.52 5.201 8.829 +4.695 -1.5	257	17:08	4.485	9744	2250	+4.331	287	19:08	5.009	- 9563		-3.271
259 17:16 4.520 9816 1908 +5.145 289 19:16 5.044 9455 +3.256 2.25 250 17:20 4.533 9848 1736 +5.671 290 19:20 5.061 9397 +.3420 -2.2 261 17:24 4.595 9917 1564 +8.314 291 19:24 5.079 9336 +.3584 -2.1 262 17:28 4.573 9903 1392 -7.115 292 19:26 5.096 .9272 -3746 -2.2 263 17:32 4.590 9925 1219 +8.144 293 19:32 5.131 9135 +3907 -2.2 264 17:36 4.608 9945 -1045 +9.514 294 19:36 5.131 -9135 +4.067 -2.2 265 17:40 4.625 9962 0672 +11.43 295 19:40 5.149 9063 +4.226 -2.2	258	17:12	4.503	9781	2079	+4.705	288	19:12	5 027			-3.078
261 17:24 4.555 9977 1564 +6.314 291 19:24 5.079 9336 +.3584 2.2 262 17:28 4.573 9903 1392 +7.115 292 19:28 5.096 9272 +37.46 2.4 263 17:32 4.590 9925 -1219 +8.144 293 19:28 5.096 9272 +37.46 2.4 264 17:36 4.608 9945 1045 +8.514 294 19:36 5.131 9135 +4.067 -2.2 265 17:40 4.625 9962 0672 +11.43 295 19:40 5.149 9063 +4.226 -2.1 266 17:44 4.643 9976 0698 +14.30 296 19:44 5.166 8988 +.4384 -2.2 267 17:48 4.660 9966 0523 +19.08 297 19:48 5.184 8910 +4540 -1.5 268 17:52 4.677 9994 0349 +26.64 288 19:52 5.201 8829 +.4895 -1.15	259	17:16	4.520	9816	1908	+5.145	289					-2.904
261 17:24 4.555 9977 1564 +0.314 291 19:24 5.079 9336 +.3594 26 262 17:28 4.573 9903 1392 +7.115 292 19:28 5.096 9272 +.3746 -2.4 263 17:32 4.590 9925 1219 +8.144 293 19:32 5.114 905 +3907 -2.2 264 17:36 4.608 9945 1045 +8.514 294 19:36 5.131 9135 +.4067 -2.2 265 17:40 4.625 9962 0672 +11.43 295 19:40 5.149 9063 +4226 -2.1 266 17:44 4.643 9976 0682 +14.30 296 19:44 5.169 8988 +.4384 -2.2 267 17:48 4.660 9966 0523 +19.08 297 19:48 5.184 8910 +.4540 -1	260	17:20	4.538	9848	- 1736	+5.671	290	19:20	5.061	- 9397	+ 3420	-2.747
262 17:28 4.573 -9903 -1392 +7.115 292 19.28 5.096 -8.272 +3.746 -2.4 283 17:32 4.590 -9.925 -1.219 +8.144 293 19.32 5.114 -9.205 +3.907 -2.3 284 17:36 4.608 -9.945 -1.045 +9.514 294 19.36 5.131 -9.135 +4.067 -2.2 285 17:40 4.625 -9.962 -0.0872 +11.43 295 19.40 5.149 -9.063 +4.226 -2.1 286 17:44 4.643 -9.976 -0.089 +14.30 296 19.44 5.166 -8.988 +4.384 -2.4 287 17:48 4.660 -9.966 -0.0523 +19.08 297 19.48 5.184 -8.910 +4.540 -1.5 288 17:52 4.677 -9.994 -0.349 +28.64 288 19.52 5.201 -8.829 +4.955 -1.8					1564	+6.314	291	19:24				-2.605
283 17.32 4.590 -9925 -1219 +8144 293 19.32 5.114 .9205 +3.907 -2.2 284 17.36 4.608 -9945 -1.045 +9.514 294 19.36 5.131 -9135 +4.067 -2.2 285 17.40 4.625 -9962 -0.6872 +11.43 295 19.40 5.149 -9063 +4.226 -2.1 286 17.44 4.643 -9976 -0.698 +14.30 296 19.44 5.166 .8980 +4.384 -2.1 287 17.48 4.660 -9966 -0.023 +19.08 297 19.48 5.164 .8910 +4.540 -1.5 288 17.52 4.677 -9994 -0.0349 +28.64 288 19.52 5.201 .8829 +4.695 -1.5				9903	- 1392	+7.115	292	19:28	5.096			-2.475
284 17:36 4.608 -9945 -1045 +8.514 294 19.36 5.131 -9135 +4.067 -2.2 285 17:40 4.625 -9962 -0872 +11.43 295 19.40 5.149 .9063 +4.226 -2.1 286 17:44 4.643 -9976 -0698 +14.30 296 19.44 5.166 .8988 +4.394 -2.6 287 17:48 4.660 -9968 -0523 +19.08 297 19.48 5.184 .8910 +4.540 -1.1 288 17:52 4.677 -9994 -0349 +28.64 288 19.52 5.201 -8829 +4.695 -1.8				9925	- 1219	+8.144	293	19:32	5.114			-2.356
266 17:44 4.64399760588 +14.30 296 19:44 5.166 .8988 +3394 2.0 287 17:48 4.66099860523 +19.08 297 19:48 5.164 .8910 +4.54015 288 17:52 4.67799940349 +28.64 288 19.52 5.201 .8829 +4.895 1.15	264	17:36	4.608	9945	1045	+9.514	294	19:36	5.131			-2.248
266 17:44 4.643 -9976 -0698 +14.30 296 19.44 5.166 8988 +.4394 -2.6 267 17:48 4.660 -9986 -0523 +19.08 297 19.48 5.184 .8910 +.4540 -1.5 268 17:52 4.677 -9994 -0349 +28.64 288 19.52 5.201 8829 +4895 -1.8	265	17:40	4.625	- 9962	0872	+11.43	295	19:40	5.149	9063	+.4226	-2.145
287 17.48 4.660 9986 0523 +19.08 297 19.48 5.184 8910 +4540 -15 288 17.52 4.677 9994 0349 +28.64 298 19.52 5.201 8829 +4895 1.8						+14.30	296	19:44				-2.050
288 17:52 4.677 -9994 -0349 +28.64 298 19:52 5.201 -8829 +4895 -1.8			4.660	9986	0523	+19.08						-1.963
			4.677	9994	0349	+28.64						-1.881
- 11.00 - 1.000 - 1.000 - 1.011.0 - 1.1.23 288 19.30 5.219 - 1.8/46 + 4.848 - 1.8	269	17:58	4.695	9998	0175	+57.29	299	19:56	5.219	8746	+.4848	-1.804

GRADOS	HORA	RADIANES	SENO	COSENO	TANGENTE	GRADO	HORA	RADIANES	SENO	COSENO	TANGENTE
300	20:00	5,236	8660	+.5000	-1.732	330	22:00	5.760	5000	+.8660	5774
301	20:04	5.253	8572	+.5150	-1.664	331	22:04	5.777	4848	+.8746	5543
302	20:08	5.271	8480	+.5299	-1.600	332	22.08	5.794	4695	+.8829	5317
303	20:12	5.288	8387	+.5446	-1.540	333	22:12	5.812	4540	+.8910	5095
304	20:16	5.306	8290	+.5592	-1.483	334	22:16	5.829	4384	+.8988	4877
•••		*			ł						
305	20:20	5.323	8192	+.5736	-1.428	335	22:20	5.847	4226	+.9063	4663
306	20:24	5.341	-,8090	+.5878	-1.376	336	22:24	5.864	- 4067	+.9135	- 4452
307	20:28	5.358	7986	+.6018	-1.327	337	22.28	5.882	3907	+.9205	4245
308	20:32	5.376	7880	+.6157	-1.280	338	22.32	5.899	- 3746	+.9272	4040
309	20:32	5.393	7771	+.6293	-1.235	339	22:36	5.917	3584	+.9336	3839
30#	20.30	3.555									
310	20:40	5.411	7660	+.6428	-1.192	340	22.40	5.934	3420	+.9397	3640
311	20:44	5.428	-,7547	+.6561	-1.150	341	22:44	5.952	3256	+.9455	3443
312	20:48	5.445	-,7431	+.6691	-1.111	342	22:48	5.969	3090	+.9511	3249
313	20:52	5.463	-7314	+ 6820	-1.072	343	22:52	5.986	2924	+.9563	3057
314	20:56	5.480	-7193	+.6947	-1.036	344	22:56	6.004	- 2756	+.9613	2867
314	20.30	3.400			1						
315	21:00	5.498	-,7071	+.7071	-1.000	345	23:00	6.021	2588	+.9659	2679
316	21:04	5.515	-,6947	+.7193	9657	346	23:04	6.039	2419	+.9703	2493
317	21:08	5.533	6820	+.7314	9325	347	23:08	6.056	2250	+.9744	2309
318	21:12	5.550	6691	+.7431	-,9004	348	23:12	6.074	2079	+.9781	2126
319	21:16	5,568	- 6561	+.7547	-,8693	349	23:16	6.091	1908	+.9816	1944
J.5	20	0.222									
320	21:20	5,585	6428	+.7660	8391	350	23.20	6.109	1736	+.9848	1763
321	21:24	5.603	- 6293	+.7771	- 8098	351	23:24	6.126	1564	+.9877	1584
322	21:28	5.620	6157	+.7880	7813	352	23:28	6.144	1392	+.9903	1405
323	21:32	5.637	6018	+.7966	-,7536	353	23.32	6.161	1219	+.9925	1228
324	21:36	5.655	5878	+.8090	7265	354	23:36	6.178	1045	+.9945	1051
324	21.50	3.000	.50.0	10000							
325	21:40	5.672	5736	+.8192	7002	355	23.40	6.196	0872	+.9962	0875
326	21:44	5.690	5592	+.8290	6745	356	23:44	6.213	0698	+.9976	0699
327	21:48	5.707	5446	+.8387	6494	357	23:48	6.231	0523	+.9966	0524
328	21:52	5.725	5299	+.8480	6249	358	23:52	6.248	0349	+.9994	0349
329	21:56	5.742	5150	+.8572	6009	359	23:56	6.268	0175	+.9998	0175
					1	360	24:00	6.283	0	+1	0

Table 8 La longitud del vector medio (ρ_t o 7) convertido a una desviación angular (σ o s en grados) o en elparámetro de concentración(κ o $^4\kappa$).

p1 or	005	k o *k	ριατ	0 O S	k o ^k
.00	61.03	00000	.50	57.30	1 15932
.01	60 62	02000	51	56 72	1 19105
.02	80.21	04001	52	56.14	1 22350
.03	79 80	06003	.53	55 55	1 25672
.04	79 39	08006	.54	54.98	1.29077
.05	75 98	.10013	55	54 36	1 32570
.06	78.56	.12022	56	53.75	1 36156
.07	78 14	14034	.57	53 14	1 39842
.08	77.72	.16051	56	52.51	1 43835
.09	77.30	18073	59	51.88	1.47543
.10	76 87	20101	.60	51 25	1.51574
.11	76.44	22134	61	50 60	1.55738
.12	76.01	24175	62	49 95	1.60044
.13	75.58	.26223	63	49 29	1.64506
.14	75.14	.28279	64	48 62	1.89134
.15	74 70	.30344	65	47 94	1 73945
.16	74.26	32419	.66	47 25	1 78953
.17	73.82	34503	67	48.55	1.84177
.18	73.37	36599	68	45 84	1.89637
.19	72.93	38707	69	45 11	1.95357
.20	72.47	40828	70	44.38	2.01363
.21	72 02	42962	71	43.64	2.07885
.22	71.56	45110	.72	42.67	2.14359
23	71.10	47273	73	42.10	2.21425
.24	70 64	.49453	.74	41.32	2.28930
.25	70.17	51649	75	40.52	2 36930
.26	69 71	53863	.76	39 69	2.45490
.27	69 23	56097	77	38.86	2.54686
.28	68.75	58350	.78	38 00	2.64613
.29	68 27	60625	.79	37 13	2.75382
.30	87.79	62922	.80	36.24	2.67129
.31	67.30	65242	81	35.32	3.00020
.32	66 52	67587	82	34.38	3 14262
33	66 32	69958	83	33 41	3.30114
.34	85 83	72356	84	32.41	3.47901
.35	65.33	74763	85	31.38	3.88041
.36	64.52	77241	86	30 32	3.91072
.37	64 31	.79730	87	29.22	4.17703
.38	63 60	82253	88	26 07	4 48878
.39	53.28	84812	.89	28.87	4.65871
.40	62.76	87408	.90	25.62	5.3047
41	62.24	90043	.91	24.31	5.8522
42	61.71	92720	92	22 92	6.5394
43	61.17	95440	93	21.44	7.4257
44	60 64	98207	94	19 85	8.6104
.45	60.09	1.01022	95	18.12	10.2718
46	59 54	1.03889	.96	18.20	12,7861
47	58 99	1 06810	.97	14.04	18 9266
.48	58.43	1.09758	.98	11.48	25 2522
.49	57.87	1.12828	.00	8.10	50.2421
	U		1.00	0.00	
			,.00	0.00	_

TABLA Č EL PARAMETRO DE CONCENTRACIÓN (K O "K) CONVERTIDO EN LA LONGITUD DEL VECTOR MEDIO (p1 o r) y EN DESVIACIÓN ANGULAR (σ O S EN GRADOS).

ko^k	ptor	008	k o ^k	p1 o r	σ 05
٥	.00000	81 03	3.0	80999	35,32
.1	.04994	78 98	3,1	.61711	34.86
2	09950	76 89	3.2	62375	34.02
.3	.14834	74.78	3.3	82993	33 42
	.19810	72.65	3.4	B3670	37.64
5	24250	70 53	3.5	24110	32.30
.6	28726	68.41	3.6	84616	31.78
.7	.33018	66.31	3.7	85091	31,29
.0	.37106 40964	64.26 62.25	3 g 3.9	85537 .85956	30.82 30.37
1.0	44639	60.29	40	.86352	29.93
11	48070	56 39	4,1	.00726	29.52
1.2	.51278	56 56	4.2	87079	29 13
1.3	.54267	54.80	43	87414	28.75
14	.57042	53 11	4.4	.67732	26.36
15	.59613	51.49	4.5	.86033	26.03
1.6	61990	49 95	46	88320	27.69
1.7	.64183	48 49	4.7	86593	27.37
1.8	68204 68065	47.11 45.79	48	86853 .89101	27.06 26.75
1.9	58065	45.79	••		20.75
20	69777	44.56	50	89338	26.46
2.1	71353	43.37	5.1	89565	26.18
2.2	.72603	42.26	5.2	89782	25.90
2.3	74138	41 21	5.3	89990	25 64
2.4	.75367	40.22	5 4	.90190	25.38
2.5	.76500	39.26	5.5	90362	25 13
2.6	.77545	38 40	5.6	90586	24 89
2.7	78511	37 56	5.7	90743 90913	24 65
2.8 2.9	79404 80231	36.77 36.03	5 8 5 9	91078	24.43 24.20
2.9	.80231				
6.0	91236	23.90	9.0	94269	19.40
6.1	.91369	23.78	9,1	94334	19.29
6.2	.91536	23.57	9.2	.94398	19.18
8.3	91678	23.37	9.3	.94480	19 07
6.4	91816	23.16	9.4	.94521	18 97
6.6	.91949	22 99	9.5	.94581	19.86
6.6	.92078	22.81	9.6	.94630	18.76
6.7	92202	22 63	97	,94696	18.66
8.8	92323	22,45	9.5	94752	18.56
6.9	92440	22.20	9.9	,94806	18 47
70	92553	22.11	10	94860	18.37
7.1	92663	21 95	11	95349	17.49
72	92770	21.79	12	.95736	16.73
73	.92874	21 63	19	.98073	16.06
74	.92975	21 48	14	.96360	15.46
7.5	93072	21.33	15	.96607	14.83
7.6	93158	21.18	16	.96623	14,44
7.7	.93280	21.03	17	.97013 97181	14.00
7.8	.93350 .83436	20.89 20.76	19	97181	13, 80
79	.83436	20.76	19	37332	13, 24
80	93524	20.62	20	.97467 .99995	12.90
8.1 8.2	93807 .93689	20.49 20.36	50 100	,99499	6.12 5.74
6.3	93767	20.23	250	90000	3.63
8.4	93/6/	20.23	290 500	96600	3.63 2.56
2.7		40.70			
8.5	93919	19 96	90	1,00000	0.00
8.6	93993	19 66			
8.7	.94064	19.74			
8.0	94134	19.62			
8.9	94202	19.51			

Table D La desviación angular (σ o s en grados) convertida en la longitud del vector medio (ρ 1 o r) y en el parametro de concentración (κ o κ).

σ 08	ρtor	k o ^k	0 O S	plar	ko*k
0	1.00000	∞	40	.75631	2.423
1	.99985		41	.74397	2.321
2	.99939		42	.73133	2.224
3	.99863		43	.71838	2.133
4	.99756		44	.70513	2.046
5	.99619		45	.69157	1.963
6	.99452		46	.67771	1.884
7	.99254		47	.66355	1.808
8	.99025		48	64908	1.735
9	.98766		49	.63431	1.665
10	.98477	35.100	50	.61923	1.597
11	.98157	28.300	51	.60385	1.532
12	.97807	23.300	52	.58816	1.458
13	.97426	20.000	53	.57216	1.400
14	.97015	17.000	54	.55587	1.347
15	.96573	15.000	55	.53927	1.288
16	.96101	13.100	56	.52236	1.231
17	.95598	11.660	57	.50515	1.176
18	.95065	10.410	58	.48763	1.121
19	.94502	9.380	59	.46982	1.068
20	.93908	8.490	60	.45169	1.015
21	.93283	7.730	61	.43326	.9634
22	.92628	7.070	62	.41453	.9125
23	.91943	6.500	63	.39549	.8623
24	.91227	6.000	64	.37614	.8128
25	.90481	5.555	65	.35650	.7638
26	.89704	5.165	66	.33654	.7152
27	.68897	4.818	67	.31629	.6671
28	. <i>8</i> 8059	4.511	68	.29572	.6194
29	.87191	4.233	69	.27486	.5719
30	.86292	3.985	70	.25368	.5246
31	.85363	3.761	71	.23221	.4775
32	.84404	3.557	72	.21043	.4305
33	.83414	3.372	73	.18835	.3835
34	.82393	3.203	74	.16596	.3366
35	.81342	3.048	75	.14326	.2895
36	.80261	2.904	76	.12026	.2422
37	.70149	2.771	77	.09696	.1948
38	.78007	2.647	78	.07335	.1471
39	.76834	2.531	79	.04944	.0990
			80	.02522	.0505
			81	.00070	,0015

TABLA DI PUNTO DE ESTIMACIÓN DE L.

	1	, 04101	~		•													
				•													0.00	0.05
n	r= 0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95
5	0	0	0	0	0	0	0	0.15	0.67	0.94	1.18	1.41	1.68	2.00	2.44	3.10	4.39	8.33
6	ō	ō	0	0	0	0	0	0.56	0.83	1.04	1.25	1.48	1.74	2.07	2.51	3.20	4.54	8.66
7	0	0	0	0	0	0	0.38	0.69	0.90	1.10	1.30	1.52	1.78	2.11	2.56	3.27	4.65	8.89
8	ō	Ŏ	0	0	0	0	0.53	0.76	0.95	1.13	1.33	1.55	1.81	2.15	2.60	3.32	4.73	9.06
9	ō	ō	ō	ō	Ō	0.31	0.61	0.80	0.98	1.16	1.35	1.57	1.84	2.17	2.63	3.36	4.79	9.19
40			0	0	0	0.42	0.65	0.83	1.00	1.18	1.37	1.59	1.86	2.19	2.66	3.39	4.84	9.30
10	0	0	0	0	0	0.48	0.69	0.85	1.02	1.19	1.38	1.61	1.87	2.21	2.68	3.42	4.89	9.39
11	0	0	0	0	0.23	0.53	0.09	0.87	1.02	1.20	1.40	1.62	1.88	2.22	2.69	3.44	4.92	9.46
12 13	0	0	ŏ	0	0.23	0.56	0.73	0.88	1.03	1.21	1.41	1.63	1.89	2.23	2.71	3.46	4.95	9.53
14	0	0	0	0	0.37	0.58		0.89	1.05	1.22	1.41	1.63	1.90	2.24	2.72	3.47	4.98	9.58
14	U	U	v	٠	0.51	0.50	0.74	0.00	1.00									
15	0	0	0	0	0.41	0.60	0.75	0.90	1.06	1.23	1.42	1.64	1.91	2.25	2.73	3.49	5.00	9.63
20	0	0	0	0.30	0.50	0.65	0.79	0.93	1.09	1.26	1.45	1.67	1.94	2.28	2.76	3.53	5.07	9.79
25	0	0	0	0.38	0.54	0.67	0.81	0.95	1.10	1.27	1.46	1.68	1.95	2.30	2.79	3.56	5.12	9.88
30	0	0	0.22	0.42	0.56	0.69	0.82	0.96	1.11	1.28	1.47	1.69	1.96	2.31	2.80	3.58	5.15	9.95
35	0	0	0.27	0.44	0.57	0.70	0.83	0.97	1.12	1.29	1.48	1.70	1.97	2.32	2.81	3.60	5.17	9.99
40	0	0	0.31	0.45	0.58	0.70	0.83	0.97	1.12	1.29	1,48	1.70	1.98	2.33	2.82	3.61	5.19	10.03
45	Ö	0.04	0.33	0.46	0.58	0.71	0.84	0.98	1.13	1.30	1.49	1.71	1.98	2.33	2.82	3.62	5.20	10.06
50	Ö	0.14	0.34	0.47	0.59	0.71	0.84	0.98	1.13	1.30	1.49	1.71	1.98	2.34	2.83	3.62	5.21	10.08
100	-	0.26	0.38	0.49	0.61	0.73	0.86	1.00	1.15	1.31	1.50	1.73	2.00	2.35	2.85	3.65	5.26	10.18
150		0.28	0.39	0.50	0.62	0.74	0.86	1.00	1.15	1.32	1.51	1.73	2.00	2.36	2.86	3.66	5.27	10.21
200	0.19	0.29	0.40	0.51	0.62	0.74	0.87	1.00	1.15	1.32	1.51	1.73	2.01	2.36	2.86	3.67	5.28	10.22
80	0.20		0.41	0.52	0.63	0.75	0.87	1.01	1.16	1 33	1 52	1.74	2.01	2.37	2.87	3.68	5.31	10.27
				-														

TABLA E LA FUNCIÓN DISTRIBUCIÓN DE LA DISTRIBUCIÓN VON MISES. (K ES EL PARÁMETRO DE CONCENTRACIÓN. EL ANGULO MEDIO 8;=180°)

									·	
	K=0	K=.2	K=.4	K=.6	K=.8	K=1.0	K=1.2	K=1.4	K≃1.6	K=1.8
0	.00000	.00000	.00000	.00000	.00000	.00000	.00000	00000	.00000	.0000
5	.01389	.01126	.00895	.00699	.00536	.00404	.00301	.00221	.00161	.0011
10	.02778	.02254	.01793	01400	.01074	.00811	.00604	.00444	.00323	.0023
15	.04167	.03385	.02697	.02108	.01620	.01225	.00913	.00672	.00490	.0035
20	.05556	.04522	.03608	.02826	.02175	.01647	.01230	.00907	.00662	.0047
25	.06944	.05665	.04531	03557	.02744	.02083	.01559	.01153	.00843	.0061
30	.08333	.06816	.05467	.04304	.03329	.02535	.01903	.01411	.01035	.0075
35	.09722	.07978	.06420	.05071	.03936	03007	.02266	.01686	.01241	.0090
40	.11111	.09152	.07392	.05861	.04567	03504	.02650	.01981	.01465	.0107
45	.12500	.10338	.08386	.06679	.05228	.04029	.03062	.02299	.01709	.0125
50	.13889	.11540	.09405	.07527	.05921	.04587	.03505	.02647	.01978	.0146
55	.15278	.12757	.10452	.08409	.06653	.05184	.03985	.03028	.02278	.0169
60	.16667	.13992	.11529	.09331	.07428	.05825	.04509	.03450	.02614	.0196
85	.18056	.15246	.12639	.10295	.08251	.06517	.05082	.03919	.02994	.022
70	.19444	.16520	.13784	.11306	.09128	.07265	.05711	.04442	.03425	.026
5	.20833	.17815	.14968	12368	.10064	.08078	.06407	.05030	.03915	.030
BO	.22222	.19132	.16192	.13485	.11066	.08962	.07176	.05690	.04477	.035
85	.23611	.20471	.17460	14662	.12139	.09925	.08028	.06436	.05122	.040
90	.25000	.21834	.18772	.15901	.13289	.10975	.08974	.07277	.05863	.046
95	.26389	.23222	.20130	.17206	.14522	.12122	.10025	.08228	.06714	.054
100	27778	.24633	.21537	.18582	.15844	.13372	.11191	.09302	.07693	.063
105	.29167	.26069	22992	.20030	.17260	.14734	12483	.10514	.08816	.073
110	.30556	.27529	.24498	.21554	.18774	16217	.13913	.11876	.10101	.085
115	.31944	.29014	.26054	.23154	.20392	.17825	.15491	.13405	.11566	.0996
120	.33333	.30522	.27659	.24832	.22114	.19566	17226	.15112	.13228	.1156
125	.34722	.32053	.29314	.26587	.23944	.21444	.19125	.17009	15103	.1340
130	.36111	.33606	.31017	.28420	.25882	.23460	.21194	.19106	.17206	.1549
135	.37500	.35180	.32766	.30327	.27926	.25616	.23435	.21408	.19545	.178
140	.38889	.36774	.34559	.32306	.30073	.27909	.25849	.23918	.22127	.2041
145	.40278	.38385	.36392	.34353	.32319	.30334	.28431	.26633	.24951	.233
150	.41667	.40013	.38263	.36463	.34656	.32883	.31172	.29544	.28010	.265
155	.43056	.41655	.40166	.38628	.37077	.35546	.34060	.32638	31290	.3002
160	,44444	.43309	.42098	.40841	.39570	.38309	.37079	.35897	.34769	.3370
165	45833	.44973	.44053	.43095	.42122	.41155	.40208	.39294	.38418	.3758
170	.47222	.46644	.46025	45379	44722	44066	.43423	.42800	42201	4163
175	.48611	48321	48009	.47684	.47353	.47022	46696	.46381	.46077	.4578

	K=0	K=.2	K=.4	K=.6	K=.8	K=1.0	K≈1.2	K=1.4	K=1.6	K=1.8
180	.50000	.50000	.50000	.50000	.50000	.50000	.50000	.50000	.50000	.50000
185	.51389	.51679	.51991	.52316	.52647	.52978	.53304	.53619	.53923	.54214
190	.52778	.53356	.53975	.54621	.55278	.55934	.56577	.57200	.57799	.58370
195	.54167	.55027	.55947	.56905	.57878	.58845	.59792	.60706	.61582	.62415
200	.55566	.56691	.57902	.59159	.60430	.61691	.62921	.64103	.65231	.66299
205	.56944	.58345	.59834	61372	.62923	.64454	.65940	.67362	68710	.69980
210	.58333	.59987	.61737	.63537	.65344	.67117	.68828	.70456	.71990	.73425
215	.59722	.61615	.63608	.65647	.67681	.69666	.71569	.73367	.75049	.76610
220	.61111	.63226	.65441	.67694	.69927	.72091	.74151	76082	.77873	.79521
225	.62500	.64820	.67234	.69673	.72074	.74384	76565	.78592	.80455	.82153
230	63889	.66394	.68983	.71580	.74118	.76540	.78806	.80894	.82794	.84509
235	.65278	.67947	.70686	.73413	.76056	.78556	.80875	.82991	.84897	86598
240	.66657	.69478	.72341	.75168	.77886	.80434	82774	.84888	.86772	.88435
245	.68056	.70986	.73946	.76846	.79608	.82175	.84509	86595	.88434	.90038
250	.69444	.72471	.75502	.78446	.81226	.83783	.86087	.88124	.89899	.91429
255	70833	73931	.77008	.79970	.82740	.85266	.87517	.89486	.91184	.92630
260	72222	.75367	.78463	.81418	.84156	.86628	.88809	.90698	.92307	.93661
265	73611	76778	.79870	.82794	.85478	.87878	.89975	.91772	.93286	.94545
203	./3011	.10110	.79070	.02134	.00470	.0,010	.00313		.00200	
270	.75000	.78166	.61228	84099	.86711	.89025	.91026	.92723	.94137	.95301
275	.76389	.79529	.82540	.85338	.87861	.90075	.91972	.93564	.94878	.95947
280	.77778	.80868	.83808	.86515	.88934	.91038	.92824	.94310	.95523	.96499
285	.79167	.82185	.85032	.87632	.89936	.91922	.93593	.94970	.96085	.96973
290	.80556	.83480	.86216	88694	.90872	.92735	.94289	.95558	.96575	.97380
295	.81944	.84754	.87361	.89705	.91749	.93483	94918	.96081	.97006	.97730
300	.83333	.86008	.88471	.90669	.92572	.94175	.95491	.96550	.97386	.98035
305	.84722	.87243	.89548	.91591	.93347	.94816	.96015	.96972	.97722	.98301
310	.88111	.88460	.90595	.92473	.94079	.95413	.96495	.97353	.98022	.98534
315	.87550	.89662	.91614	.93321	.94772	.95971	.96938	.57701	.98291	.98741
			.92608	.94139	.95433	96496	.97350	.98019	.98535	.98927
320	.88669	.90848		.94929	.96064	.96993	.97734	.98314	.98759	.99094
325	.90278	.92022	.93580	.94929	.90004	.90993	.9/134	.50314	.80139	.55000
330	.91667	.93184	.94533	.95696	.96671	.97465	.98097	.98589	.98965	.99247
335	.93056	.94335	.95469	.96443	.97256	.97917	.98441	.98847	.99157	.99389
340	.94444	.95478	.96392	.97174	.97825	.98353	.98770	.99993	.99338	.99521
345	.95833	.96615	.97303	.97892	.98380	.98775	.99087	.99328	.99510	.99647
350	.97222	.97746	.98207	.98600	.98926	.99189	.99396	.99556	.99677	.99767
355	.98511	.98874	.99105	.99301	.99464	.99596	.99699	.99779	.99839	.99884
360	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000

		K = 2.0	K = 2.2	K = 2.4	K = 2.8	K = 2.8	K = 3.0	K = 3.2	K = 3.4	K = 3.6	K = 3.8
	0	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000
	5	.00083	.00059	.00041	.00029	.00020	.00014	.00010	.00007	.00005	.00003
	10	.00167	.0011B	.00064	.00059	.00041	.00029	.00020	.00014	.00010	.00007
	15	.00253	.00180	.00127	.00090	.00063	.00044	.00031	.00021	.00015	.00010
	20	.00344	.00245	.00174	.00123	.00086	.00060	.00042	.00029	.00020	.00014
	25	.00440	.00314	.00223	.00158	.00111	.00078	.00055	.00038	.00027	.00019
	30	.00543	.00389	.00278	.00197	.00139	.00098	.00069	.00048	.00034	.00024
	35	.00656	.00472	.00338	.00241	.00171	.00121	.00085	.00060	.00042	.00029
	40	.00781	.00564	.00406	.00290	.00207	.00147	.00104	.00074	.00052	.00037
	45	.00920	.00669	.00483	.00348	.00249	.00178	.00127	.00090	.00064	.00046
	50	.01078	.00788	.00574	.00416	00300	.00216	.00155	.00111	.00079	.00057
	55	.01259	.00927	.00679	.00496	.00361	.00262	.00190	.00137	.00099	.00071
	60	.01467	.01089	.00805	.00593	.00435	.00319	.00233	.00170	.00124	.00090
	65	.01709	.01281	.00956	.00711	.00527	.00390	.00288	.00213	.00157	.00116
	70	.01993	.01509	,01138	.00856	.00642	.00481	.00360	.00269	.00201	.00150
	75	02328	.01782	.01360	.01035	.00786	.00596	.00452	.00343	.00260	.00197
	80	.02723	.02111	.01631	.01258	.00969	.00746	.00573	.00441	.00339	.00261
	85	.03193	.02508	.01965	.01537	.01201	.00938	.00733	.00573	.00448	.00350
	90	.03752	.02988	.02376	.01887	.01498	.01189	.00944	.00750	.00596	.0475
	95	.04416	.03571	02882	.02325	.01876	.01514	.01223	.00988	.00800	.00648
	100	.05210	.04276	.03506	.02875	.02359	.01936	.01591	.01308	.01077	.00888
	105	.06150	.05127	.04273	.03563	.02972	.02482	.02075	.01737	.01456	.01222
	110	.07263	.06152	.05212	.04419	.03749	.03185	.02710	.02308	.01968	.01681
	115	.08574	.07379	.06355	.05477	.04727	.04084	.03534	.03062	.02657	.02308
	120	.10109	.08840	.07736	.06777	.05946	.05223	.04595	.04048	.03571	.03154
	125	.11895	.10564	.09391	.08360	.07452	.06652	.05946	.05323	.04771	.04282
	130	.13954	.12581	.11356	.10264	.09290	.08421	.07644	.06947	06322	.05760
	135	.16308	.14917	.13662	.12530	.11507	.10583	.09746	.08986	.08294	.07665
	140	.18970	.17592	.16335	.15188	.14141	.13183	.12305	.11499	.10758	.10071
	145	.21948	.20618	.19393	.18284	.17222	16259	.15367	.14538	.13767	.13048
	150	.25239	.23996	.22841	.21766	.20766	.19832	.18959	.18140	.17371	.16647
	155	.28829	.27713	.26668	.25688	.24769	.23903	.23088	.22317	.21588	.20893
	160	.32694	.31744	.30848	.30004	.29206	.28450	27732	.27050	26399	.25776
×	165	.36795	.36047	.35339	.34667	.34029	.33421	.32841	.32287	.31755	.31244
Ž	170	.41087	.40570	40079	.39612	.39166	.38740	.38332	.37941	.37563	.37200
Č	175	45500	45246	44994	44755	44526	44306	44095	43893	43697	.43508

	K = 2.0	κ = 2.2	K = 2.4	K = 2.6	K = 2.8	K = 3.0	K = 3.2	K = 3.4	K = 3.6	K = 3.8
180	.50000	.50000	.50000	.50000	.50000	.50000	.50000	.50000	.50000	.50000
185	.54491	.54754	.55006	.55245	.55474	.55694	.55905	.56107	.56303	.56492
190	.58913	.59430	.59921	.60388	.60834	.61260	.61668	.62059	.62437	.62800
195	.63205	63953	.64661	.65333	.65971	.66579	.67159	.67713	.68245	.68756
200	.67306	.68256	.69152	.69996	.70794	.71550	.72268	.72950	.73601	.74224
205	.71171	.72287	.73332	.74312	.75231	.76097	.76912	.77683	.78414	.79107
210	.74781	.76004	.77169	.78234	.79234	.80168	.81041	.81860	.62629	.83353
215	.78052	.79382	.80607	.81736	.82778	.83741	.84633	.85462	.86233	.86952
220	.81030	.82408	.83665	.84812	.85859	.86817	.87695	.88501	.89244	.69929
225	.83692	.85083	.86338	.87470	.88493	.89417	.90254	.91014	.91706	.92335
230	.86048	.87419	.88644	.89738	.90710	.91579	.92356	.93053	.93678	.94240
235	.88105	.89436	.90609	.91640	.92548	.93348	.94054	.94877	95229	.95718
240	.89891	.91160	.92264	.93223	.94054	.94777	.95405	.95952	.96429	.96846
245	.91426	.92621	.93645	.94523	.95273	.95916	.96466	.96938	.97343	.97692
250	.92737	.93848	.94788	.95581	.96251	.96815	97290	.97692	.98032	.98319
255	.93850	.94873	.95727	.96437	.97028	.97518	.97925	.98263	.98544	.98778
260	.94790	.95724	.96494	.97125	.97641	.98064	.98409	.98692	.98923	.99112
265	.95582	.96429	.97118	.97675	98124	.98486	.98777	.99012	.99200	.99352
270	.96248	.97012	.97624	.98113	98502	.98811	.99056	.99250	.99404	99525
275	.96807	.97492	.98035	.98463	.98799	.99062	.99267	.99427	99552	.99650
280	.97277	.97889	96369	.98742	.99031	.99254	.99427	.99559	.99661	.99739
285	.97672	.98218	.98640	.98965	.99214	.99404	.99548	.99657	.99740	.99803
290	.98007	.98491	98862	99144	.99358	.99519	.99640	.99731	99799	.99850
295	.98291	.98719	.99044	99289	99473	.99610	.99712	.99787	.99843	.99884
300	.98533	.98911	.99195	.99407	.99565	.99681	.99767	.99830	.99876	.93910
305	.98741	.99073	.99321	99504	.99639	.99738	.99810	.99863	.99901	.99929
310	.98922	,99212	.99426	.99584	.99700	.99784	.99845	.99889	.99921	.999943
315	.99080	.99331	.99517	.99652	.99751	.99622	.99873	.99910	.99936	.99954
320	.99219	.99436	.99594	.99710	.99793	.99853	.99896	.99926	.99948	.99963
325	.99344	.99528	.99662	.99759	.99829	.99879	.99915	.99940	.99958	.99971
330	.99457	.99611	.99722	.99803	.99861	.99902	.99931	.99952	99966	.99976
335	.99560	99686	.99777	.99842	.99889	.99922	.99945	.99962	.99973	.99981
340	.99656	.99755	.99826	.99877	.99914	.99940	.99958	.99971	.99980	.99986
345	.99747	.99820	.99873	.99910	.99937	.99956	.99969	.99979	.99985	.99990
350	.99833	.99882	.99916	.99941	.99959	.99971	.99980	.99986	.990	.99993
355	.99917	.99941	.99959	.99971	.99980	.99986	.99990	.99923	.99995	.99997
260	1,00000	1 00000	1.00000	1.00000	1,00000	1.00000	1.00000	1.00000	1.00000	1.00000

XXXII

	K = 4.0	K = 4.2	K = 4.4	K = 4.6	K = 4.8	K = 5.0	K = 5.2	K = 5.4	K = 5.6	K = 5.8
180	.50000	.50000	.50000	.50000	.50000	.50000	.50000	.50000	.50000	.50000
185	.56676	.56854	.57027	.57195	.57359	.57519	.57676	.57829	.57979	.58127
190	.63162	.63492	.63823	.64143	.64455	.64759	.65058	.65345	.65628	.65904
195	69248	.69723	.70182	.70626	.71056	.71473	.71878	.72272	.72656	.73029
200	.74820	.75392	.75941	.76470	.76980	.77472	.77947	.78407	.78852	79284
205	.79768	.80394	.80994	.81567	.82116	.82642	.83147	.83632	.84098	.84547
210	.84036	.84681	.85292	.85871	.86422	.86945	.87442	.87917	.68369	.88801
215	.87623	.88252	.88841	.69395	.89916	.90406	.90868	.91305	.91717	.92107
220	.90562	.91148	.91691	.92196	.92666	.93103	.93512	.93693	.94249	.94582
225	.92911	.93437	.93919	.94362	.94768	.95143	.95488	.95806	.96100	.96372
230	.94747	95205	.95618	.95993	.96333	.96642	.96923	.97179	.97412	.97625
235	.96153	.96540	.96886	.97194	.97470	.97716	.97938	.98137	.98315	.98476
240	.97211	.97530	.97811	.98059	.98276	.98469	.98638	.98788	.98921	.99039
245	.97992	.98252	.98476	.98670	.98838	.98984	.99111	99222	.99318	.99403
250	.98563	.98769	.98945	.99095	.99223	.99332	.99425	.99505	.99574	.99633
255	.98973	.99136	.99273	.99387	.99483	.99563	.99630	.99687	.99735	.99776
260	.99267	.99394	.99499	.99585	99656	.99714	.99763	.99803	.99836	.99863
265	.99475	.99574	.99654	.99718	.99771	.99813	.99848	.99876	.99898	.99917
270	.99622	.99699	99760	.99808	.99846	.99877	.99902	.99921	.99937	.99949
275	.99726	.99785	.99832	.99868	.99896	.99918	.99936	.99949	.99960	.99969
280	.99799	.99645	.99881	.99908	.99929	.99945	.99958	.99967	.99975	.99980
265	.99651	.99687	.99914	.99935	.99951	.99963	.99972	.99978	.99984	.99987
290	.99888	.99916	.99938	.99953	.99965	.99974	.99951	99985	.99989	.99992
295	.99915	.99937	.99954	.99966	.99975	.99982	.99986	.99990	.99993	.9995
300	.99934	.99952	.99965	.99975	.99982	.99987	.99990	.99993	.99995	.99996
305	.99949	.99963	.99973	.99981	.99986	.99990	.99993	.99995	.99996	.99997
310	.99960	.99971	.99979	.99985	.99990	.99993	.99995	.99996	.99997	.99998
315	.99968	.99977	.99984	.99989	.99992	.99994	.99996	.99997	.99998	.99999
320	.99974	.99982	.99987	.99991	.99994	.99996	.99997	.99998	.99999	.99999
325	.99979	.99986	.99990	.99993	.99995	.99997	.99998	.99998	.99999	.99999
330	.99984	.99989	.99992	.99995	.99996	.99997	.99998	.99999	.99999	.99999
335	.99987	.99991	.99994	.99996	.99997	.99998	.99999	.99999	.99999	1.00000
340	.99990	.99993	.99995	.99997	.99998	.99998	.99999	.99999	1.00000	1.00000
345	.99993	.99995	.99997	.99998	.99998	.99999	.99999	.99999	1.00000	1.00000
350	.99995	.99997	.99998	.99999	.99999	.99999	1.00000	1.00000	1.00000	1.00000
355	.99998	.99998	.99999	.99999	.99999	1.00000	1.00000	1.00000	1.00000	1.00000
360	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000

	K = 6.0	K = 6.2	K = 6.4	K = 6.6	K = 6.8	K = 7.0	K = 7.2	K = 7.4	K = 7.6	K = 7.8
30	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000
35	.00001	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000
40	.00001	.00001	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000
45	.00001	.00001	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000
50	.00001	.00001	.00001	.00000	.00000	.00000	.00000	.00000	.00000	.00000
55	.00002	.00001	.00001	.00001	.00000	.00000	.00000	.00000	.00000	.00000
60	.00003	.00002	.00001	.00001	.00001	.00001	.00000	.00000	.00000	.00000
65	.00004	.00003	.00002	.00002	.00001	.00001	.00001	.00000	.00000	.00000
70	.00006	.00005	.00003	.00003	,00002	.00001	.00001	.00001	,00001	.00000
75	.00010	.00007	.00006	.00004	.00003	.00002	.00002	.00001	.00001	.00001
80	.00015	.00012	.00009	.00007	.00006	.00004	.00003	.00003	.00002	.00002
85	.00025	.00020	.00015	.00012	.00010	.00008	.00006	.00005	.00004	00003
90	.00041	.00033	.00026	.00021	.00017	.00014	.00011	.00009	.00007	.00006
95	.00068	.00056	.00048	.00037	.00031	.00025	.00021	.00017	.00014	.00011
100	.00114	.00095	.00079	.00066	.00055	.00048	.00038	.00032	.00027	.00023
105	.00190	.00161	.00137	.00116	.00099	.00084	.00071	.00081	.00052	.00044
110	.00317	.00274	.00238	.00204	.00176	.00153	.00132	.00114	.00099	.00086
115	.00524	.00460	.00404	.00355	.00312	.00274	.00241	.00212	.00187	.00164
120	.00857	.00764	.00681	.00608	.00543	.00485	.00434	.00388	.00346	.00310
125	.01379	.01249	.01131	.01025	.00929	.00843	.00765	.00694	.00630	.00572
130	.02181	.02003	.01841	.01693	.01556	.01432	.01318	.01213	.01117	.01029
135	.03377	.03144	.02928	.02728	.02543	.02371	.02211	.02063	.01925	.01796
140	.05106	.04814	.0450	.04283	.04041	.03815	.03602	.03402	.03213	.03036
145	.07525	.07175	.05844	.06530	.06233	.05950	.05681	.05426	.05184	.04953
150	.10787	.10392	.10015	.09654	.09308	.08976	.08658	.08353	.08061	.07780
155	.15020	.14604	.14202	.13814	.13440	.13078	.12728	.12390	.12063	.11746
150	.20298	.19893	.19499	.19116	.18744	.18382	.18029	.17688	.17352	.17027
165	.26806	26251	.25904	.25566	.25235	24911	24594	.24285	.23981	23684
170	.33826	.33561	.33302	.33047	.32798	.32553	.32312	.32076	.31844	.31618
175	.41729	.41588	.41449	.41312	.41178	.41045	.40915	.40787	.40661	.40537

	K = 6.0	K = 6.2	K = 6.4	K = 6.6	K = 6.8	K = 7.0	K = 7.2	K = 7.4	K = 7.6	K = 7.8
185	.58271	.58412	.58551	.58688	.58822	.58955	.59085	.59213	.59339	.59463
190	.66174	.66439	.66698	.66953	.67202	.67447	.67688	.67924	.68156	.68384
195	.73394	.73749	.74096	.74434	.74765	.75089	.75406	.75715	.76019	.76316
200	.79702	.60107	.80501	.80884	.81256	.81618	.81971	.82314	.82648	.82973
205	.84980	.85396	.85798	.86186	.86560	86922	.87272	.87610	.87937	.88254
210	.89213	.89608	.89985	.90346	.90692	.91024	.91342	.91647	.91939	.92220
215	.92475	.92825	.93156	.93470	.93767	.94050	.94319	.94574	.94816	.95047
220	.94894	.95186	.95460	.95717	.95959	.96185	.96398	96598	.96787	.96964
225	.96623	.96856	.97072	.97272	.97457	.97629	.97789	.97937	.98075	.98204
230	.97819	.97997	.98159	98307	.98444	.98568	.98682	.98787	98883	.98971
235	.98621	.98751	.98869	98975	.99071	.99157	.99235	.99306	.99370	.99428
240	.99143	.99236	99319	.99392	.99457	.99515	.99566	.99612	.99654	.99690
245	.99476	.99540	.99596	99645	.99688	.99726	.99759	.99788	.99813	.99836
250	.99683	.99726	.99764	99796	.99824	.99847	.99868	.99886	.99901	.99914
255	.99610	.99839	.99863	.99884	.99901	.99916	.99929	.99939	.99948	.99956
260	. 9988 6	.99905	.99921	99934	.99945	.99954	.99962	.99968	.99973	.99977
265	.99932	.99944	.99954	.99963	.99969	.99975	.99979	.99983	99986	.99989
270	.99959	.99967	.99974	.99979	.99983	99986	.99989	.99991	.99993	.99994
275	.99975	.99980	.99985	99988	.99990	.99992	99994	.99995	99996	.99997
280	.99985	.99988	.99991	.99993	.99994	.99996	.99997	.99997	.99998	.99998
285	.99990	.99993	.99994	99996	.99997	.99998	99998	.99999	.99999	.99999
290	.99994	.99995	.99997	99997	.99998	.99999	.99999	99999	.99999	1.00000
295	.99996	.99997	.99998	.99998	.99999	.99999	.99999	1.00000	1.00000	1.00000
300	.99997	.99998	.99999	.99999	.99999	.99999	1.00000	1.00000	1 00000	1.00000
305	.99998	.99999	.99999	.99999	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
310	.99999	.99999	.99999	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
315	.99999	.99999	1.00000	1 00000	1.00000	1.00000	1.00000	1.00000	1.00000	1 00000
320	.99909	.99999	1.00000	1.00000	1.00000	1.00000	1.00000	1 00000	1 00000	1.00000
325	.99999	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1 00000	1.00000
330	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1 00000	1 00000

	K = 8.0	K = 8.2	K = 8.4	K = 8.6	K = 8.8	K = 9.0	K = 9.2	K = 9.4	K = 9.6	K = 9.8	K = 10.0
70	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000
75	.00001	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000
80	.00001	.00001	.00001	.00001	.00000	.00000	.00000	.00000	.00000	.00000	.00000
85	.00002	.00002	.00002	.00001	.00001	.00001	.00001	.00000	.00000	.00000	.00000
90	.00005	.00004	.00003	.00003	.00002	.00002	.00001	.00001	.00001	.00001	.00001
95	.00009	80000.	.00006	.00005	.00004	.00004	.00003	.00002	.00002	.00002	.00001
100	.00019	.00016	.00013	.00011	.00009	.00008	.00007	.00005	.00005	.00004	.00003
105	.00038	.00032	.00027	.00023	.00020	.00017	.00014	.00012	.00011	.00009	.00008
110	.00074	.00064	.00056	.00048	.00042	.00036	.00032	.00027	.00024	.00021	.00018
115	.00145	.00127	.00112	.00099	.00087	.00077	.00068	.00060	.00053	.00047	.00041
120	.00277	.00248	.00222	.00199	.00178	.00160	.00143	.00128	.00115	.00103	.00092
125	.00519	.00472	.00429	.00390	.00354	.00322	.00293	.00266	.00242	.00221	.00201
130	.00948	.00873	.00805	.00742	.00684	.00631	.00582	.00537	.00495	.00457	.00422
135	.01677	.01566	.01462	.01366	.01276	.01193	.01115	.01042	.00974	.00911	.00852
140	.02869	.02712	.02564	.02425	.02293	.02169	.02052	.01942	.01838	.01740	.01547
145	.04733	.04524	.04325	.04136	.03955	.03783	.03619	.03463	.03314	.03171	.03036
150	.07510	.07251	.07001	.06762	.06531	.06310	.06096	.05891	.05693	.05503	.05319
155	.11440	.11143	.10855	.10576	.10305	.10043	.09789	.09542	.09302	.09069	.08843
160	.16710	.16400	.16099	.15801	.15517	.15236	.14962	.14694	.14433	.14177	.13927
165	.23393	.23107	.22827	.22552	.22283	.22019	.21759	.21504	.21253	.21007	.20765
170	.31391	.31170	.30952	.30738	.30527	.30319	.30115	.29913	.29714	.29517	.29323
175	.40414	.40293	.40174	.40056	.39940	.39825	.39712	.39600	.39489	.39380	.39271

	K = 6.0	K = 8.2	K = 8.4	K = 8.6	K = 8.8	K = 9.0	K = 9.2	K = 9.4	K = 9.8	K = 9.8	K = 10.0
180	.50000	.50000	.50000	.50000	.50000	.50000	.50000	.50000	.50000	.50000	.50000
185	.59586	.59707	.59626	.59944	.60060	.60175	.60288	.60400	.60511	.60620	.60729
190	.68809	.68830	.89048	.69262	.69473	.69681	.69885	.70087	.70287	.70483	.70677
195	.76607	.78893	.77173	.77448	.77717	.77981	.78241	.78496	.78747	.78993	.79235
200	.63290	.83600	.83901	.84196	.84483	.84764	.85038	.85306	.85567	.85823	.86073
205	.88560	.88857	.89145	.89424	.89695	.89957	.90211	.90458	.90698	.90931	.91157
210	.92490	.92749	.92999	.93238	.93469	.93690	.93904	.94109	.94307	94497	.94681
215	.95267	.95476	.95675	.95864	.96045	.96217	.96381	.96537	.96686	.96829	.96954
225	.96323	.98434	.98538	.98634	.98724	.98807	.98885	.98958	.99026	99089	.99148
230	.99052	.99127	.99195	.99258	.99316	.99369	.99418	.99463	.99505	.99543	.99578
235	.99481	.99528	.99571	.99610	.99646	.99678	.99707	.99734	.99758	.99779	.99799
240	99723	.99752	.99778	.99801	.99822	.99840	.99857	.99872	.99885	.99897	.99908
245	.99855	.99873	.99888	.99901	.99913	.99923	.99932	.99940	.99947	.99953	99959
250	.99926	.99936	.99944	.99952	.99958	.99964	.99968	.99973	.99976	.99979	.99982
255	.99962	.99968	.99973	.99977	.99980	.99983	.99986	.99988	.99989	.99991	.99992
260	.99981	.99984	.99987	.99989	.99991	.99992	.99993	.99995	.99995	.99996	.99997
265	.99991	.99992	.99994	.99995	.99996	.99996	.99997	.99998	.99998	.99998	.99999
270	.99995	.99996	.99997	.99997	.99998	.99998	.99999	.99999	.99999	.99999	.99999
275	.99998	.99998	.99998	.99999	99999	.99999	.99999	1.00000	1.00000	1.00000	1.00000
280	.99999	.99999	.99999	.99999	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
285	.99999	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
290	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000

ABLA F	FUNCKINES BESSEL			
	J ₀ (z)	J, (z)	J ₂ (2)	J ₃ (z)
0.0	1.00000	0.00000	0.0000	0.00000
0.1	0.99750	0.04994	0.00125	0.00002
0.2	0.99002	0.09950	0.00498	0.00016
0.3	0.97763	0.14832	0.01117	0.00056
0.4	0.96040	0.19603	0.01973	0.00132
0.5	0.93847	0.24227	0.03060	0.00256
0.6	0.91200	0.28670	0.04367	0.00440
0.7	0.88120	0.32900	0.05879	0.00693
0.8	0.84629	0.36884	0.07582	0.01025
0.9	0.80752	0.40595	0.09459	0.01443
1.0	0.76520	0.44005	0.11490	0.01956
1.5	0.51183	0.55794	0.23209	0.06096
2.0	0.22389	0.57672	0.35283	0.12894
2.5	-0.0483B	0.49709	0.44606	0.21660
30	-0.26005	0.33906	0.48609	0.30906
3.5	-0.38013	0.13738	0.45863	0.38677
4.0	-0.39715	-0.06604	0.36413	0.4301
4.5	-0.32054	-0.23106	0.21785	0.42470
5.0	-0.17760	-0.32758	0.04657	0.36483
	i ₀ (z)	1, (z)	1 ₂ (z)	l ,(z)
0.0	1.00000	0.0000	0.00000	0.00000
0.1	1.00250	0.05006	0.00125	0.00002
0.2	1.01003	0.10050	0.00502	0.00017
0.3	1.02263	0.15169	0.01133	0.00057
0.4	1.04040	0.20403	0.02027	0.0013
0.5	1.06348	0.25789	0.03191	0.00264
0.6	1.09204	0.31370	0.04637	0.0046
0.7	1.12630	0.37188	0.06379	0.0073
0.8	1.16652	0.43287	0.08436	0.01110
0.9	1.21299	0.49713	0.10826	0.0159
1.0	1.26607	0.56516	0.13575	0.0221
1.5	1.64672	0.98167	0.33783	0.0807
2.0	2.27959	1.59064	0.68895	0.2127
2.5	3.28984	2.51672	1.27647	0.4743
3.0	4.88079	3.95337	2.24521	0.9597
3 5	7.37820	6.20584	3.83201	1.8264
4.0	11.30192	9.75946	6.42219	3.3372
4.5	17.48117	15.38922	10.84152	5.93001
5.0	27.23987	24.33564	17.50561	10.33115

TABLA G. RLOKOS DE LA FUNCIÓN DE DENSIDAD PARA EL TRAZO AEQUARELA. DE LA DISTRIBUCIÓN CIRCULAR NORMA.

TABLA H DIFERENCIAS DE PROBABILIDAD DE LA DISTRIBUCIÓN CIRCULAR HORMAL PARA 12 AREAS, DE 30°.

к	MEDIA	± 30°	± 60°	1 90°	± 120°	± 150°	± 180°	_
0.0	.08333	.08333	.08333	.08333	.08333	.08333	.08333	-
0.1	.09176	.09056	.08735	.08314	.07912	.07630	.07530	
0.2	.10054	.09793	.09111	.08255	.07476	.06953	.06770	
0.3	.10962	.10539	.09458	.08158	.07031	0.6304	.06058	
0.4	.11895	.11286	.09774	.08024	.06581	0.5690	.05394	
0.5	.12846	.12032	.10054	.07858	0.6133	.05110	.04780	
0.6	.13810	.12768	.10296	.07662	.05690	.04570	.04217	
0.7	.14782	.13491	.10501	.07440	.05256	.04069	.03704	
0.8	.15755	.14196	.10666	.07196	.04837	.03608	.03239	
0.9	.16726	.14880	.10793	.06933	04434	.03186	.02822	
1.0	.17690	.15539	.10882	.06656	.04049	.02804	.02449	
1.1	.18644	.16171	.10934	.06369	.03686	.02459	.02118	
1.2	.19584	.16772	.10953	.07076	.03345	.02149	.01826	
1.3	.20507	.17345	.10938	.05781	.03026	.01872	.01569	
1.4	.21413	.17885	.10895	.05484	.02730	.01627	.01344	
1.5	.22298	.18395	.10824	.05190	.02457	.01410	.01149	
1.6	.23163	.18874	.10729	.04901	.02206	.01219	.00979	
1.7	.24007	.19230	.10613	.04617	.01978	.01052	.00833	
1.8	.24829	.19738	.10476	.04344	.01768	.00906	.00707	
1.9	.25630	.20127	.10324	.04078	.01578	.00778	.00599	
2.0	.26409	.20487	.10158	.03822	.01407	.00668	.00506	
2.1	.27167	.20822	.09979	.03578	.01252	.00572	.00427	
2.2	.27905	.21130	.09790	.03345	.01113	.00489	.00360	
2.3	.28623	.21415	.09592	.03124	.00988	.00418	.00303	
2.4	.29322	.21677	.09388	.02914	.00876	.00356	.00255	
2.5	.30003	.21917	.09179	.02715	.00776	.00304	.00214	
2.6	.30666	.22138	.08966	.02528	.00687	.00258	.00179	
2.7	.31312	.22328	.08752	.02352	.00607	.00220	.00150	
2.8	.31942	.22522	.08535	.02186	.00536	.00187	.00126	
2.9	.32557	.22688	.08318	.02031	.00474	.00158	.00105	
3.0	.33157	.22838	.08100	.01886	.00418	.00135	.00088	
3.1	.33744	.22974	.07884	.01750	.00369	.00114	.00073	
3.2	.34317	.23096	.07670	.01624	.00325	.00096	.00061	
3.3	.34878	.23204	.07458	.01505	.00286	.00082	.00051	
3.4	.35427	.23301	.07249	.01394	.00252	.00069	.00043	
3.5	.35964	.23386	.07042	.01292	.00222	.00058	.00038	
3.6	.36490	.23460	.06839	.01196	.00196	.00049	.00030	
3.7	.37006	.23524	.06639	.01107	.00172	.00042	.00025	
3.8	.37513	.23579	.06442	.01026	.00151	.00035	.00020	
3.9	.38009	.23625	.06251	.00949	.00133	.00030	.00017	
4.0	.38497	.23662	.06063	.00877	.00137	.00025	.00014	
4.1	.38976	.23692	.05879	.00812	.00102	.00021	.00012	
4.2	.39446	.23714	.05700	.00750	.00090	.00018	.00010	

APÉNDICE II

	·						-, ,,,=	· ·		
Grados	K = 0	K =-2	K =-4	K= -6	K=.8	K =1.0	K=1.2	K=1.4	K=16	K=1.8
0	0.00000	0.00000	0.00000	0.00000	0-00000	0.00000	0.00000	0.00000	0.00000	0.00000
5	.01389	.01326	.00895	.00699	.00536	.00404	.00301	.60221	.00161	.00116
Ю	.02778	.02254	.01793	.01400	.01074	.00811	.00604.	.00444	.00323	.00233
15	.04167	.03385	.02697	.00108	.01620	.01225	.00913	.00672	.00490	.00353
20	.05556	.04522	.03608	.02826	.02175	.01647	.01230	.00907	.00662	.00479
25	.06944	.05665	.04531	.03557	.02744	.02083	01559	.01153	.00843	.00611
30	.08333	.06816	.05467	.04304	.03329	.02535	.01903	.01411	.01035	.00753
35	.09722	.07978	.00420	.05071	.03936	.03007	02266	.03686	.01241	.00906
40	11111	.09152	.07392	.05861	.04567	.03504	.02650	.01981	.01465	.01073
45	.12500	.10338	.08386	.06679	.05228	.04029	.03062	.02299	.01709	.01259
50	.13889	.11540	.09405	.07527	.05921	.04587	.03505	.02547	.01978	.01466
55	.15278	.12757	.10452	.08409	.06653	.05184	.03985	03028	.02278	.01699
60	.16667	.13992	.11529	.09331	.07428	.05825	.04509	03450	.02514	.01965
65	.18056	.15248	.12639	.1095	.08251	.06517	.05082	.03919	.02994	.02270
70	.19444	.16520	.13184	.1306	.09118	.07265	.05711	.04442	.03425	.02620
75	.20833	.17815	.14968	.12368	.10064	.08078	.06407	05030	.03915	.03027
80	.22222	.19132	.16192	.33485	.11066	.08962	.07176	.05690	.04477	.03501
85	.23611	.20471	.17460	.14662	.12139	.09925	.08028	.06436	.05122	.04053
90	.25000	.21834	.18772	.15901	.13289	.10975	.08974	.07277	.05863	.04699
95	.26389	.23222	.20130	.17206	.14522	.12122	.10025	.08228	.06714	.05455
100	.27778	.24633	.21537	.18582	.15844	.13372	.11191	.09302	.07693	.06339
105	.29167	.26069	.22992	.20030	.17260	.14734	.12483	.10514	.08816	.07370
110	.30556	.27529	.24498	.21554	.18774	.16217	.13913	.11876	.10101	.08571
115	.31944	.29014	.26054	.23154	.20392	.17825	.15491	.13405	.11566	.09962
120	.33333	.30522	.27659	.24832	.22114	19566	.17226	.15112	.13228	.31565
125	.34722	.32053	.29314	.26587	.23944	.21444	.19125	.17009	.15103	.13402
130	.36111	.33606	.31017	.28420	.25882	.23460	.21194	.19106	.17206	.15491
135	.37500	.35180	.32766	.30327	.27926	.25616	.23435	.21408	.19545	.17847
140	38889	.36774	.34559	.32306	.30073	.27909	.25849	.23918	.22127	.20479
145	.40278	.38385	.36392	.34353	.32319	.30334	.28431	.26633	.24951	.23390
150	41667	.40013	.38263	.36463	.34656	.32883	.31172	.29544	.28010	.30020
155	.43056	.41655	.40166	.38628	.37077	.35548	.34060	.32638	.31290	.30020
160	.41444	.43309	.42098	.40841	.39570	.38309	.37079	.35897	.34769	.33701
165	.45833	.44973	.44053	.43095	.42122	.41155	.40208	39294	.38418	.37585
170	.47222	.46644	.46025	.45379	.44722	.44066	.43423	.42800	.42201	.41630
175	.48611	.48321	.48009	.47684	.47353	47022	.46696	.48381	.46077	.45786
180	.50000	.50000	.50000	.50000	.50000	.50000	.50000	.50000	.50000	.50000

Grados	K=2.0	K=2.2	K=2.4	K=2.6	K=2.8	K=3.0	K=3.2	K=3.4	K=3.6	K=3.8
0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
5	.00083	.00059	.00041	.00029	.00020	.00014	.00030	.00007	.00005	.00003
10	.00167	.00138	.00084	.00059	.00041	.00029	.00020	.00014	.00010	.00007
15	.00253	.00180	.00327	.00090	.00063	.00044	.00031	.00021	.00015	.00010
20	.00344	.00245	.00174	.00123	.00086	.00060	.00042	.00029	.00020	.00014
25	.00440	.00314	.00223	.00159	.00111	.00055	.00038	.00027	.00019	.00038
30	.00543	.00389	.00278	.00197	.00139	.00098	.00069	.00048	.00034	.00036
35	.00656	.00472	.00338	.00241	.00171	.00121	.00085	.00060	.00042	.00029
40	.00781	.00564	.00406	.00290	.00207	.00147	.00104	.00074	.00052	.00037
45	.00920	.00669	.00483	.00348	.00249	.00178	.00127	.00090	.00064	.00046
50	.01071	.00788	.00574	.00416	.00300	.00226	00155	.00079	.00057	.00067
55	.01259	.00927	.00679	.00496	.00361	.00262	.00190	.00137	.00099	.00071
60	.01467	.01089	.00805	.00593	.00435	.00319	.00233	.00170	.00124	.00090
65	.01709	.01281	.00956	.00711	.00527	.00390	.00288	.00213	.00157	.00116
70	.01993	.01509	.01138	.00856	.00642	.00481	.00360	.00269	.00201	.00150
75	.02328	.01782	.01360	.01035	.00786	.00596	00452	.00343	.00260	.00197
80	.02723	.02111	.01631	.01258	.00969	.00746	.00573	.00441	.00339	.00261
85	.03193	.02508	.01965	.01537	.01201	.00938	.00733	.00573	.00448	.00350
90	.03752	.02988	.02376	.01887	.01498	.01189	.00944	.00750	.00596	.00475
95	.04418	.03571	.02882	.02325	.01876	.01514	.01223	.00988	.00800	.00648
100	.05210	.04276	.03506	.02875	.02359	.01936	.01591	.01308	.01077	.00888
105	.06150	.05127	.04273	.03563	.02972	.02482	.02075	.01737	.01458	.01222
110	.07263	.06152	.05212	.04419	.03749	.03185	.027 10	.02308	.01968	.01997
150	.08574	.07379	.06355	.05477	.04727	.04084	.03534	.03062	.02657	.02308
120	.10109	.08840	.07736	.06777	.05946	.05223	.04595	04048	.03571	.03154
125	.11895	.10564	.09391	.08360	.07452	.06652	.05946	.05323	04771	.04282
130	.13954	.12581	.11356	.10264	.09290	.08421	.07644	.06947	.06325	.05760
135	.16308	.14917	.13662	.12530	.11507	.10583	.09746	.08986	.08294	.07665
140	.18970	.17592	.16335	.15188	.14141	.13183	.12305	.11499	.10756	.10071
145	.21948	.20618	.19393	.18264	.17222	.16259	.15367	.14538	.13767	.13048
150	.25239	.23996	.22841	.21766	.20766	.19832	.18959	.18140	.17371	.15647
155	.28829	.27713	.25668	.25688	.24769	.23903	.23088	.22317	.21586	20893
160	.32694	.31744	.30848	.30004	.29206	.28450	.27732	.27050	.26399	25776
165	.36795	.36047	.35339	.34667	.34029	.33421	32841	.32287	.31755	.31244
170	.41087	.40570	.40079	.39612	.39166	.38740	.38332	.37941	.37563	.37200
175	.45509	.45246	44994	44755	44526	.44306	.44095	.43893	.43697	.43508
180	.50000	.50000	.50000	.500000	.50000	.50000	50000	.50000	.50000	.50000

Grados	K=4.0	K=4.2	K=4.4	K=4.6	K=4.8	K=5.0	K=5.2	K=5.4	K=5.6	K=5.8
0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
5	.00002	.00002	.00001	.00001	.00000	00000	.00000	.00000	.00000	.00000
10	.00005	.00003	.00002	.00001	00001	.00000	00000	.00000	.00000	.00000
15	.00007	.00005	.00003	.00002	00002	.00001	00001	.00001	.00000	.00000
20	.00010	.00007	.00005	.00003	00002	.00002	.00001	.00001.	00000	.00000
25	.00013	.00006	.00003	.00002	00001	.00001	.00001	00001	.00001	.00000
30	.00016	.00011	.00008	.00005	.00004	.00003	00002	.00001	.00001	.00001
35	.00021	.00014	.00010	00007	00005	00003	.00002	00002	.00001	.00001
40	.00026	.00018	.00013	00009	.00005	00004	00003	00002	.00001	.00001
45	.00032	.00023	.00016	.00008	00006	.00004	.00003	00002	.00002	.00001
50	.00040	.00029	00021	.00015	.00010	.00007	.00005	.00004	.00003	.00001
55	.00051	.00037	.00017	.00019	00014	.00010	.00007	00005	.00004	.00003
60	.00066	.00048	.00035	.00025	.00018	.00013	00010	.00007	.00005	.00004
65	.00085	.00063	.00046	.00034	00025	.00018	.00014	.00010-	.00007	.00005
70	.00112	.00084	.00062	.00047	.00035	.00026	.00019	.00015	.00011	.00008
75	.00149	.00113	.00086	.00065	.00049	.00037	.00028	.00022	.00016	.00013
80	.00201	.00155	00119	00092	00071	00055	.00042	.00033	C0025	.00015
85	.00274	.00215	.00168	00132	00104	00082	.00064	.00051	00040	.00031
90	.00378	.00301	.00240	.00192	.00154	99123	00098	00079	.00063	.00051
95	.00525	.00426	.00346	.00282	00229	.00187	00152	00124	00102	.00083
100	.00733	.00606	.00501	.00415	00344	.00236	00237	.00197	00164	.00137
105	01027	.00864	.00727	00613	.00517	00437	.00370	00313	.00265	.00224
110	.01437	.01231	01055	00905	00777	60568	.00575	.00495	00425	.00367
115	.02008	.01748	.01524	.01330	01162	01016	.00889	00778	00682	.00597
120	.02789	.02470	.02189	.01941	.01724	01531	.01362	01212	01079	.00961
125	.03847	.03460	03114	.02806	.02530	02284	.02062	.01863	.01685	.01524
130	.05253	.04795	04382	.04007	03567	03358	.03077	02821	.02581	.02375
135	.06563	.06081	.05638	.05232	.04857	04512	.04194	03900	03628	.02376
140	.09438	.08852	.08309	.07804	.07334	.06897	.06488	.06107	.05751	.05418
145	.12377	.11748	11159	.10605	.10084	.09594	.09132	.08695	08283	.07893
150	.15964	.15319	.14708	.14129	13578	33055	12558	.12083	11631	.11199
155	.20234	.19606	.19006	.18433	17884	.17358	.15853	.16368	.15902	.15453
160	.25180	.24608	.24059	23530	.23020	.22528	.22053	21593	.21148	.20716
165	.30752	.30277	.29818	.29374	28944	.28527	.28122	.27728	.27344	.26971
170	.36848	.36508	.36177	.35857	.35545	.35241	34944	.34655	.34372	.34096
175	.43324	.43146	42973	.42805	.42641	.42481	.42481	.42171	42021	.41873
180	.50000	.50000	.50000	.50000	.50000	.50000	.50000	50000	.50000	.50000

TABLA I (CONTINUACIÓN)

	K=6.0	K=6.2	K=6.4	K=6.6	K=6.8	K=7.0	K=7.2	K=7.4	K=7.6	K=7.8
30	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
35	,00001	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000
40	.00001	.00001	.00000	.00000	.00000	,00000	.00000	.00000	.00000	.00000
45	.00001	.00001	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000
50	.00001	.00001	.00001	.00000	.00000	.00000	.00000	.00000	.00000	.00000
55	.00002	.00001	.00001	.00001	.00000	.00000	.00000	.00000	.00000	.00000
60	.00003	.00002	.00001	.00001	.00001	.00001	.00000	.00000	.00000	.00000
65	.00004	.00003	.00002	.00002	.00001	.00001	.00001	00000	.00000	.00000
70	.00006	.00005	.00003	.00003	.00002	.00001	.00001	.00001	.00001	.00000
75	.00010	.00007	.00006	.00004	.00003	.00002	.00002	.00001	.00001	.00001
80	.00015	.00012	.00009	.00097	.00006	.00003	.00003	.00003	.00002	.00002
85	.00025	.00020	.00015	.00012	.00010	.00008	.00006	.00005	.00004	.00003
90	.00041	.00033	.00016	.00021	.00017	.00014	.00009	.00009	.60007	.00006
95'	.00068	.00056	.00046	.00037	.00031	.00025	.00021	.00017	.00014	.00011
100	.00114	.00095	.00079	.00066	.00055	.00045	.00038	.00032	.00027	.00023
105	.00190	.00161	.00137	.00116	.00099	.00084	.00071	.00061	.00052	.00044
110	.00317	.00274	.00236	.00204	.00176	.00153	.00132	.00114	.00099	.00086
115	.00524	.00460	.00404	00355	.00274	.00241	.00212	.00187	.0016.4	.00164
220	.010857	.00764	.00681	.00608	.00543	.00485	.00434	.00388	.00346	.00310
325	.01379	.01249	.01131	.01025	.00929	.00843	.00765	.00694	.00630	.00572
130	.02181	.02003	.01841	.01693	.01556	.01432	.01318	.01213	.01117	.01029
135	.03377	.03144	.02918	.02728	.02543	.02371	.02211	.02063	.01925	.01796
140	.05106-	.04814	.04540	.04283	.04041	.03815	.03602	.03402	.03213	.03036
145	.07525	.07175	.06844	.06530	.06233	.05950	05681	05416	.05184	.04953
150	.10787	.10392	.09654	.09308	.08976	.08658	.08353	08061	.07780	.00000
155	.15020	.14604	14202	.13814	.13440	.13078	12728	.12390	.12063	.11746
160	.20298	.19893	.19499	.19116	.18744	.18382	.18029	.17686	.17352	.17027
165	.26606	.26251	.25904	25566	.25235	.24911	24594	.24285	.23981	.23684
170	.33826	.33561	.33302	.33047	.32798	.32553	.32312	.32076	.31844	31616
175	.41729	.41588	.41449	.41312	.41178	.41045	.40915	.40787	.40661	.40537
180	.50000	.50000	.50000	.50000	.50000	.50000	.50000	.50000	.50000	.50000

Grados	K=8.0	K=8.2	K=8.4	K=8.6	K=8 8	K=9.0	K=92	K=9.4	K=9.6	K=98	K=10.0
70	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0 00000	0.00000	0.00000	0.00000
75	.00001	0.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000	.00000
80	.00001	.00001	.00001	.00000	00000	.00000	00000	.00000	.00000	.00000	00000
85	.00002	.00002	.00002	.00001	.00001	.00001	00000	00000	.00000	.00000	.00000
90	.00005	.00004	.00003	.00003	.00002	.00002	.00001	00001	00001	.00000	.00000
95	.00009	.00008	.00006	.00004	.00004	.00004	.00003	.00002	00002	.00000	.00001
100	.00019	.00016	.00013	.00009	00009	.00007	00005	00002	.00002	.00002	
105	.00038	.00010	.00073	.00023	.00020	.00007	.00014				.0000
110	.00074	.00032	00056	.00023	.00020	.00017	00032	.00012	.00011	.00009	.00008
115	.00145							00027	.00024	.00021	.00018
		.00127	.00112	.00099	.00087	.00077	.00068	.00060	.00053	.00047	.00870
120	.00277	.00248	.00222	.00199	.00178	00160	.00143	00128	60115	.00103	.00092
125	.00519	.00472	.00429	.00390	00354	.00322	.00293	.00266	.00242	.00221	.00201
130	.00948	.00873	.00805	.00742	.00684-	.00631	.00582	.00537	D0495	.00457	.00422
135	.01677	.01566	01462	.00356	01276	.01193	.01115	.01042	.00974	00911	.00852
140	.02869	.02712	.02564	.02425	02293	.02169	.02052	.01942	.01838	.01740	.01647
145	.04733	.04524	.04325-	.04136	.03955	.03783	.03619	.03463	.03314	.03171-	.03036
150	.07510	.07251	.07001-	.06762	.06531	.06310	.06096	.05891	.05693	.05503	.05319
155	.11440-	.10855	.10855	.10576	.10305	.10043	09789	.09542	.09302	.09069	.08843
160	.16710	.16400	.16099	.15804	.15517	.15236	.14962	.14694	.14433	.14177	.13927
165	.23393	.23107	.22827	22552	.22283	22019	.21759	.21504	21253	.21007	20765
170	.31391	.31170	.30952	30738	.30527	.30319	30115	29913	29714	29517	29323
175	40414	40293	.40174	40056	39940	.39825	.39712	39600	39489	.39380	,39271
180	.50000	.50000	.50000	.50000	.50000	.50000	50000	.50000			
100	.000					.50000	.50000	.00000	.50000	.50000	.50000