

UNIVERSIDAD NAGIONAL AUTONOMA DE MEXICO

FACULTAD DE INGENIERIA

FENOMENO DE SEDIMENTACION EN UN CANAL TRIDIMENSIONAL

TESIS

QUE PARA OBTENER EL TITULO DE INGENIERO MECANICO ELECTRICISTA (AREA MECANICA) PRESENTA: MARGARITA AVIÑA HERNANDEZ

ASESOR: DR. ARTURO PALACIO PEREZ

CIUDAD UNIVERSITARIA, D. F.

a construction of a second second

1997

TESIS CON FALLA DE ORIGEN

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. Agradezco de todo corazón

• •

A la U.N.A.M.

A la Facultad de Ingeniería

Al Instituto de Ingeniería

Al Doctor Arturo Palacio

Al Doctor Alejandro Rodriguez

Al Maestro Martín Salinas

A mi familia por su apoyo, paciencia y comprensión sin los cuales este trabajo no hubiera sido posible.

indice

Capítulo I. Objetivo.	1
Capítulo II. Introducción	
0.1 Antecedentes	3
2.2 l'ropiedades del sedimento	5
2.2.1 Densidad y porosidad	5
2.2.2 Forma	6
2.2.3 Tamaño	7
2.2.4 Diámetros	. 7
2.2.5 Velocidad de caída de partícula	8
2.2.5.1 Partículas no esféricas	9
2.2.5.2 Efecto de la concentración de sedimentos	.10
2.3 Propiedades del fluido	10
2.3.1Densidad	11
2.3.2 Viscosidad	11
2.4 Iniciación de movimiento	.12
2.5 Transporte de carga en suspensión	15
2.6 Ecuación de balance de masa para la concentración	15
2.7 Formulación matemática	.21
2.7.1 Superficies sólidas	.21
2.7.2 Modelo k-ε	24
2.7.3 Ecuación de continuidad	29
2.7.4 Ecuación de cantidad de movimiento	29
2.7.5 Ecuación de transporte de sedimentos	50
Capítulo III. Modelo	31
3.1 Transporte de sedimentos por suspensión	31
3.2 Condiciones de frontera	32
3.2.1 Cantidad de movimiento	53

3.2.2 Conservación de masa	•••••	33
3.2.3 Modelo de turbulencia k		33
3.2.4 Rapidez de disipación turbulenta		
3.2.5 Concentraciones de sedimento		34
3.3 Condiciones Iniciales		34
3.4 Método de solución		34
Capítulo IV. Análisis de resultados		36
4.1 Sedimentador tridimensional		36
4.1.1 Mallado		38
4.1.2 Perfiles de velocidad		
4.1.3 Perfiles de concentración		40
4.2 Sedimentador bidimensional		44
4.2.1 Mallado		44
4.2.2 Perfiles de velocidad y de sedimento		44
4.3 Diferencias centradas y hacia adelante		47
Capítulo V. Aplicaciones		49
5.1 Introducción		49
5.2 Sistema de coordenadas		50
5.3 Discusión de resultados		50
5.3.1 Hidrodinámica		51
5.3.2 Distribución de sólidos en suspensión	•••••••••	52
Capítulo V. Conclusiones	••••••	64
Referencias	•••••••	66
Bibliografía		66
Apéndice 1. Q1 del sedimentador tridimensional	•••••••	i

Apéndice 3. Q1 del sedimentador bidimensional			 v
Apéndice 3. Ground sel sedimentadot tridimensional			 ×
Apéndice 4. Ground del sedimentador bidimensional	•••••	•••••	 xxviii

SIMBOLOGIA

Latinas

- altura de referencia (m) а
- eje (factor de forma de partícula) а
- constante (ley logarítmica de pared) А
- eje (factor de forma de partícula) Ь
- в constante (ley logaritmica de pared)
- concentración de referencia para y=a (m³_p/m³_a) Ca
- concentración (m_{a}^{3}/m_{a}^{3}) С
- Chezy (ecuaciones empíricas de transporte) С
- coeficiente de arrastre(-) Ċп
- C_{1} , C_{2} constantes
- C_3, C_u constantes
- d50 tamaño mediano de partícula(m)
- diámetro de la partícula(m) d.D
- D* parámetro de partícula(-)
- factor de corrección e
- E parámetro de rugosidad (ley logarítmica de pared)
- f fuerza (N)
- F factor de forma
- Fp fuerza de arrastre (N)
- F. fuerza gravitacional (N)
- Fp fuerza perturbadora (N)
- aceleración debido a la gravedad (m/s^2) g
- ĥ tirante (m)
- k energía cinética turbulenta (J)
- k+ altura adimensional de rugosidad
- m masa (kg)
- porosidad (-) P
- presión (Pa)
- aasto unitario de sedimento (m2/s) 99
- Řе número de Reynolds
- densidad específica 9
- coeficiente de fricción 9
- velocidad (m/s) u
- velocidad de corriente ue
- u* velocidad de cortante (m/s)
- u*.cr velocidad crítica cortante (m/s)

- u+ velocidad adimensional
- wo velocidad de sedimentación (m/s)
- ures velocidad resultante paralela a la pared
- x coordenada
- y coordenada
- y⁺ distancia adimensional a la pared
- z coordenada
- Z número de suspensión

<u>Griegas</u>

- α constante
- β ángulo de reposo
- δ ancho de capa límite
- ε_{ec} coeficiente de mezclado de sedimento relacionado con la corriente
- ε_f coeficiente de mezclado de fluido
- **Γ** coeficiente
- κ constante de von Kármán
- λ parámetro de concentración adimensional
- ρ densidad (kg/m³)
- to cortante en el piso (Pa)
- Ther cortante crítico en el piso (Pa)
- μ viscosidad dinámica (Pa.s)
- v viscosidad cinemática (m²/s)
- σ número de Schmid (-)
- θ número de Schields (-)
- Ocr número de Schields crítico (-)
- ξ gradiente de presión(N/m³)
- **χ** constante

Subindices

- k energía cinética turbulenta
- s sedimento
- ε disipación de la energía cinética turbulenta
- m mezcla de fluido-sedimento

CAPITULO I

OBJETIVO

El predecir el fenómeno de sedimentación de sólidos en suspensión se ha convertido en una necesidad tanto industrial como ecológica. p.e. reducción de costos en diseño y operación de tanques sedimentadores, evitar que canales de riego se bloqueen provocando una mala irrigación de las cosechas o que ocurra una inundación de los campos, dar adecuado mantenimiento de los canales para la navegación, lograr retirar la máxima cantidad de sedimentos abrasivos en aguas destinadas a accionar una turbina o que serán bombeadas, en la obtención de agua potable, o simplemente retirar el exceso de sólidos en suspensión en ríos o lagos para favorecer la fauna y vida silvestre.

Realizar trabajo experimental para cada opción de diseño resulta muy costoso en tiempo, recursos humanos y materiales, y por ello se requiere de métodos computacionales avanzados para poder predecir el transporte de sedimento.

El objetivo de esta tesis es desarrollar un modelo numérico capaz de dar una primera aproximación confiable del comportamiento de las partículas en suspensión, tal que siente las bases del diseño o prediseño de un canal, tanque sedimentador o cualquier sistema dependiente del transporte de sedimentos.

Un segundo punto que cubrirá este trabajo será el validar el modelo numérico obtenido, comparando los resultados que este arroje con resultados experimentales reportados en la literatura.

El tercer y último objetivo fundamental, será mostrar la aplicación del modelo

numérico en un caso práctico de flujo tridimensional con marcada asimetría, en donde los modelos empíricos de parámetros concentrados presentan grandes limitaciones.

CAPITULO II

INTRODUCCION

2.1 Antecedentes

La sedimentación por gravedad es el tratamiento más común y aplicado para la remoción de los sólidos en suspensión en aguas de desecho. Dado que la inversión en los tanques de sedimentación es generalmente el 30% de la inversión total del sistema incluyendo bombas, desarenadores, etc.,[1] la determinación de la eficiencia, es decir, el porcentaje de remoción de sólidos de un tanque sedimentador, ha sido el objeto de numerosos estudios teóricos y experimentales.

Las características más importantes de las partículas en suspensión son la distribución de tamaños y la densidad, que junto con la concentración de partículas en suspensión y la densidad del fluido, determinan la distribución de velocidad de sedimentación de las mismas. Las características de las partículas en suspensión pueden ser afectadas a su vez por las características de flujo (distribución de viscosidad turbulenta), porque puede ocurrir aglomeración de partículas o un romplimiento. Además la distribución de la densidad del fluido depende de los campos de concentración.

El patrón de flujo y las trayectorias seguidas por las partículas en suspensión a través del sedimentador, están necesariamente enlazadas la una a la otra y al desempeño del tanque sedimentador. Además, el campo de flujo determina la distribución de la difusividad turbulenta a través del tanque, que a su vez determina el nivel de mezclado de partículas. Mientras que el mezclado puede realzar la aglomeración de partículas, ciertamente actúa contra la gravedad tratando de mantener las partículas sólidas en

З

suspensión y hasta puede causar la resuspensión de partículas que ya se habían sedimentado. Por lo tanto, la determinación del campo de flujo y las características de la turbulencia es esencial para la predicción de la eficiencia del tanque.

La obtención del campo de flujo puede ser lograda ya sea experimentalmente o teóricamente a través del uso de modelos matemáticos. La determinación experimental del campo de flujo es una tarea ardua que sin embargo, puede proveer información importante sobre la hidrodinámica del tanque bajo estudio. Frecuentemente la información experimental es específica del tanque y dichas mediciones tienen aplicación limitada al estudio y diseño de otros tanques. Por esta razón, distribuciones teóricas simplificadas para la velocidad y difusividad turbulenta han sido usadas frecuentemente en el desarrollo de métodos de predicción para el campo de flujo y eficiencia de sedimentación.

Existen diversos estudios en los cuales han sido propuestos perfiles de velocidad unidireccional uniforme [Camp (1946), Dobbins (1944)] y logarítmico o parabólico [Sarikaya(1977)]; sin embargo estos ignoran las complejidades hidrodinámicas, tales como regiones de recirculación en el tanque real. Las simplificaciones asociadas a la imposición de perfiles de velocidad, son realistas sólo para ciertas partes del tanque y fuerzan al ingeniero a usar grandes factores de seguridad en el diseño para compensar imprecisiones derivadas de dichas suposiciones.

Modelos numéricos más sofisticados para el cálculo del campo de flujo han sido propuestos recientemente, y permiten predecir dicho campo de flujo en tanques de sedimentación con cierto éxito. Estos modelos emplean varias formas de formulación de campo de flujo estable medio [Abdel-Gaward(1985), Celik-Rodi-Stamou(1985), Imam(1981)] o inestable [Stamou-Adams(1985)]. Técnicas de diferencia finita o elemento finito son usadas para la solución numérica de las ecuaciones de flujo y de partículas en suspensión. Algunos modelos emplean una simple suposición considerando constante la difusividad turbulenta [Imam-McCorquodale(1984)], mientras otros usan un modelo más refinado de turbulencia, como por ejemplo el modelo k-ɛ [Rodi(1980)].

Dicho modelo determina la distribución de viscosidad turbulenta y la difusividad turbulenta sobre un campo de flujo resolviendo ecuaciones de transporte para la energía cinética del movimiento turbulento k y su rapidez de disipación ε .

2.2 Propiedades del sedimento

El transporte y deposición del sedimento no sólo depende de las características del flujo sino también de las propiedades del sedimento; la velocidad de sedimentación de una partícula caracteriza directamente su reacción al flujo. Para la descripción de sedimentos son necesarios la distribución frecuencial del tamaño de partícula y velocidad de sedimentación de las mismas. La floculación es importante en el comportamiento de sedimentos finos y en muchos casos puede ser el factor principal en determinar la velocidad de sedimentación.

El sedimento es un material fragmentario formado primordialmente por la desintegración física y química de las rocas de la corteza terrestre. Dichas partículas varían en tamaño y forma, así como en gravedad específica y composición mineral; los materiales predominantes son cuarzo y minerales de arcilla. Estos últimos tienen una estructura que cambia fácilmente en medios salinos (floculación) bajo la influencia de fuerzas electrostáticas (fuerzas cohesivas). Consecuentemente hay una diferencia fundamental en sedimentación entre la arena y los minerales de arcilla.

2.2.1 Densidad y porosidad

La densidad p_9 del cuarzo y los minerales de arcilla son aproximadamente iguales, con un valor promedio de $p_9=2650$ kg/m³.La densidad del sedimento seco es la masa del sedimento seco por unidad de volumen (concentración) y es igual a:

 $\rho_{eeco} = (1 - p)\rho_{\theta} \tag{2.1}$

donde p es el factor de porosidad. La densidad húmeda o masa volumétrica del material depositado es la masa del agua y sedimento por unidad de volumen:

 $Phimedo = p p + (1 - p) p_s$

(2.2)

donde ρ es la densidad del agua (kg/m³)

La porosidad del sedimento está relacionada frecuentemente con la forma en que el sedimento es depositado (precipitado). Un acomodo fácil ocurre cuando los sedimentos se depositan en aguas tranquilas. Existen básicamente cuatro arreglos de acomodo para partículas esféricas. El arreglo más inestable es el cúbico con las esferas formando un cubo, resultando en una porosidad del 48%. El arreglo romboidal con las esferas en los huecos de las otras ofrece el acomodamiento más estable y de menor porosidad, 26%. Una arena gruesa de diversos tamaños tiene típicamente una porosidad del 40% y una arena fina uniforme la tendrá de un 45%. Los depósitos consistentes de arcilla, arena y materiales orgánicos son llamados lodos, y pueden tener un factor grande de porosidad, hasta del 80%.

2.2.2 Forma.

La forma de las partículas está generalmente representada por el factor de forma de Corey definido como:

(2.3)

donde:

a= longitud del eje más largo perpendicular a otros dos ejes b= longitud del eje medio perpendicular a otros dos ejes c= longitud del eje más corto perpendicular a otros dos ejes.

El factor SF de la arena natural es de aproximadamente 0.7.

2.2.3 Tamaño

Usualmente los sedimentos son referidos como grava, arena o arcilla. Estos términos se refieren al tamaño de la partícula, el cual varía entre 256 mm y $0.24 \ \mu$ m.

2.2.4. Diámetros

Los diámetros típicos son:

-diámetro de tamiz, es el diámetro de la esfera igual a la longitud del lado de la abertura de un tamiz cuando a través del mismo la partícula pasa.

-diámetro nominal, es el diámetro de una esfera que tiene un mismo volumen que la partícula.

-diámetro estándar de caída, es el diámetro de una esfera que tiene una gravedad específica de 2.65 y que tiene la misma velocidad de caída que la partícula en agua quieta y destilada a 24°C.

Una muestra natural de sedimentos contiene partículas de varios tamaños. La distribución de tamaños de dicha muestra es la distribución de material de sedimentos por porcentaje de peso, usualmente representado como una distribución de frecuencia.

La distribución de frecuencia está representada por:

- Tamaño mediano de la partícula, d 50 que es el tamaño para el cual 50% del peso es más fino.

- Tamaño de partícula medio, $d_m = \Sigma$ (pi di)/100 donde pi es el porcentaje por peso de cada fracción de tamaño de grano di.

-Desviación estándar, $\sigma_d = \Sigma pi (di - dm)^{0.2} / 100$

2.2.5. Velocidad de caída de partícula

Básicamente la velocidad de caída es una propiedad de comportamiento. La velocidad terminal de caída (Ws) de una esfera es la que se presenta cuando la fuerza de arrastre del fluido sobre la partícula está en equilibrio con la fuerza de gravedad, dando:

$$W_{5} = \left[\frac{4(6-1)gd}{3CD}\right]^{0.5}$$

(2.4)

donde Ws= velocidad terminal de caída d= diámetro de esfera CD= coeficiente de arrastre g= aceleración de la gravedad s= gravedad específica

El coeficiente de arrastre CD es una función del número de Reynolds, definido como Re=W₉ d/v, donde v, es la viscosidad cinemática. En la región de Stokes (Re<1), el coeficiente de arrastre está dado por CD=24/Re, lo cual da por resultado:

Fig. 2.1. Coeficiente de arrastre para un cilindro y una esfera.

W== <u>(5-1)00</u>2 18u

Afuera de la región de Stokes no existe una expresión simple para el coeficiente de arrastre. El valor de CD decrece rápidamente afuera de la región de Stokes (Re<1) y se vuelve casi constante para $10^3 < \text{Re} < 10^5$, lo que se puede apreciar en la figura 2.1. El efecto de la temperatura en la velocidad de caída está tomado en cuenta por el coeficiente de viscosidad cinemática v. El efecto mayor ocurre para los diámetros de esfera más pequeños.

2.2.5.1. Partículas no esféricas

La velocidad terminal de caída para sedimento no esférico puede ser determinada a partir de las siguientes fórmulas:

$$W_{s} = (\underline{s-1})a d^{2}$$
 $1 < d < 100 \,\mu m$
18 v

 $W_{S} = \frac{10 v}{d} [(1 + 0.01(s-1)a d^{3})^{0.5} - 1] \qquad 100 < d < 1000 \mu m$ $d \qquad v^{2}$

$$W_{e}= 1.1[(e-1)gd]^{0.5} \qquad d > 1000 \,\mu m \tag{2.6}$$

donde d es el diámetro de tamiz.

(2.5)

2.2.5.2. Efecto de la concentración de sedimentos

La velocidad de caída de una sola partícula está modificada por la presencia de otras partículas. Una pequeña nube de partículas en fluido claro tendrá una velocidad de caída mayor que para una sola partícula. Experimentos con suspensiones uniformes de sedimento y fluido han mostrado que la velocidad de caída es fuertemente reducida con respecto a la de una sola partícula, cuando la concentración de sedimento es grande. Este efecto es conocido como "sedimentación entorpecida" y es causado por el flujo de retorno inducido por las velocidades de sedimentación.

De acuerdo con Richardson y Zaki (1954), la velocidad de caída de una suspensión de fluido-sedimento puede ser determinada como:

$$W_{\mathfrak{s},\mathsf{m}}=(1-c)\,\gamma\,W_{\mathfrak{s}} \tag{2.7}$$

donde:

 $W_{s,m}$ = velocidad de caída de partícula en una suspensión c=concentración volumétrica de sedimento γ = coeficiente

El coeficiente γ varía de 4.6 a 2.3 para Re incrementando de 10⁻¹ a 10³. Para partículas en un rango de 50 a 500 μ m bajo condiciones de flujo normal el coeficiente γ es cercano a 4.

10

2.3 Propiedades del fluido

Las propiedades relevantes del fluido son la densidad y viscosidad.

2.3.1.Densidad

La densidad de agua fresca varía con la temperatura como sigue:

p=999.9 kg/m³	Te=O°C
p=1000 kg/m ³	Te=4℃
p= 999.5 kg/m ³	Te=12℃
ρ= 999.0 kg/m ³	Te=16℃
p= 998.3 kg/m ³	Te=20°C
p=995.7 kg/m ³	Te=30°0

lo cual se aprecia en la figura 2.2.

Fig.2.2 Variación de la densidad del agua con la temperatura

2.3.2. Viscosidad

El coeficiente de viscosidad cinemática υ se define como:

(2.8)

υ=μ

ρ

en donde:

 υ = coeficiente de viscosidad cinemática (m²/s)

```
\mu= coeficiente de viscosidad dinámica (Ns/m<sup>2</sup>)
```

```
\rho = densidad de fluido (kg/m<sup>3</sup>)
```

El coeficiente de viscosidad está influenciado por el sedimento. Para suspensiones diluidas Einstein [2] encontró:

Basado en experimentos con concentraciones de volumen en el rango de c=0.1 a 0.6Bagnol (1954) encontró:

 $v_{m} = v(1+\lambda)(1+0.5\lambda)$ (2.10)

en donde:

 $\lambda = [(0.74/c)^{1/3} - 1]^{-1} = parámetro de concentración adimensional.$

2.4 Iniciación de movimiento

En esta sección así como las dos siguientes, 2.5 y 2.6, se abordará el inicio de movimiento, el transporte de carga y la ecuación de balance de masa para la

concentración, tal y como se suele plantear de manera analítica el problema de la predicción del sedimento en suspensión. Sólo se icluye de manera ilustrativa, ya que el modelo que se desarrolla en esta tesis emplea un enfoque diferente y no contempla en sí estas consideraciones.

El movimiento de partícula ocurre cuando las fuerzas hidráulicas sobre una partícula son mayores que la fuerza crítica hidráulica para el inicio de movimiento.La fuerza perturbadora F_p es proporcional al esfuerzo cortante de lecho τ_b y al área superficial de partícula ($F_p \approx \tau_b d^2$). La fuerza estabilizadora es igual al peso de la partícula sumergida ($F_c \approx (\rho_b - \rho) g d^3$).

El movimiento de partícula es iniciado cuando el momento de la fuerza del fluido Fp se vuelve mayor que el momento de la fuerza de gravedad, dando:

$$\frac{1}{(\rho_{s} - \rho) g d} \ge \theta_{cr}$$
(2.11)

donde: $\tau_{b,cr}$ es el esfuerzo crítico cortante de lecho. El número crítico de Shields, θ_{cr} depende de las condiciones hidráulicas cerca del lecho, de la forma de partícula y de la posición de la partícula relativa a otras partículas. La condición hidráulica cerca del lecho es una función del número de Reynolds, definido como Re*= u* d/v donde u* es la velocidad de cortante dada por u*= $(\tau/\rho)^{1/2}$; por lo que $\theta_{cr} = F(Re*)$.

Muchos experimentos se han realizado para definir θ_{cr} como una función de Re*. Los experimentos de Shields (1936) relacionados a un lecho liso son los más usados. Shields utilizó como su definición de esfuerzo crítico cortante de lecho, al valor del esfuerzo cortante de lecho donde los valores de transporte extrapolados (medidos) son cero (figura 2.3).

Fig.2.3 Curva de Shields

Yalin (1972) demostró que la curva de Shields puede ser expresada en términos del parámetro de partícula D*. Aplicando estos parámetros, la curva de Shields puede ser expresada como:

 $\begin{array}{ll} \theta_{cr} = 0.24 \ D^{*.1} & \mbox{para } 1 < D^* \leq 4 \\ \theta_{cr} = 0.14 \ D^{*.0.64} & \mbox{para } 4 < D^* \leq 10 \\ \theta_{cr} = 0.04 \ D^{*.0.1} & \mbox{para } 10 < D^* \leq 20 \\ \theta_{cr} = 0.013 \ D^{*.0.29} & \mbox{para } 20 < D^* \leq 150 \\ \theta_{cr} = 0.055 & \mbox{para } D^* > 150 \\ \mbox{donde:} \\ \theta_{cr} = \tau_{b,cr} / \left(\left(\rho_{s} - \rho \right) g \ d_{50} \right) = n \ u \ mero \ cr (tico \ de \ Shields) \end{array}$

 $D^* = [(s-1)g/v)^2]^{1/3} d_{50}$

2.5 Transporte de carga en suspensión

El transporte de carga está definido como la integral del producto de la velocidad (u) y la concentración (c), como sigue:

$$q_{\mathfrak{B},c} = \int_{a}^{b} u c \, dz \tag{2.13}$$

Para poder aplicar la ecuación se necesita conocer los perfiles de velocidad de concentración y una concentración a un nivel de referencia z=a cerca del fondo.

2.6 Ecuación de balance de masa para la concentración

En un flujo uniforme y estable en equilibrio en la dirección vertical, el transporte relacionado con la turbulencia y la gravedad puede ser expresado como:

(2.12)

$$c W_{s,m} + \varepsilon_s \frac{dc}{dz} = 0$$
(2.14)
$$dz$$

donde:

c= concentración de sedimento a una altura "z" del lecho W_{p,m} = velocidad de caída de partícula en una mezcla de fluido- sedimento ϵ_p = coeficiente de mezclado de sedimento relacionado con la corriente

El coeficiente de difusión de sedimento $\varepsilon_{\mathfrak{s}}$ está relacionado con el coeficiente de mezclado de fluido $\varepsilon_{\mathfrak{f}}$ de la siguiente manera:

$$\epsilon_{\theta} = \beta \, \phi \, \epsilon_f \tag{2.15}$$

donde el factor β describe la diferencia en la difusión de una partícula-fluido y una partícula discreta de sedimento. Basado en la ecuación 2.14, Coleman calculó los coeficientes de mezclado de sedimento.

Varias distribuciones de mezclado de fluido (ϵ_f) están dadas por las siguientes expresiones:

constante:

 $\varepsilon_f = 1 \kappa u_{,c} h$

lineal:

 $\varepsilon_{1} = 1 \kappa u_{,c} h \frac{z}{h}$

parabólica:

$$\mathbf{\varepsilon}_{\mathbf{f}} = \mathbf{\kappa} \mathbf{u}_{c} \mathbf{h} \underline{z} (1 - \underline{z})$$

h h

parabólica lineal:

ε_l=κu...ch<u>z</u>(1-<u>z</u>) para<u>z</u><0.5 h h h

 $\varepsilon_i = 0.25 \kappa u_{ch}^*$ para $z \le 0.5$

(2.16)

donde:

u.c = velocidad de corriente relacionada al cortante de lecho

h = profundidad del agua

z = coordenada vertical

 κ = constante de von Kármán = 0.4

 $\alpha_1, \alpha_2 = constantes$

El factor ϕ de la ecuación 2.15, expresa la influencia del sedimento en la estructura turbulenta del fluido. Van Rijn (1984) lo define como:

$$\phi = 1 + (c/co)^{O.B} - 2(c/co)^{O.4}$$

(2.17)

donde:

c= concentración local volumétrica co= concentración máxima= 0.65

Perfiles de concentración

Al integrar la ecuación de convección y difusión (2.14), se obtienen los siguientes perfiles:

constante

lineal

$$\underline{c} = (a/z) \alpha_2 Z$$

 c_a

parabólico

parabólico lineal

$$\frac{c}{c_{a}} = (\underline{a})^{Z} (e)^{-4Z(z-h-0.5)} \qquad \text{para}_{\underline{z}} \ge 0.5 \qquad (2.18)$$

$$c_{a} h^{-a} \qquad h$$

donde:

- c = concentración a una altura z sobre el lecho
- $c_a = concentración de referencia a una altura z=a sobre el lecho$
- h = profundidad del agua
- $Z = W_{\theta}/(\kappa_{u+c}) = número de suspensión$

Los métodos más comunes para obtener la tasa de transporte en suspensión, al igual que el transporte de fondo, son semiempíricos y se describen a continuación de acuerdo a sus autores:

Einstein (1950):

 $q_{5,c} = 11.6 \text{ u'*,c} c_a a [12 + 11 \ln (30.2 \text{ e} \text{ h}/\text{d}_{65})]$

$$l_{1} = 0.216 \quad \underline{A}^{Z-1} \int_{A}^{t} (\underline{1-z'})^{Z} dz' \\ (\underline{1-A})^{Z} \quad z'$$

$$I_{2} = O.216 \underline{A^{Z-1}}_{(1-A)^{Z}} \int_{a}^{t} \frac{(1-z')^{Z}}{(1-A)^{Z}} \ln(z') dz'$$

donde:

 $q_{5,c}$ = transporte de carga en suspensión (m²/s) u'*,c = velocidad de cortante de grano (m/s) ca= concentración de referancia (-) a= referencia de nivel (m) h= profundidad del agua (m) d= diámetro de partícula (m) A= a/h= nivel de referencia adimensional z'= z/h= coordenada vertical adimensional

(2.19)

Z= número de suspensión (-) ĸ= constante de von Kármán W₅= velocidad de caida de sedimento en agua clara (m/s) e= factor de corrección

De acuerdo con Einstein, el transporte de carga en suspensión está relacionado con la velocidad de cortante de grano, u'*.c y no con la velocidad de cortante, u*.c.

Bagnol (1966):

Introdujo un concepto de balance de energía, y relacionó el transporte de carga suspendida con el trabajo hecho por el fluido.

(2.20)95.c = <u>es (1-eb</u>) To U $(\rho_{s}-\rho) q (W_{s}/u-tan\beta)$ donde: $q_{B,C}$ = transporte de carga suspendida (m²/s) $e_{s} = factor de eficiencia (=0.02) (-)$ $e_b = factor de eficiencia (=0.01) (-)$ $\tau_{b} = cortante (N/m^2)$ u= velocidad (m/s) Ws=velocidad de caída de partícula (m/s) $\beta =$ ángulo de reposo (-) Bijker (1971): Basado en el concepto de Einstein (1950), propone: $q_{5,c} = 1.83 q_{b,c} [l_2 + l_1 ln (33h/ks)]$ (2.21)qb,c= transporte de carga de lecho

a=ks=nivel de referencia 11 y l2= integrales de Einstein (ec 2.17)

 $q_{b,c} = b_{u,c} d_{50} e^{-0.27/(\mu \theta)}$

θ= parámetro de movilidad
μ= factor de forma de lecho= (c/c')^{1.5}
c= coeficiente de Chézy
c'= coeficiente de Chézy relacionado con el grano
k= coeficiente=5

van Rijn (1984):

Se apoya en una distribución parabólica-lineal de concentración, de velocidad logarítmica y con una corrección para altas velocidades, obtiene:

$$q_{9,c} = \underbrace{\mu \cdot c c_{a}}_{\kappa} (\underline{a})^{Z'} \left[\int_{a}^{c^{5}} (\underline{h-z})^{Z'} \ln(\underline{z}) + \int_{a,5h}^{b} e^{-4Z'} (z/h - 0.5) \ln(\underline{z}) dz \right]$$
(2.23)
$$\kappa h \cdot a \qquad z \qquad zo \qquad zo$$

2.7 FORMULACION MATEMATICA

2.7.1. Superficies sólidas

Ludwig Prandtl y Theodore von Kármán dedujeron que el perfil de forma de la capa límite consiste de una capa interior, una exterior y, además, de una intermedia traslapada entre estas dos:

Capa interior: el esfuerzo viscoso (molecular) domina

Capa exterior: el esfuerzo turbulento domina

Capa intermedia: ambos tipos de esfuerzos son importantes, el perfil conecta las regiones exteriores e interiores.

Para la ley interna. Prandtl (1933) infirió que el perfil dependería del esfuerzo de pared cortante, de las propiedades del fluido y de la distancia "y" de la pared. Esto es:

 $u=f(\tau_w,\rho,\mu,y)$

Por otro lado, para la capa exterior, Kármán dedujo en 1930 que la pared actúa sólo como un medio de retraso, reduciendo la velocidad local u(y) debajo de la velocidad de corriente U_e, en forma independiente de la viscosidad μ , pero dependiente del esfuerzo cortante de pared tw. del ancho de capa δ y del gradiente de presión dpe/dx:

$$U_{e}-u = f(\tau_{w}, \rho, y, \delta, \underline{dp_{e}})$$

Finalmente, para la capa traslapada simplemente se especifica que las funciones externas e internas se fusionan en una región finita intermedia:

Uinterna = Uexterna

Mediante el uso de análisis dimensional, la ley interna queda:

donde:

 $u^* = (\tau w / \rho)^{1/2}$

(2.24)

La variable u* tiene unidades de velocidad y es llamada velocidad de cortante de pared. Así mismo, por análisis dimensional para la ley externa:

$$\frac{be - u}{u^*} = g(y/\delta, \xi)$$

$$u^*$$

$$\xi = \underbrace{\delta}{tw} \frac{dpe}{dx}$$
(2.25)

A cualquier posición dada la función $g(y/\delta)$ dependerá del gradiente de presión y por lo tanto de ξ .

Dándole a & un valor particular, entonces la función de traslape se resuelve igualando los perfiles interno y externo:

 $\underline{u} = f(\underline{du^* y}) = \underline{U}e - g(\underline{y})$ $\underline{u^* v \delta} u^* \delta$

Las variables internas son:

 $\underline{u} = \underline{1} \ln \underline{y} \underline{u}^* + B$ $\underline{u}^* \kappa \quad v$

Las variables externas son:

 $\frac{U_{e}-u}{u^{*}} + A \qquad (2.26)$

κy B son constantes para flujo turbulento y A varía con el gradiente de presión ξ.

La ley logarítmica de pared se usará en el modelo k- ε en la siguiente sección.

2.7.2. El modelo k-e

Las dos ecuaciones que representan este modelo, son para un flujo elíptico (fuera de la capa límite), con número de Reynolds alto. Energía cinética turbulenta:

$$\frac{\delta k}{\delta t} + u \frac{\delta k}{\delta t} + w \frac{\delta k}{\delta z} = \frac{\delta [v t \delta k]}{\delta t} + \frac{\delta [v t \delta k]}{\delta t} + \frac{\delta [v t \delta k]}{\delta z} + \frac{\delta [v t \delta k]}{\delta z} + \frac{\delta [v t \delta k]}{\delta z} + \frac{\delta k}{\delta z}$$
(2.27)

Rapidez de disipación:

$$\frac{\delta \mathbf{\hat{e}} + u \delta \mathbf{\hat{e}} + v \delta \mathbf{\hat{e}} = \delta \left[u t \delta \mathbf{\hat{e}} \right] + \delta \left[u t \delta \mathbf{\hat{e}} \right] + \delta \left[u t \delta \mathbf{\hat{e}} \right] + C1P_k \mathbf{\hat{e}} + C2 \mathbf{\hat{e}}^2$$
(2.28)
$$\delta t \quad \delta \mathbf{x} \quad \delta \mathbf{y} \quad \delta \mathbf{z} \quad \delta \mathbf{x} \quad \delta \mathbf{y} \left[\sigma \epsilon \delta \mathbf{y} \right] \delta \mathbf{z} \left[\sigma \epsilon \delta \mathbf{z} \right] \quad \mathbf{k} \quad \mathbf{k}$$

donde Pk es la rapidez de producción de k, que se determina a su vez a partir del tensor de esfuerzos turbulento. $\sigma_k y \sigma_{\epsilon}$ son números de Prandtl, que relacionan la difusión turbulenta de k y ϵ (v_k , v_{ϵ}) con la viscosidad turbulenta : $\sigma_k = v_t/v_k$ y $\sigma_{\epsilon} = v_t/v_{\epsilon}$. La viscosidad turbulenta está dada por:

$$v_t = \frac{C\mu k^2}{\varepsilon}$$
(2.29)

Las cinco constantes empíricas en estas relaciones tienen los siguientes valores de acuerdo con Launder y Spalding (1974):

 $C\mu = 0.09$ $C_1 = 1.44$ $C_2 = 1.92$ $\sigma_k = 1.0$ $\sigma_c = 1.3$

Estos valores no son universales, desafortunadamente, sino que tienen que ser modificados para casos como chorros y flujos de recirculación.

Dado que la viscosidad molecular y los efectos de capa límite son omitidos, el modelo debe usarse sólo para capas exteriores y capas traslapadas. Cerca de la pared, se asume que la ley logarítmica se mantiene. Los cálculos de k- ε comienzan en un punto y_p en la región logarítmica, donde las variables son calculadas como sigue:

El uso de las funciones de pared mencionadas son discutidas en detalle por Launder y Spalding (1974) y por Gossman(1969).

El modelo k-e es utilizado para altos números turbulentos de Reynolds, no cercanos a la pared. Al disminuir el número de Reynolds, las constantes C μ y C2, al menos, se vuelven variables. Entonces ajustando el modelo k-e, de la ley logarítmica para pared lisa resulta:

$$u^{+}=1 \ln y^{+} + A$$
 (2.31)

donde:

u+=velocidad adimensional= u_{ree}/u* u_{ree}= velocidad resultante paralela a la pared y+= distancia adimensional a la pared= (u*y)/v A= constante

haciendo

$$A = \ln (e^{\kappa A/\kappa})/\kappa$$

donde « es la constante de von Kármán, la ecuación 2.31 puede escribirse:

$$u^{+}=\underline{1}\ln (Ey^{+})$$

$$\kappa$$
donde:
$$E = e^{\kappa \Lambda}$$
(2.32)
(2.32)
(2.33)

La ley logarítmica para una pared rugosa es:

$$u^{+} = \underline{1} \ln(y/\kappa) + B$$
(2.34)

donde B es una constante. Arreglando esta ecuación como la 2.32:

$$u^{+}=\underline{1}\ln(y/\kappa) + \underline{1}\ln(e^{\kappa B})$$

$$\kappa \qquad \kappa \qquad (2.35)$$

Dado que y/ κ =y+/k+, la ecuación 2.35 se escribe:

$$\mu^{+} = \underline{1} \ln(y^{+}/k^{+}e^{(\kappa B)})$$
(2.36)

donde:

k+=ku*/υ

Por lo que la ecuación 2.36 se reduce a:

Esta ecuación 2.37 sirve para encontrar el coeficiente local.de fricción "s" definido como:

9 =	T_ _	(2.38)
	pures ²	

Como el esfuerzo de fricción está dado por:

τ=ρu*2	(2.39)
-	

entonces s es igual a:

(2.40) $g = 1/(u^+)^2$

Substituyendo esta expresión en la ecuación logarítmica de pared, y desarrollando se obtiene que:

(2.41) $\mathfrak{S} = (\kappa / \ln(Ey^+))^2$

y dado que Re=u+y+, la ecuación 2.41 se reduce a:

(2.42) $s = (\kappa/\ln(E Re s^{1/2}))^2$

La ecuación 2.42 permite determinar el coeficiente de fricción local de manera iterativa. El valor de E va a depender de la rugosidad de la superficie.

27

(2.37)
Lisa
$$(0 \le k \le 3.7)$$
:
E = Em = $e^{k/A}$
A=5.0
Transición $(3.7 \le k \le 100)$:
E = $[\alpha(k+/\beta)^2 + (1-\alpha)/Em^2]^{1/2}$
donde:
 $\alpha = (1+2 X_{3c}^3 - 3 X_{2c}^2)$
 $X_c = 0.02248(100-k+)(k+)^{-0.5}$
 $\beta = 29.7$
Rugosa $(k+>100)$:
E = β

(2.43)

A partir del coeficiente s se obtiene el término fuente de la ecuación de cantidad de movimiento para cada velocidad paralela a la pared en las celdas inmediatas a la misma. Este término es la fuerza que produce el esfuerzo cortante sobre la pared y está dado por:

64

 $S\phi = \tau A = \sigma A \rho U_{res}^2$ (2.44)

De acuerdo a Launder y Spalding, para las celdas inmediatas a una pared, el valor de k y e se debe fijar con los valores siguientes:

kp == <u>5 U</u>2 0.090.5

k+

$$p = \frac{k^{1.5} (0.1643/m)}{L}$$

donde L es la distancia del piso al primer nodo

2.7.3. Ecuación de continuidad

La ecuación de continuidad de masa está dada por:

 $\frac{\delta u}{\delta x} + \frac{\delta w}{\delta z} = 0$ (2.46) $\frac{\delta z}{\delta z}$

Donde u, v y w son las componentes de velocidad en cada una de las direcciones coordenadas x,y,z.

2.7.4. Ecuación de cantidad de movimiento

Para la dirección x:

$$\rho \begin{bmatrix} \delta \underline{\lambda} + u \delta \underline{\lambda} + v \delta \underline{\lambda} + w \delta \underline{\lambda} \end{bmatrix} = \rho \underline{\beta} \times - \frac{\delta \underline{\lambda}}{2} + \frac{\delta}{2} \begin{bmatrix} 2\mu \delta \underline{\lambda} + \frac{\delta}{2} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta - \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix} + \frac{\delta}{2} \begin{bmatrix} \mu \begin{bmatrix} \delta \underline{\lambda} + \delta \underline{\lambda} \end{bmatrix} \end{bmatrix}$$

Para la dirección y:

 $\rho\begin{bmatrix}\underline{\delta v} + u\underline{\delta v} + v\underline{\delta v} + w\underline{\delta v} \\ \delta t & \delta x & \delta y & \delta z\end{bmatrix} = \rho g_y - \underline{\delta p} + \underline{\delta} \begin{bmatrix} \mu \begin{bmatrix} \underline{\delta u} + \underline{\delta v} \\ \delta y & \delta x \end{bmatrix} \end{bmatrix} + \underline{\delta} \begin{bmatrix} 2\mu \underline{\delta v} \\ \delta y \end{bmatrix} + \underline{\delta} \begin{bmatrix} \mu \begin{bmatrix} \underline{\delta v} + \underline{\delta w} \\ \delta z & \delta y \end{bmatrix}$

Para la dirección z:

29

(2.45)

$$\rho \begin{bmatrix} \underline{\delta w} + u \underline{\delta w} + v \underline{\delta w} + w \underline{\delta w} \\ \delta t & \delta \times & \delta y & \delta z \end{bmatrix} = \rho g_z - \underline{\delta p} + \underline{\delta} \begin{bmatrix} \mu \begin{bmatrix} \underline{\delta u} + \underline{\delta w} \\ \delta z & \delta \times \end{bmatrix} + \underline{\delta} \begin{bmatrix} \mu \begin{bmatrix} \underline{\delta v} + \underline{\delta w} \\ \delta z & \delta \end{bmatrix} + \underline{\delta} \begin{bmatrix} 2\mu \underline{\delta w} \\ \delta z \end{bmatrix}$$
(2.47)

2.7.5. Ecuación de transporte de sedimentos

El transporte de sedimento suspendido puede ser calculado con la ecuación de convección-difusión para la concentración de sedimento, C

$$\frac{\delta C}{\delta t} + u \frac{\delta C}{\delta t} + w \frac{\delta C}{\delta c} = \frac{\delta}{\delta} \left(\Gamma \frac{\delta C}{\delta c} \right) + \frac{\delta}{\delta} \left(\Gamma \frac{\delta C}{\delta c} \right)$$
(2.48)
$$\delta t \quad \delta x \quad \delta y \quad \delta z \quad \delta x \quad \delta y \quad \delta y \quad \delta z \quad \delta z$$

Para calcular el transporte turbulento, se recurre a un modelo de turbulencia con base en el concepto de difusividad turbulenta

$$-vC = \Gamma \frac{\delta C}{\delta y}$$
(2.49)

Donde Γ :

$$\Gamma = y_1 \tag{2.50}$$

donde σ es el número de Schmidt que se puede considerar constante e igual a 0.7, considerando que el transporte de masa y cantidad de movimiento son semejantes (Stamou (1989)).

En condiciones de equilibrio, el flujo hacia abajo debido a la gravedad es igual al flujo hacia arriba por la turbulencia. Entonces la deposición de sedimentos es igual a la resuspensión de los mismos, y no hay acumulación o erosión en el fondo. En este caso el flujo ha alcanzado su capacidad máxima de transporte de sedimentos q_{p.m} (el flujo está saturado), y no hay variación longitudinal, esto es: dqp.m/dx = O

30

En condiciones de no equilibrio se tiene:

$$\frac{vr}{\delta C} + vC = D - F = -\frac{dq_{P}}{dx}$$
(2.51)
$$\sigma \delta y \qquad dx$$

donde D es la rapidez de deposición de sedimentos en la frontera del arrastre de fondo (igual a vCb), y F es la resuspensión. El problema para modelar el transporte de sedimentos en condiciones de no equilibrio es que no se conoce a priori esta condición de frontera.

Para el caso presente se consideran condiciones de equilibrio, por lo que se asume que D = F, y en consecuencia no se modela el arrastre de fondo. Las partículas suspendidas de sedimentos se suponen como un material discreto.

CAPITULO III

MODELO NUMÉRICO

3.1.Transporte de sedimento por suspensión.

El transporte por suspensión se modela a partir de la ecuación de transporte escalar (concentración), ecuación (2.48). Dicho escalar, que representa la concentración del sedimento, no afecta la hidrodinámica del flujo, ya que solamente es un marcador transportado por el fluido. Se puede reescribir como:

 $\frac{\delta C}{\delta t} + \sqcup \frac{\delta C}{\delta x} + \vee \frac{\delta C}{\delta z} = \frac{\delta}{\delta x} \left(\Gamma \frac{\delta C}{\delta z} \right) + \frac{\delta}{\delta x} \left(\Gamma \frac{\delta C}{\delta z} \right) + \frac{\delta}{\delta x} \left(\Gamma \frac{\delta C}{\delta z} \right)$ (3.1) $\delta t \quad \delta x \quad \delta y \quad \delta z \quad \delta x \quad \delta y \quad \delta y \quad \delta z \quad \delta z$

A esta ecuación difusiva-convectiva se le añade un término fuente producto de la convección creada por la velocidad de sedimentación de las partículas, ésto es, dicha fuente modela el efecto gravitatorio sobre el sedimento:

$$V_{\theta} \frac{\delta C}{\delta y}$$
 (3.2)

La ecuación resultante de la suma de las ecuaciones 3.1 y 3.2, es la expresión matemática que se utiliza para modelar el transporte de sedimento por suspensión, siendo una ecuación para cada tamaño representativo de partícula.

Si se observa el término fuente anterior se ve que tiene, en general, un signo negativo debido a la derivada parcial (concentraciones menores a alturas mayores). El efecto numérico de esta fuente es que quita sedimento (concentración), del dominio computacional para crear con ésto un perfil en equilibrio. Este sedimento que en realidad cae a través de la columna de fluido al piso del canal, desde el punto de vista de la simulación numérica se elimina.

31

3.2 Condiciones de frontera

Siendo las coordenadas cartesianas, y: vertical, x: transversal, z: longitudinal

3.2.1. Condiciones de frontera para la ecuación de cantidad de movimiento

-Velocidad uniforme a la entrada -Salida convectiva -En la superficie libre: <u>dv</u> = 0 dy -En las paredes: fricción Sø = Asv2p y la velocidad de pared, v_{pared} = 0

3.2.2. Condiciones de frontera para la conservación de masa

-Gasto uniforme a la entrada

-A la salida Po de referencia

-En la superficie libre: Gasto=0

3.2.3. Condiciones de frontera para el modelo de turbulencia

Energía turbulenta (k):

-Entrada: k=3.3u*2

-La salida es convectiva, o sea que sólo el flujo por convección afecta a la variable en esta frontera. En otras palabras el transporte difusivo es cero.

dy

-Pared: $k = u^{*2}/Cv^{0.5}$ donde $u^{*2} = 0.004uo^2$ y u^* es calculado de los factores de fricción para flujo turbulento en canal, y uo es la velocidad de entrada.

3.2.4. Condiciones de frontera para la rapidez de disipación turbuienta:

-Entrada: $\varepsilon = u^{*2}uo/h$, donde $u^{*}=0.004uo^{2}$, uo=velocidad de entrada, h=tirante.- Salida convectiva-Superficie: <math>de = 0 dy-Pared: $\varepsilon = \frac{k^{1.5}(0.1643/\kappa)}{L}$ L=distancia del piso al primer nodo

3.2.5. Condiciones de frontera para las concentraciones del sedimento

-Entrada: concentración uniforme -Salida convectiva

3.3.Condiciones iniciales

No existen condiciones iniciales específicas, se pueden añadir algunas como el perfil de concentraciones, perfil de velocidades, concentración inicial en ciertas celdas (en el piso por ejemplo), etc. Sin embargo, su implementación no es obligatoria.

3.4.Método de solución

Cada una de las ecuaciones de transporte descritas en la sección 2.7 se discretiza utilizando el método de volumen finito. Es decir, el dominio de solución es subdividido en pequeños volúmenes de control, asociando a cada uno de ellos un punto nodal. Las variables escalares y la presión son almacenadas en las caras de los volúmenes localizadas entre los puntos nodales. De esta manera, los volúmenes de control para las velocidades quedan defasados con respecto a los empleados para las variables escalares.

Este método de discretización es empleado por PHOENICS, que es el código utilizado para llevar a cabo las simulaciones numéricas [Ludwig et al (1990)] que se presentan en este estudio.

El algoritmo de solución se basa en el procedimiento iterativo de Patankar y Spalding, SIMPLE [Patankar (1972)], pero es modificado de acuerdo al algoritmo de Spalding (1982), SIMPLEST. En términos generales, las variables escalares tales como k, y e, y las concentraciones, se resuelven utilizando el método implícito de Stone (1968). En seguida, las velocidades se obtienen al resolver las ecuaciones de cantidad de movimiento utilizando los valores de presión de la iteración previa; posteriormente, la ecuación de continuidad es ajustada resolviendo una ecuación de corrección de presión que determina los ajustes requeridos para las velocidades y las presiones. Este procedimiento es repetido varias veces hasta que la solución cumple con un criterio de convergencia especificado.

CAPITULO IV

4.1 ANALISIS DE RESULTADOS

El modelo numérico desarrollado e implantado en el código numérico PHOENICS, se calibró y comprobó con datos experimentales reportados en la literatura de dos sedimentadores, siendo uno de ellos bidimensional y el otro tridimensional. Adicionalmente, se llevaron a cabo pruebas empleando dos esquemas diferentes de discretización del término fuente que se incluye en la ecuación de transporte de sedimentos.

4.1 Sedimentador tridimensional

El sedimentador tridimensional mostrado en la figura 4.1 es el reportado por Olsen y Skoglund [5] que se encuentra en el SINTEF (Laboratorio Hidrotécnico de Noruega). En él hicieron varias mediciones, las cuales fueron proporcionadas directamente por dichos autores, y en su artículo reportan los resultados obtenidos por ellos.

Las características del sedimento se muestran en la tabla 4.1. Así mismo, los puntos donde fueron tomadas las mediciones de la concentración de sedimentos se ilustran en la figura 4.2, mientras que la tabla 4.2 muestra las coordenadas y concentraciones de los tres perfiles.

Figura 4.1 Sedimentador tridimensional, dimensiones en m. a) vista de planta, b) vista lateral

Tamaño	Diámetro (mm)	Vel. sed. (cm/s)	Gasto (kg/s)
1	0.45	7.0	0.0625
2	0.30	4.0	0.0625
3	0.20	2.5	0.0625
4	0.10	0.8	0.0625

Tabla 4.1. Características del sedimento

Figura 4.2. Puntos de medición de concentración de sedimento

4.1.1 Mallado

Para este sedimentador se realizaron dos mallados, el primero de 11x11x41 y el segundo de 11x21x60 en las direcciones x,y,z, respectivamente, es decir, se

Largo (m)	Ancho (m)	Alto (m)	concentración (m3sed/m3agua)
9.25	0.5	1.3 0.8 0.4 0.07	0.0001634 0.0002169 0.0002163 0.0002205
14.75	0.5	1.2 0.6 0.3 0.05	0.00009738 0.0001462 0.00013 0.0001412
19.25	0.5	1.2 0.5 0.203 0.07	0.00005073 0.00008222 0.0001095 0.0001065

emplearon un total de 13 860 volúmenes de control. El segundo mallado se muestra en la figura 4.3. El tanque sedimentador fue dividido en cuatro secciones: para el primer mallado la entrada de 3 m tiene asignadas 5 celdas, la segunda de 0.7 m tiene 11 celdas, la tercera de 5.1 m con 15 celdas y la cuarta de 9.2 m tiene 20 celdas. La distribución de celdas en cada tramo es uniforme.

El número de celdas para el segundo mallado es el mismo en x pero el número de celdas en z es mayor: 60, con 15, 10, 15 y 20 celdas respectivamente para cada sección, y con 21 celdas en y. El objetivo de haber dividido el tanque en cuatro secciones con diferente distribución de celdas, fue el poder tener una mayor resolución del comportamiento hidrodinámico y de los sedimentos en aquellas áreas que se consideran de mayor importancia.

Debido a que las velocidades a la salida del sedimentador eran afectadas considerablemente por la turbulencia, lo que modificaba a su vez el comportamiento de los sedimentos, el número de Prandit turbulento fue variado de 1.3 a 0.9 siguiendo la recomendación de Olsen y Skoglund [5]. Al hacer las respectivas simulaciones para dichos números de Prandit, se notó un cambió muy favorable y las simulaciones restantes se hicieron con el número de Prandit 0.9.

4.1.2. Perfiles de velocidad

En la figura 4.4 se muestran los resultados de cuatro diferentes casos comparando los perfiles de velocidad vertical medidos a diferentes distancias sobre la línea de flujo con los perfiles obtenidos a partir del modelo numérico. Cada uno de los casos difiere en cuanto a la densidad de la malla y a la asignación de rugosidad. Dichas pruebas fueron indispensables para tratar de reproducir los perfiles de flujo de la manera más correcta posible, para así concentrar el esfuerzo en la formulación y predicción del transporte de sedimentos.

El caso A utiliza una malla de 11×11×41 y cuenta con rugosidad de 0.1 en los primeros

3,7 m. El caso B es el mismo que el A, sólo que esta vez la rugosidad está en todo el canal. Para el caso C se utiliza una malla de 11×21×60 y, al igual que el caso B, tiene rugosidad en todo el canal. Finalmente el caso D tiene el mismo mallado que el C pero, como en el caso A, la rugosidad sólo está asignada los primeros 3.7 m.

La zona de mayor interés en esta figura es la zona de expansión, ya que ahí se presentan los efectos más importantes de turbulencia. Como se puede notar, los casos que concuerdan con los perfiles de velocidad medidos en esta zona. son el B y el C, lo que indica que la rugosidad es más correcta en estos casos que en el A y D. También se puede notar que el mallado para el caso B, que es menos fino que el C. mejor concuerda con los demás perfiles de velocidad. Las distancias de los diferentes perfiles de velocidad aquí mostrados son: 4 m. 6 m. 8 m. 10 m y 12 m. medidos desde el origen.

Aún cuando desde el punto de vista hidrodinámico resulta evidente que asignar rugosidad a todo el canal arroja los mejores resultados, en la siguiente sección se justifica, a partir de los resultados de concentración, el uso de rugosidad de manera parcial.

4.1.3. Perfiles de concentración

En la figura 4.5 se muestran perfiles verticales de concentración de sedimentos en la línea central de fiujo. De manera global, todos los casos se ajustan bien a los perfiles medidos, notándose una mejor correlación en los casos A y D, siendo este último el que mejor los representa en la primera sección.

Equiparando los resultados obtenidos en todos los casos tanto para la hidrodinámica como para el comportamiento de sedimentos, se puede elegir al caso D como el que más asemeja a los valores medidos, aunque en sí, entre los 4 casos no hay diferencias muy marcadas.

40

Fig.4.3 Mallado de 11x21x60 celdas del sedimentador tridimensional

.

Fig.4.4 Perfiles de velocidad verticales obtenidos y medidos a lo largo del canal. Las líneas corresponden a los valores obtenidos y las cruces a los medidos.

Fig.4.5. Perfiles de concentración verticales a lo largo del canal. Las líneas son los valores obtenidos y las cruces los medidos.

43

4.2 Sedimentador bidimensional

Este sedimentador se encuentra en Sarnia, Canadá y ya ha sido estudiado ampliamente por varios autores, entre ellos Stamou-Rodi [1],Dobbins (1994),Camp (1946) y Abdel-McCorquodale (1985). Las características del sedimento son las que se muestran en la tabla 4.3.

4.2.1. Mallado

El mallado que se realizó es de 60x30 celdas y los cálculos se realizaron para tres valores diferentes de flujo unitario: 37, 60 y 110 m/d.

4.2.2 Perfiles de velocidad y de sedimentos

Las figuras 4.6 y 4.7 muestran la comparación entre los perfiles de velocidad y concentración obtenidos y los medidos para el caso de flujo intermedio de 60m/d.

Como se puede observar en la figura 4.6, los perfiles de velocidad obtenidos no concuerdan con los medidos. esto era de esperarse ya que en la realidad este sedimentador cuenta con dos bafles a la entrada, ninguno de los cuales llega a la superficie. Este arregio provoca que el flujo sea tridimensional, formando un zona de separación justo después de los bafles y extendiendose los vórtices a lo largo del canal. A pesar de la discrepancia en la distribución de velocidad, los perfiles de concentración mostrados en la figura 4.7 indican una buena correlación entre los datos experimentales y los numéricos. Esto se puede explicar si se observa que para

Tamaño	Vel. Sedim.	Fracción
	(mm/s)	(%)
1	2.25	40
2	.1.5	15
3	1.1	15
4	0.9	5
5	0.56	5
6	0	20

table 4.3. Sedimentos tanque bidimensional

Fig.4.6 Perfiles de velocidad obtenidos y medidos

fig 4.7 Perfiles de concentración para el sedimentador bidimensional.

la profundidad a la cual fueron medidas las concentraciones, los valores de velocidad también coinciden en general, ya que éstos últimos difieren físicamente a 1 m del fondo, donde el flujo se acelera.

Por otro lado, al comparar las eficiencias de remoción con las medidas y las obtenidas por Stamou-Rodi (figura 4.8), si blen es cierto que en promedio los valores calculados concuerdan mejor con los medidos experimentalmente, no difieren mayormente de ambos.

fig. 4.8 Eficiencia de remoción. Serie 1-Stamou-Rodi, serie2valores medidos, serie3- valores calculados

4.3 Diferencias centradas v hacia adelante

Para un mismo caso del sedimentador tridimensional, se resolvió la ecuación de la concentración de sedimentos empleando dos esquemas distintos: con diferencias hacia adelante y diferencias centradas. Los resultados se pueden observar en la figura 4.9. Se puede apreciar que el esquema de diferencias hacia adelante es el que mejor se ajusta a los datos experimentales. Esto se puede asociar al hecho de que tal esquema es consistente con la forma en que son resueltas las ecuaciones por medio del algoritmo SIMPLEST ya descrito en la sección 3.4.

Fig. 4.9 Diferencias centradas 🛦 , diferencias hacia adelante 🔶 y valores medidos 🔳

48

CAPITULO V

APLICACIONES

5.1 Introducción

El diseño del desarenador de la obra de toma de un río se realiza con base en el rango de tamaños de los sedimentos esperados, los gastos que se tendrán para irrigación o bombeo, la topografía del sitio, la máxima concentración de sólidos en suspensión y el máximo tamaño de partículas que se admite aguas abajo de la obra, además de la capacidad de regulación de la obra hidráulica.

Si bien existen varios métodos posibles para efectuar la separación, el que se considera en este estudio es una separación por gravedad en un tanque rectangular con entradas, salidas y dimensiones de acuerdo a los planos que han sido proporcionados para la toma de Río Verde por la CNA. El propósito del estudio es determinar la eficiencia de remoción de sólidos en suspensión del desarenador para el rango de gastos que se tendrán en la obra de toma sobre dicho río. 6 y 12 m³/s.

Al no disponer de la granulometría de los sedimentos del río, los resultados que se presentan son para las distribuciones representativas de tamaños de partículas menores de 0.10 mm de diámetro. Es evidente que para D50 mayores, las velocidades de sedimentación son también mayores y por ende las eficiencias de remoción se incrementarán significativamente para los gastos considerados. Una vez conocidos los tamaños esperados y las magnitudes máximas de concentraciones de sólidos en suspensión, que pueden provocar un deterioro acelerado de los impulsores de las bombas por abrasión, se podrá utilizar el modelo desarrollado para cuantificar los gastos máximos que garanticen la remoción de los sólidos en suspensión de mayor riesgo, o bien proponer modificaciones al desarenador para mejorar su desempeño. Con el fin de obtener resultados de eficiencia que sean comparables con mediciones experimentales, en vez de emplear un valor promedio de la velocidad de sedimentación Vs para los sólidos en suspensión, se han considerado dos distribuciones de dicha velocidad en función de la fracción de masa de los sólidos en la entrada, figura 5.1.

5.2 Sistema de coordenadas

El problema general a ser considerado es el de un flujo incompresible, tridimensional y en estado permanente, de un canal que recibe el gasto determinado a través de un par de compuertas situadas en la parte inferior del canal, y descarga por la parte superior de un costado del canal. La figura 5.2 muestra esquemáticamente el sistema y las dimensiones principales del mismo.

Para discretizar el dominio, se emplea un sistema de coordenadas cartesianas, utilizando como variables independientes las direcciones x-y-z, adoptándose como coordenada vertical a y. Adicionalmente, se emplea una técnica de bloqueo de celdas, que impide el flujo a través de porciones sólidas sin incurrir en deformaciones innecesarias en el dominio computacional. La misma figura 5.2 presenta la malla empleada. El número total de celdas utilizadas en cada dirección es de 32x25x33, dando lugar a un total de 26,400 nodos. Este número de celdas y su distribución, fueron resultado de un estudio preliminar de independencia de malla que permite afirmar que los resultados obtenidos ya no varían apreciablemente con un mayor refinamiento de la malla.

5.3 Discusión de resultados

Los resultados que a continuación se presentan, están divididos en dos partes; la primera describe el comportamiento hidrodinámico del desarenador y posteriormente se muestran contornos de distribución espacial de sólidos en suspensión y se incluyen gráficas de tipo x-y que permiten comparar el funcionamiento del desarenador bajo

dos diferentes gastos de operación. Finalmente, se determina la eficiencia de remoción de l desarenador para las condiciones prescritas.

5.3.1. Hidrodinámica

Dada la absoluta similitud cualitativa en los patrones de flujo, se presentan solamente las figuras correspondientes al gasto de 6 m³/s. En la figura 5.3 se muestran los vectores de velocidad en los tres planos adyacentes a la descarga del desarenador. En el plano lateral es notorio que la máxima velocidad tiene lugar en la parte de entrada al canal, mientras que en la parte superior se genera una zona de recirculación que induce un flujo a contracorriente en los planos horizontales superiores. De igual manera, se detectan zonas muertas en las esquinas del desarenador indicada por el color y magnitud de las flechas correspondientes a los vectores. Esta vista global muestra el carácter tridimensional del flujo que excluye la posibilidad de un análisis bidimensional del problema.

En los planos transversales mostrados en la figura 5.4 correspondientes a la entrada, a un plano justo antes de la descarga y en plena descarga. respectivamente, se muestra la evolución de vórtices longitudinales. En el último plano se genera un vórtice tridimensional por la cercanía de la pared frontal. La compleja estructura tridimensional del flujo se aprecia más claramente en la figura 5.5, donde el plano intermedio revela los múltiples cambios de dirección del flujo. Las figuras 5.6, 5.7 y 5.8 muestran la vista de planta correspondiente a los planos horizontales de la figura anterior. En el fondo del desarenador, figura 5.6, se aprecian tree aspectos importantes: el efecto de la columna que separa las compuertas de entrada abarca prácticamente la mitad de la longitud, la generación de dos vórtices de diferente magnitud en las esquinas, en particular el punto de separación en la pared opuesta a la descarga se localiza aproximadamente en el primer tercio de la longitud del vertedor, lo cual explica la alta concentración de sólidos en suspensión que se analiza posteriormente. Una inspección del plano horizontal a la profundidad media del desarenador, figura 5.7, indica que la estructura encontrada en la parte inferior cambia completamente, formándose zonas de baja velocidad en la parte superior localizada por encima de las compuertas, la cual coincide con el plano del eje del vórtice, y generándose una aceleración del flujo debido a la presencia de la descarga. Finalmente, la figura 5.8 correspondiente al plano superior, muestra como a excepción de la zona de descarga. el flujo se mueve a contracorriente.

Las vistas laterales en el plano opuesto a la descarga, figura 5.9, y en el propio plano de descarga, figura 5.10, muestran las diferencias tanto en el tamaño como en la magnitud de las zonas de recirculación, que son determinantes en la cuantificación y distribución de la concentración de sólidos en suspensión.

5.3.2. Distribución de sólidos en suspensión

En la figura 5.11 se presentan dos vistas isométricas de los contornos de sólidos en suspensión, para los planos localizados en las fronteras, (a), y para los tres planos transversales correspondientes a la figura 5.4, (b). La escala de colores representa la concentración de sólidos, donde el valor azul corresponde al valor mínimo, y el rojo al máximo. Este valor es de 100 g/l, que es la condición de ingreso al desarenador, razón por la cual en la zona de las compuertas predomina dicho color.

En la zona de descarga, presentada en la figura 5.11a, se distinguen los gradientes en los planos horizontal y vertical, que indican por un lado la distribución no uniforme de sólidos en suspensión en todo el dominio. Y por otro, que las concentraciones de los mismos en la descarga tienen valores superiores a los 59 g/l.

La figura 5.11.b, por su parte, indica que las altas concentraciones de sólidos se mantienen cerca del fondo, con una distribución estratificada en el plano anterior a la descarga y casi uniforme en la mayor parte del último plano. Vale la pena hacer notar que en este último plano los valores se incrementan debido al arrastre del flujo proveniente de la parte inferior del desarenador. El plano correspondiente al ingreso de flujo, muestra que la formación del vórtice favorece a la zona de mínima concentración.

La figura 5.12 presenta vistas laterales correspondientes a dos planos verticales: uno en el lado opuesto de la descarga, (a), y otro en la sección de descarga. (b). De la figura 5.11.b resulta evidente que la distribución de los sólidos en suspensión cerca del vertedor rebasa los 59 g/l, llegando hasta un valor de 88 g/l en el extremo lejano del mismo. De igual manera, resulta claro que en el plano opuesto de la descarga se presentan los valores mínimos de concentración de sólidos en suspensión. La ausencia de color rojo en las proximidades de la descarga, indica la máxima eficiencia de remoción para las partículas más pesadas, es decir, aquellas con máxima velocidad de sedimentación.

Finalmente, en la figura 5.13 se grafica la eficiencia de remoción del desarenador para los dos gastos de operación. Como era de esperarse, la eficiencia se incrementa a medida que aumenta la velocidad de sedimentación y es mayor para el gasto más bajo, tendiendo a separarse a medida que aumenta el tamaño de las partículas. Cabe mencionar que estas curvas de eficiencia resultaron independientes de la distribución de fracciones de masa de sólidos en suspensión, porque no se refieren al comportamiento global del desarenador, lo cual concuerda con lo reportado en la literatura. Sin embargo, la eficiencia total de remoción sí depende tanto del gasto como de las fracciones de masa. Para el caso presente se obtuvieron los valores siguientes de eficiencia total, η :

N total	Vs1	Vs2
Q1=6,0001/s	19.3%	34.4%
Q2=12,0001/s	10.0%	17.9%

53

Fig. 5.1. Distribución de la velocidad de sedimentación para las diferentes fracciones de masa de los sedimentos. La serie 1 es la distribución Vs1 y la serie 2 es la distribución Vs2.

Fig.5.2. Representación geométrica del desarenador y discretización del dominio.

Fig. 5.4 Velocidades en tres planos transversales: en el ingreso, antes de la descarga y en la descarga.

Fig. 5.10 Vista lateral de las velocidades en el plano de la descarga

÷.

Fig. 5.11 Vistas isométricas de los contornos de concentración de sólidos en suspensión: a) en las fronteras. b) en los planos transversales

Fig. 5.12 Distribución espacial de la concentración de sólidos en suspensión en dos planos laterales: a) opuesto a la descarga, b) en la descarga

Fig.5.18 Eficiencia de remoción de sólidos en suspensión para el desarenador en estudio, considerando las diferentes fracciones de masa. La serie 1 es el gasto de 12,000 l/s. la serie 2 es el gasto de 6,000 l/s.

63

CAPITULO VI

Conclusiones

El modelo numérico desarrollado demostró ser eficaz en la simulación del comportamiento de los sólidos en suspensión y en la predicción de la remoción de los mismos. Esto fue especialmente significativo para el sedimentador tridimensional que presentaba una geometría compleja. Es de suponer que si se contara con la información completa del sedimentador bidimensional, su representación numérica en tres dimensiones arrojaría resultados aún más cercanos a la realidad, sobre todo en lo concerniente a los perfiles de velocidad.

Este modelo resulta ser una herramienta muy útil para realizar diseños preliminares de sedimentadores o en el rediseño de los mismos, ya que se pueden ensayar en forma relativamente sencilla modificaciones a la geometría que permiten mejorar su funcionamiento.

Al aplicar el modelo desarrollado al caso de la toma del río Verde descrito en el capítulo V, se determinó que la eficiencia total del desarenador depende tanto del gasto de operación como de la distribución de fracciones de masa, mientras que la eficiencia de remoción para un tamaño de partículas específico no depende de la diferencias en las fracciones de masa de las partículas en suspensión que ingresan al desarenador. Así, a partir de las simulaciones realizadas se ha podido cuantificar la diferencia de operar el desarenador con uno u otro gasto bajo las condiciones establecidas del problema.

Cabe mencionar que las concentraciones de sedimento utilizadas fueron bajas y que al tener concentraciones altas, presumiblemente afectaría al comportamiento del flujo al modificar la viscosidad del mismo y a la velocidad de sedimentación. Sin embargo, dichos efectos también podrían incorporarse al modelo.

Para una mejor representación del comportamiento del fenómeno de sedimentación, habría que añadirle al presente modelo el arrastre de sedimento en el lecho, incluyendo la resuspensión ya que actualmente sólo representa el transporte por suspensión.

Referencias

[1] Stamou, A.; Adams, E.; Rodi W. (1989) "Numerical Modeling of Flow and Settling in Primary Rectangular Clarifiers", Journal of Hydraulic Research, Vol.27,No.5,pp.665-682.

[2] Rijn,L. van(1989) "Sediment Transport by Currents and Waves" Delf Hydraulics, Holland

[3]Launder, B.E.; Spalding, D.B. (1974), Computer Methods in Applied Mechanics and Engineering, Vol3. pp.269-289.

[4] Patankar, S. (1980) "Numerical Heat and Fluid Flow" McGraw-Hill, USA.

[5] Olsen, N.; Skoglund, M. (1994) "Three Dimensional Numerical Modeling of Water and Sediment Flow in a Sand Trap", Journal of Hydraulic Research, Vol.32, No.6. pp. 833-844.

[6] Stamou, A.; Adams, E.; Rodi, W. (1989) "Numerical Modeling of Flow and Settling in Primary Rectangular Clarifiers", Journal of Hydraulic Research. Vol.27, No.5, pp.665-682.

Bibliografía

* Abdel-Gawad, S.M.; McCorquodale, J.A. (1985)"Numerical Simulation of Rectangular Settling Tanks", J. Hyd.Res, Vol. 23, No. 2, pp. 85-97.

*Adams, E.W.; Rodi, W. (1990)"Modeling Flow and Mixing in Sedimentation Tanks" J. Hyd. Div. ASCE Vol. 116. No. 7. pp. 85-97

*Ackers, P.(1983) "Sediment Transport Problems in Irrigation Systems Design" Developments in Hydraulic Engineering 1, London

* Celik,I;Rodi,W(1988) "Modeling Suspended Sediment Transport in Non equilibrium Situations", J. of Hyd.Div.ASCE,Vol.114,No.10,pp.1157-1191.

* Celik,I.;Rodi,W.(1991)"Suspended Sediment-Transport Capacity for Open Channel Flow", J. of Hyd. Div. ASCE,Vol.117,No.2,pp.191-204.

* Celik,I;Rodi,W(1991),"Suspended Sediment-Transport Capacity for Channel Flow", J. of Hyd. Div. ASCE,Vol.117,No.2,pp.101-114.

* Chow, V (1959) "Open Channel Hydraulics", McGraw-Hill, USA.

* De Vantier, B.; Narayanaswami, R. (1986)" A k- ε Based Model for Sediment Transport", Third International Symposium on River Sedimentation, The University of Mississippi, pp. 1407-1415.

* Engelund, F.(1965) "A Note on the Vedernikov's Criterion", La Houille Balnche, No. 6, pp. 801-802

* Graf, H (1971)"Hydraulics of Sediment Transport" McGraw-Hill, USA

* Hoyal,D;Atkinso,J;Depinto,J;Taylor, S.(1995)"Effect of Turbulence on Sediment Deposition", J. of Hyd. Div.,Vol.33,No.3,pp.349-360.

*Imam, E.; McCorquodale, J.A.; Bewtra, W.(1982)"Numerical Modeling of Sedimentation Tanks" J. of Hyd. Div. ASCE Vol.109. No.12.pp.1740-1754.

* Johns, B; Chescher, T.J; et al (1990) "The Modeling of Sand Wave Evolution from Suspended and Bed Load Transport of Sediment", J. of Hyd. Div. Vol.28, No.3, pp. 335-374.

* Kerssens,P;Prins,A;van Rijn,L(1979) "Model for Suspended Sediment Transport",J. of Hyd. Div.ASCE,al.105,No.NY5,pp.461-476.

* Launder, B.E.; Spalding, D.B. (1974), "Computer Methods in Applied Mechanics and Engineering", Vol. 3, pp. 269-289.

* Lyn,A;Stamou,I;Rodi,W"Density Currents and Shear Induced Flocculation in Sediment Tanks", J. of Hyd. Div.ASCE,Vol.118,No.6,pp.849-867.

 Mallin,M;Parry,J(1987) "Turbulent Heat and Momentum Transfer in Rough Tubes". Report CHAM/146,CHAM * Maza, J;(1989)"Manual de Ingeniería de Ríos, Erosión y Obras de Protección", Instituto de Ingeniería, UNAM.

* Nakagawa,H;Tsujimoto,T(1980)"Sand Bed Instability due to Bed Load Motion",J. of Hyd. Div. ASCE,Vol.106,No.HY12,pp.2029-2051.

* Ni,J.;Wang,G.(1991) "Vertical Sediment Distribution", J. of Hyd.Div. ASCE,Vol.117,No.9,pp.1184-1194.

* Odgaard, J.; Wang, Y. (1991) "Sediment Management with Submerged Vanes I: Theory", J. of Hyd. Div. ASCE, VOL. 117, No. 3, pp. 267-282.

* Olsen,N;Skoglund,M(1994)"Three Dimensional Numerical Modeling of Water and Sediment Flow in a Sand Trap". J. of Hyd. Div., Vol. 32, No. 6, pp. 833-844.

* Pacheco-C(1989) "Transport of Sediments: Analytical Solution", J. of Hyd. Res.27 No.4.pp.501-518.

* Stamou, A.; Adams, E.; Rodi, W. (1989)" Numerical Modeling of Flow and Settling in Primary Rectangular Clarifiers", J. of Hyd. Div, Vol. 27, No.5, pp. 665-682

* Raudkivi, A. (1993)"Sedimentation, Exclusion and Removal of Sediment from Diverted Water"A.A. Balkema, Rotterdam.

*Rijn,L van(1989) "Sediment Transport by Currents and Waves" Delf Hydraulics, Holland

* Rosten,H.;Worrel,J.(1988) "Generalized Wall Functions for Turbulent Flow Including Wall Roughness", Report CHAM/88/2,CHAM

* Teisson, Ch.; Latteux, B. (1986) "A Depth-Integrated Bidimensional Model of Suspended Sediment Transport" Third International Symposium on River Sedimentation, The University of Mississippi, pp.441-429.

* Vanoni, Vito (1977) "Sediment Engineering", ASCE Manual and Reports on

ESTA TESIS NO DEBE Salir de la Biblioteca

Engineering Practice, New York.

* White Frank (1991) "Viscous Fluid Flow", McGraw-Hill, Second Edition USA.

*Woo, H.S.; Julien, P.Y.; Richardson, E.V.(1989) "Suspension of Large Concentration of Sands", J. Hyd. Div. ASCE Vol.114.No.8.pp.888-899

* Zhou,S; McCorquodale,J;Vtasovic,Z.(1992) "Influence of Density on Circular Clarifiers with Baffles", J. of Hyd. Div. ASCE,Vol.118,No.6,p.829-847.

* Zyserman, J.; Fredsoe, J. (1994) "Data Analysis of Bed Concentration of Suspended Sediment", J. of Hyd. Div. ASCE, Vol. 120, No. 9, pp. 1021-1041.

Apéndice 1. Q1 del sedimentador tridimensional

Initialize the TURBULENT KINETIC ENERGY
 INIT(KE) - kein
 Initialize the KNETIC -ENERGY DICIPATION RATE
 INIT(EP) = epsin
 Initialize the USER VARIABLE 1
 FINIT(c.1) = 30.000E+00

Group 12. Convection and diffusion adjustments

Croup 13. Boundary & Special Source rg(7)=uin+1.60 PATCH(BFCENT, LOW, 1, NX, 1, NY,1,1,1,LSTEP) COVAL(BFCENT, PI, FIXFLU,RHO1+ uin) COVAL(BFCENT, W1, ONLYMS, uin) COVAL(BFCENT, W1, ONLYMS, 0.000E+00) COVAL(BFCENT, V1, ONLYMS, 0.000E+00) COVAL(BFCENT, E2, ONLYMS, 0.0001668) COVAL(BFCENT, C2, ONLYMS, 0.0001068) COVAL(BFCENT, C2, ONLYMS, 0.0001068) COVAL(BFCENT, C2, ONLYMS, 0.0001068) COVAL(BFCENT, C3, ONLYMS, 0.0001068) COVAL(BFCENT, C4, ONLYMS, 0.0001068)

 WALL Boundary Condition, Named FONDO PATCH(FONDO, SWALL, 1, NX, 1, 1, 1, NZ, 1, LSTEP) COVAL(FONDO, U1, CRND2, 0.000E+00) COVAL(FONDO, W1, GRND2, 0.000E+00) COVAL(FONDO, KE, CRND2, GRND2) COVAL(FONDO, EP, GRND2,GRND2) walla=0.001

WALL Boundary Condition, Named Pared1
PATCH(PARED1,wMALL,nx,nx, 1,ny,1,nz,1,LSTEP)
COVAL(PARED1, w1, GRND2, 0.000E+00)
COVAL(PARED1, K1, GRND2, 0.000E+00)
COVAL(PARED1, KE, GRND2,GRND2)
 WALL Boundary Condition, Named Pared2
PATCH(PARED2,ewALL,11, 1,ny,1,LSTEP)
COVAL(PARED2,ew1, GRND2, 0.000E+00)
COVAL(PARED2, V1, GRND2, 0.000E+00)
COVAL(PARED2, V1, GRND2,0RND2)

COVAL(PARED2, EP, GRND2, GRND2)

PATCH(SALIDA01,HIGH,1,NX,1,NY,NZ,NZ,1,LSTEP) COVAL(SALIDA01,P1,FIXP,0.0) COVAL(SALIDA01,U1,0NLYMS,SAME) COVAL(SALIDA01,V1,0NLYMS,SAME) COVAL(SALIDA01,V1,0NLYMS,SAME) COVAL(SALIDA01,C2,0NLYMS,SAME) COVAL(SALIDA01,C2,0NLYMS,SAME) COVAL(SALIDA01,C3,0NLYMS,SAME) COVAL(SALIDA01,C3,0NLYMS,SAME) COVAL(SALIDA01,C4,0NLYMS,SAME)

patch(sumidero,phasem, 1, nx, 1, ny, 1, nz, 1, 1step) coval(sumidero, c1, grnd, grnd) coval(sumidero, c2, grnd, grnd) coval(sumidero, c3, grnd, grnd) coval(sumidero, c4, grnd, grnd)

ii

Apéndice 1. Q1 del sedimentador tridimensional

surnidero=skip real(frac):frac=1.0 ra(1)=0.07+frac rg(2)=0.04+frac rg(3)=0.025+frac ra(4)=0.008+frac Group 14, Downstream Pressure For PARAB Group 15. Terminate Sweeps LSWEFP=5 restrt(o1.u1.v1.w1.ke.eo) Group 16. Terminate Iterations Group 17, Relaxation AUTOMATIC FALSE-TIME-STEP RELAXATION APPLIED TO UT relax(p1,linrlx,0.5) REAL(SCALEL, SCALEU);SCALEL = 1.000E-00;SCALEU = 1.000E+00 RELAX(U1.FALSDT, 1.000E+00+SCALEL/SCALEU) RELAX(V1.FALSDT, 1.000E+00+SCALEL/SCALEU) RELAX(W1,FALSDT, 1.000E+00+SCALEL/SCALEU) RELAX(KE,FALSDT, 1.000E+00+SCALEL/SCALEU) RELAX(EP,FALSDT, 1.000E+00+SCALEL/SCALEU) RELAX(c1.FALSDT, 1.000E+01+SCALEL/SCALEU) RELAX(c2,FALSDT, 1.000E+01+SCALEL/SCALEU) RELAX(c3.FALSDT. 1.000E+01+SCALEL/SCALEU) RELAX(c4.FALSDT, 1.000E+01+SCALEL/SCALEU) Group 18 Limits Group 19, EARTH Calls To GROUND Station Group 20. Preliminary Printout ECHO = T Group 21. Print-out of Variables Printout for the PREcIURE OUTPUT(P1.n.N.N.Y.Y.Y) OUTPUT(U1.n.N.N.Y.Y.Y) OUTPUT(V1,n,N,N,Y,Y,Y) OUTPUT(KE.n.N.N.Y.Y.Y) OUTPUT(EP.n.N.N.Y.Y.Y) OUTPUT(c1,n,N,N,Y,YY OUTPUT(c2,n,N,N,Y,Y,Y OUTPUT(c3,n,N,N,Y,Y,Y OUTPUT(c4.n,N,N,Y,Y,Y) OUTPUT(c5,n,N,N,Y,Y,Y) OUTPUT(c6.n.N.N.Y.Y.Y) OUTPUT(c7,n,N,N,Y,Y,Y) Group 22, Monitor Print-Out

Group 23.Field Print-Out & Plot Control

Frequency of tabulation/plots of Spot/Residuals Values
 (D0 NOT Reset)

NPLT=1

Print TABLES AND PLOTS of Spot-Values and Residuals

iii

Apéndice 1. Q1 del sedimentador tridimensional

11ABL=3

Croup 24. Dumps For Restarts Save the Final Flow Field in a RE-SIART File SAVE=T; NSAVE=CHAM STOP

.

Apéndice 2. Q1 del sedimentador bidimensional

TALK = F:RUN(1,1):VDU=0 GROUP 1, Run tille and other preliminaries. TEXT(SEDIMENTADOR VER STAMOU Y RODI) . Si LG(1)=1 tomara diferencias centradas LG(1) = F GROUP 2. Transience; time-step specification . GROUP 3. X-direction arid specification. Cartesian Grid Selected CARTES=T * Extent of the Domain in the X-Direction XULAST = 3.270E + 01 Number of Cells in the X-Direction NX=60 Equal Grid Spacing in the X-Direction CRDPWR(X,NX,XULAST, 1.000E+00) INTEGER(NXF01.NXL01): NXF01=1: NXL01=NX GROUP 4. Y-direction and specification. Extent of the Domain in the Y-Direction: 2,700E+00 ٠ Number of Cells in the Y-Direction NY = 30 Equal Grid Spacing in Subregion 1 SUBCRD(Y,1,15, 1.350E+00, 1.300E+00) INTEGER(NYF01,NYL01): NYF01=1: NYL01=15 Equal Grid Spacing in Subregion 2 SUBGRD(Y, 16, 24, 8.100E-01, 1.000E+00) SUBCRD(Y,16,24, 5.100E-01, 1.000E+00) SUBCRD(Y,16,24, 1.050E-00, 1.000E+00) INTEGER(NYF02,NYL02): NYF02=16: NYL02=24 Equal Grid Spacing in Subregion 3 SUBGRD(Y,25,30, 5.400E-01, 1.000E+00) SUBGRD(Y,25,30, 8.400E-01, 1.000E+00) SUBGRD(Y,25,30, 3.000E-01, 1.000E+00) INTEGER(NYF03,NYL03); NYF03=25; NYL03=30 GROUP 5, Z-direction arid specification. . CROUP 6. Body-fitted coordinates or grid distortion. GROUP 7. Variables stored, solved & named. SolvE(P1,u1,v1) solve(c1.c2.c3.c4.c5.c6) store(enut.c7.c8) ****** ********* CROUP 8. Terms (in differential equations) & devices.

Apéndice 2. Q1 del sedimentador bidimensional

```
GROUP 9. Properties of the medium (or media).
  .

    Set First-Phase Density Value

RH01 = 9.980E+02

    Set Laminar Kinematic Viscosity

ENUL = 1.080E - 06

    Set Schmidt Number for USER VARIABLE 1

PRI(c1) = 1.000
PRT(c2) = 1.000
PRI(c3) = 1.000
PRI(c4) = 1.000
PRI(c5)=1.000
PRI(c6)=1.000
PRI(ep)=0.400
PRT(ke) = 1.4

    Select K-E Turbulence Model

  ENUT = CMU * (Mixing-StrLen) * K**0.5

    EL1 = (CD + K++1.5)/E

TURMOD(KEMODL)
  store(ke,ep)

    GROUP 10. Inter-phase-transfer procectes and properties.

  .

    GROUP 11. Initialization of variable or porosity fields.

real(uin):uin=21E-3
real(kein.epsin):kein=(uin++2.0)+0.310
epsin=(0,1643*(kein)**1.5)/(0.30*1.3500)

    Initialize the PREc1URE

FIINIT(P1) = 1.000E - 10

    Initialize the X-DIRECTION VELOCITY COMPONENT

FIINIT(U1) = uin

    Initialize the Y-DIRECTION VELOCITY COMPONENT

FIINIT(V1) = 1.000E - 10

    Initialize the TURBULENT KINETIC ENERGY

FIINIT(KE) = kein

    Initialize the KINETIC-ENERGY DICIPATION RATE

FIINIT(EP) = epsin

    Initialize the USER VARIABLE 1

  FIINIT(c1) = 30.000E + 00
  ******************

    GROUP 12. Convection and diffusion adjustments.

    GROUP 13, Boundary conditions and special sources.

rg(7)=uin+2.70
PATCH(BFCENT, WEST, NXF01, NXF01, NYF01, NYL01,1,1,1,1)
COVAL(BFCENT, P1, FIXFLU,RHO1+ uin)
COVAL(BFCENT, U1, ONLYMS, uin)
COVAL (BFCENT, V1, ONLYMS, 0.000E+00)
COVAL (BFCENT, KE, ONLYMS, kein)
COVAL (BFCENT, EP, ONLYMS, epsin)
   COVAL(BFCENT, c1, ONLYMS, 1.500E+01)
   COVAL(BFCENT, c2, ONLYMS, 5.000E+00)
```

vi

COVAL(BFCENT, c3, ONLYMS, 1.500E+01) COVAL(BFCENT, c4, ONLYMS, 1.000E+01) COVAL (BFCENT, c5, ONLYMS, 1.000E+01) COVAL (BFCENT, c6, ONLYMS, 4.500E+01) COVAL(BFCENT, c1, ONLYMS, 4.000E+01) COVAL (BFCENT, c2, ONLYMS, 1,500E+01) COVAL (BFCENT, c3, ONLYMS, 1,500E+01) COVAL (BFCENT, c4, ONLYMS, 5.000E+00) COVAL (BFCENT, c5, ONLYMS, 5.000E+00) COVAL (BFCENT, c6, ONLYMS, 2.000E+01) OUTLET Boundary Condition, Named SALIDA01 PAICH(SALIDAO1, EAST, NXLO1, NXLO1, NYFO3, NYLO3, 1, 1, 1, 1) COVAL(SALIDA01, P1, FIXp, 0.000E+00) COVAL(SALIDAO1, KE, ONLYMS, SAME) COVAL (SALIDAO1, EP, ONLYMS, SAME) COVAL(SALIDAD1, c1, ONLYMS, SAME) COVAL (SALIDAO1, c2, ONLYMS, SAME) COVAL SALIDAD1, c3. ONLYMS, SAME) COVAL (SALIDAO1, c4, ONLYMS, SAME) COVAL(SALIDAO1, c5, ONLYMS, SAME) COVAL(SALIDAO1, c6, ONLYMS, SAME) WALL Boundary Condition, Named FONDO PATCH(FONDO, SWALL, NXF01, NXL01, NYF01, NYF01, 1, 1, 1, 1) COVAL(FONDO, U1, GRND2, 0.000E+00) COVAL(FONDO, KE, GRND2, GRND2) COVAL(FONDO, EP, GRND2, GRND2) PLATE Boundary Condition, Named PLATE01
 PATCH(PLATE01, WEST, NXF01, NXF01, NYF02, NYL03,1,1,1,1) COVAL(PLATED1, U1, FIXVAL, 0.000E+00) PLATE Boundary Condition, Named PLATE03 PATCH(PLATE03, EAST, NXL01, NXL01, NYF01, NYL02,1,1,1,1) COVAL(PLATEO3, U1, FIXVAL, 0.000E+00) patch(sumidero.phasem,2,nx-1,2,ny,1,1,1,1) coval(sumidero.c1.grnd.grnd) coval(sumidero.c2.grnd.grnd) coval(sumidero.c3.arnd.arnd) coval(sumidero.c4,arnd.arnd) coval(sumidero.c5.arnd.arnd) coval(sumidero.c6.grnd.grnd) real(frac);frac=1.0 rg(1)=0.0000+frac rg(2)=0.00055+frac ra(3)=0.00085+frac ra(4)=0.0011+frac rg(5)=0.0015+froc rg(6)=0.0022+frac GROUP 14. Downstream preclure for PARAB=.IRUE.. GROUP 15. Termination of sweeps. LSWEEP=200 restri(all) Number of Iterative Sweeps (Outer Iterations) RESREF(P1) = 1.000E - 10· Reference Residual for the X-DIRECTION VELOCITY COMPONENT

Apéndice 2. Q1 del sedimentador bidimensional

RESREF(U1) = 1.000E - 10 Reference Residual for the Y-DIRECTION VELOCITY COMPONENT RESREF(V1)= 1.000E-10 Reference Residual for the TURBULENT KINETIC ENERGY RESREF(KE) = 1.000E-10 Reference Residual for the KINETIC-ENERGY Dic LIPATION RATE RESREF(EP) = 1.000E - 10 Reference Residual for the USER VARIABLE 1 RESREF(c1) = 1.000E - 10RESREF(c2) = 1.000E - 10RESREF(c3)= 1.000E-10 RESREF(c4) = 1.000E - 10RESREF(c5) = 1.000E - 10RESREF(c6) = 1.000E - 10 GROUP 16. Termination of iterations. Linear-Iterations and Termination Criterion for P1 GROUP 17. Under-relaxation devices. Automatic False-Time-Step Relaxation Applied to U1 REAL(SCALEL, SCALEU):SCALEL= 9.000E-01;SCALEU= 2.200E-02 RELAX(U1,FALSDT, 3.000E+00+SCALEL/SCALEU) Automatic False-Time-Step Relaxation Applied to V1 RELAX(V1,FALSDT, 3.000E+00+SCALEL/SCALEU) Automatic False-Time-Step Relaxation Applied to KE RELAX(KE,FALSDT, 3.000E+00+SCALEL/SCALEU) Automatic False-Time-Step Relaxation Applied to EP RELAX(EP.FALSDT, 3.000E+00+SCALEL/SCALEU) Automatic False-Time-Step Relaxation Applied to c1 RELAX(c1.FALSDT, 2.000E+00+SCALEL/SCALEU) RELAX(c2.FALSDT, 2.000E+00+SCALEL/SCALEU) RELAX(c3.FALSDT, 1.000E+00+SCALEL/SCALEU) RELAX(c4.FALSDT, 1.000E+00+SCALEL/SCALEU) RELAX(c5.FALSDT, 1.000E+00+SCALEL/SCALEU) RELAX(c6.FALSDT, 1.000E+00+SCALEL/SCALEU) GROUP 18. Limits on variables or increments to them. · GROUP 19. Data communicated by satellite to GROUND. GROUP 20. Preliminary print-out. . Activate Printout of Satellite Data. ECHO=T GROUP 21, Print-out of variables. Printout for the PREc1URE OUTPUT(P1,n,N,N,Y,Y,Y) Printout for the X-DIRECTION VELOCITY COMPONENT OUTPUT(U1.n.N.N.Y.Y.Y) Printout for the Y-DIRECTION VELOCITY COMPONENT

Apéndice 2, Q1 del sedimentador bidimensional

```
OUIPUI(V1,n,N,N,Y,Y,Y)

    Printout for the TURBULENT KINETIC ENERGY

OUIPUI(KL,n,N,N,Y,Y,Y)

    Printout for the KIN IIC | NERCY DICTIPATION RATE

OUTPUT(LP,n,N,N,Y,Y,Y)

    Printout for the USER VARIABLE 1

OUTPUT(c1,n,N,N,Y,Y,Y)
001P01(c1,n,N,N,T,T,T)
001P01(c2,n,N,N,Y,Y,Y)
001P01(c3,n,N,Y,Y,Y)
001P01(c4,n,N,N,Y,Y,Y)
001P01(c5,n,N,N,Y,Y,Y)
OUTPUT(c6.n.N.N.Y.Y.Y)

    GROUP 22. Spot-value print-out.

    X-Direction Index of Spot-Value

IXMON=59

    Y-Direction Index of Spot-Value

IYMON=26
   ٠

    GROUP 23. Field print-out and plot control.

    Frequency of tabulation/plots of Spot/Residuals Values

    (DO NOT Reset)

NPLT=1

    Print TABLES AND PLOTS of Spot-Values and Residuals

IIABL=3
   .
        *********
   ....
   .

    GROUP 24. Preparations for continuation runs.

    Save the Final Flow Field in a RE-START File

SAVE =1: NSAVE = CHAM
```

STOP

C Este ground es el usado junto con QSEDINF1 para el primer C analisis del desatenador. PROCRAM MAIN c С THIS IS THE MAIN PROGRAM OF EARTH С Ċ (C) COPYRIGHT 1984, LAST REVISION 1989. Ĉ CONCENTRATION HEAT AND MOMENTUM LTD. ALL RIGHTS RESERVED. Č This subroutine and the remainder of the PHOENICS code are proprietary software owned by Concentration Heat and Momentum c Ĉ Limited, 40 High Street, Wimbledon, London SW19 SAU, England, č c č PROGRAM MAIN c Ĉ1 The following COMMON's, which appear identically in the č satellite MAIN program, allow up to 50 dependent variables to č be solved for (or their storage spaces to be occupied by č other variables, such as density). If a larger number is č required, the PARAMETER NUMPHI should be reset to the required č larger number. Numbers less than 50 are not permitted. PARAMETER (NUMPHI=50. NM=NUMPHI.NM4=NM+4) С COMMON/LGE4/L4(NM) 1/1 DB1/15(NM)/IDA1/11(NM)/IDA2/12(NM)/IDA3/13(NM)/IDA4/14(NM) 1/IDA5/I5(NM)/IDA6/I6(NM)/CI1/I7(NM)/CI2/I8(NM)/HDA1/IH1(NM) 1/GH1/H2(NM)/RDA1/R1(NM)/RDA2/R2(NM)/RDA3/R3(NM)/RDA4/R4(NM) 1/RDA5/R5(NM)/RDA6/R6(NM)/RDA7/R7(NM)/RDA8/R8(NM)/RDA9/R9(NM) 1/RDA10/R10(NM)/RDA11/R11(NM) 1/GR1/R12(NM)/GR2/R13(NM)/GR3/R14(NM)/GR4/R15(NM) 1/IPIP1/IP1(NM)/HPIP2/IHP2(NM)/RPIP1/RVAL(NM)/LPIP1/LVAL(NM) 1/IFPL/IPLO(NM)/RFPL1/ORPRIN(NM)/RFPL2/ORMAX(NM) 1/REPL3/ORMIN(NM)/IDA7/ID7(NM)/IDA8/ID8(NM) LOGICAL L1.L2.L3.L4.L5.DBCFIL.LVAL CHARACTER+4 IH1.IH2.IHP2.NSDA с COMMON/F01/19(NM4) COMMON/DISC/DBGFIL COMMON/LUNITS/LUNIT(60) С EXTERNAL WAYOUT С C 2 Set dimensions of data-for-CROUND arrays here. WARNING: the С corresponding arrays in the MAIN program of the satellite С (see SATLIT) must have the same dimensions. PARAMETER (NLG=20, NIG=20, NRG=100, NCG=10) С COMMON/LGRND/LG(NLG)/IGRND/IG(NIG)/RGRND/RG(NRG)/CGRND/CG(NCG) LOGICAL LG CHARACIER+4 CG С Ĉ3 Set dimensions of data-for-GREX arrays here. WARNING: the Ĉ corresponding arrays in the MAIN program of the satellite Ĉ (see SATLIT) must have the same dimensions. PARAMETER(NLSG=20, NISG=20, NRSG=100,NCSG=10) С COMMON/LSG/LSGD(NLSG)/ISG/ISGD(NISG)/RSG/RSGD(NRSG)/CSG/CSGD(NCSG)

x

LOGICAL LISGD CHARACIER+4 CSCD С C 4 Set dimension of patch-name array here. WARNING: the array c NAMPAT in the MAIN program of the satellite must have the č same dimension PARAMETER (NPNAM=1000) c COMMON/NPAT/NAMPAT(NPNAM) COMMON/LWFUN1/DOSKIN(NPNAM) COMMON/LWEUN2/DHCHKD(NPNAM) CHARACIER+8 NAMPAT С ĉ CONFIG FILE name declaration. COMMON/CNFG/CNFIG CHARACIER CNFIG+48 с C.5. The numbers in the next statement indicates how much computer C memory is to be set aside for storing the main and auxiliary С variables. The user may after them if he wishes, to accord С with the number of arid nodes and dependent variables he is c concerned with. PARAMETER (NFDIM=2500000) С COMMON F(NFDIM) С Č 6 The following three statements concern storage for the PATCH-wise CCCC variables. If more than 30 PATCH-wise variables are required NPVDM should be increased and the common block /LBPV/ in the include file GRDLOC15 should be lengthened. PARAMETER (NPVDM=31) COMMON/INDPV/NPVMX,NIMAX,NITOT,LOPV(NPVDM) С CALL SUB2(NPVMX,NPVDM,NIMAX.NPVDM) С CALL CNFGZZ(2) CALL EARSET(1) CALL OPENFL(6) С CALL MAIN1 (NEDIM.NUMPHI.NESG.NISG.NRSG.NCSG.NLG.NIG.NRG.NCG) CALL WAYOUT(0) STOP END C........... SUBROUTINE GROUND INCLUDE 'SATEAR' INCLUDE 'GRDLOC' INCLUDE 'GRDEAR' INCLUDE 'GRDBFC' c capp este include es para determinar areas y volumenes en BFC EQUIVALENCE (IZ, IZSTEP) С copp hay que comentar las 2 líneas siguientes para usar GRDBFC COMMON/NMFILS/NMFIL(60) CHARACTER NMFIL+48 C 1 Set dimensions of data-for-GROUND arrays here. WARNING: the С corresponding arrays in the MAIN program of the satellite

хi

```
С
       and EARTH must have the same dimensions.
       PARAMETER (NLG=20, NIG=20, NRG=100, NCG=10)
 С
       COMMON/LGRND/LC(NEG)/IGRND/IC(NIG)/RGRND/RG(NRG)/CGRND/CG(NCG)
       LOGICAL LG
       CHARACTER+4 CG
 С
 č
   2
       User dimensions own arrays here, for example;
 Ĉ
       DIMENSION GUH(10,10),GUC(10,10),GUX(10,10),GUZ(10)
       PARAMETER (NPNAM=1000)
       PARAMETER(NXDIM=100.NYDIM=100)
       DIMENSION GSEDIM(NYDIM, NXDIM), GYCOOR(NYDIM, NXDIM)
       DIMENSION gcag(NYDIM,NXDIM),gseval(NYDIM,NXDIM)
 С
 č
      COMMON/NPAT/NAMPAT(NPNAM)
      COMMON/LWFUN1/DOSKIN(NPNAM)
      COMMON/IWFUN2/DHCHKD(NPNAM)
      CHARACTER+8 NAMPAT
 С
 Ĉ3
      User places his data statements here, for example:
 С
       DATA NXDIM.NYDIM/10.10/
      SAVE varmar, altura, iindx1, iindx2, itime, itime1, itime2, ieasp
 С
 С
   4
      Insert own coding below as desired, guided by GREX examples.
      Note that the satellite-to-GREX special data in the labelled
C
C
C
      COMMONs /RSG/, /ISG/, /LSC/ and /CSG/ can be included and
      used below but the user must check GREX for any conflicting
c
      uses. The same comment applies to the EARTH-spare working
Ĉ
      grrays EASP1, EASP2....EASP20, In addition to the EASPs.
C
C
C
C
C
C
C
C
      there are 10 GRound-earth SPare arrays, GRSP1.....GRSP10.
      supplied solely for the user, which are not used by GREX. If
      the call to GREX has been deactivated then all of the arrays
      may be used without reservation.
č
      IXL = IABS(IXL)
      IF(IGR.EO.13) GO 10 13
      IF(IGR.EQ.19) CO TO 19
      GO TO (1,2,3,4,5,6,25,8,9,10,11,12,13,14,25,25,25,25,19,20,25,
     125,23,24),ICR
   25 CONTINUE
     RETURN
С
C--- GROUP 1. Run title and other preliminaries
C
    1 CO TO (1001,1002),ISC
 1001 CONTINUE
     call make(va2d)
     call make(arsp1)
С
č
     User may here change message transmitted to the VDU screen or
č
     batch-run log file.
     IF(IGR.EQ.1.AND.ISC.EQ.1) THEN
       CALL WRYT40('GROUND file is GROSEDIM.F of: 190392 ')
       CALL WRYT40('PHOENICS version number is :
                                                   1.5.3 ')
     ENDIF
С
```

RI TURN 1002 CONTINUE

RETURN C--- GROUP 2. Transience: time-step specification C..... C--- GROUP 3. X-direction grid specification C--- GROUP 4. Y-direction grid specification C--- GROUP 5. 7-direction arid specification C--- GROUP 6. Body-fitted coordinates or grid distortion C--- CROUP 7. Variables stored, solved & named C--- GROUP 8. Terms (in differential equations) & devices C--- CROUP 9. Properties of the medium (or media) C--- GROUP 10. Inter-phase-transfer processes and properties C--- GROUP 11. Initialization of variable or porosity fields C--- GROUP 12. Convection and diffusion adjustments C--- CROUP 13. Boundary conditions and special sources Index for Coefficient - CO C С Index for Value - VAL 1.3 CONTINUE GO TO (130.131.132.133.134.135.136.137.138.139.1310. 11311,1312,1313,1314,1315,1316,1317,1318,1319,1320,1321),ISC 130 CONTINUE C----- SECTION 1 ----- coefficient = GRND copp Source term for sedimentation of C1: Vs/dy(Cy+1-2Cy+Cy-1) Copp LG(1)=T implica diferencias centradas; F es hacia adelante il(indvar.eq.c1) then gvs = rg(1)else if (indvor.eq.c2) then qvs=rq(2)else if(indvar.eg.c3) then avs = rg(3)else il(indvar.eg.c4) then avs=ra(4)else if(indvar.eq.c5) then qvs=rq(5)else if(indvar.ea.c6) then qvs=rq(6) endif if(bfc) then call atizyx(69,izstep,qycoor,nydim,nxdim) PISP call getyx(yg2d,gycoor,nydim,nxdim) endif IF(LG(1)) THEN do jx=1,nx do jy=1,nv qdy = qycoor(jy+1,jx) - qycoor(jy-1,jx)

```
if(jy.eq.1) gdy=gycoor(jy+1,jx)-gycoor(jy,jx)
        il(jy.eq.ny) gdy=gycoor(jy jx)-gycoor(jy-1,jx)
        gsedim(jy,jx)=gvs/qdy
      end do
     end do
    ELSE
    do jx=1,nx
      do jy=1.ny
        gdy=gycoor(jy+1.jx)-gycoor(jy.jx)
        if(jy.eq.ny) gdy=gycoor(jy.jx)-gycoor(jy-1,jx)
        gsedim(jy jx)=gvs/gdy
      end do
    end do
    ENDIE
    call setyx(co.gsedim.nydim.nxdim)
    RETURN
 131 CONTINUE
C-----
                   ----- SECTION 2 ----- coefficient = GRND1
    RETURN
 132 CONTINUE
                    ---- SECTION 3 ----- coefficient = GRND2
C-----
    RETURN
 133 CONTINUE
C-----
                   ----- SECTION 4 ----- coefficient = GRND3
    RETURN
 134 CONTINUE
                    ---- SECTION 5 ----- coefficient = GRND4
C-----
    RETURN
 135 CONTINUE
C-----
                   ----- SECTION 6 ----- coefficient = GRND5
    RETURN
 136 CONTINUE
                   ----- SECTION 7 ----- coefficient = GRND6
C-----
    RETURN
 137 CONTINUE
                   ----- SECTION 8 ----- coefficient = GRND7
C-----
    RETURN
 138 CONTINUE
C-----
                   ----- SECTION 9 ------ coefficient = GRND8
    RETURN
 139 CONTINUE
C----
                  ----- SECTION 10 ----- coefficient = GRND9
    RETURN
1310 CONTINUE
                   ----- SECTION 11 ----- coefficient = GRND10
C-----
    RETURN
1311 CONTINUE
C-----
                ----- SECTION 12 ----- value = GRND
C.....
capp Source term for sedimentation of C1: Vs/dy(Cy+1-2Cy+Cy-1)
capp Source term for sedimentation replaced: Vs/dy(Cy+1-Cy)
    if(indvar.ea.c1) then
      call getyx(c1.gsedim.nydim.nxdim)
    else if(indvar.eg.c2) then
       call getyx(c2,gsedim.nydim.nxdim)
    else if(indvar.eq.c3) then
       call getyx(c3,gsedim.nydim.nxdim)
    else if(indvor.eq.c4) then
       call active(c4.asedim.nydim.nxdim)
```

```
else if(indvor.eg.c5) then
         call getyx(c5,gsedim,nydim,nxdim)
      else if(indvar.eq.c6) then
         call actyx(c6.asedim.nydim.nxdim)
      endif
      IF(LG(1)) THEN
      do ix=1.nx
       do jy=1,ny
          gsedim(jy,jx)=gsedim(jy+1,jx)+gsedim(jy,jx)-gsedim(jy-1,jx)
          if (jy.eq.ny) qsedim(jy.jx)=0.
          if (jy.eq.1) gsedim(jy,jx)=gsedim(jy+1,jx)
       end do
      end do
      ELSE
      do jx=1,nx
       do jy=1,ny
         gsedim(jy,jx)=gsedim(jy+1,jx)
if (jy.eq.riy) gsedim(jy,jx)=0.
          if (jy.eq.1) qsedim(jy,jx)=qsedim(jy+1,jx)
       end do
      end do
      ENDIF
      call setyx(val,gsedim,nydim,nxdim)
      RETURN
 1312 CONTINUE
C-----
                            -- SECTION 13 ----- volue = CRND1
       if(iz.eg.nz) return
      if (isweep .gt. 10) then
      call getyx(c1.gcgg.nydim.nxdim)
      Ix=IOpvar(pvstrs,IPNAME('ESFUERZO'),0)
      do m=1.nx
           qxx=f(lx+m)
           gua=(qxx/1000.0)++.5
           if (guo .lt. 2.0e-2) then
           aolo 110
           else
           gsh= gua++2/((2.651-1)+9.81+0.00062)
         gca=(0.331+(gsh-0.045)++1.75)/
           (1+(0.331/0.46)+(gsh-0.045)++1.75)
Ł
            qcoo(1,m)=qco
с
       write(6.+)'tau',qxx,'u+',qua,'qsh',qsh,'ca',qca
           end if
110
       end do
      else
      do m=1.nx
          qcaa(1,m)=0.2
          end do
          end if
          call setyx(val.gcaa.nydim.nxdim)
     RETURN
 1313 CONTINUE
                        ----- SECTION 14 ----- volue = GRND2
Co----
     call glizyx(69,izstep,gycoor,nydim,nxdim)
     do jy=1.ny
      do jx=1.nx
          gseval(jy,jx) = -4.64e-5+gycoor(jy,jx)+0.0002205
      end do
     end do
     call setyx(val.gseval.nydim.nxdim)
```

RETURN		
1314 CONTINUE	FUCTION 15	
RETURN 1315 CONTINUE	Section 15 W	ante = CKND2
C	SECTION 16 vo	alue = CRND4
	SECTION 17 vo	alue = GRND5
RETURN 1317 CONTINUE		
C	SECTION 18 vo	slue = CRND6
1318 CONTINUE		00007
RETURN		ILLE = GRNUT
1319 CONTINUE	·	
C	SECTION 20 va	lue = CRND8
1320 CONTINUE		
C	SECTION 21 va	luc = GRND9
1321 CONTINUE		
C	SECTION 22 va	lue = CRND10
RETURN		
C GROUP 14. Down	stream pressure for PARAB=.TRUE.	
C CPOUD 15 Jarm		
C GROUP 15. Term	ingtion of iterations	
C GROUP 17. Unde	r-relaxation devices	
C GROUP 18. Limits	s on variables or increments to them	
C GROUP 19. Speci	al calls to GROUND from EARTH	
19 GO TO (191,192,1 191 CONTINUE	93,194,195,196,197,198),ISC	
C •	SECTION 1 Start of time step.	
192 CONTINUE		
C •	SECTION 2 Start of sweep.	
RETURN		
C •	SECTION 3 Start of iz slab	
RETURN		
194 CONTINUE	SECTION 4 Start of iteration	
RETURN		
195 CONTINUE		
	SECTION 5 Finish of iteration.	
196 CONTINUE		
C •	SECTION 6 Finish of iz stab.	
197 CONTINUE	SECTION 7 Finish of aware	
c C7 es la suma de t	odas las fracciones Ci	
il(isweep.eq.lsweep.	or.enufsw) then	
call fn14(grsp1,c1	,c2,c3,c4,c5,0.0,1.,1.,1.,1.,1.)	

	call fn10(c7,grsp1,c6,0.0,1.,1.)
	call fn2(c8,vist,0.0,1.0/rq(7))
	endií
	il(isweep.eg.lsweep-1) then
	coll getsor('BFCENT',c1,gc1ent)
	call getsor('SALIDAO1',c1,gc1sal)
с	coll getsor('BFCENI',c2,gc2ent)
с	call getsor('SALIDA01',c2,gc2sal)
с	call getsor('BFCENT',c3,gc3ent)
с	call getsor('SALIDA01',c3,gc3sal)
С	call getsor('BFCENT',c4,gc4ent)
С	call getsor('SALIDA01',c4,gc4sal)
с	call getsor('BFCENT',c5,gc5ent)
с	call getsor('SALiDAO1',c5,gc5sal)
с	coll getsor('BFCENT',c6,gc6ent)
с	call getsor('SALIDA01',c6,gc6sal)
	gefic1=(gc1ent+gc1sal)/gc1ent
	write(14,+) 'Eficiencia de remocion de C1 es',gefic1
	endif
С	gefic2=(gc2ent+gc2sol)/gc2ent
С	write(14,*) 'Eficiencia de remocion de C2 es',gefic2
с	gefic3=(gc3ent+gc3sal)/gc3ent
с	write(14,•) 'Eficiencia de remocion de C3 es',gefic3
с	gefic4=(gc4ent+gc4sal)/gc4ent
с	write(14,•) 'Eficiencia de remocion de C4 es' gefic4
с	gelic5=(gc5ent+gc5sal)/gc5ent
С	write(14.*) 'Eficiencia de remocion de C5 es',gefic5
С	gefic6=(gc6ent+gc6sal)/gc6ent
с	write(14,•) 'Eficiencia de remocion de C6 es',gefic6
	RETURN
_	198 CONTINUE
ç	 Finish of time step.
č	
C.	
C.	GROUP 20. Preliminary print-out
5	- CPOLID 21. Driet-put of verified
2	GROUP 21, Frint-out of Variables
2	
č	GROUP 23 Field print-out and plot control
<u> </u>	andor 20, rick print-out one plot control
c.	*************

C--- GROUP 24. Dumps for restarts

A CONTINUACIÓN SE PRESENTA EL ÚNICO GRUPO QUE DIFIERE DEL GROUND DEL SEDIMETADOR TRIDIMENSIONAL. LOS DEMAS GRUPOS SON IGUALES.

C--- GROUP 19. Special calls to GROUND from EARTH c 19 GO TO (191,192,193,194,195,196,197,198).ISC 191 CONTINUE . -----C ----- SECTION 1 ---- Start of time step. RETURN **192 CONTINUE** C . _ _ _ _ _ _ _ ---- SECTION 2 ---- Start of sweep. RETURN **193 CONTINUE** ----- SECTION 3 ---- Start of iz slob. C RETURN 194 CONTINUE C . _ _ _ _ _ _ _ ----- SECTION 4 ---- Start of iteration. RETURN 195 CONTINUE С ----- SECTION 5 ---- Finish of iteration. RETURN 195 CONTINUE С ---- Finish of iz slab. 197 CONTINUE c • ----- SECTION 7 ---- Finish of sweep. C7 es la suma de todas las fracciones Ci if(isweep.eg.lsweep.or.enufsw) then coll fn14(grsp1,c1,c2,c3,c4,c5,0.0,1.,1.,1.,1.,1.) call fn10(c7,grsp1,c6,0.0,1.,1.) call fn2(c8,vist,0.0,1.0/rg(7)) endif if(isweep.eq.lsweep-1) then call getsor('BFCENT',c1,qc1ent) call getsor('SALIDA01',c1,gc1sal) call getsor('BFCENT',c2,qc2ent) call getsor("SALIDA01",c2,gc2sal) call getsor('BFCENT',c3,gc3ent) call getsor('SALiDA01',c3,qc3sal) call getsor('BFCENT',c4,gc4ent) call getsor('SALIDA01',c4,gc4sal) call getsor('BFCENT',c5,ac5ent) call getsor('SALIDA01',c5,gc5sal) call getsor('BFCENT', c6, gc6ent) call getsor('SALIDA01',c6,gc6sal) gefic1=(gclent+gclsal)/gclent write(14,*) 'Eficiencia de remocion de C1 es' gefic1 endif gefic2=(gc2ent+gc2sal)/ac2ent write(14,.) 'Eficiencia de remocion de C2 es' gefic2 gefic3=(gc3ent+gc3sol)/gc3ent write(14,•) 'Eficiencia de remocion de C3 es',gefic3 gefic4=(gc4ent+gc4sol)/gc4ent write(14.+) 'Eficiencia de remocion de C4 es'.aefic4 gefic5=(gc5ent+gc5sal)/gc5ent write(14.*) 'Eficiencia de remocion de C5 es'.gefic5 gelic6=(gc6ent+gc6sal)/gc6ent write(14,*) 'Eficiencia de remocion de C6 es',gefic6 RETURN