

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE QUIMICA

Influencia del carácter pi del ligante (N-N) en la fuerza del enlace Cu-O en compuestos del tipo [Cu(N-N)(O-O)]

T E S I S QUE PARA OBTENER EL TITULO DE Q U I M I C Q P R E S E N T A:

GERARDO JUAN, MEDINA DICKINSON

1997

México, D. F.

TESIS CON FALLA DE ORIGEN

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Jurado asignado según el tema:

Presidente: Vocal Secretario: 1" Suplente: 2^{do} Suplente:

Prof. Rocio Pozas Horcasitas Prof. Lena Ruiz Azuara Prof. Laura Maria Gasque Silva Prof. Sigfrido Escalante Tovar Prof. Silvia Elena Castillo Blum

Sitio donde se desarrolló el tema:

Departamento de Química Inorgánica de la División de Estudio de Posgrado de la Facultad de Química de la UNAM.

Asesora: Dra. Laura María Gasque Silva

Lametto page

Sustentante: Gerardo Juan Medina Dickinson

A mis padres, Gerardo y Patricia, y mi nana Cecilia

Agradecimientos

Principalmente a Laura Gasque por sus enseñanzas y su cariño. A Rafael Moreno por resolver las estructuras cristalinas presentes en esta tesis, así como por su ayuda y sus consejos. A Lena Ruiz por quien mucho es posible, y finalmente, a Armando Marín y Erika Martín por su ayuda y su tiempo.

Índice

I Introducción	. 1
II Antecedentes	2
II.1 Estabilidad de compuestos mixtos en disolución	2
II.2 Influencia de la formación de enlaces π	5
II.3 Espectroscopia de infrarrojo	7
II.4 IR de acetilacetonatos	8
II.5 IR de oxalatos	8
II.6 IR de salicilaldehidatos	9
II.7 IR de salicilatos	10
II.8 IR de malonatos	10
III Resultados y discusión	11
III.1 Síntesis y caracterización	11
III.1.1 Bis-quelatos de los donadores por nitrógeno	12
III.1.2 Bis-quelatos de los donadores por oxígeno	15
III.1.3 Compuestos mixtos de acetilacetonato	18
III.1.4 Compuestos mixtos de salicilaldehidato	20
III.1.5 Compuestos mixtos de oxalato	22
III.1.6 Compuestos mixtos de salicilato	25
III.1.7 Compuestos mixtos de malonato	26
111.2 Estudio de la variación de la banda Cu-O en el infrarrojo lejano	31
III.2.1 Compuestos mixtos de acetilacetonato	31
III.2.2 Compuestos mixtos de salicilaldehidato	35
III.2.3 Compuestos mixtos de oxalato	39
III.2.4 Compuestos mixtos de salicilato	45
III.2.5 Compuestos mixtos de malonato	60
IV Conclusiones	73
V - Referencias hibliográficas	76

Apéndice I	79
A.I.1 Datos cristalográficos del compuesto [Cu(5NO2fen)(mal)(H2O)]·2H2O	79
A.I.2 Datos cristalográficos del compuesto [Cu(5,6dmfen)(mal)(H ₂ O)]·H ₂ O	84
A.I.3 Datos cristalográficos del compuesto [Cu(bipi)(mal)(H ₂ O)]·H ₂ O	88
A.I.4 Datos cristalográficos del compuesto [Cu(4,4'dmbipi)(mal)(H ₂ O)]·2H ₂ O	93
Apéndice 11. Parte experimental	98
Apéndice III. Compuestos de la forma K ₂ [Cu(5-X-sal) ₂]	103
Apéndice IV. Síntesis y caracterización de compuestos de la forma K2[M(mal)2]	105

•

I.- Introducción:

El presente trabajo surgió debido al papel tan importante que tienen los metales de transición en ciertas enzimas y a los estudios realizados sobre la estabilidad de compuestos temarios en solución acuosa desde la década de los 60°s. Dado que la formación de los compuestos mixtos se ve favorecida por diversos factores, el presente trabajo está enfocado a la síntesis y caracterización de compuestos mixtos de cobre en que se tengan donadores por nitrógeno (N-N), y donadores por oxígeno (O-O), para posteriormente estudiar los espectros en el infrarrojo lejano de cada uno de los compuestos mixtos. Dado que las vibraciones para los elementos pesados aparecen en la región del lejano, mediante esta técnica se pretende estudiar la fuerza del enlace Cu-O de los compuestos mixtos dependiendo del donador por nitrógeno (N-N) utilizado. Para dicho estudio se sintetizaron todos los bis-quelatos de cobre con los donadores por nitrógeno y los donadores por oxígeno. Una vez identificadas las bandas de vibración Cu-O en el lejano se sigue el estudio de cómo varía la banda de vibración Cu-O en los compuestos mistos. Como ta frecuencia de vibración y el número de onda son cantidades proporcionales a la energía, entonces se puede determinar de manera cualitativa si ha existido un aumento o decremento en la fuerza del enlace en función de qué tipo de sustituyentes se tiene en los donadores por nitrógeno. Entre los factores que contribuyen notablemente a la mayor estabilidad de los compuestos mixtos respecto a los bis-quelatos de los donadores tanto por nitrógeno o por oxígeno que los originaron se encuentra el carácter aromático de los donadores por nitrógeno (o por oxígeno) debido a que, en el caso de tener como donadores por nitrógeno a fenantrolinas y bipiridinas, estos se comportan como aceptores π con mayor o menor intensidad (dependiendo de los sustituyentes sobre la molécula) y se refleja en una variación en la fuerza del enlace Cu-O. Para tener una referencia respecto a la cual se mide esta variación en la fuerza del enlace, se utilizó como donandor por nitrógeno (para todas las series de compuestos) el ligante N[N]N[N]-tetrametiletilendiamina que no es un aceptor π . Los valores obtenidos para la vibración Cu-O en todos los compuestos en que (N-N) sea un donador por nitrógeno aromático se compararon con aquel en el compuesto mixto que presenta carácter π nulo para poder arribar a conclusiones que involucren directamente a la influencia del carácer π de los donadores (N-N) en la fuerza del enlace Cu-O en compuestos mixtos del tipo [Cu(N-N)(O-O)], estudiados desde hace tiempo por nuestro grupo de trabaio.

Por otro lado, los compuestos sintetizados se han caracterizado por distintas técnicas (infrartojo mediano, conductividad, análisis elemental, etc.), dado a que algunos de ellos se estudian como agentes con potencial actividad antincoplásica^{1, 2, 3} y una caracterización de ellos resulta útil. De todos los compuestos que se incluyen en este rubro, se han sintetizado dos nuevas series de compuestos mixtos: aquéllas en que el donador por oxígeno es malonato (mal²) y salicilato (sal²).

II .- Antecedentes:

Estabilidad de compuestos mixtos en disolución:

Debido al importante papel que juegan los metales en los complejos enzimáticos, en las últimas décadas ha habido un creciente interés en el estudio de la interacciones existentes entre un metal y compuestos parecidos a los existentes en el estido rostético de la enzima. Dichos estudios de estabilidad y reactividad de compuestos de coordinación mixtos comenzaron a adquirir importancia en la década de los 60's. La importancia esencial de estos sistemas, fue descubrir que el cobre, en muchos sistemas enzimáticos, se encuentra coordinado al grupo imidazol existente en las cadenas laterales del aminoácido histidina en las proteínas⁴. Los estudios realizados tratan sobre la estabilidad, estructura y reactividad de compuestos mixtos del tipo M(A)(B). En dichos estudios se distingue entre dos posibles tipos de compuestos: (i) aquéllos en que ambos ligantes simplemente se coordinan al mismo ion metálico y, por tanto, admiten sólo efectos de estabilidad indirectos y (ii) aquellos en que curren interacciones intramoleculares ligante.

De acuerdo con dichos estudios de estabilidad de compuestos ternarios, se determinan en disolución los valores de las constantes de formación de dichos compuestos:

Para un ion metálico M y para dos ligantes distintos A y B, la constante de formación está dada por el siguiente equilibrio (las cargas tanto del metal como de los ligantes se omíten por razones de simplicidad):

$$M + A + B = M(A)(B)$$

para el cual $\beta = [M(\Lambda)(B)]/([M][\Lambda][B]).$

Si se considera la siguiente reacción, en que el compuesto mixto, M(A)(B), se forma a partir de un compuesto previo, entonces tenemos:

$$M(A) + B \xrightarrow{\sim} M(A)(B), \tag{1}$$

con una constante de formación $K_{M(A)(B)M(A)} = [M(A)(B)]/([M(A)][B])$, o bien:

$$M(B) + A \xrightarrow{} M(A)(B), \qquad (2)$$

con una constante de formación K $M(A \times B \times M(B)) = [M(A)(B)]/([M(B)][A]).$

Debido a que los sistemas bajo estudio son cinéticamente lábiles, las especies M(A)(B) y M(B)(A) son idénticas. La constante global de estabilidad, que puede determinarse experimentalmente, está relacionada tanto con K_{M(AKBVM(A)} y K_{M(AKBVM(B)}) de acuerdo con las siguientes ecuaciones respectivamente:

 $\log K_{M(AXBYM(A)} = \log \beta - \log K_{M(AYM)}$

 $\log K_{M(A)(B)/M(B)} = \log \beta - \log K_{M(B)/M}$

en que K $_{M(A)M}$ y K $_{M(B)M}$ se refieren a los siguientes equilibrios de formación de los compuestos M(A) y M(B):

 $M + A = M(A); K_{M(A)M} = [M(A)]/([M][A]).$

 $M + B = M(B); K_{M(BVM} = [M(B)]/([M][B]).$

Una manera de dar una medida de la estabilidad de los compuestos ternarios se logra mediante la siguiente ecuación:

Δ log KM = log K M(AKBYM(A) - log K M(B)M

= log K MIAKBEM(B) - log K MIAEM

= log β - log K MANM - log K MIDIM

El valor de Δ log K_M caracteriza la tendencia del ligante B a coordinarse al compuesto M(A) de acuerdo con la ecuación (1) o bien, la tendencia del ligante A a coordinarse al compuesto M(B) de acuerdo con la ecuación (2)^{4.5,6,7,8,9,10}. El valor de Δ log K_M también es el logaritmo de la constante de equilibrio de la siguiente reacción:

M(A) + M(B) - M(A)(B) + M

En general se esperan valores negativos⁴ de $\Delta \log K_M$ pues $K_{MML2} > K_{MML2}$. Esto coincide con lo esperado estadisticamente: hay más disponibilidad espacial de que se coordine un primer ligante a un ion metálico que en el caso en que se coordina un segundo ligante. Dependiendo de la geometría del complejo y de la denticidad del ligante, se tienen distintos valores para $\Delta \log K_M$. En general, para la coordinación de dos ligantes bidentados distintos a una esfera octadérica de coordinación. $\Delta \log K_{ab} = -0.38$, mientras que, para la esfera de coordinación distorsionada del Cu²⁺, $\Delta \log K_{ab} = -0.38$, mientras que, para la esfera de coordinación distorsionada del Cu²⁺, $\Delta \log K_{ab} = -0.39$. Debe notarse que, en el caso de que los dos ligantes sean iguales, *i.e.*, A = B, la probabilidad de que ocurra la disociación es de dos y, por lo tanto, se deben de agregar -0.3 unidades logarítmicas a los valores dados. Esto quiere decir que los valores esperados estadísticamente son menores para los compuestos binarios que les dan origen, es decir, log K_{MML2} - log K_{MML2} - log K_{MML2} - log K_{MML2} - 10.6 y logK_{Cult/2} - log K_{Cult/2} - log K_{Cult/2} - log K_{Cult/2} - log K_{Cult/2} - log K_{MML2} - log K_{ML2} -

Existe⁴ otra manera de cuantificar la estabilidad de un compuesto ternario. Esta se basa en en la "antidesproporción" de acuerdo con el siguiente equilibrio:

 $M(A)_2 + M(B)_2 = 2 M(A)(B)$

Log X se calcula de acuerdo con la siguiente ecuación:

 $\log X = 2 \log \beta_{MM(AXB)} - (\log \beta_{MM(A)2} + \log \beta_{MM(B)2})$

 $= (\log K_{M(A)M(AXB)} - \log K_{M(B)M(B)2} + (\log K_{M(B)M(BXA)} - \log K_{M(A)M(A)2})$

 $K_{M(A)M(A)2}$, $K_{M(B)M(B)2}$, $\beta_{MM(A)2}$ y $\beta_{MM(B)2}$ son, respectivamente, las constantes de los equilibrios binarios que se presentan a continuación:

M(A)	+ A		M(A) ₂
M(B)	+ B		M(B) ₂
M +	2 A		M(A)2
M +	2 B	- ATTACK	M(B)2-

Aunque esta descripción posee un fundamento estadístico muy firme (log X_{stat} = 0.6) que es independiente de la geometría de la esfera de coordinación del ion metálico, también posee la desventaja de que la estabilidad de los compuestos temarios se compara a la estabilidad de los compuestos binarios (1:2) que les dan origen. Es importante considerar que los compuestos M(A)₂ y M(B)₂ no se encuentran presentes en la trayectoria de reacción necesaria para obtener el compuesto M(A)(B), de aquí que en K_{M(A)M(A)2}, K_{M(B)M(B)2} puedan aparecer diversos factores que posteriormente aparecerá en log X.

Los valores de log X y Δ log K M son los utilizados para cuantificar la estabilidad de un compuesto ternario⁴, 2^{,6}, 7, ⁴, ⁹, ¹⁰ en relación a los compuestos binarios que le dan origen, y no los valores de las otras constantes log $\beta_{MM(AKID}$, log K_{M(AYM(AKID}) o log K_{M(BYM(AKID}) pues los valores anteriores dependen directamente de la basicidad de los ligantes ya que algunos de éstos pueden protonarse en solución acuosa, Sin embargo, log X y Δ log K_M dependen sólo indirectamente de la basicidad de los ligantes. De esta manera, se cancelan factores como la basicidad de los ligantes y aparecen en estas descripciones aumentos o degrementos debidos a las interacciones directas o indirectas ligante-ligante.

A partir de las consideraciones estadísticas hechas previamente, se sigue que ciertos efectos favorecen la formación de complejos mixtos. Entre estos factores se encuentran la neutralización de carga, factores estéricos y la formación de enlaces π .

En cuanto a neutralización de la carga se refiere, se ha observado^{4, 3, 6, 8, 9} que los efectos de neutralización de carga en que A sea un ligante neutro y B un ligante con dos cargas negativas (B^2) son en general muy pequeños en relación al valor estadístico de 0.6 unidades logarítmicas.

En cuanto a factores estéricos se refiere, grupos voluminosos, un exceso de sitios de coordinación y el tamaño de un anillo quelatante son factores importantes a considerar pues afectan en mayor grado los valores de log X y Λ log K_M aún más que los efectos obtenidos por neutralización de carga.

En cuanto al tamaño del anillo quelatante, se determinó una regla general para compuestos ternarios de $Cu(11)^{4/6}$ en que se observó que los sistemas que contienen dos anillos quelatantes, en que uno es de seis miembros y el otro de cinco miembros, se favorecen mucho más que aquellos casos en que los dos anillos tienen el mismo número de átomos. Existen datos que indican que lo opuesto ocurre en compuestos en que el ion metálico es el Ni(II), por lo tanto, es probable que dichas tendencias sean exclusivas del metal bajo estudio.

Influencia de la formación de enlaces π:

La formación de enlaces π de retrodonación, que son posibles entre iones metálicos como el Mn²⁺, Co²⁺, Cu²⁺, etc., y bases que contienen N heteroaromático como la 2,2⁺ bipiridina, 1,10-fenantrolina, etc., son un factor de considerable importancia en la estabilidad de los compuestos ternarios -en comparación con los factores antes mencionados- siempre y cuando el segundo ligante sea un donador por oxígeno del tipo (O-O) como ocurre en los fenolatos, en los carboxilatos o en los fosfatos. En este caso, el equilibrio antes mencionado

$$M(A) + M(B) \longrightarrow M(A)(B) + M$$

puede incluso desplazarse considerablemente hacia la formación de productos, es decir, $\Delta \log K_M > 0$. Esto se ha observado en compuestos ternarios de cobre con pirocatecolato y 2,2'-bipiridina, en que la tendencia del $[Cu(2,2'-bipi)]^{2'}$ a coordinarse con el pirocatecolato (pir²) es muchisimo mayor que su tendencia a coordinarse a un ligante que no posee átomos donadores (O-O) como, por ejemplo, el 1,2-diaminobenceno. De igual manera, si en lugar de la base heteroaromática que contiene átomos donadores de nitrógeno del tipo (N-N), ésta se sustituye por etilendiamina en que el fecto π es nulo, se observa que la tendencia a de $[Cu(2,2'-bipi)]^{2'}$ adsorbido por en complejos ternarios de superfice como, por ejemplo, el $[Cu(2,2'-bipi)]^{2'}$ adsorbido por la interfase sfilca-agua.

Se ha mostrado por EPR^{4. ª} que el ligante donador por N heteroaromático recibe densidad electrónica π del ion cobre y que se tiene un incremento considerable en este proceso al enlazarse un donador por oxígeno al Cu²⁺. Estos efectos electrónicos son los que se han indicado como responsables del aumento tun fuerte en la estabilidad de los compuestos ternarios.

Espectroscopía de infrarrojo:

En la espectroscopia de infrarrojo se utiliza radiación electromagnética de distintas frecuencias para irradiar una muestra y la intensidad de la luz que se transmite se mide a cada una de estas frecuencias¹¹. Aquellas frecuencias que correspondan a energías vibracionales de la muestra se traducirán en una absorción por la muestra obteniéndose una menor intensidad de luz transmitida que en aquellas frecuencias en que la muestra no absorba.

El tratamiento más sencillo que puede darse en función de las vibraciones poliatómicas es el obtenido al considerar una molécula diatómica. Cuando se aplica el tratamiento mecánico-cuántico al modelo del oscilador armónico para una molécula diatómica se llega a la siguiente expresión para la energía vibracional:

$E_{x} = (v + V_{0}) (h/2\pi) \sqrt{k/\mu}$

en que v es el número cuántico vibracional que toma los valores v = 0, 1, 2, 3,...; h es la constante de Planck, μ es la masa reducida del sistema y k la constante de fuerza del enlace químico. De aquí que la cenegía vibracional es proporcional a la fuerza del enlace, y dado que $E = hv = hc/\lambda = hcv$, entonces el número de onda al cual aparezca determinada banda en un espectro, es una manera indirecta de medir la fuerza del enlace, que será mayor si v aumenta y menor si v disminuye.

Para citar un ejemplo, de acuerdo con diversos estudios realizados en compuestos de coordinación con el ligante amoniaco¹², se ha llegado a resultados que atañen a un aumento o decremento en la fuerza del enlace M-N. Se observa que en los compuestos de coordinación del tipo M(NH₀)ⁿ, las bandas características al estiramiento para el amoniaco aparecen a un menor valor que el correspondiente para la molécula de amoniaco libre. Esto es debido a dos cosas, en primer lugar se tiene el efecto de coordinación en que el enlace N-H se debilita y, por lo tanto, las frecuencias de estiramiento para el amoniaco disminuyen. Conforme más fuerte se hace el enlace M-N, más débil el enlace N-H. Por tanto, en condiciones controladas, las frecuencias de estiramiento para el amoniaco pueden utilizarse como una medida indirecta de la fuerza del enlace M-N. El otro efecto importante en dicho estudio es el fecto del contraión en que se observa que las vibraciones antes mencionadas son también susceptibles al contraión utilizado.

IR de acetilacetonatos:

Nakamoto, Udovich v Takemoto, en 1970, realizaron estudios sobre los acetilacetonatos de Fe(III), Cr(III), Pd(II), Cu(II) y Ni(II) estudiando el efecto en las vibraciones metal-ligante por la sustitución de un metal M en particular, por un isótopo del mismo¹³, Mediante esta técnica, fue posible la asignación empírica de las vibraciones M-O que anteriormente se habían predicho mediante cálculos teóricos¹⁴. En particular, el cálculo teórico se efectuó para el bis-acetilacetonato de cobre (II) en que se encontraron dos bandas cuyo desplazamiento hacia un menor número de onda o menor frecuencia de vibración aparecía cuando se sustituía ⁶/Cu por ⁶⁵Cu. Dichas bandas se localizan en 455 cm⁻¹ (B₁₀) y 290.5 cm⁻¹ (B₂₀). Previamente, en 1960, Nakamoto et al calcularon¹⁵ las frecuencias vibracionales de acetilacetonatos de metales trivalentes basándose en los resultados obtenidos por el tratamiento de coordenadas normales del complejo de Cu (II). Como conclusión de dicho trabajo, se observó que era prácticamente imposible asignar las bandas entre 1600-1400 cm⁻¹ en los quelatos metálicos de los compuestos de B-dicetonas debido a que, en primer lugar, los órdenes de enlace de C=O y C=C son bastante similares y ambos absorben en la misma región y, en segundo lugar, que sus posiciones relativas son sensibles a un cambio del ion metálico. Más aún, en un sistema como el anillo quelato formado, el acoplamiento entre varios modos de vibración es considerable y el concepto de frecuencia de grupos no se puede aplicar. Mediante los experimentos y calculos realizados, se llegó a la conclusión de que, en la región de 1600 a 1400 cm⁻¹, la banda de mayor frecuencia vibracional corresponde a un 75% de vibración de estiramiento C=C más un 25% de vibración de estiramiento C-O. La segunda banda de mayor frecuencia correponde a ca. 75% de vibración de estiramiento C=O y a un 25% de vibración de estiramiento C=C. Con base en estudios más recientes se ha determinado el orden inverso para las bandas antes mencionadas¹⁶ siendo la de mayor carácter C=O la banda de mayor frecuencia y la de mayor carácter C=C la de menor frecuencia. En los estudios efectuados para el infrarrojo lejano se determinaron experimentalmente los valores de las vibraciones M-O predichas por el estudio teórico realizado con el bis-acetilacetonato de cobre (II). Los resultados obtenidos indican que se tienen bandas en 684, 612, 451 cm⁻¹ para v(Cu-O) acopladas con otras vibraciones y una banda exclusiva de vibración v(Cu-O) en 291 cm⁻¹.

IR de oxalatos:

•

De acuerdo con diversos estudios realizados por Fujita, Martell y Nakamoto¹⁷ se ha llegado a diversos resultados que involucran a compuestos de distintos metales de transición con el ligante oxalato. De tal manera se pretende dar una relación entre las constantes de fuerza de estiramiento metal-oxígeno y las estabilidades y estructuras de los compuestos de coordinación de oxalato con iones metálicos. En diversos compuestos sintetizados con los siguientes iones metálicos, Al(III), Cr(III), Fe(III), Co(III), V(III), Cu(II), Pd(II) y Pt(II) con oxalato, se hicieron cálculos para determinar las constantes de fuerza de enlace y las frecuencias de vibración. Los cálculos se para el compuesto con Cr(III) aunque las mediciones en el infrarrojo se hicieron para la serie de los 10 compuestos antes mencionados. En el caso del compuesto sintetizado con Cr(III), el tris-oxalatocromato(III) de potasio trihidratado, se observa que, a diferencia de lo que ocurre con el ligante oxalato solo, en que los cuatro enlaces C-O son equivalentes, y con una distancia de 1.27 Å, en el caso del oxalato coordinado al Cr(III), la difracción de ravos X indica que los enlaces C-O aumentan (1.39 A), mientras que los enlaces C-O disminuyen (1.17 A). A partir de diversas graficas realizadas para los distintos compuestos de oxalato con diversos metales¹⁵ los autores llegan a la conclusión de que los espectros de todos los compuestos sintetizados con oxalato son esencialmente similares. Se observa en todos casos que las frecuencias de las bandas de estiramiento de C=O no coordinado aumentan y que las frecuencias de estiramiento de las bandas de C-O coordínado disminuyen mientras que la frecuencia de la banda de estiramiento metal-oxígeno, M-O, aumenta (en particular esto ocurre con la banda de estiramiento localizada en 600 ~ 500 cm⁻¹. La otra banda de vibración de estiramiento metal-oxígeno observada (~420 cm⁻¹) no muestra esta correlación ya que se encuentra acoplada con las vibraciones del anillo. Cabe mencionar que las frecuencias de estiramiento de las vibraciones C O y C-O son más sensibles en el caso de los compuestos 1:2 que en el caso de los compuestos 1:3. Las frecuencias de estiramiento M-O siguen el mismo orden, para distintos iones metálicos que las frecuencias de estiramiento para los compuestos con acetilacetonato. De aqui que las frecuencias de estiramiento M-O sean más útiles para medir la fuerza del enlace de coordinación que las bandas C-O en los compuestos 1:3. Aunque existe otra vibración característica M-O (~480 cm⁻¹), no se observa un incremento en la misma; al contrario, se observa un decremento. Esto puede deberse al hecho de que, conforme se fortalece la interacción metal-oxígeno, aumenta la transferencia de carga negativa del átomo de oxígeno al átomo metálico, de manera que se tiene un incremento en la constante de fuerza de **repulsion** $F(\mathbf{M} \cdots \mathbf{C})$ v un decremento en la constante $F(\mathbf{C} \cdots \mathbf{O})$.

IR de salicilaldehidatos:

De acuerdo con los estudios realizados por Percy y Thomton¹⁸ en compuestos metálicos de salicitaldehidatos, se conocen algunos de los valores de las frecuencias de vibración en el infrarrojo. Los compuestos estudiados de salicitaldehidatos con fórmula general [M(salal)₂] de los siguientes iones metálicos: M = Co(II), Ni(II) y Cu(II), tienen varias similitudes con los acetilacetonatos de los mismos compuestos. La geometría de los compuestos es análoga a los compuestos con acetilacetonato; en particular, el cobre presenta una geometría muy cercana a la cuadrada. Para el *bis*-saticilaldehidato de cobre(II), las frecuencias de vibración para las bandas de estiramiento son las siguientes: (M-O) = 539, 552 cm⁻¹; v(C=O) = 1614 cm⁻¹ y v(C-O) = 1344 cm⁻¹. Los valores de v(M-O) que se obtuvieron para toda la serie de compuestos realizados por Percy y Thomton se encuentran aproximadamente 50 cm⁻¹ por debajo de los valores de las principales bandas v(M-O) de

los acetilacetonatos estructuralmente análogos. Dicha variación entre los compuestos de salicilaldehidato y los acetilacetonatos es consistente con las constantes de estabilidad en solución acuosa que son menores por aproximadamente un 25% para los compuestos con salicilaldehidato que para los respectivos acetilacetonatos.

IR de salicilatos:

No se ha encontrado mucha información sobre compuestos del tipo $[M(sal)_2]^{2*}$ con M-un metal divalente. Sin embargo existen artículos en los cuales se intenta asignar la posición de las bandas de vibración M-O en compuestos ternarios. En particular, en un estudio realizado en compuestos ternarios de 1, 10-fenantrolina con Cu(II) y distintos donadores por oxigeno¹⁹ se asignan las vibraciones M-O para el compuesto [Cu(fen)(sal)] en 775 cm⁻¹ (acoplada con O-C=O), y en 585, 440 y 405 cm⁻¹. La gran mayoría de los compuestos que se han sintetizado con salicitato tiene la fórmula [Cu(Hsal)₂]o [Cu(sal)], o son dimeros del tipo [Cu₂(Hsal)₄]²⁰⁻²¹.

IR de malonatos:

No obstante que se han hecho estudios de asignación completos con malonamidas²², no se ha encontrado ningún estudio en la región del infrarrojo lejano que se reflera a compuestos del tipo [Cu(mal)₂]². La única información disponible es un estudio de compuestos de distintos iones metálicos divalentes y trivalentes realizada por Farago y Amirhaeri en 1984 con malonato²³ y asignaciones para las vibraciones en la región de estiramiento del carboxilato. La información proporcionada para compuestos con malonato y los siguientes iones metálicos: Al(III), Co(III), Fe(III), Cr(III), Cu(II), Co(II), Ni(II), $2n(II) \neq Cd(II)$, indica que, para el ácido malónico, la vibración de estiramiento v(C-O) se encuentra cerca de los 1700 cm⁻¹ ; afrededor de 1400 y 1250 cm⁻¹ se tienen las vibraciones asociadas al estiramiento C-O y/o deformaciones del OH, y alrededor de 900-950 cm⁻¹ se tienen vibraciones asociadas a deformaciones fuera del plano del OH. En el ion carboxilato, la absorción del carbonilo en el ácido es reemplazada por la vibración antisimétrica. $v_{s}(CO_{2})$, y simétrica, $v_{s}(CO_{2})$, del grupo CO₂ que aparecen en las regiones de 1610-1550 cm⁻¹ y 1400-1300 cm⁻¹. Para el compuesto Na-[Cu(mal)₂(H₂O)₂], las bandas que aparecen en la región de estiramiento del CO₂ son 1610 y 1530 cm⁻¹ (v₂) y 1405, 1365 cm⁻¹ (v₂). El estudio realizado también indica que un aumento en $v_{s}(CO_{2})$ y un decremento en $v_{s}(CO_{2})$ se refleia un aumento en la fuerza del enlace M-O.

III .- Resultados y discusión:

III.1 Síntesis y caracterización.

A continuación se presentan, de manera general, las síntesis de los compuestos utilizados para el presente trabajo. Se prepararon los bis-quelatos de los donadores por nitrógeno, los bis-quelatos de los donadores por oxígeno y los compuestos mixtos de la forma [Cu(N-N)(O-O)] con todos los donadores por nitrógeno y todos los donadores por oxígeno.

Por cuestiones de simplicidad, se omiten las moléculas de agua (ya sean de coordinación o de cristalización) en las fórmulas generales de cada compuesto, salvo en aquellos casos en que se obtuvieron los datos exactos por análisis elemental o por determinación de la estructura cristalina utilizando diffacción de ravos X.

Preparación:

Se prepararon series de compuestos de fórmula general:

The second second

(1) $[Cu(N-N)_2](NO_3)_2$ (2) $[Cu(O-O)_2]$ (3) $K_2[Cu(O-O)_2]$ (4) $[Cu(N-N)(O-O)]NO_3$ (5) [Cu(N-N)(O-O)]

Los compuestos de fórmula general (1) representan a los compuestos 1:2 de Cu(II) con fenantrolinas y bipiridinas. Los compuestos de fórmula general (2) representan al *bis*-acetilacetonato y *bis*-salicilaldehidato de cobre (II). Los compuestos de fórmula general (3) representan a los compuestos 1:2 de Cu(II) con oxalato, malonato y salicilato.

Para los compuestos ternarios, los donadores por nitrógeno (N-N) fueron los mismos en todos los casos y más abajo se indica la nomenclatura mediante la cual serán referidos a lo largo de este trabajo. Los donadores por oxígeno utilizados fueron, para los compuestos de fórmula general (4): acetilacetonato (acae') y saliciladehidato (sala'). Para los compuestos de fórmula general (5) los donadores por oxígeno utilizados fueron oxalato (ox²), malonato (mal²) y salicilato (sal²). A continuación se muestra una lista de los distintos donadores por nitrógeno utilizados así como las estructuras de los ligantes:

Nombre	Abreviatura		K2	R3	R4	KS.	R6
N.N.N'N'-tetrametiletilendiamina	tmen	1	1	1	1		
1,10-fenantrolina	fen	11	11	1 11	11	н	111
4,7-dimetil-1,10-fenantrolina	4.7dmfen	11	CH	1 11	11	CH	H
5.6-dimetil-1,10-fenantrolina	3,6dmfen	11	11	CHA	CHI	H	11
3,4,7,8-tertametal-1,10-fenantrolina	3,4,7,8tmlen	CHI	CH1	TIT	II	CH ₃	Cin
4,7-difenil-1,10-fenantrolina	4,7d#len	11	1 15	11	11	14	11
3-nitro-1,10-fenantrolina	3NO2fen	11	1 11	NOT	H	11	1 11
5-metil-1,10-fenantrolina	Smfen	11	H	CHY	H	11	11
5-fenil-1, 10-fenantrolina	Søten	11	1 11	11	H	11	111
2,2'-bipiridina	bipi	11	1-11-				
4,4'-duncul-2,2'-bipiridina	4.4'dmbipi	CHI	CHI				

Tabla 3.1.1. Sustituyentes presentes en los donadores por intrógeno de tipo dumina utilizados.

Figura 3.1.1. Donadores por nitrógeno: (a) 1, 10-fenantrolinas, (b) 2,2*-bipiridinas, (c) N,N,N',N'-tetrametiletilendiamina.

III.1.1 Bis-quelatos de los donadores por nitrógeno:

(a) Compuestos de la forma [Cu(N-N)2](NO3)2 :

A un equivalente de Cu(NO₃)₂ disuelto en agua se agregaron 2 equivalentes de la fenantrolina o bipiridina utilizada. En algunos casos el producto precipitó y el polvo oblenido se filitó y se lavó con agua. En los casos en que no se obtuvo un producto precipitado, la solución se dejó en reposo hasta la aparición de cristales muy finos que se filtraron y se lavaron con agua. La fórmula general de estos compuestos es [Cu(N-N)₂(NO₃)₂ donde (N-N) es el donador por nitrógeno.

Todos los bis-quelatos de los donadores por nitrógeno aromáticos, presentan la banda característica de nitrato en 1384 cm⁻¹ debida a la vibración v₁(N-O), confirmando la presencia de nitrato en 108 compuestos. De igual manera, en todos los compuestos en que (N-N) es una fenantrolina, se observan bandas intensas en la región de 1500 a 1650 cm⁻¹ así como en 720 cm⁻¹ propias de fenantrolina coordinada^{24, 23}. Para los compuestos en que (N-N) es una bipiridina se observan bandas intensas en la región de 1400 a 1500 cm⁻¹ y en 725 cm⁻¹ propias de bipiridina coordinada^{24, 25}. Un análisis más detallado de las sectales adicionales obtenidas debidas a la presencia de los sustituyentes en los donadores por nitrógeno se hará más adelante. A continuación se presentan las estructuras generales de los bis-quelatos de los donadores por nitrógeno utilizados.

(a)

(b)

(b) Sintesis de [Cu(tmen)-µ(OH)2-Cu(tmen)](NO3)2:

El bis-quelato de cobre con tetrametiletiendiamina no pudo obtenerse debido a factores estéricos²⁶. El compuesto sintetizado fue el dímero con puentes hidroxo que se preparó agregando a un equivalente de Cu(NO₃)₂·311₂O disuelto en metanol un exceso de tmen. La solución obtenida se evaporó en el rotavapor hasta sequedad y el compuesto obtenido se lavó con etanol y se secó al vacío.

El espectro en el infarrojo mediano coincide con el reportado en la literatura²⁶ en que se asigna una banda muy intensa y definida que aparece en 3500 cm⁻¹ a la frecuencia de estiramiento del puente hidroxo para el compuesto con perclorato. Dicha banda aparece en 3407 cm⁻¹ para el compuesto sintetizado con nitrato, utilizado en el presente trabajo. Se tienen también una serie de bandas en la región de 2800-3000 cm⁻¹ que corresponden a las frecuencias de estiramiento C-H de los metilos y metilenos presentes. En 1384 cm⁻¹ aparece la banda característica de nitrato debida a la vibración v.(N-O). A continuación se muestra la estructura del compuesto sintetizado y una tabla con los resultados de los análisis elementales de algunos de los compuestos sintetizados:

Figura 3.1.3. [Cu(tmen)-µ(OH),-Cu(tmen)](NO1),

Compuesto	experimental			teórico			
	% C	% H	% N	%C	%H	% N	
[Cu(tmen)-µ(OH) ₂ -Cu(tmen)](NO ₃) ₂ ·2H ₃ O	26.00	6.40	15.18	26.13	6.58	15.24	
[Cu (fen) ₂](NO ₃) ₂	53.45	3.12	15.55	52.61	2.94	15.34	

Tabla 3.1.2. Análisis elementales de algunos de los bis-quelatos de los donadores por nitrógeno

III.1.2 Bis-quelatos de los donadores por oxígeno:

Las síntesis de los bis-quelatos de los donadores por oxígeno se pueden dividir en dos: (a) aquellas especies en que el donador por oxígeno (O-O) se enlazará al cobre como un ligante cargado negativamente, de la forma (O-O)⁷, en cuyo caso el bis-quelato del donador por oxígeno formado es neutro y de fórmula general [Cu(O-O)₂] y (b) aquéllas en que el donador por oxígeno (O-O) se enlazará al cobre como un anión de la forma $(O-O)^2$ en cuyo caso, para todas las síntesis de este tipo, se utilizó como contraión de la especie compleja aniónica formada al ion potasio, de manera que la fórmula general de los compuestos sintetizados es K₂[Cu(O-O)₂]. Los donadores por oxígeno que caen dentro de (a) son acetilacetonato y salicilaldehidato mientras que en (b) son oxalato, malonato y salicilato.

(a) Sintesis de los bis-quelatos de donadores por oxígeno de la forma $[Cu(O-O)_2]$:

A un equivalente de $Cu(NO_3)_2$ se agregaron 2 equivalentes del donador por oxígeno. La solución obtenida se neutralizó con NH₃ acuoso hasta la formación de una precipitado que corresponde al compuesto neutro $[Cu(O-O)_2]$. El precipitado obtenido se filtró, se lavó con agua y se secó al vacío.

Para el compuesto en que (O-O) es acetilacetonato, de fórmula $[Cu(acac)_2]$, el espectro en el infrarrojo mediano presentó las mismas bandas que las reportadas en la literatura^{3, 15} para ese compuesto.

Para el compuesto en que (O-O) es salicilaldehidato, de fórmula [Cu(salal)₂], el espectro en el infrarrojo mediano presentó las bandas reportadas en la literatura para ese compuesto^{18, 27}. A continuación se presentan las estructras de los compuestos de fórmula general [Cu(O-O)₂].

Dado que ambos compuestos han sido extensamente estudiados, la identificación de los compuestos se hizo únicamente comparando sus espectros en el mediano y en el lejano con los reportados en la literatura.

Figura 3.1.4. Bis-quelatos de los donadores por oxígeno de la forma. [Cu(O-O)2]: (a) [Cu(acac)2] y (b): [Cu(salal)2]:

(b) Síntesis de los bis-quelatos de donadores por oxígeno de la forma $K_2[Cu(O-O)_2]$:

La síntesia de los tres compuestos con fórmula $K_1[Cu(O-O)_2]$ no se puede tratar de manera general ya que cada uno de estos compuestos fue sintetizado por técnicas distintas. En un principio se intentó seguir una técnica general de síntesis, pero los compuestos obtenidos no correspondían a los que se descaba obtener. En la mayoría de los casos, al seguir una síntesis general para todos, en que se intentó obtener el compuesto a partir de la reacción de un equivalente de Cu(11) con 2 equivalentes del donador por oxígeno, se obtuvo siempre el compuesto neutro 1:1 de fórmula [Cu(O-O)] o [Cu(O-O)], A continuación se describe cómo se obtuvieron los bis-quelatos con oxalato, malonato y salicilato.

(b.1) Bis-oxalatocuprato(II) de potasio:

A un equivalente de $Cu(NO_3)_2$ se agregaron dos equivalentes de oxalato de potasio (K₂ox). La solución obtenida se concentró con calor y se dejó reposando. Al cabo del tiempo se obtuvo una mezcla de productos, un polvo insoluble y cristales que aparecieron tiempo después. Ambos se filtraron y se redisolvieron los cristales en agua para separarlos del producto insoluble. La solución obtenida de redisolver los cristales se dejó en reposo hasta la formación, nuevamente, de cristales que se filtraron y se secaron al vacío.

El espectro en el infrarrojo mediano del compuesto con oxalato, de fórmula $K_2[Cu(ox)_2]$ presentó las mismas bandas que las reportadas en la literatura para dicho compuesto¹⁷. La identificación se hizo exclusivamente con los espectros en el infrarrojo mediano y en el lejano por las mismas razones que para los compuestos con acetilacetonato y salicilaldehidato.

Figura 3.1.5. Estructura del bis-oxalatocuprato (II) de potasio

(b.2) Bis-malonatocuprato(II) de potasio:

A un equivalente de Cu(AcO)₂:H₂O disuelto en etanol se agregaron 2 equivalentes de ácido malónico (H₂mal) disueltos en etanol. La solución se neutralizó con 4 equivalentes de KOH disueltos en etanol. El polvo precipitado, se filtró, se lavó con etanol y se secó al vacío.

El espectro en el infrarrojo mediano del compuesto con malonato, de fórmula $K_2[Cu(mal)_2]$ presentó las mismas bandas que las reportadas en la literatura²³ y su conductividad en agua, de 200-210 µmhos, corresponde a la de un electrolito 1:2 de acuerdo con lo reportado en la literatura²⁸. A continuación se presenta la estructura del compuesto sintetizado.

Figura 3.1.6. Estructura del bis-malonato cuprato (11) de potasio.

(b,3) Bis-salicilatocuprato(II) de potasio:

El bis-salicilatocuprato (11) de potasio no pudo obtenerse en solución acuosa dado que el pKa fenólico es de aproximadamente 13.6. Por esta razón el compuesto se sintetizó en etanol como se describe a continuación. A un equivalente de $Cu(AcO)_2$ ·H2O disuelto en etanol se agregaron 2 equivalentes de ácido salicífico (H2sal) disueltos en etanol. A la solución obtenida se agregó un exceso de una solución etanólica saturada de KOH hasta la aparición de un precipitado que se filtró al vacío, se lavó repetidas veces con etanol y se secó al vacío.

No se encontró en la literatura información sobre el compuesto de fórmula $K_2[Cu(sal)_2]$, sin embargo, los resultados obtenidos por análisis elemental son congruentes con la formula propuesta y se presentan más adelante en este trabajo. La conductividad del compuesto sintetizado en McOH fue de 160 µmhos que corresponde a un electrolito 1:2²².

A continuación se presenta la estructura del compuesto sintetizado.

Figura 3.1.7. Estructura del bis-salicilatocuprato(11) de potasio.

Compuestos de la forma [Cu(N-N)(O-O)]NO₃:

III.1.3 Compuestos mixtos de acetilacetonato:

Los compuestos de acetilacetonato se sintetizaron, de manera general, como se indica a continuación. Para cada compuesto se tomó un equivalente de $Cu(NO_1)_2$ y se le agregó un equivalente de acacl1 disuelto en agua. La solución se neutralizó con NH3 acuoso hasta la aparición de un precipitado azul al que se agregó un equivalente del donador por nitrógeno aromático disuelto en etanol. La solución obtenida se dejó reposando hasta que se formaron cristales que se filtraron y secaron al vacío. Mediante la técnica antes descrita fue imposible aislar los compuestos en que (N-N) es 5NO2 fen. 56 fen y tmen. Los compuestos mixtos de las fenantrolinas asimétricas mencionadas se obtuvieron evaporando hasta seguedad en el rotavapor hasta la formación de un aceite que precipitó al agregar etanol. Todos los compuestos presentaron la banda intensa de nitrato en 1384 cm⁻¹ así como dos bandas de intensidad similar en ~1580 cm⁻¹ y ~1520 cm⁻¹ que corresponden a las frecuencias de vibración v(C=O) y v(C=C) de acetilacetonato coordinado^{16, 20}. En todos los **compuestos se observan las bandas de fenantrolina y bipiridina coordinada^{24, 25} en la región** de 1400 a 1650 cm⁻¹ así como en 720 cm⁻¹. El compuesto com trnen se obtuvo agregando a un equivalente de Cu(NO₁)-3H₂O disuelto en etanol un equivalente de acael disuelto en agua. A la solución formada se agregó un equivalente de tmen y se neutralizó con una solución etanólica de KOH. Se filtró el KNO, formado y el filtrado se llevó a seguedad en el rotavapor. El sólido se disolvió en agua para separarlo de cualquier producto insoluble, se filtró, y el filtrado se secó en el rotavapor y se recristalizó de etanol. El espectro en el infrarrojo mediano del sólido obtenido coincide con el reportado en la literatura para ese compuesto^{29, 30}, presentando una serie de bandas en la región de 2800-3000 cm⁻¹ que corresponden a las frecuencias de estiramiento v(C-II) de los metilos y metilenos presentes. una serie de bandas en la región de 900 a 1070 que corresponden a vibraciones v(C-C) y v(C-N) de la etilendiamina sustituida³¹ así como dos bandas de intensidad similar en 1590 y

1532 cm⁻¹ que corresponden a las frecuencias de vibración v(C=0) y v(C=C) de acetilacetonato coordinado^{16, 39}. En 1384 cm⁻¹ aparece la banda característica de nitrato debida a la vibración $v_i(N-0)$. La formula general de los compuestos mixtos de acetilacetonato es [Cu(N-N)(acac)]NO₃, donde (N-N) es el donador por nitrógeno.

A continuación se presentan las estructuras de los compuestos mixtos de fórmula general [Cu(N-N)(acac)]NO₁.

(b)

(c)

Figura 3.1.8. Estructuras generales de los compuestos mixtos de formula [Cu(N-NXacae)]NO, (a) Compuestos en que (N-N) es una fenantrolina, (b) compuestos en que (N-N) es una bipiridina y (c) el donador por nitrógeno es tmen.

III.1.4 Compuestos mixtos de salicilaldehidato:

A un equivalente de Cu(NO₁), se agregó un equivalente de salicilaldehido (salalH). La solución se neutralizó con NH₁ acuoso hasta la formación de un precipitado. A esta mezcla se agrego un equivalente de la fenantrolina o bipiridina correspondiente disuelta en etanol. El precipitado se redisolvió y la solución resultante se deió en reposo hasta la formación de cristales que se filtraron y secaron al vacío o, en algunos casos, hasta la formación de un precipitado que se filtró al vacío, se lavó con agua y se secó al vacío. Mediante la técnica antes descrita fue imposible aislar los compuestos en que (N-N) es 5NOsfen, 5¢fen y tmen. Los compuestos mixtos con las fenantrolinas asimétricas mencionadas se obtuvieron de manera análoga a los compuestos con acetilacetonato antes descritos. Todos los compuestos presentaron la banda intensa de nitrato en 1384 cm⁻¹ así como una banda muy intensa en la región de 1610 a 1620 cm⁻¹ que corresponde a la frecuencia de vibración v(C=O) y otra banda de intensidad mediana en la región de 1310 a 1340 cm⁻¹ que corresponde a la frecuencia de vibración v(C-O) para saliciladehidato coordinado^{18, 27}. En todos los compuestos se observan las bandas de fenantrolina y bipiridina coordinada^{24, 25} en la región de 1400 a 1650 cm⁻¹ así como en 720 cm⁻¹. El compuesto con tmen se obtuvo agregando a un equivalente de Cu(NO₃)₂-3H₂O disuelto en etanol un equivalente de salalH y a la solución formada se agregó un equivalente de tmen. La solución se neutralizó con una solución etanólica de KOH y se filtró obteniéndose un sólido blanco cristalino (KNO₃) y uno azul intenso. El filtrado se evaporo en el rotavapor hasta sequedad y se obtuvo un aceite que precipitó al raspar con una espátula. El precipitado obtenido se lavó repetidas veces con éter etilico para remover el exceso de saliciladehido y de [Cu(salal)2]. El espectro en el infrarrojo mediano presentó una serie de bandas en la región de 2800-3000 cm⁻¹ que corresponden a las frecuencias de estiramiento v(C-H) de los metilos y metilenos presentes, una serie de bandas en la región de 900 a 1070 cm^{-1} que corresponden a vibraciones v(C-C) y v(C-N) de la etilendiamina sustituída³¹ así cm que corresponden a violaciones v(c < y) v(c < y) de la chinalization de la frecuencia de vibración v(C = O) del salicitaldebidato coordinado^{18, 27}. En 1384 cm⁻¹ aparece la banda característica de nitrato debida a la vibración v.(N-O). Los compuestos mixtos de salicilaldehidato tienen formula general [Cu(N-N)(salal)]NO₃, donde (N-N) es un donador por nitrógeno.

A continuación se presenta la estructura general de los compuestos mixtos de fórmula general [Cu(N-N)(salal)]NO₃.

(a)

(b)

Figura 3.1.9. Estructuras de los compuestos de fórmula general [Cu(N-N)(salal)]NO₃: (a) Compuestos en que (N-N) es una fenantrolina. (b) Compuestos en que (N-N) es una bipiridina. (c) [Cu(tmen)(salal)]NO₃.

Compuestos de la forma [Cu(N-N)(O-O)]:

III.1.5 Compuestos mixtos de oxalato:

Los compuestos mixtos de oxalato se intentaron obtener mezclando un equivalente de Cu(NO₁)₂ con un equivalente del donador por nitrógeno utilizado disuelto en etanol. A la solución anterior se agrego un equivalente de K-ox disuelto en agua. El precipitado formado se filtró, se lavó con agua y se secó al vacío. La sintesis descrita anteriormente dio, en algunos casos, los compuestos deseados. Sin embargo, para ciertos donadores por nitrógeno, los espectros obtenidos en el infrarrojo mediano presentaban una banda muy intensa en 1384 cm⁻¹, banda que corresponde a la vibración v.(N-O) en el ion nitrato. Dado que se han reportado diversos compuestos en que el oxalato puede formar un puente entre dos jones metálicos³² y dado que los espectros de infrarrojo no debían presentar la banda de nitrato, entonces se obtuvieron todos los compuestos mediante una técnica distinta en la que se buscó eliminar de la mezcla de reacción a cualquier especie aniónica que pudiera servir de contraión a un ion complejo en que se presentaran puentes de oxalato entre átomos de cobre, *i.e.*, $[(N-N)Cu(\mu-ox)Cu(N-N)]^2$. De manera que se pudiera eliminar la presencia de nitratos de la mezcla de reacción, se obtuvo el compuesto de cobre y oxalato [Cu(ox)]. Dicho compuesto se encuentra en forma polimérica como ha sido descrito por Dubicki y sus colaboradores^{33,34}. Para la síntesis de los compuestos mixtos de oxalato se suspendió un equivalente de $[Cu(ox)]_n$ en agua. A esta mezela se agregó un equivalente del donador por nitrógeno empleado. El precipitado suspendido se disolvió hasta formar una solución que se dejó en reposo hasta la formación de cristales que se filtraron y se secaron al vacío o hasta la aparición de un precipitado que se filtró al vacío, se lavó con agua y se secó al vacío. Ninguno de los espectros de infrarrojo de los compuesto obtenidos de acuerdo con la síntesis anterior presenta la banda de nitrato en 1384 cm⁻¹. Existen en la literatura las asignaciones de ciertas bandas para algunos de los compuestos mixtos de Cu(II) con oxalato y un donador por nitrógeno (N-N). En todos los compuestos en que (N-N) es un donador por nitrógeno de tipo diimina, se observan las bandas de fenantrolina y bipiridina coordinada^{24, 25} en la región de 1400 a 1650 cm⁻¹ así como en 720 cm⁻¹. Para el compuesto con tmen el espectro en el mediano presenta una serie de bandas en la región de 2800-3000 cm^{-1} que corresponden a las frecuencias de estiramiento v(C-H) de los metilos y metilenos presentes y una serie de bandas en la región de 900 a 1070 cm⁻¹ que corresponden a vibraciones v(C-C) y v(C-N) de la etilendiamina sustituída¹¹, en la región de 1590 a 1680 cm¹ aparecen una o dos bandas muy intensas que corresponden a las frecuencias de vibración v(C=O) del carbonilo en el oxalato coordinado^{5, 15}.

A continuación se presentan las estructuras de los compuestos mixtos de fórmula general [Cu(N-N)(ox)].

Figura 3.1.10. Estructuras de los compuestos de fórmula general {Cu(N-NXox)}:
(a) Compuestos en que (N-N) es una fenantrolina. (b) Compuestos en que (N-N) es una bipiridina. (c) [Cu(turneXox)].

Dado que se tenían los compuestos de oxalato obtenidos de acuerdo con las dos síntesis descritas anteriormente, y que los espectros de infrarrojo de algunos de los compuestos preparados de acuerdo con la primera síntesis indicaban la presencia de nitrato, se hicieron pruebas de conductividad y se obtuvieron los análisis elementales de algunos de ellos. Los resultados obtenidos concuerdan con el hecho de que se presenten exalatos puente en los compuestos de la primera síntesis y, a su vez, con la ausencia de dichos oxalatos puente en los compuestos obtenidos en la segunda síntesis. A continuación se presentan los resultados de los análisis elementales de dos compuestos, uno con puente de oxalato y otro sin, así como los resultados obtenidos en las pruebas de conductividad y sus correspondientes espectros de infrarrojo de 4000 a 400 cm⁻¹ :

Compuesto	experimental			teórico		
	*•C	% H	% N	*• C	% H	% N
[Cu(4,4'dmbipi)-µ(ox)-Cu(4,4'dmbipi](NO1), 211,0	42.08	3.76	11.11	41.99	3.76	11.30
[Cu(4,4'dmbipi)(ox)]	49.32	3.45	8.02	50.07	3.57	8.34

Tabla 3.1.3. Análisis elemental dealgunos de los compuestos obtenidos con oxalato,

Las conductividades en agua para los compuestos mencionados fueron de 200 y 14 µmhos respectivamente, que corresponden a un electrolito 1:2 y a una especie neutra²⁴, respectivamente.

Figura 3.1.12. Espectro en el ir mediano del compuesto [Cu(4,4'dmbipi) (ox)].

III.1.6 Compuestos mixtos de salicilato:

Los compuestos mixtos de salicilato se obtuvieron agregando a un equivalente de Cu(NO₃)₂ un equivalente de la fenantrolina o bipiridina utilizada disuelta en etanol. A la solución resultante se agregó un equivalente de ácido salicífico (H₂sal) disuelto en etanol. La solución se neutralizó con NH₁ acuoso hasta la formación de un precipitado que se filtró (en algunos casos con cierta dificultad), se lavó repetidas veces con agua, y se secó al vacío. Mediante la técnica antes descrita fue imposible aislar el compuesto con tmen, que se obtuvo partiendo de un equivalente de K₂[Cu(sal)₂] disuelto en agua, al que se agregó un equivalente de tmen. El precipitado obtenido se filtró y se secó al vacío.

Los espectros en el mediano presentan una forma característica para todos los compuestos mixtos con salicitato sintetizados. En particular, se han asignado ciertas bandas" para el compuesto [Cu(fen)(sal)] que coinciden con las obtenidas para el compuesto de esa fórmula sintetizado. En todos los compuestos en que (N-N) es un donador por nitrógeno de tipo dimina, se observan las bandas de fenantrolina y bipiridina coordinada^{24,23} en la región de 1400 a 1650 cm⁻¹ así como en 720 cm⁻¹. Para el compuesto con tmen el espectro en el mediano presenta una serie de bandas en la región de 2800-3000 cm⁻¹ que corresponden a las frecuencias de estiramiento v(C-II) de los metillos y metilenos presentes y una serie de bandas en la región de 1570 a 1600 cm⁻¹ aparecen dos bandas muy intensas que corresponden a las frecuencias de vibración v(C=O) y v(C=C)¹⁰ del carbonilo en el salicitato y de carbono insaturado. En todos los espectros de los compuestos mixtos aparece una banda muy intensa, dobleteada en ~1450 a 1465 cm⁻¹ que aparece como una banda servila to 1469 para el *bies*alicitatoteupato (II) de potasio. Los compuestos mixtos de salicitato tienen fórmula general [Cu(N=N)(sal)].

A continuación se presentan las estructuras de los compuestos de fórmula general [Cu(N-N)(sal)].

Figura 3.1.13. Estructuras de los compuestos de fórmula general [Cu(N-N)(sal)]: (a) Compuestos en que (N-N) es una fenantrolina. (b) Compuestos en que (N-N) es una bipiridina. (c) [Cu(timen/Sal)].

III.1.7 Compuestos mixtos de malonato:

Los compuestos mixtos de malonato se obtuvieron agregando a un equivalente de Cu(NO₃), un equivalente de la fenantrolina o bipiridina correspondiente disuelta en metanol. A la solución resultante se agregó un equivalente de ácido malónico (H₃mal) disuelto en agua. La solución se neutralizó con NH, acuoso y se dejó reposando hasta la formación de cristales que se filtraron y se secaron al vacío o hasta la formación de un equivalente del compuesto con tmen se obtuvo partiendo de un equivalente del compuesto (1:1) de cobre y malonato [Cu(mal)] disuelto en agua y agregando un equivalente de tmen. La solución se dejó en reposo hasta la formación de cristales que se filtraron y se secaron al vacío. Para aquellos compuestos mixtos que cristalizaron se determinaron las estructuras cristalinas que más adelante se presentan. En todos los compuestos en que (N-N) es un donador por nitrógeno de tipo diimina, se observan las bandas de fenantrolina y bipiridina coordinada^{24, 25} en la región de 1400 a 1650 cm⁻¹ así como en 720 cm⁻¹. Para el compuesto con tmen el espectro en el mediano presenta una serie de bandas en la región de 2800-3000 cm⁻¹ que corresponden a las frecuencias de estramiento v(C-H) de los metilos y metilenos presentes y una serie de

bandas en la región de 900 a 1070 cm⁻¹ que corresponden a vibraciones v(C-C) y v(C-N) de la etilendiamina sustituida¹¹. Para todos los compuestos se observan una o dos bandas muy intensas en la región de 1580 a 1640 cm⁻¹ y otra banda de intensidad mediana en la región de 1400 a 1440 cm⁻¹ que corresponden a las frecuencias de vibración v(C-C) y v(C-O)respectivamente para malonato coordinado²³. El espectro en el infrarrojo mediano del compuesto [Cu(fen)(mal)] ha sido previamente estudiado¹⁹, y las bandas reportadas coinciden con las del compuesto obtenido. La fórmula general de los compuestos mixtos de malonato es [Cu(N-N)(mal)]. El resto de los espectros en el infrarrojo mediano son de la misma forma que el antes mencionado. Los compuestos mixtos de malonato tienen fórmula general [Cu(N-N)(mal)].

A continuación se presentan las estructuras de los compuestos de fórmula general [Cu(N-N)(mal)].

Figura 3.1.14, Estructuras de los compuestos de fórmula general [Cu(N-N)(mal)]: (a) Compuestos en que (N-N) es una fenantrolina. (b) Compuestos en que (N-N) es una bipiridina. (c) [Cu(tmen/mal]].

Estructuras cristalinas de compuestos mixtos de malonato:

Los cristales obtenidos para ciertos compuestos, de buen tamaño y aspecto, se enviaron a difracción de rayos X obteniéndose las estructuras cristalinas de los siguientes: [Cu(5,6dmfen)(mal)[H₂O)][L₃O, [Cu(5NO₅fen)(mal)H₂O]2H₂O, [Cu(bipi)(mal)(H₃O)]]H₂O y [Cu(4,4'dmbipi)(mal)(H₂O)]]. De los compuestos mixtos sintetizados también se obtuvieron cristales del compuesto de 4,7-difenil-1,10-fenantrolina, sin embargo la estructura cristalina de dicho compuesto aún no ha sido resuelta. A continuación se muestra uma tabla con los valores de las distancias Cu-O y Cu-N para los compuestos antes mencionados. La información restante que atañe a estos compuestos se muestra en el apêndice I de este trabajo. Más adelante se muestran las estructuras cristalinas de estos compuestos.

Compuesto	d(Cu-O1)	d(Cu-O2)	d(Cu-N1)	d(Cu-N2)
[Cu(5,6dmfen)(mal)(H2O)]H2O	1.915(1)	1.934(1)	2.009(1)	2.274(2)
[Cu(5NO2fen)(mal)H2O]-2H2O	1.908(6)	1.909(6)	2.011(6)	2.020(7)
[Cu(bipi)(mal)(H2O)]·H2O	1.937(1)	1.924(1)	2.001(1)	1.998(1)
[Cu(4,4'dmbipi)(mal)(H2O)]	1.933(6)	1.933(6)	2.003(6)	2.003(6)

Tabla 3.1.4. Distancias de enlace (en Å) Cu-O y Cu-N en compuestos mixtos de la forma [Cu(N-N)(mal)] con (N-N) una fenantrolina o una bipiridina .

Como puede observarse a partir de los datos obtenidos para las distancias de enlace en los distintos compuestos que se presentan, no existen diferencias significativas en las distancias Cu-O ni en las distancias Cu-N en los compuestos sintetizados, si se considera el error en la tercera cifra decimal.

Figura 3.1.15. Estructura del compuesto [Cu(5,6dmfen)(mal)(H₂O)]H₂O obtenida por difracción de rayos X.

Figura 3.1.16. Estructura del compuesto [Cu(5NO2fen)(mal)H2O]·2H2O obtenida por difracción de rayos X.

Figura 3.1.17. Estructura del compuesto [Cu(bipi)(mal)(H₂O)]·H₂O obtenida por difracción de rayos X

Figura 3.1.18. Estructura del compuesto [Cu(4.4'dmbipi)(mal)(H2O)] obtenida por difracción de rayos X.

A set and set and a

30

R

III.2 Estudio de la variación de la banda Cu-O en el infrarrojo lejano:

III.2.1 Compuestos mixtos de acetilacetonato:

٠

La asignación teórica para las bandas presentes en el compuesto [Cu(acac)₂] fue hecha por Nakamoto y Martell en la década de los 60's utilizando un análisis de coordenadas normales para el modelo 1:1 del compuesto [Cu(acac)₂]¹². Más Adelante, Mikami *et al.* asignaron teóricamente las bandas mediante un análisis por cordenadas normales de los modelos 1:2 y 1:3 de varios compuestos con acetilacetonato¹². Los estudios realizados posteriormente lograron nelarar algunas de las incongruencias que se presentaban en la asignación de determinadas bandas¹⁶, así como extender el estudio a compuestos mixtos con acetilacetonato. Para el compuesto [Cu(acac)₂] se ha determinado que las principales bandas relacionadas con las vibraciones v(CuO) aparecen en 615 y 455 cm⁻¹. Relacionada con la vibración v(CuO) se tiene la vibración de la banda v(CuO).

El estudio hecho con distintos compuestos, muestra que aparecen nuevas bandas de vibración v(CuO) en compuestos mixtos que contienen acetilacetonato. En particular, es interesante notar que en el ba-acetilacetonato de cobre con quinolina [Cu(ace)₂(quin)], aparecen nuevas bandas relacionadas con las vibraciones Cu-O. La asignación presentada para estas bandas es la siguiente: 616 y 600 cm⁻¹, correspondientes a v(CuO); 441 y 427 cm⁻¹, que corresponden a v(CuO) + δ (C-CH₃) y las bandas en 283 y 264 cm⁻¹ que corresponden a δ (O-M-O).

Las asignaciones presentadas en este trabajo¹⁶ muestran, en primer lugar, que dada la presencia de un sustituyente adicional, donador por nitrogeno aromático en el [Cu(acac)-(quin)], las principales bandas de vibración Cu-O parecen desdoblarse en dos bandas y, en segundo lugar, que aquella banda en 291 cm⁻¹ indicada por Nakamoto¹² como la banda con mayor carácter de vibración v(CuO) debido al desplazamiento obtenido al efectuar una sustitución isotópica en el [Cu(acac),], y que en el compuesto con quinolina aparece como dos bandas en 283 y 264 cm⁻¹, se trata de una vibración de deformación hacía dentro del plano, del tipo $\delta(O-M-O)$, que proporciona poca información acerca del aumento o decremento en la fuerza del enlace Cu-O. De manera que, para el presente trabajo, se buscaron todas aquellas bandas en el lejano que aparecieran en una región cercana a la posición en que aparecen las bandas Cu-O en el [Cu(acac)₂] y en el [Cu(acac)₃(quin)] que pudieran ser bandas que correspondieran a la vibración v(CuO). Para tener un parámetro cuantitativo que indicara la posibilidad de que las bandas estudiadas en estas regiones correspondieran a las bandas de vibración v(CuO), se hicieron gráficas de número de onda vs. el valor de pKa de la fenantrolina utilizada. Para los compuestos con bipiridina no pudo darse este tratmiento debido a que solamente se cuenta con dos bipiridinas como donadores por nitrógeno a diferencia de las 8 fenantrolinas utilizadas. A continuación se presenta una tabla en la que se muestran los valores obtenidos para las distintas bandas relacionadas con las vibraciones Cu-O. En primer lugar se indican los valores de las bandas para el [Cu(acac)₂], sintetizado para este trabajo.

Compuesto	Vibración (cm ⁻¹)					
	V(C=O)	v(CuO)	v(CuO) + v(C-CH3)	δ (O-Cu-O)		
[Cu(acac) ₂]	1578	612	454	266		
[Cu(tmen)(acac)]NO,	1590	587	452	267		
[Cu(fen)(acac)]NO,	1587	592	454	275		
[Cu(4,7dmfen)(acac)]NO,	1577	-	458	266		
[Cu(5,6dmfen)(acac)]NO,	1580	590	453	267		
[Cu(3,4,7,8tmfen)(acac)]NO1	1582	587	472	262		
[Cu(4,7døfen)(acac)]NO,	1585	593	453	273		
[Cu(5NO,fen)(acac)]NO,	1574		454	283		
[Cu(5mfen)(acac)]NO,	1583	592	454	266		
[Cu(5¢fen)(acac)]NO,	1583	593	457	270		
[Cu(bipi)(acac)]NO,	1576	591	451	265		
[Cu(4,4'dmbipi)(acac)]NO ₃	1583	594	454	271		

Tabla 3.2.4. Frequencias de vibración de las bandas relacionadas con la vibración v(CuO) en compuestos mixtos de la forma [Cu(N-N)(acac)]NO₄

A continuación se presenta una tabla en la que se muestran los valores de pKa de las fenantrolinas utilizadas así como los valores de número de onda a los que aparecen las distintas bandas de vibración relacionadas con la vibración Cu-O:

fenantrolina	$pK_{*}; \mu = 0.1, T = 25^{\circ}C$	v(CuO)	v(CuO) + v(C-CH3)	δ (O-Cu-O)
3,4,7,8tmfen+	6.31	587	452	262
4,7dmfen	5.95	-	458	266
5,6dmfen	5.60	590	453	267
5mfen	5.27	592	454	266
fen	4.93	592	454	275
Søfen'	4.9	593	457	270
4,7d¢fen*	4.8	593	453	273
5NO ₂ fen	3.22		454	283

Tabla 3.2.2. Frecuencias de vibración de las bandas relacionadas con la vibración v(CuO) en compuestos mixtos de la forma [Cu(N+N(acac)]NO, donde (N+N) es una fenantrolina y pNa de los distintos donadores (N+N).

--

Los valores de pKa de las fenantrolinas fueron tomados de la ref.36.

*Valor tomado de la ref. 37

· · · ·

٠

† Valor extrapolado a partir del valor a $\mu \approx 0$ y $T \geq 25^{o}C.$

* Valor obtenido en sol, acuosa al 10% EtOH, T = 18°C.

Se hicieron las gráficas de pKa vs. v(CuO) y de pKa vs. δ (O-Cu-O), debido a que con estas frecuencias de vibración se obtuvieron los mejores coeficientes de correlación: r = -0.98079 y r = -0.95382 respectivamente.

Fig. 3.2.1. Grafica de pKa de (N-N) vs. v(CuO) para los compuestos mixtos de la forma [Cu(N-N)(acac)]NO, donde (N-N) es una fenantrolina. Se obtuvo un valor de r = -0.98079.

Fig. 3.2.2. Gráfica de pKa de (N-N) vs. δ (O-Cu-O) para los compuestos mixtos de la forma [Cu(N-N)(acac)]NO, donde (N-N) es una fenantrolina. Se obtuvo un valor de r= -0.95382.

La gráfica de pKa vs. [v(CuO) + v(C·CII3)] no correlaciona bien con los valores de pKa debido, probablemente, al hecho de que se trata de una vibración para C·CII, Sin embargo se obtiene una buena correlación en las dos gráficas presentadas y de particular interés resulta la gráfica hecha con los valores para v(CuO), debido a que se trata de una vibración representativa de la fuerza del enlace Cu-O al tratarse de una vibración de sitramiento.

Aunque existen numerosas bandas para los compuestos con acetilacetonato, la asignación hecha por Nakamoto y sus colaboradores plantea que conforme la banda de vibración v(CuO) se mueva a valores más altos de número de onda, debe observarse una disminución en el número de onda de la banda $v(C \cdot O)$. Dicha relación debe considerarse cuidadosamente ya que esta banda puede encontrarse acoplada con otro tipo de vibraciones.

A continuación se presenta una tabla en la que se comparan los desplazamientos más significativos obtenidos para los compuestos mixtos con el compuesto utilizado como referencia por poseer carácter a nulo, el compuesto [Cu(tmen)(acac)]NO₃. La diferencia Av está calculada de acuerdo con los valores obtenidos para [Cu(tmen)(acac)]NO₃. En el primer caso se restan a este valor los de los demás compuestos y en el segundo caso se hace de manera contraria.

Compuesto		Vib	ración (cm ⁻¹)	
	4(C+O)	32	v(CuO)	<u>Δν</u>
[Cu(tmen)(acac)]NO1	1590		587	
[Cu(fen)(acac)]NO,	1587	3	592	5
[Cu(5,6dmfen)(acac)]NO,	1580	10	590	3
[Cu(4,7dofen)(acac)]NO,	1585	5	593	6
[Cu(5NO2fen)(acac)]NO,	1574	16		-
[Cu(5mfen)(acac)]NO1	1583	7	592	5
[Cu(Sofen)(acac)]NO,	1583	7	593	6
[Cu(bipi)(acac)]NO,	1576	14	591	4
[Cu(4,4'dmbipi)(acac)]NO ₃	1583	7	594	7

Tabla 3-2.3. Compuestos mixtos de acetilacetonato que presentan el mayor desplazamiento de la banda v(CuO)

De acuerdo con los valores obtenidos para dicha banda, el número de onda asignado a estas vibraciones aumenta dependiendo del donador por nitrógeno empleado de acuerdo con la siguiente tendencia:

4,4'dmbipi > 4,7d¢fen \approx 5¢fen > 5mfen \leq fen > bipi > 5,6dmfen > 3,4,7,8tmfen = tmen.

Para todos los donadores por nitrógeno de tipo difimina utilizados (a excepción de la 3,4,7,8tmfen), se observa un desplazamiento a mayor energía de la banda de vibración v(CuO), comparada con el valor obtenido para la tmen, el donador por nitrógeno que posee carácter π nulo.

III.2.2 Compuestos mixtos de salicitaldehidato:

Aunque los compuestos con salicilaldehido y derivados del mismo han sido extensamente estudiados^{14, 27, 18, 39}, hasta el momento no se cuenta con una asignación completa de todas las bandas que aparecen en los espectros de infrarojo debido a lo complicados que resultan los cálculos para compuestos en que el número de átomos es grande. Sin embargo, se han podído asignar de manera experimental las posiciones de las bandas y(C=O), v(C=O) y v(CuO) de acuerdo con los trabajos realizados por Bellamy y Branch²⁷ y, más recientemente, por Thornton y Percy^{14, 18, 39}.

A continuación se presenta una tabla en la que se muestran los valores obtenidos para las distintas bandas relacionadas con las vibraciones Cu-O. En primer lugar se indican los valores de las bandas reportadas para el compuesto según Thornton y Percy¹¹, el [Cu(salal)₂]¹ y, en segundo lugar, los valores de esas bandas en el compuesto [Cu(salal)₂] sintetizado para el presente trabajo:

Compuesto	Vibración(cm ⁻¹)						
	V(C=O)	V(C-O)	v(CuO) ₁	v(CuO) ₂			
[Cu(salal)]]T	1614	1344	552	539			
[Cu(salal) ₂]	1610	1337	549	537			
[Cu(tmen)(salal)]NO,	1620	1333	535	515			
[Cu(fen)(salal)]NO,	1610	1317	546	528			
[Cu(4,7dmfen)(salal)]NO,	1612	1310	534	509			
[Cu(5,6dmfen)(salal)]NO,	1612	1320	530	513			
[Cu(3,4,7,8imfen)(salal)]NO,	1613	1327	531	498			
[Cu(4.7dofen)(salal)]NO,	1614	1332	547	532			
[Cu(SNO2fen)(salal)]NO,	1618	1325	547	533			
[Cu(5mfen)(salal)]NO,	1616	1342	- 1	530			
[Cu(5¢fen)(salal)]NO1	1614	1335		535			
[Cu(bipi)(salal)]NO,	1610	1314	543	526			
[Cu(4,4'dmbipi)(salal)]NO,	1617	1322		535			

Tabla 3.2.4. Frecuencias de vibración de las ba	indas relacionadas con la vibración
v(CuO) en compuestos mixtos de la forma	[Cu(N-N)(salal)]NO,

Cabe mencionar que dado a que no se conoce de manera certera si una banda en particular está compuesta principalmente de un modo normal de vibración o una combinación de modos normales de vibración, entonces las asignaciones hechas deben considerarse con cuidado. Se observa, sin embargo, que aquellos compuestos para los cuales la vibración v(C=O) disminuye están directamente ligados a un incremento en la fuerza del

enlace Cu-O¹⁴. El compuesto mixto con tmen, el donador por nitrógeno con carácter π nulo, es, de todos los compuestos, el que presenta el valor más alto para v(C^mO), que aparece como una banda muy intensa en 1620 cm⁴. Posee también valores bastante bajos (en relación al resto de los compuestos) para las vibraciones v(CuO), que aparecen en 535 y 515 cm⁻¹, variación de 22 cm⁻¹ y 14 cm⁻¹ respectivamente, si se computan estos valores con los de compuesto neutro [Cu(salal)₂], en que dichas bandas aparecen en 537 y 549 cm⁻¹ respectivamente. Sin embargo, la comparación entre estos dos compuestos no es del todo válida, pues hay que considerar que en un caso se tiene un ion complejo de la forma [Cu(tmen)(salal)¹ mientras que el [Cu(salal₂)] es una complejo neutro. Es interesante, de cualquier modo, notar que como se ha predeho por los trabajos en solución con ligantes por nitrógeno como etilendiamina o etilendiaminas sustituídas, estos compuestos no son tan estables como los que se forman con donadores por nitrógeno que sean diminas como en el caso de las fenantrolinas o bipiridinas. De igual manera, se obtienen valores muy bajos para las vibraciones del enlace CuO

A continuación se presenta una tabla con los valores de pKa de las distintas fenantrolinas así como los valores de número de onda a los que aparecen las distintas bandas de vibración relacionadas con la vibración Cu-O.

fenantrolina	рКа	v(CuO)	v(CuO) ₂
3,4,7,8tmfen	6.31	531	498
4,7dmfen	5.95	534	509
5.6dmfen	5.60	530	513
Smfen	5.27		530
ten	4.93	546	528
5¢fen	4.9	-	535
4.7døfen	4.8	547	532
5NO ₂ fen	3.22		

Tabla 3.2.5 Frecuencias de vibración de las bandas relacionadas con la vibración v(CuO) en compuestos mixtos de la forma [Cu(N-N)(sala1)]NO, donde (N-N) es una fenantrolina y pKa de los distintos donadores (N-N) Los valores de pKa y las condiciones a que fueron medidos son las mumas que en la tabla 3.2.2.

Se hicieron las gráficas de pKa vs. $v(CuO)_1$ y $-v(CuO)_2$ obteniéndose los coeficientes de correlación r = -0.98793 y r = -0.96584 respectivamente.

Fig. 3.2.3. Gráfica de pKa de (N-N) vs. $V(CuO)_1$ para los compuestos mixtos de la forma [Cu(N-N)xsalal]]NO₂ donde (N-N) es una fenantrolina. Se obtuyo un valor de r = -0.98793.

Fig. 3.2.4. Gráfica de pKa de (N-N) vs. v(CuO), para los compuestos mixtos de la forma [Cu(N-N)Xsala1)]NO, donde (N-N) es una fenantrolina. Se obtuvo un valor de r = 0.96584.

Para el [Cu(SNO_1 fen)(salal)]NO₃ se cuenta con los valores para v(CuO)₁ y v(CuO)₂. Dichos valores no se consideraron en las gráficas anteriores ya que, aún cuando los valores obtenidos para estas vibraciones son elevados, no lo son suficientemente como para obtener una buena correlación.

A continuación se presenta una tabla en la que se comparan los desplazamientos más significativos obtenidos para los compuestos mixtos con el compuesto utilizado como referencia por poseer carácter n nulo, el compuesto [Cu(tmen)(salal)]NO₁. La diferencia Av está calculada de acuerdo con los valores obtenidos para [Cu(tmen)(salal)]NO₁

Compuesto	Vibración (cm ⁻¹)						
	v(CuO),	<u>Δν</u>	v(CuO),	Δ٧			
[Cu(tmen)(salal)NO,	535		515				
[Cu(fen)(salal)]NO,	546	11	528	13			
[Cu(5,6dmfen)(salal)]NO,	536	1	513	-2			
[Cu(4,7d¢fen)(salal)]NO,	547	12	532	17			
[Cu(5NO,fen)(salal)]NO,	547	12	533	18			
[Cu(5mfen)(salal)]NO,			530	15			
[Cu(Sofen)(salal)]NO,			535	20			
[Cu(bipi)(salal)]NO,	543	8	526	11			
[Cu(4,4'dmbipi)(salat)]NO,			535	20			

Tabla 3.2.6. Compuestos mixtos de salicilaldehidato que presentan el mayor desplazamiento de la baida v(CuO)

De acuerdo con los valores obtenidos para cada banda, el número de onda asignado a estas vibraciones aumenta dependiendo del donador por nitrógeno empleado de acuerdo con la siguiente tendencia:

(a) Para la banda $v(CuO)_1$ en 549 cm⁻¹ para el [Cu(salal)₂] y 535 cm⁻¹ para el [Cu(tmen)(salal)]NO₃:

 $4,7d\phi \text{fen} = 5NO_2 \text{fen} > \text{fen} > \text{bipi} > 5.6 \text{dmfen} > \text{tmen} > 4.7 \text{dmfen} > 3.4.7.8 \text{tmfen}.$

(b) Para la banda $v(CuO)_2$ en 537 cm⁻¹ para el [Cu(salal)₂] y 515 cm⁻¹ para el [Cµ(unen)(salal)]NO₁:

5¢fen = 4,4'dmbipi > 5NO₂fen > 4,7d¢fen > 5mfen > fen > bipi > tmen > 5,6dmfen > 4,7dmfen > 3,4,7,8tmfen.

38

The second se

III.2.3 Compuestos mixtos de oxalato:

La asignación para las bandas presentes en el compuesto $K_2[Cu(ox)_2]$ fue hecha por Nakamoto y sus colaboradores en la década de los 60's. Dado que el sistema es uno relativamente sencillo de estudiar debido a los pocos átomos que contiene, se cuenta con la asignación completa de todas las bandas. En total se tienen 15 modos de vibración distintos para esta molécula que pertenece al grupo puntual C_{2v} . De los 15 modos de vibración se mencionan únicamente 11 que corresponden a las vibraciones en el plano¹⁷. De estas 11 vibraciones no todas presentan relevancia significativa, para el estudio de la banda v(CuO), por tanto se tratarán exclusivamente aquellas bandas que permitan obtener información ya sea directa de la vibración v(CuO).

Existen diversos estudios espectroscópicos de compuestos mixtos de oxalato. En la mayoría de los casos, estos se centran en el cálculo de las constantes de estabilidad así como el estudio de sus espectros electrónicos^{5, 6, 29, 38, 40, 41} y, en algunos casos, de sus espectros en el infrarrojo mediano y/o lejano¹⁹.

A continuación se presenta una tabla en la que se muestran los valores obtenidos para las distintas bandas relacionadas con las vibraciones Cu-O. En primer lugar se indican los valores de las bandas reportadas para el compuesto según Nakamoto¹⁷, el K₂[Cu(ox)₂]^N y en segundo lugar los valores para las bandas del compuesto sintetizado para este trabajo, el K₂[Cu(ox)₂].

Compuesto	Vibración (cm ⁻¹)								
	v.(4 - 43)	· • ((A)) • • ((A)	S.(E.(C)) +2(E)(C-(C))	v (tata) + ((t -t)	vituti) + def anillo				
K2[Cu(ox)2]	1672	1411	1277	541	420				
K,[Cu(ox)]	1672	1416	1288	542	—				
[Cu(tmen)(ox)]	1674	1468	1307	538	405				
[Cu(fen)(ox)]	1663	1396	1256	546					
[Cu(4,7dmfen)(ox)]	1655	1423	1300	529	413				
[Cu(5,6dmfen)(ox)]	1666		1246	527	410				
[Cu(3,4,7,8tmfen)(0x)]	1658	1428	1294	528	412				
[Cu(4,7d¢fen)(ox)]	1671	1392	1260		427				
[Cu(5NOgfen)(ox)]	1678	1344	1221	570	436				
[Cu(5mfen)(ox)]	1666	1425	1297	542	417				
[Cu(5¢fen)(ox)]	1679	1396	1268	550	425				
[Cu(bipi)(ox)]	1677	1405	1268	547	440				
[Cu(4,4'dmbipi)(ox)]	1658	1418	1300	533	409				

Tabla 3.2 7. Frecuencias de vibración de las bandas relacionadas con la vibración v(CuO) en compuestos mixtos de la forma [Cu(N-N)(ox)]

El análisis global de los compuestos mixtos de oxalato se dificulta debido a que una de las bandas que mayor información pudiera proporcionar sobre la vibración Cu-O, v(CuO) + def, del anillo en 420 em³, es una banda de muy baja intensidad no observable en todos los espectros. Existe otra banda que proporciona información sobre la vibración Cu-O, <math>v(CuO) + v(C-C) en 541 cm⁻¹, sin embargo ésta también resulta dificil de asignar dado que aparece en la región en que se tienen bandas de intensidades similares a las de la banda antes mencionada, pero que podrían corresponder al ligante donador por nitrógeno. En aquellos casos en que la compararción con ambos espectros en el lejano, tanto del *bis* oxalatocuprato(II) de potasio como del nitrato del bis donador por nitrógeno respectivo permita asignar las bandas presentadas en la tabla a las vibraciones v(CuO), entonces se presenta dicha asignación, de lo contratio, dada la imposibilidad de asignar de una manera supoco ambigua, se emiten las bandas que pudieran corresponder a dichas vibraciones. La asignación de las bandas antes mencionadas también se apoya fueremente en el hecho de que exista una correlación contundente con los paras fenantrolinas utilizadas.

A continuación se presenta una tabla con los valores de pKa de las distintas fenantrolinas así como los valores de número de onda a los que aparecen las distintas bandas de vibración relacionadas con la vibración Cu-O-

fenantrolina	рКа	v,(C≈O)	v.(C-O) + v(C-C)	v <u>(C+O)</u> → δ(O+C=O)	v(CuO) + v(C-C)	v(CuO) + def. anillo
3,4,7,8tmfen	6.31	1658	1428	1294	528	412
4,7dmfen	5.95	1655	1423	1300	529	413
5,6dmfen	5.60	1666		1313	527	410
5mfen	5.27	1666	1425	1297	542	417
fen	4.93	1663	1396	1256	546	
5¢fen	4.9	1679	1396	1268	550	425
4,7d¢fen	4.8	1671	1392	1260		427
5NO ₂ fen	3.22	1678	1344	1221	570	436

Tabla 3.2.8 Frequencias de vibración de las bandas relacionadas con la vibración v(CuO) en compuestos mixtos de la forma [Cu(N-N)(ox)] donde (N-N) es una fenantrolina y pKa de los distintos donadores (N-N) Los valores de pKa y las condiciones a que fueron medidos son las mismas que en la tabla 3.2.2

Se hicieron gráficas correlacionando los valores de pKa de las fenantrolinas con las bandas de vibración v(CuO) así como de v(CuO) vs. v(C=O) y v(CuO) vs. v(C=O). Los resultados se muestran a continuación.

.

40

Fig. 3.2.5. Gráfica de pKa de (N-N) vs. [v(CuO) + v(C·C)] para los compuestos mixtos de la forma [Cu(N-N)(0x)] donde (N-N) es una fenantrolina. Se obtuvo un valor de r = -0 96767.

Fig. 3.2.6. Gráfica de pKa de (N-N) vs. [v(CuO) + def. anillo] para los compuestos mixtos de la forma [Cu(N-NXox)] donde (N-N) es una fenantrolina. Se obtuvo un valor de r = -0.93171.

• Como puede observarse a partir de las gráficas antes mostradas, se obtienen muy buenas correlaciones para las bandas de vibración v(CuO) con los valores de pKa de los donadores por nitrógeno en los compuestos mixtos de fórmula [Cu(N-N)(ox)]. También se obtienen muy buenas correlaciones con ambos valores de las vibraciones v(CuO) con las dos bandas de vibración v(C-O), no obstante el hecho de que las dos bandas de vibración v(C-O) se encuentran acopladas con otra vibración, cuando menos en el K₂[Cu(ox)₂]¹⁷. Dicho comportamiento es de esperarse, pues en general, un aumento en v(CuO) debe reflejarse en un decremento en v(C-O).

A continuación se presenta una tabla en la que se comparan los desplazamientos más significativos obtenidos para los compuestos mixtos con el compuesto utilizado como referencia por poseer carácter π nulo, el compuesto [Cu(tmen)(ox)]. La diferencia Δv está calculada de acuerdo con los valores obtenidos para [Cu(tmen)(ox)].

Compuesto	Vibración (cm ⁻¹)						
•	WCUO) + WC-C)	Δν	v(CuO) + def. anillo	Δν			
[Cu(tmen)(ox)]	538		405				
[Cu(fen)(ox)]	546	8					
[Cu(4,7døfen)(ox)]			427	22			
[Cu(5NO ₂ fen)(ox)]	570	32	436	31			
[Cu(5mfen)(ox)]	542	4	417	12			
[Cu(5¢fen)(ox)]	550	12	425	20			
[Cu(bipi)(ox)]	547	9	440	35			

Tabla 3.2.9. Compuestos mixtos de oxalato que presentan el mayor desplazamiento de la banda v(CuO).

De acuerdo con los valores obtenidos para cada banda, el número de onda asignado a estas vibraciones aumenta dependiendo del donador por nitrógeno empleado conforme a la siguiente tendencia:

(a) Para la banda [v(CuO) + v(C-C)] en 542 cm⁻¹ para el K₂[Cu(ox)₂] y 538 cm⁻¹ para el [Cu(tmen)(ox)]:

 $5NO_2$ fen > 5 ϕ fen > bipi \equiv fen > 5mfen > tmen > 4,4'dmbipi > 4,7dmfen \equiv 3,4,7,8tmfen \cong 5,6dmfen.

(b) Para la banda [v(CuO) + def. anillo] en 420 cm⁻¹ para el K₂[$Cu(ox)_2$] y 405 cm⁻¹ para el [Cu(umen)(ox)]:

- - -

bipi > 5NO₂fen > 4.7d ϕ fen > 5 ϕ fen > 5mfen > 4.7dmfen \cong 3.4.7.8tmfen > 5.6dmfen \cong 4.4'dmbipi > tmen.

III.2.4 Compuestos mixtos de salicilato:

(a) Asignación de la banda v(CuO) en compuestos de la forma $K_2[Cu(5-X-sal)_2]$:

No existe en la literatura información sobre compuestos de la forma $K_2[Cu(sal)]_2$. Existe información sobre compuestos neutros^{20, 21} de la forma [Cu(Hsab)], pero no se encontró un estudio hecho para el infrarrojo lejano de estos compuestos ni de la asignación de las bandas v(CuO). Sólo se cuenta con algunas asignaciones empíricas para las bandas CuO en compuestos con salicilato¹⁹, por lo que parte de este trabajo se enfocó a la asignación de las bandas v(CuO) en una serie de compuestos sintetizados con ácido salicílico con distintos sustituyentes en la posición 5 del anillo aromático. Se sintetizaron compuestos de la forma K. [Cu(5-X-sal).] en que X = McO, Me, H, Cl, Br, I y las bandas de vibración v(CuO) se determinaron de acuerdo con las propiedades de cada uno de estos grupos de enriquecer o empobrecer la densidad electrónica en el anillo aromático^{19, 18}, que se refleja en un aumento o disminución en los valores de pKa de los protones en el ácido salicífico. Para la asignación de dichas bandas, se utilizó como un parámetro cuantitativo la correlación existente entre los parámetros σ^* y σ de Taft así como los valores de los parámetros de sustituyente σ de Hammett, que propreionan una cantidad numérica que caracteriza a los sustituyentes en un sistema en particular. En ambos casos dichos parametros se calcular con base en la relación existente entre las constantes de velocidad de compuestos en que se tiene determinado sustituyente X respecto al compuesto que tiene como sustituyente al II. En el caso particular de la ecuación de Hammett, el parámetro por sustituyente σ se define como $\sigma = \log(k/k_{\rm el})$, donde k es la constante de velocidad de la reacción estudiada con determinado sustituyente X en el anillo aromático y k_{11} es la constante de velocidad para la misma reacción pero con X - II en el anillo aromático. Los parámetros de Taft se calculan de manera parecida pero en compuestos que no son aromáticos42.

La correlación existente entre determinadas frecuencias de vibración y los parámetros por sustituyente ha sido utilizada para la asignación de bandas v(M-L) empleando el parámetro de sustituyente σ de Harnmett en compuestos que presenten un sustituyente en el anillo aromático y utilizando la diferencia $\sigma^* - \sigma$ en anillos aromáticos con más sustituyentes^{16, 18, 18, 29, 42}. La síntesis y caracterización de los compuestos de la forma (S₁Cu(5-X-Sal))] se describe en el apéndico III de este trabajo.

Para tener una idea de cuáles son las posibles bandas de vibración v(CuO) en el infrarrojo lejano, so obtuvieron los espectros en el lejano tanto del ligante sustituido, H₂5-X-sal, como del compuesto de fórmula K₂[Cu(5-X-sal)₂]. Ambos espectros se compararon entre sí observándose que ciertas bandas presentes en el ligante se observaban en el bis quelato con un ligero desplazamiento. La aparición de nuevas bandas en el espectro en el lejano de algún compuesto de la forma K₂[Cu(5-X-sal)₂]. Actor personar que algunas de éstas probablemente se deban a vibraciones v(CuO). No obstante el hecho de que estas vibraciones pueden deberse a la vibración antes mencionada, es también probable que alguna banda de vibración v(CuO) se encuentre acoplada con otra de las bandas que aparecen en el ligante sin coordinar. A continuación se muestran los espectros en el lejano de los bis quelatos con cobre, de la forma 11,5-X-sal junto con los respectivos espectros en el lejano de los bis quelatos con cobre, de la forma K₂[Cu(5-X-sal)₂].

-

46

Fig. 3.2.11. Espectros en el lejano de los ligantes de la forma H₂5-X-sal y los compuestos de la forma K₂[Cu(5-X-sal)₂]. Las bandas sombreadas corresponden a las de mayor carácter de vibración v(CuO)

47

.

Haciendo uso de los parámetros σ de Hammett para distintos sustituyentes en el anillo aromático, y considerando la diferencia $\sigma^* - \sigma$ de los parámetros de Taft como la más representativa en compuestos que presentan anillos aromáticos disustituidos, se buscaron las posibles bandas de vibración v(CuO). Dada la estructura de los compuestos sintetizados, se esperan bandas de vibración del cobre con el oxígeno del fenolato así como bandas que correspondan a las vibraciones del cobre con el oxígeno del carboxitato. De aquí que una banda que correlacione bien con σ_p y $\sigma_p^* - \sigma_p$ probablemente se deba a un modo normal de vibración del cobre con el oxígeno del carboxitato.

Fig. 3.2.12. Estructura general de los compuestos de la forma K₂[Cu(5-X-sal)₂] con X = McO, Me, H, Cl, Br. I.

Por la razón antes mencionada, se hicieron gráficas de los valores de $\sigma_1 \ y \ \sigma_1^* - \sigma_1$ vs. los valores de las distintas bandas de vibración tanto en el mediano como en el lejano que parecian correlacionar bien con estos valores.

A continuación se muestra una tabla con los valores de σ_i y $\sigma_i^* - \sigma_i$ así como los valores a los que aparecen las distintas bandas probablemente ligadas a las vibraciones v(CuO) en los compuestos de la forma $K_2(Cu(5-X-sal)_2)$.

x	σ,	σ, - σ,	0 m	a, - a,	×,	V1	ν,	· ·	1 .
MeO	-0.28	-0.5	0.1	-0.063	821	802	686	553	520
Me	+0.14	-0.141	-0.06	-0.006	818	801	680	539	507.5*
H	0	-	0	-	810	784	662	541	507
CI	0.22	-0.106	0.37	0.029	803	734	674	532	501
Br	0.22	-0.107	0.37	0.065	798	715	659	529	500
1	0.21	-0.105	0.34	0.009	806	749	676	528	495

Tabla 3.2.10. Valores de σ₁, σ₁' - σ₁, y valores en los que aparecen las bandas ligadas a la vibración v(CuO). *Valor obtenido con la semisuma de dos bandas que aparecen en esta región.

parecen en esta region.

A continuación se muestran las gráficas obtenidas a partir de los datos anteriores:

Fig. 3.2.13. Gráfica de σ_m vs. v_1 para los compuestos de la forma K₂[Cu(5-X-sal)₂] con X = MeO, Me, H, Cl, Br, I. Se obtuvo un coeficiente de correlación r = -0.95313.

Fig. 3.2.14. Gráfica de o_m² - o_m vs v₁ para los compuestos de la forma K₂[Cu(5-X-sal)₂] con X = MeO, Me, Cl, Br, I. Se obtuvo un coeficiente de correlación r = -0.92805.

Fig. 3.2.15. Gráfica de σ_m vs v_2 para los compuestos de la forma $K_1[Cu(5-X-sal)_2]$ con X = MeO, Me, H, Cl, Br, I. Se obtuvo un coeficiente de correlación r = -0.96254.

Fig. 3.2.16. Grafica de o_m² - o_m vs v₂ para los compuestos de la forma K₂[Cu(5-X-sal)₂] con X = McO, Me, Cl, Br, I. Se obtuvo un coeficiente de correlación r = -0.89298.

Fig. 3.2.17. Gráfica de σ_m^{*} - σ_m vs. v₁ para los compuestos de la forma K₂[Cu(5-X-sal)₂] con X = MeO, Me, Cl, Br, I. Se obtuvo un coeficiente de correlación r = -0.9392.

Fig. 3.2.18. Gráfica de σ_p vs. v_a para los compuestos de la forma K₂[Cu(5-X-sal)₂] con X = MeO, Me, H, Cl, Br, I. Se obtuvo un coeficiente de correlación r = -0.93879.

Fig. 3.2.19. Gráfica de $\sigma_{\mu}^{+} - \sigma_{\mu} vs_{\mu} v_{\mu}$ para los compuestos de la forma K₂[Cu(5-X-sal)₂] con X = MeO, Me, Cl, Br, I. Se obtuvo un coeficiente de correlación r = -0.95336.

Fig. 3.2.18. Gráfica de σ_p vs v, para los compuestos de la forma $K_2[Cu(5-X-sal)_2]$ con X = MeO, Me, H, CI, Br, I. Se obtuvo un coeficiente de correlación r = -0.94326.

Fig. 3.2.21. Gráfica de o, - o, vs. v, para los compuestos de la forma K₂[Cu(5-X-sal)₂] con X ~ MeO, Me, Cl. Br, I. Se obtuvo un coeficiente de correlación r = -0.96136.

Fig. 3.2.22. Gráfica de v₄ vs. v(C-O) para los compuestos de la forma K₂[Cu(5-X-sal)₂] con X = MeO, Me, H, Cl, Br, I. Se obtuvo un coeficiente de correlación r = 0.97854

Fig. 3.2.23. Gráfica de v, vs. v(C-O) para los compuestos de la forma K₂[Cu(5-X-sal)₂] con X = MeO, Me, H, Ct, Br, I. Se obtuvo un coeficiente de correlación r = 0.95764

Como puede observarse a partir de las gráficas mostradas anteriormente las bandas de vibración que mejor correlacionan con los parámetros utilizados para los distintos sustituyentes en posición meta son las que se designaron como v_1 , v_2 y v_3 , mientras que las bandas que mejor correlacionan con las parámetros utilizados para los sustituyentes en posición para son las que se designaron por v_4 y v_3 . Sin embargo, estas dos últimas bandas también correlacionan bien con los valores para los sustituyentes en meta. Parece adecuado, dada la evidencia experimental que se mostrará más adelante, designar a las vibración v_3 y v_3 como aquéllas de mayor carácter v(CuO). De estas dos, la vibración v_3 es una banda de baja intensidad que no aparece en los espectros en el lejano de los ligantes, mientras que v_4 sí.

(b) Variación de la banda v(CuO) en compuestos mixtos de la forma [Cu(N-N)(sal)]:

Una vez determinadas las posibles vibraciones con carácter CuO en los compuestos de la forma K₂[Cu(5-X-su)₂] se procedió a determinar la posición de dichas bandas en los compuestos mixtos con salicilato. La única información con que se contó para la asignación de las bandas v(CuO), v(C-O) y v(C-O), además del trabajo previo, fue un artículo en que se asignaban empiricamente las bandas antes mencionadas en una serie de compuestos mixtos con fenantrolina y distintos donadores por oxígeno¹⁹. De acuerdo con este trabajo se tienen los siguientes valores para el compuesto [Cu(fen)(sal)]: v(C=O) en 1590 cm⁻¹, v(C-O) en 1575 cm⁻¹ y v(CuO) en 585, 440 y 405 cm⁻¹. A continuación se presenta una tabla con las bandas de vibración relacionadas con las vibraciones CuO en los compuestos mixtos de la forma [Cu(N-N)(sal)]:

Compuesto	Vibración (cm ⁻¹)					
	V(C-O)	v(C-O)	v(CuO)	v(CuO)	v(CuO)	v(CuO)
K2[Cu(sal)2]	1589 1580	1362	541	507	524	-
[Cu(tmen)(sal)]	1579	1361	540	504	522	
[Cu(fen)(sal)]	1577	1359	543	507	525	524
[Cu(4,7dmfen)(sal)]	1568	1360	535	501	518	518
[Cu(5,6dmfen)(sal)]	1571	1368	547	501	524	515
[Cu(3,4,7,8tmfen)(sal)]	1578	1365	540	486	513	506
[Cu(4,7d¢fen)(sal)]	1565	1351	541	512	526.5	541
[Cu(5NO;fen)(sal)]	1571	1340	529	529	529	~~
[Cu(5mfen)(sal)]	1566	1368	541	501	521	519
[Cu(5¢fen)(sal)]	1568	1358	539	500	522.5	-
[Cu(bipi)(sal)]	1572	1366	540	.199	519 5	526
[Cu(4,4'dmbipi)(sal)]	1587	1343	543	•		-

Tabla 3-2.11 Frecuencias de vibración de las bandas relacionadas con la vibración v(CuO) en compuestos mixtos de la forma [Cu(N-N)(sal)]

Como herramienta de asignación para determinar la posición de las bandas v(CuO) en los compuestos mixtos con salicilato, se procedió de manera análoga a como se hizo con el resto de los compuestos mixtos, buscando aquellas bandas que correlacionaran bien con los valores de pKa de las fenantrolinas utilizadas, con base en las bandas sensibles al sustituyente X en los compuestos de la forma $K_2[Cu(5-X-sal)_2]$ así como las bandas cuya asignación empírica se hizo para el compuesto [Cu(fen)(sal)].

A continuación se muestra una tabla con los valores de pKa de las distintas fenantrolinas utilizadas así como los valores de número de onda a los que aparecen las bandas de vibración relacionadas con la vibración Cu-O:

1996 🛥 1997 - 1

fenantrolina	рКа	v(C-O)	v(CuO)	v(CuO)	v(CuO)*	v(CuO)
3,4,7,8tmfen	6.31	1365	540	486	513	506
4,7dmfen	5.95	1360	535	501	518	518
5,6dmfen	5.60	1368	547	501	524	515
5mfen	5.27	1368	541	501	521	519
fen	4.93	1359	543	507	525	524
5¢fen	4.9	1358	539	506	522.5	
4,7døfen	4.8	1351	541	512	526.5	541
5NO ₂ fen	3.22	1340	529	529	529	

Tabla 3.2 12 Frecuencias de vibración de las bandas relacionadas con la vibración v(CuO) en compuestos mixtos de la forma [Cu(N-NX)(sal)] donde (N-N) es una fenantrolina y pKa de los distintos donadores (N-N). * Valores correspondentes a la semisuma de las dos vibraciones v(CuO) anteriores. Los valores de pKa y las condiciones a que fueron medidos son las mismas que en la tabla 3.2.2

Se hicieron gráficas correlacionando los valores de pKa de las fenantrolinas con las bandas de vibración v(CuO) así como de v(CuO) vs. v(C-O). Los resultados se muestran a continuación.

Fig. 3.2.24. Gráfica de pKa vs. v(CuO) para los compuestos de la forma [Cu(N-N)(sal)] con (N-N) una fenantrolina. Se obtuvo un coeficiente de correlación r = -0.85604

Fig. 3.2.25. Gráfica de pKa vs. v(CuO) para los compuestos de la forma [Cu(N-N)(sal)] con (N-N) una fenantrolina. Se obtuvo un coeficiente de correlación r = -0.96213

Fig. 3.2.26. Gráfica de pKa vs. v(CuO)* para los compuestos de la forma [Cu(N-N)(sal)] con (N-N) una fenantrolina. Se obtuvo un coeficiente de correlación r = -0.86219

Fig. 3.2.27. Gráfica de v(CuO) vs. v(C-O) para los compuestos de la forma [Cu(N-N)(sal)] con (N-N) una fenantrolina. Se obtuvo un coeficiente de correlación r. -0.87224

Es interesante observar que de todas las bandas que correlacionaron bien para los compuestos de la forma $K_2[Cu(5-X-sal)_2]$ con X = MeO, Me, H. Cl, Br, I, únicamente se obtiene una buena correlación para los compuestos mixtos con la banda que aparece en 507 cm⁻¹ para el $K_2[Cu(sal)_2]$ y con la semisuma de las bandas que aparecen en 541 y 501 cm⁻¹ para el mismo compuesto. También se observa la aparición de una nueva banda en la región de 506 a 520 cm⁻¹ en los compuestos mixtos que parece correlacionar bien con los valores de pKa de las fenantrolinas empleadas. No obstante el hecho de que los espectros en el lejano presentan bandas muy intensas y definidas, parece ser que en la mayoría de los casos aquellas bandas relacionadas con la vibración Cu-O no son muy intensas. No se encontró correlación alguna con las bandas propuestas por Kwik y Ang para la vibración de dad intensa en la región de 1340 a 1370 cm⁻¹ parece ser una vibración de alda con las banda for y cubor vibración v(CuO).

Dado que se obtuvieron un gran número de bandas que parecerian sensibles al sustituyente X en los compuestos de la forma $K_2[Cu(5-X-sal)_2]$, se pretende, en un trabajo posterior, determinar cuiles de éstas son sensibles a la variación de un sustituyente Y en compuestos de la forma $K_2[Cu(4-Y-pir)(5-X-sal)_2]$ en donde el ligante 4-Y-pir son piridinas sustituidas en la posición 4. Dado que se conocen los parámetros σ_Y para cada sustituyente, entonces puede determinarse cuides de las bandas mencionadas anterioremte tienen mayor carácter de vibración v(Cu-O), pues serán aquéllas que correlacionen bien con los parámetros σ_Y y cuyos desplazamientos para un sustituyente X fijo en el salicilato sean considerables¹⁶.

A continuación se presenta una tabla en la que se comparan los desplazamientos más significativos obtenidos para los compuestos mixtos con el compuesto utilizado como referencia por poseer carácter π nulo, el compuesto [Cu(tmen)(sal)]. La diferencia Av está calculada de acuerdo con los valores obtenidos para [Cu(tmen)(sal)].

Compuesto	Vibración (cm ⁻¹)		
	v(CuO)	Δ٧	
[Cu(tmen)(sal)]	504		
[Cu(fen)(sal)]	507	3	
[Cu(4,7d\$fen)(sal)]	512	8	
[Cu(5NO ₂ ten)(sal)]	529	25	
[Cu(Søfen)(sal)]	506	2	

Tabla 3.2.13. Compuestos mixtos de salicilato que presentan el mayor desplazamiento de la banda v(CuO)

De acuerdo con los valores obtenidos el número de onda asignado a las vibraciones v(CuO) aumenta dependiendo del donador por nitrógeno empleado conforme a la siguiente tendencia:

 $5NO_2$ fen $> 4,7d\phi$ fen $> fen \approx 5\phi$ fen > tmen > 5mfen $\approx 4,7dm$ fen $\approx 5,6dm$ fen > bipi > 3,4,7,8tmfen.

III.2.5 Compuestos mixtos de malonato:

(a) Asignación de la banda v(MO) en compuestos de la forma $K_2[M(mal)_2]$:

No existe en la literatura un estudio de asignación de las bandas de vibración v(Cu-O) en el infartojo lejano. Existe, sin embargo, un artículo bastante extenso sobre compuestos de metales de transición con malonato que trata de manera detallada la síntesis de los compuestos y plantea asignaciones para las principales bandas de vibración v(C=O) y v(C-O) en el mediano³¹. Dado el problema de que se desconocía la posición de la banda v(M-O) en el lejano (y en particular aquélla para el Cu) entonces se preparó una serie de compuestos de fórmula K₂[M(mal)₂] con M = Mn²⁺, Co²⁺, Ni²⁺, Cu²⁺ y Zn²⁺ para llevar a cabo la asignación. La sintesis y caracterización de dichos compuestos se describe en el apéndice IV de este trabajo. Para una serie de compuestos como la antes mencionada, si los espectros en el infrarrojo siguen un patrón similar y puede pensarse que los compuestos son isoestructurales, entonces las bandas de vibración v(M-O) deben variar de acuerdo con el orden establecido por la serie de l'ving-Williams, esperándose que v(Mn-O) < v(Co-O) < v(Ni-O) < v(Cu-O) > v(Zn-O)¹⁶⁻¹⁸.

Una vez sintetizados los compuestos, los espectros en el lejano se compararon con el espectro en el lejano del ligante neutro para determinar si aparecían nuevas bandas que pudieran deberse a la vibración v(M-O). Para todos los compuestos se obtienen espectros similares además de aparecer una banda sumamente intensa en la región de 320 a 360 cm⁻¹ que se encuentra ausente en el espectro del ligante neutro. A continuación se muestran los espectros en el lejano del ligante neutro así como de los complejos sintetizados.

Fig. 3.2.28. Espectros en el lejano del figante protonado H₂mal y los compuestos de la forma K₂[M(mal)₂] con M = Mn, Co, Ni, Cu, Zn. La banda sombreada corresponde a la de mayor carácter de vibración v(MO).

La asignación de las banda v(M-O) se hizo correlacionando las bandas en el lejano con los valores de los logaritmos de las constantes de formación $\log \beta_1$ y $\log \beta_2$ de los complejos de los metales antes mencionados con malonato de acuerdo con los siguientes equilibrios:

 $M^{2^*} + H_2 mal$ M(mal) $\beta_1 = [M(mal)]/[H_2 mal][M^{2^*}]$ $M^{2^*} + 2 H_2 mal$ $M(mal)_2^{2^*}$ $\beta_2 = [M(mal)_2^{2^*}]/[H_2 mal]^2[M^{2^*}]$

De todas las bandas en el lejano, la banda antes mencionada en la región de 320 a 360 cm⁻¹ es la que mejor correlaciona con los valores de las constantes de formación log β_1 y log β_2 . La banda de vibración v(MO) se encuentra ligada a las vibraciones v(C-O) y v(C=O), esperándose un decremento en la primera y un incremento en la segunda conforme aumente v(M-O)²³. A continuación se muestra una tabla con los valores de las constantes de formación para cada metal y el número de onda de las frecuencias de vibración propuestas como v(M-O), las bandas relacionadas con v(MO) así como las gráficas obtenidas de log β_1 vs. v(M-O).

Metal (M ^{2*})	logβ	log _{β2}	v(C-O) (cm ⁻¹)	v(C-O) (cm ⁻¹)	v(M-O) (cm ⁻¹)
Mn	2.30		1574.5*	1378	326
Co	2.97	4.4	1582	1369	332
Ni	3.24	4.9	1576.5*	1367	339
Cu	5.05	7.8	1591	1357	362
Zn	2.96	4.4	1591	1370	332

Tabla 3.2,14. Frecuencias de vibración de las bandas relacionadas con la vibración v(M-O) en compuestos de la forma $K_2[M(mal)_2]$ con $M((1) \otimes Mn, Co, Ni, Cu y Zn y valores de las (logla y logla). Los valores de las constantes de formación se obtuvieron$

de la referencia 43 y se calcularon a T = 25°C y fuerza ionica de 0.1 M.

* Valores obtenidos tomando el promedio de dos bandas de la misma intensidad en la región de vibración de C+O.

Fig.3.2.29. Gráfica de log β_1 vs. v(M-O) para los compuestos de la forma K₃[M(mal)₂] con M(11) = Mn, Co, Ni, Cu y Zn. Se obtuvo un coeficiente de correlación r = 0.99377

Fig.3.2.27. Gráfica de $\log \beta_2$ vs. v(M-O) para los compuestos de la forma K₂[M(mal)₂] con M(11) =Co, Ni, Cu y Zn. Se obtuvo un coeficiente de correlación r = 0.99668

Fig.3.2.31. Gráfica de $log\beta_1$ vs. v(C-O) para los compuestos de la forma K₂[M(mal)₂] con M(II) = Mn, Co, Ni, Cu y Zn. Se obtuvo un coeficiente de correlación r = -0.96825.

Fig.3.2.32. Gráfica de $log\beta_2$ vs. v(C-O) para los compuestos de la forma $K_3[M(mal)_2]$ con M(II) = Co, Ni, Cu y Zn. Se obtuvo un coeficiente de correlación r = -0.99617.

Fig.3.2.33. Gráfica de $log\beta_1 vs. v(C=0)$ para los compuestos de la forma $K_2[M(mal)_2]$ con M(II) = Mn, Co, Ni y Cu. Se obtuvo un coeficiente de correlación r = 0.91987.

Fig. 3.2.34. Gráfica de v(M-O) vs. v(C-O) para los compuestos de la forma $K_2[M(mal)_2]$ con M(II) = Mn, Co, Ni, Cu y Zn. Se obtuvo un coeficiente de correlación r = -0.94874.

Fig.3.2.35. Gráfica de v(M-O) vs. v(C-O) para los compuestos de la forma K₃[M(mal)₂] con M(II) = Mn, Co, Ni y Cu. Se obtuvo un coeficiente de correlación r = 0.88343.

Como puede observarse a partir de las gráficas anteriores, se obtienen muy buenas correlaciones de la banda en la región de 320-360 cm⁻¹ para los compuestos sintetizados. Esta es la única banda (de las que se estudiaron en el lejano) que presenta un buena correlación con los valores de la constante de formación, de aquí que probablemente sea la banda de vibración con mayor carácter v(MO). Es interesante observar que también se obtienen buenas correlaciones para las bandas asignadas a $v(C-O) \ge v(C=O)$ tanto con los valores de log β_i , como con los valores obtenidos de v(MO). Farago et al estudiaron una serie de malonatos de distintos compuestos y plantearon las siguientes asignaciones para las bandas en la región del carboxilato para el compuesto Na₃[Cu(mal) ₃(H₂O) ₃] como las más representativas de las vibraciones $v(C=O) \neq v(C=O)$ en 1610, 1580, 1405 y 1365 cm⁻¹. Las dos primeras bandas corresponden a las vibraciones $v(C \approx O) y$ no aparecen en el compuesto sintetizado con cobre para este trabajo, sino únicamente una banda muy intensa en 1591 cm⁻¹. Las otras dos bandas que corresponden a las vibraciones v(C-O) aparecen en 1390 y 1357 cm⁻¹ para el K₂[Cu(mal)₂], sin embargo solamente la segunda banda es la que correlaciona bien con los valores de v(MO) obtenidos para la serie de compuestos con malonato sintetizados. Posiblemente la banda de vibración en 1390 cm⁻¹ se encuentre acoplada con otra vibración mientras que la banda en 1357 cm⁻¹ parecería ser la de mayor carácter de vibración v(C-O).

(b) Variación de la banda v(CuO) en compuestos mistos de la forma [Cu(N-N)(mal)]:

Existe muy poca información en cuanto a compuestos mixtos de la forma [Cu(N-N)(mal)] se refiere. Unicamente se cuenta con información para el [Cu(fen)(mal)] de acuerdo con los trabajos realizados por Kwik y Ang¹⁰. Dichos autores han asignado la banda que aparece en 1580 cm⁻¹ a la vibración C=O, las bandas en 1400 y 1275 cm⁻¹ a las vibraciones C-O, C-C y C-O, O-C=O respectivamente y las bandas en 560, 450 y 405 cm⁻¹ a Cu-O.

A continuación se presenta una tabla en la que se muestran los valores obtenidos para las distintas bandas relacionadas con las vibraciones Cu-O en los compuestos mixtos con malonato:

Compuesto	Vibra	ación (cm ^{**})		
	v(C-O)	v(C+O)	V(CuO)	V(CuO)
K ₂ [Cu(mal) ₂]	1580 .	1357	362	-
[Cu(tmen)(mal)]	1597	1350	349	313
[Cu(fen)(mal)]	1603	1323	366	331
[Cu(4,7dmfen)(mal)]	1578	1351	359	320
[Cu(5,6dmfen)(mal)]	1583	1344	360	325
[Cu(3,4,7,8unfen)(mal)]	1574	1358	357	318
[Cu(4,7døfen)(mal)]	1580	1336	358	-
[Cu(SNO,fen)(mal)]	1598	1344	363	347
[Cu(\$mfen)(mal)]	1604	1335	364	332
[Cu(5¢fen)(mal)]	1585	1339	363	330
[Cu(bipi)(mal)]	1592	1330	354	329
[Cu(4,4*dmbipi)(mal)]	1602	1331	364	319

Tabla 3.2.15. Frecuencias de vibración de las bandas relacionadas con la vibración v(CuO) en compuestos mixtos de la forma [Cu(N-N)(mal)].

De igual manera que con las otras series de compuestos sintetizados, la asignación de la banda de vibración v(CuO) en los compuestos mixtos de fórmula [Cu(N-N)(mal)], con (N-N) una fenantrolina se apoya fuertemente en el hecho de que exista una correlación contundente con los pKa's de las fenantrolinas utilizadas y la vibración v(CuO). De las bandas de vibración v(CuO) que se muestran en la tabla, la primera corresponde a la banda intensa que aparece en 362 cm⁻¹ para el K₂[Cu(mal)₂], sin embargo, la segunda banda mostrada se encuentra ausente en el K₂[Cu(mal)₂] y en el resto de los compuestos de la forma K₂[M(mal)₂] con M = Mn²⁺, Co²⁺, Ni²⁺.

A continuación se presenta una tabla con los valores de pKa de las distintas fenantrolinas así como los valores de número de onda a los que aparecen las distintas bandas de vibración relacionadas con la vibración Cu-O:

fenantrolina	рКа	v (C=O)	v(C-0)	v(CuO)	v(CuO)
3,4,7,81mfcn	6.31	1574	1358	357	318
4,7dmfen	5.95	1578	1351	359	320
5,6dmfen	5.60	1583	1344	360	325
5mfen	5.27	1604	1335	364	332
fen	4.93	1603	1323	366	331
5¢fen	4.9	1585	1339	363	330
4,7døfen	4.8	1580	1336	358	
5NQ ₂ fen	3.22	1598	1344	363	347

Tabla 3.2.16. Frecuencias de vibración de las bandas relacionadas con la vibración v(CuO) en compuestos mixtos de la forma [Cu(N-N(mal)] donde (N-N) es una fenantrolina y pKa de los distintos donadores (N-N). Los valores de pKa y las condiciones a que fueron medidos son las mismas que en la tabla 3.2.2.

Se hicieron gráficas correlacionando los valores de pKa de las fenantrolinas con las bandas de vibración v(CuO) así como de v(CuO) vs. v(C=O) y v(CuO) vs. v(C=O). Los resultados se muestran a continuación.

Fig. 3.2.38. Gráfica de v(CuO) vs. v(C-O) para los compuestos mixtos de la forma [Cu(N-N)(mail)] donde (N-N) es una fenantrolina. Se obtuvo un valor de r= -0.95187.

Como puede observarse a partir de las gráficas antes mostradas, la banda de vibración v(CuO) en los compuestos mixtos corresponde a la misma banda que la que se determinó para los compuestos de la forma $K_2[Cu(mal)_2]$ mientras que las bandas reportadas por Kwik y Ang no correlacionaron bien. Parece que también se han asignado equivocadamente las bandas de vibración v(C-O).

Para los valores utilizados en el presente trabajo se obtienen buenas correlaciones para las bandas de vibración v(CuO) con los valores de pKa de los donadores por nitrógeno en los compuestos mixtos de förmula [Cu(N-N)(mal)]. Para los compuestos mixtos con (N-N) = 4,7d¢fen y 5NO₃fen los valores obtenidos para la banda de vibración v(CuO) son altos (358 y 363 cm⁻¹ respectivamente) sin embargo no lo suficiente como para obtener una buena correlación en la gráfica de v(CuO) vs. pKa. Por esta razón se eliminaron de la gráfica. El hecho de que todos los valores de v(CuO) si correlacionen con los valores para v(C-O) y v(C=O) hace pensar que estas bandas si son las representativas de la vibración Cu-O aún cuando para los otros compuestos mixtos se hayan obtenido los mayores desplazamientos con estos ligantes. Para la nueva banda que aparece en la región de 320 a 430 cm⁻¹ se obtiene una muy buena correlación con los valores de pKa sin embargo las correlaciones con las bandas v(C-O) y v(C=O) presentan algunos puntos que se desvian mucho del comportamiento lineal, por lo que las gráficas obtenidas no se incluyeron anteriormente.

A continuación se presenta una tabla en la que se comparan los desplazamientos más significativos obtenidos para los compuestos mixtos con el compuesto utilizado como referencia por poseer carácter π nulo, el compuesto [Cu(tmen)(mal)] La diferencia Δv está calculada de acuerdo con los valores obtenidos para [Cu(tmen)(mal)].

Compuesto	Vibración (cm ¹¹)				
	v(CuO)	Δν	v(CuO)	Δv	
[Cu(tmen)(mal)]	349	1	313		
[Cu(fen)(mal)]	366	17	331	18	
[Cu(4,7dmfen)(mal)]	359	10	320	7	
[Cu(5,6dmfen)(mal)]	360	11	325	12	
[Cu(3,4,7,8tmfen)(mal)]	357	8	318	5	
[Cu(4,7d¢fen)(mal)]	358	9			
[Cu(5NO2fen)(mal)]	363	14	347	34	
[Cu(5mfen)(mal)]	364	15	332	19	
[Cu(Søfen)(mal)]	363	14	330	17	
[Cu(bipi)(mal)]	354	5	329	16	
[Cu(4,4'dmbipi)(mal)]	364	15	319	6	

Tabla 3.2.17. Compuestos mixtos de malonato que presentan el mayor desplazamiento de la banda v(CuO). De acuerdo con los valores obtenidos para cada banda, el número de onda asignado a las vibraciones v(CuO) aumenta dependiendo del donador por nitrógeno empleado conforme a la siguiente tendencia:

(a) Para la banda que aparece en 362 cm⁻¹ para el K₂[Cu(mal)₂] y en 349 cm⁻¹ para el [Cu(tmen)(mal)], el compuesto con carácter π nulo :

fen > 5mfen = 4,4'dmbipi > 5NO₂fen = 5¢fen >5,6dmfen > 4,7dmfen > 4,7d¢fen > 3,4,7,8tmfen > bipi > tmen.

(b) Para la banda que aparece en 313 cm⁻¹ para el compuesto con carácter π nulo, el [Cu(tmen)(mal)] y que se encuentra ausente para K_2 [Cu(mal)₂]:

 $5NO_2$ fen > 5mfen > fen > 5 ϕ fen > bipi > 5,6dmfen > 4,7dmfen > 4,4'dmbipi > 3,4,7,8tmfen > tmen.

IV.- Conclusiones:

i.- Se sintetizaron en total 80 compuestos que fueron caracterizados todos con espectroscopia de infrarrojo. De estos compuestos se obtuvieron estructuras cristalinas de compuestos de la forma [Cu(N-N)(salal)]NO₃ y [Cu(N-N)(mal)], con fenantrolinas sustituidas, 2,2'-bipiridina y 4,4'-dimetil-2,2'-bipiridina. Algunos de estos compuestos no se encuentran reportados en la literatura.

ii.- Los compuestos sintetizados de la forma $K_2[Cu(5-X-sal)_i]$ se caracterizaron mediante análisis elemental, conductividad y sus espectros de infrarrojo tanto en el mediano como en el lejano. Ninguno de estos compuestos se encuentra reportado en la literatura.

iii.- Los compuestos sintetizados de la forma $K_2[M(mal)_2]$, con M = Mn, Co, Ni, Cu y Zn, se caracterizaron mediante análisis elemental, conductividad y sus espectros de infrarrojo tanto en el mediano como en el lejano.

iv.- Se determinaron las bandas de mayor carácter de vibración v(CuO), v(C-O) y v(C=O) en los compuestos de la forma K₂[Cu(5-X-sal)₂]. En particular, para el *his*salicilatocuprato(11) de potasio se encontró que las principales bandas v(CuO) están en 541 y 507 cm⁻¹, v(C-O) en 1362 cm⁻¹ y v(C-O) en 1589 y 1580 cm⁻¹.

v.- Se determinó la posición de la banda de mayor carácter v(MO) en los compuestos de la forma $K_2[M(mal)_2]$, para M = Mn, Co, Ni, Cu y Zn así como la posición de las bandas v(C-O) y v(C=O) para esta serie de compuestos. Las bandas de mayor carácter vibracional v(MO) se encuentran en 326, 332, 339, 362 y 332 cm⁻¹ para Mn, Co, Ni, Cu y Zn, respectivamente. Las bandas antes mencionadas siguen el orden establecido por la serie de lrving-Williams, *i.e.*, v(MnO) < v(C=O) < v(NiO) < v(ZnO).

vi.- Para todos los compuestos mixtos de la forma $[Cu(N-N)(O-O)]NO_3$ en que el donador por oxígeno es acetilacetonato y salicilaldehidato, se observa que los desplazamientos más considerables hacia una mayor energia de la banda de vibración v(CuO) se dan con los donadores por nitrógeno 4.7døfen, SNO₂fen, fen, Smfen y Søfen, en cuanto a los donadores por nitrógeno de tipo fenantrolina se refiere y, para ambas series de compuestos mixtos, se obtuvo un desplazamiento a mayor energía con la 4.4 dmbipi que con bipi.

Para los compuestos en estas dos series, también se observa que los desplazamientos más significativos se dan con el saliciladehidato, obteniéndose desplazamientos muy pequeños, en relación con el ligante que posee carácter π nulo para la serie de los acetilacetonatos.

vii.- Para todos los compuestos mixtos de la forma [Cu(N-N)(O-O)] en que el donador por oxígeno es oxalato, malionato o salicilato, se observa que los desplazamientos de las bandas de vibración v(CuO) hacia una mayor energía se dan con los donadores por nitrógeno SNO₂fen, 5¢fen, 5mfen, fen y 4,7d¢fen, aunque este último se desplaza a una menor energía que la esperada en los compuestos con malonato; esto en cuanto a los donadores por nitrógeno de tipo fenantrolina se refiere. En el caso de las bipiridinas, parece ser que se tienen desplazamientos a mayor energía en aquellos compuestos en que se tiene bipiridina, más que en los compuestos con 4,4'dmbij, sin embargo no se pudieron determinar las bandas v(CuO) en todos los casos para estos compuestos, por lo que no se pude concluir contundentemente al respecto. De todos estos compuestos, los mayores desplazamientos se obtavieron para los compuestos mixtos en que el donador por oxígeno es oxalato y malonato.

viii.- Para los compuestos de la forma $K_2[Cu(\sigma x)_2] \neq K_2[Cu(mal)_2]$, así como en los compuestos mixtos [Cu(N-N)(ox)] y [Cu(N-N)(mal)], se observa que las bandas de vibración v(CuO) aparecen a una mayor energía en los compuestos con oxalato que en los compuestos con malonato. En ambos casos se obtienen los mayores desplazamientos en cuanto al compuesto con carácetr π nulo que con cualquiera de los otros compuestos mixtos.

ix.» Para los compuestos en que los donadores por oxígeno son salicitaldehidato y salicitato, las bandas de mayor carácter de vibración v(CuO) aparecen aproximadamente en la misma región, siendo las principales aquéllas en 549 y 537 cm⁴ para el [Cu(sala)₂] y en 541 y 507 cm⁴ para el K₂[Cu(sal₂]. El hecho de que las vibraciones v(CuO) sean de mayor energía para el [Cu(salal₂] que para el K₂[Cu(sal₂)] quizá se deba a que el primer compuesto formado es neuro mientras que el segundo es aniônico, aunque las diferencias son muy sutiles.

x.- En general puede decirse que en los compuestos mixtos sintetizados, ya sean de la forma [Cu(N-N)(O-O)]NO₄ o de la forma [Cu(N-N)(O-O)] con (N-N) una femantrolina, existe una tendencia lineal entre los valores de pKa de las femantrolinas y los valores de v(CuO) de los compuestos mixtos, obteniéndose los mayores desplazamientos de las bandas de vibración v(CuO) con las fenantrolinas más ácidas.

xi.- En general se observa que la presencia de un donador por nitrógeno que pueda formar enlaces π de retrodonación con el Cu²⁺, como ocurre con las fenantrolinas y bipiridinas, se refleja en un desplazamiento a mayor energia de la banda de vibración v(CuO) en la mayoría de los compuestos mixtos. Esto concuerda con el incremento en las cosntantes de estabilidad de los compuestos mixtos de la misma forma en solución acuosa. Sin embargo, en cuanto a lo que el presente estudio se refiere, existe al menos un donador por nitrógeno en que los desplazamientos de la banda v(CuO) fueron a una menor energía que los obtenidos con el donador por nitrógeno que poseía carácetr π nulo. Dicho efecto se encontró de manera consistente con la 3,4,7,8tmfen en todos los compuestos mixtos, por lo que puede decirse que el desplazamiento de la banda v(CuO) en los compuestos mixtos se encuentra estrechamente ligado a la acidez o basicidad del donador por nitrógeno de tipo diimina utilizado.

xii.- Por último, se presenta una tabla con las tendencias seguidas para los compuestos mixtos estudiados en que se muestran los donadores por nitrógeno de acuerdo con los desplazamientos en la(s) banda(s) de vibración v(CuO) a una mayor energía:

Compuestos mixtos	Tendencia observada
[Cu(N-NXacac)]NO;	4,4°dmbipi > 4,7døfen + Søfen - Smfen + fen > bipi > S,6dmfen > 3,4,7,8tmefn + tmen
[Cu(N-N)(salal)]NO,	(a) 4,7døfen = 5NO ₃ fen - fen = bipi = 5,6dmfen > tmen = 4,7dmfen > 3,4,7,8tmfen (b) 5øfen = 4,4'dmbipi > 5NO ₂ fen = 4,7døfen = 5mfen > fen > bipi > tmen > 5,6dmfen = 4,7dmfen = 3,4,7,8tmfen
[Cu(N-NX0x)]	(a) SNO ₂ fen > Søfen → bipi ≈ fen > Smfen > tmen > 4,4*dmbipi > 4,7dmfen ≥ 3,4,7,8tmfen = 5,6dmfen (b) bipi > SNO ₂ fen > 4,7døfen → Søfen > Smfen > 4,7dmfen = 3,4,7,8tmfen > 5,6dmfen = 4,4*dmbipi > tmen
[Cu(N-N)(sal)]	SNO,len ≫ 4,7dølen ≥ fen ≈ 5ølen ≥ tmen ≥ 5mlen ~ 4,7dmlen ∾ 5,6dmlen ≥ bipi ≥ 3,4,7,8tmlen
[Cu(N-N)(mal)]	 (a) fen ≥ \$mfen ~ 4.4'dmbipi ≥ \$NO;fen = \$\$fen ≥ \$.6dmfen ≥ 4.7dmfen ≥ 4.7dmfen ≥ 4.7dmfen ≥ bipi ≥ tmen (b) \$NO;fen > \$mfen ≥ fen ≥ \$\$fen > bipi ≥ \$.6dmfen > 4.7dmfen > 4.4'dmbipi ≥ 3.4.7.8tmfen ≥ tmen

V.- Referencias bibliográficas:

- 1.-, Ruiz-Ramírez, L.; Gracia, I.; de la Rosa M. E.; Sumano, H.; Gómez C.; Arenas, F.; Gómez E.; Pimentel E.; y Cruces M.; J. of Inorg. Biochem., 51 (1-2), 1993, p 250.
- Ruiz-Ramírez L.; Gómez Ruiz, C.; Gracia Mora, I. y de la Garza Salazar, J.; Antineoplasic Activity <u>In vitro</u> of Castopeinas I, II and III, New Coordination Compounds on Cervix Cancer, Based Metal Drugs, 1996, en prensa.
- Ruiz-Ramirez L.; Gracia Mora, L.; Huerta, L.; Mayet, L.; y Lomeli C.; Antineoplasic Activity in sign of Castopelnas I, II, III and IV, New Coordination Compounds on Murine Tumors, Based Metal Drugs, 1996, en prensa.
- 4.- Sigel, H.; IUPAC Coordination Chemistry, 20, 1980, pp. 27-43.
- 5.- Walker, A.; Sigel, H. y McCormick, D. B.; Inorg. Chem., 11(11), 1972, pp. 2756-2763.
- 6.- Griesser, R. y Sigel, H.; Inorg. Chem., 9(5), 1969, pp. 1238-1243.
- 7.- Katel, P. J.; Patel, V. K. y Bhattacharya, P. K.; Inorg. Chem., 21, 1982, pp. 3163-3166.
- Amico, P.; Bonomo, R. P.; Cali, R.; Cucinotta, V.; Daniele, P. G.; Ostacoli, G. y. Rizzarelli, E.; Inorg. Chem., 28, 1989, pp. 3555-3561.
- 9.- Sigel, H.; Huber, P. R.; Griesser, R. y Prijs, B.; Inorg. Chem., 12(5), 1973, pp.1198-1200.
- 10.- Huber, P. R.; Griesser, R. y Sigel, H.; Inorg. Chem., 10(5), 1971, pp.945-947.
- Harris, D. C. y Bertolucci, M. D.; Symmetry and Spectroscopy An Introduction to Vibrational and Electronic Spectroscopy, Dover Publications, Inc., USA, 1978, pp. 93-117.
- 12.- Nakamoto, K.; Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edition, John Wiley & Sons, USA, 1986, pp. 230-237, 244-248, 259-267.
- Nakamoto, K.; Udovich, C. y Takemoto, J.; J. Amer. Chem. Soc., 92(13), 1970, pp. 3973- 3976
- 14.- Nakamoto, K. y Martell, A. E.; J. of Chem. Phys., 32(2), 1960, pp. 588-597.
- Nakamoto, K.; McCarthy, P.; Ruby A., y Martell, A.; J. Amer. Chem. Soc., 83, 1960, pp. 1066-1069

- 16.- Thornton D. A.; Coordination Chemistry Reviews, 104, 1990, pp. 173-249.
- 17.- Fujita, J.; Martell, A. y Nakamoto, K.; Journal of Chem. Phys., 36(2) 1962. pp. 324-331.
- 18.- Percy, G. y Thornton, D.; J. Inorg. Nucl. Chem., 35, 1973, pp. 2719-2726.
- 19.- Kwik W. y Ang, K.; Aust. J Chem., 31, 1978, pp. 459-463.
- Kharitinov, G. V.; Kharitonova, R. I. y Maslennikova, T. I.; *Zh. Neorg. Khim.*, 24(3), 1979, pp. 840-842.
- Yoshimura, Yoshitake; Oki, Hisaya; y Tsuchiya, Ryokichi; Nippon Kagaku Kaishi, 4, 1979, pp.502-505.
- 22.- De Beukeleer, S. y. Desseyn, H.; Spectrochimica Acta, 50-A(14), 1994, 2291-2309.
- 23.- Farago, M. E. y Amirhaeri, S.; Inorganica Chimica Acta, 81, 1984, pp. 205-212.
- 24.- Schilt A. A. y Taylor, R. C.; J. Inorg. Nucl. Chem., 9, 1959, pp. 211-221.
- 25.- Inskeep, R.G.; J. Inorg. Nucl. Chem., 24, 1962, pp. 763-776.
- 26.- Meek, D. y. Ehrhardt, S.: Inorg. Chem., 4(4), 1964, pp.584-587.
- 27.- Bellamy, L. J. y Branch, R. F.; J. Chem. Soc, 1954, pp. 4491- 4494.
- Angelici, R. J.; Synthesis and Technique in Inorganic Chemistry, 2nd edition, W. B. Saunders Company, USA, 1977, pp. 18, 213.
- 29.- Fukuda, Y.; Shimura, A.; Mukaida, M.; Fujita, E. y Sone, K.; J. Inorg. Nucl. Chem., 36, 1974, pp. 1265-1270.
- 30.- Fukuda, Y. y. Sone, K.; Bull. Chem. Soc. Jap., 45, 1972, pp. 465-469.
- Bennett, A. M. A.; Foulds, G. A.; Thornton, D. A. y Watkins, G. M.; Spectrochimica Acta, 46A(1), 1990, pp. 13-22.
- 32.- Alvarez, S.; Julve, M. y Verdaguer, M.; Inorg. Chem., 29, 1990, pp. 4500-4507.
- 33.- Dubicki, L.; Harris, C. M.; Kokot, E. y Martin R. L.; Inorg. Chem., 5(1), 1966, pp. 93-99.

77

-

- 34.- Figgis, B. N. y Martin, D. J.; Inorg. Chem., 5(1), 1966, pp.100-104.
- Fabretti, A.; Franchini, G. y Zannini, P.; Inorganica Chimica Acta, 105, 1985, pp. 187-191.
- 36.- Kotrly and Sucha, Handbook of Chemical Equilibria in Analytical Chemistry, Ellis Horwood Series.
- 37.- Leipoldt, J. G. y Lamprecht, Steynberg, E. C., J. Organomet. Chem., 402, 1991, p. 259.
- 38.- Percy, G. C. y Thornton, D. C.; J. Inorg. Nucl. Chem., 34, 1972, pp. 3369-3376.
- 39.- Percy, G. C. y Thornton, D. C.; J. Inorg. Nucl. Chem., 34, 1972, pp. 3357-3367.
- 40.- Srivastava V. y Nigam, H. L.; Bioelectrochemistry and Bioenergetics, 9, en J. Electroanal. Chem. 141, 1982, pp. 627-637.
- 41.- Srivastava V. y Nigam, H. L.; Bioelectrochemistry and Bioenergetics, 9, en J. Electroanal. Chem. 141, 1982, pp. 639-644.
- Exner Otto; Correlation Analysis of Chemical Data ; Plenum Publishing Corporation, Czechoslovakia, 1988, pp.55-68, 139-159.
- Martell, A. E. y Smith, R. M., Critical Stability Constants Volume 5: First Supplement, Plenum Press, USA, 1982, pp. 308, 309.

ESTA TESIS NO DEBE SALIR DE LA BIBLIOTECA Apéndice I

A.I.1.- Datos cristalográficos del compuesto [Cu(5NO2fen)(mal)(H2O)]-2H2O

Tabla 1. Datos cristaiográficos y refinamiento estructural del [Cu(5NO₂fen)(mal)(H₂O)]·2H₂O.

Formula empirica	C., H., Cu N, O.
Masa molar	444 84
Temperatura	293(2) K
Longitud de onda	0 71069 Å
Sistema cristalino	MONOCLINICO
Grupo espacial	P 21/c
Dimensiones de la celda unitaria	a = 9.240(3) Å ca = 90.0(3) *
	b = 15 628(4) Å β = 95 2(3) *
	c = 12 047(5) Å y = 90 0(3)*
Volumen	1732 5(10) Å
z	4
Densidad (calculada)	1.705 Mg/m ³
Coeficiente de absorción	1.319 mm ⁻¹
F(000)	908
Tamaño del cristal	06x012x009mm
Intervalo de 0 para la colección de	3.40 a 27 73 *
datos	
Intervalo de los índices de Miller	0-0-h-12, 0k20, -15-0-h-15
Reflexiones colectadas	4204
Reflexiones independientes	3964 [R(int) = 0.0518]
Corrección de absorción	EMPIRICA
Máx, y mín, de transmisión	0 9999 5 0 9779
Método de refinamiento	Minimos cuadrados en la matriz completa de F ²
Datos /restricciones /parámetros	2827/6/273
Bondad de ajuste sobre F	0 962
Indices R finales [1:-20(1)]	R1 = 0.0490, wR2 = 0.1149
Indices R (todos los datos)	R1 - 0 2025, wR2 - 0
Diferencia máxima de pico y valle	0 582 y -0 584 e Å

	×	У		U(eq)
Cu(1)	669(1)	251(1)	2908(1)	35(1)
O(1W)	2397(7)	-50(5)	4238(5)	57(2)
N(I)	203(6)	1401(4)	3536(5)	35(1)
N(2)	1838(6)	1000(4)	1952(5)	35(1)
0(1)	-933(6)	-216(4)	3600(5)	52(1)
0(2)	1011(5)	-766(3)	2096(4)	45(1)
O(3)	-2540(6)	-1158(4)	3977(4)	50(1)
O(4)	640(6)	-2084(4)	1557(5)	61(2)
C(1)	-621(8)	1560(5)	4369(6)	44(2)
C(2)	-890(9)	2399(6)	4703(7)	52(2)
C(3)	-340(9)	3069(6)	4178(8)	50(2)
C(4)	519(8)	2911(5)	3293(6)	39(2)
C(5)	1125(9)	3565(6)	2654(7)	48(2)
C(6)	1946(9)	3351(5)	1828(7)	44(2)
C(7)	2283(8)	2499(5)	1526(6)	40(2)
C(8)	3161(8)	2216(6)	697(7)	46(2)
C(9)	3346(8)	1372(6)	524(6)	47(2)
C(10)	2675(8)	757(5)	1164(6)	40(2)
C(11)	1666(8)	1846(5)	2140(6)	34(2)
C(12)	787(8)	2063(4)	3020(6)	33(2)
C(13)	-1576(7)	-907(5)	3398(6)	34(2)
C(14)	-1252(9)	-1446(6)	2425(8)	59(3)
C(15)	254(8)	-1437(5)	2012(6)	37(2)
N(3)	2500(10)	4090(5)	1235(6)	61(2)
O(31)	1738(10)	4731(4)	1119(6)	87(2)
O(32)	3737(8)	4034(5)	927(6)	80(2)
O(2W)	6201(7)	1476(4)	8758(6)	59(2)
ociwó	5248(8)	512(5)	6808(7)	85(2)

Tabla 2. Coordenadas atómicas (x 10^4) y parámetros de desplazamiento isotrópico equivalentes ($A^2 \times 10^3$) para [Cu(5NO₂fen)(mal)(H₂O)]·2(H₂O). La U(eq) se define como un tercio de la traza del tensor ortogonalizado U₁.

_		
	Cu(1)-O(1)	1,909(7)
	Cu(1)-O(2)	1.908(7)
	Cu(1)-N(1)	2.011(7)
	Cu(1)-N(2)	2.021(8)
	Cu(1)-O(1W)	2.208(9)
	O(1W)-H(11W)	0.801(5)
	O(1W)-H(12W)	0.800(3)
	N(1)-C(1)	1.336(9)
	N(1)-C(12)	1.345(9)
	N(2)-C(10)	1.333(9)
	N(2)-C(11)	1.353(9)
	O(1)-C(13)	1.246(9)
	O(2)-C(15)	1.259(9)
	O(3)-C(13)	1.244(8)
	O(4)-C(15)	1.219(9)
	C(1)-C(2)	1.400(11)
	C(1)-H(1)	0.93
	C(2)-C(3)	1.346(12)
	C(2)-H(2)	0.93
	C(3)-C(4)	1.407(11)
	C(3)-H(3)	0.93
	C(4)-C(12)	1.392(10)
	C(4)-C(5)	1.423(12)
	C(5)-C(6)	1.347(12)
	C(5)-H(5)	0.93
	C(6)-C(7)	1.422(11)
	C(6)-N(3)	1.473(11)
	C(7)-C(11)	1.410(11)
	C(7)-C(8)	1.413(11)
	C(8)-C(9)	1.348(12)
	C(8)-H(8)	0.93
	C(9)-C(10)	1.410(11)
	C(9)-H(9)	0.93
	C(10)-H(10)	0.93
	C(11)-C(12)	1.433(10)
	C(13)-C(14)	1.495(11)
	C(14)-C(15)	1.519(10)
	C(14)-H(14A)	0.97
	C(14)-H(14B)	0.97
	N(3)-O(31)	1.225(10)
	N(3)-O(32)	1.237(10)
	O(2W)-H(21W)	0.87(4)
	O(2W)-H(22W)	0.800(4)
	O(3W)-H(31W)	1.02(7)
	O(3W)-H(32W)	1.02(7)

Tabla 3. Distancias de enlace seleccionadas [Å].

and the second s

	UII	U22	U33	U23	013	012	
Cu(1)	35(1)	31(1)	40(1)	-3(1)	17(1)	-2(1)	
O(IW)	45(3)	79(5)	49(4)	-10(3)	12(3)	12(3)	
N(I)	31(3)	36(3)	39(4)	-1(3)	8(3)	1(3)	
N(2)	38(3)	32(3)	36(3)	-1(3)	14(3)	-3(3)	
0(1)	53(3)	45(3)	64(4)	-22(3)	37(3)	-16(3)	
O(2)	43(3)	38(3)	58(4)	-8(3)	30(3)	-7(3)	
0(3)	46(3)	51(3)	56(3)	-2(3)	27(3)	-11(3)	
O(4)	68(4)	41(3)	81(4)	-19(3)	48(4)	-6(3)	
C(1)	36(4)	53(5)	43(5)	1(4)	11(4)	5(4)	
C(2)	54(5)	49(5)	56(5)	-12(4)	16(4)	13(4)	
C(3)	47(5)	41(5)	64(6)	-7(4)	11(4)	12(4)	
C(4)	41(4)	31(4)	45(5)	-4(3)	-1(4)	0(3)	
C(5)	46(5)	41(5)	5(45)	2(4)	-6(4)	1(4)	
C(6)	44(5)	34(5)	53(5)	11(4)	-6(4)	-8(4)	
C(7)	35(4)	41(4)	42(4)	8(4)	-2(3)	-6(4)	
C(8)	38(5)	54(6)	47(5)	12(4)	5(4)	-7(4)	
C(9)	43(4)	63(6)	38(4)	10(4)	13(4)	-2(4)	
C(10)	42(4)	46(5)	35(4)	-4(4)	14(3)	1(4)	
C(11)	32(4)	36(4)	33(4)	2(3)	0(3)	-2(3)	
C(12)	29(4)	34(4)	36(4)	2(3)	1(3)	-2(3)	
C(13)	25(4)	38(4)	39(4)	2(3)	11(3)	6(3)	
C(14)	47(5)	57(6)	77(6)	-32(5)	28(5)	-14(5)	
C(15)	45(4)	33(4)	36(4)	-1(3)	19(4)	0(4)	
N(3)	67(6)	55(5)	66(5)	4(4)	2(4)	-16(5)	
0(31)	126(6)	36(4)	98(5)	18(4)	9(5)	9(5)	
O(32)	76(5)	74(5)	91(5)	14(4)	10(4)	-28(4)	
O(2W)	7(4)	53(4)	82(5)	15(3)	24(3)	12(4)	
O(3W)	74(5)	81(6)	104(6)	0(4)	29(4)	5(4)	

Tabla 4. Parámetros de desplazamiento anisotrópico ($Å^2 \times 10^3$) para [Cu(5NO₂fen) (mal)(H₂O)]·2(H₂O). El exponente del factor de desplazamiento anisotrópico es de la forma: -2 π^2 [h² a⁻² U11 + ... + 2 h k a[•] b[•] U12]

Tabla 5. Coordenadas de hidrógeno (x 10^4) y parámetros de desplazamiento isotrópico (Λ^2 x 10^3) para [Cu(5NO₂fen)(mal)(H₂O)]·2(H₂O).

	*	У	2	
H(11W)	2508(117)	225(53)	4800(45)	_
H(12W)	3135(57)	-251(61)	4054(77)	
H(1)	-1023(8)	1106(5)	4733(6)	
1(2)	-1454(9)	2494(6)	5293(7)	
4(3)	-524(9)	3626(6)	4396(8)	
1(5)	954(9)	4137(6)	2808(7)	
1(8)	3613(8)	2613(6)	270(7)	
1(9)	3923(8)	1193(6)	-26(6)	
1(10)	2818(8)	178(5)	1036(6)	
I(14A)	-1935(9)	-1283(6)	1802(8)	
4(14B)	-1468(9)	-2034(6)	2607(8)	
1(21W)	5820(108)	1989(22)	8729(79)	
4(22W)	7035(28)	1534(69)	8642(81)	
1(31W)	6009(135)	934(24)	6572(116)	
((32W)	5117(126)	1130(47)	6548(114)	

A.I.2.- Datos cristalográficos del compuesto [Cu(5,6dmfen)(mal)(H2O)]·H2O

Formula empirica	C ₁₇ H ₁₀ Cu N ₂ O ₆	
Masa molar	409 87	
Temperatura	293(2) K	
Longitud de onda	0 71069 A	
Sistema cristalino	Monoclinico	
Grupo espacial	'('2/c'	
Dimensiones de la celda unitaria	a - 24 772(2) Å	a = 90 000(10)*
	6 - 10.1650(10) A	ß = 120.680(10)*
	c = 15.362(2) Å	y = 90 000(10)*
Volumen	3326 8(6) Å	
2.	8	
Densidad (calculada)	1.637 Mg/m ¹	
Coeficiente de absorción	1.352 mm ⁴	
F(000)	1688	
Tamaño del cristal	0.43 x 0.37 x 0.33 mm	
Intervalo de O para colección de	2.22 # 30 41*	
datos		
Intervalo de los índices de Miller	-30<-h<-35, 0++k<-14,	-21<-1<-0
Reflexiones colectadas	5208	
Reflexiones independientes	5033 [R(int) ~ 0.0146]	
Corrección de absorción	semi-empirica de barrido	5-Ψ
MAx. y mín. de transmisión	0,9999 y 0,9372	
Método de refinamiento	Minimos cuadrados en la	matriz completa de F ²
Datos /restrucciones / parámetros	5033/0/252	
londad de ajuste en 1 ⁵²	1 075	
ndices R finales [1>20(1)]	RI = 0 0295, wR2 = 0 08	40
ndices R (todos los datos)	R1 - 0 0528, wR2 - 0 09	36
oeficiente de extinción	0.0021(2)	
Diferencia máxima de pico y valle	0621 y -0.597 c A -1	

E

Tabla 1. Datos cristalográficos y refinamiento estructural del [Cu(5,6dmfen)(mal)(H2O)]· H2O

 	×	У	Z.	U(eq)	
 Cu(1)	3827(1)	3892(1)	6028(1)	30(1)	
O(IW)	3277(1)	3755(2)	4309(1)	42(1)	
O(1)	3158(1)	3369(1)	6254(1)	41(1)	
O(2)	3737(1)	5737(1)	6172(1)	41(1)	
O(3)	2296(1)	3720(1)	6306(1)	42(1)	
O(4)	3276(1)	7396(1)	6444(2)	57(1)	
N(1)	4110(1)	2013(1)	6162(1)	29(1)	
N(2)	4684(1)	4198(1)	6195(1)	29(1)	
C(1)	3804(1)	942(2)	6155(1)	35(1)	
C(2)	4038(1)	-313(2)	6181(1)	39(1)	
C(3)	4600(1)	-458(2)	6225(1)	37(1)	
C(4)	4945(1)	656(2)	6244(1)	30(1)	
C(5)	5543(1)	606(2)	6289(1)	32(1)	
C(6)	5843(1)	1745(2)	6310(1)	33(1)	
C(7)	5566(1)	3008(2)	6286(1)	30(1)	
C(8)	5844(1)	4236(2)	6328(1)	37(1)	
C(9)	5551(1)	5378(2)	6319(2)	40(1)	
C(10)	4967(1)	5329(2)	6250(1)	36(1)	
C(11)	4980(1)	3065(2)	6224(1)	27(1)	
C(12)	4671(1)	1872(2)	6207(1)	27(1)	
C(13)	6469(1)	1755(2)	6379(2)	48(1)	
C(14)	5816(1)	-743(2)	6335(2)	43(1)	
C(15)	2713(1)	4100(2)	6142(1)	31(1)	
C(16)	2666(1)	5480(2)	5731(2)	46(1)	
C(17)	3270(1)	6267(2)	6165(1)	34(1)	
O(2W)	7454(1)	9203(2)	8261(1)	57(1)	

Tabla 2. Coordenadas atómicas (x10⁴) y parámetros de desplazamiento isotrópico equivalentes ($Å^2$ x 10³) para [Cu(5,6dmfen)(mal)(H₂O)]·H₂O. La U(eq) se define como un tercio de la traza del tensor ortogonalizado U₄.

Tabla 3. Distancias de enlace seleccionadas [Å] para [Cu(5,6dmfen)(mal)(H2O)] (H2O).

Cu(1)-O(2)	1.9151(14)
Cu(1)-O(1)	1.9343(12)
Cu(1)-N(1)	2.0082(14)
Cu(1)-N(2)	2.0282(14)
Cu(1)-O(1W)	2.275(2)

Tabla 4. Parámetros de desplazamiento isotrópico ($\Lambda^2 \times 10^3$) para [Cu(5,6dmfen)(mal)(H₂O)]·H₂O. El exponence del factor de desplazamiento anisotrópico es de la forma: $-2\pi^2$ [h² a⁺² U11 + ... + 2 h k a⁺ b⁺ U12]

ι	J11	U22	U33	U23	013	U12	
Cu(1)	26(1)	27(1)	40(1)	0(1)	20(1)	-1(1)	·
O(1₩)	40(1)	35(1)	42(1)	1(1)	16(1)	-4(1)	
0(1)	39(1)	33(1)	63(1)	7(1)	36(1)	2(1)	
O(2)	35(1)	31(1)	66(1)	-6(1)	32(1)	-4(1)	
O(3)	40(1)	41(1)	59(1)	-5(1)	35(1)	-8(1)	
O(4)	62(1)	31(1)	103(1)	-16(1)	60(1)	-8(1)	
N(1)	25(1)	30(1)	34(1)	1(1)	15(1)	-2(1)	
N(2)	26(1)	27(1)	36(1)	0(1)	17(1)	-1(1)	
C(I)	30(1)	34(1)	40(1)	0(1)	18(1)	-7(1)	
C(2)	39(1)	31(1)	44(1)	101	19(1)	-8(1)	
CO	41(1)	28(1)	39(1)	1(1)	18(1)	-1(1)	
C(4)	30(1)	28(1)	28(1)	1(1)	12(1)	1(1)	
C(5)	30(1)	35(1)	31(1)	0(1)	14(1)	6(1)	
C(6)	27(1)	39(1)	33(1)	octi	16(1)	3(1)	
City	24(1)	35(1)	31(1)	-1(1)	15(1)	-2(1)	
Cit	29(1)	41(1)	43(1)	101	20(1)	-6(1)	
Cisi	3601	33(1)	50(1)	0(1)	22(1)	-10(1)	
Cab	3600	27(1)	45(1)	-1(1)	21(1)	-3(1)	
can	25(1)	28(1)	29(1)	000	14(1)	-100	
C(12)	24(1)	28(1)	28(1)	1(1)	13(1)	-1(1)	
cus	34(1)	51(1)	67(1)	-400	3105	2(1)	
Citt	4105	38(1)	48(1)	2(1)	2100	nico	
Cits	29(1)	32(1)	38(1)	-405	20(1)	-5(1)	
C(16)	32(1)	34(1)	75(1)	6(1)	30(1)	2(1)	
CUT	36(1)	28(1)	48(1)	0(1)	28(1)	-2(1)	
orzw	169(1)	54(1)	50(1)	-11(1)	33(1)	-24(1)	

	×	У	z	U(eq)
H(12W)	3059(14)	4282(30)	4062(21)	58(4)
H(IIW)	3100(13)	3108(30)	4095(20)	58(4)
H(I)	3424(1)	1029(2)	6133(1)	62(2)
H(2)	3813(1)	-1051(2)	6169(1)	62(2)
H(3)	4756(1)	-1296(2)	6242(1)	62(2)
H(8)	6230(1)	4268(2)	6362(1)	62(2)
H(9)	5739(1)	6185(2)	6357(2)	62(2)
H(10)	4770(1)	6113(2)	6242(1)	62(2)
H(13A)	6454(2)	2343(12)	5879(8)	62(2)
H(13B)	6567(4)	883(4)	6261(12)	62(2)
H(13C)	6785(1)	2044(15)	7041(4)	62(2)
H(14A)	5969(7)	-1116(7)	6994(4)	62(2)
H(14B)	6156(5)	-665(3)	6207(12)	62(2)
H(14C)	5497(2)	-1302(5)	5832(8)	62(2)
H(16A)	2372(1)	5974(2)	5845(2)	62(2)
H(16B)	2487(1)	5416(2)	5005(2)	62(2)
H(21W)	7294(13)	8610(30)	8396(21)	58(4)
H(22W)	7407(14)	9091(28)	7758(23)	58(4)

Tabla 5. Coordenadas de hidrógeno (x 10⁴) y parámetros de desplazamiento isotrópico (A^2 x 10³) para [Cu(5,6dmfen)(mal)(H₂O)]-H₂O.

A.I.3.- Datos cristalográficos del compuesto [Cu(bipi)(mal)(H2O)]·H2O.

Tabla 1. Datos cristalográficos y refinamiento estructural del [Cu(bipi)(mal)(H2O)]·H2O.

Fórmula empírica	C11 H1+ Cu N2 O4
Masa molar	357 80
Temperatura	293(2) K
Longitud de onda	0.71069Å
Sistema cristalino	Trictinico
Grupo espacial	P+1
Dimensiones de la celda unitaria	a = 7 1260(10) Å ct = 105 880(10)*
	6 - 10 4010(10) A (I - 104 520(10)*
	с = 10.6920(10) Д у = 105 180(10)*
Volumen	689 84(13)人
Z	2
Densidad (calculada)	1.723 Mg/m
Coeficiente de absorción	1 616 mm ⁻¹
F(000)	366
Tamaño del cristal	0.32 x 0.21 x 0.15 mm
Intervalo de 8 para la celección de datos	2 8 a 30 41 *
Intervalo de rangos de los índices de Miller	-10<>h<=0, -14<>k<=14, +14<>15
Reflexiones colectadas	4482
Reflexiones independientes	4175 [R(int) = 0.0143]
Corrección de absorción	Semiempírica de u-barridos
Máx, y mln. de transmisión	0.9999 y 0.9833
Método de refinamiento	Minimos cuadrados en la matriz completa de F ²
Datos / restricciones / parametros	4175/4/214
Bondad de ajuste en F ²	1 056
ndices R finales [1>20(1)]	R1 = 0.0267, wR2 = 0.0737
ndices R (todos los datos)	R1 = 0.0448, wR2 = 0.0800
Coeficiente de extinción	0.055(3)
Diferencia máxima de pico y valle	0.397 y -0 500 c. 人 ⁻¹

	×	у	Z	U(eq)	
Cu(1)	2411(1)	6431(1)	1638(1)	31(1)	
0(1)	2105(2)	5312(1)	-225(1)	34(1)	
O(2)	2084(2)	8023(1)	1141(1)	39(1)	
0(3)	2511(2)	5155(1)	-2236(1)	38(1)	
O(4)	2368(2)	9370(2)	-115(2)	47(1)	
N(1)	2417(2)	7381(2)	3540(1)	30(1)	
N(2)	2395(2)	4840(1)	2346(1)	26(1)	
C(1)	2447(3)	8712(2)	4066(2)	39(1)	
C(2)	2476(4)	9300(2)	5398(2)	47(1)	
C(3)	2499(4)	8479(2)	6220(2)	45(1)	
C(4)	2481(3)	7099(2)	5686(2)	38(1)	
C(5)	2425(2)	6580(2)	4336(2)	27(1)	
C(6)	2404(2)	5130(2)	3655(2)	26(1)	
C(7)	2407(3)	4136(2)	4292(2)	35(1)	
C(8)	2397(3)	2810(2)	3546(2)	39(1)	
C(9)	2384(3)	2513(2)	2202(2)	36(1)	
C(10)	2396(3)	3560(2)	1638(2)	30(1)	
C(11)	2690(2)	5871(2)	-1053(2)	27(1)	
C(12)	3705(3)	7490(2)	-549(2)	32(1)	
C(13)	2639(3)	8365(2)	185(2)	29(1)	
O(1W)	6313(2)	7241(2)	2560(2)	45(1)	
O(2W)	1073(2)	914(2)	8339(2)	45(1)	

Tabla 2. Coordenadas atômicas (x 10⁴) y parámetros de desplazamiento isotrópico equivalente (Å² x 10³) para [Cu(bipi)(mal)(H₂O)]·H₂O. La U(eq) se define como un tercio de la traza del tensor ortogonalizado U_{ij}.

Cu(1)-O(2)	1.9240(12)	
Cu(1)-O(1)	1.9369(12)	
Cu(1)-N(2)	1.9977(13)	
Cu(1)-N(1)	2.0009(13)	
Cu(1)-O(1W)	2.521(1)	
O(2)-Cu(1)-O(1)	93.17(5)	
O(2)-Cu(1)-N(2)	169.34(5)	
O(1)-Cu(1)-N(2)	94.49(5)	
O(2)-Cu(1)-N(1)	90.67(5)	
O(1)-Cu(1)-N(1)	172.70(5)	
N(2)-Cu(1)-N(1)	80.95(5)	

,

Tabla 3. Distancias de enlace seleccionadas [Å] para [Cu(bipi)(mal)(H2O)]·H2O.

Tabla 4. Parámetros de desplazamiento anisotrópico ($A^2 \times 10^3$) para [Cu(bipi)(mal)(H₂O)]·H₂O. El exponencte del factor de desplazamiento anisotrópico es de la forma: -2 π^2 [$h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12$]

	UH	U22	U33	023	UB	U12	
Cu(1)	53(1)	28(1)	24(1)	14(1)	21(1)	22(1)	
0(1)	54(1)	28(1)	28(1)	13(1)	22(1)	16(1)	
O(2)	65(1)	39(1)	39(1)	23(1)	33(1)	34(1)	
O(3)	59(1)	35(1)	26(1)	12(1)	21(1)	21(1)	
O(4)	61(1)	41(1)	58(1)	33(1)	26(1)	28(1)	
N(1)	41(1)	29(1)	25(1)	10(1)	15(1)	16(1)	
N(2)	31(1)	26(1)	24(1)	10(1)	13(1)	12(1)	
C(I)	58(1)	32(1)	33(1)	12(1)	19(1)	24(1)	
C(2)	69(1)	40(1)	36(1)	7(1)	21(1)	30(1)	
C(3)	65(1)	50(1)	28(1)	9(1)	23(1)	30(1)	
C(4)	51(1)	45(1)	27(1)	16(1)	19(1)	24(1)	
C(5)	30(1)	31(1)	25(1)	11(1)	13(1)	13(1)	
C(6)	28(1)	28(1)	25(1)	13(1)	11(1)	\$1(1)	
C(7)	44(1)	37(1)	32(1)	19(1)	17(1)	15(1)	
C(8)	47(1)	34(1)	47(1)	24(1)	20(1)	17(1)	
C(9)	38(1)	26(1)	45(1)	13(1)	16(1)	13(1)	
C(10)	34(1)	27(1)	31(1)	10(1)	14(1)	12(1)	
cin	33(1)	30(1)	24(1)	12(1)	13(1)	16(1)	
C(12)	41(1)	30(1)	31(1)	13(1)	20(1)	12(1)	
C(13)	35(1)	28(1)	28(1)	- 13(1)	- 11(1)	13(1)	
O(IW	52(1)	35(1)	59(1)	20(1)	31(1)	21(1)	
O(2W) 54(1)	50(1)	55(1)	33(1)	31(1)	31(1)	

	×	У	L	U(eq)	
H(I)	2448(3)	9264(2)	3513(2)	45(2)	
H(2)	2481(4)	10226(2)	5736(2)	45(2)	
H(3)	2526(4)	8849(2)	7123(2)	45(2)	
H(4)	2506(3)	6534(2)	6226(2)	45(2)	
HOD	2416(3)	4351(2)	5197(2)	45(2)	
H(8)	2398(3)	2124(2)	3950(2)	45(2)	
H(9)	2369(3)	1627(2)	1689(2)	45(2)	
HILO	2404(3)	3370(2)	738(2)	45(2)	
H(12A)	5110(3)	7762(2)	76(2)	45(2)	
H(12B)	3802(3)	7749(2)	-1342(2)	45(Z)	
HOIW	7096(32)	7785(22)	2360(26)	53(4)	
H(12W)	6701(38)	6582(18)	2493(27)	53(4)	
HOIW	151(27)	1126(27)	8525(26)	53(4)	
H(22W)	1414(38)	430(23)	8749(24)	53(4)	

Tabla 5. Coordenadas de hidrógeno (x 10^4) y parámetros de desplazamiento isotrópico ($A^2 \times 10^3$) para [Cu(bipi)(mal)(H₂O)]·H₂O.

A.I.4.- Datos cristalográficos del compuesto for [Cu(4,4'dmbipi)(mal)(H2O)]·H2O

Tabla 1. Datos cristalográficos y refinamiento estructural del [Cu(4,4*dmbipi)(mal)(H2O)]·2H2O.

Fórmula empírica	C ₁₁ H ₂₀ Cu N ₂ O ₇	
Masa molar	403.87	
Temperatura	293(2) K	
Longitud de onda	0.71069 Å	
Sistema cristalino	Ortorrómbico	
Grupo especial	Pn=21	
Dimensiones de la celda unitaria	a = 6.9780(10) Å	a - 90.0(3)*
	6 - 13.9960(10) Å	β = 90.0(3)*
	c = 17,156(2) Å	y = 90.0(3)*
Volumen	1675.5(3) Å ¹	
z	4	
Densidad (calculada)	1.601 Mg/m	
Coefficiente de absorción	1.344 mm ⁻¹	
F(000)	836	
Tamaño del cristal	0.35 x 0.15 x 0.10 mm	
Intervalo de 0 para la colección de datos	2.37 = 30.41 *	
Intervalo de rangos de los indices de Miller	-9<-h<-0, -19<-k<-0,	0<-1<-24
Reflexiones colectadas	2608	
Reflexiones independientes	2608 [R(int) = 0.0000]	
Corrección de absorción	Semiempinca de v-ban	nidos
Max. y min. de transmisión	0.9999 y 0.9387	
Método de refinamiento	Minimos cuadrados en	la matriz completa de F ²
Datos / restricciones / parámetros	2608/7/250	•
Bondad de ajuste en F ²	0.923	
Indices R finales [I>2o(I)]	R1 = 0.0362, wR2 = 0.0	0828
Indices R (todos los datos)	RI = 0.1303, wR2 = 0.	1001
Parámetros estructural absoluto	-0 02(2)	
Diferencia máxima de pico y valle	0.530 y -0 435 c.Å.	

	x	У	z t	J(eq)
Cu(1)	1577(1)	149(1)	-3(1)	27(1)
O(1W)	4864(5)	20(2)	-16(7)	35(1)
0(1)	1031(15)	-770(7)	811(5)	36(2)
0(2)	950(15)	-771(7)	-803(6)	35(2)
O(3)	793(15)	-2241(6)	1256(5)	40(3)
O(4)	858(14)	-2266(6)	-1223(5)	38(2)
N(I)	1467(17)	1216(9)	743(5)	26(2)
N(2)	1555(17)	1253(9)	-771(6)	27(2)
C(I)	1517(18)	1189(9)	1577(6)	33(3)
C(2)	1478(21)	2001(10)	2004(7)	35(3)
C(3)	1447(18)	2864(8)	1656(8)	37(3)
C(4)	1444(14)	2936(9)	913(7)	20(2)
C(5)	1509(20)	2173(9)	436(7)	27(3)
C(6)	1515(19)	2067(8)	-435(5)	21(2)
C(7)	1552(18)	2923(11)	-854(8)	37(3)
C(8)	1525(17)	2867(8)	-1714(5)	25(2)
C(9)	1470(22)	1917(10)	-2023(7)	32(3)
C(10)	1463(20)	1154(8)	-1494(7)	35(3)
C(11)	1422(21)	3736(11)	2183(7)	37(3)
C(12)	1529(20)	3727(9)	-2236(7)	41(3)
C(13)	1243(19)	-1686(10)	770(6)	26(2)
C(14)	2304(6)	-2013(2)	1(9)	28(1)
C(15)	1393(17)	-1682(8)	-701(7)	27(3)
O(2W)	6860(15)	-854(9)	1158(8)	45(3)
O(3W)	1877(15)	5837(9)	8800(7)	44(3)

 Tabla 2. Coordenadas atómicas (x 10⁴) y parámetros de desplazamiento isotrópico

 equivalente (Å² x 10³) para [Cu(4,4'dmbipi)(mal)(H₂O)]·2H₂O. La U(eq) se define como un tercio de la traza del tensor ortogonalizado U_{ij}.

Tabla 3. Distancias de enlace seleccionadas [Å] para [Cu(4,4'dmbipi)(mal)(H2O)]·2H2O.

Cu(1)-O(1)	1.936(11)
Cu(1)-O(2)	1.933(12)
Cu(1)-N(1)	1.967(13)
Cu(1)-N(2)	2.030(13)
Cu(1)-O(1W)	2.301(4)
O(3W)-H(31W)	0.800(12)
O(3W)-H(32W)	0.797(12)

	บก	U22	U33	U23	013	U12	
Cu(1)	34(1)	18(1)	29(1)	0(1)	-3(1)	1(1)	
O(1W)	34(2)	33(2)	38(2)	3(6)	2(6)	3(1)	
O(1)	57(6)	19(4)	32(5)	-4(4)	5(5)	2(4)	
O(2)	45(6)	21(5)	38(5)	-4(5)	-10(5)	-2(5)	
O(3)	64(7)	24(5)	32(5)	1(4)	21(4)	4(4)	
O(4)	50(6)	30(5)	34(5)	-9(4)	6(4)	-4(4)	
N(1)	33(5)	21(4)	23(4)	10(4)	-4(4)	3(4)	
N(2)	35(5)	19(4)	28(4)	5(4)	0(4)	-1(4)	
C(1)	43(6)	40(6)	17(4)	14(4)	-2(4)	-12(5)	
C(2)	46(7)	33(5)	25(5)	-3(4)	-6(5)	2(5)	
C(3)	26(5)	22(5)	63(7)	-11(4)	-8(5)	7(4)	
C(4)	19(5)	17(5)	23(5)	-7(4)	-8(3)	3(4)	
C(5)	22(5)	21(4)	39(5)	17(3)	-5(4)	5(3)	
C(6)	34(5)	11(3)	18(3)	7(3)	-9(4)	0(3)	
C(7)	53(8)	29(7)	29(5)	-11(4)	-13(5)	5(5)	
C(II)	36(6)	32(5)	5(3)	-4(3)	-6(4)	-2(5)	
C(9)	47(6)	26(5)	22(4)	-12(4)	-1(5)	0(5)	
C(10)	54(B)	17(5)	35(5)	6(4)	3(5)	12(5)	
C(11)	51(6)	37(6)	23(4)	-4(4)	-10(5)	6(5)	
C(12)	56(7)	30(5)	37(5)	11(4)	-14(5)	-6(6)	
C(13)	31(5)	33(5)	13(3)	-8(4)	6(3)	6(4)	
C(14)	36(2)	22(2)	26(2)	-2(7)	-16(6)	1(2)	
C(15)	28(5)	15(4)	37(6)	-9(4)	7(4)	-8(4)	
0(2%) 48(7) 31(5) 57(6)	-3(5)	- 0(5)	12(5)	
O(3W	/) 55(8	30(5) 48(5)	2(5)	-7(5)	-5(5)	

Tabla 4. Parámetros de desplazamiento anisotrópico ($\Lambda^2 \times 10^3$) para [Cu(4,4°dmbipi)(mai)(H₂O)]·2H₂O. El exponencte del factor de desplazamiento anisotrópico es de la forma: $-2 \pi^2$ [$\Lambda^2 a^{*2}$ U11 + ... + 2 h k a* b* U12]

Tabla 5. Coordenadas de hidrógeno (x 10⁴) y parámetros de desplazamiento isotrópico (Å² x 10³) para [Cu(4,4'dmbipi)(mal)(H₂O)]-2H₂O.

	×	у	2	U(eq)	
H(11W)	4578(137)	.97(65)	-458(22)	49(11)	
H(12W)	5778(121)	-288(52)	280(26)	49(11)	
H(I)	1577(18)	602(9)	1830(6)	43(6)	
H(2)	1473(21)	1963(10)	2545(7)	43(6)	
H(4)	1395(14)	3542(9)	693(7)	43(6)	
H(7)	1591(18)	3510(11)	-599(8)	43(6)	
H(9)	1439(22)	1809(10)	-2558(7)	43(6)	
H(10)	1385(20)	537(8)	-1692(7)	43(6)	
HUIA	691(73)	4235(17)	1941(17)	54(9)	
H(11B)	2711(21)	3952(28)	2268(29)	54(9)	
H(11C)	849(81)	3571(14)	2674(14)	54(9)	
H(12A)	262(27)	3829(25)	-2438(26)	54(9)	
H(12B)	2403(62)	3624(18)	-2660(18)	54(9)	
H(12C)	1924(76)	4278(12)	-1944(10)	54(9)	
H(14A)	3610(6)	-1777(2)	14(9)	33(7)	
H(14B)	2358(6)	-2706(2)	-9(9)	33(7)	
H(21W)	7941(72)	-966(128)	1036(109)	49(11)	
H(22W)	6624(127)	-1192(55)	1521(39)	49(11)	
H(JIW)	1529(122)	6327(41)	8991(54)	49(11)	
H(32W)	2980(71)	5823(133)	8920(100)	49(11)	

Apéndice II

Parte experimental:

-Todos los reactivos utilizados para las síntesis de los compuestos en el presente trabajo fueron Sigma-Aldrich.

-Los espectros en el infrarrojo mediano y lejano se obtuvieron en un espectrómetro Nicolet 740 con transformadas de Fourier en pastillas de KBr para el mediano y en pastillas de polietileno para el lejano. El error en reproducibilidad de la bandas M-O es menor a 1 cm⁻¹. -Las conductividades se midieron utilizando un puente de conductividad YSI.

 Los análisis elementales obtenidos para ciertos compuestos fueron realizados por los laboratorios de Desert Analytics.

A. II.1.1.- Bis quelatos de los donadores por nitrógeno:

A.II.1.1.- Compuestos de la forma $[Cu(N-N)_2](NO_3)_2$, en que (N-N) es una fenantrolina o una bipiridina:

La sintesis de los bis quelatos de los donadores por nitrógeno se llevó a cabo como se describe a continuación. A 2.5 ml. de una solución de concentración 0.1M de Cu(NO₃)₂ se agregaron, disueltos en etanol, 0.5 mmol de la fenantrolina o bipiridina utilizada. En algunos casos (aquéllos en que la fenantrolina se encuentra muy sustituida) el producto precipitó y el polvo obtenido se filtró y se lavó con agua. En los casos en que no se obtuvo un producto precipitado, la solución se dejó en reposo hasta la aparición de cristales muy finos que se filtraron y se lavaron con agua. La fórmula general de estos compuestos es [Cu(N-N)₂](NO₄); donde (N-N) es un donador por nitrógeno.

A.H.1.2.- Sintesis de [Cu(tmen)-µ(OH)2-Cu(tmen)](NO3)2:

A 1 mmol de Cu(NO₃)₂·H₂O (0.2416 g.) disuelta en metanol, se agregó un exceso de tmen (3mmol \pm 0.5 mL). La solución de color azul intenso obtenida se evaporó en el rotavapor hasta sequedad. El compuesto azul intenso obtenido se lavó con etanol repetidas veces y se secó al vacío.

A.II.2.- Bis quelatos de los donadores por oxígeno:

A.II.2.1.- Síntesis de los bis quelatos de donadores por oxígeno de la forma [Cu(O-O)₂]:

A 5 mL de una solución de concentración 0.1 M de $Cu(NO_3)_2$ se agregaron 10 mL de una solución de concentración 0.1 M del donador por oxígeno (O-O). La solución obtenida se neutralizó con NH₃ acuoso (1:5) hasta la formación de un precipitado que corresponde al compuesto neutro [Cu(O-O)₂]. El precipitado obtenido se filtró, se lavó con agua y se secó al vacío.

98

A.II.2.2.- Bis-oxalatocuprato(II) de potasio:

A 5 mL de una solución 0.1 M de Cu(NO₃); se agregó 1 mmol de oxalato de potasio ($K_2 ox$) disuelta en agua. Se formó un precipitado azul claro que se redisolvió al agregar NH₃ acuoso. La solución azul obtenida se concentró con calor y se dejó reposando. Al cabo de los días se obtuvo una mezcla de productos, un polvo blanco muy insoluble y cristales que aparecieron tiempo después. Ambos se filtraron y se redisolvieron los cristales en agua dejó en reposo hasta la formación, nuevamente, de cristales que se filtraron y secaron al vacío.

A.II.2.3.- Bis-malonatocuprato(II) de potasio:

Se disolvieron 0.5 mmol Cu(AcO)₂-H₂O en etanol. A esta solución se agregó, con agitación, 1 mmol de ácido malónico (H₂mal) disuelta en etanol. La solución resultante se neutralizó con 2 mmol de KOH disueltas en etanol. El polvo precipitado, de color azul, se filtró, se lavó con etanol y se secó al vacío.

A.II.2.4.- Bis-salicilatocuprato(II) de potasio:

Se disolvieron 0.5 mmol de Cu(AeO)₂·H₃O en etanol y a la solución resultante se agregó 1 mmol de ácido salicílico (H₃sal) disuelta en etanol. A la solución verde obtenida se agregó, lentamente y con agitación, un considerable exceso de una solución saturada de KOH disuelto en etanol hasta la aparición de un precipitado azul verdoso, sumamente insoluble en etanol, que se filtró al vacío, se lavó repetidas veces con etanol y se secó al vacío.

A.II.3.- Compuestos míxtos de acetilacetonato:

A.II.3.1.- Compuestos de la forma [Cu(N-N)(O-O)]NO₃:

Los compuestos de acetilacetonato se sintetizaron, de manera general, como se indica a continuación. Para cada compuesto se tomaron 2.5 mL de una solución 0.1 M de Cu(NO₃). A ésta se agregaron lentamente y con agitación 2.5 mL de una solución 0.1 M de acacH. La solución verde obtenida se neutralizó con NH₃ acuoso (1:5) hasta la aparición de un precipitado azul correspondiente a [Cu(acac)₂]. A esta mezela se agregaron 0.25 mmol de la fenantrolina o bipiridina correspondiente disuelta en etanol. La solución azul obtenida se dejó reposando hasta que se formaron cristales que se filtraron y secaron al vacio. La fórmula general de los compuestos mixtos de acetilacetonato es [Cu(N-N)(acac)]NO₃, donde (N-N) es el donador por nitrógeno. Mediante la técnica anes descrita fue imposible aislar los compuestos en que (N-N) es 5NO₃fen , 5 ϕ fen y tmen.

A.II.3.2.- Sintesis de [Cu(5NO2fen)(acac)]NO1 y [Cu(5¢fen)(acac)]NO1:

A 2.5 mL de una solución 0.1 M de Cu(NO₄)₂ se agregaron, con agitación, 2.5 mL de una solución 0.1 M de acacH. La solución obtenida se neutralizó con NH₃ acuoso (1:5) hasta la aparición de un precipitado azul que corresponde al [Cu(acac₂)₂]. A esta mezela se agregaron 0.25 mmol de la fenantrolina correspondiente disuelta en etanol. El precipitado azul se redisolvió y la solución resultante se evaporó hasta sequedad en el rotavapor. El precipitado obtenido se lavó con retunol y con agua y se secó al vacio.

A.II.3.3.- Sintesis de [Cu(tmen)(acac)]NO₃:

A 1.2 g de Cu(NO₁)₂·3H₂O (aprox. 5 mmol) disueltos en etanol se agregaron 0.5 mL de acaell (aprox. 5 mmol) y a la solución verde formada se agregaron 0.75 mL de treen (aprox. 5 mmol). Se formó un precipitado azul intenso que se redisolvió al neutralizar con 0.28 g (aprox 5 mmol) de KOII disuelto en etanol. Al redisolverse el precipitado azul, se obtiene, a su vez, un precipitado blanco cristalino que corresponde a KNO₃ (insoluble en etanol). La mezcla anterior se filtró obteniéndose un sólido blanco cristalino (KNO₃) y el filtrado de color azul intenso se llevó a sequedad en el rotavapor. El sólido azul intenso obtenido se encontraba contaminado con [Cu(acac)₃] por lo que se disolvio en agua y la solución se filtró obteniéndose un sólido muy insoluble, [Cu(acac)₂], y un filtrado azul intenso

A.II.4.- Compuestos mixtos de salicilaldehidato:

A.II.4.1.- Compuestos de la forma [Cu(N-N)(O-O)]NO1:

Los compuestos mixtos de salicilaldehidato se obtuvieron como se indica a continuación. A 2.5 mL de una solución de concentración 0.1 M de Cu(NO₃)₂ se agregaron 2.5 mL de una solución 0.1 M de salicilaldehido (salall). La solución verde resultante, se neutralizó con NH₃ acuoso (1:5) hasta la formación de una precipitado verde muy insoluble que corresponde a [Cu(salal)₂]. A esta mezela se agregaron, con agitación constante, 0.25 mmol de la fenantrolina o bipiridina correspondiente disuelta en etanol. El precipitado verde se redisolvió y la solución resultante se dejó en reposo hasta la formación de un precipitado que se filtraron y secaron al vacio o, en algunos casos, hasta la formación de un precipitado que se filtró al vacío, se lavó con agua y se secó al vacio. Los compuestos mixtos de salicilaldehidato tienen fórmula general [Cu(N-N)(salal)]NO₃, donde (N-N) es un donador por nitrógeno. Mediante la técnica antes descrita fue imposible aislar los compuestos en que (N-N) es SNO₃fen, Sófen y truen.

A.II.4.2.- Sintesis de [Cu(5NO2fen)(salal)]NO3 y [Cu(5¢fen)(salal)]NO3:

A 2.5 mL de una solución 0.1 M de Cu $(NO_3)_2$ se agregaron, con agitación, 2.5 mL de una solución 0.1 M de salal11. La solución obtenida se neutralizó con NH₃ acuoso (1:5) hasta la aparición de un precipitado verde que corresponde al [Cu(salal₂)]. A esta mezcla se agregaron 0.25 mmol de la fenantrolina correspondiente disuelta en etanol. El precipitado azul se redisolvió y la solución resultante se evaporó hasta sequedad en el rotavapor. El precipitado obtenido obtenido se lavó con etanol y con agua y se secó al vacío.

A.II.4.3.- Sintesis de [Cu(tmen)(salal)]NO3:

A 1.2 g de Cu(NO₃)₂:3H₂O (aprox. 5 mmol) disueltos en etanol se agregaron 0.5 mL de salalli (aprox. 5 mmol) y a la solución verde formada se agregaron 0.75 mL de tmen (aprox. 5 mmol). La solución verde se tornó azul intenso y se neutralizó con 0.28 g (aprox 5 mmol) de KOII disuelto en etanol obteniendose una solución verde y un precipitado. La mezcla anterior se filtró obteniéndose un solido blanco cristalino (KNO₁) y uno azul intenso. El filtrado se evaporo en el rotavapor hasta sequedad y se obtuvo un aceite verde que precipitado para con una espátula. El precipitado verde se lavó repetidas veces con éter etilico para remover el exceso de salicitaldenido y de [Cu(sala])2].

A.II.5.- Compuestos mixtos de oxalato:

Se suspendieron 0.25 mmol del compuesto $[Cu(ox)]_n$ en agua y a esta mezcla se agregaron, con agitación, 0.25 mmol de la fenantrolina o bipiridina correspondiente y el precipitado suspendido se disolvió hasta formar una solución de color azul intenso. La solución anterior se dejó en reposo hasta la formación de cristales que se filtraron y se secaron al vacío o hasta la aparición de un precipitado que se filtró al vacío, se lavó con agua y se secó al vacío.

A.II.6.- Compuestos mixtos de salicilato:

A.II.6.1.- Compuestos de la forma [Cu(N-N)(O-O)]:

Los compuestos mixtos de salicilato se obtuvieron como se indica a continuación. A 2.5 mL de una solución 0.1 M de Cu(NO₃)₂ se agregaron 0.25 mmol de la fenantrolina o bipiridina disuletas en etanol. A la solución verde resultante de la adición del donador por nitrógeno se agregaron, con agitación, 2.5 mL de una solución 0.1 M de ácido salicílico (H2sal). La solución resultante se neutralizó con NH₃ acuoso (1:5) hasta la formación de un precipitado muy insoluble que se filtró (en algunos casos con cierta dificultad), se lavó repetidas veces con agua, y se secó al vacio. Los compuestos mixtos de salicilato tienen fórmula general [Cu(N-N)(sal)]. Mediante la técnica antes descrita fue posible aislar todos los compuestos mixtos de salicilato en que (N-N) es una fenantrolina o una bipiridina.
A.II.6.2.- Síntesis de [Cu(tmen)(sal)]:

Se pesó 1 mmol de $K_2[Cu(sal)_2]$ (0.413 g) y el compuesto se disolvió en muy poca agua. A esta solución se agregó 1 mmol de tmen (~0.15 mL). La solución verde pálido adquirió un color verde intenso. La solución se dejó reposando hasta la aparición de cristales que se filtraron y se secaron al vacío.

A.II.7.- Compuestos mixtos de malonato:

A.II.7.1.- Compuestos de la forma [Cu(N-N)(O-O)]:

Los compuestos mixtos de malonato se obtuvieron como se indica a continuación. A 2.5 mL de una solución 0.1 M de $Cu(NO_3)_2$ se agregaron 0.25 mmol de la fenantrolina o bipiridina correspondiente disuelta en metanol. A la solución resultante se agregaron, con agitación constante, 2.5 mL de una solución 0.1 M de ácido malónico (H₂mal) que se neutralizó con NH₃ acuoso (1:5) hasta que adquirió una coloración azul intensa. La solución obtenida se dejó reposando hasta la formación que se filtraron y se secaron al vacío o hasta la formación de un precipitado que se filtrá y se secó al vacío. La fórmula general de los compuestos mixtos de malonato es [Cu(N-N)(mal)], donde (N-N) es una fenantrolina o una bipiridina.

A.II.7.2.- Síntesis de [Cu(tmen)(mal)]:

Se pesó 1 mmol de [Cu(mal)] (~ 0.1835 g) y se disolvió en agua. A la solución azul clara se agregó 1 mmol de tmen (-0.15 mL) y adquirió una coloración azul intensa. La solución se dejó en reposo hasta la formación de cristales que se filtraron y se secaron al vacío.

Apéndice III

Compuestos de la forma K2[Cu(5-X-sal)2]:

Aunque existen algunos estudios de compuestos mixtos de salicilato, no se ha encontrado en la literatura información alguna sobre la asignación de las bandas v(CuO) en el infrarrojo lejano para un compuesto del tipo K₂[Cu(sal)]₂. Al parecer, los bis-quelatos de salicilato que se han sintetizado son todos compuestos neutros^{20, 21} de la forma [Cu(lisal),]. Esto probablemente debido al hecho de que los valores de pKa para el ácido salicílico son 2.8 para el protón del ácido carboxílico y 13.6 para el protón fenólico. De manera que, aunque dicho sistema pudiera en principio parecer similar al formado por salicilaldehido, la existencia de un pKa tan elevado, estabilizado por lo formación de puentes de hidrógeno con el oxígeno carbonilico del carboxilo, hace que el pKa sea sumamente elevado como para lograr una desprotonación en el OH fenólico (cuando menos para síntesis en solución acuosa). Existen algunas asignaciones empíricas para las bandas CuO en compuestos mixtos con salicilato¹⁹ pero dada la inexistencia de información para un compuesto de la forma K₂[Cu(sal)]₂, entonces parte del trabajo experimental se enfocó en determinar en qué posición se encuentran las bandas v(CuO) en el infrarrojo lejano para bis quelatos de salicilato. Debido a que, en general, para una serie de compuestos isoestructurales con distintos metales de transición divalentes, el sustituir un metal por otro en general se refleia en un desplazamiento de ciertas bandas, en particular las de metal ligante (vML)^{16, 18, 18, 59}. entonces se intentó utilizar este método para determinar si existía alguna banda que se desplazara de acuerdo con las energías de estabilización de campo cristalino de los iones utilizados. Se intentaron, pues, de sintetizar compuestos de la forma K₂[M(sal)], en donde $M = Mn^{2*}$, Co^{2*} , Ni^{2*} , Cu^{2*} y Zn^{2*} . Todos se intentaron sintetizar de acuerdo con la forma descrita en A.I.2.4. El único compuesto que pudo ajslarse de esta forma fue el compuesto de cobre. El compuesto con manganeso se oxidó en la solución etanólica básica, los compuestos de cobalto y níquel, dados sus espectros de infrarrojo, parecen ser de la forma M(Hsal), mientras que en caso del cinc, lo que se obtuvo como producto fue el hidróxido. Dado que solamente el compuesto de cobre podía obtenerse de esta manera, entonces se sintetizaron compuestos de la forma $K_3[Cu(5-X-sal)_2]$ en que X = MeO, Me, H, Cl, Br, 1 y las bandas vibración v(CuO) se determinaron de acuerdo con las propiedades de cada uno de estos grupos de enriquecer o empobrecer la densidad electrónica en el anillo aromático. Todos los compuestos de la forma K₂[Cu(5-X-sal)₂] se obtuvieron siguiendo la misma técnica que la descrita en A.II.2.4.

103

A continuación se presenta la estructura general de los compuestos sintetizados:

Figura A.III.1. Estructura general de los compuestos de fórmula K2[Cu(5-X-sal)2] con X = McO, Me, H, Cl, Br, I.

Los compuestos se caracterizaron mediante análisis elemental, sus espectros en el infrarrojo (tanto mediano como lejano) y sus conductividades. La información obtenida se muestra en la siguiente tabla, para los compuestos de fórmula $K_2[Cu(5-X-sal)_2]$ con X = MeO, Me, H, Cl, Br y el $K_2[Cu(5-1-sal)_2]$ ·H₂O :

X	1		Conductividad en MeOH µmhos				
	Experimental			Teórico			
	%•C	%H	%0	%C	%H	%0	1
McO	39.27	2.59	- 1	40.54	2.55	27.00	160
Me	42.63	2.69		43.48	2.74	21.72	160
н	39.77	1.91	22.52*	40.62	1.95	23.19	160
Cl	31.55	1.40	- 1	34.83	1.25	19.88	160
Br	27.63	0.96		29.41	1.06	16.79	190
	24.19	1.12	<u> </u>	24.59	1.18	16.38	160

Tabla A.111.1 Análisis elementales y conductivudades de compuestos de la forma $K_2[Cu(5-X-sal)_2]$ ·H₂O con X = MeO, Me, H, Cl, Br, I.

 Los valores obtenidos experimentalmente para el oxígeno pueden ser menores que los teóricos debido a la presencia de los metales en el compuesto y a la posible formación de óxidos.

Los espectros en el mediano de los compuestos sintetizados siguen un patrón similar. Por otro lado, las conductividades en metanol de soluciones $\sim 10^{-5}$ M caen dentro del valor esperado para electrolitos tipo 1:2 en que el intervalo de conductividades es 160-220 µmhos²⁸.

104

Apéndice IV

Síntesis y caracterización de compuestos de la forma K₂[M(mal)₂]:

and the first state of the state of the state of the state of the

Existe muy poca información acerca del comportamiento de compuesto con malonato de fórmula general K₃[M(mal)₂] con M un metal de transición en el infrarrojo lejano. Existe un artículo bastante extenso sobre compuestos de metales de transición con malonato que trata de manera detallada la síntesis de los compuestos y plantea asignaciones para las principales bandas de vibración $v(C=O) \neq v(C-O)$ en el mediano²³. También existen publicaciones en las que se estudian las consatntes de estabilidad de ciertos compuestos mixtos de fórmula [Cu(N-N)(mal)]^{6, 7, 8}, Para el presente trabajo, dada la importancia de conocer en qué posición aparece la banda de vibración v(M-O) en compuestos con malonato, la asignación se hizo de acuerdo con el estudio en el lejano de compuestos de fórmula general K₂[M(mal)₂] en que M = Mn^{2*} , Co^{2*} , Ni^{2*} , Cu^{2*} , $y Zn^{2*}$. Si los compuestos formados con dichos metales de transición son isoestructurales, entonces los espectros en el infrarrojo de estos compuestos deberán presentar las mismas bandas y podrá hacerse una asignación de la banda M-O siguiendo la serie de Irving-Williams en que se esperará que v(Mn-O) $< v(Co-O) < v(Ni-O) < v(Cu-O) > v(Zn-O)^{16, 18}$. Todos los compuestos antes señalados se sintetizaron siguiendo la técnica descrita en A.II.2.3. A continuacón se presenta la estructura general de los compuestos sintetizados.

Figura A.IV.1. Estructura general de los compuestos de fórmula K₂[M(mal)₂] con M = Mn(II), Co(II), Ni(II), Cu(II) y Zn(II).

Los compuestos se caracterizaron mediante análisis elemental, sus espectros en el infrarrojo (tanto mediano como lejano) y sus conductividades en agua. La información obtenida se muestra en la siguiente tabla para los compuestos $K_2[Cu(mal)_2]$. $K_2[Mn(mal)_2]$. $2H_2O y K_2[M(mal)_2]$. $2H_2$

105

M	1		Conductividad en H2O µmhos				
	Experimental			Teórico			
	%C	%H	1%0	%C	%11	%0	
Ma	19.18	2.14	- 1	19.31	2.16	42.86	310-320
Co	17.31	2.98	- 1	17.44	2.93	46.46	230-240
Ni	17.53	2.88	42.73*	17.45	2.93	46.48	230-240
Cu	19.44	1.69	37.81*	19.81	1.66	39.58	200-210
Zn	17.56	2.75	-	17.17	2.88	45.74	250-260

Tabla A.IV. I. Análisis elementales y conductividades de compuestos de la forma $K_3[M(mal)_2]$ con $M \sim Mn(11)$, Co(11), Ni(11), Cu(11) y Zn(11). * Los valores obtenidos experimentalmente para el oxígeno pueden ser menores que los teóricos debido a la presencia de los metales en el compuesto y a la posible formación de óxidos.

Los espectros en el infrarrojo mediano presentan todos una forma semejante y los valores de conductividad en agua para soluciones de concentración $\sim 10^{-3}$ M son congruentes con los valores reportados en la literatura para electrolitos del tipo 1:2 en que el intervalo de conductividad es es de 235 a 273 µmhos²⁴ a excepción del compuesto con cobre que presenta una conductividad ligeramente más baja.