

FACULTAD DE INGENIERIA DIRECCION 60-1-165

Vniveridad Nacional Avfinma de Mexico

> SR. HECTOR DAVID LEON JUAREZ Presente.

En atención a su solicitud, me es grato hacer de su conocimiento el tema que propuso el profesor Ing. Ricardo Padiila Velázquez, y que aprobó esta Dirección, para que lo desarrolle usted como tesis de su examen profesional de in geniero civil:

> " APLICACION DE PRUEBAS TRIAXIALES EN ARENAS (NO CONSOLIDADAS - NO DRENADAS) "

- I. INTRODUCCION
- II. DESCRIPCION CONCEPTUAL DE LAS PRUEBAS U U
- III. RESULTADOS DE LAS PRUEBAS DE LABORATORIO
- IV. EJEMPLOS DE APLICACION
- V. CONCLUSIONES

Ruego a usted cumplir con la disposición de la Dirección General de la Administración Escolar en el sentido de que se imprima en lugar visible de cada ejem-plar de la tesis el título de ésta.

Asimismo le recuerdo que la Ley de Profesiones estipula que se deberá prestar servicio social durante un tiempo mínimo de seis meses como requisito para sus tentar examen profesional.

A t e n t a m e n t e "POR MI RAZA HABLARA EL ESPIRITU" Ciudad Universitaria, D.F., a 12 de septiembre de 1988 EL DIRECTOR

DANIEL RESENDIZ NUÑEZ

93 DRN/MDC/jrs*

TESIS CON FALLA DE ORIGEN

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

DEDICATORIA:

A "DIOS" :

 i

POR DARME LA OPORTUNIDAD DE ESTAR EN ESTE MUNDO Y TRATAR DE SER UN HOMBRE HONESTO, DE BIEN Y PROVECHO.

A LA MEMORIA DE MI MADRE :

BERTHA JUAREZ DE LEON (Q.E.P.D.),

POR DARME LA VIDA Y LA MÁS IMPORTANTE EDUCACIÓN, MIS PRINCIPIOS Y MORAL, POR ENSEÑARME LOS BUENOS SENTIMIENTOS DE LA VIDA, POR SEGUIR SIENDO UNO DE MIS APOYOS PRINCIPALES. POR SEGUIR SIENDO SU AMOR, CARIÑO Y CUIDADO EN TODO MOMENTO, PUR EL GRAN ESFUERZO Y VALENTIA QUE TUVO AL SOBRELLEVAR SU ENFERMEDAD Y POR SEGUIR CUIDANDOME DESDE ALLA ARRIBA.

A MI PADRE :

ROBERTO LEON MARTINEZ,

POR BRINDARME SU APOYO Y CARIÑO CON EJEMPLO Y PALABRAS PARA PODERME REALIZAR DURANTE EL CURSO DE MI VIDA. Y ES ÉSTA, LA MÁS IMPORTANTE HERENCIA QUE ME PUDO HABER DADO.

AGRADECIMIENTOS:

A MI ABUELA :

GLAFIRA HERNANDEZ DE JUAREZ (Q.E.P.D.),

POR SER COMO UNA SEGUNDA MADRE, POR TODOS LOS BUENOS CONSEJOS, POR SU CARIÑO, APOYO Y SOBRE TODO POR CONTRIBUIR CON APOYO EN MI EDUCACIÓN.

A MIS HERMANOS:

ROBERTO, LETTY Y JORGE :

Porque con ustedes he aprendido el valor de la sonrisa y las lagrimas y gracias a ellas nuestra union ha sido un cimiento de enlace con DIOS.

A MIS SOBRINOS :

PERLA, JORGE, PABLO, ROBERTO Y SAUL, Porque sigan el ejemplo de sus padres y aprendan lo verdaderamente importante de la preparación.

A LA UNIVERSIDAD :

POR SER MI ÁLMA MATER, POR DEJARME SER UNO MÁS DE SUS HIJOS, TRANSMITIÉNDOME TODOS SUS CONOCIMIENTOS, TRADICIONES, Y CREANDO EN MÍ, UNA FORMACIÓN ÉTICA Y CULTURAL QUE CON LA MÍSTICA Y EL AMOR A MI PAÍS PODRE SERVIRLE A LA SOCIEDAD CON HONESTIDAD Y RECTITUD.

A LA FACULTAD DE INGENIERIA :

POR LA HOSPITALIDAD DE SUS AULAS, LABORATORIOS, BIBLIOTECAS Y AUDITORIOS.

A MIS MAESTROS :

POR DARME TODO SU CONOCIMIENTO, APOYO Y AMISTAD.

Y EN ESPECIAL A :

EL ING. RICARDO PADILLA VELAZQUEZ POR HABER COMPARTIDO SUS CONOCIMIENTOS Y SUS GRANDES CONSEJOS PARA LA REALIZACIÓN DE ESTA TESIS. AL LABORATORIO DE MECANICA DE SUELOS :

Por permitirme usar parte de sus instalaciones y equipo para la elaboración de este trabajo.

A LA INGENIERIA :

Por PERMITIRME COMPRENDER LA FUNCIÓN DEL INGENIERO VER DENTRO DE LA SOCIEDAD, DE EL ADQUIERE COMPROMISO QUE SE CON LA MISMA, DE ENTENDER COMO LOS CONOCIMIENTOS FISICO-MATEMÁTICOS LA TÉCNICA SON LAS Y HERRAMIENTAS BASES PARA LOGRAR UN MEJOR APROVECHAMIENTO DE LOS RECURSOS PARA BIEN Y PROVECHO DEL SER HUMANO.

A MIS AMIGOS Y COMPANEROS :

POR TODAS LAS LARGAS JORNADAS DE ESTUDIO, POR SU AMISTAD Y TODOS LOS BUENOS MOMENTOS.

À TODAS LAS PERSONAS QUE DE ALGUNA MANERA U OTRA ME HAN APOYADO A LO LARGO DE MI VIDA Y QUE POR DESCUIDO NO MENCIONO.

A TODOS ELLOS MUCHAS GRACIAS

SINCERAMENTE

HÉCTOR DAVID LEÓN JUÁREZ

APLICACION DE PRUEBAS TRIAXIALES EN ARENAS (NO CONSOLIDADAS - NO DRENADAS)

La Ingeniería Civil es la profesión que tiene por finalidad proveer, a los individuos y a la sociedad de beneficios útiles Y económicos, mediante 18 transformación de la naturaleza que tienden a mejorar su calidad de vida. Para alcanzar este objetivo, utiliza sus conocimientos físicos-matemáticos, su ingenio y su capacidad de trabajo que le permiten transformar óptimamente los recursos para la realización de obras civiles de servicio colectivo, donde cubre las etapas de planeación, diseño, construcción, operación Y mantenimiento de las mismas. Además se desenvuelve dentro de un marco legal establecido, que trata de garantizar basicamente la seguridad y economía de las obras y la preservación del medio ambiente.

LNDICE

CAPITULC) I INTRODUCCION	1
CAPITULO	DII,- DESCRIPCION CONCEPTUAL DE LAS PRUEBAS UU Y CD	6
	II.1 INTRODUCCION II 2 GENERALIDADES II.3 ANTECEDENTES II.4 APARATO PARA EFECTUAR LAS PRUEBAS II.5 SATURACION DEL APARATO II.6 PREPARACION DE LA MUESTRA II.7 ARMADO DEL APARATO EN CONJUNTO II.8 PROCEDIMIENTO DE LA PRUEBA	7 9 14 33 39 46 49 52
CAPITULC) III RESULTADOS DE LAS PRUEBAS UU Y CD	. 58
	III.1 RESULTADOS DE LAS PRUEBAS UU III.2 RESULTADOS DE LAS PRUEBAS CD	59 78
CAPITULO	IV EJEMPLOS DE APLICACION	87
	IV EJEMPLO No. 1 IV EJEMPLO No. 2	88 98
CAPITULO	V CONCLUSIONES	116
ANEXOS		21
	ANEXO A - GENERALIDADES	21

Pag.

CAPITULO I

INTRODUCCION

INTRODUCCION

En la práctica de la ingeniería civil, el ingeniero tiene que modificar el medio ambiente mediante obras tendientes a satisfacer las necesidades de la sociedad. Para alcanzar dicho objetivo el ingeniero deberá conocer el comportamiento de distintos materiales bajo acciones externas; es decir, deberá conocer como se comportan bajo la acción de un estado de esfuerzos determinado, así como la resistencia última.

Para el caso de materiales tales como el acero o el concreto, es factible determinar su comportamiento en forma confiable mediante estudios de laboratorio, estando en posibilidad de predecir el comportamiento de conjunto cuando dicho material se encuentra formando parte de una estructura. Sin embargo, uno de los materiales más versátiles y complejos es el suelo, ya que puede ser usado tanto como material de construcción así como elemento de cimentación de una estructura. Lo complejo del comportamiento del suelo se debe a que se encuentra formado por tres fases, una sólida, una líquida y una gaseosa, por lo que las propiedades del suelo dependen tanto de las propias de cada una de

las fases, como de la acción conjunta de las tres. Para visualizar la importancia de este problema se puede pensar en un trozo de acero y en una porción de arena de playa, en el primero se podrá predecir mediante pruebas de laboratorio como se deforma al aplicarle una carga determinada hasta que se llegue a la falla, mientras que en la porción de arena resulta mucho más complejo el determinar la forma en que influye la carga en el suelo, ya que esto dependerá de la relación que guarden las tres fases entre sí y la resistencia dependerá de la presión del aire y/o del agua, intersticiales.

i

No obstante la existencia de los problemas antes mencionados, la Mecánica de Suelos actual ha logrado llegar a un cierto grado de sistematización en los métodos de estudio del comportamiento de algunos tipos de suelo, permitiéndonos inferir las condiciones de campo, basados en la obtención de muestras inalteradas y representativas del mismo. Desafortunadamente, esto no se puede hacer con todos los tipos de suelo en forma indiscriminada, tal es el caso de los suelos granulares, en los que para tener información de campo, tradicionalmente se ha recurrido a métodos empíricos, tales como el de la prueba de penetración estándar en donde se infieren las propiedades del suelo basándose en la facilidad o dificultad de penetración. Hasta la fecha se ha tenido que recurrir a métodos empíricos, debido a la difícultad en obtener una muestra inalterada de arena; por lo que para estudiar en el laboratorio el comportamiento de suelos granulares se tiene que formar muestras en el mismo laboratorio. Con tal motivo, en

este trabajo se trata de analizar las posibles formas en que puede fallar un suelo granular, y con esta experiencia prever mecanismos de falla en campo.

En el Capítulo II se presenta una descripción conceptual de las pruebas "UU" y "CD" aportando las herramientas teóricas en que se basan estas pruebas, también se hace una descripción del equipo que se utiliza en la realización de estas pruebas y el mecanismo de formación de muestras utilizado en los suelos que se probaron en esta tesis. Además se hace una presentación breve de la llamada prueba multitraxial.

En el Capítulo III se muestran los resultados obtenidos en el laboratorio al aplicar las pruebas mencionadas en el párrafo anterior. Estas pruebas se realizaron en dos arenas diferentes con la finalidad de que estos datos sirvieran para ejemplos de aplicación.

En el Capítulo IV se presentan ejemplos de aplicación donde para cada ejemplo se utilizan los datos de una de las arenas probadas y se aplican en los cálculos los criterios de falla no drenada y falla drenada para el mismo material, utilizando dos teórias diferentes. En el Ejemplo 1 se hace enfasis en la capacidad de carga admisible fijando un factor de seguridad en cada caso. En el Ejemplo 2 se plantea la descarga de una estructura definida y se analiza los factores de seguridad con las mismas dos teórias.

į,

En el Capitulo V se exponen las conclusiones del trabajo a

partir de los resultados de las pruebas y de los datos obtenidos en los ejemplos.

En el anexo se hace un recuento de las generalidades del campo de la Mecánica de Suelos aplicables a suelos granulares. CAPITULO II DESCRIPCION CONCEPTUAL DE LAS PRUEBAS UU Y CD

İ

DESCRIPCION CONCEPTUAL DE LAS PRUEBAS UU Y CD.

II.1 INTRODUCCION

El problema de la determinación de la resistencia al esfuerzo cortante de los suelos, puede decirse que constituye uno de los puntos fundamentales de la Mecánica de Suelos. En efecto, una valoración correcta de ese concepto constituye un paso previo imprescindible para intentar, con esperanzas de éxito cualquier aplicación de la Mecánica de Suelos al análisis de la estabilidad de las obras civiles.

Gracias a Coulomb, la Mecánica de Suelos tradicional había creido resolver el trascendental problema en forma satisfactoria. Durante años, basándose en ideas sin duda más precisas que otras anteriores, el ingeniero valuó la resistencia al esfuerzo cortante y construyó obras de tierra con una tranquilidad que hoy se antoja exagerada. Una vez que, en épocas modernas y aprovechando desarrollos paralelos de la Teoría de la Plasticidad, se revisaron las ideas tradicionales sobre la resistencia de los suelos. Se vió

que aquéllas podrían ser muy difilcilmente sostenidas, de hecho, se hizo indispensable abandonarlas. Sin embargo, la tecnología o investigación actuales no han sido capaces aún de sustituir el cuerpo de doctrina, sistematizado y completo del que antes se disponia, por otro análogo y acorde con las nuevas ideas. En lo que se refiere al problema de la resistencia al esfuerzo cortante, la Mecánica de Suelos está en una etapa de transición: la investigación moderna se ha mostrado iconoclasta con lo antiguo y, por otra parte, aún no le ha sido posible elaborar una doctrina completa y sistemática. Esta es la razón por la que aún hoy en muchos laboratorios de ingeniería de suelos se trabaja en estos terrenos, como si los últimos años no hubiesen transcurrido.

Es por esto que hay que aportar algunas ideas modernas como es el caso de este trabajo sobre el tsma y recordar que no debe olvidarse que las verdaderas fuentes actuales del tema son los artículos, comunicaciones y trabajos de investigación, que en gran número aparecen por doquier. Allí, eliminando lo que haya de probarse insostenible, se encontrarán las ideas que iran normando el futuro de este campo.

R

II.2 GENERALIDADES

El primer trabajo en que seriamente trató de explicarse la génesis de la resistencia de los suelos es debido al conocido físico e ingeniero francés C. A. Coulomb (1776). La primera idea de Coulomb consistió en atribuir a la fricción entre las partículas del suelo la resistencia al corte del mismo y en extender a este orden de fenómenos las leyes que sigue la fricción entre cuerpos, según la Mecánica elemental.

Es sabido que si un cuerpo Figura (II.2.1.a) sobre el que actúa una fuerza normal P ha de deslizar sobre una superficie rugosa, se encuentra que la fuerza F, necesaria para ello, resulta ser proporcional a P, teniendose:

F = µ P

donde μ recibe el nombre de coeficiente de fricción entre las superficies de contacto.

Coulomb admitió que, en primer lugar, los suelos fallan por esfuerzo cortante a lo largo de planos de deslizamiento, y que esencialmente el mismo mecanismo de fricción arriba mencionado

rige la resistencia al esfuerzo cortante. Dada una masa de suelo y un plano potencial de falla de la misma AA' (Figura II.2.1.b) el esfuerzo cortante máximo susceptible de equilibrio y, por lo tanto, la resistencia al esfuerzo cortante del suelo en ese plano, es proporcional al valor de σ , esfuerzo normal en el plano AA', teniéndose :

 $\frac{F}{A} = S = T \text{ max} = \sigma \tan \phi'$

Automáticamente nace así una ley de resistencia, según la cual la falla se produce cuando el esfuerzo cortante actuante alcanza un valor, s, tal que:

 $s = \sigma \tan \phi'$ (1)

La constante de proporcionalidad entre s y σ , un ϕ' , fue definida por Coulomb en términos de un ángulo, al cual él llamó "ángulo de fricción interna" y que definió como una constante del material.

De la ecuación (1) se deduce que la resistencia al esfuerzo cortante de los suelos que la obedezcan debe ser nula para $\sigma = 0$. Basta tener en una mano entreabierta una muestra de arena seca y suelta (por ejemplo, arena de playa) en la cual obviamente puede considerarse $\sigma = 0$, para darse cuenta, al ver deslizar entre los dedos a la arena, que ese material es de los que para $\sigma = 0$ presentan una s = 0. Por otra parte, Coulomb pudo observar que, en otros materiales, tales como por ejemplo un fragmento de arcilla, el sencillo experimento anterior conduce a otras conclusiones. En efecto, es un hecho que la arcilla no deslizaria

entre los dedos, de modo que ese material exhibe resistencia al esfuerzo cortante, aún en condiciones en que el esfuerzo normal exterior es nulo. A los materiales de este ultimo tipo, Coulomb les asignó arbitrariamente otra fuente de resistencia al corte, a la cual llamó "cohesión" y consideró también una constante de los materiales. Es más, Coulomb observó que en arcillas francas, la resistencia parecia ser independiente de cualquier presión normal exterior actuante sobre ellas y, por lo tanto, en dichos materiales parecia existir sólo cohesión, comportándose en definitiva como si en ellos $\phi' = o$. La ley de resistencia de estos suelos será :

s = c (2)

ť,

۱,

En general, según Coulomb, los suelos presentan características mixtas entre las antes enumeradas, es decir, presentan a la vez "cohesión" y "fricción interna", por lo que puede asignárseles una ley de resistencia que sea una combinación de las (1) y (2). Esta ecuación, tradicionalmente conocida en Mecánica de Suelos con el nombre de ley de Coulomb, podría escribirse:

 $s = c + \sigma \tan \phi'$ (3)

Así, las ecuaciones (1) y (2) pueden verse como casos particulares de una ley más general. Un suelo cuya resistencia al esfuerzo cortante pueda representarse por una ecuación del tipo (1) se ha llamado tradicionalmente "suelo puramente friccionante", así como un suelo que satisfaga la ley (2) ha recibido el nombre de "puramente cohesivo". En el caso más general se ha hablado de

suelos "cohesivos y friccionantes" o suelos "intermedios".

Estos términos aún son usados en la actualidad por muchos ingenieros, aunque el significado íntimo de las expresiones se haya modificado considerablemente, respecto al pensamiento original de Coulomb.

La ecuación (3) fue usada por más de un siglo y sirvió de base para la elaboración de teorías de empuje de tierras, capacidad de carga y métodos de análisis de la estabilidad de terraplenes y presas de tierra.

No obstante, los ingenieros con ciertas dotes de observación, empezaron a notar las fuertes discrepancias que existian entre la realidad y lo que alguno de ellos llegó a denominar teorías de "libros de texto". En 1925 Terzaghi estableció, con base en serias investigaciones experimentales, comenzadas alrededor de 1920, que en las ecuaciones (1) y (3) el esfuerzo normal total debería sustituirse por la presión intergranular, de modó que el esfuerzo que se admite controla los fenómenos de resistencia al esfuerzo cortante, o sea el esfuerzo efectivo, no es el total, sino el intergranular. Actualmente es común considerar en Mecánica de Suelos los términos intergranular y efectiva iguales para análisis teóricos. La ecuación (3) se modificó así para tomar la forma :

 $s = c + (\sigma - \mu n) \tan \phi'$ (4)

En donde, como es usual, μ_n representa la presión neutral en el agua. La modificación de Terzaghi tomó en cuenta, por primera vez,

la trascendental influencia del agua contenida en el suelo. Pronto se descubrió que el valor de μ n depende no sólo de las condiciones de la carga, sino también y en forma muy notable, de la velocidad de aplicación de ella, lo que condujo a distinguir el valor de la resistencia "lenta" de la "rápida". Más adelante se podrán extender estas ideas.

Posteriormente, Hvorslev hizo notar que el valor de la "cohesión" de las arcillas saturadas no era una constante, sino que resultaba ser función de su contenido de agua. Por lo tanto, la ecuación (3) debe escribirse ahora :

 $s = f(w) + (\sigma - \mu n) \tan \phi'$

Es interesante hacer notar que la contribución de Hvorsler destruyó, de una vez por todas, la idea, en si insostenible de que c fuese una constante del material.

La ley (5) es líneal en un diagrama σ -s para todo valor de σ . Las ideas más recientes sobre el tema, aplicadas a suelos compresibles, hacen necesario establecer una distinción entre las arcillas normalmente consolidadas, para las que la ley líneal parece seguir siendo satisfactoria, con la ordenada en el origen nula (c = 0) y las preconsolidadas, en las que la ley líneal ha tenido que ser sustituida por otra más complicada. En lo que sigue habrá ocasión de insistir sobre estas ideas.

II.3 ANTECEDENTES

Las pruebas de compresión triaxial son mucho más refinadas que las de corte directo y en la actualidad son, con mucho, las más cualquier laboratorio para determinar las usadas en características de esfuerzo deformación y de resistencia de los suelos. Teóricamente, son pruebas en que se podrían variar a voluntad las presiones actuantes en tres direcciones ortogonales sobre un espécimen de suelo, efectuando mediciones sobre sus características mecánicas en forma completa. En realidad y buscando sencillez en su realización, en las pruebas que hoy se efectúan, es usual llamar σ_1 , σ_2 , y σ_3 a los esfuerzos principales mayor, intermedio y menor, respectivamente. En una prueba de compresión, el esfuerzo axial sumado al confinamiento siempre es el esfuerzo principal mayor, (o1). Los esfuerzos intermedios y menor son iguales ($\sigma_2=\sigma_3$) y quedan dados por la presión de confinamiento. En una prueba de extensión, por lo contrario, el esfuerzo sumado al confinamiento axial siempre será el esfuerzo principal menor (σ_3); el mayor y el intermedio son ahora iguales y están dados por la presión de confinamiento en la cámara ($\sigma_1=\sigma_2$).

El estado de esfuerzos al centro de la probeta, en un instante dado, se supone uniforme en toda la muestra y puede analizarse recurriendo a las soluciones gráficas de Mohr, con σ_1 y σ_3 como esfuerzos principales mayor y menor, respectivamente. Debe observarse, que en una cámara triaxial el suelo está sujeto a un estado de esfuerzos tridimensional, que aparentemente debería tratarse con la solución general de Mohr, que envuelve el manejo

de tres círculos diferentes; pero como en la prueba dos de los esfuerzos principales son iguales, en realidad dos círculos devienen a uno solo y el tercero a un punto, de modo que el tratamiento resulta simplificado.

La resistencia al esfuerzo cortante, sobre todo en suelos "cohesivos", es variable y depende de diversos factores circunstanciales. Al tratar de reproducir en el laboratorio las condiciones a que el suelo estará sujeto en la obra de que se trate, será necesario tomar en cuenta cada uno de esos factores, tratando de reproducir las condiciones reales de ese caso particular. Por ello no es posible pensar en una prueba única que refleje todas las posibilidades de la naturaleza. Parece que, en cada caso. debería montarse una prueba especial anne 10 representara fielmente. Sin embargo, es obvio que esto no es práctico, dado el funcionamiento de un laboratorio común. Lo que se ha hecho es reproducir aquellas circunstancias más típicas e influyentes en algunas pruebas estandarizadas. Estas pruebas se refieren a comportamientos y circunstancias extremas; sus resultados han de adaptarse al caso real, interpretándose con un criterio sano y teniendo siempre presente las normas de la experiencia.

Las pruebas triaxiales suelen considerarse constituídas por dos etapas. La primera es aquella en que se aplica a la muestra la presión de cámara (σ_c); durante ella puede o no permitirse el drenaje de la muestra, abriendo o cerrando la válvula de salida del agua a través de las piedras porosas. En la segunda etapa, de

carga propiamente dicha, la muestra se sujeta a esfuerzos cortantes, sometiéndola a esfuerzos principales que ya no son iguales entre sí; esto requiere variar el esfuerzo que comunica el vástago, de acuerdo con alguna de las líneas de acción ya mencionadas (pruebas de compresión o de extensión). Esta segunda etapa puede también ser o no drenada, según se maneje la misma válvula mencionada. En realidad, la alternativa en la segunda etapa sólo se presenta si la primera etapa de la prueba fue drenada, pues no tiene mucho sentido permitir drenaje en la segunda etapa, después de no haberlo permitido en la primera.

La descripción de las pruebas se hace con base en la más familiar, que es la prueba de compresión aumentando el esfuerzo axial por aplicación de una carga a través del vástago.

Existen básicamente 3 distintos tipos de pruebas triaxiales, pero solamente se explicaran 2 de ellas que son las utilizadas en este trabajo:

II.3.A Prueba rápida (UU).

En este tipo de prueba no se permite en ninguna etapa consolidación de la muestra. La válvula de comunicación entre el espécimen y la bureta permanece siempre cerrada impidiendo el drenaje. En primer lugar se aplica al espécimen una presión hidrostática y, de inmediato, se hace fallar al suelo con la aplicación rápida de la carga axial. Los esfuerzos efectivos en esta prueba no se conocen si no se mide la presión con el equipo adecuado.

La característica fundamental de esta prueba es, según ya se dijo, el no permitir drenaje del espécimen ní en la etapa inicial, de presión de cámara, ní en la final de falla.

II.3.A.I Descripción de la prueba triaxial (UU) en arcillas :

Al someterse una muestra, consolidada en la naturaleza a el esfuerzo γ_z , a esa misma presión con el agua de la cámara, teóricamente la estructura del suelo tomará toda esa presión, puesto que el suelo ya había sido consolidado a ella y el agua de la muestra pasará al mismo tiempo a un estado de presión nula a partir del estado de tensiones adoptado al ser extraido espécimen de su lugar natural. Por otra parte, si la presión ejercida con el agua es mayor que el esfuerzo que el suelo tenía en la naturaleza, todo el exceso lo tomará en teoría el agua contenida en la muestra, sin que se modifique el grado de consolidación del espécimen ni la magnitud de los esfuerzos efectivos y ello independientemente del valor de la presión aplicada en la cámara. Consecuentemente, al no variar los esfuerzos efectivos, la resistencia mostrada por el suelo $(s = \Delta \gamma_s/2)$ es constante, cualquiera que sea la presión del agua en la etapa inicial.

ť,

١

En la Figura II.3.A.I.1 aparecen los esfuerzos que obran sobre el suelo en prueba rápida.

a) prueba de compresión

b) prueba de extensión

Fig. II.3.A.I.1. Distribución de esfuerzos totales efectivos en prueba triaxial (UU).

En la primera etapa de la prueba se supone que la presión hidrostática es la que el suelo tenía en la naturaleza (σ_c), más un cierto valor Λ arbitrario; consecuentemente se desarrolla en el agua del suelo una presión neutral $u_i=\Lambda$.

En la segunda etapa se aplica el esfuerzo desviador, $\Delta \sigma_{\bullet}$, con el vástago de la cámara y al final de ella se ha desarrollado en el agua una presión neutral adicional, u_2 , por estar impedida la salida del agua del espécimen.

El desarrollo de la presión uz es totalmente análogo al de la presión neutral en la segunda etapa de la prueba rápida

consolidada. Al sumar las dos etapas se tiene una presión neutral total $u=u_1+u_2$. Los esfuerzos efectivos serán los totales, menos esa presión neutral u.

 $\overline{\sigma_3} = \sigma_3 - u = \sigma_3 - (u_1 + u_2) = (\sigma_3 - (\Delta + u_2) = \sigma_3 - u_2$

 $\overline{\sigma_1} = \overline{\sigma_3} + \Delta \sigma_a = \sigma_c - 02 + \Delta \sigma_a$

Es de importancia hacer notar que el valor de los esfuerzos efectivos es independiente del valor de Λ y sólo depende de la presión a que la muestra haya estado sujeta "in situ" (σ_c) y de la presión neutral v2, desarrollada en la segunda etapa. En otras palabras, independientemente del número grande de pruebas que se hagan con diferentes valores de Λ , en lo que se refiere a esfuerzos efectivos se tiene un solo círculo y podría decirse que todo ese conjunto de pruebas rinde la misma información que una sola prueba rápida-consolidada, en la que la presión de consolidación sea igual a la del suelo en la naturaleza. En la Figura (II.3.A.I.2) aparecen varios círculos obtenidos en pruebas rápidas (círculos I, II y III). La envolvente de estos círculos resulta horizontal, tal como debe haber sido previsto de todo lo anterior.

Fig. II.3.A.I.2 Línea de falla en prueba triaxial (UU).

El círculo I corresponde una prueba ejecutada con presión de cámara igual a σ_c . Para obtener los círculos II y III se usaron, en la primera etapa, presiones incrementadas en Λ_1 y Λ_2 , respectivamente. El suelo se comporta como si tuviese resistencia al esfuerzo cortante constante; algunos técnicos llaman a esa resistencia "cohesión", pero en forma totalmente indebida. En efecto, todos esos círculos tienen al círculo I' como círculo de esfuerzos efectivos común, que puede, razonablemente considerarse tangente a la línea "L", de prueba lenta y, por ello, la resistencia debe ser atribuida, una vez más, a la fricción interna entre las partículas sólidas del material.

II.3.A.II Descripción de la prueba triaxial (UU) en arenas :

Para este tipo de material es muy difícil como ya se dijo

anteriormente, el obtener una muestra inalterada de arena e imposible de arena limpia de finos; por lo que para estudiar en el laboratorio el comportamiento de suelos granulares, se debieron formar probetas de arena, para así tratar de reproducir condiciones similares a las que se presentan en la naturaleza.

Así, en el início de la prueba, se aplica presión hidrostática (esfuerzo isotrópico) de confinamiento. Esto se hace con la finalidad de sobrepasar la tensión hidrostática que se aplica con la bureta que se encuentra conectada a la probeta y que permite que permanezca erguida. De esa forma, se elimina la tensión hidrostática dejando únicamente con la presión hidrostática. Posteriormente se deja que drene el material, que se acomoden las partículas y que se adhiera perfectamente la membrana de latex a la probeta. Imediatamente después, se deja estabilizar la probeta y se cierra la válvula que la conecta con la bureta, no sin antes dejar que el nivel de agua de la bureta se encuentre a la mitad de ésta. Todo esto se hace para que la probeta inicialmente se encuentre bajo la presión atmosférica (u=o).

De esa manera en la primer etapa de la prueba la presión de poro es al final la presión atmosférica Pa, y el agua del suelo tiene una presión $u_1 = 0$.

En la segunda etapa se aplica el esfuerzo desviador, $\Delta \sigma_a$, con el vástago de la cámara y al final de ella se ha desarrollado en el agua una presión neutral, u_2 , por estar impedida la salida del agua del espécimen.

21

El desarrollo de la presión uz es totalmente análogo al de la presión neutral en la segunda etapa de la prueba (CD). Al sumar las dos etapas se tiene una presión neutral total U=U1+U2. Los esfuerzos efectivos serán los totales, menos esa presión neutral U.

 $\overline{\sigma_3} = \sigma_3 - U = \sigma_3 - (U_1 + U_2) = (\sigma_c) - (0 + U_2) = \sigma_c - U_2$

 $\overline{\sigma_1} = \overline{\sigma_3} + \Delta \sigma_a = \sigma_{c-U2} + \Delta \sigma_a$

Es importante hacer notar que el valor de los esfuerzos efectivos depende de la presión inicial de la prueba. En este caso se trata de la presión de confinamiento (σ_c) y de la presión neutral 02, desarrollada en la segunda etapa. En otras palabras, independientemente del número grande de pruebas que se hagan con diferentes presiones de confinamiento, si el agua no tiene aire disuelto, en lo que se refiere a esfuerzos efectivos se tiene solo un circulo y podria decirse que todo ese conjunto de pruebas rinde la misma información que una sola prueba rápida consolidada, en la que la presión de consolidación sea igual a la del suelo en la naturaleza. En la Figura (II.3.A.II.1) aparecen varios circulos obtenidos en pruebas rápidas (círculos I, II y III). La envolvente de estos círculos resulta horizontal, siempre y cuando la saturación del material sea muy cercana al 100 %. Sin embargo, para las pruebas realizadas en este trabajo la saturación no fue tan cercana al 100 %, esto dado que en la naturaleza el agua del suelo no esta desaireada, por lo cual, se prefirió trabajar con agua en condiciones de campo y obtener su envolvente no

horizontal.

Además, vale la pena comentar que la prueba UU es un caso partícular de la prueba CU, donde la consolidación de la primera etapa se realiza en campo.

Fig. II.3.A.II.1 Línea de falla en prueba triaxial (UU).

II.3.B Prueba lenta (CD) en arcillas.

La característica fundamental de la prueba es que los esfuerzos aplicados al espécimen son efectivos. Primeramente se sujeta al suelo a una presión hidrostática de confinamiento (σ_c), teniendo abierta la válvula de comunicación con la bureta y dejando transcurrir el tiempo necesario para que haya una completa consolidación bajo la presión actuante. Cuando el equilibrio estático interno se haya reestablecido, todas las fuerzas exteriores estarán actuando sobre la fase sólida del suelo; es

decir, producen esfuerzos efectivos, en tanto que los esfuerzos neutrales en el agua corresponden a la condición hidrostática. La muestra es llevada a la falla a continuación aplicando la carga axial en pequeños incrementos, cada uno de los cuales se mantiene el tiempo necesario para que la presión en el agua, en exceso de la hidrostática, se reduzca a cero.

Como queda dicho, los esfuerzos actuantes sobre el espécimen de suelo en esta prueba son efectivos en toda etapa significativa de ella; esto se logra permitiendo drenaje libre en las líneas de la muestra a la bureta y, por lo tanto, la completa consolidación del suelo bajo los distintos estados de esfuerzos a que se somete. En la primera etapa, la muestra es sometida en todas direcciones a la presión del agua (σ_3) y, en la segunda etapa, se le lleva a la falla con incrementos de carga axial $\Delta \sigma_a$, permitiendo completa consolidación bajo cada incremento. El esfuerzo total axial de falla será designado por $\sigma_{1f}=\sigma_3+\Delta\sigma_{af}$ donde $\Delta\sigma_a$ se denomina esfuerzo desviador de falla y es el máximo esfuerzo desviador. $\Delta \sigma_{af}$ mide la resistencia a la compresión del espécimen en esta prueba.

ť,

1

Las condiciones finales de cada etapa pueden sumarse esquemáticamente para obtener la condición definitiva de falla Figura (II.3.B.I).

b) prueba de extensión

Fig. II.3.B.1. Distribución de esfuerzos totales efectivos en prueba triaxial (CD).

En la primera etapa el espécimen aparece sujeto al esfuerzo total σ_3 y, por haberse permitido la consolidación total, la presión neutral, un, se ha reducido a cero; como se considera uh=0, dado el pequeño tamaño de los especímenes, puede escribirse esa condición como u=0.

En la segunda etapa obra sobre el suelo el esfuerzo desviador de falla, $\Delta \sigma_{af}$, y nuevamente u=0, por existir drenaje libre y dejarse transcurrir suficiente tiempo.

La suma de estas dos etapas conduce a la etapa final que se presenta desplegada en dos croquis, uno relativo a esfuerzos totales y otro a los efectivos.

Los resultados de una prueba lenta se llevan a una gráfica construida de acuerdo con la Teoría del Círculo de Mohr. En la Figura (II.3.B.II) aparece una de estas gráficas.

Fig. II.3.B.II Línea de falla de arcillas saturadas y normalmente consolidadas en prueba (CD).

El círculo I es el círculo de falla para una presión del agua en la cámara igual a σ_c , que es la que tenía el suelo en el lugar (γz será el correspondiente a la condición en que el suelo se encuentre). En este círculo s es la resistencia al esfuerzo cortante y σ el esfuerzo normal que obra en el plano de falla.

Si con especímenes del mismo suelo se ejecutan otras pruebas lentas con presiones de cámara crecientes, se obtienen otros círculos de falla (círculos II y III de la Figura (II.3.B.II)). La envolvente de estos círculos en el intervalo de presiones utilizadas resulta ser una línea recta cuya prolongación pasa por el origen de coordenadas y es el lugar geométrico de las

resistencias al esfuerzo cortante del suelo. Esta línea recibe el nombre de línea de falla y el ángulo ϕ' que forma con el eje horizontal es el ángulo de fricción interna del material, ya mencionado, en esfuerzos efectivos.

Nótese que el hecho de que la línea de falla resulte cruzando por el origen indica que la resistencia del material debe atribuirse únicamente a su fricción interna, corroborandose la ley antes dada:

$s = \overline{\sigma} \tan \phi'$

En el Círculo de Mohr el polo resulta sobre el eje horizontal, en el punto correspondiente al esfuerzo principal menor, pues el esfuerzo principal mayor (representado por el punto B, círculo I en la Figura (II.3.B.II)) está actuando sobre el plano horizontal; por lo tanto esa dirección horizontal llevada por B corta al círculo en el punto P, polo que coincide ahora con el punto A. Uniendo el polo con el punto D se obtiene la dirección del plano de falla, que forma con la horizontal un ángulo $45^0 \cdot \phi'/2$.

También se tiene prueba de compresión si en lugar de aumentar el esfuerzo axial, se disminuye el lateral o si se efectúa una prueba en la que, al mismo tiempo, se haga aumentar el esfuerzo axial y disminuir el lateral. Sin embargo, cualquier disminución de la presión lateral induce un efecto de preconsolidación, pues en tal caso, a medida que la prueba progresa, el espécimen irá teniendo esfuerzos laterales menores que los que tenia anteriormente; así estos casos corresponden a pruebas en suelos
preconsolidados.

ť,

١

II.3.C Descripción de la prueba (CD) en arenas :

Para este tipo de prueba, la determinación se hace igual que para suelos arcillosos, es decir, en la primera etapa de esta prueba el espécimen se sujeta al esfuerzo total σ_3 y, como el agua de la probeta se encuentra a la presión atmosférica, se considera U=0.

En la segunda etapa obra sobre la probeta el esfuerzo desviador de falla $\Delta \sigma_a$, y nuevamente u=0, por existir drenaje libre y dejarse transcurrir suficiente tiempo para que el agua drene.

La suma de estas dos etapas conduce a la etapa final que se presenta en un croquis tanto para los esfuerzos totales como para los esfuerzos efectivos.

Los resultados de una prueba lenta se llevan a una gráfica construida de acuerdo con la Teoría del Círculo de Mohr. En la Figura (II.3.C.I) aparece una de estas gráficas.

Fig. II.3.C.I Línea de falla en prueba CD.

El círculo I es el círculo de falla para una presión de confinamiento en la cámara igual a σ_c . En este círculo s, es la resistencia al esfuerzo cortante y σ el esfuerzo normal que obra en el plano de falla. Si con probetas del mismo material y misma compacidad relativa se ejecutan otras pruebas lentas con presiones de cámara crecientes, se obtienen otros círculos de falla (círculos II y III de la Figura (II.3.C.I)). La envolvente de estos círculos en el intervalo de presiones utilizadas resulta ser una línea recta cuya prolongación pasa por el origen de coordenadas y es el lugar geométrico de las resistencias al esfuerzo cortante del suelo. Esta línea recibe el nombre de línea de falla ó de resistencia y el ángulo ϕ' que forma con el eje horizontal es el ángulo de fricción interna real del material ya mencionado.

Nótese que el hecho de que la línea de falla resulte pasando

por el origen indica que la resistencia del material debe atribuirse únicamente a su fricción interna, corroborándose la ley antes dada:

 $s = \sigma \tan \phi'$

Para representar los sucesivos estados de esfuerzos existentes en una muestra de suelo al cargarla, se puede trazar una serie de círculos de Mohr.

Por ejemplo, la Figura (II.3.C.II.1), muestra estados sucesivos de esfuerzos al incrementar σ_1 manteniendo constante σ_3 . Sin embargo, un diagrama con muchos círculos puede resultar confuso, sobre todo si se presentan en un mismo diagrama los resultados de diversas pruebas. Un método más satisfactorio consiste en representar una serie de puntos (p - q) uniéndolos mediante una línea denominada TRAYECTORIA DE ESFUERZOS como muestra la Figura (II.3.C.II.2) tales puntos representan los esfuerzos cuyas coordenadas son:

Ę

1.

Dado que en la mayoría de los casos en los que se utiliza la representación puntual los esfuerzos principales actúan sobre planos verticales-horizontales, en este caso la ecuación se reduce a :

$$p = \frac{\sigma_1 + \sigma_3}{2}$$
 (A)
$$q = \frac{\sigma_1 - \sigma_3}{2}$$
 (B)

Así pues, se tienen dos caminos para encontrar los valores de ϕ' , a partir de una serie de ensayes triaxiales:

- Se construyen los circulos de Mohr y se ajusta la envolvente Fig.(II.3.C.II.3.).

ľ

ų,

- Se representan los valores de _P y q se ajusta la línea κ y se cálcula el valor de ϕ' por medio de la siguiente expresión:

$$\phi' = \operatorname{sen}^{-1} \operatorname{tan} \alpha - - - - (A)$$

El diagrama (p - q) se muestra en la Figura (II.3.C.II.4).

* Numéricamente, q equivale a la mitad del esfuerzo desviador.

La expresión (A), se obtiene a partir del siguiente análisis, Fig. (II.3.C.II.5).

Fig. II.3.C.II.5 Relación entre un círculo de Mohr y un punto en el plano (p - q).

De la Fig. (II.3.C.II.5).

Y

ť

۱,

 $\tan \alpha = \frac{R}{\frac{\sigma_3 + \sigma_1}{2}}$

en
$$\phi' = \frac{R}{\frac{\sigma_3 + \sigma_1}{2}}$$

De donde sen $\phi' = \tan \alpha$, es decir :

9

$$\phi' = \operatorname{sen}^{-1} \operatorname{tan} \alpha$$

II.4 APARATO PARA EFECTUAR LAS PRUEBAS

ſ,

1

El único aparato que se describe en lo que sigue corresponde a un modelo originalmente diseñado en la Universidad de Harvard, EE.UU. y es seguramente, uno de los tipos más comunes en los laboratorios de Mecánica de Suelos en todo el mundo.

El aparato consta, en primer lugar, de la llamada cámara de compresión triaxial constituida por un cilindro de lucita de unos 20 cm de diametro exterior y unos 6mm de espesor en su pared.

Las bases de la cámara son dos placas redondas de acero al cadmio (o su equivalente), selladas respecto al cilindro de lucita perfectamente, por medio de goma de hule.

La cámara con las anteriores dimensiones es resistente a presiones internas hasta valores de alrededor de 7 kgf/cm², con un generoso factor de seguridad. Sí las presiones interiores fueran aún mayores, la cámara deberá protegerse con anillos de bronce o latón o con malla metálica; con estas protecciones pueden manejarse presiones hasta de 10 kgf/cm².

Dentro de la cámara se ubican dos cilindros cortos de lucita, que sirven como base y cabezal del espécimen, con piedras porosas en los contactos con dicho espécimen. Estas piezas están perforadas y se comunican, por medio de tubo sarán de unos 3 mm (1/8 de pulgada) de diámetro exterior con una bureta, a fin de permitir drenaje de la muestra.

El vástago transmisor de carga axial transmite ésta a la

muestra en forma de una articulación a través del cabezal superior de lucita, que está provisto de una muesca para que apoye la punta de dicho vástago; en esa muesca se permite un juego de dos o tres grados a fin de garantizar en todo caso un contacto entre cabezal y la cara superior del espécimen que produzca una distribución uniforme de la presión axial.

El sistema de drenaje está constituido por cuatro válvulas, un pequeño depósito de agua y una bureta calibrada, preferentemente de lucita, por no ser este material muy quebradizo. Un esquema detallado de esta instalación se muestra en la Figura (II.4.I).

ţ'-

Fig. II.4.I Cámara de compresión triaxial

Las líneas de drenaje de la base del cabezal de lucita atraviesan materialmente la placa metálica que constituye la base de la cámara. Esto tiene por objeto que el agua no entre en contacto con el metal y así evitar la posibilidad de actividad electroquímica, en pruebas de larga duración.

Las cargas se aplican siempre desde el exterior y se transmiten

al espécimen por medio de un vástago bien ajustado. La fricción que actúe sobre el vástago puede llegar a ser de importancia, por lo que es conveniente o bien medir las cargas dentro de la cámara, esto se hace insertando un anillo de carga calibrado entre el vástago y el cabezal de la muestra o entre el vástago y el marco de carga. Estos anillos de carga son piezas anulares de acero calibradas previamente, conociéndose las variaciones de su diámetro interior bajo la acción de carga axial; en el momento de la prueba, un extensómetro colocado diametralmente reporta deformaciones que tengan lugar, las que en la tabla o gráfica de calibración, proporcionan las cargas actuantes correspondientes. En ocasiones la prueba se efectúa sobre una báscula cuya carátula reporta, directamente sin necesidad de anillo, las cargas aplicadas en cada instante. Desde el punto de vista de determinaciones de resistencia no existe diferencia importante entre los métodos de esfuerzo o deformación controlados, sí es que las demás circunstancias de la prueba se mantienen similares. En trabajos de rutina el actual progreso de las básculas de laboratorio ha popularizado el empleo deformación de la controlada, pero en trabajos de investigación suele considerarse más preciso el método de esfuerzo controlado.

En las pruebas de compresión triaxial se requiere que la muestra esté enfundada en membranas transparentes, resistentes e impermeables. En pruebas de rutina, las disponibles comercialmente son satisfactorias, pero en pruebas de larga duración se ha observado que el flujo a su través aunque pequeño, llega a afectar

seriamente los resultados de las pruebas. Algunos laboratorios han optado por el uso de membrana doble, en tanto que otros han preferido la fabricación de sus propias membranas, buscando siempre satisfacer el doble requisito de impermeabilidad y resistencia.

Para dar la presión inicial en torno a la muestra, el aire sería el fluido ideal, sí no fuera porque todas las membranas son permeables a sus moléculas. En las pruebas rápidas, que se realizan en pocos minutos, la cantidad de aire que alcanza a atravesar la membrana no es de consideración pero en las pruebas lenta y rápida-consolidada, aun pequeñas cantidades de aire aumentan la presión neutral, disminuyendo en la misma proporción a la efectiva; esto aparte del efecto desfavorable causado por la acumulación de aire libre dentro del espécimen. Para disminuir este flujo a través de la membrana, algunos investigadores llenan la cámara triaxial hasta un nivel superior al espécimen con un fluido que no ataque a la membrana (agua, glicerina, aceites, Aunque membranas usadas son comparativamente etc.). las impermeables a estos fluidos, esto no resuelve el problema; el aire entra en solución con todos los líquidos, prácticamente hablando, en cantidad proporcional a la presión, por lo que en la cámara el fluido se satura de aire rápidamente. A través de la membrana, el aire disuelto pasa entonces a formar solución en el agua intersticial de la muestra, esto sucede aun cuando dicha agua intersticial esté saturada, a su vez de aire y ello por la menor concentración y presión que prevalece en el agua dentro de la

Ľ

muestra. Al estar el agua de la muestra saturada de aire, lo que sucede es que el aire que penetra desde el exterior, sale de la solución y forma burbujas con el efecto nocivo de crear presión neutral, si el drenaje de la muestra está impedido o de desalojar agua del suelo a la bureta, provocando en el observador la falsa impresión de un cambio de volumen adicional no ocurrido. Lo que ha dado mejor resultado a final de cuentas, es el llenar la cámara totalmente con el líquido, generalmente agua, dejando incluso que éste llene un buen segmento de la línea de comunicación con el compresor, que le comunica la presión por medio de aire comprimido y se ha observado que el agua que atraviesa la membrana que protege al espécimen ejerce un efecto de mucha menor importancia que el aire antes analizado.

II.5 SATURACION DEL APARATO

Todas las líneas de tubería, válvulas y piedras porosas del conjunto deben llenarse con agua destilada y desaireada antes de comenzar la prueba en el laboratorio. Para lograrlo, procédase como sigue:

> 1.- Desármese y limpiense la cámara y todas las líneas, además ciérrense todas las válvulas Figura (II.5.I) y la Figura (II.5.II).

Fig. II.5.I Equipo en perfectas condiciones para la prueba,

Fig. II.5.II Material utilizado para la prueba triaxial

2.- Desairear toda la cantidad de agua destilada por utilizar en la prueba, así como también la arena y las piedras porosas. Figuras (II.5.III), (II.5.IV), (II.5.V) y (II.5.VI).

Fig. II.5.III Desaireando agua destilada para la prueba.

Fig. II.5.IV Se vierte arena en agua destilada y desaireada.

Fig. II.5.V Desaireando arena dentro de agua destilada.

Fig. II.5.VI Desaireando piedras porosas.

- 3.- Saturar los dos ductos de la base de la cámara con agua destilada y desaireada (Figura II.5.VII), para lo cual se tiene proceder de la siguiente manera:
 - a) Conectar dos buretas llenas de agua destilada y desaireada a cada extremo de cada ducto.
 - b) Una vez conectadas las buretas a cada ducto, se hace varias corridas de agua hasta no percibir burbujas de aire en las buretas.
 - c) El mismo procedimiento de 3 inciso b) se hará para el otro ducto.

Fig. II.5.VII Saturación del sistema de drenaje.

- 4.- Una vez saturadas las líneas de la base, se procederá a dejar conectada sólo una bureta a una válvula, esto con el fin de que por medio ésta se sature todo el molde de la prueba.
- 5.- Se coloca la piedra porosa en la base de la cámara. Esto se hace una vez que la piedra se ha colocado en una cámara con agua destilada y desaireada y a la cual se le aplica succión para extraerle todo el aire atrapado dentro de la piedra.
- 6.- Una vez colocada la piedra en la base, se coloca el extremo inferior de una membrana cilíndrica de hule de 3" abrazando la base sobre la que irá el espécimen y fijese a esa posición enrrollando hilo elástico fuertemente en torno a la membrana y la base.

7.- En torno a la membrana cilíndrica de hule colóquense dos semicilíndros metálicos que puedan atornillarse uno a otro firmemente, y sobre este el copete cilíndrico de lucita: Este será el molde que sirve para constituir el espécimen. El extremo superior de la membrana de hule deberá doblarse ahora sobre el filo del borde superior del copete de lucita. Asegurándose ese dobles también con hilo elástico. Colocado ya el molde con el copete de lucita, la membrana de hule y la piedra se le aplica vacío en éste y se verifica la distención en la membrana. Se procede a abrir la válvula de la base que esta conectada con la bureta y por el la cual se llenará todo el molde con agua destilada y desaireada, cuidando siempre de no dejar aire atrapado en el sistema, así hasta alcanzar el borde superior de copete de lucita Figura (II.5.VIII).

Ver analisis del capete en anexo A.

Fig. II.5.VIII Instalación del molde de 3" en la base de la cámara triaxial.

11.6 PREPARACION DE LA MUESTRA

Para producir una muestra con una compacidad relativa del 50%, que es la compacidad relativa utilizada en las pruebas realizadas en este trabajo⁴. En un matraz se coloca un peso conocido de arena secada al horno y se agraga agua agua destilada y desaireada, se coloca un tapón con un tubo muy delgado y por este se hace hervir al suelo bajo la acción de un vacío por aproximadamente 15 mínutos, sacudiendo ocasionalmente el matraz. Una vez hecho esto, se llena completamente el matraz con agua destilada y desaireada hasta alcanzar el nivel más alto del tubo, así se voltea el matraz apuntando hacia el molde hasta que la punta del tubo toque el agua que se encuentra dentro de este. De esta manera el material que se encuentra en el matraz empieza a fluir siempre bajo el agua en forma de lluvia de partículas, las cuales se van depositando en forma muy suelta dentro del molde Figura (II.6.I).

Ver anexo A

Fig. II.6.I Lluvia de partículas de arena dentro del molde.

Para alcanzar la compacidad relativa del 50 % después de que se depositó todo el material dentro del molde y el copete de lucita, se vibra el conjunto molde, copete muestra. En el momento en que la arena alcanza el nivel prefijado en el copete, se puede asegurar que la muestra presenta en promedio una compacidad relativa del 50%⁴. Además en este caso, como la arena se depositó estando en todo momento bajo el agua, se puede aceptar que el material se encuentra con un grado de saturación cercano al 100%. Fig. (II.6.II).

Ver anexo A

Fig. II.6.II Aspecto de la probeta después de quitar el molde.

II.7 ARMADO DEL APARATO EN CONJUNTO

Para poner el conjunto del aparato triaxial en condiciones de efectuar las pruebas, se procedió como sigue:

Una vez que el material se encuentra dentro del molde, se procede a quitar el copete de lucita y a colocar la cabeza del mismo material. Así, el extremo superior de la membrana cilíndrica de hule se coloca abrazando la cabeza de lucita y se fija en esta posición enrrollando hilo elástico fuertemente en torno a la membrana y el copete. Posteriormente se procede a aplicar tensión a la muestra de arena; esto se hace mediante la bureta que se encuentra conectada a una de las válvulas de la base. Así una vez aplicada la tensión al material, se quita el molde metálico de 3" y la muestra permanece erguida, así de esta manera se le coloca la camisa de lucita de la cámara triaxial y se lleva junto con la bureta auxiliar hasta el marco de carga, donde se ajusta el vástago de la cámara triaxial con el anillo de carga y se nivela el marco de carga. Después se comienza a llenar la cámara con el liquido confinante, y se aplica el primer confinamiento que se haya programado Figuras (II.7.I) y (II.7.II).

1

Fig. II.7.1 Llenado de la cámara triaxial para el confinamiento de la probeta.

Fig. II.7.II Vista previa al ensaye de la probeta.

.....

II.8 PROCEDIMIENTO DE LA PRUEBA

Prueba UU :

Básicamente la prueba se realizó en 2 etapas:

Primera etapa:

- 1.- Se aplica presión de confinamiento (σ_c) por medio del líquido confinante, en este caso glicerina. Dicha presión debe ser menor o igual al valor inicial de σ_c programado para el ensaye.
- 2.- Se cierra la válvula donde se encuentra conectada la bureta auxiliar.
- 3.- Se ajusta el extensómetro para una lectura inicial igual a cero.

Segunda etapa:

- 4.- Se aplica el primer incremento de carga axial e imediatamente se pone en marcha el cronómetro. Pasado un minuto (este tiempo prevee que haya un acomodamiento del material) se lee la lectura del extensómetro y se aplica el segundo incremento de carga Figura (II.8.I).
- 5.- Pasado otro minuto, se lee el extensómetro, se aplica el siguiente incremento de carga y así sucesivamente, hasta llevar la probeta a la falla Figura (II.8.II).

Toda la prueba se lleva a cabo, sin permitir el drenaje del material.

Con estas pruebas no se quería que la probeta tuviera una saturación del 100 %, para lo cual se habría aplicado contrapresión. Se pensó que al no hacer esto, la prueba modelaría mejor lo que se tiene en la realidad, ya que el agua en la

naturaleza no se encuentra desaireada y por lo tanto no satura al 100 % al suelo.

ł

Fig. II.8.I Aplicación de carga a la probeta.

Fig, II.8.II Aspecto de la probeta despues de la falla.

Prueba CD (MULTITRAXIAL) :

Para este tipo de prueba se incluyó una variante de ésta, denominada Multitraxial la cual está constituida por un mayor número de etapas, que están en función del número de incrementos programados para la presión confinante σ_c (0.4, 0.7, 1.0, 1.3 y 1.6 kgf/cm²), aplicando incrementos de esfuerzo desviador crecientes conforme se avanzó de una etapa a otra: durante la última etapa, la muestra se llevó a la falla aplicando los incrementos de esfuerzo desviadores correspondientes $\Delta\sigma d$.

La primera etapa de la prueba de compresión multitraxial es idéntica a la descrita para la prueba triaxial estándar (CD). En la segunda etapa, se aplica un esfuerzo desviador σ dl tal, que no

alcance a provocar la falla del material (ver Fig.II.8.III) y entonces se suspende momentáneamente la prueba. Para controlar esto, se van graficando[•] los valores de carga-deformación conforme se ejecuta el ensaye. Cuando la gráfica muestra que la inclinación de la curva llega a formar un ángulo de 45° con respecto a la horizontal, se aplica el siguiente esfuerzo de confinamiento programado σ_{c1} sosteniendo el esfuerzo desviador σ_{d1} y se deja transcurrir el tiempo necesario para que se disipe la presión del agua en la probeta. Esto permite obtener varios círculos de Mohr con una sola probeta de suelo.

• En una gráfica carga-deformación con la misma escala.

Fig. II.8.III

En la tercera etapa se aplica un esfuerzo desviador σ_{42} y se sigue el mismo procedimiento descrito para la segunda etapa.

Con la misma secuela, se realizan las siguientes etapas del ensaye hasta que la última de ellas; (la correspondiente al esfuerzo de confinamiento σ_{c5} = 1.6 kgf/cm²) la muestra es llevada a la falla con el esfuerzo desviador σ df.

En la Figura II.8.IV puede observarse que al aplicar el segundo esfuerzo desviador σ_{d2} , el segundo confinamiento σ_{c2} ya tiene implícito en esfuerzo desviador debido al primero, que es $\Delta \sigma_{d1}$ luego al aplicar un esfuerzo desviador σ_{d2} al segundo

confinamiento σ_{c2} , en realidad sólo se está aplicando el complemento de σ_{d2} , es decir $\Delta \sigma_{d2}$. También puede observarse que el primer tramo de la gráfica carga-deformación correspondiente al primer esfuerzo confinante σ_{c1} es el mayor de todos y es el que da la pauta para el control de las siguientes etapas del ensaye (en cuanto al límite para detener el esfuerzo desviador y aplicar el esfuerzo confinante respectivo). La pendiente de este primer tramo se mantiene en los siguientes, y es tal, que debe alcanzar antes de provocar la falla de la muestra para ese confinamiento, Fig.II.8.IV.

CAPITULO III

RESULTADOS DE LAS PRUEBAS UU Y CD

RESULTADOS DE LAS PRUEBAS UU Y CD

III.1 RESULTADOS DE LAS PRUEBAS UU.

í,

11

Los datos obtenidos de cada una de las pruebas correspondientes a cada confinamiento para dos tipos de arena⁴, se vacían en un listado de carga-lectura de extensómetro y mediante los cálculos indicados a continuación se obtienen los datos para trazar la curva esfuerzo-deformación unitaria y para determinar el esfuerzo máximo soportado por la muestra justo antes de la falla (σ uc).

Con los valores de los esfuerzos de confinamiento $\sigma_{c=\sigma_3}$ y de falla $\sigma_{1=\sigma_3+\sigma_{df}}$ correspondientes a cada material ensayado, se traza la gráfica _{P-q} (aplicando las ecuaciones A y B) y se obtiene la trayectoria de esfuerzos y su inclinación α y finalmente el ángulo de fricción interna ϕ .

A continuación se presentan los resultados de las pruebas realizadas en el laboratorio:

Ver análisis granulométrico y de compacidad relativa en anexo A

U. N. A. M. FACULTAD DE INGENIERIA

INGENIERIA CIVIL

LABORATORIO DE MECANICA DE SUELOS

					FECUL: 2 DE ACOSTO DE 1988									
ORKY		: TESI:	S DE LIC.	I L	FECHA: 2 DE AGOSTO DE 1988									
LOCAL	JIZACIO	DN: FAC. I	DE INGENI	ERIA OP	ERADOR:	HECTOR D.	AVID LEON	V JUAREZ						
TIPO	DE ARE	INA: ARENI	A NEGRA	СУ	LCULO:	HECTOR D.	AVID LEOI	V JUAREZ						
DESCH	RIPCION (E No.	I : PRUEI : UNO	9 A UU	c.	R. =	50 %								
MEDIDAS DE LA MUESTRA														
$D_B = 7.62$ cm $A_B = 45.60$ cm ² $H_1 =grf$														
Dc = 7.62 cm Ac = 45.60 cm ² Vt =cm ³														
$Di = 7.62$ cm $Ai = 45.60$ cm ² $\gamma m =t f/m^3$														
Hm = 18,30 cm As + 4 Ac + Al 273,62 2														
$Am = \frac{1}{6} = \frac{1}{6} = 45.60 \text{ cm}^2$														
No. ANILLO: 500 kgf CTE. ANILLO: 0.3166 073 = 0.60 kgf/cm ²														
TIEN	LECTU RA DE		LECTURA	DEFORMA CION	DEFORMA	DEFORA.	AREA	ESFUER- Zo						
0 4	623-	CARGA	MICHONE TRO	TOTAL	RATU-	UNITA-	DA DA	DESVIA- DOR						
mln	()	kgf	na ma	տո	()	()	c m 2	kgf/cm ²						
0	0	00.00	0,52	0.00	0.000	0.000	45.60	0,000						
_1	70	22.16	1.88	1.36	0.0074	0.9926	45.94	0.482						
2	140	44.32	3.67	3.15	0.0172	0.9828	46.40	0.955						
3	210	66.49	5.08	4.56	0.0249	0.9751	46.77	1.422						
4	280	88.65	6.57	6,05	0.0331	0.9669	47.16	1,880						
-5	350	110.81	7.57	7.05	0.0305	0,9615	47.43	2.336						
6	420	132.97	8,80	8,28	0.0452	0.9548	47.76	2.784						
	490	135.13	9,93	9.21	0.0503	0.9497	48.02	3.231						
	620	100 16	10.74	10.22	0.0558	0.9442	48.30	3.671						
$\frac{-3}{10}$	700	221 62	16 50	11.41	0.0824	0.9377	40.03	4,101						
<u> </u>		661.06	15.50	14.90	0.0819	0.9101	49.07	4.402						
					<u> </u>									
						·								
					<u> </u>	<u> </u>								
						<u> </u>								
]					<u> </u>	<u>}</u>								
						<u> </u>								
		***************************************			<u> </u>	†								
089	TEDVACI	ONES .			<u></u>	**************************************								
ODSERVACIONES :														
1			AREA CO	DRREGIDA	=	AR FEORMACT								

60

....

U. N. A. M. FACULTAD DE INGENIERIA

INGENIERIA CIVIL

LABORATORIO DE MECANICA DE SUELOS

OBRA		: TESIS	G DE LIC.	FE	CHA:	3 DE AGOS	STO DE 19	88						
LOCAI	IZYCI	N: FAC. I	DE INGENI	ERIA OP	ERADOR:	HECTOR DA	WID LEON	JUAREZ						
TIPO	DE ARE	NA: ARENA	NEGRA	CA	LCULO:	HECTOR DA	VID LEON	JUAREZ						
DESCI			λ IΠI	···										
FNSAV	E No.	• DOS	JA 00	C.	R. =	50 %								
MEDIDAS DE LA MUESTRA														
Ds	Ds = 7.62 cm ∧s = 45.60 cm² Wl =grf													
Dc	= 7.6	52 cm	Ac =	45,60	с ња 2	¥t =		с <u>в</u> 3						
nı	_ 7	3		45 60	2 2	Υ π -		16/23						
UI = 7,62 CM AI = 45,60 CM /M =U//M														
Hm	= 18.3	30 cm.		s + 4 A	c + Al _	273.62		2						
Am = = = = = 45,60 cm														
								2						
No. ANILLO: 500 kgf CTE, ANILLO: 0.3166 073 = 1.00 kgf/cm ⁶														
I I E H	LECTU RADE	CARCA.	LECTURA	DEFORMA CIÓN	CION	DEEORAA	AREA	ESFUER-						
80	659-	CARGA	TRO	TOTAL	UNITA-	UNITA-	DA	DESVIA-						
						RIA	2	2						
min	()	kgf	0, m	a a	[[]	()	С п,	kgt/cm						
0	0	00.00	0.62	0.00	0.000	0.000	45.60	0,000						
_1	70	22.16	1.22	0.60	0.0033	0.9967	45.75	0.487						
2	140	44.32	4.19	3.57	0.0195	0.9805	46.51	0.958						
3	210	66.49	6.18	5.56	0.0303	0.9697	47.03	1.421						
4	280	88.65	7.96	7.34	0.0400	0.9600	47.50	1.876						
5	350	110.81	9.44	8.82	0.0481	0.9519	47.90	2.325						
6	420	132.97	10.89	10.27	0.0560	0.9440	48.30	2.767						
7	490	155,13	12.08	11.46	0.0625	0,9375	48.64	3.206						
8	560	177.30	13.36	12.74	0.0695	0.9305	49.00	3.637						
9	630	199.46	14.46	13,84	0.0755	0.9245	49.32	4.065						
10	700	221.62	16.10	15.48	0.0844	0.9156	49.80	4.473						
11	770	243.78	17.46	16.84	0.0918	0.9082	50.21	4.880						
12	840	265.94	19.36	18.74	0.1022	0.8978	50.79	5.263						
13	910	288.11	18.39	20.77	0.1133	0.8868	51.42	5.632						
					1									
		L												
OBSERVACIONES :														
Á m														
	AREA CORREGIDA =AM													

ť,

U. N. A. M. FACULTAD DE INGENIERIA

INGENIERIA CIVIL

LABORATORIO DE MECANICA DE SUELOS

OBRA		: TESIS	S DE LIC.	FE	CHA:	8 DE AGOS	STO DE 19	988
LOCA	LIZACIO	DN: FAC. I	DE INGENI	ERIA	ERADOR:	HECTOR D	VID LEON	V JUAREZ
TIPO	DE ARE	ENA: ARENA	A NEGRA			HECTOR D	עדה בביי	I JUAREZ
DESC	RIPCION YE No.	: PRUEL	BA UU	c.1	R. =	50 %		
ME	DIDAS I	DE LA MUES	STRA				· · · · · · · · · · · · · · · · · · ·	
Ля	= 7.0	52 cm	ÅR =	45.60	c #2	¥1 :	2	arf
	- 7 6	3		46 60	2			3
50	- 7.0	52 CM	AC =	45.60	2		·	
01	Di = 7.62 cm Ai = 45.60 cm 3 ^r m =tf/m							
Hm	Hm = 18.30 cm Am = $\frac{As + 4 Ac + Ai}{a} = \frac{273.62}{a} = 45,60 cm^2$							
1				0		D		
No	. ANILI	.0: 500 kg	уѓ сте	. ANILL	0: 0.316	6 O°3 :	= 1.40 k) f / cm ²
	LECTU		LECTURA	DEFORMA	DEFORMA	- LA	AREA	ESFUER-
TIEN PO	RA DE	CARGA	HICRONE	CION	CION	CION	CORREGI	20
	620		1.00	IUIKL	RIA	HNITA-	D A	DOR
min	()	kgf	in m	រា ផ្	()	()	с m. ²	kgf/cm ²
0	0	00.00	0.04	0,00	0,000	0.000	45.60	0,000
1	70	22.16	1.19	1,15	0.0063	0.9937	45.88	0.483
2	140	44.32	3.29	3,25	0.0177	0.9823	46.42	0.955
	210	66,49	5.57	5,53	0.0302	0.9698	47.02	1.414
	280	88,65	7.12	7.08	0.0386	0.9614	47.43	1.869
- <u></u>	350	110.81	8,69	8.65	0.0472	0,9528	47.86	2.315
	420	132,97	9.94	9.90	0.0540	0.9460	48.20	2.759
<u> </u>	490	155,13	11.28	11.24	0.0613	0.9387	48.58	3,193
- <u></u>	620	111.30	12.47	12.43	0.0678	0.9322	48.92	3.624
	200	199.90	13.80	13.76	0.0750	0.9250	49,30	4.046
	770	661.02	14.79	14.75	0.0804	0.9196	49.59	4.469
	840	243.18	10.05	10.01	0.0873	0.9127	49.96	4.880
$\left \frac{16}{13} \right $	040	203.94	10.01	10.97	0.0925	0.9075	50.25	5.292
$\left \frac{1}{14} \right $	910	210 27	10.05	18,01	0.0982	0.9018	50.57	5.697
	960	510.27	19.20		0.1061	0.8939	51.01	6.D82
							·	
OB	SERVACI	IONES :						
			AREA CO	RREGIDA	= <u>1 - D</u>	A m EFORHAGIO	ON UNITAI	RIA

U. N. A. M.

FACULTAD DE INGENIERIA

INGENIERIA CIVIL

LABORATORIO DE MECANICA DE SUELOS

OBRA		: TESIS	S DE LIC.	FI	CHA:	2 DE AGO	STO DE 1	988
LOCA	LIZYCIC	DN: FAC. I	DE INGENI		ERADOR:	IECTOR DA	VID LEON	I JUAREZ
TIPO	DE ARE	ENA: ARENA	NEGRA			TECTOR D	VTD LEON	I JULAREZ
DESCI	RIPCION	I : PRUEL	A UU					JUANEL
ENSA	YE No.	: CUATI	20	C	R, = .	50 %		
MEI	MEDIDAS DE LA MUESTRA							
D n	$D_{R} = 7.62$ cm $A_{R} = 45.60$ cm $W_{1} = 0.00$							arf
	- 7.0				2		·	3
Dc	= 7.6	55 cm	Ac :	45.60) cn:)	VE :		_ cm
DI	= 7.6	95 cw	A I =	45.6) cm.	7 m =	•	_tf/m ~
Hm	= 18.3	30 cm		1 5 + 4	1c + A1	273.62		2
			Am =	6	2	6	= 45.60	с м,
No	. ANTLI	0: 500 4	1 C T I	. ANTI	.0. 0.316	6 (†3)	= 1.80 kg	2
			,				- 1100 k	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	LECTU		LECTURA	DEFORM	DEFORMA	11 - LA	AREA	ESFUER-
TIEN	RA DE	CARGA	HICBONE	CION	CION	DEFORMA CION	CORREGI	20
	1669_		140	IUIAL	RTA -	NNITA-	D A	DOR IN-
mln	()	kgf	n n	mm	()	()	cm ²	kgf/cm ²
0	0	00.00	0.10	0.00	0.000	0.000	45.60	0,000
1	70	22.16	1.01	0.91	0.0050	0,9950	45,83	0.486
2	140	44.32	3.34	3.24	0.0177	0.9823	46.42	0.950
3	210	66.49	5.35	5.25	0.0286	0.9714	46.94	1.424
4	280	88.65	7.20	7.10	0.0387	0.9613	47.44	1.878
	350	110.81	8.70	8.60	0.0469	0.9531	47,84	2.328
	420	132.97	10.07	9.97	0.0544	0.9456	48.22	2.772
7	490	155.13	11.32	11.22	0.0612	0.9388	48.57	3.211
8	560	177.30	12.54	12.44	0.0678	0.9322	48.92	3.643
9	630	199.46	13.74	13.64	0.0744	0.9256	49.26	4.070
10	700	221.62	15.02	14.92	0,0814	0.9186	49.64	4.488
11	770	243.78	16.21	16.11	0.0878	0.9122	50.00	4.902
12	840	265.94	17.35	17.25	0.0941	0.9059	50.33	5.311
13	910	288.11	18.58	18.48	0.1008	0,8992	50.71	5,711
14	980	310.27	19.86	19,76	0.1077	0.8923	51.11	6.103
15	1050	332,43	21.26	21.16	0.1154	0.8846	51.55	6.482
16	1120	354,59	22.70	22.60	0.1232	0.8768	52.01	6.853
17	1190	376,75	24.54	24.44	0,1333	0.8667	52.61	7.190
[L		L					
OB	OBSERVACIONES .							
	· · · · · · · · · · · · · · · · · · ·							
			AREA CO	DHREGID	1 - D	EFORMACIO	N UNITA	RIA

U. N. A. M.

FACULTAD DE INGENIERIA

INGENIERIA CIVIL

LABORATORIO DE MECANICA DE SUELOS

OBRA		: TESIS	5 DE LIC.		FECHA:	12 DE SE	P TIEMBRE	DE 1988
LOCA	LIZACI	ON: FAC. I	DE INGENI	ERIA	OPERADOR:	HECTOR D	AVID LEON	N JUAREZ
TIPO	DE ARI	ENA: AREN.	A DE OTAW	x ا	CALCULO:	HECTOR D	AVID LEO	JUAREZ
DESCI	RIPCIO VE No.	N : PRUEL UNO	BA UU		C.R. =	50 %		
MEI	DIDAS	DE LA MUE	STRA					
Ds	= 7.6	52 cm	A 11 =	45.	60 cm ²	W 1	=	grf
Dc	= 7.0	62 cm	Ac =	45.	60 cm ²	۷t	=	с m ³
DI	$D_1 = 7.62$ cm $A_1 = 45.60$ cm $7m = 1000$							
Hus	= 18.3	30 cm						_
			An =		$\frac{AC + A1}{6} =$	<u>273.62</u> 6	= 45,60	cm. ²
								2
Ho.	ANIL	LO; 500 K		. ANI	LLO: 0.318		= U. 60 K	91/cm
	LECIN		LECTURA	DEEOR	HA DEFORMA	lineaka.	AREA	ESFUER-
PO	ANI-	CARGA	MICRONE	TOTAL	UNITA-	CION	CORREGI DA	DESVIA-
	LLO				RIA	RIA -	2	DOR 2
m) n	()	kgf	18,10	14 m	()	[()	C m	kgf/cm
0	0	00.00	0.15	0.0	0 0.000	0.000	45.60	0.000
1	70	22.16	0.97	0.8	2 0.0045	0.9955	45.81	0.484
	210	44.32	2,00	3.9	3 0.0136	0.9882	46.57	1 4 2 8
4	280	88.65	5.52	5.3	7 0.0293	0.9707	46.98	1.887
5	350	110.81	6.98	6.8	3 0.0373	0.9627	47.37	2.339
6	420	132.97	6.00	7.8	5 0.0429	0.9571	47.64	2.791
7	490	155.13	9.10	8.9	5 0.0489	0.9511	47.94	3.236
8	560	177.30	10.91	10.7	6 0.0508	0.9412	48.45	3.659
9	630	199.46	13.53	13.3	8 0.0731	0.9269	49.20	4.054
						1		
						.l	l	
						·}		
				*****		·		
						f	<u> </u>	
						1		
						1		
OBS	SERVAC	ONES :						
		· •		·	. .	A m		
			AREA CO	HREGI	UA = 1 - D	EFORMACI	ON UNITAR	RIA .

ť Ļ

U. N. A. M. FACULTAD DE INGENIERIA

INGENIERIA CIVIL

LABORATORIO DE MECANICA DE SUELOS

OBRA		: TESI	S DE LIC.		FEC	CHA:	14 DE OC	TUBRE DE	1988
LOCALIZACION: FAC. DE INGENIERIA TIPO DE ARENA: ARENA DE OTAWA DESCRIPCION : PRUEBA UU ENSAYE NO. : DOS MEDIDAS DE LA MUESTRA Ds = 7.62 cm As = 49 Dc = 7.62 cm Ac = 49 D1 = 7.62 cm Al = 49						ERADOR; LCULO; R. =	HECTOR D HECTOR D 50 % Wi Vt Ym	AVID LEON AVID LEON =	JUAREZ V JUAREZ
Hm	= 18.3	30 cm		\ z + 4		+ AL	273.62	- 15 60	2
			<u>.</u>		6		6	- 43.80	с <u>ра</u>
No.	ANILI	.0: 500 k	JF CTI	E. ANI): 0.316	6 (°3	= 1.00 k	gf∕cm²
ТІЕН РО	769 <u>-</u> Fecifi	CARGA	LECTURA NICROME TRO	DEFOF TOTAL	1 H A	DEFORMA CIÓN UNITA - RIA	 	AREA CORREGI DA	ESFUER- Zo Desvia- Dor
min	()	kgf	10 M		•	()	()	с m ²	kgf/cm ²
0	0	00.00	0.05	0.0	0	0.000	0.000	45.60	0.000
1	70	22.16	3.67	3.6	52	0.0198	0.9802	46.52	0.476
2	140	44.32	5.16	5.1	1	0.0279	0.9721	46.91	0.945
3	210	66,49	6.29	6.2	24	0.0341	0.9659	47.21	1.408
4	280	88,65	7.35	7.3	0	0.0399	0.9601	47.49	1.866
5	350	110.81	8.02	7.9)7	0.0436	0.9564	47.68	2.324
6	420	132.97	8.85	8.6	10	0.0481	0,9519	47.90	2.776
7	490	155.13	9.48	9.4	3	0.0515	0,9485	48.08	3.227
8	560	177.30	10.06	10.0)1	0.0547	0.9453	48.24	3.675
_9	630	199.46	10.73	10.6	8	0.0584	0.9416	48.43	4,119
10	700	221.62	11.61	11.5	6	0.0632	0.9368	48.67	4.553
	770	243.78	13.73	13.6	8	0.0748	0.9252	49.28	4.946
12	840	265.94	17.97	17.9	2	0.0979	0.9021	50.55	5.261
	910	288.11	27.57	27.5	52	0.1504	0.8496	53.67	5.368
				· · · · · · · · · · · · · · · · · · ·			ļ		
		·						<u> </u>	
		·							······
OBS	SERVACI	ONES ;	AREA CO				A m	4	

ť,

RREGIDA = 1 - DEFORMACION UNITARIA

U. N. A. M.

FACULTAD DE INGENIERIA

INGENIERIA CIVIL

LABORATORIO DE MECANICA DE SUELOS

						والمتحدث والمحجور المحجور		
OBRA		: TESIS	S DE LIC.	FE	CHA: 2	28 DE SEI	PTIEHBRE	DE 1988
LOCN	LIZACIO	ON: FAC. I	DE INGEN	TERIA OP	ERADOR: /	IECTOR D	AVID LEON	JUAREZ
TIPO	DE ARE	ENA; AREN.	A DE OTA					711310057
DECO	TRETO			CA	rcoro: 1	IECTOR D	AVID LEOR	JUAREZ
ENSA	YE No.	TRES		C.	R. ≖ .!	50 %		
MEI	MEDIDAS DE LA MUESTRA							
1					•			
Dw	= 7.6	52 CM	A s	= 45.60	c m ²	W1 :		grf
Dc	= 7.6	52 cm	A c	≠ 45.60	с в 2	٧٤ :		_cas
01	= 7.6	52 cm	A i	= 4 5,60	c m 2	7 m :		_tf/m ³
Нш	= 18.3	30 cm						
			Am =	<u>18 + 4 A</u>	<u>c + Al</u> =	273.62	- 45.60	c m 2
				D		J		
No.	ANILI	.0; 50D k	gf CT	E. ANILL	0: 0.316	5 0 73 -	= 1,40 k	gf/cm ²
[LECTU	ĺ		DEFORMA	DEFORMA	1 - 1 4	ARFA	ESFUFR-
TIEN	Ră DE	CARGA	NICRONE	CION	CTON	ÔFFOŘŇA CION	CORREGI	20.02.
	669-		TRÓ	TOTAL	HNITA-	UNITA-	DĂ	BERVIA-
min	()	kgf	m m		()	()	c m ²	kgf/cm ²
0	0	00.00	0.09	0.00	0.000	0.000	45.60	0.000
1	70	22.16	3.87	3.78	0.0207	0.9793	46.56	0.476
2	140	44,32	6.43	6.34	D.0346	0.9654	47.24	0,938
3	210	66.49	8.15	8.06	0.0440	0,9560	47.70	1.394
[280	88.65	9.42	9.33	0.0510	0.9490	48.05	1.845
	350	110.81	10.62	10.53	0.0575	0.9424	48.38	2.290
<u> </u>	420	132.97	11.93	11.84	0.0647	0,9353	48,75	2.727
	490	155.13	12.89	12.80	0.0699	0.9301	49.03	3.164
	500	177.30	13.85	13.76	0.0752	0,9248	49,31	3.596
	200	199.40	14.67	14.58	0.0797	0.9203	49.55	4.026
	770	243 70	16.70	15.01	0.0853	0.9147	49.85	4.446
	840	245.76	17 50	17 49	0.0901	0.9099	50.12	6.804
13	910	288.11	19.70	18.60	0 1031	0.9044	50.46	5 672
14	9.0.0	310 27	20.55	20 46	0.1110	0.00779	51 24	6.043
15	1050	332.43	24.37	24.28	0.1127	0.8672	52 58	6 122
····							36.30	<u></u>
		···			(I		·····	······
				·····			******	
	EDULAT	ONEC					*****	
083	DERVACI	IONES :						
1			AREA CO	RREGIDA		Am		
					1 - DE	FORMACIC	DN UNITAF	

ł,

72

<u>.</u>...

.

U. N. A. M. FACULTAD DE INGENIERIA

INGENIERIA CIVIL

LABORATORIO DE MECANICA DE SUELOS

OBRA		: TESIS	5 DE LIC.	FE	CHA:	17 DE OCT	UBRE DE	1988
LOCA	LIZACIO	DN: FAC. I	DE INGENI	ERIA	ERADOR:	HECTOR DA	VID LEON	JUAREZ
TIPO	DE ARE	ENA: ARENA	A DE OTAW		LCULO	HECTOR D	NTD LEON	JUAREZ
DESCI	RIPCIO	I : PRUEI	3A UU		n			
ENSA	YE NO.	: CU ATI	RO	C.	K, =	50 %		
ME	MEDIDAS DE LA MUESTRA							
								arf
	- 7.0				2			3
u c	= 7.0	5 2 C B	AC =	45.00	2			3
10	= 7.0	52 cm	A1 =	45.60	C MA	7 m	•	.t[/m
lina	= 18.3	30 са		5 + 4 A	c + A1	273.62		2
			A R = ~~	6		6	- 45,00	· •
No		.0: 500 44	af CTF		0: 0.316	6 (73):	= 1,80 ka	1 f / cm ²
	LECTU		LECTURA	DEEGRMA	DEEGRMA	1	AREA	ESFUER-
PO	RA DE	CARGA	HICRONE	TOTAL	UNITA-	CION CION	CORREGI	DESVIA-
	ELO	1			RYA	NNI TA-		DÖR
min	()	kgf	n n	n 14	()	()	ເຫ້	kgf/cm [®]
0	0	00.00	0.08	0.00	0.000	0.000	45.60	0,000
1	70	22.16	4.50	4.42	0.0241	0.9759	45.73	0.474
2	140	44.32	7.12	7.04	0.0384	0.9616	47.42	0.935
3	210	66.49	8.84	8.76	0.0479	0.9521	47.89	1.388
<u> </u>	280	88.05	10.16	10.08	0.0551	0.9449	48.26	1.837
	350	110.01	11.30	11.28	0.0616	0.9384	48.60	2.280
<u> </u>	•20	132.97	12.57	12.49	0.0683	0.9317	48.94	6.717
<u> </u>	490	155.13	13.57	13.49	0.0737	0.9263	49,23	3.151
	560	177.30	14.51	14.43	0.0789	0.9211	49.50	3.581
	630	199.46	15.43	15.35	0.0839	0.9161	49.78	4.007
10	700	221.62	16,29	10.21	0.0886	0.9114	50.03	4.430
	770	243.78	17.17	17.09	0.0934	0.9066	50,30	4.847
12	840	265.94	17.92	17.84	0.0975	0.9025	50.53	5.264
13	910	280.11	18.84	18.76	0.1025	0.8975	50.81	5.670
14	980	310.27	19.69	19.61	0.1072	0.8928	51.07	6.075
15	1050	332,43	20.56	20.48	0.1119	0.8880	51,35	6.434
16	1120	354.59	21.60	21.52	0.1176	0.8824	51.68	6.862
17	1190	376.75	24.31	24.23	0.1324	0.8676	52.56	7.168
18	1260	398.92	28.62	28.54	0.1560	0.8440	54.03	7.384
19	1330	421.08	36.65	36.57	0.1998	0.8002	56.99	7.389
OBS	SERVACI	ONES :						
			AREA CO	RREGIDA		A m.		[
			adan co		1 - D1	EFORMACIO	N UNITAL	ITA

ť,

A	continuación	se	presentan	las	graficas	P-d	У	los	valores
obteni	.dos de α γ φ	para	los mater	iale	s ensayado:	3:			

MATERIAL	σι	Aaar	Ασας σι		$q = \frac{\sigma_1 - \sigma_3}{2}$	
	(kg f / c m ²)	(kgf/cm ²)	(kg f / c m ²)	(kgf/cm ²)	(kgf/cm ²)	
	0.60	4.462	5.062	2.831	2.231	
ARENA NEGRA	1.00	5.632	6.632	3.816	2.816	
VOLCANI-	1.40	6.082	7.482	4.441	3.041	
CA.	1.80	7.198	8.998	5.399	3.599	
	0.60	4.054	4.654	2,627	2.027	
ARENA BLANCA	1.00	5,368	6.368	3.684	2.684	
OTAWA	1.40	6.323	7.723	4.562	3.162	
	1.80	7.389	9.189	5,495	3.695	

í,

MATERIAL	α	$\phi = \operatorname{sen}^{-1} \operatorname{tan} \alpha$
ARENA NEGRA	26.91	30.50°
ARENA OTAWA	30.05	35.35

Tabla III.1. Valores de ϕ (ensaye triaxial UU)

III,2 RESULTADOS DE LAS PRUEBAS CD (MULTITRAXIALES).

Los datos obtenidos de cada una de las pruebas realizadas se vacían en un listado carga-lectura del extensómetro y mediante los cálculos indicados, se obtienen los datos para trazar la curva esfuerzo-deformación unitaria y para determinar el esfuerzo máximo soportado por la muestra justo antes de la falla σ_{dfl} correspondiente a cada esfuerzo confinante σ_{cl} .

Con los valores de los esfuerzos confinantes $\sigma_{c=\sigma_3}$ y de falla $\sigma_{1=\sigma_3+\sigma_{df}}$ correspondientes a cada material ensayado, se traza la gráfica _{P-q} (aplicando las ecuaciones A y B) y se obtiene la trayectoria de esfuerzos y su inclinación α y finalmente el ángulo de fricción interna ϕ .

A continuación se presentan los resultados de las pruebas reslizadas en laboratorio.

78

....

U. N. A. M.

FACULTAD DE INGENIERIA

INGENIERIA CIVIL

LABORATORIO DE MECANICA DE SUELOS

OBRA : TESIS DE LIC.	FECHA: 3 DE OCTUBRE DE 1988
LOCALIZACION: FAC. DE INGENIERIA	OPERADOR: HECTOR DAVID LEON JUAREZ
TIPO DE ARENA: ARENA NEGRA	CALCULO: HECTOR DAVID LEON JUAREZ
DESCRIPCION : PRUEBA CD MULTRX ENSAYE NO. : UNO	C.R. = 50 %
MEDIDAS DE LA MUESTRA	
HEDIDAS DE LA ROESTRA	
Ds ≖ 7.62 cm As = 45	.60 cm ² Wi =grf
Dc = 7.62 cm Ac = 45	.60 cm² Vt =cm³
Di = 7.62 cm Ai = 45	$60 \text{ cm}^2 \qquad \gamma \text{ m} = \text{ tf/m}^3$
Hm = 18.30 cm	
Am =	$\frac{400}{6}$ = $\frac{273.02}{6}$ = 45.60 cm ⁶
No. ANILLO: 500 kgf	
CTE. ANILLO: 0.3166 03 = 0.4,).7, 1.0, 1.3 y 1.6 (kgf/cm²)
······································	
	HACTURA DEFORMA ESFUER-
PROGRAMA UTILIZADO PARA EL	DE NICRONE UNITA- DESVIA-
CALCULO DEL ESFUERZO DESVIADOR	LLO TRO RIA DOR
	() m.m., () kgf/cm ²
	an a
PRP "NULTRX"	
PRP "NULTRX" Olmlbl "Nultrx" 23 1/X	$\sigma_3 = 0.4 \text{ kgf/cm}^2$
PRP "NULTRX" Olmlbl "Nultrx" 23 1/X O2 "UNIDADES?" 24 "ESF=" O3 PROMPT 25 ABCL X	$\frac{\sigma_3 = 0.4 \text{ kgf/cm}^2}{0 0.210 0.000 0.000}$
PRP "NULTRX" Olmlbl "NULTRX" 23 1/X O2 "UNIDADES?" 24 "ESF=" O3 PROMPT 25 ARCL X O4 RCL 11 26 AVIEW	$\sigma_{3} = 0.4 \text{ kgf/cm}^{2}$ $0 0.210 0.000 0.000$ $20 0.395 0.001 0.139$
PRP "NULTRX" 01 mLBL "NULTRX" 23 1/X 02 "UNIDADES?" 24 "ESF=" 03 PROMPT 25 ARCL X 04 RCL 11 26 AVIEW 05 • 27 STOP	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
PRP "NULTRX" O1 mLBL "NULTRX" 23 1/X 02 "UNIDADES?" 24 "ESF=" 03 PROMPT 25 ARCL X 04 RCL 11 26 AVIEW 05 • 27 STOP 06 STO 21	$\sigma_{3} = 0.4 \text{ kgf/cm}^{2}$ $0 0.210 0.000 0.000$ $20 0.395 0.001 0.139$ $40 0.600 0.002 0.277$ $60 0.890 0.004 0.414$
PRP "NULTRX" O1 mLBL "NULTRX" 23 1/X O2 "UNIDADES?" 24 "ESF=" O3 PROMPT 25 ARCL X O4 RCL 11 26 AVIEW O5 • 27 STOP O6 STO 21 28 RCL 22 O7 "LEEXT?" 29 "e="	$\sigma_{3} = 0.4 \text{ kgf/cm}^{2}$ $0 0.210 0.000 0.000$ $20 0.395 0.001 0.139$ $40 0.600 0.002 0.277$ $60 0.890 0.004 0.414$ $80 1.320 0.006 0.552$
PRP "NULTRX" O1 mLBL "NULTRX" 23 1/X O2 "UNIDADES?" 24 "ESF=" O3 PROMPT 25 ARCL X O4 RCL 11 26 AVIEW O5 • 27 STOP O6 STO 21 28 RCL 22 O7 "LEEXT?" 29 "e=" O8 PRDMPT 30 ARCL X	$\sigma_{3} = 0.4 \text{ kgf/cm}^{2}$ $0 0.210 0.000 0.000$ $20 0.395 0.001 0.139$ $40 0.600 0.002 0.277$ $60 0.890 0.004 0.414$ $80 1.320 0.006 0.552$ $100 1.750 0.008 0.688$ $130 2.685 0.014 0.932$
PRP "NULTRX" O1mlBL "NULTRX" 23 1/X O2 "UNIDADES?" 24 "ESF=" O3 PROMPT 25 ARCL X O4 RCL 11 26 AVIEW O5 • 27 STOP O6 STO 21 28 RCL 22 O7 "LEEXT?" 29 "e=" O8 PRDMPT 30 ARCL X O9 RCL 14 31 AVIEW	$\sigma_{3} = 0.4 \text{ kgf/cm}^{2}$ $0 0.210 0.000 0.000$ $20 0.395 0.001 0.139$ $4D 0.600 0.002 0.277$ $60 0.890 0.004 0.414$ $80 1.320 0.006 0.552$ $100 1.750 0.008 0.688$ $120 2.685 0.014 0.922$ $140 3.730 0.014 0.923$
PRP "NULTRX" O1 mLBL "NULTRX" 23 1/X O2 "UNIDADES?" 24 "ESF=" O3 PROMPT 25 ARCL X O4 RCL 11 26 AVIEW O5 • 27 STOP O6 STO 21 28 RCL 22 O7 "LEEXT?" 29 "e=" O8 PRDMPT 30 ARCL X O9 RCL 14 31 AVIEW 10 - 32 STOP	$\sigma_{3} = 0.4 \text{ kgf/cm}^{2}$ $0 0.210 0.000 0.000$ $20 0.395 0.001 0.139$ $40 0.600 0.002 0.277$ $60 0.890 0.004 0.414$ $80 1.320 0.006 0.552$ $100 1.750 0.008 0.688$ $120 2.685 0.014 0.822$ $140 3.730 0.019 0.953$
PRP "NULTRX" O1 mLBL "NULTRX" 23 1/X O2 "UNIDADES?" 24 "ESF=" O3 PROMPT 25 ARCL X O4 RCL 11 26 AVIEW O5 • 27 STOP O6 STO 21 28 RCL 22 O7 "LEEXT?" 29 "e=" O8 PRDMPT 30 ARCL X O9 RCL 14 31 AVIEW 10 - 32 STOP 11 ABS 33 GTO"HULTRX	$\sigma_{3} = 0.4 \text{ kgf/cm}^{2}$ $0 0.210 0.000 0.000$ $20 0.395 0.001 0.139$ $40 0.600 0.002 0.277$ $60 0.890 0.004 0.414$ $80 1.320 0.006 0.552$ $100 1.750 0.008 0.688$ $120 2.685 0.014 0.822$ $140 3.730 0.019 0.953$
PRP "NULTRX" O1 mLBL "NULTRX" 23 1/X O2 "UNIDADES?" 24 "ESF=" O3 PROMPT 25 ARCL X O4 RCL 11 26 AVIEW O5 • 27 STOP O6 STO 21 28 RCL 22 O7 "LEEXT?" 29 "e=" O8 PRDMPT 30 ARCL X O9 RCL 14 31 AVIEW 10 - 32 STOP 11 ABS 33 GTO"HULTRX 12 RCL 12 34 END	$\sigma_{3} = 0.4 \text{ kgf/cm}^{2}$ $0 0.210 0.000 0.000 \\ 20 0.395 0.001 0.139 \\ 40 0.600 0.002 0.277 \\ 60 0.890 0.004 0.414 \\ 80 1.320 0.006 0.552 \\ 100 1.750 0.008 0.688 \\ 120 2.685 0.014 0.822 \\ 140 3.730 0.019 0.953 \\ \sigma_{3} = 0.7 \text{ kgf/cm}^{2}$ $140 3.840 0.020 0.953$
PRP "NULTRX" O1 = LBL "NULTRX" 23 1/X O2 "UNIDADES?" 24 "ESF=" O3 PROMPT 25 ARCL X O4 RCL 11 26 AVIEW O5 • 27 STOP O6 STO 21 28 RCL 22 O7 "LEEXT?" 29 "e=" O8 PRDMPT 30 ARCL X O9 RCL 14 31 AVIEW 10 - 32 STOP 11 ABS 33 GTO"HULTRX 12 RCL 12 34 END 13 / 14 STO 22	$\sigma_{3} = 0.4 \text{ kgf/cm}^{2}$ $0 0.210 0.000 0.000 \\ 20 0.395 0.001 0.139 \\ 40 0.600 0.002 0.277 \\ 60 0.890 0.004 0.414 \\ 80 1.320 0.006 0.552 \\ 100 1.750 0.008 0.688 \\ 120 2.685 0.014 0.822 \\ 140 3.730 0.019 0.953 \\ \sigma_{3} = 0.7 \text{ kgf/cm}^{2} \\ \sigma_{3} = 0.7 \text{ kgf/cm}^{2} \\ 140 3.885 0.020 0.988 \\ 160 3.885 0.020 1.088 \\ \end{array}$
PRP "NULTRX" 01 mLBL "NULTRX" 23 1/X 02 "UNIDADES?" 24 "ESF=" 03 PROMPT 25 ARCL X 04 RCL 11 26 AVIEW 05 • 27 STOP 06 STO 21 28 RCL 22 07 "LEEXT?" 29 "e=" 08 PRDMPT 30 ARCL X 09 RCL 14 31 AVIEW 10 - 32 STOP 11 ABS 33 GTO"HULTRX 12 RCL 12 34 END 13 / 14 STO 22 15 CHS 35 CHS	$\sigma_{3} = 0.4 \text{ kgf/cm}^{2}$ $0 0.210 0.000 0.000 \\ 20 0.395 0.001 0.139 \\ 40 0.600 0.002 0.277 \\ 60 0.890 0.004 0.414 \\ 80 1.320 0.006 0.552 \\ 100 1.750 0.008 0.688 \\ 120 2.685 0.014 0.822 \\ 140 3.730 0.019 0.953 \\ \sigma_{3} = 0.7 \text{ kgf/cm}^{2} \\ \sigma_{3} = 0.7 \text{ kgf/cm}^{2} \\ 140 3.885 0.020 1.088 \\ 180 3.920 0.020 1.224 \\ \end{cases}$
PRP "NULTRX" 01 = LBL "NULTRX" 23 1/X 02 "UNIDADES?" 24 "ESF=" 03 PROMPT 25 ARCL X 04 RCL 11 26 AVIEW 05 • 27 STOP 06 STO 21 28 RCL 22 07 "LEEXT?" 29 "e=" 08 PRDMPT 30 ARCL X 09 RCL 14 31 AVIEW 10 - 32 STOP 11 ABS 33 GTO"HULTRX 12 RCL 12 34 END 13 / 14 STO 22 15 CHS 16 1	$\sigma_{3} = 0.4 \text{ kgf/cm}^{2}$ $0 0.210 0.000 0.000 \\ 20 0.395 0.001 0.139 \\ 40 0.600 0.002 0.277 \\ 60 0.890 0.004 0.414 \\ 80 1.320 0.006 0.552 \\ 100 1.750 0.008 0.688 \\ 120 2.685 0.014 0.822 \\ 140 3.730 0.019 0.953 \\ \sigma_{3} = 0.7 \text{ kgf/cm}^{2} \\ \sigma_{3} = 0.7 \text{ kgf/cm}^{2} \\ 140 3.885 0.020 1.088 \\ 180 3.920 0.020 1.224 \\ 200 3.960 0.021 1.360 \\ \end{array}$
PRP "NULTRX" 01 = LBL "NULTRX" 23 1/X 02 "UNIDADES7" 24 "ESF=" 03 PROMPT 25 ARCL X 04 RCL 11 26 AVIEW 05 • 27 STOP 06 STO 21 28 RCL 22 07 "LEEXT?" 29 "6=" 08 PRDMPT 30 ARCL X 09 RCL 14 31 AVIEW 10 - 32 STOP 11 ABS 33 GTO"HULTRX 12 RCL 12 34 END 13 / 14 STO 22 15 CHS 16 1 17 +	$\sigma_{3} = 0.4 \text{ kgf/cm}^{2}$ $0 0.210 0.000 0.000 \\ 20 0.395 0.001 0.139 \\ 40 0.600 0.002 0.277 \\ 60 0.890 0.004 0.414 \\ 80 1.320 0.006 0.552 \\ 100 1.750 0.008 0.688 \\ 120 2.685 0.014 0.622 \\ 140 3.730 0.019 0.953 \\ \sigma_{3} = 0.7 \text{ kgf/cm}^{2} \\ \sigma_{3} = 0.7 \text{ kgf/cm}^{2} \\ \sigma_{3} = 0.7 \text{ kgf/cm}^{2} \\ 140 3.885 0.020 1.088 \\ 180 3.920 0.020 1.224 \\ 200 3.960 0.021 1.360 \\ 220 4.060 0.021 1.495 \\ \end{array}$
PRP "NULTRX" 01 LBL "MULTRX" 23 1/X 02 "UNIDADES7" 24 "ESF=" 03 PROMPT 25 ARCL X 04 RCL 11 26 AVIEW 05 • 27 STOP 06 STO 21 28 RCL 22 07 "LEEXT?" 29 "6=" 08 PRDMPT 30 ARCL X 09 RCL 14 31 AVIEW 10 - 32 STOP 11 ABS 33 GTO"HULTRX 12 RCL 12 34 END 13 / 14 STO 22 15 CHS 16 1 17 + 18 RCL 13	$\sigma_{3} = 0.4 \text{ kgf/cm}^{2}$ $0 0.210 0.000 0.000 \\ 20 0.395 0.001 0.139 \\ 4D 0.600 0.002 0.277 \\ 60 0.890 0.004 0.414 \\ 80 1.320 0.006 0.552 \\ 100 1.750 0.008 0.688 \\ 120 2.685 0.014 0.622 \\ 140 3.730 0.019 0.953 \\ \sigma_{3} = 0.7 \text{ kgf/cm}^{2} \\ \sigma_{3} = 0.7 \text{ kgf/cm}^{2} \\ \sigma_{3} = 0.7 \text{ kgf/cm}^{2} \\ 140 3.885 0.020 1.088 \\ 160 3.885 0.020 1.224 \\ 200 3.960 0.021 1.360 \\ 220 4.060 0.021 1.495 \\ 240 4.280 0.022 1.629 \\ \end{cases}$
PRP "NULTRX" 01 LBL "NULTRX" 23 1/X 02 "UNIDADES7" 24 "ESF=" 03 PROMPT 25 ARCL X 04 RCL 11 26 AVIEW 05 • 27 STOP 06 STO 21 28 RCL 22 07 "LEEXT?" 29 "e=" 08 PRDMPT 30 ARCL X 09 RCL 14 31 AVIEW 10 - 32 STOP 11 ABS 33 GTO"HULTRX 12 RCL 12 34 END 13 / 14 STO 22 15 CHS 16 1 17 + 18 RCL 13 19 /	$\sigma_{3} = 0.4 \text{ kgf/cm}^{2}$ $0 0.210 0.000 0.000 \\ 20 0.395 0.001 0.139 \\ 4D 0.600 0.002 0.277 \\ 60 0.890 0.004 0.414 \\ 80 1.320 0.006 0.552 \\ 100 1.750 0.008 0.688 \\ 120 2.685 0.014 0.822 \\ 140 3.730 0.019 0.953 \\ \sigma_{3} = 0.7 \text{ kgf/cm}^{2} \\ \sigma_{3} = 0.7 \text{ kgf/cm}^{2} \\ \sigma_{3} = 0.7 \text{ kgf/cm}^{2} \\ \sigma_{3} = 0.20 0.000 0.000 \\ 160 3.885 0.020 1.088 \\ 180 3.920 0.021 1.360 \\ 220 4.060 0.021 1.495 \\ 240 4.280 0.025 1.760 \\ \hline \end{array}$
PRP "NULTRX" 01 LBL "NULTRX" 23 1/X 02 "UNIDADES7" 24 "ESF=" 03 PROMPT 25 ARCL X 04 RCL 11 26 AVIEW 05 • 27 STOP 06 STO 21 28 RCL 22 07 "LEEXT?" 29 "e=" 08 PRDMPT 30 ARCL X 09 RCL 14 31 AVIEW 10 - 32 STOP 11 ABS 33 GTO"HULTRX 12 RCL 12 34 END 13 / 14 STO 22 15 CHS 16 1 17 + 18 RCL 13 19 / 20 1/X	$\sigma_{3} = 0.4 \text{ kgf/cm}^{2}$ $0 0.210 0.000 0.000 \\ 20 0.395 0.001 0.139 \\ 4D 0.600 0.002 0.277 \\ 60 0.890 0.004 0.414 \\ 80 1.320 0.006 0.552 \\ 100 1.750 0.008 0.688 \\ 120 2.685 0.014 0.822 \\ 140 3.730 0.019 0.953 \\ \hline \sigma_{3} = 0.7 \text{ kgf/cm}^{2} \\ \hline \sigma_{3} = 0.7 $
PRP "NULTRX" 01 = LBL "NULTRX" 23 1/X 02 "UNIDADES7" 24 "ESF=" 03 PROMPT 25 ARCL X 04 RCL 11 26 AVIEW 05 • 27 STOP 06 STO 21 28 RCL 22 07 "LEEXT?" 29 "e="" 08 PRDMPT 30 ARCL X 09 RCL 14 31 AVIEW 10 - 32 STOP 11 ABS 33 GTO"HULTRX 12 RCL 12 34 END 13 / 14 STO 22 15 CHS 16 1 17 + 18 RCL 13 19 / 20 1/X 20 1/X 21 RCL 21	$\sigma_{3} = 0.4 \text{ kgf/cm}^{2}$ $0 0.210 0.000 0.000 \\ 20 0.395 0.001 0.139 \\ 4D 0.600 0.002 0.277 \\ 60 0.890 0.004 0.414 \\ 80 1.320 0.006 0.552 \\ 100 1.750 0.008 0.688 \\ 120 2.685 0.014 0.822 \\ 140 3.730 0.019 0.953 \\ \hline\sigma_{3} = 0.7 \text{ kgf/cm}^{2} \\ \sigma_{3} = 0.7 \text{ kgf/cm}^{2} \\ \sigma_{3} = 0.7 \text{ kgf/cm}^{2} \\ \sigma_{3} = 0.7 \text{ kgf/cm}^{2} \\ \hline\sigma_{3} = 0.7 \text{ kgf/cm}^{2} \\ \hline\sigma_{4} = 0.3960 0.021 1.360 \\ 160 3.885 0.020 1.224 \\ 200 3.960 0.021 1.360 \\ 220 4.060 0.021 1.495 \\ 240 4.280 0.022 1.629 \\ 260 4.820 0.025 1.760 \\ 280 5.275 0.028 2.016 \\ 300 6.105 0.032 2.016 \\ \hline\sigma_{5} = 0.76 $

ESTA TESIS NO DEDE Salin de la bibliotega

U. N. A. M.

FACULTAD DE INGENIERIA

INGENIERIA CIVIL

LABORATORIO DE MECANICA DE SUELOS

OI	BRA	: 7	TESIS DE	LIC.	FE	CHA:	3 DE O	TUBRE DI	E 1988	
L	CALIZ	CION: F.	AC. DE II	NGENIERIA	OPI	ERADOR	HECTOR		EON JUARE	2
T)	IPO DE	ARENA:	ARENA NEG	GRA			NECTOR			,
DI	ESCRIP		PRUEBA CI				RECIOR	DAVIDLI	SON JOARES	4
E	ISAYE I	No. : (INO		C.1	R. ≠	50 %			
	LECTU			i I	1	LECTU				-
	RACIO	LECTURA	DEFORMA CIÓN	ESFUER-		ŘĂ	LECTURA RA	DEFORMA CION	ESFUER-	
	DE ANI-	NICROME TRO	UNITA- RIA	DESVIA-		DE AMI-	HICRONE	RAYLA-	DESVIA-	
	()	mm	()	kgf/cm ²		()	n n	()	kgf/cm ²	
				[I_		L			L	-
	σ3 = 1	.0 kgf/c	; n ⁶			$\sigma_3 = 1$.6 kgf/0	: m		
	300	6.120	0.032	2.015		640	11.255	0.06D	4.175	
	320	6.190	0.033	2.149		660	11.290	0.061	4.305	
	340	6.235	0.033	2.283		680	11.320	0.061	4.434	
	360	6.310	0.033	2.416		700	11.350	0.061	4.564	
	380	6.420	0.034	2.549		720	11.410	0.061	4.693	
	400	8.535	0.033	2.001		740	11.320	0.002	4.820	
	420	7.000	0.037	2 012	11	780	11 000	0.064	5 067	
	460	8,140	0.043	3.055		800	12 315	0.066	5 197	1
	480	9,170	0.049	3,169		820	13,720	0.074	5.273	
						840	15.360	Q.083	5.349	
	σ3 = 1		2 : m			860	17.370	0.094	5,411	
	480	9.210	0.049	3.168		880	20.270	9.110	5.440	
	500	9.250	0.049	3.300		900	22.120	0.120	5.500	
	520	9.380	0,050	3.429	1					
	540	9.320	0.050	3.562						
	560	9.380	0.050	3.693						
	580	9.500	0.051	3.822						1
	600	9.790	0.052	3.947	1					1
	620	10.285	0.055	4.067						1
-	640	11.175	0,060	4.177						
	OBSERV	ACTONES	•							-
			•							
			ARE	A CORREG	IOA			m		
						1 -	DEFORMAC	LION UNIT	ARIA	

ť

í

U. N. A. M. FACULTAD DE INGENIERIA

INGENIERIA CIVIL

LABORATORIO DE MECANICA DE SUELOS

OBRA : TESIS DE LIC.	FECHA: 3 DE OCTUBRE DE 1988
LOCALIZACION: FAC. DE INGENIERIA	OPERADOR: HECTOR DAVID LEON JUAREZ
TIPO DE ARENA: ARENA DE OTAWA	CALCULO: HECTOR DAVID LEON JUAREZ
DESCRIPCION : PRUEBA CD MULTRX ENSAYE No. : UNO	C.R. = 50 %
MEDIDAS DE LA MUESTRA	
Ds = 7,62 cm As = 45	.60 cm ² Wi =grf
Dc = 7,62 cm Ac = 45.	.60 cm ² Vt =cm ³
Di = 7,62 cm Ai ≠ 45	60 cm^2 $\gamma_m = 1/m^3$
un - 18 30 cm	
	$\frac{Ac + A1}{c} = \frac{273.62}{c} = 45.60 \text{ cm}^2$
No. ANILLO: 500 kgf	• •
CTE. ANILLO: 0.3166 03 = 0.4, 0	0.7, 1.0, 1.3 y 1.6 (kgf/cm ²)
	RA LECTURA DEFORMA ESFUER-
PROGRAMA UTILIZADO PARA EL Calculo del Egenerzo desviador	DE NICROME UNITA- DESVIA-
CRECCLO DEL ESTOERES DESTINOUR	
	() mm () kgf/cm
OTELEL "NULTEX" 23 1/X	03 = 0.4 kgf/cm ⁶
02 "UNIDADES?" 24 "ESF="	0 0.210 0.000 0.000
03 PRONPT 25 ARCL X	20 0.240 0.001 0.139
04 RCL 11 26 AVIEW	40 0.410 0.002 0.277
05 · 27 STOP	60 0.815 0.004 0.415
06 STO 21 28 RCL 22	80 1.665 0.009 0.551
07 "LEEXT?" 29 "e≠"	100 2.835 0.015 0.684
OB PROMPT 30 ARCL X	
09 RCL 14 31 AVIEW	
10 - 32 STOP	$\sigma_{3} = 0.7 \text{ kgf/cm}^{2}$
11 ABS 33 GTO"NULTRX'	100 2.890 0.015 0.684
12 RCL 12 34 END	120 2.915 0.015 0.820
	140 2.955 0.016 0.957
16 STO 22	160 3.020 0.016 1.093
	180 3.135 0.017 1.229
10 1 17 A	200 3.490 0.019 1.363
18 RCL 13	220 4.0B0 0.022 1.494
19 /	240 4.940 0.027 1.622
20 1/X	
21 RCL 21	
22 /	

t Ij

U. N. A. M. FACULTAD DE INGENIERIA

INGENIERIA CIVIL

LABORATORIO DE MECANICA DE SUELOS

									لمرت أكالية فيرواد والمستجريني متجمع	-1
OBRA : TESIS DE LIC.					FECHA: 3 DE OCTUBRE DE 1988					
LOCALIZACION: FAC. DE INGENIERIA					OPE	ERADOR:	HECTOR		CON JUARE	z
TIPO DE ARENA ARENA DE OTAVA					[• • •					
IIFO DE ARENA; ARENA DE UIAWA						LCULO:	HECTOR	DAVID LI	EON JUARE	z
DESCRIPCION : PRUEBA CD MULTRX ENSAVE NO. UNO					C.1	R. =	50 %			
-					1					7
										ł
										1
										1
			·							\neg
· ·	LECTU	LECTURA	DEFORMA	ESFUER-		LECTU	LECTURA	DEFORMA	ESFUER-	1
	DE		CTON	20.		DΕ	RA	CION	20	
	ANI-	MICRONE TRO	UNITA- RIA	BERVIA-		ANJ-	NICRONE TRO	UNITA- RIA	DESVIA- DOR	
	()		()	ka£/a ²		()		(kaf/c=2	
		μ ia						. (= = =)	K G I / C E	_
			2		1			2		
	03 =	1.0 kgf/	a			<u>σ3 = 1</u>	.6 kgf/	: m		
	240	4.965	0.027	1.622		540	9.390	0.051	3.558	
	260	5.020	0.027	1.756		560	9.420	0.051	3.689	
	280	5.060	0.027	1.891		580	9,465	0.051	3.820	1
	300	5.130	0.028	2.025		600	9.540	0.052	3.950	1
	340	5.200	0.028	2.139		640	9,000	0.052	4.079	
	340	6 250	0.029	2.291	1	660	9.810	0.053	4.207	
	380	6.895	0.037	2.540		680	11.010	0.055	4 4 3 0	
						700	12.100	0.066	4.541	
						720	13.285	0.072	4.638	
			-			740	17.470	0.095	4.649	
	σ3 = 1	1.3 kgf/0	2 :#			760	23.550	0.128	4.600	
	380	6.920	0.037	2.540	1					
	400	6.965	0.038	2.673						
	420	7.000	0.038	2.806						
	440	7.030	0.038	2,939						
j	460	7.140	0.039	3.070	1					
	480	7.335	0.040	3.200						1
	500	7.730	0.042	3.326						
	520	8,080	0.044	3.452						
	540	9.300	0.050	3.560						i
										_
	OBSER	ACIONES	:							ļ
										1
AREA CORREGIDA						a	/	h		
						1 -	DEFORMAC	ION UNIT	ARIA	

ľ.

Ę

1

84

.....

A con	tinuación	se	presentan	las g	graficas	b-d	У	los	valores
obtenidos	ideαy¢	par	a los mate	riale	s ensayad	os:			

MATERIAL	σι	Aoar	σι	$p=\frac{\sigma_1+\sigma_3}{2}$	$q = \frac{\sigma_1 - \sigma_3}{2}$
	(kgf/cm ²)	(kgf∕cm ²)	(kgf/cm ²)	(kgf/cm ²)	(kgf/cm ²)
	0.40	0.930	1.330	0.865	0.465
ARENA NEGRA	0.70	2.170	2.870	1.785	1.085
VOLCANI-	1.00	3.330	4.330	2.665	1.665
CA.	1.30	4.394	5.694	3.497	2.197
	1.60	5.480	7.080	4.340	2.740
	0.40	0.661	1.041	0.721	0.321
ARENA	0.70	1.674	2.374	1.537	0.837
BLANCA	1.00	2.604	3.604	2.302	1.302
otawa	1.30	3.679	4.979	3.140	1.840
	1.60	4.650	6.250	3.925	2.325

MATERIAL	α	$\phi = \operatorname{sen}^1 \tan \alpha$
ARENA NEGRA	33.20 ⁰	40.87 ⁰
ARENA OT A WA	0 32.00	0 38.67

ų. Na

86

ł

CAPITULO IV

EJEMPLOS DE APLICACION

EJENPLOS DE APLICACION

IV.1 EJEMPLO No. 1

ę. Nj

Se calculará la capacidad de carga admisible (q_{ad}) que soportara un suelo con un F.S.2 3, de un cajón de dimensiones de 20 x 30 m. desplantado a 5.0 m. de profundidad. Para lo cual se resolvera primeramente con los datos obtenidos en la prueba UU y posteriormente los datos de la prueba CD.

Primero se calculará la profundidad (L) en la cual actuará el esfuerzo vertical promedio (σv).

4! 1

L cos 45° =
$$\frac{B}{2}$$
; 2 L $\frac{1}{\sqrt{2}}$ = B; L = $\frac{\sqrt{2}}{2}$
Como 2 = $\sqrt{2}$ $\sqrt{2}$ = $\sqrt{4}$ L = $\frac{\sqrt{2}}{\sqrt{2}}$ $\frac{B}{\sqrt{2}}$ = $\frac{B}{\sqrt{2}}$
A la profundidad L = $\frac{B}{\sqrt{2}}$ = 0.7071 B

Una vez calculada la profundidad, se procede a encontrar el esfuerzo vertical promedio (σv), para lo cual, se determinará dicho esfuerzo a partir de la gráfica de estados de esfuerzo que se presenta a continuación:

Se observa que para la prueba no consolidada-no drenada (UU) se tiene un esfuerzo vertical inicial (σv_0), el cual es devido al suelo a la profundidad "L'" y un esfuerzo vertical final (σv_1), el cual es devido a la sobrecarga del edificio a la misma profundidad "L'". Por lo tanto, el esfuerzo vertical promedio se escribe de la siguiente manera:

$$\sigma v \text{ promedio} = \sigma v_0 + \frac{1}{2} \Delta \sigma v$$

Ahora se calculará el esfuerzo vertical inical (σv_0) .

σ¥0 = γ x L'

donde :

Ľ

۱.

γ = Peso volumétrico del suelo.

L'= Profundidad en la cual actúa el esfuerzo promedio más la profundidad de la sobrecarga dej suelo.

$$L' = \frac{B}{\sqrt{2}} + Df$$

y donde :

B = Ancho dei cajón Df = Profundad de la mobrecarga dei sueio o de dampiante.

Sustituyendo valores :

í,

$$GV_0 = 1.9 \times \left(\frac{20}{\sqrt{2}} + 5\right) = 36.37 \text{ tf/m}^2$$

Ahora se calculará el esfuerzo vertical (σ_v) a la profundidad "L" para una carga determinada debido a la sobrecarga del edificio.

Primero se considera una caraga de W = 10 tf/m^2 del edificio y aplicando Boussinesq se encontrara el esfuerzo vertical en el punto L/2 (ver Anexo B gráfica 1.).

Como el esfuerzo en el punto L/2 es simetrico al otro lado, se tiene que:

 $\sigma_v = 1.96 \times 2 = 3.92 \text{ tf/m}^2$

Por lo tanto el esfuerzo vertical promedio es :

$$\sigma v$$
 prom.= 36.37 + $\frac{1}{2}$ x 3.92 = 38.33 tf/m² = 3.83 kgf/cm²

Por la ley de Coulomb se tiene :

$$S = C + O'v$$
 prom tan ϕ

donde :

$$C = \frac{a}{\cos \phi}$$

y donde "a" se obtiene de la gráfica p-q de las pruebas :

Sustituyendo valores:

$$S = \left(\frac{0.675}{\cos 30.5}\right) + 3.83 \tan 30.5 = 3.04 \text{ kgf/cm}^2 = 30.40 \text{ tf/m}^2$$

Entrando a la ecuación de Skempton:

$$qad = \frac{\left(1 + 0.2 \frac{B}{L}\right) 5 \text{ Nc}}{F.S.} + \gamma Df$$

donde :

ť

ļ

$$\gamma$$
 Df = 0.9 x 5.0 = 4.5 tf/m²

Nc (largo) = 5.6 (me obtiene de gráfica 2. del anexo B)

$$\frac{B}{L} = \frac{20}{30} = 0.67$$

Sustituyendo valores y despejando el F.S. se tiene lo siguiene :

$$qad = \frac{(1 + 0.2 (0.67)) \times 30.40 \times 5.6}{F.S.} + 4.5$$

$$qad = \frac{193.05}{F.S.} + 4.50$$
F.S. qad = $\frac{193.05}{F.S.} + F.S. + F.S. + 4.50$

F.S. qad - F.S. 4.50 = 193.05

F.S. (qad - 4.50) = 193.05

F.S. =
$$\frac{193.05}{qad - 4.50} = \frac{193.05}{10.0 - 4.50} = 35.1$$

Como se puede observar se trata de un F.S. mucho más alto que 3, por lo que se incrementara la carga w a 50 tf/m^2 y se aplica nuevamente Boussinesq para encontrar el esfuerzo vertical.

Como el esfuerzo en el punto L/2 es simétrico al otro lado, se tiene que:

$$0^{\circ}v = 9.80 \times 2 = 19.60 \text{ tf/m}^2$$

Por lo tanto el esfuerzo vertical promedio es :

$$\sigma v \text{ prom.} = 36.37 + \frac{1}{2} \times 19.60 = 46.17 \text{ tf/m}^2 = 4.62 \text{ kgf/cm}^2$$

Por la ley de Coulomb se tiene :

$$S = C + O'v$$
 prom tan ϕ

donde :

ť: Nj

$$c = \frac{a}{\cos \phi}$$

y donde "a" se obtiene de la gráfica p-q de las pruebas : Sustituyendo valores:

$$S = \left(\frac{0.675}{\cos 30.5}\right) + 4.62 \tan 30.5 = 3.50 \text{ kgf/cm}^2 = 35.00 \text{ tf/m}^2$$

Entrando a la ecuación de Skempton:

$$qad = \frac{\left(1 + 0.2 \frac{B}{L}\right) S Nc}{F.S.} + \gamma Df$$

donde :

$$\gamma$$
 Df = 0.9 x 5.0 = 4.5 t/m²

Nc (largo) = 5.6 (se obliene de gráfica 2. del anexo B)

$$\frac{B}{L} = \frac{20}{30} = 0.67$$

Sustituyendo valores y despejando el F.S. se tiene lo siguiene :

$$qad = \frac{(1 + 0.2 (0.67)) \times 35.00 \times 5.6}{F.S.} + 4.5$$

$$qad = \frac{222.26}{F.S.} + 4.50$$
F.S. qad = $\frac{222.26}{F.S.} + F.S. 4.50$

F.S. gad - F.S. 4.50 = 222.26

F.S. (qad - 4.50) = 222.26

F.S. =
$$\frac{222.26}{qad - 4.50} = \frac{222.26}{50.0 - 4.50} = 4.88$$

Como se puede observar se trata de un F.S. mucho más alto que 3, por lo que se incrementara la carga w a 88 tf/m^2 y se aplica nuevamente Boussinesq para encontrar el esfuerzo vertical.

$$\sigma v = W_0 X W = 0.196 X 88 = 17.75 tf/m^2$$

Como el esfuerzo en el punto L/2 es simétrico al otro lado, se tiene que:

94

ļ

$$\sigma_{\rm V} = 17.56 \times 2 = 34.50 \text{ tr/m}^2$$

Por lo tanto el esfuerzo vertical promedio es :

$$\sigma_{V}$$
 prom.= 36.37 + $\frac{1}{2}$ x 34.50 = 53.62 tf/m² = 5.362 kgf/cm²

Por la ley de Coulomb se tiene :

donde :

Ę

$$c = \frac{a}{\cos \phi}$$

donde a se obtiene de la gráfica p-q de las pruebas :

Sustituyendo valores:

$$S = \left(\frac{0.675}{\cos 30.5}\right) + 5.362 \tan 30.5 = 3.94 \text{ kg/cm}^2 = 39.40 \text{ tf/m}^2$$

Entrando a la ecuación de Skempton:

$$qad = \frac{\left(1 + 0.2 \frac{B}{L}\right) \text{ S Nc}}{F.S.} + \gamma Df$$

donde :

$$7$$
 Df = 0.9 x 5.0 = 4.5 tf/m²

Nc (largo) = 5.6 (se obtiene de gráfica 2. del anexo B)

$$\frac{B}{L} = \frac{20}{30} = 0.67$$

Sustituyendo valores y despejando el F.S. se tiene lo siguiene :

4.5

$$q_{ad} = \frac{(1 + 0.2 (0.67)) \times 39.40 \times 5.6}{F.S.} + q_{ad} = \frac{250.21}{F.S.} + 4.50$$

$$F.S. q_{ad} = \frac{250.21}{F.S.} + F.S. 4.50$$

$$q_{ad} \sim F.S. 4.50 = 250.21$$

F.S. (gad - 4.50) = 250.21

F.S. =
$$\frac{250.21}{qad - 4.50} = \frac{250.21}{88.0 - 4.50} = 3.00$$

Como se puede observar se trata del F.S. igual a 3 y por lo tanto la carga W = 88 tf/m^2 es la carga buscada.

Ahora el problema se resolverá con los resultados obtenidos en la prueba hecha consolidada-drenada (CD).

φ = 40.87[°]

F.S.

Con el Criterio de Meyerhof y dado que C=0 se tiene :

 $qc = \frac{1}{2} \gamma B N\gamma + \gamma Dr Nq$

donde :

$$B = 20.00 \text{ m}$$

 $\gamma = 1.90 \text{ tr/m}^3$
 $\gamma Dr = 0.9 \times 5.00 = 4.50 \text{ tr/m}^2$

Para $\phi = 40.87^{\circ}$ se entra a la gráfica 3 del anexo B. y se obtiene lo siguiente :

$$\begin{array}{l} \aleph \gamma = 160 \\ \aleph q = 95 \end{array} \right\} \text{ cimiento cuadrado (B/L = 1)} \\ \aleph \gamma = 120 \\ \aleph q = 64 \end{array} \text{ cimiento superficial largo (B/L = 0)}$$

Interpolando en la gráfica para un B/L= 0.67 se tiene :

Por lo tanto para una carga de 88.0 ${\rm tr/m}^2$

$$88.0 = \frac{1}{2} (1.9) (20.0) (146.80) + (4.50) (84.77)$$

$$88.0 = \frac{2789.2 + 381.47}{F.S.}$$

$$F.S. = \frac{3171.00}{88.00} = 36.03$$

$$qad = \frac{3171.00}{3.00} = 1057 \text{ tr/m}^2$$

IV.2 EJEMPLO No. 2

Se tiene un edificio de 4 niveles, el cual se desplantará en un suelo de arena saturada (ϕ = 35.3° en prueba UU y ϕ = 38.67° en prueba CD) a base de zapatas corridas de 60 cm de espesor. Se desea conocer el factor de seguridad (F.S.) contra la falla de fondo, primero utilizando los resultados obtenidos de la arena saturada en prueba UU y posteriormente utilizando los resultados

Primero se calculará la profundidad (L) en la cual actuará el esfuerzo vertical promedio (σv).

L cos 45° =
$$\frac{B}{2}$$
; 2 L $\frac{1}{\sqrt{2}}$ = B; L = $\frac{\sqrt{2}}{2}$
Como 2 = $\sqrt{2}$ $\sqrt{2}$ = $\sqrt{4}$ L = $\frac{\sqrt{2}}{\sqrt{2}}$ $\frac{B}{\sqrt{2}}$ = $\frac{B}{\sqrt{2}}$
A la profundidad L = $\frac{B}{\sqrt{2}}$ $\stackrel{\circ}{=}$ 0.7071 B

Una vez calculada la profundidad, se procede a encontrar el esfuerzo vertical promedio (σ v), para lo cual, se determinará dicho esfuerzo a partir de la gráfica de estados de esfuerzo que se presenta a continuación:

Se observa que para la prueba no consolidada-no drenada (UU) se tiene un esfuerzo vertical inicial (σv_0), el cual es debido al suelo a la profundidad "L'" y un esfuerzo vertical final (σv_f), el cual es debido a la sobrecarga de la cimentación del edificio a la misma profundidad "L'". Por lo tanto, el esfuerzo vertical promedio se escribe de la siguiente manera:
$$\sigma v$$
 promedia = $\sigma v_0 + \frac{1}{2} \Delta \sigma v$

Ahora se calculará el esfuerzo vertical inical (σv_0).

donde :

- γ = Peso volumétrico del suelo.
- L'≕ Profundidad en la cual actúa el esfusrzo promedio más la profundidad de la sobrecarga del suelo.

$$L' = \frac{B}{\sqrt{2}} + Df$$

y donde :

B = Ancho de zapata

Df ≕ Profundad de la sobrecarga del suelo o de desplante.

Sustituyendo valores :

$$\sigma V_0 = 1.9 \times \left(\frac{0.60}{\sqrt{2}} + 0.80 \right) = 2.33 \text{ tf/m}^2$$

Ahora para calcular el esfuerzo vertical (σ v) debido a la sobrecarga del edificio en ese punto, se resolverá la bajada de cargas de éste.

CARGAS EN AZOTEA

PESO DE LA LOSA DE 10 cm (0.10 x 2400)	240	kgf/m ²
PESO POR INCREMENTO	20	kgf/m ²
PESO DEL RELLENO Y ENLADRILLADO	75	kgf/m ⁴
PESO DEL PLAFON	25	kgf/m_
Wa (Carga instantanea de diseño por sismo)	70	kgf/m_
Wm (carga viva máxima)	100	kgf/m ^e
TOTAL	530	kgf/m ²

1

CARGA DE ENTREPISO

PESO DE LA LOSA DE 10 cm (0.10 x 2400)	240	kgf/m ²
PESO DEL MORTERO	29	kgf/m_
PESO DEL PISO DE LOZETA	50	kgf/m_
PESO DEL PLAFON	25	kgf/m_
Wa (Carga instantanea de diseño por sismo)	90	kgf/m_
Wm (carga viva máxima)	170	kgf/m"

AREAS TRIBUTARIAS

CANALIZACION DE CARGAS EN CIMIENTO :

 MURO EJE A TRAMOS 1-2 Y 2-3

 NIVEL DE AZOTEA :

 Pretil 0.15 x 0.90 x 2.95 x 1500

 1272 kgf

 Losa de azotea 2.40 x 530

 1272 kgf

 NIVELES 3, 2, 1 Y P.B. :

 Losa de entrepiso 2.40 x 604 x 3

 Trabe de cerramiento (0.15 x 0.20 x 2.95 x 2400) x 4

 850 kgf

 Muro de tabique (1 cara) (0.15 x 2.95 x 2.45 x 1500) x 4 - 6505 kgf

 NIVEL P.B. :

 Peso propio de la cimentación (0.26 x 2.95 x 2400)

 1841 kgf

 Peso total

 13957 kgf

MURO EJE B TRAMO 1-2 NIVEL DE AZOTEA : Pretil sobre eje 1 0.15 x 0.90 x 1.35 x 1690 ______ 308 kgf Losa de azotea 4.63 x 530 _____ 2454 kgf

NIVELES 3, 2, 1 Y P.B. : Trabe de cerramiento (0.15 x 0.20 x 2.50 x 2400) x 4 ----- 720 kgf Trabe de cerramiento (1)(0.15 x 0.20 x 1.35 x 2400) x 4 - 389 kgf Muro de tabique (2 caras)(0.15 x 1.98 x 2.45 x 1690) x 4 4919 kgf Muro vajo vent. (2 caras)(0.15 x 1.35 x 1.25 x 1690) x 4 - 1711 kgf NIVEL P.B. : Peso propio de la cimentación (0.26 x 2.50 x 2400)----- 1560 kgf Peso total ----- 19216 kgf MURO EJE B TRAMO 2-3 NIVEL DE AZOTEA : Pretil sobre eje 3 0.15 x 0.90 x 1.05 x 1690 _____ 240 kgf Losa de azotea 3.70 x 530 1961 kgf NIVELES 3, 2, 1 Y P.B. : Losa de entrepiso 3.70 x 604 x 3 ----- 6704 kgf Trabe de cerramiento (0.15 x 0.20 x 2.50 x 2400) x 4 ---- 720 kgf Trabe de cerramiento (3)(0.15 x 0.20 x 1.05 x 2400) x 4 -- 302 kgf Muro de tabique (2 caras) (0.15 x 1.98 x 2.45 x 1690) x 4 · 4919 kgf Muro vajo vent. (2 caras)(0.15 x 1.25 x 0.68 x 1690) x 4 - 862 kgf Muro vajo vent. (2 caras)(0.15 x 1.85 x 0.38 x 1690) x 4 - 713 kgf NIVEL P.B. : Peso propio de la cimentación (0.26 x 2.50 x 2400)----- 1560 kgf Peso total ----- 16746 kgf MURO EJE C TRAMO 2-3 NIVEL DE AZOTEA : Losa de azotea 6.19 x 530 3281 kgf NIVELES 3, 2, 1 Y P.B. : Trabe de cerramiento (0.15 x 0.20 x 2.95 x 2400) x 4 ----- 850 kgf Trabe de cerramiento (2)(0.15 x 0.20 x 0.60 x 2400) x 4 -- 173 kgf Trabe eje (2) (0.20 x 0.30 x 1.08 x 2400) x 4 ------ 622 kgf Muro de tabique (2 caras)(0.15 x 2.95 x 2.45 x 1690) x 4 - 7329 kgf Murete tabique (2 caras) (0.15 x 0.50 x 2.45 x 1690) x 4 - 1242 kgf NIVEL P.B. : Peso propio de la cimentación (0.26 x 2.95 x 2400) 1841 kgf Peso total _____ 25097 kgf MURO EJE D TRAMO 1-3 NIVEL DE AZOTEA : Pretil sobre eje 1 0.15 x 0.90 x 0.53 x 1690 ----- 121 kgf

f

 NIVELES 3, 2, 1 Y P.B. :
 10836 kgf

 Losa de entrepiso 5.98 x 604 x 3
 10836 kgf

 Trabe de cerramiento (0.15 x 0.20 x 5.90 x 2400) x 4
 1699 kgf

 Trabe de cerramiento (1) (0.15 x 0.20 x 0.53 x 2400) x 4
 153 kgf

 Trabe eje (2) (0.20 x 0.30 x 1.08 x 2400) x 4
 622 kgf

 Muro de tabique (1 cara) (0.15 x 5.90 x 2.45 x 1500) x 4-13010 kgf

 NIVEL P.B. :
 Peso propio de la cimentación (0.26 x 5.90 x 2400)
 3682 kgf

 Peso propio del suelo (menos) (0.26 x 5.90 x 1900)
 -2915 kgf

 Peso total
 31572 kgf

 MURO EJE B TRANO 2-3

 NIVEL DE AZOTEA :

 Pretil 0.15 x 0.90 x 2.33 x 1690

 Josa de azotea 2.20 x 530

 1166 kgf

 NIVELES 3, 2, 1 Y P.B. :

 Losa de entrepiso 2.20 x 604 x 3

 Trabe de cerramiento (0.15 x 0.20 x 2.33 x 2400) x 4

 671 kgf

 Muro de tabique (2 caras) (0.15 x 1.73 x 2.45 x 1690) x 4

 Yaio vajo vent. (2 caras) (0.15 x 0.60 x 1.25 x 1690) x 4

 NIVEL P.B. :

 Peso propio de la cimentación (0.26 x 2.33 x 2400)

 1454 kgf

 Peso total

 11717 kgf

MURO EJE 1 TRAMO C-D

N.

 NIVEL DE AZOTEA :
 491 kgf

 Pretil 0.15 x 0.90 x 2.15 x 1690
 491 kgf

 Losa de azotea 2.56 x 530
 1357 kgf

 NIVELES 3, 2, 1 Y P.B. :
 4639 kgf

 Losa de entrepiso 2.56 x 604 x 3
 4639 kgf

 Trabe de cerramiento (0.15 x 0.20 x 2.15 x 2400) x 4
 619 kgf

 Muro de tabique (2 caras) (0.15 x 1.10 x 2.45 x 1690) x 4
 2733 kgf

 Muro vajo vent. (2 caras) (0.15 x 0.60 x 1.25 x 1690) x 4
 761 kgf

 NIVEL P.B. :
 Peso propio de la cimentación (0.26 x 2.15 x 2400)
 1342 kgf

 Peso propio del suelo (menos) (0.26 x 2.15 x 1900)
 -1062 kgf

Peso total ----- 10880 kgf

MURO EJE 2 TRAMO A-B

NIVEL DE AZOTEA : Losa de azotea 5.40 x 530 ----- 2862 kgf

103

NIVELES 3, 2, 1 Y P.B. : Losa de entrepiso 5.40 x 604 x 3 9785 ko Trabe de cerramiento (B) (0.15 x 0.20 x 1.05 x 2400) x 4 302 ko Trabe de cerramiento (2) (0.15 x 0.20 x 3.60 x 2400) x 4 1037 ko Muro de tabique (2 caras) (0.15 x 3.00 x 2.45 x 1690) x 4 7453 ko NIVEL P.B. :	gf gf gf
Peso propio de la cimentación (0.26 x 3.00 x 2400) 1872 ko Peso propio del suelo (menos) (0.26 x 3.00 x 1900)1482 ko	gf gf
Peso total 21829 kg	gf.
MURO EJE B TRAMO B-C Nivel de Azotea :	
Pretil 0.15 x 0.90 x 0.83 x 1690 189 kg Losa de azotea 0.35 x 530 186 kg	gf af
NIVELES 3, 2, 1 Y P.B. :	
Losa de entrepiso 0.35 x 604 x 3 634 kg Trabe de cerramiento (0.15 x 0.20 x 0.83 x 2400) x 4 239 kg	gf gf
Muro de tabique (2 caras)(0.15 x 0.53 x 2.45 x 1690) x 4 - 1317 kc	gf
Muro vajo vent. (2 caras)(0.15 x 0.30 x 1.85 x 1690) x 4 - 563 Kg	gr.
NIVEL P.B. : Peso propio de la cimentación (0.26 x 0.83 x 2400) 518 kc	qf
Peso propio del suelo (menos) (0.26 x 0.83 x 1900) 410 kc	qf
Peso total 3236 kg	gf
MURO EJE 3 TRAMOS C Y D	
NIVEL DE AZOTEA :	
Pretil 0.15 x 0.90 x 1.08 x 1690 - 246 kg	gf af
NIVELES 3 2 1 V P R +	·9 ~
Losa de entrepiso 0.66 x 604 x 3 1196 ko	gf
Trabe de cerramiento (0.15 x 0.20 x 1.08 x 2400) x 4 311 kc	gf
Muro de tabique (2 caras)(0.15 x 0.78 x 2.45 x 1690) x 4 - 1938 kg	gf
muto vajo venc. (2 caras) (0.15 x 0.30 x 1.85 x 1690) x 4 - 563 Kg	dr
RIVEL F.B. : Peso propio de la cimentación (0 26 y 1 08 y 2400) 674 bo	af
Peso propio del suelo (menos) (0.26 x 1.08 x 1900) 534 ko	af
Peso total 4744 kg	gf

ľ,

104

ł

1 1

,..**.**

MURO			DESCARGA TOTAL	AREA Zapata	DESCARGA POR Zapata		
(1.00	ALIZ	(HOLDAS		ITonl	(m ²)	(Ton/m ²)	
EJE	1	TRAMO	A-B	11.72	1.59	7.37	
EJE	1	TRAMO	C-D	10,88	1.80	6.04	
EJE	2	TRAMO	A-B	21.83	1.56	14.00	
EJE	3	TRAMO	A-B	11.72	1.59	7.37	
EJE	3	TRAMO	B-C	3.24	0.56	5.79	
EJE	3	TRAMO	C-D	9.48	1.08	8.78	
EJE	Α	TRAMO	1-2	13.96	1.56	8,95	
EJE	A	TRAMO	2-3	13.96	1.56	8,95	
EJE	B	TRAMO	1-2	19.22	1.53	12.56	
EJE	В	TRAMO	2-3	16.75	1.53	10,95	
EJE	С	TRAMO	2-3	25.10	1.53	16.41	
EJE	D	TRAMO	1-3	31.57	3.27	9.65	

ť

Una vez resuelta la descarga de los muros en el edificio, se procederá a calcular el esfuerzo vertical que ocacionan estos muros en el punto del eje B y eje 3 a una profundidad "L". Se utilizará Boussinesq (ver anexo B. gráfica 1).

2.

1.- Primero se sumará toda el área.

$$x = 6.050$$

$$y = 3.075$$

$$m = \frac{x}{z} = \frac{6.050}{0.420} = 14.40$$

$$W_0 = 0.252$$

$$z = \frac{B}{\sqrt{2}} = \frac{0.60}{\sqrt{2}} = 0.420$$

$$n = \frac{y}{z} = \frac{3.075}{0.420} = 7.32$$

La carga uniforme es la aportada por el muro eje 1 tramo A-B W = 7.37 tf/m² W'= 8.16 tf/m² (área corregida por aportación de muro A y B)

Por lo tanto σ_z = Wo x W'= 0.252 x 8.16 = 2.06 tf/m²

- Ahora se restará

$$x = 5.450$$

 $y = 3.075$
 $z = \frac{B}{\sqrt{2}} = \frac{0.60}{\sqrt{2}} = 0.420$
 $n = \frac{y}{z} = \frac{3.075}{0.420} = 12.98$
 $W_0 = 0.252$
 $R = \frac{y}{z} = \frac{3.075}{0.420} = 7.32$

La carga uniforme es la aportada por el muro eje 1 tramo A-B W = 7.37 tf/m² W'= 8.16 tf/m² (área corregida por aportación de muro A y B) Por lo tanto σ_z = Wo x W'= 0.252 x 8.16 = -2.06 tf/m²

3.- Ahora se sumará

x = 5.450 y = 3.075 $x = \frac{x}{z} = \frac{5.450}{0.420} = 12.96$ $W_0 = 0.252$ $y = \frac{B}{\sqrt{2}} = \frac{0.60}{\sqrt{2}} = 0.420$ $n = \frac{y}{z} = \frac{3.075}{0.420} = 7.32$

La carga uniforme es la aportada por el muro eje A tramo 1-2 y 2-3 $\,$

 $W = 8.95 \text{ tf/m}^2$ $W' = 9.02 \text{ tf/m}^2$ (área corregida)

Por lo tanto σ_z = Wo x W'= 0.252 x 9.02 = 2.27 tf/m²

4.- Ahora se sumará

x = 5.450 y = 2.475 x = $\frac{B}{\sqrt{2}} = \frac{0.60}{\sqrt{2}} = 0.420$ n = $\frac{y}{z} = \frac{2.475}{0.420} = 12.98$ Wo = 0.252 No = 0.252

La carga uniforme es la aportada por el muro eje A tramo 1-2 y 2-3.

 $W = 8.95 \text{ tf/m}^2$ W'= 9.02 tf/m² (area corregida)

Por lo tanto σ_z = Wo x W'= 0.252 x 9.02 = -2.27 tf/m²

5.- Ahora se sumará

x = 5.450 y = 0.300 $m = \frac{x}{z} = \frac{5.450}{0.420} = 12.98$ $W_0 = 0.173$

 $z = \frac{B}{\sqrt{2}} = \frac{0.60}{\sqrt{2}} = 0.420$ $n = \frac{y}{z} = \frac{0.300}{0.420} = 0.71$

La carga uniforme es la aportada por el muro eje B tramo 1-2

 $W = 12.56 tf/m^2$

Por lo tanto $\sigma_z = Wo \times W' = 0.173 \times 12.56 = 2.17 \text{ tf/m}^2$

6.- Ahora se restará

x = 3.325 y = 0.300 $m = \frac{x}{z} = \frac{3.325}{0.420} = 7.42$ $W_0 = 0.172$ $z = \frac{B}{\sqrt{2}} = \frac{0.60}{\sqrt{2}} = 0.420$ $n = \frac{y}{z} = \frac{0.300}{0.420} = 0.71$

La carga uniforme es la aportada por el muro eje B tramo 1-2 $W = 12.56 \text{ tf/m}^2$ Por lo tanto σ_z = Wo x W' = 0.172 x 12.56 = -2.16 tf/m² 7.- Ahora se sumará y = 2.475 x = $\frac{B}{\sqrt{2}} = \frac{0.60}{\sqrt{2}} = 0.420$ n = $\frac{y}{z} = \frac{2.475}{0.420} = 5.89$ Wo = 0.251 x = 3.325La carga uniforme es la aportada por el muro eje 2 tramo A-B $W = 14.00 \text{ tf/m}^2$ W'= 13.86 tf/m² (área corregida) Por lo tanto $\sigma_z = Wo \times W' = 0.251 \times 13.86 = 3.48 \text{ tf/m}^2$ 8.- Ahora se restará y = 2.475 $m = \frac{x}{z} = \frac{2.725}{0.420} = 6.49$ $W_0 = 0.250$ $z = \frac{B}{\sqrt{2}} = \frac{0.60}{\sqrt{2}} = 0.420$ $n = \frac{y}{z} = \frac{2.475}{0.420} = 5.89$ x = 2,725 La carga uniforme es la aportada por el muro eje 2 tramo A-B $W = 14.00 \text{ tf/m}^2$ $W'= 13.86 \text{ tf/m}^2$ (área corregida) Por lo tanto $\sigma_z = Wo \times W' = 0.250 \times 13.86 = -3.47 \text{ tf/m}^2$ 9.- Ahora se sumará x = 2.725 y = 0.300 y = $\frac{x}{z} = \frac{2.725}{0.420} = 6.49$ Ho = 0.173 $z = \frac{B}{\sqrt{2}} = \frac{0.60}{\sqrt{2}} = 0.420$ $n = \frac{y}{z} = \frac{0.300}{0.420} = 0.71$ La carga uniforme es la aportada por el muro eje B tramo 2-3 $W = 10.95 \text{ tf/m}^2$

Por lo tanto σ_z = Wo x W = 0.173 x 10.95 = 1.89 tf/m²

10.- Ahora se restará

x = 0.600 y = 0.300 $x = \frac{x}{z} = \frac{0.600}{0.420} = 1.43$ $W_0 = 0.164$ $z = \frac{B}{\sqrt{2}} = \frac{0.60}{\sqrt{2}} = 0.420$ $n = \frac{y}{z} = \frac{0.300}{0.420} = 0.71$

La carga uniforme es la aportada por el muro eje B tramo 2-3 W = 10.95 tf/m²

Por lo tanto σ_z = Wo x W = 0.164 x 10.95 = -1.80 tf/m²

11.- Ahora se sumará

x = 0.600 y = 2.475 $x = \frac{B}{\sqrt{2}} = \frac{0.60}{\sqrt{2}} = 0.420$ $n = \frac{y}{z} = \frac{2.475}{0.420} = 1.43$ $W_0 = 0.220$ $W_0 = 0.220$

La carga uniforme es la aportada por el muro eje 3 tramo A-B W = 7.37 tf/m² W'= 7.73 tf/m² (área corregida)

Por lo tanto
$$\sigma_z$$
 = Wo x W'= 0.228 x 7.73 = 1.76 tf/m²

La suma total de los esfuerzos de los muros es :

$$\sigma_{z} = 1.87 \text{ tf/m}^{2}$$

Area B

1.- Primero se sumará toda el área.

x = 6.050 y = 3.425 $m = \frac{x}{z} = \frac{6.050}{0.420} = 14.40$ $H_0 = 0.252$ $z = \frac{B}{\sqrt{2}} = \frac{0.60}{\sqrt{2}} = 0.420$ $n = \frac{y}{z} = \frac{3.425}{0.420} = 8.15$

La carga uniforme es la aportada por el muro eje 1 tramo B-D W = 6.04 tf/m² W'= 6.61 tf/m² (área corregida)

Por lo tanto σ_z = Wo x W' = 0.252 x 6.61 = 1.67 tf/m²

2.- Ahora se restara x = 5.450 $m = \frac{x}{z} = \frac{5.450}{0.420} = 12.98$ Wo = 0.252 y = 3.425 $z = \frac{B}{\sqrt{2}} = \frac{0.60}{\sqrt{2}} = 0.420$ $n = \frac{y}{z} = \frac{3.425}{0.420} = 0.15$ La carga uniforme es la aportada por el muro eje 1 tramo B-D $W = 6.04 \text{ tf/m}^2$ W'= 6.61 tf/m² (área corregida) Por lo tanto σ_z = Wo x W'= 0.252 x 6.61 = -1.67 tf/m² 3.- Ahora se sumará x = 5.450 $m = \frac{x}{z} = \frac{5.450}{0.420} = 12.98$ Wo = 0.252 y = 3.425 $z = \frac{B}{\sqrt{2}} = \frac{0.60}{\sqrt{2}} = 0.420$ $n = \frac{y}{z} = \frac{3.425}{0.420} = 8.15$ La carga uniforme es la aportada por el muro eje D tramo 1-3 $W = 9.65 \text{ tf/m}^2$ W'= 9.07 tf/m² (área corregida) Por lo tanto σ_z = Wo x W' = 0.252 x 9.07 = 2.29 tf/m² 4.- Ahora se restará x = 5.450 $m = \frac{x}{z} = \frac{5.450}{0.420} = 12.98$ No = 0.250 y ≈ 2.825 $z = \frac{B}{\sqrt{2}} = \frac{0.60}{\sqrt{2}} = 0.420$ $n = \frac{y}{z} = \frac{2.825}{0.420} = 6.73$ La carga uniforme es la aportada por el muro eje D tramo 1-3 $W = 9.65 \text{ tf/m}^2$ W'= 9.07 tf/m² (área corregida) Por lo tanto σ_z = Wo x W' = 0.250 x 9.07 = -2.27 tf/m² 5.- Ahora se sumará x = 5.450 $m = \frac{x}{z} = \frac{5.450}{0.420} = 12.98$ Wo = 0.173 y = 0.300 $z = \frac{8}{\sqrt{2}} = \frac{0.60}{\sqrt{2}} = 0.420$ $n = \frac{y}{z} = \frac{0.300}{0.420} = 0.71$

f' :

Ņ

La carga uniforme es la aportada por el muro eje B tramo 1-2 $W = 12.56 \text{ tf/m}^2$ Por lo tanto $\sigma_z = Wo \times W' = 0.173 \times 12.56 = 2.17 \text{ tf/m}^2$ 6.- Ahora se restará x = 3.325 y = 0.300 y = 0.300 x = $\frac{x}{z} = \frac{3.325}{0.420} = 7,92$ Wo = 0.173 x = $\frac{B}{\sqrt{2}} = \frac{0.60}{\sqrt{2}} = 0.420$ n = $\frac{y}{z} = \frac{0.300}{0.420} = 0.71$ La carga uniforme es la aportada por el muro eje B tramo 1-2 $W = 12.56 \text{ tf/m}^2$ Por lo tanto σ_z = Wo x W' = 0.173 x 12.56 = -2.17 tf/m² 7.- Ahora se sumará x = 0.600 y = 2.825 x = $\frac{B}{\sqrt{2}} = \frac{0.60}{\sqrt{2}} = 0.420$ n = $\frac{y}{z} = \frac{2.825}{0.420} = 1.43$ Wo = 0.229 x = $\frac{B}{\sqrt{2}} = \frac{0.60}{\sqrt{2}} = 0.420$ N = $\frac{y}{z} = \frac{2.825}{0.420} = 6.73$ La carga uniforme es la aportada por el muro eje 3 tramo C-D $W = 8.78 \text{ tf/m}^2$ Por lo tanto σ_z = Wo x W = 0.229 x 8.78 = 2.01 tf/m² 8.- Ahora se restará x = 0.600y = 1.500 x = $\frac{x}{z} = \frac{0.600}{1.500} = 1.43$ y = 1.500 x = $\frac{B}{\sqrt{2}} = \frac{0.60}{\sqrt{2}} = 0.420$ n = $\frac{y}{z} = \frac{1.500}{0.420} = 3.57$ La carga uniforme es la aportada por el muro eje 3 tramo C-D $W = 8.78 \text{ tf/m}^2$ Por lo tanto σ_z = Wo x W = 0.227 x 8.78 = -1.99 tf/m²

9.- Ahora se sumará

- x = 3.325 y = 1.500 $m = \frac{x}{z} = \frac{3.325}{0.420} = 7.92$ $W_0 = 0.250$ $z = \frac{B}{\sqrt{2}} = \frac{0.60}{\sqrt{2}} = 0.420$ $n = \frac{y}{z} = \frac{1.500}{0.420} = 3.57$
- La carga uniforme es la aportada por el muro eje C tramo 2-3 W = 16.41 tf/m² W'= 15.35 tf/m² (àrea corregida)

Por lo tanto σ_z = Wo x W' = 0.250 x 15.35 = 3.84 tf/m²

10.- Ahora se restará

x = 2.725 y = 0.900 $u = \frac{x}{z} = \frac{2.725}{0.420} = 6.49$ u = 0.242 $z = \frac{B}{\sqrt{2}} = \frac{0.60}{\sqrt{2}} = 0.420$ $u = \frac{y}{z} = \frac{0.900}{0.420} = 2.14$

La carga uniforme es la aportada por el muro eje C tramo 2-3

 $W = 16.41 tf/m^2$ W'= 15.35 tf/m² (área corregida)

Por lo tanto σ_z = Wo x W'= 0.242 x 15.35 = -3.71 tf/m²

11.- Ahora se sumará

x = 2.725y = 0.300 $x = \frac{x}{z} = \frac{2.725}{0.420} = 6.49$ $W_0 = 0.173$ $z = \frac{B}{\sqrt{2}} = \frac{0.60}{\sqrt{2}} = 0.420$ $n = \frac{y}{z} = \frac{0.300}{0.420} = 0.71$

La carga uniforme es la aportada por el muro eje B tramo 2-3

 $W = 10.95 \text{ tf/m}^2$ Por lo tanto $\sigma_z = Wo \times W = 0.173 \times 10.95 = 1.89 \text{ tf/m}^2$

12.- Ahora se restará

x = 0.600 y = 0.300 $x = \frac{x}{z} = \frac{0.600}{0.420} = 1.43$ $x = \frac{B}{\sqrt{2}} = \frac{0.60}{\sqrt{2}} = 0.420$ $n = \frac{y}{z} = \frac{0.300}{0.420} = 0.71$

La carga uniforme es la aportada por el muro eje B tramo 2-3 W = 10.95 tf/m^2

Por lo tanto σ_z = Wo x W = 0.164 x 10.95 = -1.80 tf/m²

13.- Ahora se sumará

x = 0.600 y = 0.900 $x = \frac{x}{z} = \frac{0.600}{0.420} = 1.43$ y = 0.223 $y = \frac{B}{\sqrt{2}} = \frac{0.60}{\sqrt{2}} = 0.420$ $y = \frac{y}{z} = \frac{0.900}{0.420} = 2.14$

La carga uniforme es la aportada por el muro eje 3 tramo B-C W = 5.79 tf/m² W'= 6.56 tf/m² (área corregida)

Por lo tanto σ_z = Wo x W' = 0.223 x 6.56 = 1.46 tf/m²

La suma total de los esfuerzos de los muros es :

 $\sigma_z = 1.72 \text{ tf/m}^2$

Así, el esfuerzo debido al aporte de la descarga de los muros a una profundidad Z, es:

 $\sigma_z = \frac{1.87 + 1.72}{2} = 1.80 \text{ tf/m}^2$

Por lo tanto el esfuerzo vertical promedio es :

 σv prom. = 2.32 + 1.80 = 4.12 tf/m = 0.41 kgf/cm

Por la ley de Coulomb se tiene :

$$S = C + \sigma v$$
 prom tan ϕ

donde :

$$c = \frac{a}{\cos \phi}$$

y donde "a" se obtiene de la gráfica p-q

Sustituyendo valores:

$$S = \left(\frac{0.800}{COS \ 35.3}\right) + 0.412 \ tan \ 35.3 = 1.27 \ kg/cm^2 = 12.70 \ tf/m^2$$

Entrando a la ecuación de Skempton:

qad =
$$\frac{\left(1 + 0.2 \frac{B}{L}\right) 5 \text{ Nc}}{\text{F.S.}} + \gamma \text{ Dr}$$

donde :

$$\gamma$$
 Df = 0.9 x 0.8 = 0.72 tf/m²

No (largol = 6.5 [se obtiene de gráfica 2. del anexo B)

$$\frac{B}{L} = \frac{0.6}{6.5} = 0.09$$

Sustituyendo valores y despejando el F.S. se tiene lo siguiene :

$$q_{ad} = \frac{11 + 0.2 (0.09) \times 12.70 \times 6.5}{F.5.} + 0.72$$

$$q_{ad} = \frac{B4.04}{F.5.} + 0.72$$
F.S. q_{ad} = $\frac{B3.37 F.5.}{F.5.} + F.5. 0.72$

F.S. gad - F.S. 0.72 = 84.04

F.S. (gad - 0.72) = 84.04

F.S. =
$$\frac{84.04}{\text{qad} - 0.72} = \frac{84.04}{6.26 - 0.72} = 15.17$$

Ahora el problema se resolverá con los resultados obtenidos en la prueba hecha consolidada-drenada (CD).

 $\phi = 38.67^{\circ}$

Con el Criterio de Meyerhof y dado que C=0 se tiene :

 $qc = \frac{1}{2} \gamma B N\gamma + \gamma Df Nq$

donde :

B = 0.600 m γ = 1.90 tf/m³ γ Df = 0.9 x 0.80 = 0.72 tf/m²

Para ϕ = 38.67° se entra a la gráfica 3 del anexo B. y se obtiene lo siguiente :

```
 \begin{array}{l} N_{Y}^{\gamma} = 160 \\ N_{q} = 95 \end{array} \right\} \text{ cimiento cuadrado (B/L = 1)} \\ \\ N_{Y}^{\gamma} = 120 \\ N_{q} = 64 \end{array} \\ \text{ cimiento superficial largo (B/L = 0)}
```

Interpolando en la gráfica para un B/L= 0.09 se tiene :

```
NY = 123.60
Ng = 66.80
```

Por lo tanto para una carga de 6.26 tf/m^2

 $6.26 = \frac{1}{2} (1.9) (0.60) (123.60) + (0.72) (66.80)$ $6.26 = \frac{70.45 + 48.10}{F.S.}$ $F.S. = \frac{118.55}{6.26} = 18.94$

CAPITULO V

CONCLUSIONES

116

,. .**.**

CONCLUSIONES

Las conclusiones relativas a las pruebas que se aplicaron a dos diferentes arenas son las siguientes:

- 1.- La resistencia mostrada por la misma arena es diferente si la prueba es UU a diferencia de la prueba CD, mostrando un valor de ordenada al origen ambas arenas en prueba UU. No hay que olvidar que la inclinación de la envolvente en prueba UU está asociada al aire contenido en el agua utilizada para rellenar los huecos del suelo.
- 2.- Como la arena negra presenta menor permeabilidad y mayor uniformidad se observa que la prueba UU presenta un ángulo de fricción interna (30.5°) marcadamente diferente al que presenta en prueba CD (40.87°). La arena blanca por el contrario y probablemente debido a su mayor permeabilidad y menor uniformidad presenta ángulos de fricción interna muy similares en prueba UU (35.35°) y en prueba CD (38.67°).
- 3.- Con base en los dos puntos anteriores se puede concluir que la diferente respuesta resistente sera función del tipo de

material su uniformidad o no y de su compacidad relativa. Estos parámetros deberán calcularse y con base en ellos realizar las dos pruebas triaxiales comentadas. Lo anterior permitira percatarse de la importancia de considerar una falla no drenada en una arena saturada.

Conclusiones que se deducen a partir de los ejemplos:

÷

- 1.- Del primer ejemplo se concluye que para el mismo factor de seguridad exigido la diferencia entre la resistencia no drenada y drenada implican descargas admisibles que se antojan muy diferentes. En el caso de que se preevea una posible falla no drenada la descarga admisible debe ser el 8.3 % de la aceptada en condición de falla drenada y para el mismo factor de seguridad. Es muy probable que si se tomara en cuenta esta consideración para arenas saturadas, al reducir la descarga admisible se evitaría la posible falla por licuación de arenas, consideración que no se toma en cuenta en las teorías de capacidad de carga tradicionales.
- 2.- De los resultados del ejemplo 2 se concluye que para una descarga provocada por una estructura definida, que por otro lado no implica incrementos importantes de esfuerzo en la masa del suelo, se observa que los factores de seguridad en ambos casos (resistencia no drenada y resistencia drenada) la consideración de tomar en cuenta una posible falla no drenada pierde su validez debido al alto factor de seguridad que se reporta, por cierto muy similar al que se obtendría para una

condición drenada.

Conclusiones que se desprenden de mi opinion de la realización de una tesis del tipo experimental:

Como ya se ha comentado, uno de los materiales más complejos es el suelo y es que su complejidad se debe a que se encuentra formado por tres fases, una sólida, una líquida y una gaseosa, por lo que las propiedades del suelo dependen tanto de las propias de cada una de las fases, como de la acción conjunta de las tres. Por eso es importante desarrollar temas de investigación, ya que estos aportan información muy valiosa que puede ser utilizada para complementar lo ya existente, y es que se debe recordar que las verdaderas fuentes actuales del tema de los suelos son los artículos y trabajos de investigación que normarán el futuro del estudio de éste.

REFERENCIAS

- "Mecánica de Suelos" Tomo I.- Fundamentos de la Mecánica de Suelos.- Juárez Badillo y Rico Rodríguez.- Editorial Limusa.-México, 1986.
- "Mecánica de Suelos" Tomo II.- Teoría y aplicaciones de la Mecánica de Suelos.- Juárez Badillo y Rico Rodríguez.-Editorial Limusa.- México, 1986.
- "Mecánica de Suelos".- T. Willian Lambe y Robert V. Whitman.-Editorial Limusa.- México, 1976.
- 4. "Mecánica de Suelos".- R. F. Craig.- Logos Consorcio Editorial, S. A..- México, 1976.

120

•••

ANEXOS

ANEXO A. GENERALIDADES

En Mecánica de Suelos uno de los problemas clásicos es el comportamiento de arenas finas sueltas, uniformes y saturadas, de subangulosos a redondeados, granos ya que son altamente asentamientos susceptibles a experimentar severos. Estos asentamientos pueden ser causados ya sea por el hincado de pilotes, las vibraciones propias de equipo o maquinaria en general, explosiones; o bien, por la acción de algún sismo.

Es importante tener presente que cualquier cambio volumétrico que experimente un suelo, originado por la aplicación de un esfuerzo cortante, se debe a un cambio en el volumen de vacíos. Las arenas muy sueltas disminuyen su volumen mientras que las más compactas lo aumentan, definiéndose como compacidad relativa al grado de acomodo alcanzado por las partículas del suelo, dejando más o menos vacíos entre ellas. En un suelo muy compacto, las partículas sólidas que lo constituyen tienen un alto grado de acomodo y la capacidad de deformación bajo carga del conjunto será

pequeña. En suelos poco compactos el grado de acomodo es menor, de modo que el volumen de vacíos, y por ende la capacidad de deformación, serán mayores. Una base de comparación para tener una idea de las compacidades teóricas extremas alcanzables por una estructura simple, se tiene estudiando las disposiciones de un conjunto de esferas iguales. Como se muestra a continuación:

ESTADO MAS SUELTO

ESTADO MAS COMPACTO

En las figuras anteriores se muestran en frente, perfil o planta, los estados más suelto y más compacto teóricos posibles de tal conjunto. Los valores de η (porosidad de un suelo) y e (relación de vacios) correspondientes a ambos casos puede calcularse fácilmente y son :

Estado más compacto :

$$Vt = \left(\frac{2D}{\sqrt{2}}\right)^{3} = \frac{8D^{3}}{2\sqrt{2}}$$
$$V5 = 4\left(\frac{4}{3}\pi\left(\frac{D}{2}\right)\right)^{3} = 4\left(\frac{4}{24}\pi D^{3}\right) = \frac{2}{3}\pi D^{3}$$
$$e = \frac{Vt - Vs}{Vs} = \frac{Vt}{Vs} - 1 = \frac{8D^{3}3}{2\sqrt{2}} - 1$$

$$\eta = \frac{\mathrm{Vv}}{\mathrm{Vt}} = \frac{\mathrm{e}}{1+\mathrm{e}} = \frac{\left(\frac{6}{\pi} - 1\right)}{1+\left(\frac{6}{\pi} - 1\right)} = \frac{\left(\frac{6}{\pi} - \frac{1}{\pi}\right)}{\left(\frac{6}{\pi}\right)}$$

 $\eta = \frac{6-\pi}{6} = \left(1 - \frac{\pi}{6}\right) \times 100 \quad (\%) \text{ valor exacto}$

 $\eta = 47.64$ % valor aproximado

Las arenas naturales muy uniformes en tamaño, poseen valores de η (porosidad de un suelo) y e (relación de vacíos) que se acercan mucho a los arriba descritos. En arenas bien graduadas, con amplia gama de tamaños, los estados más sueltos y más compactos tienen valores de e y η mucho menores que los que corresponden a la acumulación de esferas iguales.

Para medir la compacidad de una muestra o probeta de estructura simple, Terzaghi introdujo una relación empírica, determinable en laboratorio, llamada Compacidad Relativa (Cr).

$$Cr (\$) = \frac{e m \delta x - e m at}{e m \delta x - e m (n)} \times 100$$

En la anterior relación :

- e máx = Relación de vacíos correspondiente al estado más suelto del suelo.
- e mín = Relación de Vacíos correspondiente al estado más compacto del mismo.
- e nat = Relación de vacíos de la muestra en estado natural o controlado en laboratorio.

La expresión anterior también puede expresarse en función del peso específico seco :

$$Cr (\$) = \frac{\frac{1}{\gamma d \min} - \frac{1}{\gamma d \max}}{\frac{1}{\gamma d \min} - \frac{1}{\gamma d \max}} \times 100$$

Donde:

ţ

ï

 $\gamma_{d máx}$ = Peso específico seco máximo del material.

yd min = Peso específico seco minimo del material.

yd nat = Peso específico seco en estado natural del material o controlado en el laboratorio.

Para determinar los pesos específicos secos máximo y mínimo se relizaron algunas pruebas en el laboratorio de Mecánica de Suelos, dichas pruebas se explicaran a continuación :

Primeramente se vacía el suelo previamente secado en el horno, a un matraz con agua destilada y desaireada. Posteriormente al matraz con el suelo ya saturado, se le coloca un tapón con un tubo muy delgado y se satura todo matraz hasta el nivel más alto de dicho tubo. Ya una vez saturado todo el matraz se invierte y se coloca sobre una probeta graduada llena de agua destilada y desaireada hasta que la punta del tubo toque el nivel del agua de la probeta (ver Figura A.1.a). Esto hace que el material fluya siempre bajo el agua en forma de lluvia de partículas, las cuales se van depositando en una forma muy suelta dentro de la probeta (ver Figura A.1.b).

Con esto, y conocido el peso del material seco, se puede determinar el estado más suelto de éste. Más tarde se hace vibrar la probeta hasta ver que el material ya no siga comprimiéndose (ver Figuras A.1.c y A.1.d). En ese momento se puede determinar el estado más compacto.

1

.....

Fig. A.1. Determinación de los pesos específicos secos máximo y mínimo de la arena.

A.I. Análisis de dos tipos de arena para determinar sus condiciones granulamétricas.

Para este trabajo se escogieron dos tipos de arena, una de ellas de origen volcánico y la otra llamada de Otawa.

ARENA VOLCANICA NEGRA :

í,

1

Peso de la charola = 0.482 kgf Peso del molde de 3" = 1.518 kgf Peso total del molde = 2.000 kgf

Muestra número uno de arena :

A = Peso total del molde + arena = 3.159 kgf Material retenido por malla No. 100 B = Malla No. 100 (0.397 Kgf) + material = 1.461 kgf Material retenido por malla No. 200 C = Malla No. 200 (0.391 Kgf) + material = 0.475 kgf Material que pasa por la malla No. 200 D = Charola (0.338 Kgf) + material = 0.355 kgf

Peso del material retenido en las mallas

1.- Peso de la muestra = A - Peso total del molde= 1.159 kgf2.- Peso material retenido malla No.100 = 1.461-0.397 = 1.064 kgf3.- Peso material retenido malla No.200 = 0.475-0.391 = 0.084 kgf4.- Peso material retenido charola= 0.355-0.338 = 0.017 kgf

Muestra número dos de arena :

A	25	Peso total molde + arena	#	3.171	kgf
в	-	Material retenido por malla No. 100 Malla No. 100 (0.397 Kgf) + material	=	1.534	kgf
с	=	Material retenido por malla No. 200 Malla No. 200 (0.391 Kgf) + material	=	0.414	kgf
D		Material que pasa por malla No. 200 Charola (0.388 Kgf) + material	=	0.344	kgf

Peso del material retenido en las mallas

1.- Peso de la muestra = A - Peso total del molde = 1.171 kgf2.- Peso material retenido malla No.100 = 1.534-0.397 = 1.137 kgf3.- Peso material retenido malla No.200 = 0.414-0.391 = 0.023 kgf4.- Peso material retenido en charola = 0.344-0.338 = 0.006 kgf

Muestra número tres de arena :

Ę.

ł

١

A = Peso total del molde + arena = 3.167 kgf
Material retenido por malla No. 100
B = Malla No. 100 (0.397 Kgf) + material = 1.452 kgf
Material retenido por malla No. 200
C = Malla No. 200 (0.391 kgf) + material = 0.491 kgf
Material que pasa por malla No. 200
D = Charola (0.388 Kgf) + material = 0.351 kgf

Peso del material retenido en las mallas

1.- Peso de la muestra = A - Peso total del molde = 1.167 kgf 2.- Peso material retenido malla No.100 = 1.452-0.397 = 1.055 kgf 3.- Peso material retenido malla No.200 = 0.491-0.391 = 0.100 kgf 4.- Peso material retenido en charola = 0.351-0.338 = 0.013 kgf

Peso promedio de las tres muestras de arena :

1	Peso	muestra						1.166	kgf
2	Peso	material	retenido	malla	No.	100	3	1.085	kgf
3	Peso	material	retenido	malla	No.	200	=	0.069	kgf
4	Peso	material	retenido	charol	La		=	0.012	Kgf

U.N.A.M. FACULTAD DE INGENIERIA G E O T ECNIA

FORMA No. 2

GRANULOMETRIA POR MALLAS

08RA	Tesis d	e Licen	<u>ciatura</u>		PESO DE LA MUESTRA						
LOCALIZ	ACION Fa	cultad d	ie ingen	nieria	RECIPIENTE No. Eard obtioner al contendo de daus						
ENSATE N			1 CEO No		PESORECIP ± SUELO HUMEDO(gr)						
DESCRIPC	INN Are	na Volci	inica		PE SO RECI		action (du)				
FECHA	21-Abr	-88			PESOREC	PIENTE					
OPERADO	a lléct	or David	l León J	luárez	PESONUE	STRA SECA	(gr.) 1	166			
CALCULO					CONTENIC	DE HUME	DAC 21%)	(4)			
Molia No.	Abartum.	Paso sualo retenido	Por canto reten parcial	Por ciento que pasa	tilaita tia.	Abartura	Paso suelo referido	Por ciento retan porciol	for clanto qua polo		
	m.m.	gr.	° 0	%		ភាព-	gr.	%	°'a		
2*	50 80			1	8	2.38					
11/2*	36.10				18	1.00					
1"	25.4C			1	30	0.59					
3/4"	1905			1	50	0.297			100.00		
1/2"	12.70				100	0149	1085	93.05	6,95		
3/6"	9.52				200	0 074	69	5.92	1.03		
No. 4	4.76				PASA 200		12	1.03	0		
Pasa No. 4			[[SUMA		1166	100			
SUMA									·		
	00- 90 80 70 80 70 60 80 80 80 80 80 80 80 80 80 80 80 80 80										
	5 30		· · · · · · · · · · · · · · · · · · ·		• · · •		····				
	20				· · · · · · · · · · · · · · · · · · ·		<u> </u>				
	a 16		·····		······	ļ		·			
	0.					L		<u></u>			
		2 15	2 1 74 78		8	18 30	60 100	200			
				DIANS	TRO EN ma	n.					
	0₀0 ≕ - 0₃0 ≕ - 0₀0 ≕ -	0.160 0.180 0.200		$C_{\psi} = \frac{D_{60}}{D_{10}}$ $C_{g} = \frac{(D)}{D_{10}}$	$ \begin{array}{r} 0.200 \\ 0.160 \\ 30^{2}, 0. \\ 060 0. \end{array} $	<u>032</u> 4	<u>1.25</u> > 3 <u>1.0</u> 1	" =(3 =(\$ =(\$ =()%)%)%		
		CLASIFICA	CION SUCS.	SP							
				and the second se							

130

ARENA BLANCA DE OTAWA :

Peso de la charola = 0.482 kgf Peso del molde de 3" = 1.518 kgf Peso total del molde = 2.007 kgf

Muestra número uno de arena :

A	=	Peso total del molde + arena	=	3.115	kgf
в	-	Material retenido por malla No. 50 Malla No. 50 (0.465 Kgf) + material		1.096	kg f
с	=	Material retenido por malla No. 100 Malla No. 100 (0.405 Kgf) + material	=	0.825	kgf
D	#	Material retenido por malla No. 200 Malla No. 200 (0.400 Kgf) + material	=	0.450	kgf
E	=	Material que pasa por malla No. 200 Charola (0.345 Kgf) + material	=	0.354	kgf

Peso del material retenido en las mallas

1.- Peso de la muestra = A - Peso total del molde = 1.108 kgf 2.- Peso material retenido malla No. 50 = 1.096-0.465 = 0.631 kgf 3.- Peso material retenido malla No.100 = 0.825-0.405 = 0.420 kgf 4.- Peso material retenido malla No.200 = 0.450-0.400 = 0.050 kgf 5.- Peso material retenido charola = 0.354- 0.345= 0.009 kgf

Muestra número dos de arena :

A = Peso total molde + arena = 3.096 kgf Material retenido por malla No. 50 B = Malla No. 50 (0.465 Kgf) + material = 1.116 kgf Material retenido por malla No. 100 C = Malla No. 100 (0.405 Kgf) + material = 0.793 kgf Material retenido por malla No. 200 D = Malla No. 200 (0.400 Kgf) + material = 0.440 kgf Material que pasa por malla No. 200 E = Charola (0.345 Kgf) + material = 0.351 kgf

Peso del material retenido en las mallas

1.- Peso de la muestra = A - Peso total del molde = 1.089 kgf

2.- Peso material retenido malla No. 50 = 1.116-0.465 = 0.651 kgf 3.- Peso material retenido malla No.100 = 0.793-0.405 = 0.388 kgf 4.- Peso material retenido malla No.200 = 0.440-0.400 = 0.040 kgf 5.- Peso material retenido charola = 0.351-0.345 = 0.006 kgf

Muestra número tres de arena

A = Peso total del molde + arena = 3.084 kgf Material retenido por malla No. 50 B = Malla No. 50 (0.465 Kgf) - material = 1.123 kgf Material retenido por malla No. 100 C = Malla No. 100 (0.405 Kgf) - material = 0.780 kgf Material retenido por malla No. 200 D = Malla No. 200 (0.400 Kgf) - material = 0.441 kgf Material que pasa por malla No. 200 E = Charola (0.345 Kgf) - material = 0.352 kgf

Peso del material retenido en las mallas

1

1.- Peso de la muestra = λ - Peso total del molde = 1.077 kgf 2.- Peso material retenido malla No. 50 = 1.123-0.465 = 0.658 kgf 3.- Peso material retenido malla No.100 = 0.780-0.405 = 0.375 kgf 4.- Peso material retenido malla No.200 = 0.441-0.400 = 0.041 kgf 5.- Peso material retenido en charola = 0.352-0.345 = 0.007 kgf

Peso promedio de las tres muestras de arena :

1	Peso	muestra					=	1.091	kgf
2	Peso	material	retenido	malla	No.	50	Ħ	0.647	kg f
3	Peso	material	retenido	malla	No.	100	=	0.394	kgf
4	Peso	material	retenido	malla	No.	200	=	0.044	kgf
5	Peso	material	retenido	charo	la		-	0.007	kg f

U.N.A.M. FACULTAD DE INGENIERIA G E O T ECNIA

FORMA No. 2

GRANULOMETRIA POR MALLAS

A.II. Cálculo del peso específico seco máximo y mínimo del material.

ARENA NEGRA :

 Peso de probeta
 = 384.39 gf

 Peso de matraz
 = 179.42 gf

 Peso de probeta + arena
 = 734.50 gf

 Peso de arena = 734.50 - 384.39 = 350.11 gf

Volumen de arena saturada en estado suelto = 275 cm3 Volumen de arena saturada en estado compacto = 230 cm3

$$\gamma_{d min} = \frac{350.11}{275} = 1.27 \text{ gf/cm}^3$$

$$\gamma_{\rm d} = \frac{350.11}{230} = 1.52 \, {\rm gf/cm}^3$$

ARENA BLANCA ::

Ę

Peso	de	probeta					=	384.50	gf
Peso	de	matraz					=	146.71	gf
Peso	de	probeta	t	arena	L		=	769.00	gf
Peso	de	arena =	70	59.00	-	384.50	Ħ	350.11	αf

Volumen de arena saturada en estado suelto = 305 cm3 Volumen de arena saturada en estado compacto = 265 cm3

 $\gamma_{d m(n)} = \frac{384.50}{305} = 1.261 \text{ gf/cm}^3$

$$\gamma_{\rm d} = \frac{384.50}{265} = 1.451 \, {\rm gf/cm}^3$$

Así, una vez obtenido el ydmín y el ydmáx y considerando la compacidad relativa por utilizar en las pruebas de este trabajo, se propuso el ydmat que es el peso específico con el cual se

realizaron dichas pruebas.

Este tipo de pruebas efectuadas en el laboratorio de Mecánica de Suelos, se hicieron con el fin de crear un método que nos permita formar las muestras de arena garantizando la reproducción a voluntad de una compacidad relativa determinada. Todo esto se hace, ya que el estudio de los suelos granulares existen dos problemas principales. El primero esta en la dificultad para obtener muestras representativas de las condiciones de campo, razón por la cual se tiene que recurrir a correlaciones empíricas basadas en la prueba de penetración estandar. El segundo problema esta en la dificultad que existe para formar muestras de arena, con la seguridad de reproducir tanto el grado de compacidad y la uniformidad deseada, así como la estructura. De aquí resulta la necesidad de contar con métodos que permitan formar muestras de arena en donde se pueda controlar a voluntad tanto la compacidad del material como la homogeneidad del mismo, a fin de poder llevar a cabo un control confiable de las variables que rigen las características esfuerzo-deformación. Es por esto que se tuvieron que implementar algunas modificaciones al equipo de laboratorio, para lo cual, se tuvo que hacer un análisis especial para cada aditamento que se implementaría a dicho equipo,

A.III. Cálculo para determinar el peso del material seco.

Como se mencionó anteriormente, el γ_d nat que se propuso para este trabajo, fue el considerado para poder producir una muestra con una compacidad relativa del 50 % . A continuación se muestra
el análisis utilizado para determinar el peso del material seco para cada una de las dos arenas.

$$\operatorname{Cr}(\mathfrak{F}) = \frac{\frac{1}{\gamma d \min} - \frac{1}{\gamma d \operatorname{nat}}}{\frac{1}{\gamma d \operatorname{uin}} - \frac{1}{\gamma d \operatorname{max}}} \times 100$$

ARENA NEGRA VOLCANICA :

Cr = 50 % $\gamma_{d min} = 1.27 \text{ gf/cm}^{3}$ $\gamma_{d max} = 1.52 \text{ gf/cm}^{3}$

(*) | | $\frac{0.5}{\gamma d \min} - \frac{0.5}{\gamma d \max} = \frac{1}{\gamma d \min} - \frac{1}{\gamma d \max}$ $\frac{1}{\gamma d \max} = \frac{0.5}{\gamma d \max} - \frac{0.5}{\gamma d \min} + \frac{1}{\gamma d \min} = \frac{0.5}{\gamma d \max} + \frac{0.5}{\gamma d \min}$ $\frac{1}{\gamma d \max} = \frac{0.50}{1.52} + \frac{0.50}{1.27}$ $\frac{1}{\gamma d \max} (50\% \text{ Cr}) = 1.384 \text{ gf/cm}^3$ $\gamma d \max = \frac{Ws}{Vol}$ $Ws = \gamma d \max Vol$

Donde :

Ws = Peso del suelo seco.

Vol = Volumen del molde de 3".

ARENA BLANCA DE OTAWA :

Cr = 50 % $\gamma d_{min} = 1.261 \text{ gf/cm}^3$ $\gamma d_{max} = 1.451 \text{ gf/cm}^3$

 $\frac{0.5}{\gamma d \min} = \frac{0.5}{\gamma d \min} = \frac{1}{\gamma d \min} = \frac{1}{\gamma d \min}$ $\frac{1}{\gamma d \max} = \frac{0.5}{\gamma d \max} = \frac{0.5}{\gamma d \min} + \frac{1}{\gamma d \min} = \frac{0.5}{\gamma d \max} + \frac{0.5}{\gamma d \min}$ $\frac{1}{\gamma d \max} = \frac{0.500}{1.451} + \frac{0.500}{1.261}$ $\gamma d \max (50\% Cr) = 1.349 \text{ gf/cm}^3$ $\gamma d \max = \frac{Ws}{Vol} - Ws = \gamma d \max Vol$

Donde :

Ws = Peso del suelo seco.

Vol = Volumen del molde de 3".

ACOT: CB

Volumen sección 1 Fig. A.III.1 :

$$V_1 = \left(\frac{7.66 \times \Pi}{4}\right) \times 1 = 46.08 \text{ cm}^3$$

Volumen seccion 2 Fig. A.III.1 :

$$V_2 = \left(\frac{7.56^2 \times \pi}{4}\right) \times 17.26 = 774.77 \text{ cm}^3$$

Vol total = 820.85 cm³

A.IV.- Cálculo del copete para molde de 3" para poder garantizar la compacidad relativa deseada.

ARENA NEGRA :

1

Volumen de arena en estado suelto = 275 cm^3 Volumen de arena en estado compacto = 230 cm^3 Diferencia de volumen = 275 - 230 = 45 cm^3

Relación de volumen mínimo con el volumen del molde de 3"

$$\frac{230}{45} = \frac{820.85}{X} \qquad X = 160.6 \text{ cm}^3$$

Volumen máximo de material en molde de 3" :

 $820.85 + 160.6 = 981.45 \text{ cm}^3$

Volumen que debe retener el copete para garantizar el estado más suelto :

$$Vol = \left(\frac{7.56^{2} \times \pi}{4}\right) \times E = 160.6 \text{ cm}^{3}$$

 $\varepsilon = 3.57$ cm (altura del copete)

ARENA BLANCA :

l,

Volumen de arena en estado suelto = 305 cm^3 Volumen de arena en estado compacto = 265 cm^3 Diferencia de volumen = $305 - 265 = 40 \text{ cm}^3$

Relación de volumen mínimo con el volumen del molde de 3" :

$$\frac{265}{40} = \frac{820.85}{X} - X = 123.90 \text{ cm}^3$$

Volumen máximo de material en molde de 3" :

820.85 + 123.90 = 944.75 cm³

Volumen que debe retener el copete para garantizar el estado más suelto :

$$Vol = \left(\frac{7.56^2 \times \pi}{4}\right) \times E = 123.90 \text{ cm}^3$$
$$E = 2.76 \text{ cm} \text{ (altura del copete)}$$

Considerando los dos resultados de altura de copete para molde de 3" antes obtenidos para los dos distintos materiales, se propuso el siguiente diseño de la Fig. A.IV.1.

Fig. A.IV.1 Diseño del copete de 3" para garantizar la compacidad relativa deseada. 141

Į

Fig. B.2. Valores de Nc según Skempton, para suelos puramente cohesivos

Factores de capacidad de superficiales y pilotes. Fig. B. 3. carga para cimientos