01162,

DIVISION DE ESTUDIOS DE POSGRADO / Facultad de Ingeniería $2e_j$

METODO HIDROLOGICO CON BASE FISICA PARA EL TRANSITO DE AVENIDAS EN CAUCES

ERNESTO AGUILAR GARDUÑO

TESIS

PRESENTADA A LA DIVISION DE ESTUDIOS DE POSGRADO DE LA FACULTAD DE INGENIERIA

DE LA UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

> COMO REQUISITO PARA OBTENER EL GRADO DE

MAESTRO EN INGENIERIA (HIDRAULICA)

ASESOR : DR. ALVARO A. ALDAMA RODRIGUEZ

CIUDAD UNIVERSITARIA

FALLA DE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

A María de los Ángeles

mi total agradecimiento por su apoyo, comprensión y motivación constante

A Felipe de Jesús

espero que éste documento sea una motivación para su desarrollo personal

A mi madre

por su ejemplo de superación y entrega, sin su motivación constante, sería muy difícil alcanzar las metas planteadas

A mis hermanos

Al Dr. Alvaro A. Aldama Rodríguez

por su tiempo, dedicación y valiosos comentarios (responsable de la idea original de este trabajo)

A los profesores de la DEPFI

Al Instituto Mexicano de Tecnología del Agua

por el apoyo recibido

METODO HIDROLOGICO CON BASE FISICA PARA EL TRANSITO DE AVENIDAS EN CAUCES

TEMA

PAG.

1

5

9

22

27

35

51

64

66

70

86

- 1 Introducción
- 2 Tránsito de avenidas en cauces
- 3 Ecuaciones de movimiento aproximadas
- 4 Métodos hidrológicos
- 5 El método de Muskingum-Cunge
- 6 El método AD (advección-difusión)
- 7 Estudios de caso
- 8 Conclusiones y recomendaciones

Bibliografía

Anexo A

Anexo B

MÉTODO HIDROLÓGICO CON BASE FÍSICA PARA EL TRÁNSITO DE AVENIDAS EN CAUCES

1 Introducción

Uno de los principales problemas en hidrología de superficie consiste en el movimiento transitorio del agua a través de estructuras hidráulicas, cauces y almacenamientos. El proceso se denomina comúnmente tránsito de avenidas. En términos más concretos, por tránsito de avenidas se entiende la variación de un hidrograma al recorrer un vaso o un cauce. En este trabajo sólo se considera el tránsito de avenidas en cauces. En la Figura 1.1 se observa la variación de una onda de avenida al recorrer un cauce.

Fig. 1.1 Viaje de una avenida a lo largo de un cauce

En cauces con pendiente fuerte, donde se produce flujo supercrítico, se observan atenuaciones pequeñas en la altura de la onda. En contraste, en cauces con pendiente suave (y rugosidad apreciable) se producen atenuaciones significativas. Por lo tanto, la atenuación de la altura de la onda es una consecuencia de las características físicas del cauce.

El grado de atenuación de la onda impacta la tasa de cambio de almacenamiento en un tramo de cauce. En efecto, por continuidad, a mayor atenuación, mayor será la tasa de cambio del almacenamiento.

Resulta sumamente importante predecir los niveles que puede alcanzar el agua en los sitios en los cuales existe riesgo de inundaciones, ya que la excedencia de ciertos niveles críticos puede ocasionar graves daños. El análisis de hidrogramas de crecientes es un elemento básico para la toma de decisiones con fines preventivos y en la definición del evento de diseño de un gran número de estructuras hidráulicas.

El camino que sigue una gota de agua desde el momento que alcanza la superficie de la tierra, hasta llegar a una corriente es incierto, ya que puede escurrir por la superficie terrestre, por debajo de ella sin alcanzar el nivel freático, o bien percolarse y salir a una corriente mucho tiempo después de que cayó la tormenta.

El escurrimiento subsuperficial que se mueve paralelo al terreno con poca velocidad y el agua que se percola integran el escurrimiento base, mientras que el escurrimiento subsuperficial que escurre con mayor velocidad y el superficial forman el escurrimiento directo. Este último es el factor a analizar en el tránsito de avenidas.

2

e e e en en en en en en en en

En general existen dos tipos de métodos para el tránsito de avenidas en cauces: los hidráulicos y los hidrológicos.

Los métodos hidráulicos se basan en la solución numérica de las ecuaciones de movimiento unidimensional transitorio a superficie libre, conocidas como ecuaciones de Saint-Venant, que son la de continuidad y la de cantidad de movimiento. Estos métodos generalmente requieren muchos datos, tanto geométricos en las secciones de interés, como hidrológicos en las zonas de aportación y control.

Los métodos hidrológicos utilizan simplificaciones de las ecuaciones de movimiento para llegar a una solución más sencilla, la cual sólo requiere de datos hidrológicos en la entrada y salida del tramo en estudio para su calibración, y después solamente datos en la entrada para su aplicación. Estos métodos son menos precisos que los métodos hidráulicos. Uno de los métodos hidrológicos y posiblemente el más conocido en nuestro país es el denominado Método de Muskingum.

Cunge (1969) propuso que el método de Muskingum es una aproximación de diferencias finitas a la ecuación de advección-difusión, (también conocida en hidrología como "analogía de difusión") con un error de truncado de orden Δx^2 donde Δx es la longitud del tramo de tránsito. En lugar de esta afirmación, se ha encontrado mediante un análisis más preciso que el esquema de Muskingum aproxima una ecuación diferencial que incluye términos advectivos y difusivos, pero también uno dispersivo de tercer orden (Aldama, 1995).

Por otra parte, los parámetros que se obtienen para el método de Muskingum mediante calibración basada en datos de un evento de avenida dado no siempre aseguran un funcionamiento adecuado para fines de pronóstico, esto es, para el tránsito de una avenida de orden diferente al que se utilizó para la calibración. Por ello, en este trabajo se propone un método hidrológico para tránsito de avenidas en cauces utilizando una base física. La incorporación de la base física en el método permite ajustar los parámetros calibrados del método de Muskingum para el pronóstico del tránsito de una avenida con características distintas a las de la utilizada en la calibración.

En el planteamiento del método se parte de las ecuaciones de movimiento y se llega a una ecuación de advección-difusión, la cual se aproxima mediante un esquema discreto de segundo orden de sencilla calibración y aplicación.

2 Tránsito de avenidas en cauces

Al estudiar el escurrimiento de agua generado por la lluvia en exceso, sólo nos ocuparemos de la descripción del movimiento del agua que ingresa a un tramo de cauce en la sección aguas arriba del mismo.

Comúnmente, el sitio donde se miden escurrimientos se localiza varios kilómetros aguas arriba del punto donde las avenidas pueden causar daños y en donde puede ser necesario construir infraestructura para su control. La técnica de tránsito de avenidas permite conocer la variación de las ondas de avenida desde el lugar donde pueden ser medidas hasta el sitio de interés.

Para esto es necesario contar con métodos confiables que permitan conocer la variación de un hidrograma al recorrer un tramo de cauce, a fin de determinar el efecto de presas reguladoras en tramos aguas abajo, para diseñar bordos de protección contra inundaciones, etc. El tránsito de avenidas en cauces es similar al tránsito de avenidas en vasos en el sentido de que el río mismo es también una especie de almacenamiento alargado.

Se tienen en general dos casos de estudio, el primero de ellos se refiere al caso en que el agua entra al tramo de interés únicamente en la frontera aguas arriba, y el segundo incluye la entrada lateral, ya sea por escurrimiento superficial o por confluencia de otros ríos, lo cual complica mucho más el problema. Aunque el segundo caso es común, aquí trataremos solamente el correspondiente a entrada aguas arriba sin aporte lateral.

Cuando una avenida entra en la frontera de aguas arriba, en la salida la onda de creciente aumenta su tiempo base y reduce su cresta, es decir la onda es atenuada y desfasada.

Dada la variación del gasto en la entrada del canal, el proceso de tránsito de avenidas permite calcular la variación de la onda hasta la sección de interés. Esto sirve para conocer la evolución del nivel del agua, lo que ayuda a tomar medidas preventivas y correctivas en el manejo del agua facilitando a su vez la operación y diseño de estructuras hidráulicas.

Movimiento de ondas

El tratamiento matemático simple de las avenidas en cauces está limitado a secciones transversales relativamente uniformes. Los hidrólogos deben tratar casos de canales no prismáticos, de sección transversal compleja, pendiente no uniforme y rugosidad variable. La mayoría de las ondas de avenida en canales naturales de una red hidrográfica se forman por flujo no uniforme; por esta razón, las ondas de avenida en canales naturales naturales son mucho más complicadas que los casos relativamente simples que se prestan a análisis matemático y verificación experimental.

El volumen de almacenamiento de las avenidas en canales naturales se evalúa calculando el área bajo la curva entre el hidrograma de entrada y el hidrograma de salida. Esto puede apreciarse gráficamente en el área sombreada de la figura 2.1:

Fig. 2.1 Entrada y salida de flujo en cauces.

Para ondas de pequeña amplitud, la relación que se tiene entre la velocidad del agua y la velocidad de la onda se puede estudiar con el número de Froude; cuando el número de Froude es mayor que uno, la velocidad de la onda es mayor que la velocidad del agua, y el flujo corresponde al régimen supercrítico. Si por el contrario, el número de Froude es menor que uno, entonces la velocidad de la onda es menor a la del agua, en este caso el flujo tiene régimen subcrítico, consecuentemente, al estar la onda más tiempo en el cauce, produce un mayor almacenamiento temporal.

El número de Froude es solo un parámetro comparativo, y no necesariamente tiene el mismo valor al paso de toda la avenida; sin embargo conceptualmente nos sirve para entender mejor este fenómeno. El tipo de flujo no solo depende de la magnitud del gasto, sino también de la forma del canal, es decir que depende tanto de sus características geométricas, como de sus características hidrológicas.

Es común que el movimiento de ondas en canales naturales sea tratado con procedimientos hidrológicos de tránsito de avenidas, los cuales resuelven conjuntamente la ecuación de continuidad y una relación entre el volumen de almacenamiento y las entradas y salidas de un tramo extenso del canal, generalmente limitado por dos estaciones hidrométricas o secciones de interés.

En la aplicación de los métodos hidrológicos normalmente se utilizan datos de aforos practicados en las secciones de entrada y salida del cauce, con el objeto de calibrar los parámetros que intervienen en el método de tránsito en cuestión.

Una vez calibrados, dichos parámetros son utilizados para efectos de pronóstico, extrapolando su rango de aplicación. Extrapolaciones de este tipo no son justificables, dado que los parámetros de un método hidrológico son fuertemente dependientes de los datos asociados con el evento de avenida utilizado para su calibración (Cunge, 1969).

Con el objeto de superar las dificultades inherentes al uso indiscriminado de parámetros calibrados para una avenida dada y utilizada posteriormente para el pronóstico del tránsito de otras avenidas con características muy distintas, en este trabajo se presenta el desarrollo de un método hidrológico con base física, fundamentado en la ecuación de advección difusión, ejemplificando su aplicación.

3 Ecuaciones de movimiento aproximadas

El flujo a superficie libre esta descrito por las ecuaciones de Saint-Venant, (Daily, 1969):

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = 0$$
Continuidad (3.1

$$\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + g \frac{\partial h}{\partial x} = g \left(S_o - S_f \right)$$
Cantidad de Movimiento (3.2
A = área hidráulica [m²]
t = tiempo [s]
Q = gasto [m³/s]
x = coordenada espacial [m]
U = velocidad [m/s]
g = aceleración de la gravedad [m/s²]
h = tirante [m]
S_o = pendiente de plantilla
S_f = pendiente de fricción

Análisis dimensional

donde:

Fig. 3.1 Características geométricas de un canal natural

De la figura 3.1 se puede observar que:

$$h \propto D_0 = \frac{A_0}{B_0}$$

(3.3)

(3.4)

donde: h = tirante [m] D₀ = tirante medio de referencia [m] A₀ = área hidráulica de referencia [m²] B₀ = ancho de superficie libre de referencia [m]

El subíndice cero indica que el área hidráulica, el ancho de superficie libre y el tirante medio corresponden a una condición (hipotética) de flujo uniforme (la condición de flujo transitorio complicaría mucho el análisis) que se utiliza como referencia.

Ahora introduzcamos los siguientes escalamientos:

$$\frac{h}{D_0} = O(1) \qquad h = D_0 h^* \qquad h^* = O(1)$$

$$\frac{U}{U_0} = O(1) \qquad U = W_0 U^* \qquad U^* = O(1)$$

$$\frac{x}{L} = O(1) \qquad x = L x^* \qquad x^* = O(1)$$

$$\frac{t U_0}{L} = O(1) \qquad t = \frac{L}{U_0} t^* \qquad t^* = O(1)$$

con: $U_0 =$ velocidad de referencia [m/s] U = velocidad [m/s] L = longitud del tramo [m] x = coordenada espacial [m]

En 3.4 el asterisco denota los términos adimensionales, y se aprecia un escalamiento del tipo advectivo en el tiempo. Sustituyendo los escalamientos dados en 3.4 en la ecuación 3.2, se llega a:

$$\frac{U_0^2}{L} \left(\frac{\partial U^{\, \cdot}}{\partial t^{\, \cdot}} + U^{\, \cdot} \frac{\partial U^{\, \cdot}}{\partial x^{\, \cdot}} \right) + g^{\, \cdot} \frac{D_0}{L} \frac{\partial h^{\, \cdot}}{\partial x^{\, \cdot}} = g \left(S_0^{\, -} S_f^{\, -} \right)$$

multiplicando la expresión anterior por L/(gD_o), se obtiene:

$$\frac{U_0^2}{gD_0} \left(\frac{\partial U^*}{\partial t^*} + U^* \cdot \frac{\partial U^*}{\partial x^*} \right) + \frac{\partial h^*}{\partial x^*} = \frac{L}{D_0} \left(S_0 - S_f \right)$$

la cual se puede escribir como:

$$\mathbf{Fr}^{2}\left(\frac{\partial \mathbf{U}^{*}}{\partial t^{*}} + \mathbf{U}^{*} \frac{\partial \mathbf{U}^{*}}{\partial \dot{\mathbf{x}}^{*}}\right) + \frac{\partial \mathbf{h}^{*}}{\partial \mathbf{x}^{*}} = \frac{\mathbf{L}}{\mathbf{D}_{0}}\left(\mathbf{S}_{0} - \mathbf{S}_{f}\right)$$
(3.5)

Donde Fr = $U_0/\sqrt{gD_0}$ es el número de Froude y los términos adimensionales son de orden uno. Asumiendo que el flujo es subcrítico con número de Froude pequeño,

$$Fr^2 < < 1$$

Con esta consideración se puede suponer que los términos inerciales son despreciables y suponiendo que;

$$\frac{\mathrm{L}}{\mathrm{D}_{0}}\left(\mathrm{S}_{0}^{*}-\mathrm{S}_{\mathrm{f}}^{*}\right)=\mathrm{O}(1)$$

la ecuación de cantidad de movimiento puede simplificarse como:

$$\frac{\partial \mathbf{h}}{\partial \mathbf{x}} = \mathbf{S}_0 - \mathbf{S}_f \tag{3.6}$$

Dado que esta última expresión corresponde a la ecuación dinámica para flujo gradualmente variado, se puede aceptar que un flujo subcrítico con número de Froude pequeño tiene un comportamiento dinámico instantáneo aproximadamente igual al de un flujo gradualmente variado.

Ecuaciones de Saint-Venant linealizadas

Consideremos la ocurrencia de una avenida según se muestra en la figura 3.2:

Fig. 3.2 Tirante y gasto de referencia en una onda de avenida

El gasto promedio de la onda puede tomarse como gasto de referencia y el tirante normal para ese gasto será el tirante de referencia, como se muestra en la figura 3.2. El gasto y el tirante en cada punto del canal corresponden a los valores de referencia más una diferencia que puede ser positiva o negativa. Para fines prácticos se puede considerar que esa diferencia es mucho menor que el gasto o el tirante de referencia, es decir:

$$Q(x,t) = Q_0 + \dot{Q}$$
; $|\dot{Q}| << Q_0$ (3.7)

$$h(x,t) = h_0 + h_i; |h| << h_0$$
 (3.8)

donde: Q(x,t) = gasto real (curva continua de la fig. 3.2) [m³/s]
h (x,t) = tirante real (curva continua de la fig. 3.2) [m]
Q₀ = gasto de referencia (línea discontínua de la fig 3.2) [m³/s]
Q = diferencia de gasto (gasto real menos gasto de referencia) [m³/s]
h₀ = tirante de referencia (línea discontínua de la fig 3.2) [m]
ĥ = diferencia de tirante (tirante real menos tirante de referencia) [m]

Como el área es función del tirante real, que es igual a la suma del tirante de referencia más la diferencia de tirante, se obtiene al expandir en serie de Taylor, que:

같은 동물 동물 같은 동물을 받았다.

$$\mathbf{A} = \mathbf{A}\left(\mathbf{h}\right) = \mathbf{A}\left(\mathbf{h}_{0} + \mathbf{\tilde{h}}\right) = \mathbf{A}\left(\mathbf{h}_{0}\right) + \left(\frac{\partial \mathbf{A}}{\partial \mathbf{h}}\right)_{\mathbf{x}} \left| \mathbf{\tilde{h}} + \mathbf{O}\left(-\mathbf{\tilde{h}}^{2}\right) \right|$$

Introduciendo el factor de conducción de la fórmula de Manning combinada con la ecuación de continuidad (Sotelo, 1989):

$$K = \frac{1}{n}AR^{2/3}$$

donde:

se puede escribir para la pendiente de la línea de energía específica:

$$S_{f} = \frac{|Q| Q n^{2}}{A^{2}R^{4/3}} = S_{f} (Q,h) = \frac{|Q| Q}{K^{2}(h)}$$

la cual indica que la pendiente de fricción es función del gasto y el tirante.

Desarrollando en serie de Taylor, se obtiene:

$$S_{f}(Q_{0} + \dot{Q}, h_{0} + \dot{h}) = |Q_{0} + \dot{Q}| (Q_{0} + \dot{Q}) F (h_{0} + \dot{h})$$

(3.9)

donde

$$F(h_0 + h) = K^{-2}(h_0 + h)$$

Inspeccionando los términos que involucran al valor absoluto del gasto y la variación con

respecto al gasto de referencia; se tiene:

$$|\mathbf{Q}| = \begin{cases} +\mathbf{Q}, & \mathbf{Q} > \mathbf{0} \\ -\mathbf{Q}, & \mathbf{Q} < \mathbf{0} \end{cases}$$

por lo que:

$$|Q_0 + \tilde{Q}| = \begin{cases} + Q_0 + \tilde{Q}, & Q_0 + \tilde{Q} > 0 & \delta & Q_0 > 0 \\ - Q_0 - \tilde{Q}, & Q_0 + \tilde{Q} < 0 & \delta & Q_0 < 0 \end{cases}$$

Desarrollando los términos que intervienen en la fórmula de Manning:

$$|Q_0^+ \tilde{Q}| (Q_0^+ \tilde{Q}) = \begin{cases} +(Q_0^+ \tilde{Q})^2 & Q_0^- > 0 \\ -(Q_0^+ \tilde{Q})^2 & Q_0^- < 0 \end{cases}$$

o bien:

$$|Q_0 + \dot{Q}| (Q_0 + \dot{Q}) = \begin{cases} +(Q_0^2 + 2Q_0\dot{Q} + \dot{Q}^2), & Q_0 > 0\\ -(Q_0^2 + 2Q_0\dot{Q} + \dot{Q}^2), & Q_0 < 0 \end{cases}$$

simplificando:

$$|Q_0 + \ddot{Q}| (Q_0 + \ddot{Q}) = \begin{cases} +Q_0 (Q_0 + 2\ddot{Q}) + O(\ddot{Q}^2), Q_0 > 0\\ -Q_0 (Q_0 + 2\ddot{Q}) + O(\ddot{Q}^2), Q_0 < 0 \end{cases}$$

lo que se puede expresar como:

$$|Q_0 + \dot{Q}|(Q_0 + \dot{Q}) = |Q_0| (Q_0 + 2\dot{Q}) + O(\dot{Q}^2)$$
(3.10)

Sustituyendo 3.10 en 3.9 y desarrollando el resultado en serie de Taylor:

$$\mathbf{S}_{f}\left(\mathbf{Q}_{0}+\mathbf{\tilde{Q}}, \mathbf{h}_{0}+\mathbf{\tilde{h}}\right) = \left| \mathbf{Q}_{0} \right| \left(\mathbf{Q}_{0}+2\mathbf{\tilde{Q}}\right) \left[\mathbf{F}\left(\mathbf{h}_{0}\right) + \left(\frac{\partial \mathbf{F}}{\partial \mathbf{h}}\right)_{x} \left|_{\mathbf{h}_{0}}\mathbf{\tilde{h}} \right] + \mathbf{O}\left(\mathbf{\tilde{h}}^{2}, \mathbf{\tilde{Q}}^{2}\right)$$
(3.11)

Recordando que:

$$F(h_0) = K^2(h_0)$$

entonces

$$\frac{\partial \mathbf{F}}{\partial \mathbf{h}_0} = -2 \mathbf{K}^{-3} \left(\mathbf{h}_0 \right) \frac{\partial \mathbf{K}}{\partial \mathbf{h}_0}$$
(3.12)

Sustituyendo 3.12 en 3.11 e introduciendo la notación $K_0 = K(h_0)$:

$$S_{f}\left(Q_{0}+\tilde{Q}, h_{0}+\tilde{h}\right) = \left| Q_{0} \right| \left(Q_{0}+2\tilde{Q}\right) \left| K_{0}^{-2}-2K_{0}^{-3}\left(\frac{\partial K_{0}}{\partial h}\right)_{x} \right| \left| h_{0} \right| + O\left(\tilde{h}^{2}, \tilde{Q}^{2}\right)$$

desarrollando:

$$S_{f}\left(Q_{0}+\bar{Q}, h_{0}+\bar{h}\right) = \frac{|Q_{0}|Q_{0}}{K_{0}^{2}} + 2\frac{|Q_{0}|\bar{Q}}{K_{0}^{2}} - 2\frac{|Q_{0}|Q_{0}}{K_{0}^{3}}\left(\frac{\partial K}{\partial h_{0}}\right)\bar{h} + O\left(\bar{h}^{2}, \bar{h}, \bar{Q}, \bar{Q}^{2}\right)$$

ya que:

$$S_{r_0} = \frac{|Q_0|Q_0}{K_0^2} \qquad \qquad y \qquad \qquad K_0 = \frac{\partial K}{\partial h_0}$$

entonces:

$$S_{f}\left(Q_{0}+\tilde{Q}, h_{0}+\tilde{h}\right) = S_{\tilde{h}_{0}} + 2 \frac{|Q_{0}|\tilde{Q}}{K_{0}^{2}} - 2 \frac{|Q_{0}|Q_{0}}{K_{0}^{3}} K_{0} \tilde{h} + O\left(\tilde{h}^{2}, \tilde{h} \tilde{Q}, \tilde{Q}^{2}\right)$$

lo que sustituido en la ecuación dinámica para flujo gradualmente variado (3.6), resulta en:

$$\frac{\partial h}{\partial x} = S_0 - S_{f_0} - 2 \frac{|Q_0|\dot{Q}}{K_0^2} + 2 \frac{|Q_0|Q_0}{K_0^3} K_0 \dot{h}$$

Desarrollando de manera similar la ecuación de continuidad que tiene la forma:

$$B \frac{\partial h}{\partial t} + \frac{\partial Q}{\partial x} = 0$$

y con la hipótesis de que $S_0 = S_{t_0} = cte$, se obtienen las Ecuaciones de Saint-Venant linealizadas:

16

$$B_0 \frac{\partial \hat{h}}{\partial t} + \frac{\partial \hat{Q}}{\partial x} = 0$$
 Continuidad (3.13)

$$\frac{\partial \mathbf{\tilde{h}}}{\partial \mathbf{x}} = 2 \frac{|\mathbf{Q}_0|}{\mathbf{K}_0^2} \left(\frac{\mathbf{Q}_0 \mathbf{K}_0}{\mathbf{K}_0} \mathbf{\tilde{h}} - \mathbf{Q} \right)$$

Cantidad de Movimiento (3.14)

Esta última versión de las ecuaciones de Saint-Venant se aplicará en la metodología propuesta. Dichas ecuaciones pueden expresarse como;

$$\frac{\partial \hat{\mathbf{h}}}{\partial t} = -\frac{1}{\mathbf{B}_0} \frac{\partial \mathbf{Q}}{\partial \mathbf{x}}$$
(3.15)

$$\frac{\partial \mathbf{\hat{h}}}{\partial \mathbf{x}} = \frac{2|\mathbf{Q}_0|\mathbf{Q}_0\mathbf{K}_0}{\mathbf{K}_0^3} \mathbf{\hat{h}} - \frac{2|\mathbf{Q}_0|}{\mathbf{K}_0^2} \mathbf{\hat{Q}}$$
(3.16)

Derivando la ecuación 3.15 con respecto a x y la ecuación 3.16 con respecto a t, se obtiene:

가슴이 있는 것을 가지? 정말이 하는 것은 이렇게 한 것을 하는 것을 하 같은 것은 것은 것은 것을 수 있는 것을 하는 것을 하는 것을 하는 것을 하는 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있는 것을 하는 것을 하는 것을 하는 것을 하는 것을 하는 것을 수 있

$$\frac{\partial^2 \hat{h}}{\partial x \partial t} = -\frac{1}{B_0} \frac{\partial^2 \tilde{Q}}{\partial x^2}$$
(3.17)

$$\frac{\partial^2 \hat{h}}{\partial x \partial t} = \frac{2|Q_0|Q_0 K_0}{K_0^3} \frac{\partial \hat{h}}{\partial t} - \frac{2|Q_0|}{K_0^2} \frac{\partial \hat{Q}}{\partial t}$$
(3.18)

Sustituyendo la ecuación 3.17 en la ecuación 3.18 y simplificando:

$$\frac{\partial \dot{Q}}{\partial t} + V \frac{\partial \dot{Q}}{\partial x} = D \frac{\partial^2 Q}{\partial x^2}$$
(3.19)

donde:

$$V = \frac{Q_0 K_0}{B_0 K_0}$$
(3.20)

$$D = \frac{K_0^2}{2B_0 |Q_0|}$$
(3.21)

La expresión 3.19 representa la ecuación de advección-difusión en \bar{Q} , (Ponce, 1989). Alternativamente se puede obtener una ecuación de advección-difusión en \bar{h} ; sin embargo la que se utilizará para todos los desarrollos posteriores es la ecuación 3.19.

Condiciones de frontera para la ecuación de advección-difusión

Consideremos un tramo de cauce de longitud L, en el cual la sección de entrada está en x = 0 y la sección de salida en x = L, según se muestra en la fig. 3.3.

Fig. 3.3 Tránsito de avenidas en un tramo de cauce

La condición de frontera aguas arriba (x = 0) está dada por el hidrograma de entrada, por lo que se puede afirmar que el gasto de entrada en todo el tiempo es conocido, es decir: Q(0,t) = I(t).

Por lo que se refiere a la condición de frontera aguas abajo (x=L), en este trabajo cubriremos dos posibilidades: tirante constante y relación tirante-gasto.

El tirante aguas abajo de un tramo de cauce permanece prácticamente constante cuando el río descarga a un cuerpo de agua de gran capacidad de regulación en el cual el volumen de entrada al almacenamiento no afecta de manera importante al nivel del agua. Como no existe variación del tirante en el tiempo en x=L:

Por tanto, la ecuación de continuidad queda como:

$$\frac{\partial Q}{\partial x} = 0$$

lo cual, recordando que $Q = Q_0 + \dot{Q}$, donde Q_0 es constante, resulta en:

$$\frac{\partial \dot{\mathbf{Q}}}{\partial \mathbf{x}} = \mathbf{0} \tag{3.22}$$

En el otro caso, existe una relación entre el tirante y el gasto aguas abajo del tramo de cauce, de la forma:

$$\frac{\mathbf{Q}}{\mathbf{Q}_{r}} = \left(\frac{\mathbf{h}}{\mathbf{h}_{r}}\right)^{\alpha} \tag{3.23}$$

en donde h, y Q, son valores de referencia para el tirante y el gasto, respectivamente, en la relación tirante-gasto y α es una constante que caracteriza a la sección de control.

Ahora bien, en la mayoría de las situaciones que se presentan en la práctica, la relación 3.23 solo puede tomarse como una aproximación; pues es bien conocido que, en términos de la relación tirante-gasto, la curva de ascenso de un hidrograma es distinta de la de descenso y ambas son diferentes de la curva correspondiente a flujo permanente, según se muestra en la fig. 3.4.

Fig. 3.4 Relación Tirante-Gasto

Considerando 3.7 y 3.8, la ecuación 3.23 se puede escribir como:

$$\frac{\mathbf{Q}_{0}+\mathbf{Q}}{\mathbf{Q}_{r}}=\left(\frac{\mathbf{h}_{0}+\mathbf{h}}{\mathbf{h}_{r}}\right)^{n}$$
(3.24)

haciendo un desarrollo en serie binomial en la ecuación 3.24, se obtiene:

$$\frac{\mathbf{Q}_{0}}{\mathbf{Q}_{r}} + \frac{\mathbf{\tilde{Q}}}{\mathbf{Q}_{r}} = \left(\frac{\mathbf{h}_{0}}{\mathbf{h}_{r}}\right)^{\alpha} + \alpha \cdot \frac{\mathbf{h}_{0}^{\alpha-1}}{\mathbf{h}_{r}^{\alpha}} \mathbf{\tilde{h}} + \mathbf{O}\left(\mathbf{\tilde{h}}^{2}\right)$$

pero en x = L se cumple que:

$$\frac{Q_0}{Q_r} = \left(\frac{h_0}{h_r}\right)^{\alpha}$$

y despreciando términos de O (\hbar^2) :

$$\frac{\check{\mathbf{Q}}}{\mathbf{Q}_{\mathbf{r}}} = \alpha \left(\frac{\mathbf{h}_0}{\mathbf{h}_{\mathbf{r}}}\right)^{\alpha-1} \frac{\check{\mathbf{h}}}{\mathbf{h}_{\mathbf{r}}}$$

de donde h

$$\tilde{\mathbf{h}} = \frac{\mathbf{h}_{\mathbf{r}}}{\alpha} \left(\frac{\mathbf{h}_{\mathbf{r}}}{\mathbf{h}_{\mathbf{0}}}\right)^{\alpha-1} \frac{\tilde{\mathbf{Q}}}{\mathbf{Q}_{\mathbf{r}}}$$

derivando 3.25 con respecto a x se obtiene

$$\frac{\partial \tilde{h}}{\partial x} = \frac{h_r}{\alpha} \left(\frac{h_r}{h_0} \right)^{\alpha-1} \frac{1}{Q_r} \frac{\partial \tilde{Q}}{\partial x}$$
(3.26)

(3.25)

sustituyendo 3.25 y 3.26 en la ecuación de cantidad de movimiento linealizada, ecuación 3.14 se llega a:

$$\frac{\mathbf{h}_{r}}{\alpha} \left(\frac{\mathbf{h}_{r}}{\mathbf{h}_{0}}\right)^{\alpha-1} \frac{1}{\mathbf{Q}_{r}} \frac{\partial \bar{\mathbf{Q}}}{\partial \mathbf{x}} = \frac{2|\mathbf{Q}_{0}|\bar{\mathbf{Q}}|}{K_{0}^{2}} \frac{\mathbf{Q}_{0}K_{0}}{K_{0}} \frac{\mathbf{h}_{r}}{\alpha} \left(\frac{\mathbf{h}_{r}}{\mathbf{h}_{0}}\right)^{\alpha-1} \frac{1}{\mathbf{Q}_{r}} - 1$$

que también se puede escribir como

$$\frac{\partial \dot{\mathbf{Q}}}{\partial \mathbf{x}} - \beta \dot{\mathbf{Q}} = \mathbf{0} \tag{3.27}$$

donde

$$\beta = \frac{2 |Q_0|}{K_0^2} \left[\frac{Q_0 K_0}{K_0} - \frac{\alpha}{h_r} \left(\frac{h_0}{h_r} \right)^{\alpha - 1} Q_r \right]$$
(3.28)

La ecuación 3.27 constituye la condición de frontera linealizada para la ecuación de advección-difusión 3.19 cuando existe una relación tirante gasto en x = L.

4 Métodos hidrológicos

Como ya se ha comentado, el tránsito de avenidas en cauces se puede hacer utilizando tanto métodos hidráulicos como métodos hidrológicos.

Los métodos hidrológicos tradicionalmente se sustentan en el desarrollo de la ecuación de continuidad y alguna relación entre la variación del volumen de almacenamiento y los gastos de entrada y de salida al tramo del cauce.

Entre los métodos hidrológicos más utilizados, destaca el método de Muskingum, desarrollado por el Cuerpo de Ingenieros del Ejército de los Estados Unidos de Norteamérica, (McCarthy, 1938).

Método de Muskingum

Este método está basado en la ecuación de continuidad, expresada en la forma;

$$\frac{\mathrm{dS}}{\mathrm{dt}} = 1 - \mathbf{O} \tag{4.1}$$

donde: S = volumen de almacenamiento en el tramo de río $[m^3/s]$

I = flujo de entrada al tramo [m³/s]

- O = flujo de salida del tramo [m³/s]
- t = tiempo [s]

la cual se puede discretizar de la forma:

$$\frac{S^{n+1} - S^n}{\Delta t} = \frac{I^{n+1} + I^n}{2} - \frac{O^{n+1} + O^n}{2}$$

donde Sⁿ, Iⁿ y Oⁿ son aproximaciones discretas a S($n\Delta t$), I($n\Delta t$) y O($n\Delta t$), respectivamente, y Δt es un intervalo de tiempo. La ecuación anterior también se puede escribir como:

$$\mathbf{S}^{n+1} - \mathbf{S}^{n} = \left(\mathbf{I}^{n+1} + \mathbf{I}^{n}\right) \frac{\Delta t}{2} - \left(\mathbf{O}^{n+1} + \mathbf{O}^{n}\right) \frac{\Delta t}{2}$$
(4.2)

El método Muskingum utiliza una relación lineal entre el almacenamiento S en el tramo y las entradas y salidas I y O, de la forma:

$$S = K O + K X [I - O] = K [X I + (1 - X) O]$$
(4.3)

donde:

K = parámetro de almacenamiento

X = factor de peso

La ecuación 4.3 plantea el almacenamiento en un tramo de río y se puede dividir en dos partes, la primera corresponde a un almacenamiento en forma prismática definida por el término KO, que depende solamente de las salidas, y es el único almacenamiento, si se considera que la pendiente de la superficie libre es paralela a la pendiente de la plantilla del río. Este almacenamiento es análogo al que se tiene en un tránsito de avenidas en vasos.

El otro tipo de almacenamiento que prácticamente no existe en vasos, es el denominado almacenamiento en cuña. Ambos tipos de almacenamiento se muestran en la figura 4.1:

Fig. 4.1 Almacenamientos en prisma y en cuña

El almacenamiento en cuña se debe al efecto de la diferencia de la pendiente de la superficie libre del agua, S_{p} con respecto a la pendiente de la plantilla del río, S_{o} . S_{f} depende tanto de las entradas como de las salidas y en el método de Muskingum, el almacenamiento total se toma como una función lineal de los gastos de entrada I y de salida O. Dicha relación lineal incluye los parámetros K y X, los cuales se calculan por medio de una calibración a partir de una avenida que fue medida tanto en la entrada como en la salida del tramo en estudio. La ecuación 4.3 para los tiempos n y n+1 queda:

$$S^{n+1} = K [X | I^{n+1} + (1 - X) O^{n+1}]$$

$$S^{n} = K [X | I^{n+1} + (1 - X) O^{n}]$$
(4.5)

Sustituyendo las ecuaciones 4.4 y 4.5 en 4.3 se obtiene:

K [XIⁿ⁺¹ + (1-X)Oⁿ⁺¹] - K [XIⁿ + (1-X) Oⁿ] = (Iⁿ⁺¹ + Iⁿ)
$$\frac{\Delta t}{2}$$
 - (Oⁿ⁺¹ + Oⁿ) $\frac{\Delta t}{2}$

Simplificando la ecuación anterior, se llega a:

$$O^{n+1}[2K(1-X)+\Delta t] = I^{n+1} [-2KX+\Delta t] + I^{n} [2KX+\Delta t] + O^{n} [2K(1-X)-\Delta t]$$

Esta ecuación corresponde a la ecuación de Muskingum, la cual normalmente se expresa como:

$$O^{n+1} = C_0 I^{n+1} + C_1 I^n + C_2 O^n$$
(4.6)

donde:

$$C_{0} = \frac{-2 K X + \Delta t}{2 K (1 - X) + \Delta t}$$

$$C_{1} = \frac{2 K X + \Delta t}{2 K (1 - X) + \Delta t}$$
$$C_{2} = \frac{2 K (1 - X) - \Delta t}{2 K (1 - X) + \Delta t}$$

cumpliéndose que: $C_0 + C_1 + C_2 = 1$

(4.7)

Con la ecuación de Muskingum es posible efectuar el tránsito de cualquier avenida por el tramo en estudio, con un incremento de tiempo dado y con los parámetros K y X calibrados, a partir de los datos de escurrimiento en la entrada y la salida previamente medidos.

La ecuación 4.7 garantiza la satisfacción global del principio de conservación de masa ya que, en ausencia de entradas laterales, se cumple que:

$\sum_{n} I^{n} = \sum_{n} I^{n+1} = \sum_{n} O^{n} = \sum_{n} O^{n+1}$

la expresión anterior utilizada en la (4.6) cumple (4.7).

En muchas ocasiones, los valores de los parámetros K y X del método de Muskingum tradicional obtenidos por calibración con una avenida de magnitud específica, no son los más adecuados para tormentas que se presentan en la misma cuenca y que tienen magnitud diferente. Por esta razón, en este trabajo se estudia un método hidrológico para tránsito de avenidas basado en el uso de parámetros que incorporan las características geométricas del cauce, así como las características hidráulicas de la avenida, por lo que pueden ajustarse dependiendo de la avenida que se desee transitar. Cabe señalar que como es de esperar, el método propuesto es menos preciso que un método hidráulico, sin embargo, los resultados que se obtienen son mucho mejores que los obtenidos con los métodos hidrológicos tradicionales. El método propuesto tiene las ventajas de un método hidrológico, al igual que el método de Muskingum, en el que no se requiere conocer con detalle las características geométricas del cauce, pero tiene las ventajas de incluir una base física con la que se obtienen buenos resultados, por lo que puede ser muy útil en los casos donde no se dispone de ese tipo de datos.

5 El método de Muskingum - Cunge

Antes de presentar el método propuesto en este trabajo, es necesario aclarar ciertas percepciones equivocadas del método conocido como "Muskingum-Cunge", (Cunge, 1969).

Suponiendo que existe una relación área-gasto uno a uno, de la forma Q = Q(A), el término de almacenamiento en la ecuación de continuidad 3.1 se puede escribir como

$$\frac{\partial A}{\partial t} = \frac{1}{c} \frac{\partial Q}{\partial t}$$
(5.1)

donde

$$c = \frac{dQ}{dA}$$
(5.2)

es una celeridad. Sustituyendo 5.1 en 3.1 se llega a:

$$\frac{\partial Q}{\partial t} + c \frac{\partial Q}{\partial x} = 0$$
 (5.3)

La expresión 5.3 se conoce como la ecuación de la onda cinemática (Ponce, 1989). Esta ecuación se puede linealizar alrededor de un estado de flujo uniforme; utilizando la expresión 3.7 se obtiene como resultado:

$$\frac{\partial \tilde{\mathbf{Q}}}{\partial t} + \mathbf{c}_0 \frac{\partial \tilde{\mathbf{Q}}}{\partial x} = \mathbf{0}$$
(5.4)

donde

$$c_0 = \left(\frac{dQ}{dA}\right)_0 \equiv V$$

(véase ecuación 3.20) es la celeridad constante de una onda cinemática de pequeña amplitud.

La ecuación 5.4 puede aproximarse en diferencias finitas mediante el siguiente esquema, (Cunge, 1969):

Fig. 5.1 Discretización

$$\chi \frac{Q_{j}^{n+1}-Q_{j}^{n}}{\Delta t} + \left(1 - \chi\right) \frac{\dot{Q}_{j+1}^{n+1}-Q_{j+1}^{n}}{\Delta t} + c_{0} \left(\frac{1}{2} \cdot \frac{Q_{j+1}^{n+1}-Q_{j}^{n+1}}{\Delta x} + \frac{1}{2} \cdot \frac{\dot{Q}_{j+1}^{n}-\dot{Q}_{j}^{n}}{\Delta x}\right) = 0$$
 (5.5)

donde: \hat{Q}_i^n es una aproximación a $\hat{Q}(j\Delta x, n\Delta t)$ y χ es un factor de peso.

Cunge (1969) demostró que el esquema 5.5 es equivalente al de Muskingum para tránsito de avenidas en canales. En efecto, tomando un tramo de longitud Δx y llamando:

$$1^{n} = Q_{j}^{n}$$
 (5.6)

$$O^{n} = Q_{j+1}^{n}$$
 (5.7)

donde, como se explicó anteriormente, lⁿ y Oⁿ representan, respectivamente, el gasto de entrada y salida del tramo respectivamente, correspondientes al instante n, además:

$$K = \frac{\Delta x}{\alpha}$$

se obtiene al sustituir 5.6, 5.7 y 5.8 en 5.5 y despejando a Oⁿ⁺¹:

$$O^{n+1} = \frac{1}{2K(1-\chi)+\Delta t} \{ (-2K\chi + \Delta t) I^{n+1} + (2K\chi + \Delta t) I^{n} + [2K(1-\chi) - \Delta t] O^{n} \}$$
(5.9)

(5.8)

Según puede observarse, la ecuación 5.9 es idéntica a la ecuación de tránsito para el método de Muskingum, dada por la expresión 4.6.

Ahora bien, con el objeto de analizar con mayor profundidad la relación que el esquema de Muskingum guarda con la ecuación linealizada de la onda cinemática 5.4 y con la ecuación de advección-difusión 3.19, Cunge llevó a cabo un análisis de consistencia, determinando la ecuación diferencial modificada (Beam y Warming, 1976) que de hecho se resuelve al aplicar el esquema en cuestión. De este modo, consideremos las siguientes expansiones en serie de Taylor:

$$\hat{\mathbf{Q}}_{j}^{n+1} = \hat{\mathbf{Q}}_{j}^{n} + \Delta t \left(\frac{\partial \hat{\mathbf{Q}}}{\partial t}\right)_{j}^{n} + \frac{\Delta t^{2}}{2} \left(\frac{\partial^{2} \mathbf{Q}}{\partial t^{2}}\right)_{j}^{n} + \frac{\Delta t^{3}}{6} \left(\frac{\partial^{3} \hat{\mathbf{Q}}}{\partial t^{3}}\right)_{j}^{n} + O(\Delta t^{4})$$
(5.10)

$$\hat{Q}_{j+1}^{n} = \hat{Q}_{j}^{n} + \Delta x \left(\frac{\partial \hat{Q}}{\partial x}\right)_{j}^{n} + \frac{\Delta x^{2}}{2} \left(\frac{\partial^{2} \hat{Q}}{\partial x^{2}}\right)_{j}^{n} + \frac{\Delta x^{3}}{6} \left(\frac{\partial^{3} \hat{Q}}{\partial x^{3}}\right)_{j}^{n} + O(\Delta x^{4})$$
(5.11)

$$\hat{Q}_{j+1}^{n+1} = \hat{Q}_{j}^{n} + \Delta x \left(\frac{\partial \hat{Q}}{\partial x}\right)_{j}^{n} + \Delta t \left(\frac{\partial \hat{Q}}{\partial t}\right)_{j}^{n} + \frac{\Delta x^{2}}{2} \left(\frac{\partial^{2} \hat{Q}}{\partial x^{2}}\right)_{j}^{n} + \Delta x \Delta t \left(\frac{\partial^{2} \hat{Q}}{\partial x \partial t}\right)_{j}^{n} + \frac{\Delta t^{2}}{2} \left(\frac{\partial^{2} \hat{Q}}{\partial t^{2}}\right)_{j}^{n} + \frac{\Delta x^{3}}{6} \left(\frac{\partial^{3} \hat{Q}}{\partial x^{3}}\right)_{j}^{n}$$

$$(5.12)$$

$$+ \frac{\Delta x^{2} \Delta t}{2} \left(\frac{\partial^{3} \hat{Q}}{\partial x^{2} \partial t}\right)_{j}^{n} + \frac{\Delta x \Delta t^{2}}{2} \left(\frac{\partial^{3} \hat{Q}}{\partial x \partial t^{2}}\right)_{j}^{n} + \frac{\Delta t^{3}}{6} \left(\frac{\partial^{3} \hat{Q}}{\partial t^{3}}\right)_{j}^{n} + O(\Delta x^{4}, \Delta x^{3} \Delta t, \Delta x^{2} \Delta t^{2}, \Delta x \Delta t^{3}, \Delta t^{4})$$
Sustituyendo las ecuaciones 5.10, 5.11 y 5.12 en el esquema 5.5, se obtiene:

$$\frac{\partial \dot{Q}}{\partial t} + c_0 \frac{\partial \dot{Q}}{\partial x} + \frac{\Delta t}{2} \frac{\partial^2 \dot{Q}}{\partial t^2} + \frac{\Delta t^2}{6} \frac{\partial^3 \dot{Q}}{\partial t^3} + c_0 \left[\left(1 - \chi \right) \left(\Delta x \frac{\partial^2 \dot{Q}}{\partial x \partial t} + \frac{\Delta x^2}{2} \frac{\partial^3 \dot{Q}}{\partial x^2 \partial t} + \frac{\Delta x \Delta t}{2} \frac{\partial^3 \dot{Q}}{\partial x \partial t^2} \right) + (5.13)$$

$$\frac{\Delta x}{2} \frac{\partial^2 \dot{Q}}{\partial x^2} + \frac{\Delta x^2}{6} \frac{\partial^3 \dot{Q}}{\partial x^3} + \frac{\Delta t^2}{2} \frac{\partial^2 \dot{Q}}{\partial x \partial t} + \frac{\Delta x \Delta t}{4} \frac{\partial^3 \dot{Q}}{\partial x^2 \partial t} + \frac{\Delta t^2}{4} \frac{\partial^3 \dot{Q}}{\partial x \partial t^2} \right] + O(\Delta x^3, \Delta x^2 \Delta t, \Delta x \Delta t^2, \Delta t^3) = 0$$

donde, por simplicidad, el subíndice j y el superíndice n han sido eliminados.

Evidentemente el límite de la ecuación 5.13 cuando $\Delta x \rightarrow 0$ es la ecuación 5.4, por lo que el esquema de Muskingum es consistente con la ecuación linealizada de la onda cinemática. Adicionalmente la ecuación 5.13 muestra que el error de truncado del esquema de Muskingum, como aproximación de la ecuación 5.4 es de $O(\Delta x, \Delta t)$.

Como siguiente paso, Cunge supuso que Q satisfacía la ecuación 5.4, de modo que utilizó expresiones del siguiente tipo como equivalencias entre derivadas temporales y mixtas, y derivadas espaciales:

Sustituyendo las ecuaciones 5.14 a 5.19 en la ecuación 5.13 y reordenando términos, se obtiene:

$$\frac{\partial \dot{\mathbf{Q}}}{\partial t} + c_0 \frac{\partial \dot{\mathbf{Q}}}{\partial x} = \left(\frac{1}{2} - \chi\right) c_0 \Delta x \frac{\partial^2 \dot{\mathbf{Q}}}{\partial x^2} + \left[\left(\frac{2}{3} - \chi\right) - \left(\frac{1}{2} - \chi\right) \mathbf{rc} - \frac{\mathbf{r}^2 \mathbf{c}^2}{\mathbf{c}}\right] \frac{\Delta x^2}{2} \frac{\partial^3 \dot{\mathbf{Q}}}{\partial x^3} + O(\Delta x^3)$$
(5.20)

donde

0

$$\mathbf{r} = \frac{\Delta t}{\Delta \mathbf{x}} \tag{5.21}$$

Recordando que $c_0 = V$, a partir de la ecuación 5.20, Cunge razonó que al hacer

$$\left(\frac{1}{2} - \chi\right) c_0 \Delta x = \mathbf{D}$$
(5.22)

 $\chi = \frac{1}{2} - \frac{D}{c_0 \Delta x}$ (5.23)

la ecuación 5.20 quedaría como

$$\frac{\partial Q}{\partial t} + c_0 \frac{\partial Q}{\partial x} = D \frac{\partial^2 \dot{Q}}{\partial x^2} + O(\Delta x^2)$$
(5.24)

por lo que se concluyó que el esquema de Muskingum, cuando el factor de peso se determinara a través de 5.23, podía ser considerado como una aproximación de segundo orden a la ecuación de advección-difusión.

Esto pareció ser un resultado altamente satisfactorio, ya que, por un lado, las expresiones 5.8 y 5.23 permitirían ligar los parámetros de Muskingum con características físicas del cauce, y por otro, en apariencia; Cunge había podido demostrar que el esquema de Muskingum no sólo podía aproximar la ecuación de la onda cinemática (la cual supone la existencia de una relación gasto-tirante uno a uno), sino que, cuando se emplea 5.23, dicho esquema aproximaba la ecuación de advección-difusión, la cual representa una mejor aproximación a las ecuaciones dinámicas.

A pesar de los aparentemente razonables argumentos anteriores, Aldama, (1995) (vease también French, 1991) ha demostrado que Cunge llevó a cabo su análisis en forma errónea. A continuación se presentan los resultados obtenidos por Aldama. En primer lugar, Cunge supuso que \hat{Q} satisfacía la ecuación de la onda cinemática 5.4. Esta suposición es falaz, ya que la ecuación que \hat{Q} satisface, es la ecuación diferencial modificada (Por otro lado, si \hat{Q} satisficiera la ecuación de la onda cinemática 5.4, jel error de discretización $\hat{Q} - \hat{Q}$ sería cero para Δx , Δt finitas!). Por tal motivo, para obtener equivalencias entre derivadas temporales y mixtas, y derivadas espaciales, es necesario utilizar la ecuación 5.13.

Sustituyendo la ecuación 5.23 en 5.13 se obtiene:

$$\frac{\partial \hat{\mathbf{Q}}}{\partial t} = \mathbf{c}_0 \frac{\partial \hat{\mathbf{Q}}}{\partial x} - \frac{\mathbf{D}}{\mathbf{c}_0} \frac{\partial^2 \hat{\mathbf{Q}}}{\partial x \partial t} + \mathbf{O}(\Delta x)$$

por lo que:

$$\frac{\partial^2 \dot{Q}}{\partial x \partial t} = c_0 \frac{\partial^2 \dot{Q}}{\partial x^2} - \frac{D}{c_0} \frac{\partial^3 \dot{Q}}{\partial x^2 \partial t} + O(\Delta x)$$

(5.26)

(5.25)

Sustituyendo 5.26 en 5.25, se llega a:

$$\frac{\partial \dot{Q}}{\partial t} = -c_0 \frac{\partial \dot{Q}}{\partial x} + D \frac{\partial^2 \dot{Q}}{\partial x^2} + \left(\frac{D}{c_0}\right)^2 \frac{\partial^3 \dot{Q}}{\partial x^2 \partial t} + O(\Delta x)$$
(5.27)

de donde:

$$\frac{\partial^3 \dot{\mathbf{Q}}}{\partial x^2 \partial t} = -c_0 \frac{\partial^3 \dot{\mathbf{Q}}}{\partial x^3} - \frac{\mathbf{D}}{c_0} \frac{\partial^4 \dot{\mathbf{Q}}}{\partial x^3 \partial t} + \mathbf{O}(\Delta \mathbf{x})$$
(5.28)

sustituyendo 5.28 en 5.27 resulta en:

$$\frac{\partial \hat{Q}}{\partial t} = -c_0 \frac{\partial \hat{Q}}{\partial x} + D \frac{\partial^2 \hat{Q}}{\partial x^2} + \left(\frac{D}{c_0}\right)^2 c_0 \frac{\partial^3 \hat{Q}}{\partial x^3} - \left(\frac{D}{c_0}\right)^3 \frac{\partial^4 \hat{Q}}{\partial x^3 \partial t} + O(\Delta x)$$
(5.29)

Continuando con el proceso de sustitución iterada, por inducción, se obtiene:

$$\frac{\partial \hat{Q}}{\partial t} = -c_0 \frac{\partial \hat{Q}}{\partial x} - c_0 \sum_{k=1}^{\infty} (-1)^k \left(\frac{D}{c_0} \right)^k \frac{\partial^{k+1} \hat{Q}}{\partial x^{k+1}} + O(\Delta x)$$
(5.30)

Tomando el límite para $\Delta x \rightarrow 0$, se obtiene que la ecuación diferencial que satisface el esquema de Muskingum - Cunge es:

$$\frac{\partial \dot{\mathbf{Q}}}{\partial t} + c_0 \frac{\partial \mathbf{Q}}{\partial x} = \mathbf{D} \frac{\partial^2 \mathbf{Q}}{\partial x^2} - c_0 \sum_{k=2}^{\infty} (-1)^k \left(\frac{\mathbf{D}}{c_0}\right)^k \frac{\partial^{k+1} \mathbf{Q}}{\partial x^{k+1}}$$
(5.31)

计记录 电自己转动 医白色白色 医白白色

lo cual demuestra que dicho esquema es inconsistente con la ecuación de advección-difusión.

Este hallazgo justifica desarrollar un método hidrológico de tránsito de avenidas en cauces que sí aproxime la ecuación de advección-difusión, según se explica en el resto del trabajo.

6 El método de advección difusión

Una vez demostrado que el método de Muskingum-Cunge carece de base física adecuada, se justifica desarrollar un método hidrológico de tránsito de avenidas en cauces con base física. Con ese objeto, se supondrá que la longitud total del tramo de cauce se divide en dos incrementos espaciales Δx , como se muestra en la figura 6.1.

De este modo puede utilizarse el siguiente esquema en el que se emplean aproximaciones en diferencias centrales en el espacio y la regla trapezoidal (o esquema de Crank - Nicolson) en el tiempo:

Fig. 6.1 Discretización en el espacio y en el tiempo

$$\frac{\underline{Q}_{j}^{k+1} - \underline{Q}_{j}^{k}}{\Delta t} + \frac{\underline{V}}{2} \left[\frac{\underline{Q}_{j+1}^{k+1} - \underline{Q}_{j-1}^{k+1}}{2\Delta x} + \frac{\underline{Q}_{j+1}^{k} - \underline{Q}_{j-1}^{k}}{2\Delta x} \right] = \\ = \frac{\underline{D}}{2} \left[\frac{\underline{Q}_{j+1}^{k+1} - 2\underline{Q}_{j}^{k+1} + \underline{Q}_{j-1}^{k+1}}{\Delta x^{2}} + \frac{\underline{Q}_{j+1}^{k} - 2\underline{Q}_{j}^{k} + \underline{Q}_{j-1}^{k}}{\Delta x^{2}} \right]$$
(6.1)

donde \hat{Q}_j^k representa una aproximación discreta a $Q(j\Delta x, k\Delta t)$. Es sencillo demostrar que el error de truncado del esquema 6.1 es de $O(\Delta x^2, \Delta t^2)$.

La relación linealizada tirante - gasto dada en 3.24 se puede aproximar mediante el uso de diferencias hacia atrás de $O(\Delta x^2)$ como sigue:

$$\frac{3\dot{Q}_{j+1}^{k+1} - 4\dot{Q}_{j}^{k+1} + \dot{Q}_{j-1}^{k+1}}{2\Delta x} - \beta\dot{Q}_{j+1}^{k+1} = 0$$
$$\frac{3\dot{Q}_{j+1}^{k} - 4\dot{Q}_{j}^{k} + \dot{Q}_{j-1}^{k}}{2\Delta x} - \beta\dot{Q}_{j+1}^{k} = 0$$

de las dos ecuaciones anteriores, se despejan los gastos en j:

$$\hat{Q}_{j}^{k+1} = \phi \hat{Q}_{j+1}^{k+1} + \frac{1}{4} \hat{Q}_{j-1}^{k+1}$$
(6.2)

$$Q_{j}^{k} = \phi \dot{Q}_{j+1}^{k} + \frac{1}{4} \dot{Q}_{j-1}^{k}$$
(6.3)

donde

$$\phi = \frac{3}{4} - \frac{\beta \Delta x}{2} \tag{6.4}$$

Sustituyendo 6.2 y 6.3 en la ecuación discreta de advección-difusión, ecuación 6.1, se obtiene:

$$\frac{\phi Q_{j+1}^{k+1} + \frac{1}{4} Q_{j-1}^{k+1} - \phi Q_{j+1}^{k} - \frac{1}{4} Q_{j-1}^{k}}{\Delta t} + \frac{V}{4\Delta x} \left[Q_{j+1}^{k+1} - Q_{j-1}^{k+1} + Q_{j+1}^{k} - Q_{j-1}^{k} \right]$$
$$= \frac{D}{2\Delta x} \left[\left(1 - 2\phi \right) Q_{j+1}^{k+1} + \frac{1}{2} Q_{j-1}^{k+1} + \left(1 - 2\phi \right) Q_{j+1}^{k} + \frac{1}{2} Q_{j-1}^{k} \right]$$

factorizando y reacomodando términos:

$$\begin{bmatrix} \phi + \frac{\mathbf{V}\Delta t}{4\Delta \mathbf{x}} - \left(1 - 2\phi\right) \frac{\mathbf{D}\Delta t}{2\Delta \mathbf{x}^2} \end{bmatrix} \mathbf{Q}_{j+1}^{k+1} = \begin{bmatrix} -\frac{1}{4} + \frac{\mathbf{V}\Delta t}{4\Delta \mathbf{x}} + \frac{\mathbf{D}\Delta t}{4\Delta \mathbf{x}^2} \end{bmatrix} \mathbf{Q}_{j-1}^{k+1} \\ \begin{bmatrix} \phi - \frac{\mathbf{V}\Delta t}{4\Delta \mathbf{x}} + \left(1 - 2\phi\right) \frac{\mathbf{D}\Delta t}{2\Delta \mathbf{x}^2} \end{bmatrix} \mathbf{Q}_{j+1}^{k} + \begin{bmatrix} \frac{1}{4} + \frac{\mathbf{V}\Delta t}{4\Delta \mathbf{x}} + \frac{\mathbf{D}\Delta t}{4\Delta \mathbf{x}^2} \end{bmatrix} \mathbf{Q}_{j-1}^{k}$$

Llamando:

$$C = \left[\phi + \frac{V\Delta t}{4\Delta x} - \left(1 - 2\phi\right)\frac{D\Delta t}{2\Delta x^2}\right]$$

(6.5)

(6.6)

$$C_{0} = \left[-\frac{1}{4} + \frac{V\Delta t}{4\Delta x} + \frac{D\Delta t}{4\Delta x^{2}} \right]$$

$$C_{1} = \left[\frac{1}{4} + \frac{V\Delta t}{4\Delta x} + \frac{D\Delta t}{4\Delta x^{2}} \right]$$

$$C_{2} = \left[\phi - \frac{V\Delta t}{4\Delta x} + \left(1 - 2\phi \right) \frac{D\Delta t}{2\Delta x^{2}} \right]$$

sean:

$$\hat{C}_0 = \frac{C_0}{C}$$
 $\hat{C}_1 = \frac{C_1}{C}$ $\hat{C}_2 = \frac{C_2}{C}$ (6.7)

у

$$O^{k+1} = \hat{Q}_{j+1}^{k+1}, \qquad I^{k+1} = \hat{Q}_{j-1}^{k+1}, \qquad I^{k} = \hat{Q}_{j-1}^{k}, \qquad O^{k} = \hat{Q}_{j+1}^{k}$$

Entonces

$$O^{k+1} = \hat{C}_0 I^{k+1} + \hat{C}_1 I^k + \hat{C}_2 O^k$$

Esta última expresión tiene una estructura idéntica a la ecuación de tránsito correspondiente al método de Muskingum dada en 4.6.

Según se explicó anteriormente, los coeficientes de una ecuación de tránsito como 6.8 deben cumplir con la siguiente condición de continuidad:

$$\hat{C}_{0} + \hat{C}_{1} + \hat{C}_{2} = 1 \tag{6.9}$$

(6.8)

o, de acuerdo con 6.7:

$$C_0 + C_1 + C_2 = C.$$
 (6.10)

Pero según las expresiones 6.16;

$$C_0 + C_1 + C_2 = \phi + \frac{V \Delta t}{4 \Delta x} + (1 - \phi) \frac{D \Delta t}{\Delta x^2}$$

la cual, de acuerdo con 6.5, se puede escribir como:

$$\phi + \frac{\mathbf{V} \,\Delta t}{4 \,\Delta \mathbf{x}} + \left(1 - \phi\right) \frac{\mathbf{D} \,\Delta t}{\Delta \mathbf{x}^2} = \phi + \frac{\mathbf{V} \,\Delta t}{4 \,\Delta \mathbf{x}} - \left(1 - 2\phi\right) \frac{\mathbf{D} \,\Delta t}{2 \,\Delta \mathbf{x}^2}$$

simplificando;

$$\left(1-\phi\right)\frac{\mathbf{D}\ \Delta t}{\Delta \mathbf{x}^{2}}=-\left(1-2\phi\right)\frac{\mathbf{D}\ \Delta t}{2\ \Delta \mathbf{x}^{2}}$$

de donde:

$$\left(1-\phi\right)=-\frac{\left(1-2\phi\right)}{2} \qquad \Longrightarrow \qquad \phi=\frac{3}{4} \tag{6.11}$$

de acuerdo con 6.4 se tiene:

$$\boldsymbol{\beta} = \boldsymbol{0} \tag{6.12}$$

(6.13)

Sustituyendo el valor de ϕ (6.11) en 6.5 y 6.6, se obtiene:

$$C = \frac{3}{4} + \frac{V}{4}\frac{\Delta t}{\Delta x} + \frac{D}{4}\frac{\Delta t}{\Delta x^2}$$

$$C_0 = -\frac{1}{4} + \frac{V}{4}\frac{\Delta t}{\Delta x} + \frac{D}{4}\frac{\Delta t}{\Delta x^2}$$

$$C_1 = \frac{1}{4} + \frac{V}{4}\frac{\Delta t}{\Delta x} + \frac{D}{4}\frac{\Delta t}{\Delta x^2}$$

$$C_2 = \frac{3}{4} - \frac{V}{4}\frac{\Delta t}{\Delta x} - \frac{D}{4}\frac{\Delta t}{\Delta x^2}$$

Ahora bien, sean \hat{C}_0 , \hat{C}_1 y \hat{C}_2 los coeficientes de la fórmula 6.8, los cuales pueden calcularse a partir de los gastos de entrada y salida de que se dispone (en una calibración) como datos para el tramo de cauce en estudio, entonces, de 6.7:

$$C_0 = \hat{C}_0 C$$
$$C_1 = \hat{C}_1 C$$
$$C_2 = \hat{C}_2 C$$

Sustituyendo 6.13 en el sistema anterior resulta:

$$\frac{1}{4} + \frac{V\Delta t}{4\Delta x} + \frac{D\Delta t}{4\Delta x^2} = \hat{C}_0 \left[\frac{3}{4} + \frac{V\Delta t}{4\Delta x} + \frac{D\Delta t}{4\Delta x^2} \right]$$
$$\frac{1}{4} + \frac{V\Delta t}{4\Delta x} + \frac{D\Delta t}{4\Delta x^2} = \hat{C}_1 \left[\frac{3}{4} + \frac{V\Delta t}{4\Delta x} + \frac{D\Delta t}{4\Delta x^2} \right]$$
$$\frac{3}{4} - \frac{V\Delta t}{4\Delta x} - \frac{D\Delta t}{4\Delta x^2} = \hat{C}_2 \left[\frac{3}{4} + \frac{V\Delta t}{4\Delta x} + \frac{D\Delta t}{4\Delta x^2} \right]$$

multiplicando todo el sistema de ecuaciones por 4:

$$-1 + \frac{V \Delta t}{\Delta x} + \frac{D \Delta t}{\Delta x^{2}} = \hat{C}_{0} \left[3 + \frac{V \Delta t}{\Delta x} + \frac{D \Delta t}{\Delta x^{2}} \right]$$
$$1 + \frac{V \Delta t}{\Delta x} + \frac{D \Delta t}{\Delta x^{2}} = \hat{C}_{1} \left[3 + \frac{V \Delta t}{\Delta x} + \frac{D \Delta t}{\Delta x^{2}} \right]$$
$$3 - \frac{V \Delta t}{\Delta x} - \frac{D \Delta t}{\Delta x^{2}} = \hat{C}_{2} \left[3 + \frac{V \Delta t}{\Delta x} + \frac{D \Delta t}{\Delta x^{2}} \right]$$

factorizando términos semejantes:

$$-1 - 3 \hat{C}_{0} = (\hat{C}_{0} - 1) \frac{V \Delta t}{\Delta x} + (\hat{C}_{0} - 1) \frac{D \Delta t}{\Delta x^{2}}$$

$$1 - 3 \hat{C}_{1} = (\hat{C}_{1} - 1) \frac{V \Delta t}{\Delta x} + (\hat{C}_{1} - 1) \frac{D \Delta t}{\Delta x^{2}}$$

$$3 - 3 \hat{C}_{2} = (\hat{C}_{2} + 1) \frac{V \Delta t}{\Delta x} + (\hat{C}_{2} + 1) \frac{D \Delta t}{\Delta x^{2}}$$

simplificando:

$$\frac{-1-3\hat{C}_0}{\hat{C}_0-1} = \frac{V\Delta t}{\Delta x} + \frac{D\Delta t}{\Delta x^2}$$
$$\frac{1-3\hat{C}_1}{\hat{C}_1-1} = \frac{V\Delta t}{\Delta x} + \frac{D\Delta t}{\Delta x^2}$$
$$\frac{3-3\hat{C}_2}{\hat{C}_2+1} = \frac{V\Delta t}{\Delta x} + \frac{D\Delta t}{\Delta x^2}$$

El sistema de ecuaciones 7.6 es equivalente a:

$$P = \frac{\Delta t}{\Delta x} V + \frac{\Delta t}{\Delta x^2} D$$
 (6.15)

(6.14)

en donde:

$$P = \frac{-1 - 3\hat{C}_0}{\hat{C}_0 - 1} = \frac{1 - 3\hat{C}_1}{\hat{C}_1 - 1} = \frac{3 - 3\hat{C}_2}{\hat{C}_2 + 1} = cte$$
 (6.16)

de la expresión anterior se tienen dos igualdades, la primera de ellas es:

$$\frac{-1-3\hat{C}_0}{\hat{C}_0-1} = \frac{1-3\hat{C}_1}{\hat{C}_1-1}$$

de donde se llega a:

$$\hat{\mathbf{C}}_1 = \frac{1 + \hat{\mathbf{C}}_0}{2}$$

y la segunda,

$$\frac{-1 - 3 \hat{C}_0}{\hat{C}_0 - 1} \frac{3 - 3 \hat{C}_2}{\hat{C}_2 + 1}$$

de donde se obtiene:

$$\hat{C}_2 = \frac{1 - 3 \hat{C}_0}{2} \tag{6.18}$$

(6.17)

sustituyendo 6.17 y 6.18 en la ecuación 6.8, se obtiene:

$$O^{k+1} = \hat{C}_0 I^{k+1} + \frac{1 + \hat{C}_0}{2} I^k + \frac{1 - 3 \hat{C}_0}{2} O^k$$
(6.19)

o bien,

$$O^{k+1} = \left(\frac{1}{2}I^{k} + \frac{1}{2}O^{k}\right) + \left(I^{k+1} + \frac{1}{2}I^{k} - \frac{3}{2}O^{k}\right)\hat{C}_{0}$$
(6.20)

Las ecuaciones 6.19 o 6.20 equivalen a la ecuación de tránsito 6.8 pero con un solo parámetro libre \hat{C}_0 .

Finalmente, la expresión 6.20 puede calibrarse ya sea con un ajuste por mínimos cuadrados o según se explicará más adelante, forzando la igualdad del gasto pico de salida observado y estimado. Para el ajuste por mínimos cuadrados, se tiene:

$$\hat{C}_{0} = \frac{\sum_{k} \left[\left(\mathbf{O}^{k+1} - \frac{1}{2}\mathbf{I}^{k} - \frac{1}{2}\mathbf{O}^{k} \right) \left(\mathbf{I}^{k+1} + \frac{1}{2}\mathbf{I}^{k} - \frac{3}{2}\mathbf{O}^{k} \right) \right]}{\sum_{k} \left(\mathbf{I}^{k+1} + \frac{1}{2}\mathbf{I}^{k} - \frac{3}{2}\mathbf{O}^{k} \right)^{2}}$$

Con \hat{C}_0 conocido se calculan \hat{C}_1 y \hat{C}_2 de las expresiones 6.17 y 6.18.

Análisis de estabilidad

La expresión 6.19 es una ecuación de diferencias en O^{k+1} . Con el objeto de analizar la estabilidad de la misma, utilizaremos las expresiones:

$$\begin{array}{c}
O^{k} = O_{e}^{k} + E^{k} \\
O^{k+1} = O_{e}^{k+1} + E^{k+1}
\end{array}$$
(6.22)

(6.21)

 $O_e^k y O_e^{k+1}$ representan la solución exacta de la ecuación de diferencias para los instantes k y k+1 respectivamente, y $E^k y E^{k+1}$ los errores de redondeo correspondientes. Sustituyendo 6.22 en la ecuación 6.19 se obtiene:

$$O_{e}^{k+1} + E^{k+1} = \hat{C}_{0}I^{k+1} + \frac{1}{2}\left(1 + \hat{C}_{0}\right)I^{k} + \frac{1}{2}\left(1 - 3\hat{C}_{0}\right)O_{e}^{k} + \frac{1}{2}\left(1 - 3\hat{C}_{0}\right)E^{k}$$

pero, dado que O_e^k y O_e^{k+1} satisfacen la ecuación de diferencias en forma exacta:

$$\mathbf{O}_{e}^{k+1} = \hat{\mathbf{C}}_{0} \mathbf{I}^{k+1} + \frac{1}{2} \left(\mathbf{1} + \hat{\mathbf{C}}_{0} \right) \mathbf{I}^{k} + \frac{1}{2} \left(\mathbf{1} - \mathbf{3} \ \hat{\mathbf{C}}_{0} \right) \mathbf{O}_{e}^{k}$$

se tiene:

$$\mathbf{E}^{k+1} = \frac{1}{2} \left(1 - 3 \ \hat{\mathbf{C}}_{0} \right) \mathbf{E}^{k}$$

Sea ahora

$$\frac{\mathbf{E}^{k+1}}{\mathbf{E}^{k}} = \boldsymbol{\xi}$$

entonces

$$\xi = \frac{1}{2} \left(1 - 3 \hat{C}_0 \right)$$

La condición de estabilidad esta dada por $|\xi| \le 1$. De donde:

$$-1 \le \frac{1}{2} \left(1 - 3\hat{C}_0 \right) \le 1$$
$$-2 \le 1 - 3\hat{C}_0 \le 2$$
$$-3 \le -3\hat{C}_0 \le 1$$

finalmente se obtiene:

$$-\frac{1}{3} \le \hat{C}_0 \le 1$$
 (6.23)

Con este resultado del análisis de estabilidad, se determina el rango de variación del único parámetro libre para la ecuación de tránsito 6.8 basada en el método de advección - difusión. El rango de valores posibles para \hat{C}_0 , dado por 6.23, es pequeño, lo cual simplifica la tarea de buscar el valor de \hat{C}_0 que asegura la igualdad del gasto pico de salida observado y el gasto pico de salida estimado, mediante aplicaciones sucesivas. Para ilustrar lo anterior, en la figura 6.2 se muestran, en línea gruesa, los hidrogramas observados de entrada y salida que corresponden a un tramo de cauce sujeto a un evento hipotético; y en línea delgada, los hidrogramas de salida asociados con diversos valores de \hat{C}_0 . En este caso particular, la igualdad del gasto pico de salida, observado y estimado, se logra para $\hat{C}_0 = -0.1655$. El hidrograma asociado a $\hat{C}_0 = 1$ coincide con el hidrograma de entrada.

Fig. 6.2 Hidrogramas de salida en función de \hat{C}_0

Pronóstico de avenidas

El propósito principal de desarrollar un método hidrológico para tránsito de avenidas con base física, es poder ajustar los parámetros obtenidos vía calibración, para fines de pronóstico. Esto es, para transitar avenidas distintas a la utilizada para la calibración. Este es el problema que típicamente se presenta para casos de diseño, en donde el hidrograma de ingreso puede ser obtenido a través de técnicas probabilísticas y su correspondiente hidrograma de egreso se asocia con la zona en la que desea diseñarse una obra de control de avenidas.

A fin de simplificar la determinación de los parámetros físicos asociados con la calibración del método de advección - difusión, se utilizará un modelo conceptual en que se supondrá que el cauce es muy ancho. Así, el área y el radio hidráulico estarán dados según se indica en la figura 6.3.

donde

A = área hidráulica

R = radio hidráulico

B = ancho de la superficie libre

h = tirante

Además, el gasto de referencia Q_o se tomará como el promedio de los gastos del hidrograma de entrada, ya que esta es una buena medida de la magnitud de la avenida, ver figura 6.3.

Sustituyendo lo anterior en la fórmula de Manning, se obtiene;

$$\mathbf{Q}_0 = \frac{\mathbf{B}_0}{n} \mathbf{h}_0^{5/3} \mathbf{S}_0^{1/2}$$

despejando Bo:

$$B_0 = \frac{Q_0 n}{h_0^{5/3} S_0^{1/2}}$$

(6.24)

Por otro lado, el factor de conducción (K₀) es:

$$K_0 = \frac{A_0 R_0^{2/3}}{n} = \frac{B_0 h_0^{5/3}}{n}$$

siendo la derivada de K₀ con respecto a h₀:

$$\mathbf{K}_{0}^{\prime} \equiv \left(\frac{\mathrm{d}\mathbf{K}}{\mathrm{d}\mathbf{h}}\right)_{0} = \frac{5}{3} \frac{\mathbf{B}_{0} \mathbf{h}_{0}^{2/3}}{\mathbf{n}}$$

De la ecuación 3.20 se tiene que la velocidad advectiva de la ecuación de advección - difusión está dada por:

$$\mathbf{V} = \frac{\mathbf{Q}_{0}\mathbf{K}_{0}}{\mathbf{B}_{0}\mathbf{K}_{0}} = \frac{\frac{5}{3}\mathbf{Q}_{0}\frac{\mathbf{B}_{0}\mathbf{h}_{0}^{2/3}}{n}}{\mathbf{B}_{0}^{2}\frac{\mathbf{h}_{0}^{5/3}}{n}} = \frac{5}{3}\frac{\mathbf{Q}_{0}}{\mathbf{B}_{0}\mathbf{h}_{0}}$$
(6.25)

(6.26)

De 3.21 se puede encontrar el valor de la difusividad D correspondiente a la misma ecuación de advección - difusión, como sigue;

$$D = \frac{K_0^2}{2B_0|Q_0|} = \frac{\frac{B_0^2 h_0^{10/3}}{n^2}}{\frac{n^2}{2B_0|Q_0|}} = \frac{1}{2} \frac{B_0 h_0^{10/3}}{n^2 |Q_0|}$$

Sustituyendo 6.25 y 6.26 en 6.15, donde se observa que se puede omitir el valor absoluto del gasto de referencia, ya que éste siempre es positivo:

$$\mathbf{P} = \frac{\Delta t}{\Delta x} \left[\frac{5}{3} \frac{\mathbf{Q}_0}{\mathbf{B}_0 \mathbf{h}_0} \right] + \frac{\Delta t}{\Delta x^2} \left[\frac{1}{2} \frac{\mathbf{B}_0 \mathbf{h}_0^{10/3}}{\mathbf{n}^2 \mathbf{Q}_0} \right]$$
(6.27)

sustituyendo 6.24 en 6.27 y simplificando, resulta:

$$P = \frac{\Delta t}{\Delta x} \left[\frac{5 h_0^{2/3} S_0^{1/2}}{3 n} \right] + \frac{\Delta t}{\Delta x^2} \left[\frac{1}{2} \frac{h_0^{5/3}}{n S_0^{1/2}} \right]$$

Esta última expresión se puede expresar como:

$$h_0^{5/3} + \frac{10}{3} \Delta x S_0 h_0^{2/3} - 2 \frac{\Delta x^2}{\Delta t} n S_0^{1/2} P = 0$$
 (6.28)

En un tramo de río a través del cual se desea transitar una avenida, es sencillo conocer la longitud $2\Delta x$ y la pendiente media S₀. Una visita de campo permite estimar la rugosidad n y el intervalo Δt se puede seleccionar de acuerdo con los datos disponibles. Dado que P es conocido una vez que \hat{C}_0 se ha determinado (ecuación 6.16), h₀ se determina a partir de la ecuación 6.28 la cual es no lineal y puede ser resuelta mediante un método iterativo, como el de Newton - Raphson.

Una vez que h_0 , correspondiente a los datos de calibración, ha sido calculado, B_0 puede ser determinado mediante la ecuación 6.24.

Cabe aclarar que al momento de realizar el pronóstico de avenidas de salida de un tramo, se supone que el cauce mantiene un ancho de superficie constante, por lo que B_o es el dato encontrado en la calibración.

Al realizar un pronóstico, en muchas ocasiones se transita un hidrograma de entrada de orden de magnitud diferente al usado para calibración, por lo que el gasto de referencia debe modificarse para corresponder al promedio de los gastos del nuevo hidrograma de entrada.

Con Q_o modificado, el nuevo valor de h_o puede encontrarse de la fórmula de Manning:

$$h_0 = \left(\frac{Q_0 n}{B_0 S_0^{1/2}}\right)^{3/5}$$
(6.29)

donde se considera que la rugosidad y pendiente naturales se mantienen constantes.

El siguiente paso consiste en calcular V y D que son los parámetros básicos del modelo de advección -difusión, con las ecuaciones 3.20 y 3.21 y con esos valores se puede calcular P de la ecuación 6.15. Recordando la ecuación 6.16, se obtiene:

$$\hat{C}_0 = \frac{P-1}{P+3}$$

 \hat{C}_1 y \hat{C}_2 se obtienen con 6.17 y 6.18. Con \hat{C}_0 , \hat{C}_1 y \hat{C}_2 y la ecuación de tránsito 6.8 se procede a realizar el tránsito de avenidas para fines de pronóstico. En este capítulo se analizan dos ejemplos; el primero es un experimento numérico similar al "Evento Wilson" discutido por O'Donnell (1985) y que fue estudiado por Aldama (1990) en una evaluación comparativa de procedimientos de calibración del método de Muskingum; el segundo corresponde a datos reales de la región hidrológica número 30 Grijalva-Usumacinta, en la parte baja del río Usumacinta.

Ejemplo 1. Experimento numérico: Considérese un canal trapecial con ancho de plantilla b = 100 m, talud k = 2, longitud L = 50500 m, pendiente de plantilla $S_0 = 0.0001$ y rugosidad de Manning n = 0.08. Para fines de calibración, se supondrá que el evento de avenida discutido por Aldama (1990) (tabla 7.1), ocurre en dicho canal. Con el objeto de evaluar la capacidad predictiva de la metodología propuesta en este trabajo en comparación con otros procedimientos existentes, en situaciones de pronóstico, el hidrograma del citado evento de avenida se multiplica por factores de 2, 5 y 10 y cada uno de los hidrogramas resultantes se transita por el canal empleando un método hidráulico, obteniéndose así los correspondientes hidrogramas de salida. El programa de cómputo correspondiente está basado en un esquema de diferencias finitas para la solución de las ecuaciones de Saint-Venant; Aldama (1991). El listado del programa (denominado CANALL) se presenta en el anexo A. Los hidrogramas de salida obtenidos mediante tránsito hidráulico se toman como datos reales y contra ellos se comparan los hidrogramas pronosticados por el método propuesto y por el método de Muskingum calibrado con las técnicas propuestas por Gill (1977) y O'Donnell (1985), que han sido discutidas y comparadas por Aldama (1990). El listado del programa que utiliza las dos técnicas anteriores (MINMUSK), se presenta también en el anexo A.

Número de	Tiempo	Gasto de Entrada I	Gasto de Salida O	
intervalo	(hrs)	(m³/s)	(m³/s)	
1	0	22.000	22.000	
2	6	23.000	22.000	
3	12 👘	35.000	22.001	
4	18	71.000	22.005	
5	24	103.000	22.078	
6	30	111.000	22.624	
7	36	109.000	25.541	
8	42 42	100.000	36.093	
9	48	86.000	57.113	
10	54	71.000	76.565	
11	60	59.000	85.625	
12	66	47.000	86.555	
13	72	39.000	82.866	
14	78	32.000	76.915	
15	84	28.000	70.106	
16	90	24.000	63.251	
17	96	22.000	56.781	
18	102	22.000	50.894	
19	108	22.000	45.651	
20	114	22.000	41.066	
21	120	22.000	37.137	
22	126	22.000	33.834	
23	132	22.000	31.114	
24	138	.22.000	28.910	
25	144	22.000	27.158	
26	150	22.000	25.789	
27	156	22.000	24.746	
28	162	22.000	23.963	
29	168	22.000	23.384	
30		22.000	22.964	
31	180	22,000	22.662	

 Tabla 7.1
 Datos para el experimento numérico.

Con los datos de la tabla 7.1, se calibró el tramo de río con el método de advección-difusión de dos maneras diferentes; la primera empleando la técnica de mínimos cuadrados y la segunda haciendo que el gasto pico del hidrograma de salida calculado fuera igual al del hidrograma "registrado", esta segunda manera de calibrar con el gasto pico, se debe a que en muchos casos es el gasto más importante del hidrograma de salida.

Como ya se dijo antes, este último procedimiento se justifica en vista de que el gasto pico del hidrograma de salida es la característica más importante de la avenida para fines de diseño y prevención de daños. Conjuntamente con las dos calibraciones del método de advección-difusión, se presentan en la figura 7.1 los hidrogramas de salida calibrados con las técnicas de Gill y O'Donnell aplicadas al método de Muskingum.

Fig. 7.1 Calibración del experimento numérico utilizando los métodos de Advección-Difusión, y las técnicas de Gill y O'Donnell.

Con los parámetros encontrados según los ajustes anteriores y las correcciones para pronóstico con la base física del problema según el método de advección-difusión, en donde el promedio de los gastos del hidrograma de entrada a transitar es el dato complementario para la corrección de dichos parámetros, se calcularon los hidrogramas de salida correspondientes a avenidas de entrada en las que se multiplicaron las ordenadas del hidrograma de entrada original por 2, 5 y 10. Este tipo de prueba tiene interés dado que los períodos de retorno asociado con gastos de diseño generalmente son mucho mayores que los de la avenida máxima registrada. Estos resultados se muestran en las figuras 7.2, 7.3 y 7.4, donde también se muestran los tránsitos calculados con el método tradicional de Muskingum en donde la calibración de los parámetros se llevo a cabo con las técnicas de Gill y O'Donnell. Los cálculos que dan origen a dichas figuras se muestran en el anexo B.

Fig. 7.2 Pronóstico de la avenida equivalente a dos veces el hidrograma original del experimento numérico

En las figuras 7.2 a 7.4, se observa que el pronóstico con el método propuesto de adveccióndifusión (tanto para calibración del gasto pico, como con mínimos cuadrados), que incluye base física, mejora el pronóstico de avenidas en comparación con el método de Muskingum tradicional utilizando las técnicas de calibración de Gill y O'Donnell. En esas figuras, el gasto de salida se calculó con un tránsito de avenidas hidráulico.

Fig. 7.3 Pronóstico de la avenida equivalente a cinco veces el hidrograma original del experimento numérico.

Fig. 7.4 Pronóstico de la avenida equivalente a diez veces el hidrograma original del experimento numérico.

En la tabla 7.2 se presentan los resultados más importantes de las figuras 7.1 a 7.4, Los errores de pronóstico del gasto pico para los diversos métodos evaluados fluctúan entre el 3% y el 5% para el método de advección-difusión basado en la calibración del gasto pico, entre el 6% y el 20% para el método de advección-difusión basado en una calibración por mínimos cuadrados, entre el 6% y el 20% para la técnica de Gill, y entre 20% y 32% para la técnica de O'Donnell. Estos resultados indican, en primera instancia, que el método de advección-difusión basado en la calibración del gasto pico de advección-difusión basado en la calibración del gasto pico de advección-difusión basado en la calibración del gasto pico es el más preciso para fines de pronóstico del gasto pico de hidrogramas de salida distintos al empleado para la calibración.

	METODO UTILIZADO					
	Gasto de Salida Medido	A - D pico ajustado	A - D mínimos cuadrados	Gill	O'Donnell	
Gasto pico (m ³ /s) "Evento Wilson"	86.555	86.556	69.279	81.542	69.771	
Diferencia con respecto al gasto medido (%)	0.000	0.001	-19.96	-5.792	-19.391	
Diferencia con respecto al gasto medido (m ³ /s)	0.000	0.001	-17.276	-5.013	-16.784	
Gasto pico (m ³ /s) "Evento Wilson" * 2	183.865	188.968	153.438	163.085	139.542	
Diferencia con respecto al gasto medido (%)	0.000	2.775	-16.549	-11.302	-24.106	
Diferencia con respecto al gasto medido (m ³ /s)	0.000	5.103	-30.427	-20.780	-44.323	
Gasto pico (m³/s) "Evento Wilson" * 5	492.756	517.333	440.243	407.712	348.855	
Diferencia con respecto al gasto medido (%)	0.000	4.988	-10.657	-17.259	-29.203	
Diferencia con respecto al gasto medido (m ³ /s)	0.000	24.577	-52.513	-85.244	-143.901	
Gasto pico (m³/s) "Evento Wilson" * 10	1019.592	1070.738	960.007	815.424	697.710	
Diferencia con respecto al gasto medido (%)	0.000	5.016	-5.844	-20.024	-31.570	
Diferencia con respecto al gasto medido (m ³ /s)	0.000	51.146	-59.585	-204.168	-321.882	

 Tabla 7.2
 Tránsito hidrológico correspondiente al experimento numérico

Ejemplo 2. Avenidas en la región hidrológica número 30 Grijalva-Usumacinta, en la parte baja del río Usumacinta.

Ejemplo 2. Caso real correspondiente a la parte baja del Río Usumacinta: Una segunda evaluación comparativa de métodos de tránsito hidrológico, similar a la descrita para el experimento numérico, se llevo a cabo para avenidas registradas en el tramo comprendido entre las estaciones hidrométricas Boca del Cerro y El Tigre en la parte baja del río Usumacinta. El tramo corresponde a un canal muy ancho con longitud L = 155 000 m, pendiente de plantilla S_o = 0.00025, ancho de plantilla variable desde b ~ 500 m hasta b ~ 2500 y rugosidad de Manning n = 0.03. Para fines de calibración, se utilizó una avenida ocurrida en agosto de 1964, y se realizó un pronóstico con las avenidas de diciembre de 1964, agosto-septiembre de 1970 y noviembre-diciembre de 1971.

La estación hidrométrica El Tigre se encuentra en la frontera de aguas arriba del tramo considerado. El Río Usumacinta se forma por confluencia de los ríos La Pasión y Chixoy o Salinas los cuales proceden de territorio guatemalteco, y 500 m aguas arriba de la estación El Tigre confluye a él el río Lacantún por la margen izquierda. El área drenada aguas arriba de la estación hidrométrica El Tigre es de 41,852 km², y los registros correspondientes permiten conocer el escurrimiento del Usumacinta aguas abajo de la confluencia de los ríos Salinas y Lacantún.

La estación hidrométrica Boca del Cerro se encuentra en la frontera de aguas abajo del tramo en estudio, y aguas arriba de la confluencia con el río San Pedro. Tiene una área de aportación de 47,697 km². Es en este lugar, donde empieza la zona denominada Bajo Usumacinta.

Aguas abajo, el río se divide en tres brazos, de los que el occidental, va a unirse al Grijalva en un punto que se denomina Tres Brazos; el brazo central se llama San Pedro y San Pablo y desemboca directamente en el Golfo de México y el brazo oriental, denominado Palizada, desagua en la Laguna de Términos por la llamada Boca Chica.

Después de una revisión exhaustiva de los datos hidrométricos, se eligieron cuatro avenidas, en las que se juzgó que la entrada lateral fue prácticamente despreciable. Las avenidas seleccionadas se presentaron durante agosto de 1964, diciembre de 1964, agosto-septiembre de 1970 y noviembre-diciembre de 1971. La avenida utilizada para fines de calibración fue la más pequeña, que también resultó ser la más antigua, esto es la correspondiente a agosto de 1964. El resultado de la calibración se muestra en la figura 7.5.

Fig. 7.5 Calibración de la avenida de agosto de 1964.

Para el resto de las avenidas se efectuó un pronóstico con el método de advección-difusión basado en la calibración de gasto pico y en el ajuste por mínimos cuadrados y con los procedimientos de Gill y O'Donnell aplicados al método de Muskingum.

Los resultados que corresponden a las avenidas de diciembre de 1964, agosto-septiembre de 1970 y noviembre-diciembre de 1971 se muestran en las figuras 7.6, 7.7 y 7.8.

Fig. 7.6 Pronóstico del hidrograma de salida (estación Boca del Cerro) correspondiente a la avenida de diciembre de 1964.

Los resultados más importantes de las figuras 7.6 a 7.8 se resumen en la tabla 7.3. Según puede observarse, los errores de pronóstico del gasto pico, fluctúan entre el 0.5% y el 2.5% para el método de advección-difusión basado en la calibración del gasto pico, entre el 0.7% y el 6% para el método de advección-difusión basado en la calibración por mínimos cuadrados, entre el 0.2% y el 4% para el procedimiento de Gill y entre el 7% y el 12% para el procedimiento de O'Donnell.

En este caso los resultados obtenidos con el método de advección-difusión, calibrando el pico y ajustando por mínimos cuadrados, y la técnica de Gill son similares, debido a que los hidrogramas correspondientes a las avenidas utilizadas para pronóstico son del mismo orden de magnitud que el empleado para calibración.

Fig. 7.7 Pronóstico del hidrograma de salida (estación Boca del Cerro) correspondiente a la avenida de agosto-septiembre de 1970.

Fig. 7.8 Pronóstico del hidrograma de salida (estación Boca del Cerro) correspondiente a la avenida de noviembre-diciembre de 1971.

	METODO UTILIZADO						
	Gasto de Salida Medido	A - D pico ajustado	A - D mínimos cuadrados	Gill	O'Donnell		
Gasto pico (m ³ /s) "Ago/64 (calibración)"	2387.5	2385.4	2289.5	2323.2	2322.3		
Diferencia con respecto al gasto medido (%)	0.000	-0.1	-4.1	-2.7	-2.7		
Diferencia con respecto al gasto medido (m ³ /s)	0.000	-2.1	-98.0	-64.3	-65.2		
Gasto pico (m³/s) "Diciembre de 1964"	2749.0	2741.7	2569.6	2615.8	2390.7		
Diferencia con respecto al gasto medido (%)	0.000	0.5	-5.8	-4.1	-12.4		
Diferencia con respecto al gasto medido (m ³ /s)	0.000	12.7	-159.4	-113.2	-338.3		
Gasto pico (m³/s) "Ago Sept. de 1970".	5070.0	5157.1	5071.7	5080.6	4514.7		
Diferencia con respecto al gasto medido (%)	0.000	1.7	0.03	0.2	-11.0		
Diferencia con respecto al gasto medido (m ³ /s)	0.000	87.1	1.7	10.6	-555.3		
Gasto pico (m³/s) "Nov Dic. de 1971"	4285.0	4390.9	4316.5	4323.9	3972.3		
Diferencia con respecto al gasto medido (%)	0.000	2.5	0.7	0.9	-7.3		
Diferencia con respecto al gasto medido (m ³ /s)	0.000	105.9	31.5	38.9	-312.7		

Tabla 7.3 Tránsito hidrológico en un tramo del Río Usumacinta

8 Conclusiones y Recomendaciones

Conclusiones

Es importante recordar que el tránsito de avenidas en cauces puede realizarse tanto por métodos hidráulicos como por métodos hidrológicos, y que los primeros son mucho más precisos que los segundos. Sin embargo la aplicación de métodos hidrológicos requiere mucho menos datos que la de métodos hidráulicos, por lo que el uso de aquellos es ventajoso en la práctica.

A partir de la información analizada para la aplicación del método, se observó que es más frecuente que la entrada lateral sea poco significativa en la parte baja de las cuencas, ya que en los tramos que se encuentran en la parte alta de las cuencas, la entrada lateral representa casi todo el ingreso de escurrimiento al tramo, ya que el área tributaria a la sección de entrada es prácticamente inexistente.

En la metodología propuesta, se tiene un solo parámetro libre sujeto a calibración. Con esto se puede determinar dicho parámetro en forma única, igualando el gasto pico del hidrograma de salida al registrado.

Esto permite obtener resultados muy satisfactorios en el pronóstico de gasto pico de hidrogramas de salida asociados con avenidas diferentes a la empleada para fines de calibración.

Este resultado es de suma importancia para efectos de diseño, ya que las avenidas usadas con ese propósito son generalmente mucho mayores que las empleadas para calibración.

Aunque en el método de Muskingum-Cunge se trata de incluir una base física en el tránsito hidrológico, dicho procedimiento tiene un error sutil en su desarrollo. No obstante, la idea esencialmente es buena. Es por esta razón que el método hidrológico con base física permite obtener mejores resultados que cualquier método que no incluya base física.

Recomendaciones

La primera recomendación, la cual es aplicable incluso en los métodos hidráulicos, se refiere al conocimiento físico del tramo en estudio, ya que de esto depende en buena parte, el criterio de estimación de algunas características físicas importantes, como lo son la rugosidad, el tirante y ancho de referencia, así como la pendiente media.

La hipótesis principal del análisis considera eventos sin entrada lateral, por ello, la aplicación de lo expuesto se reduce a casos en donde esta sea poco importante, y esto generalmente ocurre en la parte baja de las cuencas, por lo que es en esas zonas en donde se recomienda la utilización del procedimiento aquí propuesto.

Debe enfatizarse que en este trabajo solo se analizó el tránsito de avenidas en cauces sin incluir entrada lateral, y como los casos de avenidas con entrada lateral importante son comunes en las partes alta y media de las cuencas, se recomienda que se extienda a casos de tránsito de avenidas con entrada lateral.

Bibliografía y Referencias

Abbott, M. A. "*Method of Characteristics*", in Unsteady Flow in Open Chammels, Vol. 1, K. Mahmood and V. Yevjevich, editors. Fort Collins, Colorado: Water Resources Publications, 1975.

Abramowitz, M., Stegun, I. A., "Handbook of Mathematical Functions", Dover, New York, 1965.

Aldama, R. A. A., "Least-Squares Parameter Estimation for Muskingum Flood Routing", Journal of Hydraulic Engineering, Vol 116, No. 4, April, 1990, pp. 580-586.

Aldama, R. A. A., "Pumping rate optimization in a storm drainage system through the combined use of numerical simulation and linear programming", Adv. Water Resources, 1991, Vol. 14, No. 4, pp. 192-202.

Aldama, R. A. A., "Comunicación personal", Julio, 1995.

Aparicio, M. F. J., "Fundamentos de Hidrología de Superficie", Limusa, México, 1993.

Beam, R. M., R. F. Warming "An Implicit Finite-Difference Algorithm for Hyperbolic Systems in Conservation-Law Form", J. Comp. Phys., 1976.

Berezowsky, V. M. "*Escurrimiento a Superficie Libre*", Cap. A.2.9. del Manual de Diseño de Obras Civiles, Comisión Federal de Electricidad, México, 1980.
Chow, V. T., "Handbook of Applied Hydrology", McGraw Hill, New York, 1964.

Chow, V. T., Maidment, D. R. y Mays, L. W., "Hidrología Aplicada", McGraw Hill, Colombia, 1994.

Chow, V. T., "Open Channel Hydraulics", McGraw Hill, New York, 1959.

Comisión Nacional del Agua, "Boletín Hidrológico No. 45 (Región Hidrológica No 10)", 1975.

Cunge, J. A., "On the Subject of a Flood Propagation Computation Method (Muskingum Method)", Journal of Hydraulic Research, Vol. 7, No. 2, 1969, pp. 205-230.

Daily, J. W., Harleman, F. R. F., "Dinámica de los Fluidos", Trillas, México, 1969.

French, W., "Approximate methods for flood routing in rivers", Tesis, Princeton University, April, 1990

Gill, M. A., "*Critical Examination of the Muskingum Method*", Nordic Hydrology, Vol 10, 1979, pp. 261-270.

Gill, M. A., "Routing of Floods in River Channels", Nordic Hydrology, Vol 8, 1977, pp. 163-170.

Gill, M. A., "Time Lag Solution of the Muskingum Flood Routing Equation", Nordic Hydrology, Vol 15, 1984, pp. 145-154.

Henderson, F. M., "Open Channel Flow", Macmillan Publishing Co., New York, 1969.

Comisión Nacional del Agua, "CD-HIDRO", Datos hidrométricos de México (1937 - 1985), 1ª edición, 1990.

Linsley, R. K., Kohler, M. A., Paulhus, J. L., "Hidrología para Ingenieros", Segunda Edición, McGraw-Hill, México, 1992.

McCarthy, G. T., "*The Unit Hydrograph and Flood Routing*", manuscrito no publicado, presentado en una conferencia de la División del Atlantico Norte, Corporación de Ingenieros del Ejercito de E. U. A., 1938.

Mahmood, K., Yevjevich, V., "Unsteady Flow in Open Channels", Water Resources Publ., Fort Collins, 1975.

O'Donnell, T., "A direct three-parameter Muskingum procedure incorporating lateral inflow", Journal of Hydrological Sciences, Vol 30, No. 4, Dec., 1985, pp. 479-496.

Ponce, V. M., "Enginnerring Hydrology (Princeples and Practices)", Prentice Hall, Englewood Cliffs, New Jersey, 1989.

Raudkivi, A. J., "Hydrology", Pergamon Press, Oxford, 1979.

Sotelo, A. G., "Apuntes de hidráulica II", Facultad de Ingeniería, UNAM, México, 1989.

Spiegel, M. R., Abellanas, L., "Formulas y Tablas de matemática aplicada", McGraw Hill, España, 1991.

Viessman, W., Lewis, G., Knapp, J., "Introduction to Hydrology", Harper & Row Pub., New York, 1977.

Anexo A (Programas de Computo)

A continuación se presenta el programa CANALL codificado en FORTRAN, que sirve para simular el tránsito de avenidas con un método numérico que soluciona las ecuaciónes de Saint-Venant.

С	Programa canall
с	이 가장 방법, 방법, 방법, 방법, 방법, 가장 가장 방법, 가장
C**	******
С	Las variables del programa son como sigue:
С	Nusec = numero total de secciones
С	Nutime = numero total de iteraciones
С	Totime = tiempo total de la simulacion en segundos
С	g = aceleracion de la gravedad en unidades consistentes
С	Slope = pendiente de la plantilla como una fraccion
С	Roug = coeficiente de rugosidad de manning
С	Ss = pendiente lateral de la seccion transversal trapecial
С	Width = ancho de plantilla de la seccion transversal
С	Xlen = longitud del canal
С	Elevi = elevacion de la plantilla en la seccion aguas arriba
С	Z(j) = elevacion de la plantilla en la seccion j
С	Y(j) = tirante en la seccion j
С	U(j) = velocidad en la seccion j + 1/2
С	H(j) = elevacion de la superficie libre en la seccion j
С	$\dot{Y}_{a}(i) = tirante promedio entre las secciones i y i+1$

c	Dif(j) = aproximacion de diferencias finitas de la derivada
С	espacial de u en la seccion j + 1/2
С	Cf(j) = factor convectivo-friccional + 1 en la seccion j + 1/2
С	Q(j) = gasto en la seccion j + 1/2
С	Delt = incremento de tiempo
C	Delx = incremento espacial
C	Q0 = gasto de entrada aguas arriba en el instante k
С	Aa = area de la seccion transversal en la seccion j + $1/2$
С	Ra = radio hidraulico en la seccion j + $1/2$
С	\mathbf{B} = ancho de superficie libre en la seccion j
С	P = perimetro mojado en la seccion j + 1/2
С	Alpha(j) = Alpha en la seccion j + 1/2
С	Beta(j) = Beta en la seccion j
C	Gamma(j) = Gamma en la seccion j
С	Qpum = gasto en la estacion de bombeo
С	Variables auxiliares: Xn, Expo, Nm1, Nm2, Del, G1, G2, G3,
С	Adep, f, Qout, Qin, Vel, Elevi2, Alphaf
C***	***************************************

С

Dimension Z(51),Y(51),U(51),Ya(51),Dif(51),Cf(51),Q(51),Qup(50) Common/tri/ Beta(50),Alpha(50),Gamma(50),H(51) Open(5,file='canall.ent')

Dep,

C Lee variables de entrada

Read(5,*)Nusec,Nutime,Totime,g,Slope,Roug,Ss,Width,Xlen,Elevi Read(5,*) nuti,nint,qlat C

С

- Imprime variables de entrada
 - Open(6,file='canall.sal')

Write(6,2) Slope,Ss,Width,Xlen,Elevi

- 2 Format(1x,'caracteristicas del canal:',
 - /,5x,'pendiente de canal =',f10.5,
 - * /,5x,'pendiente lateral trapecial =',f8.2,
 - /,5x,'ancho de plantilla =',f8.2,' metros',
 - '/,5x,'longitud de canal =',f10.2,' metros',
- * /,5x,'elev. De plant. De frontera aguas arriba
 =',f10.3,'metros'/)

Write(6,3) Roug

- 3 Format(5x,'coef. de rugosidad de manning = ',f8.4,//) Write(6,4) Nusec,Totime,Nutime
- 4 Format (1x,'datos de discretizacion:',
 - /,1x,'numero de secciones =',i6,
 - /,1x,'tiempo total de simulacion =',f13.2,' segundos',
 - /,1x,'numero de pasos de tiempo =',i6,/)
- Lectura de gastos de entrada Nutim=nuti+1

Read(5,*) (Qup(k), k=1, nutim)

Delt=Totime/Nutime

Vlat=Qlat*Delt

Xn=Nusec-0.5

Delx=Xlen/Xn

Expo=1.333333

Nm1=Nusec-1

Nm2=Nusec-2

Del=Delt/Delx

G1=g*Delt*Roug*Roug

G2=g*Del

G3=G2*Del

Elevi2=Elevi-0.5*Delx*Slope

C Calculo de elevaciones de plantilla

Do 10 j=1,Nusec

Z(j)=Elevi2-Slope*Delx*(j-1)

10 Continue

C Lectura y calculo de condiciones iniciales Read(5,*) (Y(j),j=1,Nusec)

Read(5,*) (U(j),j=1,Nm1)

Do 20 j=1,Nusec

H(j)=Y(j)+Z(j)

20 Continue

Hd=h(Nusec)

- C Imprime las condiciones iniciales
- C Write(6,22)
- C 22 Format(/,1x,'condiciones iniciales:',/)
- C Write(6,25)
- C 25 Format(/,5x,'seccion',5x,'tirante',5x,'elev. De',
- C * 1x,'sup. Libre',6x,'velocidad')
- C Write(6,26)

- c 26 Format (18x,'(m)',17x,'(m)',15x,'(m/seg)',/) Do 27 ipr=1,Nm1
- C Write(6,28) ipr,y(ipr),h(ipr),u(ipr)
- C 28 Format (4x,i5,4x,f9.2,11x,f9.2,10x,f9.2,10x,f9.2)
 - 27 Continue
- C Write(6,29) Nusec,y(Nusec),h(Nusec)
- C 29 Format(4x,i5,4x,f9.2,11x,f9.2)

Do 30 j=1,Nm1

 $Ya(j)=0.5^{*}(Y(j)+Y(j+1))^{-1}$

30 Continue

 $Dif(1)=0.5^{*}(-3.0^{*}u(1)+4.0^{*}u(2)-u(3))$

Do 40 j=2,Nm2

Dif(j)=0.5*(u(j+1)-u(j-1))

40 Continue

Dif(Nm1) = 0.5*(3.0*u(Nm1)-4.0*u(Nm2)+u(Nm1-2))

C Comienza calculo de flujo no permanente

K=0

Write(6,45)

- 45 Format(//,5x,'hora',5x,'gasto de entrada (m3/s)',
 - * 5x,'gasto de salida (m3/seg)',2x,'qlat',/)

Do 90 kk=1, nuti

Diq=(Qup(kk+1)-Qup(kk))/nint

Q0=Qup(kk)

Do 90 kkk=1,nint

k=k+1

- C Forma el sistema de ecuaciones
- C Condicion de frontera aguas arriba
- C Lee gasto de entrada

Q0=Q0+diq

Dep=y(1)

```
Adep=ya(1)
```

C Llama a la subrutina de calculo geometrico

```
Call trape(Ss,Width,Dep,Adep,Aa,Ra,B)
```

```
Cf(1)=1.0+Del*dif(1)+G1*abs(u(1))/(Ra**Expo)+qlat/Aa
```

f=cf(1)

Alpha(1)=-G3*Aa/f

Beta(1)=B-Alpha(1)

 $Qout=u(1)^*Aa/f$

 $Gamma(1)=B^{h}(1)+Del^{QO-Qout}+vlat$

Qin=Qout

C Secciones internas

Do 50 j=2,Nm1

Dep=Y(j)

Adep=Ya(j)

C Llama a la subrutina de calculo geometrico

```
Call trape(Ss,Width,Dep,Adep,Aa,Ra,B)
```

```
Cf(j)=1.0+Del^{Dif}(j)+G1^{abs}(U(j))/(Ra^{**}Expo)+qlat/Aa
```

f = Cf(j)

Alpha(j)=-G3*Aa/f

Beta(j)=B-Alpha(j-1)-Alpha(j)

 $Qout=U(j)^*Aa/f$

 $Gamma(j)=B^{*}H(j)+Del^{*}(Qin-Qout)+vlat$

Qin=Qout

- 50 Continue
- C Condiciones de frontera de aguas abajo

Gamma(Nm1)=Gamma(Nm1)-Alpha(Nm1)*hd+vlat

Alphaf=Alpha(Nm1)

Alpha(Nm1)=0.0

- C Resuelve el sistema de ecuaciones Call tridag(Nm1)
- C Calcula las características hidraulicas

Do 60 j=1,Nm1

Y(j) = H(j) - Z(j)

60 Continue

Do 70 j=1,Nm1

Vel = 0.0

 $Ya(j)=0.5^{*}(Y(j)+Y(j+1))$

Adep=Ya(j)

f=Cf(j)

If (Adep.ne.0.0) $Vel = (U(j) + G2^*(H(j)-H(j+1)))/f$

U(j)=Vel

C Llama a la subrutina que calcula el area hidraulica Call atra(Adep,Ss,Width,Aa)

Q(j)=Vel*Aa

70 Continue

с

Actualizacion de diferencias de velocidad espacial

0.5*(-3.0*u(1)+4.0*u(2)-u(3))

Do 75 j=2,Nm2

 $Dif(j)=0.5^{(u(j+1)-u(j-1))}$

75 Continue

Dif(Nm1)=0.5*(3.0*u(Nm1)-4.0*u(Nm2)+u(Nm1-2))

Qpum=Qin-Alphaf*(h(Nm1)-hd)/Del

C Imprime resultados

Write(6,86) k,Q0,Qpum,qlat

- 86 Format(3x,i4,12x,f10.3,18x,f10.3,10x,f6.3)
- 90 Continue
 - Stop

End

C C

```
С
```

Subroutine trape(Ss,Bb,y,ya,a,r,B)

С

: C*

C Subrutina que calcula las características geometricas

- C Las variables de la subrutina son como sigue:
- C A = area de la sección transversal
- C Bb = ancho de plantilla
- $C \quad B = ancho de superficie libre$
- C Ss = pendiente lateral

- c Ya = tirante en la seccion j + 1/2
- C P = perimetro mojado
- C = R = radio hidraulico
- C*****
 - A=(Bb+Ss*ya)*ya
 - P=Bb+2.0*ya*sqrt(1.0+Ss*Ss)

R = A/P

B=Bb+2.0*Ss*y

Return

End

С

С

Subroutine atra(ya,Ss,Bb,a)

С

Č*

C Subrutina que calcula el area de la sección transversal

C Las variables de la subrutina son como sigue:

```
C Ya = tirante
```

C Bb = ancho de plantilla

C*

A=(Bb+Ss*ya)*ya

Return

End

С

С

С

Subroutine tridag(n)

C C*

C Subrutina que resuelve una matriz tridiagonal simetrica

- C Las variables de la subrutina son como sigue:
- C = B = vector diagonal principal
- C = vector fuera de la diagonal
- C D = vector de terminos independientes
- C = X = vector de variables desconocidas
- C N = orden de la matriz
- C Variables auxiliares: Gamma, Beta

C*

10

Dimension Gamma(50),Beta(50)

Common/tri/ B(50),C(50),D(50),X(51)

Beta(1)=B(1)

Gamma(1)=D(1)/Beta(1)

Do 10 i=2,n

Beta(i) = B(i)-c(i-1)*c(i-1)/Beta(i-1)

Gamma(i) = (D(i)-C(i-1)*Gamma(i-1))/Beta(i)

X(n) = Gamma(n)

Mm=n-1

ESTA	TE	513	N8	1000
SALIR	ы.	LÁ	815	Liuilca

Do 20 k=1,mm

I=n-k

20 X(i)=Gamma(i)-C(i)*X(i+1)/Beta(i)

Return

End

Eof:

El siguiente programa (MINMUSK) sirve para calcular los parámetros del método de Muskingum, según las técnicas de Gill y O'Donnell;

c PROGRAMA PARA ESTIMACION OPTIMA DE LOS PARAMETROS DEL METODO DE MUSKINGUM PARA

c TRANSITO DE AVENIDAS POR MEDIO DE LAS TECNICAS DE GILL Y O'DONNELL

common/ro/ qi(50),qoest(50),qbase

dimension qo(50),sr(50)

real k,k1

c LECTURA DE DATOS DE ENTRADA

open(5,file='muskin.dat')

open(6,file='muskin.out')

read(5,*) n,qbase,dt

read(5,5) (qi(j),j=1,n)

read(5,5) (qo(j),j=1,n)

```
5 format(10f8.3)
```

np1=n+1

```
Nm1=n-1
```

qi(np1)=qbase

qo(np1)=qbase

dt2=0.5*dt

c ESTIMACION DE PARAMETROS CON EL PROCEDIMIENTO DE GILL sr(1)=dt2*(qi(1)-qo(1))

do 10 j=1,Nm1

$sr(j+1)=sr(j)+dt2^{*}(qi(j+1)+qi(j)-qo(j+1)-qo(j))$

continue sum1=0. sum2=0. sum3=0. sum4=0. sum5=0. sum6=0. sum6=0. do 20 j=1,n sum1=sum1+qi(j) sum2=sum2+qo(j) sum3=sum3+sr(j) sum4=sum4+qi(j)*qi(j)

10

sum5=sum5+q0(j)*q0(j)

sum6=sum6+qi(j)*qo(j)

sum7=sum7+qi(j)*sr(j)

sum8=sum8+qo(j)*sr(j)

20 continue

sum12=sum1*sum1

sum22=sum2*sum2

sum62=sum6*sum6

det=n*(sum4*sum5-sum62)+2.*sum1*sum2*sum6-sum12*sum5-sum4*sum22 Alpha=((sum6*sum2-sum1*sum5)*sum3+(n*sum5-sum22)*sum7+(sum1*sum2-n

```
sum6)*sum8)/det
```

```
Beta = ((sum1*sum6-sum4*sum2)*sum3 + (sum1*sum2-n*sum6)*sum7 + (n*sum4-sum12)*sum8)/det
```

k = Alpha + Beta

x = Alpha/k

 $deno=2.*k^{*}(1.-x)+dt$

c0=(-2.*k*x+dt)/deno

c1=(2.*k*x+dt)/deno

c2=(2.*k*(1.-x)-dt)/deno

call route(c0,c1,c2,Nm1)

 IMPRESION DE RESULTADOS DEL PROCEDIMIENTO DE GILL write(6,30)

k1=k/86400

- 30 format(5x,'PROCEDIMIENTO DE GILL:',/) write(6,40) k1,x
- 40 format(5x,'k = ',f15.6,' DIAS',5x,'x = ',f10.6,/)
 write(6,45) c0,c1,c2
- 45 format(5x,'c0 = ',f10.6,3x,'c1 = ',f10.6,3x,'c2 = ',f10.6,/) write(6,50)
- 50 format(' ENTRADA (m3/s)',1x,' SALIDA MEDIDA (m3/s)',1x,' SALIDA ESTIMADA (m3/s)',/)

sum9=0.

do 60 j=1,n

```
write(6,70) j,qi(j),qo(j),qoest(j)
```

```
sum9=sum9+(qo(j)-qoest(j))**2.
```

- 60 continue
- 70 format(i3,4x,f8.3,10x,f8.3,19x,f8.3)

write (6,80) sum9

80 format(/,5x,'SUMA DE ERRORES AL CUADRADO = ',f15.3,//)

c

- ESTIMACION DE PARAMETROS DE ACUERDO AL PROCEDIMIENTO DE
 - O'DONNELL

sum1=0.

sum2=0.

sum3=0.

sum4=0.

sum5=0.

do 90 j=1,n

```
sum1 = sum1 + (qi(j)-qi(j+1))**2.

sum2 = sum2 + (qo(j)-qi(j+1))**2.

sum3 = sum3 + (qi(j)-qi(j+1))*(qo(j)-qi(j+1))

sum4 = sum4 + (qi(j)-qi(j+1))*(qo(j+1)-qi(j+1))

sum5 = sum5 + (qo(j)-qi(j+1))*(qo(j+1)-qi(j+1))
```

90 continue

```
det=sum1*sum2-sum3*sum3
c1=(sum2*sum4-sum3*sum5)/det
c2=(sum1*sum5-sum3*sum4)/det
c0=1.-c1-c2
k=(c1+c2)*dt/(1.-c2)
x=1.-(1.+c2)/(2.*(c1+c2))
call route (c0,c1,c2,Nm1)
```

IMPRESION DE RESULTADOS PARA EL PROCEDIMIENTO с DE **O'DONNELL**

write(6,100)

k1 = k/86400

100 format (/,5x,'PROCEDIMIENTO ODONNELL:',/)

write(6,40) k1,x

write(6,45) c0,c1,c2

write(6,50)

sum9=0.

do 110 j=1,n

write(6,70) j,qi(j),qo(j),qoest(j)

sum9=sum9+(qo(j)-qoest(j))**2.

110 continue

write(6,80) sum9

stop

end

SUBRUTINA PARA TRANSITO DE AVENIDAS с

subroutine route (c0,c1,c2,Nm1)

common/ro/ qi(50),qo(50),qb

qo(1)=c0*qi(1)+(c1+c2)*qb

do 120 j=1,Nm1

qo(j+1)=c0*qi(j+1)+c1*qi(j)+c2*qo(j)

85

120 continue

return

end

Anexo B

En este anexo se presentan las tablas que describen el análisis del experimento numérico.

En la tabla B.1 se presentan los datos de la avenida para el experimento numérico, así como los hidrogramas de salida de los múltiplos de dicho evento.

En la tabla B.2 están las características del canal, así como los cálculos de los parámetros tanto de los procedimientos de Gill y O'Donnell, como del método de advección-difusión y las características físicas de cada uno de los casos.

En la tabla B.3 se presentan los registros de la calibración tanto con el método de advección-difusión, como de las técnicas de Gill y O'Donnell.

En las tablas B4 a B.6 se registraron los datos de los pronósticos de las avenidas transitadas correspondientes a las diferentes magnitudes de pronóstico del experimento numérico.

	Tiempo	Entrada I	Salida O1	Salida O2	Salida O5	Salida O10
	(hrs)	(m³/s)	(m³/s)	(m³/s)	(m³/s)	(m³/s)
1	0	22	22,000	44,000	110,000	220,000
2	.6	23	22,000	43,966	110,031	220,447
3	12	35	22,001	44,003	110,793	226,574
4	18	/ 🔅 👘 7 1	22,005	44,256	117,719	267,947
5	24	103	22,078	46,184	151,603	414,342
6	30	111	22,624	55,816	247,250	689,006
7	36	109	25,541	86,073	381,404	924,773
8	42	100	36,093	134,712	468,034	1019,592
9	48	86	57,113	170,774	492,756	1007,414
10	54	71	76,565	183,865	475,226	928,898
11	60	59	85,626	180,875	434,134	819,966
12	66	47	86,555	169,133	384,720	707,681
13	72		82,866	153,546	334,579	601,266
14	78	32	76,915	136,990	288,400	508,955
15	84	28	70,106	121,125	248,163	431,884
16	90	24	63,251	106,751	214,405	370,162
17	96	22	56,781	94,163	186,594	320,672
18	102	22	50,894	83,342	163,997	282,815
19	108		45,651	74,203	146,694	257,194
20	114	22	41,066	66,723	134,295	241,597
21	120	22	37,137	60,775	125,844	232,384
22	126	22	33,834	56,185	120,219	227,099
23	132	22	31,114	52,718	116,555	224,032
24	138	22	28,910	50,157	114,178	222,275
25	144	22	27,158	48,293	112,618	221,259
26	150	22	25,789	46,956	111,652	220,747
27	156	22	24,746	46,022	111,044	220,413
28	162	22	23,963	45,369	110,665	220,253
29	168	22	23,384	44,925	110,426	220,126
30	174	22	22,964	44,624	110,259	220,080
31	180	22	22,662	44,417	110,169	220,049

 Tabla B.1
 Datos de la avenida del experimento numérico y múltiplos de el.

delta t =	21600	ho =	2,54	Gill/salida	ad/salida
delta x =	25250	Qo =	41,61	0,9421	1,0000
So =	0,0001	.bo =	70,37	0,8870	1,0278
n =	0,08	· V =	0,3879	0,8274	1,0499
		D =	2956,71	0,7998	1,0502
	Q		Gill		O'Donnell
C'0 =	-0,1655	C'0 =	-0,393902	C'0 =	-0,26043
C'1 =	0,41725	C' 1 =	0,576578	C'1 =	0,390031
C'2 =	0,74825	- C'2 =	0,817324	C'2 =	0,870398
k =	1,15739821251		1,90761512186	, k =	2,4313455811
x =	0,25	x =	0,34811629512	x =	0,2580311941
P =	0,432003432	P =	-0,1303578013	P =	0,1735201479
	2Q		5Q		10Q
Qod =	83,2258064516	Qod =	208,064516129	Qod =	416,12903226
ho =	3,85101522508	ho =	6,67327836044	ho =	10,114798564
V = .	0,51184946424	V = .	0,73844517389	V =	0,9743842486
D ≂	5913,42023917	D =	14783,5505979	D =	29567,101196
P =	0,63820029403	P =	1,13255200981	P =	1,835237416
C'0 =	-0,0994446915	C'0 =	0,03207509778	C'0 =	0,1727396908
C'1 =	0,45027765423	C'1 =	0,51603754889	C'1 =	0,5863698454
C'2 =	0,6491670373	C'2 =	0,45188735332	C'2 =	0,2408904639
k =	0,78345310192	k =	0,44148082884	k =	0,2724443146
x =	0,25	x =	0,25	x =	0,25
P =	0,63820029403	P =	1,13255200981	P = ;	1,835237416

Tabla B.2 Parámetros y características físicas.

Tiempo	Entrada	Salida	AD	Gill	O'Donnell
0	22,000	22,000	22,000	22,000	22,000
6	23,000	22,000	21,835	21,606	21,740
12	35,000	22,001	20,142	17,134	18,778
18	71,000	22,005	17,924	6,217	11,505
24	103,000	22,078	25,990	5,447	10,882
30	111,000	22,624	44,053	20,116	20,737
36	109,000	25,541	61,238	37,506	32,956
42	100,000	36,093	74,752	54,111	45,155
48	86,000	57,113	83,425	68,009	55,909
54	71,000	76,565	86,556	77,204	63,715
60	59,000	85,626	84,626	80,797	67,784
66	47,000	86,555	80,160	81,542	69,771
72	39,000	82,866	73,136	78,384	68,903
78	32,000	76,915	65,701	73,946	66,851
84	28,000	70,106	57,879	67,859	63,376
90	24,000	63,251	51,019	62,154	59,833
96	22,000	56,781	44,548	55,972	55,709
102	22,000	50,894	38,871	49,766	51,341
108	22,000	45,651	34,624	44,694	47,538
114	22,000	41,066	31,446	40,548	44,228
120	22,000	37,137	29,068	37,160	41,347
126	22,000	33,834	27,289	34,390	, 38,840
132	22,000		25,957	32,127	36,657
138	22,000	28,910	24,961	30,277	34,758
144	22,000	27,158	24,216	28,765	33,104
150	22,000	25,789	23,658	27,529	31,665
156	22,000	24,746	23,240	26,519	30,412
162	22,000	23,963	22,928	25,694	29,322
168	22,000	23,384	22,694	25,019	28,373
174	22,000	22,964	22,520	24,467	27,547
180	22,000	22,662	22,389	24,017	26,828

4.1. 1.1.

Tabla B.3 Calibración del experimento numérico.

Tabla B.4

Pronóstico del evento dos veces el experimento numérico.

Tiempo	Entrada	Salida	AD	Gill	O'Donnell
.0	44,000	44,000	44,000	44,000	44,000
6	46,000	43,966	43,801	43,212	43,479
12	70,000	44,003	42,186	34,268	37,555
18	142,000	44,256	44,784	12,434	23,009
24	206,000	46,184	72,526	10,893	21,763
30	222,000	55,816	117,762	40,232	41,473
36	218,000	86,073	154,730	75,012	65,912
42	200,000	134,712	178,717	108,223	90,310
48	172,000	170,774	188,968	136,018	111,818
54	142,000	183,865	185,999	154,408	127,430
60	118,000	180,875	172,949	161,595	135,569
66	94,000	169,133	156,058	163,085	139,542
72	78,000	153,546	135,877	156,767	137,806
78	64,000	136,990	(116,964	147,893	133,701
84	56,000	121,125	99,178	135,719	126,751
90	48,000	106,751	84,825	124,307	119,665
96	44,000	94,163	72,304	111,943	111,419
102	44,000	83,342	62,374	99,532	102,681
108	44,000	74,203	55,928	89,387	95,076
114	44,000	66,723	51,743	81,096	88,456
120	44,000	60,775	49,027	74,320	82,695
126	44,000	56,185	47,263	68,781	77,680
132	44,000	52,718	46,118	64,254	73,315
138	44,000	50,157	45,375	60,554	69,515
144	44,000	48,293	44,893	57,530	66,209
150	44,000	46,956	44,579	55,058	63,330
156	44,000	46,022	44,376	53,038	60,825
162	44,000	45,369	44,244	51,387	58,644
168	44,000	44,925	44,159	50,038	56,746
174	44,000	44,624	44,103	48,935	55,094
180	44,000	44,417	44,067	48,033	53,656

90

Tiempo	Entrada	Salida	AD	Gill	O'Donnell
0	110,000	110,000	110,000	110,000	110,000
6	115,000	110,031	110,160	108,030	108,698
12	175,000	110,793	114,738	85,670	93,889
18	355,000	117,719	153,542	31,086	57,523
24	515,000	151,603	269,096	27,233	54,408
30	555,000	247,250	405,162	100,580	103,684
36	545,000	381,404	486,969	187,531	164,779
42	500,000	468,034	517,333	270,557	225,775
48	430,000	492,756	505,587	340,044	279,545
54	355,000	475,226	461,751	386,020	318,576
60	295,000	434,134	401,315	403,987	338,922
66	235,000	384,720	341,118	407,712	348,855
72	195,000	334,579	281,670	391,918	344,516
78	160,000	288,400	233,043	369,732	334,253
84	140,000	248,163	192,366	339,297	316,878
90 -	120,000	214,405	163,022	310,768	299,163
96	110,000	186,594	139,120	279,859	278,547
102	110,000	163,997	123,159	248,830	256,703
108	110,000	146,694	115,946	223,469	237,690
114	110,000	134,295	112,687	202,741	221,141
120	110,000	125,844	111,214	185,799	206,737
126	110,000	120,219	110,549	171,952	194,199
132	110,000	116,555	110,248	160,635	183,287
138	110,000	114,178	110,112	151,385	173,789
144	110,000	112,618	110,051	143,825	165,521
150	110,000	111,652	110,023	137,646	158,326
156	110,000	111,044	110,010	132,596	152,062
162	110,000	110,665	110,005	128,468	146,611
168	110,000	110,426	110,002	125,094	141,866
174	110,000	110,259	110,001	122,337	137,736
180	110,000	110,169	110,000	120,083	134,141
			91		

Tabla B.5 Pronóstico del evento cinco veces el experimento numérico.

Tiempo	Entrada	Salida	AD	Gill	O'Donnell
0	220,000	220,000	220,000	220,000	220,000
6	230,000	220,447	221,727	216,061	217,395
12	350,000	226,574	248,736	171,339	187,777
18	710,000	267,947	387,793	62,171	115,046
24	1030,000	414,342	687,660	54,466	108,815
30	1110,000	689,006	961,353	201,160	207,367
36	1090,000	924,773	1070,738	375,061	329,558
42	1000,000	1019,592	1069,813	541,115	451,550
48	860,000	1007,414	992,634	680,088	559,090
54	710,000	928,898	866,039	772,039	637,152
60	590,000	819,966	726,860	807,974	677,844
66	470,000	707,681	602,239	815,424	697,730
72	390,000	601,266	488,036	783,835	689,032
78	320,000	508,955	401,524	739,464	668,507
84	280,000	431,884	332,729	678,594	633,757
90	240,000	370,162	285,792	621,537	598,326
96	220,000	320,672	247,576	559,717	- 557,095
102	220,000	282,815	226,643	497,659	513,406
108	220,000	257,194	221,600	446,937	475,380
114	220,000	241,597	220,385	405,481	442,282
120	220,000	232,384	220,093	371,598	413,474
126	220,000	227,099	220,022	343,905	388,399
132	220,000	224,032	220,005	321,271	366,574
138	220,000	222,275	220,001	302,771	347,577
144	220,000	221,259	220,000	287,651	331,043
150	220,000	220,747	220,000	275,292	316,651
156	220,000	220,413	220,000 .	265,192	304,125
162	220,000	220,253	220,000	256,936	293,222
168	220,000	220,126	220,000	250,189	283,732
174	220,000	220,080	220,000	244,674	275,472
180	220,000	220,049	220,000	240,167	268,282

Tabla B.6 Pronóstico del evento diez veces el experimento numérico.

92