

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

ESCUELA NACIONAL DE ESTUDIOS PROFESIONALES ' ' A R A G O N ' '

FALLA DE ORIGEN

LA MAQUINARIA DE CONSTRUCCION SU MANTENIMIENTO Y CONTROL

T E S J S

Que para obtener el Título de:
INGENIERO MECANICO ELECTRICO

P r • • • n t a

ELIAS MACEDO TEMPLOS

Asesor: Ing. Fco. Raúl Ortiz González

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

LOS CIENTÍFICOS EXPLORAN LO QUE ES Y LOS INGENIEROS CREAN LO QUE NUNCA HA SIDO.

THEODOR VON KARMAN

DEDICATORIA

A la memoria de mi padre:	
	Sr. Leopoldo Macedo García
	ar. Geopordo nacedo Garcia
A mi madre:	이 그 그는 생활을 가는 내가 되는 그가 하셨다.
	그 생님이 있는 것 같아 생활하게 한 사람들이 살아.
	Sra. María Templos Ramirez
	Sta, Natta Temptoa Kamittez
	그 그 아이 어떤 그로 바음하셨다면 나가 많다.
	그는 이 사람들이 가장하다 사람들이 모든 것이다.
A mis hermanos	
AGRADECIMIENTOS	
WORNDESTLITENIOS	그 그리는 그 얼마나를 하고 있는 물을 하는 것
A mi asesor de tesis:	
A MI deesor de cesta.	
	Ing. Fco. Raul Ortiz González
A mis profesores	이 그들 아내는 아래를 가를 받았다고 있다.
	사람들 그리고 있는 사람이 되는 사람들이 얼마나 되었다.
	그는 처음 가면 무슨 것이 되는 것이 없다.
	A mis amigos
A LOS SRES. PROFRS. DEL JURADO	
	Al pueblo de México
	ut bacato de devico

PERO SOBRE TODO A DIOS GRACIAS.

LA MAQUINARIA DE CONSTRUCCION

SU MANTENIMIENTO Y CONTROL

PREFACTO

La presente tesis fue elaborada con el vehemente deseo de ser fitil a los estudiantes y profesionistas de la industria de la construcción, aunque comose observará más adelante, los conocimientos aquí descritos sirven también en la organización industrial, ya que los estudios y análisis que aquí se proponen, enmarcan los lineamientos necesarios para llevar un excelente control administrativo y operacional del mantenimiento de la maquinaria.

Reduciendo considerablemente fuga de capital por el mal uso de los equipos, lo que evoca a la recuperación de los recursos tanto económicos como huma
nos, ya que sin esto su impacto social y ambiental irfa en decremento.

En el capitulo I se definen los conocimientos necesarios para interpre - tar los alcances organizativos y de control operacional, de los tipos de mante nimiento utilizados en la maquinaria y/o equipos para construcción, se clasifican los equipos según su tamaño y su uso con el fin de que el lector encuentre una idea del equipo que puede administrar.

Eu el capitulo II se describe la utilización de las cartas de control, la programación del equipo, se incluye la forma de proformar los equipos y se — enuncian los requerimientos mínimos, con los que debe contar un Departamento — Ingeniería de Mantenimiento.

En el capitulo III se esboza la funcionalidad de los laboratorios de análisis de aceite, las camionetas de apoyo al Departamento de Mantenimiento, así como la importancia de los lubricantes, su utilización y consecuencia por la falta de éstos en la maquinaria, se incluye también un inciso que habla de la seguridad industrial ya que los accidentes imprudenciales, por parte de los trabajadores y el poco interés de los ingenieros a cargo de los equipos suelen ser de gran consideración, ya que afecta tanto a la administración como a las personas encargadas de efectuar el mantenimiento de los máquinas.

Se penso premeditadamente dejar en el capitulo IV, ejemplificaciones de los análisis de los costos directos de la maquinaria utilizada en obra, su rendimiento y la descripción de como seleccionar equipos para una correcta utilización de los costos originados por la utilización de la maquinaria en las - obras públicas y privadas.

Por último se deja un apéndice para concentrar un glosario de términos técnicos, tablas de mayor uso en la Ingeniería de Mantenimiento, se da también una bibliografía para poder profundizar en los temas y se evalua la tesis a través de las conclusiones.

Con lo anterior descrito me queda la esperanza de que esta tesis sea de gran interés a los estudiantes y profesionistas que desarrollen estudios o actividades afines.

OBJETIVO GENERAL DE LA TESIS

Definir los conocimientos fundamentales sobre los tipos, funciones y orgación del mantenimiento, utilizando programas de mantenimiento preventivo,gráficas de control y estimación de costos, obteniendo con ello el máximo aprovechamiento de la maquinaria, ahorro de combustible, prevención de la contaminación por combustibles, abatimiento de costos y calidad en la obra civil.

INTRODUCCION

Toda maquinaria en operación sufre un desgaste normal, ocasionado por la fricción entre las partes métalicas de sus componentes al encontrarse en movimiento, dicho desgaste, es particular en cada máquina de cada compartimiento, es decir, que las curvas de desgaste en función del tiempo, son únicas en cada caso, por ello con un seguimiento perfodico de anúlisis es posible saber el comportamiento, estadístico normal, pudiendo observarse con claridad el momento en que algún elemento metálico se eleva considerablemente indicando una posible falla próxima. Por esta razón es conveniente realizar muestreos perfodicos y analizar los metales de desgaste que se consideran de mayor importanciacomo son: cobre (Cu), hierro (Fe), cromo (Cr), aluminio (Al), silicio (Si) y plomo (Pb), dichos componentes son los que proporcionan mayor información acer ca del estado de los conjuntos lubricados, el silicio (Si), es un elemento no metálico el cual muestra la contaminación en el accite por polvo e tierra, siendo un parámetro importante a determinar puesto que al encontrarse en exceso acelera considerablemente el proceso de desgaste.

INDICE	
	Pág.
Prefacio	4
Objetivo de la Tesis	6
Introducción.	7
CAPITULO I	
- Generalidados del Equipo de Construcción	
1) Aspectos Cenerales del Equipo de Construccióπ	11
1.1) Falta de Mantenimiento, (Impacto Ambiental)	20
1.2) Estructura Organizacional	26
1.3) Tipos de Mantenimiento	37
CAPITULO II	
- Administración del Equipo de Construcción	
2) Cartas de Control, su Uso y Manejo de la Bitácora	45
2.1) Programa de Utilización del Equipo	59
2.2) Envío, Recepción Entrega y/o Devolución de Maquinaria	69
2.3) Aprovisionamientos Necesarios	76
CAPITULO III	
- Control Operacional	3,42, 달
3) Laboratorio, Análisis de Pruebas	83
3.1) Camionetas de Diagnôstico	91
3.2) Sistemas de Lubricación	93
3.3) Seguridad en el Trabajo	100
CAPITULO IV	
- Evaluación de los Costos Directos de Maquinaria	10 10 M = 1 1 10 M = 1
4) Anālisis de los Costos Horario	109
4.1) Factores de Rendimiento	122
a) Retroexcavadoras	122
그는 그는 사람이 목대통하다를 받았다는 것은 것은 것은 것이 들어가고 있는데 다시다.	
그 그는 그는 그는 사람들은 얼마를 하는 것이 그렇게 하셨다면 하는 것이 되었다. 그는 사람들은 사람들은 사람들이 되었다.	
그 그는 아내가 아내 아파 아래 중학인 남은 생활하다 함은 그래 아래를 받았다. 이 나를 하 없는 다이	

	formadoras	126
	사용 전환	129
4.2) Selección	de Equipo	133
4.3) Estimación	de los Costos de Posesión y Operación	143
- Conclusiones		149
- Recomendaciones		150
- Bibliografía		151
APENDICE		r figures in the Africa. Fair to a Chinasan
I) Glosario d	e Términos Técnicos	154
and the second s	esarias en Ing. de Mantenimiento	158
III). Förmulas E	léctricas.	187
	함께 없는 제 말이 그리고 하시다고 말을 수 있는 모든데 다	

CAPITULOI

GENERALIDADES DEL EQUIPO DE CONSTRUCCION

OBJETIVO PARTICULAR

Describir los conocimientos necesarios de los tipos de mantenimiento y organización administrativa, de la maquinaria utilizada en la industria de la construcción, asociando esta actividad con lo actual en control y organización del mantenimiento, señalando la participación del Ingeniero Mecánico Eléctrico en esta actividad.

1) ASPECTOS GENERALES DEL EQUIPO DE CONSTRUCCION

La Ingeniería de Mantenimiento se refiere a los problemas cotidianos de conservar la maquinaria en buenas condiciones de operación, y es auxiliar de la Ingeniería de Construcción, que es la encargada de ojecutar la obra civil.

La justificación de un grupo de Ingeniería de Mantenimiento se encuentra en que sirve para asegurar la disponibilidad de máquinas y servicios que se ne cesitan en la obra para desarrollar sus funciones, a una tasa óptima de rendimiento sobre la inversión, ya sea que esta inversión se encuentre en maquina ria, en materiales o recursos humanos.

La dependencia del personal de obra en la Ingeniería de Mantenimiento au menta con la complejidad del equipo que se usa en la industria de la construcción. El costo de mantenimiento se ha convertido en una parte del costo total de producción, y el grupo de Ingeniería de Mantenimiento, en una unidad importante de la compañía.

Aunque en la practica el alcance de las actividades de un Departamento de Ingeniería de Mantenimiento es diferente en cada obra y se encuentra influido por el tamaño de la misma, por el tipo, por la política de la compañía y por los antecedentes de la empresa y de la rama constructiva, queda establecido que la capacidad de construcción de que disponga un contratista para la eje cución de una obra, deberá estar en proporción de la misma, a fin de que sus operaciones sean conducidas en la forma más eficiente y econômica posible, lo cual implica que los contratistas dispongan de la maquinaria de construcción adecuada con la que puedan realizar las obras que les sean encomendadas, por-

parte del contratista deberán realizarse cuidadosos estudios a fin de determinar cual es la maquinaria más conveniente para la óptima ejecución de una - obra. A continuación se describe la clasificación del equipo por su tamaño y según su uso.

1) CLASIFICACION DEL EQUIPO SEGUN SU TAMAÑO

EQUIPO LICERO

MALACATES GASOLINA
ELECTRICOS

TORRE GRUA REVOLVEDORAS

VIBRADORES DE AIRE ELECTRICOS

BOMBA DE CONCRETO

BOMBA DE AGUA

EQUIPO DE SOLDADURA GASOLINA

SIERRA CORTADORA DE CONCRETO

2) EQUIPO PESADO

TRACTORES

BULLDOZER (CUCHILLA RECTA)
EMPUJADORES
ANGLEDOZER (CUCHILLA ANGULABLE)
DESGARRADORES
PLUMA LATERAL
CADENA DE DESMONTE
PUNZON

DESCARGA FRONTAL DESCARGA LATERAL DESCARGA TRASERO - CUCHARON DE ARRASTRE - CUCHARON DE ALMEJA - CUCHARON DE GAJOS **EXCAVADORAS** DE NARANJA - GARFIOS - GRUA - BACHAS DE CONCRETO RETROEXCAVADORAS - PILOTEADORAS - DEMOLEDORA ZANJADORAS - ELECTROIMAN

ESCREPAS

ARRASTRE
AUTOIMPULSADAS
TANDEM
AUTOCARGABLES

TRANSPORTE

VOLTEOS VOLQUETES VAGONETAS PLATAFORMAS DUMPTORS

MOTOCOMPORMADORAS

COMPACTADORES

PATA DE CABRA
RODILLO DE REJA
APLANADORA DE 2 RODILLOS LISO (TANDEM)
APLANADORA DE 3 RODILLOS LISOS
COMPACTADOR DE LLANTAS NEUNATICAS
COMPACTADOR COMBINADO (DUO-PACTOR)

COMPACTADORES MANUALES PISON DE MANO BAILARINAS RODILLO MANUAL

PALETAS DESLIZANTES ROTATORIOS | LOBULOS RECTOS LORULOS HELICOIDALES PISTON LIQUIDO DESPLAZAMIENTO POSITIVO RECIPROCANTES | SIMPLE EFECTO (FLUJO INTERMITENTE) DOBLE EFECTO COMPRESORES (FLUJO RADIAL) FLUJO AXIAL FLUJO CONTINUO FLUJO MIXTO PISTOLA DE BARRENACION PISTOLA DEMOLEDORA PERFORADORAS PIERNA NEUMATICA JUMBO PERFORADORA DE CARRETILLA PERFORADORA DE ORUGAS QUIJADAS CONOS O GIRATORIAS TRITURADORAS RODILLOS IMPACTO MOLINO DE MARTILLO BANDA TRANSPORTADORA CRIBAS PLANTA DE TRITURACION PAVIMENTACION PLANTA DE ASFALTO PLANTA DE CONCRETO PETROLIZADORA BARREDORA PAVINENTADORA (FINISHER)

3) CLASIFICACION DEL EQUIPO SEGUN SU USO

TRACTORES TILTDOZER **ESCARIFICADORES**

MOTO ESCREPAS Y TRAILLAS

RETROEXCAVADORAS DRAGAS CARGA . GRUAS PATO CUCHARON DE ALMEJA CARGADORES FRONTALES

ESTACIONARIA

B) ACARREO DE MATERIALES

A) PARA MOVIMIENTO DE TIERRAS

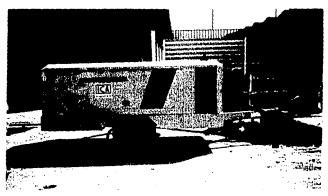
> REMOLQUES TRAILERS GRUAS DERRICK

CAMIONES DE VOLTEO

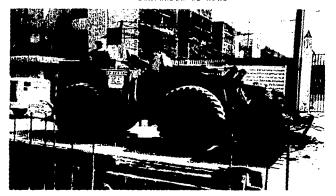
DUMPERS : MOTO - ESCREPAS

C) EQUIPO DE ELEVACION DE MATERIAL

GRUAS TORRE FIJA GRUAS LIJERAS PLUMAS TELESCOPICAS CABLE GRUAS MALACATES

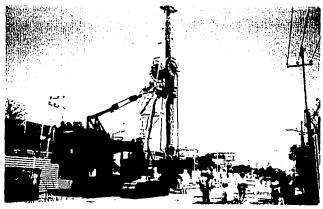

D) EQUIPO DE COMPACTACION

PATA DE CABRA RODILLO REJA BAILARINAS DUO - PACTOR RODILLOS VIBRATORIOS TAMBOR ACERO LISO

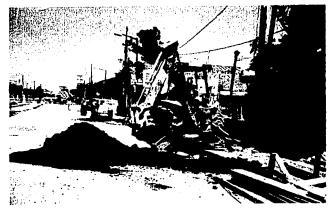

E) EQUIPO URBANIZACION

MOTOCONFORMADORAS PETROLIZADORAS PAVIMENTADORAS PLANTAS ASFALTICAS ESPARCIDORES BARREDORAS

Como se puede apreciar, la cantidad de maquinaria utilizada en una obra es muy variada y por lo tanto, es necesario la vigilancia de la óptima calidad de operación de la maquinaria por un especialista en mantenimiento de maquinaria pesada y ligera, este especialista deberá tener conocimientos de motores a gasolina, diesel, electricidad automotriz, neumática e hidráulica, además delcontrol y administración del equipo.


COMPRESOR DE AIRE

CARGADOR FRONTAL


COMPACTADORAS NEUNATICAS (BAILARINAS)

DRAGA LS 108 CON EQUIPO GUIADO "CASA GRANDE"

GRUA PATO

RETRO EXCAVADORA

- 18

Entre las muchas razones del porque se dehe dar especial atención al mante nimiento de maquinaria pesada y ligera, de una obra civil es el desgaste, yaque estamos hablando de elementos metálicos en movimiento, a continuación doy algunos datos sobre este tema:

A) TIPOS

- 1) MECANICO: a) ABRACION
 - b) FRICCION
- 2) CORROSIVO: a) POR ATAQUE QUIMICO
 - 1.- Por productos de oxidación del
 - lubricante
 - 2.- Por ácidos de combustible
 - 3.- Herrumbre ocasionada por el agua

B) PROBLEMAS OCASIONADOS POR EL DESGASTE

- 1) Escapes de gases, pérdida de potencia, ruido
- 2) Reducción en la economía
- Aumento de reparaciones y mantenimiento
- 4) Vida más corta

C) PARA REDUCIR EL DESGASTE

- 1) Usar lubricantes y combustibles adecuados
- 2) Dar montenimiento correcto a los filtros de aire y aceite
- 3) Reducir al mínimo las operaciones a bajas temperaturas del motor
- 4) Cambios de aceite regulares y engrasadas frecuentes

D) AFLOJAMIENTO INICIAL DEL MOTOR

- 1) Un tipo "especial" de desgaste
- 2) Un rápido asentamiento es lo mejor
 - a) Para las partes del motor y la operación
 - b) Para mayor economía de combustible y aceite
- 3) Recomendaciones del fabricante
 - a) Evite excesiva marcha en vacío

NOTA: De este problema y otros se hablara más ampliamente en el capitulo III

1.1) PALTA DE MANTENIMIENTO. (IMPACTO AMBIENTAL)

La mayorfa de las personas conocen las molestias que ocasiona una obra sobre todo si ésta es muy grande, el polvo, el ruido, desvío de tráfico, entreotras y si a esto agregamos la falta de mantenimiento en la maquinaria utiliza
da en una obra, tendremos problemas de contaminación seguridad personal, desor
den en el trabajo y por ende costos elevados de mantenimiento en los equipos,pero esto lo podemos evitar, si no en un 100%, al menos lo suficiente para tra
bajar adecuadamente, conociendo un poco de los efectos causados por la falta de buena organización en la Ingeniería de Mantenimiento.

Algunas de las fuentes de contaminación que afectan a la maquinaria son:

Polvo de la atmósfera y de los caminos, en las áreas rurales se tiene 0.3gramos/28 m² equivalente a 1:1/4 tons, por km² y en áreas industriales 0.3 gramos/28 m² equivalente a 12:1/2 tons, por km².

Una maquina ligera o pesada, en obra y en condiciones normales, en uso durante una hora diaria puede absorver como promedio 272.2 gms. (0.6 lb) de polvo por año en 2 horas diarias, 544.4 gms. (1.2 lb), etc., aún los purificado ros de aire en buen estado no pueden remover todos los abrasivos de aire.

No parece gran cosa, pero nadie deliberadamene hecharia una bolsa de 270 gr. de polvo dentro de su motor o aún una décima parte.

Estas estadísticas no muestran la historia completa:

En zonas rurales la concentración de polvo, sobre caminos sin pavimentar y en operaciones agrícolas y de construcción, puede ser muy elevada.

El polvo es dañino y trabaja en forma inadvertida, aumenta los depósitos y ocasiona desgaste abrasivo.

PRODUCTOS DERIVADOS DE LA COMBUSTION

4 lts. de gasolina más 34,000 lts. de aire más 4 lts. de rgua más otros - productos de la combustión tienen la fuerza para impulsar un auto, el agua y - otros residuos permanecen en estado gaseoso, una parte sale por el escape y - otra pasa a través de los anillos al cárter.

Algunos residuos sólidos también son expulsados y otros permanecen en el motor.

También hay combustible parcialmente quemado. Los residuos de combustión permanecen en el motor.

- 1) Forman depósitos inmediatamente
- 2) Se convierten en depósitos al continuar la operación
- 3) Diluven el aceite
- 4) Pueden ocasionar herrumbre, corrosión y desgaste

La ventilación ayuda a expulsar del motor los vapores de agua y combustión que contribuyen grandemente a la formación de depósitos.

DEPOSITOS CONTAMINANTES EN EL MOTOR:

A) FUNETES PRINCIPALES

- 1) Polvo de la atmósfera y suciedades
- 2) Arena de la fundición y rebabas del maquinado
- 3) Particulas metálicas de desgaste
- 4) Aceite lubricante
 - a) Deteriornación química de un aceite inestable o de un aceite debajo en servicio por mucho tiempo
 - b) Carbonización o una continuación de lo que es esencialmente es la destilación del aceite expuesto continuamente a muy altas temperaturas (destilación des tructiva)
- 5) Productos resultantes de la combustión
- 6) Escapes de agua

B) TIPOS

- Carbón de la cámara de combustión, hollín del combustible polvos abrasivos, sales de plomo y otros residuos de la combustión, carbonización del aceite y combustible
 - Barnices y laca émbolos, cilindros y cojinetes, provenientes generalmente del combustible
 - "Lodos calientes" químicamente similares a los barnices, pero presentándose en varias formas sobre otras partes del motor

 "Lodos fríos" o "mayonesas" de la emulsión de agua, contaminantes y aceite se encuentran en cárters, tuberías, cámaras de válvulas y áreas de enfriamiento

C) PROBLEMAS OCASIONADOS POR LOS DEPOSITOS

- En cámaras de combustión: bajo rendimiento, elevado consumo de gasolina
 - a) Aumento del golpeteo y pre-ignición (especialmente en los modernos V-8)
 - b) Fallas de las buifas
- 2) Sobre émbolos, anillos, válvulas y elevadores hidráulicos
 - a) Mal funcionamiento en general, ruido de los elevadores
 - b) Escapes de gases
 - c) Mayor desgaste
 - d) Menor potencia
 - e) Mayor consumo de gasolina y aceite
- 3) En cárters, cámaras de válvulas y tuberías de aceite
 - a) Distribución y flujo incorrecto del aceite
 - b) Menor disipación del calor

D) REDUCCION DE DEPOSITOS

- Uso de aceite adecuado (químicamente estable, detergente dispersante, volatilidad adecuada)
- 2) Cambiar aceite frecuentemente y regularmente
- Conservar al minimo la operación a baja temperatura, tener el sistema de ventilación trabajando adecuadamente
- 4) Conservar la eficiencia del sistema de enfriamiento
- 5) Mantener la eficiencia de los purificadores de aire y de aceite
- Usar aceites multigrados para reducir los depósitos en la cámara de combustión
- Asegurarse que el carburador y estrangulador se encuentren trabajando perfectamente

SISTEMAS DE CONTROL PARA LAS EMISIONES DEL MOTOR

PROBLEMA: Los motores automotrices a gasolina producen vapores y gases que son las causas potenciales de la contaminación del aire. Los sistemas de controlreducen muchas emisiones, pueden obtenerse otros beneficios, tales como mejoramiento en la economía de operación, y en general mejores condiciones del mortor.

ORIGENES:

- Cárter del motor, gases de escape de cilindros, vapores de aceite, cerca de 1/4 del total
- Sistema de escape, gases de la combustión, combustible sin quemar vapor de agua, óxidos de nitrógeno, aproximadamente 1/2 del total
- Carburador y tanque de combustible, evaporación del combustible, cerca de un 1/4 del total.

Los sistemas para controlar las fuentes 1 y 2 están en amplio uso; las del punto 3 son factibles y actualmente están bajo desarrollo.

Causa 1, con la velocidad del motor aumentan los vapores; causa 2, los gases con hidrocarburos (IIC's) no quemados y el monóxido de carbono (Co), presentan los problemas más serios durante la accleración, desaceleración y baja velocidad (incluyendo marcha en vacío).

METODOS DE CONTROL

CARTER:

Principio empleado: retorno de los vapores al sistema de admisión mediante su inclusión en la mezcla combustible de alimentación a los cilindros: ventila ción positiva del cárter (PCV).

METODO: Los vapores son aspirados al sistema de admisión mediante vacío. El <u>SISTEMA CERRADO</u> mostrado aquí, está sellado para evitor el escape del va-por a la atmósfera. <u>SISTEMA ADIERTO</u>, encontrado en vehículos viejos, y que no está sellado; bajo adversas condiciones los vapores pueden escapar a la atmósfera.

COMPONENTES PRINCIPALES: Válvula PCV y una tubería o manguera de conexión, diseñadas para el motor específico.

MANTENIMIENTO: Inspección cada 6 meses 6 10,000 kms. (6,000 millas) del funcio namiento de la válvula, mangueras libres de depósitos; reemplazo de la válvula cada 12 meses 6 20,000 kms. (12,000 millas). También revisión en el sellado del tapón para llenado de aceite; filtro de aire, guarda flama y separador de aceite (donde se utilicen).

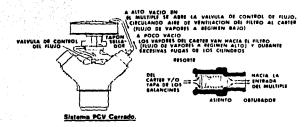


Fig. 1

Sistema PCV Cerrado. La Fig. 1 muestra una típica válvula de control de flujo en la posición de cerrada, con el motor sin carga (cero vacío) el obturador es retenido firmemente en su asiento por el resorte y no hay flujo. Cuan do el motor está funcionando, el obturador flota en el cuerpo de la válvula, a una posición determinada por el vacío del múltiple y la presión del resorte. El flujo es mayor a vacío reducido y menor a alto vacío.

CONTROL DE LAS EMISIONES DEL MOTOR

ESCAPE

Principio empleado: reducción de la concentración de gases no quemados - (HC's,CO) en el escape por (A) aumento de la combustión en los cilindros, o --

(B) combustión y quemado por los gases residuales en el múltiple, antes de su salida final a la atmósfera.

A) SISTEMA DE MODIFICACION EN EL MOTOR

Características: Carburación especial, para mezclas pobres; tiempo de en cendido especial, para retardar más chispa de encendido en vacío, y posiblemen
te durante la desaceleración (en algunos diseños): en ciertos casos, más altas
temperaturas del sistema de refrigeración, mayor capacidad de enfriamiento, mo
dificación de los contornos de la cámara de combustión, reducción del traslape
de las válvulas, aspiración de aire pre-calentado.

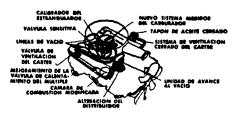
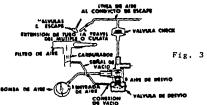



Fig. 2

B) SISTEMA DE INVECCION DE AIRE

Características: La bomba es operada por el motor, para suministrar aire auxiliar en el múltiple de escape, para quemar los gases residuales de la combustión; para la válvula check y de desviación, además en algunos diseños, uno o más carburadores, tiempo de encendido y otros cambios enlistados en el sistema de modificación del motor.

- 25 FALLA DE ORIGEN

MANTENIMIENTO A AMBOS SISTEMAS

Afinación del motor anualmente o cada 20,000 kms. (12,000 millas) siguiendo las instrucciones del fabricante.

La revisión a un sistema PCV es un caso preliminar requerido. Adicional mente, los sistemas A-l requieren inspección en la banda de la bomba de nire y
filtro.

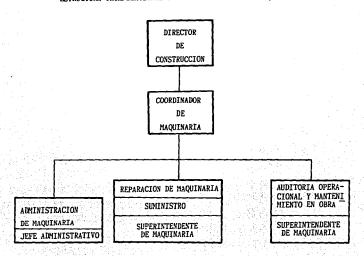
Esta problemática de contaminación la podemos observar también en maquinaria con motores a diesel y por ende los cuidados deben ser también extremos, a
pesar de que en la industria de la construcción hay bastante polvo, lodos y
otros contaminantes que afectan a la maquinaria, éstas se deben mantener en lo
posible, limpias y en buen estado de operación, con el objeto de disminuir depósitos.

Del tipo y control de este mantenimiento se hablará más ampliamene en los capitulos siguientes:

1.2) ESTRUCTURA ORGANIZACIONAL

La estructura organizacional aquí presentada, ha sido pensada para satisfa cer las necesidades operativas de una obra de una manera ordenada y para 11e - var a cabo la utilización adecuada de la maquinaria.

El éxito de esta organización depende de la ejecución de las responsabilidades adquiridas por el personal de la coordinación de Ingeniería de Manteni miento.


Se reconoce que esta estructura organizacional no resuelve los problemasfísicos o administrativos de una obra, pero de ésta depende las acciones tomadas por la coordinación de maquinaria y aún de la dirección de la compañía.

Sin esto los costos seguirán rebazando las metas y los programas de obrafilados, no se cumplirán en su tiempo estimado.

Otro punto importante que cabe señalar es que los servicios que brinde una determinada compañía no se cumplirán, siendo la imagen de la empresa con poca calidad de servicio, poco rendimiento productivo y claro que todo lo que se genera de un mal servicio repercutirá en el prestigio de la empresa, dando como resultado utilidades mínimas o nulas, además de la desconfianza de los —
clientes para seguir contratanto los servicos de dicha compañía, a continua —
ción presenta:

- Organigrama de la estructura organizacional de la coordinación de maquinaria
- Diagrama de flujo del sistema de control gerencial de maquinaria

ESTRUCTURA ORGANIZACIONAL DE LA COORDINACION DE MAQUINARIA

.

La estructura como se muestra en el organigrama da a cada uno sus responsa bilidades específicas.

La coordinación de maquinaria tendrá la responsabilidad de:

- 1) Entrega de equipo en óptimas condiciones
- 2) Reparación del equipo, en talleres propios y de terceros
- 4) Compra y venta de maquinaria
- 5) Auditorias de operación y mantenimiento

La superintendencia de obra tendrá la responsabilidad de:

- 1) La operación de la maquinaria
- Control de mantenimiento predictivo, preventivo y correctivo, éste Gltimo lo menos posible

El personal para controlar la maquinaria en obra será como sigue:

- a) Superintendente
- b) Jefe de obra
- c) Jefe de frente
- d) Auxiliar técnico

Las actividades que a continuación se enuncian serán llevadas de acuerdo a la jerarquía y al grado de responsabilidad que cada una de éstas represente, — será entonces, el superintendente de maquinaria el encargado de distribuir ade cuadamente este trabajo.

RESPONSABILIDADES

- Instalación del taller mecánico al inicio de la obra
- Costos horario de la maguinaria
- Programas de mantenimiento
- Incidencias de maquinaria
- Inventario físico
- Controles de recepción, calidad y envío
- Requisiciones de material, refacciones y herramienta
- Ordenes de trabajo
- Plantilla de personal

RESPONSABILIDADES

- Reportes de mantenimiento preventivo y correctivo
- Reportes de operadores
- Envio de muestras de aceite
- Pólizas de seguros de vehículos y maquinaria
- Consumo de combustible
- Horario y turnos
- Distribución adecuada de tareas al personal
- Aspecto físico del equipo
- Vigilancia de horômetros
- Avaluos de llantas
- Bitacora de maquinaria mayor -
- Información técnica
- Conocer los equipos que va a utilizar
- Programa de utilización
- Capacitación del personal
- Reparaciones mayores
- Provisiones de renta y costos por devolución de maquinaria
- Cargos y abonos de maquinaria

SUPERVISION

- Mantenimiento predictivo, preventivo y correctivo
- Cumplimiento de programa
- Utilización correcta de recursos
- Operación óptima de la maquinaria
- Seguridad de los operadores

FLUJO DEL SISTEMA DE CONTROL GERENCIAL **MAQUINARIA** CHOLCOM BEPCATE PERCHIE FERORE REPORTE SERENCIAL C'A (SEW 167474 OPERACIONES **CFERACIONES** PROSECUA ACATATACES OPER ACCION ATAUL TOVACA PRESSAVA SEVANA, CE DARK DE AEVISION MENSUAL REVISION GENERALDORES VOLUMENES CONCRADOS REQUERCOS BEF SEPANAL MENSIE DEER **EETHACIONES** REPORTE DIARIO (AIRANUCAM PROBLEMA CPER ASSION CONTROLDE PERSONAL PARTICIPACION DIRECTA PARA ESTA AREA NOMINA DISCREP DELCONTROL PARTICIPACION INDIRECTA PARA ESTA AREA DE PERSONAL

FALLA DE ORIGEN

Con el diagrama de flujo del sistema de control gerencial se pretende esta blecer una relación eficiente entre el área de maquinaria y los frentes de tra bajo, cuantificando las horas de utilización real de la maquinaria, y el estado en que se encuentran: en operación, reparación ociosa, etc., para lo cual se llenará un reporte diariamente con la información que se recopile de los frentes de trabajo realizando para ello al menos dos recorridos por el área de obra.

Estos documentos serán controlados, diarinmente y semanalmente, para ser - presentados finalmente en un reporte mensual, los cuales serán revisados por - la gerencia y según los resultados ésta tomará la acción más pertinente, evi - tando con esto fallas en el sistema de control de maquinaria. A continuación se da una forma eficaz para llevar este control.

REPORTE DIARIO DE OPERACION

FORMA 1 MECANICA DE LLENADO

- 1) FECHA: dia, mes, año correspondiente
- 2) ZONA: zona a la que corresponde la información
- 3) FRENTES: los frentes de cobertura del reporte
- 4) Jefe de obra (responsable de llenar el reporte)
- 5) Número de página consecutivo, así como el total de éstas
- 6) Número económico de todas y cada una de las máquinas con sideradas como equipo mayor, que se encuentran asignadas dentro de los frentes de cobertura de este reporte (seanotarán los económicos del equipo menor, solamente cuan do alguno de éstos se encuentren en reparación
- Descripción de la maquinaria correspondiente al número económico anotado en cada pensión (grúa hidráulica, nive ladora, cargador frontal etc.)
- 8) Nombre del frente al cual está asignada la maquinaria -- que se reporta
- Número de horas máquina, disponibles durante el turno, que deberá ser el equivalente a un turno normal de traba jo (8 horas)
- 10) Número de horas que realmente trabajó el equipo durante el turno, según indique el horômetro de cada máquina
- Se resta la casilla (10) menos la casilla (9) respetando el signo (+/-) del resultado
- La cantidad de horas que la máquina trabajó en forma normal
- 13) La cantidad de horas que la máquina estuvo en reparación

A series a transfer for a figure of a section of the first

- 14) La cantidad de horas que la máquina permaneció inactiva u ociosa durante el turno
- 15) La cantidad de horas que la máquina permaneció descompues ta en el dea de trabajo, incluyendo tanto el tiempo de reparación y el tiempo que transcurrió desde que se presentó la falla hasta que se comenzó a reparar
- 16) Marcar esta casilla "x" si la reparación que se realizó fue de tipo mayor
- 17) Marcar esta casilla "x" si la reparación que se realizó fue de tipo menor
- 18) Número de horas que se planea tardará la reparación
- 19) Número de horas que realmente tomó la reparación cuando exista una diferencia entre el número real y el planeado, deberá anotarse en el reporte del problema operativo ac ción tomada las razones que ocasionaron esta diferencia
- 20) La hora a la que se planea iniciar la reparación, o la fecha de inicio plan, si es que la reparación no comenzará a realizarse el mismo día
- llora a la que se planea terminar la reparación, o la fe cha plan de terminación, si es que la reparación no podrá realizarse en un solo día
- 22) Hora o la fecha en la que realmente se inicio la repara ción
- 23) Hora o la fecha en la que realmente se termino la reparación
- 24) Total de horas que el equipo no estuvo disponible, no incluyendo el tiempo de traslado, frente-taller-frente, eltiempo transcurrido desde que se presentó la falla, hasta que se comenzó a reparar el equipo, el tiempo que tomo el diagnóstico de la falla, el tiempo mismo de la reparación
- 25) Descripción breve de la falla que se presentó, comenta rios realizados por el operador o Jefe de frente, respecto a posibles fallas, o mal funcionamiento del equipo.

		100					
ELABOR	04	P	ROBLEMA OPERATIV	O / ACCION TOMADA		FECHA:	
PUESTO:		나는 내가 되었		12 12 12 12 12 12 12 12 12 12 12 12 12 1		GERENCIA:	
X (5)							
JEFE:_		SUPERINTEND	ENTE: 7			FRENTE:	
	adanga darbar jaltar keja ya i	Charles and the second of the second	a second in the second	des ar with the factor is all the second	984 1184 H. H. H. L. C.		

.

DIAS			TO COLORS HAVE A MADE VALUE TO A TO		ASIGNADO		
SIN	PROBLEMA OPERATIVO	HOWBRE	ACCION TOWADA REQUERIDA	ROMBRE	FECHA	FECHA	STAT
UC:ON	and the marker of the confidence of the confiden	PERDIDAS	Charles and the second control of the second	1.00	持續情勢	CUMPL	1000
			在外位。1855年的基础的企作的企业,在1965年中的基础的企业。				
* **	Control of the second of the s	1 10	the second section of the second section is a second section.	12	13	14	15
1/	in the second of the control of the		在高度的 在实际的主义和 (A. C. M. M. A. A. M. M. A. A. M. M. A. A. M.	的數			
	Control of the second s	(A**) 374 . Ft	在1000年以前1000年10日(1) 中国地域民主党等共和共和党共和国的	Attion.		ANDING	127
登名	salah sebagai perandan salah sebagai s	d. No.	The same distribution of the problem in the constraint of the cons	\$ 10 mg	ME TO	强制造	
å.	在一些可能的概念的可能是一种的問題的人學的學科學的學科學的學術		Talleria de la Crista de La California d	16689	(金)	915-4	
	2016年1月1日中央中央市场,1916年1月1日中央市场中央市场中央市场市场的		为2的新加州的基础的		- 0.48	5138	
	在第二十三十八年代前二世紀 计新元素的多字形式 对新	100 May 1	and a consequent of the consequence of the conseque	34.34		53.20	1
960 1	Butter for an application of the state of the second		是了是古典的神经期的中央。 地名西葡萄罗斯特 电影的电影的电	高等等	3255	1500 Hz.	1.50
	and authorized by the control of the		是这个企图的种子中有对方。 图 建筑 医克勒耳克斯氏结核				
Me.	VII. SKIE II. DAN AND AND AND AND AND AND AND AND AND	198	第三位国际国际部分的特别的		174 475 L		
96	有效性性的不可能性性的不同性。但是不同性的性效性的	222	10年1月第四年1月1日 1月1日 1月1日 1月1日 1月1日 1月1日 1月1日 1月1日	衛衛		1 min	1
4.2	在EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	安理学	TO THE SECTION OF SECTION OF THE SEC	\$26.0	1年6月1日生	3080,735	2.0
	· · · · · · · · · · · · · · · · · · ·	188	的复数医医神经神经神经神经病 特拉克斯特拉克斯克克克克斯克斯克克	100 Mg. 1	22.		100
	THE PURPLE OF TH		A CANADA CONTROL OF CONTROL OF CONTROL	養養			
<i>.</i>	Commission of the Commission o	395	De l'Alland Presidentes dinimités (Color l'Especiale)	李統		建制的	127
, i.i.,	1017年12日 12日 12日 12日 12日 12日 12日 12日 12日 12日	150 SEC.	建筑设施 机电影学院工作员 插入 超级 化电影电影	9967	AUK!	92°\92°	30.7
	2.7 mm. 2.4 mm. 2.2 m	le y	50%。資本的關鍵性能對於與中國的關鍵的對於10次次至2022				١
(i)	Access to the form a female of the control of the second states.	1	pertinamentalismento de ciminamento de esta	1888	家學家		
	2017年12日 12日 12日 12日 12日 12日 12日 12日 12日 12日	1 學家	25个分类。在10个是1200年中的1000年,在10个年代的10个年代的1000年,	1000	25	\$50%	(G),
123	-physician process (through suppressed in the City Chairest	34000	and the second s	94/88KVs	198087	- 10 Sec.	-
	and the second s	13.86	Carrier Data Contain to a cappe and recovery	1	122		200
19.		搜集					
4		128	at the control of the		\$9.5		
لند	The second secon	100	and the second of the second o		20 to 20 to 20	200 200 2	

- FORMA 2 -

PROBLEMA OPERATIVO / ACCION TOMADA

El objetivo de este reporte es documentar los problemas operativos que sepresentan durante el turno de trabajo, cuantificando las horas hombre pérdidas a causa de los problemas operativos asignando acciones correctivas tomadas, re queridas y responsables de su cumplimiento.

MECANICA DE LLENADO

- Del punto 1 al 7 se omite la descripción por ser similares a la forma 1 en su llenado
- Número de días que se ha estado presentando el mismo problema sin que haya sido resuelto
- 9) Descripción breve y clara del problema operativo identificado
- 10) Cuantas horas hombre se perdieron a causa del problema (en caso de no conocer este dato proporcionar una estimación)

 EJEMPLO: (No. de personas) x (Horas sin trabajo)
- 11) Descripción de las acciones que se tomaron o tomarán para solucionar de finitivamente el problema. (en caso de no tener la solución definitiva, reportar que medidas provisionales se tomaron o que acciones se requieren para la solución definitiva)
- 12) Nombres de las personas asignadas a resolver el problema
- Fechn en que se presento y asigno el problema operativo al responsable de solucionarlo
- 14) Fecha estimada para la solución del problema
- 15) Indicar "complete cuando el problema haya sido solucionado satisfacto riamente, el espacio quedará en blanco hasta que se haya completado la acción correctiva al 100%

NOTA: El control de personal y discrepancial al que se tenga con este serán manejados de manera interna por la superintendencia de maquinaria.

FALLA
DE
ORIGE

FRENTES			_4_			REF			IRIO DE		RACIO)N	-			GEREN	1 IGA 4_5_DE_	
	;				MAQU	114814	LIAYO	·				PEPAP	1001				TOTAL	Œ\$₽\ACOÆS
M.VE-S	:	FRENTE		EAS U		1_		47.5		76		ECE.			PE	F1000	-3-45	
ESTN	1400444	CE ASIGNADON							CESCUF C-LAPEA	ure	KE'13	PLAN	FEA		*****	7E-0	PERDOAS	It is a supplying the second
	,		_	1	ī	Ι.		1	1	T.,	1 .,	1	16	-		22	74	25
			Ť	Ì	Ť	Ť		•	Ť	1	i i	1	 -	-	۳			
			-	+	+-	-	-	-	-	-	-	!	 	Ė				
	·		-	-			••••	-	 -				:			<u> </u>		
			-	-	-	-	:	!		1	Ť	 -	i-	٥				
			-	 		-	 :		 	-	 - -	\vdash	 -					
			-		1	-	i - -	 	_	_	\vdash	-					-	
					i	-	 I				-	-						
					Γ	-	-									-		
														c c		F		
														u				
						L								a a	-			
						L				L				4 6				
														<u>a</u>		E		
				1	_								-	•	\vdash	├_		

1.3) TIPOS DE MANTENINIENTO

Se puede decir sin lugar a equivocarnos que los tipos de mantenimiento que existen son dos, el mantenimiento preventivo y el correctivo, el primero y para efectos de trabajo lo podemos dividir en uno más, el mantenimiento PREDICTI VO que como su nombre lo indica nos va a dat datos a través de un análisis de laboratorio, con lo cual se detectan próximas fallas por desgaste de plezas, este mantenimiento se hará con un previo programa de mantenimiento, coordinado con la superintendencia de obra civil.

El mantenimiento CORRECTIVO se aplicará cuando se necesite una recuperación inmediata del servicio de la maquina, haciéndolo de forma provisional, (debido a la importancia de terminar un trabajo cualquiera), o de forma definitiva, pero como sea este mantenimiento por representar un costo elevado, (por
tener que suspender trabajos de obra, pago de maquinaria y personal inactivo,gasto de piezas, no programadas en costos de obra etc.), por todo ello se debe
realizar lo menos posible.

Del mantenimiento predictivo se hablará más ampliamente en los próximos ca pitulos, por ahora haremos mayor énfasis en el mantenimiento preventivo, su programación y control.

Una forma de programar y controlar este mantenimiento es:

OVITARIAN CLICIMINALIMIN

(MAQUINARIA PESADA)

SUPERVISION

- 1) Revisar reporte del operador
- Revisar nivel de agua en radiador, apretar y ver estado de mangueras, lo calizar y corregir fugas del sistema
- Limpiar con aire comprimido filtros de aire, revisar mangueras y apretar abrazaderas del sistema
- 4) Ordenar tanque de combustible, localizar y corregir fugas del sistema
- Revisar nivel de aceite del motor, localizar y corregir fugas en el sistema
- Revisar nivel de agua de la batería, revisar tensión de bandas del generador o alternador.

- Revisar niveles de aceite en: transmisión, el hidráulico, convertidor o cople hidráulico, caja de engranes de levante de pluma
- 8) Otros servicios

CONSERVACION DIARIA

- Comprobar nivel de aceite en la transmisión, mandos finales, engranajecónico y embragues de dirección y buscar pérdidas
- 2) Comprobar nivel de aceite en el sistema hidráulico y buscar pérdidas
- 3) Comprobar nivel de aceite del carter del motor de arranque
- 4) Comprobar nivel de aceite del carter del motor diesel
- 5) Llenar tanque de combustible
- Examinar mangueras del sistema de enfriamiento, nivel de refrigerante, buscar pérdidas, basuras en el radiador
- 7) Examinar hornes de batería y amperimetro (razón de carga)
- 8) Comprobar estado del sobrealimentador
- 9) Drenar depósitos del sistema de aire
- 10) Lubricar cotinetes del cilindro hidráulico de dirección
- 11) Lubricar cojinetes del varillaje y de cilindros de control del cucharón
- 12) Lubricar cojinetes del ubicador del cucharón
- 13) Lubricar tubo telescópico del ubicador del cucharon
- 14) Lubricar cojinetes del vástago de pistón y muñón del cilindro de alza miento y cojinetes de brazo de alzamiento
- 15) Lubricar cojinetes superiores del pivote del bastidor de dirección
- 16) Efectuar inspección visual del equipo
- 17) Efectuar reparaciones necesarias

DESPUES DE LAS 10 HORAS DE SERVICIO:

Cambiar elemento de filtro en el carter del motor de arranque

CONSERVACION A LAS 50 HORAS

- 1) Drenar caja del elemento de filtro de combustible
- 2) Limpiar antefiltro del sistema de inducción de aire
- Comprobar nivel de electrólito en la batería
- 4) Comprobar estado y presión de los neumáticos
- 5) Comprobar ajusto de las correns del vontilador del sistema de enfria miento
- 6) Lubricar estrfas del eje motriz

- 7) Lubricar cojinetes del muñón del eje trasero
- 8) Lubricar rótulas de varilla de dirección, rótulas delantera y trasera del tirante de la dirección, palanca acomodada intermedia de dirección rótulas delanteras y varilla del reforzador de dirección y rótula delantera y rótula del vástago de la válvula de control (de ser pertinente)

Después de las 50 primeras horas de servicio:

1) Cambiar elemento de filtro de la transmisión y lavar rejillas

CONSERVACION A LAS 125 HORAS

- Cambiar nivel de aceite en los diferenciales delantero y trasero y mandos finales
- 2) Drenar agua y sedimentos del tanque de combustible
- Verificar el ajuste de los pernos de montaje del sistema de inducción de aire
- 4) Cambiar aceite del carter y filtro del motor diesel (cuando el contenido de azufre sea de 0.4% o menos
- 5) Lubricar cojinetes de soporte de eje motriz
- 6) Lubricar varillaje de seguimiento de la dirección
- 7) Lubricar cojinete inferior del pivote del bastidor (de ser pertinente)
- 8) Lubricar estrías de ele motriz
- Comprobar cojinetes de las palancas de control hidráulico y cojinetes de desconexión automática del mecanismo de alzamiento (de ser pertinente)
- 10) Comprobar cilindros maestros hidráulicos del freno (de ser pertinente).

DESPUES DE LAS 125 PRIMERAS HORAS DE SERVICIO

- 1) Cambiar filtro del sistema hidráulico
- 2) Ajustar válvulas del motor diesel y la descompresión
- 3) Ajustar válvulas del motor de arranque

CONSERVACION A LAS 250 HORAS

- Comprobar ajuste de correas motrices en el alternador o generador, com presor de aire y bomba de agua
- Limpiar recipiente para sedimentos en el tanque de combustible del motor de arranque

- 3) Limpiar filtro de aire del motor de arranque
- 4) Limpiar tapa y rejilla del tanque de combustible
- 5) Limpiar elementos de filtro primario del sistema de inducción de aire
- 6) Comprobar ajusto del freno de estacionamiento/aflojar brazo de ajuste
- 7) Lubricar polea de ajusto de la correa y cojinete de la bomba de agua
- 8) Cambiar aceite del carter del motor de arrangue y lavar el respiradero
- 9) Cambiar elemento de filtro del sistema de la transmisión
- 10) Lubricar cojinetes superiores de la columna del eje de dirección
- Comprobar la lubricación de la caja del engranaje de dirección y cojinete inferior del eje
- 12) Comprobar la lubricación de los cilindros maestros de desconexión automática de alzamiento y del lubricador del cucharón
- 13) Lavar y aceitar los respiraderos de los diferenciales delantero y trase ro y mandos finales
- 14) Lubricar funtas motrices universales de la transmisión
- 15) Lavar respiradero del carter del motor diesel

CONSERVACION A LAS 500 HORAS

- 1) Ajustar válvulas del motor de arranque
- 2) Lubricar motor de arranque eléctrico
- Lubricar palanca de control hidráulico, cojinetes de eje y palanca acodada
- 4) Lubricar cojinetes de palanca acodada de control de la transmisión
- 5) Lubricar estrías delanteras del eje motriz
- 6) Lubricar palanca acodada de la válvula de control de la dirección y cojinetes de eje del pedal de freno
- 7) Lubricar juntas universales de dirección (de ser pertinente)

CONSERVACION A LAS 1000 HORAS

- 1) Limpiar unidad de presión y derrame del sistema de enfriamiento
- 2) Limpiar elemento de filtro secundario del sistema de inducción de aire
- Ajustar luz de la bujfa de encendido del motor de arranque y la abertura de los platinos de magneto
- 4) Cambiar aceite en el sistema de transmisión :
- 5) Lavar y aceitar respiradero del sistema de la transmisión
- 6) Lavar rejillas del sistema de la transmisión
- Cambiar el aceite en los diferenciales delantero y trasero y mandos finales y lavar compartimientos

- 8) Cambiar el aceite en el sistema hidráulico y lavar rejilla del orificio de llenado
- 9) Lubricar el eje de levas del freno de las ruedas
- 10) Lubricar juntas universales del eje motriz
- 11) Lubricar los cojinetes de la palanca acodada posterior (de ser pertinente)

CONSERVACION A LAS 2000 HORAS

- 1) Ajustar válvulas del motor de arranque
- 2) Lubricar motor de arranque eléctrico
- Lubricar palanca de control hidráulico, cojinetes de eje y palanca acodada
- 4) Lubricar cojinetes de palanca acodada de control de la transmisión
- 5) Lubricar estrías delanteras del eje motriz
- 6) Lubricar palanca acodada de la válvula de control de la dirección y cojinetes de eje del pedal de freno
- 7) Lubricar juntas universales de dirección (de ser posible)

A continuación se da una descripción de como deba presentar su informe el sobrestante, haciendo la aclaración que este tipo de informe lo debe presentar también:

- a) Mecánico de gasolina
- b) Mecánico diesel
- c) Mecánico de aire
- d) Eléctrico

INFORME DEL MECANICO

MAQUINA	No. ECONMOMICO
() = TODO BIEN	() = SE EFECTUO AJUSTE
이 이 사람들이 되었다.	그는 그는 내는 이 유리를 가고 있는데 뭐 하는데.
() = NECESITA REPARACION, NO	SE IIA EFECTUADO
En caso de combustible, ace	ite o lubricantes, anotar cantidad agregada.
Detallar al pie de la págin	a, una explicación de las reparaciones efectua
das, o la razón por la cual no	se realizarón.
一、自然等的物質等等數數的數學數數的數學的數學	iar todas las tapas, antes de llenar tanques,
radiadores, motor, tra	nsmisión, diferencial, depósitos.
NOTA 2. Limpiar todas los cras	eras antes de lubricar, mantener limpia la bo
quilla de lubricación.	
NOTA 3: No deben usarse trapos	, latas, tapones de madera, ni ninguna otra co
sa con excepción de la	tapa adecuada o cada tanque.
NOTA 4: Usar ûnicamente lubric	
NOTA 4: Usar unicamente funite	antes recommendatos.
FECHA:	UNIDAD No.
No. SERIE:	LECTURA HOROMETRO INICIAL
	FTNAL

Por todo lo anterior, se puede observar que si se puede programar el mante nimiento preventivo, lo que trae como consecuencia disminución de costos y ma yor vida útil del equipo, ahora para poder controlar esta programación de acuerdo al No. de horas de servicio, se usarán formus hechas a las necesidades de la empresa llamadas cartas de control que de ellas se hablará en el siguien te capitulo.

CAPITULOII

ADMINISTRACION DEL EQUIPO DE CONSTRUCCION

OBJETIVO PARTICULAR

Estructurar el mantenimiento preventivo de tal forma que el lector encuen tre un instrumento idóneo, para ser aplicado al área de trabajo de que se trate, observando que tal aplicación se puede realizar tanto, en el sector cons trucción como el industrial.

2) CARTAS DE CONTROL, USO Y MANEJO DE LA BITACORA

Es responsabilidad de la obra proporcionar el mantenimiento preventivo, ade cuado para la correcta conservación de la maquinaria, implantando por medio de una programación correcta como la mostrada en el inciso 1.3 del Capitulo I,con apoyo del mantenimiento predictivo, que nos dan a conocer las medidas de la maquinaria y poder efectuar las correcciones oportunas.

CONDICIONES ADVERSAS AL MANTENIMIENTO

Se mencionan aquellas que afectan directamente a la maquinaria para que ten ga cuidado de prevenirlas, las más importantes son:

- 1) Factor de humedad
- 2) Epoca de lluvias
- 3) Temperatura ambiente
- 4) Corresión
- 5) Contaminación (días sin auto)
- 6) Condiciones del agua
- 7) Condiciones del área de trabajo
- 8) Tipo de material a mover

Para facilitar el control, se da a continuación un catálogo de formas.

SOLICITUD DE MAQUIMARIA

OBRA>PECRA	
TIPO DE MAQUIMA SOLICITADA	는 사람이 있습니다. 경우를 통해하다 목표를 위해 보다 하다.
MARCA PREFERIDA	
MODELO	
CAPACIDAD	
TIEMPO DE UTILIZACIONRORAS	A PARTIR DERASTA
ESTA EM PROGRAMA DE UTILIZACIOM	ax () 310 ()
INFORMACION CONPLEMENTARIA	****

BUPERINTENDENTE JEVE SUPERINTENDENTES COORD. RAQUINARIA BUE-GTS. COMBTRUCCION

INVENTABLO FISICO DE MAQUINARIA

MO, ECO. DESCRIPCION CARACTERISTICAS DE LA MAGUINA CARACTERISTICAS DEL MODELO SERIE MOCEDENCIA LEGADA CONTROL INICIAL FINAL TRABAC	EIPRESA:					CORA _					FECHA:				.
MARCA MODELO SERIE TIPO MARCA MODELO SERIE LLEGADA CONTROL BICCIAL FIRMA FRAME				Ĺ	CARACTERISTICAS DEL MOTOR				FECHA DE	DE NO. DE	HORONE TROS		HORAS		
	40, ECO.	DESCRIPCION	MARCA	MODELO	SERIE	1170	MARCA	MODELO	SERIE	PROLEDENCIA	LLEGADA	CONTROL	INICIAL	FINAL	TRABAJADAS

INC. NECANICO	SUPTYE. DE MAGUIMARIA	SUPTYE. CHILA

Forma No. 2

MAQUINARIA CONTROL DE ENVIO

POR YIRK	X		CANIO		
DOCUMENTOS ADJUNTOS	SI	MO	NO. ECO.	CARACTERIST	ICAS DE LA NAQUINA Y ADITAMENTOS
BITACORAS CATALOGO DE PARTES MANUAL OPERACION COMTROL CALIDAD FACTURA ORIGINAL PEDIMENTO ADUANAL	() () () ()	()			
NARCAR CON UNA E					

ACUSE DE RECIBO	VALOR COMERCIAL	<u>ــــــــــــــــــــــــــــــــــــ</u>	_
		·	-

BUPERINTENDENTE DE NAQUINARIA

CONTROL DE CALIDAO.

DE RECEPCION ()

	• • •		2.54	OF BECE	Perou { }	
No. ECONOMICO	on	AA				
INPASCCIONO						
SALE A	MODELO_		LLEGADA DE			
HOTOR GASOLINA ()	016867 ()					
1) RADIADOR 2) YENTILDOR 3) ANDA YENTILDOR 4) BOMBA ACUAT 5) BOMBA ACUAT 6) BOMBA TRANSFERENCIA 7) BOMBA INVECTION 6) TURBO CAMERDOR	\$AL IDA () () () () ()		47) EMPUJADOR 48) CARCADOR 49) RÉTROEXCAVADORA 50) CUCHAGON O BOTE 51) LABZA ARRESTRE 52) TIRON O ALACRAN 53) GANCHO O GLACRAN 53) FARRIERO O GUIA CABLÉ	SALIDA C) C) C) C)	LLEGADA	
TRANSMISTON			55) PLUM		53	
9) CLUTCH 10) CRUCETAS 11) PLECHAS CARDAN 12) CAJA VELOCIONDES 13) DIFERENCIAL 14) MANDOS FIRALES			55) PLUMA 36) CARLE a) DE EXTENCION b) DE SOSTEM mta. c) DE LEVANTE mts. d) DE ARRASTRE mts. FILTROS, NIVELES Y TAPONES	******	-	
TRANSITO			57) COMBUSTIBLE	- 13	{}	
15) RUEDAS GUIA 16) CATARIMAS 17) RODILLOS SUPERIORES 18) RODILLOS SUFERIORES 19) RODILLOS CASETA 20) CADEMA 21) ZAPATAS			57) COMMUNITIBLE 58) ACCLIE MOTOR 59) TRANSMITON 60) HIDRAULICO 61) AIRE 62) AGUA FRENOS	200000		
			65) DE MANO 64) DE PIE	8	8	
BISTEMA ELECTRICO			CARROCERIA	٠,	• •	
22) MOTOR DE ARRANGUE 23) GARRACOR 23) GARRACOR 23) MIRRACOR 23) MOTOR GENERAL 23) MOTOR GENERAL 23) MOTOR GENERAL 23) MOTOR GENERAL 24) PARC ALIGNATICO 24) PARC ALIGNATICO 25) CLASSES 35) CLASSES 36) CLASSES 3		***************************************	65) ASSENCE 66) CHISTAGE 66) CHISTAGE 66) CHISTAGE 66) PERILLE Y PALANCAS 66) PERILLE Y PALANCAS 66) PERILLE Y PALANCAS 67) INACCAS 77) SALEACTAGE 78) SALEACTAGE 78) PERILLE 78) PERILLE 77) PALANCES 77) AGRAPHIAS 77) PARAMETRAS 77)	***************************************	***************************************	
TABLERO DE INSTRUMENTOS			761 CASETA 771 PARABRISAS Y CRESTALES	- }}	{}	- 4
SA, INCOMETED 35. AMERICATE ACT 36.) RESINANCE OF 36.) ACCAL PROJUME 36.) ACCAL PROJUME 37.) ACCAL PRANSMISSON 37.) ACCA	***********		70) ESTRIBOS PO) TAPAS MOTOR 80) TOLVAE RODILLOS VIBRATORIOS 81) SAMDAS 62) CLUTCH 83) CALERADOS REMOTO 84) MASPAGORES	*****		
SISTEMA HIDRAULICO			85) 84)	53	13	
59) BOMBA HIPRAULICA 60) BAMCO DE VALVULAS 61) MAMGRERS Y CONEXIOMES 62) PISTONES HIDRAULICOS 63) ACURLIADOR ELTROGENO			851 861) 871) 872) 973) 971) 971) 974) 974) 974) 974) 974)	***************************************		
EGUIPOS			93) 94)	- }}	- }}	
64) CUCHILIAS 65) GAVILANES 66) ESCORIFICADOR		!	931 96) 97) 96) 99) 100)			
B BUEN ESTADO)	M MAL EST				
					No. 4	
						7 ₄ .

MAGUINARIA Avaluo de Llantas

CBRA:										
FECHA: _										
	_	Mo. ECO.:								
POSTCION	MARCA	SERIE	MEDIDA Y No. DE CAPAS		ESTADO	32 AVOS.	E VIDA	CASCO	PESO	TOTAL
		I								
		 	 	 	<u> </u>	↓			ļ	ļ
		 	 	-		+		L	├ ──	
-		┼──	 	 		 			 	
		├ -	 	 	 	 	-		 	├
-		 	 	 		 	-			
			 	 		1				
			1	\vdash						1
				•	I	1		_		

N NUEVA R RENOVADA

BITACORA

SUPERINTENDENTE DE MAGUINARIA

Forma No. 5

CONTROL DE RECEPCION DE MAOUIMARIA

OBRA:	
FECEA:	

NO. ECO. MAQUIN	'A	MARCA _		MODELO	BRIE
PROCEDENCIA				PECHA DE LLEGADA	
RENTADA		SI ()	MO ()		
CONTROL DE ENVIO		SI ()	MO ()		
CONTROL DE CALIDAD		SI ()	MO ()		
BITACORA DE MANTENIHIENTO		SI ()	380 ()		
CATALOĜOS		BI ()	MO ()	ESPECIFICAR _	
MANUAL		SI ()	300 ()	ESPECIFICAR _	1949
AVALUO DE LLANTAS		aI ()	ж ()		
OBSERVACIONES -	·		 -		
					
	13.0				

_____ BITACORA

SUPTIE. DE MAQUINARIA

OBEA: ____ FECINA: MES PROBABLE DE REPARACION MES. MRS. MES. OBSERVACIONES NAGUI NA ACURI. TRABAJO REUSUAL 10. ECO. EN OBRA PROM.

SUPTTE. DE MAGUIMARIA	COORD I MADOR DE MAQUI MARIA	SUPTTE. DE CORA

PROGRAMA DE VENTAS

DIVISION	DIVISION: EXERCICIO:											
EMAETAL: FECON:												
10. ECO.		PSELDO PROPIETARIO	DESCRIPCION	MARCA	MODELO	MESTE	ARD FAG.	AWALUO	FACTOR VENTAS	ESTABO FISICO	FOCAT ISACION	P,M,V.
		L							L			
	FORMULO		¥o.	So.			A U T (0 R 1 20			A U T O I	R 1 Z 0
cooms	INADOR ENPRES	<u> </u>	GE SEE MTE	ENPRESA		-6	ERENTE I	MANITHAR JA	-		VICEPRESIDENTE	DIVISIONAL

Forma No. 8

		PROGRAI	MA DE UT	ILIZA	CION D	E MAQL	IINARIA	
OREX								
HCRV								
SO LCO MAQUINARIA	TI			T	`[OBSTRVACIONES	
			Ì					
					1			
] ;				Ī			
				T				
ANIMATE DESCRIPTION OF THE PARTY OF THE PART								
	įį			l. i.				
					ĺ	ŕ		
and addition of the state of th	. }					1		
			1 1	L	(j		
	1					<u> </u>		
			j l			į		
ALEST ON THE TOTAL STREET, SAME								
				i_I				
SCHERISTINDENT	JILE DE SETI	RINTENDENTES	CORD. MAQ	PINARLA	SUR-G	IE.CONSL	GERENEL	

OBRA	
FECHA	
	LUGAR:
MAQUINARIA:	NO ECO
MARCA	HOROMETROACTUAL:
MODELO	HORAS TRAEAJADAS EN OBRA:
SERIE	
CAMSIO DE	REFARACION
FECHA ULTIMO CAMBIO	FECHA ULTIMA REPARACION
COSTO APROXIMADO:	MANO DE CERA
ECHA INICIACION	HORAS - HOMBRE:
ECHA TERMINACION:	
SOLICITO	AUTORIZO
	CONTROL FISICO DIVISIONAL FORMA No. 10

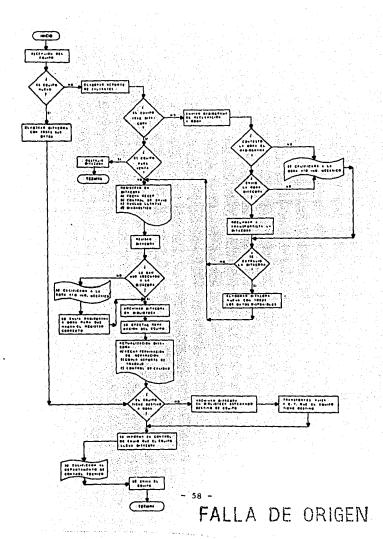
	LIQUIDACION DE	REPARACION DE MAQUINARIA MAYOR
OBRA:		
FECHA:		
	-	LUGAR:
MAQUINARIA:	NO, ECO	LECTURA DE HOROMETRO:
FECHASOLICITUD:		IMPORTETOTAL REPARACION:
CANTIDAD AUTORIZADA:		FECHA INICIACION:
HORAS HOMBREE MPLEADAS:_		FECIA TERMINACION:
CAMBIO DE		REPARACION:
		TONDEL TRARAO EFECTUADO
	F746660041	
Section etc. A		
	erava yerotar, daga k	
DETALLEDEL CARGO:		
RIFACCIONIS:		
OBRA DE MANO:	4 34 12 14 15 25 6 34 T	lantiki pera balang Peranti bibataan aktomber engangkan akting diberakan bang terapakan tanggan perantikan dal
		그 회사는 그렇게 그 눈을 잃었다. 그림에 하는 대통령은 이 기교 등을 가장하고 있는데 다른 사람들이 되었다.
INDIRECTOS:		
IMPORTETOTAL:	 -	
	RMULO	AUTORIZO

A continuación se describe lo que deberá contener la bitácora y se da eldiagrama de flujo de su uso.

1) FOTOGRAFIAS DE LA MAQUINA

- a) Envío de la máquina
- b) Receción de la maquinaria
- c) Tomadas cada 6 meses

2) CONTROL MANTENIMIENTO PREVENTIVO


- a) Características de la máquina
- b) Instructivo para su aplicación
- c) Control general de horas acumuladas
- d) Control diario y de servicios:
- e) Cartas de mantenimiento
- f) Control de incidencias (comentarios breves)

3) COPIAS DE LOS CONTROLES DE ENVIO Y RECEPCION DE LA MAQUINA

- 4) COPIAS DE LOS CONTROLES DE CALIDAD, ENVIO, RECEPCION
- 5) CONTROL DE MANTENIMIENTO PREDICTIVO
 - a) Copias del informe de la camioneta de diagnósticos
 - b) Copias del informe del laboratorio de análisis de aceite
- 6) COPIAS CERTIFICADAS DE:
 - a) Factura de la maguina
 - b) Pedimento de importación de la máquina

7) COPIAS DE OTROS REPORTES O INFORMES DE LA MAQUINA

- a) Solicitud de reparación
- b) Liquidaciones mayores
- c) Radiogramas o memorándums referentes a (A) y (B)
- d) Registro de reparaciones efectuadas a la miguina

2.1) PROGRAMAS DE UTILIZACION DEL EQUIPO

El propósito del programa de utilización de maquiaria (P.U.M.), es fijar - directrices que enmarquen la acción de los funcionarios y empleados, hacía una educada utilización de la maquinaria y equipo.

El (P.U.M.) define los programas de, reparación y mantenimiento de la ma - quinaria y debe establecerse en forma tal que su conocimiento evite tener, que recurrir al equipo rentado a terceros, sólo cuando se haya agotado la capaci - dad del equipo.

Es conveniente que exista un programa anual de utilización actualizado cada tres meses, de acuerdo a las necesidades de utilización de equipo.

Se debe incluir un programa de reparación y mantenimiento que será formula do por el coordinador de maquinaria, previendo las reparaciones mayores.

Previo a toda reparación mayor, deberá existir un análisis que permita decidir entre la reparación o adquisición de conjuntos.

Para proceder a rentar equipo a terceros, es necesario contar con la evi - dencia escrita de la coordinación de maquinaria para que se cerciore de que no exista equipo disponible propiedad de la empresa.

PROFORMAS DE RENTA DE MAQUINARIA:

Es la forma de tener un control de las rentes mensuales, para no tener des viaciones de los costos por depreciación y costos de mantenimiento y financie ros establecidos, tomando las siguientes consideraciones.

- 1) Se debe recuperar el valor de la inversión
- Porcentaje de rescate es en función de los valores comerciales al termino de su vida útil
- La vida Gtil se establece basado en los datos del green guide y con la experiencia y la estadística que tiene la compañía
- El tiempo para la primera reparación es en base a datos del fabricante y experiencia de la compañía
- 5) Se considera recuperar el 50% de la inversión cuando el equipo es más productivo (antes de la primera reparación)

DEFINICION DE TARIFAS

```
TARIFA 1 (T1)
```

De cero a primera reparación (6 000 hrs. de trabajo normalmente)

Cálculo de (T1)

T1 = D1 + GM1 + GA1 + GF1

en donde:

D1= valor de adquisición - valor de rescate /2
vida hasta la primera reparación (6,000 hrs.)

GM1= gastos de mantenimiento mayor (el factor determinado es de 0.61 x D1)

GAI= gastos administrativos (su factor es de 0.09 x DI)

GFI= gastos financieros por la adquisición de equipo nuevo (el factor determinado es de 0.45 x Dl)

En conclusión: si Dl= 1 por lo tanto T1 = D1 x 2.15

TARIFA 2 (T2)

A partir de las 6 001 hrs. de trabajo hasta la terminación de su vida útil

Cálculo de (T2)

T2= D2 + GM2 + GA2 + GF2

D2 = valor de adquisición - valor de rescate/2
vida útil (más de 6,001 hrs.)

 $GM2 = D2 \times 0.61$

 $GA2 = D2 \times 0.09$

 $GF2 = D2 \times 0.45$

En conclusión: si D2=1, por lo tanto T2= D2 x 2.15

NOTA: Algunas empresas dan un incentivo por trabajar las máquinas más de las horas mínimas establecidas por la dirección de la compañía de tal forma que las tarifas quedarían de la siguiente (frma:

EJEMPLO: Para el caso de Tl

Si una máquina rebasa las 250 hrs., de trabajo en el mes ya no se aplica el gasto financiero sobre las horas excedentes, es decir, cuando trabaja 300 ho - ras su renta total será:

Renta total = D1 x 2.15 x 250 hrs. + D2 x 1.7 x 50 hrs.

Para el caso de T2

No se aplicará el gasto financiero a la máquina que rebase las 200 hrs.

EJEMPLO: Si una maguina trabaja 250 hrs.

Renta Total = D2 x 2.15 x 200 hrs. + D2 x 2.15 x 50 hrs.

El caso de renta entre filiales su tarifa es la siguiente:

TI = D1 x 2.5 EQUIPO NUEVO

 $T2 = D2 \times 2.5$ EQUIPO USADO

El factor 2.5 lo compone 2.15 más el diferencial que es para cubrir los gas tos generales y la utilidad de la empresa.

Las tarifas de rentas se actualizarán según la variación en el tipo de combios que presente la moneda del país de procedencia de la maquinaria.

PROFORMA DE COSTOS HORARIO

Los costos horarios en la industria de la construcción en México se fija en hase a reglas generales para la contratación y ejecución de las obras públicas, el cual describiremos a continuación, no sin antes mencionar que este criterio es muy general y para tener parámetros por conceptos que están esta blecidos por políticas de la compañía, como son operación, consumos, rentas técnicas, mantenimiento menor de obra, llantas y taller mecánico, se deberán controlar estadísticamente, lo cual no se tiene con regularidad ni actualiza dos.

Lo que se propone es que se debe llevar una estadística mensual de costo horarios con sus cuentas de maquinaria, ya que no es conveniente llevarlo por separado del control contable de la obra.

La integración de los precios unitarios que forman parte de un contrato para la ejecución de obras públicas, deberá sujetarse a los criterios fijados en las siguientes bases y lineamientos generales, y en los que corresponda a los enalado en la ley de obras públicas y su reglamento.

Criterios para el cálculo de los costos de maquinaria según las reglas generales para la construcción de obras públicas.

Apegándose a lo indicado en la sección 5 de las reglas generales para la contratación y ejecución de la ley de obra pública tenemos:

- 1.- Cargos que integran un precio unitario
 Un precio unitario se integra sumando todos los cargos
 - a) Directos
 - b) Indirectos
 - c) Utilidad
 - d) Adicional
- a) CARGOS DIRECTOS: Son los cargos aplicables al concepto de trabajo quese derivan de las erogaciones por mano de obra, materiales, maquinaria, herra mienta, instalaciones, y por patentes en su caso, efectuadas exclusivamente pa ra realizar dicho concepto de trabajo,
- b) CARCOS INDIRECTOS: Son los gastos de carácter general no incluídos en los cargos en que deba incurrir, "el contratista" para la ejecución de los trabajos y que se distribuyen en proporción a ellos para integrar el precio unitario.
- c) CARGOS POR UTILIDAD: Es la ganancia que debe percibir "el contratista" por la ejecución del concepto de trabajo.
 - 2.- Integración de los cargos directos Los cargos directos están formados por:
 - a) Cargos por materiales: M=PmC
 - b) Cargos por mano de obra: $M_0 = \sum s/R$

c) Cargo por herramienta:

d) Cargo por maguinaria v equipo

e) Cargo por equipo de seguridad

 $He = kh \times M_o$ $Cm = \frac{CHM}{M}$

ES = Ks Mo

3. CARGO DIRECTO POR MAQUINARIA

Es el que se deriva del uso correcto de las máquinas consideradas como nuevas y que sean las adecuadas y necesarias para la ejecución del concepto de trabajo, de acuerdo con lo estipulado en las normas y especificaciones, de - construcción de "la dependencia" o "entidad" y conforme al programa establecido,

EL CARGO DIRECTO UNITARIO POR MAQUINARIA "CM" se expresa como el cociente del costo horario directo de las máquinas, entre el rendimiento horario de dichasmáquinas. Se obtendrá mediante la ecuación:

En la cual:

"CHM" representa el costo horario directo de la maquinaria nueva en las condiciones específicas del trabajo a ejecutar, en las correspondientes, unidades de medida.

"RM" = Representa el rendimiento horario expresado en la unidad de que se - trate.

- a) Cargos fijos. Son los correspondientes a depreciación, inversión seguros y mantenimiento.
- a.1) CARGO POR DEPRECIACION. Es el que resulta por la disminución del valor original de la maquinaria, como consecuacia de su uso, durante el tiempo de su vidaeconómica. Se considerará una depreciación lineal, es decir que la maquinaria se deprecia una misma cantidad por unidad de tiempo.

Este cargo está dado por

$$D = \frac{V_{a} - V_{r}}{V_{c}}$$

En la que:

"Va" representa el valor inicial de la maquina, considerandose como tal, el precio comercial de adquisición de la maquina nueva en el mercado nacional,
descontando el precio de las llantas, en su caso.

"Vr" representa el valor de rescate de la maquina, es decir, el valor comercial que tiene la misma al final de la vida económica.

"Ve" representa la vida económica de la máquina, expresada en horas efectivas de trabajo, o sea el tiempo que puede mantenerse en condiciones de operar y producir trabajo en forma económica, siempre y cuando se le proporcione el mantenimiento adecuado.

a.2) CARGO POR INVERSION. - Es el cargo equivalente a los intereses del capital invertido en maquinaria.

Está dado por:

En la que:

"Va" y "Vr" representan los mismos valores enunciados en el punto a.1)

"Ha" representa el número de horas efectivas que el equipo trabaja durante el año.

"i" representa la tasa de interés expresada en decimales

Las dependencias y entidades para sus estudios y análisis de precios unitarios considerarán a su juicio la tasa de interés "1", los contratistas en sus propuestas de concurso propondrán la tasa de interés que más le convenga.

En los casos de ajustes por variación del costo de los insumos que intervengan en los precios unitarios, y, cuando haya variaciones de las tasas deinterés, el ajuste de este se hará en base al relativo de los mismos, conforme a los que hubiera determinado el Banco de México en la fecha del concurso correspondiente a la fecha de la revisión. a.3) CARGO POR SEGUROS.— Es el que cubre los riesgos a que está sujeto la maquinaria de construcción durante su vida económica, por accidentes que su—fra, este cargo forma parte del precio unitario, ya sea que la maquinaria se—asegure por una compañía de seguros, o que la empresa constructora decida hacer frente, con sus propios recursos, a los posibles riesgos de la maquinaria.

Este cargo está dado por:

$$S = \frac{Va + Vr}{2} \qquad \frac{S}{Ha}$$

En donde:

"Va" representa el valor inicial de la máquina, considerándose como tal,el precio comercial de adquisición de la máquina nueva en el mercado nacional,des contando el precio de las llantas, en su caso.

"Vr" representa el valor de rescate de la máquina, es decir, el valor co mercial que tiene la misma al final de su vida económica.

"S" representa la prima anual promedio fijada como porcentaje del valor de la máquina y expresada en decimales.

"Ha" representa el número de horas efectivas que el equipo trubaja durante el año.

a.4) CARGO POR MANTENIMIENTO MAYOR O MENOR: Es el originado por todas las erogaciones necesarias para conservar la maquinaria en buenas condiciones du rante su vida económica.

CARGO POR MANTENIMIENTO MAYOR: Son las erogaciones correspondientes a las reparaciones de la maquinaria en talleres especializados, o aquellas que pue - dan realizarse en el campo, empleando personal especialista y que requieran retirar maquinaria de los frentes de trabajo. Este cargo incluye la mano de - obra, repuestos y renovaciones de partes de la maquinaria, así como otros materiales recesarios.

CARGO POR MANTENIMIENTO MENOR: Son las erogaciones necesarias para efec -tuar los ajustes rutinarios, reparaciones y cambios de repuestos que se efec -tuarán en las propias obras, así como los cambios de líquido, para mandos hi -dráulicos, aceite de transmisión, filtros, grasas y estopas.

Incluye el personal y equipo auxiliar que realiza estas operaciones de man tenimiento los repuestos y otros materiales que sean necesarios.

Este cargo está representado por:

En la que:

"Q" es un coeficiente que considera tanto el mantenimiento mayor como el menor, este coeficiente varía según el tipo do máquina y las Características del trabajo, y se fija en base a la experiencia estadísca.

"D" representa la depreciación de la máquina calculada de acuerdo con lo expuesto en a.l).

- b).- CARGO POR COMSUMOS.- Son los que se derivan de las erogaciones que resulten por el uso de combustible u otras fuentes de energia y en su caso lubricantes y llantas.
- b.1) .- CARGO POR COMBUSTIBLE.- Es el derivado de todas las erogaciones originadas por los consumos de gasolina y diesel para el funcionamiento de los
 motores.

El cargo por combustible "E" se obtendrá, mediante la ecuación

En la cual:

"C" representa la cantidad de combustible necesario, por hora efectiva de trabajo. Este coeficiente está en función de la potencia del motor del factor de operación de la máquina y de un coeficiente determinado por la experiencia, que variará de acuerdo con el combustible que se utilice.

"PC" representa el precio del combustible puesto en la máquina.

- b.2) CARGO POR OTRAS FUENTES DE EMERGIA.— Es el cargo por los consumos de energía eléctrica o de otros energéticos distintos a los señalados en la regla anterior. La determinación de este cargo requerirá en cada caso de un estudio especial.
- b.3) CARGO POR LUBRICANTES. Son los motivados por el consumo y los cam bios períodicos de aceites lubricantes de los motores.

Se obtendrá de la ecuación:

$$AL = (C/t + AL) PL$$

En la cual:

"AL" representa la cantidad de aceite lubricante necesaria por hora efectiva de trabajo, de acuerdo con las condiciones medias de operación; está determinada por la capacidad del recipiente dentro de la máquina y los tiempos en tre cambios sucesivos de aceite.

"PL" representa el precio de los aceite puestos en las máquinas.

"C" representa el consumo entre cambios sucesivos de lubricantes.

b.4) CARGO POR LLANTAS.— Es el correspondiente al consumo por desgaste de las llantas cuando se considere este cargo, al calcular la depreciación de la maquinaria deberá deducirse el valor inicial de la misma, el valor de las llantas.

El cargo por llantas "N" se obtendrá de la ecuación:

$$N = \frac{V n}{H V}$$

En la cual:

"Yn" representa el precio de adquisición de las llantas, considerando el precio en el mercado nacional de llantas nuevas de las características indicadas por el fabricante de la máquina.

"Hv" representa las horas de vida econômica de las llantas, tomando en cuenta las condiciones de trabajo impuestas a las mismas. Se determinará de acuerdo con la experiencia, considerando entre otros, los factores siguientes: velo cidad máxima de trabajo; condiciones relativas del camino que transite, tales como pendientes curvaturas, superficie de rodamiento, posición en la máquina, cargas de soporte y clima en que se operen.

c).- Cargos por salarios para operación.- Es el que resulta por concepto de pago del o los salarios del personal encargado de la operación de la máquina,- por hora efectiva de trabajo de la misma.

Este cargo se obtendrá mediante la ecuación:

$$c_0 = \frac{So}{H}$$

"S_o" representa los salarios por turno del personal necesario para operarla máquina, entendiéndose por salarios la definición dada en la regla.

"H" representa las horas efectivas de trabajo de la maquina dentro del tur-

- d) CARGO POR TRANSPORTE EXTRAORDINARIO DE MAQUINARIA.-Corresponde a las erogaciones necesarias para traslados extraordinarios de maquinaria ordenados por la "dependencia" o "entidad". Este cargo se analizará como un concepto de trabajo específico.
- e) CARGO POR ALMACENAJE. Es el cargo derivado de las erogaciones para cubrir la guarda y vigilancia de la maquinaria durante los perfodos de su vida econômica considerados inactivos. Este cargo está representado por la ecua ción:

$$A = KD$$

Donde:

"A" representa cargo por almacenaje por hora efectiva de trabajo.

"K" representa un coeficiente calculado en relación con las rentas de los locales necesarios para guardar la maquinaria, de los salarios del personal de vigilancia. "D" depreciación de la maquinaria.

NOTA: En el capitulo IV se dan ejemplos de los costos de maquinaria.

2.2) ENVIO, RECEPCION, ENTREGA Y/O DEVOLUCION DE MAQUINARIA

1) Una vez que la coordinación de maquinaria envía la maquinaria a la obra, ésta deberá ser recibida por un ingeniero mecánico de obra, para comprobar que la máquina es de las características que se solicito, y mediante una inspección visual verificar que venga completa con todos sus componentes y confirmar lo que se describe en el control de envío de quien está entregando lamáquina.

Las piezas de fácil extravío deben de colocarse en un lugar seguro, al transporte.

El transporte es responsabilidad del que envía, y el que recibe tiene que estar preparado en la obra para ponerla en operación al menor tiempo posible.

Para comprobar todo lo mencionado en el control de envio la obra deberá llenar los formatos que se presentarón el el inciso 2 de este capitulo.

a) CONTROL DE RECEPCION	(FORMA No. 6)
b) CONTROL DE CALIDAD	(FORMA No. 4)
그는 그 사람들은 어떻게 하고 한다는 물을 하는 것이 없는 것이 없는 것이 없는 것이 없다는 것이 없다.	(FORMA No. 5)

Se debe tomar en cuenta que existen cinco opciones de suministro de maquinaria.

- 1) Nueva
- 2) Reparada
- 3) Sin reparar
- 4) Entre obras
- 5) Renta a terceros

1.1) MAQUINA NUEVA

Deberá venir acompañada de los documentos siguientes:

- a) Control de envio (Forma No. 3)
- b) Póliza de garantía

- c) Manual de mantenimiento y operación
- d) Manual de partes
- e) Bitácora
- f) Comprobante de alta al seguro
- g) Copia del permiso de importación

1.2) MAQUINARIA REPARADA

Todas las máquinas mayores, que salgan reparadas de talleres, fuera de la obra, serán entregados en obra y el primer servicio de mantenimiento preventivo de éstas serán realizadas con personal de dichos talleres, de presentar algún desperfecto, en los conjuntos que fueron reparados, se podrá solicitar el servicio de garantía.

El personal de maquinaria de obra no interviene, para que la garantía tenga validez.

1.3) MAQUINARIA SIN REPARAR

Deberá venir acompañada de los documentos siguients:

- a) Control de envío (Forma No. 3)
- b) Copia de diagnóstico, el más reciente
- c) Manual de mantenimiento y operación
- d) Manual de partes
- e) Bitácora
- f) Comprobante de alta al seguro

1.4) CAMBIO DE MAQUINARIA ENTRE OBRAS

La maquinaria deberá de ser enviada a la obra que la requiere con los controles de la opción 3.

Cuando se efectúe un movimiento de maquinaria entre obras es importanteque éstas, avisen a la coordinación de maquinaria de la empresa y ésta a suvez informe al control de maquinaria de las obras, con la finalidad de aplicar correctamente la renta a la obra que corresponda. Lo anterior se efectúa con el control de envio correspondiente.

1.5) RENTA MAQUINARIA A TERCEROS

Es necesario contar con la evidencia escrita de parte de la dirección de maquinaria de que no existe disponible.

Con estudios y estadísticas de maquinaria del sector de construcción, localiza y selecciona el arrendador que cuenta con la maquina que se solicita.

Se verifica con un diagnóstico que el arrendador tenga la maquinaria que se requiere en buenas condiciones, mecánicas para su operación, la cual contará con un horómetro correspondiente.

Se debe exigir al arrendador lo siguiente:

- a) Control de envío
- b) Control de calidad

2) RECEPCION DE MAQUINARIA

Procedimiento a elaborar la siguiente documentación:

- a) Control de recepción. (Forma No. 6)
- b) Control de calidad de recepción, (Forma No. 4)
- c) Avaluo de llantas, (Forma No. 5),en caso de ser necesario

Todos los documentos de recepción deben de compararse con los componentes que trae la máquina con el fin de determinar las diferencias.

3) ENTREGA Y/O DEVOLUCION DE MAQUINARIA

Al término de la obra, cada una de las máquinas (mayor, menor y vehículos) deberá ser entregado al control físico de maquinaria, con el desgaste del demérito normal.

El ingeniero mecânico asignado a la obra será el responsable de solicitar

al superintendente de construcción la autorización, para que la máquina se envíe completa en todas sus partes y accesorios con buena presentación de pintura y vestidura.

Deberá llevar los documentos siguientes:

- a) Control de envío (Forma 3)
- b) Bitácora
- c) Control de calidad (Forma 4)
- d) Manuales de operación y mantenimiento
- e) Catálogo de partes
- f) Avaluo de llantas (en caso de ser necesario)
- g) Pedimento aduanal si viene de frontera
- h) Documentos y placas para trámites (vehículos)

Las ventajas para la obra son:

- 1) Cargos anticipados mínimos
- 2) Se tiene derecho a que el costo de la reparación mayor se aplique a la reserva de la maquinaria, para lo cual se debe haber cumplido con el manteni miento preventivo menor, el predictivo se debe contar con la evidencia de la comunicación con el laboratorio de análisis de aceite.

Las tablas que a continuación se anexa, nos muestra la vida de los conjuntos en horas, nuevos y usados, (ver tabla No. 14).

VIBA UTIL DE CONJUNTOS

8-8-68A B-0. -----ALIBABTAD . ----EGA ELEC. MALACATES TRABBITO FIRALES BIBECC C0#7E (BATOS EN MILES DE MORAS) # O T O B è BERCRIPCION BLEVO REPARADO • 152 CAMION VOLTED PESAGO 3 3 5 5 210 EXCAVADORA B/ORUGAS . 211 CHUA S/CAPION 6 5 . 212 RETRIERCAVADORA S/OBUGAS . . 213 RETROEXCAVADORA S/ORUGAS . 216 EXCAVADORA CARGADORA . 222 CARGADOR S/ORUGAS . 5 5 5 • 223 CARGADOR S/HEUNATICOS • 5 6 6 225 MOTOESCREPA . 4 5 . 230 PERFORMOGRA S/CARLON 4. . . 250 MOTOCOMFORMADORA 3 3 . 251 AFINADORA DE TAL.

			_	<u> </u>	1 .	_	1	_	_	-		<u> </u>	ι-			1			-		_	T-
GRUPO CRUPO	VIDA UTIL DE COMJANTOS (DATOS EN MILES DE MORAS) D E S C R 1 P C I D N	MUEVO -	# O T O @	CORV. DE TORS	TRANSMISTON	MANDOS FINALES		TRAUSTIO	I	SISTEMA NID	5 0 - 6	#0 . Kuo	U 0 . TRITURAD	UND . MOTALN	A L I	UND TRANSPORT	IST WEUN O NID	UND . VIERAT	AB FZA -/ NESA R	MALACATES	BORBAS D'LODOS	AND . RAD .X ENV .
2.5%	presentation and enviolen	138 M 36	5	5	5	5	31	(2)	137	5	_	-		43	161	123	157	37	8	75.		10
260	COMPACTADOR AUTOP.	70 R	4	3	3	3	934	23	杂	3	5	謹	335	150	19	(i)	93	Q.	337.	3.4	ĝi.	10
15,150	s cross destruigation of the support of the	#3 • *	6	5	5	5	್ಯ	鏬	3	5	7	ᇑ	78	16.	25	4	132	72	Ų.	ं	ĴΣ,	10
261	APLANADORA	越 R基	4	3	3	3	100	鬱	18	3	5	粥	痰	31.	18	篡	190	176	93	3	400	10
Auto.	Jackstration to Market Section	海紅町 窟	7	7	7	6	357	\$\$	療	6	6	312	35	192	200	楽	rich.	\$3	8y	şç	řď.	10
268	COMPACT. PATA CAB.	超過電路	5	5	5	4	121	gr.	36	4	4	36	35	5%	े	:	120	150	142	÷.		10
1.11	tersional management deliberation	襟⊪辭	۲).	10	ŶC.	4%	25	16		14.	Ŋ.	速	. 14	5	35	Ĭψ.	46	30	₩.	100	34	15.
283	LIMPIADORA PRIMARIA	\$30, 2 \$5	ą, ž	4,35	S.	¥4,	1.77	12	85	42	$\mathcal{G}_{\mathcal{L}}$	编	40	3	£5,	ĊΥ	49	28	(4)	de	891	100
286	ESMALTADORA Y ENV.	製制物	78	23	82	糠	1	10	24	94	120	481	312	5	$\mathcal{O}_{\mathcal{T}}^{\mathcal{L}}$	160	: P.	200	m,	7		
200		3000年1000	100	12	3,5	1	2	172	Ä	Α	ě,	73	锁	3	~	\$4	<i>30</i>	(4)	24. 25. hr.	$\hat{\psi}^{b}_{i}$	\$0	
320	TRITURADORA PRIMARIA	食器● 结	1	100			T _Q	900 114	je:	(5+ 9372	100	24	5	5	5	Ages.	22	30	354	35.	wit	
320	一、日本の、場合集合は対象等等等	製造業業	120	225	22	3	96	寨	72	徽	\$9.	48	3	3	3	1.2	140	330	3.0	爭	(C.)	
320	TRITURADORA SEC. Y TERC.	現為世級	急	\$24	\$10	松	961	Ş	2	8	357	15	13	5	\$7,	2.	护	8	20	標	1/2 2011	25
J2.0		经风息	15	51	10	9367 2367	.54°	**	Ç.	6	1.5	115	3	3		1	12	6	2.5	ं		
350	PLANTA DOS CONC.	海洋開發		48	\$5	翔	33	100	\$ 6	365	셨다	325	俳	帮	983	1,000	iet.	78. 200	37	55	80	1.
3,0		深具用質	36	250 727	4	裳	₽ 8	r_{i}^{-1}	1	Sar	Sên,		135	12	200	\mathbb{N}_{i}	髓	32	34.	33	11.5	شا
Ton	PLANTA DE ASFALTO	¥35 ■ 48	5	32	薪	188	瓣	盤	3	维	雅	42	사	35	· .	23%	12	100	17	Ŷ.		10
370		颜色	4	200	32	35	繳	199.63 2.56	2,	恢	Ö,	韵	34	750 450	\$10	ψů.	135	45	.,31	13.	35,	10
707	PAVINENTADORA	J. 10 3	5	35	35	清	152	37	3	325	30		94	(8)	-6	3	10	3	93	40		10
		\$19. 4 .39	4	Æ.	禁	12E	18/	164	2	Si.	2	17	35	14	横	85	38	2	2.3	ै	20	10
704	COLDCADOR CONCRETO	[62.■33.	5	120	937	100	\$	15	家	32	損益	翁	83	割	2%	£33	<i>V</i> .,	75°	12	4	3	10
		0,8 ₹ .H	4	32	3	193	30	183	99	32		7-9 227	13	186	17	غا	13.		1.0	14		10
511	PLANTA DE LUZ	5/2 ● X 3	6	33	3.	66	35	夢	7	仑	,1 ²²	鲣	岭	30	<i>1</i> 0%	13		47	坚.			10
-111	TOWN OF THE	925 € 33	4	1	1	10	Γ.		5	133	14	100	130	15			1	.70	- T		5	10

RAGUIBARIA: RATUR.

VIDA UTIL DE CONJUNTOS

							• •			7 ^	7 0	٠.											
#UPO	VIDA UTIL DE COMJUNIOS (DATOS EN MILES DE MORAS) D E S C R I P C I O N	MUEVO REPARADO	MOTOR	10	. TRANSA - SION	HANDOS FINALES	MANDOS DIRECC.	1 a A B S 1 T O		SISTEMA	EJES Y DIFER.		UND . TR.TURAD .		UND ALIMANTAD.	UND TRANSPORT.	S ST WEUM O WID.		CAD FRA . / HESA R .	HALACATES	BORBAS D'LODOS	CAMB. RAD.X ENV.	
_		-		7	95	5	20	781	Æ:	98.	燕	7	7	19	35			92				-	
٥	COMPRESOR ESTACIOMARIO			Г			1	162	暖	35	貓	5	5	ψķ.	40	基等	427	42	13	¥0	: T		
_				3.7	ē.	1/2	蒙	.52	躞	4	30	.5	18	7.	福		12	8:	116	42.5	3.9	10	
2	COMPRESOR PORTATIL	R		37		10	3,0	ᡄ	幅	\$\$.	12	4	97	44	胁	20	100	35	96.		7.5	10	
	TRACTOR S/ORUGAS	3 4	7	7	7	6	7	4	嫠	6	\$	寂	12.	\$	ŵ.	97	嬔	#	XX.	32	10	10	
	MACION SYMBOLS		3	5	5	4	5	4	314	4	225	744	37	47	8.	7	盐	ji.	25)	\$1	27.0	10	
	TRACTOR TIENDETUROS		7		7	•	7	7	玻	•	郯	28	#	37	$\tilde{\chi}_{ij}$	37	(4) (4)	282	1 2 201	第.	潮	10	
an matter a desar a little of	10.80	15	5	5	4	5	6	群	•		3	\mathcal{H}^{2}	s-3;	38.8	谜	111	$\tilde{\mathcal{S}}$	12	9°	$\mathbb{R}^{\mathbb{N}}$	10		
.	CRUA HIDRAULICA	<u>\$</u> 8,∎ :::	6	6	6		蝗	39-	灩	6	100	*	Æ.	膜		450	\$\$\text{\$\exititt{\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\texititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\tex{	22.	27.2		25	10	aids.
		₹ 8	٠	5	₩			G)	41	٠	4	- 1	46	1.62	12	Ťij.	33	3	12	<i>#</i>		10	
,	DOBLADORA TUBERIA	# 0 ±	7		L				20	6			24		Ç.	-	9		怜	75%	90		1-1
	the first of the second of the	A . ■	5	-			-	6.	群	•	鸋	30 ft.	4	3	×	器.	, N.	d.		<u></u>	32		
	TRACTOR CON SOLDADORA	原数 单 等。	6	6	6	6	7	6		6	300	75	1	100	36		300		100	3.4		10	
₹?	\$25(b) 46(4) \$25 \$2 \$3 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2	排馬	5	_	5_	5	5	5	1.00	4	D ₁	10	樂	\$5.				37.	ं	100	(A)	10	43.5
ា		300 ■ 60 500 ■ 60	28	4.6	(8) (8)	36	30	<i>월</i>	級	繼	(A)	1000 M	獨	100 500	160	(株) (24)	18	500 m	.81	194	30	2	
-	Andread Francisco (September 1986)	(200 € 22)	200	255	激	100		100	参		des per	382	30	ine.	46	585 I	5. v.	.0	134	24	181		Palse!
		201 ■ S	-	56g	磁器	-	多	· .	報	鍵	蒙	卷	棚	整徽	接	107	_	機	影響	100	-	18 T	×.
_	na dan basar ayan bir ketindan basar basar basar Kalandan magan bansagan ketinggan ketinggan basar basar basar	25年 30	ded ded	25	1001	102	100	10.	24	#2.	彩色	49 40	903 363	186	報	WAY	蒙古	200 200	136 33	10 10 10	14.5c		
		100 100	雅	120	8	100	認	(E)	30	雞	(F)	33	345 174	學	验	37	135 35	粉		10%	170 m	3	
		33 I S	37	787	3535	-	220	200	223	50°.	625. 688	145 145	- W/ - SEL	212-		-	10 St	10 to 1	202	10.			
		368 R FS	1	-	276	1	3	100	7%	320		126	30					37	200	Ť	۲	\vdash	
		建 点■ 43	38	1	23		4		3	156	űš	191	(3.	200	猫	82		標	物	77	H		
		R	_	-	1	-	1	-	Η-		-			200 81	-	146	۳	-	100	-	35	-	

2,3) APROVISIONAMIENTO NECESARIO

Los recursos necesarios, para efectuar un mantenimiento aplicado a la ma - quinaria durante su estancia en la obra deben tener características de tecnología actualizada de seguridad, uso correcto y adecuado, lo cual prolonga la vida útil de la maquinaria.

Los recursos se aplicarán mediante servicios de 10, 50, 125, 250, 500, - - 1000 y 2000 hrs. de trabajo, también se aplicarán a reparaciones por corrección de fallas en los conjuntos, subconjuntos y elementos constitutivos de la maquinaria y son los siguientes:

- a) Equipo nuxiliar
- b) Herramientas en general
- c) Instalaciones

a) EOUIPO AUXILIAR

TIPO	DESCRIPCION
1) COMPRESOR DE TALLER	PARA VULCANIZAR Y ENGRASE
2) PLANCHA VULCANIZADORA	REPARACION DE LLANTAS
3) PRENSA HIDRAULICA 50 TN.	PARA SEPARAR O UNIR PIEZAS
4) SOLDADORA DE COMB. 300 AMP	TRABAJOS DE SOLDADURA
5) FQUIPO DE LUBRICACION F-350	EFECTUAR SERVICIOS VARIOS
6) LAVADORA DE PRESION	LIMPIEZA DE LA MAQUINARIA
7) CANTON PARA COMBUSTIBLE F-600	REPARTO A LA MAQUINARIA
	(DIESEL)

B) HERRAMIENTA EN GENERAL

A continuación se presenta un listado de herramiento que es necesario te ner en el almacén de maquinaria, para ser utilizado por el personal con su debido control de resguardo.

PERSONAL DE MAQUINARIA

- 1) Mecánico de gasolina
- 2) Mecánico diesel
- 3) Electromecánico
- 4) Orquestero, (mecánico diesel)
- 5) Electricista automotriz
- 6) Mecánico de aire

HERRAMIENTA MAYOR

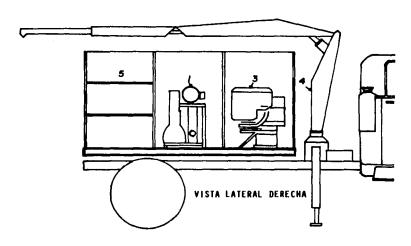
- 1) Tornillo de banco con apertura max. de 6 1/2"
- 2) Taladro manual de 1/2 hp
- 3) Esmeril de banco de 1/2 hp
- 4) Gato (pistón hidráulico), tipo patín hasta 4 ton.
- 5) Gato (pistón hidráulico), tipo botella de 20 ton.
- 6) Ensambladora de conexiones de tipo hidráulico
- 7) Corgador de baterías carga lenta (tungar)
- 8) Pulidora de 1/2 hp
- 9) Cubeta engrasadora manual de 18kg. de cap.
- 10) Extractor de birlos
- 11) Opresor de anillos de dos bandas de 8.0"
- 12) Vernier de 0-6.0"
- 13) Torquimetro de 0-250 Lb. ent. 1/2"
- 14) Micrometro (para interiores)
- 15) Lámparas de puesta a punto de 12 volts de tiempo
- 16) Herramienta p/elevación o tiro (GARRUCHA) 4 ton.
- 17) Marro de 8.0 LB.
- 18) Llave Stillson 12"
- 19) Extractor de poleas de tres patas hasta 12 ton.

- 20) Extractor de cojinetes
- 21) Juego de brocas de 3/16" a 1/2"
- 22) Juegos de números de golpe de 5/32"
- 23) Equipo de corte oxigeno-acetileno.

HERRAMIENTA MENOR

- 1) Juego de llaves mixtas de 1/4 a 1 1/4"
- 2) Juego de llaves españoles 7/16 a 1.0"
- 3) Juego de autocler completo ent. 1/2" con dados de 3/8" a 1.0"
- 4) Desarmadores tipo paleta de 5.0" delgado y 7.0" grueso
- 5) Desarmadores tipo cruz 5.0" delgado y 7.0" grueso
- 6) Martillo de bola 2 Lb
- 7) Pinzas (mecânicas de 8" ,punta 6" ,seguros 9",presión de 7"
- 8) Llaves (cadena de 19" inglesa 18")
- 9) Punzones de 3/8" a 3/4"
- 10) Cinceles de 1/4 a 1.0" corta frío
- 11) Arco para segueta
- 12) Cepillo de cerdas metálicas de 3 hileras de 8"
- 13) Calibrador de hojas de 1/2 x 3 5/16"
- 14) Llaves tipo Alen de 5/32 a 3/8"
- 15) Machuelos NPT de 1/8" v 1/4"
- 16) Machuelos STD, de 5/16" a 5/8" tipo cónico
- 17) Machuelos MF de 5/16" a 5/8" tipo cónico
- 18) Linterna de 3 pilas tipo "D"
- 19) Limas de 1/2 caña de 6"-8" y 12" y planas misma med.
- 20) Aceitera de 3 onzas
- 21) Desarmodores de caja de 1/4" a 1/2"
- 22) Limaton redondo de 3/8"
- 23) Multimetro mod. 506
- 24) Cautin de pistola 2 colores
- 25) Analizador
- 26) Probador de armaduras (Drauler)
- 27) Hidrômetro probador de líquido
- 28) Llave perico inglesa 14"
- 29) Maneral de fuerza ent. 1/2"
- 30) Pinzas de punta 8", corte 8"
- 31) Flejadora

- --, ...camperimetro de gancho 10- 1000 AMP

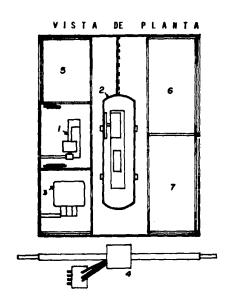

 33) Llaves estrías 9/16 x 1/2"

 INSTALACIONES

C) INSTALACIONES

A continuación se da dos croquis, uno del taller fijo y otro del taller móvil que vienen a ser recursos de apoyo necesarios.

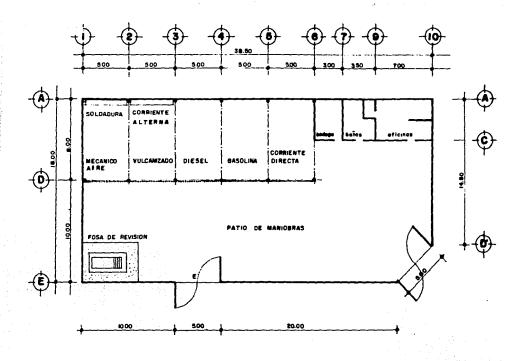
TALLER MOVIL DE MANTENIMIENTO



SIMBOLOGIA

- HERRAMIENTA LAVADORA DE PRESION
- 3 PLANTA DE LUZ GRUA

ESTA TESIS NO DEBE SALIR DE LA 1"


TALLER MOVIL DE MANTENIMIENTO

SIMBOLOGIA

- I LAVADORA DE PRESION
- 2 COMPRESOR
- 3 PLANTA DE LUZ
- 4 GRUA
- 5 HERRAMIENTA

- 6 FILTROS Y REFACCIONES
- 7 TORNILLERIA
 - LINEA DE AGUA
 - LINEA DE ACEITE

PLANTA ARQUITECTONICA ESCALA 1:200

CAPITULOIII

CONTROL OPERACIONAL

OBJETIVO PARTICULAR

En este capitulo se pretende que el lector comprenda la importancia delanálisis de pruebus de laboratorio, las funciones de las camionetas de diagnós
tico, como apoyo al mantenimiento predictivo, por otro lado se pretende que co
nozca como evitar desgaste en los elementos de la maquinaria y algo esencial
que todo ingeniero de mantenimiento debe saber la seguridad en el trabajo, ya
que de ésta depende el bienestar del personal que colabora directamente en los
trabajos de mantenimiento, teniendo presente que se trabaja con maquinaria pesada en obras de alto riesso.

3) LABORATORIO. ANALISIS DE PRUEBA

El laboratorio de análisis de accite incrementa sus actividades, llegando a determinar siete parâmetros, que son:

- a) Metales de desgaste
- b) Viscosidad
- c) Indice de viscosidad
- d) TBN (Número total de basicidad)
- e) Temperatura de inflamación e ignición
- f) Dilución por combustible
- g) Contaminación con agua

A continuación se describe en que consiste cada punto, basados en normas ASTM D2270-74, ASTM D2602, ASTM D341, ASTM D445, ASTM D3829, clasificaciones - para viscosidad SAE y API.

a) METALES DE DESGASTE

En el capitulo I, se mencionó los problemas ocasionados por el desgaste, en este indiso daremos las condiciones para que el desgaste suceda.

ABRAC ION:

La abración puede ser muy pronunciada bajo algunas condiciones como cuando circulan materias abrasivas tan finas que pueden producir una superficie aparentemente lisa (pulido).

Las partículas sólidas en la corriente de aceite sacan metal a su paso.

FRICCION:

Corte

Los puntos altos se entrelazan y depsués son cortados (Se rompen al continuar)

Soldamiento seguido de la fractura

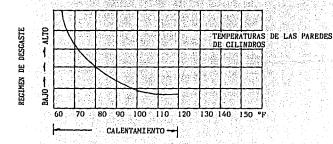
Los puntos altos opuestos forman pequeñísimas soldaduras y al continuar el movimiento se desprenden partes de cualquiera de las superfícies.

CORROSION:

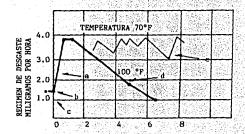
Agua, ácidos, combustible y aceites.

Las materias corrosivas del combustible y otros ácidos atacan el metal destru yéndole progresivamente.

DESGASTE CORROSIVO


Entre las 2/3 a las 3/4 partes del desgaste del motor corresponde a causa de la corrosión.

La razón es las bajas temperaturas del motor, los resultados son los si guientes:


- El aceite se contamina excesivamente con agua y otros gases de la com bustión.
 - a) Dilución
 - b) Deterioración del aceite
 - c) Lodos frios
 - 2) Se acelera la corrosión
 - a) Rápido desgaste del motor; (anillos, cilindros)
 - b) Consumo excesivo del aceite
 - c) Mayor consumo de combustible

La protección contra el desgaste corrosivo aumenta de acuerdo con el aumento del nivel detergente del acelte, así como la protección contra los depósitos de lodos fríos.

Cuando el motor está frío, las materias corrosivas se forman más rápidamen te, permanecen en el motor en mayor cantidad.

El régimen de desgaste es muy elevado a bajas temperaturas, se aproxima a los 100-120°F en unos minutos puede ocurrir un desgaste considerable,

TIEMPO EN HORAS

- a) Al arrancar el motor el régimen de desgaste aumenta rápidamente
- b) Nivel de régimen de desgaste
- c) Nivel con calentamiento previo
- d) El régimen de desgaste comienza a caer al elevarse la temperatura, pero no répidamente, los efectos adversos de la operación inicial en frío persisten por mucho tiempo.
- e) Muchas paradas y arranque conservan el régimen promedio de desgaste, a un nivel muy alto

El desgaste persiste aún después de alcanzada la temperatura normal, las paradas y arranques frecuentes ocasionan un régimen de desgaste muy elevado.

Se puede medir el régimen de desgaste del motor, por el grado de radioncti vidad que indica un contador Geiger sobre el acette usado.

b) VISCOSIDAD

La viscosidad en los aceites es una propiedad muy importante, puesto que en base a esta se determina el tipo de lubricante que requiere una máquina en en sus confuntos. Debido a esto, es necesario vigilar la viscosidad del aceite de cada com partimiento, ya que el disminuir o aumentar esta propiedad repercute directa mente en la vida útil dol conjunto.

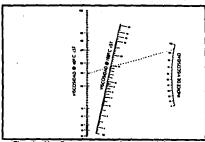
Cuando disminuye la viscosidad significa que existen contaminantes que diluyen el aceite, comúnmente combustible o agua, se considera como límite máximo de dilución por combustible 5%, el cual logra descender un grado sea de viscosidad y el agua 0.2% antes de que se genere corrosión.

Si la viscosidad aumenta, indica contenido excesivo de sólidos tales como lacas, barnices, lodos, degradando el lubricante, lo cual indica que las cadenas de hidrocarburos se están rompiendo por efecto de la temperatura, de esfuerzos mecánicos, de fricción.

Esto es que ha perdido sus propiedades de lubricación, detergencia, dis - persión y en general su poder antifriccionante y de seguir circulando en el - sistema puede provocar depósitos de carbón en partes críticas, taponeando de venas de lubricación y filtros.

c) INDICE DE VISCOSIDAD

Este anfilisis consiste en obtener la relación de viscosidad a dos temperaturas, a 100% (especificación SAE) como temperastura aproximada de operación de un motor en condiciones normales y a 40 °C (especificación 180) considerada como la temperatura de arranque.


Así a valores altos de índice de viscosidad el aceite tiene la característica de soportar grandes cambios de temperatura sin alterar considerablementes u viscosidad, y a valores bajos no sería capaz de soportar cambios bruscos de de temperatura, perdiendo sus propiedades.

REGLAS FUNDAMENTALES

- a) La viscosidad varía inversamente con la temperatura
- b) La variación no es igual con todos los aceites

Una medida para determinar la variación de la viscosidad con los cambios temperatura mientras menor sea la inclinación, mayor será el IV (Indice de viscosidad), o menor el cambio de viscosidad con las variaciones de temperatura.

Se emplea una fórmula matemática arbitraria que da resultados desde abajode (o) hasta bastante más de (100) mediante el monograma de Dean & Davis puede obtenerse el Índice de viscosidad (ASTM D2270-74)

Ejemplo: Una linea recta entre dos viscosidades comcidas de un acohe que tiene 147 elle a 40°C y 14.2 elle e 18°C de protonge hante intercaptor la cosale de IV Indidedesses interfes de Viscosidades

GUIA GENERAL:

- 1) Bajo IV.- Desde abajo de cero hasta 40 δ 50
- IV Moderado. de 50 a 90.
- 3) IV Elevado. de 90 a 150
- 4) IV Excelente. arriba de 150

Un alto Indice de viscosidad no siempre puede ser ventajoso, sin embargo, en la operación automotriz generalmente resulta benéfico.

d) NUMERO TOTAL DE BASIDAD (TBN)

El poder cuantificar el TBN de un aceite significa conocer la reserva alcalina con que cuenta.

Esto es muy necesario determinar, ya que el combustible en México tiene un alto contenido de azufre, superior al 0.05% que marca como máximo Carterpillar, el cual al entrar en contacto con agua durante el proceso de combustión, reacciona para formar ácido sulfúrico, mismo que es altamente corrosivo.

Considerando que al estar el aceite en servicio la reserva alcalina dismiye gradualmente, debido a que los aditivos que imparten en el TBN son consumidos al neutralizar los ácidos que se van formando.

Esto sirve como indicativo para determinar que tanto tiempo puede seguir-

se utilizando el aceite dentro del compartimiento de tal forma que cuando lle gue a la mitad del TBN que tenía de nuevo, sería tiempo de reemplazarlo,

e) TEMPERATURA DE INFLAMACION E IGNICION

La determinación de las temperaturas de ignición e inflamación se considera de importancia, puesto que son una medida de apoyo para detectar posibles—contaminantes en el aceite. En especial es de gran utilidad en la detección—de dilución por algún solvente, normalmente por combustible.

Esto se logra comparando las temperaturas cuando el aceite es nuevo y después de ciertas horas de trabajo, de existir una posible dilución se registracomo un abatimiento en ambas temperaturas.

Además es una medida de inspección de calidad a los acestes nuevos puestoque en base a esta determinación es posible tener una idea tipo del básico empleado en la elaboración del aceite, ya que los acestes de base parafínica tignen las temperaturas más altas que los de base naftenica.

Ambas temperaturas sirven de apoyo a la cromatografía en papel (prueba de la gota) como la determinación del porcentaje por combustible.

f) DILUCTON POR COMBUSTIBLE

La prueba de la gota es una determinación que se practica a los aceites de motor, en esta cromatografía se pueden observar en forma cualitativa los si-guientes aspectos:

La detergencia, la acumulación de contaminantes y la dilución por combust<u>i</u> bles.

Si existen dos pruebas consecutivas que difieren grandemente entre si son un aviso que debe tomarse en cuenta, pues estas variaciones son señal de posible falla o contaminación. Para esta prueba se consideran períodos de cambio de 100 horas aproximadamente y que la cantidad de litros de relleno no sobrante el 100% de la capacidad del cárter.

R) CONTAMINACION CON AGUA

Es importante determinar el porcentaje de agua en el aceite, ya que la presencia de este contaminante trae como consecuencia graves problemas de corro sión debido a la formación de ácidos, en especial el ácido sulfúrico, el cual tiene un fuerte poder de ataque, propiciando la fatiga mecánica y la fragilidad del material por corrosión.

Con las observaciones del comportamiento mecânico de cada máquina se determina el conservar o desechar el aceite en uso:

TOMA DE MUESTRAS

Para efectuar un buen seguimiento estadístico de los análisis de aceite y poder hacer recomendaciones acordes con la realidad, es de vital importancia que la toma de la muestra sea de la forma adecuada, puesto que la veracidad del análisis depende de la forma en que se realice esta operación, para ello se enumeran una serie de recomendaciones a considerar en el muestreo:

- 1) Todas las muestras deberán ser tomadas con um bombo de succión, la cual tiene la misma entrada que el frasco, para evitar una posible contaminación.
- Todas las muestras deberán ser tomadas cuando el aceite esté caliente y bien mezclado, o sea inmediatamente después de parar la máquina
- 3) Deberán usarse únicamente los recipientes proporcionados por el laboratorio, los cuales son de poliétileno de nita densidad para evitar que se colapsen con las altas temperaturas, no se use ningún otro tipo de recipiente (vidrio, cartón, etc.)
- Desechar la manguera utilizada para drenar después de cada muestra, nunca utilice la misma manguera para más muestras.
- 5) Cuide que la posición del frasco sea siempre vertical, para evitar que el aceite contamine la pistola
- 6) Las hojas de reporte y las etiquetas de los frascos deberán ser lienadas de la manera más completa y explicita, con objeto de obtener la mayor veracidad posible en la interpretación de los resultados de los análisis

INTERPRETACION DE RESULTADOS

Esta se divide en dos etapas:

- 1) Evaluación del comportamiento de desgaste del equipo
- 2) Los criterios generales para efectuar cambios de aceite

Para la <u>primera</u> etapa se cuenta con límites generales de desgaste, los cua les se califican en base a la marca y modelo de la maquinaria, a la marca y modelo del motor y del comportamiento que se trate, se hace la evaluación en base a cuntro metales de desgaste.

Cobre, fiero, cromo y aluminio considerados como los más importantes, pues to que el ascenso de alguno de ellos es indicativo inmediato de posible falla en algún elemento del compartimiento.

Para los valores altos de dichos metales, se asocian posibles fallas, en el caso del cobre se sugiere en forma general la revisión de bujos y discos pa
ra el fierro se sugieren válvulas, engranos y camisas, para el cromo se sugie ren anillos y baleros y para el aluminio arandelas y cojinetes.

También se analiza un elemento más, el silicio, considerado como un contaminante, a valores elevados de este se indica revisar posibles entradas de tierra y polvo al compartimiento y verificar el estado físico del filtro de aire.

Los límites de desgasto fueron obtenidos con la recopilación de informa ción de parámetros que marcan los fabricantes de la maquinaria como lo son;
Carterpillar, Cummins, Perkins, Mercedez Benz, GMC, etc.

La <u>segunda</u> etnpa de interpretación se tiene lineamientos generales para el cambio de aceite, estos límites están basados en la comparación de las determinaciones, cuando el aceite es nuevo y después de que el aceite ha sido trabaja do, (viscosidad e índice de viscosidad).

3.1) CAMIONETAS DE DIAGNOSTICO

Para efectuar el mantenimiento predictivo en obra, se propone emplear las camionetas de diagnóstico, las cuales deberán contar con herramienta y equipo especializado, además de personal capacitado para realizar las pruebas que $r_{\underline{o}}$ quieren las diferentes máquinas.

Sin embargo, para que las camionetas de diagnóstico puedan dar un buen ser vicio, es necesario que se realice en un tiempo mínimo, el cual no deberá afectar la calidad de los reportes que determinen el estado de la unidad.

La obra debe dar facilidades al personal de diagnóstico de la siguiente forma:

- Programar la maquina existente para su revisión; de esta forma se podrá checar las unidades sin inteferir con la producción de la obra y en un tiempo minimo.
- Informar lo observado en las maquinas, para que el personal de diagnóstico se forme un mejor criterio de su estado actual
- 3) Dar facilidades de acceso al lugar donde se encuen tren las māquinas
- 4) Faciltiar recursos materiales cuando así lo requie

Una vez que se haya efectuado el diagnóstico, es necesario que la obra mantenga comunicación con el departamento de diagnóstico en planta para programar futuras visitas a obra.

¿ COMO SE COMPONE UNA CAMIONETA DE DIAGNOSTICO?

- 1) Personal: cada camioneta cuenta con un mecánico especializado
- Herramienta y equipo: se contará con la herramienta necesaria para desmontar y montar las diferentes partes de cada unidad que se inspecciona

EQUIPO CON QUE DEBE CONTAR LA CAMIONETA

a) EVALUADOR DE MOTORES: es un conjunto de manómetros sensibles y de mucha precisión, que sirve para medir en los motores, pre siones de lubricación, combustible y nire de turbocargador

- b) MULTITACOMETRO: es un instrumento que se utiliza para medir y calibrar las revoluciones de los distintos motores
- c) MEDIDOR DE PASO DE COMPRESION: consiste en un manômetro muy sensible, equipado con boquillas calibradas que son utilizadas para medir el paso de compresión, al cárter de los motores a consecuencia de los despastes sufridos entre sus componentes
- d) TERMISTOR DE USO MULTIPLE: es un instrumento que se utiliza para medir temperaturas de operación, de manera simultanea en los distintos conjuntos que integran la maquinaria que son: motores, transmisiones, convertidores y sistemas hidráulicos
- e) EVALUADOR DE HUMOS: es un dispositivo que sirve para medir el nivel de humo de los motores diesel, tomando muestras de opacidad del humo directamente de los escapes
- f) EVALUADOR DE PRESIONES HIDRAULICAS: consiste en un conjunto de manimetros de diferentes rangos que son utilizados para medir y calibrar simultáneamente presiones en los sistemas hidráulicos, transmisiones, convertidores, embragues, etc.
- 8) MEDIDORES DE FLUJO HIDRAULICO: son instrumentos que se utilizan, para medir el rendimiento de las bombas de flujo hidráulico, así como en la realización de una serie de pruebas de diagnóstico de los sistemas hidráulicos
- h) SONDAS OPTICAS: son utilizadas para la revisión interna de algunos conjuntos como son: cámaras de combustión en motores, mandos finales, diferenciales etc.
- i) DRDOS MAGNETICOS Y MECANICOS: son dispositivos que se utilizan para detectar partículas metálicas en el interior de algunos conjuntos
- j) HERRAMIENTA PARA DIAGNOSTICO DE TRANSITOS: consiste en distintos instrumentos que son usados para tomar mediciones físicas de todos los componentes que constituyen un tránsito de orugas
- k) HERRAMIENTA VARIA: es necesaria para facilitar la instalación de instrumentos, así como para realizar el acondicionamiento de los envisos
- BOMBA DE SUCCION PARA ACRITES: es utilizada para extraer muestras de aceites de los diferentes compartimientos de la maquinaria para que éste sea analizado.

3.2.) SISTEMAS DE LUBRICACION

La lubricación no es mada nuevo, se ha venido empleando por el hombre desde época prehistórica, en los artefactos rudimentarios que utilizaban para su supervivencia. Con el advenimiento de la maquinaria industrial, la lubricación siguió — siendo totalmente empfrica. Los lubricantes eran simples, de procedencia vege tal, animal o mineral y sus características han resultado deficientes a medida que se tienen rápidos avances en los diseños de las modernas máquinas, cadavez más perfectas, las cuales aumentan las exigencias de las características — de los lubricantes, dando origen a nuevas técnicas en su obtención y formula — ción.

Esto ha originado productos lubricantes de mejor calidad, de hecho ha dejor do de ser un arte, convirtiendose en una tecnica aplicada a la eficiencia y conservación de la maquinaria y, por ende de las plantas industriales.

Hay tres sistemas de clasificación de aceites lubricantes más comunes:

- 1) ASTM. Sistema de clasificación por viscosidad para fluidos lubricantes. Aunque la ASTM ha elaborado un sistema de clasificación de aceites industriales por viscosidad, no siempre los lubricantes que se encuentran en el mercado cane dentro de esos límites, ya que el fabricante de aceites por ejemplo Petróleos Mexicanos, elabora sus lubricantes de acuerdo a las necesidades de su mercado (ver apéndice).
- 2) DIM 51-501. También clasificación por viscosidad, de origen alemán aunque no es usual en América, también se concluye, porque frecuentemente se menciona en los equipos eu ropeos, como se notará al igual que la clasificación ASTM, se refeirer exclusivamente a la viscosidad (vor apéndice).
- 3) ACMA. A menudo los fabricantes de maquinaria hacen recomen daciones para la lubricación de sus engranes de acuerdo, a esta clasificación, la cual se presenta en dos tablas por separado, la primera para aceltes, para engranes con cargas moderadas y la otra cargas EP moderados (ver apéndice).

COMPRESORAS Gas natural. Grados SAE 30, 40 v 50.

Aceite para carter de motores de combustión interna donde se emplea como combustible gas natural.

Para su elaboración se emplearon aceites básicos refinados y aditivos detergentes sin ceniza, con las siguientes ventajas: máxima estabilidad a la oxidación, mínimo depósito en los pistones, limpieza de bujías, bajo contenido de depósitos de carbón en la cámara de combustión evitando la pre-ignición,mínimo desgaste del tren de válvulas, buena protección contra la herrumbre y protección eficiente contra la corrosión de cojinetes.

Este aceite proporciona óptimos resultados tanto en motores de dos ciclos como de cuatro, operados a gas natural.

Se recomienda y está aprobado su uso en motores Ingersoll- Rand XVG y Carterpillar G376 Turbocargado y Postenfriado, Motores Clark, Cooper Bessemer, - Waukesha-Climax, etc.

Características Típicas

LUBRICANTE	VISCOSIDAD 37.82 °C	SUS 98.9 °C	ı.v.	TEMP INFL°C	COLOR ASTM
NAC. COMPRESORAS GAS NATURAL SAE 30 SAE 40 SAE 50	552	64	92	222	4.0
	742	74	93	226	4.5
	1195	98	97	268	6.0

CILINDROS DE COMPRESION

Se elabora en los grados SAE 20,30 y 40

Aceite de base parafínica con aditivos grasos de origen animal.

El aceite grado SAE 20 es un lubricante especialmente elaborado para el perfodo de quebrantamiento (primeras 600 horas de operación) de compresoras a - gas nuevas o reción ajustadas, de determinadas marcas se emplea en la lubricación de los cilindros de compresión de las compresoras de gas instaladas en la sección de absorsión del DTUCN de Posa Rica; Ver., durante el período de que - brantamiento.

Algunas de las compresoras donde se usa este acette son las siguientes: Clark y NRA-8, Ingersoll-Rand tipo JVG en "Y", Cooper Bessemer tipos CV, GMX -6-TF y GMV.

Después de haber pasado el período de quebrantamiento en los cilindros de compresión, habrá de utilizarse posteriormente como aceite de servicio nacio nal para cilindros de compresión SAE 30 o SAE 40.

Los grados SAE 30 y 40 se aplican en la lubricación de cilindros de com -presión de las compresoras de gas natural de diversos marcas y modelos, des -pués del período de quebrantamiento.

CARACTERISTICAS TIPICAS

LUBRICANTE	VISCOSIDAD 37.8 °C	SUS 98.9°C	ı.v.	TEM INFL.°C	% COMPUESTO GRASO
NAC. PARA CILINDROS DE COMPRESION SAE 20 SAE 30 SAE 40	200	46	92	210	8
	525	64	96	218	5
	737	76	98	220	6

Aceite especialmente preparado para los **filtros de aire** tipo rejilla de m<u>a</u> quinas industriales.

Cumple ampliamente con las especificaciones fijadas por los fabricantes de filtros.

Tiene las siguientes características principales; buena retención en el filtro para un amplio rango de temperatura de trabajo, adhesividad, buena capa
cidad para retener el polvo, baja volatilidad, no produce olores desagradables
no es corrosivo, tiene alta temperatura de inflamación, es resistente al aguaes fácil de aplicar, además de que se remueve con todo e impurezas muy fácil mente.

NACIONAL SATURANTE PARA FILTROS DE AIRE

Producto para los filtros de aire de los motores diesel utilizados en las locomotoras. Estos filtros son de rejilla y se les pone una capa de este lubricante con el objeto de que retengan el polvo e impurezas que se encuentran en su largo - trayecto. No se reseca y se desprende fácilmente con las impurezas al ser lavado con solvente; también se aplica en rejillas de motores estacionarios, este producto deberá aplicarse en caliente y dejar escurrir la rejilla, para que no haya exceso de lubricante.

Se elabora en dos viscosidades: el BA y el YH

Estos productos fueron elaborados para los filtros de los acondicionadores de aire de la empresa Climas Acondicionados, S.A.; cumplen con especificaciones de la American Air Filter.

CARACTERISTICAS TIPICAS

LUBRICANTE	VISCOSIDAD 37.8 °C	SUS 98.9 °C	I.V.	TEN °C	COLOR ASTM
NAC. FILTROS DE AIRE NAC.SAT.PARA FILTROS DE AIRE NAC.PARA FILTROS DE	478 3795	55 71	37	226 242	3.5 4.5
AIRE BA	302 100	49 38	48 54	192 164	3,5 2,5

ACRITES HIDRAULICOS

Nacional 150x, 220x, 300x, 450x,600x, 900x, 1200x, 1400x,

Aceites de alta calidad, elaborados con básicos parafínicos reforzados con aditivos antioxidantes, antiherrumbre y supresores de espuma que les imparten - gran estabilidad, proporcionando mayor protección al equipo en que se usen.

Una de las principales aplicaciones de los aceites más delgados está en los sistemas hidráulicos de máquinas herramientas, tractores, prensas hidráulicas, montacargas, etc., y en general en cojinetes lubricados a anillo o cojinetes antifricción de árboles de transmisión de bombas, centrifugas, motores ge-

neradores y excitadores eléctricos y en chumaceras de alta velocidades y bajas presiones.

Los aceites más gruesos se usan en cajas de engranes rectos y helicoidales que operan a velocidades y cargas moderadas.

CARACTERISTICAS TIPICAS

LUBRICANTE	VISCOSIDAD 37.8 °C	SUS 98.9°C	i.v. (MIN)	TEMP. INF °C	COLOR ASTM
NACIONAL 150X 220X 300X 450X 600X 900X 1200X	150 220 300 450 600 900 1725 2049	43 47 52 62 69 85 115	98 98 97 97 96 96 95	205. 211 218 225 235 263 268 272	2 2.5 2.5 3.0 3.5 3.5 5.0

PERFORADORAS

Se elabora en los grados 550, 750 y ASARCO

Lubricantes compuestos con productos emulsionables de origen vegetal, elaborados para lubricación de perforadoras neumáticas, cuyo mecanismo trabajan con cargas elevadas y aire seco o húmedo.

Dan un rendimiento excepcionalmente alto en perforadoras neumúticas que trabajan en recintos cerrados, como túneles, minas, etc., son estables a cualquier temperatura.

El Nacional Perforadoras Asarco, se elaborá exclusivamente para las condiciones especiales de operación de las herramientas neumáticas de la Sarco Mex<u>i</u> cana.S.A.

NEUMACEITE ESPECIAL

Se elaboró en los grados SAE 30 y 40

Son aceites de máxima calidad, elaborados con aditivos que les permiten - resistir altas presiones de trabajo, recomendados para lubricar perforadoras - neumáticas que operan en condiciones severas, soportando más de 300,000 PSI de carga, obteniêndose un desgaste mínimo.

Se puede usarlos en recintos abiertos como cerrados, el aditivo y la humedad del aire forman una emulsión incipiente favorable para la lubricación de las partes mecánicas.

Son aceites adecuados para perforadoras de roca, no produciendo en el aire de escape vapores tóxicos o nocivos a la salud; además contienen aditivos - que evitan la herrumbre y la corrosión en las partes mecánicas.

Sus características fundamentales son las siguientes: se adhieren con tena cidad al metal, tienen propiedades de presión extrema, antiherrumbre, resisten el lavado al agua, no son corrosivos, no producen olores desagradables ni gases tóxicos y forman emulsiones incipientes con la humedad del aire,

CARACTERISTICAS TIPICAS

LUBRICANTE	V1SCOSIDAD 37.8°C	SUS 98.9°C	TEMP. INFL. °C	COLOR ASTM
NAC. PERFORADORAS 550 750 ASARCO NEUMACEITE ESP. SAE 30 SAE 40	560 770 525 578 800	63 73 61 66 78	210 220 204 226 232	5 5 4 4 4,5 4.5

3.3) SEGURIDAD EN EL TRABAJO

La seguridad de la obra, es importante para el desarrollo de la misma, ya que el poder ejercer un plan de este tipo nos ahorrará, en gran parte, todas-las incidencias que afectan el trabajo, tanto económicamente, como la parte - más importante, que es la integridad de los trabajadores.

RIESGOS DE TRABAJO. (SUS CAUSAS)

Existen diversas teorías en cuanto a la casualidad de los accidentes y por lo tanto, a la prevención de los mismos.

- 1) Teoria de Henrich
- 2) Teoría de control de pérdidas
- 3) Teoría de análisis de seguridad de sistemas
- LA TEORIA DE HENRICH: señala que los accidentes son causados por las causas próximas y las causas remotas

Indica que las causas próximas son los actos inseguros (violación a procedimientos establecidos) y a las condiciones peligrosas (circumstancia que permite el accidente).

Y que las causas remotas (problemas psicológicos ajenos al trabajo).

Simulaba como <u>fichas de domino</u> que al caer una se precipitaba sobre las de más, originando el accidente.

En virtud de buscar más que una prevención, un inculpado, se conoce a ésta como la teoría de culpa, posteriormente aparece, con el desarrollo administrativo.

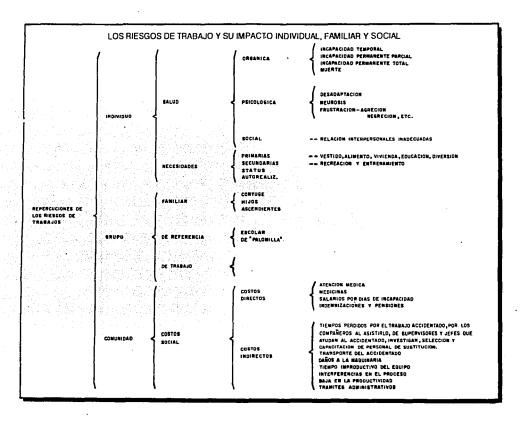
LA TEORIA DEL CONTROL DE PERDIDAS: basando su acción en los efectos económicos producidos por riesgos de trabajo en las empresas, esta teoría indica tres tipos de causas para la generación de accidentes que son: causas administrati -

vas, causas básicas y causas inmediatas.

Señala esta teoría que las causas inmediatas, actos y condiciones insegu ras o peligrosas, son sintomas de una administración deficiente.

Que las causas básicas, se subdividen en factores personales y factores de trabajo, explica que la gente no actúa como es su deber, por falta de conoci = mientos o capacidad, motivación incorrecta, o por problemas físicos o menta - les.

Sostiene que los factores de trabajo que propician la accidentabilidadson; normas inadecuadas de trabajo, diseño o mantenimiento inadecuado, defi cientes normas de compra, uso anormal de los objetos y uso de objetos desgasta dos o deficientes.


Como consecuencia, hay una administración deficiente en la empresa, ya que cumple los principios administrativos (planeación, organización, dirección y-control).

LA TEORIA DE ANALISIS DE SEGURIDAD DE LOS SISTEMAS

Analiza la probabilidad de ocurrencia de los accidentes, los probables orígenes y la forma de evitarlos o, al menos, controlar los daños, esta teoría
parte de hechos supuestos (posibles fallas) causas que pueden dar origen a esas fallas, modo de corregirlas o de limitar los daños.

Esta técnica ha sido de gran utilidad en proyectos tales como los espaciales, comunicación intercontinental, etc. y empiezan a ser aplicados a la seguridad industrial.

Ofrecen la ventaja de seguir en forma de rutina los concursos más vulnerables en el sistema que se analiza y presenta diversas desiciones referentes a los métodos para robustecer los sistemas operativos, mediante dispositivos redundantes, que aseguren el funcionamiento deseado de diversos equipos.

ESTADISTICA

Las estadísticas de seguridad son tan importantes para la seguridad como las estadísticas de un país son para su desarrollo.

La utilidad de la estadística es: planear y orientar mejor los programas - de seguridad hacia los puntos donde podemos obtener una mejor reducción, o hacia los que acusan una tendencia peligrosa.

Es decir, nos permiten hacer una mejor inversión de esfuerzos y de recursos.

Los instrumentos más útiles de las estadísticas de seguridad son los indices.

a) Indice de frecuencia de accidentes incapacitantes

Donde:

I de F = Indice de frecuencia

N= Número de accidentes con incapacidad

H= Número de horas hombre trabajadas, de acuerdo con contabilidad

b) Indice de gravedad

I de G=
$$\frac{D \times 1'000,000}{H}$$

Donde:

I de G= Indice de gravedad

D - Número total de días

H = Número de horas hombre trabujadas, de acuerdo con contabilidad

c) Indice de frecuencia de accidentes totales

I de F =
$$\frac{N \times 1'000,000}{H}$$

Donde:

I de F= Indice de frecuencia

N = Número de casos ocurridos

H = Número de horas hombre trabajadas, según contabilidad

d) Indice de frecuencia de incendios

Donde:

I de F= Indice de frecuencia de incendios

N = Número de incencios y explosiones ocurridos, por leves que hayan sido

V = Valor de la planta

e) Indice de daño

I de D= Indice de daño

C = Costo de incendios y explosiones habidos se supone un daño minimo de N\$1 por caso en que el costo sea despreciable

V = Valor de la Cin.

La Ley Federal del Trabajo nos define al accidente de trabajo como toda le sión orgánica o perturbación funcional, inmediata o posterior, o la muerte, - producida repentinamente en ejercicio, o con motivo del trabajo, cualesquieraque sea el lugar y el tiempo en que se presente.

El JEFE DE OBRA, debe conocer los fundamentos legales que intervienen, para lograr contar con los servicios de las instituciones dedicadas a esta área.

FUNDAMENTOS LEGALES

Constitución política de los Estados Unidos Nexicanos.

ARTICULO 123

La fundamentación jurídica de la seguridad e higiene en México, se encuentra en este arcículo.

Fracción XIV

Habla sobre la responsabilidad que tienen los empresarios ante los accidentes de trabajo y las enfermedades profesionales que sufren los trabajadores en el desempeño de su trabajo.

FRACCION XV

Habla de la responsabilidad del patrón, sobre la higiene y la seguridad.

ARTICULO 132

Nos habla de las obligaciones de los patrones.

FRACCION XVII

El patrón debe cumplir las disposiciones de seguridad e higiene que fijanlas leyes y reglamentos para preventr accidentes y enfermedades.

FRACCION XXVIII

Integración y funcionamiento de las comisiones mixtos de seguridad e higi<u>e</u> ne.

ARTICULO 134

Nos habla de las obligaciones de los trabajadores.

FRACCION II

Observar las medidas preventivas e higiénicas que acuerdan las autoridade competentes y las que indiquen los patrones.

ARTICULO 473

Define los riesgos de trabajo.

ARTICULO 474

Define accidentes de trabajo.

ARTICULO 475

Define enfermedad de trabajo.

ARTICULO 478

Define incapacidad temporal,

ARTICULO 479

Define incapacidad permanente parcial.

ARTICULO 480

Define incapacidad permanete total.

ARTICULO 509

En cada empresa o establecimiento se organizarán las comisiones de seguridad e hiziene.

LEY DEL SEGURO SOCIAL

ARTICULO 60

"El patrón que haya asegurado a los trabajadores, a su servicio contra -riesgos de trabajo, quedará revelado en los términos que señala esta ley.

ARTICULO 63

Habla sobre las prestaciones a que tiene derecho el asegurado.

REGLAMENTOS

Medidas preventivas cuando se trate del trabajo de las mujeres o de los me nores de 16 años, Diario Oficial del 29 de noviembre de 1934.

Nuevo Reglamento: Diario Oficial del 13 de febrero de 1946.

REGLAMENTO GENERAL DE SEGURIDAD E HIGIENE EN EL TRABAJO

Tiene como fundamento la prevención de los riesgos de trabajo, promueve el mayor empleo de la medicina y de la INGENIERIA ESPECIALIZADA en este campo, -

en las grandes, medianas y pequeñas empresas, contiene 21 instructivos.

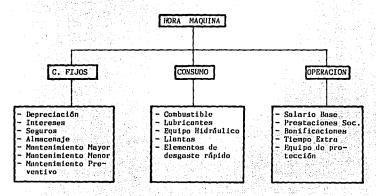
Diario Oficial del 5 de junio de 1978,

CONVENIOS INTERNACIONALES

- 1) Convenio 167 Seguridad y Salud en la Industria de la Construcción.
- Cumple con la función de prescribir medidas orientadas a buscar la protección de los trabajadores que laboran en cualquiera de las ramas de la Industria de la Construcción.

CAPITULO IV

EVALUACION DE LOS COSTOS DIRECTOS DE MAQUINARIA


OBJETIVO PARTICULAR

Analizar la metodología para la obtención de los rendimientos y costos horrarios de la maquinaria, la importancia de la integración de precios unitarios donde interviene la maquinaria, así como conocer los mecanismos para la selección de equipos y/o maquinaria y su impacto en la construcción.

4) ANALISIS DE LOS COSTOS HORARIO DE MAQUINARIA PARA CONSTRUCCION

En el capitulo II se estudio los criterios para el cálculo de los costos -horario de la maquinaria, ahora en este nuevo capitulo se desarrolla la metodo
logía a base de ejemplos para la mejor comprensión de este tema pues es de -gran interés ya que su estudio interviene directamente en los precios unita
rios que son base para concursarobras públicas, según el artículo 134 Constitu
cional y las reglas generales de la Ley de Obras Públicas, a continuación se ejemplifica lo antes mencionado.

COSTOS:

AL ANALIZAR LOS CARGOS POR CONSUMO TENEMOS

1) Formula General

$$E = C P_c$$

Donde:

- C = Cantidad de combustible que, consume la maquina por hora efectiva de operación
- P = Precio del combustible puesto en el motor
- 2) Formulas particulares
 - a) Motores a gasolina

$$E_B = (0.24 \frac{1ts}{hr} \times HP \times OP \times E) P_B$$

Donde:

- HP = Potencia nominal de la máquina
- OP = Factor de operación 0.8%
- E = Factor de eficiencia por tiempo efectivo de trabajo por hora (dato del fabricante del equipo)
- Pg = Precio de la gasolina
- b) Motores a diesel

$$Ed = (0.20 \frac{1t}{hr} \times HP \times OP \times E)Pd$$

Donde:

Pd = Precio de la diesel

NOTA: Por experiencia estadística se usa

- 0.24 lt x HP OP/horn motores gasolina
- 0.20 1t x HP OP/hora motores diesel
- c) Motores que trabajan con energía eléctrica

$$E_e = (0.764 \frac{KW}{hr} \times HP \times OP \times E) P_e Kw/hr$$

Donde:

P = Precio de la energía eléctrica e expresada enkilo-watts/hora

EJEMPLO 1

Cuantos Its. de gasolina consume una revolvedora en I hr., cuya potencia nominal es 8 y trabaja en horas efectivas 45 min., en 1 hora, precio de la gasolina N\$ 1.30

Fórmula:

Sf
$$E = \frac{45 \text{ min}}{60 \text{ min}} / \text{hr} = 0.75 \text{ hr}.$$

Sustituyendo

$$Eg = 1.152 \frac{1ta}{br} \times N$1.30$$

$$Eg = N$ 1.49 \frac{lts}{hr}$$

EJEMPLO 2

Determinar el consumo horario de combustible para una retroexcavadora Mca. Jumbo Y90, Motor Diesel 180 NP y trabaja 50 min. efectivos, precio del diesel-N\$ 1.38.

Formula:

Ed =
$$(0.20 \frac{1 \text{ ts}}{\text{hr}} \times \text{HP} \times \text{OP} \times \text{E}) \text{ Pd}$$

$$E = \frac{50 \text{ min}}{60 \text{ min}/hr} = 0.833 \text{ hr.}$$

Sustituyendo

Ed =
$$(0.20 \frac{1 \text{ ts}}{\text{hr}} \times 180 \text{ HP} \times 0.87 \times 0.833 \text{ hr}) \text{ N$ 1.38}$$

Ed = 23.99
$$\frac{1ts}{hr}$$
 x N\$ 1.38

Ed = NS 33.10
$$\frac{1 \text{ Es}}{\text{hr}}$$

ANALISIS DE LOS LUBRICANTES

1) Fórmula General

$$AL' = (\frac{c}{r} + AL) PL$$

Donde:

c = Consumo horario del lubricante generado por el cambio periodico del aceite (cap.carter)

t = Tiempo en horas efectivas entre cambio y cambio

AL = Consumo horario de lubricantes por hora efectiva de operación

- 2) Fórmulas particulares
- a) Para motores a Rasolina de menos de 100 HP

$$ALg = \frac{c}{t} + (0.0030 \frac{1t}{hr} \times IIP \times OP \times E) PLg$$

Donde:

PLg = Precio del lubricante para motor a gasolina

b) Para motores diesel de más de 100 HP

ALd =
$$\frac{c}{t}$$
 + (0.0035 $\frac{1t}{hr}$ x HP x OP x E) PLd

Donde:

PLd = Precio del lubricante para motores diesel

EJEMPLO 3

Calcular la cantidad de lubricante para una retroexcavadora Mca. Jumbo Modelo Y90, Motor diesel 180 MP, capacidad del carter 22.5 lts, tiempo entre cam bio y cambio de aceite 150 hr., y trabaja 50 min. efectivos, precio del lubricante N\$ 6.5

Formula:

ALd =
$$\frac{c}{t}$$
 + (0.0035 $\frac{1ts}{hr}$ x HP x OP x E) PLd

Sf

$$E = \frac{50 \text{ min}}{60 \text{ min}/hr} = 0.833 \text{ hr}$$

Sustituyendo

ALd =
$$\frac{22.5 \text{ lt}}{150 \text{ hr}}$$
 + (0.0035 $\frac{1 \text{ ts}}{\text{hr}}$ x 180 MP x 0.8% x 0.833 hr)N\$ 6.5

ALd = 0.15
$$\frac{1t}{hr}$$
 + (0.419 $\frac{1t}{hr}$ x N\$ 6.5)
ALd = N\$ 2.87 $\frac{1tu}{hr}$

Hasta el momento se ha visto, como se efectúan cálculos de los costos por consumo de combustible y lubricantes, ahora veremos el cálculo completo de un costo horario en base a la Sec.V del Reglamento de la Ley de Obra Pública;

EJEMPLO 4

Determine el costo por metro cóbico de excavación medido en banco que realiza una retroexcavadora Mca. Carterpillar K-225V de 1 1/4 YDS³, de capacidad,
motor diesel de 145 HP valor de adquisición N\$ 67,0000. valor de rescate 25% de Va, vida económica 10,000 hr, horas efectivas de trabajo 2000 hr., coefi ciente experimental de mantenimiento Q = 1.10, tasa de interés = 0.24%, prima de seguro 2% capacidad del cárter 25 lts. Tiempo entre cambio y cambio 200 hr.
N\$ 6.5 se considera 50 min. efectivos de trabajo, si el rendimiento calculado
de la máquina es de 29.76 m³/hr.

DATOS

a) Cálculo de los cargos fijos

<u>Pórmulas</u> <u>Desarrol</u>

preciación

$$D = \frac{Va - Vr}{Ve}$$
 $Vr = 25\%$ de Va $Vr = N\$$ 167,500

$$D = \frac{670,000 - 167,500}{10,000 \text{ hr}} = N$ 50.25$$

Inversión

$$I = \frac{V_a - V_r}{2 l l a}$$
 i $I = \frac{670,000 - 167,500}{2(2000)} \cdot 0.24 = N$ 30.15$

Mantenimiento

$$T = 0 \times D$$
 $T = 1.10 \times 50.25 = N$ 55.25$

Seguros

$$S = \frac{V_0 + V_F}{2} (\frac{S^4}{110})$$
 $S = \frac{670,000 + 167,500}{2} (\frac{0.02}{2000}) = N$ 4.18$

b) Cálculo de consumos

Combustible Si E =
$$\frac{50 \text{ min}}{60 \text{ min/hr}} = 0.833 \text{ hr}$$

Ed =
$$(0.20 \frac{1 \text{ t}}{\text{lir}} \times \text{HP} \times \text{OP} \times \text{E}) \text{Pd}$$
 Ed= $(0.20 \frac{1 \text{ t}}{\text{lir}} \times 145 \text{ HPx0.8}\% \times 0.83 \text{ hr}) \times 1.38$
Ed= NS 26.57

Lubricante

ALd=
$$\frac{c}{t}$$
 + (0.0035 $\frac{l \ln x}{hr}$ x HP x OP x E)

ALd= $\frac{251 \ln x}{200 \ln r}$ + (0.0035 $\frac{l \ln x}{hr}$ x 145HPx0.8%x0.83) N\$ 6.5

ALd= (0.125 + 0.34 N\$ 6.5)

ALd= N\$ 3.02 $\frac{l \ln x}{hr}$

c) Cálculo de operación

$$0 = \frac{So}{H_{\rm T}}$$

$$0 = \frac{N\$ 75}{8 \text{ hr x } 0.8\%} = N\$ 11.71 \text{ hr.}$$

... El costo horario máquina = C. Fijos + C.consuno + C.operación

$$C.H.M. = 139.85 + 29.59 + 11.71 = N$ 181.15$$

El cargo directo por maquinaria será

Sf: el rendimiento es 29,76 m3/hr

$$C.M. = \frac{C.H.M.}{R}$$

C.M. =
$$\frac{N$ 181.15}{29.76}$$
 m¹/hr = N\$ 6.08 m¹/hr.

MAQUINA:	MARCA:
RETHO-EXCAVADERA	CHRTERPIALAR
MODELO:	MOTOR:
K-225V	DIESEL
FECHA:	ELABORO:

análisis costo hora-maquina

DATOS GENERALES							
Proces pages spren		670,000	WN	Peroncia melar		145	÷.
lares secret			44	Promoceration 1, 2.7 (Sec. 294228).	HP 00	145 x0.8 = 116	.; -5 (-
YERRED	(Va)	676,000	MW			对新老师和新典的 15年15年	
Yang rostale	[141]	167,500	44	Cool strategie	हैं(म) ह	\$549.05 (\$100.05 (a)	2, •3.
Themore	14	C, 24	. • ;	form married (450) (450) (460)	(iQ) (题相信() 经现金经济	4.
Profes de seguras	[6]	1	2.0	Vide according borist	(m)	\$	g ,A.
Yes expenses	(An)	10,000	AAma	Consider Carter California (Carteria)	(C) ::	@ 2.5 Garaga Haya (Species (
Hard Ser Mile	Peal	2,000	Ma	Campin do at 0.00 to 1.00 to 1	(11)	Zennika	8. 1. 54

COSTOS BASICOS

I have all N	8	A Section of the Sect	● 四世的後の「韓国	OPPORT AND A SERVICE N	\$ ±:75*
Ligrenterity	6.5			Aremo 到海·特克·朗姆克兹	FYSSACJA/A
	1,134	Corrected Springers Street	现形物物的形式	相關的理解。由例如學歷版訂	0,585,65,5356

I CARGOS FIJOS	。 在1000年代,1000年日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本		
Depressor de	Cale - Alles of the April 1989	STATE OF THE SECOND SECTION	50.25
in-proper	Im (ve - wing we see a second see see	数据的设计的数据 2000 YOU TRANSPORT (1800 YEAR ON THE STATE OF T	30.15
topus .	S = Vo · Vno S to Children Service	19、10年/5年至4年/6月1日/19月1年/19日本	4.18
Anaciona	A-R-D	erange between the Asia desidents.	我的影影 发症
Mantenimente	W-0.0	Andrewski transport at the state was a suite	S.5. 27
	- continue relationary to the suppression	His posturati di Balaki i Elegali i 199 ang disiana ngapa biotopi si 199 ang d	86 schatter

		 Garrier and State of American American State of Ameri		 \$:139.:85
2. CONS	UMOS	and the second s	An Esta Financia Communication (Communication)	dwine a este o
Dave	3.7.3.8	. In I store on the store of the state of th	建筑的设施设施工作增长的设施工作的工作部分工作的工程	24.57
-	14.	Emajo and op Loop Art 1 (1997)	Strategy (The Condition to the although a space	45-02-03-18/70
*****	11.5		PROBLEM SERVICE CONTRACTOR OF THE PROPERTY OF	\$70000 \$50000000000000000000000000000000
		6 49 L 77 + 8 0838 + HP + courts have	有影響影響等的所有影響等的支持心理學的	3.02
^	1 (1967)	a=L/T - 8 0036 + mF ap + creme has	agentuals symmetric comply has been capped and	485.9%4
		man and the control of the second of the sec	and the commence of the second control of the contr	200

Listen.	THE RESERVE	\$16-16 · 西南南南南南南部市	SECOND SE
	garing and same	delle surgia, deleter i stalligen arte camera	N(\$ 29.59)
3 OPERA	CION	对其的自己的特殊的特殊的自己的特殊的	
144144	4,700,000,00	1 miOs + Apretas the Hall State and Alles	and the state of t
-	11 (2011)	Salar Branch State Control	Bernard the Harrist of the Control o
	T. Jaget	5.1.24.2.25 20 20 20 20 20 20 20 20 20 20 20 20 20	REND. 29 76 H3/HR N (17.77)
		(co	STODIRECTOHORAMAQUINA WE C.OS LILI

EJEMPLO 5

Camión de volteo Mca. Fansa 1317-60 de 7 m³ de capacidad de caja, valor de adquisición N\$ 165,000, valor de rescate 30% de Va, vida económica 10,000 hr. horas activas 2,000 coeficiente de mantenimiento 0.9, valor de llantas - - N\$ 3,200, vida económica de las llantas 2950 hrs., capacidad del cárter 14 - 1ts. potencia nominal 170 HP, salario del operador N\$ 79.20 el gasto empresa y los demás valores son los mismos del ejemplo 4.

DATOS

- 7m' capacidad de caja - Vn = N\$ 3,200 - s' = 2% - Va = N\$ 165,000 - Hv = 2950 hr t = 200 hr Vr = 30% de Va - Cap. cárter 14 lts Pd = N\$ 1.38 - Ve = 10,000 hr HP = 170 - PLd= N\$ 6.5	
- Va = N\$ 165,000 - Hv = 2950 hr t = 200 hr Vr = 30% de Va - Cap. carter 14 lts Pd = N\$ 1.38	
- Va = N\$ 165,000 - Hv = 2950 hr t = 200 hr Vr = 30% de Va - Cap. carter 14 lts Pd = N\$ 1.38	
- Vr = 30% de Va - Cap. carter 14 lts Pd = N\$ 1.38	
- Vr = 30% de Va - Cap. carter 14 lts Pd = N\$ 1.38	
- Vr = 30% de Va - Cap. carter 14 lts Pd = N\$ 1.38	
- Vr = 30% de Va - Cap. carter 14 lts Pd = N\$ 1.38	
- Ve = 10.000 hr HP = 170 - PLd= N\$ 6.5	
- Ve = 10.000 hr $- HP = 170$ $- PLd = N$ 6.5$	
- Ve = 10.000 hr PLd= NS 6.5	
。	
- Ha = 2 000 - Salario OP = N\$ 79.20 tiempo efectivo	
- Ha = 2 000 - Salario OP = N\$ 79.20 tiempo efectivo	
-Q = 0.9 de trabajo 50 mi	

a) Cálculo de los cargos fijos

Fórmulas

Deparrolla

Depreciación

$$D = \frac{(Va - Vn) - Vr}{Ve}$$

$$D = \frac{(165,000 - 3,200) - 48540}{10,000} = N$ 11.33$$

INVERSION

$$I = \frac{V_8 + V_7}{2 \text{ Ha}} i$$
 $I = \frac{161.800 + 48, 540}{2(2,000)} \text{ 0.24} = N$ 12.62$

MANTENIMIENTO

$$T = Q \times D$$
 $T = 0.9 \times 11.33$ = N\$ 10.20

SECUROS

$$S = \frac{Va - Vr}{2}$$
 (S') $S = \frac{161,800 + 48,540}{2}$ (0.02) = N\$ 1.05

$$= N$ 35.20$$

b) Cargo por consumo

Lubricante

$$ALd = \frac{c}{t} + (0.0035 \frac{lts}{hr} \times HP \times OP \times E) PLd$$

SI

$$E = \frac{50 \text{ min}}{60 \text{ min}} = 0.833 \text{ hr}$$

ALd =
$$\frac{14 \text{ lts}}{200 \text{ hr}}$$
 + (0.0035 $\frac{1 \text{ ts}}{\text{hr}}$ x 170 HP x 0.8% x 0.83 hr) N\$ 6.5

LLANTAS

$$N = \frac{Vn}{Hu}$$

$$N = \frac{3200}{2950} = N$ 1.08$$

Combustible

Ed =
$$(0.20 \frac{1 \text{ts}}{\text{hr}} \times \text{HP} \times \text{OP} \times \text{E}) \text{ pd}$$
 Ed = $(0.20 \frac{1 \text{ts}}{\text{hr}} \times 170 \text{ HP} \times 0.8\% \times 0.8\% \text{ hr}) \text{N$ 1.38}$

Total consumo N\$ 35.25

c) Cargo por operación

$$0 = \frac{So}{Hm}$$

C.H.M. = C.Fijo + C. Consumo + C. Operación

Cálculo del rendimiento

Donde:

V = Capacidad nominal de la maguina (volumen)

Cc = Factor de llenado

Ca = Factor de abundamiento para materiales medidos en banco

Ca = Peso volumétrico de material en banco Peso volumétrico de material suelto Los 60 están en min/hr.

Tc = Tiempo del ciclo en minutos

E = Factor de eficiencia 85% aproximadamente capacidad del operador

Si se calcula los tiempos de traslado del material ida y regreso, considerando 1 km de recorrido en 30 km/hr de ida y 45 km/hr de regreso tendremos.

$$Tida = \frac{d}{v} = \frac{1 \text{ km}}{30 \text{km}} / x \text{ 60 min/hr} = 2.0 \text{ min}$$

Tregreso =
$$\frac{d}{v} = \frac{1 \text{ km}}{45 \text{km}} \times 60 \text{ min/hr} = 1.33 \text{ min}$$

Para el tiempo de carga tenemos

Tcarga =
$$\frac{\text{cap. cam16n}}{\text{cap. de cuchar6n}} = \frac{7\text{m}^2}{0.57\text{m}^3} 6.3/4 \text{ yb}^3 = 12 \text{ Botazos}$$

Como el tiempo efectivo es de 0.83 min. tenemos:

Tcarga= 12 botazos x 0.83 min. = 9.96 min.

o sea que:

Ahora bien:

12 botazos x 0.57 m = 6.84m material suelto

$$Cc = \frac{6.84 \text{ m}^3}{7\text{m}^3 \text{ cap. nominal}} = 0.985$$

Para Ca tenemos:

$$Ca = \frac{1850 \text{kg m}^3}{1348 \text{kg m}^3} = 1.37 \text{ kg.m}^3$$

El rendimiento será

$$R = \frac{7 \text{ m}^{2}(0.982)}{1.37 \text{ kg.m}^{2}} \qquad \left(\frac{60 \text{min/hr}}{16.29 \text{ min/ciclo}}\right)$$

$$R = 15.66 \text{ m}^3/\text{hr}.$$

Sustituyendo en

$$C.M. = \frac{C.H.M.}{R}$$

C.M. =
$$\frac{N$82.82}{15.66 \text{ m}^3/\text{hr}}$$
 = N\$ 5.28 m¹/hr

análisis costo hora-maquina

	25-24 2 No. 11 NA - 12 NA - 24 NA - 14 NA
MAQUINA:	MARCA:
CAPITON DE VOLIED	TANSA 13/7-60
MODELO:	MOTOR:
	DIESEL
FECHA:	ELABORO:
	新 班 特别和15000000000000000000000000000000000000

DATOS GENE	RALES)		
Prints paquities		T	165,000		Parancia matas	m# 1gq	17.000
Equips spring	LLAHIAS	-	3, 200	44	Prince operation Control (1995)	HP 80	170 x 0.8 = 136 -
Varioti		IVal	161,800	~~	Type combustion () () () () () () () () () (0.075	DIESEL
Vara reticale		141	48,540	-	Cost stracorda (A) 1 1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2	(1 41)	表表 100mm
Table do mismag		14	0,24	•	Fall Advisor (1.8 . 1.42)-3006(1.45)	101	- 100 O TO 100 O TO 100 O TO 100 O
Print de segurité		(0)	7,0	•	Value and Anna (Anna organization (Anna organizatio	[PR]	- 2950 Amai
Valendranics		(Va)	10,000	AAma	Concern use has provide the first	(C)	13.00mm 1.4.00mm 2.00mm
***** par 9/40		1701	2,000	Hre	Constant	(L)	300 mg / 1mg

COSTOS BASICOS

HAME ATT N	\$ 3,200	General Control of the Control of th	 # 125,6 € 7 € 7 		€ 79.20 °
torrespectation .	6.5		1.18	Arama yan dinakasan ma	SHOWER WILL
		Server of the Se	Market Control	1996年 - 1996年 - 高級統領化	11. A.M. 11. 11. 11. 11.

I CARGOS	FIJOS	 不可以對於了發展的可能的可能的 		
Coprobation	·	O = (Ye = Y1) (Ye)	可能的 (1777年) 11 11 11 12 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	11.33
-		Im(Vo+Whrame State	自然的现在分词 医氯苯二二二烷二烷 医克萨 斯拉氏管硬膜管	12.62
-	1.75	- B metve - Vrientines (April 1985)		1.05
-		4-4-0 (() () () () () () () () () () () () ()	2. (1986年) [1987年 - 1987年 - 1987年 - 1988年 - 1	翻到编码
-	(40)	w=0.0 (\$1.00 kg)	to the following the regions are wished the property	10.20
	100	B. 1000 (1994) (1995) (1994) (1994) (1994)	部等100mm 100mm 100	器和的统计

2. CON	SOMUS	1. 我们们不同时,但就被他的现代和1995年之后		National Control
0	100000000000000000000000000000000000000	[-1 2014 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	A company of the fact of the fall was break and the fall of the content of the fall of the	31.15
-	17.15克特	E = 0 34 a 100 agr comptage 7	Skalledonia in historia (1960-1960) kalendari kalendari kalendari kalendari	\$964 distinct
-	1878	"这些可能的"。		8999 Burn
	0	4-017/-8 0008 + 14 ² + 1440-6 (400)	2007年1月1日日本中国共和国共和国共和国共和国共和国共和国共和国共和国共和国共和国共和国共和国共和国	3.02
	•		被制度排列。在自己一些第二次指示于连续的连续被制度的正确的	Parinetti
Lienas	H.12(P)@4.54	are in a fill on the supplies of the supplies	·····································	1.08

		ことに (1945年) - 1945年 - 1945年 - 1945年 - 1945年 - 1945年 - 1947年 - 1947
tauner i statisty tyd i at	Smiller Appellage Baug 18 19 19 19 19 19 19 19 19 19 19 19 19 19	was the same and the same same and the same of the sam
Beritakan	on the section of the property with	· 可是一致基础的基础,可是是一种的一种的一种的一种的一种的一种的一种的一种的
		RENDIMIENTO 15.44 13/HR N 12.37
		STO DIRECTO HORA MAQUINA W6 5-28 M3/N

4.1 FACTORES DE RENDIMIENTO

Es prácticamente imposible que un operador de una máquina, laboren en forma contínua e ininterrumpida durante la jornada de trabajo, es de suponer la existencia de atrasos, algunas veces debidas a factores humanos, como la necesidad de que los trabajadores tomen pausas de descanso, refrigerios, etc., la finaliad no importa, otras ocasiones debido a reparaciones, ajuste y lubrica ción de las máquinas, puesto que sabido es que las mismas no pueden ni deben estar funcionando ininterrumpidamente durante un número indefinido de horas al día, ya que frecuentemente es necesario pararlas para fines de sus diversos eservicios de mantenimiento.

Así pues, por cada hora cronológica, sólo se trabaja efectivamente un porcentaje de la misma, el que está profundamente influido por las condiciones de
la obra y por la calidad de la administración o gestión de la empresa constructora, por lo antes dicho, para obtener los tiempos reales o efectivos de trabajo, es necesario introducir en los cálculos los factores correspondientes, ver tablas de rendimientos en el apéndice.

a) RETROEXCAVADORAS

1) DESCRIPCION DEL EQUIPO

Las retroexcavadoras son equipos que se utilizan en una amplia variedad de trabajos de excavación, estas excavadoras se desarrollaron a partir de un diseño básico de orugas y operadas con motor de gasolina o diesel, con capacidades 3/8. 1/2. 5/8. 2 1/2 y 3 YD.

Son completamente hidráulicas y con mayor poder de excavación dando por re sultado una mayor productividad en los trabajos desarrollados;

Alcance: 10 a 15 m.

Profundidad: 5 a 10 m.

Altura de cargo: 4 a 7 m.

Una retroexcavadora tiene características favorables para excavar una zan-

ja. Pero su área de vaciado está limitada.

Puede moverse utilizando sus medios de tracción y aumenta así su alcance de descarga, dentro de ciertos límites, pero esto reduce su productividad.

2) CARACTERISTICAS DE OPERACION

MOVILIDAD

Depende del tipo de tracción que posea, que puede ser montada sobre orugas o sobre llantas.

Otras características de operación y diseño son:

- a) Alcance
- b) Profundidad de excavación
- c) Area de excavación
- d) Altura de descarga
- e) Giro
- f) Capacidad del cucharón

La selección del cucharón apropiado se hace de acuerdo a:

- 1) Tamaño de la retroexcavadora
- 2) Tipo y peso del material que va a ser excavado
- 3) Profundidad y ancho de la zanja que se requie

Los fabricantes ofrecen equipos opcionales (cuchillas y dientes), según las necesidades del constructor.

3) RENDIMIENTO

El rendimiento de una retroexcavadora está dada en función de los siguien tes factores:

- a) Tipo de material
- b) Peso del material
- c) Abundamiento del material
- d) Contenido de humedad
- e) Facilidad de manejo

f) Angulo de reposo

El cálculo del rendimiento se hace en función de los anteriores factores y pueden ser dos procedimientos.

PROCEDIMIENTO No. 1

Para suelos arcillosos y roca bien fragmentada, este se basa en el cálculo de los siguientes factores;

- a) Primero seleccionar la capacidad del cucharón
- b) Rendimiento horario aproximado (ver apéndice)
- c) Factor de eficiencia de la obra
- d) Coeficiente de profundidad (ver apéndice)
- e) Coeficiente de facilidad de carga (ver apéndice)
- f) Por el coeficiente por giro (ver apéndice)

EJEMPLO 1

Calcular el rendimiento: de una retroexcavadora de 1 1/4 Yd', la zanja tiene una profundidad máxima de 7.0 mts. y el giro para descargar es de 90° la
zanja se hace en un suelo arcilloso de muy dura extracción. Se considera una
eficiencia de la obra de 0.90 y el masterial excavado se deposita a un lado de
la zanja que es para alojar unas tuberias de drenaje.

SOLUCION:

- De la tabla 1 del apéndice se tiene un rendimiento aproximado R= 76 m²/hr.
- Se toma el valor inferior, por ser la arcilla de muy dura extracción.
- El coeficiente de la profundidad de corte la obtenemos de la tabla 2 interpolando n= 7.00 nos d\u00e1 f= 0.92
- 3) El coeficiente de eficiencia de la obra

Por datos: f = 0.90

 Cálculo del coeficiente por facilidad de carga según la tabla 2 del apéndice, y la clasificación de carga muy dura nos dó:

5) Cálculo del coeficiente según el ángulo de 90° nos dá:

$$f = 0.86$$

Sustituyendo:

RENDIMIENTO REAL - Rendimiento teórico x factor de profundidad de corte x factor de eficiencia de obra x factor por facilidad de carga x factor por coeficiente por giro.

.*. RENDIMIENTO REAL = 76 m³/hr:x 0.92 x 0.90 x 0.55 x 0.86

Rr = 29.76m³/hr.

PROCEDIMIENTO No. 2

La producción real se obtiene afectando la producción teórica de la tabla-No. 5, según el tipo de material y la capacidad del cucharón por un factor de corrección por la profundidad de excavación y el ángulo de giro el cual se obtiene con la tabla 6 y 7 que se calcula en base a la profundidad óptima y la real, y el ángulo de giro del cucharón desde la posición de excavación al de descarga.

Este procedimiento es más completo por tener producción teórica para una mayor cantidad de materiales en comparación con el primero únicamente contem pla 2 tipos de materiales.

Adomás al rendimiento hay que afectarlo por los factores de eficiencia del operador.

RENDIMIENTO REAL = Rend. teór. x fact. por profundidad de excavación y ángulo de giro y fact. de eficiencia del operador x factor de tipo de obra y organización.

EJEMPLO 2

Calcular la producción teórica de una retroexcavadora Mca. Jumbo, Mod.Y-90 de capacidad de bote 1.5 m² que realiza una excavación en zanja hasta una profundidad máxima de 4.65 mts. en arcilla dura, considerar la eficiencia del operador como buena y las condiciones de trabajo regulares, las condiciones de organización y administración buenas el braso describe un ángulo de giro de 75°-para llenar las unidades de acarreo.

SOLUCION:

1) De la tabla No. 5, la producción óptima de la máquina es:

$$P = 200 \text{ m}^3/\text{hr}$$
.

2) El factor por profundidad es distinta de la ôptima, de la tabla No. 6 - se obtiene que la profundidad ôptima para la capacidad del cucharón de 1.5 m², y el tipo de material a excavar es arcilla dura, nos dá un va - lor de 3.72 mts.

.. El factor es de
$$\frac{3.72 \text{ mts.}}{4.65 \text{ mts.}} = 0.80$$

- 3) Factor de rendimiento de la măquina, con este valor, 0.80 y el ângulo de giro de 75° calculamos por medio de la tabla 7, el factor de corrección del rendimiento de la mâquina = 1.04
- 4) Factor de eficiencia del operador = 0.85
- 5) El factor por tipo de obra y de su organización = 0.69

$$P_x = 200 \text{ m}^3/\text{hr} \times 1.04 \times 0.85 \times 0.69 = 121.99 \text{ m}^3/\text{hr}.$$

b) MOTOCONFORMADORAS

La motoconformadora es una máquina utilizada principalmente en la conforma ción y acabado.

VELOCIDAD RECOMENDADA SEGUN EL TIPO DE TRABAJO

TABLA No. 1

TIPO DE TRABAJO	VELOCIDAD
1) Conservación de caminos	3a. a 5a.
2) Extendido de materiol	2a. a 4a.
3) Mezcla de material	4a. a 6a.
4) Afine de taludes	1a.
5) Acabado final	2a. a 4a

TABLA No. 2

	The state of the s				
EQUIVALENCIA					
1) la. velocidad 2) 2a. velocidad 3) 3a. velocidad 4) 4a. velocidad 5) 5a. velocidad 6) 6a. velocidad	4 kms/hora 7 kms/hora 12 kms/hora 18 kms/hora 25 kms/hora 35 kms/hora				

¿ Qué se obtiene con la compactación?

Mediante la aplicación de un esfuerzo compactador se consigue:

- a) Minimización de asentamientos
- b) Menores deformaciones
- c) Estabilidad deseada
- d) Reducción de permeabilidad
- e) Homogeneidad en los rellenos

¿Cómo se mide una compactación?

En el laboratorio, mediante pruebas estandarizadas.

CALCULO DE RENDIMIENTO.

$$R = \frac{Lc \times A \times E}{T} - - - (1)$$

Donde:

R = Rendimiento de la máquina en mº por tiempo

Lc = Longitud del camino

A = Ancho de la hoja

E = Eficiencia del ancho de la hoja

T = Tiempo utilizado en el tipo de trabajo y su ecuación es:

$$T = \frac{N \times L}{V_{1} \times e} + \frac{N \times L}{V_{2} \times e} + \frac{N \times L}{V_{3} \times e} + \cdots + \frac{N \times L}{V_{1} \times e} - - - (2)$$

Donde:

N = Número de pasadas necesarias

L = Longitud recorrida en kms., en cada pasada

Vn = Velocidad para el tipo de trabajo

 Factor de eficiencia, este factor se integra por: el factor de las condiciones de trabajó y organización de la obra (ver tabla 8) + el factor de eficiencia de la capacidad del operador (ver tabla No. 9)

EJEMPLO 3

Calcular el rendimiento de una motoconformadora Caterpillar Mod. 120B que rastrea y nivela un camino de 3km. de longitud.

Se requiere 6 pasadas para efectuar el trabajo, con las siguientes velocidades de cada una de ellas.

La velocidad a 4kms/hr; 2a. velocidad a 6.4 kms/hr; 3a. y 4a. velocidad a 10.3 kms/hr., considerar un factor de eficiencia del ancho de la hoja de un -60%, el ancho de la hoja de 3.60 mts., condiciones de la obra y organización-como buenas y la eficiencia del operador como bueno en un 80%.

FORMULAS

DATOS

N = 1

L = 3 kms

Vn = Velocidades

e = Dato de tabla 8

e₁ = 0.75

Fac.OP = 0.80

... e = 0.75 x 0.80 = 0.60

$$T = \frac{N \times L}{V_1 \times C} + \frac{N \times L}{V_2 \times C} + \cdots + \frac{N \times L}{V_1 \times C} - - - (2)$$

Sustituyendo en (2)

$$T = \frac{1 \times 3 \text{kms}}{4 \text{km/hr} \times 0.60} + \frac{1 \times 3}{6.4 \times 0.6} + \left(\frac{1 \times 3}{10.3 \times 0.6}\right)^2 + \left(\frac{1 \times 3}{15 \times 0.6}\right)^2 = 3.67 \text{ hrs.}$$

Susticuyendo en (1)

$$R = \frac{3,000 \text{ mts x } 3.60 \text{ mts x } 0.60}{3.67 \text{ hr}}$$

 $R = 1,766.66 \text{ m}^3/\text{hr}$.

c) LLANTAS

Los fabricantes en Estados Unidos han creado una nomenclatura para desig nar a las llantas por el tipo de máquinas para las que fueron hechas. La nomen clatura es la siguiente:

- C COMPACTADORES
- C-1 Liso "
- C-2 Rugoso
- E PARA MOVIMIENTO DE TIERRAS
- E-1 Tipo arado
- E-2 Tracción
- E-3 Roca
- E-4 Huella profunda
- E-5 Roca resistencia al calor intermedia
- E-6 Roca con máxima resistencia al calor
- E-7 Flotación
- G MOTOCONFORMADORAS
- G-1 Tipo arado
- G-2 Tracción
- G-3 Roca
- L CARGADORES Y TRACTORES
- L-1 Tracción
 - L-3 Roca
- L-4 Roca huella profunda
- L-5 Roca huella extra profunda
- HR RESISTENCIA AL CALOR

VIDA UTIL

La mayoría de los procedimientos para calcular la vida útil de los neumáti

cos se han basado en experiencia y recomendaciones del fabricante, en este capitulo analizaremos dos formas de cálculo, que son:

1) SEGUN GRAFICAS DE CARTEPILLAR

En páginas 23 y 24 del manual de Cartepillar se encuentran para motoconfor madoras, arrastradores de troncos, motoescrepas, tractores, cargadores y camio nes. En estas gráficas se clasifica el neumático según 3 zonas de aplicación: A, B y C, que viene siendo que debido al tipo de material donde se trabajará el tipo de desgaste que presenta en la llanta.

ZONA DE APLICACION

- ZONA A: Casi todos los neumáticos se desgastan hasta la banda de rodadura debido a la abrasión.
- ZONA B: Los neumáticos se desgastan pero ocurren otras fallas prematuras debidas a cortes por rocas; desgarraduras o pinchazos irrepara bles.
- ZONA C: Pocos o ninguno de los neumáticos se desgastan hasta la banda de rodadura antes de descartarlos generalmente debido a cortes por rocas.
- NOTA: Pueden ocurrir fallas prematuras en cualquier momento debido a pinchazos por tacones o ramas puntiagudas, por lo tanto, no se considera esta falla.
- NOTA: La vida útil del neumático se puede aumentar frecuentemente utizando banda de rodadura extra y neumáticos con banda de rodadura extra profunda.

Según la clasificación y clase de neumático de <u>Good Year Pire and Rubber</u> : <u>Co.</u>

Esta clasificación se ha incluido en el manual Carterpillar.

La forma de calcular la vida útil consiste en base a la clasificación deltipo de neumático dado en la página 27 del manual Carterpillar, se afecta este valor por los factores en la página 26 del mismo, debido a las condiciones de mantenimiento, velocidad, condiciones del terreno, posición de ruedas, carga,curvas, pendientes y otras combinaciones varias.

EJEMPLO 4

Calcular la vida econômica en horas de un juego de neumáticos tipo E-4 de banda de rodadura extra,bajo las siguientes condiciones de trabajo: manteni miento, promedio, velocidad máxima = 32 kms/hora, condiciones de terreno, con mal mantenimiento, posición de las ruedas, de descarga trasera, con 20% de descarga, ningún grado de curvatura, pendiente del 5% máxima y condiciones varias media.

a) PROCEDIMIENTO 10. (SEGUN CLASIFICACION DE LOS NEUMATICOS)

1) Cálculo de vida útil teórica, de la tabla tenemos:

Vida útil = 3.510

 Cálculo de vida útil final, igual vida útil teórica x los factores de condición

De la tabla de los factores de condición tenemos:

I. Mantenimiento = promedio = 0.981

II. Velocidad māxima = 32 kms/hr = 0.872

III. Condiciones de terreno= mal mantenimiento = 0.763

to the first of the control of the c

IV. Posición de las ruedas- descarga trasera- 0.872V. Carga = 20% de sobrecarga - 0.872

VI. Curvas = ninguna= 1.090

VII. Pendientes = 5% māximo = 0.981

VIII. Otras combinaciones varias - media- 0.981

Sustituyendo:

Vida (til = 3.510 x 0.981 x 0.892 x 0.763 x 0.872 x 0.872 x 1.09 x 0.981 x 0.981

Vida Gtil = 1,869.23 horas

PROCEDIMIENTO No. 2

Según gráficas del manual Carterpillar.

Por las condiciones del terreno que se nos indica mal mantenimiento y ha ciendo referencia a la hoja 26 que nos específica que es ruta de grava, las - clasificamos según zona de aplicación "B", tomando la curva inferior y a la mitad de la zona, por las condiciones del terreno, lo cual nos dá:

Vida Gtil = 1,700 horas

NOTA: Las gráficas y tablas de rendimientos de llantas se encuentran en el apéndice.

4.2) SELECCION DE EQUIPO

Sabiendo como se calculan los rendimientos de la maquinaria, se puede en tonces analizar la maquinaria a utilizar en obra, las marcas y características
de la maquinaria se pueden obtener de dos formas, una es de la experiencia que
tenga el ingeniero de mantenimiento y la otra de los catálogos y recomendaciones de los fabricantes de maquinaria.

EJEMPLO

Calcular el rendimiento de la maquinaria utilizada para la construcción de una sub-base con material de banco compactado al 95% de la prueba Proctor Standard.

Los conceptos de trabajo son la carga, el acarreo ler. kilómetro del material, el acarreo del agua, la homogenización del material, su tendido y la compactación.

El equipo a utilizar será un cargador frontal 977 de 3 1/2 Yd³, camiones - de volteo de 7m³, una motoconformadora catálogo 120B, pipa de agua con capacidad de 10,000 lts., un compactador DYNOPAC Ca -25.

Las características de la sub-buse serón: una longitud de calle de 150mts. espesor de la capa = 0.30mts., un coeficiente de abundamiento del material del 30%, un ancho de calle de 9.0 mts., el cargador realiza una distancia media de acarreo de 15 mts., el material utilizado es una grava arena cementada.

La velocidad del cargador con carga es a 4kms/hr; y vacío de 6kms/hr, la velocidad del camión volteo es: con carga de 15kms/hr; y vacío de 30 kms/hr; la velocidad de la pipa con carga es de 18 kms/hr; y vacío de 36 kms/hr;

CONCEPTOS

- 1) Carga del material con cargador
- 2) Acarreo en camión ler, kilómetro
- 3) Homogenización y tendido del material
- 4) Compactación del material
- 5) Acarreo del agua a 10 kms. de distancia

ANALISIS

- 1) CARGA DEL MATERIAL: Análisis del cargador 977
 - a) CALCULO DEL TIEMPO DEL CICLO:

Tc= Tiempo de carga + tiempo de maniobras + tiempos de viaje + tiempos de descarga

Los anteriores tiempos los obtendremos de la tabla No. 11 (Cargadores Frontales), como sigue:

1) Tiempo de carga: Para materiales cementados tenemos:

Tcarga = 0.20 min

2) Tiempo de maniobras: siempre se considera 0.22 min

T_{maniobras} = <u>0.22 min</u>

3) Tiempo de descarga: tomando en cuenta que la descarga es a camión, considerando el valor intermedio tenemos:

T_{descarga} = 0.06 min

4) Tiempo de acarreo: aplicando la fórmula:

$$T_v = \frac{dc}{Vc} + \frac{dv}{Vv}$$

donde:

dc = 15 mts.

dv = 15 mrs.

Vc = 4 kms/hr.

Vv = 6 kms/hr.

Sustituyendo:

$$T_V = \frac{15 \text{ mts.}}{4000 \text{ mts/60 min}} + \frac{15 \text{ mts.}}{6000 \text{ mts/60 min}} = 0.375 \text{ min}$$

Sumando los tiempos tenemos 0.855 min

b) CALCULO DEL RENDIMIENTO

Aplicando la fórmula

$$R = \frac{V \times Cc}{Ca} \times \frac{60 \text{ min}}{tc} \times E$$

Donde:

V = 3 1/2 Yd capacidad del cucharón

Ca = 1 por ser volumen medido en banco

- Cc = Factor por la capacidad del cucharón, 3 1/2 Yd², y el tipo de material, grava, arena, este valor lo obtenemos de la tabla No. 10. (cargadores), Cc= 1.02
- E = Factor por tiempo efectivo de trabajo por eficiencia del operador y por eficiencia del tipo de obra y de su organización

Considerando tiempo efectivo del cargador = 45 min, tenemos factor por tiempo = 45 min/60 min = 0.75

Considerando al operador como bueno, tenemos de la tabla No. 9, factor = 0.80

Considerando las condiciones de la obra y su organización como buena, tene mos de la tabla No. 8, factor = 0.75

Sustituvendo

Sustituyendo en la fórmula de rendimiento tenemos

$$R = \frac{3 \cdot 1/2 \cdot Yd^3}{1} \times \frac{1.02}{0.855 \text{ ciclos}} \times 60 \text{ min/hr} \times 0.45 =$$

R = 112.74 Yd 3/hr (Abund)

$$R = 112.74 \text{ Yd}^3/hr \times 0.76 \text{ m}^3/\text{Yd}^3 = 86.36 \text{ m}^3/hr \text{ (Abund)}$$

2) ACARREO DEL MATERIAL EN CAMION

A. Cilculo del ciclo

El ciclo de un camión se calcula con:

Tiempo de recorrido vacio

a) $\frac{\text{Tiempo de Carga}}{\text{No. de Camiones}}$ = rendimiento cargador / capacidad del camión = $\frac{86.36 \text{ m}^2/\text{lorga}}{7 \text{ m}^7 \text{ Camiones}}$ = 12.34 Camiones

Tiempo de carga de cada camión = $\frac{60 \text{ min/hr}}{12.34 \text{ CAMIONES/hr}}$ = 4.86 minutos

Otra forma de calcular el tiempo de carga es:

$$\frac{\text{CAPACIDAD DEL CAMION}}{\text{REND.DEL CARGADOR}} = \frac{7.00 \text{ m}^3}{86.36 \text{ m}^3/\text{hr}} \times \frac{60 \text{ min}}{1 \text{ horn}} = \frac{4.86 \text{ min}}{1 \text{ horn}}$$

b) TIEMPO DE DESCARGA

Este tiempo siempre dependerá de las condiciones de la obra, de la que se podrá observar el grado de la dificultad para realizar la descarga de los camiones.

En este ejemplo consideramos:

c) TIEMPO DE MANIOBRAS

Igualmente que el tiempo de descarga, dependerá de las condiciones de la obra, y aquí se deben considerar los tiempos que requiere un camión en las - - vueltas que ejecuta a la entrada de la carga y a la salida de la descarga.

En este ciemplo se considera:

- d) TIEMPO DE RECORRIDO CON CARGA A 1er. Km.
 - DISTANCIA RECORRIDA
 VELOCIDAD

$$= \frac{1 \text{er. km}}{15 \text{ Km/hr}} \times \frac{60 \text{ min}}{1 \text{ hora}} = \frac{4.0 \text{ min}}{1 \text{ min}}$$

e) TIEMPO RECORRIDO VACIO A ler. Km.

$$= \frac{1 \text{ er. Km}}{30 \text{Km/hr}} \times \frac{60 \text{ min}}{1 \text{ hora}} = \frac{2.0 \text{ minutos}}{2.0 \text{ minutos}}$$

b) Cálculo del número de camiones.

$$=\frac{17.86}{4.86}=3.67$$
 camiones

Si consideramos 4 camiones tendremos

 a) Cálculo del tiempo inactivo de los camiones por considerar 4 unidades,gráficamente lo obtenemos como sigue:

	ler. VIAJE		2o. VIAJE		3er. VIAJE		40. VIAJE	
	min I	min T	min I	min T	min I	min T	min I	min T
ler. CAMION 20. CAMION 3er. CAMION 40. CAMION ler. CAMION	0 4.86 9.72 14.58	4.86	17.86	22.72	35.72	40.58	53.58	58.44

Por lo tanto, el tiempo inactivo de los camiones es 19.44 min - 17.86 = 1.58 min.

Agregando este tiempo inactivo al tiempo total del ciclo tenemos:

Tiempo real del ciclo = 17.86 + 1.58 =19.44

 b) Cálculo del tiempo inactivo del cargador por considerar 3 camiones, gráfica mente lo obtenemos como sigue:

				2o. VIAJE		
1		INICIA	TERMINA	INICIA	TERMINA	
ler.	CAMION	0	4.86	17,86		
20.	CAMION	4.86				
3er.	CAMION	9.72				
ler.	CAMION	14.58			學是學科學	

Por lo tanto, el tiempo inactivo del cargador es de 17.86 min-14.58=3.28min

Por lo anterior, se concluye que es más económio tener 4 camiones que nosocasionaría un tiempo inactivo de cada camión de 1.58 min, contra usar 3 camiones que nos ocasionaría tener un tiempo inactivo del cargador cada vez que cargue un camión, de 3.28 min, por lo tanto, número de camiones = 4.

c) Cálculo del rendimiento de un camión:

ciclos por hora =
$$\frac{60 \text{ min}}{19.44 \text{ min/ciclo}}$$
 = 3.08 ciclos

$$3.08 \times 7m^3 = 21.60 \text{ m}^3/\text{hr}.$$

3) HOMOGENIZACION Y TENDIDO DEL MATERIAL

Análisis del rendimiento de una motoconformadora

A. Análisis del tiempo de ejecución del trabajo, aplicando la fórmula:

$$T = \frac{N \times L}{V_1 \times E} + \cdots + \frac{N \times L}{V_n \times 3}$$

Donde:

N = NGmero de pasados en cada actividad

L = Longitud recorrida en km. en cada pasada

V. = Velocidad del equipo en cada actividad

E = Factor de eficiencia de operador y organización de obra

ACTIVIDADES DE LA MOTOCONFORMADORA

a) Extendido del material.

En 2a, velocidad = 7kms/hora, consideraremos un 60% de eficiencia por ser en tramos cortos, 150 mts., el trabajo que ocasiona, que el equipo tarda en 1e vantar a la velocidad, por tento tendremos:

 $V_1 = 7 \times C.6 = 4.2 \text{km/hr}$. el número de pasadas del equipo: N = 4

b) Mezcla del material para su homogenización

Considerando las mismas tablas tomadas en el inciso a), tablas 1 y 2.

4ta, velocidad=18kms/hr., afectando por el mismo factor, 0.60 del inciso a, tenemos; V, = 18 x 0.6 = 10.8 kms/hr., y el número de pasadas; N=4

c) Acabado final

Considerando las mismas tablas indicadas en el inciso b), tenemos:

2a. velocidad = 7kms/hr, afectando por el mismo factor, 0.60, del inciso a, tenemos; $V.=7 \times 0.6 = 4.2 \text{ km/hr}$, el número de pasadas N=4

FACTOR E

Considerando eficiencia del operador como buena = 0.85 (tabla No. 9), y - las condiciones de la obra y organización de la misma como buena (tabla 8), - E = 0.75

Sustituyendo

$$T = \frac{4 \times 0.150 \text{ kms.}}{4.2 \text{ kms/hr.} \times 0.64} + \frac{4 \times 0.150 \text{ kms.}}{10.8 \text{kms/hr.} \times 0.64} + \frac{4 \times 0.50}{4.2 \times 0.64} = 0.53 \text{ hrs.}$$

B) Rendimiento de la motoconformadora, aplicando la fórmula.

$$R = \frac{Lc \times A \times E}{T}$$

Donde:

Lc = Longitud del tramo = 150 mts.

A = Ancho de la hoja = 3.60 mts.

E = Eficiencia del ancho de la hoja = 65%

T = 0.53 horas

Sustituvendo

$$R = \frac{150 \text{ mts. } \times 3.60 \times 0.65}{0.53} = 662.26 \text{ m}^3/\text{hr.}$$

Espesor de la capa = 0.30 mts. $R = 662.26 \times 0.30 = 198.68 \text{ m}^3/\text{hr}$.

4) COMPACTACION DEL MATERIAL

Análisis del rendimiento del compactador:

A. Característica del compactador Ca-25: Ancho del rodillo = 2.36 mts. (catálogo del fabricante)

El rendimiento se obtiene aplicando la fórmula:

$$R = \frac{A \times C \times V \times 1,000}{P} \times E$$

Donde:

A = ancho efectivo de la capa compactada, como dato estadístico se conside un 80% por transposición de capas al compactar, por tanto:

$$A = 2.36 \times 0.80 = 1.88 \text{ mts.}$$

- C = Espesor de la capa = 0.30 mts.
- P = Número de pasadas necesarias, para la compactación del 95% y usando la gráfica de compactación tenemos;

V = Velocidad de compactación, de la tabla No. 12

$$V = 3 \text{ kms/hr.}$$

E = Eficiencia de operador, tipo de obra y su organización, tomamos el va lor de (Ε) de la motoconformadora = 0.64

Sustituyendo -

$$R = (\frac{1.88 \times 0.30 \times 3 \times 1,000}{5}) \quad 0.64 = 216,58 \text{ m}^{3}/\text{hr}.$$

5) ACARRED DE ACUA A 10 KILAMETROS

a) Consideraciones

Se supone que al material le hace falta un 12% de porcentaje de humedad de su peso, el cual es de 1.500 kg/m².

 b) Cálculo del ciclo de un camión pipa capacidad = 10.000 lts.

ciclo: Tiempo llenado + tiempo descarga + maniobras + recorrido carga + recorrido vacía.

b.1) Tiempo llenado: considerando se llena con una garza de 4", se tiene un gasto igual a:

El gasto de la garza de 4" se obtuvo del distribuidor de la bomba de 4" Ø

b.2) Tiempo de descarga: considerando se usa una bomba de 2º ∅, tenemos:

b.3) Maniobras: Considerando los tiempos para:

10 minutos

b.4) Tiempo de acarreo llena, a una velocidad de 20 kms/hr.

$$T = \frac{10 \text{ kms}}{20 \text{ kms/hr}} - x 60 \text{ min} = \frac{30 \text{ minutos}}{20 \text{ kms/hr}}$$

b.5) Tiempo de acarreo vacía, a 40 kms/hr.

SUMA TOTAL 85 min/ciclo

c) Ciclos por hora

- d) Volumen de agua por hora es igual a:
 - 0.71 ciclos/ hr. x 10,000 lts. = 7,100 lts/hr.
- e) m¹ de material humedecido con una pipa

$$\frac{7,100 \text{ lts/hora}}{200 \text{ lts/m}^3} = \frac{35.5 \text{ m}^3/\text{hr}}{1.50 \text{ m}^3/\text{hr}}$$

RESIMEN

EQUIPO	RENDIMIENTO	TIFMPO/CICLO
CARGADOR	86.36 m³/hr.	0.855 min/botazo
CAMION VOLTEO	21.60 m³/hr.	19.44 min/viaje
MOTOCONFORMADORA	198.68 m³/hr.	0.53 hrs/150 ml.
COMPACTADOR	216.50 m³/hr.	
PIPA DE AGUA	35.5 m³/hr.	85 min/viaje

CONCINCTONEC

Del resumen se concluye:

- a) Son necesarios 2 cargadores que trabajen 9 horas cada uno
- b) Son necesarios 8 camiones que trabajen 9 horas cada uno
- c) Una motoconformadora
- d) Un compactador que tendrá 4.94 minutos parado cada hora
- e) Se necesitan 6 pipas de 10,000 lts.

4.3) ESTIMACION DE LOS COSTOS POSESION Y OPERACION

EJEMPLO

1) COSTO DE POSESION

Supongamos un tractor de cadenas con transmisión POWER SHIFT, con hoja recta control hidráulico, cilindros de inclinación y un descargador de tres vósta gos, comprado por un contratista a N\$ 115,000 precio de entrega en el lugar de trabajo.

Se utilizará en trabajos de empuje con la hoja en una cantera de grava, se necesita hacor un trabajo previo con desgarrador.

a) DETERMINACION DEL VALOR DE REEMPLAZO

N\$ 115,000= Precio de entrega sin considerar neumáticos por ser un tractor de cadena

b) VALOR DEL TRACTOR EN EL MOMENTO DEL CANJE 35% de su valor original = N\$ 40.250

c) Si el período de posesión es de 7 años con una utilización anual de 1200 hr/año tenemos

$$7 \times 1200 = 8400 \text{ horas}$$

d) COSTO POR HORA.

$$N$ \frac{74,750}{8.400} = N$ 8.90$$

Intereses, seguros, impuestos

Considerando las tarifas locales

Interés 147

Seguros 1%

Impuestos 1%

e) COSTOS DE INTERES

Utilizando la fórmula.

$$\frac{N+1}{2 \times N}$$
 x precio de entrega x % tasa de interés simple

No. horas/ año

Sustituvendo:

$$\frac{\frac{7+1}{2\times7}\times115,000\times0.14}{1,200}=N\$7.67$$

f) SECUROS

De la fôrmula:
$$\frac{N+1}{2 N}$$
 x precio entrega x $\frac{X}{de}$ tasa de seguros horas/año

Sustituvendo:

$$\frac{7 + 1}{14} \times 115,000 \times 13$$
1200 horas/año = 0.55

g) IMPUESTOS

Fórmula

$$\frac{N+1}{2N}$$
 x precio de entrega x % impuestos

horas/año

Sustituyendo

$$\frac{\frac{7+1}{14} \times 115,000 \times 1\%}{1,200 \text{horas}/870} = 0.55$$

Sumando d + e + f + g =N\$ 17.67 que es el costo por hora de posesión

2) COSTO POR OPERACION

 a) De la tabla de consumo de combustible, el trabajo con la hoja empujadora indica un factor de carga medio.

Suponiendo que el consumo es de 18.8 lts/hr , (4.9 gal/hr E.U.A), el costo de combustible en la localidad es P\$ 0.34lts(N\$ 1.25/gal,E.U.A.)

. . Consumo

b) LUBRICANTES, FILTROS GRASAS

UTILIZANDO LA TABLA DE ESTIMACION RAPIDA TENEMOS:

N\$ 0.48

c) COMPONENTES DE ALTO DESGASTE, de la tabla No. 16 el tren de rodaje, en condiciones moderado es:

d) RESERVAS PARA REPARACIONES

Con la aplicación de la zona B (ver inciso c, neumáticos), el gráfico parareparaciones de los tractores de cadena indica un valor medio, nos ocupa aproximadamente 4.5 basado en 10,000 hrs, de uso el que se va a utilizar es de -8,400 hrs, el multiplicador de duración prolongada es 1.0.

e) COSTOS DE DESGASTE ESPECIAL (cuchillas, hta. corte, dientos de cucharón, reparación de brazo de la excavadora etc.).

COSTOS TOTALES DE OPERACION = N\$ 15.97

POSESION Y OPERACION =
$$17.67 + 15.97 = N$$
\$ 33.64

SALARIO HORARIO DEL OPERADOR + BENEFICIOS SOCIALES = N\$ 18.00

COSTO TOTAL DE POSESION Y OPERACION = N\$ 51.94

COSTOS POR HORA DE POSESION Y OPERACION	(1)	HA
Māguina	TRHCICR	
Periodo estimado de posesión (años)	7	desert salvassi
·	1200	i ikan megeral
Utilización estimada (horas/año)	8400	Ayaki ketalis su si
Tiempo de posesión (total de horas)		Bethe cases a citie
COSTO DE POSESION	(9)	(2)
a. Preció de entrega (incluyendo accesorios)	115.000 (A)	
b. Menos el costo del reemplazo de los neumáticos (si se desea)		
c. Precio de entrega menos neumáticos		Japan Marie Santa S Marie Santa Sa
2. Menos valor residual al reemplazo	5 %) 40, 250 (B)	% <u> </u>
(Ver la subsección 2A en el reverso)	74.750(C)	
3. a. Valor a recobrar mediante el trabajo	77,702.00	A =
b. Costo por hora:	8. 90 (D)	
Valor (1) 24:2:50 (2)	**************************************	10 10 10 10 10 10 10 10 10 10 10 10 10 1
4. Costos de interés N+1 x Precio de entrega x % de tasa de nterés simple 2N x Precio de entrega x % de tasa de interés simple x x x x x x x x x x x x x x x x x x x		
Horas/Año		
(1) $\frac{7+1}{79} = \frac{145,000}{19} = \frac{149}{19}$ (2) $\frac{+1}{19} = \frac{9}{19}$	7.67 (E)	
Ace Horas/Año Horas/Año	Per part that 18	
5 Seguro N = No. de Anos N+1 x Precio de entrega por 1/6 de tasa 2N de seguros		
Hotas/Año		
(1) 7+1 = 155 COC = 1 46 (2) +1 = 1 46	0.55 (F)	
/20CHoras/Año Horas/Año		
0		
8 Por año + Horas/Año =		
6 Impuestos N+1 Precio de entrera sis de impuestos		
N = NO de Años 2N		
Horas/Ano		
(1) 7+1 , 1/5 coc , -% (2) +1 , -%	0.55(6)	State of the state of
/// Horas/Año Heras/Año	Alexander of the second	9 7 7
Spor año +Horas/Año=		
7. COSTO TOTAL POR HORA DE POSESION (sumar las lineas 3B, 4, 5, y 6)	17.67 (H)	
COSTOS DE OPERACION	(0)	(2)
8. Combustible: Precio Unitario a Consumo		1-7
(1) 1.25 × 4.9 =	6.13 (a)	
(2) ==		
9. Lubricantes, filtros, grasa:	0.48(6)	
(Ver subsección 9A en el reverso)		

FALLA DE ORIGEN

		eren energy grown	to the second						ere i a se en est disconsiste
1	O. NEUMATICOS								
	Costo (1)	(2)							2 <u>1 2 </u>
	Duración					•			
	b. Tren de rodeje (impacto + Abrat	unded + E		uar Basica			eti elliğ	14.451.4	real field of
			0.3		.5.5 _		3.85 C	,	
	17 1	*		<u> </u>		•	يرتاه بالمائد	100	
	(4) (+		(Total)	(Factor)				
11	. Reservas para repar	aciones				n segeral d			
	(Mulliplicador de us					-700	4.50 (
	177	4.5		ட. •			1.01 (4	-	
12	 Elementos de desga (Ver subsección 1 	ate especia	el: Costo + C	ouración	• • • • • • • • •		7.27		
13	COSTOS TOTALES			- 40				MELE	
	(Sume las lineas 8	. 9, 10A (6 ·	105), 11 y 121				15.97	_	
14	POSESION Y OPERA (Sume las tincas 7	ACION DE	LA MAQUINA				33.64	46/2015 P. 15/20	
	•			- A/A/	au tri yggg)		18.00		Sztadodouroalidák él.
	SALARIO HORARIO				CIGIES)		51.64		Complete Service of the second of the
*0	. COSTO TOTAL DE P	OSESION	POPERACIO	Ν	. rox. cov	-	and extreme and	- 5	
C			Calculos Supi	lamentatios	a la Placulia	de			
C081	los de Posesión y Oper	acion (ratajo de Co	stos de Po	sesion y Op	eración			등학 전환, 왕이 14일의 기계 기계
	SECCION 2A: Valor			3.0			Yang di		
	esic silic de venta	Hezignei	(1) (%		(2) (∟_% L	419,175,145		
M	enos, a. Comisión			· 	-44	104.	<u> </u>		
	 Costos de pre Inflación dura 		- 55			in de la company	200 miles		
	petiodo de po				_ :	-	NAMES OF THE OWNER, AS A		
ELD)	ifor residual neto scribalo en la linea 2) indo se utilizan los pre iodo de posesión se de liante trabajo	cios de ren be substra	tale de equit er para poder	o para calcu	(35 %) star et valor r alor constan	esidua!, Ne que p	el efecto de	entrega o la inflació divo se de	on durante et
	SECCION SA: Lubri	cantas E	lives Grass			40, 50			
-			nsumo = C.			Maria de la compansión de			
	otor (1)		: -	 ,	(5)	:		:	
Ma	indos	777							
	nales nciones								
His	draulicas							•	
Gr.	asa	:	:-			:		<u>-</u> -	
		200 y 1852	fotal (1)		(2)				
	scriba el totat en la line SECCION 12A: Etem								
			charôn, repa						
1)	Costo	utación	Costo/H	ora	(2)	es Physic		13.772.741.6	计图片数 计数字符
	72 +	1.50	· C.48		1	•	<u> </u>	= _	<u> Nave Naveau</u> plate
.		150	<u> </u>		2		190 Santik		
. .	115" . 5	rec_	· C.23		3	(PL (448)	ा । द्वारोडी स्थानक		who disput 15 ft.
	+					as insig	4,496,496		the green field.
	·				s	40) - G	· 经第二条数据		Specification of the
					6.	a, F. 1877	tate per		Angle State Control
		Total	N\$ 1.01		2)	84° X. ()	negictes	1956	
	criba el total en la tine	a 12)						4 183	
AC1	TORES DE CONVER	SION DE	LA RESERV	A DE REP	ARACION	(lines 1	1)		
ara i	utilizar en países fuera itos a los utilizados en	de los Est	r oraficas:	en donde lo:	s costos de	piezas de	repuestos	A BELAICIO	pueden ser
	Proporción de Mar	a de Obra	(1)		_ (2)				
,00	oporción del Costo de	ias Piezas	(1)		- (2)	1 1	A >>	رم سو	. (**, * e*, *** n *
					P* (.)	1 1 L	/\ i \	I []	132 17.2 1.3 1.4 1.4

CONCLUSIONES

Al finalizar la exposición de esta tosis, se podrá observar la importancia de mantener un excelente control administrativo y operacional de la maquina - ria, utilizada en la industria de la construcción, por otro lado y recordando que al entrar México al Tratado de Libre Comercio con los países del Norte y otros convenios que ha realizado con países de Sudamérica y Europa, se asume la responsabilidad de trabajar con una mayor calidad de servicio y producción-obteniendo beneficios en favor no sólo de una determinada empresa, sino tam - bién de toda la sociedad de nuestro país.

RECOMENDACIONES

- Con el afán de que el lector obtenga una perspectiva más amplia del manteni miento de la maquinaria de construcción, se aconseja conseguir la información siguiente.
 - n) Catálogos de especificaciones y características de los equipos empleados en la costrucción, algunas marcas conocidas son:
 - Carterpillar
 - Link Belt Speeder Corporation
 - Mercedes Benz
 - Dynapac Equipamientos Industriales LTDA
 - Case, S.A. de C.V.
 - Compacto, S.A. de C.V.
 - Seamon Cunnison
 - Mycsa, Maquinaria y Caminos, S.A.
 - B) Normas más importantes
 - ASTM D2602 Método de Simulador de Cárter
 - ASTM D3829 Método de Temperatura Límite de Bombeo de Aciete para Motor
 - ASTM D445 Método de Viscosidad Cinemático
 - Clasificaciones SAE v API (Lubricante)
 - 2) Como altima recomendación, que se hace a los ingenieros de mantenimiento de maquinaria de construcción, es tener muy presente la seguridad de los operadores y mecánicos que tengan a su cargo ya que este trabajo está considerado por el IPMS, de alto riesgo y por lo tanto, los accidentes pueden ser muy frecuentes, si no existe un buen control de seguridad e higiene.

BIBLIOGRAFIA

- Título: Costo y tiempo en edificación Autor: Suárez Salazar Ed. Limusa 3ra. Edición
- 2) Título: Ley de Obras Públicas y su Reglamento 1990

Editorial: Cámara Nacional de la Industria de la Construcción

- 3) Manual Carterpillar
- 4) Manual Good Year Tire and Rubber Co.
- 5) Ajuste de precios unitarios Editorial: ICIC
- 6) Integración de Precios Unitarios Editorial ICIC
- 7) Manual de Lubricantes PEMEX
- 8) Lubricación Automotriz Mobil - Oil
- 9) Nueva Ley Federal de Trabajo
 Ed. Libros Económicos
- 10) Catálogo de Maquinaria para la Construcción Cartervillar
- 11) Manual de Partes LS 70 Link - Belt Speeder Corporation
- 12) Catálogo de Maquinaria Seaman Gunnison
- 13) Catálogo de Maquinaria Duo Pactor Mycsa
- 14) Ley del IMSS Ed. Gómez Hermanos Editores, S. de R.L.
- 15) Costo Social de los Riesgos de Trabajo Investigación para el IMSS, 1983 Canto González Gilda
- 16) Los Problemas de Salud Ocupacional y el Control de los Factores Humanos como causa de los Accidentes de Trabajo

I Simposio Nacional sobre Accidentes, S.S.A. junio de 1972 Ruiz Salazar, Antonia

- 17) Manual de Maquinaria para Construcción ICA Construcción Urbana, S.A. de C.V.
- 18) Curso de Seguridad Búsica Celanese Mexicana Guillermo Orosco C.
- 19) Catálogo de Herramienta León Weill, S.A.
- 20) Administración de Mantenimiento Industrial Et. Newbrough Ed. Diana, México 1982
- 21) Título: Manual de Mantenimiento Industrial Autor: L.C. Morrow Editorial: Continental México, 1982
- 22) Mantenimiento, su Administración y Control Autor: Inapro Información Tecnológica
- 23) Manual de Mantenimiento de Inst. Industriales Autor: A Baldin L. Furlaneto y otros Ed.: Gustavo Gili, Barcelona, España 1982
- 24) Organización y Dirección Industrial Autor: I.I. Betel F.S. Atwater v otros Ed. Fondo de Cultura Económica México, 1977
- 25) Mantenimiento y Reconstrucción de Maguinaria Autor: Porrit y Litton Ed.: Hispano Europen, Barcelona, España, 1974
- 26) La Administración en el Mantenimiento Autor: Enrique Dounce Villanueva Ed. Continental, México, 1982

APENDICE

I) GLOSARIO DE TERMINOS TECNICOS

- ADMESION. La propiedad de un lubricante para adherirse o pegarse a una superficie sólida.
- ADITIVO. Sustancia que se agrega a los aceites y grasas para mejorar sus propiedades.
- BARNIZ. Cuando se trata de lubricación, es un depósito que resulta de oxidación y polimerización de combustible y lubricantes, similar a la laca pero más suave que ósta.
- 4) COEFICIENTE DE FRICCION.- La relación del movimiento de resistencia a la fuerza de fricción, entre la fuerza de fricción entre la fuerza nor mal de presión ejercida por dos cuerpos destizantes.
- COMESION. Propiedad de una sustancia de resistir el empuje proporcionado por medios mecánicos.
- 6) DYMUSIBILIDAD.- La habilidad de un fluido que es insoluble en agua para separarse de aquella con la que se ha mezclado en forma de emul sión. Entre mós elevados son los datos de demulsibilidad más rápida mente se separa el fluido del agua, la demulsibilidad se expresa algunas veces como la relación en centímetros cúbicos por la hora durante los cuales el fluido se separa de la emulsión.
- 7) DETERGENTE. En lubricación es un aditivo o un aceite con aditivo que tiene la propiedad de conservar las materias insolubles en suspensión, así como de evitar la formación de depósitos dañinos, un detergente puede también remover los depósitos reción formados.
- EMULSIBILIDAD. La propiedad de un fluido, para formar una emulsión no soluble.
- MULSION. Es la mezcla mecânica de dos líquidos insolubles, como aceite con agua.
- 10) GRASA. Lubricante compuesto de uno o varios aceites, espesados con uno o más jabonos y otro espesante para darles una consistencia sólida o semi-sólida.
- INHIBIDOR. Cualquier sustancia que retrasa o envia relaciones químicas como corrosión y oxidación.
- 12) LACA. Depósito que resulta de la oxidación y polimerización de combustibles y lubricantes cuando se expresan a elevadas temperaturas, similar al barniz pero más dura que éste.
- 13) LODGS. Material insoluble formado como resultado de las reaccio nes de deterioro y/o contaminación de un aceite.

- 14) LUBRICANTE KP.- Lubricante que imparte a la superficie frotante, la propiedad de soportar apreciablemente grandes cargas que no serfan posibles con cualquier otro lubricante mineral sin excesivo desgaste o daño.
- 15) NUMERO BASICO TOTAL. La cantidad de ácido expresado en términos del número equivalente en mgs. de (KOH), hidróxico de potasio, que se requieren para neutralizar todos los constituyentes básicos presentes en un gramo de muestra.
- 16) RESISTENCIA DIELECTRICA. Una medida de la propiedad de un material aislante para soportar voltaje sin falla, los fluidos con alta ro sistencia dieléctrica son buenos aislantes.

PRUEBAS FISICAS Y QUIMICAS?

17) PESO ESPECIFICO. - Es la relación del proceso de un líquido al peso de un volumen igual de agua a la misma temperatura, se determina posando un volumen conocido del material.

En este método, la densidad específica del agua es 1000, un número más bajo que 1000 significa que el producto es más ligero que el - agua.

18) GRADOS API.— Es una escala arbitraria relucionada al peso especifico, la prueba se hace midiendo con un hidrómetro especial calibrado al desplazamiento del líquido a cualquier temperatura, por medio de tablas se determina el valor corregido de 15.5% los valores API se expresan en grados y se refieren a la densidad 15.5%.

En el método API la densidad del agua es 10, un número más alto que 10 significa que el producto es más ligero que el agua.

- 19) TEMPERATURA DE INFLAMACION.— Básicamente mide la inflamación de los productos de petróleo, y es la más baja temperatura a la cual los vapores de la muestra se queman cuando se los hace pasar una pequeña flama por la superficie, nos indica la temperatura en que comienza la evaporación del aceite.
- 20) TEMPERATURA DE IGNICION. Mide la inflamabilidad de los productos de petróleo y es la temperatura más baja a la que la muestra se que ma y se mantiene la combustión por no monos de 5 segundos.
- 21) VISCOSIDAD. Es la valoración de la fluidez o resistencia al flujo de una substancia fluida, semi-fluida o semi-solida, también se des cribe como la medida de la fricción, fluida o la resistencia al des plazamiento entre capas de moléculas de acette.

Se mide por diferentes métodos aceptados, que se fundamentan en el mismo principio básico, es decir, se mide el tiempo requerido para que una temperatura, determinada, una cantidad dada de aceite fluya por gravedad a través de un orificio o capilar de un tamaño específico.

La temperatura a la cual se mide la viscosidad y el sistema de medición deben acompañar al número de viscosidad, de otra manera, el número no tendrá significado.

- 22) INDICE DE VISCOSIDAD.— Es un número empfrico que indica la rela ción de cambio de viscosidad de un aceite dentro de un rango dado
 de temperatura, un índice de viscosidad bajo significa grandes cam
 bios de viscosidad con respecto a la temperatura, el indice de vis
 cosidad no sirve para medir ninguna otra cualidad del aceite.
- 23) AGUA Y SEDIMENTO.— Se usa para determinar la presencia de grandos porcientos de agua el aceite se disuelve en benzol y la mezcla se centrifuga hasta que el agua se ha separado hacia el fondo del tubo de centrifugado, los resultados se expresan en porciento y nos indican la condición de limpieza de un aceite en servicio.
- 24) PRUEBA DE HERRUMBRE. Indica la propiedad de un lubricante para evitar la corrosión en presencia de agua de las partes de hierro durante la lubricación, la prueba se hace con el fin de ver si el aceite protege de la corrosión a las partes mecánicas, líneas y tanques.

SIGLAS DE SOCIEDADES DE ÎNGENIERIA, TÉCNICAS E ÎNDUSTRIALES DE LOS ESTADOS UNIDOS DE AMÉRICA

American Association of Engineers AAE	Anti-friction Bearing Manufacturers*	
American Bailer Manufacturers' Association	Association	AFBMA
& Affiliated Industries ABMA	Association of American Railroads Association of American Steel	. AAR
American Bureau of Shipping ABS	Association of American Steel	
Air Conditioning & Refrigerating	Manufacturers Association of Iron & Steel Engineers	. AA54
Mochinery Association ACRMA	Association at Ital & Steel Engineers .	. AISE
American Chemical Society ACS	Automobile Manufacturers Association	· AMA
American Concrete Institute		· CLA
American Electrochemical Society AES	Canadian Standards Association	· CSA
American Electroplaters Society AES	Compressed Air Institute	· CAI
American Engineering Council AEC	Edison Electric Institute	· EE!
American Foundrymen's Association AFA	Electrochemical Society	ES
American Gas Association	Gas Appliances Manufacturers'	
American Geor Manufocturars*	Association	GAMA
Association. AGMA	Hydraulic Institute	· · . #
American Institute of Architects AIA	Illuminating Engineering Society	· IES
American Institute of Chemical		. JRE
Engineers AIChE		. ITE
American Institute of Electrical	Insulated Power Cable Engineers*	
Engineers AIEE American institute of Mining &	Association	IPCEA
	Joint Electron Tube Engineering	
Morallurgical Engineers AIMME	Council Monufacturers, Standardization Society of	JETEC
American Institute of Steel Construction. AISC	Monutecturers, Standard Lation Society of	. MSS
American from & Steel Institute AISI	the Valve and Fittings Industry	. w22
American Petroleum Institute API		. NACA
American Rollway Engineering Association . AREA	National Aircraft Standards	NAS
Association American Reilway Bridge & Building	National Bureau of Standards	. NBS
Association ARBBA	National Association of Manufacturers .	. NAM
American Sociaty of Aeronautical	National Conservation Bureau	. NÇB
Emilianos	National Electrical Manufacturers*	
American Society of Body Engineers . ASBE	Association	. NEMA
American Society of Civil Engineers ASCE	National Hordwood Lumber Association	. NHLA
American Society of Engineers and	National Housing Agency	NHA .
Architects ASEA	National Lumber Manufacturers'	
American Society of Heating &		NLMA
Ventilating Engineers ASHVE	Netional Machine Teal Builders*	
American Society of Lubricating		MATER
Engineers ASLE	National Petroleum Association	NPA
American Society of Mechanical	National Safety Council	NSC
Engineers ASME	Oil Heat Institute of America	OHIA
American Society of Metals ASM	Radio Manufacturers' Association	RMA
American Sociaty of Refrigerating	Refrigeration Equipment Manufacturers'	
Engineers ASRE American Society of Selety Engineers ASSE	Attociation	REMA
American Society of Solety Engineers ASSE American Society of Society Engineering . ASSE	Society for the Advancement of	
American Society for Steel Treating ASST	Management	. SAM
American Society for Testing Motoriels . ASTM		. SAE
American Society of Teel Engineers ASTE	Society of Fire Engineers	. SFE
American Standards Association ASA	Society of Industrial Engineers	, SIE
American Steel Foundrymen's	Society of Military Engineers	
Association ASFA	Society of Naval Architects and Marine	-
American Transit Association ATA	Engineers	MAAME
American Water Works Association AWWA	Society of Tractor Engineers	
American Welding Society AWS	Standards Engineers Society	
American Wood Preservers Association AWPA	Underwriters Laboratories, Inc	. 463
	Comment Constituted the contract	

Actualmente, Institute of Electrical and Electronics Engineers (IEEE).
 Actualmente, American Society of Heating, Refrigerating and Air-conditioning Engineers (AMIRA VE).

A Actualmente National Aeronauties and Stace Administration (NASA)

II.) TABLAS NECESARIAS

TABLA No. 1
RENDIMIENTO HORARIO APROXIMADO (mº EN BANCO), mº/HR.

CAPACIDAD CUCHARON (Yd')			ROCA BIEN FRAGMENTADA
1	0.75	65 - 76	45 - 57
1 1/4	0.95	76 - 100	60 - 76
1 7/8	1.45	110 - 145	80 - 105
2 1/2	1.90	150 - 195	105 - 150
3	2.30	188 - 295	138 - 188

TABLA NO. 2

COEFICIENTE POR FACILIDAD DE CARGA

CARGA FACIL	0.95
CARGA MEDIA	0.85
CARGA DURA	0.70
CARGA MUY DURA	0.55

TABLA No. 3

FACTOR POR PROFUNDIDAD DE CORTE

PROF. MAX.DE CORTE (m)	FACTOR
1.5	 0.97
3.0	1.15
4.5	1.00
6.0	0.95
7.5	0.85
9.0	0.75

TABLA No. 4

FACTOR POR ANGULO DE GIRO

ANGULO DE GIRO	FACTOR
45° 60° 75° 90° 120°	1.05 1.00 0.93 0.86 0.76 0.61

TABLA Nº5 PRODUCCION TEORICA POR HORA DE PALAS MECANICAS CAPACIDADES DE CU CHA RONES EN M3

CAPACIDAD DEL CUCHARON	0.29	020	0.58	0,77	0.96	1,15	1,35	1,5	1.9	2,1	2,3	2,7	3,05	3,45	3,8	4.2	4,6	1,95
CLASE DE MATERIAL																		
MARGA HUMEDA O ARCH LA ARENOSA	65	88	125	155	190	220	245	270	310	330	Sol)	400	445	485	525	565	610	661
ARI NA Y GRAVA	(40)	85	120	150	175	205	230	250	3(8)	320	345	385	425	460	495	530	565	600
HERRA COMUN	53	73	105	136	160	185	205	230	270	290	310	345	390	430	460	495	525	555
ARCHTA DURA	38	57	85	110	140	[m]	180	200	235	265	270	310	345	375	405	435	460	-11 M
ROCA BIEN FRAGMENTADAS (DINAMITADAS)	30	45	72	95	120	140	155	175	210	230	245	280	315	350	380	410	110	465
TH RRA COMUN CON ROCA	20	N	۸I	80	Į(K)	120	140	155	185	205	220	265	290	320	350	380	415	44(
ARCH LA MOJADA PEGAJOSA	19	31)	54	7.3	92	110	125	140	175)	190	205	235	265	295	320	360	375	414
ROCA MAIL DINAMITADA	12	20	38	57	73	88	110	122	150	165	180	205	235	260	285	315	335	360

NOTA:

ESTA TABLA SE HA CALCULADO EN MEHORA (MEDIDOS EN EL BANCO) EN UN TRABAJO EN QUE EL AGUILON DE LA PALA DESCRIBE UN ARCO DE 90°, LA PROFUNDIDAD DE EXCAVACION ES OPTIMA, SE CARGA EL MATERIAL EN UNIDADES DE ACARREO, NO HAY ESPERAS Y SE HA CONSIDERADO EL FACTOR DE LLENADO DEL CUCHARON.

OPTIMA PROFUNDIDAD DE EXCAVACION, SEGUN SU CAPACIDAD DEL CUCHARON Y DEL TIPO
DE MATERIAL QUE SE EXCAVARA

CAPACIDAD DEL CUCHARON	MATERIALES LIVIANOS Y MUY SUELTAS, COMO MARGA, ARENA,GRAVA	MATERIALES MEDIANOS COMO TIERRA COMUN	MATERIALES DIFICILES COMO ARCILLA DURA C MOJADA Y PEGAJOSA
m*•	m.	m.	m. X (3)
0.29	1,15	1,37	1,83
0,38	1,40	1,43	2,13
0,58	1,62	2,07	2,44
0,77	1,83	2,38	2,74
0,96	1,98	2,60	2,99
1,15	2,13	2,80	3,26
1,35	2,25	2,96	3,51
1,5	2,38	3,11	3,72
1,9	2,56	3,41	4,05

FACTOR DE CORRECCION PARA LA PROFUNDIDAD DE EXCAVACION Y EL ANGULO DE GIRO EN
LOS CALCULOS REFERENTES AL RENDIMIENTO DE PALAS MECANICAS

PORCENTAJE DE LA PROFUNDIDAD OPT <u>I</u>	ANGULO DE GIRO										
MA DE EXCAVACION	450	60°	750	90°	120°	150°	180°				
40	0,93	0,89	0,85	0,80	0,72	0,65	0,59				
60	1,10	1,03	0,96	0,91	0,81	0,73	0,66				
80	1,22	1,12	1,04	0,99	0,86	0,77	0,69				
100	1,26	1,10	1,07	1,00	0,88	0,79	0,71				
120	1,20	1,11	1,03	0,97	0,86	0,77	0,70				
140	1,12	1,04	0,97	0,91	0,81	0,73	0,66				
160 .	1,03	0,96	0.90	0,85	0,75	0,67	0,62				

TABLA No. 8

FACTORES DE RENDIMIENTO DE TRABAJO EN FUNCION DE LAS CONDICIONES DE OBRA Y DE LA CALIDAD DE ADMINISTRACION											
CONDICIONES DE LA OBRA	COEFICIENTE DE ADMINISTRACION O GESTION EXCELENTE BUENA REGULAR MALA										
Excelentes (1.00)	0.84	0.81	0.76	0.70							
Buenas (0.95)	0.78	70.75	0.71	0.65							
Regulares (0,85)	0.72	0.69	0.65	0.60							
Malas (0.75)	0.63	0,61	0.57	0.52							

Factores de calificación de operadores de maquinaria.

Es bien sabido que existen clasificaciones en toda categorfa de cualquier tipo de trabajo, y para la maquinaria de construcción es común trabajar para - aplicar al rendimiento de la maquinaria, la siguiente clasificación y el por - centaje de eficiencia.

TARLA NO O

CALIFICACION	FACTOR
1. Excelente 2. Muy bueno 3. Bueno 4. Regular	1.00 0.90 0.80 0.70

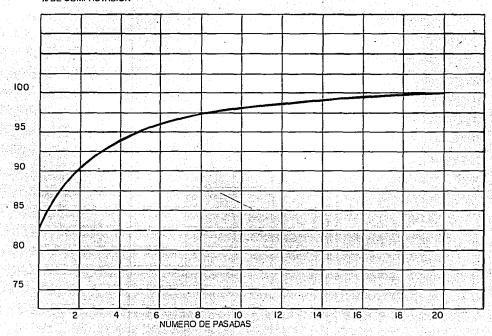
TABLA #_10

VALORES DE "Cc" DE CARGADORES FRONTALES

	CAPACIDAD NOMINAL (yd3)							
TIPO DE MATERIAL	3/4	1	1 1/2	_2	2 1/2	3	3 1/2	4
ARCILLA HUMEDA ARENOSA	1,15	1,15	1,15	1,16	1,16	1,16	1,20	1,22
ARCILLA DURA Y TENAZ	1,10	1,10	1,10	1,12	1,12	1,12	1,16	1,18
ARCILLA COHESIVA HUMEDA	1,10	1,10	1,10	1,12	1,12	1,12	1,16	1,18
TIERRA COMUN	1,00	1.00	1,00	1,05	1,05	1,05	1,08	1,08
ARENA O GRAVA	0,93	0,93	0,96	0,96	0,96	0,98	1,02	1,02
ROCA BIEN FRAGMENTADA	0,80	0,80	0,90	0,92	0,92	1,00	1,00	1,00
ROCA MAL FRAGMENTADA	0,60	0,60	0,75	0,80	0,80	0,90	0,95	0,95
ESCOMBROS	0,85	0,85	0,90	0,90	0,90	0,95	0,95	0,95

TABLA # 11 TIEMPOS DE DURACIOPN DEL CICLO CARGADOR FRONTAL DE ORUGAS

IC= TIEMPO DE CARGA + TIEMPO DE MANIOBRAS + TIEMPO DE VIAJES + TIEMPO DE DESCARGA


TIEMPOS DE CARGA			TIEMPO DE MANIOBRAS	TIEMPO DE ACARREO
TIPO DE MATERIAL	TIEMI (MINU)	-	0,22 MIN	EN TRABAJO
ARCILLA HUMEDA ARENOSA	0,05	0,07	NCLUYE:	NORMAL DE
MATERIALES CEMENTADOS	0,10	0.20	CUATRO CAMBIOS DE	CARGA
TIERRA COMUN COMPACTA	0,05	0.10	SENTIDO DE MARCHA	(RECORRIDO
AGREGADOS UNIFORMES	0,03	0,05	Y LOS VIRAJES.	MEDIO 7 M.) =
AGREGADOS MEZCLADOS	0,04	0,06	ĺ	0.10 - MIN.
ROCA BIEN FRAGMENTADA	0,05	0,20	TIEMPO DE DESCARGA	
ROCA MAL FRAGMENTADA	0.10	0.20		EN TRABAJO
.			LIBRE 0,02 MIN.	DE CARGA
			TOLVA 0,04 MIN.	Y ACARREO
			CAMION 0.04 A 0.07 M	IN.
				tv = (dc/vc)+(dv/vv)

dc = DISTANCIA DE VIAJE CARGADA dv = DISTANCIA DE VIAJE VACIA

vc = VELOCIDAD MEDIA CARGADA

vv = VELOCIDAD MEDIA VACIA

RENDIMIENTOS DEL FABRICANTE PARA LOS RODILLOS

CA - 25, CA - 25D, CA - 25PD.

TABLA No. 12

N- DD	VEL. DE		ESPESOR DE CAPA COMPACTADA (cms .)									
No. DE PASADAS	OPERACION km/horn	20	30	40	50	75	100					
2	3	480	720	960	1,200	1,800	2,400					
	1.5	720	1,100	1,400	1,800	2,700	3,600					
	6	960	1,400	1,900	2,400	3,600	4,800					
4	3	240	360	480	600	900	1,200					
	4.5	360	540	720	900	1,350	1,800					
	6	480	740	960	1,200	1,800	4,800					
6	3	160	240	320	400	600	800					
	4.5	240	360	480	600	900	1,200					
	6	320	480	640	800	1,200	1,600					
8	3	120	180	240	300	450	600					
	4.5	180	270	360	450	680	900					
	6	240	360	480	600	900	1,200					

Rendimiento = m¹/hora.

Rendimientos del fabricante para los rodillos CA-15 y CA-15P

TABLA No. 13

No. de	ESI	ESOR DE	LA CAPA (c	mp.)	a dejar ereğe çe
PASADAS	15	30	40	50	75
2	470	940	1,260	1,580	2,350
4	240	470	630	790	1,180
6	160	320	420	630	790
8	120	240	320	390	540

Rendimiento = m'/hora.

TABLA No. 14

VIDA ECONOMICA DE LOS EQUIPOS

		VIDA ECONOMICA				
	EN AÑOS	EN HORA				
Bombas autocebantes	3	3,600				
Camiones de volteo	5	10,000				
Compresoras rotatorias	5	6,000				
Excavadoras (dragas y palas)	5	10,000				
사람들은 불통하다 하는 것이 되었다.		图的文学等解析				
Mezcladoras de concreto:	시하는 기술을 가능하고 있다. 기업 기업 기업 기업 기업 기업 기업					
3 1/2 S.	2	3,200				
6 S.	2.5	4,000				
11 S .	2.5	4,000				
16 S.	3 - 7	4,800				
Motoconformadoras motor diesel	5	10,000				
Motoescrepas	5	10,000				
Perforadoras neumāticas:						
De mano	3	3,600				
De columna	1 1	4.800				
Montadas sobre ruedas	5	8,000				
Montadas sobre orugas	5	8,000				
Pisones neumáticos	3	3,600				
Plantas eléctricas	7	11,200				
Plantas trituradoras portātiles	5	8,000				
Rodillos pata de cabra	4	8,000				
Rodillos lisos (aplanadoras)	7	14,000				
Tractores de oruga Poleas cargadoras (traxcavos)	5	10,000				
Vibradoras de gasolina	3	4,600				
Malacates de gasolina	7	4,860				

TABLA No. 15

FACTORES	BASICOS DEL	TREN DE ROI HORARIO	DAJE, PARA	SU CALCULO	DEL COSTO
MODELO			FACT	OR BASICO	
D10 D9,983 D8,977,594,2 D7,955,583,2 D6,951,572,2 D5,941,571,1 DA, 931,561,	35,D6 LGP 25,D5 LGP	D5 SA		14.5 11.0 8.2 7.2 5.5 4.5 3.2	
		MULTIPLICA	DORES DE CO	NDICIONES	
		IMPACTO	ABR	ASION	"Z"
Alto Moderado Bajo		0.3 0.2 0.1	c	.4 .2 .1	1.0 0.5 0.2

CARACTERISTICAS MEDIAS DE DISTINTOS NATERIALES

TABLA No. 16

MATERIAL	PESO VOLI	METRICO	ABUNDA MIENTO	FACTOR DE CONVERSION	
	EN_BANCO	SUELTO	- 7	DE PESOS	
Arcilla en banco	1,750	1,260	40	0.72	
Arcilla y grava secas	1,270	915	40	0.72	
Arcilla y grava hūmedas	1,380	1,000	40	0.72	
Carbón en la veta (Antracita)	1,600	1,190	35	0.74	
Carbón en la veta(Bituminoso)	1,280	950	35	0.74	
Tierra común y margas secas	1,550	1,250	25	0.80	
Tierra comûn y margas hû- medas	2,000	1,600	25 🧎	0.80	
Cravas de 6 a 51mm.secas	1,680	1,495	12	0.89	
Gravas de 6 a 51mm.húmedas	2,250	2,000	12	0.89	
Yeso	2,800	1,600	74	0.57	
Mineral de Hierro-Magnetita	3,280	2,780	23	0.84	
Mineral de Hierro -Pirita	3,040	2,580	23	0.84	
Mineral de Hierro-Hematita	2,900	2,465	23	0.84	
Piedra caliza	2,600	1,560	67	0.60	
Arena suelta seca	1,600	1,440	12	0.89	
Arena compacta hūmeda	2,070	1.850	12	0.89	
Arena dinamitada	2,520	1,500	54	0.65	
Cenizas		575			
Roca fragmentada	2,620	1,755	49 🚃	0.67	
Basaltos	2,964	1,956	51	0.66	
Gnais	2,845	1,849	54	0.65	
Granito	2,667		50 a 80	0.67 a 0.50	
Mármol	2,727		67 n 75	0.60 a 0.5	

TABLA No. 17

FACTOR DEL COSTO DE LAS REPARACIONES DE DIFERENTES TIPOS DE MAQUINARIA Y EQUI-PO, EXPRESADO EN PORCIENTO DE LOS COSTOS DE DEPRECIACION LINEAL DE LOS MISMOS.

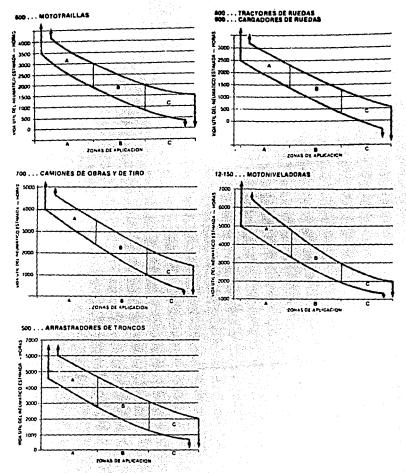
FACTOR Q	M A Q U I N A R I A
100 x Q = 1.0	Aplanadoras, arados, bombas de alta presión, de pistón o de sumidero, botes para concreto, coladeras equipo marino, esca rificadoras, escrepas, gráas de patas fijas, maquinaria para trabajar madera, moide de acoro, motoconformadoras pequeñas, motores de combustión interna y eléctricos, palas mecánicas, retrooxcovadoras, rodillos pata de cabra, sierra de madera, soldadores de acetileno, tolvas para concreto, tractores con y sin cuchilla, transportadores portátiles.
80% Q = 0.8	Agitadores paa concreto, automóviles, bombas de concreto con motor de gasolina, bombas centrifugas, botes de almeja, camiones de volteo, compresoras, dosificadoras, gragas de arrastre, equipo bituminoso (exceptunado estufas), gatos hidrulicos, malacates eléctricos y de vapor, martinetes para clavar pilotes, mozcladoras de concreto de 1.5 m², o mayores montadas en camión, mezcladoras de mortero de 400 litros, motoconformadoras, pavimentadoras, pantas trituradoras, y clasificadoras pequeñas, impartidoras de piedra triturada, soldadoras con motor de gasolina, tolvas para agregados trans portadores estacionarios, vagonetas de volteo, vibradores de concreto zanjaderas.
60% Q = 0.6	Aguzadoras, camiones (exceptuando los de volteo), cañones neumfiticos para concreto, cargadoras de canjillones, elevadoras de canjillones grúas móviles, malacates de gasolina, mezcladoras de concreto, tamaño mediano, mezcladoras pequeñas para mortero, perforadora neumútica plantas de concreto, quebradoras, rodillos excepto los de pata de cabra.
40%	Herramienta eléctrica de mano, herramienta neumática, mezcl <u>a</u> doras pequeñas para concreto, tubería.

TABLA No. 18

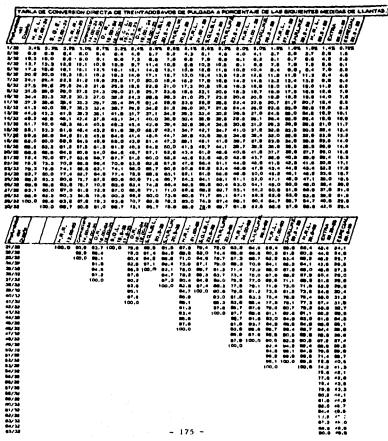
FACTORES DE CONSERVACION DE LAS LLANTAS DEL EQUIPO DE CONSTRUCCION Y VIDA ECONOMICA DE LAS MISMAS

CONDICIONES	1.	2	3	4	5	6-7	8	FACTOR TOTAL	VIDA ECO MICA
Camiones de carretera	1.00 0.90	0.85 0.90	0.90 0.80	0.95 0.95	1.00	0.90 0.70		65.407 38.783	3,270 (*) 1,940 (*)
Camiones pesados de terracerías	1.00 0.90	0.90 1.00	0.80 0.70	0.95 0.95	1.00 1.00	0.85 0.70		58.140 37.706	2,900 1,900
Escrepas y motoes- crepas	1.00 0.90	1.00	0.80 0.70	0.75 0.75	1.00 1.00	0.85 0.70		51.000 33.070	2,550 1,650
Motoconformadoras	1.00 0.90	1.00	0.80	0.90 0.90	1.00 1.00	0.85 0.70		61.200 45.360	3,060 2,270
Palas cargadoras	1.00 0.90	1.00	0.80	0.90 0.90	1.00 1.00	0.85 0.85		51.200 49.570	3,060 2,480
Tractores	1.00 0.90	1.00	0.80 0.88	0.10 0.80	1.00	0.85 0.70		54.400 36.288	2,720 1,815
Apisonadoras	1.00 0.90	1.00 1.00	0.80 0.80	1.00	1.00	0.85 0.85		68,000 61.200	3,400 3,060

(*) NOTA: En los subrenglones superiores se consignan valores correspondientes a condiciones normales promedio. En los subrenglones inferiores se consignan los valores correspondientes a condiciones adversas.


,

GOOD YEAT TIRE AND RUBER CO. VIDA UTIL ESTIMADA DE LOS NEUMATICOS DE LAS UNIDADES DE ACARREO (CAMIONES Y TRAILLAS) # CONDICIONES FAC I MANTENIMIENTO	
LAS UNIDADES DE ACARREO (CAMIONES Y TRAILLAS) # CONDICIONES FAC	
# CONDICIONES FAC	
MANITENIMIENTO	TOR
I MANATEMINIENTO	
EXCELENTE	1,090
PROMEDIO	0,981
POBRE	0,763
II VELOCIDADES MAXIMAS	
10 MPH - 16 KM/H	1,090
20 MPH - 32 KM/H	0,872
30 MPH - 48 KM/H	0,763
III CONDICIONES DE TERRENO	
TIERRA BLANDA – SIN ROCA	1,090
TIERRA BLANDA – ALGUNAS ROCAS	0,981
BIEN MANTENIDO – RUTA DE GRAVA	0,981
MAL MANTENIDO – RUTA DE GRAVA	0,763
VOLADURA – ROCAS AGUDAS	0,654
IV POSICION DE LAS RUEDAS	
REMOLQUE	1,090
DELANTERA	0,981
IMPULSORA (DESCARGATRASERA)	0,872
(DESCARGAPOR EL FONDO)	0,763
(MOTO TRAILLA)	0,654
V CARGA (VER NOTA VIII)	
T&RA/ETRTO CARGA RECOMENDADA	1,090
20 % SOBRECARGA	0,872
40 % SOBRECARGA	0,545
VI CURVAS	
NINGUNA	1,090
MEDIAS	0,981
SEVERAS	0,872
VII PENDIENTES (NEUMATICOS IMPULSORES UNICAMENTE)	
NIVEL	1,090
5 % MAXIMO	0,981
15 % MAXIMO	0,763
VIII OTRAS COMBINACIONES VARIAS	
NINGUNA	1,090
MEDIA	0,981
SEVERA	0,872


(llay que usar la condición VIII cuando hay sobrecarga junto con una o más condiciones primarias de conservación, velocidades, condiciones del peralte. La combinación de niveles severos en dichas condiciones, junto con una sobrecarga, creará una condición aún más severa que contribuirá en mayor proporción a una falla prematura del neumático que los factores individuales de cada condición).

TIPO DE NEUMATICO	VIDA UTIL horas	PROMEDIO BASE
E - 3 Estándar lonas diagonales	2510	25,100 40400
E - 4 Banda de rodadura extra	3510	35,100 54500
Radial RL4 Banda de rodadura extra	4200	42,000 67600

Utilizando las horas base (O millas) multiplique el factor apropiado para cada condición para obtener como producto final las horas estimadas aproximada mente (o millas).

FALLA DE ORIGEN

FALLA DE ORIGEN

/Jat	LLANIA			1 2 1 5 2	
	Pages L. Lie limited deben de resirance pare su responsation mainté largent un 10% de vide, o colo como ce (retice en traincistacene stola de cale mentide, cuestide perme par d'alconon - dictice largen que resirance artes. (Contadas, avrancimientes, celebrates, recentes, n de.)				
11/30 71/30	1,= Para determinar at valor de una illimita reseva de hará en la forma espelaria	determinan di valen da una a Renavado da Pará dh la Rin gulanta	97.4 84.0 99.0 96.0 99.0 99.0		
	(A),— Do al mesto de la Lisma Naum-n de la asignarió sur 33,45 el alexes y ol restés el price (66.65). Æ jens, Disteminar el valor de una Lisma Raum-n (10.00-75 de la recoda 16/35 è de apres, el 10% de su vidal, precio Lisma 16.00-75 el 10% de la vidal, precio Lisma 16.00-76 el 10% de la vidal, precio Lisma 16.00-76 el 13,33,00 y el 100 de jens (10.00-76 de la vidal del vidal de la vidal del vidal de la vidal		Os el precisi de la Lierza huma se la delignară un » 10% al casor remonde (di ni 10% al casor di ni 10% al casor remonde (di 10%) a	0010 0010 0010 0010 0010 0010 0010 001	
			· ·		
1/88 1/80 1/30 1/30			·	70.1 70.0 70.0 90.0	
1/20 1/20 1/20 1/20 1/20				81.7 80.6 80.6 84.8 80.4	
1/30 1/30 1/30 1/30				90.8 97.1 97.0	
4/30 6/30 6/30 7/34				80.0 60.7 90.4 81.1	
6/36 6/36 6/36 6/36 6/36				61,8 86,7 83,4 84,8 96,8	
13/10 14/10 16/10 16/13 17/13 16/10				89.8 97.3 96.0 66.7 86.3 100.6	

CUADRO DE EQUIVALENTES DE LUBRICACION

ESPECIFI- CACION MILITAR	VISCOSI - DAD	EQUIVALENTES					CONJUNTOS A LUBRICAR	
		MOBIL OIL	TEXACO	PEMEX	QUAKER-STATE	VALVOLINE		
MIL-L-2104-C MIL-L-451998	SERIE 3	CD-OIL	URSA DIL-5-3	DEX	HOA SEHIE 3	SUPER VALVOL.	MOTORES CONVERTIDONES TRANSMI- SIONES SEMI-AUTOMATICAS, NANDOS DIRECCIONALES DE EQUIPO CATERPILLA	
M:L-L-2104-C M:L-L-45199-B	SERIE 3 SAE 10W	CO-OIL	ursa OIL-5-7	DEX	HDA SERIE 3	Super valvol.	SISTEMAS HIDRAULICOS DE EQUIPO CATERPILLAR	
MIL-L-2104-A MIL-L-2104-B	SAE 30	DELVAC 1130	URSA OIL HEAVY	DIS	SUPER MOTOR OIL	SUPER HPO	MOTORES QUE NO SEAN CAT. COMO CUMMINS G. N. C. ROLLS ROYCE, DEUTZ Y PERKINS,	
TIPO DEXRON C3. C2. C1. A Y F		ATF 210	FLUIDO TRANS- MISION AUTOMA- TICA	TRANS. DE#	QUADROMATIC	VALVOMATIC TIPO B DEX- RON	TRANSMISIONES SEMI-AUTOMATICAS ALLISON, CLARCK, FUNK Y SISTEMA HIDRAULICO POCLAIN,	
MIL-L-2104-A MIL-L-2104-B MIL-L-46152	SAE IOW	DELVAC 1110	URSA OIL HEAVY	MM-150	MID. HOX S-3 SUPER MOTOR OIL	HIDRAULIC-OIL	SISTEMAS HIDRAULICOS MENOS CAT. Y POCLAIK,	
ant-L-2105-B	SAE 90EP SAE 140EP	LUBE 46	MULTIGEAR LU- BRICANTE E.P.	LUBRCANTE DIFERENCIA- LES S, C, L	SUPER QUADROLUBE	SCL-GEAR LUBRICACION	ENGRANES CUBIERTOS IREDUCTORES DIFERENCIALES, PLANETARIOS, TRAN MISIONES TIPO FULLER, MAN. FINALES.	
COMPOUND		VISCOLITE OIL MM	CARTER NO. 2	NACIONAL ENGNANES MEDIANO	OPEN GEAR COMPOUND	PERFECTION POUND No. 3	ENGRANES DESCUBIERTOS	
MULTIPORPOSE		LUX 2	MARFAK MULTI- PORPOSE 2 M	CALPLEX EP. 2	PERFECT. PLEA	VALPLEX E.P. GREASE	ENGRASE GENERAL	
T0006 L06 COMP.		DTE HEAVY	REGAL OIL 48	NACIONAL TURBINAS 15			UNIDAD COMPRESORA	

FALLA DE ORIGEN

PERIODO DE CAMBIO DE ELEMENTOS FILTRO LUBRICANTE Y REFRIGERANTE

CONJUNTO O COMPARTIMIENTO	C/B HORAS	C/100 HORAS		C/500 HORAS		C/1000 HORAS	
	PONER A	ELEMENTO	LUBRICANTE O REFRIG.	ELEMENTO	LUBRICANTE O REFRIG.	ELEMENTO	LUBRICANTE O PEFFIG.
RADIADOR	✓			•	•	•	•
MOTOR	✓	•	•	•	•	•	•
CONVERTIDOR	✓			•	•	•	•
CAJA DE VELOCIDADES SEMI-AUTOMATICA	✓	×		Ø ●	•	⊠ ●	•
CAJA DE VELOCIDADES DE ENGRANES O TIPO FULLER	✓				•		•
SISTEMA HIDRAULICO	✓		X	•	X	•	•
DIFERENCIALES	✓				•		•
MANDOS FINALES	V			•	•	•	•
CAJA DE ENGRANES CUBIERTOS	✓				•		•
CAJA DE CADENAS	V				•		•
UNIDAD COMPRESORA	✓		X	•	X	•	•

DRENAR CONDENSADO

CAMBIOS ELEMENTOS FILTROS LUBRICANTES Y REFRIGERANTES

REVISION DEL FLEMENTO MAGNETICO

NOTA:

EN ÉL CASO DEL ELEMENTO DEL REFRIGERANTE CUANDO LO TENGA INSTALADO COMO EN EL MO-TOR CUMMINS.

TABLA DE CONSUMO DE COMBUSTIBLE Y GUIA DEL FACTOR DE CARGA

Madele .	1 1	Bajo		edio	1 4	lite .
	Liros	Garones	Lilros	Gaiones	Litros	Galones
DIR & BPS		1.8		24	114	10
DIE & BPS	78	2.1	103	27	127	2.0
DOE AE	90	24	12 (3.2	15 4	4.1
C98 & 8PS	100	20	13 2	3.6	16 9	4.1
DSB AE	120	22	15 9	4 2	200	8.1
CEO 4 825	141	27	10.0	41	230	. 61
DOD AE	180	4.7	21.2	3.6	264	70
C7G 4 8PS	212	6.6	28 0	7.4	1 35 2	
DEN	307	8.1	40.9	10.8	51 1	13.5
29H	426	11.3	97.2	18.7	712	18.8
Dig	44.2	17.6	64.2	21.3	1124	25.7

GUIA	DEL FACTOR BE CARG	į

Desgarramiento continuo empuje con la hoja 8 Cirl eb avies et nos stamdet concs ceisie ne piene acereración muy soca o funguna mar

cha en vacio, ni recorrido en tetrocaso. Medio: Empure en gran volumen con la hoja, remoli que de travitas y sobre todo empure en la carga. 244-411 62

Bastante carga en vatic o sin carga

12 150	AFCCAJBVINDTOM	5	0.000
Magela	Bajo .	Medio	Alto
1205	120 24	.174 . 15 4.71	24 2 8 4
1428	133 35	181	24.7 6.1
1255	112 29	15 4 41	200 11
13CG	121 22	188. 6.0	230 0.1
125	128 . 23	174 0.6	230 6.3
1405	138 38	183 LO	26.2 7.0
14G	151 40	211 50	285 7.5
16G	206 54	29 7 7.5	38 6 10 2

CUIA DEL FACTOR DE CARGA

Zanjas esparcimiento de reliene y de material para base desgaliamiento consecration

pereda de carreros destorio de nieve Medio Conservación mediana de caminos trabajos de mercia en los caminos escarificacion ----

hivelacide de letera de contervacion Ruiena

200 PA	LAS FRONT	ALES				
Models	80)	•	Me	flo.	Δli	•
235	14.8	3.0	23.6	4.7	33.6	8.1
245	23.9	6.3	40.7	10.8	\$7.5	15.3
-						

Cicios constantes en materia es dificues de

Cicios consiantes con gennoca frecuentes de

marcha en vazio. Trabajo facili y liviano. Considerable marcha

300 E1	200 ERCAVADORAS							
Medele		Dajo		ledie	Alle			
	Lilios	Galones	Litros	Quiones	Litroe	Galones		
215		2.4	125	24	100	4		
225	17.0	45	189	6.4	234	4.0		
215	27.1	7.2	30.2	6.0	367	8.4		
245	234	4.0	394	10 4	\$1.1	18.6		

QUIA DEL FACTOR DE CARGA

80 VA210

La mayona de trabajos en aplicaciones de tender tubos en auelos duros de roca Escava ción del 90 el 95% de la joinada diaria

Atedio La mayor pare de las apricaciones en traba pos de alcantarilles para urbanizaciones con techo de arcilla natural Escavación de 60 al 85% de la jorneda diaria

La mayona de los trabajos en servicio general, o umanos en marga arsesa. Excavación de menos del 50% de la jornada

SOL . ARRASTRADORES DE TRONCOS						
Madele	_ Bej0	•	Med	10	All	•
518	6.6	1.8	8.3	2.2	15.1	40
578	10.5	2.7	15.1	40	234	8.8

GUIA DEL FACTOR DE CARGA - \$18 Arrastre de troncos grandes (más de 6.800 kg

Artable de Innicos grandes (Más de 6800 la por carga en cuestas (más de 10%) con gran reactionica di arrastre reactionica di arrastre hace de innicos medianos itargas de hasta 8 800 bigian cuestra moderaca de table 10% con regulariora media au arrastre de innicos de grandes cargas menores de considera d resistencia al aviantre

BUILD OF FACTOR OF CARGA - \$26

Arrestia de troncos grandas isarges de mas se 17 300 egi en cuestas icon mas cel 10 hi y alla tempiencie al attablie

Arrastre de troncos medienos icarcas hatle de 11,300 agr en cuestas ida à ar 10%; con ittation is alcom are traited

Arrestre of trongge deligatos tearges menoras de E BCO agri en terranos pienos (0.5%) con be Sa:a Is resistencia al Artastia

130 . PIF	ELAVER	la,a	-	ed-d		Alto
	Litres	Salanes	Litras	Garanes	Litres	Galones
561D	4.5	1.2	6.8	0.1.0		
1115	9.5	.75	144	3.0	189	
1725	9,1	2.5	14.4	3.0	199	
SOIK	3.1	3.5	197		26 5	
524M	8 9	4.0	29.4		2.3	10:

Guia DEL FACTOR DE CARGA Lifet il de calge de 100 tende lucas depende en gian parie del humpo en que la maduina esta en 1803 (180

			4.5				_
500	M01014	AHLAS	ofit - 19	بالعارضة أأحديهم	1.04, 10	any 11 met	Ξ
¥ .44	io .	Baja	1,550 - 55	Media	1,042,811	Alte	
1138 3218 5238	14 12 12	6	7 'S	: 17 ° 11		1 54	3
527B	100	, 0 11	63 63	0 11	4 19 8 15	D 19	•
5318 5310 5390	 ;;	0 11	9 6C 7 94	• •		0 31	,
541 B 551 B	14	1	13 71 21	y 19	C 90	1 22	
69IA	44.7 cd •1.	. 24	4 125	2 22	1 155	2 41	٠

GUIA DEL FACTOR DE CARSA

-

La tenstifera total es commun y les eletes

Main Sauritizan en le construccion de Carreteits An secto chasta apalo e cen tampiacera a la

700 CAMIGNES DE CHRAE Y DE TIRO						
Madele		DAIO	Media		Alte	
	Litras	Gaiones	Lines	Geronda	Littes	Galones
769C	147	3.0	74 6	0.0	34.4	9.1
7738	212	5.5	35 2	9.8	48.6	19.1
777	27.8	1.5	46 1	12.3	443	17.1
7640	24 6	4.5	34 4	8.1	438	11.6
772B	25.2	0.1	494	18.1	638	16 5
776	46 1	12.2	643	17.0	829	21.8

QUIA DEL FACTOR DE CARGA

Cargo con repides stoive o transporte de banda para distancia lotal continua Tiempo normal de carga en torno de la pala

Acarreds cuesta arriba y reformos cuesta abajo Acarreda favorabas en puentos partidos y fre cuente marcha em racio

800	TRACTORES C	E HUED	AS V COL	PACTAD	DRES	
Made:0	84	0	Met	i e	A	
\$14	18.9	10	25 7	4.0	34 1	90
615	24 6	0.5	341	8.9	40.9	10 6
816	74 \$	85	34 1		409	104
824C	29 9	79	431	114	53.4	141
425C	43 (106	134	101	198	15.8
2256	4D 1	10.6	534	181	598	15.0

GUIA DEL FACTON DE CARGA

fratajo pesaco con la hoja i compaciación de

Habigo perada con compressión de la material de la material por la material de la Considerable marcha en iacia o recorrido sin CATCA

Medis

34 17 4

42 183

.,

7.4

103 47 7

Atto

1.2

..

70

.

12 8

12 1

24.5

24 1

TO CARGADORES DE RUEDAS						
W addie		1810		84.2		1110
	Litras	Salores	Litros	Galares	Lilias	Galanes
110	12	1.5	. 0.1	2.2	. 9.5	2.5
519	6.3	22		1.0	12.2	44
310	15.2	2.7	140	12	19.3	
910	12.9	34	17.4		218	1 1
955C	17.2	4.5	: : -	5.2	31.6	4
3566	73.4		:::		423	11.
see.	36.3		477	13.2	64.1	18.5
310C .	er 3	16.7	946	22.2	114,7	32.3

DUIA DEL FACTOR DE CARGA

CARGADORES DE CADEHAS

1.8 .

2 4 12.0

34

50 28 0

7.1

..

110

144

10 9

900

....

0418

2510

9551

417L

9978

38 9 Carde continua del fanco en el cicio basico

15 2

21 6

40. 49.6830. Madio Cerge del banco en el ciclo basica dei cerge

mercipe mouristates Baddons

GUIA DEL FACTOR DE CARDA

Cicios pasicos constantes del carzador Media Ciclos con stantes pera más distancia do aca-rido o frebajo en el ciclo pasido del carpeco-

enn peredus lietupries en vario Visbaje liviano de nervisió cenera, tabiante marche en vació

Lubricantes, Filtros, Grasa | Costos de Posesión y Operación

TABLA RAPIDA DE ESTIMACION COSTO MORARIO APROXIMADO EN LOS ESTADOS UNIDOS PARA LOS LUBRICANTES, FILTROS, GARSA Y FLUTUOS MIDRAULICOS (Al operar an barre profundo. apus o com mucho peiro, evennie estate cities en un 23%)

Los Tractores de Cadenas incluyen el costo del fluido y los . Dixos de los controles hidraubcos. Precios utilizados —

Aceste serie 3 a EUA 53,00 por Galon EUA Gesta a 50,50 por libra Filtros a los Precios de Lásta al Consumidor de E.U.A.

ures a 30,30 per utra. Filtros a los Precios de Lista al Consumidor de E.U.A. Aceite EP a 33,00 EUA por Gaton EUA. Se incluye la mano de obra.

Modelo	Costa Horada Aproximado	Modelo	Caste Horsele Aproximade
0.10		600	
039 y 038 LGP	.26	6138	.54
DAE y DAE SA I		6218	.70
DAE LGP	.26	673B	.70
058 y D58 SA p		6278	1.10
DSB LGP	.36	6310	.94
060 y 060 SA	, the section is	633D	1.02
DED LGP	48	637D	1.20
07G y D7G LGP	.58	641B	172
Dak	.70	651B	1.72
DRH	.04	8578	2.70
DD9H	1.72	700	
D10	1.60	768C, 769C	
12-150		7728, 7738	
1208	.20	720, 777	2.28
140B	20	600	
120G	.34	8 14 .	
130G	-36	815	.80
126	.36	816	.80
140G	40	824C	l 10
146	58	825C	1.10
16G 2G0	.76	826C	1.10
215 225	1,38	8318 + 8316	1 LGP _36
235 , 235	1.30	9418	40
Pais France	1.80	951C	.50
245 , 245	100	951L 977L	.54
Para Fronta	230	9615	. 64 100
500		900	ું '' '
319	78	910	
528	1.34	920	
550	er Jago (1966)	930	
3415	26	950	50
571G	4	See C	
572G	49	983C	94
50)4		9640	1 14
5944	es .	9920	1.92

1GP - 8P5 50 - A

TABLA RAPIDA DE ESTIMACION -COSTO HORARIO APROXIMADO EN LOS ESTADOS UNIDOS PARA LOS LUBRICANTES, FILTROS. GRASA Y FLUIDOS HIDRAULICOS

(Al operar en barro profundo, agua o con mucho polva, aumenia estas citres en un 25%)

Les Tractores de Cadenas inclusen el costo del fluido y los filtros de los controles hidraulicos. Precios utilizados -

Aceste serie 3 a EUA \$3,00 por Galon EUA Grasa a \$0,00 por libra

Orana a 30.00 pc. nura Faltros a los Precios de Lista al Consumudor de E.U.A. Aceste EP a 83.00 EUA por Galon EUA Se incluye la mano de obra

Modelo	Casta Heraria Apresimada	Medelo	Coeto Harario Aproximado
0.10		600	
DJB y DJB LGP	24	6138	.50
DIE Y DIE SA J		6218	.70
DIELGP	.26	6238	.79
C58 y D58 SA y		6278	1.16
DSB LGP	.36	6310	.94
D60 y D6D SA +		6370	1.02
DID LGP	48	6370	1.28
D7G y D7G LGP	.50	6418	1.72
Dex	.70	6518	.,72
D9H	.84	657B	2.70
DDSH	1 72	700	
D10	1 60	788C. 788C	.86
12-150		7728, 7738	1,78
120B	.20	776, 777	2.29
1408	50	800	
120G	.34	814	. 8 0
133G	36	815	.80
12G	.36	816	.80
149G	48	824C	1 10
14G	\$6	#25C	1.10
160	.76	826C	1.10
200		900	
215	.92	931B y 931B LG	
225	1.36	9418	48
205 , 205		951C	.50
Pala Fronta	1 80	9551	.54
245 , 245		977L	84
Pala Fronta	2 30	9639	100
500		900	
\$18	.78	910	44
528	1,34	920	44
550	200	930	- 40
3615	26	950	50
\$71G	46	966C	74
5720	45	983C	86
5834	23	9888	1 14
1944	6.	9976	1.50

 CONVERSION D	E PULGADAS	A	MILIMETRO!

TABLA DE CONVERSION DE PULGADAS A MILIMETROS											
			1"	2"	3"	4"	8"	6"	7"	•"	
911	GADA					MILIM	ETROS				
			25,400 0	50,800 0	76,200 0	101,600 0	127,000 0	152,400 0	177,800 o	203,200 0	
0	0 015 825	0,396.9	25,786 9	51,195 9	76,596 9	101.996 9	127,396 9	152,796 9	178,196 9	203,596 8	228,600 (
1/84	0031 25	0.793 8	26,193 0	51,593 8	76,993 8	102,393 8	127,793 8	153 193 8	178,593 8	203,993 8	229,393
	0.046 875	1,190 6	26.590 6	51,990 6	77,390 6	102,790 6	128,190 6	153,590 6	178.990 6	204,390 6	
3/84	0.062 5	1,567 5	26,987 5	52,367 5	77,787 5	103.187 5	128,587 5	153,967 5	179,387 5	204,787 5	229,790 (230,187 :
				52,784.4	78,184 4	103,584 4	126,984 4	154,384 4	179.784 4		
3/32	0,078 125	1,984 4 2,361 2	27,384 4 27,781 2	53,181 2	78,5812	103,981 2	129,381 2	154,781 2	180.181 2	205,184.4	230,584 4
7/64	0.109 375	2,778 1	28,178 1	53,578 1	78,978 1	104,378 1	129,778 1	155,178 1	180,578 1	205,978 1	231,378
1/8	0 125	3,1750	28,575 0	53,975.0	79.375.0	101.775 0	130,175 0	155.575 0	180,975 0	206 375 0	231,775
9.84	0,140 625	3,571 9	28,9719	54,371 9	79,771 8	105,171 9	130,571 9	155,9719	181,3719	206,771 9	232,171
5/32	0,156 25	3,968 8	29,368 8	54,768 8	80,158 B	105,568 8	130,968 8	156,368 B	181,768 8	207,168 8	232,568
11/84	0,171 875	4,365 6	29,765 6	55.165 6	80,565 6	105.965 6	131,365 6	156,765 6	182,165 6	207,565.6	232,965
3/16	0,187 5	4.762 5	30,162 5	55.562.5	60,962 5	106.362 5	131,762 5	157,162 5	182,562 5	207,962.5	233,362
13/64	0,203 125	5,159 4	30,559 4	55,9594	81,3594	106,759 4	132,1594	157,559 4	182,959 4	208 359 4	233,759
7/32	0,218 75	5,556 2	30,956 2	56.356 2	81,756.2	107,156 2	132,556 2	157,956 2	183,356 2	208,756.2	234,156
15.84	0.234 375	5,953 1	31,353 1	56,753 1	82,153 1	107,553 1	132,953 1	158,353 1	183,753 1	209 153 1	234,553
1/4	0.25	6,350 0	31,750 0	57,1500	82,5500	107,950 0	133,3500	158,7500	184,150 0	209,550 0	234,950 (
17/64	0.265 625	6,746 9	32,146 9	57.545 9	82,946 9	108,346.9	133,7469	159,146 9	184,546 9	209,946.9	235,346
9/32	0.281 25	7,143 8	32,543 8	57,943 8	63,343 8	106,743 6	134,1438	159,5438	184,943 8	210,3438	235,743
9.84	0,796 875	7,540 6	32,940 6	58,340 6	83,740 6	109,140 6	134,540 6	159,940 6	185.340 6	210,740 6	236,140
5/16	0,312 5	7,937 5	33,337 5	56,737 5	84,137.5	109.537 5	134,937 5	160.337.5	185,737 5	211,1375	236,537
1/64	0,328 125	8,334 4	33,734 4	59,134 4	84,534 4	109.934 4	135,334 4	160,734 4	186.134 4	211,534 4	236,934
11/32	0,343 75	8,731 2	34,131 2	59.531 2	84,931 2	110.3312	135,731 2	161,1312	186.531 2	211,9312	237,331
3/84	0,359 375	9,128 1	34,528 1	59,928 1	85,328 1	110.728 1	135,126 1	161,528 1	186.928 1	212,328 1	237,728
3.9	0,375	9,525 0	34,925 0	60,325 0	85.725 0	111,1250	136,525 0	161,9250	107,325 0	212,7250	238,125
584	0,390 625	9.9219	35,321 9	60,7219	86,1219	111.521.9	136 921 9	162,321 9	187,721.9	213.121.9	238.521
3/32	0.406.25	10,318 8	35,718 8	61,1188	86,518 8	111,918.8	137,318 8	162,718.8	185,115 8	213,519 8	238.918
77/64	0.421 075	10.7156	36,115 6	61,515 6	86,915 6	112 315 6	137,7156	163,1156	188.515.6	213,9156	239,315
7/16	0.437 5	11.1125	36,512.5	61.9125	87,3125	112,712 5	138,112.5	163.512.5	188,912.5	214,3125	239,712
9.64	0,453 125	11,509 4	36,909 4	62,309 4	87,709 4	113,109 4	138,509.4	163,909 4	189,309 4	214,709 4	240,109
15/32	0 458 75	11,906 2	37,306.2	62,706.2	88.106.2	113.506 2	138.906 2	154,306 2	189.706.2	215,106 2	240,506
31/64	0.484 375	12,303 1	37,703 1	63.103 1	88,5031	113,903 1	139,303 1	164,703 1	190,103 1	215,503 1	240.903
1/2	0.5	12,700 0	36,1000	63,500 0	68,9000	114,3000	139,700 0	165,100 0	190,500 0	215,900 0	
3364	0.515 625	13 096 9	38,496.9	63,896 9	89,296 9	114,696 9	140 096 9	165,496 9	190,896 9	216,296 9	241,300 241,695
17/32	0,531 25	13,493 6	30,693 8	64,293 8	89,693 6	115.093 8	140,493 8	165,893 8	191,293 8	216,693 8	242,093
35/84	0,546 875	13,690 6	39,290 6	64,690 6	90,090 6	115,490 6	140,890 6	166,290 6	191,690 6	217,090.6	242,490
9/18	0.542 5	14,207 5	39,687.5	65,007 5	90.4875	115.887.5	141,2875	166 687 5	192.087 5	217,487 5	242,887
37/64	0,578 125	14 564 4	40,364 4	65.484 4	90,884 4	116,284 4	141.6844	167.084 4	192 484 4	217.884.4	243,264
19/32	0,503 75	15,081 2	40,4812	65.8612	91,2812	115 681 2	142 081 2	167,481 2	192,881 2	218,281 2	243.681
994	0,009 375	15,478 1	40,878 1	66,278 1	91,678 1	117,078 1	142,478 1	167,678 1	193,278 1	218 678 1	244,078
50	0.625	15,875.0	41,275.0	66,675.0	92,075 0	117,475 0	142,875.0	168.275.0	193.675.0	219 075 0	244,475
17/64	0.640 625	16 271 9	41,671 9	67,0719	92 471 9	117.871.9	143 271 9	168 671 9	194,071 9	219 471 9	244,871
1/32	0.656 25	16,668 8	42,068.8	67,468.8	92,668 8	118,268 8	143,668 8	169.068 8	194,468 8	219.868.8	245,268
13/64	0.671 875	17.065 6	42,465 6	67,865.6	93,265 6	118.665.6	144,065 6	169,465 6	194 665 6	220 265 6	245,665
1/16	0,587 5	17,462 5	42,862 5	68,262 5	93,662 5	119.062 5	144,462 5	169,862 5	195.262 5	220,662 5	246.062
15 84	0,703 125	17,859 4	43.259 4	68,659 4	94.0594	119,459.4	144,8594	170,259 4	195,659 4	221,0594	248,459
13/32	0,718 75	18,756.2	43.656 2	69.056.2	94,456.2	119.856.2	145,256 2	170 656 2	196.056 2	221,456.2	246,856
17/64	0,734 375	18 653 1	44,053 1	69.453 1	94,853 1	120.253 1	145.653 1	171.053 1	196.453 1	221,853 1	247,253
3.4	0.75	18,050 0	44,450 0	69 850 0	95.2500	120.6500	146.050 0	171,4500	196 850 0	222,2500	247,650
1954	0,765 625	19,446 9	44,846 9	70,246 9	95.646 9	121,0469	146,446 9	171,8469	197,246 9	222,646 9	248,046
15/32	0,781 25	19,643 8	45,243 8	70,643 8	96,043 8	121,443 B	146,843 8	172,2438	197,643 8	223,043.8	248,443
31/64	0,796 875	20,240 6	45,640 6	71,040 6	36,440 6	121.6406	147,240 6	172,640 6	198.040 6	223,4406	248,540
3/16	0,812 5	20 637 5	46,037 5	71,437 5	96,337.5	122.237 5	147,637.5	173.037.5	198,437.5	223 837 5	249.237
13.64	0,828 125	21,034 4	46,434 4	71,834.4	97,234 4	122 634 4	148 034 4	173,434.4	196 834 4	224 234 4	249 634
17/32	0,843 75	21,431 2	45.531 2	72,231 2	97,6312	123 031 2	148,4312	173,631 2	199 231 2	224,6312	250,031
3/84	0,859 375	21,828 1	47,226 1	72,628 1	96,026 1	123,426 1	148,828 1	174,226 1	199,628 1	225,028 1	250,428
7/0	0,875	22,225 0	47,625 0	73.025 0	98,425.0	123,8250	149,2250	174,625 0	200.025 0	225,425 0	250,825
57/64	0,890 625	22,621 9	48,0219	73,4219	98.821.9	124,221 9	149.621 9	175,021 9	200,4219	225,8219	251,221
29/32	0,906 25	23 018 8	48,418 8	73.618.6	99,218 8	124,618.8	150,018.8	175,418 8	200.8188	226,2188	251,618
58.94	0,821 875	23,415 6	48,815.6	74.215 6	99,615.6	125.015.6	150,415.6	175,815 6	201,2156	226,6156	252,015
15/16	0 937 5	23,812 5	49,2125	74,612.5	100,012 5	125.412.5	150,612 5	176,2125	201,612 5	227,0125	252,412
61/64	0.953 125	24,209 4	49,609 4	75,009 4	100 409 4	125 809 4	151,209 4	176.609 4	202.009 4	227,409 4	252.009
31/32	0,968 75	24,406.2	50,006 2	75 406 2	100.806 2	126 206 2	151,806 2	[177,006.2	202,406?	227,806.2	253,206
63/64]	0.984 375	25,003 1	50 403 1	75 803 1	101,203 1	126 503 1	152,003 1	177,4031	202.503 1	228 201 1	253,603
~~ 1											54,000 D

FALLA DE ORIGEN

TABLA GENERAL DE CONVERSIONES

MULTIPLIQUE	A POR	PARA GOTENER	MULTIPLIQUE	POR	PARA ORTENER
		Hectare as	Dinas/cm.*	9 869 2 10 '	
Acres	4047 0	Mujios?	Donation ?	2 953 10	Atmosferes
Acres Amperes	Onms		Dinasiem *	4015 2 10 4	Pule de Ho (e 0°C) Pule de H _o O (e 4°C)
Amperes	Volts # 0 00173	KVA (C.A. 3 Fases)	Dinasiem *	1 0 = 10 4	Bars
hunos eras	33.9	KVA (C.A. 3 Fases) Pers de H(O (a 4°C) Puig de Hig (a 0°C) Mis de Hig (a 0°C) MM de Hig (a 0°C)	Drugs .	1.0 = 10 /	Julios'on.
Atmósferas	29 92	Pulo de Ha (a 0°C)	Dinas	7.233 a 10 °	Pounda's
Atmosferes	076	Mhs de Ha (a 0°C)	Dinas	2 248 = 10 *	Libras
Annocieras	760 0	MM de Ho (a O'C)		F	1
Atmos leras	1 0333	Koʻcm.)		
Atmosferas	147	Libras bulg !	Ergos	9 466 ± 10 "	BTU
Apriós'eras	1 10 23	Mrs 00 H () (15 5°C)	Ergos	1 1.0	Dina cm
Aumosferas	1 10133	Bars	Ergos	7.376 x 10 °	Lbs - pres
			Ergos	[2380 = 10 **	Calorias
	B		_) Erö∙os	1.020 1 10 4	
Barries Americanos	119 227	Litros	Ergos Ergos	3.725 z 10 "	HP. hr.
Bartiles de Patroleo	159.0	Litros	Erpos	10.001	Julios
Bars	0.0860	Atmósferas	Ergos	2773 a 10 '	Kilowan - hr.
Bars	1.0 ± 10 4	Dinas'cm *	Ergos/seg	2 773 a 10 '' 5 668 x 10 ''	BTU/min.
Ba's	2089 0	Libras'pie?	Ergos'seg	4 426 # 10 *	Lbs pres/min.
Bars	145	Libras/pulg *	Ergos/seg	1.34 = 10 "	HP.
Bars	1.0197	Kgs/cm.	Ergos/seg	1.433 # 10 *	Calorias/min.
ย้าน้	1 055 1 10 4	Erpos	Erposiseo	10 # 10 **	Kilowans
BTÜ	778 16	libras po	- AARISTA		1
Biu	0 252	Calorias	1	F	-
812	3 927 2 10 *	HP - hora	Faraday/seq	9 65 # 10 *	Amoute (absolute)
BTÜ BTÜ	10550	West	Faraday	26.5	Ampere (absoluto) Ampere - hr.
ที่เบ	107.58		Faraday	9 649 x 10 '	Coulombs
BiU	2 978 1 10 4	Kg - m. Kilowati - hora	Fuitones	201.7	Metros
តិវិប័	1 055	Kilowats - Hora	Furtings		- Ludirus
B1U/hr.	0 2162	Libras - pierseg.	I	G	
BTU/h/		Calonas seg	Grados Centigrados	('C + 951 + 32	Grados Farenheit
BTU/hr.	3 929 1 10 4	HP. hr.	Grados Centigrados	C - 273 18	Grados Keivin
BIUhr.	0 2931	Wans	Galones	3.785 = 10*	Centimetros cúbicos
GIOIR.			Galones	0.1337	Pies cúbicos
	c		Galones	2310	Pulgadas cúbicas
Centimetros	0 3937	(P41	Galones	4 951 2 10"	Yardas cubicas
Centimetros	3 281 # 10 4	Pulgadas	Galones	3 785	
Centimetros	6214 210 4	Milas	Calcout the be into)	1,20095	Galones (U.S.liq.) Galones (Imp.)
Centimetros	0 0 1094	Yardas	Galones (Hq br Inip) Galones (U.S.)	0 83767	(0.00.43 (0.3 (4)
Centimetros *	1 076 × 10 3	Pes	Galones de agua	6 337	Librat de agua
Centimetros *	0.1550	Pulgadas*	Galones mun	2.228 # 10 1	Pies Vseg
Continetios !	10110	Metros	Garones min	6 308 10	Lilros/seg
Centimetros	3 861 4 10 "	Milas 1	Grados	1 571 8 10	Radianes
Centimetros 3	3 531 . 10	Pes 1	Granos (troy)	6 48 4 10	Gramos
Centimetros 1	6 102 x 10		Granos galones (U.S.)	17 110	
Centimetros 3	1.0 4 10 4	Pulgadas *	Granos garones (U.S.)	142 86	Partes por milión Lbs /mill, de galones
Centimetros*	1 308 4 10 4	Yardas *	Granos galon imp.	14 285	Partes/million
Centimetros 3	2642 10 4	Garones	Gramos galori emp.	15 43	Granos (troy)
Centimetros 1	10410	Lidros	Gramos	9 607 x 10	Julias/metros (Ne)
Cm. de mercurio	27 85	Libras'pe'	Gramos	7 093 1 10	Pounda's
Cm. de mercura	0 1934	Libras pulgadas *	Gramos	2 205 : 10	Libras
Crt. de mercuro	1.316 # 10 4	Almosferas	Gramos Cm.	56110	Libratio dandas
Cm. de mercurio	0.4461	Pes de agua	Gramos/Cm.	62 43	Libras/pulgadas Libras/pie
Cm. de mercuro	136 0	Kg/m.	Gramos Cm.	3613110	Librat/pulgadas*
Cm de marcura	136	Cm. de agua	Gramostino	2 613 10 .	Cipran bodacas.
Cm/seq	1 1969	Pes/min	Gramosfitro	58 417 8 345	, Grandos galones Libras/1000 galones
Cm/seg	3 261 1 10	Pes/seg	Gramoshiro	6 2427 = 10 *	Libras/pers
Cm./wg	0 036	Km/hr.	Gramos Cm.	20461	Librasipe
Cm/seq	06	Miszmen.	Conden (annual)	20401	Cuadrante
Cm/seg	2 237 # 10 *	Milas hr.	Grados (angulo)	1.111 # 10 :	
Circunferenca	6 283	Mulga nr.	Grados (angulo) Grados (angulo) Grados (angulo)	1.745 £ 10 '	Rad snes
Circunterença Coulombs	2 938 # 10 *	Radianes	Grados (anguio)	36,10	Segundos
Coulombs	1 033 1 10	Stat coulombs Faradays	Grados seg	1.745 - 10 *	Rad anelised
Coulombyen	1 033 1 10 .	1 0 10 10 10 10 10	Oragos/seg	0.1667	RPM
Coulombs'cm.	6.452	Coulonios Pulg	Grados'seg	2 778 - 10 '	RPS
	10110		Gr.Cm	10110	Ko-m.
Coutombarpulg. *	0 155	Coulombs em	Gr-Cm.	7.231 10 4	Libras pe
	3 968	BTU		Н	
Calorias	3086 0	Lbs - pe			.,
Calorias Calorias	1 558 ± 10 *	nr. N	Huctareas	1 076 1 10	Pies !
Calorias Calorias	41830	A/os	Hectolitros	1000	Litros
Calorias	476 9	Kg - m Klowatt - hrs	I HP	42.44	BIUmis
Calorias	1.163 : 10 *	Ridwatt - hrs	HP	33210*	Librat De'min
	4 1860	Lio	l HP (métrico)	1 0 9863	LHP
Caforlas min	51 43	tbs - perseg	I HP	1 014	HP (métrico)
Calorias min	9 351 10 10	HP	HP	1068	Ca'orlas min
Caloriasimin	6972 : 10 *	Kilowatts	1 HP	0 7454	
Centroise	10.10	Gricm - seg	HP (caldera)	3 352 2 10 *	Kilowatts BTU1vi
Centipoise	672110 *	Lbs/p.e - sea) HP (caldera)	B 503	Kilowatts
Centipoise	24	LDS/D-e - fu.	HP.W.	9 803 2 547 1 10 *	BTU
Cuadranie (ángulo)	900	Grados	HP-by.	2 6845 : 10 "	Final
Cuadranie (angulo)	54 1 10 1	Mhutos	HP.hr	1.96 1 10	Ergios Libratione
Cuadrante (ángulo) Cuadrante (ángulo)	1 571	Radianes	I HR W	2 684 = 10	Julios pe
Cuadrante (angulo)	324 x 10 *	Segundos	MD v	6 417 1 10	Calorias
			THE N.	2.737 : 10 *	Kg-m
	0		HP.Nr.	0 7457	Kilowatt IV.
Dias	864 1 10	Secundos	Horas	4.167 ± 10 *	Dias
	1 44 4 10 *	Minutos	1 0043	5 952 4 10	Semanas
Dias Dias Dirias/om !	240	Horas	Horas	36000	Segundos

TABLA GENERAL DE CONVERSIONES

			MULTIPLIQUE	- C	PARA OBTENER
MULTIPLIQUE	POR	PARA GATENER		1488	
Vol	1.0 1 10	BTU Ergras	Libras/pie *		Kg.m.
VO.	0.7134	I the rubs	Litravow	4 725 a 10 4	Aimosleres Pes de ague Puig de rig
Viola Viola	0.7736 2.369 a 10 4	Lbs-pes Calorias	Librarios *) 1.414 x 10 *	Pulg de Ho
uoi uoi	2.778 # 10 *	Wan br.	Librarde *	6 944 1 10 4	Ho/m !
L/GS	2.778 # 10 *	Wan hr.	Libratipe 1	0 944 8 10 *	
MONCH	1.0 a 10 ' 7.233 a 10 *	Dines Poundals	Librarpuig	6 604 ± 10 * 2 307	Pies de agua Puig de rig. Rg/m* Libras/pie*
UniCm.	22 48	Libras	Librarpud	1 2 636	Puis de Ha
HOSEM.		Ciper	Librasioulo	7.031 = 10 *	Kg/m
	K		1 typesypula *	1440	Libras/pie*
Joorgana	9 90665 # 10 *	Dinas	Libras/pulg	27.71	Putgadas de egua Dz/outo *
logramo ilogramo	9 807	Juhos/m. (NW)	Librasipulg	0.06895	
ADDITATION OF THE PROPERTY OF	70 93 2.20048	Paundala	Librations	0 07031	Ho AGM.
logramo	8243 £ 10 *	Libras pies 2	Libras bies	1.286 x 10 *	atu
log-smo/m	3613210	Libras/pulgadas *	Libras Des	1 1.356 ± 10 7	Erges HP Nr
logramorm	1 0872	Libras/ove Dinas/Cm.	Libras pes	\$ 050 a 10 '	Julios
	9 80665 x 10 *	Dinas/Cm.	Libras pes	1.356	Calprias
ilogramo/Cm.*	0 9678	Aimosferas	Libras pies Libras pies	0.1383	No.
log-amorCm.*	3281	Pies de agua	Libras Des	3 765 # 10 '	Kg-m. Kilowan Iv.
ipprano/Cm.	26.96	Pulgadas de mercirio Libras/pies	Libras Dies/min.	1.286 : 10 *	BIU/mun.
isogramo/Cm.*	14.22	Libras pulgadas *	Literat Das/min	3 030 1 10	HP
ilogramo/Cm.*) 0.960?	Bars	Libras pies/min.	2 241 4 10 1	Catorias/min.
ilogramorm. ?	(BA7# = 10 €	Atmosferas	Libras Dies/mirt.	2.260 s 10 4 4 6260	Riowans Bluhr.
Apprenonn.") GBG7 x 10 *	Bara	Libras Desised	J 1818 - 10 3	HP.
incament !	3.261 ± 10 *	Pies de agus	Libras Desised	1 1 145 x 10 * '	Caloriasimin
logramo/m.	2 895 ± 10 *	Pulgadas de Hg	Libras Desised	1,356 # 10 *	Kilowatts
ilogramom.* ilogramom.*	1.422 = 10 *	Libras/guigadas*	Litros	10000	Cm3
innement f	94 0665	Libras/pulgadas*	Litros	3 531 × 10 *	Pus Pug
A·M.	0.200 + 10.7	810	Litros	1.0 = 10 =	Metros *
a · m. a · m. a · m. g · m.	9807 4 10 '	Ermos	Litros	1 1308 = 10 2	(Vandas)
ō· <u>m</u> .	7.233 9.807	(bs pie	Litros	0.2642	Galores (US bri)
g·m. g·m.	2342 8 10 *	Calories	Litros/min	5 886 1 10 4	Pies 1300
g·m.	2 723 2 10 9	(Kitowatts-hr.	Litros/min	2303	Galones/seg.
o m. Nameros *		Shee ?	Log 10 n.	0 4343	1 100 100
IONETOS!	1.550 x 10*	Pulgadas *	tumen/pie!	1 10	Log 10 n. Builes pies
ioneros	03861	Mine	LumeVpe	1076	Lumen m *
NOTHER TOR !	1.195 x 104	Yardas*	Lus	9 29 x 10 *	Bujas pes
(III)/mg trod	0.6214 0.5396	MARIS (Innestres)		4	
(HOME FOR	0 5396	Mélas (acuaticas)	<u> </u>	1.0 4 10 1	T-A
Nome tras	1093 6	Yardas	Megantyms	3.281	Ohma Pes
ilàmetras/hr.	27.78 54.68	Cm/seg.	Admiros	39 37	
iomerosty.	18 87	Metros/min.	Metros Metros Metros	5 396 # 10 4	Milas (nauticas) Milas (terrestres)
idmeros/hr.	0.8214	Motas/tv.	Metros	6213.10*	Milas (serrasties)
Nomatta	56 92	BTU/min	Metros/min.	1.094	Yardas
Now atta	4.426 ± 10 °	Libras permin.	Metros/min. Metros/min	3 281 3 728 x 10 *	Personan Malasahr
NOW STS	4134	Caloriasimin	Metros cuadrados	1.04 10	Centimetros
dowalts for.	34130	BIU	Maintens Cuadrados	10.76	Pes
Accessed by	20-10-9	Ergios	Metros cuadrados	1 155 x 10*	Pulpadas*
Accessatis No.	2655 à 10°	Libras pie	1 Amiros Franciscos	3 661 x 10 1) Millas "
lowests by.	36 2 10"	Juhos	Meiros cuadrados	1.196 2.788 # 10 '	Yaidas*
lowalls ly.	5 B60 5	Calorias	SATIS CURDINGS	2.788 # 10 7	Pars* Km.*
ipmets iv.	3671 a 10 *	Kg.m.	Milas Cuadradas	3 098 2 10*	(Vandas)
domails hr.	} -339	evaporada desde y a 212° o F.	Metros Cubicos	(B1023 # 10 *	Puldedas *
	}	2121 . F.	Metros cúbicos	1 308	Vardas *
lows11a	22 75	1 hiteas de sous	Metros cub-cos	2642 # 10'	Galones (U.S. hq.)
	1	proporcionada 60° f .	Metros Eúbicos	1000 0	Litros Pres
	.{	a zize F.	Melios Cubicos	35.31 60/6 D	Pes
	L		Metros cubicos Abras (nauncas) Metas (nauncas)	1 853	Km
sovet nivicus	8 55	1 Kilómetros	SARIAS (NAUDCAS)	14510	Mayos
SANS SUBSTITUTE	2 448 ± 10*	Dinas	MAHER (MEUTICAS)	2025 4	Millas terrestres
0-44	20.10	Grance	Mara (nautical)	5280.0	Yardas Pes
Cr 8a	4 448	Jukosmeto (Nw)	Maras (meres 1981)	63364104	Pulgadas
traa	0 4538	Kg Poundals	Miles Herrestres	1 600	1 Km
Or &s Er Ab	1 21624	Libras DDy	Miles (lenestres)	1609 0	Marros
tras (trov)	5 780 ± 10 1 0 37324	Granos	Miles (tenespes)	0 8684	Mulas (nautons)
Cr 84 (907)	0 37324	Kgr		1760 0	Pasmin
EVEN ON HOUR	1 1.602 1 10	Pies	Marty Martin	1,6090	Km/ht.
D'AL de sous	27 %6 0 1198	Pulgadas * Galones	1 SANDATE	26 12	Metros/min
briss (froy) criss (froy) driss (froy) driss die agus driss die agus driss die agus driss die agus	2 670 a 10 *) Post times	Mikmetro4	3 281 # 10 *	Park
eras de aguamm. Aras de agua	1 5002 0 10 0	Page 3	AAkmetros.	3 937 4 10 *	Pulgedas Yaudas
ALAN COM	1.356 : 10	j Direas Cm.	\$Ahmelros	3 094 1 10 3	Yestas Grados
ivas ou i	(0.1383	Kg m	Minutes (Angule) Minutes (Ar 2010) Minutes (Angule)	8-2 = 10 +	Cuadrante
	18 02 5 787 s 10 * 2 768 s 10 * 1.728 s 10 *	Kg /m	Manufas (Angula)	2 090 4 10 4	Radanes
dravpe '	3 (6/ 110 7	Librariputg	Minutos (Angulo) Minutos (sempo)	1 600	Segundos
ATRICPUS *		Kg/m.*		9 9206 # 10 *	Semenas

TABLA GENERAL DE CONVERSIONES

	M		l	R	
MULTIPLIQUE	POR	PARA OBTENER	MULTIPLIQUE	POR	PARA OBTENER
Moutos (nempo)	6 944 1 10 *	Dias Horas	Radianes Radianes	57 296 3438 0	Grados
Minutes (bempo)	1 667 1 10 *	Horas	- Radianes	0 6366	Manulos Cuadrantes
	NN		Radianes Radianes seg	2 063 a 10 a 57 296	Segundos Gredos/seg
Newtone	10 4 10 *	Dinas Km/hora	Red-anes/seg	9 549	Rev.min.
Nudos	1.85	Kmrnora	Revoluciones/seg	3600	i Gradios
			Revoluciones Revoluciones	6283	Cuadrantes Radianes
Ohm (mt)	1 0005	Ohm (abs) Megaotims	RPM	8.0	J Grados⊬seo
Ohma Ohma	1.02.10	Microhms	RPM	0 1047	Revised
Ozvila *	1.732	Pulgadas de agua Libras:Pulg *	Revoluciones/seq	3600	(Grados/see
Ot/pulg *	0 0625 28 349	Gramos	Revoluciones/seg Revoluciones/seg	6 263	Radianes/seg Revoluciones/min
Onzas fluidas	29 57 31.1035	Militros (Cm. ?)	Nevoloconias seg	3	Unagord godes with
Onzas troy		Gramos	ļ. <u>.</u>	1 168 0	1-5
	P		Semanas Semanas	1 008 # 10*	Horas Manujos
Paresmillón	5 84 x 10 4	Granos/galones U S	Sametes	6 048 # 10 1	Segundos
Partesmillón Partesmillón	7.016 ± 10 *	Granos galones imp	Segundos (ángulo) Segundos (ángulo) Segundos (ángulo)	2 778 ± 10 *	Grados Manutos
Pinta Pounds/s	453	Granos/galones a 10 * Milatros (Cm*)	Segundos (ángulo)	3 087 x 10 4	Cuadranies
Poundals Poundals	1.3826 = 10 *	Dinas Julios/Cm.	Segundos (angulo)	4 848 H 10 *	Radianes
Poundals	0.13826	Julios/metro (Nw)	Slugs	1488	Kitogramos UTM
Poundals	1.41.410.4	Kg. Libras		/	
Poundals Porse	3 108 # 10 *	Gramos/Cm-seo	Tamp #C1 - 273	1 10	Temperatura abs.
Per	0.3048		Temp (*C) + 273 Temp (*C) + 17.78 Temp (*f) + 460 Temp (*f) - 32	1 18	Temperatura (15)
Pers Pers	1 645 # 10 4	Milas (Náuticas) Milas (terrestres) Almósferas	Temp (*f) • 460	590	1 Temperatura abs
Pres de aqua	295 : 10 *	Almósferas	Toneladas cortas	1	Temperatura (°C)
Pies de agua Pies de agua	0 8826 3 048 # 10 *	Pulg de mercuno Kos /Cm.	USA	907.2	Kitogramos
Pres de agua Pres de agua Pres de agua	3.048 4.10 *	Kos/m.*	Toneladas cortas U.S.A	2000	Libras
Pies de agua Pies de agua	62 43	Libras/pie *	Toneladas largas		1
Presente.	0 4335 0 5080	Cm/seq	G.B. Toneladas largas	1016	Kilogramos
Pesmin.	1 829 4 10 4	Kms fri.	l GB *	2240	Libras
Per/min. Per/teq	30.48	Cm/seq	Toneladas métricas	1.10023	Toneladas cortas USA.
Panakan	1829	Mrs/m/n	Toneladas métricas	0 9842	Toneladas largas
Persoula Persoula	10 764	Lumen/m*	}	ł	G.B
Park Cuadrados	929 0	Cm.	}	·	
Pies cuedrados Pies cuedrados	144 0	Pulg *	UTM	21 62	Libras
Pers tund/ados	3 587 # 10 4	SAIlas *	i ŭiŭ	0.672) Siuc
Pies cuadrados Pies cúbicos	0.1111 1.728 x 101	Yardas * Pulgadas *	UIM	9 607	Ko
Pres cubicos	2832 * 10 *	Metros *	1	W	
Pies cubicos Pies cubicos	3 704 ± 10 4 7 48052	Galones (U.S. lig.)	Watts Watts	3 4129	BTUAL.
Pres cubicos	2632	Litros	Watte) 44.27	Ergios/seg Libras permin.
Pas Min. Pas Min.	472 D 0.1247	Cm.*/seg Galores/seg	Watts	1.341 # 10 °	I HP
Pms 3/min	0.4720	Liberised	Watts	1 433 # 10 *	HP (métrico) Calorias/min.
Pags */min Pags */seq	62 43 448 631	Libras agua/min. Galores/min.	Watts (abs)	1.0	Jukos/sec.
Pulandas	2 540	Centimetros	Watt-fr. Watt-hr.	36110"	BTU Ergios
Pulgadas Pulgadas	1 578 # 10 1	Milas	Watt-hr.	2656.0	Libras pies
Pulgadas Pulg de mercurio	2.778 ± 10 * 1.133	Yardas Pies de H.O	Watt-tv. Watt-tv	1 341 ± 10 ° 0 8605	HP-Nr.
Pula de mercurio	3 342 # 10 *	Asmosferas	Watthr	36.7.2	Calories Ko-m
Puig de mercurio Puig de mercurio	3 453 = 10 *	Kg·Cm * Libras/p-e *	Wall (int)	1.000165	Kg -m. Wall (absoluto)
Pulg de mercurio	0 4912	Libras pulo		γ	
Pula de mercurio	136	Pulgadas de H.O.	Yarda	91.4	Centimetros
Puig de agua (a 4°C)	2458 ± 10 * 7355 ± 10 *	Atmos'eras	Yarda Yarda	4 934 x 10 4 5 682 x 10 4	Milas (naulicas) Milas (lerrestres)
Puig de agua (a e°C) Puig de agua (a e°C) Puig de agua (a e°C) Puig de agua (a e°C)	1 254 x 10 4	Puig de lig Kg/Cm ² Lebras pre ²	Yardas cuadradas	l 8361 x 10 3	Centimetros *
Pulg de agua (a 4°C)	5 204 3 163 # 10 *	Librasipie *	Yardas cuadradas	1 90	Pies !
F-mid on edine	0 577	Ozzpula z	Yardas cuadradas Yardas cuadradas	1296.0	Pulgadas* Metros*
Pulgadas cubicas Pulgadas cubicas	5 787 a 10 *	Pies *	Yardas cuadradas	3 228 10	1 SAHAS
Pulmedas puberas	2143 1 10 4	Yardas 1	Yardas cubicas Yardas cubicas	7 646 ± 10 1	Continetos *
Pulgadas cubicas	4 329 1 10 *	Galones	Yardas cubicas	4 6656 ± 10 *	Pulgadas I
Pulgadas cubicas Pulgadas cuadradas	1639 = 10 *	Litros Centimetros *	Yardas cúbicas Yardas cúbicas	0 7646 202 0	Metros 1
Pragedas cyadradas Pragedas cuadradas	6944 = 10 *	Pws !	Yardas cubcas	7646	Galones (US leg)
Pulgades buildrades	7.716 = 10 4	Yerdis'	Yardas cub-cas/min	1 045	Piet Plans
	0		Yardas cubicas/min.	3 367 12.74	Galones/seg
Cudates	206.0	Migramos			

FALLA DE ORIGEN

III). TABLA DE FORMULAS ELECTRICAS

	T		CORRIENTE ALTERNA	
PARA DETERMINAR	CONTINUA	UNA FASE	2 FASES" 4 HILOS) FASES
AMPERES conssion do C.F.	C# . 745 E · N	CF . 746 E · N · I p	2 · E · N · 1p	CF . 746
AMPERIOS consciends RW	KW - 1000	KW - 1000	. K₩ - 1000 2 · E · I p	173 · ₹ · ₹p
AMPERES consciendo KYA		E 1000	KVA + 1000	
KW	1000 1000	1000 P	1.6.10.2	1 · E · 1 p · 173
RVA	_	-1:-E-	1.5.2	1.6.173
POTENCIA en le fleche C.F.	1 · E · N	1 · E · N · 1p	1 · E · 2 · N · Ip	1 · E · 173 · N · 1p
Factor do patencia	Unitatio	<u>.€.1</u>	. 3 . 5 . 1	TRIEST

I - Cornente en amperes

E Tension en voltios

N Eficiencia expresada en decimales

C.F. Potencia en caballos de fuerza 1p. Factor de potencia

LETRAS CLAVE

KW - Potencia en Kilowatts KVA : Potencia aparente en Kilovoltamperes

W Potencia en watts
P M Revoluciones por minuto
f Frecuencia
p Numero de polos

*Para sistemas de 2 fases 3 hilos, fa corriente en el conductor comun es 1 41 veces mayor que en cualquiera de los otros conductores

R PM · 1 · 120

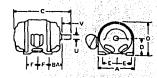
LETRAS CLAVE APLICADAS A LA CLASIFICACION DE MOTORES QUE NORMALMENTE ARRANCAN CON VOLTAJE PLENO

		111111111111111111111111111111111111111		,	{ -	1 -		1'		
		Monofásico	-	5	3	2.114	1. %	14		
LETRA CLAVE NEMA	KVA DE ARRANQUE POR CABALLO	PROTECCIO EN PORCEN PLENA CAR	TAJE DE CO	CIRCUITO DE DERIVACION DE CORRIENTE DE MOTOR						
	DE FUERZA	ARRANQUE PLENO	A VOLTA			ANGUI		RODAMADOR		
		CAPACIDAD MAXIMA DEL FUSIBL	MAX. D	EL !	CAP/ MAX	MA	M	JUSTE AX. DEL TERRUP.**		
くこうのかってるアメトエムかのののシ	000 - 3 1 4 315- 354 400 - 400 400 - 500 500 - 600 500 - 600 600 - 700 7.10 - 700 9.00 - 990 9.00 - 990 9.00 - 990 11.70 - 17.90 12.50 - 13.90 14.00 - 15.90 16.00 - 19.90 16.00 - 19.90 16.00 - 19.90 16.00 - 19.90 16.00 - 19.90 16.00 - 19.90 18.00 - 19.90 20.00 - 22.30 22.40 - y.644	150 250 250 250 250 250 300 300 300 300 300 300 300 300 300 3	150 200 200 200 200 250 250 250 250 250 2		150 200 200 200 250 250 250 250 250 250 2		15 20 20 20 20 20 20 20 20 20 20 20 20 20	000000000000000000000000000000000000000		
Motor rotor embubinado	•	150	150	- }						

^{*}No tiene letre clave. **Tipo Ilmite de tiempo.

Arranque watts x amp, rotor cerrado por h.p. h.p.

1 para monotásico 2 para bilásico 1,732 para trifásico


selección de motores eléctricos

fuerts de françà	1	Rospe de Persona	O	O	Aspertan se venerale See Pairtimente	None Groupe	Aptionen Marcingries	1 5 1	Bumbes Contributes y de Lutina		Compression of Camprisher		lients de Transado	Over Marketon.		Address de Commente to	Meritaments de Mana	Pires of Pales o Reditors	43 6.0	Mails Garage and CC CA	12.	Aprile de Improvia.	THE PROPERTY	- 13	Queb proces y Bures	18	Annual of the Bestit	11	Course (page a late a
П	Eminder to home Conserve on damps	h	110	290 - 250		Chair Contract Americ April 16-10	•		•	1	T	Ī	•	1		•	•	T	•		•			•	•	1	•	9	1
Ш	Sy hours, by a corpora go fire	7% 0	121 0 19	200 0 225	201	Cardior Specimo	•	П	•	T	T	Γ	•		П		•	Ī	•		•	Γ		•	•		9	•	T
	April 60 Br Pris. Byr Erpinder Bon Cyronics on Arran	30	200 - 71	175 - 275	***	Arraman Pouds. Control Sánctico		•		7	9.0			Γ	П	T		•			Γ	Γ		•			T		•
	Source de Augrie.	7.0	200 to 300	700 + 340	****	Corpor Practicalities o programmanion	П			•		•		•	Π				П		Г			1	•	П	Ţ	П	•
1	Par Boso.	100		125 + 150	***	Units Estractures Cargos Canadantos, Arranguith Lagures	П		•	Ī	T	Г	П	Ī	П	1		T	•	T	Γ	Γ		T	Τ	П	•	П	Ī
	pa Arrangya sawa da Ardina Far Baja	73:-	100 - 17	173 a 206	•••	Saratio Especial Sarche Alras Salare		j	d	1	İ			İ		土	Ħ	İ	Ⅱ	1	L			1	İ	9	1	П	7
1	De or Dispuso	100	170 - 270	200 a 230	1 0	Arrandors Fracularies		•	7	•	•	•	П		П			•	П	T	Г				1	П	Т	П	•
3:	Con Emperator Found	70.00	***	179 0 200	4	Cargo Canochado Descriptiones		Ī		T	Ī		П		П	7	П	T	П	T	Γ		Ī	T	T	П	T	П	T
3,2	De Capaciter, while happeneder, for home	1000	150 0 200	175 + 200	***	too Gorman Arrandom Pero Principality	٠	•	•				œ	•	П	Т	Ī	1	•	ī	•	П		•	10	П		•	T
12	Dansen Dansen	17:	1100	0	7.10	Su Cored Cogo	•	╗	•	7	\Box		0,0	•			۰	7					⊣			П	9	•	7
	Danvers Company	- 13:	179 0 200	0	10 - 25	Carpes Proces	L	•	T	í	Œ	•		•	•	T		Đ	П		•	ō	•	1	ri T		Т	П	•
33	Community Service		300 - 000	0	0	Arrandom Fracument	П	╗	ī	8	Ţ		П		П		П	Т	П	Т	П		7	Т	Т	П	Т	П	⊣
200	g Vertex dates	100	120 0 130	176 e 300	***	to the Corps	П			Т	П		-		П	Т	П	Т	П	Т			- 3	•	T	П		•	╗
	Ap Carrismo 3 3-4 Vaga desta		125 - 130	173 - 200	•••	do to Corps	•	•	•	Т	•	•	7		П	1	0	•	11	1	•	$\overline{\bullet}$	•	T	i-	1	•	П	7
Sã.	- Per Verseys, 234	700 -4	175 - 136	173 a 200	***	Charles on Brossanderes	T	ī	7	T			T	Т	П	1	П	T	П	Т	П		7	Т	Τ	П	1	П	T
\$ 4.		10.00	1 199	1 0	3010	Rouge Amone, Control Factors	П	7	7	Т	17		-	1	П	Т	•	+	П	1	П		╛		1	П	•	•	ヿ
3.4	Comingo do Variano	No.	130	0	0	Epops thuy Ampire, Control Freezon	Ī	T	\neg	T			1		П	Т	П	T	П	Τ	П	П	7	Т	Т	П	Ť	П	7
3	Cate Describe	ž.,	100 o 110	100 0 234	ō	Rongo Limitago, Arrenquis Pappas	•	•	•	t		П	1	•	П	•			H	T	•	•	•	T	П	H		T,	ij
Π.	C	. 3:	150	0	0	Rongo Limitados, tratocados Depondentes de la Carda	٠		•	Ī	П		\top				П	T	П	T	П		┪	1	П		T	Ī	T
,]	Compo de Armeter	. 2:-	1100	0	0	None Anoma	H	7	7	7	П	П	7	П	П	T	П	T	H	1	П	•	히	7	П	П	П	7	+
110	County de Verses	200	170	ō	ŏ	Harm Amora Bas L'Islanco	H	+	7	+	H	Η	╅	П	Ħ	Н	\Box	۲	H	т	Н	ě	•	+	Н	†	Н	+	+
1	Correct as Armedy		179 + 200	0	0	Rango Latinippo, Vince and Disserpoints on in Carpo	H	•	1	Ť	•		T	Г	H	Ħ			H	T	Н	7	7	t	H	+	H	1	†
316	Control de Armetar	, A	179 o 300	0	0	Range America Agreeated Limiteds	H	+	1	+	Н	H	+	•	H	1	1	T	H	Н	•	•	٠t	T	Н	+	Ħ	+	†
~[ŝ	Contrat de Vortage	15.	170 - 200	1 8 1	- X -	Song America Sone Eferancia	H	ナ	7	†	Ħ	Н	\top	•	+	П	†	Ħ	1	П	Ħ	7	ă	†	П	†	Ħ	1	†
1:	Compt to Armeter	13.	300 - 400	1 8	-×-	Spring Lawrence	+	+	-		Н	┪	1	Ť	+	Ы	+	Ħ	\top	Н	Н	Ť	7	1	Н	+	Ħ	+	†
علب								٠.	-1	5	~			۳.	٠.		_	۰.		•	_		_	_		_	•		_

881

ALLA DE ORIGEN

dimensiones normales NEMA para motores horizontales a prueba de goteo y totalmente cerrados

ARMAZON	A MAX.	C		D	E	F	o		ВА	Ü	V MIN.
TIPO		GOTEO	CERRADO	<u> </u>			GOTEO	CERRADO			<u> </u>
56 143T 145T 182T 184T	6 1/2 7 7 9	10 4/16 11 11/16 12 11/16 12 5/8 13 5/8	12 11 9/16 11 9/16 14 9/16 15 9/16	3 1/2 3 1/2 3 1/2 4 1/2 4 1/2	2 1/16 2 3/4 2 3/4 3 3/4 3 3/4	1 1/2 2 2 1/2 2 1/4 2 3/4	6 7/8 6 3/4 6 3/4 8 15/16 8 15/16	7 7 1/8 7 1/8 9 3/8 9 3/8	2 3/4 2 1/4 2 1/4 2 3/4 2 3/4	5/8 7/8 7/8 1 1/8 1 1/8	1 7/8 2 2 2 1/2 2 1/2
213T 215T 254T 256T	10 1/2 10 1/2 12 1/2 12 1/2	15 11/16 17 3/16 20 1/2 22 1/4	17 1/2 19 23 1/4 25	5 1/4 5 1/4 6 1/4 6 1/4	4 1/4 4 1/4 5	2 3/4 3 1/2 4 1/8 5	10 7/16 10 7/16 12 1/2 12 1/2	10 5/8 10 5/8 12 5/8 12 5/8	3 1/2 3 1/2 4 1/4 4 1/4	1 3/8 1 3/8 1 5/8 1 5/8	3 1/8 3 1/8 3 3/4 3 3/4
284T 284TS 286T 286TS	14 14 14	23 1/16 22 1/16 24 15/16 23 9/16	26 1/8 24 3/4 27 5/8 26 1/4	7 7 7	5 1/2 5 1/2 5 1/2 5 1/2	4 3/4 4 3/4 5 1/2 5 1/2	13 15/16 13 15/16 13 15/16 13 15/16	14 3/16 14 3/16 14 3/16 14 3/16	4 3/4 4 3/4 4 3/4 4 3/4	1 7/8 1 5/8 1 7/8 1 5/8	4 3/8 3 4 3/8 3
324T 324TS 326T 326TS	16 16 16 16	26 24 1/2 27 1/2 26	29 1/16 26 15/16 30 15/16 29 7/16	8 8 8	6 1/4 6 1/4 6 1/4 6 1/4	5 1/4 5 1/4 6 6	15 15/16 15 15/16 15 15/16 15 15/16	16 3/8 16 3/8 16 3/8 16 3/8	5 1/4 5 1/4 5 1/4 5 1/4	2 1/8 1 7/8 2 1/8 1 7/8	5 3 1/2 5 3 1/2
364T 364TS 365T 365TS	18 18 18 18	28 11/16 26 9/16 29 11/16 27 9/16	32 1/16 29 15/16 32 1/16 30 15/16	9 9 9	? ? ?	5 5/8 5 5/8 6 1/8 6 1/8	17 13/16 17 13/16 17 13/16 17 13/16 17 13/16	18 5/16 18 5/16 18 5/16 18 5/16	5 7/8 5 7/8 5 7/8 5 7/8	2 3/8 1 7/8 2 3/8 1 7/8	5 5/8 3 1/2 5 5/8 3 1/2
404T 404TS 405T 405TS	20 20 20 20 20	32 9/16 29 9/16 34 1/16 31 1/16	36 1/2 33 1/2 38 35	10 10 10 10	8 8 8	6 1/8 6 1/8 6 1/8 6 1/8	19 7/8 19 7/8 19 7/8 19 7/8	20 1/8 20 7/8 20 7/8 20 7/8 20 7/8	6 5/8 6 5/8 6 5/8 6 5/8	2 7/8 2 1/8 2 1/8 2 1/8 2 1/8	7 4 7 4
444T 444TS 445T 445TS	72 22 22 22 22	37 7/8 34 1/8 39 7/8 33 1/8	43 7/8 40 1/8 45 7/8 42 1/8	11	9 9 9 9	7 1/4 7 1/4 8 1/4 8 1/4	22 5/16 22 5/16 22 5/16 22 5/16	22 3/4 22 3/4 22 3/4 22 3/4	7 1/2 7 1/2 7 1/2 7 1/2	3 3/8 2 3/8 3 3/8 2 3/8	8 1/4 4 1/2 8 1/4 4 1/2
1504 15045 1505 1505 1507 1507	24 7/8 24 7/8 24 7/8 24 7/8 24 7/8 24 7/8 24 7/8	44 3/4 38 5/8 46 3/8 40 5/8 50 1/2 44 5/8	53 1/4 47 3/8 - - -	12 1/2 12 1/2 12 1/2 12 1/2 12 1/2 12 1/2	10 10 10 10 10 10	8 9 9 11	75 1/8 75 1/8 75 1/8 75 1/8 75 1/8 75 1/8	25 7/8 25 7/8 - - -	B 1/2 B 1/2 B 1/2 B 1/2 B 5/8 B 5/8	3 7/8 2 7/8 3 7/8 2 7/8 3 7/8 2 7/8	11 5/8 5 3/4 11 5/8 5 3/4 11 5/8 5 3/4
1587 1587S 1589 1589S	28 1/4 28 1/4 28 3/4 28 3/4	59 3/8 51 1/2 66 3/4 48 1/2	- -	14 1/2 14 1/2 14 1/2 14 1/2	11 1/2 11 1/2 11 1/2 11 1/2	12 1/2 12 1/2 16 16	29 29 29 29 29	=	10 10 10 10	4 7/8 3 3/8 4 3/8 3 3/8	14 5/8 6 3/4 14 5/8 6 3/4
1689 1689S	33 3/4 33 3/4	78 70 3/8	=	17 17	13 1/2 13 1/2	20	34 34	-	11 1/2 11 1/2	5 1/8 3 7/8	15 3/B 7 3/4

^{*}Dimensiones en pula uta-

factores de servicio

MAQUINAS IMPULSADAS	MOTORES ELEC FASE DIVIDIDA JAULA DE ARD NORMAL Y SIN DEVANADO SH TURBINAS DE V Y DE AGUA MOTORES DE CO INTERNA.	C.A. ILLA, TORSION CRONOS UNT C.C. VAPOR	MOTORES ELECTRICOS MONOFASCOS DEVANADOS SERIE CA ALTO DESLIZAMIENTO O ALTO PAR DE ARRANQUE DE CA, INDUCCION-REPULSION CA, INDUCCION-REPULSION CA, IPPO CAPACITOR DEVANADO COMPOUND C.C, MAQUINAS DE VAPOR LINEAS DE TRANSMIMISION EMBRAGUES
Ventiladores hasta 10 H.P. Bombas centrifugas Agitadores para líquidos Comprensores centrifugos Transportadores de paquetes Sopladores	1,1		12
Transportatores de banda Lineas de transmisión Generadores Prensas y troqueladoras Maguinas herramientas Maguinas impresoras Ventifadores grandis	1.2		1.4
Motinos de martillos Pulver valores Comprenses Sopiadores de acción positiva Bombas de pistón del tornillo Transpolizadores de patiente Magunesa modistrales Cossocras Magunesa modistrales Elevadores de cargiones Magunesa relativadores de Magunesa relativadores Magunesa modistrales Elevadores de cargiones Magunesa se Magunesa para la industria de lapete La para la industria de la page la modistria de la modistria de la modistria de la modistria de la modistria de la modistria de la modistria de la modistria de la modistria de la modistria de la modistria de la modistria de la modistria de la modistria de la	14		16
Trituradores rotatorios Trituradores de quipadas Trituradores de rotillos Trituradores de rotillos Trituradores de tono Motinos de botas Rotadoras de lamina Motinos de rodillos Aparejos, malacales	16		18

Notal Aumente 0.2 al factor de servicio por servicio continuo de 24 hrs. diarras.

Los motores estándar soportan correctamente su carga normal cuendo la tensión es 10% mayor o menor que la especificada, y cuando la tracuencia es 5% mayor o menor que la especificada.