00582

DETERMINACIÓN EXPERIMENTAL DE LA FOTÓLISIS DEL DIOXIDO DE NITRÓGENO A LA ALTURA DE LA CD. DE MÉXICO Y SU CORRELACIÓN CON MEDIDAS DE RADIACIÓN ULTRA VIOLETA EN SUPERFICIE

T E S I S Que para obtener el grado de Doctor en Ciencias Químicas presenta

TELMA GLORIA CASTRO ROMERO

Director: Dr. Luis Gerardo Ruiz Suárez Codirector: Dr. Mario J. Molina

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA México, D.F. 1995

FALLA DE UNIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. Para mis tres hombres, Carlos, Javier y Rubén, quienes con su cariño y comprensión, me han apoyado siempre.

Carlos, compañero de mi vida, por sus comentarios siempre críticos y profundos pero con mucha sensibilidad humana. Su apoyo me ha ayudado, enormemente, en mi desarrollo profesional.

Javier, mi hijo, por el amor que le tengo, y que con su inquietud continua, siempre es un reto para mi. Espero que nunca pierda su inquietud y la dirija siempre en forma positiva.

Rubén, mi hijo, por el amor que le tengo, y que a través de prudencia y persistencia siempre logra lo que se propone. Solo le falta un poco de paciencia. Creo que con el tiempo la encontrará.

Marzo 1995

Gloria y Germán

Α

mis padres, con admiración y cariño.

A mis hermanos

Al Dr. Luis. G. Ruiz-Suárez, por su excelente dirección y apoyo en el desarrollo de este trabajo y, el haberme dado la oportunidad de conocer a través de este trabajo una pequeña parte de la química de la atmósfera. Como amigo y compañero de trabajo siempre me hizo comentarios atinados.

Al Dr. Mario Molina, por su codirección y excelentes comentarios, tanto por carta como personales, en el desarrollo de este trabajo. Trabajar con un científico tan reconocido mundialmente fue una oportunidad única y valiosa en mi desarrollo profesional.

A la Dra. Carmen Durán, quien me sugirió realizar el doctorado en la Facultad de Química, abriéndome todos los caminos posibles que estuvieron a su alcance. Como mujer científica y amiga me trasmitió su capacidad y tenacidad en el trabajo.

Al Dr. Carlos Gay quien siempre me ayudó a aclarar las dudas que surgieron a lo largo del trabajo, sobre todo, en lo referente al tema de Transferencia de Radiación en la Atmósfera.

A los Doctores Jaime Cervantes de Gortari, Alejandro Salcido González, Apolonio Juárez Nuñez, Claudio Estrada Gasca y Jesús Carlos Ruiz-Suárez por revisar este manuscrito y que con sus comentarios enriquecieron este trabajo.

A la M. en C. Bertha Mar por sus sugerencias para mejorar la presentación del trabajo y por la gran ayuda que me brindó para conseguir muchas cosas.

Para llevar a cabo un trabajo experimental, intervienen muchas gentes, por ello quiero agradecer: al Sr. Francisco García (Don Panchito) porque siempre se preocupó entre otra cosas, por el buen funcionamiento mecánico de la Unidad Móvil y por la seguridad mi persona; A la C.P. Martha Zarate y su grupo por su ayuda en lo referente a la gestiones administrativas para obtener el equipo necesario para el experimento; Al Sr. Rafael García quien siempre me apoyó en las compras del equipo y gestiones con todos los proveedores; Al Ing. Alferdo

iv

Rodríguez y su grupo que me ayudaron en la fabricación de los soportes del reactor, el diseño y acondicionamiento para montar el equipo la Unidad Móvil. Un agradecimiento especial a los señores José G. Mendoza, Mario G. Santos y Antonio G. Perea por su magnífica ayuda en el traslado y manejo del equipo. Finalmente quiero expresar mi agadecimiento a todas las personas que de una u otra forma me apoyaron en el desarrollo de este trabajo.

Este trabajo fue financiado por: el Instituto Mexicano del Petróleo bajo el Convenio IMP-UNAM, la Dirección de General de Estudios de Postgrado bajo el programa PADEP y el Centro de Ciencias de Atmósfera.

vi

RESUMEN \ ABSTRACT viii

CAPÍTULO 1. Introducción 1

- 1.1 Definición del problema 1
- 1.2 Antecedentes 3

CAPÍTULO 2. Fotoquímica en la troposfera 8

- 2.1 Procesos fotoquímicos primarios 8
- 2.2 Especies más importantes que absorben luz en atmósferas limpias y contaminadas 10
- 2.3 Procedimiento para calcular teóricamente la constante de fotólisis 13
 - 2.3.1 Relaciones entre radiancia, irradiancia y flujo actínico 19
 - 2.3.2 Aproximación isotrópica: Luz incidente y reflejada 21
 - 2.3.3 Modelo de dispersión múltiple molecular 23
 - 2.3.4 Modelo para calcular la constante de fotólisis. Aproximación *delta*-Eddington **24**
 - 2.3.5 Ecuaciones del modelo de transferencia de radiación 24

CAPÍTULO 3. Análisis de sensibilidad de un modelo para calcular las constantes de fotólisis del NO₂. 28

3.1 Análisis de sensibilidad del modelo 28

CAPÍTULO 4. Determinación experimental de las constantes de fotólisis del NO₂ 33

4.1 Proceso experimental 33

- 4.2 Técnica experimental 37
- 4.3 Medidas en el Estadio Olímpico, Cd. de México 40
 - 4.3.1 Análisis de los valores teóricos de J(NO₂) y los obtenidos por el experimento realizado en el Estadio Olímpico **41**
- 4.4 Medidas en Palacio de Minería, Cd. de México 43
 - 4.4.1 Análisis de los valores teóricos de J(NO₂) y los obtenidos por el experimento realizado en el Palacio de Minería 44
- 4.5 Medidas en Instituto Mexicano del Petróleo, Cd. de México 46
 - 4.5.1 Análisis de los valores teóricos de J(NO₂) y los obtenidos por el experimento realizado en el IMP 48
- 4.6 Medidas en Tres Marías, Mor., México 49
 - 4.6.1 Análisis de los valores teóricos de J(NO₂) y los obtenidos por el experimento realizado en Tres Marías 51
- 4.7 Análisis general de los valores de fotólisis del NO₂, incluidas las cuatro campañas 52

CAPÍTULO 5. Conclusiones generales 55

REFERENCIAS 57

APÉNDICE A. Sistema de adquisición de datos

APÉNDICE B. Calibración del monitor de NO_x y radiómetro Eppley

APÉNDICE C. Valores experimentales de J(NO₂) y de irradiancia U.V.

Resumen

Se reportan medidas directas de la fotolisis del NO₂ a NO y O(³P) como frecuencias de fotolisis J_[NO2] para la Cd. de México. Estas frecuencias se midieron usando un reactor de cuarzo, donde se hizo pasar una concentración conocida de NO₂ para diferentes tiempos de exposición. El experimento se llevó a cabo en tres localidades diferentes de la ciudad: Estadio Olímpico, Palacio de Minería, Instituto Mexicano del Petróleo con la finalidad de tener diferentes condiciones, tanto en concentración de partícula, como en albedo de superficie y columna de ozono. Para tener un lugar libre de contaminación se realizó una cuarta campaña de medidas en Tres Marías, Mor., México. La radiación UV se midió con un radiómetro Eppley.

Se utiliza un modelo de transferencia de radiación y la fórmula de Madronich para fines de comparación y obtener un modelo más real para calcular las constantes de fotólisis bajo condiciones de la Cd. de México.

Abstract

Direct measurements of the rate of NO₂ photolysis to NO and O(³P) are reported as photolysis frequencies $J_{(NO2)}$ for Mexico City. These frequencies were measured using a quartz reactor, where a known concentration of NO₂ was photolysed for different experimental exposure times. Measurements were recorded in three different locations of the city: Estadio Olímpico, Palacio de Minería, Instituto Mexicano del Petróleo, in order to deal with different conditions of particles concentration, surface albedo and ozone column. A fourth measurement was made in Tres Marías, Morelos, a site free of contamination. UV radiation was measured with an Eppley UV radiometer.

Comparisons of calculated values were made using a radiation transfer model, and Madronich's formula, in order to obtain a model more accurate to calculate the photolysis rate constants under the conditions of Mexico City.

CAPÍTULO 1

1

Introducción

Para la evaluación de políticas de prevención y control de la contaminación atmosférica es importante el uso de modelos fisicoquímicos en los cuales se represente la generación y el comportamiento del *smog*¹ fotoquímico. Entre las especies químicas para las cuales hay interés en modelar la formación y evolución de sus concentraciones están: los oxidantes como el ozono y el dióxido de nitrógeno, los irritantes como los aldehidos, los lacrimógenos como el nitrato de peroxiacilo, los ácidos como el nítrico y el sulfúrico. Todos conocidos por sus efectos nocivos: en la salud de la población, en los materiales y en áreas verdes y de cultivo. Las constantes de fotólisis (J) de las especies químicas presentes en el *smog* fotoquímico son un dato de entrada de especial importancia en los modelos del mismo [*Atkinson y Lloyd 1984; Lurman et al., 1986; Ruiz-Suárez, 1989; Dechaux et al., 1994*]. La forma usual de introducir estas velocidades en los modelos es referirlas a la constante de fotólisis del dióxido de nitrógeno o del ozono.

1.1 Definición del problema

Los modelos de cinética química de la atmósfera requieren entre otras cosas, de la especificación de las constantes de fotólisis² de reacciones fotolíticas que se dan en la tropósfera, las más importantes son las del ozono y dióxido de nitrógeno,

$O_3 + h\upsilon \rightarrow O_2 + O(^1D)$	R1
$NO_2 + hv \rightarrow NO + O$	R2

¹ smog (contracción en ingles de las palabras smoke y fog, humo y neblina), es una palabra usada en la literatura, para señalar contaminación en la atmósfera por diferentes especies, originalmente solo para las mezclas de humos con neblina (como la llamada contaminación tipo Londres) ² Disociación de una molécula al absorber energía.

Estas reacciones tienen lugar en diferentes regiones del espectro solar, la mayoría entre 280 a 420 nm. La fotólisis del dióxido de nitrógeno en el *smog* fotoquímico juega un papel fundamental como el único precursor inmediato de ozono troposférico, es decir,

$$NO_2 + hv \longrightarrow NO + O$$
 R2

$$O + O_2 \xrightarrow{M} O_3$$
 R0

y también es uno de los pasos de inicio en la cadena de oxidación de compuestos orgánicos reactivos.

Las constantes de disociación de las reacciones R1 y R2 se han estudiado experimentalmente bajo condiciones atmosféricas. Estas reacciones se han determinado al exponer a radiación UV una mezcla de gas absorbedor en un tubo de cuarzo. Se mide el cambio de concentración del gas después de la reacción y productos de reacciones secundarias. Así, las velocidades de reacción se determinan por el tiempo de exposición, la concentración inicial del gas, la concentración de los productos secundarios y una fórmula derivada de la cinética química que tiene lugar.

En este tipo de experimentos, hay que tener un cuidado especial al medir los cambios en las concentraciones del gas, los flujos, el tiempo de exposición a la radiación UV y otras variables. Además, se tienen que minimizar los errores experimentales que se pueden dar por absorción, reflexión y refracción en las paredes del tubo, así como también por sombras y reflexiones que se dan por los instrumentos y estructuras cercanas al experimento.

Las reacciones R1 y R2 se han medido en el pasado, en diferentes condiciones atmosféricas por algunos científicos [Jackson et al., 1975; Harvey et al., 1977; Zafonte et al., 1977; Sickles et al., 1978; Dickerson et al., 1982; Parrish et al., 1983; Madronich et al., 1983; Junkermann et al, 1989; Shetter et al., 1990; Brauers y Hofzumahaus, 1992]. Para un mejor entendimiento de los procesos químicos que tienen lugar en la atmósfera es importante la determinación de las constantes de fotólisis. La presencia de partículas y nubes en la atmósfera,

incrementa la incertidumbre en los cálculos y, es por eso que se necesitan medidas de las frecuencias de fotólisis, cuando se investiga *in situ* la fotoquímica de la atmósfera. Sin embargo, las medidas experimentales de las constantes de fotólisis presentan algunas dificultades aún cuando se tenga una atmósfera libre de nubes y aerosoles. La estimación de las J²s mediante modelos de absorción y dispersión de radiación requiere de grandes simplificaciones del problema y los modelos actualmente en uso introducen, en forma usual, incertidumbres de hasta un 20% [*Madronich, 1987*]. Errores de tal magnitud no pueden ignorarse debido a que las constantes de fotólisis son de los parámetros a los cuales el rendimiento de ozono es más sensible. Por otro lado, hacer depender los modelos de calidad del aire de medidas experimentales puede introducir errores de la misma magnitud debido a la dependencia de éstas con efectos locales como el albedo y capa de aerosoles.

En este trabajo se desarrolla y diseña un experimento para obtener las constantes de fotólisis del NO₂ para condiciones de la Cd. de México. Los valores experimentales, obtenidos para J, se comparan con un modelo teórico [*Ruiz Suárez J.C., et al., 1993a*] con el objeto de ajustar los parámetros del modelo, tales como albedo de superficie, columna de ozono, índice de refracción de partículas etc. Con ello se obtiene finalmente un modelo más realista para calcular las J's en la Cd. de México.

1.2 Antecedentes

En la literatura, existen reportes de medidas directas de constantes de fotólisis que anteceden a las obtenidas en el presente trabajo. Sin embargo, cabe mencionar que en México el experimento para obtener las J's del NO₂ (Capítulo 4) se realiza por primera vez.

A la fecha se han empleado dos principios diferentes para medir las constantes de fotólisis; los reactores de cuarzo (actinómetros químicos) y los detectores fotoeléctricos. En los primeros se miden cambios de concentración de

un gas absorbedor, por efecto de la radiación, dentro de un tubo cerrado transparente a la radiación ultravioleta. Todas las medidas pubicadas (*Jackson et al., 1975; Harvey et al., 1977; Zafonte et al., 1977; Sickles et al., 1978; Bahe et al., 1980; Dickerson et al., 1982; Parrish et al., 1983; Madronich et al., 1983; Madronich, 1987; Shetter et al., 1990)*, usan esta técnica.

Jackson et al. [1975] obtienen J, exponiendo una concentración conocida de NO_2 (1ppm) que pasa por un tubo de cuarzo, durante cuatro segundos a la luz solar directa. Presentan una gráfica de J's medidas y de la irradiancia UV cuya ventana espectral se sobrepone a la del NO_2 , encuentran una correlación entre ellas a través de la relación

$$J=0.019\pm0.002E$$
 (E en Watt/m²). (1.1

En sus cálculos no consideran el albedo de superficie y la respuesta coseno del radiómetro Eppley, mismos que si son considerados en el trabajo de *Harvey et al.*, [1977]. Obtienen también una relación para las constantes de fotólisis y la irradiancia, esto es,

1

$$J=E(J_{max}/E_{max}).$$
(1.2)

Además, comentan que si se trabaja en una área con albedo de superficie grande, J se debe multiplicar por un factor (1+A), con A=albedo. Zafonte et al. [1977] calculan las propiedades ópticas de reactores cilíndricos y esféricos que son usados en los experimentos para medir las constantes de fotólisis concluyen que las reflexiones en la superficie del tubo se compensan con las reflexiones internas, con lo que muestran que la geometría cilíndrica para el tubo es la más recomendable. También obtienen una relación semiempírica entre las J's, la irradiancia (E en mWatt/cm²) y el coseno del ángulo cenital (θ),

$J=\{0.079(1/\cos\theta)+0.022\}E$	para 0 ⁰ <θ<40 ⁰	
$J=\{0.16 (1-\cos \theta) + 0.088\}E$	para $40^{\circ} < \theta < 90^{\circ}$	(1.3

Sickles et al [1978] encuentran valores similares a los reportados en Zafonte [1977], pero ellos incluyen el efecto de las nubes. Bahe et al [1980], utilizando un reactor de cuarzo, miden durante nueve meses y con una variedad de condiciones atmosféricas las constantes de fotólisis del NO₂, en un lugar de Alemania cercano a Bonn. *Dickerson et al.* [1982] obtienen valores experimentales para $J(O_3)$ y $J(NO_2)$ utilizando también un reactor cilíndrico de cuarzo. Además, proporcionan una relación semiempírica para las $J(NO_2)$ en términos del ángulo cenital. Para cielo despejado, albedo cero, ángulos entre 0° y 65° y altitud entre cero y 6 km, obtienen,

$$J(NO_2) = 1.6 \times 10^{-2} \exp(0.575 \sec \theta) (s^{-1}).$$
 (1.4)

Muestran también que las $J(NO_2)$ no tienen una dependencia con la presión entre 0.144 a 1.2 atm y que presentan una dependencia muy débil con la temperatura, la altitud y la carga de aerosoles. *Madronich et al* [1984] no están de acuerdo con la dependencia débil de las J's con la temperatura, ya que sus cálculos teóricos muestran que los valores de J pueden cambiar hasta un 15%. En el artículo de *Madronich et al* [1983] se presentan valores de los coeficientes de disociación para el NO₂, medidos con un instrumento diseñado especialmente para medir desde una plataforma montada en un globo sonda, en la estratosfera. Reportan un valor típico de J(NO₂)=8.0X10⁻³ s⁻¹ para un ángulo cenital igual a 40⁰. *Madronich, en 1987*, presenta un modelo para calcular las constantes de fotólisis del NO₂, en él hace una correlación entre estas constantes y medidas de irradiancia E, esto es,

$$J=C[f'+2A_L]E$$
 (1.5)

donde C es una constante, f^{1} es una función de la luz directa y difusa hacia abajo. En el mismo trabajo, se presenta una ecuación 'parametrizada' para calcular J en función de la irradiancia E, la altura z y del ángulo cenital θ_{0} , esto es,

$$J \approx \frac{1.35 \text{ E}}{(0.56 + 0.03z)\cos\theta_0 + 0.21}$$
(1.6)

las ecuaciones 1.5 y 1.6 se utilizan en el presente trabajo para comparar los valores experimentales con los reportados por *Madronich 1987*.

Por otro lado, los detectores fotoeléctricos, tienen una respuesta característica a las longitudes de onda de las frecuencias de fotólisis de $J(O^1D)$, $J(NO_2)$ y $J(NO_3)$ en un hemisferio (2π sr), hacen uso de la proporcionalidad que hay entre las constantes de fotólisis y radiación solar en un intervalo de longitud de onda para un proceso dado [*Junkermann et al, 1989*]. La respuesta espectral del detector se adapta a través de una combinación de filtros ópticos y sensores fotoeléctricos apropiados al producto de la eficiencia cuántica $\varphi(\lambda)$ con los coeficientes de absorción de la molécula $\sigma(\lambda)$, de las diferentes frecuencias de fotólisis manejadas. En los trabajos de *Junkermann et al* [1989] y Brauers y Hofzumahaus [1992] se utilizan los detectores fotoeléctricos. El manejo práctico de estos detectores así como su respuesta hemisférica del sistema difusor, lo hace competitivo para medir las constantes de fotólisis de diferentes procesos fotoquímicos a nivel de superficie, en aviones y globos sondas.

En la literatura, existen también, modelos que calculan a partir de primeros principios las constantes de fotolisis. Esto es, resuelven la ecuación de transferencia radiativa para al atmósfera y con ello obtienen el flujo actínico. [Demerjian et al, 1980; Ruiz Suárez et al., 1993a; Ruggager et al., 1993, 1994]

El presente trabajo está organizado en cinco capítulos. En el capítulo 2 se da en forma breve una introducción de las especies que absorben luz en la troposfera y su fotoquímica. Se dan las bases para el cálculo de las constantes de fotólisis en la troposfera. Se exponen también, las bases de un modelo de transferencia de radiación en la troposfera, para así obtener el flujo actínico y con él, los valores teóricos de las constantes de fotólisis del NO₂, O₃ y HCHO. En el

and the part of

capítulo 3 se presenta un análisis de sensibilidad utilizando el modelo reportado en *Ruiz Suárez et al.*, [1993 a, b]. En el capítulo 4 se explica con detalle el diseño del experimento para obtener las medidas de las constantes de fotólisis del NO_2 para la Cd. de México. Además, se muestran los resultados de las cuatro campañas de medición. Finalmente, en el capítulo 5 se dan las conclusiones de este trabajo.

Fotoquímica de la troposfera

Una gran parte de los procesos químicos en la troposfera se inician por las reacciones fotolíticas. La radiación solar en el visible y ultravioleta, interacciona con los constituyentes atmosféricos, los cuales se fragmentan y se producen átomos, radicales y iones, o bien, en algunos casos solo se excitan, cambiando así su reactividad.

La atmósfera actúa como un filtro de la radiación en onda corta, ya que las especies que la constituyen, absorben la radiación. La fotoquímica en la troposfera está dominada por especies tales como O₃, NO₂, SO₂ y HCHO, las cuales absorben en el ultravioleta.

2.1 Procesos fotoquímicos primarios

La absorción de radiación por una molécula, la conduce a una excitación electrónica. Este proceso se puede representar simbólicamente como,

$$AB + h \upsilon \rightarrow AB^*$$
 (2.1)

La molécula excitada AB* tiene diferentes fases conocidas y varias de ellas ocurren en la atmósfera; puede emitir energía como radiación (fluorescencia), disiparla por colisiones, utilizar la energía para transformaciones químicas (isomerización, disociación, ionización, etc.), transferir toda o parte de la energía a otras moléculas, que posteriormente reaccionarán, o participar en reacciones químicas. En la figura 2.1 se resumen estos procesos. Las rutas (i) y (ii) conducen a la fragmentación de una clase en otra. El proceso (iii) es la luminiscencia o reemisión de radiación: se llama fluorescencia cuando la re-emisión de luz es inmediata y, de lo contrario, fosforescencia. Si las especies excitadas se originan

de una reacción química, la emisión de luz se llama quimicoluminiscencia. Las rutas (iv) y (v) involucran población de otras especies excitadas que se produjeron primero por excitación. La transferencia de energía intermolecular (iv) genera un nuevo estado electrónico de la misma molécula por una transición sin radiación, mientras que la transferencia intramolecular (v) excita a diferentes moléculas, frecuentemente químicamente distintas a las especies absorbedoras. La estabilización por colisiones (vi) es un caso especial de transferencia de energía intermolecular donde la excitación electrónica se degrada a modos vibracionales, rotacionales y traslacionales. La ruta (vii), incluye todos los procesos donde la reacción es posible para cambios que están enlazados con reactantes electrónicamente excitados.

figura 2.1 Caminos de pérdidas por excitación electrónica que son de importancia en química atmosférica. [Wayne , 1991]

2.2 Especies más importantes que absorben luz en atmósferas limpias y contaminadas.

Oxigeno molecular

El oxígeno molecular absorbe luz fuertemente en la región del ultravioleta en longitudes de onda abajo de 200 nm (figura 2.2) lo cual no es importante en la troposfera. Sin embargo, la fotodisociación de O_2 en $\lambda \leq 220$ nm es importante en la estratosfera. La mayor absorción de luz por O_2 está dentro de la región de 175 a 200 nm conocida con el nombre de *Schumann-Runge*. También el O_2 tiene un gran pico de absorción en la región del rojo (762 nm) e infrarrojo (1.27 y 1.07 µm) conocidas como *bandas de oxígeno atmosférico*.

<u>Ozono</u>

Una parte del espectro de absorción del O_3 está en la región de 200 a 300 nm, conocida como *bandas de Hartley* (figura 2.2), en esta región el O_3 absorbe luz fuertemente en la estratosfera y controla la radiación de onda corta que llega al limite de la troposfera. También el O_3 absorbe en la región de 300 a 360 nm, el las llamadas, *bandas de Huggins*, y en la región de 440-850 nm, conocida como *bandas de Chappuis*.

La radiación UV en las bandas de Huggins y la radiación visible en las bandas de Chappuis fotodisocian al ozono para producir oxígeno molecular y oxígeno, uno o ambos pueden estar en estados excitados, dependiendo de la energía de excitación. Por ejemplo a $\lambda \ge 320$ nm, el proceso fotoquímico primario es,

$$O_3 + h \upsilon \longrightarrow O_2 + O(D)$$
 R1

En la troposfera, el aspecto más importante de la fotoquímica del O₃ es la dependencia de la longitud de onda en la producción de O(¹ D) en la reacción R1 ya que O(¹ D) es una fuente de radicales libres hidroxilo vía la reacción con el agua

$$O(^{1}D)+H_{2}O\rightarrow 2OH$$
 R3

La reacción R3 es muy rápida y compite con la desactivación de O(¹D) por aire via

$$O(^{1}D)+M_{aire} \rightarrow O(^{3}P)+M_{aire}$$
 R4

Los radicales libres hidroxilo son muy importantes en la química de la troposfera ya que ellos pueden remover contaminantes tales como CO, CH₄, SO₂, NO₂, HC's [Levy II, 1973; Davis et al., 1979] y contribuyen a la formación de ozono [Fishman y Crutzen, 1978].

Dióxido de nitrógeno

El dióxido de nitrógeno expuesto a radiación a longitudes de onda entre 280 y 420 nm se fotodisocia, en óxido nítrico y un átomo de oxígeno, esto es

$$NO_2 + hv \longrightarrow NO + O.$$
 R2

Arriba de 430 nm , solamente se forman moléculas excitadas de dióxido de nitrógeno, es decir, NO₂. La fotodisociación del NO₂ da origen al mecanismo de reacción mostrado en la figura 2.3

$NO_2 + hv \rightarrow NO + O$	R2
$O + O_2 \rightarrow O_3$	R0
$O + NO_2 \rightarrow NO+O_2$	R5
$O + NO_2 \rightarrow NO_3$	R6
$O + NO \rightarrow NO_2$	R7
$NO_3 + NO \rightarrow 2NO_2$	R 8
$NO + O_3 \rightarrow NO_2 + O_2$	R9
$NO_3 + hv \rightarrow NO_2 + O$	R10
$NO_3 + hv \rightarrow NO + O_2$	R11
$NO_2 + NO_3 \rightarrow N_2O_3$	R12
$N_2O_3 \rightarrow NO_2 + NO_3$	R13
$O + NO_3 \rightarrow NO_2 + O_2$	R14
$O_3 + h \upsilon \rightarrow O_2 + O$	RI
$O_3 + NO_2 \rightarrow NO_3 + O_2$	R15

Figura 2.3 Mecanismo de reacción de fotólisis del NO₂. (Dickerson, 1980)

El dióxido de nitrógeno es una de las especies fotoquímicamente más activas que se encuentran en atmósferas contaminadas y es un participante importante en la formación de *smog*. [*Manahan*, 1991]

Dióxido de azufre

El SO₂ absorbe fuertemente en la región de 240-330 nm y presenta muchos picos pequeños entre los 340 a 400 nm (figura 2.2). El dióxido de azufre se puede

disociar en SO y O (monóxido de azufre y oxígeno) sólo en longitudes de onda menores de los 218 nm, este tipo de reacción no ocurre en la troposfera ya que solo en las longitudes de onda mayores o iguales a 290 nm están presentes.

Esta especie es relevante en la troposfera, ya que en el aire, la oxidación de SO₂ (fase gaseosa) a ácido sulfúrico no se inicializa directamente por procesos fotoquímicos resultado de la absorción de radiación solar. Sin embargo, se inicializa por el ataque de los radicales hidroxilo, los cuales se forman como resultado de procesos fotoquímicos primarios.

Formaldehido

El formaldehido tiene dos caminos de fotodisociación:

HCHO + hu(
$$\lambda$$
 < 370nm)----_a→H + HCO
---_b→H₂ + CO R17

La vía (a) es particularmente importante en la química de la troposfera, ya que en aire proporciona una fuente de radicales HO_2 , vía la reacción de H y HCO con O_2 . Y, a su vez, los radicales HO_2 combinados con NO son fuente de radicales hidroxilo.

2.3 Procedimiento para calcular teóricamente la constante de fotólisis¹

La fotólisis tiene un papel importante en la química de la atmósfera ya que las medidas exactas de las frecuencias de fotólisis o constantes de fotólisis son esenciales en los modelos de calidad del aire.

Las ecuaciones que representan los procesos de fotodisociación en la atmósfera para su uso en modelos de calidad del aire están representados por una ecuación de primer orden:

$$\left(-\frac{d[A]}{dt}\right)_{h\nu} = J[A]$$
(2.2)

¹ Esta sección está basada en los trabajos de Finlayson-Pitts y Pitts [1986] y Madronich [1987a]

donde [A] es la concentración de una especie A disociada y J es la constante de velocidad de fotodisociación para esta especie. Integrando la ecuación 2.2 se tiene

$$\ln [A] = -J_{[A]} t + C_A$$
 (2.3)

donde C_A es una constante de integración que se determina de las condiciones iniciales. Si la concentración de A es $[A_0]$ al tiempo t=0, entonces C_A se puede eliminar de 2.3, obteniéndose,

$$\ln\left(\frac{[A]}{[A_0]}\right) = -J_{[A]}t$$
(2.4)

14 -

En ausencia de otros procesos de pérdida o formación, la concentración de A decae con una vida media de t_i= $\ln 2/J$.

La expresión (2.2) define a la constante de velocidad de primer orden para la fotodisociación, pero no puede ser utilizada para predecir el valor de J en alguna parte específica de la atmósfera. Dicha predicción depende de la luz solar disponible, así como de las propiedades internas de la molécula. Así que es necesario tener una relación entre J y estas cantidades físicas.

Cuando la radiación pasa a través de la atmósfera de la tierra, se modifica en intensidad, por la absorción y dispersión en los gases y partículas que la componen. La luz absorbida por un elemento de volumen de aire se puede calcular usando la ley de Beer-Lambert, si se conoce la concentración de las especies que componen la muestra de aire, y los coeficientes de absorción de las mismas. Para explicar lo anterior, se considera un elemento de volumen (figura 2.4) donde la luz, con intensidad total I'₁ (I'₁=I'_d+I'_s+I'_r, donde I'_d es luz directa, I'_s luz dispersada y I'_r luz reflejada en fotones cm⁻² s⁻¹) y una longitud de onda λ , incide en una caja de aire de 1 cm² de área y altura L.

figura 2.4 Esquema de absorción de luz por una molécula en una caja en la troposfera. [Finlayson-Pitts y Pitts, 1986]

En la figura 2.4 se observa que la luz directa, dispersa y reflejada inciden en la superficie de la caja en forma vertical esto se considera así por simplicidad en el esquema: sin embargo, se sabe que la luz directa, dispersa y reflejada llegan a la superficie desde todas direcciones. Así, la intensidad incidente l'_i es equivalente a un flujo integrado esféricamente. La caja de aire contiene X especies absorbedoras de luz cuya concentración es [X] (número cm⁻³) y sección transversal de absorción σ (cm² moléculas⁻¹). Si la luz que se transmite a través de un volumen es I'_i (fotones cm⁻² s⁻¹) entonces la luz absorbida I'_a (fotones cm⁻² s⁻¹) por las especies X, está dada por,

$$I'_{a} = I'_{i} - I'_{t} = I'_{i} \left[1 - \frac{I'_{i}}{I'_{i}} \right]$$
 (2.5)

Usando la ley de Beer-Lambert²

$$\frac{I}{I_o} = \frac{I'_i}{I'_i} = e^{-\sigma(X)L}$$

en la ecuación 2.5 se tiene

² Ley de Beer-Lambert I/I₀= e^{-nNL} donde I₀ es la intensidad de luz monocromática que incide en la columna, I es la intensidad de luz transmitida a través de la columna del material, N el número de moléculas por cm⁻³ y L es la longitud.

$$I'_{a} = I'_{i} [1 - e^{-\sigma [X] L}]$$
(2.6)

Cuando existe absorción débil, lo cual es cierto para condiciones atmosféricas, se puede usar la aproximación $(1-e^{b}) \approx b$. Así la ecuación 2.6 queda

$$I'_{a}\left(\frac{\text{fotones}}{\text{cm}^{2}\text{s}}\right) \approx I'_{i}(\sigma[X]L)$$
 (2.7)

La luz absorbida por unidad de volumen por segundo I"a, está dada por:

$$I_{s}^{\prime}\left(\frac{\text{fotones}}{\text{cm}^{3}\text{s}}\right) = \frac{I_{s}^{\prime}(\sigma[X]L)}{L} = I_{s}^{\prime}\sigma[X]$$
(2.8)

La forma más común de la ecuación 2.8 es [Finlayson-Pitts y Pitts, 1986]

$$I(\lambda) = \sigma(\lambda) F(\lambda) [X]$$
(2.9)

donde se ha incluído la dependencia explícita de la longitud de onda. La irradiancia actínica $F(\lambda)$ (en unidades de fotones cm⁻² s⁻¹) se usa en lugar de Γ_i , es la intensidad total de luz (directa, dispersada y reflejada) que incide en una superficie unitaria horizontal y es fundamental en todos los cálculos de las constantes de fotólisis en la atmósfera. Es importante notar, que mientras que las unidades de $F(\lambda)$ son fotones cm⁻² s⁻¹, es de hecho un flujo integrado esféricamente. Esto se puede ver por el hecho de que un fotón choca en cualquier punto del espacio en un campo de radiación, desde cualquier dirección.

En la siguiente parte, se presenta la forma en la que las funciones que aparecen en la ecuación 2.9 se relacionan con funciones tales como: el ángulo cenital, el albedo y coordenadas. Las cuales a su vez están en relación directa con las constantes de fotólisis.

Teniendo como referencia a la figura 2.5 se considera una capa atmosférica de espesor infinitesimal, dz, iluminada desde arriba. La "cantidad" de luz incidente sobre la superficie de la capa de arriba depende, en general, de la longitud de onda λ y de la dirección de incidencia de la luz (en coordenadas esféricas θ , ϕ); esta dependencia está especificada por la radiancia espectral I(θ , ϕ), definida como,

$$I(\lambda, \theta, \phi) = dQ / (\cos\theta ds d\omega d\lambda)$$
 (2.10)

donde Q es la energía radiante en el intervalo de longitud de onda d λ , la cual es transportada a través de un elemento de superficie de área ds, en un tiempo dt, originado desde un elemento de ángulo sólido d ω que está a un ángulo θ de la normal de superficie (figura 2.5). Las unidades de fotón son las que se utilizan en este trabajo debido a que la fotodisociación se debe a la absorción de cuantos de luz individuales. Si se conoce la radiancia, el número de fotones que entran en la capa (a través de ds, en un tiempo dt para un ángulo sólido d ω y longitud de onda d λ) se calcula re-arreglando la ecuación 2.10, esto es,

$$dQ = I(\lambda, \theta, \phi) \cos\theta \, ds \, d\omega \, d\lambda \tag{2.11}$$

Después de entrar a la capa, los fotones pueden interactuar con las moléculas y ser absorbidos. Por definición, se considera que la capa tiene N moléculas de la especie absorbedora A, distribuídas uniformemente en el volumen V con una concentración inicial de n=N/V. Debido a que la capa es infinitamente delgada, la forma diferencial de la ley de Beer-Lambert se puede usar para calcular el número de fotones absorbidos por las moléculas A, como: $\sigma(\lambda)$ nξdE, donde $\sigma(\lambda)$ es la sección transversal de absorción de cada molécula A y $\xi(\theta)$ es el recorrido transversal, igual a dz/cos θ , (figura 2.5). Por cada fotón absorbido por una molécula A, hay una probabilidad $\varphi(\lambda)$ de que esta molécula se

disocie (eficiencia cuántica para disociación) de modo que el número de moléculas disociadas es,

$$\varphi(\lambda) \sigma(\lambda) n \xi(\lambda) I(\lambda, \theta, \phi) \cos\theta \, ds \, d\omega \, dt \, d\lambda = \varphi(\lambda)\sigma(\lambda) n I(\lambda, \theta, \phi) ds \, dz \, d\omega \, dt \, d\lambda$$
(2.12)

El número total de eventos de disociación se obtiene integrando sobre todos los ángulos sólidos en la superficie más alta de la capa y, finalmente, sobre todas las longitudes de onda:

$$dN = -\left(dz \int_{s} ds\right) (ndt) \int_{\lambda} \phi(\lambda) \sigma(\lambda) \int_{\omega} I(\lambda, \theta, \phi) d\omega d\lambda$$
(2.13)

El primer factor del lado derecho es el volumen total de la capa, el cual se puede dividir de ambos lados para obtener la razón de cambio de la concentración

$$\frac{\mathrm{dN}}{\mathrm{dt}} = -n \int_{\lambda} \varphi(\lambda) \sigma(\lambda) \int_{\omega} I(\lambda, \theta, \phi) \mathrm{d}\omega \mathrm{d}\lambda$$
(2.14)

La comparación de esta última expresión con la definición empírica de J, (ecuación 2.2) da como resultado:

$$J = \int_{\lambda} \varphi(\lambda) \sigma(\lambda) \int_{\omega} I(\lambda, \theta, \phi) d\omega d\lambda$$
 (2.15)

o también,

$$J = \int_{\lambda} \varphi(\lambda) \sigma(\lambda) F(\lambda) d\lambda$$
 (2.16)

donde $F(\lambda)$ es el flujo actínico. La ecuación 2.16 es la 'ecuación de trabajo' para J.

figura 2.5 Geometría de una capa atmosférica infinitamente delgada utilizada para derivar la ecuación de trabajo para J. [Madronich, 1987a]

La necesidad que presentan los modelos de la química de la atmósfera de tener una mejor descripción de los procesos de fotodisociación, hace indispensable un buen cálculo de la constante de fotólisis (el valor de J), lo cual se logra a través de la ecuación 2.16. Para cada molécula fotoactiva que tiene una sección transversal $\sigma(\lambda)$ y una eficiencia cuántica $\phi(\lambda)$, el valor de J se obtiene integrando el producto de $\sigma(\lambda)\phi(\lambda)F(\lambda)$ sobre todas las longitudes de onda. Aquí $F(\lambda)$ es el flujo actínico, cantidad relacionada con la luz disponible en la atmósfera. En la siguiente sección se presenta una descripción de la relación entre cantidades como radiancia, flujo actínico e irradiancia, las cuales a su vez, están relacionadas en forma directa o indirecta con J.

2.3.1 Relaciones entre radiancia, irradiancia y flujo actínico

El cálculo del flujo actínico se obtiene con el estudio de la radiación solar que incide en el tope de la atmósfera, incluyendo absorción y dispersión (scattering) de la luz, tanto en la atmósfera como en la superficie de la tierra. Por definición el flujo actínico y la irradiancia se calculan por integración de la radiancia I(λ) sobre todos los ángulos [*Liou*, 1980]:

Flujo actínico

$$F \equiv \int_{\omega} I(\lambda, \theta, \phi) d\omega = \int_{\phi} \int_{\theta} I(\lambda, \theta, \phi) \operatorname{sen} \theta d\theta$$

Irradiancia

$$E(\lambda) = \int_{\phi} \int_{\theta} I(\lambda, \theta, \phi) \cos \theta \, \operatorname{sen} \, \theta \mathrm{d} \, \theta \mathrm{d} \phi$$

La irradiancia $E(\lambda)$ es la energía radiante transportada desde todas las direcciones, que atraviesa una superficie (por unidad de área, tiempo y longitud de onda). El factor $\cos \theta$ que aparece en la ec. 2.18, refleja el cambio en el área proyectada de la superficie cuando se va variando el ángulo de incidencia (figura 2.6).

Figura 2.6 a) Geometría de la reflexión lambertiana, rayos incidentes directo y difuso b) Decrecimiento del espacio entre los rayos de un haz colimado después de una reflexión lambertiana. [*Madronich*, 1987a]

La relación entre el flujo actínico y la irradiancia puede ser muy compleja, debido a la dependencia angular de la radiancia. Sin embargo, hay dos casos

(2.18

(2.17

extremos, luz colimada y luz isotrópica, las cuales tienen soluciones simples y que pueden usarse para aproximar la radiación atmosférica en varias situaciones.

.

La luz colimada esencialmente es paralela y se origina de un ángulo sólido muy pequeño $\Delta\omega_0$. Sobre este ángulo pequeño la radiancia I(θ, ϕ) se puede tomar como constante (o al menos igual a un valor promedio), mientras que para los demás ángulos sólidos es igual a cero. Si $\Delta\omega_0$ es muy pequeño las integrales 2.17 y 2.18 se pueden llevar a cabo y obtener la irradiancia E₀ y el flujo actínico F₀:

$$E_{0} = I_{0} \cos \theta_{0} \Delta \omega_{0}$$

$$F_{0} = I_{0} \Delta \omega_{0}$$
(2.19)

Si I_0 es la radiancia solar extraterrestre, E_0 es la irradiancia en el tope de la atmósfera.

Cuando la luz es isotrópica, la radiancia es por definición independiente de la dirección, así, para el hemisferio superior $I(\theta,\phi)=I_{\downarrow}$ =cte. Entonces el flujo actínico y la irradiancia se evaluan de las ecuaciones 2.17 y 2.18 como:

$$F_{\downarrow} = 2\pi I_{\downarrow}$$

$$E_{\downarrow} = \pi I_{\downarrow}$$
(2.21)

2.3.2 Aproximación isotrópica: Luz incidente y reflejada

Para calcular la radiancia , irradiancia y flujo actínico con la luz reflejada $(I^{\dagger}, E^{\dagger}, F^{\dagger})$, en términos de los valores del haz colimado incidente (I_0, E_0, F_0) y el valor isotrópico incidente $(I_{\downarrow}, E_{\downarrow}, F_{\downarrow})$. Se considera que la luz colimada e isotrópica que incide desde arriba sobre una superficie refleja una fracción de energía A_L (albedo de superficie local) y entra de regreso al hemisferio superior. La situación se ilustra en la figura 2.6a. Como el albedo está referido a la energía reflejada, es claro que $E^{\dagger}=A_L(E_0+E_{\downarrow})$. Entonces, usando 2.17 y 2.18 se tiene,

$$E^{\uparrow} = A_{t.}(E_{0} + E_{\downarrow}) = \int I^{\uparrow}(\theta, \phi) \cos\theta d\omega$$

$$F^{\uparrow} = \int I^{\uparrow}(\theta, \phi) d\omega$$
(2.22)

No es posible evaluar estas integrales sobre todos los ángulos sólidos, a menos que se conozca la variación angular de $I(\theta,\phi)$. Por ello es necesario hacer una 'fuerte' aproximación. La aproximación más común es la de considerar una superficie de Lambert: Si la superficie es un buen difusor, se puede suponer que irradia energía hacia arriba aproximadamente igual en todas direcciones, esto es, la radiancia hacia arriba es isotrópica $(I^{\uparrow}(\theta,\phi)=I^{\uparrow}=cte)$. Las integrales angulares se pueden evaluar y las relaciones entre cada cantidad radiométrica antes y después de la reflexión 'lambertiana', quedan como:

$$I^{\uparrow} = A_{L} \left(\cos \theta_{0} I_{0} \Delta \omega_{0} / \pi + I_{\downarrow} \right)$$

$$E^{\uparrow} = A_{L} \left(E_{0} + E_{\downarrow} \right)$$

$$F^{\uparrow} = A_{L} \left(2 \cos \theta_{0} F_{0} + F_{\downarrow} \right)$$

(2.23)

Las ecuaciones 2.23 muestran que las reflexiones en superficie afectan la irradiancia y el flujo actínico por diferentes caminos. El flujo actínico total se obtiene sumando las contribuciones hacia arriba y hacia abajo, esto es,

$$F_{tot} = F_0 + F_{\downarrow} + F^{\dagger} = F_0 (1 + 2A_L \cos\theta_0) + F_{\downarrow} (1 + A_L)$$
(2.24)

Ahora bien, si $A_L=1$, $\theta=0^0$ y $F_{\downarrow}=0$ entonces $F_{tot}=F_0+F^{\uparrow}=3F_0$. Asi, la presencia de una superficie altamente reflectora incrementa el flujo actínico y por consecuencia los valores de J hasta por un factor de tres, relativo solamente al de la luz directa.

2.3.3 Modelo de dispersión múltiple molecular

Se ha mostrado que la dispersión múltiple molecular, la reflexión por la superficie de la tierra, nubes y aerosoles tienen un efecto significativo en la intensidad de la radiación, tanto en la estratosfera como en la troposfera, en longitudes de onda para las cuales es posible la fotodisociación [Michelangeli, et al., 1992].

Luther y Gelinas [1976] en su trabajo discuten ampliamente la importancia de la dispersión molecular y albedo de superficie y sus efectos en las constantes de fotodisociación en la atmósfera. Calcular la cantidad de luz difusa por dispersión y absorción de fotones en la atmósfera es complicada. Isaksen, et al., [1977] desarrollan un esquema numérico simple para calcular los efectos de la dispersión múltiple, absorción y albedo sobre los valores de J. En este esquema la atmósfera se subdivide en 50 capas horizontales, cada una con un espesor de 1 km y cada capa se considera aproximadamente homogénea y absorbe y/o dispersa luz que entra por arriba y por abajo. En cada evento de dispersión se supone que la mitad de la luz es dirigida hacia adelante y la otra mitad hacia atrás a lo largo de la línea original del haz de luz solar, por lo que a este modelo se le conoce con el nombre de 'modelo de dos haces colimados' (two-stream collimated model). La desventaja de este modelo es que no distingue entre luz difusa y luz directa. Luther et al., [1978] proponen dos modificaciones para tener en cuenta lo anterior: i) el factor $2\cos\theta_0$ que aparece en el flujo actínico total, debe aplicarse aún cuando la luz sea dispersada, y ii) para propósitos de cálculo de absorción y dispersión en cada capa se deberá suponer un promedio de la luz difusa que cruza cada capa, lo cual es entonces diferente que para el haz directo. A este método de Luther y colaboradores se le conoce con el nombre de 'modelo de dispersión isotrópico de dos haces (two-stream isotropic scattering model). En el trabajo de Ruiz-Suárez et al. [1993a, 1993b] se desarrolla un modelo similar al de Isaksen, con las observaciones de Luther y colaboradores, para calcular las constantes de fotodisociación del NO₂, O₃ y HCHO. En este modelo, el flujo actínico se calcula usando la ecuación 2.17 en donde la radiancia $I(\theta,\phi)$ se

obtiene de la solución de un modelo de transferencia radiativa, en el cual se usa la aproximación delta-Eddington *de Joseph y Wiscombe* [1976].

2.3.4 Modelo para calcular las constantes de fotólisis. Aproximación delta-Eddington²

La idea central de esta sección es la de presentar en forma breve, las bases téoricas del modelo desarrollado por *Ruiz-Suárez et al.* [1993 a, b] para calcular las constantes de fotólisis del NO₂ bajo condiciones de la Cd. de México.

En la sección anterior se establecieron las bases para el cálculo de los coeficientes de fotólisis J. Así, se puede obtener J a partir de primeros principios integrando el producto del flujo actínico $F(\lambda)$, la sección transversal de absorción $\sigma(\lambda)$ y la eficiencia cuántica $\phi(\lambda)$. El flujo actínico (2.17) y la irradiancia (2.18) se calculan integrando la radiancia $I(\theta, \phi)$ sobre todos los ángulos. La irradiancia describe el flujo de la energía radiante a través de la atmósfera y el flujo actínico se puede entender como la probabilidad de un encuentro entre un fotón y una molécula en la atmósfera.

Para estimar la radiancia necesaria en los cálculos del flujo actínico, se resuelve la ecuación de trasferencia de radiación por el método delta-Eddington.

2.3.5 Ecuaciones del modelo de trasferencia de radiación

La ecuación básica para la dispersión de radiación en una atmósfera planoparalela es:

$$\frac{\mu dI(\tau,\mu)}{d\tau} = -(I_0 + \mu I_1) + \frac{\omega}{2} \int_{-1}^{1} I(\tau,\mu') P(\mu,\mu') d\mu' + \frac{\omega}{4} E_0 P(\mu,-\mu_0) e^{\frac{\tau}{2}\mu_0} \quad (2.25)$$

24

en la ecuación 2.25 se usa la siguiente notación:

² El desarrollo detallado del modelo se encuentra en Montero [1993]

 $\mu = \cos\theta$

 $\theta =$ ángulo cenital

 ϕ = ángulo azimutal

k(z) = coeficiente de extinción

 $\tau = \int k(z')dz'$ espesor óptico

 $\hat{\varpi}(\tau)$ = albedo por dispersión simple

 πE_0 = irradiancia solar en el tope de la atmósfera

P(μ,φ; μ',φ',) es la función fase, que define a luz incidente en μ',φ' la cual es dispersada en la dirección μ , ϕ .

En la aproximación Eddington la radiancia total $I(\tau,\mu)$ se expresa como

$$I(\tau, \mu) = I_0(\tau) + \mu I_1(\tau) \qquad (-1 \le \mu \le 1)$$
(2.26)

substituyendo 2.26 en 2.25 se obtiene [Shettle y Weinman, 1970]:

$$\frac{\mu dl(\tau,\mu)}{d\tau} = -(I_0 + \mu I_1) + \varpi(I_0 + g\mu I_1) + \frac{\varpi}{4} F_0(1 + 3g\mu\mu_0) e^{-\tau/\mu_0}$$
(2.27)

el parámetro g es el primer momento de la función fase, llamado factor de asimetría. Integrando la ecuación 2.27 sobre μ , se encuentran dos ecuaciones diferenciales de primer orden,

$$\frac{dI_{1}}{d\tau} = -3[1 - \varpi(\tau)]I_{0} + \frac{3}{4}\varpi(\tau)F_{0} e^{\tau/\mu_{0}}$$

$$\frac{dI_{0}}{d\tau} = -[1 - \varpi(\tau)g(\tau)]I_{1} + \frac{3}{4}\varpi(\tau)g(\tau)\mu_{0}F_{0} e^{\tau/\mu_{0}}$$
(2.28)

Debido a que ϖ y g son funciones del espesor óptico (lo que es el caso para una atmósfera real heterogénea), el sistema de ecuaciones 2.28 no tiene

una solución analítica. Sin embargo, si se considera que la atmósfera está compuesta por capas homogéneas (cada una con ϖ y g constantes) se pueden encontrar soluciones simples para cada capa. Para la *i*-ésima capa (*i* = 1,2,...,N) se tiene:

$$I_{0}(\tau) = I_{0}^{i}(\tau) = C_{1}^{i} e^{-k_{i}\tau} + C_{2}^{i} e^{+k_{i}\tau} - \alpha_{i} e^{-\tau/\mu_{0}} \qquad \tau_{i-1} < \tau < \tau_{i}$$

$$I_{1}(\tau) = I_{1}^{i}(\tau) = P_{i}(C_{1}^{i} e^{-k_{i}\tau} - C_{2}^{i} e^{+k_{i}\tau}) - \beta_{i} e^{-\tau/\mu_{0}} \qquad \tau_{i-1} < \tau < \tau_{i}$$
(2.29)

donde,

$$\begin{aligned} \mathbf{k}_{i} &= [(1 - \mathbf{\varpi}_{i})(1 - \mathbf{\varpi}_{i}\mathbf{g}_{i}]^{1/2} \\ \mathbf{P}_{i} &= [3(1 - \mathbf{\varpi}_{i}) / (1 - \mathbf{\varpi}_{i}\mathbf{g}_{i}]^{1/2} \\ \boldsymbol{\alpha}_{i} &= 3\mathbf{\varpi}_{i}E_{0}\mu_{0}^{2}[1 + \mathbf{g}_{i}(1 - \mathbf{\varpi}_{i})] / 4(1 - \mathbf{k}_{i}^{2}\mu_{0}^{2}) \\ \boldsymbol{\beta}_{i} &= 3\mathbf{\varpi}_{i}E_{0}\mu_{0}[1 + 3\mathbf{g}_{i}(1 - \mathbf{\varpi}_{i})\mu_{0}^{2}] / 4(1 - \mathbf{k}_{i}^{2}\mu_{0}^{2}) \end{aligned}$$
(2.30)

Para determinar los coeficiente C_{1}^{i} y C_{2}^{i} se usan condiciones de frontera en el tope y fondo de la atmósfera y en la interfase de la capa N-1. Esto conduce a un sistema lineal de 2N ecuaciones que, en principio, tiene una solución fácil. Sin embargo, obtener un código flexible para calcularlas, en donde se pueda escoger cualquier N, τ_{i} , ϖ_{i} y g_{i} no es una tarea trivial. En el trabajo de *Ruiz-Suárez et al.* [1993b], se presenta con detalle el algoritmo para la construcción de la matriz y el vector independiente del sistema de ecuaciones lineales de la forma, **AX=B**.

La irradiancia total se calcula con

$$E_{tot}(\tau) = E^{\uparrow}(\tau) + E_{\downarrow}(\tau) + \pi \mu_0 E_0 e^{-\tau/\mu_0}$$
(2.31)

donde,

$$E^{\uparrow}(\tau) + E_{\downarrow}(\tau) = 2\pi \int_{-1}^{1} (I_{0} + \mu I_{1}) \mu d\mu$$
 (2.32)

Aquí $E^{\uparrow}(\tau) \ge E_{\downarrow}(\tau)$ son la irradiancia hacia arriba y hacia abajo, respectivamente. Para calcular los coeficientes de fotólisis se tiene que evaluar, en lugar de la irradiancia, el flujo actínico. Esto se hace evaluando la siguiente integral,

$$F^{\uparrow}(\tau) + F_{\downarrow}(\tau) = 2\pi \int_{-1}^{1} (I_{o} + \mu I_{1}) d\mu$$
 (2.33)

En el siguiente capítulo se presenta un análisis de sensibilidad del modelo, lo cual permitió obtener algunas condiciones para mejorar el diseño del experimento y medir las constantes de fotólisis en la Cd. de México.
Análisis de sensibilidad de un modelo para calcular las constantes de fotólisis del NO₂

Se presenta un análisis de sensibilidad del modelo para calcular las constantes de fotólisis del NO₂ usando la aproximación delta-Eddington [*Ruiz Suárez et al., 1993 a,b*]. Este análisis se realizó para obtener un modelo bajo condiciones reales de la Cd. de México. Además, permitió un mejor diseño en el experimento (Capítulo 4).

3.1 Análisis de sensibilidad del modelo

El modelo completo está diseñado para calcular: irradiancia, flujo actínico, constantes de fotólisis de O_3 , NO_2 y HCHO. Los datos de entrada para el programa del modelo son: el perfil de concentración para cada componente atmosférico, coeficientes de absorción y dispersión de cada componente por longitud de onda (λ = 290 a 400 nm), eficiencia cuántica de cada componente por longitud de onda y la irradiancia por longitud de onda en el tope de la atmósfera [*Montero, 1993*]. Se modela una atmósfera de 50 km de altura, compuesta por aire, dióxido de nitrógeno, ozono y una capa de aerosoles. La atmósfera se divide en cinco capas, la 1^ª de 50 a 35 kms, la 2^ª de 35 a 20 kms, la 3^ª de 20 a 5 kms, la 4^ª de 5 a 1 kms y la 5^ª de 1 km a la superficie, en ellas se calcula el espesor óptico y el albedo para dispersión simple. Los aerosoles están presentes únicamente en la 5^ª capa.

Se realizaron varias simulaciones con el modelo para probar su sensibilidad a diferentes condiciones. Se cambió el albedo de superficie, el índice de refracción de las partículas y la columna de ozono.

Los valores para el análisis de sensibilidad se escogieron de tal forma que se pretende cubrir diferentes escenarios que se encuentran en la Cd. de México. El albedo de superficie se varió de 0.05, 0.15 y 0.25. Los valores de la columna de ozono en unidades Dobson (UD) se tomaron de los datos reportados por *Bravo* [1984], esto es; 240, 270 y 300. En un trabajo reciente de *Juárez et al.*, [1994] se hace una revisión de las mediciones para el grosor de la columna de ozono de los años de 1986-1989 en la Cd. de México encontrando que, debido a la alta contaminación ambiental, el ozono superficial afecta apreciablemente las mediciones del grosor de la columna de ozono, hasta por 18 UD.

Los aerosoles de polvo pueden formarse de arcilla con un valor típico del índice de refracción de 1.6+0.005i. En atmósferas urbanas contaminadas los aerosoles pueden ser partículas con alto contenido orgánico y se consideran con un índice de refracción de 1.4+0.005i [*Finlayson-Pitts y Pitts , 1986*]

La distribución de tamaño de partícula en la atmósfera de la Cd. de México, puede variar de 0.05 a 1µm [*Montañez y García-García, 1993*] (figura 3.1). Y, de acuerdo con *Junge* [1969], el promedio del tamaño del espectro para partículas de aerosoles atmosféricos más grandes que 0.1 µm de radio se puede describir por

$$\frac{\Delta N}{\Delta r} = c r^{\alpha}$$
(3.1)

donde $\Delta N/\Delta r$ es la concentración de partículas por tamaño de intervalo, r es el radio de las partículas y, c y α son constantes.

Figura 3.1 Distribución de tamaño de aerosol en la Cd. de México. [Montañez y García-García 1993]

Para $r \ge 0.09 \ \mu m$ la forma funcional de Junge se satisface para el conjunto de datos analizados por *Montañez y García-García*. Así, la ecuación se puede escribir como

$$\frac{\Delta N}{\Delta r} = n \left[\frac{r_0}{r} \right]^{\alpha}$$
(3.2)

donde N es la concentración de partículas con radio más grande que r, r_0 (=0.05 μ) es el valor mínimo para el cual la ecuación 3.2 es válida. El valor que reportan para α es: 3 para atmósfera urbana contaminada, 4 para atmósfera urbana limpia y 5 para atmósfera continental, lo que está de acuerdo con *Junge* [1969].

En las tablas 3.1-3.3 se condensan los resultados del análisis de sensibilidad a cambios en los diferentes parámetros. Las cajas en la matriz contienen el porcentaje de cambios relativos al caso de referencia o caso típico de la Cd. de México (albedo 0.15, índice de refracción 1.65 \pm 0.05i, 270 unidades Dobson y α =3).

			CAMBIOS RELATIVOS EN J(O3)								
					UNID	ADES DO	BSON				
		240	270	300	240	270	300	240	270	300	I.REFR
A	.05	24.3	2.4	-14.8	19.0	-1.9	-18.6	9.1	-5.24	-22,4	1.4
L		5.2	-13.3	27.6	19.5	-14.3	18.6	14.8	-5.2	-21.4	1.6
в	.15	44.8	19.1	-1.0	37.1	12.9	-6.2	31.4	9.1	-10.0	1.4
E		21.4	0.0	-16.8	37.6	13.3	-5.7	32.9	9.1	-9.1	1.6
D	.25	67.7	36.2	13.3	56.2	28.6	7.1	50	24.8	2.4	1.4
0		38.6	14.3	4.8	57.1	29.1	7.6	51.4	24.8	3.8	1.6
U <u></u>	<u></u>	- 1999 1998 -				4 α	nesser: Scitti		5	segeras Malifeta	

Tabla 3.1 Análisis de sensibilidad del modelo para J(O₃)

Los cálculos para ozono (tabla 3.1) muestran que las constantes de fotólisis decrecen un 13% cuando se reduce el albedo de 0.15 a 0.05 y se incrementan un 14% cuando se aumenta a 0.25. Esto sugiere que puede haber un cambio de aproximadamente un 30% en los valores de las constantes al desplazarse de una parte a otra en la ciudad, manteniendo todos los demás parámetros del caso típico. Las constantes del dióxido de nitrógeno tienen un comportamiento similar a las del ozono (tabla 3.2). La irradiancia es menos sensible a este cambio, esto se puede explicar por el hecho de que sólo se toma en cuenta la radiación directa y difusa hacia abajo [*Madronich, 1987 b*]. Para el caso de sensibilidad del modelo a cambios en la columna de ozono se puede observar que las constantes de fotólisis del ozono decrecen casi un 17% al pasar de 270 a 300 UD y se incrementan al pasar a 240 UD. No ocurre así para el dióxido de nitrógeno, ya que los cambios son del orden de un 1%. Sin embargo, para ajustar mejor los valores de J(NO₂) a los experimentales, se utilizó el valor de 290 UD en el modelo (Capítulo 4), lo cual está de acuerdo a lo que se sugiere en *Júarez et al* [1994].

			CAMBIOS RELATIVOS EN J(NO₂) %								
					UNIDA	ADES D	OBSON	ł		·	l
		240	270	300_	240	270_	300	240	270	300	LREFR
A	.05	-6.3	-6.6	-6.8	-6.1	-6.3	-6.6	-7.2	-7.6	-7.6	1.4
L		-13.1	-13.2	-13.4	-6.5	-6.7	-7.0	-7.3	-7.6	-6,5	1.6
в	.15	8.0	7.7	7.5	8.3	8.1	7.8	7.3	6.8	6.8	1.4
E		0.1	0.0	-0.3	8.0	7.7	7.5	7.1	6.8	6.6	1.6
D	.25	23.0	22.8	22.4	23.6	23.3	23.0	22.5	22.0	21.9	1.4
0		14.2	14.0	13.7	23.1	22.8	22.5	22.4	22.0	21.8	1.6
			3		24.94	4			5	digar dig	
						ά					

Tabla 3.2 Analisis de sensibilidad del modelo para J(NO₂)

		CAMBIOS RELATIVOS EN IRRADIANCIA %								%	
	1				UNIDA	DES D	OBSON			,	
		240	270	_300	240	270	300	240	270	300	1. REFR
A	.05	13.9	13.3	12.7	14.1	13.5	12.9	11.7	11.0	11.0	1.4
L		-2.6	-3.0	-3.4	12.5	11.9	11.5	11.5	11.0	10.4	1.6
в	.15	16.5	15.9	15.5	16.7	16.3	15.7	15.1	13.9	14.1	1.4
Е		0.4	0.0	-0.6	15.7	14.7	14.3	14.5	13.9	13.3	1.6
a	.25	19.3	18.7	18.1	19.7	19.1	18.5	18.9	16.9	17.8	1.4
0		3.6	3.2	2.6	18.3	17.7	17.1	17.5	16.9	16.3	1.6
		3 4 5									
			αα							1	

Tabla 3.3 Analisis de sensibilidad del modelo en irradiancia.

Estos resultados llevaron a realizar varias campañas para medir la constante de fotólisis del NO₂ en diferentes lugares de la Cd. de México.

Cuando se considera una atmósfera no contaminada (α =4) el valor de las constantes de fotólisis del NO₂ aumenta casi un 8% (tabla 3.2). Teniendo en cuenta este resultado, se realizó una campaña en el poblado de Tres Marías, Mor., con el fin de tener un lugar de referencia. Para efectos de comparación, este poblado se considera que tiene condiciones geográficas similares a la Cd. de México (Capítulo 4).

El diseño del experimento y la metodología seguida para obtener los valores experimentales de las constantes de fotólisis del NO₂ para la Cd. de México, se presenta en el siguiente capítulo.

Determinación experimental de las constantes de fotólisis del NO2

Con base en el análisis de sensibilidad del modelo presentado en el capítulo anterior, para calcular las constantes de fotólisis bajo condiciones de la Cd. de México, se realizaron campañas para medir en tres localidades de la ciudad: esto es, Estadio Olímpico, Palacio de Minería, Instituto Mexicano del Petróleo. Se trató de cubrir condiciones diferentes en albedo de superficie y concentración de partículas. Además, para tener un lugar de referencia sin contaminación y con condiciones geográficas similares a la ciudad, se llevó a cabo una cuarta campaña en el poblado de Tres Marías, Morelos.

El experimento requiere de condiciones de cielo despejado, lo cual se logra haciéndolo en temporada de secas en México.

4.1 Proceso experimental

En la figura 4.1 se muestra el diagrama del dispositivo experimental utilizado para obtener la constante de fotólisis del dióxido de nitrógeno y la irradiancia ultravioleta. Con el objeto de entender mejor el funcionamiento del experimento, la descripción se divide en tres partes.

En la primera parte, se hace pasar una concentración conocida (47 ppm) de NO_2 diluida en nitrógeno (ALPHAGAZ) por un regulador de flujo (VICI, CONDYNE, modelo SA202-31) que mantiene un flujo de 200 cm³ min⁻¹, el cual se registra en un medidor de flujo (AALBORG, modelo GFM-1700, intervalo 0-5 litros). El NO₂ pasa por una válvula solenoide (ALLTECH, ATKOMATIC, modelo K38G16VN), en donde una salida se conecta con una manguera de teflón (1/4", o.d., ALLTECH, 5 m de longitud) al reactor (tubo de cuarzo de 1" de diámetro interno y 1 m de largo) la otra salida va al monitor de NO_X (Columbia Sc. In. Co., modelo NA510-2), la cual se usa solo cuando se lleva a cabo la calibración del monitor (Apéndice B) y para obtener las condiciones iniciales del experimento (tiempo cero). Los trabajos de *Zafonte et al*

.

....

[1977]; *Dickerson y Stedman* [1980]; *Madronich et al* [1984], muestran que los tubos cilíndricos con una longitud mucho mas grande que su diámetro dan buenos resultados en las medidas de fotólisis.

Figura 4.1 Diagrama del experimento

El cilindro de oxígeno se conecta a través de un regulador y un medidor de flujo (100 cm³ min⁻¹) directamente al analizador de óxidos de nitrógeno para que genere ozono y tenga lugar la reacción B.1 (apéndice B). En el reactor se lleva a cabo la fotólisis de NO₂. La presión en el reactor se mantiene a presión atmosférica y se mide con un transductor de presión (Data Instruments, modelo SAPSIS, PSIA). La temperatura en el reactor se mide con un termopar tipo J, manteniéndose a temperatura ambiente. El tubo de cuarzo o reactor se montó en una base de metal a 20 cm de la superficie de la base, la cual a su vez, se fijó en el techo de la Unidad Móvil (altura, 3m), la salida del reactor se conecta al monitor de NO_x con una manguera de teflón (¼ ", o.d., ALLTECH, 7m de longitud). Todas las mangueras usadas, se cubren con cinta adhesiva negra para evitar la entrada de luz. Las conexiones se hicieron con conectores de acero inoxidable (SWAGELOK). El eje del reactor se orientó perpendicular al plano de la trayectoria del sol, durante el día. La base del reactor, las conexiones de acero inoxidable y el techo de la Unidad Móvil se pintaron de negro

mate, para minimizar la reflexión de la luz solar durante el experimento. En el monitor de óxidos de nitrógeno se miden las concentraciones de NO₂, NO y NO_x.

La segunda parte del experimento es la que concierne al sistema de adquisición de datos. La salida de los tres canales (NO₂, NO y NO_x) del analizador de óxidos de nitrógeno (señal en voltaje) se conecta a una computadora PCLAB 80386 a través de una tarjeta de interfase PCL812 [*1989*] (Apéndice A) del sistema de adquisición de datos LabDas [*PC-LabDas, 1991*]. A la tarjeta PCL812 se le conecta en cascada una tarjeta PCL789 [*1989*] (Apéndice A) que tiene la función de amplificar y ramificar la señal. Con ella es posible medir la temperatura, la presión y la irradiancia UV que se detecta con un radiómetro Eppley (THE EPPLEY LAB., modelo 27992) cuya ventana espectral es de 295 a 385nm (Apéndice B). La señal de salida de estos sensores es en milivolts. El radiómetro se coloca en el techo de la unidad móvil, a poca distancia del reactor, las reflexiones de la luz por este instrumento son despreciables ya que el reactor solo recibe luz directa y luz difusa hacia abajo (figura 4.2) [*Shetter R.E. et al, 1990*]

Figura 4.2 Representación esquemática de la radiación directa y difusa hacia abajo, que llega al reactor ubicado en la "Unidad Movil".

Para la captura automática de los datos se hizo un programa (Apéndice A) utilizando el soporte de programación (software) del sistema LabDas. Durante cada campaña se tomaron medidas cada minuto en un espacio de tiempo de 7 a 10 horas, dependiendo de la campaña. Por último, la tercera parte comprende, tanto la calibración del sistema (Apéndice B), así como el establecimiento de las condiciones iniciales. La condición inicial del sistema (tiempo cero) se obtiene cubriendo todas las mangueras con cinta negra y el reactor con tela negra, para evitar que la luz solar entre al sistema y se lleve a cabo el proceso de fotólisis. La concentración de NO₂ reportada por el fabricante fue de 47ppm ($1.562X10^{15}$ moléculas cm³). El valor obtenido como condición inicial de NO₂ fue para la campaña del Estadio Olímpico: 45.54 ppm ($1.120X10^{15}$ moléculas cm³). Aquí hay que notar que hay una pérdida de NO₂, por absorción y difusión en el teflón. [*Molina*, 1995]

Para las tres campañas restantes, hubo necesidad de cambiar de cilindro de NO₂ (45.3 ppm, reportado por el fabricante) por lo que se repitió el procedimiento descrito en el párrafo anterior, para obtener la nueva condición para NO₂, así se obtuvo 43.84ppm (1.078×10^{15} moléculas cm⁻³).

Para obtener diferentes tiempos de exposición, se modificó la longitud del tubo de cuarzo o reactor, cubriéndolo por secciones, con tela negra. Se usaron cuatro diferentes longitudes, cada una corresponde a un día completo de medidas. Así una campaña comprende cuatro días.

4.1.1 Pérdida de NO2 en el sistema

El dióxido de nitrógeno al pasar por 12 metros de tubería de teflón de ¼ " o.d y 1 metro de tubo de cuarzo, se absorbe o difunde en el teflón, con lo cual se tiene un cambio de concentración de NO₂. La metodología seguida para encontrar la pérdida de NO₂ por este efecto se describe a continuación. Se hace pasar NO₂ a través de diferentes longitudes de manguera (0.075, 0.14, 0.25, 0.50, 1.0, 1.50, 5.0 y 7.0 metros), las cuales se conectan al monitor de NO_x, obteniéndose un registro de la concentración del gas, por cada longitud. Como se conoce el flujo (200 cm³ min⁻¹) y el volumen del gas que pasa a través de las mangueras, es posible obtener: el tiempo que el gas está en contacto con las paredes del sistema y así el cambio de concentración del gas.

. . . .

4.2 Técnica experimental

En esta parte se presenta la técnica usada para calcular la constante de fotólisis usando los cambios de concentración de NO₂ registrados en el monitor de óxidos de nitrógeno durante el experimento.

REACCION	CONSTANTE DE REACCION	-
$NO_2 + h \upsilon \rightarrow O + NO$	7.74X10 ⁻³	R2 ^b
$O + O_2 \rightarrow O_3$	1.403X10 ⁻¹⁴	R0*
$O + NO_2 \rightarrow NO + O_2$	1.189 X10 ⁻¹²	R5
$O + NO_2 \rightarrow NO_3$	1.41X10 ⁻¹²	R6*
$O + NO \rightarrow NO_2$	1.76X10 ⁻¹²	- R7*
$NO_3 + NO \rightarrow 2NO_2$	2.0X10 ⁻¹¹	R8
$NO + O_3 \rightarrow NO_2 + O_2$	1.36X10 ⁻¹⁴	R9
NO₃ + hu → NO₂ + O	1.37X10 ⁻¹	R10
$NO_3 + hv \rightarrow NO + O_2$	1.667X10 ⁻²	RII
$NO_2 + NO_3 \rightarrow N_2O_3$	1.765X10 ¹²	- R12
$N_2O_3 \rightarrow NO_2 + NO_3$	6.416X10 ⁻²	R13
$O + NO_3 \rightarrow NO_2 + O_2$	1.0X10 ⁻¹¹	R14
$O_3 + h \upsilon \rightarrow O_2 + O$	2.453X10 ⁻⁵	RI
$O_3 + NO_2 \rightarrow NO_3 + O_2$	3.226X10 ⁻¹⁷	RI5

Tabla 4.1 Mecanismo de fotólisis del NO2

* Equivalente a la constante de reacción de dos cuerpos para un número de densidad de 2.5X10¹⁹ moléculas cm³. ^b Constante de fotólisis medida en IMP, 13:00h.

La constante de velocidad para una reacción fotoquímica primaria, como lo es la reacción R2, está descrita por [*Demerjian et al., 1980*]:

$$\frac{d[NO_2]}{dt} = -J_2 [NO_2]$$

donde J2 es su constante de fotólisis.

(4.1

Si la concentración inicial de NO₂ e [NO₂]₀ en el tiempo $t=t_0$, entonces, integrando 4.1 se tiene

$$\ln\left(\frac{[NO_2]}{[NO_2]_0}\right) = -J_2 t$$
(4.2)

donde J₂ es la pendiente de una recta.

A continuación se muestra el desarrollo para obtener la ecuación 4.1. Del mecanismo de fotólisis del NO_2 (tabla 4.1) se obtienen las siguientes ecuaciones para cada uno de los reactivos involucrados.

$$I) \qquad \frac{d[NO_2]}{dt} = -J_2[NO_2] - k_3[O][NO_2] - k_4[O][NO_2] + 2k_4[NO_3][NO] + k_4[O_3][NO] - k_4[O][NO] - k_4[O][NO] + J_{10}[NO_3] - k_{12}[NO_2][NO_3] + k_{13}[N_2O_3] + k_{14}[O][NO_3] - k_{13}[O_3][NO_2]$$

II)
$$\frac{d[NO_3]}{dt} = k_6[O][NO_2] - k_7[NO_3][NO] - J_{10}[NO_3] - J_{11}[NO_3] - k_{12}[NO_2][NO_3] + k_{13}[N_2O_3] - k_{14}[O][NO_3] + k_{15}[O_3][NO_2]$$

III)
$$\frac{d[O]}{dt} = J_2[NO_3] - k_0[O][NO_2] - k_3[O][NO_3] - k_3[O][NO_3] - k_7[O][NO] + J_{10}[NO_3] - k_{14}[O][NO_3] + J_1[O_3]$$

 $IV) \quad \frac{d[NO]}{dt} = J_2[NO_3] + k_3[O][NO_3] - k_1[O][NO] + k_4[NO_3][NO] - k_2[NO][O_3] + J_{11}[NO_3]$

 $V) \quad \frac{d[O_{2}]}{dt} = -k_{0}[O][NO_{2}] + k_{3}[O][NO_{2}] + k_{9}[NO][O_{3}] + J_{1}[NO_{3}] + k_{14}[O][NO_{3}] + J_{1}[O_{3}] - k_{14}[O][NO_{3}] - k_{14}[O][NO$

VI)
$$\frac{d[N_2O_3]}{dt} = k_{12}[NO_2][NO_3] - k_{13}[N_2O_5]$$

Las ecuaciones I-VI forman un sistema de ecuaciones diferenciales ordinarias, lineales y acopladas cuya solución se encuentra a través del uso de métodos numéricos. Se utiliza el paquete KINMOD5 para obtener la solución de las ecuaciones [*Ruiz Suárez. et al 1993*]. Este paquete es un conjunto de programas en lenguaje FORTRAN diseñado para representar y estudiar la cinética de un mecanismo químico. Se consideró un tiempo de simulación de 200 segundos, el cual corresponde al tiempo de mayor exposición del NO₂ en el experimento. En la figura 4.3 se muestra la evolución en el tiempo de los diferentes reactivos involucrados en el mecanismo químico del NO₂. Con el objeto de presentar en una sola gráfica todas las especies involucradas, las curvas para O, NO₃ y O₃ se aumentaron por un factor de 10^6 y la curva para el N₂O₅ se aumentó por un factor de 10^2 .

Figura 4.3 Evolución en el tiempo de los reactivos que intervienen en el mecanismo de fotólisis del NO₂. Las curvas para O, NO₃ y O₃ están aumentadas por un factor de 10^6 . La curva para N₂O₅ está aumentada por un factor de 10^2 .

Con los resultados presentados en la figura 4.3 se hizo la la tabla 4.2, donde se muestra el orden de magitud de cada término que aparece en la ecuación I, lo que permite en buena aproximación, obtener la ecuación 4.1.

término de la ecuación 1	valores dados por la simulación	orden de magnitud
J ₂ [NO ₂]	(7.74x10 ⁻³)(1.710 ¹⁴)	1012
k ₃ [O][NO ₂]	(1.18x10 ⁻¹²)(1.5x10 ^E)(1.7x 10 ¹⁴)	1010
k ₆ [O][NO ₂]	$(1.41 \times 10^{-12})(1.5 \times 10^{4})(1.7 \times 10^{14})$	10 ¹⁰
k ₇ [O][NO]	$(1.76 \times 10^{-12})(1.5 \times 10^8)(9.3 \times 10^{14})$	10 ¹¹
ka[NO3][NO]	(2x10 ⁻¹¹) (4.41x 10 ⁶) (9.3x 10 ¹⁴)	109
k ₉ [O ₃][NO]	(1.36x10 ⁻¹⁴)(1.3x 10 ⁸)(9.3x 10 ¹⁴)	10
J ₁₀ [NO ₃]	(1.37x10 ⁻¹)(4.41x 10 ⁶)	10 ³
k ₁₂ [NO ₂][NO ₃]	(1.76x10 ⁻¹²)(1.7x 10 ¹⁴) (4.41x 10 ⁶)	108
k ₁₃ [N ₂ O ₅]	(6.41x10 ⁻²)(3.1x10 ¹⁰)	10*
k ₁₄ [O][NO ₂]	(1x10 ⁻¹¹)(1.5x 10 ⁸)(4.41 x 10 ⁶)	103
k15[O3][NO2]	$(3.2210^{-17})(1.3 \times 10^8)(1.7 \times 10^{14})$	105

Tabla 4.1 Orden de magintud de los términos de las ecuaciones I-IV

4.3 Medidas en el Estadio Olímpico, Cd. de México

El Estadio Olímpico está situado al sur de la Cd. de México (19[°] 19' 50" latitud norte, 99[°] 11' 03" longitud y 2280 m sobre el nivel del mar) rodeado básicamente por árboles, jardines y lava volcánica. Se puede considerar como parte de una de las pocas zonas verdes de la ciudad. El albedo de superficie que se considera para este lugar es 0.13 de acuerdo a las tablas de *Finlayson-Pitts* y Pitts, [1986] y *Dickerson* [1980]. La campaña de medición se realizó los días 30 de noviembre, 1, 3 y 4 de diciembre de 1993. Durante estos días se presentaron cielos despejados con excepción del día 4 que estuvo un tanto brumoso.

La longitud del reactor se varió, de acuerdo a la tabla 4.2. El ángulo cenital en este sitio durante el período en que se llevó a cabo el experimento fue de 41.66 grados, a las 12:30 horas (tiempo local).

Estadio Olímpico						
días	30 nov 1993	1 dic 1993	3 dic 1993	4 dic 1993		
longitud	94cm	74cm	64cm	54cm		

Tabla 4.2 Cambios de longitud del reactor expuesto a la luz solar

4.3.1 Análisis de los valores teóricos de J(NO₂) y los obtenidos en el experimento realizado en el Estadio Olímpico

Los valores de J(NO₂) obtenidos del experimento (triángulos sólidos) y los del radiómetro Eppley (cada minuto) en el Estadio Olímpico se muestran en la figura 4.4. Se puede observar que los mínimos y máximos de ambas curvas están en buena correlación. Sin embargo, después de las 13:30 ambas curvas presentan un desplazamiento, esto se puede explicar por la presencia, cercana al experimento, de una construcción con techo de lámina. Esta construcción se localizaba a 70 m al sudoeste del eje del reactor, el cual a su vez se orientó perpendicular al plano de la trayectoria seguida por el sol durante el día. El techo de lámina aumenta el albedo regional cercano al reactor.

Los valores teóricos de la fotólisis del dióxido de nitrógeno se calcularon con la ecuación 2.18, donde se usó la aproximación delta-Eddington en el modelo de trasferencia radiativa, condiciones de cielo claro, altura 2240 msnm, albedo regional 0.13 para λ < 410 nm, 290 UD [*Juárez et al 1994*], para el caso de partículas α = 3 (exponente de la ecuación 3.2) e índice de refracción de las partículas de 1.4+0.05i.

La J(NO₂) total se calcula sumando las contribuciones asociadas a luz directa J₀ y a luz difusa hacia abajo J_d y hacia arriba J_u. Esta última no se considera en el modelo al comparar con los valores experimentales. En la figura 4.5 se muestran, con un intervalo de media hora, los valores experimentales (triángulos sólidos), los valores calculados con el modelo completo (cuadros sólidos), los calculados con el modelo (MC) sin la contribución de luz difusa hacia arriba (cuadros vacíos). También se muestran los valores calculados (círculos sólidos) con la ecuación 1.5 donde la función f se calcula con el modelo [*Montero, 1993*] y E es la irradiancia UV, medida *in situ*, por el Eppley. Esta fórmula fue derivada por *Madronich* [*1987b*] lo mismo que la ecuación 1.6, fórmula 'parametrizada' (círculos vacíos). Al comparar los valores teóricos con los experimentales se ve que el ajuste es mejor con el modelo (MC) usado en el presente trabajo (sin la contribución de luz difusa hacia arriba) que usar los modelos de Madronich ya que con ellos se subestima, por ejemplo, el valor de J(NO₂) con un error hasta de un 28.57% a las 12.30 horas.

Figura 4.5 Comparación de los valores experimentales y teóricos de la fotólisis del dióxido de nitrógeno en el Estadio Olímpico; a) experimentales (triángulos sólidos), b) calculados con el modelo MC (cuadros sólidos), c) calculados con el modelo MC sin la contribución de luz difusa hacia arriba (cuadros vacíos). d) calculados con la fórmula de Madronich (círculos sólidos). e) calculados con la fórmula parametrizada de Madronich (círculos vacíos)

4.4 Medidas en el Palacio de Minería, Cd. de México

El experimento se llevó a cabo en el techo del Palacio de Minería, situado en el centro de la Cd. de México (19º 25' 59" latitud norte, 99º 07' 58" longitud y 2233 msnm), rodeado por edificios y calles de concreto. El albedo de superficie que se considera para este lugar es 0.10. La campaña de medición se realizó los días 9-13 de febrero de 1994. Durante estos días hubo contaminación alta (visibilidad entre 500-700m), cielos despejados sin nubes con excepción del día 11 en donde se presentaron pocas nubes del tipo *cirrus* muy altas.

	Palacio de Minería							
días	10 feb 1994	11 feb 1994	12 feb 1994	13 feb 1994				
longitud	54cm	74cm	64cm	94cm				

Tabla 4.3 Cambios de longitud del reactor expuesto a la luz solar

El ángulo cenital en este sitio durante el periodo de medición es de 34.06 grados a las 12:30 hs (tiempo local). En este lugar también se tomaron registros de concentración de partículas con diámetros de 0.4 a 1µm.

4.4.1 Análisis de los valores teóricos de J(NO₂) y los obtenidos en el experimento realizado en el Palacio de Minería

En la figura 4.6 se presentan los valores obtenidos del experimento (triángulos sólidos) y los del radiómetro Eppley (con un intervalo de un minuto), se puede observar que las curvas están en buena correlación en sus máximos y mínimos, sin embargo, se nota un desplazamiento de la curva de la J(NO₂) entre las 14:00 y 16:00 horas, con respecto a la de la irradiancia (línea continua). Este comportamiento, similar al del Estadio Olímpico, puede explicarse también, por la presencia de edificios altos como la Torre Latino Americana y el Edifício del Banco de México, situados al sudoeste del reactor, estas construcciones, si bien no obstruían la luz solar que llegaba al reactor, si tenían influencia en las medidas de las constantes de fotólisis.

Los valores teóricos de J(NO₂) se calcularon utilizando en el modelo MC, las siguientes condiciones: albedo regional de 0.10, valor de la columna de ozono 290 UD, índice de refracción de partículas de 1.4+0.05i y α =3. El valor de α se confirma para este caso, al analizar los datos de concentración de partículas (figura 4.7) se encuentra un valor para α igual a 3.36 por lo que están en buena correlación con los

presentados en el trabajo de *Montañez y García-García* [1993] es decir que es válido usar la aproximación de Junge (ecuación 3.11).

Figura 4.6 Valores experimentales de J(NO₂) y lecturas en el radiómetro Eppley como función del tiempo 10-13 de abril de 1994, Palacio de Minería, Cd. de México

Figura 4.7 Concentración de partículas, Palacio de Minería, Cd. de México

En la figura 4.8 se muestran los valores experimentales (triángulos sólidos), los calculados con el modelo completo (cuadros sólidos), los valores calculados con el modelo MC sin la contribución de luz difusa hacia arriba (cuadros vacíos). Los círculos sólidos y vacíos son los valores calculados con la fórmula de Madronich y la fórmula parametrizada de Madronich, respectivamente. Se puede notar que el modelo MC sobrestima los valores de fotólisis, durante las primeras horas de día y por la tarde, esto se debe a que la luz que le llega al reactor se atenúa o modifica por la presencia de edificios.

Figura 4.8 Comparación de los valores experimentales y teóricos de la fotólisis del dióxido de nitrógeno en el Palacio de Minería; a) experimentales (triángulos sólidos), b) calculados con el modelo MC (cuadros sólidos), c) calculados con el modelo MC sin la contribución de luz difusa hacia amba (cuadros vacíos). d) calculados con la fórmula de Madronich (círculos sólidos). e) calculados con la fórmula parametrizada de Madronich (círculos vacíos)

4.5 Medidas en el Instituto Mexicano del Petróleo (IMP), Cd. de México

El techo del edificio de Geofísica del Instituto Mexicano del Petróleo, situado al norte de la Cd. de México (19º 28' 48" latitud norte, 99º 11' 07" longitud y 2277 msnm)

rodeado por edificios, jardines y calles de asfalto, se utilizó para realizar el experimento. El albedo regional que se considera para este lugar es 0.10. La campaña de medición se realizó los días 23-27 de marzo de 1994. En estos días se presentaron cielos despejados sin nubes, contaminación alta durante las mañanas (visibilidad entre 500-700 m), no así, por las tardes, debido a los vientos.

Tabla 4.4 Cambios de longitud del reactor expuesto a la luz solar

Instituto Mexicano del Petróleo							
días	24 marzo 1994	25 marzo 1994	26 marzo 1994	27 marzo 1994			
longitud	94cm	54cm	64cm	74cm			

El experimento se realizó usando diferentes longitudes del tubo de cuarzo expuesta a la luz (tabla 4.4). El ángulo cenital en este sitio durante el periodo de medición es de 17.90 grados a las 12:30 h (tiempo local). En este lugar también se tomaron registros de concentración de partículas. (figura 4.9)

Figura 4.9 Concentración de partículas, IMP Cd. de México.

4.5.1 Análisis de los valores teóricos de J(NO₂) y los obtenidos por el experimento realizado en el IMP

En la figura 4.10 se presentan los valores obtenidos del experimento (triángulos sólidos) y los del radiómetro Eppley (con un intervalo de un minuto), se puede observar que las curvas están en buena correlación en sus máximos y mínimos, en la figura se observa un pequeño desplazamiento de la curva de J(NO₂) entre las 14:00 y 16:00 hs., con respecto a la de la irradiancia (línea continua).

Los valores teóricos de $J(NO_2)$ se calcularon, utilizando en el modelo MC, las siguientes condiciones; albedo regional de 0.10, valor de la columna de ozono 290 UD, índice de refracción de partículas de 1.4+0.05i y α =3.24, este valor para alfa fue el que se encontró de las mediciones de partículas, el cual a su vez está en buen acuerdo con lo reportado por *Junge* [1969]. En la figura 4.11 se muestran los valores experimentales (triángulos sólidos), los calculados con el modelo completo (cuadros sólidos), los valores calculados con el modelo MC sin la contribución de luz difusa hacia arriba (cuadros vacíos). Los círculos sólidos y vacíos son los valores calculados con la fórmula de Madronich y la fórmula parametrizada de Madronich, respectivamente.

Figura 4.10 Valores experimentales de J(NO₂) y lecturas en el radiómetro Eppley como función del tiempo. 24-27 de marzo de 1994, IMP, Cd. de México

Figura 4.11 Comparación de los valores experimentales y teóricos de la fotólisis del dióxido de nitrógeno en el IMP; a) experimentales (triángulos sólidos), b) calculados con el modelo MC (cuadros sólidos), c) calculados con el modelo MC sin la contribución de luz difusa hacia amiba (cuadros vacios), d) calculados con la fórmula de Madronich (círculos sólidos), e) calculados con la fórmula parametrizada de Madronich (círculos vacios)

En la figura 4.11 se observa que el mejor ajuste a los valores experimentales se obtiene con el modelo sin la contribución de luz difusa hacia arriba (cuadros vacíos).

4.6 Medidas en Tres Marías, Morelos, México

En el poblado de Tres Marías se encuentra el Centro de Enseñanza, Investigación y Extensión en Producción Ovina de la Facultad de Veterinaria de la UNAM (Km. 53+100 de la Carretera Federal México-Cuernavaca,19° 03' latitud norte, 99° 14' longitud y 2810 msnm). En este Centro el paisaje está compuesto básicamente por pastizales, árboles y pinos. El albedo regional de superficie que se considera para efectos de modelado es de 0.15 [*Finlayson-Pitts y Pitts, 1986*]. La campaña de medición se realizó los días 11-15 de abril de 1994. En estos días se presentaron cielos despejados sin nubes, sin contaminación y vientos ligeros. El ángulo cenital en este sitio durante el periodo de medición es de 11.13 grados a las 12:30 h (tiempo local).

La tabla 4.5 resume la variación de la longitud del reactor, durante la campaña de medición en Tres Marías.

Tres Marías, Morelos							
días	12 abril 1994	13 abril 1994	14 abril 1994	15 abril 1994			
longitud	94cm	74cm	54cm	64cm			

Tabla 4.5 Cambios de longitud del reactor expuesto a la luz solar

En este lugar también se tomaron registros de concentración de partículas de diferentes diámetros (figura 4.12). Los días 14 y 15 de abril se molió alimento para borregos, de las 8:30 a 9:50 aproximadamente, por lo cual se tienen registros de partículas grandes y pesadas.

Figura 4.12 Concentración de partículas, Tres Marías, Mor.

4.6.1 Análisis de los valores teóricos de J(NO₂) y los obtenidos por el experimento realizado en Tres Marías

En la figura 4.13 se presentan los valores obtenidos del experimento (triángulos sólidos) y los del radiómetro Eppley (con un intervalo de un minuto), se puede observar que las curvas están en buena correlación en sus máximos y mínimos.

Los valores teóricos de $J(NO_2)$ se calcularon, utilizando en el modelo MC, las siguientes condiciones; valor de la columna de ozono 270 UD, índice de refracción de partículas de 1.6+0.05i (polvo) y α =4. En el valor de la columna de ozono no se consideran las 18 UD propuestas en el trabajo de *Júarez et al* [1994] porque el sitio de medición está fuera de la Cd. de México.

figura 4.13 Valores experimentales de J(NO₂) y lecturas en el radiómetro Eppley como función del tiempo (linea contínua). 12-15 de abril de 1994, Tres Marías, Mor.

En la figura 4.14 se muestran los valores experimentales (triángulos sólidos), los calculados con el modelo completo (cuadros sólidos) y los valores calculados con el modelo MC sin la contribución de luz difusa hacia arriba (cuadros vacíos). Los

círculos sólidos y vacíos son los valores calculados con la fórmula de Madronich y la fórmula parametrizada de Madronich, respectivamente.

Figura 4.14. Comparación de los valores experimentales y teóricos de la folólisis del dióxido de nitrógeno en el Tres Marias, Mor. a) experimentales (triángulos sólidos), b) calculados con el modelo MC (cuadros sólidos), c) calculados con el modelo MC sin la contribución de luz difusa hacia arriba (cuadros vacíos). d) calculados con el módelo MC sin la Madronich (círculos sólidos). e) calculados con la fórmula parametrizada de Madronich (círculos vacíos)

4.7 Análisis general de los valores experimentales de la fotólisis del dióxido de nitrógeno obtenidos en las cuatro campañas

Un resumen de las cuatro campañas, de los valores de $J(NO_2)$ vs tiempo local se muestra en la figura 4.15. En esta figura sólo se puede apreciar que los datos están en buen acuerdo con los reportados en la literatura [*Demerjian et al., 1980; Dickerson , 1980; Shetter et al, 1990*]. Sin embargo, para hacer una mejor comparación se presentan los datos en una gráfica $J(NO_2)$ vs ángulo cenital. La figura 4.16 muestra la variación de los datos experimentales de $J(NO_2)$ con respecto al ángulo cenital. En esta figura se puede observar que para ángulos θ >70 grados, los valores presentan

un error debido a que la respuesta del reactor a la luz entre estos ángulos es muy pequeña y es cuando los árboles, los edificios y colinas o lomas tienen un efecto complicado e importante en los valores de fotólisis [*Dickerson*, 1980].

figura 4.15 Valores experimentales de J(NO₂) en cuatro localidades diferentes de México. Estadio Olímpico (círculos), Palacio de Minería (cuadros), Instituto Mex de Petróleo (triángulos), Tres Marías Mor, (cruces)

En las figuras 4.5, 4.8, 4.11, 4.14 se observa que el efecto que tiene más significado en los valores teóricos de la J's es el de no considerar en el modelo la luz difusa hacia arriba. Con respecto a la carga de aerosoles, Dickerson [*1980*] y Dickerson *et al* [*1982*] encuentran que no existe una diferencia significativa en las medidas de las J's en atmósferas limpias o moderadamente contaminadas. Sin embargo, en atmósferas altamente contaminadas (caso Cd. de México) los aerosoles juegan un papel importante en los valores de J's. Esto se puede observar en la figura 4.16, donde los valores obtenidos en Tres Marías (lugar de referencia, sin contaminación) varían hasta un 29% para un ángulo cenital de 41 grados. En general, en la figura 4.16 se observa que para lugares con contaminación alta, Instituto Mexicano del Petróleo (Δ) y Palacio de Minería (\Box) los valores de las J's disminuyen en general un 25% con respecto a los valores reportados para Tres Marías (+).

Figura 4.16 J(NO₂) vs ángulo cenital. Estadio Olímpico (Ο), Palacio de Minería (□), Instituto Mex de Petróleo (Δ), Tres Marías (+).

Conclusiones Generales

Las constantes de fotólisis para el NO₂ obtenidas experimentalmente bajo condiciones de la atmósfera de la Cd. de México, reportadas en este trabajo, constituyen el primer conjunto de datos en su especie, para ser usados en los modelos de calidad del aire que se utilizan en la ciudad, con los cuales se simula el comportamiento, en el tiempo, de diferentes especies químicas presentes en su atmósfera contaminada.

Otra aplicación directa de estos datos fue la que se realizó en el ajuste de parámetros del modelo teórico [*Ruiz Suárez et al., 1993 a,b*], para calcular las constantes de fotólisis, presentado en el Capítulo 3. Esto permitió obtener un modelo más realista para la Cd. de México (Capítulo 4). Es importante notar que el modelo teórico resultó ser, en general, más sensible a cambios en el albedo de superficie y a la presencia de aerosoles. También, el análisis de sensibilidad del modelo, mostró cambios importantes, hasta de un 21% en los valores de la constante de fotólisis del ozono (tabla 3.1), a cambios en la columna de ozono, no así para el NO₂. Lo anterior sugiere que es importante tener datos *in situ* del albedo de superficie y datos más completos y precisos de los aerosoles presentes en la atmósfera, sobre su concentración, origen e índice de refracción.

Un aspecto que resultó ser de importancia en el ajuste de los valores del modelo a los experimentales, fue el que se refiere a no considerar la luz difusa hacia arriba en los cálculos del flujo actínico, lo cual se justifica porque el soporte del reactor y el techo de la unidad móvil se cubrieron de tela negra evitándose así, que la luz se reflejara hacia arriba, por lo menos en las inmediaciones del reactor. En lo que respecta a usar los modelos de *Madronich* [1987b] para obtener las J's del NO₂ para la Cd. de México, se recomienda que en caso de usarlos, hay que considerar que estos subestiman los valores con un error de un 25% en promedio.

Algunas recomendaciones a futuro que se pueden desprender de este trabajo son:

 i) Diseñar y realizar un experimento para medir el albedo de superficie en diferentes escenarios de la Cd. de México.

 ii) Realizar mediciones de concentración de partículas. Catalogar al menos el tipo de partículas presentes y, con ello, tener un índice de refracción promedio más representativo.

iii) En el modelo se considera una atmósfera dividida en cinco capas homogéneas. Hay que hacer una división más fina en la capa cercana a la superficie (0 a 1 km). Esto serviría para discriminar mejor la influencia de la reflexión de la luz por un albedo regional.

iv) Diseñar y realizar el experimento para medir la constante de fotólisis del ozono para mejorar el modelo teórico y los modelos de calidad del aire. El presente trabajo es un buen antecedente para realizar este experimento.

REFERENCIAS

1. Atkinson R. y Lloyd A.C. (1984). "Evaluation of kinetic y mechanistic data modeling of photochemical smog". J. Phys. Chem. Ref. Data, 13, 315.

2. Bahe F.C., Schurath U. y Becker K.H. (1980). "The frequency of NO₂ photolysis at ground level, as recorded by a continuous actinometer". *Atmos. Environ.* **14**, 711-718.

3. Brauers T. y Hofzumahaus A. (1992). "Latitudinal variation of measured NO₂ photolysis frecuencies over the Atlantic Ocean between 50° N y 30° S". *J. Atmos. Chem.* **15**, 269-282.

 Bravo C. J. (1984). "Determinación del espesor de la capa de ozono con un espectrofotómetro de Dobson en una atmósfera urbana" *Tesis de Maestría*, Fac. de Ciencias, UNAM, Méx.

5. Davis D.D., Ravishankara A.R. y Fischer S., (1979). "SO₂ oxidation via the Hydroxyl radicals; atmospheric fate of HSO_x radicals", *Geophys. Res. Lett.*, Vol. <u>6</u>, No. 2, 113.

6. Dechaux J.C., Zimmermann V. y Nollet V. (1994). "Sensitivity analysis of the requirements of rate coefficients for operational models of photochemical oxidants formation in the troposphere" *Atmos. Environ.*, Vol **28**, No 2, 195-211.

7. Demerjian L.K., Schere L.K. y Peterson T.J. (1980). "Theoretical estimates of actinic (spherically integrated) flux y photolytic rate constant of atmospheric species in the lower troposphere". *Advances in Environmental Siences y Techology*. Vol. **10**, John Wiley & Sons, NY, EUA.

8. Dickerson R.R y Stedman D.H. (1980). "Precision of NO₂ Photolysis Rate Measurements" *Eniron. Sci. Technol.*, Vol. 14, 1261-1262.

9. Dickerson R.R. (1980). "Direct Measurement of ozone y nitrogen dioxide photolysis rates in the atmosphere", Ph.D. thesis, Univ. of Michigan., Ann Arbor, EUA.

10. Dickerson R.R, Stedman H.D. y Delany C.A. (1982). "Direct Measurements of ozone y nitrogen dioxide photolysis rates in the troposphere". *J. Goephys. Res.* Vol. **87**, No. **C7**, 4933-4946.

Finlayson-Pitts B. y Pitts J., (1986). "Atmospheric Chemistry", J. Wiley & Sons, New York, EUA.
 Fishman J. y Crutzen P.J. (1978). "The origin of ozone in the troposphere". *Nature*, No. 274, 855.

13. Harvey R.B., Stedman D.H. y Chameides W. (1977). "Determination of the absolute rate of solar photolysis of NO₂". J. Air Pollution Control Assoc., 27, (7), 663.

14. Isaksen I.S., Midtbo K.H., Sunde J. y Crutzen A. (1977). "A simplified method to include molecular scattering y reflection in calculations of photon fluxes y photodissociation rates". *Geophys. Norv.*, No. **31**, 11-26.

15. Jackson J.O., Stedman D.H., Smith R.G., Hecker L.H. y Wamer P.O. (1975). "Direct NO₂ photolysis rate monitor ". *Rev. Sci. Instrum.* **46**, 376-378.

16. Joseph J.H. y Wiscombe W.J. (1976). "The delta-Eddington aproximation for radiative flux transfer". J. Atmos. Sci., Vol 33, 2452-2459.

17. Juárez A., Gay C., Bravo J.L. (1994). "Influence of Urban Ozone in the Measurements of the total ozone column in Mexico City", ATMÓSFERA, en prensa.

18. Junge C. E. (1969). "Comments on Concentration y Size Distribution Measurements of Atmospheric Aerosols y Test of Theory of Self-preserving Size Distributions". *Journal of the Atmospheric Science*. Vol. **26**, 603-608

19. Junkermann W., Platt U. y Volz-Thomas A. (1989). "A photoelectric detector for the measurement of photolysis frequencies of ozone y other atmospheric molecules". J. Atmos. Chem. Vol. 8, 203-227.

20. Levy H. II (1973). "Photochemistry of the lower troposphere". Planet. Space Sci. No. 21, 919.

21. Liou K. W. (1980). "An Introduction to Atmospheric Radiation", Academic Press, Capitulos 1-6 New York, EUA.

22. Luther F. M. y Gelinas R.J. (1976). "Effect of molecular scattering y surface albedo on atmospheric photodissociation rates" *J. Geophys. Res.* Vol. **81**, 1125-1132.

23. Luther F.M., Wuebbles D.J. Duewer W.H. y Chang J.S. (1978). "Effect of multiple scattering on species concentrations y model sensitivity" *Journal of Geophysical Research*. Vol. **83**, No. **C7**, 3563-3570.

24. Lurman F. W., Lloyd A.C. y Atkinson R. (1986). " A chemical mechanism for use in long-range transport/acid deposition computer modeling". *J. Geophys. Res.* **91**, 10905

25. Madronich S., Hastie D.R., Ridley B.A. y Shiff H.I. (1983). "Measurement of the photodissociation coeficient of NO_2 in the atmosphere: I. Method y surface measurements". *J. Atmos. Chem.* **1**, 3-25.

26. Madronich S., Hastie D.R., Ridley B.A. y Shiff H.I. (1984). "Calculations of the temperature dependence of the NO₂ photodissociation coefficient in the atmosphere". *J. Atmos. Chem.*, **1**, 151-157.

27. Madronich S. (1987a). "Photodissociation in atmosphere, 2.- Actinic flux y the effects of ground reflections y clouds" *Journal of Geophysical Research*, Vol. 92, No. D8, 9740-9752.

 Madronich S. (1987b). "Intercomparison of NO₂ photodissociation y U.V. radiometer measurements". *Atmos. Environ.* Vol 21, No. 3, 569-578.

29. Manahan E.S. (1991). "Environmental Chemistry" 4ª Edición, Lewis Publishers, EUA.

 Michelangeli D.V., Allen M., Yung Y.L., Shia R., Crisp D. y Eluszkiewicz J. (1992).
 "Enhancement of atmospheric radiation by aerosol layer". J. Geophys. Res. Vol. 97, No. D1, 865-874.

31. Molina M.J. (1995). Comunicación privada.

32. Montañez R. A. y García-García F. (1993). "Some Urban y Meteorological Effects on the Production of Cloud Condensation Nuclei in México City". A7MÓSFERA, Vol 6, No 1, 39-49

33. Montero M. M. (1993). "Determinación teórica de coeficientes de correlación entre irradiancia en superficie y, razones fotolíticas del NO₂" *Tesis de Maestria*, Fac. de Ciencias, UNAM. México.

'34. Parrish D.D., Murphy P.C., Albritton D.L. y Fehsenfeld F.C. (1983). "The measurement of the photodissociation rate of NO₂ in the atmosphere. *Atmos. Environment*, Vol. 17 1365-1379.

35. PCLS-700 PC-LabDAS Data Adquisition Software. (1991). "User's Manual". Advantech Co., Ltd.. Taiwan.

36. PCL-812 Enhanced Multi-Lab Card User's Manual. (1989). Advantech Co., Ltd., Taiwan.

37. PCLD-789 Amplifier/Multiplexer Board. User's Manual. (1988). Advantech Co., Ltd.. Taiwan

38. Ruggaber A., Forkel R., y Dlugi R. (1993). "Spectral actinic flux y its ratio to spectral irradiance by radiation transfer calculations" *J. Goephys. Res.*, **98**, 1151-1162.

39. Ruggaber A., Dlugir R y Nakajima T. (1994). "Modelling radiation quantities y photolysis frecuencies in the troposphere" J. Atmos. Chem., 18, 171-210.

40. Ruiz-Suárez J.C., Ruiz-Suárez L.G., Gay C., Castro T., Montero M., Eidels-Dubovoi S., Muhlia A. (1993a). "Photolytic rates for NO₂, O₃ y HCHO in the atmosphere of México City". *Atmospheric Environment*, Vol. **27A**, No. 3, 427-430.

41. Ruiz Suárez J.C., Ruiz-Suárez L.G., Castro T., Gay C. y Eidels-Dubovoi S. (1993b). "Photolysis of nitogen dioxide y ozone in the atmosphere of Mexico City". *Air Pollution*, Computational Mechanics Publications, Southampton, UK.

42. Ruiz-Suárez L.G. (1988). "Photo-Oxidation of hydrocarbons in Mexico City. Effects of altitude". ATMÓSFERA, Vol. 2.

43. Ruiz-Suárez L.G., Castro T., Mar B., Ruiz Santoyo M. y Cruz X. (1993). "Do we need ad hoc chemical mechanism for México City's photochemical smog?". *Atmospheric Environment*, Vol 27A, No. 3, 405-425

44. Shettle E.P. y Weinman J.A. (1970). "Transfer of solar irradiance through inhomogeneous turbid atmosphere evaluated by Eddington's aproximation" *J. Atmos. Sci.*, Vol 27, 1048-1055.

45. Shetter E.R. McDaniel H.A., Cantrell A. Ch., Madronich S. y Calvert J.G. (1990). "Actinometer y eppley radiometer measurements of the NO₂ photolysis rate coefficient during Mlopex". Comunicación personal.

46. Sickles J.E. II, Ripperton L.A., Eaton W.C. y Wriht R.S. (1978). "Nirotgen dioxide photolytic radiometric y meteorological field data". EPA-600/7-78-053, EPA, Research Triangle Park, NC. EUA.

47. Wayne R.P. (1991). "Chemistry of Atmospheres" Segunda Edición, Oxford Science Publications. EUA.

48. Zafonte L., Rieger P.L. y Holmes J.R. (1977). "Nitrogen dioxide photolysis in the Los Angeles atmosphere". *Envir. Sci. Technol.*, **11**, 483-487.

ESTA TESIS NO DEBE SALIA BE LA DIBLIOTECA59

а

Sistema de adquisición de datos. Tarjetas PCL812 y PCL789

A TARJETA PCL812

La PCL812 es una tarjeta de alta velocidad que se usa para la adquisición de datos, compatible con computadoras PC IBM/XT/AT.

A.1 Características generales

* 16 canales de entrada analógica.

* Convertidor de entrada analógica (HADC574Z) de 12 bits. La máxima frecuencia de muestreo del A/D es de 30 KHz en modo DMA (Acceso directo a la memoria).

* Interruptor para seleccionar los intervalos de entrada analógica. Bipolar: +/-1V, +/-2V, +/-5V, +/-10V

* Tres modos de disparo A/D (trigger).

* Cuenta con la habilidad para transferir los datos convertidos A/D por medio de un programa de control, rutina de manejo de interrupciones o transferencia DMA.

* Un contador programable INTEL8253-5.

* 16 entradas digitales TTL/DTL compatibles, y 16 canales de salida digital.

* Tiene capacidad de expansión, es decir se puede enlazar con otras tarjetas, como por ejemplo, la PCL789 que tiene la función de amplificador y ramificador (multiplexer).

* Tiene un soporte de programación, PC-LabDAS, para adquisición y análisis de datos.

A.2 Instalación

Figura A1

En la PCL812 hay dos interruptores DIP y siete puentes (jumpers); la función de cada uno se explica en la sección correspondiente. Para la localización física de estos elementos véase la siguiente figura:

A.2.1 Selección de dirección base. Interruptor SW1

Los periféricos de la computadora y de las tarjetas de interfase se controlan por los puertos de entrada/salida (I/O). Estos puertos se direccionan usando el espacio para el puerto I/O. El interruptor de la PCL812 viene de fábrica con la dirección Hex220; si es necesario cambiar la dirección, se debe consultar la página 11 del manual del usuario. [PCL-872]

A.2.2 Selección del intervalo de entrada bipolar. Interruptor SW2

El intervalo de entrada analógica del grupo bipolar se selecciona con las cinco posiciones del interruptor (DIP) SW2. En este caso se seleccionaron las posiciones para +/-10V. (1 y 3 encendido, 2 y 4 apagado, la posición de 5 es irrelevante).

La selección del canal DMA (acceso directo a la memoria) se hace con los puentes JP5 y JP6. El de la fuente de disparo con el JP1. Para seleccionar un contador de entrada se usa el JP2. Para el nivel IRQ (petición de interrupción) se usa JP4 y por último para la fuente de referencia D/A (digital/analógica) se utilizan los JP7 y JP8. En todos los casos se recomienda ver el manual para confirmar las posiciones de los puentes.

A.3 Asignación de las terminales de los conectores

La tarjeta PCL812 está equipada con cuatro conectores de 20 terminales (pines) accesibles desde la tarjeta, éstos se conectan al mismo tipo de cable plano. Los siguientes diagramas ilustran la asignación de terminal en cada conector: (fig. A2)

Leyendas:

A/D - conversión analógica/digital
 A.GND - tierra analógica
 D/A - conversión digital/analógica
 D/O - salida digital
 D/I - entrada digital
 D.GND - tierra digital

Conector 1 (CN1) - Entrada analógica

Conector 2 (CN2) -salida analógica A/D 10 1 2 A. GND

A/D (2 A.	GND
A/D 1	3	4 A.	GND
A/D a	2 5	6 A.	GND
A/D :	1 7	8 A.	GND
A/D 4	I 9 🔅	10 [A.	GND
A/D !	5 11 -	12 A.	GND
A/D 6	ៀវ 🖓	14 (A.	GND
A/D 7	15	16 A.	GND
A/D 8	17 :	1 B A.	GND
A/D S	19	A 05	GND

Conector 3 (CN3) - Salida digital

D/O 0	1 2	D/0 1
D/O 2	3 4	D/O 3
D/0 4	56	D/O 5
D/O 6	7 8	D/0 7
D/O 8	9 10	D/O 9
D/O 10	11 12	D/0 11
D/0 12	13 14	D/0 13
D/0 14	15 16	D/O 15
D. GND	17 18	D. GND
+ 5V	19 20	+ 12V
1.1		

A/D 11	3 4	A. GND
A/D 12	56	A, GND
A/D 13	7 8	A, GND
A/D 14	9 10	A, GND
A/D 15	11 12	A. GND
D/A 1	13 14	A, GND
D/A 2	15 16	A. GND
V. REF 1	17 18	A. GND
V. REF 2	19 20	A. GND
	· · · · · · · · · · · · · · · · · · ·	

Conector 4 (CN4) - Entrada digital

DA	0 11	21	D/1	1
D/1	2 3	-4	D/I	з
DA	4 5	6	D/I	5
D/I	6 7	8	D/I	7
D/I	8 9	10	D/I	9
D/I 1	0 111	12	D/I	11
D/1 1	2 13	14	D/I	13
D/1 1	4 15	16	D/I	15
D. GN	D 17	18	D. GND	
+ 5V	19	20	+ 12V	

Figura A2

A.4 Conexión de señales

La conexión adecuada de la señal es uno de los pasos importantes para asegurar que el sistema reciba los datos correctamente. Debido a que las aplicaciones del sistema de adquisición de datos involucran señal en voltaje, una mala conexión puede dañar la computadora y los manejadores del equipo en los circuitos electrónicos. A continuación se proporciona información sobre la forma correcta para hacer las conexiones que se usaron.

A.4.1 Conexión para entrada analógica

La PCL812 soporta una configuración de 16 entradas analógicas. Las terminales tienen sólo una conexión de señal para cada canal. El voltaje que se mide es el que de está referido a una tiena común. En el diagrama siguiente se muestra una forma estándar de conexión (figura A3).

Los diagramas de las conexiones para salidas analógicas, señales digitales y expandir entradas señal de entrada analógicas aparecen en el manual.

A.5 Calibración de la tarjeta PCL812

En la adquisición y control de datos, es importante calibrar constantemente el sistema de medición para mantener su precisión. Existe un programa de calibración, CALB.BAS, escrito en lenguaje BASIC que utiliza nuinas que manejan a la tarjeta. Debido a que el programa de calibración requiere para operar del programa manejador de la PCLB12, el 812BAS.BIN, se debe asegurar que dicho programa esté presente en el disco duro y dentro del lenguaje BASIC.

figura A3

Además del programa de calibración hay que tener, un multímetro, un osciloscopio y una fuente de voltaje DC muy estable y sin ruido.

Hay cinco potenciómetros (VR) en la tarjeta para hacer ajustes en los canales A/D y D/A. Para localizar los VR (ver figura A1)

ŗ

La función de cada VR es:

VR1: D/A ajuste de ganancia 1 VR2: D/A ajuste de ganancia 2 VR3: A/D ajuste de ganancia (intervalo +/- 5V) VR4: Ajuste de ganancia de 5 tiempos (intervalo +/-1V) VR5: A/D ajuste de compensación

A.5.1 Calibración A/D (analógica digital)

Ya que la PCL812 tiene vanos intervalos de entrada analógica, la calibración de un intervalo A/D puede no ser exacta con respecto a otro. Por ello se sugiere que se haga la calibración cada vez que se quiera cambiar el intervalo de entrada.

El programa de calibración pide que se le especifique:

- 1.- Canal de configuración
- 2.- Intervalo de entrada
 - 3.- Número de canal

Siguiendo los pasos anteriores se obtiene el ajuste de compensación y ganancia A/D.

A.5.2 Calibración D/A (digital analógica)

La entrada D/A de referencia se debe conectar en el canal que se va a calibrar. La ganancia de toda la escala (+/- 5V) de cada canal se ajusta con los diferentes potenciómetros VR. En este caso la lectura es de 4.9997V para la ganancia de toda la escala.

A.B. TARJETA PCL789 (AMPLIFICADOR Y RAMIFICADOR)

La tarjeta PCL789 ramifica 16 canales diferenciales de entrada a un canal analógico de salida. También, se pueden poner en cascada hasta diez tarjetas para expandir entradas analógicas de la tarjeta de adquisición de datos a 160 canales. Tiene además un amplificador que provee ganancias seleccionables de 0.5, 1, 2, 10, 50, 100, 200, 1000, a través de un interruptor. Existe además la facilidad para que el usuario defina la ganancia que le convenga.

A.B.1. Características principales.

* Ramifica 16 canales de entrada en un canal analógico de salida. (figura A.4)

* Expande las entradas analógicas a un máximo de 160 canales, cuando se colocan en cascada 10 tarjetas.

* Se logra una gran amplificación a través de un interruptor IP donde se seleccionan las ganancias.

* Tiene un circuito de compensación para medir directamente temperatura con termopares. Soporta termopares tipo T, J, E, K, R y S. En este caso usamos el tipo J por ser el más compatible con la PCL812.

* Tiene unos conectores con tomillos sujetadores que permiten hacer las conexiones de la señal de manera fácil y confiable.

* Tiene integrados circuitos de filtrado, atenuación y acondicionamiento de la señal.

Figura A4

A.B.2 Instalación

A.B.2.1 Interruptor de ganancia:

Como se mencionó anteriormente, la tarjeta PCL789 cuenta con un amplificador de ganancia seleccionable; se recomienda ver el manual correspondiente, [PCLD-789], para determinar la posición adecuada del interruptor. En este caso se seleccionó un factor de ganancia 100 que es el indicado para un termopar tipo J.
A.B.2.2 Puente de selección de canal de salida analógica (JP16):

La tarjeta tiene capacidad para 10 puentes de selección de canal de salida, de esta manera se pueden conectar 10 tarjetas PCL789 a una tarjeta de 10 canales analógicos de entrada. En este caso el puente está colocado en el canal 0.

A.B.2.3 Puente de compensación de unión fría (JP17):

La tarjeta cuenta con un circuito de compensación de unión fría (CJC) para aplicaciones que involucren el uso de un termopar. En este caso se utilizó el canal 7.

A.B.3 Asignación de las terminales de los conectores.

La tarjeta cuenta con cuatro conectores de cable plano de 20 terminales. Los conectores 1 y 3 son compatibles para las salidas analógicas y los conectores 2 y 4 son compatibles para el control de las entradas digitales del ramificador (multiplexor), tierra y voltajes (figura A.5). Los siguientes diagramas ilustran la asignación de terminal:

La

Leyendas:

ANA OUT - salida analógica A.GND - tierra analógica D/I - entrada digital D.GND - tierra digital + 5V - + 5V de la computadora personal + 12V - + 12V de la computadora personal

Conectores CN1	Y CN3 - Canales de salida analógica
ANA	OUTO 1 2 A GND
ANA	
ANA	OUT3 7 B A. GND
ANA	OUT4 9 10 A. GND
ANA	OUT5 11 12 A. GND
ANA	OUT6 13 14 A. GND
ANA	0UT7 [15 16] A. GND
ANA	OUTU 117 18 A. GND
	0013 113 20 A. GHD
Conectores CN2 y C	N4 - Control de entrada, tierra y voltaje
-	
0/1	0 1 2 0/ 1
ן הס	2 3 4 D/1 3
	5 6
}	7 8
	9 10
]	
	15 16
D. GM	ND 17 18 D. GND
+ 5V	19 20 + 12V
(
1	

Figura A5

alimentaciones de +5V y +12V; las terminales 19 y 20 del conector 2 se usan en este caso. Debido a que la computadora tiene una fuente de +5V y +12V, la tarjeta se alimenta directamente de ella.

PCL789

requiere

de

A.B 4 Conexión de señales

tarieta

A.B.4.1 Conexión de entrada analógica

La PCL789 puede ramificar hasta 16 entradas analógicas diferenciales o sencillas. La selección del canal de entrada se controla con los datos de una salida digital de cuatro bits TTL/CMOS que está en la tarjeta de control del adquisidor de datos, PCL812.

A.B.4.2 Conexión del canal diferencial.

La configuración de la entrada diferencial tiene dos señales de cada canal. La entrada diferencial responde solamente a la diferencia de voltaje entre las entradas alta y baja. Si la señal no está conectada a tierra,

se tiene una fuente flotante. Para evitar un ruido por la tierra, la señal de tierra debe de conectarse a la señal de entrada baja. La entrada baja no se debe de conectar a la tierra de la PCL789 directamente. El siguiente diagrama muestra la conexión correcta (figura A6):

Figura A.6

A.B.4.3 Conexión de salida analógica

La tarjeta tiene 10 puentes para seleccionar los canales de salida. El usuario puede escoger cualquiera de estos canales para los datos de salida colocando el puente JP16 (salida del AMP) en el canal deseado.

La configuración del canal de salida a través de la terminal se determina por la compatibilidad entre el conector de entrada analógica de la PCL812 y el conector de salida de la PCL789. También está limitada por el número de canales disponibles de la PCL812.

A.B.4.3.1 Salida a la PCL812

La PCL812 puede manejar 16 canales diferenciales de entrada. Los 10 de salida de la PCL789 pueden ser soportados por los canales de entrada analógica de la PCL812. La siguiente tabla describe las conexiones de los canales:

PUENTE SALIDA	PCL789 CN1 TERMINAL CANAL DE ENTRADA	PCL812 TERMINAL	PCL812 CN1
0	1	A/D 0	1
1	3	A/D 1	3
2	5	A/D 2	5
3	7	A/D 3	7
4	9	A/D 4	9
5	11	A/D 5	11
6	13	A/D 6	13
7	15	A/D 7	15
8	17	A/D 8	17
9	19	A/D 9	19

A.B.5 Calibración de la tarjeta PCL789

Para la calibración se usa el programa CALB789.BAS que está escrito en BASIC. Una vez que el programa se carga y ejecuta, se va mostrando una guía gráfica como ayuda para ajustar los diferentes potenciómetros VR que están en la tarjeta.

Para la calibración del CJC se debe de tener un termómetro digital con un error de +/- 2 grados Celsius.

A.B.5.1 Calibración del amplificador de compensación

Para hacer la calibración se requieren los siguientes pasos:

 Se conecta la PCL879 con la tarjeta PCL812 para que reciba un voltaje de alimentación de +5V y +12V y se selecciona el canal de entrada analógica a través de la salida digital de 4 bits.
 Se ponen en corto los puertos del canal de entrada analógica seleccionado, conectando la tierra, la señal alta (high), y la baja (low) juntas.

f

3) Se coloca el puente de la salida analógica (JP16) en cualquiera de los canales de salida, excepto en el que se ocupe para temperatura, en este caso se escogió el 0.

4) Identificar las terminales del canal de salida seleccionado en el paso 3 y la tierra analógica en el conector 1 y conectar estas terminales a la entrada y tierra del multímetro.

 Ajustar la compensación de la entrada colocando el interruptor de ganancia en la posición 1000 o 200, y ajustar el potenciómetro VR3 hasta obtener una lectura de cero en el multímetro.

6) Ajustar la compensación de salida colocando el interruptor de ganancia en 0.5 o 1, y ajustar el potenciómetro VR4 hasta obtener una lectura de cero en el multímetro.

A.B.5.2 Calibración de las ganancias del amplificador

Las ganancias del amplificador de esta tarjeta se controlan con los potenciómetros VR5 al VR12. La ganancia correspondiente a cada uno de ellos es como sigue:

VR5:	ganancia G=0.5	VR9:	ganancia G≂50
VR6:	ganancia G=1	VR10:	ganancia G=100
VR7:	ganancia G=2	VR11:	ganancia G=200
VR8:	ganancia G=10	VR12:	ganancia G=1000

Los pasos a seguir para calibrar el amplificador son:

1) Se conecta la tarjeta PCL789 con la PCL812 para obtener los voltajes de alimentación de +5v y +12v y seleccionar el canal analógico de entrada a través de la salida digital de cuatro bits.

2) Se conecta la señal de entrada analógica al puerto seleccionado.

3) Se coloca el puente de la salida analógica (JP16) en cualquiera de los canales de salida, excepto en el que se ocupe para la temperatura, en este caso se escogió el 0.

4) Identificar las terminales del canal de salida seleccionado en el paso 3 y la tierra analógica en el conector 1 y conectar estas terminales a la entrada y tierra del multímetro.

5) Ajustar la compensación de la ganancia 0.5 colocando al interruptor de ganancia en la posición 0.5, ajustando el potenciómetro VR5 hasta obtener la lectura requerida en el multimetro de acuerdo con la fórmula

Vin x Ganancia = Vout = 5v.

6) Repetir el paso 5 hasta que todas las ganancias hayan sido calibradas.

A.B.5.3 Calibración del circuito de compensación de unión fría (CJC)

1) Colocar el puente de CJC en cualquiera de los canales de salida, siempre y cuando no sea el mismo que el de salida de AMP (JP16); en este caso se escogió el canal 7.

2) Identificar las terminales del canal de salida y tierra seleccionadas en el paso anterior en el conector 1 y conectarlas a la entrada y tierra del multímetro.

 Utilizar un termómetro digital para medir la temperatura alrededor del sensor de temperatura CR1.

4)Como el circuito de compensación de esta tarjeta genera una señal de +24.4mV/°C con una salida de 0 V a 0 °C, el voltaje correspondiente a la temperatura medida se puede calcular por medio de la fórmula siguiente:

Vt = (24.4 mV/ºC) x Temperatura medida

5) Ajustar el potenciómetro VR2 para obtener una lectura en el multímetro igual al voltaje Vt calculado en el paso anterior.

A.C. PROGRAMACIÓN

El soporte de programación PC-LabDAS contiene 9 programas escritos en QuickBasic Ilamados: *Welcome, Config, Main, Setup, Setup-help, Setup-edit, Log, Analyz, Report.* Se recomienda leer el manual correspondiente [*PCLS-700*] para familiarizarse con los programas antes mencionados.

Un proceso es un conjunto de funciones ordenadas que se especifican en la tabla de grupos, que al ser ejecutadas adquieren y controlan los datos.

La información concerniente al proceso se prepara en dicha tabla que puede ser interpretada como una hoja de instrucciones o lista de comandos, donde cada línea es una instrucción que especifica un paso del procedimiento; posteriormente se puede ejecutar a través del programa Log o se puede almacenar en un archivo de datos por medio del Setup.

Cada rengión de la tabla consta de siete campos, en los cuales se especifica el número de grupo, la función de éste, su estado, parámetros especificos que la función requiera y un breve comentario. Se puede enlistar un máximo de 100 grupos en un solo proceso. Una vez más, se recomienda ver el manual correspondiente para consultar las funciones.

A continuación se presenta un pequeño programa como ejemplo para medir voltajes y temperatura con un termopar.

Gp Fr	ηΥ	Parm1 Parm	12 Parm3	Fcn. Remark	
01 21	Y	1	81		Set D/A
02 23	Y	1	5		Set D/O byte
03 02	Y	J	7	100	TC measure
04 21	Y	1	81		Set D/A
05 23	Y	1	1		Set D/O byte
06 01	Y				DC voltage

Notas:

<u>Grupo 01</u>: En la función 21, **Parm1** corresponde al puerto de la tarjeta PCL789, puede ser 1 o 2. Por puerto se entiende los dos grupos de canales, en el puerto 1 tenemos los canales del 0 al 7, en el puerto 2 tenemos los canales 8 al 15. **Parm2** corresponde a los escalones del convertidor Digital a Analógico; 8192 escalones corresponden a un intervalo de 0 a 10 volts y hay que dividirlo entré la ganancia correspondiente al tipo de termopar. En nuestro caso se dividió entre 100 dado que se usó un termopar tipo J.

<u>Grupo 02</u>: En la función 23, **Parm1** corresponde al puerto de la PCL789, **Parm2** corresponde al canal de entrada en la PCL789.

<u>Grupo03</u>: En la función 02, **Parm1** corresponde al tipo de termopar en uso, **Parm2** corresponde a la terminal de compensación de unión fría, que en nuestro caso es la 7 y **Parm3** es la ganancia según el tipo de termopar.

Calibración del monitor de NO_X y del radiómetro Eppley

B.1 Monitor de oxidos de nitrógeno.

El monitor de NO_X (Modelo NA510-2, Columbia Scientific Ind.)^{c1} puede analizar en forma continua, óxido nítrico (NO), dióxido de nitrógeno (NO₂) y el total de óxidos de nitrógeno (NO_X, NO y NO₂) en una mezcla de gas.

El principio de operación del monitor se basa en la reacción quimicoluminiscente entre las moléculas de NO y O₃ (ozono) para producir moléculas excitadas de alta energía de NO₂*. Cuando las moléculas de NO₂ pasan a un estado de energía más baja producen luz en la región del infrarrojo cercano. Las siguientes ecuaciones, resumen estas reacciones:

$$NO + O_3 = NO_2^* + O_2$$

$$NO_2^* = NO_2 + luz$$
(B.1)

En este monitor la intensidad de luz que se produce es directamente proporcional a la concentración de NO. Utiliza un filtro (cut-off) para evitar interferencia con otra reacción quimicoluminiscente que tiene lugar a bajas longitudes de onda, es decir, la reacción entre O_3 y etileno la cual produce luz azul. El analizador tiene integrado un generador de ozono. Con una descarga eléctrica en aire seco u oxígeno se produce una concentración muy alta de ozono el cual se introduce después dentro de la cámara de reacción.

El aire y el ozono se introducen en la cámara, donde se mezclan y reaccionan químicamente para producir energía. La luz pasa a través de un tubo fotomultiplicador (TFM) el cual mide la intensidad de radiación químicoluminizada. La salida DC del TFM es convertida en un pulso DC cuya amplitud es proporcional a la intensidad de luz. Después, la señal se amplifica y un demodulador convierte el pulso amplificado en una señal DC analógica (se elimina el ruido electrónico). La concentración de NO₂ se obtiene restando la señal de salida del canal de NO del canal de NO_x.Para analizar el NO y NO_x, el monitor cuenta con un interruptor para cada canal.

B.1.2 Calibración del monitor de NO_X

En el presente trabajo, la calibración del monitor de NO_x se realizaba *in situ.* Es por ello que se presenta a continuación, una explicación breve sobre la forma de calibración.

Se recomienda que la calibración se inicie después de que el monitor tenga una hora de encendido, para que se estabilice. Las líneas de gas se conectan a los puertos de entrada, ubicados en la parte posterior del monitor, de la manera siguiente:

- a) Se conectan las líneas del gas de muestra en el lugar etiquetado con SAMPLE
- b) Se conecta el aire seco u oxígeno en el puerto etiquetado con AIR/O2
- c) Para calibrar el monitor, se conecta la línea del aire cero en el puerto etiquetado con ZERO y la del gas de calibración en SPAN.

B.1.2.1 Calibración en ZERO y SPAN

El Monitor se puede calibrar en las posiciones de ZERO y SPAN, con una fuente de aire cero (que no contenga NO_x) y una fuente de gas de calibración (span) que contenga una concentración de una mezcla de NO-NO₂.

^{C1} Se recomienda consultar el manual para obtener detalles de operación del monitor de óxidos de nitrógeno, Modelo NA510-2

Después, se llevan a cabo los siguientes pasos:

a) Checar ZERO

- a1) Poner el interruptor MODE (localizado en la parte del frente del monitor) en la posición ZERO
- a2) Esperar a que la salida de los canales se estabilice
- a3) Poner los canales de NO y NO_X en la posición 0.0 e ir ajustando el cero del canal NO₂

b. Checar SPAN

Después de que se ha realizado el paso de checar ZERO se hace lo siguiente:

- b1) Poner el interruptor MODE en la posición SPAN
- b2) Esperar a que se estabilicen todos los canales
- b3) Poner el interruptor del rango de cada canal en la escala más sensible para la concentración de NO, NO₂ y NO_x en el gas de calibración.
- b4) Poner en la salida los canales de NO y NO_x e ir ajustando la concentración de NO₂ con referencia al gas de calibración.

B.2 Radiómetro EPPLEY

El radiómetro está constituido principalmente de una celda fotoeléctrica Weston recubierta con una capa de selenio que a su vez se encuentra sellada herméticamente en una ventana de cuarzo, tiene un filtro de banda que sirve para restringir la respuesta de longitud de onda de la folocelda para el rango del diseño (generalmente 295-385 nm) y un disco difusor de cuarzo opaco. Este disco tiene dos propósitos; 1) Reducir la intensidad de luz en el filtro de la fotocelda, 2) Mejorar la aproximación del instrumento a la ley de Lambert.

Las terminales de la fotocelda están conectadas a través de una resistencia de precisión y la señal se mide como una caída de voltaje a través de esa resistencia. Por este método el flujo de corriente es de unos pocos microampers lo cual satisface las condiciones de estabilidad de la fotocelda. Toda la estructura está montada en un tubo de latón; el disco difusor es removible y su base está protegida contra el mal tiempo, por un empaque de hule. El nivel de burbuja circular se encuentra en el soporte, el cual tiene tres tomillos niveladores.

B.2.1 Calibración, instalación

La calibración del radiómetro Eppley con una ventana de 290-385 nm, utilizado en el presente trabajo, viene de fábrica. Sin embargo se verificó la calibración en el Laboratorio de Radiación del Instituto de Geofísica de la UNAM. El valor de respuesta es 0.532 mW cm⁻² mV⁻¹. La señal de salida está en milivolts.

La instalación es muy sencilla, solo debe de cuidarse lo siguiente:

a) El sitio seleccionado para la exposición del instrumento debe de tener un mínimo de obstrucción entre el intervalo de 0-360º del azimutal.

j

- b) Las uniones de los cables deben de estar protegidas y conectadas a tierra.
- c) Debe estar bien nivelado.

En este apéndice se reportan los valores experimentales de las constantes de fotólisis, para diferentes localidades de la Cd. de México y Tres Marias, Mor

Cd. Universitaria		Palacio de	Palacio de Mineria					Tres Maria	IS .			
	30 nov-4 o	lic/94		9-13 feb/9	4		24-27 mar	zo/94		12-15 abr	1/94	
R	tiempo	J(NO2)	IRRA-EX	tiempo	J(NO2)	IRRA-EX	tiempo	J(NO2)	IRRA-EX	tiempo	J(NO2)	IRRA-EX
Ĵ	local	seg-1	watt/m2	local	seg-1	watt/m2	local	seg-1	watt/m2	local	seg-1	watt/m2
	RR	0.00444	9 3637	8 31333	0.00124	4 69 46	0.75					
	8 810007	0 00391	9 6797	0 JJJJJJ 8 35	0.00124	4 00 10	8/3	0.0033654	15 8536	8 083333	0 003735	12.1828
	8 833333	0.00402	9 2302	8 36667	0.00131	4 4156	0.0	0.003792	10 1 190	81	0 003941	12.1828
	8 85	0.00395	9 3632	A 39333	0.00135	4 4 100	0 0 10007	0.00374	10.3030	8 116667	0 003869	12.1828
	8 866667	0.00384	9 8952	84	0.00133	4 00 10	0033333	0.003797	16.6516	8.133333	0 003727	12.4488
	8 883333	0.0037	9.6292	8 4 1667	0.00130	5 2130	8 965557	0.003779	10.0044	8,15	0.003773	12./148
	8.9	0 00359	10.0016	8 43333	0.00135	5 4796	8 892322	0.003794	17.3904	8.166667	0.003941	12.9808
	8,916667	0 00359	10 241	8.45	0.00124	5 6924	0.003333	0.003761	17,3964	8.183333	0 003633	13 2468
	8 933333	0.00383	10 241	8 46667	0.00124	5 0024	6.0	0.003369	17.1304	8.2	0.003611	13.5128
	8 95	0.00365	10 2676	0.40007 B 40333	0.00132	5,6524	0.910007	0.003756	17.6624	8 216667	0.003645	13.7788
	8 96667	0.00394	10.2070	0.40333	0.00122	6 2244	0.933333	0.003604	17.6624	8.233333	0.003857	14.0448
	8 983333	0.00401	10.64	8 51667	0.00166	6 2244	8 000000	0.003517	17.6624	8.25	0.003791	13 7788
	9	0.00394	10 773	8 53333	0.00100	5 6074	0.900007	0.003672	17.9284	8 266667	0 00369	14.0448
	9 016667	0.00356	11 030	0,0000	0.001/2	5 0524	0 903333	0.003662	18,1944	8.283333	0 003565	14.3108
	9 033333	0.00375	11 177	9 50007	0.00107	0.2244		0.003753	18.4604	8.3	0 003773	14.3108
	0.05	0.00277	11 429	0.0007	0.00109	6 2244	9.016667	0 003641	18 9392	8 316667	0 003773	14 7896
	0.055557	0.00377	11.436	6.56333	0.00189	6 / 564	9 033333	0.003758	18 9392	8.333333	0 004017	15 0556
	0 083333	0.00331	11,305	0.0	0.00181	/ 2884	9 05	0.003657	18.9392	8.35	0.004399	15.3216
	10000	0.0030	11.436	0.61667	0.0016	6.7564	9.066667	0.003938	19.4712	8.366667	0.004128	15.3216
	91	0.00389	11.704	8.63333	0.00154	6 7564	9 083333	0.003912	19.4712	8.383333	0 004484	15.3216
	9 116667	0 00369	12 0764	8.65	0.00172	7 2884	9.1	0 003914	20 0032		0 004315	15 5876
	9.133333	0 0037	11.97	8 66667	0 00 19	7.7672	9.116667	0.003884	20 0032	8.416667	0.00444	15 5876
	9.15	0 00378	12.0764	8 68333	0.00166	7.7672	9.133333	0.003891	20 2692	8.433333	0 004204	15.5876
	9.166667	0 00381	12 3158	8.7	0.00172	8.0332	9,15	0 003901	20 2692	8.45	0 004315	16 1196
	9.183333	0 00365	12.0764	8 71667	0.00198	8 0332	9 166667	0.00392	20 5352	8.466667	0 00444	16.3856
	92	0 00382	12.3424	8 73333	0 002 16	8 0332	9 183333	0.003884	20.0032	8.483333	0 004397	16,3856
	9216667	0 0038	12.4488	8 75	0.0021	8 2992	92	0.003894	20.5352	85	0 004354	16.6516
	9 233333	0 00383	12.5818	8.76667	0.00165	8.2992	9216667	0 003971	21 0672	8.516667	0 004354	16 8644
	9 25	0 00392	13 2468	8 78333	0 00223	9 0972	9 233333	0 003871	21,0672	8 5 3 3 3 3 3	0.004271	17 1304
	9 266667	0 00405	13.3798	. 88	801000	8 83 12	9 25	0 003842	21.28	8 55	0.004271	17 3964
	9 283333	0 00376	13 6458	8 8 1667	0 00208	8 5652	9 266667	0.003954	21 812	8 566667	0 004147	17 3964
	93	0 00398	13 5128	8 83333	0 00 184	9 0972	9 283333	0 003962	21 28	8,583333	0 004312	176674
	9 3 16657	0 00403	13 8852	8 85	0 00204	9.3632	9.3	0 003815	21 812	86	0 004312	17 6624
	9 333333	0 00395	13 91 18	8 86667	0 002 19	9 8952	9 3 16667	0.004041	22 078	8 6 16667	0.004645	18 1944
	9 35	0 0041	14.1512	8 88333	0 00245	10 108	9 333333	0.003867	22 344	8 633333	0 004359	17 9284
	9 365567	0 00 12	14 1512	89	0 00229	10 374	9 35	0.00401	22 344	8 65	0.004941	18 1944
	9 383333	0 00407	14 5236	8 91667	0 00212	9 8952	9 366667	0 004054	22 876	8666687	0.004601	18 7064

FALLA DE ORIGEN

ľ

9.	4 0.00406	14 6832	8 93333	0 00203	10 374	9 383333	0.004046	22 876	0 603333	0.004557	40.0202
9 4 1666	7 0 00413	14 7896	8 95	0.00235	10 374	0 0000000	0.004040	22 0/0	0000000	0.004557	18.9392
9 43333	3 0 0041	15 0556	8 96667	0.00233	10.64	9 416667	0.004105	13 9969	07	0 004354	19 2052
9 4	5 0 00418	15 1886	8 98333	0.00229	11 175	0 422222	0.004054	23 0000	8710007	0 004397	19 2052
9 46666	7 0 00431	15 32 16	9	0.00276	11.138	0.45	0.004034	23 0000	0 / 33 3 3 3	0 004/6/	19 /3/2
9 46333	3 0 00442	15 7206	9.01667	0.00231	11 170	9 40	0 004214	24,1320	8.75	0.00469	19/3/2
9	5 0.00451	15 5876	901333	0.00231	10.000	0 493333	0.004009	23 8000	8 /6666/	0.005438	19 7372
9.51666	7 800477	16 1196	30333	0.00251	10 906	9 103333	0 004254	23.8868	8 /83333	0 005087	20 2692
9 53333	3 0 00441	16 1196	9,06667	0.00203	11 /04	95	0.004279	23.8868	8.8	0 00 49 18	20 2692
95	5 0.00449	16 3856	0.08333	0.00201	11 704	9 3 10007	0.004334	24.1528	8 8 1666 7	0.004918	20 8012
9 56666	7 0.00478	16 5186	9 08 3 3 3	0.00201	11 704	9533333	0 004385	24.1528	8.833333	0.005087	20 8012
9 58333	3 0.00464	16 3950	0.11007	0.0020	11.704	9.55	0 004483	24.4188	8.85	0 00 49 18	21.0672
0 30333	5 0 00489	16.3030	9 1 1007	0.00252	12/148	9.566667	0.004381	24,4188	8 866667	0 004918	21 28
961666	7 0 00457	16 8644	5 13333	0.00247	12 1020	9.583333	0.004423	25.2168	8 883333	0 005262	21.28
963333	3 0.00467	16 901	0 10007	0.00242	12 / 140	96	0 004411	24 9508	8.9	0 004918	21 812
96	5 0.00465	16 758	G 18232	0.00202	12 9008	9616667	0 00448	25 2168	8 916667	0 005 138	21 812
0.00	7 0.00454	17 024	3 10272	0.00273	12,7146	9033333	0 004573	25.6956	8 933333	0 005138	21 812
0 68333	3 0 00405	17 7024	3.2	0.0025	12.9608	965	0.004617	26.2276	8 95	0.005313	22.344
3.00333.	7 0 00403	17.2034	9.21067	0.00238	13.5128	9.666667	0.004691	26.2276	8.966667	0.005138	22.344
0 71666	7 0 00404	17.29	923333	0.0027	13.7788	9.683333	0.004711	25.9616	8.983333	0 005365	22.876
9.7 1000	0 00491	17.5294	9.25	0.00216	13.7788	9.7	0.004863	25.6956	9	0.005242	22.61
9.733333	5 0.00467	17.024	9 20007	0.00242	14.3108	9.716667	0.004786	26.2276	9.016667	0.004812	23.3548
0.76666	7 0 00466	17.1304	9.28333	0.00289	14.5236	9,733333	0 004449	26.4936	9 033333	0.005418	23.3548
9 70000	7 0 00478	17.024	9.3	0.00302	14.3108	9.75	0.004796	26.2276	9,05	0.00502	22.876
3,70333.	0 000473	10.020	9,31667	0.00313	14,7896	9.766667	0.004882	27.0256	9.066667	0.005242	23 6208
0.91666	7 0 00478	10.091	9.33333	0.00303	15.0556	9.783333	0.004715	26.7596	9.083333	0.005418	24,1528
5 0 1000	000463	17.157	9.35	0.00289	15.5876	9.8	0.004935	26.4936	9.1	0.005242	23 6208
903333	3 0 00469	17.157	9,36667.	0.00222	14.5236	9.816667	0.004892	26.4936	9,116667	0.005418	24.1528
9.6	5 00049	17.5294	9.38333	0.00293	15.0556	9.833333	0.004936	26.4936	9.133333	0.005645	24.1528
9 00000	000461	17.157	9.4	0.00323	15.0556	9 85	0.004481	26.4936	9.15	0.006036	24.4188
9 00 3 3 3	3 0 004/4	17,1304	941667	0 00296	16 1 196	9 866667	0 004845	26 7596	9.166667	0 005462	24 6848
93	9 00048	17.2634	9 43333	0.00307	15 3216	9.883333	0 004951	26.7596	9.183333	0.005602	25 2168
9 9 1000	000468	17,3964	945	0.00268	15.3216	99	0.004914	26,7596	9.2	0.005517	25.4828
9 93 33 3	3 0 00483	17.7954	9.46667	0.00226	16.1196	9.916667	0.00512	27.5576	9.216667	0.005701	25.4828
9.9	5 0 00489	17.9284	9 48333	0.00313	16 6516	9.933333	0 005284	27.2916	9.233333	0.005645	25 6956
9 96666	7 0.00486	18 1944	9.5	0.00352	16.1196	9 95	0 004656	27,7704	9.25	0 005758	25 96 16
9.98333	3 0 00495	18.3274	9.51667	0.00302	16.8644	9.966667	0.005325	27,7704	9.266667	0 005758	26 2276
16	0 00494	18 4604	9.53333	0.00322	16 8644	9.983333	0.005081	27.5576	9 283333	0 005837	26 22 76
10 0 166	7 0 00517	18 1944	9 55	0 00308	16 3856	10	0 00 50 38	27.5576	9.3	0.005418	25 9616
10 0333	3 0 00 19 1	18 3274	9 56667	0.00383	16 65 16	10 01667	0 005038	28.0364	9 3 16667	0.005837	26 7596
10 0	5 0 00478	18 4504	9 58333	0.003	16 8644	10 03333	0.005082	28 3024	9 3 3 3 3 3 3 3	0.005548	26 7506
10 0666	7 0 00482	18.5934	96	0 0032	17.1304	10 05	0.005142	28 5684	9 35	0.005893	20.7350
10 0833	3 0 00486	18 7264	961667	0.00311	17.6624	10 06667	0 005044	28 8344	9 366667	0.005645	20,7350
10.1	1 0 0047	18 7264	9.63333	0.00319	17.6624	10.08333	0.005153	28 8344	0 393333	0.005045	27.0230
10 1166	7 0 00471	19 0722	965	0 00362	- 18 1944	10.1	0 004949	28 3074	3.303333	0.00593	21.2910
10 1333	3 0 00493	18 6998	9 66667	0 00365	17 6524	10 1 1667	0.005145	20 3024	9.4	0.002023	21 / / 04
10 1	5 0 00477	19 0988	9 68333	0.00369	176574	10 13333	0.00519	28.0364	0 433939	0.005009	20 0364
10 1666	7 0 00487	19 7372	97	0.00315	18 4604	10 15	0.005137	20.0304	3 433333	0.00595	28 0364
10 1833	3 0.00496	19 2052	9 71657	0.00376	17 9224	10 10/07	0.005127	20 2004	9 45	0005151	28 3024
10	2 0.00492	18 8328	9 73333	0.00325	12 0305	10 10(2)7	0.0053442	20 2004	9 466667	0 005036	27 7704
10.2166	7 00000	18 9279		0.003-6	765201	10 163.33	0.005305	29 6324	9 483333	0 005059	28 3024
102100	- 0.000004 - 0.0004-1*	10 0020	975	0.003/2	10 / 204	102	0 005191	29 3664	95	0 00595	28 5684
10 2333.	5 U UU487	19,0399	976667	0.00335	18 /254	10 2 1607	0 005 135	29 6324	9 5 16667	0 00521	29 1004

	10 25	0 00518	19 8702	9.78333	0 00395	18 9392		10 23333	0 005295	30,3772	9 533333	0 006009	29 3664
	10 26667	0 00492	20 6682	98	0 0038	19.2052		10 25	0 005284	29 8984	9.55	0.006397	29 1004
	10 28333	0 00514	20 6682	9 8 1667	0 00366	19.7372		10 26667	0 005222	29 1004	9 566667	0.006131	29 6324
	10 3	0 00518	20 0032	9 83333	0.00391	19 7372		10 28333	0.00542	30 1112	9 583333	0.006271	30 1117
	10 3 1667	0 00528	20 64 16	9 85	0 00343	19.2052		10.3	0 005386	30 3772	96	0.00642	30 1112
	10 33333	0 005 19	20 2692	9 86667	0 00343	20,5352		10.31667	0.005361	30 6432	9.616667	0.006674	30 3772
	10 35	0 005 15	20 64 16	9.88333	0.00348	20 5352		10 33333	0.005442	30 6432	0 633333	0.000074	30 3772
	10 36667	0 00518	21.0406	99	0.00349	20 8012		10 35	0.005567	30 9092	3 0 3 3 3 3 3	0.000271	30 3772
	10 38333	0 00509	21.0406	9.91667	0.00386	20 8012		10 36667	0.005529	30 0002	0 666667	0.000401	30 6432
	10 4	0 00523	20,9076	9 95	0.00393	21.28	8.0	10 38333	0.005509	30,0002	0 693333	0.000401	30 9092
	10.41667	0.00529	21.3066	9.96667	0.00413	20 5352	ing and States and	10.00000	0.005446	31 1767	9 00 3 3 3 3	0.006461	31.1/32
	10 43333	0 00514	21,3066	9 98333	0.00363	20 8012	10	10 41667	0.005346	31 1752	0 716667	0.000271	31.4412
	10,45	0 00503	21.0406	10	0.00438	20 5352		10.413331	0.00551	30 3773	9.7 10007	0.000544	319/32
	10 46667	0 00508	20 9076	10.0167	0.00399	21.28	영상	10.45555	0.00578	30.3772	9.735333	0.000544	31.7072
	10,48333	0.00529	20 7746	10 0333	0.00356	21 812	- 18 - E	10 46667	0.005505	20 6422	0 700007	0.006544	317072
	10 5	0 0051	21 3066	10.05	0.00387	21 78	dina di	10 40222	0.005305	30.0432	9/0000/	0.006462	319732
	10 51667	0.00532	21 3066	10.0667	0.00456	21.20		10 40333	0.005766	30.3772	9.783333	0.00672	32 984
	10 53333	0.00515	21 9716	10.0837	0.004305	21.20		10 51007	0.005847	30.1112	9.8	0 006674	32.718
	10 55 55	0.00573	. 72 211	10.0033	0.00303	21.20		10.51667	0.006003	30.1112	9.816667	0.006608	32.718
	10 56667	0.00547	77 75 49	10.1467	0.00409	22.01		10.53333	0.005941	30,9092	9,833333	0.006785	33 25
	10 58333	0.00578	23.0040	10.1107	0.00352	22.078		10.55	0.006155	31.1752	9 85	0.00692	32.984
	10 30333	0.0020	22.3024	10 1333	0.00367	22.344		10 56667	0.006046	31.4412	9.866667	0.006608	33.25
	10 6 10 6 7	0.00203	22.4//	10.15	0.0038	22.61		10 58333	0.006046	31,9732	9.883333	0.006785	33.782
	10 0 1007	0.00239	22.743	10 1667	0 00392	22.61		10.6	0.006187	32.452	9.9	0.006608	33.516
	1063333	0.00523	22.211	10 1833	0.00391	22.876		10.61667	0.005994	33.782	9.916667	0.006851	34.048
	10.65	0.0052	22.61	10.2	0.00437	22.876	유지가 가 1000년 - 1	10.63333	0.006106	33.516	9.933333	0.006462	33.25
	10.66557	0.0055	22.078	10 2167	0.00411	22.61		10.65	0.006224	33.25	9 95	0.006397	33.25
	10 68333	0 00528	23.1154	10.2333	0.00393	22.61		10,66667	0.006238	33.25	9.966667	0.006195	34.048
	. 10.7	0 00515	23.009	10.25	0.00434	23.3548		10 68333	0.006405	32.452	9,983333	0 00672	34 048
	10 71667	0 00583	22 876	10.2667	0.00443	23.3548		10.7	0.006261	32.718	10	0 006785	34 314
	10 73333	0 00544	23 3814	10 2833	0 00395	23 8868		10 71667	0 006198	32 452	10 01667	0.006674	34 314
	10 75	0.00559	23.2484	10.3	0.00353	24.1528		10,73333	0 006392	33.25	10 03333	0.006851	35 0588
	10.76667	0 00561	23.142	10.3167	0.00427	24,9508		10 75	0.006523	33.25	10.05	0.006146	35 3248
	10,78333	0.00526	23.9134	10,3333	0.00464	24.6848	1.1	10.76667	0.006604	32,718	10 06667	0.006544	34 5268
	10 8	0 00557	24.4188	10 35	0 00423	24 9508		10.78333	0.006294	32,186	10 08333	0.006851	35 3248
÷.,	10 8 1667	0 00588	24 2858	10.3667	0 00495	24 6848		10.8	0.006257	32,984	10.1	0.006851	35 5908
	10 83333	0 00593	23 6474	10 3833	0.00409	24,4188		10.81667	0.006365	32,718	10 11667	0.007082	36 1778
	10 85	0.00589	23 8868	10,4	0.00437	25.4828		10.83333	0.006217	32,452	10 13333	0.00002	35 8668
	10 86667	0 0057	23 5144	10.4167	0 00405	25.9616		10 85	0.006696	32 718	10 15	0.00002	35 0500
	10 88333	0 00568	24 1528	10.4333	0.0045	25 96 16		10 86667	0.006416	32 186	10 16667	0.0007052	35 5000
	10 9	0 0058	25 1902	10 45	0.00443	25 4828		10 88333	0.006186	32 718	10.10007	0.000763	33.3908
	10 91667	0 0059	24,1528	10 4667	0.00461	25,2168	5. N. Q.	10.9	0.006312	32 718	10 10333	- 0 000742 - n nneen	30 00 10
	10 93333	0 00505	24 2858	10 4833	0.00419	26 4936	j alig	10 91667	0.006444	32.710	10 210 22	0.000092	30 3000
	10 95	0 006	23 6474	10.5	0.00529	25 2276		10 03333	0.006440	32.100	10 2 1067	0.006851	36 3888
	10 96667	0 00583	24 4188	10 5167	0.00478	25 6956	문문	10 33333	0.000443	33,510	10 23333	0.007151	36 3888
	10 98333	0 00565	24 4188	10 5333	0.00464	27 0256		10.93	0.006421	33,702	10 25	0.007082	35 50 16
	11	0 00581	25 0572	10.55	0.00459	26 2274		10 00007	0.000121	34 3208	10 20567	0.006742	36 60 16
	11 01667	0.00596	74 0198	10 5667	0.00402	76 7566	1994	14	0.000942	33 3248	10 28333	0 006851	36 60 16
	11 03333	0.00561	23 6474	10 5977	0.00577	201300		11	0.00001	35 3248	10 3	0 006785	36 8676
	11.05	0.00571	23 012 1	201	0.00427	2022/0		11,01667	0.006543	35 0588	10 31667	0 007082	37 1336
	1100007	0.00571	23 3134	106	0.00426	26 22/5	신간	11 03333	U 006387	35 0588	10 33333	0 00572	37 1336
	11 02222	0.000001	24 0002	106167	0.00489	25 5956		11.05	0 006592	34.314	10 35	0 007015	35 3888
	1100333	0.0022",	52 1905	106333	0 00507	26 22 / 6		11 06667	0 006 705	34 5268	10 36667	0 005535	37 3996
								, 사람, 문제				승규가 지역 4	
									- 60 h 20	e de carte			

 \mathbb{C} UNINGEN

111	0 00576	25.3232	10 65	0 00506	25 4828		11 08333	0 006655	34 7928	10 38333	0 006657	38 1976	
11 11667	0 00597	25 0572	10 6667	0 00485	26 2276		11 1	0 006336	34 048	10 4	0 00695	38 1976	
11 13333	0.00611	24 9242	10 6833	0 00458	25.9616		11 11667	0 006598	33 782	10.41667	0 007258	38 1976	
11 15	0 00588	25 0572	10.7	0 00512	26.4936		11 13333	0.006496	33 782	10.43333	0 00695	38 4636	
11 16667	0 00582	24 2858	10 7167	0 00444	25 6956		11.15	0.00662	33 782	10 45	0 005758	38,7296	
11 18333	0 00576	24 6848	10 7333	0 00506	27.2916		11 16667	0 006581	34 5268	10.46667	0 007066	39,7404	
112	0 00594	24.5518	10.75	0 00462	27.5576		11 18333	0 006627	35 0588	10.48333	0 006824	39.7404	
1121667	0 00565	24 5518	10.7667	0 00516	28 0364		11.2	0 006613	35 5908	10 5	0 007082	40 0064	
1123333	0 00601	24 9508	10 7833	0 00433	28.5684		11 21667	0.006577	35 8568	10 51667	0 006705	39 2084	
1125	0 006	24.5518	10.8	0 00467	28 0364		11 23333	0 006753	35 5908	10 53333	0 007321	40 5384	
1126667	0 00562	24 6848	10 8167	0 00 4 3 6	28.3024		11 25	0 006719	35 3248	10 55	0 007066	40 006 1	
11 28333	0 00617	25 3232	10 8333	0 00465	28.0364		1126667	0 006788	36 1228	10.56667	0 007592	39 2084	
113	0 00585	25 0572	10.85	0 00482	28.8344		11 28333	0.006736	36 1228	10 58333	0 007384	39,7404	
1131667	0 00592	24 0198	10 8667	0 00485	28 0364		113	0 006778	35 8568	10 6	0 007384	39.4744	
11 33333	0 00626	24 6848	10 8833	0 00481	28.3024		11 31667	0.0068	35 5908	1061667	0 006786	38.1976	
11 35	0.00585	25.0572	10.9	0 00469	28.3024		11.33333	0.006827	35 5908	10.63333	0 007015	39 4744	
11 36667	0 0059	25 4562	10.9167	0 00464	27.5576	1.3	11 35	0.006518	34 5268	10 65	0.007326	39 2084	
11 38333	0.00597	24.9508	10.9333	0.0049	28.5684		11.36667	0.00708	33 782	10.66667	0.007082	40.0064	
114	0.00613	24.2858	10.95	0.0049	29.1004		11.38333	0.006916	34.314	10.68333	0.007151	39.7404	
11 41667	0.00605	24.5518	10 9667	0 00494	28.0364		11.4	0.007383	35 0588	10.7	0.00806	39,7404	
11.43333	0.00622	24.5518	10.9833	0 00503	28 8344		11,41667	0.007176	35.0588	10,71667	0.007356	40.8044	
11 45	0 00597	25.0572	11	0 00566	29.1004		11,43333	0.007008	35.5908	10.73333	0.007281	40.5384	
1146667	0.00601	25 7222	11.0167	0 00496	29.3664		11.45	0.007375	35.3248	10.75	0.007453	41.0172	
11 48333	0 00613	26.2542	11.0333	0.00502	30.1112		11.46667	0.007137	36 3888	10.76667	0.007281	39,7404	÷
115	0.00616	26.3552	11.05	0.00569	29.6324		11,48333	0.007213	37.1336	10.78333	0 007281	39,2084	
11 51667	0.00616	25 7222	11.0667	0.00515	29 6324		11.5	0.006821	37.3996	10.8	0.007122	39,7404	
11.53333	0 006	25 9882	11.0833	0 00484	29.6324		11.51667	0.007309	38.1976	10.81667	0 007356	40.2724	
11 55	0 00586	25 8552	11.1	0.00545	29.6324		11,53333	0.00718	38.7296	10 83333	0 007433	40 0064	
11 56667	0 00613	26 4936	11.1167	0.00526	29.8984		11.55	0.00726	38 9424	10 85	0 007116	40.8044	
11 58333	0 0062	26 999	11 1333	0 0057	29 8984		11.56667	0 007203	38 7296	10 86667	0 007433	41,0172	
11.6	0 00618	27.265	11.15	0.00545	29.6324		11 58333	0.007492	38.1976	10.88333	0.007301	41,5492	
1161667	0.00643	27.531	11.1667	0.00524	29 8984		11.6	0.007081	38.4636	10.9	0 007433	42 6132	
1163333	0 00628	26.8926	11.1833	0.00503	30.3772		11.61667	0.007579	38.7296	10.91667.	0.00724	40.5384	Ĵ
1165	0 00641	27.797	11.2	0.00541	30.3772		11 63333	0.007626	38 9424	10.93333	0 007433	40.8044	
1165567	0 00657	28,1694	11 2167	0.00539	30.6432		11.65	0.006545	38,7296	10.95	0 007 199	41.5492	
11 68333	0 00654	27.132	11 2333	0.005	30.6432		11.66667	0.007567	38.7296	10 96667	0 007433	41,2832	
117	0 00654	27.132	11.25	0.00535	30.1112		11 68 333	0.006962	39 2084	10 98333	0.007533	42,0812	
1171667	0 00621	27 265	11.2667	0 00557	31.1752		11.7	0.007149	39 2084	<u>े ि</u> ि ग ि	0 007681	42 6132	
11 73333	0 00658	27.664	11 2833	0 00537	31.4412		11,71667	0.007192	38,7296	11.01667	0.007277	42 0812	
11 75	0 00642	27.1586	11.3	0 00583	31.9732		11 73333	0.007329	38 9424	11.03333	0 008378	43 358	
11 76567	0 00666	26 3606	11.3167	0 00553	31.1752		11 75	0.007144	39 2084	11.05	0 007841	43,358	
11 78333	0 00648	25 7222	11.3333	0 00491	31.9732	0. S.S.	11,76667	0.00715	39 2084	11.06667	0.007841	43 358	
118	0 00635	24 4 188	11,35	0 0055	31,4412		11,78333	0.006978	39 7404	11 08333	0.007928	43 624	
1181557	0 00619	25 1902	11 3667	0.00516	32,186	- 15	11.8	0 007149	40 2724	11.1	0.007933	43.89	
11 83333	0 00622	26.7596	11.3833	0 00537	31.1752	6733	11 81657	0 007082	39 7404	11 11667	0.008019	43 624	
11 85	0 00629	28 9574	11.4	0 00517	31,1752		1183333	0 007294	39 7404	11 13333	0.007681	43 624	
1185557	0 00539	29 1004	11.4167	0 00622	31,1752		11 85	0 007198	39 4744	11 15	0.007841	AA 156	
11 88333	0 00661	28 4354	11.4333	0 00565	31.4412		11 85567	0.006984	39 4744	11 16667	0 00819	43 624	
119	0 00593	29 7388	11.45	0 00572	31.7072		11 88333	0 007438	39 4744	11 18333	0.007841	43 358	
11 91667	0 00673	29 4728	11 4667	0 00635	31.9732		11.9	0.007264	39 7404	11.7	0.00751	43.89	
1193333	0 0067	28 4354	11,4833	0 00621	32,186	1.1.1	11 91657	0 007 166	35 9424	11 21667	0.007756	44 472	
					nan a ta	. R	f an tao	1994 - S.	parte de las				

11 95	0 00692	28 196	11.5	0 00599	31 7072	11 9333	3 0 007308	39 2084	11.23333	0 007934	44 156	
11 96667	0 007	28 0364	11.5167	0 00631	32 452	11 9	5 0 00691	38 7296	11.25	0 007674	43.624	
11 98333	0 00678	27 664	11.5333	0 00625	32 718	119666	7 0 006947	38 46 36	11.26667	0 007596	43 358	
12	0 00673	28 265	11.55	0.00684	31 7072	11 9833	3 0.007303	37.6656	11.28333	0 007854	42.8792	
12 01667	0 00666	26 4936	11.5667	0 00585	32 186	1;	2 0 007456	37.3996	11.3	0.00729	43.89	
12 03333	0 0066	25 8552	11,5833	0.00676	32 718	12 0 166	7 0 007302	38 9424	11.31667	0 00729	44,156	
12 05	0 00641	26.1212	11.6	0 00638	32 718	12 0333	3 0 007471	39.4744	11.33333	0 007792	45 22	
12 06667	0 00629	27.664	11,6167	0.00677	32 984	12.0	5 0 007467	39 2084	11.35	0.007534	44.422	
12 08333	0 00633	27.1586	11.6333	0.00653	32 718	12.0666	7 0 008096	38 7296	11.36667	0 007854	42.3472	
12 1	0 00666	28.7014	11.65	0.00702	33.25	12 0833	3 0 007256	38 4636	11.38333	0 007596	42.8792	
12 11667	0 00657	27.6906	11.6667	0 00655	32.452	12	0.00754	39 2084	11.4	0 007596	44.422	
12.13333	0 00689	27.6906	11.6833	0.00602	31 9732	12 1 166	7. 0.007326	40.0064	11.41667	0 007674	45,4328	÷
12.15	0 00707	27.2916	11.7	0 00654	33 25	12.1333	3 0.007545	39.4744	11.43333	0 007854	45,6988	
12.16667	0 00692	26.2276	11.7167	0.00606	33.782	12 1	5 0.007573	39.4744	11.45	0.007674	45 6988	
12.18333	0 00701	27,797	11.7333	0.00687	34 5268	12.1666	7 0 007161	39.4744	11.46667	0 00746	45.624	
12 2	0 0061	26.0946	11.75	0.00604	33 516	12,1833	0.007419	39.7404	11.48333	0.007534	41.8152	
1221667	0 00675	25.6956	11,7667	0.00599	34 048	12:	2 0 007771	39 7404 •	11.5	0 007216	43.5384	. 1
12 23333	0 00679	26 6266	11.7833	0.00641	32.984	12.2166	7 0.007545	39,7404	11.51667	0 007364	41.6152	
12 25	0.00512	26.2276	11.8	0.00634	33.782	12.2333	3 0 007326	39,7404	11 53333	0.008301	43.624	
12.26667	0 00672	27.398	11.8167	0.00705	33 516	12.2	5 0.007308	39,7404	11.55	0 008558	43,358	
12 28333	0 0066	28.7014	11.8333	0.00613	34 048	12.2666	7. 0.007372	39.4744	11.56667	0.008216	41.0172	
12.3	0 00703	28 9674	11.85	0 00642	33 516	12 2833	3 0.007692	39.7404	11.58333	0 00846	41.5492	-
12.31667	0 00718	28.8344	11,8667	0.00663	33 782	12.	3 0.007277	39 7404	11.6	0 008216	42.3472	
12 33333	0 00717	28.7014	11.8833	0.00518	33,782	12.3166	7 0.007492	39.4744	11.61667	0.008216	44.422	
12 35	0 00715	28.196	11.9	0 00701	34 5268	12.3333	3 0.006765	39,4744	11,63333	0 00846	45.6988	
12 36667	0 00711	27.93	11.9167	0.00663	34 314	12.3	5 0.007303	39,7404	11.65	0 008388	45 6988	
12 38333	0 00723	27.9034	11.9333	0 00621	34 314	12.3666	0.007212	39.7404	11.66667	0.008534	46,2308	
12 4	0 00667	28 1694	11.95	0 00644	34 7928	12 3833	0 007874	40 2724	11.68333	0 00846	46.7628	
12 41667	0 00701	27.664	11 9667	0 00649	34 048	12	1 0 007427	40 2724	11.7	0 00846	46 2308	
12 43333	0 00709	27 531	11.9833	0 00586	32 984	12 4166	0 007445	40 0064	11.71667	0 008645	46 2308	
12 45	0 00675	28 3024	12	0 00657	33 782	12 4333	0 007165	39 2084	11,73333	0 008991	46 4968	
12 46667	0 0067	28 9674	120167	0 00577	33 782	12.4	5 0 007151	38 9424	11 75	0.008717	45 6988	
12 48333	0 00697	29 2334	12.0333	0 00656	34 048	12,4666	0.007049	38 9424	11,76667	0 008792	46 4968	
125	0 00719	29 31	12.05	0 00662	34 314	12 4833	3 0 007736	39 2084	11 78333	0.008991	46 4968	
12 51667	0.00676	29 3664	12 0667	0 006 15	35 5908	12 /	0.007519	39 4744	11.2	0.0000001	46 7630	
12 53333	0 00675	30 0048	12 0833	0 00649	35 3248	12 5166	0.006788	40.0064	11 81667	0.000045	40 /020	
12 55	0 00714	28,728	12 1	0 00602	35 8568	12 5333	3 0 006792	39 7404	11 83333	0 008991	48.8376	
12 56667	0 00722	28 196	12.1167	0 00611	35 5908	12 5	0 006768	38 9474	11.85	0.000443	45 72	
12 58333	0 00695	27,797	12,1333	0 00671	35 3248	12 5666	0.006862	38 4636	11 86667	0.009717	44 699	
126	0 00694	27.664	12.15	0 00633	35 5908	12 5833	0 007464	38 1976	11 88333	0.000717	44.000	
1261657	0 00669	26 8926	12,1667	0 00643	36 1228	. 12/	0.007604	37 6656	11.00555	0.000004	44,422	
12 63333	0.00664	26 3606	12 1833	0.00675	35 8568	17 6166	7 0.007065	376656	11.5	0.0000004	44,934	
12.65	0.00662	27 132	12.2	0.0066	35 0528	12 6333	3 0 007713	38 1976	11.01007	0.000500	40,4900	21
12 69667	0.0066	26 1212	12 2167	0.00675	35 5908	17.6	0 007713	30 7404	11.955555	0.000200	46.2306	÷.
12 68333	0.00669	26,3606	12 2333	0.00634	35 32/8	17 6660	7 0 006002	40 2724	11.95	0.000792	42 0966	
12.7	0.00055	25 4562	17.75	0.00021	3,1 7079	12 0000	0.000993	402124	11,90657	0.0008854	45 9648	
12 71567	0.00641	26 3606	12 2667	0.00087	35 72/2	17.	7 0 007443	40 3304	11.90333	0.0007/92	45.9648	
12 73333	0.00347	28 7014	12 2822	0.00059	33.75	12 7100	0.00750	41 6 132	12	0.009217	46.7628	
17.75	0.00648	26 8926	173	0.00639	34 314	12 1 200	0.007976	40 3364	12 01667	0.009354	46 2308	
17 70467	0.00675	25 0825	17 3167	0.00050	35 0522			402724	12 03 333	0.009217	46 7628	
10.72737	0.00073	20 2002	12 3 10/	0.00032	35 3342	12/1		39 7404	12.05	0 009434	48 5716	
1- 10333	0.00005	10 22/15	12 2222	00000	30 3240	1. 7656	0.007282	40.0054	12 06067	0 009354	47 7736	

128	3 0 00667	25 8286	12 35	0 00628	35 0588	12 78333	0 007531	39,7404	12 06333	0 0 10002	46 4968
12 8166	7 0 0058	26 999	12 3667	0.00678	34 5268	12 8	0.007463	41,0172	12 1	0 009434	46 4968
12 83333	3 0 0067	27 265	12 3833	0.00667	35 5908	12 81667	0 007663	41 0172	12 11667	0 009792	44 422
12 85	5 0 00506	27.797	12.4	0.00665	35 3248	12.83333	0 00727	40,5384	12 13333	0 009516	44 422
12 86667	0 00702	27 664	12 4167	0.00593	34 5268	12 85	0 007659	40 0064	12,15	0 009256	45 6988
12 86333	3 0 00712	27 265	12 4333	0 00642	34 314	12 86667	0 007702	39 2084	12 16667	0.009256	46 4968
12 9	0 00696	28.329	12 45	0 00637	34 048	12 88333	0 007758	38 9424	12 18333	0.009601	44 954
12 91667	0 00719	30.0048	12 4667	0.00651	35 3248	12.9	0 00758	39.2084	122	0 009096	45 6988
12 93333	0 00721	30 1112	12 4833	0.00623	36 1228	12 9 1667	0 007596	38 4636	12 21667	0.009434	46 4968
12 99	6 0 00756	29 2334	12.5	0.00694	35 5908	12,93333	0 007933	38,4636	12 23333	0 009434	46 4968
12 96667	0 00698	29,4994	12 5167	0.00547	34 7928	12.95	0.007741	38,4636	12.25	0.009434	45 9648
12 98333	0 00751	28 9674	12 5333	0.00658	34 314	12,96667	0 007691	38 1976	12 26667	0 009074	44 954
1;	0 0068	28 5584	12 55	0.00663	34 5268	12.98333	0.007773	39,2084	12,28333	0.009145	45 6988
13 01667	0 00741	28 1694	12,5667	0.00712	35 3248	13	0.007741	38,1976	12.3	0.008929	47 0288
13 03333	0 00689	28 9674	12 5833	0.00641	34 5268	13,01667	0.00777	37,3996	12.31667	0.009174	47 7736
13 05	6 0 00712	28 7014	12.6	0.0071	34 314	13 03333	0 007691	37,9316	12,33333	0 009709	49 1036
13 06667	0 00702	28 3024	126167	0 00665	35 0588	13 05	0.007216	37 6656	12 35	0.009653	49 6356
13 08333	3 0 00695	28 0364	12 6333	0 00684	35 5908	13 06667	0.007821	36 8676	12 36667	0.009629	45 6988
13 1	0 0069	29 3664	12 65	0.00682	34 5268	13 08333	0 007483	37 1336	12 38333	9.009434	46 4968
13 11663	0 00735	29 1004	12 6667	0.00708	35 3248	13.1	0.007173	37 1336	12.00000	0.000404	46 2308
13 13333	0 00766	28.8344	12 6833	0 00685	35 3248	13 11667	0.007211	36 3888	12 41667	0.009292	47 2949
13 15	5 0 00683	28 7014	12.7	0 00669	35 5908	13,13333	0.007592	37 9316	12 43333	0.009217	47 0288
13 16667	0 00714	28 1694	12,7167	0.0071	35 3248	13.15	0 007508	37,6556	12 45	0.009292	48 1036
13.1833	0 00738	28 063	12.7333	0.00695	35 5908	13,16667	0 007398	38,1976	12,46667	0.009491	48 3056
13 2	2 0 00696	27,664	12.75	0 00695	36 3888	13,18333	0.007349	37,1336	12 48333	0.009491	48 1036
13 21667	7 0.00699	26 866	12 7667	0.00665	36 1228	13.2	0.007407	35 0588	125	0.009346	47 4968
13 23333	3 0 00702	27,2916	12 7833	0 00707	36 60 16	13 21667	0 00744	33 782	12 51667	0.009417	46 7628
13 25	5 0 0059	26 6266	12.8	0 00694	36 3888	13 23333	0.007949	34 048	12 53333	0.000717	46 7628
13 26667	0 00685	26,7596	12 8 167	0.00665	35 8568	13 25	0.007617	34 048	17 55	0.000211	45 6088
13 2833	3 0 00711	27 5576	12 8333	0.0073	35 8568	13 26567	0.007608	33.25	12 56667	0 000020	45 7630
13 :	3 0 00582	26 7596	12 85	0 00729	35 5908	13 28333	D 008443	32 984	12 58333	0.009354	45 4328
13 3166	0 00075	26 6266	12 8667	0.00698	36 3888	13.3	0.0072	33.25	126	0 000000	47 0288
13 33333	0 00691	27,1586	12 8833	0.00667	36 3888	13 31667	0.007611	33.25	17 61667	0.0000020	47.0200
13 35	5 0.00685	26 7596	12.9	0.00684	36 1778	13 33333	0.007667	23 797	12 63233	0.000000	47.2340
13 3656	7 0.00691	27 265	12 9 167	0.00004	36 1220	13 35	0.007845	33.702	12.03333	0.009292	40 0988
13 3833	0.00676	27 797	12 9333	0.00732	35 8568	13 36667	0.007633	34.040	12.03	0.0000000	44 688
13/	0.00705	27 6906	17 95	0.00002	35 8568	13 38333	0.007333	24 314	12 00007	0.009029	45 2632
13 4166	7 0.00678	28 1694	12 9667	0.00000	35 3248	13.30333	0.007721	36.7920	12 00333	0 009034	49 6132
13 4333	0.00687	28.063	12 0007	0.00705	35 5002	17 41607	0.007076	34 344	12 71007	0.009034	40 5492
13 45	5 0 00775	20 000	12.3033	0.00703	35 5000	13,41007	0.007712	34,314	12.7 1007	0.009034	44.954
13 4666	7 000723	27 3370	12 0167	0.00714	35 5003	13 43333	0.007713	34,5260	12.73333	0.008929	47.7736
13 49331	0.00746	27.9290	12 0107	0.00004	35 3543	13 45	0.007555	33.0360	12.75	0.009354	45.6016
13 4033.	000702	27.0200	13.0333	0.00000	JD J240	13.46667	0 00/648	34,5268	12.76667	0.009629	45.1112
13 5 10 5	000703	27 132	13 05	0.00725	35 6566	13.48333	0 007/18	34.7928	12.78333	0 009897	43 624
13 3 105	0.00120	21.93	13 0057	000/15	35 3248	135	0.007824	35.782	12.8	U.009897	44.156
13 5333;	0.00/24	25 8926	13 0833	0.00/14	35 8558	13 51667	0.007665	34.048	12 81667	0 009979	47.7736
13 55	0 00/22	27 205	131	0.00694	35 3248	13 53333	0.007661	34,314	12 83333	0 009145	45 4328
1,5 56,60	0.00722	27.132	13 1167	0.00/1	34 314	13 55	007536	34,314	12 85	0 009354	45 22
13 2633.	5 000/13	20/096	13,1333	100666	34 /928	13 56657	0 00 76	33,782	12 86667	0 009709	44,954
136	o 00724	27 265	13 15	0.00695	34 7928	13 58333	0 00756	34 048	12 88333	0 00958	44 422
13 6 1667	0.00713	26 7596	13 1667	0 00681	31 7928	136	010798	34,7928	12 9	0 008955	40 8044
13 6333.	8 0.00728	256266	13 1833	0 00709	34 5268	13 61667	0 007733	35 8568	1291667	0 009057	45 4968

13 65	0 00695	26 3606		13.2	0 00615	34 048		13 63333	0 00757	36.1228	12.93333	0 009749	45.6988	
13 66667	0 00712	25 8552		13.2167	0 00658	34 314		13 65	0 007808	36.3888	12 95	0 00934	44.422	
13 68333	0 00714	25 7222		13,2333	0 00664	34 7928		13 66667	0 008141	36 60 16	12 96667	0 009446	44 422	
137	0 00721	25 8552		13 25	0.00692	35 0588		13 68333	0.007318	35 8568	12 98333	0.009773	AG 2308	
13 71667	0 00714	25 4562		13 2667	0.00707	35 0588		13.7	0.006879	35 5908	13	0.009446	40,2000	
13 73333	0.00691	25 1902		13 2833	0.00716	35 3248		13 71667	0.0075	35 5908	12 01667	0.00844	46 7638	
13 75	0.00709	25 3232		13.3	0.00671	34 314		13 73333	0.007/62	35.0588	12 02222	0.000740	40.7020	
13 76667	0.00691	24 8178		13 3167	0.00652	34 048		12 75	0.007402	34 7038	13,03333	0.000701	40.7020	
13 78333	0.000001	74 0747		13 3333	0.00002	35 0590		13 70007	0.007477	34.1920	13 03	0 009781	47,7730	
13 / 0000	0.00723	24 3242		13.3333	0.00033	33 0308		13.70007	0.007477	35.0586	13.06667	0.009676	48.63/6	
13 81667	0.00090	24.0040		13 3667	0.00209	34.7920		13.78333	0.007822	35.5908	13.08333	0 009446	48.3056	
13 01007	0.00000	74 68 40		12 2022	0.00036	33.3900		13.0	0.007340	35.3248	13.1	0.009749	47.7735	
13 03333	0.00065	24 0040		13.3833	0.00675	34,314		13 81667	0.007523	35 8568	13,11667	0 009676	47.0288	-
13 85	0.0069	24 81/8		13.4	0.00538	35.3248		13.83333	0.007516	35.3248	13.13333	0 009676	47.0288	
13 00007	0.00063	24 3124		13.4167	0.0061	34.314		13.85	0.007545	35.3248	13.15	0 009676	46.7628	
13 00333	0 00055	24 33 18		13,4333	0.00627	33.782		13 86667	0.00/528	35.3248	13,16667	0 009676	47.0288	
13.9	0.00676	24 0198		13,45	0 00682	34.5268		13.88333	0.007348	35,0588	13,18333	0.009659	47,7736	
13 91667	0 0067	23 6208		13.4667	0 00646	33.782		13.9	0.007462	35.3248	132	0 009558	48.0396	
13 93333	0 00658	24 0198		13,4833	0 00643	33.25		13 91667	0.007418	35.8568	13.21667	0.009446	48.3056	
13 95	0.00658	24 2858		13.5	0.00687	34.048		13.93333	0.007468	35.5908	13.23333	0 009273	47.0288	
13 96667	0 00672	23 6208		13 5167	0.00636	33,782		13.95	0.007387	35,3248	13.25	0.009662	45.4328	
13 98333	0 00694	23 9134		13.5333	0.00634	32.718		13.96667	0.007567	35.0588	13 26667	0 009558	45 4328	
14	0 00679	24 0198		13.55	0.00661	33.516		13.98333	0.007243	35.5908	13 28333	0 009446	45 6988	
14 01667	0.00685	23 4878		13.5667	0 00666	33,516		14	0.007306	34,7928	13.3	0.009676	45,9648	
14 03333	0 00723	23 1154		13.5833	0.00694	34,7928		14.01667	0.007632	35.0588	13.31667	0.009269	46.4968	÷
14 05	0 00732	24 2858		13.6	0.00708	34.7928		14.03333	0.008109	34.5268	13.33333	0 009446	46.7628	
14 06667	0.00761	23 7538		13.6167	0.00655	34.314		14.05	0.007686	34.314	13.35	0 009676	47,2948	
14 08333	0 00721	23 142		13 6333	0 00669	34 7928		14.06667	0.007412	35 0588	13.36667	0 009446	46.4968	
14.1	0 00758	22 8494		13.65	0 0069	34.314	é é i	14.08333	0.007306	36.1228	13.38333	0 00844	47,5608	1
14 11667	0 00732	22.743		13.6667	0 00645	34.5268		14,1	0.007397	35,8568	13.4	0.009537	48 0396	
14 13333	0 00685	22 211		13 6833	0 00672	34 048		14 11667	0 007369	35,5908	13 41667	0 009749	48 5716	
14.15	0 00698	21 4396		13.7	0.00659	33.516		14,13333	0.00735	34,314	13 43333	0 009558	47 7736	1
14 16667	0.00731	21.7056		13 7167	0 00672	34.048		14.15	0.007388	34 5268	13.45	0.009676	46 7628	
14 18333	0 00689	20.9076		13,7333	0 00617	34.314		14,16667	0.007426	35 3248	13 46667	0.009662	44 688	
142	0 00676	21,8386		13 75	0 00645	34 5268		14 18333	0.00725	35 8568	13 48333	0.008435	43.80	Ì,
14 21667	0 00727	20 4022		13 7667	0 00671	34,7928		14.2	0.007195	35 5908	13.5	0.009512	45.55	
14 23333	0.00583	20 2692	9 g 1	13 7833	0.00634	34 5268	문화공	14 21667	0.007166	34 7978	1351667	0.000380	45.00	
14 25	0.00703	20 7746		13.8	0.00667	34 314		14 23333	0.007100	34.048	13,51007	0.009303	43,4320	
14 26567	0.00701	20.1362		13 8167	0.0002	34 048		14 76	0.007103	23 546	13 3333	0.00934	40.0040	
14 78333	0.00000	20 1002		12 9772	0.0000	34 5369		14.20	0.007241	33.310	13 23	0.009558	45,6968	
1420333	0.00005	20 1050		12 0555	0.00044	33 703	경기법	14.20007	0.007241	32.904	13.50007	009446	45,9648	
14 31667	0.0000	10 0099		13 8667	0.00651	34 714	994 F	14 20333	0.0071392	32.160	13,58333	0.00934	46,4968	
14 3 3 3 3 3	0.00000	10 0029		13 8833	0.00031	23 546		14 21007	0.007130	31,9732	130	0.009641	46,4968	
14 35333	0.00007	10 6040		13 0033	0.00001	33.310		14.31007	0 000042	32.100	1361667	0 009308	45 4968	î
14 33	0.00002	13 0042		13 9	0.00055	33 /02		14.33333	0.007346	32.452	1363333	0 008955	44.156	
14,30567	0.00543	16 6 3 2 8		139167	0.00691	33 516	145	14,35	0 007303	31 4412	13 65	0 009269	44 422	
14 38333	0 00538	17 9284		13 9333	0 00638	31 9732	and S	14,36667	0 007767	31.9732	13 66667	0 009446	44 954	
14.4	0 00524	18 5998		13 95	0 00667	32 452		14 38333	0 007479	31.7072	13 68333	0 009237	45 22	
14 41667	0 00505	19 5042		13 9667	0 00639	32.452		14.4	0 007366	32.718	13 7	0 009063	44 688	
14 43333	0 006 15	19 7372		13 9833	0 007	32 452	414	14 4 1667	0 007613	32,186	13 71667	0.008684	44.155	
14 45	0 00653	20 4022		14	0 00669	32 186	C. 14	14 43333	0 007765	32.186	13 73333	0 008637	43 89	
14 46667	0 00627	20 4022		14 0167	0 00682	31,7072	9. J	14 45	0 007594	32.186	13 75	0 008717	44 156	2
14 48333	0.00521	20 1352		14 0333	0 00658	31 7072	신경험	14 46667	0 007526	31 7072	13 76567	0 008884	45 6988	
						가 승규요? 문		See 222	能够了了	문화적용님	전 소설 것 같아.			
							24							
					19 C 1	- 14 - 14 - 14 - 14	. 19 A.		we be fit it.	- 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19				

145	0 00648	19 60 42	14 05	0 00684	31 9732	14 48333	0 007216	31,4412	13 78333	0.009139	45 6988	
14 51667	0.00641	19 23 18	14 0667	0 00692	31 1752	14 5	0.007446	31 9732	13.8	0 008884	45 9648	
14 53333	0 00635	19.2052	14 0833	0 00697	31 7072	14 51667	0.006934	31 7072	13 8 1667	0 009063	45 22	
14 55	0 006 17	18 9658	14 1	0 00566	31 7072	14 53333	0 007469	31 4412	13 83333	0.009139	46 2308	
14 56667	0 00614	18 8328	14 1167	0 00674	31 9732	14 55	0.007371	31,1752	13 85	0 009558	45 4328	
14 56333	0 0064	18 8328	14 1333	0 00658	31 9732	14 56667	0 007593	31.1752	13 86667	0 009676	45 4328	
146	0 0062	18 1678	14 15	0 00668	31.4412	14 58333	0 007844	31.4412	13 88333	0.009981	45 6988	
1461667	0 00627	18 6998	14.1667	0 00593	30 9092	146	0.006843	31 7072	13.9	0.009662	44 688	
14 63333	0 006 18	18 4338	14 1833	0 00597	30 6432	1461667	0 007134	32 186	13 91567	0.009558	44 688	
14 GS	0 00639	17 7954	14.2	0 00708	30 3772	14 63333	0.007055	31 7072	13 93333	0.009867	45 6088	
14 66667	0 00638	17 2634	14.2167	0 006 16	30 6 4 3 2	14.65	0.007138	31 4412	13 05	0.000421	45 0500	
1468333	0 00627	17.3964	14 2333	0.00498	30 3772	14 6666 7	0.007110	31 4412	12 00557	0.000072	40,0040	
14.7	0.00583	17 3964	14.25	0.00618	30 3772	14 (8333	0.007113	31.4412	13.90007	0.009676	45,9648	
14 71667	0.00589	17 7954	14 7667	0.0064	70 1004	14 00333	0.000975	317072	13 98333	0.009581	45 22	
14 73333	0.00582	17 3964	14.2007	0.00644	20.1004	14 7	0.007012	31 7072	14	0 009308	44 22	
14 75	0.00606	17 9284	14.2000	0 00044	23 3004	14.7 1007	0.007013	31,7072	14.01667	0.009176	43,1452	Ì
14 76667	0.00585	17.5204	14 3167	0.00073	20.0004	14 7 3 3 3 3	0.00746	31./0/2	14 03333	0 009481	42.0812	ļ
14 78333	0.00000	17 300 4	14.3333	0.00572	23 1004	14.75	0.000765	32718	14.05	0 009481	42 08 12	
14 10 5 5 5	0.00581	17 7054	14.3333	0.00373	29 3004	14.70007	0.007250	32,186	14.06667	0 009058	41.8152	
14 81667	0.00500	17 2634	14 3067	0.00011	25 3004	14,70333	0.007339	32.452	14.08333	0 009058	42.6132	
14 83333	0.00579	17 12034	14.3007	0.00001	30 6432	14.8	0.007826	31.7072	14,1	0.009058	42.6132	
14 95	0.00570	16.0074	14,3633	0.00576	29 8984	14,81667	0.007081	31,9732	14.11667	0 008773	42.3472	
14 86667	0.00551	10 9974	14.4	0.00626	29.6324	14.83333	0.007569	31,9732	14.13333	0.008504	42.3472	
14 29333	0.00566	10 020	14,4107	0.00594	29.3064	14 85	0.007166	31.4412	14.15	0 009176	42.0812	
14 00 3 3 3	0.00565	16 623	14,4333	0.00628	29 6324	14 86667	0.007361	30.9092	14.16667	0.008946	42.3472	
14 9	0.00503	15 492	14.45	0.00589	28 0364	14.88333	0.00722	30,9092	14.18333	0 008946	41.0172	
14 3 1007	0.00564	15 694	14.4667	0.00617	27,7704	14 9	0.00711	30 6432	14.2	0 008573	40 8044	
14 93333	0.00572	15 827	14,4833	0.00629	27.5576	14.91667	0.006944	30.3772	14 21667	0 008946	41.5492	
14 95	0.00568	15 827	14.5	0.00658	28 3024	14 93333	0 006799	30.3772	14,23333	0 006662	42.3472	
14 96667	0 00549	15 0822	14 5167	0.00625	29.1004	14.95	0.007185	29.8984	14.25	0.008557	42.3472	
14 98333	0 00563	15 0556	14.5333	0 00615	28 5684	14 96667	0 007095	29 6324	14 26667	0 00884	42 08 12	
15	0 00552	15 4546	14.55	0.00574	28.8344	14.98333	0.007105	29 3664	14 28333	0.008737	41.5492	
15 01667	0.00545	14.4172	14 5667	0.00586	29.1004	15	0.006886	29 6324	14.3	0 007614	41,2832	
15 03333	0 00546	14 6566	14.5833	0 00596	28 5584	15.01667	0.006788	29.6324	14.31667	0.008946	41.8152	
15 05	0 00536	14 9226	14.6	0.00621	29.1004	15 03333	0.00646	29 6324	14.33333	0.009069	41.0172	
15 06667	0 00527	14 5502	14.6157	0.0061	27.7704	15.05	0.006815	29 6324	14.35	0.008662	40,8044	
15 08333	0 00513	14 4172	14.6333	0.00606	27.7704	15.06667	0.00682	28 8344	14.36667	0 008946	40.5384	
15 1	0 00528	14 2842	14.65	0 00577	28 8344	15 08333	0.006446	28 3024	14.38333	0 008639	40.5384	
15 1 1667	0 00514	13 7788	14 6667	0 00616	27.5576	15.1	0.006329	28 5684	14.4	0 00794	40.0064	
15 13333	0 0052	13 6458	14 6833	0.00634	27 2916	15 11667	0.006184	28 5684	14.41667	0 008662	40.2724	
15 15	0 00534	13 2468	14.7	0 0065	27.2916	15 13333	0.006449	28 3024	14.43333	0 008662	40 5384	
15 16667	0 00539	13 6458	14.7167	0 00606	26 7596	15.15	0.006506	27.7704	14 45	0 008662	40 5384	
15 18333	0 00535	13 5128	14,7333	0.00514	26 4936	15 16667	0.006261	27.0256	14.46667	0 003662	41,2832	
15 2	0 00468	140182	14,75	0 00559	26 4936	15 18333	0.006102	26.7596	14 48333	0 008889	40 8044	
15 2 1667	0 00537	110182	14 7667	0 00565	27 29 16	152	0 006 127	27 0255	14 5	0.008662	40.0064	
15 23333	0 00526	14 1512	14 7833	0 00572	27.0256	15 2 1667	0 006204	27.5576	14 51667	0 009176	39 2084	
15 25	0 00525	13 6458	14.8	0 00613	27 0256	15 23333	0.006061	27 2916	14 53333	0.008394	40.0064	
15 29557	0 0053	13 2468	14,8167	0 00599	25 9616	15 25	0 006428	25 7596	14 55	0.002946	38 9474	
15 28333	0 005 13	13 0074	14.8333	0 006	25 6956	15 26667	0.00616	26 7596	14 56667	0 000340	38 7305	
15 3	0 00518	12 7148	14 85	0.00579	25 4936	15 28333	0.006148	25 9616	14 58222	0.000000	37 0210	
15 31997	0 00497	12 7148	14 8667	0 00613	26 2276	15 3	0.00612	25 2168	14.00000	0.00029	37 33 10	
15 33333	0 00508	12 9603	14 8833	0 00582	25 55 16	15 3 1667	0 006075	259616	140	0.000007	37 1320	
								230010	14.01007	0 00029	37.1336	
				-			이 아이지?	he de la Merice de				

15 35	0 00483	12 8478	14.9	0.00606	25 2168	15.33333	0.00605	25.9616	14 63333	0 008662	38 1976	
15.36667	0 00502	12 7414	14 9167	0 00594	25 2168	15.35	0 005379	25 9616	14.65	0.00829	37 3996	
15 38333	0 00485	13 1404	14 9333	0.00618	24 9508	15,36667	0 006057	25 6956	14 66667	0.008455	36 3888	
15 4	0 00517	12.6084	14.95	0.00591	25 2 168	15 38333	0.00607	26,4936	14.68333	0.008455	36 1228	
15 41667	0 00504	12.4754	14.9667	0 00568	24 9508	15 4	0 006065	26.4936	14.7	0.008094	37 3996	
15.43333	0 00541	12 3424	14 9833	0.00607	25 4828	15 41667	0 005789	25,6956	14 71667	0.008563	37 93 16	
15.45	0 00507	12,0764	15	0 00618	23 96 16	15 43333	0 005789	25 6956	14 73333	0.0000000	37 6656	
15.46667	0 00517	12 2094	15.0167	0.0059	25 6956	15 45	0 005811	24,9508	14 75	0.008557	37 1336	
15 48333	0 0051	11.571	15.0333	0.00596	24 9508	15.46667	0 005447	24,9508	14.76667	0.008946	36,1228	
15.5	0 00517	.11.172	15.05	0.00579	25 4828	15 48333	0 005768	24,4188	14 78333	0.008557	35 8568	
15 51667	0 00507	10.773	15 0667	0.00577	24 9508	15 5	0.005509	23 1528	14.8	0.00819	35 3248	ć
15 53 333	0 00494	11 039	15 0833	0.00575	25 4828	15 51667	0.005697	23 6208	14 81667	0.007938	34 7078	
15 55	0 00509	11.039	15.1	0.00587	24 4188	15 53333	0.005544	23 6708	14 83333	0.007843	34 7028	
15 56667	0 00497	10 906	15 1167	0.00581	24 6848	15 55	0.005432	23 8858	14.85	0.00810	34 7320	
15 58333	0.00505	10,6666	15 1333	0.00589	24 1528	15 56667	0 005452	23.3648	44 96697	0.007694	34.7920	
15.6	0.00512	10 1346	15 15	0.00574	25 2168	15 50007	0 003435	23.3340	14.00007	0.00/001	34.314	
15 6 1667	0.005	9 8686	15 1667	0.00503	23 2100	13.30333	0.005330	23.0000	14.08333	0.000019	34.5268	
15 63333	0.0048	9 6797	15 1833	0.00555	24 3300	15 6 15 6 7	0.005535	24,1320	14.9	0.008037	34.7926	
15.65	0.00467	9 2302	15.1055	0.00576	23 2 100	15 0 1007	0.00555	24.4100	14,91007	0.003037	34.7928	
5 66667	0.0045	9 0077	15 2167	0.00570	24 3300	10.00000	0.005321	23.0200	14 93333	0.007938	34.7928	
15 68733	0.00440	0.4000	15 2107	0.00072	24.1020	10 00	0.005492	22.8/6	14.95	0.00829	35 0588	
15 00555	0.00445	0 2632	15,2333	0.00393	24.9000	15.00007	0.005846	23.3548	14.96667	0.008394	33 /82	
15 71667	0.00437	8 9642	15 25	0.00564	24 0040	15 60333	0.005030	22.070	14.96553	0.00819	32.984	
15 73333	0.00425	9 5052	15 2007	0.00504	23 0000	10.7	0.000640	22.61	15	0.007938	32.984	
15 75	0.00433	0.0002	13,2033	0.00574	22.344	15./100/	0.005515	22.344	15 01667	0.008938	32 452	
15.73	0.00445	0.9042	15,3	0.00574	22 0/8	15.73333	0 005336	22,876	15.03333	0.008798	32.186	
13.70007	0.00435	0.4322	15.3167	0.00574	22.61	15.75	0.005407	21.546	15.05	0.009037	31,9732	
12 18333	0.00422	8.1062	15,3333	0.00553	23.142	15,76667	0.005443	21.28	15.06667	0.008798	32.186	
15.8	0.00422	8.4322	15.35	0.00573	22.876	15.78333	0.005517	21.28	15.08333	0.008938	30.3772	
5.81667	0 0043	7.6608	15.3667	0.00584	20.5352	15 8	0.005653	20.8012	15.1	0.009037	31,9732	
15 83333	0 0043	8 0598	15 3833	0 0058	13 5128	15 81667	0 005522	20 8012	15 11667	0 008605	32 452	
15 85	0 00408	7.9268	15.4	0.00565	11.97	15 83333	0.00576	20,5352	15.13333	0.00924	32 718	
15 86667	0 004	7.7938	15 4167	0.00586	13 566	15 85	0.00553	20.5352	15.15	0 008681	32.452	
15 88333	0 00435	7.6608	15.4333	0.00585	15.5876	15.86667	0.005385	20.2692	15.16667	0 008351	32,186	
15 9	0 00432	7.9268	15 45	0.00569	17 024	15 88333	0 005196	20,5352	15.18333	0.009193	31,4412	
15 91667	0 00438	7.3948	15 4667	0.00574	18 886	15 9	0 005196	20 2692	15.2	0 008681	31.4412	
15 93333	0 0044	7.9268	15 4833	0 0058	19 4712	15 91667	0 005302	19 4712	15 21667	0.008433	30 6432	
15.95	0 00444	7.2884	15.5	0.0053	20 0032	15 93333	0.005175	19 2052	15 23333	0.008595	30 6437	
15 96567	0 0042	7 0224	15 5167	0.00589	19 4712	15.95	0.005452	18 9392	15 75	0.000333	30 3772	,
15 98333	0.00428	7 3948	15 5333	0.00576	20.8012	15 96667	0.005144	18 7764	15 2667	0.000270	70 5004	
16	0.00425	7 1554	15 55	0.00539	10 4712	15 09223	0.00544	10.7201	15 20007	0.000270	20 0004	ŝ
16 0 1667	0.00425	6 6234	15 5667	0.00546	20 2602	12 20222	0.00041	10 9392	15 26333	0.000090	27.7704	
6 03333	0.00416	ETCCA	15 5007	0.00544	10 4717	10 15 01007	0.0000000	18,4004	10.3	0.008019	28 0364	
10 03333	0 00300	6 6724	13 3033	0.00544	10 2052	10 0 1007	0.004968	18 / 264	15.31667.	0 00/943	28.3024	é
10 05	0 00339	00234	100	0.00278	19 2022	16 03333	0 004958	18,7264	15,33333	0.007943	27.7704	ġ.
רבבבט סו	0.00397	6 7574	156167	0.00535	19 2052	16 05	0 004981	18 7264		0 007656	28 0364	ł
10 00333	190000	6.35/4	120333	0.00535	18 4504	16.06667	0 004962	18 7264	15.36667	0 007674	27.7704	
15 1	0 00385	6 2244	15.65	U 00527	18 9392	16 08333	0 004854	18.4604	15,38333	0.007674	28 0364	
16 1 1667	U 00387	6 2244	15 6667	0.00508	18 1944	16 1	0 004946	18 1944	15.4	0 007742	27.7704	
16 13333	0 00389	5 719	15 6833	0 00503	18 1944	16.11667	0 004831	18 1944	15 41667	0 007798	27.0256	1
16 15	0 00364	6 0914	15.7	0 00512	18 4604	16 13333	0 004803	18 1944	15 43333	0 007742	27.0256	
16 16667	0 00371	5 7 19	15 7167	0 00505	18 9392	16 15	0 004902	18 1944	15 45	0 009219	27.5576	
			A STATE AND A DECK MARKED AND AND AND AND AND AND AND AND AND AN		· · · · · · · · · · · · · · · · · · ·							

	10 2	0.00366	5.054		15 / 5	0 00499	17 6624		16.18333	0.004761	17.6624	15 48333	0 007798	27 5576
	16 21667	0 00366	5.586		15.7667	0.00492	17,1304		16 2	0.004776	16.6515	155	0.007608	27 7704
	16 23333	0.00333	5.586		15.7833	0.00496	16.3856		16.21667	0.004832	16.8644	15 51667	0.007742	28 0364
	16 25	0.00352	5.453		15.8	0.00511	14,1828		16 23333	0.00481	17,1304	15 53333	0.007742	27.0256
	16.26667	0.00345	5.054		15 8167	0.00511	13.7672		16 25	0.004787	17,1304	15 55	0.007608	26 4936
	16 28333	0.00365	5 054	•	15 8333	0.00502	13.2884		16.26667	0.004746	16.6516	15 56667	0 007608	27.0256
	16 3	0.00335	4 8146		15 85	0 00499	11.6924		16.28333	0.004799	16,8644	15 58333	0 007742	26,7596
	16 31667	0.00345	4 68 16		15.8667	0 00487	13 2884		16,3	0.004799	16,3856	156	0.007462	24,6848
	16.33333	0 00329	4 68 16		15.8833	0 00474	11.7672		16.31667	0.004787	15.8536	1561667	0.007798	24,9508
	16.35	0.00335	4 4156		15 9	0 00469	13 0224		16.33333	0.004655	15.3216	15 63333	0.00753	26 7596
	16 36667	0.00332	4,522		15.9167	0 00464	11.4904	1.1	16.35	0 004721	15,5876	15 65	0.007544	26 7596
	16 38333	0.00327	4 3092		15 9333	0 00473	13,1288		16 36667	0.004643	15 5876	15 66667	0.007657	25 6956
	16.4	0 00324	4 4156		15.95	0.00458	11 5544		16 38333	0.004726	15 3216	15 68333	0.007535	25 0350
	16 41667	0.00303	4 4156		15 9667	0 00459	11 4904		16.4	0.00466	15 5876	15 00000	0.007371	25 2169
	16 43333	0 00289	3 7772		15 9833	0.0044	9 9584		16 41667	0.004684	15.0556	15 71667	0.007271	252100
	16 45	0.00299	3 7772		16	0.00437	1165		16 41333	0.004677	14 5736	15 7 1007	0.007033	232100
r jeri	16 46667	0 00288	4 2826		16 0167	0.00439	11 7564		16.45	0.004072	14 3105	15 75	0.00721	24 5500
	16 48333	0.00273	3 7772		16 0333	0.00400	0,6202	1.1	10.43	0.004350	14.3100	13.73	0.007069	24 4 108
	16.5	0.00245	3 7772		10.0000	0.00424	10232		10,40007	0.004465	14,3108	15.76667	0.00/2/1	24.6848
	16 51667	0.00245	4 0166		10.03	0.00431	0.5544	a 1997	10,40333	0.004368	14.0448	15 /8333	0.007271	24.1528
	16 53233	0.00238	3 7 4 5 7		10 0007	0.0041	9.5544		10.5	0.004468	135128	158	0.007131	24,1528
1.17	16 55	0.00260	3 9102		16.0033	0.00350	0.0224	19 - C.	1월 4월			15 81667	0.007009	24 1528
11114	16 56667	0 00201	2 7772		10.1	0.00259	9.2004	4.19	1.2	소리가 같		15,83333	0.00695	24.1528
	10 50007	0.00200	31112		10 1 10/	0.00356	9.0224	10.11		n ag sú súir i		15.85	0.006752	23 6208
	10.30333	0.00249	3.0442		10.1333	0 00354	92884	12.22	1 A			15.86667	0.007271	23 6208
	10 0 10 0	0.0023	3 3702		CI 01	0.00330	8.5544					15 88333	0.007397	23.3548
	10 0 1007	0.00254	2,9792		16.1667	0 00371	8 2884					15.9	0.00753	23.3548
	16.63333	0.00257	3,1122		16.1833	0 00298	9.2884					15,91667	0.00726	22.61
	16.65	0.00263	3.3782		16.2	0.00325	9.0224			44.44		15 93333	0.00726	23 142
	16 60667	0.00253	29/92		162167	0.00329	8.7672					15.95	0.007327	23 3548
	16 68333	0.00239	3 3782		16 2333	0 00353	8 5652					15 96667	0.007798	22 876
	167	0.00227	3,1122		16.25	0.00384	8 5652					15,98333	0.007186	22 078
	16 71667	0.00226	2.7132		16.2667	0.00357	8 2992					16	0.0068	21.812
	16 73333	0.00233	2 3408		16 2833	0 00348	7.7672					16 01667	0.007132	21.0672
	16.75	0 002	2.7132		16.3	0.00334	8.0332					16 03333	0.007065	21.0672
	16 76567	0 00221	2.3408		16,3167	0.00353	7.5544					16 05	0.006879	20 80 12
	16.78333	0 00207	2.3408		16.3333	0 00304	8 0332					16 06667	0.006999	20 5352
	16.8	0.00206	1.9684		16 35	0.00349	8.0332					16.08333	0.006817	20.0032
	16 81667	0 00213	1.9584	1.53	16.3667	0 00303	8 2992					16.1	0.006765	19,2052
	16 83333	0 00208	2 0748	1	16 3833	0 00347	7.5544			6.11		16 11667	0.006765	18 7764
	16 85	0 00 188	1.9418		16 4	0 00301	7.5544	2.23	e i gine di			16 13333	0.006819	18 4604
	16 86667	0 00 194	1 8354		16.4167	0 00328	7.0224			1.11		15 15	0.005861	17 9784
	16 88333	0 00 19	1.8354		16 4333	0 00282	7.7672			e de la composition		16 16667	0.0000001	17 0384
	16 9	0.00198	1 8354		16 45	0 00294	6 7564	Angel	$2^{-1} (I_{1} P_{1}^{-1})$			16 18333	0.000230	17 0204
	16 9 1667	0 00191	1 7024		16 4667	0 00307	6 4904		₫ proje			10.10333	0.000100	17.5204
	16 93333	0 00 18 1	1 5694		16 4833	0.00258	5 9584			1 de 1		10.2	0000177	1766.24
	16 95	0 00168	1 3034	12.34	16.5	0.00255	5 4790					10 2 1007	0.006454	17 6624
	16 96667	0.00173	1 3034		16 5167	0.00200	5 3120		A. M.			16 23333	0.006752	17,1304
	16 98337	0.00177	1 3034		16 53 32	0.0020	J 2130	준비서				16 25	U.006817	18 4604
	17	0.00162	1 1 70 4		1C 5F	0.00263	4 00 10	588	de la com			16 26667	0.00695	18 1944
	1701667	0.00102	1 1704		10 33	0.00200	32136	영상 문화				16 28333	0 006992	17 1304
	17 0100/	0 00102	1 027		10 3001	0.0029	4 1495	8-9-5-2 1				16 3	0 006959	17 1304
	000000	0.00122	1.03/4	. 전신	10 2913	0.0025	3 3516		1.1.1.1	1. A.		16 31667	0.006837	17 1/014

16.33333	0 006634	16 8644
16 35	0 006534	16.3856
16.36667	0 006534	16.3856
16.38333	0 006534	16.1196
16.4	0 006584	15.5876
16.41667	0 005941	15.5876
16,43333	0 006212	15.0556
16.45	0 006485	14,7896
16,46667	0 006068	14,7896
16,48333	0 005894	14 0448
16 5	0 005612	14 3108
16 51667	0.00569	13 7788
16 53333	0.005645	13 5128
16 55	0.005484	13 5128
16 56567	0.005601	12 9808
16 58333	0.005397	12 9808
16.6	0.005514	12 7148
16 6 16 6 7	0.005271	12 9808
16 63333	0.005315	11 97
16.65	0.005350	17 1878
16 66667	0.005350	11 704
16 69333	0.0053335	11 704
16.7	0.005333	11 439
16 71667	0.005333	11.430
16 73233	0.003200	11.430
10.73333	0.005781	11.435
10.73	0.005208	11.97
16.70007	0.00544	11.438
10,76333	0.00000000	11.704
10.0	0.0005658	11./04
10 0 1007	0.0000000	11,172
16.83333	0.005581	11,172
10.05	0 005581	11.1/2
16.86667	0.005428	11.172
16.88333	0.005533	11.172
16.9	0 005658	10.906
16.91667	0 005581	11,172
16.93333	0 005581	10.64
16 95	0 005581	10 906
16.96667	0 00544	10.374
16 98333	0 005533	10.374
17	0 004623	9 6 2 9 2
17 01667	0 00528	9.0972
17 03333	0 004998	8 5652
17 05	0 004824	8 5652
17.06667	0 00469	8 0332
17 08333	0 00469	8 0332
17,1	0 004604	7.5544
17 11667	0 004432	7,2884
17.13333	0 004265	7.5544
17 15	0 004103	7 5544
17 16667	0 004272	7 5544

.

17.05	0.00168	0.798	16.6	0 00243	3 3516	
17.06667	0.00149	0 532	166167	0 00206	2 0748	
17.08333	0.0015	0.7714	16,6333	0 00182	3 3516	
17.1	0.00144	0.399	16 65	0 00248	2 6068	
17 11667	0.00146	0.399	16 6667	0 00189	1 8088	
			16,6833	0 00187	1.8088	
			16.7	0.00206	1 2768	
			16,7167	0.0018	1.064	
			16,7333	0 00175	1.064	
			16.75	0.00183	1,2768	1
			16,7667	0 00186	1.064	
1 . A .			16,7833	0.00174	1,2768	
			16.8	0.00174	1,2768	
	. A 1997	9 A. C. S. S.	16.8167	0.00176	1.064	
	a an		16.8333	0.00176	1.064	
			16.85	0 00169	0.798	d de la
			16.8667	0.00147	1.064	in Surge
		일이 같다.	16.8833	0.00167	1.2768	ing a chuir an she
			16.9	0.00149	0.532	
			16.9167	0 00161	0.532	
		and and a	16.9333	0.00159	0 266	
			16.95	0.00165	0.532	
			16.9667	0.00139	0.532	
			16.9833	0.00131	0.532	
	19 A. A.		17	0.00146	0.532	
				anto 1933. Mangaréné		1. 1911 - A.
		19. S. 1			가지 같은	化电子运行

	17.18333	0.004147	7.2884
	17.2	0 004234	7.2884
	17.21667	0.004204	7.0224
	17.23333	0.00392	6 7564
	17 26657	0.004147	5 0584
	17 28333	0.004103	5,5304
	17.3	0.003851	4 68 16
	17.31667	0.003442	4,1496
	17.33333	0.003307	3.8836
그는 것 같은 것 같아요. 이 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같아요. 영화가 말했다.	17.35	0.003168	3.3516
이 같은 것 같은	17.36667	0 003102	3.1388
그는 그는 것 같은 것 같	17.38333	0.002883	2.8728
그는 것 같은 것 같이 있는 것 같은 것 같	17.4	0.002592	2.3408
	17.41667	0.002895	2.6068
이 것 같은 것 같은 것 같은 것 같아요. 이 가락 가지 않는 것 같은 것 같은 것 같은 것 같은 것 같이 말했다.	17.43333	0.00256	2.8/28
	17 40007	0.002466	2.3408
그는 것 같은 것 같은 것 같아요. 그는 것 같은 것 같은 것 같은 것 같이 있는 것 같아요. 가지 않는 것 같은 것 같아요. 가지 않는 것 않는 것 같아요. 가지 않는 것 않는 것 같아요. 가지 않는 것 않는 것 않는 것 않는 것 않는 것 같아요. 가지 않는 것 않는 것 같아요. 가지 않는 것 같아요. 가지 않는 것 같아요. 가지 않는 것 않는	17.40007	0.00250	2.3400
	17.5	0 00255	2 6068
	17.51667	0.00256	2.3408
이 눈에 가지 않는 것 같아요. 이 가지 않는 것 않는 것 않는 것 않는 것 같아요. 이 가 있는 것 이 가 있는 것 같아요. 이 가 있는 이 가 있는 것 같아요. 이 가 있는 것 않는 것 같아요. 이 가 있는 것 이 이 가 있는 것 같아요. 이 가 있는 것 같아요. 이 이 이 이 이 이 이 있는 것 같아요. 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	17.53333	0 002535	2.8728
이 같은 것 같은	17.55	0.002535	2.0748
이 가지 않는 것 같아요. 나는 것 않는 것 같아요. 나는 것 않는 것 같아요. 나는 것 않는 것	17.56667	0.002629	2.3408
이 이 것 같아요. 이 것 같아요. 이 물건 것 같아요. 나는 것 같아요. 이 있는 것 같아요. 한 것 같아요. 神秘 感激的	17.58333	0.002468	2.3408
· · · · · · · · · · · · · · · · · · ·	1/6	0.00283	2.3408
이 가지 않는 것 같은 것 같은 것 같은 것 같아요. 한 사람이 있는 것 같아. 한 사람은 가지 않는 것 같아. 물건 가지 않다.	17.01007	0.002592	2.0748
이 가는 것이 같아요. 이 이 것이 있는 것이 같은 것이 같아요. 이 가지 않는 것이 있는 것이 많이	17.63333	0.002655	1.0008
이 제품 같은 방법에 있는 것으로 이 이 밖에서 물건이 있다. 것은 이 가장하고 있었다. 가지 않는 것이 많은 것이 많은 것을 했다.	17.66667	0.002621	1.6066
그는 것은 말 좋은 것 같아요. 이 가슴은 물질 것 같아요. 이 가슴 것을 가슴을 물었다. 이 가슴 영향했	한 비지 않는	a de la compañía A de la compañía	
이 활동 <mark>~~~~</mark> 이 가지 않는 것이 있는 것이 있는 것이 같은 것이 같이 같이 있는 것이 가지 않는 것이 있다. 이 가지 않는 것이 있는 것이 같은 것을 알 수 있는 것이 있다. 것이 있는 것이 없다. 것이 있는 것이 없다. 것이 있는 것이 없는 것이 없는 것이 있는 것이 없는 것이 있는 것이 있는 것이 있는 것이 없다. 것이 있는 것이 있는 것이 있는 것이 없는 것이 없는 것이 없다. 것이 있는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없다. 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없 않이 않이 않다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없다. 것이 있 않은 것이 없는 것이 없는 것이 없다. 것이 없는 것이 않은 것이 없다. 것이 없는 것이 없는 것이 없다. 것이 않은 것이 없다. 것이 않은 것이 않은 것이 없다. 것이 없는 것이 없다. 것이 없는 것이 없다. 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없다. 것이 않은 것이 없다. 것이 않은 것이 없다. 것이 않은 것이 않은 것이 않이 않이 않이 않이 않이 않다. 않은 것이 없다. 것이 않은 것이 없다. 것이 않은 것 것이 것이 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 않이 않이 않이 않다. 것이 않은 것이 않은 것이 않이 않이 않이 않이 않다. 것이 않은 것이 않이 않이 않이 않이 않 않이 않이 않이 않이 않이 않이 않이 않이			
이 방법 🚰 이 지난 것 같은 것 같아요. 이 것 이 가지 않는 것 같아. 이 것 같아. 한 것 같아.			
이 가슴 🚾 이 같은 것이 있는 것이 이 이 이 같은 것이 있는 것이 이 것이 가지 않을까? 이 것 않는 것 같은 것이 나는 것 같은 것이 가 많은 것이 있는 것 같은 것이 없다. 것 같은 것 같			
- 물건 <mark>문,</mark> '물물물'로 다시는 것이 되는 것을 위해서 이 가지 못하게 하는 것이다. 이 가장을 들어 가지 못			n in the second s
이 생활 수 있는 것 같은 것 같은 것 같아요. 이 것 같은 것 같아요. 정말한 것 같아요. 한 것 같아.			
an an 🗛 a shekara ta bara ka shekara ka s			
그렇게 가지 아니는 것은 것은 것은 것을 가지 않는 것 같이 많은 것 같이 많을까? 것 같아요. 것 같아?			
n an a 🔽 an an Albana an Albana a Bhann an Albana an Albana an Albana an Albana an Albana an Albana.	e de la face		
and similar with the first state of the first state of the first state of the stat			
이 같다. 그렇게 가지 않는 것 같아요. 이 것 이 나는 것 같아요. 가지 않는 것 같아요. 한 ? 한 것 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?			
a ti da 🔿 da se a terra interna da cara da cara da la terra de se			
그 가는 🎇 이 방법이 있는 것 같은 것 같			
그는 그 🕰 그는 것이 같은 것입니다. 그는 물로 그는 것 같은 것이 있는 것을 물었다. 것은 것이 같은 것이 같은 것이 같은 것이 없다.			
그는 🔐 가을 다 물로 다 가운 것 거 같이 가 것 같아. 것 가지, 것 가 있는 것 같아. 가 나는 것			
그는 그 📅 이 지도는 것 같아요. 전통 것을 알았지 못하고 관계에서 동물을 통해 가장해 지난 것을 가지?			
an an 💑 an			
化氯化化物 化分子 化分子分子 化分子分子分子分子分子 机动力器 机运行器 化分子器 化分子器 化分子器			