

FACULTAD DE QUIMICA

FUNDAMENTOS DE VOLTAMETRIA CICLICA

1995

T		E		S		1		S
QUE	PAF	۲ A	OBTE	NER	EL	TITU	0	DE
IN	GE	N	ΓEF	R 0	Ql	II M	ΙΟ	0
P	R	E	S	E	Ν	T	A	:
MIG	UEL	AN	IGEL	ÞΕ	REZ	CAR	DEN	IAS

MEXICO, D. F.

FALLA DE ORIGEN

TESIS CON FALLA DE ORIGEN

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. JUFADO ASIGNADO:

PRESIDENTE:	Prof. Miguel Saloma Terrazas
VOCAL:	Prof. Silvia Lilia Tejada Castañeda
SECRETARID:	Prof. Carlos Maurício Castro Acuña
ler. SUPLENTE:	Prof. Joan Genesca Llongueras
2do. SUFLENTE	Prof. Aurora Angeles Ramos Mejia

SITIO DONDE SE DESARROLLO EL TEMA:

DIVISION DE ESTUDIOS DE POSGRADO. FISICOQUIMICA DE SEMICONDUCTORES. LABORATORIO 223 FACULTAD DE QUIMICA.

ASESOR DEL TEMA:

SUPERVISOR TECNICO:

Carlos Mauricio Castro Acuna Dr.

•

M en C. Arona Angeles Ramos Mejia

Cardenas

SUSTENTANTE:

Con todo mi caríno:

A la Finfiriniña. por su apoyo, cariño y fortaleza en los momentos dificiles

> A mis hermanos: Tere, Lety, Enrique, y Juan. Por todo lo que somos y por lo que siempre seremos.

A mi Mariana. Por la vida que estamos compartiendo juntos.

> A Luzemma: Por el regalo de Fernanda

Al Dr. Mauricio y a las maestras Silvia y Aurora: Por su apoyo y su paciencia.

> A toda las personas que han compartido su amistad conmigo.

> > Al Finfiriniño. Porque su recuerdo y compañía me motiva a continuar en la jornada.

Si das pescado a un hombre hambriento, lo nutres durante una jornada. Si le enseñas a pescar, lo nutriras toda su vida.

Lao Tsé

فكموا محمد مي برجم عمد بجنوب فعن بالاستقاري مهداي وجري المحادثين المحادثين المحد بالمحد بالمحد والمحد	
0	ONDICE

		Pagina
I	INDICE	I
II	INTRODUCCION	1
	FUNDAMENTOS DE VOLTAMETRIA CICLICA	3
	Complicaciones.	14
IV	CORRIENTES DE PICO	16
۷	REVERSIBILIDAD E IRREVERSIBILIDAD	19
vI	DERIVACION DE LA FUNCION CORRIENTE	22
VII	CONSTANTE DE RAPIDEZ	25
VIII	PICOS DE CORRIENTE Y REACCIONES QUIMICAS APAREJA	DAS
		27
IX.,	INSTRUMENTACION	34
x	EL PAPEL DEL SISTEMA SOLVENTE-ELECTROLITO SOPORT	E EN
	ELECTROQUIMICA	38
	El papel del electrólito soporte.	39
XI	ADSORCION	43

۲.

Página I

	Efecto de la adsorcion de especies electroact:	ivas
	en la respuesta electroquímica.	48
XII	ELECTRODOS DE REFERENCIA	56
	Propiedades del electrodo de referencia ""idea	1"
		56
	Electrodos de referencia para usarse en soluci	ión 57
	acuosa.	37
	El electrodo de hidrógeno.	57
	El electrodo de referencia de Ag/AgCl.	58
	El electrodo de Mercurio-Cloruro mercuroso	
	(Calomel).	61
XIII	ELECTRODOS DE TRABAJO	65
	Mercuria.	65
	Platino, oro y otros metales nobles.	66
	Carbón.	67
XIV	PARTE EXPERIMENTAL	69
	Introducción.	67
	Parte I. Fundamentos de la Voltametría Cíclic	a.
		71
	Parte II. El efecto d e reacciones acopladas.	
	Acetaminofén.	75
xv	EQUIPO	77

~

- Pagina II

4 I.A	FIECUEIC, DE REEULTAPOS	77
	Farte I. Fundamentos de la Voltametría Cíclic	a.
		79
	Farte II. El efecto de reacciones acopladas.	
	Acetaminofén.	97
XVII	CONCLUSIONES Y RECOMENDACIONES	116
XVIII	ANEXO I	120
	Solución amortiguadora de McIlvane.	
XIX	ANEXO II	123
	Criterios de diagnóstico.	
XX	ANEXO III	128
	Potenciales normales de electrodo (Semicelda).
XXI	BIBLIOGRAFIA	134

Página III

.

	and the second secon
aa aa	NIRODUCCION

Las técnicas electroquímicas en las que se impone el potencial sobre una celda, y la corriente resultante es medida, son categorizados generalmente como métodos voltamétricos.

Una gran variedad de estos métodos han sido desarrollados. Estos difieren entre sí, por la "forma" en la que el potencial es aplicado a la celda, por el tipo de electrodo empleado y por el estado en el que se encuentra la solución (ya sea agitada o no). Algunas características de las más comunes técnicas voltamétricas se han sumarizado en la Tabla 1

Dentro de éstas, la voltametría cíclica (VC) es quizás la más versátil técnica electroanalítica para el estudio de especies electroactivas [1]. Su versatilidad, combinada con su facilidad de uso, ha resultado en un uso extensivo en Campos tales como la química inorgánica, la química orgánica У la bioquímica. La VC es con frecuencia el primer experimento empleado en un estudio electroquímico de un compuesto, de un material biológico o de la superficie de un electrodo. La efectividad de la VC resulta de su capacidad para detectar rápidamente el comportamiento redox sobre un amplio intervalo de potencial. El voltamograma resultante es análogo a un espectro convencional que transmite información como una función de la energía de barrido.

Es de reconocerse que, a pesar del amplio uso que ha disfrutado la VC, esta técnica generalmente no es bien comprendida en comparación con otras técnicas instrumentales como la espectroscopía y la cromatografía. No es raro que los estudiantes que trabajan con esta técnica, lleguen a adquírir un

Página 1

conocimiento incompleto de los conceptos básicos, de Asta, as: como de el porque de las formas de los voltamogramas [2].

Y es por ello, que este trabajo surge de esta necesidad, siendo su objetivo el recopilar y organizar la informacion más importante sobre esta técnica.

En este trabajo se enfrenta el objetivo a través de dos partes generales:

En la primera, se proporciona la información fundamental de la voltametría cíclica. Se refiere sobre parametros tales como los potenciales e intensidades de pico, la importancia del electrólito soporte, el efecto de la adsorción sobre la respuesta, el efecto de las reacciones químicas aparejadas, así como de los diversos tipos de electrodos de referencia y de trabajo empleados en esta técnica.

La segunda, corresponde a la parte experimental. En ella se demuestra de forma práctica la forma en que un voltamograma cíclico nos brinda la información más importante de el, y sobre todo, la forma en que esta debe de manipularse para obtener su máximo provecho. En esta parte también, se enfoca de manera experimental el caso de un sistema que poseé reacciones químicas acopladas. En este caso se hace el análisis del comportamiento electroquímico del acetaminofén (N-acetil-p-aminofenol).

Fagina 2

Polarografía: Normal o corriente directa Señai de excitación: Potencial: Barrido de potencial E. lento (o de E constante) Transferencia de masa: Difusión ŧ Relación analítica de concentración: Típica representación: id a C i Е Ref:[11][47][48]

Corriente Alterna

Señal de excitación:

m id

- Potencial: Barrido lineal lento + onda sinusoidal de baja amplitud
- Transferencia de masa: Difusión
- Relación analítica de concentración: ιρα C

Típica representación:

Re1:[49]

- Petencial: Pulse, cuadr<u>,</u> dos de voltaje com « incremento de amplitud
- Transferencia de masa: Difusión

Rolación analítica de concentración >d a C Schal de excitación

lípica representación:

Ref:[1][50]

De pulso diferencial

- Potencial: Pulsos cuadra dos de voltaje con amplitud cte. + pendiente lineal.
- Transferencia de masa: Difusión
- Relación analítica de concentración: te x C

Señal de excitación:

Ref: [11][49]

FALLA DE ORIGEN

6-

Voltametria:

De barrido sencilio

Señal de excitación:

Potoncial: Barrido lineal de E

Transferencia de masa: Difusión

Refación analítica de concentración: έρ α C

Típica representación:

Ref:[1][11]

Cíclica

Potencial: Barrido triangular de E

Transferencia de masa: Difusión

Relación analítica de concentración: τραC Señal de excitación:

Típica representación:

Ref: [1][1]]

......

Cronoamperometria:

Putencial: Escatúra de E.

Senal de escitorión:

lransterencia de masa: Difusión

Relación analítica de concentración: ί_ι α C

Típica representación:

Ref: [51]

Cronocoulometría:

Potencial: Escalón de E.

Transferencia de masa: Difusión

Relación analítica de concentración: Q a C

Señal de excitación:

Típica representación:

Potencial: E constante

Transferencia de masa: Convección/Ditusión

Relación analítica de concentración:

$$Q = \int_{0}^{t} i dt = nFVC$$

Señal de excitación: E

Típica representación:

Ref:[11][52]

Electrogravimetría:

De potencial controlado

Potencial: E constante

Transferencia de masa: Convección/Difusión

Relación analítica de concentración: Peso α VC Señal de excitación:

Ninguna

Ref: [51][52]

. .

.

	Fundamentos de
U U U	LA VOLTAMETRIA CICLUCA

La VC consiste en ciclar el potencial de un electrodo, el cual esta sumergido en una solución y medir la corriente resultante [3][4]. El potencial del electrodo de trabajo es controlado contra un electrodo de referencia, por ejemplo un electrodo de calomel saturado (ECS) o uno de plata/cloruro de plata (Ag/AgCl). El potencial de control, el cual se aplica a través de estos dos electrodos, puede considerarse como una señal de excitación. La señal de excitación para la VC es un barrido de potencial lineal de forma de onda triangular (fig 1)

Fig 1. Típica señal de excitación para voltametría cíclica -onda triangular de potencial

Esta señal de excitación barre el potencial del electrodo entre dos valores, algunas veces ilamados potenciales de desvío, $(E\lambda)$. En el caso mostrado en la figura 1, la señal de excitación consta de un primer barrido de potencial en dirección negativa, de +0.8 a ~0.2v (contra el potencial del electrodo de referencia que se emplee), punto en el cual la dirección de barrido es invertida, haciendo un barrido de reareso **a**1 potencial inicial de +0.8v. La velocidad de barrido, reflejada en la pendiente, es de 50mV/s. Un segundo ciclo esta indicado por la línea punteada. Pueden hacerse ciclos sencillos o multiples. Página 3 Un voltamograma cíclico se obtiene midiendo la corriente del electrodo de trabajo durante el barrido de potencial. La corriente puede ser considerada como la señal de respuesta a la señal del potencial de barrido. El voltamograma muestra la corriente (eje vertical) contra el potencial (eje horizontal). Debido a que el potencial varía linealmente con el tiempo, el eje horizontal puede ser también, considerado como el del tiempo [3].

Un típico voltamograma cíclico se muestra en la fig 2.

Fig 2. Típico voltamograma cíclico. Potencial inicial de 0.8V. Dirección negativa (catódica) con potencial de desvío Eλ⇒0.2V

Cabe hacer la aclaración acerca de la forma en que estan orientados los voltamogramas. Debido a que los polarogramas de polarografía dominan los libros y manuales concernientes a la electroquímica, es común ver la convención en la que se incrementan los potenciales negativos a la derecha del origen, y con las corrientes catódicas arriba del origen. (fig 3a) Por nuestra parte, nosotros consideraremos que los potenciales negativos se incrementan a la izquierda del origen y las corrientes catódicas abajo del origen.(fig 3b)[5]

Convención en este trabajo.

El potencial de excitación usado para obtener el voltagrama de la fig 2 esta mostrado en la fig 1. Así, el eje vertical de la fig 1 es ahora el eje horizontal de la fig 2.

El potencial inicial (Ei) de 0.8V aplicado en (a) es escogido evitando la electrólisis de la especie oxidada (\mathfrak{O}), esto es, buscando un punto de corriente nula. El potencial es entonces explorado negativamente, barrido en la dirección inicial (forward scan), como es indicado por la flecha. Cuando el potencial es lo suficientemente negativo para reducir a \mathfrak{O} , la corriente catódica es indicada en (b) debido al proceso en el electrodo:

0 + ne -----→ **ℝ**

Página 5

El potencial del electrodo es ahora lo suficientemente reductor para reducir a O. La corriente catódica se incrementa rápidamente (b → d) hasta que la concentración de O en la superficie del electrodo es sustancialmente disminuida causando la corriente de pico (d).

La corriente entonces decae (d \rightarrow f) cuando la solución que rodea el electrodo es agotada de O debido a su conversión electrolítica hacia la especie \mathbb{R} .

Página 6

La dirección de barrido es cambiada a positivo en -0.20V (f) para el barrido en la dirección contraria (reverse scan). Entonces el potencial es lo suficientemente negativo para reducir a O, así la corriente catódica continúa uniforme aunque el potencial se examina ahora en la dirección positiva. Cuando el electrodo se hace lo suficientemente oxidante, R, el cual se ha estado acumulando cerca del electrodo, puede oxidarse a través del proceso en el electrodo:

Esto causa la corriente anódica (i \rightarrow k). La corriente anódica rápidamente se incrementa hasta que la concentración de \mathbb{P} en la superficie disminuye, causando la corriente de pico (j).

Página 7

Es entonces cuando decae $(j \rightarrow k)$ debido a que la solución alrededor del electrodo esta agotada de R.

El primer ciclo esta completo cuando el potencial llega a 0.8V. Ahora que el voltamograma cíclico fué obtenido, se observa que a cualquier potencial positivo de \pm 0.4V puede ser adecuado como potencial inicial en la reducción de O, (punto de corriente nula). Este procedimiento evita electrólisis inadvertidas como resultado de aplicar el potencial inicial.

Expresado de manera simple, en el barrido en la dirección inicial, R es electroquímicamente generado a partir de Φ y esto se indica por la corriente catódica. En el barrido en la dirección contraria, R es oxidado de nuevo a O como se indica por la corriente anódica. Así, la VC es capaz de generar rápidamente un nuevo estado de oxidación durante el barrido en la dirección inicial y entonces probarlo en el barrido en la dirección contraria.

Esto puede entenderse considerando la ecuación de Nernst y el cambio en la concentración de la solución adyacente al

Página 8

electrodo durante la electrólisis. El potencial de la señal de excitación ejerce un control sobre la relación de 070° en la superficie del electrodo así descrita por la ecuación de Nernst para un sistema reversible:

$$\mathbf{E} \approx \mathbf{E}^{\circ} \mathbf{O}, \mathbf{R} + \underbrace{\mathbf{0}, \mathbf{059}}_{\mathbf{n}} \log \left[\underbrace{\mathbf{0}}_{\mathbf{1}} \right]$$
(3.1)

donde E°' es el potencial formal de reducción del par. Un valor inicial de E suficiente más positivo que E° mantiene la relación en la que O es predominante. Sin embargo, si E es explorado negativamente, la conversión de O a R por reducción es forzada para satisfacer la ecuación de Nernst. La relación logarítmica entre E y [O]/[R] es reflejada por una rápida relación de cambio en la región donde E = E° ([O]/[R] = i), esto causa una dramática subida en la corriente catódica (b \rightarrow d) durante el barrido en la dirección inicial.

La situación física en la solución adyacente al electrodo durante el barrido de potencial es ilustrado por los perfiles distancia-concentración (perfil C-x)[3]. Estos representan una ilustración gráfica de como la concentración (C) varía en función de la distancia (x) a la superficie del electrodo (fig 4)

El perfil C-x (a) es para O y 🛚 en el potencial inicial. Nótese que la aplicación de Ei no crea una alteración registrable en la concentración de **O en la superficie** del electrodo comparándola con el seno de la solución. Cuando el potencial es examinado en la dirección negativa, la concentración de O, en la superficie del electrodo, decae de acuerdo a una relación **O/IR** que satisface la ecuación de Nernst para el potencial aplicado en cualquier instante en particular. Esto esta ilustrado por los perfiles (c-e). Note que el perfil (c) en eì. que la concentración de O en la superficie del electrodo 86 exactamente igual a la concentración de \mathbb{R}_{+} corresponde a un E el cual es igual al potencial formal del electrodo (contra el electrodo de referencia) del par.

Los perfiles (e,g) corresponden a potenciales suficientemente negativos respecto a el potencial formal del electrodo por lo que la concentración O es efectivamente cero en la superficie del electrodo.

El comportamiento de la corriente durante el barrido de potencial puede ser entendido examinando detenidamente los perfiles C-x.

Consideremos ahora que el transporte de materiales dentro de la celda toma lugar siguiendo 3 modos:

Difusión	El movimiento macroscópico de los compo- nentes de un sistema que procede de di ferencias de concentración [6]
Migración	El movimiento de partículas cargadas dentro de un campo eléctrico.
Convección	El movimiento de material contenido den- tro de un elemento de volumen hidrodi námico de solución. Puede ser natural o forzado.

Página 10

En términos matemáticos, el flujo (transporte de masa) al electrodo es descrito (en una dimensión) por la ecuación de Nernst-Planck

$$\mathcal{D}_{CR,CP} = -D \frac{\partial C_{CR,CP}}{\partial x} - \frac{zF}{RT} \frac{\partial \Phi_{CR,CP}}{\partial x} + C_{CR,CP} \sqrt{(3.2)}$$

donde J es el flujo (mol/cms); D es el coeficiente de difusión (cm2/s), C es la concentación , § es el potencial electrostático, y Vx es la velocidad hidrodinámica en términos simples.

Si la corriente es controlada ya sea por el transporte de masa o por un proceso estacionario, está puede ser determinada por el flujo asociado con esta pendiente (perfiles C-x):

$$i(t) = nFAD \frac{\partial C(x,t)}{\partial x}$$
 (3.3)

Donde n es el número de electrones (faraday/mol), A es el área del electrodo y F≈96500C/faraday (F es la carga por cada mol de electrones). Esto es válido si unicamente la difusión contribuye al flujo en la superficie el electrodo Por ejemplo. Si deseamos eliminar el transporte convectivo unicamente mantenemos sin agitar la solución, y aun cuando se agite, las desviaciones producidas en la ecuación son mínimas por lo que la ecuación sigue siendo válida. El eliminar el transporte migracional 65 más dificil pero igualmente posible. Si adicionamos a la solución una sal inerte la cual tenga material iónico el cual reaccione al electrodo polarizado, el campo eléctrico del electrodo 85 disipado sobre todos los iones de la solución y no solamente en el material electroactivo. Así, la adición de electrólito soporte elimina el modo migracional del transporte de masa para el

Página 11

masa para el material electroactivo presente.

Así, la corriente observada a un potencial particular para el voltamograma (fig 2) puede ser explicado por la pendiente del perfil C-x correspondiente. La pendiente del perfil (a) es cero y la corriente es despreciable a ese potencial. En un potencial en el que es examinado dentro de un rango negativo, $(\partial C/\partial x)_{x=0}$ se incrementa en los perfiles (c-d), y la corriente catódica en la fig 2 se incrementa correspondientemente.

Sin embargo, cuando el perfil (d) es alcanzado, $(\partial \mathbb{C}/\partial x)_{x=0}$, disminuye como es mostrado en los perfiles (e) y (g) debido al agotamiento de O cerca del electrodo. Correspondientemente, la corriente entonces cae.

Página 12

Durante el barrido negativo, en la que O es reducido ${f R},$ el agotamiento de ${f O}$ en la vecindad del electrodo es acompatado por una acumulación d**e R.** Esto puede ser visto por los perfiles C-x para **R**. Despues de que la dirección del potencial de barrido es desviada en ~0.20V a barridos positivos, la reducción continúa hasta que el potencial aplicado se hace suficiente positivo para causar la oxidación del R acumulado. La oxidación de R 65 señalada por la aparición de la corriente anódica. Una vez mas. la corriente se incrementa positivamente hasta aue 1a concentración de R se agota en el electrodo. En este punto la corriente llega a su punto máximo y entonces empieza а decrecer.

De esta forma, el fenómeno físico que causa una corriente de pico durante el ciclo de reducción también causa una corriente de pico durante el ciclo de oxidación. Esto puede ser visto comparando los perfiles C-x para ambos barridos.

Los parámetros importantes de un voltamograma cíclico són las magnitudes de la corriente de pico anódico (*i*pa), la corriente de pico catódico (*i*pc), el potencial del pico anódico (Epa), el potencial del pico catódico (Epc) y la separación entre

Página 13

٠

parametros estan indicados en la fig 2. Un metodo de medir p envuelve la extrapolación de una línea de base mostrado tambión en la fig 2. El establecimiento de una línea de base correcta es esencial para una adecuada medición de la corriente de pico. (Ver capitulo DV) Esto no es fácil siempre, particularmente para sistemas más complicados (por ejemplo, sistemas que posean reacciones químicas acopladas)(Ver capitulo VODO)

3.1 Complicaciones

Puede suceder que en la naturaleza de los procesos de transferencia de carga en el electrodo, pueden limitar ó por lo menos complicar el uso de la voltametría cíclica como una herramienta de diagnóstico. Basicamente, son tres los problemas asociados con la presencia de la transferencia de carga [7].

Primero. la ecuación de Nernst. basada en consideraciones termodinámicas, se aplica rigurozamente a corriente cero. Las concentraciones en la superficie pueden no obødecer la ecuación de Nernst si existe un flujo neto de corriente. La reacción en el electrodo se dice entonces que 85 "irreversible" en un sentido electroquímico, el cual es análogo a un proceso termodinámicamente irreversible. Esto es, el maximo trabajo útil involucrado en el proceso es menor que e١ decremento en la energía libre de Gibbs.

Segundo, La solución adyacente al electrodo, consistente de iones cargados (electrólito soporte) y moléculas dipolares de solvente, las cuales pueden orientarse y distribuirse alrededor del electrodo en respuesta al potencial y al campo eléctrico resultante. Dado que esas especies no están descargadas (osidadas o reducidas) por el electrodo, aparece una carga eléctrica neta

Página 14

en el lado de la solución de la interfase electrodo-solución, que es exactamente igual a la carga del electrodo pero de signo opuesto. Esta interfase electrificada actúa como una capacitancia dependiente del potencial, la cual acumulará carga en respuesta a la variación del potencial aplicado a lo largo de la experimentación.

Una corriente que no depende de la electrólisis de especies electroactivas fluye a cargar esta capacitancia. Hay otros ejemplos de tales corrientes las cuales se les denomina como no farádicas.

Tercero, los reactivos ó los productos de la reacción de transferencia de carga (farádica) pueden adsorberse en el electrodo. Estas especies adsorbidas evitan los procesos de difusión, generando grandes corrientes que fluyen durante 0000 tiempo. Las especies adsorbidas son termodinámicamente diferentes a las especies libres (en solución), causando un corrimiento en el potencial correspondiente al máximo de corriente en el voltamograma cíclico. Además, la capa adsorbida tiene propiedades tanto resistivas (ya que obstaculiza el flujo normal de corriente de las especies difundidas), como capacitiva (actuando como un dieléctrico de la interfase caroada)

Las complicaciones que pueden presentarse por los efectos cinéticos y electródicos pueden causar que un voltamograma sea virtualmente ininteligible

. .

.

Página 15

010	CORRIENTES	DE	PICO

Se considera que la medición de la corriente de pico es fácil para el barrido en la dirección inicial. La línea de base para esta puede ser obtenida grabando la corriente de fondo.[4]

Esta corriente de fondo esta compuesta por: corrientes residuales, oxidación o reducción de material electroactivo, (por ejemplo, oxígeno disuelto, el solvente o el mismo electrodo), y por corrientes de carga, corrientes no farádicas requeridas para cargar el electrodo a un potencial dado (con un comportamiento similar al de un capacitor).[1]

La corriente de pico debe medirse de tal manera que no incluya la corriente de fondo. Una técnica común es extrapolar la línea de base de la corriente que precede la corriente farádica y medir *i*p por diferencia. Otra alternativa es obtener un barrido del electrólito soporte bajo las mismas condiciones (misma velocidad, mismo pretratamiento superficial, etc). Aquí *i*p es tomado como la diferencia entre la corriente de pico (medida desde corriente cero) y la corriente de fondo, todo esto a un potencial dado.

La corriente debida al cargar el electrodo a un potencial dado es directamente proporcional a la velocidad de barrido:

$$i_{c} = C \frac{dE}{dt} = AC_{dl} V$$
(4.1)

donde 2 es la corriente de carga, A es el área del electrodo

Página 16

÷

Ł

1

٢

 (cm^2) y $C_{d/}$ es la capacitancia de la doble capa por centímetro cuadrado. Consecuentemente, la corrección para este componente de la corriente de fondo se incrementa significativamente cuando la velocidad de barrido se incrementa. Es importante reconocer que $C_{d/}$ es función del potencial y por lo tanto, *ic* es función tanto de E como de V. Además, $C_{d/}$ no es necesariamente función de E, por lo que la extrapolación lineal, de la línea de base, sobre una larga distancia (potencial) puede producir un error significativo en la medidad de *i*p [1]

Generalmente se acepta como primer acercamiento, el asumir que durante el proceso inicial su contribución a la corriente total continúa al decrecer con la raiz cuadrada del tiempo durante el barrido en la dirección contraria. La línea de base de la curva para el barrido de retorno puede ser obtenida al parar el barrido en la dirección inicial, en el potencial de desvio con el registrador barriendo a lo largo del eje x como función del tiempo. (fig.5a)

Un segundo acercamiento es, detener el barrido en un punto conveniente y tomar el potencial hasta que la corriente sea relativamente constante. La línea de base apropiada se muestra en la fig.5b

Una tercera aproximación, la cual se muestra en la figura 2, es la extrapolación gráfica de la línea de base. (fig 5c)

Hay ocaciones en que ninguno de estos métodos son convenientes. Nicholson [8] ha indicado que la relación de corrientes puede calcularse usando la siguiente ecuación empírica:

$$ipa/ipc = (ipa)a/ipc + 0.485(i/a)/ipc + 0.086 (4.2)$$

donde ipc es la corriente de pico para el barrido en la dirección

Página 17

inicial, $(i \setminus)$ es la corriente absoluta del potencial de desvio, y $(i pa)_{0}$ es la corriente de pico de retorno, no corregida, medida sobre el eje de la corriente. fig.5d.[4]

Algunos autores como Perone [57] resolvieron el problema de la línea de base empleando la primera derivada de la respuesta. La relación téorica para la voltametría cíclica derivativa solo tuvo aplicación hasta que Ahlberg y Parker [58] desarrollaron el método. La primera derivada para un voltamograma cíclico para la transferencia reversible de un electrón se muestra en la siguiente figura:

El voltamograma presenta como absisa el tiempo (≈ al potencial, E). La misma línea de base se toma para medir la intensidad de pico en la dirección inicial, I½, así como para la dirección contraria, I'b. La relación de los dos picos derivativos, R'I=I½/l'b, tiene gran interes en estudios cinéticos.

Página 18

. . .

•

V	REVERSUBILIDAD
	E DRIKEVERSUBULDDAD

Es una práctica común el reportar el promedio de los potenciales de pico como el potencial formal de reducción para un par redox. Esta es una aproximación que es bastante precisa cuando el proceso de transferencia de electrones es reversible y el coeficiente de difusión para las formas oxidada y reducida es la misma. Si la reacción es reversible, entonces la separación entre los picos de potencial, Δ Ep, puede ser cercana a 59/m mV (a 25°C), y Ep/2 ~ Epc = 56.5/n mV.[9]

Por reversibilidad, se considera que la reacción es lo bastante rápida para mantener la concentración de las formas oxidada y reducida en equilibrio en la superficie del electrodo. La adecuada relación del equilibrio a un potencial dado está determinada por la ecuación de Nernst:

$$E = E^{\circ} + \underbrace{0.059}_{\text{O},\text{IR}} \log \underbrace{1}_{\text{O},\text{I}} \tag{3.1}$$

donde 0 es la forma oxidada y $\mathbb R$ la reducida.

Qué rápidez es lo bastante rápida?. Muchos sistemas "se ven" reversibles cuando el voltaje es examinado lentamente pero a barridos más rápidos el valor de $\Delta Ep/n$ aparece mayor de 59/n mV. Si el potencial del electrodo es forzado a variar desde su valor de equilibrio, los electrones deben de ser transportados entre el electrodo y la solución adyacente en un esfuerzo para reajustar las concentraciones de las varias especies oxidadas y reducidas, en nuevos valores dictados por el potencial aplicado.

Matsuda y Ayabe [10] encontraron que las desviaciones con

respecto a la reversivilidad se pueden considerar imperseptible: si el valor de k¹ (en cm/s) es mayor que el valor numerico de $0.32^{1/2}$ (donde 1 es la velocidad de barrido en volts/s)

Un par redox en el cual ambas especies intercambian electrones rápidamente con el electrodo de trabajo es llamado par electroquímicamente reversible. El potencial formal de reducción (E°') para un par reversible esta centrado entre Epa y Epc

$$E^{*'} = \underline{E}\underline{D}\underline{a} + \underline{E}\underline{D}\underline{C}$$
 (5.1)

El número de electrones tranferidos en la reacción del electrodo (n) para un par reversible puede ser determinado de la separación entre los potenciales de pico:

$$\Delta Ep = Epa - Epc = 0.059/n$$
 (5.2)

La corriente de pico para un sistema reversible esta descrito por la ecuación de Randles-Sevcik para un barrido en la dirección inicial para el primer ciclo:

$$ip = 2.69 \times 10^5 A(n^{3/2}) C(DV)^{1/2}$$
 (5.3)

Esta ecuación asume un electrodo planar, para electrodos esféricos (p.ej. de gota suspendida de mercurio) adquiere la forma:

donde ip es la conviente de pico (A), n es el electrón estequiométrico, A es el área del electrodo (cm²), D es el coeficiente de difusión (cm²/s), C es la concentración y : es la velocidad de banvido (V/s), n, es el radio del electrodo.[11]

Página 20

FALLA DE ORIGEN

(a) A set of the se

De acuerdo a esto, ip se incrementa con (V^{1-2}) y es directamente proporcional a la concentración. Esto es válido si el control es por difusión para lo cual se emplea como criterio el hecho de que $(p/V^{1/2})$ debe ser una constante [9][12]. En el caso de que el control sea por adsorción ip/V debe ser una constante. (ver capítulo X0.. ADSORCION)

La relación con la concentración es particularmente importante en aplicaciones analíticas y en estudios del mecanismo del electrodo. Los valores de *i*pa e *i*pc puede ser idénticos para un par reversible (rápido) simple. Esto es,

También, si la reacción es reversible, el grupo adimensional (la función corriente):

$$ip/nFAC(DnFV/RT)^{1/2} = 0.466$$

Una reacción irreversible o cuasi-reversible da valores de la función corriente menores del 50%

La irreversibilidad en términos electroquímicos es causada por el intercambio lento de electrones de las especies activas con el electrodo de trabajo y viceversa. En este caso las ecuaciones anteriores no se aplican. Esta irreversibilidad está caracterizada por una separación de potenciales de pico mayor que la indicada por la ecuación (5.1)

and the second second

Ł

VI DERIVACIÓN DE LA FUNCIÓN CORRIENTE

En voltametría cíclica, la función potencial-tiempo esta dado (en dirección negativa) por:

$$E = \begin{bmatrix} E = EI - Vt & para & 0 \le t \le t_0 \\ E = EI - 2Vt_0 + Vt & para & t \le t_0 \end{bmatrix}$$
(6.1)

donde Ei es el potencial inicial, V es la velocidad de barrido en volts/s., y t: es el tiempo en el que el barrido de potencial es cambiado. Generalmentela velocidad de barrido es la misma en ambas direcciones, pero no necesariamente. Barridos de potencial asimétrico han sido sugeridos por Savéant [13] para simplificar el análisis de esquemas cinéticos complejos.

Obteniendo una ecuación integral que relacione corriente, potencial y tiempo a partir de la ecuación de Nernst para transferencia de carga reversible, se tiene que:

$$\int_{-\infty}^{t} \frac{i d\tau}{nFC(\pi D(t-x))^{1/2}} = \frac{1}{1+e^{t}}$$
(6.2)

donde j esta dada en términos del potencial de media onda

$$i = \frac{nF}{(E - E_1 \cdot 2)}$$
(6.3)

Debido a que nuestra meta es obtener una expresión de densidad de corriente como función del potencial unicamente, y no del tiempo, una transformación de variables es hecha empleando:

Página 22

ì

i.

f

i

$$at = nF_{e}t/RT$$
 (6.4)

combinando (6.1), (6.3) y (6.4) tenemos:

$$j(at) = \begin{cases} \frac{nF}{RT} (E_2 - E_{1/2}) - at & para & 0 \le t \le t_4 \\ \frac{nF}{RT} (E_1 - E_{1/2}) + at - 2at_5 & para & t \ge t_5 \end{cases}$$
(6.5)

Haciendo el siguiente cambio de variables

У

$$x(at) = \frac{i}{nFC(\pi aD)^{1/2}}$$
 (6.7)

nos da la siguiente expresión adimensional:

$$\int_{0}^{at} \frac{\chi(z)dz}{(at-z)^{1/2}} \frac{1}{1+e^{j(at)}}$$
(6.8)

La solución de esta ecuación genera valores de densidad de corriente en función del potencial, de acuerdo a:

$$i = nFC(\pi Da)^{1/2}X(at)$$
 (6.9)

La ecuación (6.8) ha sido resuelta analíticamente [10], [14], pero su solución numérica es más aplicable a la experimentación en voltamentría cíclica. Nicholson y Shain [15] han usado esta técnica para calcular X(at) con una precisión de ± 0.001 para un barrido sencillo como función del potencial.

La solución de la ecuación (6.9) para la corriente de pico en la dirección inicial de barrido, donde $e^{1/2}X(at) =$

Página 23

FALLA DE UNIGEN

0.4463, esta dada por:

$$f_{\rm p} = 2.69 \times 10^5 {\rm A} \left({\rm n}^{3-2} \right) {\rm C} \left({\rm D} V \right)^{1/2}$$
 (5.3)

que es la ecuación de Randles-Sevcik.

$$Ep = E_{1/2} - 2B.5/n (mV)$$
 (6.10)

mientras que el potencial de medio pico:

$$E_{P^2} = E_{1/2} + 2B.5/n (mV)$$
 (6.11)

donde ambas expresiones se refieren a la reducción, por lo que para oxidación es necesario cambiarles el signo.

Página 24

FALLA DE ORIGEN

and the second second

Tomemos como ejemplo el voltamograma de la fig. 2. En él, el potencial es barrido en la dirección negativa y COMO respuesta la corriente baja y posteriormente sube de manera regular. La corriente depende de dos etapas, el movimiento del material electroactivo a la superficie y la reacción de transferencia de el o los electrones. La constante de rapidez en la transferencia del electrón para un proceso de reducción es función del potencial y puede ser descrito teóricamente COMO [4]:

VOO

$$kf = k^{\circ} \exp((-\alpha nF/RT) * (E-E^{\circ}))$$
 (7.1)

donde k° es la constante heterogénea de rapidez estandar de la transferencia del electrón (su valor es específico de la reacción particular entre el tipo de compuesto y la superficie del electrodo usado), n es el número de electrones transferidos Dor molécula, F es el Faraday, R es la constante universal de 105 gases. T es la temperatura en K y E°' es el potencial formal de reducción. El término a es conocido como coeficiente de transferencia. Este valor varia de cero a uno (usualmente 0.5) dependiendo de la forma de la energía libre superficial para los reactivos y los productos [4].

La dependencia exponencial de *ki* con el potencial aplicado aumenta para los incrementos de corriente. Sin embargo, la electrólisis de los reactivos agota su concentración en la superficie del electrodo. Desde que el experimento es dise::ado para un electrodo estacionario en una solución sin agitación, la difusión es el principal medio para el movimiento de reactivos a la superficie. Esta es un modo relativamente lento de transporte

Página 25

de masa que no puede mantener un perfil de concentración en estado estacionario en la región cercana al electrodo. Por lo tanto, la zona de agotamiento crece. En este sentido, la distancia promedio que las moléculas reactantes deben atravesar para alcanzar la superficie se incrementa. Consecuentemente, la rapidez en el transporte de materia decrece.

La dependencia en transporte de masa, y el hecho de que una rapidez finita para el proceso de transferencia del electrón en el proceso inverso es posible, previene la corriente de un incremento exponencial con el potencial.

Eventualmente, el paso del transporte de masa se hace determinante y la corriente alcanza un máximo. Mientras que el gradiente de concentración continúa decreciendo, la rapidez del transporte de materia continúa decendiendo causando que la corriente decaiga. Más alla de este punto, la corriente de pico es en realidad dependiente del tiempo e independiente del potencial aplicado. En esta región límite difusional la corriente es proporcional a $t^{1/2}$ [4]

Una ventaja de la experimentación en voltametría cíclica es el hecho de que una concentración significativa de producto (en esta caso, de la forma reducida) es generado cerca del electrodo en el barrido en la dirección inicial. Cuando 1a dirección del barrido es invertida, la forma reducida es oxidada de nuevo a su forma inicial. (siempre y cuando se trate de una transferencia reversible de electrones). La constante de rapidez de transferencia de electrones para el proceso inverso (oxidación) es controlada de manera similar por el potencial aplicado:

 $kr = k^{\circ} \exp(((1-\alpha)nF)/RT)(E-E^{\circ})$ (7.2)

Pigina 26

• • • • •

V000	Y	REACCIONES	picos Quimi	dde Cas	Corriente Aparejadas

El comportamiento de un voltamograma cíclico puede exhibir una gran variedad de formas. Formas altamente dependientes de la relativa rapidez de la transferencia de electrones, transporte de masa, y de cuaquier reacción química que ocurra en la superficie del electrodo; esto permite permite el deducir una gran cantidad de información de un proceso a partir de su voltamograma [593[60]:

Dado que el comportamiento representado por la figura a (fig.2) ya se ha examinado, consideremos ahora las figuras b y c.

Supongamos que el proceso es totalmente irreversible (fig. b), por lo tanto:

Observe en la fig. b la ausencia completa de alguna corriente anódica medible. Esto es consistente con una muy lenta velocidad de reoxidación de \mathbb{R} por lo que se considera como evidencia de irreversabilidad.

Por otro lado, en el comportamiento mostrado en la figura :, el pico anódico se observa considerablemente disminuido en altura, comparandolo con el pico catódico. En los casos que

esto se observa, al aumentar la velocidad de barrido, la altura relativa del pico anódico se incrementa hasta una altura comparable a la del pico catódico. A muy lentas velocidades de barrido el pico anódico puede desaparecer completamente. (ver en cápitulo XVV.. DUSCUSION DE RESULIADOS, Parte II: El efecto de las reacciones acopladas. Acetaminotén p.97)

Este comportamiento se asocia con una reacción química subsecuente a la transferencia electrónica:

$$0 + ne \xrightarrow{k} \mathbb{R}$$

$$\overline{k} \xrightarrow{k} \mathbb{Z}$$

donde una fracción de \mathbb{R} reacciona químicamente, por lo que no se encuentra disponible para su reoxidación durante el barrido en la dirección contraria. Si la velocidad es muy alta con respecto a k, muy poco \mathbb{R} puede perderse en la subsecuente reacción química, y el voltamograma se asemeja al comportamiento reversible. Si la velocidad es muy baja con respecto a k, la reacción química puede ser dominante, antes de que el barrido sea invertido, y el proceso puede aparecer totalmente irreversible.

Debido a que k puede variar sobre un amplio rango, es importante el medir el voltamograma sobre un amplio rango de velocidades de barrido. De otra manera, la existencia de una reacción química acoplada puede no ser descubierta. Por supuesto que, si k es muy alta, la oxidación reversible de IR puede no ser observable si se emplean altas velocidades de barrido. Si k es muy pequeña, los voltamogramas pueden aparecer reversibles a cualquier velocidad de barrido.

La examinación de un voltamograma para elucidar el comportamiento de una sustancia, va más allá de una simple caracterización de la reversibilidad del proceso de transferencia de electrones. Este hace posible el observar la formación y

Página 28

ł.

decremento de los intermediarios reactivos. e incluso, el identificar sus intermediarios v/o productos.

Tomemos por ejemplo la oxidación electroquímica de la anilina, reportado por Bacon v Adams en 1968 [61].

Se observa un pico de oxidación bien definido a +1.0V. (vs. ECS), pero la ausencia del pico catódico correspondiente +1.0V en el barrido en la dirección contraria, indica que l a oxidación es irreversible. Cuando el barrido catódico continua y regresa al potencial inicial, se observan dos nuevas ondas catódicas (b y c), y en un segundo ciclo anódico, dos picos 60 observan (d y e). Los picos b,c,d y e deben de corresponder a especies que se forman en pasos subsecuentes a la oxidación de laanilina, ya que estos picos aparecen solo despues de que el barrido de potencial alcanza el punto a en el primer ciclo. 29 Расіла

Este es la evidencia de que dos pares reversibles se formaron en la oxidación de la anilina en a, y estos pares estan representados por el par de picos en b y e, y por el par en c y d. La identificación de las especies responsables de estos nuevos pares reversibles se hace de la siguiente manera: Se encontró en experimentos independientes que los voltamogramas cíclicos de - 1a benzidina y del p-aminodifenilamina exhiben redax Dares reversibles a los potenciales correspondientes de los picos b-e v c-d respectivamente. El proceso de comparar el comportamiento de los voltamogramas cíclicos de compuestos conocidos. aue 58 sospecha que pudieran ser los intermediarios o productos, 85 bastante común.

El comparamiento de picos (peak matching), si bien es de gran valor, suministra identificación a partir de la suposición y requiere, por lo tanto, de un adicional soporte, donde sea posible.

La siguiente tabla muestra los macanismos electroquímicos más comunes [4]:

 Mecanismos Electroquímicos que involucran Reacciones Químicas acopladas

 I. Transferencia reversible de electrones, sin complicaciones químicas.

 0 + ne

 0 + ne

 II. Transferencia reversible de electrones seguido de una reacción química reversible. Mecanismo ErCr

 0 + ne

 0 + ne

 II. Transferencia reversible de electrones seguido de una reacción química reversible. Mecanismo ErCr

Página 30

Tabla 2

.

La figura 6 muestra el comportamiento general de la relación de las corrientes de oico como función de la velocidad de barrido para cada uno de los casos que envuelven transferencia reversible de electrones listados en la tabla 2. La figura 7 muestra el comportamiento del cambio del potencial de medio pico $(E_{\rm P},z)$ como función de la velocidad de barrido.

Página 32

Fig 7. Relación del cambio del potencial como función de la velocidad de barrido para varios mecanismos electroquímicos.

.

La VC requiere de un generador de ondas para producir la señal de excitación, un potenciostato para aplicar esta señal a una celda electroquímica, un convertidor corriente a voltaje para medir la corriente resultante, y un registrador XV o un osciloscopio para observar el voltamograma. Los primeros tres artículos estan normalmente incorporados en un solo equipo electrónico. El potenciostato asegura que el potencial del electrodo de trabajo no sea influenciado por las reacciones que tomen lugar.

Los potenciostatos modernos utilizan una configuración de tres electrodos (Fig. 8)[3]:

El potenciostato aplica el potencial deseado entre el electrodo de trabajo y el de referencia. La corriente requerida para sostener la electrólisis en el electrodo de trabajo circula entre éste y el electrodo auxiliar. Este arreglo evita que corrientes altas casen a través del electrodo de referencia y que quedan cambian su potencial. Un sistema de tres electrodo: minimiza los errores debidos a pardidas chmicas (o iR) a través

Pugina 34

de la solución por colotar el electrodo de referencia cerca de la superficie del electrodo de trabajo. El voltaje representa el producto de la corriente y de una resistencia no compensada (principalmente la resistencia en la solución entre los electrodos de referencia y de trabajo) la cual es gastada y no aparece a través de la interfase electrodo/solución.

Una celda electroquímica típica es la siguiente:

Figura 9. Celda electroquímica para voltametria

. . ~

Pagina II

Esta consiste en un contenedor de videro con una tapa con orificios para introducir los electrodos y el nitrógeno. Este nitrogeno es burbujeado en la solución para mantenerla libre de oxígeno. El electrodo de referencia es tipicamente un electrodo ECS o Ag/AgCl los cuales con frecuencia son aislados de la solución, con un puente salino. El electrodo auxiliar es usualmente un alambre de platino que se coloca directamente en la solución. La corriente límite (o de pico) en cualquier tipo de voltametría es dependiente de la temperatura, por lo que la celda puede ser aislada para un trabajo más exacto.

Una gran cantidad de electrodos de trabajo han sido us**ado**s en voltametría. Las técnicas voltamétricas llamadas polarografía utilizan el electrodo de goteo de mercurio (DHE). Este consiste en optas de mercurio que continuamente salen de un capilar. Los electrodos de gota suspendida de mercurio (HDME) son comunmente usados en VC. Aquí la gota de mercurio se suspende de un capilar. Una fina capa de mercurio puede ser depositada en un sustrato como grafito para formar un electrodo de capa de mercurio (MFE). Una ventaja significativa del mercurio es su buen rango de potencial negativo. Electrodos sólidos tales COMO platino, oro, carbón vítreo, cera impregnada con grafito, y pasta de carbón son comunmente usados en la VC. (Ver capítulo XIII.. ELECTRODOS DE TRABAJO)

Página 36

ŒſL.	PAPEL	DEL	SISTEMA	SOLVENTE-
ELECTRO	LOTO SC	DPORT	e en ele	CUROQUIMICA

formas en las aue el sistema Existen muchas solvente-electrólito soporte puede influenciar la transferencia de masa, la reacción en el electrodo (transferencia de electrones), y las reacciones químicas que puedan acoplarse con la transferencia de electrones. La difusión de las especies electroactivas puede verse afectada no solo por la viscosidad del medio, sino también por la fuerza interactiva entre e1 soluto-solvente las cuales determinan el tamaño de la esfera de solvatación.[5]

x

El solvente juega un papel importante en la movilidad del protón; el agua y otros solventes próticos producen una mayor movilidad debido al rápido intercambio con protones del solvente, fenómeno que no existe en los solventes orgánicos apróticos.

El medio tiene también un importante efecto en la estructura eléctrica de la doble capa, un factor crucial en electroquímica debido a que la transferencia electrónica trima lugar en, o en la cercania de, la doble capa. Aunando a esto, tres factores son importantes a considerar son [16]: Primero, la mayoría de los solventes orgánicos polares tienden a tener una fuerte orientación en la doble capa en la interface electrodosolución. Esta fuerza afecta la capacitancia de la doble capa, la cual no esta relacionada de manera simple con la constante dieléctrica del seno de la solución. Segundo, el fenómeno de adsorción, el cual afecta frecuentemente el curso de una reacción electroquímica, es menos pronunciado en solventes orgánicos **DUP** en agua. Esto es debido a la energía involucrada en reemplazar las moléculas de solvente orgánico polar, por moléculas de soluto

electroactivo. Finalmente, los iones del electrólito soporte pueden ser *especificamente adsorbidos* en la doble capa, la cual crea una capa monomolecular de iones adsorbidos (algunas vecez llamada capa interna de Helmholtz) la cual esta asociada con un potencial característico.

10.1 El papel del electrólito soporte

El uso de un electrólito soporte "inerte" es indispensable en electroquímica y afecta el medio solvente en varias formas:[5]

- (a) Este regula la resistencia de la celda y el transporte de materia por migración eléctrica.
- (b) Este puede controlar el nivel de actividad de los iones hidrógeno en solución (actuar como "amortiguador")
- (c) Puede asociarse con soluto electroactivo, como un complejante de iones metálicos con ciertos ligandos.
- (d) Puede formar pares iónicos o agregados miscelares con especies electroactivas.
- (e) En gran parte determina la estructura de la doble capa.
- (f) Puede imponer límites de voltaje positivos o negativos debido a sus propiedades redox.

<u>Control de la resistencia de la celda</u>: Todos los solventes orgánicos puros esencialmente son no conductores. Sin la adición de algun electrólito, su resistencia es tan grande que para pasar una corriente de unos cuantos miliamperes, requiere a su vez de un voltaje muy grande, haciendolo inoperable. Por lo tanto, la función primaria del electrólito soporte es proveer un medio conductor. La combinación electrólito soporte-solvente

Fágina 39

puede escogerse de tal manera que los valores de resistencia sean lo más pequeño posible.

Cuando un campo eléctrico es impuesto a una solución electrolítica, sus iones tienden a moverse - los cationes 58 mueven hacia el cátodo (electrodo negativo) y los aniones hacia el ánodo. Esta migración de iones constituye el flujo de corriente en la celda, y cada tipo de ión toma una fracción de la corriente que es proporcional a su concentración y movilidad. Para un valor particular de corriente, la adición de un electrólito inerte puede reducir la resistencia de la solución. la cual hace decrecer el campo eléctrico de acuerdo a la ley de Ohm. E≈iR. Así, el transporte de masa de una especie iónica electroactiva, que es causado por la migración dentro de un campo eléctrico, puede ser reducido de manera considerable a 1 "saturarse" la solución con un electrólito soporte. Entonces, la mayoría de la corriente será transportada por los iones del electrólito soporte.

En polarografía y voltametría es común el que la concentración del electrólito soporte sea entre 50 a 100 veces la concentración de las especies electroactivas, y de esta manera suprimir la migración eléctrica.

<u>Control de la acidez de la solucion</u>: Muchas reacciones redox inorgánicas y orgánicas implican protones, por ejemplo:

(10.1)

Página 40

puede escogerse de tal manera que los valores de resistencia sean lo más pequeño posible.

Cuando un campo eléctrico es impuesto a una solución * electrolítica, sus iones tienden a moverse - los cationes se mueven hacia el cátodo (electrodo negativo) y los aniones hacia el ánodo. Esta migración de iones constituye el flujo de corriente en la celda, y cada tipo de ión toma una fracción de la corriente que es proporcional a su concentración y movilidad. Para un valor particular de corriente, la adición de HID electrólito inerte puede reducir la resistencia de la solución, la cual hace decrecer el campo eléctrico de acuerdo a la ley de Ohm, E≕/R. Así, el transporte de masa de una especie iónica electroactiva, que es causado por la mígración dentro de un campo eléctrico, puede ser reducido de manera considerable al "saturarse" la solución con un electrólito soporte. Entonces, la mayoría de la corriente será transportada por los iones del electrólito soporte.

En polarografía y voltametría es común el que la concentración del electrólito soporte sea entre 50 a 100 veces la concentración de las especies electroactivas, y de esta manera suprimir la migración eléctrica.

<u>Control de la acidez de la solución</u>: Muchas reacciones redox inorgánicas y orgánicas implican protones, por ejemplo:

(10.1)

Página 40

La importancia de las relaciones potencial~pH ha sido reconocida para el entendimiento y utilización del comportamiento redox de estos sistemas.

Una reducción reversible (como para la quinona, ecuación (10.1)), su forma general es:

El potencial de media onda (E $_{1/2}$) varía con el pH de acuerdo con:

$$\frac{dE_{1/2}}{d(pH)} = \frac{2.3RT}{m}$$
(10.3)

donde m es facilmente evaluado cuando n es conocido.

La reducción de quinona consume iones hidrógeno, y si la solución acuosa no esta bien amortiguada, los iones hidrógeno son suministrados por el agua, lo que produce un exceso de OH^- en la superficie del electrodo. Esto puede incrementar el pH en la superficie del electrodo y cambiar el pico catódico a valores más negativos. La reacción inversa (oxidación de la hidroquinona) no presenta cambios ya que en la superficie del electrodo se libera H^+ .

Este ejemplo ilustra el hecho de que la capacidad de amortiguamiento de un sistema puede ser tal que reaccione con los iones OH⁻y H⁺que son liberados en la superficie del electrodo. Si bien, esto puede verse simple, existen varias complicaciones:

Primero, los componentes de algunos sistemas de amortiguamiento (por ejemplo fosfato o citrato) pueden interactuar fuertemente con algunas especies, particularmente con sistemas biológicos que contengan nucleótidos u otros intermediarios metabólicos. Segundo, las investigaciones indican que el pH en la superficie del electrodo en condiciones de un potencial de -1.5V contra ESC puede ser de 2 unidades de pH menor que en el seno de la solución [17][18]. Esto resulta de la

Página 41

alteración en la distribución de las especies cargadas en la doble capa, debido a la caída de potencial en la zona difusa de la misma.

<u>Formación de complejos</u>: Un gran número de donadores aniónicos o neutros pueden ligarse para formar complejos con iones metálicos. Estos ligandos incluyen a los cianuros, tiocianatos, haluros, aminas, polihidroxicarboxilatos (como el tartrato) y poliaminocarboxilatos (como el EDTA). En general, el complejo ion metálico-ligando puede ser reducido a potenciales más negativos que el ion metálico libre.

· · · · · · · · ·

La VC ha sido extensivamente empleada en el estudio de la adsorción de reactivos o productos en la superficie de los electrodos [19][20][21][22]. La versatilidad de esta técnica es clara, va que durante el barrido en la dirección contraria es posible examinar electroquímicamente los productos adsorbidos en la superficie durante el barrido en la dirección inicial, siempre que la transferencia de carga sea reversible.

El abastecimiento de reactivo a la superficie del electrodo puede ser controlado tanto por un proceso de adsorción como por un proceso difusional, complicando severamente el proceso electroquímico global a ser estudiado. Aunque, a través de ajustar las condiciones experimentales, puede reducirse la adsorción, el reconocer la presencia de ósta es fundamental para el uso adecuado de la voltametría cíclica. Se debe saber cual de las especies electroactivas es la adsorbida y si la velocidad de adsorción es rápida (en condiciones de equilibrio) o lenta comparada con la escala del tiempo del experimento. El criterio de diagnóstico es presentado a continuación para la investigación de algunas situaciones [7].

Para condiciones de equilibrio, la isotérma de adsorción se usa para la descripción del proceso. Para situaciones en donde no hay interacción de especies adsorbidas, se usa frecuentemente la isoterma de Langmuir la cual está dada por:

$$\Gamma = \frac{\Gamma^* \rho C}{1 + c C}$$
(11.1)

donde 🗈 es la concentración en la superfície, 🗋 es el valor de

la concentración de saturación en la superficie, C es la concentración de la solución y // es la constante de proporcionalidad. Debe hacerse notar que esta isoterma supone que se alcanzará una limitante en la concentración de la superficie. La energía libre de adsorción está dada por:

$$\Delta G = -RT \ln \beta \qquad (11.2)$$

donde el valor de β es dependiente de un número de condiciones experimentales, incluyendo particularmente el material del electrodo, el disolvente del sistema y la presencia de otras especies adsorbibles. La fuerza de adsorción está contenida en el valor de la energía libre y, por medio de Γ^{*} , la cantidad del material adsorbido. De aquí, que la fuerza de adsorción denota una gran cantidad de energía libre, como una gran cantidad de adsorción.

La cinética de la adsorción puede ser importante, particularmente a bajas concentraciones. La voltametría cíclica no es conveniente para estudios en procesos de adsorción lenta a menos que utilicemos superficies de 'electrodos fácilmente renovables. Feldberg [21] ha usado técnicas de simulación para estudiar los efectos de adsorción lenta tanto de reactivos como de productos en la corriente de respuesta en voltametría cíclica. Para nuestro caso se considerarán que tanto la adsorción como la desorción están en equilibrio.

Una respuesta típica de voltametría que involucra una adsorción fuerte de producto con transferencia de carga se muestra en la figura 10a. Bajo condiciones en las cuales tanto el proceso controlado por difusión como el controlado por adsorción son significativas, la respuesta anterior a la respuesta del proceso controlado por difusión se obtiene mediante la reducción del estado adsorbido. El barrido de potencial en sentido contrario también tiene relación con el proceso de adsorción, en

éste caso sigue la respuesta del proceso controlado por difusión. La observación de la respuesta tanto catódica como de la anódica es necesaria para caracterizar los procesos como la secuencia:

0 + ne ------ P

La separación entre los picos de potencial de las respuestas controladas tanto por difusión como por adsorción 85 función de la energía libre de adsorción. Como la energía de adsorción se incrementa, la separación entre las dos respuestas, ΔEp. se incrementa. Sin embargo, ésta separación es también función de la concentración del reactivo de los alrededores y ΠO puede ser usada directamente para calcular la energía libre de adsorción. La forma de la respuesta del proceso controlado por adsorción es función del potencial que depende de la isoterma. Si la adsorción se incrementa a medida que el potencial se vuelve Gás negativo, hay un aumento en la corriente de respuesta que podría ocurrir de otra manera si la adsorción fuera independiente del potencial. La disminución de la respuesta es también dependiente de la concentración. El ancho se incrementa a bajas concentraciones porque la difusión no puede mantener un equilibrio en la superficie con la concentración de la solución.

Cuando ocurre una fuerte adsorción del producto, 1. concentración de la solución también tiene una importancia relativa en los procesos controlados tanto por difusión como por adsorción. A muy bajas concentraciones, la reducción del estado adsorbido es el proceso primordial. A modida de la que concentración aumenta, la elevación relativa a la respuesta de adsorción decrece con respecto a la respuesta del proceso controlado por difusión. Incrementando los cambios dø concentración, el potencial de los procesoso de adsorción se dirige hacia valores positivos de aproximadamente 60/n mV por

a ser a s

cada diez incrementos en la concentración, si la isoterma es independiente del potencial.

A muy bajas velocidades de barrido la respuesta do adsorción puede no aparecer. A medida que la velocidad de barrido es aumentada, la respuesta de adsorción aumenta øn relación a la respuesta del proceso controlado por difusión. A velocidades de barrido muy rápidas, solo se notan respuestas de adsorción. Este comportamiento ilustra el punto en el que aunque el pico de corriente es una función que se incrementa con 1 3 velocidad de barrido, el número total de coulombs involucrados en el experimento disminuye con el aumento de la velocidad de barrido. A muy rápidas velocidades de barrido. el número de coulombs transferidos se vuelve igual (o menor que) a la cantidad que pueden ser transferidos hacia el producto adsorbido.

Los procesos que involucran una fuerte adsorción del reactivo producen una respuesta de corriente posterior al proceso de difusión como se ilustra en la figura [10b]

La apariencia de la respuesta del proceso de adsorción en ambas direcciones de barrido implica una reacción reversible de adsorción-desorción, ésto es:

O Diada;

La variación en la respuesta de adsorción en condiciones experimentales es similar a las de una adsorción fuerte de producto.

Las magnitudas relativas de las respuestas de ladsorción y difusión están dadas en función de la concentración, en donde la respuesta de adsorción es predominante a bajas

Fágina 46
concentraciones. La integración total del área bajo la curva de respuesta del proceso controlado por adsorción (coulombs) proveen de una importante información de valores de concentración en la superficie. El valor límite del área integrada a medida que aumentamos la concentración es una manera conveniente para estimar el máximo o la saturación de la superficie. A medida que la concentración en el seno de la solución aumenta, la magnitud relativa de la respuesta de adsorción disminuye.

Cuando las especies electroactivas son débilmente adsorbidas, la respuesta en el voltamograma no es marcadamente diferente a un caso sin complicaciones. La energía libre de adsorción es baja, así la diferencia de potencial para la reducción de las especies en solución y las especies adsorbidas es muy pequeñas para mostrar una respuesta por separado. Sin embargo, la magnitud de la respuesta refleja la presencia de adsorción como se muestra en la figura (10c). Los picos de potencial tanto del barrido inicial como el posterior están muy juntos uno del otro. Diferenciando estás respuestas con una reacción de transferencia de carga multielectrónica es posible estudiar la dependencia de la velocidad de barrido y la concentración, con la corriente.

A grandes velocidades de barrido, mucha de la carga total pasa a través del reactivo adsorbido, causando que la función de corriente (ip/ $V^{1/2}$), aumente al aumentar la velocidad de barrido 120). Si este comportamiento es único, un aumento significativo en la función de corriente a velocidades de barrido elevadas es un fuerte indicio de la presencia de una débil adsorción.

La concentración del reactivo puede incluso darnos información para detectar también la presencia de una adsorción débil. A medida que aumentamos la concentración de reactivo, una gran cantidad de la respuesta total ocurre a través del

proceso controlado por difusión.

11.1 Efecto de la adsorción de especies electroactivas en la respuesta elecroquímica

La ecuación general del flujo que incluye la electrólisis de la especie D que se encuentra difundida así como la que se encuentra adsorbida en el electrodo, para producir la especie R que se encuentre difundida y la que se encuentre adsorbida esta dada por [11]:

$$D_{0} \left[\frac{\partial C_{0}(x,t)}{\partial x} \right]_{x=0} - \frac{\partial \Gamma_{0}(t)}{\partial t} = \left[D_{R} \left(\frac{\partial C_{R}(x,t)}{\partial x} \right)_{x=0} \frac{\partial \Gamma_{R}(t)}{\partial t} \right]$$
$$= \frac{i}{nFA}$$
(11.3)

donde $\Gamma_{\Phi}(t)$ y $\Gamma_{R}(t)$ son las cantidades de Φ y \mathbb{R} adsorbidas en el tiempo t (moles/cm²). La introducción del tármino Γi requiere unas ecuaciones adicionales que la relacionen con la concentración C*i*. Empleando la isoterma de Langmuir, por ejemplo, se tiene:

$$\Gamma_{o}(t) = \frac{\beta_{0}\Gamma_{0}C_{0}(0,t)}{1 + \beta_{0}C_{0}(0,t) + \beta_{0}C_{0}(0,t)}$$
(11.4)

$$\Gamma_{R}(t) = \frac{\beta_{R}\Gamma_{R}C_{R}(0,t)}{1 + \beta_{R}C_{R}(0,t)}$$
(11.5)

Ahora consideremos el caso en el que únicamente la especie D adsorbida es electroactiva. Este puede ser el caso en

· ··

. . . .

el que la velocidad de barrido es tan grande que no se aprecia que ocurra difusión de D hacía la superficie del electrodo. Alternativamente, la onda para la adsorción de C puede estar cambiado a potenciales antes de la onda de reducción de la especie O disuelta. Las condiciones para este comportamiento se dan a continuación: Existen casos en los que la adsorción de O es tan fuerte, que la que pudiese estar disuelta que contribuye muy poco con la corriente. Considerando esta suposición dentro del rango de potenciales de la onda, entonces las Γi s son independientes del potencial. Bajo estas condiciones se tiene que la ecuación (11.3) cambia a:

$$\frac{\partial \Gamma_{0}(t)}{\partial t} = \frac{\partial \Gamma_{R}(t)}{\partial t} = \frac{1}{nFA}$$
(11.5)

considerando las condiciones iniciales:

$$(t=0) \quad \Gamma_0 = \Gamma_0^{\overline{v}} \qquad \Gamma_{\overline{z}} = 0$$

queda de la siguiente forma:

. . . .

$$\Gamma_{o}(\mathbf{t}) + \Gamma_{\mathbf{x}}(\mathbf{t}) = \Gamma_{o}^{\mathbf{T}} \qquad (11.6)$$

de (11.4) y (11.5),

$$\frac{\Gamma_{0}(t)}{\Gamma_{B}(t)} = \frac{\beta_{0}\Gamma_{0}C_{0}(0,t)}{\beta_{B}\Gamma_{B}C_{B}(0,t)} = \frac{\beta_{0}C_{0}(0,t)}{\beta_{B}C_{B}(0,t)}$$
(11.7)

donde $b = \beta c c$, $b \mathbf{x} = \beta \mathbf{x} c \mathbf{x}$. Si la reacción es "nernstiana", se tiene,

· · ··

$$\frac{C_{0}(0,t)}{C_{R}(0,t)} = \exp\left[\left(\frac{nF}{RT}\right)(E-E^{\circ})\right]$$
(11.8)

-

Página 49

1

donde (11.7) produce,

$$\frac{\Gamma_{O}(t)}{\Gamma_{R}(t)} = \left(\frac{b_{O}}{b_{R}}\right) \exp\left[\left(\frac{nF}{RT}\right)(E-E^{*})\right]$$
(11.9)

de (11.5), (11.6) e (11.9) con,

$$\frac{i}{nFA} = \frac{-\partial\Gamma_{o}(t)}{\partial t} = \begin{bmatrix} \partial\Gamma_{o}(t) \\ \partial E \end{bmatrix}$$
(11.10)

y E = Ei - Vt, obteniendose la ecuación para la curva i-E: (fig 11)

$$i = \frac{n^{2}F^{2}}{RT} \frac{VA\Gamma_{0}^{\frac{1}{2}}(b_{0}/b_{R})\exp[(nF/RT)(E-E^{*})]}{(11.11)}$$
(11.11)

la corriente de pico está dada por,

$$ip = \frac{n^2 F^2}{4RT} \quad \forall A \Gamma_0^{\textcircled{B}} \qquad (11.12)$$

y el potencial de pico por:

$$Ep = E^{c'} - \left(\frac{RT}{nF}\right) \ln \left(\frac{bo}{bR}\right)$$
(11.13)

Note que la corriente de pico, y de hecho, la corriente en cualquier punto de la onda, es proporcional a V, en constraste a la dependencia de $V^{1/2}$ observada en las ondas de especies que se difunden. La proporcionalidad entre i y V es la misma que se observa para una corriente puramente capacitiva [11], y este hecho es el que hace que algunos tratamientos de adsorción se hagan en términos de seudocapacitancias.[23][24]

en en en la companya de la companya

Página 50

1

FALLA DE ORIGEN

La isoterma de adsorción de Langmuir constituye una buena aproximación para el tratamiento de determinados sistemas, en los que se considera que la especie adsorbida se encuentra en posiciones fijas y determinadas, formando una monocapa y no tomando en cuenta las interacciones laterales de las especies o la heterogeneidad de la superficie donde estan adsorbidas, así como para recubrimientos que presentan valores próximos a cero o próximos a la unidad, es decir, para recubrimientos muy bajos n muy altos [25]. Así pues, se supone que la energía de adsorción es independiente de la superficie recubierta por la sustancia adsorbida. En estas condiciones, el equilibrio de adsorción entre las especies en la superficie del electrodo y en el seno de la disolución conduce a la relación:

$$\theta = \frac{\beta C}{1 + \beta C}$$
(11.14)

donde 0 es el recubrimiento, C es la concentración y /3 está relacionada con la entalpía libre de adsorción por

$$P = \exp\left(-\frac{\Delta G_{3d}^{2}}{RT}\right)$$
(11.15)

Sin embargo, en muchos casos, el suponer que la entalpía libre de adsorción es independiente del recubrimiento, implica importantes limitaciones, sobre todo en los casos del recubrimiento medio.

A menudo la superficie del electrodo no es perfectamente homogénea y, además, se presentan interacciones laterales con las especies adsorbidas. Estas interacciones significan que la entalpía libre de adsorción depende del recubrimiento, pues las interacciones entre las especies varian con este factor. Por otra parte, si la superficie no es uniforme, las especies tienden a

Página 51

FALLA DE ORIGEN

situarse en determinadas posiciones, en función de la energía de adsorción, y ello afecta a la interacción de las especies adsorbidas.

Los sistemas sujetos a estas condiciones se desvían, pues, del comportamiento sencillo de Langmuir. El tratamiento cuantitativo de estos sistemas fue desarrollado por Temkin, sobre la base de suponer que la adsorción en cada elemento de superficie homogéneo sigue la isoterma de Langmuir, y que la entalpía libre de adsorción disminuye con el recubrimiento, de modo practicamente lineal para recubrimientos medios, esto es, para 0.2< θ <0.8. Así, se puede escribir,

$$\Delta G_{A}^{o} = \Delta G_{a}^{o} - g R T \theta \qquad (11.16)$$

donde $\Delta G_{\Theta}^{\circ}$ y $\Delta G_{\Theta}^{\circ}$ son las entalpías libres estándar de adsorción a recubrimiento Θ y a recubrimiento 0, respectivamente. Sustituyendo esta expresión en la ecuación (11.15) y aplicando a cada elemento de superficie homogéneo la ecuación (11.14), por integración se calcula el recubrimiento relativo total, que resulta ser,

$$\theta = \frac{1}{g} \ln \frac{1 + \beta_c C}{1 + \beta_c C \exp(-g)}$$
(11.17)

donde β c es el valor de la constante para la isoterma da Langmuir para recubrimiento cero. El parámetro q viene dado por

$$g = \frac{1}{RT} \frac{d(\Delta G_{\theta}^{\circ})}{d\theta}$$
(11.18)

el cual da la variación de la entalpía libre estándar de adsorción con el recubrimiento. La ecuación (11.17) representa la isoterma de Temkin.

Si el parámetro g es suficientemente grande, en la región central de la isoterma donde gac >> 1 >> exp(-g), la ecuación (11.17) toma la forma simplificada

Esta relación se conoce como isoterma de Temkin logarítmica, y es válida para recubrimientos intermedios.

La isoterma de Temkin logarítmica (11.17) se puede comparar con la isoterma de Langmuir (11.14) escrita de la forma,

$$\ln\theta - \ln(1-\theta) = \ln(\beta_{c}C) \qquad (11.20)$$

La comparación de ambas ecuaciones indica que el recubrimiento varía con la concentración más rápidamente en el caso de Langmuir que en el caso de Temkin, teniendo en cuenta que g es grande. Ello se debe a que al ir aumentando el recubrimiento, la adsorción de nuevas especies va siendo energéticamente más difícil, pues disminuye la variación de la entalpía libre, de acuerdo con la ecuación (11.16)

-

Fig 10a Voltamograma cíclico teórico con fuerte adsorción de producto. Las líneas punteadas muestran la onda reversible normal.

Fig 10b. Voltamograma cíclico teórico con fuerte adsorción de reactivo. Las líneas punteadas muestran la onda reversible normal.

Fig 10c. Voltamograma cíclico teorico con adsorcion debil de reactivo. Las líneas punteadas muestran la onda reversible normal.

.

	NAMES AND ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS A	and the state of t		1	
1	3300	<u>։</u> ԵՆԵՇՄԹՓⅅՓՖ Ո	ЭŒ	REFERENCOA	-
ź					

12.1 Propiedades del electrodo de referencia "ideal"

Un electrodo de referencia "ideal" debe presentar las siguientes propiedades:

d)

e)

- a) Debe de comportanse de manera reversible y obedecer la ecuación de Nernst con respecto a las especies en la solución.
- b) Su potencial debe de mantenerse estable con respecto al tiempo.
- c) Su potencial debe regresar a su valor inicial después de que pequeñas corrientes son pasadas a través de él (no se presenta la histéresis)
 - Si es un electrodo de la segunda clase, (esto es, que posea una fase metálica en equilibrio con sales metálicas solubles), la fase sólida no debe mostrarse soluble apreciablemente en la solución.
 - Debe mostrar baja histéresis con la temperatura.

Debido a que siempre el flujo de corriente eléctrica implica el transporte de materia en solución y - transformaciones químicas en la interfase electrodo/solución, el comportamiento "ideal" es únicamente una aproximación. De cualquier manera, podemos aproximarlo a dicho comportamiento, si contamos con un. electrodo de referencia cuyo ootencial está controlado por un proceso de transferencia de electrones "bien definido", en el cual ,las cantidades esenciales de fases sólidas están presentes en una cantidad adecuada y los constituyentes de la solución están presentes en concentraciones suficientemente altas.

Pagina 56

Los electrodos de referencia pueden clasificanse en diferentes tipos:

Tabla 3

Clase	Características	Ejemplo		
Primera	Una fase metálica o soluble en equilibrio con sus iones	H/H2(Pt); ferroci- no/ferroceno; - Ag /Ag; amalgamas del tipo M /M(Hg)		
Segunda	Una fase matálica en equili~ AgCl/Ag Una fase matálica en equili~ Hg2Cl2/Hg brio con sales metálicas so~ Hg2SC4/Hg lubles HgO/Hg			
Miscelá- neos.	Electrodos específicos a iones.			

12.2 Electrodos de referencia para usarse en solución acuosa

Un estudio extensivo de estos electrodos ha sido editado por Ives y Janz [26], Bates [27], y Covington [28]. En estas tres fuentes se da una información detallada acerca de la preparación y uso de éstos.

12.3 El electrodo de hidrógeno.

El electrodo de hidrógeno se considera como el primario porque es el electrodo de referencia que se ha usado para definir una escala internacional de potenciales estándar en solución acuosa. Por convención, el potencial de una media reacción de un electrodo, medida con respecto al electrodo de hidrógeno estandar (EHE, donde H y HZ tienen actividad unitaria) está definido cumo

- -

.

Pagina 57

FALLA DE ORIGEN

el potencial de electrodo de la media reacción. Esta convención asigna arbitrariamente el valor de cero para el potencial estandar del electrodo de hidrógeno, a cualquier temperatura.

El electrodo de hidrógeno consiste comúnmente de una fina lámina de platino platinado, la cual es capaz de catalizar en su superficie la reacción:

$$H^{\dagger} + e^{i_{1}} \qquad (12.1)$$

El platino negro es el catalizador más comunmente empleado y puede funcionar ya sea disperso en la solución [29] o depositado en la superficie de platino pulido. El platino negro es depositado de soluciones de ácido cloroplatínico (1 a 3% de H2PtClo) conteniendo pequeñas cantidades de acetato de plomo. Este acetato de plomo no es esencial, pero es deseable, ya que los electrodos preparados con este presentan una mayor vida útil y son menos susceptibles de envenenarse. El envenenamiento puede generarse con trazas de cianuros y sulfuros que aparentemente actuan desplazando el hidrógeno adsorbido [30].

Dos formas del electrodo de hidrógeno se muestran en la figura 11a y 11b [29]. En la figura 11a los electrodos de la celda se encuentran soportados en un tapón y cuenta con un tubo de PVC para hacer la conexión con la otra media celda. La celda de la figura 11b cuenta con un presaturador y con una derivación para el hidrógeno. Esta está diseñada para estar completamente inmersa en un babo tórmico.

> 12.4 El electrodo de referencia de Ag/AgCl

El electrodo de clata-clororo de plata se encuentra dentro del tipo de electrodos reversibles de la segunda clase. En

. .

Pagina 58

contraste con los electrodos de la primera clase , los cuales son reversibles únicamente con respecto a los iones de la fase metálica, los electrodos de la segunda clase tienen una fase sólida en forma de una sal soluble en equilibrio con la solución saturada de esta sal, participando en la reacción del electrodo.

Entre las ventajas más importantes de los electrodos de plata-cloruro de plata se encuentra que son pequeños, compactos, pueden ser usados en cualquier orientación y usualmente no son contaminados de manera significativa por cualquier medio en el que se encuentren inmersos.

Existen varios métodos de construcción, en los cuales se logra obtener electrodos estables, sensibles y reproducibles. Entre estos métodos destacan los siguientes [31]:

(a) Electrolítica, la deposición electrolítica tanto de la plata como de su cloruro.

(b) Térmica, la descomposición térmica en un horno de una pasta de óxido de plata, haluro de plata (clorato, bromato, "iodato), y agua para formar un par plata-haluro de plata.

(c) Termal-electrolítico, la formación electrolítica del haluro de plata en pasta de óxido de plata térmicamente reducida.

(d) Miscelánea, como el uso de haluro de plata precipitado en plata.

Las propiedades y la preparación de estos electrodos se encuentra reportada en varias fuentes [28],[32]

La reacción del electrodo es la siguiente:

 $AgC1 + e^{-----} Ag + C1^{------} (12.2)$

Se ha encontrado que el electrodo de cloruro de plata no se recomienda para su uso, en general, en solventes orgánicos [33]

La solubilidad del cloruro de plata es del orden de 10^{15} M a 25°C lo cual muestra el límite tan bajo en el uso del electrodo como electrodo específico de iones para el caso del ion cloruro. La solubilidad en una solución saturada de KCl se incrementa alrededor de 6×10^{-9} M debido a la formación de complejos solubles del tipo AgCl2. Por esta razón, el electrólito saturado de KCl debe estar presaturado con cloruro de plata; de otra manera el electrodo empieza a perder su recubrimiento de AgCl.

En la siguiente tabla se enlistan los potenciales estandar (E°'+Ej) para celdas del tipo (Pt)/Hz,Hkauis KC1/MC1(maturado)/M.

Tabla 4

	אניו			E° ′	+ Eij()	Ve°C)		
MC1/M	Molaridad	10	15	20	25	30	35	40
AgC1/Ag	3.5M (a 25°C)	0.215	0.212	0.208	0.205	0.201	0.197	0.193
	Saturado	0.214	0.209	0.204	0 . 19 9	0.194	0.189	0.184
Hg2C1z/ Hg	0.1M (a 25°C)	0.336	0.336	0.336	0.336	0.335	0.334	0.334
	0.1M (a 25°C)	0.287		0.284	0.283	0.282		0.278
	3.5M (a 25°C)	0.256	0.254	0.252	0.250	0.248	0.246	0.244
	Saturado	0.254	0.251	0.248	0.244	0.241	0.238	0.234
T1C1/T1	Sat	565	- 569	573	577	581	585	589

donde Eu representa el potencial de la "junta-líquido" [5]

La forma de un electrodo de Ag/AgCl se muestra en la figura 12 [39]

12.5 El electrodo de Mercurio-Cloruro mercuroso (Calomel)

El mercurio posee propiedades que pueden considerarse como deseables en sistemas "bien comportados". Es un metal líquido, fácil de purificar y por lo tanto, fácil de obtener en un estado estandar con propiedades bien definidas. Esto es una ventaja considerable sobre los metales sólidos, aun cuando sean tan suaves como el plomo. Además, existen un gran número de compuestos mercurosos.

El electrodo mercurio~cloruro mercuroso, o calomel, y el electrodo mercurio~sulfato mercuroso son los electrodos más importantes y más usados de este tipo.

El electrodo de calomel se basa en la media reacción:

En 1950, Hills e Ives [34],[35] identificaron varios factores que contribuyen a un desempeño insatisfactorio de este sistema. Estos factores son los siguientes.

(a) Oxígeno disuelto. Ellos encontraron dos efectos, uno que aparece cuando el oxígeno se introduce en él sistema del electrodo que se encontraba inicialmente libre de él. Este consiste en un inmediato desplazamiento del potencial en la dirección positiva, pero si es reversible, hace que el período de oxigenación sea corto. El segundo, es una reacción muy lenta de oxidación generando un agotamiento de la solución.

(b) Exceso de fase sólida Si sobre la superficie del mercurio, se satura de mercurio-calomel~solución, el electrodo resultante no es siempre satisfactorio. Esto magnifica el resultado de deseguilibrios residuales en el sistema y hace

.

que el actencial del electrodo sel inneoroducible. Una pequela capa de calomel es todo lo que se requiere v, cuando es usada. los efectos de un mejoramiento inmediato se hacen notar.

(c)El efecto cuma Cualquier solucion acuosa que se encuentre sobre un recipiente lleno de merciurio, puede ser penetrado por capilaridad, entre el mercurio y las paredes del recipiente. Esto ha sido llamado de manera descriptiva efecto cuma [36]. Esto crea una capa anular líquida en condiciones que no son las tipicas del seno de la solución que se encuentra encima del mercurio. El área interfacial que esta capa hace con el mercurio, con frecuencia excede el área de la superficie expuesta del mercurio y puede cor lo tanto, tener un efecto predominante en la determinación del potencial. Se cree que este es un razgo indeseable que puede afectar a todos los electrodos de recipientes con mercurio. La penetración de la solución puede ser prevenida al dotar de un recipiente "hidrofóbico", (método descrito por Ives y Janz [31])

Tabla 5

1

Potenciales molares estandar del electrodo de calomel (volts abs)[31]						
	Autor y fecha					
Temperatura (°C)	Hills 1952	Pouradier y Chateau 1953	Grzybowski 1956	Gupt e 1	a,Hills Ives 957	
0			0.27406			
5	0.27286	0.27283	0.27321	0.27290	0.2728	
10	0.27189	0.27187	0.27218	0.27194	0.2719	
15	0.27075	0.27078	0.27099	0.27087	0.2708	
20	0.26943	0.26949	0.26962	0.26962	0.2695	
25	0.26797	0.26804	0.26812	0.26823	0.2681	
30	0.26639	0.26642	0.26648	0.26661	0.2665	
35	0.26466	0.26466	0.26468	0.26490	0.2648	
40	0.26278	0.26273	0.26276	0 .26 306	0.2630	
45	0.26079	0.26063	0.26068	0.26104	0.2610	

Pagina 63

FALLA DE ORIGEN

			Autor v fec	la
Temperatura (°C)	Hills 1952	Fouradien V Chateau 1953	Grevbowski 1956	Gupta.Hills e Ives 1957
50		0.25839	0.25841	
55		0.255 98	0.25613	
60		0.25347	0.25376	
65		0.25088		
70		0.24767		

En la figura 13a y 13b se muestran dos tipos de electrodos de calomel. La figura 13b muestra un electrodo "hecho en casa".

.

Fágina 64

....

....

,

X009

13.1 Mercurio

Debido a que el mercurio permanece líquido a temperaturas hasta de -39°C, permite que sea usado ya sea en goteo, chorro o en un recipiente en configuraciones tales que es imposible hacerlo con electrodos sólidos.

El mercurio tiene la ventaja de proveer una superficie renovada y contínua, lo cual permite minimizar los efectos de adsorber impurezas de la solución o el sufrir obstrucciones en la superficie del electrodo debido a la formación de capas. Además, debido a que la superficie es lisa y contínua, no requiere del pretratamiento ni de pulido como es común en electrodos sólidos.

La ventaja de la superficie líquida y su amplio sobrepotencial de hidrógeno hacen del mercurio un material adecuado para procesos catódicos, siempre que su uso no este específicamente contraindicado.

13.2 Platino, oro y otros metales nobles

El platino y el oro son los electrodos metálicos sólidos de uso más común. El obtener estos metales con alta pureza es bastante fácil. Así mismo, son fáciles de maquinar lo que permite fabricarlos en una gran variedad de configuraciones geométricas -alambres, barras, hojas delgadas-. Son resistentes a la oxidación, pero no son totalmente inertes como se llega a suponer de antemano.

Pégina 66

El platino tiene sobrepotenciales extremadamente pequelos para la evolución de hidrógeno, lo cual justifica su uso en la construcción de electrodos reversibles de hidrógeno.

A potenciales suficientemente positivos, todos 106 metales nobles forman una capa de óxido o de oxígeno en solución acuosa con una esteguiometría muy bien definida, lo que permite que se use para estimar la superficie del electrodo [5]. La naturaleza exacta de esta capa, de oxígeno, ha sido, objeto, de algunas controversias. muchas investigaciones Y pero investigaciones sugieren que la capa de oxígeno consiste de oxígeno guimiadsorbido con nucleación y crecimiento de una fase óxido bajo condiciones anódicas severas [37].

13.3 Carbón

Diferentes formas de carbono han sido usadas de manera satisfactoria como electrodos, incluyendo el grafito grado espectroscópico (usualmente impregnado con cera parafínica), grafito pirolítico (con alta densidad y formas altamente orientadas), pasta carbónica (grafito grado espectroscópico calentado en suficiente bromonaftaleno o bromobenceno en forma de pasta rígida), grafito disperso en resina epóxica o silicón, y carbón vitreo.

Carbon vitreo: Es un material conductor, altamente resistente al ataque químico e impenetrable por gases. Algunas de sus ventajas con respecto al platino 500: menor costo. pretratamiento a través de pulído con líja fina. amplios sobrepotenciales por producción de H_2 y O_2 disuelto. incremento de la reversibilidad en algunos pares redox y en reacciones que involucran transferencia de protones. Entre sus desventajas con respecto al platino son: grandes corrientes residuales (en H2SO4 1M) y poseer una superficie rugosa como resultado de la

recristalización en altas densidades de corriente.

Cera impregnada con grafito: E1 Grafito grado espectroscópico posee una superfice rugosa por lo que puede ser penetrado tanto por la solución como por O2, lo que lo hace inadecuado para voltametría. La impregnación de cera con grafito en condiciones de vacío hace que sea reproducible satisfactoreamente. Su superficie puede ser renovada – fácilmente con un ligero pulido con una lija fina.

<u>Grafito pirolítico</u>: El grafito pirolítico se produce a través de la pirólisis de hidrocarburos a presiones reducidas lo que produce un depósito de cristales de carbono altamente orientados sobre un sustrato, a temperaturas entre 1000 y 2500°C. Este grafito es insensible a líquidos y gases, inerte a ataques químicos y libre de impurezas metálicas o de gases atrapados. La superficie del grafito pirolítico puede ser renovado a través del pulido con lija fina.

La fabricación y uso de electrodos de grafito pirolítico en voltametría en solución acuosa ha sido ampliamente discutido por Miller y Zittel [38].

Pégina 68

La parte experimental de este trabajo se divide en dos partes:

En la <u>parte I</u> se d**eterminan los parámetros más** importantes de un voltamograma, magnitudes tales como: la corriente de pico anódico (ipa), la corriente de pico catódico (ipc), el potencial de pico anódico (Epa), el potencial de pico catódico (Epc).

A través de la manipulación de éstos se determinan magnitudes tales como: El potencial formal de reducción $(E^{\circ'})$, el número de electrones transferidos en un proceso redox (n), y el coeficiente de difusión (D).

La reversibilidad electroquímica, el efecto de emplear diferentes electrodos de trabajo, el efecto de variar la concentración y la velocidad de barrido, son tambien analizados. Para ello se emplea el sistema $Fe^{III}(CN)^{3-}_{a}/Fe^{II}(CN)^{4-}_{a}$ como un ejemplo de un sistema electroquímico reversible "bien comportado" en solución acuosa. De manera comparativa a este par, se emplea el sistema FeCl2/ FeCl3.

Por otro lado, se han encontrado iones inorgánicos, complejos metálicos, y algunos pocos compuestos orgánicos que se ven envueltos en reacciones de transferencia de electrones, sin la "necesidad" de construir o romper enlaces covalentes [39].

La gran mayoria de las reacciones electroquímicas incluyen un paso en el que se realiza la transferencia de electrones, en la cual se generan especies que reaccionan

rápidamente con los componentes del medio a través de reacciones a las que se conocen como reacciones químicas aparejadas.

Uno de los aspectos de mayor utilidad de la voltametría cíclica es su aplicación para el diagnóstico cualitativo de estas reacciones químicas homogéneas que se encuentran acopladas a la reacción que se lleva a cabo en la superficie del electrodo.

La voltametría cíclica tiene la capacidad de generar especies durante el barrido inicial y probar este hecho durante el barrido en la dirección contraria o en subsecuentes ciclos, todo ello en segundos. Además, la escala de tiempo del experimento puede ajustarse sobre varios órdenes de magnitud al cambiar el potencial de la velocidad de barrido, permitiendo el valorar la rapidez de varias reacciones.

Y es por ello, que en la <u>parte II</u> se investiga el comportamiento electroquímico del acetaminofén (N-acetil-paminofenol), el cual es comúnmente usado como sustituto de la aspirina (ácido acetil salicílico)

En esta parte se ilustra entonces, el efecto de reacciones químicas aparejadas, el efecto de estas en la apariencia de los voltamogramas. También, el efecto del pH en su apariencia y en el mecanismo de reacción. El uso de la velocidad de barrido para aclarar la información sobre la mecánica.

rápidamente con los componentes del medio a través de reacciones a las que se conocen como reacciones químicas aparejadas.

Uno de los aspectos de mayor utilidad de la voltametría cíclica es su aplicación para el diagnóstico cualitativo de estas reacciones químicas homogéneas que se encuentran acopladas a la reacción que se lleva a cabo en la superficie del electrodo.

La voltametría cíclica tiene la capacidad de generar especies durante el barrido inicial y probar este hecho durante el barrido en la dirección contraria o en subsecuentes ciclos, todo ello en segundos. Además, la escala de tiempo del experimento puede ajustarse sobre varios órdenes de magnitud al cambiar el potencial de la velocidad de barrido, permitiendo el valorar la rapidez de varias reacciones.

Y es por ello, que en la <u>parte II</u> se investiga el comportamiento electroquímico del acetaminofén (N-acetil-paminofenol), el cual es comúnmente usado como sustituto de la aspirina (ácido acetil salicílico)

En esta parte se ilustra entonces, el efecto de reacciones químicas aparejadas, el efecto de estas en la apariencia de los voltamogramas. También, el efecto del pH en su apariencia y en el mecanismo de reacción. El uso de la velocidad de barrido para aclarar la información sobre la mecánica.

pas - record to deside -	יוער אינער אינער אינער אינערעיין אינערער גענערע גערערעער איזער אינערע אינערערער אינער אינער אינער אינערערער אי
1	Parte I: Fundamentos de Voltametria Ciclica
5	
hours starter as the same	ere dire e un régénerant des médages dues anomérere debenerant, de méridendes des la directions de la direction de la di

La primera sección emplea el par $Fe^{III}(CN)^{3/2}/Fe^{II}(CN)^{4/2}$ el cual, con frecuencia, es usado como modelo en experimentos electroquímicos. Puede ser usado para determinar áreas de electrodos [5] y diagnosticar problemas asociados con el diseño de nuevas celdas electroquímicas. También, se emplea el sistema FeCl2/FeCl3 a manera de comparación y ambas pruebas fueron usadas para demostrar algunos principios importantes de la voltametría cíclica.

Experimento:

.

ReactivosSe prepararon las siguientes soluciones:25ml de K3Fe(CN)a 10mM en KNO3 1M.25ml de K3Fe(CN)a 10mM en Na2SO4 1M.50ml de K3Fe(CN)a 10mM y K4Fe(CN)a 10mM en KNO3 1MDe esta solución se hacen soluciones de 2, 4,6, y 8mM de K3Fe(CN)a y K4Fe(CN)a en KNO3 1M.25ml de FeCl2 10mM y FeCla 10mM en KC1 1M.

<u>Aparato</u> Potenciostato BAS CV-1B-120. Sistema de tres electrodos: Electrodo de trabajo de Pt (área=2.83mm²), electrodo auxiliar de platino (alambre $\phi = 0.6$ mm) y electrodo de referencia de Ag/AgCl. Todos los potenciales en este experimento son referidos contra el electrodo de Ag/AgCl. El potencial de salida es seguido con un multímetro. (FLUKE 8050A, Digital Multimeter).

La celda usada es de vidrio con tapa. En la tapa posee cuatro orificios para los tres electrodos y para un tubo para la

deoxigenación a través de N2 burbujeado.

<u>Frocedimiento</u> El pretratamiento de la superficie del electrodo de trabajo de platino, en caso de ser necesario, se hace con una solución ligeramente ácida (.25M HCl) y puliendo ligeramente la superficie y por último enjuagando con agua destilada.

La celda es ensamblada y llenada con la solución a examinar, en la cantidad necesaria para que el extremo de los electodos permanezcan inmersos.

Para toda la experimentación se consideró que la desoxidación con nitrógeno no afectaría de manera significativa, debido a que la desoxigenación se hace nesesaria cuando el compuesto estudiado se reduce a un potencial cercano al necesario para reducir el O2 (en H2O2 y H2O), y es por ello que todas las pruebas se corrieron sin ésta.

Aquí, cabe hacer la aclaración de que las dos primeras pruebas para el par $Fe^{III}(CN)^{3-}/Fe^{II}(CN)/3^{-}$ se corren con la solución de KaFe(CN)a 10mM en KNDa 1M. Mientras que para las siguientes se emplea la solución de KaFe(CN)a 10mM y K4Fe(CN)a 10mM en KNDa 1M. Esto se hace con el objeto de ver el efecto que tiene sobre las voltametrias, el emplear una solución en la que inicialmente se encuentre una sola de las especies (D) y una en donde se encuentren ambas especies (D y R)

Ambos barridos son iniciados en la dirección negativa con una velocidad de 20mV/s.

Para obtener el voltamograma del efecto del electrólito soporte en la apariencia de estos (VC1) (p.100), se fijan las condiciones iniciales para la primera sección, y una vez efectuado esto, el barrido de potencial se inicia obtenióndose

su voltamograma. Para ello se emplea primero la solución de KaFe(CN) σ 10mM en KNDa 1M. Despues de desconectar el electrodo de trabajo, la celda se limpia y se vuelve a llenar con KaFe(CN) σ 10mM en Na2SD4 1M.

Las condiciones iniciales deben de ser fijadas de la siguiente forma:

Solución (Velocidad:20mV/cm)	Potencial inicial	Límites de barrido	Electrodo de trabajo
KaFe(CN)a 10mM/KNDa 1M.	0.67	0.64/-0.14	Platino
KaFe(CN)o 10mM/Na2SO4 1M	0.67	0.64/-0.14	Platino

El efecto de la velocidad de barrido (V) en los voltamogramas (VC2 y VC3) (p.101 y 103)es observado usando la solución de KaFe(CN)a 10mM en KNDa 1M. (VC2) y empleando la solución de KaFe(CN)a 10mM y KaFe(CN)a 10mM en KNDa 1M. (VC3) y registrando los voltamogramas a velocidades variables. Para la solución de KaFe(CN)a 10mM en KNDa 1M. (VC2) a velocidades entre 10mV/s y 100mV/s a intervalos de 5mV/s. Para la solución de KaFe(CN)a 10mM en KNDa 1M. (VC3) a velocidades entre 10mV/s y 100mV/s a intervalos de 5mV/s. Para la solución de KaFe(CN)a 10mM en KNDa 1M. (VC3) a velocidades entre 10mV/s y 100mV/s a intervalos de 10mV/s.

Entre cada barrido, las condiciones iniciales en la superficie del electrodo deben ser restituidas moviendo suavemente arriba y abajo sin sacarlo de la solución, cuidando de que no queden burbujas sobre los electrodos.

Solución (Velocidad:variable)	Potencial inicial	Límites de barrido	Electrodo de trabajo
KaFe(CN)a 10mM/KNDa 1M.	0.67	0.67/-0.17	Platino
Kafe(CN)s y Kefe(CN)s 10mM/KNDs 1M	0.60	0.64/-0.14	Platino

La concentación afecta del mismo modo la magnitud de los picos de corriente. Esto puede ser observado obteniendo barridos de concentraciones de soluciones de 2, 4, 6, 8, y 10 mM de KaFe(CN) σ y K4Fe(CN) σ usando una velocidad de barrido de 20 mV/s.(VC4)(p.107)

Solución	Potencial	Limites	Electrodo de
(Velocidad:20mV/s)	inicial	de barrido	trabajo
K3Fe(CN)a y K4Fe(CN)a /KNO3 1M	0.67	0.64/-0.14	Platino

Así mismo, el efecto de la velocidad de barrido (V) en otra solución, esta vez la solución de FeCl2 10mM y FeCl3 10mM en KCl 1M, es obtenida registrando los voltamogramas a velocidades entre 10 y 100mV/s con intervalos de 10mV/s.(VCS)(p.109)

Solución	Potencial	Limites	Electrodo de
(Velocidad:20mV/s)	inicial	de barrido	trabajo
FeClz y FeCla 10mM/KCl 1M	0.67	0.67/-0.17	Platino

El efecto de emplar un electrodo de trabajo diferente puede verse en la la voltametría cíclica de la solución de KaFe(CN)& 10mM y K4Fe(CN)& 10mM en KNDa 1M., esta vez con un electrodo de trabajo de carbón vítreo (área: B.04mm²)(VC6)(p.111)

Solución	Potencial	Límites	Electrodo de
(Velocidad:variable)	inicial	de barrido	trabajo
K3Fe(CN)& y K4Fe(CN)&/KNO3 1M	0.67	0.64/-0.14	

El efecto de las reacciones acopladas Farte II: Acetaminofén (N-acetil-p-aminofenol, APAP)

<u>Reactivos</u>: Se preparan 100ml de cada solución amortiguadora de McIlvane de pH 2.2 y pH 6 con fuerza iónica de 0.5M. Se preparan 100ml de HzSD4 1M. (*nota:* para ver como se prepara la solución amortiguadora de McIlvane ver el ANEZO ()

Se preparan soluciones de APAP en cada uno de los electrólitos soportes, con una concentración aproximada de 3mM.

<u>Aparato</u>: Los mismos que en el experimento 1, solo que el electrodo de trabajo es de grafito (área=15.9mm²)

<u>Procedimiento</u>: De igual manera que en la parte 1, la celda es ensamblada y llenada con la solucion a examinar, en la cantidad necesaria para que el extremo de los electodos permanescan inmersos.

También aquí se consideró que la deoxidación con nitrógeno no afectaría de manera significativa, por lo que las pruebas se corrieron sin esta.

Las condiciones iniciales deben de ser fijadas de la siguiente forma:

Electrólito soporte	Potencial inicial	Límites de barrido
рН 2.2 (VC6pH2.2)	0.0V	1.0V/-0.2V
рН 6.0 (VC7рН6.0)	0.0V	1.0V/-0.2V
H2SO4 (VCB)	0.07	1.07/-0.27

يوسي من المعني المعالي المعالي

.

Una vez fijadas las condiciones iniciales se obtienen sus voltagramas a velocidades de barrido de 40mV/s y 100mV/s.

-

٠

and war a sector and the	
	Equipo

A continuación se da una lista del equipo empleado para este trabajo.

Fotenciostato BAS Cyclic Volametry Model CV-1B-120.

Multímetro

FLUKE Digital Multimeter. Model 8050A

Electrómetro Keithley Instruments Inc. Electrometer 610C

Graficador BAS X-Y Recorder Model RXY

Fuente de poder King Instruments Electronics Co. Dual DE Power Supply DPS-1306A 30V 6A

Electrodo d<mark>e trabajo de</mark> Pt (área≈2.83mm²) Bionalytical Systems

....

Electrodo de trabajo de carbón vítreo (área: B.O4mm²) Bionalytical Systems
Electrodo de trabajo de grafite (área=15.9mm²)

Electrodo auxiliar de platino (alambre $\phi = 0.6mm$)

-

Electrodo de referencia de Ag/AgCl.

Parte I: Fundamentos de Voltametría Cíclica

Usando los datos obtenidos, ipa, [ipc], Epa, Epc, y a través de simples cálculos, puede determinarse una considerable información acerca del sistema ferri-ferrocianuro y del cloruro ferrico-ferroso.

Empleando la ecuación (5.1), es posible determinar E°/:

$$E^{\circ'} = E_{pa} + E_{pc} \qquad (5.1)$$

Tanto la ecuación (5.2) como la (5.5) nos permiten conocer que tanto el sistema se aleja de la reversibilidad electroquímica:

$$\Delta \mathbf{E} \mathbf{p} = \mathbf{E} \mathbf{p} \mathbf{a} - \mathbf{E} \mathbf{p} \mathbf{c} = 59 \mathbf{m} \mathbf{V} / \mathbf{n} \qquad (5.2)$$

El número de electrones intercambiados (n) es posible determinarlo a través de la ecuación (5.2):

 $\Delta Ep = Epa-Epc = 59mV/n; n = 59mV/\Delta Ep$

El efecto del electrólito soporte para el sistema ferri-ferrocianuro se observa en la gráfica VC1 (p.100). Ver tabla R1

Página 79

*

ESTA TESIS NO DEBE Valir de la biblidtega

Tabla R1

Gráfica VC1 Solución KaFe(CN)& 10mM Electrólito soporte variable Electrodos: Trabajo, Platino; Referencia, Ag/AgC1 Velocidad: 10mV/s

El	ec. sop	orte	ipa	[ipc]	Epa	Epc	ipa/[ipc]
			μA		A	N N	
A B	KND3 Na2 SD4	1M 1M	16.50 10.75	18.25 12.50	313.5 339.5	175.0 155.0	0.9041 0.8600

Elec. soporte			E°′	n
			۳V	
A B	KN09 Na2504	1M 1M	243.75 247.25	0.429 0.320

Aun cuando ambos electrólitos soportes presentan un Δ Ep mayor de 59mV, claramente se ve que el electrólito soporte tiene un papel fundamental en el comportamiento del sistema. Para este caso, el electrólito soporte de KNO3 1M, es el más adecuado para el sistema ferri-ferrocianuro. También, es posible ver que el valor de ipa/[ipc] en el electrólito soporte de KNO3 1M da un valor más cercano a la unidad. En cuanto al valor de E°' y al número de electrones intercambiados (n) ambos electrólitos dan valores que se alejan de los valores teóricos:

El efecto de la velocidad de barrido, \vec{v} , en la apariencia de los voltamogramas puede verse en la gráfica VC2 (p.101) y en la VC3 (p.103). La diferencia entre ambas gráficas es el hecho de que para realizar la gráfica VC2 se empleó unicamente solución de KaFe(CN) σ 10mM/KNO3 1M, mientras que para la gráfica VC3 se empleó ambas especies, esto es: KaFe(CN) σ 10mM/KNO3 1M.

Tabla R2

1

ŧ

Gráfica VC2 Solución KaFe(CN)a 10mM / KNOa 1M Electrodos: Trabajo, Platino; Referencia, Ag/AgCl

Vel	ipa	[ipc]	Ера	Ерс	ipa/[ipc]	Epa-Epc
mV/s	μ β	•	۳V	1		ส∨
A 10 B 15 C 20 D 25 E 30 F 35 G 40 H 45 I 50 J 55 K 60 L 65 M 70 N 75 D 80 P 85	12.00 15.50 17.25 18.50 19.50 20.25 20.75 21.25 21.50 21.25 21.25 21.25 21.25 21.25 21.25 21.25 21.25 21.25 21.25	14.50 17.00 18.00 20.00 21.75 22.75 23.50 24.25 24.75 25.25 25.75 25.75 26.00 26.25 26.50	295.0 305.0 315.0 320.0 327.5 332.5 340.0 342.5 347.5 347.5 355.0 345.0 370.0 377.5 389.5 390.0	197.5 189.5 180.0 175.0 167.5 160.0 152.5 145.0 140.0 137.5 127.5 120.0 115.0 106.0 106.0	0.8276 0.9176 0.9583 0.9250 0.8966 0.8910 0.8830 0.8763 0.8763 0.8317 0.8317 0.8349 0.8252 0.8173 0.8190 0.8095 0.9018	97.5 115.5 135.0 145.0 145.0 160.0 172.5 187.5 207.5 207.5 217.5 237.5 237.5 237.5 250.0 262.5 283.5 287.0
Q 90 R 95 S 100	21.50 21.50 21.20	26.75 26.50 26.75	405.0 407.5 410.0	87.5 77.5 70.0	0.8037 0.8113 0.8037	317.5 330.0 340.0

Vel	E	n
mV/s	۳۸	
A 10 B 15 C 20 D 25 E 30 F 35 G 40 H 45 I 50 J 55 K 60 L 65 M 70	246.25 247.25 247.50 247.50 247.50 246.25 246.25 246.25 243.75 246.25 246.25 246.25 246.25	0.605 0.511 0.437 0.407 0.369 0.342 0.314 0.299 0.284 0.271 0.248 0.236 0.225

Tabia RZa

Vel	E-'	n
mV/s	۳V	
N 75 0 80 P 85 0 90 R 95 S 100	247.75 221.00 247.50 245.00 241.25 242.25	0.208 0.249 0.193 0.187 0.180 0.172

E'' = 244.45

Tabla R3

Gráfica VC3

Solución KaFe(CN)a 10mM y K4Fe(CN)a 10 mM / KNOa 1M Electrodos: Trabajo, Platino; Referencia, Ag/AgCl

Ve	1	ipa	[ipc]	Ера	Ерс	ipa/[ipc]	Ера-Ерс
۳V	/5	μA		m∨	· · · · · · · · · · · · · · · · · · ·		۳V
A	10	28.13	29.13	286.0	201.5	0.9656	84.5
В	15	34.75	34.00	294.0	197.5	1.0220	96.5
С	20	38.75	37.50	300.0	190.0	1.0333	110.0
D	25	41.25	39.63	304.5	184.5	1.0408	120.0
E	30	47.13	41.75	309.5	178.0	1.0333	131.5
F	35	45.00	43.75	314.9	172.0	1.0285	142.9
G	40	45.00	45.63	319.5	167.5	0.9862	152.5
H	45	45.63	45.63	324.0	162.5	1.0000	161.5
I	50	47.50	45.00	328.5	159.5	1.0555	167.0
J	55	46.88	46.25	334.0	152.5	1.0136	181.5
ĸ	60	48.75	47.50	337.5	146.5	1.0263	191.0

Tabla R3a

Ve	1	E-,	n			
mν	/5	٧m				
A B C D E F G H I J K	10 15 20 25 30 35 40 45 50 55 60	243.75 245.75 245.00 244.50 243.75 243.45 243.25 243.25 243.25 244.00 243.25 242.00	0.698 0.611 0.536 0.492 0.449 0.413 0.387 0.365 0.349 0.345 0.309			

 $E^{\circ}' = 243.81$

En ambas tablas, puede verse al comparar que el orden de magnitud de las intensidades de los picos anódicos y catódicos, en la tabla R3 son aproximadamente el doble en comparación a las de la tabla R2, y esto va de acuerdo a que la concentración de las especies electroactivas es también el doble, y la intensidad de los picos es dependiente de la concentración, de acuerdo con la ecuación de Randles-Sevcik (5.3):

$$ip = 2.69 \times 10^5 \mathrm{A} \, (\mathrm{n}^{3/2}) \, \mathrm{C} \, (\mathrm{D}V)^{1/2}$$
 (5.3)

El valor de ipa/[ipc], en el caso del sistema que presenta ambas especies (VC3) da valores más cercanos a la unidad, en comparación con el sistema que presenta únicamente una de las especies electroactivas inicialmente (VC2). Por lo tanto, puede considerarse que el sistema que posee inicialmente ambas especies electroactivas (VC3) actúa de manera más electroquímicamente reversible.

Página 83

i

ŧ

También, el número de electrones intercambiados (n) en ambas pruebas difiere de la unidad. Aqu: puede verse que mientras se va aumentando la velocidad de barrido, el valor calculado de n, se va haciendo más pequeño, a la vez que AEp va aumentando. Esto es, a medida de que se aumenta la velocidad de barrido, el sistema se aleja de su comportamiento reversible.

Este comportamiento puede deberse a que, a medida de que la velocidad de barrido se va incrementando, la rapidez en el transporte de materia entre el seno de la solución y el electrodo decrece. Esto a su vez se debe a que la electrólisis de los reactívos agota su concentración en la superficie del electrodo.

Debido a que la difusión es el principal medio para el movimiento de reactivos a la superficie y este es un modo relativamente lento de transporte de masa que no puede mantener un perfil de concentración en estado estacionario en la región cercana al electrodo. Por lo tanto, la zona de agotamiento crece. En este sentido, la distancia promedio que las moléculas reactantes deben atravesar para alcanzar la superficie se incrementa.

Pero comparativamente, el sistema que presenta ambas especies electroactivas (VC3) da valores de ipa/[ipc] más cercanos a la unidad y de Δ Ep más pequeño (y a su vez más cercanos a 59mV). Ambas pruebas dan un valor de E°' que, si bien el promedio de ambas se alejan de lo teórico, las dos son del mismo orden de magnitud.

Gráfica	E°′(mV)
VC2	244.45
VC3	243.81
VC3	243.8

Como es descrito en la ecuación de Randles-Sevcik (5.3), ip debe incrementarse con $e^{1/2}$:

$$ip = 2.69 \times 10^5 A(n^{3/2}) C(DV)^{1/2}$$
 (5.3)

siempre que el control sea difusional. Mientras que para control por adsorción ip debe incrementarse con V.

$$ip = \frac{n^2 F^2}{4RT} VA\Gamma_{o}^{\#}$$
 (11.12)

De acuerdo a esto, ip se incrementara con $(V^{1/2})$ si el control es difusional, entonces al graficar ip vs. $V^{1/2}$ debe de dar una línea recta. En el caso de que el control sea por adsorción, al graficar ip vs. V debe de dar una línea recta.

El análisis del tipo de control que se presenta en las gráficas VC2 y VC3, se hace en las gráficas VC2a (ipa), VC2b (ipc) (p.102), VC3a (ipa) y VC3b (ipc) (p.104), respectivamente. En ellas se representan las variables de la siguiente forma:

(Velocidad de Barrido)^{1/2}

Velocidad de barrido

Este tipo de representación se hace con el fin de facilitar la comparación entre el comportamiento de $ip/V^{1/2}$ (difusión), contra el de ip/V (adsorción).

En la grafica VC2a, se hace evidente que ambas representaciones, ipa/2 e ipa/2 $^{1/2}$, presentan un comportamiento que podría describirse por dos situaciones. A velocidades bajas (entre 10mV/s y 50mV/s) parece ser que la intensidad de pico anódico es dependiente de V^{1/2}. Mientras que para velocidades mayores (de 50mV/s hasta 100mV/s) la intensidad muestra un comportamiento que pudiese ser independiente de la velocidad.

Analizemos inicialmente la primera situación. En esta, ipa vs. $V^{1/2}$ muestra un comportamiento más lineal que ipa vs. Vpor lo que el control en este rango de velocidades el control podría ser difusional.

Mientras que para velocidades mayores se observa otro comportamiento, ipa independiente de la velocidad. Esto puede deberse a que este sistema se encuentra en equilibrio a bajas velocidades, mientras que a altas velocidades se encuentra bajo un control cinético. (como se vió para las variaciones de ipa/[ipc] y de Δ Ep)

Para la intensidad de pico catódico (VC2b), muestra un comportamiento parecido. En esta el rango de velocidades de la primera pendiente se situa entre 10mV/s y 65mV/s, presentándose otra pendiente a velocidades mayores. Los coeficientes de correlación son los siguientes:

٩

Gráfica	rangö	parámetro	C.R.
VC2a	10 a 50mV/s	ipa vs. $V^{1/2}$	0.9657
VC2b	10 a 65mV/s	ipc vs. $V^{1/2}$	0.9837

Para las gráficas VC3a y VC3b también se da un comportamiento que podría describirse por dos situaciones. El comportamiento más lineal lo da ip/ $V^{1/2}$ en un rango de velocidad entre 10 y 35 mV/s, y para 10 y 40mV/s respectivamente. Mientras

que para velocidades mayores se observa otra pendiente. Los coeficientes de correlación son los siguientes:

Gráfica	rango	parámetro	C.R.
VC3a	10 a 35mV/s	ipa vs. V ^{1/2}	0 .96 57
VC3b	10 a 40mV/s	ipc vs. V ^{1/2}	0 .9 837

En la gráfica VC3' (p.105) se repite la prueba de la gráfica VC3 pero en esta se emplea además del pretratamiento de la superficie del electrodo de trabajo de platino (a través de un sutil pulido empleando para ello una solución ligeramente ácida (HC1 0.25M)), se procedió también a una limpieza electroquímica, empleando como cátodo al electrodo de trabajo de platino y como ánodo un alambre da platino, en una solución de HC1 0.25M a un voltaje de 15V. durante un tiempo de 2 minutos.

> Tabla R3' Gráfica VC3'

ţ

1

÷

t

Solución KaFe(CN)& 10mM y K4Fe(CN)& 10 mM / KNDa 1M Electrodos: Trabajo, Platino; Referencia, Ag/AgCl Limpieza a través de pulido y electroquímicamente

Ve	1	ipa	CipcJ	Ера	Ерс	ipa/tipc]	Epa-Epc
ωΛ	/5	μA		۳V			٧m
A	10	27.75	29.75	290.0	210.0	0.9328	80.0
B	20	40.00	41.25	304.5	197.0	0.9673	105.5
C	30	44.75	47.50	310.0	188.0	0.9421	122.0
D	40	47.50	50.00	320.5	179.0	0.9500	141.5
E	50	51.25	52.50	334.0	171.0	0.9762	163.0
F	60	52.50	55.00	343.0	162.5	0.9545	180.0
G	70	55.00	55.00	355.0	155.0	1.0000	200.0
H	80	53.75	54.50	370.0	146.0	0.9862	224.0
I	90	53.00	56.25	379.5	135.0	0.9422	244.5
J	100	53.75	56.25	385.0	122.5	0.9556	262.5

T a bla	R3'a
----------------	------

	V€	1	E* <i>'</i>	п
ſ	۳V	/s	mν	
	A B C D E F G H I J	10 20 30 40 50 60 70 80 90 100	250.00 251.75 249.00 252.50 252.75 255.00 258.00 257.25 253.75	0.738 0.599 0.484 0.417 0.362 0.327 0.295 0.263 0.241 0.225

 E° = 252.96

Para las gráficas VC3'a y VC3'b también se observan unos resultados descritos por dos situaciones, uno a bajas velocidades y otro a altas velocidades. De la misma manera que en las anteriores gráficas, a bajas velocidades el comportamiento más lineal lo da $ip/V^{1/2}$ con rangos de velocidad entre 10 y 70 mV/s, y para 10 y 60mV/s respectivamente. Los coeficientes de correlación son los siguientes:

Gráfica	rango	parámetro	C.R.
VC3'а	10 a 70mV/s	ipa vs. V ^{1/2}	0,9727
VC3'b	10 a 60mV/s	ipc vs. V ^{1/2}	0,9733

De los resultados puede verse la importancia de la limpieza del electrodo de trabajo. Los valores obtenidos de Δ Ep en la gráfica VC3' son más cercanos a lo teórico (59mV) que en la gráfica VC3. También, el valor numérico de n se acerca más al valor teorico (1) en la gráfica VC3'. El valor promedio de E°', aun cuando en ambos casos se alejan del valor teórico (360mV), en la gráfica VC3' da un valor más cercano en comparación con el obtenido en la gráfica VC3. También aquí se presenta otra

pendiente a partir de cientas velocidades mayores, pero el rango de velocidades, en las cuales el comportamiento se puede considerar en equilibrio, es mayor.

Gráfica	E°'(mV)
VC3	243.81
VC3	252.96

.

Tambion, la ecuaci n de Radles-Seveik (5.3) indica que tanto ipa como ipe son directamente proporcionales a la concentración. El efecto de aumentar la concentración puede verse en la gráfica VC4 (p.107). A travos de ella, es posible determinar la concentración de una solución de ferri-ferrocianuro desconocida al emplear esta como curva patrón.

Tabla R4

Gráfica VC4 Solución KaFe(CN)♂ y K∢Fe(CN)♂ / KNOa 1M ambas especies a la concentración indicada Velocidad de Barrido: 20 mv/s Electrodos: Trabajo, Platino; Referencia, Ag/AgCl

C	onc.	ipa	[ipc]	Epa	Epc	ipa/[ipc]	Ера-Ерс
	nM	μ	A		v		m∨
A B C D E	2 4 6 8 10	6.75 14.75 22.75 30.75 37.00	7.25 15.00 22.50 30.75 37.25	305.0 302.5 302.5 302.5 302.5 302.5	200.0 197.5 200.0 197.5 195.0	0.9310 0.9833 1.0111 1.0000 0.9933	105.0 105.0 102.5 105.0 107.5

Cor	ης.	E°'	n
fm	1	m∨	
A B C D E 1	2 4 6 8 0	252.50 250.00 251.25 250.00 248.75	0.562 0.562 0.575 0.562 0.549

E''= 250.50

En la gráfica VCS (p.107) se hace el mismo análisis para el sistema ferri-ferro cloruro.

Tabla R5

Gráfica VC5

Solución FeClz 10mM y FeCla 10 mM / KCl 1M Electrodos: Trabajo, Platino; Referencia, Ag/AgCl

.

Vel	ipa	[ipc]	Ера	Ерс	ipa/Cipcl	Ера-Ерс
mV/s	μA)	mV			ev.
A 10 B 20 C 30 D 40 E 50 F 40 G 70 H 80 I 90	115.0 156.0 183.0 200.0 210.0 220.5 230.0 235.0 235.0	124.0 161.0 190.0 209.0 231.0 237.5 242.5 245.0	536.0 549.0 562.0 579.0 589.0 600.0 610.0 624.0 633.0	438.0 427.0 419.0 305.0 393.0 381.0 369.0 359.0 345.0	0.9274 0.9689 0.9632 0.9569 0.9545 0.9545 0.9545 0.9684 0.9691 0.9694	98.0 122.0 143.0 174.0 196.0 219.0 241.0 265.0 288.0

Vel		E.,	n
mV/s	5	mV	
A 1 B 2 D 4 E 5 G 7 H 6 J 10	10 20 50 10 50 50 50 70 30 70 30 70	487.00 488.00 490.50 492.00 491.00 490.50 489.50 489.50 489.00 487.50	0.602 0.484 0.413 0.339 0.301 0.269 0.245 0.223 0.205 0.193

En estos resultados puede verse que el sístema ferriferro cloruro actúa también de manera similar que el sistema

Página 91

ì

ferri-ferrocianuro. En este caso, tambiún el sistema se ve controlado por difusión (ip/ $r^{1/2}$). Los coeficientes de correlación son los siguientes:

Gráfica	rango	parámetro	C.R.
VC5a	10 a 100mV/s	ipa vs. V ^{1/2}	0.9710
VC5b	10 a 100mV/s	ipc vs. V ^{1/2}	0.96 5 5

En la gráfica VC6 (p.111) se emplea como electrodo de trabajo de uno de carbón vítreo, lo que nos permite comparar su comportamiento frente al electrodo de trabajo de platino.

Tabla R6

Gráfica VC6

Solución KaFe(CN)a 10mM y K4Fe(CN)a 10 mM / KNOa 1M Electrodos: Trabajo, Carbón Vítreo; Referencia, Ag/AgCl

Væl	ipa	[ipc]	Ера	Epc	ipa/[ipc]	Epa-Epc
mV/s	μA	•	m∨			۳۷
A 10 B 20 C 30 D 40 E 50 F 60 G 70 H 80 I 90 J 100	95.5 135.0 155.0 172.5 181.0 186.5 193.5 190.0 193.5 195.0	96.0 136.5 162.0 177.5 191.0 197.5 202.5 207.5 206.5 210.0	278.5 310.0 323.0 332.0 341.0 353.5 360.0 369.5 380.0 389.5	210.0 196.0 186.0 176.0 166.5 158.5 150.0 141.5 130.0 121.0	0.9635 0.9890 0.9568 0.9718 0.9476 0.9476 0.9418 0.9555 0.9157 0.9370 0.9286	88.5 114.0 137.0 156.0 174.5 195.0 210.0 228.0 250.0 248.5

Vel	E° ′	n
mV/s	mν	
A 10 B 20 C 30 D 40 E 50 F 60 G 70 H 80 I 90 J 100	254.25 253.00 254.50 254.00 253.75 256.00 255.00 255.50 255.00 255.25	0.667 0.517 0.431 0.378 0.338 0.303 0.281 0.259 0.236 0.220

E°'= 254.63

Aquí puede verse que el electrodo de trabajo de platino da valores más cercanos, en promedio, al valor ideal de ΔEp que el electrodo de trabajo carbón vítreo en el sistema KaFe(CN)α/ K4Fe(CN)α/KNO3 IM, por lo que el sistema se comporta más reversible electroquímicamente empleando el electrodo de platino.

En este caso, también el sistema se ve controlado por difusión $(ip/V^{4/2})$. Los coeficientes de correlación son los siguientes:

Gráfica	rango	parámetro	C.R.
VC6a	10 a 70mV/s	ipa vs. $V^{1/2}$	0.9727
VC6b	10 a 50mV/s	ipc vs. $V^{1/2}$	0.9924

La pendiente de las gráficas de ip vs. $V^{1/2}$ pueden emplearse para determinar el coeficiente de difusión (cm²/s). En las siguientes tablas se muestran los resultados obtenidos para todas las pruebas.

Experimento VC1

	10n	ericiente de Dirus	
	Dox 2	Dred	Electrolit
	Cm /s	cm /s	Soporte
	0.0000057268	0.0000046812 0.0000019870	A KNO9 B Na2SO4
wento V	Experi ión	eficiente de Difus	
	Dox cm²/s	Dred cm ² /s	Velocidad mV/s
	0.000025078	0. 0000021669	10 → 50 10 → 85
mento V	Experi: ión	eficiente de Difus	
	Dox cm²/s	Dred cm ² /s	Velocidad mV/s
	0.000028241	0.000030279	10 + 35 10 + 40

Experimento VC3'

i

l

ī

į

Velocidad mV/s	Dred cm²∕s	Dox cm²∕s
10 + 70	0.000025948	
10 + 60		0.000029863

Coeficiente de Difusión

Experimento VC5

Coeficiente de Difusión				
Velocidad mV∕s	Dred cm²/s	Dox cm /s		
10 → 100 10 → 100	0.000038704	0.000042121		

Experimento VC6

Coeficiente de Difusión				
Velocidad mV/s	Dred cm²/s	Dox cm²s		
10 → 70 10 → 50	0.0000038751	0.000045352		

Los valores reportados para los coeficientes de difusión para el sistema ferri/ferrocianuro son los siguientes:

Especie	Coeficiente de Difusión (cm²/s) Newman (55) Angell y Dickinson (56)	
Fe ³⁺ (CN) a (Dox)	8.96×10 ⁻⁶	8.9×10 ⁻⁶
Fe ²⁺ (CN) & (Dred)	7. 39x10 ⁻⁶	8.0×10 ^{~6}

El efecto de las reacciones acopladas <u>Farte II</u>: Acetaminofén (N-acetil-p-aminofenol, AFAF)

El acetaminofén (N-acetil-p-aminofenol, APAP), ingrediente activo de medicamentos tales como el Tylenol o Tempra, el cual es comunmente usado como sustituto de la aspirina. Sin embargo, y a difrencia de esta, se conoce el hecho de que cuando se administra en grandes cantidades causa problemas en el hígado y en el riñón. Se cree que un metabolito del APAP es el agente hepatóxico.

El APAP es oxidado electroquímicamente en un proceso que es dependiente del pH (2e y 2 protones) para generar el N-acetil-p-quinonamina (NAPQI)(paso 1). La frecuencia con que ocurren las reacciones químicas que involucran el NAPQI son dependientes del pH. Al variar el pH del medio y la velocidad de barrido en las voltametrias cíclicas, las reacciones del NAPQI pueden ser rastreadas.

A pH26, el NAPQI puede existir en forma no protonada y estable (II)(ver VC7pH6.0 p.113). Los picos catódicos y anódicos

SP encuentran razonablemente definidos. E1 pico anódico representa el paso 1 del mecanismo propuesto, mientras que el pico catódico representa el paso opuesto. La apariencia similar en ambos voltamogramas (a V≈40mV/s y V≠100mV/s) indica que las especies involucradas son estables en las condiciones del voltamograma. La amplia separación entre 105 picos, en condiciones de pH≠6, es una manifestación de una posible transferencia lenta de electrones.

Bajo condiciones más ácidas, el NAPQI es inmediatamente protonado (paso 2) generando especies menos estables pero electroquímicamente activas (III), las cuales rápidamente producen (paso 3) formas hidratadas (IV) las cuales 500 electroquímicamente inactivas en condiciones de los potenciales examinados. El voltamograma a pH=2.2 (ver VC8pH2.2 p.114) 85 consistente con este mecanismo. En este se observa un pico catódico pequeño debido a la reducción del NAPQI protonado (III). el cual se hace más evidente cuando la velocidad de barrido es de 100mV/s. Este pico puede ser más pronunciado si se emplean velocidades mayores, pero estas requieren del uso de un osciloscopio. A velocidades menores de 40mV/s, el pico catódico debido a la reducción del NAPQI protonado no se observa.

Todo el NAPQI protonado (III) es convertido a una forma hidratada inactiva (IV), antes de alcanzar potenciales suficientemente negativos. El NAPQI hidratado (IV) se convierte a benzoquinona (paso 4), sin embargo, el medio debió ser extremadamente ácido para que la rapidez del proceso sea 10 suficientemente significativa para que la reducción de 1a benzoquinona sea registrable durante el voltamograma. El medio empleado fue H2SO4 IM. (ver VC9H2SO4 p.115). La onda de reducción es amplia debido a la formación de benzoquinona (V), a partir del NAPQI hidratado (IV) lo cual ocurre durante el barrido en la dirección contraria.

Cuando la velocidad es de 40mV/s, el tiempo requerido para alcanzar potenciales lo suficientemente negativos (durante el barrido en la dirección contraria), se ve incrementado permitiendo la acumulación de la benzoquinona (V). Consecuentemente, el pico debido a la reducción de la benzoquinona (V) debiera de encuentrarse bien definido cuando la velocidad de barrido es lenta.

El pequeño pico anódico que antecede al del APAP (ver VC9H2SO4) corresponde a la oxidación de la hidroquinona.

,

Voltametría Cíclica

KeFe(CN)e y KeFe(CN)e 10mM/KNOe 1M Electrodo:trabajo..Pt;Ref..Ag/AgCl Temperatura: 25°C

Gráfica VC3a

Voltametría Cíclica

Pagina

105

Voltametría Cíclica

Ke^re(CN)s y Ke^re(CN)s 10mM/KNOs 1M Electrodo:Trabajo..Pt;Ret..Ag/AgCl Temperatura: 25[°]C

Grafica VC3a'

Voltametría Cíclica

Pegina 106

Voltametría Cíclica

Electrodo:Trabajo..Pt;Ref..Ag/AgOl Temperatura: 25°C FeClaFeCla 10mM/KCl 1M

Gráfica VC5a

Voltametría Cíclica

Facial acta IOmM/KOLIM

Gráfica VC6b

La voltametría cíclica paulatinamente a incrementado su popularidad en la mayoria de los campos de la quámica que se dedican al estudio de sistemas redox. Este método es capaz de hacer rápidos barridos de potencial sobre un amplio rango de potencial generando especies reducidas u oxidadas. Esta capacidad sumada al hecho de que posee una gran sensibilidad hacen de esta una de las más versátiles técnicas electroanalíticas.

XV06

Sin embargo, debe tenerse en cuenta que estos méritos en gran parte pertenecen a experimentos cualitativos o de diagnóstico. Los diagnósticos cualitativos pueden ser obtenidos de manera más adecuada por otros medios (por ejemplo técnicas de "pulso" o "paso")

Este hecho pudo verse confirmado en los sistemas estudiados. KaFe(CN)& / K4Fe(CN)& / KNO3 v FeClz / FeCl3 / KC1. bien el comportamiento puede en los que, si considerarse quimicamente reversible (ipa≈ipc), el comportamiento de electroquímico se aleja un poco la reversibilidad (AEp>>59mV/n). Este comportamiento hace tambien que la estimación de los coeficientes de difusión calculados para el sistema KaFe(CN)σ / K4Fe(CN)σ / KNOa se alejen de lo reportado.

La presencia de la adsorción no se registró en las pruebas llevadas a cabo, sin embargo, el reconocer la presencia de esta es fundamental para el uso adecuado de la voltametría ciclica. Probablemente la velocidad de barrido es el más importante parámetro experimental para diferenciar entre los efectos debidos a un reactante adsorbido y el material que llega al electrodo por difusión. Esto es debido a que el material

Pagina 116

adsorbido constituye una cantidad fija de material, mientras que el material que se difunde hacia la superficie del electrodo es dependiente del tiempo que toma para llegar a este. A una velocidad de barrido lo suficientemente rápida, la cantidad de material que se difunde es relativamente menor que el material adsorbido en la superficie del electrodo.

Para detectar la presencia de la adsorción es necesario que este proceso contribuya de manera significativa a la corriente total a la velocidad de barrido y a la concentración estudiada.

Por otro lado, quizás el mayor aspecto de utilidad de la voltametría cíclica se encuentre en su aplicación en e1 diagnóstico cualitativo de reacciones en el electrodo las ruales se encuentren acopladas con reacciones químicas homocéneas. La fuerza real de esta técnica es su capacidad para generar especies durante un barrido y entonces probarlo en los subsecuentes barridos.

Un aspecto común del metabolismo de muchos agentes citotóxicos, incluyendo la mayoría de los agentes carcinogénicos, es la existencia de uno o más procesos redox que convierten la forma molecular inicial en un compuesto altamente reactivo. especies electrofílicas capaces de modificar químicamente 105 constítuyentes celulares. Es posible el poner en claro la estructura de estos hipotéticos metabolitos. "reactivos intermediarios", y la investigación de la naturaleza de 105 mismos, a través del importante hecho de que algunos de estos compuestos, que se proponen como responsable de la toxicidad, son generados electroquímicamente.

Sobre el acetaminofén (N-acetil-p-aminofenol,APAP), analgésico no carcinogénico, se conoce que a dosis excesivas es hepatotóxico y se ha encontrado un fuerte apoyo a la suposición

Página 117

de que el metobolito reactivo del acetaminofon es el N-acetil-p-quinonamina (NAFQI). Esta información electroquímica permite aplicar esta técnica como herramienta cualitativa ya que la frecuencia con que ocurren las reacciones químicas que involucran el NAPQI dependen del pH. Al variar el pH del medio y la velocidad de barrido en las voltametrias cíclicas, las reacciones del NAPQI pueden ser rastreadas.

Las siguientes recomendaciones pueden ser de utilidad a los estudiantes que deseen trabajar con esta técnica:

La característica de mayor importancia para determinar el uso de un solvente o no, es el hecho de que las especies de interes sean solubles y estables en el.

El electrolito soporte debe suministrar una fuerza iónica relativamente fuerte (>0.01 M.) y debe, sobre todo, ser compatible con el sistema estudiado.

La desoxigenación se hace nesesaria cuando el compuesto estudiado se reduce a un potencial cercano al necesario para reducir el Oz (en HzOz y HzO).

El uso del electrodo de trabajo de mercurio se encuentra "limitado" a regiones de potencial negativo.

El electrodo de trabajo de platino y los de carbón, en sus diversas formas, se emplean con frecuencia para llevar a cabo oxidaciones. Sin embargo son suceptibles a la adsorción, la formación de depósitos de suciedad y de óxidos superficiales, por lo que la limpieza es de gran importancia en estos.

Cuando se analice el comportamiento de una sustancia, su voltamograma se debe de medir sobre un amplio rango de

Página 118

velocidades de barrido, porque de otra maneral la esterencia de alguna reacción química acoplada puede no ser descubierta.

.

FALLA DE ORIGEN

Página 119

Solución amortiguadora de McIlvane.[42]

El uso de la solución amortiguadora adecuada para el estudio de muchos fenómenos químicos tiene una gran importancia. La preparación de una gran cantidad de diversas soluciones amortiguadoras que cubran los usuales rangos de pH se encuentra descrita en varias referencias.[27][43][44][45][46]

Para algunos propósitos es necesario el mantener relativamente constante la fuerza iónica de la solución mientras el pH varie al cambiar la composición del sistema amortiguado. Por ejemplo, los potenciales polarográficos de media onda de ciertos tipos de compuestos orgánicos, presentan una marcada dependencia de la fuerza iónica.

En el caso de sistemas amortiguadores sencillos, como los que incluyen sistemas como ácido acético-acetato de sodio y amonio-cloruro de amonio, es relativamente sencillo el mantener la fuerza iónica constante sobre un rango normal de amortiguamiento del sistema correspondiente a pKa ± 1.

Bates [27] ha descrito la preparación de sistemas de amortiguamiento de fuerza iónica constante. Sin embargo, en el caso de sistemas de amortiguamiento más complejos, como los que incluyen al citrato y fosfato, es más dificil el mantener la fuerza iónica constante. Debido a que la fuerza iónica depende de la raiz cuadrada de la carga de los iones presentes, el efecto puede ser de consideración variando de un anión monovalente a uno

divalente, de 1 a 1.5 unidades de pH.

Procurando minimizar estos cambios en la fuerza iónica, tablas de la composición para el sistema de McIlvaine -tipo citrato-fosfato- han sido desarrolladas, las cuales son útiles para la preparación de soluciones amortiguadores de fuerza iónica constante en cualquier región de amortiguamiento de este sistema. El cloruro de potasio se agrega para mantener la fuerza iónica constante en un nivel deseado.

Los datos esenciales de la solución amortiguadora de McIlvaine se dan en la siguiente tabla, para fuerzas iónicas de 0.5 y 1.0M.

рН	g,	/1	Fuerza iónica	g de KC1/	l de sol.
€25°C.	Na ₂ HPO ₄	HaCoHaO7	del sistema	para fuerz	a iónica
	12Hz0	HzO	M.	1.0M.	0.5M.
		70 (00	0.0100	74 8	77 200
2.2	1.43	20.600	0.0108	79.3	37.200
2.4	4.44	17.700	0.0245	74.7	
2.6	7.80	18.700	0.0410	/1.5	34.200
2.8	11.35	17.700	0.0392	/0.2	32.900
3.0	14.70	16.70 0	0.0771	68.7	31.400
3.2	17.70	15.800	0.0934	67.6	30.300
3.4	20.04	15.000	0.1120	66.2	28.900
3.6	21.50	14.200	0.1280	64.9	27 .6 00
3.8	25.40	13.600	0.1420	64.0	26.70 0
4.0	27.60	12.900	0.1570	62.8	25.500
4.2	29.70	12.300	0.1730	61.7	24.400
4,4	31.60	11.700	0.1900	60.4	23.100
4.6	33.40	11.200	0.2100	58.9	21.600
4.8	35.30	10.700	0.2320	57.2	19.900
5.0	36.90	10.200	0.2560	55.5	18.200
5.2	38.40	9.750	0.2780	53.8	16.500
5.4	40.00	9.290	0.3020	52.1	14.800
5.6	41.50	B.720	0.3210	50.6	13.300
5.8	43.30	8.320	0.3360	49.5	12.200
6.0	45.20	7.740	0.3440	48.9	11.600
6.2	47.50	7.120	0.3580	47.9	10.600
6.4	49.60	6.470	0.3710	46.9	9.620
6.6	52.10	5.720	0.3850	45.8	8.500
6.8	55.40	4.790	0.3920	44.5	7.230
7.0	58.90	3.700	0.4270	42.7	5.440

perturbations and	T AND A CONTRACTOR OF THE OWNER O	*****	The state of the second se	production is a second statement of a s	Service and the second second
7.2	62.30	2.740	0.4570	40.4	3,100
7.4	65.00	1.910	0 . 4880	38.2	0.488
7.6	67.20	1.350	0.5160	36.0	······
7.8	68.60	0.893	0.5400	34.3	
8.0	69.60	0.589	0.5590	32.9	
Construction of the second	horace and a second				

-

•

Página 122

.

And I And I I State which is it for the first

Transferencia reversible de carga

Propiedades de la función corriente: i//^{1 2} virtualmente es constante con « Propiedades de la relación de corrientes: ipa/ipc es menor que la unidad al incrementarse V

Propiedades de la función corriente:

 $i/V^{1/2}$ decrece al incrementarse i

Propiedades de la relación de corrientes:

ipa/ipc es generalmente mayor que la unidad al incrementarse V y con valores pequeños de 2 se aproxima a la unidad.

Características del potencial de respuesta:

Ep cambia anódicamente a un máximo de 60/n mV por un decremento cada diez veces en V. No se ve dependencia de Ep con V para valores grandes o pequeños de k/a

Propiedades de la función corriente:

 $i/V^{1/2}$ se incrementa a bajos valores de V y se hace independiente de V a altos valores.

Propiedades de la relación de corrientes:

ipa/ipc es la unidad.

Transferencia quasireversible de carga (+ + ne Características del potencial de respuesta: Ep cambia con 1/

```
Epa-Epc = se aproxima a 60/n mV a bajas + pero
se incrementa al incrementar +
Propiedades de la función corriente:
1/ν<sup>1 2</sup> es virtualmente independiente de +
Propiedades de la relación de corrientes:
ipa/ipc es igual a la unidad solo para α=0.5
```

Transferencia irreversible de carga
ks,α Φ + ne P.
Características del potencial de respuesta:
Ep cambia catódicamente por 30/0n mV por cada diez incrementos en V
Propiedades de la función corriente:
i/V ^{1/2} es constante con V

Propiedades de la relación de corrientes:

ipa/ipc se incrementa con , y baja al incrementarse C.

nantanan kanangan kananganan kanakar kanakar pentangan kanakar pada kanangan kanangan kanangan karangan kanang

Transferencia reversible de carga seguido de una reacción de desproporción Características del potencial de respuesta: Ep cambia catódicamente en 20/n mV por cada diez incremento en V y por cada diez decrementos a la concentración inicial C. Propiedades de la función corriente: $i/v^{1/2}$ baja por más de un factor de 2 al incrementarse V Propiedades de la relación de corrientes: ipa/ipc se incrementa con V y baja al incrementarse C. CONTRACTOR AND ADDRESS OF A DESCRIPTION OF A DESCRIPTIONO

	C 15 (17"	nna	FORENCOALES	NTEMALES DE
2×0.47	ALCOLL3891	000	正正正す『中心Dの	(SEEMG-LEILEAL)

-

Reacción de semicelda	E°,volts.
Fz + 2H ⁺ + 28 ⁻	3.060 [41
F2 + 2e 2F	2.866 [40]
$H_2N_2O_2 + 2H^+ + 2e^- \rightarrow N_2 + 2H_2O$	2.850 (41)
$0_3 + 2H^+ + 2e^- \longrightarrow 0_2 + H_2 0$	2.070 [41
S20e + 2e 2S04	2.010 [41
Ag ⁺⁺ + # Ag ⁺	1.980 [41]
Br04 + 2H ⁺ + 2e ⁻ Br03 ⁻ + H20	1.853 [40]
$Co^{+++} + e^{-} \longrightarrow Co^{++}$	1.842 [41]
H2O2 + 2H ⁺ + 2e ⁻ 2H2O	1.770 [41
HC102 + 2H ⁺ + 2e ⁺ HOC1 + H20	1.701 [40
Ce ⁴⁺ + e ⁻ Ce ⁺⁺⁺ (en perclorato)	1.700 [41
$104^{-} + 2H^{+} + 2e^{-} + 103^{-} + H_20$	1.700 [41
MnO4 + 4H + 3e MnO2(a) + 2H2O	1.695 [41
Pb0z + 4H ⁺ + 504 ⁻⁺ + 2e ⁻ Pb504 + Hz0	1.685 [41
2HOC1 + 2H ⁺ + 2	1.630 [40
Ce ⁴⁺ + e ⁻	1.610 [41
2HOBr + 2H+ 2e Brilig/ + 2H2D	1.604 [40
$10(0H)_5 + H^+ + e^- + 10_3 + 3H_20$	1.600 [40
$NiO_{2(6)} + 4H^{+} + 2e^{+} Ni^{2+} + 2H_{2}O$	1.593 [40
NaBiO3 + 6H ⁺ + 2e \longrightarrow Na ⁺ + Bi ⁺⁺⁺ + 3H ₂ O	1.590 [41
$BizO_4 + 4H^+ 2e^ 2BiO^+ + 2H_2O$	1.590 [41
Br03 + 6H + 5e	1.520 [41
MnO4 + 8H + 5e	1.510 [41
Mn ⁺⁺⁺ + e ⁻ Mn ⁺⁺	1.510 [41
HC10 + H ⁺ + 2e ⁻ C1 ⁻ + H20	1.490 E41
$2BrD_3 + 12H^+ + 10e^- \rightarrow Brztra + 6HzD$	1.478 [40
(+ DEFENSIONE) BANAD DE LAPE ARAME DEL AN ANTRESE SERDENDER DE TEM MANDEL DE BALENAME (+ 1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	LE LEAST THREE FOR SHE SHE SHE SHE STOLED

and a second na casala interna t E ,voits. Reacción de semicelda ין אדרטער ארייינער דין איז איזיגערער געניינערער געניינערער אוויזערענערעט און גענערער איזיגעערעט אוויין איזיגער איזיגער איזיגענער דין איז איזיגערער געניינערער געניינערער גענערערעט אוויזערערעט אוויזערערעט אוויין איזיגענייערע $C10_3$ + $6H^+$ + $5e^-$ + $3/2C1_2$ + $3H_2O$ PbD2 + $4H^+$ + $2e^-$ Pb⁺⁺ + $2H_2O$ 1.470 6413 1.455 [41] HID + H^{+} + $e^{-1/2I_2}$ + H2D 1.450 [41] $C1D_{3}^{+} + 6H^{+} + 6e^{-}$, $C1^{+} 3H_{2}O$ $Ce^{++} e^{-}$, Ce^{+++} (en sulfato) 1.450 [41] 1.440 [41] Br0s + 6H + 68 ----- Br + 3H20 1.440 [41] $\begin{array}{c} Cl_{2(q)} + 2e \xrightarrow{} 2C1 \\ Cl_{2(q)} + 2e \xrightarrow{} 2C1 \end{array}$ 1.3595[41] 1.396 [41] Cr207 + 14H + 6e ------ 2Cr +++ + 7H2D 1.330 [41] Ce⁺⁺+ e⁻ Ce⁺⁺⁺ (en cloruro) 1,280 [41] $T1^{+++} + 2 \longrightarrow T1^+$ 1.250 [41] MnO2 + 4H+ 20 ------ Mn++ 2H2O 1.230 [41] → → → Oz + 4H⁺+ 4e^{------→} 2HzO + + + 1.230 [41] 103 + 6H + 5e + 1/2 I2 + 3H2D 1.195 [41] C104 + 2H+ 20 _____ C10s + Hz0 1.190 [41] C103"+ 3H+ 20"_____ HC102"+ H20 1.181 [40] 1,175 [40] 1.130 [40] Brzilig + 28 ____ 2Br 1.065 [41] $\begin{array}{c} Br2(aq) + 2e^{-1} \xrightarrow{2} 2Br^{-1} \\ ICl_{2}^{-1} + e^{-1} \xrightarrow{1} 2I_{2} + 2Cl \\ HNO_{2} + H^{+} + e^{-1} \xrightarrow{1} NO + H_{2}O \\ VO_{2}^{+} + 2H^{+} + e^{-1} \xrightarrow{2} VO^{++} + H_{2}O \end{array}$ 1.0874[40] 1.060 [40] 1.000 [41] 1.000 [41] $HIO + H^{\dagger} + 2e^{-\frac{1}{4}} I^{-} + H_2O$ 0.990 [41] ND3 + 4H + 3e \rightarrow ND + 2H2D 0.960 [41] NDs"+ 3H⁺+ 20 HND2 + H2D 0.940 [41] 2Hg⁺⁺ + 2e⁻ Hg₂⁺⁺ 0.920 [41] C10+ HzO + 2e _____ C1+ 20H 0.890 [41] ND3 + 10H + 8e NH4 + 3H2D 0.870 [41] Cu⁺⁺ + I + e⁻_-----+ CuI 0.860 [41] Hg⁺⁺ + 2e⁻⁻⁻⁻⁻⁻ Hg 0.854 [41]

ş,

Página 129

Reacción de semicelda	E°,volts.
NO3 ⁻ + 2H ⁺ + e ⁻	0.800 [41]
Aq ⁺ + e ⁻	0.7991[41]
Hg2 ⁺⁺ + 2e 2Hg	0.789 [41]
Fe + e	0.771 [41]
Br0 + H2D + 2₽→ Br + 20H	0.760 [41]
$H_2O_2 + H^+ e^- \xrightarrow{q} HO_0 + H_2O$	0.714 [40]
$C_{\sigma}H_{1}O_{2} + 2H^{+} + 2e^{-1} C_{\sigma}H_{1}(OH)_{2} (quinhidrona)$	0.700 [41]
$D_2 + 2H^+ + 2e^- \rightarrow H_2 D_2$	0.682 [41]
$I_{2(aq)} + 2e \longrightarrow 2I$	0.621 [40]
$U02^{+}+4H^{+}+e^{-}+U^{+}+2H_{2}O$	0.620 [41]
Hg2SO4(2) + 2e 2Hg + SO4 ²	0.615 [40]
Br03"+ 3H20 + 68" Br"+ 60H"	0.610 [41]
NnD4 + 4HzO + 3e [→] MnDz + 40H	0.600 E41]
H3A504 + 2H ⁺ + 2e \longrightarrow HA502 + 2H20	0.581 [40]
$5b_20_5 + 6H^+ + 4e^-$	0.559 [40]
Ca (C2D4) 3 + e Ca (C2D4) 3	0.570 [40]
MnD4 + e MnD4	0.564 [41]
AsD(OH)3 + 2H ⁺ + 2e AsD(OH)3 +H2D	0.560 [40]
I₂ + 2₽ 2I	0.5355[41]
I3 + 2e 3I	0.536 E401
Cu ⁺ + • Cu	0.521 [41]
$SO_{2(aq)} + 4H^+ + 4e^- + 5 + 2H_2O$	0.500 [40]
IO" + H2O + 2e I + 2OH	0.490 [41]
2S02(aq) + 2H ⁺ + 4e ⁻ S203 + H20	0.400 [40]
→ → Fe(CN)a + e ⁻ → Fe(CN)å ⁻ + + +	0.360 [41]
Cu ⁺⁺ + 2e ⁻	0.337 [41]
$U_{02}^{++} + 4H^{+} + 2e^{-} + U^{++} + 2H_{2}U$	0.334 [41]
Coderos + e Coderos	0.327 E401
$Bi0^+ 2H^+ 3e^-$ Bi + 2H ₂ 0	0.320 [40]
V0 ⁺⁺ + 2H ⁺ + e V0 ⁺⁺⁺ + H2O	0.310 [41]
·	

Reacción de semicelda	E°, volts.
As (UH) 3 + 3H + 3e	0.240 [40]
AgCi+ e Ag + Ci	0.22221411
$5b0 + 2H + 3e$ \longrightarrow $5b + H2U$	0.212 [40]
$50_4 + 4H + 2e \rightarrow H_2SO_3 + H_2O$	0.200 [41]
$CuClo2 + e \longrightarrow Cu + 3Cl$	0.178 [40]
$504^{\circ} + 4H' + 2e - 502(aq) + 2H20$	0.170 [40]
	0.153 [41]
Sb203 + 6H + 6e	0.152 [41]
Sn [*] + 2e → Sn [*]	0.150 [41]
$S + 2H' + 2e' \xrightarrow{H_22}$	0 .140 [41]
$CuCl(s) + e \longrightarrow Cu(s) + Cl$	0.121 [40]
$Ti0^{++} 2H^{+} + e^{-}$ $Ti^{+++} Ha0$	0.100 [41]
840σ + 2e 2S203	0.080 [41]
AgBr + e Ag + Br	0.070 [41]
$Co(NH_3)a^{+++} = Co(NH_3)a^{2+}$	0.058 [40]
UQ2 ⁺⁺ +e	0.050 [41]
2H ⁺ + 2e ⁻ H ₂	0.000 [41]
HgI4 + 28 Hg + 41	-0.040 [41]
HgzIz + 2e 2Hg + 241	-0.040 [41]
2H2SO3 + H++ 2e HS2O4 + 2H2O	-0.080 [41]
$CO_{2(gas)} + 2H^{\dagger} + 2e^{-1} CO + H_{2O}$	-0.106 [40]
P + 3H ⁺ + 3e ⁻ → PH ₃	-0.111 [40]
$D_2 + H^+ + e^- \rightarrow HD_2$	-0.125 [40]
Pb ⁺⁺ + 2e ⁻	-0.126 [41]
5n ⁺⁺ + 2e 5n	-0.136 [41]
AgI + e Ag + I	-0.150 [41]
$CuI + e^{-1}$	-0.190 [41]
CO2(gaz) + 2H ⁺ + 2e ⁻	-0.199 [401
As + 3H ⁺ + 3e ⁻ AsH ₃	-0.225 [40]
$N_2 + 5H^+ + 4e^- + H_2 NNH_3^+$	-0 230 [40]
Ni ++ 20	
	-0.230 [41]

Reacción de semicelda	E°,volts.
A REAL PROPERTY AND	***************************************
$250_1^{} + 4H^+ + 2e^{} 5_20_4^{} + 2H_20$	-0.250 [40]
V++++ e> V++ (-0.260 [41]
PbCl2 + 2e	-0.268 [41]
PO (OH) 3 + 2H ⁺ + 2e ⁻	-0.276 [40]
Co ⁺⁺ + 2e ⁻ Co	-0.277 [41]
PbBr ₂ + 2 e^{-} Pb + 2Br ⁻	-0.280 [41]
Ag (CN) 2 + e Ag + 2CN	-0.310 [40]
T1 ⁺ + e ⁻ T1	-0.340 [41]
PbSO4 + $2e^{-} \rightarrow Pb + SO_{4}^{-}$	-0.360 [41]
$PbI_2 + 2e^{-} \rightarrow Pb + 2I^{-}$	-0.370 [41]
$Cd^{++} 2e^{-} \longrightarrow Cd$	-0.403 E413
$Cr^{+++} e^{-\frac{1}{2}} Cr^{++}$	-0.410 [41]
Fe ⁺⁺ + 2e ⁻ Fe	-0.440 [41]
HPO(OH)2 + 3H+ 3e	-0.454 E403
$2CO_{2(gas)} + 2H^{+} + 2E^{-} + H_{2}C_{2}O_{4(aq)}$	-0.490 [41]
$HPO(OH)_2 + 2H^+ + 2e^+ + H_2PO(OH) + H_2O$	-0.499 [40]
S + 2e ⁻ 5	-0.510 [41]
$U^{++} e^{-} U^{+++}$	-0.610 [41]
Hg5 + 2e Hg + 5	-0.700 E413
Ag25 + 2e 2Ag + 5 ¯	-0.710 [41]
Ni (OH) 2(s) + 2e \rightarrow Ni(s) + 2OH	-0.720 [40]
Cr ⁺⁺⁺ + 3e ⁻ Cr	-0 .74 0 [41]
Zn ⁺⁺ + 2e Zn	-0.763 E41]
Cr ⁺⁺ + 2e ⁻ Cr	-0.900 [40]
SO4 + H2O + 2e→ SO3 + 20H	-0.940 E403
250 ³ + 2H20 + 2e ⁻ 520 ⁴ + 40H	-1.120 [41]
V ⁺⁺ + 2e ⁻ V	-1.130 E403
Fe (CN) a + 2e Fe + 6CN	-1.160 [40]
Mn ⁺⁺ + 2e ⁻ Mn	-1.180 [41]
ZnO2 + 2H2O + 2e Zn + 40H	-1.220 [41]
Zn (OH)+++ 2e-+++++++++++++++++++++++++++++++++	-1.285 [40]
THE REAL PROCESSING FROM THE PROPERTY AND THE PROPERTY AND THE TAXABLE PROPERTY AND T	

1

Reacción de semicelda	E ,volts.
and a second state and and the second state of the second state of the second state of the second state of the	
2r4+ 48- Zr	-1.530 [40]
Ti ^{s+} + 3e Ti	-1.630 [40]
$A1^{+++} + 3e^{-} \longrightarrow A1$	-1.660 [41]
Th ⁺⁺ + 4e ⁻ + Th	-1.900 E403
Be ⁺⁺ + 2e ⁻ Be	-1.970 [40]
Hz + 20 2H	-2.250 [41]
A1 (OH) + 30 A1 + 40H	-2.350 [41]
Ng ⁺⁺ + 20 Ng	-2.370 [41]
La ³⁺ + 30	-2.520 [40]
Na ⁺ + • Na	-2.714 [41]
Ca ⁺⁺ + 20 Ca	-2.870 [41]
Sr ⁺⁺ + 2e [→] Sr	-2.890 [41]
Ba ⁺⁺ + 2∎ ⁻ → Ba	-2.900 [41]
K ⁺ + • K	-2.925 [41]
Rb ⁺ + w Rb	-2,925 [40]
Li ⁺ + • Li	-3.045 [41]

Referencias:				
E403	Lang#'s	Handbook	af	Chemisry
C413	Ayres			

Electro	dos de R efere ncia	E°,∨olts.
Calomel	(0.1M KC1)	0.336
Calonel	(1.0M KC1)	0.283
Calomel	(sat KCl)	0.244
Ag/AgC1	(3.5M KC1)	0.205
Ag/AgC1	(sat KCl)	0.199

كمراجبها بأركيني استباد الجماد البليان المحد الأخرية فيتشاعد المدكر ومتعاف المراجب	
2 .79	任何日间也是这些正常。

[]]	Kissinger, P.T., "Laboratory Techniques in Electroanalytical Chemistry" Kissinger, P.T. and Heinemann, W.R. (eds), Dekker, New York (1984).
[2]	Maloy, J.T., <u>J. Chem. Educ</u> , 60, 285, (1983).
[3]	Kissinger, P.T. and Heinemann, W.R., <u>J.Chem Educ</u> , 60, 702, (1983).
[4]	Mabbott, G.A., <u>J Chem Educ</u> , 60, 697, (1983).
(5)	Sawyer, D.T. and Roberts, J.L., "Experimental Electrochemistry for Chemists". John Wiley & Sons, USA (1974).
[6]	Levine, I.N., "Fisicoquímica", McGraw Hill, México (1988).
[7]	Rossiter, B.W., and Hamilton, J.H., "Physical Methods of Chemistry". Vol.II, Electrochemical Methods, John Wiley & Sons. USA (1986).
[8]	Nicholson, R.S., <u>Anal Chem</u> , 38, 1406 (1966).
[9]	Evans, D.H. et al. <u>J Chem Educ</u> , 60, 290, (1983).
[10]	Matsuda, H., and Ayabe, Y. Z., <u>Electrochem</u> , 59, 494 (1955).
[11]	Bard, A.J. and Faulkner, L.R., "Electrochemical Methods", John Wiley & Sons., New York, (1980).
	Página 134

- [12] Baldwin, P.R. et al, J. Deck. Rep., 61, 820 (1964).
- [13] Saveant, J. M. Electrophin, Acta, 12, 999 (1967).
- [14] Myland, J. C., and Oldham, K.B. <u>Cliectroanal Chem</u>, 153, 43 (1983).
- [15] Nicholson, R.S. and Shain, I. <u>Anal Cham</u>, 36, 706 (1964).
- [16] Cauquis, G. "Organic Electrochemistry". Baizer, M. M., ed., Marcel Dekker Inc., New York (1973).
- [17] Mairanovskii, S. G. "Catalytic and Kinetic Waves in Polarography" Plenum Press, New York (1968).
- [18] Mairanovskii, S. G. <u>J Electroanal Chem</u>, 4, 161 (1962).
- [19] Showsmith, D. W. and Barrodas, R. G., <u>Rev Anal Chem</u>, 2,83 (1974).
- [20] Wopschall, R. H. and Shain, I., <u>Anal Chem</u>, 39, 1514, 1527, 1535 (1967).
- [21] Feldberg, S.W. "Electrochemistry, Calculations, Simulations, and Instrumentation" (Mattson, J.S., Mark, H.B., MacDonal, H.C., eds)Marcel Dokker, Now York (1972)
- [22] Sluyters-Rehback, M. and Sluyters, J. H., <u>J Electroanal Chem</u>, 65, 831 (1975).
- [23] Conway, B.E. "Theory and Principles of Electrode Processes", Roland, New York (1965).
- [24] Srinivasand, S., and Gileadi, E. <u>Electrochim Acta</u>, 11, 321 (1966).

- [25] Costa, J.M., "Fundamentos de Electródica", Alhambra, España (1981).
- [26] Carter, D.B. and Silver, I.A. "Microelectrodes and Electrodes used in Biology", in reference electrodes, Ives, D.J.G. y Janz, G.J., eds, Academic Press, New York, (1961), Cap 11.
- [27] Bates, R.G. "Determination of pH". 2nd ed., Wiley-Interscience, New York, (1973).
- [28] Covington, A.K. "Reference Electrodes", Durst, R.A. ed., National Bureau of Standards Govt. Printing Office, Nashington, D.C., (1969).
- [29] Hills, G.J. and Ives, D.G.J., "The Hydrogen Electrode", Ives, D.J.G. y Janz, G.J., eds., Academic Press, New York, (1961), Chap 2, p102.
- [30] Franklin, T.C., Naito, M., Itoh, T. and McClelland. D.C., <u>J.Electroanal.Chem</u>, 27,303, (1970).
- [31] Ives, D.J.G., and Janz, G.J., "Reference Electrodes, Theory and Practice". Academic Press, Inc. USA (1969).
- [32] Janz, G.J., "Silver-Silver Halide Electrodes", Ives, D.J.G. and Janz, G.J., eds., Academic Press, New York, (1961).
- [33] Butler, J.N. "Reference Electrodes in Aprotic Organic Solventes", Delahay, ed., Interscience Publishers, New York, (1970), Vol 7, oo 106-114.
- [34] Hills, G.J and Ives, D.J.G. Nature 165, 530 (1950).

[35] Hills, G.J and Ives, D.J.G. <u>J. Chem. Boc.</u> 311 (1951). Pagina 136

FALLA DE UNIGEN

- [36] Johnson, R.J., and Ubbelohde, A.R. <u>Free, Roy, Eac.</u> A206, 275 (1951).
- [37] Rand, D.A.J. and Woods, R., <u>J. Electroanal. Chem.</u>, 31, 29 (1971).
- [38] Miller, F.J. and Zittel, H.E., <u>Anal. Chem.</u>, 35, 1866 (1963).
- [39] Sawyer., Heineman. and Beebe. "Chemistry Experiments for Instrumental Methods". John Wiley and Sons. USA. (1984).
- [40] Lange, N.A. "Lange's Handbook of Chemistry". Ed.J.A.Dean, McGraw Hill, New York (1979).
- [41] Ayres, G.H. "Análisis Químico Cualitativo", Harper & Row, New York (1968).
- [42] Elving, P. et al. Anal Chem. 28, 7, 1179 (1956).
- [43] Hodgman, C., ed. "Handbook of Chemistry and Physics", Cleveland, Ohio, (1954).
- [44] Kolthoff, I.M. and Laitien, H.A. "pH and Electro titrations". Wiley, New York, (1941).
- [45] Lange, N.A. "Lange's Handbook of Chemistry". Ed.J.A.Dean, McGraw Hill, New York (1979).
- [46] Lingane, J.J., "Electroanalytical Chemistry", Interscience, New York, (1953).
- [47] Kolthoff, I.M. and Lingane, J.L. "Polarography", Interscience Pub. New York (1952).

- [48] Heyrovsky, J. and Zuman, P. "Practical Polarography: An Introduction for Chemistry Students", New York Academic, London (1968).
- [49] Bond, A.M. "Modern Polarographic Methods in Analitical Chemistry" Dekker, New York (1980).
- [50] Gayer et al. J Chem Educ. 30, 557 (1953).
- [51] Strobel, H.A. and Heineman, W.R. "Chemical Instrumentation, a Systematica Approach", John Wiley and Sons, New York (1989).
- [52] Skoog, D.A. and West, D.M. "Análisis instrumental", Nva. Editorial Interamericana, México (1986).
- [53] Willard, H.H. et al, "Instrumentan Methods of Analysis", Wadsworth, USA (1988).
- [54] Stock, J.T. "Amperometric Titrations", Kieger Huntington, New York (1965).
- [55] Newman, J. "Electrochemical Systems". Prentice Hall. Englewood Cliffs, New Jersey (1973).
- [56] Angell, D. H. and Dickinson, T. <u>J Electroanal Chem</u>, 35, 55 (1972).
- [57] Perone, S. P. "Computering Chemistry and Instrumentation, Electrochemistry". Edited by J. S. Mattson, H. B. Mark, Jr., and H. C. MacDonald, Jr. Dekker, New York (1972).
- [58] Ahlberg, E. and Farker, V. D. <u>J Electroanal Coea</u>, 121, 57, 73 (1981).

- [59] Fry. A. J. and Britton, B. "Topics in Organic Electrochemistry". Plenum Fress, New York (1986).
- [60] Fry, A. J. "Syntetic Orgenic Electrochemistry". Harper and Row Fub. New York (1972).
- [61] Bacon, J. and Adams, R.N., <u>J Amer Chem Soc</u>, 90, 6596 (1968).

FALLA DE ORIGEN