

FACULTAD DE QUIMICA

"ESTUDIO HIDRODINAMICO DE LA AGRESIVIDAD DEL AGUA DE LA CIUDAD UNIVERSITARIA"

T				E	L			S									Š
Q	UE	1	PA	RA		0	BTE	ENER		EL		τľ	TUL	0		DB	::
ł	N	G	E	N	۱	E	R	0		Q	U	١	M	١	С	C	>
Ρ		R		Ε		\$	3	E		N		T	•	A	۱.		:
G	E	R A	R	D	0		M	UÑ	0	Z		R /	A N	(I	RE	ĒŽ	Ζ

MEXICO, D. F.

TESIS CON FALLA DE ORIGEN

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

The ME HUITIEN

Jurado asignado:

Presidente: Prof. JOAN GENESCA LLONGUERAS.

Vocal: Profra.AURORA DE LOS ANGELES RAMOS MEJIA.

Secretario: Prof. TEZOZOMOC PEREZ LOPEZ.

1^{er} Suplente: Prof. GERMAN OROZCO GAMBOA.

2⁰ Suplente: Prof. CARLOS RODRIGUEZ RIVERA.

Sítio donde se desarrolló el tema:

LABORATORIO DE CORROSION, EDIFICIO D, FACULTAD DE QUIMICA.

Asesor del tema

Volei

I.O. Tezozomoc Perez López

Sustentante

Gerardo Muñoz Ramírez

Al creador del Universo. Por permitirme ser una parte insignificante y efímera de su gran obra.

A mis abuelos:

Remedios Pacheco. María Hernández. Gabino Muñoz.

Florentino Ramirez.

A mis padres: Joaquina Ramirez.

Ramón Muñoz.

A Mis hermanos:

Gabino.

Graciela.

Arturo y su esposa Martha. Laura.

María Elena.

Y muy en especial para Yésica Esmeralda,que representa el inicio de la próxima generación de la familia La actual idea de la enseñanza superior, es que el trabajo debe ser interesante, dejando el afán de lucro puesto que muchos plomeros y macánicos, ganan a menudo más que los profesionistas universitarios y mucho más que los profesores de estos.

c.u.

La ciencia no consiste sólo en saber lo que se debe o puede hacerse,sino también en saber lo que podría hacerse, aunque quiza no debiera hacerse.

> Guillermo de Baskerville en "El nombre de la rosa" de Umberto Eco.

"O sea que, si no entiendo mal, haces y sabes porque haces, pero no sabes porque sabels que sabels lo que haces"

Adso de Melk. Op Cit

-			INDICE
			Pág
	INTRODUCCION		1
	CAPITULO I		
		1.1.~Generalidades	6
		1.2Electrodo de disco rotatorio	10
		1.3Polarización electroquímica	12
		1.4Curvas de polarización	19
	CAPITULO II	DESARROLLO EXPERIMENTAL	21
	CAPITULO III	DATOS EXPERIMENTALES Y RESULTADOS	24
	CAPITULO IV	ANALISIS Y DISCUSION DE RESULTADOS	73
	CAPITULO V	CONCLUSIONES	83
	BIBLIOGRAFIA	·.	87

INTRODUCCION

El hombre en su afán de llevar una vida más comoda, ideó métodos para mejorar y superar lo que la naturaleza le daba; para lograrlo tuvó que desarrollar primero herramientas y después máquinas para producción, transporte, almacenamiento y otras finalidades prácticas. Con el tiempo se dió cuenta que le era muy conveniente que el material del que estaban fabricados sus utencilios y máquinas fuera lo más resistente y durable posible; fue hasta el descubrimiento de los metales que creyó que había encontrado la mejor opción. Los metales eran y son aún obtenidos al llevar a su estado metálico, compuestos que en estado natural se encuentran como óxidos, sulfatos, etcétera.

Con el paso del tiempo, se percató que si bien los metales eran más resistentes que otros materiales que usaba, no lo eran tanto como supuso en un principio, ya que los artefactos de metal y aún las máquinas presentaban deterioros mayores a los provocados por el uso normal. A dicho deterioro se le dió el nombre de corrosión y no es más que la tendencia de los metales a regresar a su estado natural, esto sucede al ponerse en contacto con el medio ambiente.

Como siempre le ha sucedido al hombre, cuando se erfrenta a algo desconocido y que además le afecta, comienza a cuantificar

los daños y le da un nombre al fenómeno; con la aplicación del método científico busca encontrar el mecanismo por el cual se presenta el fenómeno, para, de esta manera, estar en posición de modificar las condiciones y evitar el daño, o bien, obtener algún beneficio adicional.

Así, al enfrentarse a la corrosión, en un principio sólo se tenían métodos cuantitativos: variación de peso y determinación analítica de la cantidad de material que pasa a forma iónica en una disolución corrosiva.

Posteriormente Tafel planteó una relación empírica entre A¢ (diferencia de potencial) y la Ir (corriente total), abriendo así la brecha para la comprensión del mecanismo de la corrosión, que fue aún más claro con el postulado del potencial mixto de Wagner y Traud, el cual establece: "sin asumir la existencia de ánodos y cátodos locales, se pueden explicar las reacciones de corrosión si se asume que las reacciones parciales de oxidación y reducción, ocurren en la interfase metal-electrolíto, y que estas reacciones están en constante cambio bajo una distribución estadística de posición y tiempo.

Ellos mismos, calcularon la velocidad de reacción usando métodos electroquímicos, y demostraron que es posible determinar la velocidad de corrosión a través de curvas de polarización, usando la llamada "extrapolación de Tafel".

El agua es conocida como el líquido vital, ya que es necesaria para la vida y además tiene un sinfín de usos en la industria.

Para hacer uso de este recurso natural es necesario transportarla hasta los lugares donde será usada. En el pasado, era transportada en contenedores, tales como barriles de madera, tambores de metal o bien carros cisterna, para los casos en que el sitio de abastecimiento estuviera lejano; para los lugares cercanos era común el uso de canales, y pozos para los casos de las aguas subterráneas. Con el tiempo se usaron tuberías para suministrar el agua tanto a los hogares como a la industria.

Las tuberías mas comúnes son las de cobre, fierro y algunas con recubrimiento de zinc (galvanizado). Todas las tuberías sufren de un fenómeno llamado corrosión, que no es otra cosa que el deterioro natural que sufren los metales. Este deterioro presenta problemas ya que de no prevenirse llega a inutilizar la tubería y por lo tanto a interrumpir el suministro de agua.

Una vez usada el agua se tiene el problema de donde depositarla, hacia donde enviarla o que hacer para poder utilizarla de nuevo. Una de las opciones más comúnes es enviarla por tuberías hacia el drenaje. Las aguas residuales incustriales son un problema, porque llegan a contener, en la mayoria de los

casos, sustancias peligrosas tanto para los seres Humahom comb para el medio ambiente; por esta razón se han creado leyes que hacen forzoso el tratamiento de las aguas residuales, þara eliminar dichas sustancias antes de enviarlas al drenaja.

Como el agua contiene sustancias disueltas, que no siempre están presentes en las mismas cantidades en lugares difermentes y, si además se le agregan más sustancias durante su uso específico, llegamos a encontrar que la corrosión para tuberías del mismo material ubicadas en lugares diferentes, no tendrá la misma magnitud.

El presente trabajo está encaminado a determinar el efecto que tiene la velocidad de flujo sobre la magnitud de la corrosión en tuberías de: cobre, zinc y fierro. El fluído usado es agua proveniente de la planta de tratamiento de aguas de Ciudad Universitaria. Se tomaron muestras tanto a la entrada como en la salida previa al proceso de cloración.

Para simular las condiciones dinámicas se usó un electrodo de disco rotatorio (EDR).

La importancia de este tipo de estudios es poder encontrar técnicas adecuadas para la medición de valores de corrosión, de manera que se pueda sustituir las pruebas de campo y así evitar el fenómeno corrosivo desde un principio.

Se encontró que los valores para el potencial de corrosión de los diferentes metales son característicos; los barridos potenciométricos que se realizaron, permiten hacer las gráficas respectivas y determinar la corriente límite y a partir de ella encontrar la velocidad de corrosión.

También es posible construir una gráfica que relacione los números adimensionales como son el Reynolds y el Smith,los cuales en ingeniería tienen importancia, pues dan una idea de las magnitudes de los fenómenos de transporte, en este caso de los de masa y momentum.

El usar cobre o fierro en las tuberías de C.U. resulta indistinto prácticamente, mientras que usar de zinc si representaría algunas desventajas.

1.1 GENERALIDADES.

La literatura sobre la influencia del flujo en medios tales como el agua de mar sobre el comportamiento de la corrosión de materiales metálicos es limitada, pero recientemente ha tomado un gran interés debido a que la presencia de un patrón de flujo modifica notablemente la velocidad de corrosión.

Las mediciones electroquímicas son ampliamente usadas en el campo de la corrosión. La aplicación de los métodos electroquímicos ha permitido estudiar la corrosión por picaduras, corrosión galvánica, corrosión intergranular y otros tipos de corrosión. La mayor parte de los casos de corrosión involucran un movimiento relativo entre el metal corrovéndose y su medio ambiente. Tal movimiento puede incrementar o disminuir los procesos que ocurren en condiciones estáticas: esto también puede introducir diferentes formas de ataoue. por ejemplo la "corrosión-erosión" o problemas debidos a la depositación de sales incrustantes. En la literatura, el efecto del flujo sobre la velocidad de corrosión es comúnmente expresado en términos de los parámetros de la velocidad de flujo únicamente. Pero tales aproximaciones no pueden revelar todas las interacciones entre los aspectos hidrodinámicos y de transporte de masa.

Recientemente, se han clasificado los estudios hidrodinámicos relacionados a la corrosión en tres categorías. La primera categoría solo distingue el efecto cualitativo de la hidrodinámica sobre la corrosión. El segundo relaciona tales efectos a cierta forma de coeficientes de transporte de masa, (Re,Sh,Sc)expresada en una relación de naturaleza empírica. La tercera clase tiene asociadas mediciones de polarización electroquímicas y expresa los efectos a los coeficientes de transporte de masa.

Las condiciones de flujo de fluidos, influyen sobre la velocidad y el tipo de corrosión. En todos los casos involucran movimiento relativo entre el metal corroyéndose y su medio ambiente. Tales desplazamientos, pueden aumentar o disminuir los procesos que ocurren bajo condiciones estáticas, lo que también indica que se pueden tener diferentes tipos de ataques.

Las velocidades de corrosión obtenidas por ensavos de laboratorio no pueden ser siempre aplicadas a las condiciones de campo con certeza, lo cual es atribuído a la poca atención dada a las condiciones hidrodinámicas y a las de transporte de masa durante el trabajo experimental. El efecto del flujo hidrodinámico ha sido apreciado por más de cincuenta años. pero se carecía de evaluaciones cuantitativas y el entendimierto de la

меса́ліса.

El papel de la transferencia de masa en la corrosión recientemente ha recibido atención. El efecto significativo del transporte de masa sobre la corrosión, puede ser apreciado en dos casos: cuando la velocidad de la corrosión es determinada por la remoción de los producto de la corrosión anódica de la superficie del metal al seno de la disolución; y cuando la velocidad es controlada por la transferencia convectiva de masa del agente oxidante catódico del bulto de la disolución a la interfase del metal.

En algunas situaciones industriales, los efectos hidrodinámicos tienen su impacto sobre los procesos de corrosión. En tales casos, comúnmente conocidos como la transferencia convectiva de masa controlada por corrosión, la velocidad de corrosión neta es limitada por la llegada de las especies corrosivas o la remoción de los productos de corrosión. La característica clave en estos casos, es que la sustancia limitante es fuertemente soluble y que la velocidad del paso controlante es el transporte de tales sustancias disueltas.

La velocidad de los mecanismos de corrosión puede ser significativamente determinada, especialmente en los casos de flujo pequeños, por la aplicación de los principios básicos de transporte de masa y de momentum a tales procesos

electroquímicos. El flujo puede interactuar con una superficie metálica corroída por el transporte de materia hacia y desde la superficie, provocando que en la superficie se formen las líneas de flujo o promoviendo el transporte de calor hacia y desde la superficie del metal. El primer tipo es conocido como transporte convectivo de masa controlado por la corrosión, mientras que el segundo es llamado corrosión-erosión. El tercer tipo concerniente a los aspectos de transporte de calor está relacionado al efecto del fluido sobre la temperatura superficial del metal.

F1 desarrollo hidrodinámica de la teoría е1 v perfeccionamiento del EDR han permitido su amplia aplicación al estudio de la transferencia de masa en un régimen de flujo laminar sobre la velocidad de varios procesos electroquímicos y de corrosión. Un entendimiento de tales procesos **P**S de fundamental importancia y permite también la cuantificación de la velocidad de corrosión cuando el proceso es límitado por el transporte de masa. Este último provee información para el diseño de proceso de planta. Sin embargo, muchas situaciones de corrosión tienen añadida la interacción del efecto de la transferencia de calor.

.

1.2 EL ELECTRODO DE DISCO ROTATORIO

El diseño más práctico de un electrodo para el cual un tratamiento hidrodinámico completamente riguroso se haya dado es el EDR. Las ecuaciones de transporte de masa para el EDR fueron obtenidas por Levich en 1942. Hasta hoy se han publicado una gran variedad de aplicaciones del EDR en diferentes campos de investigación y en el campo de la electroquímica el estudio de los mecanismos de electrodo ha sido muy notable.

La teoría del EDR es aplicada a una superficie plana, de un diámetro tan grande que las orillas son despreciadas respecto al área superficial total. Esta superficie plana es rotada con una velocidad constante en un eje perpendicular al plano.

En la práctica, el diámetro del disco toma valores que van desde 1 mm hasta varios centímetros, rotados a una velocidad constante dentro de un recipiente de uso común, como vasos de precipitados de 50-1000 ml.

El patrón de flujo del fluido sobre la superficie de un electrodo se da de la siguiente manera: Como el disco es rotado, el líquido adyacente que forma una capa, adquiere un movimiento rotacional; el líquido puesto en movimiento de esta forma, tiene una velocidad tangencial debida a la fuerza centrífuga y, de igual forma, desarrolla una fuerza radial desde el centro del disco hacia la orilla. Este patrón de flujo, el

cual mueve el líquido horizontalmente, requiere de un flujo axial perpendicular a la superficie del electrodo para suplir al líquido que ha sido expulsado.

Dentro de la capa límite estacionaria, de un espesor definido, las velocidades tangencial y radial del flujo decrecen como una función de la distancia medida verticalmente desde la superficie del disco. En la capa límite hidrodinàmica la velocidad tangencial sufre un decremento sagún Levich; a una distancia mayor, se considera que sólo el movimiento axial prevalece.

1.3 POLARIZACION ELECTROQUINICA.

Cuando un elemento metálico es sumergido en un medio corrosivo, ambos procesos, oxidación y reducción, ocurren sobre la superficie del material. El metal es oxidado (corroido) y el medio (disolvente) es reducido. El metal debe funcionar como ánodo y cátodo a la vez y ambas corrientes, anódica y catódica ocurren en la superficie del metal. La muestra que se encuentra en contacto con un líquido corrosivo presenta un potencial (respecto a un electrodo de referencia) llamado potencial de corrosión (Ecorr). Una muestra en el potencial de corrosión presenta ambas corrientes anódica y catódica en su superficie. Sin embargo, estas corrientes son iguales en magnitud y por lo tanto no hay una corriente que medir. El potencial de corrosión puede ser definido como el potencial en el cual la velocidad de oxidación es exactamente igual a la velocidad de reducción.

Es importante señalar que cuando un metal se encuentra en su potencial de corrosión ambas polaridades de corriente están presentes. Si el metal es polarizado ligeramente más positivo que el potencial de corrosión, entonces la corriente anódica predomina a expensas de la corriente catódica. Como el potencial del metal es hecho más positivo la corriente catódica llega a ser insignificante con respecto a la anódica.

Para analizar un sistema electroquímico mediante el estudio

de la relación i va E, es necesario controlar una de las variables. Las gráficas de i va E también pueden ser obtenidas por la imposición de un barrido de potencial lo suficientemente lento para obtener la curva de estado estable (curva potenciodimánica).

Fig.1.3a La parte de la corriente catódica es debida a la reducción del disolvente, o la reducción de una especie en disolución. La parte de la corriente anódica es debida también a la oxidación del disolvente o la oxidación del electrodo, o la oxidación de las especies en disolución.

En la región anódica, la forma de la curva puede mostrar una pasivación si la corriente decrece con el incremento del potencial; por el contrario, si la corriente llega a ser poco afectada por el potencial, entonces se presenta una limitación de la velocidad total por el transporte de masa, o control difusional.

El análisis de los datos también puede proporcionar parámetros significativos en la investigación. Como ejemplo tenemos: la gráfica de log i vs E permite obtener la corriente de corrosión por el procedimiento de extrapolación.

El método está basado en la teoria del potencial mixto, propuesta por Wagner y Traud, la cual postula que: la reacción total de corrosión es el resultado de dos o más reacciones electroquímicas parciales, las cuales son, en principio, independientes entre sí.

Para el caso de la corrosión de un metal en medio ácido, la reacción total puede escribirse:

Me + n H⁺ \longrightarrow Meⁿ⁺ + n/2 Hz

la cual es el resultado de una reacción de oxidación (anódica):

y de una reducción (catódica):

n H⁺ + n e[−] -----→ n⁄2 Hz

Esta teoría asume que las reacciones anódica y catódica, ocurren en cualquier sitio de la superficie en constante cambio, con una distribución estadística de posición y tiempo de las reacciones individuales.

La interacción que ocurre entre las reacciones de oxidación y reducción en el metal que se corroe, puede ser descrita con base en la teoría del potencial mixto, usando las relaciones entre densidad de corriente (velocidad de reacción electroquímica) y el potencial (fuerza electromotriz).

La relación entre la corriente I y el potencial p,puede ser escrita utilizando las ecuaciones de Buttler-Volmer de la cimética electroquímica:

> Redu $\underbrace{\frac{10}{10}}_{10}$ 0x1 + n1 e⁻ 0x2 + n2 e⁻ $\underbrace{\frac{20}{10}}_{10}$ Redz

II=IIa + IIc= IOI[EXP $(\rho - \rho OI/b'Ia) - EXP (-\rho - \rho OI/b'Ic)$] I2=I2a + I2c= IO2[EXP $(\rho - \rho O2/b'2a) - EXP (-\rho - \rho O2/b'2c)$] (1) IT= I1 + I2 = I1a + I1c + I2a + I2c

Donde:

- Isa, Iza==> Corrientes anódicas de los pares Oxs/Reds y Oxz/Redz, respectivamente (+).
- Isc, Izc==> Corrientes catódicas de los pares Qx1/Reda y Ox2/Reda, respectivamente (-).

IT ==> Corriente total (medida experimentalmente).

poi ==> Potencial de equilibrio del par Dxi/Redi.

poz ==> Potencial de equilibrio del par 0x2/Red2.

- Ios ==> Corriente de intercambio para el par Oxs/Reds en el
 pos.
- Ioz ==> Corriente de intercambio para el par 0xz/Redz en el poz.

b'10=RT/(1-01)nF

 $b^2z_0=RT/(1-\alpha z)nzF$

b'sc=RT/-csnsF

b'ze=RT/-aznzF

Estas pendientes están relacionadas con las de Tafel de la siguiente manera:

b = 2.303 b' escala log escala ln

y, de estas pendientes depende el mecanismo de la reacción.

Haciendo el desarrollo matemático con las ecuaciones básicas de la cinética electroquímica, se llega a la ecuación de la cinética de corrosión. IT = Icorr [EXP (p-pcor/b'ia) - EXP (-p-pcor/b'2c)]

Para la extrapolación de Tafel es necesario poner en forma gráfica el desarrollo matemático (diagrama de Evans). Fig 1.3b.

El diagrama de Evans linealiza los comportamientos exponenciales de la ecuación anterior, sin embargo, en la práctica el comportamiento lineal, sólo se observa cuando una de las componentes de la Ir predomina sobre el otro y sólo existe control activacional (por transferencia de e⁻).

A la zona lineal se le conoce como recta de Tafel, ya que él fue quien encontró la relación lineal:

 $\eta = a + b \log i \cong \Delta \rho$

donde b¤ pendiente de Tafel = 2.3 b'

Ejemplo de las técnicas de corriente directa:

a) medición de la Icorr de Tafel.

b) medición de la Rp de la curva I-E.

Las limitaciones de la técnica de estado estable han sido explicadas especialmente en el caso de la corrosión teniendo las siguientes causas como fuentes de error en las mediciones para determinar la intensidad de la corrosión:

-Las pendientes de Tafel son desconocidas o varían con el tiempo.

-Carencia de linealidad de la curva de polarización en la vecindad del potencial de corresión.

-Alta resistividad, debido al electrolito mismo o a la capa de productos de corrosión.

-Variación de potencial de corrosión durante la medición.

-Picaduras o corrosión localizada.

-Los potenciales de equilibrio de las semirreacciones catódicas y anódicas son muy cercanas al potencial de corrosión.

-El sistema siendo polarizado requiere un tiempo dado para alcanzar el estado estacionario.

-Perturbaciones en la interfase electrodo de trabajo-electrolito durante la medición.

1.4. - CURVAS DE POLARIZACION.

Experimentalmente se miden las características de polarización a través del análisis oráfico de la respuesta de 1a corriente como una función del potencial aplicado, donde 1.45 mediciones de la corriente pueden variar sobre varios ordenes de magnitud. Usualmente las funciones de log i son llevados una oráfica en función del potencial en una carta semilogar1tmica; la curva que se obtiene se le llama curva de polarización potenciodinámica.

A potenciales negativos respecto al Ecorr se obtiene un incremento de la corriente catódica y de esta forma disminuye la magnitud de la corriente amódica.

A manera de ilustración se da el siguiente ejemplo:

La figura, muestra una curva de polarización anódica potenciodinámica de una muestra de acero 430. Se construye la gráfica potencial aplicado contra el logaritmo de la corriente.

La región A de la figura, es la región activa en la cual, la muestra metálica, es corroldo conforme se aumenta el potencial a valores más positivos. En B, después de incrementar la velocidad de corrosión, se llega a la zona de pasivación; la pérdida de reactividad química bajo ciertas condiciones ambientales, muy probablemente se deba a la formación de una película en la superficie del metal, llamada película pasivante. Este punto es caracterizado por dos valores de coordenadas, el potencial primario de pasivación (Epp) y la densidad de corriente crítica (ic). En la región C,la corriente decrece rápidamente conforme la película pasivante se forma sobre la superficie del metal; un pequeño pico es observado después de la región D, donde se observa un cambio conforme se aumenta el potencial. La película pasivante se comienza a romper en E (región transpasiva).

Una curva de polarización potenciodinámica puede dar la siguiente información:

-La capacidad del material a pasivarse en un medio particular.

-La región de potencial sobre la cual el metal permanece pasivado.

-La velocidad de corrosión.

DESARROLLO EXPERIMENTAL

Se tomaron muestras de agua de la planta de tratamiento de aguas de la Ciudad Universitaria; las muestras se obtuvierón tanto a la entrada a la planta como a la salida previa al proceso de cloración.

Para realizar los barridos potenciométricos se montó el equipo como se muestra en el dibujo, (fig. 3.1):

Fig. 3.1

MATERIAL Y EQUIPO.

1.~ Potenciostato.

2.- Contraelectrodo de grafito.

3.- Electrodo de referencia de calomelanos saturado.

4-- Invección de nitrógeno.

5.- Electrodo de disco rotatorio (EDR).

6.- Regulador de velocidad.

7.- Probeta de prueba.

8.- Muestra de agua.

La muestra de agua de aproximadamente 50 ml, se deposita en un vaxo de precipitados al cual se le adapta un tapón de hule con los orificios necesarios para el EDR y los electrodos; de esta forma el tapón también ayuda a mantener en forma vertical el EDR.

Antes de colocar la probeta de prueba en el EDR, es necesario limpiar la superficie de ella que será expuesta al agua,esto se hace lijando con una lija N⁰600.

Para evitar daños al EDR es necesario evitar que el agua llegue a introducirse, para ello es que se inyecta mitrógeno en la parte inferior de él.

Cuando se tienen veríficadas todas las conecciones se fija

la velocidas del EDR, en este caso son: 250, 500, 750, 1000, 1250, 1500, 2000 y 2500 rpm.

En un lapso de 2 min se mide el potencial de reposo y a partir de ese valor se hará un barrido potenciométrico de 1 volt con incrementos de 25 mV cada 15 segundos.

CAPITULO III

RESULTADOS

Al iniciar cada barrido potenciométrico, fue medido el potencial de corrosión;se traza la gráfica de Ecor vs $\omega^{1/2}$.

La tabla 1 muestra los resultados y las gráficas correspondientes son:

A Gráfica de Ecor vs *^1/2.

Los resultados de los barridos potenciométricos se encuentran en las tablas:

2	Cu AT.
3	Cu AST.
4	Fe AT.
5	Fe AST.
6	Zn AT.
7	Zn AST.

Las tablas muestran el sobrepotencial aplicado y la corriente medida, así como su logaritmo, para cada velocidad angular com los tres metales de prueba.

Con los datos de estas tablas se generan las gráficas de sobrepotencial vs log i:

B	Cu AT.
С	[·] Cu AST:
α	Fe AT.
E	Fe AST.
F	Zn AT.
G	Zn AST.

Mediante el método de la pendiente de Tafel, se obtienen los valores de la corriente:

8	Tabla	de	cor	ri	ent	e	límite.
н	Gráfi	ca (je I	L	vs	ట^ీ	./2

Con los datos de 8, es posible calcular la velocidad de corrosión: Tabla 9.

I Vel. corrosión vs ω^{1/2}.

 10
 Tabla de números de transporte (Re, Sc, Sh).

 11
 Esfuerzo cortante, rv.

 J
 Sh/Sc^{0.950} vs Re.

 K, K'
 rv vs o.

Con Re es posible calcular el factor de fricción: Tabla 12. L f vs ω .

Las figuras A, B, y C, muestran los diagramas de Pourbaix para Cu, Fe y Zn respectivamente. Las figuras D y E, muestran un diagrama de factor de fricción en función del número de Reynolds.

POTENCIALES DE CORROSION

w w 1/2			POTENCIAL	AL DE	CORROSION	i	
	Γ	CuAT	GuAST	FeAT	FeAST	ZnAT	ZnAST
250	15.8	-75.4	-96	-512.5	-444	-908	-987
500	22.3	-92.8	-91	-526	-420	-928	-957
750	27.3	-88	-141	-583.8	-492	-887	-930
1000	31.6	-109.1	-68	-515.8	-482	-891	-960
1250	35.3	-115.1	-99	-449.7	-471	-856	946
1500	38.7	-113.1	-74	-512.4	-477	-849	-914
2000	44.7	-177.2	-60	-617.1	-515	-876	-911
2500	50	-130	-61	-572.8	-556	-896	-903

Tabla № 1

Potenciales de corrosión experimentales para Ou, Fe y Zn, en función de la velocidad angular, tervo para egua tratada, como para agua sin tratz-.

Ecor= mV w= rpm

COBRE AGUA TRATADA

	250 rpm		500 rpm		750 rpm		1000 rpm		
V	1	log i	i	log i	i	log i	i	log i	
100	0.7	-0.15490	0.145	-0.83863	0.2	-0.69897	0.03	-1.52287	
125	1.3	0.113943	0.32	-0.49485	0.55	-0.25963	0.32	-0.49485	
150	1.9	0.278753	0.46	-0.33724	0.805	-0.09420	0.56	-0.25181	
175	2.5	0.397940	0.595	-0.22548	1.2	0.079181	0.74	-0.13076	
200	2.8	0.447158	0.73	-0.13667	1.4	0.146128	0.94	-0.02687	
225	3.2	0.505149	0.86	-0.06550	1.8	0.255272	1.15	0.060697	
250	3.4	0.531478	0.98	-0.00877	1.9	0.278753	1.2	0.079181	
275	3.6	0.556302	1.2	0.079181	2.15	0.332438	1.4	0.146128	
300	3.9	0.591064	1.25	0.096910	2.2	0.342422	1.5	0.176091	
325	4.2	0.623249	1.4	0.146128	2.65	0.423245	1.7	0.230448	
350	4.6	0.662757	1.7	0.230448	2.95	0.469822	1.95	0.290034	
375	5.1	0.707570	2.05	0.311753	3.2	0.505149	2.15	0.332438	
400	5.7	0.755874	2.4	0.380211	3.45	0.537819	2.35	0.371067	
425	6.4	0.806179	2.55	0.406540	3.75	0.574031	2.6	0.414973	
450	7.1	0.851258	3	0.477121	4.05	0.607455	2.7	0.431363	
475	7.8	0.892094	3.25	0.511883	4.4	0.643452	3	0.477121	
500	8.5	0.929418	3.6	0.556302	4.7	0.672097	3.2	0.505149	
525	9.5	0.977723	3.9	0.591064	5.15	0.711807	3.5	0.544068	
550	11	1.041392	4.4	0.643452	5.5	0.740362	3.8	0.579783	
575	12	1.079181	5	0.698970	6	0.778151	4.1	0.612783	
600	13	1.113943	5.7	0.755874	6.6	0.819543	4.6	0.662757	
625	14	1.146128	6.4	0.806179	7.3	0.863322	5	0.698970	
650	15	1.176091	7.2	0.857332	8.1	0.908485	5.5	0.740362	
675	16	1.204119	8	0.903089	9.1	0.959041	6.3	0.799340	
700	17	1.230448	8.9	0.949390	10.5	1.021189	6.7	0.826074	
725	18	1.255272	9.75	0.989004	11	1.041392	7.8	0.892094	
750	19.5	1.290034	11	1.041392	12.5	1.096910	8.15	0.911157	
775	20	1.301029	11.5	1.060697	14	1.146128	8.8	0.944482	
800	21.5	1.332438	12	1.079181	16	1.204119	9.4	0.973127	
825	22	1.342422	13	1.113943	19	1.255272	9.9	0.995635	
850	24	1.380211	13.5	1.130333	20	1.301029	10	1	
875	25.5	1.406540	14	1.146128	21.5	1.332438	10.5	1.021189	
900	27.5	1.439332	14.5	1.161368	25	1.397940	11	1.041392	
925	30.5	1.484299	15.5	1.190331	25,5	1.406540	11.5	1.060697	
950	32	1.505149	16	1.204119	26	1.414973	12	1.079181	
975	33	1.518513	16.5	1.217483	28	1.447158	12.5	1.096910	

Tabla N⁰2

Dales experimentales de las curvas de polarizacion catodica

del cobre con agua tratada.

÷	1250 rpm		1500 rpm		2000 rpm		2500 rpm					
	<u>i</u>	log i	<u>i</u>	log i	<u> </u>	log i	i	lag i				
100	-	l		i <u> </u>	<u> </u>		-	·				
125	0.32	-0.49485	0.195	-0.70996		-	-	-				
150	1.2	0.079181	0.26	-0.58502	-	-	0.6	-0.22184				
175	1.6	0.204119	0.52	-0.28399	0.23	-0.63827	1.1	0.041392				
200	2.05	0.311753	0.66	-0.18045	0.99	-0.00436	1.45	0.161368				
225	2.25	0.352182	0.795	-0.09963	1.8	0.255272	1.8	0.255272				
250	2.6	0.414973	0.925	-0.03385	2.35	0.371067	2.2	0.342422				
275	2.85	0.454844	1.05	0.021189	2.8	0.447158	2.45	0.389166				
300	3.2	0.505149	1.45	0.161368	3.3	0.518513	2.8	0.447158				
325	3.5	0.544068	1.6	0.204119	3.8	0.579783	3.15	0.498310				
350	3.75	0.574031	1.85	0.267171	4.25	0.628388	3.4	0.531478				
375	3.95	0.596597	2.15	0.332438	4.6	0.662757	3.8	0.579783				
400	4.2	0.623249	2.4	0.380211	4.65	0.667452	4.2	0.623249				
425	4.55	0.658011	2.8	0.447158	5	0.698970	4.65	0.667452				
450	4.8	0.681241	3	0.477121	5.65	0.752048	5.3	0.724275				
475	5.1	0.707570	3.25	0.511883	6.1	0.785329	6	0.778151				
500	5.4	0.732393	3.5	0.544068	6.8	0.832508	6.8	0.832508				
525	5.85	0.767155	3.8	0.579783	7.55	0.877946	7.75	0.889301				
550	6.3	0.799340	4.2	0.623249	8.25	0.916453	8.8	0.944482				
575	6.8	0.832508	4.6	0.662757	9.15	0.961421	9.75	0.989004				
600	7.4	0.869231	5,15	0.711807	9.95	0.997823	10	1				
625	8.15	0.911157	5.7	0.755874	11	1.041392	11.5	1.060697				
650	8.85	0.946943	6.35	0.802773	11.5	1.060697	12.5	1.096910				
675	9.6	0.982271	6.9	0.838849	12	1.079181	14	1.146128				
700	10	1	7.55	0.877946	13	1.113943	15.5	1.190331				
725	11	1.041392	8.35	0.921686	14	1.146128	17	1.230448				
750	11.5	1.060697	9.1	0.959041	15	1.176091	19	1.278753				
775	12.5	1.096910	10.5	1.021189	16.5	1.217483	20.5	1.311753				
800	14	1.146128	11	1.041392	18	1.255272	22.5	1.352192				
825	14.5	1.161368	11.5	1.060597	19.5	1.290034	25	1.397940				
850	16	1.204119	12	1,079181	20.5	1.311753	27.5	1.439332				
875	17.5	1.243038	13.5	1.130333	21.5	1.332438	30	1.477121				
900	18	1.255272	14	1.146128	22.5	1.352182	31.5	1.498310				
925	19.5	1.290034	14.5	1.161368	24	1.380211	33.5	1.525044				
950	20.5	1.311753	16	1.204119	25.5	1.406540	36	1.555302				
975	23.5	1.371067	16.5	1.217483	26.5	1.423245	37	1.568201				
		استقصمته	Tabla	N 2								

OBRE AGUA TRATADA

- - -

Datos experimentales de las curvas de polarizacion catódica

del cobre con agua tratada.conclusion.
·	260 mm		500 mm		750		1000 rpm	
1	250 mm	<u></u>	<u> </u>	<u> </u>	<u>750 mpn</u>	<u> </u>		<u>n</u>
V	1	logi		1001	l	109 1		0001
100	0.48	-0.318/5	0.4	-0.39794		ļ	0.69	-0.16119
125	1.7	0.230448	1.2	0.079181	-	-	1.2	0.079181
150	2.2	0.342422	1.9	0.278753	0.28	-0.55284	1.55	0.190331
175	2.95	0.469822	2.4	0.380211	0.94	-0.02687	1.85	0.267171
200	3.6	0.556302	2.9	0.462397	1.4	0.146128	2.25	0.352182
225	4.4	0.643452	3.3	0.518513	1.9	0.278753	2.7	0.431363
250	5	0.698970	3.7	0.568201	2.4	0.380211	3.25	0.511883
275	5.7	0.755874	4.1	0.612783	3	0.477121	3.9	0.591064
300	6.3	0.799340	4.6	0.662757	3.45	0.537819	4.6	0.662757
325	7.2	0.857332	5.2	0.716003	4	0.602059	5.4	0.732393
350	8.25	0.916453	5.4	0.732393	4.6	0.662757	6.2	0.792391
375	9.2	0.963787	5.9	0.770852	5.4	0.732393	7	0.845098
400	9.8	0.991226	6.6	0.819543	6.25	0.795880	8	0.903089
425	10	1	7.5	0.875061	7.2	0.857332	9	0.954242
450	11	1.041392	8.5	0.929418	8.2	0.913813	10	1
475	12	1.079181	9.5	0.977723	9.1	0.959041	10.5	1.021189
500	13.5	1.130333	10	1	10	1	12	1.079181
525	14	1.146128	11	1.041392	10.5	1.021189	13.5	1.130333
550	15	1.176091	12	1.079181	11	1.041392	14.5	1.161368
575	16	1.204119	13	1.113943	12	1.079181	16	1.204119
600	16.5	1.217483	14	1.146128	13	1.113943	17.5	1.243038
625	17.5	1.243038	15	1.176091	14	1.146128	19	1.278753
650	18	1.255272	16	1.204119	15	1.176091	20.5	1.311753
675	19	1.278753	16.5	1.217483	16	1.204119	22	1.342422
700	20	1.301029	17	1.230448	16	1.204119	23.5	1.371067
725	20.5	1.311753	17.5	1.243038	16,5	1.217483	24	1.380211
750	21	1.322219	18	1.255272	17	1.230448	26	1.414973
775	22	1.342422	18.5	1.267171	17	1.230448	27	1.431363
800	22.5	1.352182	19	1.278753	17	1.230448	28	1.447158
825	23	1.361727	19.5	1.290034	17.5	1.243038	28.5	1.454844
850	24	1.380211	20	1.301029	17.5	1.243038	29.5	1.469822
875	24.5	1.389166	20.5	1.311763	18	1.255272	30	1.477121
900	26	1.414973	21	1.322219	20	1.301029	31	1.491361
925	27.5	1.439332	22	1.342422	24	1.380211	39	1.591064
950	28	1.447158	22.5	1.352182	26	1.414973	49.5	1.694605
975	29.5	1.469822	23	1.361727	26.5	1.423245	56	1.748188
1000	30	1.477121	23.5	1.371067	28	1.447158	58	1.763427
1025	30.5	1.484299	24	1.380211	28	1.447158	63	1.799340
1050	31	1.491361	24.5	1.389166	28	1.447158	64.5	1.809559
1075	32	1.505149	25	1.397940	28.5	1.454844	66	1.819543
1100	33	1.518513	26	1.414973	29	1.462397	67	1.826074

COBRE AGUA SIN TRATAR

Tabla Nº3

Datos experimentales de las curvas de polarizacion catódica

del cobre con agua sin tratar.

	COBRE	AGUA SIN 1	TRATAR		cont			
	1250 spr	n	1500 rpr	n	2000 rpr	n	2500 rpr	n
v	i	i pol	i	log i	i	log i	i	log i
100	0.04	-1.39794	0.24	-0.61978	1.1	0.041392	0.99	-0.00436
125	0.47	-0.32790	0.57	-0.24412	1.4	0.146128	1.45	0.16136B
150	0.99	-0.00436	0.8	-0.09691	1.95	0.290034	1,95	0.290034
175	1.4	0.146128	1.1	0.041392	2.24	0.350248	2.4	0.380211
200	2.05	0.311753	1.45	0.161368	3	0.477121	2.8	0.44715B
225	2.9	0.462397	2.1	0.322219	3.4	0.531478	3.45	0.537819
250	3.4	0.531478	2.5	0.397940	4.3	0.633468	3.8	0.579783
275	3.9	0.591064	3	0.477121	5.3	0.724275	4.4	0.643452
300	4.5	0.653212	3.45	0.537819	6.4	0.806179	4.85	0.685741
325	5.1	0.707570	4.05	0.607455	7.6	0.880813	5.6	0.748188
350	5.8	0.763427	4.6	0.662757	8.5	0.929418	6.5	0.812913
375	6.4	0.806179	5.15	0.711807	9.4	0.973127	7.45	0.872156
400	7.4	0.869231	6.1	0.785329	12	1.079181	8.6	0.934498
425	8.4	0.924279	7.2	0.857332	12.5	1.096910	9.8	0.991226
450	9.45	0.975431	8.35	0.921686	14	1.146128	10.5	1.021189
475	11.5	1.060697	9.6	0.982271	16	1.204119	12	1.079181
500	12	1.079181	12	1.079181	18	1.255272	14	1.146128
525	13	1.113943	13	1.113943	20	1.301029	16	1.204119
550	14	1.146128	15.5	1.190331	23	1.361727	17	1.230448
575	16	1.204119	17	1.23044B	26	1.414973	19	1.278753
600	18	1.255272	19.5	1.290034	28	1.447158	21	1.322219
625	20	1.301029	21.5	1.332438	31.5	1.498310	23	1.361727
650	22	1.342422	24	1.380211	34	1.531478	25	1.397940
675	24	1.380211	26	1.414973	37	1.568201	27	1.431363
700	27.5	1.439332	28	1.447158	40	1.602059	29.5	1.469822
725	30	1.477121	30.5	1.484299	43.5	1.638489	31.5	1.498310
750	31.5	1.498310	32.5	1.511883	46.5	1.667452	34	1.531478
775	33.5	1.525044	35.5	1.55022B	49.5	1.694605	36	1.556302
800	34	1.531478	37	1.568201	52	1.716003	36	1.579783
825	35	1.544068	39	1.591064	56	1.748188	39.5	1.596597
850	36	1.556302	41	1.612783	57.5	1.759667	40.5	1.607455
875	37.5	1.574031	42	1.623249	60	1.778151	42	1.623249
900	39.5	1.596597	43.5	1.638489	61	1.785329	42.5	1.628388
925	45	1.653212	44	1.643452	62	1.792391	43.5	1.638489
950	46	1.662757	46	1.662757	64	1.806179	46	1.662757
975	66	1.819543	50	1.698970	66	1.819543	52	1.716003
1000	73	1.863322	64	1.806179	76	1.880813	58	1.763427
1025	C.05	1.909795	69.0	1.809339	78_	1.892094	67	1.826074
1050	85	1.929418	38	1.579783	83	1.919078	81	1.908485
1075	68.5	1.946943	72	1.857332	90	1.954242	91	1.959041

Tabla N⁰3

Datos experimental es de las curvas de polarizacion catódica del cobre con agua sin tratar, conclusion.

F	(EF	IRO i	AGUA	TRA	TADA

V	250 mpm		500 rpm		750 rpm		1000 rpm	
	i	log í	i	lag i	i	log i	i	logi
500	-		-	-	-	~	-	-
525	0.4	-0.39794	~	-	-	-	0.24	-0.61978
550	0.82	-0.08618	0.68	-0.16749	-	~	1.2	0.079181
575	1.2	0.079181	1.7	0.230448	-	-	1.8	0.255272
600	1.8	0.255272	2.2	0.342422	0.55	-0.25963	2.55	0.406540
625	2.45	0.389166	2.8	0.447158	1.4	0.146128	3.2	0.505149
650	3.05	0.484299	3.3	0.518513	2.3	0.361727	3.75	0.574031
675	3.7	0.568201	3.8	0.579783	3	0.477121	4.2	0.623249
700	4.3	0.633468	4,35	0.638489	3.6	0.556302	4.65	0.667452
725	4.8	0.681241	4.8	0.681241	4.1	0.612783	5.15	0.711807
750	5.2	0.716003	5.2	0.716003	4.6	0.662757	5.6	0.748188
775	5.65	0.752048	5.65	0.752048	5	0.698970	6.2	0.792391
800	6.05	0.781755	6.25	0.795880	5.4	0.732393	6.8	0.832508
825	6.4	0.806179	6.75	0.829303	5.8	0.763427	7.45	0.872156
850	6.8	0.832508	7	0.845098	6.3	0.799340	8.15	0.911157
875	7.3	0.863322	7.2	0.857332	6.7	0.826074	8.95	0.951823
900	7.8	0.892094	7.4	0.869231	7.2	0.857332	9.8	0.991226
925	8.3	0.919078	7.6	0.880813	7.6	0.880813	10	1
950	8.9	0.944482	8	0.903089	8.3	0.919078	11	1.041392
975	9.5	0.977723	8.7	0,939519	8.9	0.949390	12	1.079181

Tabla Nº4

Datos experimentales de las curvas de polarizacion catódica

del fierro con agua traisda.

FIERRO AGUA TRATADA

cont...

V	1250 rpm		1500 npm		2000 rpm	1	2500 rpm	1
	i	logi	i	log i	i	log i	i	log i
500	-	-	-	-	-	-	-	i -
525	0.44	-0.35654	0.6	-0.22184	-	-	-	-
550	0.82	-0.08618	1.4	0.146128	-	-	-	-
575	1	0	1.75	0.243038	-	-	-	-
600	1.35	0.130333	2.1	0.322219	-	-	0.24	-0.61978
625	1.7	0.23044B	2.55	0.406540	0.38	-0.42021	0.52	-0.28399
650	2.05	0.311753	3	0.477121	2.2	0.342422	0.795	-0.09963
675	2.3	0.361727	3.5	0.544068	3.8	0.579783	1.05	0.021189
700	2.55	0.406540	3.95	0.596597	5.2	0.716003	1.15	0.060697
725	2.8	0.447158	4.4	0.643452	6.4	0.806179	1.35	0.130333
750	3	0.477121	4.8	0.681241	7.3	0.863322	1.55	0.190331
775	3.25	0.511883	5.2	0.716003	8.1	0.908485	1.7	0.230448
800	3.4	0.531478	5.5	0.740362	8.75	0.942008	1.9	0.278753
825	3.65	0.562292	5.7	0.755874	9,3	0.968482	2.1	0.322219
850	4	0.602059	6	0.778151	9.9	0.995635	2.3	0.361727
875	4.3	0.633468	6.4	0.806179	10	1	2.6	0.414973
900	4.7	0.672097	6.6	0.819543	10.5	1.021189	2.9	0.462397
925	5	0.698970	6.9	0.838849	11.5	1.060697	3.2	0.505149
950	5.45	0.736396	7.3	0.863322	12	1.079181	3.6	0.556302
975	5.95	0.774516	7.65	0.883661	13.5	1.130333	4.05	0.607455

Tabla N⁰4

Datos experimentales de las curvas de polarizacion catodica

del fierro con agua tratada, conclusion.

FIERRO AGUA SIN TRATAMIENTO

	250 грл	1	500 rpm		750 rpm)	1000 ipr	n
v	· · · ·	log i	i	log i	ì	log i	1	log i
450	0.4	-0.39794	1.2	0.079181	-	-	-	-
475	1.8	0.255272	2.6	0.414973	-	-	-	-
500	3	0.477121	3.9	0.591064	0.1	-1	1.1	0.041392
525	4	0.602059	5.1	0.707570	1.4	0.146128	2.9	0.462397
550	5.2	0.716003	6.2	0.792391	2.3	0.361727	4.3	0.633468
575	6.45	0.809559	7.3	0.863322	4.6	0.662757	5.95	0.774516
600	7.9	0.897627	8.45	0.926856	7.9	0.897627	7.3	0.863322
625	10	1	9.5	0.977723	9.8	0.991226	8.3	0.919078
650	11.5	1.060697	11	1.041392	10	1	9.6	0.982271
675	12.5	1.096910	11.5	1.060697	11.5	1.060697	10	1
700	14	1.146128	12	1.079181	13.5	1.130333	10.5	1.021189
725	15.5	1.190331	12.5	1.096910	15	1.176091	11	1.041392
750	16	1.204119	13.5	1.130333	16	1.204119	12	1.079181
775	1B	1.255272	14	1.146128	17.5	1.243038	12.5	1.096910
800	19	1.278753	15.5	1.190331	18.5	1.267171	13.5	1.130333
825	20.5	1.311753	16.5	1.217483	19.5	1.290034	14	1.146128
850	22	1.342422	18	1.255272	20.5	1.311753	15	1.176091
875	22.5	1.352182	19	1.278753	21	1.322219	15.5	1.190331
900	24	1.380211	20.5	1.311753	22	1.342422	16	1.204119
925	25	1.397940	23	1.361727	23	1.361727	17	1.230448
950	28	1.447158	24.5	1.389166	24	1.380211	18	1,255272
975	32	1.505149	26	1.414973	26	1.414973	19	1.278753
1000	36	1.556302	30	1.477121	27	1.431363	19.5	1.290034
1025	39	1.579783	33	1.518513	27.5	1.439332	20	1.301029
1050	40.5	1.607455	35	1.544068	28.5	1.454844	20.5	1.311753
1075	43	1.633468	37	1.568201	30	1.477121	22	1.342422
1100	46	1.662757	39	1.591064	31.5	1.498310	23	1.361727
1125	48	1.581241	43	1.633468	33.5	1.525044	24	1.380211
1150	51	1.707570	46	1.662757	34.5	1.537819	26	1.414973
1175	53.5	1.728353	49.5	1.694605	36.5	1.562292	28	1.44715B
1200	56	1.748188	58	1.763427	39	1.591064	30	1.477121
1225	58.5	1.767155	62	1.792391	42	1.623249	32.5	1.511883
1250	62	1.792391	68.5	1.835690	45.5	1.658011	35.5	1.550228
1275	64	1.806179	73	1.863322	49	1.690196	38	1.579783
1300	67	1.826074	86	1.934498	52	1.716003	42	1.623249
1325	68.5	1.835690	99	1.995635	57	1.755874	45.5	1.658011
1350	72	1.857332	100	2	61.5	1.788875	49.5	1.694605
1375	75	1.875061	105	2.021189	66	1.819543	54	1.732393
1400	78.5	1.894869	110	2.041392	71	1.851259	58	1.763427
1425	83.5	1.921686	115	2.060697	76	1.880813	62.5	1.795880
1450	88	1.944482			82.5	1.916453	68	1.832508
1475	93	1.968482	r		88.5	1.946943	72	1.857332
1500	98	1.991226			95	1.977723	78	1.892094

Tabla N⁰5

Dalos experimentales de las curvas de polarizacion calòdica del fierro con agua sin tralar.

34

. •

FIERRO AGUA SIN TRATAMIENTO

cont.

	r ner me	OR SIT 150	TANELITO			GOI		
1	1250 rpm	<u>۱ </u>	1500 rpm	<u> </u>	i 2000 rpm	۱	2500 rpm	1
V	i	log i	<u>i i</u>	log i	1	log i	, i	log i
450	-	- 1		1 -	- 1	1 - 1	-	-
475	-		-	-	-	-	-	-
500	2.15	0.322438	4.25	0.628388		-	-	-
525	4.2	0.623249	8.4	0.924279	1	0		
550	6.1	0.785329	10	1	1.6	0.204119		<u>, </u>
575	7.9	0 897627	125	1 096910	62	0 792391	28	0 447158
600	9.5	0 977723	15	1 176091	87	0 9 3 9 5 1 9	6	0 778151
625	10	1	18	1 255 272	10	1	8.6	0 934498
650	10.5	1 021189	20.5	1 311753	11.5	1.060697	10	1
675	12	1 079181	23	1 361727	13	1 113943	10.5	1 021189
700	13.5	1 130333		1 414973	15	1 176091	12.5	1 096910
725	14	1 146128	28	1 447158	16.5	1 217483	14	1 146128
750	15	1 176091	31.5	1 498310	18	1 255272	16	1 204119
775	16	1 204119	33.5	1 525044	20	1 301029	175	1 243038
800	16.5	1 217483	36	1 556302	22	1 342422	18	1 255272
825	17.5	1 243038	39.5	1 596597	22.5	1 352182	195	1 290034
050	18	1 265272	42.5	1 629389	24	1 390211	21	1 222219
875	18.5	1 267171	44.5	1 648360	26	1 414973	22	1 342422
900	19.5	1 290034	50	1 698970	28.5	1 454844	26	1 414973
925	20	1 301029	56.5	1 752048	31	1 491361	29	1 462397
950		1 322219	62	1 792391	33	1 518513	30	1 477191
975		1 342422	55	1 819543	34.5	1 537819	315	1 498310
1000		1 380211	70	1.845098	37	1 569201	37.5	1 519513
1025	25	1 397940	74	1 869231	39	1 579783	225	1 525044
1050	26	1 414973	79	1.892094	40	1 602059	34	1 531479
1075	26.5	1 423245	R1	1 908485	42	1 623249	35	1 544068
1100	28	1 447158	84.5	1 926856	43.5	1 638489	36	1 556302
1125	29.5	1 469822	87 5	1 942008	44.5	1 649360	37	1 568201
1150	31	1 491361	90.5	1 956648	46.5	1 667452	39	1.579783
1175	32.5	1 511883	93	1.968482	48	1.681241	39.5	1 596597
1200	35	1 544068	94	1 973127	50	1 698970	41	1 612783
1225	37.5	1 574031	94.5	1 975431	52	1 716003	42.5	1 628388
1250	40.5	1 607455	95	1 977723	54	1 732393	44.5	1 648360
1275	44	1 643452	95.5	1 980003	56	1 748188	47.5	1.676693
1300	48.5	1 685741	96	1 982271	58	1 763427	50.5	1 703291
1325	52	1 716003	96.5	1 984527	60	1 778151	54.5	1 736396
1350	56.5	1 752048	97	1 986771	64	1 806179	59	1 770852
1375	61 5	1 788875	100	2	67	1 826074	54	1 906179
1400	67	1 826074	105	2 021189	71	1 851259	68.5	1 925690
1425	73	1 863322	110	2 041 392	76	1 880813	75	1 875061
1450	80	1 903089	115	2 060697	80.5	1 905795	81.5	1 911167
1475	87	1 939519	120	2 079181	96	1 934499	80	1 944492
1500	98	1 977723	125	2 096910	92	1 963797	96	1 977722
1525			.20	2.030310	98.5	1 993426	100	
1550							105	2 021 189
1575							110	2 041392

Tabla Nº5

Datos experimentales de las curvas de polarización catódica del fienvo con agua sin tratar, conclusión.

- - - -

the set of a set of the set of the set of the

ZING AGUA TRATADA

. . .

1

,	250 rpm		500 rpm		750 rpm		1000 rpm	1
l v F	i	1001	1	log i	i i	logi	i (log i
850	-	-	~ 1	-	- i	- !	~ (- :
875		-	-	-	- :	-	-	-
900	-	~	- 1	-	0.66	-0.18045	0.56	-0.25181
925	J 28 -	- 0.55294	- 1	-	1.6	0.204119	1.6	0.204119
950	0.79	-0.10207	0 62 :	-0 20760	2.5	0.397940	2.6	0.414972
975 1	1.4	0.146128	1	01	3.6	0.556302	3.6	0.555302
1000	1 65	0.217483	1.7 1	0.230448	4.2	0.623249	4.6	0.662757
1025	2.25	0.352182	2.25	0.352182	5.25	0.720159	5.8	0.763427
1050	2 95	0.469822	3	0.477121 1	6.25	0.795880	7.1	0.851258
10751	3.6	0.556302 /	3.7	0.568201	7.1	0.851258	8.25	0.916453
1100	4.2	0.623249	4.2	0.623249	7.85	0.894869	9.4	0.973127
1125	4.85	0.685741	5.2	0.716003	8.6	0.934498	10	1
1150	5,55	0.744292	6.2	0.792391	9.3	0.968482	11	1.041392
1175	6.25	0.795880	6.8	0.832508	10	1	12	1.079181
1200	7	0.845098	7.7	0.886490	10.5	1.021189	14	1.146128
1225	7,85	0.894869	9	0.954242	11	1.041392	15	1.176091
1250	9.2	0.963787	10	1	13	1.113943	17	1.230448
1275	12	1.079181	12	1.079181	16	1.204119	20	1.301029
1300	14.5	1.161368	16	1.204119	19.5	1.290034	24	1,380211
1325	17.5	1.243038	18	1.255272	23.5	1.371067	28.5	1.454844
1350	19.5	1.290034	21	1.322219	26.5	1.423245	1 33	1.518513
1 1375	21	1 322219 1	24	1.380211	29	1.462397	36	1,556302
1400	22.5	1.352182	25	1.397940	20.5	1.484299	39.5	1.596597
1425	24	1.380211	26	1.414973	32	1.505149	42	1.623249
1450	26	1.414973	26.5	1.423245	32.5	1.511883	44	1.643452
1 1475	27 1	1.431363	28.5	1.454844	33.5	1.525044	46.5	1.667452
1500	28.5	1,454844	30	1.477121	34.5	1.537819	49	1.690196
1525	31	1,491361	31	1.491361	36	1.556302	52	1.716003
1550	33.5	1.525044	34	1.531478	38	1.579783	55.5	1.744292
1575	37	1.568201	37	1.568201	40.5	1.607455	59	1.770852
1600	41.5	1.618048	40	1.602059	43.5	1.638489	62.5	1.795880
1625	46	1.662757	44	1.643452	47	1.672097	67	1.826074
1650	51	1,707570	48	1.681241	51	1.707570	71.5	1.854306
1675	55.5	1,744292	54	1.732393	55.5	1.744292	76	1.880813
1700	61	1,785329	60	1.778151	60	1.778151	82	1.913813
1725	66.5	1.822821	65.5	1.816241	64.5	1.809559	87.5	1.94200B
1750	73	1 863322	71	1.851258	70	1.845098	93	1.968482
1775	80.5	1,905795	79	1.897627	76	1.880813	99.5	1.997823
1800	88	1,944482	86	1.934498	82	1.913813	100	2
1825	96	1,982271	94	1.973127	89	1.949390	105	2.021189
1850	110	2.041392	100	2	96	1.982271	115	2.060697
1875	120	2.079181	105	2,021189	100	2	120	2.079181
1900	125	2.096910	110	2.041392	105	2.021189	130	2.113943
1925	├ <u>-</u>	+	120	2.079181	110	2.041392	140	2.146128
1960	f	<u>+</u>	130	2,113943	120	2.079181		1
1975		<u> </u>	140	12,146128				1

Tabla Nº6

Datos experimentales de las curvas de polarización catódica del zinc con agua tratada.

ZINC AGUA TRATADA cont...

1	1250 rpm		1500 rpr	1500 rpm		n	2500 rpr	n
L V	i	log i	i	log i	i	log i	i	log i
850	-	~	0.15	-0.82390		-	-	-
875	1.5	0.204119	1.9	0.278753	-	-	-	-
900	3,15	0.498310	3.25	0.511883	0.1	-1	0.4	-0.39794
925	4.65	0.667452	4.65	0.667452	0.17	-0.76955	1.8	0.255272
950	6.2	0.792391	5.8	0.763427	0.255	-0.59345	3	0.477121
975	7.6	0.880813	6.8	0.832508	0.175	-0.75696	4.2	0.623249
1000	8	0.903089	6.9	0.838849	1.2	0.079181	6.2	0.792391
1025	9.2	0.963787	8.2	0.913813	2.1	0.322219	9.1	0.959041
1050	10	1	9.2	0.963787	3.5	0.544068	13.5	1.130333
1075	11	1.041392	10	1	5.2	0.716003	15	1.176091
1100	12	1.079181	10.5	1.021189	6.4	0.806179	17.5	1.243038
1125	12.5	1.096910	11.5	1.060697	9.5	0.977723	20	1.301029
1150	13.5	1.130333	12.5	1.096910	11	1.041392	22	1.342422
1175	14	1.146128	13.5	1.130333	13	1.113943	23.5	1.371067
1200	15	1.176091	14.5	1.161368	14.5	1.161368	25.5	1.406540
1225	16	1.204119	15.5	1.190331	16	1.204119	26.5	1.423245
1250	17	1.230448	16.5	1.217483	18	1.255272	27.5	1.439332
1275	20	1.301029	19	1.278753	21	1.322219	29.5	1.469822
1300	23	1.361727	22.5	1.352182	25	1.397940	32.5	1.511883
1325	27.5	1.439332	26.5	1.423245	30	1.477121	36	1.556302
1350	32	1.505149	31	1.491361	24.5	1.537819	41	1.612783
1375	36	1.556302	34	1.531478	39	1.591064	46	1.662757
1400	39.5	1.596597	36	1.556302	44	1.643452	50.5	1.703291
1425	42	1.623249	38	1.579783	47.5	1.676693	54	1.732393
1450	44	1.643452	40	1.602059	50	1.698970	58.5	1.767155
1475	46.5	1.667452	42	1.623249	52	1.716003	62	1.792391
1500	48.5	1.685741	44	1.643452	55.5	1.744292	66.5	1.822821
1525	51	1.707570	46.5	1.667452	57	1.755874	70	1.845098
1550	54	1.732393	49.5	1.694605	60.5	1.781755	75	1.875061
1575	56.5	1.752048	52	1.716003	63.5	1.802773	79	1.897627
1600	59.5	1.774516	56	1.749188	67	1.826074	84	1.924279
1625	63.5	1.802773	59	1.770852	70	1.845098	88.5	1.946943
1650	67.5	1.829303	64	1.806179	74	1.869231	93.5	1.970811
1675	71.5	1.854306	67.5	1.829303	78.5	1.894869	98	1.991226
1700	76	1.880813	72	1.857332	83.5	1.921686	99	1.995635
1725	81	1.908485	77	1.886490	88	1.944482	100	2
1750	86	1.934498	82	1.913013	92.5	1.966141	105	2.021189
1775	91.5	1.961421	87	1.939519	97	1.986771	115	2.060697
1800	96	1.982271	92	1.963787	99	1.995635	120	2.079181
1825	100	2	97.5	1.989004	100	2	125	2.096910
1850	105	2.021189	100	2	105	2.021189	130	2.113943
1875					110	2.041392	135	2.130333
1900					120	2.079181	140	2.146128
1925					125	2.096910	145	2.161368
1950							155	2.190331
1975								

Tabla Nº6

Datos experimentales de las curvas de polarización catódica del zinc con agua tratada, conclusión. 37

[]	250 m	250 mpm		500 mm			1000 rpn	1
l v [i	logi	i	log i	· · · · ·	log i	i	log i
900			-					
925	-	_	-	-	-	-	-	-
950	-		-	· · ·	1.5	0.176091		-
975	0.4	1-0.39794	1.8	0.255272	3.2	0.505149	1.6	0.204119
1000	1.8	0.255272	4	0.602059	4.6	0.662757	3.7	0.568201
1025	3.2	0.505149	5.8	0.763427	5.9	0.770852	6	0.778151
1050	3.95	0.596597	7	0.845098	7	0.845098	7.9	0.897627
1075	4.6	0.662757	7.7	0.886490	7.8	0.892094	9.6	0.982271
1100	5	0.698970	8.3	0.919078	8.5	0.929418	10	1
1125	5.2	0.716003	8.6	0.934498	9	0.954242	11.5	1.060697
1150	5.5	0.740362	9	0.954242	9.6	0.982271	12	1.079181
1175	5.85	0.767155	9.6	0.982271	10	1	13.5	1.130333
1200	7.2	0.857332	10	1	10.5	1.021189	15	1.176091
1225	9	0.954242	12.5	1.096910	12	1.079181	17	1.230448
1250	10	1	16	1.204119	14	1.146128	20.5	1.311753
1275	12.5	1.096910	19	1.278753	15.5	1.190331	23.5	1.371067
1300	15	1.176091	22	1.342422	16.5	1.217483	26	1.414973
1325	18	1.255272	25	1.397940	18	1.255272	28.5	1.454844
1350	20	1.301029	29	1.462397	19	1.278753	32	1.505149
1375 :	23.5	1.371067	34	1.531478	20	1.301029	34	1.531478
1400	27	1.431363	38	1.579783	21	1.322219	37	1.568201
1425	31	1.491361	43	1.633468	22	1.342422	40.5	1.607455
1450	35.5	1.550228	48	1.681241	24	1.380211	44	1.643452
1475	39.5	1.596597	54	1.732393	26	1.414973	48.5	1.685741
1500	44	1.643452	60	1.778151	28	1.447158	53	1.724275
1525	50	1.698970	66	1.819543	30	1.477121	57.5	1.759667
1550	55.5	1.744292	72	1.857332	32.5	1.511883	63	1.799340
1575	60.5	1.781755	77.5	1.889301	36	1.556302	69	1.832508
1600	66.5	1.822821	84	1.924279	39.5	1.596597	74	1.869231
1625	72.5	1.860338	90	1.954242	44.5	1.648360	BO	1.903089
1650	79	1.897627	96.5	1.984527	50.5	1.703291	86	1.934498
1675	85	1.929418	100	2	57	1.755874	93.5	1.970811
1700	91	1.959041	105	2.021189	64	1.806179	100	2
1725	97	1.986771	110	2.041392	70.5	1.848189	105	2.021189
1750	100	2	115	2.060697	79	1.892094	110	2.041392
1775	110	2.041392	120	2.079181	96	1.934498	115	2.060697
1800	120	2.079181	130	2.113943	94	1.973127	120	2.079181
1825	125	2.096910	140	2.146128	100	2	135	2.130333
1850	130	2.113943	145	2.161368	105	2.021189	140	2.146128
1875	135	2.130333	150	2.176091	115	2.060697	155	2.190331
1900	140	2.146128	160	2.204119	120	2.079181	160	2.204119
1925	145	2.161368	165	2.217483	135	2.130333	175	2.243038
1950	150	2.176091	175	2.243038	140	2.146128	180	2.255272
1975	160	2,204119					195	2,290034

ZING AGUA SIN TRATAF

Tabla №7

Datos experimentales de las curvas de polarización catódica del zino con agua sin tratar.

,

.

	ZINC AGUA SIN TRATAR C				cont				
	1250 rpn	n	1500 rpr	n	2000 rpr	n	2500 rpi	n	
V	i	log i	i	logi	i	log i	<u>i</u>	log i	
900	-		<u> </u>						
925	-	-	1		1.2	-	1.7	0.230448	
950	0.4	-	3	-	3	0.477121	3.95	0.596597	
975	2.2	0.342422	4.B	0.681241	4.8	0.681241	5.95	0.774516	
1000	2.5	0.397940	6.1	0.785329	6.1	0.785329	7.35	0.866287	
1025	4.8	0.681241	7.4	0.869231	7.5	0.875061	9.3	0.968482	
1050	6	0.778151	8.5	0.929418	8.6	0.934498	10	1	
1075	6.9	0.838849	9.3	0.968482	9.5	0.977723	11.5	1.060697	
1100	7.7	0.886490	10	1	10	1	13	1.113943	
1125	8.4	0.924279	10.5	1.021189	10.5	1.021189	14	1.146128	
1150	9.2	0.963787	11	1.041392	11	1.041392	15.5	1.190331	
1175	9.8	0.991226	11.5	1.060697	11.5	1.060697	17	1.230448	
1200	10	1	12	1.079181	13	1.113943	18	1.255272	
1225	11.5	1.060697	14	1.146128	15.5	1.190331	20.5	1.311753	
1250	13.5	1.130333	16	1.204119	18	1.255272	23	1.361727	
1275	14.5	1.161368	19	1.255272	20.5	1.311753	26.5	1.423245	
1300	16	1.204119	19.5	1.290034	22.5	1.352182	30	1.477121	
1325	17.5	1.243038	22	1.342422	25	1.397940	32	1.505149	
1350	19	1.278753	24	1.380211	28	1.447150	34	1.531478	
1375	20	1.301029	26.5	1.423245	32	1.505149	36	1.556302	
1400	21	1.322219	29.5	1.469822	34.5	1.537819	38	1.579783	
1425	22.5	1.352182	32	1.505149	38	1.579783	39	1.591064	
1450	24.5	1.389166	35	1.544068	42.5	1.628398	41	1.612783	
1475	27	1.431363	38	1.579783	46.5	1.667452	43	1.633468	
1500	29	1.462397	42	1.623249	51	1.707570	46	1.662757	
1525	31.5	1.498310	46	1.662757	56	1.748188	48	1.681241	
1550	34.5	1.537819	50.5	1.703291	61	1,785329	51	1.707570	
1575	38	1.579783	55.5	1.744292	66	1.819543	54.5	1.736396	
1600	43.5	1.638489	60	1.778151	70.5	1.848189	59.5	1.774516	
1625	49	1.690196	66	1.819543	76.5	1.883661	64	1.806179	
1650	55.5	1.744292	71.5	1.854306	82.5	1.916453	69	1.838849	
1675	62	1.792391	78	1.892094	89	1.949390	76	1.880813	
1700	69	1.838849	84	1.924279	95.5	1.980003	82.5	1.916453	
1725	77	1.886490	90.5	1.956648	100	2	90	1.954242	
1750	85.5	1.931966	98	1.991226	105	2.021189	97	1.986771	
1775	94	1.973127	100	2	110	2.041392	100	2	
1800	100	2	110	2.041392	120	2.079181	105	2.021189	
1825	105	2.021189	115	2.060697	125	2.096910	115	2.060697	
1850	115	2.060697	120	2.079181	135	2.130333	125	2.096910	
1875	120	2.079181	130	2.113943	140	2.146128	135	2.130333	
1900	140	2.146128	140	2.146128	155	2.190331	145	2.161368	
1925	150	2.176091	145	2.161368					
1950	160	2.204119	160	2.204119					
1975			165	2.217483		1			

Tabla Nº7

Datos experimentales de las curvas de polarización catódica del zinc con agua sin tratar, conclusión.

POTENCIAL DE CORROSION

Ecor= mV w= rpm

COBRE AQUA TRATADA

Gráfica B. Ourvas de polarización catódica del Ou con agua tratada. sobrepotencial= mV i= mA

COURE

COBRE ADUA NIN TRATAR

. 44

FIERRO

Gráfica D'. Ourvas de polarización catódica del Fe
 con agua tratada. sobrepotencial= mV $$i=\!nA$$

FIERRO

Qráfica E. Ourvas de polarización catódica del Fe con agua sin tratar. sobrepotencial= mV i= mA

ZINC AGUA TRATADA

ZINC AGUA TRATADA

		······	1			
w^1/2	FeAST	FeAT	CuAST	CuAT	ZnAST	ZnAT
0	- 1	- 1	- 1	- 1	- 1	-
15.81	7.174	2.347	8.912	3.715	19.245	2.192
22.36	5,796	1.313	9.44	3.162	30.227	4
27.38	9,701	2.05	11.22	4.853	35.481	2.25
31.62	6.072	2.154	13.183	4.245	42.987	9.345
35.35	8,577	1.995	13,995	2.66	28.73	10.625
39.73	11.17	2.762	15.283	3.48	38.312	13,955
44.72	14.125	4.203	19.552	5.129	27.123	9.006
50	17.113	4.44	17.19	8.128	33.497	14.052

CORRIENTE LIMITE

Tabla Nº 8

w[=] rpm

i{≕} mA

CORRIENTE LIMITE

Gráfica H. Corriente límite vs raiz cuadrada de la velocidad angular.

Ilim= mV w= ryra

CALCULO DE LA VELOCIDAD DE CORFOSION:

 $V_{c_{mpy}} = \frac{1c}{9} \cdot \frac{1001 \text{ lumb}}{\text{amp*seg}} + \frac{1001 \text{ requivalente}}{96500 \text{ Coulumb}} + \frac{1001}{\text{ Hequiv}} + \frac{\text{PM}}{\rho_m} + \frac{1"}{2.54 \text{ cm}} + \frac{10^3 \text{ mpulg}}{1 \text{ pulg}} + \frac{3600 \text{ s}}{\text{ hr}} + \frac{24 \text{ hr}}{\text{ dla}} + \frac{365 \text{ dla}}{\text{ aNO}} = [\text{mpy}]$ $A = \text{ area en cm}^2.$

Ic= corriente en mA.

Equivalentes: Cu²⁺,Fe²⁺,Zn²⁺===> 2.

Peso molecular: Cu=63.54 Fe=55.84 Zn=65.37

Densidad:

Cu=8.92 g/cm³ Fe=7.6 " Zn=7.14 "

φ=3.1 mm= 0.31cm

 $A=\pi (0.31/2)^2 = 0.0755 \text{ cm}^2$

 $V_{1} = \frac{I_{C}}{0.0755} + \frac{PM * 3600 + 24 * 365}{96500 + 2 * 2 * 3.54} = 952.057 + \frac{I_{C} * PM}{p}$ $Cu: \frac{I_{C} * 63.52}{9.92} + 352.057 = \frac{6069.473I_{C}}{6069.473I_{C}}$ For: $\frac{I_{C} * 55.84}{7.7} + 352.057 = \frac{6179.073I_{C}}{6179.073I_{C}}$ $Zn: \frac{I_{C} * 65.37}{7.14} + 352.057 = \frac{7800.976I_{C}}{7800.976I_{C}}$

Usando estas ecuaciones se obtienen las velovidades de corrosión, los resultados se muestrán en la tabla 9.

Cálculo del número de Reynolds:

 $Re = \frac{r^2 \omega}{\nu}$

r≈radio del disco.rotatorio[=]cm. ∞=velocidad angular[=]rpm. v=viscosidad cinemática[=]s⁻¹.

µ=0.95Cp p≈0.99825 g/cm³. r=1.1/2= 0.55 cm.

 $\nu = \frac{\mu}{2} = 0.007516$

Re= (0.55)²•• [0.5298••]

Los resultados se muestran en la tabla 10.

Cálculo del número de Sherwood:

Cálculo del esfuerzo cortante:

 $v = \frac{\pi D \omega}{60}$

 $\tau_{v}=0.0791 \text{ Re}^{-0.9}(0.99825)*[(n*1.1**/60)^2]$

Cálculo del factor de fricción:

$$\frac{1}{\sqrt{f/2}} = -1.71 + 5.76 \log (\text{Re} (f/2)^{1/2})$$

Los resultados se encuentrán en las tablas 10 y 11.

VELOCIDAD DE CORROSION

Gráfica I. Velocidad de corrosión vs raíz cuadrada de la velocidad angular. w= rom

Ve= mpy

VELOCIDAD DE CORROSION mpy

W	w 112	FeAST	FeAT	ZnAST	ZnAT	CUAST	CUAT
250	15.811	44.329	14.502	150.129	17.01	54.094	22,55
500	22.361	35.814	8.113	235.8	31.204	57.3	19.193
750	27.386	59.943	12.667	276.786	17.552	68.099	29.458
1000	31.623	37.519	13.31	335.34	72.9	80.011	25.767
1250	35.355	52.997	12.327	224.122	82.885	84.701	16.149
1500	38.729	69.02	17.071	298.871	109.863	92.76	21.126
2000	44.721	87.279	25.971	211.586	70.256	179,366	31,128
2500	50	105.742	22.719	261.309	109.619	104.334	49.334

Tabla Nº 9

Datos experimentales de la velocidad de corrosión. Vo= mpy

Re	Sh/Se*.356
100	1 -
132.44	2.4188
264.89	3.9293
397.33	5.2189
529.77	6.3832
662.22	7.4624
792.66	8.4782
1059.55	10.3696
1324.43	12.1226
1589.32	13.7729
2119.09	16.8454
2648.86	19.6933
3179.64	22.3741
3708.41	, 24.9234
4238.18	27.3654
4767.96	29.7173
5297.73	31.9918
5500	-

NUMEROS DE TRANSPORTE

Tabla № 10

Gráfica J. Números de transporte de masa en función del número de Reynolds. Se muestra la gráfica de Eisenberg, et al⁸, para superficies lisas.

ESFUERZO GORTANTE

Re	ESF CORT
100	
132.44	3.786
264.89	12.302
397.33	24.51
529.77	39.97
662.22	58.409
792.66	79.632
1059.55	129.862
1324.43	189.771
1589.32	258.725
2119.09	421.924
2648.86	616.568
3179.64	840.6
3708.41	1092.443
4238.18	1370.835
4767.96	1674.729
5297.73	2003.236
5500	-

Tabla № 11

tw≕N/m²

ESFUERZO CORTANTE

ESFUERZO CORTANTE

ESFUERZO CORTANTE

ESFUERZO CORTANTE

Gráfica X'. Velocidad de corrosión vs esfuerzo cortante.

Voor= mpy tw= N/m²

FACTOR DE FRICCION

Re	w	f	fe	
100	-	-	-	
132.44	250	0.4832	0.055156	
264.89	500	0.2416	0.037762	
397.33	750	0.1611	0.0309	
629.77	1000	0.1208	0.027051	
662.22	1250	0.0966	0.02451	
792.66	1500	0.0805	0.022697	
1059.55	2000	0.0604	0.020146	
1324.43	2500	0.0483	0.018449	
1589.32	3000	1.0403		
2119.09	4000	0.0302		
2648.86	5000	0.0242		
3179.64	6000	0.0201		
3708.41	7000	0.0173		
4238.18	8000	0.0151		
4767.96	9000	0.0134		
5297.73	10000	0.0121		

Tabla Nº 12

f= factor de fricción calculado con 64/Re

fe= factor de fricción calculado con la fórmula para EDR

w	Re	f	RUGOSIDAD
			E+4
-	100	-	-
250	132.44	0.055156	4.62
500	264.89	0.037762	2.797
750	397.33	0.0309	2.058
1000	529.77	0.027051	1.65
1250	662.22	0.02451	1.386
1500	792.66	0.0226975	1.205
2000	1059.55	0.020146	0.956
2500	1324.43	0.018449	0.799

RUGOSIDAD SUPERFICIAL

Tabla Nº 13

Rugosidad= m

Figura A. Diagrama de Pourbaix del cobre.

Figura B. Diagrama de pourbaix del fierro.

Figura C. Diagrama de Pourbaix del zinc.

 $R_c = Numero de Reynolds = \frac{DTP}{\mu_c}$

Figura

•

Gráfica de factor de fricción de

drane.

VALORES DE (cu/) PARA AGUA A 15°C (VELOCIDAD EN m/s × DIAMETRO EN mm)

CAPITULO IV

ANALISIS Y DISCUCION DE RESULTADOS

En las gráficas de Ecor vs $\omega^{1/2}$, (A-A3), se dan los siguientes intervalos del potencial de corrosión (Ec[=]mV):

Metal	Agua tratada	Agua sin tratar
Cobre	-75	-60
	-177	-141
Fierro	-450	-420
	-617	-556
i		
Zinc	-840	-903
	-928	~960

El potencial de corrosión es característico de las metales de prueba, ya que en la gráfica, se ve claramente que están separadas las curvas de cada uno de ellos, pero muy juntas las de un mismo metal.

El potencial de corrosión se va modificando por el tratamiento que se le va dando al agua, en todos los casos el

tratamiento hace que disminuya el potencial de corrosión.

Al analizar las gráficas de sobrepotencial vs log i, junto con los datos que las generan, se puede notar que en los límites de las escalas del potenciostato, la sensibilidad no es la adecuada y provoca que se tengan unos cambios de pendientes, los cuales no deben confundirse con los que representan el cambio de mecanismo o bien, el cambio de especie. En cada caso se señala el intervalo en el cual se presenta el problema.

Para el cobre con agua tratada, las pendientes del cambio de escala, se presentan en el intervalo de 300~400 mν do sobrepotencial, los potenciales de corrosión se encuentran en la tabla 1. Para pH=7, en el diagrama de Pourbaix (fig A), SP encuentra en la zona de inmunidad. En el intervalo de sobrepotencial de 700-900 mV se observa un cambio de pendiente en la curva catódica, que corresponde al cambio de mecanismo de reducción de oxígeno a generación de hidrógeno; estas curvas son mostradas en las gráficas B.

Para el tobre con agua sin tratar, tenemos: En los intervalos de 350-400 mV y 900-1000 mV, se dan cambios de escala, en estos casos es más notorio el cambio de pendiente al final de las curvas, debido a la relación de magnitud del cambio de escala.

Los potenciales de corrosión se encuentran en la tabla 1; en el diagrama de Pourbaix estos valores nos situan en la zona de inmunidad, a pH=7. El mecanismo de reducción de oxígeno predomina hasta el intervalo de- 600 a -700 mV de sobrepotencial, más allá de este sobrepotencial, el mecanismo presente es el de generación de hidrógeno.

Para el fierro con agua tratada, los potenciales de corrosión se muestran en la tabla 1, con ellos y un valor de pH≈7, se alcanza la zona de inmunidad en el diagrama de Pourbaix correspondiente (fig B); alrededor de los -200 mΨ dв sobrepotencial se tiene el cámbio de pendiente de la curva de polarización catódica, la cual corresponde al cambio de mecanismo, de reducción de oxígeno a generación de hidrógeno.

Para el fierro con el agua sin tratamiento, también se alcanza la zona de inmunidad, los cambios de pendiente en la curva de polarización catódica, se dan alrededor de los 200 mV de sobrepotencial.

En este caso, fierro, los potenciales de corrosión del agua sin tratamiento son menores que los del agua tratada, pero las pendientes de Tafel para el agua sin tratar son mayores que las del agua tratada, lo que explica porqué la velocidad de corrosión para el agua sin tratamiento es mayor.

La corriente aumenta al aumentar la velocidad angular, como se muestra en la serie de gráficas H.

Para todos los casos, el agua sin tratamiento es la que presenta una corriente mayor que la tratada.

Con respecto a los metales, el zinc presenta los valores más altos,(19.2-33.5 mA para agua sin tratamiento, 2.2-14 mA para agua tratada), el fierro presenta los valores menores(7-17 mA para agua sin tratamiento, 2.3-4.4 mA para agua tratada), y el cobre presenta valores intermedios (8.9-17.1 mA para agua sin tratamiento, 3.7-8.12 mV para agua tratada).

El cobre y el fierro presentan un comportamiento similar, la diferencia entre los valores de corriente de agua tratada y agua sin tratar.son menores a velocidades angulares bajas comparandolas con las diferencias que se tienen a velocidades angulares altas, la diferencia entre dichos valores va aumentando al incrementarse la velocidad angular. En el caso del zinc la tendencia es a la inversa, ls diferencia de los valores de corriente da agua tratada y agua sin tratar, va disminuyendo al ir aumentando la velocidad angular; además, la disminución es menos pronunciada que en los casos anteriores.

La velocidad de corrosión (mpy) se presenta en las gráficas I; en a ellas se encuentra que al agua sin tratamiento, posee valores mayores que los del agua tratada:

metal	AST	AT
Fe Cu	44.3-105.7 54.1-104.3	14.5-25.9 22.5-49.3
Zn	150.1-251.3	17.1-109.6

Lo anterior nos indica que el tratamiento del agua es significativo, ya que disminuye la velocidad de corrosión.

Por otro lado, al aumentar la velocidad angular, aumenta la velocidad de corrosión,tanto del agua tratada como del agua sin tratar. Las pendientes de las curvas correspondientes al agua sin tratamiento son mayores, esto indica que para estos casos el aumento de la velocidad de corrosión con el aumento de la velocidad angular, es mayor. Esto conduce a afirmar que la composición del agua sin tratar afecta significativamente la velocidad de corrosión.

Como se ve en la tabla de arriba, el zinc presenta las mayores velocidades de corrosión, el fierro las menores y el cobre las intermedias.

En la tabla 10 se muestran los números de transporte: Re y

la relación Sh/Sc^{0.356},cuyos valores se muestran en la gráfica J, en ella, también se muestra la linea de Einsenberg et al⁸.

En la gráfica se notan tres zonas perfectamente delimitadas, que corresponden a los patrones de flujo: laminar, transicional y turbulento. Así, al situarse sobre la gráfica los valores de Reynolds experimentales, se encuentra la zona laminar y, apenas, dentro de la zona transicional.

En la gráfica J' se tiene la relación log-log, en la cual no se presenta una tendencia lineal, similar a la de Einsenberg, la cual representa el fenòmeno con superficie lisa. Se concluye que la transferencia de masa no es la que controla el fenómeno corrosivo en este sistema; lo hace la transferencia de momentum y más directamente el esfuerzo cortante.

También se nota en esta gráfica, que la linea experimental queda por encima de la de Einsenberg, lo que indica que la rugosidad superficial juega un papel importante. Se comentará más adelante de ella.

Las gráficas K, τv vs Re muestra que no se tiene una relación lineal, en la zona experimental aparentemente se tiene una tendencia de estas, pero, al hacer una gráfica de esta zona (gráfica K^{*}), se comprueba que, efectivamente no es una relación lineal.

La gráfica K'', (Vo vs tv), muestra una tendencia lineal, lo

que sugiere una relación del tipo:

 $V_c = a \tau v^b$

en esta relación a es función del medio,pero al desconocer la composición real del agua, se hace una determinación matemática.

Ve= 36.137 TV 0.15415

Esta ecuación presenta buenos resultados para el agua sin tratamiento en tuberia de fierro, pero solamente puede aplicarse en este caso.

La tabla 12 muestra los valores del factor de fricción, tanto el calculado con la relación 64/Re¹⁰como el calculado con la fórmula para el EDR.

La gráfica L muestra que el factor de fricción disminuye al aumentar el número de Reynolds, lo mismo con respecto a la velocidad angular, (gráfica L').

Al comparar estos valores con los reportados en la gráfica de Crane¹⁰ (c/D vs Re), se nota que los valores de la ecuación de 64/Re están fuera de orden, ya que son muy superiores a los de la gráfica; esto conduce a pensar que no se tiene régimen laminar, sino turbulento. Para el EDR el régimen turbulento se alcanza con velocidades bajas⁶, es decir con números de Reynolds relativamente bajos comparados con los de flujo en tuberias.

Al hacer la gráfica del factor de fricción calculado con la fórmula para EDR, se obtiene una curva muy similar a las de Crane y el orden de los valores del factor de fricción, están dentro del intervalo de dicha gráfica.

Como se mencionó anteriormente, la rugosidad superficial $\delta \mathbf{x}$, influye significativamente en el la velocidad de corrosión. El intento de obtener un valor de ella mediante la gráfica de Crane falló.La causa, fue la magnitud de los valores de factor de fricción. Trabajando con los datos de factor de fricción obtenidos con la formula para EDR, y la fórmula:

8

$$\frac{1}{\sqrt{f/2}} = 1.26 + 5.76 \log \frac{d}{\delta_R}$$

Donde: f≂ factor de fricción. d≃ diámetro de la probeta. δR= rugosidad superficial.

f	δ r ε 4
0.055156	4.62
0.037762	2.797
0.0309	2.058
0.027051	1.65
0.02451	1.386
0.0226975	1.203
0.020146	0.0956
0.018449	0.799

Como se ve en los resultados, la rugosidad superficial sería del orden de décimas de milimetro, lo cual es dificil. ¿ Porqué no se tienen valores razonables ? Esto se debe a que la fórmula anterior se basa en la suposición de que el esfuerzo cortante, es función del Reynolds a la potencia 1, como 5e demostró anteriormente, esto no es cierto, de ahí lo errado de 105 cálculos. No se usa otra fórmula, debido que las а investigaciones no han conducido a ninguna otra.

Una comparación de los valores de velocidad de corrosión determinadas en este trabajo, con las obtenidas para agua tratada, pero en condiciones estáticas:

	Estáticas mmpy	Dinámicas mpy
Сц	1.2 E-8	22.55
Zn	7.3 E-8	17.01
Fe	10.4 E-8	14.502

En condiciones dinámicas la velocidad de corrosión es mucho mayor, aun comparando con la velocidad angular más baja.

Para condiciones estáticas el Fe presenta la mayor velocidad de corrosión y, para condiciones dinámicas el cobre. Por otro lado, la menor velocidad de corrosión en condiciones dinámicas la presenta el fierro, en tanto en condiciones estáticas, la presenta el cobre.

- El potencial de corrosión es característico de cada metal,Fe, Cu, y Zn, como lo muestran las gráficas A.

- La composición del agua modifica el potencial de corrosión,esto se aprecia en las gráficas A1,A2 y A3.

- En condiciones hidrodinámicas aumenta la velocidad de corrosión, al aumentar la e, aumenta la vcor, lo que queda de manifiesto en las gráficas I y la comparación de la velocidad de corrosión, obtenida para condiciones estáticas.

 La velocidad de corrosión está controlada por el esfuerzo cortante (τν), para este caso, no puede generalisarse; para cada en particular, es necesario hacer el estudio para determinar que fenómeno controla el proceso corrosivo.

- La rugosidad superficial (ɛ) tiene influencia sobre la velocidad de corrosión, al aumentar la rugosidad, aumenta la velocidad de corrosión. Esto se muestra en la gráfica K.

- Para el agua de Ciudad Universitaria, es mejor usar tuberia de acero, tanto para el agua tratada, como para la no tratada, ya que este metal es el que presenta las menores velocídades de corrosión para ambos casos.

- Para que la tecnica del EDR pueda ser aplicada, para la estimación de velocidades de corrosión a nivel laboratorio, para su posterior uso en campo, es necesario comprobar con otras técnicas su eficiencia, como ejemplo la técnica de impedancia, para asi, hacer una comparación de los resultados obtenidos con ambas técnicas. Lo más recomendable es hacer una comparación con valores obtenidos en campo, ya que esto permitiría tener la confianza necesaria para la estimación de las velocidades de corrosión a nível laboratorio, para su posterior uso en campo.

La secuencía de la técnica sería:

Proceso para la estimación de la rapidez de corrosión de campo partir de dalos de laboratrio.

-Si se hace una gráfica de factor de fricción, velocidad de corrosión y rugosidad superficial en función del número de Reynolds, se estaría en posición de estimar los efectos de un cambio de flujo en campo, sin tener que hacer las determinaciones puesto que esta sería la gran ventaja de esta técnica.

GRAFICA FINAL

Gráfica M.Velocidad de corrosión y factor de fricción en función del Reynolds.

1.- D.C. Silverman "Aplication of EMF-pH diagrams to corrosion prediction". Corrosion-NACE, vol 38 N⁰10,1982.

2.-G. A. Cash et al. "The corrosion Rate of low carbon steel in stationary and stirred sugar juice: A mathematical analysis of polarization curves". Corrosion science, vol 21, N⁰4, 1981.

3.-S.H.Alwash et al "a rotating disc electrode with heat transfer facilities for corrosion studies". Corrosion Science Vol 27 N^0 4, 1987.

4.-Sheldom W. Dean. "Velocity-acelerated corrosion testing and prediction". Material Performance, September 1990.

5.-T.Y. Chen & D.D. Mc Donald. " Development of controlled hidrodinamic techniques for corrosion testing". Corrosion-NACE. Vol 48, N^0 3 ,1992.

6.-K.D. Efird et al. "Correlation of steel corrosion in pipe flow with jet impingment and rotating cylinder tests". Corrosion-NACE, Vol 49, N⁰12, December 1993.

7.-D.D. McDonald et al." Aparatus for controlled hidrodinamic electrochemical and corrosion studies in high-temperature aquous systems" Corrosion-NACE. Vol 44, N⁰3 March 1988.

B.D.C. Silverman. "Rotating Cylinder Electrode- geometry relationships for prediction of velocity-sensitive corrosion". Corrosion-NACE. Vol 44, N⁰1, January 1988.

9.-K. Dempo & H Ogawa. "Fluid flow efects on CO2 corrosion resistance of oil well materials". Corrosion-NACE. Vol 49, N⁰6, June 1993.

10.- CRANE "Flujo de fluidos".Mc Grow Hill. México 1989.