

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

ESCUELA NACIONAL DE ESTUDIOS PROFESIONALES " A C A T L A N "

"DESCRIPCION DE UN SISTEMA DE CONSTRUCCION CON PANEL ESTRUCTURAL LIGERO PREFABRICADO".

T E S I S
QUE PARA OBTENER EL TITULO DE
INGENIERO CIVIL
P R E S E N T A
GUILLERMO ORTEGA QUINTANAR

Asesor: Ing. Víctor Perusquia M.

TESIS CON FALLA DE ORIGEN

ACATLAN, EDO. DE MEXICO

1004

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

ESCUELA NACIONAL DE ESTUDIOS PROFESIONALES "ACATLAN" PROGRAMA DE INGENIERIA CIVIL

VNIVERSDAD NACIONAL AVENDIA DE MEXICO

SR. ORDECA OUTDITANAR CITILLERNO ALIMNO DE LA CARRERA DE INCENIERIA CIVIL. PRESENTE.

De acuerdo a su solicitud presentada con fecha 23 de marzo de 1994 me complace notificarle que esta Jefatura del Programa tuvo a bien asig narle el siguiente tema de tesis: "DESCRIPCION DE UN SISTEMA DE CONS-TRUCCION CON PANEL ESTRUCTURAL LIGERO PREFABRICADO", el cual se desarro lla como sigue:

INTRODUCCION.

- CAP. I Conceptos Básicos de elementos prefabricados en la Construcción.
- CAP. II Descripción del panel estructural ligero prefabricado "MICSA".
- CAP.III Metodología de Construcción.
- CAP. IV Comparativa costo-tiempo con el sistema tradicional.

CONCLUSIONES

APENDICE I VOCABULARIO.

APENDICE II BIBLIOGRAFIA.

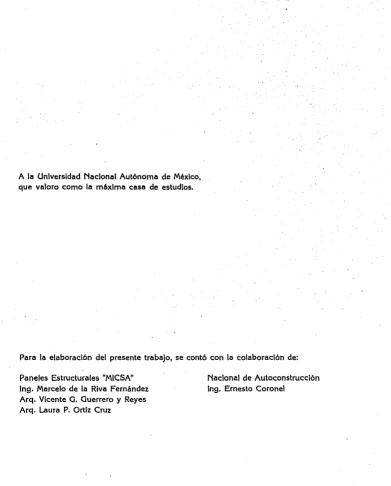
Así mismo fue designado como asesor de tesis el ING.VICTOR PERUSQUIA MONTOYA.

Pido a usted tomar nota que en cumplimiento de lo especificado en la ley de profesiones, deberá prestar Servicio Social durante un tiempo míni mo de seis meses como requisito básico para sustentar examen profesional así como en la disposición de la Dirección General de Servicios Escolares en el sentido de que se imprima en lugar visible de los ejemplares de la tesis, el título de trabajo realizado, esta comunicación deberá imprimirse en el interior de la tesis.

Sin más por el momento, aprovecho la oportunidad de env dial saludo.

> ATENTAMENTE. "POR MI RAZA HABLARA EL ESPIRITU" ACATLAN, EDO. DE MEX., A 26-DE ABRILT DE 1994

THE CARLOS ROSALES ACTULAR JEFE DEL PROGRAMA DE INCENTERIA CIVIL ET: PERCETTAN I SATURA CEL


PROGRAMIA DE INGENIERIA

EL PRESENTE TRABAJO LO DEDICO A:

Con profundo amor a la memoria de mi MADRE y a un gran hombre: mi PADRE, quienes me enseñaron a valorar lo bello que es la vida con su ejemplo de unión y fuerza.

A mis hermanos que slempre serán mis mejores amigos.

a Jaime Angel por su mentalidad triunfadora; así como a Marcela y mis sobrinos que en todo momento son alegría.

A mi asesor el

Ing. Victor Perusquia Montova

INDICE GENERAL

	P	À
INTRODUCCION		
CAPITULO UNO		
1.1. Principios	s de elementos prefabricados en la construcción	
		 S.
CAPITULO DOS		%.
2.1 Fabricación		
2.2 Características constructivas	20	
2.4 Estudios técnicos	23	
2.5 Ventajas		
		•
		, ?
CAPITULO TRES		
Metodología de construcción	40	
3.1 Preliminares		
3.2 Cimentación		
3.4 Instalación eléctrica		٥.
3.6 Acabados	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 가 나요. 하는데 그 그 그	
1 / Impermeabilización y mantenimiento	53	

CAPITULO CUATRO

Comparativa costo-tiempo con respecto al	sistema tradi	cional		. 57
4.1 Presupuesto de una casa habitación co				
estructural ligero prefabricado MICSA				
4.2 Presupuesto de una casa habitación co				
4.3 Resultados	• • • • • • •		• • • • •	94
		1		
CONCLUSIONES				
CONCLUSIONES				. 99

APENDICE I. VOCABULARIO

APENDICE II. BIBLIOGRAFIA

INTRODUCCION

Las finalidades principales de la elaboración de este tema, es el de presentar los aspectos fundamentales de la prefabricación y dar a conocer un sistema de construcción con panel estructural ligero MICSA.

También se generará un análisis de comparación, en costo-tiempo formulando un presupuesto de casa-habitación con el sistema de panel y otro con el sistema tradicional.

Se puede decir que los antecedentes son remotos y no se podría afirmar cuando se comenzó con la prefabricación en la construcción. Pero aún hoy en día es difícil definir lo que se muestra por construcción tradicional y construcción prefabricada. Para diferenciaria se podría exponer de que la prefabricación en la construcción es todo lo concerniente a nuevos sitemas en la producción de elementos con propuesta de nuevos materiales que por sus características encuentran, o pueden encontrar una oportuna utilización y optimización en el proceso de obra.

Repasando sobre la historia se pueden señalar algunos puntos sobresalientes.

Las culturas prehispánicas de Mesoamérica tuvieron algunas experiencias con la prefabricación. Los toftecas con sus atlantes y pilares del templo de Tlahuizcalpantecuhili, en donde por medio de una piedra formada de diversas partes que se ensamblan conforme al principio de caja y espiga (agujero y pivote).

Los elementos decorativos de fachas de algunos templos mayas donde se observa la repetitividad y producción masiva de elementos.

Dentro de los orígenes del empleo de la modulación se encuentra la Arquiectura griega. Para proporcionar sus construcciones, los griegos tomaban como base determinados valores relativos. En el caso de los templos, se tomaba generalmente el diámetro inferior de la columna y a esta dimensión se le llamó "módulo". Para estos principios su función no era tecnológica y constructiva, sino de carácter estético.

Otro ejemplo histórico es el Japón, donde desde tiempo atrás utilizaban la coordinación modular y la normalización en la construcción.

Retomando la historia, encontramos que en el año de 1516, Leonardo Da Vinci diseño una ciudad ideal sobre el río Loire; la cual se construía con casas prefabricadas y desmontables.

El norteamericano Burnham Kelly, autor del libro "The prefabrication of houses". 1951, menciona que en 1727 fueron construidas dos casas en Nueva Orieans y posteriormente trasladadas a las Antillas y rearmadas allá.

En 1851 un inglés realizó el palacio de cristal para una exposición en Londres, la cual estaba formada de elementos prefabricados de metal y vidrio, coordinados modularmente; el palacio fué desmontado enn 1854 y rearmado en Sydenham.

En 1905 Tomás Alva Edison creó un sistema de prefabricación de concreto "in situ"., empleando para ello cimbra metálica.

Al terminar la Segunda Guerra Mundial, la evolución de la prefabricación en la construcción toma diversos caminos de modernización, siendo estos los más Importantes:

En Francia 1945, se desarrolla la producción de elementos grandes (paneles de concreto). El objeto es bajar los costos del mercado de la construcción en las edificaciones.

En la Unión Soviética se construyen enormes plantas para la prefabricación de elementos en la construcción.

En Estados Unidos sus inicios comienzan con casas unifamiliares constituidas de marcos de madera, donde predominan los sistemas abiertos de prefabricación.

Por último, en Alemania Occidental (1959) se comienza la construcción de 80,000 viviendas prefabricadas con elementos de concreto.

Por lo que toca a México, en cuestión de prefabricación, en 1962 se llevó a cabo la construcción de viviendas en la colonia San Juan de Aragón. La construcción se basó en un sistema de concreto prefabricado. La elaboración se realizó en planta, vaciando el concreto en moldes especiales, de manera de prefabricar los muros y las losas. Posteriormente eran colocadas fijándolas con soldadura, para formar la casa.

En la actualidad la prefabricación en nuestro país va teniendo mayor auge debido a la gran demanda de vivienda, por lo que se están desarrollando o modificando sistemas de construcción donde el objetivo es el abatimiento en cuanto al costo-tiempo. Como prueba de esto podemos mencionar la reciente convocatoria por parte de la SEDESOL al 1 Concurso Nacional de Tecnologías para la Vivienda de Interés Social, donde se manifiesta la creatividad en cuanto a nuevos proyectos de construcción por medio de elementos prefabricados.

En lo referente al tema que se desarrollará, podemos indicar que el sistema de construcción con panel estructural ligero MICSA, fue creado en México por la empresa paneles

estructurales MICSA (ubicación: Patriotismo Nº 56, Col. Escandón) en el año 1982, siendo una empresa 100% mexicana.

Este sistema está basado en uno de origen americano el cual se ilama termopanei. En un principio el panel MiCSA se fabricabá igual que el termopanel, el cual no contaba con refuerzos en el alma del panel.

El principal cambio fue el de adicionarle al panel refuerzos metálicos repartidos uniformemente en el área del elemento; así como al.ogar los muros en su sección inferior al firme de concreto. Con estas variaciones al sistema original se obutvo que el panel MICSA cumple con las especificaciones y funciones que se requieran en una edificación.

CAPITULO 1

CONCEPTOS BASICOS DE ELEMENTOS PREFABRICADOS EN LA CONSTRUCCION

1.1 PRINCIPIOS

1.2 METODOS

1.1 PRINCIPIOS

Para comenzar a adentrarse en lo referente a los prefabricados, se enunciarán algunos conceptos básicos.

La prefabricación puede definirse como los elementos de construcción que se elaboran antes de llegar a la obra o a ple de obra y los cuales pueden tener variables procesos de producción, desde un nivel sencillo o artesanal hasta llegar a una jerarquía de industrialización.

Una de las características de la industrialización es que al momento de dejar de ser artesanal, entra un concepto llamado "serie" el cual se opone a crear solo un objeto, sino debe llegar a tener la multiplicación necesaria de este para su uso adecuado.

La serie se puede dividir en:

- a) Reproducción de elementos idénticos (producción en serie).
 - b) Reproducción de elementos con variaciones, dependiendo de la información.

Para cualquier tipo de prefabricación con elementos constructivos: se debe tomar en cuenta que es esencial crear o tener un sistema de producción y construcción lógica. Esto se puede lograr en base a dividir el sistema en tres partes, que serlan: estructura de organización, estructura técnica y estructura de planteamiento.

- Podemos decir que la estructura organizada queda compuesta de:
- a) Tener el sistema a emplear descrito por medio de catálogos de elementos, componentes, tablas, costos y manuales para el montaje correcto.
- b) Organización en la producción de elementos con el personal idóneo.
- c) Organización en el almacenaje y en el departamento de compras, para tener una óptima distribución de la producción.
- d) Organización en la etapa de construcción (montaje) contando con los recursos necesarios para el desarrollo ideal.

La estructura organizada nos puede asegurar que la producción sea constante y sin retrasos considerables, además que en el proceso de construcción, el sistema tenga la garantía de que se va ilevar a un buen término.

- 2) La estructura técnica queda conformada por:
- a) Los elementos y componentes en que se basa el sistema, como:

- muros
- columnas
- entrepisos (losas)
- cubiertas

- cimentación
- instalaciones
- accesorios, etc.

La estructura técnica nos da el buen funcionamiento, o sea, que los elementos y componentes que van de la planta a la obra, se acopien unos con otros y el montaje se lleve a cabo con el menor de los imprevistos.

- 3) Por lo que toca a la estructura de planteamiento queda comprendida en:
- a) Que el proyecto esté asociado al sistema modular referido.
- b) Que la combinación de los elementos y componentes forme el sistema constructivo en su totalidad.

La estructura de planteamiento nos asegura que el proyecto de construcción se va a llevar a cabo conforme a lo propuesto.

De los anteriores puntos, podemos resumir que la construcción sistematizada con elementos prefabricados llevada a cabo de la mejor manera posible, nos dará lo que principalmente se busca, que es el abatimiento de costo-tiempo-calidad, es decir, que habrá un bajo costo en un menor tiempo y con un alto grado de calidad.

De la prefabricación de elementos para la construcción se originan dos tipos de fábrica: Fábrica fija y fábrica móvil.

a) La fábrica fija contiene una maquinaria y equipo costoso ν con un alto nível de mecanización, por lo consiguiente hay grandes inversiones.

Por una parte podemos decir que es notable el aumento de producción y un buen control de calidad. Pero dentro de las restricciones que puede haber estan las fuertes inversiones que existen en la infraestructura. Lo que exige que el producto debe tener una alta demanda cuando menos al inicio y después conformar una estabilización en producción. Otras inconveniencias que se pueden manifestar son la dificultad del transporte y la lejanía del iugar.

b) La fábrica móvil es aquella que se sitúa a pie de obra. Lo que da como resultado una menor infraestructura y una menor inversión, así como la anulación de la transportación. Este tipo de fábricas se instalan en obras donde se tiene que adecuar la producción a la variabilidad cuantitativa, temporal y geográfica de la demanda. Se debe señalar que hay sistemas que no permiten este tipo de fábricas ya que los elementos de que se forma no permiten su elaboración fuera de una planta establecida por la alta tecnología y control que se requiere para su proceso.

Dentro de los sistemas de construcción con elementos prefabricados se conocen dos tipos de éstos, que son: El sistema cerrado y el sistema abierto.

- a) El sistema cerrado es el que utiliza elementos fabricados en serie y no está preparado para recibir o intercambiar estos con otros de procedencia ajena al propio sistema, y donde debe haber una estricta coordinación en todo el proceso.
- b) El sistema abierto es aquel que ocupa elementos fabricados en serie de distinta procedencia o de la misma, y que al momento del montaje puede tener una variabilidad de combinaciones y por lo consiguiente, intercambiables en alto grado.

Existe también otra forma de clasificar a los sistemas de prefabricación, la cual se basa en el peso de cada elemento que lo constituye y son:

- Prefabricación ligera. Es aquella que precisa de no ocupar maquinaria o en su caso usar maquinaria para mover elementos de hasta 500 kg., independientemente de su volumen.
- 2) Prefabricación media.- Es la que requiere de maquinaria para manejar elementos con un peso oscilante entre los 500 kg, y los 1000 kg.
- 3) Prefabricación pesada. Es la que ocupa maquinaria para maniobrar elementos cuyo peso es mayor a los 1000 kg.

Para nuestro caso, cuyo sistema que describiremos más adelante entra dentro del rango de la prefabricación ligera.

Para esto también se hará un breve bosquejo sobre el uso de los plásticos en la construcción, ya que el tema principal "Panel estructural ligero MICSA", está constituido en base a un plástico (resina de poliestireno expansible).

Los plásticos son materias artificiales formadas por macromoléculas de compuestos orgánicos obienidos sintéticamente o bien por la transformación de productos naturales. Poseen una gran resistencia a ataque de los ácidos, bases y agentes atmosféricos, con buenas propiedades mecánicas, como resistencia a la rotura y al desgaste.

Los plásticos se clasifican en:

a)Termoestables.- Son polímeros tridimensionales, los cuales, una vez adquirida la rigidez por moldeo a una temperatura determinada, no puede volverse a trabajar. Como la urea formol, melámina formol, poliésteres, siliconas y resinas epóxico.

b) Termoplásticos. Son polimeros lineales que se reblandecen por la acción del calor, pueden fundir sin descomponerse y entonces se moldean como el polietileno, poliestireno, cloruro de polivinilo, acetatos de celulosa y mitrocelulosa. El proceso de fusión y moldeo es reversible, o sea, que el material no se descompone y puede usarse para una nueva fabricación.

Poliestireno: Sustancia sólida, insoluble en el agua, soluble en los aceites esenciales, generalmente en el alcohol y capaz de arder en el aire. Se obtiene por la polimerización del estireno con peróxidos.

Estireno: Compuesto orgánico no saturado, punto de fusión -30 grados C. punto de ebullición 145 grados C. densidad a 20 grados C. 0.9057. Y se origina por la reacción del benceno y el acetileno.

La característica común de los productos plásticos para la construcción, es su contenido en compuestos químicos del Carbono con moléculas muy grandes que representan importantes productos de la industria química, como materias orgánicas sintéticas macromoleculares.

La tendencia actual a la prefabricación con elementos constructivos del más diverso tipo en plásticos iigeros, y por lo tanto fáciles de colocar, así como no exigen de un mantenimiento una vez instalados.

Los productos plásticos han alcanzado una participación mínima del 10% en el conjunto de materiales utilizados en la construcción.

De los usos principales que se le da al plástico dentro del aspecto constructivo, podemos mencionar algunos como:

- a) Tubos y piezas moldeadas para instalaciones.
- b) Como material aislante térmico, acústico, del agua, etc.
- c) Dentro de la ventilación y climatización.
- d) Revestimiento de pisos y muros.
- e) Estructuras autosoportantes.
- f) Cimbras muertas.

1.2 METODOS

En esta parte se verán los diferentes tipos de sistemas en base al material principal que ocupan, así como algunas de las técnicas de prefabricación en edificación.

Actualmente el uso de sistemas de prefabricación se han venido desarrollando tanto en viviendas, pavimentos, puentes, cimentaciones, etc.

A continuación se hará una breve descripción de los diferentes tipos de prefabricación de acuerdo a la forma en que están constituidos.

- Elementos prefabricados de concreto: reforzados como presforzados (pretensados y postensados), que se utilizan para la construcción de puentes, edificios, bodegas, etc.
- Elementos prefabricados de concreto ligero hechos con cemento arena y agentes químicos adicionales, que al término del proceso adquieren una gran resistencia mecánica y estabilidad reforzada con acero. Con esta forma se pueden constituir losas, muros, cerramientos, etc.
- Elementos prefabricados de lámina metálica. Son de zinc, hierro, aluminio. Empleados generalmente en cubiertas, fachadas, muros. Por su maneabilidad pueden ser onduladas, planas, rectangulares y acanaladas.
- Elementos prefabricados de asbesto-cemento. Son láminas constituidas de asbesto-cemento que pueden ser onduladas o planas y que como característica tiene que superar en el aspecto termoacústico a la lámina metálica. Sus principales usos son en cubiertas, muros, tuberías para drenaje, tinacos, fosas sépticas, etc.
- Elementos prefabricados de acero. Los cuales son utilizados en construcción de puentes, fábricas, torres, tanques, hangares, silos,etc.
- Elementos prefabricados de plástico. Su uso es manifestado más como recubrimientos de muros, techos, domos, para instalaciones en general, como material de junteo e impermeabilización y en estructuras autosoportantes.

Existen otras formas de elementos de prefabricación que se van desarrollando y en este momento se usan como el sistema de cimbras deslizantes, estructuras colgantes, muros de yeso, tubos de cartón comprimido para aligerar la construcción con concreto.

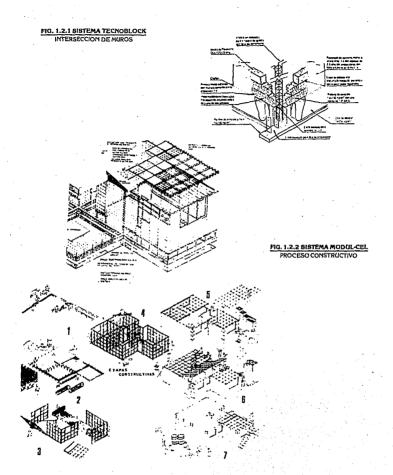
Una alternativa dentro de la vivienda en México, es la prefabricación con ferrocemento. Esto se debe a que existe una efectiva disponibilidad de sus materiales componentes, al bajo nivel tecnológico que se requiere para su elaboración y relativo bajo costo del producto terminado. El sistema mexicano fué desarrollado a través del Instituto Politécnico Nacional y fué efectuado por el Instituto del fondo nacional para la vivienda en México. Se puede decir que es un sistema de prefabricación ligera, conformado a partir de paneles a utilizarse en muros, cubiertas, trabes y cerramientos.

Se puede comentar que uno de los sistemas para entrepiso y cubiertas más utilizado actualmente es el de vigueta y bovedilla, el cual se forma por medio de viguetas presforzadas anclándose en el perímetro de los muros y entrelazado entre las viguetas por bovedillas de concreto. Para su terminación se tiende en toda el área malla electrosoldada y sobre de ésta, una capa de compresión de concreto de 4 cm. o 5 cm., dependiendo de las especificaciones.

En 1993 se creó el I CONCURSO NACIONAL DE TECNOLOGIAS PARA LA VIVIENDA DE INTERES SOCIAL, organizada por la SEDESOL y apoyada por el CONACYT. Que tuvo por objetivo el de incentivar y fomentar tanto el proceso de generación, desarrollo e industrialización, además de la aplicación de tecnologías modernas en la construcción de viviendas de Interés social.

En este concurso participaron alrededor de 160 proyectos en dos categorías:

Cateogrias "A" Tecnologías pre-industrializada
Categoría "B" Tecnología industrializada


La dominante de estos proyectos fue la construcción con elementos prefabricados.

Cabe destacar que el sistema de construcción con panel estructural ligero MICSA participó en este concurso.

A continuación se presentarán los cinco mejores participantes en cada categoría.

NOMBRE	PROPUESTA		
Centro Nacional de Investigaciones de Construcción con Tierra y Energia Alternativas, A.C.	Sistema constructivo a base de módulos de tierra comprimida y estabilizada.		
Empresa tecnopolimetos para la construcción S.A. de C.V (Sistema Tecnoblock).	Sistema constructivo a base de un block de plástico (25, 12.9, 9 cms.), elaborado de material de recuperación de desperdicios plásticos de polietileno (lo que mas abunda en la basura). (fig. 1.2.1)		
Bufete Técnico y construcciones S.A. (BUTECO) (Sistema Modul-Cel)	Sistema constructivo mixto prefabricado en planta a través de módulos celulares (fig. 1.2.2)		
Alejandro Figueroa Ocañas (Sistema Tecnokin)	Sistema modular celular de construcción en seco. Basado en piezas prefabricadas de concreto presforzado y reforzado para trabajar en forma ablerta con muros y losas.		
Ingenieria y procedimientos prefabricados, S.A. de C.V. (Sistema Modal)	Sistema en base a moldes para muros y losas de concreto armado hechos a pie de obra. Se dice que una vivienda se levanta en sels horas con todas las instalaciones (fig. 1.2.3 y 4)		

CATEGORIA "B" TECNOLOGIAS INDUSTRIALIZADAS			
NOMBRE PROPUESTA			
Empresa MEKI S.A. de C.V. (Sistema MEKI)	Sistema constructivo a base de 5 elementos (cimentación, castillos, cerramientos, muros y losas) hechos en obras. Todos en conjunto forman una bardo, edificio, etc. Se forma en base a concreto con fibras polipropileno.		
Arquitectura Industrial mexicana, S.A. de C.V. (Sistema Fierrocel)	Sistema constructivo que funciona en el reforzamiento de estructuras metálicas con concreto.		
Construcciones S.A. de C.V. (Sistema Cortina y Concreto Postensado)	Sistema basado en la prefabricación a pie de obra de las losas y los muros. En el izaje y montaje de los muros y las losas, tanto en interiores como de fachada (fig. 1.2.5 y 6)		
Miguel Angel Grajeda y Karl Jordano (Sistema Plastbau)	Sistema en base de paneles para muros y losas prefabricadas con pollestireno expandido, extruido con huecos y mallas de acero en ambas caras unidas por conectores metálicos.		
CARCI, S.A. DE C.V. (Sistema Roca-Panel)	Sistema a base de panel de concreto ligero, alslante térmico-acústico, de armadura con alma abierta para entrepisos y cubiertas.		

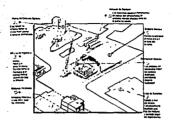


FIG. 1.2.3 SISTEMA MODAL

FIG. 1.2.4 SISTEMA MODAL MONTAJE DE UNA CASA

FIG. 1.2.5 SISTEMA CORTINA PREFABRICACION DE UN EDIFICIO

FIG. 1.2.6 SISTEMA CORTINA EDIFICACION TERMINADO DE 5 NIVELES

CAPITULO 2

DESCRIPCION DEL PANEL ESTRUCTURAL LIGERO PREFABRICADO M I C S A

- 2.1 FABRICACION
- 2.2 CARACTERISTICAS CONSTRUCTIVAS
- 2.3 CARACTERISTICAS ESPECIFICAS
- 2.4 ESTUDIOS TECNICOS
- 2.5 VENTAJAS
- 2.6 USOS

En el presente capítulo se explicarán las características generales del panel estructural.

2.1 FABRICACION

La elaboración del panel estructural se lleva a cabo en una fábrica exclusivamente diseñada para éste uso. Se localiza en el corredor industrial Xicontencalt-Tetla estado de Tiaxcala.

La planta cuenta con una superficie aproximada de 12500 m² en la cual está enclavada la nave industrial. La planta cuenta con la siguiente infraestructura:

Instalaciones Maguinaria y equipo

Oficinas generales Punteadora (2)

Vestidor y sanitarios Cizalla (3)

Area de trabajo Dobladora o cortina

Area de almacenaje Máquina de pre-expansión

Area de terminado Tolva de almacenamiento (3 de 1T)

Area de estacionamiento Caldera de 150 hp

Moldeadora o cámara de cohesión

Compresoras Montacarga

Para la producción del panel estructural se requiere del siguiente material:

- Lámina galvanizada (G-90 Fy=1500 kg/cm2), de calibre de 24.20 y 18 con anchos de 8 cm., 12.3 cm., 21 cm.; dependiendo en lo que se vaya a ocupar.
- Resina de poliestireno expansible Braf de alta densidad.
- Adhesivo Emulac

El personal que se utiliza en un turno normal, para una producción de 450 m2 / semana es de:

Jefe de planta 2 ayudantes administrativos

Moldeador Doblador

Fogonero 2 ayudantes Total= 10 personas

En caso de que se requiera de una mayor producción se aumentará el personal de acuerdo a las necesidades,

La metodología que se sigue para la elaboración del panel estructural es de la manera siguiente:

- 1) Se hacen los cortes necesarios para formar las partes de los accesorios y las nervaduras del armazón del panel.
- La lámina ya cortada se pasa a la dobladora (lámina doblada en frío), donde se producen las nervaduras laterales, centrales, los accesorios complementarios y las ligas del panel (fig. 2.1.1)
- Para formar los canales centrales y laterales se llevan a una punteadora, donde se deja la preparación para posteriormente unir el armazón completo por medio de remaches po AM-54 (fig. 2.1.2)
- 4) Al mismo tiempo en el área de pre-expansión, se deposita la resina de poliestireno en el tanque de pre-expansión, con una capacidad de 40 kg. El cual estará previamente calentado a una temperatura de 200 grados centigrados. La resina de poliestireno deberá permanecer en el tanque 20 minutos donde estará sometida a una presión de 5 kg. de vapor. En esta fase se debe verificar constantemente la densidad requerida que es de 1.0, por lo que se utiliza una báscula de densidad (fig. 2.1.3)
- 5) De ahí el poliestireno se envía a una tolva de almacenamiento (esto se traslada por medio de dúctos), en donde se deja reposar por un periodo de 24 hrs. antes de ser utilizado para la conformación del panel (2.1.4).
- 6) En este paso se inicia el terminado del panel. Primeramente se coloca el armazón de lámina galvanizada en la cámara de cohesión, la cual tendrá escantillones para dar la medida requerida. Colocado el armazón se cierra la cámara de cohesión formando una especie de sandwulch. Se inicia el Inyectado del poliestireno hasta que este completamente saturada la cámara. Inmediatamente se le aplica vapor a presión por un lapso de 20 a 30 seg. Después de este tiempo se cierra la válvula de vapor y se le vierte agua fría para darle un terminado terso al exterior de la pieza, también sirve para enfriar la pieza y con esto evitar que se colapse (arrugar), o se expanda más de lo necesario (fig. 2.1.5)
- 7) Por último se saca la pieza y se verifica la calidad de esta o sea, principalmente que no hayan quedado huecos y que tenga la resistencia debida, llevando la pieza al almacenaje para su posterior uso en obra.

Un punto primario de comentar, es que la resina de poliestireno expansible contiene

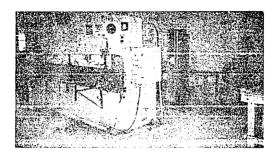


FIG. 2.1.1 MAQUINA DOBLADOR DE LAMINA

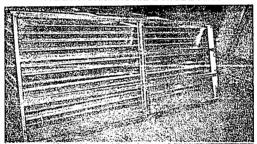


FIG. 2.1.2 ARMAZON PARA FORMAR EL PANEI

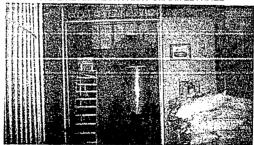


FIG. 2.1.3 AREA DE PRE-EXPANSION

un 6% de pentano; lo que ocasiona que sea un producto altamente inflamable. Pero la función de este gas es provocar la pre-expansión y en la etapa de cohesión el soldado de las perlas de pollestireno. Cabe señalar que durante todo el proceso de elaboración el gas se va perdiendo de la siguiente forma:

PERDIDA DE GAS PENTANO	
Producto virgen	6%
Etapa de pre-expansión -	3%
Etapa de cohesión	2%
Almacenaje	1%
Para colocación en obra=	0%

Por lo que se demuestra que para su montaje estructural el panel se vuelve autoextinguible.

2.2 CARACTERISTICAS CONSTRUCTIVAS

El sistema de panel estructural MICSA es utilizado para construir muros divisorios, muros de carga, losa de entrepiso y losa de azotea, ya que este panel cumple con los requerimientos de carga de acuerdo con el R.C.D.D.F. y principalmente en la losa con su función de diafragma para la adecuada transmisión de los cortantes producidos por efectos sísmicos. Graclas a las vigas de carga intermedia y su refuerzo perimetral más la capa de compresión.

En el punto anterior se expuso el proceso de fabricación de ddonde se puede resumir que: consiste en un panel prefabricado formado a base de pollestireno expandido de alta densidad y elementos de carga por lámina galvanizada doblada en frío, de distintos calibres dependiendo de la carga a soportar. Esto da como resultado un producto económico de fácil colocación y que cuenta con excelentes propiedades físicas que se describirán más adelante.

Con este sistema se pueden construir desde viviendas de un nivel hasta edificios de dos o tres niveles con respectivos refuerzos estructurales según el proyecto.

El sistema de losa puede combinarse con otras formas de construcción, tanto en entrepiso como de cubiertas, mientras que el muro MICSA se puede usar en otros sistemas solo como muro divisorio.

2.3 CARACTERISTICAS ESPECIFICAS

Dentro de las características del panel estructural, podemos decir que se distinguen d elos materiales usados en sistemas tradicionales por sus muy particulares propiedades físicas y de construcción y se presentarán a continuación:

- a) Alslamiento acústico. La razón principal de esta característica es que el panel estructural es formado por pollestireno expansible que es un producto de aislamiento acústico, ya que no absorbe y no transmite los sonidos, por lo que es ideal tanto para la construcción de hospitales, hoteles y viviendas duplex.
- b) Alslamiento térmico. El poliestireno es un magnifico aislante térmico de la temperatura, ya que ofrece un coeficiente de conductividad térmica de 0.29 kcal/MH grados, ya que a 10 grados C, de temperatura media es bastante inferior al exigido que es de 0.035 kcal/MHgrados, por lo que se logra una diferencia de 12 grados C. de temperatura entre el exterior y el interior con el panel de 3" de espeor. Por esto se puede utilizar en regiones calurosas o regiones frias.
- c) Durabilidad.- El poliestireno tiene un muy bajo grado de deteriodo, por ser un producto inorgánico y además al panel se le da un acabado donde lleva la protección de cemento. En base a esto podemos comparar en duración de vida con cualquier producto de construcción de un sistema tradicional.
- d) Elemento contra el fuego. La conformación de los elementos del panel cumple con las normas DIN 4102F30F60. Esto se debe a que el poliestireno no transmite el calor del fuego, sino que se autoextingue, sin provocar gases tóxicos. Además que está considerado como elemento B1 (material dificilmente inflamable) y al tener una terminación con diferentes recubrimientos, la posibilidad de alaún accidente con fuego se reduce considerablemente al

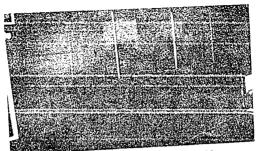


FIG. 2.1.4 TOLVA DE ALMACENAMIENTO

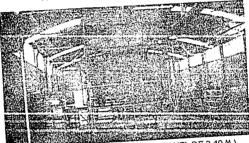


FIG. 2.1.5 CAMARA DE COHESION (PANEL DE 2.40 M.)

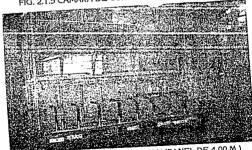


FIG. 2.1.6 CAMARA DE COHESION (PANEL DE 4.00 M.)

minimo

- e) Impermeable. Durante la fabricación del panel, hay una tase (la de terminación), donde el pollestireno se introduce en una cámara de cohesión donde por medio de vapor las perlas de estireno se soldan unas con otras no dejando espacios vacíoas entre ellas. Esto trae como resultado que el panel sea impermeable. En pruebas realizadas, el panel es sumergido en agua totaltmente durante un año. Al final se tiene una absorción de un 4% de agua del total de su volumen. No causa capilaridad alguna, resiste la acción de los parásitos, hongos y bacterias.
- f) Ligereza.- Las perlas de poliestireno de que está conformado el panel, contienen hasta un 98% de volumen de aire, por lo tanto es un elemento muy ligero. El peso por pieza del panel listo para su uso es de 9 kg/m2. Esto hace que se facilite su manejo en obra.
- El peso total deuna construcción mediante paneles es inferior al peso total de una construcción convenciona. Por lo que se requiere de una cimentación mucho menor, además que esto contribuye al buen comportamiento sísmico.
- g) Modulación.- Para este sistema de construcción la modulación es esencial, ya que teniendo un proyecto autorizado, se mandan a fabricar los paneles de acuerdo a un croquis o plano de distribución de muros y losas, dejando en ellos los espacios para las ventanas y puertas. Todo esto nos da que en obras se tenga un montaje sencillo, rápido yordenado y así también se elimina casi el desperdicio y se optimiza el panel.

Actualmente las piezas se fabrican en producción estandar de:

MEDIDAS DEL PANEL

ESPESOR	ANCHO	LARGO
3"	1.20 m.	2.00 m.
3"	1.20 m.	2.50 m.
3"	1.20 m.	3.00 m.
3"	1.20 m.	3.50 m.
3"	1.20 m.	4.00 m.

Nota: Se pueden fabricar paneles con otras medidas menores dependiendo de las necesidades del

h) Resistenica. En lo correspondiente a la losa, por su capa de compresión de concreto y su estructura de acero galvanizada proporciona una gran resistencia a la flexión, haciéndola una losa autosoportante, o sea, que admite el tránsito de personas y la presión de la bomba durante el colado. Por lo que toca al muro tiene también gran resistencia a las cargas laterales, así como las cargas verticales.

Existe otra característica como la corrosión la cual no se produce por los recubrimientos que se le aplican al panel.

2.4 ESTUDIOS TECNICOS

Aquí se verán los estudios efectuados al panel, tanto de losa como de muro, efectuados por el IMCYC (instituto Mexicano del Cemento y el Concreto A. C.). El estudio es bastante extenso y detallado, por lo que se tratará de efectuar un resumen con todos los pormenores principales.

La compañía paneles estructurales MICSA solicitó al IMCYC, realizar un estudio orientado a evaluar el comportamiento del panel que tabrica dicha empresa, para esto se efectuaron pruebas del siguiente modo:

- 1) LOSAS
- 1a) Prueba a flexión.
- 2) MUROS
- 2a) Prueba bajo carga lateral
- 2b) Prueba bajo carga axial (vertical)
- 1) LOSAS.- Se uso panel de 4.00 m. * 1.20 m. para la prueba. Fueron formados por cuatro nervaduras de lámina galvanizada cal. 24 (0.60 mmesp), paralelas a su lado más largo y espaciadas a @ 40 cm. las nervaduras están ligadas perpendicularmente a sus ejes con remaches y 4 cintas de lámina galvanizada de 120 cm. de longitud, 3.5 cm. de ancho y de cal. 24, como complemento integral el poliestireno expandido reliena los espacios interiores que existen entre as nervaduras y ligaduras perpendiculares (fig. 2.4.1 y 2).
- 1a) Prueba e flexión.- El ensaye se realizó aplicándole al panel una capa de compresión compuesta por malla electrsoldada 6 °6.10/10. Un firme de concreto de 4 cmf°c=200 kg/cm2 (fig. 2.4.3). Para la prueba se utilizaron como lastre bultos de 50 kg., dandole a la losa incrementos de carga de 100 kg., colocando los bultos en forma distribuida en el área. La deflexión se

midió en el centro del claro, auxiliándose de un micrómetro de carátula con aproximación de 0.001" y carrera de 2".

Para este ensaye s ehizo con la ayuda de un marco de carga y dos gatos hidráulicos.

Las mediciones fueron hechas en el momento de la aplicación de la carga, luego 24 hrs. depués, posteriormente se dejaron pasar 24 hrs. más para quitar la carga y hacer la medición, por último se realizó la medición final 48 hrs. más tarde sin carga (cuadro 2.4.1, gráfica 2.4.1).

· Resultados:

- La resistencia de los paneles utilizados como losa es suficiente para ocuparla como losa de entrepiso y de azotea.
- Se experimentó un comportamiento dúctil, el cual es apropiado para el uso de edificación, ya que no presenta fallas.
- De acuerdo con las especificaciones del R. C. D. D. F. versión 87 el panel cumple satisfactoriamente con la prueba de carga:

R. C. D. F. versión 87 Prueba realizada

Recuperación mínima en sus deflexiones de la losa 75% Recuperación de la losa MICSA 89.79 %

Flecha máxima por peso propio 20.58 mm. Flecha máxima de la losa MICSA por peso propio 12.056 mm.

 M(IROS.- Para las diferentes pruebas realizadas con el muro se utilizó el mismo panel ocupado para la losa (fig. 2.4.1), pero con las siguientes dimensiones: 1.20 m. * 2.40 m.

Se hicieron dos tipos de ensayes: el primero basado en la norma norteamericana ASTM E564, los especímenes se sometieron a carga lateral en una sola dirección, para ver la capacidad y la rigidez de los muros, para lo cual se realizaron tres pruebas.

En el segundo ensaye basado en la norma norteamericana ASTME72, los especímenes se sometieron a carga axial (vertical), para determinar sus resistencia a la compresión, también se aplicaron tres pruebas.

2a) Prueba bajo carga lateral:- Los muros ensayados para esta prueba fueron ahogados en dalas de concreto reforzado (f'c=200 kg/cm², 4 var #9, estribos #2@20 cm.), que se usaron como cimentación, en medio de dos marcos de acero (fig. 2.4.4). La carga horizontal se aplicó en el cabezal de cada muro, trayendo consigo la posibilidad del desplazamiento vertical de la

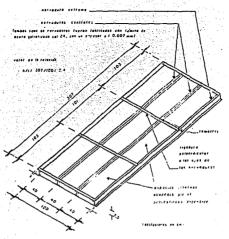


FIG. 2.4.1 CARACTERISTICAS DEL PANEL ESTRUCTURAL

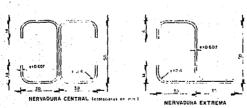


FIG. 2.4.2 CARACTERISTICAS DE LAS NERVADURAS

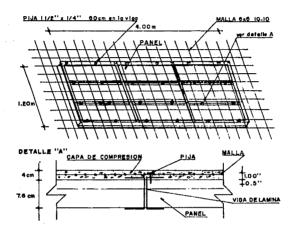
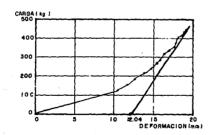



FIG. 2.4.3 ARMADO DE LA LOSA MICSA

LECT	PESO	DEFLEXIO-	DEFLEXION 24 hrs. desputs	DEFLEXION SIN GARBA E4 hrs. después	DEFLEXION SIN CARGA 48 brs. despuis
P.R	127.75	11.039	80.68	12.93	12.04
-	154.49	11.915			
2	181.23	12.77		!	j
3	208.00	13.68		ł	}
4	234.70	14.41		ļ	1
5	261.40	15.30		}	}
6	288.20	15.75		ì	
7	315.00	10.18	Ì		
8	341.70	16.37		}	
0	368,40	10.48		}	
10	381.70	17.08		}	1
	395.10	17.60			
12	408.50	18.14		1	'
13	421.00	18.52			
14	435. ZO	18.95		S	
15	448.80	19.34			
16	462.00	19.57	20.68		

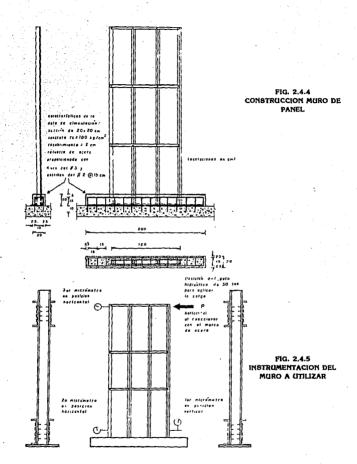
CUADRO 2.4.1 RESULTADOS DE LA PRUEBA DE CARGA

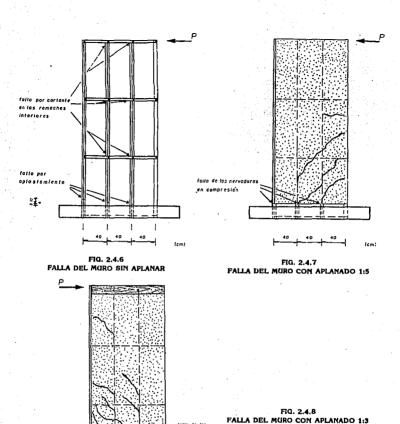
GRAFICA 2.4.1 PRUEBA DE CARGA

dala. Esto fue impedido mediante un polín de madera presionado entre los marcos de acero y la misma dala.

Las pruebas de los muros fueron de la siguiente manera:

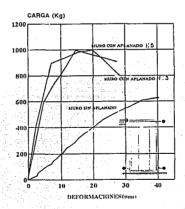
- Muro de panel sin aplanar.
- Muro de panel con aplanado de mortero cemento-arena 1:5 y añadiendo al mortero fibras de polipropileno (900 gr.-1mm9mortero), por ambas caras. Anes se le aplica al muro un adhesivo para concreto (2 manos), para sujetar bien el aplanado.
- Muro de panel con aplanado de mortero 1:3, en ambas caras, se aplican los mismo productos y el proceso utilizado en el aplanado 1:5.


Es importante señalar, que el hecho de intentar formar un aglomerado con el mortero y las fibras, no implica de ninguna manera otorgar una resistencia al aplanado que contribuyera a soportar la carga. Mas bien se intentó con la finalidad de mejorar la distribución de la carga en las 4 nervaduras que componeen cada panel.


La carga horizontal fue aplicada con un gato hidráulico de 30T, uniéndosele al muro con aplanado 1:3 dos piezas de madera para mejorar la distribución de la carga (fig. 2.4.5). Las mediciones fueron hechas con un micrometro (o.01 mm. carre r a 50 mm). La carga aplicada tuvo un incremento constante de 30 kg.

De las tres pruebas ejecutadas (fig. 2.4.6, 7 y 8). Se tomaron los valores más significativos (cuadro 2.4.2, gráfica 2.4.2) y se resume en lo siguiente:

La fig. 2.4.6 representa la falla del muro sin aplanar, donde la resistencia fue otorgada a las nervaduras extremas y las ligaduras perpendiculares, mientras que las nervaduras centrales proporcionaron una resistencia muy escasa. La forma de la falla del muro demuestra el papel tan importante que tuvieron las ligaduras de lámina galvanizada para distribuir la carga en el muro. Aquí, la carga aplicada generó esfuerzos cortantes en los remaches qur provocaron su falla. casi simultáneamente con el aplastamiento de las nervaduras, sin embargo, esto n implica de ninguna manera que la resistencia proporcionada por el poliestireno sea nula.


Por lo que respecta a los muros aplanados (fig. 2.4.7 y 8), se nota como influye en su modo de falla el aplanado, demostrando así su eficacia. La carga aplicada a estos muros implicó que las nervaduras extremas y centrales trabajaran adecuadamente. También se puede indicar que estos muros resistieron un 35% de carga adicional, respecto a la carga última resistida por el muro sin aplanar. Además el aplanado con mortero contribuyó favorablemente a incrementar su rigidez, reduciendo deformaciones laterales casi al 50% de las presentadas en la falla del muro sin aplanar.

MURO	LECTURAS HECHAS	P	d
	EN LA PRIMERA GRIETA		
MURO SIN APLANAR	EN LA DETECCION DE LA FALLA	460	22.94
	EN LA CARGA ULTIMA	025	40.40
MURO COM APLANADO	EN LA PRIMERA GRIETA	8 4 0	9.60
	EN LA DETECCION DE LA FALLA	900	10.80
	EN LA CARGA ULTIMA	1000	14.47
MURO CON APLANADO	EN LA PRIMERA GRIETA	870	7.36
	EN LA DETECCION DE LA FALLA	930	8.12
	EN LA CARGA ULTIMA	1000	20.00

CUADRO 2.4.2 RESULTADOS DE LOS MUROS ENSAYADOS A CARGA LATERAL

GRAFICA 2.4.2 PRUEBAS ANTE CARGAS LATERALES

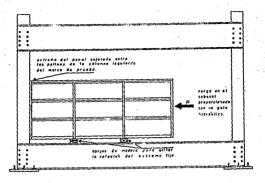


FIG. 2.4.9s CONSTRUCCION DEL MURO PANEL

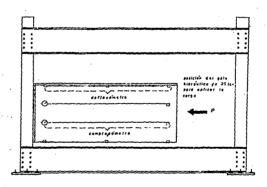


FIG. 2.4.9b INSTRUMENTACION DEL MURO A UTILIZAR

2b) Prueba bajo carga axial (vertical).- Se usa término axial en vez del término de carga vertical, debido a que los muros fueron construidos en forma horizontal.

Los muros ensayados a carga axial fueron fijados horizontalmente en el interior de un marco de acero, para facilitar la aplicación de la carga (fig. 2.4.9). La fijación del panel se hizo mediante tuercas y tornillos. Se adicionaron polines para evitar la rotación del extremo fijo. El apnel se elevó aproximadamente 10 cm. del nivel horizontal para la prueba. Los muros se ensayaron en posición horizontal. El propósito fue el de evaluar la capacidad de carga axial de los muros mediante tres pruebas realizadas de la forma siguiente:

- Muro sin aplanar*
- Muro con aplanado 1:5 *
- Muro con aplanado 1:3 *
- * Nota: Los muros fueron elaborados con el mismo criterio que los utilizados para la prueba de carga laterai.

La carga axial fue aplicada por un gato hidráulico de 30 ton, que reacciona contra una de las columnas de acero del amrco de prueba, los incrementos de carga fueron constantes y controlados por medio de un manómetro. La carga se desarrolló directamente sobre la sección transversal en los dos primeros muros. Mientras que en el tercero se colocó un polín donde se imprimia la fuerza para distribuir la carga uniformemente sobre el muro. El tiempo de incremento de carga fue en lapsos de 5 mln. Para medir los acortamientos y las delfexiones laterales de cada muro. Fueron colocados 2 compresómetros y 2 deflexómetros en cada una de las dos caras. De las tres pruebas ejecutadas (fig. 2.4.10, 11 y 12), se tomaron los siguientes valores principales de estos (cuadro 2.4.3, gráfica 2.4.3). Analizándolos se llega a los siguientes resultados.:

El cuadro 2.4.3 nos muestran los valores correspondientes a las fallas del muro. Notamos que la carga última soportada por el muro aplanado 1:3, fué aproximadamente 5 vece smás grande que la resistida por el muro sin aplanar y alrededor de un 60% mayor que la soportada por el muro aplanado 1:5.

El muro sin aplanar tuvo una reisistencia muy baja. Esto se debió al pandeo lateral de los canales de las nervaduras centrales por la separación de las almas en contacto y por pandeo local de las placas de las nervaduras en el cabezal del muro antes de alcanzar la falla integral del especimen.

Por otro lado, el muro aplanado 1:5 presentó una falla local en su cabezal similar a la del muro s/aplanar, debido a que la carga aplicada no se le puso un polin para que esta se distribuyera uniformemente. También se debe mencionar que este muro tuvo un incremento de más del 100% de su carga última resistida en comparación con el muro sin aplanar.

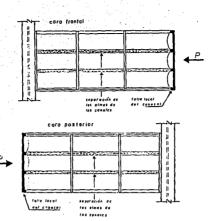


FIG. 2.4.10 FALLA DEL MURO SIN APLANAR

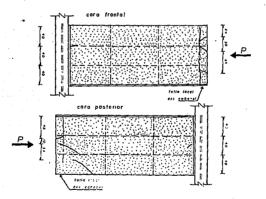


FIG. 2.4.11 FALLA DEL MURO CON APLANADO 1:5

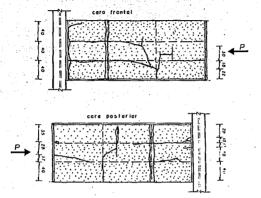
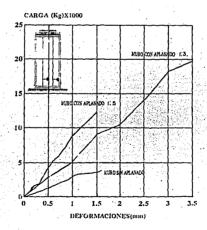


FIG. 2.4.12 FALLA DEL MURO CON APLANADO 1:3

Por último, en el muro aplanado 1:3, la pieza de madera colocada entre el cabezal y los perfiles de acero para distribuir la carga, influyó en el comportamiento del muro con respecto a los otros.

De los desarrollos de estas pruebas se resume que:

- El comportamiento de los paneles es satisfactorio para las condiciones de carga de servicio en casas-habitación.
- Para usar el panel como muro es recomendable que tenga la adición de un recubrimiento, lo que contribuye a cumplir con la rigidez lateral, así como la carga axial.
 - Puede ser utilizado como muro divisorio en cualquier estructura.
 - Se indica que debe usarse en construcciones de una o dos plantas.
 - Respecto a la altura de 3 m. se marca que es la máxima que se puede utilizar.


2.5 VENTAJAS

A continuación se enuncian las ventajas que hay al usar este sistema constructivo, las cuales se comparan con respecto a los sistemas convencionales.

- La ligereza del panel estructural da como resultado que para transportario se puede usar cualquier tipo de vehiculo de carga también que para su manejo y traslado tanto en fábrica como en obra no se requiere de mucho personal (un ayudante soporta facilmente un panel de 1.20 m * 2.40 m).
- 2) El peso total de la construcción es inferior en un 70% con respecto al peso total de una construcción convencional y por lo consiguiente la cimentación requerida será de mucho menor peso y costo.

MURO	LECTURAS-HECHAS	(kg)	ď,
MURO SIN APLANAR	EN LA PRIMERA GRIETA	3000	0.96
	EN LA DETECCION DE LA FALLA	3 8 5 0	1.48
	EN LA CARGA ULTIMA	4500	2.76
MURO CON APLANADO.	EN LA PRIMERA GRIETA	9150	1.01
	EN LA DETECCION DE LA FALLA	9650	1.05
	EN LA CARGA ULTIMA	13250	1.46
	EN LA PRIMERA GRIETA	600 0	i.06
MURO CON APLANADO	EN LA DETECCION DE LA FALLA	11200	1.91
1:4	EN LA CARGA ULTIMA	20500	3.46

CUADRO 2.4.3 RESULTADOS DE LOS MUROS ENSAVADOS A CARGA AXIAL

GRAFICA 2.4.3 PRUEBAS ANTE CARGAS AXIALES

- Una construcción con este sistema tendrá un excelente aislamiento térmico, por las características del poliestireno y con esto se puede utilizar en cualquier tipo de clima.
- Su aislamiento acústico no permite que el sonido se transmita de un área cerrada a otra y de un nivel a otro.
 - 5) No permite la transmisión de humedad, especialmente en losas de azotea.
- Se puede acoplar y modular a cualquier tipo de proyecto, y con esto se elimina el desperdicio.
 - 7) Se reducen considerablemente los tiempos de ejecución de una obra.
- 8) No se requiere de personal especializado para su montaje, acabados, instalaciones y la cantidad de obra es menor que en otros sistemas.
- 9) Se elimina casi totalmente el uso de cimbra en la losa y muro, ya que el sistema es estructural y autosoportable.
- 10) En cuestión de costo se nuede decir que es inferior en un 20% con respecto a los sistemas convencionales de obra terminada.
- 11) No requiere de ninguna precaución especial para su almacenamiento (al aire libre), esto durante un periodo normal de duración de obra.
 - 12) Es autoextinguible.
 - 13) Se obtiene un mayor nivel de limpieza durante el periodo de la obra.
- 14) Por ser un material fabricado en serie y su ensamblaje uniforme, con esto se eleva la calidad de la construcción.

2.6 USOS

El panel estructural MICSA, ha sido usado en diversos proyectos, tanto a nivel particular, como para la construcción de viviendas de nivel institucional.

En el uso de proyectos particulares, el panel se ha ocupado en la construcción de hospitales, edificios para oficinas, hoteles, comercios, residencias, etc. Probando siempre su eficacia como muro, losa de entrepiso y losa de azotea.

A nivel de obras de viviendas institucionales, cabe señalar que el panel estructural, ha sido utilizado para la edificación de 2000 viviendas del FOVISSSTE, tanto en viviendas unifamiliares, como en edificios de vivienda múltiple.

También se ha usado en obras para el ISSFAM, en un conjunto habitacional en Chilbancingo. Guerrero.

Por otra parte, se obutvo la validación técnica del panel por parte del INFONAVIT.

Este panel se ha ocupado en diferentes regiones de la república mexicana como son:

Oaxeca, Oaxaca
Campeche, Campeche
Delicias, Chihuahua
Lázaro Cárdenas, Michoacan
Atlixco, Puebla
Tepic, Nayarit
Cuernavaca, Morelos
México, D.F., etc.

Por lo referido anteriormente, se observa que el sistema se ha utilizado en varias instituciones y en diferentes regiones del país.

CAPITULO 3

METODOLOGIA DE CONSTRUCCION

- 3.1 PRELIMINARES
- 3.2 CIMENTACION
- 3.3 ESTRUCTURA Y MONTAJE
- 3.4 INSTALACION ELECTRICA
- 3.5 INSTALACION HIDROSANITARIA
- 3,6 ACABADOS
- 3.7 IMPERMEABILIZACION Y MANTENIMIENTO

El propósito de este capítulo es dar a conocer el procedimiento constructivo que se ileva a cabo para la realización en una vivienda de una planta trabajando con el sistema de panel estructural MICSA.

3.1 PRELIMINARES

Con este sistema la construcción de uan casa es sencilla, es recomendable para un terreno virgen con capa de tierra vegetal cuyo promedio de espesor sea de 15 cm. a 20 cm. y topografía plana con resistencia máxima de 3 ton./m2.

- Se procede a despalmar el terreno, haciendo un corte de 20 cm. y retirando el material fuera de la obra.
 - Se ubica y se traza la losa de cimentación.
 - Se hace le trazo general de ejes para desplantes de muros.
- Este sistema se puede desplantar en azoteas, o en niveles subsecuentes de una ampliación.

3.2 CIMENTACION

La cimentación que se ocupa para el soporte de la estructura es muy sencilla y poco reforzada, ya que la estructura que va a cargar es de poco peso total, por lo que para una vivienda de una planta se desarrollaria el siguiente proceso.

- Se comienza con la excavación del terreno de aproximadamente unos 25 cm.
- En los ejes perimetrales se coloca una plantilla de concreto pobre (f'c=1000 kg/cm2), de 5 cm. de espesor por 25 cm. de ancho, para alojar la trabe perimetral.
- Se arma, cimbra y cuela la trabe perimetral con estas especificaciones.

 Trabe de 15 cm. * 20 cm. con 4 varillas de 3/8" y estribos de 1/4" @ 20 cm. concreto fc=200ka/cm2
 - Se dejan las preparaciones para las instalaciones hidráulicas y sanitaris.
- Se rellena y compacta en capas con material mejorado 25 cm. de altura a unn 95% de compactación (prueba proctor).
- Se coloca la malla electrosoldada 6 * 6, 10/10, y se desplantan los muros para que queden ahogados en el firme de concreto, retirando el poliestireno de la capa inferior unos 10 cm.
- Una vez nivelados y plomeados los muros, se procede al colado del firme de concreto con un espesor de 10 cm. y $\,$ f'c= 200 kg/cm2.
- El acabado que se le dará al firme de concreto, será de acuerdo al tipo de piso que se vaya a colocar.

La cimentación se puede elaborar también con mampostería de piedra braza, en caso de que sea de menor costo. Esto depende del lugar donde se esté construyendo y las facilidades de la adquisición de los materiales.

3.3 ESTRUCTURA Y MONTAJE

En este sistema la estructura para la construcción de una vivienda de una o dos plantas, no necesita reíuerzos estructurales ajenos al sistema, por lo que todo se ejecuta a base de accesorios y elementos prefabricados de acuerdo a la modulación del proyecto.

- El montaje de los muros y la losa se tiene que hacer antes de colar el firme de concreto, para que los muros queden ahogados en el piso, esto es, cuando los elementos van a trabajar como muros de carga.
- cuando los muros van a ser divisorios, sobre el piso se fijarán los accesorio E (fig. 3.3.1) a base de pijas 2 1/2 U #2 a @ 40 cm, con taquetes de piástico de 1/4", sobre de estos accesorios se colocarán y se fijarán los paneles formando así el muro. Estos paneles se fijan al accesorio E3 con pijas de 3/4" * 1/8" a @ 40 cm., coincidiendo en las VH de lámina galvanizada del panel en ambas caras.
- En el sentido vertical para la unión de panel con panel, se hará en base de remaches pop AM-54 a @ 40 cm, como máximo.
- En las uniones de dos muros a 90 grados esquinero, estas se harán usando el accesorio E1 (fig. 3.3.2), con remaches pop AM-54 a @ 40 cm. em ambas caras.
- En cuanto a las uniones de tres muros a 90 grados, estas so fijarán usando el accesorio E2 (fig. 3.3.3), con remaches pop AM-54 a @ 40 cm. en todas las caras de los tres paneles.
- En caso que la unión de tres muros a 90 grados coincida con la VH de lámina galvanizada del panel, se sujetarán con el accesorio E3 (fig. 3.3.4) y se fijaráncon remachespop AM-54 a @ 40 cm. alternándolos y al otro muro se fijará con el mismo accesorio E3 con remaches en ambas caras.
- Como los muros viene ya prefabricados y modulados de acuerdo al proyecto, se recomienda primero desplantar los muros perimetrales y posteriormente los de interiores.
- Una vez terminada la etapa de desplante de muros, se colocará sobre la parte superior de estos, los accesorios T1 o T2, dependiendo del diseño, fijándolos con remaches popAM-54 a @ 40 cm., siempre sobre la VH de lámina galvanizada (fig. 3.3.5, 6 y 7).
- En la parte donde haya un claro mayor de 3.00 m se colocará el accesorio XAL-TEN (fig. 3.3.8), tanto vertical como horizontalmente, este servirá de apoyo a la losa.
- Se colocarán los paneles para formar la losa de acuerdo a la modulación del proyecto y se sujetarán a los accesorio T1 o T2, fijándolos con pijas de 3/4" * 1/8" a @ 40 cm., de preferencia sobre la VH de lámina galvanizada.

Cuando la losa es horizontal o de entrepiso, debe llevar una capa de compresión de 4 cm. (azotea) y 5 cm. (entrepiso), compuesta por una malla electrosoldada 6 * 6, 10/10 tendida sobre toda la losa, fijada por pijas de 1 1/2U * 1/2" de cabeza hexagonal a @ 60 cm.

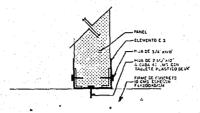


FIG. 3.3.1 DESPLANTE DE MUROS CON PANEL

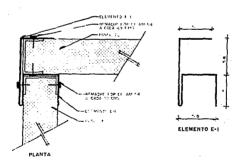


FIG. 3.3.2 DETALLE DE MURO ESQUINERO

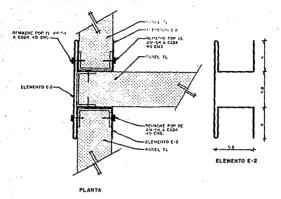


FIG. 3.3.3 DETALLE UNION DE TRES MUROS

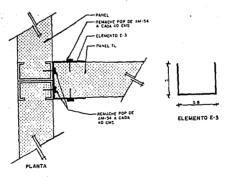


FIG. 3.3.4 DETALLE UNION DE TRES MUROS

por la parte superior de la losa en las VH. Complementandose con una capa de concreto $fc=200\ kg/cm2$.

La losa MICSA puede ser utilizada en otros sistemas, como en el tradicional, donde generalmente es usada en edificios de casa-habitación como losa de azotea. Para esto, el proceso constructivo es como sigue:

- Para anciar la losa se debe dejar en la cadena perimetral de cerramiento varillas de 3/8" verticales de 50 cm. de largo a @ 40 cm. (fig. 3.3.9).
- El panel será colocado de acuerdo al plano de modulación, perforando el poliestireno en las varillas perimetrales (fig. 3.3.10).

La unión de paneles serán ensamblados por medio de extremos doble Z, se emparejan y remachan por ambas caras con remaches pop AM-54 (fig. 3.3.11).

- Para que la losa tenga una continuidad estructural, las varillas de anclaje deberán doblarse alternadamente quitando el poliestireno que las rodea en un diámetro de 10 cm. aproximadamente. Al efectuar el colado de la capa de compresión se formará un tapón de concreto que permite generar el anclaje mecánico necesario (fig. 3.3.12).
- En cada una de las vigas metálicas se deberá colocar pijas a @ 60 cm. por la parte superior de la losa (fig. 3.3.13).
- Se tiende sobre el panel la malla electrosoldada 6 $^{\circ}$ 6, 10/10 fijándola con alambre recodio a las pijas y a las varillas de anclaje (fig. 3.3.14).
- Cuando la losa tiene volados se le puede ecolocar un accesorio llmado cimbra-gotero, con el cual se podrá tener control sobre el espesor del concreto, se tendrá una cimbra perimetral, un gotero y un remate estético de la losa (fig. 3.3.15).
- Ya colocada la malla electrosoldada e instalaciones sobre la losa, se colocará una capa de compresión de 4 cm., con un concreto f'c=200 kg/cm2 y así quedará lista para recibir la impermeabilización (fig. 3.3.16).
- Como último se aclara que en las losas durante la etapa de colado es necesario colocar puntales a base de una madrina y dos pies derechos al centro del claro proporcionando una contraflecha de 1 cm. a la losa (fig. 3.3.17).

Nota: El panel podrà cortarse en obra en el sentido longitudinal para efectuar los ajustes que sean necesarios que por efecto de las tolerancias normales de construcción fuera necesario. Carantizando que las vigas galvanizadas tengan un apoyo de 7 cm. como mínimo en los elementos que transmiten la carga a la cimentación.

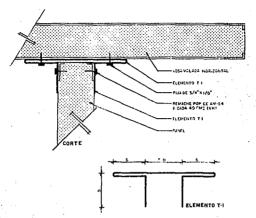


FIG. 3.3.5 DETALLE UNION DE MURO CON LOSA HORIZONTAL

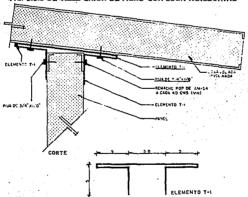
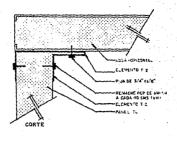



FIG. 3.3.6 DETALLE UNION DE MURO CON LOSA INCLINADA

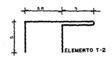


FIG. 3.3.7 DETALLE UNION DE MURO CON LOSA SIN VOLADO

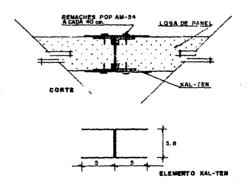


FIG. 3.3.8 REFUERZO EN CLAROS GRANDES DE LA LOSA

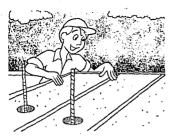


FIG. 3.3.9 ANCLAJE EN LA CADENA

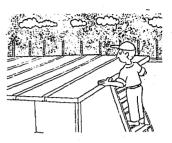


FIG. 3.3.10 COLOCACION DEL PANEL

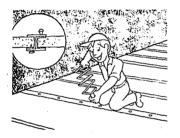


FIG. 3.3.11 UNION DE PANELES

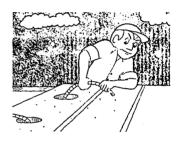


FIG. 3.3.12 CONTINUIDAD ESTRUCTURAL

FIG. 3.3.13 COLOCACION DE PIJAS

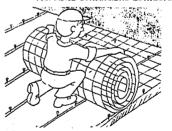


FIG. 3.3.14 COLOCACION MALLA ELECTROSOLDADA

FIG. 3.3.15 ACCESORIO CIMBRA-GOTERO

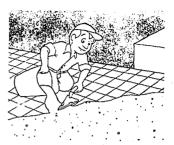


FIG. 3.3.16 COLADO DE LA LOSA MICSA

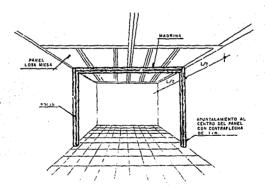


FIG. 3.3.17 APUNTALAMIENTO DE LA LOSA MICSA

3.4 INSTALACION ELECTRICA

Este sistema de construcción se puede adaptar a trabajar con cualquier tipo de instalación eléctrica, se recomienda seguir el proceso presente:

- Antes del colado del firme de concreto se deberán dejar las preparaciones eléctricas correspondientes.
- Durante la colocación de los muros se tiene que ranurar el panel donde se alojará el polyducto para dejar las salidas de contactos, apagadores, televisión, teléfono, interfón, etc.
- Cuando se arma la losa, también se tien que ranurar por la parte superior para mter el plyducto para las salidas de centro (fig. 4.4.1).
- Todas estas preparaciones deben ser sujetadas con alambre recocido para que al momento del colado o de los acabados no se muevan de su sitio.
- Una vez terminados los acabados interiores y exteriores de muros y losas, se procede a cablear y colocar los accesorios necesarios para el buen funcionamiento de la instalación.

Haremos mención que para evitar el ranurado tanto de muros como de losa, donde muchas veces no se hace conforme a lo indicado. Meidante el proyecto de modulación, se pueden marcar los ramaleos y en la fábrica durante el proceso, se pueden ir dejando en el panel las aberturas para posteriormente colocar el polyducto.

3.5 INSTALACION HIDROSANITARIA

En el sistema de panel estructural se le pude desarrollar las instalaciones hidráulicas, de gas y sanitarias que requiera el proyecto. Se dan algunos puntos básicos para su buen uso:

- Se dejan las preparaciones de las salidas hidráulicas y sanitarias antes de efectuar el colado del firme de concreto.
- Una vez erigidos los muros se debe ranurar para alojar las tuberías de cobre y p.v.c.. Dejando así listas las salidas para el baño, cocina, patio de servicio, calentador, etc.
- Antes de realizar el colado de la losa y los recubrimientos de los muros se deben hacer las pruebas pertinentes para localizar alguna fuga y arreglarla de inmediato (fig. 3.5.1).
- Teniendo el terminado de los acabados de piso, muro y platón se hará la colocación y filación de los muebles de baño, de cocina, calentador, etc.

Al igual que en las instalaciones eléctricas se puede mandar a la fábrica el proyecto marcando las preparaciones indicadas.

3.6 ACABADOS

Los muros y las losas de panel estructural se les puede aplicar el recubrimiento que se requiera, esto es de acuerdo a la región en que se construya y al poder económico del propietario que la vaya a habirar. Se enunciarán a continuación la forma en que se pueden aplicar algunos de los acabados más comunes.

- En cuestión de pisos se puede colocar cualquier tipo de material como: Loseta vinílica, alfombra, loseta cerámica, marmol, duela, etc.

En lo concerniente a los acabados en muros interiores se deben seguir los pasos siguientes:

 Con un cepillo de cerda metálica o similar, raspar la superficie de poliestireno para proporcionar un muro rugoso que facilité la adherencia entre el recubrimiento y el panei.

- 2) Colocar sobre los elementos de l\u00e1mina galvanizada del panel, una capa de adhesivo acr\u00edlico, por ejemplo el sotto\u00edondo de corev, para pegar una tira de tela poliester a todo lo largo del \u00e1rea de la \u00edamina.
- Colocar una tira de metal desplegado cubriendo la superficie inferior de los elementos metálicos.
 - 4) Aplicar el recubrimiento ya sea de yeso, mezcla, tirol, pasta, etc.
- También se puede utilizar tablaroca que se sujeta con pijas a las VH de lámina galvanizada.
- En los muros exteriores se raspa al igual que en los interiores la superficie de poliestireno, para aplicar una mano de mortero 1:4. Sobre este mortero se colocará tela de galilneio sujetada con pijas a las VH. Entonces se le da una segunde mano de mortero 1:3 con diferentes terminados como puede ser rústico, fino, serroteado, etc.
- Por lo que corresponde a plafones, se deben seguir el mismo proceso que en los muros, dándole el recubrimiento que se guiera.
- Al terminar de aplicar los recubrimientos se puede pintar tanto interior como exterior con píntura vinilica o esmalte.
- Tanto en la zona de baño como cocina se puede colocar azulejo aplicando antes una capa de mortero (fig. 3.6.1).

En cuestiones de ventanería y carpintería se puede ocupar una variedd de materiales que existen para un mejor acabado.

3.7 IMPERMEABILIZACION Y MANTENIMIENTO

El final del proceso constructivo es la impermeabilización, y para la losa MICSA se puede emplear cualquier sistema usado en nuestro medio. Se recomienda usar estos productos: - La teja asfáltica mineralizada donde primero se aplica una capa de cemento plástico, para posteriormente colocar la teja que se sujeta con clavos. Tiene una vida útil de 15 años.

- Con impermeabilizante base agua como el Microlastic F.B.R.
- Se puede colocar teja vidriada, de barro o ladrillo, etc. (fig. 3.7.1)

Para finalizar la obra, la limpleza general es bastante sencilla, ya que los materiales utilizados en obra no tienen casi desperdicio.

El fabricante en el aspecto de mantenimiento no marca nada especial para el cuidado de la vivienda y lo que se llegue a requerir será de igual forma que lo que necesite una construcción tradicional. Con la ventaja el panel no tendrá humedad, filtraciones en muros y losas por las características del producto con que fue fabricado el panel.

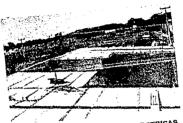


FIG. 3.4.1 PREPARACIONES ELECTRICAS

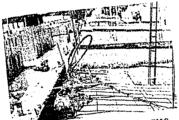


FIG. 3.5.1 PREPARACIONES SANITARIAS



FIG. 3.6.1 PREPARACION DE MUROS Y PLAFONES PARA ACABADOS

FIG. 3.7.1 TERMINADO DE AZOTEA

CAPITULO 4

COMPARATIVA COSTO-TIEMPO CON RESPECTO AL SISTEMA TRADICIONAL

- 4.1 PRESUPUESTO DE UNA CASA HABITACION CON EL SISTEMA DE PANEL ESTRUCTURAL LÍGERO PREFABRICADO MICSA.
- 4.2 PRESUPUESTO DE UNA CASA HABITACION CON EL SISTEMA TRADICIONAL.
- 4.3 RESULTADOS

La finalidad de este capítulo es verificar y comprobar que diferencia hay en costo-tiempo del sistema MICSA con respecto al sistema tradicional. Par esto se llevará a cabo el desarrollo de los dos presupuestos de una casa con planta única donde esta tendrá los mismos tipos de acabados, instalaciones y solamente se variará dependiendo del proceso constructivo, especificaciones y cantidad de obra de cada sistema.

A continuación se describe la casa que se pretende presupuestar:

Tipo.- Casa-habitación de una planta única.

Lugar.- México, D.F.

Area de construcción - 56.43 m2

Distribución - Baño

 Cocina
 5.96 m2

 Estancia (sala-comedor)
 18.29 m2

 Pasillo
 4.14 m2

 Patio de servicio
 5.07 m2

 Recámara 1
 8.14 m2

 Recámara 2
 11.14 m2

56.43 m2

3 24 m2

Acabados.

Pisos:

Azuleio-baño

Loseta cerámica-cocina, estancia, pasillo, recámara 1 y 2

Muros (interiores)

aplanado mezcla-baño, cocina, patio de servicio aplanado yeso-estancia, pasillo, recámara 1 y 2 pintura esmalte-cocina, patio de servicio.

Muros (exteriores):

aplanado serroteado-todo el perimetro de la casa. pintura vinílica todo el perimetro de la casa

Plafón:

aplanado mezcla-baño, cocina, patio de servicio aplanado yeso-estancia, posillo, recámara 1 y 2 pintura esmalte-cocina, patio de servicio Tirol rústico-estancia, pasillo, recámara 1 y 2 Ventaneria.-

Ventana de alumínio 1.20 x 1.20 - estancia, pasillo, recamara 1 y 2

Ventana de aluminio 2.40 x 1.20 - estancia

Ventana de aluminio 0.80 x 0.60 - baño, cocina.

Carpinteria.

Puerta de madera 0.90 x 2.10 - acceso Puerta de madera 0.80 x 2.10 - cocina Puerta de madera 0.75 x 2.10 - baño

Muebles de baño y cocina.- Lavabo, w.c., Juego de accesorios, fregadero.

Accesorios eléctricos.-

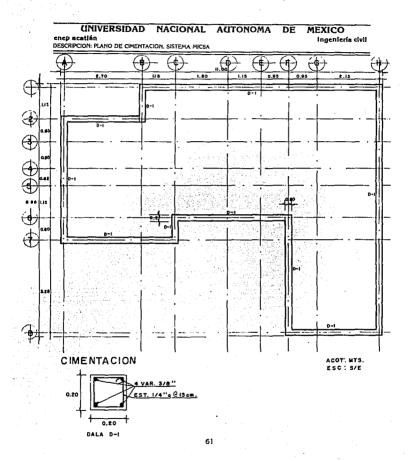
	contactos	sal. de centro
baño	1	2
cocina	1	3
estancia	2	4
pasillo	1	1
p. de servicio	1	2
recámara 1	1	2
recámara 2	1	2

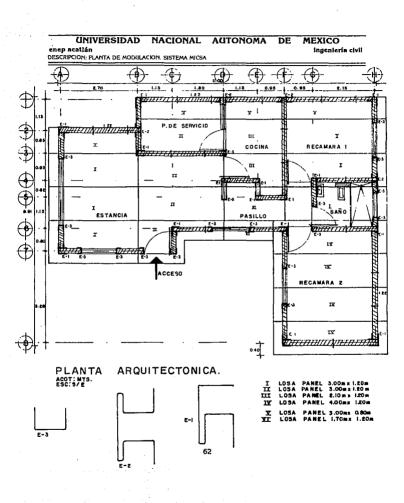
Impermeabilización.- azotea

tela asfáltica

4.1 PRESUPUESTO DE UNA CASA HABITACION CON EL SISTEMA DE PANEL ESTRUCTURAL LIGERO PREFABRICADO MICSA

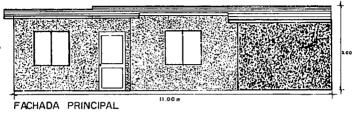
Este presupuesto fué elaborado bajo la supervisión de la empresa paneles estructurales MICSA, donde facilitarón la siguiente información para el desarrollo de dicho presupuesto:

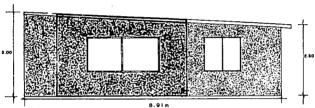

- Los precios de accesorios y paneles que requiere este sistema para su proceso constructivo, son los de la empreesa.

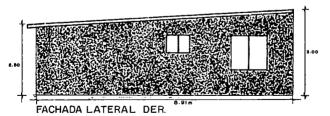

- Los precios de los materiales que son comunes en la construcción, se colizarón los de mercado.
- Los rendimientos para la mano de obra que son especiales en este sistema de construcción, fueron proporcionados por la empresa y verificados en obra.
- Los rendimientos para la mano de obra que se ocupan regularmente en construcción se analizaron en base a investigación de campo y experiencia propia.
 - El factor salario real utilizado son los siguientes:

salario igual al mínimo salario mayor al mínimo 1.656

- 1.598
- La empresa paneles estructurales MiCSA trabaja con un indirecto del 20%, para este tipo de edificaciones.
 - El IVA ocupado es un 10% con respecto al monto total del presupuesto.


Se presenta a continuación la distribución, detalles estructurales, fachadas y el presupuesto con su programación.




UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

enep acatián DESCRIPCION: PLANO DE FACHADAS, SISTEMA MICSA ingeniería civil

FACHADA LATERAL IZQ.

63

RESUMEN DE PRESUPUESTO SISTEMA MICSA

PLANTA UNICA

No.	Descripción			Costo CD	% / total
01	Preliminares		N\$	772.81	1.396
02	Cimentación		N\$	5,554.21	10.034
03	Estructura		N\$	19,524.01	35.272
04	Acabados		N\$	20,493.72	37.024
05	instalación eléctrica		NS -	1,346.74	2.433
06	Instalación hidrosanitaria		N\$	1,557.13	2.813
07	Ventaneria y Carpinteria		N\$	5,401.17	9.758
80	Instalación de gas		N\$	308.00	0.556
09	Limpieza		N\$	394.28	0.712
		Subtota!	N\$	55,352.07	100.000
		Indirecto 20%	N\$	11,070,41	
	*	Total	N\$	66,422.48	
		IVA 10%	N\$	6,642.25	
		Gran total	N\$	73,064.73	

UNIVERSIDAD NACIONAL		AUTONOM	IA DE	MEXICO	
enep acatián DESCRIPCION: PRESUPUESTO, SISTEMA MICSA				inge	nieria civil
Descripción del concepto	Unid.	Cantidad	P.U.	Importe	% Total
01 PLANTA UNICA					
01 PRELIMINARES Trazo y nivelación del área por construir Incluye: aparatos topográficos, cinta, hilos y madera. En la climentación y la planta de muros.	m2	67.790	3.83	259.64	0.469
Despaime del terreno con excav. promedio de 20 cm. Incluye: desenraice y acarreo de material fuera de la obra.	m2	67.790	7.57	513.17	0.927
			Subtotal	772.81	1.396
			•		
02 CIMENTACION					
Relieno y compactación al 85% de prueba PROCTOR, en capas de 20 cm. con material mejorado. Incluye: suministro, acarreo y compactación.	m3	15.680	71.32	1,118.30	2.020
Excavación en material i, hasta 0.50 de profundidad con medios manuales.	m3	4.250	28.70	121.98	0.220
Plantilla de 5 cm. de espesor, con concreto rc=100 kg/cm2	m2	17.010	15.64	266.04	0.481
Trabe de cim. con 4 varillas #3, estribos #2 a @15 cm., concreto Γα=200 kg/cm2 y cimbra de contacto acabado común. Incluye: armado, cimbrado y colado de la trabe.	ml.	42.520	39.59	1,683.37	3.041
Firme de concreto de 0.10 m. esp. f'c≃150 kg/cm2 acabado pulido integra. Incluye: acarreo, vaciado y nivelación del piso.	m2	67.790	34.88	2,364.52	4.272
			Subtotal	5,554.21	10.034

AUTONOMA DE UNIVERSIDAD NACIONAL MEXICO

enep acatlán DESCRIPCION: PRESUPUESTO. SISTEMA MICSA

ingenieria civil

Descripción del concepto	Unid.	Cantidad	P.U.	Importe	% Total
03 ESTRUCTURA					
Suministro y colocación de accesorio E-1 cal. 20, en muros, incluye: plomeado y sujeto para su terminación.	ml.	37.090	7.54	279.66	0.505
Suministro y colocación de accesorio E-2 cal. 20, en muros. Incluye: plomeado y sujeto para su terminación.	ml.	14.000	14.90	208.60	0.377
Suministro y colocación de accesorio E-3 cal.20, en muros. Incluye: plomeado y sujeto para su terminación.	ml."	24.580	22.84	561.41	1.014
Suministro y colocación de accesorio T-1 cal. 20 en muros con losa. Incluye: plomeado y sujeto para su terminación.	ml.	52.980	15-15	802,65	1.450
Suministro y colocación de acceso.io T-2 cal. 20; en muros con losa. Incluye: plomeado y sujeto para su terminación.	ml.	11.000	15.83	174-13	0.315
Suministro y colocación de estructura metálica tipo XAL-TEN cal10	ml.	9.170	68.76	630.53	1.139
Suministro y colocación de muro panel MICSA cal24 de 1.20 x 2.00, 1.20 x 2.50, 1.20 x 3.00. Incluye: todo lo necesario para su fijación y puesto para su terminación.	m2	132.870	72.37	9,615.80	17.372
Suministro y colocación de losa panel MICSA cal24 de 1.20 x 2.00, 1.20 x 2.50, 1.20 x 3.00. Incluye: todo lo necesario para su fijación y puesto para su terminación.	m2	77.040	74.04	5,704.04	10.305
Suministro y colocación de accesorio gotero cal20 en volado de losa. Incluye: plomeado y sujeto para su terminación.	ml.	28.490	14.61	416,24	0,752

UNIVERSIDAD NACION	AL	AUTONO	MA DI	E MEXI	co
enep acatlán DESCRIPCION: PRESUPUESTO, SISTEMA MICSA				inge	nieria civil
Descripción del concepto	Unid.	Cantidad	P.U.	Importe	% Total
Capa de compresión de 4 cm. de esp., Fc=200 kg./cm2. Incluye: acarreo, vaciado, vibrado y curado del concreto.	m2	77,040	14.68	1,130.95	2.043
			Subtotal	19,524.01	35.272
04 ACABADOS					
Tirol rustico en platón de yeso. Incluye: andamios.	m2	44.500	10.07	448.12	0.810
Aplanado de yeso en muros con maestras y a plomo. Incluye: andamios, metal despegado y todo lo necesario para su correcta ejecución a 3 m. de altura.	m2	123.140	17.68	2,177.12	3.933
Aplanado de yeso en plafón con maestras y a plomo. Incluye: andamios, metal desplegado y todo lo necesario para su correcta ejecución a 3 m de altura.	m2	44.500	18.43	820.14	1.482
Boquilla de yeso en puertas, ventanas y aristas a 90 grados. Incluye: acarreos, metal desplegado y lo necesario para su correcta ejecución a 3 m. de alt.	m!.	41.500	9.42	390.93	0.706
Aplanado a plomo y regla, pulido en muros con mortero cemento-arena 1:3. Incluye: metal desplegado y todo lo necesario para su terminado.	m2	37,450	25.58	957.97	1.731
Aplanado a regla, pulido en plafón con mortero cemento-arena 1:3. Incluye: metal desplegado y todo lo necesario	m2	14.190	36.56	518.79	0.937

para su terminado.

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

enep acatlán DESCRIPCION: PRESUPUESTO, SISTEMA MICSA ingenieria civil

Descripción del concepto	Unid.	Cantidad	P.U.	Importe	% Total
Apianado a piomo y regia, serroteado muros con mortero cemento-arena-granzón 1:3:3. Incluye: acarreo, metal desplegado y apilicación hasta 3m. de altura.	m2	105.280	32.25	3,395.28	6.134
Boquillas en puertas, ventanas y aristas de murcs a 90 grdos con mortero cemento-arena 1:3. Incluye: metal desplegado.	ml.	49.950	9.00	449.55	0.812
Sum. y col. de pasta texturizada marca Corev o Texturi en muros, Incluye: andamios.	m2	123.140	21.96	2,704.15	4.885
Sum. y aplicación de pintura Vinilica Vinimex de Comex. Incluye: prep. de la base, una mano de sellador, resanes generales.	m2	105.280	8,06	848.56	1.533
Sum. y aplicación de pintura esmalte mate de ICI. incluye: prep. de la base, una mano de sellador, resanes generales.	m2	51.640	9.23	476.64	0.861
Sum. y col. de loseta interceramic de 20x20 cm. de la línea roca, acero, italia, Leornardo o constelación. Incluye: pegazulejo, lechada de cemento blanco o color, boquillas, así como todo lo necesario.	m2	44.500	88.28	3,928.46	7.097
Azulejo 9 cuadros en piso y sardinel en baño. Incluye: boquillas, remates y lechadeada.	m2	3.240	51,22	165.95	0.300
Azulejo iiso de 11 x 11 cm. en lambrin. Incluye: boquilias, remates y lechadeada.	m2	18.300	55.50	1,015.65	1.835
Impermeabilización azotea a base de teja asfáltica.	m2	77.040	28.51	2,196.41	3.968
			Subtotal	20,493.72	37.024

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO enep acatlán DESCRIPCION: PRESUPLIESTO, SISTEMA MICSA

Descripción del concepto	Unid.	Cantidad	P.U.	Importe	% Total
05 INST. ELECTRICA					
Alimentación desde concentración de medidores hasta tablero de vivienda. Incluye: tubería y cableado.	lote	1.000	99.53	999.53	0.180
Salida a contactos. Incluye: accesorios y pruebas para su correcto funcionamiento.	sal.	16.000	45.68	730.88	1.320
Tablero 2 circuitos con interruptores termomagnéticos. Incluye: pruebas y lo necesario para su ejecución.	pzas.	1.000	58.24	58.24	0.105
Salida de centro. Incluye: accesorios, pruebas y todo lo necesario para su buen funcionamiento.	sal.	8.000	44.65	357.20	0.645
Suministro y colocación de interruptor de seguridad de 2 polos. Incluye: pruebas y lo necesarip para su ejecución.	pza.	1.000	100.89	100.89	0.182
			Subtotal	1,346.74	2.433
06 INST. HIDROSANITARIA				:	
Suministro y elaboración de salida hidráulica para muebles sanitarios a base de tubería de cobre de 13 mm. de ø, conexiones (codos,	sal.	4.000	61.38	245.52	0.444
tees, coples, etc.) de cobre, válvulas de cierre, ranuras.					
Suministro y colocación de muebles y accesorios de lote baño y cocina. Incluye:	lote	1.000	1,013.20	1,013.20	1.830
muebles y pruebas finales de instalación.					
Suministro y colocación de descargas sanitarias de: baño, cocina y patio de	lote	1.000	298.41	298.41	0.539
servicio. Incluye: preubas.					
			Subtotal	1,557.13	2.813

UNIVERSIDAD NACION enep acatlán DESCRIPCION: PRESUPUESTO, SISTEMA MICSA	AL	AUTONOM	A DE		CO nieria civil
Descripción del concepto	Unid.	Cantidad	P.U.	Importe	% Total
07 VENTANERIA Y CARPINTERIA					
Ventana prefabricada de aluminio de 2.40 x 1.20 m. suministro y colocación.	pza.	1.000	415.03	415.03	0.750
Incluye: fletes, elevación materiales de fijación, mano de obra y herramienta.					
Ventana prefabricada de aluminio de 1.20 x 1.20 m. suministro y colocación.	pza.	4.000	237.45	949.80	1.716
Incluye: fletes, elevación materiales de fijación, mano de obra y herramienta.					
Ventana prefabricada de aluminio de 0.80 x 0.60 m. suministro y colocación. Incluye: Netes, elevación materiales de fijación, mano	pzas.	2.000	120.78	241.56	0.436
de obra y herramienta.					
Puerta de 2.10 x 0.80 m. fabricada a base de perfiles tubulares de lámina, calibre 18. Incluye: hechura, pintura anticorrosiva, esmalte, vidrio y	pza.	1.000	621.53	621.53	1.123
colocación.					
Sum. y Col. de puerta (0.90 x 2.10) de pino 1a. 6 mm . y marco de madera de pino. Incluye: hechra, sellador, barniz, y todo lo necesario para su terminación.	pza.	1.000	716.95	716.95	1.295
Sum. y col. de puerta (0.80 x 2.10) de pino 1a 6 mm. y marco de madere de pino. Incluye: hechura, sellador, barniz y todo lo necesario para su terminación.	pza.	3.000	621.95	1,865.85	3.371
Sum. y nol. de puerta (0.75 x 2.10) de pino 1a 6 mm y marco de madera de pino. Incluye: hechura, sellador barniz y todo lo necesario	pza.	1.900	590.45	590-45	1-067

para su terminación.

. —	UNIVERSIDAD	NACIONAL	AMONOTUA	DE	MEXICO	_
enep	acatlán				ingenieria civil	

enep acatián DESCRIPCION: PRESUPUESTO, SISTEMA MICSA

Descripción del concepto	Unid.	Cantidad	P.O.	Importe	% Total
08 INST. DE GAS				•	
Salida de gas a estufa y calentador. Incluyen: pruebas de fugas.	sal,	2.000	154.00	308.00	0.556
			Subtotal	308.00	0.556
09 LIMPIEZA					
Limpiuza general de vivienda Incluye: pisos, muros, muebles, accesorios, puertas, techos y vídrios.	lote	1.000	394.28	394.28	0.712
			Subtotal	394.28	0.712
				55,352.07	100.000

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

enep acatlán

DESCRIPCION: CUANTIFICACION DE RECURSOS. SISTEMA MICSA

ingenieria civil

Descripción del concepto	<u>Unid.</u>	Cantidad	Costo	Importe	% Total
Cemento plastico	ito.	38.520	3.00	115.56	0.209
teja asfáltica	m2	111.708	14.00	1,563.91	2.825
marco de madera pino 1a.	pza.	5.000	75.00	375.00	0.677
Agua	m3	7.191	5.50	39.55	0.071
Cemento gris tipo normal	ton.	7.016	359.00	2,518.74	4.549
Cemento blanco	ton.	0.084	563.00	47.29	0.085
Calhidra	ton.	0.014	250.00	3,50	0.006
Yeso	ton.	3.853	192.00	739.78	1.336
Pegazulejo	kg.	107.700	0.50	53.85	0.097
Arena	m3	13.692	38.00	520,30	0.940
Grava	m3	8.682	38.00	329.92	0.596
Agua	m3	9.168	5.00	45.84	0.083
Acido muriático	ito.	5.000	4.00	20.00	0.036
Detergente en polvo	kg.	5.000	2.25	11.25	0.020
Tepetate	m3	19,600	27.30	535.08	0.966
Acero de refuerzo del #2	kg.	45.878	1.35	63.29	0.114
Acero de refuerzo del #3	kg.	99,471	1.26	125,33	0.226
Malla electrosoldada 6-6/10-10	m2	159.313	2.15	342.52	0.619
Alambre recocido	kg.	24.552	1.85	45.42	0.082
Triplay de pino de 2a. de 19 mm.	m2	3.402	28.50	96,96	0.175
Madera de pino de 2a.	P.T.	42.520	1.80	76.54	0.138
Clavo	kg.	46.433	2.10	97.51	0.176
Diesel	lto.	13.606	1.20	16.33	0.029
Loseta Interceramic 30x30 L. Constelación					
M. Aurora	m2	48.950	57.83	2,830.78	5.113
Azulejo de 9 cuadros de 11x11 cm.	m2	3.402	28.50	96.96	0.175
Azulejo liso blanco 11x11 cm.	m2	19.215	29.00	557.24	1.007
Material de consumo	%	1.000	115.79	115.79	0.209
Taquetes	Pza.	40.000	0.12	4.60	0.009
Tomillo	Pza.	40.000	0.12	4.80	0.009
Material de consumo de carpinteria	%	1.000	129.75	129.75	0.234
Chapa Phillips mod. 715	Pza.	4.000	25.00	100.00	0.181
Cerradura Phillips mod, 550 J-M	Pza.	1.000	120.00	120.00	0.217
Cerradura Phillips mod. 550 M-M	Pza.	1.000	111.00	111.00	0.200
Interruptor de seguridad de 2 polos x 15-60					
Ampere	Pza.	1.000	65.00	65.00	0.117
Tablero de control Q0-2f	Pza.	1.000	30.60	30.60	0.055
Foco de 70.01155 a 100 W.	Pza.	8.000	1.05	8.40	0.015
Cable tipo THW 0.329Cal. 12 Condumex	ml.	207.000	88.0	182.16	0.329
Cable tipo THW cal. 10 Condumex	ml.	82.200	1.28	105,22	0.190
Cable tipo THW Cal. 8 Condumex	mi.	1.000	2.10	2,10	0.004

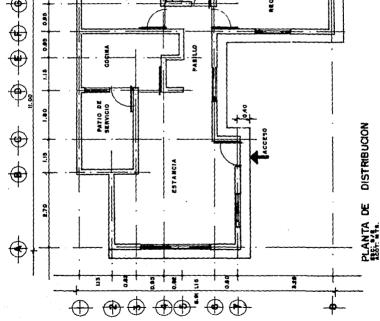
MEXICO UNIVERSIDAD NACIONAL AUTONOMA DE

enep acatlán

ingenieria civil

DESCRIPCION: CUANTIFICACION DE RECURSOS, SISTEMA MICSA

Descripción del concepto	Unid.	Cantidad	Costo	Importe	% Total
Cable tipo THW cal. 6 Condumex	ml.	0.300	3.16	0.95	0.002
Tubo polyducto de 13 mm. ø	ml.	87.490	0.59	51.62	0.093
Tubo polyducto de 19 mm. ø	ml.	5.000	0.68	3.40	0.006
Tubo polyducto de 25 mm. ø	ml.	0.250	1.27	0.32	0.001
Curvas de polyducto de 13 mm. ø	Pza.	8.000	0.23	1.84	0.003
Soquet sencillo de baquelita	Pza.	8.000	1.36	10.88	0.020
Caja de conexión cuadrada de	Pza.	8.000	1.36	10.88	0.020
10 x 10 cm. galvanizada	Pza.	8.000	1.00	8.00	0.014
Caja de conexión tipo chalupa	Pza.	24.000	0.62	14.88	0.027
Tapa de 1 a 3 unidades	pza.	24.000	1.78	42.72	0.077
Apagador sencillo mca. Quinziño	pza.	8.000	1.63	13.04	0.024
Contacto sencillo mea. Quinziño	pza.	16.000	1.64	26.24	0.047
Tubo de Cu. tipo l. de 13 mm. de ø	ml.	14.000	6.79	95.06	0.172
Tubo flexible de Cu de 10 mm. de ø	mi.	3.200	2.20	7.04	0.013
0.013Válvula de paso para gas de 13 mm. de ø	pza.	4.000	14.00	56.00	0.101
Tubo0.101 de Cu tipo M de 13 mm de ø	ml.	16.000	4.36	69,76	0.126
Tubo de Cu Tipo M de 19 mm de ø	mi.	5.000	7.08	35.40	0.064
Codo de Cu de 90ºx13 mm de ø	pza.	14.000	0.41	5.74	0.10
codo de Cu de 900.010x19 mm de ø	pza.	1.000	0.96	0.96	0.002
Cople de Cu de 13 mm0.002 de ø	pza.	14.000	0.48	6.72	0.012
Reducción BUSH de Cu de 0.01213 mm de ø	pza	1.000	0.33	0.33	0.001
Tee de Cu de 13 mm de ø0.001	pza.	5.000	0.77	3,85	0.007
tee de Cu de 19 mm de 0.007	pza.	0.400	1.76	0.70	0.001
Tapón capa de Cu de 13 mm 0.001de ø	pza.	4.000	0.52	2.08	0.004
Tee de Cu de 13 mm de ø0.004	pza.	4.000	6.11	24.44	0.044
Tee de Cu de 19 m de c0.044	ml.	9.000	1.92	17.28	0.031
Tapón capa de Cu de 13 mm 0.031de ø	mi.	10.000	6.15	61.50	0.111
Llave de narzi de bronce	pza.	5.000	1.10	5.50	010.0
Tubo de PVC de 40 mm de ø	pza.	4.006	4.03	16.12	0.029
Tubo de PVC d 100 mm ø	pza.	1.000	1.43	1.43	0.003
Codo de PVC de 90ºx40 mm de ø	pra.	4.000	8.65	34,60	0.062
Reduccin Campana De 100 X 40 Ø	pza.	2.000	4.50	9.00	0.016
Cespol Coladera De Pvc Con Una Sal. 40 Mm.	pza.	2.000	7.21	14.42	0.026
Cespol Boe De Pvc Con Rejilla	pza.	1.000	137.95	137.95	0.249
Lavabo Viromex Mod. C'avei	pza.	1.900	239.80	239.80	0.433
Inodoro Vitromex Mod. Troyano	ρza.	1.000	20.00	20.00	0.036
Lavadero De Conc. De 0.80 X 0.70 Mt, C/pileta	pza.	1.000	45.90	45.90	0.083
Accesorios/baño Color, Vitromex Jgo. 6 Pzas.	pzą.	1.000	37.72	37.72	0.68
Botiquin mea. Gadi No. cero	pza.	1.000	41.37	41.37	0.075
Mezcladora sencilla Rugo No. 24	jgo.	1.000	17.00	17.00	0.031
Llaves cromadas Rugo No. 16	pza.	1.000	36.00	36.00	0.065
Regadera mca. Helvex mod. 821	pza.	1.000	54.20	54.20	0.098


UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

enep acatlán DESCRIPCION: CUANTIFICACION DE RECURSOS, SISTEMA MICSA

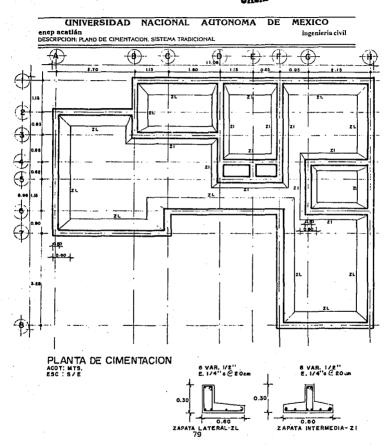
ingenieria civil

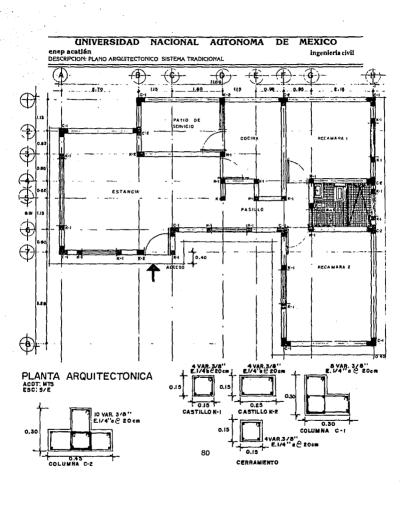
Descripción del concepto	Unid.	Cantidad	Casto	Importe	% Total
Fregadero de acero inox., 1 tarja, 1 escurridero	pza.	1.000	54.20	54.20	0.098
Metal desplegado	m2	74.057	6.50	481.37	0.869
Canal metálico E-2 cal 20	ml.	14.000	12.44	174.16	0.315
Remache pop AM-54	pza.	3285,470	0.05	164.27	0.297
Canal metálico E-1 cal20	ml.	37,090	6.26	232.18	0.419
Canal0.419 metálico E-3 cal.20	ml.	24.580	19.55	480.54	0.868
Canal metálico T-1 cal20	ml.	52,980	12.69	672.32	1.214
Canal metálico 1.214T-2 cal20	ml.	11,000	13.27	145.97	0.264
Estructura metálica XAL-TEN cal10	mi.	9.170	55.59	509.76	0.921
Panel de poliestireno expandido 2VH-24	m2	209,910	63.00	13,224.33	23.886
Gotero metálico G-1 cal20	ml.	29,914	7.41	221.66	0.400
Pintura Vinilica Vinimex de Com0.400ex	Ito.	21.056	9.88	208.03	0.376
Pintura de esmalte mca. ICI	lto.	10.328	10.16	104.93	0.190
Sellador vinílico	ito.	56.012	8.18	458.18	0.828
Ligatirol	Ito.	18,690	8.50	158.87	0.287
Grano de marmol fino y grueso	ton.	0.252	230.00	57.96	0.105
Pasta Texturi de Comex (Terza)	lto.	204.412	5.05	1,032.28	1.865
Dow Coming	pza.	2,400	14.00	33.60	0.061
Ventana de aluminio anodizado de 1.20x1.20	pza.	4,000	205.00	820.00	1.481
Ventana de aluminio anodizado de 0.80x0.60	pza.	2,000	100.00	200.00	0.361
Ventana de alumínio anodizado de 2.40*1.20	pza.	1.000	380.00	380.00	0.683
Puerta de 2.10x0.80 de perfil tubular	pza.	1.000	450.00	450.00	0.813
Puerta de 0.90x 2.10 de pino 1a (6mm)	pza.	1,000	450.00	450.00	0.813
Puerta (0.80x2.10) de pino 1a (6mm)	pza.	3,000	450.00	1,350.00	2,438
Puerta (0.75 x2.10) de pino 1a (6mm)	pza.	1.000	420.00	420.00	0.759
			Subtotal	35,950.24	64.935
MANO DE OBRA					
Ayudante general	Jor.	81.802	41.16	3,366.97	6.082
Albañil	Jor.	61.378	72.04	4,421.67	7.987
aluminiero	Jor.	1.250	72.04	90.05	0.163
Oficial azulejero	Jor.	9,866	72.04	710.75	1.284
Cabo de oficios	Jor.	16.678	104.81	1,748.02	3.157
Oficial carpintero de banco	Jor.	1.666	72.04	120.02	0.217
Oficial carpintero de obra negra	Jor.	1.361	72.04	98.05	0.177
Oficial Electricista	Jor.	5.750	72.04	4;4.23	0.748
Oficial fierrero	Jor.	2.467	72.04	177.72	0.321
Maestro de obra	Jor.	3,369	154.37	520.07	0.939
	20,.	5,233	,,	020.01	0.000

UNIVERSIDAD NACION enep acatián DESCRIPCION: CUANTIFICACION DE RECURSOS. SIS	MA DI		CO nieria civil		
Descripción del concepto	Unid.	Cantidad	Costo	Importe	% Total
Peón	Jor.	88.999	40.52	3,606.24	6.514
Oficial pintor	Jor.	5.540	72.04	399.10	0.721
Oficial plomero	Jor.	5.000	72.04	360.20	0.651
Topografo	Jor.	0.339	104.83	35.54	0.064
Oficial yesero.	Jor.	27.694	72.04	1,995.08	3.604
			Subtotal	18.063.71	32.628
HERRAMIENTA Y EQUIPO					
Herramienta menor	%%	1,000	549.70	549.70	0.993
Andamios	%%	1.000	365.82	365.82	0.661
Revolvedora de concreto MIPSA 1 saco 8 HP	hora	9.329	12.82	114.56	0.207
Vibrador para concreto DYNAPC gasotina 8 HP	hora	0.510	19.14	9.76	0.018
Camión de volteo 7 m3 diesel	m3	13.558	10.00	135.58	0.245
Nivel automático ZE ISSNI-025	hora	5.423	32.09	174.02	0.314
			Subtotal	1,349.44	2.437
			Total	55,363.39	100.000
RESUMEN POR INSUMOS					<u></u>
MATERIALES	0104	35,950.24	64.935		
MANO DE OBRA	0104	18,063,71	32.628		
HERRAMIENTA Y EQUIPO	0006	1.349.44	2.437		

	ALENDARIO DE OBRA SCRIPCION: CASA-HABITACION, SISTEMA MICSA												U							U enep (:a	-	lo		1		ir	ıg	<i> </i>	n	ie	ri	a	c	i	N V	ı				
No	Partida	Costo	Γ	M	e	3		C)	Ī						_		1	A	8	S	() ;	2	_				_		Į	A	1	8	9	, ,	0	3	,	_	_	_	_	_	_
OI	PRELIMINARES	1,020,1		Ī							Ī				Ī		l			1												I				Ī			Ī				Ī	Ī	Ī
02	CIMENTACION	7,331.50						1			I															li				1									Ī		Ī				Ī
03	ESTRUCTURA	25,771.00									Ī						l			Ī						il L	Ī					Ī				Ī		\prod	Ī	[]				\prod	I
04	A CAB AD OS	27,051.71						I		\prod	I		I		ŀ		ŀ	I		Ī	1					ľ,										Ī			Ţ			I	Ī	Π	Ī
05	INST. ELECTRICA	1,771.70						I	П	F	Ī		Ī	I	I		H		I	I	1	I		Ī			Ī			1		Ī				Π		\prod	T	I	П		Ī	$\ $	Ī
08	INST, HIDROSANTARIA	2,085.41		T		H		1	H		Ŧ		Ī				Ī		П	I	Î	H		Ŧ		-	Ŧ	li		Ī				Ī		Ī		П	1	Ţ	Ī		i	I	Ī
07	VERT Y CARP.	7, 1 29.54		Ī							Ī				i		Ī	i		I	†					L	ļ					Ī		Ī		Ī		il	Ī	Ī					Ī
08	WST. DE GAS	40 0.50		Ī		i									Ī					Ī				۱	Ļ	Ī	I	ļ				1				Ī		Ī	Ī	Ī				I	Ī
09	L: MPIEZA	520.45									-		İ		Ī					Ī	Ī			Ī			Ī	II 				Ī				Ī			Ī						Ī
	TOTAL	78, 064.78	4,4	8		E.		74	3	Г			Т		_	_	T		_		Г		_	Т		51		Г	_	-	1	•			1	_	21	==	Ī		-	٦	Ī	-	=

duración. 38 días


4.2 PRESUPUESTO DE UNA CASA HABITACION CON EL SISTEMA TRADICIONAL


Este presupuesto fue elaborado bajo la supervisión de la empresa Nacional de Autoconstrucción S.A. de C.V. de donde se facilitó la siguiente información para desarrollar un presupuesto conforme a lo que se maneja en tal compañía.

- Los precios que se utilizaron para conformar el trabajo fueron cotizados los de mercado.
- Se proporcionaron los rendimientos de mano de obra que ellos ocupan, verificandose en obra y por experiencia personal.
 - Los factores de salario real utilizados son los mismos que en el sistema MICSA.
- La empresa Nacional de Autoconstrucción para la edificación de este tipo de obra maneia un indirecto del 33%.
 - El IVA usado es de un 10% con respecto al monto total.

A continuación se presenta la distribución de la casa, así como los detalles estructurales y las fachadas. Posteriormente se desglosa el presupuesto por conceptos, partidas, programación y el gran total.

ESTA TESIS NO DEBE SALIB DE LA BIBLIOTECA

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO enep acatián DESCRIPCION: PLANO DE FACHADAS. SISTEMA TRADICIONAL ingenieria civil FACHADA PRINCIPAL FACHADA LATERAL IZO.

FACHADA LATERAL DER.

RESUMEN DEL PRESUPUESTO SISTEMA CONVENCIONAL

PLANTA UNICA

No.	Descripción			Costo CD	% / total
01	Preliminares		N\$	772.81	1.239
02	Cimentación		N\$	11,862.33	19.019
03	Estructura		N\$	21,819.85	34.894
04	Acabados		N\$	18,907.86	30.316
05	Instalación eléctrica		N\$	1,346.74	2.159
06	Instalación hidrosanitaria	•	N\$	1,557.13	2.497
07	Ventaneria y carpinteria		14\$	5,401.17	8.660
80	Instalación de gas		N\$	308.00	0.494
09	Limpieza		N\$	394.28	0.632
	•	Subtotal	N\$	62,370.17	100.000
		Indirecto 33%	N\$	20,582.16	
		Total	п\$	82,952.33	
		IVA 10%	N\$	8,295.23	
		Gran total	N\$	91,247.56	

UNIVERSIDAD NACION enep acatlán DESCRIPCION: PRESURIESTOS SISTEMA TRADICIO		MONOTUA	A DE	MEXIC inger	CO ileria civil
Descripción del concepto	Unid.	Cantidad	P.U.	Importe	% Total
01 PLANTA UNICA					
01 PRELIMINARES					
Trazo y nivelación del área por construir. Incluye: aparatos topográficos, cinta, hilos y madera, en la cimentación y la planta de muros.	m2	67.790	3.83	259.64	0.416
Despalme del terreno con excav. promedio de 20 cm. incluye: desenraice y acarreo de material fuera de la obra.	m2	67.790	7.57	513.17	0.823
			Subtotal	772.81	1.239
02 CIMENTACION				. *	
Excavacion en material I, hasta 0.50 m. de profundidad con medios manuales	m3	22.980	28.70	659.53	1.057
Plantilla de 5 cm. de espesor, con concreto fc≃100 kg/cm2	m2	52.520	15.64	821.41	1.317
Zapata lateral con 8 varillas #4, estribos #2 a @20 cm., concreto rc=200 kg/cm2 y cimbra de contacto acabado comun. Incluye: armado, cimbrado y colado de elemento.	ml.	42.520	94.38	4,013.04	6.434
Zapata interm. con 8 varillas #4, estribos #2 a @20 cm. concreto fce200 kg/cm2 y cimbra dc contacto acabado común. Incluye: aramdo, cimbrado y colado del elemento.	ml.	21.730	102.42	2,225.59	3,568
impermeabilización en lomo de zapata para desplante de muros a base de emulsión asfática aplicada en frío y polietileno. Incluye: Sum. de material, equipo, herramienta y mano de obra.	ml.	64.250	8.34	535.85	0.859

UNIVERSIDAD NACION enep acatlán DESCRIPCION: PRESUPUESTO SISTEMA TRADICION.		MONOTUA	A DI		CO nieria civil
Descripción del concepto	Unid.	Cantidad	P.U.	Importe	% Total
Relleno y compactación al 85% de prueba PROCTOR, en capas de 20 cm, con material mejorado, Incluye: suministro, acarreo y compactación.	m3	17.420	71.32	1,242.39	1.992
Firma de concreto de 0.10 m. esp rc=150 kg/cm2 acabado pulido integra. Incluye: acarreo, vaciado y nivelación del piso.	m2	67.790	34,88	2,364.52	3.791
			Subtotal	11,862.33	19.019
03 ESTRUCTURA					
Muro de tabique rojo recocido 6*13*26 de base 14 cm. junteado cemento-arena 1:5	m2	98.910	38.94	3,851.56	6,175
con espesor de 2.5 cm. de junta, incluye: acarreo, colocación y andamios.					
Castillo k1 de 4 varillas de 3/8", estribos de 1/4" a @ 20 cm. concreto f'c=200 kg/cm2, incluye: armado, clmbrado y colado del castillo.	ml.	57.870	43.30	2,505.77	4.018
Castillo k2 e 4 varillas de 3/8", estribos de 1/4" a @ 20 cm. concreto l'e-200 kg/cm2, Incluye: armado, cimbrado y colado del castillo.	ml.	7.820	48.71	380-91	0,611
Columna C1 de 8 varillas de 3/8" estribos de 1/4" a @ 20 cm. concreto l'c=200 kg/cm2. Incluye: armado, cimbrado y colado de la columna.	ml.	20.070	79.99	1,65.40	2.574
Columna C2 de 10 varillas de 3/8", estribos de 1/4" a @ 20 cm. concreto l'c=200 kg/cm. Incluye: armado, cimbrado y colado de la colum	ml. na.	10.490	94.41	990.36	1.588
Trabe T-1 de 6 varillas de 3/8", estribos de 1/4" a @ 20 cm. concreto f°=200 kg. cm2. Inclye: armado, cimbrado, y colado de la trabe.	ml.	3.370	61.18	206.18	0.331
Cerramiento de 4 varillas de 3/8", estribos de 1/4" a @ 20 cm. concreto f'c= 200 kg/cm2. Incluye: armado, cimbrado y colado del elemento	ml, o.	65.300	37.71	2,462.46	3.948

UNIVERSIDAD NACION	AL	AUTONOA	1A DI	E MEX	ICO
enep acatlán DESCRIPCION: PRESUPUESTO SISTEMA TRADICIONA	ıL.			ing	enieria civil
Descripción del concepto	Unid.	Cantidad	Р.Ц.	Importe	% Total
Losa de concreto armado de 10 cm. de esp. con acero de 3/8" en dos lechos,	m2	77.040	127.43	9,817.21	15.740
f'c=200 kg/cm2, incluye: aramdo, cimbrado y colado de la losa.					
			Subtotal	21,819.85	34.984
04 ACABADOS					
Aplanado de yeso en muros con maestras y a plomo, incluye: andamios, y todo lo	m2	123.140	15.53	1,912.36	3.066
necesario para su correcta ejecuión a 3 m. de altura.					
Aplanado de yeso en plafón con maestras	m2	44,500	15.88	706.66	1.133
y a plomo, incluye: andamios, y todo lo necesario para su correcta ejecución a 3 m. de altura.					
Boquilla de yeso en puertas, ventanas y aristas a 90 grados, incluye: acarreos y todo lo necesario par su correcta ejecución a 3 m. de altura.	mi.	41.500	7.49	310.84	0.498
Aplanado a plomo y regia, pulido en muros con mortero cemento-arena 1:3. Incluye: acarreo, aplicación correcta para su terminado.	m2	37.450	22.68	849.37	1.362
Aplanado a plomo y regla, serroteado muros con mortero cemento-arena 1:3. Incluye: acarreo, aplicaicón hasta 3 m de altura.	m2	14,190	27.39	388.66	1.362
Aplanado a plomo y regla, serroteado muros con mortero cemento-arena-granzón 1:3:3 incluye: acarreo, aplicación hasta 3m de altura.	m2 ·	105.280	24.51	2,580.41	4.137
Boquillas en puertas, ventanas y aristas de muros a 90º con mortero cemento arena 1:3	m!.	49.950	7.52	375.62	0.602
Tirol rústico en plafón de yeso, incluye andamios	m2	44.500	10.07	448.12	0.718

UNIVERSIDAD NACION enep acatián DESCRIPCION: PRESUPUESTO SISTEMA TRADICION		AUTONOM	A DE		CO nieria civil
Descripción del concepto	Unid.	Cantidad	P.U.	Importe	% Total
Sum. y Col. de loseta interceramica de 20x20 cm. de la linea roca, acero, Italia, Leonardo o constelación. Incluye: pegazulejo, lechada de cemento blanco o color, boquillas, así como todo lo necesario.	m2	44.500	88.28	3,928.46	6.299
Azulejo 9 cuadros en piso y sardinel en baño, incluye boquillas, remate y lechadeada.	m2	3.240	51.11	165.95	0 266
Azulejo liso de 11x11 cm. en lambrin. Incluye: boquillas, remates y lechadeada.	m2	18.300	55.50	1,015.65	1.628
impermeabilización azotea a base de teja asfáltica	m2	77.040	28.51	2,196.41	3.522
			Subtotal	18.907.86	30.316
05 INST. ELECTRICA					
Alimentación desde concentración de medidores hata tablero de vivienda. Incluye: tubería y cableado.	lote	1.000	99.53	99.53	0.160
Salida a contactos. Incluye: accesorios y pruebas para su correcto funcionamiento.	sal.	16,000	45.68	730.88	1.172
Tablero 2 circuitos con interruptores termomagnéticos, incluye pruebas y lo					
necesario para su ejecución	lote	1.000	58.24	58.24	0.093
Salida de centro, incluye: accesorios, pruebas y todo lo necesario para su buen funcionamiento.	8.000	0 44.65	357.20	0.573	
Suministro y colocacion de interruptor de seguridad de 2 polos, incluye pruebas y lo necesario para su ejecución.	pza.	1.000	100.89	100,89	0.162
			Subtotal	1,346.74	2.159

UNIVERSIDAD NACIO enep acatlán DESCRIPCION: PRESUPUESTO SISTEMA TRADICIO		AUTONO	MA DE		ICO enieria civil
Descripción del concepto	Unid.	Cantidad	P.U.	Importe	% Total
06 INST. HIDROSANITARIA					
Suministro y colocación de muebles y accesorios de lote baño y cocina. Incluye: muebles y pruebas finales de instalación.	lote	1.000	1,013.20	1,013.20	1.624
Suministro y elaboración de salida hidraulica para muebles sanitarios a base de tuberia	sal.	4.000	61.38	245.52	0.394
de cobre de 13 mm. de ø, conexiones (codos, tees, copies, etc.) de cobre, válculas de cierre, ranuras.					
Suministro y colocación de descarges	lote	1.000	298.41	298,41	0.478
sanitarias de: baño, cocina y patio de servicio. Incluye: pruebas.					
			Subtotal	1,557.13	2.497
07 VENTANERIA Y CARPINTERIA					
Ventana prefabricada de aluminio de 2.40x1.20 m. suministro y colocación. Incluye: fletes, elevación materiales de fijación, mano de obra y herramienta.	pza.	1.00	415.03	415.03	0.665
Ventana prefabricada de aluminio de 1.20x1.20 m. suiministro y colocación. Incluye: fletes, elevación materiales de fijación, mano de obra y herramienta.	pza.	4.000	237,45	949.80	1.523
Ventana prefabricada de alumínio de 0.80x0.60 m. suministro y colocación. Incluye: fletes, elevación materiales de fijación, mano de obra y herramienta.	pza.	2.000	120.78	241.56	0.387
Puerta de 2.10x0.80 m, fabricada a base de perfiles tubulares de lámina calibre 18, incluye: hechura, pintura anticorrosiva, esmalte, vidrio y colocación.	pza.	1.000	621.53	621.53	0.997
Sum. y coi. de puerta (0.90x2.10) de pino la 6mm y marco de madera d epino. Incluye:	pza.	3.00	621.95	1,865.85	2.992
hechura, sellador, barniz y todo lo necesario para su terminación.					
	87				

Descripción del concepto	Unid.	Cantidad	P.U.	Importe	% Total
Sum. y col. de puerta (0.75 x 2.10) de pino 1º 6 mm y marco de madera d epino. Incluye: hechura, sellador, barniz y todo la necesario para su terminación.	Pza.	1.00	590.45	590.45	0.947
			Subtotal	5,401.17	8.660
0 8 INST. DE GAS					
Salida de gas a estufa y calentador, incluyen: pruebas de fugas	sal.	2.000	154.00	308.00	0.494
			Subtotal	308.00	0.494
09 LIMPIEZA					
Limpieza general de vivienda. Incluye: Pisos, muros, lote, muebles, accesorios, puertas, techos y vidrios.	lote	1.000	394.28	394.28	0.632
			Subtotal	394.28	0.632
			Total	62.370.17	100,000

DE

MEXICO

NACIONAL

UNIVERSIDAD

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

enep acatián
DESCRIPCION: CUANTIFICACION DE RECURSOS. SISTEMA TRADICIONAL

ingenieria civil

Descripción del concepto	Unid.	Cantidad	Costo	Importe	% Total
Cemento plástico	ito.	38.520	3	115.56	0.185
Teja asfáltica	m2	111.708	14	1563.91	2.507
Madera pino 1ª	pza	5	75	375	0.601
Agua	m:3	9.769	5.50	53.73	0.086
Cemento gris tipo normal	ton	14.104	359	5063.34	8.017
Cemento blanco	ton	0.084	563	47.29	0.176
Calhidra	ton	0.014	250	3.50	0.006
Yeso	ton	3.853	192	739.78	1.186
Pegazulejo	kg	107.70	0.5	53.85	0.086
Arena	m3	24.317	38	924.05	1,481
Grava	m3	20.478	38	778.16	1.248
Granzón	m3	1.954	25	48.85	0.078
Agua	m3	13.764	. 5	68.82	0.010
Acido muriático	Ito	5	4	20.	0.032
Detergente	kg	5	2.25	11.25	0.018
Tepetate	m3	21.775	27.30	594.46	0.953
Acero de refuerzo #2	kg	330.507	1.35	446.18	0.715
Acero de refuerzo #3	kg	937.585	1.26	1181.36	1.894
Acero de refuerzo #4	kg	562.333	1.26	708.84	1.136
Malia electrosoldada 6-6/10-10	. m2	74.569	2.15	160.32	0.257
Alambre recocido	kg	113.548	1.85	210.06	0.237
Triplay de pino de 2º 19 mm.	m2	39.179	28.50	1016.60	1.79
Madera de pino 2º	pt	489.535	1.80	881,52	1.413
Clavo	kg	27.293	2.10	57.32	0.0292
Diesel	lto	156.715	1.20	188.06	0.310
Tabique rojo recocido de 6 x 13 x 26 cms.	ជារា	5,242	330	1729.86	2.773
Loseta Interceramic 30x30	m2	48.950	57.83	2830.78	4.538
Azulejo 9 cuadros de 11x 11	m2	3.402	28.50	96.96	0.055
Azulejo liso blanco de 11x11	m2	19.215	29	557.24	0.893
Vaportite 550	lto	25.700	6.60	169.62	0.272
Polietileno Nº 600	m2	16.062	2	32.13	0.052
Curacreto	lto	101,525	4.50	456.86	0.732
Material de cosumo	%	1	115.79	115.79	0.186
Taquetes	pza	40	0.12	4,80	0.008
Tornillos	pza	40	0.12	4.80	0.008
Material de consumo de carpinteria	%	1	129.75	129.75	0.2802
Chapa Phillips Mod. 715	pza	4	25	100	0.280
Cerradura Phillips Mod. 550 J-M	pza	1	120	120	0.192
Cerradura Phillips Mod. 510 M-M	pza	1	111	111	0.178
Interruptor de seguridad de dos polos	pza	1	65	65	0.104
Tablero de control QO-2F	pza	1	30.60	30.60	0.49
Foco de 75 a 100 watts	pza	8	1:05	8.40	0.013

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO enep acatlán
DESCRIPCION: CUANTIFICACION DE RECURSOS. SISTEMA TRADICIONAL

Descripcion del concepto	Unid.	Cantidad	Costo	Importe	% Total
Cable tipo THW cal 12 Condumex	ml	207	0.88	182.16	0.292
Cable tipo THW cal 10 Condumex	ml	82.20	1.28	105.22	0.169
Cable tipo THW cal 8 Condumex	ml	1	2.10	2.10	0.003
Cable tipo THW cal 6 Condumex	mi	0.30	3.16	0.95	0.002
Tubo poliducto de 13 mm ø	ml	87.49	0.59	51.62	0.083
Tubo poliducto de 19 mm ø	·ml	5	0.68	3.40	0.005
Tubo poliducto de 25 mm ø	ml	0.250	1.27	0.32	0.001
Curvas de poliducto de 13 mm	ml	8	0.23	1.84	0.003
Soquet	Pzas	8	1.36	10.88	0.017
Caja de conexión cuadrada de 10x10	Pzas	8	1	8	0.013
Caja de conexión tipo chalupa	pzas	24	0.62	14.88	0.024
Tapa de 1 a 3 unidades	pzas	24	1.78	42.72	0.068
Apagador sencillo	Pza	8	1.63	13.04	0.021
Contacto sencillo	pzas	16	1.64	26.24	0.042
Tubo de Cu tipo L de 13 mm ø	ml	14	6.790	95.06	0.252
Tubo flexible de Cu de 10mm de ø	mi .	320	2.20	7.04	0.011
Válvula de paso para gas de 13 mm	pza	4	. 14	56	0.090
Tubo de Cu tipo M de 13 mm	ml	16	4.36	69.76	0.0112
Tuba de Cu tipo M de 19 mm	ml	5	7.08	35.40	0.057
Codo de cobre de 90º x 13 de ø	ml	14	0.41	5.74	0.159
Codo de cobre de 90º x 19 de ø	ml :	1 1	0.96	0,96	0.002
Cople de cobre de 13 mm	pza	14	0.48	6.72	0.,011
Reducción Bush de Cu de 13 mm de ø	pza	1	0.33	0.33	0.001
Tee de Cu de 13 mm de ø	pza	5	0.77	3.85	0.0006
Tee de Cu de 19 mm de ø	pza	.40	1.76	0.70	0.001
Tapón caja tapa de Cu de 13 mm	pza	4	0.52	2.08	0.003
Llave nariz de bronce	pza	4	6.11	24.44	0.0139
Tubo de PVC de 40 mm de ø	mi	9.1	1.92	17.28	0.028
Tubo de PVC de 100 mm de ø	ml	10	6.15	61.50	0.099
Codo de PVC de 90°x40mm de ø	ml	5	1.10	5.50	0.009
Codo de PVC de 90°x100mm de ø	mi	4	4.03	15.12	0.026
Codo de PVC de 45ºx40mm de ø	ml	1	1.43	1.43	0.002
Reducción de campana de 100 x40	pza ·	4	8.65	34.60	0.055
Cespol coladera de PVC	pza	2	4.50	9	0.014
Cespol bote de PVC con rejilia	Pza	2	7.21	14.42	0.023
Lavabo en Vitromex modelo clavel	pza	1 .	137.95	137.95	0.221
Inodoro Vitromex modelo Troyano	pza	1	239.80	239.80	0.384
Lavadero de concreto de 0.80x0.70	pza	1	20	20	0.032
Accesorios para baño Vitromex	Jgo	1	45.90	45.90	0.074
Botiquin	Pza	1	37.72	37.72	0.060
Mezcladora sencilla Rugo No 24	Pra	1	41.37	41.37	0.066
LLaves cromadas Rugo Nº 16	pza	. 1	17	17	0.027

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO enep acatlán DESCRIPCION: CUANTIFICACION DE RECURSOS. SISTEMA TRADICIONAL

Descripción del concepto	Unid.	Cantidad	Casto	Importe	% Total
Regadera marca Helvex	pza	1	36	36	0.058
Fregadero de acero inox	pza	1	54.20	54.20	0.087
Pintura vintlica Vinimex	lto	21.056	9.68	208.03	0.334
Pintura esmalte ICI	lto	10.328	10.16	104.93	0.168
Sellador vinílico	lto	56.012	8.18	458.18	0.735
Ligatirol	lto	18.690	8.50	158.87	0.255
Grano de marmol fino y grueso	ton	0.252	230	57.96	0.093
Pasta texturi de comex	lto	204.412	5.05	1032.28	1.655
Dow Corning	pza	2,40	14	33.60	0.054
Ventana de aluminio anodizada de 1.20x1.20	pza	4	205	820	1.315
Ventana de aluminio anodizada de 2.40x1.20	pza	2	100	200	0.321
Ventana de aluminio anodizada de .80x0.60	pza	1	380	380	0.609
Puerta de 2.10 x 0.80 perfii tubular	pza	1	450	450	0.721
Puerta de 0.90 x 2.10 de pino de 1ª de 6mm	pza	1	450	450	0.721
Puerta de 0.80 x 2.10 de pino de 1ª de 6mm	pza	3	450	1350	2.164
Puerta de 0.75 x 2.10 de pino de 1ª de 6mm	pza	1	420	420	0.673
			Subtotal	29,660,49	47.551

(INIVERSIDAD encp acatlán descripcion: Cuantificacion de	NACIONAL E RECURSOS, SISTEMA T	AUTONO!	MA DI		CO nieria civil
Descripción del concepto	Unid.	Cantidad	Costo	Importe	% Total
MANO DE OBRA					
Ayudante general	Jor	100.235	41.16	4125.67	6.614
Albañil	Jor	116.792	72.04	8413.70	13.489
Aluminero	jor	1.250	72.04	90.05	0.144
Oficial azulejero	Jor	9.666	72.04	710.75	1.139
Cabo de oficio	јог	27.275	104.81	2858.69	4.583
Oficial carpintero de banco	Jor	1.666	72.04	120,02	0.192
Oficial carpintero de obra negra	Jor	15.672	72,04	129.01	1.810
Oficial electricista	Jor	5.750	72.04	414.23	0.664
Official fierrero	jor	28.075	72,04	222.52	3.242
Maestro de obra	lor	5.489	154.37	847.34	1.358
Peón	lor	173.535	40.52	731.64	11.273
Oficial pintor	, jor	5.540	72.04	399.10	0.640
Oficial plomero	lor	5	72.04	360.20	0.577
Topógrafo	lor	0.339	104.83	35.54	0.057
Oficial yesero	jor	26.40	72.04	1901.86	3.049
			Subtotal	30,460.32	48.833
HERRAMIENTA Y EQUIPO					
Herramienta menor	%	1	937.25	937.35	1.503
Andamios	%	1	303.90	303.90	0.487
Revolvedora de concreto	hora	18.703	12.28	229.67	0.366
Vibrador para concreto	hora	24.807	19.14	474.81	0.761
	_	13.558	10	135.58	0,217
	m3	13.550			
Camión de volteo de 7 m3	m3 hora	5.423	32.09	174.02	0.279
Camión de volteo de 7 m3			32.09 Subtotal	174.02 2,255.23	
Camión de volteo de 7 m3 Nivel automático					
Camión de volteo de 7 m3 Nivel automático RESUMEN POR INSUMOS					
Camión de volteo de 7 m3 Nivel automático RESUMEN POR INSUMOS Materiales Mano de obra	hota	5.423	Subtotal		0.279 3.616

C/	PRELIMINARES 1,130.82																																										
DES	CRIPCION: CASA-HA	BITACION.	5 i	51	rE	¥.	A	т	R	AC	10	21	0#	A	L							8	ne	9)	a	CO	ıt	l	36	1		i	n	96	91	1i	0	ri	a	C	iv	il
ટ્ટ	Partida	Costo					1	0	l					_		I	٨	A	9:	3	C	2	2	_		_				N	10	8	5	():	3							
01	PRELIMINARES	1, 130.6z	Ŧ	I		Π	I									Ţ										I					I		I					Ī	П	Π	\prod_{i}	T	
02	CIMENTACION	17,354.50			I	I	Ī		n		Ī		Π	I		I					Ī					I				Ī			I					Ī				T	\prod
03	ESTRUCTURA	31,922.44					Ī				T		H			ļ	ļ	ľ	H		ļ	1	H	H	H	I			I	Ī			Ī		I		\prod	Ī	\prod				П
04	ACAB ADOS	27,662.20	I		I	I	Ī			I	1		I		1	Ī			1				H	H	H	H	H	Ŧ		ľ	Ī	H	Ī	I	Ī	1	$\ $			Ĭ	1	T	
05	INST. ELECTRICA	1, 970.28				1	Ī	1			Ī		$\ $	Ī			4	H	1	Ï			H	H	H	ľ	I	Ī		ľ	1		I		I		I	Ī		$\ $		I	1
06	INST. HICROSANITARIA	2,278.08	I		I	I	Ī	I	١		ļ	H	ļ	H	ļ	ļ	H	Ì	H	H	1		ļ	H	H	Ħ	H	ļ	H	Ī	1	H	Ī		ij		I	T	Ī	I	1	Ī	I
07	VENT. Y CARP.	7,901.91		1		I	1	1	I	ľ	ı	I	I	I	-	Ì	H	I	I	I	t		ľ		I	I	I	t		t		H	ł	H	ij		Ħ		I	I		İ	
08	INST. DE BAS	450.60					T																			I							I										
09	LIMPIEZA	570.83																					H			I		I	I	I			l		I		\llbracket	I					
	TOTAL	91, 247.56		60	154	ŀ	94	1. 8	,	7,2	43	.5	Ļ	28	43	ŀ	V.	12.	×	3,6	42	30	Ĺ	00	75	k)O	2.00	4	44	28	48	ŀ	1,4	26	.15	Γ	_]	_	_	_
_			_	_	_	_	_	_		_	•	-		-		-				_			_		_		_	τ.		Ξ	Ξ	ī.	=		-	-	ភ	_	7	Ξ	_	_	_

duración: 60 dias

4.3 RESULTADOS

El propósito fundamental de este punto es mostrar como se comporta el sistema de paneles MICSA con respecto a un sistema convencional comparando los dos presupuestos desarrollados en el punto anterior.

Primero se hará una comparativa en cuanto al costo directo:

Sistema MICSA sistema convencional NS 55.352.17 NS 62.370.17

El sistema Micsa fué más económico en un 11.30% con respecto al sistema convencional.

La distribución de insumos:

Monto a costo directo

	sistema MICSA	sistema convencional
materiales	N\$ 35,950.24 - 64.935%	N\$ 29,660.49 - 47.551
mano de obra	N\$ 18,063.71 - 32.626%	N\$ 30,460.32 - 48.833
herr. y equipo	N\$ 1,349.44 - 2.437%	N\$ 2,252.26 - 3.616

N\$ 55,352.44 - 2.437% N\$ 62,370.17 - 100%

Enseguida se analizarán los dos casos por partida:

Preliminares:

	sistema MICSA	sistema convencional
Monto a C.D.	NS 772.81	NS 772.81

En esta primera partida del proceso no cambian los costos ya que se maneja la misma cantidad de obra.

Cimentación:

sistema MICSA sistema convencional Monto a C.D. N\$ 5,554.21 N\$ 11,862.33

Esta partida resulta más economica la cimentación del sistema MICSA en un 53.20% con respecto a la otra desarrollada; esto se debe a que hay peso menor de un 70% en la contrucción con el sistema MICSA, por lo que se requiere de una menor cimentación.

Estructura:

	sistema MICSA	sistema convencional
Monto a C.D.	NS 19,524.21	NS 21,819.85

En ésta partida del sistema Micsa es un 10.50% más barata que la estructura del sistema tradicional. Aquí se podría subdividir la partida para tener una mejor idea de la variación.

	Costo de 132.87 m ²	Costo/m ²
Muro MICSA (accesorios y paneles)	N\$ 11.642.30	N\$ 87.60
Muro Convencional	110 11,042.50	110 07.00
(tabique, castillos,	NA 11 700 FO	*** ***
columnas y cerr.)	N\$ 11,796.50	. N\$ 88.80

El muro con el sistema MICSA es menor su costo en 1.3% que el muro convencional.

•	Costo de 77.04 m ²	Costo/m ²
Losa MICSA		
(accesorios, paneles y capa de compresión) Losa tradicional	N\$ 7,881.80	N\$ 102.30
(losa de concreto armado y trabe)	N\$ 10,023.40	N\$ 130.10

La losa MICSA cuesta menos que la losa tradicional en 21.4% por lo que se verifica que la diferencia del costo en la estructura repercute principalemnte en la losa.

Acabados:

	sistema MICSA	sistema convencional
Monto a C.D.	N\$ 20,493.72	N\$ 18,907.86

La diferencia es de un 7.7% en favor del sistema tradicional; esto se debe a que los muros y plafones del sistema MICSA están formados por lámina galvanizada como refuerzo,

de allí que no haya adherencia de las pastas o repellador; por lo que es necesario adicionarle metal desplegado, tela de gallinero o algún adhesivo para una mejor calidad de terminación; por lo consiguiente baja un poco el rendimiento del oficial por la colocación del adhesivo con respecto al sistema tradicional.

Instalación eléctrica:

Monto C.D.	sistema MICSA N\$ 1,346.74	sistema convencional N\$ 1,346.74
Instalación hidrosanitaria Monto a C.D.	N\$ 1,557.13	N\$ 1,557.13
Ventanería y carpintería Monto a C.D.	N\$ 5,401.17	N\$ 5,401.17
Inatalación de gas Monto a C.D.	N\$ 308.00	N\$ 308.00
Limpieza Monto a C.D.	N\$ 394.28	N\$ 394.28 ·

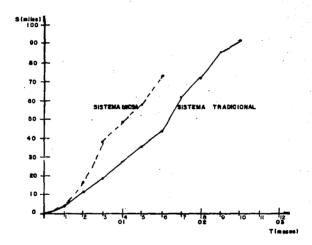
En estas cinco últimas partidas los montos a C.D. no cambian ya que se desarrollaron los mismos conceptos y cantidad de obra de los presupuestos respectivos.

Respecto a los tiempos de ejecución el sistema MICSA tiene un periódo de 38 días mientras que el sistema tradicional su período es de 60 días dando una diferencia de 22 días.

La última comparación y muy importante, es el porcentaje de indirectos que maneja cada compañía para la construcción de la casa. La empresa Nacional de autoconstrucción trabaja este tipo de obras con 33% de indirectos. Mientras que la empresa Paneles estructurales MICSA ocupa un 20% de indirectos, debiendose esencialmente a lo siguiente:

Reduce los tiempos de ejecución.

Fabrican un 43.56% del material a ocupar.


La calidad de obra es menor.

Por lo que el gran total de obra terminada es:

		sistema MICSA		Sistema convencional
C.D.		N\$ 55,352.07		N\$ 62,370.17
Indirecto	20%	N\$ 11,070.41	33%	N\$ 20,582.16
costo total		N\$ 66,422.48		N\$ 82,952.33
IVA	10%	N\$ 6,642.25	10%	N\$ 8,295.23
Gran Total		N\$ 73,064.73		N\$ 91,247.56

Dando como resultado final que la obra terminada con el sistema MICSA es un 19.93% más económica que la obra terminada con el sistema tradicional.

GRAFICA: costo - tiempo

CONCLUSIONES

En la actualidad el uso de sistemas de prefabricación van teniendo mayor demanda por parte de particulares y por instituciones públicas, ya que estos logran abatir el costo y el tiempo con respecto a los sistemas convencionales, por lo que hoy son de buena aceptación principalmente en viviendas de interés social.

El sistema de panel estructural ligero prefabricado MICSA, es un producto elaborado a base de poliestireno expandido y reforzado con lámina galvanizada; el cual gracias a sus características y proceso constructivo, cumple con los reglamentos y normas de cosntrucción. Este sistemaaún no tiene el auge debido ya que la gente todavía lo desconoce o en su defecto no le tiene confianza; por lo que prefiere construir con sistemas tradicionales.

Por lo que corresponde a su proceso de contrucción, este no requiere de personal especializado para su montaje, ni de gran supervición técnica; por el contrario puede llegar a tener un proceso de autoconstrucción (varias personas ya lo han experimentado), aparte de que no necesita de un departamento especial.

En lo concerniente al costo y tiempo que requiere este sistema para su ejecución; se desarrolló y verificó que con respecto a un sistema convencional cuesta un 19.9% menos se construye en 22 días menos.

Desde un punto de vista muy particular el sistema MICSA puede ser ocupado para eregir casas de un nivel o en su defecto para ampliaciones de viviendas, oficinas, bodegas, etc.

En cuestión de edificios de oficinas o habitacionales se recomendaría el uso solo como losa de azotea combinada con otro sistema.

De todo lo dicho anteriormente respecto al sistema MICSA, este puede llegar a tener los resultados deseados; si se lleva a cabo el proceso constructivo dentro de los pasos indicados; sino es así, pueden llegar a perder gran parte de las ventajas que este ofrece.

Esta es la terminación de un trabajo que tal vez pueda llegar a servir a alguien que esté interesado en la fabricación o le ayude para tener una mejor idea de lo que existe hoy en día como alternativa en la construcción.

VOCABULARIO

Abatir.- Hacer que el costo de un producto o trabajo baje.

Armazón.- Ensamblaje de piezas, formada para servir de base al definitivo.

Bosquejo.- Breve descripción superficial de algo.

Capilaridad.- Conjunto de fenómenos relacionados con la tensión superficial de los

líquidos y su comportamiento.

Cohesión.- Es la adherencia o unión de cosas entre si.

Cuantitativa. Es lo referente a la calidad de cosas o efectos.

Desplame.- Limpiar y quitar hierbas de un terreno para su posterior uso.

Ebullición.- Vaporización que se produce en toda la masa de un líquido.

Infraestructura.- Nombre colectivo que se aplica a todo el material que no cambia

de posición.

Lastre.- Conjunto de sacos que se colocan para afirmar una cosa cargándola.

Modular.- Arregiar progresivamente cosas respecto a algo indicado.

Nervadura.- Moldura saliente que cumple una función estructural.

Optimizar,- Buscar la mejor manera de realizar una actividad.

Polímero.- Macromolécula formada por la reacción de moléculas elementales.

Postensado.- Cuando el elemento se tensa después de colada la pieza.

Presforzado.- Elementos que son hechos en planta o a pie de obra más ligeros

que los reforzados.

Pretensado.- Cuando se pone el elemento en tensión antes de ahogar la pieza en concreto.

Ramaleo.- Parte que arrança de una línea principal y ésta a su vez se divide

en varias líneas.

Resina.- Sustancia sólida o de consistencia pastosa insoluble en el aqua

capaz de arder en el aire.

Sotofondo.- Poner una capa de material antes del terminado principal.

BIBLIOGRAFIA

Normas y costos de construcción, tomo I, II y III. Alfredo Plazola C. Ed. LIMUSA

Catálogo de panel estructural ligero prefabricado "MICSA". Paneles estructurales Micsa S.A. de C.V.

Reporte técnico del comportamiento estructural del panel MICSA. IMCYC

Folleto de tejada asfáltica CIA. Industrial de Mexicali.

Manual de impermeabilizantes.

FESTER

Catálogo I concurso nacional de tecnología para la vivienda de interés social. SEDESOL.

La prefabricación y la vivienda en México. Héctor Ceballos. Centro de investigaciones arquitectonicas.

Aplicaciones del plástico en la cosntrucción. Juan de Cusa. Ed. CEAC.

Prefabricados de vivienda. K. Berndt. Ed. Blume.

Prefabricados de hormigón. M. Paya Peinado. Ed. CEAC.

Los plásticos en la cosntrucción. Hansjurgen Saechtling. Ed. Gustavo Gili.

Materiales plásticos y arquitectura experimental A. Quarmy.
Ed. Gustavo Gili.

Productos prefabricados de concreto.

J. G. Richardson.

IMCYC.

Estimación de los costos en la construcción. R. L. Peurifoy. Ed. DIANA

Costos de construcción, pesada y edificación Tomo I, II y III Leopoldo varela alonso Ed. Compuobras.

Diccionario SALVAT. SALVAT editores.